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Preface

OR2014, the German Operations Research Society’s (GOR) annual international
scientific conference was held at RWTH Aachen University on September 2–5,
2014. The conference’s general theme was “business analytics and optimization”
that reflected the growing importance of data-driven applications and the underlying
decision support by operations research (OR) models and methods. This volume
contains a selection of extended abstracts of papers presented at OR2014. Each
of the 124 submissions was reviewed by two or three editors and we decided to
accept 90 of them, solely on the basis of scientific merit. In particular, the GOR
Master’s thesis and dissertation price winners summarize their work in this volume.
The convenient EasyChair system was used for submission and paper handling.

OR2014 was a truly interdisciplinary conference, as is OR itself, and it reflected
also the great interest from the natural sciences. Researchers and practitioners from
mathematics, computer science, business and economics, and engineering (in
decreasing order of their share) attended. The conference Web site www.or2014.de
contains additional materials such as slides and videos of several of the presenta-
tions, in particular the talks given by practitioners at the business day.

We would like to thank the many people who made the conference a tremendous
success, in particular the program committee, the 35 stream chairs, our 12 invited
plenary and semi-plenary speakers, our exhibitors and sponsors, the 60 persons
organizing behind the scenes, and, last but not least, the 881 participants from
47 countries. We hope that you enjoyed the conference as much as we did.

Aachen Marco Lübbecke
November 2015 Arie Koster

Peter Letmathe
Reinhard Madlener

Britta Peis
Grit Walther
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Experimental Validation of an Enhanced
System Synthesis Approach

Lena C. Altherr, Thorsten Ederer, Ulf Lorenz, Peter F. Pelz
and Philipp Pöttgen

Abstract Planning the layout and operation of a technical system is a common task
for an engineer. Typically, the workflow is divided into consecutive stages: First,
the engineer designs the layout of the system, with the help of his experience or of
heuristic methods. Secondly, he finds a control strategy which is often optimized
by simulation. This usually results in a good operating of an unquestioned system
topology. In contrast, we apply Operations Research (OR) methods to find a cost-
optimal solution for both stages simultaneously via mixed integer programming
(MILP). Technical Operations Research (TOR) allows one to find a provable global
optimal solution within the model formulation. However, the modeling error due
to the abstraction of physical reality remains unknown. We address this ubiquitous
problem of ORmethods by comparing our computational results with measurements
in a test rig. For a practical test case we compute a topology and control strategy via
MILP and verify that the objectives are met up to a deviation of 8.7%.

1 Introduction

Mixed-integer linear programming (MILP) [4] is the outstandingmodeling technique
for computer-aided optimization of real-world problems, e.g. logistics, flight or pro-
duction planning. Regarding the successful application in other fields, it is desirable
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to transfer Operations Research (OR) methods to the optimization of technical sys-
tems.

The design process of a technical system is typically divided into two consecutive
stages: First, the engineer designs the layout of the system, with the help of his
experienceor of heuristicmethods. Secondly, hefinds a control strategywhich is often
optimized by simulation. This usually results in a good operating of an unquestioned
system topology.

In order to provide engineers with a methodical procedure for the design of new
technical systems, we strive to establish Technical Operations Research (TOR) in
engineering sciences. The TOR approach allows one to find an optimal solution for
both the topologydecision and the usage strategy simultaneously viaMILP [3].While
this formulation enables us to prove global optimality and to assess feasible solutions
using the global optimality gap, the modeling error often cannot be quantified.

Our aim in this paper is to quantify the modelling error for a MILP of a booster
station with accumulators based on [1, 2]. We examine a practical test case and
compare the computed results with measurements in a test rig.

2 Problem Description

We replicate MILP predictions for the topology and operating of a technical system
in a test rig and compare the computed optimal solution to experimental results.
A manageable test case is a water-conveying system, in which a certain amount of
water per time has to be pumped from the source to the sink. Such a time-dependent
volume flow demand can for example be observed when people shower in a multi-
story building. To fulfill this time-varying load, a system designer may choose one
single speed-controlled pump dimensioned to meet the peak demand.

Another option is a booster station. It consists of an optional accumulator and a set
of pumps which are able to satisfy the peak load in combined operation. Compared
to the single pump, this set-up allows for a more flexible operating that may lead to
lower energy consumption. The speed of each active pump can be adjusted according
to the demand, so that they may operate near their optimal working point and thus
with higher efficiency. The designer’s challenging task is to trade off investment costs
and energy efficiency while considering all possible topology and operating options.

3 Mixed Integer Linear Program

Our model consists of two stages: First, find a low-priced investment decision in
an adequate set of pumps, pipes, accumulators and valves. Secondly, find energy-
optimal operating settings for the selected components. The goal is to compare all
possible systems that fulfill the load and to minimize the sum of investment and
energy costs over a given depreciation period.
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All possible systems can be modelled by a graph G = (V, E) with edges E
corresponding to possible components, and verticesV representing connection points
between these components. A binary variable pi, j for each optional component
(i, j) ∈ V indicates the purchase decision. Since accumulators can store volume,
we generate a time-expansion G = (V,E) of the system graph G by copying it once
for every time step [1]. Each edge (i, ti , j, t j ) ∈ E connects vertices (i, ti ) ∈ V at
time ti and ( j, t j ) ∈ V at time t j . An accumulator is represented by edges in time,
connecting one point in time with the next, while the other components are edges
in space, representing quasi-static behavior. Binary variables ai, ti , j, t j for each edge
of the expanded graph allow to deactivate purchased components during operation.
The conservation of the volume flow Qi, ti , v, tv in space and time is given by

∀ v ∈ V :
∑

(i, ti , v, tv) ∈ E

Qi, ti , v, tv · �t =
∑

(v, tv, j, t j ) ∈ E

Qv, tv, j, t j · �t (1)

with time step�t . An additional condition with an adequate upper limit Qmax makes
sure that only active components contribute to the volume flow conservation:

∀ e ∈ E : Qi, ti , j, t j ≤ Qmax · ai, ti , j, t j (2)

Another physical constraint is the pressure propagation

∀ (i, ti , j, ti ) ∈ E : p j,ti ≤ pi, ti + �p + M · ai, ti , j, ti (3)

p j,ti ≥ pi, ti + �p − M · ai, ti , j, ti (4)

which has to be fulfilled along each edge in each time step, if the component is active.
Regarding pumps, the resulting increase of pressure depends on the rotational speed
of the pump and on the volume flow that is conveyed, cf. Fig. 1b. For pipes and valves,
pressure loss increasing with the volume flow is observed, cf. Fig. 1a, c and d. All of
the measured characteristic curves were linearly approximated and included in the
model by a convex combination formulation [5].

4 Experimental Validation

To validate our mathematical model, we consider three test cases with different time-
dependent demand profiles. To assess the modeling error, the computed optimal
combination of the available components is replicated in an experimental setup,
and the settings of the system (e.g. the speed of the used pumps or the valve lift)
are adjusted according to the computed optimal variable assignment. Subsequently,
we verify if the demand profiles are met in each time step. Moreover, the energy
consumption of the setup is measured and the resulting energy costs are calculated
and compared to the objective value of the mathematical model.
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Fig. 1 Input data for themodel are themeasured characteristic curves of the components of the fluid
system. Each data point is themean value of 10,000 samples. The error bars depict the corresponding
standard deviation. a Characteristic curves of the valve. Discharging the accumulator causes more
pressure loss than charging it. b Characteristic curve of the most powerful of the available three
pumps with a speed range of 1400–4500 rpm. c Characteristic curve of the system for the section
from the source to the junction, cf. Fig. 2. A geodetic offset of around 0.5m has to be overcome
from the source to the junction. d Characteristic curve from junction to sink. Since the geodetic
height of the sink is around 0.5m lower than that of the junction, this curve starts with negative
pressure values

4.1 The Test Rig

Figure2 shows the modular test rig used for validation measurements. It consists
of a combination of up to three speed-controlled centrifugal pumps in a row and
an optional acrylic barrel which serves as volume and pressure accumulator. The
three pumps differ in their maximum rotating speed (S: 2800 rpm, M: 3400 rpm,
L: 4450 rpm) and power consumption. Figure1b depicts the characteristic curves of
pump L. The accumulator has a maximum volume of 50 l and a maximum storable
pressure of ≈0.2 bar. The barrel can be charged and discharged via a controllable
valve, cf. Fig. 1a. Closing the ball valve allows to charge the accumulator without
conveying water to the sink. The volume flow is measured by a magnetic flow meter
with a tolerance of ± 0.1 l/min = ± 0.006m3/h. Pressure measurements are per-
formed by manometers with a tolerance range of ± 0.01 bar ≈ ± 0.1mH2O. All
data points represent the mean value of 10,000 samples, collected within 10s.
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Fig. 2 The test rig consists of a combination of up to three out of three different speed-controlled
centrifugal pumps. An optional accumulator can be used to fulfill the demand at the sink. It can be
charged and discharged via a controllable valve

Fig. 3 Test case 1. One
pump fulfills the load
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4.2 Comparison of Optimization Results and Measurements

Three different load profiles are given as an input to the optimization program. We
built every calculated first-stage solution on our test rig, set up the control strategy
and measured the volume flows at the sink and the power consumption of the pumps.
The measurement results are given in Figs. 3, 4 and 5.

The time-varying flow demand of the first test case is between 0.25m3/h and
0.6m3/h. It can be fulfilled by pumpM and pump L, but not by pump S. As pumpM
is at a lower price than pump L, the optimal result via MILP is to buy pump M. The
measured flow is in good agreement with the demand profile, cf. Fig. 3, if the pump is
driven with the predicted control settings. The computed total energy consumption
for a recovery period of 10 years is 1.9126 × 103 kWh, corresponding to energy
costs of e478.14, and total costs of e923.14. The measured energy consumption
for one repetition of the load cycle is (663 ± 11.2) × 103 kWh, which sums up to
(1.9369 ± 0.1117) × 103 kWh and e(484.23 ± 9.57) within 10 years.

The second test case contains higher flow demands than the first one: 0.4m3/h
to 0.9m3/h. The optimization result is to use pumps S and M to cover the load. The
demanded andmeasured volumeflow ratesmatch, cf. Fig. 4.During a recovery period
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Fig. 4 Test case 2. Two
pumps fulfill the load
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Fig. 5 Test case 3. One
pump in combination with an
accumulator fulfills the load
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of 20 years the pumps consume 1.0565 × 104 kWh according to the optimization
result, compared to (1.0765 ± 0.0239) × 104 kWh derived from the measurements.
This leads to total optimal costs of e3436.27, compared to e(3486.32 ± 59.85).
Pump L could have also been used, but its energy consumption is higher for flow
demands around 0.7m3/h.

The flow demands in the third test case range from 0.1m3/h to 0.8m3/h. The
optimal topology consists of pump L, the accumulator and the valve. Pump L cannot
convey volume flows as low as 0.05m3/h in the test rig configuration. The optimiza-
tion model correctly predicts the usage of the accumulator during time steps with
these small demands. The accumulator starts with a positive water level. To satisfy
the conservation of energy, the water level at the last time step has to be equal to this
starting value.

In Fig. 5 the measured data is in satisfying agreement with the time-varying
demand. The optimal energy costs are e537.57. Compared to e(584.27 ± 27.91)
derived from the measurements this corresponds to the highest observed deviation
of 8.7%. For all test cases a delayed step response of around 5–10s to the changed
rotational speed settings is observed.
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5 Conclusion

In this paper, we presented a MILP model for a system synthesis problem. We are
able to find the best combination out of a set of pumps, valves and accumulators
to satisfy a given time-dependent flowrate demand with minimal weighted purchase
and energy costs. The predicted topology and operating decisions were validated in
an experimental setup for three different load demands. The measured volume flows
and the power consumption of the pumps match the predicted values with satisfying
accuracy. The observed deviations could be caused by the delayed response of the
pumps when changing their speed settings.We plan to investigate the influence of the
time step size on the modeling error in a future research project. This will allow us
to determine to which degree the components’ start-up characteristics and deferred
adaptation should be included into our model formulation.
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Stochastic Dynamic Programming Solution
of a Risk-Adjusted Disaster Preparedness
and Relief Distribution Problem

Ebru Angün

Abstract This chapter proposes a multistage stochastic optimization framework
that dynamically updates the purchasing and distribution decisions of emergency
commodities in the aftermath of an earthquake. Furthermore, the models consider
the risk of exceeding the budget levels at any stage through chance constraints,
which are then converted to Conditional Value-at-Risk constraints. Compared to
the previous papers, our framework provides the flexibility of adjusting the level of
conservativeness to the users by changing risk related parameters. Under some con-
ditions, the resulting linear programming problems are solved through the Stochas-
tic Dual Dynamic Programming algorithm. The preliminary numerical results are
encouraging.

1 Introduction

This chapter proposes a dynamic and stochastic methodology to generate a risk-
averse disaster preparedness and logistics plan that can mitigate demand and road
capacity uncertainties. More specifically, we apply multistage stochastic optimiza-
tion for dynamically purchasing and distributing emergency commodities with time
dependent demands and road capacities. Several authors have dealt with problems
similar to ours, but [2, 4] are the most related papers. In many cases, our approach
can give less conservative solutions than [2], which considers a robust dynamic opti-
mization framework. Furthermore, our approach gives more conservative solutions
than [4], which considers a risk-neutral dynamic stochastic optimization framework
with a finite number of scenarios.

This researchwith the project number 13.402.005 has been financially supported byGalatasaray
University Research Fund.
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The structure of the chapter is as follows. In Sect. 2, we introduce multistage
stochastic programming models that take risk into account. Section3 presents the
novelty in our application of the risk-averse Stochastic Dual Dynamic Program-
ming (SDDP) algorithm, and Sect. 3.1 presents some preliminary numerical results.
Finally, Sect. 4 summarizes the chapter and presents a few future research directions.

2 Risk-Adjusted Multistage Stochastic Programming
Model

We formulate the problem through a risk-adjusted, T -stage stochastic programming
model, where the decisions at the first-stage belong to the preparedness phase, and
the decisions at later stages belong to the response phase of a disaster. The risk adjust-
ments are achieved by adding probabilistic constraints to the risk-neutral formulation
at stages t = 1, . . . , T − 1. A risk-neutral formulation and solution of this problem
is given in [1].

We make the following two assumptions for the random vector ξ t whose com-
ponents are the demands and the road capacities: i—The distribution Pt of ξ t is

known, and this Pt is supported on a set �t ⊂ R
dt ; ii—The random process

{
ξ t

}T

t=2
is stage-wise independent.

We formulate the T -stage problem through the following dynamic programming
equations. At stage t = 1, the problem is

Min
∑
i∈I

[∑
l∈L

fil yil + ∑
k∈K

qk
1rk

1i

]
+ E

[
Q2

(
x1, ξ 2

)]

s.t
∑

k∈K
bkrk

1i ≤ ∑
l∈L

Ml yil ∀i ∈ I
∑
l∈L

yil ≤ 1 ∀i ∈ I

Prob
{

Q2
(
x1, ξ 2

) ≤ η2
} ≥ 1 − α2

yil ∈ {0, 1} , rk
1i ≥ 0,∀i ∈ I, l ∈ L , k ∈ K

(1)

where I , L , and K are the set of potential nodes to open storage facilities, the set of
size categories of the facilities, and the set of commodity types, respectively, fil is
the fixed cost of opening a facility of size l in location i , qk

t is the unit acquisition
cost of commodity k at stage t , bk is the unit space requirement for commodity k,
Ml is the overall capacity of a facility of size l, rk

ti is the amount of commodity k
purchased at stage t in location i , yil is the location i and the size l of a facility, ηt

and αt are the known budget limit and the significance level at stage t , respectively,
and x1 is the vector with the components yil ’s and rk

1i ’s. Furthermore, in (1), the
first set of constraints limits the capacity of a facility, the second set of constraints
restricts the number of facilities per node, and the chance constraint ensures that
the second-stage cost-to-go function Q2

(
x1, ξ 2

)
does not exceed the budget limit η2

with high probability.
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For later stages t = 2, . . . , T − 1 and for a realization ξ s
t of ξ t , the cost-to-go

functions Qt
(
xt−1, ξ

s
t

)
are given by

Min
∑

k∈K

[
∑
i∈I

qk
t r k

ti + ∑
(i ′, j ′)∈A

ck
ti ′ j ′mk

ti ′ j ′ + ∑
j∈J

pk
t w

k
t j

]
+ E

[
Qt+1

(
xt , ξ t+1

)]

s.t zk
ti + ∑

(i, j ′)∈A
mk

ti j ′ − ∑
( j ′,i)∈A

mk
t j ′i = rk

t−1,i + zk
t−1,i ∀i ∈ I, k ∈ K

∑
(i ′, j)∈A

mk
ti ′ j − ∑

( j,i ′)∈A
mk

t ji ′ + wk
t j = νks

t j ∀ j ∈ J, k ∈ K

∑
k∈K

bk
(

mk
ti ′ j ′ + mk

t j ′i ′

)
≤ κs

ti ′ j ′ ∀ (
i ′, j ′) ∈ A

∑
k∈K

bk
(
zk

ti + rk
ti

) ≤ ∑
l∈L

Ml yil ∀i ∈ I

Prob
{

Qt+1
(
xt , ξ t+1

) ≤ ηt+1
} ≥ 1 − αt+1

rk
ti , mk

ti ′ j ′ , wk
t j , zk

ti ≥ 0∀i ∈ I, j ∈ J, k ∈ K , (i ′, j ′) ∈ A

(2)

where J and A are the set of nodes that represent shelters and the set of arcs that
represent roads in the network, respectively, ck

ti ′ j ′ is the unit transportation cost of
commodity k through arc

(
i ′, j ′), pk

t is the unit shortage cost of commodity k,
mk

ti ′ j ′ is the amount of commodity k transported through arc
(
i ′, j ′), wk

t j and zk
ti are

the shortage amount of commodity k in shelter j and the amount of commodity k
stored in location i , respectively, νks

t j and κs
ti ′ j ′ are the demand for the commodity

k in shelter j and the road capacity of arc
(
i ′, j ′) for a realization s, respectively,

and xt is the vector with components rk
ti ’s and zk

ti ’s; all values depend on stage t .
Moreover, in (2), the first set of constraints represents the flow conservation with
zk
1,i = 0∀i ∈ I, k ∈ K , the second set of constraints is for the demand satisfaction,
and the third set of constraints is for the road capacity. The stage T problem has the
same three sets of constraints as in (2), but there are no more acquisition decisions
and the remaining inventories are penalized through a unit holding cost hk

T . Hence,
the objective function at t = T becomes

Min
∑

k∈K

⎡

⎣
∑

i∈I

hk
T zk

T i +
∑

(i ′, j ′)∈A

ck
T i ′ j ′mk

T i ′ j ′ +
∑

j∈J

pk
T wk

T j

⎤

⎦ .

It was suggested in [5] to replace the chance constraint by the CV@Rα-type
constraint, where CV@Rα is given by

V@Rα

[
Qt

(
xt−1, ξ t

)] + α−1
E

[
Qt

(
xt−1, ξ t

) − V@Rα

[
Qt

(
xt−1, ξ t

)]]
+ (3)

where the Value-at-Risk (V@Rα) in (3) is, by definition, the left-side (1 − α)-
quantile of the distribution of Qt

(
xt−1, ξ t

)
, and

[
Qt − V@Rα (Qt )

]
+ = max {Qt − V@Rα (Qt ) , 0} .
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A problem with a CV@R-type constraint is that it can make the problem infea-
sible. Consequently, it could be convenient to move the CV@R-type constraint into
the objective function; that is, we redefine the cost-to-go function as

Vλt

[
Qt

(
xt−1, ξ t

)] := (1 − λt )E
[
Qt

(
xt−1, ξ t

)] + λtCV@Rαt

[
Qt

(
xt−1, ξ t

)]

(4)

where λt ∈ [0, 1] is a parameter that can be tuned for a tradeoff between minimizing
on average and risk control.

The expectation and the CV@R in (4) usually make the problem analytically
untractable. A possible way to deal with this problem is to use Sample Aver-
age Approximation (SAA). That is, sample ξ t from its distribution Pt to obtain
St := {

ξ 1
t , . . . , ξ

Nt
t

}
, where Nt is the sample size at stage t . Then, setting λt = 0

in (4) and for a fixed xt−1, solve the stage t problem to obtain the Nt opti-
mal values Qt

(
xt−1, ξ

1
t

)
, . . . , Qt

(
xt−1, ξ

Nt
t

)
. Let Qt,(1) < Qt,(2) < · · · < Qt,(ι) <

· · · < Qt,(Nt ) be the order statistics obtained from these optimal values, and ι be
the smallest integer that satisfies ι ≥ Nt (1 − αt ). This Qt,(ι) is an estimate of
V@R

[
Qt

(
xt−1, ξ t

)]
so that (4) is estimated through

(1 − λt )

Nt

Nt∑

s=1

Qt
(
xt−1, ξ

s
t

) + λt Qt,(ι) + λt

Ntαt

Nt∑

s=1

[
Qt

(
xt−1, ξ

s
t

) − Qt,(ι)
]
+ .

3 Stochastic Dual Dynamic Programming Applications

The Stochastic Dual Dynamic Programming (SDDP) algorithm was introduced in
[3], and the risk-averse SDDP algorithm was applied to an SAA problem in [6].
Furthermore, a detailed description of the risk-neutral SDDP algorithm applied to an
SAA problemwas given in [1]. We do not give further detail on the SDDP algorithm,
but refer to the papers above.

The novelty in our application of the risk-averse SDDP follows from the following
proposition.

Proposition 1 For a realization ξ s
t of ξ t and at a given xt−1, a subgradient gs

t of
Vλt

[
Qt

(
xt−1, ξ t

)]
is computed through

gs
t =

{
−

(
1 − λt + λtα

−1
t

)
BsT

t π s
t −

(
λt − λtα

−1
t

)
B(ι)T

t π
(ι)
t if Qt

(
xt−1, ξ

s
t
)

> Qt,(ι)

−(1 − λt )BsT
t π s

t − λt B(ι)T
t π

(ι)
t if Qt

(
xt−1, ξ

s
t
) ≤ Qt,(ι)

where π s
t is the vector of dual variables corresponding to the first set of constraints

for t = 3, . . . , T , and to the first and the second set of constraints for t = 2, Bs
t is the
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matrix whose entries are given by the coefficients of rk
t−1,i and zk

t−1,i for t = 3, . . . , T ,

and by the coefficients of rk
t−1,i and yil for t = 2, and B(ι)

t and π
(ι)
t correspond

to Qt,(ι).

Then, a subgradient ĝt of (4) is estimated through ĝt = 1
Nt

Nt∑
s−1

gs
t .

3.1 Numerical Results

We consider three consumable emergency commodity types, 10 potential locations
for facilities, and 30 shelters in the two boroughs of Istanbul. The data for costs
and volumes of commodities, the data for costs and capacities of facilities, and the
population data are the same as in [1]. Furthermore, [7] estimated the total numbers
of buildings that are prone to be damaged at various levels for an earthquake of
magnitude 7.3 on the Richter scale; these data are also summarized in [1].

We model the random demand νk
t j for commodity k at shelter j and random

capacity κt i ′ j ′ for any arc (i ′, j ′) at stage t (t = 2, . . . , T ) as follows:

νk
t j = δk

t

(
ςt−1, j + ςt, j

) ∀ j ∈ J and κti ′ j ′ = η ∗ τ(t)
ω(i ′, j ′)/γti ′ j ′

∀(i ′, j ′) ∈ A

where δk
t is the amount of commodity k needed by a single individual during stage t ,

ςt−1, j is the number of evacuees who were expected to arrive at shelter j by the end
of stage (t − 1), and ςt, j is the random additional number of evacuees who arrive at
shelter j at stage t . Moreover, η is the capacity of a single vehicle, τ(t) is the length
of stage t , ω(i ′, j ′) is the actual distance between nodes i ′ and j ′, and γti ′ j ′ is the
random speed of the vehicle. Both ςt, j and γti ′ j ′ are assumed to be normal; see [1].

We consider T = 6 stages, and concentrate on the first 72h in the aftermath
of an earthquake. The stopping criterion of the SDDP algorithm is the maximum
number of iterations, which is 100. All computational experiments are conducted
on a workstation with Windows 2008 Server, three Intel(R) Xeon(R) CPU E5-2670
CPUs of 2.60GHz, and 4GB RAM. The linear programming problems are solved
by ILOG CPLEX Callable Library 12.2.

So far we have only experimented with risk-related parameters, namely λ and
α. Values of λ closer to 1 and values of α closer to 0 make the 6-stage problems
more risk-averse. In Fig. 1, for α = 1% (on the left) the lower bounds on the 6-
stage costs for λ = 0.4 and λ = 0.5 stabilize at almost the same value. For α = 5%
(on the right), however, the lower bound for the more risk-averse case (λ = 0.5)
stabilizes at a value which is much lower than the lower bound of the less risk-averse
case (λ = 0.4); this is due to the fact that for the λ = 0.5 case, facilities store more
emergency commodities, and hence the shortage amounts and the penalty costs are
much lower compared to the λ = 0.4 case.
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Fig. 1 Changes in the lower bound on the 6-stage costs for α = 1% on the left and α = 5% on
the right

4 Conclusions

In this chapter, we formulate a short-term disaster management problem through a
multistage stochastic programming model. The model takes the risk of exceeding
the budget level at that stage into account through a chance constraint, which is then
converted into a CV@R-type constraint. Because the CV@R-type constraint can
make the problem infeasible, that constraint is further added to the objective function.
Under some assumptions, the resulting problem is solved through the Stochastic
Dual Dynamic Programming (SDDP) algorithm. The numerical results are very
preliminary, but nevertheless encouraging; the model responds to the risk factors,
namely λ and α, as it should. Furthermore, the solution time of a risk-adjusted
problem is not worse than a risk-neutral one.

Future research should include the derivation of a stopping rule for the risk-
adjusted SDDP. Moreover, more numerical experiments should be done concerning
the risk factors and testing the model sensitivities to various cost parameters.
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Solution Approaches for the Double-Row
Equidistant Facility Layout Problem

Miguel F. Anjos, Anja Fischer and Philipp Hungerländer

Abstract We consider the Double-Row Equidistant Facility Layout Problem and
show that the number of spaces needed to preserve at least one optimal solution is
much smaller compared to the general double-row layout problem. We exploit this
fact to tailor exact integer linear programming (ILP) and semidefinite programming
(SDP) approaches that outperform other recent methods for this problem. We report
computational results on a variety of benchmark instances showing that the ILP is
preferable for small and medium instances whereas the SDP yields better results on
large instances with up to 60 departments.

1 Introduction

An instance of the Double-Row Equidistant Facility Layout Problem (DREFLP)
consists of d one-dimensional departments with equal lengths and pairwise non-
negative weights wi j . The objective is to find an assignment r : [d] → {1, 2} of the
departments to the rows and feasible horizontal positions p for the centers of the
departments minimizing the total weighted sum of the center-to-center distances
between all pairs of departments:
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min
r,p

∑

i, j∈[d]
i< j

wi j |p(i) − p( j)|, s.t. |p(i) − p( j)| ≥ 1 if i �= j and r(i) = r( j).

In this short paper we summarize our new results on the structure of the optimal
layouts, present the ILP and SDP models that follow from those results and pro-
vide representative computational results. Formal proofs and detailed computational
results are omitted due to space limitations and are provided in the full paper [3].

2 The Structure of Optimal Layouts

The definition of the (DREFLP) suggests that the spaces between the departments
can be of arbitrary lengths in a feasible layout. Hence it is intuitive to model the
problem using continuous variables. But in fact the (DREFLP) has some hidden
underlying combinatorial structure that makes it possible to model it using only
binary variables. The following theorem is a special case of Theorem 2 from [8]:

Theorem 1 There is always an optimal solution to the (DREFLP) on the grid.

Note that for such layouts all departments and spaces have equal size. An illustration
of this result is provided in Fig. 1:

Note that the grid property is implicitly fulfilled for layouts corresponding to the
graph version of the(DREFLP), i.e. the extension of the linear arrangement problem
where two or more nodes can be assigned to the same position. Hence in particular
the Minimum Duplex Arrangement Problem considered by Amaral [2] is a special
case of the (DREFLP) by Theorem1.

For layouts fulfilling the grid property we say that department i lies in column j
if the center of department i is located at the j th grid point. For example, department
5 lies in column 4 in Fig. 1.

In the next theorem we make three assumptions.

Assumption 1: Columns that contain only spaces can be deleted.

d1

d2

d3 d4

d5

d1

d2

d3 d4

d5

Assumption 2: If two non-empty adjacent columns both contain only one depart-
ment, then the two departments can be assigned to the left column and the right
column can be deleted.

Fig. 1 Illustration of the
grid property of the
(DREFLP) s

s

d3

sd1

d2

d4

d5

d6

d7

d8

s

s

s

Row 1

Row 2
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Table 1 Minimum number of columns needed for small values of d

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# columns 1 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10

d1

d2

d3 d4 d5

d6

d1

d2

d3

d4

d5

d6

Assumption 3: If d > 4 and the first column and the third column contain in total
at most 2 departments, then both departments can be assigned to the third column
and the first column can be deleted. The same holds for the last and third-to-last
columns.

d1

d2

d3 d4

d5

d6

d7

d8

d1

d4

d2

d3

d5

d6

d7

d8

Note that the local changes described in the three assumptions cannot worsen the
objective value of the layout. The next theorem shows that under these assumptions,
it is possible to determine in advance the minimum number of columns needed, and
hence the minimum number of spaces needed, to compute an optimal solution for
the (DREFLP).

Theorem 2 If Assumptions 1, 2, and 3 hold, then the number of columns needed
to preserve at least one optimal layout for an instance of the (DREFLP) with d
departments is

⌈
2d
3

⌉ − 1 for d ≥ 9.

For small values of d, Table1 gives the minimum number of columns needed so
that at least one optimal solution for the (DREFLP) is preserved.

Theorem2 allows us to reduce the number of spaces needed to formulate the
(DREFLP). It also helps to eliminate some of the symmetries in the problem (e.g.
the position of columns containing no department) and hence to obtain stronger
global bounds independently of the choice of the relaxation.

3 Formulations

To simplify notation we let n denote the total number of departments (original ones
plus spaces) such that n = 2c for some c and the number of spaces is s = n − d.
After the insertion of a suitable number of spaces we have a space-free optimiza-
tion problem as introduced by Hungerländer and Anjos [7], and Theorems1 and 2
ensure that the optimal solution of the space-free problem solves the corresponding
(DREFLP).

The MILP Formulation of Amaral. To the best of our knowledge the paper
by Amaral [2] contains the only approach tailored specifically to the (DREFLP).
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We briefly recall his MILP formulation. Let us introduce the binary variables yip ∈
{0, 1}, i ∈ [d], p ∈ [c], with the interpretation

yip =
{
1, department i is assigned to column p,

0, otherwise.

Using these variables we can write the objective function of the (DREFLP) as:

∑

i, j∈[d]
i< j

∑

p,q∈[c]
p<q

wi j (q − p)yip y jq .

This quadratic objective function can now be linearized in a standardway, and adding
appropriate constraints yields an MILP formulation of the (DREFLP).

The ILP Formulation. Next we outline our ILP formulation for the (DREFLP).
This is an extension of the model of Amaral [1] for the Single-Row Facility
Layout Problem. Our model uses the binary betweenness variables bi jk = bk ji ∈
{0, 1}, i, j, k ∈ [n], i < k, i �= j �= k, with the interpretation

bi jk =
{
1, if department j lies between departments i and k,

0, otherwise,

as well as the binary overlap variables ai j = a ji ∈ {0, 1}, i, j ∈ [n], i < j, with the
interpretation

ai j =
{
1, if departments i and j are assigned to the same column,

0, otherwise.

Using these variables the objective function of (DREFLP) can be expressed as:

min
∑

i, j∈N ,i< j

wi j

2

⎛

⎝
∑

k∈N\{i, j}
bik j + 2(1 − ai j )

⎞

⎠

We count all departments that lie between the departments i and j and because
of the double-row structure the corresponding sum is divided by two. Furthermore
we add wi j if departments i and j do not lie in the same column. Using standard
constraints and also some additional symmetry-breaking conditions, we obtain an
ILP formulation for the (DREFLP).

The SDP Formulation. The ILP formulation can be reformulated as a quadratic
program by expressing the variables bi jk and ai j in terms of the following bivalent
ordering variables xi j , i, j ∈ [n], i �= j :
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xi j =
{
1, if department i lies left of department j,

−1, otherwise,

bik j = 1
4 (xik,k j + x jk,ki + xik + xk j + x jk + xki ) + 1

2 , i, j, k ∈ [n], i < j,

ai j = − 1
2 (xi j + x ji ), i, j ∈ [n], i < j.

We can further rewrite the resulting quadratic program as an SDP problem with a
rank-one condition and use standard techniques for relaxing it. Hence we obtain a
basic semidefinite relaxation for the (DREFLP) that can be tightened by adding
several classes of valid constraints. Our final SDP relaxation can be interpreted as a
generalization of the SDP relaxations for the (SRFLP) [9].

4 Computational Experiments

Weimplemented a simple aswell as anSDP-based construction heuristic and a 3-OPT
improvement heuristic in order to obtain good upper bounds on the optimal solution,
i.e., integer solutions that describe feasible layouts of the departments. The MILP
and ILP formulations were solved using Gurobi 5.6.3 [4], partially with our own
separators. The SDP approach used a spectral bundle method [5, 6] in conjunction
with primal cuttingplanegeneration.Hence,we always obtain both a feasible solution
and an optimality gap showing how far this solution can be from the true optimum.
Exploiting these lower and upper bounds allows us to solve (DREFLP) instances
of reasonable size to optimality or near-optimality.

All experiments were conducted on an Intel Core i7 CPU 920 with 2.67GHz and
12 GB RAM in single processor mode using openSUSE Linux 12.2.

We denote by MILP I the original approach proposed by Amaral [2] using d
columns, andbyMILP II the approach to solve the samemodel usingonly the smallest
number of columns according to Theorem2. Table2 shows that reducing the number
of columns (and hence the number of variables) in the MILP model reduces the
running times considerably. Nonetheless this improvement is not enough to create a
competitive solution approach. Although the instances are small (d = 11, 12), MILP
II cannot solve these instances within 1 hour, and the optimality gaps are significant.
On the other hand, the ILP and SDP approaches solved all instances to optimality.
For this reason we do not present results for MILP I and II in the next tables.

Table 2 CPU times (sec, min:sec, or h:min:sec) and gaps for small instances

Optimal Gap (%) Time

Solution MILP I MILP II MILP I MILP II ILP SDP

Y-11_t 2008 41.2 3.0 1:00:00 1:00:00 0.63 3:59

Y-12_t 2342 91.3 16.1 1:00:00 1:00:00 1.99 1:33

S-12_t 2167 84.4 20.7 1:00:00 1:00:00 9.85 1:40
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Table 3 CPU times (sec, min:sec, or h:min:sec) and gaps for medium-sized instances

Inst. Best Gap (%) Time

UB ILP SDP ILP SDP

S-13_t 2940 0.0 0.0 24.59 18:15

S-14_t 3608 0.0 0.0 3:03 57:00

S-15_t 4466 0.0 0.3 2:51 1:00:00

S-16_t 5446 0.0 0.0 27:29 12:50

S-17_t 6577 0.0 0.3 44:48 1:00:00

S-18_t 7788 0.2 0.1 1:00:00 1:00:00

S-19_t 9343 0.5 0.5 1:00:00 1:00:00

S-20_t 10841 8.3 0.1 1:00:00 1:00:00

Y-13_t 2730 0.0 0.0 12.63 25:41

Y-14_t 3164 0.0 0.0 1:52 14:44

Y-15_t 3676 0.0 0.3 2:26 1:00:00

Y-20_t 6046 9.5 0.0 1:00:00 1:00:00

Table 4 SDP gaps for large instances

Inst. Best Gap (%) Gap (%)

UB (1h) (5h)

S-21_t 12431 0.6 0.2

S-22_t 14208 0.1 0.0

S-23_t 16521 0.8 0.4

S-24_t 18658 0.3 0.1

S-25_t 21172 0.8 0.4

Y-25_t 10170 0.8 0.3

Y-30_t 13790 0.8 0.1

Y-35_t 19087 1.3 0.3

Y-40_t 23747 1.6 0.4

Y-45_t 31442 1.9 0.6

Y-50_t 41517 5.3 0.9

Y-60_t 55996 9.8 1.9

The results in Table3 show that for instances with up to 17 departments the ILP
model is faster than the SDP and all instances can be solved to optimality within
1 hour. But for large instances, particularly for d ≥ 20, the SDP approach provides
much better lower bounds, although we are only considering the SDP root node
relaxation. Accordingly Table4 gives the SDP results for large instances with more
than 20 departments after 1 hour and 5 hours of computation. This shows that SDP
is well-suited for providing high-quality lower bounds for large-scale instances in
adequate running times.
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One direction for future work is to use these bounds within a branch-and-bound
scheme. Furthermore, it remains an open question to what extent the results in this
paper can be generalized to the non-equidistant case.
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Simulation of the System-Wide Impact
of Power-to-Gas Energy Storages
by Multi-stage Optimization

Christoph Baumann, Julia Schleibach and Albert Moser

Abstract In this paper a simulation method for the European power and natural gas
system based on an optimization is introduced. The mathematical formulation of the
problem represents a minimization of total costs subject to the coverage of demand
and reserve requirements as well as the adherence of technical constraints. Due to
the complexity of the problem, especially due to binary decisions and non-linearities
resulting from restrictions of thermal power as well as Power-to-Gas plants, a closed-
loop formulation is not practicable. Thus, this paper presents a simulation method
consisting of a multi-stage optimization with the use of Lagrangian Relaxation and
decomposition techniques.

1 Introduction

The transformation of the European energy system with a strong expansion of Renew-
able Energy Sources (RES) leads to an increasing coupling of the systems of natural
gas and power. On the one hand, flexible thermal power plants are needed to provide
backup for the intermittent feed-in of RES, on the other hand energy surpluses in
situations with high RES feed-in and low demand will trigger the need for long-term
energy storages. For the necessary thermal capacities, especially gas-fired power
plants are suitable due to their high flexibility and efficiency as well as low green-
house gas emissions. One of the most promising options for long-term storage is the
Power-to-Gas technology (PtG), which transforms electrical energy into methane or
hydrogen. The produced gas can be stored in the natural gas infrastructure afterwards.
In order to simulate the impact of the increased coupling in general and PtG storages
in particular, a combined simulation of the European energy system regarding the
elements presented in Fig. 1 is necessary. Assuming an efficient energy market the
simulation can be formulated as a cost minimization problem. This problem and its
solution are described in the following.
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Fig. 1 Scope of model

2 Mathematical Model

The European power and natural gas system is modeled as several single gas and
power market areas. Each power market area contains one or more gas market areas.
Between the market areas cross-border exchange of gas and electrical energy, which is
limited by maximum transfer capacities, is possible. Each power market area includes
an hourly power demand and feed-in of renewable energy. The residual load, which
is defined as the difference between power demand and non-dispatchable generation
(especially RES), has to be covered by the hydraulic and thermal generation system.

In analogy to the power system, each gas market area has a daily demand for
natural gas, which can either be covered by indigenous production, import from
other European countries or import from countries outside of Europe. These different
sources are defined by their flexibility of supply and production costs. Beside this,
natural gas storages can adjust short-term and seasonal fluctuations in demand.

PtG and gas-fired power plants are coupling elements between the power and
the natural gas system. PtG plants produce gas from electrical energy whereas in
gas-fired power plants gas is used for electricity generation.

2.1 Objective Function

The problem of simulating the energy system for natural gas and power is formulated
as minimization of the total costs Ctot for natural gas and power supply in N market
areas and for T time intervals under consideration of load coverage and technical
constraints. The usual simulation period is one year in hourly time steps for the power
system and daily time steps for the natural gas system.
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min Ctot =
N∑

n=1

T∑

t=1

(
Cgas,n,t + Cpower,n,t

)
(1)

The costs Cgas,n,t include costs for gas transport and supply whereas the costs
Cpower,n,t compose costs for power generation Ċi,stat and transport. Thereby, the costs
for the power output pt,i of a power plant i with the primary energy carrier source’s
costs ci,prim, the heat consumption Q̇(pt,i ) and the additional costs ci,add yield to:

Ċi,stat = ci,prim · Q̇(pt,i ) + ci,add · pt,i (2)

The heat consumption is either modeled by a linearization in pieces or by a second-
degree polynomial. Thereby, the convex heat consumption Q̇(pt,i ) subject to the
output power and the heat consumption coefficients hcc0, hcc1 and hcc2 has the form:

Q̇(pt,i ) = hcc0 + hcc1 · pt,i + hcc2 · p2
t,i (3)

2.2 Constraints

In order to ensure safe operation of the grid and to guarantee security of supply, the
electrical load has to be covered and reserve power has to be provided for each power
market area. These two requirements are added to the minimization problem as linear
constraints. The load is covered, if the feed-in of hydraulic and thermal power plants
minus the consumption of electrical energy by PtG plants plus import balance of all
exchange capacities (N T C) equals the residual load dt,power :

dt,power =
I∑

i=1

pt,i +
J∑

j=1

pt, j −
K∑

k=1

pt,k +
M∑

m=1

(
st,m − wt,m

) +
NTC∑

n=1

(
imt,n − ext,n

)

(4)
In the stated formula I indicates the number of non-gas-fired thermal power plants, J
the number of gas-fired power plants, K the number of PtG plants and M the number
of hydro power plants. pt represents the current power output or consumption, st, j the
feed-in and wt, j the power consumption of hydro power plants. The power exchange
is represented by the imports im and exports ex.

The natural gas demand, which has to be covered in the natural gas system, consists
of a fixed and a variable part. The gas demand of households, businesses and industry
is predetermined in the model as a function of temperature and forms the fixed part
dt,gas,fix. The variable part arises from the demand or feed-in xt of gas-fired power
plants and PtG plants and results endogenously from the simulation. The gas load
dt,gas is covered when fixed and variable demand equals the sum of domestic gas
production xt,prod, balance of exchanges of all market area interconnection points
(MAIP) and gas storages (STOR) injection in or withdrawal wi .
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dt,gas =
J∑

j=1

xt, j −
K∑

k=1

xt,k + dt,gas,fix

= xt,prod +
MAIP∑

o=1

(
imt,o − ext,o

) +
STOR∑

p=1

(
wit,p − int,p

)
(5)

Besides load coverage, especially technical constraints have to be regarded in the
model. PtG and power plants have dispatch limitations such as start-up procedures,
minimum up- and down-times and minimum and maximum output. These limitations
generate binary variables in the optimization problem.

For hydro power and gas storages, technical restrictions and time couplings need to
be considered. The supply of natural gas splits into import and domestic production.
Both sources underlie quantitative restrictions, which can be yearly or short-term
maximum and minimum amounts of gas. Also, for the import of liquefied natural
gas (LNG) the maximum capacity of LNG terminals has to be observed.

3 Developed Method

The mathematical optimization task forms a highly complex mixed integer quadratic
programming problem. For this reason, a closed-loop solution by using commer-
cially available solver software is not possible. Therefore, a method based on a
decomposition approach is developed to solve the problem. The procedure, which is
divided into three stages, is shown in Fig. 2. In the first stage, the power and natural
gas system is optimized by Linear Programming (LP), while integer decisions and
non-linearities are neglected. The resulting power exchanges and price indicators
for natural gas, which are derived from the dual variables of the gas load coverage
constraints (“shadow prices”), are passed on to the second stage. In the second stage,
the PtG and power plant dispatch is optimized under consideration of all constraints
for the power system described in Sect. 2.2 using Lagrangian Relaxation (LG). The
Lagrangian equation L includes coordinators λ for load balance (LB) and μ for
reserve balance (RB) [1]:

min L = max
λ,μ

{ min
p,s,w,x

(
Cpower + λ(LB) + μ(RB)

)} (6)

The dual problem of L can be decomposed into subpoblems for thermal and
hydraulic units which can be solved by Dynamic Programming and Network Flow
Optimization, respectively. The aim of maximizing the dual problem is achieved
iteratively by adjusting λ and μ using gradient descent method. Finally, in the third
stage the power and natural gas system is optimized by LP again by adopting the
dispatch decisions found in the second stage and with linearized heat consumption
curves.
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Closed-loop optimization of the power and gas system1. LP

Optimization of the power system by Lagrangian Relaxation
First iteration: fixed gas prices
From second iteration: consideration of gas price elasticities
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dispatch decisions of PtG and power plants
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gas price elasticities
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Fig. 2 Three-stage optimization

In the second stage of the optimization, gas prices are fixed. Since certain con-
straints are neglected in the first stage of the optimization, gas demand and thus gas
prices might be different after the second LP. Therefore, new gas prices and power
exchanges are derived from the last stage and passed on again to the second stage in
an iterative process. In further developments of the method, gas price elasticities for
specific market areas and time intervals shall be determined and considered in the
LG stage if gas prices differ between iterations. Since the multi-stage approach does
not guarantee finding the optimal solution inherently, close attention has to be paid
to the parameterization of the LG stage and the development of the objective value
between iterations.

4 Exemplary Results

In this section, first exemplary results computed with the developed method for the
power and natural gas system simulation are presented. The underlying scenario
represents an RES dominated scenario of the European energy system for the year
2050. The power system scenario is based on the German grid development plan [2]
and the natural gas system is designed according to the outlook in ENTSO-G TYNDP
[3]. In order to make use of power surpluses, PtG plants with a total capacity of 20
GW are considered in Germany. Overall, the scenario contains 992 thermal and 424
hydraulic units in the power system as well as 146 storages and 30 LNG terminals
in the natural gas system.

The computer used for the calculations has 16 Intel Xeon processor cores and a
main memory of 256 GB. All linear problems are solved with IBM ILOG Optimiza-
tion Studio using barrier algorithm. The resulting computation time for an annual
simulation and the development of total costs between iterations for a monthly sim-
ulation is shown in Fig. 3.

It can be seen that the computing time for the LG relaxation is about twice as
long as the time for each LP. With each iteration of the LG and second LP stage the
computational time increases correspondingly. The total costs after the first iteration
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Fig. 3 Computation time and development of total costs

are the highest, because the determination of gas prices in this iteration does not
include e.g. starting processes of power plant due to their negligence in the first LP.
In the following iterations the total costs converge and only vary less than 0.06 %.
An implementation of the consideration of gas price elasticities in the second opti-
mization stage should further improve convergence.

5 Conclusions

The introduced method allows to simulate the European natural gas and power system
under consideration of relevant constraints. In order to keep the complex problem
solvable and the computational time manageable, a multi stage optimization is nec-
essary. After implementing final improvements the method will be applied to assess
the impact of PtG on the energy system by simulating different scenarios for the
future.
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An Approximation Result for Matchings
in Partitioned Hypergraphs

Isabel Beckenbach and Ralf Borndörfer

Abstract We investigate the matching and perfect matching polytopes of hyper-
graphs having a special structure, which we call partitioned hypergraphs. We show
that the integrality gap of the standard LP-relaxation is at most 2

√
d for partitioned

hypergraphs with parts of size ≤ d. Furthermore, we show that this bound cannot be
improved to O(d0.5−ε).

1 Introduction

It is well known that the set packing problem is N P-hard and that it admits no
constant factor approximation algorithm unless P = N P . Here, we look at the
equivalent problem of finding a maximum weight matching in a hypergraph. There
exists a lot of work characterizing classes of hypergraphs for which the matching
problem can be solved in polynomial time. For example, this is the case for bal-
anced hypergraphs introduced by Berge in [2]. As for bipartite graphs the standard
LP-Relaxation of the matching polytope of a balanced hypergraph is integral. So the
polynomial time solvability of the matching problem in balanced hypergraphs fol-
lows from the fact that one can optimize over the LP-Relaxation in polynomial time.
In general, the integrality gap of the standard LP-Relaxation can be arbitrarily high.
In the followingwe look at hypergraphs in which the hyperedges have a special struc-
ture. We call this class partitioned hypergraphs as in [3]. We investigate the matching
and perfect matching polytope of partitioned hypergraphs and their LP-Relaxations.
Furthermore, we show that the integrality gap of the standard LP-relaxation of a
partitioned hypergraph is bounded by its part size.
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2 Definitions

In this section we introduce some basic definitions and notations that we use in the
remainder. First, we give two definitions that show the close connection between
matchings in hypergraphs and the set packing problem and perfect matching and the
set partitioning problem, respectively.

Every hypergraph can be represented by a 0, 1 matrix in the following way:

Definition 1 Let H = (V, E) be a hypergraph, The incidence matrix of H is the
matrix A = (av,e)v∈V,e∈E ∈ {0, 1}V ×E defined by

av,e =
{
1, if v ∈ e
0, else

(1)

Now, we define the four polytopes that we investigate in the next section.

Definition 2 Let H = (V, E) be a hypergraph the matching polytope, the fractional
matching polytope, theperfect matching polytope, and the fractional perfect matching
polytope are defined by:

IPM(H) = conv
({

x ∈ {0, 1}E |Ax ≤ 1
})

, (2)

LPM(H) = conv
({

x ∈ R
E |Ax ≤ 1, x ≥ 0

})
, (3)

IPPM(H) = conv
({

x ∈ {0, 1}E |Ax = 1
})

, (4)

LPPM(H) = conv
({

x ∈ R
E |Ax = 1, x ≥ 0

})
. (5)

The extreme points of IPM(H) are exactly the incidence vectors of matchings in H .
So, finding a maximum weight matching is equivalent to optimizing over IPM(H)

which is hard. However, we can optimize over LPM(H) to obtain an upper bound.
Therefore, ifwe canbound the integrality gapofLPM(H)weobtain an approximation
result for the maximum weight of a matching in H .

Borndörfer and Heismann introduced in [3] the hypergraph assignment problem
which is a generalization of the assignment problem to hypergraphs. The hypergraph
assignment problem can also be seen as a perfect matching problem in a hypergraph
having the following special structure:

Definition 3 Let H = (V ∪ W, E) be a hypergraph with |V | = |W |, V ∩ W = ∅,
and |e ∩ V | = |e ∩ W | for all e ∈ E . A nonempty set P ⊆ V or P ⊆ W is called
a part of H if for all e ∈ E either e ∩ V ⊆ P or (e ∩ V ) ∩ P = ∅ holds or in
the case P ⊆ W either e ∩ W ⊆ P or (e ∩ W ) ∩ P = ∅ holds. H is a partitioned
hypergraph with maximum part size d if there are disjoint parts P1, . . . , Pr ⊆ V
and Q1, . . . , Qs ⊆ W that form a partition of V and W , respectively, and |Pi | ≤
d, |Q j | ≤ d for 1 ≤ i ≤ r, 1 ≤ j ≤ s.

It is easy to see that the intersection of two parts is empty or again a part. So,
there exists a unique finest partition P1, . . . , Pr of V and a unique finest partition
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Q1, . . . , Qs ofW into parts.We always assume thatwe have a partitioned hypergraph
with its finest partition into parts. Under this assumption the part size of a partitioned
hypergraphs is the maximum size of one of its parts.

In the next section we deal with the following “complete” partitioned hypergraph
with parts of size two:

Definition 4 Let n ∈ N be an even number. The partitioned hypergraph Dn consists
of two disjoint vertex sets Vn = {v1, . . . , vn} and Wn = {w1, . . . , wn}. Each of the
two vertex sets is partitioned into n

2 parts of size two, say V i
n = {v2i−1, v2i }, W i

n =
{w2i−1, w2i } for all 1 ≤ i ≤ n

2 . The set of hyperedges En of Dn consists of n2 edges{
vi , w j

}
for all 1 ≤ i, j ≤ n and n2

4 hyperedges of the form V i
n ∪ W j

n for all 1 ≤
i, j ≤ n

2 .

3 Polyhedral Investigations

In this section we give some results on the matching polytope, the perfect match-
ing polytope, and their fractional variants. We begin with the dimension of these
polytopes.

Theorem 1 IPM(H) and LPM(H) have full dimension.

Proof {χ∅} ∪ {
χ{e}|e ∈ E(H)

}
is a set of |E | + 1 affinely independent vectors in

IPM(H) and LPM(H), so IPM(H),LPM(H) ⊆ R
E have full dimension. �

The dimension of the perfect matching polytope is more difficult to calculate, as it is
N P-hard to decide whether a hypergraph has a perfect matching (i.e. IPPM(H) is
non-empty). However, for Dn it is possible to calculate the dimension of the perfect
matching polytope and the fractional perfect matching polytope.

Theorem 2 The dimension of IPPM(Dn) and LPPM(Dn) is 5
4n2 − 2n + 1.

Proof As every valid equation for LPPM(Dn) is a linear combination of the rows of
Ax = 1, the dimension of LPPM(Dn) is |En| − rank(A). Let ae be a column of A
corresponding to a hyperedge of the form V i

n ∪ W j
n . Then e is the disjoint union of the

two edges e1 = {v2i−1, w2i−1} and e2 = {v2i , w2i } and ae is the sumof the two column
vectors corresponding to e1 and e2. So we can delete column ae from A without
changing the rank of A. Doing this for all columns corresponding to hyperedges
of size four, shows that the rank of A is the same as the rank of the incidence
matrix of Kn,n which is 2n − 1. It follows that dim(LPP M(Dn)) = |En| − 2n + 1 =
5
4n2 − 2n + 1.

To see that dim(IPPM(Dn) = dim(LPPM(Dn)),we construct 54n2 − 2n + 2 affinely
independent vectors in IPPM(Dn). First, observe that every fixed hyperedge of size
four can be completed to a perfect matching of Dn by adding edges. Clearly, the inci-
dence vectors of these n2

4 perfect matchings are affinely independent. The matching
polytope of Kn,n has dimension n2 − 2n + 1. Thus, there are n2 − 2n + 2 perfect
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matchings in Kn,n such that their incidence vectors are affinely independent. These
vectors can be lifted to vectors in IPPM(Dn) by setting all entries corresponding to
hyperedges of size four to 0. The n2

4 first vectors and these n2 − 2n + 1 new vectors
are affinely independent. �
Now, we state some results on valid inequalities and facets of the matching polytope
and the perfect matching polytope (see [1] for proofs).

Theorem 3 Every trivial inequality xe ≥ 0 defines a facet of IPM(H).

In the case of the perfect matching polytope it is even difficult to decide when a
trivial inequality is facet defining. So we restrict ourselves to the hypergraphs Dn .

Theorem 4 The trivial inequality xe ≥ 0 defines a facet of IPPM(Dn)

A clique in a hypergraph is a set Q ⊆ E of hyperedges such that every two elements
of Q intersect. Clearly, every matching contains at most one edge from a clique. So
x(Q) ≤ 1 is a valid inequality for IPM(H).

Theorem 5 A clique inequality x(Q) ≤ 1 defines a facet of IPM(H) if and only if
Q is a maximal clique.

Heismann also generalized the odd set inequalities that are valid for the matching
polytope of a graph to valid inequalities for the (perfect) matching polytope of a
hypergraph. See references [1, 9] for more details.

4 Integrality Gap

In this section we prove our main result concerning the multiplicative integrality gap
of maximizing over the matching polytope of a partitioned hypergraph. This gap
can be bounded in contrast to the unbounded integrality gap of the perfect matching
polytope (see [1]).

Füredi, Kahn and Seymour show in [5] that the integrality gap of

max wt x (6)

s.t. x ∈ LPM(H)

is at most k − 1 + 1
k for k-uniform hypergraphs. For k-partite hypergraphs the result

can be strengthen to k − 1. The proofs of [5] are non-algorithmic, however, in [4]
an iterative rounding algorithm with approximation factor k − 1 is given for the
maximum weight matching problem in k-partite hypergraphs. For the analysis of
their algorithm Chan and Lau consider the following linear program for fixed degree
bounds 0 ≤ Bv ≤ 1:

max wt x (7)

s.t. x(δ(v)) ≤ Bv ∀v ∈ V (H)

xe ≥ 0 ∀e ∈ E(H)
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Let N [e] := {
e′ : e ∩ e′ �= ∅}

be the set of all hyperedges intersecting e. The crucial
point of their proof for an integrality gap of k − 1 for (6) is that for every extreme
point x of (7) with x > 0 there exists a hyperedge e ∈ E(H) with x(N [e]) ≤ k − 1.
The further analysis of the algorithm in [4] does not use the k-partiteness of the
hypergraph. If we can show that for every extreme point x with x > 0 there exists
a hyperedge e ∈ E(H) with x(N [e]) ≤ α for H in some class C of hypergraphs,
then the result of [4] directly gives an α-approximation algorithm for the weighted
matching problem in C . For partitioned hypergraphs we can proof the following
bound:

Lemma 1 Let H be a partitioned hypergraph with maximum part size d and x
be an extreme point of (7) with xe > 0 for all e ∈ E(H). There exists a hyperedge
e∗ ∈ E(H) with x(N [e∗]) ≤ 2

√
d.

Proof 1. Case: There exists a hyperedge e∗ of size less than 2
√

d . Then

∑

e∈N [e∗]
x(e) ≤

∑

v∈e∗

∑

e:v∈e

x(e) ≤ |e∗| < 2
√

d. (8)

2. Case: |e| ≥ 2
√

d for all e ∈ E(H). We choose e∗ ∈ E arbitrarily. Let P and
P ′ be the two parts of H such that e∗ ⊆ P ∪ P ′. Summing over all inequalities
x(δ(v)) ≤ 1 for v ∈ P gives

∑

e∈δ(P)

√
dx(e) ≤

∑

e∈δ(P)

|e|
2

x(e) ≤ d, (9)

and the same inequality holds for e ∈ δ(P ′). Thus we get
∑

e∈N [e∗]
x(e) ≤

∑

e∈δ(P)

x(e) +
∑

e∈δ(P ′)

x(e) ≤ 2
√

d. (10)

�

Now, we can proof that (6) has an integrality gap≤ 2
√

d for partitioned hypergraphs
with maximum part size d. The proof is based on the ideas used in [4] for the analysis
of the k-dimensional matching algorithm.

Theorem 6 The multiplicative integrality gap of (6) is at most 2
√

d for a partitioned
hypergraph H with maximum part size d.

Proof Let x be an extreme point of (6). We have to show that there exists a matching
M of H such that wt x ≤ 2

√
d × w(M).

We use induction on the number of hyperedges e ∈ E(H)with positive weight. If
w(e) = 0 for all hyperedges e ∈ E the claim trivially holds. Otherwise, there exists
a hyperedge e∗ of positive weight with x(N [e∗]) ≤ 2

√
d.

Define a weight function w1 by w1(e) := w(e∗) for all e ∈ N [e∗] and w1(e) := 0
for all other e ∈ E(H). Furthermore, set w2(e) := w(e) − w1(e) for all e ∈ E(H).
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The weight function w2 has fewer hyperedges with positive weight then w. By induc-
tion there exists a matching M ′ of H with (w2)t x ≤ 2

√
d × w2(M ′). If M ′ ∪ {e∗} is a

matching we set M := M ′ ∪ {e∗}, otherwise we set M := M ′. In both cases, we have
w2(M) = w2(M ′) and w1(M) = w(e∗), because w2(e∗) = 0 and N [e∗] ∩ M �= ∅. It
follows that:

2
√

dw(M) = 2
√

dw2(M) + 2
√

dw1(M) = 2
√

dw2(M ′) + 2
√

dw(e∗) (11)

≥ (w2)t x + w(e∗)x(N [e∗]) = (w2)t x + (w1)t x = wt x . (12)

�

For general hypergraphswith hyperedges of size k Hazan, Safra and Schwartz proved
in [8] that there is no O( k

ln k ) approximation algorithm for the maximum matching
problem unlessP = N P . So, if themaximumpart size of a partitioned hypergraph
is ck for some constant c ∈ Q+ we get a O(

√
k)-approximation algorithm which is

better than O( k
ln k ).

Furthermore, there exists a 2 |V (H)|0.5 approximation algorithm for the maxi-
mum weight matching problem in hypergraphs with hyperedges of unbounded size
(see [6]). This approximation factor cannot be improved to O(|V (H)|0.5−ε) in the
unweighted case (see [7]). Every hypergraph H can be transformed into a parti-
tioned hypergraph HP with maximum part size ≤ |V (H)| by setting V (HP) :=
V (H) × {0, 1} and E(HP) := {{(v, 0), (v, 1) : v ∈ e} : e ∈ E(H)}. This shows that
(6) cannot have an integrality gap of O(d

1
2 −ε), so Theorem6 is nearly tight.
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On Class Imbalance Correction
for Classification Algorithms in Credit
Scoring

Bernd Bischl, Tobias Kühn and Gero Szepannek

Abstract Credit scoring is often modeled as a binary classification task where
defaults rarely occur and the classes generally are highly unbalanced. Although
many new algorithms have been proposed in the recent past to mitigate this specific
problem, the aspect of class imbalance is still underrepresented in research despite
its great relevance for many business applications. Within the “Machine Learning in
R” (mlr) framework methods for imbalance correction are readily available and can
be integrated into a systematic classifier optimization process. Different strategies
are discussed, extended and compared.

1 Introduction

Credit scoring denotes the assignment of ordered values (scores) to individuals that
are supposed to be decreasing with risk. Here, risk is interpreted as the probability
of a lender to default in the future. Business application scoring models are a major
element in credit decisions and the IRBA Basel capital framework [1, 19].

In order tomodel credit risk, typically a binary randomvariablewith two outcomes
(default and non-default) and classification algorithms are used. The most widely-
used technique is logistic regression, but in the recent past several new models have
been proposed and studies have compared performances in different data situations
[17] as well as on real world credit scoring data [2, 13].
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One complicating factor in credit scoring is that classes typically follow a highly
unbalanced distribution, i.e., the default class is much smaller. The effect of this on
the performance of different classification algorithms has been investigated byBrown
and Mues [7]. Vincotti and Hand [20] discuss both the introduction of misclassifica-
tion costs at either scorecard construction or classification stage and preprocessing of
the training sample by over- or undersampling of the classes. The effect of over- and
undersampling in relation to effective class sizes has been extensively investigated
by Crone and Finlay [9].

In this article, we study different strategies for imbalance correction together with
different classifiers in a comprehensive setting, introducing several new aspects:

• Joint framework for tuning of classifiers and imbalance correction.
• Newer techniques like SMOTE [8] and overbagging are investigated.
• Extension of SMOTE through the Gower distance for categorical data.
• Iterated F-racing instead of grid search [13] for tuning within mlr [5, 16].
• Large data base of real world data sets and validation on credit scoring data.
• Realistic evaluation of logistic regression using coarse classed data.

2 Methodology

Imbalance Correction: A standard approach for class imbalance correction consists
in sampling [9]: In undersampling a random subset of the majority class is used for
training, whereas oversampling randomly duplicates instances of the minority class.
Some classifiers allow weighting of observations during training, which is a straight-
forward, alternative intrinsic imbalance correction to sampling, if one downweights
majority and upweights minority class observations. Oversampling can be extended
to overbagging, where the oversampling of the minority class is repeated several
times. Majority class instances are bootstrapped in each iteration and for the new
training sets we fit a bagging predictor in order to reduce prediction variance. The
popular synthetic minority over-sampling (SMOTE) [8] generates new observations
of the minority class as random convex combinations of neighboring observations.
As categorical features occur in many real-world problems, we use the Gower dis-
tance in this mixed space to identify neighbors and sample a new category for each
categorical feature from the respective two entries of the neighbors during the convex
combination step.

The mlr R package [6] offers an interface to more than 50 classification, regres-
sion and survival analysis models, and most standard resampling and evaluation pro-
cedures. Models can be chained and extended with, e.g., preprocessing operations
and jointly optimized. The package allows for different optimization/configuration
techniques, from simple random search, to iterated F-racing and sequential model
based optimization. The latter two are arguably among the most popular and suc-
cessful approaches for algorithm configuration nowadays.
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Iterated F-racing [12, 14] builds upon the simpler racing technique, where algo-
rithm candidate configurations are sequentially evaluated on a stream of instances.
After each iteration, a statistical test is performed—usually the non-parametric Fried-
man test—to identify outperformed candidates, which are eliminated from the can-
didate set. In our case, candidates are joint hyperparameter settings for classifiers and
imbalance correction and instances are subsampled versions of the training data set.
Iterated F-racing samples one set of candidate configurations from a joint distribution
over the parameter space, performs a usual F-race to reduce the current candidates to
number of elite configurations and adapts the distribution by centering it around the
elites as well as reducing its spread. The latter results in exploration in the beginning
and exploitation in the later stages of the optimization.

3 Experiments

A typical problem in credit scoring research is the availability of data so that most
studies are based on only a few data sets [2]. In order to obtain general results we
follow a two-fold approach: First, all methods are evaluated on a large set of public
unbalanced data sets,1 among them the popular German credit data, which is not
very representative due to the low degree of imbalance (30%) and the low number
of observations. In a second step, we validate the results on two more realistic real
world credit scoring problems: gmsc2 and glc [15].

Industrial standard includes preliminary coarse classing of the data. We address
this by generating additional binned data sets (suffix “nom”) using decision trees
with varying complexity parameters [18] and subsequent manual investigation of
bins concerning numbers of defaults and default rates using binomial tests. The
manual step implies a loss in scientific rigor, but allows to assess the results with
respect to industrial practice.

As a general preprocessing step, constant features are removed from the data
sets. Afterwards, five classification techniques, logistic regression (logreg), rpart
decision tree (rpart), random forest (RF), gradient boosting (gbm) and support vector
machines (ksvm) with a Gaussian kernel, are applied to each data set. We combine all
classifiers with all mentioned imbalance correction techniques. In this context, we
study the following variants: classifiers without tuning or imbalance correction (bl =
baseline), normal tuning of hyperparameters (tune), and joint tuning of the classifier
and an imbalance correction method like class weighting (cw), undersampling (us),
oversampling (os), SMOTE (sm) and 10 iterations of overbagging (ob) (Tables1, 2,
3 and 4).

1http://www.cs.gsu.edu/~zding/research/benchmark-data.php.
2http://www.kaggle.com/c/GiveMeSomeCredit.

http://www.cs.gsu.edu/~zding/research/benchmark-data.php
http://www.kaggle.com/c/GiveMeSomeCredit
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Table 1 Overview of tuning parameters (arguments of corresponding R functions) for each learner

Learner Tuning parameters with range (lower, upper)

gbm n.trees (100, 5000)/interaction.depth (1, 5)/shrinkage (1e-05, 0.1)/bag.fraction (0.7, 1)

ksvm C (2−12, 212) / sigma (2−12, 212)

logreg –

RF ntree (10, 500)/mtry (1, 10)

rpart cp (0.0001, 0.1)/minsplit (1, 50)

Table 2 Effect of tuning versus imbalance correction: top tenAUC improvements of the baseline by
tuning (left, columns 1 to 4) as well as improvements of tuning by additional imbalance correction
together with the best strategy (right, columns 5 to 8)

Data Learner Base Tuning Data Learner Tuning Imbal Method

balance gbm 0.29 0.89 poker rpart 0.47 0.76 sm

poker gbm 0.53 1.00 abalone19 rpart 0.56 0.81 ob

balance ksvm 0.68 0.92 balance rpart 0.50 0.73 ob

mammography gbm 0.71 0.94 balance logreg 0.29 0.50 us

gmsc gbm 0.66 0.87 solar
flare m0

ksvm 0.62 0.82 sm

satellite image gbm 0.78 0.97 ozone level rpart 0.67 0.84 ob

abalone7 rpart 0.50 0.67 poker logreg 0.34 0.52 us

vehicle gbm 0.69 0.86 abalone7 rpart 0.67 0.83 os

coil2000 rpart 0.50 0.66 oil spill rpart 0.70 0.85 ob

glc rpart 0.70 0.85 balance RF 0.36 0.50 ob

Table 3 Effect of tuning versus imbalance correction: Mean improvements per learner by tuning
across data sets (left) and further improvements by imbalance correction across data sets, averaged
over all sampling methods and best sampling method on average (right)

Learner Tuning mean Imbal mean Imbal max Method

gbm 0.14 0.02 0.04 ob

ksvm 0.05 0.04 0.06 us

logreg 0.00 0.05 0.13 us

RF 0.00 0.04 0.14 ob

rpart 0.04 0.13 0.29 sm

The parameter controlling the upsampling ratio/minority class upweighting is
tuned in the range of 1 and 1.5× I R, where I R is the class imbalance ratio. For
undersampling we use a range of 0.67× I R−1 and 1.

For all set-ups (except the baseline) tuning is performed via iterated F-racing and
a budget of 400 evaluations. During the inner resampling for tuning (in each racing
step) we use 80% of the observations for training and 20% for testing. The whole
tuning/model selection process is embedded into an outer loop of stratified 5-fold
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cross-validation to ensure unbiased performance estimation. As it represents a stan-
dard for credit scoring applications the area under the ROC curve (AUC) is used
both as a measure for tuning and performance evaluation [4, 11]. We parallelize our
experiments via the BatchJobs and BatchExperiments R packages [3].

4 Results and Summary

The tables show the results of the conducted experiments. Often strong improvements
are achieved, mostly using upsampling strategies—which are unfortunately the com-
putationally most expensive ones. Also, these improvements are only observed in
combination with proper hyperparameter tuning, especially for SVMs and boosting
which reflects their strong dependence on parameterization. Decision trees are most
strongly affected by imbalance correction, followed by random forests and logis-
tic regression. Note that in some rare cases the results after imbalance correction
worsen, which might be due to an overfitting on the validation sets. The results do
not uniquely favor a single combination of methods and the picture is much less clear
than in [10], where only decision trees and no tuning was considered. Nevertheless,
boosting and upsampling (sm or os) seem to be a good choice in many cases.

For credit scoring, the established pre-binned logistic regression shows good
results, but improvements by the proposed integrated tuning and imbalance correc-
tion framework are visible. This is especially noteworthy, as the pre-binning comes
with a substantial time investment for the human expert, while the automated one
does not.
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The Exact Solution of Multi-period Portfolio
Choice Problem with Exponential Utility

Taras Bodnar, Nestor Parolya and Wolfgang Schmid

Abstract In the current paper we derive the exact analytical solution of the multi-
period portfolio choice problem for an exponential utility function. It is assumed that
the asset returns depend on predictable variables and that the joint random process of
the asset returns follows a vector autoregression. We prove that the optimal portfolio
weights depend on the covariancematrices of the next two periods and the conditional
mean vector of the next period. The case without predictable variables and the case
of independent asset returns are partial cases of our solution.

1 Introduction

Nowadays, the investment analysis and portfolio choice theory are very important
and challenging topics in finance, economics and management. Since Markowitz
[7] presented his mean-variance paradigm modern portfolio theory has become a
fundamental tool for understanding the interactions of systematic risk and reward.

It is well known that the mean-variance optimization problem of Markowitz [7]
is equivalent to the expected exponential utility optimization under the assumption
of normal distribution (see Merton [8]). Unfortunately, his approach only gives an
answer to the single-period portfolio choice problem in discrete time but it says
nothing about the multi-period setting. Therefore, it is important to investigate the
multi-period (dynamic) portfolio optimization problem which is of great relevance
for an investor as well.
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The continuous case has already been solved for many types of utility functions in
the single- and multi-period case by Merton [8]. On the other hand, the discrete time
setting is more useful and seems to be more realistic for the investors because they
observe the underlying data-generating process discretely and make their decisions
only at discrete points of time. In other words, they would prefer to deal with the
time series models rather than the stochastic differential equations for modelling the
asset returns. Moreover, the continuous time portfolio strategies are often inadmis-
sible in discrete time because they may cause a negative wealth (see, Brandt [4]). In
general, there are not many closed-form solutions provided in the literature to the
discrete-time multi-period case. Moreover, the most of them contain the assumption
of independence of the asset returns in time. This assumption, however, is unfor-
tunately not fulfilled in many practical situations. As a result, analytical solutions
of the discrete-time multi-period optimal portfolio choice problems are not easy to
obtain.

In the present paper we consider an investor who invests into k risky assets and one
riskless asset with an investment strategy based on the exponential utility function

U (Wt ) = −e−αWt . (1)

Here Wt denotes the investor’s wealth at period t and α > 0 stands for the coefficient
of absolute risk aversion (ARA), which is a constant over time for the exponential
utility (CARA utility). The application of the exponential utility function is more
plausible than the use of the quadratic utility since the last one possesses an increas-
ing risk aversion coefficient. That is why the exponential utility function is commonly
used in portfolio selection theory. Moreover, the optimization of the expected expo-
nential utility function leads to the well known mean-variance utility maximization
problem and consequently its solution lays on the mean-variance efficient frontier.
This is also true when the uncertainty of the asset returns is taken into account (see,
Bodnar et al. [3]).

We extend the previous findings on the exponential utility function in three ways:
(i) we do not assume the independence of the asset returns in time; (ii) taking into
account the untradable predictable variables, we work in the presence of the incom-
plete market; and (iii) we derive a closed-form solution of the discrete-time multi-
period portfolio choice problem with the exponential utility function (1) under the
assumption that the joint process consists of the asset returns and the predictable
variables and it is assumed to follow a vector autoregressive (VAR) process.

2 Multi-period Portfolio Problem for an Exponential Utility

Let Xt = (
Xt,1, Xt,2, . . . , Xt,k

)′
denote the vector of the returns (e.g., log-returns)

of k risky assets and let r f,t be the return of the riskless asset at time t . Let zt be a
p-dimensional vector of predictable variables.We assume thatYt = (X′

t , z′
t )

′ follows
a VAR(1) process given by
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Yt = ν̃ + �̃Yt−1 + ε̃t (2)

where the k + p-dimensional vector ν̃ and the (k + p) × (k + p)-dimensionalmatrix
�̃ contain the model parameters and ε̃t ∼ N (0, �̃(t)), where �̃(t) is a (k + p) ×
(k + p)-dimensional positive definite deterministic matrix function. Let Ft denote
the information set available at time t . Then Yt |Ft−1 ∼ Nk+p(μ̃t , �̃(t)), i.e., the
conditional distribution of Yt given Ft−1 is a k + p dimensional normal dis-
tribution with mean vector μ̃t = E(Yt |Ft−1) = Et−1(Yt ) and covariance matrix
Var(Yt |Ft−1) = �̃(t).

The stochastic model (2) is described in detail by Campbell et al. [5] who argued
that the application of VAR(1) is not a restrictive assumption because every vector
autoregression can be presented as a VAR(1) process through an expansion of the
vector of state (predictable) variables. Let ν = Lν̃ and � = L�̃ with L = [Ik Ok,p]
where Ik is a k × k identity matrix and Ok,p is a k × p matrix of zeros. From (2) we
obtain the following model for Xt expressed as

Xt = LYt = Lν̃ + L�̃Yt−1 + Lε̃t = ν + �Yt−1 + εt . (3)

Consequently, the conditional distribution of Xt given Ft−1 is a multivariate nor-
mal distribution with conditional mean vector μt = E(Xt |Ft−1) = ν + �Yt−1 and
conditional covariance matrix �(t) = Var(Xt |Ft−1) = L�̃(t)L′, that is Xt |Ft−1 ∼
Nk(μt ,�(t)).

Let wt = (
wt,1, wt,2, . . . , wt,k

)′
denote the vector of the portfolio weights of the

k risky assets at period t . Then the evolution of the investor’s wealth is expressed as

Wt = Wt−1
(
1 + r f,t + w′

t−1(Xt − r f,t 1)
) = Wt−1

(
R f,t + w′

t−1X̆t

)
, (4)

where R f,t = 1 + r f,t and X̆t = Xt − r f,t 1 with μ̆t = Et−1(X̆t ) = ν + �Yt−1 −
r f,t 1. The aim of the investor is to maximize the expected utility of the final wealth.

The optimization problem is given by

V (0, W0,F0) = max
{ws }T −1

s=0

Et [U (WT )] (5)

with the terminal condition

U (WT ) = − exp(−αWT ) for α > 0. (6)

Following Pennacchi [9] the optimization problem (5) can be solved by applying the
following Bellman equation at time point T − t

V (T − t, WT −t ,FT −t ) = max
wT −t

ET −t

[
max

{ws }T −1
s=T −t+1

ET −t+1[U (WT )]
]

(7)

= max
wT −t

ET −t

[
V (T − t + 1, WT −t

(
r f,T −t + w∗ ′

T −t+1X̆T −t+1

)
,FT −t+1)

]
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subject to (6), where w∗
T −t+1 are the optimal portfolio weights at period T −

t + 1. Note that in contrast to the static case now the vector of optimal port-
folio weights wT −t is a function of the weights of the next periods, i.e., of
wT −t+1, wT −t+2, . . . , wT −1, what is the consequence of the backward recursion
method (see, e.g. Pennacchi [9]).

For the period T − 1 we get

V (T − 1, WT −1,FT −1)

= ET −1

[
− exp(−αWT −1(R f,T + w′

T −1X̆T ))
]

= − exp(−αWT −1R f,T )ET −1[exp(−αWT −1w′
T −1X̆T )]

= exp(−αWT −1R f,T )
(
− exp

[
−α(WT −1w′

T −1μ̆T − α

2
w′

T −1�(T )wT −1W 2
T −1)

])
→ max .

(8)

The last optimization problem is equivalent to

WT −1w′
T −1μ̆T − α

2
w′

T −1�(T )wT −1W 2
T −1 → max over wT −1 . (9)

Taking the derivative and solving (9)with respect towT −1 weget the classical solution
for the period T − 1

w∗
T −1 = 1

αWT −1
�−1(T )μ̆T = 1

αWT −1
(L�̃(T )L′)−1(ν̆T + �YT −1) with ν̆T = ν − r f,T 1 .

(10)

2.1 Multi-period Portfolio Weights

In Theorem 1 the multi-period portfolio weights for all periods from 0 to T − 1 are
given (cf. Bodnar et al. [2]).

Theorem 1 Let Xτ = (
Xτ,1, Xτ,2, . . . , Xτ,k

)′
be a random return vector of k risky

assets. Suppose that Xτ and the vector of p predictable variables zτ jointly follow a
VAR(1) process as defined in (2). Let r f,τ be the return of the riskless asset. Then the
optimal multi-period portfolio weights are given by (10) for period T − 1,

w∗
T −2 = 1

αWT −2R f,T

(
L�̃

−1
(T − 1)μ̃∗

T −1 − L�′�−1(T )(ν̆T + r f,T �L′1)
)

,

(11)
and

w∗
T −t = CT −t

(
L�̃

−1
(T − t + 1)μ̃∗

T −t+1 − L�̃
′
�̃

−1
(T − t + 2)(ν̆∗

T −t+3 + r f,T −t+2�̃L′1)
)

(12)
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for t = 3, . . . , T with

CT −t = 1

αWT −t

(
T∏

i=T −t+2

R f,i

)−1

, μ̃
∗
T −t+1 = μ̃T −t+1 − r f,T −t+2L′1 and (13)

ν̆
∗
T −t+3 = ν̃ − r f,T −t+3L′1 . (14)

The results of Theorem 1 show us that the optimal portfolio weights at every
period of time except the last one depend on the covariance matrices of the next two
periods and the conditional mean vector of the next period. This property turns out to
be very useful if we want to calculate the optimal portfolio weights for a real data set.
Moreover, Theorem 1 presents a solution to the discrete-time multi-period optimal
portfolio choice problem with the CARA utility in the presence of an incomplete
market.

Note that the case without predictable variables (the case with a complete market)
is a special case of Theorem 1. In this case the following expressions are obtained.

Corollary 1 Let Xτ = (
Xτ,1, Xτ,2, . . . , Xτ,k

)′
be a random return vector of k risky

assets which follows a VAR(1) process as defined in (2) but without a vector of
predictable variables zτ . Let r f,τ be the return of the riskless asset. Then the optimal
multi-period portfolio weights for period T − 1 are given by

w∗
T −1 = 1

αWT −1
�−1(T )μ̆T = 1

αWT −1
�−1(T )(ν̆T + �YT −1) with ν̆T = ν − r f,T 1

(15)
and for t = 2, . . . , T by

w∗
T −t = CT −t

(
�−1(T − t + 1)μ̆T −t+1 − �′�−1(T − t + 2)(ν̆T −t+2 + r f,T −t+2�1)

)
, (16)

with CT −t = 1

αWT −t

T∏
i=T −t+2

R f,i

.

In Corollary 2 the return vectors are assumed to be independent.

Corollary 2 Let Xτ = (
Xτ,1, Xτ,2, . . . , Xτ,k

)′
be a sequence of the independently

and identically normally distributed vectors of k risky assets, i.e., Xτ ∼ N (μ,�).
Let r f,τ be the return of the riskless asset. We assume that � is positive definite. Then
for all t = 1, . . . , T the optimal multi-period portfolio weights for period T − t are
given by

w∗
T −t = 1

αWT −t

T∏
i=T −t+2

R f,i

�−1μ̆ with μ̆ = μ − r f,T −t+21 . (17)
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The results of Corollary 2 can be obtained as a partial case of Çanakoğlu and
Özekici [6], where the stochastic market was presented by a discrete time Markov
chain. In that case the asset returns depend on the present state of the market and not
on the previous ones which implies the independence of the asset return over time.

It is noted that the dynamics of the optimal portfolio weights in Corollary 2 is
hidden in the coefficient of the absolute risk aversion α which is given by ατ =(

αWT −τ

T∏
i=T −τ+2

R f,i

)−1

.

3 Summary

There are only a few results on closed-form solutions of the multi-period portfolio
choice problem in the discrete time available in literature (see, e.g., Bodnar et al. [1]).
Unfortunately, most of them are derived under the assumption that the asset returns
are independently distributed in time.

In the present paper we derive an exact solution of the multi-period portfolio
selection problem for an exponential utility function which is obtained under the
assumption that the asset returns and the vector of predictable variables follow a
vector autoregressive process of order 1. Under the assumption of independence the
obtained expressions of the weights are proportional to the weights of the tangency
portfolio obtained as a solution in the case of a single-period optimization problem.
We show that only the coefficient of absolute risk aversion depends on the dynamics
of the asset returns in this case. Theweights of the optimal portfolio derivedwithout a
vector of predictable variables are obtained as a partial case of the suggested general
solution.

The obtained results can be further extended by taking into account the uncertain-
ties about the parameters of the data generating process. The analytical expressions
of the weights can be used to derive the expected mean vector and the covariance
matrix of the estimated weights which provide us the starting point for the detailed
analysis of their distributional properties.
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On the Discriminative Power of Tournament
Solutions

Felix Brandt and Hans Georg Seedig

Abstract Tournament solutions constitute an important class of social choice func-
tions that only depend on the pairwise majority comparisons between alternatives.
Recent analytical results have shown that several concepts with appealing axiomatic
properties tend to not discriminate at all when the tournaments are chosen from the
uniform distribution. This is in sharp contrast to empirical studies which have found
that real-world preference profiles often exhibit Condorcet winners, i.e., alternatives
that all tournament solutions select as the unique winner. In this work, we aim to
fill the gap between these extremes by examining the distribution of the number of
alternatives returned by common tournament solutions for empirical data as well as
data generated according to stochastic preference models.

1 Introduction

A key problem in social choice theory is to identify functions that map the prefer-
ence relations of multiple agents over some abstract set of alternatives to a socially
acceptable alternative.Whenever the social choice function is required to be impartial
towards alternatives and voters, it may be possible that several alternatives qualify
equally well to be chosen. It is typically understood that such ties will eventually
be broken by some procedure that is independent of the agents’ preferences. In gen-
eral, it seems desirable to narrow down the choice as much as possible based on the
preferences of the voters alone. The goal of this paper is to study the discrimina-
tive power of various social choice functions—i.e., how many tied alternatives are
returned—when preferences are drawn from common distributions that have been
proposed in the literature.

An important class of social choice functions only depends on the pairwise major-
ity relation between alternatives. When the pairwise majority relation is asymmetric,
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as is the case when there is an odd number of agents with linear preferences, these
functions are known as tournament solutions. The tradeoff between discriminative
power and axiomatic foundations is especially evident for tournament solutions as
manyof themcanbe axiomatically characterized as themost discriminating functions
that satisfy certain desirable properties.1

Analytical results about the discriminative power of tournament solutions for
realistic distributions of preferences are very difficult to obtain. To the best of our
knowledge, all existing papers explicitly or implicitly consider a uniform distribution
over all tournaments of a fixed size. Under this assumption, it was shown that the
Banks set and the minimal covering set almost always selects all alternatives as
the number of alternatives goes to infinity [5, 14]. For the bipartisan set, a more
precise result by Fisher and Reeves [6] implies that on average, it returns half of the
alternatives for odd |T |.

These analytical results stand in sharp contrast to empirical observations that
Condorcet winners exist in many real-world situations, implying that tournament
solutions very frequently return singletons.

Simulations with stochastic preference models have been used for the analysis
of several problems in (computational) social choice. See Laslier [8] and McCabe-
Dansted and Slinko [11] for examples. In comparison, we consider tournaments of
larger sizes because several tournament solutions are known to always coincide when
there are only few alternatives [3].

2 Methodology

2.1 Preference Profiles and Tournament Solutions

Let A be a set of alternatives and N = {1, . . . , n} a set of voters. The preferences
of voter i ∈ N are represented by a complete and antisymmetric preference rela-
tion Ri ⊆ A × A. The interpretation of (a, b) ∈ Ri , usually denoted by a Ri b,
is that voter i values alternative a at least as much as alternative b. When indi-
vidual preferences are transitive, we also speak of rankings. A preference pro-
file R = (R1, . . . , Rn) is an n-tuple containing a preference relation Ri for each
agent i ∈ N . The majority relation �R of a given preference profile is defined as
a �R b ⇔ |{i | a Ri b}| > |{i | b Ri a}|.

A tournament T is a pair (A,�), where � is an asymmetric and connex binary
relation on A. Whenever the number of voters n is odd, (A,�R) constitutes a tourna-
ment. If there is an alternative a such that a �R b for all b ∈ A \ {b}, a is aCondorcet
winner according to R. A tournament solution is a function that maps a tournament
to a nonempty subset of its alternatives, the choice set, and uniquely chooses a Con-
dorcetwinnerwhenever one exists. The simplest tournament solution isCONDwhich

1See, e.g., [2], Chap. 6, Sect. 2.2.2.
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Fig. 1 Set-theoretic
relationships between
tournament solutions. If the
ellipses of two tournament
solutions S and S′ intersect,
then S(T ) ∩ S′(T ) �= ∅ for
all tournaments T . If the
ellipses for S an S′ are
disjoint, however, this
signifies that
S(T ) ∩ S′(T ) = ∅ for some
tournament T . The exact
locations of BP and TEQ in
this diagram are unknown COND

TC

UC

BA
UC∞
MC

TEQ

BP

SL MA

CO

chooses the set of all alternatives whenever there is no Condorcet winner. The other
tournament solutions considered in this paper are the top cycle (TC), the uncovered
set (UC), the iterated uncovered sets (UC∞), the Copeland set (CO), the bipartisan
set (BP), the Markov set (MA), the Banks set (BA), the Slater set (SL), the minimal
covering set (MC), and the tournament equilibrium set (TEQ).

For definitions and discussions on most of these concept, we refer to the excellent
overview byLaslier [7]. The set-theoretic relationships of these concepts are depicted
in Fig. 1.

2.2 Empirical Data

In the preference library PrefLib [10], scholars have contributed data sets from
a variety of real world scenarios. At the time of writing, PrefLib contained 354
tournaments induced from pairwise majority comparisons. Out of these, all except 9
exhibit a Condorcet winner. The remaining tournaments are still very structured as
the uncovered set never contains more than 4 alternatives. This is in line with earlier
observations that real-world majority relations tend to be close to linear orders and
often have Condorcet winners [13].

2.3 Stochastic Models

As the available empirical data does not allow to draw conclusions about the differ-
ences in discriminative power of tournament solutions, we now consider stochastic
models to generate tournaments.

The uniform random tournament model was used in the previous analysis of
the discriminative power of tournament solutions (e.g., [5, 6]). It assigns the same
probability to each labeled tournament of a fixed size.
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In the next models, we sample preference profiles and work with the tourna-
ment induced by the majority relation. One of the most widely-studied models is
the impartial culture model (IC), where for each voter, every possible ranking of the
alternatives has equal probability. If we add anonymity by having indistinguishable
voters, the set of profiles is partitioned into equivalence classes. Under the impartial
anonymous culture model (IAC), each of these equivalence classes is chosen with
equal probability. In the Pólya-Eggenberger urn model, each possible preference
ranking is thought to be represented by a ball in an urn from which individual prefer-
ences are drawn. After each draw, the chosen ball is put back and α ∈ N0 new balls
of the same kind are added to the urn [1]. The urn model subsumes both IC (α = 0)
and IAC (α = 1).

A very different kind of model is the spatial model used frequently in political and
social choice (see, e.g., [12]). Here, alternatives and voters are uniformly at random
placed in a multi-dimensional space and the voters’ preferences are determined by
the (Euclidian) distanced to the alternatives.

In distance-based models, it is assumed that agents report noisy estimates of a
pre-existing truth as their preferences and suchmodels are usually parameterized by a
homogeneity parameter. In its arguably simplest form, every agent provides (possibly
intransitive) preferences R where each pairwise preference a R b is ‘correct’, with a
probability p. We will call this the Condorcet noise model. In Mallows-φ model [9],
the probability of a ranking is determined by its Kendall-tau distance to a reference
ranking, i.e., the number of pairwise disagreements. Obviously, one can define a
number of such distance-based models. See [4] for a discussion. To overcome the
bias of distance-based models to transitive majority relations, mixtures of models
have been considered. We consider uniformmixtures over k Mallows-φ models with
a shared parameter φ and refer to this as Mallows k-mixtures.

For a more detailed exposition of these models and additional results, we refer to
Seedig [15].

3 Experimental Results and Discussion

In our experimental setup, we generated tournament instances according to the afore-
mentioned models and computed the different choice sets for them. For the sampling
step, we built on the implementations from Mattei and Walsh [10] to generate pref-
erence profiles of which we considered the majority relation. The computation of the
various tournament solutions was done by our own implementations.

We examined the ability of the various solutions to rule out alternatives. Our
informal measure for discriminative power of a tournament solution on a specific
model is the distance of its average choice set size to the average size ofCONDwhich,
by definition, is the least discriminative tournament solution. In our comparisons, we
provide COND not only as a baseline but also as an indicator for the frequency of
tournaments with a Condorcet winner. We examined the average choice set sizes of
the aforementioned tournament solutions for a fixed number of voters n = 51. The
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Fig. 2 Comparison of average absolute choice set sizes for various stochastic preference models.
The number of alternatives is on the horizontal axis, the number of voters is n = 51. Averages are
taken over 100 samples. The Slater set (SL) is omitted whenever its computation was infeasible

results are shown in Fig. 2 where the graphics for IC and the urn model (α = 10)
have been omitted due to space constraints. They are very similar to the graphic for
IAC.

The following conclusions can be drawn from our results.

• TC is almost as undiscriminating as COND.
• All other tournament solutions are much more discriminating than the analyti-
cal results for uniform random tournaments suggest. In fact, for all reasonable
parameterizations of the considered models with transitive individual preferences
and at least 10 alternatives (including impartial culture) all tournament solutions
except TC discarded at least 75% of the alternatives on average.

• All tournament solutions except TC behave similarly in terms of discriminative
power. One may conclude that the decision which one to use in practice should
not be based on discriminative power, but rather on axiomatic properties.

• Tournament solutions based on scoring (SL, CO, and MA) are more discriminating
than all other tournament solutions.
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• UC∞ (and thereby also MC) discriminates more than BA. This could not be
deduced from the set-theoretic relationships between tournament solutions.

• Within the group of tournament solutions with appealing axiomatic properties, BP
discriminates the most (and is efficiently computable).
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An Actor-Oriented Approach to Evaluate
Climate Policies with Regard to Resource
Intensive Industries

Patrick Breun, Magnus Fröhling and Frank Schultmann

Abstract Metal production is responsible for a large part of greenhouse gas (GHG)
emissions in Germany. While some political stakeholders call for a more restric-
tive climate policy to force further reductions of GHG emissions, the exceptions
made for the metal industry increased so far to guarantee its global competitive-
ness. The question rises how a more restrictive climate policy would affect industrial
GHG emissions and the profitability. To estimate the impact of political instruments
the actor-oriented approach presented focuses on the simulation of plant-specific
investment decisions. First, a detailed database of the internal material and energy
flows of all relevant iron, steel and aluminium producing plants together with the
best available techniques (BAT) for GHG emission reduction is developed. In the
subsequent simulation, the plants, modelled as actors, decide on the implementa-
tion of these techniques dependent on the political conditions which are varied in
scenarios. The results show, that there are only minor GHG emission reduction
potentials due to already implemented high efficiency standards. Nevertheless, more
restrictive climate policies can lead to significant cost increases influencing global
competitiveness.

1 Introduction

The GHG emissions of the German metal production constitute 27% of the man-
ufacturing industrie’s GHG emissions in 2011.A large part of this amount can be
allocated to a comparably small number of plants. Hence, there is a special interest of
political stakeholders to focus on the decarbonization of those industrial activities. At
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the same time, about 740,000 employees work in the metal producing and processing
sectors which consequently form an important economic factor. Furthermore, numer-
ous industries downstream the value chain, as e.g. the automotive industry, depend
on the metal supply. Taking into account these two perspectives, national climate
policies need to be formulated to incentivize the utilization of available energy effi-
cient techniques in order to reach environmental long-term targets without harming
the global competitiveness due to increasing production costs.

As various possible ecological and economic impacts of different climate policies
together with the given industry-specific technical restrictions have to be investi-
gated, decision support for political stakeholders is required. So we developed the
national integrated assessment model DECARBONISE, funded by the Federal Min-
istry of Education and Research (BMBF), which focuses on the decarbonization of
the Germanmetal industry taking into account plant-specific investment decisions as
well as macroeconomic developments. The actor-oriented simulation model is part
of this project and helps to gain insight into the economic and technical reduction
potentials which are currently available and how these can be made use of by the
German metal industry.

Before the approach is sketched in Sects. 3 and 2 is concerned with a short classi-
fication of the approach and the used data which is required to determine the status
quo of the metal industry. Section4 shows exemplary model results whereas Sect. 5
gives a short conclusion.

2 Previous Works and Estimation of Plant Configurations

Ilsen [4] developed an actor-oriented approach for environmental policy evaluation
regarding emission relevant industrial processes carried out in Germany. Therein,
every plant is modelled as an actor and reacts on imposed political instruments by
deciding on the implementation of emission reduction measures based on the net
present value (NPV). As this approach is capable to capture the affects of climate
policies on different industries, it has been used andmodified in our described works.
Modifications are necessary to calculate plant- and facility-specific efficiencies more
precisely in order to estimate carbonaceous inputs, GHG emissions and reduction
potentials. Especially gaseous by-products of facilities, whose energy content can
be used at other stages of the process, as well as recovered waste heat determine the
overall efficiency of a plant (cf. [2]).

Thus, the initial internal material and energy flows of all simulated plants have
to be estimated for the starting year of the simulation. This is done by a nonlinear
programming model (NLP), which uses the reported CO2 emissions of each facility
[3] as well as plant-specific production volumes [6], capacities and technical restric-
tions [2] that are combined via a carbon balance (The detailed NLP can be found in
[1]). The calculations are carried out for eight (partly) integrated steelworks, 20 elec-
tric arc furnaces, four aluminium smelters and 14 aluminium refiners and remelters.
Figure1 shows exemplary results for one integrated steelworks.
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Fig. 1 Sankey diagram of carbon flows for an exemplary integrated steelworks (COG: coke oven
gas, BF gas: blast furnace gas, BOF gas: basic oxygen furnace gas)

3 Actor-Oriented Simulation Model

The modelling of the actors, i.e. the simulated plants, follows an input-output
approach. Initially, the input and output coefficients of the simulated facilities are
obtained from the results of the NLP and translated into a technology matrix T p,
where t p

i j represents the input (<0) or output (>0) ofmaterial i to produce the interme-
diate product j of the corresponding facility. This matrix, which contains 52materials
(columns), reflects the utilized technology for each facility (rows) of a plant p and is
the basis for the calculation of plant-specific emissions and production costs.

In the simulation, plants decide on the implementation of in total 22 efficiency
increasing techniques for the iron and steel industry and seven for the aluminium
industry, as these techniques have been identified by screening the related latest BAT
documents [2]. Every modelled efficiency increasing technique tech influences at
least one entry t p

i j in the technology matrix, which in case of an implementation
has to be adapted according to the input coefficients of this technique Δt tech

i j . A
distinction is made between onetime and continuous measures to incorporate also
techniques which can be extended continuously (i.e. over several years) as e.g. the
direct injection of reducing agents into the blast furnace.

Before the plant-specific investment decisions are annually taken, all possible
alternatives are implemented seperately for a test entity of the regarded plant to com-
pare possible GHG emission reductions and cost changes induced by the respective
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techniques and to calculate the relatedNPVs. Thereby, an implementation sometimes
not only affects the aforementioned coefficientsΔt tech

i j but also further material flows
as e.g. the generation of gaseous by-products. Hence, these indirectly affected flows
are adapted according to a carbon balance which ensures that the input mass flow
of carbon equals the output mass flow for every facility. In this way, also the CO2

emissions can be derived while other non-carbonaceous GHGs as PFC—relevant for
aluminium smelters—are adapted directly. For every adaptation of coefficients t p

i j , it
is ensured that given technological upper tmax

i j and lower bounds tmin
i j are satisfied.

Once a technology matrix is adapted, the required total inputs (>0) as well as
accruing total outputs (<0) g of the corresponding plant p can be obtained on an
annual basis by the following focal Eq.1:

g p = (T p)−1 · π p + inPP − outPP , (1)

where the vector π p denotes the annual amount of products to be sold while the
vectors inP P and out P P indicate the absolute inputs and outputs per year (each >0)
of a potentially connected power plant PP incinerating energy-rich surplus gases,
which are not utilized in other facilities, to produce electricity and steam. The latter
ones can either be used at other process stages or sold. If no power plant is available at
the production site, the surplus gases are flared leading to additional CO2 emissions
without energy recovery and inP P and out P P are set to zero.

To calculate the NPVs of all efficiency increasing techniques tech, the investments
as well as the costs and revenues have to be computed to obtain the corresponding
technique- and plant-specific cash flows C F p,tech. While the costs for raw materials
and supplies can directly be calculated using g p, the costs for depreciation, labor,
maintenance, administration, etc. are derived from Peters et al. [5] and depend on
e.g. overall investments or capacities. The costs induced by political instruments
are emphasized here and computed dependent on the configuration of ecotaxes, the
trade with GHG certificates and the EEG reallocation charge, which all are varied
in scenarios. With this information the cash flows CF can be obtained. Finally, the
calculation of the NPVs is carried out using Eq.2.

NPVp,tech = −Invtech +
∑

LS
t=1

CF p,tech
t − CF p

t

(1+ e)t
, (2)

where Invtech denotes the investments required for technique tech, L S the life span
of this technique and e the assumed interest on capital. For the investments, mainly
data of the BAT documents [2] are used while economies of scale are incorporated.
In short, Eq. 2 calculates the net effect of an investment in efficiency increasing
techniques compared to no additional investments.

Now, every plant chooses the highest positive NPVp,tech and the corresponding
technique is implemented or, if there are no positiveNPVs, no investments are carried
out. Subsequently, the technology matrices T p as well as the carbon balance are
updated and the simulation run is repeated for the next year.
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With this approach, the ecological and economic impacts of individual political
instruments—or climate policies containing a set of different instruments—on the
regarded industries can be quantified. The model is implemented in MATLAB and
connected to an input-output model of the German economy, which allows for an
estimation of the resulting macroeconomic impacts and the calculation of GHG
emissions accruing in industry sectors upstream the value chain.

4 Results of an Example Application

Simulation runs are carried out up to the year 2030. The scenarios contain probable
raw material price changes, especially for fossil fuels, and various configurations
of economic political instruments. The latter ones are modelled in detail to analyze
different free allocation rules for and different prices of GHG certificates, different
ecotaxes for used energy carriers or different EEG reallocation charges,which depend
on the respective electricity consumption.

First of all, the plant-specific GHG emission reduction potentials are estimated.
For this purpose, the standard decision routine of the simulation using NPVs is
replaced by another objective function to maximize GHG savings. The results are
shown in Fig. 2. These results are compared to the standard scenario where the plants
act economically and a reduction potential of in total 2.2 m. t CO2-eq. is obtained,
which represents only about 4% of the GHG emissions of all simulated plants.

As it becomes obvious from Fig. 2, these further GHG mitigations are possible at
the cost of reduced (but still positive) profits. This leads to the question, how the cal-
culated remaining reduction potential can be achieved when plants decide according
to the NPV by changing political instruments. With high prices for CO2 certificates,
a large part of the reduction potential is used. But this leads to comparably high
windfall profits for some plants if the current free allocation rules are maintained.

Fig. 2 Exemplary results for the scenario maximize GHG savings
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If the actual financial reliefs of the energy intensive industries are repealed by elim-
inating the free allocation of certificates as well as by increasing the ecotaxes and
EEG reallocation charges up to the level of the manufacturing industry, the GHG
emission reductions are comparably low while notable financial losses are recorded.

5 Conclusions

To estimate the affects of climate policies, the reactions of the affected actors (here:
the metal industry) have to be incorporated. These reactions depend on given techni-
cal restrictions and financial conditions. Thus, the presented approach focuses on a
detailedmodelling of possible efficiency gains on facility and plant level as well as on
a detailed calculation of costs induced by imposing political instruments. This level
of detail goes beyond most approaches in the field of policy evaluation and allows
for a realistic estimation of the future developments in the regarded sectors. The
results show that the possible contribution of the metal industry to achieve ambitious
national long-term GHG reduction targets is comparably low and that more restric-
tive climate policies rather lead to unprofitable production than to additional GHG
emission savings.
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Upper Bounds for Heuristic Approaches
to the Strip Packing Problem

Torsten Buchwald and Guntram Scheithauer

Abstract We present an algorithm for the two-dimensional strip packing problem
(SPP) that improves the packing of the FFDH heuristic, and we state theoretical
results of this algorithm. We also present an implementation of the FFDH heuristic
for the three-dimensional case which is used to construct the COMB-3D heuristic
with absolute worst-case performance ratio of 5. We also show, that this heuristic
has absolute worst-case performance ratio of at most 4.25 for the z-oriented three-
dimensional SPP. Based on this heuristic, we derive a general upper bound for the
optimal height which depends on the continuous and the maximum height lower
bound. We prove that the combination of both lower bounds also has an absolute
worst-case performance ratio of at most 5 for the standard three-dimensional SPP.
We also show that the layer-relaxation has a worst-case performance ratio of at most
4.25 for the z-oriented three-dimensional SPP.

1 Introduction

In this paper, we consider the two- and three-dimensional strip packing problem
(SPP) with rectangular items. In the two-dimensional case (SPP-2), a list L :=
(R1, . . . ,Rn) of small rectangles Ri (items) of width wi ≤ W and height hi ≤ H,
i ∈ K := {1, . . . , n} is given. The items have to be packed into a strip of given width
W andminimal heightOPT such that the items do not overlap each other. In the three-
dimensional case (SPP-3), the items (boxes)Ri additionally have length li ≤ L, i ∈ K ,
and they have to be packed into a container of given length L and width W such that
minimal height is used. For standard SPP-3, rotation of items is not permitted, but
we also consider a version of SPP-3 where the length and width of items can be
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interchanged. Without loss of generality, we assume that all input-data are positive
integers.

In this paper, we present new results based on those given in [2]. There, a new
algorithm for SSP-2 is introduced which improves the well-known FFDH heuristic
(cf. [3]). Theoretical results are also given. Furthermore, in [2] an implementation of
the FFDH heuristic for SPP-3 is proposed. Based on this heuristic, in this paper a new
upper performance bound for some special case is proposed. Using this heuristic,
in [2] a new heuristic for SPP-3 is created which enables us to prove a new general
upper bound for the optimal value of this packing problem.

2 Two-Dimensional Approaches

A simple heuristic for the two-dimensional SPP is the FFDH heuristic. In [3] it is
proved that this heuristic has an asymptotic worst-case performance ratio of 1.7 and
an absolute worst-case performance bound of 2.7 . One disadvantage of this heuristic
is the fact that all items of every single strip has decreasing heights. It might be more
useful to have strips with decreasing heights and with increasing heights. Based on
this idea, Schiermeyer provided an algorithm, called Reverse Fit [6], with an absolute
worst-case performance bound of 2. The idea that we analyzed is a post-reduction
procedure FFDH∗ (cf. [2]) for a packing created by the FFDH heuristic.

Algorithm FFDH∗

1. Pack all items of K using the FFDH heuristic.
2. Choose two strips t, u ∈ {1, . . . , s}, t < u.
3. Rearrange the order of the strips, such that t is the second-highest strip and u is

the highest one.
4. Rotate the whole strip u by 180◦ (cf. Fig. 1).
5. Drop down strip u as much as possible.
6. If possible, repeat this method with two of the not already considered strips.

For this procedure we proved the following statement (cf. [2]):

Step 3 Step 4 Step 5

Fig. 1 Algorithm FFDH∗
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Theorem 1 Let p ≥ 2 be a natural number, wi ≤ W/p for all items of K and let
A(K) denote the area of all items. Furthermore, let h̃j denote the height of strip j
created by the FFDH heuristic. In the case that Algorithm FFDH∗ cannot achieve
any improvement, we have

FFDH∗(K) <
p + 1

pW
A(K) + h̃1

−
(
1

2
+ p − 2

2p2

)(
h̃1 − max{0, 2 max

j∈{1,...,s}{̃hj − h̃j+1} − h̃1}
)
.

This result also provides that the FFDH∗ procedure improves the height of the
packing created by the FFDH heuristic, if this height is greater than the bound stated
in Theorem 1. Another algorithm with absolute worst-case performance bound of 2
was provided by Steinberg in [7]. This algorithm is based on a reduction procedure
and packs all items in polynomial time.

3 Three-Dimensional Approaches

In this section, we consider an implementation of the FFDH heuristic for the three-
dimensional case, called FFDH-3D heuristic. The FFDH-3D heuristic is then com-
bined with the algorithm of Steinberg [7] to formulate a new three-dimensional
packing heuristic, called COMB-3D heuristic [2].

Using the layer-based FFDH-3D heuristic, the items are sorted according to non-
increasing height and each item is placed in the lowest layer, where the item can
be packed. A set of items can be packed in one layer, if all items of this set can
be placed next to each other or a packing can be guaranteed by the algorithm of
Steinberg [7]. The general absolute worst-case performance ratio of the FFDH-3D
heuristic is unlimited, but we get a finite absolute worst-case performance ratio in
some special cases:

Theorem 2 Let a container with base area L × W and a natural number p ∈ [2, W ]
be given. Furthermore, let K be a set of items of size li × wi × hi with wi ≤ W/p
for all i ∈ K. Then we have for the absolute worst-case performance ratio of the
FFDH-3D heuristic:

sup
E

FFDH-3D(E)

OPT(E)
= 2(p + 1)

p
+ 1.

We use the fact that an instance of the three-dimensional SPP with wi > W/2
for all items can be reduced to an instance of the two-dimensional SPP, since it
is not possible to pack two items next to each other in the width-direction. For the
COMB-3D heuristic we partition the set of items into the set of items withwi ≤ W/2
and the set of items withwi > W/2 and pack both sets separately. We pack all items
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with wi ≤ W/2 using the FFDH-3D heuristic. For the items with wi > W/2 we
reduce the instance of SPP-3 to an instance of the two-dimensional SPP and use
the algorithm of Steinberg [7] to pack these items. We also analyzed the worst-case
performance ratio of the COMB-3D heuristic.

Theorem 3 Let a container with base area L × W be given. Furthermore, let K
be a set of items of size li × wi × hi. Then we have for the absolute worst-case
performance ratio of the COMB-3D heuristic:

sup
E

COMB-3D(E)

OPT(E)
= 5.

More detailed examinations show that this result can be further improved.

Theorem 4 Let a container with base area L × W be given. Furthermore, let K be
a set of items of size li × wi × hi and let K2 := {

i ∈ K : wi >
1
2W, li ≤ 2

3L
} �= ∅.

Let the constant C be defined by
∑

j∈K2
ljhj = CL max{hi : i ∈ K2}. Then we have

for the absolute worst-case performance ratio of the COMB-3D heuristic:

sup
E

COMB-3D(E)

OPT(E)
= max{5 − 3

2
C,

9

2
}.

Theorem 5 Let a container with base area L × W be given. Furthermore, let K be a
set of items of size li × wi × hi and let K2 := {

i ∈ K : wi >
1
2W, li ≤ 2

3L
} = ∅. Then

we have for the absolute worst-case performance ratio of the COMB-3D heuristic:

sup
E

COMB-3D(E)

OPT(E)
= 4.

Moreover, the idea of the COMB-3D heuristic is not only applicable for the three-
dimensional SPPwithout rotation.We also consider the case that items can be rotated
so that li and wi can be interchanged but hi is fixed. For this problem we assume
max{li, wi} ≤ min{L, W } for all items i ∈ K , so that each item can be packed in both
orientations. This kind of three-dimensional SPP, called z-oriented three-dimensional
SPP, was analyzed in [5] and [4]. The authors provided algorithms which are focused
on the asymptotic worst-case performance bounds. We can show that the COMB-3D
heuristic has an absolute worst-case performance bound for the z-oriented three-
dimensional strip packing problem, that is even better than the absolute worst-case
performance bound for the three-dimensional SPP without rotation.

Theorem 6 Let a container with base area L × W with L ≤ W be given. Further-
more, let K be a set of items of size li × wi × hi with li ≥ wi. For the COMB-3D
heuristic, we get an absolute worst-case performance bound of

sup
E

COMB-3D(E)

OPT(E)
≤ 17/4 = 4.25.
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Since the condition li ≥ wi can be fulfilled by rotation, this absolute worst-case
performance bound holds also for the considered SPP with rotation. For the special
case L = W , we get an even better result.

Theorem 7 Let a container with square base area L × W with L = W be given. Fur-
thermore, let K be a set of items of size li × wi × hi with li ≥ wi. For the COMB-3D
heuristic adapted to the z-oriented SPP-3, we get an absolute worst-case perfor-
mance bound of

sup
E

COMB-3D(E)

OPT(E)
≤ 4.

The COMB-3D heuristic is also useful to analyze the absolute worst-case perfor-
mance ratios of lower bounds of the three-dimensional SPP:

Theorem 8 Let E = (L, W,K) be any instance of the three-dimensional strip
packing problem. Let V (K) denote the volume of all items in K. For the absolute
worst-case performance ratio of the combined lower bound b0 := max{⌈ 1

LW V (K)
⌉
,

max
j∈K

hj} holds

sup
E

OPT(E)

b0(E)
≤ sup

E

COMB-3D(E)

b0(E)
≤ 5.

Considering the z-oriented three-dimensional SPP we can show a similar result
for a class of lower bounds.

Theorem 9 Let E = (L, W,K) be any instance of the z-oriented three-dimensional
strip packing problem with L ≤ W and li ≥ wi for all i ∈ K. Furthermore, let K1 :=
{i ∈ K : wi > W/2}. Let b be any lower bound for the z-oriented three-dimensional
strip packing problem with

b ≥ max

⎧
⎨

⎩

⌈
1

LW
V (K)

⌉
,max

j∈K
hj,

∑

j∈K1

hj

⎫
⎬

⎭ .

For the absolute worst-case performance ratio of the lower bound b holds

sup
E

OPT(E)

b(E)
≤ sup

E

COMB-3D(E)

b(E)
≤ 17/4 = 4.25.

An example for a lower bound of this class is the layer-relaxation. This relaxation
replaces each item i with hi items with same length and width but height 1. Two
items which are created by the same original item are not allowed to be placed at the
same layer.

The proofs of the Theorems of this section can be found in [1].
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4 Conclusions and Outlook

In this paper, we presented a new algorithm for the two-dimensional strip packing
problem which improves packings of the FFDH heuristic and we stated an improved
upper bound of this algorithm for an important special case. Furthermore, we showed
new upper bounds for two special cases of the three-dimensional strip packing prob-
lem. By using these special cases we succeeded to create a new general upper bound
for the optimal value of this problem.We used this upper bound to improve the upper
bound of the absolute worst-case performance ratio of a well known natural lower
bound of the three-dimensional strip packing problem. Furthermore, we adapted the
new heuristic to the z-oriented three-dimensional SPP and proved absolute worst-
case performance bounds for the adapted heuristic. Moreover, we used this heuristic
to improve the absolute worst-case performance bound of a class of lower bounds of
the z-oriented SPP-3.

It will be part of our future research to prove a stronger general bound for the new
algorithm for the two-dimensional strip packing problem. Furthermore, we will try
to improve the bounds of the worst-case performance ratio mentioned above.
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An Approximative Lexicographic
Min-Max Approach to the Discrete
Facility Location Problem

Ľuboš Buzna, Michal Koháni and Jaroslav Janáček

Abstract We propose a new approximative approach to the discrete facility location
problem that provides solutions close to the lexicographic minimax optimum. The
lexicographic minimax optimum is concept that allows to find equitable location of
facilities. Our main contribution is the approximation approach, which is based on
the rules allowing: (i) to take into account the multiplicities assigned to different
customers; (ii) to detect whether for a given distance active customers can reach
higher, equal or smaller distance to the closest located facility; and (iii) to usemethods
customized for solving the p-median problem.Customizedmethods can handle larger
problems than state-of-the-art general purpose integer programming solvers. We use
the resulting algorithm to perform extensive study using the well-known benchmarks
and benchmarks derived from the real-world road network data. We demonstrate
that our algorithm allows to solve larger problems than existing algorithms and
provides high-quality solutions. The algorithm found the optimal solution for all
tested benchmarks, where we could compare the results with the exact algorithm.

1 Introduction

Our study is motivated by problems faced by public authorities when locating
facilities, such as schools, branch offices and ambulance, police or fire stations.
These systems are typically paid from public money and they should account for
equitable access to services. Previous approaches to the equitable location of facil-
ities [1, 2], result in a specific form of the mathematical model that is supposed to
be solved by a general purpose solver. Our initial experience with the algorithm [1],
implemented on the state of the art solverXPRESS, indicated that we are able to solve
problems up to 900 customers and 900 candidate facility locations, while restricting
the distances to integers and measuring them in kilometres. This limitation might be
too tight for some real-world applications and therefore it is of interest to elaborate
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algorithms, which can provide high-quality solutions to larger problems. Building on
the concept of unique classes of distances [1], we propose approximation algorithm
providing high quality solutions for large instances of solved problems. We use the
resulting algorithm to perform extensive study using the well-known benchmarks
and two new large benchmarks derived from the real-world data.

2 Problem Formulation

Weconsider a set of potential locations of facilities I and a set of aggregate customers
J . Each aggregate customer j ∈ J is characterized by a unique geographical position
and by an integer weight b j . The weight b j represents the number of individual
customers situated in the location j . The decisions to be made can be represented by
a set of binary variables. The variable yi equals to 1 if the location i ∈ I is used as
a facility location and 0 otherwise. Allocation decisions are modelled by variables
xi j for i ∈ I and j ∈ J , whereas xi j = 1 if location i is serving the customer j and
xi j = 0 otherwise. In order to obtain a feasible solution, the decision variables have
to satisfy the following set of constraints:

∑

i∈I

yi = p, (1)

∑

i∈I

xi j = 1 for all j ∈ J, (2)

xi j ≤ yi for all i ∈ I, j ∈ J, (3)

xi j ∈ {0, 1} for all i ∈ I, j ∈ J, (4)

yi ∈ {0, 1} for all i ∈ I, (5)

where the Eq. (1) specifies that the number of located facilities equals to p. The
constraints (2) make sure that each customer is assigned to exactly one facility,
and the constraints (3) allow to assign a customer only to the located facilities.
Following Ref. [1], we denote the set of all feasible location patterns, which satisfy
the constraints (1)–(5), by the symbol Q.

