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Preface

Versatile and effective techniques for knowledge representation and reasoning
(KRR) are essential for the development of successful intelligent systems. Many rep-
resentatives of next-generation KRR systems are founded on graph-based knowledge
representation formalisms and leverage graph-theoretical notions and results. The goal
of the workshop series on Graph Structures for Knowledge Representation and Rea-
soning (GKR) is to bring together researchers involved in the development and
application of graph-based knowledge representation formalisms and reasoning
techniques.

This volume contains the revised selected papers of the fourth edition of GKR,
which took place in Buenos Aires, Argentina, on July 25, 2015. Like the previous
editions, held in Pasadena, USA (2009), Barcelona, Spain (2011), and Beijing, China
(2013), the workshop was associated with IJCAI (the International Joint Conference on
Artificial Intelligence), thus providing the perfect venue for a rich and valuable
exchange.

The scientific program of this workshop included many topics related to
graph-based knowledge representation and reasoning such as argumentation, concep-
tual graphs, RDF, representations of constraint satisfaction problems and many more.
All in all, the fourth edition of the GKR workshop was very successful. The papers
coming from diverse fields all addressed various issues for knowledge representation
and reasoning and the common graph-theoretic background allowed to bridge the gap
between the different communities. This made it possible for the participants to gain
new insights and inspiration.

We are grateful for the support of IJCAI and we would also like to thank the
Program Committee of the workshop for their hard work in reviewing papers and
providing valuable guidance to the contributors. But, of course, GKR 2015 would not
have been possible without the dedicated involvement of the contributing authors and
participants.

November 2015 Madalina Croitoru
Pierre Marquis

Sebastian Rudolph
Gem Stapleton
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Designing a Knowledge Representation Tool for Subject
Matter Structuring

Giovanni Adorni(✉) and Frosina Koceva(✉)

University of Genoa, Genova, Italy
adorni@unige.it,frosina.koceva@edu.unige.it

Abstract. Relying on pedagogical theories of subject matter structuring and
presentation, this paper focuses on the design of a knowledge representation tool
for the scheming and organization of educational materials. The idea originates
from the Educational Concept Maps model - logical and abstract annotation
system, developed with the aim of guaranteeing the reusability of both teaching
materials and knowledge structures; in fact, the knowledge structure could be
reused for design of different courses according to the learner target. A sequence
of concepts characterizing the subject matter under design (lesson or entire
course) define a teaching/learning path through the map. It represents the output
of the design process of lesson plan, which could be imported in a text-editor, in
a LCMS, or presented as web pages. The final goal is to develop a tool assisting
the teacher in the daily design of lesson plans via a pliable structured model of
domain knowledge.

Keywords: Knowledge representation · Knowledge management · Instructional
design · Topic maps

1 Introduction

A student facing a computer terminal reads/listens materials, answers questions or solve
problems displayed on the screen by manipulating the keyboard or through multimedia
interface. This is a common picture in the case of e-learning processes but which can
also be representative of cases of the wider use of digital technologies in everyday
teaching practice at school. The questions/problems probe the student’s knowledge,
skills and competences in a scholarly subject (such as arithmetic, history, grammar,
foreign language, etc.), and because of this assessment, the computer proceeds to teach
didactic materials to the student.

In this scenario, didactic materials play a key role as well as how such materials are
organized and structured.

Between the different theories available in the literature (see, for example, [1, 2]),
Knowledge Space Theory (KST) [3] allows the representation of a network of possible
Knowledge States organizing the relevant scholarly subject (i.e., the Subject Matter).

It is worth noting that a Knowledge State is not a quantitative estimate of how much
a student has learned. Rather, it is a precise description of what the student knows and
does not know at a given moment. According to this theory, a student’s competence in
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the subject matter at a given instant of her/his learning process may be identified with
one of these states, which is a collection of the concepts (or skills, facts, problem-solving
methods, etc.) that the student has mastered.

Learning Space Theory (LST) is a special case of KST where the Knowledge State
of a student reveals exactly what she/he is ‘ready to learn’ (see [4] for a discussion on
this topic); such state is then represented by the subset of items in the domain that
she/he is capable of answering correctly.

The collection of all the Knowledge States establish a Knowledge Space that, by
convention, always contains at least (1) the empty state, that is, the state with no items,
corresponding to a student knowing nothing in the subject matter, or (2) the entire
domain, which is the state of a student knowing everything in the subject matter.

While LST is mainly focused on assessment aspect, which is to gauge the knowledge
state of the student as accurately as possible, in this paper we face the problem of
organize and structure the subject matter discussing a model, Educational Concept Map
[5], and an instructional authoring system based on that model. Such system, called
ENCODE – ENvironment for COntent Design and Editing, integrates two different
models into a same environment. The pedagogical model is that presented by Stelzer
and Kingsley in “Theory of Subject Matter Structure” [6]. The reference model for the
representation of the subject matter is that of subject centric networks with specific focus
on Topic Maps [7].

The rest of the paper is structured as follows. Next section is a surfing on the literature
of reference; Sect. 3 introduce the Educational Concept Map model; Sect. 4 presents the
architecture of the ENCODE system. Section 5 illustrates how the Educational Concept
Map model has been implemented by means of Topic Maps. In the last section we report
same concluding remarks.

2 Surfing the Literature

Since their origins, Knowledge Representation theories have been applied in the context
of Computer-Assisted Instruction with the aim of supporting Intelligent Tutoring
Systems (see for example [8, 9]) by means of a formal representation of: the subject
matter to be taught; the educational goals; the starting and final level of knowledge and
competencies; and the learning model [10].

Concerning the first issue, Stelzer and Kingsley [6] proposed a comprehensive theory
for organizing and formally describing subject matter structures. In their theory, founded
on the paradigm of axiomatics, these structures are composed by content (content
elements consisting of Primary Notions, Secondary Notions, Basic Principles and
Established Principles) and tasks. Moreover, they introduced the notion of dependency
between content and task components to restrict the order in which contents can be
presented in the course of the learning processes.

The new millennium has seen a revamp of interest for those studies, related to the
representation of knowledge content structures in e-learning context. The major contri‐
bution to these topics has come from the studies on Educational Modeling Languages
(EMLs) [11] and on the Semantic Web field [12].

2 G. Adorni and F. Koceva



EMLs provide a formal conceptualization of the learning process describing learning
units to promote the reuse and the exchange of these descriptions among different e-
learning environments. Martínez-Ortiz and colleagues [13] classified EMLs into the
following categories: evaluation languages; content structuring languages; and, finally,
activity languages. Among the “content structuring languages” the following can be
identified: Learning Material Markup Language (LMML) by University of Passau [14];
TArgeted Reuse and GEneration of TEAching Materials (Targeteam) by Universität der
Bundeswehr [15]; AICC Course Structure Data Model [16]; ADL Sharable Content
Object Reference Model 2004 [17].

LMML is based on the Passau Teachware Metamodel that offers a general descrip‐
tion of the modular structure of educational contents. According to it, educational
contents are organized into a hierarchy of Modules. The Passau Teachware Metamodel
supports predefined associations, such as defines, illustrates, and references. Moreover,
prerequisites can be expressed using corresponding associations among modules and,
with tasks and objectives, can be incorporated using appropriate meta-data.

The Targeteam language [15], built around the XML-based language TeachML,
enables the management of knowledge contents in a structured and interrelated way. It
is based on the following assumptions: a simple linear sequence of learning contents is
not sufficient to support meaningful learning processes; and, consequently, the subject
matter structure is crucial for providing an understanding for learners. TeachML consists
of several XML sublanguages for different purposes; to support: an abstract structuring
of contents, the integration and adaptation of other modules, references to other modules,
and different kinds of contents. It is worth noting that LMML and Targeteam-TeachML
do not enable instructional designers to create different paths throughout the course [18].

AICC [16] provides a description of sequencing in a course structure. The parts of
the course that can be rearranged to define the course order and structure (organizing it
into logical sections or units) are referred to as the following structure elements: assign‐
able units (AU, also referred to as a lesson) and the blocks (a group of lessons and other
blocks). Another element to be considered in defining the prerequisites for a course is
the objective that can be associated with AUs and Blocks. The sequencing within a
course is controlled using prerequisites, a set of requirements that must be satisfied by
a student before entering a new AU.

ADL [17] defines the technical foundations of a Web-based Learning Management
System; In 2009 it has released SCORM 2004 4th edition. According to it, the subject
matter is organized into a hierarchical structure. Each learner’s experience with the same
knowledge content structure may be different, depending on the sequencing information
that was defined by the content developer and on the learner’s specific interactions with
content objects.

Felix and Paloma [19] presented a framework based on an instructional application
model, called Xedu, that provides entities representing instructional components and
that will drive the instructional design process.

Pecheanu et al. [20] proposed a theoretical model, named COUL-M (COnceptual
Units’ Lattice Model), for representing the knowledge domain of a given instructional
system. The main elements of their model are the Conceptual Unit, a group of related
concepts belonging to the knowledge domain; the Conceptual Structure, and the
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Conceptual Transition Path, a set of conceptual units interconnected within a Concep‐
tual Structure. To apply this model, an instructional designer should start from an anal‐
ysis of the pedagogical relations among domain’s concepts, such as the Precedence
Relation which concerns the order of concepts within a course; the Contribution Relation
which concerns the explicit contribution of a concept in the presentation of another
concept.

As previously said, a great contribution to the problem of knowledge structure repre‐
sentation in learning design has come from the field of Semantic Web (typically, such
researches are based on an ontological approach to the conceptualization process – see
for example [21, 22]).

Devedžić [23] classifies educational ontology into domain ontology (describing
essential concepts, relations, and theories of a specific domain, not necessary only for
educational purposes), task ontology (specifying features of problem solving processes),
teaching strategy ontology (describing the knowledge and principles underlying peda‐
gogical actions and behaviors), learner model ontology (representing learner’s perform‐
ances and cognitive traits), interface ontology (specifying e-learning system’s adaptive
behaviors and techniques at the user interface level), communication ontology (defining
the semantics of message content languages), and, finally, educational service ontology
(providing a semantic description of educational services and the underlying logic).

It is interesting to notice that none of these categories concerns the representation of
learning content structure (and learning goals), regardless of its knowledge domain. A
learning content structure ontology should be based on several kinds of links that repre‐
sent different types of relationships among subject matter topics; the most common
associations in these ontologies are “prerequisite links”, representing the fact that a given
concept has to be learned before another one. Other common relationships are traditional
semantic links, such as “is-a” and “part-of” (categorizing topics into classes and
subclasses). In more elaborate ontologies, the formal representation can include a
vocabulary to classify educational units, such as definition, example, or exercise [22].

Stojanovic et al. [24], referring to ontology-based metadata in the context of e-
learning environments, discuss the use of metadata for describing the structure of
learning materials. In this respect, several types of structuring relations between chunks
of learning material may be identified, such as Prev, Next, IsPartOf, HasPart, Refer‐
ences, IsReferencedBy, IsBasedOn, IsBasisFor, Requires, IsRequiredBy. On the other
hand, it is interesting to put in evidence that such a kind of metadata representing rela‐
tionships also appears in conventional metadata models, such as the IEEE Learning
Object Metadata at the Relation level [25].

An example of content structure ontology, related to the learning domain, has been
proposed by Jovanović et al. [26] whose approach is based on the Abstract Learning
Object Content Model (ALOCoM) ontology. This latter defines concepts and relation‐
ships that enable formal definition of the structure of a learning object.

4 G. Adorni and F. Koceva



3 Educational Concept Maps

3.1 Overview

The goal of this work is to develop a system that assists the teacher for the design of a
course structure, i.e. a network of Knowledge States (nodes), and related teaching mate‐
rials associated to each state (node), with the aim of guaranteeing the reusability of both
network and materials. The network of knowledge states can be of two types: an ECM –
Educational Concept Map, representing a general structure of the domain of knowledge,
or a CCM - Course Concept Map, representing an instance of that domain.

An ECM is a formal representation of the domain of knowledge in the context of
learning environments. It is a logical and abstract annotation model created with the aim
of guaranteeing the reusability of the knowledge structure, as well as of the teaching
materials associated to each node of the structure. ECM model has been designed taking
into account the pedagogical requirements defined by Educational Modeling Language
research group [27], namely:

1. pedagogical flexibility: the model must be able to describe the structure of instruc‐
tional contents regardless of a specific learning theory;

2. learner centrality: the instructional content design process must be based on
students’ profile and needs;

3. centrality of learning objectives: the instructional content design process must be
based on a preliminary definition of learners’ pedagogical objectives;

4. personalization: the model must be able to design learning contents and resources
in a flexible way, consistently with learners’ profile;

5. domain-independence: the model must be able to describe instructional content
regardless of its disciplinary nature;

6. reusability: the model must allow to define and de-contextualize learning content
structures and to reuse these in other contexts;

7. interoperability: the model must be language-independent, so that it can be imple‐
mented through different knowledge representation languages and exported in
different learning environments;

8. medium neutrality: the instructional contents design process must be medium
neutral, so that it can be used in different publication formats;

9. compatibility: the model must fit in with existing standards and specifications on
learning resources;

10. formalization: the model must describe instructional content according to a formal‐
ized model, so that automated processing is possible.

Figure 1 represents a high level view of the activity diagram of the ENCODE system.
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Fig. 1. Activity diagram of the ENCODE system

Where a user may work on a previously defined ECM (i.e., import) or may “create”
a new structure of a domain knowledge (i.e., a new ECM), and then, an instance of that
domain (i.e., a CCM). Throughout the following sections we will describe the activity
of that figure.

6 G. Adorni and F. Koceva



3.2 ECM Model Structure

The ECM model has been developed by means of an ontological structure characterized
by the integration of hierarchical and associative relationships. Firstly, it asks teachers
and instructional designers to focus their attention on learners’ profile (in particular
educational background, learning and cognitive styles) and objectives. Taking into
account these elements, the model suggests how to identify, within the discipline’s
subject matter, the key concepts and their relationships to identify effective strategies
of contents presentation and to support the activation of meaningful learning processes.

According to the ECM model (see Fig. 2), a profiled learner has a Lesson Plan with
a goal identified by an objective (or a composition of objectives) that is (are) achieved
by a Unit of Learning (UoL), or by a composition of UoLs. A UoL is characterize by an
Effort, i.e., an evaluation of the needed commitment that the learner requires in dealing
with the learning materials. A UoL is composed by key concept and their relationships,
where the key concepts can be of two types:

• Primary Notion Type - PNT when the concept is the starting point of a UoL and
identifies the “prerequisites”, i.e., the concepts that a student must know before
attending a given UoL.

• Secondary Notion Type - SNT identifies the concepts that will be explained in the
present UoL (this kind of concepts go with learning materials).

Fig. 2. The ECM model

The ECM model has been developed by means of an ontological structure charac‐
terized by the integration of hierarchical and associative relationships. Thus, four educa‐
tional relations are defined:

Designing a Knowledge Representation Tool 7



• is-requirement-of: denoted as is_req (x, y) a propaedeutic relation, e.g., it may be
used with the aim of specifying the logical order of contents, i.e., used for creating
learning linearized paths;

• is-item-of: denoted as is_item (x, y), representing hierarchical structure of an aggre‐
gation or membership type;

• is-related-to: denoted as is_rel (x, y), represents a relation between closely related
concepts;

• is-suggested-link-of: denoted as is_sug (x, y), relates a main concept with its in-depth
examination, e.g., this relationship type may be used in order to suggest in-depth
resources.

A CCM is the structure of the subject matter, e.g., a specific teacher vision of the
course domain tailored for a specific class of students. As to reusability, the ECMs are
designed to maintain the concept layer separate from the resources, making it possible
to provide courses with the same CCM from the ECM but with different resources, as
in the case of a course for beginners and a course on the same argument for advanced
students.

4 The ENCODE Architecture

The ECM model is the theoretical framework for the design of ENCODE application,
currently in the implementation phase, with some innovative features described in the
following of this section. Starting from an ECM a user can:

• publish a CCM on the Web, where the relationships suggest the different navigation
strategies of the underlying subject matter.

• generate a linearized path, useful, for example, for a teacher to produce a lesson or
a document about a given subject matter. In this latter case, a Suggested Paths
Strategy is necessary, to be expressed by means of is_req relationships. The linear‐
ized path will be than used to create didactic materials on such subject (by means of
a text editor) or to generate a course through a Learning Content Management System
(LCMS) as explained at the end of this section.

To explain the approach behind the Suggested Paths Strategy, let us also consider
the idea of preparing a lesson on a given subject matter, using the previous ECM model.
The is_req relationships order the topics T of the lesson according to the propaedeutics
rules, therefore in the graph G = (T, E) there cannot be loops, thus obtaining a Direct
Acyclic Graph, where T are nodes and E arcs, with: (ti, tj) ∈ E ↔ is_req(ti, tj). In this
context, a Topological Order on a CCM is a sequence S = {s1, s2, … s|T|} where each
element T appears only once and cannot be preceded by any of its successors; given pair
of nodes (ti, tj) in S if there exists an arc from ti to tj of type is_req, it follows that the
node ti is before the node tj in the list: ∀(ti, tj) ∈ S: (ti, tj) ∈ E → i < j.

The algorithm implementing the Topological Order is derived by Topological sorting
algorithm [28] with a main modification in order to get all the possible sequences of
topological sorting. The possible sequences are obtained by permutations between topics
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without invalidating the prerequisite constraint. Therefore we let the teacher to choose
which of these sequences better answers the accomplishment of the didactic objectives.
The result of topological ordering is a XML structure.

For as much the topics are topologically ordered this doesn’t take into account the
distance factor in between the topics, thus a signaling (denoted as Topic Aider - TA) is
introduced in the sequence S before the distant topic to remind its subject. The TA is a
suggestion for the teacher to introduce an exercise, an example, a text or a valuation test.
This TA is also reported in the final sequence in order to highlight not only to the teacher,
but also to the student the place where s/he should evoke a determinate argument. The
choice to have not a single path but a list of paths to suggest to the author leaving the
final choice to the author him/herself, is also to answer to the non-equifinality problem
posed in [29]. The “suggested” order lists is on the basis of the principle of reducing as
much as possible the distance between two topics of the list that are contiguous on the
graph.

Furthermore, for better presentation of the knowledge structure and effective navi‐
gation a cluster with a name Nc is defined, by grouping all the topics ti which are in an
is_item relationship, i.e., is_item(ti, tj) with a common topic tj. More formally we define
a cluster C = {Nc, Tc} as a non-empty finite set of topics Tc, where ∀ti ∈ Tc and ∃tj∉

Tc where is_item(ti, tj).
The ENCODE (see Fig. 3) is web based application designed on top of the Ontopia

Engine [30] by implementing the specific constraints of the ECM model. Taking into
account the target end-user and retaining that graph-based knowledge representation is
more intuitively understandable, ENCODE will implement a graph-based interface.

Fig. 3. ENCODE Architecture
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Providing a graphical visualization/navigation and editing interface lets the map-
designer to incrementally populate the ECM/CCM.

The End-user layer provides also an export possibility of the ECM or of the topo‐
logical order, i.e., the linearized lesson plan. Thus, for editorial purposes the topological
order can be exported in a XML format, which maintains the structure of the lesson plan
and makes it possible to be imported in a text editor for further adaptations. The XML
format can be imported in LCMS, giving an initial shape of the course and the learning
materials. Last but not least, form the XTM format (serialization of the ECM map, see
ECM representation) html pages can be generated transforming the propaedeutic order
in navigational.

The API Layer is a JSP tag library and Java API for developing a web-based interface
based on topic maps. For the storing and providing access to the educational topic maps
the underlying layer is used, i.e., the engine layer.

The engine is a set of Java APIs which with the ENCODE extension manages both
the ECM; the CCM; provides utilities for the consistency checks, for the generation of
learning paths (implementation of the topological ordering algorithm), etc. It can keep
maps in memory or store them in a relational database.

5 The ECM Representation

In order to implement the ECM-model, TM has been chosen. TM is an ISO multi-part
standard [7] designed for encoding knowledge and connecting this encoded knowledge
to relevant information resources. The standard defines a data model for representing
knowledge structures and a specific XML-based interchange syntax, called XML Topic
Maps (XTM) [31]. The main elements in the TM paradigm are: topic (a symbol used to
represent one, and only one, subject), association (a relationship between two or more
topics) and occurrence (a relationship between a subject and an information resource).
Therefore, two layers can be identified into the TMs paradigm:

• The knowledge layer representing topics and their relationships, allowing to construct
our network of knowledge states (topics);

• The information layer describing information resources, to be attached to the ECM
topics.

Each topic can be featured by any number of names (and variants for each name);
by any number of occurrences, and by its association role, that is a representation of
the involvement of a subject in a relationship represented by an association. All these
features are statements and they have a scope representing the context a statement is
valid in. Using scopes it is possible to avoid ambiguity about topics; to provide different
points of view on the same topic (for example, based on users’ profile) and/or to modify
each statement depending on users’ language, etc. Therefore, to solve ambiguity issues,
each subject, represented by a topic, is identified by a subject identifier. This unambig‐
uous identification of subjects is also used in TMs to merge topics that, through these
identifiers, are known to have the same subject (two topics with the same subject are
replaced by a new topic that has the union of the characteristics of the two originals).

10 G. Adorni and F. Koceva



The TM data model uses an infoset formalism plus UML diagrams (for illustration
purposes) to describe the Topic Maps. We define the design rules of the ECM model
via ECM Schema and tolog rules, i.e., tolog is a language for querying and updating
topic maps. Thus, by defining the constraints we give an educational interpretation of
the topic map enhancing it with pedagogical concepts, e.g., prerequisite structure,
Primary Notion, Learning Outcomes, Effort. The ECM schema defines a collection of
typing topics for our ECM and the specific constraints on them where a constraint defines
either a way in which types can be combined in the TM or a way in which a schema
type and property values can be combined. One of the limitation in our model in respect
of the TM model is that the Association in ECM are binary - involve only two topics,
instead of the n-ary association in the TM model. If we denote by T the set of educational
topics, and by R the set of types of educational association, for x, y ∈ T and x ≠ y, r(x,
y) is a generic educational association type member of R = {is_req(x, y), is_item (x, y),
is_rel (x, y), is_sug(x, y)}. The set R of four education association types constraints the
interaction between the topics representing the domain of interest in order to support the
designer of the educational map. They have been selected with the aim of allowing
teachers to create different learning paths (with or without precedence constraints among
topics). More precisely, the association types are:

• is_req (x, y) stands for “topic x is a requirement of topic y”. Identifies a asymmetric
(1), transitive (2) and propaedeutic association between topic x with role prerequisite
and y with role subsidiary;

• is_item (x, y) identifies a hierarchical asymmetric (4) association among two topics
x and y, where x is an individual topic (role individual) and y is its more general topic
(role general). It can be used also to identify a membership relationship;

• is_rel (x, y) identifies a symmetric (5) association among closely related topics; where
topic x is of role linked and topic y of role linked (e.g., it may be used with the aim
of creating learning paths without precedence constraints);

• is_sug (y, x), identifies an asymmetric (3) association among a topic y with role main
and it’s in-depth examination x with role deepening. The deepening topics are leafs
in the map (7)

(1)

(2)

(3)

(4)

(5)

(6)

Another constraint of ECM is that two topics x and y can be related only by one type
of association (7)

Designing a Knowledge Representation Tool 11



(7)

We defined an Education Topic Type, which is a super type of the PNT and the
SNT. The PNT as mentioned is the starting point of a unit of learning, i.e., identifies
the concepts that a student must know before attending a given unit of learning. Thus
the PNT’s will not have learning materials and they do not introduce new knowl‐
edge. The SNT instead identifies the concepts that will be explained in the present
unit of learning (this kind of topics will have specific learning materials associated
by using suitable occurrence type).

By the occurrence types, we represent a special relationship between the topic and
its information resource. We define five Occurrence Types to specify the nature of the
relationship that the topic has with the information resource: Prerequisites, Learning
Outcomes, Awareness, Understanding, and Innovation. The values of the Prerequisite
and Learning Outcome occurrence type represents all the prerequisites and learning
outcomes of the educational topic. The URLs of the learning materials associated to an
education topic are the values of the Awareness, Understanding and Innovation occur‐
rence types. In this manner, we classify the learning materials (usually Learning Objects)
in respect of the target of students for the specific CCM. To the learning materials, we
also associate a number representing the Effort, e.g., the time effort necessary for
learning the material. Once the CCM is created the single efforts are accumulated in the
UoL Effort.

The constraint may or may not require the existence of some properties. Thus, all
instances of a concept of PNT may take a part of relationship of type is_req with a role
prerequisite, or is_sug with a role main, or is_rel with role linked and must have Prereq‐
uisite and Learning Outcome occurrence. While all instances of a concept of SNT may
take any role in a relationship (r(x, y) ∈ R) and must have Prerequisite and Learning
Outcome occurrence and at list one occurrence for the learning materials of type Aware‐
ness, Understanding and/or Innovation

In addition to the validation of the map against the ECM schema, we also express
design rules for our model by defining specific tolog rules. Some examples of constraints
of this type are:

• On deletion of a topic y where ∃ x, y, z is_req(x, y) Λ is_req(y, z) first a new association
is_req(x, z) is created than a check of existence of a path(x, z) is made. If ∃ path(x,
z) than is_req(x, z) is deleted, else is_req(x, z) remains.

• On adding a is_req(x, y) a verification of existence of a path(x, y) is made, if ∃ path(x,
y) than the is_req(x, y) is deleted.

• On adding a topic x and relating the topic with is_req(x, y) or is_item(x, y), the values
of the Learning Outcomes of x are “propagated”/added to the list of existing values
of Learning Outcomes of y, and “propagated”/added to ∀ z ∈ path(y, z).

• On some types of inconsistency, e.g., patterns not found in the ECM, an inconsistency
property flag is added.

12 G. Adorni and F. Koceva



6 Conclusions

The idea behind this work has been stimulated by the real needs of a community of
teachers to have model and tools that facilitates some phases of instructional design.
Since the concept representation is independent of its implementation, ECM lends itself
for reusability of both teaching materials and knowledge structure. Thus the knowledge
structure (network of knowledge states) could be reused for the design of a different
course according to the learner target. Moreover, the underlying model, ECM, is
grounded on pedagogical reflections. For these reasons we believe that this model will
have a good acceptance by the community of teachers we plan to select for the testing
phase.
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Abstract. Ontology alignment is essential to enable communication in
a multi-agent system where agents have heterogeneous ontologies. We
use language games as a decentralised iterative ontology alignment solu-
tion in a multi-agent system where ontologies are grounded in mea-
surements taken in a dynamic environment. Rather than attempting
to ground ontologies through physical interaction, we design language
game strategies that involve exchanging descriptions of the environment
as graph patterns and interpreting descriptions using graph matching.
These methods rely on structural similarity as evidence for ontology
alignment. We compare various language game strategies with respect
to communication overhead and alignment success and provide prelimi-
nary results which show that ontology alignment using language games
that rely on descriptions alone can result in perfect alignments with only
modest communication overhead. However, this requires that environ-
mental dynamics are reasoned about when providing descriptions.

1 Introduction

Successful communication in a multi-agent system is paramount to successful
coordination. To this end, ontologies make the semantics of a language explicit, in
a machine readable form, that facilitate in the interpretation of communication.
However, when ontologies are heterogeneous, an alignment between them must
be found. In this paper, we explore graph-based ontology matching solutions to
this problem, where structural similarity between ontologies serves as evidence
for ontology alignment. We do this in the context of a multi-agent simulation
where ontologies are grounded in measurements of a dynamic environment.

We adapt ‘language games’ popularised by [12] as a coordinated communica-
tion process that serves as a decentralised, iterative ontology alignment solution.
Agents perform communication tasks to distinguish between different elements
of their environment by selecting, communicating and reasoning about graph
patterns and performing graph matching. Our language games are novel in that
they are based on finding overlapping descriptions of a shared environment with-
out relying on alignment through physical interaction alone.

Language games for the purpose of ontological alignment are reduced to
three subproblems, target selection, context selection and correspondence induc-
tion. Target selection consists of selecting a label that agents will attempt to
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 15–31, 2015.
DOI: 10.1007/978-3-319-28702-7 2
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discover an alignment for. Context selection consists of selecting a graph pattern
whose structure distinguishes the selected target label from other labels. Cor-
respondence induction consists of inducing correspondences between ontologies
based on reasoning about structural similarity between local and communicated
knowledge. We use a fixed target selection strategy in this paper and instead
focus on context selection and correspondence induction. In particular we explore
the quality of different solutions to these problems with respect to correctness
of alignments and communication overhead. We believe that graph-based struc-
tural similarity can resolve practical, task oriented, ontology alignment problems
if we assume a sufficiently distinctive environment, that agents structure their
knowledge in the same way, and that agents co-exist within and have overlapping
knowledge of, their environment.

We only address instance matching and provide fixed and correct alignments
between other elements of ontologies such as concepts and relations. We explore
two forms of ontological heterogeneity, coverage and terminological mismatch,
as described by [7]. Difference in coverage of ontologies results from perceiving
the environment at the same level of granularity, but, as a result of incomplete
information, ontologies represent a partial perspective of a dynamic environment.
Terminological mismatch is caused by autonomous labelling of instances and
is inevitable given that agents experience their environment in isolation and
discover entities independently.

The approach detailed in this paper is applicable to any ontology match-
ing problem where structural similarity of ontologies is indicative of similar-
ity between ontological elements. We have not addressed a real-world ontology
alignment problem. Instead, we favour well-defined, randomly generated ontol-
ogy matching problems that require robust solutions with respect to variations
among generated ontologies. We regard our approach as a first step towards fur-
ther principled and methodical exploration of language games as a solution to
distributed ontology alignment along the dimensions of ontology heterogeneity,
agent behaviour and communication requirements.

We provide preliminary experimental results in a simulated grid-world-like
scenario which show that ontology alignment using language games that rely on
descriptions alone can result in near perfect alignments. However, this requires
that environmental dynamics are reasoned about when providing descriptions
and that partial matching of descriptions is used when there are inconsistencies
between received descriptions and local knowledge.

The remainder of this paper is structured as follows: In Sect. 2, we contex-
tualise our work against related literature. In Sect. 3, we provide a formal defi-
nition of the ontology alignment problem within a multi-agent systems context.
In Sect. 4, we describe our proposed solution. Section 5 outlines our experimen-
tal methodology. We then compare the performance of various language game
strategies in Sect. 6. Finally, we summarise our findings and suggest possible
extensions to this work in Sects. 7 and 8, respectively.
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2 Related Work

Ontology matching [7] is the automatic/semi-automatic discovery of semantic
correspondences between heterogeneous ontologies. Existing agent-based ontol-
ogy matching approaches involve some form of interaction between agents,
where agents negotiate the meaning of the correspondences between ontologies
[5]. The ontologies that these techniques are applied to are typically Semantic
Web ontologies, as initially described by [8]. In general, both agent-based and
non-agent-based approaches to ontology matching rely on the assumption that
ontologies are constructed by humans. This allows for a rich plethora of natural
language processing tools and resources to be used. However, when ontologies are
learnt autonomously from non-human perceptions and labelled in an artificial
language, this assumption does not hold.

The ‘symbol grounding problem’ as described by [10] is the problem of how
symbols ‘acquire’ meaning. In robotics and intelligent systems, this problem is
that of grounding symbols in data measured by physical sensors. There are two
variants of this: ‘physical symbol grounding’, described by [14], which consists
of individual agents grounding symbols by interacting with the environment and
‘social symbol grounding’, the multi-agent extension to this described by [2], in
which agents negotiate the meaning of independently physically grounded sym-
bols. In this work we explore social symbol grounding at a high level of abstrac-
tion without taking account of the complexities of low-level signal processing.
We believe that anchoring frameworks, as described by [3], provide a plausible
solution to the low-level counterpart of this abstraction and therefore, we assume
a mapping from low-level signals to symbolic labels is readily available.

Though our work is influenced by language games, it is distinct from existing
work that use this technique in a number of ways:

– Agents do not plan actions to discover overlapping measurements. Instead,
agent behaviour is fixed and overlapping measurements are coincidental,
instead agents align ontologies by discovering structural similarity between
knowledge.

– Language games are driven by a need to communicate. As such, language
learning is not an end in itself.

– A shared language is not the result of shared invention of labels. Instead,
agents have an existing language before attempting to align ontologies that
corresponds to their conceptualisation of the environment.

– Language games typically only focus on strategies to discover equivalences
between labels, we also infer disjunction between labels when particular equiv-
alences can be ruled out. Disjunctions are used to constrain interpretation of
language in subsequent language games.

Unlike the work of [11] we do not explore feedback from a task for the diag-
nosis and correction of incorrect alignments. Our techniques are evidence based,
and as such, prone to error; solutions to correcting incorrect alignments are
beyond the scope of this paper.
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3 Formal Framework

Agents A = {1, 2, · · · , n} exist within an environment. Each agent maintains
a conceptualisation of their environment as an ontology. We define ontology as
follows:

Definition 3.1. An ontology is a tuple O = 〈C, I, T ,D,R,R〉 where: C is the
set of concepts (classes), I is the set of individuals/instances, T is the set of data
types, D is the set of data values, R is the set of relations, R : (C∪I ∪T ∪D)2 →
℘(R) is a function indicating which binary relations hold among C, I, T ,D.

This is similar to the definition used by [7], however we do not differen-
tiate between particular classes of relations such as subsumption, equivalence
and exclusion as our focus is only on the structure of an ontology rather than
reasoning about what particular relationships entail.

Example 3.1 describes an ontology and Fig. 1 provides a graphical depiction
of this ontology. These are representative fragments of the ontologies used in our
experiments described in Sect. 5.

Example 3.1. C = {Location,Agent, C1}, I = {A,B,C,D,E}, R =
{Connected, InLocation,MemberOf,HasV alue,HasType}, T = {Boolean}.
As T only contains Boolean, D = {True, False}. R defines: what concept
an instance is a members of (R(D,Agent) = {MemberOf}), which location
an instance is in (R(D,C) = {Inlocation}), which locations are connected
(R(A,B) = {Connected}), what property an instance has (R(A, True) =
{HasV alue}) and the type of a data value (R(True,Boolean) = {HasType}).

Fig. 1. A graphical depiction of an ontology. This ontology depicts three instances in
different locations, two of these instances are members of concept Agent and one of an
arbitrarily generated concept C1. The instance A of concept C1 has a property True
of type Boolean.

The set of possible ontologies is O. The environment, E , is itself an ontology
in this set. It is at the abstraction of this ontology that agents perceive, reason
and communicate about their environment. Agents ‘measure’ their environment
at each time step according to a measurement function,

μi : O → O (1)
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where μi(E) = Ê is the measurement received by agent i. Ê is a sub ontology
of E such that Ĉ ⊆ C, Î ⊆ I, T̂ ⊆ T ,D̂ ⊆ D and R̂ is a sub function of R.
μ defines how complete each agent’s measurements are of E , for example, if
μi(E) = E then agents have complete measurements.

Given measurements, agents independently learn their own conceptualisa-
tion of their environment as an ontology, where Oi is the ontology of agent i.
To communicate about ontologies, ontologies are associated with a ‘labelling’
function,

� : C ∪ I ∪ T ∪ D ∪ R → L, (2)

that associates elements of the ontology with a countably infinite set of labels, L.
We assume that the labelling functions for local ontologies and the environ-

ment are surjective in general and bijective for instances. Though elements of D
are not uniquely labelled (e.g. True and False are used for multiple entities), we
require that the ontological entities they label can be distinguished from other
entities by the entities’ relational context. For example, the entity labelled True
in Fig. 1 can be uniquely identified by its relation with the uniquely labelled
instance A.

With these provisions, we can now proceed with our definition of the ontology
alignment problem. To facilitate communication between agent i and agent j,
agent i must discover an alignment, φ ⊂ Li × Lj × Θ where Li consists of labels
local to agent i, Lj consists of labels received from j and Θ is a set of semantic
relations that can hold between labels. An element of an alignment is called a
correspondence and is a tuple 〈l, l′, θ〉 that implies that θ holds between l and
l′. We use Φ to denote all agent alignments and the notation Φi,j to denote the
alignment that agent i has with agent j.

Ontology alignment is only used when communication cannot be understood.
This creates the focus of the ontology alignment problem. This focus is influenced
by pre-defined communication rules, that dictate what agents attempt to com-
municate about, fixed action policies that influence the ‘behaviour’ of agents
within the environment and a fixed alignment that is a subset of all agents’
alignments that specifies a shared alignment between all agents prior to lan-
guage games. As we are only focused on instance matching, this fixed alignment
contains correct equivalences between all non-instance ontological components.

For the purpose of evaluation, we generate gold standard alignments between
all agents Φ∗, where Φ∗

i,j is the gold standard alignment between agent i and j.
This is created by keeping track of the labels that each agent assigns to E ,
allowing for a gold standard alignment to be constructed directly from ground
truth. Given this gold standard alignment, we can then define our ontology
alignment problem as follows: given agents i and j, and their ontologies O and
O′ respectively, find an alignment φ ∈ Φi,j from O to O′ such that φ = Φ∗

i,j .

