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Preface

Recently, there has been considerable progress in cardiac image analysis techniques,
cardiac atlases, and computational models, which can integrate data on heart shape,
function, and physiology from large-scale databases. Integrative models of cardiac
function are important for understanding disease, evaluating treatment, and planning
intervention. However, a significant clinical translation of these tools is constrained by
the lack of complete and rigorous technical and clinical validation as well as by
benchmarking of the developed tools. For doing so, common and available ground-truth
data capturing generic knowledge on the healthy and pathological heart are required.
This knowledge can be acquired through the building of statistical models of the heart.
Several efforts are now established to provide Web-accessible structural and functional
atlases of the normal and pathological heart for clinical work, research, and educational
purposes. We believe all these approaches will only be effectively developed through
collaborations across the full research scope of the imaging and modelling communities.

STACOM 2015 was held in conjunction with the MICCAI 2015 conference (Munich,
Germany) and followed the past five editions: STACOM 2014 (Boston, USA), STA-
COM 2013 (Nagoya, Japan), STACOM 2012 (Nice, France), STACOM 2011 (Toronto,
Canada), and STACOM 2010 (2010, Beijing, China). Our main goal is to provide a
forum for the discussion of the latest developments in the areas of statistical atlases and
computational imaging and modelling of the heart. The topics of the workshop include:
cardiac image processing, atlas construction, statistical modelling of cardiac function
across different patient populations, cardiac mapping, cardiac computational physiology,
model customization, image-based modelling and image-guided interventional proce-
dures, atlas-based functional analysis, ontological schemata for data and results, inte-
grated functional and structural analyses, as well as the pre-clinical and clinical
applicability of these methods. STACOM 2015 drew many submissions from around the
world, with 23 papers finally accepted for presentation at the workshop. Beside regular
contributions on various topics (e.g., state-of–the-art cardiac image analysis techniques,
atlases, and computational models that integrate data on heart shape, function, and
physiology from large-scale databases), additional efforts of this year’s workshop
focused on a statistical shape modelling challenge, briefly described here.

In addition to the papers presented, two keynote lectures were included in the
program of STACOM 2015: Dr. Graham Wright of Sunnybrook Research Institute,
University of Toronto (Canada), whose talk focused on “MRI for Guiding Ventricular
Arrhythmia Management,” and Dr. Mark Potse of Inria Bordeaux (France), who pre-
sented “Patient-Tailored Heart Models as a Diagnostic Modality.”

Statistical shape modelling challenge: Statistical shape modeling is a powerful tool
for visualizing and quantifying geometric and functional patterns of variation in the
heart. Biologically, the heart exhibits great anatomical and functional variation making
the encoding of these differences an interesting challenge in itself. After a myocardial
infarction, the heart remodels in response to physiological challenges. The 2015



STACOM LV statistical shape modelling challenge was designed to test the hypothesis
that a probabilistic model of the left ventricle can predict a patient’s disease status. The
goals of this challenge were to (a) establish a statistical shape model from the set of 3D
shapes, and (b) develop an optimal classifier to distinguish between normal or diseased
with myocardial infarct. Participants’ methods could be supervised or unsupervised.
Classification accuracy, specificity, and sensitivity measures were reported. The chal-
lenge provided additional insight into the methods that best describe left ventricular
remodelling after myocardial infarction, attracting 11 participating groups, whose
detailed methods and results are included in these proceedings. A collation journal
paper including all results is planned in the near future. Preliminary results can be
found on the workshop’s website.

We hope that the results obtained by the challenge, together with all regular paper
contributions, will act to accelerate progress in the important areas of heart function and
structure analysis.

October 2015 Oscar Camara
Tommaso Mansi

Mihaela Pop
Kawal Rhode

Maxime Sermesant
Alistair Young
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Automated Model-Based Left Ventricle
Segmentation in Cardiac MR Images

Sharath Gopal(B) and Demetri Terzopoulos

Computer Science Department, University of California, Los Angeles, USA
sharath@cs.ucla.edu

Abstract. We present a fully automated system for segmenting the Left
Ventricle (LV) in cardiac MR images based on statistical and deformable
models. A Project-Out Inverse Compositional Active Appearance Model
of 3D LV shape produces segmentations that are refined using a unified
statistical/deterministic deformable model. A new multi-scale detector,
based on the Histogram of Oriented Gradients (HoG), produces initial
estimates of LV position and scale in the MR volume. The performance
of the HoG detector and the deformable-model-based segmentation com-
ponents are evaluated on the 30 MICCAI Grand Challenge test images.
The average F-measure for detector bounding box overlap is 0.89. The
average F-measures for contour overlap are 0.80 (endo), 0.82 (epi), and
0.46 (myocardium).

1 Introduction

Left Ventricle (LV) segmentation in cardiac Magnetic Resonance (MR) images is
a well-studied problem [14] that is clinically important in cardiac function analy-
sis. Even though much research has been reported, full automation of accurate
LV segmentation remains a challenge [16]. A fully automated system should
be able to produce good LV shape reconstructions in the presence of moderate
noise, intensity inhomogeneities, partial volume effects, patient motion misreg-
istrations, and other cardiac MR imaging artifacts that can be detrimental to
image analysis algorithms. In this work, we introduce a system that achieves the
automation goal with as few assumptions as possible.

The key algorithms/components employed by our system and our main moti-
vations for including them are as follows: A Project Out Inverse Compositional
(POIC) Active Appearance Model (AAM) [11] underlies a model-based segmen-
tation procedure and a unified statistical/deterministic deformable model refines
the performance of the AAM. Due to the sensitivity of most optimization-based
segmentation algorithms to model initialization, a good initial estimate of LV
position and scale can help avoid convergence on sub-optimal local extrema.
To provide good estimates, we propose a new multi-scale LV detector based on
the Histogram of Oriented Gradients (HoG) [4].

c© Springer International Publishing Switzerland 2016
O. Camara et al. (Eds.): STACOM 2015, LNCS 9534, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-28712-6 1



4 S. Gopal and D. Terzopoulos

2 Position and Scale Estimation

2.1 Multi-scale HoG Detector

Multi-scale HoG detectors are trained to estimate the position and scale of the
LV in image slices from the base to the apex of the heart. The change in scale
and appearance of the LV myocardium from the base to the apex is the main
reason for having 3 different detectors (of 3 different scales) that are trained on
basal, mid, and apical regions (Fig. 1).

Given a patient’s image volume as a training case, it is first divided into
3 sets of slices from base to apex. For each of the 3 slice sets, a HoG feature
vector (L2 norm block normalization) is computed on every slice in that set
and fed to a Support Vector Machine (SVM) classifier (linear, C = 1) [1] as
positive training cases. Negative training cases are obtained by computing the
HOG feature vector in the background of the slice in the respective set. The
details of each HoG descriptor are given in Table 1.

Given a new patient’s MR image slices, a sliding window detection algorithm
is used to obtain a final bounding volume across the slices (Fig. 2). The algo-
rithm’s post-processing steps, listed in Procedure 1, deal with Non-Maximum
Suppression (NMS), estimating the basal and apical slices, and finally choosing
a combination of bounding boxes (BBs) that are better “aligned” along the LV
longitudinal axis. The final output of this procedure is a set of BBs (each with
its own size/scale), from the basal slice p to the apical slice q, which have been
registered to remove any slice misregistration due to patient motion or breathing.

The volume bounded by the BBs provides an estimate of the position and
scale of the LV in the images. The central line of the LV is the line through the

Fig. 1. HoGs visualized for Base (left), Mid (middle), and Apex (right) regions.

Table 1. HoG Feature Descriptors

Detector Region Box Size Block Size Cell Size Block Stride Bins

Db Base 80× 80 10× 10 5× 5 5 9

Dm Mid 60× 60 6× 6 3× 3 3 9

Da Apex 42× 42 6× 6 3× 3 3 9
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Procedure 1. Left Ventricle Detector
Input: Image slices 1, 2, . . . , N
Output: Bounding box for each slice in range p − q, (p < q and 1 ≤ p and

q ≤ N), where p and q are the estimated basal and apical slices.
1 Compute SVM score masks MD = (m1, m2, . . . , mN ) using sliding window

detection for all detectors D ∈ (Db, Dm, Da) across all N slices.
2 Compute a candidate BB set C = (c1, c2, . . . , cN ), where ci : i ∈ (1, 2, . . . , N) is

the candidate set of BBs for slice i, by performing NMS on MDb, MDm, and
MDa score masks using an overlap threshold ε.

3 Set p to the smallest slice number such that candidate sets c1, c2, . . . , cp−1 are
empty. Similarly, set q to the largest slice number such that candidate sets
cq+1, cq+2, . . . , cN are empty. If any set from cp to cq is empty, then fill them
with averages of the BBs from neighboring slices.

4 Compute “scatter” scores for all possible combinations of BBs in the sets
cp, cp+1, . . . , cq. For a given combination of BBs, Bp, Bp+1, . . . , Bq, the scatter
score is the sum of the 2 eigenvalues of the covariance matrix of the Gaussian fit
to the 2D centers of the BBs. Select the combination with the least scatter score.

5 Register the slices p to q such that the centers for the final BBs line up along
the longitudinal axis of the volume.

Fig. 2. Volume showing LV and detected bounding boxes.

center of each BB, from slice p to q, along the longitudinal axis. An approximate
scale can be obtained by first producing a rough LV shape from the BBs, where
2 concentric circles (endo and epi) are placed within each BB at each slice in
the range p–q. The epi contour is just the inscribed circle for the square BB.
The endo contour has to be estimated from the quantity of pixels that belong
to the blood pool. To do this in a principled way, we collect the intensity of
all the pixels enclosed by the BBs across all slices, and fit a Gaussian Mixture
Model (GMM) [3] with two modes. This GMM is subsequently used to classify
the pixels as either blood pool or myocardium. The ratio of endo and epi contour

radii is given by rendo

repi
=

√
Abp

Atotal
, where Abp is the number of pixels labelled as

blood pool, and Atotal is the total number of pixels inside the BB.
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Using this approximate LV shape t ∈ Rn as the target shape, and given
another LV shape m ∈ Rn that needs to be scaled by a factor k, we can minimize
the following cost function:

arg min
k

‖t − km‖2 (1)

The minimizer is k = mT t/‖m‖2. These initial estimates of position and scale
are crucial for a segmentation system to be fully automated and less susceptible
to suboptimal local minima.

3 Segmentation

Segmentation of the LV has been studied under two main types of methods
based on the strength of the LV shape and appearance priors incorporated into
the models [14]. On the one hand, deformable models [12] and pixel/image-
based models [10] incorporate weak or no priors. On the other hand, statistical
deformable models such as Active Shape Models (ASMs) and Active Appear-
ance Models (AAMs) (see, e.g., [6,7,13,17]) include strongs priors learned via
Principal Components Analysis (PCA). Below we describe the use of the Project
Out Inverse Compositional (POIC) approach [11] to building a strong prior for
the 3D shape and appearance of the LV in cardiac MR images. Subsequently,
we describe a unified deformable model to further refine the estimates obtained
from the AAM.

3.1 Project Out Inverse Compositional 3D AAM

AAMs learn linear models of shape and appearance variation. They are classi-
fied as Combined AAMs [2] or Independent AAMs [11] based, respectively, on
whether or not they have a common set of parameters that control both shape
and appearance. POIC is an Independent AAM, which we use to train linear
models of shape and appearance on aligned (by Procrustes analysis) 3D shapes
of LV, and shape-normalized appearance sampled cardiac MR image informa-
tion within the 3D LV shape. PCA on such training data yields the following
generative models of shape s and appearance g:

s = s̄ + Psbs, (2)

g = ḡ + Pgbg. (3)

The appearance model is trained by warping the training shapes to the
base/mean shape s̄ using piecewise affine warping on the tetrahedral 3D tes-
sellation.

Given a new set of images I(x), the fitting process involves a Gauss-Newton
minimization of the following non-linear cost function (error image), with respect
to the parameters bs and bg (with reduced dimensions):

‖ḡ + Pgbg − I(W(x;bs))‖2. (4)
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The ability to precompute the steepest descent images and the Hessian, makes
POIC an efficient algorithm.

3.2 Unified Statistical/Deformable Model

The above AAM provides an estimate of the LV shape by linearly combining
deformation modes with coefficients bs. Since this is a limited set of orthonormal
modes, the actual solution might not be present in the subspace spanned by
them. It can be challenging to obtain accurate segmentation estimates with just
an AAM. Therefore, to further refine the segmentation, we employ a variant of
the Unified Statistical/Deterministic deformable model [7].

The model’s geometry consists of a 3D deformable “skin” superimposed on a
reference PCA shape (as in the POIC (2)). The skin is composed of spring-edged
cuboids (12 springs) that impose elastic/structural constraints on neighboring
nodes present on the endo and epi surfaces. Applying Lagrangian dynamics, the
model is then made dynamic with respect to its parameters, thus yielding the
following (massless) equations of motion:

Cq̇ + Kq = fq, (5)

where q̇ is the time derivative of the vector q of degrees of freedom (DOF) of the
model, which includes the pose parameters, PCA parameters, and displacement
parameters of the skin from the PCA reference shape, Cq̇ are damping forces,
Kq are internal elastic forces, and fq are image gradient-based external forces
applied to the model. The stiffness matrix K can be assembled “element-wise”

by using the spring element matrix
[

k −k
−k k

]
, where k is the spring stiffness,

which can be tuned to control the elasticity of the skin that deforms away from
the reference shape under the influence of external forces. Finally, we initialize
the PCA parameters in q to the values obtained from the POIC AAM fitting
algorithm and explicitly time-integrate the above equations of motion under the
influence of the image forces [7] that pull the skin towards nearby image intensity
edges.

4 Results

The MICCAI Grand Challenge dataset [15], consisting of short-axis (SA) image
slices for 15 training and 30 test cases, was used to train and test the HoG
detector and the deformable-model-based segmentation components. Each of the
45 cases contains ground truth epicardial (epi) and endocardial (endo) contours
for the end-diastolic (ED) phase, and just the endo contours for the end-systolic
(ES) phase. We evaluate our system on the ED phase only. The C++ SVM
implementation in LibSVM [1] was used for the HoG detector, and the MLPACK
[3] implementation of GMM was used for labelling the BB pixels. We tested the
three Linear SVMs (C = 1) of the HoG detector on the 30 cases by using an
overlap threshold ε = 0.5 for the NMS step. We used 8 shape modes for the
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Fig. 3. Top 2 rows: POIC-AAM only. Bottom 2 rows: POIC-AAM + Refinement

POIC AAM and a spring constant k = 0.5 for the unified model. Except for
assuming that the ED phase is known and the slices 1, 2, . . . , N go from base to
the apex, all components of the system are fully automated.

For each of these 30 cases, we report in Table 2 the precision and recall
between the set of ground truth BBgt and the estimated BBest bounding boxes,
which are calculated as Recall = BBgt∩BBest

BBgt
and Precision = BBgt∩BBest

BBest
(these

are computed for the whole volume). For convenience, we also report in the table
the F-measure (harmonic mean of precision and recall) for each case. Similarly,
we evaluate the segmentation accuracy by computing the above 3 metrics with
respect to overlap of areas for EPI (pixels inside the epi contour), ENDO (pixels
inside the endo contour), and MYO (pixels in-between epi and endo contours).

The average F-measure for the detector BB overlap is 0.89. This shows that
the detection system, as described in Procedure 1, is able to get good estimates
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Fig. 4. Overlap of ground truth and estimated myocardial pixels (MYO) across slices.
TP (yellow), FP (green), FN (red) and TN (black) (Color figure online).

of position and scale of the LV in the MR volume. The average F-measures for
contour overlap are 0.80 for endo, 0.82 for epi, and 0.46 for myocardium. The
potential refinement of the unified deformable model can be seen in Fig. 3 for
the case HC-HF-I-05, where POIC-AAM only estimates are compared with those
that have been further refined. We also show in Fig. 4, the myocardial overlap
masks for case SC-HF-I-09 (with F-measure - 0.91 for endo, 0.93 for epi, 0.64 for
myo). These images have been color coded to show the True Positive (TP), False
Positive (FP), False Negative (FN) and True Negative (TN) myocardial labels
obtained by overlaying the ground truth contours with the estimated contours.
The myocardial F-measure is a good indicator of closeness between the estimated
LV shape and the ground truth LV shape. It can be very challenging to get a high
MYO F-measure due to the high degree of accuracy expected of a segmentation
system on the test dataset.

To further investigate the performance, we measure the region-wise (base,
mid, apex) contour overlap with respect to the ground truth contours (Recall).
The average Recall for the base, mid and apex regions are as follows - endo (0.91,
0.89, 0.77), epi (0.90, 0.91, 0.81) and myo (0.50, 0.56, 0.43). These scores show that
our automated system performs better at the base and mid LV regions when com-
pared to the apex region. Dice coefficients and Average Perpendicular Distance
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Table 2. Precision (P), Recall (R), and F-Measure (F)

Detector ENDO EPI MYO

ID Case P R F P R F P R F P R F

1 SC-HF-I-05 0.82 0.99 0.90 0.81 0.88 0.84 0.81 0.89 0.85 0.55 0.63 0.59

2 SC-HF-I-06 0.91 0.96 0.93 0.98 0.86 0.92 0.99 0.83 0.90 0.72 0.55 0.62

3 SC-HF-I-07 0.93 0.95 0.94 0.96 0.69 0.80 0.98 0.64 0.77 0.30 0.17 0.22

4 SC-HF-I-08 0.89 0.98 0.93 0.97 0.84 0.90 0.96 0.89 0.92 0.62 0.64 0.63

5 SC-HF-NI-07 0.87 0.94 0.91 0.97 0.82 0.89 0.95 0.89 0.92 0.56 0.62 0.59

6 SC-HF-NI-11 0.93 0.95 0.94 0.77 0.84 0.80 0.77 0.88 0.83 0.52 0.65 0.58

7 SC-HF-NI-31 0.88 0.98 0.93 0.73 0.93 0.82 0.70 0.98 0.82 0.32 0.53 0.40

8 SC-HF-NI-33 0.93 0.91 0.92 0.84 0.80 0.82 0.85 0.84 0.85 0.52 0.54 0.53

9 SC-HYP-06 0.89 0.95 0.92 0.79 0.82 0.81 0.81 0.78 0.80 0.53 0.46 0.49

10 SC-HYP-07 0.90 0.90 0.90 0.60 0.97 0.74 0.71 0.97 0.82 0.35 0.38 0.37

11 SC-HYP-08 0.83 0.88 0.86 0.59 0.86 0.70 0.71 0.77 0.74 0.54 0.41 0.47

12 SC-HYP-37 0.89 0.84 0.86 0.50 0.90 0.64 0.64 0.79 0.71 0.47 0.37 0.42

13 SC-N-05 0.88 0.89 0.89 0.89 0.83 0.86 0.96 0.78 0.86 0.62 0.41 0.49

14 SC-N-06 0.93 0.85 0.89 0.70 0.89 0.78 0.69 0.96 0.80 0.39 0.61 0.48

15 SC-N-07 0.77 0.98 0.86 0.66 0.99 0.79 0.64 0.99 0.78 0.19 0.31 0.24

16 SC-HF-I-09 0.87 0.98 0.93 0.96 0.87 0.91 0.93 0.93 0.93 0.58 0.72 0.64

17 SC-HF-I-10 0.85 0.98 0.91 0.91 0.89 0.90 0.88 0.92 0.90 0.54 0.65 0.59

18 SC-HF-I-11 0.84 0.97 0.90 0.93 0.90 0.91 0.85 0.95 0.90 0.50 0.74 0.59

19 SC-HF-I-12 0.85 0.94 0.90 0.95 0.84 0.89 0.97 0.83 0.89 0.67 0.53 0.59

20 SC-HF-NI-12 0.87 0.98 0.92 0.92 0.90 0.91 0.88 0.96 0.92 0.52 0.69 0.59

21 SC-HF-NI-13 0.75 0.93 0.83 0.69 0.86 0.77 0.65 0.94 0.77 0.19 0.38 0.25

22 SC-HF-NI-14 0.82 0.97 0.89 0.52 0.85 0.65 0.57 0.85 0.68 0.36 0.48 0.41

23 SC-HF-NI-15 0.62 0.98 0.76 0.39 0.79 0.52 0.41 0.85 0.55 0.17 0.37 0.23

24 SC-HYP-09 0.78 1.00 0.88 0.58 0.95 0.72 0.52 0.96 0.68 0.21 0.47 0.29

25 SC-HYP-10 0.94 0.91 0.93 1.00 0.70 0.82 1.00 0.71 0.83 0.36 0.26 0.30

26 SC-HYP-11 0.89 0.91 0.90 0.42 0.95 0.59 0.50 0.97 0.66 0.25 0.40 0.31

27 SC-HYP-12 0.83 0.93 0.88 1.00 0.72 0.84 0.99 0.78 0.87 0.46 0.42 0.44

28 SC-N-09 0.87 0.97 0.92 0.86 0.94 0.90 0.84 0.95 0.89 0.59 0.73 0.65

29 SC-N-10 0.74 0.93 0.82 0.61 0.92 0.74 0.81 0.91 0.86 0.52 0.41 0.45

30 SC-N-11 0.75 0.98 0.85 0.70 0.97 0.81 0.80 0.95 0.87 0.46 0.44 0.45

Average 0.85 0.94 0.89 0.77 0.87 0.80 0.79 0.88 0.82 0.45 0.50 0.46

(APD) [15] were also measured for the test dataset. The dice coefficients were 0.87
and 0.89, and APD were 3.06 and 3.17 mm for endo and epi respectively. Results by
other works (such as [5,8,9]) are either reported on private datasets or they include
final averages for both ED and ES phases on the Grand Challenge dataset. Since
our method has been applied only to the ED phase, an objective comparison of
the final performance metrics will be hard.
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Many semi-automated and manual LV segmentation systems and algorithms
require some form of user interation, such as indicating the LV position in the
image by clicking in the middle of the blood pool or by drawing a circle around
it. As stated earlier, our main motivation for this work, is to build a system
that is fully automated and produces 3D LV shape estimates from patient MR
volumes with as few assumptions about the images as possible. Hence, we have
focussed our efforts on trying to automatically reconstruct LV shapes that are
close to the manually reconstructed LV shapes, without any clinical validation
for now. The use of such a system in a clinical setting for LV mass, volumes and
ejection fraction calculation requires automatically generated LV shapes for both
ED and ES phases. As future work, we plan to build a similar system that per-
forms temporal reconstruction of LV shapes, and also evaluate its accuracy and
parameter sensitivity on a larger dataset, such as the consensus-based database
of the Cardiac Atlas Project (CAP) [16].

5 Conclusion

We have presented a fully automated system to detect and segment the LV in
cardiac MR images. The system employs a HoG-based multi-scale detector to
obtain position and scale estimates of the LV in the MR volume. These estimates
are crucial for optimization-based segmentation algorithms (POIC-AAM and the
Unified Deformable Model), as they provide good initial model states that can
aid in converging to the globally optimum solution. We tested the performance of
our system on the 15 training and 30 test cases in the MICCAI Grand Challenge
dataset, reporting precision, recall, and F-measures for the bounding box overlap
and the contour overlap. The results show promise for the future use of such a
system in a clinical setting for the reproducible reconstruction of LV shapes,
without having to worry about any issues of inter- and intra-observer variability.
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Abstract. A major challenge for cardiac motion analysis is the high-
dimensionality of the motion data. Conventionally, the AHA model is
used for dimensionality reduction, which divides the left ventricle into
17 segments using criteria based on anatomical structures. In this paper,
a novel method is proposed to divide the left ventricle into homoge-
neous parcels in terms of motion trajectories. We demonstrate that the
motion-driven parcellation has good reproducibility and use it for data
reduction and motion description on a dataset of 1093 subjects. The
resulting motion descriptor achieves high performance on two exemplar
applications, namely gender and age predictions. The proposed method
has the potential to be applied to groupwise motion analysis.

1 Introduction

The evaluation of cardiac function involves assessing not only the anatomy of
the heart but also its motion [1,2]. Modern imaging modalities such as magnetic
resonance (MR) and ultrasound (US) provide a convenient way for visualisation
and analysis of cardiac motion. A major challenge for cardiac motion analysis
is the high-dimensionality of the image data, both spatially and temporally.
In order to reduce the dimensionality, the 17-segment model proposed by the
American Heart Association (AHA) is conventionally used to divide the image
data into regional segments using criteria based on anatomical structures [3].

For cardiac motion analysis, however, it is possible that certain regions with
unique motion signatures, e.g. regions with scars or other pathologies, may not
align with the pre-defined anatomical segments of the AHA model. In this work,
we propose to parcellate the left ventricle (LV) into a number of segments such
that each segment contains similar and consistent motion information. To the

c© Springer International Publishing Switzerland 2016
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Fig. 1. The flowchart consists of motion tracking, spatial normalisation and motion-
driven parcellation.

best of our knowledge, this is the first time that motion-driven parcellation is pro-
posed for the heart, although a similar idea, functional parcellation, has become
common for brain analysis [4]. Using a large dataset of cardiac MR images from
1093 subjects, we demonstrate that the parcellation has good reproducibility
and can be used to reduce data dimensionality and be applied to cardiac motion
analysis.

2 Methods

In this work, we are interested in the motion of the LV and parcellation is based
on the motion tracking results for the LV. We employ a group-wise parcellation
method, in which the motion fields of a large population are normalised onto a
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template surface mesh and then clustering is applied to the normalised motion
feature vectors of the vertices. Figure 1 illustrates the flowchart of the method
and we will explain each step in the following.

2.1 Data Description

The dataset used in this work consists of cardiac MR images of 1093 normal
subjects (493 males, 600 females; age range 19–75 yr, mean 40.1 yr). Cardiac
MR was performed on a 1.5T Philips Achieva system (Best, Netherlands) using
the 3D cine balanced steady-state free precession (b-SSFP) sequence. The voxel
spacing is 1.25×1.25×2 mm. Cine MR images are used here for cardiac motion
analysis, which consists of 20 time frames across a cardiac cycle with the 0-th
frame representing the end-diastolic (ED) frame. Other imaging modalities such
as tagged MR or ultrasound may also be used, which can capture the motion of
the heart at a different spatio-temporal resolution and with different quality.

2.2 Motion Tracking

Motion tracking is performed for each subject using a 4D spatio-temporal B-
spline image registration method with a sparseness regularisation term [5]. The
motion field estimate is represented in the subject space by a displacement vector
at each voxel and at each time frame t, which measures the displacement from
the 0-th frame to the t-th frame.

2.3 Spatial Normalisation

Parcellation is performed in a template image space, as shown at the top-right
corner of Fig. 1. To represent the motion fields of all the subjects in the template
space, the subject images are aligned to the template image by non-rigid B-spline
image registration [6]. Using the transformation between the template space and
subject space, the motion field of each subject is transported to the template
space. Let x′ = T (x) denote the transformation from template to subject, where
x and x′ are respectively the coordinates in the template space and in the subject
space. By considering the spatial transformation as a change of coordinates [7],
we have,

d(x, t) = JT−1(x′) · d′(x′, t) (1)

where d′ denotes the displacement in the subject space, d denotes the corre-
sponding displacement in the template space and JT−1(x′) ≡ dx

dx′ denotes the
Jacobian matrix of the inverse transformation.

2.4 Motion-Driven Parcellation

Let M denote the number of vertices on the template surface mesh (8528 vertices
in our case), N denote the number of subjects and F denote the dimension
of the motion trajectory. The motion trajectory at a vertex is defined as the
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concatenation of the radial, longitudinal and circumferential displacements of all
the time frames across the cardiac cycle. Then at each vertex, we concatenate the
motion trajectory of all the subjects, resulting in a feature vector of dimension
n = NF . Parcellation can be regarded as clustering of the M vertices into K
groups such that the vertices in each group display similar group-wise motion
trajectory. It produces a reduced representation of the input data.

A number of approaches have been proposed for clustering, such as K-means,
Ward’s algorithm [8], EM algorithm which models the clusters as a mixture of
Gaussians or other distributions [9] and graph partitioning [10]. We use the
Ward’s algorithm which has been shown to perform with good reproducibility
in [11].

Ward’s algorithm starts by considering each vertex as a cluster [8]. Then at
each step, it merges the two closest clusters. It defines the loss function as the
within-cluster variance and the two clusters which lead to the minimal increase
of the loss function are selected for merging,

(c1, c2) = arg min
c1,c2

∑
i∈c1∪c2

||yi − ȳc1∪c2 ||2 −
( ∑

i∈c1

||yi − ȳc1 ||2 +
∑
i∈c2

||yi − ȳc2 ||2
)

(2)
where c1 and c2 denote the clusters to be merged, yi denotes a data point in the
cluster and ȳ denotes the cluster mean.

The feature vector at each vertex is of n dimension. To reduce the compu-
tational cost of clustering, we reduce the dimension of the feature vector using
PCA. We keep the first few principal components which account for 95 % of
the data variance and thus reduce the feature vector dimension to 36. Ward’s
clustering is applied to the data after dimensionality reduction.

2.5 Reproducibility Index

To evaluate the reproducibility of the clustering or the parcellation, we use the
Rand index as in work [11], which measures the agreements between two clus-
tering results [12]. For M vertices, the total number of vertex pairs is

(
M
2

)
. Let a

denote the number of vertex pairs that are placed in the same class in clustering
1 and also in the same class in clustering 2, b denote the number of vertex pairs
that are placed in different classes in clustering 1 and also in different classes in
clustering 2. The Rand index is defined as R = (a+b)/

(
M
2

)
. It is a value between

0 and 1, with 0 indicating that two clusterings do not agree with each other at
all and 1 indicating that two clusterings are the same.

3 Experiments and Results

3.1 Visualisation

We empirically set the number of clusters for Ward’s clustering to 17 to be
comparable with the AHA 17-segment model. Figure 2 compares the AHA 17-
segment model with the 17-segment model produced by motion-driven parcel-
lation, which we name as “functional 17-segment model” for short. The AHA
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(a) AHA 17-segment model (b) Functional 17-segment model

Fig. 2. Comparison of the anatomical segment model with the functional segment
model.

model, Fig. 2(a), distributes 35 % of the volume to the basal part (6 segments),
35 % to the mid-ventricular part (6 segments), 30 % to the apical part (4 seg-
ments) and 5 % to the apex [3]. The functional 17-segment model does not fol-
low the empirical definition for the volume percentage, but instead it creates
segments which have homogeneous motion trajectories. There are several inter-
esting findings in the functionally parcellated model, as shown in Fig. 2(b). First,
the segments are not of equal size. Those at the basal part (pointed by the arrow)
are relatively small, which hints that the variance of motion is large at this part
so the parcellation needs to be dense. Second, the septal wall (left of line 1)
is separated from the other parts of the wall (right of line 1), which is physi-
ologically reasonable, because the motion of the septal wall is restricted by its
connection with the right ventricle while the other parts are more free.

3.2 Reproducibility

We evaluate the reproducibility of the parcellation by comparing the clustering
results on two subsets. We randomly select 500 subjects as the first set and 500
subjects as the second set and the two sets are mutually exclusive. Motion-driven
parcellation is performed on both sets and the clustering results are compared
visually and quantitatively. As Fig. 3 shows, the septal wall (left of line 1) is
consistently separated from the lateral wall (right of line 1) on both subsets.
The basal part (above line 2) is consistently separated from the mid-ventricular
part (below line 2). The separations at line 3 and line 4 are also consistent. These
separating lines and regions are also noticeable on the parcellation based on the
full dataset, Fig. 2(b).

To quantitatively evaluate the reproducibility of parcellation, we repeat the
random subset division for 10 times and measure the Rand index between the
two parcellations. The mean Rand index is 0.922 ± 0.006. This means that for
92.2 % of the vertex pairs, the two parcellations agree on whether or not they
belong to the same parcel.
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(a) Subset 1 (b) Subset 2

Fig. 3. The parcellation results based on two mutually exclusive subsets, each contain-
ing 500 subjects. The colour codes of the two parcellations are not exactly the same,
because the cluster IDs given by the Ward’s algorithm can be different in two runs.
Please refer to the paragraph for the explanation of the lines (Color figure online).

Table 1. Gender and age prediction performance using the motion descriptors with
different number of parcels and with the AHA 17-segment model.

Gender Accuracy Age Correlation

7 parcels 87.4 % 0.823

17 parcels 88.0 % 0.830

27 parcels 89.0% 0.831

37 parcels 88.6 % 0.834

AHA 88.9 % 0.827

3.3 Application: Classification

Parcellation is often used for dimensionality reduction and it has a wide range
of potential applications. In this study, we use it to extract a motion descriptor
for cardiac motion analysis. We compute the mean motion trajectory for each
parcel and concatenate them to form a motion descriptor of the left ventricle.
We demonstrate the ability of the motion descriptor using two exemplar classi-
fication tasks, gender classification and age prediction. For comparison, we test
the performance when different numbers of clusters are used in parcellation and
when the AHA 17-segment model is used for computing the motion descriptor.

We performed 10-fold cross-validation on the set of 1093 subjects. Given the
motion descriptor as input, SVM classifiers with RBF kernels were trained on
the training set and then applied to the testing set to predict the gender and
age of a given subject. The prediction accuracy for gender and the correlation
coefficient between predicted age and real age are evaluated. The results are
reported in Table 1 and plotted in Fig. 4. It shows that using the parcellation-
based motion descriptor, we can achieve high accuracy for both gender and age
prediction. For gender prediction, motion-driven parcellation using 27 segments
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(a) Gender prediction (b) Age prediction

Fig. 4. Gender and age prediction performance using the motion descriptors with dif-
ferent number of parcels (7, 17, 27 or 37 parcels) and with the AHA 17-segment model.

achieves slightly better performance than the AHA model (p > 0.01). For age
prediction, motion-driven parcellation using 17, 27 or 37 parcels perform better
than the AHA model (p < 0.01). In addition, using a small number of parcels
such as 7 only slightly sacrifices the performance. The reason is that gender and
age affects the cardiac motion globally and therefore a small number of parcels
can also encode the information.

4 Conclusions

To conclude, a novel method is proposed for cardiac motion analysis, which
parcellates the left ventricle based on motion information instead of using
pre-defined anatomical structure. Although each individual component of the
method (registration, transport and clustering) may not be novel in itself, they
are combined to form a novel way to investigate cardiac motion. It can be used
for visualising regional clustering of motion and for reducing high-dimensional
motion data. As an exploratory step in this direction, we use the displacement
trajectory to represent cardiac motion, but other representation such as velocity,
strain or electroanatomical recording can be explored in future in this framework.

In the work, our data are all healthy subjects and therefore we only demon-
strate the motion descriptor on two exemplar classifications, gender and age
predictions. These two factors affect motion globally and may not be the best
examples for demonstrating a regional descriptor. However, the proposed method
has the potential to be extended to other applications, where regional descriptors
are more important. For example, it can be used for groupwise motion analysis
in which two groups of subjects present different local motion patterns.

A limitation of the proposed method is that it may be more suited to group
analysis instead of case studies. A direction of future work is to include patients
data with similar pathologies into our dataset and to perform motion analysis
and comparison between the healthy and the patients.
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Abstract. Coarctation of the Aorta (CoA) is a cardiac defect that
requires surgical intervention aiming to restore an unobstructed aortic
arch shape. Many patients suffer from complications post-repair, which
are commonly associated with arch shape abnormalities. Determining
the degree of shape abnormality could improve risk stratification in rec-
ommended screening procedures. Yet, traditional morphometry struggles
to capture the highly complex arch geometries. Therefore, we use a non-
parametric Statistical Shape Model based on mathematical currents to
fully account for 3D global and regional shape features. By comput-
ing a template aorta of a population of healthy subjects and analysing
its transformations towards CoA arch shape models using Partial Least
Squares regression techniques, we derived a shape vector as a measure
of subject-specific shape abnormality. Results were compared to a shape
ranking by clinical experts. Our study suggests Statistical Shape Mod-
elling to be a promising diagnostic tool for improved screening of complex
cardiac defects.

Keywords: Non-parametric statistical shape model · Mathematical
currents · Partial least square regression · Coarctation of the aorta ·
Aortic arch

1 Introduction

Coarctation of the Aorta (CoA) has an incidence of around 1 in 2500 live births
[1]. Defined as a discrete or long obstruction of the aortic arch at the transverse,
c© Springer International Publishing Switzerland 2016
O. Camara et al. (Eds.): STACOM 2015, LNCS 9534, pp. 21–29, 2016.
DOI: 10.1007/978-3-319-28712-6 3
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isthmus or descending aorta level, it requires surgery to restore an unobstructed
arch shape. Although survival rates have improved over the last decades, many
patients suffer from late complications post-aortic arch repair such as hyperten-
sion, which have been associated with shape abnormalities of the arch [2]. Recent
studies therefore suggest long-term follow-up and regular screening via cardiac
imaging [1]. Being able to quantify the degree of shape abnormality could be
beneficial for such screening procedures as it assists in identifying highly abnor-
mal cases that are potentially associated with a higher risk profile. Yet, in clinical
practice, aortic arch shape is commonly assessed via conventional 2D morphome-
try – without fully exploiting the shape information provided by current imaging
technology. A multitude of geometric shape parameters is necessary to describe
the complex tortuous arches, and landmarks for measuring deviations between
shapes are difficult to select. Apart from the inherent measurement bias, such
data are rather tedious to interpret and analyse. Statistical Shape Models (SSM)
provide a visual, thus intuitively comprehensible tool to assess the entire 3D
anatomy of a population of shapes [3]. Furthermore, the introduction of mathe-
matical currents of surfaces as non-parametric anatomical shape descriptors [4]
circumvents the process of landmarking and allows a robust and efficient analysis
of shape features in complex shape populations.

In this paper, we aimed to build a SSM based on 3D surface models of aortic
arches reconstructed from cardiovascular magnetic resonance (CMR) data in
order to quantify the degree of shape abnormality of CoA arch shapes compared
to the healthy aorta. The method is based on the forward approach, whereby
transformations of an ideal unbiased template shape towards each subject shape
within the population encode all global and regional 3D shape information [5,6].
We hypothesised that by analysing how a template shape of a healthy (not
surgically altered) arch transforms towards each CoA arch shape, a shape vector
as a subject-specific measure of abnormality can be derived. The shape vector
essentially condenses 3D shape features down to a single number for each CoA
patient, which allows a ranking of CoA shapes according to their overall shape
deviation from the template. This was compared with an expert ranking of shape
abnormality performed by three clinical experts, in order to explore to which
degree the shape vector reflects the experts’ opinion. Furthermore, we analyse
associations between the expert ranking and conventional 2D shape descriptors
that are commonly used in clinical practice.

2 Methods

2.1 Patient Population

This is a retrospective study based on a population of 20 healthy Control subjects
and 20 age- and body surface area (BSA)-matched patients post-aortic arch
repair (CoA) [7]. BSA was calculated using DuBois’s formula [8]. Average age was
15.2 ± 2.0 years (mean ± standard deviation) for the Control and 16.5± 3.1 years
for the CoA group. CoA patients had surgical arch repair four days to five years
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after birth. Control subjects did not have any intervention on the aortic arch
and were considered “normal” in terms of shape.

2.2 Image Acquisition, Segmentation and Pre-processing
of the Surface Models

40 aortas were segmented manually (Mimics, Leuven, Belgium) from whole-
heart images acquired during mid-diastolic rest via CMR examination (1.5T
Avanto MR scanner, Siemens Medical Solutions, Erlangen, Germany; 3D bal-
anced steady-state free precession sequence; voxel size 1.5×1.5×1.5 mm) [7]. Seg-
mented models were cut at the aortic root and at the level of the diaphragm.
Coronary arteries and head and neck vessels were removed. Surface models of the
arches were meshed with 0.75 triangular cells/mm2 and smoothed with a pass-
band filter (VMTK, The Vascular Modeling Toolkit, Bergamo, Italy [9]). Prior to
computing the template shape, Control arches were rigidly aligned to an initial
reference subject from the Control population using an Iterative Closest Point
algorithm in VMTK [10]. As conventional 2D morphometric shape descriptors,
the coarctation index (CoAi) and the ratio of arch height A to width T, A/T
were measured on CMR images as proposed by Tan [11] and Ou [2], respectively.

2.3 Expert Assessment of the Aortic Arch Shapes

Three clinical experts (radiologist, cardiac surgeon and cardiologist; each with
>10 years of experience) qualitatively ranked the CoA shapes according to their
distance from a normal arch shape (1= close; 2= fairly close; 3=mid-range;
4= far away ; 5= very far away from normal). Control arch shapes were acces-
sible for comparison. The experts assessed the arches’ surface models, merely
using a 3D viewer1, without knowing the patients’ clinical history or results of
the shape analysis.

2.4 Computation of the Control Template and its Transformations
Towards CoA Subject Shapes

The template (i.e. mean shape) of the Control group was computed with the
exoshape code framework as proposed by Durrleman [6] and introduced to car-
diac research by Mansi [5], using mathematical currents [4] as non-parametric
shape descriptors. Based on a forward approach [6], the template T and its trans-
formations ϕi towards each subject shape T i are computed simultaneously using
an alternate two-step algorithm, minimising the distance between the deformed
template ϕi(T ) and T i in the vector space of currents. The latter is generated
by two Gaussian kernels: KW for the shape representations and KV for the
transformations ϕ. The associated kernel widths λW and λV are defined as the
resolution of the currents representation and the stiffness of the deformations,
1 3D viewable models of the arches available under http://www.ucl.ac.uk/cardiac-

engineering/research/library-of-3d-anatomies/congenital defects/coarctations.

http://www.ucl.ac.uk/cardiac-engineering/research/library-of-3d-anatomies/congenital_defects/coarctations
http://www.ucl.ac.uk/cardiac-engineering/research/library-of-3d-anatomies/congenital_defects/coarctations
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respectively [5]. In order to find an adequate set of λ parameters, an initial tem-
plate of the Control group TControl,initial was computed using starting values of
λW,initial = 15 mm and λV,initial = 47 mm. As our analyis is based on analysing
transformations that match the Control template with CoA shapes, the final set
of λ parameters was obtained by matching TControl,initial with a specific target
shape from the CoA group T i

CoA,Target, while incrementally decreasing λW,initial

and λV,initial until the registration error between the deformed source shape
ϕi(TControl,initial) and T i

CoA,Target was reduced by at least 80 %. Being one of the
arch models that posed the most challenging shape features to be captured, the
CoA subject with the smallest surface area was chosen as T i

CoA,Target (CoA3).
Prior to the λ estimation, T i

CoA,Target was rigidly registered to TControl,initial.
Based on this approach, λW = 9 mm and λV = 44 mm were found to allow suf-
ficient matching of TControl,initial with T i

CoA,Target and all other subjects, and
were used to compute the final Control template TControl,final. After rigidly
registering all CoA arch shapes to TControl,final, the transformations ϕi of
TControl,final towards each of the CoA subject shapes were computed using
the same set of λ parameters. TControl,final was validated using 10-fold cross-
validation [5]. Further, gross geometric parameters of TControl,final (volume V,
surface area Asurf , centreline length LCL and median diameter along the cen-
treline Dmed) were compared to the respective mean values of the Control pop-
ulation.