We order the set of all feasible distance values di j into the descending sequence
of unique distance values Dk , for k = 1, . . . , kmax . Each feasible solution in the set
Q can be associated with a sequence of subsets [J1, J2, . . . , Jkmax ] and with a vector
[B1, B2, . . . , Bkmax ]. The distance between customers in the set Jk and the assigned
facility is exactly Dk . The component Bk is a number defined as Bk = ∑

j∈Jk
b j .

If the set Jk is empty, then the associated value Bk is zero. The lexicographically
minimal solution in the set Q is a solution that corresponds to the lexicographically
minimal vector [B1, B2, . . . , Bkmax ] [3].
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3 The Algorithm A-LEX

Similarly to the algorithm [1], our algorithm solves optimization problems in stages
corresponding to the distance values. For each k = 2, . . . , kmax , we consider a par-
titioning of the set J into the system of subsets {J1, . . . , Jk−1,Ck}, where Ck is a
set of active customers. The subset Jk ⊆ Ck is determined as the minimal subset
of customers (i.e. the set, where the sum of multiplicities

∑
j∈Jk

b j is the smallest),
whose distance from the closest facility location equals to the value Dk . For a given
value of Dk , we find the minimal set Jk by solving the problem Pk :

Minimize gk(x) =
∑

i∈I

∑

j∈J

r k
i j xi j (6)

Subject to (x, y) ∈ Q, (7)

where rk
i j are the costs defined for j ∈ Ck and i ∈ I in the following way:

rk
i j =

⎧
⎪⎨

⎪⎩

0, if di j < Dk,

b j , if di j = Dk,

(1 + ∑
u∈Ck

bu), if di j > Dk,

(8)

and for j ∈ Jl where l = 1, . . . , k − 1and i ∈ I according to the followingprescription:

rk
i j =

{
0, if di j ≤ Dl,

(1 + ∑
u∈Ck

bu), otherwise.
(9)

Knowing the optimal solution (xk, yk) of the problem Pk , the following implica-
tions can be derived:

1. If gk(xk) = 0, then each customer j ∈ Ck can be assigned to a facility whose
distance from j is less than Dk .

2. If 0 < gk(xk) < 1 + ∑
u∈Ck

bu , then each customer j ∈ Ck can be assigned to
a facility, whose distance from j is less or equal to Dk . The minimal subset of
customers Jk ⊆ Ck , whose distance from the closest facility locations equals to
the value Dk can be defined as { j ∈ Ck | ∑i∈I r k

i j x
k
i j = b j }.

3. If gk(xk) >
∑

u∈Ck
bu , then this case indicates non-existence of a solution (x, y)

to the problem Pk , for which
∑

i∈I di j xi j ≤ Dl for j ∈ Jl , where l = 1, . . . , k.

We formulate the algorithm A-LEX, where we identify the customers whose
distance from the closest facility location cannot be shorter than Dk , by embedding
the problem Pk :

Step 0: Set k = 1 and C1 = J.
Step 1: Solve the problem Pk and denote the solution by (xk, yk).
Step 2: If gk(xk) = 0, set Ck+1 = Ck and go to Step 4, otherwise go to Step 3.
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Step 3: Set Jk = { j ∈ Ck | ∑i∈I r k
i j x

k
i j = b j }; Ck+1 = Ck − Jk .

Step 4: If Ck+1 = ∅, then terminate and return (xk, yk) as the solution, otherwise set
k = k + 1 and continue with the Step 1.

Correctness and finiteness of the algorithm A-LEX, including the optimality condi-
tions, are in more details analysed in Ref. [4].

4 Numerical Experiments

Our two main goals are to evaluate the quality of solutions provided by the algorithm
A-LEX by comparing them to the exact algorithm (algorithm O-LEX hereafter) [1]
and to test the limits of the algorithm regarding the size of solvable problems. To
be able to compare our results with the exact algorithm O-LEX, we implemented
algorithm A-LEX (algorithm A-LEXX hereafter) in the XPRESS-Mosel language
(version 3.4.0) and we ran it using the XPRESS-Optimizer (version 23.01.05). To
explore the properties of the algorithm A-LEX beyond the limits of the general pur-
pose integer solvers, we implemented the algorithm A-LEX in the Microsoft Visual
C++ 2010 using the algorithm ZEBRA, the state-of-the-art solver for the p-median
problem [5] (algorithm A-LEXZ hereafter). Two sets of testing problems organized
by the size were used to perform the computational study. In all cases, customers’
sites are considered to be also possible facility locations, i.e. sets I and J are identi-
cal. As there are no standard test problems for the facility location problem with the
lexicographic minimax objective, we used the problems originally proposed for the
capacitated p-median problemwhile interpreting the demands asb j values (multiplic-
ities of customers). Three problems S JC2 (|I | = 200), S JC3 (|I | = 300) and S JC4
(|I | = 402) are taken from the Ref. [6] and together with two instances derived from
the network of |I | = 737 Spanish cities [7] constitute the medium sized instances.
Large test problems include the problem p3038 (|I | = 3038) originally proposed for
the TSP [8] and later adjusted to the capacitated p-median problem [6]. Furthermore,
considering the population data as b j values, we created large-sized benchmarks
from the interurban road network of the Slovak Republic (|I | = 2928) [9] and the
interurban road network of six south-eastern U.S. states: Tennessee, North Carolina,
South Carolina, Georgia, Alabama and Mississippi (|I | = 2398) [10].

We summarized the computational results in Table1. Due to problems with the
computer memory XPRESS solver was not able to solve large instances successfully.
Therefore, for large instances we show in Table1 the results obtained by the solver
ZEBRA only. Comparison of results reveals that the algorithmA-LEXX outperforms
the algorithm O-LEX in terms of the computational time. A-LEXX computed all
medium instances in 47.6% of the time needed by the algorithm O-LEX. In order to
compare the quality of the solution, we evaluated the Manhattan distance between
the location vectors y. Occasionally, we found small differences in the location of
facilities. However, we checked, and we found that customers have the same distance
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Table 1 Computational results for the algorithm A-LEX

Medium instances Large instances

Instance p O-LEX A-LEXX Instance p A-LEXZ

Time [s] Time [s] Time [s]

S JC2 10 131,4 50,9 p3038 2000 4204,3

S JC2 20 64,4 37,4 p3038 1500 8915,9

S JC2 30 32,2 17,4 p3038 900 190092,9

S JC2 40 20,3 9,7 p3038 700 17902,9

S JC3 15 461,6 357,7 p3038 100 ∗
S JC3 30 145,1 68,8 p3038 50 ∗
S JC3 45 71,1 37,9 p3038 10 201165,3

S JC3 60 53,3 29,8 SR 2000 1021,6

S JC4 20 1371,2 1205,8 SR 1500 1083,4

S JC4 40 1207,5 1052,5 SR 900 1988,5

S JC4 60 158,7 87,2 SR 700 2954,2

S JC4 80 144,9 56,2 SR 100 9624,7

Spain_737_1 37 116838 81185,1 SR 50 10509,8

Spain_737_1 50 196000 27296,2 SR 10 11888,4

Spain_737_1 185 12367,4 279,5 U S 2000 1006,6

Spain_737_1 259 430,4 32,2 U S 1500 1203,7

Spain_737_2 37 35590,7 29185,6 U S 900 1694,7

Spain_737_2 50 64005,7 27806,1 U S 700 11022,5

Spain_737_2 185 3182,3 232,4 U S 100 ∗
Spain_737_2 259 72,5 43,2 U S 50 ∗

U S 10 9038,2

The symbol “∗” denotes the cases when the algorithm did not terminate within 3days

to the closest located facility in all tested instances. Thus, the algorithmA-LEX found
an optimal solution in all cases where we were able to compare it with the algorithm
O-LEX.

5 Conclusions

The proposed algorithm A-LEX is competitive with the state-of-the-art algorithm
O-LEX:

• it allows to solve large instances of the problem,
• the algorithm found the optimal solution for all instances, wherewe could compare
the results with the exact algorithm,

• the algorithmA-LEX computed all medium instances in 47.6% of the time needed
by the algorithm O-LEX.
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The proposed approximation approach is also applicable to other types of similar
combinatorial optimization problems with lexicographic minimax objective. Exam-
ple of a problem, where this approach could be used, is the maximum generalized
assignment problem.
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Effects of Profit Taxes in Matrix Games

Marlis Bärthel

Abstract It is consensus in different fields of practical relevance that the introduction
of taxes will—in one way or the other—affect the playing behavior of actors. How-
ever, it is not clear what the effects might really look like. Here, a game theoretic
model is considered that concentrates on effects of relative or constant taxes on
transferred monetary volume. For matrix games it is asked: How do taxes change
the behavior of players and the expected transacted volume? Analyzing this basic
researchmodel clearly shows:One has to be careful in considering taxes as a powerful
instrument to confine aggressive playing behavior. Taxes might encourage increased
expected transfers.

1 Introduction

In some economic applications not only the real payoffs of the actors, but the trans-
ferred amount of money plays an important role. When for instance a financial
transaction tax is introduced, the traded financial volume would be crucial to deter-
mine resulting tax revenues. Offerers of bets or gambling (e.g. online portals of
sports betting, poker platforms or casinos) are faced with a similar situation. It is not
important for the providers who of the participating actors has which payoff; instead
the monetary transfer is interesting.

In this context the concept of (bi) matrix games offers an interesting modelling
framework. Commonly, for a 2-person-zerosum matrix game Γ with payoff matrix
A for player 1 (and −A for player 2) and mixed strategies p and q of the players, the
expected payoff for player 1 is defined by v1(A; p, q) = ∑ ∑

pi q j ai j . We define
the expected transfer (cf. [1])

ET (A; p, q) :=
∑ ∑

pi q j |ai j |.
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The only difference between expected payoff and expected transfer is, that the
absolute values of the entries ai j instead of the real, signed payoffs are consid-
ered in our setting. If the matrix game has a unique Nash-equilibrium ( p̄, q̄), we
call ET (Γ ) := ET (A; p̄, q̄) the expected transfer of the game. We investigate how
the expected transfer changes, when taxes have to be paid to a third, uninvolved
party. We basically consider four different tax scenarios, depending on who (win-
ner or loser) is taxed and how (relative or constant tax) the amount of the taxes is
determined.

In Sect. 2 we explain the model. An example and some general results are pre-
sented in Sect. 3. We conclude by summarizing the main facts and listing some open
questions in Sect. 4.

2 The Model

Our basic model can be described in six steps. We always assume fully informed,
risk neutral and perfectly rational players.

(I) Consider a 2-person-zerosum matrix game Γ with payoff matrix A for player
1 and −A for player 2.

(II) Determine the optimal strategies, i.e. the Nash-equilibrium ( p̄, q̄) (cf. [3]).
To ensure that the game has a unique Nash-equilibrium, consider only non-
degenerate games in step (I) (cf. [2] for definition and properties of non-
degenerate matrix games).

(III) The game theoretic value of the game (cf. [4]) is given by the expected payoff of
player 1: v(Γ ) = ∑ ∑

p̄i q̄ j ai j . Determine the expected transfer of the game
(cf. [1])

ET (Γ ) :=
∑ ∑

p̄i q̄ j |ai j |.

(IV) Change the payoffs of the players by charging a tax with tax-parameter x
and receive a bimatrix game Γtax(x). This step involves the essential idea of
modelling a tax and will be explained in more detail below. Different scenarios
are considered.

(V) Determine the optimal strategies, i.e. the Nash-equilibrium ( p̄(x), q̄(x)) of the
taxed game. The Nash-equilibrium need not be unique. In this case, consider
all possible Nash-equilibria.

(VI) The expected transfer of the taxed game with respect to the equilibrium
( p̄(x), q̄(x)) is

ET (Γtax(x); p̄(x), q̄(x)) :=
∑ ∑

p̄i (x)q̄ j (x)|ai j |.

In case there is a unique equilibrium in step (V), we shortly write

ET (Γtax(x)) := ET (Γtax(x); p̄(x), q̄(x)).
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In step (IV) the taxation of the matrix game Γ = (A,−A) is modelled. Basically
we define four different tax scenarios. The scenarios arise by combining two options
ofwho is taxed (winner or loser) and two options of how is taxed (relative or constant
tax).

Assume for instance a winner tax with a relative tax rate of 10%, i.e. x = 0.1
(or a constant tax of y = 0.1). When row i and column j are played, then |ai j | is
transferred. For ai j > 0,winner tax means that player 1 receives only 0.90 · ai j in the
relative case (or ai j − 0.1 in the constant case), whereas player 2 has to pay the full
ai j . For ai j < 0, player 1 has to pay the full |ai j |, but player 2 only gets 0.90 · |ai j | (or
|ai j | − 0.1). For ai j = 0, nothing at all is transferred and no taxes (or 1

2 y = 0.05 in
the constant case) are taken from both players. We denote the new game by ΓWiT(x),
where the index “WiT” is short for “Winner Tax”.

Introducing such a tax changes the character of the game. It is no longer a zerosum,
but now a bimatrix game. The resulting bimatrix game may have several equilibria,
with different expected payoffs and transfers. However, at least in the case where also
the taxed game has a unique equilibrium, one may compare the expected transfers
of ΓWiT(x) and Γ . We do this comparison with respect to the original |ai j |. So, when
for instance in the taxed game player 1 gets (1 − x) · a (or a − y) and player 2 has to
pay 1 · a, then we count this as transfer of size 1 · a. I.e. our transfer means “transfer
before tax”.

The payoff changes and comparisons of the expected transfers in the other tax
scenarios are realized analogously. We investigate the scenarios

• relative winner tax: the winner only gets (1 − x) · |ai j | instead of |ai j |, the loser
has to pay |ai j | (where x ∈ [0, 1)).

• relative loser tax: the loser has to pay (1 + x) · |ai j | instead of simply |ai j |, the
winner gets |ai j | (where x ∈ [0, 1)).

• constant winner tax: the winner only gets |ai j | − y instead of |ai j |, the loser has
to pay |ai j | (where y ≥ 0).

• constant loser tax: the loser has to pay |ai j | + y instead of simply |ai j |, the winner
gets |ai j | (where y ≥ 0).

Naive common sense might suggest that such a tax should discourage high trans-
fers, resulting in a smaller expected transfer. But analysis tells a different story, at
least for small, fair matrix games. Rather often, a tax increases the expected transfer.
There are interesting differences between relative and constant taxes.

3 Results for Relative and Constant Profit Taxes

In this article, we only consider non-degenerate, fair games, i.e. games with game
theoretic value v(Γ ) = 0 according to step (III) in Sect. 2. In the initial situation the
equilibrium payoffs are 0 for both players.
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Table 1 The four scenarios for the fair 2 × 2 example game with fixed relative tax rate x = 0.1 or
constant tax y = 0.1

Scenario A B p̄ q̄ v̄1 v̄2 ET

Matrix game: Γ

(
1 −2

−3 6

) (
−1 2

3 −6

)
⎛

⎝
3
4

1
4

⎞

⎠

⎛

⎝
2
3

1
3

⎞

⎠ 0 0 2

Relative winner

tax: ΓWiT(0.1)

(
0.9 −2

−3 5.4

) (
−1 1.8

2.7 −6

) ⎛

⎝
87
115

28
115

⎞

⎠

⎛

⎝
74
113

39
113

⎞

⎠ − 57
565

≈ −0.1009

− 57
575

≈ −0.0991

2 + 2
12995

≈ 2.0002

Relative loser

tax: ΓLoT(0.1)

(
1 −2.2

−3.3 6

) (
−1.1 2

3 −6.6

) ⎛

⎝
96
127

31
127

⎞

⎠

⎛

⎝
82
125

43
125

⎞

⎠ − 63
625

≈ −0.1008

− 63
635

≈ −0.0992

2 + 2
15875

≈ 2.0001

Constant winner

tax: ΓWiT(0.1)

(
0.9 −2

−3 5.9

) (
−1 1.9

2.9 −6

) (
89
118
29
118

) ⎛

⎝
79
118

39
118

⎞

⎠ − 69
1180

≈ −0.0585

− 49
1180

≈ −0.0415

2 − 54
3481

≈ 1, 9845

Constant loser

tax: ΓLoT(0.1)

(
1 −2.1

−3.1 6

) (
−1.1 2

3 −6.1

) ⎛

⎝
91
122

31
122

⎞

⎠

⎛

⎝
81
122

41
122

⎞

⎠ − 51
1220

≈ −0.0418

− 71
1220

≈ −0.0582

2 + 56
3721

≈ 2.0150

Example 1 As an example, we look at the non-degenerate 2 × 2 matrix game Γ =
(A,−A) with

A =
(

1 −2
−3 6

)
.

This game has the unique equilibrium ( p̄, q̄) =
((

3
4 ,

1
4

)�
,
(
2
3 ,

1
3

)�)
. The value of

the game is v(Γ ) = p̄� Aq̄ = 0, so it is a fair game. The expected transfer of Γ is

ET (Γ ) = (
3
4

1
4

) (
1 2
3 6

)( 2
3
1
3

)
= 3 · 2 · 1 + 3 · 1 · 2 + 1 · 2 · 3 + 1 · 1 · 6

12
= 2.

Now we assume that a third party (for instance the state, a platform provider etc.)
enters the scene and collects a profit tax. Table1gives anoverviewof all four scenarios
if the relative tax rate is x = 0.1 or the constant tax is y = 0.1, respectively. It contains
the payoffmatrices (A, B), the equilibriumstrategies ( p̄, q̄), and the expectedpayoffs
(v1, v2) of the two players, as well as the resulting expected transfer (ET ).

An interesting observation is: The expected transfer in the scenarios relative win-
ner tax, relative loser tax and constant loser tax has increased, while it has decreased
in the scenario constant winner tax. Figure1 shows the effects for all relative tax rates
x ∈ [0, 1) and all constant taxes y ∈ [0, 3).

This phenomenon of monotonically increasing or decreasing expected transfers
is not an artifact of the special 2 × 2 game with matrix A from above, as shown by
Theorem 1 (cf. [1]) and Theorem 2: Resulting effects, represented by Fig. 1, occur
for all non-degenerate, fair 2 × 2 matrix games.
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Fig. 1 Expected transfers for the example game and the four scenarios. a Scenarios with rel. tax
x ∈ [0, 1). b Scenarios with const. tax y ∈ [0, 3)

Theorem 1 (Scenarios with a Relative Tax)
Let Γ = (A,−A) be a non-degenerate, fair 2 × 2 matrix game. For every relative
tax rate x ∈ [0, 1), the following four statements hold.

(i) The bimatrix gamesΓWiT(x)andΓLoT(x) each have exactly one Nash-equilibrium.
(ii) ET (ΓWiT(x)) is either strictly increasing in x or constant.

(iii) ET (ΓLoT(x)) is either strictly increasing in x or constant.
(iv) ET (ΓWiT(x)) ≥ ET (ΓLoT(x)) ≥ ET (Γ ).

Theorem 2 (Scenarios with a Constant Tax)
Let Γ = (A,−A) be a non-degenerate, fair 2 × 2matrix game and a := min{|a11| +
|a21|, |a12| + |a22|, |a11| + |a12|, |a21| + |a22|}. For every constant tax y ∈ [0, a), the
following three statements hold.

(i) The bimatrix gamesΓWiT(y)andΓLoT(y) each have exactly one Nash-equilibrium.
(ii) ET (ΓWiT(y)) is either strictly decreasing in y or constant.

(iii) ET (ΓLoT(y)) is either strictly increasing in y or constant.

Remark 1 The games with mixed optimal strategies and constant expected transfers
in Theorems 1 and 2 are always sets of measure 0.

A complete proof of Theorem 1 can be found in [1]. The proof of Theorem 2
works analogously. The limitation of the constant tax tomaximally a := min{|a11| +
|a21|, |a12| + |a22|, |a11| + |a12|, |a21| + |a22|} substantially means: For a player, the
winner tax does not convert an originally better option to a worse option if the
opponent selects a fixed pure strategy.
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4 Conclusion and Open Questions

For small matrix games, the introduction of taxes often results in higher expected
transfers. For non-degenerate, fair 2 × 2 matrix games and the three tax scenarios
relative winner tax, relative loser tax, constant loser tax this phenomenon holds in
every instance. The scenario constant winner tax results in a decreasing expected
transfer.

Having results of our model in mind, several interesting questions for real appli-
cations occur. Is it possible that after the introduction of taxes, actors speculate and
gamble even more aggressively? Would in consequence a tax be much more disturb-
ing than calming for a market? Would on the other hand a tax be a secure source
of revenue? If so, what would be a good tax parameter to establish a justifiable bal-
ance between disturbance and financial revenue (that in an ideal case could be used
sustainably)?

The game theoretic result of increasing expected transfers indeed can not readily
be transmitted to real-world applications like a financial transaction tax or taxes on
bets or gambling. However, our model shows that one has to be careful in considering
taxes as panacea to confine aggressive playingbehavior. In case of taxing2 × 2matrix
games, often the opposite is true: Taxes encourage higher transfers.

Acknowledgments Special thanks go to Ingo Althöfer, who gave his time for discussions and
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form.html).
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Extension and Application of a General
Pickup and Delivery Model for Evaluating
the Impact of Bundling Goods in an Urban
Environment

Stephan Bütikofer and Albert Steiner

Abstract In this work we present results from a research project dealing with the
bundling of goods, which was applied to the region of Zurich. The main goal was
to develop a model for quantifying the impact of bundling goods on total costs. We
focussed on the case of two distributors here and investigated two scenarios, namely
no and full cooperation. The scenarios were based on transportation requests from
customers and known origin-destination transport flows between postcodes. The
costs include salaries, fleet degeneration and amortisation, respectively, and CO2

emissions. To allow for computing the total costs, a pickup and delivery model from
literature was implemented and extended. It could be shown that even for a simple
kind of cooperation, savings of around 7% in total costs are possible.

1 Introduction

Over the past decades, many metropolitan areas were facing a continuing increase of
their population leading, amongst others, to a higher demand of transporting goods,
both by the industry and suppliers, and by households. In addition, various new types
of services were developed to deliver goods. For delivery companies, short delivery
times, low costs and high quality are some of the main targets of a shipment, whereas
for public authorities and the society, the minimization of green-house gas emissions
is of increasing importance.

To address these requirements, various methods for bundling goods were devel-
oped. In an applied research project with industrial partners in the region of Zurich, a
cooperation platform for several logistic companies, associations and public author-
ities will be developed. The main goal of the project is to come up with a cooperation
platform for the transport of goods with respect to economic and ecological aspects.
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Bundling goods is a key component to achieve this target. The results we present here
are part of a pre-study, with the goal of quantifying the impact of bundling goods. For
this we considered transportation requests of two distributors with separate depots.
In a first scenario each distributor carries out his freight independently. In a sec-
ond scenario the distributors collaborate by sharing their transportation requests (see
Sect. 3 for details).

Therefore, an existing pickup and delivery model from [10] was extended. We
refer to [2, 9] and the references there for a good literature survey corresponding to
pickup and delivery models. A pickup and delivery model was required especially
for the second scenario. Furthermore, in the main project following this pre-study,
it will be necessary to handle transportation requests which will be shipped directly
between customers without an intermediate depot station. This model used is flexi-
ble enough for the extensions developed while at the same time covering all essen-
tial requirements (allowing for time windows, splitting orders, etc.). Furthermore,
a methodology was developed to allow for meeting multi-criteria objectives (driver
and fleet costs, costs due to emissions, etc.).

2 Methodology

In the pickup and delivery problem in [10] a set of routes has to be constructed in
order to satisfy transportation requests. A fleet of vehicles is available to serve the
routes. Each vehicle has a given capacity, a start location and an end location. Each
transportation request specifies the size of the load to be transported, locations where
freight has to be picked up (origins) and locations where freight has to be delivered
(destinations). Each load has to be transported by one vehicle from its set of origins
to its set of destinations without any transshipment at other locations.

Our aim is the integration of conflicting targets (e.g. low driver costs and low CO2

emissions in one objective function). For this we translate all targets into a common
currency (i.e. EUR) and combine them as linear combination in a utility function. In
the rest of the paper we make use of the definitions and notations in Table1.

Optimization
Thepickup anddeliverymodel in [10] is defined on a complete, directed andweighted
graph (A, F) as an mixed integer problem, where the nodes fulfill A = (V ∪ M+ ∪
M−) with

V = ∪r∈N (N+
r ∪ N−

r ), M+ = {k+| k ∈ M}, M− = {k−| k ∈ M}

and ck
i j are the weights of edge (i, j) ∈ F for vehicle k ∈ M . The graph (A, F) rep-

resents the formalized road network in our test system (see Sect. 3). The construction
of the graph is discussed in Sect. 3. Instead of restating the formal definitions of this
optimization problem, we just describe its feasible set in words, provide the objective
function and refer to [10] for details.
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Table 1 Notation of sets, variables and parameters together with corresponding units

Classes Subclass Description Notation Unit

Road network Set of nodes in road
network

i ∈ I (1)

Distance between
node i and j

di j (km)

Max. speed on edge
(i, j)

v0i j (km/h)

Fleet vehicle (k) Characteristics Set of vehicles k ∈ M (1)

Capacity Qk (kg)

Emissions of CO2 on
edge (i, j)

Ek
i j (tCO2/km)

Locations Average speed on edge
(i, j)

vk
i j (km/h)

Start node (start depot)
of vehicle k

k+ –

End node (end depot)
of vehicle k

k− –

Time to traverse edge
(i, j)

T k
i j (h)

Order (r ) Locations Set of orders r ∈ N (1)

Set of pickup nodes N+
r (1)

Set of delivery nodes N−
r (1)

Volume or weight qr (m3) or (kg)

Handling Pickup duration at
node i

T +
i (h)

Delivery duration at
node i

T −
i (h)

Costs Time Salary of driver of
vehicle k

P S
k (EUR/h)

Handling cost (pickup,
delivery)

P H
k (EUR/h)

Distance Cost for vehicle k PV
k (EUR/km)

Emissions P E (EUR/tCO2)

The feasible set of the pickup and delivery model consists of pickup and delivery
plans. A pickup and delivery plan is a set of routes for each vehicle k ∈ M , which
form a partition of all nodes in V . For a vehicle k ∈ M a route heads through a
subset of Vk ⊂ V , such that the route starts in k+ and ends in k−. Vehicle k visits
all locations in Vk exactly once and fulfils all the transportation requests, which are
associated to this vehicle. The capacity restriction Qk is always met. The properties
of the routes imply an important fact for constructing the graph. Namely, each node
(pickup, delivery, origin and destination depot, respectively) has its own representa-
tion even if they are geographically the same nodes (e.g. origin and destination depot
are identical).
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The objective function f (x) is given by

f (x) =
∑

k∈M

∑

(i, j)∈F

xk
i j c

k
i j , (1)

where xk
i j is a decision variable equal to 1 if vehicle k travels from location i to j

and 0 otherwise.

Composition of the Weights ck
i j

The costs ck
i j in (1) for traversing an edge (i, j) of graph (A, F) by vehicle k ∈ M

consist of components depending (i) on time (driving and handling) and (ii) distance,
respectively. For the sake of simplicity we don’t integrate costs for infrastructure,
safety, and environment here.

We start with the salary costs (ck
i j )

S due to the time required by the driver, the
costs (ck

i j )
E due emissions and the costs (ck

i j )
V of vehicle k ∈ M to traverse edge

(i, j) ∈ F .

(ck
i j )

S = T k
i j P S

k , (ck
i j )

V = di j PV
k , (ck

i j )
E = di j Ek

i j P E (2)

The handling costs (ck
i j )

H are calculated as

(ck
i j )

H =
{

T +
j P H

k , if j ∈ N+T −
j P H

k ,& if j ∈ N−;
0, else.

(3)

In a similar manner these costs could also be time dependent (e.g. by replacing T k
i j

with T k
i j (t)). We omit this here for space reasons. For most vehicles, data regarding

their average CO2 emissions is available (e.g. [5, 8]). From [11], CO2 emissions can
be calculated for a variety of vehicle classes even as a function of speed and other
parameters. References [1, 4] provide a very good discussion on the dependency of
vehicle emissions from speed, road gradients and weight.

Based on equations in (2) and (3), the resulting overall costs for vehicle k ∈ M to
traverse the edge (i, j) ∈ F are defined by

ck
i j = α1(c

k
i j )

S + α2(c
k
i j )

H + α3(c
k
i j )

V + α4(c
k
i j )

E

where parameters α1 to α4 (with
∑

i αi = 1) allow for some weighting of costs, e.g.
over-weighting emission costs to optimize for low-emission routes. We have set all
parameters to an identical weight of 0.25.
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3 Case Study

The road network considered around the city centre of Zurich covers an area of around
1670km2 (width: 62km, height: 26.5km) and consists of around 29000 nodes and
36000 edges. For each edge (i, j) in the original road network the road type, the
maximum speed v0

i j and the driving directions allowed are known [7]. The average
speed vi j was set to 80% of the maximum speed and always below 80km/h. For the
sake of simplicity, we assumed that turnings are possible between adjacent edges.
Furthermore, 242 postcodes were considered, based on data provided by [6].

The number of distributors was two, each one with a fleet consisting of seven
vehicles. All vehicles k ∈ M had an identical payload Qk of 12 tons. In addition,
both distributors had to process 15 orders, where each order r ∈ N had a weight qr

of 3 tons. We assumed that at the beginning all vehicles and all orders are located at
the start depot for each distributor. The end depot was identical to the start depot. For
each distributor, the ten postcodes with the highest number of orders (delivery) were
determined from survey data on Swiss freight transport for 2008 [6] and scaled down
such that the overall number of orders is 15 each (which is necessary for sampling
the orders, see section computational procedure below).

For each vehicle k ∈ M the average salary P S
k considered for truck drivers is

50EUR/h (average value according to our Swiss distributor partners) and the average
time T +

i resp. T −
i required to loading/unloading freight was assumed to be 10min.

The averages costs PV
k of a truck delivering general cargo were assumed to be

0.80EUR/km (which is low compared to the 3EUR/km for parcel deliveries where
usually larger vehicles are required), and the costs P E of emitting CO2 is assumed
to be 48 EUR per ton, which is in good agreement with data from [3]. In the long
run, a fair price should be even higher.

Model Extensions

We added two additional groups of constraints to the pickup and delivery model
from [10], which both led to better performance (i.e. shorter computing times) of the
optimization in CPLEX. First we introduced a maximal time duration for a pickup
and delivery route of 3h for each vehicle k ∈ M . Second we add a constraint to break
symmetry in the vehicle loadings. A vehicle had to pick up orders in the depot with
increasing order number, which excludes a lot of feasible solutions with equal total
costs of the pickup and delivery problem.

Computational Procedure

Based on the above mentioned parameters and constraints, we now describe in brief
the procedure to calculate the overall costs for the two scenarios:

a. For each edge (i, j) of the road network we determine the costs according to the
formulae defined in (2) and (3).

b. For each distributor and for each of its destination postcodes, we sampled ran-
domly the corresponding number of pickup/delivery nodes from all nodes within
the postcode area.
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c. Calculation of the shortest path with respect to the costs ck
i j for all (i, j) in F

(according to b). Only the nodes and edges in (A, F) will be considered later in
the pickup and delivery model.

d. Optimization: (i) no collaboration: for each distributor and for each of its orders,
the routes are determined by solving the extended pickup and delivery model;
(ii) with collaboration (depots and orders stay at the same place but the orders
are shared between the distributors): the two results from (i) are used as initial
solution for the new optimization run.

4 Results

The results were computed on a laptop with 8 GB RAM and 4 Intel Core 2.4GHz
processors. The model was implemented in GAMS 24.2.1 and solved with CPLEX
12 (up to a relative gap of 10%). With the computational procedure described in
Sect. 3 above we produced a typical delivery situation for distributors 1 and 2. Table2
summarizes the results. For larger instances with more delivery requests (>30) we
could not solve the cooperation case within 5h. In Fig. 1 the computed routes for the

Table 2 Comparison of costs for working individually or in cooperation

Strategy Distributor 1
(EUR)

Distributor 2
(EUR)

Total (EUR) Total (%) CPU (min)

Individual 530.43 446.35 976.81 100.00 6

Cooperation 401.12 504.6 905.72 92.72 120

Fig. 1 Cooperation of distributor 1 and 2: Squares resp. Triangles represent delivery nodes of
distributor 1 resp. 2. The numbers 1–7 represent the different tours. Routes 1–3 resp. 4–7 start in
the depot of distributor 1 resp. 2. Route 7 starts with distributing requests from depot 2 and then it
picks up four requests in depot 1 for which the delivery node is closer to depot 2
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case of cooperation are shown. Only route 7 serves nodes of distributor 1 and 2 and
is mainly responsible for reduction of 7% in total costs.

In the large research project following this pre-project, the methodology will
be further extended with respect to, amongst others, the general pickup and delivery
model and the optimization (speed, solutionmethod, quality of solutions).Moreover,
large-scale cases will be investigated considering (i) several distributors collaborat-
ing, (ii) a substantially higher number of orders and parameter sensitivity.
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Optimizing Time Slot Allocation in Single
Operator Home Delivery Problems

Marco Casazza, Alberto Ceselli and Lucas Létocart

Abstract Motivated by applications in last-mile home delivery, we tackle the
problem of optimizing service time to customers by service providers in an online-
realtime scenario. We focus on the particular case where a single operator performs
all deliveries.We formalize the problemwith combinatorial optimizationmodels.We
propose diverse time slot assignment policies and level of service measures. We per-
form a computational study to evaluate the impact of each policy on the quality of a
solution, and to assess the overall effectiveness on the time slot assignment process.

1 Introduction

Home service optimization is becoming a key issue in many industrial sectors. For
instance, it is common practice for large technology stores in Europe to offer both
the delivery of products at home after purchase, and additional professional services
like installation and setup, either for free or at a charge. On one hand, the customer
must wait at home for the service to be provided, and is therefore interested in having
very well defined, guaranteed, service time slots; he is also interested in choosing
as much as possible the placement of the slots that best suits his needs. On the other
hand, retailers that must provide such a service are interested in minimizing costs,
that mainly consist in limiting the number of operators involved in the home services.
Often, the number of operators employed is even fixed in advance by the retailer,
who is then interested in offering the best possible level of service to the customer,
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taking into account the limited service possibility of her operators. In turn, the skill
of matching the agreed service time windows is crucial for a store reputation.

In this context crucial decisions must be taken at different levels, like the tactical
definition of time slots and the operational scheduling of the operators; different
strategies have been developed, typically trying to trade time slot flexibilitywith price
incentives and discounts [2]. Any approach agrees on a common principle: while a
service time slot may be modified with some degree of flexibility, missing a fixed
appointment is perceived as a strong disservice by the customer. Later, more focused
investigations on the tactical definition of time slots [1], ormethods exploiting a-priori
knowledge on the set of customers [7] have appeared in the literature. Very recently,
customer acceptance policies have been proposed and experimented, allowing the
selection among two possible delivery time slots for each customer [5].

None of the works in the literature, however, face at the same time (a) the problem
of designing service time slots, that is explicitly producing new hard time windows,
instead of simply selecting a slot in a restricted set of pre-defined ones (b) in an online
fashion, that is answering to each customer at his arrival time, without assuming any
previous knowledge on future customers, and without the possibility to retract at
later time, and (c) with realtime performances, that is with computational methods
yielding decision support options in small fractions of seconds.

Hence, in this paper we formalize a time slot allocation problem and we introduce
suitable level of service measures (Sect. 2), and we design policies for decision sup-
port tools that are able to cope with issues (a), (b) and (c) simultaneously (Sect. 3).
We also report on experiments assessing the trade-off that can be achieved between
different level of servicemeasures (Sect. 4).We focus on the casewhere a single oper-
ator performs all deliveries, assuming that no a-priori information can be exploited
on the distribution of customer’s requests.

2 Modeling

Our time slot allocation problem involves three actors: a set of customers, that ask
for a certain home service at a particular day and time, an operator that performs
such a service, and a service provider that acts as an interface between customers and
operators, by assigning service slots and by creating daily schedules. From the point
of view of the service provider, we model the service scheduling as the following
two-step process.

Time slot assignment. Let I be a sequence of customers. During the day, each
customer i ∈ I appears at the provider’s counter in an online fashion, asking for the
delivery of a service in a desired time window [ai , bi ] of a certain day. The provider
can either directly accept the customer’s request, propose an alternative service time
window [ci , di ] on the same day, or negate service in the desired day, and defer to
alternative service days. Once an agreement is reached, no change in the assigned
day and time window is allowed: it is mandatory for the provider to meet the service
slot they agreed.
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Routing. Then, at the end of the day, a routing for a single operator is computed,
in order to service the accepted customers in their assigned time windows. The
scarce resource is time: the operator has a limited working shift, that without loss of
generality we indicate as [0, T ]. Moving from the location of a customer i to that
of a customer j takes Di j units of time, that is D represents the distance matrix
between customers; once at destination, we consider the time needed to perform
service at i to be known, and we denote it as wi . Therefore, computing a feasible
routing amounts to find a feasible solution to a Traveling Salesman Problem with
Time Windows (TSPTW) [4], considering the operator as a vehicle leaving a depot
at time 0, visiting once each of the accepted customers within their assigned time
windows, and going back to the depot before time T .

By design, the two service scheduling steps are of radically different nature. The
routing problem is an offline problem, that can be solved by overnight computations
once per day. A provider may assume the traveling cost to be not an issue, as the
operator is expected tomove in a rather small urban area, ormay provide an additional
suitable cost function. In any case, once the set of customers and their service time
windows is fixed, the problem of finding an optimal schedule turns out to be a
traditional TSPTW, for which very efficient exact algorithms are presented in the
literature. The time slot assignment, instead, is an online problem to be solved with
realtime efficiency: the sequence of customers is not known in advance, and every
time a newcustomer appears, the provider has to be able to give answers in fractions of
seconds. Since at this stage it is crucial not tomiss a fixed service, the provider needs a
procedure taking in input the desired service day and timewindow of a new customer,
and the set of accepted customers for that day and their assigned time windows, and
producing as output either an alternative time window or a ‘null’ value, indicating
that the new customer cannot be serviced in the desired day; in the latter case we say
for the sake of simplicity that the customer is rejected, although the actual behavior of
the provider is to repeat the assignment process on a different day. More formally, let
Ī be the set of accepted customers for the desired service day, [ci , di ] be the assigned
time window for each customer in Ī , and [a, b] be the desired time window of
the new customer j , a procedure σ( Ī ,

⋃
i∈ Ī [ci , di ], D, j, [a, b]) → [c, d] is needed

in the decision making process, where [c, d] represents an alternative service time
window for the new customer, or encodes a ‘reject’ value [−∞,+∞].

Among all possible feasible time slot allocations, the service provider may search
for ones providing high level of service L. There are many ways of defining good
plans. In the following we describe three possible measures.

Acceptance rate. First, the provider may be interested in rejecting as few cus-
tomers as possible, as changing the service delivery day is usually perceived by a
customer as the worst level of service. We therefore define the rate of acceptance
quality measure as follows: La = | Ī |

|I | .
Amount of time shift. If alternative time windows are proposed to a cus-

tomer, a certain worsening in her perceived level of service is introduced. The
most intuitive way of measuring such a worsening is by means of average amount
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of shift of the assigned time window with respect to the desired one, that is
L

s =
∑

i∈ Ī |(ai +bi )/2−(ci +di )/2|
| Ī | .

Amount of window enlargement For services that require the customer to be
at home, a widening of the time window is even more problematic than a shift, as
it forces the customer to take hours off. We therefore define a third level of service
measure as the average amount of time window enlargementLe =

∑
i∈ Ī (di −ci )−(bi −ai )

| Ī | .

3 Defining and Computing Assignment Policies

We propose online policies to support decisions of the provider during the online
task of assigning time windows to the customers. Formally, to define such an online
decision policy corresponds to provide a definition for the σ() procedure introduced
in the previous Section.

We outline four policies. Full details are given in [3]. Each of them is based on
the iterative checking of TSPTW feasibility problems: let τ() be a procedure taking
in input a set of customers Ī , their assigned time windows [ci , di ], their pairwise
distances Di j and their service timewi , for each i ∈ Ī , and giving as output a Boolean
‘true’ value if the resulting TSPTWproblemhas a feasible solution, ‘false’ otherwise.

Fixed. As soon as a new customer arrives, we check if it is possible to service
her and all customers previously accepted in their desired time window. If so, the
customer is accepted without any change in its desired time window. Otherwise, the
customer is rejected.

Shift policy. It aims to accept each new customer, provided that a suitable shift in
his desired time window can be found, allowing the operator to visit him and all the
previously accepted customers. No change in the time window width is performed.

We consider two strategies for performing the time shift: forward and backward,
in which a certain value s is added (resp. subtracted) to both ai and bi , that makes
feasible the TSPTW instance including all accepted customers and the new one;
if no such a value can be found without exceeding the daily deadline T (resp. 0),
the customer is rejected. We also consider the bidirectional strategy in which both
forward and backward shifts are computed, and the one requiring minimum shift
is retained. For what concerns the search for a suitable amount of shift s, we take
into account two strategies: in the coarse strategy s is chosen as a multiple of a base
constant k, while in the fine strategy s can take any value.

Enlarge policy. It aims to accept each new customer by possibly enlarging its
desired time window. Also in this case we consider three strategies (forward, back-
ward, and bidirectional) and two ways of choosing the amount of enlargement e
(coarse and fine), that are defined as in ‘Shift’.

Bucket policy. Finally, we simulated a policy which is often used by industrial
home service providers. We define q time buckets, that is a splitting of the daily
working time [0, T ] in equal parts [� · T/q, (� + 1) · T/q] for � = 0 . . . (q − 1).

Then we replace the desired time window of each customer with that of the best
fitting bucket that allows the operator to visit all the accepted customers and the new
one; if no such a bucket can be found, the new customer is rejected. In our case, the
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regret of a bucket is computed as the difference between the central instant of the
bucket and the central instant of the desired customer time window, being best those
buckets having minimum regret.

4 Computational Results

We implemented our algorithms in C, using gcc 4.7 as a compiler, and running a set
of experiments on a PC equipped with a 2.7 GHz CPU and 2 GB of RAM, under
linux operating system.As a benchmarkwe considered the set of instances of [6], that
were originally drawn fromSolomon’s dataset. The benchmark consists of 30 feasible
TSPTW instances involving up to 44 customers, that include a single depot. Indeed,
the size and feature of these instances well represent those of realistic home service
delivery problems. In order to check the behavior of our policies as the requests of
the customers become more and more tight, we created three scenarii, indicated as
datasetsA,B, andC in the following, obtained by reducing each original timewindow
[a′

i , b′
i ] by 25, 50 and 75%, that is by setting αi = a′

i +b′
i

2 , βi = b′
i − a′

i , ai = αi − r ·
βi

2 , bi = αi + r · βi

2 , for r equal to 0.75, 0.50 and 0.25, respectively. Therefore, our
overall testbed consists of 90 instances. Each service time wi was set to 15; the
availability time window of the depot has been left unchanged.

Three main issues arise in the implementation of our policies. First, for efficiently
computing the procedure τ() to solve TSPTW feasibility problems, we embed a
dynamic programming algorithm that is adapted from [4]. Second, for computing
minima for s and e values to make a new customer reachable, we simply resort to an
iterative binary search. Third, for balancing accuracy with speed, for each customer
we set the base constant k to half of the width of her desired service time window. In
a preliminary round of experiments we found that by fixing a maximum number of
labels Δ = 2000 in the dynamic programming procedure gave a good compromise
between solution quality and CPU time. As a first observation, we found the average
query time to be always less than a tenth of a second, matching our proposal of
producing a real-time tool. Our results are given in full details in [3]: in order to
highlight the most significant trends, in the following we report only aggregated
ones.

In Fig. 1 (top, center-left) a chart for each quality measure is drawn, that reports
time windows reduction values on the horizontal axis and average L

a , Ls and L
e

values on the vertical axes, and includes one line for each policy, indicating the
average values over all the instances having a certain time windows reduction, and
for all policy variations. In terms of number of accepted customers, the ‘bucket’
policy performs best, yielding from 6.5% to almost 20% improvement with respect
to the ‘fixed’ policy. Policies ‘shift’ and ‘enlarge’ perform similarly: they offer a few
percentage points improvement with respect to ‘fixed’ in dataset A, that increases as
the desired time windows reduce, reaching more than 10% on dataset C. The other
measures worsen mildly as the time windows reduce. No policy eventually overtakes
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Fig. 1 Average La (top left) Ls (top right) and L
e (center left) values as the desired time windows

reduce; behavior of the best performing acceptance policies and strategies in terms of average L
a

(center right) Ls (bottom left) and L
e (bottom right) values

the others. While ‘shift’ policy produces by construction solutions having zero L
e

values, the ‘enlargement’ policy is able to reduce shift amount by enlargement.
By using ‘buckets’ policy, in dataset A and dataset B it is even possible to shrink
the desired customer service time windows, at the expense of higher shift values.
For what concerns the strategy selection, bidirectional coarse and backward fine
showed to be particularly appealing for both ‘shift’ and ‘enlarge’. For the ‘bucket’
policy, 8 slots seem to provide the best overall behavior, accepting more customers
with a modest increase in L

s and a strong reduction in L
e. We therefore report a
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synthesis of this comparison in Fig. 1. Bottom and center-right charts have the same
structure of the previous ones, and contain one line for each of the following policy-
strategy combination: fixed, shift bidirectional coarse, shift backward fine, enlarge
bidirectional coarse, enlarge backward fine, bucket 8 slots. No policy dominates the
others, but ‘bucket’ with 8 slots seems to offer the best compromise.

We conclude that our algorithms are suitable for real-time decision support sys-
tems, and that the fraction of accepted customers can be substantially increased by
allowing for automatic changes in their desired time window.
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Robust Scheduling with Logic-Based
Benders Decomposition

Elvin Coban, Aliza Heching, J.N. Hooker and Alan Scheller-Wolf

Abstract We study project scheduling at a large IT services delivery center in which
there are unpredictable delays. We apply robust optimization to minimize tardiness
while informing the customer of a reasonable worst-case completion time, based
on empirically determined uncertainty sets. We introduce a new solution method
based on logic-based Benders decomposition. We show that when the uncertainty
set is polyhedral, the decomposition simplifies substantially, leading to a model of
tractable size. Preliminary computational experience indicates that this approach is
superior to a mixed integer programming model solved by state-of-the-art software.

1 Introduction

We analyze a project scheduling problem at a large IT services delivery center in
which there are unpredictable delays in start times. This study is motivated by a real
problem at a global IT services delivery organization. To design a schedule that is
not unduly disrupted by contingencies, we formulate a robust optimization problem.
Weminimize tardiness cost while informing the customer of a reasonable worst-case
completion time.

Due to the impracticality of quantifying joint probability distributions for delays,
we apply robust optimization with uncertainty sets rather than probabilistic informa-
tion [1, 2]. An uncertainty set is an empirically determined space of
possible outcomes for which one should realistically plan, without encompassing
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theoretically worst-case scenarios [5]. To our knowledge, uncertainty sets have not
previously been applied to service scheduling. We propose a new solution method
based on logic-based Benders decomposition [11, 12].We show that when the uncer-
tainty set is polyhedral, the problemhas convexity properties that result in a simplified
decomposition. In addition, the Benders subproblem decouples into many smaller
subproblems, each corresponding to an agent or small group of agents.

Robust optimization with uncertainty sets was introduced by [15] and polyhedral
uncertainty sets by [3, 4]. Detailed reviews of robust optimization with uncertainty
sets can be found in [1, 2, 5].

2 Modeling the Problem

Several hundred agents with different skill sets process thousands of incoming
customer projects each year. A project may consist of several ordered tasks, each of
which requires certain skills. Late deliveries result primarily from interruptions that
require a task to be set aside for an unpredictable period of time. Because processing
times are short, we treat an interrupted task as having a delayed start time. We re-
compute the schedule on a rolling basis as projects arrive. The notation is summarized
in Table1.

Table 1 Notation

Sets

(J, E) Precedence graph with task set J = {1, 2, ..., n}
Si , S′

j Skill set of agent i and required for task j

Iα , Jα αth agent class, jobs assigned to agents in Iα
R Uncertainty set for release time delays

Parameters

r j , d j Release time and due date of task j

p j , c j Processing time and unit tardiness cost of task j

pr( j, σ, y) Task performed by agent y j immediately before task
j in sequence σ

Δr̄ k
j Task j release time delay in subproblem solution of

Benders iteration k

Δr�
j Task j release time delay at extreme point � of R

Variables

y j (xi j ) Agent assigned to task j (xi j = 1 if y j = i)

s j Start time of task j

sk
j Task j start time in kth Benders subproblem

s�
j Task j start time for extreme point � of R

σ j Position of task j in sequence

Δr j Task j release time delay in uncertainty subproblem
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In the robust model, we require that the tuple of uncertain release time delays
Δr = (Δr1, . . . , Δrn) belong to uncertainty set R.Weminimizeworst-case tardiness
cost subject to R as follows, where α+ = max{0, α}:

min
y,σ

{
max
Δr∈R

{ f (σ, y, r + Δr, p}
∣∣∣∣ S′

j ⊂ Sy j

}
(1)

Here f (σ, y, r + Δr, p) is the cost that results from a greedy schedule in which each
agent performs assigned tasks, without overlap, in the order given by σ . Thus we
have f (σ, y, r + Δr, p) = ∑

j c j (s j + p j − d j )
+, where s j is recursively defined

for all j = 1, . . . , n by

s j = max
{

r j + Δr j , spr( j,σ,y) + ppr( j,σ,y), max
( j ′, j)∈E

{s j ′ + p j ′ }
}

(2)

3 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) is a generalization of Benders
decomposition in which the subproblem can in principle be any combinatorial prob-
lem, not necessarily a linear or nonlinear programming problem [9, 12, 13]. This
approach can reduce solution times by several orders of magnitude relative to con-
ventional methods [6–8, 11, 14].

We apply LBBD as follows. The master problem determines agent assignments
y and the task sequence σ :

min z
S′

j ⊂ Sy j , all j; σ j < σ j ′ , all ( j, j ′) ∈ E
Benders cuts

(3)

where each y j ∈ {1, . . . , m}. The subproblem is

max
s,Δr,Δp

∑

j

(s j + p j − d j )
+

s j = max
{
r j + Δr j , spr( j,σ̄ ,ȳ) + ppr( j,σ̄ ,ȳ)

}
, all j; Δr ∈ R

(4)

where (σ̄ , ȳ) is the solution of the master problem. It is straightforward to formulate
this as an MILP, but the problem becomes very large as Benders cuts accumulate
due to the addition of new variables with each cut.

To overcome this, (3) can be solved by a second Benders decomposition scheme
in which the subproblem decouples by agent classes, resulting in the three-stage
decomposition of Fig. 1a.Agent classes are the smallest sets of agentswhose assigned
tasks are not coupled by precedence relations with tasks assigned to other sets of
agents. When the uncertainty set R is polyhedral, the three-stage decomposition
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(a) (b)

Fig. 1 a Three-stage decomposition. b Two-stage decomposition

simplifies to the more tractable two-stage decomposition in Fig. 1b. The proof of
the following theorem is based on that fact that (4) can be viewed as maximizing a
convex function over the polyhedron R.

Theorem 1 If the uncertainty set R is a bounded polyhedron, then at least one of
its extreme points is an optimal solution of the uncertainty subproblem (4).

We can now minimize worst-case tardiness for a given assignment by finding a
sequence that minimizes the maximum tardiness over all extreme points �.

The master problem computes an optimal assignment of tasks to agents:

min z

S
′
j ⊂ Si , all i, j with xi j = 1;

∑

i

xi j = 1, all j

relaxation and Benders cuts

(5)

where xi j ∈ {0, 1} for all i, j . The subproblem minimizes worst-case tardiness T :

min T

T ≥
∑

j

(s�
j + p j − d j )

+, all �

noOverlap
(
σ(x̄, i), s�(x̄, i), p(x̄, i)

)
, all i, �

s�
j ≥ r j + Δr �

j , all j, �; s�
j ≥ s�

j ′ + p j ′ all ( j ′, j) ∈ E, all �

(6)

The minimum is taken over variables s�
j and T .

Theorem 2 If the uncertainty set R is a bounded polyhedron, the three-stage and
two-stage decompositions are equivalent optimization problems.
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The number of constraints in the subproblem (6) grows linearly with the num-
ber of extreme points, and therefore only linearly with the number of tasks when
the polyhedron is a simplex. In addition, (6) decouples by agent class Iα . We can
strengthen the master problem (5) with relaxations of the subproblem, which allow
the master problem to select more reasonable assignments before many Benders cuts
have been accumulated. We use the two relaxations described in [11].

As Benders cuts, we use strengthened nogood cuts in the master problem (5)
which state that the solution of the subproblem cannot be improved unless certain
x’s are fixed to different values. If T ∗ is the optimal value of the subproblem when
x = x̄ , the simplest nogood cut is

z ≥
{

T ∗ if x = x̄
−∞ otherwise

(7)

The cut can be strengthened by heuristically removing task assignments and re-
solving the subproblem until the minimum tardiness is less than T ∗.

4 Computational Results

We compared a rudimentary implementation of the two-stage Benders model with
an MILP model solved by commercial software (IBM ILOG CPLEX 12.5.0). The
MILP model uses a discrete-time formulation, which previous experience shows to
be best for MILP [10, 11], and takes advantage of Theorem 1. The time horizon
is 5 times the maximum due date in one formulation (MILP1), and 40 plus the
maximum due date in a second formulation (MILP2), based on a maximum total
tardiness of 40 obtained from the Benders solution. The instances, which have 13
tasks and 2 agents, are based on actual data obtained from an IT services delivery
center. The Benders master problem is solved by the CPLEX MILP solver and the
subproblems by IBM ILOG CP Optimizer 12.5.0. Table2 shows that the Benders
method is significantly faster thanMILP. The advantage is less forMILP2, butMILP2
relies on prior information about the optimal solution.

We increase the number of tasks to 16 from 13 with the same number of agents
and generate another 20 instances mimicking the motivating real IT services delivery
center. Average computation time of the Benders method increases to 11.2 s (with a
maximum of 75.7 s) from 8.4 s (with a maximum of 24.2 s as represented in Table2)
and the Benders method is still significantly faster than MILP.
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Table 2 Computational results

Instance Optimal Computation times (s)

Value Benders MILP1 MILP2

1 39 5.4 32.1 7.5

2 20 7.8 122.0 14.5

3 39 5.6 26.4 7.2

4 22 6.1 216.0 29.9

5 33 8.2 68.8 14.7

6 36 8.3 68.8 10.9

7 34 5.6 40.0 10.9

8 25 11.2 61.4 13.7

9 31 5.8 29.5 5.8

10 23 5.8 61.0 14.9

11 30 5.6 54.1 27.5

12 11 8.4 59.9 15.4

13 21 8.1 7.8 6.0

14 33 8.2 79.7 27.9

15 34 6.2 52.1 14.6

16 36 8.9 19.6 17.0

17 38 24.1 78.7 34.1

18 7 5.6 18.5 5.3

19 40 11.0 57.8 13.3

20 40 11.32 27.8 7.2

5 Conclusion

We introduced a novel robust scheduling method for IT services delivery based on
logic-based Benders decomposition. We obtained solutions for small but realistic
instances in significantly less time that a state-of-the-art mixed integer solver. The
advantage of Benders is likely to be much greater as the instances scale up, because
the decoupled Benders subproblems remain about the same size as the number of
agents increases. In addition, the MILP model grows with the length and granularity
of the time horizon, which does not occur in the Benders model. Finally, the Benders
model is suitable for distributed computation due to the decoupling of the Benders
subproblems.
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Optimal Adaptation Process of Emergency
Medical Services Systems in a Changing
Environment

Dirk Degel

Abstract Quality of emergency medical services (EMS) depends on the EMS
infrastructure which is subject to exogenous conditions, like the considered demand
area. Demographic changes, increased traffic volume, and structural modifications
in the urban infrastructure lead to permanent changes in the demand area. To provide
high EMS quality in a strategic perspective, an adaptive planning system to consider
these future environmental changes is necessary. An anticipatory adaptation process
based on the existing EMS infrastructure and anticipating future developments has to
be determined. Assessment criteria of an adaptation process include (1) EMS quality,
(2) periodic operating costs, and (3) system adaptation costs. A linear multi-criteria
program is developed to support EMS decision makers to dynamically improve an
existing EMS infrastructure with respect to multiple requirements during a strategic
time horizon.

1 Problem Description and Criteria of an Optimal
Adaptation Process

An appropriate EMS infrastructure, including number and positions of EMS facil-
ities, and the configuration of the EMS system (number, positions, and relocations
of ambulances) is needed to ensure a high service quality. In particular, the deter-
mination of facility locations is a crucial task in the context of planning rescue and
emergency medical services. In highly developed areas such as Europe and the USA,
environmental changes, especially developments in the urban infrastructure, require
anticipatory adaptation of the existing EMS infrastructure to ensure the high service
quality. Such developments include modifications of the road network, the devel-
opment of new residential areas, novel use of former industrial properties, and the
incorporation of neighboring cities with a merger of EMS systems. For example,
in Munich (Germany) three of the existing ten EMS stations will be relocated and
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two stations will be newly build until 2030 with costs of about 500 million Euro to
counteract the new requirements through expanding cities and an increasing traffic
volume [8]. Most existing models, solution approaches, and studies in this research
area concentrate on planning without considering the existing EMS infrastructure
and dynamic adaptation of the EMS infrastructure. For an overview see [1, 4, 5]. In
[2] an approach to reorganize a volunteer fire station network is analyzed but only
a dynamic reduction of stations is considered neglecting optional relocations. In
contrast, the focus of this paper is a dynamic adaptation process of an existing EMS
infrastructure. An anticipatory and future-oriented planning concept that takes merg-
ing of cities and new developments into account, is proposed. This allows a smooth
EMS infrastructure adaptation and stability. To evaluate an adaptation process, the
following assessment criteria are used: (1) A high service quality has to be ensured to
guarantee themedical services supply in each time period (2)with respect to adequate
periodic operating costs of the EMS system (for the use of existing stations). Further-
more, (3) the costs of the adaptation process (new stations and relocations) have to be
as low as possible, corresponding to solution stability, which means robustness and
sustainability of the EMS infrastructure with respect to environmental changes. Sat-
isfying the EMS quality criteria in one point in time leads to a solution in this period,
which may be completely different from an optimal solution of another period. This
instability of solutions results in high adaptation/reconstruction costs of the EMS
infrastructure. Due to this trade-off a simultaneous consideration of the three assess-
ment criteria is necessary to reach a stable adaptation process without over-fitting to
short-term changes. The remainder of the paper is structured as follows: In Sect. 2 a
multi-critera linear programming model is developed and described. The scalariza-
tion approach is briefly stated. Results for an illustrative case study are presented in
Sect. 3. The paper concludes with a short outlook in Sect. 4.

2 Model and Solution Approach

Due to the trade-off a simultaneous consideration of the three aforementioned assess-
ment criteria is necessary to reach a continuously adjustable but stable adaptation
process without over-fitting to short-term environmental changes. For this reason a
multi-criteria decision approach is proposed. Coverage is one of the most accepted
quality criteria in EMS literature [1, 4, 5, 7]. Covering constraints are usually for-
mulated as hard constraints, i. e., (for the notations see next page)

∑

j∈Ni t

y j t ≥ 1 ∀i ∈ I , ∀t ∈ T (1)

which means that each demand node i has to be covered by at least one EMS facility
within a predefined response time threshold r in period t . In most real world situa-
tions using (1) as a hard covering constraint might result in an empty solution space,
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i. e., there are uncovered demand nodes at the initial state. Relaxing this constraint
and using the constraint in a soft way (see Eq. 5) has the advantage that it allows
a much smoother adaptation process, in which small constraint violations are tol-
erated in sporadic periods. This can be interpreted as a kind of robustness of the
adaptation process. To formalize the second assessment criterion, i. e., the periodic
operational system costs, the number of stations is minimized. The third assessment
criterion, namely solution stability, is incorporated by minimizing the changes in
the EMS infrastructure. The three criteria are integrated into a linear multi-criteria
programming model, called dynamic set covering problem (dynSCP). The model
considers a strategic time horizon of T time periods t ∈ T = {1, . . . , T }. The sub-
set T̄ ⊂ T collects all points in time when EMS infrastructure is expanded. For
each time period t , the index set It represents the demand nodes and the sets Jt

indicate potential locations for EMS facilities. The subsetsJ 0
t ⊂ Jt (t ∈ T̄ ) rep-

resent existing facilities of the status quo (t = 1) or at the point in timewhen cities are
merged (t ∈ T̄ \ {1}). A demand node i ∈ It is said to be covered by anEMS station
at node j ∈ Jt if and only if the travel time disti j t is less than or equal to r , where r is
a predefined coverage threshold. The setsNi t := { j ∈ Jt | disti j t ≤ r} characterize
the neighborhood sets of a demand node i in period t .λ−, λ+ ∈ R≥0 represent penalty
values for one un-/overcovered demand node. b̄, b ∈ N0 are upper/lower bounds for
the amount of newly built/closed facilities in each time period. The decision variable
y jt ∈ {0, 1} is equal to 1 if and only if an EMS station is located at node j in period
t . The variables bclose

t , bopen
t ∈ N0 represent the number of stations built or closed in

period t . To capture under-coverage and over-coverage of a demand node i in period
t , variables Δ−

i t ∈ {0, 1} respectively Δ+
i t ∈ N0 are used. The dynSCP can be stated

as follows:

min
∑

t∈T

∑

j∈Jt

y j t (2)

min
∑

t∈T

(
bopen

t + bclose
t

)
(3)

min
∑

t∈T

∑

i∈It

(
λ−Δ−

i t + λ+Δ+
i t

)
(4)

s. t.
∑

j∈Ni t

y j t + Δ−
i t − Δ+

i t = 1 ∀t ∈ T , ∀i ∈ It (5)

y jt = 1 ∀t ∈ T̄ , ∀ j ∈ J 0
t (6)

y jt = 0 ∀t ∈ T̄ , ∀ j ∈ Jt \ (Jt−1 ∪ J 0
t ) (7)

y jt ≥ y jt ′ ∀t, t ′ ∈ T , t < t ′, ∀ j ∈
t⋃

τ=1

J 0
τ (8)



110 D. Degel

y jt ≤ y jt ′ ∀t, t ′ ∈ T , t < t ′, ∀ j ∈ Jt \
t⋃

τ=1

J 0
τ

(9)
∑

j∈Jt \⋃t
τ=1 J

0
τ

y jt ≤ (t − 1) · bopen
t ∀t ∈ T (10)

∑

j∈⋃t
τ=1 J

0
τ

(1 − y jt ) ≤ (t − 1) · bclose
t ∀t ∈ T (11)

bopen
t ≤ b̄ ∀t ∈ T (12)

bclose
t ≤ b ∀t ∈ T (13)

y jt ∈ {0, 1} ∀t ∈ T , ∀ j ∈ Jt (14)

Δ+
i t ∈ N0 ∀t ∈ T , ∀i ∈ It (15)

Δ−
i t ∈ {0, 1} ∀t ∈ T , ∀i ∈ It (16)

bclose
t , bopen

t ∈ N0 ∀t ∈ T (17)

The first objective function (2) minimizes the number of EMS stations over the entire
time horizon, representing corresponding operating costs of the EMS infrastructure.
In contrast, objective (3) minimizes changes in the EMS infrastructure, in order to
ensure stability of the EMS system. Finally, objective (4) considers the EMS quality
by minimizing uncovered and overcovered demand nodes. Together with constraints
(5), the aim is to minimize the number of stations needed to cover all demand points
in each period. Constraints (6) and (7) ensure a variable fixing at points t ∈ T̄ when
a given EMS infrastructure has to be incorporated into the model. Equations (8)
and (9) stabilize the infrastructure. An existing station that has been closed once
cannot be reopened and newly built stations have to be used until the end of the
planning horizon. Constraints (10)–(13) state that at least b̄ resp. b stations can be
opened resp. closed in average per period t . Declarations (14)–(17) describe the
domain of the decision variables. With definitions x := (y,Δ+,Δ−, bopen, bclose)

and X := {x | x satisfies (5) − (13)} the multiobjective program (2)–(17) can be
stated in the form

min
x∈X

(
f1(x), . . . , fL(x)

)T
. (18)

The scalarization of the weighted sum method is a convex combination of the
L objectives (L = {1, . . . , L}) of a multiobjective problem, where the feasible
set X is unchanged [9]. The basic formulation of a weighted sum approach is
minx∈X

∑
�∈L u� f�(x), with u = (u1, . . . , uL),

∑
�∈L u� = 1 and u� > 0 for all

� ∈ L . The magnitudes of the objective functions f�(x) affect how the weights are
to be set. Therefore, the following formulation is used [6]:
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min
x∈X

∑

�∈L
u� · f�(x)− f �

�

f̄�− f �
�

(19)

with x�
� := argminx∈X f�(x), f �

� := minx∈X { f�(x) + ∑
k∈L
k 	=�

ε fk(x)}where ε > 0 is

a small value to avoid dominated solutions and f̄� := maxk∈L { f�(x�
k )}.

3 Case Study and Results

In the case study a planning horizon of T = 20 periods and a planning area with
three adjacent demand areas is considered as shown in Fig. 1: The entire planning
area consists of a core city, a development area without an existing infrastructure,
and a neighboring city. The EMS infrastructure of the entire area will be planned by
anticipating added demand areas and their particular expansion date (development
area in t = 5, neighboring city in t = 15). In the initial state, the existing EMS

Fig. 1 Three adjacent areas and the existing EMS facilities J 0
1 = {26, 60, 82}, J 0

5 = ∅, J 0
15 =

{77, 113} in the beginning. Relocations and new stations at t = 6, t = 16, and the resulting EMS
infrastructure
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infrastructure in the core city, described by the set J 0
1 = {26, 60, 82}, as well as

|I1| = 71 demand nodes, is infeasible with respect to a hard covering constraint.
Nine demand regions cannot be reached within the pre-defined response time (dark
gray squares). Thus, in period t = 3 one station will be relocated to ensure a full
demand area coverage. In period t = 5 the development area will be added without
an infrastructure present. To ensure high EMS quality and minimal operating costs
one existing stationwill be relocated (from82 to 131). Additionally, station 60will be
relocated to 85 to cover the development area while anticipating the incorporation of
the neighboring city. In total, there are 4 stations less in comparison to the individual
solutions for each planning area with hard covering constraints. The solution of the
optimization model was determined optimally using Fico Xpress-Optimizer 7.3 on
a desktop PC with Intel Core i7 CPU (3.4 GHz) and 8 GB RAM running Windows
7 (64 Bit Version).

4 Conclusion and Outlook

Thepresented approach identifies anoptimal adaptationprocess of anEMS infrastruc-
ture. Optimal adaptation means minimizing the costs of adaptation, i. e., stability of
the solution and at the same time minimizing the operating costs and maximizing the
service quality. The initial state of the EMS system, exogenous changes in the urban
infrastructure, and changing demand are considered in a strategic planning horizon.
An inter-city planning considering mergers of cities is included. To stabilize the
EMS system against environmental changes the presented model can be combined
in further work with the tactical model in [3] in a tactical-strategic decision support
process.
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Strategic Network Planning of Recycling
of Photovoltaic Modules

Eva Johanna Degel and Grit Walther

Abstract Due to high subsidies, the installed capacity of photovoltaic (PV) in
Germany steeply increased in the last years. Considering an expected lifetime of
20–25 years the related amount of PV waste will increase during the next decades.
Thus, PV modules have been integrated into theWEEE directive in 2012. In order to
fulfil theWEEE recycling and recovery quotas, it will be sufficient to recover the raw
materials with the highest mass, i.e. glass and aluminium. However, with new tech-
nologies under development, it will be possible to recover also other rare strategic
materials with limited availability in Germany, like silver, copper or indium. Against
this background, the aim is to develop a strategic planning approach to analyse the
early installation of appropriate collection and recycling infrastructures with the
focus on resource criticalities. In order to do so, a multi-period MILP is developed
regarding capacity, technology and location decisions for collection and recycling
facilities of PV modules. Decisions are evaluated with regard to economic aspects.
Additionally, information on resource criticalities derived from criticality indicators
are integrated. A case study illustrates the approach and its results.

1 Decision Situation and Model Requirements

The energy production by renewable energy sources is an essential mean to prevent
the climate change and its consequences. For this reason the German government has
strongly supported the installation of PVmodules via different subsidies (e.g. 1,000-
and 100,000-roof program) since 1990 [13]. The installed PV capacity reached a
power of 35,7GWp at the end of 2013 [3]. This trend also stimulated the development
of PVmodule technologies, which can be divided into two main groups—crystalline
and thin-film modules. According to their type the modules have different resource
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Table 1 Criticality assessment of PV resources [7]

Resource Aluminium Silicon Copper Tellurium Silver Indium

Criticality II II IV IV V V

compositions. Due to the expected life-time of 20–25 years the amount of end-
of-life modules will steeply increase in the next decades following the trend of the
installed capacity. The focus of this paper is the recycling of PVmodules with special
consideration of the small portions of rare materials, like silver, copper, tellurium or
indium, which are especially used in thin-film modules.

Besides the different module types, there are also different recycling technologies.
They can be differentiated by their development stage in technologies, which are in
industrial use (e.g. shredders [9]) or in pilot or development stage (e.g. [8, 12]).
While the simple technologies focus mostly on the mass parts, glass and aluminium
frames, the research activities for the advanced technologies aim to recover the small
amounts of scarce materials.

In 2012, the European Union integrated PVmodules in the Directive 2012/19/EU
on waste electrical and electronic equipment (WEEE), due to the expected amount
of waste [6]. To fulfil the specified mass-based recycling and recovery quotas of the
WEEE, it is sufficient to recover the low value fractions with the highest mass. But
due to limited availability of rare materials, it could be reasonable to focus also on
the small portions of scarce resources.

To evaluate the necessary recycling technologies and especially the future strategic
potential of different raw materials, the so-called resource criticality indicators are
under development.Anoverview is given in [1, 11]. The indicators and sub-indicators
are still under discussion and topic of further research. Table1 shows one possible
criticality assessment of PV resources for Germany in a scale from I (not critical) to
VI (very critical) given by [7].

There already exists a lot of planning approaches for strategic recycling networks
in the field of Reverse Logistics and Closed-Loop Supply ChainManagement (cf. [2,
4, 5, 10]), which could be used for the planning of a strategic PV recycling network.
Nevertheless, there is a lack of a systematic integration of resource criticality risks.
Hence, this research gap will be filled with the presented approach.

Accordingly, the aim of this paper is to develop a strategic planning approach
in order to analyse the early installation of appropriate collection and recycling
infrastructures with special focus on resource criticalities. In Sect. 2, a multi-period
MILP is developed regarding capacity, technology and location decisions for collec-
tion and recycling of PV modules. Decisions are evaluated with regard to economic
aspects. Additionally, in Sect. 3, resource price scenarios, derived from criticality
indicators, are integrated. By using this information, the model evaluates the effects
of resource criticality on economic decisions in recycling network planning. The
computational results of a small case study will be shown in Sect. 4. The paper ends
with a conclusion and an outlook.
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2 Strategic Network Planning Approach for PV Recycling

For PV recycling network planning a linear multi-period mixed-integer problem
is developed. The considered recycling network contains existing collection points
m ∈ M and the potential recycling facilities n ∈ N . In each period t ∈ T and at each
side n a recycling facility can be installed. There are different recycling technologies
r ∈ R, which can treat different types of PVmodules p ∈ P , and recovering different
output fractions h ∈ H . As mentioned before, currently recycling technologies focus
on the mass parts, glass and aluminium,while advanced technologies, aiming at a
recovery of the small amounts of scarce materials, are mostly still in development.
For each technology the point in time of availability the market t∗

r is known. The
different collection qualities q ∈ Q influence the applicable recycling technology r .
A high collection quality means that the PVmodules are separated according to their
type p, whereas in a low quality all module types are mixed.

The decision variables of the model can be divided in design, transportation and
storing variables. At the collection points the gathered waste quantities in the chosen
collection quality can be directly sent to a recycling facility or can be stored at the
collection points. The design variable indicates, whether a recycling facility at site
n with technology r is build in period t . Here, the point in time of availability at
the market of each recycling technology t∗

r has to be respected. Depending on the
applied recycling technology r different amounts of the considered output fractions
will be recovered. The model structure is shown in Fig. 1.

In order to evaluate the decisions with regard to economic aspects, the net present
value (NPV) is used as the objective. It consists of the sumof the discounted payments
of all periods t ∈ T . These payments result from investments It , transports CT

t , the
operation at the different locationsC P

t and the sales or disposal of the different output
fractions E Out

t :

max NPV =
∑

t∈T

(−It − CT
t − C P

t + E Out
t

) · (1 + i)−t . (1)

Fig. 1 Model structure
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The starting point for the integration of resource criticalities are the payments for
the output fractions. In the deterministic model, these are calculated as the price
respectively the fees for the disposal multiplied with the mass:

E Out
t =

∑

n∈N

∑

h∈H

Eht · x Out
nht ∀s ∈ S,∀t ∈ T . (2)

3 Strategic Network Model Enhanced with Resource
Criticalities

Gleich et al. observed a significant correlation between the criticality assessment
and the price development of different resources [11]. As a first step, information
derived from resource criticality indicators given in [7] are used to deviate resource
price scenarios s ∈ S for each resource h ∈ H . To do so, the payments for the recov-
ered output fractions E Out

t are modelled as being dependent on scenario s:

E Out
ts =

∑

n∈N

∑

h∈H

Ehts · x Out
nht ∀t ∈ T . (3)

To find an appropriate solution without complete information the approaches of
optimisation under uncertainty have to be considered.A robust approach is used as the
developed resource criticality indicators include no direct probability information.

In the present situation, the relevant uncertainties appear in the objective function.
Hence, the problem is not to find a feasible solution, but to find one with an adequate
objective value in all possible scenarios. In such a situation different decision criteria
can be applied. In our approach the Hurwicz-Criterion is used, due to the fact that
it calculates a linear combination of the best and the worst objective value for each
solution (4). This combination reflects the expected opportunity through uncertain
price development of the strategic raw materials. The risk attitude of the decision
maker is set by a weighting parameter λ. A linear formulation is given in (4)–(8),
where zmax and zmin are auxiliary variables, which represent the best and the worst
objective value for one solution considering each scenario s. The variable zs indicates
the scenario s achieving zmax .

max λ · zmax + (1 − λ) · zmin (4)

s. t. zmin ≤ N P V s ∀s ∈ S, (5)

zmax ≤ N P V s + M · (1 − zs) ∀s ∈ S, (6)
∑

s∈S

zs = 1, (7)

zs ∈ {0, 1} ∀s ∈ S, (8)

+ basic problem constraints.
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4 Case Study and Computational Results

The developed model is applied to a case study of North Rhine-Westphalia (NRW).
In Germany, data about the installed PVmodules, including postal code, location and
power, have been published by the transmission network operator since 1990. Thus,
the considered data cover a planning horizon of 24 years. With an expected life-time
of 25 years the first modules will reach their end of life in 2015. The expected waste
quantities are allocated to existing collection points.

For a first integration of the resource criticality, four price scenarios are considered
corresponding to the criticality assessment given in Table1: In each period in (s1)
prices remain stable, in (s2) prices of criticality class V rise by 5%, in (s3) prices of
criticality class V rise by 10%, in (s4) prices of criticality class IV rise by 5% and
class V by 10%. Three recycling technologies are considered for installation. Two
are already available or will be in a short time (shredder, Sunicon). One (Lobbe) is
still under development.

The case study is solvedwith FICOXpress. For theHurwicz decision approach the
weighting factor is set to λ = 0.8, which represents a risk-loving decisionmaker. The
chosen technologies in the Hurwicz solution are compared to the optimal solutions
in each scenario s in consideration of the installed recycling technologies r (Fig. 2
left) and the reached objective value (Fig. 2 right).

The results show that in the scenarios, where the prices for the critical resources
rise (especially s3, s4), it is better to wait for the advanced technologies like Lobbe,
which can treat every PV module type and recovers also the strategic materials. In
the Hurwicz solution, this technology is also installed, but in fewer number. The
comparison of the objective values displays that the Hurwicz approach is in an
acceptable distance to the scenario optimal solution in every scenario but scenario s4.

Fig. 2 Left Number of installed recycling technologies r ; Right Hurwicz solution in comparison
to the scenario optimal solutions
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5 Conclusion and Outlook

In this paper a resource criticality extension of an strategic recycling network plan-
ning approach is presented. The approach offers the possibility to include resource
price risks within the planning of a recycling network. Thereby it is possible to
hedge an economy against scarcity of strategic resources by an early reaction and
installation of an appropriate infrastructure. In further research, the methodological
derivation of further information from the resource criticality indicators and from
experts will be considered to refine the derived and implemented data. Furthermore,
other approaches for optimisation under uncertainty will be tested and compared
with the currently used approach.
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Designing a Feedback Control System
via Mixed-Integer Programming

Lena C. Altherr, Thorsten Ederer, Ulf Lorenz, Peter F. Pelz
and Philipp Pöttgen

Abstract Pure analytical or experimental methods can only find a control strategy
for technical systems with a fixed setup. In former contributions we presented an
approach that simultaneously finds the optimal topology and the optimal open-loop
control of a system via Mixed Integer Linear Programming (MILP). In order to ex-
tend this approach by a closed-loop control we present a Mixed Integer Program for
a time discretized tank level control. This model is the basis for an extension by com-
binatorial decisions and thus for the variation of the network topology. Furthermore,
one is able to appraise feasible solutions using the global optimality gap.

1 Introduction

Conventional methods can only find an optimal control strategy for technical systems
with a fixed setup. Another system topology may enable an even better control
strategy. To find the global optimum, it is necessary to find the optimal control
strategy for a wide variety of setups, not all of which might be obvious even to an
experienced designer. We introduce a Mixed Integer Linear Program (MILP) for a
feedback control that can be extended by combinatorial decisions. This approach is
the basis for finding the optimal topology of a system and its optimal closed loop
control simultaneously.
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One example for a fluid system with different topological and control strategy
options is a tank level control system. Pumps can either be used or not and they can
be connected in series or in parallel. To control the water level, the rotational speed
of the used pumps has to be adjusted. The goal may either be energy efficiency or a
controller property like settling time or stability.

The tank level control system can be represented by a control circuit. To accurately
optimize a feedback control system one needs to account for the time-dependent
behavior of its components: P (proportional), I (integration) and D (derivation), PT1,
PT2 (delay of first or second order) or PTt (dead-time). We discretized the time
dependence and obtained a mixed-integer formulation based on a time-expanded
flow network. This formulation allows us to appraise feasible solutions using the
global optimality gap. Furthermore, we can combine this approach with a variation
of the network topology [4].

2 State of the Art

A proportional-integral-derivative (PID) controller is one of the most commonly
used closed-loop feedback methods. The control output u(t) is computed from the
present error P, the accumulated past errors I, and a prediction of future errors based
on the current error derivative D [2]. The corresponding controller parameters kp,
ki and kd affect the variation of the error e(t) in time. Adjusting these parameters
is called tuning. For instance, with a bad parameter assignment the process variable
may oscillate around a given set point, but given a good assignment the controller
is fairly robust against small disturbances. However, tuning a controller for specific
process requirements is highly nontrivial.

One approach to finding controller parameters is manual tuning. In this case, the
proportional parameter kp is raised until the control variable oscillates. This current
value of kp is then halved to obtain a good assignment. From this starting point,
the other controller parameters can be derived [7]. Of course, this approach is rather
error-prone and can be improved by computer-aided methods, e.g. by parameter
optimization or evolutionary algorithms. However, each of these methods has at
least one significant shortcoming: Discrete decisions like topology variations are not
possible, or local optima cannot be distinguished from global optima.

MILP [5] is a modeling and solving technique for computer-aided optimization
of real-world problems. Its main advantage compared to other optimization methods
is that global optimality can be proven. During the last two decades, its application
has become increasingly popular in the Operations Research community, e.g. to
model problems in logistics, transportation and production planning. Commercial
solvers are nowadays able to solve plenty of real-world problems with up to millions
of variables and constraints. The field of applying mathematical optimization to
physical-technical systems is called Technical Operations Research (TOR) [3].

In previousworkwehave shownhow to optimize a hydrostatic power transmission
system via mixed-integer programming [1]. The solution is a system topology with
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a corresponding open-loop control strategy. A weakness of this approach is that the
actuating variable has to be known in advance for each time step. It is not possible
to react to the current state of the fluid system. To overcome this, we include a
mathematical description of closed-loop controllers into a mixed integer program.
The aim of this paper is to illustrate the first step of our current work by presenting
a small example.

3 Tank Level Control

We look at the example of a water level control. A tank is filled with water and has
an outlet at the bottom out of which a certain amount of water drains, depending on
the height of the stored water column. To fill the tank, a pump has to be activated.
The filling speed depends on the pressure built up and the volume flow provided by
the pump. Figure1 shows an exemplary setup.

We model this setup by a mathematical graph G = (V, E). The reservoir and
the tank are represented by vertices V , pumps and pipes by edges E . The following
physical equations and models describe the filling level system and are included into
theMILP formulation. First, the continuity equation for incompressible fluids results
in the conservation of volume flows Q.

∀ t ∈ T ∀ v ∈ V :
∑

(i,v)∈E

Qi,v
t =

∑

(v, j)∈E

Qv, j
t (1)

The increase or decrease of the tank’s filling volume V is approximated in our model
by a sequence of static flows over short time intervals Δt .

∀ t ∈ T \ {0} : Vt = Vt−1 +
⎛

⎝
∑

(i,tank)∈E

Qi,tank
t −

∑

(tank, j)∈E

Qtank, j
t

⎞

⎠ · Δt (2)

If a pump is activated (indicated by the binary variable ai, j
t ), the pressure difference

between both connectors i and j is fixed to Δpi, j
t , which is given by the pump

Fig. 1 A tank level control system. A pump conveys water from a reservoir into the tank while
water is draining out of it. The rotary speed of the pump is set via controller. The task is to reach
and maintain a given filling level in minimum time
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characteristic, cf. Eq. (10). Otherwise, the pressure levels of the two connectors are
decoupled by means of a big-M formulation.

∀ t ∈ T ∀ (i, j) ∈ Pumps : |p j
t − pi

t | ≤ Δpi, j
t + M · (1 − ai, j

t ) (3)

In an ideal pipe and in case of turbulent flow, the pressure loss is described by an
origin-rooted parabola. In real systems, an interference due to dynamic effects can
be observed. Still, the pressure loss can be well fitted by a general quadratic form.

∀ t ∈ T ∀ (i, j) ∈ Pipes : p j
t − pi

t = c2 · Qi, j,sqr
t + c1 · Qi, j

t + c0 (4)

We have to introduce an auxiliary variable for the squared flowrate and a piecewise
linearization of the square function. For univariate functions, the incremental method
was shown to be very efficient [6].With progress variables δ ∈ [0, 1] on linearization
intervals D and passing indicators z ∈ {0, 1}, this results in:

∀ t ∈ T ∀ (i, j) ∈ E ∀ (g, h) ∈ D : zi, j
t,g ≥ δ

i, j
t,g,h ≥ zi, j

t,h (5)

∀ t ∈ T ∀ (i, j) ∈ E : Qi, j
t =

∑

(g,h)∈D

(Q̃i, j
t,h − Q̃i, j

t,g) · δ
i, j
t,g,h (6)

∀ t ∈ T ∀ (i, j) ∈ E : Qi, j,sqr
t =

∑

(g,h)∈D

(Q̃i, j,sqr
t,h − Q̃i, j,sqr

t,g ) · δ
i, j
t,g,h (7)

The pump characteristic is a nonlinear relation—caused by the pump geometry—
between its rotational speed n, flowrate Q, pressure boost Δp and power input P .
This dependence is MILP-representable by a convex combination formulation [6]
with weights λ ∈ [0, 1] on nodes K and a selection σ ∈ {0, 1} of simplices X .

∀ t ∈ T :
∑

x ∈ X

σ
pump
t,x =

∑

k ∈ K

λ
pump
t,k = apump

t (8)

∀ t ∈ T ∀ k ∈ K : λ
pump
t,k ≤

∑

x ∈ X (k)

σ
pump
t,x (9)

∀ t ∈ T : npump
t =

∑

k ∈ K

λ
pump
t,k · ñpump

k , Δppump
t =

∑

k ∈ K

λ
pump
t,k · Δ p̃pump

k (10)

∀ t ∈ T : Qpump
t =

∑

k ∈ K

λ
pump
t,k · Q̃pump

k , Ppump
t =

∑

k ∈ K

λ
pump
t,k · P̃pump

k (11)

The pressure at the bottom of the tank is proportional to the water column height,
with the tank’s area A, the density of water ρ and the gravitational acceleration g.

∀ t ∈ T : ptank
t = ρ · g · V tank

t−1

A
(12)
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Additional Variables and Constraints for the Control Circuit

We model a PI controller with the equation

nref(t) = kp · ΔV (t) + ki ·
∫ t

0
ΔV (τ ) dτ (13)

where kp and ki are control parameters that determine if and how fast the control
deviation converges to zero. Discretizing this relation yields input variables ΔVt for
the proportional and SV

t = ∑t
0 Vτ for the integral part.

∀ t ∈ T : nref
t = n p

t + ni
t , n p

t = kp · ΔVt , ni
t = ki · SV

t (14)

∀ t ∈ T : ΔVt = V ref − V tank
t , SV

t = SV
t−1 + ΔVt (15)

Theproducts of continuous variables kp · ΔVt and ki · SV
t are linearized by the convex

combination method, cf. Eqs. (8) and (10).
If the reference value is larger than the pump’s maximum rotational speed or

smaller than the pump’s minimum rotational speed, it cannot be reached by the
actual value. We introduce two auxiliary variables Ωt and ωt for each time interval
that peak if and only if the reference value is out of bounds.

Ωt · (n p
max + ni

max − nmax) ≥ nref
t − nmax ≥ (1 − Ωt ) · (n p

min + ni
min − nmax) (16)

ωt · (n p
min + ni

min − nmin) ≤ nref
t − nmin ≤ (1 − ωt ) · (n p

max + ni
max − nmin) (17)

If the out-of-bounds indicators are deactivated, the rotational speed of the pump has
to be equal to the output n p + ni of the PI controller. If an out-of-bound indicator
peaks, the rotational speed has to reach its corresponding bound.

ωt · (n p
min + ni

min − nmax) ≤ nref
t − nt ≤ Ωt · (n p

max + ni
max − nmin) (18)

nmax − nt ≤ (nmax − nmin) · (1 − Ωt ) (19)

nmin − nt ≥ (nmin − nmax) · (1 − ωt ) (20)

We want to minimize the time m until the tank’s volume stays within a given error
bound εV . We model this using a big-M formulation and a monotonically increasing
binary function st ∈ {0, 1} with peak indicator j s

t ∈ {0, 1}.

∀ t ∈ T : |ΔVt | ≤ εV + M · (1 − st ) , st − st−1 = j s
t (21)

∑

t∈T

j s
t = 1 , minimize

∑

t∈T

t · j s
t (22)
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Fig. 2 Comparison of
optimization result and
simulation. The step size is
set to 1 s in our model. The
simulation result is
computed with the DASSL
solver with variable order
and a time step of 0.02 s

Figure2 shows the result for a test instance. The MILP model needs 71s to reach
the target volume. In a detailed simulation with the controller parameters obtained
from the optimization, the desired set point is reached within approximately 75s. In
contrast to the optimization model, no oscillation of the control variable is observed.

The approximation used in the MILP is comparable to the Euler method, a first-
order method with an error proportional to the step size. The computation times are
still rather long, ranging from minutes with MILP start to days without. For ongoing
research it might be interesting to investigate problem-specific primal heuristics.

4 Conclusion

We motivated a MILP formulation for the design process of a closed-loop control.
We started from a model for finding an optimal open-loop control for a filling level
control system and extended it to find an optimal closed-loop control. The advantage
of this formulation is that the load does not need to be known in advance to adjust
the rotational speed of the pump. Instead, the implemented controller is able to
compute the actuating variable in realtime based on the current pressure head of the
tank. Owing to the mixed-integer formulation one can easily extend our model by
integer or binary variables. We aim to include discrete purchase decisions or network
topology variations in future projects.
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Research Foundation (DFG) funded SFB 805.
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Fair Cyclic Roster Planning—A Case Study
for a Large European Airport

Torsten Fahle and Wolfgang Vermöhlen

Abstract Airport ground staff scheduling has been long known as one of the most
challenging and successful application of operations research. In this presentation,
wewill concentrate on one type of rostering known as cyclic roster.Numerous aspects
required in practice have to be taken into account, amongst others crew qualification,
work locations and the travel time between each location, government regulations
and labor agreements, etc. INFORM’s branch-and-price solution approach covers
all of these aspects and is in use on many airports world-wide. Cyclic Rosters cover
several fairness aspects by construction. In this case study wewill discuss why one of
our customers wanted to add additional fairness criteria to the roster. We showwhich
new fairness requirements are needed. We present a fast local search post-processing
step that transforms a cost optimal shift plan into a fair cyclic shift plan with the
same costs. The transformed plans are highly accepted and are in operational use.

1 Introduction

Airport ground staff scheduling has been long known as one of the most challenging
and successful application of operations research, in particular column generation
method.

Cyclic rosters (equivalently, shift patterns or rotating schedules) represent
sequences of shifts designed for a group of employees. One worker starts on each
week on the roster, switching cyclically from one week to the next. After finishing
one week, each worker switches to the subsequent week. The worker assigned to the
last week switches to the shifts planned in week one. All workers therefore rotate
over the pattern for a given period of time, e.g. for 4 weeks or for a flight season,
see [5].
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The main goal is to cover all demand of a planning week at low costs. Numer-
ous aspects required in practice have to be taken into account, amongst others crew
qualification, work locations and the travel time between each location, government
regulations and labor agreements, etc. Our branch-and- price solution approach cov-
ers all of these aspects and is in use on many airports world-wide.

The number of weeks in a typical cyclic roster is usually small (4–12) and rarely
exceeds the 26 weeks of a season. If the number of worker n assigned to the cyclic
roster is larger than the number of weeks w, workers are grouped in teams of size
b ≈ n/w.

Cyclic rosters occur at airlines and airports, but also in call centers, hospitals,
emergency services and in public transport, see [1–3, 6].

Cyclic Rosters cover several fairness aspects by construction. E.g. each group
of workers has to perform the entire schedule. Thus, all workers perform the same
number of day and night shifts in the same order. This is one reason why unions
often prefer cyclic rosters over individual shifts.

A drawback of cyclic rosters (especially with large teams) is that the covering
quality decreases. E.g. if a department runs a 13-week cyclic roster this means that
each week has to be covered by 13 different work lines. If there are 130 workers
in the department, each team of 10 workers perform the same line of work. This is
efficient only if there is always work for 10 persons. We may avoid over covering by
using more individual assignments.

These considerations lead to the idea that rather than using a fully cyclic roster of
13 weeks for teams of 10 persons, we generate a cyclic roster of 130 lines of work
for individuals. A worker entering the roster in line i leaves the roster after 13 weeks
in line (i + 13) mod 130. Now, the covering of work is good, but the subsequences
of weeks per worker may contain different shifts/functions and work is no longer
distributed fairly. Thus, external fairness criteria need to be taken into account.

A shift defines start and end of work on a day. A function here defines what work
has to be done. Certain (night) shifts and (leader) functions qualify for premiums,
thus shift and functions basically determine the roster costs. A work stretch (WS) is a
sequence of some days on and some days off. A typical patterns is “6-3”—working
6 days, having 3 days off. Another one covering 3 weeks is “7-3/7-4”: working 7
days, 3 days off, again 7 days of work, 4 days off. For an overview on staff rosterring
see [4].

2 Customers Fairness Rules

According to our customer, different departments have different definitions of a
“fair roster”. These definitions often stem from negotiations with unions and reflect
ergonomic aspects, monetary fairness or variety of work. There are several detailed
rules and exceptions, but the main principles are:
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1. Shifts and functions are evenly distributed over the roster (e.g. night shifts or
functions that qualify for premiums). If shifts or functions occur in blocks (see
below), distribute the blocks equally over the roster.

2. Within a work stretch (WS), different departments follow different rules:

a. (Dep. A, 6-3 rhythm) a WS should have as much variety of shifts and func-
tions as possible. If a functions occurs more than once, it should not be
assigned to consecutive shifts.

b. (Dep. B, 7-3/7-4 rhythm) The 7 days on are subdivided into blocks of 3
early, 4 late and then 4 early, 3 late shifts. All days in a block get the same
function, consecutive blocks must have different functions.

3 Transforming a Roster into a Fair Roster

Unfortunately, these criteria are hard to integrate into the existing branch-and-price
approach. In the following we define several measures that calculate the fairness of a
given roster R and we define swaps that exchanges parts of a roster such that fairness
can be improved.1

Let prio(ST ) [prio(F)] denote the priority for a certain shift type [function].
Let pos(i, ST ) [pos(i, F)] denote the i th occurrence of a shift of shift type ST [of
function F] within the entire plan, pos(1, X) < pos(2, X) < · · · < pos(n, X) for
X ∈ {ST, F}. We calculate the distance between positions i and its two neighbors
i ± 1 and store the larger of these to two:

αST (i) := max{pos(i + 1, ST ) − pos(i, ST ), pos(i, ST ) − pos(i − 1, ST )}
(1)

αF (i) := max{pos(i + 1, F) − pos(i, F), pos(i, F) − pos(i − 1, F)} (2)

obj1 :=
∑

ST

prio(ST ) ·
∑

i

αST (i), obj2 :=
∑

F

prio(F) ·
∑

i

αF (i) (3)

Function count (X, W S) counts the appearance of X in work stretch W S. X might
be a function or a shift. We penalize counters larger than one.

ϑX
W S := max{0, count (X, W S) − 1}, X ∈ {ST, F} (4)

obj3 :=
∑

W S

(
∑

F

ϑF
W S

)
, obj4 :=

∑

W S

(
∑

ST

ϑST
W S

)
(5)

1We only denote the normal cases here and omit the technical cases where a formula must take into
account the wrap-around from the last week in the plan to the first one.
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For all days on d in the work plan we use a penalty of one if day d + 1 is also
a day on and has the same function as day d. Otherwise the penalty is zero. Let
f unction(d) denote the function assigned to the shift on day d:

δ
f

d :=
{
1, if f = f unction(d) and f = f unction(d + 1)
0, otherwise

(6)

obj5 :=
∑

d, f

δ
f

d (7)

We evaluate the overall fairness of a plan by summing up all partial objective
terms. For each term, we use some parameter λ for calibration. In so doing we can
put emphasis on different aspects of fairness and adapt the magnitude of the different
terms.

obj :=
5∑

i=1

λi · obji (8)

Next, we need to define some swaps that are capable of improving the fairness of
a roster while preserving the desired work stretch structure.

The result of the branch-and-price approach is a valid and cost-optimal rotating
roster R = ((sid , fid), i = 1 . . . n, d = 1 . . . 7) containing shifts sid and functions
fid for each day d = 1 . . . 7 in each week i .

• A 2-swap swaps shift+functions on day d in week i with those in week j .
• A 3-swap exchanges shift+functions on day d in weeks i, j, k
• A work stretch swap swaps two different work stretches starting on the same day
of the week.

• A crossover swap exchanges first k days of two different work stretches starting
on the same day of the week.

Figure1 shows these swaps on a roster.Notice, that according to the customers fair-
ness rules (Sect. 2) we have a certain shift substructure in the 7-3/7-4 work stretches.
Thus, we can only apply work stretch swaps and crossover swaps with k = 3, 4 to
these rosters. 2-swap, 3-swap, and cross over swaps with arbitrary k are only valid
for department A.

The swaps defined above are embedded in a simple hill climbing algorithm. Each
admissible swap for the scenario at hand is called for all possible combinations of
days, weeks, work stretches, or parameters k. Each combination is further checked
for validity with global rostering rules, e.g. shift start time offset, min time before day
off. The parameters that provide the best improvement with respect to objective (8) is
applied to the roster at hand. If no parameter set for a swap provides an improvement,
the swap is skipped. This procedure is repeated until we cannot improve the current
roster anymore.
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Fig. 1 2-/3-swap, work stretch swap and crossover swap exchange parts of the roster in order to
obtain a better fairness value

Notice, that roster costs depend on the selected shifts and functions which are not
altered by any swap. Consequently, the roster’s cost stays optimal while the roster’s
fairness improves.

4 Numerical Results

We ran the described hill climbing algorithm on 28 scenarios from different depart-
ments of a large European airport. These scenarios contain 1–20 functions and 6–15
shift types. A scenario contains between 9 and 789 persons.2 Depending on the
department’s fairness definition, the algorithms applied different swaps and used
adapted weights λ in the objective (8). On an up-to-date laptop, 15 scenario took less
than 5s for fairness optimization, 26 scenarios took less than 2min. In two cases, we
applied 3-swaps to increase fairness quality and run time went up to 320 and 600s
(time limit), resp. In all cases, planners at the airport were highly satisfied with the
results.

Due to space limitations we present a deeper look into only one example from
department A for 189 workers, 12 shift types and 17 functions.3 Each worker rotates
over an 18 weeks subset of this roster. Figure2 shows the distribution of functions for
the scenario before and after fairness optimization. In the initial roster there were 327
days having the same function as the day before (only 7 after fairness). Shifts were
not equally distributed, one shift type was assigned 18 times to some worker, other
workers had no shifts of this types. After fairness, each worker got 5–9 shifts of this
type. Concerning the shift and functions variety, the initial roster only contained 3
work stretchwith 5 or 6 different shifts and functions, but 56work stretches contained

2One scenario had only 1 function, all other hadmore. 19 scenarios had between 54 and 252 persons,
only 1 had 9 persons, the largest scenarios contained 684, 789 persons, resp.
3The roster is a 6-3 roster. It contains 189 · 7 = 1323days and189 · 7/(6 + 3) = 147work stretches.
In a 6-3 pattern, 147 · 6 = 882 shift/functions combinations have to be assigned.
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Fig. 2 Function distribution before (l) and after (r) fairness. x-axis is the starting week from 1–189.
The column for week w represents the portion of shifts having a certain functions in roster weeks
w . . . w + 18. Different colors denote the 17 different functions

3 or less different shifts and functions. After fairness, all work stretches contained
at least 4 different shifts and 3 different functions. 95 work stretches (≈65%) were
rather diverse, they contained 5 or 6 shifts and 5 or 6 functions.

5 Conclusions

Since 2013, the approach is in operational use and plans several departments with
up to 700 persons per cyclic roster. The main gain of the fairness post optimization is
that it allows planners to reduce their manual work dramatically when management
is in negotiations with unions. Unions typically request several alternative rosters per
department for the next season and select one for operations. Planners thus have to
prepare several cost optimal and fair rosters per department per season. This manual
process easily took 1–2 weeks per roster. As the customer states it:

A 495 week roster meant assigning 3465 shifts one by one which meant a lot of mouse
clicking

Using the fairness post-optimization reduces this process to some minutes run
time and some reporting preparation, allowing to react faster and with reproducible
quality.
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Why Does a Railway Infrastructure
Company Need an Optimized Train Path
Assignment for Industrialized Timetabling?

Matthias Feil and Daniel Pöhle

1 Introduction

Today’s timetabling process of German rail freight transport is a handicraft make-to-
order process. Train paths are only planned when operators apply for specific train
services including specific train characteristics such as train weight, train length,
accelerating and braking power, etc.What seems customer-friendly, has indeedmany
disadvantages: frequentmismatch of demand and supply, general lack of service level
differentiation and long customer response times for the train operators; inefficient
use of network capacity and timetabling resources for the rail infrastructure manager.

Modern and industrialized supply chain concepts do not feature pure make-to-
order processes but often prefer a mix of make-to-stock/make-to-order processes,
namely assemble-to-order processes ([7, 8]). Products consist of forecast-based
made-to-stock modules that are assembled to finished goods only when customers
haveplaced their specificorders. The core ideaof assemble-to-order processes is post-
ponement. “Postponement [...] is based on the principle of seeking to design products
using common platforms, components or modules but where the final assembly or
customization does not take place until the final [...] customer requirement is known”
(see [2]). A first advantage of an assemble-to-order supply chain is that the common
modules strategy leads to a low total number of modules helping reduce the forecast
risk and, hence, reduce inventory stocks. A second advantage is that a company can
achieve very high flexibility. This is because it can feature both a high product dif-
ferentiation by cross-assembling the modules as well as short order lead times since
the supply chains order penetration point, or “de-coupling point” respectively, has
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Fig. 1 Comparison of both
processes

moved backwards (see [8]). “The marketing advantages that such flexibility brings
are considerable. It means that in effect the company can cater for the precise needs of
multiple customers, and they can offer even higher levels of customization. In todays
marketplace where customers seek individuality and where segments or ‘niches’
are getting ever smaller, a major source of competitive advantage can be gained by
linking production flexibility to customers needs for variety.” (see [3]). Prominent
examples of assemble-to-order products are e.g. electronic devices such as printers,1

cars2 or fashion.3

German Railways Infrastructure division DB Netz has started to gradually intro-
duce an assemble-to-order process for its rail freight timetabling.4 Two innovations
have been necessary (see Fig. 1): the pre-production, or pre-planning respectively, of
standardized train paths (“slots”) able to match future demand, and the assignment of
operators’ train service applications to the pre-planned slots. First analyses of the new
timetabling process indicate that the aforementioned advantages from non-transport
industries can be carried over to the railway industry: Rail freight operators (“multiple
customers”) will mainly benefit from a better match of demand and supply (“link-
ing production flexibility to customers’ needs for variety”). They will also benefit
from much faster response times when applying for train paths (“shorter order lead
times”). Finally, they will benefit, as a side-kick, from shorter average O-D-travel
times, hence better rolling stock and crew utilization. This is because the pre-planned
slots feature better average travel time characteristics than the pure made-to-order
train paths. The rail infrastructure manager DB Netz is expected to benefit from
increased demand, from a higher network transparency leading to higher network

1Case study Hewlett Packard: Country-generic printers are combined with country-specific power
modules and power cord terminators, see [7], pp. 331ff.
2All major OEM: Modules are e.g. body type, color, engine, décor elements, etc.; see e.g. [9].
3Case study Benetton: “By developing an innovative process whereby entire knitted garments can
be dyed in small batches, they reduced the need to carry inventory of multiple colors, and because
of the small batch sizes for dying they greatly enhanced their flexibility”, see [3].
4Timetabling of passenger traffic will continue to be a make-to-order process. Core reason is the
strong customization requirement in passenger traffic leading to timetabling to the minute with
lots of definite changing connections at the stations. Both factors eliminate the likelihood that
pre-produced and standardized slots would meet future customer demand.
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utilization as well as from economies of scale in the pre-planning of slots. Altogether,
the rail freight sector is expected to strengthen its competitive position against road
and shipping transport. Going forward, this paper will give a basic introduction to
the slot assignment innovation. Detailed explanations of the slot assignment’s results
can be found in [5]. The pre-planning of slots for a long-term timetable is extensively
described in [6, 10].

2 Requirements and Constraints of the Slot
Assignment Model

The aim of the assignment phase is to find optimal O-D-slot itineraries for all oper-
ators’ train service applications. A slot is a train path from a node A to a node B at a
certain time t. An O-D-slot itinerary p is a string of slots leading from the origin to
the destination of a train service r matching the operator’s route and departure/arrival
time requirements.Apre-processingmodule verifieswhich type of pre-planned slots5

is adequate for the specific train service application. Three different objective func-
tions can be used in the slot assignment model: maximize total revenues from slot
fees, maximize fulfillment of demand (equal to minimal rejection of train service
applications), or maximize quality of the assigned slot itineraries:

∑

p,r

ωp,r · x p,r → max

∀Cs ∈ C :
∑

p∈Cs

x p,r ≤ 1

∀H ∈ H :
∑

p∈P(H)

x p,r ≤ cH

x p,r ∈ {0, 1}

ωp,r =
⎧
⎨

⎩

1 , max . f ul f illment
ur , max . revenue

(� · τ (p∗
r ) − τ (p)) , max . quali t y

where x p,r is a binary decision variable indicatingwhether application r uses itinerary
p, cH is the node’s capacity, � is a detour factor and τ (p) is the travel time for itinerary
p. The fulfillment criterion represents slot and node capacities. If the slot or node
capacity is insufficient, affected train service applications cannot be fulfilled and
must be rejected. Slot capacity means that every slot may only be assigned to at the
most one train service. Node capacity means that only a certain number of trains can
simultaneously dwell in a node while every node has also a minimum dwelling or

5The slot types are mainly characterized by maximum train speed. On most lines, a fast (100km/h)
and a slow (80km/h) slot type is sufficient to cover more than 90% of nowadays train service
applications. The balance must continue to be planned in a handicraft make-to-order process.
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Fig. 2 Three different levels
of modelling nodes

transfer time from an incoming to an outgoing slot. We differentiate three levels of
node capacity (see Fig. 2). At level 1, there are no capacity restrictions in the network
nodes. All incoming and outgoing slots of a node can be arbitrarily connected, only
subject to the node’s minimum transfer time. In level 2a, each node is assigned with
a global capacity of dwelling positions. This number indicates how many trains can
simultaneously dwell in a node waiting for or transferring to the next suitable exit
slot. In contrast, at level 2b, themodel differentiates all dwelling positions bywhether
or not they give access to the slots of the desired exit direction and by their length (can
the dwelling position cope with the specific train’s length?). The revenue criterion
represents the infrastructure managers income from slot fees. Every application may
have a different fee. The quality criterion quantifies the ratio of assigned travel time
and minimum technical travel time.6 The optimization model is solved by a two-step
approach. First, a valid initial solution is generated by a simple heuristic algorithm.
The algorithm sorts all train service applications by ascending departure times and
assigns them one by one to the slots. Once a slot has been assigned to a train service
application, it is no longer available for subsequent applications. Similarly, node
dwelling positions are gradually blocked during a train’s node dwelling time. This
simple heuristic basically represents the strategy a human timetabling engineerwould
pursue. Second, the initial solution is optimized by the column generation method
(see e.g. [1]). A comprehensive explanation of the optimization model is given in [4].

3 Practical Use of the Optimization Model

To be useful in daily business, the optimization model must yield better results in
affordable run times than the infrastructure manager’s conventional means. There-
fore, we tested the optimization model’s performance by running the column gener-
ation method against the simple “human” heuristic algorithm introduced in Sect. 2.
Two different disguised scenarios of the German railway network have been served

6This number is always greater or equal to 1.A ratio of 1 means assigned travel time and minimum
technical travel time are equal.
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Fig. 3 Performances of the algorithms

as a test environment. In both scenarios, the number of train path applications has
been deliberately increased compared to today’s numbers. This leads to a certain level
of network overload and guarantees some optimization potential for the algorithms.
Therefore, no conclusions about real network capacities or bottlenecksmay be drawn
from the presented results. In the first attempt, we let a group of timetable engineers
equipped by today’s standard timetabling software compete against the column gen-
eration method executed by a standard PC.7 The attempt was in vain because the
engineers quit after a couple of days without a valid solution. They did not fail the
individual slot assignment task but couldn’t manage to establish an effective admin-
istration system of assigned and free slots. So they got lost after some while. As
a consequence, in the second attempt, we let the simple “human” heuristic algo-
rithm compete against the column generation method, both executed by a standard
PC. Figure3 display the performances of the two algorithms. For the optimization
model, only the objective function is shown that maximizes the assigned slots’ qual-
ity as it performed best among the three objective functions. One can observe in Fig. 3
that, in all test cases, the optimization model rejects less train service applications
than the heuristic algorithm. The number of applications with a valid assignment
is raised by 5–12%. Moreover, the average quality improves, too. The more node
constraints are considered, the higher the optimization potential of the optimization
model is. In test case D, the optimization models travel time quality is 4.9% higher
than the heuristics one. Run times can be drawn from the right graph in Fig. 3. For
the optimization model, run times are those for solutions with a dual gap of less or
equal 20 or 10%. The first solution with a duality gap less than 20% for test cases
B, C and D can be found within two to five hours of optimization. The more node
constraints are included (level 2a and 2b) the longer it takes to optimize the assign-
ments. It becomes clear that the optimization model yields much better results than
the heuristic at the cost of higher run times. Yet, over-night runs are feasible so that
the optimization model will be usable in daily business. Moreover, thanks to the use
of column generation, there is always a feasible solution for assignment available
independently from how long the optimization takes.

7CPU 2.5 GHz, RAM 16 GB, OS Debian 64 bit.
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4 Conclusion and Outlook

Germanys largest rail infrastructure manager DB Netz has started to adopt an
assemble-to-order process for its rail freight timetabling. First analyses indicate
that train operators will benefit from a better match of demand and supply, from
faster response times when applying for train paths and from shorter average travel
times, hence better rolling stock and crew utilization. The rail infrastructure man-
ager DB Netz is expected to benefit from a higher network transparency leading to
higher network utilization as well as from economies of scale in the pre-production
of slots. Altogether, the rail freight sector is expected to strengthen its competitive
position against road transport. For the assembly phase, we have developed a slot
assignment optimization model. Different test scenarios have shown that the model
is able to generate valid initial solutions and to refine them by a column genera-
tion method. The latter one excels the simple initial heuristic algorithm representing
today’s timetabling logic up to 12% (fulfillment and average travel time). The overall
model’s run times allow for over-night runs so that the model is appropriate for daily
business. Heading towards day-to-day implementation, we will extend the model’s
functionality. Development efforts will focus on the extension of the current 1-day
model scope to a 365-days scope. They will also focus on improving running times
and a more granular representation of the rail network (inclusion of all relevant net-
work nodes instead of onlymajor andmid-sized network nodes). The implementation
is accompanied by a major transformation program to enable staff to deal effectively
with the new assemble-to-order process.
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A Polyhedral Study of the Quadratic
Traveling Salesman Problem

Anja Fischer

Abstract In this paper we summarize some of the results of the author’s
Ph.D.-thesis. We consider an extension of the traveling salesman problem (TSP).
Instead of each path of two nodes, an arc, the costs depend on each three nodes that
are traversed in succession. As such a path of three nodes, a 2-arc, is present in a
tour if the two corresponding arcs are contained in that tour, we speak of a quadratic
traveling salesman problem (QTSP). This problem is motivated by an application in
biology, special cases are the TSPwith reload costs as well as the angular-metric TSP.
Linearizing the quadratic objective function, we derive a linear integer programming
formulation and present a polyhedral study of the associated polytope. This includes
the dimension as well as three groups of facet-defining inequalities. Some are related
to the Boolean quadric polytope and some forbid conflicting configurations. Further-
more, we describe approaches to strengthen valid inequalities of TSP in order to get
stronger inequalities for QTSP.

1 Introduction

The traveling salesman problem (TSP) is one of the most studied combinatorial
optimization problems, see, e.g. [3, 13]. In this paper we consider the asymmetric
quadratic TSP (AQTSP), as an extension of the asymmetric TSP (ATSP), where the
costs do not depend on two but on three nodes that are traversed in succession by a
tour. The QTSP was originally motivated by an application in bioinformatics [12].
Special cases are the Angular-Metric TSP [1], which looks for tours minimizing the
total angle change for points in the Euclidean space, and the TSP with reload costs
(relTSP) used in telecommunication and transport networks [2]. In addition to the
distance-dependent transportation costs the relTSP takes the costs for changes of
transportation means into account.
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Because a path of three nodes is contained in a tour if and only if the two asso-
ciated arcs are present, this leads to a TSP with a quadratic objective function. We
derive a linear integer programming formulation by linearizing the objective func-
tion by introducing new variables for each path of three nodes. Considering the
associated asymmetric quadratic traveling salesman polytope PAQTSP, we determine
the dimension of PAQTSP and present three groups of facet-defining inequalities. The
inequalities in the first group are related to the Boolean quadric polytope [14]. After
this we study which paths of two and three nodes are in pairwise conflict, leading to
the conflicting arcs inequalities. Third, we exploit the relation of AQTSP to ATSP by
strengthening valid inequalities for ATSP in order to get improved valid inequalities
for AQTSP. We demonstrate our strengthening approaches on the example of the
well-known subtour elimination constraints.

For further details and references aswell as for an extensive study of the symmetric
QTSP, where the direction of traversal is irrelevant, we refer the reader to [6–8] as
well as to the author’s Ph.D.-thesis [5].

2 Problem Description

In this section we describe our optimization problem more formally. Let G =
(V, V (2), V (3), c) be a directed 2-arc-weighted complete graph with node set
V := {1, . . . , n}, n ≥ 3, set of arcs V (2) := {(i, j) : i, j ∈ V, i �= j}, set of 2-arcs
V (3) := {(i, j, k) : i, j, k ∈ V, |{i, j, k}| = 3}, as well as 2-arc weights ca, a ∈ V (3).
We often write ij and ijk instead of (i, j) and (i, j, k). A cycle of length k is a
set of arcs C = {v1v2, v2v3, . . . , vk−1vk, vkv1} with associated set of 2-arcs C3 =
{v1v2v3, v2v3v4, . . . , vk−1vkv1, vkv1v2} with pairwise distinct nodes vi ∈ V, i.e.,
|{v1, v2, . . . , vk}| = k. Then the task is to find a tour or Hamiltonian cycle C in
G, i.e., a cycle of length n, that minimizes the sum of the given weights ca over all
2-arcs a ∈ C3. Let Ca

n = {C : C tour inG} denote the set of all tours on n nodes. Then
the optimization problem reads

min

{
c(C) :=

∑

ijk∈C3

cijk : C ∈ Ca
n

}
.

For a cycle C we define the incidence vector (xC, yC) ∈ {0, 1}V (2)∪V (3)
by

∀ a ∈ V (2) : xC
a =

{
1 if a ∈ C,

0 if a /∈ C,
and ∀ a ∈ V (3) : yC

a =
{
1 if a ∈ C3,

0 if a /∈ C3.

Because a 2-arc ijk ∈ V (3) is part of a tourC ∈ Ca
n, i.e., ijk ∈ C3, if the two associated

arcs (i, j) and (j, k) are contained in C, our optimization problem can be written as
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min

{ ∑

ijk∈V (3)

cijkxC
ij xC

jk : C ∈ Ca
n

}
. (1)

Linearizing, a linear integer programming formulation for (1) is given by

min
∑

ijk∈V (3)

cijkyijk

∑

j∈V \{i}
xij =

∑

j∈V \{i}
xji = 1, i ∈ V, (2)

∑

ij∈S(2)

xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n − 2, (3)

xij =
∑

k∈V \{i,j}
yijk =

∑

k∈V \{i,j}
ykij, ij ∈ V (2), (4)

xij ∈ {0, 1}, yijk ∈ [0, 1], ij ∈ V (2), ijk ∈ V (3). (5)

The degree constraints (2) ensure that each node is entered and left exactly once by a
tour. Subtours are forbidden via the well-known subtour elimination constraints (3),
see [4]. Constraints (4) couple the arc- and 2-arc-variables. Indeed, the sum of the
in-flow into ij via 2-arcs kij ∈ V (3) has to be the same as the out-flow out of ij via
2-arcs ijk ∈ V (3). One can derive these inequalities by multiplying (2) by a variable
xki or xik and using the integrality of the x-variables as well as the property that
subtours of length two are forbidden.