4 Proposed Solution Method

Our solution to this ontology alignment problem is based on using ‘language
games’ defined as follows:
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Definition 4.1. A language game is a coordinated communication process
between two agents i and j, called the comprehender and the explicator respec-
tively, that generates correspondences between Li and Lj. A language game con-
sists of three steps:

Target Selection: The comprehender chooses some target label ltarget ∈ Lj that
they cannot understand and which they were exposed to in previous communica-
tion.
Context Selection: The explicator provides ‘context’ for ltarget to distinguish
it from other labels.
Correspondence Induction: Given this context, the comprehender infers a
correspondence, 〈llocal, ltarget, θ〉, by induction, where θ is a semantic relation
that holds between llocal and ltarget from a set Θ of possible semantic relations.

We consider each step of a language game to be a strategy. In this paper
we use a fixed strategy for target selection and focus on context selection and
correspondence induction. Agents communicate messages to each other, where
the content of a message is a graph pattern (described later in this section). A
language game follows a simple protocol that is shown in Fig. 2 that dictates the
state of communication. This protocol distinguishes between two stages of com-
munication: operational communication, that is communication between agents
that is intended to be understood and explication communication, that consists
of communication to align ontologies and facilitate future operational communi-
cation.

Fig. 2. Operational communication protocol (OCP): Agent i sends an Inform message
to inform agent j about changes in E . If Agent j cannot correctly translate this Inform
message, agent j requests explication as a RequestExplication message. Explication
communication protocol (ECP): Agent i replies with an InformExplication message
containing the explication from their content selection strategy. This is a simplified
version of the protocol suggested by [13].

All context selection strategies that we consider consist of the neighbour-
hood of the element that ltarget refers to. This neighbourhood consists of any
element from I ∪ C ∪ T ∪ D that can be reached by traversing from the ele-
ment corresponding to ltarget along relations defined by R. The relations that
are traversed along are also included in the neighbourhood, preserving struc-
tural information. We restrict the traversed relations to not include MemberOf
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or HasType relationships. Without this restriction, the neighbourhood of an
instance or data value along two traversed relations could be all instances or
data values that share a concept or data type with ltarget. After the neighbour-
hood is selected, MemberOf and HasType relations and their concepts and data
types are included. Our assumption is that structural similarity/dissimilarity of
neighbourhoods serve as evidence for similarity/dissimilarity between elements
of those neighbourhoods, in particular, the target element that corresponds to
the target label selected in the target selection strategy.

Though this is a very general structure-based similarity measure, in this
paper, we are only concerned with applying it to instance matching. As such, the
set of semantic relations Θ only consists of equivalence (=), that indicates that
llocal and ltarget refer to the same instance in the environment, and disjunction
(⊥), that indicates that llocal and ltarget do not refer to the same instance in the
environment.

To facilitate reasoning about structural similarity, we represent ontologies as
vertex and edge labelled directed multi-graphs as follows:

Definition 4.2. A vertex and edge labelled directed multi-graph is a tuple G =
(V,E,ΣV , ΣE , �, s, t) where V is a set of vertices, E is a multiset of ordered pairs
from V × V , ΣV is a set of labels for vertices, ΣE is the set of labels for edges,
� is a labelling function � : V ∪ E → ΣV ∪ ΣE; s : E → V assigns each edge to
its source vertex; and t : E → V assigns each edge to its target.

We represent agent i’s ontology Oi as a graph knowledge base Ki where
V (Ki) is a set of vertices corresponding to elements of C ∪ I ∪ T ∪ D, E(Ki) is
a set of edges derived from R and t and s are defined such that they respect the
ordering of pairs in E(Ki), i.e., t(〈v, v′〉) = v′ and s(〈v, v′〉) = v.

Agents communicate about their local knowledge by exchanging ‘graph pat-
terns’ as defined in [1]:

Definition 4.3. A graph pattern π is a tuple with the same elements as those in
Definition 4.2 except V = Vconst ∪ Vvar,E = Econst ∪ Evar,ΣV = REG(ΣVconst

∪
ΣVvar

),ΣE = REG(ΣEconst
∪ΣEvar

), indicating that vertices and edges can rep-
resent either constants or variables and a regular language over vertex and edge
labels denoted by REG(Γ ) which denotes the set of non-empty regular languages
over Γ . We denote πΣ as the graph pattern labelled with ΣV ∪ ΣE.

An example of a graph pattern is shown in Fig. 3.
Further to the notion of a graph pattern, is a graph pattern query. This is

a pair Q = (π, x̄) where π is a graph pattern and x̄ is a tuple of elements from
V (π). This is similar to a conjunctive query where x̄ is the head of the query,
containing distinguished variables and π is the body of the query, limiting what
x̄ can be bound to. Given a knowledge base K and a graph query Q = (π, x̄)
with |x̄| = k, the answer to Q on K is:

Q(K) = {v̄ ∈ V k|K |= π[v̄/x̄]}. (3)

Here π[v̄/x̄] is the result of substituting v̄ for x̄ in the pattern π. x̄ can
consist of any vertices in π that are constants or variables, while its substitution
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Fig. 3. πΣ expresses that there is an agent instance labelled ‘C’ that is within one or
more connected relations of a Location labelled either ‘A’ or ‘B’ that has some instance
denoted by variable ‘e’ of type C1 in that location.

v̄ consists of constants from K constrained by the graph structure in π. We refer
to π as the context for x̄, as π serves to distinguish vertices in x̄ from other
vertices by constraining how it can map onto a knowledge base.

In our language games, the explicator provides context for ltarget as a graph
pattern query where x̄ is a single vertex corresponding to ltarget and π con-
textualises ltarget. The comprehender matches this context against their local
knowledge base, finding possible valuations for x̄ and hence also for ltarget. When
|Q(K)| > 1 the answer to the query, and hence the context provided by the expli-
cator, is ambiguous. The higher the cardinality of Q(K), the more ambiguous the
context is. An unambiguous graph query is then one where |Q(K)| = 1. It is also
possible that |Q(K)| = 0, indicating that the context provided by the explicator
does not overlap with the comprehender’s knowledge. This is expected to occur
given that agents have heterogeneous knowledge. Reasoning about ambiguity
features prominently in our language game strategies described later.

Before the comprehender matches context from the explicator, the compre-
hender first translates the context according to a mapping function between sets
of labels,

mapi,j : Lj � Li (4)

where mapi,j is agent i’s mapping function for agent j such that mapi,j(l′) =
l ⇐⇒ 〈l, l′,=〉 ∈ Φi,j where l′ ∈ Lj , l ∈ Li. mapi,j is a partial function as agent
i does not have a complete mapping from agent j’s labels to their own in general.
A graph query is then translated as follows: if a mapping for a label belonging to
a constant vertex is defined, this label is substituted by its mapping. Otherwise,
the vertex corresponding to the constant label is moved to Vvar making it a
variable. The label given to this vertex depends on whether there are known
disjunctions or not for the constant label according to alignment Φi,j . If there
are no known disjunctions, the label is given a unique variable label. If there are
known disjunction, a regular expression of possible alternatives for the constant is
created indicating that the label could be one of any label of the same concept for
which a disjunction semantic relation does not hold. For example, a translation
for a vertex might be A|B|C, indicating that the vertex label is either A or B
or C.

An example of the graph matching that occurs in a language game is given
in Fig. 4.
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Fig. 4. Graph matching in a language game. For clarity, these graphs omit vertices
coresponding to members of C and T as well as MemberOf and HasType rela-
tions. 1. The explicator selects the neighbourhood of a vertex corresponding to ltarget.
2. This neighbourhood is communicated to the comprehender as a graph query. At this
point, the graph query is translated by the comprehender according to their current
mapping and alignment with the explicator. 3. The comprehender finds all valuations
for this graph query against their knowledge base. In this case, there is no exact match
for the context given by the explicator. However, there are two partial matches that
provide evidence that ltarget may be one of two vertices. The partial matches are shown
by dotted boundaries and the potential candidates for ltarget are indicated by dashed
arrows from the query to Ki.

Reasoning About Environmental Dynamics. To reason about environmen-
tal dynamics, agents must maintain a model of ‘change’ of their environment.
An edge has ‘changed’ with respect to local knowledge if: there is evidence that
an observed edge (those edges that they have observed in previous time steps)
present in the knowledge base in the last time step, is no longer present, or, if
an edge that was not present in the knowledge base in the previous time step is
now present. An edge is ‘unchanged’ if it existed in the knowledge base in the
previous time step and still exists in the knowledge base. Each agent maintains
a data set for each edge they have observed. This data set is a set of tuples of
the form 〈x, y〉, where y is a label indicating ‘changed’ or ‘unchanged’ and x is
the elapsed time since the last observed change. For example, 〈5, changed〉 for
an observed edge indicates that the edge had changed after 5 time steps. This
serves as a training set for a support vector machine [4] which is used in Sect. 4.1
to classify whether an edge has changed or not since it was last observed. We
use this notion of change and this classification technique whenever updating
knowledge and reasoning about uncertain local knowledge respectively.

4.1 Language Game Strategies

In this section we begin by formalising language game strategies in general and
followed this by describing particular strategies used in our experiments. We omit
a general description of ‘target selection’ as this is hard-coded in our experiments.
Correspondence induction and context selection are defined as follows:
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Definition 4.4. Correspondence induction. Given the comprehender’s knowl-
edge base Ki, ltarget, context Q from the explicator such that ltarget is the label
of a vertex in V (π) where π ∈ Q, and the existing alignment of the comprehender
with the explicator φ, induce a set of correspondences φ′ ⊆ Li × ltarget × Θ if Q
provides enough evidence that φ′ ⊆ Φ∗

i,j and update φ with these.

Definition 4.5. Context selection. Given the explicator’s knowledge base Kj,
ltarget ∈ Lj, the existing alignment of the explicator with the comprehender φ
and a correspondence induction strategy, send a message to the comprehender
with a graph pattern Q such that ltarget is in x̄ where x̄ ∈ Q and such that the
comprehender, using the correspondence induction strategy with Q, will induce
correct correspondences.

The difficulty of these sub-problems stem from the distributed nature of
these language games. Agents do not have access to each other’s knowledge and
even if they did, their knowledge is labelled differently. As such, any solution
to this problem relies on the assumption that structural similarity between a
translated query and a knowledge base is enough evidence for induction of correct
correspondences. Also note that, though we refer to the gold standard alignment
Φ∗ in our definitions, this is of course inaccessible to agents when reasoning.

Target Selection Strategy. When agent i receives an operational message
from agent j that cannot be translated (i.e. mapi,j is undefined for any label in
the message), agent i sends an ExplicationRequest message to agent j for the
labels that have an undefined mapping. Agent i then discards the operational
message. Labels are no longer selected for target selection if the explication by
the explicator results in no matches (Q(Ki) = 0).

Correspondence Induction Strategies. The following correspondence
induction strategies take as input the parameters described in Definition 4.4.
The graph queries in correspondence induction are first translated before serv-
ing as input for these strategies.

Exact Match: Correspondences are induced as follows: if |Q(K)| = 1, induce
〈�(v) where v ∈ Q(K), ltarget, =〉; if|Q(K)| > 1 induce {〈�(v), ltarget,⊥〉|v /∈
Q(K) ∧ v ∈ V (K)} indicating that ltarget is disjoint (⊥) from some local labels.
This is essentially induction based on graph isomorphism where labels, regular
expressions and graph structure must match.

Partial Match: The maximum common sub graph containing a vertex for ltarget

between π and K. The consequence of this is that edges in π become optional
and so can be removed from the query if they do not match. If there are multiple
maximum common sub graphs that bind ltarget to the same vertex, only one of
these is selected at random for each possible binding of ltarget. Induction is then
handled in the same way as in the exact match strategy.
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Context Selection Strategies. The following strategies take as input the
parameters described in Definition 4.5.

K-Increasing: We define an algorithm kcon that, given a vertex v ∈ V (K)
and a natural number k, returns the neighbourhood within k edges of v. The
k-increasing strategy begins with k = 0 and generates a query Q = 〈v, v〉 where
of course v is the only sub graph within 0 edges of v. k is then increased by 1 for
each subsequent request of v. The value k associated with requests for explication
of a vertex is independent between vertices and requests from different agents.
This essentially expands the neighbourhood of vertex v where ltarget = �(v) each
time a request is made.

K-Selection the explicator chooses the size of the neighbourhood to share by
applying the k-increasing strategy against their own knowledge base. The neigh-
bourhood selected is the lowest value of k that is locally unambiguous (when
|Q(K)| = 1). Before executing the query, the context selected by the k-increasing
strategy is translated in reverse: only labels that the explicator believes the com-
prehender understands are included in the context. Intuitively this answers the
hypothetical question: what context would the explicator need to provide to
their self to disambiguate a label?

Uncertainty Removal: We consider variations of k-increasing and k-selection
where uncertain edges are removed from graph patterns. This is applied to the
graph selected by kcon so that k-selection selects only certain context. We also
explore an extreme version of uncertainty removal where all dynamic edges are
removed, leaving only static edges.

5 Experimentation

The environment is generated pseudo-randomly: there is a randomly generated
component and some predefined relational structure. The environment we use for
experimentation is a grid world, where cells are locations, there are agents and
instances in cells and there are arbitrarily many connections between locations.
The generation of E is parametrised by a vector N

m where each parameter is
used to specifying the number of vertices in the generated graph. This vector
corresponds to 〈locations, agents, otherInstances, otherConcepts〉. This allows us
to easily specify randomly generated ontologies with only a few parameters. The
ontology we consider is:

O = 〈C = {Location,Agent, C1, C2, · · · , CE4},

I = {I1, I2, · · · IE1+E2+E3·E4}, T = {Boolean},

D = {D1,D2, · · · ,DE3·E4},

R = {Connected, InLocation,MemberOf,HasType,HasV alue},R〉

The instances IE1+E2+1, IE1+E2+2, · · · , IE1+E2+E3·E4 , of classes C1, C2, · · · ,
CE4 , are the possible target instances of our language games. Data values in
D are properties of these instances where: data values are not shared between
instances. There are initially an even number of true and false instances.
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MemberOf relations are created such that ∀i ∈ I, ∃c ∈ C s.t R(i, c) =
{MemberOf}. In particular:

– ∀location ∈ {I1, I2, · · · , IE1}, R(location, Location) = {MemberOf}.
– ∀agent ∈ {IE1+1, IE1+2, · · · , IE1+E2} R(agent,Agent) = {MemberOf}.
– Each target instance has a MemberOf relation with a single concept from

C1, C2, · · · , CE4 such that there are an even number of instances per concept.

HasType relations are created such that all elements of D have the type Boolean.
InLocation relations are created incrementally between non-location instances
and a randomly selected location that does not already contain an instance of
the same type. If two instances of the same type are in the same location, they
would not be distinguishable from one another.

Connected relations are randomly generated between Location instances
using a variation of Erdős-Rényi G(n, p) [9] random graph model where ver-
tices (n) are Location instances and edges are Connected relations that hold
from one location to any other location with a probability of p. To ensure that
locations are fully connected, we connect a random vertex in one component to
a random vertex in another component until the graph is fully connected. An
example of a generated environment is shown in Fig. 1. This is generated with
parameters 〈2, 2, 1, 1〉.

5.1 Environment Dynamics

Only data values and the location of agents change in the environment. When
the environment is created, there are initially an even number of True and False
data values. Values d ∈ D then alternate between True and False according to
a parameter ρ ∈ (0, 1] where each d ∈ D alternates value with a probability ρ at
each time step. Agents create plans to move stochastically in the environment.
When agent i does not have a plan, it selects a location at random to travel
to. It uses A* search to plan a path along Connected relations from its current
location to its target location. At each time step it moves along one Connected
relation into a new location. When agent i arrives at its target location, agent i
re-plans in the same way.

5.2 Measurements

Measurement Ê = μt
i(E) is received by agent i at time t. The set of vertices

received by agent i are: A vertex representing agent i, the location agent i is
in, any instances in agent i’s location (including other agents), any data values
and data types of these instances, all locations along one Connected relation
from their current location and all instances in these locations but not their
properties. For example, in Fig. 1, agent D would measure them self, locations
B and C, agent B and instance A as well as all Connected, InLocation and
MemberOf relations. Agent E would measure the entire graph.
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5.3 Operational Communication

Agents can communicate with each other from any location and at any time.
Operational communication in this scenario consists of messages indicating that
an instance has changed data value. When an agent observes this change, the
agent communicates the instance and its new data value. The purpose of this
communication is to enable agents to have more complete knowledge of the
environment by sharing their measurements.

5.4 Updating K
At the start of each experiment, agents are given a snapshot of the complete
environment. Agents duplicate this snapshot as their local knowledge. Agents
then spend a fixed amount of time learning the dynamics of the environment from
measurements. During this time, differences in measurements and behaviour
result in different knowledge.

Agents use common sense rules to detect change to update their knowledge:
1. An agent cannot be in two locations at once, therefore if an agent is seen in
a new location, it no longer holds that it is in the old location. 2. There can be
only one data value that is a property of an instance with a particular relation
name, therefore a new value for this property overwrites an old value. Given
these definitions of change, the way in which agents update their knowledge from
successfully translated operational messages and measurements is the same: new
edges are added if they do not occur in K, and inconsistent edges are removed.

6 Experimental Results

We compare pairs of context selection and correspondence induction strategies
with respect to correctness of alignments and the amount of context required
to achieve this. To measure the amount of context sent, we count the number
of edges sent in explication messages, excluding edges that indicate class mem-
bership, i.e., HasType edges. We then average the number of edges across the
number of explication messages sent.

To measure correctness of alignments, we use semantic precision and recall
described by [6]. Given an alignment φ ∈ Φi,j and the gold standard reference
alignment φ∗ ∈ Φ∗

i,j , semantic precision and recall is calculated as P (φ, φ∗) =
C(φ)∩C(φ∗)

C(φ) and R(φ, φ∗) = C(φ)∩C(φ∗)
C(φ∗) where C(·) is the deductive closure of

an alignment under its entailments, i.e., all alignments that can be deduced
from other alignments. We use F -score as a combined measurement of precision
and recall defined as F -score(φ, φ∗) = 2 · P (φ,φ∗)·R(φ,φ∗)

P (φ,φ∗)+R(φ,φ∗) . We then use the mean
F -score across all alignments of all agents excluding the fixed known alignments.
Semantic precision and recall is often not possible to compute in the general case.
However, our entailments are simple: If an equivalence (=) between two labels
that refer to instances of the same class is known, a disjoint (⊥) semantic relation
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Fig. 5. F -score and explication content communicated for pairs of correspondence
induction and context selection strategies. Legends abbreviations: exact = exact match-
ing, part = partial matching, kinc = k-increasing, kincrem = k-increasing with uncer-
tainty removal, ksel = k-selection, kselrem = k-selection with uncertainty removal,
kselnd = k-selection with no dynamics, kincnd = k-increasing with no dynamics.

is deduced between these two labels and all other labels of instances of the same
class.

The results of our experiments are shown in Fig. 5. The parameters used in
all experiments are : ρ = 0.25, 〈50, 4, 4, 3〉 as environment generation parameters,
and n = 50, p = 0.1 as the random graph parameters. Agents learn dynamics
of their environment for 1000 steps before communicating and all experiments
are run over 10 repetitions. A repetition is complete when all agents have found
correct or incorrect equivalence correspondences for all instances, or when they
have exhausted attempts at finding correspondences. For the later case we set a
limit of 10 requests for explication for an instance target.

Our results show that the removal of uncertain context results in higher F-
scores. In the case that agents only communicate static context, agents achieve
optimal F -scores. This demonstrates that the environment is simple enough,
and the agent strategies powerful enough, to resolve the ontology alignment
problem by the communication of only static context. Moreover, the amount of
context provided to do so is quite modest; only 11 edges per target for the best
performing strategy pair (exact-kselnd).

We expected inclusion of some dynamic context to perform better than com-
municating static context. For example, if agents are in the same location and
attempt to communicate about a target in that location, context that includes
the agents in the description should result in a correct correspondence with less
context than omitting the agents from the description. This suggests that agents’
knowledge of dynamic elements of the environment are still too different to be
used successfully as context under our uncertainty removal approach.
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K-selection strategies result in lower F-scores than k-increasing strategies
when the selected context is unsuitable for comprehension by the comprehen-
der. This is because parameter k in the k-increasing strategy is essentially fine-
tuned by the comprehension need of the comprehender via repeated requests for
explication while the k-selection strategy is blind to the comprehension require-
ments of the comprehender. However, when the assumption about what context
is needed is correct, the same F -score can be achieved with much less context
(exact-kselnd vs. exact-kincnd). The best performing strategies in our results
achieve a perfect F -score with and average of between 11 and 15 edges of context
per target node. This is quite a modest communication overhead requirement to
enable correct interpretation of messages.

7 Discussion

The context selection strategies that we have explored in this paper focus on find-
ing context that is both unambiguous and shared between agents. In future work,
we plan to extend context selection strategies by both identifying and exploiting
salient features of the environment and including approximate dynamic infor-
mation in selected context. One can identify salient parts of the environment by
statistical analysis of graphs and use this information to bias context selection
strategies towards more salient parts of the environment. Our results have shown
that simply removing uncertain dynamic context only goes so far in improving
alignment success. Rather than removing uncertain context all together, bound-
ing uncertainty by providing approximate context may be beneficial. For exam-
ple, if the location of an agent is uncertain, rather than excluding the agent
from explication, the explicator can include the agent’s approximate location as
a regular expression over Connected relations bound by their maximum expected
distance travelled since they were last observed.

As well as expanding on context selection strategies, we plan to explore target
selection strategies. In particular, when operational communication messages
contain multiple misunderstood labels, or more generally, when an agent has
a pool of possible misunderstood labels to select from, the comprehender must
choose a sequence of target labels as the focus of language games. Further to
this, the comprehender can select multiple targets in a single explication request,
requiring that the explicator disambiguates all of these targets with a single
explication message.

8 Conclusion

In this paper, we proposed a novel combination of language games and graph-
based knowledge representation as a solution to decentralised ontology matching
between agents situated in a shared environment where ontologies are represen-
tations of agents’ beliefs about their environment. To this end, we defined a
language game as a sequence of three strategies: target selection, correspon-
dence induction and context selection. We compared the performance of various
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correspondence induction and context selection strategies given a fixed target
selection strategy.

Our results show that structural similarity alone can help align ontologies
that are at the same level of granularity without agents utilising grounding
through physical interaction with only a modest communication overhead. How-
ever, environmental dynamics and incomplete measurements that result in dif-
ferent local knowledge must be reasoned about for this to be possible. We have
also shown that the shortcomings of a correspondence induction strategy can be
ameliorated by the choice of context selection strategy and vice versa.

In future work we plan to explore more complex language game strategies. In
particular, context selection strategies that identify and reason about salient fea-
tures of the environment and the inclusion of approximate dynamic information
as context, and target selection strategies, where agents must select sequences
of targets for language games and where a single language game can involve
multiple targets.
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Abstract. Several forms of argumentation frameworks have been used
to support decision-making: these frameworks allow at the same time
a graphical representation of decision problems as well as an automatic
evaluation of the goodness of decisions. We overview several such uses
of argumentation frameworks and discuss future directions of research,
including cross-fertilisations amongst them.

1 Introduction

Argumentation frameworks (AFs), a non-monotonic reasoning paradigm that
consists of a set of arguments and relations between these arguments, have
attracted considerable research attention in recent years [28]. AFs can be natu-
rally represented as directed graphs, with each node representing an argument
and each arc representing an attack or, in certain AF definitions, a support.
By using a graphical representation of AFs, one can not only represent domain
knowledge and conflicts therein, but can also perform reasoning over this knowl-
edge in an intuitive manner. These properties make AFs particularly suitable for
supporting decision making problems [1], as, in addition to affording a graphi-
cal view of decision problems, argumentation provides the capability to evaluate
graphs, with the aim of reaching ‘dialectically justified’ decisions. In this paper,
we provide an overview of a number of AFs and applications thereof offering var-
ious ways of supporting some form of decision-making. We also discuss promising
directions for future research in this area.

We consider multiple forms of AFs, from classic Abstract AFs [11] to their
extensions, namely bipolar AFs (BAFs) [8] and Value-Based AFs (VAFs) [5],
to structured argumentation frameworks in the form of Assumption-Based
AFs [13,30], referred to as ABA frameworks. From the application domain
perspective, we consider decision-making based on Question & Answer (Q&A),
collaborative multi-agent decision making and classic multi-criteria decision
making. We describe an application domain for each form of argumentation to
illustrate their concrete use, and explain why the chosen form of argumentation
is suitable for each particular problem.

One may naturally opt for different combinations of AFs and application
domains than those described in this paper. We discuss future directions and
the possibility and advantages of such cross-fertilisation towards the end of this
paper.
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 32–49, 2015.
DOI: 10.1007/978-3-319-28702-7 3
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Fig. 1. Example argumentation frameworks.

The remainder of this paper is organised as follows: In Sect. 2, we provide
background of AFs; in Sect. 3, we introduce BAFs and outline their use in some
Q&A decision making problems; in Sect. 4, we introduce VAFs and describe
their use in collaborative multi-agent decision making problems; in Sect. 5, we
introduce ABA frameworks and their use in multi-criteria decision making; in
Sect. 6, we discuss future work and conclude.

2 Abstract Argumentation

An Abstract AF [11] – referred to simply as AF – consists of a set of arguments
and a binary attack relation between arguments, representing conflicts between
arguments. Formally, an AF is a pair

(Args,Attack)

where Args is a set of arguments and Attack ⊆ Args×Args is a binary relation
((A,B) ∈ Attack is read ‘A attacks B’). An AF can be represented as a directed
graph, in which each node corresponds to an argument and each directed arc
corresponds to an attack. As an example, consider the following arguments

A1: Let’s have dinner at home today
A2: Let’s have dinner in a restaurant today.

Since these two arguments support incompatible decisions they attack one
another. This AF can be represented by the directed graph in Fig. 1(a).

There are multiple criteria for selecting the ‘winning’ arguments in an AF,
and these criteria are known as semantics in argumentation [11]. To be specific,
semantics of AFs are defined as ‘dialectically acceptable’ sets of arguments, where
each set is known as an extension. For example, for an AF F = (Args,Attack),
S ⊆ Args is an admissible extension iff S is conflict-free (i.e. for any argument
A ∈ S, A is not attacked by any argument in S) and can defend all its member
arguments (i.e. for any A ∈ S, if there exists an argument B ∈ Args \ S that
attacks A, there is some argument in S attacking B). Still consider the AF in
Fig. 1(a). {A1}, {A2} and ∅ are all admissible extensions, whereas {A1,A2} is
not, because it is not conflict-free.

Abstract Argumentation is the most widely used form of argumentation
and offers great simplicity. Also, most other forms of argumentation are either
instances or extensions of Abstract Argumentation. For example, Assumption-
Based Argumentation [13,30] (see also Sect. 5.1) is an instance of Abstract Argu-
mentation and both Bipolar Abstract Argumentation [8] (see also Sect. 3.1) and
Value-Based Argumentation [5] (see also Sect. 4.1) are extensions of Abstract
Argumentation.
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Fig. 2. Example bipolar argumentation framework (− stands for attack, + stands for
support, see Sect. 3.1)

3 Bipolar Abstract Argumentation and Q&A-Based
Decision-Making

We first give some background in Bipolar Abstract Argumentation (Sect. 3.1)
and then outline its use to support a Q&A system (www.quaestio-it.com,
Sect. 3.2) and Q&A-based decision-making in engineering design (Sect. 3.3).

3.1 Bipolar Abstract Argumentation

A Bipolar Abstract Argumentation Framework (BAF) [8] is an AF extended with
a binary support relation between arguments. Formally, a BAF is a triple

(Args,Attack, Support)

where (Args,Attack) is an AF and Support ⊆ Args × Args is a binary rela-
tion ((A,B) ∈ Support is read ‘A supports B’). A BAF can be represented
as a directed graph, in which each node corresponds to an argument and each
directed arc corresponds to an attack or a support (thus arcs need to be labelled
accordingly). Take, for example, the below excerpt of a discussion between John,
Joe and Jane on whether or not they should go and watch the latest Avengers
movie in the cinema:

John: I think we should go and see the new Avengers; the first one was
really great! (A1)
Joe: Please spare me! It’s just going to be another big Hollywood pro-
duction that goes for explosions instead of plot and characters. (A2)
Jane: I loved the first one, as well, so I think we should see it! (A3)

By identifying that Joe disagrees with (attacks) John and Jane agrees with
(supports) John, this dialogue can be mapped onto the BAF shown in Fig. 2.

There are multiple criteria for selecting the ‘winning’ arguments in a BAF,
and, as in the case of other AFs, these criteria are known as semantics [8].
Some of these semantics are defined as ‘rationally acceptable’ extensions, anal-
ogously to Abstract AFs. Here, however, we focus on a class of quantitative
semantics, assessing the ‘dialectical’ strength of arguments numerically. In par-
ticular, we focus on two of these semantics, given in [3,4,19] respectively, both
building upon [24]. These approaches are referred to as QuAD (for Quantitative

http://www.quaestio-it.com
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Argumentation Debate) [3,4] and ESAA (for Extended Social Abstract Argu-
mentation) [19]. Both QuAD and ESAA assume that arguments are equipped
with a base score, namely a number in the [0, 1] interval. ESAA also assume
that positive and negative votes may be ascribed to arguments, that result in
a modification of their base score (see [19] for details). In both approaches, the
(given or modified) base score amounts to an intrinsic (non-dialectical) strength
of arguments. Both approaches determine the (dialectical) strength of arguments
by aggregating the strength of attackers against and supporters for these argu-
ments, for restricted types of BAFs in the form of trees. Let v0 be the base score
of an argument A, and va, vs the combined strength of all attackers against A
and supporters for A, respectively. Then the dialectical strength of A is given
by g(v0, va, vs) defined as follows:

g(v0, va, vs) = va if vs = nil and va �= nil

g(v0, va, vs) = vs if va = nil and vs �= nil

g(v0, va, vs) = v0 if va = vs = nil

g(v0, va, vs) =
(va + vs)

2
otherwise

Here va = nil/vs = nil if there are no attackers against/supporters for (respec-
tively) A or all such attackers/supporters have strength 0 (and are thus ineffec-
tive [4]). The combined strength va/vs of (the sequence S of the strength of)
all attackers against/supporters for A is computed as F∗(v0, S), for ∗ a or s
(respectively), defined recursively as follows, in both QuAD and ESAA:

if S is ineffective : v∗ = nil

if S = (v) : F∗(v0, S) = f∗(v0, v)
if S = (v1, . . . , vn) : F∗(v0, (v1, . . . , vn)) =

f∗(F∗(v0, (v1, . . . , vn−1)), vn)

where in both QuAD and ESAA:

fa(v0, v) = v0 − v0 · v = v0 · (1 − v)

in QuAD:

fs(v0, v) = v0 + (1 − v0) · v = v0 + v − v0 · v

and in ESAA:1

fs(v0, v) = min(v0 + (v0 − v0 · (1 − v)), 1)
1 This presentation of f∗ corrects a typo in [19]. There, the min condition was erro-

neously omitted.
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For example, given the BAF of Fig. 2, assuming that all arguments have a base
score of 0.5, the dialectical strength of A1 is given, in both QuAD and ESAA, by

g(0.5, fa(0.5, vA2), fs(0.5, vA3))

where vA2/vA3 is the dialectical strength of A2/A3, respectively. Since there
are no attacks against or supports for A2 and A3, there strength is their base
score (the third case in the definition of g applies). Thus, in both approaches,
the dialectical strength of A1 is given by

g(0.5, fa(0.5, 0.5), fs(0.5, 0.5))

In both approaches fa(0.5, 0.5) = 0.5 · (1 − 0.5) = 0.25. In QuAD, fs(0.5, 0.5) =
0.5 + (1 − 0.5) · 0.5 = 0.75. In ESAA, fs(0.5, 0.5) = min(0.5 + (0.5 − 0.5 ·
(1 − 0.5)), 1) = min(0.75, 1) = 0.75. Thus, in both approaches, the dialectical
strength of A1 is

(0.25 + 0.75)/2 = 0.5.

(It is easy to see however that the two approaches give different strengths in
general, as for example discussed in [4].)

3.2 Quaestio-It for Q&A

Quaestio-it (www.quaestio-it.com) is a web-based Q&A debating platform that
allows users to open topics, ask questions, post answers, debate and vote. Figure 3
shows the visualisation of a debate aiming at identifying the best material to use
for the production of a rubber item (this is an example of a debate in a design
engineering domain, see Sect. 3.3). In the figure, the answer (reply) on the right is
being debated: it is supported by the comment on the bottom right and attacked,
on the left, by a comment that is further attacked (on the bottom left).

In Quaestio-it each answer is the root of a tree, which forms a BAF. Through
any evaluation algorithm overviewed in Sect. 3.1, the strength of answers and
comments, as determined by the opinions in the community, can be computed.
Figure 3 uses the ESAA algorithm. As illustrated in the figure, Quaestio-it
visualises the strength of opinion graphically: a larger node indicates a higher
strength.

In addition to contributing to the debate, users can also propose new answers,
as well as cast votes on answers and opinions of others positively or negatively,
increasing or decreasing the strength of the argument voted on, as dictated by
the ESAA algorithm. Finally, users can signal answers and opinions of others as
spam (casting a third kind of vote), so as to limit malicious behaviour by users:
after a predefined number of spam votes, answers and opinions (as well as any
debate about them) are hidden to users.

Compared with other Q&A platforms, Quaestio-it allows the visualisation
of debates as graphs, while also providing an evaluation of the positions in the
debate that can, arguably, more effectively and directly inform the decision-
making processes underlying the debates.

http://www.quaestio-it.com
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Fig. 3. Visualisation of a debate on a design problem faced by injection molding experts

3.3 Q&A for Engineering Design

The Q&A-style of decision support discussed in the earlier section lends itself
well to support decision-making in engineering design, where several stakehold-
ers, with varying degrees of expertise and technical competences, are involved
[3,4,6,18]. In particular, this style has been adopted within the DesMOLD
project (www.desmold.eu) to facilitate decision making in injection molding.
More specifically, the DesMOLD system is an interactive tool that incorporates
Quaestio-it to support injection molding experts throughout the design process.
The platform is mainly composed of the following processes: (I) a decompo-
sition process to convert complex geometries into simplified geometries, (II) a
debate process supporting argumentation and ontology interoperability to ensure
designers’ mutual understandings and (III) automatic recommendations based
on debates and past experience (see [6,18] for details).

As an illustration, Fig. 3 shows a possible debate amongst stakeholders in
injection molding. Figure 4 shows how that debate can incorporate contents from
past debates, to create a detailed graphical view of a design problem under
consideration. Moreover, the evaluation of strength of arguments, as discussed
for Quaestio-it in the earlier section, helps identify strong contenders and weak
points in the decision problem.

4 Value-Based Argumentation and Collaborative
Multi-agent Decisions

We first give some background on Value-based Argumentation (Sect. 4.1) and
then outline its use to support Collaborative Multi-Agent decisions (Sect. 4.2).

http://www.desmold.eu
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Fig. 4. Visualisation of a debate in which part of a past debate has been inserted,
highlighted via a thick blue edge on the right (Color figure online).

4.1 Value-Based Argumentation

Another direction for extending Abstract Argumentation is to consider ‘val-
ues’ promoted by arguments in an argumentation framework. Value-based
AFs (VAFs) [5] incorporate values and preferences over values into AFs. The
key idea is to allow for attacks to succeed or fail, depending on the rela-
tive worth of the values promoted by the competing arguments. Given a set
V of values, an audience V alpref is a strict partial order over V (corre-
sponding to the preferences of an agent), and an audience-specific VAF is
a tuple (Args,Attack, V, val, V alpref), where (Args,Attack) is an AF and
val : Args → V gives the values promoted by arguments. In VAFs, the order-
ing over values, V alpref , is taken into account in the definition of extensions.
The simplification of an audience-specific VAF is the AF (Args,Attack−), where
(A,B) ∈ Attack− iff (A,B) ∈ Attack and val(B) is not higher than val(A) in
V alpref . (A,B) ∈ Att− is read ‘A defeats B’. Then, (acceptable) extensions of a
VAF are defined as (acceptable) extensions of its simplification (Args,Attack−).

Let us consider the AF introduced earlier in Sect. 2. Let A1 and A2 promote
values V 1: Money-saving and V 2: Time-saving, with V 2 more preferred than V 1
in V alPref (denoted as V 2 >v V 1). Then we can simplify the original AF by
eliminating the attack from A1 to A2, because A2 promotes a higher ranked
value than A1 does. The simplified argumentation framework (denoted as AF−)
is illustrated in Fig. 1(b). In AF−, {A2} is an admissible extension, whereas
{A1} is not as it cannot defend its member from the attack from A2.

4.2 Collaborative Multi-agent Decisions

VAFs can be used to model domain knowledge to coordinate independent agents
in collaborative multi-agent systems (CMAS), where coordination is defined as
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‘the ability of two or more agents to jointly reach a consensus over which actions
to perform in an environment’ [23]. VAF-based domain knowledge is useful for
specifying heuristics for agents that learn to coordinate efficiently [22].

Consider a scenario of a multi-agent Wumpus World2 illustrated in Fig. 5.
The goal of the agents is to collect all gold and arrive at the exit as quickly as
possible, without being killed by a Wumpus. Note that an agent can smell stench
if it is (non-diagonally) next to a Wumpus, and it can see glitter if there is a gold
in the agent’s square. Suppose we have the domain knowledge for agent Ag1 that
there is a Wumpus on its left-hand side, and for agent Ag2 that the exit is next
to it on the left-hand side. Also, Ag2 can see that there is a gold in its square.
Intuitively, Ag1 should perform action shoot left and Ag2 should perform pickup,
because there is no need for both agents to shoot the same Wumpus at the same
time, and the agents collaboratively need to collect all gold before they exit.