2.5 Analysing the Transformations Using Partial Least Squares
Regression

The transformations ϕ, encoding all shape features present in the population,
are parametrised by moment vectors β, which deform TControl,final towards each
subject shape in the space of currents [5]. The moment vectors β, obtained from
transforming TControl,final towards all Control and CoA shapes, constituted the
input (predictors) for a Partial Least Squares regression (PLS). PLS extracts
shape modes that maximise the covariance of predictors X and response Y [12].
To first extract shape features predominantly related to size differences between
subjects, an initial PLS I was performed with all moment vectors β as predictors
XI and BSA of the subjects as response YI . A second PLS II was performed
on the predictor residuals of PLS I, XI,resid using the grouping parameter YII

(0 = Control ; 1 = CoA) as response. Residuals were defined as XI,resid = XI −
XSBSA×XLBSA with XSBSA being the predictor scores and XLBSA being the
predictor loadings of PLS I. Thereby, dominant shape features related to size
differences were removed prior to extracting the shape mode most related to the
grouping parameter. Shape modes were computed using the SIMPLS algorithm
in Matlab (The MathWorks, Natick, MA) and the mean squared prediction
error (MSEP) was estimated using 10-fold cross-validation. Only one PLS I and
PLS II mode was retained as MSEP was not substantially decreased by adding
more modes. By projecting each subject shape transformation onto the final
shape mode PLS II, we derived the shape vector S [5]. It contains subject-
specific weights, describing how much the template has to be deformed along
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the extracted mode in order to match template and subject shape as accurately
as possible.

We hypothesised that the weights associated with the final shape mode yield
a notion of how distant a specific subject shape is from the Control template
shape – with large positive values representing subjects “far away” and small,
negative numbers representing subjects “close” to the normal arch shape.

Correlations between the subject-specific entries of S, CoAi, A/T and the
expert scores were assessed using Kendall’s τ for non-parametric and ranked
data. Non-parametric Mann-Whitney-U Test was applied to analyse shape vector
differences between the two groups. Consistency between the expert ranking was
assessed using the Intraclass Correlation Coefficient (ICC) assuming a 2-way
mixed effects model. The significance level was set to p<.05. Statistical tests
were carried out in SPSS (IBM SPSS Statistics, Chicago, IL).

3 Experiments and Results

3.1 Control Template

The final Control template showed a smooth, rounded aortic arch with a sub-
tle tapering from ascending to descending aorta (Fig. 1a,b,c). Gross geometric
parameters were close to their respective means measured on the entire Control
population. Deviations ranged from 0.3 % (volume) to 1.94 % (median diameter),
resulting in an overall average deviation of 1.02 %. Cross-validation revealed that
the template shape was not substantially influenced by removing specific subjects
from the analysis (Fig. 1d). Average surface distances between the full dataset
shape and the reduced dataset shapes ranged from 0.14 to 1.22 mm.

side view front view top view cross-validation 

a b c d 

Fig. 1. Computed template shape of the Control population (a,b,c) and overlay of
cross-validated template shapes based on reduced datasets (d, dark blue) (Color figure
online)
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Fig. 2. PLS II shape vector results for Control and CoA group. Extreme subjects
marked
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Fig. 3. Computed ranking of CoA arch shapes from normal (low shape vector values)
to abnormal (high shape vector values)

3.2 PLS Regression Results

PLS I extracted shape features most related to BSA such as overall differences
in size between subjects. The model yielded a good fit of BSA based on the
derived PLS I shape mode (r = 0.70; p≤.001), which accounted for 18 % of shape
variability. PLS II derived shape features most related to either the Control or
the CoA group. The PLS II shape mode accounted for 21 % of the remaining
shape variability.

The PLS II shape mode weights of Control subjects clustered closer together
(−1036 ± 252; mean ± standard deviation), whereas weights derived for CoA sub-
jects showed a larger spread (1036 ± 1396), related to more shape variability
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Table 1. Correlations between expert ranking and conventional 2D shape descriptors

Expert 1 Expert 2 Expert 3 Average

τ Significance τ Significance τ Significance τ Significance

CoAi −0.11 p = .520 −0.04 p = .838 −0.22 p = .222 −0.11 p = .533

A/T 0.18 p = .919 0.13 p = .453 0.02 p = .892 0.06 p = .718

Expert 1 Expert 2

Expert 3 Expert Average

Shape Abnormality Ranking Shape Abnormality Ranking

Shape Abnormality Ranking Average Shape Abnormality Ranking
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τ=0.41*
p=.020 

τ=0.35*
p=.048 

τ=0.31
p=.078 

τ=0.36*
p=.033 

subject
CoA12

Fig. 4. Correlations between expert ranking of shape abnormality and computed shape
vector values: Apart from the mid-range, trends were captured well. Outlier marked

within the CoA group. The distribution of shape vector values was significantly
different (p≤.001) between the two groups (Fig. 2). Control subjects were asso-
ciated with weight values between −1521 and −581; CoA subjects ranged from
−721 to +3897 (Fig. 3).
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3.3 Comparison of Expert Ranking with Shape Model Results

Qualitative shape rankings were consistent for experts 1 and 2 (mean scores
2.65 and 2.60), while expert 3 on average ranked CoA shapes farther away from
normal (mean score 3.40). However, all experts applied a similar range of scores
(all standard deviations 1.04).

Average ranking was reliable with ICC = 0.88 (p≤ .001). Conventional shape
descriptors CoAi and A/T did not correlate with the experts’ ranking (Table 1).
Expert shape scores correlated well with the computed shape vector for experts
1 and 2, and less for expert 3 (Fig. 4). Average expert ranking however, showed
good correlation (Kendall’s τ = 0.36, p = .033).

4 Discussion and Conclusion

In this paper we analysed the transformations of a “normal” template aorta
shape towards surgically repaired CoA arch shapes via PLS, in order to derive
a subject-specific measure of shape abnormality. Particularly in the extreme
cases of CoA shapes being either close or far away from normal, the derived
shape vector reflected the expert ranking well. In the mid-range however, our
method struggled to differentiate expert scores sufficiently. In particular one sub-
ject (CoA12) contributed to weak correlations between shape vector and expert
rankings (Fig. 4). With a severe transverse narrowing and a highly localised
indentation, subject CoA12 presents sophisticated shape features to be captured
(Fig. 3). A decrease of the λ parameters might improve the method’s accuracy –
though at the expense of computation time. The main limitation of our study is
the small sample size for both groups, which impeded applying more elaborate
statistics and which should be addressed in future studies.

Interestingly though, the derived shape vector seemed to reflect the experts’
shape assessment better than conventional 2D arch shape descriptors as typically
used in clinical practice. This suggests Statistical Shape Modelling on 3D shapes
to account for more relevant shape information and thus to come closer to an
intuitive human shape assessment. Ultimately, applying Statistical Shape Models
for clinical decision support could lead to more robust, efficient and objective
diagnosis and risk stratification strategies in complex cardiac disease.
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Abstract. We propose a novel technique for the localisation of Left Ven-
tricular (LV) scar based on local motion descriptors. Cardiac MR imag-
ing is employed to construct a spatio-temporal motion atlas where the
LV motion of different subjects can be directly compared. Local motion
descriptors are derived from the motion atlas and dictionary learning is
used for scar classification. Preliminary results on a cohort of 20 patients
show a sensitivity and specificity of 80% and 87% in a binary classifica-
tion setting.

1 Introduction

Accurate assessment of Left Ventricular (LV) scar location is paramount in many
clinical applications, ranging from the evaluation of viable LV myocardium fol-
lowing myocardial infarction, to the planning of optimal lead placement in Car-
diac Resynchronisation Therapy (CRT) or cardiac stem cells transplant [1,10].

Cardiac Magnetic Resonance (CMR) has become the imaging modality of
choice for the characterisation of cardiac function and scar distribution due to
its high spatial resolution, soft-tissue contrast and non-invasiveness. In particu-
lar, delayed-enhancement MR (DE-MR) imaging allows evaluation of the extent
of scarred myocardium after injection of a contrast agent [10]. In DE-MR, scarred
areas appear hyper-enhanced compared to healthy myocardium and scar trans-
murality is typically quantified by manually adjusting an intensity threshold.
Standard clinical DE-MR protocols typically acquire 2D short-axis (SA) and
long-axis (LA) images of the LV with slice thickness ≈ 10mm, and therefore
lack accurate through-plane scar information. Furthermore, DE-MR requires the
use of a contrast agent, which is typically a gadolinium-based nephrotoxic drug.

Injured myocardium alters LV electrical activation and mechanical contrac-
tion, which causes differences in LV motion between ischaemic and non-ischaemic
myocardium [7]. We present a framework for the prediction of LV scar location
purely based on LV motion, without the need for a DE-MR scan or user inter-
action. We present preliminary results on a cohort of patients selected for CRT,

c© Springer International Publishing Switzerland 2016
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but the proposed framework has potential use in the assessment of LV scar dis-
tribution for other applications. To the authors’ knowledge, very little work has
been done on the use of 3D LV motion for automatic localisation of scar. Related
work includes [8], in which the cardiac shape at different cardiac phases was used
to characterise scarred myocardium, although it should be noted that their best
results were achieved using the shape at only a single phase (end systole).

In the proposed method, LV motion is estimated using (T-MR) imaging,
which provides 3D high-spatial resolution motion information. A spatio-temporal
motion atlas is generated to remove biases towards LV geometry and cardiac
cycle duration, allowing direct comparison of the LV motions of different patients.
The novelty of our method lies in the use of local motion descriptors and dic-
tionary learning to localise scar. Provided with the 3D LV motion descriptors of
an unseen patient, the proposed framework is able to predict location of scarred
myocardium.

2 Materials

A cohort of 20 patients1 fulfilling conventional criteria for CRT (New York Heart
Association functional classes II to IV, QRS duration > 120ms, and LV ejection
fraction ≤ 35%) was considered. All patients underwent CMR imaging using a
1.5 T scanner (Achieva, Philips Healthcare, Best, Netherlands) with a 32-element
cardiac coil. Details of the acquired CMR sequences are as follows:

cine MR: a multi-slice SA and three single-slice LA (2-chamber, 3-chamber
and 4-chamber view) 2D cine Steady State Free Precession (SSFP) sequences
were acquired (TR/TE = 3.0/1.5ms, flip angle = 60◦). The SA and LA images
have a typical slice thickness of 8mm and 10mm, respectively and an in-plane
resolution ≈ 1.4 × 1.4mm2;

T-MR: tagged MR sequences in three orthogonal directions with reduced field-
of-view enclosing the left ventricle were acquired (TR/TE = 7.0/3.2ms, flip
angle = 19−25◦, tag distance = 7mm). The data for each tagging direction
consisted of multiple 2D slices covering the whole LV volume. The typical spatial
resolution in the plane orthogonal to the tagging direction is ≈ 1.0 × 1.0mm2;

DE-MR: delayed-enhancement MR images were acquired 15 to 20 min fol-
lowing the administration of 0.1 to 0.2mmol/kg gadopentate dimeglumine
(Magnevist, Bayer Healthcare, Dublin, Ireland) using conventional inversion
recovery sequences. A multi-slice SA and three single-slice LA 2D images were
acquired (TR/TE = 5.6/2.0ms, flip angle = 25◦). The same field-of-view and
orientation as the cine MR sequences was used. Slice thickness of both SA and
LA images is 10 mm with an in-plane resolution ≈ 1.4 × 1.4mm2.
All images were acquired during sequential breath-holds of approximately 15 s
and were ECG-gated. Given their high in-plane spatial resolution, the cine

1 Data were acquired from different projects and cannot be made publicly available
due to lack of ethical approval or patient consent on data sharing.
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MR images at end-diastole (ED) were employed to estimate LV geometry (see
Sect. 3.1). The other cine MR images were not used in this work. An average high
resolution 3D + t T-MR sequence was derived from the three T-MR acquisitions
with orthogonal tagging directions and was used to estimate the LV deformation
(see Sect. 3.1). Finally, the DE-MR images were used to estimate the location
of LV scar. These scar maps were used in the training and validation of the
classifier (see Sect. 3.2).

3 Methods

The main novelty of the proposed method lies in the application of dictionary
learning to 3D LV motion descriptors for classification of scarred myocardium.
An illustration of the proposed framework is shown in Fig. 1. To allow motion
comparison from different patients, a spatio-temporal motion atlas of the LV was
generated similarly to [4]. The use of a spatio-temporal motion atlas allowed
us to remove differences in LV anatomy and cardiac cycle duration from the
comparison of LV motion.

Fig. 1. Overview of the proposed framework.

3.1 Spatio-Temporal Motion Atlas

The formation of the LV spatio-temporal motion atlas comprises estimation of
LV geometry and motion, spatial normalisation of LV geometries and motion
reorientation from each subject-specific to the common atlas coordinate system.

Prior to the LV geometry and motion estimation, the SA and LA cine MR
sequences were spatially aligned to the T-MR coordinate system, as in [11].

LV Geometry Estimation. For each patient, the end-diastolic (ED) cardiac
phase was chosen as the temporal reference. The LV myocardium, excluding pap-
illary muscles, was manually segmented from the ED frames of the multi-slice SA
and three LA cine MR images. The four binary masks were fused together into
an isotropic 2mm3 binary image and the result was further refined manually to
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obtain a smooth LV segmentation. To determine point correspondences amongst
all LV geometries, an open-source statistical shape model (SSM) of the LV was
employed [6]. The SSM represents the anatomical variance of a population of
134 patients and consists of the epi- and endo-cardial surfaces. After an initial
landmark-based rigid alignment, the modes of variation of the SSM were opti-
mised to maximise the overlap between the LV segmentation and the volume of
the SSM. Non-rigid registration followed the mode optimisation to refine local
alignment. An example of a resulting LV surface is shown in Fig. 2(a), (b), (c),
(d), (e), (f) and (g).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example of estimated LV anatomical surface at end-diastole. The estimated LV
mesh is overlaid onto a (a) apical, (b) mid and (c) basal cine SA slice and (d) 2-chamber,
(e) 3-chamber, and (f) 4-chamber cine LA slices. Figure (g) shows the resulting SSM
epi- and endo-cardial meshes, while (h) shows the resampled medial LV mesh.

To facilitate the computation of motion descriptors, a medial surface mesh
with regularly sampled vertices (≈1500) was generated from the personalised
SSM epi- and endo-cardial surfaces. An example of a resampled medial surface
is shown in Fig. 2(h). The same resampling strategy was employed for all patients
to maintain point correspondence.

LV Motion Estimation. As mentioned in Sect. 2, an average high resolution
3D+t T-MR sequence was derived from the 3D+t T-MR sequences with orthogo-
nal tagging planes. For each patient, the trigger time tT specified in the DICOM
meta-tag of the T-MR volumes was normalised with respect to the patient’s
average cardiac cycle, such that tT ∈ [0, 1), with 0 being ED. A 3D + t free-
form-deformation algorithm with sparse spatial and temporal constraints [12]
was employed to estimate LV motion with respect to the ED cardiac phase.
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This algorithm estimates a smooth and continuous 3D + t transformation for
any t ∈ [0, 1). This way, temporal normalisation was achieved for each patient,
regardless of the number of acquired T-MR volumes and cycle length.

Spatial Normalisation. Spatial normalisation aims to remove bias towards
patient-specific LV geometries from the motion analysis. LV surfaces at ED
(see Fig. 2(h)) were derived from N patients using the steps outlined above.
An initial Procrustes alignment based on the point correspondences was per-
formed on the N medial LV surfaces, obtaining a set of affine transformations
{φn

aff}, n = 1, . . . , N with respect to a randomly chosen reference. An average
surface was computed from the aligned surfaces and an unbiased LV medial sur-
face was computed by transforming the average surface by the inverse of the aver-
age affine transformation φ̃aff = 1

n

∑
n φn

aff . This way, bias towards the initial
reference is removed. An example of an unbiased LV surface is shown in Fig. 3(b).
The original transformations {φn

aff} were similarly normalised to enforce an
average similarity transformation equal to identity φ̂n

aff = φn
aff ◦ (φ̃aff )−1.

To capture the local differences in LV geometry, all surfaces were consequently
aligned to the unbiased medial LV surface using Thin Plate Spline (TPS) trans-
formations {φn

TPS}. The resulting transformation from the patient-specific coor-
dinate system to the unbiased LV surface is given by φn = φn

TPS ◦ φ̂n
aff [4].

Motion Reorientation. To compare cardiac phases amongst all patients, the
reference ED medial surface was warped to T = 24 cardiac phases equally dis-
tributed in [0, 0.8] by using the estimated 3D+t transformation for each patient.
Only the first 80% of the cardiac cycle was considered since it is the typical cov-
erage of T-MR sequences, and the estimated motion for t ∈ (0.8, 1] is therefore
due to motion interpolation. As a result, the patient-specific LV motion was
fully represented by the T shapes. We denote with vn

p,t = un
p,t −un

p,0 the motion
at location u of vertex p ∈ 1, .., P at the cardiac phase t ∈ 1, .., T with respect
to the ED phase for patient n ∈ 1, .., N . The aim of motion reorientation is
to transport vn

p,t,∀n, t, p from each patient specific coordinate system to the
coordinate system of the unbiased average surface. Under a small displacement
assumption [3,9], this is achieved by computing vatlas

n,p,t = J−1(φn(up)) · vn
p,t,

where J(φn) denotes the Jacobian of the transformation φn [3,4,9]. After reori-
entation, LV motion from different patients can be directly compared at each
vertex p of the unbiased LV medial surface and cardiac phase t.

3.2 Local Motion Descriptors

As a result of the previous steps, the LV motions vatlas
n,p,t , ∀n, p, t are represented

in a common coordinate system. For a better description of the LV motion,
the atlas was segmented into the standard 16 AHA segments [2] (see Fig. 3(a)
and (b)) and the LV motions vatlas

n,p,t were decomposed into longitudinal, radial
and circumferential cylindrical coordinates (vatlas

n,p,t = [ln,p,t, rn,p,t, cn,p,t]
T ) with

respect to the long axis of the LV ED medial surface.
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For each patient, the LV scar distribution was estimated from the SA and LA
DE-MR images by using cmr42 (Circle Cardiovascular Imaging Inc.). The soft-
ware requires the observer to delineate the endo- and epi-cardial LV contours and
to set an intensity threshold to best separate scarred from healthy myocardium.
In this work, a single clinical expert derived the scar maps to eliminate inter-
observer variability. Figure 3(c) shows an example of a resulting scar map, where
the scar transmurality is specified for each AHA segment, while Fig. 3(d) shows
the scar distribution mapped onto the unbiased LV atlas.

The aim of this work is to characterise scar as a function of the LV spatio-
temporal motion information. To this end, as described in Guha et al. [5], local
motion pattern (LMP) descriptors were computed from the spatio-temporal
motion atlas to characterise the scar, and dictionary learning was subsequently
employed on the LMP descriptors for classification. Finally, in order to robustly
cope with outliers, a Random Sample Reconstruction [5] was employed to localise
the scar of an unseen patient.

(a) (b) (c) (d)

Fig. 3. The standard AHA bull’s eye plot (a) and the segmented unbiased LV medial
mesh at ED (b). An example of scar distribution provided by the software cmr42 and
mapped onto the atlas is shown in (c)–(d)

Local Motion Pattern Descriptors. A LMP descriptor represents the local
variations of the LV in the spatio-temporal dimensions [5]. After normalisation
of the LV motions vatlas

n,p,t with respect to the temporal norm ‖vatlas
n,p ‖, a neigh-

bourhood Bp for each vertex p was considered. LMP descriptors were computed
as the concatenation of the first 4 central temporal moments (mean, variance,
skewness and kurtosis) for the circumferential, radial and longitudinal compo-
nents for each point pi ∈ Bp at different temporal intervals (see Fig. 4). The
three components were treated separately, as evidence has shown the different
impact of the components on scar characterisation [7]. This results in a matrix
X ∈ R

(M)×(NP ), where M is proportional to the number of temporal intervals
and the size of the neighbourhood (see Fig. 4). Given the high dimensionality of
the LMP descriptors, Random Projections were used to reduce the complexity
of the classification task, resulting in a matrix Ψ ∈ R

(D)×(NP ),D � M , which
contains projections of X onto a random D-dimensional subspace [5].
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Concatenated Dictionary Learning. Dictionary learning (DL) techniques
can learn an overcomplete set of basis functions (i.e. dictionary) to represent a
signal with a high level of sparsity. DL has been employed successfully in many
image processing tasks, including denoising, inpainting and classification.

In our context, the scar transmurality was divided into K evenly distributed
classes within the 0−100% scar transmurality range and the sparsity properties of
DL were exploited for classification. In particular, a concatenated DL technique
was employed under the hypothesis that LMP descriptors of scar class k are
better represented by the corresponding dictionary rather than a dictionary of
a different class. Therefore, class-specific dictionaries were trained by solving

〈Φk,Sk〉 = argmin
Φk,Sk

‖Ψk − ΦkSk‖22 + α‖Sk‖1, (1)

where Ψk ∈ R
(D)×(NP )k , Φk ∈ R

(D)×(A) and Sk ∈ R
(A)×(NP )k respectively are

the descriptor matrix, the dictionary and the sparse code for the scar class k,
while A is the number of basis functions (i.e. atoms) and (NP )k is the number
of points belonging to the scar class k. We denote by 〈..〉 the variables being
optimised. The scikit − learn python package was used for the code implemen-
tation and a least angle regression method was used to solve the lasso problem.
After training, the K dictionaries were concatenated into a single dictionary
ΦC = [Φ1|...|ΦK ] and, provided with a set of unseen descriptors Ψun, the sparse
code Sun was computed using the Orthogonal Matching Pursuit (OMP) greedy
algorithm for the optimisation of

〈Sun〉 = argmin
Sun

‖Ψun − ΦCSun‖22, s.t. ‖sun‖0 ≤ β. (2)

The sparse code Sun is the concatenation of [SΦ1 |...|SΦK
] where SΦk

is the
sparse code corresponding to Φk. The estimated scar class is

ke = argmax
i∈1,..,K

‖SΦi
‖0, (3)

where ‖SΦi
‖0 counts the non-zero entries of SΦi

[5].
Since the scar size can vary within a given AHA segment, the classification

was performed using a Random Sample Reconstruction (RSR) [5], where the
class ke is assigned to the AHA segment if a randomly chosen subset of descrip-
tors also belongs to the same class. RSR provides robustness to the classification,
allowing classification of whole AHA segments based on a smaller set of descrip-
tive points, as is the case for localised scarred myocardium (see [5] for details).

4 Experiments and Results

Given the low number of datasets containing scar in the apical and basal seg-
ments, the AHA segments corresponding to the LV mid cavity only (i.e. segments
7 to 12) were analysed. On average, each segment contained ≈ 100 points. For
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Fig. 4. Toy example of LMP descriptor computation for a neighbourhood composed
of 3 points (Bp0 = 3). The descriptor is derived by concatenating the first four central
moments of the circumferential (blue), radial (green) and longitudinal (red) compo-
nents for each pi ∈ Bp, i = 1, 2, 3 computed over 6 temporal intervals Tj , j = 1, ..6
(Color figure online).

simplicity, a binary classification (i.e. K=2, 0 - no scar, 1 - scar) was considered.
The distribution of the binary ground-truth scar over all patients within the
considered segments is shown in Fig. 5(a).

A leave-one-out cross validation was employed. Given the high number of free
parameters for our technique, the best set was determined empirically, since an
exhaustive search proved to be cumbersome. The set of parameters used was:
Bp = 8, j = 6 temporal intervals (see Fig. 4), D = 256, sparsity coefficient α = .5,
maximum number of iterations = 200, number of atoms A = 512, number of non-
zero coefficients in OMP β = 2. For the RSR, random set size ≈ 5 descriptors,
probability of selecting an error-free set of points P = .9 (see [5]).

Results of the binary classification are reported in Fig. 5 considering each
segment as an independent observation. Values of sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV) achieved were 80%,
87%, 36% and 98%, respectively.

5 Discussion

In this paper, a novel framework for LV scar location using local motion descrip-
tors has been proposed. Results on a cohort of 20 patients enrolled for CRT
treatment were presented, with a sensitivity and specificity of 80% and 87% in
a binary scar classification setting. Although the investigation presented in this
paper is preliminary, to the authors’ knowledge this is the first work to demon-
strate that scar can be localised using motion information alone. Therefore, this
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(a) (b)

(c)

GT
0 1

PT 0 96 2 98
1 14 8 22

110 10

Fig. 5. (a) Scar distribution over AHA segments 7–12 (mid LV cavity). (b) Bull’s
eye plot of a GT map and predicted scar (0 - red, 1 - blue), mid-cavity segments
only. (c) the corresponding predicted scar mapped onto the medial surface is overlaid
onto the SA DE-MR image (the LV scar in yellow). (Bottom right) Joint frequency
table of AHA segment classification (GT - ground-truth, PT - proposed technique)
(Color figure online).

represents an important proof-of-principle that such a technique may one day
aid or even replace DE-MR in LV scar localisation and quantification.

There are a number of areas for future investigationbefore this possibilitymight
become reality. One is the use of a larger number of scar classes (i.e. not a binary
classification), or even a regression-based approach in which scar transmurality
is directly predicted from the LMP descriptors. Further work is also required to
refine the localisation of the ground truth scar, in which transmurality is currently
assigned for all points within a segment. Moreover, inter- and intra- observer vari-
ability in the determination of scar transmurality needs to be investigated. Finally,
investigations using larger numbers of scar-affected datasets is required.
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Abstract. Macro-reentrant atrial and ventricular tachycardias originate
from additional circuits in which the activation of the cardiac chambers
follows a high-frequency rotating pattern. The macro-reentrant circuit
can be interrupted by targeted radiofrequency energy delivery with a
linear lesion transecting the pathway. The choice of the optimal ablation
site is determined by the operator’s experience, thus limiting the pro-
cedure success, increasing its duration and also unnecessarily extending
the ablated tissue area in the case of incorrect ablation target estimation.
In this paper, an algorithm for automatic intraoperative detection of the
tachycardia reentry path is proposed by modelling the propagation as a
graph traverse problem. Moreover, the optimal ablation point where the
path should be transected is computed. Finally, the proposed method
is applied to sparse electroanatomical data to demonstrate its use when
undersampled mapping occurs. Thirteen electroanatomical maps of right
ventricle and right and left atrium tachycardias from patients treated
for congenital heart disease were analysed retrospectively in this study,
with prediction accuracy tested against the recorded ablation sites and
arrhythmia termination points.

1 Introduction

In recent years, catheter ablation of cardiac arrhythmias has moved from ablation
of ‘simple’ substrates like accessory pathways to more complex arrhythmias such
as atrial or ventricular tachycardia or fibrillation. Even patients with complex
congenital heart disease (CHD) that may present with a very unusual cardiac
anatomy can now be candidates for catheter ablation procedures. Merging pre-
procedural 3D image data with the 3D electroanatomy has provided a very
valuable tool to improve ablation outcomes even during longterm follow-up.

The state-of-the-art in intraoperative guidance for mapping and ablating
tachycardias in CHD includes CARTO (Biosense Webster, Bar Diamond, CA,
US). After vascular access into the cardiac chamber, the mapping catheter is
moved in contact with the endocardial wall in order to generate the spatial
information, i.e. the fast anatomical map (FAM), and also acquire sparse elec-
trical data at specifically selected points on the FAM. The electrical parameters
c© Springer International Publishing Switzerland 2016
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include unipolar and bipolar voltage and local activation times (LAT). With
each point acquisition, CARTO interpolates the electrical parameters across the
FAM using a preset distance threshold. From the LAT map, CARTO is able to
simulate the activation wave based on a sequential plot of activation time geo-
desics. Apart from CARTO, a second widely used electroanatomical mapping
system is EnSite NavX (St. Jude Medical, St. Paul, MN, US), which outputs
the same activation time and voltage maps as CARTO, but employs a different
technology. Despite the advances in these two systems, establishing the path of
fastest conduction, i.e. the main ectopic propagation circuit, and correlating it
with the location of fibrotic tissue shown on the bipolar voltage map are still
operator-dependent skills.

Intra-operatively, the electrophysiologists guide themselves in locating the
circuit by circuit entrainment mapping. They measure the post pacing interval
at the reset of the tachycardia to see if the circuit was entered successfully.
Naturally, with increasing numbers of mapping and pacing points, the activation
and voltage amplitude maps become more accurate. However, there is a trade-off
between mapping time and resolution. Moreover, if the ablation site is, by error or
misinterpretation of the mapping data, far from the conduction path, repeated
energy delivery will be required, causing more tissue damage than necessary.
Successful ablation is declared if the mapped tachycardia is terminated during
energy delivery and no longer inducible.

In order to understand the underlying mechanisms of macro-reentrant tachy-
cardias, different electrophysiological models have been proposed for simula-
tion. These models are meant to replace to some extent the more expensive
electroanatomical mapping systems. They use general electrical wave propaga-
tion principles applied to the cardiac tissue and anatomy and personalised with
electromechanical parameters from preoperative imaging. Although the well-
established CARTO and EnSite technologies are preferred in clinical practice,
the electroanatomical models can also provide the cardiologists with activation
time maps and potentially voltage information. Among the least computationally
expensive frameworks are the eikonal model for conduction parameter estimation
at macro-scale [1,2], but also simplified biophysical ionic channel models [3] or
mono-domain models such as Lattice-Boltzmann [4]. Fast Marching, an adapta-
tion of the graph traverse Dijkstra algorithm, is typically used to solve the differ-
ential equations in these models. The solution of these equations can be mapped
on 3D anatomy in order to mimic the information output of electroanatomical
mapping systems. Alternatives to these classical biophysical approaches are the
models of propagation in cellular automata [5] and the estimation of pathways
as a minimal cost graph traverse formulation [6], the latter having been used for
qualitative identification of the normal conduction along the Purkinje fibres.

This paper proposes a novel approach for the detection of tachycardia
propagation path based on graph traverse theory by using the mapping data
directly and without the need for simulation or electroanatomical model fitting.
Furthermore, the point in the circuit of the highest termination probability
was computed. The algorithms were tested for repeatability in sparse mapping
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conditions when fewer points are acquired. The proposed method was validated
with data from 13 patients with previous CHD surgery and suffering from atrial
or ventricular reentrant tachycardias.

2 Methods

2.1 Data Acquisition

CARTO 3 studies of macro-reentrant right ventricular and left and right atrial
tachycardia were collected – 4 right ventricles, 6 right atria, 2 left atria, 1 total
cavopulmonary connection (TCPC). Each study contained a 3D endocardial
surface of the cardiac chamber, with a corresponding set of LATs, bipolar volt-
ages, and unipolar voltages for each surface vertex. The anatomical meshes were
smoothed with Poisson reconstruction, threshold set as the default 6, in Mesh-
Lab [7]. The electrical data at the new vertices were interpolated linearly from
the values on the original meshes. The latest and earliest activation times with
respect to the end-diastolic ECG peak (R peak) were extracted. The input data
required by the proposed method is independent of the CARTO system, as long
as the electroanatomical information can be recovered with another technology,
e.g. EnSite, or modelled using any cardiac activation principles.

2.2 Macro-Reentrant Circuit Reconstruction

For macro-reentrant circuit reconstruction, the shortest geodesic path between
the earliest and the latest activation vertices was computed. The mesh edges were
used as graph edges and the vertices as nodes. The edges were weighted with the
propagation speed between the vertices that they connected, multiplied by the
means of the bipolar and unipolar voltage amplitudes at the two vertices (Eq. 1).

wi,j =
di,j

|LATi − LATj | · Vuni,i + Vuni,j

2
· Vbi,i + Vbi,j

2
(1)

The variable wi,j is the weight of the edge connecting vertex i to vertex j, each
with activation times LATi and LATj , unipolar voltage amplitudes Vuni,i and
Vuni,j , and bipolar voltage amplitudes Vbi,i and Vbi,j . The propagation speed
between the neighbouring vertices i and j was computed from the Euclidean
distance di,j . The product of mean voltage amplitudes modelled the energy of
the wave traversing that part of the tissue, dependent on the tissue conductivity.
This modulated the path to avoid crossing areas of surgical scars, which have
low conductivity. Finally, Dijkstra’s algorithm was applied [8].

Due to the limitations of the interpolation algorithm in CARTO, the earliest
and latest activation points may not directly coincide, leaving a strip of artifi-
cially interpolated LATs (Fig. 1). Also in some cases, the incomplete geometry
of the endocardial chamber caused the activation circuit to be represented only
partially. The remaining gap was closed with a new application of the Dijkstra
algorithm on the complementary path, which was forced to pass through the
vertex opposite to the centre of the path found in the first Dijkstra run.
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2.3 Tachycardia Termination Point Detection

The electrical features of typical tachycardia points were learned and tested in
a leave-one-out fashion. For each of the 13 studies, the triplets of LAT, bipolar
voltages, and unipolar voltages of the points along the path were normalised
and concatenated. The LATs were a measure of position of the termination
points along the parameterised path running from earliest to latest activation;
the voltages were a measure of tissue fibrosis. Each study was left out in turn
from the full set of 13. The points on the remaining 12 paths were fed as a
training set into an adapted version of a random subsampling boosting classifier
(RUSBoost, presented in [9] and adapted as in Algorithm1).

The labels of the training set were exported from CARTO and projected
onto the paths, in order to distinguish between the features of the two classes,
ablation points and regular points. The learner predicted the labels of the path
points on the test case. RUSBoost was deemed the most adequate classification
method given the imbalanced number of termination points compared to the
other points on the path.

Data:
– (ytrain,i, LATtrain,i, bitrain,i, unitrain,i), i = 1, ntrain and ytrain,i ∈ {0, 1}, where 0

denotes regular path point and 1 termination point, as marked in CARTO
– number of termination points is significantly lower than the number of regular

path points, i.e. n1 � n0

– (LATtest,i,bitest,i,unitest,i), i = 1, ntest

– weak learner, which does not necessarily yield a good initial classification.

Initialization: w1,i = 1
ntrain

, i = 1, ntrain, where wk,i is the weight of sample i in

iteration k;
while preset number of iterations not reached do

1. subsample from the full set using the weights wk,i, i = 1, ntrain;
2. feed the subset and the weights to the learner;
3. learner estimates the labels of the training data;
4. update the weights with the classification error;

end

Result: ytest,i = 0 or ytest,i = 1, p(ytest,i = 1), and p(ytest,i �= 1), where i = 1, ntest

Algorithm 1. RUSBoost classification algorithm for detection of most prob-
able point of tachycardia termination

2.4 Subsampling of Electroanatomical Maps

Electrical Data Interpolation. In order to test how the circuit reconstruction
and the termination point detection perform on sparse electroanatomical data,
subsampling of the original maps was performed. The electrical values of every
vertex in the sparse maps were obtained through a two-step interpolation and



44 M. Constantinescu et al.

threshold filling algorithm, tuned to mimic the online interpolation of CARTO
when new electroanatomical data is acquired.

In the first step, for every vertex, only the mapping points within a 12 mm
radius were taken into consideration. The value at that vertex was either that
of the mapping points, if it coincided, or the mean of the values of all mapping
points within 12 mm, weighted inversely with the distance from the vertex. In
the second step, the vertices which did not have any mapping points to meet the
proximity threshold were given the value of their closest vertex with an assigned
value from the interpolation step. The value of 12 mm was set by trial and error
to best match the CARTO ground truth. A qualitative comparison can be made
between the figures in Table 2 and the original mesh in Fig. 1.

Iterative Cluster Subsampling. The original mapping points were clustered
around 5 centroids computed with the k-means method and approximated by
the closest mapping point in the cluster according to the Cartesian distance. The
5 centroids were ordered using a greedy search with respect to their marginal
information, which is explained in the next paragraphs.

Given the full set of mapping points P0, from which the ground-truth elec-
troanatomical map was built, and a subset P⊂P0, the map reconstruction accu-
racy when using subset P for interpolation can be computed as the inverse of
the error

εP∼P0 =
1
3

∑
i∈{LAT,uni,bi}

1
j

nV∑
j=1

|fi,j,P − fi,j,P0 |
maxi,j fi,j,P0 − mini,j fi,j,P0

. (2)

The anatomy is in both cases a 3D surface of nV vertices. The value fi,j , i ∈
{LAT,uni,bi}, is either the LAT, unipolar voltage (uni), or bipolar (bi) voltage
at vertex j. For each vertex, the difference in electroanatomical values was scaled
with reference to the P0 map. The marginal information of a mapping point can
be defined as the difference in map accuracy between two maps constructed with
and without that particular point. The adapted greedy search for ordering the
centroids according to their marginal information is presented in Algorithm2.

The path reconstruction and termination point detection were run in 5 iter-
ations, where in each iteration a new cluster of points was added to interpolate
the colour maps.

3 Results

3.1 Macro-Reentrant Circuit Reconstruction

For each of the 13 cases, the graph was built with the FAM vertices and edges.
The forward circuit was computed using Matlab’s implementation of the Dijkstra
algorithm with weights as in Eq. 1. Figure 1 shows qualitative results on a right
ventricle and on left and right atria. The CARTO ablation, circuit entrainment,
and termination points are displayed as reference points of the ground-truth
propagation path detected intraoperatively. The dense bipolar voltage maps were
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Data:
• P0 full set of mapping points;
• fi,j,P0 , i ∈ {LAT, uni, bi}, j = 1, nV, electrical features of all vertices for

the map computed with the points in P0

• vertex indices of the 5 centroids

Initialization: c1 = argmink ε(P0−{k})∼P0 , k = 1, 5;
while i <= number of clusters - 1 do

1. interpolate for fi,j,{c1,i} and fi,j,({c1,i}∪{k}), where k = 1, 5 − {c1,i};

2. ci+1 = argmaxk |ε{c1,i}∼P0 − ε({c1,i}∪{k})∼P0 |;
3. i = i + 1;

end
Result: c, decreasing order of centroid marginal information

Algorithm 2. Ordering of the cluster centroids according to their marginal
information added to the electroanatomical map

thresholded at 0.5 mV, a value commonly used in the EP literature for ventricular
scar segmentation in electroanatomic data. The third row of results, displayed
on top of the scar maps, shows that the calculation of propagation paths avoids
the crossing of scars, according to the edge weights in Eq. 1.

Several qualitative observations can be made from the results shown in Fig. 1.
Firstly, there was a good correlation between the LAT geodesics and the com-
puted path perpendicular to them. Secondly, the paths were modulated by the
presence of surgical scar, encoded by the bipolar voltage amplitude at each ver-
tex. The perpendicularity of the paths to the LAT geodesics is ensured by the
core principle of shortest path in the Dijkstra algorithm.

Table 1 shows a quantitative analysis of both tachycardia circuit detection
and termination point learning. Assuming that all critical points labelled intra-
operatively and imported from CARTO, i.e. circuit entrainment, ablation, and
final tachycardia termination points, lie on the true wave propagation path, an
accuracy measure was defined as the distance between this ground-truth and the
computed path, namely the mean distance to CARTO points. The average of
16.36 mm was comparable to the range of tip instability of the ablation catheter
(12 mm), as recorded by the electromagnetic sensors in the CARTO framework.

3.2 Tachycardia Termination Point Detection

Several measures were defined to assess the method’s performance in this step:
the accuracy, sensitivity, and specificity, all of which quantified the ability to dis-
tinguish a regular path point from an critical point on the path. A critical point
is either an ablation, a termination, or a circuit entrainment point as labelled and
exported from CARTO. A critical path point is the projection of a critical point
onto the tachycardia path reconstructed in the first step of the method.
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Fig. 1. Tachycardia propagation path for average right and left atria and for an average
right ventricle. The panels show from top to bottom the LAT, bipolar voltage, and scar
maps, the probability of tachycardia termination at each point along the path, and the
distance of the computed termination points from the closest ground-truth ablation.
AP – antero-posterior axis, LR – left-right axis, SI – supero-inferior axis.

Apart from the relative performance measures, the average minimal distance
to the critical path points was computed. These points were all considered the
ground-truth termination points, as it was difficult to assess which of them led
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Table 1. Distance of computed propagation path from critical points, i.e. ablation,
termination and circuit entrainment points marked in CARTO, i.e. critical CARTO
points; characteristics of the tachycardia termination point classifier and distance of
the point with the highest computed probability of termination from actual CARTO
critical points.

RV RA LA TCPC Mean

Mean distance to CARTO points [mm] 22.25 14.09 13.98 3.77 16.36

Standard deviation [mm] 13.05 12.16 6.98 3.53 12.03

Accuracy [%] 59.26 71.59 72.37 79.10 68.49

Specificity [%] 62.07 75.64 75.40 82.26 71.94

Sensitivity [%] 38.54 33.06 47.62 40.00 37.52

Avg. min. dist. to CARTO points [mm] 0.00 2.84 0.00 2.46 1.52

Standard deviation [mm] 0.00 4.19 0.00 0.00 3.06

to the tachycardia termination. For every path point, the closest critical path
point was found. This distance was then averaged over all path points.

The leave-one-out ensemble learning yielded a mean accuracy of 68.49 % in
detecting critical points along the propagation path (Table 1). The points with a
termination probability over 50 % lay within 1.52 mm from their closest critical
path point. The lowest error was recorded in RV and LA, for which all computed
termination points matched a ground-truth critical point (0.00 entries in the
table). The computed tachycardia termination was colour-coded to emphasize
the points of highest probability. Table 1 averages the results of both circuit
reconstruction and critical point detection for each type of cardiac chamber.

3.3 Performance on Subsampled Electroanatomical Maps

The path reconstruction and termination point detection algorithms were
applied on 5 iterations of subsampling in each study. Results for a right atrium
are presented in Table 2 which shows how the tachycardia circuit was re-shaped
with the addition of new mapping points and how the classification algorithm
changed its output.

4 Discussion and Conclusion

In this paper, a traversed graph representation for sparse encoding of macro-
reentrant tachycardia was presented. In addition to good qualitative correlation
with the geodesics in the LAT map, the Cartesian distance to the true ter-
mination and circuit entrainment points also support the applicability of the
algorithm. The observed error in this study was primarily caused by the inter-
polation limitations in CARTO, a system error which could be alleviated with
the use of another electroanatomical mapping system or in a simulated cardiac
activation software.
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Table 2. Sequence of propagation path reconstruction for the right atrium in Fig. 1
(upper table) and average over all cases (lower table). The points were added in decreas-
ing order of their k-mean cluster centroid’s marginal information value. A – accuracy
[%], Sp – specificity [%], Se – sensitivity [%], d – minimal distance to CARTO ablation
[mm], D – average distance to CARTO critical points, assumed on the ground-truth
path [mm], σ – standard deviation of the distances to CARTO critical points [mm].

Also, partial anatomical maps, due to the cardiologist’s interest in one par-
ticular area, lead to incompleteness of the activation wave. While constructing a
more detailed map would be time consuming, operator input, where the cardiol-
ogist can correct or add features locally, is a feasible solution for better results.
In this regard, the subsampling algorithm and the application of the presented
method to sparse data provide guidance for the cardiologist in deciding which
region needs more detailed information for a more accurate reconstruction.