In the following we will present a polyhedral study of the associated Asymmet-
ric Quadratic Traveling Salesman Polytope PAQTSPn

:= conv{(xC, yC) : C ∈ Ca
n} =

conv
{
(x, y) ∈ RV (2)∪V (3) : (x, y) fulfills (2)−(5)

}
.

3 Polyhedral Study of PAQTSPn

In this section we summarize the main polyhedral results for PAQTSPn
. Before con-

sidering its facetial structure we shortly look at its dimension. An upper bound on
the dimension of PAQTSPn

is given by the number of variables reduced by the rank
of the constraint matrix, which equals 2n2 − n − 1 for n ≥ 4. One can prove:

Theorem 1 The dimension of PAQTSPn
equals f (n) := n(n − 1)2 − (2n2 −

n − 1) = n3 − 4n2 + 2n + 1 for all n ≥ 8.

The proof of this result is constructive. We build f (n) + 1 tours whose incidence
vectors are affinely independent in a three step approach. First, we determine, inde-
pendently of n, the rank of some specially structured tours explicitly and take a
maximal subset such that all corresponding incidence vectors are affinely indepen-
dent. In steps two and three we iteratively construct tours in such an order that each
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of these tours contains at least one 2-arc that is not contained in any previously con-
structed tour. The same proof structure also allows us to prove the facetness of several
classes of valid inequalities, but (partially large) adaptations of the constructions are
needed, because we have to ensure that the incidence vectors of the tours define roots
of the respective inequality.

The facet-defining inequalities presented next can be divided into three large
classes. First, we exploit the relation of PAQTSPn

to the Boolean quadric poly-
tope (BQP) [14]. Then we introduce the conflicting arcs inequalities, which for-
bid certain configuration. Because the asymmetric traveling salesman polytope
PATSPn := conv{xC ∈ {0, 1}V (2) : C ∈ Ca

n} is a projection of PAQTSPn
, valid inequali-

ties for PATSPn remain valid for PAQTSPn
but in most cases a strengthening is possible.

Based on the ideas that led to the conflicting arcs inequalities we present approaches
to strengthen valid inequalities of PATSPn in order to derive stronger inequalities for
PAQTSPn

. One strengthening is applicable to constraints with non-negative coeffi-
cients, the other one to the so called clique tree inequalities [9, 11].

Because we consider a linearization of a quadratic zero-one problem it is natural
to ask for connections to the BQP. One can easily show that the inequalities yijk ≥ 0,
ijk ∈ V (3), are facet-defining for PAQTSPn

. But the triangle inequalities of the BQP
can be improved:

Theorem 2 For n ≥ 7 the inequalities

yijk + ykij ≤ xij, ij ∈ V (2), k ∈ V \ {i, j},
∑

ij∈D(2)

xij −
∑

ijk∈D(3)

yijk ≤ 1, D ⊂ V, |D| = 3,

define facets of PAQTSPn
.

The conflicting arcs inequalities exploit the fact that short subtours or T-structures
are not allowed. In their most general form they can be written as

xij + xji +
∑

k∈S∪S1

yikj +
∑

k∈S∪S2

yjki +
∑

k∈S1,
l∈S2

ykil +
∑

k∈S1,
l∈T

ykil +
∑

k∈T ,
l∈S2

ykil +
∑

k,l∈T ,
k �=l

ykil ≤ 1 (6)

with V = {i, j}∪̇S∪̇T ∪̇S1∪̇S2, i �= j, being a partition of V . One can prove the fol-
lowing result:

Theorem 3 Inequalities (6) define facets of PAQTSPn
if

1. n ≥ 7 and T = S1 = S2 = ∅,
2. n ≥ 8 and |S| ≥ 3, |T | ≥ 3, S1 = S2 = ∅,
3. n ≥ 6 and |S1| ≥ 2, |S2| ≥ 2, S = T = ∅,
4. n ≥ 6 and S1, S2 �= ∅ as well as ((|S1| ≥ 2, |S2| ≥ 2, |T | = 1), (|S1| ≥ 3,

|S2| ≥ 3) or (|T | ≥ 2)).
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Furthermore, let V = {i, j}∪̇S∪̇T with T = {k, l}, k �= l, then inequalities

xij + xji + ykil + ykjl + ylik + yljk +
∑

m∈S

yimj +
∑

m∈S

yjmi ≤ 1 (7)

define facets of PAQTSPn
, n ≥ 7.

Somegroups of these inequalities have only polynomial size and can therefore be sep-
arated by enumeration. If we consider the two cases (|S| ≥ 3, |T | ≥ 3, S1 = S2 = ∅)
and (|S1| ≥ 2, |S2| ≥ 2, S = T = ∅), then there are exponentially many inequalities
(6) of both types. However, in the first case the separation problem is solvable in
polynomial time and in the second case the separation problem is NP-hard even if
the tested vector (x̄, ȳ) fulfills (2)–(4) as well as (x̄, ȳ) ∈ [0, 1]V (2)∪V (3)

.
As mentioned above, valid inequalities of PATSPn are also valid for PAQTSPn

, but
in many cases they can be improved. Our strengthening approaches are motivated
by the conflicting arcs inequalities (6). Let i, j ∈ V, i �= j, be fixed. Then the 2-arcs
imj, jmi ∈ V (3) almost act like the two arcs ij, ji themselves expressing that the two
nodes i, j are close in a tour. Based on this observation we derive:

Theorem 4 Let aT x ≤ b be a valid inequality of PATSPn with a ≥ 0. Define V ′ :=
{i ∈ V : ∃ j ∈ V with aij + aji > 0}. Then the inequalities

aT x +
∑

ikj∈V (3) :
aik=akj=0

aijyikj ≤ b if V ′ < n
2 , and aT x +

∑

ikj∈V (3) : k �=t̄,
aik=akj=0

aijyikj ≤ b

for a node t̄ ∈ V \ V ′ are valid for PAQTSPn
.

Applying this general strengthening to the subtour elimination constraints (3) we
even derive facet-defining inequalities of PAQTSPn

.

Theorem 5 For n ≥ 7 the inequalities

∑

ij∈S2

xij +
∑

ikj∈V (3) :
i,j∈S,k∈V \S

yikj ≤ |S| − 1 ⇔
∑

ijk∈V (3) :
i∈S,j,k∈V \S

yijk ≥ 1 (8)

define facets of PAQTSPn
for all S ⊂ V, 2 ≤ |S| < n

2 . Furthermore, the inequalities

∑

ij∈S2

xij +
∑

ikj∈V (3) :
i,j∈S,

k∈V \(S∪{t̄})

yikj ≤ |S| − 1 ⇔
∑

ijk∈V (3) :
i∈S,

j,k∈V \S

yijk +
∑

it̄j∈V (3) :
i,j∈S

yit̄j ≥ 1

define facets of PAQTSPn
, n ≥ 11, for all S ⊂ V, n

2 ≤ |S| ≤ n − 5, t̄ ∈ V \ S.

It is well-known that the separation problem for the subtour elimination constraints
(3) can be solved in polynomial time. But, it is NP-hard to determine a maximally
violated inequality of type (8) for points (x̄, ȳ) ∈ [0, 1]V (2)∪V (3)

satisfying (2) and (4).
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Unfortunately, the strengthening approach does not leads to facets of PAQTSPn
in

general if we apply it to facet-defining inequalities of PATSPn . Examples are further
lifted versions of some of the so called D+

k - and D−
k -inequalities [10].

Our second lifting approach can only be applied to the clique tree inequalities
[9, 11], which are a large class of valid inequalities of ATSP including the subtour
elimination constraints and comb inequalities. It combines the idea of “replacing”
2-arcs of the last approach with “outer” 2-arcs, see the 2-arcs with nodes i or j
between two nodes of T (or S1, S2) [7]. Strengthened, even facet-defining, versions
of (3) read, e.g.,

∑

ij∈I (2)

xij +
∑

ikj∈V (3) :
i,j∈I,k∈S

yikj +
∑

kil∈V (3) :
i∈I\{ı̄},k,l∈T

ykil ≤ |I| − 1

for appropriate sets I, S,T with V = I∪̇S∪̇T , |I| ≥ 2, ı̄ ∈ I and n ≥ 9. There also
exist non-coefficient-symmetric strengthened variants of (3) similar to (6).

Using some of the newly derived cutting planes in a branch-and-cut framework
allowed us to solve real-world instances from biology resp. bioinformatics surpris-
inglywell. Instanceswith up to 100nodes could be solved in less than 700s improving
the results in the literature by several orders of magnitude. Without the new cutting
planes the root gaps aswell as the running timesweremuch higher for these instances.
On most of the randomly generated instances additional separators reduced the root
gaps and the numbers of nodes in the branch-and-cut tree significantly, often even
the running times.
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New Inequalities for 1D Relaxations
of the 2D Rectangular Strip Packing
Problem

Isabel Friedow and Guntram Scheithauer

Abstract We investigate a heuristic for the two-dimensional rectangular strip pack-
ing problem that constructs a feasible two-dimensional packing by placing one-
dimensional cutting patterns obtained by solving the horizontal one-dimensional bar
relaxation. To represent a solution of the strip packing problem, a solution of a hori-
zontal bar relaxation has to satisfy, among others, the vertical contiguous condition.
To strengthen the one-dimensional horizontal bar relaxation with respect to that ver-
tical contiguity new inequalities are formulated. Some computational results are also
reported.

1 Introduction

Given a set of rectangles I := {1, . . . , n} of widthwi and height hi , i ∈ I , the objec-
tive of the rectangular two-dimensional strip packing problem (2D-SPP) is to pack
the set into a strip of width W without overlap and minimal needed height H . The
dimensions of the rectangles and the strip are integers and rotation of rectangles
is not allowed. The problem has several industrial applications and is known to be
NP-hard. Numerous heuristic algorithms have been proposed in literature. For a sur-
vey of some of the most common see [7]. In [2] the iterative heuristic SVC(SubKP)
is presented that utilizes 1D knapsack problems and the sequential value correction
method. The results achieved improve those of SPGAL [3] and GRASP [1].

We investigate a heuristic based on solutions of 1D bar relaxations [8] or more
precisely on packing the 1D cutting patterns obtained. A brief description of the
constructive heuristic approach is given in Sect. 2. The strip is filled from bottom
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to top. We define bottom patterns (Sect. 3) and formulate inequalities that maintain
the bottom-up filling by continuing the bottom patterns. In Sect. 4 we show how to
carry on the concept of continuing for non-bottom patterns.

2 LP-Based Constructive Algorithm

Our algorithm bases on two linear problems, the one-dimensional cutting stock
problem (1D-CSP) and the one-dimensional multiple length cutting stock prob-
lem (1D-MCSP) [8]. The 1D-CSP consists in cutting stock bins of size W into
smaller items of size wi to meet order demands hi , i = 1, . . . , n, while minimiz-
ing the number of stock bins used. A cutting pattern a ∈ Zn+ describes which items
are obtained by cutting a stock bin. That means the i th element is the number of
items of size wi in a. If stock bins of different sizes Wk , k ∈ K = {1, . . . , q}, are
applicable for cutting, the considered problem is the 1D-MCSP. Stock bins of size
Wk , k = 1, . . . , p < q can be used uk-times. The supply of the other stock bins is
not restricted. The goal is again to meet all demands while minimizing the number
of stock bins. Let Jk , k ∈ K , describe the set of feasible cutting patterns a j for stock
size Wk . Thus j ∈ Jk , if wT a j ≤ Wk . In the case of 1D-CSP j ∈ J , if a j satisfies
wT a j ≤ W . How often a cutting pattern a j is used is represented by x j ∈ Z+, j ∈ J ,
and matrix A consists of columns representing the cutting patterns.

2.1 1D-CSP and 1D-MCSP Adapted to 2D-SPP

Weassume that a rectangle i ∈ I is representedbyan itemwith sizewi anddemandhi .
So we need to cut exactly hi items of size wi , i = 1, . . . , n, and we consider binary
patterns a ∈ {0, 1}n . When the strip is empty, we have only one stock bin size W .
It results the one-dimensional binary horizontal bar relaxation (1DHBRb):

∑

j∈J

x j → min
∑

j∈J

a j
i x j = hi ∀i ∈ I, x j ∈ Z+ ∀ j ∈ J (1)

Now, imagine there are rectangles that already have been packed into the strip
and I is the set of unpacked rectangles. We describe the resulting free space by
stock bins of size Wk and supply uk with the help of the packing skyline [6]. Let
(s1, . . . , s p+1) be the vector of line segments of pairwise different, in ascending order
sorted, y-coordinates sk

y . Furthermore let (v1, . . . , vp+1) be the vector of the lengths
of line segments. The free space between line segment sk and sk+1 is represented
by a stock bin of size Wk = W − ∑p+1

i=k+1 vi and available number uk = sk+1
y − sk

y
for k = 1, . . . , p (see Fig. 1). We get exactly one stock bin of unrestricted supply
(p + 1 = q) and size W =: Wq which represents the space above the highest line
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Fig. 1 Free space
represented by stock bins of
size W1, . . . , W3 and supply
u1, . . . , u3

segment. Because the strip height needed is at least s p+1
y weminimize only the usage

of patterns for stock size W . The objective function becomes
∑

j∈Jq
x j → min. Fur-

thermore we demand that
∑

j∈Jk
x j = uk for all k = 1, . . . , p to ensure best usage

of the free space below the highest line segment. With J := ⋃
k∈K Jk we get again∑

j∈J a j
i x j = hi for all i ∈ I and x j ∈ Z+ for all j ∈ J . We refer to this model with

1DHBRb-ML.
The solution of 1DHBRb or 1DHBRb-ML only represents a solution of 2D-SPP

if there exists such an ordering of cutting patterns that all items representing one
rectangle are in consecutive patterns (vertical contiguous condition) and all items
have the same position in each stock bin [2]. The objective value of 1DHBRb respec-
tively 1DHBRb-ML is a lower bound L B := ∑

j∈J x j for the 2D-SPP.

2.2 Algorithm

The integer linear problems 1DHBRb and 1DHBRb-ML are also NP-hard prob-
lems [8]. To obtain 1D cutting patterns that represent sets of rectangles that can
be placed in the strip side by side in x-direction we solve the relaxations (x j ≥ 0)
referred to as HBR respectively HBR-ML. To ensure the vertical contiguous con-
dition and the consistency of x-positions we generate and pack the cutting patterns
iteratively. The algorithm works as follows:

At first HBR is solved and the 1D cutting patterns are obtained in the form of the
columns of A. Now we consider the patterns a j that are part of the solution, which
means x j > 0. They are called candidates. To evaluate the quality of a candidate
we examine the packing that would result after placing the rectangles in a j . The
arising skyline and the updated data of unpacked rectangles define the input data for
the next linear problem needed to solve, HBR or HBR-ML. The solution of HBR
respectively HBR-ML delivers on the one hand the major quality criterion, the lower
bound L B for the candidate, and on the other hand the cutting patterns for the next
construction step. The candidate of best quality is chosen and the corresponding
rectangles are really packed. If HBR-ML was solved for that candidate only cutting
patterns a j, j ∈ J1, have to be considered next otherwise all cutting patterns in A are
possible candidates. Again the quality of the new candidates is evaluated and so on.
The algorithm ends when all rectangles are packed. To get a more detailed insight
see [4].
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3 Constraints for Bottom Patterns

As described in Sect. 2.2 in the later steps of the algorithm the possible candidates are
taken from set J1 that represents the stock bin with the smallest size W1 < W . The
number of candidates is limited. In the initial step every pattern a j with x j > 0 can be
chosen for placing at bottom. With increasing n the number of candidates increases
but differences between the resulting lower bounds L B are only minor or do not
exist. Thus the lower bounds are not helpful in order to decide which candidate is
chosen for packing. Because we want to minimize the height of the packing it seems
reasonable to pack high rectangles as early as possible. Furthermore packing long
rectangles in the end may cause a lot of waste. Thus we would choose a candidate
that contains for example especially high or long rectangles. For these reasons we
define in an appropriate way a set of rectangles I0 that can be packed on the strip
bottom and require that a bottom pattern only contains rectangles i ∈ I0. Let be
J 0 := { j ∈ J : a j

i = 0 ∀i ∈ I \ I0} the set of bottom patterns and u0 := mini∈I0 hi

the height of the lowest rectangle in I0. The linear problem HBR is extended to
HBR-BP (bottom pattern) by the following inequality

∑

j∈J 0

x j ≥ u0 (2)

With that constraint we can reduce the number of bottom patterns and we ensure the
existence of patterns with somehow suitable properties.

Rectangles i ∈ I (a j ) := {i ∈ I : a j
i = 1} are placed at the bottom of the strip

if j ∈ J 0. Because yi = 0 for all i ∈ I (a j ), j ∈ J 0, we know their positions rela-
tive to each other in y-direction. Let us consider a bottom pattern a j , j ∈ J 0, that
contains rectangles with t ( j) ≤ |I (a j )| pairwise different heights h̃1 < · · · < h̃t ( j).
When placing them at the bottom a skyline (s1, . . . , st ( j)) arises where si

y = h̃i ,
i = 1, . . . , t ( j). For every r ∈ C j := {1, . . . , t ( j) − 1} there is a horizontal bar
between line segment sr and sr+1 that intersects with every rectangle of height
hi > sr

y but not with the others. That properties are represented by c jr ∈ {−1, 0, 1}n ,
r = 1, . . . , t ( j) − 1, with

c jr
i =

⎧
⎪⎨

⎪⎩

1 if i ∈ I (a j ) ∧ hi > sr
y,

−1 if i ∈ I (a j ) ∧ hi ≤ sr
y

0 else

called combinations induced by bottom pattern a j, j ∈ J 0 (see Fig. 2).
A pattern ak fulfills a combination c jr if ak

i = 0 for all i ∈ I +(c jr ) := {i ∈ I :
c jr

i = 1} and ak
i = 0 for all i ∈ I −(c jr ) := {i ∈ I : c jr

i = −1}. So a strip pattern ak ,
k ∈ J S := J \ J 0, continues the bottom pattern a j if (ak)�c jr = n(c jr ) for a r ∈ C j ,
where n(c jr ) := |I +(c jr )|.
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Fig. 2 Horizontal bars
represented by combinations
c j1 , . . . , c j3 induced by a j,
j ∈ J 0

Remember that HBR, and so it’s extension (2), does not ensure the vertical con-
tiguous condition (Sect. 2.2). Thus there is no guarantee for the existence of strip
patterns j ∈ J S that continue bottom patterns. Now we formulate inequalities that
ensure the following: If a bottom pattern a j, j ∈ J 0, is used in the solution of HBR
with usage x j > 0 and a j induces at least one combination, then there exists a strip
pattern ak with usage xk > 0 that continues a j .

The usage x j of a bottom pattern a j is restricted by x j ≤ b j
0 := mini∈I (a j ) hi . The

height of the horizontal bar represented by c jr is sr+1
y − sr

y . Thus the usage of patterns

that fulfills combination c jr is restricted by b j
r := sr+1

y − sr
y , r ∈ C j .

Let J (c jr ) := {k ∈ J \ J 0 : (ak)�c jr = n(c jr )} be the index set of patterns that
fulfills combination c jr , r ∈ C j , induced by bottom pattern a j, j ∈ J 0. The linear
problem HBR-BP is extended to HBR-cBP (continuous bottom pattern) by the fol-
lowing linear inequalities

∑
k∈J (c jr ) xk

b j
r

≥ x j

b j
0

j ∈ J 0, r = 1, . . . , t ( j) − 1. (3)

4 Higher Level Continuing

The presented concept of continuing bottompatterns can be applied to strip patterns if
they continue a bottom pattern or an other strip pattern. Let us consider a bottom pat-
tern a j, j ∈ J 0, and a strip pattern ak , k ∈ J S , that fulfills the first-level combination
c j := c j1 . Let I (ak) = {i1, . . . , i p} and Ic := {i ∈ I (ak) : c j

i = 1} be the set of items
that continue the rectangles of the bottom pattern and Inew := {i ∈ I (ak) : c j

i = 0}.
If a j and ak are chosen for packing then yi = b j

0 for all i ∈ Inew. Because of that the
argumentation described in Sect. 3 can be applied. The difference is that we have to
consider the reduced heights h̃i := hi − b j

0 for i ∈ Ic for continuing. With h̃i := hi

for all i ∈ Inew the maximum usage of ak is bk
0 = min{h̃i : i ∈ I (ak)}. Remember

that rectangles i ∈ I −(c j ) are not allowed in ak and so naturally not in any pattern
continuing ak . The induced first-level combination is

ck
i =

⎧
⎪⎨

⎪⎩

1 if i ∈ I (ak) ∧ h̃i > bk
0

−1 if i ∈ I (ak) ∧ h̃i ≤ bk
0 ∨ i ∈ I −(c j )

0 else
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The usage of patterns that fulfills combination ck is restricted by bk
1 := min{h̃i − bk

0 :
i ∈ I (ak), h̃i − bk

0 > 0}. With J (ck) := {l ∈ J \ J 0 : (al)�ck = n(ck)} we get the
inequality ∑

l∈J (ck ) xl

bk
1

≥ xk

bk
0

.

The introduced continuing strategy leads to a solution matrix A with a sub matrix
that has the consecutive ones property. Note that the presented approaches can also
be applied to HBR-ML where the lowest line segment of the skyline represents the
bottom and I0 ⊆ {i ∈ I : wi ≤ W1}.

5 Numerical Experiments and Conclusions

We tested our algorithm, among others, for the instances of the waste-free classes
T1–T5 from Hopper [5] because optimal strip height is known. Each of the 5 classes
contains 5 instances with strip width W = 200 and optimal strip height Hopt = 200.
The average number of items per instance is n. Table1 contains the results of the
algorithm (Sect. 2.2) using the linear problems HBR, HBR-BP, HBR-cBP and HBR-
cBP combined with HBR-MLwith continuing bottom patterns (ML-cBP). For better
comparison we pack all rectangles of bottom patterns in decreasing order of heights.
Column HBR-BP* contains the results obtained with a more specialized packing
rule. Column SVC contains the results of the iterative heuristic SVC(SubKP) of [2].
For SVC and HBR-BP* the percentage deviation from Hopt is given in column gap.

The introduced concept of continuing bottom patterns enables our algorithm to
start at a somehow suitable initial point but the obtained forecast is still a short one.
With the higher level continuing the vertical contiguous condition can be fulfilled
but that does not ensure a feasible two-dimensional packing. Thus, further work will
focus on the realization of constant location of items in one-dimensional cutting
patterns.

Table 1 Results obtained by the constructive algorithm with and without bottom patterns

Class n Hopt HBR HBR-BP HBR-cBP ML-cBP HBR-BP* gap SVC gap

T1 17 200 200,4 200,0 200,0 200,0 200,0 0,0 201,8 0,9

T2 25 200 207,4 206,6 205,4 201,4 201,6 0,8 207,0 3,5

T3 29 200 207,2 205,2 206,4 205,6 203,6 1,8 206,6 3,3

T4 49 200 206,8 206,4 206,2 206,2 205,8 2,9 205,0 2,5

T5 73 200 206,0 205,6 205,6 205,2 205,0 2,5 204,2 2,1

gapav 1,6 2,5
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Representing Production Scheduling
with Constraint Answer Set Programming

Gerhard Friedrich, Melanie Frühstück, Vera Mersheeva,
Anna Ryabokon, Maria Sander, Andreas Starzacher and Erich Teppan

Abstract Answer Set Programming and Constraint Programming constitute declar-
ative programming approaches with different strengths which have already been
shown to be highly effective for many hard combinatorial problems. In this arti-
cle we discuss two hybrid Constraint Answer Set Programming approaches with
regard to their suitability for encoding production scheduling problems. Our exem-
plifications are done on the basis of a production scheduling problem of Infineon
Technologies Austria AG.

1 Introduction

Scheduling is one of the most important and also hard problems in industrial pro-
duction planning. Various methods such as SAT-Solving, Dynamic Programming or
state-based search have been applied to scheduling since the late 1940s. In handling
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the diversity and dynamics of different scheduling domains, declarative approaches
have proven to be highly effective. Those approaches have a long history in Artificial
Intelligence in general, and in automatic planning and scheduling [5] in particular.
In this circumstance, Constraint Programming (CP) is a very successful approach
whichoffers goodperformance for numerical calculations and a rich set of specialized
global constraints. Another approach is Answer Set Programming (ASP) which con-
stitutes a decidable subset of first-order logic. The big advantage of ASP is its high-
level knowledge representation features. Different strengths of these approaches—
the representation abilities of ASP and the numerical calculation features of CP—led
to the development of a hybrid approach called Constraint ASP (CASP).

This article introduces two CASP approaches with respect to production schedul-
ing. Our exemplifications are based on a simplified semiconductor manufacturing
scheduling problem of Infineon Technologies Austria AG. Infineon is one of the
biggest semiconductor manufacturers world-wide and offers system solutions in the
fields of automotive-, industry-, smartcard- and security electronics.A semiconductor
chip is an integrated circuit consisting of thousands of components being assembled
in highly complex workflows. Consequently, the Infineon case constitutes a repre-
sentative real-world case.

2 Lot Scheduling Problem

Input contains a set of lots (silicon wafer entities) that have to be scheduled starting
from the given current time. Each lot belongs to an order and consists of several
wafers that are of a certain product type. Every order includes wafers of only one
type. A lot should be finished by the given due date, otherwise, it is late. The time
by which a lot is late is called tardiness. Every lot has to be processed in accordance
with its product’s workflow that is a sequence of tasks. A workflow can have time
coupling intervals. A time coupling is the maximal time interval between the end
of one task and the beginning of a defined subsequent task. Available machines are
listed with their current setup, i.e. task–product pair, and possible tasks of products
that they can perform. For every possible task a processing time per wafer is given.
Machines can process only one lot at a time. A machine might not be available in
one or several time periods when it cannot process lots. Such periods are defined as
start and end time points and can be either planned (service) or unplanned (break
down). In the latter case, a rescheduling procedure is triggered. Another parameter
is the changeover. The notion of changeover expresses the time which is needed
for setting up a machine to perform another type of task. During a changeover no
lots can be processed on the affected machine. At the beginning of the schedule
some lots might have already started their workflow. Such lots are given in a set
together with information about their current status. If a lot is being processed by a
machine, its entry includes a machine, a sequence number of the current task and
its remaining time. If a lot is waiting for the next task to start, it is listed with a
sequence number of the last finished task. A legacy schedule might also be provided
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as an input. A solution of the problem is a set of admissible timed assignments of
lots to the existing machines. Currently we consider a decision problem based on
summed-up total tardiness which is not allowed to exceed a predefined maximal
value. In this case, optimization can be performed by an iterative approach. Addi-
tionally, it is possible to add any further optimization criteria such as minimization
of finish time of each lot or number of changeovers.

3 Constraint Answer Set Programming

ASP is a declarative programming approach having its roots in deductive databases
and logic programming. Problem solutions correspond to answer sets which are
models of ASP programs under the stable model semantics [2] and its extensions,
e.g. [6]. An ASP program contains logic rules possibly including variables starting
with capital letters. During the process of finding a solution the variables are sub-
stituted by constant symbols. This process is called grounding. Constant symbols
start with lower letters. Generally, if the body of a rule is satisfied, its head can be
derived. A special form of an ASP rule are choice rules, e.g. 1 {st(J,S):time(S)} 1 :-

job(J),in_sched(J). The meaning of this rule is that exactly one starting time is assigned
to every job which must be in the schedule.

A Constraint Satisfaction Problem (CSP) is a triple (V, D, C) where V is a set
of variables associated with a domain D and a set of constraints C . A solution of
a CSP is an assignment of domain values to variables such that no constraint is
violated. CASP approaches have been developed for defining CSPs within answer
set programs in order to combine the high-level representation abilities of ASP and
the computation facilities of state-of-the-art CP solvers. In general, CASP allows
to improve ASP grounding and solving performance, since it gives a possibility
to represent constraints over large (infinite) domains and pass them to specialized
constraint programming systems. Several CASP systems have been developed [3].
In our paper we discuss two of them, clingcon [4] and ezcsp [1], and outline their
characteristics.

The clingcon system [4] is part of the Potassco collection.1 It is a hybrid solver
which combines the high performance Boolean solving capacities of ASP with tech-
niques for using non-Boolean constraints from the area of constraint programming.
The systemdifferentiates between regularASPatoms and constraint atoms.As shown
in Fig. 1 for clingcon, the input file iswritten in an extended input language for gringo.
It includes specific constraint programming operators marked with a preceding $
symbol. This involves arithmetic constraints (+, ∗, etc.), the global constraints count
and distinct as well as the optimization statements minimize and maximize. After
grounding, a partial Boolean assignment of regular and constraint atoms (interpreta-
tion) is initialized. The ASP and CP solvers (clasp and gecode) extend this Boolean
assignment until a full assignment of the atoms is reached. In case of a conflict, the

1clingcon, clasp and gringo are available on http://sf.net/projects/potassco/files/.

http://sf.net/projects/potassco/files/
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Fig. 1 General architecture of clingcon and ezcsp systems

conflict is analysed and backjumping is done. Eventually, the CP solver fixes the
values for the CSP variables such that the CSP constraints are not violated. Such
interpretation including the assignments of domain values to variables constitutes an
answer set.

In [1], ezcsp 2 has been introduced. Its language comprises statements for declara-
tion of variables, their domains as well as constraints over these variables. The atom
cspdomain(D) specifies a domain type D of all CSP variables occurring in a pro-
gram. The system ezcsp supports three types of domains: f d—finite domain, r—real
numbers and q—rational numbers. The atom cspvar(X, L , U ) declares CSP vari-
ables where a term X stands for the CSP variable name, whereas L and U stand for
the lower and upper values from the selected domain. Finally, the atom required(γ )

defines constraints on CSP variables and any solution of a CSP, i.e. assignment of
values to CSP variables, must satisfy all constraints. The constraint atoms are treated
as regular atoms by anASP grounder, e.g. gringo. A grounded program is then solved
by an ASP solver, e.g. clasp. If a returned answer set includes constraint atoms, they
are mapped by ezcsp into a CSP which is processed by a CP solver, e.g. bprolog, as
shown in Fig. 1. The performance of a CP solver might be improved by using global
constraints, variable and value orderings.

4 Modeling Production Scheduling

To keep the model more general, notions of lots, products and workflows are trans-
formed to jobs, where a job is a single task of a lot. For example, lot1 with three tasks
will be transformed to three jobs: lot1_1, lot1_2 and lot1_3, where the last numbers
stand for sequential indexes of the tasks. All data related to the mentioned notions is
transformed as well.

The input is defined using the following atoms. Job information is given in
job(Job) and deadline(Job,Time). The last atom defines the due time by which a job

2http://www.mbal.tk/ezcsp/index.html.

http://www.mbal.tk/ezcsp/index.html
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should be accomplished. Order of tasks belonging to one lot is expressed by an atom
prec(Job1,Job2) meaning that Job2 cannot start before its preceding Job1 is finished.
The time that the job takes on a machine is given by job_len(Job,Machine,Time).
An atom cur_t(Time) defines the time when the new schedule will start, whereas
max_t(Time) indicates the maximal possible time value. Finally, max_p(Value)
defines the maximal possible value of the optimization criteria (total tardiness).

A solution is expressed using atoms st(Job,Time) and on_inst(Job,Machine) in
ASP. They specify the time when a job will start and a machine that will perform it.
These atoms are defined only for the jobs that have not been finished yet. Such jobs
are listed by an atom in_sched(Job). In CASP, the representation is slightly different,
e.g. st(Job)=Time. Tardiness of a job is defined using an atom td(Job,Value), whereas
the total tardiness of all jobs is expressed as an atom total_td(Value).

Below the encodings of several essential rules are provided for both clingcon and
ezcsp.3 First of all, solution generation is performed in clingcon as follows:

st(J) $>= 0 $and st(J) $<= MT :- job(J),max_t(MT),in_sched(J).

1 {on_inst(J,M) : job_len(J,M,_)} 1 :- job(J),in_sched(J).

The same rules in ezcsp are expressed slightly different:

cspvar(st(J),0,MT) :- job(J),max_t(MT),in_sched(J).
cspvar(on_inst(J),1,N) :- job(J),in_sched(J),nMachines(N).
job_m(J,M) :- job(J),in_sched(J),job_len(J,M,_).
required(on_inst(J) != M) :- machine(M),in_sched(J),not job_m(J,M).

One example of common constraints is that no job that must be scheduled can
start before the current time. This constraint looks in clingcon as follows:

st(J) $>= CT :- cur_t(CT),in_sched(J).

The same constraint can be rewritten in ezcsp in the following way:

required(st(J) >= CT) :- cur_t(CT),in_sched(J).

The rule for tardiness that cannot be greater than the maximum value is expressed
in clingcon as:

td(J) $>= 0 $and td(J) $<= MT :- job(J),max_t(MT),in_sched(J).

td(J) $== $max{0,st(J) $+ L $- D} :- job(J),deadline(J,D),

on_inst(J,M),job_len(J,M,L),in_sched(J).

$sum{td(J) : job(J) : in_sched(J)} $== total_td.

total_td $<= MP :- max_p(MP).

3In our paper only parts of the models are provided due to the space limit. The full encodings as
well as input and output formats can be found at http://isbi.aau.at/hint/problems.

http://isbi.aau.at/hint/problems
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Table 1 Maximal (average) time and grounding size measured during the evaluation of (C)ASP
approaches

ASP (pure) clingcon ezcsp

Grounding Solving Grounding Solving Grounding Solving

Success rate 0% 0% 100% 90% 100% 0%

time, s 1.1 (0.8) 597.7
(107.3)

2.4 (2.0)

size, # lines 94301
(69752)

64853
(56216)

Its analog in ezcsp looks like the following set of rules:

cspvar(td(J),0,MT) :- job(J),in_sched(J),max_t(MT).
required( (td(J) == max(0, st(J) + L - D)) \/ on_inst(J) != M) :-

job(J),in_sched(J),deadline(J,D),job_len(J,M,L).
cspvar(total_td,0,MP) :- max_p(MP).
required(sum([td/1],==,total_td)).

5 Results

We have evaluated the following solvers within 900 seconds: ASP (pure)—grounder
gringo 3.0.3 and solver clasp 2.0.4; clingcon 2.0.3 and ezscp 1.6.20b30.4

The evaluation was conducted on a set of real-world instances5 which include 107
machines each. The results for a set of 20 mid-size instances with up to 101 jobs
are presented in Table1. In contrast to pure ASP, CASP approaches could ground
the program and required at most 2.4s. Generally clingcon was faster but ezcsp
generated smaller grounded programs. However, only clingcon could solve all but
two instances.

Generally, finding (optimal) schedules remains a challenge for realistic prob-
lem cases. The principal difficulties for ASP-based approaches are the explosion
of grounding and the completeness of search. Solutions for the two instances, i.e.
with 84 and 101 jobs, could not be computed, although realistic schedules might
include even higher number of jobs. Due to computational complexity, the described
approaches seem to be inapplicable for large practical scenarios without incorpora-
tion of heuristics. Therefore, the design of methods which are able to (automatically)
create heuristics for high-level knowledge representation languages such as ASP is
a promising direction for future work.

4The experiments were performed on a system with Intel i7-3930K CPU (3.20GHz), 64GB of
RAM, running Ubuntu.
5Instances are available at http://isbi.aau.at/hint/images/lsp/benchmarks.zip.

http://isbi.aau.at/hint/images/lsp/benchmarks.zip
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Day-Ahead Versus Intraday Valuation
of Flexibility for Photovoltaic and Wind
Power Systems

Ernesto Garnier and Reinhard Madlener

Abstract This paper takes the perspective of a photovoltaic (PV) or wind power
plant operator who wants to optimally allocate demand-side flexibility to maximize
realizable production value. We compare two allocation alternatives: (1) use of flex-
ible loads to maximize relative day-ahead market value by shifting the portfolio
balance in view of day-ahead prices; (2) use of flexible loads in intraday operations
to minimize the costs incurred when balancing forecast errors. We argue that the
second alternative yields a greater average value than the first in continuous-trade
intraday markets. The argument is backed by a market data analysis for Germany in
2013.

1 Introduction and Background

Two effects decrease the competitiveness of non-dispatchable renewable power pro-
duction in energy markets: a low relative market value and balancing costs.

The former is a direct result of non-dispatchability. Since the output of PV or wind
power systems is dictated byweather conditions, operators cannot freely choose their
output levels. Further, weather conditions are similar within fairly large geographical
regions. Consequently, wind or PV power plant operators within the same market
area face strongly correlated production patterns. This implies relatively low (high)
market prices in times of strong (weak) production. The issue is amplified by the
expansion of PV and wind power capacities in energy markets [5].

Balancing costs result from PV and wind forecast errors, i.e. deviations between
day-ahead projections and actual power production. Shortages and surpluses need to
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be balanced within portfolios or in intraday markets. All remaining deviations must
be compensated in the imbalancemarket, often at substantial surcharges. Considering
both opportunity costs from foregone day-ahead sales and actual balancing costs, the
impacts of production forecast errors can easily destroy up to 10%of day-ahead sales
value [8].

In this paper, we investigate temporal wise flexibility (storage, flexible loads) as
one of the most promising resources to both increase relative market value and mini-
mize balancing costs. Relative market value could be improved by shifting expected
supply surpluses and resulting (day-ahead) sales into delivery slots with high prices.
Balancing costs could be minimized by using flexibility to shift unexpected short or
long positions arising from forecast errors.We address temporal flexibility by assess-
ing the value created by demand response (DR)—i.e. flexible, responsive loads—
when applied to either day-ahead marketing or intraday balancing of forecast errors
for PV or wind power assets. Our interest for DR is based on its vast potential [6]
and on the gap we suspect regarding science-based support for operators who face
DR allocation decisions. Previous contributions have focused on either day-ahead
or intraday use [1, 6], or modeled DR application as a unit commitment problem
without explicitly trading off between markets [7]. Given the challenges that power
markets face in light of the expansion of PV and wind power, a better understanding
of the relative value of flexibility in real-world power markets is paramount.

Section2 suggests a simple valuation logic for day-ahead and intraday DR appli-
cations. Section3 compares both application strategies from an analytical and from
a real data perspective for Germany. Section4 provides an outlook on upcoming
research steps and discusses limitations.

2 Value Formulation

We consider two strategies for DR: (1) a day-ahead application (denoted by DA) to
increase sales revenue, and (2) an intraday application (denoted by ID) to minimize
forecast error balancing costs. DR is modeled as Lt units of flexible load, to be
understood as a share of (perfectly predictable) demand Dt for any time slot that can
be shifted by r slots within a predetermined range Rt → t − r, . . . , t + r .1 Dt is set
below the day-ahead supply forecast Y t

DA at all times.2

In strategy (1), the operator has different amounts of excess power available for
delivery or sale across time slots within Rt . Value is derived from flexibility by
shifting demand into times of low market prices, such that supply volumes are freed
for selling at times of high prices. Assuming that flexible loads can be shifted from

1The amount of slots within Rt depends on the time span by which demand can be shifted and on
the granularity by which time is dissected into slots (e.g., 15min versus one hour).
2Note that these requirements are given in order to focus on the aspect under investigation—relative
market value optimization for PV or wind. Relaxing the constraints is easily possible; however, it
would introduce other effects, i.e. short day-ahead portfolios and demand volatility.
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their initial consumption slot at time t into the least-cost available slot within the
range Rt , M → min Pt

DA

{
Rt

}
, the value of units shifted day-ahead is defined by

V
(
Lt

)
DA = Lt ×

[
Pt
DA − P M

DA + cs
M
DA − cs

t
DA

2
− (

CO
DA + CA

DA

)]
. (1)

It shows that the value of shifting loads away from t is determined by differences
in price P and bid-ask spread (BAS) cs between the current slot and the slot M .
The costs of shifting loads arise from both opportunity costs of customers CO

DA and
variable activation costs CA

DA. Evidently, the value of flexibility at slot t increases
with the difference in day-ahead prices between t and M .

For strategy (2), valuation not only depends on prices, but also on forecast error
dynamics. Depending on the forecast error sign, an operator is either short, and has
to buy intraday for the current slot t , or he is long and can sell volumes intraday for
the current slot at time t . In both settings, there are two options for the operator:

(a) to shift loads from the current short (long) position slot into another slot with a
short (long) position within range Rt that offers a lower price, or

(b) to net (enhance) an open position, by moving loads from the current short (long)
position slot into a slotwith a long (short) positionwithin Rt . This is only possible
if Rt is “mixed”, i.e. if there are slots with both long and short positions.

The valuation of (a) is similar to the day-ahead valuation. For long positions,
the formula is identical to Eq. (1), except that intraday variables replace day-ahead
variables. At short position slots, the only difference occurs regarding the BAS terms:
instead of (cs

M
ID − cs

t
ID), we have (cs

t
ID − cs

M
ID). This is because the short position at

time t is reduced, leading to BAS savings. Meanwhile, the short position at M is
enhanced, leading to more BAS incurred at M .

The valuation of (b) calls for further differentiation. In the case of a short position,
the current shortage is netted with a long positionwithin Rt . To this end, the long posi-
tion with the lowest corresponding market price is chosen: N → min Pt

ID{Rt |Y t
DA <

Y t
ID}. We define the value of flexible load in this setting as

V
(
Lt

)Net
ID = Lt ×

[(
Pt
ID + cs

t
ID

2
+T C

)
−

(
P N
ID − cs

N
ID

2
−T C

)
− (

CO
ID + CA

ID

)]
.

(2)
The first term within the squared brackets refers to the value created by shifting

loads away from the current short slot. Here, purchasing volumes at price Pt
ID with

the corresponding (half) spread and transaction costs (T C) is avoided. The second
term defines the value created by shifting these loads into the lowest-priced long slot
within Rt . While revenues are foregone by reducing the volumes sold at price P N

ID,
a half spread and transaction costs for the sale are avoided.

A comparison between options (a) and (b) shows that, for short positions, it is
beneficial to opt for option (b)whenever

[
(cs

N
ID + cs

M
ID)/2 + 2T C + P M

ID > P N
ID

]
. Just

from the balance of variables, this seems to hold in the majority of cases. Indeed,
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marketmechanismsmake it likely that, on average, P M
ID > P N

ID, as long as theportfolio
of the operator is sufficiently correlated with the portfolio of the other PV or wind
power plant operators in the market. This is because the aggregate balance of market
actors is reflected in the market prices. Hence, with correlation, prices are likely
higher for slots with short positions than for slots with long positions.

In contrast, if the operator decides to shift flexible loads away from a long position
towards a short position, he does not net but rather enhance positions. Since demand
is reduced at time t , the supply surplus is even larger. Similarly, the shortage at the
short slot to which demand is shifted, E → min Pt

ID

{
Rt |Y t

DA > Y t
ID

}
, is increased.

Consequently, higher transaction costs are incurred at both the long and short position
slots. We thus have the (already simplified) term

V
(
Lt

)Enhance
ID = Lt ×

[
Pt
ID − P E

ID − cs
t
ID + cs

E
ID

2
−2T C − (

CO
ID + CA

ID

)]
. (3)

Applying a similar logic as before, we can show that applying option (b) to long
position slots by shifting demand into a short position slot E only increases value
if

[
P E
ID + (cs

E
ID + cs

M
ID)/2 + 2T C < P M

ID

]
. Market mechanics further imply that, on

average, P E
ID > P M

ID . Thus, (b) will not be executed at many long position slots.

3 Value Comparison

Ignoring differences in prices, BAS, and (transaction) costs between day-ahead and
intraday markets for now, we can derive analytically that the application of flexible
demand creates greater value intraday. This can be shown by setting the day-ahead
value equation equal to the intraday valuations for the different scenarios (see [3] for
a detailed analysis). In summary, intraday application yields additional value due to
the possibility to mitigate short positions and thus BAS and transaction costs. For
long intraday positions, the most likely outcome is that value is equal to day-ahead
application value. Consequently, the share of short position slots intraday drives the
value advantage of intraday DR application. That share amounted to a remarkable
61% for the dominating German operators in 2013.3 Table1 summarizes the results
from setting DA = ID and eliminating variables where possible.

Our analytical comparison treats corresponding day-ahead and intraday parame-
ters as equal. In practice, they differ, with the effect that intraday application of
flexible demand will prove even more advantageous. Recalling Equations (1)–(3),
we find four value determinants: prices, BAS, and other transaction costs increase
the DR value, whereas DR costs lower it. Focusing on the value-increasing elements,

3In Germany, the bulk of PV and wind power production is currently integrated into the market by
the four transmission system operators (TSOs). The 61% short positions refer to actual production
deviations from forecasts, at an aggreagate level (sum of TSOs) for 15-min delivery slots.
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Table 1 Setting valuations DA = ID and reducing to differentiating variables

Slot positions in Rt Current slot t : long Current slot t : short

Homogeneousa DA = ID → 0 cs
M = cs

t

(Option (a))

Mixeda −P M
DA + cs

M
DA/2 = −P M

DA + cs
M
DA/2 =

(Option (b)) −P E
ID − cs

E
ID/2 − 2T C −P N

ID + cs
t + cs

N
ID/2 + 2T C

aHomogeneous ranges only include either short or long positions. Mixed ranges include both

prices have the largest impact. BAS constitutes a fraction of price; other transaction
costs for trading amount to only a fraction of the BAS and can thus be neglected.

When investigating market data (EPEX) for Germany in 2013, we find numerous
indications that intraday price dynamics increase the value of DR more than day-
ahead dynamics. First, absolute prices of hourly deliveries average higher intraday
(38.5e /MWh versus 37.9e /MWh), while variance is much higher (+20%). For an
exemplary range size of Rt = 5,4 intraday variance exceeds variance day-ahead for
the same range regarding the 2013 average value (68.9 versus 59.5,+16%). Further,
the spread between the highest and the lowest price intraday exceeds the day-ahead
spread by more than 9% (16.0 versus 14.6). All of these measures support the notion
that intraday price volatility is higher, and that absolute price movements are larger
as well. With respect to our valuations, this implies greater DR value intraday than
day-ahead. Another very important aspect should be mentioned here: while day-
ahead trading is possible for hourly delivery and longer slots, intraday balancing of
forecast errors is also commonly conducted at 15-min granularity. When we leave
the time distance by which demand can be shifted unchanged, but assume 15-min
granularity, we have a range of Rt = 17.5Volatility then significantly exceeds the
values for hourly slots and Rt = 5, with variance amounting to 292.2 (versus 43.9
for day-ahead hours). The difference between the highest and lowest price averages
51.1 (versus 14.6 day-ahead). All in all, using DR when balancing forecast errors at
15-min granularity appears much more valuable than any other option.

While BAS dynamics are hard to quantify and less relevant for DR valuation than
prices, we can expect them to also boost the value of intraday DR application. The
BAS is much larger intraday than day-ahead. [4] find an intraday BAS of 3 e /MWh
versus 0.25e /MWhday-ahead.Given the higher absoluteBASvalues, and the higher
volatility of prices intraday, it seems plausible to assume BAS volatility to be higher
intraday as well. Another factor is that, derived from our analytical comparison, DR
value is enhanced more through BAS effects intraday than day-ahead (i.e., avoidance
of BAS through netting).

4This means that demand can be brought forward or postponed by up to two hours.
5One hour covers four 15-min intervals. Considering the two hours prior and after the current
delivery hour, we get a total of 17 slots, including the current slot.
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4 Conclusion

This paper addressed the economic benefits of access to flexible demand for operators
of PV andwind power plants. Two alternative allocation strategies were investigated:
(1) the use of DR to improve market value in day-ahead sales, and (2) the use of
DR to optimize the balancing of forecast errors intraday. Both from an analytical
and from a data perspective, we find evidence for the advantages of using flexible
demand in the latter setting (2). In light of these findings, we advocate a more explicit
consideration of intraday dynamics in future research on DR decision support and
resource allocation. As a contribution to this, in amore detailed paper than the present
one [3], we aim at integrating DR allocation strategies into a previously developed
intraday bidding strategy [2] to holistically address PV or wind forecast errors under
uncertainty. A caveat of our study is the lack of an analysis of DR activation costs.
While this is on our research agenda, it cannot be addressed analytically and requires
another, yet to be developed approach.
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A Real Options Model for the Disinvestment
in Conventional Power Plants

Barbara Glensk, Christiane Rosen and Reinhard Madlener

Abstract The liberalization of the energy market and the promotion of renewables
lead to difficulties in the profitable operation even of many modern conventional
power plants. Although such state-of-the-art plants are highly energy-efficient, they
are often underutilized or evenmothballed. Decisions about further operation or shut-
down of these conventional power plants are in most cases characterized as being
irreversible, implying uncertainty about future rewards, and being flexible in timing.
A useful approach for evaluating (dis-)investment projects with uncertainties is the
real options approach (ROA) [2, 14]. This valuation technique is based on option
pricing methods used in finance that have been developed by Black, Scholes, and
Merton [1, 11]. In the last two decades, real options models have been widely applied
to analyze investment decisions under dynamic market conditions. In recent years,
however, also the analysis of disinvestment decisions considering market uncertain-
ties has gained in importance (e.g. in studies on the agricultural and dairy sector).
Moreover, ignoring disinvestment options in decision-making processes can lead
to incorrect valuations of investment strategies at the firm level. In this paper, we
develop a real options model for the disinvestment in conventional power plants,
with the aim of determining the optimal timing for the shut-down of unprofitable
power plants.
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1 Introduction

The liberalization of energy markets has increased the sources of uncertainty. In
particular, electricity producers today face market risks (regarding future demand
and supply and thus also prices) and also regulatory risks related to uncertainty
about the future legal environment impacting electricity generation activities.

The traditional school of economic thought proposes the net present value (NPV)
criterion to evaluate investment decisions under uncertain future market conditions.
However, such a static approach does not provide sufficient guidance regarding the
estimation of the expected streams of profits, inflation, or discount rates. In particular,
the NPV criterion does not properly capture any existing managerial flexibility to
adapt decisions dynamically to unexpected market developments. Moreover, dissat-
isfaction with the NPV criterion by academics as well as corporate practitioners has
been an important motivation for the development of new project valuation methods.

A relatively new approach for evaluating (dis-)investment projects under uncer-
tainty is the real options approach (ROA) [2, 14]. Hereby, the use of continuous time
stochastic processes enables modeling of uncertain cash flows, prices, as well as
returns or asset values. Methodologically, the approach builds upon option pricing
theory (options in financial securities) by applying it to non-financial, i.e. physical
(or “real”) assets viewed as investment options. Several kinds of options can be
implemented, such as simple timing options with the option to invest or abandon
the project, compound timing options, and switching or learning options (for more
details see, e.g. [7, 12]). Regarding the investment decisions in the energy sector,
the option to invest is one of the most popular ones, whereas the options to delay,
expand or abandon a project support the definition of an optimal policy decision.
Fleten and Näsäkkälä [6] use a real options model to analyze whether it is sensible
for an energy company to build a gas-fired power plant (vis-a-vis a biofuel plant). On
the other hand, sequential modular investments in the energy sector are discussed in
Jain et al. [9]. Unfortunately, real options models for disinvestments have so far only
been discussed in a few applied articles, especially in the fields of agriculture [13],
dairy [5], and production planning [4]. From a dynamic perspective, the research
question addressed here is at what point in time an energy company should shut-
down an existing power plant that does not, or no longer, generate any profits. This
disinvestment decision is related to the market situation and, therefore, the capacity
factor, i.e. the achieved output divided by the potential output, for a specified period
of time (in our case full-load hours in one year).

2 Model Specification

In general, a real options model is based on three factors, namely the existence of
uncertainty about future cash flows, investment irreversibility, and flexible timing
regarding project initiation or (as in our case) project abandonment. In our approach,
we discretize the problem and set up a discrete-valued lattice, for which we apply a
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dynamic programming model, developed to numerically value the investment deci-
sion, that is solved by backward induction. The uncertain capacity factor (number of
full-load hours) of power plants serves as the stochastic variable (the underlying risky
asset). Furthermore, it is assumed that the capacity factor is normally distributed and
then approximated by a binomial distribution, allowing for the use of the standard
binomial lattice approach. The binomial lattice is just one of several real options
solution approaches (such as closed-form solutions, partial-differential equations,
finite-differences, or simulations). Due to its better tractability, it has been more
widely accepted by the industry than others. This also means that when using this
approach for the real options analysis, the procedures and results can be more easily
explained to and accepted by executives. The binomial approach specifies how the
underlying assets change over time. It means that from the current state only two
future states are possible, so-called “up” and “down” movements corresponding to
good and bad market (situation) development. The “up” and “down” movements as
well as risk-neutral probabilities can be calculated using the distribution parameters
from the underlying asset [9, 12]. We further anticipate that at the beginning of the
investigated period the expected discounted future cash flows are significantly higher
than the residual value of the power plant. This difference should then decrease over
time. The proposed method consists of the following steps:

1. Based on the assumed normal distribution of the capacity factor, the “up” and
“down” movements are determined as follows:

up = e(σ
√

Δt) and down = e(−σ
√

Δt) (1)

where σ is the associated volatility, andΔt is the time step. The “up” and “down”
movements are subsequently used to set up the binomial tree.

2. The future cash-flowvalues of the existing project (the power plant) in each period
are calculated for different values of the capacity factor obtained in step 1. In order
to account for the stochastic character of some of the cash-flow elements, aMonte
Carlo simulation is employed.

3. The optimal project value as a function of the capacity factor, PVi,t (C Fi,t ), is
given by

PVi,t (CFi,t ) = max

{
RVt

PCFi,t + α·PVi,t+1(CFi,t+1)+(1−α)·PVi+1,t+1(CFi+1,t+1)

1+r f

(2)

where RVt denotes the residual value, PC Fi,t the project cash flow for the i th
“down” move at current time period t , α defines the probability for an “up”
movement, C Fi,t denotes the capacity factor for the i th “down” move at time t ,
r f the risk-free rate, and i is the number of “down” movements (i = 1 . . . T − 1).
The risk-neutral probability α is calculated according to the formula1:
α = K−down

up−down , where K = E[CF] − (E[RM ] − r f )β, E[CF] is the expected

1Note that the underlying asset is not a price of a traded asset (for more information see [7]).
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proportional change in the state variable, E[RM ] is the expected return on the
market portfolio, and β is the beta coefficient. The optimal project value is then
calculated using recursive dynamic programming. As soon as PVi,t is equal to
the residual value (RVt ), the power plant should be shut down. In contrast, if the
optimal project value is equal to the second part of Eq. (2), the power plant should
be kept in operation.

3 Case Study and Results

The case study presented here considers one of the highly efficient and recently built
gas-fired power plants in Germany. While such power plants are environmentally
friendly in terms of their efficiency, their CO2 emissions, and their ability to operate
flexibly (and thereby to counter the fluctuating generation of renewables), they are
economically not viable. This is due to two reasons: On the one hand, the gas price
has developed unfavorably in the past years and on the other hand the electricity
prices at the wholesale market have decreased significantly. In combination with the
increasing share of renewable energy sources, such as wind and solar power, with
extremely low marginal costs, this leads to the so-called merit order effect [10]. This
effect describes the fact that power plants with largermarginal costs, such as gas-fired
power plants, are not dispatched any longer because they are pushed to the right on
the merit order curve. Their operation becomes unprofitable and often the remaining
option is to liquidate the plant altogether. The important question hereby is at what
point in time the operation of the power plant should be given up.

The maximum time period during which the decision should be made is assumed
to be six years. Note that the capacity factor and its stochastic values influence the
plant’s output and thus also the current value of the power plant, thus playing a crucial
role for the analysis. In the model, both the capacity factor and the electricity, gas,
and CO2 prices (the latter obtained from EEX databases, the former from [3]) are
represented as stochastic variables with corresponding probability distributions.

The power plant analyzed was commissioned in year 2010, with a net installed
capacity of 845 MW. Its net thermal efficiency is 59.7%, and the total investment
volume 400 million Euros [3]. Further assumptions considering technical charac-
teristics as well as economic parameter values are based on expert interviews and
a thorough literature review (more detailed information can be obtained from the
authors upon request). The analytical procedure used to compute the optimal project
values is based on the methodology presented in the previous section.

Based on the existing literature, and available online data regarding full-load hours
of gas-fired power plants, the impact of different values (distributions) of the capacity
factor on the optimal project value and the final decision are analyzed. The results of
three different values for the capacity factor and emerging decisions are presented
in Table1.

From the results presented here, one can see that the higher the capacity factor
value is, the longer is the time period during which the power plant can remain in
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Table 1 Value of capacity factor and corresponding decision (C—continue or S—stop operation)

Period Capacity
factor

Decision Capacity
factor

Decision Capacity
factor

Decision

1 0.3000 C 0.1100a S 0.1500 C

2 0.3154 C 0.1133 S 0.1546 C

2 0.2854 C 0.1067 S 0.1456 C

3 0.3316 C 0.1168 S 0.1593 C

3 0.3000 C 0.1100 S 0.1500 C

3 0.2715 C 0.1036 S 0.1413 C

4 0.3486 C 0.1204 S 0.1641 C

4 0.3154 C 0.1133 S 0.1546 C

4 0.2854 C 0.1067 S 0.1456 C

4 0.2582 C 0.1005 S 0.1371 S

5 0.3664 C 0.1240 S 0.1691 C

5 0.3316 C 0.1168 S 0.1593 C

5 0.3000 C 0.1100 S 0.1500 C

5 0.2715 C 0.1036 S 0.1413 S

5 0.2456 C 0.0976 S 0.1330 S

6 0.3852 C 0.1278 S 0.1743 C

6 0.3486 C 0.1204 S 0.1641 C

6 0.3154 C 0.1133 S 0.1546 C

6 0.2854 C 0.1067 S 0.1456 C

6 0.2582 C 0.1005 S 0.1371 S

6 0.2336 C 0.0947 S 0.1291 S

7 0.4050a S 0.1317 S 0.1796a S

7 0.3664 S 0.1240 S 0.1691 S

7 0.3316 S 0.1168 S 0.1593 S

7 0.3000 S 0.1100 S 0.1500 S

7 0.2715 S 0.1036 S 0.1413 S

7 0.2456 S 0.0976 S 0.1330 S

7 0.2222 S 0.0919 S 0.1253 S
aStopping values (more information on this can be found in [8])

service. Nevertheless, it should bementioned that the residual value defined in Eq. (2)
also impacts the final decision regarding how long the power plant’s operation can be
continued. In this case study, the residual value is assumed to be constant, computed
by accounting for linear depreciation; a more sophisticated calculation of the RV
variable will be an important next step in the further development of the model.
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4 Conclusion

The increased use of technologies for renewable electricity production has a signifi-
cant impact on the merit order of power plant dispatch, and leads to difficulties in the
profitable operation of many highly energy-efficient conventional power plants. Due
to these circumstances, numerous power plant operators today are forced to revise
their strategy and decide about the continued operation, mothballing, or shut-down
of their conventional power plants.

In this short paper, we presented a real options model which can support such a
decision-making process. We find that it is highly dependent on the initial capacity
factor and its subsequent development. This alsomeans that the final decision is path-
dependent. For this reason, the results suggest the stopping of the plant’s operation
at very different values of the capacity factor. For a starting value of 0.300, operation
should be ceased at a value of 0.405, whereas for a starting value of 0.110, operation
should be stopped immediately. In contrast, for a more moderate starting value of
0.150, operation should be stopped at a value of about 0.180. The higher threshold
values for stopping seem paradoxical, but result from the upward movements in the
binomial tree, which nonetheless have unfavorable prospects.

We plan to further investigate the residual value of the power plant, including a
thorough analysis aimed at determining its exact value. Further sensitivity testing of
the other parameters is also planned to check the robustness of the model. Future
research will be dedicated to evaluate whether a temporary shut-down instead of a
complete disinvestment of the power plant is economically reasonable.
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Political Districting for Elections
to the German Bundestag:
An Optimization-Based Multi-stage
Heuristic Respecting Administrative
Boundaries

Sebastian Goderbauer

Abstract According to the legal requirements for Elections to the German
Bundestag the problem of partitioning Germany into electoral districts can be for-
mulated as a multi-criteria graph partition problem. To solve this regularly current
problem, an optimization-based heuristic is introduced and successfully applied to
German population data.

1 Electoral Districts in Elections
to the German Bundestag

In general, the election to the German federal parliament, the Bundestag, takes place
every four years. The 299 electoral districts play an important role in those elections.
In fact, the voters of each district elect one representative into parliament ensuring
that each part of the country is represented. These elected representatives make up
half of the members of the Bundestag. The allocation of electoral districts needs
regular updates due to an ever-changing population distribution and is subject to a
variety of legal requirements as listed in the following.

In order to comply with the principle of electoral equality as anchored in the
German constitution, the differences in population between the districts have to be
preferably small. The law defines a tolerance limit, saying that the amount of deviation
from the average district population should not exceed 15 %. Moreover, an amount of
deviation beyond 25 % is illegal. Every district should be a contiguous area and it is
prefered that its allocation aligns with existing administrative boundaries. In addition
to that, the law demands that the districts strictly comply with the borders of the
German federal states. The law specifies that the Sainte-Laguë method [7] has to be
used to distribute the 299 districts among the 16 states. The electoral districts ought
to be visually compact counteracting the suspicion of applying Gerrymandering
[6, 9, 11]. In the context of setting electoral districts, Gerrymandering is a practice
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that attempts to create an advantage or disadvantage for a certain political party or
candidate by manipulating district boundaries.

In this contribution, which is an extended abstract of the author’s master’s the-
sis, the problem of dividing a country into electoral districts is defined as a multi-
criteria graph partition problem. To solve this regularly current practical problem,
an optimization-based multi-stage heuristic is introduced and successfully applied
to population data of the latest German census [12]. The computed results show that
the presented algorithm allocates electoral districts, which are not only in accordance
with the law, but also fulfill the tolerances mentioned in the law more closely than
the current districting.

2 The Political Districting Problem

The Political Districting Problem is defined on the basis of a so-called population
graph. In a population graph

G = (V, E)

a node i ∈ V represents an geographical area, e.g., the area of a municipality, and is
weighted with its population pi . An undirected edge (i, j) ∈ E with nodes i, j ∈ V
exists, iff the corresponding areas share a border. The Political Districting Problem
is an optimization problem in which a node-weighted population graph has to be
partitioned into a given number of connected, weight-restricted subgraphs.

More precisely, let S be the set of all 16 German states. Given the total number
of electoral districts d ∈ N, which has to be set, the number of districts d(s) ∈ N

for each state s ∈ S is computable with the mentioned Sainte-Laguë method [7].
Of course,

∑
s∈S d(s) = d holds. Furthermore let ∅p := 1

d

∑
i∈V pi be the average

population of an electoral district. Finally, a partition

Dk ⊆ V , k = 1, . . . , d with Dl ∩ Dm = ∅, l �= m and ∪k Dk = V

is called a feasible solution (districting) for the Political Districting Problem, if the
following holds:

∀1 ≤ k ≤ d ∀i, j ∈ Dk : i and j are in same state, (1)

∀s ∈ S : |{Dk : state s contains district Dk}| = d(s), (2)

∀1 ≤ k ≤ d : G[Dk] connected, (3)

∀1 ≤ k ≤ d : 0.75∅p ≤
∑

i∈Dk

pi ≤ 1.25∅p. (4)
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Fig. 1 The population graph
of North Rhine-Westphalia
(NRW) consists of 396 nodes
and 1 084 edges at
municipality level. All in all,
there are 11 339
municipalities in Germany,
thus NRW’s population
graph is one of the smaller
ones

To complete the definition and as a result of analyzing the legal requirements, the
multi-criteria objective is as follows:

max |{Dk : 1 ≤ k ≤ d and 0.85∅p ≤
∑

i∈Dk

pi ≤ 1.15∅p}|, (5)

min amount of deviations between district population
∑

i∈Dk

pi and ∅p, (6)

max match between district and existing administrative boundaries, (7)

max geographical and visual compactness of the districts. (8)

To obtain the population graph of Germany and thus the required graphs for each
German state, data of the latest German census [12] were combined with geoinfor-
mation [8] (cf. Fig. 1).

The Political Districting Problem includes incomparable and conflicting objective
criteria. Analyzing the complexity of the subproblems, in which only one objective is
considered, Altman [1] concludes the complexity of the Political Districting Problem.

Theorem 1 The Political Districting Problem is NP-hard.

To gain a profound understanding of the complexity, it is possible to analyze the
graph partition problems on which the Political Districting Problem is based [2, 4,
5]. It is possible to compute feasible districtings in polynomial or even linear time
on paths and special trees. Suitable partitions with minimal differences in population
between the components can be found in polynomial time as well. Considering
general trees a feasible districting is computable in polynomial time, but the problem
gets NP-hard by adding the objective of minimizing the differences in population.
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3 Optimization-Based Multi-stage Heuristic

Since the 1960 s the Political Districting Problem has been discussed and approached
by many authors in operations research and social science. In 1961 Vickrey [9]
provided a multi-kernel growth procedure. Although his proposal was rather informal
and rudimentary it marked the start of a large variety of work on this topic. Hess et al.
[3] considered the problem of setting electoral districts as a modified facility location
problem in 1965. The technique of column generation was applied by Mehrotra et
al. [6] in 1998. In 2009 Yamada [10] formulated the problem as a spanning forest
problem and presented a local search based heuristic.

Most heuristics and exact methods in the literature implement the requirements
and objectives of the German Political Districting Problem only partially, e.g., sup-
port for matching district boundaries with existing administrative bounderies is disre-
garded. Beyond that, the numbers of nodes and edges in the population graphs of most
German states outnumber all graph orders and sizes considered in the literature. The
optimization-based heuristic described hereafter was developed to overcome these
shortcomings. The multi-stage algorithm uses the existing hierarchical administra-
tive divisions in Germany (cf. Fig. 2) and iteratively divides the Political Districting
Problem into smaller subproblems. This has two advantages: The goal of aligning
electoral district boundaries with existing administrative bounderies is realizable in
an adequate way and in addition to that, the graphs of the subproblems will be of
manageable size.

1st stage: states As mentioned above, it is required by law to align the districts with
the boundaries of the German states. Therefore, a union of electoral districts for the
individual states is a solution of the Political Districting Problem for Germany.

2nd stage: governmental districts The four most highly populated states are com-
posed of so called governmental districts. For those states, the number of electoral
districts of a state is distributed over the governmental districts by reapplying the
Sainte-Laguë method [7]. With regard to the final solution, this is mostly a good and
valid choice. If it is not valid, two neighbouring governmental districts are merged
and seen as one in the application of the Sainte-Laguë method [7].

3rd stage: rural districs, urban districts Subsequently, the population graphs on
rural and urban district level of a state (or governmental district) are considered.

Fig. 2 The multi-stage
algorithm is based on the
structure of the hierarchical
administrative divisions of
Germany

state
Bundesland

governmental district (if existing)
Regierungsbezirk

rural district, urban district
Kreis, kreisfreie Stadt

municipality
Gemeinde
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Fig. 3 a A solution of the set partitioning problem at the third stage for North Rhine-Westphalia.
b The population graph on municipality level of the rural districts Borken, Coesfeld, and Steinfurt
(top) and the allocation of four electoral districts after applying the heuristic (bottom)

Intuitively, each node represents a rural or urban district. On this population graph
a modified set partitioning problem is solved: A graph partition into connected sub-
graphs is computed and a number of electoral districts is assigned to each subgraph.
The sum of those numbers has to be equal to the number of districts assigned to that
state (or governmental district) (cf. Fig. 3a). As the major part of the objective in this
set partitioning problem the resulting average differences in district population are
minimized. Components and thus subproblems with exactly one electoral district are
solved, because the electoral district is already set.

4th stage: municipalities Subproblems which are still open after the third stage are
solved at the municipality level. For setting the remaining electoral districts almost
all algorithms from the literature can be used, because the problem size is at this point
mostly manageable. In this work a simple heuristic was implemented (cf. Fig. 3b).

The districtings computed by the optimization-base multi-stage heuristic are use-
able for the elections to the German Bundestag in general, because latest population
data was used and the heuristic respects all legal requirements. It is worth to note that
the developed algorithm supports matches between existing administrative bound-
eries and electoral district boundaries. This aspect is hard to implement in a compact
formulation of the problem. Beside this, the computed districts follow the mentioned
objectives transferred from the law more closely than the current districting applied
in elections to the Bundestag in 2013.
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4 In Search of an Optimal Number of German
Electoral Districts

Currently, Germany is divided into 299 districts for elections to the Bundestag. The
question arises if that is a well chosen number of electoral districts. In the following,
one option of approaching this issue is outlined.

The Sainte-Laguë method [7] distributes the districts between the states on the
basis of the state’s population. However, the population of a state is usually not
an integer multiple of the average electoral district population, thus differences in
population between the districts are unavoidable. A question is which realizable
number of German electoral districts causes the lowest maximal amount of average
deviation in district population in a state. Considering the distribution of 299 electoral
districts with the Sainte-Laguë method [7], the state Bremen has the highest average
deviation of 17.2 %. This value is greater than the tolerance limit of 15 % specified in
the law. However, when Germany is divided into 242 districts, the maximal average
deviation is reduced to a mere 5.2 % (Bremen again). This value is the minimum
in the range between 1 and 376 distributed districts. It can therefore be concluded,
that 242 districts would observe the rules of the law more closely than the current
choice of 299 districts. In other words, 242 districts embody the German population
distribution between the 16 states better than 299. Interestingly, when the number
of districts is increased to 319 no legal districting can be found as the maximum
deviation limit of 25 % would always be exceeded in Bremen.
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Duality for Multiobjective Semidefinite
Optimization Problems

Sorin-Mihai Grad

Abstract In this note we introduce a new multiobjective dual problem for a given
multiobjective optimization problem consisting in the vector minimization with
respect to the corresponding positive semidefinite cone of a matrix function sub-
ject to both geometric and semidefinite inequality constraints.

1 Introduction and Preliminaries

Matrix functions play an important role in optimization especially in connection to
the cone of symmetric positive semidefinite matrices which induces the Löwner par-
tial ordering on the corresponding space of symmetric matrices. Such functions were
usedmainly in scalar optimization as constraint or penalty functions, but one can find
contributions to vector optimization involving them, for instance [8], where convex
multiobjective optimization problems subject to semidefinite constraints were con-
sidered, or [5, 6], where multiobjective optimization problems consisting in vector
minimizing matrix functions with respect to the corresponding cone of the symmet-
ric positive semidefinite matrices under semidefinite constraints were investigated.
Motivated by them and by the vector dual problems inspired by [7] we assigned in
[1, 2, 4] to linear vector optimization problems, we propose in this note a new mul-
tiobjective dual for multiobjective optimization problems similar to the ones from
[5, 6] mentioned above.

We denote the set of the symmetric k × k real matrices by Sk . The cone of the
positive semidefinite symmetric k × k matrices is Sk+, while its interior, the set of the
positive definite symmetric k × k matrices is Ŝk+. The entries of a matrix A ∈ R

k×k

will be denoted by Aij, i, j = 1, . . . , k, while its trace by TrA. The Löwner partial
ordering induced by Sk+ on Sk is “�”, defined by A � B ⇔ B − A ∈ Sk+, where
A, B ∈ Sk . When A � B and A �= B we write “A � B”. Recall that the cone Sk+ is
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self-dual and the Frobenius inner product of two matrices A, B ∈ Sk is defined as
〈A, B〉 = Tr(A� B).

Given a set U ⊆ R
k , riU denotes its relative interior of U , while δU is its indi-

cator function. For a function f : Rn → R we use the classical notations for its
domain dom f = {x ∈ X : f (x) < +∞} and epigraph epi f = {(x, r) ∈ X × R :
f (x) ≤ r}. The conjugate function of f is f ∗ : Rn → R = R ∪ {±∞}, f ∗(y) =
sup{y�x − f (x) : x ∈ R

n}. Between a function and its conjugate there is the Young-
Fenchel inequality f ∗(y) + f (x) ≥ y�x for all x, y ∈ R

n . A matrix function H :
R

n → Sk is said to be Sk+-convex if H(t x + (1 − t)y) � t H(x) + (1 − t)H(y) for
all x, y ∈ R

n and all t ∈ [0, 1].

2 Duality for Multiobjective Semidefinite Optimization
Problems

Let the nonempty set S ⊆ R
n and the matrix functions F : Rn → Sk and H :

R
n → Sm . For i, j ∈ {1, . . . , k}, denote by fij : Rn → R the function defined as

fij(x) = (F(x))ij. The primal multiobjective semidefinite optimization problem we
consider is

(PVS) Min
x∈A

F(x),

where

A = {
x ∈ S : H(x) ∈ −Sm

+
}
,

where the vector minimization is done with respect to the cone Sk+.
An element x̄ ∈ A is said to be an efficient solution to (PVS) if there exists no

x ∈ A such that F(x) � F(x̄), and the set of all the efficient solutions to (PVS) is
denoted by E(PVS). An element x̄ ∈ A is said to be a properly efficient solution
to (PVS) (in the sense of linear scalarization) if there exists a Λ ∈ Ŝk+ such that
Tr

(
Λ�F(x̄)

) ≤ Tr
(
Λ�F(x)

)
for all x ∈ A , and the set of all the properly efficient

solutions to (PVS) (in the sense of linear scalarization) is denoted by PELS(PVS).
A properly efficient solution x̄ to (PVS) is also efficient to (PVS), but the opposite
implication fails to hold in general.

Remark 1 Similar vector optimization problems were considered, for instance, in
[5, 6], with all the involved functions taken cone-convex and differentiable, without
the geometric constraint x ∈ S and by considering finitely many similar semidefinite
inequality constraints. Besides delivering optimality conditions regarding the ideal
efficient points to considered vector optimization problems, some investigations via
duality were performed for them, too, Lagrange and Wolfe dual problems being
assigned to the attached scalarized problems. Moreover, a Lagrange type vector dual
for a multiobjective semidefinite optimization problem was considered in [5], but
with a different construction than the one proposed below.
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The vector dual problem we assign to (PVS) is inspired by the ones proposed in
[1–4] for primal linear vector optimization problems and by the ones considered in
[7, 8] for vector optimization problems whose image spaces were partially ordered
by the corresponding nonnegative orthants, being

(DVS) Max
(Λ,Q,P,V )∈BS

HS(Λ, Q, P, V ),

where

BS =
{
(Λ, Q, P, V ) ∈ Ŝk+ × Sm+ × (Rn)k×k × R

k×k : P = (pij)i, j=1,...,k,

pij ∈ dom f ∗
ij ∀i,j ∈ {1, . . . , k} s.t. Λij �= 0,

−
k∑

i, j=1
Λij pi j ∈ dom (Q H)∗S,Tr(Λ�V ) = 0

}

and, for i, j = 1, . . . , k,

(HS(Λ, Q, P, V ))ij = Vij −

⎧
⎪⎨

⎪⎩
f ∗
ij (pij) + 1

z(Λ)Λij
(Q H)∗S

(
−

k∑
i, j=1

Λij pij

)
, if Λij �= 0,

0, otherwise,

where z(Λ) denotes the number of nonzero entries of the matrix Λ.

Remark 2 One can replace in BS the constraint equality Tr(Λ�V ) = 0 by Tr(Λ�V )

≤ 0, obtaining thus another vector dual problem to (PVS) with a larger feasible set
and, consequently, image set, than (DVS). Wewill not treat it here separately because
the duality investigations regarding it follow analogously and its efficient solutions
coincide with the ones of (DVS).

Remark 3 If (Λ, Q, P, V ) ∈ BS , one can easily note that V /∈ (Sk+ ∪ (−Sk+))\{0}.
Now let us formulate the weak duality statement for (PVS) and (DVS).

Theorem 1 There exist no x ∈ A and (Λ, Q, P, V ) ∈ BS such that F(x) � HS

(Λ, Q, P, V ).

Proof Assume the existence of x ∈ A and (Λ, Q, P, V ) ∈ BS such that
F(x) � HS(Λ, Q, P, V ). Then 0 > Tr

(
Λ�(F(x) − HS(Λ, Q, P, V ))

) = ∑k
i, j=1

Λij( fij(x)+ f ∗
ij (pij))+(Q H)∗S

(−∑k
i, j=1 Λij pij

)≥(
∑k

i, j=1 Λij p�
ij x−Tr(Q� H(x))−

δS(x) − (
∑k

i, j=1 Λij pij)
�x ≥ 0 because x ∈ A . As this cannot happen, the assump-

tion we made is false. �

In order to prove strong duality for the primal-dual pair of multiobjective opti-
mization problems (PVS) − (DVS) one needs additional hypotheses. The regularity
conditions we consider are inspired by the ones used in [3, 4] and they are a gener-
alized Slater type one
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(RCV S
1 ) ∃x ′ ∈ S such that H(x ′) ∈ − Ŝm+ ,

an interiority type one
(RCV S

2 ) 0 ∈ ri(H(S) − C),

and, respectively, a closedness type one

(RCV S
3 ) S is closed and epi(ΛF)∗ + ⋃

Q∈Sm+
epi(Q H)∗S is closed for anyΛ ∈ Ŝk+.

Theorem 2 If S is a convex set, fij, i, j = 1, . . . , k, are convex functions, H is Sm+ -
convex, x̄ ∈ PELS(PVS) and one of the regularity conditions (RCV S

i ), i ∈ {1, 2, 3},
is fulfilled, there exists (Λ̄, Q̄, P̄, V̄ ) ∈ E(DVS) such that F(x̄) = HS(Λ̄, Q̄, P̄, V̄ ).

Proof Since x̄ is properly efficient to (PVS), there exists a Λ̄ ∈ Ŝk+ such that
Tr

(
Λ�F(x̄)

) ≤ Tr
(
Λ�F(x)

)
for all x ∈ A . The fulfillment of any of the consid-

ered regularity conditions yields (cf. [3, Sect. 3.2]) strong duality for the scalarized
optimization problem attached to (PVS)

inf
x∈A

Tr
(
Λ�F(x)

)

and its Fenchel-Lagrange dual

sup
Q∈Sm+ ,

T ∈Rn

{
− (ΛF)∗(T ) − (Q H)∗S(−T )

}
,

thus the latter has the optimal solutions Q̄ and T̄ that fulfill

Tr
(
Λ�F(x̄)

) = −(Λ̄F)∗(T̄ ) − (Q̄ H)∗S(−T̄ ).

Because fij, i, j = 1, . . . , k, are convex functions defined on R
n with full domain

they are continuous, too, consequently there exist p̃ij ∈ R
n , i, j = 1, . . . , k, taken

p̃ij = 0 if Λ̄ij = 0, such that

(Λ̄F)∗(T̄ ) =
k∑

i, j=1,
Λ̄ij �=0

(Λ̄ij fij)
∗( p̃ij) =

k∑

i, j=1,
Λ̄ij �=0

Λ̄ij f ∗
ij

(
p̃ij

Λ̄ij

)

and
∑k

i, j=1 p̃ij = T̄ . For i, j ∈ {1, . . . , k} take p̄ij = p̃ij/Λ̄ij and

V̄ij = fij(x̄) + f ∗
ij ( p̄ij) + 1

z(Λ̄)Λ̄ij
(Q̄ H)∗S

⎛

⎝−
k∑

i, j=1

p̃ij

⎞

⎠
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if Λ̄ij �= 0 and p̄ij = p̃ij and V̄ij = fij(x̄) otherwise. Then

Tr(Λ̄�V̄ ) =
k∑

i, j=1,
Λ̄ij �=0

Λ̄ij

⎛

⎝ fij(x̄) + f ∗
ij ( p̄ij) +

(
1

z(Λ̄)Λ̄ij

)
(Q̄ H)∗S

⎛

⎝−
k∑

i, j=1

Λ̄ij p̄ij

⎞

⎠

⎞

⎠ = 0.

Consequently, after denoting P̄ = ( p̄ij)i, j=1,...,k , one notices that (Λ̄, Q̄, P̄, V̄ ) ∈ BS .
Assuming that (Λ̄, Q̄, P̄, V̄ ) /∈ E(DVS), Theorem1 yields a contradiction, therefore
(Λ̄, Q̄, P̄, V̄ ) ∈ E(DVS). �

Last but not least, let us give necessary and sufficient optimality conditions for
the primal-dual pair of multiobjective optimization problems (PVS) − (DVS).

Theorem 3 (a) If S is a convex set, fij, i, j = 1, . . . , k, are convex functions, H
is Sm+ -convex, x̄ ∈ PELS(PVS) and one of the regularity conditions (RCV S

i ),
i ∈ {1, 2, 3}, is fulfilled, there exists (Λ̄, Q̄, P̄, V̄ ) ∈ E(DVS) such that

(i) F(x̄) = HS(Λ̄, Q̄, P̄, V̄ );
(ii) fij(x̄) + f ∗

ij ( p̄ij) = p̄�
ij x̄ when Λ̄ij �= 0;

(iii) (Q̄ H)∗S

(
−

k∑
i, j=1

Λ̄ij p̄ij

)
= −

(
k∑

i, j=1
Λ̄ij p̄ij

)�
x̄ ;

(iv) Tr(Q̄� H(x̄)) = 0;
(v) Tr(Λ̄�V̄ ) = 0;

(b) Assume that x̄ ∈ A and (Λ̄, Q̄, P̄, V̄ ) ∈ Ŝk+ × Sm+ × (Rn)k×k × R
k×k fulfill the

relations (i) − (v), where P̄ = ( p̄ij)i, j=1,...,k . Then x̄ ∈ PELS(PVS) and
(Λ̄, Q̄, P̄, V̄ ) ∈ E(DVS).

Proof (a) The existence of a (Λ̄, Q̄, P̄, V̄ ) ∈ E(DVS), where P̄ = ( p̄ij)i, j=1,...,k ,
such that F(x̄) = HS(Λ̄, Q̄, P̄, V̄ ) is guaranteed by Theorem2. The relations
(i) and (v) are thus satisfied. Moreover,

Tr(Λ̄�V̄ ) =
k∑

i, j=1,
Λ̄ij �=0

Λ̄ij

⎛

⎝ fij(x̄) + f ∗
ij ( p̄ij) +

(
1

z(Λ̄)Λ̄ij

)
(Q̄ H)∗S

⎛

⎝−
k∑

i, j=1

Λ̄ij p̄ij

⎞

⎠

⎞

⎠ ,

and this is actually equal to 0. On the other hand, the Young-Fenchel inequality
yields fij(x̄) + f ∗

ij ( p̄ij) ≥ p̄�
ij x̄ , for all i, j ∈ {1, . . . , k} such that Λ̄ij �= 0, and

(Q̄ H)∗S

⎛

⎝−
k∑

i, j=1

Λ̄ij p̄ij

⎞

⎠ + Tr
(
Q̄� H(x̄)

) ≥
⎛

⎝−
k∑

i, j=1

Λ̄ij p̄ij

⎞

⎠
�

x̄,

which, taking into consideration the equality from above, imply Tr(Q̄� H(x̄)) ≥
0. But Tr(Q̄� H(x̄)) ≤ 0 because Q ∈ Sm+ and H(x̄) ∈ −Sm+ , consequently
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the Young-Fenchel inequalities given above are fulfilled as equalities and
Tr(Q̄� H(x̄)) = 0, hence relations (i i) − (iv) are fulfilled, too.

(b) From (i i) it follows that p̄ij ∈ dom f ∗
ij for all i,j ∈ {1, . . . , k} such that Λ̄ij �= 0,

while (i i i) yields−∑k
i, j=1 Λ̄ij p̄ij ∈ dom (Q H)∗S . Because of (v), it follows that

(Λ̄, Q̄, P̄, V̄ ) ∈ BS .

Multiplying (i i) for fij with Λ̄ij and summing up these relations and also (i i i) −
(iv) one obtains

k∑

i, j=1,
Λ̄ij �=0

Λ̄ij

⎛

⎝ fij(x̄) + f ∗
ij ( p̄ij) +

(
1

z(Λ̄)Λ̄ij

)
(Q̄ H)∗S

⎛

⎝−
k∑

i, j=1

Λ̄ij p̄ij

⎞

⎠

⎞

⎠ = 0,

that yields because of the strong duality for the scalarized optimization problem
attached to (PVS)

inf
x∈A

Tr
(
Λ�F(x)

)

and its Fenchel-Lagrange dual that x̄ ∈ PELS(PVS). The efficiency of (Λ̄, Q̄, P̄,

V̄ ) to (DVS) follows immediately by (i) and Theorem1. �

Remark 4 Of interest and subject to further research are a converse duality statement
regarding the primal-dual pair of multiobjective optimization problems (PVS) −
(DVS) (possibly inspired by corresponding assertions from [1–4], but no direct con-
sequence of any of them) and investigations on how to derive numerical methods
based on the provided duality results and optimality conditions for concretely solving
such problems.

Acknowledgments Research partially supported by DFG (German Research Foundation), project
WA 922/8-1. The author is indebted to Y. Ledyaev and L.M. Graña Drummond for the useful
discussions which led to this note.

References
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Algorithms for Controlling Palletizers

Frank Gurski, Jochen Rethmann and Egon Wanke

Abstract Palletizers are widely used in delivery industry. We consider a large pal-
letizer where each stacker crane grabs a bin from one of k conveyors and position it
onto a pallet located at one of p stack-up places. All bins have the same size. Each
pallet is destined for one customer. A completely stacked pallet will be removed auto-
matically and a new empty pallet is placed at the palletizer. The FIFO Stack- Up
problem is to decide whether the bins can be palletized by using at most p stack-up
places. We introduce a digraph and a linear programming model for the problem.
Since the FIFO Stack- Up problem is computational intractable and is defined on
inputs of various informations, we study the parameterized complexity. Based on
our models we give xp-algorithms and fpt-algorithms for various parameters, and
approximation results for the problem.

1 Introduction

We consider the combinatorial problem of stacking up bins from a set of conveyor
belts onto pallets. A detailed description of the practical background of this work is
given in [1, 9]. The bins that have to be stacked-up onto pallets reach the palletizer on
a conveyor and enter a cyclic storage conveyor, see Fig. 1. From the storage conveyor
the bins are pushed out to buffer conveyors, where they are queued. The equal-sized
bins are picked-up by stacker cranes from the end of a buffer conveyor and moved
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Fig. 1 A real stack-up
system storage conveyor

conveyors
buffer

stack−up
places

Fig. 2 A FIFO stack-up
system

onto pallets, which are located at some stack-up places. Full pallets are carried to
trucks by automated guided vehicles (AGVs).

The cyclic storage conveyor enables a smooth stack-up process irrespective of
the real speed the cranes and conveyors are moving. Such details are unnecessary
to compute an order in which the bins can be palletized with respect to the given
number of stack-up places. For the sake of simplicity, we disregard the cyclic storage
conveyor. Figure 2 shows a sketch of a simplified stack-up system with 2 buffer
conveyors and 3 stack-up places.

From a theoretical point of view, we are given k sequences q1, . . . , qk of bins and a
positive integer p. Each bin is destined for exactly one pallet. The FIFO Stack- Up
problem is to decide whether one can remove iteratively the bins of the k sequences
such that in each step only the first bin of one of the sequences will be removed and
after each step at most p pallets are open. A pallet t is called open, if at least one
but not all bins for pallet t has already been stacked-up. If a bin b is removed from a
sequence then all bins located behind b are moved-up one position to the front.

Our model is the second attempt to capture important parameters necessary for an
efficient and provable good algorithmic controlling of stack-up systems. Many facts
are known on a stack-up system model that uses a random access storage instead
of buffer queues, see [9, 10]. We think that buffer queues model the real stack-up
system more realistic than a random access storage.

The FIFO Stack- Up problem is NP-complete even if the number of bins per
pallet is bounded [3]. In this paper we give parameterized algorithms for the FIFO
Stack- Up problem based on a digraph model and a linear programming model.
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2 Preliminaries

We consider sequences q1 = (b1, . . . , bn1), . . . , qk = (bnk−1+1, . . . , bnk ) of pairwise
distinct bins. These sequences represent the buffer queues (handled by the buffer
conveyors) in real stack-up systems. Each bin b is labeled with a pallet symbol plt(b).
We say bin b is destined for pallet plt(b). The labels of the pallets can be chosen
arbitrarily, because we only need to knowwhether two bins are destined for the same
pallet or for different pallets. The set of all pallets of the bins in some sequence qi

is denoted by plts(qi ) = {plt(b) | b ∈ qi }. For a list of sequences Q = (q1, . . . , qk)

we denote plts(Q) = plts(q1) ∪ · · · ∪ plts(qk). For some sequence q = (b1, . . . , bn)

we say bin bi is on the left of bin b j in sequence q if i < j . A sequence q ′ =
(b j , b j+1, . . . , bn), j ≥ 1, is called a subsequence of sequence q = (b1, . . . , bn),
and we write q − q ′ = (b1, . . . , b j−1).

Let Q = (q1, . . . , qk) and Q′ = (q ′
1, . . . , q ′

k) be two lists of sequences of bins,
such that each sequence q ′

j , 1 ≤ j ≤ k, is a subsequence of sequence q j . Each such
pair (Q, Q′) is called a configuration. In every configuration (Q, Q′) the first entry Q
is the initial list of sequences of bins and the second entry Q′ is the list of sequences of
bins that remain to be processed.A pallet t is called open in configuration (Q, Q′), if a
bin of pallet t is contained in some q ′

i ∈ Q′ and if another bin of pallet t is contained in
some q j − q ′

j for q j ∈ Q, q ′
j ∈ Q′. The set of open pallets in configuration (Q, Q′)

is denoted by open(Q, Q′). A pallet t ∈ plts(Q) is called closed in configuration
(Q, Q′), if t /∈ plts(Q′), i.e. no sequence of Q′ contains a bin for pallet t . Initially all
pallets are unprocessed. From the time when the first bin of a pallet t is processed,
pallet t is either open or closed.

The FIFO Stack-Up Problem Let (Q, Q′) be a configuration. The removal of the
first bin from one subsequence q ′ ∈ Q′ is called a transformation step. A sequence
of transformation steps that transforms the list Q of k sequences from the initial
configuration (Q, Q) into the final configuration (Q, Q′), where Q′ = (∅, . . . ,∅)

containing k empty subsequences is called a processing of Q.
We define theFIFO Stack- Up problemas follows.Given a list Q = (q1, . . . , qk)

of sequences and a positive integer p. Is there a processing of Q, such that in each
configuration during this processing at most p pallets are open?

In the analysis of our algorithms we use the following variables: k denotes the
number of sequences, and p stands for the number of stack up places. Furthermore,
m represents the number of pallets in plts(Q), and n denotes the total number of bins
in all sequences. Finally, N = max{|q1|, . . . , |qk |} is the maximum sequence length.
In view of the practical background, it holds p < m, k < m, m < n, and N < n.

Obviously, the order inwhich the bins are removed from the sequences determines
the number of stack-up places necessary to process the input. Consider a processing
of a list Q of sequences. Let B = (bπ(1), . . . , bπ(n)) be the order in which the bins are
removed during the processing of Q, and let T = (t1, . . . , tm) be the order in which
the pallets are opened during the processing of Q. Then B is called a bin solution
of Q, and T is called a pallet solution of Q. Examples can be found in [3]. Let si
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denote the sequence qsi from which in the i-th decision configuration (Q, Qi ) a bin
for pallet ti will be removed. Then S = (s1, . . . , sm) is called a sequence solution.

During a processing of a list Q of sequences there are often configurations (Q, Q′)
for which it is easy to find a bin b that can be removed from Q′ such that a further
processing with p stack-up places is still possible. This is the case, if bin b is destined
for an already open pallet [3]. A configuration (Q, Q′) is called a decision configu-
ration, if the first bin of each sequence q ′ ∈ Q′ is destined for a non-open pallet. We
can restrict FIFO stack-up algorithms to deal with such decision configurations, in
all other configurations the algorithms automatically remove a bin for some already
open pallet.

For some positive integer n, let [n] = {1, . . . , n} be the set of all positive integers
between 1 and n. The following theorems are easy to show.

Theorem 1 For some pallet order (t1, . . . , tm), ti ∈ plts(Q) and ti �= t j for i �= j ,
we can verify in timeO(n · k) ⊆ O(n · m) ⊆ O(n2), whether it represents a sequence
of transformation steps to process Q with p stack-up places.

Theorem 2 Likewise, for a sequence order (s1, . . . , sm), si ∈ [k], it can be verified
in time O(n2) whether it represents a processing of Q.

The sequence graph Next we consider a useful relation between an instance of the
FIFO Stack- Up problem and the directed pathwidth of a directed graphmodel. The
notion of directed pathwidth was introduced by Reed, Seymour, and Thomas around
1995 and relates to directed treewidth introduced by Johnson, Robertson, Seymour,
and Thomas in [5]. The problem of determining the directed pathwidth of a digraph
is NP-complete [8].

The sequence graph G Q = (V, E) for an instance Q = (q1, . . . , qk) of the
FIFO Stack- Up problem is defined by vertex set V = plts(Q) and the follow-
ing set of arcs. There is an arc (u, v) ∈ E if and only if there is a sequence
qi = (bni−1+1, . . . , bni ) with two bins b j1 , b j2 such that (1) j1 < j2, (2) b j1 is des-
tined for pallet u, (3) b j2 is destined for pallet v, and (4) u �= v.

If G Q = (V, E) has an arc (u, v) ∈ E then u �= v and for every processing of Q,
pallet u is opened before pallet v is closed. Digraph G Q = (V, E) can be computed
in time O(n + k · |E |) ⊆ O(n + k · m2), see [3].

Theorem 3 ([3]) Let Q = (q1, . . . , qk) then digraph G Q = (V, E) has directed
pathwidth at most p − 1 if and only if Q can be processed with at most p stack-up
places.

3 Algorithms for the FIFO Stack-Up Problem

Exponential time Since the directed pathwidth of a digraph D = (V, E) can be
computed in time O(1.89|V |) by [8], the FIFO Stack- Up problem can be solved
using G Q by Theorem 3 in time O(1.89m + n + k · m2).
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In the following paragraphs we use standard definitions for parameterized algo-
rithms from the textbook [2]. A parameterized problem is a pair (Π, κ), where Π

is a decision problem, I the set of all instances of Π and κ : I → N a so-called
parameterization. κ(I ) is expected to be small for all inputs I ∈ I .

An algorithm A is an fpt-algorithm with respect to κ , if there is a computable
function f : N → N and a constant c ∈ N such that for every instance I ∈ I the
running time of A on I is at most f (κ(I )) · |I |c. If there is an fpt-algorithm with
respect to κ that decides Π then Π is called fixed-parameter tractable. For example,
vertex cover can be solved in time O(2k · |V |2) relating to parameter k.

An algorithm A is an xp-algorithm with respect to κ , if there are two computable
functions f, g : N → N such that for every instance I ∈ I the running time of A on
I is at most f (κ(I )) · |I |g(κ(I )). If there is an xp-algorithm with respect to κ which
decides Π then Π is called slicewise polynomial.

XP-Algorithms In [4] we have shown that we can compute a solution for the FIFO
Stack- Up problem in timeO((N + 1)2k), which is an xp-algorithm with respect to
the parameter k.

Since the directed pathwidth of a digraph D = (V, E) can be computed in
time O(|E | · |V |d-pw(D)+1) ⊆ O(|V |d-pw(D)+3) by [11] and G Q can be computed in
time O(n + k · m2) ⊆ O(n + m3) the FIFO Stack- Up problem can be solved by
Theorem 3 in timeO(n + md-pw(G Q)+3), which is an xp-algorithm with respect to the
parameter p.

FPT-Algorithms Since there are at most m! different pallet orders (t1, . . . , tm), ti ∈
plts(Q), ti �= t j for i �= j , and every of these can be verified in time O(n2) by
Theorem 1, the FIFO Stack- Up problem can be solved in time O(n2 · m!), which
is an fpt-algorithm with respect to parameter m.

Since there are at most km different sequence orders (s1, . . . , sm), si ∈ [k], and
every of these can be verified in time O(n2) by Theorem 2, we can solve the FIFO
Stack- Up problem in timeO(n2 · km), which is an fpt-algorithmwith respect to the
combined parameter km . In practice k is much smaller than m, since there are much
fewer buffer conveyors than pallets, thus this solution is better than O(n2 · m!).
Linear Programming To realize a bijection π : [n] → [n] we define n2 binary
variables x j

i ∈ {0, 1}, i, j ∈ [n], such that x j
i is equal to 1, if and only if π(i) = j .

In order to ensure π to be surjective and injective, we use the conditions

n∑

i=1

x j
i = 1 for every j ∈ [n] and

n∑

j=1

x j
i = 1 for every i ∈ [n].

Further we have to ensure that all variables x j
i , i, j ∈ [n], are in {0, 1}.Wewill denote

the previous n2 + 2n conditions by n-Permutation(x j
i ).

By Theorem 3 the minimum number of stack-up places can be computed by the
directed pathwidth of sequence graph G Q plus one. In the following we use the fact
that the directed pathwidth equals the directed vertex separation number [12].
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For a graph G = (V, E), we denote byΠ(G) the set of all bijections π : [|V |] →
[|V |] of its vertex set. Given a bijection π ∈ Π(G) we define for 1 ≤ i ≤ |V | the
vertex sets L(i, π, G) = {u ∈ V | π(u) ≤ i} and R(i, π, G) = {u ∈ V | π(u) > i}.
Every position 1 ≤ i ≤ |V | is called a cut. This allows us to define the directed vertex
separation number for a digraph G = (V, E) as follows.

d-vsn(G) = min
π∈Π(G)

max
1≤i≤|V | |{u ∈ L(i, π, G) | ∃v ∈ R(i, π, G) : (v, u) ∈ E}|

An integer program for computing the vertex separation number for some given
sequence graph G Q = (V, E) on m vertices is as follows. To realize permutation π

we define m2 binary variables x j
i ∈ {0, 1}, i, j ∈ [m]. Additionally we use an integer

valued variable p in order to count the vertices on the left which are adjacent to
vertices of the right side of the cuts.

For every list Q of sequences we can compute the minimum number of stack-up
places p in a processing of Q by minimizing p subject to m-Permutation(x j

i ) and

c∑

j=1

Y ( j, c) ≤ p for every c ∈ [m − 1]

where

Y ( j, c) =
∨

j ′∈{c+1,...,m}i,i ′∈[m],(vi ′ ,vi )∈E

(x j
i ∧ x j ′

i ′ ).

For the correctness note that subexpression Y ( j, c) is equal to one if and only if there
exists an arc from a vertex on a position j ′ > c to a vertex on position j . The shown
integer program has m2 + 1 variables and a polynomial number of constraints.

By [6] integer linear programming is fixed-parameter tractable for the parameter
number of variables, thus the FIFO Stack- Up problem is fixed-parameter tractable
for the parameter m. Since m ≤ n the problem is also fixed-parameter tractable for
the parameter n.

Approximation Since the directed pathwidth of a digraph D = (V, E) can be
approximated by a factorO(log1.5 |V |) by [7], the FIFO Stack- Up problem can be
approximated using the sequence graph G Q by Theorem 3 by a factor O(log1.5 m).
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Capital Budgeting Problems:
A Parameterized Point of View

Frank Gurski, Jochen Rethmann and Eda Yilmaz

Abstract A fundamental financial problem is budgeting. A firm is given a set of
financial instruments X = {x1, . . . , xn} over a number of time periods T . Every
instrument xi has a return of ri and for time period t = 1, . . . , T a price of pt,i .
Further for every time period t there is budget bt . The task is to choose a portfolio
X ′ from X such that for every time period t = 1, . . . , T the prices of the portfolio
do not exceed the budget bt and the return of the portfolio is maximized. We study
the fixed-parameter tractability of the problem. For a lot of small parameter values
we obtain efficient solutions for the capital budgeting problem. We also consider the
connection to pseudo-polynomial algorithms.

1 Introduction

Capital budgeting can be regarded as a tool for maximizing a companys profit since
most companies are able to manage only a limited number of projects at the same
time. See [9] for a survey on capital budgeting problems.

From a computational point of view the capital budgeting problem is intractable.
Since the problem is defined on inputs of various informations, in this paper we
consider the fixed-parameter tractability for several parameterized versions of the
problem. The idea behind fixed-parameter tractability is to split the complexity into
two parts—one part that depends purely on the size of the input, and one part that
depends on some parameter of the problem that tends to be small in practice. For
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example, vertex cover can be solved in time O(2k · n2), which is exponential, but
usable in practice for small values of k. We also address the connection between
these problems and pseudo-polynomial algorithms.

The capital budgeting problem can be solved in timeO(T · n · 2n) by enumerating
all possible subsets of the n financial instruments. We present better algorithms
relating to parameters. In this paper we use standard definitions for parameterized
algorithms and pseudo-polynomial algorithms from the textbooks [1, 3, 4].

2 Single-Period Capital Budgeting Problem

The simplest of all capital budgeting models has just one time period (T = 1). It has
drawn a lot of attention in the literature, see for example [8, 9]. For some positive
integer n, let [n] = {1, . . . , n} be the set of all positive integers between 1 and n.

Name Max Single- Period Capital Budgeting (orMax SPCB for short)
Instance A set X = {x1, . . . , xn} of n financial instruments, for every instrument

xi , i ∈ [n], there is a return of ri and a price of pi and there is a budget b.
Task Find a subset X ′ ⊆ X such that the prices of the portfolio X ′ do not exceed

the budget b and the return of the portfolio X ′ is maximized.

Parameters n, ri , pi , and b are assumed to be positive integers. Let rmax =
max1≤i≤n ri and pmax = max1≤i≤n pi . The problem is also known as the 0/1-knapsack
problem (KP), see [7]. For some instance I its size |I | can be bounded by O(n +
n · log2(rmax) + n · log2(pmax) + log2(b)). We can bound the number n and prices
of the instruments of an instance I as follows.

Theorem 1 Every instance of Max SPCB can be transformed into an equivalent
instance, such that n ∈ O(b · log(b)).

Proof First we can assume, that there is no instrument in X , whose price is larger than
the budget b, i.e. pi ≤ b for every 1 ≤ i ≤ n. In general, for every 1 ≤ a ≤ b and
� b

a+1� + 1 ≤ p ≤ � b
a � there are at most n p = a instruments of price p in X . Since

for every 1 ≤ a ≤ b the number of integer valued prices in interval � b
a+1� + 1 ≤ p ≤

� b
a � is at most a · (� b

a � − (� b
a+1� + 1) + 1) = a · (� b

a � − � b
a+1�) ∈ O( b

a+1 ), and by
the harmonic series, we always can bound the number n of instruments in X by
O( b

2 + b
3 + b

4 + b
5 + b

6 + · · · + b
b+1 ) = O(b · log(b)).

Ifwehave given an instance forMax SPCBwithmore than thementionednumber
n p of instruments of price p, we remove all of them except the n p instruments of the
highest return. �

By choosing a boolean variable yi for every instrument xi ∈ X , indicatingwhether
or not instrument xi is chosen into the portfolio, a binary integer programming (BIP)
version of this problem is as follows.
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max
n∑

i=1

ri yi s.t.
n∑

i=1

pi yi ≤ b and yi ∈ {0, 1} for i ∈ [n] (1)

Dynamic programming solutions forMax SPCB can be found in [7, 10].

Theorem 2 Max SPCB can be solved in time O(n · b).

Theorem 3 Max SPCB can be solved in time O(n · ∑n
i=1 ri ) ⊆ O(n2 · rmax).

The algorithm used in the proof of Theorem 3 is pseudo-polynomial by its running
time O(n2 · rmax). Therefore the following hold:

Theorem 4 There is a pseudo-polynomial algorithm that solvesMax SPCB in time
O(n2 · rmax).

Parameterized Algorithms By adding a threshold value k for the return to the
instance and choosing a parameter κ(I ) from the instance I , we define the following
parameterized problem.

Name κ(I )-Single- Period Capital Budgeting (or κ(I )-SPCB for short)
Instance An instance of Max SPCB and a positive integer k.
Parameter κ(I )
Question Is there a subset X ′ ⊆ X such that the prices of the portfolio X ′ do not

exceed the budget b and the return of the portfolio X ′ is at least k?

By Theorem 3.3.2.1 of [5] and Theorem 4 we conclude that κ(I )-SPCB is fixed-
parameter tractable with respect to parameter κ(I ) = “maximum length of the binary
encoding of all numbers within I”.

Parameterization by number of instruments n A brute force solution is to check
all 2n possible subsets of X within BIP (1), which leads to an algorithm of time
complexity O(n · 2n).

Theorem 5 There is an fpt-algorithm that solves n-SPCB in time O(n · 2n).

Alternatively one can use the result of [6], which implies that integer linear pro-
gramming is fixed-parameter tractable for the parameter number of variables. Thus
using BIP (1) the n-SPCB problem is fixed-parameter tractable.

Parameterization by standard parameter k When choosing the threshold value of
the return as our parameter, i.e. κ(I ) = k we obtain the so-called standard parame-
terization of the problem.

Theorem 6 There is an fpt-algorithm that solves k-SPCB in time O(n2 · k).

Proof The k-SPCB problem is a special case of the 0/1-knapsack problem which
allows an FPTAS of running time O(n2 · 1

ε
), see [7]. By Theorem 3.2 of [2] a poly-

nomial fpt-algorithm that solves k-SPCB in time O(n2 · k) follows. �
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Parameterization by budget b From a practical point of view choosing k as a
parameter is not useful, since a large return of the portfolio X ′ violates the aim that
a good parameterization is small for every input. So we suggest it is better to choose
the budget as parameter, i.e. κ(I ) = b.

Theorem 7 There is an fpt-algorithm that solves b-SPCB in time O(n · b).

Proof The running time of dynamic programming algorithm in the proof of Theorem
2 is in O(n · b).

3 Multi-period Capital Budgeting Problem

Name Max Multi- Period Capital Budgeting (orMax MPCB for short)
Instance A set X = {x1, . . . , xn} of n financial instruments, a number of time peri-

ods T , for every xi , i ∈ [n], there is a return of ri , for period t ∈ [T ] instrument
xi has a price of pt,i , and for every period t ∈ [T ] there is a budget bt .

Task Find a subset X ′ ⊆ X such that for every period t ∈ [T ] the prices of portfolio
X ′ do not exceed the budget bt and the return of X ′ is maximized.

Parameters n, ri , pt,i , and bt and are assumed to be positive integers. Let rmax =
max1≤i≤n ri , pmax = max1≤i≤n,1≤t≤T pt,i , and bmax = max1≤i≤T bi . The problem is
also known as the multi-dimensional 0/1-knapsack problem (MKP), see [7]. For
some instance I its size |I | can be bounded by O(n · T + n · log2(rmax) + n · T ·
log2(pmax) + T · log2(bmax)).

Theorem 8 Every instance of Max MPCB can be transformed into an equivalent
instance, such that n ∈ O(

∑T
t=1 bt · log(bt )).

Proof By the proof of Theorem 1 for every 1 ≤ t ≤ T there are O(bt · log(bt ))

instruments, the union of all these instruments leads to n ∈ O(
∑T

t=1 bt · log(bt )). �

By choosing a boolean variable yi for every instrument xi ∈ X , a binary integer
programming (BIP) version of this problem is as follows.

max
n∑

i=1

ri yi s.t.
n∑

i=1

pt,i yi ≤ bt for t ∈ [T ] and yi ∈ {0, 1} for i ∈ [n] (2)

Dynamic programming solutions forMax MPCB can be found in [7, 10].

Theorem 9 Max MPCB can be solved in time O(n · T · (bmax)
T ).

Pseudo-polynomial Algorithms The existence of pseudo-polynomial algorithms
forMax MPCB depends on the assumption whether the number of time periods T
is given in the input or is fixed.
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Theorem 10 Max MPCB is not pseudo-polynomial.

Proof Every NP-hard problem for which every instance I only contains numbers
x , such that the value of x is polynomial bounded in |I | is strongly NP-hard and
thus not pseudo-polynomial (cf. Theorem 3.18 in [1]). Thus we can use a pseudo-
polynomial reduction from Max Independent Set to show that our problem is
not pseudo-polynomial in general. The problem is given a graph G = (V, E) and
the task is to find a subset V ′ ⊆ V such that no two vertices of V ′ are adjacent and
V ′ has a maximum size.

Let graph G = (V, E) be an input for theMax Independent Set problem. For
every vertex vi of G we define an instrument xi and for every edge ei of G we define
a time period within an instance IG forMax MPCB. The return of every instrument
is equal to 1 and the budget for every time period is equal to 1, too. The price of
an instrument within a time period is equal to 1, if the vertex corresponding to the
instrument is involved in the edge corresponding to the time period, otherwise the
price is 0. �

Theorem 11 For every fixed T there is a pseudo-polynomial algorithm that solves
Max MPCB in time O(n · T · (bmax)

T ).

Proof The algorithm in the proof of Theorem 9 given in [7, 10] has running time in
O(n · T · (bmax)

T ). If T is fixed, n · T is polynomial in the input size and (bmax)
T is

polynomial in the value of the largest occurring number in every input. �

Parameterized Algorithms By adding a threshold value k for the return to the
instance and choosing a parameter κ(I ) from the instance I , we define the following
parameterized problem.

Name κ(I )-Multi- Period Capital Budgeting (or κ(I )-MPCB for short)
Instance An instance of Max MPCB and a positive integer k.
Parameter κ(I )
Question Is there a subset X ′ ⊆ X such that for every time period t ∈ [T ] the prices

of portfolio X ′ do not exceed the budget bt and the return of X ′ is at least k?

By Theorem 3.3.2.1 of [5] and Theorem 11 we conclude that for every fixed T
problem κ(I )-MPCB is fixed-parameter tractable with respect to parameter κ(I ) =
“maximum length of the binary encoding of all numbers within I”.

Parameterization by number of instruments n A brute force solution is to check
all 2n possible subsets of X each in time O(T · n) by BIP (2).

Theorem 12 There is an fpt-algorithm that solves n-MPCB in time O(T · n · 2n).

One also can use the result of [6], which implies that integer linear programming
is fixed-parameter tractable for the parameter number of variables. Thus by BIP (2)
problem κ(I )-MPCB is fixed-parameter tractable for the parameter κ(I ) = n.

Parameterization by standard parameter k When choosing κ(I ) = k we obtain
the standard parameterization of the problem.
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Theorem 13 k-MPCB is W[1]-hard.

Proof The proof of Theorem 10 describes a parameterized reduction from the
k-Independent Set problem, which is W[1]-hard, see [3]. �

Theorem 14 There is an xp-algorithm that solves k-MPCB in time O(T · nk+1).

Proof Let I be an instance of k-MPCB and X ′ be a solution which complies the
budgets of every time period and the return of X ′ is at least k. Whenever there are
at least k + 1 instruments in X ′ we can remove one of the instruments of smallest
return r ′ and obtain a solution X ′′ which still complies the budgets of every time
period. Further since all returns are positive integers, the return of X ′′ is at least
r ′ · (k + 1) − r ′ = r ′ · k ≥ k. Thus we can assume that every solution X ′ of k-MPCB
has at most k instruments which allows us to check at most nk possible solutions
within BIP (2), which implies an xp-algorithm w.r.t. parameter k. �

Parameterization by the budgets b1, . . . , bT Again, from a practical point of view
choosing κ(I ) = k is not useful. So we suggest it is better to choose the sum of the
budgets κ(I ) = ∑T

t=1 bt · log(bt ) as a parameter.

Theorem 15 There is an fpt-algorithm that solves (
∑T

t=1 bt · log(bt ))-MPCB in time

O(T · n · 2O(
∑T

t=1 bt ·log(bt ))).

Proof By Theorem 8 we have to check at most 2O(
∑T

t=1 bt ·log(bt )) possible portfolios
X ′ ⊆ X each in time O(T · n) by BIP (2). �

Parameterization by number of time periods T When choosing κ(I ) = T the
parameterized problem is at least W[1]-hard, since an fpt-algorithm with respect to
T would imply a polynomial time algorithm for every fixed T . But even for T = 1
the problem is NP-hard.

Theorem 16 T -MPCB is at least W[1]-hard, unless P = NP.

For the same reasons there is no xp-algorithm for T -MPCB.

Theorem 17 There is no xp-algorithm that solves T -MPCB, unless P = NP.
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How to Increase Robustness
of Capable-to-Promise

A Numerical Analysis of Preventive Measures

Ralf Gössinger and Sonja Kalkowski

Abstract Reliable delivery date promises offer supply chains a chance to differen-
tiate from competitors. Order planning therefore not only aims at short-term profit
maximization, but also at robustness. For planning purposes different preventivemea-
sures are proposed to enhance robustness if order- and resource-related uncertainty
is present. With regard to profit and robustness this paper analyzes the interaction of
preventive measures applied in capable-to-promise approaches.

1 Problem

In capable-to-promise (CTP) approaches proposed for answering to customer order
inquiries [1] the order- and resource-related uncertainty is not yet adequately taken
into account. As a result, promised delivery dates often cannot be met. To enhance
reliability, order planning can be done robust against fluctuating planning data in two
respects [2]: Solution robustness is given if the objective function value fluctuates
only within a tolerable range [3]. The term planning robustness is used if the extent of
adjustments required to restore an optimal plan is tolerable [4]. Preventive measures
applied for generating robustness are: (a) Capacity nesting (CN): The basic idea is
to split up capacity into multiple segments and to define segment-specific utilization
costs [5]. Hence, more lucrative orders have access to a bigger share of capacity than
less lucrative orders. The risks of having to reject lucrative orders and of not being
able to meet delivery dates of accepted orders due to accepting less lucrative orders
are reduced. This measure is adopted to deal with order-related uncertainty [1, 6].
(b) Providing safety capacity (SC): In order to cover resource-related uncertainty a
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risk-averse estimation of available capacity is performed in such a way that the
planned capacity utilization meets constraints with an acceptable probability [6].
Thus, the available capacity usually exceeds the estimated values and consequently
delayed deliveries occur less often. However, if the available capacity is exceeded,
currently processed orders need to be rescheduled. Therefore, the probability para-
meter has to balance lost sales and the costs of delayed order fulfillment due to
scarce capacity. In situations where these cost components cannot be measured with
acceptable effort, the parameter value is normally set according to customary service
level standards. (c) Interactive order promising (IP): Desired, but unrealistic deliv-
ery dates cannot be confirmed without rescheduling currently processed orders. The
option of proposing delivery dates that deviate from the desired ones delegates the
order acceptance decision to the customer. For order planning customers response
to proposed deviating delivery dates needs to be anticipated with the probability of
winning an order in dependence of the deviation [7, 8]. In the CTP context this
response function is taken into consideration for model tests [6] and as a central part
of the planning approach [9].

Up until now, the effectiveness of these measures has been proven in isolated
analyses. Although they are directed to different sources of uncertainty, it cannot
be assumed that the observed impacts unfold independently. Hence, in the present
paper the impacts of a joint measure application on profit and solution resp. planning
robustness are numerically analyzed based on batch CTP models proposed in [9].

