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Abstract. Modern approaches for optimally learning Bayesian network
structures require decomposable scores. Such approaches include those
based on dynamic programming and heuristic search methods. These
approaches operate in a search space called the order graph, which has
been investigated extensively in recent years. In this paper, we break from
this tradition, and show that one can effectively learn structures using
non-decomposable scores by exploring a more complex search space that
leverages state-of-the-art learning systems based on order graphs. We
show how the new search space can be used to learn with priors that are
not structure-modular (a particular class of non-decomposable scores).
We also show that it can be used to efficiently enumerate the k-best
structures, in time that can be up to three orders of magnitude faster,
compared to existing approaches.

1 Introduction

Modern approaches for learning Bayesian network structures are typically for-
mulated as a (combinatorial) optimization problem, where one wants to find the
best network structure (i.e., best DAG) that has the highest score, for some given
scoring metric [10,19,23]. Typically, one seeks a Bayesian network that explains
the data well, without overfitting the data, and ideally, also accommodating any
prior knowledge that may be available.

Some of the earliest procedures for learning Bayesian network structures used
scoring metrics with a certain desirable property, called score decomposability.
For example, consider the K2 algorithm which exploited decomposable scores, in
combination with an assumption on the topological ordering of the variables [6].
Under these assumptions, the structure learning problem itself decomposes into
local sub-problems, where we find the optimal set of parents for each variable,
independently. Local search methods exploited decomposability in a similar way
[5]. Such methods navigated the space of Bayesian network structures, using
operators on edges such as addition, deletion, and reversal. Score decomposabil-
ity allowed these operators to be evaluated locally and efficiently. Indeed, almost
all scoring metrics used for Bayesian network structure learning are decompos-
able. Such scores include the K2 score, [6], the BDeu score [4], the BDe score
[16], and the MDL score [2,20,29], among many others.
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Modern approaches to structure learning continue to exploit the decompos-
able nature of such scoring metrics. In particular, the past decade has seen
significant developments in optimal Bayesian network structure learning. These
recent advances were due in large part to dynamic programming (DP) algo-
rithms, for finding optimal Bayesian network structures [18,27,28]. Subsequently,
approaches have been proposed based on heuristic search, such as A* search
[34,35], as well as approaches based on integer linear programming (ILP), and
their relaxations [7,17].

By exploiting the nature of decomposable scores, these advances have signif-
icantly increased the scalability of optimal Bayesian network structure learning.
There is, however, a notable void in the structure learning landscape due to
the relative lack of support for non-decomposable scores. This includes a gen-
eral lack of support for non-decomposable priors, or more broadly, the ability
to incorporate more expressive, but non-decomposable forms of prior knowledge
(e.g., biases or constraints on ancestral relations). In this paper, we take a step
towards a more general framework for Bayesian network structure learning that
targets this void.

The modern approaches for optimal structure learning, mentioned earlier,
are based on a search space called the order graph [18,35]. The key property of
the order graph is its size, which is only exponential in the number of variables of
the Bayesian network that we want to learn. Our proposed framework however is
based on navigating the significantly larger space of all network structures (i.e.,
all DAGs). Moreover, to facilitate the efficient navigation of this larger space,
we employ state-of-the-art learning systems based on order graphs as a (nearly)
omniscient oracle. In addition to defining this new search space, we instanti-
ate it to yield a concrete system for finding optimal Bayesian networks under
order-modular priors, which we evaluate empirically. We further demonstrate the
utility of this new search space by showing how it lends itself to enumerating the
k-best structures, resulting an algorithm that can be three orders of magnitude
more efficient than existing approaches based on DP and ILP [9,32].

This paper is organized, as follows. In Sect. 2, we review Bayesian network
structure learning. In Sect. 3, we propose our new search space for learning
Bayesian networks. In Sect. 4, we show how our search space can be leveraged
to find optimal Bayesian networks under a class of non-decomposable priors. In
Sect. 5, we show how our search space can be further used to efficiently enu-
merate the k-best network structures. Finally, we conclude in Sect. 6. Proofs of
theorems are provided in the Appendix.

2 Technical Preliminaries and Related Work

In this section, we first review score-based Bayesian network structure learning.
We then review a formulation of score-based structure learning as a shortest-
path problem in a graph called the order graph. Shortest-path problems can
subsequently be solved with heuristic search methods such as A* search.
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First, we use upper case letters (X) to denote variables and bold-face upper
case letters (X) to denote sets of variables. Generally, we will use X to denote
a variable in a Bayesian network and U to denote its parents.

2.1 Score-Based Structure Learning

Given a dataset D, we first consider the problem of finding a DAG G of a
Bayesian network which minimizes a decomposable score. Such a score decom-
poses into a sum of local scores, over the families XU of the DAG:

score(G | D) =
∑

XU

score(XU | D). (1)

For example, MDL and BDeu scores are decomposable; see, e.g., [10,19,23]. In
this paper, we will generally assume that scores (costs) are to be minimized
(hence, we negate scores that should otherwise be maximized).

There are a variety of approaches for finding a DAG G that minimizes the
score of Eq. 1. One class of approaches is based on integer linear programming
(ILP), where 0/1 variables represent the selection of parent sets (families) in a
graph. Our goal is to optimize the (linear) objective function of Eq. 1, subject
to (linear) constraints that ensure that the resulting graph is acyclic [17]. In
some cases, an LP relaxation can guarantee an optimal solution to the original
ILP; otherwise, cutting planes and branch-and-bound algorithms can be used to
obtain an optimal structure [7,17].