In terms of termination point detection, while part of the error can be traced
back to the path reconstruction inaccuracy, the learning feature vector itself can
be enhanced with information such as wall thickness and estimated catheter tip
motion at each point on the path, as described by [10]. The importance of addi-
tional information can be inferred from Table 2, where it is shown how different
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activation paths led to different termination points. Starting with only a fifth of
the full set of mapping points, the detection algorithm had limited electrical data
gradients to differentiate between ablation and regular sites (high sensitivity and
low specificity). With the addition of mapping points, the specificity increased.

Despite the expected benefit of the leave-one-out learning of tachycardia ter-
mination, the results in Table 1 do not support this method. The most numerous
cohort of RA tachycardias does not have a high score in any of the accuracy,
sensitivity, or specificity. This is probably due to the high variability in the set,
but also because of the error in the first stage of path reconstruction. In fact, it
can be inferred from Table 1 that the termination accuracy is inversely correlated
with the mean distance to the CARTO points on the ground-truth path, i.e. the
path reconstruction accuracy. This is also the reason why the single TCPC case,
with a small error of path reconstruction, has the best accuracy and specificity
result, despite not being able to learn from other TCPC maps.

On the computational side, the two-step method of reconstruction and learn-
ing can be easily integrated into a real-time solution. The tachycardia circuit
detection runs in approximately 42.2 ms. The subject-specific RUSBoost classifi-
cation runs in approximately 2.1 s, considering that the data base of the training
model can be learned offline and only the test data needs to be labelled. Times
were measured on an i7 CPU at 2.4 GHz with unoptimised Matlab code.

In conclusion, this paper presents a method for effective combination of
graph traverse and ensemble learning classification algorithms for reconstructing
macro-reentrant tachycardia circuits and identifying the site of most probable
termination. It is based on the identification of the shortest path from the ear-
liest to the latest activation time along the arrhythmia propagation curve. The
anatomy was modelled as a graph with edges weighted by the propagation speed
between two adjacent vertices and the conductivity of the tissue measured as
local potential. After reconstructing the activation path, the point of most prob-
able termination was sought. RUSBoost was applied in a leave-one-out ensemble
learning framework, where the pattern of LAT-bipolar-unipolar voltage of typical
termination points was learned.

Finally, both the activation reconstruction and the termination point detec-
tion were run on subsets of the original mapping points. This anticipates
re-mapping guidance after ablation in order to verify the uninducibility of the
ablated tachycardia. Moreover, the reconstruction from undersampled data can
provide an optimal order of mapping points acquisition in similar anatomy.
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Abstract. We propose a novel framework to predict the location of a
myocardial infarct from local wall deformation data. Non-linear dimen-
sionality reduction is used to estimate the Euclidean space of coordinates
encoding deformation patterns. The infarct location of a new subject is
inferred by two consecutive interpolations, formulated as multiscale ker-
nel regressions. They consist in (i) finding the low-dimensional coordi-
nates associated to the measured deformation pattern, and (ii) estimat-
ing the possible infarct location associated to these coordinates. These
concepts were tested on a database of 500 synthetic cases generated from
a realistic electromechanical model of the two ventricles. The database
consisted of infarcts of random extent, shape, and location overlapping
the whole left-anterior-descending coronary territory. We demonstrate
that our method is accurate and significantly overcomes the limitations
of the clinically-used thresholding of the deformation patterns (average
area under the ROC curve of 0.992±0.011 vs. 0.812±0.124, p<0.001).

1 Introduction

In clinical routine, imaging of the heart often aims at evaluating the local car-
diac tissue viability. A decrease in this viability directly affects the electrical
propagation and the muscle contraction, and therefore hampers the resulting
cardiac function. However, the transfer function linking the local deformation
to the tissue viability is complex, due to advanced physiological interactions
between the muscle and the blood, the fibers arrangement, or the influence of
the neighboring segments or the opposite wall. Late-enhancement imaging is
generally accepted as ground truth to localize the regions with scarred tissue
[8,9]. However, this modality is costly and requires the injection of a contrast
agent. Moreover its post-processing is still challenging due to the limited con-
trast and number of acquired slices. On the other hand, 3D echocardiography is
non-ionizing and cheaper, and allows the quantification of local wall deformation
(myocardial strain). Cardiologists use it in a daily practice to assess the local
tissue viability. Nonetheless, the localization of infarct by thresholding deforma-
tion patterns [9] is inaccurate, as the optimal threshold depends on the infarct
position and grade, and the relationship between these two parameters is not
straightforward.

c© Springer International Publishing Switzerland 2016
O. Camara et al. (Eds.): STACOM 2015, LNCS 9534, pp. 51–59, 2016.
DOI: 10.1007/978-3-319-28712-6 6
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Fig. 1. Proposed method to predict infarct location from local myocardial deformation.

In this paper, we address this issue by proposing a framework to predict the
infarct location from local wall deformation data. While the literature abounds of
works that threshold the deformation data, our work is novel in designing a more
advanced and accurate prediction strategy. Several works investigated variables
inference for different cardiac applications, such as the reconstruction of fibers
architecture from cardiac shape [5] or to relate cardiac shape remodeling and
myocardial infarction [12]. However, these works used linear or logistic regression
techniques, which are not necessarily suited to compute statistics on cardiac
motion and deformation patterns. For our concrete application, we preferred a
formulation based on spectral embedding [11] and kernel regression [3,4] against
a Bayesian formulation, in order to minimize the amount of a-priori knowledge
in our method.

A notable asset of the proposed work consists in the large database of syn-
thetic cases created to test the methods against a large variety of infarct config-
urations. Indeed, in such a framework, the transfer function between the model
parameters of healthy/damaged tissue and the local deformation is fully con-
trolled, a requisite to test the methods accuracy on ground truth data. Our
experiments show that the prediction of infarct location with our method is
significantly more accurate than the clinically-used techniques.

2 Methods

In the following, we denote {(dk, ik)}k∈[1,K] the pairs of local deformation and
infarct position data for the set of K training samples. This information is avail-
able at each point of the volumetric mesh for each subject, and each of these
two parameters is treated as a column vector. In the present work, the infarct
position is defined as a binary value 0/1 at each vertex. The relative change in
the cell volume with respect to the beginning of the cycle is used as a surro-
gate for local deformation. A single scalar value is therefore associated to the
deformation at each point of the mesh. This was preferred over more advanced
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measures of local deformation such as the strain tensor, which would require
more advanced statistics. However, using scalar deformation data does not limit
the concepts demonstrated in the present work: the observed deformation pat-
terns still reflect local infarct (Figs. 1 and 4), and focus is kept on the core of
the inverse problem.

2.1 Non-linear Dimensionality Reduction (Training Set)

The (high-dimensional) local deformation data {dk ∈ D}k∈[1,K] are first mapped
to a Euclidean space of (low-dimensional) coordinates {ck ∈ C}k∈[1,K] by means
of standard non-linear dimensionality reduction (Isomap [10]). This assumes that
there exists a lower-dimensional manifold that can explain the main variations
in such data.

In brief, a nearest-neighbors graph is built for the samples {dk}k∈[1,K], using
the Euclidean distance as metric. Then, the geodesic distance between each
pair of samples is approximated as the shortest path connecting them along
the graph, and put into an affinity matrix. The set of coordinates {ck}k∈[1,K]

is finally obtained by the diagonalization of a centered version of this geodesic
distance matrix.

No restriction is made on the manifold learning technique used. We preferred
a non-linear one, as linear operations directly on the deformation data may
generate unphysiological patterns [2,4] (e.g. the linear average of two deformation
patterns corresponding to two disjoint infarcts would provide a mixed widespread
pattern reflecting a larger but less accentuated infarct, instead of the pattern of
an infarct of similar grade at an intermediate location). The Isomap algorithm
was preferred over other spectral embedding techniques [11] as we assumed that
the samples distribution follows a uniform random distribution, in contrast with
kernel-based methods more relevant for more clustered distributions.

2.2 From Deformation Patterns to Infarct Prediction (Testing Set)

Given a new case for which only the local deformation d is known, our method
provides a prediction of the infarct position B(̂i). Its estimation is obtained by
two consecutive interpolations formulated as kernel regression, and a multiscale
strategy to prevent from artifacts due to non-uniformities in the density of the
samples. An overview of the processing pipeline is given in Fig. 1.

From Deformation Patterns to Low-Dimensional Coordinates. Given
a new deformation pattern d ∈ D, a single-scale formulation would compute its
corresponding coordinates ĉ ∈ C as:

ĉ =
K∑

k=1

kD (d,dk) · ak. (1)

Here ak is the k-th column of the matrix (KD + 1
γD

I)−1
C, where I is the identity

matrix, C = (c1, . . . , cK)T , γD is a scalar weight balancing the adherence to the
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data and the smoothness of the interpolation, and KD = (kD(di,dj))(i,j) is a
kernel-based affinity matrix between the input samples. The kernel function is
defined as kD = exp(−‖di − dj‖2/σ2

D), σD being its bandwidth.
Detailed explanations of this single-scale process can be found in [2]. The

expression in Eq. 1 corresponds to the analytical solution of the following inexact
matching problem:

argmin
f∈F

(
1
2
‖f‖2F +

γD
2

K∑
k=1

‖f(dk) − ck‖2
)

, (2)

where ĉ = f(d), and ‖.‖F stands for the norm on the reproducible kernel Hilbert
space F of functions D → C.

In the current application, this process is iterated from large to small scales
by dividing the bandwidth σD by a factor 2 at each iteration s, and looking
for the remainder function f − F (s−1), where F (s) stands for the s-th scale
approximation of the original function f [3]. In practice, scales across iterations
range from the overall spread of the samples until getting lower than the average
density of the samples [3].

From Low-Dimensional Coordinates to Infarct Prediction. An infarct
map î ∈ I is estimated from the coordinates ĉ using a multiscale regression
process similar to the one described in the previous subsection, where î, ĉ and ck

now respectively stand for ĉ, d and dk in Eq. 1. The interpolating function is now
denoted g. The infarct map therefore corresponds to î = g(ĉ) = g ◦ f(d). Data
adherence and smoothness are balanced by a weight γC , and the kernel function
is kC , of bandwidth σC . In a single-scale formulation, this corresponds to:

î =
K∑

k=1

kC (ĉ, ck) · bk, (3)

where bk is the k-th column of the matrix (KC + 1
γC

I)−1
I, I = (i1, . . . , iK)T , and

KC = (kC(ci, cj))(i,j). This process is also made multiscale, and follows similar
rules to the ones used for the estimation of f .

Due to this regression process, the values of î at each vertex lie within the
continuous [0, 1] interval. Thus, the prediction of the infarct position B(̂i) is
finally obtained by applying a relevant threshold to î (in our case, previously
determined by a ROC analysis, as described in Sect. 3.2).

3 Experiments and Results

3.1 Dataset

Infarct Generation. A database of 500 synthetic cases was generated to eval-
uate the methods. Starting from a volumetric tetrahedral mesh of the two ven-
tricles (46876 cells and 9673 points for the left ventricle [LV], corresponding to a
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Fig. 2. Iterative generation of an infarcted region (red) with random extent, shape,
and location, initiated within the mid-anterolateral segment (black arrow) (Color figure
online).
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Fig. 3. Average myocardial deformation for each AHA segment in a healthy case (a),
and two infarcts in opposite AHA segments (b and c).

myocardial volume/mass of 173 mL/182 g), a fully-connected region correspond-
ing to an infarct of random extent, shape, and location was constructed for each
case. The algorithm determined the diseased region iteratively, as illustrated
in Fig. 2. It first randomly selected a starting point within the left-anterior-
descending coronary territory. This specific territory was retained due to its
higher prevalence and agreement in its delineation [8]. Note that this only con-
cerns the location of the starting point for the infarct generation algorithm, and
that infarcts can spread out of this territory (Fig. 4). Further testing should be
extended to other coronary territories and different geometries to better evaluate
the performance of the method.

A spherical neighborhood of random radius between 2 and 12 mm was marked
as diseased, and a new starting point was randomly selected within this new
region. The process was iterated a random number of times (values from 1 to 16).
Infarct extents were of 5.2±2.6 mL (3.0±1.5% of the LV myocardium). A total
of 400 cases were used as training set and the other 100 served as testing data.

Electromechanical Simulation. A realistic electromechanical model [6] was
then used to simulate the cardiac function along a full cycle of duration 1 s.
This model was previously evaluated on invasive clinical data and has a realistic
behavior. Simulations here use a real anatomical mesh with fibers architecture
from an atlas. The contractility and stiffness parameters were altered in the
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random zone defined by our algorithm to model a local infarct [1]. They par-
tially reflect changes in active force and tissue elasticity. These parameters were
retained among many others to limit the training data to manageable amounts,
and corresponded to the ones with major influence on the deformation [7]. Border
zone was not set to only evaluate the algorithm on binary prediction. Neighbor
locations were therefore only passively influenced by the infarct.

Then, local deformation was computed for each tetrahedral cell of the mesh.
Figure 3 depicts the deformation values of two infarct configurations at opposite
AHA segments, against a healthy case. In this illustrative example, the whole
AHA segment was infarcted. Curves represent volume change values averaged
over each of the 17 AHA segments of the LV. Notably, deformation patterns are
less affected by a mid-anterolateral infarct than by a mid-inferoseptal one, due to
the influence of the right ventricle and the surrounding septal regions. Testing
our methods on a wide territory of infarct configurations will therefore allow
evaluating the sensitivity of the algorithm to marked or moderated alterations
of local deformation.

For the sake of simplicity in the infarct prediction process, we limited
the input to our algorithm to the deformation data at end-systole (the
{dk ∈ D}k∈[1,K] in Sect. 2), spatially smoothed by a Gaussian filter of band-
width 1 cm to prevent from inconsistencies due to point-cell correspondences
and the non-homogeneity of cell sizes and orientation across the whole volu-
metric mesh. Note that this might lower the accuracy of the infarct prediction
near the border of the ground truth location. The use of the deformation data
along the whole cycle may add robustness to the results in more complex con-
figurations, where local post-systolic abnormalities may be more marked or in
the presence of asynchronous hearts.

Parameters Setting. The number of nearest neighbors in the Isomap algo-
rithm was set to 5. The number of dimensions retained for the estimated coordi-
nates was set to 30. This value corresponded to the limit from which eigenvalues
weigh less than 5% of the first eigenvalue. The scalar weights used in the multi-
scale regression were determined by a leave-one-out procedure, as the value that
minimizes the generalization ability (the reconstruction error for samples lying
within the range of noise of the training set). Such values were of γD = γC = 1.

3.2 Results

Representative examples of the outputs of our method are shown in Fig. 4, to
compare with the thresholding of the deformation data from the same cases,
in Fig. 5 (animated version available as Supplementary Material1). The latter
notably failed on the transmurality of the infarct location. Qualitatively, our
method correctly predicted the infarct location, even for infarcts of small size,
location internal to the myocardium, and reduced effect on the deformation
curves (e.g. infarcts closer to the septum).
1 http://www-sop.inria.fr/asclepios/docs/TestCasesThresh.zip.

http://www-sop.inria.fr/asclepios/docs/TestCasesThresh.zip
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Fig. 4. Examples of myocardial deformation pattern, ground truth infarct location,
and estimated infarct location (Color figure online).

test case #07 test case #23
thresh = thresh =

Fig. 5. Ground truth infarct location (red) against the thresholding of the defor-
mation patterns (blue) for the cases shown in Fig. 4. Animated version available as
Supplementary Material (see footnote 1).

ROC Analysis. On each case, a ROC analysis was used to determine the
optimal threshold leading to the infarct prediction B(̂i) from the infarct map
î ∈ I (Fig. 6a). A similar process was applied for the direct thresholding of the
deformation data d ∈ D (Fig. 6b). These thresholds were defined as the average
of the optimal thresholds for each individual case.
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Fig. 6. ROC analysis of the tested cases comparing our method (a) to the thresholding
of the deformation patterns (b).

The performance of directly thresholding the deformation was rather poor in
terms of sensitivity and specificity (average area under the curve: 0.812±0.124).
Some cases even led to a ROC curve worse than randomly selecting points of the
mesh (the diagonal line). Our method significantly outperformed this technique
in all cases (average area under the curve: 0.992±0.011, p<0.001).

4 Conclusion

We presented a method to predict the location of a myocardial infarct from local
deformation patterns. This approach is novel and contrasts with the simpler and
clinically-used thresholding of the deformation patterns. Notably, our method
significantly outperformed this technique. A notable asset of the proposed work
also resides in the large database used to test the methods, made of synthetic
cases with infarcts of random extent, shape, and location. We are currently
collecting a database of 3D echocardiographic sequences and late-enhancement
images to extend the evaluation of our method to real data. This will allow evalu-
ating the scalability of the method towards the use of different heart geometries,
more complex deformation patterns, and possibly less contrasted local changes
in the deformation data to the acquisition and post-processing of ultrasound
sequences.
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1 Introduction

Building heart models for investigating the electrical [1–3], biomechanical [4–7],
and energetic function of the heart [8,9] is crucial to fully understand the underly-
ing effects of cardiac diseases. For such heart models, finite element (FE) interpo-
lation is generally used to describe cardiac geometry and microstructure. These
models allow for integration of structural and functional data acquired using
various imaging modalities, together with other measurements, such as haemo-
dynamic or electrophysiological recordings, to analyse the electro-mechanics of
the heart on a subject-specific basis.

Shape and microstructural tissue organisation are important, well-established
determinants of the biomechanical function of the heart. While in vivo mea-
surements of cardiac geometry are readily available via computed tomography,
magnetic resonance imaging (MRI), or ultrasound, in vivo microstructural mea-
surements from the whole heart remain sparse and difficult to quantify.

One option for acquiring microstructural information throughout the whole
heart is to use diffusion weighted MRI (DWI). This imaging modality exploits
the Brownian motion of water molecules within myocardial tissue to determine
local anisotropic diffusion in the ventricular walls [10]. Several approaches have
been explored to determine myocyte orientations, using either ex vivo or in vivo
imaging [11–15]. Typically, a diffusion tensor is derived at each voxel from the
acquired DWI, and the direction of maximum water diffusion, as represented by
the primary eigenvector of the derived local diffusion tensor, has been found to
correlate well with the local histologically-measured myocyte orientation [16,17].
The myocyte orientation is often represented as a helix angle with respect to
the short-axis plane of the heart. FE models typically incorporate the spatial
distribution of fibre orientations by interpolating helix angle parameters at the
nodes of the FE mesh [2,5,6]. Representing and analysing the apparent diffusion
with diffusion tensors comes with several drawbacks [18] including: (1) spatial
discontinuities in helix angle distributions; and (2) misrepresentation of myocyte
orientation in regions of high image noise or low fractional anisotropy (FA).

A third issue arises from the use of least squares fitting methods when cal-
culating a diffusion tensor for each voxel. This leads to a generally neglected
error, which expresses how well a tensor can represent the underlying diffusion
behaviour. Figure 1(b) shows a slice extracted from the whole heart (Fig. 1(a)),
indicating the coefficient of determination (R2) of the least squares fit for each
diffusion tensor1. If the data can be well represented by a diffusion tensor,

1 The fitted diffusion tensor was projected back onto the original set of j gradient
directions to get a set of estimated signal strengths (Se(j)). The estimated signal
strengths, the measured signal strengths (Sm(j)), and the mean of the measured
signal strengths (S̄m) were then used to calculate the coefficient of determination:

R2 = 1 −
∑

j(Sm(j) − Se(j))
2

∑
j(Sm(j) − S̄m)2

. (1)

.
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Fig. 1. Suitability of representing DWI voxels using a diffusion tensor, as indicated by
the coefficient of determination (R2) of the least squares tensor fit for (a) the whole
heart and (b) one mid-ventricular slice. Normalised diffusion signals are plotted as
vectors at two voxels; one with a low fitting error (high R2) where the vectors can be
well represented by an ellipsoid (diffusion tensor), and one with a high fitting error
(low R2) where the signals would be poorly represented by an ellipsoid.

the R2 would be close to 1 and therefore the error in fitting a tensor to the
data would be low. In these cases, the data show a clear apparent diffusion
direction. On the other hand, the diffusion tensor can be a poor representation
of the DWI data for some voxels, especially if non-adjacent directions have very
high normalised signal strengths. We propose that avoiding the intermediate
step of least squares fitting of a diffusion tensor would therefore be useful for
understanding the accuracy of the FE field and sensitivity to variation/noise in
the DWI data.

In this study we have extended the modelling framework presented in [18]
to avoid the least squares error issue by direct parameterisation of the myocyte
orientation field from the raw diffusion signals. In contrast to the conventional
method, the intermediate step of diffusion tensor calculation is not required in
this process and the raw diffusion signals are carried all the way through from
image acquisition to the final fibre field fitting process.

2 Methods

2.1 Experimental Procedure

The experimental study was approved by the Animal Ethics Committee of the
University of Auckland and conforms to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (NIH Publication No. 85-23).

A Wistar-Kyoto rat heart was excised, perfused with St Thomas cardioplegic
solution for relaxation, and fixed using Bouins solution in an approximate end-
diastolic state. DWI was performed using a 3D fast spin-echo pulse sequence on
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a Varian 4.7 T MRI scanner. The image set consisted of 12 short-axis slices with
a thickness of 1.5 mm, and no gap between slices; the in-plane resolution was
set to 128 voxels × 64 voxels (zero-pad interpolated to 128 voxels × 128 voxels)
with an in-plane voxel dimension of 156 µm × 156 µm. The image data for each
slice contained one non-diffusion weighted anatomical image, and 30 diffusion
weighted images. The 30 diffusion gradient directions were evenly distributed
across a hemisphere. Further details in [18].

2.2 Workflow for Myocyte Orientation Field Parameterisation

The following method was developed to parameterise a spatially-varying myocyte
orientation field for the LV myocardium directly from the raw diffusion signals
(i.e. without the calculation of diffusion tensors).

Step 1: Image Segmentation andLVFEGeometricModelConstruction.
The endocardial and epicardial surfaces of the LV, excluding the papillary muscles,
were manually segmented from the non-diffusion images using MATLAB2. Three
landmark points (LV base, LV apex, and right ventricle (RV) base) defined the
orientation of the orthogonal cardiac coordinate system (further details in [18]).

A prolate spheroidal-shaped 16-element (4 circumferential, 4 longitudinal
and 1 transmural) hexahedral tri-cubic Hermite FE model was customised to
the segmented surfaces to represent the LV geometry. The surfaces of the model
were fitted using non-linear least squares minimisation.

Step 2: Field-Based Parameterisation of LV Myocyte Orientation. To
parameterise the myocyte orientation field throughout the LV FE geometric
model, we developed a novel method to estimate spatially-continuous myocyte
angle fields (interpolated using tri-cubic Hermite basis functions) that best rep-
resent the maximal diffusion direction at all voxels within the LV. Firstly, the
myocyte orientation field was initialised by setting the helix angles (θ(n)) to 0◦

for endocardial and epicardial nodes. Initial imbrication angles (ϕ(n)) at all nodes
were also set to 0◦. Secondly, the FE local coordinates within the LV geomet-
ric model were determined for each voxel (v), and an estimate of the myocyte
orientation (f(v)) at each voxel was interpolated. This was done by Euler angle
rotations of vectors [19] by the interpolated angles θ(n) and ϕ(n).

To express the amount of diffusion along the jth gradient direction (g(j)) we
introduced a weight (w(j,v)) for direction j in voxel v derived from the basic
diffusion equation3:

S(j,v) = S(0,v)e
−γ2G2D(j)δ

2(Δ− δ
3 ). (2)

2 The MathWorks, Inc., Natick, Massachusetts, United States.
3 γ represents the gyromagnetic ratio of protons, δ and G the duration and magnitude

of application of the motion probing gradient along direction g(j), D(j) the apparent
diffusivity in the same direction, and Δ the time difference between the centres of a
pair of gradient pulses.
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Rearranging Eq. 2 gives:

− ln(
S(j,v)

S(0,v)
) = γ2G2D(j)δ

2(Δ − δ

3
) ≡ w(j,v). (3)

Scaling the unit vectors g(j) by w(j,v) provided weighted direction vectors
(w(j,v)) that represented the magnitude of diffusion along each gradient direction.

Finally, an objective function (Ψ) was constructed:

Ψ =
∑

v

∑
j

(w(j,v) · f(v))2, (4)

which is greatest when f(v) is aligned with the directions of w(j,v) with great-
est magnitude. The objective function was maximised using non-linear optimi-
sation4 by modifying the nodal parameters (θ(n) and ϕ(n)). The method was
implemented using the OpenCMISS-Cmgui software package5 [20].

2.3 Surrogate Estimate of Fractional Anisotropy

By avoiding the calculation of a diffusion tensor the conventional estimate of FA
from the eigenvalues of the diffusion tensor is not available. FA describes how
much the ellipsoid associated with a diffusion tensor differs from a sphere. To
provide an equivalent index, we derived an estimate of FA from the raw diffusion
signals (rdsFA) in a formulation similar to the expression used to compute FA
from the eigenvalues of the diffusion tensor [21]:

rdsFA =

√
d

d − 1

∑
j(w(j) − w̄)2∑

j w2
(j)

, (5)

where d is the number of directions and

w̄ =
1
d

∑
j

w(j). (6)

This enabled a comparison of the relative anisotropy between voxels without
the need to compute diffusion tensors. As a comparison with the conventional
approach, we found that there was a strong linear correlation between FA and
rdsFA (correlation coefficient of R2 = 0.9975).

3 Results

Having fitted the myocyte orientation field to the raw diffusion signals, the
myocyte angles were then interpolated at each of the image voxel locations. The
4 least squares quasi Newton function, OPT++ optimisation library, http://software.

sandia.gov/opt++.
5 OpenCMISS-Cmgui application, www.opencmiss.org.

http://software.sandia.gov/opt++
http://software.sandia.gov/opt++
www.opencmiss.org
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result is plotted in Fig. 2(a) using the helix angle to colour-code the myocyte ori-
entation. The helix angle field varied smoothly throughout the LV, with positive
angles at the endocardium and negative angles at the epicardial surface.

We compared the fitted myocyte orientations (f(v)) with the primary eigen-
vectors (e1(v)) calculated by conventional eigenanalysis of the diffusion tensors.
We used a normalised dot product (nDP, see Eq. 7) to quantify the overall align-
ment of the fitted orientation and the primary eigenvector at each voxel by
scaling their dot product by the FA(v) at the corresponding voxel. This accounts
for the differing degree of confidence in the calculated eigenvectors since a voxel
with a FA of 0 does not have a unique primary eigenvector. nDP ranges from
0 to 1, with 1 representing a perfect alignment of both vectors within an image
voxel. The resulting nDP in this study was very close to 1, which suggests a
high correlation between the primary eigenvector of the diffusion tensor and the
fitted myocyte orientation across all myocardial voxels:

nDP =
∑

v(FA(v)|f(v) · e1(v)|)∑
v FA(v)

= 0.979. (7)

When building personalised models of the heart based on primary eigenvec-
tors of diffusion tensors, it is common to parameterise myocyte orientations using
a FE model by interpolating their spatial distribution (after phase-unwrapping).
We processed the primary eigenvectors with this approach to provide a compar-
ison set of myocyte orientations (h(v)) fitted to the eigenvectors e1(v).

Figure 2(b) presents a map of FA (top) in a mid-ventricular slice, along with
the alignment between f(v) and e1(v) (bottom-left), and between f(v) and h(v)

(bottom-right). At locations where FA was high, the directions were similar,
however significant differences were observed in regions of low FA (highlighted
with dashed boxes in Fig. 2(b)). The alignment with spatially-interpolated eigen-
vectors was much closer, and remaining differences, which tended to arise near
boundaries, may have been caused by those voxels containing partial-volume
imaging artefacts.

Figure 3 shows transmural gradients of raw and fitted helix angles at two
locations around the LV wall, and illustrates that even in regions of low FA,
such as the intersection of LV and RV, this method provided a smoothly varying
myocyte angle field.

4 Discussion

A novel method was developed to parameterise a continuous myocyte orientation
field throughout a FE model of the LV by directly fitting to raw diffusion signals
acquired by DWI. This method circumvents issues associated with the eigen-
analysis of diffusion tensors that can potentially lead to misrepresentation of the
local myocyte orientation. These disadvantages can have a significant impact on
electrophysiological and mechanical modelling studies as they affect the descrip-
tion of the electrical, contractile, and passive mechanical constitutive properties
of the tissue. In addition, this new method does not assume the diffusion to be
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Fig. 2. (a) Fitted myocyte orientations colour-coded by the interpolated helix angles
at all voxels within the LV. (b) A mid-ventricular slice showing (top) FA, and the align-
ment between interpolated myocyte orientations f(v) and (bottom-left) primary eigen-
vectors e1(v), and (bottom-right) between f(v) and spatially-interpolated eigenvectors
h(v). The dotted squares indicate (top) areas of low FA and (bottom) corresponding
regions of poor alignment. The FA spectrum was set to range between 0 and 0.4 to
highlight the regional variability (Color figure online).

Fig. 3. Transmural gradients of helix angle along the indicated lines at the intersection
of LV and RV and at the LV free wall. Fitting to the raw diffusion signals (red lines)
shows good agreement with the raw helix angles. The result for fitting to the helix
angles is illustrated for comparison reasons (Color figure online).
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best represented by a tensor, and thus avoids the loss of information associated
with the least squares fit of the diffusion tensor. Instead of using a voxel-wise
data reduction to a tensor, the new method incorporates the spatial distribution
of diffusion signals. The error therefore only involves one fitting process instead
of two by eliminating the intermediate step of least squares fitting of the diffusion
tensor, and requires less computation. It would be possible to further extend this
technique to capture microstructural features that are not well represented by
a diffusion tensor. One example would be to represent crossing fibres by allow-
ing multiple orientations within a single voxel, and another would be to allow
the representation of tissue isotropy (where there is no preferred direction) as
it may be found in regions of myocyte disarray. Myocyte orientations estimated
using this method agree well with the conventional method of fitting a myocyte
field to primary eigenvectors for regions of high FA, within which the primary
eigenvector has been shown to reliably represent the local myocyte orientation.
In regions of low FA, this method provides continuously varying myocyte orien-
tations. If the main contributor to low FA is noise, then maintaining continuity
in the myocyte orientation field despite low FA is an important advantage.

The results suggest that fitting to the raw diffusion signals gives a better
representation of the underlying structure than fitting to the primary eigenvec-
tors of diffusion tensors, because the objective function implicitly accounts for
variations in FA.

5 Conclusions

In this study, a model-based parameterisation method was proposed to directly
interpret diffusion signals provided by ex vivo DWI. Our scheme does not require
the conventional calculation of diffusion tensors, but directly fits a myocyte ori-
entation field to spatial distributions of raw diffusion signals. A comparison of
the proposed framework with a conventional eigenvector fitting method showed
good agreement in regions of high FA, and smooth solutions in regions with
low FA. Future studies will include exploring the influence of noise and motion
artefacts on the fitting results.
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Abstract. Cardiac deformation and changes therein have been linked to
pathologies. Both can be extracted in detail from tagged Magnetic Reso-
nance Imaging (tMRI) using harmonic phase (HARP) images. Although
point tracking algorithms have shown to have high accuracies on HARP
images, these vary with position. Detecting and discarding areas with
unreliable results is crucial for use in clinical support systems. This
paper assesses the capability of two confidence measures (CMs), based on
energy and image structure, for detecting locations with reduced accu-
racy in motion tracking results. These CMs were tested on a database
of simulated tMRI images containing the most common artifacts that
may affect tracking accuracy. CM performance is assessed based on its
capability for HARP tracking error bounding and compared in terms of
significant differences detected using a multi comparison analysis of vari-
ance that takes into account the most influential factors on HARP track-
ing performance. Results showed that the CM based on image structure
was better suited to detect unreliable optical flow vectors. In addition,
it was shown that CMs can be used to detect optical flow vectors with
large errors in order to improve the optical flow obtained with the HARP
tracking algorithm.

1 Introduction

Tagged MRI (tMRI) is an important imaging technique to obtain detailed
motion information of the cardiac left ventricle (LV) [1]. Tagged MRI images
are obtained by spatially modulating the MR magnetization (SPAMM) field just
before performing a cine acquisition so that images have a characteristic stripe
or grid pattern that deforms along with cardiac tissue contraction and relax-
ation [2]. This enables the analysis of motion and deformation over time, which
c© Springer International Publishing Switzerland 2016
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are known to reflect changes due to pathology [3–5]. The current standard for
obtaining motion information from tMRI is by application of a material point
tracking algorithm on harmonic phase (HARP) images, presented by Osman
et al. [6,7]. In the past, it has been shown that HARP tracking is able to cor-
rectly estimate the displacement of the cardiac muscle [8,9]. Nevertheless, there
will always be a limit to the accuracy which may drop in difficult areas. There-
fore, it is important to provide an estimate of the upper bound for the error by
means of a confidence measure (CM).

In this paper, we test the suitability of two CMs to serve as an estimation
of the error bounds in the absence of ground truth. The proposed CMs are
quantities computed from the input data that should help detect those points
for which the tracking is not accurate enough for further use, such as strain
computations. Unreliable points can be selected for post-processing by CMs,
which improves the quality of the results. It should be noted that for each value of
the confidence measure, which in our case lies within [0, 1], it can only provide an
upper bound to the displacement error at each pixel, instead of the displacement
error value itself (according to numerical error analysis [10]). This implies that
high values of the confidence measure, i.e. high confidence, should ensure a low
tracking error, while for low CM values errors may take any value, even a small
one. Points that have a high value of the CM and a high error are unpredictable
points, which cannot be detected by the CM and, thus, should not occur if the
confidence measure has a perfect performance. Furthermore, when this behaviour
is stable across frames or references with similar features, the CM is suited for
bounding the error in the absence of ground truth, which is ultimately what we
need to apply the CMs in a clinical setting.

To the best knowledge of the authors, no confidence measures have been pro-
posed that can give an estimate of the upper bound of the displacement error
in HARP results. In this paper, we propose and test the capability of different
CMs for bounding the motion estimation error of the HARP algorithm, which is
explained in Sect. 3, while tracking the cardiac left ventricle in tMRI sequences.
First, a database of synthetic tagged MR images containing several motion pat-
terns with known ground truth was generated by means of a simplified cardiac
motion simulator [11,12] and is analysed with the HARP tracking algorithm.
Second, sparse-density plots [13] were used to quantify the capability of a given
CM to bound the displacement error within the myocardium. Statistical analysis
over the variability of sparse-density plots is used to test the impact of motion
and appearance factors in displacement accuracy.

2 Evaluation of Confidence Measures

In this work, the goal of a confidence measure is to provide an upper bound for
the flow error in order to detect pixels for which the flow estimation is likely
to be non-reliable. In order to assess the capability of a CM for bounding the
displacement error, we use Sparse-Density Plots (SDPs) [13]. An SDP evaluates
the risk of a confidence measure; that is, the proportion of points (ρ) the bound
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of which can not be determined by CM values. While decision support systems
usually set a lower bound to acceptable accuracy, we compute ρ in terms of the
maximum allowed error (Emax), which we call risk:

ρ(CM0) := P (E > Emax|CM > CM0). (1)

Consequently the SDP is the plot given by:

SDP (prctCM ) := (prctCM , ρ(prctCM )), (2)

where prctCM are CM distribution percentiles , which are used instead of directly
using the CM to ensure that the SDP is invariant under monotonically increasing
transformations of the CM.

Considering a database of image sequences with ground truth, we compute
the SDP profile for every two subsequent frames. Note that each SDP profile
assesses a bound on the optical flow error specifically for the two frames on
which it was based. However, we would like to obtain a general curve, SDP,
that can reliably assess a bound on the optical flow error (also called risk) for
any other sequence with similar features without ground truth. Therefore, we
provide a statistical bound for the risk by computing an upper estimator of
SDP profiles using a Student’s t-distribution for confident estimation of random
variables means. Let us consider a sample of SDP profiles, {SDPi}N

i=1 of N
frames (N > 30) presenting similar motion and appearance features. For each
CM percentile, prctCM , consider the sample mean, μ(prctCM ), and variance,
σ(prctCM ), computed for the values ρi(prctCM ), i = 1, . . . , N . Then, an upper
bound for ρi(prctCM ) at confidence level αSDP is given by:

μ(prctCM ) + tN−1
1−αSDPσ(prctCM ) = ΥprctCM

(3)

for tN−1
1−αSDP the value of a Student’s t-distribution with N-1 degrees of freedom

having a cumulative probability equal to 1 − αSDP [14]. The bounding curve is
defined as

SDP := SDP(prctCM ) = (prctCM ,ΥprctCM
)

and it indicates that, once a prctCM of pixels has been removed, the error of the
remaining ones should be under EEmax with probability ΥprctCM

.
By definition of the confidence interval, the risk at prctCM is under ΥprctCM

for new incoming frames with probability 1 − αSDP [14], that is, for approxi-
mately (1 − αSDP)% of frames. For the remaining αSDP%, the risk could be as
high as 1. The bound ΥprctCM

applies to all frames provided that SDP variability
across such a frame sample is not large [15]. In this context, a most relevant qual-
ity feature of confidence measures is a stable behaviour of SDP across sequences
in the decision support system. In other words, the lower variability in training
SDP profiles we have, the higher predictive value SDP has.

Under the previous considerations, the capability of a CM for risk bounding
should follow a two-stage cascade process. First, SDP predictive value should be
assessed and, then, for those CMs with the highest predictive value, the quality
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of the bound provided by SDP should be determined. The predictive value is
assessed by the variance of SDP across the training samples, while the quality
of SDP bound is measured in terms of a minimum risk for the bounded pixels.
Each quality score is defined as follows:

1. SDP Predictive Value. Given a sampling of CM-percentiles prctjCM =
j·h

Nprct
, with h the sampling step and Nprct the number of percentiles, the

variance of its SDP is approximated by the unbiased sample estimator:

σSDP
i =

1
Nprct − 1

Nprct∑
j=1

(
ρi(prctjCM ) − Υj

prctCM

)2

, (4)

where i and j correspond to the frame and the percentile, respectively, and
Υj

prctCM
is the sample mean at the j -th sampled percentile computed by (3).

2. SDP Bound Quality. The amount of risk for a family of SDP curves can
be summarized by the mean area, AUCSDP

i , under the curve SDP i. Given
a sampling of CM-percentiles prctjCM = j·h

Nprct
, AUCSDP

i is defined as:

AUCSDP
i :=

1
Nprct

Nprct∑
j=1

ρi(prctjCM ) (5)

for i, j denoting the frame and CM-percentile, respectively.

Figure 1 illustrates the computation of the two quality scores, the variance
σSDP

i and the average risk AUCSDP
i . The prediction curve SDP is plotted in

black and the SDPi in red. Subsequently, the variance σSDP
i is given by the

area between both curves (shaded area in Fig. 1(a)) whereas the risk AUCSDP
i

is given by the area under the curve (shaded area in Fig. 1(b)).

)b()a(

Fig. 1. CM quality assessment: σSDP
i computation for SDP predictive value assess-

ment (a), and AUCSDP
i computation for SDP bound quality (b).
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3 The HARP Algorithm

The stripe or grid pattern that is present in tMRI images deforms along with
myocardial tissue contraction and relaxation. This means that via feature track-
ing, assessment of local cardiac motion should be possible. Osman et al. devel-
oped a tracking algorithm (HARP) [6] that links changes of the feature over
time to local spatial feature changes by the tissue displacement y(n+1) − y(n) to
be estimated, similar to optical flow [16], but now iteratively:

y(n+1) − y(n)

︸ ︷︷ ︸
displacement

= − [∇∗a(y(n), tm+1)]︸ ︷︷ ︸
(spatial) feature gradient

−1 W(a(y(n), tm+1) − a(ym, tm))︸ ︷︷ ︸
temporal feature derivative

. (6)

Here, y is two-dimensional position, n is the iteration number, tm is time, a
is the apparent feature vector [a1 a2], where the subscript determines the input
image (image 1 and 2 start with perpendicular stripe tags in the first frame),
and W indicates the apparent feature is wrapped (v.i.).

Typically, the feature tracking in both optical flow and HARP assume feature
constancy over time. However, since the intensity of material points is not con-
stant in tMRI images, due to signal decay as a result of T1-relaxation, intensity
is not a proper feature to track. To overcome this issue, Osman et al. developed
a tracking algorithm based on (instead of pixel intensity) the harmonic phase of
material points, unaffected by signal decay [6].

By application of a Gabor filter to isolate the i-th spectral peak at frequency
ωi in the Fourier domain, a complex-valued spatial domain image is obtained.
Usually, the first harmonic spectral peak in the tag direction is preserved. Then,
the harmonic phase image is obtained by taking the argument of each pixel in
the complex spatial domain image. This is in fact not the true phase φk but the
wrapped “apparent” phase ak which lies within the interval [−π, π).

Because a is wrapped, it has discontinuities, which leads to problems in the
context of computing gradients. Therefore, before computing ∇a, a is locally
unwrapped, indicated by ∇∗ in Eq. (6).

4 Experimental Settings

The goal of our experiments is to show the applicability of the framework for
selecting CMs capable of predicting the displacement error upper bound in
cardiac tagged MRI sequences analysed with HARP. Since the commercially
available HARP software does not allow access to the calculations, we used an
in-house implementation of the HARP algorithm described by Osman et al. [6].
In the experiments, we are interested in the displacement of each pixel in the
myocardium at each time step and, therefore, we apply the HARP algorithm at
each frame separately. In [6], iteration stops when the phase difference between
source and target position drops below a threshold. However, since phase error is
part of our CM, we did not want to use it as a stopping criterion. Consequently, a
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stopping criterion based on phase error stability (Δφ < 0.01) and/or maximum
number of iterations (N = 30) was implemented.

The iteration process is stopped when the last five estimates are stable with
a threshold of 0.01 or when the maximum number of 30 iterations is reached.

To find the optimal confidence measure for the HARP tracking algorithm,
we have considered two types of CMs:

1. Image structure (Ck). The condition numbers of the spatial harmonic phase
gradient matrix from each iteration, see Eq. (6), defined as

Ck = smin/smax

where s are singular values [17], are combined by taking the L2-norm.
2. Energy (Ce). The confidence measure Ce = cos(φ) is computed from the final

temporal harmonic phase difference

φ = W(a(ym+1, tm+1) − a(ym, tm)),

which is the difference between the harmonic phases a of the material point
in the two frames, with W a wrapping function, see Eq. (6).

4.1 Cardiac Deformation DataSet

In order to test if CMs can accurately bound the motion tracking error, it is
necessary to have images with a known motion field. A solution for this is to
use artificially generated images. However, to reliably apply the CMs to real

Fig. 2. Frames of horizontal tagging sequence from the 3rd slice of the set with con-
traction. The arrows illustrate a sample of the ground truth and are amplified three
times for visibility.
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data, these synthetic images need to have comparable features to the real clin-
ical images. Therefore, we use the database of synthetic MR images (Fig. 2)
first introduced by Márquez-Valle et al. [12], which is based on the cardiac
motion simulator by Arts et al. incorporating a time-dependent model using 13
parameters [18].