Fig. 5. A fragment of a multi-agent Wumpus World game.

To obtain heuristics based on the domain knowledge above using VAFs, first,
we can propose four arguments3:

– A1shoot: Ag1 should perform shoot left because there is a Wumpus next to
Ag1 on its left-hand side.

– A2shoot: Ag2 should perform shoot right because there is a Wumpus next
to Ag2 on its right-hand side.

– A2left: Ag2 should perform go left because the exit is on its left-hand side.
– A2pick: Ag2 should perform pickup because there is a gold in its square.

Then, we can identify conflicts between arguments: for example, arguments
A1shoot and A2shoot conflict, because only one agent needs to shoot the
Wumpus. This type of conflict is between different agents’ arguments, referred
to as external conflicts4. In addition, arguments A2shoot and A2pick also con-
flict, because they recommend the same agent with different actions, while an
2 For ease of presentation, the Wumpus World game used in this paper is slightly

different from the classic one presented in [29]. In particular, each agent has nine
actions: go left, go right, go up, go down, shoot left, shoot right, shoot up, shoot down
and pickup.

3 Technically, more arguments can be proposed: e.g. an argument ‘Ag1 should perform
go down to sidestep the Wumpus’. However, for simplicity, we only consider four
arguments here.

4 Two arguments for the same action for two different agents do not necessarily con-
flict, e.g. the additional argument ‘Ag1 should perform go left because it wants to
greet the Wumpus’ may not conflict with A2left, because it is fine that both agents
perform go left . Actions that should not be performed by multiple agents can be
thought of as critical. Thus, external conflicts only exist between arguments recom-
mending the same critical action to different agents.
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Fig. 6. The original (a) and simplified (b) AF for the scenario in Fig. 5

agent can only perform one action at a time in this setting. This type of conflict,
between arguments recommending actions to the same agent, are referred to as
internal conflicts. Based on these arguments and conflicts, we can build an AF
to represent the domain knowledge, as illustrated in Fig. 6(a).

In order to select one best action for each agent, values and preferences over
them can be given, as follows:

– Vsafe: to make sure the agent is safe.
– Vmoney: to make more money.
– Vexit: to exit the Wumpus World.

Let A1shoot and A2shoot promote Vsafe, A2left promote Vexit and A2pick
promote Vmoney. Also, as an example, suppose that Vmoney >v Vsafe >v Vexit
(for >v, see Sect. 4.1). We can then simplify the AF in Fig. 6(a) by eliminating all
attacks pointing to arguments promoting higher ranked values from arguments
promoting lower ranked values. The simplified AF (AF−) is given in Fig. 6(b).
We can see that {A1shoot,A2pick} is the maximal (with respect to ⊆) admis-
sible extension for AF−, indicating that Ag1 should perform shoot left and Ag2
should perform pickup. This can be deemed to be a high-quality heuristic because
each agent is recommended one action, and no agent is recommended to perform
the same critical action.

Note that VAFs are flexible in that they can easily accommodate changes to
CMAS problems. For example, suppose we change the setting of the Wumpus
World game, such that the agents only need to arrive at the exit as quickly as
possible, without collecting all gold. Given this change, we can simply change
the ranking of values to e.g. Vexit >v Vsafe >v Vmoney without changing any
other components of the VAFs. The new simplified AF is given in Fig. 7. Then,
{A1shoot,A2left} is the maximal (with respect to ⊆) admissible extension, in
line with our intuition that, under the new setting, Ag2 should exit instead of
picking up gold.

To summarise, in CMAS decision making problems, VAFs not only provide a
method for building a graphical representation of (possibly conflicting) domain
knowledge, but also provide a mechanism for reasoning over this graphical rep-
resentation and thus derive heuristics. The examples we provide in this section
show that the construction of VAFs can be performed ‘semi-automatically’ at
run-time, ‘by instantiating arguments’, provided at design-time, in particular
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Fig. 7. A new simplified AF of Fig. 6(a) based on the value ranking Vexit >v Vsafe >v

Vmoney.

forms (e.g. each argument recommends an action under certain conditions), val-
ues promoted by the arguments and rankings of these values (see [22] for details).

5 Assumption-Based Argumentation and Multi-criteria
Decision Making

So far we have focused on variants of Abstract Argumentation, where we abstract
away from the content of nodes of argumentation graphs (e.g. sentences in nat-
ural language or conditional recommendations for actions) and how edges in
these graphs may be determined (e.g. because the sentences agree or disagree
or because the recommended actions cannot be executed concurrently). Here we
show a further application of argumentation graphs in a form of multi-attribute
decision-making, where arguments have a specific structure, in terms of rules
and assumptions in an underlying deductive system, and attacks are made on
assumptions by deriving their contrary. The form of argumentation we use is
Assumption-Based Argumentation (ABA) [13,30]. In Sect. 5.1 we will briefly
recap ABA. In Sect. 5.2, we will define a simple (graphical) decision making
model and show, in Sect. 5.3, how it can be captured in ABA, benefitting from
the graphical representation afforded by ABA.

5.1 Assumption-Based Argumentation (ABA)

ABA frameworks [13,30] are tuples 〈L,R,A, C〉 where

– 〈L,R〉 is a deductive system, with L the language and R a set of rules of the
form β0←β1, . . . , βm(m≥0, βi∈L);

– A ⊆ L is a (non-empty) set, referred to as assumptions;
– C is a total mapping from A into 2L \ {{}}, where each β ∈ C(α) is a contrary

of α, for α ∈ A.

Given a rule ρ of the form β0 ← β1, . . . , βm, β0 is referred to as the head (denoted
Head(ρ) = β0) and β1, . . . , βm as the body (denoted Body(ρ) = {β1, . . . , βm}).
In a flat ABA framework assumptions are not heads of rules. Here, we restrict
attention to flat ABA frameworks. Indeed, they are sufficient to capture the
kinds of multi-attribute decision making problems we are focusing on.

In ABA, arguments are deductions of claims using rules and supported by
assumptions, and attacks are directed at the assumptions in the support of argu-
ments. Informally, following [13,30]:
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– an argument for (the claim) β ∈L supported by Δ ⊆ A (denoted Δ � β) is a
finite tree with nodes labelled by sentences in L or by τ5, the root labelled by
β, leaves either τ or assumptions in Δ, and non-leaves β′ with, as children,
the elements of the body of some rule with head β′.

– An argument Δ1 � β1 attacks an argument Δ2 � β2 iff β1 is a contrary of one
of the assumptions in Δ2.

Thus, for each ABA framework, we can construct a corresponding AF.
Attacks between (sets of) arguments in ABA correspond to attacks between

sets of assumptions, where a set of assumptions Δ attacks a set of assump-
tions Δ′ iff an argument supported by a subset of Δ attacks an argument sup-
ported by a subset of Δ′.

Given F = 〈L,R,A, C〉, a set of assumptions is admissible (in F) iff it does
not attack itself and it attacks all Δ ⊆ A that attack it.

We say that an argument Δ � β is admissible (in F) supported by Δ′ ⊆ A iff
Δ ⊆ Δ′ and Δ′ is admissible. We also say that an argument is in a framework
F iff all rules used to construct it and all assumptions supporting it are in F .

We will use Dispute Trees [12,14] to illustrate how ABA can support explaining
best decisions. Given an AF 〈Args,Attack〉, a dispute tree for A ∈ Args is a
(possibly infinite) tree T such that:

1. every node of T is labelled by an argument (in the AF) and is assigned the
status of either proponent (P) or opponent (O), but not both;

2. the root of T is a P node labelled by A;
3. for every P node n labelled by an argument B, and for every argument C that

attacks B (in the AF), there exists a child of n, which is an O node labelled
by C;

4. for every O node n labelled by an argument B, there exists at most one child
of n which is a P node labelled by an argument which attacks (in the AF) B;

5. there are no other nodes in T except those given by 1–4.

The set of all arguments labelling P nodes in T is called the defence set of T ,
denoted by D(T ). A dispute tree T is an admissible dispute tree iff:

1. every O node in T has a child, and
2. no argument in T labels both a P and an O node.

We have the result:

1. If T is an admissible dispute tree for an argument A, then D(T ) is admissible.
2. If A is an argument and A ∈ E where E is an admissible set then there exists

an admissible dispute tree for A with D(T ) = E′ such that E′ ⊆ E and E′ is
admissible.

5 τ /∈L represents “true” and stands for the empty body of rules.
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5.2 Decision Graphs

Multi-criteria decision making problems can be modelled with decision graphs
where

– nodes may be decisions, goals, or intermediates;
– edges represent relations amongst nodes, e.g. an edge from a decision to an

intermediate represents that the decision has the attribute; an edge from an
intermediate to a goal represents that the intermediate satisfies the goal; an
edge from an intermediate to another intermediate represents that the former
leads to the latter;

– edges are equipped with tags.

We assume that all decision graphs are acyclic, and that tags are natural num-
bers. Different edges may have the same tag.

Fig. 8. An example decision graph

As a simple example, consider an agent who needs to decide on accommo-
dation in London. The agent wants this accommodation to be convenient and
cheap. The two candidates are Imperial College London Student Accommodation
(ic) and Ritz Hotel (ritz). ic is £50 a night and in South Kensington (inSK).
Ritz is normally £200 a night and in Piccadilly (inP ic). However, Ritz is having
a promotion discount. Hence both accommodations are cheap. However, South
Kensington is near so it is convenient whereas Piccadilly is not. Intuitively, ic is
the better choice between the two. This decision problem can be represented as
the decision graph in Fig. 8. Here

– the decisions are: D = {ic, ritz};
– the goals are: G = {convenient, cheap};
– the intermediates are: I = {inSK, 50, inP ic, 200, discount, near};
– all edges are (implicitly) tagged 1, except for the edges explicitly tagged 2.

We can define a notion of reachability from a set of nodes to a node as follows:

C1. if there is a set of nodes N all having edges with the same tag pointing to
some node n, then n is reachable from N ;

C2. if there is some set of nodes N ′ satisfying C1 (n being reachable from N ′)
and every single node n′ in N ′ is reachable from N by satisfying either C1
or C2, then n is reachable from N .
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This is a recursive definition, with C1 the base case.
For the decision graph in Fig. 8:

– inSK and 50 are reachable from {ic},
– inP ic, 200, discount are reachable from {ritz},
– near is reachable from {inSK} and {ic},
– convenient is reachable from {near}, {inSK}, {ic},
– cheap is reachable from {50}, {200, discount}, {ic} and {ritz}.

Then, a notion of decisions meeting goals can be given in terms of reachability of
the goal from the singleton set consisting of the decision. Thus, for the example
in Fig. 8, the decision ic meets the goals convenient and cheap; and the decision
ritz only meets the goal cheap.

Finally, following [26], a decision d can be deemed to be dominant if there
is no goal g such that d does not meet g but there exists some d′ meeting g.
In short, a decision is dominant iff it meets all goals that can be met. For the
decision graph in Fig. 8, since ic meets convenient and cheap and ritz meets
cheap, ic meets all goals that are ever met. Therefore ic is dominant.

Dominance can then be used as the decision criterion by means of which to
choose decisions. (Other decision criteria can be defined, e.g. as in [20,21]; we
focus here on dominance by way of illustration).

5.3 Dominant Decisions in Decision Graphs in ABA

The problem of identifying dominant decisions in decision graphs can be under-
stood equivalently as the problem of identifying admissible arguments in ABA.
This in turn allows a further graphical representation, incorporating the decision
problem and the decision criterion at the same time, that can be used to explain,
via debate trees, best decisions.

As an example, given the decision framework in Fig. 8, the ABA framework
is 〈L,R,A, C〉 where:
• R consists of:

isD(ic) ← isD(ritz) ←
isG(convenient) ← isG(cheap) ←
edge(ic, inSK, 1) ← edge(ic, 50, 1) ←
edge(ritz, inP ic, 1) ← edge(ritz, 200, 1) ←
edge(ritz, discount, 1) ← edge(inSK, near, 1) ←
edge(near, convenient, 1) ← edge(50, cheap, 1) ←
edge(discount, cheap, 2) ← edge(200, cheap, 2) ←

as well as all instances of the following rule schemata, with variables X,Y,Z,W
instantiated to elements of D ∪ G ∪ I, variable S instantiated to elements of G
and variable T instantiated to tags in the decision graph:

reach(X,Y ) ← edge(X,Y, T )
reach(X,Y ) ← reach(X,Z), edge(Z, Y, T ), ¬unreachableSib(Z, Y, T,X)
unreachableSib(Z, Y, T,X)←edge(W,Y, T ),W �=Z, ¬reach(X,W )
met(D,S) ← reach(D,S), isD(D), isG(S)
notDom(D)←notMet(D,S), isD(D), isG(S)
othersMet(D,S) ← met(D1, S),D �= D1
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• A = A¬u ∪ A¬r ∪ Arest where, for S = {ic, ritz, inSK, 50, inP ic, 200,
discount, near, convenient, cheap} :
A¬u = {¬unreachableSib(n′, n′′, t, n)|

n ∈ S,
(n′, n′′) ∈ {[ic, inSK], [ic, 50], [ritz, inP ic], [ritz, 200], [ritz, discount],

[inSK, near], [50, cheap], [200, cheap], [discount, cheap],
[near, convenient]}, n �= n′, n �= n′′,
and t is the tag of (n′, n′′)}

A¬r = {¬reach(n, n′)| n, n′ ∈ S, n �= n′}
and Arest consists of:
dom(ic) dom(ritz)
notMat(ic, convenient) notMat(ic, cheap)
notMat(ritz, convenient) notMat(ritz, cheap)
noOthers(ic, convenient) noOthers(ic, cheap)
noOthers(ritz, convenient) noOthers(ritz, cheap)

• C is such that (for all instances of the variables as for R):
C(¬unreachableSib(Z, Y, T,X)) = {unreachableSib(Z, Y, T,X)};
C(¬reach(X,Y )) = {reach(X,Y )};
C(dom(D)) = {notDom(D)};
C(notMet(D,S)) = {met(D,S), noOthers(D,S)};
C(noOthers(D,S)) = {othersMet(D,S)}.

Dominant decisions in the decision graph G correspond then to admissible argu-
ments in the ABA framework. Formally: d is dominant in G iff {dom(d)} �
dom(d) is admissible in the ABA framework.

In our running example, argument {dom(ic)} � dom(ic) is admissible and
ic is dominant. The admissible dispute tree for this argument, shown in Fig. 9,
explains why ic is indeed dominant: the root shows the claim that ic is a dom-
inant decision; this claim is challenged by two opponent arguments, A and B,
stating that ic does not meet the goals convenient and cheap, respectively; A
and B are counter-attacked by C and D, respectively, confirming that ic meets
both goals.

Fig. 9. The dispute tree for {dom(ic)} � dom(ic).
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6 Discussion and Future Directions

We have given an overview of various uses of Argumentation Frameworks of
various kinds to support some forms of decision-making. In addition to affording
a graphical view of decision problems, argumentation provides the capability to
evaluate the graphs, with the evaluation being linked to best decisions, in the
different ways considered. To conclude, we discuss various directions for future
research in this area.

6.1 From Trees to Full Graphs

The current structure of debates both in QuAD and ESAA (see Sect. 3) cur-
rently only allows the evaluation of tree structures. It will be important to
broaden the class of debates that can be analysed, extending the current evalua-
tion functionality to cope with the evaluation of directed graphs of more general
forms. In terms of allowing more generic graph structures and visualising them
in Quaestio-it, for example, the main issue lies not with the debate process, but
rather with the evaluation of argument strength values.

6.2 Constructing Bipolar Argumentation Frameworks from Text

Much work in Knowledge Representation has traditionally struggled facing a
knowledge acquisition bottleneck. In this, argumentation research is no excep-
tion; much work needs to be invested in constructing graphs of arguments that
can then be used as discussed earlier. One way to remedy this issues may be pre-
sented by Argumentation Mining (AM) [27], a fairly young discipline in Natural
Language Processing, aiming to identify arguments, and their relations to each
other, in natural language text. One possible AM approach [7] is to construct
BAFs from text, where the nodes in the BAF graphs constitute argumenta-
tive sentences and edges between the nodes signify attack and support relations
between sentences. To achieve this by means of supervised learning techniques,
we need to construct corpora of the form

P = {(s1, s′
1, C1), (s2, s′

2, C2), . . . , (sn, s′
n, C3)},

where each si, s
′
i is a chunk of text and Ci is a class label in {A,S,N}, for

A = Attack, S = Support and N = Neither. Basically, each triple in P deter-
mines whether sentence si attacks, supports or neither attacks nor supports s′

i.
Rather than determining whether a sentence is an argument in its own right, this
approach aims to determine whether it has argumentative qualities in relation
to another sentence. For new pairs of sentences (s, s′), a trained classifier can
then be used to determine the relation between s and s′, and, if this is attack
or support, help construct a graph of arguments, as in bipolar abstract argu-
mentation. Apart from building a reliable classification model to label sentence
pairs the main challenge faced here is that of finding a way of constructing sen-
tence pairs that is not computationally prohibitive. The approach described in
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[7] foregoes this issue by selecting a fixed Hypothesis against which to evaluate
the contents of a text. We may, for example, propose a hypothesis on whether a
certain politician is fit to be the leader of his or her party:

sa = Mrs. Johnson is hardly qualified to lead the Party, being that she is
both inexperienced and has had some dubious dealings with prominent
business figures.

We may then construct sentence pairs by matching our hypothesis with sentences
from news articles that discuss said politician, e.g.

Looking at her voting record on recent bills she has also been accused of
pandering to certain industries which she has allegedly invested in.

Doing so for every sentence in a collection of relevant sentences gives us an idea
of how the text agrees or disagrees with our hypothesis; it does not, however,
enable us to construct the desired graph. To achieve this, we need to construct
sentence pairs from the text itself. When analysing text that is comprised of
more than just a handful of sentences, building sentence pairs by combining
every sentence with every other sentence in the text is generally not an option,
as the amount of sentence pairs we need to analyse grows quadratically. We
hence need to find ways of preselecting a set of candidate sentences from which
we construct the pairs.

6.3 Computation of Acceptability/Strength

The computation of strength in Bipolar Argumentation is simple enough for
trees, as Quaestio-it shows. However, once graphs are accommodated for, the
computational burden will increase. Much work has been devoted to computa-
tional issues in argumentation. For example, [10,15–17] give complexity results
for several AF types and reasoning problems. It is generally recognised that
computation in argumentation is expensive. Novel algorithms have been pro-
posed to address computational challenges in argumentation: [31] represent AFs
in propositional satisfiability (SAT) programs and rely on advanced SAT solvers
for computing acceptable arguments; [2] propose to understand various argu-
mentation semantics as Strongly Connected Component concepts, yielding new
semantics computation methods such as the one in [9]; [25] give an overview of
recent development in argumentation semantics computation; several computa-
tional mechanisms for ABA have been proposed (e.g. see [13,30]). The impact
of different computational mechanisms on decision-making applications is an
important issue to be studied further.

6.4 Cross-Fertilisations

DesMOLD uses relevant past debates to automatically extend an ongoing debate,
as described in Sect. 3.3. It would be useful to integrate arguments from ABA
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frameworks, e.g. to model policy rules in a specific design domain within debates.
Collaborative Multi-Agent decision making (see Sect. 4) uses qualitative evalua-
tion of arguments (using for example admissibility) in the presence solely of an
attack relation. The use of supporting arguments, as in Bipolar Argumentation,
and of quantitative evaluation methods, may also be useful in this setting.
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Abstract. Modern approaches for optimally learning Bayesian network
structures require decomposable scores. Such approaches include those
based on dynamic programming and heuristic search methods. These
approaches operate in a search space called the order graph, which has
been investigated extensively in recent years. In this paper, we break from
this tradition, and show that one can effectively learn structures using
non-decomposable scores by exploring a more complex search space that
leverages state-of-the-art learning systems based on order graphs. We
show how the new search space can be used to learn with priors that are
not structure-modular (a particular class of non-decomposable scores).
We also show that it can be used to efficiently enumerate the k-best
structures, in time that can be up to three orders of magnitude faster,
compared to existing approaches.

1 Introduction

Modern approaches for learning Bayesian network structures are typically for-
mulated as a (combinatorial) optimization problem, where one wants to find the
best network structure (i.e., best DAG) that has the highest score, for some given
scoring metric [10,19,23]. Typically, one seeks a Bayesian network that explains
the data well, without overfitting the data, and ideally, also accommodating any
prior knowledge that may be available.

Some of the earliest procedures for learning Bayesian network structures used
scoring metrics with a certain desirable property, called score decomposability.
For example, consider the K2 algorithm which exploited decomposable scores, in
combination with an assumption on the topological ordering of the variables [6].
Under these assumptions, the structure learning problem itself decomposes into
local sub-problems, where we find the optimal set of parents for each variable,
independently. Local search methods exploited decomposability in a similar way
[5]. Such methods navigated the space of Bayesian network structures, using
operators on edges such as addition, deletion, and reversal. Score decomposabil-
ity allowed these operators to be evaluated locally and efficiently. Indeed, almost
all scoring metrics used for Bayesian network structure learning are decompos-
able. Such scores include the K2 score, [6], the BDeu score [4], the BDe score
[16], and the MDL score [2,20,29], among many others.
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Modern approaches to structure learning continue to exploit the decompos-
able nature of such scoring metrics. In particular, the past decade has seen
significant developments in optimal Bayesian network structure learning. These
recent advances were due in large part to dynamic programming (DP) algo-
rithms, for finding optimal Bayesian network structures [18,27,28]. Subsequently,
approaches have been proposed based on heuristic search, such as A* search
[34,35], as well as approaches based on integer linear programming (ILP), and
their relaxations [7,17].

By exploiting the nature of decomposable scores, these advances have signif-
icantly increased the scalability of optimal Bayesian network structure learning.
There is, however, a notable void in the structure learning landscape due to
the relative lack of support for non-decomposable scores. This includes a gen-
eral lack of support for non-decomposable priors, or more broadly, the ability
to incorporate more expressive, but non-decomposable forms of prior knowledge
(e.g., biases or constraints on ancestral relations). In this paper, we take a step
towards a more general framework for Bayesian network structure learning that
targets this void.

The modern approaches for optimal structure learning, mentioned earlier,
are based on a search space called the order graph [18,35]. The key property of
the order graph is its size, which is only exponential in the number of variables of
the Bayesian network that we want to learn. Our proposed framework however is
based on navigating the significantly larger space of all network structures (i.e.,
all DAGs). Moreover, to facilitate the efficient navigation of this larger space,
we employ state-of-the-art learning systems based on order graphs as a (nearly)
omniscient oracle. In addition to defining this new search space, we instanti-
ate it to yield a concrete system for finding optimal Bayesian networks under
order-modular priors, which we evaluate empirically. We further demonstrate the
utility of this new search space by showing how it lends itself to enumerating the
k-best structures, resulting an algorithm that can be three orders of magnitude
more efficient than existing approaches based on DP and ILP [9,32].

This paper is organized, as follows. In Sect. 2, we review Bayesian network
structure learning. In Sect. 3, we propose our new search space for learning
Bayesian networks. In Sect. 4, we show how our search space can be leveraged
to find optimal Bayesian networks under a class of non-decomposable priors. In
Sect. 5, we show how our search space can be further used to efficiently enu-
merate the k-best network structures. Finally, we conclude in Sect. 6. Proofs of
theorems are provided in the Appendix.

2 Technical Preliminaries and Related Work

In this section, we first review score-based Bayesian network structure learning.
We then review a formulation of score-based structure learning as a shortest-
path problem in a graph called the order graph. Shortest-path problems can
subsequently be solved with heuristic search methods such as A* search.
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First, we use upper case letters (X) to denote variables and bold-face upper
case letters (X) to denote sets of variables. Generally, we will use X to denote
a variable in a Bayesian network and U to denote its parents.

2.1 Score-Based Structure Learning

Given a dataset D, we first consider the problem of finding a DAG G of a
Bayesian network which minimizes a decomposable score. Such a score decom-
poses into a sum of local scores, over the families XU of the DAG:

score(G | D) =
∑

XU

score(XU | D). (1)

For example, MDL and BDeu scores are decomposable; see, e.g., [10,19,23]. In
this paper, we will generally assume that scores (costs) are to be minimized
(hence, we negate scores that should otherwise be maximized).

There are a variety of approaches for finding a DAG G that minimizes the
score of Eq. 1. One class of approaches is based on integer linear programming
(ILP), where 0/1 variables represent the selection of parent sets (families) in a
graph. Our goal is to optimize the (linear) objective function of Eq. 1, subject
to (linear) constraints that ensure that the resulting graph is acyclic [17]. In
some cases, an LP relaxation can guarantee an optimal solution to the original
ILP; otherwise, cutting planes and branch-and-bound algorithms can be used to
obtain an optimal structure [7,17].

In this paper, we are interested in another class of approaches to optimiz-
ing Eq. 1, which is based on a formulating the score, in a particular way, as a
recurrence. This recurrence underlies a number of recent approaches to structure
learning, based on dynamic programming [18,22,27,28], as well as more efficient
approaches based on A* search [34,35]. In particular, to find the optimal DAG
over variables X, we have the following recurrence:

score�(X | D) = min
X∈X

(
min

U⊆X\X
score(XU | D) + score�(X \ X | D)

)
(2)

where score�(X | D) denotes the score of the optimal DAG over variables X
given dataset D. According to this recurrence, we evaluate each variable X as a
candidate leaf node, and find its optimal family XU. Moreover, independently,
we find the optimal structure over the remaining variables X \ X. The best
structure then corresponds to the candidate leaf node X with the best score.

2.2 Shortest-Paths on Order Graphs

Yuan & Malone [34] formulate the structure learning problem as a shortest-path
problem on a graph called the order graph. Figure 1 illustrates an order graph
over 3 variables X. In an order graph, each node represents a subset Y of the
variables X. There is a directed edge from Y to Z in the order graph iff we add
a new variable X to the set Y, to obtain the set Z; we denote such an edge by
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Fig. 1. An order graph for variables X = {X1, X2, X3}

Y X−→ Z. The order graph is thus a layered graph where each new layer adds,
in total, one new variable to the nodes of the previous layer. Hence, we have a
unique root node {}, and a unique leaf node X. Any path

{} X1−−→ · · · Xn−−→ X

from the root to the leaf will then correspond to a unique ordering 〈X1, . . . , Xn〉
of the variables. Suppose that we associate each edge Y X−→ Z with a cost

min
U⊆Y

score(XU | D)

where, for the variable X added on the edge, we find the optimal set of parents
U from the set of variables Y. A path from the root node {} to the leaf node
X will then correspond to a DAG G since each edge Y X−→ Z adds a new leaf
node X with parents U to the DAG, i.e., the U that minimized score(XU | D).
The cost of the path (the sum of the scores of its edges) gives us the score of the
DAG, score(G | D), as in Eqs. 1 and 2. Hence, the shortest path from the root
{} to the leaf X corresponds to the DAG with minimum score.

3 A New Search Space for Learning Bayesian Networks

We now describe our A* framework, for learning the structure of Bayesian
networks. We first describe the search space that we use, and then propose
a heuristic function to navigate that space, which is based on using existing,
state-of-the-art structure learning systems as a black-box. Later in this paper,
we discuss two learning tasks that are enabled by our framework: (1) learning an
optimal Bayesian network structure using a class of non-decomposable scores,
and (2) enumerating the k-best Bayesian network structures.
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Fig. 2. A BN graph for variables X = {X1, X2, X3}

3.1 A New Search Space: BN Graphs

Following Yuan & Malone [34], we formulate structure learning as a shortest-path
problem, but on a different graph, which we call the Bayesian network graph (BN
graph). The BN graph is a graph where each node represents a BN, but more
specifically, each node represents a BN structure, i.e., a DAG. Figure 2 illustrates
a BN graph over 3 variables. In this graph, which we denote by Gbn, nodes
represent Bayesian network structures over different subsets of the variables X.
A directed edge Gi

XU−−→ Gj from a DAG Gi to a DAG Gj exists in Gbn iff Gj

can be obtained from Gi by introducing variable X as a leaf node with parents
U. Hence, the BN graph, like the order graph, is a layered graph, but where each
layer adds one more leaf to an explicit (and not just an implicit) DAG when we
walk an edge to the next layer. Correspondingly, when we refer to a DAG Gi, we
assume it is on the i-th layer, i.e., Gi has i nodes. The top (0-th) layer contains
the root of the BN graph, a DAG with no nodes, which we denote by G0. The
bottom (n-th) layer contains DAGs Gn over our n variables X. Any path

G0
X1U1−−−−→ · · · XnUn−−−−→ Gn

from the root to a DAG Gn on the bottom layer, is a construction of the DAG Gn,
where each edge Gi−1

XiUi−−−→ Gi adds a new leaf Xi with parents Ui. Moreover,
each path corresponds to a unique ordering 〈X1, . . . , Xn〉 of the variables. Each
edge Gi−1

XiUi−−−→ Gi is associated with a cost, score(XiUi | D), and thus the
cost of a path from the empty DAG G0 to a DAG Gn gives us the score of the
DAG, score(Gn | D), as in Eq. 1.

For example, consider the BN graph of Fig. 2 and the following path, corre-
sponding to a sequence of DAGs:

G0 G1 G2 G3

X1 X1 → X2 X1 → X2 X3

Starting with the empty DAG G0, we add a leaf X1 (with no parents), then a
leaf X2 (with parent X1), then a leaf X3 (with no parents), giving us a DAG G3

over all 3 variables.
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Both the order graph and the BN graph formulate the structure learning
problem as a shortest path problem. The BN graph is however much larger
than the order graph: an order graph has 2n nodes, whereas the BN graph has
O(n! · 2(n2)) nodes. Despite this significant difference in search space size, we
are still able to efficiently find shortest-paths in the BN graph, which we shall
illustrate empirically, in the remainder of this paper. The efficient navigation of
the BN graph depends significantly on the heuristic function, which we discuss
next.

3.2 On Heuristic Functions for BN Graphs

A* search is a best-first search that uses an evaluation function f to guide the
search process, where we expand first those nodes with the lowest f cost [15].
The evaluation function for A* takes the form:

f(G) = g(G) + h(G)

where G is a given DAG, function g is the path cost (the cost of the path to
reach G from G0), and function h is the heuristic function, which estimates the
cost to reach a goal, starting from G. If our heuristic function h is admissible,
i.e., it never over-estimates the cost to reach a goal, then A* search is optimal.
That is, the first goal node Gn that A* expands is the one that has the shortest
path from the root G0. Ideally, we want a good heuristic function h, since an
accurate estimate of the cost to a goal state will lead to a more efficient search.
For more on A* search, see, e.g., [26].

Consider the special but extreme case, where we have access to a perfect
heuristic h(G), which could predict the optimal path from G to a goal node Gn.
In this case, search becomes trivial: A* search marches straight to a goal node
(with appropriate tie-breaking, where we expand the deepest node first). Having
access to a perfect heuristic by itself is not useful, if we are just interested in an
optimal DAG. Such a heuristic, however, becomes useful when we are interested
in solving more challenging learning tasks. Consider, for example, learning an
optimal DAG, subject to a set of structural constraints. In this case, a perfect
heuristic is no longer perfect—it will under-estimate the cost to reach a goal.
However, in this case, it remains an admissible heuristic, which we can use in
A* search to find an optimal DAG, when we subject the learning problem to
constraints.

We do, in fact, have access to a perfect heuristic—any learning system could
be used as such, provided that it can accept a (partial) DAG G, and find an
optimal DAG Gn that extends it. Systems such as URLearning meet this
criterion [34], which we use in our subsequent experiments. Such a system is
treated as a black-box, and used to evaluate our heuristic function in A* search,
to potentially solve a learning problem that the black-box was not originally
designed for. We shall later highlight two such learning tasks, that are enabled
by using existing structure learning systems as black-boxes for A* search.
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We also remark that using such a black-box to evaluate a heuristic function,
as described above, is also a departure from the standard practice of heuristic
search. Conventionally, in heuristic search, one seeks heuristic functions that are
cheap to evaluate, allowing more nodes to be evaluated, and hence more of the
search space to be explored. Our black-box (which finds an optimal extension
of a DAG), in contrast, will be relatively expensive to evaluate. However, for
the particular learning tasks that we consider, a strong heuristic can outweigh
the expense to compute it, by more efficiently navigating the search space (i.e.,
by expanding fewer nodes to find a goal). We shall demonstrate this empirically
after introducing each of the learning tasks that we consider.

Implementation of A* Search. Finally, we describe two further design deci-
sions, that are critical to the efficiency of A* search on the BN graph. First,
if two given DAGs G and G′ are defined over the same set of variables, then
they have the same heuristic value, i.e. h(G) = h(G′). Hence, we can cache the
heuristic value h(G) for a DAG G, and simply fetch this value for another DAG
G′ (instead of re-invoking our black-box), when it has the same set of variables.
As a result, the heuristic function is invoked at most once for each subset Y
of the variables X. In addition, when we invoke our black-box on a DAG G,
we can infer and then prime other entries of the cache. In particular, when our
black-box returns an optimal completion G′ of a DAG G, then we know the
optimal completion (and heuristic values) of any DAG in between G and G′ in
the BN graph—their optimal completion is also G′ (from which we can infer the
corresponding heuristic value). Based on this caching scheme, a single call to our
black-box heuristic function suffices, to recover a single best network using A*
search in the BN graph (i.e., it is no worse than using the black-box directly).

Next, the branching factor of the BN graph is large, and hence, we can
quickly run out of memory if we expand each node and insert all of its children
into A*’s priority queue (i.e., open list). We thus use partial-expansion A* in our
implementation, i.e., when we expand a node, we only insert the b-best children
into the priority queue. We can re-expand this node, as many times as needed,
when we want the next b-best children. While we may spend extra work re-
expanding nodes, this form of partial-expansion can save a significant amount
of memory, without sacrificing the optimality of A* search; see, e.g., [13,33].

3.3 Experimental Setup

In the subsequent sections, we shall highlight two different tasks that are enabled
by performing A* search on the BN graph. After discussing each task, we report
empirical results on real-world datasets, which were taken from the UCI machine
learning repository [1], and the National Long Term Care Survey (NLTCS). For
learning, we assumed BDeu scores, with an equivalent sample size of 1. We
adapted the URLearning structure learning package of [34] to serve as our
black-box heuristic function.1 Our experiments were run on a 2.67GHz Intel
1 At https://sites.google.com/site/bmmalone/files/urlearning.

https://sites.google.com/site/bmmalone/files/urlearning
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Xeon X5650 CPU, with access to 144 GB RAM. For our partial-expansion A*
search, each time a node is expanded or re-expanded, children are inserted into
the priority queue in blocks of 10. We further pre-compute the BDeu scores,
which are fed as input into each system evaluated. Finally, all timing results are
averages over 10 runs.

4 Structure Learning with Non-Decomposable Scores

Now that we have described our framework for learning Bayesian networks using
BN graphs, we will show how we can use it to learn BN structures using for
a class of non-decomposable scores.2 In particular, we consider a class of non-
decomposable priors on network structures, which we discuss next. Subsequently,
we propose a heuristic that can be used in A* search, to optimize this class of
non-decomposable scores. We then describe our A* search algorithm, and then
provide some experimental results.

4.1 Order-Modular Priors

One prevalent non-decomposable prior is the order-modular prior [14,18]. The
uniform order-modular prior Pr(G), in particular, is proportional to the number
of topological orderings consistent with a DAG G, i.e., the number of its linear
extensions, which we denote by #G. Hence,

logPr(G) = log #G − log C,

where C is a normalizing constant. More generally, order-modular priors can
be viewed in terms of a weighted count of linear extensions [18]. In general,
counting the number of linear extensions is itself a challenging problem (let
alone optimizing with it); it is a #P-complete problem [3]. We shall revisit this
issue, shortly.

Order-modular priors are notable, as they enable MCMC methods for the
purposes of (approximate) Bayesian model averaging [14]. They also enable
some DP-based methods for exact Bayesian model averaging, when there are
a moderate number of network variables [18]. However, to our knowledge, only
approximate approaches had been previously considered for this prior, when one
wants a single optimal DAG; see Koivisto & Sood [18, Sect. 5], for a discussion
on some of the difficulties.

4.2 A Heuristic for Order-Modular Priors

Consider the probability of a DAG G given a dataset D:

Pr(G | D) =
Pr(D | G)Pr(G)

Pr(D)
2 Approaches based on ILP can in principle handle non-decomposable scores (and

constraints), assuming that they can be expressed using a linear cost function (or
as linear constraints) [25]. We remark that order-modular priors, which we consider
later, are not easy to encode as ILPs (as we need to compute linear extension counts).
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where Pr(D | G) is the marginal likelihood, and Pr(G) is a prior on the DAG G.
Further, the quantity Pr(D) is a normalizing constant, which is independent of
the given DAG G. To maximize the probability of a graph, it suffices to maximize
the log probability:

argmax
G

logPr(G | D) = argmax
G

logPr(D | G) + logPr(G).

When using the BDeu score, the marginal likelihood decomposes as in Eq. 1. We
assume the BDeu score for the remainder of this section.