In this paper, we are interested in another class of approaches to optimiz-
ing Eq. 1, which is based on a formulating the score, in a particular way, as a
recurrence. This recurrence underlies a number of recent approaches to structure
learning, based on dynamic programming [18,22,27,28], as well as more efficient
approaches based on A* search [34,35]. In particular, to find the optimal DAG
over variables X, we have the following recurrence:

score�(X | D) = min
X∈X

(
min

U⊆X\X
score(XU | D) + score�(X \ X | D)

)
(2)

where score�(X | D) denotes the score of the optimal DAG over variables X
given dataset D. According to this recurrence, we evaluate each variable X as a
candidate leaf node, and find its optimal family XU. Moreover, independently,
we find the optimal structure over the remaining variables X \ X. The best
structure then corresponds to the candidate leaf node X with the best score.

2.2 Shortest-Paths on Order Graphs

Yuan & Malone [34] formulate the structure learning problem as a shortest-path
problem on a graph called the order graph. Figure 1 illustrates an order graph
over 3 variables X. In an order graph, each node represents a subset Y of the
variables X. There is a directed edge from Y to Z in the order graph iff we add
a new variable X to the set Y, to obtain the set Z; we denote such an edge by
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Fig. 1. An order graph for variables X = {X1, X2, X3}

Y X−→ Z. The order graph is thus a layered graph where each new layer adds,
in total, one new variable to the nodes of the previous layer. Hence, we have a
unique root node {}, and a unique leaf node X. Any path

{} X1−−→ · · · Xn−−→ X

from the root to the leaf will then correspond to a unique ordering 〈X1, . . . , Xn〉
of the variables. Suppose that we associate each edge Y X−→ Z with a cost

min
U⊆Y

score(XU | D)

where, for the variable X added on the edge, we find the optimal set of parents
U from the set of variables Y. A path from the root node {} to the leaf node
X will then correspond to a DAG G since each edge Y X−→ Z adds a new leaf
node X with parents U to the DAG, i.e., the U that minimized score(XU | D).
The cost of the path (the sum of the scores of its edges) gives us the score of the
DAG, score(G | D), as in Eqs. 1 and 2. Hence, the shortest path from the root
{} to the leaf X corresponds to the DAG with minimum score.

3 A New Search Space for Learning Bayesian Networks

We now describe our A* framework, for learning the structure of Bayesian
networks. We first describe the search space that we use, and then propose
a heuristic function to navigate that space, which is based on using existing,
state-of-the-art structure learning systems as a black-box. Later in this paper,
we discuss two learning tasks that are enabled by our framework: (1) learning an
optimal Bayesian network structure using a class of non-decomposable scores,
and (2) enumerating the k-best Bayesian network structures.
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Fig. 2. A BN graph for variables X = {X1, X2, X3}

3.1 A New Search Space: BN Graphs

Following Yuan & Malone [34], we formulate structure learning as a shortest-path
problem, but on a different graph, which we call the Bayesian network graph (BN
graph). The BN graph is a graph where each node represents a BN, but more
specifically, each node represents a BN structure, i.e., a DAG. Figure 2 illustrates
a BN graph over 3 variables. In this graph, which we denote by Gbn, nodes
represent Bayesian network structures over different subsets of the variables X.
A directed edge Gi

XU−−→ Gj from a DAG Gi to a DAG Gj exists in Gbn iff Gj

can be obtained from Gi by introducing variable X as a leaf node with parents
U. Hence, the BN graph, like the order graph, is a layered graph, but where each
layer adds one more leaf to an explicit (and not just an implicit) DAG when we
walk an edge to the next layer. Correspondingly, when we refer to a DAG Gi, we
assume it is on the i-th layer, i.e., Gi has i nodes. The top (0-th) layer contains
the root of the BN graph, a DAG with no nodes, which we denote by G0. The
bottom (n-th) layer contains DAGs Gn over our n variables X. Any path

G0
X1U1−−−−→ · · · XnUn−−−−→ Gn

from the root to a DAG Gn on the bottom layer, is a construction of the DAG Gn,
where each edge Gi−1

XiUi−−−→ Gi adds a new leaf Xi with parents Ui. Moreover,
each path corresponds to a unique ordering 〈X1, . . . , Xn〉 of the variables. Each
edge Gi−1

XiUi−−−→ Gi is associated with a cost, score(XiUi | D), and thus the
cost of a path from the empty DAG G0 to a DAG Gn gives us the score of the
DAG, score(Gn | D), as in Eq. 1.

For example, consider the BN graph of Fig. 2 and the following path, corre-
sponding to a sequence of DAGs:

G0 G1 G2 G3

X1 X1 → X2 X1 → X2 X3

Starting with the empty DAG G0, we add a leaf X1 (with no parents), then a
leaf X2 (with parent X1), then a leaf X3 (with no parents), giving us a DAG G3

over all 3 variables.
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Both the order graph and the BN graph formulate the structure learning
problem as a shortest path problem. The BN graph is however much larger
than the order graph: an order graph has 2n nodes, whereas the BN graph has
O(n! · 2(n2)) nodes. Despite this significant difference in search space size, we
are still able to efficiently find shortest-paths in the BN graph, which we shall
illustrate empirically, in the remainder of this paper. The efficient navigation of
the BN graph depends significantly on the heuristic function, which we discuss
next.

3.2 On Heuristic Functions for BN Graphs

A* search is a best-first search that uses an evaluation function f to guide the
search process, where we expand first those nodes with the lowest f cost [15].
The evaluation function for A* takes the form:

f(G) = g(G) + h(G)

where G is a given DAG, function g is the path cost (the cost of the path to
reach G from G0), and function h is the heuristic function, which estimates the
cost to reach a goal, starting from G. If our heuristic function h is admissible,
i.e., it never over-estimates the cost to reach a goal, then A* search is optimal.
That is, the first goal node Gn that A* expands is the one that has the shortest
path from the root G0. Ideally, we want a good heuristic function h, since an
accurate estimate of the cost to a goal state will lead to a more efficient search.
For more on A* search, see, e.g., [26].