2 Numerical Testbed

TheCTP approach focuses on order-related planning of the processesmanufacturing,
intermediate storing and delivery of ordered quantities in a supply chain. These
processes are initiated by customers order inquiries and controlled by decisions
on order acceptance, delivery dates and production quantities. To capture order-
related uncertainty real order data on the seven best-selling product configurations
of a manufacturer of customized products from a period of 3 months are taken as
the basis (order scenario 1). Additionally, four order scenarios are generated which
are statistically equal to the observed order situation (Table1). Resource-related
uncertainty is modelled by a random variable that considers fluctuating capacity
availability and follows period-specific triangular distributions. While scenarios I
and II represent a certain capacity situation, uncertainty is present in scenarios III
and IV. For each uncertain scenario four streams of random variables are generated.
The parameters of CN and SC are varied systematically in the situations with and
without IP.CN differentiates between standard (SCap) and premiumcapacity (PCap).
The cost rates k P for utilizing PCap are set to 500, 1000, 1500, 2000, 2500, 3000
and 6000 and the share of PCap is varied with the values 1/3, 1/2 and 2/3. SC is
varied with the values 1 · σ c (scenario a) and 2 · σ c (scenario b). In each test 13
batch runs are performed with and without IP so that 51480 runs result (99.98%
solved to optimality). In order to take the interaction with the customer into account,
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Table 1 Order and capacity data
Product configuration 1 2 3 4 5 6 7

Order quantity μq |σq 4.7|3.3 4.9|2.5 7.8|3.9 4.7|6.5 7.7|0.6 4.8|3.3 6.4|2.6
Interarrival time μt |σ t 13.0|5.9 11.4|12.7 9.1|4.9 22.8|16.8 30.3|22.5 22.8|31.5 11.4|7.4
Profit margin 5120.07 3555.07 3523.5 2958.81 2641.35 2388.28 2077.56

Capacity μc σ c (Periods within batch interval) σ c (Periods after batch interval)
scenario 1 2 3 4 5 6 …T

I 2.75 0 0 0 0 0 0

II 2.5 0 0 0 0 0 0

III 2.75 0 0.0204 0.0408 0.0612 0.0816 0.1021

IV 2.5 0 0.0408 0.0816 0.1225 0.1633 0.2041

a two-stage planning approach is applied. At the non-interactive stage only those
order inquiries become accepted orders that can be fulfilled in time and maximize
the profit. The remaining order inquiries are preliminarily rejected and integrated at
the interactive stage. This process allows for interaction with customers whose order
inquiries could be accepted with a deviating delivery date. For this purpose a profit-
enhancing delivery date is determined with respect to anticipated customer response.
In case of its rejection, the order is finally rejected, otherwise the modified order
is accepted. Customer response is empirically estimated as a discrete cumulative
distribution function of the deviation-dependent acceptance probability β(V ) (with
the values V ;β(V )): (>25; 1 · 10−10), (>10; 0.2), (>0; 0.6), (≤0; 1).

3 Numerical Results

The combination of parameter values results in six scenarios which are character-
ized by increasing SC (e.g. scenario I, IIIa, IIIb) and/or increasing resource-related
uncertainty (e.g. scenario IIIa, IVa) (Fig. 1). In all scenarios the CTP approach gen-
erates a positive average profit for each parameter constellation. If IP is applied,
on average 9% more orders than without IP are accepted if the costs for PCap
are between 500 and 3000. For PCap costs of 6000 the percentage is much higher
(15%). This increases profits by 5% or 40%, respectively. In all scenarios parameter
constellations exist in which CN raises profits (dashed shading). In particular, costs
for PCap between 2000 and 3000 combined with a high share of PCap are advan-
tageous. The advantage range grows with increasing SC and increasing capacity
uncertainty as well with applying IP. This can be attributed to the increasing scarcity
of capacity and to the increasing profits going along with the growing number of
accepted orders induced by IP. However, by applying CN the number of accepted
orders is reduced with an increasing share of PCap and increasing costs for its utiliza-
tion. SC results in a shortage of capacity accessible for planning so that less orders are
accepted and lower profits are generated the greater the safety level and the capacity
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Fig. 1 Generated average profit in case of applying all preventive measures

uncertainty are. Simultaneously costs of delayed order fulfillment are reduced, but the
reduction is overcompensated by lost profits. Thus, orientating towards customary
service level standards does not necessarily enhance profits.

The preventive measures are not able to completely cover uncertainty. Therefore,
a rescheduling of currently processed orders is necessary which might cause penalty
costs due to delays if the present production situation lies outside the covered range. In
terms of solution robustness, it is determined to which extent the planning approach
compensates the uncertainty of planning data with regard to the objective value.
Table2 visualizes the uncertainty by coefficients of variation (CV). Despite the three
sources of uncertainty, profits have very low CV if the costs for utilizing PCap are
between 500 and 3000. This indicates a high level of solution robustness. The CV rise
with increasing uncertainty and increasingSC,whereas IP leads to their reduction.On
the other hand, the CV have considerably higher values if the cost rate for utilizing
PCap is very high (6000) and the influence tendencies of parameters are slightly
different: SC partially compensates increasing uncertainty and the impact of IP on
CV is non-monotonic.

Since the extent of plan adjustments required to copewith uncertainty is an indica-
tor for planning robustness, the penalty costs (PC) as the average weighted deviation
between planned and achieved delivery dates can be used for evaluation [10]. In
Fig. 2 the evolution of PC is exemplary illustrated for the representative scenario IV.
In case of CN PC decrease with an increasing share of PCap and increasing costs
for its utilization. It has the strongest impact on planning robustness, but the influ-
ence direction is dependent on the parameter setting and the application of the other
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Fig. 2 Evolution of penalty costs in scenario IV

measures. The black line marks the PC level for a PCap of zero. That is, planning
robustness can be improved by CN if costs of PCap are high enough. IP always
leads to a moderate reduction of PC and the advantage area of CN increases with
increasing SC. For a high level of capacity uncertainty (IV) PC have the strongest
reduction if a high level of SC is utilized. The evolution of PC induced by CN and
SC is leveraged by IP which results mostly in a PC increase.

4 Conclusions

In the present paper the impacts of applying the preventivemeasures capacity nesting,
safety capacity and interactive order promising on the assessment criteria profit as
well as planning and solution robustness of CTP approaches are analyzed regarding
the interactions of themeasures. The numerical analysis reveals that the simultaneous
application of analyzed measures can increase both, profits and solution robustness,
if the parameter settings are coordinated. In the numerical analysis this is given in
combinations with a high share of premium capacity, medium utilization costs as
well as low safety capacity and interactive order promising. Compared to the case
without capacity nesting planning robustness is also increased in this area. Outside
this area firstly a trade-off between planning robustness, solution robustness as well
as generated profits exists and then, in extreme cases, themeasure application reduces
the values of the three assessment criteria simultaneously. Regardless of the other
measures interactive order promising has to be highlighted as a suitable measure to
increase profits and solution robustness. Providing safety capacity according to an
externally defined service level enhances planning robustness but goes along with
the risk of an unbalance between costs of delayed order fulfillment and lost sales.
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Capacity nesting has the strongest increasing/reducing impact on solution and plan-
ning robustness and the strength of effects depends on the extent of safety capacity
(planning robustness enhancing resp. solution robustness reducing) and the applica-
tion of interactive order promising (effect-strengthening). For constant order-related
uncertainty an area of advantage has been identified whose surface area depends on
the application of the two other measures and the resource uncertainty. However, the
behavior at different levels of order-related uncertainty has to be analyzed in future
studies.
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An Iterated Local Search
for a Re-entrant Flow Shop Scheduling
Problem

Richard Hinze and Dirk Sackmann

Abstract This paper discusses a re-entrant permutation flow shop scheduling
problem with missing operations. The two considered objective functions are
makespan and total flow time. Re-entrant flows are characterized by a multiple
processing of jobs on more than one machine. We propose a heuristic for solv-
ing the problem. Since there have been promising approaches in literature on other
scheduling problems, we chose the iterated local search (ILS). This meta-heuristic
framework combines the advantages of local search algorithm and still tries to avoid
being stuck in local optima by a so called shaking step. The initial solution for the
ILS is obtained by a dispatching rule. Various rules have been tested, e.g., total job
processing time and total processing time of job levels. A hill climbing algorithm
has been implemented as the integrated local search method of the ILS. The ILS is
compared to a MIP formulation from literature. The results show, that the ILS can
deliver better results.

1 Introduction

The jobs in many real world production systems need to be processedmore than once
on at least one manufacturing facility within a production system. This re-entrant
property can be determined either by technological reasons, e.g., in semiconductor
wafer fabrication, paint shops, software development and aircraft manufacturing or
by rework operations due to quality issues. The re-entrant feature in scheduling was
first described by [3] in a flow shop problem. Later a variety of re-entrant scheduling
problems have been considered in literature. An overview on research in this field
can be found in [2, 9, 10]. Chamnanlor et al. [1] examine a re-entrant flow shop
problem for a hard-disk manufacturing system with time windows. In [6] and [7] a
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genetic algorithm with an integrated analytic hierarchy process (AHP) is applied to a
flexible re-entrant flow shop. The proposed combination outperformed a pure genetic
algorithm. For a two stageflexible re-entrant flow shopproblemahybrid genetic algo-
rithm and a random key genetic algorithm have been compared to modified versions
of shortest processing time, longest processing time and NEH algorithms by [4]. The
hybrid genetic algorithm obtained the best results for makespan minimization.

This paper considers a re-entrant permutation flow shop problem (RPFSP). The
detailed problem assumptions are shown in Sect. 2. Different dispatching rules are
suggested to initialize an iterated local search (ILS). The ILS is described in Sect. 3.
Section4 presents the computational results.

2 Problem Description

The RPFSP considers the problem of scheduling N jobs on M machines, with at
least one job visiting one or more machines multiple times. The number of entries of
each job into the production system is counted in levels L [8]. The machine sequence
for each job is identical, as well as the sequence of job levels on all machines. As the
number of the jobs’ operations may differ from machine to machine, we consider a
problem with missing operations. Missing operations occur, when a job re-enters the
production system on a other machine than the first one. That can have technological
reasons as well as quality reasons, which lead to rework operations.

Each job level needs to be assigned to a position in the processing sequence in
order to optimize a selected objective function. Therefore the processing sequence
has B = N · L positions. Makespan and total flow time are the examined objective
functions.

The processing times of job i in a level l on machine k are represented by a
parameter pi

lk . The following example shows the processing times for a job with
L = 2, that re-entrers the system onmachine k = 2. This leads to amissing operation
on machine k = 1.

pi
lk =

(
4 6 2 7 4 5
0 2 3 4 2 3

)

The re-entries caused by rework lead to a necessity to consider missing operations
and to shuffle levels of different jobs. The processing times need to be adjusted in
case of rework:

pi
lk =

⎛

⎝
4 6 2 7 4 5
0 2 3 0 0 0
0 0 1 4 2 3

⎞

⎠

A repeated processing onmachine k = 3 is necessary, if a mistake after operating the
job on machine k = 3 in level l = 2 is recognized. The rework operation on k = 3
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is lead to an additional job level. The rework time on the third machine is pi
33 = 1.

Zero processing times represent the operations, that need to be skipped before the
rework is done. The processing of the job continues with the normal processing
times after correcting the quality problems. This deterministic, static representation
of rework is used in Sect. 2, to deliver an estimation of the lower bound of the problem.
The importance of a proper dealing with zero processing times for makespan and
throughput time minimization has been shown in [5].

3 Proposed Iterated Local Search

We propose an algorithm to the RPFSP with greedy and random moves within an
interchange neighborhood. Figure1 shows the elements of the ILS framework. In the
following the different steps are explained in detail.

3.1 Initial Solution

Different dispatching rules have been compared for calculating an initial solution.
The maximum sum of processing times rule (MaxSP rule) uses each job’s sum

of processing times. The first level of the job with the maximum sum of processing
times is put on sequence position one. The first level of the job with the second
highest sum of processing times follows on the second position and so on. The levels
l = 2 follow in the same job sequence, after all levels l = 1 have been assigned to

Start Input data

Initial solution

t = 1
t +1

t Shaking

Local Search: Hill Climbing

Improved?
y nUpdate solution t = tmax?

n

y

Output

best solution
End

Fig. 1 Iterated Local Search
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their positions. Assigning the sequence positions in that manner results into blocks
of the size N within the sequence.

The minimum sum of processing times rule (MinSP rule) is similar to the first
procedure, but prefers the lowest sum of processing times for first sequence position.

Similar to the method using the sum of all processing times of a job as criteria
the sum of processing times of each level are used as a criteria (MaxLSP rule and
MinLSP rule). Thesemethods avoid to assign a complete block of sequence positions
with job levels of the same rank l. A job level l is allowed to be assigned to a sequence
position, if the predecessor level l − 1 of the same job has a lower sequence position
and has completed its last operation.

3.2 Shaking

The shaking phase provides the possibility to leave local optima in order to reach a
better solution than the current best in an additional local search phase. The performed
operations are pairwise swaps of level sequence positions in the current best solution.
That means, that a level of a job swaps the sequence position with a level of another
job. The two jobs i with level l and i i with level ll are selected randomly. The
conditions for a valid swap are: (1) the two selected jobs are not identical, i �= i i ,
(2) the new sequence positions of the levels are between their predecessors and
successors. The number of pairwise swaps within one iteration of the ILS is t . t is
increased by one, if the local search phase did not find a better solution than the
current best. The maximum number of pairwise swaps is tmax .

3.3 Local Search

A hill climbing algorithm as local search method is applied after the shaking phase
the current best solution. It searches for the best pairwise swap of sequence positions
in the current solution, iterating until there is no improvement in this neighborhood
possible anymore. The following shaking phase continues with t = 1, if there is an
improvement of the current best solution. Otherwise the shaking follows with t + 1
follows, if t < tmax . The algorithm quits in case of t = tmax .

4 Computational Experiments

Two versions of the ILS have been compared to a MIP model of [8] (P&C model)
on an Intel Core2 Duo CPU E8500 3.16GHz, 3.44GB memory system. The two
versions of the ILS use different methods of initialization (MinSP or MaxSP rule).
In preliminary tests the MinSP rule reached better results for the total flow time in
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Table 1 Computational results, N—number of jobs, L—number of levels, L∗—number of levels
including rework, M—number of machines

Problem size Makespan Total flow time

N L L∗ M ILS P&C
model

ILS P&C
model

5 5 7 10 759 739 2870 3560

10 20 1638 1609 5660 8045

11 30 2411 2613 8880 12813

13 40 3600 3685 11105 17589

13 50 3612 4236 17100 20967

10 14 10 1576 1532 6525 7559

18 20 3153 3232 12735 16037

23 30 5690 5582 17595 27750

25 40 6616 7327 28600 36635

27 50 8023 9103 36930 45169

10 5 8 10 983 962 6500 9391

10 20 1997 1987 10350 19457

13 30 3362 3283 19950 32190

14 40 4077 4453 26100 43768

18 50 5896 6125 37900 60992

10 16 10 2014 1951 15890 18793

19 20 3928 3981 31940 39169

22 30 6236 6185 47060 60522

27 40 8909 9145 65900 89478

32 50 11842 12150 82170 120608

a majority of problems. The MaxSP rule outperformed the other dispatching rules,
considering makespan as the objective. The ILS is coded in C++, the MIP is solved
with CPLEX 12.4. The results are shown in Table1. The initial test processing times
are randomly generated and equal distributed between 1 and 20. The test problems
consider missing operations (see example shown in Sect. 2). L is the number of
re-entries per job without rework, L∗ includes rework operations. N is the number
of jobs to be scheduled on M machines. The performance on makespan and total
flow time minimization has been tested in separate test runs. The ILS finds better
solutions than the MIP of Pan and Chen for 14 of the 20 tested problem instances, if
the objective is makespan. Total flow time reached by the ILS is in every case lower
than the flow time calculated by the MIP. This improvement is possible because of
a proper dealing with processing times equal to zero. The average improvement of
makespan is 3.09 and 27.71% for total flow time.
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5 Conclusions

Different dispatching rules have been tested to initialize the ILS. In most cases the
MinSP rule leads to the best results regarding makespan. The MaxSP rule obtains
better total flow time. The ILS reaches mostly lower values of makespan as well as
total flow time than the model of [8]. The algorithm is able to find initial solutions
for large problem sizes, e.g., N = 50, L∗ = 69, M = 50, within several seconds.
Further research is necessary to improve the results regarding objective values and
computation time. The hill climbing algorithm needs relatively long to identify a
local minimum. An improvement can be obtained by applying different methods
to generate an initial solution as well as implementing an alternative local search
algorithm.
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Selecting Delivery Patterns for Grocery
Chains

Andreas Holzapfel, Michael Sternbeck and Alexander Hübner

Abstract On a tactical level retailers face the problem of determining on which
weekdays stores should be delivered, and of setting a frame for short-term vehicle
routing. We therefore propose a binary program that considers the decision-relevant
costs and capacities at the distribution center, in transportation and instore. To resolve
the trade-off between the different cost components aligned to the delivery pattern
decision, we propose a sequential solution approach. A numerical example illustrates
first results.

1 Problem Description

Especially in the grocery retail trade, repetitive weekly delivery patterns are used
to increase planning stability for the stores and to balance picking workload at the
distribution center (DC). A delivery pattern is defined as a store-specific combination
of weekdays on which a delivery takes place. Assuming that there must be at least
one delivery every week, and six weekdays, there is a total of 63 potential delivery
patterns for each store.

As several processes in the logistics subsystems DC, transportation and instore
logistics of the retail supply chain are influenced by the delivery pattern decision,
an integrated approach is necessary to solve the problem. Existing approaches in
literature, however, neglect important areas influenced by the delivery patterns and
often focus on short-term vehicle routing. E.g., Ronen and Goodhart [4] propose
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a hierarchical approach in a cluster-first, route-second manner. They first cluster
stores with similar characteristics and preselect patterns. Then they assign patterns
to stores using a MIP, and afterwards build transportation routes applying a periodic
vehicle routing problem (PVRP). Cardos and Garcia Sabater [1] design a decision
support system to determine delivery schemes for stores focusing on inventory and
transportation costs. They preselect feasible solutions in the first step. Then they
evaluate minimal cost paths for each delivery frequency for each store and afterwards
solve a PVRP for each delivery frequency combination. A major disadvantage of
both approaches is that they do not consider instore handling costs, despite the fact
that these determine the main cost block of operational logistics costs according
to several empirical studies (see [3]). Finally Sternbeck and Kuhn [5] try to act on
some of the limitations of the papers previously named. They present an integrative
approach taking into account relevant cost components and capacity restrictions in
three subsystems of the retail supply chain (DC, transportation and the stores). A
limitation is that they do not model bundling effects across stores.

The model we propose in the following section is based on the approach of
Sternbeck andKuhn [5], but avoids preselection of patterns and incorporates bundling
issues, thus creating amore exact decision tool for retailers trying to resolve the prob-
lem of selecting optimal delivery patterns for their stores.

Our focus within this paper is on the three major subsystems of the retail supply
chain that are affected by the selection of delivery patterns, namely the DC, trans-
portation and the stores (see [5]). We concentrate on one DC supplying its affiliated
stores with a dry goods assortment. We focus on operational costs that are directly
dependent on the selection of delivery patterns. Basing our model on the findings of
Sternbeck and Kuhn [5], we include the following cost terms: picking costs at the
DC, transportation costs, instore inventory holding costs and instore handling costs
that can be separated into ordering and receiving costs, initial shelf restocking costs
and costs of restocking shelves from the backroom.

There is a trade-off between different cost components that are aligned to the
delivery pattern decision. While most cost components increase with higher delivery
frequency, instore inventory holding costs and shelf restocking costs have an inverse
relationship. Picking costs, transportation costs, ordering and receiving costs as well
as initial shelf restocking costs increasewith higher delivery frequency as they consist
of a fixed portion for each delivery and a variable component depending on the
quantities delivered. As a consequence, less frequent deliveries lead to a reduction
in fixed costs and therefore decreasing total costs per week. As delivery frequency
goes down, however, the quantities delivered exceed daily demand and shelf space
capacity to a greater degree, leading to higher inventory holding costs and more shelf
restocking activities instore as well as higher costs.

Without considering capacity limits at the DC and in transportation, each store
could realize its own optimal delivery pattern. Retailers, however, try to balance the
workload at the DC to be able to use existing capacity efficiently. We therefore ass-
ume minimum and maximum picking capacity as well as limited transportation
capacity on each day. Limited space in a store’s backroom can limit the poten-
tial delivery frequencies for the store. We therefore include store-specific receiving
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capacity in our decision model. The mathematical model reflects the relevant cost
components as well as the restricting capacities, and models a twofold decision:

• Selection of delivery patterns: Which stores are supplied on which days?
• Construction of base tours: Which stores build a delivery cluster?

As our decision is a tactical one, we assume deterministic but dynamic store- and
article-specific demand. Furthermore, each store has its specific shelf layout with
specific shelf space capacity as well as different backroom capacities. We assume
a homogeneous transportation fleet, but this assumption can easily be avoided by
slightly adapting themodel proposed in the following section. Each delivery includes
the demand of all articles until the next delivery day. In contrast to themodel proposed
by Sternbeck and Kuhn [5], we explicitly model bundling effects in transportation
across stores and determine the base tours that build the basis for short-term vehicle
routing.

2 Model Formulation

Considering the setting and assumptions above, we propose the following binary
program to model the joint delivery pattern and base tour decision:

Minimize
∑

f ∈F

∑

r∈R

x f,r · ĉ f,r +
∑

k∈K

∑

t∈T

yk,t · ctranstour
k +

∑

f ∈F

∑

k∈K

∑

r∈R

x f,k,r · ctransstop
f,k,r

(1)
s.t.

∑

r∈R

x f,r = 1 ∀ f ∈ F (2)

∑

k∈K

x f,k,r = x f,r ∀ f ∈ F, r ∈ R (3)

∑

f ∈F

∑

r∈R

x f,k,r · pall f,r,t ≤ yk,t · captrans ∀k ∈ K , t ∈ T (4)

∑

f ∈F

∑

r∈R

x f,r · pick f,r,t ≤ maxcap pick
t ∀t ∈ T (5)

∑

f ∈F

∑

r∈R

x f,r · pick f,r,t ≥ mincap pick
t ∀t ∈ T (6)

∑

r∈R

x f,r · pall f,r,t ≤ caprec
f ∀ f ∈ F, t ∈ T (7)

x f,r ∈ {0; 1} ∀ f ∈ F, r ∈ R (8)

x f,k,r ∈ {0; 1} ∀ f ∈ F, k ∈ K , r ∈ R (9)

yk,t ∈ {0; 1} ∀k ∈ K , t ∈ T (10)
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Fig. 1 Determination of transportation costs: schematic illustration and calculation example

The objective function (1) minimizes the sum of total operational costs. These
consist of the costs independent of the delivery tour settings ĉ f,r and tour-specific
costs. While costs independent of the tour settings solely depend on which pattern
r is assigned to store f , reflected in the binary decision variable x f,r , tour-specific
costs also depend on the assignment of a store f to a delivery cluster k, reflected in
the two other types of decision variables x f,k,r and yk,t , which decides if a cluster
k is supplied on day t . The associated tour-specific costs are costs reflecting tour
length and stops, ctranstour

k and ctransstop
f,k,r . The underlying idea of the determination of

tour-specific transportation costs is the logic developed by Fisher and Jaikumar [2].
They approximate tour costs on a tactical level by assigning stores to seed points.
They thereby construct clusters that build so-called base tours for which the exact
sequence is not known, but transportation costs can be approximated quite accurately.
Figure1 illustrates the determination of transportation costs.

Besides the objective function, the model consists of several constraints (2)–(10).
The first two conditions (2) and (3) ensure that each store f gets exactly one delivery
pattern r , and is assigned to exactly one cluster k. Constraint (4) ensures that trans-
portation capacity is met and a delivery to cluster k on day t only takes place if at least
one of the stores assigned to cluster k is served on this day. Conditions (5) and (6)
ensure that the picking effort at theDC iswithin the range [mincap pick

t ; maxcap pick
t ]

on each day. Constraint (7) ensures that the receiving capacity restriction holds. The
decision variables are defined in conditions (8)–(10).

3 Solution Approach

As computational efforts can be extensive when applying the MIP proposed with
its simultaneous clustering decision and pattern selection, we propose a sequential
approach. The methodology is a cluster-first, assign-second procedure. In a first step,
stores are assigned to clusters. This assignment can be done on the basis of predefined
delivery areas of service providers or via a two-step algorithm. First, seed points are
set (e.g., by applying a clustering algorithm), and then an adapted algorithm on the
basis of Fisher and Jaikumar [2] can be used to assign stores to clusters. The clustering
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step results in an assignment parameter z f,k that assigns store f to cluster k. After
determining the clusters a model for assigning delivery patterns to stores can be
applied that is analogous to the model presented in Sect. 2, with the main difference
being that no store-cluster assignment decision is incorporated. The decision variable
x f,k,r is replaced by the combination of decision variable x f,r and parameter z f,k .

4 Numerical Example

To illustrate the results of the model and approach proposed, we use real-life data
from a major European grocery chain. The sample taken for this example consists of
35 small- and medium-sized stores attached to one central DC. The product ranges
are store-specific and amount to a maximum of 618 different articles. Shelf space
capacities and demand are also store-specific. For supplying the 35 stores, five trucks
are available with capacity constraints according to the share of the products focused
on the total assortment. To limit the analysis, a sequential approach is used, clustering
the stores into 10 clusters according to geographical and sales issues in a first step.
Applying the data obtained, CPLEX solves the model within a few seconds.

The results show a distribution of operational costs to the subsystems of the
retail supply chain that is analogous to findings presented in literature: DC 27%,
transportation 30%, and instore 43%. The stores are served 1.86 times per week on
average, with a maximum of three and a minimum of one delivery per week. As the
sample consists of merely small- and medium-sized stores, this result is reasonable.
The capacity utilization of the trucks is 87% on average. There are 2.24 stops per
tour on average. This means that the logic of Fisher and Jaikumar can serve as a good
approximation of transportation costs because of a manageable amount of stops per
tour on average. Post-calculations show that the transportation cost approximation

Fig. 2 Numerical results: delivery patterns of stores of two clusters
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only differs by less than 1% from the real transportation costs that apply to the
resulting tours.

A main criticism of the existing approach of Sternbeck and Kuhn [5] was the
missing incorporation of bundling effects in transportation across stores. Figure2
illustrates the delivery patterns of the stores of two clusters and shows the synchro-
nization that is obtained with our new model and solution approach. The stores of
cluster 1 are served by specific tours on Monday, Wednesday and Thursday. The
stores of cluster 2 are mainly served on Tuesday, Wednesday and Saturday. An extra
delivery for store 5 is needed on Friday due to transportation capacity limits.

5 Summary

We proposed a binary programming model that considers the decision-relevant costs
and capacities at the DC, in transportation and instore to solve the problem of deter-
mining optimal store delivery patterns for grocery chains. To resolve the trade-off
between the different cost components aligned to the delivery pattern decision, we
proposed a sequential solution approach. We revealed significant bundling potential
by applying the model and approach proposed using a case from a major European
grocery retailer. The logistics levers identified can be applied to further optimize
delivery patterns in retail distribution.
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Towards a Customer-Oriented Queuing
in Service Incident Management

Peter Hottum and Melanie Reuter-Oppermann

Abstract The provision of services hinges considerably on the contribution of the
provider and the customer and—if present—on their involved networks. In this paper
we focus on incident management—a service domain that is highly relevant for all
kinds of industries and is described from a provider internal perspective in the ITIL
documentation.

1 Introduction

The provision of services hinges considerably on the contribution of the provider
and the customer and—if present—on their involved networks. In this paper we
focus on incident management—a service domain that is highly relevant for all
kinds of industries and is described from a provider internal perspective in the ITIL
documentation [1].

By understanding the influence of a customer’s contribution to a service, the
provider should be able to improve the interaction quality in general. Furthermore,
the provider should be able to determine and control his effort based on the expected
customer’s contribution.

In incident management, tickets can arrive by call, email or web interface. For
this research we just assume tickets to arrive by web interface as done by many big
companies. This has two implications: On the one hand, tickets have a predefined
structure, such as a predefined content in general, and on the other hand, the inter-
actions between the customer and the provider are asynchronous—therefore it is
possible to collect tickets for some time and then assign them using the knowledge
about the other tickets in the queue. This results in an online problem with lookahead
or in the extreme case even in an offline problem if we collect all tickets that arrive
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within a certain period of time (e.g., a day or a week) and schedule them the next
period (e.g., next day or week). It also means that the content of the tickets can be
analyzed and the tickets can therefore be categorized. In contrast, in a regular call
center tickets often have to be assigned right away. In addition, no incident ticket
would quit the queue for new tickets before scheduling, whereas waiting customers
would do, if their processing lasts too long.

In previously conducted studies, we have derived result influencing factor classes
and instantiated a framework based on qualitatively and textual analyzed service
incident tickets from a worldwide operating IT service provider. We have proven the
customer induced contribution to the service generation and aggregated a customer
contribution factor (cc f ). By complementing these provider-centric service processes
with the cc f , we are able to use information about the customer’s ability to contribute,
which was not able to process before, in order to classify the tickets in more detail.

The aim is to build a decision support tool that assigns tickets to servers (agents
in service incident management) based on a set of rules depending on the underlying
objectives and including ticket characteristics as well as the cc f .

In the paper at hand, we address the question: How can the customer’s potential
to contribute be used to organize the queuing in service incident management in
a customer-oriented way? We present and solve a mathematical formulation for
assigning tickets to servers and discuss first results of a discrete event simulation. We
use this simulation to compare basic assignment rules based on the ticket complexity
and the servers’ level of experience to the optimal solution. We also study the impact
of the cc f in a small example. In addition, run time experiments for the formulation
are presented.

2 Problem Formulation and Solution Approach

Service providers in incident management have to handle different topics on several
levels of complexity. For each incident ticket providers have to determine topic and
expertise level needed to solve the incident. In the model each incoming ticket is
given a set of attributes and each service agent has a specific skill level for each topic
he or she is working on.

Figure 1 visualizes the problem of assigning tickets to agents and the setup that
is formalized in this short paper. If new incident tickets are reported to the incident
management web interface, it has to be decided which agent should work on it. This
depends on different aspects: which agent is currently available and fits best to the
present topic and necessary expert level? Agents are allowed to work on an incident
with a complexity equal or less compared to their expertise level, but not higher.

For the deterministic formulation we assume a set of incoming service incident
tickets C including |C | tickets that are known but that cannot be handled before their
release date, i.e., arrival time, ec for all c ∈ C . This is needed to compare the results
to the ones of the simulation. Each ticket c ∈ C has a processing time dc. The set of
topics is represented by T . As described, tickets that arrive have a different level of
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Fig. 1 Examined scenario
of ticket scheduling
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complexity, which we represent be the set of levels L . The binary parameter gctl is
equal to 1 if ticket c ∈ C has topic t ∈ T with complexity level l ∈ L whereas for
each ticket c ∈ C only one parameter is equal to 1. The tickets are handled by a set
of agents S. Each agent can only serve a defined subset of topics t ∈ T and for each
topic he has a certain knowledge level that matches with the levels of complexity
l ∈ L . fstl is equal to 1 if agent s ∈ S can solve a ticket with topic t ∈ T at level l ∈ L
and 0 else. Due to work regulations and as agents are the most valuable resource,
their workload should not exceed α percent of the daily working time W . By P
we denote the number of consecutive days we are looking at, i.e., the length of the
considered period. We assume that it is possible to schedule all tickets within the
planning horizon and that each agent is only able to work on one ticket at a time.
By M we denote a sufficiently large number. For the formulation, we need three
artificial ticket sets C0 that includes 0 as a starting point, C1 that includes |C | + 1 as
an ending point and C01 that includes both 0 and |C | + 1. In addition, we introduce
the following decision variables:

xbcs =
{

1 if agent s ∈ S solves ticket c ∈ C1 after ticket b ∈ C0

0 else

ycs =
{

1 if agent s ∈ S solves ticket c ∈ C

0 else

zcs ≥ 0 starting time for solving ticket c ∈ C01 by server s ∈ S.

The objective function (1) minimizes the workload for the agents with the highest
skill levels. Constraints (2) assure that the service of a ticket cannot start before the
release date, constraints (3)–(5) set the starting times for serving the tickets. By (6)
all tickets must be finished within the planning horizon. Of course an agent can only
serve a ticket with the right topic and level that he is able to solve (7). Constraints
(8)–(11) make sure that we start and end a schedule for each agent once, that each
ticket is served and that the same agent starts and ends serving a ticket. We assume that
each agent has to solve at least one ticket. Agents shall not work more than α % of the
daily working hours in average throughout the considered period as expressed in (12).
Constraints (13) and (14) connect the decision variables. (15)–(17) are the domain
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constraints. Note that if the formulation shall be used in practice, constraints (2) are
not needed, of course.

The formulation looks as follows:

min
∑

b,c∈C,b �=c

∑
s: fst |L|=1xbcsdc (1)

s.t. zcs ≥ ec · ycs ∀c ∈ C, s ∈ S (2)

zcs ≥ zbs + db − M (1 − xbcs) ∀b, c ∈ C, s ∈ S (3)

zcs ≥ z0s − M (1 − x0cs) ∀c ∈ C, s ∈ S (4)

z|C |+1,s ≥ zcs + dc − M
(
1 − xc,|C |+1,s

) ∀c ∈ C, s ∈ S (5)

z|C |+1,s ≤ P · W ∀s ∈ S (6)

ycs ≤ ∑
t∈T

∑
l∈L (gctl fstl) ∀c ∈ C, s ∈ S (7)

∑
s∈S ycs = 1 ∀c ∈ C (8)

∑
c∈C x0cs = 1 ∀s ∈ S (9)

∑
c∈C xc,|C |+1,s = 1 ∀s ∈ S (10)

∑
a∈C0,b �=a xabs − ∑

c∈C1,b �=cxbcs = 0 ∀b ∈ C, s ∈ S (11)
∑

c∈C ycsdc ≤ α · P · W ∀s ∈ S (12)

ycs ≥ ∑
b∈C0

xbcs ∀c ∈ C1, s ∈ S (13)

zcs ≤ M · ycs ∀c ∈ C, s ∈ S (14)

xbcs ∈ {0, 1} ∀b, c ∈ C, s ∈ S (15)

ycs ∈ {0, 1} ∀c ∈ C, s ∈ S (16)

zcs ≥ 0 ∀c ∈ C, s ∈ S (17)

Based on already examined studies in that domain [2–5] we assume the following
conditions for an example scenario that we want to study in a discrete event simulation
as well as use as an input for the formulation:

We examine the incident management of a medium-sized company. Seven
employees with different levels of expertise are working on their day-to-day oper-
ations and additionally have to solve incidents that are reported by customers via
the company’s incident management web interface. We assume an equal distribution
of daily business and incident management. Furthermore, we assume an average
availability of each expert of less than 70 % of the working time (a so called “shrink-
age” with over 30 %), which results in a maximum workload of 35 % per expert for
incident management tasks in general. Each expert could gain a level of expertise
from low (1) to medium (2) to high (3) for each topic. In our model there are tickets
in the domains of 3 different topics (topic x, topic y, and topic z). Each ticket has
a complexity of low (1) or medium (2) or high (3). The agents work on the tickets
on maximum five days per week for 8 h. The incidents, reported via the incident
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management web interface, are Poisson distributed with an arrival rate of 1/50 min.
The customer contribution is rate-able for each ticket as cc f from low (0) to medium
(1) to high (2).

The discussed approach is based on the assumption that a high customer contri-
bution has at least two effects on incident management—incidents could better be
identified and solved and incidents are less complicated as there is more information
given to solve them.

The first aspect has an influence on the processing time (time to resolve) that
is calculated in the model by 20 min + max(complexi ty − cc f ; 0) · t where t is
normally distributed with a mean of 60 min and a standard deviation of 10 min.

The second aspect has an influence on the requirements of the agent’s expert
level, that is represented in the model as follows complexi ty∗ = complexi ty −
�cc f · s + 0.5	 where s as the provider’s sensitivity for customer contribution is
distributed according to the Beta distribution and the product of cc f and s is rounded-
to-nearest. By skewing the Beta distribution to the left or right, the sensitivity of the
provider’s setup and applied scheduling methods could be represented. In this short
paper a balanced Beta distribution with p = q = 2 was chosen.

An incident ticket always has to be scheduled to the available agent with the lowest
expert level. This is important to give the highly educated (and therefore higher paid)
experts more time for solving issues in their day-to-day operations. Every incident
ticket in the queue is scheduled based on complexi ty∗ by the first-come-first-serve
principle.

3 Computational Results

Based on the above described model, we simulated the scheduling of tickets and
the utilization of corresponding agents with AnyLogic to also study the impact of
the percentage of tickets with a high cc f . Therefore we used ten base seeds each to
reduce variations for different shares of tickets with a high customer contribution—
from 0 to 1 in steps by 1 %. The remaining share of tickets with a low and a medium
customer contribution have been divided equally.

In addition, we solved the formulation on an Intel Core i7-4600U CPU with
CPLEX 12.6 using the same data as in the simulation for the instances from 0 to 1 in
steps by 10 %.

In Fig. 2a the effects of different shares of tickets with a high cc f on the utilization
of the agents is presented. Given a maximum utilization limit of 35 % per agent, it
is obvious that with an increase of cc f the utilization of agents with higher expert
levels reduces. Additionally, a minimum utilization of those agents with higher expert
levels can be determined by solving the presented formulation. It shows the potential
of collecting the tickets first and then scheduling them offline instead of online while
they are arriving. In Fig. 2b the runtime of CPLEX for different settings of tickets
and agents as well as variations of the model is described. It can be seen that the
model is calculable, with the restriction that the processing time grows exponential.
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Fig. 2 a Utilization of service agents relatively to the customer contribution. b Runtime for solving
the scenarios with different variations

As we designed the scenario motivated by practice, determining an optimal solution
for a whole week (53 tickets to 7 agents) or even for larger problem instances could
be done with reasonable effort. By varying restrictions the processing time could be
reduced considerably.

4 Conclusions and Recommendations for Further Research

In this short paper it could be shown that the customer contribution factor cc f can
help to reduce the unbalanced utilization of service agents by assigning tickets to
agents that are able to handle them properly. By applying information about their
customers, providers could be able to save resources and time internally and—at the
same time—serve their customers more individual, faster and with no more effort.

Within this short paper we were not able to apply our approach to real world
data, where we took our motivation and initial set up from. As the exact cause effect
relationships of the cc f are estimated in the starting model, the next step in our
research is to prove these effects with the real interaction data, captured with our
application partner. From a mathematical point of view, we will use queuing theory
to further study waiting times, business of agents and the time a ticket stays in the
system. In addition, further tests with real data are necessary to determine running
times for an optimal solution if daily runs and schedules are desired.
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A Lagrangian Relaxation Algorithm
for Modularity Maximization Problem

Kotohumi Inaba, Yoichi Izunaga and Yoshitsugu Yamamoto

Abstract Modularity proposed by Newman and Girvan is one of the most common
measure when the nodes of a graph are grouped into communities consisting of
tightly connected nodes.We formulate the modularity maximization problem as a set
partitioning problem, and propose an algorithm based on the Lagrangian relaxation.
To alleviate the computational burden, we use the column generation technique.

1 Introduction

As social network services grow, clustering on graphs has been attracting more atten-
tion. Since Newman and Girvan [5] proposed the modularity as a graph clustering
measure, modularity maximization problem became one of the central subjects of
research.Most of the solutionmethods proposed so far are heuristic algorithms due to
its NP-hardness, which was shown by Brandes et al. [2], while few exact algorithms
have been proposed.

Aloise et al. [1] formulated the problem as a set partitioning problem, which
has to take into account all, exponentially many, nonempty subsets of the node set.
Therefore one cannot secure the computational resource to hold the problem when
the number of nodes is large. Their algorithm is based on the linear programming
relaxation, and uses the column generation technique. Although it provides a tight
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upper bound of the optimal value, it can suffer a high degeneracy due to the set
partitioning constraints.

In this paper, based on the set partitioning formulation, we propose a Lagrangian
relaxation algorithm, and apply the column generation technique in order to alleviate
the computational burden. We also report on some computational experiments.

2 Modularity Maximization Problem

Let G = (V, E) be an undirected graph with the set V = {1, 2, . . . , n} of n nodes
and the set E = {1, 2, . . . , m} of m edges. We say that � = {C1, C2, . . . , Ck} is a
partition of V if V = ⋃k

p=1 C p, C p ∩ Cq = ∅ for any distinct p and q, and C p �= ∅
for any p. Each member C p of a partition is called a community. For i, j ∈ V let ei j

be the (i, j) element of the adjacency matrix of graph G, and di be the degree of
node i , and π(i) be the index of community which node i belongs to, i.e., π(i) = p
means i ∈ C p. Then modularity, denoted by Q(�), of a partition � is defined as

Q(�) = 1

2m

∑

i∈V

∑

j∈V

(
ei j − di d j

2m

)
δ(π(i), π( j)),

where δ is the Kronecker delta. Modularity maximization problem, MM for short, is
the problem of finding a partition of V that maximizes the modularity Q(�).

LetP denote the family of all nonempty subsets of V . Note thatP is composed
of 2n − 1 subsets of V . Introducing a binary variable zC for each C ∈ P , a partition
� is represented by the (2n − 1)-dimensional binary vector z = (zC)C∈P defined as

zC =
{
1 when C ∈ �

0 otherwise.

For each i ∈ V and C ∈ P we define a constant aiC to describe whether node i
belongs to C , i.e., aiC = 1 when i ∈ C and aiC = 0 otherwise. The column aC =
(a1C , . . . , anC )� is called the incidence vector of community C , i.e., C = {i ∈ V |
aiC = 1}. For each C ∈ P , let fC be

fC = 1

2m

∑

i∈V

∑

j∈V

wi j aiC a jC ,

where wi j = (ei j − di d j/2m). The constant fC represents the contribution of com-
munityC to the objective function whenC is selected as amember of the partition�.
Thus MM is formulated as the following integer programming (P):
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(P)

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

C∈P
fC zC

subject to
∑

C∈P
aiC zC = 1 (∀i ∈ V )

zC ∈ {0, 1} (∀C ∈ P)

We call the first set of constraints set partitioning constraints.

3 Lagrangian Relaxation and Lagrangian Dual Problem

The problem (P) is a difficult problem due to both its integrality and the set partition-
ing constraints. The well-known technique in order to obtain the useful information
about the solution of (P) is Linear Programming relaxation, LP relaxation for short.
Although LP relaxation provides a tight upper bound of the optimal value of (P), it
usually suffers the high degeneracy due to the set partitioning constraints. To over-
come this degeneracy, several techniques have been proposed in the literature, for
example [3, 4]. In this paper we employ the Lagrangian relaxation instead of LP
relaxation. Nowwe will give a brief review of Lagrangian relaxation and Lagrangian
dual problem.

We relax the set partitioning constraints and add them to the objective function
as a penalty with Lagrangian multiplier vector λ = (λ1, . . . , λn)

�, and obtain the
following Lagrangian relaxation problem (L R(λ)) with only the binary variable
constraints:

(L R(λ))

∣∣∣∣∣∣

maximize
∑

C∈P
fC zC +

∑

i∈V

λi (1 −
∑

C∈P
aiC zC)

subject to zC ∈ {0, 1} (∀C ∈ P).

Let γC(λ) = fC − ∑
i∈V λi aiC , then the objective function of (L R(λ)) is written as

L(z, λ) =
∑

C∈P
γC(λ)zC +

∑

i∈V

λi .

For a given multiplier vector λ, we can obtain an optimal solution z(λ) of (L R(λ))

by simply setting zC(λ) = 1 if γC(λ) > 0, and zC(λ) = 0 otherwise. We denote the
optimal value of (L R(λ)) by ω(L R(λ)), then ω(L R(λ)) provides an upper bound
of ω(P) for any λ. The problem of finding the best upper bound of ω(P) is called
the Lagrangian dual problem (L RD), which is given as:

(L RD)

∣∣∣∣
minimize ω(L R(λ))

subject to λ ∈ R
n.
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One of the most commonly used method for this problem is the subgradient
method. This method uses the subgradient d(λ) = (di (λ))i∈V at λ, defined by
di (λ) = 1 − ∑

C∈P aiC zC(λ) for i ∈ V , and updates the Lagrangian multiplier vec-
tor to the direction of d(λ) with a step size μ. We employ the well-known Armijo
rule to determine the step-size μ.

4 Proposed Algorithm

As we discussed in the previous section, the optimal solution z(λ) can be obtained
by checking the sign of γC(λ). However it is hard to compute all of γC(λ) owing
to the huge number of variables. The number of variables which are positive at an
optimal solution of (P) is at most the number of nodes, hence we need only a small
number of variables. Therefore we use the column generation technique in order
to alleviate the computation burden. Namely, we start the algorithm with a small
number of variables and gradually add variables as the computation goes on.

We consider a small subfamily C of P and deal with the following subproblem
(P(C )):

(P(C ))

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

C∈C
fC zC

subject to
∑

C∈C
aiC zC = 1 (∀i ∈ V )

zC ∈ {0, 1} (∀C ∈ C ).

We denote the the Lagrangian relaxation problem and the Lagrangian dual problem
corresponding to (P(C )) by (L R(C , λ)) and (L RD(C )), respectively. Let λ(C ) be
an optimal solution of (L RD(C )). Since the variables zC for C ∈ P \ C are not
considered in the problem (L R(C , λ(C ))), an optimal solution z(λ(C )) is not neces-
sarily optimal to (L R(λ(C ))).WhenγC(λ(C )) ≤ 0 for allC ∈ P \ C , z(λ(C )) is an
optimal solution of (L R(C , λ(C ))). On the other hand γC(λ(C )) > 0 holds for some
C ∈ P \ C , adding this C to C can lead to an improvement of the optimal value of
(L R(C , λ(C ))), i.e., ω(L R(C

′
, λ(C ))) > ω(L R(C , λ(C ))) where C

′ = C ∪ {C}.
Note that λ(C ) is not necessarily an optimal solution of (L RD(C

′
)), hence we solve

the problem (L RD(C
′
)) again to obtain an optimal Lagrangian multiplier λ(C

′
) by

the subgradient method.
According to the formulation of Xu et al. [6], the problem of finding C that

maximizes γC(λ) is formulated as the problem (AP(λ)) with a quadratic concave
objective function:



A Lagrangian Relaxation Algorithm for Modularity Maximization Problem 245

(AP(λ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

m∑

r=1

xr − 1

4m2

(
∑

i∈V

di yi

)2

−
∑

i∈V

λi yi

subject to xr ≤ yi (∀r = {i, j} ∈ E)

xr ≤ y j (∀r = {i, j} ∈ E)

xr ∈ {0, 1} (∀r ∈ E)

yi ∈ {0, 1} (∀i ∈ V ).

For each edge r = {i, j} ∈ E , a binary variable xr is equal to 1 when both end nodes
i, j of edge r belong to the community that maximizes γC(λ), and for each i ∈ V a
variables yi is equal to 1 when node i belongs to the community and 0 otherwise.

From the above discussion, our proposed algorithm is given as follows.

Algorithm LCG

Step 1 : Let C and λ be an initial family of nonempty subsets of V and an initial
multiplier vector, respectively.

Step 2 : Solve (L RD(C )) to obtain a near optimal solution λ and the objective value
ω(L RD(C )) by the subgradient method.

Step 3 : Solve (AP(λ)) and set y∗ be an optimal solution.
Step 4 : If ω(AP(λ)) ≤ 0, then set C ∗ := C and ω∗ := ω(L RD(C )).

Output C ∗ and ω∗, and terminate.
Step 5 : Otherwise set C := {i ∈ V | y∗

i = 1} and incrementC := C ∪ {C}. Return
to Step2.

When this algorithm terminates, we construct the problem (P(C ∗)) from the
obtained C ∗, and solve (P(C ∗)) by an IP solver.

The following proposition shows that we can obtain an upper bound of ω(P) at
each iteration of the algorithm.

Proposition 1 Let t be an upper bound of the number of communities at an optimal
solution of (P). Then

∑
i∈V λi + t · ω(AP(λ)) is an upper bound of ω(P) for any

λ ∈ R
n.

If the difference between the upper bound and ω(L RD(C )) is small, we can stop
the algorithm even if ω(AP(λ)) ≤ 0 does not hold.

5 Computational Experiments

We report the computational experiment with AlgorithmLCG. The experiment was
performed on a PCwith an Intel Core i7, 3.20GHz processor and 12.0GBofmemory.
We implemented the algorithm in Python 2.7, and used Gurobi 5.6.2 as the IP solver.
We solved the benchmark instances provided by DIMACS. The size and the known
optimal value of each instance is given in Table 1.
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Table 1 Instances Name n m ω(P)

Karate 34 78 0.4198

Dolphins 62 159 0.5285

Football 115 613 0.6046

Table 2 Computational
results of AlgorithmLCG

Instance |C ∗| ω∗ ω(P(C ∗)) Gap (%) Time (s)

Karate 62 0.4198 0.4198 0.000 7

Dolphins 112 0.5302 0.5222 1.192 37

Football 192 0.6054 0.6043 0.049 34509

We set C initially to the family of all singletons, i.e., C = {{1}, . . . , {n}}, and set
an initial multiplier vector λ = 0. Table 2 shows the results of the proposed algorithm
for each instance. The columns |C ∗| and ω(P(C ∗)) represent the cardinality of the
final family of C ∗ and the optimal value of (P(C ∗)), respectively. The column Gap
indicates relative gap defined by

Gap =
(

ω(P) − ω(P(C ∗))
ω(P)

)
× 100.

The column Time indicates the computation time in seconds.
From Table 2, we observe that AlgorithmLCG solves Karate to optimality and

fails to solve the others, but the Gap is less than 2%. Moreover the number of |C ∗|
is quite small.

Figure 1 shows ω(L RD(C )) and the upper bound in Proposition1 at each iter-
ation of the algorithm for the instance Dolphins. We set t to the optimal number of

Fig. 1 ω(L R D(C )) versus
iterations for Dolphins
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communities in calculating an upper bound of ω(P). ω(L RD(C )) rapidly increases
at an early stage, and increases slowly as the algorithm goes on. Since we observed
the similar results in other instances, we omitted the figures of the others.
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Row and Column Generation Algorithm
for Maximization of Minimum Margin
for Ranking Problems

Yoichi Izunaga, Keisuke Sato, Keiji Tatsumi
and Yoshitsugu Yamamoto

Abstract We consider the ranking problem of learning a ranking function from the
data set of objects each of which is endowed with an attribute vector and a ranking
label chosen from the ordered set of labels. We propose two different formulations:
primal problem, primal problem with dual representation of normal vector, and then
propose to apply the kernel technique to the latter formulation.We also propose algo-
rithms based on the row and column generation in order tomitigate the computational
burden due to the large number of objects.

1 Introduction

This paper is concernedwith amulti-class classification problem of n objects, each of
which is endowed with an m-dimensional attribute vector xi = (xi

1, xi
2, . . . , xi

m)� ∈
R

m and a label �i . The underlying statistical model assumes that object i receives
label k, i.e., �i = k, when the latent variable yi determined by yi = w�xi + εi =∑m

j=1 w j xi
j + εi falls between two thresholds pk and pk+1, where εi represents a

random noise whose probabilistic property is not known. Namely, attribute vectors
of objects are loosely separated by hyperplanes H(w, pk) = { x ∈ R

m | w�x = pk }
for k = 1, 2, . . . , l which share a common normal vector w, then each object is given
a label according to the layer it is located in. Note that neither yi ’s, w j ’s nor pk’s are
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observable. Our problem is to find the normal vectorw ∈ R
m as well as the thresholds

p1, p2, . . . , pl that best fit the input data { (xi , �i ) | i = 1, 2, . . . , n }.
This problem is known as the ranking problem and frequently arises in social

sciences and operations research. See, for instance [2–5, 7]. It is a variation of the
multi-class classification problem, for which several learning algorithms of the sup-
port vector machine (SVM for short) have been proposed. We refer the reader to
[1, 8, 9]. What distinguishes the problem from other multi-class classification prob-
lems is that the identical normal vector should be shared by all the separating hyper-
planes. In this paper based on the formulation fixed margin strategy by Shashua
and Levin [5], we propose a row and column generation algorithm to maximize the
minimum margin for the ranking problems.

Throughout the paper N = {1, 2, . . . , i, . . . , n} denotes the set of n objects and
xi = (xi

1, xi
2, . . . , xi

m)� ∈ R
m denotes the attribute vector of object i . The predeter-

mined set of labels is L = {0, 1, . . . , k, . . . , l} and the label assigned to object i is
denoted by �i . Let N (k) = { i ∈ N | �i = k } be the set of objects with label k ∈ L ,
and for notational convenience we write n(k) = |N (k)| for k ∈ L . For succinct nota-
tion we define X = [xi ]i∈N ∈ R

m×n , XW = [xi ]i∈W ∈ R
m×|W | for W ⊆ N , and the

corresponding Gram matrices K = X
�

X ∈ R
n×n , KW = X

�
W XW ∈ R

|W |×|W |. We
denote the k-dimensional zero vector and vector of 1’s by 0k and 1k , respectively.

2 Hard Margin Problem for Separable Case

Henceforth we assume that N (k) �= ∅ for all k ∈ L for the sake of simplicity,
and adopt the notational convention that p0 = −∞ and pl+1 = +∞. We say
that an instance { (xi , �i ) | i ∈ N } is separable if there exist w ∈ R

m and p =
(p1, p2, . . . , pl)

� ∈ R
l such that p�i < w�xi < p�i +1 for any i ∈ N . Clearly an

instance is separable if and only if there are w and p such that p�i + 1 ≤ w�xi ≤
p�i +1 − 1 for any i ∈ N .

Then the margin between { xi | i ∈ N (k − 1) } and { x j | j ∈ N (k) } is at least
2/‖w‖. Hence the maximization of the minimum margin is formulated as the
quadratic programming

(H)

∣∣∣∣
minimize ‖w‖2
subject to p�i + 1 ≤ (xi )�w ≤ p�i +1 − 1 for i ∈ N .

The constraints therein are called hard margin constraints.
A close look at the primal problem (H) shows that the following property holds

for an optimum solution w∗. See, for example [1, 5, 6].

Lemma 1 Let (w∗, p∗) ∈ R
m+l be an optimum solution of (H). Then w∗ ∈ R

m lies
in the range space of X, i.e., w∗ = Xλ for some λ ∈ R

n.

The representation w = Xλ is called the dual representation. Substituting Xλ for w
yields another primal hard margin problem (H̄):
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(H̄)

∣∣∣∣
minimize λ�Kλ
subject to p�i + 1 ≤ (ki )�λ ≤ p�i +1 − 1 for i ∈ N ,

where (ki )� = ((xi )�x1, (xi )�x2, . . . , (xi )�xn) is the i th row of thematrix K . Since
n is typically by far larger thanm, problem (H̄)might be less interesting than problem
(H). However, the dimension m of the attribute vector is usually much smaller than
the number of objects, hence we need a small number of attribute vectors for the
dual representation, and it is likely that most of the constraints are redundant at an
optimal solution. Then we propose to start the algorithm with a small number of
attribute vectors as W and then increment it as the computation goes on. Moreover
the fact that this formulation only requires the matrix K will enable the application
of the kernel technique to the problem. The sub-problem to solve is

(H̄(W ))

∣∣∣∣
minimize λ�

W KW λW

subject to p�i + 1 ≤ (ki
W )�λW ≤ p�i +1 − 1 for i ∈ W,

where (ki
W )� is the row vector consisting of (xi )�x j for j ∈ W . Note that the dimen-

sion of λW varies when the size of W changes as the computation goes on.

Algorithm RCH̄ (Row and Column Generation Algorithm for (H̄))

Step 1 : Let W 0 be an initial working set, and let ν = 0.
Step 2 : Solve (H̄(W ν)) to obtain λν

W and pν .
Step 3 : Let�= { i ∈ N\W ν | (λν

W , pν) violates p�i + 1 ≤ (ki
W )�λW ≤ p�i +1−1}.

Step 4 : If � = ∅, terminate.
Step 5 : Otherwise choose�ν ⊆ �, let W ν+1 = W ν ∪ �ν , increment ν by 1 and go

to Step2.

The following lemma shows that AlgorithmRCH̄ solves problem (H̄) upon
termination.

Lemma 2 Let (λ̂W , p̂) ∈ R
|W |+l be an optimum solution of (H̄(W )). If

p̂�i + 1 ≤ (ki
W )�λ̂W ≤ p̂�i +1 − 1 for all i ∈ N\W,

then (λ̂W , 0N\W ) ∈ R
n together with p̂ forms an optimum solution of (H̄).

The validity of the algorithm follows from the above lemma.

Theorem 1 The AlgorithmRCH̄ solves problem (H̄).

3 Kernel Technique for Hard Margin Problem

The matrix K in the primal hard margin problem (H̄) is composed of the inner
products (xi )�x j for i, j ∈ N . This enables us to apply the kernel technique simply
by replacing them by κ(xi , x j ) for some appropriate kernel function κ.
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Let φ : Rm → F be a function, possibly unknown, from R
m to some higher

dimensional inner product space F, so-called the feature space such that κ(x, y) =
〈φ(x),φ(y)〉 holds for x, y ∈ R

m , where 〈·, ·〉 is the inner product defined on F. In
the sequel we denote x̃ = φ(x). The kernel technique considers the vectors x̃ i ∈ F

instead of xi ∈ R
m , and finds a normal vector w̃ ∈ F and thresholds p1, . . . , pl .

Therefore the matrices X and K should be replaced by X̃ composed of vectors
x̃ i and K̃ = [〈x̃ i , x̃ j 〉]

i, j∈N , respectively. Note that the latter matrix is given as

K̃ = [κ(xi , x j )]i, j∈N by the kernel function κ. Denote the i-th row of K̃ by (ki )�,
then the problem to solve is

(H̃)

∣∣∣∣∣
minimize λ� K̃λ

subject to p�i + 1 ≤ (k̃i )�λ ≤ p�i +1 − 1 for i ∈ N .

In the same way as for the hard margin problem (H̄)we consider the sub-problem

(H̃(W ))

∣∣∣∣∣
minimize λ�

W K̃W λW

subject to p�i + 1 ≤ (k̃i
W )�λW ≤ p�i +1 − 1 for i ∈ W,

where K̃W is the sub-matrix consisting of the rows and columns of K̃ with indices
in W , and (k̃i

W )� is the row vector of κ(xi , x j ) for j ∈ W .

Algorithm RCH̃ (Row and Column Generation Algorithm for (H̃))

Step 1 : Let W 0 be an initial working set, and let ν = 0.
Step 2 : Solve (H̃(W ν)) to obtain λν

W and pν .
Step 3 : Let �= {i ∈ N\W ν | (λν

W , pν)violatesp�i + 1≤ (k̃i
W )�λW ≤ p�i +1 − 1}.

Step 4 : If � = ∅, terminate.
Step 5 : Otherwise choose�ν ⊆ �, let W ν+1 = W ν ∪ �ν , increment ν by 1 and go

to Step2.

Theorem 2 The AlgorithmRCH̃ solves problem (H̃).

4 Soft Margin Problems for Non-separable Case

Introducing nonnegative slack variables ξ−i and ξ+i for i ∈ N relaxes the hardmargin
constraints to soft margin constraints:

p�i + 1 − ξ−i ≤ w�xi ≤ p�i +1 − 1 + ξ+i for i ∈ N .

Positive values of variables ξ−i and ξ+i mean misclassification, hence they should be
as small as possible.We penalize positive ξ−i and ξ+i by adding δ(ξ−) and δ(ξ+) to the
objective function via a penalty function δ, where ξ− = (ξ−i )i∈N and ξ+ = (ξ+i )i∈N .
Then we have the following primal soft margin problem.
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(S)

∣∣∣∣∣∣∣

minimize ‖w‖2 + c (δ(ξ−) + δ(ξ+))

subject to p�i + 1 − ξ−i ≤ (xi )�w ≤ p�i +1 − 1 + ξ+i for i ∈ N

ξ−, ξ+ ≥ 0n,

where c is a penalty parameter. When 1-norm function (resp., 2-norm function) is
employed as the function δ, we call the above problem soft margin problem with
1-norm penalty (resp., 2-norm penalty). As we discussed in the previous section, we
can replace ‖w‖2 and (xi )

�
w in the problem (S) by λ

�
Kλ and (ki )

�
λ to obtain the

primal problem with the dual representation of the normal vector. Then we have

(S̄)

∣∣∣∣∣∣∣

minimize λ
�

Kλ + c (δ(ξ−) + δ(ξ+))

subject to p�i + 1 − ξ−i ≤ (ki )�λ ≤ p�i +1 − 1 + ξ+i for i ∈ N

ξ−, ξ+ ≥ 0n.

The sub-problem (S̄(W )) for the working set W will be

(S̄(W ))

∣∣∣∣∣∣∣

minimize λ
�
W KW λW + c (δ(ξ−W ) + δ(ξ+W ))

subject to p�i + 1 − ξ−i ≤ (ki
W )�λ ≤ p�i +1 − 1 + ξ+i for i ∈ W

ξ−W , ξ+W ≥ 0|W |,

where ξ−W = (ξ−i )i∈W and ξ+W = (ξ+i )i∈W .

Algorithm RCS̄ (Row and Column Generation Algorithm for (S̄))

Step 1 : Let W 0 be an initial working set, and let ν = 0.
Step 2 : Solve (S̄(W ν)) to obtain (λν

W , pν, ξν
−W , ξν

+W ).
Step 3 : Let � = { i ∈ N\W ν | (λν

W , pν) violates p�i + 1 ≤ (ki
W )�λW ≤ p�i +1 −

1 }.
Step 4 : If � = ∅, terminate.
Step 5 : Otherwise choose�ν ⊆ �, let W ν+1 = W ν ∪ �ν , increment ν by 1 and go

to Step 2.

Lemma 3 Let (λ̂W , p̂, ξ̂−W , ξ̂+W ) be an optimum solution of (S̄(W )). If

p̂�i + 1 ≤ (ki
W )�λ̂W ≤ p̂�i +1 − 1 for all i ∈ N\W,

then ((λ̂W , 0N\W ), p̂, (ξ̂−W , 0N\W ), (ξ̂+W , 0N\W )) is an optimum solution of (S̄).

Theorem 3 The AlgorithmRCS̄ solves problem (S̄).

Since the kernel technique can apply to the soft margin problem in the same way
as discussed in Sect. 3, we omit the kernel version of soft margin problem.
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5 Illustrative Example and Conclusion

Weshowwith a small instance howdifferentmodels result in different classifications.
The instance is the grades in calculus of 44 undergraduates. Each student is given
one of the four possible grades A, B, C , and D according to his/her total score of
mid-term exam, end-of-term exam and a number of in-class quizzes. We take the
scores of mid-term and end-of-term exams to form the attribute vector, and his/her
grade as a label.

Since the score of quizzes is not considered as an attribute, the instance is not
separable, hence the hard margin problem (H) is infeasible. The solution of the soft
margin problem (S) with 1-norm penalty is given in Fig. 1. We set the parameter c
to 15.

Using the Gaussian kernel defined as κ(x, y) = exp(−‖x − y‖2/2 σ2), we solved
(H̃). The result with σ = 7 is given in Fig. 2, where one can observe that the problem
(H̃) is exposed to the risk of over-fitting. Other kernel functions with a combination
of various parameter values should be tested.

In this paper, we considered the ranking problem and proposed a row and column
generation algorithm to alleviate the computational burden. Furthermore we proved
the validity of the algorithm.

Fig. 1 Classification by (S)

with 1-norm penalty

Fig. 2 Classification by (H̃)
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Dual Sourcing Inventory Model
with Uncertain Supply and Advance
Capacity Information

Marko Jakšič

Abstract We model a periodic review, single stage dual sourcing inventory system
with non-stationary stochastic demand,where replenishment canoccur either through
a regular stochastic capacitated supply channel with immediate delivery and/or an
alternative uncapacitated supply channel with a longer fixed lead time. We focus
on describing a situation in which upfront information on capacity availability of
an unreliable supply channel is available, denoted as advance capacity information
(ACI), to the customer. We derive the optimal dynamic programming formulation
and we show some of the properties of the optimal policy by carrying out a numerical
analysis. Additionally, our numerical results on the benefits of dual sourcing and the
value of sharing ACI reveal several managerial insights.

1 Introduction

In the age of agile supply chains the two main determinants of the customer service
level are the speed of replenishment and its reliability. To guarantee the customer
satisfaction the companies are seeking for a supply base that would enable them to
pursue these two goals. It is often the case, that a supplier might offer fast delivery
while its reliability will suffer occasionally. This has forced the companies to search
for alternative supply channels, throughwhich theywould improve the supply process
reliability, where often more reliable supply comes with the price, either in higher
purchasing costs per unit of a product or longer replenishment lead time.

In this paper wemodel the problem of a company that primarily relies on a regular
supplier, which offers fast replenishment but the order might not be delivered in full
due to the limited on-hand stock availability for instance. When the decision maker
within the company anticipates the supply shortage, he can rely on an alternative

M. Jakšič (B)
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supplier, whose lead time is longer, but he is able to deliver the entire order with cer-
tainty. While most of the multiple supplier research explores the trade-off between
purchasing costs and indirect costs of holding safety inventory to cover against
demand and supply variability, we study the effect of capacity and lead time on
supply reliability and the order allocation decision to suppliers. That is the decision
between unreliable capacitated supplier with short lead time and reliable infinite
capacity supplier with longer lead time. In addition, we study the effect of ACI on
the capacity availability, and how this information if revealed by the supplier, can
help the company to reduce the negative effects of unreliability of the faster supply
channel.

The way we model the supply availability of a regular supplier is in line with the
work of [1–4], where the random supply/production capacity determines a random
upper bound on the supply availability in each period. For a finite horizon stationary
inventory model they show that the optimal policy is of order-up-to type, where
the optimal base-stock level is increased to account for possible, albeit uncertain,
capacity shortfalls in future periods.

For a general review of the multiple supplier inventory models we refer the inter-
ested reader to [5]. A more focused review on multiple sourcing inventory models
when supply components are uncertain by [6] reveals that most of these models
consider uncertainty in supply lead time, supply yield, or supplier availability. In a
deterministic lead time setting, several papers discuss the setting in which the lead
times of the two suppliers differ by a fixed number of periods [7, 8], where they
all assume infinite supply capacity or at most a fixed capacity limit on one or both
suppliers. However, when there is uncertainty in the supplier capacity, diversification
through multiple sourcing has received very little attention. The exception to this are
[9, 10], where they study a single period problem with multiple capacitated suppli-
ers and develop the optimal policy to assign orders to each supplier. Also, all of the
capacitated multiple sourcing papers cited above assume identical lead time suppli-
ers. Our paper makes a contribution to the literature by introducing a dual sourcing
inventory model with a capacitated unreliable supplier and a reliable supplier with
longer lead time. In addition, we study a situation in which the unreliable supplier
provides an upfront information on exact capacity availability, a situation that was
studied by [4] in a single supplier setting.

The remainder of the paper is organized as follows. We present the model formu-
lation in Sect. 2. In Sect. 3 we provide the characteristics of the optimal policy based
on the numerical results. In Sect. 4, we present the results of a numerical study to
quantify the benefits of ACI, and in Sect. 5 we summarize our findings.

2 Model Formulation

In this section, we give the notation and the model description. A regular, zero
lead time, supply channel is stochastically capacitated, where the supply capacity is
exogenous to the customer and the actual capacity realization is only revealed upon
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replenishment. However, when ACI is available, the supply capacity availability is
known prior to placing the order to the regular supplier, either as ACI on current
period’s capacity or on capacity of one period in the future. An alternative supply
channel is modeled as an uncapacitated with a fixed one period lead time. The end-
customer demand and supply capacity of a reliable supply channel are assumed to
be stochastic non-stationary with known distributions in each time period, however,
independent from period to period. In each period the customer places the order
either to a regular, or to an alternative supplier, or both.

Presuming that unmet demand is fully backordered, the goal is to find an optimal
policy that would minimize the inventory holding costs and backorder costs over a
finite planning horizon T . We intentionally do not consider any product unit price
difference and fixed ordering costs as we are primarily interested into the trade-off
between capacity uncertainty associated with regular ordering and the delay in the
replenishment of an alternative order. We assume the following sequence of events:

(1) At the start of the period, themanager reviews inventory position before ordering
xt , where xt = x̂t + vt−1 is a sum of the on-hand stock x̂t and the order to the
alternative supplier from the previous period vt−1.

(2) The order to the regular supplier zt and the order to the alternative supplier vt are
placed and the inventory position is raised to inventory position after ordering yt ,
yt = xt + zt + vt . In the case when ACI is available the regular order is placed
only up to the available supply capacity qt .

(3) The order from the alternative supplier from the previous period and the current
period’s regular order are replenished, and the inventory position is corrected
according to the realized capacity availability of the regular supplier yt − [zt −
qt ]+ = xt + min(zt , qt ) + vt in the case when ACI is not available.

(4) At the end of the period, demand dt is observed and satisfied through on-hand
inventory; otherwise it is backordered. The system’s costs consist of inventory
holding ch and backorder cb costs charged on end-of-period on-hand inventory,
x̂t+1 = yt − [zt − qt ]+ − vt − dt . Correspondingly, the expected single period
cost function Ct (yt , zt ) = αEQt ,Dt C̃t (x̂t+1), where C̃t (x̂t+1) = ch[x̂t+1]+ +
cb[x̂t+1]− is the regular loss function.

Correspondingly, for the case without ACI, the minimal discounted expected cost
function that optimizes the cost over a finite planning horizon T fromperiod t onward,
starting in the initial state xt , can be written as:

ft (xt ) = min
zt ≥0,vt ≥0

{
Ct (yt − [zt − Qt ]+ − vt − Dt )

+ αEQt ,Dt ft+1(yt − [zt − Qt ]+ − Dt )
}], for 1 ≤ t ≤ T (1)

and the ending condition is defined as fT +1(·) ≡ 0.



260 M. Jakšič

Fig. 1 The optimal
inventory position after
ordering and the optimal
regular and alternative order
sizes

3 Characterization of the Optimal Policy

To study the structure of the optimal policy, we depict the optimal order sizes for
orders made at a regular unreliable supplier and an alternative reliable supplier
depending on the initial inventory position xt in Fig. 1. Looking at the xt + zt line,
we observe that the ordering to an unreliable supplier takes place in the manner of
the base stock policy. For xt ≤ yz

t we order a regular order zt up to a base stock level
yz

t , while for xt > yz
t no regular order is placed. Similarly, looking at the alternative

order vt to a reliable supplier, it is placed only if xt ≤ yv
t , and on yz

t ≤ xt < yv
t , where

no regular order is placed, the inventory position xt is increased to a base stock level
yv

t . For xt < yz
t size of an alternative order also depends on the anticipated supply

shortage of a regular order (either through supply capacity probability distribution in
the case without ACI or upfront information on exact regular order realization in the
case with ACI), thus the optimal base stock level yv

t is state dependent, depending
on the size of the regular order. The effect the shortage anticipation has on the size
of an alternative order is what makes the optimal policy in our model different from
the optimality results of the corresponding uncapacitated model, where the optimal
policy instructs that with each of the orders the inventory position is increased to a
corresponding constant optimal base stock level [11].

4 The Value of Advance Capacity Information

In this section we present the results of the numerical analysis, which was carried
out to determine the value of sharing ACI of the regular supply channel. Numerical
calculations were done by solving the dynamic programming formulation given
in (1).

In Fig. 2 we present the cost comparison between the base setting without ACI
and the settings in which ACI is available for the current and for the future period, for
different utilizations and levels of supply capacity variability of the regular supply
channel. The cost curve depicted asUtil = 0 represents the scenario with the lowest
costs, where ordering is done solely to a regular supplier with infinite capacity. The
worst case scenario is the case where regular supplier has no capacity and all orders
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Fig. 2 System costs under
ACI for different unreliable
supply channel utilizations

are placed to an alternative supplier, and is depicted with a Util = I n f cost curve.
Our interest lies in studying the intermediate scenarios, where we are predominantly
interested in the effect the supply capacity variability (denoted as supply capacity
coefficient of variation CVQ) has on the costs under both, the situation without and
with ACI.

Observe, when CVQ = 0 there is no supply capacity uncertainty at a regular sup-
plier, therefore the costs of both situations are equal. It is expected that the reduction
in costs throughACI is increasingwhenCVQ is increasing, asACI effectively reduces
the uncertainty of the supply capacity availability. The value of ACI, defined as the
relative difference in costs between a situation without and with ACI, is up to 1.5%
in the case of ACI on current period’s capacity. For the case of future ACI availability
the cost savings become considerable, approaching 20%. These largest savings are
attained at settings with high CVQ , no matter what the utilization of the regular sup-
plier is. For lower CVQ the value of ACI decreases, but still remains relatively high
particularly when regular supplier is highly utilized. While the supply capacity vari-
ability of the regular supplier has the predominant effect on the benefits of ACI, the
demand uncertainty also influences the possible savings attained through ACI. In the
case of a highly utilized regular supplier the alternative supplier is usedmore heavily.
While ACI helps the decision maker to come up with a better ordering decision to
an alternative supplier, the delayed replenishment together with demand uncertainty
results in high costs due to demand and supply mismatches, thus the value of ACI
diminishes. This effect is lower for the case of low utilization of a regular supplier.
Here ACI is helpful in covering the mismatches mainly through a regular supplier,
therefore the exposure to the demand uncertainty risk faced by a supply through an
alternative supplier is lower.

5 Conclusions

In this paper we establish the optimal inventory control policies for a finite horizon
stochastically capacitated dual sourcing inventory system inwhich the regular supply
is done through a fast albeit unreliable supply channel. The upfront information on
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regular supply capacity availability is available to a decision maker to improve his
ordering decision to a regular supplier and/or decides to utilize an alternative, longer
lead time, reliable supplier. We show that the structure of the optimal inventory
policy is of a base-stock type, where the order to a regular supplier is up to a constant
base stock level, and the order to an alternative supplier is placed up to a state
dependent base stock level, depending on the size of the outstanding regular order.
We show that the value of ACI is considerable in the case of high regular supply
capacity uncertainty, already for the settings in which regular supply channel is only
moderately utilized.
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Integrated Line Planning and Passenger
Routing: Connectivity and Transfers

Marika Karbstein

Abstract The integrated line planning and passenger routing problem is an
important planning problem in service design of public transport. A major challenge
is the treatment of transfers. In this paper we show that analysing the connectivity
aspect of a line plan gives a new idea how to integrate a transfer handling.

1 Introduction

The integrated line planning and passenger routing problem is an important plan-
ning problem in service design of public transport. The infrastructure of the public
transport system can be represented by a graph where the edges correspond to streets
and tracks and the nodes correspond to stations/stops. We are further given the num-
ber of passengers that want to travel from one point in the network to another point.
A line is a path in the network, visiting a set of stops/stations in a predefined order.
Passengers can travel along these lines and they can change from one line to another
line in a stop/station if these lines intersect. Bringing capacities into play, the task
is to find paths in the infrastructure network for lines and passengers such that the
capacities of the lines suffice to transport all passengers. There are two main objec-
tives for a line plan, namely, minimization of line operation costs and minimization
of passenger discomfort measured in, e.g., travel times and number of transfers.

In general, the computed line system should be connected, i.e., one can travel
from one station to any other station along the lines. Associating cost with the lines
and searching for a cost minimum set of lines that connects all stations gives rise
to a combinatorial optimization problem which we denote the Steiner connectivity
problem. Its solution gives a lower bound on the costs of a line plan.

In this paper we present some results for the Steiner connectivity problem and
show that they can be used to handle the transfer aspect for the line planning problem.
In Sect. 2, the Steiner connectivity problem is introduced in more detail. We focus
on the special case to connect two nodes via a set of paths. In Sect. 3, we propose
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a new model for the integrated line planning and passenger routing problem that
favors direct connections and involves a version of the 2-terminal Steiner connec-
tivity problem as pricing problem. We briefly discuss computational results and the
optimized line plan for ViP Potsdam of the year 2010 in Sect. 4.

2 Steiner Connectivity Problem

The Steiner connectivity problem is a generalization of the well-known Steiner tree
problem. Given a graph with costs on the edges, the Steiner tree problem is to find a
cost minimum set of edges that connects a subset of nodes. The Steiner connectivity
problem is to choose a set of paths instead of edges. Steiner trees are fundamental for
network design in transportation and telecommunication; see Dell’Amico, Maffioli,
and Martello [1] for an overview. In fact, the Steiner tree problem can be seen as
the prototype of all problems where nodes are connected by installing capacities
on individual edges or arcs. In the same way, the Steiner connectivity problem can
be seen as the prototype of all problems where nodes are connected by installing
capacities on paths which is exactly the case in line planning. Hence, the significance
of the Steiner connectivity problem for line planning is similar to the significance of
the Steiner tree problem for telecommunication network design.

A formal description of the Steiner connectivity problem (SCP) is as follows.
We are given an undirected graph G = (V, E), a set of terminal nodes T ⊆ V , and
a set of elementary paths P in G. The paths have nonnegative costs c ∈ P≥0. The
problem is to find a subset of paths P′ ⊆ P of minimal cost

∑
p∈P′ cp that connect

the terminals, i. e., such that for each pair of distinct terminal nodes t1, t2 ∈ T there
exists a path q from t1 to t2 in G such that each edge of q is covered by at least one
path ofP′. We can assume w.l.o.g. that every edge is covered by a path, i. e., for every
e ∈ E there is a p ∈ P such that e ∈ p; in particular, G has no loops. Figure1 gives
an example of a Steiner connectivity problem and a feasible solution.

a

b
c d

e f g

Terminal

a

b
c d

e f g

Fig. 1 Example of a Steiner connectivity problem. Left A graph with four terminal
nodes (T = {a, d, e, f }) and six paths

(
P= {p1 = (ab, bc, cd), p2 = (e f, f g), p3 = (ae), p4 =

(e f, f c), p5 = (gd), p6 = ( f g, gc, cd)}). Right A feasible solution with three paths (P′ =
{p3, p4, p6})
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Main results about complexity, approximation, integer programming formula-
tions, and polyhedra can be generalized from the Steiner tree problem to the Steiner
connectivity problem, see [5, 7]. In the following we want to consider the two-
terminal case of the Steiner connectivity problem, see also [3]. The problem is to
find a minimum set of paths connecting two given nodes s and t .

We call a set of paths P′ ⊆ P an st-connecting set if s and t are connected in the
subgraph H = (V, E(P′)), i. e., P′ is a solution for the Steiner connectivity problem
with T = {s, t}. A set P′ ⊆ P is st-disconnecting if P \ P′ is not an st-connecting
set.

Algorithm 1 computes the cost of a minimum st-connecting set. It generalizes
Dijkstra’s algorithm to our setting. The distances from node s are stored in node
labels d(v). The algorithm can be extended such that it also determines the minimum
st-connecting set P′.

A cut formulation for the SCP with T = {s, t} is:

(MCS) min
∑

p∈P
cp x p

s.t.
∑

p∈Pδ(W )

x p ≥ 1 ∀ s ∈ W ⊆ V \ {t}

x p ∈ {0, 1} ∀ p ∈ P.

Here, x p is a 0/1-variable that indicates whether path p is chosen (x p = 1) or not
(x p = 0). Furthermore,Pδ(W ) := {p ∈ P : δ(W ) ∩ p �= ∅} is the set of all paths that
cross the cut δ(W ) = {{u, v} ∈ E : |{u, v} ∩ W | = 1} at least one time.

Algorithm 1: Primal-dual minimum st-connecting set algorithm.

Input : A connected graph G = (V, E), a set of paths Pwith costs c ∈ P≥0 that covers all
edges E , s, t ∈ V .

Output: The value d(t) of a minimum cost st-connecting set.
d(s) := 0, d(v) := ∞ ∀ v ∈ V \{s}; all nodes are unmarked1
while t is unmarked do2

Choose v with v = argmin {d(u) : u unmarked}3
for all p ∈ Pwith v ∈ p do4

for unmarked w with w ∈ p do5
if d(w) > d(v) + cp then6

d(w) := d(v) + cp7
end8

end9
end10
mark v11

end12
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Theorem 1 The inequality system of (MCS) is TDI.

This can be shown by extending Algorithm 1 to a primal-dual algorithm that defines
integer solutions for (MCS) and its dual program, compare with [3].

Setting c ≡ 1 in Algorithm 1 and interpreting the set of paths P as lines and s
and t as origin and destination stations, then the algorithm computes the minimum
number of lines that are necessary to connect s and t . This number corresponds to
the minimum number of transfers minus 1 that are necessary to travel from s to t .
The calculation of the minimum number of transfers is the basic idea of the model
introduced in the next section.

3 A Transfer Model for Line Planning

In this sectionwewant to propose amodel for line planning and passenger routing that
accounts for the number of unavoidable transfers. Each passenger path is associated
with its number of minimum transfers with respect to the given set of all possible
lines. More precisely, considering a certain passenger path, it may not be possible
to cover this path by a single line or even by two lines, i. e., in any definition of a
line plan, passengers on the path under consideration have to transfer at least once
or twice, respectively. We call such transfers unavoidable.

We use the following notation. Consider a public transportation network as a graph
N = (V, E), whose nodes and edges correspond to stations and connections between
these stations, respectively. Denote by L the line pool, i.e., a set of paths in N that
represent all valid lines and byF ⊆ the set of possible frequencies at which these
lines can be operated. If line � is operated with frequency f , κ�, f ∈ + denotes the
capacity and c�, f ∈ + the operation cost of this line. Let further (dst ) ∈ V ×V

+ be an
origin-destination (OD) matrix that gives the travel demand between pairs of nodes,
and denote by D = {(s, t) ∈ V × V : dst > 0} the set of all OD-pairs with positive
demand. Derive a directed passenger routing graph N̄ = (V, A) from N by replacing
each edge e ∈ E with two antiparallel arcs a(e) and ā(e). Denote by P(s,t) the set of
all possible directed (s, t)-paths in N̄ for (s, t) ∈ D, and byP = ⋃

(s,t)∈D P(s,t) the
set of all such paths; these represent travel routes of passengers. Associated with each
arc a ∈ A and path p ∈ P are travel times τa ∈ + and τp = ∑

a∈p τa , respectively,
and with each transfer a (uniform) penalty σ ∈ +. Let kp be the minimum number
of transfers that passengers must do on path p if all lines in L would be built.
A path p ∈ P with kp unavoidable transfers has travel and transfer time τp,k =
τp + kpσ . Let e(a) be the undirected edge corresponding toa ∈ A, and let us interpret
a(n undirected) line in N in such a way that passengers can travel on this line in both
directions in N̄ . The unavoidable transfer model is then
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(UT)min λ
∑

�∈L

∑

f ∈F
c�, f x�, f + (1 − λ)

( ∑

p∈P
τp,kp yp,kp

)

∑

p∈Pst

yp,kp = dst ∀ (s, t) ∈ D (1)

∑

p∈P:a∈p

yp,kp ≤
∑

�∈L :e(a)∈�

∑

f ∈F
κ�, f x�, f ∀ a ∈ A (2)

∑

f ∈F
x�, f ≤ 1 ∀ � ∈ L (3)

x�, f ∈ {0, 1} ∀ � ∈ L , ∀ f ∈ F (4)

yp,kp ≥ 0 ∀ p ∈ P. (5)

Model (UT) minimizes a weighted sum of line operating costs and passenger travel
times. We use binary variables x�, f for the operation of line � ∈ L at frequency
f ∈ F . The continuous variables yp,kp account for the number of passengers that
travel on path p ∈ P doing at least kp transfers. Equations (1) enforce the passenger
flow. Inequalities (2) guarantee sufficient total transportation capacity on each arc.
Inequalities (3) ensure that a line is operated at one frequency at most.

Algorithm 1 can be extended such that it computes a travel-time minimal path
from a given node s ∈ V to all other nodes including a uniform transfer penalty
σ ∈ + for each transfer w. r. t. a given set of linesL . More precisely, replacing cp

by the travel time on line � from v to w in lines 6 and 7 of the algorithm and adding
a σ for v �= s in the same lines, yields the following proposition.

Proposition 1 The pricing problem for the passenger path variables in model (UT)
can be solved in polynomial time.

The number kp accounts for the minimum number of transfers w. r. t. all lines
L . In a final line plan usually only a small subset of lines L ′ ⊆ L is established,
i. e., the number of necessary transfers on a path p might be much larger. Since
offering direct connections is a major goal in line planning, we included constraints
to ensure enough capacities for passenger paths considered as direct connections. Let
Lst be the number of lines supporting a direct connection from s to t ,Lst (a) = {� ∈
Lst : a ∈ �} be the direct connection lines for (s, t) containing arc a, and P0

st =
{p ∈ Pst : kp = 0} be the set of all passenger paths from s to t with 0 unavoidable
transfers. Then we can define direct connection constraints for each arc and each
OD pair

∑

(u,v)∈D

∑

p∈P0
uv :a∈p,

Luv (a)⊆Lst (a)

yp,0 ≤
∑

�∈Lst (a)

∑

f ∈F
κ�, f x�, f ∀ a ∈ A, (s, t) ∈ D. (6)

These constraints are a combinatorial subset of the so-called dcmetric inequalities [4]
that enforce sufficient transportation capacity to route all st-paths with 0 transfers
via arc a. For each path p ∈ P0 = ∪(s,t)∈DPst we then have an additional variable
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yp,1 which come into play if the associated direct connection constraints for yp,0 are
not satisfied. Then the path can still be chosen in the optimization model but it is
associated with at least one transfer and incurs one transfer penalty.

4 Computational Results and Potsdam Line Plan 2010

We made computations for several instances, e.g., a SiouxFalls instance from the
Transportation Network Test Problems Library of Bar-Gera, a Dutch instance for the
train network introduced by Bussieck in the context of line planning [6], an artificial
China instance based on the 2009 high speed train network and some real world
instances provided by our cooperation partner ViP Verkehrsbetriebe PotsdamGmbH
(ViP), the public transport company of Potsdam.

For the SiouxFalls, Dutch, and China instances it turned out that it already suf-
fice to distinguish passenger paths on direct connections and passenger path with one
transfer and to consider the direct connection constraints. Indeed, evaluating the com-
puted line plans shows that each passenger path of these instances is either a direct
connection path or involves exactly one transfer [4]. Since the Potsdam instances
are real multi-modal public transportation networks, there exist several passenger
paths containing two or more transfers. However, modeling transfers between dif-
ferent transportation modes via transfer arcs (including a transfer penalty) and dis-
tinguishing direct connection paths from paths with at least one transfer for paths of
one transportation mode via the direct connection constraints (6) yields a tractable
model also for the Potsdam instances that estimates the travel times and transfers
quite accurately [4].

A study to optimize the 2010 line plan for Potsdam was organized within the
project “Service Design in Public Transport” of the DFGResearch CenterMatheon
Mathematics for key technologies together with ViP. A reorganization of the line plan
in Potsdam became necessary when ViP took over six additional bus lines that were
formerly operated by Havelbus Verkehrsgesellschaft mbH. The new line plan should
minimize the travel time at a same cost level, and ViP emphasized the importance of
a minimal number of transfers.

Our mathematically optimized solution for the Potsdam line plan 2010 minimizes
the total number of transfers by around 5% in comparison to a “hand made” plan
on the basis of experience, see [2]. It further reduces the cost by around 4% and the
perceived travel time by around 6%. ViP also certified that this line plan was indeed
practicable and established a slightly modified version of our optimized solution.

Acknowledgments The work of Marika Karbstein was supported by the DFG Research Center
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Robust Discrete Optimization Problems
with the WOWA Criterion

Adam Kasperski and Paweł Zieliński

Abstract In this paper a class of combinatorial optimization problems with uncer-
tain costs is discussed. The uncertainty is modeled by specifying a discrete scenario
set containing all possible vectors of the costs which may occur. In order to choose a
solution theWeightedOrderedWeightedAveraging aggregationoperator (WOWA) is
used. TheWOWAoperator allows decisionmakers to take both their attitude towards
the risk and subjective probabilities for scenarios into account. The complexity of the
problem is described and an approximation algorithm with some guaranteed worst
case ratio is constructed.

1 Problem Formulation and Motivation

Let E = {e1, . . . , en} be a finite ground set and let Φ ⊆ 2E be a set of feasible
solutions. In a deterministic case, each element ei ∈ E has a nonnegative cost ci and
we seek a feasible solution X ∈ Φ, whichminimizes the total cost F(X) = ∑

ei ∈X ci .
We denote such a deterministic combinatorial optimization problem by P . This
formulation encompasses a wide class of problems. We obtain, for example, a class
of network problems by identifying E with edges of a graph G and Φ with some
objects in G such as paths, spanning trees, or matchings. Usually,P is represented
as a 0-1 programming problem whose constraints describe Φ in compact form.

In many practical situations, the element costs are not known in advance and their
values depend on a state of theworld, which is possible to occur.Wemodel this uncer-
tainty by specifying a scenario set Γ = {ccc1, . . . ,cccK }, where ccc j = (c j1, . . . , c jn) is
a cost scenario corresponding to the j th state of the world, j ∈ [K ]. The cost of
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solution X depends on scenario ccc j ∈ Γ and we will denote it by F(X,ccc j ) =∑
ei ∈X c ji . If no additional information with Γ is provided, then the maximum crite-

rion is typically used to aggregate the solution costs and to choose a solution. Namely,
we seek a solution X ∈ Φ which minimizes the value of max j∈[K ] F(X,ccc j ), which
leads to the robustMin- MaxP problem. There are, however, several known draw-
backs of this approach.Themaximumcriterion is very conservative and is appropriate
for very risk-averse decision makers. There are examples of decision problems, for
which the maximum criterion gives unreasonable solutions (see, e.g. [8]). Moreover,
in many situations decision makers have some knowledge about which scenarios
are more likely to occur. This knowledge can be modeled by subjective probabili-
ties, which can be derived from the individual preferences of decision makers (see,
e.g. [10]). Hence, there is a need of criterion which takes into account both the
probabilities for scenarios and various attitudes of decision makers towards a risk.

In [11] Torra proposed an aggregation criterion, called the Weighted Ordered
Weighted Averaging operator (WOWA), defined as follows. Letvvv = (v1, . . . , vK ) and
ppp = (p1, . . . , pK ) be two weight vectors such that v j , p j ∈ [0, 1] for each j ∈ [K ],∑

i∈[K ] v j = 1, and
∑

j∈[K ] p j = 1. Given a vector of reals aaa = (a1, . . . , aK ), let σ
be a sequence of [K ] such that aσ(1) ≥ · · · ≥ aσ(K ). Then

wowa(vvv,ppp)(aaa) =
∑

j∈[K ]
ω j aσ( j),

where

ω j = w∗(
∑

i≤ j

pσ(i)) − w∗(
∑

i< j

pσ(i)),

and w∗ is a nondecreasing function that interpolates the points (0, 0) and
( j/K ,

∑
i≤ j vi ) for j ∈ [K ]. The functionw∗ is required to be a straight linewhen the

points can be interpolated in this way. In this paper, we will assume that v1 ≥ v2 ≥
· · · ≥ vK and the function w∗ is linear between the points (0, 0), ( j/K ,

∑
i≤ j vi ),

j ∈ [K ]. Under these assumptions, w∗ is a concave and piecewise linear function.
Figure1 shows three sample functions w∗ with two boundary cases, where vvv1 =

(1, 0, . . . , 0) and vvv2 = (1/K , . . . , 1/K ). The vector vvv2 models the weighted mean,
i.e. in this case we get wowa(vvv2,ppp)(aaa) = ∑

j∈[K ] p j a j . The vector vvv1 models the
weighted maximum, which in the case of uniform ppp = (1/K , . . . , 1/K ) is the usual
maximum operator. In general, for arbitrary vvv and uniform ppp = (1/K , . . . , 1/K ),
WOWA becomes the OWA operator proposed by Yager in [12]. The OWA operator
contains: the maximum, minimum, median, average and Hurwicz criteria as special
cases.

We now apply the WOWA operator to the uncertain problem P and provide the
interpretation of the vectors vvv and ppp. For a given solution X ∈ Φ, let us define:

WOWA(X) = wowa(vvv,ppp)(F(X,ccc1), . . . , F(X,cccK )).
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Fig. 1 Three sample
functions w∗ for K = 5

We thus obtain an aggregated value for X , by applying the WOWA criterion to the
vector of the costs of X under scenarios in Γ . Given vectors vvv and ppp, we consider
the following optimization problem:

Min-Wowa P : min
X∈Φ

WOWA(X).

The vector vvv models the level of risk aversion of decision maker. Namely, the
more uniform is the weight distribution in vvv the less risk averse a decision maker
is. In particular, vvv2 = (1/K , . . . , 1/K ) means that decision maker is risk indifferent
while the vector vvv1 = (1, 0, . . . , 0) means that decision maker is extremely risk-
averse. On the other hand, ppp can be seen as a vector of subjective probabilities
for scenarios. More precisely, p j is a subjective probability of the occurrence of
the state of the world which leads to scenario ccc j (see, e.g. [10] for a description
of the axiomatic definition of the subjective probability). Then, in particular, a risk
indifferent decision maker aims to minimize the expected solution cost. In general, vvv
and ppp define distorted probabilities and theWOWAcriterion can be seen as aChoquet
integral with respect to the distorted probabilities [3, 9]. Notice thatMin- WowaP
becomes the Min- Owa P problem discussed in [6], when ppp = (1/K , . . . , 1/K ).

2 Complexity of the Problem

Since Min- Max P is a special case of Min- Wowa P with vvv = (1, 0, . . . , 0)
and ppp = (1/K , . . . , 1/K ), all the negative results known for Min- Max P remain
valid for Min- Wowa P . Unfortunately, Min- Max P is typically NP-hard even
when K = 2. This is the case for all basic network problems and for the selecting
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items problem, i.e. for the problemwhereΦ = {X ⊆ E : |X | = p} for some constant
p ∈ [n] [2, 7]. Furthermore, when K is part of the input, then for all these problems,
Min- MaxP is strongly NP-hard and also hard to approximate within any constant
factor [4, 5]. The problem complexity becomes worse when the maximum criterion
is replaced with the more general OWA one. It has been shown in [6], that all the
basic network problems are then not at all approximable, when K is a part of the
input. However, if the weights are nonincreasing, i.e. v1 ≥ v2 ≥ · · · ≥ vK , thenMin-
Owa P is approximable within v1K . Notice that this approximation ratio is in the
interval [1, K ], as v1 ∈ [1/K , 1]. The main goal of this paper is to generalize this
result to the Min- WowaP problem.

It is easy to verify that the WOWA operator is monotone, i.e. wowa(vvv,ppp)(aaa) is
nondecreasing with respect to each ai in aaa. This fact immediately implies, that there
exists an optimal solution X toMin- WowaP , which is efficient (Pareto optimal),
i.e. for which there is no solution Y such that F(Y,ccc j ) ≤ F(X,ccc j ) for each j ∈ [K ]
with at least one strict inequality.Notice that each optimal solution toMin- WowaP
must be efficient when all components of ppp andvvv are positive. For some problems, for
example whenP is the shortest path or minimum spanning tree, an optimal efficient
solution can be found in pseudopolynomial time, provided that K is constant [1].
Hence, for constant K , Min- Wowa P can be solved in pseudopolynomial time.
However, the resulting algorithm is practically applicable only for small values of
K . For larger values of K the approximation algorithm proposed in the next section
can be more attractive.

3 Approximation Algorithm

In this section we construct an approximation algorithm for Min- Wowa P under
the assumptions that v1 ≥ v2 ≥ · · · ≥ vK and P is polynomially solvable. We will
also assume that p j > 0 for each j ∈ [K ]. When p j = 0 for some j ∈ [K ], then we
can remove scenario ccc j from Γ without changing the problem.

Lemma 1 For any vector aaa = (a1, . . . , aK ) and any sequence π of [K ] it holds
wowa(vvv,ppp)(aaa) ≥ ∑

j∈[K ] ω j aπ( j), where ω j = w∗(
∑

i≤ j pπ(i)) − w∗(
∑

i< j pπ(i)).

Proof Assume w.l.o.g. that a1 ≥ a2 ≥ · · · ≥ aK . Let fπ (aaa) = ∑
j∈[K ] ω j aπ( j). Con-

sider any two neighbor elements aπ(i) and aπ(i+1) in π such that aπ(i) ≤ aπ(i+1).
Let us interchange aπ(i) and aπ(i+1) in π and denote the resulting sequence by
π ′. We will show that fπ ′(aaa) ≥ fπ (aaa) and the equality holds when aπ(i) = aπ(i+1).
This will complete the proof since we can transform π into σ = (1, . . . , K ) by
using a finite number of such element interchanges without decreasing the value of
fπ and fσ (aaa) = wowa(vvv,ppp)(aaa). It holds fπ ′(aaa) − fπ (aaa) = ω′

i aπ(i+1) + ω′
i+1aπ(i) −

ωi aπ(i) − ωi+1aπ(i+1) = (ω′
i+1 − ωi )aπ(i) − (ωi+1 − ω′

i )aπ(i+1). It holds ω′
i +

ω′
i+1 = ωi + ωi+1 (see Fig. 2a), so ω′

i+1 − ωi = ωi+1 − ω′
i = α. Hence fπ ′(aaa) −

fπ (aaa) = α(aπ(i) − aπ(i+1)). Sincew∗ is concave,wehaveωi+1/pπ(i+1) ≤ ω′
i/pπ(i+1),
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(a) (b)

Fig. 2 Illustrations of the proofs of Lemmas1 and 2

which implies α ≤ 0 since pπ(i+1) > 0. Hence fπ ′(aaa) ≥ fπ (aaa). Observe that
fπ ′(aaa) = fπ (aaa) if aπ(i) = aπ(i+1), which means that the WOWA operator for non-
increasing weights is symmetric, i.e. its value does not depend on the order of the
elements in aaa. �

Lemma 2 For any vector aaa = (a1, . . . , aK ) it holds wowa(vvv,ppp)(aaa) ≤ v1K
∑

j∈[K ]
p j a j .

Proof Since w∗ is concave and piecewise linear, it holds ω j

pσ( j)
≤ v1

1/K = v1K for each

j ∈ [K ] (see Fig. 2b). In consequence, wowa(vvv,ppp)(aaa) = ∑
j∈[K ] ω j aσ( j) ≤ ∑

j∈[K ] v1
K pσ( j)aσ( j) = v1K

∑
j∈[K ] p j a j . �

Let ĉi = wowa(vvv,ppp)(c1i , . . . , cK i ) be the aggregated cost of element ei ∈ E over
all scenarios. Let X̂ be an optimal solution for the costs ĉi , i ∈ [n]. The following
theorem holds:

Theorem 1 For any X, it holds WOWA(X̂) ≤ K v1 · WOWA(X).

Proof Let σ be a sequence of [K ] such that F(X̂ ,cccσ(1)) ≥ · · · ≥ F(X̂ ,cccσ(K )) and
ω j = w∗(

∑
i≤ j pσ(i)) − w∗(

∑
i< j pσ(i)). The definition of the WOWA operator and

Lemma1 imply the following inequality:

WOWA(X̂) =
∑

j∈[K ]
ω j

∑

ei ∈X̂

cσ( j)i =
∑

ei ∈X̂

∑

j∈[K ]
ω j cσ( j)i ≤

∑

ei ∈X̂

ĉi . (1)

Using Lemma2, we get ĉi ≤ v1K
∑

j∈[K ] p j c ji . Hence, from the definition of X̂ , we
obtain ∑

ei ∈X̂

ĉi ≤
∑

ei ∈X

ĉi ≤ K v1
∑

ei ∈X

∑

j∈[K ]
p j c ji . (2)
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Since v1 ≥ · · · ≥ vK it follows that

WOWA(X) ≥
∑

j∈[K ]
p j F(X,ccc j ) =

∑

j∈[K ]
p j

∑

ei ∈X

c ji =
∑

ei ∈X

∑

j∈[K ]
p j c ji . (3)

Combining (1), (2) and (3) completes the proof. �

Theorem1 leads to the following corollary:

Corollary 1 If v1 ≥ · · · ≥ vK andP is polynomially solvable, thenMin- WowaP
is approximable within v1K .

The bound obtained in Corollary1 is tight (see [6]). We get the largest ratio equal
to K , when WOWA is the weighted maximum. On the other hand, when v1 = 1/K
(WOWA is the expected value), then we get a polynomial algorithm for the problem.

4 Conclusions

In this paper we have proposed to use the WOWA criterion to choose a solution for
a wide class of discrete optimization problems with uncertain costs. This criterion
allows us to take both scenario probabilities and risk aversion of decision makers
into account. Since the obtained problem is typically NP-hard even for two sce-
narios, we have proposed an approximation algorithm, which can be applied if the
underlying deterministic problemP is polynomially solvable.We believe that better
approximation algorithms can be designed for particular problems P .
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Robust Single Machine Scheduling
Problem with Weighted Number of Late
Jobs Criterion

Adam Kasperski and Paweł Zieliński

Abstract This paper deals with a single machine scheduling problem with the
weighted number of late jobs criterion, where some job parameters, such as: process-
ing times, due dates, and weights, may be uncertain. This uncertainty is modeled by
specifying a scenario set containing all vectors of the job parameters, called scenar-
ios, which may occur. The min-max criterion is adopted to compute a solution under
uncertainty. In this paper some of the recent negative complexity and approximabil-
ity results for the problem are extended and strengthened. Moreover, some positive
approximation results for the problem in which the maximum criterion is replaced
with the OWA operator are presented.

1 Preliminaries

In a single machine scheduling problem with the weighted number of late jobs
criterion, we are given a set of n independent, nonpreemptive, ready for processing
at time 0 jobs, J = {J1, . . . , Jn}, to be processed on a single machine. For each job
j ∈ J a processing time p j , a due date d j and aweightw j are specified. A scheduleπ

is a permutation of the jobs representing an order in which the jobs are processed.We
will useΠ to denote the set of all schedules. LetC j (π) denote the completion time of
job j in schedule π . Job j ∈ J is late inπ ifC j (π) > d j ; otherwise j is on-time in π .
SetU j (π) = 1 if job j is late inπ andU j (π) = 0 if j is on-time inπ ,U j (π) is called
the unit penalty of job j in π . In the deterministic case, we wish to find a schedule
π ∈ Π whichminimizes the value of the cost function f (π) = ∑

j∈J w jU j (π). This
problem is denoted by 1||∑ w jU j in Graham’s notation (see, e.g., [7]). The problem
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1|| ∑ w jU j is weakly NP-hard [8]. However, its special cases 1||∑ U j (minimizing
the number of late jobs) and 1|p j = 1| ∑ w jU j (minimizing the weighted number
of late jobs with unit processing times) are polynomially solvable (see, e.g., [4]).

Suppose that all the job parameters may be ill-known. Every possible realization
of the parameters, denoted by S, is called a scenario. We will use p j (S), d j (S) and
w j (S) to denote the processing time, due date and weight of job j under scenario S,
respectively. Without loss of generality, we can assume that all these parameters are
nonnegative integers. Let scenario set Γ = {S1, . . . , SK } contain K explicitly listed
scenarios. Now the job completion time, the unit penalty and the cost of schedule
π depend on scenario S ∈ Γ , and we will denote them by C j (π, S), U j (π, S) and
f (π, S), respectively. In order to compute a solution we will use the min-max cri-
terion, which is the most popular criterion in robust optimization (see, e.g. [11]).
Namely, in the Min-Max 1||∑ w jU j problem, we seek a schedule that minimizes
the largest cost over all scenarios, that is

min
π∈Π

max
S∈Γ

f (π, S), (1)

where f (π, S) = ∑
j∈J w j (S)U j (π, S). We will also discuss its special cases,Min-

Max 1||∑ U j andMin-Max 1|p j = 1| ∑ U j , in which f (π, S) = ∑
j∈J U j (π, S)

is the number of late jobs in π under scenario S.

2 Single Machine Scheduling Problem with the Number
of Late Jobs Criterion Under Uncertainty

In this section,we extend and strengthen the negative resultswhich have been recently
obtained in [1, 2] for some special cases of the Min-Max 1||∑ w jU j problem,
namely for Min-Max 1||∑ U j and Min-Max 1|p j = 1| ∑ U j . It has been proved
in [2] thatMin-Max 1||∑ U j with deterministic due dates and uncertain processing
times is weakly NP-hard, if the number of processing time scenarios equals 2. We
now show that if the number of processing time scenarios is a part of the input, then
the problem is strongly NP-hard even if all jobs have a common deterministic due
date.

Theorem 1 When the number of processing time scenarios is a part of the input,
then Min-Max 1||∑ U j is strongly NP-hard. This assertion remains true even when
all the jobs have a common deterministic due date.

Proof We show a polynomial time reduction from the following 3-Sat problem
which is strongly NP-hard [6]. Given a set of boolean variables x1, . . . , xn and a
set of clauses C1, . . . , Cm , where each clause contains exactly three distinct literals
(variables or their negations). We ask if there is a truth assignment to the variables
which satisfies all the clauses. Given an instance of 3-Sat, we create an instance of
Min-Max 1||∑ U j in the following way. For each variable xi we create two jobs Jxi
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Table 1 Processing time scenarios for the formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨
x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

S1 S2 S3 S4 S5 S′
1 S′

2 S′
3 S′

4 di

Jx1 0 0 1 0 0 2 0 0 0 2

Jx1 1 0 0 1 1 2 0 0 0 2

Jx2 1 1 0 0 0 0 2 0 0 2

Jx2 0 0 1 1 0 0 2 0 0 2

Jx3 1 1 0 0 0 0 0 2 0 2

Jx3 0 0 0 1 1 0 0 2 0 2

Jx4 0 0 1 0 1 0 0 0 2 2

Jx4 0 1 0 0 0 0 0 0 2 2

Schedule π = (Jx1 , Jx2 , Jx3 , Jx4 |Jx1 , Jx2 , Jx3 , Jx4 ) corresponds to a satisfying truth assignment

and Jxi , so J contains 2n jobs. The due dates of all these jobs are the same under each
scenario and equal 2. We form processing time scenario set Γ as follows. For each
clause C j = (l1, l2, l3) we construct scenario under which the jobs Jl1 , Jl2 , Jl3 have
processing time equal to 1 and all the remaining jobs have processing times equal
to 0. Then, for each pair of jobs Jxi , Jxi we construct scenario S′

i under which the
processing times of Jxi , Jxi are 2 and all the remaining jobs have processing times
equal to 0.A sample reduction is shown in Table1. We will show that the answer to
3-Sat is yes if and only if there is a schedule π such that maxS∈Γ f (π, S) ≤ n.

Assume that the answer to 3-Sat is yes. Then there exists a truth assignment to the
variableswhich satisfies all the clauses. Let us form scheduleπ by processing first the
jobs corresponding to true literals in any order and processing then the remaining jobs
in any order. From the construction of the scenario set it follows that the completion
time of the nth job in π under each scenario is not greater than 2. In consequence, at
most n jobs in π is late under each scenario and maxS∈Γ f (π, S) ≤ n.

Assume now that there is a schedule π such that f (π, S) ≤ n for each S ∈ Γ

which means that at most n jobs in π are late under each scenario. Observe first that
Jxi and Jxi cannot appear among the first n jobs in π for any i ∈ [n]; otherwise more
than n jobs would be late in π under S′

i . Hence the first n jobs in π correspond to a
truth assignment to the variables x1, . . . , xn , i.e. when Jl is among the first n jobs,
then the literal l is true. Since f (π, S) ≤ n, the completion time of the n-th job in π

is not greater than 2. We conclude that at most two jobs among the first n job have
processing time equal to 1 under S, so there are at most two false literals for each
clause and the answer to 3-Sat is yes. �

We now discuss the Min-Max 1|p j = 1| ∑ U j problem under due date uncer-
tainty. It has been proved in [1], that when the number of due date scenarios is a
part of the input and there are two distinct due date values, the problem is strongly
NP-hard and it is not approximable within 2. We now extend this result, namely, we
show that if the number of due date scenarios is a part of the input and there are two
distinct due date values, the problem is not approximable within any constant factor.
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Consider the following 0-1 Selecting Items problem. We are given a set of
items E = {e1, e2, . . . , en} and an integer p ∈ [n]. For each item e j , j ∈ [n], there
is a cost c j ∈ {0, 1}. We seek a selection X ⊂ E of exactly p items of the minimum
total cost f (X) = ∑

e j ∈X c j .

Proposition 1 There is a cost preserving reduction from 0-1 Selecting Items
problem to 1|p j = 1| ∑ U j .

Proof Let (E, p, (c j ) j∈[n]) be an instance of 0-1 Selecting Items. The corre-
sponding schedulingproblem is constructed as follows.Wecreate a set of jobs J = E ,
|E | = n, with unit processing times. If c j = 1 then d j = n − p, and if c j = 0, then
d j = n. Suppose that there is a selection X of p items out of E with the cost of C .
Hence X contains exactly C items, C ≤ p, with the cost equal to 1. In the corre-
sponding schedule, we first process n − p jobs from J\X and then the jobs in X in
any order. It is easily seen that there are exactly C late jobs in π , hence the cost of
schedule π is C . Let π be a schedule in which there are C late jobs. Clearly C ≤ p
since the first n − p jobs in π must be on-time. Let us form solution X by choosing
the items corresponding to the last p jobs in π . Among these jobs exactly C are late,
hence the cost of X is C . �

We have arrived to the theorem that improves the lower bound for approximating
Min-Max 1|p j = 1| ∑ U j give in [1].

Theorem 2 When the number of due date scenarios is a part of the input, Min-
Max 1|p j = 1| ∑ U j is not approximable within any constant factor unless P =
NP. This assertion remains true even if there are two distinct values of the due dates
in scenarios.

Proof Proposition 1 shows that there is a cost preserving reduction from 0-1
Selecting Items to 1|p j = 1| ∑ U j . Therefore, there exists a cost preserving
reduction from Min-Max 0-1 Selecting Items with K , 0–1 cost scenarios to
Min-Max 1|p j = 1| ∑ U j with K due date scenarios. Since the former problem is
not approximable within any constant factor [9], the same results holds for the latter
one. �

3 Single Machine Scheduling Problem with the Weighted
Number of Late Jobs Criterion Under Uncertainty

In this section we explore theMin-Max 1|p j = 1| ∑ w jU j problem under due date
and weight uncertainty. We note first that if the jobs have a common deterministic
due date, then 1|p j = 1| ∑ w jU j is equivalent to the Selecting Items problem
discussed in [1, 3, 5], i.e. a generalization of 0-1 Selecting Items (see Sect. 2) in
which the items have arbitrary nonnegative costs. It suffices to fix E = J , c j = w j ,
j ∈ J , and p = n − d, where d is a common due date. The same reduction allows us
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to transform any instance of Selecting Items toMin-Max 1|p j = 1| ∑ w jU j with
adeterministic commonduedate.Hence, there exists a cost preserving reduction from
Min-Max 1|p j = 1| ∑ w jU j with K weight scenarios to Min-Max Selecting
Items with K cost scenarios and vice versa. Consequently, the results obtained in
[1, 3] immediately imply the following theorem:

Theorem 3 When the jobs have a common deterministic due date, then Min-
Max 1|p j = 1| ∑ w jU j is NP-hard for two weight scenarios. Furthermore, it
becomes strongly NP-hard and hard to approximate within any constant factor when
the number of weight scenarios is part of the input.

In [5], an LP-based O(log K/ log log K ) approximation algorithm for Min-Max
Selecting Items has been proposed. Applying this algorithm toMin-Max 1|p j =
1| ∑ w jU j leads to the following result:

Theorem 4 If the number of weight scenarios is a part of the input, then Min-
Max 1|p j = 1| ∑ w jU j with a common deterministic due date is approximable
within O(log K/ log log K ).

We now consider the general case, in which both due dates and weights may
be uncertain. We make use of the fact that 1|p j = 1| ∑ w jU j is a special case
of the Minimum Assignment problem. To see this, we can build an instance
(G = (V1 ∪ V2, E), (ci j )(i, j)∈E ) of Minimum Assignment for given an instance of
1|p j = 1| ∑ w jU j in the followingway. The nodes in V1 correspond to job positions,
V1 = [n], the nodes in V2 correspond to jobs, V2 = J , obviously |V1| = |V2| = n.
Each node j ∈ V2 is connected with every node i ∈ V1. The arc costs ci j , (i, j) ∈ E ,
are set as follows: ci j = w j if i > d j , and ci j = 0 otherwise. There is one to one
correspondence between the schedules and the assignments and the reduction is cost
preserving. This fact still holds, when a scenario set Γ is introduced. In this case
we fix ci j (S) = w j (S) if i > d j (S) and ci j (S) = 0 otherwise for each scenario
S ∈ Γ . The reduction is then cost preserving under each scenario. In consequence,
1|p j = 1| ∑ w jU j with scenario set Γ belongs to the class of combinatorial opti-
mization problems discussed in [10], which allows us to establish a positive result
described in the next part of this section.

Let v1, . . . , vK be numbers such that vi ∈ [0, 1], i ∈ [K ], and v1 + · · · + vK =
1. Given schedule π , let σ be a permutation of [K ] such that f (π, Sσ(1)) ≥
f (π, Sσ(2)) ≥ · · · ≥ f (π, Sσ(K )). The Ordered Weighted Averaging aggregation
operator (OWA), introduced in [12], is defined as follows: OWA(π) = ∑

i∈[K ] vi f
(π, Sσ(i)). We now consider the following Min-OWA 1|p j = 1| ∑ w jU j problem:

min
π∈Π

OWA(π). (2)

The choice of particular numbers vi , i ∈ [K ], leads to well known criteria in
decision making under uncertainty, among others: the maximum, the average and
the Hurwicz pessimism—optimism criteria. Suppose that v1 ≥ v2 ≥ · · · ≥ vK , such
numbers are used if the idea of the robust optimization is adopted. Notice that this
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case contains both the maximum and the average criteria as special (boundary) cases.
Indeed, if v1 = 1 and vi = 0 for i 
= 1, then we obtain the maximum criterion, the
first extreme, and problem (2) becomes (1). If vi = 1/K for i ∈ [K ], then we get the
average criterion—the second extreme. The following theorem holds:

Theorem 5 If v1 ≥ v2 ≥ · · · ≥ vK then Min-OWA 1|p j = 1| ∑ w jU j is approx-
imable within v1K .

Proof The result follows from the fact that the problem is a special case ofMin-OWA
Minimum Assignment, which can be approximated within v1K [10]. �

When v1 = 1, then Min-OWA 1|p j = 1| ∑ w jU j becomes Min-Max 1|p j =
1| ∑ w jU j . Thus, the latter problem, under due date and weight uncertainty, admits
a K -approximation algorithm.
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Price of Anarchy in the Link Destruction
(Adversary) Model

Lasse Kliemann

Abstract In this model of network formation, players anticipate the destruction of
one link, which is chosen according to a known probability distribution. Their cost
is the cost for building links plus the expected number of other players to which
connection will be lost as a result of the link destruction. We consider different equi-
librium concepts (Nash equilibrium, pairwise Nash equilibrium, pairwise stability)
and two different ways in which the probability distribution depends on the network.

We give proof sketches for bounds on the price of anarchy for the link destruction
model (a.k.a. adversary model), a network formation game studied by the author
since 2010. For details, we refer to [4, 5].

1 Equilibrium Concepts for Graphs

Let G = (V (G), E(G)) be an undirected, simple graph. We denote the link (a.k.a.
edge) between v and w by {v, w} for v, w ∈ V (G). We write G + ∑

i∈[k]{vi , wi } :=
(V (G), E(G) ∪ {{v1, w1}, . . . , {vk, wk}}) and G − ∑

i∈[k]{vi , wi } := (V (G),

E(G) \ {{v1, w1}, . . . , {vk, wk}}) to add or remove one or multiple links. If no con-
fusion can arise, we notationally do not distinguish between G and the set of links
E(G). Denote e(G) := |E(G)| the number of links.

Let n ∈ N≥3 and Gn the class of all undirected, simple graphs on [n] = {1, . . . , n}
as the vertex set. The numbers in [n], i.e. the vertices of the graphs, will often be
called players, since in the equilibrium concepts we are about to introduce, they
can be considered as decision-making entities. Let α ∈ R>0. For each player v,
there is a disutility function Dv : Gn −→ R. A popular concrete disutility function is
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Dv(G) = ∑
w∈[n] distG(v, w) [1]. We will introduce our disutility function in Sect. 2.