First, we consider how to update the weights on the edges of a BN graph, to
handle a prior on the structure, decomposable or otherwise.

Theorem 1. Let Pr i(.) denote a distribution over DAGs having i nodes (i.e.,
our structure prior).3 If we label each edge Gi

XU−−→ Gj in graph Gbn with the
cost:

score(XU | D) − log
Pr j(Gj)
Pr i(Gi)

,

then the total cost of a path from the root G0 to a leaf Gn is

score(G | D) − logPrn(Gn).

Hence, assuming a structure prior, the DAG with an optimal score corresponds
to a shortest path in the BN graph Gbn, from the root G0 (top layer) to a leaf
Gn (bottom layer). In what follows, we shall assume that our structure prior is a
uniform order-modular prior, although general (weighted) order-modular priors
can also be accommodated.

We now propose a simple heuristic function for learning an optimal DAG
with a uniform order-modular prior. Let Gi � Gn indicate that a DAG Gn

is reachable from DAG Gi in Gbn. We propose to use the heuristic function
h(Gi) = h1(Gi) + h2(Gi), which has two components. The first component is:

h1(Gi) = min
Gn:Gi�Gn

∑

XU∈Gn−Gi

score(XU | D) (3)

where we sum over families XU that appear in Gn but not in Gi. This component
is looking for the shortest path to the goal, based on the decomposable part of the
score, ignoring the prior (i.e., maximizing the marginal likelihood). The second
component is:

h2(Gi) = min
Gn:Gi�Gn

− log
Prn(Gn)
Pr i(Gi)

(4)

This component is looking for the shortest path to the goal, based on the prior
part of the score, but ignoring the data (i.e., maximizing the prior).

Theorem 2. The heuristic function h(Gi) = h1(Gi) + h2(Gi) of Eqs. 3 and 4
is admissible.
3 Pr0(G0) = 1 as there is a unique graph over zero nodes.
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To use this heuristic function, we must perform two independent optimization
problems (for h1 and h2). The first is the familiar optimization of a decompos-
able score; we can employ most any existing structure learning algorithm for
decomposable scores, as an oracle, as discussed in the previous section. The sec-
ond is an optimization of the prior, independently of the data. Next, we show
how to both optimize and evaluate this component, for order-modular priors.

Optimizing the Prior. Here, we briefly describe how to solve the component
h2 for a uniform order-modular prior. Again, we want to identify the most likely
goal node Gn reachable from Gi, i.e., the DAG Gn with the largest linear exten-
sion count. Remember that DAG Gi has i nodes. Since adding any edge to the
DAG constrains its possible linear extensions, then the DAG Gn with the largest
linear extension count simply adds the remaining n − i nodes independently to
DAG Gi. If #Gi is the linear extension count of DAG Gi, then

#Gn = #Gi · (i + 1) · · · n

is the linear extension count of DAG Gn.4 Next, we have that:

Pr i(Gi) =
1
Ci

· #Gi and Prn(Gn) =
1

Cn
· #Gn

where Ck is a normalizing constant:

Ck =
∑

Gk

#Gk =
∑

Gk

∑

π∼Gk

1 =
∑

π

∑

π∼Gk

1 =
∑

π

2(k2) = k! · 2(k2)

and where π ∼ Gk denotes compatibility with an ordering π and a DAG Gk.
Thus,

Prn(Gn)
Pr i(Gi)

=
Ci

Cn

#Gn

#Gi
=

Ci

Cn
· (i + 1) · · · n = 2(i

2)−(n2)

Hence, h2(Gi) = [
(
n
2

)
−

(
i
2

)
] · log 2. We note that for all DAGs Gi in the same

layer, the heuristic function h2(Gi) evaluates to the same value, although this
value differs for DAGs in different layers.

Note, that we also need to be able to compute the linear-extension counts
#Gi themselves, which is itself a non-trivial problem (it is #P-complete). We
discuss this next.

Counting Linear Extensions. In Sect. 4.1, we highlighted the relationship
between uniform order-modular priors and counting linear extensions. We now
show that the BN graph itself facilitates the counting of linear extensions, for

4 For each linear extension π of Gi, there are (i + 1) places to insert the (i + 1)-th
node, then (i + 2) places to insert the next, and so on. Thus, there are (i + 1) · · · n
ways to extend a given ordering over i variables to n variables.
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many DAGs at once. Subsequently, we shall show that this computation can be
embedded in the A* search itself.

Recall that any path in the BN graph Gbn, from G0 to Gi, corresponds to
an ordering of variables 〈X1, . . . , Xi〉. In fact, this ordering is a linear extension
of the DAG Gi (by construction). Hence, the linear extension count #Gi of a
graph Gi is the number of paths from the root G0 to Gi, in the BN graph Gbn.
For example, consider the DAG:

X1 → X2 X3

There are 3 distinct paths in Gbn from the root G0 to the DAG above, one path
for each topological order that the DAG is consistent with. Next, observe that
the number of linear extensions of a DAG Gi, (or equivalently, the number of
paths that reach Gi), is simply the sum of the linear extensions of the parents of
Gi, in the BN graph Gbn. For example, our DAG above has 3 linear extensions,
and 2 parents in Gbn:

X1 → X2 X1 X3

the first with one linear extension, and the second with two. In this way, we can
count the linear extensions of DAGs in a BN graph Gbn, from top-to-bottom,
sharing computations across the different DAGs. A similar algorithm for counting
linear extensions is described in, e.g., [24].

Consider how A* navigates the BN graph Gbn during search. If A* expands
a node only when all of its parents are expanded, then as described above, we
can count the number of linear extensions of a DAG, when it gets expanded.5

Thus, we can evaluate its prior, and in turn, the function f . It so happens that,
we can moderately weaken the heuristic function that we just described, so that
A* will in fact expand a node only when all of its parents are expanded.

Theorem 3. Assuming a uniform order-modular prior, the heuristic function

h(Gi) = h1(Gi) + h′
2(Gi)

allows A* to count the linear extensions of any DAG it expands, where h′
2(Gi) =

−
∑n

k=i+1 log k ≤ h2(Gi) with components h1 and h2 coming from Eqs. 3 and 4.

A proof appears in the Appendix.

4.3 A* Search

Algorithm 1 provides pseudo-code for A* search using a uniform order-modular
prior. Note that this pseudo-code deviates slightly from the standard A* search,
as the linear extension counts #G are computed incrementally during the search.

5 In particular, every time that we expand a node G, we can increment each of its
children’s linear extension counts by #G. Once we have expanded every parent of a
child, the child’s linear extension count is correct.
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Algorithm 1. A* search for learning an optimal BN with a uniform order-
modular prior.
Data: a dataset D over variables X
Result: an optimal BN maximizing Pr(G | D)
begin

H ← min-heap with only (G0, f(G0), 1), where 1 is the number of linear
extensions of G0; and the heap is ordered by f
while H �= ∅ do

extract the minimum item (G, f, l) from H
if V (G) = X then return G
foreach G′ obtained by adding a leaf to G do

if G′ is not in H then
insert into H: (G′, score(G′|D) − log l + h(G′), l)

else

let (G′, f ′, l′) be in H, decrease f ′ by log l′+l
l′ , increase l′ by l;

and reheapify

end

end

end

end

Theorem 4. Algorithm1 learns an optimal Bayesian network with a uniform
order-modular prior.

A proof appears in the Appendix.
Finally, we note that Theorem 1 and the heuristic functions of Eq. 3 and 4

were proposed for order-modular priors. In principle, the shortest-path formula-
tion, and the heuristic function that we proposed, can support a much broader
class of non-decomposable priors. However, one must be able to optimize the
probability of a graph, as in the component h2 of the heuristic function that we
proposed, in Eq. 4. If we had access to some oracle that can solve this compo-
nent, then we would in principle have the pieces that are sufficient to perform
A* search over the DAG graph Gbn, using the corresponding prior.

4.4 Experiments

We evaluate our A* search approach to learning optimal Bayesian networks with
real-world datasets, assuming a uniform order-modular prior. In Table 1, we find
that our approach can scale up to 17 variables on real-world datasets (i.e., the
letter and voting datasets). We also note that with more data, and with more
of the probability mass concentrated on fewer DAGs, traversing the BN graph
with A* search appears to become more efficient. In particular, consider the
time spent in A* search (TA∗), and the number of nodes generated (gen.), in
the datasets adult and wine, which both have 14 variables. Similarly, consider
the datasets letter and voting, which both have 17 variables. Moreover, consider
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Table 1. The performance of A* search on the BN graph when learning with the uni-
form order-modular prior: (1) The time Th to compute the heuristic function. (2) The
time TA∗ to traverse the BN graph with A* (in seconds) (3) The total time t = Th+TA∗
spent in A* (4) The number of generated nodes. (5) The number of expanded nodes.
(6) The number of re-expanded nodes (in partial-expansion A*). An ×m corresponds
to an out-of-memory (64 GB).

Benchmark n N Th TA∗ t Gen. Exp. Re-exp.

Adult 14 30,162 1.03 0.26 1.29 106,832 12,620 33

Wine 14 435 0.74 6.08 6.82 1,559,900 244,694 57,259

Nltcs 16 16,181 7.21 1.17 8.38 386,363 41,125 1

Letter 17 20,000 29.42 3.79 32.20 360,899 37,034 16

Voting 17 435 5.28 56.59 61.89 10,540,132 1,961,602 396,084

Zoo 17 101 ×m

dataset zoo, also over 17 variables, which was a very small dataset, containing
only 101 instances. Here, A* search exhausted the 64 GB of memory that it was
allowed. We remark that, to our knowledge, ours is the first system for finding
optimal DAGs using order-modular priors.6

In Fig. 3, we consider a simple example, highlighting the effect that a uniform
order-modular prior can have on the structure we learn. In Fig. 3(a), we have
the classical asia network, which we used to simulate datasets of different sizes.
First, we simulated a small dataset of size 27 and learned two networks, one with
a prior, Fig. 3(b), and one without a prior, Fig. 3(c). Ignoring node A, the two
networks are Markov equivalent. However, including node A, their linear exten-
sion counts are very different: 96 for network Fig. 3(b) but only 3 for network
Fig. 3(c). This difference can explain why variable A is disconnected in Fig. 3(b),
as a disconnected node non-trivially increases the linear extension count (and
hence, the weight of the prior). In Fig. 3(d), both cases (with and without the
prior) learned precisely the same network when we raised the size of the dataset
to 214 (this DAG has 150 linear extensions). This network is Markov equivalent
to the ground truth network that generated the data.

5 Enumerating the k-Best Structures

We will next show how we can use our proposed framework for learning Bayesian
networks, using BN graphs, to enumerate the k-best Bayesian network structures.

6 There are systems available for (a) finding optimal DAGs using structure-modular
priors, (b) for Bayesian model averaging using order-modular priors, and (c) for
jointly optimizing over orders and DAGs, using order-modular priors. These tasks
are all discussed in [18], which further states that finding optimal DAGs with order-
modular priors is a more challenging problem (where we maximize over DAGs, but
sum over orders).
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Fig. 3. A network asia (a), and networks learned with dataset size 27 with a prior (b),
without a prior (c), and a network learned with dataset size 214 (d).

Enumerating the k-best Bayesian network structures is particularly simple
to do when we perform A* search on the BN graph Gbn. In particular, the k-th
best DAG can be obtained by finding the goal node Gn that is the k-th closest
to the root G0. We can thus enumerate the k-best DAGs by simply continuing
the A* search, rather than stopping when we reach the first goal node; see [12],
for more on using A* search for k-best enumeration.7,8

We also note that if our heuristic is perfect, then we can enumerate all
DAGs with an optimal score, relatively efficiently. In particular, A* will only
expand nodes that lead to an optimal DAG, as long as a DAG with an optimal
score remains (typically, they are all Markov equivalent). However, once we have
exhausted all optimal DAGs, our heuristic is no longer perfect; cf. [12]. Given
a DAG G, our heuristic is still admissible, as it still lower-bounds the cost of
the possible extensions to a goal node Gn. That is, it may just report a cost
for a goal node that was already enumerated (and hence has a lower cost). We
can thus continue to employ the same heuristic in A* search, to enumerate the
remaining k-best DAGs.

7 We remark, however, that [12] is more specifically concerned with the enumeration
of the k-shortest paths. Since we are interested in enumerating the k-closest goal
nodes, we remark that some, but not all, of their theoretical analyses applies to our
problem. In particular, each distinct goal node in the BN graph may have many
paths that can reach it. Hence, once we obtain one goal node, many more shortest-
paths may be needed to obtain the next closest (and distinct) goal node. Moreover,
we do not need to differentiate between two different paths to the same goal node,
as in [12].

8 We remark on another distinction between finding a single optimal DAG, versus
enumerating the k-best DAGs. In particular, there are techniques that can guarantee
that certain families will not appear in an optimal DAG, which can greatly simplify
the learning problem [8,11,30,31]. However, such families may still appear in a k-th
best DAG, and hence, these techniques may not be directly applicable.
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We further note a distinction between the BN graph and the order graph.
In the BN graph, DAGs are represented explicitly, whereas in an order graph,
DAGs are implicit. In particular, each node Y in the order graph represents just
a single optimal DAG over the variables Y. Hence, the k-th best DAG may not
be immediately recoverable. That is, we may not be able to obtain the k-th best
DAG starting from an optimal sub-DAG—we can only guarantee that we obtain
a single optimal DAG. While it is possible to augment the order graph to find
the k-th best DAG, as in [32], this is not as effective as searching the BN graph,
as we shall soon see.

Finally, we consider another approach to enumerating the k-best DAGs in
our experiments, based on integer linear programming (ILP) [9]. Basically, once
an optimal DAG is obtained from an ILP, a new ILP can be obtained, whose
optimal solution corresponds to the next-best DAG. In particular, we assert
additional constraints that exclude the optimal DAG that we found originally.
This process can be repeated to enumerate the k-best DAGs.

Next, we empirically compare the DP and ILP approaches, with our proposal,
based on A* search in the BN graph.

5.1 Experiments

We compare our approach, which is based on A* search, with two other recently
proposed k-best structure learning algorithms: (1) KBest,9 which is based on
dynamic programming (DP) [32], and (2) Gobnilp,10 which is based on integer
linear programming (ILP) [7].

For each approach, we enumerate the 10-best, 100-best and 1, 000-best BNs,
over a variety of real-world datasets. We impose a 7,200 second limit on running
time. To analyze memory usage, we incrementally increased the amount of mem-
ory available to each system (from 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, and up to
64 GB), and recorded the smallest limit that allowed each system to finish.

Table 2 summarizes our results for A* search on the BN graph, and for the
DP-based approach of KBest. We omit the results for the ILP-based approach
of Gobnilp, which ran out-of-memory (given 64 GB) for all instances, except
for the case of 10-best networks on the wine dataset, which took 2,707.13 s and
under 8 GB of memory.11

We observe a few trends. First, A* search on the BN graph can be over
three orders of magnitude more efficient than KBest, at enumerating the k-
best BNs. For example, when we enumerate the 100-best BNs on the voting
dataset, A* search is over 4,323 times faster. Next, we observe that A* search
is consistently more efficient than KBest at enumerating the k-best networks

9 At http://www.cs.iastate.edu/∼jtian/Software/UAI-10/KBest.htm.
10 At http://www.cs.york.ac.uk/aig/sw/gobnilp/.
11 Note that GOBNILP is known to be more effective in other regimes, for example,

where we can constrain the number of parents that a node can have [21,34]. However,
for our experiments here, we consider the more general case, where we do not assume
such a constraint.

http://www.cs.iastate.edu/~jtian/Software/UAI-10/KBest.htm
http://www.cs.york.ac.uk/aig/sw/gobnilp/


Learning Bayesian Networks with Non-Decomposable Scores 65

Table 2. A comparison of the time t (in seconds) and memory m (in GBs) used by
BN graph and KBest. An ×m corresponds to an out-of-memory (64 GB), and an
×t corresponds to an out-of-time (7,200 s). n denotes the number of variables in the
dataset, and N denotes the size of the dataset.

Benchmark 10-best 100-best 1, 000-best

BN graph KBest BN graph KBest BN graph KBest

Name n N t m t m t m t m t m t m

Wine 14 435 0.16 1 5.24 1 0.24 1 162.69 1 0.73 1 4,415.98 4

Nlts 16 16,181 2.84 1 18.84 1 4.01 1 787.52 1 5.67 1 ×t

Letter 17 20,000 13.38 1 42.16 1 15.85 1 1,849.29 2 19.40 1 ×t

Voting 17 435 0.39 1 59.29 1 0.58 1 2,507.72 2 2.85 1 ×t

Zoo 17 101 4.45 1 58.25 1 4.97 1 2,236.13 2 7.71 1 ×t

Statlog 19 752 58.82 4 291.88 1 76.17 4 ×t 78.47 4 ×t

Hepatitis 20 126 14.95 4 675.34 2 29.53 8 ×t 66.96 8 ×t

Image 20 2,310 344.54 8 480.03 2 344.54 8 ×t 344.61 8 ×t

Imports 22 205 3,013.97 32 2,646.41 8 3,167.11 32 ×t 3,167.88 32 ×t

Parkinsons 23 195 3,728.96 64 6,350.58 16 3,730.56 64 ×t 4,125.30 64 ×t

Sensors 25 5,456 ×m ×t ×m ×t ×m ×t

Table 3. The time Th to compute the heuristic function and the time TA∗ to traverse
the BN graph with A* (in seconds).

Benchmark 10-best 100-best 1, 000-best

Name n Th TA∗ Th TA∗ Th TA∗

Wine 14 0.14 0.02 0.14 0.10 0.19 0.55

Nltcs 16 2.83 0.01 3.96 0.05 5.27 0.39

Letter 17 13.36 0.02 15.72 0.13 18.28 1.12

Voting 17 0.36 0.02 0.38 0.19 1.05 1.80

Zoo 17 4.44 0.01 4.93 0.04 7.35 0.35

Statlog 19 58.79 0.03 75.99 0.18 77.58 0.89

Hepatitis 20 14.90 0.05 29.20 0.33 64.56 2.40

Image 20 344.53 0.01 344.53 0.01 344.53 0.08

Imports 22 3,013.39 0.59 3,166.36 0.75 3,166.63 1.26

Parkinsons 23 3,728.31 0.65 3,729.33 1.23 4,117.36 7.94

(except for dataset imports for k = 10). In general, our approach scales to larger
networks (with more variables), and to larger values of k. In fact, KBest appears
to scale super-linearly with k, but A* search appears to scale sub-linearly with
respect to k. These differences are due in part to: (1) the more exhaustive nature
of dynamic programming (DP) (we need to maintain all of the partial solutions
that can potentially be completed to a k-th best solution), and (2) the more
incremental nature of A* (the next best solutions are likely to be in the priority
queue already). Finally, we see that the memory usage of these two approaches is
comparable, although memory usage by A* search appears to be more memory
efficient as we increase the number k of networks that we enumerate.
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Table 4. (1) The number of generated nodes. (2) The number of expanded nodes.
(3) The number of re-expanded nodes (in partial-expansion A*).

Benchmark 10-best 100-best 1, 000-best

Name n Gen Exp Re-exp Gen Exp Re-exp Gen Exp Re-exp

Wine 14 13,156 1,948 0 50,754 8,110 36 254,981 40,992 957

Nltcs 16 1,847 202 0 19,542 2,145 0 173,726 19,784 0

Letter 17 2,613 285 0 19,795 2,174 0 164,794 18,149 0

Voting 17 13,646 1,884 0 89,153 13,836 246 727,944 118,779 4,141

Zoo 17 1,848 205 0 9,994 1,165 0 89,262 10,808 0

Statlog 19 3,603 410 0 30,517 3,589 0 223,069 26,941 68

Hepatitis 20 16,854 2,165 0 114,054 15,897 2 757,727 111,542 816

Image 20 318 43 0 2,546 397 0 31,974 4,903 0

Imports 22 2,217 251 0 20,781 2,416 0 130,426 15,923 84

Parkinsons 23 893 104 0 14,054 1,679 494 134,745 16,197 0

Table 5. The number of times the black-box is invoked to evaluate the heuristic
function.

Benchmark n 10-best 100-best 1, 000-best

Wine 14 896 896 1,067

Nltcs 16 136 402 683

Letter 17 182 472 744

Voting 17 720 1,867 4,779

Zoo 17 289 518 1,679

Statlog 19 230 1,058 1,711

Hepatitis 20 2,235 9,037 26,499

Image 20 124 130 142

Imports 22 234 654 694

Parkinsons 23 155 494 2,065

To gain more insight about the computational nature (and bottlenecks) of
A* search on the BN graph, consider Table 3, which looks at how much time Th

that was spent on evaluating the heuristic function, versus the time TA∗ that
was spent in navigating the BN graph (where t = Th + TA∗, with the total
time t corresponding to those reported in Table 2). Table 4 further reports the
number of nodes generated (the number of nodes inserted into the open list)
and expanded by A* search. First, we observe that the vast majority of the time
spent in search is spent in evaluating the heuristic function. This is expected,
as evaluating our black-box heuristic function is relatively expensive. Next, we
observe that the number of nodes expanded is relatively small, which suggests
that our black-box heuristic is indeed powerful enough to efficiently navigate
the large search space of the BN graph. We also remark again that due to the
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caching of heuristic values (which we discussed earlier), the number of times that
our black-box is invoked, can be much smaller than the number of times that a
node is generated. This is illustrated in Table 5.

6 Conclusion

Underlying nearly all score-based methods for learning Bayesian networks from
data, is the property of score decomposability. This has been true, since the
first Bayesian network learning algorithms were proposed, over two decades ago.
While the property of score decomposability has been fruitfully exploited over
this time, there is a notable void in the structure learning landscape, in the
support of learning with non-decomposable scores. This includes a general lack
of support for the integration of more expressive, but non-decomposable forms
of prior knowledge.

In this paper, we take a step towards a more general framework for Bayesian
network structure learning that targets this void. We proposed a new search
space, called the BN graph, which explicates all Bayesian network structures. We
proposed to navigate this tremendously large search space, with the assistance of
a (nearly) omniscient oracle—any state-of-the-art system for Bayesian network
structure learning can be used as this oracle. Using heuristic search methods,
such as A* search, we showed how this framework can be used to find optimal
Bayesian network structures, using non-decomposable scores (even when our
oracle relies on decomposable scores). To our knowledge, ours is the first system
for finding optimal DAGs using order-modular priors, in particular. Further, we
showed that enumerating the k-best DAGs is very simple on the BN graph, where
empirically, we observed three orders of magnitude improvement, compared to
existing approaches.
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A Proofs for Sect. 4.2

Proof (Theorem 1). The total cost of a path from the root G0 to a leaf Gn is:

∑

Gi→Gj

score(XjUj | D) − log
Pr j(Gj)
Pr i(Gi)

=
∑

Gi→Gj

score(XjUj | D) − logPr j(Gj) + logPr i(Gi)
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= score(X1U1 | D) − logPr1(G1) + logPr0(G0)
+ score(X2U2 | D) − logPr2(G2) + logPr1(G1) + . . .

+ score(XnUn | D) − logPrn(Gn) + logPrn−1(Gn−1)
= score(G | D) − logPrn(Gn)

as desired. ��

Proof (Theorem 2).

h(Gi) = min
Gn:Gi�Gn

∑

XU∈Gn−Gi

score(XU | D) + min
Gn:Gi�Gn

− log
Prn(Gn)
Pr i(Gi)

≤ min
Gn:Gi�Gn

( ∑

XU∈Gn−Gi

score(XU | D) − log
Prn(Gn)
Pr i(Gi)

)

= min
Gn:Gi�Gn

g(Gn) − g(Gi)

Since heuristic function h lower-bounds the true cost of to a goal node, it is
admissible. ��

Below we consider the correctness of Algorithm 1.

Lemma 1. In Algorithm1:

1. all Gi that generate Gi+1 are extracted from H before Gi+1 is extracted;
2. when (Gi+1, fi+1, li+1) is extracted from H,

fi+1 = score(Gi+1|D) − log #Gi+1 + h(Gi+1),

and li+1 is the number of linear extensions of Gi+1, i.e., #Gi+1.

where h(Gi) = h1(Gi) −
∑n

j=i+1 log j.

Proof. Consider a minimum item (Gi+1, fi+1, li+1) extracted from H. Below we
show by induction that (1) all Gi such that Gi generates Gi+1 are extracted
from H before Gi+1 (2) fi+1 = score(Gi+1|D) − log #Gi+1 + h(Gi+1), and li+1

is the number of linear extensions of Gi+1, which is also the number of paths
from G0 to Gi+1.

For i = 0, clearly (1) and (2) are true. Assume (1) and (2) are true for all
(Gi, fi, li). Then when (Gi+1, fi+1, li+1) is extracted, li+1 is the number of paths
from G0 to Gi+1 that pass the Gi extracted from H before Gi+1. To see this,
note that l is the number of path from G0 to Gi. Moreover, since li+1 is the
number paths from G0 to Gi+1 that pass the Gi extracted from H before Gi+1,
when (Gi+1, fi+1, li+1) is in H,

fi+1 = score(Gi+1|D) − log
∑

Gi≺Gi+1

N(G0 → . . . → Gi → Gi+1) + h(Gi+1),
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where Gi ≺ Gi+1 denotes that Gi is extracted before Gi+1, and N(G0 → . . . →
Gi → Gi+1) denotes the number of paths G0 → . . . → Gi → Gi+1. Note that
fi+1 decreases as more Gi are extracted.

Consider when (Gi, fi, li) and (Gi+1, fi+1, li+1) are both in H. Below we show
that all Gi that generates Gi+1 are extracted from H before Gi+1. Consider

fi = score(Gi|D)

− log
∑

Gi−1≺Gi

N(G0 → . . . → Gi−1 → Gi) + h1(Gi) −
n∑

j=i+1

log j

fi+1 = score(Gi+1|D)

− log
∑

G′
i≺Gi+1

N(G0 → . . . → G′
i → Gi+1) + h1(Gi+1) −

n∑

j=i+2

log j

We simply need to show fi+1 > fi. Since h1 is a consistent heuristic function for
learning with score, score(Gi+1|D) + h1(Gi+1) ≥ score(Gi|D) + h1(Gi). Then we
only need to show

(i + 1)
∑

Gi−1≺Gi

N(G0 → . . . → Gi−1 → Gi)

>
∑

G′
i≺Gi+1

N(G0 → . . . → G′
i → Gi+1)

First, for any pair of DAGs Gi and G′
i that can generate a DAG Gi+1, there

exists a unique DAG Gi−1 that can generate both Gi and G′
i. For each G′

i on the
right-hand side, there thus exists a corresponding (and unique) Gi−1 on the left-
hand side that can generate both G′

i and Gi. Further, since G′
i was expanded,

Gi−1 must also have been expanded (by induction). For each such Gi−1, if G′
i

has a linear extension count of L, then Gi−1 must have at least a linear extension
count of L/i, and hence the corresponding N(G0 → . . . → Gi−1 → Gi) is at
least L/i. On the left-hand side, we the corresponding term is thus at least
(i + 1) · L/i > L. Since this holds for each element of the summation on the
right-hand side, the above inequality holds.

Since all Gi that generates Gi+1 are extracted from H before Gi+1, as a
result, fi+1 = score(Gi+1|D) − log #Gi+1 + h(Gi+1), and li+1 is the number of
all paths from G0 to Gi+1.

Proof (of Theorem 4). To see the correctness of the algorithm, simply note that
by Lemma 1, when (Gi+1, fi+1, li+1) is extracted from H, i.e. the open list, fi+1 =
f(Gi+1).

Proof (of Theorem 3). By Lemma 1, Algorithm 1 can count the number of linear
extensions.
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24. Niinimäki, T.M., Koivisto, M.: Annealed importance sampling for structure learn-
ing in Bayesian networks. In: Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence (IJCAI) (2013)

25. Oates, C.J., Smith, J.Q., Mukherjee, S., Cussens, J.: Exact estimation of multi-
ple directed acyclic graphs. Stat. Comput. 1–15 (2015). http://link.springer.com/
journal/11222/onlineFirst/page/2

26. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Pearson
Education, London (2010)
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Abstract. Directed hypergraphs have already been shown to unveil sev-
eral combinatorial inspired results for the SAT problem. In this paper
we approach the SAT problem by searching a transversal of the directed
hypergraphs associated to its instance. We introduce some particular
clause orderings and study their influence on the backtrack process,
exhibiting a new subclass of CNF for which SAT is polynomial. Based on
unit resolution and a novel dichotomous search, a new DPLL-like algo-
rithm and a renaming-based combinatorial approach are proposed. We
then investigate the study of weak transversals in this setting and reveal
a new degree of a CNF formula unsatisfiability and a structural result
about unsatisfiable formulae.

1 Introduction

In this paper we consider a representation based on directed hypergraphs of
the SAT problem. Directed hypergraphs are generalizations of directed graphs,
introduced in [15] to represent deduction properties in data bases as paths in
hypergraphs, and developed in several papers (see [1,7]).

The main contribution of the paper is showing how a transversal based
directed hypergraph representation of the SAT problem opens the way to new
methods and ideas, otherwise not evident without a hypergraph representation.
The advantage of this representation is the uniform addressing of assignments
and clauses. Our aim is to show the plethora of interesting combinatorial results
this formalisation opens up (deepening the results in [6,7]). These contributions
will take the form of a new polynomial class of SAT instances (made evident due
to a clause ordering natural in the hypergraph setting); a new variable elimina-
tion based algorithm that could be used for further optimisations of SAT solvers
and a new unsatisfiability measure focusing on problematic variables (and not
problematic clauses as traditionally considered in the field).

A directed hypergraph is a pair H = (V, C), where V is a finite set of
vertices and C = (Ci; i ∈ I) is a family of directed edges; the index set I is
a finite set (possibly empty). Each directed edge is a pair C = (C+, C−), where
C+, C− ⊆ V .

The propositional logic satisfiability problem consists of finding a truth
assignment for the propositional variables of CNF formula F , represented as a
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 72–88, 2015.
DOI: 10.1007/978-3-319-28702-7 5
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(multi)set of clauses C (each clause being a disjunction of propositional variables
or their negations), such that each clause evaluates to true (F is satisfiable),
or proving that such truth assignment does not exist (F is unsatisfiable). SAT,
the corresponding decision problem, has as instance a finite set of propositional
variables V and the formula F = C over V and asks if F is satisfiable. Clearly,
HF = (V, C) is a directed hypergraph if each clause C ∈ C is viewed as the pair
(C+, C−), where C+ is the set of all non-negated variables in C and C− is the
set of all negated variables in C.

Example. Let F be the following propositional sentence in conjunctive normal
form (CNF): C = (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ v3) ∧ (v2 ∨
¬v2 ∨ v5) ∧ (v1 ∨ v5 ∨ ¬v1) ∧ (v3 ∨ v4 ∨ v5), where vi are propositional variables.
The clausal representation of F as a directed hypergraph on V = {v1, . . . , v5}
is HF = (V, (C1, . . . , C6)), where C1 = ({v1, v2, v3}, ∅), C2 = ({v3}, {v1, v2}),
C3 = ({v2, v3}, {v1}), C4 = ({v2, v5}, {v2}), C5 = ({v1, v5}, {v1}), C6 =
(∅, {v3, v4, v5}). This directed hypergraph can be visualised as in Fig. 1 bellow:
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Fig. 1. Directed hypergraph of CNF formula

Please note the “dangling” directed edges C1 and C6. Also, the tautological
clauses C4 and C5 have C+

i ∩ C−
i �= ∅, which could be omitted in the SAT

problem.
Motivated by the results and algorithms generalizing the similar one for

directed graphs, in [6,7] it is shown that F is satisfiable if and only if in
the directed hypergraph HF there is a 0-cardinality cutset: a (weak) partition
(V +, V −) of V (V + ∪ V − = V and V + ∩ V − = ∅) such that there is no clause
C ∈ C with C− ⊆ V + and C+ ⊆ V −. This is equivalent to the fact that
there is a pair (A+, A−) of subsets of V such that A+ ∩ A− = ∅ and, for each
clause C = (C+, C−) ∈ C, we have A+ ∩ C+ �= ∅ or A− ∩ C− �= ∅. Setting
the variable from A+ to true and the variables from A− to false, we obtain a
(partial) satisfying assignment for F . Conversely, for each satisfying assignment
of F , we can construct a pair (A+, A−) with the above properties. It follows that
we could approach the SAT problem by searching a transversal of the directed
hypergraphs associated to its instances.

Let us precise some notations associated to the subsets pairs of a finite set
V . The support of C = (C+, C−) ∈ C is V (C) = C+ ∪ C− ⊆ V . The pair (∅, ∅)
is denoted 2∅. The intersection and union of two pairs sets C1 = (C+

1 , C−
1 ) and

C2 = (C+
2 , C−

2 ) are defined componentwise: C1 
C2 = (C+
1 ∩C+

2 , C−
1 ∩C−

2 ) and
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C1 � C2 = (C+
1 ∪ C+

2 , C−
1 ∪ C−

2 ). Also we denote C1 \ C2 = (C+
1 \ C+

2 , C−
1 \ C−

2 ).
If C1 
 C2 = C1, then C1 � C2. C1 = C2 if and only if C1 � C2 and C2 � C1.

A transversal of H = (V, C) is a pair T = (T+, T−) such that T+, T− ⊆ V ,
T+ ∩ T− = ∅ and T 
 C �= 2∅, for each C ∈ C. Note that if C = ∅, then any pair
T = (T+, T−) of disjoint subsets of V is a transversal of H.

We denote by Tr(H) the directed hypergraph of all transversals of H.
By the above discussion, the SAT problem can be reformulated as:

SAT: Given a directed hypergraph H = (V, C), is Tr(H) nonempty ?

In the next section we study the SAT problem in this setting, which gives
the possibility that clauses and assignments are uniformly addressed. First, we
study the impact of the order in which the clauses are considered in a SAT
search procedure. We introduce some particular clause orderings and exhibit
their influence on the backtrack process. A new subclass of the CNF for which
SAT is polynomial is evidentiated. Second, a new DPLL-like algorithm is pro-
posed, based on unit resolution and a new dichotomous search. Finally, we devise
a combinatorial approach based on renaming.

The rest of the paper is then devoted to the study of weak transversals by
giving up the condition that the sets T+ and T− defining a transversal T =
(T+, T−) of a directed hypergraph are disjoint. We are searching in this case for
a weak transversal T minimizing |T+ ∩ T−|. This is a very interesting problem
giving rise to a new “degree of unsatisfiability” of a CNF formula, and having
many decision combinatorial problems as instances. The section is ended with
a structural result about unsatisfiable formulas. We conclude with a discussion
section.

2 Directed Hypergraph Approach to SAT

It is not difficult to see that for SAT we can consider C = (Ci; i ∈ I) non empty,
not containing the directed edge (∅, ∅), without directed edges C,C ′ satisfying
C � C ′, and with the property that there is no partition (I1, I2) of I such that⋃

i∈I1
V (Ci) ∩

⋃
i∈I2

V (Ci) = ∅. We call such a directed hypergraph H = (V, C)
a simple connected clutter . If each edge C ∈ C satisfies |V (C)| = k, then H
is a k-uniform clutter .

2.1 Clause Ordering

In order to capture the combinatorial properties of a simple connected clutter,
we introduce the notion of branching that imposes an ordering of the members
of the clutter, providing information about the associated transversal directed
hypergraph.

Definition 1 (C-Base Branching). Let H = (V, C) be a simple connected clutter
on V . A C-base branching is any ordered set of edges of C, B = {B1, . . . , Bk},
such that:
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1. V (Bi) −
⋃

j<i V (Bj) �= ∅ for each i = 1, . . . , k,
2. V (Bi) ∩

⋃
j<i V (Bj) �= ∅ for each i = 2, . . . , k,

3.
⋃

i=1,k V (Bi) = V .

B can be constructed by choosing B1 and, at each step i ∈ {2, . . . , k}, choos-
ing a C member Bi, having in V (Bi) at least a new element (cf. condition (1))
and at least a common element with

⋃
j<i V (Bj) (cf. condition (2)). The con-

struction is possible since C is a simple connected clutter on V and finishes when⋃
i=1,k V (Bi) = V .

For each remaining edge C ∈ C − B let first(C,B) the first index t ∈
{1, . . . , k} such that V (C) ⊆

⋃
j=1,t V (Bj). Clearly, 1 ≤ first(C,B) ≤ k since,

by the above definition of a base branching, we have V (C) ⊆ V =
⋃

i=1,k V (Bi).
It follows that each clause Bi in the base branching B = {B1, . . . , Bk} has

associated a set of C members, cov(Bi) from C − B, namely

cov(Bi) = (C ∈ C − B|first(C,B) = i).

Clearly, cov(Bi) and cov(Bj) are disjoint for i �= j, the union of all cov(Bi) is
C − B and some cov(Bi) can be empty. Note that cov(Bi) designates the family
of all members C out of the base branching with the property that V (C) ⊆⋃

j=1,i V (Bj) and V (C) −
⋃

j=1,i−1 V (Bj) �= ∅.

Definition 2 (Branching). If H = (V, C) is a simple connected clutter on V , a
branching of C is any ordering of the edges of C: B1, cov(B1), . . . , Bk, cov(Bk),
for a specified C-base branching B.