Consider the special but extreme case, where we have access to a perfect
heuristic h(G), which could predict the optimal path from G to a goal node Gn.
In this case, search becomes trivial: A* search marches straight to a goal node
(with appropriate tie-breaking, where we expand the deepest node first). Having
access to a perfect heuristic by itself is not useful, if we are just interested in an
optimal DAG. Such a heuristic, however, becomes useful when we are interested
in solving more challenging learning tasks. Consider, for example, learning an
optimal DAG, subject to a set of structural constraints. In this case, a perfect
heuristic is no longer perfect—it will under-estimate the cost to reach a goal.
However, in this case, it remains an admissible heuristic, which we can use in
A* search to find an optimal DAG, when we subject the learning problem to
constraints.

We do, in fact, have access to a perfect heuristic—any learning system could
be used as such, provided that it can accept a (partial) DAG G, and find an
optimal DAG Gn that extends it. Systems such as URLearning meet this
criterion [34], which we use in our subsequent experiments. Such a system is
treated as a black-box, and used to evaluate our heuristic function in A* search,
to potentially solve a learning problem that the black-box was not originally
designed for. We shall later highlight two such learning tasks, that are enabled
by using existing structure learning systems as black-boxes for A* search.
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We also remark that using such a black-box to evaluate a heuristic function,
as described above, is also a departure from the standard practice of heuristic
search. Conventionally, in heuristic search, one seeks heuristic functions that are
cheap to evaluate, allowing more nodes to be evaluated, and hence more of the
search space to be explored. Our black-box (which finds an optimal extension
of a DAG), in contrast, will be relatively expensive to evaluate. However, for
the particular learning tasks that we consider, a strong heuristic can outweigh
the expense to compute it, by more efficiently navigating the search space (i.e.,
by expanding fewer nodes to find a goal). We shall demonstrate this empirically
after introducing each of the learning tasks that we consider.

Implementation of A* Search. Finally, we describe two further design deci-
sions, that are critical to the efficiency of A* search on the BN graph. First,
if two given DAGs G and G′ are defined over the same set of variables, then
they have the same heuristic value, i.e. h(G) = h(G′). Hence, we can cache the
heuristic value h(G) for a DAG G, and simply fetch this value for another DAG
G′ (instead of re-invoking our black-box), when it has the same set of variables.
As a result, the heuristic function is invoked at most once for each subset Y
of the variables X. In addition, when we invoke our black-box on a DAG G,
we can infer and then prime other entries of the cache. In particular, when our
black-box returns an optimal completion G′ of a DAG G, then we know the
optimal completion (and heuristic values) of any DAG in between G and G′ in
the BN graph—their optimal completion is also G′ (from which we can infer the
corresponding heuristic value). Based on this caching scheme, a single call to our
black-box heuristic function suffices, to recover a single best network using A*
search in the BN graph (i.e., it is no worse than using the black-box directly).

Next, the branching factor of the BN graph is large, and hence, we can
quickly run out of memory if we expand each node and insert all of its children
into A*’s priority queue (i.e., open list). We thus use partial-expansion A* in our
implementation, i.e., when we expand a node, we only insert the b-best children
into the priority queue. We can re-expand this node, as many times as needed,
when we want the next b-best children. While we may spend extra work re-
expanding nodes, this form of partial-expansion can save a significant amount
of memory, without sacrificing the optimality of A* search; see, e.g., [13,33].

3.3 Experimental Setup

In the subsequent sections, we shall highlight two different tasks that are enabled
by performing A* search on the BN graph. After discussing each task, we report
empirical results on real-world datasets, which were taken from the UCI machine
learning repository [1], and the National Long Term Care Survey (NLTCS). For
learning, we assumed BDeu scores, with an equivalent sample size of 1. We
adapted the URLearning structure learning package of [34] to serve as our
black-box heuristic function.1 Our experiments were run on a 2.67GHz Intel
1 At https://sites.google.com/site/bmmalone/files/urlearning.

https://sites.google.com/site/bmmalone/files/urlearning
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Xeon X5650 CPU, with access to 144 GB RAM. For our partial-expansion A*
search, each time a node is expanded or re-expanded, children are inserted into
the priority queue in blocks of 10. We further pre-compute the BDeu scores,
which are fed as input into each system evaluated. Finally, all timing results are
averages over 10 runs.

4 Structure Learning with Non-Decomposable Scores

Now that we have described our framework for learning Bayesian networks using
BN graphs, we will show how we can use it to learn BN structures using for
a class of non-decomposable scores.2 In particular, we consider a class of non-
decomposable priors on network structures, which we discuss next. Subsequently,
we propose a heuristic that can be used in A* search, to optimize this class of
non-decomposable scores. We then describe our A* search algorithm, and then
provide some experimental results.

4.1 Order-Modular Priors

One prevalent non-decomposable prior is the order-modular prior [14,18]. The
uniform order-modular prior Pr(G), in particular, is proportional to the number
of topological orderings consistent with a DAG G, i.e., the number of its linear
extensions, which we denote by #G. Hence,

logPr(G) = log #G − log C,

where C is a normalizing constant. More generally, order-modular priors can
be viewed in terms of a weighted count of linear extensions [18]. In general,
counting the number of linear extensions is itself a challenging problem (let
alone optimizing with it); it is a #P-complete problem [3]. We shall revisit this
issue, shortly.

Order-modular priors are notable, as they enable MCMC methods for the
purposes of (approximate) Bayesian model averaging [14]. They also enable
some DP-based methods for exact Bayesian model averaging, when there are
a moderate number of network variables [18]. However, to our knowledge, only
approximate approaches had been previously considered for this prior, when one
wants a single optimal DAG; see Koivisto & Sood [18, Sect. 5], for a discussion
on some of the difficulties.