The cost for player v is Cv(G) := degG(v) α + Dv(G), so in addition to disutility,
each player pays α for each incident link. We call G ∈ Gn pairwise stable (PS) [2] if

Cv(G) ≤ Cv(G − {v, w}) ∀{v, w} ∈ G

Cv(G) < Cv(G + {v, w}) ∨ Cw(G) < Cw(G + {v, w}) ∀{v, w} /∈ G

An interpretation is that each unordered pair {v, w} of players forms a temporary
coalition and together they decide whether the link {v, w} should be built. If none of
the two players object, then the link is built. If one objects, then the link is not built.
Objection must be justified by the link being an impairment, i.e. strictly increasing
cost. This way of establishing links is also called bilateral link formation. When,
given any G ∈ Gn with e = {v, w} ∈ G, we move from G to G − e, we also speak
of v selling the link e (then w is forced to sell as well).

We call G ∈ Gn a pairwise Nash equilibrium (PNE) [2] if

Cv(G) ≤ Cv(G − {v, w1} . . . − {v, wk}) ∀{v, w1}, . . . , {v, wk} ∈ G

Cv(G) < Cv(G + {v, w}) ∨ Cw(G) < Cw(G + {v, w}) ∀{v, w} /∈ G

This is similar to PS, but players can also evaluate the effect of selling any number
of their incident links. Obviously, if a graph is a PNE then it is also PS.

A variation is to assign ownerships: each link is owned by exactly one of its
endpoints, and only the owner has to pay for it and only the owner can sell it. We use
orientations to indicate ownership: if link {v, w} is owned by v, we orient it in the way
(v, w). Formally, an orientated graph is a directed graph

−→
G where for each unordered

pair {v, w} of vertices we have (v, w) ∈ −→
G =⇒ (w, v) /∈ −→

G . We denote by G :=
{{v, w}; (v, w) ∈ −→

G ∨ (w, v) ∈ −→
G } the underlying undirected graph. Denote

−→
G n the

class of all orientated graphs on [n]. The cost experienced by player v in
−→
G ∈ −→

G n

is Cv(
−→
G ) := outdeg−→

G (v) α + Dv(G), so in addition to disutility, each player pays

α for each link that she owns. If v owns the link e = {v, w}, i.e. if (v, w) ∈ −→
G , and

we change to
−→
G − (v, w), we say that v sells the link e. We call

−→
G ∈ −→

G n a Nash
equilibrium (NE) if

Cv(
−→
G ) ≤ Cv

⎛

⎝−→
G −

∑

i∈[k]
(v, wi ) +

∑

s∈[t]
(v, us)

⎞

⎠

∀(v, w1), . . . , (v, wk) ∈ −→
G ∀{v, u1}, . . . , {v, ut } /∈ G

This concept gives the most freedom in terms of link building: any player can link
(at the cost of α per link) to any other player even without the other player’s consent,
this is also called unilateral link formation. Also, each player can sell any of the links
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that she owns. We call G ∈ Gn a NE if there exists an orientation
−→
G of G that is a

NE. This model has first gained attention through the work by Fabrikant et al. [1].
The social cost SC for a graph (undirected or orientated) is the sum over all

players’ costs. Even with ownerships (orientated graph), this sum only depends on
the underlying undirected graph, so we define SC as a function on Gn . We have:

SC(G) =
{
2e(G) α + ∑

v∈[n] Dv(G) for PS and PNE

e(G) α + ∑
v∈[n] Dv(G) for NE

The first term is called total building cost and the second term total disutility, denoted
TD(G). Sowritten shortly, SC(G) = Θ(e(G) α) + TD(G). A graphG ∈ Gn is called
optimal if it has minimum social cost among all graphs in Gn; we denote its social
cost by OPT(n, α). For a fixed equilibrium concept (PS, PNE, or NE), the price of
anarchy (PoA) [6] is

PoA(n, α) := max
G∈Gn is equilibrium

SC(G)

OPT(n, α)
.

Lower and upper bounds on the PoA in this model in terms of n and α have been the
topic of extensive research since the work by Fabrikant et al. [1].

2 Link Destruction Model

A destroyer1 is a mapD on Gn , assigning to each G ∈ Gn a probability measureDG

on the links of G, i.e.DG(e) ∈ [0, 1] for each e ∈ G and
∑

e∈G DG(e) = 1. Given a
connected graph G, the relevance of a link e ∈ G for a player v, denoted relG(e, v),
is the number of vertices that can, starting at v, only be reached via e. The separation
sepG(e) of a link e ∈ G is the number of ordered vertex pairs (v, w) for which there
exist no v-w path in G − e. Disutility in the link destruction model for connected
G is defined as Dv(G) := ∑

e∈G relG(e, v)DG(e), which is the expected number of
players that v will no longer be able to reach when one link is destroyed in G,
chosen randomly according to DG . The destroyer D is a parameter, like n and α. If
G is disconnected, then we define disutility to ∞, resulting in optima, PS graphs,
PNE, and NE all being connected. For connected G, total disutility can be written as
TD(G) = ∑

e∈G sepG(e)DG(e). We focus on two destroyers, namely:

• The uniform destroyerDG(e) = 1
e(G)

for all e ∈ G, i.e. the link to destroy is chosen
uniformly at random.

• The extreme destroyer DG(e) = 1
|Gmax| if e ∈ Gmax and DG(e) = 0 otherwise,

where Gmax := {e ∈ G; sepG(e) = sepmax(G)} and sepmax(G) := maxe∈G

1In earlier work by the author, the term “adversary” was used instead of “destroyer”. However, in
the context of the PoA, “adversary” would be more suited to describe a system that would aim at
maximizing the PoA. Hence the name was changed.
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sepG(e). So the link to destroy is chosen uniformly at random from the set of
links where each causes a maximum number of ordered vertex pairs to be sepa-
rated. We have TD(G) = sepmax(G).

We summarize existence results, holding for both destroyers [4, 5]: if α > 2 − 1
n−1 ,

then a star is PS, a PNE, and a NE; if α ≤ 1
2� n−1

2 �, then a cycle is PS, a PNE, and
a NE. The ranges for α overlap if n ≥ 9. All statements regarding PoA have to be
understood as: “If equilibria exist (which is at least the case if n ≥ 9, regardless of α),
then the PoA satisfies…” Star and cycle are also optima, depending on α, with social
cost Θ(nα).

We can give a rough bound on the PoA for any fixed destroyerD and any equilib-
rium concept. Since optima are connected, they have at least n − 1 links and hence
social cost Ω(nα). Let G be a worst-case equilibrium. Using sepG(e) ≤ n2 for all e,
we get:

PoA(n, α) ≤ O(e(G) α) + ∑
e∈G sepG(e)DG(e)

Ω(nα)
= O

(
e(G)

n
+ n

α

)
(1)

3 PoA for Nash Equilibrium

The PoA for NE and the two destroyers was shown to be O(1) by the author [3,
4]. Bounding total building cost in a NE works by recognizing that NE are pseudo-
chord-free, where a pseudo-chord is a link {u, v} with two internally vertex-disjoint
u-v paths neither ofwhich traverses {u, v}. Removing a pseudo-chord does not change
any relevance value, since there still exist two alternative routes between u and v. This
settles the case for the extreme destroyer. For the uniform one, cost increases slightly
(at most by 1

2 ) when a pseudo-chord is sold since the probability of destruction
increases for the remaining links. But then it can be shown that there is always the
option for one of the endpoints of improving cost by selling the pseudo-chord and
building a different link instead, contradicting NE. So we do not have pseudo-chords
in a NE. Next, a graph-theoretical result shows that a pseudo-chord-free graph on n
vertices has only O(n) links. This yields an O(nα) bound on total building cost in a
NE. By (1), we obtain an O(1 + n

α
) bound on the PoA.

An important tool for improving this bound to O(1) is the bridge tree G̃ of a
connected graph G. It is obtained by replacing each maximal bridgeless connected
subgraph of G, these are called islands, by a single vertex, and linking these new
vertices according to their connections in G: for each two islands I1 and I2 we include
the link {I1, I2} in the bridge tree iff there exist u ∈ I1 and v ∈ I2 with {u, v} ∈ G.
Alternatively, we can think of successively contracting each cycle in G to a single
vertex, until the graph is cycle-free. Links inside of islands have relevance 0 for
everyone. There is an obvious bijection between the links of G̃ and the bridges of
G, and we will often speak of relevance or separation of a link in G̃ meaning in fact
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the corresponding bridge of G. When counting vertices in the bridge tree, we count
|I | for each vertex I of G̃, so we count vertices in the respective islands.

For the uniform destroyer, we can show easily that TD(G) ≤ n diam(G̃). Then
we show for a NE G that diam(G̃) = O(α) by the following argument. Let P =
(I0, . . . , I�) be a path in G̃ and e a link on P half-way between I0 and I�. Then
w.l.o.g.at least n

2 players (we omit floor and ceiling when they are unimportant for
our arguments) are located beyond e from the view of any player v ∈ I0, giving high
relevance for v to the �

2 links from I0 up to e, namely the sum of those relevances is
Ω(n�). Player v can put all those links on a cycle by building a new link, reducing
all those relevances to 0. A computation shows that her savings in disutility are at
least 1

e(G)+1Ω(n�), which is Ω(�) by e(G) = O(n). In a NE, those saving cannot
exceed α, hence � = O(α).

For the extreme destroyer, let
−→
G be a NE. We call the links in Gmax the crit-

ical links. The whole proof is long and consists of a detailed case analysis. We
only sketch the case |Gmax| = 1 here, since it relies on unilateral link formation
and does not work for PS or PNE. In the bridge tree, let e = {I0, I1} be the crit-
ical link with I1 in the component with a minimum number of vertices in G − e.
Denote T1, . . . , TN all the subtrees below I0 when rooting the tree at I0, enumer-
ated so that I1 ∈ V (T1) and n2 ≥ · · · ≥ nN , where ni := |V (Ti )| for all i . Since e
alone has maximum separation, n1 > n2. Moreover, 1

2n ≥ n1. We restrict here to
the case that we can find v1 ∈ V (T1) and v2 ∈ V (T2) such that building {v1, v2}
does not induce any critical links inside of T1 nor T2. Then any of the new critical
links can cut off only n3 players from v1. We consider the change in disutility for
v1 when building {v1, v2}, i.e. adding (v1, v2) to

−→
G , which is upper-bounded by α

by the NE property. We have α ≥ Dv1(G) − Dv1(G + {v1, v2}) = (n − n1) − n3 ≥
(n − n1) − 1

3n ≥ 1
2n − 1

3n = 1
6n. It follows TD(G) = sepmax ≤ n2 = O(nα).

So for both destroyers, we have O(nα) for the social cost of a NE, with a ratio of
O(1) to the optimum.

4 PoA for Pairwise Stability and Pairwise Nash
Equilibrium

ThePoA for PS andPNEand the two destroyerswas studied by the author in 2013 [5].
Absence of pseudo-chords can be shown almost in the same way as for NE. For the
extreme destroyer, it works the same. For the uniform destroyer, the difficulty is
the at most 1

2 increase in disutility. In a NE, we can argue that a player would sell
the pseudo-chord and build a more beneficial link instead, but for PS and PNE this
argument does not work since we also have to show that the other endpoint has no
objection against a new link. For simplicity, we restrict to α > 1

2 in the following,
in which case players would always sell a pseudo-chord to save α in building cost.
By (1), we obtain an O(1 + n

α
) bound on the PoA. For the extreme destroyer, it is

tight up to constants. The lower bound is given by a graph with exactly one critical
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link e and numbers of players adjusted so that the players in the smaller component
of G − e wish to put e on a cycle by adding a link, but players in the larger component
of G − e are less enthusiastic about it: they will only lose connection to the smaller
component when e is destroyed. This example is PS and a PNE.

For the uniform destroyer, we show an O(1) bound for PS, which implies the
same bound for PNE. By pseudo-chord-freeness, we are left with bounding total
disutility. The obvious idea, namely using TD(G) ≤ n diam(G̃), does not work since
diam(G̃) can be

√
n in a PS graph, while α = 1. For a path P let relG(P, v) :=∑

e∈E(P) relG(e, v) the sum of relevances along P . The lower bound construction
for the diameter uses a graph G consisting of a cycle with a path P of length

√
n

attached, and n ≥ 4 and α = 1. Let v be a player on the cycle and w the player at the
end of the attached path. Then Dv(G) = relG (P,v)

n ≤
√

n
√

n
n = 1 ≤ α and Dw(G) ≥√

n (n−√
n)

n = √
n − 1 ≥ 1 = α. Adding the link {v, w} will let disutility drop to 0 for

everyone, but this is still an impairment for v, although (desperately, for large n)
desired by w. So this graph is not a NE, but it can be easily seen to be PS. However,
its social cost is within a constant of the optimum, providing no interesting lower
bound on the PoA.

The key for proving the O(1) bound lies in recognizing that the above example
is essentially the worst case. Let G be PS. Generally, in a tree T , there is a vertex u
such that if T is rooted at u, in each sub-tree there are at most n

2 vertices. This also
works for the bridge tree, so let R be an appropriate island and root the bridge tree
at R. Let P = (I0, . . . , I�) be a path and v ∈ I0 and w ∈ I�. Then (i) relG(P, v) =
O(nα) or (ii) relG(P, w) = O(nα) since otherwise neither v nor w could object
to the addition of {v, w}. If I0 = R, we have relG(e, w) ≥ n

2 for all e ∈ E(P), so
in case (ii) we conclude � = O(α). Moreover, there can be at most one subtree S
in the rooted G̃ with a path starting at R for which (ii) does not hold: otherwise,
two paths without property (ii) could be concatenated creating a path with neither
(i) nor (ii). So disregarding S, we have diameter O(α) in the bridge tree. Let P =
(R, . . . , I ) be a longest path in S. By similar arguments as before, it can be shown
that around P in S, only paths of lengthO(α) grow. Hence once we put P on a cycle
by an additional link, the bridge tree has diameter O(α). We have e(G) · TD(G) =∑

e∈G sepG(e) = ∑
e∈G

e/∈E(P)
sepG(e) + ∑

e∈E(P) sepG(e). The second sum is O(n2α)

by a simple calculation. The first sum is the same as
∑

e∈G ′ sepG ′(e) with G ′ :=
G + {v, w} for v ∈ R and w ∈ I . By diam(G̃ ′) = O(α), we have TD(G ′) = O(nα)

which means
∑

e∈G ′ sepG ′(e) = O(e(G ′) nα). In total, it follows TD(G) = O(nα),
which implies the O(1) bound on the PoA.
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Decision Support System for Week Program
Planning

Benjamin Korth and Christian Schwede

Abstract This contribution aims to give an overview of the research issue onweekly
program filling in the automotive industry and presents an approach to improve this
process by using a logistic assistance system. This system supports a dispatcher at
choosing customer orders for a production week and takes into account the large
amount of restrictions. Finally, results of the heuristic used are presented.

1 Introduction

In the automotive industry, the weekly program filling is one important part of the
week program planning process. Theweek program planning deals with the selecting
a production week for every vehicle order to form the production program, aiming
at fully utilize factory capacities of every production week while considering a huge
number of restrictions (cf. [2] S.35ff, [1] S.190ff, [4] S.190ff).

To handle the complexity of this time-critical task, Fraunhofer Institute for Mate-
rial Flow and Logistics has developed a Logistics Assistance System (LAS), which
is a decision support system that helps the planners in sales and logistics to per-
form the weekly program filling. This paper first describes the research issue on
weekly program filling, the LAS and the heuristics used for order dispatching within
the weekly program filling. Then, the developed heuristic for order dispatching is
validated and compared with the present processes at the automotive manufacturer.
Finally, a conclusion is drawn and opportunities for future research are given.
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2 Research Issue—Procedure of Filling

The weekly program filling takes place before the week enters the frozen zone (often
fourweeks before production), whichmeans, that the production program is finalized
and must not be changed any further. Before that, demand and capacity management
is performed to forecast the demands for every single market and to determine the
production and supplier capacities accordingly. In addition, the already incoming
customer orders are dispatched to particular weeks in response to these determined
capacities. Due to the fact that forecasts and real market demands seldom match,
orders often have more than 150 critical capacities that impede the dispatching to a
certain week. Thus, at the time of program freezing the production week is seldom
filled so that the full capacity of the assembly line is used. Hence, the target of the
weekly program filling is to assign as many orders to the production week that is
intended to be frozen, that the assembly line can be run at full capacity. Particularly,
orders for upcoming weeks are pre-drawn, if this is possible considering the delivery
date. The set of orders that are considerate for pre-drawing is called order stock.
When filling the week program, production and supplier capacities must be moni-
tored so that they are not exceeded. To achieve this, the OEMs (Original Equipment
Manufacturer) use so called “virtual sight glasses” to display and control restrictions
(cf. [2] S.35). Traditionally, a sight glass is a transparent tube, through which the
filling of a liquid tank can be observed. In context of the weekly program filling, a
sight glass can be available for whole vehicles, features or combination of features,
and corresponds to a lower or upper limit and a discrete filling level for orders. If an
order associated with the sight glass is dispatched to a certain week, the filling level
is increasing. If the upper limit is reached, no order associated with the sight glass
can be dispatched to the certain week and therefore must be dispatched to one of the
following.

This task can be described formally as an integer optimization problem. The
set of orders I is the order stock. The variable xi ∈ {0, 1} determines, if the order
i is dispatched in the current week or not. Dispatching aims at maximizing the
degree of capacity utilization of the plants capacities for the current week and thus
at maximizing the number of orders dispatched in this week:

max
∑

i∈I

xi (1)

The restrictions j ∈ J have an upper limit bi ∈ N0. The associations between
orders from I and sight glasses from J are represented by the matrix A with the
elements ai j ∈ {0, 1}. Therefore, the constraints can be described for every sight
glass j by the following inequality:

∑

i∈I

ai j xi ≤ b j (2)
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Aside from sight glasses for capacities, there are sight glasses for planned quotas
for market countries. Markets get their capacities (volume and features) due to their
forecasts and thus get rewarded or penalized for good or poor planning. Additionally,
by using market sight glasses, an overreaching of markets is prevented.

The original process of order dispatching performed by the OEMs provides a
complete re-dispatching of orders before the weekly program filling. Hence, all
orders are detached and tried to re-dispatch to the earliest productionweek, following
a given prioritization. After the re-dispatching, additional orders often cannot be
dispatched to the earliest week due to critical restrictions, even though the assembly
line is not being used at full capacity. The task of the planers in sales department
is then to manually select individual orders that can be dispatched with minimal
modification to the restrictions. The modifications are confirmed by the logistics
department, only if it is feasible due to safety stock or possible special measures
(extra shifts or special transports) and economically reasonable. Because of the large
number of restrictions, it is often very difficult to identify necessary modifications.
Sometimes, certain restrictions are forgotten by the sales department because they
only become critical after dispatching the first orders of the selected subset. Hence, it
can even happen that requested and confirmed capacities cannot be used due to other
inevitable restrictions. Beside the restrictions, further criteria must be considered,
such as type of orders, delivery reliability, balanced degree of capacity utilization,
high productivity and planning reliability.

3 The Logistic Assistance System

To support the process of filling the weekly program, a decision support system
(LAS) (cf. [5, 6]) was developed. This section describes its basic functions. The
central dispatching algorithm is explained in the next section.

Facing the problem of systematically determining the necessary modifications to
restrictions, the LAS enables a preview of the filling. Hence, a week program is cre-
ated first inwhich all restrictions are considered as “soft” and can be suitable adjusted.
The resulting program is completely filled, if there are enough orders in stock. The
planer can now set hard limitations where production or logistic has no flexibili-
ties and a request to implement the modification would be hopeless. Considering
these hard restrictions, a new week program is created. The results are modifications
of restrictions, which enable the maximization of production capacity utilization.
The LAS supports the subsequently necessary negotiation about these modifications
with the logistics department. Role specific competences allow to request and con-
firm modifications. If the requested modifications are not feasible, the planner can
create further scenarios on the basis of new hard restrictions.
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4 Dispatching Algorithm

This section describes the algorithm for filling the week program and for determining
the required modifications. It selects orders in consideration of the target criteria out
of the n = |I | orders in the order stock I . The plant has a capacity of k orders,
resulting in a solution space with size

(n
k

)
. Depending on the factory and the vehicle

model, the order stock could contain e.g. 10,000 orders from which up to 2,000
orders must be selected. This would result in 1,655 × 102171 possible combinations.

Additionally, e.g. 800 sight glasses must be considered while every order is asso-
ciated with about 130 of them. For solution finding, multiple week programs must
be created within a short time-frame. Therefore, a heuristic is applied that has a
short runtime and provides better results than the present re-dispatching algorithm.
The workflow of the heuristic is described next. Before dispatching an order, the
residual capacities of the sight glasses are predicted. This is done by determining the
proportion m j of orders associated with a sight glass j to the amount of orders:

m j =
∑

i∈I ai j∑
i∈I 1

Assuming that the sight glasses are filled according to this proportions, the remain-
ing capacities remainingCapacity j (3) for every sight glass can be predicted for a
completely filled week without considering other restrictions.

remainingCapacity j = (c j − m j o) (3)

Scorei =
∑

j

ai j remainingCapacity j (4)

If there remains a high capacity for a particular sight glass, it should not be critical
to fill the week program. The lower the remaining capacity, the more it should be
avoided to dispatch orders that are associated with it. If the remaining capacity is
negative and the sight glass has a hard restriction, an associated order is not allowed
to be dispatched in this week at that moment.

For the assessment and selection of an order, the extrapolated capacities of the
associated sight glasses are summed (4). The order with the highest value is dis-
patched if no associated restriction with a negative remaining capacity is declared
“hard”. To speed up the assessment, orders that are equal regarding to associated sight
glasses were combined to so called representatives. Thereby the amount of orders
that must be considered regarding their sight glasses can be reduced by 30–60%.
To take priorities and delivery dates into account, the orders of a representative are
sorted due to these criteria. To improve the quality of the planning, the LAS used an
optional exchange algorithm called “m to n exchange” that tries to replace a subset
of orders in the considered week through a subset of orders from the order stock.
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The exchange is done, if the new subset enables to put more orders in the week or to
reduce the amount of necessary sight glass modifications. In this optimization step
it is not allowed to soften any restriction.

5 Results

The performance of the dispatching heuristics will be comparedwith the present used
procedure for re-dispatching. For this purpose, the criteria filling degree, proposed
sight glass modifications and degree of capacity utilization are considered. Addition-
ally, the dispatched orders are divided into the following four groups to compare the
treatment of priority orders with time-critical delivery date orders:

1. Priority order and delivery date ≤ planning week
2. Priority order and delivery date > planning week
3. No priority order and delivery date ≤ planning week
4. No priority order and delivery date > planning week

Both procedures were applied to two experiments that include different planning
scenarios. The first experiments simulate the re-dispatching at the beginning of the
week in which the order is allocated to an expected planning week without adjust-
ment to the limitation of sight glasses. The results are shown in Table1. The number
of dispatched orders per order group is specified for two model groups. The filling
degree of the whole week increases by 9.7% and 14.9%, respectively. On average,
dispatching heuristics reached an increase of 8–12% relative to the procedure of
the OEM. In the second experiment, the adjusted limitation of the sight glass for a
manually created week program with 100% capacity utilization is used as base. For
the dispatching algorithm, these limitations were declared as hard. The dispatch of

Table 1 Experiment 1: Comparison of dispatching processes

Vehicle group A Group 1 Group 2 Group 3 Group 4 Level

Group system: 81 23 910 287 1301/2861
(45,5%)

Heuristic: 54 (–33,3%) 17 (–26,1%) 946 (+3,9%) 562 (+95,8%) 1579/2861
(55,2%)

Vehicle group B Group 1 Group 2 Group 3 Group 4 Level

Group system: 0 0 1008 26 1034/1448
(71,4%)

Heuristic: 0 (± 0%) 0 (± 0%) 1013 (+0,5%) 236 (+907,7%) 1249/1448
(86,3%)

Although the modification of limitations are not allowed, the heuristic can increase the amount of
orders
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Table 2 Experiment 2 (1): A week program was created with the LAS used only hard restrictions
that were manual determined

SG Manual filling Optimization Difference % Difference

SG 0001 90 88 −2 −2, 2%

SG 0002 6 2 −4 −66, 7%

SG 0003 210 188 −22 −10, 5%

… … … … …

20 SGs:
∑

53 Ø2, 65 Ø19, 7%

It was found that 20% of adjustments could have been avoided

Table 3 Experiment 2 (2): The lower modifications to restrictions was at expense to delivery
reliability and to order priorities

Vehicle group C Group 1 Group 2 Group 3 Group 4 Level

Group system: 13 39 524 193 769/769
(100%)

Heuristic: 11 (–15,4%) 28 (–28,2%) 488 (–6,9%) 242 (+25,5%) 769/769
(100%)

orders by heuristics shows that in average less than 20% modifications are required
(cf. Table2). Table3 shows that on the contrary, the savings of necessary modifica-
tions are at the expense of order criteria such as priority and delivery reliability.

6 Conclusion and Outlook

The process of week program filling can be effectively supported by the use of
the LAS. The experiments show that capacities of the factory can be used more
efficiently or that the number of necessary modifications could be lowered. Under
certain circumstances, this has an impact on delivery reliability and the consideration
of order priorities. Furthermore, the work with the LAS reduces the effort of program
filling because many small, partially incorrect modification requests can be avoided.
Instead, only a few requests are necessary to get the best result regarding the use of
factory capacities. Under consideration that two employees are engaged full time in
this task per vehicle model, the LAS offers a high potential of reducing work load.
In addition to the determination of modifications, the LAS could support reviewing
and confirmation of modifications requests. This is also a complex process in which
the modifications have to be translated from sight glass to part level in order to be
compared with capacities of production and logistic as well as possible adaptation
measures. The integration of translation to part level by means of bill of material
explosion in theLAS to balance capacities on part level aswell as the use of simulative
income forecast (see Eco2Las [3]) offers another great potential.
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On Multi-product Lot-Sizing and Scheduling
with Multi-machine Technologies

Anton V. Eremeev and Julia V. Kovalenko

Abstract We consider a problem of multi-product lot-sizing and scheduling where
each product can be produced by a family of alternative multi-machine technolo-
gies. Multi-machine technologies require one or more machine at the same time.
A sequence dependent setup time is needed between different technologies. The cri-
terion is to minimize the makespan. Preemptive and non-preemptive versions of the
problem are studied. We formulate mixed integer linear programming models based
on a continuous time representation for both versions of the problem. Using these
models, the polynomially solvable cases of the problem are found. It is proved that
the problem without setup times is strongly NP-hard if there is only one product,
and each technology occupies at most three machines. Besides that, problem cannot
be approximated within a practically relevant factor of the optimum in polynomial
time, if P �= NP.

1 Introduction

In practice, many scheduling problems involve tasks, machines and materials such
as raw materials, intermediate and final products. Each task may consist in storage,
loading/unloading or transformation of one material into another and may be pre-
ceded by a sequence-dependent setup time. One of the standard optimization criteria
is to minimize the makespan, i.e. the time when the last task is completed.

This paper considers a multi-product lot-sizing and scheduling problem with
multi-machine technologies, where a multi-machine technology requires more than
one machine at the samemoment of time, also known as a multi-processor task [3] in
parallel computing scheduling. The problem is motivated by the real-life scheduling
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applications in chemical industry and may be considered as a special case of the
problem formulated in [4].

An analysis of computational complexity of lot-sizing and scheduling problems
with multi-processor tasks and zero setup times is carried out in [3, 5, 8]. In the
present paper we consider a more general case where the non-zero setup times may
be required as well. A similar multi-product lot-sizing and scheduling problem with
setup times on unrelated parallel machines was studied in [2]. However on one hand,
in [2] each technology involved just a single machine, on the other hand the lower
bounds on the lot sizes were given.

2 Problem Formulation

Consider a plant producing k different products. Let Vi > 0 be the demanded amount
of product i, i = 1, . . . , k and letm be the number of machines available at the plant.
For each product i, i = 1, . . . , k, there is at least one technology to produce this
product. LetU be the set of all technologies, d = |U |, and each technology is charac-
terized by the set of machines it simultaneously occupies Mu ⊆ {1, . . . , m}, u ∈ U ,

and the product i it produces. While the product i is produced by technology u, all
machines of the subset Mu are engaged and at any moment each machine of the plant
may be engaged in not more than one technology.

Let Ui ⊆ U denote the set of technologies that output product i, i = 1, . . . , k,
and au > 0 is the production rate, i.e. the amount of product i produced by u
per unit of time, u ∈ Ui . It is assumed that a feasible schedule may assign to the
same product i one or more technologies from Ui , i = 1, . . . , k, i.e. the migra-
tion is allowed according to the terminology from [8]. For each machine l the
setup times from technology u to technology q are denoted by sluq , sluq > 0 for
all u, q ∈ Kl , where Kl = {u : l ∈ Mu, u ∈ U } is the set of technologies that use
machine l, l = 1, . . . , m.

The problem asks to find for each product i, i = 1, . . . , k, the set of technologies
from Ui that will be utilized for production of i , to determine the lot-sizes of produc-
tion using each of the chosen technologies and to schedule this set of technologies
so that the makespan Cmax is minimized and the products are produced in demanded
volumes V1, . . . , Vk . The problem is considered in two versions: when preemptions
of technologies are allowed (denoted P|seti , pmtn, sluq |Cmax) and when the pre-
emptions are not allowed (denoted P|seti , sluq |Cmax).

In practice one often may assume that the setup times satisfy the triangle inequal-
ity sluq + slqp ≥ slup, l = 1, . . . , m, u, q, p ∈ Kl . In what follows we denote the
special case of preemptive scheduling with the triangle inequality assumption by
P|seti , pmtn, Δsluq |Cmax.

The problems formulated above are strongly NP-hard because in the special case
of m = 1 the metric shortest Hamilton path reduces to them and this problem is
known to be NP-hard in the strong sense [7].
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3 Problem Complexity in Case of Zero Setup Times

It was shown in [5, 8] that in case of zero setup times the problems formulated
in Sect. 2 are intractable. These results are obtained using the graph coloring and
fractional graph coloring problems. The results from [5, 8, 12] imply that even in
the special case when each product has exactly one technology producing it and
each machine suits only two technologies, problems P|seti , sluq = 0|Cmax and
P|seti , pmtn, sluq = 0|Cmax can not be approximated within a factor k1−ε for
any ε > 0, if P �=NP.

Here we claim that in the case of single product, when multiple technologies are
allowed, the problems formulated in Sect. 2 are intractable as well:

Proposition 1 Problems P|seti , sluq = 0|Cmax and P|seti , pmtn, sluq = 0|Cmax

are strongly NP-hard even in the special case when the number of products k = 1,
and all technologies have equal production rates, however each technology occupies
at most 3 machines.

Besides that, in the case of k = 1, the problems P|seti , sluq = 0|Cmax and
P|seti , pmtn, sluq = 0|Cmax are not approximable within a factor d1−ε for any
ε > 0, assuming P �= NP.

4 Mixed Integer Programming Model

Let us define the notion of event points analogously to [6]. By event point we will
mean a subset of variables in mixed integer programming (MIP) model, which char-
acterize a selection of a certain set of technologies and their starting and completion
times. In one event point each machine may be utilized in at most one technology.
The set of all event points will be denoted by N = {1, . . . , nmax}, where the parame-
ter nmax is chosen sufficiently large on the basis of a-priory estimates or preliminary
experiments.

The structure of the schedule is defined by the Boolean variables wun such that
wun = 1 if technology u is executed in event point n, and wun = 0 otherwise. In case
technology u is executed in event point n, the staring time and the completion time
of technology u in this event point are given by the real-valued variables T s

un and
T f

un accordingly. The variable Cmax is equal to the time when the last technology is
finished (the makespan).

Define the following notation:

let I be the set of all products, |I | = k;
let M be the set of machines, |M | = m;
H = ∑

i∈I
max
u∈Ui

{
Vi
au

}
+ (k − 1) · max

l∈M, u,q∈Kl

{sluq} is an upper bound on makespan. The

amount of time H is sufficient to produce all the demanded products. Then the MIP
model for P|seti , pmtn, sluq |Cmax problem is as follows:
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Cmax → min, (1)

T f
un ≤ Cmax, u ∈ U, n ∈ N , (2)

∑

u∈Kl

wun ≤ 1, l ∈ M, n ∈ N , (3)

T s
un ≥ T f

qñ + slqu − H · (2 − wun − wqñ +
∑

q ′∈Kl

∑

ñ<n′<n

wq ′n′), (4)

l ∈ M, u, q ∈ Kl, n, ñ ∈ N , n �= 1, ñ < n,

T f
un ≥ T s

un, u ∈ U, n ∈ N , (5)

T f
un − T s

un ≤ wun · max
q∈Ui

{
Vi

aq

}
, i ∈ I, u ∈ Ui , n ∈ N , (6)

∑

n∈N

∑

u∈Ui

au · (T f
un − T s

un) ≥ Vi , i ∈ I, (7)

T s
un ≥ 0, u ∈ U, n ∈ N , (8)

wun ∈ {0, 1}, u ∈ U, n ∈ N . (9)

The objective function (1) and inequality (2) define the makespan criterion. Con-
straint (3) implies that in any event point onmachine l at most one technologymay be
executed. Constraint (4) indicates that the starting time of technology u on machine l
should not be less than the completion time of a preceding technology on the same
machine, plus the setup time. Constraint (5) guarantees that all technologies may be
performed only for non-negative time. If a technology u is not executed in the event
point n (i.e. wun = 0) then its duration should be zero—this is ensured by inequal-
ity (6). Constraint (7) bounds the amount of production according to the demand.
Constraints (8)–(9) give the area where the variables are defined.

A MIP model for problem P|seti , sluq |Cmax may be obtained from (1)–(9) by
adding the inequality ∑

n∈N

wun ≤ 1, u ∈ U, (10)

which ensures each technology is executed without preemptions.
These two models and their modifications for the triangle inequality case are

studied experimentally in [10].
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5 Polynomially Solvable Cases

In order to find an optimal solution to P|seti , sluq |Cmax using model (1)–(10), it
is sufficient to set nmax = d because the preemptions are not allowed. Denote PLP

the linear programming problem obtained by fixing all Boolean variables (wun) in
model (1)–(10). Here and below by fixing of the variables we assume assignment
of some fixed values to them (which turns these variables into parameters). Prob-
lemPLP with nmax = d involves a polynomially bounded number of variables,which
means it is polynomially solvable (see e.g. [9]).

Let τLP be an upper bound on the time complexity of solving problem PLP.
The problem P|seti , sluq |Cmax, where the number of technologies is bounded by a
constant from above, we will denote by P|seti , sluq , d = const |Cmax. This problem
reduces to (nmax + 1)d problems ofPLP typewith nmax = d . Therefore the following
theorem holds.

Theorem 1 Problem P|seti , sluq , d = const |Cmax is polynomially solvable within
O(τLP · dd) time.

To find an optimal solution to P|seti , pmtn, Δsluq |Cmax problem, it suffices to set
nmax = dm in model (1)–(9). Indeed, the number of different sets of technologies that

may be executed simultaneously does not exceed
m∏

l=1
fl ≤ dm , where fl = |Kl | + 1 if

|Kl | < d, otherwise fl = d. Besides that, there exists an optimal solution to problem
P|seti , pmtn, Δsluq |Cmax where each of the above mentioned sets of technologies is
executed simultaneously at most once. This fact follows by the lot shifting technique
which is applicable here since the setup times obey the triangle inequality.

Let P ′
LP denote the linear programming problem obtained by fixing all Boolean

variables (wun) in MIP model (1)–(9). A problem P ′
LP with nmax = dm and the

number of machines bounded above by a constant is polynomially solvable. Let
τ ′

LP denote an upper bound of the time complexity of solving P ′
LP . The problem

P|seti , pmtn, Δsluq |Cmax,where the numbers ofmachines and products are bounded
by a constant will be denoted by Pm|seti , pmtn, Δsluq , k = const |Cmax in what
follows. This problem reduces to 2dnmax problems of P ′

LP type, where nmax = dm .
The total number of technologies d does not exceed k(2m − 1), so the following
result holds.

Theorem 2 Problem Pm|seti , pmtn, Δsluq , k = const |Cmax is polynomially solv-
able within O(τ ′

LP · 2(k(2m−1))m+1
) time.

A number of other polynomially solvable cases of problems P| seti , sluq | Cmax

and P| seti , pmtn, sluq | Cmax with zero setup times may be found in [1, 5, 8, 11].
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6 Conclusion

The problem of multi-product lot-sizing and scheduling with multi-machine tech-
nologies is studied inpreemptive andnon-preemptiveversions.Non-approxi-mability
of the problem is shown and new NP-hard special cases with zero setup times are
identified. MIP models are formulated for both versions of the problem using the
event-points approach and continuous time representation. New polynomially solv-
able special cases of the problem are found using the MIP models, under assumption
that the number of technologies is bounded by a constant.

Further research appears to be appropriate in extending the obtained results to
the version of the problem where technologies may involve several tasks which
should be executed sequentially and each task is performed on a number of machines
simultaneously.

Acknowledgments This research have been supported by the RFBR Grants 12-01-00122 and
13-01-00862.
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Condition-Based Maintenance Policies
for Modular Monotic Multi-state Systems

Michael Krause

Abstract In this work, we consider a modular monotonic multi-state system, i.e., a
system with several components evolving in different states, where the maintenance
of a component cannot impair the performance of the system. A structure func-
tion provides the system performance depending on the states of its components.
Furthermore, we suppose that for each component, the deterioration over time can
be described by a deterministic or stochastic process with known properties. The
amount of money to be spent on the components’ maintenance is limited by a given
budget. A loss in the system performance results in opportunity costs.We try to find a
component-specific maintenance policy which minimizes the opportunity cost over
a finite planning horizon.

1 Introduction

In many industries, maintenance cost diminish the EBIT of a company significantly.
However, maintenance still does not receive the attention it deserves. In many cases,
only simple maintenance policies, such as age or block replacement [1, 9], have been
applied to the companies’ facilities. Moreover, in the literature the research focus
is set on systems, where the components or even the whole system have only two
possible states each (“up” and “down”, see [3, 7]).

In this work, we are concernedwith themaintenance ofmodular monotonicmulti-
state systems. Modular means that the system consists of several components, which
may be maintained individually. Multi-state systems are the generalization of binary
systems [8] where there may be more than two states for each component and the
entire system. Roughly speaking, the monotonicity of a system postulates that a
maintenance activity does not deteriorate the system’s performance. The relationship
between the states of the components and the performance of the system is specified
by the structure function of the system. Furthermore, we suppose that a state of a
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component represents its performance and that for each component, the deterioration
over time can be described by a deterministic or stochastic process with known
properties. The performance of a component can be improved by maintenance, the
degree of improvement depending on the component’s age and the amount of money
spent on the maintenance activity. The total expense for maintenance is limited by a
given budget. The loss in the system performance is penalized by an opportunity cost
rate. The problem under study consists in finding a component-specific maintenance
policy which minimizes the opportunity cost over a discrete planning horizon.

The remainder of this paper is organized as follows. At first, we develop a general
deterministic model (Sect. 2). We motivate why the associated dynamic program can
only be solved for two-period instances (Sect. 3). In Sect. 4, we apply approximate
dynamic programming (ADP) to the stochastic version of the problem, where we
substitute a deterministic deterioration function by a stochastic process. Our conclu-
sions are given in Sect. 5.

2 A Deterministic Model

Before presenting a general model for the deterministic version of our problem, we
first give some definitions in Sect. 2.1. Next, we develop the model step-by-step in
Sect. 2.2.

2.1 Definitions

Let J be the set of all components j , where n := |J |. Then we define the following:
Definition 1 LetS j be the set of all states of component j . We call s = (s j ) j∈J the
system state, i.e., the combination of all component states. Without loss of generality
we assume that each state s j ∈ S j is expressed as a percentage, thus the set of all
system states isS = × j∈JS j ⊆ R

n
≥0.

Definition 2 The structure function f provides the system’s performance as a func-
tion of the system state s:

f : S → R. (1)

Definition 3 A component j is relevant, if there exist two system states s, s′ ∈ S
with sk = s ′

k for all components k �= j such that f (s) �= f (s′). A system is called
monotonic if

• all components are relevant and
• the structure function is componentwise increasing.
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2.2 Development of the Model

We consider a monotonic system with components j ∈ J and countable or uncount-
able state sets S j evolving over a finite planning horizon comprising time periods
t = 1, . . . , T of equal length. Let x jt denote the decision variable specifying the pay-
ment for a maintenance activity of component j in period t . The objective consists
in minimizing the total opportunity cost incurred over the planning horizon, i.e.,

min
x jt

T∑

t=1

c · ( f max − f (st+1))

where c is the opportunity cost rate for performance losses, f max stands for the
maximum system performance, and st+1 = (s j (t+1)) j∈J denotes the vector of all
component performances at the end of period t . Without loss of generality we may
assume that f max = f (s1). Furthermore, we may also state the objective in the
equivalent form

max
x jt

T∑

t=1

f (st+1)

Starting with budget B1 = B at the beginning of the first period t = 1, the
remaining budget Bt+1 at the end of period t is given by Bt+1 = Bt − ∑

j∈J x jt .
We suppose that the evolution of the performance of a component j from period t

to period t + 1 depends on the component’s age a jt and on amount x jt . The age
of j can be partially or completely reset to zero depending on its current age a jt

and amount x jt . With appropriate transition functions α j and γ j , the evolution of
component j can be described via the equations

a j (t+1) = α j (a jt , x jt ) (t = 1, . . . , T )

s j (t+1) = γ j (s jt , a jt , x jt ) (t = 1, . . . , T )

For the transition functions α j and γ j we establish the following conventions:

1. Functions α j are strictly increasing in a jt and strictly decreasing in x jt .
2. α(a jt , 0) = a jt + 1 and limx jt →∞ α(a jt , x jt ) = 0 for all a jt .
3. Functions γ j are strictly decreasing in a jt and strictly increasing in s jt and x jt .
4. limx jt →∞ γ j (s jt , a jt , x jt ) = 1 for all s jt , a jt .
5. Functions γ j are concave in x jt .

Convention 1 implies that the age of component j at the beginning of period t + 1 is
positively correlated with its age at the beginning of the previous period t and that
maintenance leads to a regeneration of j . Convention 2 means that if component j is
notmaintained in period t , the component is subject to natural aging. Furthermore, by
spending a sufficiently large amount onmaintenance, a component can be completely
renewed. According to convention 3, an older component’s performance decreases
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faster than a younger one. In addition, the performance at the beginning of period
t and the amount spent on maintenance in period t have a positive impact on the
performance of a component at the beginning of period t + 1. Convention 4 ensures
that the maximum performance can be obtained by spending an arbitrarily large
amount on maintenance. Finally, convention 5 expresses the diminishing marginal
utility of the maintenance efforts.

By denoting the initial values of the performance and the age of the components
j ∈ J by s0j and a0

j , respectively, our maintenance model can be formulated as a
dynamic program with stages t = 1, . . . , T .

(DP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max.
∑T

t=1 f (st+1)

s. t. s j1 = s0j ( j ∈ J )
a1 j = a0

j ( j ∈ J )
B1 = B
a j (t+1) = α j (a jt , x jt ) ( j ∈ J ; t = 1, . . . , T )

s j (t+1) = γ j (s jt , a jt , x jt ) ( j ∈ J ; t = 1, . . . , T )

Bt+1 = Bt − ∑
j∈J x jt (t = 1, . . . , T )

Bt+1 ≥ 0 (t = 1, . . . , T )

x jt ≥ 0 ( j ∈ J ; t = 1, . . . , T )

The Bellman equation [4] decomposes the problem into a sequence of subprob-
lems Pt (St ) on stages t = 1, . . . , T :

Pt (St )

⎧
⎪⎨

⎪⎩
Vt (St ) = max

x jt

{Ct (St , xt )︸ ︷︷ ︸
= f (st+1)

+Vt+1(St+1(St , xt ))}

Ct denotes the contribution to the current stage t , St = (at , st , Bt ) is the state
attained at stage t , and Vt+1 is the value function, which sums up the contributions
of all remaining periods t = t + 1, . . . , T .

3 Solution Approach for a Serial System
with Two Components

In this section we provide an exact solution for a system containing two components
j = 1, 2 arranged in series. For such a system, we may use the following structure
function, which implies that the performance of this monotonic system is always
determined by the weakest of its components:

f (st+1) = min{s1(t+1), s2(t+1)}.

On stage t we obtain subproblem
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Pt (St )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max. min{s1(t+1), s2(t+1)} + Vt+1(St+1(St , xt ))

s. t. s j1 = s0j , a1 j = a0
j , B1 = B ( j ∈ J )

a j (t+1) = α j (a jt , x jt ) ( j ∈ J )

s j (t+1) = γ j (s jt , a jt , x jt ) ( j ∈ J )

Bt+1 = Bt − ∑
j∈J x jt

Bt+1, x jt ≥ 0 ( j ∈ J )

We start the backward computation at stage t = T > 1 with VT +1 = 0. As the
ages a jt are not considered in the contribution Ct , the associated constraints can be
neglected. Introducing auxiliary variables zT , the problem can be stated as

PT (ST )

⎧
⎪⎪⎨

⎪⎪⎩

Max. zT

s. t. zT ≤ γ j (s jT , a jT , x jT ) ( j ∈ J )
BT − ∑

j∈J x jT ≥ 0
x jT , zT ≥ 0 ( j ∈ J )

Applying the second-order sufficient optimality conditions (SSC) of Karush,
Kuhn, and Tucker [2], we obtain the following result (given that γ j ∈ C2( j ∈ J )):

1. if γ1(s1T , a1T , BT ) ≤ γ2(s2T , a2T , 0) then x1T = BT , x2T = 0
2. if γ2(s2T , a2T , BT ) ≤ γ1(sT1, aT 1, 0) then x1T = 0, x2T = BT

3. otherwise, zT = γ1(s1T , a1T , x1T ) = γ2(s2T , a2T , x2T ) and x1T + x2T = BT ,
where x1T and x2T can be computed numerically.

Since in the third case, the amounts x jT are not obtained analytically, every further
stepof the backward computation, i.e., solvingproblems P(St )with t = T −1, . . . , 1,
cannot be achieved analytically.

4 Stochastic Model and Approximate Dynamic
Programming

To tackle the problem when the problem size grows and randomness is added to the
deterioration of the components’ performances, we need to apply a heuristic method,
such as approximate dynamic programming (ADP) [5, 6, 10]. We can formulate a
stochastic version of our problem as follows:

(SDP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Max.
∑T

t=1E
{

f (ŝt+1)
}

s. t. ŝ j (t+1) = ŝ j t − R̂ j (t+1)(ŝ j t , a jt ) + ϕ(x jt ) ( j ∈ J ; t = 1, . . . , T )

a j (t+1) = α j (a jt , x jt ) ( j ∈ J ; t = 1, . . . , T )

Bt+1 = Bt − ∑
j∈J x jt (t = 1, . . . , T )

ŝ j1 = s0j , a j1 = a0j , B1 = B ( j ∈ J )

Bt+1, x jt ≥ 0 ( j ∈ J ; t = 1, . . . , T )
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Components now are subject to a stochastic and observable deterioration of their
performance with random variables R̂ j (t+1)(ŝ j t , a jt ), which depend on the current
performance and age of component j .

The function ϕ(x) is some concave, increasing function in order to represent the
diminishing marginal value of the maintenance payments. Experiments with small
instances of this model have shown that the stochastic version of the problem can be
solved by some basic ADP-algorithm, like the method given in [10, p. 141].

5 Conclusions

We discussed the problem of optimizing condition-based maintenance policies for
modular and monotonic multi-state systems. First, we developed a deterministic
model, which was formulated as a dynamic program. Using a simple series sys-
tem with two components we motivated the need of applying heuristic methods.
Finally, we proposed a generalization of our a model including stochastic deteriora-
tion. Preliminary results show that basic variants of approximate dynamic program-
ming using a lookup table approximation of the value function provide good solutions
to small instances of this model. Our next step consists in substituting the lookup
table approximation by neural networks, which avoid the drawbacks associated with
the discretization of the state spaces.
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An Optimization Model and a Decision
Support System to Optimize Car Sharing
Stations with Electric Vehicles

Kathrin S. Kühne, Tim A. Rickenberg and Michael H. Breitner

Abstract An increasing environmental awareness, rising energy cost, progressing
urbanization, and shortage of space cause to rethink individual mobility behavior and
personal car ownership in cities. Car sharing is a sustainable mobility concept that
allows individuals to satisfy their mobility needs without owning a car and addresses
modernmobility.Car sharing is particularly suitable to covermedium-rangedistances
and can be linked to the public transport of major cities (intermodal mobility).Within
this context, the integration of electric vehicles represents an opportunity to further
protect the environment and potentially save energy cost. In order to create an efficient
car sharing transportation network, the location of stations, the number of vehicles
and the availability of electric fast charging infrastructure are critical success factors.
We provide a decision support system (DSS) to plan and optimize car sharing stations
for electric vehicles. An optimization model and the DSS OptCarShare 1.1 enable to
optimize stations and visualize results. Parameters, such as the annual lease payment
for charging infrastructure, the expected travel time of consumers, the charging time
of electric vehicles dependent on available charging infrastructure, affect the decision
variables such as the number of car sharing stations, vehicles and fast chargers. On
the basis of evaluations and benchmarks for the cities of Hannover and Zürich, we
establish generalizations for the parameters of the model. The results show a high
impact of fast chargers (half an hour to fill 80% of the battery) on the current model
and the optimal solution.
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1 Introduction

Automobile traffic is one major factor of air pollution and noise annoyance in cities.
A good alternative to private cars is car sharing which allows to remain mobile
without owning a car while saving cost and emissions. In this concept, individuals,
especially young adults share vehicles which are property of an organization [3]. Car
sharing is particularly suitable to cover medium-range distances and can be linked
to the public transport of major cities such as e.g. Hannover or Zürich. It thus fills
the gap between public transport and private automobile [7].

Car sharing in connection with electric vehicles has great potential with regard to
sustainability. It can not only protect the environment (less CO2, noise and required
parking area), it represents cost security for customers and their mobility needs [4].
Since 2005 with the increase in the sales figures, electric cars have become a serious
alternative to conventionally propelled vehicles [1]. Electric vehicles differ in the
range and the maximum speed, many of them have an average of around 150Km
range with a maximum speed of about 130km/h [2]. An important component of a
pure electric car is the battery (lithium-ion) which typically needs to be charged for
eight hours on a conventional wall socket. These batteries may also be subjected to a
fast charge, which takes about 0, 5h to fill 80% of the battery, but this is associated
with high investments. With regard to the cost of a car sharing organization and
the satisfaction of the customer demand, the limited range and long charging times
respectively expensive fast charging infrastructure represent challenges.

The protection of the environment and scarce natural resources as well as limited
parking space caused by urbanization are urgent topics and are basis for the idea to
refine an optimization model for car sharing stations by Rickenberg et al. [6]. The
question, how many fast chargers need to be positioned will be addressed with an
enhanced optimization model. We pursue the following research questions:
RQ 1: What factors of electric vehicles need be considered to optimize the location
and size of car sharing stations? and
RQ 2: What influence do exogenous parameters have on the decision variables?

2 Optimization Model and Decision Support System

The objective of this model is to determine optimal locations of candidate car shar-
ing stations i (i = 1, . . . , m) as well as to optimize the number of vehicles with fast
charging ( f fc

i ∈ N) and with regular charging infrastructure ( f rc
i ∈ N). The mini-

mization of total cost and the satisfaction of the customer have the highest priority.
The maximum distance of any demand point j ( j = 1, . . . , n) to the next car shar-
ing station must not exceed a definite limit (maxd). In our case, any period (tperiod)

is 24h and is related to the normal-distributed demand n j , which is also given for
one day (24h). A vehicle is available when the travel time (t t

i ) and the appropriate
charging time (tci ) is over. To calculate the charging time a coefficient (γ ) and the
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expected travel time (normal-distributed) are needed. There are two varieties for γ ,
one for the fast charging and one for regular charging infrastructure. At any station
are limited parking lots (maxpi ) available and limited fast chargers (maxfcs) possi-
ble. Since electric cars of one single type are used in this model, a homogenous fleet
is assumed. The mathematical problem can be formulated as follows:

Min. Z =
m∑

i=1

[ f rc
i (kf + ka + klrc) + f fc

i (kf + ka + klfc) + yi ∗ ks] (1)

dij ∗ zij ≤ maxd ∀i; j (2)

m∑

i=1

zij = 1 ∀ j (3)

yi = zij ∀ i; j (4)

f rc
i

tperiod

t t
i + tcregular

i

+ f fc
i

tperiod

t t
i + tcfast

i

≥
n∑

j=1

n j ∗ zij ∀ i (5)

f rc
i + f fc

i ≤ maxpi ∀ i (6)

f f c
i ≤ maxfcs ∀ j (7)

yi ∗ vi ≤ a ∀ i (8)

wi ≥ minb ∗ yi ∀ i (9)

zi j ; yi ; ∈ {0, 1} ∀ i; j (10)

f rc
i ; f f c

i ∈ N ∀ i (11)

The objective function (1) describes the incurred cost of a car sharing organization
which are to be minimized. The cost is accumulated annual fees for renting vehicles
(kf), parking lots (ka), charging infrastructure (klrc and klfc) as well as annual cost
to maintain stations. Restriction (2) implies that the distance between a demand
point and a station must not exceed a maximum value and constraint (3) assigns
every demand point to a station but only if the station is actually built (4). The
fulfillment of the demand is ensured by restriction (5). The variables tcregular

i and tcfast
i

are calculated as follows: tcregular
i = γ regular ∗ t t

i and tcfast
i = γ fast ∗ t t

i . The coefficient
γ describes the charging time per travel hour dependent on the maximum range of
electric vehicles, the average speed and the charging time. It is calculated as follows:

max range
average speed = max travel time and accordingly γ regular and γ fast = max charging time

max travel time .
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The total number of vehicles (also the number of associated parking lots) must be
smaller than themaximum number of parking lots for each station (6) [5]. Restriction
(7) guarantees the electricity supply. Parameter vi is defined as follows: vi = free
parking lots around station i /registered vehicles around station i * 100%. The smaller
parameter vi , the higher is the shortage of parking. Due to (8), the actual shortage of
parking cannot be bigger than the default shortage of parking (a). Parameter wi is
defined as follows: wi = population at station i /area at station i [6]. Because of (9)
a minimum level of population density within an area is reached. In equations (10)
and (11) are the binary variables and decision variables defined.

Based on the optimization model, we implement the decision support system
(DSS) OptCarShare 1.1 to enable the optimization of stations and visualization of
results. The DSS, the underlying model, and sample data pools are available online
at http://archiv.iwi.uni-hannover.de/CarSharing/.

3 Benchmarks in Hannover and Zürich

Influence of charging-infrastructure—charging time and infrastructure cost:
We run several benchmarks by using different values for the parameters and show
thereby the applicability of the optimization model. We choose the German city
Hannover and the Swiss city Zürich since both have an appropriate size, population
density and well public transportation to allow efficient car sharing [5, 6].

The initial values for the benchmarks are iHannover = 100, jHannover = 30,
i Zürich = 200, j Zürich = 50, k f = 25,000e, ka = 7,000e, tperiod=24 h, GAP=3
%, maxpi = 5, maxfcs = 2, minb = 1,200, maxd = 1 km. Parameter γ is not a
fixed value and varies with the average speed, maximum range or required charging
time. Our initial values are: γ regular = 4

3 and γ fast = 1
12 with a maximum range of

150km, average speed of 25km/h and a required charging time of 0.5h or 8h. We
ignore the low cost of regular charging infrastructure and consider only the annual
fees of fast charging infrastructure. There are different providers and types of charg-
ing infrastructure, which is still in development phase and therefore the cost of the
fast chargers could decrease within the coming years. It is even possible that the
regular charging infrastructure could improve and thus the gap between these two
possibilities could diminish. Here, the smaller the charging coefficient, the more
efficient the regular charging infrastructure works. We vary the charging coefficient
γ regular and the cost klfc to investigate their influence, which can be seen from the
following table (Tables1 and 2).

A reduction of γ regular, which implies shorter charging time, results in less total
cost, since less vehicles with fast charging infrastructure are needed tomeet customer
demand. For example in Zürich and annual fees of the fast chargers of 26,000e, the
amount of car sharing stations always remains equal at 17, while the number of
vehicles related to fast or regular charging infrastructure varies. For γ regular = 4/3,
the total cost is 1,181,000e, but the cost decrease to 959,000e for γ regular = 2/3.
Because of less charging time for vehicles even with regular charging infrastructure,

http://archiv.iwi.uni-hannover.de/CarSharing/
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more vehicles of this type will be deployed. The effect is higher, the higher the annual
fees of the fast chargers are.

Influence of different driving time profiles and max. distance to station:
The distance to the next car sharing station is an important factor since consumers do
not want to walk a long way, e.g. from public transport stations and also from home,
to satisfy their mobility needs [8]. For that reason, we vary the parameter maxd and
compare it against three different expected travel time profiles.

The total number of vehicles increases, the higher the average travel time is. The
vehicles are longer on the roads and therefore need longer charging timewhich results
in a lower availability of the vehicles. The more vehicles are deployed, the higher the
total cost for the car sharing organization. For low average travel time, significantly
more vehicles are used with regular charging infrastructure, because the vehicles
only need a brief time to be charged even with regular charging infrastructure to
be available for the next customer. However, with higher travel time, more vehicles
with fast charging infrastructure are required. To meet the demand, a certain number
of vehicles is needed. For low maxd, e.g. 0.5km for Zürich at the medium travel
time, the total cost is 985,000e, but for higher maxd (1.25km), the cost decrease to
413,000e, although the demand and travel time are still the same.

4 Generalization, Limitations and Conclusion

Concerning RQ2 and based on the benchmarks of Hannover and Zürich, the influ-
ences of selected parameters can be generalized to establish a general relationship
between the exogenous parameters and the resulting effect on decision variables.

Number of car sharing stations: With higher expected travel time as well as an
increasing coefficient of regular charging infrastructure, the number of car sharing
stations increases sincemorevehicles are needed. If the coefficient of the fast charging
is lower, the number of car sharing station is reduced by having less vehicles.

Charging infrastructure: Analogous to the number of stations, the number of
vehicles with fast charging infrastructure increases with higher travel time since
the efficient fast chargers allow to reduce the charging time. However, the more
expensive the fast charging infrastructure is, the less vehicles will be deployed with
this infrastructure and in consequence the amount of regular charging infrastructure
increases. If the coefficient γ regular decreases, the number of vehicles with regu-
lar charging infrastructure increases and the number of vehicles with fast charging
infrastructure decreases due to their higher cost. With less fast chargers or more
efficient regular charging infrastructure, the total cost decreases. The effect of γ fast

is opposed to γ regular. The more vehicles are required, the higher is the total cost.
While minimizing total cost, it is affected by the mentioned parameters. If γ regular

increases, less vehicles are needed and in consequence the total cost decreases.
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t t
i (↑) ⇒

∑

i

yi (↑) γ regular(↓) ⇒
∑

i

yi (↑) γ fast(↑) ⇒
∑

i

yi (↓) (12)

t t
i (↑) ⇒

∑

i

f fc
i (↑) γ regular(↓) ⇒

∑

i

f fc
i (↓) kl f c(↑) ⇒

∑

i

f fc
i (↓) (13)

t t
i (↑) ⇒

∑

i

f rc
i (↓) γ regular(↓) ⇒

∑

i

f rc
i (↑) kl f c(↑) ⇒

∑

i

f rc
i (↑) (14)

t t
i (↑) ⇒ Z(↑) γ regular(↓) ⇒ Z(↓) klfc(↑) ⇒ Z(↑) (15)

Concerning the limitations, this model can be used for strategic and tactical plan-
ning since a homogenous fleet is assumed and no operative factors (bookingmanage-
ment, max range, etc.) are considered. Furthermore, we regard a normal distributed
demand and do not consider peaks and off-peaks. Here, only one vehicle can be
assigned to a fast charger, but in reality it could be possible to share a fast charger.

To conclude, the optimizationmodel and theDSSare afirst approach to support the
planning of car sharing stations for electric vehicles. The results of the benchmarks
of Hannover and Zürich show that fast chargers and the charging infrastructure in
general heavily determine the amount of stations, cars, and total cost.
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Optimising Energy Procurement for Small
and Medium-Sized Enterprises

Nadine Kumbartzky and Brigitte Werners

1 Introduction

In recent years, energy prices have increased drastically. In Germany, purchase prices
(excluding sales tax) for industrial consumers have risen by 28% for natural gas and
by 42% for electricity from 2007 to 2013. SMEs find themselves under increasing
pressure as they have to cope with higher energy costs. To remain competitive, SMEs
need to utilise potential energy cost savings. In addition to changing consumption
habits, a sustainable reduction of energy costs can be realised by decreasing purchase
costs. These costs depend on purchase prices which in turn depend on the chosen pro-
curement strategy. Thus,we develop amixed integer program to determine an optimal
selection of purchase contracts which minimises procurement costs. A similar prob-
lem has been formulated in [2, 3] concerning short-term electricity procurement for
large-scale consumers. In [1, 5, 6], a quantitative model to assist in the procure-
ment of a local gas supply company is proposed. Since procurement procedures for
SMEs might differ from the ones used by energy supply companies or large energy
consumers, a two-stage optimisation model that identifies appropriate procurement
strategies for SMEs is presented.

The remainder of the paper is structured as follows. In Sect. 2, energy procurement
of SMEs is introduced and different procurement strategies are illustrated. The devel-
oped quantitative optimisation model is outlined in Sect. 3. Subsequently, Sect. 4
discusses computational results of an exemplary case study. Final conclusions are
drawn in Sect. 5.
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2 Energy Procurement of SMEs

To purchase the volume of energy needed in day-to-day operations, SMEs conclude
contracts with energy supply companies or other energy providers (e.g. traders, elec-
tricity producers, or gas distribution companies). In general, there exist two different
types of purchase contracts: baseload and open contracts. Primary features of a base-
load contract are that the cumulative amount of energy provided is fixed before
delivery and that it is consumed at a constant level throughout the contract duration.
Purchase prices are also settled before the actual commencement of contract and
need to be paid for the contracted cumulative amount of energy. The actual quantity
consumed can differ from the contracted one only if negotiated with the supplier and
might lead to an additional charge for the surplus quantity.

On the contrary, the volume of energy purchased from open contracts can vary
over time. Due to this flexibility, purchase prices contain an additional margin of
risk. Thus, they are typically higher than those of baseload contracts. Boundaries
for minimum and maximum quantity of energy per period and/or for the cumulative
amount are often fixed. For instance, this can be done by applying take-or-pay clauses
that require the buyer to either take a minimum amount (e.g. 80% of the cumulative
volume) or pay for this amount even if it is not consumed (see [7]).

If the amount received by an open contract is large enough, energy suppliers
frequently offer the possibility of a delivery in tranches. Here, the cumulative amount
is split up into several tranches that can be procured consecutively within the contract
period. The price of a single tranche is calculated using a predefined formula that
usually incorporates current market prices. Therefore, prices can vary over time and
favourable market developments can be utilised. Since energy procurement is still
flexible, purchase prices also contain a margin of risk.

SMEs can purchase energy according to one of the following procurement
strategies:

1. traditional full supply contract
2. full supply contract with delivery in tranches
3. baseload delivery in combination with one open contract
4. structured procurement concept.

The easiest strategy is to sign a traditional full supply contract enabling SMEs to
consume energy by an open contract provided by a single supplier. However, to
benefit from a transparent pricing on market terms while keeping the flexibility of an
open contract, a full supply contract with delivery in tranches might be preferable.

If SMEs seek to partially avoid themargin of risk included in full supply contracts,
a baseload delivery in combination with one open contract to fulfill the residual
demand can be chosen. Finally, themost complex strategy is a structured procurement
concept. It is characterised by an efficient combination of several baseload and open
contracts (with or without delivery in tranches) that might differ regarding contract
length, date of contract conclusion, contracted volume, and supplier.
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If a structured procurement concept is chosen, SMEs need to assign the total
amount of energy required during the contract period to several contracts and have to
fix each contracted volume. Therefore, SMEs face volume riskwhich is characterised
by a deviation of the contracted volume from the actual amount consumed. This
kind of risk is also present in baseload contracts. Another form of risk occurring
in procurement decisions is price risk, i.e. the risk of losses due to unforeseen or
unfavourable market developments. By choosing a structured procurement concept,
SMEs are confronted with price risk since they need to decide when to conclude a
contract. This also applies to full supply contracts with delivery in tranches.

It results from the above that purchase prices depend on the specific type of
contract. Thus, SMEs can reduce energy purchase costs by choosing an appropriate
procurement strategy.

3 Two-Stage Optimisation Model

A two-stage MIP is used to determine an optimal selection of purchase contracts
according to one of the introduced procurement strategies. In order to obtain solutions
that are robust against uncertain parameter realisations, a minimax relative regret
approach is applied. This means inherent uncertainty of energy demand and purchase
prices of open contracts with delivery in tranches is handled by introducing a finite
number of scenarios. Each scenario captures one possible realisation of all time-
dependent uncertain parameters. Similar to the model in [5], first-stage decisions
at t = 1 include contract conclusions and cumulative volume of baseload and open
contracts since these decisions have to be made at the beginning of the contract
period. Second-stage decisions are used to react on uncertain fluctuations in demand
and market prices. Thus, the actual quantities purchased via both contract types as
well as shortfall and excess quantities are drawn at the second stage for every point
in time t ∈ T .

In the following, we exemplarily present some parts of the optimisation model
that is used for determining the optimal solution for each scenario s ∈ S. Similar to
[6] and [7], baseload contracts are modelled as follows: Let J be the set of baseload
contracts. Eachbaseload contract j ∈ J is characterisedby the contract period [t j , t̄ j ],
take-or-pay level λ j , and by the minimum and maximum capacity per period v min

j
and v max

j , respectively. Decision variables are the cumulative volume v cum
j , quantity

x j,t,s consumed in period t and scenario s, excess capacity of take-or-pay volume e j,s

in scenario s, and take-or-pay shortfall f j,s in scenario s. Besides, a binary variable
z j is introduced modelling the conclusion of a contract, i.e. z j = 1 if contract j is
concluded, and 0 otherwise. In each scenario s ∈ S, the objective is

min Z∗
s =

J∑

j=1

c fix
j z j +

J∑

j=1

T∑

t=1

c var
j x j,t,s +

J∑

j=1

(
c var

j f j,s + c ex
j e j,s

)
, (1)
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where c fix
j denotes fixed costs, c var

j are variable costs, and c ex
j are costs for exceeding

the contractually fixed cumulative volume. Thus, procurement costs are composed
of four components: fixed costs for entering a contract, variable costs for the actual
amount of energy received, variable costs to pay for a take-or-pay shortfall (if
present), and an additional charge for the excess capacity if the actual volume con-
sumed exceeds the contractually fixed quantity. For an optimal selection of baseload
contracts, the following constraints have to be fulfilled:

v min
j z j ≤ x j,t,s ≤ v max

j z j ∀ j ∈ J, ∀ t j ≤ t ≤ t̄ j , ∀ s ∈ S (2)
∑

t∈T

x j,t,s − v cum
j ≤ e j,s ∀ j ∈ J, ∀ s ∈ S (3)

λ j v cum
j −

∑

t∈T

x j,t,s ≤ f j,s ∀ j ∈ J, ∀ s ∈ S. (4)

Constraints (2) guarantee that the actual amount of energy received in period t (during
delivery) and scenario s is bounded by the minimum and maximum capacity, if
contract j is concluded. Constraints (3) and (4) determine excess quantities and
take-or-pay shortfalls, respectively.

Open contracts k ∈ K are modelled in an analogous manner taking into account
that variable costs c var

k,t,s depend on uncertain market conditions. Furthermore, the
constraint

J∑

j=1

x j,t,s +
K∑

k=1

yk,t,s = dt,s ∀ t ∈ T, ∀ s ∈ S (5)

assures that the uncertain demand dt,s is fulfilled at all times either by baseload or
open contracts.

To identify the optimal procurement strategy, the above model is solved to deter-
mine all scenario optima Z∗

s . These values are used tomodel aminimax relative regret
approach as in [8]. This ensures that the resulting optimal procurement strategy leads
to promising solutions close to optimality in all scenarios considered.

4 Case Study

In this section, an exemplary case study is conducted for an industrial laundry with
an annual energy consumption of 15 GWh. We assume that power accounts for 8%
and natural gas for 92% of the annual energy consumption. Since the structure of
power and gas procurement contracts is quite similar, we exemplarily optimise the
procurement of natural gas considering a time horizon of one year.

To determine an optimal selection of purchase contracts, predictions of the uncer-
tain gas demand and market prices are needed. A forecast of future demand is made
using temperature-dependent load profiles. To account for prediction errors, positive
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and negative deviations from the forecasted demand of 3 and 5%, respectively, are
incorporated. Scenarios for uncertain price movements of open contracts with deliv-
ery in tranches are generated assuming an expected yearly price increase of 2.5%.
The case study is comprised of 2 open contracts without delivery in tranches, 2 open
contracts with delivery in tranches (assigned to quarters and months, respectively)
and monthly baseload contracts. The specific contract parameters are fixed using
real-world data.

The minimax relative regret model is solved using the standard optimisation
software Xpress Optimization Suite [4]. In order to evaluate the obtained solution,
expected annual purchase costs are calculated. For the industrial laundry, the optimal
procurement strategy is to choose a structured procurement concept with expected
annual purchase costs of approximately 641,200 e. To compare different strategies,
the model is also solved for each of the remaining procurement concepts.

The results show that a full supply contract as well as a baseload delivery in
combination with one open contract lead to notably higher expected procurement
costs. However, an open contract with delivery in tranches is a possible alternative
if an increase of 0.7% of expected procurement costs compared to a structured
procurement concept is acceptable. The two results are close to each other due to
the assumption that the considered laundry works in two shifts between 6 a.m. and
10 p.m. Since only a small proportion of gas is needed during night time, baseload
contracts have a limited share of the cumulative amount of energy consumed.

The results also indicate that the maximum scenario costs of a structured pro-
curement concept are only slightly higher than, for example, those of a full supply
contract, whereas minimum scenario costs are significantly lower. Therefore, imple-
menting a structured procurement concept offers great potential cost savings.

We further investigate the quality of the solution obtained by the optimisation
model. For this purpose, 500 additional price and demand scenarios are generated.
For each procurement concept, the obtained first-stage decisions, that means contract
conclusions and cumulative volumes, are fixed.Then the optimisationmodel is solved

purchase
costs
(in )

cum. probability
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Fig. 1 Cumulative distribution function of annual purchase costs for each procurement strategy
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for each of the 500 scenarios separately to obtain optimal second-stage decisions and
resulting procurement costs.

Figure1 shows the cumulative distribution function of purchase costs for each pro-
curement strategy. It reveals that in 97% of the scenarios, the structured procurement
concept leads to the lowest annual purchase costs with a mean of 640,900 e.

5 Conclusion

In this paper, a two-stage MIP for determining an optimal selection of purchase con-
tracts for SMEs is presented. It is shown that SMEs can reduce its purchase costs by
choosing an appropriate procurement strategy. Uncertainty regarding future energy
demand and prices of open contracts with delivery in tranches is included. The opti-
misation model is solved using a minimax relative regret approach. Computational
results of the conducted case study indicate that a structured procurement concept
has a high potential to significantly reduce energy costs, in particular when compar-
ing it to traditional full supply contracts. However, SMEs have to decide whether
they are willing to take over volume and price risk. Furthermore, the effort of time
and personnel required to implement such a strategy as well as the company-specific
knowledge of energy markets has to be included into the decision-making process.
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Approximation Schemes for Robust
Makespan Scheduling Problems

Adam Kurpisz

Abstract Makespan Parallel Machine and Flow Shop Scheduling belong to the core
of the polynomial optimization problems.Both problems arewell studied and they are
known to beNP-hard, thus no optimal polynomial time algorithm exists under certain
theoretical assumptions. In this paper we present a Polynomial Time Approximation
Scheme for the generalized Min- Max version of the problems and the Competitive
Ratio Approximation Scheme for the online counterpart of considered problems. All
the presented algorithms work in linear time in the input size.

1 Introduction

In this paper, we investigate two robust makespan scheduling problems. In a con-
sidered robust approach we are given a constant-size scenario set with possible real-
izations of each element cost. The objective is to minimize the cost under the worst
possible scenario. The first considered problem is a Min-Max Makespan Parallel
Machine Scheduling Problem (Min- Max Pm||Cmax ). The problem is equivalent
to the know Vector Scheduling Problem [2]. The latter one is Min-Max Makespan
Flow Shop Scheduling Problem (Min- Max Fm||Cmax). In this paper we extend the
idea presented in [3] and we prove that a simple merging rule can reduce the number
of jobs to a constant depending only on ε, such that the optimum differs from the
original one by at most a 1 + O(ε) factor. As a consequence we provide a Polyno-
mial Time Approximation Scheme (PTAS) for both problems. The running time of
the algorithm is linear which improves the previous known results [5, 6]. The sec-
ond result of the paper concerns the online counterpart of the problems. Up to now
there were several approximation results with a given competitive ratio [1, 8]. Our
contribution is a Competitive Ratio Approximation Scheme (CRAS) [4, 7].
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Our approach uses several classic transformations of the input instance which
may increase the objective by a factor of at most 1 + O(ε). Throughout this paper,
when we describe this type of transformation, we say it produces 1 + O(ε) loss.

2 Min Max Parallel Machine Scheduling Problem

In the Min Max Pm||Cmax we have m identical parallel machines and a set of n
jobs J = {J1, . . . , Jn} waiting for processing. Each machine can process at most
one job at a time. Preemption is not allowed. Processing times are described with
a set of scenarios Γ = {S1, . . . , SK }. Each job Jj can be described with a vector
{p1

j , . . . , pK
j } of possible processing times. K and m are constant. Let C S

max(π) be
the maximum completion time for a schedule π under scenario S. We are looking
for π∗ such that:

OPT = Cmax(π
∗) = min

π
max
S∈Γ

C S
max(π) (1)

We start with setting the lower and the upper bound. We have:

LB = 1

m
max
S∈Γ

n∑

j=1

pS
j ≤ OPT ≤ max

S∈Γ

n∑

j=1

pS
j = UB.

Lemma 1 With 1 + ε loss, for every job Jj under any scenario Sk we can round the

pSk
j down to the nearest value

(
maxS∈Γ pS

j

)
· ε

mK · i , i = 0, 1, . . . , mK
ε

− 1.

Proof First, let us notice that decreasing the processing times cannot increase the
optimum. Now, let PSk be the subset of jobs, for which the largest processing time is
under scenario Sk i.e. PSk := {Jj : pSk

j = maxS∈Γ pS
j }. Let us consider any schedule

π . Now we replace the rounded processing times with the original ones sequentially,
starting from PS1 . Since

∑
J j ∈PS1

pS1
j ≤ m · C S1

max(π), thus replacing the processing
time of jobs from PS1 may increase the makespan under any scenario by at most
ε

mK m · C S1
max(π). Iterating this for any PS may increase the makespan by at most

ε

mK
m ·

(
∑

S∈Γ

C S
max(π)

)
≤ ε

mK
mK max

S∈Γ
C S

max(π) = εmax
S∈Γ

C S
max(π)

and the claim follows. �

For any job Jj we define the job profile to be K -tuple < Π1, j , . . . ,ΠK , j > such that
pSk

j is equal to ε
mK · Πk, j maxS∈Γ pS

j . The value d j := maxS∈Γ pS
j is called the scale

factor of the job Jj . Any job is fully described with its job profile and scale factor.

Lemma 2 The number of distinct job profiles is at most l := (
mK
ε

)K
.
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Proof Every job profile has K entries with possible mK
ε

values. �

Nowwe perform the grouping step. Let δ := εL B
mK . We partition the set of jobs into

two disjoint subsets of large L := {Jj : d j > δ} and tiny jobs T := {Jj : d j ≤ δ}.
Next we partition the set of tiny jobs into l subsets (T1, . . . , Tl) of jobs having the
same profile. For every set Tφ we take any two jobs Ja , Jb ∈ Tφ with scale factors
da, db ≤ δ

2 and merge them together. We repeat this step as long as only one job with
scale factor smaller than δ

2 is left. After grouping step, applied for each Tφ , there are
at most l tiny jobs left with scale factor smaller than δ

2 .
In the following we prove, that an optimal solution for the instance with a merged

jobs, differs from the optimum of the original instance by at most a 1 + ε factor. Thus
we can get a PTAS by enumerating all possible solutions of the reduced instance.

Lemma 3 With 1 + O (ε) loss, the number of jobs can be reduced in linear time to

be at most Δ = min{n, O
((

mK
ε

)K
)
}.

Proof The number of large jobs is bounded by a constant U B·K
εLB
mK

= m2K 2

ε
, thus we can

enumerate all possible assignments of large jobs to the machines. One can choose
the assignment corresponding to the optimal schedule. For this assignment let t S

i
denotes the time when a machine i finishes processing the large jobs under scenario
S. The L P for the problem, denoted by L P1 takes the form:

min C s.t. t S
i + ∑

J j ∈T xij pS
j ≤ C, i = [m], S ∈ Γ (2)

∑m
i=1 xij = 1, j ∈ T ; (3)

xij ∈ {0, 1}, i = [m], j ∈ T (4)

where xij = 1 means that job Jj has been assigned to machine i .
L P1 can be seen as assigning each job (maybe fractionally) to some machine.

For each φ ∈ [l] let us consider a merged job with a job profile φ and a scale factor
equal to

∑
J j ∈Tφ

d j . Now, instead of deciding on which machine each job will be
scheduled, for each job profile φ we can decide how big part of a merged job for
this profile will be scheduled on each machine. Let yφi be the variable describing the
fraction of merged job from Tφ , processed on machine i , this results in the following
L P2:

min C s.t. t Sk
i + ∑l

φ=1 yφi
∑

J j ∈Tφ
d j

ε
mKΠk, j ≤ C, i ∈ [m], k ∈ [K ] (5)

∑m
i=1 yφi = 1, φ ∈ [l]; (6)

yφi ≥ 0, i ∈ [m], φ ∈ [l]. (7)

It is easy to see that any feasible set of values xij for L P1 can be transformed to
a feasible set of values yφi for L P2. The last thing is to get rid of the fractional
jobs from L P2. Let y∗

φi be the optimal solution to L P2. The number of preempted
jobs is at most fφ − 1 where fφ = |{y∗

φi : y∗
φi > 0, i = 1, . . . , m}|. We remove all
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the preempted jobs and schedule them at the end of any machine. This increase the
makespan by at most δ

∑l
φ=1

(
fφ − 1

)
. A basic feasible solution of L P2 has the pro-

perty that the number of positive variables is at most the number of rows in the
constraint matrix, mK + l, thus

∑l
φ=1

(
fφ − 1

) ≤ mK. In order to bound the total
increase by εLB we have to choose δ such that δ ≤ εLB

mK . The number of jobs after

merging can be bounded by UB·mK
δ/2 + l ≤ 2m2K 2

ε
+ (

mK
ε

)K = O
((

mK
ε

)K
)
, thus the

claim follows. �

3 Min Max Flow Shop Scheduling Problem

In theMin Max Fm||Cmax we are given a set of jobs J = {J1, . . . , Jn}, which must
be processed sequentially on each of m machines M1, . . . , Mm . Each job completes
on machine Mi before it starts on Mi+1. Each machine can execute at most one job at
a time. A schedule is a permutation of jobs. The processing times are uncertain and
are described by a constant-size set of scenarios Γ = {S1, . . . , SK }. Thus pS

ji is the
processing time of job Jj on machine Mi under scenario S. Similar as in previous
section we are looking for a schedule π∗ satisfying (1).

Once again we start with setting the lower and the upper bound:

LB = 1

m
max
S∈Γ

n∑

j=1

m∑

i=1

pS
ji ≤ OPT ≤ max

S∈Γ

n∑

j=1

m∑

i=1

pS
ji = UB.

Lemma 4 With 1 + ε loss, for every job Jj under scenario S we can round the pS
ji ,

down to the nearest value
(
maxS∈Γ maxi pS

ji

)
· ε

m2K · k, k = 0, 1, . . . , m2K
ε

− 1.

Proof The proof is analogous to the proof of Lemma1. The additional m factor
appears because replacing job processing time results in increasing its m parts. �

For any Jj we define the job profile to be mK-tuple < Π1,1, j , . . . , ΠK ,m, j ,> such
that pSk

ji is equal to
ε

m2K · Πk,i, j maxS∈Γ maxi pS
ji . The value d j := maxS∈Γ maxi pS

ji
is the scale factor.

Lemma 5 The number of distinct job profiles is at most l :=
(

m2K
ε

)mK
.

Proof Every job profile has mK entries with possible m2K
ε

values. �

Now we perform the grouping step described in previous section with δ :=
m

(
ε

6m2K 2

)α+1
LB, for α- constant, defined later.

Lemma 6 With 1 + O(ε) loss, the number of jobs can be reduced in linear time to

be at most Δ = min{n, 2K
(
6m2K 2

ε

)m/ε +
(

m2K
ε

)mK}.
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Proof Let σ = ε
6m2K 2 and α = 0, 1, . . . , m/ε − 1. First we partition the set of

large jobs into two subsets L1, L2 such that L1 = {Jj : mσαLB < d j }, L2 = {Jj :
mσα+1LB < d j ≤ mσαLB}. Now we can choose α such that

∑
J j ∈L2

∑
i∈[m]

∑
S∈Γ

pS
ji ≤ εK · LB, see [5]. Thus with 1 + O(ε) loss the jobs from L2 can be scheduled

at the end.
Nextwe can bound the number of jobs from L1 by K ·UB

mσαLB = K
σα which is a constant.

Using the techniques from e.g. [5] we can partition the time [0, U B] into constant
number of intervals and with 1 + O(ε) loss provide that each job from L1 starts at
the beginning of some interval. Thus we can enumerate all possible schedules of
jobs from L1. The last thing is to schedule jobs from T . To do so we divide the time
into intervals such that t S

vi (v = 0, . . . , |L1|, i ∈ [m], S ∈ Γ ) defines the empty space
between consecutive jobs v, v + 1 ∈ L1 on machine i under scenario S. Moreover,
t S
i0 = 0 and t S

i |L1|+1 = C is a parameter optimized by the LP3. Let l S
vi be the length

of interval t S
vi . The task is to schedule jobs from T within the intervals.

We formulate L P3 as follows. For each job Jj ∈ T we use the set of decision
variables x jτ ∈ [0, 1] for tuples τ = (τ1, . . . , τm) ∈ A,where A = {(τ1, . . . , τm)|0 ≤
τ1 ≤ τ2 ≤ . . . ≤ τm ≤ |L1|}. Now x jτ represents the fraction of job Jj processed
according to τ = (τ1, . . . , τm), i.e. the job Jj onmachine i is processed in interval τi .

Let L S
v,i = ∑

J j ∈T

∑
τ∈A|τi =v x jτ pS

ji be the load of jobs from T in t S
vi . By Lemma4

with a small loss we have that L Sk
v,i = ∑

J j ∈T

∑
τ∈A|τi =v x jτ

ε
m2K Πk,i, j d j . Let LP3:

min C s.t. L S
v,i ≤ l S

v,i i ∈ [m], S ∈ Γ, v = 0, . . . , |L1| (8)
∑

τ∈A x jτ = 1, Jj ∈ T, (9)

x jτ ≥ 0, Jj ∈ T, τ ∈ A, (10)

Similar to previous section, for each φ let us consider a merged job with a profile φ

and a scale factor equal to
∑

J j ∈Tφ
d j . Let yφτ be the variable describing the fraction

of merged job from Tφ , processed according to τ . Let

L∗Sk
v,i =

∑

τ∈A|τi =v

l∑

φ=1

yφτ

∑

J j ∈Tφ

ε

m2K
Πk,i, j d j ,

this results in the following linear programming formulation L P2:

min C s.t. L∗S
v,i ≤ l S

v,i , i ∈ [m], S ∈ Γ, v = 0, . . . , |L1|, (11)
∑

τ∈A yφτ = 1, φ = 1, . . . , l; (12)

yφτ ≥ 0, φ ∈ [l], , τ ∈ A, (13)

With anotation andargumentation from theprevious sectionweget
∑l

φ=1

(
fφ − 1

) ≤
mK(|L1| + 1) ≤ 2mK K

σα , thus the increase of the makespan can be bounded
by 2mK K

σα · mσα+1L B = 2m2K 2σLB. Now using the Sevastianov algorithm for
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each interval t S
vi we can find a schedule of the length at most l S

vi + (mK + 1)mσα+1

LB, this increase the total length at most by (|L1| + 1)(mK + 1)mσα+1L B ≤
4m2K 2σLB. The total increase can be bounded by 2m2K 2σ L B + 4m2K 2σLB =
6m2K 2σLB. In order to bound the total increase by εLB we choose σ such that
σ ≤ ε

6m2K 2 . The number of jobs after merging can be bounded by U B·K
δ/2 + l ≤

2K
(
6m2K 2

ε

) m
ε +

(
m2K

ε

)mK
. �

4 Approximation Scheme for Online Problems

In this section we conclude that based on the constructed PTASs we can construct
an approximation scheme for the online counterpart of these problems.

In the considered online setting there is a release date associated to every job
at which the full information of the job arrives. The released information is ill-
known i.e. the task master reveals the constant-size set of scenarios with possible
processing times. The scheduler assigns jobs tomachines without knowing the future
jobs information. At any time, the task master may stop issuing any further job,
the scheduler completes the solution. At this time jobs takes one of the possible,
described with scenarios, processing values. The chosen scenario may be considered
as a choice of a task master. Now, we compute the competitive ratio [4] of the length
of the schedule for the worst case scenario to the optimal offline Min-Max schedule.

Our goal is to construct a Competitive Ratio Approximation Scheme (CRAS)
introduced in [4, 7], which algorithmically constructs an online algorithm with a
competitive ratio arbitrarily close to the best competitive ratio for a given problem.

We notice that the construction of a PTAS for both considered problems fulfil all
required properties to construct a CRAS. For more details we refer the reader to [7].
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The Price of Fairness for a Small Number
of Indivisible Items

Sascha Kurz

Abstract We consider the price of fairness for the allocation of indivisible goods.
For envy-freeness as fairness criterion it is known from the literature that the price of
fairness can increase linearly in terms of the number of agents. For the constructive
lower bound a quadratic number of items was used. In practice this might be inade-
quately large. So we introduce the price of fairness in terms of both the number of
agents and items, i.e., key parameters which generallymay be considered as common
and available knowledge. It turns out that the price of fairness increases sublinearly if
the number of items is not too much larger than the number of agents. For the special
case of conformity of both counts, exact asymptotics are determined. Additionally,
an efficient integer programming formulation is given.

1 Introduction

Fair division, i.e., the problem of dividing a set of goods between several agents, is
studied since ancient times, see e.g. [2]. Also in the context of global optimization
fairness aspects cannot be faded out completely. As argued by Bertsimas et al. [1],
harming a certain fairness criterion may lead to the situation that a globally optimal
solution is not implementable by selfish agents. So, from a practical point of view it
is vital to take possible barriers for the execution of an optimized plan into account.
Perceived fairness is indeed an important issue. However, considering additional
fairness requirements comes at a certain cost. So, several authors have studied the
price of fairness as a measurement of the costs of ensuring a certain kind of fairness
among the agents.

Herewe consider the allocation ofm indivisible items among n agentswith respect
to the fairness criterion of envy-freeness, which roughly means that no agents wants
to swap the assigned allocation with another agent. Additionally we assume additive
utility functions, i.e., the utility of a bundle is just the sum of the utilities of the
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elements in the bundle, summing up to one for all agents. This setting as well as
other fairness criteria and types of items have been studied, see e.g. [3].

While our theoretical setting is rather narrow, our contribution lies in highlighting
that the number of items has a significant impact on the price of fairness. For a
complete instance with all information, i.e., all utility functions are known, one can
compute the unique value of the price of fairness. A possible justification for the study
of worst case bounds for the price of fairness are situations where it should be more
generally decided whether a fairness criterion should be incorporated into a certain
procedure or not. Giving bounds for the maximum value of the price of fairness as a
function of certain key parameters, which generally may be considered as common
and available knowledge, may be beneficial for such decisions. The number of agents
n is an obvious example of such a key parameter. Here we argue that the number of
items m is also an interesting key parameter.

In our setting, the price of fairness can be as large as Θ(n) if we allow a large
number of items. If the number of items is restricted to a small number, compared
to the number of agents, then it turns out that the worst-case bound decreases to
Θ(

√
n). Even the smallest case possible, admitting envy-free allocations, m = n is

far from being innocent. Nevertheless we determine its exact value for all n up to a
constant and give a fast-to-solve ILP formulation.

2 Basic Notation and Definitions

Let J = {1, . . . , n} be a set of agents and I = {1, . . . , m} be a set of indivisible
items. Each agent j ∈ J has a non-negative and additive utility function u j over the
subsets ofI with u j (∅) = 0 and u j (I ) = 1. An allocationA = (A1, . . . , An) is a
partition of I meaning that the elements of A j are allocated to agent j . We call an
allocation envy-free, if we have u j (A j ) ≥ u j (A j ′) for all j, j ′ ∈ J , i.e., no agent
evaluates a share of one of the other agents higher than his own share. Depending
on the utility functions there may be no envy-free allocation at all, consider e.g.
u j ({1}) = 1 and u j ({i}) = 0 for all i �= 1. As a global evaluation of an allocation
we use the sum of the agents utilities, i.e., u(A ) = ∑n

j=1 u j (A j ). ByA � we denote
an allocation maximizing the global utility u and similarly by A �

f we denote an
envy-free allocation, if exists, maximizing u. With this the price of envy-freeness for
n agents penvy(n) is defined as the supremum of u(A �)/u(A �

f ). Obviously we have
penvy(1) = 1. For n > 1 the authors of [3] have shown 3n+7

9 ≤ penvy(n) ≤ n − 1
2 .

Besides penvy(2) = 3
2 no exact value is known.

The construction for the lower bound of penvy(n) uses Ω(n2) items so that one
can ask if the price of fairness decreases if the number of items is restricted to a
sub-quadratic number of items, which seems to be more reasonable in practice. So
we define penvy(n, m) as the supremum of u(A �)/u(A �

f ), where the number of
items equals m. In any envy-free allocation we have u j (A j ) ≥ 1

n since otherwise
u j (I ) < 1. Thus

∣∣A j

∣∣ ≥ 1 so that we can assume m ≥ n. The first case m = n is
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studied in the next section. Obviously we have penvy(n, m) ≤ penvy(n, m + 1) ≤
penvy(n) for all m ≥ n ≥ 1. The case of a small (cf. Theorem2) number of items is
considered in Sect. 4.

3 The Smallest Case: One Item per Agent

As an abbreviation we use xij = u j ({i}) for all 1 ≤ i, j ≤ n. The maximum utility
u(A �) can be easily determined as

∑n
i=1 max j xij in linear time. As argued before

in any envy-free allocation of an instance with n = m each agent is assigned exactly
one item. W.l.o.g. we assume that item j as assigned to agent j for all 1 ≤ i ≤ n,
i.e., we have xjj ≥ xij for all 1 ≤ i, j ≤ n. Using a matching algorithm the existence
of an envy-free allocation for m = n can be checked in polynomial time. For this
special case all envy-free allocations have the same utility.

The problem of determining worst case examples, i.e., penvy(n, n) can be formu-
lated as an integer linear programming problem:

max
n∑

i=1

n∑

j=1

zij − α

n∑

i=1

xii (1)

xij ∈ R≥0 ∀ 1 ≤ i, j ≤ n
n∑

i=1

xij = 1 ∀ 1 ≤ j ≤ n (2)

xjj ≥ xij ∀ 1 ≤ i, j ≤ n (3)

yij ∈ {0, 1} ∀ 1 ≤ i, j ≤ n
n∑

j=1

yij = 1 ∀ 1 ≤ i ≤ m (4)

zij ∈ R≥0 ∀ 1 ≤ i, j ≤ n zij ≤ min
(
yij, xij

) ∀ 1 ≤ i, j ≤ n (5)

Here inequalities (2) specify the non-negative utilities of agent j for item i , which
sum up to one. The envy-freeness of the allocation given by A j = { j} is guaranteed
by Inequality (3). In an optimal assignment item i is assigned to agent j iff yij =
1, see inequalities (4). The auxiliary variables zij measure the contribution to the
global welfare, see inequalities (5). If the target function (1) admits a non-negative
value, then we have penvy(n, n) ≥ α and penvy(n, n) < α otherwise. We can already
conclude that the suppremum is attained in the definition for the price of fairness.

Using a bisection approach we were able to exactly determine penvy(n, n) for all
n ≤ 9, i.e., penvy(n, n) = 1, 1, 8

7 ,
4
3 ,

60
43 ,

3
2 ,

63
40 ,

72
43 ,

9
5 . It turned out that the optimal

solution for n ≥ 2 have a rather special structure. The xij all were either equal to
zero or to 1

k j
, where 2 ≤ k j ≤ n is an integer. Even more, at most three different

k j -values are attained for a fixed number n, where one case is always k j = n. In the
next subsection we theoretically prove this empirical observation.
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3.1 Special Structure of the Optimal Solutions for m = n

For the ease of notation we use τ : {1, . . . , n} → {1, . . . , n}, mapping an item i to
an agent j , representing an optimal assignment, i.e., yiτ(i) = 1 for all 1 ≤ i ≤ n.
By u�(x) = ∑n

i=1 xiτ(i) we denote the welfare of an optimal assignment and by
u�

f (x) = ∑n
i=1 xii the welfare of an optimal envy-free assignment. In the following

we always assume that x represents utilities from an example attaining penvy(n, n).
We call an agent j big if j ∈ im(τ ) and small otherwise.

Lemma 1 If agent j is small, then we have xij = 1
n for all 1 ≤ i ≤ n.

Proof If xjj ≤ 1
n then we have xij = 1

n for all 1 ≤ i ≤ n so that we assume xjj > 1
n .

Consider x ′ arising from x by setting x ′
ij = 1

n for all 1 ≤ i ≤ n. With this we have
u�

f (x ′) < u�
f (x) and u�(x ′) ≥ u�(x).

Lemma 2 If agent j is big, then we have xij = xjj for all i with τ(i) = j .

Proof We set w = ∑
i :τ(i)= j xij and k = |{i | τ(i) = j}|. W.l.o.g. assume xjj > w

k .
Consider x ′ arising from x by setting x ′

ij = w
k for all 1 ≤ i ≤ n with τ(i) = j . With

this we have u�
f (x ′) < u�

f (x) and u�(x ′) ≥ u�(x).

Lemma 3 If agent j is big, then we can assume xij = 0 or xij = 1
n for all i with

τ(i) �= j w.l.o.g.

Proof skipped

Thus we can assume w.l.o.g. that x� j consists of zeros and k j times the entry
1/k j , where k j is a positive integer. If k j < n, then all k j items with utility 1/k j are
assigned to agent j in an optimal solution. If τ(i) �= j , then xij ∈ {0, 1/n}. We can
further assume that there is at most one big agent j with k j = n.

3.2 An Improved ILP Formulation and an Almost Tight
Bound for penvy(n, n)

Given the structural result from the previous subsection we can reformulate the
ILP to:

max
n∑

i=1

ri

i
− α

n∑

i=1

si

i

si ∈ Z≥0 ∀ 1 ≤ i ≤ n
n∑

i=1

si = n

ri ∈ Z≥0 ∀ 1 ≤ i ≤ n
n∑

i=1

ri = n ri ≤ i · si ∀ 1 ≤ i ≤ n
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Here si counts how oftenwe have k j = 1
i and r j counts how oftenwe have xiτ(i) = 1

j .
Having this ILP formulation at hand the exact values of penvy(n, n) can be computed
easily for all n ≤ 100. We observe that in each case at most three values of the vector
s are non-zero—going in line with our previous empirical findings.

Lemma 4 If xjj = 1
k and x j ′ j ′ = 1

k+g , where k, g ∈ N and k + g < n, then g ≤ 1.

Proof skipped

Theorem 1 penvy(n, n) ≤ 1
2

√
n + O(1).

Proof Choose k such that k j ∈ {k − 1, k, n} for all j ∈ J and seta = ∣∣{ j | k j = k}∣∣,
b = ∣∣{ j | k j = k − 1}∣∣. With this we have u�(x) = a + b + c/n, where c = n −
ak − b(k − 1) and u�

f (x) = a/k + b/(k − 1) + (n − a − b)/n. Next we set d =
a + b and k̃ = (ak + b(k − 1))/d. Since c/n ≤ 1, d/k̃ ≤ a/k + b/(k − 1), and
k̃ ≤ n/d we have

u�(x)

u�
f (x)

≤ d + 1
d
k̃

+ n−d
n

≤ n(d + 1)

d2 + n − d
≤ n(d + 1)

d2 + n
=: g(d).

For d ∈ {0, n} we have g(d) = 1. The unique local maximum of g(d) in (0, n) is at
attained at d = −1 + √

1 + n. Thus penvy(n, n) = u�(x)

u�
f (x)

≤ g(d) ≤ max
(
1, 1

2

√
n+

1
n + 1

)
.

Lemma 5 penvy(n, n) ≥ 1
2

√
n − 1

2 .

Proof Set a = k = ⌊√
n
⌋
and x ′ with a rows of the form ( 1k , . . . , 1

k , 0, . . . , 0) and
n − a rows of the form ( 1n , . . . , 1

n ). With this we have

penvy(n, n) ≥ u�(x ′)
u�

f (x ′)
≥ a + n−ak

n
a
k + n−a

n

≥ a

2
≥

√
n

2
− 1

2
.

Thus we can state penvy(n, n) = 1
2

√
n + Θ(1).

4 Bounds for penvy(n, m) for a Small Number of Items

If the number of items is not too large, i.e., m ≤ n + c
√

n for a constant c, then we
can utilize our results for the case m = n in order to deduce an Θ(

√
n)-bound for

the price of fairness.

Theorem 2 If m ∈ n + Θ(
√

n) with m ≥ n then penvy(n, m) ∈ Θ(
√

n).
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Proof Consider a utility matrix x with penvy(n, m) ≤ u�(x)/u�
f (x) + ε for a small

constant ε ≥ 0. Choose a constant c ∈ R≥0 withm = c + √
n. By S ⊆ J we denote

the set of agents to which a single item is assigned in the optimal envy-free allocation
and set s = |S|. All other agents get at least two items so that n − s ≤ 2c

√
n and

s ≥ n − c
√

n. Now consider another utility matrix x ′ arising from x as follows.
For each agent in S copy the utility row from x . Replace the remaining agents
from J \S by m − s ≥ n − s new agents having utility 1/m for each item. With
this we have u�

f (x) ≥ u�
f (x ′) − (m − s) · 1

m ≥ u�
f (x ′) − 3c√

n
and u�(x) ≤ u�(x ′) +

2c
√

n since each agent j /∈ S could contribute at most 1 to u�(x). Thus we have

u�(x)

u�
f (x)

≤ u�(x ′) + 2c
√

n

u�
f (x ′) − 3c√

n

≤ 1

1 − 3c√
n

·
(

u�(x ′)
u�

f (x ′)
+ 2c

√
n

)

due to u�
f (x ′) ≥ 1. Since the number of agents coincides with the number of items

in x ′, the right hand side of the last inequality is in O(
√

n). The lower bound follows
from the case m = n.

5 Conclusion

We have introduced the price of fairness in terms of the number of agents and the
number of items. As a special case we have considered the allocation of indivisible
goods with respect to envy-freeness as a fairness criterion and normalized additive
utility functions. It turned out that the price of fairness is significantly lower if only a
small number of items has to be allocated compared to the case of a large number of
items. Up to a constant we have determined the exact value of the price of fairness
for the special case when the number of items coincides with the number of agents.
In order to determine the exact value we have given an efficient ILP formulation.

We close with some open questions: Can further values of penvy(n, m), where
m > n, be computed exactly? Can the ILP approach be extended to m > n? What is
the price of fairness in our setting for m ∈ Θ(n) (or more generally, for m ∈ Θ(nα)

with α < 2)? What happens for other fairness criteria?
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Robustness Concepts for Knapsack
and Network Design Problems Under
Data Uncertainty

Manuel Kutschka

Abstract This article provides an overview of the author’s dissertation (Kutschka,
Ph.D. thesis, RWTHAachenUniversity, 2013 [10]). In the thesis, we considermathe-
matical optimization under data uncertainty using MIP techniques and following the
robust optimization approach. We investigate four robustness concepts, their para-
metrization, application, and evaluation. The concepts are Γ -robustness, its gen-
eralization multi-band robustness, the novel more general submodular robustness,
and the two-stage recoverable robustness. We investigate the corresponding robust
generalizations of the knapsack problem (KP) presenting IP formulations, detailed
polyhedral studies including new classes of valid inequalities, and algorithms. In par-
ticular, for the submodular KP, we establish a connection to polymatroids and for the
recoverable robust KP, we develop a nontrivial compact reformulation and carry out
detailed computational experiments. Further, we consider the Γ -robust and multi-
band brobust generalizations of the network design problem (NDP) presenting MIP
formulations, new detailed polyhedral insights with new classes of valid inequalities,
and algorithms. For example, we derive alternative formulations for these robust
NDPs by generalizing metric inequalities. Furthermore, we present representative
computational results for the Γ -robust NDP using real-life measured uncertain data
from telecommunication networks based on our work with the German ROBUKOM
project.

1 Introduction

Mathematical optimization strives for providing theory, models, and methods to
tackle complex real-world problems and obtain relevant solutions in practice. The
knapsack (KP) and the network design problem (NDP) are two prominent problem
structures occurring in many applications in practice. The understanding of these
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(sub)problems allows a more accurate mathematical model of the original problem.
However, aspects as data uncertainty are oftentimes simplified or ignored. Thus
solutions become suboptimal or even infeasible for the original problem. Robust
optimization is one approach to take uncertainty into account. The data uncertainty
is modeled implicitly by an uncertainty set. The robust optimization problem asks
to find an optimal solution that is feasible for any possible data realization in this
uncertainty set. In particular, robust linear optimization offers several advantages over
other approaches. The definition of an uncertainty set does not rely on the knowledge
of probability distributions and is thus often better suited to applied problems where
only a finite discrete set of historical data is available, if any. In addition, robust
solutions are feasible for all realizations in the uncertainty set by definition. Further,
the complexity of robust linear programs does not increase compared to the original
non-robust linear program under mild conditions.

Contributions. The main contributions of the thesis are the following.

• The introduction and study of the concept of submodular robustness.
• Adetailed investigation of the recoverable robust KP; in particular with aΓ -robust
scenario set and the k-removal recovery rule.

• A detailed investigation of the submodular robust KP introducing the classes of
submodular robust (1, k)-configuration and weight inequalities.

• A study of the structure of covers and their extendability for robust KPs.
• A detailed investigation of the Γ -robust NDP including new classes of strong
inequalities (e.g.,Γ -robust cutset,Γ -robust envelope,Γ -robust arc residual capac-
ity, and Γ -robust metric inequalities) and algorithms solving the corresponding
separation problems as well as the Γ -robust NDP problem itself.

• A first-time investigation of the multi-band brobust NDP including MIP formu-
lations, polyhedral studies yielding new classes of valid inequalities (multi-band
brobust cutset andmulti-band brobust metric inequalities), and corresponding sep-
aration algorithms. In particular, we point out by examples how results of the
Γ -robust NDP can be generalized to the multi-band brobust setting.

• Representative extensive computational studies for two recoverable robust KPs
and one robust NDP with application to telecommunications.

• Practical decision support methods to determine the right parameters for a robust
approach, evaluate robustness by different realized robustness measures, and visu-
alize the quality of a robust solution by its robustness profile.

Outline. This article follows the three-parted structure of the author’s thesis.

2 Part I: Concepts

In the first part of this thesis, we introduce the four considered robustness concepts.

Γ -robustness. Introduced in [4, 5], the popularΓ -robustness uses a budget of robust-
ness to control conservatismby its robustness parameterΓ and offers a computational
tractable Γ -robust counterpart of a LP by exploiting strong LP duality.
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Multi-band robustness. A generalization of the concept of Γ -robustness can be
obtained by using multiple deviation intervals, so-called bands. For each band and
each uncertain data coefficient an associated deviation value is assumed. Thus, a
“histogram-like” discrete distribution can be specified. Following this approach, the
concept of Γ -robustness is the less detailed special case with only one nominal
value (band) and one negative and one positive deviation band. The idea of multi-
band robustness goes back to portfolio optimization [6] and has not been formulated
as a general robustness concept until recently in [8, 9].

Submodular robustness. A new and more general robustness concept is submod-
ular robustness. Here, the constraints of the robust counterparts are described by
submodular functions yielding submodular knapsack constraints. Given a base set
N := {1, . . . , n}, a function f : 2N → R≥0 is called submodular if f (X) + f (Y ) ≥
f (X ∪ Y ) + f (X ∩ Y ) holds for all X, Y ⊆ N . Submodular robustness generalizes
Γ -robustness and multi-band robustness.

The submodular robust uncertainty set is the polymatroid of the corresponding
submodular function. Although many studies exist, to our knowledge polymatroids
have not been related to robust optimization except for [2] on mean-risk minimiza-
tion where submodular functions and polymatroids are considered for a stochastic
optimization problem. Note, a linear function can efficiently be optimized over a
polymatroid using a greedy algorithm. Therefore the worst-case realization of a sub-
modular robust uncertainty set can be determined efficiently explaining this well-
known observation for the special case of Γ -robustness.

Recoverable robustness. Recoverable robustness, introduced in [11], is a recent
two-stage robust approach that can be seen as a deterministic alternative to stochastic
programming with limited recourse.

It can be sketched as follows: after the first-stage decision the realization of the
uncertain data is observed. Then, the previous decision may be altered according
to a given adjustment rule taking the realization into account. This second-stage
adjustment is called recovery as the first-stage decision may become infeasible by
the realization. Both, the first stage decision and its second stage adjustment inflict
costs. An optimal recoverable robust solution minimizes the overall costs, i.e., the
first stage costs and the worst-case second stage costs.

3 Part II: Robust Knapsack Problems

In the second part of this thesis, we consider the robust counterpart of the KP for
each of the four robustness concepts. For each resulting robust KP, we present math-
ematical formulations, study the corresponding polyhedral solution sets identifying
strong classes of valid inequalities, and develop algorithms solving the occurring
separation problems as well as the robust knapsack problem itself.
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The Γ -robust knapsack problem (Γ -RKP). We consider the Γ -RKP in this thesis
as “standard” example of a robust KP and a benchmark for our studies of other
robust variants of the KP. Later, it will turn out to be the special case of more general
concepts. Besides we consider covers for this problem and the resulting class of
cover inequalities which is valid for the knapsack polytope. It can be tightened by
lifting to the so-called extended cover inequalities. In this thesis, we are able to obtain
even stronger inequalities which we call strengthened extended cover inequalities by
exploiting the structure of the worst-case realizations.

The multi-band robust knapsack problem (mb-RKP). Applying the multi-band
robustness concept to the KP with uncertain item weights results in the mb-RKP; a
generalization of the Γ -RKP with a detailed uncertainty model. So far, the mb-RKP
has only been studied implicitly: in [8, 12] the multi-band brobust counterpart of
a general linear constraint, and thus a multi-band brobust knapsack constraint, is
described. But the mb-RKP itself is not introduced nor polyhedrally analyzed.

In this thesis,we give a corrected compact formulation, a first time study of themb-
RKP polytope including its dimension, trivial facets, as well as multi-band brobust
(extended) cover inequalities. Again, we are able to tighten the latter to multi-band
brobust strengthened extended cover inequalities. We provide new exact ILP-based
separation algorithms for all considered classes of valid inequalities.

The submodular (robust) knapsack problem (SMKP). The most general robust
KP we study is the SMKP. It has been introduced in [3] investigating in particular
extended covers and specific submodular functions.

In this thesis, we introduce the classes of submodular robust (1, k)-configuration
inequalities and submodular robust weight inequalities generalizing the correspond-
ing classes of the non-robust KP. We show that SMKP polytope restricted to the
item set defining a submodular robust (1, k)-configuration is completely described
by submodular robust (1, k)-configuration inequalities and non-negativity and thus
generalizing a result for the KP.

The recoverable robust knapsack problem (RRKP). In contrast to the other con-
sidered robust KPs, the RRKP implements a two-stage approach to handle the KP
with uncertain item weights.

In this thesis two particular RRKPs are considered: the K , l-RRKP with dis-
crete scenarios and the k-RRKP with Γ -scenarios (k/Γ -RRKP). We provide com-
pact MIP formulations for these problems, a polyhedral study of the corresponding
polytopes including their dimensions, trivial facets, and ((strengthened) extended)
cover inequalities.We give an ILP-based exact separation algorithms. In addition, we
study the problem to determine the worst-case realization of the k/Γ -RRKP and give
an exact combinatorial algorithm solving this problem efficiently. Furthermore, we
develop different algorithms to solve the k/Γ -RRKP exploiting our novel compact
problem formulation, and robustness cuts.

Computations.We complement our studies of robustKPs by extensive computations
on the RRKP evaluating the gain of recovery, the effectiveness of cover constraints,
and our new compact formulation of the RRKP with Γ -robust scenario set.



Robustness Concepts for Knapsack and Network Design … 345

4 Part III: Robust Network Design Problems

The Γ -robust and multi-band brobust NDPs are studied in this part of the thesis.

The Γ -robust network design problem (Γ -RNDP). TheΓ -robustness concept has
first been applied to the Γ -RNDP in [1].

In this thesis, we study the properties of Γ -RNDP polyhedra. For the link flow
polyhedron, we present a detailed study following the general method to consider
smaller (sub)networks or relaxations polyhedrally and transfer back the results to
the original polyhedron. First, we consider cutset-based inequalities which we iden-
tify by studying a lower dimensional projection of the Γ -robust cutset polyhedron
and a related auxiliary polyhedron. By the latter, we identify the new class of Γ -
robust envelope inequalities and are able to completely describe this auxiliary poly-
hedron. By lifting, we derive strong inequalities for the originalΓ -RNDPpolyhedron
which are facet-defining under mild conditions. Second, we consider the Γ -robust
single arc design problem and its related polyhedron. Here, we identify two new
classes of inequalities valid for the originalΓ -RNDP polyhedron. Third, we consider
Γ -robust metric inequalities. We present a capacity formulation of the Γ -RNDP and
generalize the so-called “Japanese Theorem” to the Γ -robust setting. Moreover,
we show metric inequalities (together with nonnegativity) completely describe the
Γ -RNDP capacity polyhedron. We also investigate special subclasses of Γ -robust
metric inequalities valid for the original Γ -RNDP polyhedron. Finally, we present
separation algorithms including (i) exact algorithms and a heuristic for Γ -robust cut-
set and envelope inequalities, (ii) an exact combinatorial polynomial algorithm for
Γ -robust arc residual capacity inequalities, and (iii) exact separation algorithms for
Γ -robust length and metric inequalities, and selected subclasses of Γ -robust metric
inequalities. Further, we present a polynomial time separation algorithm for violated
Γ -robust metric inequalities.

The multi-band brobust network design problem (mb-RNDP). So far, only a
simplified preliminary version of multi-band robustness has been considered in con-
nection with the NDP in [7]. Recently a technical paper [12] was published on a
NDP with multiple intervals following a similar but less general concept.

In this thesis, we present a compact MIP formulation of the mb-RNDP, and study
the corresponding multi-band brobust network design link-flow polyhedron (analo-
gously to the Γ -RNDP).We successfully further generalize the “Japanese Theorem”
and obtain a capacity formulation. Further, we investigate the multi-band brobust
cutset polyhedron obtaining the generalization of Γ -robust cutset inequalities and
Γ -robust envelope inequalities and use these as examples how results for the Γ -
RNDP can be generalized to the mb-RNDP. We also present exact separation algo-
rithms for multi-band brobust cutset, length, and metric inequalities including a
polynomial separation algorithm for violated multi-band brobust metric inequalities.
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Computations. We conclude this part of the thesis with a detailed experiments on
the Γ -RNDP using real traffic measurements of telecommunication networks. We
address the parametrization of the Γ -robustness using historical data, propose a
Pareto front analysi giving a practical example. Our studies include (i) the com-
parison of different formulations, (ii) the evaluation of nine different classes of
valid inequalities, (iii) the comparison of different algorithms to solve the Γ -RNDP,
(iv) the investigation of the scalability to large instances, and (v) the evaluation of
the quality of the obtained robust network designs.

5 Conclusions

In this thesis we present a comprehensive study of four different robustness con-
cepts with application to two important reoccurring optimization problems, the KP
and the NDP. We provide mathematical formulations, high quality polyhedral stud-
ies with new classes of strong inequalities, and (separation) algorithms for each of
them. Our investigations are accompanied by extensive computational experiments
on representative data (real traffic measurements from telecommunication) and the
development of analysis methods (realized robustness measures, robustness profile,
and Pareto front analysis) to be used as decision support in practice.
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An Insight to Aviation: Rostering Ground
Personnel in Practice

Manuel Kutschka and Jörg Herbers

Abstract Numerous dynamic, interdependent processes exist at an airport. These
processes are highly affected by uncertain events as changing flight schedules, delays,
or weather conditions. Naturally a flexible workforce management is needed to sup-
port such operation. Airlines, airports, and ground handlers provide the necessary
workforce to meet this demand. But legal requirements, union agreements and com-
pany policies define the flexibility of workforce planning and utilization in practice.
Nevertheless a valid (monthly) roster matching the supply with demand under all
these requirements has to be prepared usually several weeks before the day of oper-
ation. In this paper we discuss the optimization challenges to create monthly rosters
for ground personnel at an airport. We give examples of typical constraints, point out
characteristics of different work areas at an airport, and how this affects the rostering.
Further we present how rostering is solved by our branch-and-price solution method-
ology in practice. Using this approach, we report on our real world experience with
optimized rostering in airport ground handling.

1 Introduction

Ground handling at airports comprises a number of different services. Ramp handling
includes services like baggage and cargo loading, unloading and transportation, push-
back of aircraft, deicing, fueling and cabin cleaning. In addition, passenger services
typically include check-in, boarding and ticketing.

All of these work areas are faced with an important characteristic of air traffic,
namely the considerable level of variations in flight volume within the day, the week
and over the year. As an example, daily traffic at many airports is governed by
two to three more or less sharp peaks that translate into corresponding workforce
demands during limited time periods. In such situations, providing sufficient staff for
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peak periods almost necessarily leads to idle times in off-peak times. Flexible shift
models (including part-time employees on short shifts) are typical means to address
this challenge, but ground operatorswill also try to run operations at sufficient service
levels without fully covering peak demand.

Workforce management in the aviation and other service industries typically con-
sists of different long- to short-term processes. At a strategic level, recruiting and
training of staff needs to be planned. At a tactical level, annual leave has to be
assigned (e.g. based on fairness criteria) and actual rosters with shift timings gener-
ated and published. Operational scheduling is governed by short-term changes both
in flight-induced demand (e.g. due to extra flights) and by employee availability
(e.g. short-term sickness) that need to be compensated e.g. by additional shifts and
overtime.

All of these processes ultimately aim at providing the right amount of staff at the
right times, with the right qualifications and at appropriate locations of the airport.
The uncertainty both of flight schedule information (e.g. delays) as well as absences
like sickness form an integral part of the challenges that ground operators face every
day.

2 Related Work

Personnel scheduling is a very active research area in Operations Research. Corre-
spondingly, there is a vast body of scientific articles on the topic. An excellent survey
and classification of problems can be found in [5]. Van den Bergh et al. [10] give a
literature review and classification of articles by the problems considered, types of
constraints, objective functions, solutions approaches and application areas. Further
bibliographies can be found in [6, 7].