Definition 3 (C-Base Branching Depth). If B = {B1, . . . , Bk} is a C-base
branching, we define its depth by

depth(B) =

{
0 if C − B = ∅
max{i|cov(Bi) �= ∅} if C − B �= ∅.

Example. For HF , the example of directed hypergraph given in the introduc-
tion, we can take B = {B1, B2, B3}, where B1 = C1, B2 = C4, B3 = C6, and
therefore cov(B1) = {C2, C3}, cov(B2) = {C4, C5}, cov(B3) = ∅. It follows that
depth(B) = 2.

Finding a C-base branching with small depth is useful as the following propo-
sition shows.

Proposition 1. Let H = (V, C) be a simple connected clutter on V and B =
{B1, . . . , Bk} a C-base branching. Then Tr(H) �= ∅ if and only if

Tr({B1, cov(B1), . . . , Bdepth(B), cov(Bdepth(B))}) �= ∅

Proof. We show how to transform a transversal

T ∈ Tr({B1, cov(B1), . . . , Bdepth(B), cov(Bdepth(B))})
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to a transversal

T ′ ∈ Tr({B1, cov(B1), . . . , Bdepth(B), cov(Bdepth(B)), Bdepth(B)+1}).

For depth(B) = 0, the construction works by taking T = 2∅. By the definition of
the base branching, there is v ∈ V (Bdepth(B)+1) −

⋃
j≤depth(B) V (Bj). Now, T ′

can be constructed as

T ′ =

{
T � ({v}, ∅) if v ∈ B+

depth(B)+1

T � (∅, {v}) if v ∈ B−
depth(B)+1.

A similar argument works for each i ∈ {depth(B) + 1, . . . , k − 1} and thus
we can extend T to a traversal of {B1, cov(B1), . . . , Bdepth(B), cov(Bdepth(B)),
Bdepth(B)+1, . . . , Bk} = C. 
�

Note that if depth(B) = 0, the above argument shows that Tr(H) =
Tr(C) �= ∅. We have obtained the following:

Corollary 1. If the edges of a directed hypergraph H = (V, C) in a SAT instance
can be ordered C = {C1, . . . , Cm} such that, for each i ∈ {2, . . . , m}, V (Ci) has at
least a new element (that is, not belonging to

⋃
j=1,i−1 V (Cj)), then Tr(C) �= ∅.

Moreover, it follows from the above proposition that, if depth(B) ≤ c
for some constant c (not depending on |V | or |C|), then we can test if
Tr(C) �= ∅ by checking all partitions P = (P+, P−) of

⋃
j=1,depth(B) V (Bj).

If we find P ∈ Tr(B1, . . . , Bdepth(B)), which intersects each member C in
{cov(B1), . . . , cov(Bdepth(B))}, then Tr(C) �= ∅. If each Bi has |V (Bi)| constant
(e.g. when C is 3-uniform) the number of these partitions is constant, and there-
fore the satisfiability of C can be tested in polynomial time:

Corollary 2. Let C be a 3-uniform clutter of a SAT instance and B =
{C1, . . . , Ck} a C-base branching with depth(B) ≤ c, for some positive constant
c. Then the satisfiability of C can be tested in polynomial time.

The backtrack-free construction of a transversal suggested in the proof of
Proposition 1, on which the Corollary 1 is based, can be explicitly described (in
the general case) by the following algorithm:

1. Construct a C-branching: B1, cov(B1), . . . , Bk, cov(Bk) ;
T ← B1 ;
find T ′ ∈ Tr(cov(B1)) such that T � T ′;
T ← T ′ ;

2. for i = 2 to k do
Let v ∈ V (Bi) −⋃j≤i−1 V (Bj) ;

T ←
{
T � ({v}, ∅) if v ∈ B+

i

T � (∅, {v}) if v ∈ B−
i .

find T ′ ∈ Tr(cov(Bi)) such that T � T ′;
T ← T ′ ;

3. output T .
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The critical part of this algorithm is “find T ′ ∈ Tr(cov(Bi)) such that T �
T ′” for each i ∈ {1, . . . , k}. If cov(Bi) = ∅, as in the proof of Proposition 1 or
in Corollary 1, we simply take T ′ = T . Another simple case is described in the
following proposition.

Proposition 2. Let C be a simple connected clutter on V and B = {B1, . . . , Bk}
a C-base branching. If for every i ∈ {1, . . . , k}, each member C ∈ cov(Bi) has
an element v(C,Bi) ∈ V (C) −

⋃
j=1,i−1 V (Bj) such that v(C,Bi) ∈ C+ ∩ B+

i ∪
C− ∩ B−

i , then Tr(C) �= ∅.

Proof. By the definition of a C-base branching, for every i ∈ {1, . . . , k} and
C ∈ cov(Bi), we have V (C) −

⋃
j=1,i−1 V (Bj) �= ∅. The condition in hypothesis

of the proposition assures that we can take T ′ in the above algorithm as

T ′ = T
⊔

C∈cov(Bi),

v(C,Bi)∈B+
i

({v(C,Bi)}, ∅)
⊔

C∈cov(Bi),

v(C,Bi)∈B−
i

(∅, {v(C,Bi)}).

We conclude this subsection by noting that the algorithm described can be
easily integrated in a backtracking scheme using the branching base as a driver
for the search. This could be useful for 3SAT since the extension of the current
transversal T to one of cov(Bi) can be done efficiently by solving a 2SAT.

2.2 A New DPLL-Like Algorithm for SAT

Let H = (V, C) be a directed hypergraph and let u, v ∈ V , u �= v. Hu=v =
(V − {v}, C|u=v) is the directed hypergraph obtained from H = (V, C) by the
following algorithm:

C|u=v ← ∅;
for C ∈ C do {

if v ∈ C+ then C+ ← C+ − {v} ∪ {u};
if v ∈ C− then C− ← C− − {v} ∪ {u};
if u �∈ C+ ∩ C− then C|u=v ← C|u=v ∪ {C};
}

return C|u=v.

In other words, C|u=v is obtained from C by deleting all edges in which v and
u appear on different sides, replacing v by u in all edges in which v appears but
not u, and deleting v from the edges in which u and v appear on the same side.

Similarly, Hu�=v = (V − {v}, C|u�=v) is the hypergraph obtained from H =
(V, C) by the following algorithm:
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C|u �=v ← ∅;
for C ∈ C do {

if v ∈ C+ then { C+ ← C+ − {v}; C− ← C− ∪ {u} };
if v ∈ C− then { C− ← C− − {v}; C+ ← C+ ∪ {u} };
if u �∈ C+ ∩ C− then C|u �=v ← C|u �=v ∪ {C};
}

return C|u �=v.

C|u�=v is obtained from C by deleting all edges in which v and u appear on the
same side, replacing v by u and moving it to the other side in all edges in which
v appears but not u, and deleting v from the edges in which u and v appear in
different sides.

Clearly, Hu=v and Hu�=v are (simplified) directed hypergraphs on V − {v}.
The following proposition shows that this elimination of the vertex v is sound
with respect to the existence of a transversal.

Proposition 3. Tr(H) �= ∅ if and only if Tr(Hu=v) �= ∅ or Tr(Hu�=v) �= ∅.

Proof. If Tr(H) �= ∅, let A = (A+, A−) ∈ Tr(H). We can suppose that u, v ∈
A+ ∪ A− (if A = (A+, A−) ∈ Tr(H), then any pair A1, with A+

1 ∩ A−
1 = ∅,

A+ ⊆ A+
1 and A− ⊆ A−

1 , is an edge of Tr(H)).

Case 1. {u, v} ⊆ A+, or {u, v} ⊆ A−. Suppose u, v ∈ A+ and let C1 ∈ C|u=v

such that A+ ∩ C+
1 ∪ A− ∩ C−

1 = ∅. It follows that C1 �∈ C and therefore C1

is obtained from C ∈ C, by replacing v by u in C−. Since u, v ∈ A+ it follows
that A+ ∩ C+ ∪ A− ∩ C− = A+ ∩ C+

1 ∪ A− ∩ C−
1 = ∅, contradiction. Hence

A ∈ Tr(Hu=v). A similar argument can be used for the case u, v ∈ A−.

Case 2. u ∈ A+, v ∈ A− or u ∈ A−, v ∈ A+. Suppose u ∈ A+, v ∈ A− and let
C1 ∈ C|u�=v such that A+∩C+

1 ∪A−∩C−
1 = ∅. It follows that C1 �∈ C and therefore

C1 is obtained from C ∈ C, by deleting v from C+ and adding u to C−. Since
u ∈ A+, v ∈ A−, it follows that A+ ∩C+ ∪A− ∩C− = A+ ∩C+

1 ∪A− ∩C−
1 = ∅,

contradicting the hypothesis that A ∈ Tr(H). Therefore, A ∈ Tr(Hu�=v). A
similar argument can be used for the case u ∈ A−, v ∈ A+.

Conversely, if Tr(Hu=v) �= ∅ or Tr(Hu�=v) �= ∅ then there is A ∈ Tr(Hu=v)
or B ∈ Tr(Hu�=v). We can suppose that v �∈ A+ ∪A− and v �∈ B+∪B−, since no
edge in C|u=v or C|u�=v contains v. However, we can suppose that u ∈ A+ ∪ A−

and u ∈ B+ ∪ B− (by adding it to A+, respectively B+, if necessary). We show
that A and B can be transformed into transversals of H.
Transformation of A. If u ∈ A+ then A+ ← A+ ∪ {v}, else A− ← A− ∪ {v}.
Suppose that u ∈ A+ and there is C ∈ C such that A+ ∩ C+ ∪ A− ∩ C− = ∅.
It follows that C �∈ C|u=v, and this happens if u ∈ C− and v ∈ C+, or u ∈
C+ and v ∈ C−. After the transformation of A, we have u, v ∈ A+, and now
A+ ∩ C+ ∪ A− ∩ C− �= ∅. A similar argument can be used for the case u ∈ A−.
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Transformation of B. If u ∈ B+ then B− ← B− ∪ {v}, else B+ ← B+ ∪ {v}.
Suppose that u ∈ B+ and there is C ∈ C such that B+ ∩ C+ ∪ B− ∩ C− = ∅.
It follows that C �∈ C|u�=v, and this happens if u, v ∈ C− or u, v ∈ C+. After
the transformation of B, we have v ∈ B−, and now B+ ∩ C+ ∪ B− ∩ C− �= ∅.
Similarly, if u ∈ B−. 
�

In order to use the above result in a backtracking method to find a transversal
of a directed hypergraph, we need some notations. Let B and C pair of sets of
V such that B 
 C = 2∅. Then CB denotes the pair C1 with C+

1 = C+ − B−

and C−
1 = C− − B+.

If H = (V, C) is a directed hypergraph and B is a pair of sets of V such that
B+ ∩ B− = ∅, then

CB = (CB |C ∈ C and (B+ ∩ C+) ∪ (B− ∩ C−) = ∅)

Clearly, if CB = ∅ then B ∈ Tr(H). Also, it is not difficult to see that there is
A ∈ Tr(H) extending B (i.e. B+ ⊆ A+ and B− ⊆ A−) if and only if Tr(CB) �= ∅.

In particular, if C ∈ C is a unit clause then any transversal of C must extend
C and, therefore, the following unit propagation rule holds:

Tr(C) �= ∅ if and only if Tr(CC) �= ∅.

With our notations, the well known DPLL backtracking algorithm based
on the unit propagation rule [2,3] can be modified to obtain a new complete
algorithm for the SAT problem: V EB (Variable Elimination Backtracking).

procedure V EB(C)
(SAT) if C = ∅ then return satisfiable;
(Conflict) if (∅, ∅) ∈ C then return unsatisfiable;
(Unit Edge) if ∃ unit edge C ∈ C then return V EB(CC);
(Branch) (u, v) ←a pair of vertices of a minimum size edge of C;

if V EB(C|u=v) retur ns satisfiable
then return satisfiable
else return V EB(C|u �=v)

end.

2.3 Renaming

A very interesting approach to the SAT problem can be derived from the idea
of renaming introduced in [13].

Let V be a finite nonempty set and X ⊆ V . For a pair C = (C+, C−) of
subsets of V , we define the X-renaming of C, denoted rX(C), the pair rX(C) =
D = (D+,D−), where D+ = (C+−X)∪(C−∩X) and D− = (C−−X)∪(C+∩X)
(that is, moving in C the elements of X from one side to another one).
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Definition 4 (Renaming). If H = (V, C) is a directed hypergraph and X ⊆ V ,
then its X-renaming is the directed hypergraph rX(H) = (V, rX(C)), where
rX(C) = (rX(C)|C ∈ C).

It is not difficult to see that rX(rX(C)) = C and C1 
 C2 �= 2∅ if and only if
rX(C1) 
 rX(C2) �= 2∅. Also, r∅(C) = C, rV (C) = (C−, C+) and rX(rY (C)) =
rXΔY (C), for every X,Y ⊆ V .

The following important property of renaming holds:

Proposition 4. Let H be a directed hypergraph on V and X ⊆ V . Then
Tr(H) �= ∅ if and only if Tr(rX(H)) �= ∅. Moreover, Tr(H) = rX(Tr(rX(H))).

It follows that finding a transversal of H could be approached by finding a
transversal of a suitable renaming rX(H) of it.

Definition 5 (Transversal Renaming). A X-renaming of H = (V, C) is called
a transversal X-renaming if rX(C)− �= ∅ for each C ∈ C or rX(C)+ �= ∅ for
each C ∈ C.

Proposition 5. Let H = (V, C) be a directed hypergraph. Tr(H) �= ∅ if and only
if H has a transversal X-renaming.

Proof. If H has a transversal X-renaming then T1 = (∅, V ) ∈ Tr(rX(H)) or
T2 = (V, ∅) ∈ Tr(rX(H)). By the above proposition, rX(T1) = (X,V − X) ∈
Tr(H) or rX(T2) = (V − X,X) ∈ Tr(H).

Conversely, if T ∈ Tr(C) then it is easy to see that X = T+ or X = T− is a
transversal X-renaming of H. 
�

If H = (V, C) is a directed hypergraph, let us denote H+
0 = (V, C+

0 ), where
C+
0 = (C ∈ C|C+ = ∅) and H−

0 = (V, C−
0 ), where C−

0 = (C ∈ C|C− = ∅). We also
denote t(H) = min(|C+

0 |, |C−
0 |).

Clearly, if t(H) = 0 then Tr(H) �= ∅, since then (V, ∅) or (∅, V ) is a transversal
of H. By the above proposition, it follows that

Tr(H) �= ∅ if and only if minX⊆V t(rX(H)) = 0.

Hence, we have thus reformulated the SAT problem on instance H = (V, C),
as the combinatorial search problem of a subset X∗ ⊂ V with the property that
moving in each edge the vertices of X∗ from one side to another, the number of
edges having the same side nonempty is minimized. This opens the way to use
in the SAT problem the well known heuristics methods of [5,11].

3 Weak Transversals

Let H = (V, C = (Ci; i ∈ I)) be a directed hypergraph.

Definition 6 (Weak Transversal). A weak transversal of C is a is a pair of
subsets of V , T = (T+, T−), such that T 
 Ci �= 2∅, for each i ∈ I.
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Clearly, every directed hypergraph H, not containing 2∅ as an edge, has a
weak transversal. If C,C ′ ∈ C satisfies C � C ′, then every weak transversal of
H ′ = (V, C − C ′) is a weak transversal of H = (V, C). Therefore we can suppose
that H = (V, C) is a clutter (there is no i, j ∈ I, i �= j such that Ci � Cj).

If T is a weak transversal of H and T � T 1 then T 1 is also a weak transversal
of H. A minimal weak transversal is a weak transversal T 0 of H such that if
T � T 0 and T is a weak transversal of H, then T = T 0. We denote by Trw(H)
the clutter of minimal transversals of H.

The following two simple lemmas are useful in order to prove that
Trw(Trw(H)) = H, which could be interesting for some restrictions of the prob-
lem MinSAT bellow.

Lemma 1. Let H = (V, C) and H ′ = (V,D) two clutters. If for each C ∈ C
there is D ∈ D such that C � D and for each D ∈ D there is C ∈ C such that
C � D, then H = H ′.

Lemma 2. Let H = (V, C) be a clutter. If X = (X+,X−) is a pair of subsets
of V such that there is no C ∈ C with the property C � X, then there is
T ∈ Trw(H) satisfying X ∩ T = 2∅.

Proof. Let X = (V − X+, V − X−). Then X is a weak transversal of H.
Otherwise, there is C ∈ C such that C 
 X = 2∅, that is, C+ ⊆ X+ and
C− ⊆ X−, therefore C � X, contradicting the hypothesis. It follows that there
is a minimal weak transversal T of H such that T � X. Clearly, X ∩ T = 2∅. 
�
We can now prove:

Proposition 6. If H = (V, C) is a clutter, then Trw(Trw(H)) = H.

Proof. Let C ∈ C. By the definition of Trw(H) we have C 
 T �= 2∅ for every
member T of Trw(H). It follows that there is D ∈ Trw(Trw(H)) such that
D � C.

Let X ∈ Trw(Trw(H)). Then, there is C ∈ C such that C � X. Otherwise,
by Lemma 2, there is T ∈ Trw(H) satisfying X ∩ T = 2∅, contradicting the
assumption that X ∈ Trw(Trw(H)). The proposition follows now from Lemma 1.

�

Since a weak transversal T of directed hypergraph H = (V, C) is a transversal
of H if and only if T+ ∩ T− = ∅, it follows that the following problem is NP -
complete, containing (for k = 0) the problem SAT.

MinSAT
Instance: V a finite set, C a 2hypergraph on V , k ∈ Z+.
Question: Has C a weak transversal T such that |T+ ∩ T−| ≤ k?

It follows that we can take min{|T+ ∩T−|;T ∈ Trw(H)} as a measure of unsat-
isfiability of the directed hypergraph H = (V, C). More precisely, we consider the
following definition.
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Definition 7 (Unsatisfiability). Let H = (V, C) a directed hypergraph. The
unsatisfiability of H, denoted unsat(H), is defined as:

unsat(H) =

⎧
⎪⎨

⎪⎩

0 if C = ∅,
minT∈Trw(H)|T+ ∩ T−| if C �= ∅ and 2∅ �∈ C,
∞ if 2∅ ∈ C.

An obvious lower bound for unsat(H) is the number of distinct pairs
({vi}, ∅), (∅, {vi}) contained in C, because every weak transversal T ∈ Trw(H)
must contain ({vi}, {vi}). This observation can be easily extended to obtain the
following proposition.

Proposition 7. Let H = (V, C) be a directed hypergraph, not containing 2∅ as
an edge. If there is a ∈ V such that ({a}, ∅), (∅, {a}) ∈ C, then

unsat(H) = 1 + unsat(H ′)

where H ′ = (V, C′) and C′ = {C|C ∈ C, C 
 ({a}, {a}) = 2∅}.

Some other properties of the unsatisfiability of a clutter are given in the next
proposition.

Proposition 8. Let H = (V, C) be a clutter.

1. If H = (V, C′) is a clutter, H ′ = (V, C′), and C ⊆ C′, then unsat(H) ≤
unsat(H ′).

2. If H = Trw(H ′), where H ′ = (V, C′) is a clutter, then unsat(H) = min{|C+∩
C−|; C ∈ C′}.

3. If H has an edge C ∈ C which satisfies C+ ∩ C− �= ∅, then unsat(H) =
unsat(H ′), where H ′ = (V, C − C).

4. If H ′ = (V ′, C′) is a clutter and V ∩ V ′ = ∅, then unsat(H ′′) = unsat(H) +
unsat(H ′), where H ′′ = (V ∪ V ′, C ∪ C′).

Proof.

1. Let T ∈ Trw(H ′) such that unsat(H ′) = |T+ ∩ T−|. Clearly T meets every
member of C, therefore there is T1 ∈ Trw(C) such that T1 � T . It follows that
|T+

1 ∩ T−
1 | ≤ |T+ ∩ T−| and therefore unsat(H) ≤ unsat(H ′).

2. By Proposition 5, Trw(H) = H ′ and the statement follows by the definition
of unsat(H).

3. By 1, we have unsat(H ′) ≤ unsat(H). Conversely, let T ∈ Trw(H ′) such that
unsat(H ′) = |T+ ∩ T−|. If T meets C then, as above, we have unsat(H) ≤
unsat(H ′). If T 
C = 2∅ then, taking v ∈ C+ ∩C−, T1 = (T+ ∪{v}, T−) is a
weak transversal of H. Any member T0 ∈ Trw(H), contained in T1, satisfies
|T+

0 ∩ T−
0 | ≤ |T+

1 ∩ T−
1 | ≤ |T+ ∩ T−|, therefore unsat(H) ≤ unsat(H ′).

4. Since V ∩ V ′ = ∅ it follows that T ∈ Trw(H ′′) if and only if there are
T1 ∈ Trw(H) and Tw

2 ∈ Tr(H ′) such that T = T1 � T2. The statement
follows, since |T+ ∩ T−| = |T+

1 ∩ T−
1 | + |T+

2 ∩ T−
2 |. 
�
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The analogue of the resolution rule does not hold. Indeed, let H = (V, C)
and C1, C2 ∈ C such that there is a ∈ C+

1 ∩ C−
2 and C1 � C2 �= ({a}, {a}).

If R(C1, C2; a) = C1 � C2 \ ({a}, {a}), then unsat(H) ≤ unsat(H ′), where
H ′ = (V, C ∪R(C1, C2; a)). This inequality follows from Proposition 8(1). Unfor-
tunately, it could be strictly as the following example shows. Let V = {p, q, r}
and

C = {({p, q}, ∅), ({p, r}, ∅), (∅, {p}), (∅, {q}), (∅, {r})}.

We then add to C, by applying the above restricted resolution rule, the fol-
lowing members: ({p}, ∅), ({r}, ∅), ({q}, ∅), obtaining H ′ = (V, C′). Using Propo-
sition 7, we obtain unsat(H ′) = 3, while unsat(C) = 1, by taking the weak
transversal T = ({p}, {p, q, r}).

The following proposition shows that, in order to compute unsat(H) for a
given directed hypergraph, we can transform it, in polynomial time, in a clutter
with each edge having one side empty.

Proposition 9. Let H = (V, C) be a clutter and C ∈ C such that |C+|, |C−| ≥ 1.
If vC �∈ V , V ′ = V ∪ {vC}, C′ = C − C ∪ (C+ ∪ {vC}, ∅) ∪ (∅, C− ∪ {vC}), and
H ′ = (V ′, C′), then unsat(H) = unsat(H ′).

Proof. Let T ∈ Trw(H) such that unsat(H) = |T+ ∩ T−|. If T meets both
C+ and C− then T ∈ Trw(H ′). Otherwise, T meets exactly one of them and
T � (∅, {vC}) ∈ Trw(H ′) or T � ({vC}, ∅) ∈ Trw(H ′). Therefore unsat(H) ≤
unsat(H ′). Conversely, let T ∈ Trw(H ′) such that unsat(H ′) = |T+ ∩ T−|. If
vC �∈ T+ ∩ T− then T1 = T − ({vC}, {vC}) ∈ Trw(H). Otherwise, T+ ∩ C+ = ∅
and T− ∩ C− = ∅. If a ∈ V (C), then T1 = T − ({vC}, {vC}) � ({a}, {a}) ∈
Trw(H). It follows that unsat(H ′) ≤ unsat(H). 
�

As a consequence of the above proposition, we obtain that the MinSAT prob-
lem can be polynomially reduced to the following decision problem on (usual)
hypergraphs:

Minimum intersection transversals
Instance: H1 and H2 two hypergraphs, k ∈ Z+.
Question: Are there Ti transversals of Hi (i = 1, 2) such that

|T1 ∩ T2| ≤ k ?

Another interesting simplification of the directed hypergraph H = (V, C),
which does not change unsat(H) is described in the following proposition
(extending the corresponding polynomial reduction of SAT given in [14]). Essen-
tially, it states that we can suppose that any two members of C have at most one
element in their corresponding support sets. We use the following notation: if X
is a pair of subsets of V , a ∈ V and b �∈ V , then the pair on V ∪ {b} obtained
from X by replacing a by b is denoted X[a ← b].
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Proposition 10. Let H = (V, C) be a directed hypergraph and C1, C2 ∈ C such
that there is a ∈ V (C1) ∩ V (C2). If b, c �∈ V , b �= c, V1 = V ∪ {b, c}, C1 =
C − {C1, C2} ∪ {C1[a ← b], C2[a ← c]} ∪ {({a}, {b}), ({b}, {c}), ({c}, {a})} and
H1 = (V1, C1), then unsat(H) = unsat(H1).

Proof. Let T ∈ Trw(H) such that unsat(H) = |T+ ∩ T−|. We extend T to
T1, a pair of subsets of V1, which meets each edge of C1. If a ∈ T+ then T1 =
T ∪ ({b}, ∅) ∪ ({c}, ∅). If a ∈ T− then T1 = T ∪ (∅, {b}) ∪ (∅, {c}). Finally,
if a �∈ V (T ) then T1 = T ∪ ({a}, ∅) ∪ ({b}, ∅) ∪ ({c}, ∅). In all cases we have
|T+

1 ∩ T−
1 | = |T+ ∩ T−|, therefore it follows that unsat(H1) ≤ unsat(H).

Conversely, let T ∈ Tr(H1) such that unsat(H1) = |T+ ∩ T−|. If we take T ′ =
T [b ← a] and T1 = T ′[c ← a], it is not difficult to see that T1 meets each
member of C. Moreover, the substitutions T [b ← a] and T ′[c ← a] do not increase
|T+

1 ∩ T−
1 |, because either a ∈ T+ ∩ T− or b, c are forced to be in T+ − T− or in

T− − T+, by the structure of the C1. It follows that unsat(H) ≤ unsat(H1). 
�
A known measure of unsatisfiability of a directed hypergraph H = (V, C) is

to consider (via MAXSAT problem) Unsat(H), the minimum number of edges
which must be deleted from C such that the resulted directed hypergraph has a
transversal:

Unsat(H) = |C| − max{|C′|; C′ ⊆ C and Tr(C′) �= ∅}.

In the logical formulation of SAT, Unsat(H) is the minimum number of
unsatisfied clauses from C, over all possible truth assignments of the variables
in V .

Our parameter unsat(H) refers to the minimum number of “trouble” vari-
ables which must be “considered” both true and false in order to satisfy all
clauses. More precisely, let V ′ be a disjoint copy of V . For each v ∈ V let C+

v

(C−
v ) be the set of all clauses containing v (respectively, ¬v). If in each clause

C ∈ C−
v we substitute ¬v by the copy v′ of v, obtaining C ′, then all clauses in

C+
v ∪ (C−

v )′ can be made true by setting v and v′ to true. It is not difficult to
see that the minimum number of copies of the variables in V , which must be
considered in order to satisfy all clauses in C, is exactly unsat(H).

It is well-known [9] that determining Unsat(C) is a NP-hard problem even
each clause in C has exactly 2 literals. A similar conclusion can be derived for
unsat(C) from the following proposition, using VERTEX COVER [8].

Proposition 11. Let G = (V,E) be a graph and τ(G) its vertex covering num-
ber. If HG = (V, CG) is the directed hypergraph with CG = (({v}, ∅))v∈V ∪
((∅, {v, w})vw∈E), then τ(G) = unsat(HG).

Proof. Let T ∈ Trw(HG). Since T meets each ({v}, ∅))v∈V member of CG, it
follows that T+ = V . Since T meets each (∅, {v, w})vw∈E member of CG, it fol-
lows that T− is a vertex cover of G. Therefore unsat(HG) = minT∈Trw(CG) |T+∩
T−| = minT∈Trw(CG) |T−| = minT− vertex cover of G |T−| = τ(G). 
�

In the next proposition, the two unsatisfiability degrees are compared, prov-
ing that our newly introduced degree is not greater than the usual one.
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Proposition 12. Let H = (V, C) be a directed hypergraph not containing 2∅.
Then unsat(H) ≤ Unsat(H).

Proof. Let Unsat(H) = k, C = C′∪{C1, . . . , Ck}, H ′ = (V, C′), and T ∈ Tr(H ′).
By the definition of k, it follows that for each i ∈ {1, . . . , k}, every v ∈ V (Ci) has
been used in T and either v ∈ C+

i ∩T− or v ∈ C−
i ∩T+. Hence, choosing from each

V (Ci) an element vi, we have a weak transversal of H, T0 = T
⊔

i=1,k({vi}, {vi}),
with the property that |T+

0 ∩T−
0 | = k. Hence unsat(H) ≤ k and the proposition

holds. 
�
The above inequality can be used to determine Unsat(H) for particular

directed hypergraphs or to establish combinatorial relations. Some examples are
given bellow:

1. Let HG = (V, CG) be the directed hypergraph associated to the graph
G = (V,E) in Proposition 10. unsat(HG) is the vertex covering number τ(G).
In order to determine Unsat(HG), observe that taking T− a minimum car-
dinality vertex cover of G and T+ = V − T− we obtain a transversal T
of H = (V, CG − (({v}, ∅))v∈T−), therefore Unsat(HG) ≤ τ(G). Hence, by
Proposition 12, we have unsat(HG) = Unsat(HG) = τ(G).

2. Let G = (R,S;E) be a bipartite graph and let HG = (V,BG) be the follow-
ing directed hypergraph on V = R ∪ S: BG = (({r}, ∅))r∈R ∪ (∅, {s}))s∈S ∪
(({s}, {r})rs∈E). Let T ∈ Trw(BG). Clearly, R ⊆ T+ and S ⊆ T−. Therefore
T+ = R ∪ S0, T− = S ∪ R0, where R0 ⊆ R, S0 ⊆ S and R0 ∪ S0 is a vertex
cover of G. It follows that unsat(HG) = τ(G). If M ⊆ E is a maximum
matching in G let RM = {r ∈ R|∃s ∈ S such that rs ∈ M} and SM = {s ∈
S|∃r ∈ R such that rs ∈ M}. It is easy to see that TM = (RM , SM ) satisfies
TM ∈ Tr(H), for H = (R∪S,BG −(({r}, ∅))r∈R−RM

∪(∅, {s}))s∈S−SM
). Fur-

thermore, since R−RM ∪S−SM is a vertex cover of G, we have Unsat(HG) ≤
τ(G). Hence, by Proposition 12, we have unsat(HG) = Unsat(HG) = τ(G).

3. Let G = (V,E) be a graph and let HG = (V,DG) be the following 2 directed
hypergraph: DG = (({v, w}, ∅))vw∈E ∪ ((∅, {v, w})vw∈E). It is easy to see that
Tr(DG) �= ∅ if and only if G is a bipartite graph. If T ∈ Trw(DG), then T+

and T− are vertex covers of G, therefore

unsat(HG) = n − max{|S1 ∪ S2| ; S1, S2 stable sets in G}.

On the other hand, it is not difficult to see that Unsat(HG) = m−maxcut(G).
Using Proposition 12, we obtain an interesting inequality which holds in the
given graph.

The difference between the two unsatisfiability degrees can be made no mat-
ter how big, as the following proposition states.

Proposition 13. For each positive integer n there is a directed hypergraph H =
(V, C) with |V | = 2n vertices and |C| = 8n edges such that Unsat(H) = n +
unsat(H).
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Proof. Let H1 = ({v1, v2}, C), where
C1 = {(∅, {v1}), (∅, {v2}), (∅, {v1, v2}), ({v1}, ∅), ({v2}, ∅), ({v1, v2}, ∅), ({v1}, {v2}),

({v2}, {v1})}. T = ({v1, v2}, {v1, v2}) is a weak transversal of H1 with |T+ ∩
T−| = 2 = unsat(H1). However, it is not difficult to see (by inspection) that
Unsat(C1) = 3.

Let H be the union of n disjoint copies of the directed hypergraph H1. The
proof follows from Proposition 8(4). 
�

The next proposition shows that any non-trivial directed hypergraph H with
no tansversal is the disjoint union of a directed hypergraph having transver-
sals and a directed hypergraph with exactly unsat(H) vertices such that any
transversal of the first one and any vertex of the second one satisfy an obvi-
ous conflicting property, preventing the (partial) transversal to be extended to
a transversal of H.

Proposition 14. Let H = (V, C) be a directed hypergraph not containing 2∅.
Tr(H) = ∅ if and only if there is X ⊂ V , X �= ∅, such that, if H −X = (V, (C ∈
C|V (C) ∩ X = ∅)), then:

– Tr(H − X) �= ∅ and
– for every T ∈ Tr(H − X) and every x ∈ X there are C1, C2 ∈ C such that

x ∈ C+
1 ∩ C−

2 , C+
1 − {x}, C+

2 ⊆ T− and C−
1 , C−

2 − {x} ⊆ T+.

Proof. Suppose that the condition in the proposition holds and there is T ∈
Tr(H). Clearly, T ∈ Tr(H −X). Let x ∈ X. It follows that there are C1, C2 ∈ C
such that x ∈ C+

1 ∩C−
2 , C+

1 −{x}, C+
2 ⊆ T− and C−

1 , C−
2 −{x} ⊆ T+. But then,

either C1 
 T = 2∅ or C2 
 T = 2∅, contradicting T ∈ Tr(H).
Conversely, suppose Tr(H) = ∅. Since 2∅ �∈ C, it follows that 0 < unsat(H) < ∞.
Let T0 ∈ Trw(H) with |T+

0 ∩T−
0 | = unsat(H) and let us consider X = T+

0 ∩T−
0 .

Clearly, X �= ∅. Furthermore, T̂ = T − (X,X) is a transversal of H − X. Hence
Tr(H − X) �= ∅. Also, for every T ∈ Tr(H − X), T1 = T � (X,X) is a weak
transversal of H satisfying |T+

1 ∩ T−
1 | = |X| = unsat(H).

Let H1 = (X, (C − (X,X)|C ∈ C, C 
 T = 2∅)). Then, for each x ∈ X both
({x}, ∅) and (∅, ({x} are edges of H1. Indeed, if ({x}, ∅) is not an edge of H1,
for some x ∈ X, then T2 = T1 − ({x}, ∅) satisfies T2 ∈ Trw(H) and |T+

2 ∩ T−
2 | <

|T+
1 ∩ T−

1 | = unsat(H), a contradiction. A similar argument shows that (∅, ({x}
is an edges of H1.
The condition in the statement of the theorem holds, since ({x}, ∅) and (∅, ({x}
are edges of H1 if and only if there are C1, C2 ∈ C such that x ∈ C+

1 ∩ C−
2 ,

C+
1 − {x}, C+

2 ⊆ T− and C−
1 , C−

2 − {x} ⊆ T+. 
�

4 Discussion

Existing literature reports several hypergraph formulation of the SAT prob-
lem [4,10,12,14]. In the directed hypergraph setting [6,7], the SAT problem has
been formulated as the problem of finding a hyperpath between two specified
nodes, while the problem of finding the minimum number of clauses to be deleted
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in order to make a formula satisfiable was formulated as the problem of finding
a minimum cutset.

Our approach is focused on the connection between SAT problem and
transversals in directed hypergraphs, being fairly direct and simple, and hav-
ing the advantage of an uniform addressing of clauses and assignments.

The present paper has highlighted new possibilities of addressing the SAT
problem within this framework. We have shown that, exploiting the directed
hypergraph representation induced combinatorial properties and techniques, new
problems, ideas and results arise. Clause ordering helped highlighting a new poly-
nomial class of formulae for which SAT is polynomial. The vertices elimination
algorithm introduced for finding transversal in a directed hypergraph put for-
ward a natural way of variable elimination not considered (as we know) in the
SAT literature. An interesting translation of the SAT problem into a combina-
torial search problem, which could be approached by usual heuristic of the field,
is also described (via renaming). Finally the relaxation approach taken by the
weak transversals (intuitively obvious in this alternative syntactic setting) gave
interesting measures of unsatisfiability directly connected to decision problems
on graphs (e.g., vertex cover).

Despite the (sometimes) cumbersome notations, this paper has a rigorous
contribution and message. It opens the path to new approaches to the SAT
problem that are “easy” to obtain using the directed hypergraph representation
and not intuitive otherwise. The above main results obtained are encouraging in
this sense. They allow opti
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Abstract. The capture, the structuring of the expertise or the com-
petences of an “object” (lie a business partner, an employee and even
a software component or a Web service) are of very crucial interest in
many application domains, like cooperative and distributed applications
as well as in cooperative e business applications and in human resource
managment. The work that is described in this paper concerns the adver-
tising, the classification and the discovry of competences. The foundings
of the proposals that are described here after are a formal represen-
tation of competences using conceptual graphs and the use of opera-
tions on conceptual graphs for competence discovery and their possible
composition.

Keywords: Competence management · Conceptual graphs ·
Competence discovery · Competence complementarity

1 Introduction

A competence management process [1] can be achieved following three steps:
(1) Competence identification: it consists in describing competences under a for-
mal representation. (2) Competence organization: once represented, competences
are organized, classified and structured in order to be efficiently exploited and
(3) Competence use: it consists in exploiting the organized competences. In this
work, we aim at exploiting the competences for their discovery, i.e. when search-
ing for entities that meet given needs.

Competence management and discovery find their application in differ-
ent domains, like component-based programming, semantic-based Web services
discovery [27], e-business, human resources management and even enterprise
knowledge management [17]. For example, in the e-business domain, we see the
application of our work when seeking for possible partners or subcontractors. In
human resource management, considering employees enrollment as an example,
the application of our wok can be useful when looking for employees satisfying
a given work position profile.