4.2 A Heuristic for Order-Modular Priors

Consider the probability of a DAG G given a dataset D:

Pr(G | D) =
Pr(D | G)Pr(G)

Pr(D)
2 Approaches based on ILP can in principle handle non-decomposable scores (and

constraints), assuming that they can be expressed using a linear cost function (or
as linear constraints) [25]. We remark that order-modular priors, which we consider
later, are not easy to encode as ILPs (as we need to compute linear extension counts).
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where Pr(D | G) is the marginal likelihood, and Pr(G) is a prior on the DAG G.
Further, the quantity Pr(D) is a normalizing constant, which is independent of
the given DAG G. To maximize the probability of a graph, it suffices to maximize
the log probability:

argmax
G

logPr(G | D) = argmax
G

logPr(D | G) + logPr(G).

When using the BDeu score, the marginal likelihood decomposes as in Eq. 1. We
assume the BDeu score for the remainder of this section.

First, we consider how to update the weights on the edges of a BN graph, to
handle a prior on the structure, decomposable or otherwise.

Theorem 1. Let Pr i(.) denote a distribution over DAGs having i nodes (i.e.,
our structure prior).3 If we label each edge Gi

XU−−→ Gj in graph Gbn with the
cost:

score(XU | D) − log
Pr j(Gj)
Pr i(Gi)

,

then the total cost of a path from the root G0 to a leaf Gn is

score(G | D) − logPrn(Gn).

Hence, assuming a structure prior, the DAG with an optimal score corresponds
to a shortest path in the BN graph Gbn, from the root G0 (top layer) to a leaf
Gn (bottom layer). In what follows, we shall assume that our structure prior is a
uniform order-modular prior, although general (weighted) order-modular priors
can also be accommodated.

We now propose a simple heuristic function for learning an optimal DAG
with a uniform order-modular prior. Let Gi � Gn indicate that a DAG Gn

is reachable from DAG Gi in Gbn. We propose to use the heuristic function
h(Gi) = h1(Gi) + h2(Gi), which has two components. The first component is:

h1(Gi) = min
Gn:Gi�Gn

∑

XU∈Gn−Gi

score(XU | D) (3)

where we sum over families XU that appear in Gn but not in Gi. This component
is looking for the shortest path to the goal, based on the decomposable part of the
score, ignoring the prior (i.e., maximizing the marginal likelihood). The second
component is:

h2(Gi) = min
Gn:Gi�Gn

− log
Prn(Gn)
Pr i(Gi)

(4)

This component is looking for the shortest path to the goal, based on the prior
part of the score, but ignoring the data (i.e., maximizing the prior).

Theorem 2. The heuristic function h(Gi) = h1(Gi) + h2(Gi) of Eqs. 3 and 4
is admissible.
3 Pr0(G0) = 1 as there is a unique graph over zero nodes.
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To use this heuristic function, we must perform two independent optimization
problems (for h1 and h2). The first is the familiar optimization of a decompos-
able score; we can employ most any existing structure learning algorithm for
decomposable scores, as an oracle, as discussed in the previous section. The sec-
ond is an optimization of the prior, independently of the data. Next, we show
how to both optimize and evaluate this component, for order-modular priors.

Optimizing the Prior. Here, we briefly describe how to solve the component
h2 for a uniform order-modular prior. Again, we want to identify the most likely
goal node Gn reachable from Gi, i.e., the DAG Gn with the largest linear exten-
sion count. Remember that DAG Gi has i nodes. Since adding any edge to the
DAG constrains its possible linear extensions, then the DAG Gn with the largest
linear extension count simply adds the remaining n − i nodes independently to
DAG Gi. If #Gi is the linear extension count of DAG Gi, then

#Gn = #Gi · (i + 1) · · · n

is the linear extension count of DAG Gn.4 Next, we have that:

Pr i(Gi) =
1
Ci

· #Gi and Prn(Gn) =
1

Cn
· #Gn

where Ck is a normalizing constant:

Ck =
∑

Gk

#Gk =
∑

Gk

∑

π∼Gk

1 =
∑

π

∑

π∼Gk

1 =
∑

π

2(k2) = k! · 2(k2)

and where π ∼ Gk denotes compatibility with an ordering π and a DAG Gk.
Thus,

Prn(Gn)
Pr i(Gi)

=
Ci

Cn

#Gn

#Gi
=

Ci

Cn
· (i + 1) · · · n = 2(i

2)−(n2)

Hence, h2(Gi) = [
(
n
2

) − (
i
2

)
] · log 2. We note that for all DAGs Gi in the same

layer, the heuristic function h2(Gi) evaluates to the same value, although this
value differs for DAGs in different layers.

Note, that we also need to be able to compute the linear-extension counts
#Gi themselves, which is itself a non-trivial problem (it is #P-complete). We
discuss this next.

Counting Linear Extensions. In Sect. 4.1, we highlighted the relationship
between uniform order-modular priors and counting linear extensions. We now
show that the BN graph itself facilitates the counting of linear extensions, for

4 For each linear extension π of Gi, there are (i + 1) places to insert the (i + 1)-th
node, then (i + 2) places to insert the next, and so on. Thus, there are (i + 1) · · · n
ways to extend a given ordering over i variables to n variables.
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many DAGs at once. Subsequently, we shall show that this computation can be
embedded in the A* search itself.

Recall that any path in the BN graph Gbn, from G0 to Gi, corresponds to
an ordering of variables 〈X1, . . . , Xi〉. In fact, this ordering is a linear extension
of the DAG Gi (by construction). Hence, the linear extension count #Gi of a
graph Gi is the number of paths from the root G0 to Gi, in the BN graph Gbn.
For example, consider the DAG:

X1 → X2 X3

There are 3 distinct paths in Gbn from the root G0 to the DAG above, one path
for each topological order that the DAG is consistent with. Next, observe that
the number of linear extensions of a DAG Gi, (or equivalently, the number of
paths that reach Gi), is simply the sum of the linear extensions of the parents of
Gi, in the BN graph Gbn. For example, our DAG above has 3 linear extensions,
and 2 parents in Gbn:

X1 → X2 X1 X3

the first with one linear extension, and the second with two. In this way, we can
count the linear extensions of DAGs in a BN graph Gbn, from top-to-bottom,
sharing computations across the different DAGs. A similar algorithm for counting
linear extensions is described in, e.g., [24].