The datasets contain simulated sinusoidal SPAMM tagged sequences [2],
which are modelled with signal decay according to [11]. Different image
datasets were created containing either rotation around the long-axis or radially-
dependent contraction, while eliminating longitudinal motion in the model to
prevent out-of-plane motion in the short-axis images. All seven short-axis slices
existed of 50 × 50 isotropic pixels and started with the longitudinal axis in the
center of the image, see Fig. 2. The cardiac cycle was split into 16 frames and
the tagged period was set to 6.6 pixels in either horizontal or vertical direction.
Rician noise was added with an SNR of 25, which was constant over time. SNR
was defined as SNR = μ

σ with μ the mean signal and σ the standard deviation
of the noise [19]. Signal decay is modelled to mimic the T1 decay present in MRI.
For details on the synthetic data generation, see [12].

4.2 Statistical Analysis

Significance in SDP variability and bound quality is checked using ANOVA,
which is a powerful statistical tool for detecting differences in performance across
methodologies as well as the impact of different factors or assumptions. We can
apply ANOVA in case our data consists of one or several categorical explana-
tory variables (called factors) and a quantitative response of the variable. The
variability analysis is defined after the ANOVA quantitative score and the differ-
ent factors and methods are determined. Training data (individuals) is grouped
according to such factors, and differences among quantitative response group
means are computed. ANOVA provides a statistical way to assess if such differ-
ences are significant enough for a given confidence level α. In case of having more
than one factor, ANOVA also detects any interaction across the different factors
that might distort the analysis of results for each factor separately. If interaction
across factors is significant, then the multiple ANOVA has to be re-designed as
one factor ANOVA combining all factor groups into a single one to determine
whether or not the response variable depends on the combined factors.

The ANOVA design (variable, individuals and factors) for each quality score
(SDP Predictive Value and SDP Bound Quality) is defined taking as factors
the confidence measures (with groups defined by Ce, Ck) and cardiac motions
(with groups defined by Contraction, Rotation). The sampling for each CM
quality score is given by {σSDP

i }NFr
i=1 and {AUCSDP

i }NFr
i=1 , respectively. In these

experiments the number of frames, NFr, is set to 40 and they have been ran-
domly sampled across the SA sequences with rotation and contraction motion.
To account for non normality in data, ANOVA is performed in logarithmic scale.
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(a) (b)

Fig. 3. SDP plots of the confidence measures Ck (a) and Ce (b) from 40 frames ran-
domly sampled across the sequence with contracting motion.

5 Results and Discussion

Figure 3 shows the SDP plots of both confidence measures for the sequence with
contracting motion. Table 1 shows the average variability (first two columns)
and risk (second two columns) for each ANOVA factor group (confidence mea-
sures in columns and cardiac motions in rows). For the two quality measures,
the 2-way ANOVA over CM and cardiac motions does not detect any signif-
icant differences for the motion factor (with p − Mot = 0.18 for σSDP

i and
p−Mot = 0.84 for AUCSDP

i ) nor interaction (with p−inter = 0.78 for σSDP
i and

p − inter = 0.68 for AUCSDP
i ). This implies that the capabilities of each CM

for error bounding are independent of the cardiac motion. Conversely, the 2-way
ANOVA is significant (with p − CM = 5 × 10−3 for σSDP

i and p − CM = 0.005
for AUCSDP

i ) in the column factor and, thus, the capability of Ce and Ck for
error bounding is different. In particular, and according to the average values
reported in Table 1, we conclude that Ck has a lower variability and risk, regard-
less of the motion (p − inter > 0.68). This is due to the fact that in uniform
areas of the image such as the center, interpolation errors are low but HARP
cannot compute the phase properly which results in bad correlation.

This is confirmed by a multi comparison test with Tukey correction for
one factor given by the two CMs and variable sampling taken for the two
motions. The plots of Fig. 4 show the result of the test for SDP Predictive Value

Table 1. Average variability and risk for each ANOVA factor group.

σSDP
i AUCSDP

i

Ce Ck Ce Ck

Contraction 2.5 × 10−3 0.6 × 10−3 5 × 10−3 2 × 10−3

Rotation 7.2 × 10−3 0.56 × 10−3 7.3 × 10−3 2.7 × 10−3
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Fig. 4. Multicomparison test for SDP Predictive Value and SDP Bound Quality.
Results are in logarithmic scale to account for non normality in the data.

(on the left) and SDP Bound Quality (on the right). Both plots show intervals
for mean differences. Each level mean is represented as a horizontal line centred
at the mean group and vertically distributed according to the confidence mea-
sure. In the case that there are differences between a selected interval and the
others (one in this case), the non-selected intervals are depicted in red.

Note that it is not possible to give a direct and absolute upper bound of
the optic flow error. However, since the presented framework uses powerful sta-
tistical tools, we are able to provide the risk of unbounded pixels for a specific
confidence measure and a sequence with no ground truth. This will enable more
reliable interpretation of HARP tracking results. As a next step, pixels with a
low confidence could be discarded from the computation and interpolated in the
final results. Another option is to include regularisation on the HARP images in
the areas with low confidence.

Because the synthetic images used in this study accurately simulate the
features of real tMRI sequences, we expect that our results translate to real
tMRI sequences fairly well. In the future we will apply this framework to clinical
images, for which (part of the) optic flow is known1, in order to prove that these
CMs indeed bound the error in clinical images as well.

6 Conclusion

In this paper, we propose and test the capability of two confidence measures for
bounding several motion estimation errors of the HARP algorithm in tracking
the cardiac left ventricle in tMRI sequences. A 2-way ANOVA over CMs and
cardiac motions did not detect any significant differences for the motion fac-
tor nor interaction, so that the capabilities of each CM for error bounding are
independent of the type of cardiac motion. Furthermore, we concluded that the

1 A set of volunteer sequences and phantom images are available from the 2011 STA-
COM challenge. For these images a set of feature points is tracked over time.
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capability of the CM computed from image structure, Ck, has a better error
bounding capability than the CM determined by the energy, Ce. In particu-
lar, the phase is not computed properly in noisy areas, which means it cannot
correlate well to interpolation error.
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Abstract. Planning of mitral valve replacement would benefit from pre-
procedural 3D models that could allow the clinician to fully understand
the patient anatomical and functional condition. However, no single
image modality can provide the complete picture alone but 3D echocar-
diography and magnetic resonance imaging (MRI) could be combined
to leverage the advantages of each modality. The fusion of cardiac echo
and MR images is a challenging task that currently requires the use of
anatomical landmarks to drive the registration. In mitral valve treat-
ment planning, the papillary muscles represent an ideal landmark set as
they can be clearly identified in both image modalities. In this paper, we
address the problem of papillary muscles automatic segmentation from
MRI by proposing an atlas-based segmentation method. Results show
that a good quality segmentation (Dice score 0.60± 0.14 and 0.73± 0.06
for anterior and posterior papillary muscle, respectively) can be achieved
within the straightforward pipeline provided by this approach, also on
images acquired with different scanners. Hence, our atlas-based segmen-
tation method could represent the first key step towards a novel, auto-
mated echo and MRI fusion algorithm.

1 Introduction

Mitral valve (MV) regurgitation is a common form of valvular abnormality which
requires treatment or replacement through invasive open-heart surgery, with
considerable risks of significant morbidity and mortality [1]. Thus, there is an
increased demand for minimally invasive techniques, such as sutureless and/or
transcatheter MV replacement. These procedures have already been developed
and successfully used for the replacement of aortic and pulmonary valves, and
only recently techniques are becoming available for the MV, as its anatomy
is complex, with a non-uniform geometry that relies on several inter-related
components for its function: the annulus, the leaflets, the chordae tendineae,
and the supporting papillary muscles. Echocardiography is the conventional
c© Springer International Publishing Switzerland 2016
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image modality for MV assessment, offering real-time structural and functional
information. With the latest advances in ultrasound probes, high-resolution, full-
volume imaging and quantification of the morphology of the entire MV apparatus
have become feasible. Magnetic resonance imaging (MRI) is the reference stan-
dard for the measurement of ventricular and atrial size, geometry and function.
By combining these two imaging modalities, it would be possible to fill in infor-
mation missing from echocardiography or MRI alone to create a detailed 3D
model of the left heart and MV.

A pre-requisite for the creation of a fused model is the alignment of both
image modalities. This is a big challenge as the 3D registration of echocardio-
graphy to MRI remains an open problem. To date, most approaches for echo-
to-MRI (or computed tomography, CT) registration have been developed for
neurosurgical applications [2,3]. Cardiac echo-to-MRI registration has been lim-
itedly addressed [4–6]. Currently developed methods require either some manual
initial registration [4,5] or the definition of landmarks [6] in both images that
can guide the registration procedure. Landmark-based approaches [6] for echo-
to-MRI registration represent a good trade-off between accuracy, ease of use and
computational time. However, for heart images there are only few spatially accu-
rate anatomical landmarks. Moreover, due to the limited field of view (FOV) of
echocardiography, it is mandatory to define landmarks that are specific to the
problem (i.e. anatomical region) addressed.

Within the context of mitral valve treatment planning, the papillary muscles
(PMs) represent an ideal landmark set as they can be clearly identified in both
echo and MRI images (Fig. 1), and their successfull adoption has been previously
documented. Savi et al. [7] rigidly registered cardiac PET and echo images by
using PMs and the inferior junction of the right ventricle as reference points.
PMs were used as landmarks also in [8] to validate a rigid, surface-based, cardiac

Fig. 1. Papillary muscles highlighted in both image modalities. (a) Coronal view of
cardiac whole-heart MRI. The papillary muscles are highlighted by the red arrows.
Details of the chordae and the MV leaflets are also visible. (b) Parasternal long-axis
view of 3D echo (Color figure online).
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MR-PET registration. With the final aim of fusing 3D echo and MRI for MV
pre-procedural planning, in this work we first address the problem of accurately
extracting the PMs from MR images.

While the segmentation of the main chambers of the heart has been widely
addressed [9], little work has focused on the extraction of smaller structures such
as the PMs. Spreeuwers et al. [10] were the first to tackle the problem through a
2D region-based approach. More recently, Gao et al. [11] addressed the problem
through a topological method that tries to restore missing structures from an
initial segmentation using high resolution CT. Other methods in the literature
have extracted the PMs along with the left ventricle but, not as a separate
structure. Despite the popularity of atlas-based methods in the segmentation of
the heart [9,12], none of the existing work has tried to use this type of framework
for the segmentation of the PMs. This could be explained by the complexity,
shape, size and position variability of this structure. The final aim of this work
is to demonstrate, through a validation study, that atlas-based approaches are
well suited for PMs segmentation.

The remaining of this paper is organised as follows: Sect. 2 describes the data
and the specific methods used in this study. Section 3 shows the results. Finally,
a discussion on the obtained results and a conclusion are presented in Sect. 4.

2 Materials and Methods

In this section we describe the data, the motivation for an atlas-based approach
and the evaluation scheme used to assess PMs segmentation.

2.1 Materials

Twenty-three 3D ECG- and respiratory-gated MRI volumes, images size 256 ×
256 × 140, were acquired at King’s College London [13]. We denote this as set
S1. Two additional 3D Whole Heart ECG- and respiratory-gated MRI datasets,
image size 152 × 256 × 120 and 128 × 256 × 96, were acquired at Great Ormond
Street Hospital, London, using a different scanner (1.5 Tesla Siemens Avanto).
We denote this as set S2. Both datasets come from healthy volunteers.

2.2 Method

We make use of a multi-atlas based segmentation approach. In the following,
we describe the atlas creation, the selected atlas segmentation method and the
evaluation scheme.

Atlas Creation. For each scan from S1, a manual segmentation of the four
main chambers, the myocardium, the pulmonary artery and the aorta was avail-
able. ITK-SNAP [14] was adopted to add the labels of the antero-lateral (APM)
and postero-medial (PPM) papillary muscles (Fig. 2). To ease the labelling task,
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an initial segmentation was obtained with the Snake toolbox. The region of inter-
est was selected around each muscle and a thresholding filter applied to correctly
drive the active contour evolution. One or more balloons were placed within each
muscle main region and the snake evolution performed until convergence impos-
ing expanding balloon force and low curvature constraint. Manual editing was
performed in the obtained result to correct for errors caused by the irregular and
branched shape of the PMs.

Fig. 2. Semi-automated segmentation method adopted to label the PMs. ITK-
SNAP [14] was adopted for this purpose.

Using the available labels for S1, two different atlases were created. An atlas
set containing all the possible available labels (whole heart and PMs), which we
denoted as WHPMA, and an atlas set containing only the labels of the PMs.
We denoted this atlas as set PMA. Set S2 was not included in the atlas and was
only used for validation purposes.

Multi-atlas Segmentation. There is a wide range of multi-atlas based
approaches addressing the problem of cardiac segmentation [9]. We have selected
to use the segmentation pipeline proposed by Zuluaga et al. [12] as it has shown
to be robust in the segmentation of different structures within the heart [15,16].
The details of the presented method can be found in [12]. Here we only give a
brief description of it.

Let an atlas database A be expressed as the set of n paired images A =
{Yj ; Lj}, j ∈ {1, ..., n}, with Yj an intensity image and Lj a label image, and let
Yu be an unseen image to be diagnosed. A segmentation for Yu is obtained by
transforming the set of n atlases into the image space of Yu and then applying a
fusion criterion to combine the label images Lj from each atlas into a consensus
segmentation L̂u. To determine whether an unseen image Yu contains a specific
pathology, it has to be segmented using an atlas set with the same pathological
pattern.

The structures surrounding the heart tend to bias the registration in cardiac
images. To avoid this problem, the atlas set A is registered to Yu in a two-stage
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process. In the first stage, a region of interest that encloses the heart is obtained
by affinely registering Yu to every Yj , applying the obtained transformations to
binarised Lj images, and finally fusing those into a mask Mu using a majority
voting criterion. In the second stage, this mask is applied to the unseen image to
allow for flexible registrations without bias. With a nonrigid free form deforma-
tion registration using normalised mutual information, we align the entire atlas
set A to Yu.

The final segmentation L̂u is obtained by using the multi-STEPS algo-
rithm [17] in combination with a locally normalised cross correlation (LNCC)
based ranking strategy to determine which are the most suitable atlases to use
in the fusion process. The STEPS algorithm provides a parameter X that allows
the control of the number of atlases to be used locally according to the LNCC.

Evaluation Scheme. The capability of the multi-atlas segmentation method to
obtain a satisfactory extraction of the PMs was evaluated using a leave-one-out
cross validation scheme on set S1, i.e. each image was automatically segmented
adopting the remaining twenty-two as atlas. Two different tests were performed,
the first using WHPMA, and the second using PMA.

The obtained results were compared with the manual segmentation in terms
of visual assessment and Dice score, the latter computed as

Dice =
2(Vmanual ∩ Vautomatic)
(Vmanual ∪ Vautomatic)

(1)

Additionally, the PMs from S2 were segmented with WHPMA using the
complete set (23 images). Visual assessment and Dice scores were computed also
for this dataset. The goal of this experiment was to determine the sensibility of
the method to different image scanners.

3 Validation and Results

Cross-Validation. The proposed method succeeded in performing the segmen-
tation of all the twenty-three volumes of S1, when both WHPMA and PMA
were adopted.

Table 1 shows the results of computing the Dice scores for both the APM
and PPM segmentations in S1. The values were averaged between the twenty-
three datasets and the standard deviation was computed. A reduction of the
mean Dice scores is noticeable when the atlas adopted (PMA) had only the
PMs labels.

In Fig. 3, the manual segmentation of one image of S1 is compared against
the one obtained with the multi-atlas approach. The automatic method was able
to correctly segment all the cardiac structures and the two PMs in all the tested
datasets, although the regions presenting thin and irregular branches remained
difficult to label. As a result of the label fusion, the great majority of the obtained
segmentation showed PMs with a more homogeneous and smooth shape than
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Fig. 3. Coronal views and 3D rendering of the whole heart segmentation, with particu-
lar focus on APM (green) and PPM (red). (a) Ground truth manual segmentation. (b)
Automatic segmentation obtained with the fully labelled atlas. (c) Automatic segmen-
tation obtained with the atlas where only the papillary muscles labels were provided
(Color figure online).

Fig. 4. Result of applying the automatic segmentation method with the proposed atlas
on two new datasets acquired with different scanner and MRI sequences. Coronal view
and 3D rendering of the papillary muscles segmentation.
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Table 1. Mean, standard deviation (St Dev), maximum (Max) and minimum (Min)
Dice scores computed between manual and multi-atlas segmentation for each image of
the atlas. Results are shown when adopting the completely labelled atlas WHPMA
and the one with only the papillaries labels PMA.

Dice APM PPM

WHPMA PMA WHPMA PMA

Mean 0.60 0.51 0.73 0.71

St Dev 0.14 0.19 0.06 0.10

Max 0.77 0.73 0.81 0.83

Min 0.22 0.00 0.62 0.41

the ground truth structures, hence influencing the values of the Dice scores. The
results of adopting the atlas with only the PMs labels (PMA) are presented in
Fig. 3, showing worsening of the segmentation, and suggesting the importance of
the surrounding structures to guide through a correct identification of the PMs.

The average time required to perform the automatic segmentation of an
unseen image, adopting atlases with twenty-two subjects, was 70 ± 5 min for
whole heart (WHPMA) segmentation and 66 ± 1 min for only PMs segmen-
tation (PMA). As expected, due to the reduced number of labels to compute,
the segmentation with PMA results, on average, quicker than the segmenta-
tion with WHPMA. However, the difference in time is negligible (5%), and
WHPMA remains the advisable atlas to adopt for a better quality and complete
segmentation.

Application. When adopting the validated atlas WHPMA from S1 to seg-
ment two unseen datasets acquired with different machines and MRI sequences,
promising results are obtained.

Dice scores computed on S2,1 are 0.77 for APM and 0.78 for PPM, while
those computed on S2,2 are 0.69 for APM and 0.74 for PPM. With respect to
the Dice scores computed in the cross-validation experiment, we observe higher
Dice scores for S2,1, while those of S2,2 are perfectly matching the found range.
This suggests that our multi-atlas segmentation method is robust in segmenting
whole heart MR images acquired with different environmental conditions.

In Fig. 4 one can notice a good identification of all the cardiac structures
and of the PMs, adding credit to the capability of the method in automatically
identifying and precisely labelling most of the cardiac structures of interest.

4 Discussion and Conclusions

In this work we have presented the usage of a whole heart multi-atlas segmenta-
tion framework for the extraction of the PMs from MRI. Despite the popularity
of atlas-based methods in cardiac imaging, no previous work had attempted the
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segmentation of the PMs under this framework. Although the PMs have an irreg-
ular, branched shape and their identification within the left ventricle is strictly
influenced by the image quality and contrast, we have demonstrated that an
atlas-based segmentation method can be adopted as a robust and feasible strat-
egy for their identification and labelling. The algorithm performed better than
a previous 2D approach using the same image modality [10].

We evaluated two different atlas sets: one containing only the PMs and
another one containing labels for other structures of the heart. The results sug-
gest that the use of extra labels enhances the quality of the segmentation. Further
improvements of the segmentation could be achieved if an extra refinement step
could be applied to the results, as proposed in [11]. However, the obtained qual-
ity is considered sufficient for our final aim. Furthermore, it is preferable to have
one single segmentation framework rather than a complex pipeline connecting
different methods.

The main challenges encountered with the developed methodology were the
correct classification of the PMs with respect to the left ventricle, and the precise
representation of the branched structure of the muscles. In order to improve the
quality of the results, the algorithm could be extended with a further step,
i.e. the segmentation of the PMs alone could be performed after masking the
surrounding structures with a mask corresponding to the left ventricle, obtained
with a preliminary full-heart segmentation. Nevertheless, we believe that the
quality of the segmentation obtained within this work is sufficient for our scope,
i.e. automatic landmark detection. In conclusion, the adoption of this method for
the segmentation of the PMs in MRI is the first key step for the development of
a multi-modality fusion method able to combine MRI and 3D echocardiography
of the mitral valve apparatus. To the best of our knowledge, this is the first time
that a fully automated segmentation method is successfully applied to MRI for
the extraction of the PMs.
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Abstract. The role of Purkinje fibres in the onset of arrhythmias is
controversial and computer simulations may shed light on possible
arrhythmic mechanisms involving the Purkinje fibres. However, few com-
putational modelling studies currently include a detailed Purkinje net-
work as part of the model. We present a coupled Purkinje-myocardium
electrophysiology model that includes an explicit model for the ischemic
scar plus a detailed Purkinje network, and compare simulated activation
times to those obtained by electro-anatomical mapping in vivo during
sinus rhythm pacing. The results illustrate the importance of using suf-
ficiently dense Purkinje networks in patient-specific studies to capture
correctly the myocardial early activation that may be influenced by sur-
viving Purkinje fibres in the infarct region.

1 Introduction

Personalised computational electrophysiology (EP) models are increasingly
improving in the level of anatomical and physiological detail, and their person-
alisation, so as to hold the promise of enabling personalised planning of ablation
targets in terminating ventricular tachycardias (VT). There is some evidence
that certain type of arrhythmias may be triggered by ectopic beats originating
from Purkinje fibre automaticity during acute myocardial infarction [2]. Until
recently, however, most EP simulations have neglected the effect of the Purkinje
network (PN) or used very coarse networks. Thus the first step towards more
complete modelling of ventricular tachycardia (VT) is to develop realistic mod-
els of coupled myocardium-Purkinje whole-heart models, and to validate them
against physiological measurements of activation patterns.

We present a computational pipeline for human EP modelling with: (i) a PN
model based on a rule-based algorithm for generating the network and a set of

c© Springer International Publishing Switzerland 2016
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cable equations on line segments coupled together by the gap junction resistance
model [16]; (ii) a myocardium model based on the monodomain approxima-
tion and the left ventricular (LV) action potential (AP) model of Bueno-Orovio
et al. [3]; and (iii) electrical remodelling in the scar/borderzone by fitting
the model of Bueno-Orovio et al. to a modified ten Tusscher-Panfilov 2006 -
model [14].

We then compare the model predictions against electro-anatomical mapping
(EAM) data consisting of endocardial activation times in a patient with extensive
myocardial scarring. The EAM data is projected onto the simulated LV geometry
to compare the local activation times (LAT). Results are given for varying levels
of Purkinje-muscle junction (PMJ) density.

2 Models for Cardiac Electrophysiology

A standard monodomain approximation for myocardial tissue is used:

χ

[
cm

∂u

∂t
+ iion, (u, v, r, s) − iapp(t)

]
= ∇ · (σ∇u) , (1)

where the ionic current, iion = ifi + isi + iso, consists of the fast/slow inward,
and slow outward currents respectively, which are gated by the internal mem-
brane variables v, r, s as in Bueno-Orovio et al. 2008 [3]. The conductivity
tensor in (1) depends on a spatially varying parameter γ s.t. σ = (1 −
γi) [σtI + (σl − σt) f0 ⊗ f0] . To account for structural remodelling under chronic
myocardial infarction, the conduction velocity (CV) in the deep scar and its sur-
rounding border zone are typically modified. As first approximation the mem-
brane model is turned off and the CV is set to zero throughout the deep scar
region. However, experimental evidence on rabbits [17] indicates greatly reduced
conductivity (10 % of normal CV) in the borderzone surrounding the scar, but
close to normal conductivity in the infarcted region (50 % of normal CV), and
in some cases even the possibility to stimulate the infarcted region. Accordingly,
we used γhealthy = 0, γborder = 0.97, and γscar = 0.75, and the longitudinal and
transversal conductivities are σl = 1.5 kOhm−1cm−1, σt = 0.6 kOhm−1cm−1.
This corresponds to reducing the conduction velocity to 8 % in the borderzone
and 44 % in the scar region. Fibre dispersion is not considered.

The effects of ischemia include hyperkalemia, changes in the fast Na+ and
L-type Ca2+ channels, hypoxia, and acidosis. These effects can be modelled in
the ten Tusscher-Panfilov 2006 -model by adding an extra ATP-sensitive K+ cur-
rent, as was done in [6]. The extracellular potassium concentrations are kept at
their normal levels to avoid elevated resting potentials. The modified parameters
describing mild and severe ischemia are taken from [8].

Once the ten Tusscher-Panfilov 2006 -model has been extended, APs from
rest are extracted. A subset of 7 parameters in the Bueno-Orovio et al. -model is
selected for optimisation. A curve-fitting problem for the AP is solved and para-
meters that do not change from their reference values are replaced by educated
choice. The process is repeated until an accurate replication of the AP shape



92 T. Lassila et al.

is obtained. The final values of the modified parameters are (borderzone/scar):
kw = 65.0356/65.0356, τo1 = 6.3196/5.3307, τso1 = 56.6591/56.1802, τso2 =
1.0809/1.5291, kso = 2.2695/2.4552, τs2 = 7.3099/7.6184, ks = 5.6456/5.7472.

The PN is modelled as a network of line segments (with loops) with the
model of Vigmond et al. [16]. We use the Di Francesco-Noble [4] membrane
model with standard parameters for the PN. The conductivity and membrane
model of the PN remains unchanged in the borderzone and scar regions. The
numerical algorithm used for the PN is described in more detail in [7]. The
connection between the PN and the myocardium is modelled using a coupled
resistor and distributed current source -model that captures the 3–5 ms delay in
orthodromic propagation. We do not consider the antidromic conduction back
into the PN in this work.

3 Computational Electrophysiology Model Generation

LV segmentation is performed from cardiac MRI with delayed enhancement
(DE-MRI) as described in [12]. The segmentation thresholds have been pre-
viously optimized using EAM data in [1,5]. These thresholds have been used
to successfully identify borderzone conducting channels during catheter abla-
tion. After projecting the intensity values to a surface mesh segmentation of the
LV, 4,000 radial basis function interpolation sites are randomly seeded on the
endo- and epicardial surfaces respectively. The intensity values are interpolated
using inverse multi-quadric shape functions and used to choose the appropriate
membrane model parameters using the same criterion as in [5] that intensity
above >60 % of maximum is considered scar, while <40 % of the maximum is
considered healthy tissue – everything in between is considered borderzone.

Rule-based Poisson interpolation is applied to obtain fibre orientations. The
LV centreline is identified automatically and a linearly graded fibre orientation
from −41◦ on the endocardium to +60◦ on the epicardium is obtained. Three
levels of PNs of increasing density (166 PMJs in the low-density case, 756 PMJs
in the mid-density case, and 1,296 PMJs in the high-density case) are generated
to test the impact of PMJ density on the activation pattern. A 2 cm area below
the basal cut-plane contains no PMJs as reported in literature. The resulting PN
is fitted to the endocardium, but is not modified according to the LAT observed
in the EAM. While methods exist [10,11,15] to fit the PMJ distribution to
patient-specific observations of endocardial LAT, the danger of over- fitting the
model to available data exists. Increasing the number of PMJs allows fitting
of the LAT with arbitrary accuracy at least in the regions where the PN is
present, but without necessarily providing meaningful information about the
actual morphology of the PN. A crude fitting algorithm may, for example, prefer
to eliminate the PN completely from the infarct scar region in order to match the
LAT, which is not supported by the evidence of the PN surviving in the infarct
core with prolonged action-potential duration and enhanced automaticity [9].
We therefore rely on the observations of [15] that even without personalising the
PMJ locations, sufficiently dense tentative PNs can predict LAT with reasonable
accuracy.
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4 Results

The EAM dataset was obtained with the CARTO system (Biosense Webster,
Haifa, Israel) and consisted of bipolar/unipolar voltages, LAT, and position of
each catheter point on or near the endocardium. Measurements were made with
a tetrapolar diagnostic catheter (Thermocool, Navistar, Biosense Webster) in a
total of 671 locations on the LV endocardium and around the mitral annulus.
After having the segmentation from DE-MR, this was imported into CARTO
and registration was done manually using the CARTO software during the inter-
vention. The experimental methodology is described in more detail in [12]. The
LV had considerable post-infarction myocardial scarring several days after the
initial infarct (see Fig. 1). Previous studies [5,13] have shown a moderate correla-
tion between the scar regions obtained from EAM by bipolar voltage thresholds
(<0.5 mV for the scar and 0.5–1.5 mV for the borderzone) and the DE-MRI-
derived endocardial scar regions, so that we treated the DE-MRI-derived scar
regions as having been previously validated. Simulations were run for both the
cases where the scar region was assumed to be nonexcitable tissue (not shown)
and excitable tissue with the parameters identified by the nonlinear fitting pro-
cedure. While the subject’s LV was heavily scarred both transmurally and apex-
to-base on the lateral side, the EAM did confirm slow CV but not propagation
failure in the scar regions. Thus the case of nonexcitable scar tissue was rejected
due to insufficient activation of the LV scar region compared to the EAM results.

Figure 2 shows the LAT measured from EAM and interpolated onto the lat-
eral endocardium (left) compared with the simulated LAT (right). Despite no
personalisation being performed on the myofibre orientation nor on the PN,
correspondence is good at the apex and mid-wall. The largest difference in LAT

weivroiretsoPweivroiretnA

Fig. 1. Scar and its borderzone identified from DE-MRI according to the criteria in [5].
Color scheme indicates red for deep scar, blue for borderzone, and white for healthy
myocardium. Tentative PN superimposed for reference. Large percentage of PMJs in
the posterolateral free-wall lie in the deep scar region (Color figure online).
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takes place near the basal regions. Figure 3 shows the bullseye plot of mean LAT
on each of the 17 AHA segments for the three different densities of PNs. As
coverage improves, the LAT more closely corresponds to timings measured by
EAM. The largest differences can again be observed at the basal area, which we
explain as follows. In the EAM data there are some catheter locations that are
clustered near the aortic valve and the mitral annulus. Projecting the data from
these points onto the truncated LV surface may produce spurious data that make
the recorded basal LAT unreliable. We do not consider this a serious problem,
as the basolateral region is known to activate last and therefore plays a lesser
role in the induction of VT.

Electro-anatomical mapping Simulated activation

Fig. 2. The LAT on the septal endocardium for EAM (left) and simulation (right).
Isochrones of LAT present every 10 ms. High-density PN superimposed on the right.

To analyse more closely the discrepancies observed in certain AHA segments,
we present in Fig. 4 a box plot of the LAT in the EAM (top) and the simulation
(bottom). Segment medians and 25–75 percentiles are represented by the boxes,
while outliers are denoted by red crosses (jitter added for enhanced readability).
In segments 10–17 the existence of endocardial scarring divides the surface points
in the simulation into an almost bimodal distribution – some points get activated
early by the PMJs (denoted by points falling around the median) while others
get activated late due to slow propagation in the deep scar region (the outliers).
Comparing against the EAM we find that the median LAT in the EAM mea-
surements is closer to the LAT of the simulation outliers, which may be either
because the catheter measurements were not able to measure the PMJ-induced
activation, or because the PMJs in the scar region were not activated. A similar
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(a) 166 PMJs (b) 756 PMJs (c) 1,296 PMJs (d) EAM

Fig. 3. Mean endocardial LAT [ms] in the 17 AHA segments for the simulation using
low, mid or high-density PN (from left to right), compared to the EAM (far right).

situation exists in segments 3–5. Interestingly, in this case also the EAM mea-
surements possess outliers but in the early activation region, which appears to
indicate that at least some of the PMJ-induced activation was picked up by the
catheter measurements. In the mid anterior segments without any scarring (7–9)
the confidence intervals are roughly overlapping.

Electro-anatomical mapping

Simulation

Fig. 4. Box plots of LAT for EAM (top) and simulation (bottom) grouped by AHA
segment. Red crosses denote outliers that do not fall within the confidence intervals.
The simulated LAT exhibits a strongly bimodal distribution in segments with scarring
(Color figure online).
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5 Discussion

The importance of the Purkinje fibre network in the genesis of ventricular
arrhythmias and VT is still a subject of debate in the clinical community. Conse-
quently, few computer studies have focused on its effect or even included it in the
models. Computational VT inducibility studies tend to mimic the experimental
protocols, i.e. external pacing scenarios, where the PN does not play an active
role. We propose that better understanding of the role and function of the PN
in arrhythmias is important also in the sinus rhythm case, and to this end the
first step is to construct robust and validated models of pathological ventricular
activation including the effects of the PN.

We presented a pipeline for EP simulations on a patient-specific LV geometry
with ischemic myocardial scarring and a detailed Purkinje network for initial
activation under sinus rhythm. Even without personalising the PN or myofibre
directions, reasonably good agreement between simulated and experimental LAT
was obtained, provided that the PMJ coverage was dense enough. Excitable
myocytes had to be modelled in the myocardial scar to obtain correspondence
between EAM and simulation. There may exist a viable sub-endocardial layer 3–
5 cells deep (due to oxygen diffusion from the blood pool) that allows conduction
to take place in the scar, explaining the survival of the Purkinje fibres.

Our model has certain limitations. It does not account for transmural varia-
tions in the myocardial cells nor variations in the AP of the PN in ischemia; hence
the validation centred mainly on the endocardial LAT. To study the transmural
propagation, either an EAM study with epicardial LAT needs to be performed,
or an extension to the bidomain model should be made, in order to validate
against the ECG. In order to model left bundle branch block (a typical comor-
bidity in the myocardial infarction cases we observed), the model should also be
extended to include the right ventricle with corresponding validation by EAM.
Further validation on multiple patient-specific instances is also needed.
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The work of A.R. Porras and X. Albà was supported by the Spanish Government
under FPU grant. A.F. Frangi was partially funded by the ICREA-Academia program.
Clinical data used in this study was provided by A. Berruezo, D. Andreu, J. Fernández-
Armenta, and M. Sitges from the Hospital Clinic of Barcelona.

References
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Abstract. Patient metadata such as demographic information and car-
dio vascular disease (CVD) indicators are valuable data readily avail-
able in clinical practice. This information can be used to inform the
construction of customized statistical shape models fitting the patient’s
unique characteristics. However, to the best of our knowledge, no stud-
ies have reported using these types of metadata in the construction of
shape models for image segmentation. In this paper, we propose the use
of a conditional model framework to include these patient metadata in
the construction of a personalized shape model and evaluate its effect on
image segmentation. Our validation on a dataset of 250 asymptomatic
cardiac MR images shows an average segmentation improvement of 7 %
and in some cases up to 30 % over a conventional PCA-based frame-
work. These results show the potential of our technique for improved
shape analysis.

1 Introduction

Cardiac segmentation is a prerequisite for a number of important clinical applica-
tions ranging from the relatively simple computation of ejection fraction (EF), to
understanding disease progression through shape analysis in longitudinal studies,
to more complex tasks, such as, simulating cardio-vascular function and electro-
physiology for treatment planning and intervention. All of these tasks require
accurate segmentation of the cardiac structure in order to obtain reliable and
meaningful outputs.

Segmentation of cardiac structures, however, remains a challenging task due
to the high geometric complexity of the organ, as well as image inhomogeneities.
To overcome these problems, statistical shape model-based methods have been
widely adopted due to their ability to simplify shape complexity and overcome
noisy image information through the model fitting process. Nevertheless, these
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model-based techniques have traditionally only focused on the use of shape infor-
mation for the construction of models and do not include other potentially useful
non-image derived information typically found on a patient’s clinical chart.

In our review of the literature we found a study by Wolz et al. [10] that
reports using both patient and image metadata to enhance their manifold learn-
ing technique for the purpose of brain image classification. In another study,
Blanc et al. [2] use what they refer to as surrogate variables of the femur bone
i.e., different anatomical lengths and angles within the bone and patient infor-
mation, to further constrain the shape space of a PCA derived model and study
their influence. Grbić et al. [6] use landmark derived features to build a patient
specific model with a reduced set of shapes for image segmentation. Finally,
Medrano-Gracia et al. [7] quantify and show significant morphological differences
in asymptomatic cardiac shape between different demographic and risk factor
sub-groups. They do this by performing PCA on the sub-groups, and evaluating
the statistical significance of differences between their principal modes of varia-
tion. Although all of these works address the issue of including other non-image
data in the analysis of shape, none of them use patient-metadata for cardiac
segmentation, which is the focus of this paper.

In this paper, we propose the use of a conditional shape model framework [8]
for the definition of a shape distribution constrained by demographic data and
CVD indicators and apply it to cardiac image segmentation. We validate our
framework by comparing the segmentation accuracy of our method with that of
a standard PCA-based model.

The remainder of this paper is organized as follows: In Sect. 2, we describe
the details regarding model construction and segmentation. In Sect. 3, we present
the obtained segmentation results and comparison to the standard PCA-based
model. Finally, conclusions are drawn in Sect. 4.

2 Method

This section describes the statistical modeling of the probability distribution of
shape conditioned on metadata, i.e. P (x|mj). More specifically, we would like
to compute a Point Distribution Model (PDM) for shapes xi based on their
conditional relationship with each metadata field mj , that is, a mean x̄mj

, and
covariance matrix Σx|mj

. Subsequently, we combine these conditional PDMs into
one unified PDM that accounts for all shape-metadata relationships. Lastly, we
describe the image feature search and model fitting process.

Our method consists of four main steps:

1. Metadata-Constrained Allowable Domain: Given a dataset of shape
vectors xi, i = 1, ..., N obtained from previously segmented images, and
their corresponding metadata fields mi,j , j = 1, ...,M , we compute a set
of eigenspaces Ej = {Φ,Λj} that describe the allowable shape space for
shapes xi conditioned on metadata mi,j . To train these models, we use the
definitions of multivariate conditional distributions described in Sect. 2.1.
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2. Metadata-Constrained Mean Shape: Based on a new patient’s metadata
mnew

j , we compute M new mean shape estimates x̄mj
, and combine them to

obtain the final model estimate x̄c (see Sect. 2.2).
3. Metadata Constraints Combination: The final allowable domain Λc is

computed as the intersecting space from the different metadata-constrained
variances as estimated in step 1, centered on their corresponding mean esti-
mates x̄mj

computed on step 2 (see Sect. 2.3).
4. Application to Image Search: We use the obtained metadata constrained

PDM to guide the image segmentation of a new patient’s image volume. We
use the Sparse Active Shape Models (SPASM) framework [9] to perform the
cardiac image segmentation in this paper (see Sect. 2.4).

2.1 Metadata-Constrained Allowable Domain

Let us define an augmented shape data matrix D by appending metadata values
mi,j to the last index of shape vectors xi (Eq. 1).

D =
[{

x1

m1,j

}
, . . . ,

{
xN

mN,j

}]
(1)

Using D we compute the block covariance matrix ΣDD as shown on Eq. 2.

ΣDD =
[

Σxx Σxmj

ΣT
xmj

Σmjmj

]
. (2)

The conditional covariance estimates that relate shape in xi, and metadata
mj are calculated using Eq. 3.

Σx|mj
= Σxx − Σxmj

Σ−1
mjmj

ΣT
xmj

. (3)

The covariance matrices in Eq. 3 are obtained from the block covariance matrix
in Eq. 2. Σxmj

Σ−1
mjmj

are the regression coefficients that model the relationship
between shape and the metadata fields. These coefficients are stored and used
to compute the final mean shape estimate of the model in the next section.

Since for N models we have to perform N eigendecompositions on relatively
large covariance matrices Σx|mj

, we choose to reduce the dimensionality of the
problem by working with parametric shape vectors bi = ΦT (xi − x̄) through
eigendecomposition of Σxx, rather than 3D shape vectors xi. We retained 98% of
variance after eigendecomposition, which, depending on the size of the training
set is accounted for by 20 to 30 modes of variation. With this new representation,
Eq. 2 is replaced by Eq. 4,

Σ(b)
DD =

[
Λbb Σbmj

ΣT
bmj

Σmjmj

]
(4)

where Λbb are the eigenvalues of Σxx, and subindex b indicates parametric
shape.
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Similarly, Eq. 3 is replaced by Eq. 5,

Λmj
= Λbb − Σbmj

Σ−1
mjmj

ΣT
bmj

, (5)

where Λmj
is a subset of the variance in Λbb, and has the same coordinate

system Φ that represents parametric shapes bi.
Using Eqs. 4 and 5 we obtain M eigenvalue matrices Λmj

that represent the
conditional shape variability of xi with respect to each metadata field mj .

Thus far, we have a coordinate system Φ and M conditional variance matrices
Λb|mj

. However, we still need to compute M corresponding conditional mean
vectors b̄mj

, to which Λb|mj
are centered, and combine these models into a

unique PDM that encodes all conditional relationships between shape and meta-
data.

2.2 Metadata-Constrained Mean Shape

In order to compute the final model’s mean shape, we first need to compute M
mean estimates b̄mj

using the regression coefficients Σbmj
Σ−1

mjmj
obtained in

Sect. 2.1. Using these coefficients, and the definitions of multivariate conditional
normal distributions, we obtain M conditional mean estimates based on each
metadata field (Eq. 6).

b̄mj
= ΣbmjΣ

−1
mjmj

(mnew
j − m̄j) (6)

Notice that in Eq. 6, mnew
j is the jth metadata field of a new subject for whom

shape is unknown.
The question then becomes how to combine these mean shape estimates into

the final mean. Given that not all metadata are good predictors of shape, we
weigh each mean estimate proportionally to the degree of correlation between
shape and the different metadata fields (Eq. 7),

wj =
ρbimj∑
ρbimj

(7)

where ρximj
is the correlation coefficient between shape and each metadata field.

The final parametric mean estimate b̄ is a weighted average of the previously
obtained mean estimates b̄mj

(Eq. 8). The final mean shape in 3D space is
recovered using Eq. 9. We denote the final conditional model parameters with
subindex c.

b̄ =
M∑
j=1

b̄mj
wj (8)

x̄c = x̄ + Φb̄ (9)
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2.3 Metadata Constraints Combination

The variance associated to the final mean, x̄c, is computed by centering the
previously obtained eigenvalue matrices Λmj

at their corresponding mean esti-
mates b̄mj

, and calculating the overlapping space between all eigenspaces
Ej = {Φ,Λmj

}. Equation 10 describes the intersecting space, where λmj
are

the diagonal entries of eigenvalue matices Λmj
.

λc =
1
2

{
min
j

(b̄mj
+ λmj

) + |max
j

(b̄mj
− λmj

)|
}

(10)

By assembling a diagonal matrix with the entries of λc, we obtain the final
eigenvalue matrix Λc describing the conditional variability of shapes xi given
metadata mj . The final PDM described in Eq. 11 will be used to constrain
image segmentation in the next section.

Ωx|m = (x̄c,Φ,Λc) (11)

2.4 Application to Image Search

Boundary Detection. Image boundaries were detected by minimizing the
Mahalanobis distance between a profile of grey levels g sampled from each land-
mark of the current shape estimate, and the mean profile from the training
set ḡ. The appearance model for each landmark is trained by computing the
mean ḡ, and covariance matrix Σgg, for the profiles of corresponding landmarks
across the training set. Landmark profiles g are sampled by projecting a nor-
mal vector to the shape’s surface onto the image slice closest to that landmark.
Subsequently, the Mahalanobis distance between every point in the model and
the profile is computed. Finally, the landmark is displaced to the location that
minimizes the distance on Eq. 12.

D(g) =
√

(g − ḡ)TΣ−1
gg (g − ḡ) (12)

Shape Model Fitting. After the landmark displacement procedure described
in the previous section, the new feature points need to be constrained to ensure
they constitute a valid shape (described by our PDM). We do this following a
standard procedure [3] to find the pose and shape parameters that best fit the
new feature points. Let us assume we wish to fit a new model instance x̃ to
feature points x′.