In this paper, we aim at proposing a generic approach which can be instanti-
ated in different domains. The ultimate goal is to define a method for competence
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 89–106, 2015.
DOI: 10.1007/978-3-319-28702-7 6
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management and apply the method for competence discovery and composition in
distributed knowledge bases. A significant originality of the proposed approach
resides in the type of answers we aim at providing. Indeed, when no unique
entity satisfies the search criteria, the system attempts to determine a compos-
ite answer, i.e. a set of entities that satisfy the whole search criteria, every entity
in the resulting set satisfying part of the criteria.

For competence representation and management, we rely on a knowledge rep-
resentation using Conceptual Graphs (CGs) [14]: we not only represent knowl-
edge as graphs but the reasoning is made thanks to graph-based operations. From
a system architecture point of view, we use a mediator-based architecture [5],
i.e. a set of distributed and cooperative mediators.

The presentation of this work is structured as follows. Section 2 presents
related work and the work background. Section 3 presents the proposed approach
for competence management and discovery. Section 4 provides an overview of the
implementation of the approach whereas concluding remarks are in Sect. 5.

2 Related Work and Background

The current work is related to three main bodies of research: (i) Knowledge Rep-
resentation (Sect. 2.1), (ii) competence representation and discovery (Sects. 2.2
and 2.3) and (iii) heterogeneous and distributed architectures (Sect. 2.4). We
briefly discuss important studies in these research areas.

2.1 Knowledge Representation

During the past 40 years, a wide variety of Knowledge Representation (KR)
formalisms has been developed. In general, these formalisms fall into two cat-
egories: (1) those that follow a “logical approach” (like Description Logic [25])
and provide a general reasoning machinery and a representation language which
is usually a variant of the first-order predicate calculus and (2) those that follow
a “non-logical approach” (like Semantic Networks [20] and CGs [8,14]) that use
graphical interfaces that enable representing knowledge manipulation according
to ad-hoc data structures. CGs are briefly introduced hereafter.

CGs are presented as a general model for knowledge representation. They
were conceived to represent the semantics of natural languages; they evolved to
become complete systems in the sense of logic. A CG description represents
ontological knowledge in a structure called support which introduces the
vocabulary of the studied domain. The support is implicitly used in the rep-
resentation of factual knowledge as labeled graphs called conceptual graphs.

The support consists of (an example is in Fig. 1) (i) a hierarchy of concept
types organized around the relation of specialization/generalization, (ii) a set of
relation types organized into several hierarchies, each of them organizes relation
types having the same arity, (iii) a set of markers or referents (denoted by I in
Fig. 1) that refers to specific concepts (an unspecified concept can be referenced
using a generic marker denoted as *), (iv) a conformity relation (τ in Fig. 1)
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Fig. 1. Conceptual graph support

which relates markers to concept types and (v) signatures of relations which
represent all the graphs which express constraints associated with every relation.
A signature defines the number of the relation’s arguments and their types. A
graph signature is constituted by elementary graphs from which we can construct
more complex graphs.

Furthermore, a CG is composed of: (1) A set of concept-nodes labeled from
a support. A concept is composed of a referent that identifies the represented
object, a type which classifies the represented object and (2) a set of relation-
nodes labeled from a support. A relation is composed of a label which identifies
the type of the relation and a set of edges linking the relation to its related
concepts.

CGs can have different concrete notations such as graphical representation,
textual notation and Conceptual Graph Interchange Format (CGIF) [24].

In a graphical notation, called display form (DF) (see Fig. 2), concepts are
represented by rectangles and relations are represented by circles or ovals. The
arcs that link the relations to the concepts are represented by arrows.

Fig. 2. A conceptual graph example
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In a textual notation, called linear form (LF), concepts are represented by
square brackets and relations are represented by parenthesis. Under a LF nota-
tion, the CG of Fig. 2 is expressed as: [Man: *] → (father-of) → [Person: *].

The CGIF notation has a syntax that uses co-reference labels to represent
the arcs. The example in Fig. 2 is expressed in CGIF as: [Man: *m] [Person:
*p] (father-of ?m ?p). *m and *p are variable definitions and ?m and ?p are
references to defined variables.

A CGs being a logic system, it can easily be translated under a predicate
logic form. As an example, the CG in Fig. 2 is expressed as: ∃ m ∃ p: Person(p) ∧
Man(m) ∧ father-of(m,p).

Furthermore, a variety of operations and extensions [8] are defined on CGs.
We recall hereafter those that are necessary to the comprehension of the remain-
der of this paper.

– Projection is defined as an application
∏

of the nodes of a graph H towards
the nodes of a graph G such as: (1) for each concept c in H,

∏
(c) is either a

specialization or the same as c, (2) for each relation r in H,
∏

(r) is either a
specialization or the same as r, (3) if the ith edge of r is linked to a concept c
in H, then the ith edge of

∏
(r) must be linked to

∏
(c) in G.

– The Normalization operation returns a graph under a normal form which
respects a structure where the markers are unique by merging concepts having
the same individual marker. The normal form of a graph avoids semantic and
logical ambiguity in CGs. Formally, let H be a CG, and C be the set of its
concepts. H is under its normal form if for each couple of concepts (c1, c2) c1
and c2 ∈ C, referent(c1) �= referent(c2).

– The Disjoint sum consists in drawing another CG next to the original
CG [16]. Formally, let H1 and H2 be two CGs, and let (C1, R1, E1) and
(C2, R2, E2) the concept set, the relation set and the edge set of H1 and H2
respectively. The disjoint sum of H1 and H2 is a CG H(C, R, E) such as (1) C
is the union of C1 and C2, (2) R is the union of R1 and R2 and (3) E is the
union of E1 and E2.

– Headed graphs are graphs that have a certain node chosen as the semantic
head.

– Conceptual graph rules [22] were proposed as an extension of simple CGs
to represent “IF A THEN B” knowledge where A and B are simple CGs.
Formally, a graph rule is constituted from an hypothesis graph A, a conclusion
graph B and a set of attach points corresponding to connection links between
A and B. The rule application mechanism in a CG is based on the projection
operation.

2.2 Competence Representation

Competence representation is a sub-field of KR which extends current KR lan-
guages to be more suited for competence description [9]. In [3], competences
are methods of object-oriented software. Furthermore, DL is used to describe
the intended semantics of these objects and the possible constraints involving
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their methods. In [4], entities are software objects and competences are the capa-
bilities of a software object. In [5], entities are a set of activities (or functions)
describing a given domain, an activity being described by the set of the required
competences to carry it out. These competences represent the set of proper-
ties (or attributes) of the activities and their intended semantic is expressed
using DL.

2.3 Competence Discovery

Competence discovery consists in searching entities having a set of required
competences in order to satisfy a given objective. Answers to a competence
discovery request may be of two types: (1) single answers, when single entities
satisfy the search criteria, (2) cooperative or composite answers when no single
entity, but a set of entities, meets the search criteria. In [9], competence discovery
is defined as a query-answer process that attempts to find out which kind of
entities owns a competence, and who they are. In [5], a request X is viewed
in term of DL language as a concept having the given competences and the
request evaluation consists in locating this concept in the concept classification
hierarchy. The answers of a request are the individuals or the instances of all the
concepts subsuming X. In an extended work [6], the authors present a method
to produce composite answers thanks to the notion of “complementary objects”
that is founded on the complement concept in DLs [23].

2.4 Heterogeneous and Distributed Architectures

In order to satisfy a competence search request in an heterogeneous and dis-
tributed environment like Internet, we have to cope with competence descrip-
tions expressed in different formalisms either locally or remotely. This facility
requires techniques to transform a competence description from one formalism
into another, together with communication between the systems managing the
various competence descriptions. Different heterogeneous and distributed archi-
tectures are candidate to the implementation of these systems, like Service Ori-
ented Architectures, Peer to Peer (P2P) architectures [2,15] and Mediator-based
architectures, the latter being the one we rely on.

A mediation architecture [29] tries to solve the problem of the access and the
integration of information by introducing the notion of a mediator as “a software
module that exploits encoded knowledge about some sets or subsets of data to
create information for a higher layer of application”. The mediation can be of
two types:

– Centralized mediation: where only one mediator is considered. In this case,
all the data sources are stored in the same base.

– Distributed mediation: (or federation of mediators) in which a set of media-
tors agree to be considered as a single entity when applications demand for ser-
vices to the federation. Distributed mediation systems have become a reference
architecture to integrate both structured and semi-structured data [18,29].
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In addition, many mediator-based approaches have been proposed in the lit-
erature. In [28], a single mediator is designed to offer an adequate level of
decision-making integration of heterogeneous computer systems. The Conflict
Resolution Environment for Autonomous Mediation (CREAM) system has
been implemented and it provides various user groups with an integrated and
collaborative facility to achieve semantic interoperability among participat-
ing heterogeneous information sources [21]. The KRAFT (Knowledge Reuse
And Fusion/Transformation) architecture provides a generic infrastructure for
knowledge management applications. It supports virtual organization using
mediator agents [19]. In [5,6,10,11], an architecture based on a heterogeneous
federation of mediators has been adopted. In this architecture, great emphasis
is on cooperation and heterogeneity aspects.

Now, let us turn toward our actual proposal for competence management
and discovery.

3 Proposal: Competence Management and Discovery
Using CGs

In this section, we firstly present how a request is reprented as a CG and, sec-
ondly, the request’s satisfaction process. The mediator-based architecture, as
well as the system architecture, will be described in Sect. 4.

3.1 Conceptual Architecture

In the proposed approach, a mediator-based architecture has been adopted as
described in [5]. It is very similar to the notion of discovery agency in the Web
service architecture [11]. In this architecture, an “entity”, called exporter, pub-
lishes its competences at one or more mediators (arrow (a) in Fig. 3). Entities,
called importers, send requests to the mediator asking for exporters fitted with
a given set of competences (arrow (b) in Fig. 3). The mediator explores its com-
petence base to try to satisfy the request. The competence search process is
founded on the exported competences and on relationships between them, these
relationships being transparently established by the mediator. When the request
can be satisfied by some exporters, the references of these exporters are sent back
to the importer (arrow (c) in Fig. 3).

In this architecture, some cases may conduct to a failure of the request when
only one mediator is involved. But, if we assume a grouping of mediators, these
cases are typical cases where cooperation of mediators is required. When a medi-
ator partner fails in the satisfaction of a request, we need to determine what is
missing to the entities to satisfy request. That missing part is then transmitted
to a mediator in the federation who, in turn, behaves like the preceding mediator.
Therefore, satisfying a request may fall under different cases [9]:
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Fig. 3. The mediator-based architecture

1. there exist exporters that fully satisfy the request;
2. there exist exporters that partly satisfy the request but, when “combining”

or composing the competences of different exporters one can fully satisfy the
request;

3. no single exporter nor multiple exporters satisfy the request. In the latter sit-
uation, the mediator may initiates a cooperation process with other mediators
to attempt to satisfy the request (arrow (d) in Fig. 3).

In addition, in a federated mediator architecture, the competence discovery
can fall under the following situations:

1. Homogeneous local satisfaction where the request and the knowledge base are
in the same KR language, and the knowledge base is located in one server.

2. Homogeneous distributed satisfaction: where the request and the knowledge
base are in the same KR language, and the knowledge base is distributed in
several servers.

3. Heterogeneous satisfaction: where the request and the knowledge base are in
different KR languages and the knowledge base may be distributed.

In this work, we only deal with the homogeneous distributed satisfaction.

3.2 Competence Representation

Using CGs, competences are represented by relations and entities are represented
by concepts. For example, saying that a programmer p has competences in Java
programing is represented as shown in Fig. 4.

Fig. 4. Competence representation example

However, the simple CG model does not allow to adequately represent entities
and their competences. Indeed, in a simple CG model, the semantic of a concept
type or a relation type is only given by its position in the type hierarchies;
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the only mechanism that enables defining a type is the specializa-
tion/generalization relation. This representation of types is poor and misses a
lot of expressivity to represent generic information about types and also some
relation properties such as transitivity, symmetry and reflexivity. To deal with
these problems, we propose to use CG rules as described hereafter.

1. Concept type definition: To represent generic information about concept
types, these types must be defined. “Concept type definition” is defined here
as “an either necessary or necessary and sufficient conditions that entities
must verify in order to belong to a concept type”. These conditions are for-
malized using conceptual graph rules. For example, the concept type Mother
defined as a “woman that is mother of a person” is defined as follows:

[Mother : ∗x] ⇒ [Woman :?x] → (mother of) →
[Person : ∗]

Woman : ∗x] → (mother of) → [Person : ∗] ⇒
[Mother :?x].

2. Relation type definition: In the same way, a “Relation type definition” is
“an either necessary or necessary and sufficient conditions which must be
verified in order to belong to a relation type”. For example, the relation type
grandmother of can be defined as follows:

[Woman : ∗x] → (grandmother of ]) → [Person : ∗ y]
⇒ [Woman : ∗x] → (mother of) → [Person : ∗]
→ (parent of) → [Person :?y].

[Woman : ∗x] → (mother of ]) → [Person : ∗y] →
(parent of) → [Person : ∗y] ⇒ [Woman :?x]
→ (grandmother of) → [Person :?y].

3. Meta-knowledge on relations: Relation properties are also formalized using
CG rules. For example, the following rules enables expressing the fact that
the relations parent of and child of are symmetric ones:

(1) [Person : ∗x] → (child of) → [Person : ∗y] ⇒
[Person : ∗y] → (child of) → [Person :?x].

(2) [Person : ∗x] → (parent of) → [Person : ∗y] ⇒
[Person :?y] → (parent of) → [Person :?x].

As a result of the rule-based representation we propose, the domain represen-
tation is composed of (1) Ontological knowledge, represented by the support, to
which we add a component named “Rule base” (RB) containing the set of rules
used to define the types and the relation properties and, (2) Factual knowledge,
represented by CGs labeled from the support. In this work, CGs serve for rep-
resenting entities together with their acquired competences. Each graph is then
published in one of the mediators of the federation. The set of the competences
that are published in a given mediator are collected into a single CG named
“Competence Base” and denoted as CB.

A CB is built and updated every time where a new competence (represented
by a CG noted P) is published. For each published graph P, we follow the three
following steps:
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(1) Disjoint sum of the graphs P and CB in order to add published competences
to the CB.

(2) Normalize the graph CB: this normalization avoids graph redundancy and
then minimizes the search space.

(3) Apply the rules that are present in RB on the graph CB. This is a very
important step: it allows reasoning over the CB in order to add all implicit
knowledge that is not directly published into the CB.

3.3 Competence Discovery

This section presents the way a request is represented as a CG, together with a
request satisfaction process.

Request Representation. The request is represented as a headed CG form
noted RG in which:

(i) The searched entities are represented by the head t of RG. We introduce
a special marker ? logically equivalent to the * marker in order to indicate
such a node.

(ii) The requested competences are represented by relations which are directly
attached to the node t.

(iii) The rest of RG represents conditions on the requested competences.

For example, seeking for men having some competences in UML (Unified
Modeling Language) and some competences in programing using languages that
support classes is represented as shown in Fig. 5.

Fig. 5. A request example

Local Request Satisfaction. The local satisfaction of a request R runs as
follows: (i) Normalize R in order to minimize its size and as a consequence to
minimize the search and to avoid logical and semantic ambiguities, (ii) delete
from R all the connected components that do not contain the head t, because
these components are independent from the searched entities, (iii) Project R on
BC and (iv) if at least one projection is found, then there is at least one single
answer to the request. Answers are then all the projections (images) of the head
node t. Otherwise, search for possible composite answers to the request.
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Fig. 6. A local request satisfaction example

As an example, the satisfaction of the request R in the left part in Fig. 6 is
the circled concept, the right part of the figure being the concept base.

In order to find possible composite answers to a request R, we decompose R
into sub-requests where every sub-request consists in searching entities having
one of the required competences and we proceed as follows:

(i) Decompose R into n sub-requests Ri(i ∈ [1, n]), each Ri containing the head
of R connected to one of the sub-graphs representing a discovery request
for one competence, together with conditions on it (see Sect. 3.3).

(ii) Satisfy all the sub-requests, one independently from the others.
(iii) If all the sub-requests are satisfied then composite answers are the compo-

sitions of the answers of the sub-requests.

As an example, to find composite answers to the request in Fig. 5, R is decom-
posed into two sub-requests (Fig. 7).

Fig. 7. A request decomposition example

In addition, the satisfaction of a sub-request Ri proceeds as follows:

(i) Project Ri on BC.
(ii) If at least one projection is found then Ri is locally satisfied and the replies

to Ri are images of the head node.
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(iii) Otherwise, try the distributed satisfaction of Ri thanks to the cooperation
with other mediators and this is explained in the coming section.

Cooperative Request Satisfaction. In a federation of mediators, part of a
sub-request Ri may be satisfied in one of the mediators of the federation whereas
another part may be satisfied in another one. In term of conceptual graphs, this
means that a part of the graph that represents Ri may be projected on the CB in
one mediator whereas another part may be projected on the CB in another one,
as illustrated in the following example, considering the sub-request R2 in Fig. 7.

Assume that two mediators M1 and M2 are available (Fig. 8 shows parts of
their competence bases denoted CB1 and CB2 respectively).

Fig. 8. Competence base examples

In both the mediators, only a part of R2 is satisfied: in CB1, there is a person
having java-programming competences and in CB2, we know that java supports
classes. So, in order to satisfy a sub-request in a federation, it is sufficient to find
which parts of Ri can be projected on the CB of a mediator and which parts
cannot. However, the projection operation such as defined in the CG formalism
does not allow to find this type of information. For that reason we propose to
proceed according to the following steps:

Step1: Decompose Ri into elementary parts containing only one relation.
For example, the sub-request R2 in Fig. 7 is decomposed into two parts (Fig. 9).

Fig. 9. Sub-request decomposition example.
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Fig. 10. Sub-request parts projection on CB1

Fig. 11. Sub-request parts projection on CB2

Step2: Project these parts on each CB in the federated mediators:
(1) The projection of the two parts on CB1 is shown in Fig. 10. (2) Add the

projection of the two parts on CB2 (Fig. 11).
Step3: Check whether the projections can be joined and if they do, then the sub-
request is satisfied and the satisfactions are the projections of the sub-requests’
heads (see the dotted parts in Fig. 12).

Let us now describe the prototype we developed as a support of our proposals.

4 Implementation

For an experimental validation of the proposed approach, we implemented a
prototype using many software components. There exist several tools which
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Fig. 12. Sub-request satisfaction verification

Fig. 13. The concept hierarchy

implement CGs in particular for research purposes and for information extrac-
tion [7,12,13,26]. However, few of these tools offer a complete software environ-
ment for the widest possible use of the model: the storage and the manipulation
of a large number of graphs. For that reason, we choose to use the CoGITaNT
library (Conceptual Graphs Integrated Tools allowing Nested Typed graphs), a
library of C++ classes (open source, developed at LIRM Montpellier, CNRS,
France) which allows developing applications based on the CG knowledge rep-
resentation scheme.

We illustrate hereafter the prototype functioning thanks to examples. We
present first, the domain population and then examples of competence discovery.

(1) Domain population: as an example, we consider the computer science
competence management domain represented in terms of a concept type
hierarchy (Fig. 13), a relation type hierarchy (Fig. 14), rules used to define
concept types, relation types and relations properties.
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Fig. 14. The relation hierarchy

Fig. 15. Competence base of the mediator M1.

Fig. 16. Competence base of the mediator M2.

(2) Competence bases are in the Figs. 15 and 16.
(3) A local query-satisfaction example is shown in the Fig. 17, in which

graph2 denotes the query.
(4) A distributed query-satisfaction example: the Figs. 18 and 19 illustrate

the result of the query denoted as graph1 in the Fig. 18.
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Fig. 17. Local satisfaction of a request

Fig. 18. Distributed request satisfaction in M1.
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Fig. 19. Distributed request satisfaction in M2.

5 Discussion and Concluding Remarks

In this paper, we presented an approach for competence management and discov-
ery using conceptual graphs (CG) to provide a formal semantic description of an
application domain. Acquired competences are organized under a CG form that
is built and updated every time a new competence is published. The advantage
of this organization form is that the application of graph rules at publication
time facilitates the search and may reduce the response time, since all implicit
information are available thanks to the application of these rules at publication
time. For competence discovery, we use operations on graphs and the projection
is used as a basic operation in the discovery process. For distributed satisfaction
of a request, we use another form of graph decomposition where a sub-request
is decomposed into elementary parts containing only one relation. In addition,
for experimentation purposes, we implemented a federated mediation prototype
based on the client/server architecture of COGITANT [12]. The prototype is
fully written in C++ programming language and it has been successfully veri-
fied under Linux and MICROSOFT Windows XP operating systems.

Further work is to consider the complexity of the search algorithm and to
cope with heterogeneous mediators cooperation, i.e. mediators where knowledge
bases are described in different languages. An additional on-going research topic
concerns the dynamic and semantic-based identification of possible cooperating
mediators for unsatisfied parts of a competence request together with a perfor-
mance comparative analysis of a P2P implementation against an implementation
using cloud computing technology.
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Abstract. Subjective logic is a formalism for reasoning under uncertain
probabilistic information, with an explicit treatment of the uncertainty
about the probability distributions. We introduce subjective networks as
graph-based structures that generalize Bayesian networks to the theory
of subjective logic. We discuss the perspectives of the subjective networks
representation and the challenges of reasoning with them.
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1 Introduction

Subjective logic [5] is a formalism for reasoning under uncertain probabilistic
information. The basic entities in subjective logic are subjective opinions on ran-
dom variables. A subjective opinion includes a belief mass distribution over the
states of the variable, complemented with an uncertainty mass, which together
reflect a current analysis of the probability distribution of the variable by an
expert, based on a test, etc.; and a base rate probability distribution of the vari-
able, reflecting a domain knowledge that is relevant to the current analysis. A
subjective opinion can always be projected onto a single probability distribution,
but this necessarily removes information about the uncertainty mass.

While the probability distribution of a random variable represents uncer-
tainty about the value of the variable, a subjective opinion on the variable
represents a second-order uncertainty, i.e. uncertainty about the probability
distribution itself. The latter is further formalized by establishing a correspon-
dence between subjective opinions and Dirichlet probability density functions [3].
Through this correspondence, the projected probability distribution of the sub-
jective opinion corresponds to expected probabilities or the mean probability
values.

Conditional reasoning with subjective opinions has been explored for the case
of two variables, resulting in the definition of deduction and abduction operations
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 107–124, 2015.
DOI: 10.1007/978-3-319-28702-7 7



108 M. Ivanovska et al.

for multinomial variables [6]. An alternative approach to deduction based on the
correspondence with the multinomial Dirichlet model is explored in [8].

This paper attempts to address the conditional reasoning with subjective
opinions in general, introducing subjective networks as graph-based structures
that generalize Bayesian networks to the theory of subjective logic.

A Bayesian network [10] is a compact representation of a joint probability
distribution of a set of random variables in the form of directed acyclic graph and
a set of conditional probability distributions associated with each node of the
graph. The goal of inference in Bayesian networks is to derive the conditional
probability distribution of any set of (target) variables in the network, given
that the values of any other set of (evidence) variables have been observed.
Bayesian networks reasoning algorithms provide a way to propagate the proba-
bilistic information through the graph, from the evidence to the target. Bayesian
networks are a powerful tool for modelling and inference of various situations
involving probabilistic information about a set of variables, and thus form a base
for developing tools with applications in many areas like medical diagnostics, risk
management, etc.

One serious limitation of the Bayesian networks reasoning algorithms is that
all the input conditional probabilities must be assigned precise values in order for
the inference algorithms to work and the model to be analysed. This is problem-
atic in situations where probabilities can not be reliably elicited and one needs
to do inference with uncertain or incomplete probabilistic information, inferring
the most accurate conclusions possible. Subjective opinions can represent uncer-
tain probabilistic information of any kind (minor or major imprecision, and even
total ignorance), by varying the uncertainty mass between 0 and 1.

A straightforward generalization of Bayesian networks in subjective logic
retains the network structure and replaces conditional probability distributions
with conditional subjective opinions at every node of the network. We call this a
Bayesian subjective network and consider the reasoning in it a generalization of
the classical Bayesian reasoning, where the goal is to obtain a subjective opinion
on the target given the evidence. The evidence in this case can be an instantiation
of values, but also a subjective opinion itself. In most of the cases, the inference
in Bayesian subjective networks remains a challenge, since subjective opinions
do not enjoy all the nice properties of the probability distributions; in particular,
the notions of conditional, marginal and joint subjective opinion do not have the
same interrelations as the corresponding notions in probability theory.

In this paper, we also discuss representation and inference with another type
of subjective networks that we call fused subjective networks, where the graph
follows the available input information as associated with the arrows rather than
the nodes, and where information coming from multiple paths to the same node
is combined by a fusion operation. We give an example of modelling with sub-
jective networks thorough the special case of the näıve Bayes subjective network,
which can be considered to belong to both the Bayesian and the fused subjective
networks type.
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The paper is structured as follows: In Sect. 2 we first review the necessary
preliminaries from probability theory and Bayesian networks. Then we intro-
duce subjective opinions on random variables and their correspondence with
the multinomial Dirichlet model. Section 3 introduces subjective networks rep-
resentation. In Sect. 4 we introduce the types of inference problems that can be
distinguished in subjective networks and discuss potential solutions. Section 5
presents an alternative approach to inference in subjective networks that builds
upon the Dirichlet representation of subjective opinions. In Sect. 6 we conclude
the paper.

2 Preliminaries

2.1 Bayesian Networks

We assume a simplified definition of random variable as a variable that takes
its values with certain probabilities. More formally, let X be a variable with a
domain (set of values, states of the variable) X. A probability distribution p of
X is a function p : X → [0, 1], such that:

∑

x∈X

p(x) = 1. (1)

p(x) is the probability that the variable X takes the value x.
Let V = {X1, . . . , Xn} be the set of all random variables that are of interest

in a given context. A joint probability distribution of the variables in V is a
probability distribution defined on the Cartesian product of X1, . . . ,Xn:

∑

x1∈X1

. . .
∑

xn∈Xn

p(x1, . . . , xn) = 1. (2)

In general we talk about sets of variables, subsets of V . A set of variables
Y = {Y1, . . . , Yk} ⊆ V can also be considered a variable with a domain Y =
Y1×· · ·×Yk. As standard in Bayesian networks literature, we use the notation of
a variable also for a set of variables, making the obvious identifications (see [10]).

Given a joint probability distribution p of the variables in V , and a set
of variables Y ⊂ V , the marginal probability distribution of Y is a function
p : Y → [0, 1] defined by:

p(y) =
∑

x∈X, X=V \Y

p(y, x). (3)

Given two sets of variables X and Y , a conditional probability distribution of
Y given that X takes the value x, p(Y |x), is a function from Y to [0, 1] defined
by the following equation:

p(y|x) =
p(y, x)
p(x)

. (4)
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p(y|x) is the conditional probability that Y takes the value y, given that the
value of X is x.

A set of variables X is conditionally independent of a set of variables Y given
the set of variables Z, denoted by I(X,Y |Z), if the following holds:

p(x|y, z) = p(x|z) whenever p(y, z) > 0, (5)

for every choice of assignments x, y, and z.
A Bayesian network [10] with n variables is a directed acyclic graph (DAG)

with random variables X1, . . . , Xn as nodes, and a set of conditional probability
distributions p(Xi|Pa(Xi)) associated with each node Xi containing one condi-
tional probability distribution p(Xi|pa(Xi)) of Xi for every assignment of values
pa(Xi) to its parent nodes Pa(Xi). If we assume that the Markov property
holds: Every node is conditionally independent on its non-descendants given its
parents,

I(Xi, ND(Xi)|Pa(Xi)), (6)

for the given DAG and the joint distribution p, then p is determined by:

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(Xi)), (7)

where pa(Xi) is the instantiation of the parents of Xi that corresponds to the
tuple (x1, . . . , xn).

The general inference goal in Bayesian networks is to derive the probability
p(y|x), for every instantiations x and y of subsets X and Y of V , in an efficient
way compatible with the network’s topology.

2.2 Subjective Opinions

In this section we review the basic notions related to multinomial and hyper
subjective opinions on random variables.

Let X be a random variable. A multinomial subjective opinion on X [6] is a
tuple:

ωX = (bX , uX , aX), (8)

where bX : X → [0, 1] is a belief mass distribution, uX ∈ [0, 1] is an uncertainty
mass, and aX : X → [0, 1] is a base rate distribution, satisfying the following
additivity constraints:

uX +
∑

x∈X

bX(x) = 1, (9)

∑

x∈X

aX(x) = 1. (10)

The beliefs and the uncertainty mass reflect the results of a current analysis of
the random variable applying experts’ knowledge, experiments, or a combination
of the two. bX(x) is the belief that X takes the value x expressed as a degree
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in [0, 1]. It represents the amount of experimental or analytical evidence in favour
of x. uX is a single value, representing the degree of uncertainty about the
distribution of X. It represents lack of evidence due to lack of knowledge or
expertise, or insufficient experimental analysis. The base rate aX is simply a
probability distribution of X that represents domain knowledge relevant to the
current analysis.

For example, a GP wants to determine whether a patient suffers from depres-
sion through a series of different tests. Based on the test results, the GP concludes
that the collected evidence is 10 % inconclusive, but is still two times more in
support of the diagnosis that the patient suffers from depression than of the
opposite one. As a result, the GP assigns 0.6 belief mass to the diagnosis that
the patient suffers from depression and 0.3 belief mass to the opposite diagnosis,
complemented by 0.1 uncertainty mass. The probability that a random person
in the population suffers from depression is 5% and this fact determines the base
rate distribution in the GPs subjective opinion on the condition of the patient.

In some cases of modelling it is useful to be able to distribute belief mass
to subsets of X as well. This leads to generalization of multinomial subjective
opinions to hyper opinions, which distribute the belief mass over the reduced
power set of X (hyperdomain of X), R(X) = P(X)\{X, ∅}:

bX : R(X) → [0, 1], (11)

and uX is a value from [0, 1], such that the following holds:

uX +
∑

x∈R(X)

bX(x) = 1. (12)

aX is again a probability distribution of X, defined on X.1

bX(x) represents the belief that the value of X is (in the set) x ∈ R(X), and
represents the amount of evidence that supports exactly x.2

A subjective opinion in which uX = 0, i.e. an opinion without uncertainty
mass, is called a dogmatic opinion. Dogmatic multinomial opinions correspond
to probability distributions. A dogmatic opinion for which bX(x) = 1, for some
x ∈ X, is called an absolute opinion. Absolute multinomial opinions correspond
to instantiating values of variables. In contrast, an opinion for which uX = 1,
and consequently bX(x) = 0, for every x ∈ R(X), i.e. an opinion with com-
plete uncertainty, is called a vacuous opinion. Vacuous opinions correspond to
complete ignorance about the probability distribution of the variable.

A multinomial opinion ωX is “projected” to a probability distribution PωX
:

X → [0, 1] defined in the following way:

PωX
(x) = bX(x) + aX(x) uX . (13)

1 For simplicity, we make an abuse of the notation using the same type of letters for
both elements of X and elements of R(X).

2 If we think of uX as of an amount of evidence assigned to the whole domain X, then
bX and uX correspond to a basic belief assignment [12]. However, uX is a measure
for lack of evidence, not a belief, as will be further clarified in the next section.
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We call the function PωX
a projected probability distribution or a projection

of the subjective opinion ωX . According to Eq. (13), the projected probability
PωX

(x) is equal to the belief mass in support of x increased by the portion of the
base rate of x determined by the uncertainty mass uX . In this way, the projected
probability of x is an estimate for the actual probability of x that varies from
the base rate value, in the case of complete ignorance in the current analysis, to
the actual probability in the case of zero uncertainty mass.

We call focal elements the elements of R(X) that are assigned a non-zero
belief mass. In the case of a hyper opinion there can be focal elements that
have a non-empty intersection. For hyper opinions the definition of projected
probability distribution is generalized as follows:

PωX
(x) =

∑

x′∈R(X)

aX(x|x′) bX(x′) + aX(x) uX , (14)

for x ∈ X, where aX(x|x′) is a conditional probability of x given x′, if aX is
extended to P(X) additively.3 If we denote the sum in Eq. (14) by b′

X :

b′
X(x) =

∑

x′∈R(X)

aX(x|x′) bX(x′), (15)

it is easy to check that b′
X : X → [0, 1], together with uX , satisfies the additivity

property in Eq. (12), i.e. ω′
X = (b′

X , uX , aX) is a multinomial opinion. From
Eqs. (14) and (15) we obtain PωX

= Pω′
X

. This means that every hyper opinion
can be approximated with a multinomial opinion which has the same projected
probability distribution as the initial hyper one.

2.3 Subjective Opinions as Probability Density Functions

In this section we describe the correspondence between multinomial opinions
and multinomial Dirichlet models given in [3].

Let p = (p1, . . . , pk) be the probability distribution of the variable X, where
pi = p(xi), i = 1, . . . , k. p is Dirichlet distributed random variable if its proba-
bility density function (pdf) has the following form:

fα(p) =
Γ

(∑k
i=1 αi

)

∏k
i=1 Γ (αi)

k∏

i=1

pαi−1
i , (16)

where Γ is the k-dimensional (k = |X|) gamma function and α = (α1, . . . , αk)
are the parameters of the distribution. The mean distribution determined by
Eq. (16) is given as m(xi) = αi/

∑k
i=1 αi.

The multinomial Dirichlet model [1] for the probability distribution p assumes
the following:
3 For this conditional probability to be always defined, it is enough to assume aX(xi) >
0, for every xi ∈ X. This amounts to assuming that everything we include in the
domain has a non-zero probability of occurrence.
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– a Dirichlet prior pdf for p with parameters α0
i = CaX(xi), where aX is the

mean distribution and C is a constant called prior strength that determines
the amount of evidence needed to overcome the prior, and

– a multinomial sampling (r(xi) | i = 1, . . . , k), N =
∑k

i=1 r(xk), i.e. N obser-
vations where xi is observed r(xi) times.

Then the posterior pdf for p is also a Dirchlet pdf with the following parameters:

αi = r(xi) + C aX(xi), (17)

and a corresponding mean distribution:

m(xi) =
r(xi) + CaX(xi)

N + C
. (18)

The posterior Dirichlet pdf for p uniquely determines a multinomial opinion
ωX = (bX , uX , aX), where aX is the prior mean distribution and the belief and
uncertainty masses are determined in the following way:

{
bX(xi) = r(xi)

N+C

uX = C
N+C

(19)

According to the above transformation, the beliefs are proportional to the
corresponding observations while the uncertainty is independent of the particu-
lar observations and decreases with their total number. When the total number
of observations converges to infinity, the uncertainty converges to zero and the
beliefs converge to the actual p, i.e. the transformation determines a dogmatic
opinion. The projected probability of the opinion ωX obtained by the transfor-
mation in Eq. (19) is equal to the mean value of the posterior Dirichlet pdf as
given in Eq. (18), which corresponds to the fact that the projected probability
is an estimate for the actual distribution p of X.

Conversely, given subjective opinion ωX = (bX , uX , aX) and Dirichlet
strength C determine Dirichlet parameters α as given in Eq. (17), where:

r(xi) =
CbX(xi)

uX
. (20)

The correspondence described in this section implies that expressing the
knowledge about X in the form of subjective opinion ωX = (bX , uX , aX) is
equivalent to expressing the knowledge about the probability distribution of X
by a multinomial Dirichlet pdf. This correspondence gives a way of eliciting
the beliefs and uncertainty in subjective opinions from experimental analysis.
However, the base rate as well as its strength C have to be chosen in advance.

3 Subjective Networks Representation

A subjective network Sn of n random variables is a directed acyclic graph and
sets of subjective opinions associated with it. First we introduce the concepts of
joint and conditional subjective opinion, then we introduce two different types
of subjective networks, Bayesian and fused subjective networks.
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3.1 Conditional and Joint Subjective Opinions

A joint subjective opinion on variables X1, . . . , Xn, n ≥ 2 is a tuple:

ωX1...Xn
= (bX1...Xn

, uX1...Xn
, aX1...Xn

), (21)

where bX1...Xn
: R(X1 × . . . × Xn) → [0, 1] and uX1...Xn

∈ [0, 1] satisfy the
additivity condition in Eq. (12) and aX1...Xn

is a joint probability distribution
of the variables X1, . . . , Xn.

A marginal opinion on a set of variables Y , subset of V = {X1, . . . , Xn}, is
a joint opinion on the variables in Y . The relation between a marginal opinion
on the variables Y and a joint opinion on the full set of variables V can not
be modelled with an analogue of Eq. (3), but rather with what is known as
product operation [3] in subjective logic, where a product of two multinomial
opinions on independent random variables is defined as a joint hyper opinion
on the Cartesian product of their domains. The definition is generalizable to an
arbitrary number of variables and to opinions on sets of variables, under the
assumption that the input opinions are subjective opinions on probabilistically
independent (sets of) variables.

Given two sets of random variables X and Y , a conditional opinion on Y
given that X takes the value x is a subjective opinion on Y defined as a tuple:

ωY |x = (bY |x, uY |x, aY |x), (22)

where bY |x : R(Y) → [0, 1] and uY |x ∈ [0, 1] satisfy the condition in Eq. (12) and
aY |x : Y → [0, 1] is a probability distribution of Y . We use the notation ωY |X
for a set of conditional opinions on Y , one for each value of X, i.e.:

ωY |X = {ωY |x | x ∈ X}. (23)

There is no relation in subjective logic analogous to Eq. (4) that relates con-
ditional opinions with the marginal ones.