An application at an aircraft refueling stations is described in [1], using a continu-
ous tour scheduling formulation for a mixed workforce and employing a tabu search
methodology. Chu [3] describes the solution of a shift scheduling and tour schedul-
ing problem at Hongkong International Airport, using a goal programming approach
solved by heuristics. Brunner and Stolletz [2] solve a discontinuous tour scheduling
problem for check-in operations by a stabilized branch-and-price algorithm.

A complete IT system for ground staff rostering is described by Dowling et al.
[4] who solve a tour scheduling problem by a simulated annealing approach. Jacobs
et al. [9] describe a computer system developed for United Airlines that solves a
tour scheduling problem using a combined column generation/simulated annealing
algorithm.
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3 Monthly Rostering of Ground Personnel

In this paper, we focus on tactical rostering and in particular the creation of monthly
rosters. We start with a rather informal definition.

Definition 1 Given demands as set of shifts with corresponding qualification sets
and required staffing levels, a set of employees with qualifications, and further ros-
tering rules. The Monthly Rostering Problem (MRP) asks to find an assignment of
shifts to the employees such that qualification restriction and the further rostering
rules are obeyed and the staffing levels are met at the best.

Referring to the terminology of [5], the MRP therefore assumes that the prob-
lems of demand modeling and shift scheduling have been solved before. The MRP
therefore corresponds to the shift assignment problem, see also [7, 10].

In practice, the underlying basic assignment problem becomes challenging by
further rostering rules. These side constraints are imposed by different stakeholders,
e.g. law, union agreements, and company policies. Moreover, some of them must be
obeyed as hard rules while others may be treated as soft rules. We encounter several
reoccuring types of rules in our customer projects:

• Working time rules introduce restriction on the minimal/maximal daily/weekly/
monthly working time. Additional rules exist, e.g. on overtime handling or the
minimum rest time between shifts.

• Day on/off rules impose restrictions or “patterns” of allowed sequences of working
days and days off. Often these restrictions are even more specific and define e.g.,
early or late shifts.

• Rules on rest days and leave, e.g. specify the minimum or maximum number of
days off in a certain period, the handling of days off in lieu of overtime or single
days off.

• Employee participation is becoming more important nowadays, e.g. staff member
availabilities, rostering of teams, carpooling, social rules, work preferences, and
fairness concepts play an increasing role.

• Ergonomic have to be taken into account, e.g. shifts on consecutive days should
use same start times or rotate forward, the number of consecutively worked shifts
should be limited, and long consecutive shifts (in particular night shifts) are known
to have an impact on employee health and fatigue.

In addition to these rules, theworkforce is often composed of heterogeneous contracts
(e.g. part-time staff, temporary workforce etc.) as well as different qualification
levels. Mastery of all of these challenges is crucial in achieving cost efficiency in an
increasing competitive environment.

In the following, we formulate the MRP more formally. Let E be the set of
employees, Se the set of possible rosters or schedules for employee e ∈ E . Let D be
the set of demands, T the discretized planning period (here: days of a month), and A
the set of activities, i.e. combinations of shifts and qualification sets. Furthermore,
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we denote by Ad,t the activities that can be accounted for demand d ∈ D on day
t ∈ T , and for e ∈ E by As,t the allowed activities on day t ∈ T in the roster s ∈ Se.

We introduce four types of decision variables: the binary variable xe,s which
equals 1 if employee e ∈ E is assigned roster s ∈ Se and 0 otherwise, the binary
variable za,t which equals 1 if the activity a ∈ A is worked on day t ∈ T and 0
otherwise. The non-negative variables u and o are slack variables to represent under-
and overcoverages of the demands, respectively. Their usage is penalized by costs
pu

d and po
d , respectively. The target level of demand d ∈ D is denoted by nd .

Now, we can formulate the MRP as a mixed integer program:

min
∑

e∈E,s∈Se

ce,s xe,s + ∑
d∈D

pu
d ud + ∑

d∈D
po

dod (1a)

s.t.
∑

t∈T,a∈Ad,t

za,t + ud − od = nd ∀d ∈ D (1b)

∑
e∈E,s∈Se : a∈As,t

xe,s − za,t = 0 ∀a ∈ A, t ∈ T (1c)

∑
s∈Se

xe,s = 1 ∀e ∈ E (1d)

u, o ≥ 0, x ∈ {0, 1}E×Se , z ∈ {0, 1}A×T (1e)

where ce,s is the “cost” of assigning the employee e to roster s. These cost coefficients
incorporate all hard and soft rules by penalty costs. Note that formulation (1a)–(1e)
consists of exponentially many variables.

Solving the MRP. We follow a branch-and-price approach with temporal decom-
position to solve (1a)–(1e). The pricing problem we need to solve in the branch-and-
price turns out to be a resource-constrained shortest path problem (RCSPP) on an

Fig. 1 The pricing problem as a RCSPP on an auxiliary network. This acyclic network is layered
by the day. It contains a node for each activity, an arc for each allowed sequence of consecutive
activities as well as node labels, node bounds and arc costs for multiple resources. A resource-
constrained shortest path defines a sequence of daily activities and thus a roster variable with cost
in the master problem
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auxiliary network, see Fig. 1. The RCSPP is solved exactly using a dynamic pro-
gram. To speed up the pricing process, a faster heuristic is applied first. Moreover,
the auxiliary network is preprocessed to reduce its size and tighten the resource
windows.

4 Practical Experience

Next we report on our real world experiences with monthly rostering of ground
personnel based on past customer projects using INFORM’s GroundStar RosterPlus.

INFORM [8] is a company founded as university spin-off in 1969 and located in
Aachen, Germany, that specializes in intelligent planning and logistics decision-
making software based onOperationsResearchmethods. Today, aviation is its largest
division with about 200 employees.

GroundStar RosterPlus is INFORM’s optimization solution for staff rostering. It
implements the mathematical model and solution approach sketched in the previous
section. To represent the various customer-specific roster rules, it uses a flexible
modeling language which is interpreted by the system to produce an appropriate
optimization model for the branch-and-price algorithm.

We consider seven instances of the MRP for ground personnel. The data is based
on several customer projects and spans three different work areas (cabin cleaning,
ramp and passenger services).

Our results are summarized by the following reference values in Table1: name
(Instance), the considered employee group (Work Area), the number of employees
(#Empl.), an assessment of the additional rostering rules imposed by law, union
agreements and company policies (Rules), an indication on the heuristic decompo-
sition strategy (Decomposition), and the subsequent time to solve the optimization
problem by branch-and-price (Time), the average RSCPP network size (#Nodes and
#Arcs), and the number of solved RSCPPs (#Solved).

In Table1, we observe that work areas as cabin (cleaning) and ramp services have
rather simple rostering rules while passenger services ask for more complex rules.
The latter is mostly because of a higher number of part-timers with heterogeneous
qualification sets. In addition, achieving good acceptance of rosters in this area is
more difficult and requires more social rules to be modeled. The differences in com-
putation times are partially due to different parameterization of the temporal problem
decomposition. Clearly, the decomposition strategy affects the RCSPP network size
and thus the overall solution time. For example, for eager or medium decomposition
(leading to smaller core problems to be solved), we achieve optimization times of
less than 90s the lazy strategy yields solution times of about 1.5h for these instances.
This compares to manual roster creation that often takes planners 10 working days
or more which is still wide-spread practice at airports, ground handlers and airports.
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5 Conclusions

In this paper, we have considered rostering processes at an airport. In particular,
the MRP has been investigated. We have stated a mixed integer programming for-
mulation and discussed the type of rostering rules occuring in practice. Further, we
have described our approach to solve the MRP which is implemented in INFORM’s
GroundStar RosterPlus. Finally, we have shown real-world examples.
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Consensus Information and Consensus
Rating

A Note on Methodological Problems of Rating
Aggregation

Christoph Lehmann and Daniel Tillich

Abstract Quantifying credit risk with default probabilities is a standard tech-
nique for financial institutes, investors or rating agencies. To get a higher precision
of default probabilities, one idea is the aggregation of different available ratings
(i.e. default probabilities) to a so called ‘consensus rating’. But does the concept of
‘consensus rating’ really make sense? What is a ‘real’ consensus rating? This paper
tries to clarify under which conditions a consensus rating exists. Therefore, the term
of ‘consensus information’ is used. This leads to a concept that deals with the pre-
cision of aggregated rating characteristics. Within this framework the problem of
misinformation resp. contradictory information is addressed. It is shown that con-
sensus information is not necessarily more informative than individual information.
Furthermore, the aggregation aspects are discussed from a statistical perspective.

1 Introduction

The problem of aggregating ratings seems to be a quite new one in the literature.
One article in this field is [1, p. 76], who state:

[…] but to the best of our knowledge there is no literature discussing how to combine different
(heterogeneous) ratings of a company into a common rating.

In [1] amodel is developed that combines different ratings into a so called ‘consensus
rating’. In contrast, in this paper it should be discussed what a consensus rating is
and in which cases this concept makes sense.

Firstly, we introduce some notation. The credit default of debtor i is modeled by
a default variable Yi , which takes the value 1 in the case of default of debtor i and
0 otherwise, where i = 1, . . . , n. Thus, P(Yi = 1) is the unconditional default
probability of debtor i . Characterizing the creditworthiness of a debtor with an
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estimated default probability is the main target of a rating process. Typically, sev-
eral rating characteristics are used for calculating an estimated default probability.
These rating characteristics are contained in the subject specific real random vec-

tor Xi
def= (Xi1, Xi2, . . . , Xi K ) with realization xi

def= (xi1, xi2, . . . , xi K ) ∈ RK ,
i = 1, . . . , n. Thus, the probability of interest is the conditional default probability
P(Yi = 1|Xi = xi ).

In the following we assume that all rating agencies are using the same vector Xi .
This assumption is needed in the sequel for reasonable set operations. It is not a crucial
assumption because further variables can be added to the vectorXi without difficulty.
At the first sight the assumption seems counterintuitive, but in our framework the
differences do not lie in the rating characteristicsXi themselves but in the information
about them. This is discussed more detailed in Sect. 2.

2 Information Set and Consensus Information

In reality, the complete vector of realizations xi = (xi1, xi2, . . . , xi K ) ∈ RK is
unknown in the sense that some of its components are not exactly known or even
completely unknown. In the following, an institution that assigns ratings is called
‘rating agency’. This also could be a bank which evaluates the debtors.

Definition 1 The information set Irik ⊆ R contains all information of rating
agency r about the kth rating characteristic of debtor i .

Example 1 Three rating agencies r = 1, 2, 3 have information for debtor i about
sex (rating characteristic k) and income class (rating characteristic k ′).

(a) Rating agencies 1 and 2 have the information that debtor i is female. Rating
agency 3 does not know the sex of debtor i . Therefore the informaton sets are
I1ik = {1}, I2ik = {1}, I3ik = {0, 1}, where female is coded by 1 und male by 0.

(b) The rating agencies use different income classes. Rating agency 1 has the infor-
mation that the income of debtor i lies between 1000 and 2000, i.e. the infor-
mation set is I1ik ′ = [1000, 2000]. Analogously, the information sets of rating
agencies 2 and 3 are I2ik ′ = [1500, 2200] and I3ik ′ = [1100, 1800].

Definition 2 The information sets Irik for all rating characteristics k = 1, . . . , K
are combined in the pooled information set

Iri
def= Iri1 × Iri2 × · · · × Iri K , i = 1, . . . , n, r = 1, . . . , R.

Concerning the information of an arbitrary rating agency there are several situa-
tions.

1. Zero information: There is no information about all the rating characteristics,
i.e. Irik = R for all k = 1, . . . , K , thus Iri = RK .
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2. Complete information: For all rating characteristics there is exactly one value
xik . Thus every information set is a singleton, i.e. Irik = {xik} for all k = 1, . . . , K
and Iri = {xi }.

3. Incomplete information: At least one of the rating characteristics is not known
exactly, i.e. for at least one k = 1, . . . , K the information set Irik is not a singleton.

Because of different information sets, rating agencies estimate different con-
ditional probabilities P(Yi = 1|Xi ∈ Iri ) = P(Yi = 1|X1 ∈ Iri1, X2 ∈
Iri2, . . . , X K ∈ Iri K ). In order to estimate the same probability, the information sets
of the rating agencies should be merged. Therefore, assumptions about the informa-
tion sets are needed. These assumptions are discussed in the following subsections.

2.1 No Contradictory Information

Assumption 1 There is no contradictory information, i.e.
⋂R

r=1 Iri �= ∅.
Thereby it follows:

• The information sets are overlapping, in particular Irik ∩ Ir ′ik �= ∅ for all r, r ′, i, k.
• The information of the rating agencies differ referring to their precision, i.e. the
size (cardinality) of the information sets.

WithAssumption 1 the case of complete information is desirable. For getting close
to the complete information as much as possible, within this framework different
rating agencies should interchange and combine their information. This leads to a
consensus information.

Definition 3 LetAssumption 1 hold. The consensus information set of the i th debtor
for the kth component of the rating characteristics I ∩

ik and for all rating characteristics
I ∩
i are defined as

I ∩
ik

def=
R⋂

r=1

Irik resp. I ∩
i

def=
R⋂

r=1

Iri . (1)

Thus, I ∩
i is the Cartesian product of the I ∩

ik , i.e. I ∩
i = I ∩

i1 × I ∩
i2 × · · · × I ∩

i K . The
consensus information sets depend on the number of rating agencies involved. From
Assumption 1, it follows ∅ �= I ∩

ik ⊆ Irik ⊆ R for all k and ∅ �= I ∩
i ⊆ Iri ⊆ RK .

Hence, the consensus information set I ∩
i is at least as precise as every agency specific

information set Iri . If the condition I ∩
i � Iri is fulfilled for all r ∈ {1, 2, . . . , R}, the

intersection leads to a higher precision of the consensus information in comparison
to every single information set.

Example 2 The information sets from Example 1 lead to the following consensus
information sets: I ∩

ik = {1}, I ∩
ik ′ = [1500, 1800], I ∩

i = {1} × [1500, 1800].

The consensus information set I ∩
i is more precise than every agency specific

information set Iri .
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The term ‘consensus information’ is already used in [1, p. 77]:

[…] combining different rating information stemming from different rating sources, by
deriving appropriate consensus information, i.e., consensus ratings, which incorporate the
information of several rating sources.

By (1) the term ‘consensus information’ is defined and can be distinguished from
the term ‘consensus rating’, that follows in Sect. 3. So we sharpen both terms, which
cannot be distinguished clearly in [1]. In the case of rating aggregation the term of
‘consensus’ seems to be used the first time in [1]. Especially for ‘consensus’ they
refer to [3, p. 591], who define

consensus as the degree of agreement among point predictions aimed at the same target by
different individuals […]

Following [3] we use the term consensus only if the same target, i.e. the same con-
ditional default probability, is addressed.

2.2 Contradictory Information

In Sect. 2.1 it is assumed that there is no contradictory information, i.e. that all the
information sets are overlapping. In contrast, contradictory information means that
the intersection I ∩

ik = ⋂R
r=1 Irik could be the empty set. This would imply that there is

at least one misinformation and the approach from above is not reasonable anymore.
How to get a consensus information in this case? One possibility is the union of

the information sets I ∪
ik

def= ⋃R
r=1 Irik which in general leads to more imprecise

information than before. A combination of both approaches is

I ∗
ik

def=
{

I ∩
ik, if I ∩

ik �= ∅,

I ∪
ik, if I ∩

ik = ∅.

The aggregation approaches above can be used for every scale. More specific
types of aggregation are the different types of mean concepts, e.g. mode, median or
(weighted) average. Another concept could be an interval from minimum to maxi-
mum. The use of these concepts depends on the respective scale. They are illustrated
by the following examples.

Example 3 Five rating agencies have the following information wether an enterprise
has its own division for risk controlling: no, no, no, no, yes.

• The intersection I ∩
ik is the empty set.

• Does it make sense to take the value ‘no’ because the majority of the observations
is ‘no’? This is the mode.

• Or is it better to choose ‘unknown’, because the first four agencies may have the
same (erroneous) source for this information? This would be the case of the union
I ∗
ik = I ∪

ik .
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The following example demonstrates the case of a rating characteristic, whose
realizations can take every value in an interval.

Example 4 Given the income classes from Example 1(b): What is the consensus
information set?

• The intersection leads to the interval I ∩
ik ′ = [1500, 1800] = I ∗

ik ′ .
• The union leads to the interval I ∪

ik ′ = [1000, 2200].
• The choice of minimum and maximum of the available values leads to the infor-
mation set [1000, 2200].

• The average of the lower resp. upper endpoints of the intervals leads to

[
1000+1500+1100

3 , 2000+2200+1800
3

] = [1200, 2000].

It remains unclear which approach is to be preferred. But an important conclusion
here is, that aggregation with contradictory information does not lead to an improved
information in every case. Thus, the construction of a rating based on a consensus
information in the case of contradictory information does not necessarily lead to a
rating that is more precise than before. This is in contrast to [1, p. 77] who state

that, from a general point of view, any suitably constructed consensus rating is more infor-
mative than the use of a single rating source.

3 Rating and Default Probability

Every information set Iri leads to a conditional default probability π(Iri ) = P(Yi =
1|Xi ∈ Iri ) ∈ [0, 1]. A rating agency calculates an estimate π̂r (Iri ) for this unknown
default probability π(Iri ). To get a consensus rating in the sense of estimating the
same target, rating agencies have to use the same information set, e.g. the consensus
information set. This information set can be reached with the aforementioned ideas.
If the rating agencies do not use the same information set, they address different
targets and therefore a consensus (rating) is not achievable.

But even if all the rating agencies use the same information set Ii , i.e. I1i = · · · =
IRi = Ii , there are many aspects which lead to different estimates π̂r (Ii ) �= π̂r ′(Ii ):

1. Statistical model: There are differentmodels to calculate default probabilities (cf.
[2]). A standard model is the logit/probit model. Within this model the variables,
i.e. the elements of the information set, usually constitute a linear combination
(linear predictor). Instead of a linear combination one can choose this predictor to
be non-linear. Additionally, every rating agency uses (slightly) different variables
in the models.

2. Estimation: There are different estimation methods, e.g. maximum likelihood,
least squares, Bayesian methods etc. Another aspect is the estimation error of the
parameters. This estimation error has an influence on the estimation error of the
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resulting default probability. The use of confidence intervals can be a possibility
to consider this problem.

3. Data set: The data sets that are used to estimate the model parameters will differ
between the rating agencies.

4. Time horizon: Every rating refers to a time horizon, e.g. one month, one year etc.
Additionally, there are two types of ratings that need to be distinguished, point-
in-time and through-the-cycle. In order to compare and/or to aggregate ratings,
these must have the same time horizon and must be of the same type.

4 Conclusion

The bottom line is that a real consensus rating is practically impossible, because
the rating agencies not only need to have the same information (i.e. the consensus
information) but also the same methods to calculate default probabilities. A slightly
weaker concept of consensus rating could be the aggregation of different estimates,
based on the consensus information. In this case it is ensured that the same default
probability is estimated and such a concept is in line with [3]. As already denoted
by [1, p. 77] an estimation based on the consensus information is to be preferred.
Constructing a consensus information can be quite complicated as shown in Sect. 2.
Especially in the case of contradictory information the resulting consensus informa-
tion set is not necessarily more informative than the information sets of the single
rating agencies. But the main problem is, that a rating agency strives to get more pre-
cise information than its competitors and especially interchange and recombination
of information is not desired.

Still an open question is the aggregation of default probability estimates based on
the same as well as on different information sets. One approach to aggregate ratings
is suggested by [1], whose method can be applied in both cases. Especially in the
case of different information sets the term ‘compromise rating’ seems to be more
appropriate than ‘consensus rating’.
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Integration of Prospect Theory
into the Outranking Approach
PROMETHEE

Nils Lerche and Jutta Geldermann

Abstract Outranking methods as a specific application of Multi-Criteria Decision
Analysis (MCDA) are applied to structure complex decision problems as well as to
elicitate the decision makers preferences. Therefore, a consideration of behavioral
effects within outranking-methods seems to be meaningful. Several behavioral effects
and biases have been identified in previous studies, however, only few approaches
exist to consider such behavioral issues within the application of MCDA-methods
explicitly. The prospect theory developed by Kahneman and Tversky (1979) repre-
sents one of the most prominent theories from behavioural decision theory. Their
findings concerning the decision behaviour of humans, e.g. loss aversion or refer-
ence dependency, are broadly supported and confirmed through a variety of empirical
research. Hence, the aim of the presented paper is to integrate these elements from
prospect theory within the outranking approach PROMETHEE. For that purpose,
an additional discrete reference alternative is incorporated. A case study concerning
the sustainable usage of biomass for energy conversion illustrates the new developed
method.

1 Introduction

An important theory concerning preferences and actual choice behaviour is prospect
theory by Kahneman and Tversky [9]. Two elements from prospect theory are refer-
ence dependency and loss aversion. Since these elements deal about actual assessment
behaviour concerning potential outcomes by humans, they seem to be of particular
interest with respect to outranking-methods.

Hence, the aim of the presented paper [11] is to extend Preference Ranking Organ-
isation Method for Enrichment Evaluations (PROMETHEE) about elements from
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prospect theory (further denoted as PT-PROMETHEE) and to validate this extended
version within a case study. The paper is structured as follows: In Sect. 2, the theo-
retical background of prospect theory and the development of PT-PROMETHEE is
explained. In Sect. 3, findings from an application within a case study are described.
Finally, Sect. 4 summarizes the main results and concludes.

2 The Integration of Prospect into PROMETHEE

Prospect Theory was developed by Kahneman and Tversky [9] in order to explain
human decision behaviour under risk. Two important findings from prospect theory
are reference dependency and loss aversion. Reference dependency describes that
humans assess a potential outcome relatively to personal reference, which they use
as benchmark. Loss aversion follows from reference dependency and means that
humans further divide potential outcomes into gains and losses, depending on the
reference. Additionally, a potential loss has a larger effect on desirability than a gain
of the same amount.

In prospect theory, this assessment behaviour of a decision maker is represented
by a particular value function, which assigns a value v(d) to every outcome. The
reference is located in the origin and every outcome is assessed by its positive or
negative difference d. Loss aversion is integrated through a steeper slope for potential
losses, quantified by a loss aversion coefficient λ [12]. Originally, the value-function
is S-shaped, but it can be also approximated by a piecewise linear value-function,
which is further illustrated in Fig. 1 [9, 10].

PROMETHEE has been developed by Brans et al. [4] and important charac-
teristics of PROMETHEE are that it is based on pairwise comparisons and con-
siders weak preferences as well as incomparabilities. Moreover, several extensions
have been developed in recent years, e.g. Fuzzy-PROMETHEE [7]. Two approaches
have already been developed concerning the incorporation of prospect theory into
PROMETHEE [3, 14]. However, in contrary to these approaches, the definition of
a further discrete reference alternative ar is added within PT-PROMETHEE to con-
sider reference dependency and following steps are adjusted for the incorporation of
loss aversion in a different way.

Through the integration of an additional discrete reference alternative ar , an indi-
vidual reference point can be defined which can serve as benchmark with regard
to the pursued overall goal. Furthermore, it can be determined if the choice of one
of the selectable alternatives is generally advantageous. In accordance to Bleichrodt
et al. [2], the reference alternative is defined attribute-specific. This means, that a ref-
erence value must be determined for each criterion, which gives the decision maker
the opportunity to define an individual reference alternative. Thus, the definition of
the reference alternative ar allows to check if a criterion and its measurement are
adequate to address the overall goal.

Loss aversion is incorporated into PROMETHEE by adjusting the preference
functions. For that purpose, the loss aversion coefficient λ is used. The transfer is
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Fig. 1 Transfer of loss aversion into the preference functions of type III from PROMETHEE

based on the piecewise linear value function of prospect theory and the preference
function of Type III (V-shape) from PROMETHEE. To be in accordance with the
definition of preference functions, the logic of the piecewise linear value function is
represented within the first quadrant. Consequently, a preference function for both
gains and losses is obtained. Since a potential loss shall lead earlier to strict preference
than a potential gain, the preference threshold for losses pL needs to be smaller in
case of loss aversion. With the slope defined by m, loss aversion can be transferred
by dividing the normal preference threshold p by λ. The idea behind the transfer of λ

into the preference function of type III is illustrated in Fig. 1. By applying the same
procedure of dividing the thresholds p, q and σ by λ, also the other five generalised
criteria defined by Brans et al. [4] can be adjusted.

To quantify λ a new approach of using linguistic expressions concerning loss
aversion for a subsequent transfer on a quantitative scale was developed. For deter-
mination of the underlying quantitative scale findings from Heath et al. [8] as well
as Abdellaoui et al. [1] are used. Based on their findings, a range from 1 to 4 was
applied. The mean-value of 2.5 for loss aversion is chosen in orientation on the values
of 2.25 identified by Tversky and Kahneman [13]. The case of no loss aversion is
represented by λ = 1, since pL is defined by p/λ and consequently, both normal
preference functions and loss functions would be identically in this case. Addition-
ally, also a value of 0.5 is included to offer also the expression of a contrary effect
(risk seeking) to loss aversion.

Afterwards, the original procedure for calculation of outranking relations and
flows, which has been developed by Brans et al. [4], is adjusted. Regarding any
criterion i (i = 1, . . ., k), a potential loss would occur, if the reference alternative ar

has a superior value compared to any other alternative. Thus, all pairwise comparisons
of ar with respect to any alternative a which result in a positive preference value
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represent potential losses and consequently, the preference function for losses PLi (d)

must be applied for these comparisons:

PLi (d) = PLi (gi (ar ) − gi (a)) (1)

Vice versa, a potential gain occurs if a selectable alternative a has a superior value
compared to the reference alternative ar . In this case, the normal preference function
is applied, identically as it is for pairwise comparisons between selectable alterna-
tives:

Pi (d) = Pi (gi (a) − gi (ar )) (2)

Pi (d) = Pi (gi (a) − gi (a
′)) (3)

Based on this procedure, the calculation of outranking relations π is adjusted:

π(ar , a) =
k∑

i=1

PLi (gi (ar ) − gi (a)) · wi (4)

π(a, ar ) =
k∑

i=1

Pi (gi (a) − gi (ar )) · wi (5)

π(a, a′) =
k∑

i=1

Pi (gi (a) − gi (a
′)) · wi (6)

Afterwards, the calculation of positive outranking flows Φ+ and negative outranking
flows Φ− is adjusted:

Φ+(ar ) = 1

n − 1

∑

a∈A

π(ar , a) (7)

Φ−(ar ) = 1

n − 1

∑

a∈A

π(a, ar ) (8)

Φ+(a) = 1

n − 1
(π(a, ar )

∑

a′∈A

π(a, a′)) (9)

Φ−(a) = 1

n − 1
(π(ar , a)

∑

a′∈A

π(a′, a)) (10)

The net flows Φnet are determined as in original PROMETHEE:

Φnet = Φ+ − Φ− (11)
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Finally, both the partial and complete ranking can be determined [4]. However, in
addition to common rankings as in original PROMETHEE, the reference alternative
ar is included yet, indicating if a selectable alternatives is generally advantageous.

3 Feedback from an Application of PT-PROMETHEE
Within a Case Study

To gain feedback, PT-PROMETHEE was applied subsequently on an existing deci-
sion table [5, 6] concerning a sustainable concept for bioenergy. The alternatives
are a small-scale biogas plant, a large-scale biogas plant as well as a bioenergy-
village-concept and 39 criteria from environmental, economic, social and technical
dimensions are considered. For determination of required information within PT-
PROMETHEE, e.g. reference values or level of loss aversion, interviews with three
experts, who also defined criteria and values within the original determination of the
used decision table, were conducted.

Concerning reference dependency, the incorporation of an individual reference
alternative was appreciated by the experts and they were very interested in defining
reference values adequately. It was further mentioned that thinking about an adequate
reference helps not only to focus on the underlying overall goal (sustainability),
but also to check whether each criterion and its corresponding measurement unit
are in accordance with the overall goal. However, determining reference values for
qualitative criteria was very challenging.

With respect to the consideration of loss aversion, all experts were able for every
criterion to declare whether loss aversion exists. In fact, a λ-value different to one
occurs for most criteria. It is also remarkable, that the contrary effect to loss aversion
has been applied. But, all experts mentioned that the expression of loss aversion is
cognitively more challenging compared to defining the reference. Concerning the
approach for quantification of λ, the experts were able to express their loss aversion
on the linguistic scale. One expert also mentioned that the range of the scale is seen
as adequate.

4 Conclusion

In conclusion, PT-PROMETHEE allows an incorporation of loss aversion from orig-
inal prospect theory and gives the decision maker an opportunity to express it. Further
it facilitates thinking about pursued goals and helps to gather additional information
with respect to actual advantageousness of alternative through integration of an addi-
tional discrete reference alternative.

For further research, it would be meaningful to consider uncertainty, since prospect
theory was originally developed concerning uncertain problems. For that purpose,
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an extension about the use of scenarios is currently developed and it is planned to
test those approach within further workshops.
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Multistage Optimization with the Help
of Quantified Linear Programming

T. Ederer, U. Lorenz, T. Opfer and J. Wolf

Abstract Quantified linear integer programs (QIPs) are linear integer programs
(IPs) with variables being either existentially or universally quantified. They can be
interpreted as two-person zero-sum games between an existential and a universal
player on the one side, or multistage optimization problems under uncertainty on the
other side. Solutions of feasible QIPs are so called winning strategies for the exis-
tential player that specify how to react on moves—certain fixations of universally
quantified variables—of the universal player to certainly win the game. In order to
solve the QIP optimization problem, where the task is to find an especially attrac-
tive winning strategy, we examine the problem’s hybrid nature and combine linear
programming techniques with solution techniques from game-tree search.

1 Introduction

Mixed-integer linear programming (MIP) [1] is the state-of-the art technique for
computer aided optimization of real world problems. Nowadays, we are able to
solve large MIPs of practical size, but companies observe an increasing danger of
disruptions, which prevent them from acting as planned. One reason is that input
data for a given problem is often assumed to be deterministic and exactly known
when decisions have to be made, but in reality they are often afflicted with some
kinds of uncertainties. Thus, there is a need for planning and deciding under uncer-
tainty. Prominent solution paradigms for optimization under uncertainty are [2–6].
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Relatively unexplored are the abilities of linear programming extensions, as Quan-
tified Linear (Integer) Programming (QIP) [7–9]. For ease of computation, we only
consider 0/1 QIPs in the remainder of this paper.

2 Quantified Linear (Integer) Programming

We start with the major definitions for Quantified Linear (Integer) Programs (QLP/
QIP), beginning with the continuous problem.

Definition 1 (Quantified Linear Program) Let there be a vector of n variables
x = (x1, . . . , xn)

T ∈ Q
n , lower and upper bounds l ∈ Z

n and u ∈ Z
n with li ≤ xi ≤

ui , a coefficient matrix A ∈ Q
m×n , a right-hand side vector b ∈ Q

m and a vec-
tor of quantifiers Q = (Q1, . . . ,Qn)

T ∈ {∀, ∃}n , let the term Q ◦ x ∈ [l, u] with
the component wise binding operator ◦ denote the quantification vector (Q1x1 ∈
[l1, u1], . . . ,Qn xn ∈ [ln, un])T such that every quantifier Qi binds the variable xi

ranging over the interval [li , ui ]. We call (Q, l, u, A, b) with

Q ◦ x ∈ [l, u] : Ax ≤ b (QLP)

a quantified linear program (QLP).

If the variables are forced to integer values, it is called an Quantified Interger
Program (QIP). A QLP/QIP instance is interpreted as a two-person zero-sum game
between an existential player setting the ∃-variables and a universal player setting the
∀-variables. Each fixed vector x ∈ [l, u], that is, when the existential player has fixed
the existential variables and the universal player has fixed the universal variables,
is called a game. If x satisfies the linear program Ax ≤ b, we say the existential
player wins, otherwise he loses and the universal player wins. The variables are set
in consecutive order according to the variable sequence. Consequently, we say that a
player makes the move xk = z, if he fixes the variable xk to the value z. At each such
move, the corresponding player knows the settings of x1, . . . , xk−1 before taking
his decision xk . The most relevant term in order to describe solutions are so called
strategies. Let x ∈ {0, 1}n for the rest of this paper.

Definition 2 (Strategy) A strategy S = (V, E, c) is an edge-labeled finite arbores-
cence with a set of nodes V = V∃ ∪̇ V∀, a set of edges E and a vector of edge labels
c ∈ Q

|E |. Each level of the tree consists either of only nodes from V∃ or only of nodes
from V∀, with the root node at level 0 being from V∃. The i-th variable of the QLP
is represented by the inner nodes at depth i − 1. Each edge connects a node in some
level i to a node in level i + 1. Outgoing edges represent moves of the player at the
current node, the corresponding edge labels encode the variable allocations of the
move. Each node v∃ ∈ V∃ has exactly one child, and each node v∀ ∈ V∀ has as two
children, with the edge labels being the corresponding lower and upper bounds.
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A path from the root to a leaf represents a game of the QLP and the sequence
of edge labels encodes its moves. A strategy is called a winning strategy if all paths
from the root node to a leaf represent a vector x such that Ax ≤ b [10]. If there is
more than one winning strategy for the existential player, it can be reasonable to
search for a certain (the ‘best’) one. We therefore modify the problem to include a
linear objective function as shown in the following (where we note that transposes
are suppressed when they are clear from the context to avoid excessive notation).

Definition 3 (QLPs/QIPs with Objective Function) Let Q ◦ x ∈ [l, u] : Ax ≤ b be
given as in Definition 1 with the variable blocks being denoted by Bi . Let there also
be a vector of objective coefficients c ∈ Q

n . We call

z = min
B1

(c1x1 + max
B2

(c2x2 + min
B3

(c3x3 + max
B4

( . . .min
Bm

cm xm))))

Q ◦ x ∈ [l, u] : Ax ≤ b

a QLP/QIP with objective function (for a minimizing existential player).

Note that the variable vectors x1, . . . , xi are fixed when a player minimizes or
maximizes over variable block Bi+1. Consequently, we deal with a dynamic multi-
stage decision process, similar as it is also known from multistage stochastic pro-
gramming [2].

We investigate on how far linear programming techniques can be used in order to
solve QIPs. As we will see, the simplex algorithm plays a key role similar as it does
for conventional integer programs. Yasol, the ideas of which are presented in this
paper, proceeds in two phases in order to find optimal solutions of 0/1-QIP instances.

• Phase 1: Determine the instance’s feasibility, i.e. whether the instance has any
solution at all. If it has any solution, present it. During this phase, Yasol acts like
a QBF solver [11] with some extra abilities.

• Phase 2: Go through the solution space and find the provable optimal solution.
The Alphabeta algorithm [12], which up to now has mainly been used in search
trees of games like chess etc., performs this task.
The alphabeta algorithm walks through the search space recursively and fixes
variables to 0 or 1 when going into depth or relaxes the fixations again when
returning from a subtree. Relaxing integrality as well as the universal-property
results in an ordinary LP which often gives the opportunity to cut off parts of the
search tree with the help of dual information, i.e. dual bounds or cutting planes
for the original program. Algorithm 1 shows a basic alphabeta algorithm with the
ability of non-chronologic back-jumping with the help of dual information, i.e. by
solving an LP-relaxation, cf. line 2 and 5–8. The idea is quite old and goes back to
Benders and has been described already in the seventies [13]. In [14] the technique
has been combined with an implication graphs.
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Algorithm 1: A basic alphabeta(int d, int a, int b) routine, sketched

1 compute LP-relaxation, solve it, extract branching variable or cut;
2 if integer solution found then return objective value ; // leaf reached
3 if x_i is an existential variable then score := −∞; else score := +∞;
4 for val_ix from 0 to 1 do // search actually begins …
5 if level_finished(t) then // leave marked recursion levels
6 if x_i is an extistential variable then return score ;
7 else return −∞ ;

end
8 assign(x_i, val[val_ix], …);
9 v := alphabeta(d-1, fmax(a, score), b);

10 unassign(x_i);
11 if x_i is an existential variable then
12 if v > score then score := v; // existential player maximizes
13 if score ≥ b then return score ;

else
14 …anallogously …;

end
end

Algorithm 2: A local repetition loop extends the basic algorithm with conflict
analysis and learning; replaces line 9 in Algorithm 1

1 repeat
2 if the current level is marked as finished then leave the recursion level;
3 if propagate(confl, confl_var, confl_partner, false) // unit prop. [11] then
4 if x_i is an existential variable then
5 v = alphabeta(t+1, lsd-1, fmax(a, score), b);
6 if v > score then score := v;
7 if score ≥ b then break;

else
…analogously …;

end
else

8 add reason, i.e. a constraint, to the database ; // [11]
9 returnUntil(out_target_dec_level) ; // set level_finished(…)

10 if x_i is an existential variable then return score;11 else return −∞ ;
end

until there is no backward implied variable;

The new cut possibly indicates that the search process can be directly continued
several recursion levels above the current level. In this case, the superfluous levels are
marked as finished—in Algorithm 1 that is indicated by level_finished(t)—and the
alphabeta procedure breaks out of all loops and walks up the search tree with the help
of the lines 5–7. For other design decisions like branching variable selection etc., we
refer to [14]. Non-chronologic backtracking is realized with the help of Algorithm
2, which replaces line 9 of Algorithm 1. In fact, there is a loop around the alphabeta
procedure call which is walked through as long as backward implied variables occur
deeper in the search tree. The procedure propagate(.) performs the implication
(bound propagation) of variables.



Multistage Optimization with the Help of Quantified Linear Programming 373

3 Computational Results

We compared the abilities of Yasol with the QBF-solver Depqbf and with Cplex and
Scip utilizing DEPs (cf. [9]). The latter are then called DEPCplex and DEPScip.
Depending on the type of test instances, i.e. QFB or 0/1-QIP with objective, we
competed either with Cplex solving a DEP and with Depqbf (one of the leading
QBF-solvers). Or, in the context of 0/1-QIPs, we passed on the QBF-solver and took
into additional consideration CBC and Scip, which are the best open-source MIP
solvers at the current time. The experiments on QBF instances were done on PCs
with Intel i7 (3.6GHz) processors and 64GB RAM. Those on IP and QIP instances,
where memory was no limiting factor, were executed on Intel i7 (1.9GHz) with 8GB
RAM. All computations were limited to one thread, all other parameters were left at
default.

Currently, our solver Yasol can solve QSAT instances reasonable well, however
not as good as the best dedicated QBF-solvers. Cplex (V 12.5.0.1) is one of the
leading MIP solvers and DEPCplex operates on the deterministic equivalents of the
QBF instances which have been translated from boolean formulae format to MIP
format. On a test collection of 797 instances, taken from the qbflib.org, Depqbf
solves 674 instances, Yasol 584, but the DEP approach collapses. DEPCplex can
solve only 478. Each program got a maximum of 10min solution time for each
instance. The solution time consists of the sum of all individual solution times for a
specific program. Not solving the instance was punished with 600s.

Table1 shows the number of solved instances grouped by the number of universal
variables.We see that theDEPapproachbecomesmore andmore unalluring, themore
universal variables come into play. Experimental results draw a similar picture when
we examine 0/1-QIPs with objective. In order to examine the effects, we generated

Table 1 Computational results

# Univ. var. Depqbf DEPCplex Yasol

1–5 UV Time (s) 39185 41133 73732

# Solved 312/373 315/373 259/373

6–10 UV Time (s) 1805 1351 2146

# Solved 38/41 39/41 38/41

11–15 UV Time (s) 7961 25297 11023

# Solved 84/97 65/97 79/97

16–20 UV Time (s) 2609 84685 5929

# Solved 166/170 37/170 167/170

21+ UV Time (s) 16856 69600a 39620

# Solved 96/116 0/116 60/116

� Time (s) 68416 194128 132350

# Solved 696/797 456/797 603/797
aThe small number is due to aborting, Cplex could not solve the instances with 64GB memory
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Table 2 0/1-IPs, taken from miplib.zib.de and from there artificially constructed 0/1-QIPs

No. UV DEPCplex Yasol DEPScip DEPCbc

0 59/59 24/59 48/59 34/59

(max 1h) 19520s 132129s 55062s 112958s

1–4 138/138 103/138 137/138 138/138

(max 900s) 42 s 39984s 1072s 354s

10–14 46/46 46/46 34/46 23/46

(max 1200s) 1854s 972s 23440s 38867s

artificial 0/1-QIP instances from some of the IP-instances. Compared with the MIP
solvers Cplex, Scip, Yasol performs poor on pure IPs, as can be taken from Table2,
line 1. However, on the instance set with at least 10 universal variables (UV), the
picture changes again, andYasol takes the leadership (cf. line 3 of Table2: ‘10 to 14’).
Yasol seems to have by far less difficulties with the universal variables, however, has
improvement potential for existential variables.

4 Conclusion

In this paper, we investigated for the domain of 0/1-QIPs with objective, in how
far a direct search approach can compete with building a DEP and solving it with
state-of-the-art MIP solvers. On some of instances, the prototypical implementation
in the solver Yasol could solve 0/1-QIPs up to optimality, being even faster than the
best commercial solvers on the corresponding DEPs. Next, modern cutting planes
like implied-bounds, GMI, knapsack cover, . . . have to be integrated.
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Analysis of Ambulance Location Models
Using Discrete Event Simulation

Pascal Lutter, Dirk Degel, Lara Wiesche and Brigitte Werners

Abstract The quality of a rescue service system is typically evaluated ex post by
the proportion of emergencies reached within a predefined response time threshold.
Optimizationmodels in literature consider different variants of demand area coverage
or busy fractions and reliability levels as a proxy for Emergency Medical Service
quality. But no comparisons of the mentioned models with respect to their real-world
performance are found in literature. In this paper, the influence of these different
model formulations on real-world outcome measures is analyzed by means of a
detailed discrete event simulation study.

1 Introduction

Rescue and Emergency Medical Services (EMS) are an important part of public
health care. The quality of a rescue service system is typically evaluated ex post by
the proportion of emergencies reached within a predefined response time threshold.
Coverage is one of the most accepted a priori quality criteria in EMS literature [1].
Since 1971 [9], different covering models and various extensions of these models
are used to support ambulance location planning. The main challenge in ambulance
location planning is to provide an adequate service level with respect to accessi-
bility of an emergency within a predefined response time threshold and availability
of ambulances [4]. Optimization models in literature consider different variants of
demand area coverage, such as single coverage [2], double coverage [6] and empiri-
cally required coverage [5]. Other models use busy fractions [3] and reliability levels
[7] as a proxy criterion for EMS quality. All those models support the decision maker
on the strategic and tactical level of ambulance location planning, but differ regarding
the specification of the objective functions as well as concerning input parameters
and model assumptions. To the best of our knowledge, no systematic comparisons
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of different ambulance location models exist in literature. The aim of this paper is
to provide a comparison of the mentioned models concerning their suitability for
decision support in strategic and tactical ambulance location planning. A discrete
event simulation is used to systematically evaluate the resulting solutions of each
covering concept. It is analyzed, which of those covering concepts provides the best
proxy criterion for the real world performance measure. The remainder of the paper
is structured as follows: First a brief overview of the selected ambulance location
models is given. Technical details of the discrete event simulation are described and
results of a real world case study are presented afterwards.

2 Ambulance Location Models

In this paper, daytime-dependent extensions of fivewell knownmodels for ambulance
location are considered: The (1) Maximal Covering Location Problem (MCLP) [2],
the (2) Double Standard Model (DSM) [6], the (3) Maximum Expected Covering
Location Problem (MEXCLP) [3], the (4) Maximum Availability Location Problem
(MALP I/II) [7], and the (5) Empirically Required Coverage Problem (ERCP) [5].
To compare these models, a consistent constraint set is used and model assumptions
are briefly summarized. For additional descriptions of these models see e.g. [1]. The
aim of these models is to maximize the total demand served within a legal response
time threshold of r minutes, given a limited number of pt ambulances in period t .
i indicates the planning squares or demand nodes (i ∈ I ), while dit denotes the
demand of node i in period t ∈ T . To be able to serve an emergency at demand node
i , at least one ambulance has to be available within the response time threshold r ,
e.g. positioned at node j ∈ Ni t := { j ∈ J | disti j t ≤ r}, where disti j t describes the
response time between node i and node j in period t . The integer decision variable
y jt ∈ N0 indicates the number of ambulances positioned at node j in period t , and
the binary decision variable xk

it is equal to 1 if demand node i is covered k times in
period t . With the preceding notation, generic covering constraints are given by

∑

j∈Ni t

y j t ≥
pt∑

k=1

xk
it ∀i ∈ I ,∀t ∈ T . (1)

Setting the right hand side of constraints (1) equal to 1 ensures that each demand node
i can be reached within the response time threshold at least once if an ambulance
is available. This single coverage may become inadequate when several emergen-
cies occur at the same time and the assigned ambulances become busy. To hedge
against parallel operations resulting in unavailability of ambulances, the mentioned
models use different concepts and objective functions. All models ensure a suffi-
cient number of ambulances located in Ni t to serve each demand node i . Table1
compares the covering constraints, the objective functions, and the assumptions
of a priori information of the models. In addition to covering constraints, further
constraints are used to ensure correct relocations and to restrict the number of
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Table 1 Comparison of model constraints, objectives, and assumptions about required information

Model Covering constraint Objective Required
information

MCLP
∑

j∈Ni t
y j t ≥ x1i t max

∑
i∈I

∑
t∈T dit x1i t dit

DSM
∑

j∈Ni t
y j t ≥

x1i t + x2i t

max
∑

i∈I
∑

t∈T dit x2i t dit

MEXCLP
∑

j∈Ni t
y j t ≥∑pt

k=1 xk
it

max
∑

i∈I
∑

t∈T
∑pt

k=1 dit (1 − qt )q
k−1
t xk

i t dit , qt

MALP I
∑

j∈Ni t
y j t ≥∑pt

k=1 xk
it

max
∑

i∈I
∑

t∈T dit x Kt
i t dit , α, qt , Kt

ERCP
∑

j∈Ni t
y j t ≥∑pt

k=1 xk
it

max
∑

i∈I
∑

t∈T dit x
K�i t

i t dit , K�i t

Kt := �ln(1 − α)/ ln(qt )�, K�i t empirically required degree of coverage (see explanation below)

ambulances in use (see e.g. [5]). In theMCLP and the DSM a uniform single, respec-
tively double coverage is maximized. Few information is needed, but the unavailabil-
ity of ambulances due to parallel operations is ignored in the MCLP or simplified in
theDSMby using a time and spatial fixed backup (double) coverage. In theMEXCLP
it is assumed that each ambulance has the probability q, called busy fraction, of being
unavailable and the expected covered demand is maximized. In the earliest version
of the MEXCLP [3], it is assumed that each ambulance has the same probability
of being busy. In order to compare the models on the basis of the same criterion, a
time-dependent busy fraction qt is used in the following analysis. In MALP I and
MALP II [7], a chance constrained program is used to maximize the demand covered
at least with a given probability α. The minimum number of ambulances required to
serve demand node i with a reliability level of α in period t is determined by

1 − q
∑

j∈Ni t
y j t

t ≥ α, (2)

which can be linearized as
∑

j∈Ni t
y j t ≥ �ln(1 − α)/ ln(qt )� =: Kt (with system

unique busy fraction qt in MALP I). In MALP II, the assumption of identical busy
fractions is relaxed and the busy fractions qit are calculated for each demand node i
and period t . The problem of using demand node specific busy fractions qit is that
these values depend on the output of the model and are unknown a priori [1]. To
overcome this difficulty, a more direct and data-driven way to determine the required
coverage is used in the ERCP [5]. The empirical distribution function representing
the number of parallel EMS operations per time unit and district is calculated. The
95% quantile of the stochastic demand per district l and time period t is determined
empirically in order to derive the required degree of coverage K�i t and thus the
necessary number of ambulances. This assures that there is a sufficient number of
ambulances to cover all parallel operations in at least 95% of all cases. To compare
the mentioned models, all relevant model parameters, like busy fractions, reliability
levels and the empirically required coverage levels are calculated using an identical
data base which relies on the same spatial and time-dependent partitioning.
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3 Discrete Event Simulation of EMS Systems

All previously described models consider different variants of demand coverage as
a proxy criterion for EMS quality, defined as the proportion of calls served within
the legal response time threshold. This real world outcome measure is mainly influ-
enced by the positioning of ambulances implied by different objective functions and
covering constraints. The solution quality, e.g. the quality of an EMS system can
only be evaluated ex post. Discrete event simulation represents a common approach
to analyze complex and dynamically changing environments like EMS systems. In
this paper, a simulation approach is applied to compare the performance of the afore-
mentioned models regarding the real world outcome measure. In the following, the
main components of the simulation are described. The data generation process for
the discrete event simulation consists of two main modules:

1. Generation of random events: A whole weekday is subdivided into 24 time inter-
vals t ∈ {0, . . . , 23} with a length of Δ = 1 h. For a given demand node i and a
time interval [t, t + Δ), in the following indicated by t , the number of emergen-
cies occurring within t can be approximated by a Poisson distribution Pλ with
parameter λ. The average number of emergency calls per time interval t at a given
weekday D is PλD

it
with λD

it := (αD/365) · ∑365
�=1 d�

i t . The parameter λD
it is used

as an estimator for the parameter of the Poisson distribution, where d�
i t denotes

the historical number of emergencies occurring in period t in demand node i at
day �. The scaling factor αD is determined empirically and serves as a correc-
tion term for introducing day-related seasonality. This is necessary since the total
demand fluctuates within different weekdays. For each t and i , the quantity of
emergencies dit is sampled from previously specified Poisson distributions. Then,
the emergencies are distributed according to the realization of a uniform random
variable within the time interval t .

2. Travel time generation: The travel time is not constant for different time intervals
t of the day, cf. [8]. Typically, higher traveling speeds are achieved in the evening,
while lower speeds are observed around noon and during rush hours. To incorpo-
rate realistic driving speeds, a time-dependent random variable vt ∼ N (μt , σt )

is used, where μt and σt are determined empirically. For each generated emer-
gency, the travel time is sampled from N (μt , σt ) and stored in the corresponding
variable.

During the simulation, an emergency event is characterized by the time of occur-
rence, the associated demand node, the traveling speed of the associated ambulance
and the emergency duration. The duration of each operation is sampled from the
empirical distribution function. The simulation process works as follows: An ambu-
lance is characterized by the assigned EMS station and an availability indicator.
An ambulance is available, if it is currently not serving an emergency. For each
emergency occurring, the selection of ambulances is performed by a predefined
nearest-distance strategy: For a given emergency position i , all ambulance locations
are sorted by increasing distances to i . Note, that the traveling distance depends on
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the location of ambulances which are an outcome of the tested optimization model.
If there is an ambulance available at the nearest station, this vehicle is selected.
Otherwise, the next station in the list is checked. The process repeats until an available
ambulance has been found or all stations are checked. If no ambulance is available,
a queue of unfulfilled requests is being built. Whenever an ambulance is assigned to
serve an emergency, the travel time is generated and the vehicle is blocked for the
duration time of the operation. The simulation process terminates after serving all
emergencies. Finally, dividing the overall number of emergencies served on time by
all emergencies occurring gives the desired real world quality measure.

4 Case Study and Results

Arealworld case study for evaluatingmodel performances is conductedby specifying
all required model parameters (demand, busy fractions and empirically required
coverage) on the basis of a data set from a German city containing more than 20,000
operations per year. In all models the number of ambulances in time period t is given
by the parameters pt and all demand points are considered as potential ambulance
locations. The average emergency demand over 1 year is visualized in the first picture
of Fig. 1. The first objective is to maximize the model specific objective function.
The second objective is to cover a maximal number of demand areas at least once.
The third objective aims at minimizing the number of vehicle locations. To hedge
against dual degeneracy in location models, a lexicographic approach is applied. The
coverage induced by the solutions of the models are visualized in Fig. 1. Demand
nodes are colored from light to dark gray and visualize the number of zero (light gray)

Demand MCLP DSM

MEXCLP MALP I ERCP

Fig. 1 Emergency demand and degree of coverage induced by the solutions of different models
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Fig. 2 Proportion of calls served within the time threshold of 8min during 1 year (20 simulation
runs)

to sixfold (dark gray) coverage. Results, i.e., the proportion of calls served within the
legal response time threshold of 8min for 20 simulation runs for each model solution
are shown in Fig. 2. Data driven covering models like MEXCLP, MALP and ERCP
outperform fixed covering models (MCLP, DSM) with respect to the real world EMS
performance measure. Fixed covering models provide inadequate coverage of areas
with high, resp. low, number of parallel operations due to disregarding the availability
of ambulances. Instead, data driven approaches locate ambulances as needed by
considering demand volume as well as criteria for ambulance unavailability.

5 Conclusion and Outlook

In this paper a discrete event simulation study is conducted to evaluate different
ambulance location models. Based on the simulation study exemplary results of
different coverage concepts concerning their influence on real world performance
measures are shown. All analyzed concepts differ concerning the input parameters
and model assumptions. Exemplary results suggest that models requiring detailed
information (for example the MEXCLP and the ERCP) perform better than models
ignoring these information. In the next step, studies are extended systematically to
different typical city and demand structures.
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Tight Upper Bounds on the Cardinality
Constrained Mean-Variance Portfolio
Optimization Problem Using Truncated
Eigendecomposition

Fred Mayambala, Elina Rönnberg and Torbjörn Larsson

Abstract The mean-variance problem introduced by Markowitz in 1952 is a fun-
damental model in portfolio optimization up to date. When cardinality and bound
constraints are included, the problem becomes NP-hard and the existing optimizing
solution methods for this problem take a large amount of time. We introduce a core
problem based method for obtaining upper bounds to the mean-variance portfolio
optimization problem with cardinality and bound constraints. The method involves
performing eigendecomposition on the covariance matrix and then using only few
of the eigenvalues and eigenvectors to obtain an approximation of the original prob-
lem. A solution to this approximate problem has a relatively low cardinality and it is
used to construct a core problem. When solved, the core problem provides an upper
bound.We test themethod on large-scale instances of up to 1000 assets. The obtained
upper bounds are of high quality and the time required to obtain them is much less
than what state-of-the-art mixed integer softwares use, which makes the approach
practically useful.

1 Introduction

We study the Cardinality constrained Mean-Variance model (CMV) with n assets,
for which μ = (μ1, . . . , μn)

T are expected returns, Σ is a positive semi-definite
(�0) covariance matrix of the returns, μP is the minimum return of the portfolio,
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li and ui are lower and upper bounds, respectively, on portions to be held in each
asset, if held at all, and x = (x1, x2, . . . , xn)

T are fractions of the capital invested in
the assets. Letting K be the required cardinality of the portfolio and δi , i = 1, . . . , n,
be variables indicating if an asset is held or not, the model can be stated as

min xTΣx (CMV)

s.t. μTx ≥ μP (1)

eTx = 1 (2)

liδi ≤ xi ≤ uiδi , i = 1, . . . , n (3)
n∑

i=1

δi = K (4)

δi ∈ {0, 1}, i = 1, . . . , n. (5)

It is assumed to be feasible. The continuous relaxation of (CMV) is denoted by
(RCMV), and its feasible set is assumed to satisfy Slater’s constraint qualification.

The problem (CMV) is non-convex and NP-hard [5], and since it is computation-
ally challenging, a number of solution methods have been suggested in the litera-
ture. Examples of exact algorithms are the branch-and-bound methods in Borchers
and Mitchell [4], Bonami and Lejeune [3], and Bertsimas and Shioda [1], as well
as the branch-and-cut methods in Bienstock [2] and Frangioni and Gentile [7].
Relaxation algorithms are proposed in Shaw et al. [9] and in Murray and Shek [8].
Most commonly found in the literature are the heuristic algorithms, see for example
Chang et al. [5], Soleimani et al. [10], and Fernandez and Gomez [6].

We use eigendecomposition of the covariance matrix and a core problem to pro-
vide high quality upper bounds for (CMV). These can be obtainedwithin a reasonable
amount of computing time compared to state-of-the-art softwares.

2 Theory and Solution Principle

To construct a relaxation of (CMV), an eigendecomposition of Σ is made, giving

Σ =
n∑

i=1

λi Pi PT
i ,

where Pi is the i th eigenvector (of unit length) of Σ and λi is the corresponding
eigenvalue. Assume without loss of generality that λ1 ≥ λ2 ≥ · · · ≥ λn . Let the set
I ⊆ {1, 2, . . . , n} and define

Σ I =
∑

i∈I

λi Pi PT
i .
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Let e : Rn → R with e(x) = xT(Σ − Σ I )x. Then the objective of (CMV) can be
written as xTΣx = xTΣ I x + e(x), so that the function e represents the error intro-
duced when replacing the total n pairs of eigenvectors and eigenvalues with |I | out of
them. This function is convex on Rn because Σ − Σ I = ∑

i /∈I λi Pi PT
i � 0. A first-

order Taylor series expansion of e(x) at x̄ ∈ R
n gives the linear function ē : Rn → R

with ē(x) = x̄T(Σ − Σ I )x̄ + 2 [(Σ − Σ I )x̄]T (x − x̄). Using the function ē, instead
of e, yields the following approximation of (RCMV).

min xTΣ I x + ē(x)

s.t. (1), (2), (3), (4) and δi ∈ [0, 1], i = 1, . . . , n
(ACMV)

Let v(·) denote the optimal objective value of an optimization problem. The fol-
lowing result shows that (ACMV) is a relaxation of (RCMV).

Proposition 1 For any I ⊆ {1, 2, . . . , n}and x̄ ∈ R
n, v(AC MV ) ≤ v(RCMV)holds.

Proof Because e is convex, xTΣx = xTΣ I x + e(x) ≥ xTΣ I x + ē(x) holds for any
x ∈ R

n , which implies that v(ACMV) ≤ v(RCMV). �

The problem (ACMV) is hence always a relaxation of (RCMV), and therefore also
of (CMV). However, under a certain condition, (ACMV) becomes equivalent to
(RCMV) with respect to the optimal objective values, as shown below.

Proposition 2 If the linearization point x̄ is chosen as optimal in (RCMV), then x̄
is also optimal in (ACMV) and v(ACMV) = v(RCMV) holds.

Proof Note that the two problems (RCMV) and (ACMV) have the same feasible set
and that they are both convex. Further, from ∇ (ē(x))x=x̄ = ∇ (e(x))x=x̄ it follows
that ∇ (

xTΣ I x + ē(x)
)

x=x̄ = ∇ (
xTΣx

)
x=x̄, which implies that any KKT point for

(RCMV) is also a KKT point for (ACMV). This proves the first conclusion. Further,
if x̄ solves (ACMV), then v(ACMV) = x̄TΣ I x̄ + ē(x̄) = x̄TΣ I x̄ + x̄T(Σ − Σ I )x̄
= x̄TΣ x̄ = v(RCMV). �

Our next result further justifies the usefulness of the problem (ACMV) as an
approximation of (RCMV).

Theorem 1 Suppose that x∗
R is optimal in (RCMV) and that (ACMV) is constructed

for the linearization point x̄ = x∗
R. Let x∗

I be optimal in (ACMV). Then x∗
I is feasible

in (RCMV) and x∗
I
TΣx∗

I − v(RCMV) ≤ 2maxi /∈I λi .

Proof Since all constraints of (RCMV) are included in (ACMV), the feasibility of x∗
I

follows.We next note that Proposition 2 gives that x∗
R is optimal in (ACMV). Suppose

that x∗
I 
= x∗

R . Consider the convex quadratic function ϕ : Rn → R with ϕ(x(t)) =
x(t)TΣ I x(t) + ē(x(t)), where x(t) = x∗

R + t (x∗
I − x∗

R), that is, the objective value
in (ACMV) along the line passing through x∗

R and x∗
I . The derivative of ϕ becomes

ϕ′(t) = 2(x∗
I − x∗

R)TΣ I (x∗
I − x∗

R)t + 2x∗
R
TΣ(x∗

I − x∗
R). Since ϕ is convex and both

x∗
R and x∗

I are optimal in (ACMV), it follows that ϕ is constant onR, so that ϕ′(t) ≡ 0.
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Therefore, (x∗
I − x∗

R)TΣ I (x∗
I − x∗

R) = 0 and x∗
R
TΣ(x∗

I − x∗
R) = 0 must hold. In the

case that x∗
I = x∗

R holds, these two equalities are obviously also true. We then obtain
that

(x∗
I − x∗

R)T(Σ − Σ I )(x∗
I − x∗

R) = (x∗
I − x∗

R)TΣ(x∗
I − x∗

R) = x∗
I
T
Σx∗

I − x∗
R
T
Σx∗

R

= x∗
I
T
Σx∗

I − v(RCMV).

Using that the Rayleigh quotient of a symmetric matrix is bounded from above by
the largest eigenvalue, the fact that both x∗

I and x∗
R fulfil the restrictions eTx = 1 and

x ≥ 0, and that ‖x‖2 ≤ ‖x‖1, we further obtain that

(x∗
I − x∗

R)T(Σ − Σ I )(x
∗
I − x∗

R) ≤
(
max
i /∈I

λi

)
‖x∗

I − x∗
R‖22 =

=
(
max
i /∈I

λi

) (
‖x∗

I ‖22 − 2x∗
I
Tx∗

R + ‖x∗
R‖22

)
≤

(
max
i /∈I

λi

)(
‖x∗

I ‖22 + ‖x∗
R‖22

)
≤ 2max

i /∈I
λi .

��
The intuition we get from Theorem 1 is that an optimal solution to (ACMV) is near-
optimal in (RCMV) and that its degree of near-optimality is governed by the largest
eigenvalue among those that are not taken into account when constructing (ACMV).
The corollary below follows directly from Theorem 1.

Corollary 1 Consider a fixed cardinality of the set I , say k, and let X∗
I be the set of

portfolios that are optimal in (ACMV). Then

min
I :|I |=k

max
x∗

I ∈X∗
I

(
x∗

I
T
Σx∗

I − v(RCMV)
)

is achieved for the choice I = {1, 2, . . . , k}.
Hence, in order to ensure the best possible degree of near-optimality of an optimal
solution to (ACMV) in the problem (RCMV), the former problem shall be con-
structed using a number of largest eigenvalues and corresponding eigenvectors.

We further note that the convex quadratic objective of (RCMV) can have up to n
positive eigenvalues, while the convex quadratic objective of (ACMV) can have at
most |I | ≤ n. This means that if |I | � n, then an optimal solution to (ACMV) can
be expected to have a lower cardinality than an optimal solution of (RCMV), which
justifies the use of (ACMV) for constructing a core problem for (CMV).

To form the core problem, we first solve the problem (RCMV). This provides
a lower bound to the optimal value of (CMV) and a linearization point x̄ = x∗

R to
be used in (ACMV). Next we find an optimal solution to (ACMV) and identify a
pre-specified number of largest values of the variables δi . The corresponding set of
assets, denoted P , are the only ones considered in the core problem. We thus define
the core problem as (CMV) with the additional restriction δi = 0, i ∈ {1, . . . , n}\P .
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3 Numerical Results and Conclusion

We here present numerical results for the upper bounds on the solutions to (CMV).
Three data sets are used. The first is of size 225 assets and adopted from the
OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html). The sec-
ond and third data sets are of sizes 500 and 1000 assets, respectively, and are obtained
from NYSE data for a period of 3100 trading days between 2005 and 2013. We get
three problem instances from each of the data sets by varying the target return, μP .
Table1 shows the results of solving the standardMean-Variance (MV) version of the
nine instances. Here, Card(x∗) is the cardinality of the solution.

To construct instances of (CMV), we use li = 0.01, ui = 0.25 and K = 5. The
results for the solution of (CMV) using Cplex 12.5, when allowed to run for a
maximum of 3600 s, are shown in Table2. The lower bound (LBD) and the upper
bound (UBD) on the optimal value were recorded at termination. If no value of LBD
is given, then UBD is proven optimal after the time given in the table.

Results from using our core problem approach are shown in Tables3, 4 and 5. It
can be concluded from these tables that already relatively small values of |P| and k

Table 1 Problem instances

n Problem instance μP v(MV) Card(x∗)
225 225a 0.0003 3.06030e-4 14

225b 0.00165 3.61687e-4 12

225c 0.003 5.15395e-4 8

500 500a 0.0003 2.60013e-5 38

500b 0.00165 2.31520e-5 31

500c 0.003 1.71429e-3 10

1000 1000a 0.0003 1.36468e-5 64

1000b 0.00165 2.04368e-4 28

1000c 0.003 1.30006e-3 13

Table 2 Cplex results

Problem instance LBD UBD CPU time

225a 3.19549e-4 1.3

225b 3.86179e-4 1.7

225c 5.35929e-4 1.4

500a 3.87805e-5 3.97803e-5 –

500b 3.31154e-4 504

500c 2.45698e-3 16.3

1000a 1.41139e-5 2.84444e-5 –

1000b 2.88558e-4 3.63203e-4 –

1000c 2.18773e-3 310

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Table 3 n = 225

|P| k UBD CPU time

225a 2K 5 3.19549e-4 0.60

15 3.19549e-4 0.62

40 3.19549e-4 0.65

4K 5 3.19549e-4 0.63

15 3.19549e-4 0.65

40 3.19549e-4 0.68

225b 2K 5 3.86809e-4 0.65

15 3.86809e-4 0.65

40 3.86179e-4 0.68

4K 5 3.86179e-4 0.69

15 3.86179e-4 0.70

40 3.86179e-4 0.77

225c 2K 5 5.36947e-4 0.64

15 5.35929e-4 0.66

40 5.35929e-4 0.69

4K 5 5.35929e-4 0.65

15 5.35929e-4 0.66

40 5.35929e-4 0.70

Table 4 n = 500

|P| k UBD CPU time

500a 2K 5 8.54622e-5 4.24

15 6.92900e-5 4.27

40 4.88882e-5 4.32

4K 5 5.48636e-5 4.36

15 4.08877e-5 4.63

40 3.97803e-5 4.68

500b 2K 5 3.44318e-4 4.32

15 3.44318e-4 4.35

40 3.31154e-4 4.81

4K 5 3.44318e-4 4.47

15 3.31154e-4 4.58

40 3.31154e-4 4.98

500c 2K 5 2.45698e-3 4.77

15 2.45698e-3 4.80

40 2.45698e-3 4.85

4K 5 2.45698e-3 4.82

15 2.45698e-3 4.83

40 2.45698e-3 4.97
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Table 5 n = 1000

|P| k UBD CPU time

1000a 2K 5 4.77390e-5 33.66

15 3.83896e-5 33.70

40 3.37782e-5 40.12

4K 5 4.47532e-5 34.04

40 2.86704e-5 34.51

6K 10 2.71492e-5 35.78

1000b 2K 5 4.92784e-4 39.15

15 4.60694e-4 39.29

40 4.02322e-4 40.13

4K 5 4.14883e-4 39.41

15 3.87652e-4 39.45

40 3.63203e-4 40.27

1000c 2K 5 2.57059e-3 45.47

15 2.18773e-3 45.51

40 2.18773e-3 46.14

4K 5 2.18773e-3 45.56

15 2.18773e-3 45.62

40 2.18773e-3 45.93

will yield high-quality solutions to the cardinality constrained mean-variance model,
and that those values depend on the number of assets and the target return. Note that
for the instances for which Cplex could not verify optimality within 3600 s, our core
problem approach finds at least as good feasible solutions as Cplex, but in less than
a minute.

We conclude that the proposed method can be used to obtain high quality upper
bounds to cardinality constrained mean-variance portfolio optimization problems in
a reasonable amount of time. A topic for further research is the inclusion of a strong
lower bounding criterion.
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Scheduling Identical Parallel Machines
with a Fixed Number of Delivery Dates

Arne Mensendiek and Jatinder N.D. Gupta

Abstract We consider the scheduling problem of a manufacturer that has to process
a set of jobs on identical parallel machines where jobs can only be delivered at
a given number of delivery dates and the total tardiness is to be minimized. In
order to avoid tardiness, jobs have to be both, processed and delivered before or at
their due dates. Such settings are frequently found in industry, for example when
a manufacturer relies on a logistics provider that picks up completed jobs twice
a day. The scheduling problem with fixed delivery dates where the delivery dates
are considered as an exogenously given parameter for the manufacturer’ scheduling
decisions can be solved by various optimal and heuristic solution procedures. Here,
we consider a variant of this problemwhere only the number of deliveries is fixed and
the delivery dates can be set arbitrarily. For example, a manufacturer may be entitled
to assign the logistics provider two pick-up times per day and decide on the exact
times of these pick-ups. Then, the machine schedule and the delivery dates can be
determined simultaneously which may significantly improve adherence to due dates.
Our findings can provide valuable input when it comes to evaluating and selecting
distribution strategies that offer a different extent of flexibility regarding the delivery
dates.

1 Introduction

Many traditional machine scheduling models focus on the processing of jobs and
neglect aspects of distribution. This may be justified by assuming that jobs are deliv-
ered immediately and instantaneously, or that products are sold under “ex works”-
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conditions and hence customers are responsible to pick up completed jobs. Yet, many
manufacturing companies are responsible for both, production and delivery of fin-
ished goods, and better overall solutions may be found if distribution aspects are
considered when making scheduling decisions. In this context, [1–3], among others,
have discussed scheduling problems with fixed delivery dates where jobs can only
be delivered at a given number of exogenously determined delivery dates. Similar
problems can often be found in practice, in particular when a manufacturer relies on
the timetable of a logistics provider to ship completed jobs to customers. Practical
examples of such settings involve parcel services with fixed pick-up times and air-
or sea freight transportation (for examples see [4–6]).

During the last decade, a rich body of literature on the integration of production
and outbound distribution has emerged (see [7, 8] for reviews), involving coordinated
decisions on production schedules and, for instance, the number of deliveries and
vehicle routing. Compared to such integrated problems, fixed delivery dates offer
the manufacturer very little flexibility to make distribution decisions. However, as
the integration of production and distribution decisions can yield significantly better
solutions [9, 10], amanufacturer may profit frommakingmore flexible arrangements
with logistics providers. Thus, in this paper we consider a variant of the fixed delivery
date problem where the number of deliveries is exogenously given, but the delivery
dates can be set arbitrarily by the manufacturer. To illustrate, instead of contracting
a logistics provider who picks up completed jobs at 3 p.m. and 8 p.m. each day, a
manufacturer may benefit from a more flexible arrangement where it is entitled to
assign the provider two pick-up times per day. Hence, the delivery dates become
decision variables in the problem studied here.

In the next section, we formally state the scheduling problem and its complexity.
We then propose a mathematical programming formulation and conduct numerical
experiments to evaluate the efficiency of the proposed formulation and estimate the
tardiness reduction potential compared to fixed delivery dates.

2 Problem Statement and Characteristics

The scheduling problem with a fixed number of delivery dates can be described
as follows: A set of jobs, J , has to be scheduled non-preemptively on m identical
parallel machines to minimize the total tardiness. Each job j = 1, . . . , n has a given
integer processing time p j and a due date d j . The due dates denote the times when
customers wish to receive their orders so that a job has to be both, processed and
delivered before its due date in order to avoid tardiness. C j denotes the time when a
job’s processing is completed and D j the time when it is delivered. The tardiness of
a job is defined as Tj = max{0, D j − d j }.

Jobs can only be delivered at one of the delivery dates k = 1, . . . , s. The number
of delivery dates is exogenously given, but the times when these deliveries occur,
Δ1 < · · · < Δs , can be set arbitrarily. Transportation times are not considered here
and the delivery capacity at each delivery date is assumed to be infinite. Then, each
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job will be delivered at the first delivery date after its completion, that is to say, at
D j = mink∈K {Δk |Δk ≥ C j }.

The scheduling problem with fixed delivery dates is commonly denoted as
Pm|s = s| ∑ j Tj [2], and consequently we denote the problem variant studied here
as Pm|s = s,Δ = var |∑ j Tj .

Theorem 1 The problem Pm|s = s,Δ = var |∑ j Tj is NP-hard.

Proof Restrict the problem by allowing only instances with m = 2, s = 1, d j =∑
j p j

2 ∀ j and ask if there exists a schedule with Z = ∑
j Tj ≤ 0. The restricted prob-

lem obviously corresponds to the parallel machine makespan problem, P2||Cmax , a
known NP-hard problem [11, p. 238]. ��

For the following arguments, let us say that a job is in block k on machine i
if it is processed on machine i and delivered at delivery date Δk , that is to say,
Δk−1 < C j ≤ Δk . An important property was formulated by [2] for the problem
Pm|s = s| ∑ j Tj , but it also holds for the scheduling problem where the delivery
dates are arbitrary.

Property 1 In order to identify an optimal solution for the scheduling problem, it
is sufficient to identify an optimal assignment of jobs to blocks.

While the NP-hardness of the scheduling problem suggests that there may not
be an algorithm to solve all problem instances efficiently, the last property may
permit to develop solution approaches that perform well on instances of practi-
cally relevant size. In fact, our previous research [3] suggests that mathematical
programming performs very well on instances of the problem Pm|s = s|∑ j Tj

with up to 20 jobs, and elaborate heuristic solution procedures are primarily required
for larger instances. Consequently, a mathematical programming formulation for
Pm|s = s,Δ = var |∑ j Tj is proposed next.

3 Mathematical Programming Formulation

The scheduling problem with a fixed number of delivery dates can be formulated as
an assignment problem where xi jk is a binary variable to denote if job j is processed
in block k on machine i and q is a sufficiently large number.

Z =
∑

j

Tj → min
xi jk

(1)

subject to

∑

i

∑

k

xi jk = 1 ∀ j (2)

Tj ≥ 0 ∀ j (3)
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Tj ≥ Δk − d j − q (1 −
∑

i

xi jk) ∀ j, k (4)

∑

j

∑

k ′ :k ′≤k

xi jk ′ p j ≤ Δk ∀ i, k (5)

Δk ≥ Δk−1 ∀ k (6)

xi jk ∈ {0, 1} ∀ i, j, k (7)

The objective (1) is to minimize total tardiness. Constraint (2) makes sure that
each job is processed in exactly one block on one machine. Constraints (3) and (4)
define the tardiness of a job. Constraint (5) ensures that the capacity of each block on
each machine is not violated. This formulation requires that deliveries are indexed
in ascending order of the delivery dates Δ1, . . . , Δs which is achieved by constraint
(6) (assuming Δ0 = 0). Note that a similar formulation for the fixed delivery date
scheduling problem can easily be derived by eliminating constraint (6) and possibly
reformulating constraint (4) without the use of the large number [3].

4 Numerical Results

The proposed mathematical programming formulation is evaluated in a numerical
study. The purpose of this is twofold: Firstly, we are interested in evaluating the
efficiency of this approach. Secondly, we contrast the total tardiness and the compu-
tational time required with the fixed delivery date scenario in order to estimate the
potential of more flexible delivery dates.

Instances are randomly generated for different numbers of jobs, machines and
delivery dates, denoted by n/m/s. We consider instances with 15/2/4, 15/2/6, 15/3/4,
18/3/4, 18/3/6 and 18/4/4. Job processing times are integers drawn from a uniform
distribution over [1, 100], and job due dates are drawn from a uniform distribution

over [max{0,
(∑

j
p j

m

)
· (1 − τ ∓ 0.5ρ)}]where τ ∈ {0.2, 0.5, 0.8} defines the aver-

age tardiness and ρ ∈ {0.2, 0.6, 1.0} the due date range of the jobs. 10 instances are
randomly generated for each tuple (τ , ρ), yielding a total of 540 instances.

To compare the results with a fixed delivery date setting, fixed delivery dates
are generated as follows: For each instance, the last delivery date Δs is obtained
by calculating the makespan of a LPT list schedule, that is to say, by sequencing
jobs in descending order of their processing times and assigning each job to the
next machine that becomes available. The remaining delivery dates 1, . . . , s − 1 are
integers drawn from a uniform distribution over [min j {p j },Δs] and are arranged in
ascending order.

The mathematical program was implemented and solved with the CPLEX 12.2
solver in AIMMS on a computer with a 2.83GHz four core processor and 3.21GB
RAM. As the computations often required a significant amount of time, in particular
for the setting with arbitrary delivery dates, we imposed a runtime limit of 3,600s



Scheduling Identical Parallel Machines with a Fixed Number … 397

Table 1 Tardiness reduction potential and computation times for scheduling with a fixed number
of delivery dates

Instance set (τ , ρ) Av. red. in total
tardiness in (%)

Pm|s = s| ∑ j Tj av.
comp. time in (s)

Pm|s = s,Δ =
var | ∑ j Tj av. comp.
time in (s)

(0.2, 0.2) 43.13 1.72 1,611.61

(0.2, 0.6) 85.41 0.33 582.77

(0.2, 1) 84.96 0.11 7.00

(0.5, 0.2) 35.99 274.25 2,569.51

(0.5, 0.6) 38.37 133.05 2,520.69

(0.5, 1) 41.51 69.78 2,148.44

(0.8, 0.2) 24.12 718.76 3,600.38

(0.8, 0.5) 26.82 172.54 3,466.69

(0.8, 1) 32.20 339.51 3,175.67

All (540) 45.83 190.01 2,186.97

on the solver and treat the solutions as heuristic results. Yet, we note that the solver
usually quickly converges towards an optimal solution and then requires a lot of time
to validate the optimality. The results are summarized in Table1.

The results provide several important insights. Firstly, the problem with a fixed
number of delivery dates apparently requires more computational time than the fixed
delivery date problemwhere in general the computation time increases in the number
of jobs, machines and delivery dates. Secondly, problems with a low average tardi-
ness (τ = 0.2) and a high due date range (ρ = 1) can be handled quite efficiently
with mathematical programming. For these problems the manufacturer can appar-
ently achieve the highest percentage reduction in tardiness which can be explained
by the observation that a low tardiness in the fixed delivery date scenario can often
be reduced to zero if the delivery dates can be set arbitrarily. In contrast, if average
tardiness is high then the machine capacity is simply insufficient to process all jobs
on time and thus, many jobs would be tardy even if they could be delivered individ-
ually and instantaneously. Notwithstanding, the average reduction in total tardiness
amounts to an average 28% for the instances with a high average tardiness (τ = 0.8),
and approximately 46% for all instances. This indicates that the possibility to set the
delivery dates arbitrarily offers the manufacturing company a major opportunity to
improve due date adherence.

5 Conclusion

In this paper, we have proposed and evaluated a mathematical programming formu-
lation for the parallel machine scheduling problem where jobs can only be delivered
at a given number of arbitrary delivery dates. In particular, our purpose is to contrast
the computation times and total tardiness that can be attained in this setting with the
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fixed delivery date scenario. Our first insight is that allowing the manufacturer to set
the delivery dates flexibly seems to make the problem harder to solve, at least with
an assignment-based mathematical programming approach. Hence further research
will be devoted to the development of alternative optimal and heuristic solution pro-
cedures. Second, the ability to set delivery dates flexibly allows the manufacturer to
improve due date adherence significantly. This potential should be considered when
it comes to making decisions such as the choice of logistics providers. However, in
practice more flexible delivery dates will usually be associated with higher costs for
the manufacturer, and further research on this trade-off seems promising.
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Kinetic Models for Assembly Lines
in Automotive Industries

Lena Michailidis, Michael Herty and Marcus Ziegler

Abstract Wediscuss a newmodel for automotive production based on kinetic partial
differential equations. Some theoretical analysis as well as numerical results are
presented.

1 Introduction

From a mathematical point of view an automotive assembly line is a graph with
products moving along the arcs of this graph. Flows on structured media have been
studied widely in the literature in the past years and appear in an almost infinite
variety. Here, we will use a similar description of the underlying process as in [1, 3].
In [1] a general production flowproblemon a general graph structure has been studied
and a kinetic partial differential equation for high-volume part flows is derived.
A transport (macroscopic) equation could also be obtained and used as long-time
approximation to the kinetic dynamics. Similarly, in [3] a system of hyperbolic
equations is derived from a kinetic partial differential equation describing a simple
production process on a single line. Statistical information on the production process
entered in coefficients of the final hyperbolic equations. In this paper, we discuss
results for an assembly linewith statistical informationobtainedby carmanufacturing
plants. Compared with [3] the underlying particle dynamic is more complicated and
hyperbolic closure relations are used to derive the macroscopic hyperbolic models.
The detailed proofs as well as additional numerical results and further discussion of
themodeling are given in [2]. In this paperwe discuss the samemodel as in [2] but add
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new numerical results and investigate further the dependence on the coefficients of
the model on the data. Further, new data has been acquired to provide the probability
distributions required for the model.

2 Mathematical Modeling

We are interested in the prediction of the long term behavior of the overall workload
within a supply chain, depending on the local statistics of installed parts at each
station. All variants of a single type are produced on the same production line within
this plant. The production is organized in several steps—a fully automated pre-
assembly andmanual final production.At the final production, each station represents
one production step and each production step requires essentially the assembling of
a certain number of parts to a moving car body. Due to the many variants the number
of assembly parts within a fixed station is highly volatile. Historic data is available
for a total of N = 17 (out of a total of 30) stations from one belt section.

2.1 Microscopic Model

We model an assembly line by N stations n = 1, . . . , N . The time a generic car
body spends within each station is (currently) fixed and given by T = 120. Based
on historical information we derive a discrete probability distribution function a →
Φ(a, n) for each station n. Φ(a, n) is the probability to assemble a parts at station
n to the arriving car body. To have Φ(a, n) defined for all a we interpolate the
discrete probability function defined for the values a j , j = 1, . . . , M by Φ(a, n) =
H(a)

∑M
j=1 δ(a − a j )Φ(a j , n). We have Φ(a, n) = 0 for a < 0. The description

by Φ(a, n) allows to treat all car bodies as non-distinguishable. So far, a, n are
T dimensional quantities which are normalized in the following. Therefore, from
now on a ∈ [0, 1]. A particle i ∈ {1, . . . , k ∈ N} (resembling a car body) is moving
along the assembly line and has a state Xi . The different stations are called Sn , for
n = 1, . . . N and they are in the following considered as nodes in a directed graph.
S1 is the first and SN the last station in the line. Similar to [1], we assume particles
as non-distinguishable. Dimensionless time is denoted by t ≥ 0. Each particle i
has a state Xi = Xi (t) = (x(t), τ (t), a(t), n(t))i ∈ R × R × N × N in state space
X = (Xi )

N
i=1 ⊆ R

N and ni (t) ∈ {1, . . . , N } denotes the station index of particle i at
time t . τi (t) ∈ R

+
0 is the time elapsed within the current station, and xi (t) ∈ [0, 1]

is the stage of completion of particle i along the assembly line. Within a small time
interval Δt > 0 the state of each particle may change according to the following
dynamics. If τi (t) ≤ T the particle is in between two stations ni (t) and ni (t) + 1.
So the number of parts ai and the station index do not change whereas the elapsed
time τ and the stage of completion increases. Theoretically, the stage of completion
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of the current particle is linear and independent of the number of assembled parts
and therefore set the velocity v ≡ 1. However, this is not observed in practice where
assembly is also conducted outside the designated stations, whichmeans for example
that work starts before scheduled time. No model and no data is available to quantify
this effect. In order to at least qualitatively asses this problem, we derive a model
for a general (sufficiently smooth) function a → v(a). Summarizing, we obtain the
following dynamics for a particle i and an elapsed time τi < T . If τi (t) ≤ T :

ni (t + Δt) = ni (t), ai (t + Δt) = ai (t), (1)

xi (t + Δt) = xi (t) + Δt v(ai (t)), τi (t + Δt) = τi (t) + Δt. (2)

For τi (t) ≥ T the particle has arrived at the next station. Here, it will change state
for a new number of parts to be installed. Within any time interval Δt the change of
state upon arrival happens with probability ωΔt , where ω is the so-called collision
frequency. In the considered assembly line the frequency isω = 1

T . In order to discuss
more general models, we keep the general variable ω > 0. If the particle changes
state the new number of parts α is obtained by random sampling from the probability
distributionΦ(a, ni (t) + 1), i.e., d P(α = s) = Φ(s, ni (t) + 1)ds. We also increase
the stage of completion and reset the elapsed time τi to zero. If τi (t) ≥ T :

ni (t + Δt) = ni (t)(1 − ωΔt) + (ni (t) + 1)ωΔt, (3)

ai (t + Δt) = ai (t)(1 − ωΔt) + αωΔt, P(α = s) = Φ(s, ni (t) + 1), (4)

xi (t + Δt) = xi (t) + Δt v(ai (t)), τi (t + Δt) = (τi (t) + Δt)(1 − ωΔt). (5)

A kinetic equation for f (t, X) with X = (x, τ, a, n) is derived. We denote by
f (t, X)d X the probability to find a particle in state X at time t .

∂t ( f (t, x, τ, a, n)) + ∂x (v(a) f (t, x, τ, a, n)) = C( f ) (6)

withC( f ) = −∂τ f − ωH(τ − T ) f + ωΦ(a, n)δ(τ )
∫

f (x, τ, a, n − 1)H(τ − T )

dτda and if not stated otherwise the integration in the collision operator is on the
full domain. It remains to discuss the case n = 1. In the following, we study a
periodic problem, i.e., we assume that the last station n = N is equivalent to sta-
tion n = 0 and have f (t, x, τ, a, 0) := f (t, x, τ, a, N ). Then, the high-dimensional
kinetic Eq.6 on phase space X is well-posed for all n = 1, . . . , N . A full discretiza-
tion is therefore computationally expensive. As in gas dynamics or production mod-
els [1], we therefore derive approximate, low-dimensional (macroscopic) models,
capturing some qualitative properties of the kinetic dynamics. We first analyze the
kernel of C( f ) which is similar to [1], however, there are some differences due
to the different particle dynamics. As in [1] the kernel of C is decomposed in an
invertible and non-invertible part similar to the previously given dynamics. Choos-
ing ρ(t, x) := 1

N

∑N
n=1

∫
f (t, x, τ, a, n)dadτ we obtain the desired steady-states

and leading to the definition of the mass density of the system.
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2.2 Macroscopic Equations

We are now interested in an evolution equation for ρ independent of knowledge on
f . Different approaches are known in the literature to derive a closed form, we aim in
deriving partial differential equations allowing for finite speed of propagation. Since
the total number of particles should remain constant we have a conservation property
of Eq.6 for the total mass

∫
ρ(t, x)dx .

2.2.1 Moment Approximations

In order to derive new equations we use a moment approximation in the assembled
parts a.We considermass densityρ and instead of a projection to the kernelmanifold,
we derive an equation for the first moment ρu := 1

N

∑N
n=1

∫
v f dτda. The equations

are given by

∂tρ + ∂x (ρu) = 0, (7)

∂t (ρu) + ∂x
(

p[ f ] + ρu2
) = Q[ f ], (8)

Q[ f ] = ω 1
N

∑N
n=1

∫
(EΦ(·,n)vP f (t, x, a, n − 1, τ ) − vP f (t, x, a, n, τ ))H(τ − T ) ·

(λ0(u) + λ1(u)v)dτda and p[ f ] = 1
N

∑N
n=1

∫
(v − u)2 f dτda. Note, if v(a) = cst

then u(t, x) = cstρ(t, x). During the next section we will derive a closure relation
to approximate p[ f ] and Q[ f ].

2.2.2 Extended Equilibrium Function

Interested in a closure relation which represents the deterministic problem from the
beginning, we apply a Grad closure procedure. An extended equilibrium function is
constructed for example using the Grad closure. We define for given ρ and u

f eq (t, x, τ, n) := 1

T + 1
ω

Φ(a, n)

⎛

⎝
0 τ ≤ 0
1 0 < τ ≤ T

exp (−ω(τ − T )) τ ≥ T

⎞

⎠ ρ(t, x) (λ0 + λ1v(a)) .

Herein, λ0, λ1 are functions depending on ρ and u. Using the moment relations
we obtain the following set of equations determining (λ0, λ1): ρ (λ0 + λ1E(v)) =
ρ, ρ

(
λ0E(v) + λ1E(v2)

) = ρu.Theprevious system is solved for (λ0, λ1)provided

that V(v) = E(v2) − E(v)2 is non-zero for λ0(u) = E(v2)−uE(v)
V(v) , λ1(u) = u−E(v)

V(v) .
Hence, we may close (7) by evaluating p and Q at the extended equilibrium

function f eq with Q[ f eq ] = ρu−ρE(v)
V(v)(T + 1

ω
)

(
1
N

N∑
n=1

EΦ(·,n)(v)EΦ(·,n−1)(v) − E(v2)

)
and

p[ f eq ] = −ρu2 + ρ(E2(v2)−E(v3)E(v))+ρu(E(v3)−E(v)E(v2))
V(v) . Then, f eq has the moments

ρ and ρu and we obtain the following system for the evolution of (ρ, ρu):
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∂tρ + ∂x (ρu) = 0, (9)

∂t (ρu) + ∂x (ρc1 + (ρu)c2) = (ρu)c3 + ρc4. (10)

The constants ci depend on the statistical information of Φ(a, n) and are given
by c1V(v) = E

2(v2) − E(v3)E(v), c2V(v) = E(v3) − E(v)E(v2), c3V(v)(T + 1
ω
) =

1
N

∑N
n=1 EΦ(·,n)(v(·))EΦ(·,n−1)(v(·)) − E(v2), c4 = −E(v)c3. Equation9 is a linear

hyperbolic balance law provided that 4c1 + c22 > 0 holds. In this case the real eigen-

values are λ1,2 = c2
2 Ψ 1

2

√
4c1 + c22 and there exists a full set of eigenvectors. If we

assume, thatΦ(a, n) = Ψ (a), then the Grad closure Ansatz is well-defined provided
the variance is non-zero. This also implies that V(v) > 0. Φ(a, n) = 0 for a < 0, all
moments are non-negative Ei

n ≥ 0, the eigenvalues are real, V(v) > 0 and since the
source terms are linear an initial value problem for Eq.9 is well-posed.

3 Experimental Results

We present in the following distribution probabilities a → Φ(a, n) of assembled
parts within different stations n.Φ(a, n) at 5 selected stations n (out of 17) is depicted
in Fig. 1 (left) andwe present results on the dependence ofΦ on the transport velocity
v as the assembly line runs independent of a. In practice the production within some
stations n is not completed within T leading to possibly highly utilized stations, see
Fig. 1 (right). This effect will be included in the presented model by using a non
constant velocity function v(a), dependent on the number of assembled parts. We
consider the extended equilibrium function and compute the transport coefficients
in Eq.9. We set T = 120 [s] and ω = 1/T and the maximal number of assembled
parts amax = 200. We investigate a Greenshields like model with slope 0 < κ < 1,
compute the hyperbolicity property and the coefficients ci for i = 1, . . . , 4.

v(a) = 1 − κ
a

amax
(11)

Fig. 1 Part distribution Φ(a, n) (left). Degree of capacity utilization at selected stations (right)
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For the given data Φ(a, n), we observe that for all κ the eigenvalues are real,
V(v) > 0. and we numerically discretize (9) by standard first-order finite volume
and operator splitting to treat the source term. All numerical results are obtained on
an equidistant grid x ∈ [0, 1] with Nx = 400 discretization points and Δt such that
the CFL condition is fulfilled. In order to simulate the time evolution of the density ρ,
we need to prescribe an initial station-averaged car distributionρ(t = 0, x). As initial
data for (ρu)(t = 0, x), we consider Eq.7 and density ρ(0, x).With this choice and if
we prescribe a constant car distribution ρ(t, x = 0) = ρo, then (ρu)(t, 0) = (ρu)o

is constant. The eigenvalues λ1,2 of (9) for different values of κ are positive and
between ≈ 1

2 and 1 in all cases. Therefore, any perturbation of the state ρo will
be transported towards x = 1. Assuming similar assembly times for each part, we
study a production line at ρ0 = 95% load and a perturbation of 0.1%. We prescribe
a small perturbation at x = 1% as ρ(0, x) = ρo − 0.1% exp(−(8x)2). This leads
to a perturbation in density and flow. The coefficients c3 and c4 exceed the order
of the coefficients of c1 and c2 by at least one order. Therefore, the dynamics are
mainly driven by the exponential growth of (ρu) over time. The model itself has
no mechanism to prevent densities larger than one or less than zero. Due to the
introduction of a velocity variable, we simulate Eq.9 until time t∗ where at one
stage of completion x∗ either the car density exceeds one. Within we consider two
examples with initial load ρo = 70% and ρo = 95%. For finding the ideal load of the
assembly line the unknown parameter κ has to be estimated. In Fig. 1, we observe,
at 4 out of 5 stations overload. The station averaged capacity utilization is between
20 and 40% for those stations. Identifying the capacity utilization with degree of
completion (x) and assuming the initial perturbation is at position 1%, we find a
suitable value for κ ∈ (0.3, 0.6).

4 Conclusion

In this paper, we have represented an ansatz to model automotive assembly lines by
using kinetic theory. To exhibit the same unidirectional flow of information as in the
underlying particle model and reproduce the parabolic equations, we have derived
a macroscopic model via hyperbolic conservation laws. To finally close the system
we have used the Grad closure approach to derive an extended equilibrium function
and to obtain the fluid dynamic equations (9), which are based on the statistical
information of underlying data Φ(a, n). Within the numerically discretization of
Eq.9 and simulation of the density ρ(t, x) we have filtered out of a characteristic
number for the longtime behavior of the overall workload at automotive assembly
lines. We have found suitable values for κ in the interval (0.3, 0.6) to estimate
the typical load of an assembly line. This information may be used to quantify the
workload at the stations aswell as the rate of completion at stations and is a qualitative
indicator of over- or underload at stations.
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Optimization of Vehicle Routes
with Delivery and Pickup for a Rental
Business: A Case Study

Susumu Morito, Tatsuki Inoue, Ryo Nakahara and Takuya Hirota

Abstract Optimization of vehicle routes with delivery and pickup for a rental
industry is considered. The company delivers to or pickups from customers rented
products. Several types of products exist, and customers rent the specified number
of products of the specific type. Time windows exist for delivery and pickup. There
exist two sizes of vehicles, and their trips start from and end at depot and vehicles
can make several trips during a day. Delivery must precede pickup on any trip of a
vehicle. Capacity of vehicles depends on product type and also on how products are
loaded on vehicles. Depending on demand quantity, split deliveries/pickups may be
necessary. The company wants to minimize the total transportation cost. Based on
the fact that the total number of distinct trips is rather small due to limited capacity
of the vehicles, our solution strategy first enumerates all possible trips. Routes (i.e.,
collection of trips) are obtained by assigning trips to vehicles so that the total cost is
minimized subject to constraints on demand, an upper limit on the number of trips
per vehicle, and time compatibility of trips assigned to each vehicle. Since there
exist many time compatibility constraints, the problem is first solved without them,
we then check the compatibility and if necessary add compatibility constraints, and
the problem is solved again until all routes become time compatible. Computational
performance of the proposed solution approach is evaluated.

1 Introduction

Cost effective transportation of products for a rental business is considered, and
optimizationvia integer programs is applied to generate vehicle schedules.Customers
are classified into two groups; those towhom rental products should be delivered, and
those fromwhom products should be picked up at the completion of the rental period.
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As in many other real vehicle routing (See, e.g., Toth and Vigo [1]), the problem
of interest is a complicated one as such features as customer time windows, different
types of vehicles as well as products, split deliveries due to limited capacity of
vehicles, precedence relation between delivery and pickup (See, e.g., Toth and Vigo
[2]), and multiple use of vehicles per day (See, e.g., Azi et al. [3]; sometimes called
rotations) among others.

Despite complex appearance of the problem, it turned out to be manageable
because of its moderate size in terms of the numbers of customers and vehicles,
and also of the very limited capacity of the vehicles.

2 Vehicle Routing for a Rental Business

We consider optimization of daily vehicle routes for a business renting prefabricated
unit houses. The goal is to generate a schedule minimizing the total cost of trans-
portation the company pays to truck companies. Basic assumptions are listed below:

1. There exists a single depot from which products are delivered and to which
products are returned.

2. Products are delivered to new rental customers, and are picked up fromcustomers
upon completion of rental.

3. There exist several product types and the number and the type of rented products
are given for each delivery and pickup.

4. Generally there exist customer requested time windows for delivery and pickup.
5. A vehicle trip is a simple circuit originating from and ending at the depot, and a

vehicle could make several trips within its working hours of a day.
6. There exist two types of vehicles, large and small.
7. Products can be loaded on vehicles either in a “fold” mode or in an “unfold” or

“assembled” mode.
8. The number of products each type of vehicles can carry is limited, and is depen-

dent on the product type as well as the loading mode.
9. The numbers of deliveries and pickups on a particular trip of a vehicle are limited

to two and one, respectively.
10. Pickup should follow delivery in each trip.
11. Different types of products cannot be loaded on the same vehicle.
12. Travel time and time needed for “operations” at customer’s site are all given

constants.
13. The problem calls for a vehicle schedule thatminimizes the cost of transportation

as calculated based on the agreement between the company and truck companies.

We now describe how the cost of transportation is calculated at the company.
Note that the cost is not a simple linear function of actual distance of the trips. The
calculation depends on the sequence of customer visits and also on the number of
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trips for each vehicle. The cost is generally calculated for each customer based on
the distance from depot to the customer and also on the type of vehicle used. The
cost of a visit can be read from a given table of tariff. For the first (round)trip from
depot, the first visit of the trip will be charged 100% of the designated cost, whereas
the second and possibly third visits of the trip are charged only 60% of the cost. For
the second and possibly third (round)trips, the trip’s first visit will be charged 80%
(rather than 100%) of the cost, whereas the second and possibly the third visits of
the trip are charged 60% of the designated cost. This means that the cost is less if
more customers are visited in a single (round)trip, and also if more (round)trips are
made for a vehicle.

3 Integer Programming Formulation
and Solution Strategy

Typical sizes of the problem are approximately 60–70 customers (maximum of 100)
including delivery and pickup, 60–70 vehicles consisting of 4t small trucks and 10t
large trucks, vehicle capacity of 1–2 products for small trucks and at most 5 products
for large trucks, approximately 100 products delivered per day in total. Because of
limited vehicle capacity, we only consider the following trip patterns: delivery only,
pickup only, delivery–pickup, delivery–delivery, delivery–delivery–pickup.

Because of the very limited capacity of vehicles and of limited patterns of trips, the
number of distinct trips ismoderate andmanageable, and thuswe opt to enumerate all
feasible trips and then try to optimally assign trips to vehicles using integer programs.
Some trips may not be assigned to the same vehicle due to time window for each
customer. We check time compatibility of two or three trips as we only consider
routes with at most three trips for each vehicle.

The following notations are used. N stands for the set of customers (including
delivery and pickup), K the set of vehicles, R the set of all possible trips. P(Q)

denotes the set of 2-trip (3-trip) time compatibility constraints. Given a set of cus-
tomers’ transportation requirements (say, 10 products of type X to be delivered to
customer Y at location Z ), the required number of vehicles of each type is calculated
first. Variable xk

r takes value 1 when vehicle k selects trip r , and 0 otherwise. Variable
yk is 1 when vehicle k is used, and 0 otherwise. ck

r is the cost of trip r for vehicle
k. Finally, coefficient grp(hrq) is 1 when trip r is involved in 2-trip (3-trip) time
compatibility constraint p(q), and 0 otherwise.

Since there exist no interaction between different types of vehicles, and thus the
problem is separable for each type of vehicles. Therefore the following formulation
assumes that all vehicles are of the same type. A vehicle routing and scheduling
problem is now formulated:
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(IP) min
∑

k∈K

∑

r∈R

ck
r xk

r + α
∑

k∈K

yk (1)

s.t.
∑

r∈R

air xk
r ≥ bi , i ∈ N , (2)

∑

r∈R

xk
r ≤ myk, k ∈ K , (3)

∑

r∈R

grpxk
r ≤ 1, k ∈ K , p ∈ P (4)

∑

r∈R

hrq xk
r ≤ 2, k ∈ K , q ∈ Q (5)

xk
r ∈ {0, 1}, k ∈ K , r ∈ R, (6)

yk ∈ {0, 1}, k ∈ K , (7)

Objective function (1) is minimization of the weighted sum of route cost and
the number of vehicles used. Constraint (2) specifies the number of trips needed
to satisfy customers’ requirements, whereas constraint (3) gives the upper bound
(currently m = 3) of the number of trips for each vehicle. Constraint (4) gives time
compatibility constraints which prohibit selecting two time incompatible trips for
each vehicle. Similarly, constraint (5) prohibits selecting three time incompatible
trips for each vehicle.

Under the currentmodel, we do not knowbefore solving themodel howmany trips
are made for each vehicle. Yet the real cost of transportation depends on the number
of trips for a vehicle and their sequence as described earlier. In other words, the first
term in our objective function is just an approximated cost of transportation. In order
to introduce a mechanism to reduce the number of vehicles used and thus to increase
the number of trips for a vehicle, we added the second term in our objective function.

Our solution strategy is to solve first the problem (IP) without constraints (4)
and (5). We then check time compatibility of the resultant “optimal” solution. If the
selected trips of the “optimal” solution are all time compatible on each vehicle, then
the solution is in fact optimal for the original (IP). Otherwise, the solution is not time
compatible for at least one vehicle, and we thus add time compatibility constraints
so that the same solution is no longer feasible. We repeat this process of solving (IP)
with only a subset of time compatibility constraints, that is, solving related problem
until the solution becomes time compatible and thus optimal.

4 Computational Experiments

Table1 shows the size of the particular instance to which computational results are
presented below. Note that the total number of trips generated is 828.

Table2 shows the computational results for the instance. The weighting factor α is
changed in the range of 0.00–1.00. Travel cost means the exact cost of the routes to be
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Table 1 Problem size

Customers Vehicles Trips

Delivery Pickup Large Small Large Small

53 8 23 44 351 477

Table 2 Computational results

α = 0.00 α = 0.20 α = 0.40 α = 0.60 α = 0.80 α = 1.00

Transp. cost 1,933,500 1,903,500 1,909,500 1,910,000 1,912,000 1,919,000

� Vehicles 56 49 49 49 49 49

� Trips 65 64 64 64 64 64

CPU time (s) 690 1574 3415 4743 6999 9560

� Iterations 160 135 213 211 218 214

� Added constraints 1237 1427 1611 1870 1954 1967

paid to truck companies. The number of iterations, which is the number of (relaxed)
integer programs solved, ranges around 150–200, during which on the average 1500
time compatibility constraints are identified and added. CPU time is ten minutes or
more, and depends on the value of α. The total number of trips used remains roughly
same without regard to the value of α. We note that generation of all feasible trips
takes little time as compared with time to solve integer programs.

Just by slightly increasing α from 0 to positive, the number of vehicles used goes
down, and the number of vehicles used will remain at the same level after that. Even
though we could not verify, the number of vehicles used appears to be minimum. The
transportation cost is a bit higher when α = 0, but is more or less same for different
values of positive α. We also note that CPU time to solve the problems with larger
α tends to increase, and in fact we could not solve the problem with arbitrarily large
α, i.e., the problem with the objective to minimize the number of vehicles used.

In our solution strategy, the size of (relaxed) integer programs grows as iterations
proceed. This is because more time compatibility constraints are identified and are
added to integer programs. Figure1 shows that the number of added constraints
(vertical axis) increases as iterations proceed. Reflecting the increased problem size,
CPU time to solve an integer program increases as shown in Fig. 2.

Table3 compares the transportation cost of the schedule generated by optimization
and the schedule actually made by a planning personnel. The optimization yielded a
schedule which is roughly 10% less costly than the manual schedule.

Optimized routes for positive α tend to make more trips per day per vehicle.
Optimized trips also tend to make more customer visits within a trip of a vehicle as
compared with the manual schedule.
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Fig. 1 Added # of
constraints

Fig. 2 CPU time per
iteration

Table 3 Comparison of optimization and manual schedule

α = 0.20 Transp. cost � Vehicles CPU time (s) � Iters. � Added
consts.

Cost
reduction (%)

Optimization 1,903,500 49 1574 135 2030 –

Manual 2,153,500 68 – – – 11.61

5 Conclusions and Future Work

We developed an optimization-based vehicle scheduling approach for a rental busi-
ness, minimizing total transportation cost. We exploited the fact that the number of
distinct trips for vehicles is rather small (say, less than 1000 trips), and enumerated
all possible trips in advance, and generated an optimal schedule for each vehicle by
combining trips. We succeeded to produce, in 30–60 CPU minutes schedules whose
cost is 10% less than manual schedule made by a planning personnel.
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Considering the fact that there often exist last minutes changes of the transporta-
tion requirements, it is hoped to reduce CPU time of the optimization model, say
down to a few minutes. One future direction is the set partitioning formulation with
column generation as in Azi et al. [3].
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An Ant Colony System Adaptation to Deal
with Accessibility Issues After a Disaster

Héctor Muñoz, Antonio Jiménez-Martín and Alfonso Mateos

Abstract One of the main problems relief teams face after a natural or man-made
disaster is how to plan rural road repair work to take maximum advantage of the lim-
ited available financial and human resources. In this paper we account for the acces-
sibility issue, that is, to maximize the number of survivors that reach the nearest
regional center in a minimum time by planning which rural roads should be repaired
given the available financial and human resources. This is a combinatorial problem
and we propose a first approach to solve it using an ant colony system adaptation.
The proposed algorithm is illustrated by means of an example, and its performance
is compared with the combination of two metaheuristics, GRASP and VNS.

1 Introduction

Natural disasters have a huge impact on human life, as well as on the economy and
the environment. In spite of the advances in forecasting and monitoring the natural
hazards that cause disasters, their consequences are often devastating.

The response activities during the emergency relief phase aim toprovide assistance
during or immediately after a disaster to ensure the preservation of life and of the
basic subsistence needs of the victims [8]. Activities during the rehabilitation and
reconstruction phases include decisions and actions taken after a disaster in order to
restore or improve the living conditions of the affected community, but also activities
related to mitigation and preparedness.
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One of the main problems relief teams face after a natural or man-made disaster is
how to plan rural road repairwork to takemaximumadvantage of the limited available
financial and human resources. In this paper we account for the accessibility issue,
which is defined by Donnges [3] as the degree of difficulty people or communities
have in accessing locations for satisfying their basic social and economic needs.
Specifically, we maximize the number of survivors that reach the nearest regional
center (center of economic and social activity in the region) in a minimum time
by planning which rural roads should be repaired given the available financial and
human resources.

This is a combinatorial problem since the number of connections between cities
and regional centers grows exponentially with the problem size. In order to solve
the problem we propose using an ant colony system (ACS) adaptation, which is
based on ants foraging behavior. Ants stochastically build minimal paths to regional
centers and decide if damaged roads are repaired on the basis of pheromone levels,
accessibility heuristic information and the available budget.

In Sect. 2, we introduce the mathematical model of the accessibility problem. In
Sect. 3, we describe an adaptation of the ant colony system to deal with this combi-
natorial problem. An example illustrates the algorithm and is used for a performance
comparisonwith GRASP andVNS in Sect. 4. Finally, some conclusions are provided
in Sect. 5.

2 Problem Modeling

Let G = (N , ε) be an undirected graph where N = {N1 ∪ N2 ∪ N3} is a node set
and ε is an edge set. N is partitioned into three subsets: N1, regional centers; N2,
rural towns; and N3, road intersection points. Edges in ε represent roads with an
associated binary level le (1 if the road is operational and 0 otherwise).

The subset of roads εr ∈ ε is composed of roads that are not operational and can
be repaired. The initial level for these roads is 0. There is a financial budget B and a
manpower-time budget H allocated to road repair, whereas a financial cost ce and a
manpower requirement me are associated with each road e ∈ εr .

For each node i ∈ N2 a measure of the accessibility is defined: the shortest trav-
eling time from i to the closest regional center in N1. Of course, this depends on
which roads are singled out for repair. The time to traverse an edge is te when the
road is operational and te + Me when it is not. Me represents a penalty factor for
using another means to traverse e (e.g., using animal-powered transport).

A weight wi is defined for each node i ∈ N2 to represent the importance of the
node. The value of wi is usually a function of the number of inhabitants of the rural
town associated with node i . The objective consists of minimizing the weighted sum
of the time to travel from each node i ∈ N2 to its closest regional center in N1.

Three types of decision variables have to be considered. First, the binary variables
xe indicate whether road e ∈ εr is repaired (xe = 1) or not (xe = 0). Variable yi j

e is
assigned the value 1 when the road e is used on the path from i ∈ N2 to j ∈ N1 and
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0 otherwise. Similarly, variable bi j
k is given the value 1 when node k is visited on the

path from i ∈ N2 to j ∈ N1.
A mathematical integer program for this accessibility problem, based on

research by Campbell et al. [1] and Maya and Sorensen [7], is described below.
The objective function minimizes the weighted sum of the shortest paths for all

i ∈ N2 to the nearest regional center j ∈ N1 as follows:

f (x) = min
∑

i∈N2

(wi × min j∈N1{
∑

e∈ε

de yi j
e }) (1)

where

de =
{

te + (1 − xe)Me, ∀e ∈ εr

te, ∀e ∈ ε \ εr
. (2)

The constraints to be considered in the optimization problem are as follows. First,
the following constraints ensure, respectively, that there is exactly one road leaving
i on the path from i to j , and that there is exactly one road entering j on the path
from i to j ,

∑
e∈ε(i)

yi j
e = 1,

∑
e∈ε( j)

yi j
e = 1 ∀i ∈ N2, ∀ j ∈ N1, where ε(i) is the set of

roads adjacent to node i .
We must also ensure that the path from i to j is connected:

∑
e∈ε(k)

yi j
e = 2bi j

k ∀k ∈
N \ {i, j}, ∀i ∈ N2, ∀ j ∈ N1.

Additionally, budget limitations regarding road repair have also to be taken into
account,

∑
e∈εr

cexe ≤ B,
∑
e∈εr

mexe ≤ H, where B and H are the above financial and

the person-hour budgets, respectively.

3 Ant Colony System Adaptation

The ant colony system (ACS) was first applied by Dorigo and Gambardela [4, 5]
to the traveling salesman problem aimed at achieving performance improvements
regarding the classical ant system (AS).

The basic idea of the algorithm that we propose is as follows. If N2 consists
of n2 nodes, then n2 paths have to be built taking into account the possibility of
repairing roads given a financial and a manpower budget. The n2 paths will be built
simultaneously since they all have a share in the budget, and a repaired road is
available for all paths. For this purpose, a common pheromone matrix will also be
considered, and a set of 10 ants will be used for each node in N2 when applying ACS.

In each iteration, 10 paths will be built on the basis of ACS from each node in N2

to its closest regional center. Once we have identified the shortest paths for the nodes
in N2 we rank the non-operational roads in the shortest paths taking into account the
number of ants that traverse them, the corresponding financial cost ce and manpower
requirement me, and the time saving if they are repaired (Me). Then, we spend the
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road repair budget on the basis of the above ranking until there are no longer enough
financial or human resources available to repair roads.

Now, the global pheromone trail is updated, as explained later, and a new iteration
is carried out, in which 10 paths are again built from each node in N2, the repair
decision is made and the pheromones updated.

The basic elements of the ACS and its adaptation to the accessibility problem
considered in this paper are described below. We denote by τi j and ηi j the associ-
ated pheromone trail and the heuristic information for the road (i, j), respectively.
The adaptation of the ACS can be divided into two phases, an initialization and a
construction phase.

In the initialization phase, pheromone levels are initialized as follows: τ0 =
1

n×I A , where n is the number of nodes in the accessibility problem, and IA refers to
the insertion algorithm.

The insertion algorithm [7] allowsus to build an feasible initial solution. It starts by
computing matrix P , including the minimum distances between each pair of nodes
in the considered accessibility problem, using the Floyd-Warshall algorithm [2].
Then, it iteratively repairs some roads taking into account the corresponding saving
achieved in order to improve the total accessibility until no more improvements can
be made within the remaining budgets.

Regarding the path construction phase, the pseudorandom proportional rule is
used to decide which node to visit next when building a path from a node in N2 to
its closest regional center. An ant currently at node i chooses the road

e =
⎧
⎨

⎩

argmaxe∈ε(i){[τe], [ηe]β}, if q ≤ q0

J, otherwise
, (3)

where ε(i) is the set of roads adjacent to city i and J is randomly generated according
to the following probabilities:

[τe] × [ηe]β∑
l∈ε(i)

[τl] × [ηl]β . (4)

q is randomly generated from a uniform distribution in [0, 1] and q0 models the
degree of exploration and the possibility of concentrating the search around the best-
so-far solution or exploring other paths. ηi j refers to the saving achieved by repairing
the road e, that connects vertices i and j , computed as follows:

saving(e) =
∑

l∈N2

wl(mink∈N1{T [k, l]} − mink∈N1{T [k, i] + ft (e, l) + T [ j, l]}),
(5)

where T [i, j] represents the shortest traveling time from i to j , and the function
ft (e, l) that gives the time to traverse road e when it is at level l.



An Ant Colony System Adaptation to Deal with Accessibility Issues After a Disaster 419

Regarding the pheromone update, only the best-so-far ant adds pheromone in
the global pheromone trail update after each iteration, τe = (1 − ρ) × τe + ρ ×
Δτ bs

e ,∀e ∈ T bs , where Δτ bs
e = 1/Cbs , Cbs is the length of the path built by the

best-so-far ant (T bs) and ρ is a parameter representing the pheromone evaporation.
Note that the above global pheromone trail is updated taking into account the

best-so-far ant in the paths for each node in N2.
The local pheromone trail update is applied by ants immediately after having

crossed a road e during the path construction, τe = (1 − ξ) × τe + ξ × τ0, where
τ0 is the initial value of pheromones and parameter ξ is experimentally fixed. This
local pheromone trail update allows ants to explore not previously visited arcs, and
prevents the algorithm from stagnating.

4 An Illustrative Example

We have used the accessibility problem at https://raw.githubusercontent.com/ekth0r/
ndereba/master/resources/OR_SpectrumData/Data/2-40-2-55-25.txt to analyze the
performance of the proposed adaptation of ACS against a combination of GRASP
(greedy randomized adaptive search procedure) with VNS (variable neighborhood
search) [6].

In the considered accessibility problem instance we have two regional centers
(N1 = {0, 1}), 40 rural towns, and two road cross points (N3 = {42, 43}) and 55
roads, see Fig. 1. Traverse times, the financial cost and the manpower requirement
associated with the repair of each road e ∈ εr , and node weights (wi ) accounting for
their number of inhabitants are available at the cited link. The available budgets are
74monetary units and 83 team hours. The penalty factor to traverse a non-operational
road is 10.

Fig. 1 Accessibility
problem instance

https://raw.githubusercontent.com/ekth0r/ndereba/master/resources/OR_SpectrumData/Data/2-40-2-55-25.txt
https://raw.githubusercontent.com/ekth0r/ndereba/master/resources/OR_SpectrumData/Data/2-40-2-55-25.txt
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The values fixed for parameters in the ACS adaptation are as follows: β = 2,
q0 = 0.9, and ξ = ρ = 0.1. The initial pheromone level is τ0 = 1.367382 × 10−06.
The number of iterations is 30 and the experiment was repeated 10 times.

In the solution the repaired roads are {(0, 28), (12, 21), (3, 5), (24, 38), (7, 41),
(29, 33), (31, 34), (0, 13), (3, 18), (9, 42), (14, 42), (24, 37), (4, 41), (17, 40), (35,
43), (16, 29), (43, 13)} and the traverse time associated with the paths from the 40
rural towns to their closest regional center is 715554.7 and the remaining budgets
are 5.1 team hours and 9.5 monetary units.

If we compare this solution with the one derived in [6] using a combination
of GRASP and VNS we realize that our solution is slightly outperformed the one
proposed in [6] by 1471.2 time units, which constitutes only a 0.2% of difference.
Note that the roads repaired in the solution ( f ∗ = 712873.0) with GRASP and VNS
are {(4, 40), (12, 21), (13, 43), (29, 33), (0, 13), (9, 42), (24, 37), (3, 18), (35, 43),
(2, 5), (17, 40), (14, 42), (0, 28), (31, 34), (3, 5), (4, 41), (5, 20)}.