1. Initialize parameter vector b to zero.
2. Generate new conditional model instance x̃ = x̄c + Φb.
3. Align feature points x′ to model x̃.
4. Update model parameters to match the feature points, b = ΦT (x′ − x̄c).
5. Constrain b to be within ±3

√
λc.
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6. Recover current 3D shape x̃ = x̄c + Φb.
7. Using the current shape perform landmark displacement and iterate from

Step 1.

Alignment of points is performed using Procrustes analysis [5] to eliminate
rotation and translation effects. However, scale is preserved as it is an important
feature in cardiac image segmentation.

3 Results

The goal of this paper is to show the potential in using commonly available
patient information to construct personalized shape models that improve the
accuracy of image segmentation. To test the extent of this improvement, we
compare the segmentation accuracy obtained with a standard shape-only PDM
to the accuracy obtained with the proposed metadata-constrained PDM. Both
PDMs were trained using 150 datasets, and tested on the remaining 100 cases.

3.1 Data

Image. We used 250 cardiac magnetic resonance imaging (CMR) datasets
obtained from the Cardiac Atlas Project (CAP). CAP is a web-accessible
resource (www.cardiacatlas.org), comprising a population atlas of asymptomatic
and pathological hearts [4]. For this study we use 250 asymptomatic cases
from the Multi Ethnic Study of Atherosclerosis (MESA) study [1]. The MESA
protocol used fast gradient-recalled echo (GRE) imaging with 10–12 short
axis slices with typical parameters 6 mm thickness, 4 mm gap, field of view
360–400 mm, 256× 160 matrix, and pixel size from 1.4–2.5 mm/pixel depend-
ing on patient size.

Shape. Contours were manually drawn as a series of points by the MESA CMR
core lab on short-axis slices for all cases at end-diastole (ED). These contours
were fitted by a finite element model by linear least squares as described in [7].
The resulting models are 250 triangular meshes with point correspondence. The
meshes are comprised of 1570 points, of which 785 describe the endocardial
surface at ED. In this paper we focus on the shape analysis of the Left Ventricular
(LV) endocardial surface at ED.

Metadata. In this study we include the following metadata fields provided
along with the image data: age, gender, race, height, weight, systolic/diastolic
blood pressure, heart rate, hypertension, smoker, alcohol. Some of these fields
are continuous variables and others are categorical. All categorical variables were
replaced by binary codes of length n, where n is the number of categories for
any of the variables.

www.cardiacatlas.org
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3.2 Standard vs. Metadata-Constrained Segmentation

All image volumes were initialized by artificially aligning an instance of the
PDM’s mean shape with the ground truth. The dimension of image profiles for
feature extraction was set to 7 × 1 voxels (3 on each side) projected inwardly and
outwardly from the landmark point. The stopping criterion for the ASM was set
at 30 iterations.

Table 1 shows the summary statistics for the segmentation. The root-mean-
square (RMS) point-to-surface (P2S) segmentation error across all cases for the
standard PDM was 2.18 mm, whereas the error for the proposed technique was
2.03 mm. This represents an accuracy improvement of 7 % over the standard
PDM. Also, the standard deviation of the error was improved by 13 % over the
standard PDM.

Table 1. Summary statistics comparing P2S RMS segmentation errors of the standard
PDM vs. our proposed metadata-constrained PDM.

Mean ± σ (mm) Min. Max.

Standard PDM 2.18 ± 0.62 1.41 4.33

Conditional PDM 2.03 ± 0.54 1.38 4.16

Improvement (%) 7 % ± 13 % −7.5 % 30.4 %

Figure 1 shows the percentage of improvement obtained for each individual
subject plotted from lowest to highest improvement. From the figure we can
see that using metadata improves the segmentation of nearly 80 % of the sub-
jects. Additionally, in more than 20 % of subjects the segmentation accuracy was
improved by a significant 15 % to 30 %.

Table 2 shows the distribution of the errors in the test sample for both the
conditional- and standard-PDM segmentations. It can be seen how the use of
the metadata reduces the number of cases with large errors. For example, by
using the standard shape models, 59 % of the datasets are segmented with over
2 mm errors. This number is reduced to 39 % when adding the metadata during
segmentation. Similarly, with the standard shape models, only 3 % of the cases
are segmented with less than 1.5 mm errors, while this number increases to 14 %
by using the proposed metadata constrained segmentation framework. Table 2
illustrates the positive effect of taking into account the patient metadata, in
addition to shape and image information, during cardiac segmentation.

3.3 Examples

Figure 2 shows two typical examples where our technique outperforms the stan-
dard PDM. Both panels, left and right, show the segmentation obtained with
the standard PDM (left), and our technique (right) superimposed on the ground
truth shape. On Example 1 (left panel), the standard PDM (left) fails to correctly
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Fig. 1. Percentage of improvement provided by our metadata-constrained models.
Improvements are shown in ascending order for all subjects.

Table 2. Distribution of cases by error range between the standard PDM and our
proposed metadata-constrained PDM.

Error <x mm (% of Cases)

<1.5 mm <2 mm <2.5 mm <3 mm

Standard PDM 3 % 41 % 76 % 94 %

Conditional PDM 14 % 61 % 88 % 97 %

Example 1 Example 2

Standard PDM Standard PDMConditional PDM Conditional PDM

Fig. 2. Segmentation examples. The blue and red shapes (left and right on each
example) are segmentations obtained with the standard PDM, and our conditional
PDM respectively. The ground truth shape is overlaid in gray color for comparison
(Color figure online).
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match lateral wall of the LV, whereas our method (right) better approximates
the region. Some arrows are placed on the figure to show the regions where these
differences are most significant. Similarly, example 2 (right panel) shows large
errors, on the basal, apical and lateral wall regions for the standard PDM (left),
while our method (right) is able to match those same regions with significantly
smaller errors.

4 Conclusion

We presented a method for the construction of statistical shape models that
incorporate non-image information from the patient. The proposed models
reduce the shape domain to custom fit the patient’s unique characteristics. We
achieved this by using multivariate conditional distributions to regress a model
that represents the most likely shape variation given the patient’s metadata. We
validated our method by comparing the segmentation accuracy obtained with
a standard PCA-based method with the accuracy obtained with our technique.
Results showed a 7% average segmentation improvement and in many cases
improvements of up to 30 % over the standard PCA model. As future work, we
would like to identify the metadata that best predicts shape and a methodol-
ogy to optimally combine them such that segmentation accuracy is maximally
improved.
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Abstract. This paper presents a machine-learning algorithm for the
automatic localization of myocardial infarct in the left ventricle. Our
method constructs neighbourhood approximation forests, which are
trained with previously diagnosed 4D cardiac sequences. We introduce
a new set of features that simultaneously exploit information from the
shape and motion of the myocardial wall along the cardiac cycle. More
precisely, characteristics are extracted from a hyper surface that repre-
sents the profile of the myocardial thickness. The method has been tested
on a database of 65 cardiac MRI images in order to retrieve the diag-
nosed infarct area. The results demonstrate the effectiveness of the NAF
in predicting the left ventricular infarct location in 7 distinct regions. We
evaluated our method by verifying the database ground truth. Following
a new examination of the 4D cardiac images, our algorithm may detect
misclassified infarct locations in the database.

Keywords: Machine learning · Neighbourhood approximation forests ·
Myocardial infarction · Wall thickness

1 Introduction

Cardiac imaging is now routinely used for evaluating specific anatomical and
functional characteristics of hearts. For instance, the localization of cardiac
infarcts requires contrast agent injection and a thorough examination of the
myocardial wall thickness and its motion [3,4]. We propose to assist and auto-
mate this process with a system that automatically categorizes the localization
of infarcts in the left ventricle. We exploit information from existing databases
of 4D cardiac image sequences, that already contain the infarct localization from
previously diagnosed patients. In such context, 4D images should be compared
in an image reference space.

One way to represent the population is with statistical anatomical atlases
[2] that are constructed by combining all available subjects in a single average
reference. In this paper, we favor a representation that considers all available sub-
jects in a database. Here, we consider data that is classified along their recorded
infarct localization. For this purpose, multi-atlas methods [5] could be used.
c© Springer International Publishing Switzerland 2016
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However, they require costly image registrations [6]. Retrieval systems, instead,
find images of subjects in a database that are close to a query image [7]. The
information on the infarct location of the retrieved subjects may be relevant for
establishing diagnoses in previously unseen subjects.

Content based retrieval systems require the notion of distances between
images [10]. They have been used in other areas such as neuro-images [11] or
endomicroscopy [8]. However, to the best of our knowledge, they were not applied
for categorizing infarct locations in 4D cardiac images. This raises the question
on how distances between 4D images should be defined. We suggest to learn this
metric between subjects that belong to different categories of infarct locations,
using the Neighborhood Approximation Forests algorithm (NAF) [11]. This
machine-learning approach approximates distances between new query images
and images in a database, via an affinity matrix between subjects. Decision
forests have already been applied for processing medical images such as a fully
automatic segmentation of the left ventricle [9]. Our method builds upon simple
shape and motion features derived from binary segmentation that are fast to
compute and based on a hyper surface representing the myocardial thickness
along the cardiac cycle.

The contribution of this paper is the use of a distance learning approach
for automatically categorizing the location of cardiac infarcts from 4D cardiac
image sequences. We tested several features that are extracted from a novel
hyper surface representation of the thickness profile. The next section describes
our localization method, and is followed by our results that evaluates the per-
formance of the proposed features. We discuss on the differences found in our
results and elaborate on future improvements of our infarct localization method.

2 Method

Our localization method consists of categorizing automatically the location of car-
diac infarcts via a retrieval approach based on the Neighborhood Approximation
Forests (NAF). We now suggest feature representations that are specific for the
localization of infarcts in 4D cardiac image sequences. The underlying assumption
is that infarction affects the myocardial shape and motion since complex phenom-
ena are often involved, such as wall thickening or chamber dilation [3].

2.1 Neighbourhood Approximation Forests

The NAF consists of an ensemble of binary decision trees designed for the pur-
pose of clustering similar cardiac sequences together. Its automatic learning
of image neighborhoods provides the capability of querying a training dataset
of images, I, by retrieving the most similar images given a previously unseen
image, J . Further details of the algorithm are described in [11]. Three phases
are required: feature extraction, training and testing stages. We now describe
how to apply them for the specific problem of locating infarcts in 4D images.
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The learning process aims at finding the optimal shape and motion features
for predicting the category of infarct location. Our training dataset contains 4D
cardiac image sequences, each labeled with a category of infarct location, e.g.,
infarct is in septal or lateral area. Each 4D image should have an associated
4D segmentation mask of the left ventricular muscle. In our case, each binary
mask has been cropped with a bounding box centered on the left ventricle and
oriented such that both ventricles are aligned horizontally along a left-right axis.

Feature Extraction. A surface representing the thickness profile over the car-
diac cycle is first extracted from 4D myocardial masks. The barycenter of the
left ventricle mask is computed for each slice and each frame of the 4D mask.
Rays are subsequently casted from the barycenter to the exterior of the mask,
as illustrated on Fig. 4. The ray-binary mask intersection is used to evaluate
the myocardial thickness at each angle. As a result, the myocardial thickness
h(s, t, θ) is represented by a hyper surface, where the spatial coordinates are the
corresponding slice s, the frame time t, and the angle θ.

The thickness profile is smoothed out by a Gaussian kernel filter (with a
width of 0.4) to reduce possible segmentation errors. The thickness profile is
also normalized in order to adjust its thickness values in a standardized common
scale, such that the average thickness value over the 4D hyper surface is 0 and
the standard deviation 1 (Fig. 1).

a) Thickness extraction. b) Thickness hyper surface.

Fig. 1. (a) Thickness extraction along the myocardial mask in red, red circle shows
the mask barycenter, h denotes the thickness and θ the angle of a casted ray. (b) 4D
thickness profile at end-diastolic and end-systolic frames, parameterized by h(s, t, θ),
with the slice s, the frame time t, and the angle θ (Color figure online).

As the space and temporal resolutions are specific to each image, point sam-
pling should be normalized. The slice position s is normalized between 0 at the
apex, and 1 at the left ventricular base. The frame time t is normalized between
0 at diastole, and 1 at the end of the cardiac cycle. The angle is kept between 0
and 2π, starting from a reference in the lateral wall.

Below, we describe groups of features f(I) extracted from the thickness pro-
files. In the following cases, h(s, t, θ) denotes the thickness, sampled on the slice
s, the frame time t and the angle θ.
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Feature 1: Raw thickness. The profile constitutes the input features for each
tree:

f1(I) = {h(si, tj , θk)}i,j∈[0;1], and θ∈[0◦;360◦].

In other words, given a 4D image I, this feature representation consists of
the list of surface heights. This should characterize infarcts as a function of
myocardial thickness over space and time.

Feature 2: Raw thickness and thickness differences. This feature repre-
sentation provides the raw thickness profile and the absolute difference of thick-
nesses sampled between the frame t0 and each frame t:

f2(I) = {h(si, tj , θk), |h(si, t0, θk) − h(si, tj , θk)|}i,j∈[0;1], and θ∈[0◦;360◦].

This feature is similar to the first feature representation, however, the thick-
ness difference is added. This should characterize infarcts as discrepancies in
myocardial thickness over space and time.

Training Phase. During this phase, the forest is trained: parameters of each
tree are fixed using the training set I and the distance measurement ρ(In, Im)
between each pair of images (In,Im). The distance metric ρ(In, Im) for a regres-
sion problem is defined as follows: ρ(In, Im) = |θa(In) − θa(Im)|, where θa(In)
denotes the angle that corresponds to the infarct location, as illustrated on
Fig. 3a. A set of visual features f(In) is computed from each training image
In. Along the forest construction, each tree tests a randomized subset of f(In).
A tree is grown by finding at each node p, the optimal split of the dataset into
two branches (IpLeft , IpRight) that best separates the incoming images Ip in com-
pact clusters. In the best case, cardiac images with similar infarct location should
end in one leaf. In other words, the best threshold τp is found for each selected
feature fmp

. The couple (parameters mp,threshold τp) are stored at each node
awaiting for the testing phase.

Obtaining the most compact partioning of Ip is also equivalent to maximizing
the information gain G (Eq. 1) at node p:

(mp, τp) = arg max
m,τ

G(Ip,m, τ ), (1)

where m is the set of features, and τ the set of potential thresholds, and

G(Ip,mp, τp) = C(Ip) −
|IpRight |
|Ip| C(IpRight) −

|IpLeft |
|Ip| C(IpLeft), (2)

where the set of images IpLeft of the left child node is defined by the test
function Γ (mp, τp) applied on the images of the parent node, and similarly
for the definition of the right node. Moreover, the compactness is defined by

C(A) =
1

|A|2
∑

Ii∈A

∑
Ij∈A ρ(Ii, Ij), and |A| is the number of images within a

subset A. More details on the training phase of the NAFs can be found in [11].
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Testing Phase. During the following phase, one testing cardiac image travels
across all tree nodes using the trained decisions, starting from the root node
and ending in one leaf. Each leaf contains the training images for which similar
decisions were taken. Consequently, when a testing image reaches a final leaf, it
is considered a neighbor of the training images already present in the same final
leaf. An affinity matrix is built by repeating this neighborhood approximation
for each tree by storing the affinities between all testing images and the training
images, as illustrated in Fig. 2.

Fig. 2. The NAF testing phase. The trained NAF determines the most similar
images (in the bottom/in red) of the testing cardiac sample (in the top of each tree/in
green), by performing trained tests at each node (Color figure online).

Indeed, the NAF algorithm keeps a record of the most similar cardiac
sequences to a testing image Jj in a similarity matrix W , where rows corre-
spond to training images, and columns to testing images. For each tree, W (i, j)
is incremented when Jj reaches the leaf node that also includes the training
image Ii [11]. In this paper, the resulting affinity matrix determine the angle,
where the myocardial infarct is approximatively located (refer to Fig. 3). The
predicted angle on a testing image Jj , is based on the resulting similarity matrix
such that: θa(Jj) =

∑
i W (i,j)θa(Ii)∑

i W (i,j) .

3 Results

3.1 Dataset and Settings

Cardiac images of patients with coronary artery disease and a left ventricle
infarction were randomly selected from the Defibrillators to Reduce Risk by
Magnetic Resonance Imaging Evaluation database (DETERMINE) included in
the Cardiac Atlas Project (CAP) [1]. 65 4D left ventricular masks were obtained
with the software CAP Client, made available by the Left Ventricular Segmenta-
tion Challenge conducted for the Statistical Atlases and Computational Models
of the Heart Workshop (STACOM) in 2011. Each mask is annotated by addi-
tional clinical information including the infarct location (anterior-septal, ante-
rior, anterior-lateral, lateral, inferior-lateral, inferior, inferior-septal).
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3.2 Evaluation of Infarct Localization

We validated our approach by retrieving the neighbours and the predicted angle
by forming a training set and a testing set from the expert-annotated database.
Some of the cardiac images are duplicated to obtain balanced class distribution
in the training set. Therefore, the database consists of 115 images that groups 7
types of infarct location together.

The 10-fold cross validation technique is used for estimating the accurate
performance of our classifier. The set of 115 images is partitioned into 10 subsets:
1 subset is randomly chosen as the testing set while the 9 remaining subsets form
the training set. This method is repeated 10 times by varying the testing subset.
Each infarct location in the dataset is labeled by an angle according to Fig. 3a.
Left-ventricular regions cover large areas, spanning up to 60◦. Following the
testing phase of the NAF method, the predicted angle of each testing image is
compared to the expected angle of infarction.

We proposed two types of features to locate the infarct of unseen cardiac
images. Our forest is composed of 100 trees where the maximal depth is 20.
Results associated with each type of features are shown in Fig. 3b, where the
average angle of each category is reported.

a) Sections of the left ventricular
wall [12].

b) Results on average prediction

of infarct location.

Fig. 3. (a) Sections of the myocardial wall related to an angle, ranging from 0◦ to 360◦.
(b) Results and comparison with the expected angle for each category: anterior (A),
anterior-septal (AS), inferior-septal (IS), inferior-posterior (IP), inferior-lateral (IL),
lateral (L), anterior-lateral (AL).

With the first type of features, which characterizes the thickness of the
myocardium, the localization of seven areas lead to average angular errors
between 5◦ and 48◦, which are below the maximal span of each areas of 60◦.
However, the inferior-posterior area lead to an average error of 175◦.

This leads us to examine each 4D image labeled with inferior-posterior
infarct, revealing potentially misclassified infarct location, as seen on Fig. 4. The
main drawback of this first type of features is that only the myocardial wall
shape is taken into account, notably, only the wall thinning in the infarct area
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a) Infarct locations in the database and the predicted locations with our method.

b) Misclassified infarct locations in the database.

Fig. 4. The white arrows represent the database ground truth, whereas the red arrows
show the infarct location that was predicted with our method. In Fig. 4b, our algo-
rithm underlined a possible misclassification as the infarct seems located in another
myocardial area (Color figure online).

or the wall thickening in the opposite wall of the infarct. Indeed, considering
only the minimal thickness is not enough to localize an infarct, as the thickness
of the myocardial wall changes over time and possibly gets thinner at end-systole
than in the infarct area.

Motivated by the previous results, motion information is combined to shape
information in the features 2 by considering the difference of thicknesses over
time. Following a myocardial infarction, the cardiac wall may not necessarily
change over the cardiac cycle whereas the wall thickness of a healthy heart
changes over time. Consequently, our second feature type that captures the
thickness differences over time infarcts should indicate infarct as areas where
the thickness is not changing over time.

With the second type of features, the infarct location is predicted with an
average angular error of up to 52◦ from the expected angle in all categories. This
remains below the maximal span of each areas of 60◦. Our algorithm is able
to locate the infarct location within the right area even if there are potential
sources of error in the dataset. For instance, the database ground truth may be
corrupted by misaligned binary masks if the septum is not perfectly located at
180◦ as illustrated on Fig. 3a.



Myocardial Infarct Localization Using NAF 115

4 Conclusion

We used our machine learning neighbourhood-based algorithm for detecting the
infarct in the left ventricular wall. We propose 2 types of features for improving
the infarct localization where shape and motion information have been taken
into consideration. These features have been extracted from a hyper surface that
represents the thickness profile and has been designed along the cardiac cycle.
We learnt to approximatively locate the infarct by retrieving the corresponding
angle from the undiagnosed images. The most relevant infarct location is based
on an affinity matrix. Our approach may be relevant in assisting clinical diagnosis
of left ventricular infarct and may sometimes detect misclassified infarct in a
database. Future work will focus on evaluating local wall deformation fields to
better localize the infarct over the 3D cardiac volume. We could also consider
to collect the myocardial thickness from 4D cardiac images instead of binary
masks.

Acknowledgements. The authors wish to thank Alistair Young for providing the
DETERMINE database. This research is partially funded by the ERC Advanced Grant
MedYMAFunding.

References

1. Fonseca, C., Backhaus, M., Bluemke, D., Britten, R., Chung, J., Cowan, B.,
Dinov, I., Finn, J., Hunter, P., Kadish, A., Lee, D., Lima, J., Medrano-Gracia, P.,
Shivkumar, K., Suinesiaputra, A., Tao, W., Young, A.: The cardiac atlas project.
An imaging database for computational modeling and statistical atlases of the
heart. Bioinformatics 27(16), 2288–2295 (2011)

2. Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Construction of a 4D statistical atlas
of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.)
MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005)

3. Medrano-Gracia, P., Suinesiaputra, A., Cowan, B., Bluemke, D., Frangi, A., Lee, D.,
Lima, J., Young, A.: An atlas for cardiac MRI regional wall motion and infarct scor-
ing. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.)
STACOM 2012. LNCS, vol. 7746, pp. 188–197. Springer, Heidelberg (2013)

4. Wei, D., Sun, Y., Ong, S., Chai, P., Teo, L., Low, A.: Three-dimensional seg-
mentation of the left ventricle in late gadolinium enhanced MR images of chronic
infarction combining long-and short-axis information. Med. Image Anal. 17(6),
685–697 (2013)

5. Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D.B., Maurer Jr., C.R.: Quo vadis,
atlas-based segmentation. In: Handbook of Biomedical Image Analysis, pp. 435–
486. Springer US, New York (2005)

6. Heckemann,R.,Keihaninejad, S., Aljabar, P., Rueckert,D.,Hajnal, J., Hammers,A.:
Improving intersubject image registration using tissue-class information benefits
robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage
51(1), 221–227 (2010)

7. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based
image retrieval systems in medical applications - clinical benefits and future direc-
tions. Int. J. Med. Inform. 73(1), 1–23 (2004)



116 H. Bleton et al.
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Abstract. We present a procedure that detects myocardial infarction
by analyzing left ventricular shapes recorded at end-diastole and end-
systole, involving both shape and statistical analyses. In the framework
of Geometric Morphometrics, we use Generalized Procrustes Analysis,
and optionally an Euclidean Parallel Transport, followed by Principal
Components Analysis to analyze the shapes. We then test the perfor-
mances of different classification methods on the dataset.

Among the different datasets and classification methods used, we
found that the best classification performance is given by the following
workflow: full shape (epicardium+endocardium) analyzed in the Shape
Space (i.e. by scaling shapes at unit size); successive Parallel Transport
centered toward the Grand Mean, in order to detect pure deformations;
final statistical analysis via Support Vector Machine with radial basis
Gaussian function. Healthy individuals show both a stronger contrac-
tion and a shape difference in systole with respect to pathological sub-
jects. Moreover, endocardium clearly presents a larger deformation when
contrasted with epicardium. Eventually, the solution for the blind test
dataset is given. When using Support Vector Machine for learning from
the whole training dataset and for successively classifying the 200 blind
test dataset, we obtained 96 subjects classified as normal and 104 classi-
fied as pathological. After the disclosure of the blind dataset this resulted
in 95% of total accurracy with sensitivity at 97 % and specificity at 93 %.

Keywords: Geometric morphometrics · Statistical shape analysis

1 Introduction

We present a procedure able to detect myocardial infarction by analyzing Left
Ventricular (LV) shapes, under the assumption that statistical shape analysis

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-28712-6 13) contains supplementary material, which is available to
authorized users.
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can predict a patient disease status. Such a procedure involves two main issues:
shape analysis and statistical analysis

As regards shape analysis, Geometric Morphometrics offers the most used
tool, very effective when shape data are based on homologous landmarks, i.e.
Generalized Procrustes Analysis (GPA) [1,2]. GPA may be performed in both
Size-and-Shape Space (SSS) or Shape Space (SS); it centers and optimally rotates
shapes, optionally scaling to unit size, in order to remove non-shape informed
attributes. Usually, GPA is followed by a Principal Components Analysis (PCA)
performed on aligned coordinates, which gives a ranking of the main shape-
change modes; PCA can be linear or non-linear, and allows visualizing main
shape-change modes.

Raw Data
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Fig. 1. Data handling: Given the raw data, we consider as representative of the LV
configurations three different shape-data: the full shape, the endocardial shape, and
the epicardial shape. On each of the three datasets, containing 800 shapes, we per-
form different types of shape analyses whose outcome is split in end-diastolic (ED) or
end-systolic (ES) data, numbered from 1 to 6 in the Figure, and then submitted to
classification procedures.

A major issue in motion sampling is the generation of homologous landmarks
for each time frame, and the selection of homologous time instants along the
cardiac cycle; as example, in [3] end-diastolic (ED) and end-systolic (ES) data
were analyzed, in [4,5] the entire cardiac revolution was analyzed, and evaluated
at homologous electro-mechanical times.

Another key issue is the discrimination among shape differences and motion
differences: two left ventricles having quite different ED and ES shapes may
beat in the same way, that is the deformation from ED to ES is the same. A
fundamental distinction should be made in the context of shape analysis: is the
between-groups shape difference the objective of the analysis or rather the defor-
mation differences occurring between them? This question applies only if, for the
same subject, at least two different shapes corresponding to two different times
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Table 1. The 30 different types of shape analyses submitted to classification proce-
dures; note that parallel transport (PT) can be centered in at least two ways, i.e. in
ED or in GM. cED=centered in diastole; cGM=centered in grand mean.

Analysis Type → GPA-SSS GPA-SS GPA-SSS PT - GPA-SS PT - GPA-SSS PT - GPA-SS PT -

Dataset for PCA PCA cED PCA cED PCA cGM PCA cGM PCA

classification ↓
(1) Endo+Epi ES 1 7 13 16 19 22

(2) Endo+Epi ED 2 8 - - 25 28

(3) Endo ES 3 9 14 17 20 23

(4) Endo ED 4 10 - - 26 29

(5) Epi ES 5 11 15 18 21 23

(6) Epi ED 6 12 - - 27 30

such as ED and ES, appear in the dataset [3]. Optionally, a complete sequence
of shapes, representing the entire cardiac revolution, might be included in the
analysis as in [4,5]. Shape differences can be gauged with standard GPA+PCA;
its drawback is the mixing of inter- and intra- individual variations, thus pre-
venting the detection of deformation patterns.

When a dataset contains many individuals, each represented by several
shapes varying in time, the filtering of inter-individual differences is impor-
tant. This point underlies many analytical consequences impacting the strategies
aimed at exploring the shape data. In fact, while shape differences can be eval-
uated using standard GPA+PCA, the motion differences among groups should
imply the eradication of inter-individual differences. This is necessary because, if
a dataset contains different individuals, each represented by several shapes vary-
ing in time, standard GPA+PCA ineluctably mix inter- and intra- individual
variations, thus preventing the appreciation of pure motion patterns. This prob-
lem can be solved by estimating deformations occurring within each individual,
and by applying them to a mannequin, which can be the Grand Mean (GM) of
the entire dataset, or another appropriately chosen configuration. Of course, the
mannequin represents the same shape for all individuals, and in correspondence
of it shape differences literally disappear, as it does not vary among individ-
uals. In [4,5] the GM was used, thus making both ED and ES recognizable as
deformed states, but another option could be that of centering in ED, depending
upon the disease under study, while ES should never be erased since it contains
information about inotropic state.

The geometrical tool needed for such operation is the Levi Civita Parallel
Transport (PT) and the workflow of shape analysis becomes GPA+PT+PCA.
It is possible to prove that once all the shapes have been optimally aligned
(via GPA), an Euclidean translation can well approximate PT on the Rie-
mannian manifold [6]. This kind of PT has the desirable property to maintain
the size increment when transporting deformations in SSS (size is here defined
as the square root of the summed squared distances of each landmark to the
centroid).
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As regards statistical analysis, classification problems are a central topic in
clinical practice for a wide range of medical fields [7,8]. However, both the nature
of the data and the statistical procedures used for classifying training versus test
datasets make this step highly situation-specific. Recently, besides classical meth-
ods such as Linear Discriminant Analysis (LDA) and Logistic Regression (LR),
several other methods entered classification practice e.g. Quadratic Discrimi-
nant Analysis (QDA), Support Vector Machine (SVM), Neural Networks (NN)
and Random Forest (RF) among others, whose comparison could be challenging
[9–11].

As a consequence, in any specific classification problem a comparison among
different classification methods should be performed. In particular, both sensi-
tivity and specificity should be evaluated as they have an unbalanced weight in
clinics. For example, in [9] it was suggested that, while SVM shows high accu-
racy, its sensitivity is low with respect to other methods. In addition, a goodness
of fit test, such as Hosmer Lomeshow test should be always performed in order
to evaluate the distribution of predictions in deciles.

2 Methods

Raw data includes 400 left ventricles (200 for training, plus 200 blind), sam-
pled with epi- and endo-cardial landmarks, at both ES and ED, for a total of
800 shapes, [12]. From the point of view of shape analysis, ES and ED must
be regarded as different shapes; thus, we organize our dataset as a list of 800
shapes, and we consider three sub shape-data: (1) full shapes, consisting of both
epicardial and endocardial data; (2) endocardial shapes; (3) epicardial shapes,
see Fig. 1. We apply both the GPA+PCA and GPA+PT+PCA strategies to the
three aforementioned shape-data, in both SSS and SS, and using PT with two
different data centering (i.e. in the Grand Mean or in Diastole), thus totalling 30
different sub-analyses which provide the PC scores to be used for classification
procedures, see Table 1; it is worth noting that all 800 shapes have to undergo
a common GPA+PCA or GPA+PT+PCA; once shape analysis has been done,
the 800 PC scores are split in ED or ES data, each with 400 cases: these will be
the datasets to be used for classification procedures.

We use five classification procedures: LDA, LR, QDA, RF and SVM with
Gaussian Radial Basis Kernel Function. To assess the performances of the five
different procedures, we use only the labelled training dataset, that is, half of
the 400 cases (100 healthy + 100 pathological) as follows:

1. At first, using the whole training dataset, and for any of the 30 types of
shape analyses, we perform an univariate association filtering via ANOVA
on the first 100 PC scores. The design is a classical one-way ANOVA using
the training affiliation healthy/pathological as a two-levels factor. P-value
was set (conservatively) to 0.05. All significant PC scores are retained for
classifications.

2. We assemble a warm-up dataset by randomly extracting 50 healthy individu-
als, and 50 patients affected by Myocardial Infarction (MI) from the training
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Fig. 2. Once shape analysis has been done on the whole shape-dataset, only the training
subset is considered for classification method selection; from the training subset we
assemble a learning dataset, composed of a sub-train and a sub-test dataset (not blind),
by randomly selecting 50 healthy and 50 pathological cases to fill each of the two sub-
datasets. The assembly is repeated and analyzed 1000 times. ES=end-systolic data,
ED=end-diastolic data, P=Pathology, H=Healthy.

Fig. 3. Top left: Proportion of non significant H-L test over the 1000 classification
simulations performed for the 5 methods on any type of shape analysis. Ordinal posi-
tions on x-axis correspond to shape analysis’ types in Table 1. Top right: Correspond-
ing mean AUC over 1000 simulations. Best performances, in all panels, according to
H-L test and ROC AUC is for type 22 (vertical, dashed line). Bottom left: Mean
total misclassification over 1000 simulations. Bottom right: Mean sensitivity over 1000
simulations.
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Table 2. We report the scores for the 30 types of analyses resulting from SVM; they
show the higher percentage of non significant H-L test in comparison to other classifi-
cation methods. Figures represent SVM proportions and AUC as in Fig. 3.

Type of analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non Sig. H-L test 0.93 0.94 0.95 0.83 0.86 0.84 0.81 0.89 0.64 0.74 0.79 0.77 0.88 0.94 0.80

Total misclass 0.15 0.14 0.15 0.30 0.29 0.19 0.13 0.20 0.19 0.40 0.34 0.22 0.11 0.13 0.25

Sensitivity 0.06 0.06 0.07 0.13 0.14 0.09 0.06 0.10 0.10 0.23 0.19 0.10 0.05 0.06 0.17

AUC 0.98 0.98 0.98 0.93 0.94 0.97 0.98 0.97 0.96 0.87 0.92 0.96 0.99 0.98 0.95

Type of analysis 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Non Sig. H-L test 0.96 0.90 0.87 0.90 0.93 0.83 0.97 0.91 0.70 0.91 0.93 0.81 0.97 0.90 0.78

Total misclass 0.13 0.16 0.21 0.11 0.13 0.26 0.13 0.16 0.27 0.11 0.13 0.27 0.13 0.16 0.26

Sensitivity 0.06 0.08 0.14 0.05 0.06 0.17 0.05 0.08 0.19 0.05 0.07 0.17 0.05 0.09 0.17

AUC 0.98 0.98 0.96 0.99 0.98 0.95 0.99 0.98 0.94 0.99 0.98 0.95 0.99 0.98 0.94

dataset; this procedure yields a learning training subset and a pseudo-blind
subset, each containing 100 cases (i.e. 50 healthy and 50 pathological), see
Fig. 2.

3. We use this training subset in the 5 classification methods and we employ
their learning functions in order to predict the pseudo-blind dataset; given
that this is not blind, we can evaluate the performance of each classification
method.

Steps (2) and (3) are repeated 1000 times. Basing on the corresponding results
we counted total misclassified cases and their two components, e.g. Sensitivity
and Specificity. Hosmer Lomeshow test (H-L test) was used in order to assess
the Goodness of Fit of any classification problem. Receiving Operating Curves
(ROC) and the Area under the Curve (AUC) were also computed. The type of
shape analysis and the classification method with the best global performance
in classifying the 1000 random sub-test datasets were successively used for clas-
sifying the blind test dataset. As primary criterion, we choose the percentage
of non significant H-L test (the higher the better) in order to select the best
classification method.

The use of H-L test as a primary criterion deserves particular attention. In
fact, two classifications could have identical AUCs, sensitivities and specificities
but the distributions of probabilities corresponding to misclassified cases can be
very different. H-L test divides subjects into deciles based on predicted proba-
bilities, then computes a chi-square from observed and expected frequencies. For
example, in two different classifications, the probabilities of misclassified cases
can be around 0.5. Or they can have values (leading to wrong classification) close
to 0 or 1. In the latter case the severity of misclassification is worse.

Only for the best type analysis selected with this method, we also re-run a
non linear PCA based on the Relative Warps Analysis (RWA) [2]. RWA uses the
Thin Plate Spline (TPS) interpolation function in order to compute and visualize
the deformation occurring between a reference and a target shape. RWA, with
the associated scores, yields a sequence of ordered subspaces onto which each



Systo-Diastolic LV Shape Analysis by Geometric Morphometrics 125

PC1- PC1+

endo

epi

Diastole Systole

PC2- PC2+

endo

epi

Fig. 4. PCA results for type of analysis 22. Left: Shapes in the PC1-PC3 space;
green=healthy, black=MI, red=blind. Right: 3D shape corresponding to PC1 and PC2
modes, colored according to the distance with respect to the GM (blue: minimum; red:
maximum) (Color figure online).

single case is projected. Warping is parametrized by the α parameter: for α = 1,
large-scale variations (variations among specimens in the relative positions of
widely separated landmarks) are given more weight with respect to the small-
scale ones; for α = −1, the opposite is true, and more weight is given to variation
in the relative positions of landmarks that are close together. A value of α = 0
yields to virtually identical results of a linear PCA on Procrustes coordinates.
More details can be found in [13,14]. To detect the importance of large- or small-
scale variations, the exponent α of the bending energy matrix was set equal to
1, 0 (corresponding to standard PCA), and −1. On the resulting RW scores of
these three types of RWA we run the best classification method found when
using standard PCA. The results were compared with the standard PCA results
and the absolute best result is used for classifying the blind dataset.

3 Results

In Fig. 3 results of performances of the five methods are shown. It appears evident
that SVM with Gaussian Radial Basis kernel function is characterized, under the
1000 simulations, by a higher probability to present a non significant H-L test.
Table 2 reports the results relative to the 30 types of analyses (only for SVM)
that shows the higher percentage of non significant H-L test in comparison to
other methods. Analysis type 22 is the best for H-L evaluation; it uses the full
shape for shape analysis, subjected to a GPA-SS, plus PT-cGM (PT centered in
Grand Mean), plus PCA; then, only systolic data are used for statistical analysis.

Among the firsts 100 PC scores for analysis type 22, the univariate association
filtering found 1, 2, 3, 5, 6, 8, 12, 13, 21, 24, 31, 38, 57, significant (significance
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Fig. 5. From left to right: endocardium for healthy; endocardium for pathological;
epicardium for healthy; epicardium for pathological. Color denotes the distance with
respect to the GM (blue: minimum; red: maximum) (Color figure online).

A

Probability

B

Probability

C

Probability

D

Probability

Fig. 6. A: probability-density distributions emerging from our classification of the blind
dataset. Only the results obtained with the optimal analysis method (type 22) and the
first two sub-optimal ones (types 16 and 28) are presented. B: the corresponding his-
tograms. C: healthy-subject distribution fitted by the sum of two normal distributions.
D: pathological-subject distribution fitted by the sum of two normal distributions.

level = 0.05) by using the known healthy/pathological affiliation as binary factor.
These PC scores were used to select the best classification method.

We found that, in comparison to results of Table 2, RWA performed on the
type of analysis 22 with α = −1 yields a lowest percentage of misclassification
(8%), and of significant H-L test (1.9%) after re-running the resampling pro-
cedure we described above. RW scores significant in the univariate association
filtering were: 1∼5, 7∼10, 15, 16, 20, 38, 74. Moreover, mean AUC was slightly
improved (99.3), the sensitivity reduced (3%), as well as total misclassification
(8 %). RWA on type of analysis 22 with α = −1 will then be used in order to
predict the blind test dataset.

Figure 4 (left) shows the 800 shapes in PCA scatterplot corresponding to the
type of analysis 22. Healthy individuals (green) clearly set apart from patholog-
ical ones (black), while blind (red) subjects are dispersed across the two distrib-
utions; see also Supplementary Figure S1 with dynamic 3D pdf (requires Adobe
Reader).
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Deformations associated to PC1 and PC2 extremes are also shown in Fig. 4:
we plot the values of ‖xM − x‖, with xM the position of a point in the GM, and
x its position at ED or ES; the colormap ranges from blue (min) to red (max).
It is evident that PC1 represents contraction. This contraction is more evident
on the endocardium than in epicardium and healthy individuals occupy a more
extreme position, along PC1, than pathological individuals. This can be better
appreciated in Fig. 5 where mean deformations (relative to the Grand Mean) of
healthy and pathological individuals are illustrated conjointly. Clearly healthy
subjects undergo a larger, thus more efficient, contraction than MI patients even
in the epicardium. The larger shape differences occur in the middle of endocardial
geometry. It is important to note here that we illustrated endocardium and
epicardium separately for sake of clarity while actually in type of analysis 22
they were analyzed together as a whole geometry (thus one inside the other).
See also Supplementary Figure S2.

Using SVM for learning from the whole training dataset and for successively
classifying the blind test dataset, and RWA with α = −1, we obtained 96 subjects
classified as normal and 104 classified as pathological. After the disclosure of the
blind dataset this resulted in 95 % of total accurracy with sensitivity at 97 %
and specificity at 93 %.

We are thus able to report, case by case, the resulting classification and
the probability of being found pathological according to the specified learning
function. Figure 6 shows the per-class density distributions of this probability.
We illustrated the results coming from type of analysis 22 (our optimal result)
together with the first two sub-optimal types, i.e. types 16 and 28. The two
curves are pretty similar and the 0/1 classifications are much similar among the
three types. It is evident that the two groups are well separated with very few
cases possessing probabilities around 0.5.

The distributions of the two probabilities suggest that, within each class,
more than one normal distribution is represented. This could be evidence of
a few pre-clinical healthy individuals and a few only moderately pathological
subjects.

The fact that RWA with α = −1 performs better in discriminating healthy
from pathological subjects could be related to physiological evidences: myocar-
dial infarction is a particularly localized pathology. It can be transmural or
subendocardial, but in both cases a relatively small region of LV is interested.
This region can be found at several LV locations, and α = −1 gives more impor-
tance to small scale variations; this is coherent with this particular type of pathol-
ogy. On the opposite, for example, a pathology that moulds the entire LV shape,
such as Aortic Regurgitation could be better discriminated using α = 1. Testing
this is beyond the scope of the present paper.

However, this result suggests that a tuned evaluation of deformation could
correlate with the deep nature of pathology. Another result that should be com-
mented is the evidence that the full shape (i.e. epicardium+endocardium) better
discriminates than epicardium or endocardium alone. Given that the location of
infarction was not known for the available sample of pathological individuals, we
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can only speculate that the lesser contraction of pathological condition evidenced
in Fig. 5 is inevitably related to a lesser extent of myocardial thickness variation
and that this feature can only be recognized by analyzing together epicardium
and endocardium.

Finally, it has also to be pointed out that the relative age of infarction,
whose information was missing in the blind dataset, might be a further factor
contributing to diagnostic accuracy. It is in fact well known that LV under-
goes a time-dependent overall shape change post-infarction which was variably
interpreted and measured but is in general termed “remodeling”, just to under-
score that not only the infarcted area but also the remaining still healthy LVs
undergo modifications to adapt, globally, to the loss of viable contracting muscle.
As remodeling might be minimal in some cases due to a little recent infarction
or to a relatively old one and stabilized, the double normal distributions seen in
Fig. 6 (pathological side) might represent these conditions. On the other hand,
subclinical and localized ischemia might, on the “healthy” side, explain the dou-
ble distribution there. Clearly, these are speculations and only the full disclosure
of the blind database will enable adequate considerations.

4 Conclusions

Deformation analysis performs better than shape analysis alone in detecting
pathology. This can be done by adding the PT to standard GPA+PCA. This
allows recovering the attributes linked to the contraction process per-se that,
ultimately, follows the mechanics of heart functioning. Filtering inter-individual
shape differences becomes, thus, very important when exploring systo-diastolic
shape changes occurring in a blind sample of healthy subjects and patients
affected by Myocardial Infarction.
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Abstract. Statistical shape modeling (SSM) is a widely popular framework in
cardiac image analysis, especially for image segmentation and computer-aided
diagnosis. However, the conventional PCA-based models produce new axes of
variation which are statistically motivated but thus are not necessarily clinically
meaningful. In this paper, we propose an alternative method for statistical
decomposition of the shape variability based on partial least squares (PLS). With
this method, the model construction is achieved such that it is constrained by the
specific clinical question of interest (e.g., estimation of disease state). To achieve
this, instead of deriving modes of variation in the directions of maximal vari-
ation as in PCA, PLS searches for new axes of variation that correlate most with
some output clinical response variables such as diagnostic labels, leading to a
decomposition that is anatomically and clinically more meaningful. The vali-
dation carried out with 200 cases from the Cardiac Atlas Project database as part
of the MICCAI 2015 challenge on SSM, including healthy and infarcted left
ventricles, shows the strength of the proposed PLS-based statistical shape
model, with 98 % prediction accuracy.