Consider how A* navigates the BN graph Gbn during search. If A* expands
a node only when all of its parents are expanded, then as described above, we
can count the number of linear extensions of a DAG, when it gets expanded.5

Thus, we can evaluate its prior, and in turn, the function f . It so happens that,
we can moderately weaken the heuristic function that we just described, so that
A* will in fact expand a node only when all of its parents are expanded.

Theorem 3. Assuming a uniform order-modular prior, the heuristic function

h(Gi) = h1(Gi) + h′
2(Gi)

allows A* to count the linear extensions of any DAG it expands, where h′
2(Gi) =

−∑n
k=i+1 log k ≤ h2(Gi) with components h1 and h2 coming from Eqs. 3 and 4.

A proof appears in the Appendix.

4.3 A* Search

Algorithm 1 provides pseudo-code for A* search using a uniform order-modular
prior. Note that this pseudo-code deviates slightly from the standard A* search,
as the linear extension counts #G are computed incrementally during the search.

5 In particular, every time that we expand a node G, we can increment each of its
children’s linear extension counts by #G. Once we have expanded every parent of a
child, the child’s linear extension count is correct.
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Algorithm 1. A* search for learning an optimal BN with a uniform order-
modular prior.
Data: a dataset D over variables X
Result: an optimal BN maximizing Pr(G | D)
begin

H ← min-heap with only (G0, f(G0), 1), where 1 is the number of linear
extensions of G0; and the heap is ordered by f
while H �= ∅ do

extract the minimum item (G, f, l) from H
if V (G) = X then return G
foreach G′ obtained by adding a leaf to G do

if G′ is not in H then
insert into H: (G′, score(G′|D) − log l + h(G′), l)

else

let (G′, f ′, l′) be in H, decrease f ′ by log l′+l
l′ , increase l′ by l;

and reheapify

end

end

end

end

Theorem 4. Algorithm1 learns an optimal Bayesian network with a uniform
order-modular prior.

A proof appears in the Appendix.
Finally, we note that Theorem 1 and the heuristic functions of Eq. 3 and 4

were proposed for order-modular priors. In principle, the shortest-path formula-
tion, and the heuristic function that we proposed, can support a much broader
class of non-decomposable priors. However, one must be able to optimize the
probability of a graph, as in the component h2 of the heuristic function that we
proposed, in Eq. 4. If we had access to some oracle that can solve this compo-
nent, then we would in principle have the pieces that are sufficient to perform
A* search over the DAG graph Gbn, using the corresponding prior.

4.4 Experiments

We evaluate our A* search approach to learning optimal Bayesian networks with
real-world datasets, assuming a uniform order-modular prior. In Table 1, we find
that our approach can scale up to 17 variables on real-world datasets (i.e., the
letter and voting datasets). We also note that with more data, and with more
of the probability mass concentrated on fewer DAGs, traversing the BN graph
with A* search appears to become more efficient. In particular, consider the
time spent in A* search (TA∗), and the number of nodes generated (gen.), in
the datasets adult and wine, which both have 14 variables. Similarly, consider
the datasets letter and voting, which both have 17 variables. Moreover, consider
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Table 1. The performance of A* search on the BN graph when learning with the uni-
form order-modular prior: (1) The time Th to compute the heuristic function. (2) The
time TA∗ to traverse the BN graph with A* (in seconds) (3) The total time t = Th+TA∗
spent in A* (4) The number of generated nodes. (5) The number of expanded nodes.
(6) The number of re-expanded nodes (in partial-expansion A*). An ×m corresponds
to an out-of-memory (64 GB).

Benchmark n N Th TA∗ t Gen. Exp. Re-exp.

Adult 14 30,162 1.03 0.26 1.29 106,832 12,620 33

Wine 14 435 0.74 6.08 6.82 1,559,900 244,694 57,259

Nltcs 16 16,181 7.21 1.17 8.38 386,363 41,125 1

Letter 17 20,000 29.42 3.79 32.20 360,899 37,034 16

Voting 17 435 5.28 56.59 61.89 10,540,132 1,961,602 396,084

Zoo 17 101 ×m

dataset zoo, also over 17 variables, which was a very small dataset, containing
only 101 instances. Here, A* search exhausted the 64 GB of memory that it was
allowed. We remark that, to our knowledge, ours is the first system for finding
optimal DAGs using order-modular priors.6

In Fig. 3, we consider a simple example, highlighting the effect that a uniform
order-modular prior can have on the structure we learn. In Fig. 3(a), we have
the classical asia network, which we used to simulate datasets of different sizes.
First, we simulated a small dataset of size 27 and learned two networks, one with
a prior, Fig. 3(b), and one without a prior, Fig. 3(c). Ignoring node A, the two
networks are Markov equivalent. However, including node A, their linear exten-
sion counts are very different: 96 for network Fig. 3(b) but only 3 for network
Fig. 3(c). This difference can explain why variable A is disconnected in Fig. 3(b),
as a disconnected node non-trivially increases the linear extension count (and
hence, the weight of the prior). In Fig. 3(d), both cases (with and without the
prior) learned precisely the same network when we raised the size of the dataset
to 214 (this DAG has 150 linear extensions). This network is Markov equivalent
to the ground truth network that generated the data.

5 Enumerating the k-Best Structures

We will next show how we can use our proposed framework for learning Bayesian
networks, using BN graphs, to enumerate the k-best Bayesian network structures.