5 Conclusions

We have proposed a first approach of an adaptation of the ant colony system to
maximize the number of survivors that reach the nearest regional center in aminimum
time after a natural disaster by planningwhich rural roads should be repaired given the
available financial and human resources. The performance of the proposed algorithm
has been compared with another metaheuristic, a combination of GRASP and VNS,
and the solutions differ only in a 0.2%.
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Modelling and Solving a Train Path
Assignment Model

Karl Nachtigall and Jens Opitz

Abstract We introduce a binary linear model for solving the train path assignment
problem. For each train request a train path has to be constructed from a set of prede-
fined path parts within a time-space network. For each possible path we use a binary
decision variable to indicate, whether the path is used by the train request. Track and
halting capacity constraints are taken into account. We discuss different objective
functions, like maximizing revenue or maximizing total train path quality. The prob-
lem is solved by using column generation within a branch and price approach. This
paper gives some modeling and implementation details and presents computational
results from real world instances.

1 Introduction and Motivation

Freight train planning often suffers from the fact that passenger trains are scheduled
first and the freight trains may only use the remaining capacity. As a result, those
schedules are often of badquality. TheGermanRailwayCompany (DBNetz) changes
the planning process as follows:

1. Passenger Trains and freight train slots between construction nodes are scheduled
simultaneously.

2. Train assignment for freight train demand by connecting the slots to a full train
path. Ad hoc requests will be solved by a greedy approach. Long term requests
shall be handled by optimization.

For more details see [2, 5]. In this paper we look to the optimization problem in more
detail.
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d1 a1

di j
ai j

d3 a3

di j+1

d5

ai j+1

a5

Or ds1

ask (Dr)

s1

si j

s3

si j+1

s5

�i j i j+1 [h1]

wait w

construction node

Fig. 1 Slot network and a train path for one request r

2 Basic Models

A train request r is defined by an origin node Or with preferred departure time dr

and a destination node Dr .
1 In order to fulfill this demand a system of fright train

slots is used. Each slot is some kind of placeholder, which might be used to run a
fright train. The slots are constructed between pre-defined construction nodes and
planned simultaneously with the passenger trains.

A train path for a request r can be modelled by a path

p = (w, si1 , �i1 i2 , si2 , . . . , �ik−1 ik , sik )

within a time-space network, the so-called slot network (see Fig. 1). The slots
si1, . . . , sik are linked by the halting positions �i1 i2 , . . . , �ik−1 ik . Since more than one
halting position may be accessible, there exist multiple arcs connecting consecu-
tive slots. With each of those potential train paths p we associate a binary decision
variable x p,r , to indicate whether train request r uses path p:

x p,r =
{
1, if r takes path p

0, otherwise

For the stop of the train during [as1 , ds2 ] there must be enough halting place capacity,
which can be modelled by halting constraints (see Fig. 2).

Some of the potential train paths cannot be carried out simultaneously, because
both paths are using one common slot or a pair of conflicting slots. For each slot
s ∈ S we define byCs the set of all train paths, which either contain s or a conflicting
slot s ′, which cannot be used simultaneously with s. Then a feasible solution fulfills
the slot conflict constraint

∑
p∈Cs

x p,r ≤ 1.
In general, not all requests can be fulfilled simultaneously.Minimizing the number

of rejected requests performs bad, because a lot of the generated solutions have too

1The requirements for a request may be easily extended; e.g. intermediate stops and a desired time
of arrival can be included into the model.
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arriving slots

time

departing slots

time

t1 := a1

t3 := a2

t4 := a3

d4 =: t2

d5 =: t5

T1
T2

T3

T4

Fig. 2 Sort the sequence of all arrival and departure times of all slots with access to one halting
position h by t1 < t2 < t3 < · · · < tk . Then, the time interval system Tj := [t j , t j+1[ has the prop-
erty, that the configuration of halting trains cannot be changed during each of those intervals. Hence,
for each time interval Tj we define a halting constraint H = (h, Tj , κ) with

∑
p∈P(H)

x p,r ≤ κH

much running and waiting time. The most promising approach will be to maximize
total quality. This quality of a train path p for the request r is measured by the travel
time τr (p) := ap − dr with respect to the arrival time ap of the train path and the
preferred departure time dr . We use a detour factor ρmax to define the quality of the
train path by the objective coefficient ωp,r := ρmax · τr (p∗

r ) − τr (p).

Hence, total quality is maximized by the model

∑

p,r

ωp,r · x p,r → max (1)

∀Cs ∈ C :
∑

p∈Cs

x p,r ≤ 1 (2)

∀H ∈ H
∑

p∈P(H)

x p,r ≤ κH (3)

x p,r ∈ {0, 1} (4)

3 A Branch Cut and Price Approach

Since the early 1990s, huge integer linear problems were challenging to solve in
practice. The most significant advance in general methodologies occurred in 1991
when Padberg andRinaldi [4]merged the enumeration approach of branch and bound
algorithms with the polyhedral approach of cutting planes to create the technique
branch cut and price or simply BCP. Figure3 explains the principle working of BCP.
The process of dynamically generating variables is called column generation (see
[1]) and done by computing the reduced cost of the non-active column, which will
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initialize
model

initial solution
(greedy)

solve LP

add new columns

alternative train
paths (pricing)? END

rounding
heuristic

integer solution

yes no

Fig. 3 Process flow of the branch-and-price algorithm

be added to the model if it has negative reduced cost. Lower bounds may either
be calculated directly from a feasible integral solution, or, for the case that only a
fractional solution of the LP-Relaxation is available, by applying a problem specific
rounding heuristic. We use a rounding method by applying a greedy approach for the
set of train requests with non-zero, fractional decision variables. Adding the most
promising candidates to the model, will improve the actual best solution. Finding
those variables is called the pricing problem and done by identifying those variables
with minimum negative reduced cost. Reduced cost are calculated by using the dual
prices, which are associated with each linear constraint of the underlying linear
model. In our case, we have to deal with two types of constraints or equivalently,
dual prices. This are

• Constraints of type (2) are assigned with dual prices αs , which may be interpreted
as that amount of cost, for which the solution could be potentially improved by
relaxing all conflicts associated with slot s,

• Constraints of type (3) impose dual prices βH ,which measure the saturation of the
associated halting constraint H = (h, T, κH ). Large values for βH indicate high
traffic congestion on the halting position h during the time period T .

The reduced cost for a non-active variable x p,r is given by

ω̃p,r :=
∑

s:p∈Cs

αs +
∑

H :p∈P(H)

βH − ωp,r

=
∑

s:p∈Cs

αs +
∑

H :p∈P(H)

βH − ρmax · τr (p∗
r ) + τr (p)
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Searching for new columns with minimum negative cost can be formulated as a
modification of a shortest path problem in the underlying slot network, the so-called
regular language constrained shortest path problem (see [3]). To do this, the slots
are labeled by the travel time plus dual conflict prices c̃(si ) = asi − dsi + αs and the
halting links are assigned with the c̃(�i,i−1) = dsi+1 − asi + βi,i−1, where βi,i−1 =∑ {βH | H = (h, T, cH ) with T ∩ [ai , di+1[	= ∅} summarizes the dual prices of all
associated halting constraints.

The initial solution can be calculated by a greedy approach: All requests are sorted
with respect to departure time. According to this sequence for each request the best
possible train path will be assigned.We obtain an upper bound by using the well
known concept of Lagrange relaxation.

4 Computational Results

The implemented method had been validated by a real world instance from DB
Netz (See Fig. 4). Each instance has 18541 slots and a demand of 3425 freight
trains requests. The first instance I (Table1) has no restrictions for the halting places
at the connection nodes. The second instance II (Table2) considers the real track
infrastructure for all halting postions and defines halting constraints for each possible
connection of slots. Each train path p is qualified by the detour coefficient ρ(p) =
τr (p)

τr (p∗
r )
. The tables report the average and maximum value of the detour coefficient

statics of each solution. During the optimization iteration, the number of rejected
requests can be considerably reduced (see column ‘rejected’).

Table 1 Computational results for instance I without halting constraints

Iteration Objective Upper bound CPU(s) ρ max(ρ) Rejected

1 2810.2065 ∞ 216 1.2987 2.4184 803
.
.
.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

11 3339.8515 3362.8113 6344 1.2427 2.4235 492

ρmax = 2.5 maximum connection time Wmax = 1800 s

Table 2 Computational results for instance II with halting constraints

Iteration Objective Upper bound CPU(s) ρ max(ρ) Rejected

1 2388.72 ∞ 638 1.27 2.42 1052

2 2391.39 6868.22 3366 1.27 2.42 1052
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

9 2910.90 3280.69 33907 1.21 2.38 776

ρmax = 2.5 maximum connection time Wmax = 3600 s
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Fig. 4 The figure represents
the space network for all
18541 slots between the
construction nodes

Performance and results of the method are principially satisfying. Instance I can
be solved up to optimality, whereas instance II has a rather large duality gap of
12.5%.
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A New Approach to Freight Consolidation
for a Real-World Pickup-and-Delivery
Problem

Curt Nowak, Felix Hahne and Klaus Ambrosi

Abstract During courier and express providers’ operational scheduling, vehicles
are assigned to customer orders. This task is complex, combinatorially comprehen-
sive, and contains aspects that defy modeling within reasonable effort, e.g. due to
a lack of structured data. Hence, a fully automated solution cannot be achieved.
In practice, human dispatchers often use dialog-oriented decision support systems
(DSS). These systems generate recommendations fromwhich the human dispatchers
select themost profitable one, while additionally taking into account domain-specific
knowledge. Solutions that consolidate the freight of multiple customer orders onto
a single vehicle are usually particularly favorable. Generally, consolidating leads to
a higher degree of vehicle capacity utilization, which in turn increases cost effec-
tiveness and lowers the resulting environmental damage. We present a new recursive
heuristic for this scenario based on thewell-known savings algorithm.A central para-
meter of the algorithm limits the number of interdependent single tours. Through the
appropriate setting of this parameter, one can control the results’ complexity and
ensure their transparency and acceptance by human dispatchers. Using real-world
data benchmarks, we prove the effectiveness of our algorithm empirically.

1 Introduction

For large real-world pickup-and-delivery service providers, it is not possible to com-
pute completely new dispatching plans when customer orders arrive dynamically.
Instead, new orders are integrated as cost-efficiently as possible into the current plan-
ning. In this process, scheduling is preferred that achieves freight consolidations, i.e.
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one vehicle carries the freight of more than one customer order at the same time.
This offers several advantages, e.g. a more efficient utilization of the fleet’s vehicles
and in turn both direct cost savings, the possibility to handle more orders, and less
environmental pollution.

Fully automated planning is not possible yet, due to the complexity of the given
problem, the combinatorial multiplicity of its solution space, and—sometimes—due
to the lack of (sufficiently structured) available data, e.g. special customer requests,
precise freight dimensions, or simply traffic jams, etc. Therefore, planning is usually
done by human dispatchers with the aid of a decision support system (DSS).

We analyzed past operational data from IN tIME Express Logistik GmbH, a
pickup-and-delivery service provider handling transports throughoutEurope, in order
to improve their planning. The data comprises all information necessary to recon-
struct past planning situations and in particular fleet data as well as order information
such as freight details and the ordered vehicle category. If customer time windows
allowed, reloads at the company’s subsidiaries were an option for planning.

We present a new recursive heuristic that can be incorporated into a DSS for dis-
patch planning. Employed in multiple real-world benchmarks based upon the past
operational data, it reveals considerable cost savings compared to former schedul-
ing decisions.

2 The Recursive Savings Algorithm

For a better understanding of our contribution we will start with an example that
illustrates the idea behind our algorithm before we present the pseudo-code.

The main principle is illustrated in the example in Fig. 1. Three customer orders
(a, b, c) are depicted with individual pickup (+) and delivery (−) locations. For
brevity, the given example offers only one subsidiary (s) for reloads. Let us assume
that for a, b, and c all routes that are potentially feasible in terms of time, have been
pre-calculated including those with reloads at s. The efficient storage of these routes
is described in [3]. We will refer to trips that include a reload as split routes with two
parts: the first part covers the trip between pickup and reload location and the second
part covers the trip between reload and delivery location. Routes without reloads will
be referred to as direct trips.

Starting with order a, the identified best match for consolidation is the second
part of a split route for order b, so that a first trip is planned (marked as trip 1
in Fig. 1b). This yields a “loose end”: the first part of b’s split route. This is now
the starting point for recursive calculations and is matched with the first part of a
split route for order c. Hence, a second trip is planned (marked as trip 2 in Fig. 1c).
The “loose end”—the second part of c’s split route—is once more starting point for
recursion, and since no other order is left for consolidation, a direct trip is planned
(marked as trip 3 in Fig. 1d). The result is what we will refer to as a route collective
consisting of three interdependent trips. A complete dispatching plan may include
multiple route collectives. Note that a vehicle planned for trip 2 may also serve trip 1
or 3 subsequently. Therefore, a reload action for a’s or c’s freight might not even be
necessary.
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Fig. 1 Example of dispatch planning by the recursive savings algorithms. Depicted are three cus-
tomer orders a, b, and c and the subsidiary s as potential reload location. Dashed/solid arrows
denote not scheduled/scheduled trips. d shows the final route collective.

The saving (see [1]) of this route collective is the difference between the route
collective’s costs and the sum of the costs of the three direct trips for a, b, and c.
Depending on the first customer order to incorporate (in our example: a), the result
of the algorithm will be the route collective that provides the largest saving. The
maximum number of recursions and thus the maximum number of customer orders
within a route collective can be determined by a parameter called RMAX, i.e. after
RMAX recursions, the plan for a remaining “loose end” will simply be a direct trip.

Algorithm1 shows the detailed pseudo-code for a set of given undispatched cus-
tomer orders. It is supplemented by Algorithm2 which describes the subroutine for
the consolidation in the stricter sense. While our example above only covers Algo-
rithm2, Algorithm1 is used to create a complete dispatching plan for more than
RMAX customer orders.

Algorithm 1 Recursive Savings Algorithm
Require: A set A of undispatched customer orders, maximum recursion depth RMAX

1: routeCollectives := ∅ � a list for the partial results
2: for all b ∈ A do
3: Calculate partial plan rc for b using Algorithm2 with parameters rec := 0, empty tabu list,
RMAX

4: rc.saving := rc.saving + directTrip(b).costs � equals zero, if b could not be consolidated
5: if rc.saving ≥ 0 then
6: Add rc to routeCollectives
7: end if
8: end for

9: dispatchingPlan := ∅ � container for the result
10: Sort routeCollectives descending by savings
11: for all rc ∈ routeCollectives do
12: Add rc to dispatchingPlan
13: Remove all elements from routeCollectives, that contain (split) trips also contained in rc
14: end for
15: return dispatchingPlan

Ensure: A suboptimal dispatching plan is returned, that schedules all customer orders in A to
plausible route collectives and direct trips respectively.
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The pseudo-code contains a sub-routine called directTrip(b) for calculating the
direct trip for (a part of) a customer order b. It also uses dot notation for object
attributes such as directTrip(b).costs for the costs of b’s direct trip, rc.saving for the
saving value of a route collective rc, a.parent for the original route whose split par-
tially resulted in route a, and a.sibling for the other part of that same split route. Thus,
a.parent = b.parent ⇐⇒ a.sibling = b ⇐⇒ b.sibling = a ⇐⇒ both a and b
resulted from reloading a.parent at a subsidiary. rc.consequence contains the neces-
sary follow-up route collective with the plan for rc’s “loose end”.

Algorithm2 takes a (part of a) customer order b for a parameter and consists of
three parts: Part 1 calculates a direct trip for b and stores it as the currently best
solution rcopt . Part 2 then tries to achieve a greater saving by consolidating b with
another customer order and rcopt is overwritten where applicable. Part 3 eventually
tries to consolidate b with split routes of customer orders to gain an even larger

Algorithm 2 Consolidation With a Maximum of RMAX Consequences
Require: A set of undispatched customer orders A, a (part of a) customer order b to schedule now,

a tabu list of orders tabu, a current recursion depth rec, the maximum recursion depth RMAX
Part 1
1: rcopt := directTrip(b) � i.e. no consolidation
2: rcopt .saving := −rcopt .costs � a direct trip results in costs, not in savings
3: if rec ≥ RMAX then
4: return rcopt � end of recursion
5: end if
Part 2
6: for all a ∈ A \ {tabu ∪ b} do
7: Create partial plan rc consolidating a and b
8: rc.saving := directTrip(a).costs − rc.costs
9: if rc is valid and rc.saving > rcopt .saving then
10: rcopt := rc
11: end if
Part 3
12: childrena := all plausible splits of a at all reload locations
13: for all a′ ∈ childrena \ tabu do
14: Create partial plan rc′ consolidating a′ and b � rc′.saving currently lacks “loose end”
15: rc′.saving := directTrip(a′.parent).costs − rc′.costs
16: tabuRec := tabu ∪ all (split) orders in rc′ as well as their respective parents
17: rc′.consequence := result of recursive call of this procedure with parameters a′.sibling,

tabuRec, rec + 1 and RMAX
18: rc′.saving := rc′.saving + rc′.consequence.saving �rc′.saving now covers “loose end”
19: if rc′ is valid and rc′.saving > rcopt .saving then
20: rcopt := rc′
21: end if
22: end for
23: end for
24: return rcopt

Ensure: A plausible suboptimal (partial) route collective is returned, that consolidates b with (a
part of) another customer order and contains up to RMAX consequences, or else a direct trip of
b if no valid consolidation could be found.
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saving. This is the only part in which “loose ends” may occur. These need recursive
planning and are incorporated within the resulting route collective either as another
consolidation or as a direct trip. For m plausible parts of split routes Algorithm2’s
complexity isO(mRMAX). Thus, for n customer orders (that result in m plausible parts
of split routes) Algorithm1’s complexity is O(n × mRMAX).

3 Benchmarks and Results

Using the provided past operational data, we constructed 2,066 snap-shots of the
planning situations between 2008-01-01 04:00 and 2008-12-10 08:00 each four hours
apart, ignoring daylight savings time such that only clock times 00:00, 04:00, 08:00,
12:00, and 16:00 are included. Within this time frame 208,286 customer orders were
completely served according to the past data.

For each of these snap-shots we only considered customer orders whose dispatch
had not yet started at the respective time of the snap-shot and whose real-world dis-
patch had not included consolidation. These lead to internal costs of e18.8 Mio. We
then created a dispatching plan with route collectives by employing Algorithm1. All
route calculations—including those for trips that really had been driven—where per-
formed on a digital roadmap of Europe provided byOpenStreetMap1 fromDecember
2012. We used further tabu lists to ensure that every customer order was scheduled
exactly once, even if it occurred inmultiple snap-shots.RMAXwas set to 2 as previous
tests suggested a best trade-off between speed and result quality.

The benchmark required time estimates both for journey times as well as for load-
ing, reloading, and unloading. Each road category was assigned an average driving
speed for every possible vehicle category. Hence, the journey time for a given route
and vehicle category could be calculated by summing up the driving times for each
contained road sector.

Two sets of times for freight handling (loading, reloading, and unloading) were
extracted from the past data: B75 contains times such that 75% of all respective
freight handling actions took less or equal time; B90 is a more conservative estima-
tion, covering 90% of all recorded respective freight handling actions. This way our
benchmark has no knowledge advantage over a human dispatcher, as would have
been the case e.g. if we had calculated distinct handling times for every customer.
This is important as we compare our results to the past real-world plannings.

All other assumptions were deliberately chosen so that the benchmark results
act as a lower bound for the actual cost improvement. See [2] for details on further
modeling.

1www.openstreetmap.org.

www.openstreetmap.org
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Fig. 2 Benchmark results for B75 and B90

Figure2 shows the results for both B75 (top) and B90 (bottom). For B75, our
approach saves a total of e764,919 (4.1%) within the benchmark period; B90 with
more conservative time estimations results in savings ofe369,739 (2.0%). All peaks
in Fig. 2 belong to Fridays and are followed by two days with low savings due to
weekend orders usually being known—and thus planned for—on Fridays already.

4 Conclusion

The algorithm shown provides an elegant and effective means for calculating dis-
patching plans with freight consolidations. Its resulting plans are ideal for usage in
a DSS context since the size of the contained route collectives can be controlled by
parameter RMAX. The empirical benchmarks based on real-world data reveal con-
siderable cost improvements over planning by highly trained human dispatchers.
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High Multiplicity Scheduling with Switching
Costs for Few Products

Michaël Gabay, Alexander Grigoriev, Vincent J.C. Kreuzen
and Tim Oosterwijk

Abstract We study several variants of the single machine capacitated lot sizing
problem with sequence-dependent setup costs and product-dependent inventory
costs. Here we are given one machine and n ≥ 1 types of products that need to
be scheduled. Each product is associated with a constant demand rate di , production
rate pi and inventory costs per unit hi . When the machine switches from producing
product i to product j , setup costs si, j are incurred. The goal is to minimize the
total costs subject to the condition that all demands are satisfied and no backlogs
are allowed. In this work, we show that by considering the high multiplicity setting
and switching costs, even trivial cases of the corresponding “normal” counterparts
become non-trivial in terms of size and complexity. We present solutions for one and
two products.

1 Introduction

The area of High Multiplicity Scheduling is still largely unexplored. Many problems
that are easy in the normal scheduling setting become hard when lifted to their
high multiplicity counterparts. In this work, we study a single machine scheduling
problem with sequence dependent setup costs called switching costs, and under high
multiplicity encoding of the input. In this problem, we have a single machine which
can produce different types of products. Each day, only one type of product can be
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produced. Overnight, themachine can be adjusted to produce another type of product
the following day.
Related Work. High multiplicity scheduling problems have been investigated by
several researchers. Brauner et al. [1] provided a detailed framework for the com-
plexity analysis of high multiplicity scheduling problems. We refer the reader to this
paper for an excellent survey of related work in this field. Madigan [3] and Goyal [2]
both study a variant of our problem where setup costs only depend on the product
which will be produced and holding costs are product-independent. The former pro-
poses a heuristic for the problem, whereas the latter solves the problem to optimality
for a fixed horizon.

2 The Model and Basic Properties

We model the general problem for multiple products as follows: we have a single
machine that can produce a single type of product at any given time andwe are given a
set of products J = {1, . . . , n}, and for each product i ∈ J , we are given a maximum
production rate pi , demand rate di and holding costs hi per unit. Furthermore, we
are given switching costs si, j for switching from producing product i to producing
product j . The problem is to find an optimal cyclic schedule S∗ that minimizes the
average costs per unit of time c̄(S∗). Note that for each product i , the rates di and
pi and costs hi are assumed to be constant over time and positive. Observe that the
input is very compact. Let m be the largest number in the input, then the input size
is O(n logm).

We distinguish three variants: The Continuous case, where the machine can
switch production at any time; the Discrete case where the machine can switch
production only at the end of a fixed unit of time e.g. a day; and the Fixed case,
where the machine can switch production only at the end of a fixed unit of time, and
each period in which the machine produces product i , a full amount of pi has to be
produced (in the other cases, we can lower production rates). We assume holding
costs are paid at the end of each time unit.

We denote by LSP(A, n) with A ∈ {C, D, F}, n ∈ N the Lot-Sizing Problem of
scheduling n products in the Continuous, Discrete or Fixed setting. Let π [a,b]

i denote
the amount of product i produced during time interval [a, b]. Let π t

i = π
[t−1,t]
i . Let

xt
i be a binary variable denoting whether product i is produced during time interval

[t − 1, t]. Let qt
i denote the stock level for product i at time t . We explicitly refer to

the stock for a schedule S as qt
i (S).

We now state some basic properties for the three variants.

Lemma 1 All three variants of the Lot Sizing Problem are strongly NP-hard.

Proof The lemma follows directly from a reduction from the Traveling Salesman
Problem. �
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Lemma 2 For all three variants of the problem, there exists a feasible schedule if
and only if

∑
i∈J di/pi ≤ 1.

Proof It is easy to see that di/pi is the fraction of time product i needs to be scheduled
on the machine and thus

∑
i∈J di/pi is at most 1. �

Lemma 3 Let S∗ be an optimal schedule for LSP(C, n) or LSP(D, n), with n ∈ N.
S∗ has no idle time.

Proof If there is some idle time, we can simply decrease production rates to decrease
holding costs. �

3 Single Product Case

In most scheduling problems, scheduling a single product on a single machine is
trivial. However, considering a high multiplicity encoding takes away some of the
triviality of this seemingly simple problem.
Continuous Case. If a feasible schedule exists, we know that p1 ≥ d1. In an optimal
schedule, we produce to exactly meet demand, i.e. π [a,b]

1 = d1(b − a).
Discrete Case. If a feasible schedule exists, we know that p1 ≥ d1. In an optimal
schedule, we produce d1 for every unit of time to exactly meet demand.
Fixed Case. The Fixed case for a single product is already non-trivial. We will prove
the following theorem.

Theorem 1 In an optimal schedule S∗ for LSP(F, 1), π t
1 > 0 if and only if qt−1

1 < d1.

We first characterize the minimum cycle length for LSP(F, 1), followed by the
costs of an optimal schedule. The proof shows that for an optimal schedule S∗, the
inventory levels for the time units in the schedule are the multiples of gcd(p1, d1)
smaller than p1.

Lemma 4 The minimum cycle length for LSP(F, 1) is

l∗ = p1

gcd(p1, d1)
. (1)

Proof Denote G = gcd(p1, d1). Assume without loss of generality that q0
1 < p1.

Since the cycle must be feasible, we have that d1 ≤ p1.
Producing p1 provides stock for �p1/d1� time units, with a leftover stock of p1

mod d1. Let stock at time t be qt
1 = qt−1

1 + π t
1 − d1. The schedule is cyclic when

qt
1 = q0

1 for t > 0. For a minimum cycle length, we want to minimize over t such
that qt

1 = q0
1 + ∑t

u=1 πu
1 − d1t = q0

1 . Rewriting gives

t =
∑t

u=1 πu
1

d1
=

t∑

u=1

xu
1

p1

d1
.
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Clearly, t is minimized when
∑t

u=1 xu
1 = d1

G , and thus t = p1
G = l∗. �

Using this lemma we compute the costs of an optimal schedule.

Lemma 5 The shortest optimal cyclic schedule S∗ for LSP(F, 1) has unit costs of

c̄(S∗) = h1

2
(p1 − gcd(p1, d1)) . (2)

Proof Denote G = gcd(p1, d1). Assume without loss of generality that the initial
stock q0

1 = 0 (see Remark 1 in the appendix, available online at
arxiv.org/abs/1504.00201). Let S∗ be the optimal cyclic schedule with length l∗.
Since S∗ is cyclic, qt

1 has unique values for t = 0, . . . , l∗ − 1. Suppose l∗ > p1/G .
Then each qt

1 is a multiple of G . Since l∗ > p1/G and each qt
1 has a unique value,

there exists at least one t such that qt
1 ≥ p1, and thus the schedule is not optimal.

Thus the length of the shortest optimal schedule is l∗ = p1/G .
Since the total demand during the cycle is d1l∗ and each time unit of production

produces p1, we know that we produce during d1l∗/p1 = d1/G time units. Since qt
1

has a unique value for each t < l∗ and q0
1 = 0, the stock values are all multiples of

G . Hence, the values of qt
1 are the multiples of G smaller than p1. Since p1 = l∗G ,

the total stock for the cycle equals
∑l∗−1

j=0 jG .
Thus the total costs of S∗ are:

h1

l∗−1∑

j=0

jG = h1
1

2
G l∗(l∗ − 1) = h1 p1

2

( p1

G
− 1

)
. �

The optimal schedule S∗ has length l∗ as in Eq. (1), and total costs l∗c̄ as in
Eq. (2). The length of the cycle is linear in p1/gcd(p1, d1), and Theorem 1 yields a
polynomial delay list-generating algorithm.

4 Continuous Case with Two Products

Intuitively, the Continuous variant of the problem is less difficult than the Discrete
one, which in turn is less difficult than the Fixed variant. In this section we show
that for two products, even the Continuous case is already non-trivial. We represent
a cyclic schedule of length C as a sequence:

[t0, t1]r0
j0
, [t1, t2]r1

j1
, . . . , [ts, C]rs

js
,

where [ti , ti+1]ri
ji
denotes a phase of the schedule, such that no two consecutive phases

share the same ri and ji , and in time interval [ti , ti+1], product ji ∈ J is produced at
rate ri ≤ p ji . A maximal sequence of consecutive phases of the same product ji is
called a production period, denoted by [ti , ti+1] ji .

http://arxiv.org/abs/1504.00201
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We prove some structural results on the optimal schedule. The next lemma shows
the machine produces every product i only at rates di and pi to minimize holding
costs.

Lemma 6 Consider LSP(C, n) for any n ≥ 2. There is an optimal cycle S∗ such
that for every product i ∈ J , every production period of i in S∗ consists of at most
two phases. For every production period, in the first phase the machine produces i
at a rate of di . During the second phase i is produced at a rate of pi .

We call a schedule a simple cycle if there is exactly one production period for each
product. The next lemma shows that in order to minimize holding costs, the optimal
schedule for LSP(C, 2) is a simple cycle.

Lemma 7 There exists an optimal schedule for LSP(C, 2) that is a simple cycle.

Proof Let S∗ be a minimal counterexample, i.e. S∗ = [0, t1]1, [t1, t2]2, [t2, t3]1, [t3,
C]2, where t1 �= (t3 − t2). Now denote A1 = (t1 + t3 − t2)/2 and consider the fol-
lowing schedule,

S = [0, A1]1, [A1, C/2]2, [C/2, C/2 + A1]1, [C/2 + A1, C]2 ,

which is obtained from S∗ by replacing the two production periods of each product
by two production periods with averaged length. Since S∗ is feasible, we have that
π

[0,t1]
1 + π

[t2,t3]
1 ≥ Cd1 andπ

[t1,t2]
2 + π

[t3,C]
2 ≥ Cd2. Letπ

[0,A1]
1 = d1C/2 in S to cover

the demand for product 1 during the first two production periods. Let the production
during the other production periods be similar. Clearly, S is feasible. Note that (t2 −
t1) + (C − t3) = (C/2 − A1) + (C − C/2 − A1), i.e. the sum of the lengths of the
production periods for product i in S, is equal to that in S∗.

Now suppose there is in S∗ a production period [a, b] for product 1 with
qa
1 (S∗) > 0. Then during the production period [x, a]2, holding costs increase by

qa
1 (S∗)h1(x − a) compared to S and thus c̄(S) < c̄(S∗).
Next, suppose qa

i (S∗) = 0 for every production period [a, b]i . It is easy to see that
holding costs for product 1 are only paid during production periods for 2 and during
the non-empty phase where product 1 is produced at rate p1. The same result holds
for product 2. Note that the sum of the lengths of the production periods for product
i in S, is equal to that in S∗ and holding costs are linear. Hence, the area under the
curve of the function of the holding costs over time, is the same in S as in S∗, thus
c̄(S) ≤ c̄(S∗).

Observe that S consists of two simple cycles S′ and S′′ with S′ = S′′. Thus S′ is
a feasible simple cycle with the same unit costs as S. �

For the rest of this section we assume without loss of generality that h1 < h2,
and we only consider simple cycles. Next we show that an optimal schedule for
LSP(C, 2) consists of at most three phases.



442 M. Gabay et al.

Lemma 8 There exists an optimal schedule for any LSP(C, 2) instance of the fol-
lowing form:

S∗ = [0, t1]p1
1 , [t1, t2]d2

2 , [t2, C]p2
2 , (3)

where the second phase is empty if and only if d1/p1 + d2/p2 = 1.

Proof Let S be an optimal cycle with four non-empty phases, i.e.

S = [0, t1]p1
1 , [t1, t2]d2

2 , [t2, C]p2
2 , [C, t3]d1

1 .

Consider the schedule consisting of only the first three phases, i.e. we remove
[C, t3]d1

1 . Note that π
[t2,C]
2 = d2 (t1 + (t3 − C)) > d2t1. Hence the total amount of

production for product 2 can be lowered by (t3 − C)d2, by decreasing the length of
phase [t2, C]p2

2 . Let α = (t3 − C)d2/p2 and let

S∗ = [0, t1]p1
1 , [t1, t2 + α]d2

2 , [t2 + α, C]p2
2 .

Clearly S∗ is feasible and c̄(S∗) < c̄(S).
If d1/p1 + d2/p2 = 1 the schedule is tight and demand can only be met by pro-

ducing at maximum rate, which implies [t1, t2 + α]d2
2 is empty.

If d1/p1 + d2/p2 < 1, there has to be a phase in which the machine does not
produce at maximum rate, to avoid overproduction. By Lemma 6 there are at most
two phases of production at rate d1 and d2 respectively. Since h1 < h2, by the above
reasoning we introduce only one phase where we produce d2 in order to minimize
costs. �

Using this result we calculate the optimal cycle length and corresponding costs.
Let S∗ be as in Eq. (3). The costs of the schedule as a function of the parameter t1,
are given as

c̄(t1) =
(

h1(p1 − d1)

2
+ h2d1d2

2p1

(
1 + d2

p2 − d2

))
t1 +

(
(s1,2 + s2,1)

d1
p1

)
1

t1
,

which is minimized for

t∗ =
√√√√

2(s1,2 + s2,1)d1

h1 p1(p1 − d1) + h2d1d2
(
1 + d2

p2−d2

) .

The outcomes are summarized in the following theorem.

Theorem 2 For LSP(C, 2) there exists an optimal schedule of length t∗ p1/d1 with
average costs c̄(t∗).
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Sampling-Based Objective Function
Evaluation Techniques for the Orienteering
Problem with Stochastic Travel and Service
Times

Vassilis Papapanagiotou, Roberto Montemanni
and Luca Maria Gambardella

Abstract Stochastic Combinatorial Optimization Problems are of great interest
because they can model some quantities more accurately than their deterministic
counterparts. However, the element of stochasticity introduces intricacies that make
the objective function either difficult to evaluate or very time-consuming. In this
paper, we propose and compare different sampling-based techniques for approxi-
mating the objective function for the Orienteering Problem with Stochastic Travel
and Service Times.

1 Introduction

Recently, there has been a growing interest and study of Stochastic Combinatorial
Optimization Problems (SCOP). One of their important advantages is that they can
give amore realistic solution in problems that encompass uncertain quantities such as
travel times. In this paper, we compare different algorithms for the objective function
of the Orienteering Problem with Stochastic Travel and Service Times (OPSTS).

Stochasticity makes the problems more complex to solve than their deterministic
versions. Currently, there exist some exact methods for solving them but they work
only for very small problem instances and so there is demand for designing efficient
metaheuristics. However, even this task becomes difficult as computing the objec-
tive function many times is a hard problem or in our problem (OPSTS) very time
consuming.

Metaheuristics based on Monte Carlo Sampling have become state-of-the-art
approaches for many SCOPs such as the Probabilistic Traveling Salesman Problem
(PTSP) [1], the Probabilistic Traveling Salesman Problem with Deadlines (PTSPD)
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[2, 3] and recently OPSTS [4, 5]. However, we have observed that when we compute
the objective function by using Monte Carlo Sampling in problems with deadlines
such as the OPSTS, larger errors occur in the nodes where the deadline is likely to
occur. This happens because Monte Carlo evaluation assigns the whole reward or
penalty to a node and an error on a node will propagate to subsequent nodes. These
errors sometimes are large enough to make the metaheuristic make worse choices
than it otherwise would during the phases of exploration or exploitation.

Although orienteering problem variants have been well-studied in the past, the
Orienteering Problem with Travel and Service Times (OPSTS), as far as we know
was first proposed in [6]. In that paper, Campbell et al. propose two exact methods for
solving a simplified version of the problem and the Variable Neighborhood Search
(VNS) metaheuristic [7] for providing solutions. The objective function used in that
paper is an analytical approximation of the probabilistic cost of travel times. In our
paper we refer to that function as ‘ANALYTICAL’.

In [4, 5] some alternative Monte Carlo sampling techniques for computing the
objective function of OPSTS are presented and they are compared to the ‘ANALYT-
ICAL’ in terms of time gain and error.

Using Monte Carlo Sampling to approximate the objective function is an idea
that has been explored before for different problems and methods. The Probabilis-
tic Traveling Salesman Problem and the Probabilistic Traveling Salesman Problem
with Deadlines are two related problems where Monte Carlo Sampling has been
applied before. In [8], the authors propose a Local Search algorithm for PTSP which
uses Monte Carlo sampling in the objective function to approximate the cost of the
solution.

In this paper, we study how to use Monte Carlo sampling and a mix of analytical
methodswithMonte Carlo sampling techniques in order to approximate the objective
function of OPSTS faster and we examine its benefits when we use our techniques in
the context of a metaheuristic. We extend our methods and present new results and
experiments which are partially related to our previous works [4, 5].

2 Problem Definition

In this section, we give the formal definition of OPSTS as it was introduced in [6].
We denote N = {1, . . . , n} a set of n customers with the depot being node 0. In

OPSTS a subset M ⊆ N the set of customers selected to be served. There is a global
deadline D for servicing customers without a penalty. We assume that the graph is
full and therefore there is an arc (i, j) for all i, j ∈ M . Servicing a customer i ∈ M
before the deadline results in a reward ri otherwise a penalty ei is incurred. Let Xi, j

be a non-negative random variable representing the travel time from node i to node
j and Si a random variable representing the service time of customer i . It is assumed
that we know the probability distribution of Xi, j∀i, j and that the service time Si

for the i th customer follows the same distribution as Xi−1,i and can be added to the
travel time Xi−1,i and therefore need not be considered separately. In our case, the
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probability distribution of the random variables is the Γ distribution. Let the random
variable Ai be the arrival time at customer i and Āi a realization of Ai . Now let R( Āi )

be a function representing the reward earned at customer i when arriving to i at time
Āi . According to our definitions R( Āi ) = ri for Āi ≤ D, otherwise R( Āi ) = −ei

(for Āi ).
A tour of the customers τ is defined as a sequence of customers∈ M . The objective

function of the problem is defined as the expected profit of the tour:

u(τ ) =
∑

i∈τ

[P(Ai ≤ D)ri − (1 − P(Ai ≤ D))ei ] (1)

3 Objective Function Evaluators

Analytical Evaluation of the Objective Function
The analytical evaluation of the objective function is the one used in [6] and is used
in this paper as the reference evaluator in order to measure errors and time gains. It
is used to evaluate the ‘ANALYTICAL’ area (explained below).

Considering that the Cumulative Distribution Function (CDF) of Ai computes the
probability P(Ai ≤ x) and that Ai is Γ distributed, we use the CDF Fki where k is
the k parameter for the i th customer. Now, the Eq.1 becomes:

u(τ ) =
∑

i∈τ

[Fki (D)ri − (1 − Fki (D))ei ] (2)

Monte Carlo Evaluation (MC) of the Objective Function
To compute the objective function (1) we need to compute the probabilities involved.
In Monte Carlo sampling we generate many samples which are graphs with different
realizations of the arrival times (Ai ) for every node. For each sample we compute its
objective value (1) and the final objective value is the average of all objective values.
To speed up the procedure, we precompute samples of travel times from every node
to every other node. The precomputation is done once and the samples generated are
reused throughout the computations. For more information the reader is referred to
[4, 5].

Hybrid techniques for the evaluation of the Objective Function
To generate solutions for OPSTS, in this paper, the VNSmetaheuristic is used [6, 7].
Themetaheuristic generates some solutions to be evaluated by our objective function.
Using Monte Carlo sampling (MC) speeds up the evaluation, however, because it
has relatively high error when evaluating nodes in the deadline area (see [5]) it
might affect the choices made by the metaheuristic and lead to worse solutions. This
problem intensifies as the feasible solutions have more nodes. For example, in Fig. 1
we observe that using MC for enough time to find large feasible solutions makes
the metaheuristic diverge from higher quality solutions. Therefore, there is the need
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Fig. 1 Objective function
evaluation algorithms and
the final value reached by the
VNS metaheuristic [6, 7]
versus runtime, dataset with
66 customers, deadline set to
115, α for
MC-ANALYTICAL-MC
is 0.13
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to reduce the evaluation error and have small impact on our speedup. We achieve
that by partitioning the solution. In this paper in order to partition the solution given,
we select an 0 < α < 1 and we consider that all nodes with arrival times between
[(1 − α) · D, (1 + α) · D] belong to the ‘deadline area’ and are evaluated using the
‘ANALYTICAL’ method. The rest are evaluated using Monte Carlo sampling which
has higher evaluation speed. We call this evaluator MC-ANALYTICAL-MC. As it
was shown, for a given deadline, the ‘deadline area’ is defined by the parameter α
which we will call ‘deadline area ratio’ or ‘area ratio’ for the rest of the paper. In
Fig. 1 the α used was 0.13 which meant that the evaluation error was less than 2%.
The reason will be explained in Sect. 4.

4 Experiments

In this section, a small set of experiments is presented to show how the hybridmethod
behaves and how to tune it. The datasets and the dataset generation procedures are
the same as in [6] so that immediate comparison is possible. In this paper, we only
show results for a dataset with 66 customers (dataset 566 as seen in [6]), for more
results the reader is referred to [9]. Firstly, we show how to select the deadline area
ratio (mentioned as α above) for the MC-ANALYTICAL-MC, so that there is an
upper-bound on the error made in the individual computations.

To select the deadline area we first decide on an upper-bound error threshold and
thenwe select theminimumdeadline area such that for every deadline the error is less
than the threshold. In Table1, we can see the results for theMC-ANALYTICAL-MC
method on a representative instance for different error thresholds. For example, if
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Table 1 TimeGains and deadline area ratios for different error thresholds forMC-ANALYTIC-MC

Error thresholds 1 (%) 2 (%) 3 (%) 4 (%)

Time gains 27.29 30.94 32.18 33.05

Deadline area ratio (α) 21 13 9 5

Errors are measured with reference to the ‘ANALYTICAL’ method for the dataset of 66 customers
used in the paper

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Area Ratio

R
el

at
iv

e 
E

rr
or

MC−ANALYTICAL−MC
Trend line

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
26

0.
30

0.
34

0.
38

Area Ratio

T
im

e 
G

ai
n

MC−ANALYTICAL−MC
Trend line

(b)

Fig. 2 Influence of area ratio α to relative error and time gain for deadline 40, for method MC-
ANALYTICAL-MC, dataset with 66 customers. Errors and time gains are measured with reference
to the ‘ANALYTICAL’ method. The trend lines (in black) are the fitted curves and model the
trend. The fitted exponential curve is y = e−3.56·x−6.77 and the fitted line is y = −0.57 · x + 0.45.
a Residual standard error: 0.0025. b Multiple R-squared: 0.99

we want an error below 2% we would select a deadline area ratio of 13% and it
would be 30.94% faster in the evaluation. Time gains and errors are measured with
reference to the ‘ANALYTICAL’ method. Time gains and errors are averages over
all the evaluations done in 30 runs of the VNS metaheuristic.

The effect of the deadline area to relative error and time gains
By using the concept of the ‘deadline area ratio’ we can influence the relative error
per evaluation and the time gains of our algorithm. In Fig. 2, we can see two graphs
depicting deadline area ratio vs relative error and deadline area ratio vs time gains,
respectively (dataset with 66 customers). We can observe that the error is decreasing
with a higher rate than time gain as we increase the deadline area ratio. This fact
adds to the usefulness of the pursuit for further improvement of hybrid methods
of evaluation. To confirm our observations, we fitted exponential curves (ek·x+β) to
model the error curves and lines to model the time gain curves. The average residual
standard error for the error curves was 0.0025 and multiple R2 for the time gain
curves was 0.99. This means in the first case that there exist exponential curves that
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approximate the actual error curves with negligible error and in the second case, lines
can replace the time gain curves and they would explain 99% of the variance of time
gains.

5 Conclusions

In this paper, we explored different techniques to approximate the objective func-
tion of the Orienteering Problem with Stochastic Travel and Service Times. These
techniques can accelerate the computation of the objective function which is usually
the performance bottleneck in Stochastic Combinatorial Optimization problems. We
showed that Monte Carlo sampling error may make the metaheuristic behave sub-
optimally and we suggested a hybrid method for evaluating the objective function
which is faster than the analytical and does not suffer from the problems of Monte
Carlo sampling and we showed its behavior and how to tune it with respect to the
‘deadline area ratio’.
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Optimized Pattern Design for Photovoltaic
Power Stations

Martin Bischoff, Alena Klug, Karl-Heinz Küfer, Kai Plociennik
and Ingmar Schüle

Abstract The task of planning photovoltaic (PV) power plants is very challenging.
The decision makers have to consider the local weather conditions, the land area’s
topography, the physical behavior of the technical components and many more com-
plex aspects. We present an approach for optimizing one variant of the way routing
problem for PV plants. We formulate the problem as an Integer Program (IP) which
can be solved by standard solvers. In addition, we reformulate the IP as a maxi-
mum independent set problem on interval graphs. This graph-theoretic problem can
be solved in polynomial time. Using the latter approach, we are able to generate a
variety of solutions with different angles for the ways with little effort of time.

1 Optimization of Photovoltaic Power Plants

In times of increasing energy costs and decreasing incentives for green energy
sources, the task of maximizing the economic efficiency of renewable energy power
plants becomes more and more relevant. Especially the photovoltaic industry suffers
from current political decisions and it is more important than ever to reach grid parity,
so that the price for the produced energy can compete with fossil power plants.

There are several degrees of freedom for the optimization of PV plants. The
planner can choose between different module and inverter technologies, the tables on
which the modules are mounted can vary in size and tilt angle, the distances between
the tables influence the shading of the modules, and many more (cf. [1, 2]). The
problem is far too complex for being systematically optimizedwithout computational
support. Often, decisions have to be made based on rules of thumb and experience.
In most cases, this results in a waste of potential for optimization.
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1.1 Analyzed Problem

The way routing on the available land area is one of several subproblems to be
solved while planning photovoltaic layouts. One solution approach for this problem
is addressed in this paper. These ways are needed for site access during construction
and maintenance and must be placed under certain restrictions. In the underlying
design concept, the ways are parallel stripes in the area which must be placed within
certain distance thresholds, so that preferably many PV tables can be placed between
them.

The degrees of freedom for this problem are the angle and the positions of the
ways, which both depend on the form of the area and the size of the PV tables. There
are also some additional influencing factors, like restricted parts of the area where
no tables can be located. The objective is to place the ways so that the area where no
tables can be placed is minimized.

Figure1 shows an example of such a way placement. Here, the ways (illustrated
in dark gray) are placed with a certain angle, deviating from north-south orientation,
to better fit to the shape of the polygon. The available space that can be used in
a later step for placing tables is shown in light gray. These “table columns” are
parallelograms whose width corresponds to the width of the tables. In the discussed
approach, only south- or north-facing PV tables are consideredwithout azimuth angle
variations. Hence, the upper and lower edges of the parallelograms must be parallel
to the equator. The medium gray polygons mark obstacles, where the available area
may not be used for placing PV tables.

Given such a placement of ways and table columns, a later step can be to fill the
table columns with actual tables by applying a certain distance rule from south to
north (or from north to south on the southern hemisphere).

Fig. 1 Example of a
placement for the ways (dark
gray) and table columns
(light gray) for a given area
(outer polygon) with
obstacles (medium gray).
Between the second and
third table column from the
left, a small gap is left open
for a better area coverage
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2 Mathematical Formulation

To systematically solve the problem described, we model the problem as an IP
(Integer Program). Therefore, we discretize the area in which the tables will be
placed inwest-east direction. Since the actual placement of the tables on site generally
involves tolerances and the distance between two discretization points can be chosen
small, every practical solution can be found with this discretization.

In a first approach, we model the problem as an IP which maximizes the area
covered by table columns. This program individually places the columns as well
as the ways. The constraints ensure that no two items (i.e., ways or table columns)
overlap and that the maximum distance between two ways is kept. The angle for the
planning must be defined in advance. This IP can directly be solved by commercial
solvers, although the computation time might become long. Hence, this approach is
not suitable for an exploration of different way angles.

To avoid the high computational effort, we create fixed combinations of paths and
columns, so called “columngroups” and formulate the placement of these items as a
new IP. Such a columngroup is a collection of non-overlapping table columns (that
may contain gaps in between) with an adjacent way. In Fig. 1, three columngroups
each with five table columns are illustrated. The first columngroup contains a gap
after the second table column from the left.

We first construct different types of columngroups with different numbers of table
columns, such that they leave any reasonable gap between the columns or a column
and a way. All of these constructions must satisfy the restriction that the distance
between two ways is within the predefined limits. We denote the set of all feasible
columngroups by J ∗.

In the following IP, the factor L j
i is the area which is coverd by the table columns

of the columngroup of the form j ∈ J ∗ placed at discretization point i . The set of
all discretization points is denoted by I . The integer variable x j

i specifies, whether
or not this columngroup is placed

(IP) max
∑
j∈J ∗

∑
i∈I

L j
i · x j

i (1)

s.t.
∑
j∈J ∗

∑

k∈F̃ j (i)

x j
k ≤ 1 ∀ i ∈ I (2)

x j
i ∈ {0, 1} ∀i ∈ I,∀ j ∈ J ∗ (3)

The set F̃ j (i) in the constraint (2) contains for a given discretization point i and a
columngroup of the form j all discretization points k for which the chosen column-
group placed at point k covers the point i . Thus, the constraint ensures that the selected
columngroups do not overlap. Note that the columns of a single columngroup are
non-overlapping by construction. The objective functionmaximizes the area covered
by the columns of the respective columngroups.
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Fig. 2 Visualization of
different intervals (top) that
represent the west-east area
coverage of columngroups
and the corresponding
interval graph (bottom). Two
nodes are connected in the
graph if the corresponding
intervals overlap

This IP can be reformulated as a graph-theoretical problem, the maximumweight
independent set problem. For special graphs, such as interval graphs (cf. Fig. 2), this
problem can be solved in polynomial time. An algorithm to solve the maximum
weight independent set problem is described in [3]. The idea of our transformation
is to model the overlapping of two columngroups placed at certain discretization
points as an edge between two corresponding nodes in a weighted graph. Thus, the
nodes correspond to the variables x j

i in our above IP formulation. The weights of
the nodes are given by the respective coefficients L j

i in the objective function. A
complete proof of this equivalence can be found in [4].

To summarize the results, we found a model of the discussed way placement
problem, which can be solved in polynomial time. This enables us to apply the
algorithm to different angles for a given area, allowing a more detailed analysis of
the effect the angle has on the area covered by columns. Furthermore, a (commercial)
solver for general IPs is not required for this type of problem.

3 Computational Results

We tested our independent set approach on several land areas of photovoltaic power
plants in the real world. To this end, we implemented an algorithm for solving the
independent set problem on interval graphs in C# and used a standard PC for execu-
tion. For different land areas, we executed our algorithm to compute an optimal way
placement for different ways angles between reasonable minimum and maximum
values, discretized in small steps. This approach is practicable since the computation
times are reasonably small. This way, we analyzed the effects of different angles on
the way placement problem. A selection of the results is presented in Table1. More
detailed results can be found in [4].
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Table 1 Results of the maximum independent set approach for some land areas of PV plants in
the real world

Area Size (km2) Ways angle (◦) Area coverage (%) Running time (s)

Area 1 0.12 90 83.24 0.34

Area 1 0.12 143 81.61 0.31

Area 2 0.41 90 86.31 0.67

Area 2 0.41 75 86.66 0.72

Area 3 0.08 90 87.76 0.13

Area 3 0.08 76.07 83.71 0.25

From the table, it can be seen that a variation of the ways angle has a significant
impact on the optimal objective value, i.e., the area coverage/useable land area for PV
tables. For example, for area 3, the area coverage differs by around four percentage
points for the two used ways angles. Note that not in every case vertical (north-
south) ways are the best choice (cf. area 2). In these cases, choosing an angle which
is parallel to one of the area’s edges often gives better results.

In Fig. 3, the effect of different ways angles for a certain area is illustrated. It
can be seen that even small changes to the angle can have significant effects on the
area usage. The objective value “covered land area” differs by around three percent
between maximum and minimum.

Fig. 3 Left Area for which we optimize the angle of the ways. Right Effect of different angles on
the objective function for the illustrated area. It can be seen that the objective value is quite sensitive
even to small changes of the angle. 90◦ refers to north-south ways
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4 Summary

We considered a variant of the way routing problem for PV plants, which has prac-
tical significance for automatically creating layouts of large-scale ground-mounted
photovoltaic power plants due to the high impact of the choice for the way routing
on the plant’s overall performance. We developed two solution approaches for the
problem. The first one is based on an IP formulation of the problem and solving
it using a commercial IP solver. The second approach is based on creating a cer-
tain interval graph representing the land area and the potential positions of the table
columngroups, and solving the maximum weight independent set problem using a
known polynomial-time algorithm. The two approaches are equivalent in terms of the
objective function value of the optimal solution (maximize area coverage between
the ways, i.e., maximize the space available for placing tables). Both approaches
yield optimal solutions for the problem in acceptable time for real-world areas.

The overall approach of modeling and solving the way routing problem for PV
plants in a mathematical way is superior to standard manual planning, since the
latter wastes potential for optimization. Due to the large number of possibilities and
complex interdependencies, good way routings are easily overlooked by the layout
planner without such a systematic optimization approach.

Wenote that both discussed approaches are generic in a sense that in principle, they
are integrateable in any PV plant layout planning concept, provided the concrete way
routing guidelines can be formulated as an integer programor as a practically solvable
graph-theoretic problem on a certain graph modeling the input. An interesting open
question is hence, if and how other way routing rules used in practice can be handled
by this approach. Also the inclusion of other design tasks, e.g., choosing good tilt
angles and distances for the tables, can help in creating high-quality plant layouts
and hence provide interesting research topics in the future.

References

1. Bischoff, M., Ewe, H., Plociennik, K., Schuele, I.: Multi-Objective Planning of Large-Scale
Photovoltaic Power Plants. In: Operations Research Proceedings 2012, Selected Papers of the
International Annual Conference of the German Operations Research Society (GOR), pp. 333–
338 (2012)

2. Schuele, I., Plociennik, K., Ewe, H., Bischoff., M.: An economic evaluation of two layout
planning concepts for photovoltaic power plants. In: Proceedings 28th European Photovoltaic
Solar Energy Conference and Exhibition EU PVSEC 2013, pp. 4143–4147 (2013)

3. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In:
Nash-Williams, C., Sheehan, J. (eds.) Proceedings of the Fifth British Combinatorial Conference
1975, pp. 211–226 (1975)

4. Klug, A.: Path planning and table pattern design in photovoltaic power stations. Diploma thesis
at TU Kaiserslautern (2012)



What Are New Insights Using Optimized
Train Path Assignment for the Development
of Railway Infrastructure?

Daniel Pöhle and Matthias Feil

Abstract The train path assignment optimization algorithm generates an optimal
solution for freight train service applications by connecting available slots between
several construction nodes without conflicts. This method is not only used for a real
timetable e.g. for the following year but also for timetable-based development of
railway infrastructure in long-term scenarios. However, for infrastructure develop-
ment the actual slot connections are not the main concern in this planning step. The
railway infrastructure company rather wants to detect bottlenecks in the infrastruc-
ture and needs to get evidence for necessary developments of its railway network.
By presenting results of a real world German railway network’s test case, this paper
showswhich bottlenecks can be derived fromanoptimized slot assignment andwhich
measures (in timetable and infrastructure) could eliminate the detected bottlenecks.
Necessary key figures for discovering bottlenecks will be introduced, too. It is shown
that shadow prices of the developed column generation method are a good indicator
for the identification of bottlenecks. For the first timewith the comparison of different
scenarios one can deliver a clear monetary benefit for the removal of a single bottle-
neck, e.g. the revenue advantage of an additional track for dwelling of freight trains.
Hence, using the developed optimization algorithm for train path assignment leads
to new useful insights for a railway infrastructure company to develop its railway
network.
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1 Introduction

Developing railway infrastructure is a long process. In terms of long-term planning,
timetables for passenger trains are quite stable, and in some cases even governed by
contracts (see [5]). Based on this, standardized train paths (called slots) are planned
to provide capacity for freight trains. Using a rail freight traffic forecast (see [2])
as a prediction for train service applications, train path assignments are optimized.
In so doing, O-D slot itineraries for all train service applications are optimized by
connecting slots without conflicts as explained in [3] using a column generation
approach. After optimization, there is a feasible solution for all predicted freight train
service applications that have not been rejected due to a lack of capacity. However, for
infrastructure development the actual slot assignments are not themain concern in this
planning step. The railway infrastructure manager rather wants to detect bottlenecks
in the infrastructure and must obtain evidence for necessary developments of its
railway network. Hence, the interesting questions are:

• How is the line capacity utilized?
• How are freight trains routed?
• What transport time and quality arises for the different O-D routes?
• How many dwelling positions are required in a node for the connection of slots?
• Where and when do bottlenecks occur in the railway network?
• Is there spare capacity? Where and when does it appear?
• What measures can eliminate the identified bottlenecks?

With the existing macroscopic models (see e.g. [4]), used in long-term scenarios
today, these questions cannot be answered satisfactorily, because no timetable infor-
mation is considered. Having the optimized assignments, timetable-based conclu-
sions are possible for the first time. This paper shows how to use the assignment
solution to draw better (because timetable-based) conclusions for railway infrastruc-
ture development.

2 Determining the Potential for Railway Infrastructure
Development

To determine whether there is a need to develop railway infrastructure due to bottle-
necks, a top-down analysis is performed. First, the assignment for the total network
is analyzed to determine where there is room for improvement. Subsequently, these
lines and nodes are viewed in detail. To answer the questions fromSect. 1, aggregated
key numbers as well as microscopic ones for single freight trains of the assignment
are considered.
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Fig. 1 Routing and line capacity utilization

2.1 Routing of Freight Traffic and Capacity Utilization

For an overview of the assignment it is adequate to compare the number of assigned
slots on a line with the capacity utilization of the same line (see Fig. 1)1:

If the number of assigned slots of a line is considerably lower than the assigned
slots of adjacent lines and the capacity utilization is high, this line is a potential
bottleneck. In Fig. 1, this is the case for the line from Bebra (FB) to Wurzburg
(NWR), for example. Generally, questioning all lines with particularly high or low
capacity utilization is a goodway to check whether the assignment appears plausible.

2.2 Quality and Transport Time

For a railway infrastructuremanager it is fundamental to offermarketable freight train
paths because there is always competition with other modes of transport, for example
road transport or shipping. Therefore, a certain train path quality has to be achieved,
which involves two aspects: travel time and detours. In Fig. 2, the assignments of the
route from Cologne to Basel for different node levels2 are compared with the used
lines and distribution of transportation times (in hours). The bigger white rectangles

1This map shows a solution for node level 1, meaning only the line capacity restrictions are con-
sidered. It is also possible to include stricter node restrictions into the model, see [1]. In node level
2a, which is presented later, each node has a restricted number of dwelling positions.
2Level 1 has no node capacity constraints, in contrast, level 2a sets a global number of dwelling
positions for each node.
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Fig. 2 Comparison of transportation times and used lines from Cologne to Basel

in the diagram include 50% of the trains on this track. For node level 1 on the darker
plotted track, 50% of all trains from Cologne to Basel need between 7.5 and 7.9h,
for example. In today’s timetable, the 50% average travel times range between 7.7
and 9.6h for this route. The application’s O-D travel times are shorter and have a
considerably smaller variance than today.

The additional node capacity constraints at level 2a result in a shift of traffic
streams to other lines. One train even has to take a detour from Cologne (KKAN) via
Friedberg (FFG) to Mannheim (RMF). This is caused by one of the passed nodes of
the route from Cologne to Basel which lack in dwelling positions. Using the longer
way via FFG, the train arrives later in the bottleneck node and can use a released
dwelling position. Hence, the nodes’ capacity utilization needs to be analyzed for
the detection of bottlenecks, too.

2.3 Bottlenecks and Spare Capacity

Bottlenecks can result either from the lines’ capacity or from the nodes’ capacity
or from the interdependencies between nodes’ and adjacent lines’ capacities. Even
if the number of available slots exceeds the number of train service applications,
bottlenecks can arise for a limited period of time due to an uneven distribution of the
demand.

In practical scenarios in the size of the German railway network, the number of
potential O-D-slot itineraries grows exponentially. Consequently, enumerating all of
them would cause exponentially many binary decision variables in the optimization
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model. To solve large scenarios to optimality, Nachtigall and Opitz [3] use a column
generation approach starting with a small set of slot itineraries. During the pricing
further slot itineraries which could improve solution are generated. The column ge-
neration’s pricing identifies variables with violated dual constraints using the shadow
prices αs and βH :

∑

s:p∈Cs

αs +
∑

H :p∈P(H)

βH < ρ · τ (p∗
r ) − τ (p)

where ρ is a detour factor and τ (p) is the travel time for itinerary p. Looking at
the shadow prices of a solution, it is possible to detect time periods where slots or
dwelling positions run short. When the shadow price αs for a slot s has a high value,
the existence of one more slot at this time would improve the target value. If there
are many slots with a shadow price greater than zero within a time window, it can
be concluded that there is a bottleneck on this line at this time. Additionally, free
assignment can be taken into consideration. In free assignment each train service
application gets its best itinerary as if there were no other influencing applications.
Figure3 shows the distribution of slots and free assigned applications for the line
from Mainz (FMB) to Mannheim (RMF) whose capacity utilization is greater than
70% for one day.

There are several peaks observable where six or even eight applications want to
choose the same slot. The affected slots’ shadow prices are greater than zero, so
having more slots at this time would improve the solution. Shadow prices βH belong
to the nodes’ capacity andwill have a value greater than zero, if an additional dwelling
position would improve the target value. Again, the shadow prices are related to a
point in time or a time window. Since it is not possible to provide a dwelling position
only temporarily, an additional one is only worthwile if it is used continuously over
the day. Therefore, the sum of each node’s shadow prices over a day is an adequate
key figure for the necessity of an additional dwelling position. For each node there is

Fig. 3 Distribution of slots and free assigned applications for the line FMB-RMF
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Fig. 4 Utilization of dwelling positions in the Mannheim node (RMF) for node level 1 and 2a

a graph showing the dwelling positions’ utilization over time. In Fig. 4 it is contrasted
for node level 1 and 2a of the Mannheim node3:

In this scenario it is obvious that Mannheim needs at least one additional dwelling
position.4 Hence, the Mannheim node is detected as a bottleneck in this scenario and
it results in a detour for trains from Cologne to Basel, for example.

2.4 From Bottlenecks to Measures for the Development
of Railway Infrastructure

After detecting the bottlenecks as described in the previous sections, corrective mea-
sures need to be found to eliminate the bottlenecks. If the number of slots on a
line at a certain time is insufficient, the slots have to be modified. For that purpose
measures affecting the timetable (e.g. shifting the passenger trains’ departure time a
little) or infrastructure (e.g. building an additional track or line) must be taken into
account. For areas where slots overlap each other it is also possible to change their
ratio if other routes have got spare capacities. The nodes’ capacity can be improved
by building more dwelling positions or increasing their total length so that they can
be used by longer trains. With the help of additional assignment scenarios, where a
solution for the bottleneck is included, the benefit of eachmeasure can be determined.
Furthermore, it is possible to identify the synergy effect of two coherent measures.
Therefore the scenario’s benefit with both measures is compared to the scenarios’
benefits where each measure acts alone. Consequently, for the first time it is possible
to determine a direct monetary gain for an additional infrastructure measure based
on substantial timetable analyses.

3In node level 2a, the Mannheim node (RMF) has seven dwelling positions.
4The shadow price sum indicates the same: 2.79 in RMF compared with 0.00 in most other nodes.
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3 Conclusion and Outlook

The effort of planning a long-term timetable and assigning a prediction of train
service applications pays off and leads to a considerably better quality of long-term
infrastructure planning. Firstly, all conclusion are based on a real timetable instead of
analytical models with only traffic volumes. Consequently, the assignment provides
a higher accuracy for all questions mentioned in Sect. 1 for developing the railway
infrastructure. Secondly, it is possible to determine a direct monetary gain for an
additional infrastructure based on the actual assignments.

Due to the intermeshed German railway network, there are a lot of slot over-
lappings. Based on the assignment solution and detected bottlenecks, iteratively
changing the slots’ departure or interchanging overlapping slots will improve the
assignment result considerably. The provided slots are adapted step by step to the
needs of the train service applications. In terms of short-term planning, this is a very
effective way to improve the assignments’ solution and provide better train paths
to the transportation companies. However, in long-term plannings the applications
are only predicted and therefore the provided slots have to be robust to variations of
demand. Hence, after a limited number of slot adaptions to improve the solution, the
assignment has to be repeated with several scenarios containing a varied demand.
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The Cycle Embedding Problem

Ralf Borndörfer, Marika Karbstein, Julika Mehrgardt,
Markus Reuther and Thomas Schlechte

Abstract Given two hypergraphs, representing a fine and a coarse “layer”, and a
cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP)
asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard
for general hypergraphs, but it can be solved in polynomial time for graphs. We
propose an integer programming formulation for the CEP that provides a complete
description of the CEP polytope for the graphical case. The CEP comes up in railway
vehicle rotation scheduling. We present computational results for problem instances
of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning
approach.

1 The Cycle Embedding Problem (CEP)

Let G = (V, A, H) be a directed hypergraph with node set V ⊆ E × S, i.e., a node
v = (e, s) ∈ V is a pair of an event e ∈ E and state s ∈ S, arc set A ⊆ V × V ,
and hyperarc set H ⊆ 2A, i.e., a hyperarc consists of a set of arcs (this is different
from most of the hypergraph literature). Each hyperarc h ∈ H has cost ch ∈ Q. The
following projections discard the state information:
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[v] := e for v = (e, s) ∈ V ([v]−1 = {w ∈ V | [w] = [v]}),
[a] := ([u] , [v]) for a = (u, v) ∈ A,

[h] := {[ai ] | i = 1, . . . , k} for h = {ai | i = 1, . . . , k} ∈ H.

We call G = (V, A, H) the fine (composition) layer and [G] := ([V ] , [A] , [H ])
with [V ] := {[v] | v ∈ V }, [A] := {[a] | a ∈ A}, and [H ] := {[h] | h ∈ H} the
coarse (configuration) layer. W.l.o.g., we assume [V ] = E . If A = H then we
equate G = (V, A, H) with the standard graph G = (V, A).

A set K ⊆ A is a cycle packing (partition) in G if

1. |δ−(v) ∩ K | = |δ+(v) ∩ K | ≤ (=)1, i.e., each node has at most (exactly) one
incoming and at most (exactly) one outgoing arc and

2. there exists H ′ ⊆ H such that K = ⋃
h∈H ′ h and ∀a ∈ K ∃!h ∈ H ′ : a ∈ h,

i.e., the arc set K can be partitioned into hyperarcs; we say that H(K ) = H ′ is
supported by K (there may be several supports).

K decomposes into a set of cycles C1, . . . , Ck . Let C ∈ K ⊆ A be a cycle in G. We
denote by l(C) = |C | the length of cycle C . These definitions carry over to cycles
and sets of cycles in [G]. It is easy to see that a cycle packing (partition) can only
support hyperarcs h with |h ∩ δ−(v)| ≤ 1 and |h ∩ δ+(v)| ≤ 1 for all v ∈ V and we
henceforth assume that every h ∈ H satisfies this property. We say that [h] ∈ [H ]
is embedded into h ∈ H and h ∈ H embeds [h]. Our aim is to embed a coarse cycle
partition into the fine layer.

Definition 1 Let M ⊆ [A] be a cycle partition in [G]. The CEP is to find a cost
minimal cycle packing K ⊆ A in G such that

1.
∣∣[v]−1 ∩ V (K )

∣∣ = 1 for [v] ∈ [V ], i.e., the cycle packing M visits every event in
exactly one state and

2. there exist fine and coarse supports H(K ) and H(M) such that [H(K )] = H(M),
i.e., every hyperarc of H(M) is embedded into a hyperarc of H(K ).

We call 1 the uniqueness-condition and 2 the embedding-condition and refer to the
data of the cycle embedding problemas (G, H, c, [G] , M). Note that the embedding-
condition 2 implies [K ] = M . It further follows that the decomposition of K into
cycles C1, . . . , Ck gives rise to a decomposition of cycles

[
C1

]
, . . . ,

[
Ck

]
for M .

An example for the CEP is illustrated in Fig. 1. We refer the reader to the master
thesis of Mehrgardt [1] for further details and for proofs of the following results.
For CEPs on standard graphs (the case A = H ) the problem can be decomposed by
considering each cycle of the coarse cycle partition M individually. For each such
cycle one can define a “start node”. Solving a shortest path problem for each state
of the start node in the fine layer yields a polynomial time algorithm. In general,
however, the problem is hard.

Theorem 1 The cycle embedding problem can be solved in polynomial time for
standard graphs; for hypergraphs, it is NP-hard.



The Cycle Embedding Problem 467

[C]2

[C]1

cycle partition in [G]G

CEP

C2

C1

cycle embedding

C2

C1

infeasible

Fig. 1 Example of the cycle embedding problem. Left A fine graph G and a hypercycle in [G].
Right A feasible cycle embedding and an infeasible set of hyperarcs which does not satisfy the
uniqueness-condition 1

TheCEPdefinedby the data (G, H, c, [G] , M) can be formulated as the following
integer program. (Note that h ∈ δ+/−(v) ⇔ ∃!a ∈ h : a ∈ δ+/−(v).)

min cT x (CEP)

s.t.
∑

h∈δ−(v)

xh −
∑

h∈δ+(v)

xh = 0, ∀ v ∈ V (flow)

∑

h∈H :[h]=b

xh = 1, ∀ b ∈ [H ](M) (embedding)

xh ∈ {0, 1} ∀ h ∈ H.

There is a binary variable xh for each hyperarc h ∈ H indicating whether all arcs of h
are contained in the cycle packing K . The (embedding)-constraints together with the
integrality constraints define an assignment of every hyperarc in [H ](M) to exactly
one hyperarc in H w.r.t. the given projection. The (flow)-constraints ensure that the
solution is a cycle packing. Both conditions together ensure a unique assignment of
events to states, i.e., the cycle packing K visits every event in exactly one state.

The uniqueness-condition 1 can be reformulated as follows.

Lemma 1 Let K be a cycle packing in G with cycles {C1, . . . , Ck} and let [K ] be
a cycle partition in [G]. Then

∣∣[v]−1 ∩ V (K )
∣∣ = 1∀ [v] ∈ [V ] ⇔ �(

[
Ci

]
) = �(Ci )∀ i ∈ {1, . . . , k}. (1)

Using this observation, we can come up with inequalities that prohibit cycles in G
with different lengths than the corresponding cycles in [G]. Consider for some cycle
C ∈ M the set U (C) := {C̃ cycle in G | [C̃] = C, �(C̃) 
= �(C)} of cycles that
project to the cycle C in [G] but have a different length than C . Then, the cycles in
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U (C) can be eliminated as follows:

∑

h:h∩C̃ 
=∅
xh � �(C) − 1 ∀ C ∈ M, C̃ ∈ U (C). (2)

We call (2) infeasible cycle constraints. For the basic CEP these inequalities are all
that it needed. More precisely, the CEP is a basic CEP if H = A and |S| = 2, this
is the simplest non-trivial problem variant.

Theorem 2 The LP relaxation of (CEP) plus all infeasible-cycle constraints (2)
provide a complete description for the basic CEP.

The feasibility of a basic CEP can also be characterized combinatorially in terms of
switches. A coarse arc [(u, v)] ∈ [A] is a switch w.r.t. state s if δ−(v) = {(u, v)},
u = (e, s̃), v = ( f, s), s̃ 
= s, i.e., each fine cycle containing node v = ( f, s) has to
use arc b that switches from state s̃ to state s. The following theorem gives a complete
characterization of the feasibility of the basic CEP that is easy to check:

Theorem 3 A basic CEP has a feasible cycle embedding if and only if every coarse
cycle has a state with an even number of switches.

2 Application to Rolling Stock Rotation Planning

Weaim at embedding a set of cycles, representing railway vehicle rotations computed
in a coarse graph layer, into a finer graph layer with a higher level of detail. Our
exposition resorts to a hypergraph based model of the rolling stock rotation problem
(RSRP) proposed in our previous paper [2]. For ease of exposition, we discuss a
simplified setting without maintenance and capacity constraints. In the following
we define the (RSRP), introduce aspects of vehicle composition, and show how
the results of Sect. 1 can be utilized in a two-step approach for the RSRP. Let V
a set of nodes, A ⊆ V × V a set of directed standard arcs, and H ⊆ 2A a set
of hyperarcs, forming an RSRP hypergraph that we denote by G = (V, A, H).
The nodes represent departures and arrivals of vehicles operating a set of timetabled
passenger trips T , the arcs represent different ways to operate a timetabled or a
deadhead trip by a single vehicle, the hyperarcs represent vehicle compositions to
form trains. The hyperarc h ∈ H covers trip t ∈ T if every standard arc a ∈ h
represents t . We denote the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H . There
are costs associated with the hyperarcs. The RSRP is to find a cost minimal set of
hyperarcs H0 ⊆ H such that each timetabled trip t ∈ T is covered by exactly one
hyperarc h ∈ H0 and

⋃
h∈H0

h ⊆ A is a set of rotations, i.e., a packing of cycles. The
RSRP is NP-hard [2]. A key concept is the orientation, that describes the two options
(O = {T ick, T ack}) how vehicles can be placed on a railway track. Deutsche Bahn
Fernverkehr AG distinguishes the position of the first class carriage of the vehicle
w.r.t. the driving direction. Tick (Tack) means that the first class carriage is located
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at the head (tail) of the vehicle. Every node of v ∈ V has the form v = (e, o),
where e refers to an arrival or departure event of a vehicle operating a trip with an
orientation o ∈ O . A hyperarc h ∈ H models the connection of the involved tail
and head nodes by a set of vehicles considering technical rules w.r.t. changes of
the orientation. The hyperarcs of H are distinguished into those which implement a
change of orientation caused by the network topology and those which implement
an additional turn around trip that is necessary to establish dedicated orientations.
The idea of our two step approach for the RSRP is to discard the orientations of the
nodes in a first coarse planning step and to subsequently solve a CEP that arises from
the solution of the first step in order to arrive at a solution in the fine layer including
orientations. Evaluating this two-step approach investigates the question whether the
topology of a railway network offers enough degrees of freedom to plan turn around
trips subordinately. Let [G] = ([V ], [A], [H ]) be the hypergraph that arises if we
discard the orientation by the projection procedure as it was defined for the CEP in
Sect. 1. If we prevent ourselves from producing infeasible cycles in the first (coarse)
step we increase the chance to end up with a CEP with a feasible solution in the
second (fine) step. Forbidding such cycles is the main idea of our two-step approach.
Let [C] be the set of all cycles in ([V ] , [A]) that cannot be embedded if we consider
the cycles as input for the basic CEP. Using a binary decision variable for every
hyperarc [h] ∈ [H ], the model that we solve in the first step is the following coarse
integer program:

min
∑

[h]∈[H ]

c[h]x[h], (MP)

∑

[h]∈[H ](t)

x[h] = 1 ∀t ∈ T, (3)

∑

[h]∈[H ]([v])in

x[h] −
∑

[h]∈[H ]([v])out

x[h] = 0 ∀ [v] ∈ [V ] , (4)

∑

[h]∈[H ]([c])

x[h] ≤ | [C] | − 1 ∀ [C] ∈ [C] , (5)

x[h] ∈ {0, 1} ∀ [h] ∈ [H ] . (6)

The objective function of model (MP) minimizes the total cost. For each trip t ∈ T
the covering constraints (3) assign one hyperarc of [H ] (t) to t . The Eqs. (4) are flow
conservation constraints for each node [v] ∈ [V ] that define a set of cycles of arcs
of [A]. Inequalities (5) forbid all cycles of [C]. Finally, (6) states the integrality con-
straints for our decision variables. We solve model (MP) with the commercial solver
for mixed integer programs Cplex 12.4. Since the number of inequalities (5) is
exponential we handle these constraints dynamically by a separation routine that
is based on an evaluation of integer solutions using Theorem 3 from the previous
section, i.e., we check the switches in every cycle to see if it can be embedded or not.
We evaluate this two-step approach by comparing two algorithmic variants to verify
whether inequalities (5) are necessary and/or useful. The first variant “with ICS” is
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Table 1 Comparison between embedding results of CEP models with or without separation of
cycles that can not be embedded

With ICS Without ICS

Instance T | [H ] | Cuts Fine/coarse Slacks | [H ] | Fine/coarse Slacks

1 267 1434 16 2/2 0 1434 2/4 199

2 617 3296 5 4/4 0 3292 4/5 208

3 617 3296 2 3/3 0 3292 4/5 14

4 617 3302 13 6/6 0 3292 2/5 285

5 617 3296 2 4/4 0 3294 3/4 29

6a 884 4779 2 5/5 0 4775 5/6 15

7 1443 78809 6 38/38 1 78807 39/44 63

8a 1443 29321 0 23/23 0 29321 23/23 0

9 1443 25779 2 33/33 1 25777 31/33 30

10 1443 14427 1 20/20 0 14421 21/22 12

11 1443 11738 2 17/17 0 11728 15/16 29

12 1713 14084 99 8/11 0 14074 1/11 1392

14 2319 15807 2 16/17 0 15787 17/17 43

15 2421 15829 4 18/19 0 15789 16/18 61

16 3101 40707 4240 40/42 74 40705 48/59 259

17 15 80 1 2/2 0 76 –/1 15

to solve the model MP as described and to solve the arising CEP in the second step.
The only difference to the second variant “without ICS” is that we solve the model
without constraints (5). Table1 reports computational results for 16 instances with
different numbers of trips (second column). Column “cuts” denotes the number of
constraints (5) that were separated in the first step, while column “|H |” denotes the
number of hyperarcs that appeared in the CEP of the second step. The columns “fine
/coarse” and “slacks” report about the number of cycles that could be embedded vs.
the number of cycles that were given to the CEP of the second step as well as the
number of trips that could not be covered by the cycle packing in G. The instances
were created to provoke that the arising CEPs are infeasible. Namely, we increased
the time necessary to perform a turn around trip by approximately ten times the times
in the real world data. This worst-case scenario substantially constrains the number
of possible turn around trips. Our computational results show that by utilizing con-
straints (5) the RSRP can still be tackled by a two-step approach to produce feasible
solutions. This gives evidence that railway vehicle rotation planning can indeed be
done in two steps, embedding a coarse initial solution into a fine model layer.
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Dispatch of a Wind Farm with a Battery
Storage

Sabrina Ried, Melanie Reuter-Oppermann, Patrick Jochem
and Wolf Fichtner

Abstract The combination of a wind farm with a battery storage allows to schedule
the system in a more balanced way, alleviating natural wind power fluctuations.
We present a mathematical model that optimizes the contribution margin (CM) of
a system that consists of a wind farm and a lithium-ion battery storage from an
operator’s perspective. We consider the system to take part in the electricity stock
exchange. We discuss adaptions of the model when additional participation at the
minute reserve market is possible. We construct a test instance for the model for
Germany and compare the optimal solutions to two reference cases. We evaluate
if the gain of an integrated wind battery system compensates the investment and
operating costs for the storage and we derive target prices for the battery system.

1 Introduction

Since 2012, the German renewable energy act (EEG) incentivizes direct marketing
(DM) of electricity generated by renewable energies. Until July 2014, wind farm
operators could choose between fix feed-in-tariffs (FIT) and DM, where a market
premium was paid for the spread between average trading revenues and the FIT. By
the end of 2013, more than 80% of the electricity generated by wind power was
traded through the direct marketing mechanism. An integrated wind battery system
can be scheduled in amore balancedway and avoid throttling of thewind turbines due
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to grid bottlenecks. Furthermore, generation levelling facilitates additional revenue
generation. This paper analyzes a 2013 installed wind battery system that takes part
in different DM options and compares the results with two reference cases:

• Reference case 1: Average fix EEG FIT for wind energy
• Reference case 2: Revenues for wind energy from DM
• Wind farm with battery storage: Revenues are generated through the DM mech-
anism, where first the sole participation in the day-ahead market of the European
energy exchange is considered (i), and second additional participation in the ter-
tiary control market with minute reserve is possible (ii).

We present a mixed-integer linear program (MILP) that optimizes the CM for the
direct marketing options (i) and (ii). We construct test instances and compare the
optimal solutions to the reference cases. We evaluate whether the additional rev-
enues in (i) and (ii) justify investing in the storage by a net present value (NPV)
analysis.

2 Problem Formulation and Solution Approach

There are mainly two different approaches for an economic assessment of wind
storage systems. MILP [1, 2] and stochastic dynamic programming models [3, 4].
Our MILP does not consider battery operating cost that we define to be fix, which
allows a subsequent profitability analysis for different battery prices. Moreover, we
assume perfect foresight on prices and wind power generation. The neglect of sto-
chastics tends to result in an overestimation of the profitability. On the other hand,
other model simplifications, such as excluding e.g. the intraday market and arbitrage
through purchasing electricity, could influence the results in the opposite direction.
Below, we describe the model (i) in detail and only explain the objective function and
the most important changes in the constraints for the advanced model. The following
notations for decision variables and parameters are used in model (i).

Decision variables:

X Spot
t : Energy that is sold on the spot market in period t [MWh]

Pc
t , Pd

t : Battery charging and discharging power in period t [MW]
Ct : Available battery capacity in period t [MWh]
W u

t : Wind power used for trading and battery charging in period t [MW]
Bc

t , Bd
t ∈ {0, 1}: indicates if the battery is charged or discharged in period t

Parameters:

Cmin, Cmax : Minimum and maximum battery capacity [MWh]
Pc/d

min , Pc/d
max : Minimum and max. battery charging and discharging power [MW]

D: Duration of one time period t [h], here 0.25 h
ηc, ηd : Battery charging and discharging efficiency [%]
pSpot

t , pM P
t : Spot market price and market premium in period t [e/MWh]
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W a
t : Available power of the wind farm in period t [MW]

cW,var
t : Specific operating costs of wind farm in period t [e/MWh]

The formulation looks as follows:

maxC M =
∑

t∈T

(pSpot
t + pM P

t ) · X Spot
t − cW,var

t · W u
t · D (1)

s.t.
X Spot

t

D
+ Pc

t = Pd
t + W u

t ∀t (2)

0 ≤ W u
t ≤ W a

t ∀t (3)

X Spot
t+1 = X Spot

t ∀t, z ≤ t ≤ z + 4D, (4)

z ∈ {t mod 4 �= 1}
Ct = Ct−1 + D · (Pc

t · ηc − Pd
t · 1

ηd
) ∀t (5)

Cmin ≤ Ct ≤ Cmax ∀t (6)

Pc,d
min ≤ Pc,d

t ≤ Pc,d
max · Bc,d

t ∀t (7)

Bc
t + Bd

t ≤ 1 ∀t (8)

Bc,d
t ∈ {0, 1} ∀t (9)

X Spot
t ≥ 0 ∀t (10)

The target function (1) maximizes the CM. While energy is balanced at all times
(2), the generatedwindpower can remain unused (3). Equation (4) ensures that energy
offered on the spot market remains constant within each 1 hour block. The battery
charging state is modelled in (5). Moreover, there are boundaries for the battery size
(6) and power rating (7). The constraints in (7) also ensure that the battery is only
charged or discharged if the binary variable (9) is selected accordingly. The battery
cannot be charged and discharged at once (8).

In a next step, we extended the model in order to enable additional participation in
theminute reservemarket. The battery can now be charged, when the system delivers
negative minute reserve, and discharged, when the system delivers positive minute
reserve. In order to allow for reservation of battery capacity for minute reserve,
additional variables must be introduced. The target function of model (ii) is

maxC M =
∑

t∈T

(pSpot
t + pM P

t ) · X Spot
t +

∑

t∈T

X pos
t · (

1

16
· pC,pos

t + d pos
t · pE,pos

t · D)

+
∑

t∈T

Xneg
t ·

(
1

16
· pC,neg

t + dneg
t · pE,neg

t · D

)
− cW,var

t · W u
t · D

(11)

Here, X pos/neg
t is the reserved power for positive and negative minute reserve

[in MW], pC,pos/neg
t is the capacity price [in e/MW] for reserved balancing power,
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and pE,pos/neg
t is the price for delivered energy [in e/MWh]. Parameter d pos/neg

t

indicates the actually delivered minute reserve [in %].

3 Computational Results

In the following section, we present the input data and briefly describe and compare
the results computed by the MILP with the reference cases.

3.1 Data

The test instance is created with 2013 data. The wind generation data from the
transmission system operator 50Hz is scaled to a wind park of 50MW and yearly
output of 2,700 kWh/kW. The usable battery size is set to 100MWh; the battery
can be charged and discharged at 50MW [1, 2]. Due to the current progress in
development and price decline, two lithium-ion batteries are chosen with a charging
and discharging efficiency of 92.5%, a depth of discharge of 80% and cost of 600
and 1,000e/kWh respectively. In the presented models, self-discharge as well as
battery degradation are neglected. A lifetime of 20 years is assumed for both the
battery and the wind farm. Yearly warranty cost of the battery is set to 2% of the
investment. The NPV is calculated with an interest rate of 6% [3]. The wind farm
is assumed to have investment cost of 1,000e/kW and operating costs of 1.8e-
ct/kWh (maintenance and repair) [5]. Transaction costs for DM, taxes, EEG-levies,
and grid fees are neglected. Spot andminute reservemarket prices are available on [6]
and [7].

3.2 Results for Wind-Battery System

When solely participating in the day ahead spot market, yearly revenues of 9.2mne
can be realized. With variable operating cost of the wind farm, the CM is 6.8mne.
However, taking into account investment and operating cost of the lithium-ion battery,
the NPV is strongly negative between −142.4 and −80.2mne (Table1).

Figure1 shows generated wind power, electricity sold over the spot market, and
the battery charging state, as well as spot market prices and revenues over the course
of a day. Wind power generated during periods of low spot market prices or before
periods of high spot market prices is used for charging the battery, whereas the
battery is discharged at high spot market prices or before periods of low spot market
prices. Through additional participation in theminute reservemarket, yearly revenues
increase to 11.1mne, the CM is 8.9mne, whereas the NPV is between −117.4 and
−55.2mne. The maximum target battery price for a positive NPV is 80e/kWh if
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Table 1 Comparison of revenues, CM, and NPV

Wind farm only Combined wind and battery system

Ref. case 1 Ref. case 2 Spot market only (i) With minute reserve (ii)

Battery price in e/kWh – – 600 1,000 600 1,000

Yearly revenues in mne 7.8 8.2 9.2 11.1

Yearly CM in mne 5.4 5.9 6.8 8.9

NPV in mne 4.3 9.6 −80.2 −142.4 −55.2 −117.4

Fig. 1 Dispatch of the wind battery system and the dependency on spot market prices

electricity is traded on the spot market only, and increases to up to 240e/kWh in
case of additional participation in the minute reserve market.

3.3 Results for Reference Scenarios

The first reference case is a fix FIT for a 2013 installed 50MWwind farm. The wind
farm is assumed to apply for the energy system services bonus. The average FIT over
20 years is 5.83e-ct/kWh. Compensation is calculated for 100% of the generated
electricity. The average yearly revenues would reach 7.8mne, the NPV is 4.3mne.
Within the second reference scenario, the wind energy is traded over the day-ahead
spot market. Assuming perfect foresight, as much energy as possible is sold, given
that prices and market premium exceed the operating costs. Yearly revenues reach
8.2mne, the NPV is 9.6mne. With a market premium of zero, yearly revenues
would reach 4.2mne, the NPV would be negative at −47mne.



478 S. Ried et al.

3.4 Comparison

Through adding a lithium-ion battery system to awind farm, the CMcan be increased
by 15–50%. Taking battery investment into account, the NPV is strongly negative
for lithium-ion battery prices between 600–1,000e/kWh. This shows that trading
electricity of a wind battery system was not economically viable in Germany in the
year 2013. At hypothetical lithium-ion battery prices of 80–240e/kWh, the market
integration of wind battery systems might be more close to profitability.

4 Conclusions and Recommendations for Further Research

Theprofitability of batteries e.g. in combinationwith residential photovoltaic systems
has been shown by recent publications [8, 9]. However, an economic viability of
a wind battery system could not be shown with 2013 data. The results generated
by the two MILP are mainly limited by perfect foresight. Yet, a further battery
price decrease as well as the expected increasing market price fluctuations caused
by a rising share of volatile renewable energy generation are indicating a future
profitability of wind battery systems. Moreover, the latest EEG amendments will
make alternative subsidy schemes become more attractive. In a next step, we will
take into account uncertainties in wind forecasts and future price development and
add other marketing options in order to deeper assess the profitability of the battery
storage.
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Exact Algorithms for the Vehicle Routing
Problem with Soft Time Windows

Matteo Salani, Maria Battarra and Luca Maria Gambardella

Abstract This paper studies a variant of the Vehicle Routing Problem with Soft
Time Windows (VRPSTW) inspired by real world distribution problems. Soft time
windows constraints are very common in the distribution industry, but quantifying
the trade-off between routing cost and customer inconvenience is a hard task for prac-
titioners. In our model, practitioners impose a minimum routing cost saving (to be
achieved with respect to the hard time windows solutions) and ask for the minimiza-
tion of the customer inconvenience only. We propose two exact algorithms. The first
algorithm is based on standard branch-and-cut-and-price. The second algorithm uses
concepts of bi-objective optimization and is based on the bisection method.

1 Introduction

The Vehicle Routing Problem (VRP) was proposed more than 50years ago [6] and it
is a challenging combinatorial optimization problem. One of the most studied real-
world features are the so called time windows constraints [15]. Customers receiving
goods often demand delivery within a time interval or time window. Time windows
are classified as Hard (VRPHTW), if customers must be visited within the specified
time interval, and Soft (VRPSTW), if time windows can be violated at the expense
of customer inconvenience.
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There is not a unique interpretation of time windows violations in the research
community. Customer inconvenience for being visited too late and (possibly) too
early with respect to the desired time window is typically quantified and the
VRPSTW’s objective function is modelled as a weighted combination of routing
costs and a measure of the customer inconvenience. However, how to measure the
customer inconvenience and how to quantify the relative weight of routing and cus-
tomer inconvenience are still open research questions.

VRPSTWs have been presented in the pioneering articles by Sexton and Bodin
[16, 17] and Sexton and Choi [18]. In Chang and Russell [5] a Tabu Search is
developed for the same problem studied in Balakrishnan [1]. Taillard et al. [19] also
proposed a Tabu Search for a VRPSTW, in which linear penalizations are applied
only to late visits. Calvete et al. [3] applies goal programming to the VRPSTW with
linear penalizations for early and tardy visits. Ibaraki et al. [10] extend the concept
of time window and measure customer’s inconvenience as a nonconvex, piecewise
linear and time dependent function.

Fu et al. [9] acknowledge the need of a unified approach that model penalties
associated to time windows. Figliozzi [8] proposed an iterative route construction
and improvement algorithm for the same variant and compared its results with
Balakrishnan [1], Fu et al. [9] and Chang and Russell [5].

Among the exact algorithms for VRPSTWs, we canmentionQureshi et al. [12], in
which the authors solved by column generation a problem with semi soft time (tardy
arrivals only). Bhusiri et al. [2] extend this algorithm to the variant in which both
early and late arrival at a customer are penalizated, but the arrival time is bounded
in an outer time window. Liberatore et al. [11] solves the VRPSTWwith unbounded
penalization of early and late arrival at the customers using a branch-and-cut-and-
price technique.

Objective functions weighting routing costs and customer inconvenience suffer
of typical drawbacks of weighted-sum multi objective optimization problems. As
reported in Caramia and Dell’ Olmo [4], the planner is often not “aware of which
weights are the most appropriate to retrieve a satisfactorily solution, he/she does not
know in general how to change weights to consistently change the solution”.

In this paper, we model soft time windows constraints with in mind the needs of
practitioners and their difficulties in comparing routing costs and customers inconve-
nience. Human planners accept time windows violations when the saving on routing
costs is sufficiently big. We therefore compute a nominal solution in which hard time
windows are imposed as a base of comparison for the planner. Then, the planner
quantifies a desired saving on routing costs with respect to the nominal solution.
The exact algorithm minimizes the time window violations to achieve this goal. We
believe this variant will allow practitioners to make better use of VRPSTW software,
because the parameter they are asked to define is just a measure of mileage saving
and not a weight of routing cost and customer inconvenience. In the reminder, we
propose two exact algorithms both based on branch-and-cut-and-price.
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2 A Mathematical Model for Minimal Time
Windows Violation

We recall the definition of the VRPHTW. A graph G(V, A) is given, where the
set of vertices V = N ∪ {0} is composed of a set of N vertices representing the
customers and a special vertex 0 representing the depot. Non-negative weights ti j

and ci j are associated with each arc (i, j) ∈ A; representing the traveling time and
the transportation cost, respectively. Traveling times satisfy the triangle inequality. A
positive integer demand di is associated with each vertex i ∈ N and a capacity Q is
associated with each vehicle of a set K. A non-negative integer service time si and a
time window [ai , bi ], defined by two non-negative integers, are also associated with
each vertex i ∈ N . The problem asks to find a set of routes with cardinality at most
|K |, visiting all customers exactly once and respecting time windows and vehicles’
capacity constraints. The objective is to minimize the overall routing cost.

In the VRPHTW, the vehicle has to wait until the opening of the time window
ai , in case of early arrival at customer’s i location. In the VRPSTW, constant or
proportional penalties are incurred for early or late service. The service may start
any time between the arrival and the opening of the time window. However, both in
the VRPHTW and in the VRPSTW, vehicles are allowed to wait at no cost before
servicing the customer.

In our variant of VRPSTW, we propose an alternative model. The model assumes
that the optimal value of the underlying VRPHTW, z∗, is known and is strictly
positive. A cost saving is imposed by the planner as a maximum percentage β < 1
of z∗. The objective is to minimize the overall time windows violation. The model
reads as follows:

g� = minimize
∑

r∈�

vr xr (1)

s.t.
∑

r∈�

f r
i xr ≥ 1 ∀i ∈ N (2)

∑

r∈�

cr xr ≤ β ·z∗ (3)

∑

r∈�

xr ≤ |K | (4)

xr ∈ {0, 1} ∀r ∈ � (5)

where � is the set of feasible routes in which the vehicle’s capacity is not exceeded
and vr is the overall time window violation of route r . Constraint (3) states that the
routing cost must be not greater than a fraction of the cost of the optimal VRPHTW
solution. Constraint (4) imposes that no more than |K | vehicles are used.

The routing cost improvement β is the only parameter required. Planners are likely
to be comfortable defining parameter β as it directly relates to monetary savings.
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3 Branch-and-Cut-and-Price Algorithm for the VRPSTW

Model (1)–(5)may contain a number of variableswhich grows exponentiallywith the
size of the instance and cannot be dealt with explicitly. Therefore, to compute valid
lower bounds, we solve the linear relaxation of the model recurring to a column
generation procedure. To obtain feasible integer solutions we embed the column
generation bounding procedure into an enumeration tree [7].

At each column generation iteration, the linear relaxation of the Restricted
Master Problem (RMP, i.e., the model (1)–(5) where a subset of variables is
considered) is solved. We search for new columns with negative reduced cost:
vr = vr − ∑

i∈N f r
i πi −cr ρ − γ, where πi is the nonegative dual variable asso-

ciated to the i th constraint of the set (2), ρ is the nonpositive dual variable associated
with the threshold constraint (3) and γ is the nonpositive dual variable associated
with constraint (4). The pricing problem can be modeled as a resource constrained
elementary shortest path problem (RCESPP). In our implementation, we extend the
algorithms presented in Righini and Salani [13, 14] and Liberatore et al. [11].

4 Alternative Formulation and Bisection Search

The algorithm reported in Sect. 3 is effective to identify infeasible instances and a
feasible solution, when available. On the other hand, it shows slow convergence in
proving the optimality of the master problem because the computation time required
by the exact pricing problem is cumbersome.

In this section we propose an alternative formulation and an alternative exact solu-
tion algorithm based on bisection search. The model minimizes the overall routing
costs subject to a maximal permitted time windows violation. The model is solved
with branch-and-cut-and-price and reads as follows:

h� = minimize
∑

r∈�

cr xr (6)

s.t.
∑

r∈�

f r
i xr ≥ 1 ∀i ∈ N (7)

∑

r∈�

vr xr ≤ gmax (8)

∑

r∈�

xr ≤ |K | (9)

xr ∈ {0, 1} ∀r ∈ � (10)

The pricing problem searches for columns minimizing the following reduced
cost: cr = cr − ∑

i∈N f r
i πi −vr ψ− γ, where πi is the nonegative dual variable

associated to the i th constraint of the set (7), ψ is the nonpositive dual variable
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associated with the time windows violation (8) and γ is the nonpositive dual variable
associated with constraint (9). The pricing problem associated to this formulation
is equivalent to that studied by Liberatore et al. [11] where the linear penalty for
earliness and tardiness is adjusted with the dual variable of constraint (8).

Our algorithm is based on a bisection search on the value of the permitted violation
gmax. At each iteration of the algorithm gmax represents either an upper or a lower
bound to the optimal value of model (1)–(5), g∗

�.
Let h∗

�(gmax) be the optimal solution of (6)–(10) for a given value of gmax . The
algorithm exploits the following two properties:

1. If h∗
�(gmax) > β ·z∗

�, then gmax is a valid lower bound to g∗
�.

2. If h∗
�(gmax) ≤ β ·z∗

�, then
∑

r∈� vr xr is a valid upper bound to g∗
�.

The Algorithm requires the existence of a feasible solution and the value of an
upper bound gUB to g∗

�. At each iteration, the range of possible values for the violation
of time windows (git

LB,�, git
UB,�) is halved, as reported in algorithm 1; the value ε is

strictly positive and is determined using the instance data.
We performed some preliminary computational experiments on the well known

Solomon’s data set. From the original set we derived 54 instances from the R and
RC data set by adding a performance constraint of 1, 5 and 10% with respect to the
optimal solution without time windows violation. The bisection algorithm converges
to an optimal solution for all instances while the branch and price algorithm failed
to converge on 12 instances within an our of computation.

We observe that the solution of the pricing problem benefits from the alternative
formulation adopted in the bisection algorithm. We believe that in other contexts,
where branch and price algorithms applied to combinatorial optimization exhibit
slow convergence, it may be beneficial to devise alternative formulations.

Algorithm 1 Bisection search
Require: β, z∗

�, gU B

it := 0; git
U B,� := gU B ; git

L B,� := 0;

while
(

git
U B,� − git

L B,� > ε
)

do

gmax :=
(

git
U B,� + git

L B,�

)
/2;

h∗,i t
� := Solve (6)–(10);

if h∗,i t
� > β ·z∗

� then
git+1

L B,� := gmax ; git+1
U B,� := git

U B,�;
else

git+1
U B,� := ∑

r∈� vr xr ; git+1
l B,� := git

L B,�;
end if
i t := i t + 1;

end while
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Impact of Heat Storage Capacity on CHP
Unit Commitment Under Power Price
Uncertainties

Matthias Schacht and Brigitte Werners

Abstract Combined heat and power (CHP) plants generate heat and power
simultaneously leading to a higher efficiency than an isolated production. CHP unit
commitment requires a complex operation planning, since power is consumed in the
moment of generation. The integration of a heat storage allows a partially power
price oriented plant operation, where power is generated especially in times of high
market prices. Consequently, an efficient plant operation depends on the accuracy of
the anticipated power prices and the flexibility due to storage capacity. This contribu-
tion analyzes the effects of short-term uncertainties in power prices on the CHP unit
commitment for different heat storage capacities. A simulation study is run to evalu-
ate the financial impact of an inaccurate power price anticipation. Results show that
the storage capacity affects the sensitivity of the solution due to stochastic influences.
The isolated consideration of long-term uncertainties might result in a suboptimal
choice of heat storage capacity. It is recommended, to explicitly consider short-term
uncertainties when supporting strategic planning of heat storage capacities.

1 Introduction

The German electricity market for residual power is characterized by high uncer-
tainties with respect to prices and residual load. The result of the priority feed-in of
renewable energies into the grid is significantly determined by stochastic weather
conditions. This stochastic residual power load can be fulfilled—among others—by
very efficient combined heat and power (CHP) plants, which generate power and heat
in one process. Thereby fuel efficiency can be increased by up to 40 % [3] which
is why this technology is promoted by the German cogeneration protection law in
order to achieve the German climate objectives [6].

M. Schacht (B) · B. Werners
Faculty of Management and Economics, Chair for Operations Research
and Accounting, Ruhr University Bochum, 44780 Bochum, Germany
e-mail: matthias.schacht@rub.de

B. Werners
e-mail: or@rub.de

© Springer International Publishing Switzerland 2016
M. Lübbecke et al. (eds.), Operations Research Proceedings 2014,
Operations Research Proceedings, DOI 10.1007/978-3-319-28697-6_68

487



488 M. Schacht and B. Werners

Unit commitment (UC) deals with the question which generation unit should run
at which output level on every hour. UC for CHP plants is especially challenging
and complex since demand and supply of power and heat have to be matched while
these products are generated in one process [8]. Additionally, demand patterns for
heat and power are often asynchronous. Complexity increases because uncertainties
have to be considered. For the UC the crucial stochastic influence can be seen in the
market for power sales [1].

Whereas power cannot be stored efficiently in a large scale system, heat can be
stored in a storage. The integration of a storage device allows a partially power price
oriented plant operation, where power is generated especially in times of high market
prices [2]. In times of volatile power prices, this results in a significant financial
benefit (added value) [2, 6, 8]. Up to now, the impact of short-term uncertainties in
power prices on the UC for CHP plants with storage devices has not been focused in
research, while short-term uncertainties for only power plants have been studied [1].
Long-term power price uncertainties have been incorporated in order to determine
the optimal storage capacity [2]. Without consideration of short-term risks, the value
of a heat storage might be determined incorrectly.

In the following the UC problem for a CHP unit with heat storage is presented.

2 CHP Unit Commitment Under Power-Price Uncertainties

The objective of UC for CHP plants is the coordination of heat and power generation,
satisfying heat demand at all times, while maximizing trading revenues of power sales
subtracted by its generation costs. Without heat storage, plant operation follows the
demand pattern for heat in the moment of production since heat cannot be traded like
power due to its physical limitations. The corresponding power output is produced
without any consideration of power prices on the market.

The integration of a heat storage allows the anticipation of future power prices in
order to run the plant in the most profitable hours with respect to revenues from the
spot-market. The UC for CHP plants with a heat storage can be modeled as a math-
ematical optimization problem. The operation region of a CHP plant is described
by its extreme points—characterized by power output Pi , heat output Qi and cor-
responding costs Ci in each extreme point i . For a convex operation region, each
feasible operation point is modeled as a convex combination of these extreme points
(2–5), shown in [5]. The objective function maximizes the operational profit (1)
which is the difference between the market revenues for power (generated power pt

to corresponding power price prt in periode t) and the occuring costs for the plant
operation

∑
i∈I Ci · xit . Heat demand qd

t has to be satisfied by heat production qt or
by the amount of discharged heat from the storage c−

t .
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max
∑

t∈T

(
pt · prt −

∑

i∈I

Ci · xit

)
(1)

∑

i∈I

Ci · xit = ct ∀t ∈ T (2)

∑

i∈I

Qi · xit = qt ∀t ∈ T (3)

∑

i∈I

Pi · xit = pt ∀t ∈ T (4)

∑

i∈I

xit = 1 ∀t ∈ T (5)

qt − c+
t + c−

t = qd
t ∀t ∈ T (6)

�t−1 + c+
t − c−

t = �t ∀t ∈ T \ {1} (7)

xit , c+
t , c−

t , �t ≥ 0 ∀i ∈ I, t ∈ T (8)

The storage level �t in period t is equal to the period before plus the amount of
charged heat c+

t subtracted by the discharged heat c−
t in period t (7). The model can

be extended by limiting to maximum heat storage, charging and discharging as well
as start-ups with corresponding costs [8].

The integration of a heat storage enables the UC to decouple the moment of
production and moment of demand. This allows a plant operation in times of favorable
power prices. Information about future power prices are used in order to decide wether
to run the plant at the current period or not. Therefore, the anticipation of future
power prices influences the storage policy for the current period. If power prices are
inaccurately anticipated, revenues of the plant operation are negatively affected. The
anticipation of power prices and the impact of uncertain power prices is explained
in Fig. 1. The solid line shows the market price for power with the corresponding
optimal usage of the heat storage (gray area). In times of (relatively) high market
prices the plant is run and the storage is charged. This allows a shut-down in times
of low market prices, while the demand for heat can be satisfied by the storage. The
plant operation might differ significantly if price forecasts are inadequate. That is why
forecasts are being updated in order to gain the best information about future price
deployments and the UC is being rescheduled on the basis of the latest information.
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There are two extreme situations where an incorrect anticipated power price might
have a high impact on the trading revenues. In point 1 the heat storage is filled, since
high revenues were gained due to high power prices in the hours before. A sharp
decrease of power price was expected and a shut down for the plant was planned.
Assuming that at this point the forecast was updated and that the real power price will
be significantly higher in the following hours, UC would adjust the plant operation
and run the unit to gain high revenues. But this is impossible because the storage is
fully charged so that the plant cannot be operated. In contrast to a situation where
future power prices are underestimated, 2 shows a situation, where an overestimation
of the power price strongly influences revenues. Under the assumption that the power
price will be lower than forecasted, the plant would have to be run at times of very
low power prices in order to fulfill the heat demand, since the storage is almost
empty. In both situations, an inadequate anticipation of the power price leads to
lower revenues on the power market because the plant cannot be operated with the
necessary flexibility due to limited heat storage capacity.

Higher heat storage capacities can lead to a more flexible plant operation and
effects of uncertainty on revenues can much better be exploited.

3 Simulation Study with Varying Heat Storage Capacities
and Uncertain Power Prices

We present a simulation study with a small municipal energy provider who generates
power and heat with a CHP plant with a back pressure steam turbine that can generate
up to 215 MWhel of power with a corresponding heat output of 60 MWhth. With this
CHP plant, the operator has to guarantee the heat supply while power can be sold at
the spot-market. The objective is to maximize the operational profit as described in
section two. We analyze to what extent the capacity of heat storage influences the
profitibility of CHP operation when power prices are uncertain. This indicates the
importance of integrating short-term uncertainties into strategic planning.

In order to run the simulation in a reasonable amount of time, we developed
a combined usage of two well-known algorithms. In [5] an efficient algorithm is
presented that reshapes the three dimensional convex operation region of a CHP plant
into a two dimensional efficient envelope pattern. This envelope pattern describes
an adjusted cost-function for each feasible operation point of the plant dependent on
the power price. A piecewise-linear cost-function is generated which is used as input
for an efficient algorithm in [7] that determines the optimal storage policy for the
capacitated economic lot sizing problem with piecewise-linear production costs. This
combined use of the algorithm results in the optimal CHP planning with a heat storage
device. To consider uncertainy in the model we generate power-price-anticipations
that differ from the real power price by a deviation that follows a truncated normal
distribution which is correlated and increases over time as described in [4].
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In order to consider the process of rolling updates of the UC planning, forecasts
are being updated every four hours during the planning horizon of two weeks on a
hourly bases. By this we consider the possibility to react on new information about
the future power price deployment, so that UC planning can be adjusted after any
update, assuming a guaranteed heat demand and fixed prices.

The simulation was run without a heat storage and with five different heat storage
capacities (fifty runs each). The additionally gained revenue due to the storage is
defined as the added value. The impact of inaccurate forecasts leads to a decreased
added value of up to 6 %. Figure 2 shows the expected additional revenues achieved
by the integration of a heat storage. With the integrated storage the expected added
value differs between 0.85 mioe and 1.07 mioewhich is equal to an overall increase
of revenues by 60 % up to 70 %. Therefore, the contribution of a heat storage to the
revenue is significant. Figure 2 shows that the added value by an increased storage
capacity diminishes, as e.g. the gap of the added value between a heat storage capac-
ity of 250 and 300 MWhth is low. The investment costs for a higher storage capacity
might exceed its additional value. It also shows the corresponding influences of uncer-
tain power prices. For small to medium-sized capacities the impact of uncertainty on
revenues stays constant as the dashed line that represents the standard deviation of
the expected added value stays almost steady. Therefore, the decision maker is able
to gain higher revenues without higher risk. In contrast, the heat storage with the
highest capacity will lead to a significant deviation on the expected gained revenue,
eventhough there is no significant higher expected added value. This is due to the fact
that such a high storage level is rarely needed during the considered time horizon.
Since there is no increase of risk on the added value between small and medium-
sized heat storages, we can conclude that there are benefits of medium-sized storages
because UC planning is able to react more flexible on inaccurate anticipated power
prices. Further results confirm that the impact of uncertainty on UC, as described in
Fig. 1, is less likely if storage capacity increases. But this effect holds true only to a
certain level of capacity as it can be seen for 300 MWth, where the impact of uncer-
tainty strongly affects the revenues since the high capacity allows an anticipation of
prices that are in the distant future and therefore likely to be inaccurate.

Fig. 2 Expected added value and impact of uncertainty for differing a heat storage capacities
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4 Conclusion and Outlook

This contribution presents the impact of heat storage capacity on CHP unit commit-
ment under power price uncertainties. Results show that power price uncertainties
strongly affect revenues but also that the operational profit can be increased signifi-
cantly by a power price oriented plant operation enabled by an increased heat storage
capacity. For a certain range of heat storage capacity the influence of uncertainties
remains constant due the higher flexibility described in section two and confirmed
in section three. The effect of additionally gained revenues diminishes with a cer-
tain level of capacity while impact of uncertainty affects the revenues significantly.
Information about the impact of short-term uncertainties have to be considered in the
strategic planning of heat storage capacities, since too small or too large capacities
either lead to a low added value or a high negative impact of uncertainty.

To confirm these insights different extensions to our model can be included, such
as limitating the maximum charging capacity per period as well as a heat loss. Several
power plants or additional power only units can be included in order to analyze the
effect of uncertainties for a plant portfolio. Then, a concept to involve these short-
term effects into a strategic optimization model for CHP units with heat storage
devices can be developed.

References

1. Cerisola, S., Baillo, A., Fernndez-Lopez, J.M., Ramos, A., Gollmer, R.: Stochastic power gener-
ation unit commitment in electricity markets: a novel formulation and a comparison of solution
methods. Oper. Res. 57(1), 32–46 (2009)

2. Christidis, A., Koch, C., Pottel, L., Tsatsaronis, G.: The contribution of heat storage to profitable
operation of combined heat and power plants in liberalized electricity markets. Energy 41, 75–82
(2012)

3. Mitra, S., Sun, L., Grossman, I.E.: Optimal scheduling of industrial combined heat and power
plants under time-sensitive electricity prices. Energy 54, 194–211 (2013)

4. Ortega-Vazquez, M.A., Kirschen, D.S.: Economic impact assessment of load forecast errors
considering the cost of interruptions. Power Eng. Soc. Gen. Meet. 2006 IEEE, 1–8 (2006)

5. Rong, A., Lahdelma, R.: Efficient algorithms for combined heat and power production planning
under the deregulated electricity market. Eur. J. Oper. Res. 176(2), 1219–1245 (2007)

6. Schacht, M., Schulz, K.: Kraft-Wärme-Kopplung in kommunalen Energieversor-
gungsunternehmen—Volatile Einspeisung erneuerbarer Energien als Herausforderung. Arm-
borst, K. et al. (eds) Management Science—Festschrift zum 60. Geburtstag von Brigitte
Werners, Dr. Kovac, Hamburg, pp. 337–363 (2013)

7. Shaw, D., Wagelmans, A.: An algorithm for single-item capacitated economic lot sizing withing
piecewise linear production costs and general holding costs. Manage. Sci. 44(6), 831–838 (1998)

8. Schulz, K., Schacht, M., Werners, B.: Influence of fluctuating electricity prices due to renewable
energies on heat storage investments. To be published. In: Huisman, D. et al. (eds.) Proceedings
of 2013 Operations Research. Springer, New York (2014)



Optimizing Information Security
Investments with Limited Budget

Andreas Schilling and Brigitte Werners

Abstract The importance of information security is constantly increasing with
technologybecomingmore pervasive every day.As a result, the necessity anddemand
for practical methods to evaluate and improve information security is particularly
high. The aim of this paper is to apply mathematical optimization techniques tool
improve information security. According to the identified problem structure, a com-
binatorial optimizationmodel is established. The objective of the presented approach
is to maximize system security by choosing the best combination of security con-
trols limited by available budget. In addition, by performing a What-If analysis and
systematic budget variations, the decision maker can get improved insights and thus
determine an ideal budget proposition yielding the highest benefit among all possible
control configurations. An exemplary case study demonstrates how this approach can
be used as a tool within the risk management process of an organization.

1 Introduction

The importance of information security in information systems is constantly increas-
ing with technology becoming more pervasive every day. It is in the very nature of
risk that perfect security does not exist and, therefore, investments in information
security only make sense up to a certain amount. As a consequence, it is crucial to
ensure that available resources are spent as effectively as possible.

There exists a considerable market for security solutions which is why the prob-
lem is not finding security controls to protect a system, but identifying the right ones
within a given budget. Possible controls have a wide variety of capabilities to protect
against different threats and vulnerabilities and, in addition, they may be mutually
exclusive or complement each other. To prioritize between controls it is necessary to
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measure their impact on security before they are deployed. A quantitative optimiza-
tion model enables the decision maker to maximize the effect of deployed security
controls prior to their deployment in a production environment.

In the following, a combinatorial nonlinear problem is describedwhichminimizes
expected losses caused by security incidents. We demonstrate in an exemplary case
study how it can be used as a tool within different phases of the risk management
process of an organization.

2 Security Optimization in the Context of Risk
Management

Decisions on information security investments are usually taken as part of an orga-
nizational risk management process. There are different approaches and standards
available which differ in detail but follow a similar overarching concept. The follow-
ing description of the process is based on the widely used ISO 27005:2008 standard
[6]. First, the context for the process is established in terms of scope and boundaries.
The next step is a risk assessment to identify, estimate, and evaluate risk. The starting
point for this assessment are threats, which may occur and cause damage to the orga-
nization. Threats may exploit different vulnerabilities and have a financial impact if
successful. The goal of the risk identification phase is to identify what incidents may
occur, what impact they could have, and what factors might be responsible for their
success. In the risk estimation phase, consequences and the likelihood of incidents
are determined by using quantitative or qualitative methods. The results are input to
the evaluation phase to rank threats and prioritize mitigating actions. According to
this prioritization, a risk treatment plan is defined and concrete security controls are
selected. The whole process is supported by continuous monitoring and a learning
feedback loop [6]. Figure1 illustrates this process.

The problem with this procedure lies in the separation of risk evaluation and
treatment. This separation results from the fact that the dependency structure of the
incident and control side is too complex to be treated simultaneously by traditional

Information security risk management

Risk assessment

Establishing
the context

Risk
identification

Risk
treatment

Risk
estimation

Risk
evaluation

Monitoring and review

Fig. 1 Information security risk management process based on ISO 27005:2008
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methods. This problem can be solved by using a quantitative optimization model
which takes both sides into account and combines them into an integrated decision
model. The goal is to find a selection of security controls that counteracts incidents
as effectively as possible. Complex requirements like control incompatibilities and
budget restrictions are integrated as constraints.

