Gas Network Extension Planning
for Multiple Demand Scenarios

Jonas Schweiger

Abstract Today’s gas markets demand more flexibility from the network operators
which in turn have to invest into their network infrastructure. As these investments
are very cost-intensive and long-living, network extensions should not only focus
on one bottleneck scenario, but should increase the flexibility to fulfill different
demand scenarios. We formulate a model for the network extension problem for
multiple demand scenarios and propose a scenario decomposition. We solve MINLP
single-scenario sub-problems and obtain valid bounds even without solving them to
optimality. Heuristics prove capable of improving the initial solutions substantially.
Results of computational experiments are presented.

1 Introduction

Recent changes in the regulation of the German gas market are creating new chal-
lenges for gas network operators. Especially the unbundling of gas transport and trad-
ing reduces the influence of network operators on transportation requests. Greater
flexibility in the network is therefore demanded. Traditional, deterministic planning
approaches focus on one bottleneck scenario. Stochastic or robust approaches, in
contrast, can consider a set of scenarios and therefore lead to more flexible network
extensions.

Gas transmission networks are complex structures that consist of passive pipes and
active, controllable elements such as valves and compressors. For planning purposes,
the relationship of flow through the element and the resulting pressure difference
is appropriately modeled by nonlinear functions and the description of the active
elements involves discrete decisions (e.g., whether a valve is open or closed) (see
[4, 5] for the details of our model and algorithmic approach to solve deterministic
models). The resulting model is thus an Mixed-Integer Nonlinear Program (MINLP).
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In this presentation, we focus on additional pipes as extension candidates. A new
pipe allows flow but also couples the pressures at the end nodes, possibly rendering
previously feasible transport requests (also known as nominations) infeasible. An
additional valve retains all possibilities of the original network. Opening the valve,
corresponds to building the extension pipe and is therefore penalized the cost for the
extension. Closing the valve forbids flow over the pipe which effectively removes
the pipe from the system. Details on the approach for topology optimization for a
single-scenario can be found in [1].

To approach the optimization over a finite set of scenarios (i.e., transport requests),
we propose a scenario decomposition. Section 2 describes the model. The decompo-
sition method is presented in Sect. 3 together with some details about primal and dual
bounds and results on the ability to reuse solutions from previous optimization runs
over the same scenario. Section4 presents the results of computational experiments.
Section 5 provides an outlook on planned future work on the topic.

2 Planning for Multiple Demand Scenarios

Assume a gas network, a set of scenarios w € £2, i.e., nominations, and a set of
extensions & (each extension consisting of a pipe and a valve) is given. We denote
the set of characteristic vectors of feasible extension sets for scenario w with

FO = {XE e {0, 1}¢ | Extensions E C é"makea)feasible}

In our situation, a closed form description of . is not at hand. However, we assume
monotonicity in the sense that adding extensions to an element of the set is still
feasible:

x| € F?, )CZE{O,I}&?, X2 > x| = x, € .F°.

Especially in the context of gas network planning this property cannot be taken for
granted but adding valves to all extensions ensures monotonicity in our application.
For a specific scenario w the extension planning problem can now be stated as

min ¢! x (SSTP)
s.t.x® e F°

This formulation hides the difficulties in describing and optimizing over the set .7 “.
Our approach uses problem (SSTP) as sub-problem and assumes a black-box solver
to be available (e.g., from [1]).

In the multi-scenario extension planning problem we seek for a set of extensions
of minimal cost such that the resulting network allows a feasible operation in all
scenarios. We stress that in the different scenarios not all extensions that have been
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built have to be actually used; in fact, using them might not even be feasible. The
multi-scenario problem can then be stated as:

min ¢’y (MSTP_TS_Node)
s.t. x¥ € ¢ forall we 2 (D
XY <y forall we 2 2)

y € {0, 1} 3)

This is a two-stage stochastic program. y are the first stage variables which indicate
which extensions are built. Finding a feasible operational mode for the scenarios
given the extensions selected by y is the second stage problem.

3 Scenario Decomposition

The algorithmic idea is scenario decomposition. First, we solve the scenario sub-
problems (SSTP) independently and in parallel. If one scenario sub-problem is infea-
sible, the multi-scenario problem is infeasible.

Branching on the y variables is used to coordinate the scenarios. To this end, we
identify extensions that are selected in some but not all scenarios. Two sub-problems,
i.e., nodes in the Branch&Bround tree, are created: one with the condition y, = 0 and
one with the condition y, = 1. In the two nodes, sub-problems have to be modified
accordingly. For y, = 0, variable x2 is fixed to zero. For y, = 1, extension e is built
and using it does not incur additional cost.

Each node of the Branch&Bround tree is identified by the sets E( and E| of exten-
sions that are fixed to 0 and 1, respectively. The modified single-scenario problem
for scenario w then reads:

min Z CeXy + Z Ce (SingleScen,,)
€¢E1 (’GE]

s.t. x? e F¢
x2=0 forall e e Ey

The following lemma states that adding more elements to E, and E;| might only
deteriorate the objective function value.

Lemma 1 Let Ej € Ej and E| C E7 and c} the optimal value of (SingleScen,,)
with respect to (E}, E}). Then ¢} < c3.