3.2 Bayesian Subjective Networks

A Bayesian subjective network of n random variables X1, . . . , Xn is a directed
acyclic graph with one node for each variable and a set of conditional subjec-
tive opinions ωXi|Pa(Xi), associated with each node Xi, consisting of one condi-
tional opinion ωXi|pa(Xi) on Xi, for each instantiation pa(Xi) of its parent nodes
Pa(Xi).

A Bayesian subjective network is basically a generalization of a classical
Bayesian network, where instead of probability distributions associated with
the nodes, we have subjective opinions on them. Conversely, every Bayesian
subjective network projects to a classical one. Namely, every opinion ωXi|pa(Xi) ∈
ωXi|Pa(Xi) projects to a probability distribution P(Xi|pa(Xi)). The graph of the
given subjective network Sn together with the sets of projected distributions
P(Xi|Pa(Xi)), i = 1, . . . , n, forms a classical Bayesian network, which we denote
by P(Sn) and call a Bayesian network projection of the subjective network Sn.
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The concepts of joint, marginal, and conditional opinions do not enjoy the
same relations as their probabilistic counterparts. Consequently, the joint opin-
ion on X1, . . . , Xn can not be obtained from the input opinions in the network
using the Markov condition by an analogue of Eq. (7). Nevertheless, the corre-
sponding projected probabilities are related by the equations in Sect. 2.1 and
can be reasoned about within the Bayesian network P(Sn).

The Bayesian subjective networks representation also presumes that Markov
independences, hence all the conditional independences embedded in the graph
structure of the given DAG (d-separations), hold for the uncertainties of the
corresponding opinions: If a set of variables X is conditionally independent of a
set of variables Y given the set of variables Z, I(X,Y |Z) then:

u(X|yz) = u(X|z), (24)

for every choice of values y and z. This assumption can be justified by the fact
that the uncertainty mass of a subjective opinion is a parameter that refers to
the whole probability distribution. In light of the Dirichlet pdf representation of
subjective opinions, a subjective network represents in some sense an ensemble
of possible Bayesian networks, where the spread of the distributions is related
to the uncertainties. For each ensemble, I(X,Y |Z) implies p(X|yz) = p(X|z).
Therefore, the spread of p(X|yz) is the same as that of p(X|z).

A subjective network Sn is a graphical representation of uncertain informa-
tion about probability distributions that combines beliefs and uncertainty, as
well as probabilistic information about the knowledge domain in the form of
base rate distributions. The base rate distributions in the conditional opinions
of a subjective network Sn can be set without constraints and are not necessarily
connected by the equations in Sect. 2.1, i.e. the subjective network may or may
not represent a joint probability distribution on the knowledge domain. In the
two-node case considered in [6], it is assumed aY |xi

= aY , for every xi ∈ X,
i.e. that only the unconditional base rate distributions are available.

Example: Näıve Bayes Subjective Networks. A specific case which is
often modelled in data mining and machine learning is that of a set of variables
X1, . . . , Xn, all conditionally independent given another variable Y , so that the
joint distribution of the n + 1 variables can be decomposed as follows:

p(x1, . . . , xn, y) = p(y)
∏

i

p(xi|y). (25)

The relations between the variables can be represented with what is known
as a näıve Bayes network, where Y is the common root node with X1, . . . , Xn

as children. Such a model is amenable for its scarcity of parameters, compared
to the full joint distribution, and for the possibility of assessing each p(Xi|y)
independently of the others, possibly from different sources of information or at
different times.

Having uncertain information about the probability distributions p(Xi|Y )
and p(Y ) in the form of subjective opinions, we obtain a näıve Bayes subjective
network (Fig. 1).
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Y

X1 X2ωX1|Y

ωY

ωX2|Y

Fig. 1. A three-node Näıve Bayes subjective network

As an example, let us suppose we want to construct a subjective network for
detecting type 2 diabetes (T2D), which will be the common root node, from four
of its major risk factors, which will be the children: obesity, old age, family history
of T2D, and past episodes of high blood glucose. In this case, the choice of the
näıve Bayes network structure is practical: information on T2D prevalence and
on the probability distribution of the children nodes with and without diabetes
is easy to gather from the appropriate medical sources, whereas information on
the joint distribution of the four variables would be much harder to get. Then,
in constructing the input opinions ωXi|y = (bXi|y, uXi|y, aXi|y), the uncertainty
mass could be set higher on the conditional opinions when y is true and lower
when y is false, on the account of the much larger amount of samples from which
the latter probabilities are probably estimated. Furthermore, uncertainty mass
could be set higher on the opinions on family history and past episodes of high
blood glucose than on the ones on age and obesity, on the account of the latter
two being more reliable to assess precisely and not being based on the memory
of past events or on historical clinical records. In the lack of clear evidence for
T2D in a particular case, the opinion ωY could be set to vacuous, where the only
relevant information we use is the domain knowledge (statistics on T2D in the
population, for example) reflected in the base rate distribution aY .

3.3 Fused Subjective Networks

A fused subjective network is a DAG and sets of conditional subjective opinions
ωY |X as defined in Eq. (23), for every pair of nodes X and Y , such that X is
a parent of Y , i.e. a DAG and a set of conditional subjective opinions at each
of its arrows. In addition, the fused subjective networks representation assumes
that base rates for the root nodes of the DAG are also available.

This second type of subjective networks resembles more closely what has
originally been introduced in [6]. The purpose of such a representation is to
facilitate the elicitation of experts’ opinions on variables that form a graph con-
taining V-structures, the simplest one given in Fig. 2. In such a graph, it can be
easier for the analyst to provide the opinions ωY |X1 and ωY |X2 separately, rather
than the opinions ωY |X1X2 , which is otherwise necessary if we want to construct
a Bayesian subjective network with the same DAG (Fig. 3).

For example, an expert might have an opinion on the probability of military
aggression over a country A from a country B conditional on the troop move-
ments in B, and opinion on the probability of military aggression conditional
on the political relations between the countries, but is not able to merge these
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X1 X2

Y

ωY |X1 ωY |X2

Fig. 2. A V-structure fused subjective network

X1 X2

Y

ωX1 ωX2

ωY |X1X2

Fig. 3. A V-structure Bayesian subjective network

opinions in a single opinion about military aggression conditional on both the
factors considered together.

Unlike in Bayesian subjective networks, the projected probability distribu-
tions of the subjective opinions in a fused subjective network do not necessarily
form a Bayesian network with the given DAG, which is a substantial difference
between the two representations that strongly influences the inference approach.
A fused subjective network is an approximation of the Bayesian subjective net-
work with the same DAG, in terms of both representation and inference.

Note that in näıve Bayes networks and, in general, subjective networks with
a DAG that is a single-rooted tree, every node has at most one parent, hence
this type of subjective networks is in the intersection of fused and Bayesian ones.

4 Inference in Subjective Networks

The inference in classical Bayesian networks reduces to the following: Given that
the values of some of the variables (evidence variables E) are observed, to find
the probability of any other variable or set of variables in the network (target
variables T ), which is to find the conditional probability of the target given an
instantiation of the evidence, p(T |e). In subjective networks, the evidence does
not necessarily mean an observation. Namely, an analogue to observing the value
of a variable in the case of subjective opinions is assigning a belief mass 1 to
that particular value of the variable (based on direct observation, or just a strong
opinion). This gives an evidence in the form of an absolute opinion. In general,
we could have evidence in the form of a general type of subjective opinion on
E, ωE , and would like to be able to account for it, i.e. to be able to update the
opinions on the target variables upon the evidence ωE .

In subjective networks we can distinguish among three different types of
subjective evidence:
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– absolute evidence, evidence in the form of an absolute opinion, i.e. instantiation
of the evidence variables,

– dogmatic evidence, evidence in the form of a dogmatic opinion on the evidence
variables, and

– uncertain evidence, evidence in the form of a subjective opinion with uncer-
tainty greater than zero.

For the derived opinion on the target T we use the notation ωT‖e in the case
of absolute evidence, and ωT‖E in the case of dogmatic or uncertain evidence.
Depending on whether E is a set of one or more variables, we distinguish between:

– single evidence, evidence on one variable only, and
– multiple evidence, evidence on more than one variable.

4.1 Inference in a Two-Node Network

In this section we briefly summarize the operations of deduction and abduction
for conditional reasoning with two variables defined in [4,6]. We assume we have a
two-node subjective network, where X is the parent and Y is the child node, and
the set of conditional subjective opinions ωY |X = {ωY |x | x ∈ X} is available,
along with the base rate distributions aX and aY .

Subjective Logic Deduction. Given the set of opinions ωY |X and a subjective
evidence ωX , the goal is to deduce a subjective opinion on Y , ωY ‖X

4.
First the projected probability distribution of ωY ‖X is determined by:5

P(y‖X) =
∑

x∈X

P(x)P(y|x). (26)

For the belief masses of the deduced opinion ωY ‖X , we assume the following:
The unconditional beliefs of the deduced opinion are at least as large as the
minimum of the conditional beliefs:

by‖X ≥ min
x∈X

{by|x}, (27)

for every y ∈ Y . This is a natural assumption, which can also be found as a
principle of plausible reasoning for example in [11]. Then we first determine the
uncertainty mass uY ‖X̂ corresponding to a vacuous evidence opinion on X as
the maximum possible uncertainty mass under the conditions in Eqs. (26) and
(27). The uncertainty of the deduced opinion from ωX is then determined as a

4 This input information can be considered both a Bayesian subjective network with
no evidence, or a fused subjective network with a subjective evidence on X.

5 Note that in this section we use simplified notation for the projected probabilities,
beliefs and base rates, for example P(xi) is an abbreviation of PωX (xi), by‖X is an
abbreviation of bY ‖X(y), etc.
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weighted average of the uncertainty based on vacuous input opinion for X and
the input conditional uncertainties:

uY ‖X = uXuY ‖X̂ +
∑

x∈X

bxuY |x. (28)

Once we have the uncertainty mass of the deduced opinion, the beliefs are
easily derived using the projected probabilities and Eq. (13).

Subjective Logic Abduction. Given the set of opinions ωY |X and an opinion
ωY , the goal is to abduce an opinion on X, denoted by ωX‖Y

6.
The operation of abduction first “inverts” the given set of conditional opin-

ions ωY |X into a set of conditional opinions ωX|Y and then applies deduction on
ωX|Y and ωY to derive the opinion ωX‖Y .

For determining the inverted opinion ωX|y, we first obtain its projected prob-
ability distribution as follows:

P(x|y) =
axP(y|x)∑

x′∈X
ax′P(y|x′)

. (29)

Then its uncertainty mass uX|y is obtained by a heuristic procedure which
takes the maximum possible uncertainty value compatible with Eq. (29) and
adjusts it using the average uncertainty of the input conditionals ωY |X and the
irrelevance of X to the value y, for details see [4]. The beliefs bx|y are again a
consequence of the projected probabilities and the uncertainty.

4.2 Inference in Bayesian Subjective Networks

Let us assume that we are given a Bayesian subjective network Sn and absolute
evidence on the set of variables E. Given the instantiation e of E, we want to find
the conditional subjective opinion on a target set of variables T , ωT‖e. We make
the following general assumptions for the inference procedure for deriving ωT‖e:

1. The projected probability of the derived opinion is determined from the pro-
jected Bayesian network in a classical way, i.e. P(T |e) is determined in P(Sn)
using the standard Bayesian networks reasoning methods.

2. All the conditional and marginal base rate distributions in the subjective
network are either given a priori, or determined from the ones provided in
the initial opinions in the network by Bayesian reasoning.

3. The uncertainty and the beliefs of the derived opinion satisfy certain con-
straints, like, for example, some of the conditions given in Eqs. (24) and (27).

The first assumption provides a way of determining the projected probability
distribution of the target opinion ωT‖e and is a starting point in deriving the

6 This case can only be classified as fused subjective network with a subjective evidence
on Y .
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opinion. Having determined the projected probability and considering the second
assumption above, Eq. (13) gives us a system of m linear equations with the
beliefs and the uncertainty mass of the target opinion as variables, where m is
the cardinality of the domain of the target T . We obtain one more equation over
the same variables from the additivity property for the beliefs and uncertainty of
subjective opinions, given in Eq. (12). This means that we have a system of m+1
equation with m+1 variables, which might seem to fully determine the required
opinion ωT‖e. However, Eq. (12) is a sum of the equations in Eq. (13), which
means that the system is dependent. Hence, the system has infinite number
of solutions, i.e. there are infinitely many subjective opinions with the same
projected probabilities and base rates, and additional constraints on beliefs and
the uncertainty mass are required (assumption 3.) in order to choose a single
opinion on the target as a solution.

The above discussion implies the following: If we find a suitable way of deter-
mining the uncertainty mass of the derived opinion, the beliefs follow from
Eq. (13) (the base rate is either a priori given or determined from the given
base rates), and the opinion is fully derived. While this is successfully applied
in the deduction for two variables described in the previous section, in general,
it remains a challenge to provide a meaningful way of propagating the given
uncertainty masses throughout the network in a way that would give reasonable
belief mass values (that satisfy the initially set constrains) as a consequence.
Also, there might not exist a unique way of propagating the uncertainty, and
how we decide to do it can be context-dependent.

The above described inference procedure would operate over multinomial
opinions. It is possible though to provide the input information in the form of
hyper opinions, in which case their multinomial approximations (described at the
end of Sect. 2.2) can be used in the inference procedure to derive a multinomial
opinion on the target. This is an advantage in a certain sense for one usually has
the input information in the more vague, hyper opinion form, and wants to have
the output as a multinomial opinion, i.e. to have the beliefs distributed over the
values rather than sets of values.

The inference from dogmatic or uncertain evidence remains a challenge, for in
that case we can not have the assumption 1, namely: Instantiating the evidence
variables E in a given subjective network Sn with a subjective opinion ωE that is
not absolute, we simultaneously provide a new projected probability distribution
of E, which, in general, differs from the one that would be derived by Bayesian
reasoning in P(Sn).

4.3 Inference in Fused Subjective Networks

We limit the inference in fused subjective networks to the case of a single target
variable, i.e. we define the inference problem as follows: Given subjective opinions
on the evidence variables X1, . . . , Xk, derive a subjective opinion on the target
variable Y /∈ {X1, . . . , Xk}.

Consider first the simple case of a fused subjective network with a singly-
connected DAG (only one path between any two nodes) and a simple inference
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problem where we have a single evidence: Given a subjective opinion ωX on a
node X, derive a subjective opinion ωY ‖X on another node Y . This problem can
be solved by propagating the evidence through the path from X to Y by applying
deduction or abduction operation at each step (depending on the direction of the
arrows on the path). If the graph is not singly-connected and there are multiple
paths between X and Y , then this procedure will enable us to derive multiple
different opinions on the target given the same evidence. An operation of fusion
in subjective logic can then be applied to fuse the derived opinions on the target
into a single one.

An operation of fusion can also be applied in the case of multiple evidence:
We derive a subjective opinion on the target variable for each of the evidence
opinions separately, and then fuse the resulting opinions to obtain a single one.
However, in a general graph structure, paths between evidence and target vari-
ables can intersect and partially overlap, and to avoid repetitions in the inference
procedure, we should consider fusing the opinions on the same variable coming
from different paths before propagating them further.

There is a variety of fusion operators [2] that can be used for fusion in sub-
jective networks, hence choosing an appropriate one is one of the challenges in
the inference in fused subjective networks.

In some cases, inference in a fused subjective network can be done by first
transforming it into a Bayesian one in the following way: for every V-structure
with parents X1, . . . , Xn and child Y , we invert the given set of conditionals
opinions ωY |Xi

, i = 1, . . . , n into ωXi|Y as described in the abduction operation
in Sect. 4.1. This means that we invert the V-structure into a näıve Bayes network
where Y is a parent of X1, . . . , Xn. Because of the conditional independences in
the näıve Bayes, we can apply the product operation from [3] on the opinions
ωXi|y, i = 1, . . . , n to obtain the opinion ωX1...Xn|y, for every y ∈ Y, i.e. the set
of opinions ωX1...Xn|Y . At the end, we invert again to obtain the set ωY |X1...Xn

.

5 Inference Through the Dirichlet Representation
of Subjective Opinions

This section provides an alternative approach towards inference in subjective
networks, which is based on the Dirichlet pdf representation of subjective opin-
ions introduced in Sect. 2.3.

In a subjective network, evidence has been collected to form subjective opin-
ions about the conditional probabilities. In other words, each conditional prob-
ability distribution p(Xi|pa(Xi)) is represented as a ki-dimensional Dirichlet
distributed random variable, where ki = |Xi|. Because of the Markov property,
these Dirichlet distributed random variables are also statistically independent.

One important goal of inference from absolute evidence in subjective net-
works is to derive an opinion ωXi‖e for a given instantiation e of evidence vari-
ables E, and a target node Xi not in E. In terms of the Dirichlet representation,
determining ωXi‖e is equivalent to determining the appropriate Dirichlet pdf to
represent the uncertainty about the probability distribution p(Xi|e). According
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to Sect. 2.1, this probability distribution is expressed through the input proba-
bility distributions in the graph in the following way:

p(xi|e) =

∑
Xj∈V \E∪{Xi}

∏n
k=1 p(xk|pa(Xk))

∑
Xj∈V \E

∏n
k=1 p(xk|pa(Xk))

, (30)

where pa(Xk) is the instantiation of the parents of Xk that corresponds to xi

and e.
For a standard Bayesian network, the execution of Eq. (30) can be accom-

plished as a series of variable elimination steps [14]. For subjective networks,
the probability distributions involved in the right-hand side of Eq. (30) are
Dirichlet distributed random variables and exact inference becomes more chal-
lenging. The target probability distribution p(Xi|e) is a ki-dimensional random
variable characterized through the independent Dirichlet distributed random
variables p(Xk|pa(Xk)). Through a change of variables process, it is possible to
determine the actual pdf for p(Xi|e), which in general is not a Dirichlet pdf.

In order to obtain a subjective opinion on Xi given e by means of the trans-
formation in Eq. (19), we need to approximate this pdf by a Dirichlet pdf. We
choose to use a moment matching approach to determine the best Dirichlet pdf
to approximate the pdf of p(Xi|e). First, the mean value of this Dirichlet pdf,
m(Xi|e), must equal the expectation of the actual pdf for p(Xi|e). Then, the
Dirichlet strength is selected so that the second order moments of the actual
target distribution matches that of the Dirichlet distribution as much as possi-
ble in the mean squared sense. The matching of the second order moments is
perfect only for binary variables. The moment matching method to determine
the Dirichlet strength has been implemented for partial observation updates and
deduction in [7,8], respectively. In the general case where the evidence can come
from the descendants of Xi, a closed form solution for the first and second order
expectation of Eq. (30) does not exist because of its fractional form, and one must
resort to numerical integration over N Dirichlet distributed random variables,
where N is the number of input probability distributions in the network. Such
a moment matching method is only computationally feasible for the smallest of
networks.

Current research is looking at extending the sum-product algorithm [13].
Such an approach develops a divide and conquer strategy that will provide means
to propagate one piece of evidence at a time. Then the effects of an observation
coming from the antecedents is propagated forward via subjective logic deduction
(as in [8]), and a backwards process will enable the computation of the effect
of an observation coming from a descendant node. At each stage in the process,
the stored conditionals are approximated by Dirichlet distributions using the
moment matching method. Finally, the inference of the target opinion from
combined evidence is accomplished by normalizing the opinions conditional on
evidence coming from different directions. The first steps of this normalization
process has been studied in [9] for the case of a three-node chain of binary
variables.



Subjective Networks: Perspectives and Challenges 123

The evaluation of forward/backward propagation along with normalization
over chains is the next step. The intermediate results will be stored as subjec-
tive opinions, which means that the inference via normalization will only be
an approximation of moment matching of Eq. (30), which is not making any
Dirichlet approximation about the marginal distribution for the intermediate
nodes between the evidence E and Xj . This is in contrast to the sum-product
algorithm over Bayesian networks, which provides exact inference. The plan is to
study computational efficiency and accuracy of imposing the Dirichlet approxi-
mation as the effects of the observations propagate over the “uncertain” proba-
bilistic edges.

The development and evaluation of inference techniques over subjective net-
works will consider increasing complexity in various dimensions. One dimension
is the topology of the network, where we will first study chains and then expand
to trees and eventually arbitrary DAGs where we will need to modify the sum-
product framework. Another dimension is the complexity of the subjective opin-
ions: We start with binary (ki = 2) and multinomial opinions (ki > 2), to finally
consider hyper opinions (2ki −2). The quality of the observations over E provides
another complexity dimension to explore. Initially, we will only consider infer-
ence from absolute opinions, which are equivalent to instantiation of variables,
but in future work we plan to consider inference from general type of opinions.

6 Conclusions and Future Work

We introduced subjective networks as structures for conditional reasoning with
uncertain probabilistic information represented in the form of subjective opinions
on random variables. In this way both the input information and the inferred
conclusions in the modelled scenario incorporate a current analysis of beliefs
and a domain knowledge, at the same time taking the uncertainty about the
probabilities explicitly into account.

The discussed inference problems in subjective networks lead to several infer-
ence approaches to be studied in future work: global uncertainty propagation in
Bayesian subjective networks, piece-wise inference in fused subjective networks,
and a statistical moment matching approach towards inference in subjective
networks.
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Abstract. The size and growth rate of the Semantic Web call for query-
ing and reasoning methods that can be applied over very large amounts
of data. In this paper, we discuss how we can enrich the results of queries
by performing rule-based reasoning in a top-down fashion over large RDF
knowledge bases.

This paper focuses on the technical challenges involved in the top-
down evaluation of the reasoning rules. First, we discuss the application
of well-known algorithms in the QSQ family, and analyze their advan-
tages and drawbacks. Then, we present a new algorithm, called RDF-SQ,
which re-uses different features of the QSQ algorithms and introduces
some novelties that target the execution of the OWL-RL rules.

We implemented our algorithm inside the QueryPIE prototype and
tested its performance against QSQ-R, which is the most popular QSQ
algorithm, and a parallel variant of it, which is the current state-of-the-
art in terms of scalability. We used a large LUBM dataset with ten billion
triples, and our tests show that RDF-SQ is significantly faster and more
efficient than the competitors in almost all cases.

1 Introduction

The ability to derive implicit and potentially unknown information from graph-
like RDF datasets [8] is a key feature of the Semantic Web. This process, infor-
mally referred to as reasoning, can be performed in several ways and for different
purposes. In this paper, we focus on the application of reasoning to enrich the
results of SPARQL queries [14] by deriving implicit triples that are relevant
for the query, and restrict our focus to rule-based reasoning in the OWL 2 RL
fragment.

In this context, one method to perform reasoning is traditionally referred to
as backward-chaining. The main idea behind backward-chaining is to rewrite the
input query in a number of subqueries whose results can be used by the rules
to calculate implicit answers. Backward-chaining is often implemented with a
top-down evaluation of the rules, where the “top” is the input query and the
“bottom” consists of the queries that cannot be rewritten.

We consider the top-down algorithms designed for the Datalog language [2]
because almost all rules in OWL 2 RL can be represented with this language. In
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 125–138, 2015.
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Datalog, the most popular algorithms in this category belong to the QSQ fam-
ily [2,4], which consists of a series of algorithms that implement the well-known
SLD-resolution technique [9]. These algorithms differ from each other because
their computation can be either recursive or iterative, tuple or set oriented,
sequential or parallel, or with or without adornments.

Regardless of the chosen algorithm, a common problem of backward-chaining
is that reasoning is performed under tight time constraints (since typically the
user waits until the query is computed) and the computation might become too
expensive to guarantee an acceptable response time. On the Web, this problem is
worsened by the fact that the size of current RDF datasets increases continuously.
Therefore, it is paramount to develop scalable inference techniques to provide
answers to the user in a timely manner.

To address this problem, we studied the salient characteristics of the exist-
ing QSQ algorithms, and designed a new algorithm in this family – which we
call RDF-SQ – that is tailored to the characteristics of the OWL rules and
RDF datasets. This algorithm contains several novelties: First, it exploits a pre-
materialization of the terminological knowledge and uses it to divide the OWL
rules in four different categories depending on the number and type of literals in
their body. Each category is implemented in a different way, exploiting the pre-
materialization and some heuristics that hold on current RDF datasets. Second,
it introduces a new rules evaluation order that interleaves the execution of rules
of the first two categories with rules of the last two. The first two categories of
rules are executed in parallel, with the goal of collecting as much inference as
possible, while the other two are executed sequentially. In doing so, our algo-
rithm interleaves parallel and sequential computation in order to achieve higher
efficiency and better utilization of modern hardware.

We tested the performance of our implementation against QSQ-R, the most
well-known implementation, and a parallel variant of it that was recently applied
over very large RDF knowledge bases. We used as a test ruleset a large fragment
of the OWL-RL rules. Our experiments show that RDF-SQ outperforms both
algorithms significantly, allowing in this way the execution of SPARQL queries
with complex inference over very large knowledge graphs with more than ten
billion triples.

2 Background

We assume a basic familiarity with the RDF data model [8]. Typically, users
query RDF graphs using the SPARQL language [14], which can be seen as a
SQL-like language to retrieve and process sub-portions of the RDF graphs.

SPARQL is a complex and rich language, but every SPARQL query can be
represented at its core as a graph pattern, and its execution can be translated
into a graph matching problem [14]. In this paper, we consider the most popular
type of SPARQL queries, which are the ones that can be mapped with basic
graph patterns (BGP). These graph patterns are simply defined as a finite set of
triple patterns, which are members of the set (T ∪V )× (I ∪V )× (T ∪V ), where
T is a finite set of RDF terms, V of variables, and I ⊆ T is the set of IRIs.
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We use the Datalog language to formalize the process of inferring new infor-
mation from the input. Due to space constraints we only briefly introduce key
concepts in this language and refer the reader to [2] for a complete overview.
A generic Datalog rule is of the form R1(w1) ← R2(w2), R3(w3), ..., R(wn). The
left-hand side of the arrow is called the head of the rule, while the right-hand
side constitutes the rule’s body. We call each Rx(wx) with x ∈ {1..n} a literal,
which is composed of a predicate (Rx) and a tuple of terms wx := t1, ..., tm.
Predicates can be either intensional (idb) or extensional (edb), and only inten-
sional predicates can occur in the head of a rule. Each Datalog term can be
either a variable or a constant (in this paper, variables are always indicated with
capital letters to distinguish them from the constants). We call a literal a fact if
the tuple contains only constants. We say that a fact f instantiates a literal l if
every constant in l is equal to the constant at the same position in f , and there
is an unique mapping between each variable in l and a corresponding constant
at the same position in f . Consequently, the instantiation f ← f1, f2, . . . , fn of
a rule is a sequence of facts where the mapping from constants to variables is
unique across the entire rule.

In Datalog, instantiations of rules are typically calculated through the manip-
ulation of substitutions, which map variables to either constants or other vari-
ables and are calculated using special functions (called θ in this work). Sets
of substitutions can be joined together (��) or retrieved from a database of
facts using a generic function called lookup. An unifier is a special substitu-
tion between two literals that is often used to verify whether the head of a rule
can produce instantiations for a given literal. A unifier that is no more restrictive
than needed is called a most general unifier (MGU ). In this work, we use the
usual definitions of these concepts. Their formal definition, and all other Datalog
concepts not explicitly defined in this paper, can be found in [2,4,21].

Given a generic database I which contains a finite set of Datalog facts and a
ruleset R, we say that a fact f is an immediate consequence of I and R if either
f ∈ I or there exists an instantiation f ← f1, f2, . . . , fn of a rule in R where all
fi are in I. Calculating all immediate consequences with a rule r is a process
that we refer to as the evaluation of rule r. We define TR as a generic operator
that calculates all immediate consequences so that TR(I) contains all immediate
consequences of I and R. Let T 0

R(I) := I, T 1
R = TR(I) and for each i > 0 let

T i
R(I) := TR(T i−1

R (I)). Since TR is a monotonic operator, and no new symbol is
generated, there will be an i where T i

R(I) = T i−1
R (I). We call this database the

fixpoint of I and denote it with Tω
R(I).

The goal of our work is to answer SPARQL queries over Tω
R(I). To this end,

two main techniques are normally adopted: The first technique, called forward-
chaining, stems from fixpoint semantics and consists of calculating the entire
Tω

R(I) and then (re)using the extended database to answer the SPARQL query.
Forward-chaining is often implemented with a bottom-up evaluation of the rules,
which consists of a repetitive evaluation of the rules over augmented versions
of the database. This technique has been explored extensively in literature and
there are several systems that implement this type of reasoning with different
degrees of expressivity [7,12,18,19,27–29].
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The second technique is called backward-chaining (or query rewriting), and is
the focus of this work. It adopts a proof-theoretic approach and calculates only
the subset of Tω

R(I) necessary to answer the query. For the purposes of query
answering, backward-chaining is efficient because it does not always calculate
the entire derivation like forward-chaining. For this reason, backward-chaining
is adopted in large-scale RDF query engines like Virtuoso [6], 4Store [17],
QueryPIE [22], or Stardog [15].

Backward-chaining is normally implemented with a top-down rules evalua-
tion (a notable exception is represented by the Magic Set technique [3], which
can be seen as backward-chaining performed with a bottom-up evaluation). We
illustrate the functioning of a typical top-down algorithm with a small example.

Example 1. Suppose that the Datalog query Q := (A, typ, person) must be eval-
uated using a ruleset R on a database I that contains RDF triples encoded as a
ternary relation T . We report the content of I and R below:

Database I

T(a,has grade,3), T(d,has grade,null), T(b,has grade,6),
T(student,sc,scholar) T(c,has grade,7), T(greater,typ,trans)
T(7,greater,6), T(scholar,sc,person) T(6,greater,3),
T(has grade,dom,student)

Ruleset R

R1 := T (A, sc, C) ← T (A, sc,B), T (B, sc, C)
R2 := T (A, typ, C) ← T (B, sc, C), T (A, typ,B)
R3 := T (A, typ, C) ← T (P, dom,C), T (A,P,B)
R4 := T (A,P,C) ← T (P, typ, trans),

T (A,P,B), T (B,P,C)

In general, a top-down algorithm would first identify which rules might
produce some answers. In our example, these are R2, R3, R4. Then, it would
launch a number of subqueries necessary to execute the rules. In our case, R2

would require the results of the query T (B, sc, person), R3 of T (P, dom, person),
and R4 of T (typ, typ, trans). These subqueries might either trigger other rules
or return no result. In our example, the first subquery would trigger R1

which would first read T (scholar, sc, person) and consequently request the
subquery T (B, sc, scholar) in order to calculate the triples that instantiate
T (B, sc, person). In our case, R1 would return the fact T (student, sc, person) to
R2, which could use this fact to issue another subquery T (A, typ, student). This
last subquery would trigger rule R3, which would return the facts that a, b, c, d
are students back to R2. At this point, R2 would use this information to infer
that a, b, c, d are of type person and return these facts as answers to the original
query. �

Unfortunately, a major problem of backward-chaining is that the number of
subqueries might become too large to provide all answers in a timely manner. To
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reduce this issue, backward-chaining algorithms often use tabling to reduce the
number of evaluations. Tabling is a particular technique of memoization [16] and
consists of caching the results of previously evaluated queries and reuse them
if needed. Tabling can be either transient in case it is maintained only during
the query execution, or permanent if the results are being reused across multiple
queries.

3 RDF-SQ

In Datalog, the most popular type of top-down algorithms are the ones in the
QSQ family [4]. The most popular QSQ algorithm is called QSQ-R and was pre-
sented in 1986 [23]. QSQ-R is a recursive sequential algorithm, which exhaus-
tively evaluates each subquery before it returns the results to the rule that
generated it. In this way, it can exploit tabling efficiently.

Parallel and distributed versions of QSQ have been proposed in [1,21]. The
last contribution is particularly interesting since it weakens the admissibility
test and lemma resolution in SLD/AL – that is the theoretical foundation upon
which QSQ-R and QoSaQ are based [25,26] – by allowing the rewriting of equiv-
alent queries in case they do not share any parent query except the root. This
choice is clearly less efficient than QSQ-R, since the latter does not perform
this redundant computation, but it has the advantage that it can run in parallel
without expensive synchronization.

In this landscape, our contribution consists of a new algorithm, called RDF-
SQ, which is inspired by these methods but is especially designed to execute
the OWL RL rules. It introduces novelties that exploit characteristics of current
RDF data, and reuses features of existing QSQ algorithms in an intelligent way.
We can summarize the following as its salient features:

– Rules are divided into four categories, and the evaluation of rules in each
category is implemented with different algorithms;

– Both permanent and transient tabling are used extensively: Terminological
knowledge is pre-materialized beforehand as described in [21], and intermedi-
ate results are cached in main memory and reused during the process;

– The algorithm interleaves sessions where the rules are evaluated in parallel,
and sessions where the rules are evaluated sequentially. This strategy seeks
the best compromise between tabling and parallel computation.

In the following we describe RDF-SQ in more detail. First, we describe the
categorization of the rules. Then, we give an informal description and report
the pseudocode. Finally, we analyze the fundamental properties of termination,
soundness, and completeness.

3.1 RDF-SQ: Rule Categories

When the database is loaded, the first operation performed by the system con-
sists of pre-materializing all triples that instantiate a number of predefined idb
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literals using the procedure described in [21]. The goal of this procedure is to
avoid a redundant inference upon the same literals during the execution of mul-
tiple queries. Therefore, we can see it as a form of permanent tabling: In fact, the
results of this pre-materialization are intended to be kept in main memory so that
they can be easily retrieved. During the pre-materialization, the original rules are
being rewritten by replacing the predicates of the pre-materialized literals with
an edb predicate that cannot trigger further inference. It has been shown that
this rewriting is harmless (after the pre-materialization), and inference using the
rewritten rules produces the same derivation(s) as with the original ones [21].
Therefore, our algorithm uses the rewritten rules instead of the original ones.

Before we describe our algorithm, we introduce a categorization of rules into
four disjoint categories depending on the number and type of literals they use.
We also outline how the categories of rules are implemented in our system, since
these two elements are instrumental in understanding the main intuition that
motivates our method. In the following, we describe each category in more detail.

Category 1. This category contains all rules that have, as body literals, a fixed
number of extensional predicates. These are mostly the pre-materialized literals.
An example is R1 of Example 1. In this case, all triples that instantiate the
bodies of these rules are already available in main memory. Therefore, during
the rule evaluation we calculate the rule instantiations by performing a number of
nested loop joins [5] followed by a final projection to construct the instantiations
of the head.

Category 2. This category contains all rules that have as body literals one or more
pre-materialized literals and exactly one non-materialized literal. Two examples
are rules R2 and R3 of Example 1.

These rules are more challenging than the previous ones because their evalu-
ation requires one relational join between a set of tuples that is available in main
memory and generic triples that might reside on disk. In our implementation,
the pre-materialized triples are indexed in main memory, and a hash-based join
is executed as new generic triples are being fetched either from the knowledge
base or from other rules.

Categories 3 and 4. The third category contains rules with two or more fixed
non-materialized literals (e.g. rule R4 of Example 1) while the fourth category
contains the rules where the number of literals depend on the actual input. These
are the ones that use elements of the RDF lists.

These rules are the most challenging to evaluate since they also require joins
between two or more generic sets of triples that can reside both on main memory
and disk. These joins are performed by first collecting all triples that instantiate
the first generic literal in main memory, and then passing all acceptable values
to the following generic literal using a sideways-information passing strategy [2].
This process is repeated until all generic patterns are processed. At this point a
final projection is used to construct the triples that instantiate the rule’s head.
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3.2 RDF-SQ: Main Intuition

The system receives in input a collection of triples that constitute the input
database, a set of rules, and a SPARQL BGP query. As a first operation, the sys-
tem performs the pre-materialization and rewrites the initial rules as described
in [21]. Then, each triple pattern in the SPARQL BGP query is retrieved in a
sequence, and the bindings of each variable are passed to the following pattern
using sideways information passing. After the bindings are retrieved, they are
joined using an in-memory hash join.

The RDF-SQ algorithm is invoked to retrieve all triples that instantiate each
triple pattern. Therefore, we can abstract the inference as a process that takes as
input a query that equals to a single literal and rewrites it in multiple subqueries
evaluating the rules to produce the derivations.

During this evaluation, a key difference between the categories of rules is
that rules in the third and fourth categories need to collect all the results of
their subqueries before they can proceed with the rest of the evaluation. If these
subqueries trigger further inference, then the rule evaluator must wait until the
subqueries are finished. In case the rules are evaluated by different threads, the
evaluator must introduce a synchronization barrier to ensure that all subqueries
have terminated. In contrast, rules in the first category can be executed inde-
pendently since their input is already available in main memory, and rules in the
second category do not need to wait because they can produce the derivation
immediately after they receive one triple. Therefore, the evaluation of the first
two categories of rules can be parallelized rather easily, while in the third and
fourth categories the synchronization barriers reduce the parallelism.

In RDF-SQ we leverage this distinction and only execute rules of the first
two categories in parallel. These rules are executed first, so that we can collect as
much derivation as possible before we start to apply the other two rule categories,
which require more computation.