6 There are systems available for (a) finding optimal DAGs using structure-modular
priors, (b) for Bayesian model averaging using order-modular priors, and (c) for
jointly optimizing over orders and DAGs, using order-modular priors. These tasks
are all discussed in [18], which further states that finding optimal DAGs with order-
modular priors is a more challenging problem (where we maximize over DAGs, but
sum over orders).
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Fig. 3. A network asia (a), and networks learned with dataset size 27 with a prior (b),
without a prior (c), and a network learned with dataset size 214 (d).

Enumerating the k-best Bayesian network structures is particularly simple
to do when we perform A* search on the BN graph Gbn. In particular, the k-th
best DAG can be obtained by finding the goal node Gn that is the k-th closest
to the root G0. We can thus enumerate the k-best DAGs by simply continuing
the A* search, rather than stopping when we reach the first goal node; see [12],
for more on using A* search for k-best enumeration.7,8

We also note that if our heuristic is perfect, then we can enumerate all
DAGs with an optimal score, relatively efficiently. In particular, A* will only
expand nodes that lead to an optimal DAG, as long as a DAG with an optimal
score remains (typically, they are all Markov equivalent). However, once we have
exhausted all optimal DAGs, our heuristic is no longer perfect; cf. [12]. Given
a DAG G, our heuristic is still admissible, as it still lower-bounds the cost of
the possible extensions to a goal node Gn. That is, it may just report a cost
for a goal node that was already enumerated (and hence has a lower cost). We
can thus continue to employ the same heuristic in A* search, to enumerate the
remaining k-best DAGs.

7 We remark, however, that [12] is more specifically concerned with the enumeration
of the k-shortest paths. Since we are interested in enumerating the k-closest goal
nodes, we remark that some, but not all, of their theoretical analyses applies to our
problem. In particular, each distinct goal node in the BN graph may have many
paths that can reach it. Hence, once we obtain one goal node, many more shortest-
paths may be needed to obtain the next closest (and distinct) goal node. Moreover,
we do not need to differentiate between two different paths to the same goal node,
as in [12].

8 We remark on another distinction between finding a single optimal DAG, versus
enumerating the k-best DAGs. In particular, there are techniques that can guarantee
that certain families will not appear in an optimal DAG, which can greatly simplify
the learning problem [8,11,30,31]. However, such families may still appear in a k-th
best DAG, and hence, these techniques may not be directly applicable.
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We further note a distinction between the BN graph and the order graph.
In the BN graph, DAGs are represented explicitly, whereas in an order graph,
DAGs are implicit. In particular, each node Y in the order graph represents just
a single optimal DAG over the variables Y. Hence, the k-th best DAG may not
be immediately recoverable. That is, we may not be able to obtain the k-th best
DAG starting from an optimal sub-DAG—we can only guarantee that we obtain
a single optimal DAG. While it is possible to augment the order graph to find
the k-th best DAG, as in [32], this is not as effective as searching the BN graph,
as we shall soon see.

Finally, we consider another approach to enumerating the k-best DAGs in
our experiments, based on integer linear programming (ILP) [9]. Basically, once
an optimal DAG is obtained from an ILP, a new ILP can be obtained, whose
optimal solution corresponds to the next-best DAG. In particular, we assert
additional constraints that exclude the optimal DAG that we found originally.
This process can be repeated to enumerate the k-best DAGs.

Next, we empirically compare the DP and ILP approaches, with our proposal,
based on A* search in the BN graph.

5.1 Experiments

We compare our approach, which is based on A* search, with two other recently
proposed k-best structure learning algorithms: (1) KBest,9 which is based on
dynamic programming (DP) [32], and (2) Gobnilp,10 which is based on integer
linear programming (ILP) [7].

For each approach, we enumerate the 10-best, 100-best and 1, 000-best BNs,
over a variety of real-world datasets. We impose a 7,200 second limit on running
time. To analyze memory usage, we incrementally increased the amount of mem-
ory available to each system (from 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, and up to
64 GB), and recorded the smallest limit that allowed each system to finish.

Table 2 summarizes our results for A* search on the BN graph, and for the
DP-based approach of KBest. We omit the results for the ILP-based approach
of Gobnilp, which ran out-of-memory (given 64 GB) for all instances, except
for the case of 10-best networks on the wine dataset, which took 2,707.13 s and
under 8 GB of memory.11

We observe a few trends. First, A* search on the BN graph can be over
three orders of magnitude more efficient than KBest, at enumerating the k-
best BNs. For example, when we enumerate the 100-best BNs on the voting
dataset, A* search is over 4,323 times faster. Next, we observe that A* search
is consistently more efficient than KBest at enumerating the k-best networks

9 At http://www.cs.iastate.edu/∼jtian/Software/UAI-10/KBest.htm.
10 At http://www.cs.york.ac.uk/aig/sw/gobnilp/.
11 Note that GOBNILP is known to be more effective in other regimes, for example,

where we can constrain the number of parents that a node can have [21,34]. However,
for our experiments here, we consider the more general case, where we do not assume
such a constraint.

http://www.cs.iastate.edu/~jtian/Software/UAI-10/KBest.htm
http://www.cs.york.ac.uk/aig/sw/gobnilp/
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Table 2. A comparison of the time t (in seconds) and memory m (in GBs) used by
BN graph and KBest. An ×m corresponds to an out-of-memory (64 GB), and an
×t corresponds to an out-of-time (7,200 s). n denotes the number of variables in the
dataset, and N denotes the size of the dataset.