Dual bounds for the single-scenario problems can be instantly translated into dual
bounds for the multi-scenario problem.
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Lemma 2 Let the objective function coefficients be non-negative, i.e., ¢ > 0. Then
any dual bound for problem (SingleScen,,) for any scenario is also a dual bound
for problem MMSTP_TS_Node).

We propose three ways to get or enhance feasible solutions: First, by construc-
tion the union of all extensions used in the different scenarios constitutes a pri-
mal solution for the multi-scenario problem. Therefore, we construct a solution
to (MSTP_TS_Node) in every node by setting y = max,cp x;” where x_’ is taken as
the best solution for scenario w.

Second, we observed that checking if a certain subset of extensions is feasible
is typically very fast. This observation is used by a 1-opt procedure that takes the
best current solution to (MSTP_TS_Node), removes one extension, and checks all
scenarios for feasibility.

Third, in stochastic programming optimal single-scenario solutions often lack
flexibility and do not occur in optimal solutions to the stochastic program (e.g., [7]).
To benefit from all solutions the solver provides, we access its solution pool and
store all sub-optimal solutions for the scenarios. This has two benefits. The solver
might be able to use them as start solutions in the next node. On the other hand, we
construct the “best known” solution so far by solving an auxiliary MIP.

3.1 Reusing Solutions

The Branch&Bround procedure solves slight modifications of the same problem over
and over again. In some important cases, not all scenarios need to be solved again
since we already know the optimal solution. As an example, take the extreme case
where a scenario is found to be feasible without extensions. Clearly, the procedure
should never touch this scenario again.

In order to decide whether a solution from a previous node can be reused, we need
to take the fixations under which the solution was computed and the current fixations
into account. In addition to the current fixations Ey and E|, we define the sets E(f
and EY as the extensions that were fixed to the respective values when solution §
was computed. We assume E,S C E;, i.e., currently more extensions are fixed than
when solution S was computed. Abusing notation, we identify the solution with the
set of extensions it builds.

We start with the simple observation, that if all the extensions in a solution are
already built (i.e., y, is fixed to 1), then the solution is optimal for the restricted
problem:

Lemma3 IfS € %% and S C E|, then S an optimal solution for (SingleScen,,)
for fixings Eq and E;.

If a solution is optimal for (Ej, E IS ) and all extensions in E; are part of the
solution, then the solution is still optimal.
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Lemmad Let S € .7 be an optimal solution to (SingleScen,,) given the fixa-
tions Eg and EIS If E\ €S and SN Ey =1, then S is an optimal solution to
(SingleScen,,) for fixings Ey and E.

This is the situation, for example, after branching in the root node. In the 1-branch, a
scenario which uses this extension does not need to be recomputed. In the 0-branch,
solutions that did not use the extension remain optimal.

The situation becomes tricky if a solution does not use extensions that are already
built but still uses unfixed extensions. The following lemma generalizes Lemma 4.

Lemma 5 Let S € F° be an optimal solution given the fixations Eg and E;. If
E|\ E} C Sand SN Ey=, then S is an optimal solution to (SingleScen,,) for
fixings Ey and E.

4 Computational Results

We tested our approach on realistic instances from the gaslib-582 testset of the
publicly available GASLIB [2, 5]. The GASLIB contains network data and flow sce-
narios that are distorted versions of the real data from the German gas network
operator Open Grid Europe GmbH. The approach is implemented in the framework
Lamatto++ [3]. Methods to solve the single-scenario problems and to generate
suitable extension candidates were developed in the FORNE project. We used a time
limit of 600s for the sub-problems which is reduced to 300s in the 1-opt heuristic.
The total timelimit for set to 10h. The experiments were performed on Linux com-
puters with two 64 bit Intel Xeon X5672 CPUs at 3.20 GHz having 4 cores each such
that up to 8 threads were used to solve the single-scenario problems in parallel.

Instances are composed from a pool of 126 infeasible instances that in single-
scenario optimization find feasible solutions in the first 10 min. Table 1 summarizes
the results. All but 3 instance are solved to proven optimality. The 3 instances that
run into timeout each solve 3 nodes and then arrive to a point, where all extensions
are fixed, but the single-scenario subproblem can neither find a feasible solution nor
prove infeasibility.

Table 1 Summary of computational results

Scenarios | Instances | Status Nodes Time (s)
Optimal | Timelimit | Avg Max Avg Max
186 184 2 1.1 3 475 36017
8 90 89 1 1.3 3 660 36001
16 42 42 0 2.0 15 676 4598
32 18 18 0 3.9 14 1890 6080
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5 Outlook

We presented a method for capacity planning with multiple demand scenarios. The
computational experiments show the potential of our approach. Even though devel-
oped in the context of gas network planning, the few assumptions on the problem
structure suggest the generalization to other capacity planning problems.

In the future, we also want to consider active elements (compressors, which can
increase the pressure, and control valves, which can reduce it) as extension candi-
dates. They possess 3 states: active, bypass, and closed. In case the element is not
used in active mode, the abilities needed can be covered by a much cheaper valve.
Then the binary “build”-*“not build” decision is replaced by the three possibilities
“build as active element”, “build as valve”, and “do not build”.

Last, we want to mention that Singh et al. [6] present an approach for capacity
planning under uncertainty based on Dantzig-Wolfe decomposition. A comparison
of our approach to theirs is future work.
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