3.3 RDF-SQ: Pseudocode

We report the pseudocode of RDF-SQ in Algorithm 1. To perform the parallel
evaluation of the rules in the first two categories, we use the parallel version of
QSQ presented in [21], which we call ParQSQ from now on. In our pseudocode,
this algorithm is represented by the function ParQSQ infer and it corresponds
to the function “infer” in Algorithm 1 of [21]. For the purpose of this paper, we
can see ParQSQ infer as a top-down algorithm that receives in input a query
Q and a list of queries already requested (called SubQueries in our code) and
returns a number of triples that instantiate Q using the ruleset P and I∪Mat as
input (notice that these variables are marked as global). Internally, this function
produces the same computation as in its original version, with the only differ-
ence that in the original code SubQueries is a local variable, while in our version
it is a global synchronized variable, so that every time a new member is added
through union (e.g. in line 23), the addition is permanent. This change is neces-
sary to implement our intended behavior of expanding each query only once, like
QSQ-R.



132 J. Urbani and C. Jacobs

Algorithm 1. RDF-SQ Main Algorithm. Q is the input query, I is a finite
set of facts, and R is the ruleset. The function returns the set of all facts that
instantiate Q. I, P,R, Tmp,Mat are global variables.

1 function rdf-sq(Q, R,I)
2 P := R12 := {r ∈ R : r.type = 1 ∨ r.type = 2}
3 R34 := {r ∈ R : r.type = 3 ∨ r.type = 4}
4 Mat, Tmp, New := ∅
5 do
6 SubQueries := ∅
7 Mat := Tmp ∪ New ∪ Mat
8 New := New ∪ ParQSQ infer(Q, SubQueries)
9 Mat := Mat ∪ Tmp

10 for(∀SQ ∈ SubQueries ∪ {Q})
11 if SQ was already processed in this loop
12 if all queries in SQ are processed
13 goto line 32
14 else
15 continue
16 else
17 mark SQ as processed
18 all subst := {θε}
19 for ∀r ∈ R34 s.t. SQ is unifiable with r.HEAD
20 θh := MGU(SQ, r.HEAD)
21 subst := {θε}
22 for ∀p ∈ r.BODY
23 tuples := ParQSQ infer(θh(p), SubQueries ∪ {Q})
24 Tmp := Tmp ∪ tuples
25 subst := subst �� lookup(θh(p), tuples)
26 end for
27 all subst := all subst ∪ (subst ◦ θh)
28 end for
29 if SQ = Q then New := New ∪⋃θ∈all subst{θ(SQ)}
30 else Tmp := Tmp ∪⋃θ∈all subst{θ(SQ)}
31 end for
32 while New ∪ Tmp ⊆ Mat ∪ I
33 return New
34 end function

We divide the functioning of RDF-SQ in three steps. First, the rules are
divided in two different ruleset categories (lines 2,3). The first ruleset is assigned
to P so that it is visible to ParQSQ. Second, the algorithm applies the rules
in the first two categories (line 8), and all the derivation produced is collected
in Mat. Third, the rules of third and fourth types are applied sequentially on
each (sub)subquery produced so far (lines 10–31), and ParQSQ infer is invoked
on each subquery that might be requested by these rules. Notice that the inner
invocation of ParQSQ infer might increase the size of SubQueries. Therefore,
in order not to enter in a infinite loop we mark each subquery as “processed”
and exit after all queries have been processed by all rules. The overall process
must be repeated until no rule has derived any new triple (line 32). Finally, the
program returns all explicit and inferred triples that instantiate the query Q.

3.4 RDF-SQ: Termination, Soundness, Completeness

In this paper, we limit to discuss these properties only informally since formal
proofs are lengthy and can be easily obtained with slight modifications of the
proofs presented in [21] for the algorithm ParQSQ.
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Termination. In general, every Datalog program is guaranteed to terminate
because no new symbol is being introduced [2]. Our algorithm is not an excep-
tion: Both the lookup and ParQSQ functions were proven to terminate [21], and
the two loops in the program will eventually terminate because there is always a
maximum numbers of facts and queries that we can construct from the domain
of a given input database.

Soundness. Soundness is a property that holds if every fact returned by
rdf-sq(Q,R, I) is contained in Tω

R(I) and instantiates Q. In our case, this
property can be verified rather easily since the derivations can be generated
either by ParQSQ infer or by the retrieval and union of all substitutions in lines
23 and 29. These two operations are equivalent to the operations performed by
ParQSQ infer to produce the conclusions. Hence they are sound due to the proof
in [21].

Completeness. Completeness requires that every fact that is in Tω
R(I) and instan-

tiates Q is returned by rdf-sq(Q,R, I). Completeness is a property that has
“cursed” QSQ algorithms since their inception. In fact, the original version of
QSQ-R presented in [23] was found to be incomplete and was fixed by the same
author and others in following publications [13,24]. Despite these fixes, later
implementations of QSQ presented in [10,22] and also the widely cited version
in [2] are still incomplete. A good explanation for the source of this incom-
pleteness is reported in [11]: Basically, the mistake is in relying on the intuitive
assumption that if we re-evaluate a query until fix-point during the recursive
process then we eventually retrieve all answers. Unfortunately, there are cases
where answers derived in previous steps cannot be exploited by the current sub-
query because the query is subsumed by a previous subquery, and hence not
further expanded.

One solution to fix this problem is to clear the cache of precomputed sub-
queries either at every recursive call or only on the main loop. In our pseudocode,
this operation is performed in line 6 of Algorithm 1. This guarantees that in every
iteration all intermediate derivations are used in every rule evaluation, and in
every iteration all unique subqueries are fully expanded by every rule at least
once. Therefore, our algorithm is complete because the main loop in lines 5–32
will not exit until no more derivation has been produced.

4 Evaluation

To evaluate our contribution, we compared the performance of RDF-SQ against
ParQSQ and QSQ-R. We chose the first because it has shown the best scalabil-
ity [21], and the second because it is the most popular QSQ algorithm. To this
end, we implemented both RDF-SQ and QSQ-R algorithms inside the QueryPIE
prototype, which contains the original implementation of ParQSQ.

QueryPIE is an on-disk RDF query engine written in Java, which is freely
available1. It is written on top of Ajira [20] – a general-purpose parallel frame-
1 https://github.com/jrbn/querypie.

https://github.com/jrbn/querypie
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Table 1. Response time of the LUBM queries on 10B triples. The numbers in bold
represent the best results.

Q Response time (ms. or seconds if with ’s’) Results (#)

ParQSQ QSQ-R RDF-SQ

C W C W C W

1 759 11 637 14 763 11 4

3 1.6 s 15 1.8 s 41 2.4 s 15 6

4 4.4 s 93 5.1s 330 6.6 s 55 34

5 9.3 s 251 9.8 s 658 11.0 s 82 719

7 3.5 s 67 4.1 s 236 2.1 s 51 4

8 165.8 s 3.0 s 176.0 5.3 s 171.8 s 821 7790

10 1.2 s 56 1.2 s 128 1.1 s 44 4

11 9.4 s 27 9.4 s 35 9.5 s 29 224

12 26.0 s 466 26.7 s 1.2 s 25.4 s 238 15

13 - - 4636.8 s 549.9 s 4062.3 s 50.3 s 37118

work for data intensive applications that gives the possibility of splitting com-
putation into concurrent tasks called chains. We set up Ajira so that it could
launch at most 8 concurrent tasks.

Testbed. We used a machine equipped with a dual quad-core CPU of 2.4 GHz,
24 GB of main memory and an internal storage of two disks of 1 TB in RAID-0.
We chose to launch our experiments using the LUBM benchmark for several
reasons: (i) LUBM is the de facto standard for measuring the performance of
OWL reasoners over very large RDF datasets; (ii) it was recently used to eval-
uate the performance of state-of-the-art OWL reasoners (e.g. [12,18]); (iii) it
supports challenging inference that uses rules in all four categories, and contains
a representative set of queries that encode different workloads.

To allow a fair comparison between the approaches, we activated the same
subset of rules and pre-materialized queries that were used in [21]. The excluded
rules are mainly redundant or used to derive a contradiction (these rules cannot
be activated during SPARQL answering). The only notable exclusions are the
rules that handle the owl:sameAs semantics. However, since LUBM does not
support this inference, these exclusions does not impact the performance of our
implementation.

Query Response Time. We loaded an input dataset that consists of a bit more
than 10 billion RDF triples (LUBM(80000)), and launched the LUBM queries
with the inference performed by the three top-down algorithms. We report in
Table 1 the cold and warm runtimes, and the number of results of each query.
Unfortunately not all queries succeeded because QueryPIE requires that all inter-
mediate results must fit in main memory, and this precludes the execution of
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queries 2, 6, 9, and 14. Also, query 13 failed for ParQSQ: it ran out of memory
after about 4 h.

We measured the runtime from the moment that the query is launched to the
time where all the data is collected and ready to be returned. The cold runtime
reports the runtime after the system is started. The warm runtime consists of
the average of the 29 consecutive runs of the same query. These last runs are
performed where all the data is in memory and no disk access is performed.

The results presented in the table give some interesting insights. First of all,
we notice that the difference between cold and warm reasoning reaches two orders
of magnitude. This shows that I/O has a significant impact on the performance.

Second, we notice that RDF-SQ produced the shortest warm runtime in
all but one case. To better understand the behaviour, we collected additional
statistics during these executions and report them in Table 2. In this table, we
report the maximum amount of bytes read from disk, the number of concurrent
Ajira chains produced during the execution, and the number of queries requested
to the knowledge base.

We chose to record these statistics because the amount of bytes read from
disk gives an indication of the I/O cost required for answering the query, while
the number of Ajira tasks and queries give a rough indication of the amount
of reasoning that was triggered. For example, query 1 is highly selective and
triggers no reasoning: In fact, only 21 megabytes are read from disk and the
number of both chains and queries is small. The most I/O intensive is query 13,
where about 200GB are read from disk.

Looking at the results reported in the two tables, we can draw some further
conclusions. First of all, the cold runtime is clearly limited by the I/O speed. All
three algorithms read about the same amount of data, except for query 13 where
ParQSQ fails. Second, considering the number of chains and queries produced,
we notice how ParQSQ is generally inefficient while QSQ-R positions itself as the
second most efficient algorithm. However, even though ParQSQ is less efficient
than QSQ-R, its runtimes are still competitive since the warm runtime is faster
than QSQ-R in almost all cases. This is due to its ability to parallelize the
computation.

Performance Breakdown. It is remarkable that RDF-SQ produced the smallest
number of subqueries and Ajira tasks in all cases. This highlights the efficiency
of RDF-SQ when compared with the other two methods. We further investigated
the reasons behind this difference and found that it is due to several factors:

– The impact of parallelism on the warm runtime is limited, since most of the
execution time is taken by rules of the third and fourth category. However,
parallelism brings a substantial reduction of the cold runtime. For example,
the execution of query 13 on a smaller data set (LUBM(8000)) with a single
processing thread produces a cold runtime of about 323 s, while if we use two
threads the runtime lowers to 124 s. There is no significant difference if we
increase the number of threads since two threads are enough to saturate the
bandwidth.
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Table 2. Statistics for the tests of Table 1. PQ stands for ParQSQ, QR for QSQ-R,
while RQ abbreviates RDF-SQ.

Q. Max MB
from disk

# Tasks # Queries

PQ QR RQ PQ QR RQ

1 21 18 26 18 6 8 6

3 64 144 266 138 69 98 66

4 216 7086 3275 708 3220 1055 289

5 542 6686 2907 557 2958 990 274

7 473 4527 2635 659 2029 859 282

8 13,846 6467 2427 871 2844 798 370

10 126 4476 1529 610 2006 510 261

11 1,594 57 70 52 20 22 17

12 4,359 4999 3476 775 2257 1132 327

13 198,858 - 3112 555 - 1055 274

– Executing rules of third and fourth category in a sequential manner brings
substantial benefits because at every step we can fully exploit tabling and
reuse all previous derivations. This is also confirmed by the fact that QSQ-
R produces comparable results with ParQSQ despite it being a sequential
algorithm while the other is parallel.

5 Conclusions

Overall, our evaluation gives a first empirical evidence of how our strategy of
interleaving the execution between two stages, one parallel and one sequential,
is beneficial. Because of this, our algorithm produced response times that are
significantly lower than other state-of-the-art algorithms using an input with ten
billion triples, which can be seen as graphs with more than 10 billion edges.

In the future, we plan to do further experiments to test the performance on
larger queries and on datasets with higher expressivity. Furthermore, a promis-
ing research direction consists of developing techniques which can dynamically
estimate whether parallelism can bring some benefit. Finally, we plan to extend
inference to SPARQL queries that encode other types of graph patterns.

To conclude, our contribution shows that complex top-down OWL inference
can be applied successfully over very large collections of data. This pushes for-
ward current boundaries, and enables the enrichment of the results of queries
over RDF data on an unprecedented scale.
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Abstract. Most existing approaches to query recommendation focus
on query-term or click based analysis over the user session log or click-
through data. For entity query, however, finding the relevant queries from
these resources is far from trivial. Entity query is a special kind of short
queries that commonly appear in image search, video search or object
search. Focusing on related entity recommendation, this paper proposes
to collect rich related entities of interest from a large number of entity-
oriented web pages. During the collection, we maintain a large-scale and
general-purpose related entity network (REN), based upon a special co-
occurrence relation between the related entity and target entity. Bene-
fiting from the REN, we can easily incorporate various types of related
entity into recommendation. Different ranking methods are employed
to recommend related and diverse entities of interest. Extensive experi-
ments are conducted to assess the recommendation performance in term
of Accuracy and Serendipity. Experimental results show that the REN
is a good recommendation resource with high quality of related enti-
ties. For recommending related entity, the proposed REN-based method
achieves good performance compared with a state-of-the-art relatedness
measurement and two famous recommendation systems.

Keywords: Query recommendation · Entity ranking · Related entities

1 Introduction

Query recommendation has long been considered a key feature of search engines.
Recommending the most relevant queries to users not only enhances the search
engine’s hit rate, but also helps the user to find the desired information more
quickly. However, only considering the relevance may not be enough to guarantee
recommendation usefulness and effectiveness [21], especially for entity queries.
We call queries that consist of only one entity as entity queries, such as “Tom
Cruise,” “Facebook,” and “America.” Entity query is a special kind of short
c© Springer International Publishing Switzerland 2015
M. Croitoru et al. (Eds.): GKR 2015, LNAI 9501, pp. 139–153, 2015.
DOI: 10.1007/978-3-319-28702-7 9
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queries, which is very common in image/video search or object search. It is
non-trivial to capture the user’s search intent for an entity query, because it is
generally very short and may be ambiguous. In this case, recommending the most
relevant queries may be redundant. Taking the query “iPhone” for example, rec-
ommending “iPhone 4s,” “iPhone 5s,” and “iPhone 6” may not surprise the user.
From the perspective of serendipity, it would be better to recommend queries
covering more aspects related to the entity. For example, “iPhone 6,” “Samsung
Galaxy S5,” and “Nokia Lumia 1020.” may be good choices for the user.

This paper focuses on related entity recommendation, aiming to provide new
entities of interest that are related to various aspects and topics, rather than a set
of synonyms or extensions/supplements based on user query. Related entity rec-
ommendation is deemed useful. For example, in object-level search engines [18],
it is important to return a list of user-interested entities that are highly related to
user queries. In addition, it can help users explore wider scope of query intents,
so as to inspire users with more searching interests. Figure 1 shows three real rec-
ommendation products, from related topics in Bing, related queries in Google
and query interpretations in Yahoo!

Fig. 1. Examples of entity recommendation products

However, recommending related entities of interest is a challenging task for
the following reasons.

– Query Term Based Analysis may Lead to Redundant Recommendations: Most
existing work [1,12] considers previous queries having common terms with
the current query to be the similar queries and naturally recommends these
queries. Entity query, however, is meaningful term itself. Term-based recom-
mendation methods may provide surface-similar entities, leading to redundant
recommendations.

– Search Log Based mining methods are limited: Some recommendation sys-
tems [1,6,24] can mine related queries from search log (e.g. session log). For
related entity, however, it is non-trivial to collect related entities of interest
from previous search log. First, the followed query is more likely to be the
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refinement of its former query in the search log, rather than a related query
of different topics. Second, the search log itself has many noises. It is hard to
identify whether the followed query is a user-interested entity related with its
previous query.

– Related Entities of Interest are Diverse and Abundant: Users may be inter-
ested in various queries because of different reasons. For example, when a user
searches for “iPad”, he/she may also be interested in other related tablets such
as “Surface,” or want to learn more about its producer “Apple Inc.,” or even
associate “iPad” with its founder “Steve Jobs.” In addition, entities of inter-
est to users are usually entity-dependent. Therefore, it is hard to define which
type of entities is user-interested.

In this paper we present a novel approach for related entity recommendation.
It comprises the following two stages.

The first stage aims to gather rich related entities of interest with good
coverage in an open domain manner. Instead of using session log or query click
log, we collect the related entities by leveraging a large number of entity-oriented
web pages, such as Wikipedia articles and product web pages in e-commerce web
sites. Our intuition is as follows. Although it is difficult to identify which entities
may interest the users, we observe that in an entity description page, users will
mention their interested entities that are related to the entity. For example, given
“The Amazing Spider-Man 2,” we can easily find its related entities that users
care about in the movie page1, such as the actor “Andrew Garfield” and its
director “Marc Webb”. Given an entity, we extract its user-interested entities
from its description pages.

During this process, a Related Entity Network (REN) is also maintained
based upon a special co-occurrence relationship2 between entities. As Sangkeun
et al. [15] state, exploiting a graph data model for recommendation can easily
incorporate various types of information into recommendation, because any type
of entities can be modeled as nodes in the graph.

The second stage first employs various methods to study the entity ranking
issue. To measure the semantic relatedness between entities, we utilize semantic
analysis methods based on entity co-neighbors and co-concepts. The conceptual
information is introduced by leveraging a large taxonomy knowledgebase. To
measure the entity importance, link analysis methods are exploited based on
the REN, such as Personalized PageRank [14].

Diversity is an important feature for recommending related applications,
which affects the user experience directly. Most existing approaches [8,10,16]
diversify the recommendations based on different aspects or subtopics of the
recommended target. Generally, a clustering or other subtopic mining process
is needed to generate different aspects. While in our approach, this step is no
longer needed, because the proposed ranking method incorporated with concept
information can directly gain diverse entities.
1 http://www.movies.com/amazing-spider-man-2/m68476.
2 The co-occurrence relation limits one of the two entities to be in the title while the

other appears in the body text of the same article.

http://www.movies.com/amazing-spider-man-2/m68476
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The main contributions of this paper are as follows:

– We design a simple but effective strategy that leverages massive entity-
oriented documents to gather rich related entities of interest. A graph data
mode - REN is exploited to represent the relation between the entities. Based
on the new resource of entity recommendation, we recommend diverse but
related entities to users.

– We incorporate various ranking methods to provide relevant entities related
to different aspects and topics. Experimental results show that the REN
outperforms co-occurrence based approach by 20 % in terms of relatedness
between entities, indicating that it is a good recommendation resource. Exten-
sive experiments show that the proposed recommendation method performs
well in terms of accuracy and serendipity

2 Related Work

Existing query recommendation techniques differ from one another in terms of
the methods they use to find related queries and the techniques they use to rank
the candidates for query recommendation.

Baeza-Yates et al. [1] obtain the recommendations from the aggregation of
the term-weight vectors of the URLs clicked after the query, using a k-means
clustering method. Based on search log, Chien-Kang et al. [12] extracts sugges-
tions from search sessions in a query log that appeared similar to the user’s
current session. Wen et al. [22] present a density-based clustering method for
query recommendation by leveraging the query-click graph [2]. Most of these
work considers previous queries having common terms with the current query to
be the similar queries. For related entity recommendation, however, the surface-
similar queries may lead to redundant recommendations, as the entity queries
are generally very short.

Instead, Zhiyong et al. [24] and Qi et al. [11] utilize the sequentiality of
the user query to recommend related queries. Boldi et al. [3] generate query
suggestions based on random walks in the query-flow graph. They weight the
graph edge by leveraging the number of times that the current query was followed
by the candidate query. Szpektor et al. [19] propose a template-based method to
improve the long-tail query recommendation by leveraging a query-template flow
graph. Vahabi et al. [20] propose an orthogonal query recommendation method,
which intentionally seeks the related queries that have (almost) no common
terms with the user’s query, to satisfy the users informational need when small
perturbations of the original keyword set are insufficient. Indeed, these methods
can mine some related entity of interest from the search log. However, the log
itself has many noises. It is hard to identify whether the followed query is a
user-interested entity related with its previous query or it is a new search issue
that is irrelevant to its former query.

Our method differs from previous approaches in that we find rich entities of
interest that are related to various aspects and topics from entity-oriented web
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pages. In this way, we can recommend new related entities, so as to avoid recom-
mending surface similar queries. Moreover, we utilize the conceptual information
from existing knowledgebase to enhance the semantic relatedness between enti-
ties, making the recommendations diverse without loss of relevance.

3 Related Entity Collection

In this section, we first describe our strategy for collecting related entity
of interest. And then we introduce the construction of the Related Entity
Network (REN).

3.1 Collecting Related Entities

Our construction strategy takes as input a large number of entity-oriented web
pages, which are identified with a strict rule: if there is only one entity appearing
in the title of the web page explicitly. We regard the entity in the title of an
entity-oriented document as the target entity, and the entities in the body text
as the entities related with the target entity. Specifically, it is divided into the
following two subtasks:

– Target Entity Extraction: We extract the target entity with a wrapper-based
strategy following the work by Dalvi, et al. [7]. Note that if the web page is
a Wikipedia article, this stage will be skipped, since the title of a Wikipedia
article can be regarded as an entity.

– Related Entity Extraction: We use Wikipedia Miner [17]3 to identify entities in
the text. It is one of the state-of-the-art open domain entity extraction tools,
which detects and disambiguates Wikipedia entities when they are mentioned
in documents. As we know, linking free text from web pages to existing knowl-
edge bases (e.g., Wikipedia) is far from trivial. We remark that detecting and
disambiguating entities in web pages is not the objective of this paper. Improv-
ing the entity extraction will probably further improve the quality of extracted
user-interested entities. We leave this for future work.

In our strategy, entities are extracted in the form of triples: < ei, ej , nij >,
where ei is a target entity, ej is a related entity and nij is the co-occurrence
frequency that ej appeared in ei’s pages, for instance, < iron man 3, tony, 4 >.
This work uses English Wikipedia dump4 as the main resource. In addition, sev-
eral hundreds of domain-specific web sites are also considered. We mainly focus
on web sites that are full of entities, such as product web sites like Amazon.com
(book, electronic products, etc.), Music web sites, and Movie web sites. In total,
we obtain 3.9 million entities and 77 million relations between them.

3 http://wikipedia-miner.sourceforge.net.
4 This work uses enwiki dump progress on 20130503.

http://wikipedia-miner.sourceforge.net
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3.2 Constructing the REN

The REN Graph can be represented as a directed graph GU = (V,E, ϕ) where:

– V = {e1, e2, · · · , en} is the set of entities in the graph;
– E ⊆ V × V is the set of directed edges.
– ϕ: E → R+ is a weighting function which assigns a weight w to each edge,

where R+ is the set of positive real numbers.

In our setting, a node in the graph represents an entity. An edge < ei, ej >
represents that ei is the target entity and ej is its related entity. The weight on
each edge indicates the relatedness strength between the two connected entities,
which plays an important role in ranking the related entities in the REN.

Figure 2 shows a small fragment of the REN. In this figure, the weight on
each edge is measured with tf-idf. In our case, tf is the frequency of ej appearing
in ei’ pages and idf is the inverse document frequency of ej where we regard each
entity-oriented page as a document. As can be seen from the fragment, our col-
lection strategy can gather many user-interested entities of various types, such as
Person (“Steve Jobs”), Company (“Apple Inc.”), and Device (“iPhone 4s”). For
the entity “iPad”, its user-cared entities include “Apple Inc.”, “Touchscreen”,
“Wireless”, “Tablet”, “Apple store”, etc. We can also see that the collected
entities are highly related with their target entities.

Fig. 2. A fragment of the constructed REN Graph

4 Related Entity Ranking

For ranking the related entities, co-occurrence frequency and tf-idf are two naive
methods. However, it may not work well in measuring the relevance because they
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make no use of semantic similarities between entities. In this section, we discuss
various possible ranking functions to study the relatedness ranking issue.

To capture more semantic information of entities, we assign a set of concepts
(e.g., Device, Company and Person) from Probase [23] to each entity in the
REN. To the best of our knowledge, Probase5 is the largest general-purpose
taxonomy, containing 2.7 M concepts (e.g. USA President) and 40 M entities (e.g.
“Barack Obama”). It also contains 4.5 M Is-a relations, such as “robin” is-a bird.
Moreover, Probase gives p(c|e), the typicality of concept c among all concepts
that contain instance e, to measure the probability of an entity belonging to a
concept [23]. In our case, for each entity, we rank its concepts by typicality and
select the top 20 concepts as their concept level information, which in most cases
can cover all the concepts of an entity.

4.1 Ranking by Semantic Relatedness

We study the semantic relatedness between the target entity and its related
entity based on two factors: concepts and neighboring entities.

As we know that entities belonging to similar concepts are semantically simi-
lar to each other. Thus, we represent the entities by vectors of Probase concepts,
and then measure the relatedness by comparing the corresponding vectors using
conventional metrics. Two famous similarity measurements are used here:

– Concept Overlap: this is Jaccard similarity on co-concepts of ei and ej ;

Coverlap(ei, ej) =
|C(ei) ∩ C(ej)|
|C(ei) ∪ C(ej)|

(1)

where C(ei) is the concept set of ei.
– Concept Similarity: this is cosine similarity based on entity concepts.

Simc(ei, ej) =
∑

C(ei) × C(ej)
2
√∑

C2(ei) × 2
√∑

C2(ej)
(2)

The above two methods measure the concept level similarity between two
entities. E.g., Simc(China, India) = 0.99 indicates that mostly “China” and
“India” belong to the same concepts (e.g., Country, Developing Country and
Asia Country). From the aspect of neighboring entities, we believe that enti-
ties with similar neighbors are semantically similar. Same as above, two similar
measurements are used.

– Neighborhood Overlap: it could be seen as Jaccard similarity on co-neighbor
entities of ei and ej ;

Eoverlap(ei, ej) =
|Nei(ei) ∩ Nei(ej)|

|Nei(ei) ∪ Nei(ej)| − 2
(3)

where Nei(ei) is the set of ei’ neighbors.
5 Probase data is publicly available at http://probase.msra.cn/dataset.aspx.

http://probase.msra.cn/dataset.aspx
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– Similarity Based on Entity Neighbors: this is cosine similarity based on neigh-
bored entities.

Sime(ei, ej) =
∑

Nei(ei) × Nei(ej)
2
√∑

Nei2(ei) × 2
√∑

Nei2(ej)
. (4)

4.2 Ranking by Entity Importance

Apart from the semantic relatedness, we believe that the popularity or impor-
tance of an entity is also an important feature for entity recommendation. For
example, given the target entity “iPhone,” it would be better to recommend
“Steven Jobs” than “Hutchison 3G” because the former is a more famous entity
to users. This famous or popular feature can be captured by link analysis base
on the REN.

In this paper, we adapt Personalized PageRank [14] for ranking the entity
importance with respect to the target entities. Given an entity query ei, we
define its personalized related entities as those that have co-entity or co-concept
with the target entity. Formally, we define its |V | × 1 personalized vector ṽ as
follows:

ṽj =
{

1 : if Eoverlap(ei, ej) + Coverlap(ei, ej) > 0
0 : otherwise

(5)

We use the normalized vector v of ṽ as the personalized Pagerank vector
(PPV) for ranking entities on the REN. Formally, the Personalized PageRank
score can be calculated as:

r = (1 − α)Mr + αv (6)

where M is a |V |× |V | conductance matrix. The element (ei, ej) is conductance
Pr(ei|ej), i.e., the probability that the random surfer walks from ej to ei. This
paper uses the normalized co-occurrence frequency between ei and ej to estimate
Pr(ei|ej). 0 < α < 1 is the probability of walking (as against jumping) in
each step.

We also use PageRank [5] to measure the global importance of an entity in
the REN.

5 Experiment

In this section, we evaluate the proposed approach from the following aspects:
REN quality evaluation, ranking method evaluation, relatedness comparison and
recommendation comparison. The evaluation dataset is introduced first.

5.1 Dataset

We test the performance of our method for mining and ranking related entities
by using a set of test entities. Ten target entities are selected from ten general
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Fig. 3. The REN quality evaluation

categories: “China” for Geography, “Tang Dynasty” for History, “Psychology”
for Society, “Microsoft” for Technology, “Dollar” for Economy, “Chocolate” for
Daily Life, “Gone with the wind” for Literature & Art, “Baseball” for Sports,
“Warren Buffett” for People and “SUV” for Cars. For each entity, we select its
neighboring entities in the REN as the candidate entities. Thus, we get 1728
entity pairs, more than 100 related ones per target entity, which constitute our
experimental data.

We organize the target entities and their related entities as entity pairs.
We recruit three human judges to label the relevance of the candidate entities
regarding the target entity. The label criteria is: Label 0 for irrelevant entity
pair, 1 for not sure, 2 for related and 3 for highly related. Each entity pair gets
three labels and the majority of the labels is taken as the final decision for an
entity pair. If all three annotators do not agree with each other, the arithmetic
average of the assigned label values will be used.

5.2 The REN Quality Evaluation

To assess the quality of related entities in the REN, we compare it with the
following two entity co-occurrence graphs:

– Wikipedia Co-occur Graph (WCG): We use the same English Wikipedia
dump6 as the REN to build a Wiki entity co-occur graph, based on document-
wise co-occurrence. That is, given a target entity, its related entities are those
that co-occurred with it in wiki articles.

– Entity Co-occur Graph (ECG): We also construct an entity co-occurrence
graph from the Web as a baseline method. The data was collected from sen-
tences in 1 % of search log snapshots from a popular search engine, which is
kind of sentence-wise co-occurrence. We identify the entity in each sentence
by using Freebase [4] as a lexicon of entities.

To make a fair comparison, we use the same method to select and label
the two datasets. Since we only focus on the data quality in current compari-
son, two simple weighting schemas: co-occurrence frequency and tf-idf are used
6 This work uses enwiki dump progress on 20130503.
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Fig. 4. Related entity ranking with various measures

for ranking the related entities in the three datasets. We then use the nDCG
(Normalized Discounted Cumulative Gain) to assess the relevance of the top 20
results retrieved for the ten target entities.

Experimental results are respectively plotted in Fig. 3. Both the ranking
methods show that the relatedness precision of the REN is significantly higher
than those of the two co-occurrence data. On average, the performance of the
REN in terms of entity relatedness is 9.82 % higher than Wikipedia co-occur
data and much better than Web entity co-occur data (21.77 %). This shows the
high quality of related entities in the REN, making it a good resource for entity
recommendation.

5.3 Performance of Different Ranking Methods

We also use nDCG as the evaluation metric. The ten selected entities are
regarded as entity queries. In this case, for each target entity, we randomly
select 20 related entities to constitute a ranking group. Finally, we obtain 81
ranking groups that used as our test dataset.

For each entity pair, we compute four semantic scores marked as: SimJc
by

Eq. (1), SimJe
by Eq. (3), SimCc

by Eq. (2) and SimCe
by Eq. (4). Figure 4(a)

shows the ranking results.
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Fig. 5. Overall related entity ranking performance

We also use the proposed Personalized PageRank (Eq. 6) and the tradi-
tional PageRank to compute the entity importance, where the α is set to 0.85.
For better comparison with the above semantic ranking, we simply add SimJc

and SimJe
as a combined Jaccard score based on co-concept and co-neighbor,

marked as Jaccard on Both. The combined cosine score is computed in the same
way, marked as Cosine on Both. Figure 4(b) shows the ranking results.

From this figure, we draw the following observations:

(1) As can be seen from Fig. 4(a), compared with tf-idf, the ranking precision is
greatly improved by using semantic similarity measures, with the accuracy
enhanced by at least 5%.

(2) Adding concept information can improve the ranking performance. Better
results are achieved by combining the semantic information of co-concept
and co-neighbor. The best accuracy is achieved by the combined Jaccard
score, as high as 90% even at rank 20.

(3) For ranking the related entities in the REN, the measurements based on
link analysis are inferior to semantic relatedness based measurements. Per-
sonalized PageRank performs much better than the traditional PageRank.
We think this is because it considers more semantic information through the
personalized vector (Eq. 5).

5.4 Relatedness Ranking Comparison

To assess the overall performance of the related entity ranking, we employ Rank-
ing SVM as a combined ranking method. In this comparison, the six ranking
methods are used as features to train Ranking SVM. We randomly split the
labeled data into two data sets, one for training the Ranking SVM and the other
for comparison with ESA. This work uses SVMrank [13] for efficiently train-
ing Ranking SVM. Ranking SVM assigns a score to each candidate entity. The
higher the score, the better the candidate is as a user-interested entity. Similarly,
each candidate entity also gets a relatedness score from ESA. Figure 5 shows the
experimental results.

The performance of our related entity ranking is comparable with that of
ESA, with the average nDCG higher by 5.1%. This demonstrates that the pro-
posed ranking methods are effective in ranking the related entities in terms of
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relatedness. Through a deeper analysis of their ranking results (Table 1), we
notice that the results ranked by our combined method are not only highly
related but also diverse and consistent with human thinking, due to the seman-
tic ranking methods.

5.5 Entity Recommendation Comparison

In this subsection, we assess the recommendation performance through a com-
parison with two famous recommendation systems.

Metric. Serendipity takes into account the novelty of recommendations and
how much recommendations may positively surprise users (or inspirit user more
searching interests). We adapt metric SRDP in Eq. 7 to evaluate the perfor-
mance of the combined ranking method in terms of serendipity. Ge et al. [9]
designed this metric to capture the unexpectedness and relevance of the recom-
mendations.

SRDP (RS) =
∑

i∈UNEXP rel(i)
|UNEXP | (7)

where RS denotes the set of recommendations generated by a recommender
system, UNEXP represents the set of unexpected recommendations in RS that
are not in a baseline recommendation list. The function rel(i) is used to evaluate
the relevance of a recommendation.

Baselines. We use two baseline recommender systems: Bing image search and
Yahoo! image search. For the ten target entities, we first query the target entity

Table 1. Examples of the ranking results (The top 5)

Query Ranking SVM ESA

Microsoft Google Microsoft publisher

Novell Microsoft office

Sony Microsoft project

Microsoft office Microsoft infopath

Nokia Microsoft office

Psychology Sigmund freud Free association

Stanley milgram Media psychology

Philosophy Social psychology

Clinical psychology Clinical psychology

Social science Pleasure principle

SUV Jeep wagoneer Off-road vehicle

Sedan Recreational vehicle

Gl-class General motors

Cadillac escalade American motors

Lexus lx Recreational vehicle
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through the search interface and then collect the top 5 recommendations as the
baseline data sets. For relevance, we use ESA as well as the judgements used
in the dataset labeling. In this case, we use the combined method (please refer
to the previous subsection) to generate the recommendations from the REN for
each target entity. To assess the performance, we compare our recommendations
with those that are collected from Bing and Yahoo! separately.

Results. Experimental results are given in Table 2. We abbreviate recommen-
dations to recs due to the space limitation. In comparison with Bing, we use the
recs generated by Yahoo! as the baseline. As shown in the first row, the serendip-
ity of the recs from the REN is 0.83. This score denotes that the unexpected
recs of the REN ranking, which are not in Yahoo!’s recommendation list, are
highly related to the target entities under the evaluation of human judgements.
We can see that our REN ranking outperforms Bing and Yahoo! in both of the
two evaluation methods. This indicates that the REN ranking can positively sur-
prise users with more related recommendations. Note the serendipity computed
by ESA is much lower than that from human judgements, because the relevance
score from ESA is much lower than the human labeling score. On the whole, it
is consistent with the human judge.

Table 2. Serendipity evaluation results, by using two relevance functions (Human
Judgement and ESA)

Baseline Recs from Human judgement ESA

Yahoo! REN ranking 0.83 0.27

Bing 0.76 0.26

Bing REN ranking 0.84 0.28

Yahoo! 0.73 0.12

We have transferred the REN ranking features to Bing on related entity
recommendation. Now it is successfully used in Bing image search. The feedback
is pretty good. Both the Distinct Search Queries (DSQ) rate and the Click
Through Rate (CTR) have achieved significant gains.

6 Conclusion

This paper proposes a novel approach for related entity recommendation.
Inspired by the fact that many user-cared entities are mentioned in entity-
oriented pages, we mine rich entities related to various aspects and topics from
entity-oriented web pages, instead of search engine log. Massive related entities
of interest are collected automatically from a large number of entity-oriented
pages. During the process, a large-scale, general-purpose, related entity network
(REN) is maintained based upon the co-occurrence relationship. We employ
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various related entity ranking methods based on the REN, including co-concept
and co-entity based semantic similarity methods and graph-based link analysis
methods. Extensive experiment is conducted to show the high quality of related
entities in the REN. We compare our method to existing famous recommenda-
tion systems. The results show that our method achieves better top-5 recom-
mendation performances in terms of serendipity. Also, we show that exploiting
conceptual information from existing knowledge bases can improve recommen-
dation quality.
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