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Abstract On a tactical level retailers face the problem of determining on which
weekdays stores should be delivered, and of setting a frame for short-term vehicle
routing. We therefore propose a binary program that considers the decision-relevant
costs and capacities at the distribution center, in transportation and instore. To resolve
the trade-off between the different cost components aligned to the delivery pattern
decision, we propose a sequential solution approach. A numerical example illustrates
first results.

1 Problem Description

Especially in the grocery retail trade, repetitive weekly delivery patterns are used
to increase planning stability for the stores and to balance picking workload at the
distribution center (DC). A delivery pattern is defined as a store-specific combination
of weekdays on which a delivery takes place. Assuming that there must be at least
one delivery every week, and six weekdays, there is a total of 63 potential delivery
patterns for each store.

As several processes in the logistics subsystems DC, transportation and instore
logistics of the retail supply chain are influenced by the delivery pattern decision,
an integrated approach is necessary to solve the problem. Existing approaches in
literature, however, neglect important areas influenced by the delivery patterns and
often focus on short-term vehicle routing. E.g., Ronen and Goodhart [4] propose
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a hierarchical approach in a cluster-first, route-second manner. They first cluster
stores with similar characteristics and preselect patterns. Then they assign patterns
to stores using a MIP, and afterwards build transportation routes applying a periodic
vehicle routing problem (PVRP). Cardos and Garcia Sabater [1] design a decision
support system to determine delivery schemes for stores focusing on inventory and
transportation costs. They preselect feasible solutions in the first step. Then they
evaluate minimal cost paths for each delivery frequency for each store and afterwards
solve a PVRP for each delivery frequency combination. A major disadvantage of
both approaches is that they do not consider instore handling costs, despite the fact
that these determine the main cost block of operational logistics costs according
to several empirical studies (see [3]). Finally Sternbeck and Kuhn [5] try to act on
some of the limitations of the papers previously named. They present an integrative
approach taking into account relevant cost components and capacity restrictions in
three subsystems of the retail supply chain (DC, transportation and the stores). A
limitation is that they do not model bundling effects across stores.

The model we propose in the following section is based on the approach of
Sternbeck andKuhn [5], but avoids preselection of patterns and incorporates bundling
issues, thus creating amore exact decision tool for retailers trying to resolve the prob-
lem of selecting optimal delivery patterns for their stores.

Our focus within this paper is on the three major subsystems of the retail supply
chain that are affected by the selection of delivery patterns, namely the DC, trans-
portation and the stores (see [5]). We concentrate on one DC supplying its affiliated
stores with a dry goods assortment. We focus on operational costs that are directly
dependent on the selection of delivery patterns. Basing our model on the findings of
Sternbeck and Kuhn [5], we include the following cost terms: picking costs at the
DC, transportation costs, instore inventory holding costs and instore handling costs
that can be separated into ordering and receiving costs, initial shelf restocking costs
and costs of restocking shelves from the backroom.

There is a trade-off between different cost components that are aligned to the
delivery pattern decision. While most cost components increase with higher delivery
frequency, instore inventory holding costs and shelf restocking costs have an inverse
relationship. Picking costs, transportation costs, ordering and receiving costs as well
as initial shelf restocking costs increasewith higher delivery frequency as they consist
of a fixed portion for each delivery and a variable component depending on the
quantities delivered. As a consequence, less frequent deliveries lead to a reduction
in fixed costs and therefore decreasing total costs per week. As delivery frequency
goes down, however, the quantities delivered exceed daily demand and shelf space
capacity to a greater degree, leading to higher inventory holding costs and more shelf
restocking activities instore as well as higher costs.

Without considering capacity limits at the DC and in transportation, each store
could realize its own optimal delivery pattern. Retailers, however, try to balance the
workload at the DC to be able to use existing capacity efficiently. We therefore ass-
ume minimum and maximum picking capacity as well as limited transportation
capacity on each day. Limited space in a store’s backroom can limit the poten-
tial delivery frequencies for the store. We therefore include store-specific receiving
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capacity in our decision model. The mathematical model reflects the relevant cost
components as well as the restricting capacities, and models a twofold decision:

• Selection of delivery patterns: Which stores are supplied on which days?
• Construction of base tours: Which stores build a delivery cluster?

As our decision is a tactical one, we assume deterministic but dynamic store- and
article-specific demand. Furthermore, each store has its specific shelf layout with
specific shelf space capacity as well as different backroom capacities. We assume
a homogeneous transportation fleet, but this assumption can easily be avoided by
slightly adapting themodel proposed in the following section. Each delivery includes
the demand of all articles until the next delivery day. In contrast to themodel proposed
by Sternbeck and Kuhn [5], we explicitly model bundling effects in transportation
across stores and determine the base tours that build the basis for short-term vehicle
routing.

2 Model Formulation

Considering the setting and assumptions above, we propose the following binary
program to model the joint delivery pattern and base tour decision:

Minimize
∑

f ∈F

∑

r∈R

x f,r · ĉ f,r +
∑

k∈K

∑

t∈T

yk,t · ctranstour
k +

∑

f ∈F

∑

k∈K

∑

r∈R

x f,k,r · ctransstop
f,k,r

(1)
s.t.