Benchmark 10-best 100-best 1, 000-best

BN graph KBest BN graph KBest BN graph KBest

Name n N t m t m t m t m t m t m

Wine 14 435 0.16 1 5.24 1 0.24 1 162.69 1 0.73 1 4,415.98 4

Nlts 16 16,181 2.84 1 18.84 1 4.01 1 787.52 1 5.67 1 ×t

Letter 17 20,000 13.38 1 42.16 1 15.85 1 1,849.29 2 19.40 1 ×t

Voting 17 435 0.39 1 59.29 1 0.58 1 2,507.72 2 2.85 1 ×t

Zoo 17 101 4.45 1 58.25 1 4.97 1 2,236.13 2 7.71 1 ×t

Statlog 19 752 58.82 4 291.88 1 76.17 4 ×t 78.47 4 ×t

Hepatitis 20 126 14.95 4 675.34 2 29.53 8 ×t 66.96 8 ×t

Image 20 2,310 344.54 8 480.03 2 344.54 8 ×t 344.61 8 ×t

Imports 22 205 3,013.97 32 2,646.41 8 3,167.11 32 ×t 3,167.88 32 ×t

Parkinsons 23 195 3,728.96 64 6,350.58 16 3,730.56 64 ×t 4,125.30 64 ×t

Sensors 25 5,456 ×m ×t ×m ×t ×m ×t

Table 3. The time Th to compute the heuristic function and the time TA∗ to traverse
the BN graph with A* (in seconds).

Benchmark 10-best 100-best 1, 000-best

Name n Th TA∗ Th TA∗ Th TA∗

Wine 14 0.14 0.02 0.14 0.10 0.19 0.55

Nltcs 16 2.83 0.01 3.96 0.05 5.27 0.39

Letter 17 13.36 0.02 15.72 0.13 18.28 1.12

Voting 17 0.36 0.02 0.38 0.19 1.05 1.80

Zoo 17 4.44 0.01 4.93 0.04 7.35 0.35

Statlog 19 58.79 0.03 75.99 0.18 77.58 0.89

Hepatitis 20 14.90 0.05 29.20 0.33 64.56 2.40

Image 20 344.53 0.01 344.53 0.01 344.53 0.08

Imports 22 3,013.39 0.59 3,166.36 0.75 3,166.63 1.26

Parkinsons 23 3,728.31 0.65 3,729.33 1.23 4,117.36 7.94

(except for dataset imports for k = 10). In general, our approach scales to larger
networks (with more variables), and to larger values of k. In fact, KBest appears
to scale super-linearly with k, but A* search appears to scale sub-linearly with
respect to k. These differences are due in part to: (1) the more exhaustive nature
of dynamic programming (DP) (we need to maintain all of the partial solutions
that can potentially be completed to a k-th best solution), and (2) the more
incremental nature of A* (the next best solutions are likely to be in the priority
queue already). Finally, we see that the memory usage of these two approaches is
comparable, although memory usage by A* search appears to be more memory
efficient as we increase the number k of networks that we enumerate.
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Table 4. (1) The number of generated nodes. (2) The number of expanded nodes.
(3) The number of re-expanded nodes (in partial-expansion A*).

Benchmark 10-best 100-best 1, 000-best

Name n Gen Exp Re-exp Gen Exp Re-exp Gen Exp Re-exp

Wine 14 13,156 1,948 0 50,754 8,110 36 254,981 40,992 957

Nltcs 16 1,847 202 0 19,542 2,145 0 173,726 19,784 0

Letter 17 2,613 285 0 19,795 2,174 0 164,794 18,149 0

Voting 17 13,646 1,884 0 89,153 13,836 246 727,944 118,779 4,141

Zoo 17 1,848 205 0 9,994 1,165 0 89,262 10,808 0

Statlog 19 3,603 410 0 30,517 3,589 0 223,069 26,941 68

Hepatitis 20 16,854 2,165 0 114,054 15,897 2 757,727 111,542 816

Image 20 318 43 0 2,546 397 0 31,974 4,903 0

Imports 22 2,217 251 0 20,781 2,416 0 130,426 15,923 84

Parkinsons 23 893 104 0 14,054 1,679 494 134,745 16,197 0

Table 5. The number of times the black-box is invoked to evaluate the heuristic
function.

Benchmark n 10-best 100-best 1, 000-best

Wine 14 896 896 1,067

Nltcs 16 136 402 683

Letter 17 182 472 744

Voting 17 720 1,867 4,779

Zoo 17 289 518 1,679

Statlog 19 230 1,058 1,711

Hepatitis 20 2,235 9,037 26,499

Image 20 124 130 142

Imports 22 234 654 694

Parkinsons 23 155 494 2,065

To gain more insight about the computational nature (and bottlenecks) of
A* search on the BN graph, consider Table 3, which looks at how much time Th

that was spent on evaluating the heuristic function, versus the time TA∗ that
was spent in navigating the BN graph (where t = Th + TA∗, with the total
time t corresponding to those reported in Table 2). Table 4 further reports the
number of nodes generated (the number of nodes inserted into the open list)
and expanded by A* search. First, we observe that the vast majority of the time
spent in search is spent in evaluating the heuristic function. This is expected,
as evaluating our black-box heuristic function is relatively expensive. Next, we
observe that the number of nodes expanded is relatively small, which suggests
that our black-box heuristic is indeed powerful enough to efficiently navigate
the large search space of the BN graph. We also remark again that due to the
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caching of heuristic values (which we discussed earlier), the number of times that
our black-box is invoked, can be much smaller than the number of times that a
node is generated. This is illustrated in Table 5.

6 Conclusion

Underlying nearly all score-based methods for learning Bayesian networks from
data, is the property of score decomposability. This has been true, since the
first Bayesian network learning algorithms were proposed, over two decades ago.
While the property of score decomposability has been fruitfully exploited over
this time, there is a notable void in the structure learning landscape, in the
support of learning with non-decomposable scores. This includes a general lack
of support for the integration of more expressive, but non-decomposable forms
of prior knowledge.