1 Introduction

Statistical shape modeling (SSM) is a powerful tool for the robust processing and
interpretation of cardiac images. The fundamental idea is to extract from a training
population a representation of the variability between individuals or within a class of
disease. Most commonly, this is achieved through principal component analysis (PCA),
which extracts an average cardiac shape and the directions of maximal variation. In
addition to the statistical decomposition using for example PCA, particular attention
needs to be given to the delineation of the training images with point correspondence
between the cardiac shapes, which can be obtained automatically by using nonrigid
image registration [1].

There have been at least three applications of statistical shape modeling in the case
of the heart. Firstly, one can use the SSMs for generating virtual populations for cardiac
simulations [2]. A second application of SSMs, which is also the most common in
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practice, is for cardiac image segmentation. In this case, the statistical model is used to
robustly guide the image search and to ensure that only valid instances of the shape are
obtained.

Finally, SSMs can be used for dysfunction analysis of cardiac morphology and
function, which is the subject of this paper, and which has been achieved typically by
constructing models of normality from a set of healthy hearts and identifying abnormal
deviations of new subjects from the statistical model. For this application, most works
have used conventional PCA-based decomposition [3, 4]. Alternative approaches have
been also proposed, including using sparse PCA [5], PCA with orthomax rotation [6],
inter-landmark descriptors [7, 8], and independent component analysis (ICA) [9].
A major issue with these decomposition techniques is that they are statistically moti-
vated, thus leading to models that are not necessarily anatomically and/or clinically
meaningful.

In this paper, we propose instead a novel method for the construction of cardiac
SSMs using clinically-driven shape decompositions based on partial least squares
(PLS) [10]. PLS has been used extensively as a regression tool for prediction of
anatomical information and clinical response in medical imaging [11–16]. In this work,
we use PLS decomposition to find the modes of variation that most correlate with some
clinical response variables such as disease states. More specifically, statistical models
of left ventricular end-diastolic and end-systolic shapes that are discriminative of
healthy and infarcted hearts are constructed, with application to myocardial infarction
assessment based on 200 cases from the Cardiac Atlas Project database, as part of the
MICCAI 2015 challenge on statistical shape modeling.

2 Methods

2.1 PCA Shape Decomposition

Let us denote X ¼ ðxð1Þ; . . .; xðNÞÞ the matrix comprising the available N training
shapes after shape alignment (to remove pose differences) and mean centering (after
removing the mean shape �x from each shape). Each shape is a vector of size 3n, where
n is the total number of landmarks. In PCA, the goal is to find the new axes of variation
along which there is maximal variation. For example, we want to find the first new
component p1 (unit vector) such that:

pT1XX
Tp1 is maximized; with p1k k ¼ 1 ð1Þ

It can be shown that these new components can be computed as the eigenvectors of
the covariance matrix of X. With this decomposition, a new shape can be described
using this generative model:

x ¼ �x þ Pb ð2Þ

where P is a matrix that encapsulates t eigenvectors describing the t main directions of
variation in the model, and b ¼ ðb1; . . .; btÞT is a vector that encapsulates the weights
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that control the deviation of the new subject-specific anatomical shape x from the mean
shape �x. Furthermore, each unit vectorpi is associatedwith an eigenvalue l i that describes
the amount of allowed variation along each axis (typically �3

ffiffiffi
li

p
£ bi £þ 3

ffiffiffi
li

p
, which

correspond to about 99 % of the variability).
Note that we only describe PCA in this paper to better justify and introduce the use

of PLS decomposition and that we do not use it for classification.

2.2 PLS Shape Decomposition

While PCA finds the axes of maximum variation independently of the clinical purpose
of the shape model, PLS decomposition makes sure the obtained decomposition cor-
relates with some output variable(s), which means it can be designed to be
application-oriented by careful choice of the response variables. Given N training
datasets, let us denote as X ¼ ðxð1Þ; . . .; xðNÞÞ the matrix of all the input shapes after
shape alignment and mean centering, and Y ¼ ðyð1Þ; . . .; yðNÞÞ the matrix of the
corresponding clinical response variables, such as for clinical diagnostic. In this paper,
we will use a single diagnostic variable y to label healthy and infarcted hearts, which is
equal to 0 for healthy subjects and 1 for infarcted hearts. To relate the shapes and the
clinical response variables, the simplest method is to estimate a regression model such
that for each new subject the unknown diagnostic variable ŷ (healthy or infarcted heart)
can be predicted with the highest possible accuracy based on the subject-specific shape
x̂ as follows:

ŷ ¼ x̂TA ð3Þ

where A is the regression matrix of the PLS model (in fact a 3n dimensional vector in
our case, or 3n by 1 matrix), which will be defined statistically from the training
matrices X and Y, such that to:

• project each shape x onto a new set of shape directions that are optimal for the
prediction of the response y;

• remove from x the shape information that is irrelevant for the prediction of y; This
might include shape variability that is important for the anatomical structure under
investigation but which does not play a role in the specific application (for the
description of myocardial infarction for example)

• eliminate noise and artifacts from the final statistical shape model.

The requirements above can be addressed in this work based on partial least square
(PLS) decomposition [17]. The aim of PLS is to perform a simultaneous decomposition
of X and Y such that the score vectors obtained along the new representation axes of
both the input and output matrices correlate best. This will lead to optimal predictions
and to maximal interdependencies between the shapes and the output variables, making
the statistical shape decomposition application-oriented as defined by the clinical
response variables. This type of decomposition can be obtained through the NIPALS
algorithm [10]. More specifically, we wish to extract a set of t latent variables C ¼
ðc1; . . .; ctÞ from the input training shapes X that correlate most with the output
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training response variables Y. In other words, we perform a simultaneous decompo-
sition of the input and output training data as:

X ’ PCT ð4Þ

Y ’ QDT ð5Þ

such that:

cov½PTX; QTY� is maximized: ð6Þ

Note that P ¼ ðp1; . . .; ptÞ are the new PLS shape components after the decom-
position, while C and D are the new projections for the input X and Y output matrices,
respectively.

To obtain the new PLS components, we wish to decompose X and Y simultane-
ously based on Eqs. (4)–(6), leading to optimal interdependencies between the input
and output data. To this end, we use a procedure in which the new shape components P
iteratively contributes to the estimations of the new output vectors Q and vice-versa
[10]. We do this by considering one shape component pk at a time (with, k ¼ 1; . . .; t
and X1 initialized as X):

(a) Initialize qk with one of the columns of Y.
(b) Update the shape projections ck ¼ XT

k pk;
Calculate the shape component pk ¼ Xck, with pkk k ¼ 3.

(c) Update output projections dk ¼ YTqk;.
Calculate latent output variable dk ¼ Yqk, with qkk k ¼ 3.

(d) Repeat (b)-(c) until no change is noticed in pk.
(e) Remove the contribution of pk in Xk for next iteration: Xkþ 1 ¼ Xk � pkp

T
kXk.

It can be noticed that the vector ck, i.e. the k
th shape weights for all samples, acts as

a proxy in step (b) to estimate the output variables qk , and vice-versa, the shape
component pk is used as a proxy to estimate the output projections dk in step (c). These
steps connect both the input and output spaces, which influence each other during
decomposition, thus enforcing the derivation of correlated shape and output clinical
variables (myocardial infarction score in our case). The algorithm stops when the kth

shape variable does not contribute to the predictability of the clinical outputs (using
cross-validation). Subsequently, with t ¼ k � 1, the shape components p1; . . .; pt are
retained and used in the prediction of the clinical response based on the subject-specific
shapes. The remaining shape variables are ignored as they correspond to information
that is not relevant to the clinical problem, or even detrimental (e.g., noise or irrelevant
shape variation), to the prediction of the clinical responses (e.g., disease state).

With this decomposition, the new shape components P are not those that maximize
variation in the shape space as in PCA, but rather those that maximize co-variation with
the output clinical responses, leading to models that are more clinically meaningful (see
difference between the decompositions in Eqs. (1) and (6)).
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2.3 Prediction of Myocardial Infarction

Based on the decomposition obtained in previous section, we obtain a shape model
similar to the one generated via PCA in Eq. (2) but based on the P components
obtained through PLS. However, these new components can also be used to predict the
clinical response such as cardiac disease state based on the regression model introduced
in Eq. (3). More specifically, it can be shown that for a new shape x̂, its disease state
can be estimated by using in Eq. (3) the following regression matrix:

A ¼ XDðPTXXTQÞ�1PTY: ð7Þ

It is important to note that for our myocardial infarction application, the response
variable y is categorical (0 for healthy subjects and 1 for cases with myocardial
infarction). Yet, the PLS prediction in Eq. (7) outputs a continuous response scalar,
which we transform into a categorical value for the discrimination between healthy and
infarcted hearts as follows:

y ¼ 0 (healthy subject) if y\ 0:5
1 (infarcted heart) if y[ 0:5:

�
ð8Þ

Alternatively, one could also consider the PLS discriminant analysis technique,
which can directly model categorical variables [18, 19].

2.4 Fusion of PLS Classifiers

Fusion of classifiers is a common approach to increase the classification accuracy in
medical image compution. The idea is to combine the results from different classifiers
as obtained for example by using different parameters tunings or algorithm properties.
This is generally done probabilistically, i.e. by chosing the classification which max-
imal agreement amongst the different classifiers. In our case, different different PLS
classifiers of myocardial infarction can be obtained by using varying numbers of latent
variables. To fuse these distinct classifications, we simply propose to use an odd
number K of PLS classifiers by using the numbers of latents variables t1; . . .; tK and to
subsequently derive a final classification by combining the muliple PLS classifications
y1; . . .; yK using a simple medican approach as follow:

y ¼ median
i¼1;...K

ðyiÞ: ð9Þ

The K PLS classifiers to be used as input for the fusion should be chosen empir-
ically at training, i.e. by selecting a set of numbers of latent variables that produce the
best responses in cross-validation tests as illustrated in the result section (see Sect. 3.2).
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3 Results

3.1 Datasets

The proposed technique is validated in the context of the MICCAI 2015 Statistical
Shape Modeling challenge (SSM2015). The data sample comprises 200 cases from the
Cardiac Atlas Project (CAP) database [20], of which 100 are healthy subjects and 100
are hearts associated with myocardial infarction. The shapes consist of 3D meshes of
the left ventricles at end-diastole and end-systole (two cardiac phases), with point
correspondence established previously.

In this work, all the shapes were firstly aligned to remove differences in the coor-
dinates systems between all cases. To achieve this, we aligned all the end-diastole cases
and the obtained pose parameters for each case were then applied to the end-systole
shape. Differences in scaling were not corrected for as LV size is likely to be an indicator
of the disease state. Furthermore, the ED and ES shapes were concatenated into a single
shape vector for classification based on Eq. (3).

Subsequently, we applied the proposed PLS decomposition based on the labels of
the datasets (0 for healthy cases, 1 for infarcted hearts). As an illustration, Fig. 1 shows
the first mode of variation obtain from the PLS decomposition for the endocardium at
end-systole (i.e. at maximal muscle contraction), from −2 Std to +2 Std (corresponding
to about 98 % of the variability). It can be seen that the shapes vary from significant
motion (-2 Std) that is typical in healthy subjects, all the way up to less pronounced
cardiac motion due to infarcted muscle (+2 Std). Note that the second and third modes
of variation show longitudinal and localized LV motion, respectively, which can also
be affected due to myocardial infarction.

Fig. 1. First mode of variation as obtained from the PLS decomposition for the end-systole
shape. It can be seen that the shapes vary from significant motion (−2 Std) that is typical in
healthy subjects, all the way up to reduced motion due to infarcted muscle (+2 Std).
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3.2 Effect of Latent Variables

To evaluate the strength of the proposed method for the prediction of healthy and
infarcted hearts, we must first choose an optimal value for the number of latent vari-
ables used in the PLS regression model. In leave-one-out tests with the 200 cases, we
varied the number of latent variables using 10 different values (1, 2, 3, 4, 5, 10, 20, 30,
40, and 50) and we then estimated the prediction accuracy for each case. The results
plotted in Fig. 2 show that the best predictions are obtained by using between 5 and 15
latent variables (prediction accuracy in the interval 95.0 % to 96.5 %). The maximum
prediction accuracy of 96.5 % is obtained for t ¼ 10. After 10 latent variables, the
prediction accuracy starts to decrease, indicating that the additional shape information
does not contribute to the disease state of the subject and even act as noisy information
that affect the predictions.

3.3 Effect of Classification Fusion

In this section we evaluate the improvement by fusing different PLS classifiers cor-
responding to varying numbers of latent variables. Based on the results from previous
section, we consider three PLS classifiers obtained by using 5, 10, and 15 latent
variables. These three PLS classifiers are then fused using the fusion median method
described in Sect. 2.4. The results summarized below in Table 1 show that the clas-
sification accuracy improves to 98 % by applying the proposed fusion approach. We

Fig. 2. Effect of number of latent variables on the PLS regression accuracy for the prediction of
healthy and infarcted subjects, using leave-one-out tests.
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also computed the specificity and sensitivity measures, which also show an improve-
ment in the final results by using the fused PLS classifier of myocardial infarction.

3.4 Effect of Training Size

Finally, we evaluated the effect of training size for the modeling and prediction of
healthy/infarcted hearts. We randomly selected an increasing number of datasets (from
20 to 200, in increments of 20) and each time we performed leave-one-out tests. While
the results in Fig. 3 indicate that the training size as expected affects the prediction
accuracy, it can be also seen that after 100 cases, the improvement is not significant,
with prediction accuracy between 94 % for 100 training datasets and 98.0 % for 200
datasets used in the tests. This is because normal hearts differ significantly from
infarcted hearts in the morphology (due to remodeling), as well as in the motion (less
pronounced contraction). As a result, PLS decomposition with a relatively small
training dataset (about 100 cases) is already capable of encoding the differences
between healthy and infarcted hearts.

Table 1. Accuracy, specificity, and sensitivity of the different PLS classifiers and their fusion.

PLS classifiers Accuracy [%] Specificity [%] Sensitivity [%]

5 latent variables 95 95 93.5
10 latent variables 96.5 98 96
15 latent variables 95.5 97 94
Fusion 98 99 97

Fig. 3. Effect of the number of datasets used for training the PLS shape models.
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4 Conclusions

In this paper we presented an alternative method for the construction of statistical shape
models of the left ventricle based on partial least squares (PLS), such that the
decomposition is application-specific, i.e. it takes into account the diagnostic goal of
the study such as to discriminate healthy and infarcted hearts. The results demonstrate
promise, with a high prediction accuracy of 98.0 % when using 200 cases in
leave-one-out tests.
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Abstract. Myocardial infarction changes both the shape and motion of
the heart. In this work, cardiac shape and motion features are extracted
from shape models at ED and ES phases and combined to train a SVM
classifier between myocardial infarcted cases and asymptomatic cases.
Shape features are characterised by PCA coefficients of a shape model,
whereas motion features include wall thickening and wall motion. Eval-
uated on the STACOM 2015 challenge dataset, the proposed method
achieves a high accuracy of 97.5 % for classification, which shows that
shape and motion features can be useful biomarkers for myocardial
infarction, which provide complementary information to late-gadolinium
MR assessment.

1 Introduction

Myocardial infarction results in abrupt increase of loading conditions at both
the infarcted and non-infarcted regions of the ventricle. Subsequently, ventric-
ular remodeling occurs which modulates the underlying tissue of the involved
regions in order to compensate for the loss of the myocardium and to adapt to
the increase of the load [1]. The mechanical function of the ventricular changes
accordingly during the process of infarction and post-infarction remodeling.

Clinically, myocardial infarction is assessed using late-gadolinium enhanced
MR (LGE-MR) in which the infarcted or fibrotic tissue appears bright due to the
reduced clearance and increased volume of distribution of gadolinium, whereas
normal tissue appears dark [2]. Since myocardial infarction has a direct impact
on anatomical structure and mechanical function, we hypothesise that shape
and motion features, derived from non-enhanced cine MR images, can be alter-
native biomarkers for myocardial infarction. They can provide complementary
information to LGE-MR image assessment.

In the past, numerous efforts have been dedicated to cardiac shape analysis
[3–5] or cardiac motion analysis [6,7] in the context of cardiomyopathy studies
or abnormality detection. Medrano and Perperidis both use PCA for decompos-
ing the cardiac shapes and the PCA coefficients are then used for classification
between sub-groups [3,4]. Suinesiaputra instead decomposes the shape at ES
using ICA and the ICA coefficients are used for regional wall motion abnormality
detection [5]. McLeod estimates motion using a polyaffine LogDemons method,
c© Springer International Publishing Switzerland 2016
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decomposes the polyaffine parameters spatio-temporally and the decomposition
coefficients are used for motion analysis [7]. Duchateau characterises myocardial
motion on a spatio-temporally normalised map and assesses the changes of the
motion map during bi-ventricular pacing [6].

In this paper, we propose a method for myocardial infarction detection by
using combined shape and motion features. On the STACOM 2015 statistical
shape modelling challenge dataset, the proposed method has achieved a high
accuracy of 97.5 % in detecting patients with myocardial infarction.

2 Methods

2.1 Dataset

In the STACOM 2015 challenge, a training set of 200 cases (100 with myocardial
infarction from the DETERMINE cohort, labeled 1; 100 asymptomatic from the
MESA cohort, labeled 0) is provided [8]. The provided data include the shape
models at ED and ES for each subject. The shape models are generated by fitting
a finite-element model to a small amount of user-selected guide points [9]. Bias
correction is applied to the shape models afterwards to correct for the protocol-
dependent shape bias between the DETERMINE and MESA cohorts [3]. Each
shape model contains 1089 vertices on the endocardium and 1089 vertices on
the epicardium. The shape models for a testing set of 200 cases (100 infarcted,
100 asymptomatic) are also available, whose labels are unknown to the challenge
participants.

2.2 Features

We use two types of features for classification, the myocardial shape features to
characterise anatomy and the motion features to characterise mechanical func-
tion. We will describe the two type of features subsequently.

Shape. The challenge dataset provides the surface mesh models for all the
subjects. To remove position and orientation difference, we compute a mean
mesh model and align all the subject meshes to the mean mesh using the rigid
registration programme in the IRTK software package1, which minimises the
Euclidean distance between the two point clouds as a least-square problem. For
each subject, the rigid transformation is estimated using the mesh at the ED
phase. The resulting transformation is then applied to the meshes at both ED
and ES phases.

Then principal component analysis (PCA) is performed twice, respectively
for all the aligned meshes at the ED phase and then at the ES phase. The
PCA coordinates at ED, PED, and the PCA coordinates at ES, PES, are used
as shape features. We also concatenate the coordinates at two phases to form
another shape feature P = {PED, PES}.
1 https://www.doc.ic.ac.uk/∼dr/software/.
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Motion. The motion information is measured in two aspects, wall thickening
and wall displacement. For each vertex on the epicardium, the wall thickness
w is measured from this point to the closest point on the endocardium using
the FindClosestPoint() function in the VTK library. The closest point can be
somewhere on a triangle cell of the mesh, not necessarily to be a vertex. The
absolute and relative thickening of the wall from ED to ES are defined by the
following equations,

Tabs = wES − wED

Trel = (wES − wED)/wED

In addition, wall displacement is computed for each vertex using its coordi-
nate at ED and at ES. The displacement is decomposed into radial, longitudi-
nal and circumferential components using the local cardiac coordinate system
[10]. The displacements for both the endocardial and the epicardial vertices are
included as features and denoted by Dendo,r, Dendo,l, Dendo,c, Depi,r, Depi,l and
Depi,c. The subscripts r, l and c denote radial, longitudinal and circumferential.

To summarise, 11 feature vectors are extracted, of which 3 encode shape
information (PED, PES and P ) and 8 encode motion information (Tabs, Trel,
Dendo,r, Dendo,l, Dendo,c, Depi,r, Depi,l and Depi,c).

2.3 Classifier

A support vector machine (SVM) is trained to classify between the infarcted
cases and the asymptomatic cases. The radial basis function (RBF) kernel is
chosen, which outperforms the linear kernel in experiments. The default kernel
size in the python sklearn library is applied for the RBF kernel, which is the
reciprocal of the total number of features2. Each of the 11 feature vectors are
tested independently as input to the classifier and combinations of the features
are also tested. The classification performance is evaluated using 10-fold cross-
validation on the training set of 200 cases, repeated for 10 times.

3 Results

3.1 Features

Figure 1 shows the first two PCA coordinates for the 200 training subjects.
Clearly, the PCA coordinates contain useful information to tell the difference
between the normal and the infarcted. Visually, the two groups seem to have
less overlap using the coordinates at ES than using the coordinates at ED.

Figure 2 compares the motion features between a normal subject and an
infarcted subject. It shows that for the two exemplar subjects, the normal one
has larger displacement magnitude than the infarcted one in basal and mid-
ventricular regions.
2 http://scikit-learn.org.
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(a) Coordinates at ED (b) Coordinates at ES

Fig. 1. Plot of the first two PCA coordinates for the 200 training subjects.

(a) Wall thickening (b) Epi. motion (c) Endo. motion
Normal case

(d) Wall thickening (e) Epi. motion (f) Endo. motion
Infarcted case

Fig. 2. Visualisation of the motion features for two exemplar subjects (top row: asymp-
tomatic; bottom row: infarcted). The three columns from left to right are respectively
absolute wall thickening (unit: mm), epicardial displacement magnitude (unit: mm),
endocardial displacement magnitude (unit: mm).
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Table 1. Classification performance using each feature independently and using the
combination.

Feature Accuracy (%) Sensitivity (%) Specificity (%)

PED 92.8±5.2 89.0±9.6 96.6±5.5

Shape PES 95.7±4.1 94.0±7.5 97.7±4.6

P 95.5±4.1 93.0±7.3 98.0±3.9

Tabs 92.7±5.5 90.8±9.2 94.3±7.3

Trel 90.3±6.0 87.7±10.5 92.9±7.9

Dendo,r 93.1±5.1 90.9±9.1 95.6±6.2

Motion Dendo,l 85.2±7.3 80.7±12.2 90.0±9.7

Dendo,c 88.5±6.4 92.3±8.9 85.0±10.6

Depi,r 85.4±8.0 87.0±9.4 84.4±12.3

Depi,l 80.4±8.9 87.5±10.6 73.0±13.7

Depi,c 81.3±8.0 87.6±10.5 75.5±14.1

Combined {P ,Tabs,Dendo,c,Depi,r} 97.5±3.2 98.1±4.2 96.8±6.0

3.2 Classification Performance

In Table 1, we report the classification performance using each feature indepen-
dently as the input to the SVM classifier. Accuracy, sensitivity and specificity
are evaluated. For the shape features, the first 25 PCA coordinates are used,
which keeps 97.0 % of shape variance and shows good performance in parameter
tuning. As the table shows, using PES shows a higher accuracy than using PED,
which is in line with our visual finding from Fig. 1. For the motion features, Tabs,
Dendo,r, Dendo,c and Depi,r show good performance. We also tested a number of
combinations of the shape and motion features and found that the feature set
{P ,Tabs,Dendo,c,Depi,r} achieves an accuracy of 97.5 %, which outperforms using
each independent feature alone. So we will use this feature set for the classifica-
tion on the challenge testing set.

4 Conclusions

To conclude, cardiac shape and motion features are extracted from the subject
shape models at ED and at ES. When they are combined and used to train a SVM
classifier, a high accuracy is achieved for classification between infarcted cases
and asymptomatic cases. This could potentially provide valuable information
if LGE-MR is not available. A limitation of the current work is that a global
classifier is trained for classifying infarction. However, it does not localise where
the infarcted region is. A possible extension of the work is to incorporate scar
maps into the training set and to train classifiers locally at each region or each
vertex so that potentially scar localisation can be achieved using shape and
motion features.
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Abstract. The shape of the heart is known to undergo significant alter-
ation as a result of myocardial infarction. We hypothesize that the thick-
ness of the heart wall is an important variable in discriminating normal
hearts from those with such defects. In the context of the present statisti-
cal modeling challenge, with meshes provided to describe the epicardium
and endocardium at end diastole (ED) and end systole (ES), we model
local heart wall thickness using a medial surface representation of fixed
single sheet topology. Such a surface lies between the heart walls and the
radius of the maximal inscribed disk at each point on it reveals heart
wall thickness. We align the ED and ES medial surfaces to one another
using the coherent point drift algorithm, and then align each registered
pair to that of a reference heart, so that locations within each medial
surface are in spatial correspondence with one another. We then treat
the radius values at these corresponding medial surface point locations
as inputs to a support vector machine. Our experiments yield a 96 % cor-
rect detection rate on the 200 cases of labeled test data, demonstrating
the promise of this approach.

1 Introduction

The STACOM 2015 challenge involves distinguishing hearts which have suf-
fered from myocardial infarction from those that are normal, given only 3D
shape information. The input data from Fonseca et al. [1] are Cartesian point
sets describing the epicardium and the endocardium at ED and ES, along with
triangulation information for each surface, allowing each to be represented as
a mesh. No information is provided about myofiber arrangement, cell density,
myocardial mass, or the age of the infarct when present.

The mechanisms that are involved in the remodelling of the heart as a con-
sequence of an infarction are complex. For example, Weisman et al. suggest that
the heart wall gets thinner around the zone where the infarct has occurred, and
that the left ventricle (LV) loses its circular shape [2]. Litwin et al. discuss the
process of LV remodelling after an infarction and point out that infarcted hearts
tend to be thinner [3]. They also discuss how other parameters such as fractional
shortening and filling velocity are affected. Sutton et al. explain how the infarct
c© Springer International Publishing Switzerland 2016
O. Camara et al. (Eds.): STACOM 2015, LNCS 9534, pp. 146–153, 2016.
DOI: 10.1007/978-3-319-28712-6 16
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zone propagates over time, showing that it may take months before the remodel-
ing ends and a balance is found [4]. Taken together, past research suggests that
classifying myocardial infarction from 3D shape alone is a tall order. The test
cases that are infarcted in the STACOM challenge are likely not all at the same
stage of remodeling. In the early stages that follow an infarction, the infarcted
zone is well defined as a small tissue necrosis zone, but the heart eventually
reshapes itself in a way that makes this zone more difficult to localize.

Despite these difficulties, there is consensus in the literature that structural
changes to the myocardium following an infarct are highly correlated with heart
wall thickness. Motivated by this observation, we propose to measure local heart
wall thickness using a medial surface representation and to use it to perform
both within subject and between subject registration of hearts. We describe our
processing pipeline to compute medial surfaces in Sect. 2 and then explain how
we treat the associated radius function as data for use by a machine learning
method for classification in Sect. 3. In Sect. 4 we describe the machine learning
algorithms that we have used, and present our results on the test data. We
conclude with a discussion of the strengths and weaknesses of our method in
Sect. 5.

2 Computing the Medial Surfaces

The medial surface or the 3D skeleton is comprised of the locus of centres of
maximal inscribed disks within a volumetric object, along with the associated
radius values. First introduced by Blum in [5] medial representations have been
widely used in computer vision, robotics, medical imaging and other domains
because they provide a compact representation of an object while facilitating
shape analysis. In the continuum this representation is lossless because an object
can be reconstructed as the union of balls of appropriate radii centered on the
medial surface. The mathematics of this representation is rich and is now well
understood, and algorithms for computing it along with many applications are
mature [6]. As an illustration, Fig. 1 shows a medial surface comprised of a single
sheet describing the wall of a left ventricle. Here the points on the medial surface
are colored according to local thickness, i.e., radius of the maximal inscribed disk.

The medial surface can have complex branching sheet topology, which is
related to the number and location of curvature maxima (ridges) on the object’s
surface. In the present application we wish to explicitly relate the epicardium
and endocardium at both ED and ES to one another via a single sheet, moti-
vated by the observation that the heart wall is smooth. Inspired by the average
outward flux approach of Chap. 4 in [6], we opt for a more direct approach for
the particular case of the left ventricle.

Our first step is to obtain a representation of the LV wall using a voxelization
method. We scale every heart to have a constant diameter during ED, while
storing the scaling coefficients as they might prove useful for classification. We
also rotate each heart in order to have its major axis aligned with the x-axis.
We then voxelize the heart wall surfaces, with a resolution that guarantees that
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Fig. 1. A medial surface computed for the wall of a left ventricle, viewed from four
different angles. The colors indicate the local thickness of the wall in voxel units (Color
figure online).

every point on the epicardial and endocardial mesh surfaces lies in one and only
one voxel. Once this is done, we proceed to voxelize the outer wall and the inner
wall surfaces using the provided triangulation files, while leaving no holes. We
then use a recursive seed filling algorithm on a capped version of each heart. The
capping is accomplished via a plane having equation x = K, where K is chosen
to prevent leaking while retaining as many points as possible. Subtracting the set
of voxels within the endocardial volume from those within the epicardial volume
then leaves the set of voxels lying within the LV myocardial wall.

Following this, [6] suggests to compute the Euclidean distance function
between the wall surface and each point within the interior of the object. The
idea is then to compute the average outward flux through a small sphere around
each point of the distance function gradient. In theory, this quantity is non zero
only on the medial surface that we are seeking, but we are dealing with numerical
approximations that make this approach require some parameter tuning. In the
present article we opt for a more direct method since we wish to obtain a single
medial surface with non-branching topology. Given that we have direct access
to both heart walls, we compute the distance functions to these two surfaces
separately, and treat the medial points as those where these two functions have
the same value.

Figure 2 provides a summary of our processing pipeline. In practice we com-
pute for each voxel v within the LV wall the absolute value of the difference
between its distances to the two walls: f(v) = |douter(v)−dinner(v)|, and find its
zeros. Figure 2(b) shows a plot of f on an axial slice of a left ventricle. Overall,
this process leads to smooth, thin medial surfaces.
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(a) The initial point set data.
Here the epicardial wall of one
LV during ED is displayed.

(b) A plot of the function f on
an axial slice of the filled myocar-
dial wall. The deep blue zone is
where f is almost zero, indicating
the locus of points on the medial
surface.

(c) The medial surface. Color de-
notes thickness according to the
color bar in Fig. 1.

(d) Two distinct medial surfaces are aligned us-
ing the coherent point drift algorithm.

Fig. 2. Our processing pipeline. We first obtain a voxelized heart wall and compute the
function f within it, from which we extract the medial surface. Each ED medial surface
is then registered to the ES medial surface, following which all ED medial surfaces are
registered to a single reference ED medial surface.

3 Registering the Medial Surfaces

For each heart, we now have two medial surfaces, one corresponding to ED and
one to ES, where the thickness of the heart wall is encoded in the medial surface
radius value at each location on it. In order to observe the change of thickness
during the heartbeat, we must find a correspondence map between the ED and
ES surfaces. We have previously centered and scaled each heart, but we cannot
assume that the input hearts are perfectly aligned. To perform registration, we
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opt for the coherent point drift algorithm presented in [7] because it is fast,
accurate, noise resistant and gives smooth correspondences. It also does not
require an explicit triangulation of either surface. To speed up the process we
sub-sample each medial surface, randomly picking 5000 points on it. Registration
gives us a function p : {1 ; 5000} → {1 ; 5000}, such that the ith point of the
ED medial surface corresponds to the p(i)th point of the ES medial surface. This
allows us to visualize the wall thickening, as displayed in Fig. 3.

Fig. 3. Wall thickening between ED and ES, shown from two different viewing direc-
tions on a medial surface.

Our initial hope was that this representation would give us a simple way
to discriminate between hearts with infarctions and normal ones. For instance,
infarcted zones might be reflected by an unusual local wall thickening. In practice
it turns out that both the normal and the infarcted hearts have zones of thickness
change, with no obvious way to distinguish one from the other. Infarcted hearts
tend to have a smaller radius change on average, and most show zones that
get thicker during diastole, but some normal hearts also have this property. We
decided to describe every heart via an ordered list of medial surface radius values
during both ES and ED and to use a higher level machine learning process
for classification via a labeled test set. In order to be able to compare wall
thickness between hearts it was necessary to first match corresponding locations
between them, i.e., the first radius that we pick to describe the first heart must
geometrically correspond to the first radius of every other heart. To do so, we pick
one ED medial surface as a reference, and compute the correspondence map of
each heart’s medial surfaces during ED and ES with this reference. The following
schematic shows how each heart’s medial surface radius values are stored:

Heart 1 → r1ED,1 r1ES,1 r1ED,2 .... r1ED,5000 r1ES,5000

. . . . . . .

. . . . . . .

. . . . . . .

Heart n → rnED,1 rnES,1 rnED,2 .... rnED,5000 rnES,5000

Each column of the above matrix contains the radius values of medial surface
points which correspond to one another in terms of their spatial location. In other
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words r1ED,1, r
2
ED,1, ... , rnED,1 are the radii of distinct ED medial surfaces at a

location which is in correspondence between them. The columns are not ordered
in any particular way and we would obtain the same classification results if we
were to shuffle them.

4 Statistical Analysis

We provide the list of medial surface radius values in spatial correspondence
with one another as inputs to machine learning algorithms. This data contains
meaningful information about heart wall thickness since the medial surfaces
have been co-registered. The best results we have been able to obtain so far
on the test data set are via the application of a simple support vector machine
(SVM) algorithm, as suggested by [8]. We first use principal component analysis
to reduce the number of features from 10000 (5000 radius values for ED and
5000 for ES) to 100. We then use a radial basis kernel function SVM to classify
our hearts. With the right choice of parameters, we obtain promising results. In
particular, using k-fold cross validation, with a k of 40 (i.e. 20% of our dataset)
we obtain an accuracy of 96% correct classification on average. Some hearts
appear to cause more trouble than others. For example, for the 200 labelled test
cases we have, cross validation always classifies 171 hearts correctly. 14 other
hearts are accurately classified over 90% of the time while 9 other hearts have
a classification error rate under 40%. The 6 remaining hearts are almost always
misclassified. A histogram of misclassification rates is shown in Fig. 4.

We also experimented with a random forest algorithm, as described in [9], to
compare its performance against the SVM. It achieves promising accuracy results
(88%) but does not perform quite as well as the SVM algorithm. Interestingly
enough, the random forest approach yields the same classification errors as the
SVM when it comes to the 6 problematic cases. This suggests a limitation of
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Fig. 4. Histogram of the misclassification rate over multiple cross validation experi-
ments. Most of the hearts are almost always correctly classified, but a small proportion
is not.
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diagnostic information in wall thickness as measured by medial surface radius
values, rather than an inherent limitation of the classification method itself.

5 Discussion

Our results demonstrate that relating the epicardium to the endocardium explic-
itly via a medial surface has potential for detecting myocardial infarction. This
representation provides direct access to both shape and thickness information.
Qualitatively the merits of this approach can be seen simply by observing the
average radii of the medial surfaces (which excludes all the topological and geo-
metrical information that they also contain). This is illustrated in Fig. 5 via a
scatter plot in which each heart is represented by a 2D point (x, y), where x is
the mean medial radius of a heart during ED and y is its mean medial radius
during ES. The points in blue correspond to the infarcted hearts in the test data,
while the points in red correspond to the normal hearts. Although some points
are interleaved, the red and blue clusters are quite well separated.
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Fig. 5. Each heart is represented by a 2D point whose coordinates are the mean radii
of the medial surface during ED and ES. Although the separation is not perfect, it
is qualitatively quite good. The red circles correspond to normal hearts and the blue
crosses to ones with infarcts. The radii are in voxel units (Color figure online).

As discussed earlier, an infarction leads to complex changes in the thickness
of the heart wall. Our first hope was that an infarcted heart would show some
dead zones that would have an approximately constant thickness over time. To
test this hypothesis, we registered the ED and ES medial surfaces together, and
then plotted the radius change between these two phases for each point on the
medial surface. In practice it turns out that both normal and infarcted hearts
contain such zones, with no obvious way to distinguish one from the other. While
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wall thickening is an important diagnostic parameter, other geometric features
could also be taken account, such as the local shape and curvature of the heart
wall. A limitation of our approach is that we have not taken the direction of wall
thickening into account, i.e., be it due to dilation of the epicardium or due to
contraction of the endocardium.

We have also experimented with using medial surface point locations as addi-
tional features to the machine learning classification algorithms and as well with
averaging radius values over a small local neighborhood on the medial surface.
Neither of these strategies have boosted classification performance, likely because
the medial surface points are co-registered and the medial surface radius values
vary smoothly. Despite its present limitations, using machine learning approaches
on the radius values of co-registered ED and ES medial surfaces yields promising
classification results on the test data.
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Abstract. We present the methods and results of building an Active
Shape Model (ASM) of the left ventricle (LV) and using a Support Vector
Machine (SVM) learning model to classify normal and infarcted LVs pro-
vided in the STACOM 2015 Statistical Shape Analysis Challenge dataset.
First, all LVs are rigidly registered to a reference LV. In this way, the
entire dataset is aligned to the same reference frame. Then, the shape
model is obtained by Principal Component Analysis (PCA) decomposi-
tion of the aligned LVs. This allows us to capture the principal modes of
variation in the LV shapes and reduce the dimensionality of our data.

Next, we train an SVM learning model on our data. To test the per-
formance of the model before using it on the unlabeled test set, we test
our method by partitioning the dataset with labels into a training set
and a test set of equal sizes. We train the model only using the training
set and predict the labels of the test set we created (whose labels were
known but not used during training). We repeated this for 100 differ-
ent random partitions and achieved 94 % prediction accuracy with 94%
sensitivity and 93 % specificity on the test set.

Keywords: Shape modeling · Active shape model · Support vector
machine · Classification

1 Introduction

The task of building a shape based statistical model of the LV is challenging.
Representation of the LV shape is not uniform across literature. The nature of
intensity images of the heart varies significantly across imaging devices, condi-
tions and modalities. If acquired images are not physiologically consistent, for
instance if they do not capture the same region from the base to apex of the
heart, it is difficult to align them correctly to build a statistical model.

The STACOM 2015 challenge dataset consisted of 200 DETERMINE (disease
cases, [1]) and 200 MESA (normal cases, [2]) LV point clouds (along with their
finite element models) contributed to the Cardiac Atlas Project (CAP) [3]. Of
these, half of them were labeled and the other half were not.

c© Springer International Publishing Switzerland 2016
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Just as the rest of the CAP aims to build structural and functional atlases of
the heart, and in the process, help develop and benchmark diverse cardiac model-
ing and statistical techniques, this challenge also provided a unique opportunity
to attempt to model the cardiac shape characteristics and build an algorithm to
detect myocardial infarction. Given that cardiovascular diseases are the largest
contributing factors to mortality in the developed world, a robust and well val-
idated detection technique of myocardial infarction could be of great value sci-
entifically and clinically.

In this work we build a shape model using ASM, first proposed by Cootes
et al. in [4]. In this particular formulation, the shape space is first decomposed
into a lower dimension using PCA. The data is projected onto the eigenspace
derived from the PCA of the training set. The test data’s projection will then
adhere to the variation found in the training set. This serves as a form of shape
prior.

Then, the PCA coefficients are used as features for the SVM classification
model. The number of features, the width of the RBF kernel and the data adher-
ence term C of the SVM are chosen using 10-fold cross validation.

2 Methods

2.1 Alignment of Shape Data

The Procrustes method is used to align all LVs to a reference LV. First, a random
end diastolic (ED) LV is chosen as reference. Then all other ED LVs are aligned
to the reference ED LV. This is done by solving for a transformation consisting
of rotation, translation and scaling that minimizes the mean square distance
between the reference and the shape to be aligned. Then the mean ED LV shape
is calculated by taking the mean of all aligned corresponding shape points. All
shapes are then again registered with the mean shape.

This is repeated 25 times, by randomly choosing 25 different ED LVs as the
starting reference. The mean shape formed by using a reference that led to the
lowest mean square error overall was retained as the mean shape (Fig. 1).

Finally, all ED LVs are registered to the chosen mean LV. Assuming that
ED and end systolic (ES) frames for same patients are already aligned, the

Fig. 1. Mean End Diastole (ED) Left Ventricle (LV)
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transformation that maps any given ED frame to the mean ED LV is also applied
to the ES. This is done to ensure that they are both aligned to the mean LV
while their relative differences, which must be retained, are preserved under a
linear transformation.

2.2 Shape Model

We have n data points in our training set, where each data point x ∈ R
1×p

(p = 13068 in our model). Since we concatenate all ED and ES LV points as one
vector, we get 6534 features from both ED and ES (including endocardial and
epicardial, both of which have 1089 points with x, y and z components each).

PCA is carried out on this feature set. A matrix W = (w1, w2, w3, . . . wk)ᵀ

of principal component coefficients is obtained, where each wi ∈ R
p×1 and k is

the chosen number of principal components. The matrix W maps any given data
point x to its principal component score t ∈ R

1×k using:

x′ = x − x̄

t = x′W
(1)

Where x̄ is the mean of the training feature set. Later when a feature set x from
the test set is to processed, it is projected in the same eigenspace by following
the same method (Fig. 2).

Fig. 2. Method steps: (a) Alignment of a shape (green) to mean shape (red) (b) PCA of
aligned shapes (c) SVM classification into normal vs myocardial infarction (MI) (Color
figure online)

We qualitatively validate whether or not the eigenspace decomposition cap-
tures the natural variation existing in the dataset. This is done by using the
method of Cootes et al. where new shapes are generated by adding the principal
components multiplied by different amounts to the mean shape and checking the
responses [4]. For instance, to see the variations captured by the first principal
component, we add the following quantity to the mean shape:

xnew = x̄ + λ1w1 (2)
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(a) Component 1

(b) Component 2

(c) Component 3

(d) Component 4

Fig. 3. Variation from the mean LV observed by adding first 4 principal components
to it.

λi is proportional to the variance αi of the ith principal component. We
choose λi = (−2αi, αi, αi, 2αi). In Fig. 3, we show how just the first four com-
ponents have managed to capture significant variation in the shape property of
the LV at ES (around 50% variance). We typically use 15–20 components for
our final model.

2.3 SVM Classification

After dimensionality reduction using PCA, we use the soft-margin formulation
of the SVM algorithm proposed by Cortes and Vapnik [5] with Radial Basis
Function (RBF) kernels. Now assuming x as the data point already projected
into the PCA eigenspace, we have the following classification problem:

D = {(xi, yi) | xi ∈ R
p, yi ∈ {−1, 1}}n

i=1 (3)
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D is our training set and yi = −1 for normal cases and yi = 1 for infarction.
We then carry out the following optimization:

arg min
w,ξ,b

{
1
2
‖w‖2 + Ci

n∑
i=1

ξi

}

subject to (∀i ∈ {1, n}) :
yi(w · K(xi,xi

′) − b) ≥ 1 − ξi, ξi ≥ 0

(4)

w is the weight of the RBF kernels and Ci is the data adherence term. This
is the well known soft-margin kernel based SVM optimization equation and the
convex dual form of this problem is solved [5].

A slight modification is made here by using a variable weight Ci = c ∗ Δi for
each data points. Δi is inversely proportional to the distance of a shape from
the mean shape and c is fixed. This is done with the hypothesis that shapes with
large variations from the mean shape are difficult to classify accurately.