∑

r∈R

x f,r = 1 ∀ f ∈ F (2)

∑

k∈K

x f,k,r = x f,r ∀ f ∈ F, r ∈ R (3)

∑

f ∈F

∑

r∈R

x f,k,r · pall f,r,t ≤ yk,t · captrans ∀k ∈ K , t ∈ T (4)

∑

f ∈F

∑

r∈R

x f,r · pick f,r,t ≤ maxcap pick
t ∀t ∈ T (5)

∑

f ∈F

∑

r∈R

x f,r · pick f,r,t ≥ mincap pick
t ∀t ∈ T (6)

∑

r∈R

x f,r · pall f,r,t ≤ caprec
f ∀ f ∈ F, t ∈ T (7)

x f,r ∈ {0; 1} ∀ f ∈ F, r ∈ R (8)

x f,k,r ∈ {0; 1} ∀ f ∈ F, k ∈ K , r ∈ R (9)

yk,t ∈ {0; 1} ∀k ∈ K , t ∈ T (10)
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Fig. 1 Determination of transportation costs: schematic illustration and calculation example

The objective function (1) minimizes the sum of total operational costs. These
consist of the costs independent of the delivery tour settings ĉ f,r and tour-specific
costs. While costs independent of the tour settings solely depend on which pattern
r is assigned to store f , reflected in the binary decision variable x f,r , tour-specific
costs also depend on the assignment of a store f to a delivery cluster k, reflected in
the two other types of decision variables x f,k,r and yk,t , which decides if a cluster
k is supplied on day t . The associated tour-specific costs are costs reflecting tour
length and stops, ctranstour

k and ctransstop
f,k,r . The underlying idea of the determination of

tour-specific transportation costs is the logic developed by Fisher and Jaikumar [2].
They approximate tour costs on a tactical level by assigning stores to seed points.
They thereby construct clusters that build so-called base tours for which the exact
sequence is not known, but transportation costs can be approximated quite accurately.
Figure1 illustrates the determination of transportation costs.

Besides the objective function, the model consists of several constraints (2)–(10).
The first two conditions (2) and (3) ensure that each store f gets exactly one delivery
pattern r , and is assigned to exactly one cluster k. Constraint (4) ensures that trans-
portation capacity is met and a delivery to cluster k on day t only takes place if at least
one of the stores assigned to cluster k is served on this day. Conditions (5) and (6)
ensure that the picking effort at theDC iswithin the range [mincap pick

t ; maxcap pick
t ]

on each day. Constraint (7) ensures that the receiving capacity restriction holds. The
decision variables are defined in conditions (8)–(10).

3 Solution Approach

As computational efforts can be extensive when applying the MIP proposed with
its simultaneous clustering decision and pattern selection, we propose a sequential
approach. The methodology is a cluster-first, assign-second procedure. In a first step,
stores are assigned to clusters. This assignment can be done on the basis of predefined
delivery areas of service providers or via a two-step algorithm. First, seed points are
set (e.g., by applying a clustering algorithm), and then an adapted algorithm on the
basis of Fisher and Jaikumar [2] can be used to assign stores to clusters. The clustering
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step results in an assignment parameter z f,k that assigns store f to cluster k. After
determining the clusters a model for assigning delivery patterns to stores can be
applied that is analogous to the model presented in Sect. 2, with the main difference
being that no store-cluster assignment decision is incorporated. The decision variable
x f,k,r is replaced by the combination of decision variable x f,r and parameter z f,k .

4 Numerical Example

To illustrate the results of the model and approach proposed, we use real-life data
from a major European grocery chain. The sample taken for this example consists of
35 small- and medium-sized stores attached to one central DC. The product ranges
are store-specific and amount to a maximum of 618 different articles. Shelf space
capacities and demand are also store-specific. For supplying the 35 stores, five trucks
are available with capacity constraints according to the share of the products focused
on the total assortment. To limit the analysis, a sequential approach is used, clustering
the stores into 10 clusters according to geographical and sales issues in a first step.
Applying the data obtained, CPLEX solves the model within a few seconds.

The results show a distribution of operational costs to the subsystems of the
retail supply chain that is analogous to findings presented in literature: DC 27%,
transportation 30%, and instore 43%. The stores are served 1.86 times per week on
average, with a maximum of three and a minimum of one delivery per week. As the
sample consists of merely small- and medium-sized stores, this result is reasonable.
The capacity utilization of the trucks is 87% on average. There are 2.24 stops per
tour on average. This means that the logic of Fisher and Jaikumar can serve as a good
approximation of transportation costs because of a manageable amount of stops per
tour on average. Post-calculations show that the transportation cost approximation

Fig. 2 Numerical results: delivery patterns of stores of two clusters



232 A. Holzapfel et al.

only differs by less than 1% from the real transportation costs that apply to the
resulting tours.

A main criticism of the existing approach of Sternbeck and Kuhn [5] was the
missing incorporation of bundling effects in transportation across stores. Figure2
illustrates the delivery patterns of the stores of two clusters and shows the synchro-
nization that is obtained with our new model and solution approach. The stores of
cluster 1 are served by specific tours on Monday, Wednesday and Thursday. The
stores of cluster 2 are mainly served on Tuesday, Wednesday and Saturday. An extra
delivery for store 5 is needed on Friday due to transportation capacity limits.

5 Summary

We proposed a binary programming model that considers the decision-relevant costs
and capacities at the DC, in transportation and instore to solve the problem of deter-
mining optimal store delivery patterns for grocery chains. To resolve the trade-off
between the different cost components aligned to the delivery pattern decision, we
proposed a sequential solution approach. We revealed significant bundling potential
by applying the model and approach proposed using a case from a major European
grocery retailer. The logistics levers identified can be applied to further optimize
delivery patterns in retail distribution.
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