In this paper, we take a step towards a more general framework for Bayesian
network structure learning that targets this void. We proposed a new search
space, called the BN graph, which explicates all Bayesian network structures. We
proposed to navigate this tremendously large search space, with the assistance of
a (nearly) omniscient oracle—any state-of-the-art system for Bayesian network
structure learning can be used as this oracle. Using heuristic search methods,
such as A* search, we showed how this framework can be used to find optimal
Bayesian network structures, using non-decomposable scores (even when our
oracle relies on decomposable scores). To our knowledge, ours is the first system
for finding optimal DAGs using order-modular priors, in particular. Further, we
showed that enumerating the k-best DAGs is very simple on the BN graph, where
empirically, we observed three orders of magnitude improvement, compared to
existing approaches.
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for their comments on an earlier version of this paper. This work was supported in part
by ONR grant #N00014-12-1-0423 and NSF grant #IIS-1514253.

A Proofs for Sect. 4.2

Proof (Theorem 1). The total cost of a path from the root G0 to a leaf Gn is:

∑

Gi→Gj

score(XjUj | D) − log
Pr j(Gj)
Pr i(Gi)

=
∑

Gi→Gj

score(XjUj | D) − logPr j(Gj) + logPr i(Gi)
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= score(X1U1 | D) − logPr1(G1) + logPr0(G0)
+ score(X2U2 | D) − logPr2(G2) + logPr1(G1) + . . .

+ score(XnUn | D) − logPrn(Gn) + logPrn−1(Gn−1)
= score(G | D) − logPrn(Gn)

as desired. ��
Proof (Theorem 2).

h(Gi) = min
Gn:Gi�Gn

∑

XU∈Gn−Gi

score(XU | D) + min
Gn:Gi�Gn

− log
Prn(Gn)
Pr i(Gi)

≤ min
Gn:Gi�Gn

( ∑

XU∈Gn−Gi

score(XU | D) − log
Prn(Gn)
Pr i(Gi)

)

= min
Gn:Gi�Gn

g(Gn) − g(Gi)

Since heuristic function h lower-bounds the true cost of to a goal node, it is
admissible. ��

Below we consider the correctness of Algorithm 1.

Lemma 1. In Algorithm1:

1. all Gi that generate Gi+1 are extracted from H before Gi+1 is extracted;
2. when (Gi+1, fi+1, li+1) is extracted from H,

fi+1 = score(Gi+1|D) − log #Gi+1 + h(Gi+1),

and li+1 is the number of linear extensions of Gi+1, i.e., #Gi+1.

where h(Gi) = h1(Gi) − ∑n
j=i+1 log j.

Proof. Consider a minimum item (Gi+1, fi+1, li+1) extracted from H. Below we
show by induction that (1) all Gi such that Gi generates Gi+1 are extracted
from H before Gi+1 (2) fi+1 = score(Gi+1|D) − log #Gi+1 + h(Gi+1), and li+1

is the number of linear extensions of Gi+1, which is also the number of paths
from G0 to Gi+1.

For i = 0, clearly (1) and (2) are true. Assume (1) and (2) are true for all
(Gi, fi, li). Then when (Gi+1, fi+1, li+1) is extracted, li+1 is the number of paths
from G0 to Gi+1 that pass the Gi extracted from H before Gi+1. To see this,
note that l is the number of path from G0 to Gi. Moreover, since li+1 is the
number paths from G0 to Gi+1 that pass the Gi extracted from H before Gi+1,
when (Gi+1, fi+1, li+1) is in H,

fi+1 = score(Gi+1|D) − log
∑

Gi≺Gi+1

N(G0 → . . . → Gi → Gi+1) + h(Gi+1),
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where Gi ≺ Gi+1 denotes that Gi is extracted before Gi+1, and N(G0 → . . . →
Gi → Gi+1) denotes the number of paths G0 → . . . → Gi → Gi+1. Note that
fi+1 decreases as more Gi are extracted.

Consider when (Gi, fi, li) and (Gi+1, fi+1, li+1) are both in H. Below we show
that all Gi that generates Gi+1 are extracted from H before Gi+1. Consider

fi = score(Gi|D)

− log
∑

Gi−1≺Gi

N(G0 → . . . → Gi−1 → Gi) + h1(Gi) −
n∑

j=i+1

log j

fi+1 = score(Gi+1|D)

− log
∑

G′
i≺Gi+1

N(G0 → . . . → G′
i → Gi+1) + h1(Gi+1) −

n∑

j=i+2

log j

We simply need to show fi+1 > fi. Since h1 is a consistent heuristic function for
learning with score, score(Gi+1|D) + h1(Gi+1) ≥ score(Gi|D) + h1(Gi). Then we
only need to show

(i + 1)
∑

Gi−1≺Gi

N(G0 → . . . → Gi−1 → Gi)

>
∑

G′
i≺Gi+1

N(G0 → . . . → G′
i → Gi+1)

First, for any pair of DAGs Gi and G′
i that can generate a DAG Gi+1, there

exists a unique DAG Gi−1 that can generate both Gi and G′
i. For each G′

i on the
right-hand side, there thus exists a corresponding (and unique) Gi−1 on the left-
hand side that can generate both G′

i and Gi. Further, since G′
i was expanded,

Gi−1 must also have been expanded (by induction). For each such Gi−1, if G′
i

has a linear extension count of L, then Gi−1 must have at least a linear extension
count of L/i, and hence the corresponding N(G0 → . . . → Gi−1 → Gi) is at
least L/i. On the left-hand side, we the corresponding term is thus at least
(i + 1) · L/i > L. Since this holds for each element of the summation on the
right-hand side, the above inequality holds.

Since all Gi that generates Gi+1 are extracted from H before Gi+1, as a
result, fi+1 = score(Gi+1|D) − log #Gi+1 + h(Gi+1), and li+1 is the number of
all paths from G0 to Gi+1.

Proof (of Theorem 4). To see the correctness of the algorithm, simply note that
by Lemma 1, when (Gi+1, fi+1, li+1) is extracted from H, i.e. the open list, fi+1 =
f(Gi+1).

Proof (of Theorem 3). By Lemma 1, Algorithm 1 can count the number of linear
extensions.
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