As for the choice of SVM with RBF kernels, for the method we have adopted,
RBF kernel based SVM performed slightly better than with linear SVM (.93).
However, it is interesting to note that, when we carried out the alignment process
by only rigidly registering the endocardiums (and applying the same transfor-
mation to the epicardiums), we found that the linear SVM performed slightly
better (.94) than RBF kernel based SVM (.93). Of further note is the fact that
specificity (.95) was slightly better than sensitivity (.93).

Our hypothesis is that with an alignment process based only on endocardium
(where the deformation is higher), the RBF kernel based SVM overfitted the
training data and the linear SVM achieved the appropriate balance. The opposite
is potentially true in the case of alignment with entire LV where the epicardium
with smaller deformation is also included.

Since the differences were minimal, it is difficult to justify the choice of one
SVM method over another but because RBF kernels provided slightly better sen-
sitivity, we chose it over linear SVM since in a clinical setting higher sensitivity
might be more desirable.

During our experimentation with different parameters, we found that the
choice of C, the kernel scale parameter ψ (the width of the radial basis function)
and the number of features used (the number of principal components used
from PCA) were critical. We carried out 10-fold cross validation on a number
of combinations of these parameters to choose the best set. Figure 4 shows a
representative case of how the parameters affect the training error rate during
cross validation. Smaller k values seem more stable but also have more error in
average. For C and ψ, the errors are low and consistent towards the middle of
their respective ranges as expected.

3 Results

3.1 Primary Analysis

We first present results for the straightforward train-test cycle. The training data
with labels (normal = 0, infarction = 1) is partitioned into a training set and
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Fig. 4. Error distribution for varying parameters C, ψ and k(number of PCA compo-
nents) with (a) k = 12, (b) k = 15, (c) k = 18 and (d) k = 21.

a test set of equal sizes (100 and 100). The prediction accuracy for the training
and the test sets, along with sensitivity (true positives) and specificity (true
negatives) are shown in Table 1.

Table 1. Prediction accuracy.

Accuracy Sensitivity Specificity

Training .96 ± .017 .97 ± .024 .96 ± .026

Test .94 ± .026 .94 ± .051 .93 ± .043

3.2 Effects of Varying Training Data Size

We first explore how prediction accuracies are affected when training data size
is altered. Table 2 summarizes the analysis. It is interesting to note that there is
very little difference in accuracy when training size goes from 60% to 80%. This
either means roughly half of the data was enough to capture the total variation
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present in the data (and adding more didn’t provide any extra information) or
there is room for improvement in the shape or the learning model.

Table 2. Accuracy for different training data size (as % of total data size).

Training size, % = 20 40 60 80

.64 ± .10 .92 ± .032 .94 ± .019 .94 ± 0.015

3.3 Effects of Perturbation on Data

We simulate different scenarios where the LV shape data can be corrupt and
how that affects the performance of our model.

Noise on Position Data. We first show the effects of adding gaussian noise of
varying standard deviation (σ) to the position data of the LV shapes. The test
accuracies are presented in Table 3.

Table 3. Accuracy after adding noise, mislabeling and misalignment.

Noise, σ = 1 2 4 8

.92 ± .024 .88 ± .036 .71 ± .084 .52 ± 0.17

Mislabeing, % = 5 10 20 40

.93 ± .028 .92 ± .037 .81 ± .066 .58 ± 0.18

Misalignment, % = 5 10 20 40

.91 ± .026 .82 ± .040 .60 ± .054 .47 ± .019

We can see how performance remains stable until σ = 2. At higher levels of
noise, it is difficult to form accurate shape models and performance declines.

Mislabeling. Next, we observe how performance is affected if training data is
wrongly labeled. We randomly mislabel different percentages of training data
points and record the prediction accuracy of the test set as shown in Table 3.

When the mislabeling percentage is high, the performance declines steeply.
We compared this result with that of an unsupervised learning method, which is
agnostic to training labels. For higher than 10% mislabeling, k-means clustering
(with k = 2) performed better (with >90% accuracy).
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Misalignment. Finally, we misalign certain percentage of each data. Since we
operated on the point cloud as is, assuming that the data is approximately phys-
iologically aligned, we wanted to explore what happens when some of that con-
sistency is perturbed. The misalignment is simply done by randomly reordering
certain data points. Results are presented in Table 3.

Here again, small amount of misalignment does not seem to dramatically
reduce performance. However, at higher misalignment percentages, the perfor-
mance is highly affected. Although not shown here, the training accuracies were
much higher than testing accuracies, indicating some possibility of overfitting.

4 Conclusion

We have observed that the combination of ASM based shape modeling and SVM
classification has allowed us to build a simple yet effective model to identify LV
shapes with and without myocardial infarction. We consistently achieved good
results by testing our method by splitting the provided training data into two
halves.

We tested our model by changing the training data size and simulating noise,
mislabeling and misalignment in the data. For small quantities of noise and small
percentages of mislabeling and misalignment, our results were not significantly
affected. Also, we achieved the same level of accuracy for training data size of
80% and 60%.

We also compared our results with that of an unsupervised learning method
(k-means). For most cases, our supervised learning method performed better.
Only during the presence of mislabeling, the unsupervised method performed
better, which is to be expected since unsupervised learning does not take data
labels into account.

Overall, we believe that the ASM based shape modeling along with SVM
classification is robust with very good performance.
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Abstract. Our submission to the STACOM Challenge at MICCAI 2015
is based on the supervised learning of functional map representation
between End Systole (ES) and End Diastole (ED) phases of Left Ventricle
(LV), for classifying infarcted LV from the healthy ones. The Laplace-
Beltrami eigen-spectrum of the LV surfaces at ES and ED, represented
by their triangular meshes, are used to compute the functional maps.
Multi-scale distortions induced by the mapping, are further calculated
by singular value decomposition of the functional map. During training,
the information of whether an LV surface is healthy or diseased is known,
and this information is used to train an SVM classifier for the singular
values at multiple scales corresponding to the distorted areas augmented
with surface area difference of epicardium and endocardium meshes. At
testing similar augmented features are calculated and fed to the SVM
model for classification. Promising results are obtained on both cross
validation of training data as well as on testing data, which encourages
us in believing that this algorithm will perform favourably in comparison
to state of the art methods.

Keywords: Infarct · Cardiac remodeling · Laplace-Beltrami · SVM ·
SVD

1 Introduction

Cardiac remodeling is a clinical term to refer the geometric changes occur on the
Left Ventricle (LV) due to myocardial infarction. This phenomenon is considered
as an important predictor for survival [14] in clinical practice. However current
clinical practices are limited to simple quantities like mass, volume, dimension
ratio etc. for important predictions. As a result, important geometric quanti-
ties are completely ignored in clinical practice, and only few recent studies on
small population have been proposed to quantitatively measure the geometrical
structural modification of LV during cardiac remodeling in Multirow Detector
Computer Tomography (MDCT) images [8–10].
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However, large population-based studies have been recently performed using
cardiovascular magnetic resonance (CMR) imaging [2]. CMR, as a non-invasive
radiation-free modality, provides rich and detailed quantitative data of the car-
diac function and structure. The main goal of the STACOM 2015 challenge is
to employ shape analysis and pattern recognition techniques to quantitatively
measure geometric changes during cardiac remodeling. In this paper, rather than
approaching the problem in a pure feature-driven binary classification technique,
we aimed quantifying and visualizing the shape deformation between End Sys-
tolic (ES) and End Diastolic (ED) states for healthy and diseased LVs.

Cardiac remodeling results in contraction of myocardium and volume. When
represented as a 2D manifold embedded in 3D space, these quantities can be
approximated by the surface area of the 2D manifold discretized as a triangular
mesh. As a result, a measure of surface area distortion can effectively quantify
cardiac remodeling. Moreover, we have also observed that the area distortion of
LV is a multi-scale phenomenon and tried to model it in a similar multi-scale
fashion (from global to local) to emphasize actual physiological changes. In terms
of machine learning, these steps can be considered as a feature selection proce-
dure which ensures the selection of most distinguishing features. In particular, we
have incorporated the recently developed functional map framework [11,12] to
analyze and visualize ES-ED shape variation between healthy and diseased LVs.

We hypothesize that by learning the features of those regions, where the ES-
ED deformation has introduced maximum distortion, we can successfully quan-
tify the geometric changes during cardiac remodeling. The main contributions
of this paper are twofold. First, we introduce Functional Map based shape varia-
tion exploration in cardiac image analysis context. Second, we present supervised
learning of localized feature variations for quantifying cardiac remodeling. The
remainder of the paper is organized as follows: Sect. 2 discusses related work,
Sect. 3 presents the proposed method, whereas the implementation details are
described in Sect. 4. Results are described in Sect. 5 and finally, Sect. 6 offers
discussions and conclusion.

2 Related Work

Finite-element analysis has been the de-facto standard for modeling LV shape
and function, providing measures accurate enough to be incorporated into clin-
ical practice [7]. Principal component analysis (PCA) is extensively used for
analyzing the modes of shape patterns found in populations [1]. However, the
unsupervised nature of PCA is sometimes limited towards finding clinically inter-
pretable features.

The most advanced technique for quantifying geometric changes during car-
diac remodeling is proposed by Mukhopadhyay et al. in this series of work
[8–10]. Here, the authors have proposed 3D Bag-of-words approach with extrinsic
and intrinsic isometry invariant geometric features for quantifying local cardiac
remodeling. However, this work does not address the multi-scale properties of
distortion introduced by cardiac remodeling.
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3 Method

In the proposed approach, we have relied on derived quantities of functional
maps, in order to learn the distortions introduced during cardiac remodeling.
Before describing the proposed approach in detail, we provided an overview of
the functional map framework proposed by Ovsjanikov et al. [11] in Sect. 3.1 and
the distortion analysis mechanism [12] in Sect. 3.2.

3.1 Functional Maps

A functional map is a novel approach for inference and manipulation of maps
between shapes that tries to resolve the issues of correspondences in a funda-
mentally different manner. Rather than plotting the corresponding points on the
shapes, the mappings between functions defined on the shapes are considered.
This notion of correspondence generalizes the standard point-to-point map since
every point-wise correspondence induces a mapping between function spaces,
while the opposite, in general, is not true.

The proposed functional map framework described above provides an elegant
way, using a functional representation, to avoid direct representation of corre-
spondences as mappings between shapes. Ovsjanikov et al. [11] have noted that
when two shapes X and Y are related by a bijective correspondence t : X → Y
and endowed with measures μX and μY , then for any real function f : X → R,
one can construct a corresponding function g : Y → R as g : f ◦ t−1. In other
words, the correspondence t uniquely defines a mapping between the two function
spaces F (X,R) → F (Y,R), where F (X,R) denotes the space of real functions on
X. Equipping X and Y with harmonic bases, {φi}i≥1 and {ψj}j≥1, respectively,
one can represent a function f : X → R using the set of (generalized) Fourier
coefficients {ai}i≥1 as f =

∑
i≥1 aiφi.

Translating this representation into the other harmonic basis {ψj}j≥1, one
obtains a simple representation of the correspondence between the shapes given
by T (f) =

∑
i,j≥1 aicijψj where cij are Fourier coefficients of the basis functions

of X expressed in the basis of Y , defined as T (φi) =
∑

i,j≥1 cijψj . The correspon-
dence t between the shapes can thus be approximated using k basis functions
and encoded using a k×k matrix C = (cij) of these Fourier coefficients, referred
to as the functional matrix. In this representation, the computation of the shape
correspondence t : X → Y is translated into a simpler task of determining the
functional matrix C from a set of correspondence constraints. The matrix C has
a diagonal structure if the harmonic bases {φi}i≥1 and {ψj}j≥1 are compatible,
which is a crucial property for the efficient computation of the correspondence.

3.2 Analyzing Functional Maps

Here, the main goal is to isolate the regions where the map has induced sig-
nificant distortion at various scales. This is simply achieved by considering the
functional representation of a map C and performing spectral analysis on this
representation, as shown in Figs. 1 and 2. It is expected that for an optimal map
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Fig. 1. The region where the map has distorted the area measure the most, at various
scales k for an exemplary healthy subject. Note that the region is becoming more and
more local with increasing values of k.

t : X → Y , μX and μY should be preserved. For the analysis and visualization of
the distortion, Ovsjanikov et al. [12] and Rustamov et al. [13] proposed to use a
real valued function w : Y → R which will be used for mapping distortions on Y
and w ◦ t for X. We have chosen area-distortion similar to [13] as the preferred
measure of distortion.

It is proved in [12], that the optimal w can be derived by w∗
k = φN

1...kw
where φN

1...k contains the first k eigenfunctions of the surface Laplacian operator
and w is the right singular vector corresponding to the largest singular value of
C. In addition, the scalars Sk has the ability to quantify the distortion at the
various scales k. It is interesting to note that this technique does not place any
assumptions on the geometry or topology of the function w, but provides a scale
parameter k, which is more intuitive for understanding the scales of distortion.
Large values of k allow for highly localized distortions, whereas medium and
small values of k enforce the indicator functions to be more smooth resulting
in the determination of globally problematic regions. In particular, the singular
values C associated with each singular vector, indicates the amount of distortion
introduced by the map at that particular scale.

3.3 Supervised Learning of Shape Distortions

We propose to learn the areas where the map has induced significant distortion
between the End Systole and the End Diastole phases of a healthy versus dis-
eased subject. In particular, we have achieved this by learning singular values
associated with distortions at multiple scales concatenated with the difference
of overall surface area of endo and epicardium at ES and ED. We subtracted the
total area of endocardium at ED from the total are of endocardium at ES. We
repeated the same operation for epicardium and used both features. We have
chosen the vector of singular values ck ∈ C as the feature vector representing
the distortion between ES and ED. The STACOM 2015 dataset contains labeled
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Fig. 2. The region where the map has distorted the area measure the most, at various
scales k for an exemplary diseased subject.

dataset of 100 healthy and 100 diseased subjects, which is used for training a
decision boundary of Support Vector Machine (SVM). During testing, similar
feature selection procedure is used, followed by evaluation using the learnt deci-
sion boundary to consider whether the given meshes are from a normal subject
or from a diseased one.

4 Implementation

We have employed a two step strategy for practical implementation of the prob-
lem, due to computational complexity of the method described in Sect. 3. In
particular, we have adopted a Active Shape Model (ASM) [4] to resolve the rel-
atively easier test cases. Eight different ASMs are trained on training datasets,
four for normal and four for diseased cases. For either normal or diseased case,
one ASM is trained for ES epi and endocardium, as well as ED epi and endo-
cardium. For the test cases, the representative class of each surface is determined
by finding the lower L2 error across all points. The first screening of test cases
results in determination of a class if 3 of the 4 shapes agree to a common class.
Otherwise the test case is evaluated using the method described in Sect. 3.

We have used the Mesh Laplacian implementation of [15], for computing the
basis functions. These basis functions are used for the functional map calcula-
tion and analysis. It is important to note that because of the orthonormality
of our chosen basis, matrix of area-based inner product reduces to the identity
matrix. Surface area of LV endo and epicardium meshes are calculated using the
implementation of [6]. The supervised learning using SVM is performed using
the libSVM implementation of Chang et al. [3]. In particular we have chosen a
polynomial kernel of the following form (γu′v + c)d, where γ = 2, c = 2 and
d = 5.
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Fig. 3. The region where the map has distorted the area measure the most over the
whole population of healthy subjects from STACOM 2015 training dataset, at various
scales k.

5 Results

5.1 Data

Here we use the data available through the STACOM 2015 challenge for model-
ing the statistical shape of the left ventricle (LV). The STACOM training dataset
contains 100 cases with myocardial infarction and another 100 healthy cases. The
myocardial infarction cases are acquired through DETERMINE and the healthy
ones through MESA [5]. In particular, the MESA study protocol ensured that
these subjects did not have physician-diagnosed heart attack, angina, stroke,
heart failure of atrial fibrillation, or undergone procedures related to cardio-
vascular disease. The testing set contains another set of 100 healthy and 100
diseased cases, for which the disease status is unknown to us and is evaluated
by the co-organizers.

5.2 Qualitative Evaluation

To evaluate our preliminary results qualitatively, we have chosen to visualize the
multi-scale distortion measure between ES and ED phases of a randomly sam-
pled healthy and diseased subject as shown in Figs. 1 and 2. Since this yielded
promising results, as evidenced from the multi-scale nature of the distortion, we
have tried to further characterize population-level distortions between ES and
ED phase of healthy and diseased subjects. In Figs. 3 and 4, population-level
multiscale distortions of healthy and diseased subject respectively, are projected
on two exemplary surfaces to visualize the differences. Different patterns of dis-
tortion is quite evident from Figs. 3 and 4, which motivates us for further quan-
titative analysis using machine learning techniques and check the accuracy of
the proposed method in the STACOM 2015 challenge.
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Fig. 4. The region where the map has distorted the area measure the most over the
whole population of diseased subjects from STACOM 2015 training dataset, at various
scales k.

5.3 Quantitative Evaluation

We have evaluated our algorithm on the training data set to estimate the per-
formance. We have used a 10-fold cross-validation to evaluate the performance
of the method and we have reached an average accuracy of 95.67 and a standard
deviation of 1.26.

Furthermore, we have built a set-up to estimate the effect of number of
training subjects on the accuracy. Figure 5 shows the influence of varying the
total number of training subjects n, equally divided between normal and diseased
cases, from n = 20 to n = 180 with the rest as testing subjects. The training
samples are sampled randomly and for each n, we have run 50 experiments
and reported the mean accuracy. It can be observed that increasing number of
training subjects enable the algorithm to reach higher training accuracy.

Fig. 5. The influence of the number of training subjects on accuracy
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6 Discussions and Conclusion

Myocardial infarction results in a significant change of LV geometry due to the
cardiac remodeling phenomenon. In this paper, we have proposed a framework
to effectively differentiate the distortion between ES and ED phase of a healthy
LV and diseased LV. Our proposed multi-scale approach is capable of describing
distortions from global to local scale, which we have exploited in a supervised
learning framework for the STACOM 2015 challenge. The preliminary visual-
izations and quantitative results suggest a population-wide common distortion
pattern for healthy LVs, which can be utilized further in larger clinical studies.
In this work, we have not considered the clinical quantities for describing cardiac
remodeling such as Wall Thickness, Conicity, Sphericity etc. In the future, these
quantities can be easily incorporated into the feature vector, to enhance the
quantitative performance. Finally, the quantification of the distortion using sin-
gular values enable the possibility to extend this method for longitudinal studies
of diseased LVs, and quantification of distortion over time.
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Abstract. The Left Ventricle (LV) undergoes remodelling after Myocar-
dial Infarction (MI). In order to quantify the remodelling status, clini-
cians make use of conventional measures, not fully exploiting the available
shape information. To characterize the changes in heart shape and classify
heart data as normal or infarcted, we use a hierarchical generative model,
which jointly clusters shape point sets from LV in End-Systolic (ED) and
End-Systolic (ES) phases, and estimates the probability density function
(pdf) of each cluster. We use a Variational Bayes (VB) method to infer
the clusters labels, the mean models, and variation modes for the clus-
ters. We also present the results in the supervised setting, where the labels
of training data sets are given. Our classification results are evaluated in
terms of sensitivity, specificity, and accuracy using 200 LV shapes pro-
vided by MICCAI 2015 STACOM LV Statistical Shape Modelling Chal-
lenge. Our method successfully classifies the data, achieving a specificity
of 0.92± 0.06 and a sensitivity of 0.96± 0.07 for the supervised learning
approach, and a specificity of 0.83± 0.03 and a sensitivity of 0.97± 0.01
for the unsupervised learning approach.

1 Introduction

Myocardial infarction may lead to the remodelling of the heart [3]. The increase
in size and the sphericalization of the heart due to remodelling are usually linked
to reduced life expectancy [16]. Clinical indices derived from mass and volume of
the heart shape are employed to detect the remodelling and to assess the severity
of it in current clinical practice. These conventional indices do not account for
the heart shape or alterations of it during remodelling [16].

A detailed analysis of the shape of the heart could reveal information related
to the status of the remodelling, since it contains more information compared
to mass and volume. Specifically, a statistical analysis of the heart shapes from
a population can yield new clinical indices derived from the variability of that
population.
c© Springer International Publishing Switzerland 2016
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Statistical shape models (SSM) have been widely used in medical imaging,
constituting robust tools for segmentation, recognition, and interpretation of
real structures [4,6,9]. A SSM of the heart can have great importance since
it allows to visualize shape differences, which are significant when comparing
asymptomatic patients and patients whose heart shape has undergone remod-
elling [16].

Several studies have investigated the use of shape information to quantify the
status of cardiac remodelling. Su et al. [14] assessed remodelling using curvature
based shape descriptors extracted from 3D LV surface partitions. Normal and
MI populations are compared via hypothesis testing.

Another popular way to exploit the shape information is to built a cardiac
atlas and to study its variations [1,11,16]. These methods differ in terms of
their strategy to compute the mean shape and deviations from it. Ardekani
et al. [1] constructed a cardiac atlas and studied its variations to differentiate
between ischemic and nonischemic cardiomyopathy patients. Average shapes of
the LV for end diastole (ED) and end systole (ES) of each population were
constructed using linear and non-linear registration techniques. Lamata et al.
[11] applied SSM to investigate changes in the LV shapes of pregnant women
with hypertension during pregnancy and with uncomplicated pregnancy. A LV
template was fitted to manually segment slices and calculate the deviations from
the template in both populations. Zhang et al. [16] built a statistical atlas to
study the variations of LV shape after MI. Logistic regression was implemented
using parameters that encode the variations to classify normal and remodelled
hearts. In atlas based investigation of the LV shape, principal component analysis
(PCA) is usually employed to analyse the variations in populations [1,11,16].
To this end, correspondences between the shapes must be established. Also, the
knowledge of the labels can be either taken into account [1,11] or not [16]. In the
first case, PCA is applied to normal and remodelled populations separately. In
the latter, not accounting for label information ignores the possibility of having
multi-model distributions for the shape population. In [16], PCA was applied to
ED, ES and ED+ES shapes. It was concluded that ED+ES outperformed ED
or ES alone and that the shape indices found characterized the data better than
standard clinical measures.

In this paper, we aim to compute statistical models of the LV and detect the
presence of MI. To accomplish this goal, we use a hierarchical generative model
which jointly clusters the data and learns the pdf of each cluster. Our model
is a flexible shape modelling approach which can work with correspondenceless
point sets and can automatically identify the number of clusters. Although the
model is originally devised for unsupervised learning of the pdfs of point sets, it
can be adapted for supervised learning, given training data.

2 Method

In order to accomplish both the construction of a SSM and the classification of
the left ventricular data, we used a hierarchical generative model [8]. Our model
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is structured in two layers that interact with each other and jointly estimates
the underlying pdf of the point sets, constructs a SSM of the heart data, and
clusters the point sets.

At the lower level, points sets are considered as samples from a Gaussian
Mixture Model (GMM). This level is responsible for resampling the points sets
and establishing correspondences between shapes. The means of the GMM are
concatenated, constructing a higher dimensional vector in the higher level. This
vector is regarded as a sample from a mixture of probabilistic principal compo-
nent analyzers (PPCA), which is essentially a higher dimensional GMM. The
clustering and linear component analysis take place in this level. An approxi-
mate inference algorithm based on a Variational Bayes (VB) method is utilized
for unsupervised learning of clusters and their variations.

Let X k denote the kth point set (1 ≤ k ≤ K) represented by Nk points.
Moreover, let xkn denote the nth D-dimensional point of the kth point set. In the
lower level, X k is considered to be consisted of the D-dimensional samples from
an underlying GMM with M Gaussian components. The means are concatenated
to a MD dimensional vector that represents X k, being a resampled version of it.

In the higher level, the MD-dimensional vectors are assumed to be samples
from a mixture of J PPCA. A PPCA is specified by its mean μ̄j ∈ R

MD and
the subspace component of the covariance matrix in the form WjW

T
j . The

projection of X k onto the space spanned by principal components of the jth

cluster is given by
µjk = Wjvk + μ̄j (1)

where vk are the loading coefficients. This equation describes the interaction
between both layers.

The latent variables, θ, are identified as the membership vectors for both
levels of the GMM, principal component matrices, loading vectors and variance
of the PPCAs (see [6] for details). The goal is to find the probability of the
latent variables given the observed data, p(θ|X ), which is intractable. Instead,
we aim to approximate it with an another distribution q(θ), which is assumed
to be factorizable w.r.t. disjoint groups of the latent variables.

The Kullback-Leibler (KL) divergence between the real distribution p(θ|X )
and the approximated posterior q(θ) should be minimized in order to estimate
the latter. In practice, this is not feasible as the true posterior is not known.
To overcome this, the Lower Bound (LB) is maximized, which is equivalent to
minimizing KL.

The logarithm of the marginal probability, ln(p(X )), is a combination of the
LB and the KL divergence:

ln(p(X )) = LB(q(θ)) + KL(p(θ|X )||q(θ)) (2)

where,

LB =
∫

q(θ) ln
p(X ,θ)
q(θ)

dθ (3)
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The maximum of the LB occurs when the KL divergence vanishes, i.e., when
q(θ) equals the posterior distribution p(θ|X ). One can develop further this for-
mula until concluding that the logarithm of the optimal solution for one of the
factors of q(θ) can be obtained from the logarithm of the joint distribution over
all variables and then taking the expectation w.r.t. all of the other factors:

ln q∗
j (θj) = Eθ\θj [ln(p(X ,θ))] + const. (4)

The set of above equations for all values of j represent a set of consistency
conditions for the maximum of LB. As they depend on the expectation w.r.t
other factors, they do not constitute an explicit solution. Therefore, finding the
optimal approximate distribution is based on a iterative VB method: first all
factors are initialized and then cycled over, being updated given the current
estimation on the others, until convergence. In the end, both an approximation
of the posterior probability of the unobserved variables, given the data, and a
LB for the evidence ln(p(X )) are computed.

Although our method offers an unsupervised learning of point set clusters and
their variations, it is easy to adapt it to supervised learning when training data is
available. Specifically, in the unsupervised strategy we use the point sets without
label information and compute mean models, variations and classification of the
data from the estimated pdf. In the supervised strategy, we learn the mean
models and variations given the labelled data and apply them to test data in
order to only find the classification.

3 Experiments

Our method is evaluated using the LV dataset provided by MICCAI 2015 STA-
COM Workshop LV Statistical Shape Modelling Challenge [5]. This dataset con-
sisted of one hundred symptomatic and one hundred asymptomatic cases from
DETERMINE [10] and MESA [2] datasets, respectively. Each shape comprises
point sets at two cardiac phases: ED and ES.

The proposed method requires spatial alignment of LV shapes. The spa-
tial alignment could either be incorporated into the formulation and estimated
with other latent variables [7] or could be performed as a preprocessing step.
This paper adopts the latter strategy to reduce computational complexity of the
algorithm. Coherent Point Drift (CPD) [12] algorithm was selected for this task,
since it offers a robust technique for the point set registration problem. This
method interprets the alignment of two point sets as a probabilistic problem,
while preserving the topological structure of the shapes. We opted for a simi-
larity transformation to register point sets. The shapes were normalized to zero
mean and unit variance prior to the registration process.

To achieve a non-biased registration, a mean ED model is computed by apply-
ing CPD registration to 10 normal and 10 infarcted LV shapes, which are selected
randomly from those populations. Then, the 200 ED point sets are registered
to that mean model. The transformation computed for each ED data is applied
to the corresponding ES data from the same patient, to maintain consistency.
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This is possible by assuming movement artefacts between the distinct capturing
moments (ED and ES) present, if any, are minimal.

We perform both unsupervised and supervised learning in order to compute
the mean models and classify the data, using a combination of ED and ES. By
concatenating ED and ES data into a 6 dimensional matrix and applying our
method, we can recover the data from ED and ES independently in the end of
the process and construct mean models and variations for each case.

Different model parameters were tested in both approaches. The number of
clusters (J) was set to 2, as there are 2 classes only: normal and infarcted LV.
To find the optimal combination of the number of Gaussians of the GMM (M)
and modes of variation (L), several experiments were conducted. Specifically,
we searched for optimal values on a discrete grid of values varying between
300 to 1100, with increments of 100, and 1 to 4 for M and L, respectively.
For the unsupervised learning, 4 experiments were repeated to each set of M-L
combinations, in order to reduce the randomness resulting from the initialization
algorithm. For the supervised learning, the M-L combinations were tested with
leave-20-out cross-validation experiments. Specifically, in this approach we fixed
M to the optimal value obtained for unsupervised learning and searched for
optimal L value. We chose the M-L values that led to the highest LB value
for each approach. In both supervised and unsupervised approaches, the results
pointed to the same values for M and L (M = 1100, L = 3).

4 Results

4.1 Mean Models and Modes of Variation

Within each approach, 4 mean shapes were computed: ED Normal, ES Normal,
ED Infarcted and ES Infarcted, which allows to compare not only infarcted to
normal models but also to evaluate how important is the mode of contraction of
the heart in each class.

Figure 1 shows the mean models resulting from the supervised approach and
from the unsupervised approach. We can notice that the shapes from the super-
vised and unsupervised approaches resemble each other, which indicates the
results from the unsupervised method are close to the ones created knowing a
priori the class labels.

From the coronal and axial sections present in Fig. 2 one can see in more
depth some details. The normal and infarcted shapes are quite distinct in terms
of LV wall thickness and end systolic volume in the ES models, indicating that
the contraction is stronger in normal hearts. Also, specifically in the ED model
one can note that the normal mean shape is longer and less spherical than the
infarcted one, which is supported by the literature [16].

Three modes of variation were computed for each mean shape. Figure 3 shows
the modes of variations for the ED Normal shape, as an example. These modes
of variation are associated with the elongation of the heart and the mitral valve
orientation, for instance. Due to the isotropic noise model, Wj does not fully
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ED Supervised ES Supervised

ED Unsupervised ES Unsupervised

Fig. 1. The 4 mean models resulting from: supervised (top) and unsupervised (bottom)
learning approaches. In each row, we have from left to right: ED Normal, ED Infarcted,
ES Normal and ES Infarcted mean shapes.

ED ES

Supervised Learning

ED ES

Unsupervised Learning

Fig. 2. Comparision between normal and infarcted shapes: mean models (top) and
axial and coronal cross sections (bottom), from supervised and unsupervised learning
approaches. The normal and infarcted shapes are demonstrated in red and green color,
respectively (Color figure online).

describe the variance and therefore the relationship between the loading coeffi-
cients vk and the variance is not straightforward as in PCA [15].

4.2 Classification Results

In order to perform classification, we selected the M-L combination that led to
the higher LB value. Table 1 shows some of the results for the supervised cross-
validation tests, while in Table 2 one can see the unsupervised experiments results
described in Sect. 3. It is possible to notice that the combination of M = 1100 and
L = 3 has the highest LB value, while classifying successfully most of the data.

The results with higher LB achieved by our model have usually high sensitiv-
ity values as well (above 0.90 in this case). In the unsupervised tests performed
with the optimal M-L combination, an average of 10% of the data was incorrectly
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Fig. 3. Three modes of variation obtained for normal population at ED. Each row
corresponds one mode of variation. In the middle column is the mean model and in the
left and right are the variations from the mean computed by our method.

Table 1. Supervised results for the selection of Optimal L Parameter for M=1100

Supervised

LB Specificity Sensitivity

L = 1 -2.105e+07 0.89± 0.10 0.93± 0.10

L = 2 -2.102e+07 0.88± 0.08 0.97± 0.07

L = 3 -2.102e+07 0.92± 0.06 0.96± 0.07

L = 4 -2.103e+07 0.92± 0.06 0.92± 0.08

classified. A specificity of 0.83 ± 0.03 and sensitivity of 0.97± 0.01 was achieved, as
stated in Table 3. In the same table one can notice that high values of specificity
(0.92 ± 0.06) and sensitivity (0.96 ± 0.07) were also achieved for the supervised
approach. Therefore, both the unsupervised and the supervised approach show
high classification accuracy (around 0.90, as seen in Table 3).

During the tests we concluded that the best LB value does not have a
direct relation with best classification results. This shows the difference between
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Table 2. Unsupervised results for the selection of Optimal L Parameter for M=1100

Unsupervised

LB Specificity Sensitivity

L = 1 -2.352e+07 0.83± 0.03 0.96± 0.01

L = 2 -2.349e+07 0.85± 0.02 0.94± 0.03

L = 3 -2.348e+07 0.83± 0.03 0.97± 0.01

L = 4 -2.349e+07 0.85± 0.02 0.95± 0.01

explaining and predicting about data: the method that best explains, i.e. with
higher LB, not always predicts the best [13]. Also, we stated that the initial-
ization has influence on the performance of the classification. Specifically, the
amount and type of data used to compute the initialization can lead to a decrease
of the generalization capacity of the algorithm. The quality of the initialization
is, therefore, important and should be consistent when using supervised and
unsupervised methods.

Table 3. Classification results

Specificity Sensitivity Accuracy

Supervised (M = 1100, L = 3) 0.91± 0.06 0.97± 0.07 0.94± 0.06

Unsupervised (M = 1100, L = 3) 0.83± 0.03 0.97± 0.01 0.90± 0.02

5 Conclusion

In brief, we use a hierarchical generative model that clusters the point sets into
normal and infarcted hearts, finding also the mean models and intra-clusters
variations. 4 mean shape models were constructed: ED Normal, ED Infarcted,
ES Normal and ES Infarcted. That was accomplished by joining the ED and ES
data from the same patient into a 6 dimensional matrix, running our method and
then independently analysing ED and ES. 3 modes of variation were computed
for each model. The classification results of the data into normal and infarcted
presented high specificity and sensitivity values, specifically when choosing model
parameters that had correspondent high LB values.

The computed mean models are in accordance with the literature, as it is
visually possible to notice a longer and less spherical shape in the normal mean
heart (see Fig. 2). Also, differences in wall thickness from ED to ES were spotted,
specially in the infarcted shapes.

The major contribution of the paper lies in the fact that the shape informa-
tion can be used by clinicians to diagnose and evaluate MI, as stated before in [16].
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We prove that our method successfully and accurately clusters the data and distin-
guishes between normal and infarcted hearts, while also capturing the mean shape
and intra-class variation, both in the supervised and unsupervised approach.
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Abstract. Understanding myocardial remodelling, and developing tools
for its accurate quantification, is fundamental for improving the diagnosis
and treatment of myocardial infarction patients. Conventional clinical
metrics, such as blood pool volume or ejection fraction, are not always
distinctive. Here we describe a method for the classification of myocardial
infarction from 3D diastolic and systolic left ventricle shapes, represented
by point sets. Classification features included global geometric, shape and
thickness descriptors, and a random forest was used for classification.
Results from cross validation show an accuracy of 92.5 % (leave-one-out)
and 91.5 % (5-fold), improving the 87 % obtained with ejection fraction
thresholds. These results suggest that refined remodelling metrics provide
information beyond standard clinical descriptors.

Keywords: Statistical shape model · Random forest · Left ventricle ·
Myocardial infarction

1 Introduction

The damage resulting from myocardial infarction can cause the heart to remodel,
which can have a negative effect on its function [13]. Remodelling of the left
ventricle (LV) is particularly significant because of its potential life-threatening
effects, and is currently characterised through global metrics, such as blood pool
volume or LV ejection fraction. In particular, myocardial infarction can cause
thinning and a decrease in thickness change over the cardiac cycle, in the area of
the scar, while hypertrophy can occur in other areas as they adapt to compensate
[13], and these are features not fully captured by current clinical metrics.

Shape and cardiac remodelling can also be characterised through statistical
shape models, also known as computational statistical atlases [4,15]. To further
the work of cardiac atlas research, schemes such as the Cardiac Atlas Project
(CAP) have been set up. The CAP facilitates the sharing of software and data
between investigators, across different institutions [5]. Atlas-based metrics have
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the potential to increase specificity and sensitivity, and to improve our under-
standing of shape changes in development and pathology [7,8]. In this work we
explore this hypothesis, generating a large collection of LV shape metrics, and
analysing its joint classification performance through Breiman’s decision tree
ensembles, known as random forests [3], a technique that has been shown to
provide excellent classification results when many features are available. The
objective is to provide metrics that capture the detailed anatomical changes
caused by infarction.

2 Materials and Methods

2.1 The Data

A dataset of 400 3D left ventricle shapes was provided by the organisers of
the MICCAI 2015 Statistical Atlases and Computational Modelling of the heart
(STACOM) workshop. The shapes were from a large cardiac imaging database,
built by the CAP. Each case included end-diastolic (ED) and end-systolic (ES)
point coordinates (1089 points) and indices of triangle vertices previously fitted
to magnetic resonance images as described in [16], with a correction for potential
bias from different acquisition protocols [10]. For each of the cases, the indices of
points approximately in the middle of the septum were also provided. Of the 400
shapes, 200 were labelled for use as training data. Of the training data, 100 were
cases with myocardial infarction, from the DETERMINE trial [6]. The remaining
100 training cases were from the MESA study [2], where those enrolled did not
show symptoms of myocardial infarction (these two cohorts will be referred to
as DETERMINE and MESA, respectively). The remaining 200 unlabelled cases
were used as an evaluation cohort by the challenge organisers, for which the
results were submitted as an entry to the challenge.

2.2 Feature Computation

We calculated a combination of standard clinical features and novel atlas-based
metrics, as described next (full list in Table 1). All metrics were computed using
MATLAB and The Visualization Tookit (VTK) [12].

Volumes and Ejection Fraction. We calculated the volumes contained by the
epicardium and endocardium surfaces, both at ED and ES. For this purpose, we
closed each endocardial and epicardial surface by adding a node at the centroid
of the boundary of the base and connecting this new node by a fan of triangles
to the boundary. Once the surfaces were closed (and consistent normals pointing
outwards were assigned to each triangle) we computed the volume within each
surface, making use of the divergence theorem and integrating the flow through
the surfaces [11]. These volumes were used to compute ejection fractions.
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Sphericity. Remodelling has been shown to produce increased sphericity of
the left ventricle [13]. We computed the sphericity [14] of the endocardium and
epicardium surfaces at ED and ES using Eq. 1, where V and A are the volume
and surface area of a 3D shape, respectively.

Sphericity =
π1/3(6V )2/3

A
(1)

Atlas-Based Shape Metrics. A statistical shape model, represented by a
point distribution model, was built in a similar way to previous publications
[1,9]. The 200 training cases were used to build the model. A mean shape x̄
was computed by means of Procrustes iterations, without reflection or scaling
components. Principal component analysis (PCA) was then applied to the train-
ing shapes, to find a matrix of eigenvectors Φ, with corresponding eigenvalues,
describing geometric modes of variation across the shapes. After ranking the
eigenvectors in descending order according to their corresponding eigenvalues,
the first 100 were used in Eq. 2, to obtain atlas-based shape metrics b for each
shape vector x. The eigenvalues describe the variance of the analysed population
in terms of the corresponding eigenvector. This means that modes with relatively
large eigenvalues will be comparatively more useful for separating two classes.
With this in mind, we predicted that the first 100 modes would be sufficient for
providing enough useful information for classification and that including modes
with smaller variances would be unnecessary.

b = ΦT (x− x̄) (2)

Myocardium Thicknesses. We calculated the myocardium thicknesses for all
the cases, at ES and ED. This was done by computing the distance between each
node on the epicardium mesh and the closest point (not necessarily a node) on
the endocardium surface. The shapes were divided into three segments, named:
apical, middle and basal. Each segment consisted of an equal number of nodes
in the long axis direction. Thickness statistics were computed for the whole left
ventricle and each of these sections.

Atlas-Based Thickness Metrics. We also computed a statistical shape model
of the thickness of the 100 training cases. Modes of thickness were found in a
similar way to those of shape (i.e. using Eq. 2), but by applying PCA only on the
MESA shapes, with the aim of making the model independent from the location
of the scar within the ventricle, as well as the variability of the remodelling
responses.

2.3 Classification

Random forests are ensembles of many decision trees built iteratively. To pro-
duce each tree, a subset of the cases, of predefined size, is randomly chosen
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(i.e. ‘bagged’) to be used for training. At an initial node, a subset of the features
is randomly chosen and the feature that provides the optimal split is identified
and used to divide the training data into two branches, to two new nodes. In
our study, branches were produced until each new node only contained one class.
Unused cases (i.e. ‘out-of-bag’ cases), were passed down each completed tree, and
the most common prediction for each case was compared with the true label.
The forest provided the probability (between 0 and 1) that each case belonged
to either of the two classes. Each case was assigned the label of the class with a
probability greater than a threshold (0.5).

Classification error was obtained by cross-validation, using ‘k-fold’ techniques
with k = 5 and k = 200 (equivalent to a ‘leave-one-out’). We used 300 trees in
the ensemble, as this was sufficient for achieving error convergence. Fewer trees
could possibly be used without significantly increasing the overall error. The
‘out-of-bag’ importance of each feature for successful classification was found
individually, by randomly mixing the feature values, before passing the ‘out-of-
bag’ cases down the tree again. The importance of each feature was the average
increase in classification error caused by the mixing, for the whole ensemble,
divided by the standard deviation.

The most relevant shape and thickness atlas metrics were selected according
to their out-of-bag importance: the first 15 modes were chosen as features to build
the final random forest. The features in Table 1 were also used to classify the
test data as an entry to the challenge. The parameters for shape and thickness
variation in the test shapes were produced by fitting the test shapes to the
training data models.

3 Results

3.1 Classification

Ejection fraction was used to define a baseline for the classification performance
in a conventional clinical setting, reporting an accuracy of 87 % (provided by
two different thresholds as seen in Fig. 1). This result was improved to 92.5 %
using the proposed classification strategy, as reported in Fig. 4. This result was
achieved after the selection of atlas-based features guided by the out-of-bag
importance illustrated in Fig. 2. Figure 5 compares the random forest ROC curve,
with that of the ejection fractions, and it is clear that the random forest ROC
curve covers a larger area. Rounded to two decimal places, the areas under
the random forest and ejection fraction curves were 0.98 and 0.94, respectively.
There was also an improvement in the specificity associated with the optimal
accuracy (94 % and 83 %, to 97 %). The random forest ROC curve was obtained
by varying the threshold applied to the probability of the DETERMINE class,
from 0 to 1. For each threshold value, all the ‘out-of-bag’ training cases were
classified. For example, when the threshold was 0, all of the cases were assigned
the label of DETERMINE. Figure 3 shows the importance of the complete list
of features (described in Table 1), and reveals that the relative importance of
the atlas-based metrics changed. The most relevant mode of shape variation is



184 J. Allen et al.

Table 1. The complete list of features used for classification.

Index Feature

1 Ejection fraction

2:16 Shape model parameters for modes 1:15

17:20 Sphericity (endocardium and epicardium at ED and ES)

21:22 Mean thickness (ED and ES)

23 Absolute difference in mean thickness between ED and ES

24:25 Mode thickness (ED and ES)

26:27 Median thickness (ED and ES)

28:29 Thickness variance (ED and ES)

30 Thickness difference variance

31 Thickness variance (ED with ES)

32:34 Segment thickness variance (ED: apical, middle and basal)

35:37 Segment thickness variance (ES: apical, middle and basal)

38:40 Segment thickness variance (ED with ES: apical, middle and basal)

41:43 Segment thickness mean (ED: apical, middle and basal)

44:46 Segment thickness mean (ES: apical, middle and basal)

47:49 Segment thickness mean (ED with ES: apical, middle and basal)

50:51 Volumes (ES endocardium and epicardium)

52:53 Volumes (ED endocardium and epicardium)

54:55 Log volumes (ES endocardium and epicardium)

56:57 Log volumes (ED endocardium and epicardium)

58:72 Thickness model parameters for modes 1:15

illustrated in Fig. 6, where a variation in thickness can be seen at the apex at
ED, and changes in endocardium curvature, particularly opposite the middle of
the septum, can be seen at ES.

4 Discussion

As expected according to clinical practice, ejection fraction proved to be a robust
marker (87 % accuracy). Additional features improved the classification of infarct
and control subjects, reaching a cross-validated accuracy of 92.5 %. Although the
random forest ROC curve in Fig. 5 was not produced with k-fold cross-validation
(used for the classification errors in Fig. 4), Fig. 5 suggests that an improvement
in performance was achieved by the random forest.

In the search for the most relevant classification markers, our results revealed
that ES endocardium volume is slightly more important than ejection fraction
(Fig. 3). Despite both measures being strongly correlated, they still revealed a
large complementary value. The third metric that contributed to the decisions in
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Fig. 1. 1(a) Comparing the ejection fractions of the DETERMINE and MESA cases
1(b) Ejection fraction ROC curve. Red stars mark the sensitivity (80 % and 91 %) and
specificity (94 % and 83%) values for the maximum accuracy achieved (87 %) when
thresholds were applied to the ejection fractions alone (Color figure online).
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Fig. 2. Importance of the first 100 modes of variation of the two models.

our classifier was the variance in the thickness difference between ED and ES, a
surrogate of the heterogeneity of contraction (infarcted cases will have a reduced
contraction in scarred areas). Relatively, the atlas-based metrics made a small
contribution to the classification. The analysis revealed additional insights about
the remodelling pattern in infarction, with changes in endocardial curvature and
apical thickness detected (see Fig. 6). Perhaps these areas of the ventricle were
common sites of infarction within the training cases.

The selection of atlas-based metrics was made in a preliminary stage (see
Fig. 2), but results revealed that this may have led to a sub-optimal result: the
importance of particular shape and thickness atlas metrics increased when used
along with the remaining features in Table 1 (e.g. shape mode 14 and thickness
mode 7). This suggests that these modes provide different information to the
ejection fraction and volumes measurements, and could represent an interesting
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Fig. 3. Random forest importance of all the features specified in Table 1. The colours
group the features according to Table 1. (yellow = shape model parameters, magenta =
sphericity, cyan = global thickness statistics, red = segment thickness variances, green
= segment thickness means, blue circles = volumes, blue triangles = log volumes, black
= thickness model parameters) (Color figure online).
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(a) end-diastole mode 13: -3std, mean,
+3std.

(b) end-systole mode 13: -3std, mean, +3std.

Fig. 6. Variation for the statistical shape model mode with the highest importance
when used with all other features. The points approximately in line with the middle of
the septum are shown in black.
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avenue for future research. The use of a random forest allowed us to identify
these complementary sources of discriminative information, but further work
is needed to find the optimal list of anatomical features, in terms of both the
classification performance and the number of features used.
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Abstract. In this article, we present an application of the polyaffine
transformations to classify a population of hearts with myocardial infarc-
tion. Polyaffine transformations aim at representing motion by the com-
bination of a limited number of affine transformations defined locally
on a regional division of the space. We show that these transformations
not only serve as a first (non-learnt) dimension reduction, but also allow
to interpret each of the parameters and relate them to known clinical
parameters. Then, we use standard supervised learning algorithms on
these parameters to classify the population between infarcted and non-
infarcted subjects. The method is applied on the STACOM statistical
shape modeling labeled data consisting of 200 cases, comprising the same
number of healthy subjects and patients with infarct. We train classifiers
using different standard machine learning algorithms. Finally, we vali-
date our method with 10-fold cross-validation and get more than 95 % of
correct classification on yet-unseen data. The method is promising and
ready to be tested on the remaining 200 test cases of the challenge.

1 Introduction

Myocardial infarction occurs when blood flow to the heart muscle is lowered
and the myocardial cells in the territory start dying. The local contractility is
reduced and can lead, if prolonged, to severe remodelling of the heart to maintain
physiological constraints [1]. The function of the heart is then impaired [2],
and is no longer able to pump as efficiently as it used to, which might cause
complications. Acute complications may include heart failure if the damaged
heart is no longer able to pump blood adequately around the body. Therefore, a
quantitative understanding of this pathology and how the heart function changes
with an infarct is highly desired. Several methods for computer-aided diagnosis of
infarct have already been developed using echocardiographic images of the heart
coupled with pattern recognition algorithms [3] although none of the features
used are explicitly related to physiological characteristics of cardiac function.

In this article, our goal is to classify between control subjects and patients
with infarct in an automatic way, based on the STACOM statistical shape mod-
eling labeled data [4] which consist of a segmentation of the myocardium (both
c© Springer International Publishing Switzerland 2016
O. Camara et al. (Eds.): STACOM 2015, LNCS 9534, pp. 190–198, 2016.
DOI: 10.1007/978-3-319-28712-6 21
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epi and endo) wall at end-diastole and at end-systole. These two categories of
subjects may differ both in the shape of the heart and in the deformation along
the cycle. Indeed, after an infarct the damaged region will tend to shrink and the
deformation along the cycle will be lower. Similar studies have already been done
with the same dataset as [5], which focuses on the shape differences between
both population whereas we use both shape and motion features. Due to the
complexity and high-dimensionality of these data, we try to quantify both shape
and motion using a limited number of parameters, which we combine and use to
compare patients and learn the main modes characterizing both populations.

The features of interest characterizing the shape of the patients consist of
the regional thickness at both end-diastole and end-systole. We also use features
representing the deformation along the cycle. Our approach relies on statistics
on the motion of the heart between end-diastole and end-systole. We project the
motion on the subspace of polyaffine transformations [6]. With these transfor-
mations, we can express a deformation with a limited number of parameters [7].
We develop further the methodology by reducing the transformations to keep
only the most relevant parameters.

Then, we test classical machine learning algorithms on our set of combined
shape/motion parameters and compare the performance of each algorithm using
cross-validation techniques. Validating the method with 10-fold cross-validation,
we get results of 95 % correct labeling on yet-unseen cases. In addition, our
method notably highlights the relative importance of the different features for
the classification of this population.

2 Extraction of Features of Interest Through Shape
and Motion Dimensionality Reduction

In this section, we introduce the first dimensionality reduction that is applied
to the studied data (made of one segmentation at end-diastole and one at end-
systole, each comprised of 1089 points both for the endocardium and the epi-
cardium). It consists in a non-learning approach to project the data of these
segmentations to a limited number of regional parameters representing motion
and shape.

2.1 Polyaffine Projection

Due to point to point correspondence of the meshes and prior registration, we
already have an estimate of the displacement field φ mapping each point at
end-diastole to the corresponding point at end-systole. Instead of looking at dis-
placements fields, we choose to represent the cardiac motion by the stationary
velocity fields (SVF) v such that v = log φ. Working with SVF allows to per-
form vectorial statistics on diffeomorphisms, while preserving the invertibility
constraint, contrary to the Euclidian statistics on displacement fields.

In [6], the authors introduce the space of Log-Euclidean Polyaffine Trans-
formations (LEPT). By defining K regions and smooth weights ωk(x), these
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transformations have the properties to describe locally affine deformations using
few parameters while still being invertible. The polyaffine transformation is the
weighted sum of these locally-affine transformations Mk:

vpoly(x) =
K∑

k=1

ωk(x)Mkx̃.

In the case of cardiac motion, we have a standardized regional decomposition
into the standard American Heart Association (AHA) 17 regions for the left
ventricle. We define the weights ωk as normalized Gaussian functions around
the barycenter x̄k of each region such that:

ω̃k(x) = exp
(κ

2
(x − x̄k)Tφ−1

k (x − x̄k)
)

, ωk(x) =
ω̃k(x)∑N
j=1 ω̃j(x)

.

If we gather the parameters of the polyaffine transformation into a large
vector m such that m = vect(M1, ...,MK). The parameters of the optimal pro-
jection of a Stationary Velocity Fields v onto the space of polyaffine transfor-
mations has an analytical solution [7] m = m̂ = Σ−1b, which minimizes in the
least-squares sense:

C(M1, ...,MK) =
∫
Ω

‖vpoly(x) − v(x)‖2dx � 1
2 (m − m̂)TΣ(m − m̂) − 1

2m̂Σm̂.

In order to get interpretable parameters for each
region, we choose to express them in a local
coordinate system adapted to the geometry of
the heart. If we call R = (O, e1, e2, e3) the
original Cartesian coordinate system, we define
the local coordinate of the region k as R′

i =
(Ok, ek1 , ek2 , ek3) where Ok is the barycenter of
the region (the red point in the enclosed figure),
e1 the radial vector (green vector), e2 the longi-
tudinal vector (purple vector) and e3 the circum-
ferential vector (blue vector). We can express the
polyaffine parameters M = (R,T), where R is
the 3×3 matrix of the rotational parameters and

T is the translation, in this new frame through the equations:

R′
k = P−1

k RkPk

T′
k = P−1

k (RkOk + Tk),

where Pk is the transfer matrix from the base (e1, e2, e3) to the base (ek1 , ek2 , ek3).
Then, the new expression of the parameters in this local coordinates system:

Mk =

⎡
⎢⎣

sr a1,2 a1,3 tr

a2,1 sl a2,3 tl

a3,1 a3,2 sc tc

⎤
⎥⎦ ,
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can be related to physiological deformation. The 3 translation parameters cor-
respond to the motion along the 3 local axes (radial, longitudinal, and circum-
ferential) whereas the diagonal coefficients correspond to the strain along these
directions.

We propose a method to further reduce the model by keeping only the 3
parameters of the motion and the 3 parameters of the strain. This defines a
polyaffine projection that, when expressed in the local basis previously defined,
has only these parameters not equal to zero. We first introduce the projection
matrix Q which is a 12K ×6K matrix giving the relation between the 6K trans-
lation and diagonal parameters expressed in the local coordinates mL and the
12K parameters expressed in the original coordinates m, such that QmL = m.
When expressing m this way, we constrain it to be within the subspace spanned
by Q. This subspace corresponds exactly to the polyaffine transformation whose
non-diagonal and non-translation parameters are equal to zero in the local coor-
dinates. The least-square minimization can now be rewritten as:

C(m) � 1
2
(QmL − m̂)TΣ(QmL − m̂) − 1

2
m̂Σm̂

∂C

∂mL
= QTΣ(QmL − m̂) = 0 =⇒ m = QmL = Q(QTΣQ)−1QTΣm̂

For each of the 200 training data we compute the LEPT projection of the
deformation field. We are able to parametrize the 3D displacement fields (made
of 6534 parameters: 3 parameters for each of the 2178 points of the mesh) by
only 6K = 102 polyaffine parameters. Despite this large reduction of dimen-
sionality, these parameters explain on average more than 70 % of the original
displacement. Box-plots of each of the 6 parameters are shown in Fig. 1, where
the most discriminant parameters (p value < 0.001) are highlighted in bold.
The radial displacement as well as the strain are significantly lower (in absolute
value) for the infarcted subjects, which is consistent with what would be clini-
cally expected. Similar differences can be seen for the longitudinal parameters.
On the other side, the circumferential motion is less significant, mostly due to the
fact that it is very hard to track it accurately with clinical images and therefore
not reflected in the provided meshes.

2.2 Thickness Parameters

On top of the polyaffine parameters that characterize the deformation of the
heart during a cardiac cycle, we also introduce parameters representing the over-
all shape of the heart. We choose to study the thickness of the wall within each of
the AHA zones at ED and ES. These parameters correspond to the initial and
final stages of the transformation from ED to ES, and therefore complement
the above-described parameters. We define the thickness as the local distance
between endocardial points and their corresponding epicardial locations. These
values are also averaged per AHA zone, and summarized in Fig. 2. Significant
differences are observed in the thickness of the myocardium wall at end-systole
in most of the regions, especially near the apex, for the diseased patients with
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Fig. 1. Parameters of the polyaffine projection both for infarcted patients (red) and
control subjects (blue). (Top row): radial parameters for both the diagonal parameters -
representing strain - and the translation parameters - representing motion. (Middle
row): longitudinal parameters. (Bottom row): circumferential parameters. In bold the
most significant parameters (p-value < 0.001) (Color figure online).

respect to the control group. On the other side, thickness ED diastole is less
discriminant between both groups. Other parameters related to shape were con-
sidered (such as the height of the heart at ED/ES and the diameter at the base
at ED/ES) but no significant differences between both populations were seen
and therefore we do not use them for classification.
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Fig. 2. Box-plots of the thickness of the myocardium wall per AHA region. In blue,
the control set and in red the patients with infarcts. (Left): end-diastole. (Right): end-
systole. In bold the most significant parameters (p-value < 0.001) (Color figure online).

3 Dimensionality Reduction of the Parameters
and Classification

In this section, we use both polyaffine and thickness parameters previously intro-
duced in order to classify between healthy and infarcted subjects. We use the
machine-learning toolbox Scikit-Learn [8] to test a collection of standard state-
of-the-art algorithms on our dataset and compare their performance in predicting
yet unseen data. The features that serve to feed the tested learned algorithms
were considered in four different ways: either polyaffine or thickness parameters
separately (sets # 1 and # 2), or concatenated without normalization (# 3) or
with normalization so that they have a mean of 0 and a variance of 1.

3.1 Learnt Dimensionality Reduction

Complementary to the a-priori reduction of dimensionality imposed by the
polyaffine model and the use of 17 AHA regions, we also evaluated the influence
of a second dimensionality reduction of the data both with a Principal Com-
ponent Analysis (PCA) and a Principal Least Square (PLS) decomposition [9]
prior to the tested algorithm. PCA is designed to spread the data according
to the main modes of variability and is known to be a useful dimension reduc-
tion pre-processing to prevent over-fitting and improve the performance of some
machine-learning algorithm. PLS looks at modes of the input variables that cor-
relate the most with an output variable (in our case the pathology label 0 or 1).
Therefore, in contrast with PCA, the modes also correlate with our classifica-
tion. In particular, Fig. 3 summarizes the loadings of the first mode of the PLS
with respect to each parameter. Notably, this can be used to assess which of the
parameters is the most important for the classification. The radial parameters
are the most prevalent, whereas both the circumferential parameters and the
thickness at ED provide very little contribution to the first mode and therefore
the classification.
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Fig. 3. Loadings of the first PLS mode showing the contribution of each of the para-
meters and each of the AHA zone. In green the most important parameters and in red
the less important (Color figure online).

3.2 Classification

All algorithms were tested with 10-fold cross validation on the dataset made
of 200 patients. Figure 4 summarizes the results of the different algorithms.
Combining both sets of parameters improves the performance of most of the
algorithms showing that these sets give different kind of information about the
data. We also see that PLS regression, by preprocessing the data and orienting

Fig. 4. Cross-validation results (10-fold) of the classification with respect to different
state-of-the-art machine learning algorithms and different sets of input data. Combina-
tion of algorithms and parameters that have the best performance are shown in green
whereas the worst are shown in red (Color figure online).
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the modes of the input variables upto the best correlation with the pathology
labels, improves the performance of all machine learning algorithms especially
for Decision Tree and Nearest Neighbors. With more than 95 % of correct label-
ing, SVM-SVC algorithm used on the PLS reduction with 5 modes is the method
that performs the best. It is interesting to see that increasing the number of PLS
modes further does not improve the classification. Our interpretation is that the
subsequent modes of the PLS are not correlated to the classification and can
therefore induce over-fitting of the data. We also tested the method with dif-
ferent cross-validation such as leave-one-out, 2-fold or 5-fold in order to see the
robustness of the method with respect to the size of the training set and got
similar performance.

4 Conclusion

In this paper, we evaluated the contribution of prior reduction of dimensionality
to the classification of high-dimensional motion data. One of the assets of our
work is an innovative methodology to project a motion on a reduced number of
polyaffine parameters. We apply the methodology to classify a population and
detect an infarct based on the segmentations at end-systole and end-diastole.
Following the first dimensionality reduction given by the polyaffine parameters,
we use traditional statistical reductions on our sets of parameters with PCA
and PLS. Using 10-fold cross validation, we show that the resulting parameters
have good predictive power with more than 95 % correct classification on 200
infarcted/control cases. We are also able to quantify the importance of each of
the parameters in the classification. Notably, this provides insights into what is
the main impact of an infarct both in terms of motion and shape.

Ackowledgements. The authors acknowledge the partial funding by the EU FP7-
funded project MD-Paedigree (Grant Agreement 600932).
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Abstract. Myocardial infarction leads to a change in geometry and
a modified motion characteristics of the heart, called remodeling. The
detection of patients with subclinical remodeling is clinically relevant
because effective therapies have to be initiated early to avoid a progres-
sive dilatation, and deterioration in contractile function.

In this paper, we propose a classification approach to detect patients
with cardiac remodeling based on established global and local clinical
parameters, like end-diastolic and end-systolic volume, ejection fraction
or local myocardial thickness. The functional parameters are extracted
based on segmented endo- and epicardial contours using an in-house
developed software tool. A random decision forest is trained for recog-
nition of patients with impaired shape or motion characteristics. The
17 segment model of the left ventricle proposed by the American Heart
Association is compared to a higher resolution model using 97 left ven-
tricle segments in terms of classification performance.

The classification results are submitted to the left ventricle statisti-
cal shape modelling challenge with the aim to compare the classification
performance of classical clinical parameters with other probabilistic or
model-based approaches. A leave-one-out cross-validation shows an accu-
racy of 0.93 using global and local parameters compared to an accuracy
of 0.86 using global parameters only.

Keywords: Computer aided diagnosis · Cardiac remodeling · Myocar-
dial infarction · Random decision forests

1 Introduction

Myocardial infarction is the leading cause of death for both men and women in
the western civilization. The quality of life and the course of disease for patients
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depends on the revitalization of the myocardium and avoiding the development
of a persistent dysfunctional contraction of the heart, which can lead to progres-
sive impairment of the heart function combined with cardiac remodeling. Early
detection of patients with risk of remodeling is clinically relevant to initiate
effective therapies early to avoid remodeling.

The left ventricle (LV) statistical shape modelling challenge: myocardial
infarction aims to compare probabilistic models for myocardial impairment
detection. Based on a training set of LV shapes, participants are called to gen-
erate classification models to distinguish between normal and abnormal cases.
Diagnosis of myocardial infarction is usually based on multiple MRI sequences
(e.g. cine-MRI and LGE-MRI). Several clinical parameters, like LV mass and
volume, ejection fraction (EF) or relative infarct size, are used to grade the
impairment. Beside those global functional parameters, the 17 segment model
recommended by the American Heart Association (AHA) is widely used for the
visual interpretation of regional LV abnormalities [4]. Local functional parame-
ters, like LV wall motion and thickness, can be visually assessed on a 17-segments
bull’s-eye display.

Several approaches exist for automatic detection of LV motion abnormalities
based on LV segmentations, including methods based on statistical shape models
(SSMs) [2,17,21], Bayesian or neural networks [14,18,20], information theoretic
measures [13] or classification methods [5]. Studies show a disagreement of up to
30 % between SSM-based methods and visual LV wall motion scores (VWMS)
[17]. Besides inaccuracies in the model approaches, this is due to the subjectivity
and large inter-observer variability of VWMS [12] and because segment-based
scoring may underestimate motion abnormalities near segment borders.

The aim of our approach is to detect patients with cardiac remodeling
based on established clinical functional parameters. Previous studies compared
the classification performance of SSM-based or information theoretic methods
against traditional clinical indicators of remodeling [13,17,21], however, in these
studies only global clinical parameters were analyzed. In contrast, in our app-
roach global and local clinical parameters are computed based on provided end-
diastolic (ED) and end-systolic (ES) shapes of the endo- and epicardium. The
computed measures are used to train a classifier for the detection of LV motion
abnormalities/cardiac remodeling. We hypothesize that local functional para-
meters improve the performance of LV motion abnormality detection. The aim
of our contribution within the scope of this challenge is to compare directly
the classification performance of these parameters with other probabilistic or
model-based approaches.

In our study, two hundred ED and ES shapes provided by the challenge are
used to extract functional parameters. The extracted parameters are used for
the supervised training of random forests [3] with extremely randomized trees
[7] for the recognition of LV motion abnormalities. To investigate the influence
of the parameters, experiments are performed using global parameters, local
parameters based on the 17 segment model, and local parameters with higher
spatial resolution as suggested in [15,16].
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Fig. 1. 10 epicardial and endocardial
contours extracted from a triangulated
shape of the left ventricle.

Fig. 2. Visualization of the segment
model with higher spatial resolution for
one basal slice. Segments 25 and 26
belong to segment 2 of the AHA model,
segments 27 and 28 belong to AHA seg-
ment 1 and so on.

A leave-one-out cross-validation is performed on the training data to estimate
the classification performance.

2 Methods

The aim of our approach is to compare the classification performance of methods
provided by other challenge-participants against the performance of classical
clinical parameters. Therefore, we aspire to imitate the clinical workflow with the
provided challenge data and our Heart Analysis Tool (HeAT) [11,15] to compute
the clinical measures. In the following sections, the necessary preprocessing of
the challenge data and the computation of parameters is explained in detail.

2.1 Preprocessing of the Shape Data

In clinical praxis, the diagnosis of LV shape and motion is frequently based
on endocardial and epicardial contours extracted from cine-MRI sequences. To
imitate image-based input data from the given training shapes, the triangulated
surface models are converted to contours by placing 10 cut planes between the
most basal and most apical points on the ED surface, leading to realistic slice
distances of 8–13 mm (mean: 10 mm, see Fig. 1). The resulting contour points
are interpolated with 2D Beziér-Spline functions to generate smooth continuous
contours per slice.
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Table 1. Comparison between global LV function parameters for one hundred asymp-
tomatic cases (MESA) and one hundred patients with myocardial infarction (DETER-
MINE). (EDV: end-diastolic volume; ESV: end- systolic volume; SV: stroke volume;
LVEF: left ventricular ejection fraction; Mass: mass of the myocardium).

Measure MESA DETERMINE

EDV [ml] 104 ± 28 165 ± 45

ESV [ml] 40 ± 18 92 ± 38

SV [ml] 64 ± 20 72 ± 29

LVEF [%] 61 ± 13 45 ± 15

Mass [g] 123 ± 47 155 ± 48

2.2 Computation of Global and Local Parameters

The generated contours are imported into our in-house software system for the
analysis of cardiac MRI sequences to compute clinical parameters [15]. Time and
intensity related measures as well as infarct size can not be computed, because
image data are not provided and ED+ES phase of endocard and epicard are
given only. Table 1 compares the five computed global functional parameters
of asymptomatic cases and of patients with myocardial infarction given in the
training set.

The software system offers two modes of local parameter computation: the
17 segment model and a model with a higher number of segments based on the
centerline method [16]. For both models, corresponding points in the middle of
the septum (provided with the challenge data) are used to define corresponding
segments across all patients. To define the model with higher spatial resolution,
a centerline is computed based on the epicardial contours and each segment of
the 17 segment model is subdivided into 6 evenly spaced segments, except the
apex (see Fig. 2). Thus, 97 segments are defined while the anatomical mapping
based on the coronary artery blood supply is preserved.

For each segment the following four local parameters are computed: myocar-
dial wall thickness as the absolute difference between endocardial and epicardial
contour position in ED, change in wall thickness between ES and ED, and motion
amplitude of the endocardium as the magnitude of the movement between ES
and ED of the endocardial contour. The last local parameter describes the sym-
metric or asymmetric contraction of the endocardium ES to ED regarding to
the center of mass of the LV. In total 68 local parameters are computed for each
training case using the 17 segment model and 388 for the model with higher
resolution (the apex is excluded in both models).

2.3 Supervised Classification Using Random Forests

We choose to use random decision forests (RDFs) [3,8] to classify into asymp-
tomatic cases and infarct patients based on the computed global and local para-
meters. RDFs are an ensemble of decision trees, where each decision tree is
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trained on a subset of the training samples and a subset of the available features
(here: functional parameters) using a splitting strategy at each node. Based on
the decisions of the individual trees, the RDF predicts the class probabilities of
a test sample. In our two-class problem a threshold t is needed to assign each
test sample to one of the classes “asymptomatic” or “infarct”.

RDFs are known to be accurate, robust, fast, scalable and easy to use. Com-
pared to logistic regression, RDFs do not expect the features to be roughly linear
or the problem to be linearly separable. Further, RDFs provide methods to eval-
uate the importance of features. However, in our application many features are
highly correlated (e.g. EDV and ESV) and classical methods for feature ranking
may be misleading [19].

The main parameters of RDFs are the number of trees N in the forests, the
maximum depth dmax of each tree and the splitting strategy. Extremely ran-
domized trees (Extra-Trees) [7] are used as splitting strategy in our application.
Extra-Trees had shown to have a higher computational efficiency and accuracy
for different types of classification problems [7].

2.4 Experiments and Evaluation

Three experiments are performed in our study. In the first experiment only
global functional parameters are used to train the RDF classifier. The second
experiment additionally uses local parameters based on the 17 segment model,
and in the third experiment, we extract the local parameters with higher spatial
resolution to investigate the influence of the segment-based averaging.

Two hundred ED and ES shapes provided by the challenge are used for a
leave-one-out cross-validation to estimate the classification performance. The
goodness of fit for each of the three experiments is compared qualitatively using
receiver operating characteristic, and quantitatively by the area under the curve
and accuracy of the trained classifiers.

3 Results

The provided training dataset comprises one hundred cases with myocardial
infarction and an additional one hundred asymptomatic cases from the DETER-
MINE and MESA datasets respectively [1,9], contributed to the Cardiac Atlas
Project [6]. For each case, triangulated shapes at end-diastole (ED) and end-
systole (ES) are provided with point-wise inter- and intra-subject correspon-
dence.

All cases in the training data set are processed as described in Sect. 2.1 and
global and local functional parameters are extracted. The average global func-
tional parameters are summarized in Table 1. A heteroscedastic two-sided t-test
reveals significant differences between the groups for all global parameters except
SV (p < 0.005). Comparison with EDV, ESV and Mass provided in [21] sug-
gests that the global parameters are slightly underestimated, possibly due to the
conversion into slice-wise contours.
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Table 2. Results of the leave-one-out cross-validation using 200 training shapes: area-
under-the-curve (AUC), accuracy, specificity and sensitivity for the three experiments.

AUC accuracy
(t = 0.5)

specificity (t = 0.5) sensitivity (t = 0.5)

Experiment 1 0.92 0.86 0.87 0.86

(global parameters)

Experiment 2 0.96 0.90 0.90 0.90

(global + local parameters,

17 segment model)

Experiment 3 0.97 0.93 0.93 0.92

(global + local parameters,

97 segment model)

Fig. 3. Receiver operating characteristic (ROC) for each of the three experiments.

A RDF with N = 400 decision trees and dmax = 50 was trained using
the global functional parameters (experiment 1), global and local parameters
extracted by the 17 segment model (experiment 2), and global and local para-
meters extracted by the higher resolution model (experiment 3). The RDF para-
meters were optimized using grid search and cross-validation. However, we found
the classification performance to be relatively insensitive to parameter variations.

Leave-one-out cross-validation was performed on the training data to esti-
mate the performance of our classification approach. By varying the threshold
t, specificity and sensitivity of the classifier can be adjusted. Receiver operating
characteristic (ROC) comparing the three experiments are shown in Fig. 3. The
natural choice of t = 0.5 leads to a classification accuracy of 0.93 for the 97
segment model. Table 2 compares area under the ROC curve (AUC), accuracy,
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Fig. 4. The 10 most important features in terms of normalized mean decrease impurity
[10] of a 97 segment model-RDF trained on all 200 training cases.

sensitivity, and specificity for each of the three experiments. The results show
that experiment 2 and 3 achieved a better performance than experiment 1. The
97 segment model performed slightly better than the 17 segment model.

Figure 4 exemplary shows the 10 most important features in terms of mean
decrease impurity of a RDF trained by using the 97 segment model and all 200
training cases. It is interesting to note that 3 of the top 4 parameters are global
markers (ESV, EDV, and LVEF) and that segment 85 appears three times in
the top ten. Segment 85 is laterally located in the apical region (second slice)
and is part of segment 16 in the 17 segment model. In general, it has to be noted
that many features are highly correlated (e.g. EDV and ESV), which limits the
interpretability of the ranking.

The challenge provides an additional test data set comprising two hundred
cases with unknown ground truth. The global and local parameters computed
with the 97 segment model were used to obtain the results for the test data that
were finally submitted as challenge entry (HeAT-RDF).

4 Discussion and Conclusions

We have proposed a classification scheme based on global and local functional
cardiac parameters to distinguish between asymptomatic LV motion and patients
with myocardial infarction. Due to the unavailability of image data, only end-
diastolic and end-systolic shapes of the left ventricle were used to extract classical
global and regional clinical parameters for LV motion diagnosis. To address the
limited spatial resolution of the AHA 17 segment model, regional functional
parameters were extracted using a 97 segment model, too. Both models were
compared to a model solely based on global parameters in terms of classification
performance. The extracted global and regional parameters were used to train a
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random decision forest with Extra-Trees based an two hundred training samples.
A leave-one-out cross-validation was performed to evaluate the performance of
our classification approach.

The accuracy of 0.93 and AUC of 0.97 of the proposed classification approach
is comparable with values reported for other MRI-based infarct classification
methods, including SSM-based methods [17,21] or a method based on infor-
mation theoretic measures [13]. However, comparability of the reported values
is limited due to the differences in image data, sample sizes and ground truth
reliability. Few methods were published that clearly outperform the proposed
method. An AUC of 0.99 was reported in [21], however, additional meta data,
like age, sex and weight were available in this study.

Further, we have shown that the inclusion of local functional parameters
increases the classification performance and a higher resolution of local functional
parameters performs slightly better compared to the 17 segment model.

The main purpose of our contribution in the scope of this challenge is to
compare the classification ability of classical clinical parameters with shape-
model based methods provided by other challenge participants, and thus to help
to assess the reliability of these clinical measures.

Acknowledgments. This work was supported by the German Research Foundation
(DFG, EH 224/6-1).
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Abstract. This paper presents a local-to-global statistical approach for
modeling the major components of left ventricular (LV) shape using its
3-D landmark representation. The rationale for dividing the LV into local
areas is bi-fold: (1) to better identify abnormalities that lead to local
shape remodeling and, (2) to decrease the number of shape variables by
using a limited set of landmark points for an efficient statistical parame-
trization. Principal Component Analysis (PCA) is used for the statistical
modeling of the local regions and subsets of the learned parameters that
provide significant discriminatory information are taken from each local
model in a feature selection stage. The selected local parameters are then
concatenated to form a global representation of the LV and to train a
classifier for differentiating between normal and infarcted LV shapes.

Keywords: Local statistical shape modeling · Principal component
analysis · Feature selection · Myocardial abnormality detection

1 Introduction

Statistical shape analysis is a promising approach to model cardiac anatomy and
to characterize myocardial abnormalities. The success of the point distribution
model (PDM) [2] in describing anatomical structures of medical images makes
it the basis of the majority of cardiac shape parametrization algorithms. These
algorithms have been established using both linear methods (such as Principal
Component Analysis (PCA) [7,12,14,18] and Independent Component Analysis
(ICA) [15]) and nonlinear techniques (such as kernel PCA [5]). One drawback
of these techniques, however, is that they treat the shape globally. In addition
to being computationally expensive due to the requirement of modeling a large
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-28712-6 23
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number of variables, a global approach may fail to characterize abnormalities
that affect small regions of the myocardium. An alternative approach is to learn
local statistical shape components and then merge their results to describe the
global shape as a poly-local model. A recent and well-established example of such
framework is presented in [17]. It is based on utilizing local shape descriptors, but
not landmark points as suggested in PDM, and employing a manifold learning
technique called ISOMAP [16] for dimension reduction.

Inspired by [17], a local statistical shape modeling approach based on PDM
and PCA [9] is presented in this paper to characterize major components of
LV shapes. The rationale of utilizing PCA in our framework is as follows:
(1) PCA implementation involves simple steps and its parameters can be effi-
ciently computed and, (2) it allows to visualize major modes of data variation.
The latter property could be of particular interest to study the relation between
the parameters of the statistical model and the patho-physiology of the heart.

The main contribution of this paper compared to the framework presented
in [17] is the way that the local statistical information are incorporated in the
classification phase. In [17], an independent classifier was built with the parame-
ters of each local model and the classifiers’ decisions were fused using majority
voting. Independent treatment of the local models’ parameters could degrade
the capability of the combined classification model in dealing with abnormalities
that affect small regions of the heart. Here, we propose to create an alternative
local-to-global representation of the LV shape components by concatenating the
parameters of the local models and then building a classifier with the obtained
feature vector. Having the advantage of encoding global shape parameters of the
LV, the spatial relation between the local zones is taken into consideration using
this technique. Explicit usage of the local statistical parameters can also create
distinct areas in the global feature space. This property enables a classification
system to better characterize abnormalities that mostly affect small regions of
the myocardium.

2 Materials and Methods

Figure 1 represents global and local architectures that were implemented in
this paper for the statistical modeling and classification of LV shapes. In the
local architecture (Fig. 1(b)), the LV was divided into non-overlapping regions
of interest (ROI) and an independent PCA model was built with the local shapes
belonging to each ROI. By taking a subset of the learned statistical parameters,
two different classification schemes were examined. In addition, a global PCA
model (Fig. 1(a)) was also built to benchmark the performances of the local PCA
models.

2.1 Data and Preprocessing

A data set of 100 healthy volunteers and 100 patients with myocardial infarction
from the MESA [1] and DETERMINE studies [10] respectively, was used in
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Fig. 1. Architectures of the implemented statistical frameworks. (a) A PCA model
is constructed with whole LV shapes. Then, a subset of the first PCs (solid line) or
selected PCs (dashed line) is used for training a classifier. (b) Independent PCA models
are built with the segments of LV shapes and subsets of the selected PCs are used in the
classification phase. In the classifier voting scheme, independent classifiers are trained
with the selected PCs of the local models and the final decision is made by the majority
voting rule. In the proposed scheme, one classifier is trained with a feature vector that
is obtained by concatenating the local models’ parameters.

our experiments. These data sets are part of the Cardiac Atlas Project (CAP,
www.cardiacatlas.org) [6] and contain cardiovascular magnetic resonance (CMR)
images. Endocardial and epicardial shapes at end-diastole (ED) and end-systole
(ES) are represented with their corresponding Cartesian sets of landmark points
in magnet coordinates. It has been demonstrated in [18] that a PCA model
built with shape vectors at ED and ES could provide better outcomes than its
counterparts that were constructed with only ED or ES shapes. Therefore, the
shapes of both ED and ES cardiac phases were used for the implementation of
the global and local PCA models in the current study.

All shapes were aligned by making use of the generalized Procrustes superim-
position method [13]. As suggested in [18], for building the global PCA model the
alignment phase has been performed by eliminating position and orientation dif-
ferences but preserving scale variations as ventricular size has a predictive value
for diagnosing myocardial infarction. For constructing the local PCA models,
however, scale variations were also removed in the alignment procedure.

2.2 Statistical Modeling

Both global and local PCA models were learned using the data of the healthy
volunteers to capture major modes of normal shape variations. For building the

www.cardiacatlas.org
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local PCA models, small, medium and large ROI sizes were examined which
respectively encompassed 4, 8 and 16 faces of the 3-D meshes in both the cir-
cumferential and longitudinal directions where the full LV mesh was composed of
32×32 faces. Note that the landmark points in each ROI were consistent across
the subjects.

2.3 Feature Selection

The ultimate goal of the presented framework is the accurate categorization of
the normal and infarcted LV shapes. This requires that the statistical parame-
ters taken for training a classification system provide significant discriminatory
information. Traditionally, data are projected onto the subspace spanned by the
first principal components (PCs) to retain most of the variation in the original
variables. However, it is possible that some of the PCs with low contribution
in the data variation contain relevant discriminatory information. As such, the
P -metric method [8] was used in our framework to select relevant PCs:

P (PCi) =
|μi1 − μi2|
σi1 + σi2

(1)

where μi1 and μi2 are respectively the means of the normal and infarcted samples
after projecting onto the subspace of the ith PC and σi1 and σi2 are their
corresponding standard deviations. A high P -metric value for a PC implies that
it provides a good separation between the samples of the two classes. Therefore,
the PCs were sorted based on their P -metric values in descending order and a
subset of the first selected PCs were used in the classification stage.

2.4 Classification

Figure 1(b) illustrates two classification schemes that were trained with the para-
meters of the local PCA models. The first scheme uses the strategy proposed
in [17] while the second one works based on the idea of concatenating the local
PCA models’ parameters. Both methodologies were implemented by making use
of a subset of PCs that had been chosen in the feature selection stage. Note
that, since the local PCA models were trained independently, the selected PCs
for each model can be different from the others. SVM [3] with a linear kernel
was used as classifier in both global and local models. Classification outcomes
were achieved using 10-fold cross-validation. Hereto, data vectors were randomly
divided into 10 equal-size folds such that each fold had the same number of pat-
terns from each class. Classifiers were trained with the first nine folds and tested
with the last one. This procedure was repeated 10 times so that all folds were
used for training and testing the classifiers.

3 Results

Average classification outcomes obtained with the global PCA model are shown
in Fig. 2. While the best result of the classifier trained with the first PCs
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Fig. 2. Average classification outcomes (%) with the global PCA model. (a) Training
the classifier with a subset of the first PCs or (b) with a subset of the selected PCs.
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Fig. 3. Average classification accuracies (%) obtained with the selected PCs of the
local PCA models and utilizing (a) the classifier voting scheme and (b) the proposed
classification framework.

Table 1. Best average classification accuracies (%) and their corresponding sensitiv-
ity and specificity values obtained with the global PCA model (typed in bold). The
(min,max) ranges of the obtained outcomes are also presented.

Accuracy Sensitivity Specificity

First PCs 92.5 (80,100) 92 (80,100) 93 (80,100)

Selected PCs 95 (80,100) 93 (80,100) 97 (80,100)

(Fig. 2(a)) was achieved by preserving 99% of the data variation (the first 60
PCs), training the classifier with the selected PCs (Fig. 2(b)) yielded better per-
formance with considerably less number of features (6 PCs).
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Table 2. Best average classification accuracies (%) and their corresponding sensitiv-
ity and specificity values obtained with the local PCA models (typed in bold). The
(min,max) ranges of the obtained outcomes are also presented.

Accuracy Sensitivity Specificity

Classifier Voting Scheme

Small ROI 99 (95,100) 98 (90,100) 100 (100,100)

Medium ROI 99.5 (95,100) 99 (90,100) 100 (100,100)

Large ROI 98 (90,100) 98 (90,100) 98 (90,100)

The proposed Scheme

Small ROI 99 (95,100) 98 (90,100) 100 (100,100)

Medium ROI 99.5 (95,100) 99 (90,100) 100 (100,100)

Large ROI 98.5 (95,100) 97 (90,100) 100 (100,100)

Figure 3 illustrates the average classification accuracies achieved by the local
PCA models. It can be seen that all local models could provide significantly
higher classification results than the global ones. The best classification results
of the global and local PCA models along with their corresponding sensitivity
and specificity values are listed in Tables 1 and 2, respectively.

In order to give insight into the characteristics of the selected PCs that enable
a classifier to discriminate between the normal and infarcted LV shapes, the first
five selected modes of variation of the global PCA model, which were observed
constantly across the 10 folds, are visualized in Fig. 4. Note that the reason for
visualizing the global PCs is that they are easier to interpret than the local PCs.

4 Discussion

4.1 Global Versus Local Statistical Modeling

It has been demonstrated that by using a limited number of the landmark points,
a local framework is able to provide better statistical description of LV shapes
than its global counterpart. The performance of the local structures, however,
depends on the ROI size and tuning this parameter needs a proper compromise
between the statistical significance and number of landmark points. Although the
performance of the local classification schemes in detecting myocardial infarction
is comparable, direct usage of the local models’ parameters and considering the
spatial relation between the LV segments would enable the proposed scheme
to properly deal with different abnormalities that affect small regions of the
myocardium.

As shown in Fig. 3, the favorable results of the classifier voting and the pro-
posed scheme were obtained by using a few number of selected PCs per local
PCA model which can be explained by the following reasons: (1) local regions
have less modes of variation than the whole LV and their statistical modeling
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Fig. 4. Variations of the first five selected PCs of the global PCA model at end-diastole
and end-systole. From top, PCs 18, 1, 20, 42 and 15 are the selected modes of variation.

needs less number of components as well, (2) as shown in Fig. 2(b), selected PCs
could provide considerable discriminatory information for the local classification
systems.

4.2 Feature Selection Utility

The obtained results confirm the suitability of the feature selection strategy where
training a classifier with a small group of the selected PCs could significantly
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enhance the performance of the same classifier that was trained with a much larger
subset of the first PCs. To shed further light on the utility of the feature selection
method and statistical shape modeling with PCA, some patho-physiological inter-
pretations of the selected PCs belong to the global PCA model (shown in Fig. 4)
are given in the following.

The left- and righ-hand sides of each LV mode in Fig. 4 correspond to the
anteroseptal and inferolateral walls, respectively. The first selected mode (PC 18)
describes variations in the curvature of the anterior wall. This PC might have
been selected also due to possible difference in contouring convention of the left
ventricular outflow tract (LVOT) in the MESA and DETERMINE trials. The
second selected mode (PC 1) explains variations in the LV size. Blunting of
the apex and variation of the inferior wall curvature is described by the third
selected mode (PC 20). The forth selected mode (PC 42) is associated with the
end-systolic variations in the curvatures of the inferior region and the anterior
wall. Finally, the fifth selected mode (PC 15) captures the rightward shifting of
the apex and variations in the inferior region.

The above-mentioned patho-physiological interpretations are mostly based
on the evidences presented in [4,11] and are associated with the process of the LV
remodeling due to anterior myocardial infarction. Although the DETERMINE
study involves patients with different types of the myocardial infarction, it is well-
known that coronary artery disease occurs most commonly in the left anterior
descending (LAD) coronary artery. Therefore, interpretation of the selected PCs
based on the findings of [4,11] might be valid for the majority of the subjects in
this study.

5 Conclusion

A statistical framework has been established based on local PCA models to
characterize major modes of LV shape variation. Although local statistical mod-
eling could bring favorable advantages over global parametrization, the adopted
strategy for associating the local models’ parameters plays a key role in obtain-
ing an efficient local-to-global shape characterization. We hypothesized that the
concatenation of the local models’ parameters would lead to such efficient char-
acterization. Parameters of each local model were selected based on their sig-
nificance in discriminating normal and infarcted shapes. Classification outcomes
confirmed the superiority of the proposed statistical framework over the global
model. They also approved the suitability of the feature selection strategy where
utilizing a few number of selected PCs could yield high classification results.
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