Using a quantitative optimization approach to solve this problem can improve the
outcome of a risk management process significantly. The model can manage higher
complexity and eliminates the necessity for decoupling the evaluation and treatment
phase. Results can be produced faster and in a more consistent way. Changing cir-
cumstances in form of new vulnerabilities or threats can be considered in real-time
without manually reevaluating the existing treatment plan.

3 Problem Description

The source of security risks are threats which have to be identified and their criti-
cality has to be quantified to prioritize counter measures. A threat i , i ∈ I results
in an incident that causes loss li if it occurs. An incident may be induced by differ-
ent threat agents including hackers, competitors, administrative staff, or malicious
insiders. Loss typically results from damage to an asset order technical components
like hardware, software, and data. To attack an asset, a threat agent can exploit one
of many possible vulnerabilities j , j ∈ J . A vulnerability is a technical or orga-
nizational shortcoming of the system. This may be an insecure API endpoint [7],
software backdoors [10], or even lack of, or insufficient, rules for employees [1]. To
prevent an attacker from taking advantage of such vulnerabilities, an organization
can deploy security controls k, k ∈ K which affect the probability of a threat being
successful [9].

In most cases, a threat can exploit a number of vulnerabilities and thus cause
damage. For each threat, a set of potential vulnerabilities can be identified. Probability
pV

j denotes how likely it is that a vulnerability j is exploited by threat i . The same
applies to vulnerabilities and security controls. pC

jk indicates how likely it is that
control k prevents vulnerability j from being exploited. This definition takes into
account that most security controls do not only affect a single vulnerability, but
multiple ones. Therefore, the interrelation of vulnerabilities and controls leads to
a situation, where different combinations of controls have a completely different
effect on security. If the selection of controls is not performed in an integrated way
considering all vulnerabilities at the same time, possible positive interdependencies
of controls remain unrealized. The following equation yields probability δi of an
incident depending on the selection of controls:

δi = pT
i

⎛

⎝1 −
∏

j∈J

(
1 − pV

i j

∏

k∈K

(
1 − pC

jk · sck
)
)⎞

⎠ . (1)
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Variable sck ∈ {0, 1} corresponds to the |K | security controls available for selec-
tion and is defined as sck = 1 if control k is selected, and sck = 0 otherwise. Para-
meter pT

i specifies the probability that a threat agent attacks the system once in a way
corresponding to threat i . The probability δi of an incident is the joint probability
that a threat occurs, at least one vulnerability is exploited, and all controls of this
vulnerability fail.

Themodel is formulatedwith a nonlinear objective function and linear constraints.
The optimal selection of controls minimizes the overall loss L of an organization.
The objective function has the form

L =
∑

i∈I

li · δi · ni , (2)

where ni is the number of occurrences of threat i . The structure of δi results in
a nonlinear programming (NLP) problem. The solution space of possible control
configurations is limited by a control compatibility constraint

sck + scl ≤ 1 + γkl ∀k ∈ K , l ∈ K , k < l, (3)

where γkl ∈ {0, 1} defines if control k is compatible to control l (γkl = 1) or not
(γkl = 0). The budget constraint has the form

∑

k∈K

ck · sck ≤ B, (4)

where ck is the cost of control k and B is the budget available for controls.

4 Computational Results

The model is implemented using the standard optimization software Xpress Opti-
mization Suite [3]. The NLP problem is solved applying successive linear approx-
imation provided by the Xpress-SLP solver module mmxslp. It allows modeling
and solving of complex and large nonlinear problems [2]. To demonstrate the mod-
els application, an exemplary case study is developed. The data are based on the
authors’ practical experience in developing and maintaining real-world information
systems. In the following, we analyze an exemplary cloud-based system to demon-
strate how the model can be applied in a realistic setting.

During the risk identification phase 20 threats, 40 vulnerabilities, and 40 potential
security controls were identified. All required model parameters were determined in
the subsequent risk estimation phase by expert estimates. As shown in [8], expert
judgement elicitation is a good approach to collect data in information security if no
historical data are available.
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Fig. 2 Optimal loss L∗(B)
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To solve the model, the decision maker has to provide a fixed budget limit as
an input parameter. This budget limitation results from the practical requirement
that information security budgets are preset based on a management decision. That
means, security specialists involved in the risk treatment phase have to work with a
fixed budget. It is, however, the case that security specialists advise the management
on the size of the budget. Without quantitative estimation of losses and benefits this
is an extremely difficult task. As a result, in practice, proposed budgets or even pro-
jected losses are normally reduced in some kind of a negotiation phase. To support
this phase, quantifiable data are needed that can support decision making. Solving
the proposedmodel with a systematic budget variation, an economically ideal budget
proposition can be made. Figure2 visualizes expected losses L of optimal solutions
depending on budget B. The curve starts off with a slight negative gradient, drops
steeply for mid-sized budgets, and levels off at some point. This shape is mainly
caused by two factors: for small budgets there is a lack of flexibility in the solution,
which means it is not possible to select controls that complement each other suffi-
ciently. The flattening after the drop in the middle results from the fact that additional
controls will only yield marginal improvements in loss reduction. This shape of the
loss curve corresponds to a negative logistic function which is well suited to describe
the effect of security investments [5]. This is an important extension of the widely
accepted model proposed in [4] where marginal utility is constantly decreasing with
higher investments.

The previous observations are particularly interesting because it is reasonable to
assume that the ideal budget proposition succeeds the flat part in the beginning and
precedes the flattening at the end. To verify this assumption, the actual benefit of
each solution can be determined:

Benefit(B) = L − L∗(B) − C(B). (5)

L is the worst-case loss without any investment, L∗(B) is the optimal loss accord-
ing to budget B, and C(B) are the costs of controls of the corresponding optimal
solution. Figure3 shows the benefit (5) in accordance with the loss curve depicted
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Fig. 3 Benefit of optimal
solutions according to L∗(B)
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in Fig. 2. The figure reveals that the benefit takes its maximum of approximately
44,800e for B = 135,000e. Initially the benefit is negative because the slowly
decreasing losses cannot compensate for the faster-rising costs of controls. When
the gradient of the loss curve decreases further, additional costs of controls are over-
compensated by the resulting loss reduction. As a result, the benefit increases and
eventually becomes positive. When the loss curve declines more slowly, the benefit
curve decreases again.

Insights of such aWhat-If analysis can be used to determine and support a budget
proposition. Although an ideal budget can be found, it is not guaranteed that this
will be the budget the management team agrees on. In any case, using the presented
model, the decision maker can determine the optimal investment strategy according
to a given budget.

5 Conclusion

In this paper we presented a model to optimize information security expenditures as
part of the risk management process. The model considers how losses in an informa-
tion system occur and how controls counteract threats by reducing the exploitability
of system vulnerabilities. We demonstrated that this approach can be used to deter-
mine and justify a budget proposition aswell as to find an optimal selection of security
controls. This model is a first step towards sophisticated quantitative decision sup-
port in information security. The evaluation of first results shows the potential of
this approach and justifies more intensive research in this area. Future research may
include extending the scope of the model, taking uncertainty more explicitly into
account, and creating a multi-stage model to support mid- and long-term decision
making.
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Cut-First Branch-and-Price Second
for the Capacitated Arc-Routing Problem

Claudia Schlebusch and Stefan Irnich

Abstract The basic multiple-vehicle arc-routing problem is called capacitated
arc-routing problem (CARP) and was introduced by Golden and Wong (Networks
11:305–315, 1981 [9]). This paper presents a full-fledged branch-and-price (bap)
algorithm for the CARP. In the first phase, the one-index formulation of the CARP
is solved in order to produce strong cuts and an excellent lower bound. In the sec-
ond phase, the master program is initialized with the strong cuts, CARP tours are
iteratively generated by a pricing procedure, and branching is required to produce
integer solutions. Furthermore, different pricing problem relaxations are analyzed
and the construction of new labeling algorithms for their solution is presented. The
cut-first branch-and-price second algorithm provides a powerful approach to solve
knowingly hard instances of the CARP to proven optimality.

1 Capacitated Arc-Routing Problem

The capacitated arc-routing problem (CARP) is the fundamental multiple-vehicle
arc-routing problem. It was introduced by Golden andWong [9] and has applications
in waste collection, postal delivery, winter services and more. The edited book by
Corberán and Laporte [8] reports the increased attention since then.

For a formal definition of the CARP, we assume an undirected graph G = (V, E)

with node set V and edge set E . Non-negative integer demands qe ≥ 0 are located on
edges e ∈ E . Those edges with positive demand form the subset ER ⊂ E of required
edges that have to be serviced exactly once. A fleet K of |K | homogeneous vehicles
with capacity Q stationed at depot d ∈ V is given. The problem is to find minimum
cost vehicle tourswhich start and end at the depot d, service all required edges exactly
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once, and respect the vehicle capacity Q. The tour costs consist of service costs cserv
e

for required edges e that are serviced and deadheading cost ce whenever an edge e
is traversed without servicing.

2 Cut-First Branch-and-Price Second

We developed a full-fledged cut-first branch-and-price second algorithm to solve the
CARP. Its three key components are the cut generation procedure, the pricer, and the
branching scheme. These components will be summarized in the following. For a
detailed description the reader is referred to [5–7].

2.1 Cutting

In the first phase, the one-index formulation of theCARP is solved in order to produce
strong cuts and an excellent lower bound. This formulation, first considered inde-
pendently by Letchford [11] and Belenguer and Benavent [2], solely uses aggregated
deadheading variables. However, the integer polyhedron of the one-index formula-
tion is a relaxation of the CARP and can therefore contain infeasible integer solutions
(see [3], p. 709). The cutting plane procedures are presented in [5]. At the end of
phase one, binding cuts (odd cuts, capacity cuts, disjoint-path inequalities dp1, dp2,
dp3) and odd/capacity cuts are identified and form the setS . It suffices to know that
the general form of all valid inequalities of the one-index formulation is

∑

e∈E

des ye ≥ rs s ∈ S , (1)

where s is the index referring to a particular inequality, des is the coefficient of edge e
in the inequality, andS the set of all valid inequalities.

2.2 Master Problem

Applying Dantzig-Wolfe to the two-index formulation of [2] and aggregation over
k ∈ K identical subproblems leads to an aggregated integer master program. Let cr

indicate the cost of a route r ∈ Ω and let x̄er ∈ {0, 1} and ȳer ∈ Z+ be the number of
times that route r services or deadheads through edge e. There are binary decision
variables λr for each route r ∈ Ω . Furthermore, a variable ze ≥ 0 that represents a
cycle Ce = (e, e) along an edge e is added. This cycle corresponds to an extreme ray
of the pricing polyhedron. The master problem (MP) reads then:
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min
∑

r∈Ω

crλr +
∑

e∈E

(2ce)ze (2)

s.t.
∑

r∈Ω

x̄erλr = 1 for all e ∈ ER (3)

∑

r∈Ω

dsrλr +
∑

e∈E

(2des)ze ≥ rs for all s ∈ S (4)

1�λ = |K | (5)

λ ≥ 0, z ≥ 0 (6)

The objective (2)minimizes over the costs of all tours. Equalities (3) ensure that every
required edge is covered exactly once. The reformulated cuts of the first phase are
given by (4). Herein, dsr is the coefficient of the transformed cut s ∈ S for route r ,
which is dsr = ∑

e∈E des ȳer . Equalities (5) are convexity constraints and require each
vehicle to perform a CARP tour.

2.3 Branching

Let λ̄ be a fractional solution to MP at a branch-and-bound node with associated
values x̄ and ȳ (xk

e = ∑
r∈Ω x̄erλ

k
r , yk

e = ∑
r∈Ω ȳerλ

k
r ). To obtain an integer solution,

a branching scheme has to be devised. Our hierarchical branching scheme consists
of three levels of decisions:

1. branching on node degrees
2. branching on edge flows
3. branching on followers and non-followers

The first two branching decisions are straight forward: Two branches are created
whenever there exists a node i ∈ V with non even node degree or an edge with
fractional edge flow. The third branching decision is more intricate to implement.
We define the follower information by

fee′ =
∑

r∈Ω

fee′rλr ∈ {0, 1} for all e, e′ ∈ ER

where fee′r = |{1 ≤ q < pr : {e, e′} = {er
q , er

q+1}}| counts how often the two edges e
and e′ are serviced in succession by route r ∈ Ω . If then for any two required edges e
and e′ this follower information is fractional, one can create two branches with
constraints fee′ = 0 and fee′ = 1. The first branch implies that e and e′ must not
be serviced consecutively. This constraint can be implemented using the concept of
task-2-loop free paths as presented in [10]. The second branch can be implemented by
modifying the underlying graph on which pricing is carried out. This network modi-
fication does not destroy the structure of the pricing problem. A detailed description
can be found in [5, Sect. 2.4.3].
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2.4 Pricing Problem and Relaxations

The task of the pricing problem is to generate one or several variables with negative
reduced cost or prove that no such variable exists. Let dual prices π = (πe)e∈ER to
the partitioning constraints (3), β = (βs)s∈S to the cuts (4), and μ = (μk)k∈K to the
convexity constraints (5) be given. Omitting the index k of the vehicle, the pricing
problem is the two-index formulation of [2] with the following modified objective
function:

zP P = min c̃serv,�x + c̃�y − μ

where reduced costs for service and deadheading can be associated to the edges:

c̃serv
e = cserv

e − πe for all e ∈ ER and c̃e = ce −
∑

s∈S
desβs for all e ∈ E .

Applying the suggested hierarchical branching scheme with branching on non-
follower constraintsmeans that any pricing problem relaxationmust be able to handle
two sets of tasks:

• tasks T E for modeling the elementary routes
• tasks T B for respecting non-follower constraints imposed by branching (2-loop-
free tours)

In essence, a shortest-path problem where paths are elementary w.r.t. T E and
2-loop-free w.r.t. T B must be solved. We adopted the proposed labeling algorithms
by Letchford and Oukil [12] to price out new routes that can handle two sets of tasks.
This algorithm works on the original CARP graph G and exploits the sparsity of the
network. A feasible path P ending at i = i(P) can be extended along an edge either
deadheaded or serviced. Any deadheading extension along an edge e = {i, j} ∈ δ(i)
with associated reduced cost c̃e is feasible. On the other hand, a service extension
along an edge e = {i, j} ∈ δR(i) with associated reduced cost c̃serv

e is feasible if
q(P) + qe ≤ Q holds. Moreover, in the ESPPRC case, the task sequences T E (P)

and T E (i, j) are not allowed to share a common task, and T B(P) �= T B(i, j)
needs to be fulfilled.

In [6, 7], we analyzed several pricing relaxations, and a detailed description of
dominance rules and implementation details can be found there. Our basic branch-
and-price approach [5]madeuseof just one relaxationproducing2-loop free tours [4].
This relaxation is particularly beneficial because it is compatible and at the same time
indispensable for branching on followers. Stronger relaxations are k-loop elimination
k ≥ 3. In [7] we develop an efficient labeling algorithm for the combined (k, 2)-loop
elimination in order to respect the two task sets resulting from branching. During
experimental studies, we found out that reasonable parameters are k ∈ {2, 3, 4}. The
ng-route relaxation by Baldacci et al. [1] has been successfully applied for solving
several VRP variants using cut-and-column generation approaches. The principle of
the ng-route relaxation is that the full sequence T E (P) of served tasks associated
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with a path P is replaced by a subset T E
N G(P) of the tasks T E (P) in the sequence.

It means that some of the tasks from the sequence T E (P) are disregarded and also
the ordering of the tasks is disregarded. The size of the setT E

N G is a parameter where
experimental studies show that the maximum size of neighborhoods in ng-route
relaxations should be 5, 6 or 7. A description of the combined ng-route relaxation
with 2-loop elimination is given in [7].

3 Computational Results

We tested the basic algorithm [5] on four standard benchmark sets (kshs, gdb,
bccm and egl).1 The advanced algorithms [6, 7], including more types of pricing
relaxations and additional acceleration techniques, were tested on the egl bench-
mark set and additionally on the bmcv benchmark set.

All instances of kshs and gdb are often solved to optimality with the basic
algorithm often in less than one second. For all bccm instances we can prove opti-
mality either by computing an optimal solution or due to the tree lower bound. We
can prove optimality for five out of 24 egl instances. Moreover, we can match our
lower bound with a known upper bound from the literature for one more instance.
Detailed computational results can be found in [5].

Comparing different pricing relaxations in [7], we obtain that for the egl
instances, the k-loop relaxations (k ∈ {2, 3, 4}) are able to find more integer solu-
tions, while for the bmcv the ng-route relaxation and the k-loop relaxations produce
approximately the same number of optima. There is the tendency that the 2-loop
relaxation in beneficial for problems of groups with higher vehicle capacity (54 best
lower bounds out of 58), while the best ng-route relaxation performs worse on these
instances (only 29 best lower bounds out of 58). On the other hand, for instances with
lower capacity, the 2-loop-free relaxation results in 37 out of 58 best lower bounds,
while ng-route relaxation gives 48 out of 58 best results.

4 Conclusion

We proposed a cut-first branch-and-price-second algorithm for the CARP. The
strength of the new column-generation formulation results from strong lower bounds,
symmetry elimination, efficient pricing, and an effective branching scheme. Compu-
tational experiments show that the proposed cut-first branch-and-price-second algo-
rithm gives considerable results for all standard benchmark sets. Several earlier exact
approaches proved optimality of known heuristic solutions by matching lower and
upper bounds, but were not able to deliver optimal CARP routes. Our branching

1All instances can be downloaded from http://logistik.bwl.uni-mainz.de/benchmarks.php.

http://logistik.bwl.uni-mainz.de/benchmarks.php
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scheme, however, enables us to compute feasible integer solutions and in many
cases even optimal ones.

Different relaxations known from the node-routing context were adapted to solve
theCARPwith a branch-and-price approach. The adaption is non-trivialwhenpricing
is still performed on the original sparse graph: The result is amore intricate branching
scheme, where two sets of tasks must be handled. We adapted and compared the ng-
route relaxation and the relaxation with k-loop elimination. For instances with high
capacity, k-loop elimination often outperforms ng-route relaxations. The opposite
can generally be observed for instances with low capacity. Overall, several new best
lower bounds were presented and some knowingly hard instances were solved to
proven optimality for the first time.
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Solving a Rich Position-Based Model
for Dairy Products

Karl Schneeberger, Michael Schilde and Karl F. Doerner

Abstract By considering the lot-sizing problem and the detailed sequencing and
scheduling problem simultaneously in a very realistic model formulation we aim to
improve the overall performance of the entire production process for a dairy produc-
ing company. For this purpose we extended the Position-Based Model introduced
by Lütke et al. (Int. J. Prod. Res. 43, 5071–5100, 2005 [5]). Based on a set of real-
world production data, we used our model to determine exact solutions to very small
problem settings. As even for small instances the time required for obtaining exact
solutions is too long in general, we developed a fix&optimize inspired construction
heuristic to obtain a feasible solution for several products. The results of our approach
show that the solutions obtained are competitive compared to the optimal solution
with less time consumption.

1 Introduction

Usually the lot-sizing problem and the detailed sequencing and scheduling problem
are treated separately in the production planning process, especially for perishable
goods. Instead, these two problems should be treated simultaneously to obtain better
solutions (see, e.g., [1]). We developed a very realistic model formulation aiming to
improve the overall performance of the entire production process. For this purpose
we extended the Position-BasedModel introduced by Lütke et al. [5]. The extensions
include explicit product transfers via product pipes (i.e., pipes are used to transfer
products between aggregates; no two transfers can be performed at the same time),
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product-dependent durability during the production process (e.g., after fermentation
the product has to be chilled within a certain time limit), cleaning and steriliza-
tion pipes which prevent simultaneous treatment of specific aggregates, maximum
and minimum capacity of aggregates, sequence-dependent setup times, product loss
caused by transfers, a product specific production speed for each aggregate, and
cleaning intervals (i.e., the time between two consecutive cleaning procedures is
limited). Gellert et al. [3] studied a related model considering only the filling lines,
reasoning that they are the bottleneck of the entire production system. This however
leads to infeasible solutions in practical use. Based on a set of real-world production
data, we used our model to determine exact solutions to very small problem settings.
As even for small instances the time required for obtaining exact solutions is too
long in general (even finding a first feasible solution for one product on all available
aggregates takes many hours), we developed a fix&optimize inspired construction
heuristic to obtain a feasible solution for several products. This means, that the over-
all problem is first decomposed and iteratively solved while adding one product
per iteration. Sahling et al. [6] and Helber and Sahling [4] used the fix&optimize
heuristic to solve a dynamic multi-level capacitated lot sizing problem and exten-
sions. Amorim et al. [2] give an overview of perishability issues in production and
distribution.

2 Problem Description

The production process in our data set consists of eight aggregate levels (see Fig. 1;
we use the term aggregate for both, machines and tanks). Each product has to be
processed by a specific subset of aggregates; some aggregate levels can be omitted
for some products (e.g., spoonable yoghurt skips the fermentation tanks whereas
creamy yoghurt does not). Depending on the degree of processing the products are
labeled differently. At the fillers and sorters the products are denoted as final products,
at the heaters, fermentation tanks, coolers, and filling tanks as base mass, and at the
mixers and mixing tanks as blended milk. Thus, generally speaking, blended milk is
transformed into base mass, which is then transformed into final products by filling
it into different types of bins (potentially together with some sort of fruit topping or
cereals, which is neglected in our model).

Each machine is assigned a set of production speeds for all products that need to
be processed by it, each tank has a minimum and a maximum capacity information.
Each aggregate has a set of ingoing and a set of outgoing product pipes that can be
used. Each such pipe is assigned a volume specifying the product loss due to cleaning
after a transfer.

Additionally, each aggregate has a specific pipe for cleaning-in-place (CIP) and a
pipe for sterilization-in-place (SIP) assigned to it. These pipes can be shared between
different aggregates and cannot be used to service multiple aggregates simultane-
ously. The requirement of performing a CIP and SIP operation after processing
a lot is sequence-dependent, as is the duration of the setup process required before
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Fig. 1 Overview of the aggregate levels available for producing dairy products. Each product
requires to be processed by a subset of aggregates; some aggregate levels can be omitted for some
products. The transfer from an aggregate to the next level has to be performed using a product pipe
(sorters need no pipe system for transportation; dummy pipes are used instead)

beginning the processing of a lot. Additionally, every aggregate must be cleaned after
a specific period of time without cleaning (even when no lot is being processed dur-
ing this time; cleaning interval). Coolers can voluntarily process at a slower speed to
avoid cleaning due to the cleaning interval.

Eachblendedmilk has a specific timedetermininghow long the ingredients need to
soak in a mixing tank (soaking time). Each base mass has a specific time determining
how long the fermentation in a fermentation tank needs to be (fermentation time) and
how soon after completing the fermentation the product must be chilled (tolerance
time). Furthermore, blended milk and base mass may not spend more than a specific
amount of time in any tank (maximum survival time).

If a lot processed by the mixer is smaller than a specific small batch size, the
lots processing time has to be increased by a certain penalty time. This is due to the
requirement to perform laboratory tests before moving the product into the mixing
tank. The detailed mathematical formulation and description can be found in [7].

The main objective (1) is to minimize all starting times of all lots l1 on all aggre-
gates a1 (ba1l1 ), of all lots l1 on all product transfer pipes p1 (pp1l1 ), of all lots l1 on
all CIP-pipes p1 (cp1l1 ), and of all lots l1 on all SIP-pipes p1 (sp1l1 ). This ensures
that the makespan of each aggregate is as short as possible and has also a positive
influence on the overall makespan.

Min
∑
a1,l1

ba1l1 + ∑
p1∈AP I P,l1

pp1l1 + ∑
p1∈AC I P,l1

cp1l1 + ∑
p1∈ASI P,l1

sp1l1 (1)
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3 Solution Approach

Figure2 gives an overview of the entire solution approach. To reduce the time needed
to achieve an appropriate solution quality we separated the procedure of finding a
solution into four interdependent steps (see Fig. 2).

In Step 1 we try to find a fixing for the setup indicator variables (if an aggregate
is setup to produce one product in a specific lot). Because of the large number of
aggregates (more than 40 aggregates for the used test case) we need to predefine a
set of the most appropriate aggregates. We have to consider the different maximum
and minimum capacities, pipe transfers, and the demand; all other specifications of
the model are excluded. The objective here is to find the aggregates with the lowest
processing, fermentation, or soaking time, while considering the lot position of the
used aggregates. As the complexity of the remaining reduced model is still very
high we also use a fix&optimize inspired procedure to solve it: First, we obtain a
first feasible solution of the reduced model. Second, we use the determined setup
indicators and fix them for all aggregates but the mixers. We re-run the model to
obtain a new solution. We then fix the setup indicators for all aggregates but the
mixing tanks and re-run the model. We repeat this procedure for each aggregate
level to obtain a reasonably good solution quality.

In Step 2 we fix the setup indicators to the values found in Step 1, obtain a first
feasible solution for the complete model and continue with Step 3.

In Step 3 we fix all binary variables except the CIP assignments. An overview of
the solution process for a problem with two aggregates and two different products is
presented in Fig. 3. Simultaneous usage of the same CIP and SIP pipe is not possible,
so AGG1 has to wait before the cleaning process of AGG2 is finished. This is only
the first feasible solution, so the solution quality can be improved. Aggregate AGG1
has finished processing earlier than AGG2, so it would reduce the overall makespan
if the CIP-pipe first services aggregate AGG1 instead of AGG2. When fixing all
binary variables except the CIP assignment, the CIP lots can be swapped.

Fig. 2 Overview of the solution approach used to quickly obtain a first high-quality solution. First,
we fix the setup indictors to predefine the needed aggregate lots. Second, we try to get a first feasible
solutionwith the fixed setup indicators. Third, we fix all binary variables except the CIP assignments
of the first feasible solution to get a better solution quality and last, we use this solution to fix again
all binary variables except the SIP assignments to get the final solution
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Fig. 3 Overview of an example with two aggregates and two products over the entire solution
approach; including manufacturing process, CIP, and SIP. The aggregates (AGG1 and AGG2) share
the same CIP and SIP pipe for cleaning and sterilization

In Step 4 we fix all binary variables, which includes the changed CIP assignment,
except the SIP assignment. In this small example in Fig. 3 the SIP lots for aggregates
AGG1 and AGG2 are swapped and the CIP assignment remains the same, because
it was fixed. Thus we obtain a high quality solution with respect to the makespan on
each aggregate.

4 First Solutions

Table1 shows the results of 10 test cases. We obtained the objectives of each test
case with CPLEX, CPLEX with 1h time restriction, and with our presented solution
approach. To get a feasible solution in CPLEX we used the first step of our solution
approach and fixed the setup indicators (see Fig. 2); without this, it would not be
possible to obtain a solution. The time measurement started after step one for each
test case.

The solution quality of our fix&optimize solution approach seems to be very good
(see Table1). Our solution approach finds the best known solution for each single
product test case. The objective obtained by the solution approach is 0.01 percent
worse than the optimal solution obtained by CPLEX for products 3 + 5, and products
1 + 2.

5 Summary and Outlook

We presented a rich position-based model for dairy products by considering the lot-
sizing problem and the detailed sequencing and scheduling problem simultaneously.
Our model includes many specifications to handle real-world test cases. Because of
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the very detailed model a feasible solution cannot be found within reasonable time.
We developed a fix&optimize based solution approach to reduce the time needed to
obtain a good solution quality.

We plan to extend our solution approach to optimize larger test cases of five or
more products by iterative product insertion. The method will start with optimizing
the first product, fixing all variables adding the next product, and so on. So we first
use the fix&optimize approach as a construction heuristic and also to improve the
solution after each insertion step.

Acknowledgments Financial support from the Austrian Research Promotion Agency (FFG,
Bridge) under Grant #838560 is gratefully acknowledged.
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A European Investment and Dispatch
Model for Determining Cost Minimal
Power Systems with High Shares
of Renewable Energy

Angela Scholz, Fabian Sandau and Carsten Pape

Abstract In this paper a multistage combined investment and dispatch model for
long-term unit commitment problems of large-scale hydrothermal power systems is
presented. It is based on a combination of a continuous and mixed integer program-
ming algorithm as well as Lagrangian relaxation. First, the required capacities of
power generation and storage units are determined by a continuous linear program
(LP). Second, in an optional stage the unit commitment problem for all investi-
gated market areas, i.e. those of Europe, is solved by a mixed integer linear program
(MILP). At last, a MILP solves the same problem with a higher level of detail for a
focused subarea.

1 Introduction

In times of a proceeding electrification of the energy system (ES) in Europe and
Germany, especially in the sectors mobility and heating, secure and reliable load
coverage becomes increasingly important. At the same time, due to the foreseeable
scarcity of fossil fuels as well as the climate policy objectives of the European
Commission, the use of renewable energy sources (RES) increases. The volatile
feed-in from RES results in a fluctuating residual load, wherefore the present power
system has to be adapted. To identify a future ES at minimal overall costs, various
generation technologies and constraints must be considered by the optimization.

This paper presents the most important aspects of the combined investment and
dispatch model of power supply systems. The model intends to overcome difficulties
in long-term optimization of large-scale unit commitment problems.

A. Scholz (B) · F. Sandau · C. Pape
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2 Mathematical Programming

The optimization is based on amultistage procedure. For a cross-border investigation
this includes a long-term LP in the first and a MILP in the optional second stage.
In the third stage a subproblem is solved by an MILP but based on a more detailed
model of a focused subarea as well as on results of previous stages. Moreover, it
includes a rolling planning algorithm (Fig. 1).

Each of the programming is aimed at covering the residual load and heat demand
for each hour per year at minimum costs. Therefore, several technologies for the
conversion, storage and transport of energy are options for investment. Additional
flexibility is provided by a given hydro-thermal power plant portfolio, for which only
the operating costs are considered. For each investigated market area, the hourly
residual load coverage is given, if it holds for all t in {1, . . . , 8760}

D(t) =
I∑

i=1

bi (t) · Pi (t) − Pi
con(t) +

H∑

h=1

Ph
out (t) − Ph

in(t). (1)

In (1) I indicates the number of thermal power plants and H that of hydro-storage
units. The variables Pi (t) and Ph

out (t) represent the generated power of the thermal or
hydraulic thermal units in hour t as well as Pi

con(t) and Ph
in(t) their additional power

consumption, for instance by electric heaters, electrolyzers or hydraulic pumps. The
binary variable bi (t) ∈ {0, 1} determines the operation mode of unit i and is set to 1
for all hours only in the investment model.

Fig. 1 Configuration of the multistage model
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2.1 Multiple Markets Investment Model—MMIM

The programming in the first stage is a deterministic, continuous LP for
determining the required capacities Γ of those technologies, whose expansion is
within scope of the scenario. The objective function includes operating costs of all
committed plants as well as annual investment costs for additional capacities. So,
the function for total costs T C can be written as

T C(Γ, P) =
J∑

j=1

I C(Γ j ) +
8760∑

t=1

[
K∑

i=1

OC(Pi (t), Pi
con(t)) +

J∑

j=1

OC(P j (t), P j
con(t))] (2)

Within (2) the function for the variable operating costs of unit k is labeled with
OC(Pk(t), Pk

con(t)). The numbers of existing or additional units respectively are
denoted by K and J . As a simplification, only the aggregated capacity expansions
Γ j are modeled instead of individual units, while their potential Γ̂ j can be limited,
whereas Γ is limiting the maximal power generation or consumption per hour.

0 ≤ P j (t) ≤ Γ j · Δt, ∀t =∈ {1, . . . , 8760}. (3)

The interaction between the different market areas is modeled by cross-border
interconnectors.

0 ≤ I mp j (t), Î mp
j
(t) ≤ N T C j

I mp(t), 0 ≤ Exp j (t), Ê xp
j
(t) ≤ N T C j

Exp(t),

I mp j (t) = υ · Ê xp
j
(t), Î mp

j
(t) = υ · Exp j (t), ∀ j ∈ J. (4)

Within this modeling, the transmission losses υ ∈ [0, 1] depend on the length of the
power line. However, transport restrictions within market areas have been neglected
and the results of this model stage are based on merged input data [3].

2.2 Multiple Markets Dispatch Model—MMDM

To make up for the inaccuracy in the first stage of the combined model, in the second
stage the optimization is based on a detailed power plant portfolio, as a result of
the MMIM. Besides considering single power units, this programming takes a more
realistic and detailed model of the different generation technologies into account. As
a result, more accurate time series for cross-border power exchange can be derived.
For the high level of complexity in this step, standard mixed integer algorithms
are not a pragmatic approach. Hence, the most complex constraints, those for load
coverage (1), are relaxed by Lagrangian relaxation. In consequence, these constraints
are added to the objective function by multiplication with the Lagrangian multipliers
λa∈A ∈ R

T , with A representing the number of regarded market areas.
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Unlike the operating costs function in the investment model, OC includes costs
for starting processes of thermal units. This term of OC is only different from zero
in those time steps, if bi (t + 1) − bi (t) > 0 holds for the binary operating mode
variable of unit i . Hence, the objective function of MMDM is defined by

L(bi∈I , Pi∈I , Pi∈I
con , Ph∈H

out , Ph∈H
in , λa∈A) = (5)

=
8760∑

t=1

[
I∑

i=1

OC(bi (t), Pi (t), Pi
con(t)) +

H∑

h=1

OC(Ph
out (t), Ph

in(t))]+
A∑

a=1

λa(t)[Da(t) −
I∑

i=1

bi,a(t) · Pi,l(t) − Pi,a
con(t) −

H∑

h=1

Ph,a
out (t) − Ph,a

in (t)]

Accordingly to the Lagrangian method, L has to be minimized with respect to b :=
bi∈I , P := Pi∈I , Pcon := Pi∈I

con , Pout := Ph∈H
out and Pin := Ph∈H

in andmaximizedwith
respect to λ := λa∈A so that the dual problem is defined by

max
λ

L̃(λ) := max
λ

min
b,P,Pcon ,Pout ,Pin

L(b, P, Pcon, Pout , Pin, λ), (6)

whereby the dual function, due to the L̃(λ) is concave but nonsmooth, just like the
primal function. Even so, the duality gap is supposed to be small, due to the large
number of variables [1].

For solving the relaxed problem (6) iteratively, λa(t) is initialized by the marginal
costs for load coverage in market area a and time step t based on the merit order
of fuel costs. Therefore, L∗(b, P, Pcon, Pout , Pin) := L(b, P, Pcon, Pout , Pin, λ

∗), λ∗
as determined by the initialization, can be decomposed into several independent
subproblems, each regarding just a few units. Those are solved by a branch and cut
algorithm.

The maximization of the dual function L̃ is based on the subgradient method [2].
For each iteration k, the update of λk is determined by

λk+1
a (t) = max{0, λk

a(t) + sa(t)
da(t)

‖da(t)‖}. (7)

Within this equation, the step size sa(t) is selected depending on the subgradi-
ent da(t) = Da(t) − ba(t) · Pa(t) + Pa

con(t) − Pa
out (t) + Pa

in(t), which is the current
rate of load coverage in the market area a. This approach results in a faster conver-
gence than updating the Lagrangian multipliers for each time step and market area in
the same way. Besides this, oscillation of (λk)∞k=1 decreases. If the stopping criteria
is reached, a feasible solution of the primal problem is determined by an economic
dispatch. Thus, the solutions for the binary variables b are fixed and the resulting
(LP) is smooth, so that it can be solved by the barrier algorithm.
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The presented method of the MMDM for the optimized power plant portfolio
simultaneously takes into account the interaction of market areas and detailed tech-
nical unit restrictions.

2.3 Single Market Dispatch Model—SMDM

In the final stage, the optimized power plant portfolio, the result of the MMIM (cf.
Sect. 2.1), and a fitted residual load time series are considered as input data. The fitted
time series is based on the hourly feed-in ofRES and the power demand of the focused
market area as well as the hourly import and export, determined by the MMDM (cf.
Sect. 2.2). That way, the interaction between the market areas is considered, despite
the following deterministic MILP is an analysis for an isolated area. Besides load
coverage (cf. (1)) and the technical restrictions (cf. Sect. 2.2), coverage of all types
of balancing power is modeled in this programming. Such a cross-unit constraint can
be described for each time step t and type of reserve control by:

R(t) ≤
Ĩ∑

i=1

bi (t) · (Pi
max − Pi (t)) +

H̃∑

h=1

min{Ph
max − Ph(t),

Sh(t)

ηh
− Ph(t)} (8)

where Ĩ is the set of those thermal power plants, which participate in this type of
control power market. It includes units with a minimum power restriction as well as
those without such a constraint (then bi (t) = 1). Furthermore, H̃ defines the set of
storage units. To simulate balancing power demand, a probability P i is assumed,
which depends on the technology. This leads to an additional term in the objective
function

EC(bi∈ Ĩ , Pi∈ Ĩ , Pi∈ Ĩ
con , Ph∈H̃

out , Ph∈H̃
in ) = (9)

=
8760∑

t=1

[
Ĩ∑

i=1

[OC(bi (t), Pi (t), Pi
con(t)) + P i · bi (t) · (Pi

max − Pi (t))]

+
H̃∑

h=1

[OC(Ph
turb(t), Ph

in(t)) + Ph · min{Ph
max − Ph(t),

Sh(t)

ηh
− Ph(t)}]]

In addition, the effect of RES forecast is simulated as well as the related costs.
Therefore, the optimization is basedon a rollingplanning systemwith anoptimization
horizon equaling the forecast horizon of fluctuating RES. The forecast is updated
continuously, i.e. every fourth hour, resulting in an updated residual load [4].



520 A. Scholz et al.

3 Case Study

The model described in Sect. 2 was developed within the framework of the research
project “Roadmap Speicher”.1 To address the questions named in the introduction,
the investigations focused on the development of power storage requirements. The
program modeling has been done in MATLAB and the optimization by IBM’s MIP-
solver CPLEX. The optimization problems referring to each scenario or sensitivity,
considered about 32.7 mill. variables in the MMIM, and 46.4 mill. in the MMDM,
there of 4.3 mill. binaries. Additionally to the upper and lower bounds of each vari-
able, consideration has also to be given to about 22.7 mill. constraints in the MMIM
and 31.7 mill. in the MMDM.

One fundamental finding in this project has been a relative low storage demand
in an energy supply system with a high share of renewable energies, based on the
given assumptions. For more conclusions and the considered assumptions cf. [3].

4 Examplary Results

The first applications have shown that the presented model is suited analyzing
problems as listed in Sect. 3. Computation times of 1–3 days for the MMIM and
about 5 days for the SMDM are acceptable. The programming of the MMIM finds
a near-optimal solution after 12h and reaches the required accuracy for a primal
feasible solution after 35h (Fig. 2). For the study case this results in a load deficit of
about 0.2 MW h

a for the MMIM.

Fig. 2 Convergence behavior of the MMIM. a Primal and dual function. b Relative duality gap

1Funded by the Federal Ministry for Economic Affairs and Energy, funding code 0325327.
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Pre-selection Strategies for Dynamic
Collaborative Transportation Planning
Problems

Kristian Schopka and Herbert Kopfer

Abstract To improve the competitiveness, small and mid-sized carriers may ally
in coalitions for request exchange. One main barrier is the “carrier-fear” of losing
autonomy. A decentralized pre-selection that allows carriers to preserve own trans-
portation requests for the private fleet may limit the information shared within the
coalition and increase the autonomy. Several heuristic pre-selection strategies are
presented. A computational study analyzes which of those are most qualified.

1 Introduction

Nowadays, freight carriers are confronted with customers demanding for quick exe-
cution of transportation requests and they have to plan the execution dynamically,
i.e. new customer orders appear and have to be planned. Especially for small and
mid-sized carriers (SMCs), it is difficult to create efficient transportation plans in
such dynamic environments. By building horizontal coalitions SMCs may find a
way to conquer their cost disadvantage against large forwarding companies. A facil-
ity to organize coalitions is the request exchange with competitors, which enables an
improved request clustering and results in cost savings [6]. Onemain barrier of build-
ing coalitions is the “carrier-fear” for abandoning autonomy.Thereby, potentialmem-
bers are notwilling to give all information about the request structure to their partners.
However, to drive the building of coalitions, mechanisms have to be developed that
increase the autonomy. The autonomy may be increased by using an independent
decision making process (DMP), where each member decides if a request is released
for the exchange or preserved for the private fleet. The contribution of this paper
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is to discuss adequate mechanisms (pre-selection strategies). The basic problem is
introduced in Sect. 2. Section3 presents the pre-selection strategies. A computational
study is carried out in Sect. 4. Section5 concludes the paper.

2 Selection of Collaborative Requests

To increase the autonomy in carrier coalitions for request exchange, each involved
SMC has to decide independently, which transportation requests of his own request
pool are preserved for the private fleet (self-fulfillment) and which are to be offered
for the request exchange process (collaborative). Strategies to solve this assignment
problem include preserving the requests with the highest marginal profit for the
self-fulfillment [2] or performing a request clustering and releasing the clusters with
the highest distance to the depot to the exchange process [11]. Other possibilities
are approaches for the selective vehicle routing problem (SVRP) that include only
the most profitable requests in the tour planning [1, 3, 7]. The remaining requests
may be forwarded to subcontractors or exchanged with coalition partners. The basic
SVRP-strategy is to perform a “cherry-picking”, which tends to build solutions with
a high efficiency for own vehicles. Against, in the considered problem a sequential
two stage DMP exists, where the preserving of requests for the self-fulfillment has
an immediate influence on the quality of the following request exchange process.
Hence, a high capacity utilization may block the efficiency of the request exchange
process. Another handicap of the SVRP is that the solution approaches require long
computing time that is often not available in dynamic environments. Pre-selection
strategies requiring less computing time have to be developed.

For the evaluation of the pre-selecting strategies, a multi vehicle dynamic collabo-
rative transportation planning problem is considered, where some SMCs collaborate
and exchange requests. Every request is exchangeable and assigned to one member.
It generates earnings and has a time window. Furthermore, some requests appear
during the planning horizon resulting in a dynamic planning environment. To handle
this dynamic aspect, a periodic re-optimization within a rolling horizon planning
is used [9]. At each planning update several problems related to the multi depot
vehicle routing problem with time windows (MDVRPTW) have to be solved. The
autonomy of each coalition member is increased by a postulated decentralized pre-
selection of requests that are included in the request exchange. To solve the problem,
a two step framework (TSF) depicted in Fig. 1 is used. The TSF can be classified
in two DMPs, where each is followed by an optimization phase (OP1/2). In each
optimization phase an MDVRPTW is solved by a modified adaptive large neigh-
borhood search (ALNS). That the ALNS produce good results for diverse vehicle
routing problems is shown by Pisinger and Ropke [10]. On the decentralized stage
(DMP1) the members decide, which of their requests are preserved for the private
fleet. On the centralized stage (DMP2) the request exchange is performed. It has
to be clarified which request exchange mechanism is most qualified for solving the
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Fig. 1 Sequence of the two step framework

DMP2 of the TSF. Based on the periodic re-optimization, the sequence is repeated
until the last planned update is performed. Finally, a profit sharing is conducted. The
paper focuses on the pre-selection strategies for solving the DMP1.

3 Pre-selection Strategies

The pre-selection strategies are classified into request potential valuation strategies
(RPVs) and tour potential valuation strategies (TPVs). Both types try to get a look
forward and estimate the potential of preserving a request for the self-fulfillment.

Request Potential Valuation Strategies: The RPVs analyze characteristics of
requests, where the idea is to identify those with the highest potential for preserv-
ing. For the evaluation, function (1) is introduced that calculates a potential-value
(PVj) for each request (j) in the carriers request pool (U). The requests with the
highest PVj are preserved for the self-fulfillment. Function (1) is divided in four
parts, where each rates one specific request characteristic. b1(j) considers the ratio
between the earnings (ej) of j and the overall maximum of earnings per request.
Separately, b2(j) rates the quantity of demand (dj) proportionately. b3(j) analyzes
whether a clustering of the requests is auspicious. Here, the sum of the distance
(dist(u, j)) of the n nearest requests to j is built, where Ubest represents the set of
the nearest requests. For a normalization the minimal distance overall is identified
and multiplied by the cardinal number of Ubest. b4(j) identifies the best insertion
positions (ins(i, j)) for j, which seems sensible when a tour scheduling already exists.
This situation exhibits in dynamic environments. The m best insertion positions are
identified, where V represents the set of all possible insertion positions and Vbest
stores the m best positions. This term is also normalized. By varying the weights
c1, . . . , c4 different RPVs can be generated. RPV1(c1 = 1, c2 = 0, c3 = 0, c4 = 0)
andRPV2(2, 1, 0, 0) relate to a greedy procedure,where the requestswith the highest
earnings are identified. RPV3(0, 0, 0, 1) considers only the best insertion positions.
In contrast, RPV4(2, 1, 3, 1) and RPV5(2, 1, 1, 3) represent a combination of the
previous RPVs and consider all function parts. Each of those strategies preserves a
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percentage of the requests with the highest values of PVj for the self-fulfillment. The
remaining requests are reallocated to the request exchange process.

PVj = c1 · b1(j) + c2 · b2(j) + c3 · b3(j) + c4 · b4(j); ∀j ∈ U,with: (1)

b1(j) = ej

max
u∈U

eu
; b2(j) =

min
u∈U

du

dj
; b3(j) =

|Ubest| ∗ min
u∈U\{j} dist(u, j)

∑

u′∈Ubest
dist(u′, j)

; b4(j) =
|Vbest| ∗ min

i∈V
ins(i, j)

∑

i′∈Vbest
ins(i′, j)

Tour Potential Valuation Strategies: A drawback of the RPVs is that the incidental
traveling costs per request cannot be calculated, if no current tour scheduling exists.
This situation occurs especially in static problems or the first planning period of
dynamic environments. Thereby, it is hard to give a forecast if preserving a request
for the self-fulfillment will increase the overall profit. The idea of the TPVs is to build
promising tours. The costs of those tours can be calculated easily, which results
in a more realistic cost evaluation per request. For building promising tours, the
TPVs use heuristic constructive strategies of the vehicle routing. TPV1 relates to
the saving algorithm, where the request with the highest savings is identified and
inserted into the current tour scheduling [8]. This procedure is repeated until all
requests are inserted. For the considered problem, TPV1 is supplemented with the
request earnings, so that the request j with the highest profit (ej − ins(best, j)) is
chosen first. TPV2 is a modification of the sweep algorithm, where tours are build
based on the polar coordinates of the requests [4]. The procedures of both TPVs
insert all potential requests in the tour schedule. Afterward, the DMP1 is executed
previous to the OP1. To solve the DMP1, a defined percentage of the most profitable
tours are preserved for the self-fulfillment. The requests of the residual tours are
reallocated to the request exchange process. For the performance of TPV3, an initial
tour scheduling is generated by TPV1. Afterward, the OP1 is performed, before the
DMP1 selects the requests for the self-fulfillment. Because of this procedure, TPV3
relates to the SVRP and may also block the following request exchange.

4 Computational Experiments

For the computational studies instances are generated that base on Gehring and
Homberger [5]. The instances are organized into three classes, where the number
of coalition members, requests per member and planning periods vary.1 For the
evaluation, each instance is solved ten times on a Windows 7 PC with Intel Core i7-
2600 processor (3.4GHz, 16GB) and the average of the overall profits is considered.
To get a better comparability, the allowed number of preserved requests for the self-
fulfillment is limited to 50% of the requests for all strategies. The DMP2 of the

1http://www.logistik.uni-bremen.de/english/instances/.

http://www.logistik.uni-bremen.de/english/instances/
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TSF is solved by a combinatorial auction with a central clustering and the maximal
number of iterations is limited to 1,000 for the OP1 and to 20,000 for the OP2.

The first study analyzes the ability of the RPVs for solving the DMP1. As experi-
ments demonstrate,RPV4 generates auspicious solution, if no tour scheduling exists.
In contrast, RPV5 gets good results, when an initial scheduling exists. To realize
both benefits a combination of RPV4 and RPV5 is performed, where the strategy
is switched at the first planning update. Table1 gives an overview of the results. It
can be derived, that RPV4 and RPV5 are preferable for random instances (R). The
combination of both strategies is able to increase the results for some instances. If a
random/cluster instance (RC) is considered, RPV4 generates best solutions.

As the first test case shows, to increase the results in dynamic environments,
it seems sensible to switch the pre-selection strategy, if a tour scheduling already
exists. The TPVs give opportunities to build an initial tour scheduling. In a second
case study, it is analyzed, which TPV is qualified to generate an initial tour scheduling
and to solve the DMP1. For each scenario, one TPV is used to build the initial tour
scheduling. Afterward, the strategy is changed to RPV1 or RPV5. Table2 presents
the results. The test case indicates, that building an initial tour scheduling via TPV1
or TPV2 increases the overall results for many test scenarios. Furthermore, a switch
to RPV5 is preferable, which confirms the results of the first test case. To get a
better similarity of TPV3 to an approach for the SVRP, the number of iterations of
the advanced OP1 is set to 20,000. Despite this increased computing time, TPV3
is seldom able to improve the results of the initial tour scheduling against TPV1 or
TPV2. In this context, the assumption that strategies related to approaches of the
SVRP block the request exchange process, may be confirmed. The computational

Table 1 Results of the RPV-evaluation (average profit of ten runs in $)

RPV1 RPV2 RPV3 RPV4 RPV5 RPV4/RPV5

R1-2x400 23,588.91 23,802.43 21,833.02 24,288.59 24,024.13 24,380.06

R2-2x400 25,477.64 24,327.61 23,967.01 25,070.36 24,029.87 25,017.73

R3-2x400 34,450.53 34,337.16 34,706.58 35,279.20 35,300.60 34,775.81

RC-2x400 23,334.24 23,923.38 22,894.95 25,247.74 23,407.79 23,239.92

R1-4x250 10,427.84 8,167.35 7,676.21 10,348.10 9,702.55 10,547.34

R2-4x250 13,982.38 14,379.51 15,265.93 16,599.38 16,912.63 16,624.47

R3-4x250 20,355.05 21,059.65 20,428.07 24,457.71 22,569.13 24,059.09

RC-4x250 5,584.20 8,336.73 9,766.94 9,860.16 6,152.13 8,994.35

R1-6x200 65,987.04 66,722.61 68,574.71 76,967.42 68,278.78 77,587.27

R2-6x200 68,333.91 64,832.97 66,713.48 79,013.88 67,946.56 78,685.05

R3-6x200 57,325.79 56,669.78 57,729.00 65,208.92 61,839.19 65,647.80

RC-6x200 59,175.69 57,437.22 61,718.80 64,716.57 61,495.80 64,084.60

Average 34,001.94 33,666.37 34.272.89 38,088.17 35,138.26 37,803.62
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Table 2 Results of the TPV-evaluation (average profit of ten runs in $)

TPV1/RPV1 TPV1/RPV5 TPV2/RPV1 TPV2/RPV5 TPV3/RPV1 TPV3/RPV5

R1-2x400 24,434.01 24,905.10 24,252.39 24,867.42 24,197.20 24,401.31

R2-2x400 25,624.52 25,626.29 25,372.58 25,403.97 24,828.47 24,715.57

R3-2x400 35,168.44 35,681.30 35,204.24 35,711.52 35,175.10 35,701.66

RC-2x400 23,334.23 22,721.61 21,855.05 22,605.62 21,914.74 22,249.02

R1-4x250 10,103.43 12,301.97 11,794.60 13,273.51 12,438.35 14,083.01

R2-4x250 13,506.78 16,926.41 17,531.03 18,588.50 17,078.39 18,235.03

R3-4x250 19,472.33 21,854.53 21,621.25 22,929.51 21,491.22 22,766.36

RC-4x250 9,982.99 11,537.56 10,697.20 10,006.35 9,802.38 10,173.42

R1-6x200 69,978.81 75,025.08 72,744.08 78,247.19 72,209.90 76,838.80

R2-6x200 69,904.03 73,326.25 67,035.82 69,627.33 66,857.91 69,649.16

R3-6x200 61,516.83 65,748.06 62,539.61 65.089.83 62,676.53 63,872.33

RC-6x200 62,593.82 67,518.84 60,511.64 65,571.43 61,083.16 65,239.06

Average 35,468.35 37,764.42 35,929.96 37,660.18 35,812.78 37,327.06

studies determine, that the RPVs as well as the TPVs have the ability to solve the
DMP1. For the considered test case the best results are achieved by using RPV4,
although advances that switch the pre-selection strategy generate good results.

5 Conclusion

In this paper, the pre-selection strategies of the RPV and the TPV are presented,
that give an advice for preserving requests for the self-fulfillment. The RPVs and
TPVs may be possibilities to increase the autonomy for all coalition members and
result in a long-term, stable coalition process. Computational studies identify that
both types are qualified to solve the DMP1. In contrast, strategies which are related
to approaches for the SVRP are less effective since they block the following request
exchange process of our TSF. Future research should focus on powerful request
exchange mechanisms for solving the DMP2. Because of the identified potential, it
has to be analyzed if a modified RPV within a continuous re-optimization is able to
generate an auspicious tour scheduling for problems with a higher grade of dynamic.
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Optimal Operation of a CHP Plant
for the Energy Balancing Market

Katrin Schulz, Bastian Hechenrieder and Brigitte Werners

Abstract For energy companies with a combined heat and power (CHP) plant and
a heat storage device, the provision of balancing power provides additional revenue
potential.Balancingpower is needed to ensure a stable frequency if current generation
differs from demand. In Germany, the responsible transmission system operator
procures the needed type of reserve energy through an auction. To participate in the
balancing market for minute reserve, energy companies have to submit a bid for
a certain time frame of the following day that comprises a price and the amount
of electricity at which power generation can be increased or decreased considering
the expected load. Therefore, capacity allocation for the balancing market has to
be considered simultaneously with the uncertain next day’s unit commitment of the
CHP plant and the heat storage device. To support energy companies planning their
bids, an optimization model is developed to determine the optimal bidding amount
based on a forecasted market clearing price.

1 Introduction

As a climate protection measure, the European Union approved the Climate Change
andEnergyPackage in 2008 containing i.e. the reduction of greenhouse gas emissions
aiming at a sustainable energy system. Conventional power plants shall be replaced
by renewable energies—in Germany to an extent of 80% until 2050. Since power
generation of renewables is feature-dependent, a share of conventional, preferably
efficient power plants is still needed to ensure system stability. CHP plants generate
heat and electricity simultaneously and excel in a high fuel utilization rate as well
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as an increased efficiency by 10–40% compared to separate generation. Thus, these
plants are promoted by the German government in order to increase the share of CHP
in the generation of electricity to 25%by2020.Given the current and stagnating share
of merely 16%, the implemented government support is apparently not sufficient. In
the following, it is analyzed whether participating in the energy balancingmarket can
facilitate further revenue potential for gas-fired CHP plants which allow a flexible
adaption of operation.

2 Participation of a CHP Plant in the Energy
Balancing Market

Since electricity can only be stored to a limited extent, a stable balance between
demand and supply has to be ensured what is typically done by the transmission
system operator (TSO). In any case of deviation from the setpoint frequency of
50Hz in the European integrated network, balancing energy is needed to compensate
for imbalances. As balancing deviations can, for instance, occur due to fluctuating
energy generation from renewables, deviations from demand predictions or a forced
power plant outage, the sufficient provision of so called electricity reserve power is
crucial to ensure system stability. Since Germany is part of the European Network
of Transmission System Operators for Electricity (ENTSO-E), it is distinguished
between primary (PCP) and secondary control power (SCP) as well asminute reserve
power (MRP). The latter two are separated into positive and negative reserve power.
If demand exceeds supply, positive reserve power is needed and if supply surpasses
demand, negative reserve power is used [2]. The three qualities of reserve power differ
in their delivery times which are 30s for PCP, 5min for SCP and 15min for MRP.
Thus, a power plant operator has to ensure that the reserved capacity is provided
in time. In the following, a CHP plant with a start-up time of less than 15min is
considered enabling the provision of reserve capacity as MRP even if the plant is
shut down. To prevent a must-run condition, the CHP plant takes part only in the
energy balancing market for minute reserve.

On the German energy balancing market, the four German TSOs are intercon-
nected and coordinate their operations allowing power plants to offer MRP in all
four control areas with decreased prices compared to the previous market design [2].
On a common web-based tendering platform, generation companies compete for the
published demand. This single-stage demand auction for minute reserve is carried
out daily and day-ahead as multi-unit auction, i.e. it is differentiated between posi-
tive and negative minute reserve and different time slots. As a multi-part auction, the
two-part tariff consists of a capacity price for the stand-by provision and an energy
price for the actual call. The last selected bid for the capacity price establishes the
market clearing price and the dispatched generation companies receive their bidding
price following a pay-as-bid pricing mechanism. For the actual call of reserve power,
energy prices are sorted in a merit order [5].
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In principle, a bid for positive as well as for negative minute reserve power com-
prises a time frame of 4 h. Throughout this period, the generation company has to
ensure that the offered amount of reserve power is available. Thus, the unit commit-
ment of the CHP plant, i.e. the economic dispatch, has to be considered simultane-
ously with planning the submission of a tender.

3 Optimization Model for the Operation
of a CHP Plant

To support generation companies in planning their bids for the energy balancing
market, different modeling methods have been developed. Optimization models for
a single generation company focus on one specific market participant while making
simplifying assumptions about the other market participants and influencing factors.
In this respect, the generation company is assumed to be a price-taker. In contrast to
a price-maker who influences the market clearing price with his bidding strategy, the
market clearing price can be regarded as an exogenous variable for a price-taker [4].
Thus, the generation company treats the market clearing price as a random variable
which has to be forecasted like in [1] or [8]. Based on the forecast, a bidding strategy is
introduced in [1] considering the optimal self-scheduled generation. In the following,
the optimal bidding of reserve capacity is determined assuming the bidding price to
be equal to the forecasted clearing price.

Since the bidding process is divided into time slices of 4 h, bidding for a certain
block b comprises a bidding price for positive BPPb or negative reserve power BPNb

accompanied by an offered capacity for positive opb or negative reserve capacity onb,
respectively. Whereas the stand-by provision of reserve capacity is remunerated with
the company’s bidden price B P Nb or B P Pb, respectively, the energy price is only
paid in case of delivery and reflects those costs that arise due to the adapted operation
of the CHP plant. The generation company has to decide 1 day ahead which capacity
to offer as positive opb or negative reserve capacity onb, respectively, in each block
b focussing on negative reserve power in the following. Since priority is given to
the regular power and heat demand, the available capacity is restricted. However, the
demand of the following day as well as the power price on the spot market are subject
to uncertainty. To exploit the full revenue potential of the energy balancing market,
the maximum reserve capacity that can be offered is determined with regard to the
unit commitment of the CHP plant considering different scenarios for the supply
situation, trading conditions on the spot market and the heat storage device. It has to
be ensured that the offered negative reserve capacity onb for a certain block b can
be provided in all scenarios and time periods t within the corresponding block Tb.
For each period t and scenario s the available capacity for negative reserve power is
determined as difference r−

st between the actual and the minimum power generation
at this operation point. The offered negative reserve capacity onb is restricted by the
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Fig. 1 Shows all possible combinations of heat Q and power P that can be generated by a CHP
extraction condensing turbine. The generation costs vary with the chosen operation point. Hence,
every extreme point Ei (with I as a set of extreme points) is complemented with its corresponding
costs Ci , power generation Pi and heat generation Qi [3]. q∗ gives the minimal heat generation
to satisfy the demand. Point • gives the current operation of the CHP plant, r+ and r− mark the
available capacity for adjustments in the power generation for positive respectively negative reserve
power

minimum of the available negative reserve capacity of all time periods t within the
corresponding block Tb (1).

onb ≤ r−
st ∀b ∈ B and t ∈ Tb,∀s ∈ S (1)

Based on the optimization model developed in [6], a flexible CHP plant with an
extraction condensing turbine and a heat storage device is considered. Taking into
account the characteristic diagram of the CHP plant, the available reserve capacity is
determined considering one operation point (see Fig. 1). If this indicates a certain heat
generation q∗ to the right of E3, r− is determined using the slope of the line between
E3 and E2 given as m32 := (P2 − P3)/(Q2 − Q3). Since the available capacity for
reserve power depends on the necessary heat generation, it is calculated whether an
adjustment of the operation point to the right of E3 is possible if the whole storage
content is used (given as the storage level of last period �s(t−1) minus a proportional
heat loss V ). The binary variable nst = 1 indicates a heat generation q∗ located to the
right of E3 as Eqs. (3) and (4) compare the heat demandHDst in scenario s and period
t with the storage level and the heat generation Q3 of E3. The variable vst specifies
the necessary heat generation in period t and scenario s if the scheduled operation
point is located right to E3. The available capacity for negative reserve power r−

st
is determined in (6) using the power generation pst of the current operation point
and the minimum power generation P3 at the extreme point E3 if the CHP plant is
operated (yst = 1) subtracting the heat generation to the right of E3 (vst − Q3 · nst )
multiplied with the slope m32.

zs =
∑

t∈T

(
∑

i∈I

Ci · xist + SUC · ust + SPst · (bsmst − ssmst )

)

−
∑

b∈B

(
BPPb · opb − BPNb · onb

) ∀s ∈ S (2)
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HDst − (1 − V ) · �s(t−1) − Q3 − nst · M ≤ 0 ∀s ∈ S, t ∈ T
(3)

HDst − (1 − V ) · �s(t−1) − Q3 + (1 − nst ) · M ≥ 0 ∀s ∈ S, t ∈ T
(4)

HDst − (1 − V ) · �s(t−1) − (1 − nst ) · M ≤ vst ∀s ∈ S, t ∈ T
(5)

r−
st = pst − P3 · yst − m32 · (vst − Q3 · nst ) ∀s ∈ S, t ∈ T

(6)

In Eq. (2), the net acquisition costs for each scenario zs are defined as generation costs
for heat and power plus the difference between purchase costs and revenues from
power trading minus revenues from the energy balancing market. For each period t
and scenario s it has to be decided how to operate the CHP plant xist and whether a
start-up (ust = 1) is necessary. The power demand can be met by own generation or
purchase bsmst and excess power ssmst can be sold at a charge of S Pst on the spot
market. The trading results, the hourly generation costs

∑
i∈I Ci · xist and the start-

up costs SUC for each start-up are considered. Moreover, the aspired revenues for
reserve capacity are deducted from the bidding prices (BPPb and BPNb) multiplied
by the offered reserve capacity (opb and onb). With regard to the risk attitude of
the decision maker, the objective function is formed as expected value of the net
acquisition costs for each scenario in the first case and contains a minimax regret
approach in the second case. While the optimization model seeks to determine the
maximum reserve capacity, first priority is given to the fulfilment of the regular heat
and power demand. However, due to unit flexibility and especially use of the heat
storage device, generation can be shifted between different periods according to the
revenue potential on the reserve market still taking into account trade options on the
spot market.

4 Illustrative Results

The results for a CHP plant with heat storage according to [7] are presented for
negative reserve power. Exemplarily, three different scenarios for the power and heat
demand and spot prices are assumed and the scenario-independent optimal bidding
amount of negative reserve power is determined using the expected-value (EV) and
the minimax regret (MR) approach. Whereas the optimal bidding amounts for the
blocks 2 to 6 (hours 5 to 24) come close together in both approaches, negative reserve
power is only offered for block 1 (hours 1 to 4) in theMR approach as shown in Fig. 2.
Thismeans that the bidding strategy ismore aligned to scenario 1 in the EV approach.
A 2-h shut-down of the CHP plant in this scenario is more beneficial than operating
the CHP plant for the participation in the energy balancing market. The scenario-
individual costs for scenario 1 are about 6% lower in the EV approach than in theMR
approach whereas the latter leads to lower costs in scenario 2 and 3 compared to the
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Fig. 2 Negative reserve
power in the EV approach
(—) and the MR approach
(—) considering the power
generation in scenario 1 (- - -)
and heat storage level (�) for
the EV approach
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EV approach. Since the three scenarios are assumed to be equiprobable, the possible
savings in scenario 1 without bidding for the first block on the reserve market exceed
the savings in scenario 2 and 3with bidding for this block in the EV approach. Hence,
bidding negative reserve power prevents an optimal operation of the CHP plant in a
certain scenario according to the scenario-specific heat and power demand and spot
market prices. Depending on the risk attitude of the decision maker and the trading
conditions, a single scenario-optimal operation mode may dominate. Overall, the
participation in the energy balancing market leads to additional revenues regarding
average costs for the three scenarios independent of the risk attitude.

5 Conclusion

For the participation in the energy balancing market available capacities for positive
and negative reserve power are maximized simultaneously considering unit com-
mitment. The herein examined market for minute reserve offers additional revenue
potential for a CHP plant. However, such an adapted operation for the balancingmar-
ket considering different scenarios can prevent the optimal operation of theCHPplant
in a certain scenario. According to the risk attitude of the decisionmaker, an expected
value approach and a minimax-regret approach are compared. The two approaches
lead to different results for the optimization of the available reserve capacity and
the operation of the CHP plant. Assuming a successful auction, the operation of the
CHP plant is optimized again for the case of delivery. Resulting costs are reflected
by the energy price. In order to examine the effect of a specific bidding strategy for
different scenarios, herein the bidding price equals the market clearing price. Since
the revenue potential depends on the realizable bidding price, further research will
focus on the optimal price bidding strategy taking into account the corresponding
optimal bidding amount.



Optimal Operation of a CHP Plant for the Energy Balancing Market 537

References

1. Conejo, A.J., Nogales, F.J., Arroyo, J.M.: Price-taker bidding strategy under price uncertainty.
IEEE Trans. Power Syst. 17(4), 1081–1088 (2002)

2. Haucap, J., Heimeshoff, U., Jovanovic, D.: Competition in Germany’s minute reserve power
market: an econometric analysis. Energy J. 35(2), 137–156 (2014)

3. Lahdelma, R., Hakonen, H.: An efficient linear programming algorithm for combined heat and
power production. Eur. J. Oper. Res. 148(1), 141–151 (2003)

4. Li, G., Shi, J., Qu, X.: Modeling methods for GenCo bidding strategy optimization in the
liberalized electricity spot market—a state-of-the-art review. Energy 36(8), 4686–4700 (2011)

5. Müller,G.,Rammerstorfer,M.:A theoretical analysis of procurement auctions for tertiary control
in Germany. Energy Policy 36(7), 2620–2627 (2008)

6. Schulz, K., Schacht, M., Werners, B.: Influence of fluctuating electricity prices due to renew-
able energies on heat storage investments. In: Huisman, D., et al. (eds.) Operations Research
Proceedings 2013. Springer, New York (2014)

7. Schacht, M., Schulz, K.: Kraft-Wärme-Kopplung in kommunalen Energieversorgung-
sunternehmen - Volatile Einspeisung erneuerbarer Energien als Herausforderung. In:
Armborst, K., et al. (eds.) Management Science - Festschrift zum 60. Geburtstag von Brigitte
Werners, Dr. Kovac, 337–363. Hamburg (2013)

8. Valenzuela, J.,Mazumdar,M.:Commitment of electric power generators under stochasticmarket
prices. Oper. Res. 51(6), 880–893 (2003)



Gas Network Extension Planning
for Multiple Demand Scenarios

Jonas Schweiger

Abstract Today’s gas markets demand more flexibility from the network operators
which in turn have to invest into their network infrastructure. As these investments
are very cost-intensive and long-living, network extensions should not only focus
on one bottleneck scenario, but should increase the flexibility to fulfill different
demand scenarios. We formulate a model for the network extension problem for
multiple demand scenarios and propose a scenario decomposition. We solve MINLP
single-scenario sub-problems and obtain valid bounds even without solving them to
optimality. Heuristics prove capable of improving the initial solutions substantially.
Results of computational experiments are presented.

1 Introduction

Recent changes in the regulation of the German gas market are creating new chal-
lenges for gas network operators. Especially the unbundling of gas transport and trad-
ing reduces the influence of network operators on transportation requests. Greater
flexibility in the network is therefore demanded. Traditional, deterministic planning
approaches focus on one bottleneck scenario. Stochastic or robust approaches, in
contrast, can consider a set of scenarios and therefore lead to more flexible network
extensions.

Gas transmission networks are complex structures that consist of passive pipes and
active, controllable elements such as valves and compressors. For planning purposes,
the relationship of flow through the element and the resulting pressure difference
is appropriately modeled by nonlinear functions and the description of the active
elements involves discrete decisions (e.g., whether a valve is open or closed) (see
[4, 5] for the details of our model and algorithmic approach to solve deterministic
models). The resultingmodel is thus anMixed-Integer Nonlinear Program (MINLP).
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In this presentation, we focus on additional pipes as extension candidates. A new
pipe allows flow but also couples the pressures at the end nodes, possibly rendering
previously feasible transport requests (also known as nominations) infeasible. An
additional valve retains all possibilities of the original network. Opening the valve,
corresponds to building the extension pipe and is therefore penalized the cost for the
extension. Closing the valve forbids flow over the pipe which effectively removes
the pipe from the system. Details on the approach for topology optimization for a
single-scenario can be found in [1].

To approach the optimization over a finite set of scenarios (i.e., transport requests),
we propose a scenario decomposition. Section2 describes the model. The decompo-
sition method is presented in Sect. 3 together with some details about primal and dual
bounds and results on the ability to reuse solutions from previous optimization runs
over the same scenario. Section4 presents the results of computational experiments.
Section5 provides an outlook on planned future work on the topic.

2 Planning for Multiple Demand Scenarios

Assume a gas network, a set of scenarios ω ∈ Ω , i.e., nominations, and a set of
extensions E (each extension consisting of a pipe and a valve) is given. We denote
the set of characteristic vectors of feasible extension sets for scenario ω with

Fω = {
χE ∈ {0, 1}E ∣∣ Extensions E ⊆ E makeω feasible

}

In our situation, a closed form description ofFω is not at hand. However, we assume
monotonicity in the sense that adding extensions to an element of the set is still
feasible:

x1 ∈ Fω, x2 ∈ {0, 1}E , x2 ≥ x1 =⇒ x2 ∈ Fω.

Especially in the context of gas network planning this property cannot be taken for
granted but adding valves to all extensions ensures monotonicity in our application.

For a specific scenario ω the extension planning problem can now be stated as

min cT xω (SSTP)

s.t. xω ∈ Fω

This formulation hides the difficulties in describing and optimizing over the setFω.
Our approach uses problem (SSTP) as sub-problem and assumes a black-box solver
to be available (e.g., from [1]).

In the multi-scenario extension planning problem we seek for a set of extensions
of minimal cost such that the resulting network allows a feasible operation in all
scenarios. We stress that in the different scenarios not all extensions that have been
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built have to be actually used; in fact, using them might not even be feasible. The
multi-scenario problem can then be stated as:

min cT y (MSTP_TS_Node)

s.t. xω ∈ Fω for all ω ∈ Ω (1)

xω ≤ y for all ω ∈ Ω (2)

y ∈ {0, 1}E (3)

This is a two-stage stochastic program. y are the first stage variables which indicate
which extensions are built. Finding a feasible operational mode for the scenarios
given the extensions selected by y is the second stage problem.

3 Scenario Decomposition

The algorithmic idea is scenario decomposition. First, we solve the scenario sub-
problems (SSTP) independently and in parallel. If one scenario sub-problem is infea-
sible, the multi-scenario problem is infeasible.

Branching on the y variables is used to coordinate the scenarios. To this end, we
identify extensions that are selected in some but not all scenarios. Two sub-problems,
i.e., nodes in the Branch&Bround tree, are created: one with the condition ye = 0 and
one with the condition ye = 1. In the two nodes, sub-problems have to be modified
accordingly. For ye = 0, variable xω

e is fixed to zero. For ye = 1, extension e is built
and using it does not incur additional cost.

Each node of the Branch&Bround tree is identified by the sets E0 and E1 of exten-
sions that are fixed to 0 and 1, respectively. The modified single-scenario problem
for scenario ω then reads:

min
∑

e/∈E1

cexω
e +

∑

e∈E1

ce (SingleScenω)

s.t. xω ∈ Fω

xω
e = 0 for all e ∈ E0

The following lemma states that adding more elements to E0 and E1 might only
deteriorate the objective function value.

Lemma 1 Let E1
0 ⊆ E2

0 and E1
1 ⊆ E2

1 and c∗
i the optimal value of (SingleScenω)

with respect to (Ei
0, Ei

1). Then c∗
1 ≤ c∗

2 .

Dual bounds for the single-scenario problems can be instantly translated into dual
bounds for the multi-scenario problem.
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Lemma 2 Let the objective function coefficients be non-negative, i.e., c ≥ 0. Then
any dual bound for problem (SingleScenω) for any scenario is also a dual bound
for problem (MSTP_TS_Node).

We propose three ways to get or enhance feasible solutions: First, by construc-
tion the union of all extensions used in the different scenarios constitutes a pri-
mal solution for the multi-scenario problem. Therefore, we construct a solution
to (MSTP_TS_Node) in every node by setting y = maxω∈Ω xω

e where xω
e is taken as

the best solution for scenario ω.
Second, we observed that checking if a certain subset of extensions is feasible

is typically very fast. This observation is used by a 1-opt procedure that takes the
best current solution to (MSTP_TS_Node), removes one extension, and checks all
scenarios for feasibility.

Third, in stochastic programming optimal single-scenario solutions often lack
flexibility and do not occur in optimal solutions to the stochastic program (e.g., [7]).
To benefit from all solutions the solver provides, we access its solution pool and
store all sub-optimal solutions for the scenarios. This has two benefits. The solver
might be able to use them as start solutions in the next node. On the other hand, we
construct the “best known” solution so far by solving an auxiliary MIP.

3.1 Reusing Solutions

TheBranch&Bround procedure solves slight modifications of the same problem over
and over again. In some important cases, not all scenarios need to be solved again
since we already know the optimal solution. As an example, take the extreme case
where a scenario is found to be feasible without extensions. Clearly, the procedure
should never touch this scenario again.

In order to decide whether a solution from a previous node can be reused, we need
to take the fixations under which the solution was computed and the current fixations
into account. In addition to the current fixations E0 and E1, we define the sets E S

0
and E S

1 as the extensions that were fixed to the respective values when solution S
was computed. We assume E S

i ⊆ Ei , i.e., currently more extensions are fixed than
when solution S was computed. Abusing notation, we identify the solution with the
set of extensions it builds.

We start with the simple observation, that if all the extensions in a solution are
already built (i.e., ye is fixed to 1), then the solution is optimal for the restricted
problem:

Lemma 3 If S ∈ Fω and S ⊆ E1, then S an optimal solution for (SingleScenω)

for fixings E0 and E1.

If a solution is optimal for (E S
0 , E S

1 ) and all extensions in E1 are part of the
solution, then the solution is still optimal.
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Lemma 4 Let S ∈ Fω be an optimal solution to (SingleScenω) given the fixa-
tions E S

0 and E S
1 . If E1 ⊆ S and S ∩ E0 = ∅, then S is an optimal solution to

(SingleScenω) for fixings E0 and E1.

This is the situation, for example, after branching in the root node. In the 1-branch, a
scenario which uses this extension does not need to be recomputed. In the 0-branch,
solutions that did not use the extension remain optimal.

The situation becomes tricky if a solution does not use extensions that are already
built but still uses unfixed extensions. The following lemma generalizes Lemma 4.

Lemma 5 Let S ∈ Fω be an optimal solution given the fixations E S
0 and E S

1 . If
E1 \ E S

1 ⊆ S and S ∩ E0 = ∅, then S is an optimal solution to (SingleScenω) for
fixings E0 and E1.

4 Computational Results

We tested our approach on realistic instances from the gaslib-582 testset of the
publicly available GasLib [2, 5]. The GasLib contains network data and flow sce-
narios that are distorted versions of the real data from the German gas network
operator Open Grid Europe GmbH. The approach is implemented in the framework
Lamatto++ [3]. Methods to solve the single-scenario problems and to generate
suitable extension candidates were developed in the ForNe project. We used a time
limit of 600s for the sub-problems which is reduced to 300s in the 1-opt heuristic.
The total timelimit for set to 10h. The experiments were performed on Linux com-
puters with two 64 bit Intel Xeon X5672 CPUs at 3.20GHz having 4 cores each such
that up to 8 threads were used to solve the single-scenario problems in parallel.

Instances are composed from a pool of 126 infeasible instances that in single-
scenario optimization find feasible solutions in the first 10min. Table1 summarizes
the results. All but 3 instance are solved to proven optimality. The 3 instances that
run into timeout each solve 3 nodes and then arrive to a point, where all extensions
are fixed, but the single-scenario subproblem can neither find a feasible solution nor
prove infeasibility.

Table 1 Summary of computational results

Scenarios Instances Status Nodes Time (s)

Optimal Timelimit Avg Max Avg Max

4 186 184 2 1.1 3 475 36017

8 90 89 1 1.3 3 660 36001

16 42 42 0 2.0 15 676 4598

32 18 18 0 3.9 14 1890 6080



544 J. Schweiger

5 Outlook

We presented a method for capacity planning with multiple demand scenarios. The
computational experiments show the potential of our approach. Even though devel-
oped in the context of gas network planning, the few assumptions on the problem
structure suggest the generalization to other capacity planning problems.

In the future, we also want to consider active elements (compressors, which can
increase the pressure, and control valves, which can reduce it) as extension candi-
dates. They possess 3 states: active, bypass, and closed. In case the element is not
used in active mode, the abilities needed can be covered by a much cheaper valve.
Then the binary “build”-“not build” decision is replaced by the three possibilities
“build as active element”, “build as valve”, and “do not build”.

Last, we want to mention that Singh et al. [6] present an approach for capacity
planning under uncertainty based on Dantzig-Wolfe decomposition. A comparison
of our approach to theirs is future work.

Acknowledgments The author is grateful to Open Grid Europe GmbH (OGE, Essen/Germany)
for supporting this work. Furthermore, the author wants to thank all collaborators in the ForNe
project and all developers of Lamatto++.

References

1. Fügenschuh, A., Hiller, B., Humpola, J., Koch, T., Lehman, T., Schwarz, R., Schweiger, J.,
Szabó, J.: Gas network topology optimization for upcoming market requirements. In: IEEE
Proceedings of the 8th International Conference on the European Energy Market (EEM), pp.
346–351 (2011)

2. Gaslib: A library of gas network instances (2013). http://gaslib.zib.de
3. Geißler, B., Martin, A., Morsi, A.: Lamatto++ (2014). http://www.mso.math.fau.de/edom/

projects/lamatto.html
4. Koch, T., Hiller, B., Pfetsch,M.E., Schewe, L. (eds.): From Simulation to Optimization: Evaluat-

ingGasNetworkCapacities.MOS-SIAMSeries onOptimization. SIAM—Society for Industrial
and Applied Mathematics (2015)

5. Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B.,
Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt,
M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert,
B.M.: Validation of nominations in gas network optimization: models, methods, and solutions.
Optim. Methods Softw. (2014)

6. Singh, K.J., Philpott, A.B., Wood, R.K.: Dantzig-wolfe decomposition for solving multistage
stochastic capacity-planning problems. Oper. Res. 57(5), 1271–1286 (2009)

7. Wallace, S.W.: Stochastic programming and the option of doing it differently. Ann. Oper. Res.
177(1), 38 (2010)

http://gaslib.zib.de
http://www.mso.math.fau.de/edom/projects/lamatto.html
http://www.mso.math.fau.de/edom/projects/lamatto.html


Impacts of Electricity Consumers’ Unit
Commitment on Low Voltage Networks

Johannes Schäuble, Patrick Jochem and Wolf Fichtner

Abstract Todays electricity consumer tend to become small businesses as they
invest in their own decentralized electricity generation and stationary electricity
storage as well as in information technology (IT) to connect and organize these new
devices. Furthermore, the installed IT allows them at least technically to establish
local markets. The variety of consumers and their characteristics implies numerous
ways of how they optimize their individual unit commitment. This paper aims to ana-
lyze the impact of the individual consumers decisions on a future electricity demand
and feed-in on low voltage network level. Therefore, in a first step the different unit
commitment problems of the different small businesses have been modeled using
linear programming (LP). In a second step these consumers are modeled as learning
agents of a multi-agent system (MAS). The MAS comprises a local electricity mar-
ket in which participants negotiate supply relationships. Finally, using scenarios with
different input parameters the resulting impact is studied in detail. Amongst others,
the simulations’ results show major changes in electricity demand and feed-in for
scenarios with high market penetration of storages.

1 Introduction

The design of a likewise sustainable, climate-friendly, safe, and efficient energy sup-
ply presents both current and future society with great challenges. In order to meet
this requirement, the energy sector, driven by political, economical, and social deci-
sions, is changing continuously. This evolution thereby affects all areas of energy
supply, namely provision, transport, distribution and demand. Induced by expan-
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sion of decentralized electricity generation by renewable energy sources (RES), use
of storage, new load characteristics such as electric vehicles [1], and market lib-
eralization [2], as well as increased involvement of society on climate protection
and market participation [3], the growing number and heterogeneity of actors and
elements particularly increase the complexity of the electricity sector.

Apart from the implied problems, these developments offer great potential within
a new design of a future power supply: More and more consumers will generate
electricity (e.g. by using photovoltaic (PV) systems), and will apply storages [1, 4],
therefore becoming in most hours less dependent on centralized conventional power
generation. More frequently those electricity producing consumers will be situated
in electricity networks which changed from a top-down to a bottom-up cell structure
[3]. Moreover they might be organized in local markets [5] with simple access for
individual actors using new IT appliances. These local systems offer an incentive to
locally balance power supply and consumption, and hence reduce the degree of grid
capacity utilization.

To estimate the potential of such a new design of a future power supply system,
its elements and their impact on the system must be analyzed in detail. This paper
therefore aims to examine individual households and their cost optimized scheduling
of power consumption, generation, and storage, as well as the implications for the
local system. Therefore, in a first step the different unit commitment problems of the
above described households are described and modeled using LP. In a second step
they are modeled as learning agents of a MAS although retaining their individual
LP. Following a local electricity market in which participants negotiate supply rela-
tionships is integrated into the MAS. Finally, using different scenarios with several
input parameters the resulting impacts are studied in detail.

2 Scheduling of Consumers’ Generation, Demand,
and Storage

With an increasing complexity of the households and their options of configuration,
the demand for ways to optimize the scheduling of the system elements of the house-
hold rises. A connection to the electricity network (EN) and an electricity demand
(ED) is thereby assumed for each household and each point in time t. The ED in
this paper includes no load shifting potential (e.g. via delayed charging of electric
vehicles). This paper focuses on three household configurations. Two of the config-
urations include an electric generation (EG), here a generation using PV is assumed
exemplary. One of these configurations includes an electrical storage (ES). Figure 1
displays nodes and flows from source to sink (FSource,Sink,t) in the last-mentioned
household configurations. Whereat all nodes can function as sink. Moreover, nodes
EN, EG, and ES equally can act as a source. Depending on their configuration the
types of households are referred to as ND (Nodes EN and ED), NDG (Nodes EN,
ED and EG), and NDGS (Nodes EN, ED, EG and ES).
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Fig. 1 Nodes and flows of the household configurations NDGS (left) and NDG (right)

Because households with the configuration NDG have to decide about the amount
and the ratio of the feed-in (FEG,EN,t) and own consumption (FEG,ED,t) for the points
in time t (0 < t ≤ T ) with a positive activity level of EG (XEG,t > 0) and an positive
absolute value ED (|Dt| > 0) these households are modeled via LP. For the config-
uration NDGS the flows into the storage (FEG,ES,t) from a positive own generation
(XEG > 0) have to be introduced into the above mentioned ratio. Moreover, decisions
have to be taken on the level and the ratio of the feed-in (FES,EN,t) and coverage of ED
(FES,ED,t) respectively by the ES in points of times t with a positive state of charge
of the ES (XEG,t > 0). For the points in time when maximum charge of the ES level
is not reached (XES,t ≤ L̄ES,t) additionally the decision on the amount of electricity
to store from the EN (FEN,ES,t) has to be taken. Table 1 lists relevant parameters and
indices for the mathematical formulation of the model.

Objective function of the optimization problem of the household configuration
NDG is the minimization of the system costs CNDG

min CNDG =
∑

t∈T

(
FEN,ED,t · pt − FEG,EN,t · rfi,t − FEG,ED,t · roc,t

)
(1)

Subject to (selection of constraints)

Dt = FEG,ED,t + FEN,ED,t,∀t ∈ T (2)

X̄EG · αt · jt = FEG,ED,t + FEG,EN,t,∀t ∈ T (3)

Table 1 Description of
selected model variables and
parameters

XES,t State of charge of the ES [kWh]

pt Electricity price in t [EUR/kWh]

rfi,t Price for feed-in electricity in t [EUR/kWh]

roc,t Price for the own consumption in t [EUR/kWh]

Dt ED of the household in t [kWh]

X̄EG Maximal power of EG [kWp]

αt Capacity factor of the EG in t, αt ∈ [0, 1]
L̄ES,t Storage capacity of the ES [kWh]

X̄ES Maximal power of ES [kWp]

jt Length of the time step t [h]
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where (2) ensures that the demand Dt is met for each t and (3) takes into account the
electricity production of the PV system according to the capacity factor and installed
capacity. For the optimization problem of the household configuration NDGS the
objective function is the minimization of the system costs CNDGS

min CNDGS = CNDG +
∑

t∈T

(
FEN,ES,t · pt

− FES,ED,t

FES,ED,t + FES,EN,t
· FEG,ES,t · rfi,t (4)

− FES,EN,t

FES,ED,t + FES,EN,t
· FEG,ES,t · roc,t

)

Subject to (in addition to constraints (2) and (3))

L̄ES,t ≥ XES,t−1 + FEG,ES,t + FEN,ES,t,∀t ∈ T (5)

X̄ES,t · jt ≥ FES,ED,t + FES,EN,t,∀t ∈ T (6)

FES,ED,t + FES,EN,t + XES,t = FEG,ES,t + FEN,ES,t + XES,t−1,∀t ∈ T (7)

where (5) takes into account the maximal amount of energy that can be stored in
the ES and (6) the maximal power of the ES. Equation (7) ensures balanced flows to
and from the ES. Apart from the costs all variables are subject to the non-negativity
constraint.

3 A Local Electricity System Modeled as Multi-agent
System

To investigate the effects of the households actions on the local electricity system,
the respective households are placed in a MAS as agents. The MAS is formed by
the structuring low-voltage network, the agents (households, distribution system
operator (DSO), and power supply company), and the environment (geographical
and political system and market design). The modeled MAS is then implemented to
run simulations with different input parameters.

The low voltage network is modeled in order to map the load flow between con-
sumers and higher-level networks (medium voltage). In the model, the network can
thus restrict the load flow and network bottlenecks and capacity requirements can
be identified. The low voltage network is composed of the individual line sections
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(modeled as agents), the connection points of the generating and consuming agents,
and their respective connections.

The environment describes the context in which the agents act. With the necessary
IT installed agents can (at least technically) take action in a local market. Such a
market is introduced into the model and modeled as regional spotmarket in which
agents can negotiate their offers for sale or buy. The parameters, design and processes
of this market are defined within this context. The environment also determines the
geographical context and thereby has an influences on generation and demand of
electricity (e.g. insolation and load characteristics).

The agents of the system represent different actors with different objectives (see
Sect. 2). The characteristic of the agent population is determined within their context
before (t = 0) each simulation run. Because no investment decisions are modelled
the population of the agents does not change during simulation runtime. However, at
each simulation step agents will readjust their decisions based on the newly gained
information (e.g. update projections for electricity prices using precedent local spot
market prices). Several agents have particular tasks such as the DSO which has to
perform load flow calculations and the power supply company which operates as well
as dispatches power plants and therefore provides the necessary operating reserve.

The implementation of the described MAS has been performed in Repast Sim-
phony1 which allows to include the optimization calculations of the respective agents.
Anytime a recalibration of the unit commitment problems is necessary during a sim-
ulation run a connection to either GAMS2 or Matlab®3 is established to recalculate
the agents individual LP.

4 Input Parameters and Results

In this analysis the simulation runs are limited to one typical day (for reasons of
simplicity) and do start with several agent population scenarios (different load char-
acteristics and degree of technology diffusion) as initial points which are based on
the energy system of the French island of Guadeloupe. Figure 2 shows the average
costs of the power supply company for a typical weekday in October in different
scenarios whereat A(08) serves as baseline as it denotes the situation at this day
in 2008 without any local market transactions and ES diffusion. A(20,1) denotes a
scenario with a low (5 %) and A(20,2) with a high (45 %) diffusion of ES in the house-
holds (storage capacity and maximal power depend on household size). B(20,1) and
B(20,2) show respective scenarios though with a higher number of household agents

1Open source, Java-based simulation system, see http://repast.sourceforge.net/ [20.01.2015].
2Modeling system for mathematical optimization, see http://www.gams.com/ [20.01.2015].
3Numerical computation system, see http://www.mathworks.com/products/matlab/ [20.01.2015].

http://repast.sourceforge.net/
http://www.gams.com/
http://www.mathworks.com/products/matlab/
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Fig. 2 Average costs of the system’s power supply company during a typical weekday day for
different scenarios

(which reflects the situation for a corresponding day in 2020) and thus a relatively
higher electricity demand and peak load. The baseline A(08) shows price peaks in the
morning and evening which are typical for the island. Those peaks are flattened and
lowered for A(20,1) as well as A(20,2). For B(20,1) and B(20,2) price fluctuations
are higher which is mainly due to the estimated power plant park in 2020 which
comprises expensive peak power plants to handle higher demand. The diagramed
prices in Fig. 2 demonstrate that, depending on the chosen environment and agent
population, local electricity networks with high market penetration of ES and a local
electricity market can lead to lower average costs for the power supply companies
due to the balanced power consumption and generation. In the case of the island of
Guadeloupe this additionally could help to avoid capacity bottlenecks in both grid
and production which will most probably occur more frequently as power plant and
grid expansion are not proportional to the increase in demand.

5 Conclusion

The applied bottom-up modeling process from individual customer to a local power
network allows to integrate a multitude of details, but also reduces complexity where
necessary. This made it possible to focus on the modeling of consumer with own
PV electricity generation and storage and their actions on a local market. The com-
posed multi agent system optimizes an overall cost minimizing objective for the
local grid cell although agents do individually optimize their systems. Furthermore,
simulations’ results show major changes in electricity demand and feed-in for sce-
narios with high market penetration of storages. Nevertheless, simulation runs with
present or pessimistic technology diffusion scenarios (such as A(08) and A(20,1) in
Fig. 2) still show a high dependence of consumers and consequently grid cells on a
connection to a greater power network to balance consumption and production.
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Congestion Games with Multi-Dimensional
Demands

Andreas Schütz

Abstract Weighted congestion games are an important and extensively studied class
of strategic games, in which the players compete for subsets of shared resources
in order to minimize their private costs. In my Master’s thesis (Congestion games
with multi-dimensional demands. Master’s thesis, Institut für Mathematik, Technis-
che Universität Berlin, 2013, [17]), we introduced congestion games with multi-
dimensional demands as a generalization of weighted congestion games. For a
constant k ∈ N, in a congestion game with k-dimensional demands, each player is
associatedwith a k-dimensional demand vector, and resource costs are k-dimensional
functions c : Rk

≥0 → R of the aggregated demand vectors of the players using the
resource. Such a cost structure is natural when the cost of a resource depends not
only on one, but on several properties of the players’ demands, e.g., total weight, total
volume, and total number of items. We obtained a complete characterization of the
existence of pure Nash equilibria in terms of the resource cost functions for all k ∈ N.
Specifically, we identified all sets of k-dimensional cost functions that guarantee the
existence of a pure Nash equilibrium for every congestion game with k-dimensional
demands. In this note we review the main results contained in the thesis.

1 Introduction

Game theory providesmathematical tools tomodel and analyze real-world situations,
in which multiple participants interact and mutually affect one another by their deci-
sions. Road networks and communication systems are two examples of a wide range
of applications that can be viewed as strategic games with finitely many players. We
assume that these players act selfishly and make their decisions to maximize their
private wealth. Thus, a fundamental objective in game theory is to study the exis-
tence of equilibrium states in such decentralized systems. The most famous notion
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of an equilibrium state is the pure Nash equilibrium as introduced by Nash [13]. In a
pure Nash equilibrium, no player has an incentive to switch its chosen pure strategy
because unilateral deviations would not benefit any of the players.

Rosenthal [15] addressed the existence problem of pureNash equilibria in conges-
tion games. In this well-known and extensively studied class of strategic games the
players compete for subsets of shared resources. The cost of each resource depends
on the number of players using it simultaneously. Rosenthal [15] showed that conges-
tion games always admit a pure Nash equilibrium. A natural extension of congestion
games are weighted congestion games, in which an unsplittable demand di > 0 is
assigned to each player i and the cost function cr : R≥0 → R of a resource r depends
on the cumulated demands of all players sharing r rather than the number of players.
In contrast to congestion games, weighted congestion games do not always possess a
pure Nash equilibrium. This was demonstrated by Fotakis et al. [6] and Libman and
Orda [11], who constructed weighted network congestion games with two players
and non-decreasing costs, which do not admit a pure Nash equilibrium. Goemans
et al. [7] used continuous quadratic resource cost functions with the same effect.

Consequently, many recent studies have focused on subclasses of weighted con-
gestion games with restricted strategy spaces. In singleton weighted congestion
games the strategies of all players correspond to single resources only. Fabrikant
et al. [5] showed in the final section of their paper the existence of pure Nash equi-
libria in singleton congestion games where the resource costs are non-decreasing
functions depending on the set of players using them. As a direct implication, every
singleton weighted congestion game with non-decreasing resource costs admits a
pure Nash equilibrium. Moreover, Andelman et al. [3] and Harks et al. [9] showed
the existence of a strong equilibrium for every such game. Introduced byAumann [4],
a strong equilibrium is stronger than a pure Nash equilibrium and protects against
deviations of coalitions, which may include more than one player. Rozenfeld and
Tennenholtz [16] gave the complementary result for singleton weighted congestion
games with non-increasing cost functions.

Furthermore, even broader strategy spaces exist, which give rise to a pure Nash
equilibrium. Ackermann et al. [1] showed that weighted congestion games with non-
decreasing costs always admit a pure Nash equilibrium if the strategy space of each
player is identical to the collection of bases of a matroid over the resources. These
games are referred to as matroid weighted congestion games. The matroid property
has been shown to be the maximal condition on the strategy spaces ensuring the
existence of a pure Nash equilibrium.

Other studies examine resource cost functions that ensure the existence of a pure
Nash equilibrium in weighted congestion games with arbitrary strategy spaces.
Fotakis et al. [6] showed that every weighted congestion game with affine cost
functions always admits a pure Nash equilibrium. Moreover, Panagopoulou and
Spirakis [14] proved the existence of pure Nash equilibria in every instance with
exponential resource costs of type cr (x) = ex . Later, Harks et al. [8] additionally
confirmed the existence of pure Nash equilibria in weighted congestion games with
exponential cost functions of type aceφx + bc, where ac, bc ∈ R may depend on c
while φ ∈ R is independent of c. In a recent study, Harks and Klimm [8] introduced
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the notion of a consistent set C as a set of cost functions ensuring a pure Nash equi-
librium in every weighted congestion game with resource cost functions in C . The
authors gave a complete characterization of consistent sets of cost functions. They
proved that a set C of continuous cost functions is consistent if and only if C only
contains affine cost functions c(x) = acx + bc or C only consists of exponential
cost functions of type c(x) = aceφx + bc, where ac, bc ∈ R may depend on c while
φ ∈ R is independent of c.

For illustration, we give a typical example of a weighted congestion game. The
game is represented by the directed network shown in Fig. 1a. The resources corre-
spond to the arcs of the network and the cost of each arc is a function depending on
the cumulated demand x of all players using it. The corresponding cost function is
written next to each arc. Furthermore, there are two players 1 and 2 with demands
d1 = 1 and d2 = 2, respectively. Each player has the same strategy set corresponding
to all directed paths from node t to node w. This weighted congestion game can be
interpreted as a network congestion game where the demand of each player corre-
sponds to the amount of data it wants to send through the network. The resource costs
then can be interpreted as delay functions. Hence, the delay of an arc depends on the
total amount of data that is sent through it and the delay of a t-w-path corresponds
to the cumulated delays associated with all arcs on the path. Thus, the aim of each
player is to choose a t-w-path with minimum delay.

However, what if the delay of an arc does not only depend on the total amount
of data, but additionally on the number of files that are sent through it? This might
be modeled by the directed network shown in Fig. 1b. In this network the delay of
each arc is a function of two variables x1 and x2, where x1 and x2 might represent
the aggregated amount of data and the total number of files that are sent through the
corresponding arc, respectively. Additionally, the demand of each player now is a
2-dimensional vector consisting of its amount of data and its number of files. In this
example, the players have demands d1 = (2, 3)� and d2 = (4, 1)�, respectively. We
call a game of this kind a congestion game with 2-dimensional demands. Moreover,
if the demand of each player i is a strictly positive k-dimensional vector di ∈ R

k
≥0 for

a fixed number k ∈ N≥1, the game is called a congestion game with k-dimensional
demands. The class of congestion games with multi-dimensional demands then con-
tains all congestion gameswith k-dimensional demands for all k ∈ N≥1. These games
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x1x2 2x1+7x2

ex1 + x236
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2
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1
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Fig. 1 Directed network congestion game with a 1-dimensional demands and cost functions c :
R≥0 → R of one variable x , and b 2-dimensional demands and cost functions c : R2≥0 → R of two
variables x1 and x2
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generalize the class of weighted congestion games and enable us to model real-
world applications where the cost of each resource r is a multivariable function
cr : Rk

≥0 → R.
However, to date there is no research on congestion gameswithmulti-dimensional

demands. While previous research focused on weighted congestion games with
1-dimensional demands, the equilibriumexistence problem in congestion gameswith
multi-dimensional demands has remained unsolved. The purpose of the thesis is to
investigate the existence of pureNash equilibria in both congestion gameswithmulti-
dimensional demands and arbitrary strategy spaces as well as in games of different
subclasses with restricted strategy spaces. Specifically, we characterize resource cost
functions that guarantee the existence of a pure Nash equilibrium in every congestion
game with multi-dimensional demands using two different approaches.

Firstly, we study the existence of pure Nash equilibria in games with arbitrary
strategy spaces. Let k ∈ N≥1, we follow the notion of [8] and introduce k-consistency
as a property of a set C of cost functions c : Rk

≥0 → R such that every congestion
game with k-dimensional demands and resource costs in C possesses a pure Nash
equilibrium. Specifically, we determine all types of cost functions, which form a
k-consistent set C .

Secondly, we investigate k-consistency for different subclasses of congestion
games with k-dimensional demands and restricted strategy spaces. More specifi-
cally, we examine whether the results of [2, 16] for weighted congestion games
with 1-dimensional demands can be extended to the class of congestion games with
multi-dimensional demands. Thus, we determine necessary and sufficient conditions
on k-consistent sets of cost functions for singleton and matroid congestion games
with k-dimensional demands.

2 Characterizations of k-Consistency

We formally capture the class of congestion games with k-dimensional demands for
any fixed k ∈ N≥1. We find that for any instance the demand dimension k may be
assumed to be upper bounded by the number of its players n.

In order to address the equilibriumexistence problem in gameswith arbitrary strat-
egy spaces, we initially consider congestion gameswith 2-dimensional demands.Our
first main result is a complete characterization of 2-consistent sets of cost functions.
For a setC of continuous cost functions c : R2≥0 → R, we show thatC is 2-consistent
if and only if there are φ1, φ2 ≥ 0 or φ1, φ2 ≤ 0 such that C only contains func-
tions of type c(x1, x2) = ac(φ1x1 + φ2x2) + bc or C only contains functions of type
c(x1, x2) = aceφ1x1+φ2x2 + bc, where ac, bc ∈ R may depend on c.

We then extend this characterization to congestion games with k-dimensional
demands for any k ∈ N≥3. Our second main result states that a set C of contin-
uous cost functions c : Rk

≥0 → R is k-consistent if and only if there is a vector
� ∈ R

k
≥0 or� ∈ R

k
≤0 such thatC only contains functions of type c(x) = ac�

�x + bc
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or C only contains functions of type c(x) = ace��x + bc, where ac, bc ∈ R may
depend on c. A set C with this property is called uniformly degenerate. Provided
that C is uniformly degenerate, our results imply that every congestion game with
k-dimensional demands and cost functions in C is isomorphic to a congestion game
with 1-dimensional demands and the same sets of players, resources, strategies and
private costs. Our contributions to k-consistency for k ∈ N≥1 generalize the com-
plete characterization of 1-consistent sets for weighted congestion games derived by
Harks and Klimm [8].

Key to the proof of these results are three Lemmas that provide necessary condi-
tions on the k-consistency of cost functions. The first of these lemmas, the Extended
Monotonicity Lemma for k-dimensional demands, which is a generalization of the
Extended Monotonicity Lemma introduced by Harks and Klimm [8] for weighted
congestion games with 1-dimensional demands, states that every function c ∈ C
and every integral linear combination λ1c1 + λ2c2 of any two functions c1, c2 ∈ C
must be monotonic. Second, the Hyperplane Restriction Lemma implies that, given
i ∈ {1, . . . , k}, a set of restrictions of functions c ∈ C to hyperplanes of type Hi

x̂i
=

{x ∈ R
k
≥0 : xi = x̂i } for some x̂i ≥ 0 is (k − 1)-consistent. Finally, we prove the Line

Restriction Lemma. Given a vector v ∈ R
k
>0, the lemma states that a set containing

restrictions of functions c ∈ C to the line Lv = {z ∈ R
k
≥0 : z = xv for some x ≥ 0}

is 1-consistent. The latter two necessary conditions establish a connection between
k-consistency, (k − 1)-consistency and 1-consistency for every k ∈ N≥2.

Subsequently, we discuss the existence of pure Nash equilibria in congestion
games with k-dimensional demands and restricted strategy spaces. We start by
analyzing games with matroid strategy spaces and derive necessary conditions on
k-consistency. Let C be a set of continuous cost functions c : Rk

≥0 → R, which is
k-consistent for matroid congestion games with k-dimensional demands. We then
show that C only contains monotonic functions. Additionally, we derive that every
set C containing either non-decreasing cost functions or non-increasing cost func-
tions c : Rk

≥0 → R is k-consistent for matroid congestion games with k-dimensional
demands. Matroid strategy spaces were firstly introduced by Ackermann et al. [1].
They analyzed the existence of pure Nash equilibria in weighted matroid congestion
games with 1-dimensional demands and their work forms the basis of our consider-
ations.

Finally,we study the equilibriumexistence problem in singleton congestion games
with k-dimensional demands. As singleton congestion games are special matroid
congestion games, necessary and sufficient conditions on k-consistency for matroid
congestion game carry over to k-consistency for singleton congestion games with
k-dimensional demands. Additionally, we show that a set C containing either non-
decreasing or non-increasing cost functions does not only imply the existence of a
pure Nash equilibrium, but it also guarantees the existence of a strong equilibrium
in every singleton congestion game with k-dimensional demands and resource costs
in C . This result is based on the work of Harks et al. [9].
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Unit Commitment by Column Generation

Takayuki Shiina, Takahiro Yurugi, Susumu Morito and Jun Imaizumi

Abstract The unit commitment problem is to determine the schedule of power gen-
erating units and the generating level of each unit. The decisions involve which units
to commit at each time period and at what level to generate power to meet the elec-
tricity demand. We consider the heuristic column generation algorithm to solve this
problem. Previous methods used the approach in which each column corresponds to
the start–stop schedule and output level. Since power output is a continuous quantity,
it takes time to generate the required columns efficiently. In our proposed approach,
the problem to be solved is not a simple set partitioning problem, because the columns
generated contain only a schedule specified by 0–1 value. It is shown that the pro-
posed heuristic approach is effective to solve the problem.

1 Introduction

In this paper, we consider the unit commitment problem to determine the schedule of
power generating units and the generating level of each unit. The decisions involve
which units to commit at each time period and at what level to generate power tomeet
the electricity demand [6]. In early research, deterministic models [2, 5] in which
deterministic power demand is given, was considered. Later, models considering the
variation in power demandwere developed [9]. Shiina et al. [8]modified thesemodels
to reflect the operation of a real system and described a stochastic programming
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model which takes into account the uncertainty of the power demand. The method
for solving this problem decomposes the original problem into each of the power
generation by the Lagrangian relaxation method and generates a schedule efficiently
to meet the power demand at the same time. This approach can calculate a feasible
solution in a short time, but has the disadvantage that a good solution cannot be
obtained, since the same schedule is always created for each generator having the
same characteristics.

In this paper, we propose a heuristic method to the unit commitment problem
using the column generation method, and the performance of the proposed method
is evaluated by numerical experiments. The column generation method [1] has not
been applied frequently to solve the unit commitment problem. The only research
that uses a column generation technique is a paper by Shiina-Birge [7]. They used
the column generation approach in which each column corresponds to the start–stop
schedule and output level. Since power output is a continuous quantity, it takes time
to generate the required column efficiently.

2 Unit Commitment Problem

The mathematical formulation of the stochastic unit commitment problem (UC) is
described as follows.Weassume that there are I generating units. The status of unit i at
period t is represented by the 0–1variableuit .Unit i is on at timeperiod t ifuit = 1, and
off ifuit = 0.The power generating level of the unit i at period t is represented by xit(≥
0). The fuel cost function fi(xit) is given by a convex quadratic function of xit . The
start-up cost function gi(ui,t−1, uit) satisfies the condition gi(0, 1) > 0, gi(0, 0) =
0, gi(1, 0) = 0, gi(1, 1) = 0. Fuel cost fi(xit) must be 0 in the case of not performing
the activation. Since fi(0) �= 0 for some i, the exact fuel cost is described as fi(xit)uit .

(UC): min
I∑

i=1

T∑

t=1

fi(xit)uit +
I∑

i=1

T∑

t=1

gi(ui,t−1, uit) (1)

subject to
I∑

i=1

xit ≥ dt, t = 1, . . . , T (2)

uit − ui,t−1 ≤ uiτ , τ = t + 1, . . . ,min{t + Li − 1, T} (3)

i = 1, . . . , I, t = 2, . . . , T

ui,t−1 − uit ≤ 1 − uiτ , τ = t + 1, . . . , min{t + li − 1, T} (4)

i = 1, . . . , I, t = 2, . . . , T

qiuit ≤ xit ≤ Qiuit, i = 1, . . . , I, t = 1 . . . , T (5)

uit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T (6)
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The objective function of minimization (1) is the sum of the fuel cost and the start-
up cost. The sum of the levels of generation must be greater than the demand (2).
When unit i is switched on, it must continue to run for at least a certain period Li.
These minimum up-time constraints are described in (3). Similarly, when unit i is
switched off, it must continue to be off for at least period li. These constraints are
called minimum down-time constraints (4). Let [qi, Qi] be an operating range of the
generating unit i as shown in (5).

3 Application of Column Generation

In order to apply the column generation technique for (UC), the problem is reformu-
lated based on the decomposition principle of Danzig-Wolfe [3]. Let the number of
the schedules generated for unit i beKi. The new binary variable vk

i indicates whether
the kth schedule of unit i is selected. In the reformulated problem, the state of gen-
erator i in period t in the kth schedule is given as a constant uk

it . The reformulation
of (UC) is given as (RUC).

(RUC): min
I∑

i=1

Ki∑

k=1

{
T∑

t=1

fi(xit)u
k
it

}
vk

i +
I∑

i=1

Ki∑

k=1

{
T∑

t=1

gi(u
k
i,t−1, uk

i,t)

}
vk

i (7)

subject to
Ki∑

k=1

vk
i = 1, i = 1, . . . , I (8)

I∑

i=1

xit ≥ dt, t = 1, . . . , T (9)

Ki∑

k=1

qiu
k
itv

k
i ≤ xit ≤

Ki∑

k=1

Qiu
k
itv

k
i , i = 1, . . . , I, t = 1, . . . , T (10)

vk
i ∈ {0, 1}, i = 1, . . . , I, k = 1, . . . , Ki (11)

The constraint (8) is added to (RUC) to express the choice of schedule. In addition,
the output level pair of constraints (5) is transformed into (10). The constants uk

it and
gi(uk

i,t−1, uk
i,t) involved in (RUC) are generated sequentially in the column generation

procedure described later. The minimum uptime (3) and downtime (4) constraints
are taken into account when the schedule is generated.

Since the first term of the objective function (7) becomes the product of a convex
quadratic function and a binary variable, we consider the transformation of the fuel
cost term. The convex quadratic function fi(xit) is decomposed into the constant fi(0)
and the term f̄i(xit) = fi(xit) − fi(0). Thus, the master problem (IPM) transformed
from (RUC) is shown as follows.
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(IPM): min
I∑

i=1

T∑

t=1

f̄i(xit) +
I∑

i=1

Ki∑

k=1

T∑

t=1

{
gi(u

k
i,t−1, uk

i,t) + fi(0)u
k
it

}
vk

i

subject to (8)−(11)

Here, defining f̄i(xit) = (1/2)aix2it + bixit , the dual problem for the continuous
relaxation of (IPM) becomes the following (DPM).

(DPM): max
I∑

i=1

μi +
T∑

t=1

dtπt −
I∑

i=1

T∑

t=1

(bi − πt − λit + λit − νit)
2

2ai
(12)

subject to
T∑

t=1

(−qiu
k
itλit + Qiu

k
itλit) + μi ≤

T∑

t=1

{
gi(u

k
t,t−1, uk

it) + fi(0)u
k
it

}
,

(13)

i = 1, . . . , I, k = 1, . . . , Ki

πt, λit, λit, νit ≥ 0, i = 1, . . . , I, t = 1, . . . , T (14)

Let the optimal solution for the dual problem (DPM)be (π∗
t , λ∗

it, λ
∗
it, μ

∗
i ). Then,we

consider the column generation problemwhich generates the schedule of generator i.
There is a possibility that the optimal solution of (DPM) when all of the schedules

are not be enumerated is not dual feasible for the continuous relaxation problem of
(RUC) with all columns enumerated. The constraint (13) should be satisfied for all
schedules. The new column is generated when the optimal objective function value
satisfies ζi < 0.

ζi = min
T∑

t=1

{
(gi(ui,t−1, uit) + fi(0)uit + qiλ

∗
ituit − Qiλ

∗
ituit

}
− μ∗

i (15)

subject to (3), (4), (6)

This column generation problem results in the shortest path problem, and thus it is
possible to seek the schedule of the generator uk

it by dynamic programming. Details
of the dynamic programming are shown in [7, 8].

4 Numerical Experiments

To evaluate the performance of this solution method, problem instances are based
on Shiina-Birge [7]. The numbers of generation units and periods are varied in
the experiments to seek objective value, computation time, and duality gap. The
following three strategies are compared.
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• (a) adding columns by solving the continuous relaxation problem of (IPM) and
then solving (IPM)

• (b) after removing of columns with a large reduced cost, solving (IPM)
• (c) solving (UC) using the Shiina–Birge method [7]

Experiments were carried out using AMPL [4]-Gurobi 5.5.0 on a Xeon E5507
2.00 GHz (2 processors, memory: 12.0 GB). Accuracy of the solution is evaluated
by the duality gap. In Tables1 and 2, LB and UB denote the lower and upper bound
values, respectively cols is the number of columns generated (after deleting columns
for strategy (b)). Abbreviations ite, c-time, u-time, and t-time represent the number
of iterations in the column generation procedure, time spent for the column genera-
tion, time of the upper bound calculation, and total computation time (in seconds),
respectively. The maximum computation time is limited to within 7200s. If the total
computation time exceeds this upper limit, then the time is shown as *. Performance
evaluation is performed by varying the number of units with a fixed T (Table1) and
by varying the number of periods with a fixed I (Table2).

Generally speaking, the column generation method is able to calculate a lower
bound at high speed. The time required for the calculation of the upper bound is
longer than the time required for the column generation procedure. Solving (IPM)
took much longer than solving the column generation when the size of the problem
is large. The duality gap between our proposed methods (a) and (b) is approximately
3% or less, and the solution method is accurate and precise. Comparing strategies
(a) and (b), it can be seen that strategy (b) can seek a solution effectively in terms of
calculation time without raising the obtained objective function value.

Table 1 Computational results (T = 24)

I Strategy LB UB Gap Cols Ite c-time u-time t-time

10 a 530366 542773 2.33 236 19 3 19 22

b 530366 542773 2.33 188 19 3 2 5

c 529356 569763 7.63 1071 168 27 3626 3673

20 a 1054294 1081470 1.95 476 21 4 7196 7200*

b 1054294 1081470 1.95 386 21 5 132 137

c 1053712 1108573 5.21 2161 168 72 7128 7200*

Table 2 Computational results (I = 10)

T Strategy LB UB Gap Cols Ite c-time u-time t-time

24 a 530366 542773 2.33 236 19 3 19 22

b 530366 542773 2.33 188 19 3 2 5

c 529356 569763 7.63 1071 168 27 3626 3673

48 a 1081966 1081966 2.62 563 50 12 5948 5948

b 1081966 1081966 2.62 455 51 16 39 55

c 1071395 1116367 4.20 3090 436 147 7053 7200*
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From Table1, the number of iterations for strategies (a) and (b) in the column
generation procedure does not vary as the number of generators increases. In addition,
the accompanying increase in the time required for the column generation procedure
is very small. Furthermore, comparedwith strategy (c), strategies (a) and (b) produced
good solutions in terms of the obtained objective function value. In particular, in the
case of T = 24, I = 20, strategy (b) provided a solution in 137s.

As shown in Table2, the number of iterations in the column generation procedure
increases proportionally with the number of periods, and the time of the column
generation also grows. This is because the calculation step of dynamic programming
is proportional to the value of T . Generation of good schedules takes a long time
when the number of periods is large, especially for strategy (c). Strategy (c) uses
column generation in which each column corresponds to the start–stop schedule and
the output level. Since power output is a continuous quantity, it takes considerable
time to generate the required column. In addition, compared with the calculation
results of strategy (a) and (c), strategy (b) provides the solution efficiently in terms
of the total computation time. Especially for the case with T = 72, the calculation
required long time using either strategy (a) or (c), but strategy (b) solved the problem
in 55s.

5 Concluding Remarks

In this study, a heuristic algorithmbased on the columngenerationmethod for the unit
commitment problem is proposed.Wehavedeveloped aprocedure to obtain a solution
with a certain level of accuracy within a short computation time. Improvement of the
method to seek feasible solutions and to raise the lower bound by adding a family of
valid inequalities is left as future work. As for application to real power systems, the
coordination of the operation of hydroelectric generation plants must be considered.
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Parallel Algorithm Portfolio with Market
Trading-Based Time Allocation

Dimitris Souravlias, Konstantinos E. Parsopoulos and Enrique Alba

Abstract We propose a parallel portfolio of metaheuristic algorithms that adopts a
market trading-based time allocationmechanism. This mechanism dynamically allo-
cates the total available execution time of the portfolio by favoring better-performing
algorithms. The proposed approach is assessed on a significant Operations Research
problem, namely the single-item lot sizing problem with returns and remanufactur-
ing. Experimental evidence suggests that our approach is highly competitive with
standard metaheuristics and specialized state-of-the-art algorithms.

1 Introduction

Algorithm portfolios (APs) emerged the past two decades as a promising framework
that combines different algorithms or copies of the same algorithm to efficiently
tackle hard optimization problems [3, 4]. Recently, they have gained increasing
attention as a general framework for incorporating different population-based algo-
rithms to solve continuous optimization problems [7, 13]. Significant effort has been
paid on the selection of the constituent algorithms of the APs [11], which may run
in an independent [10] or in a cooperative way [7]. The selection is usually based
on a preprocessing phase, where the constituent algorithms are selected according
to their performance from a wide range of available optimization algorithms.

In parallel implementations, theminimization of the total execution time is crucial
due to the limited (or expensive) resources allocated to the users in high-performance
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computer infrastructures. The AP’s framework offers inherent parallelization
capability that stems from the ability of concurrently using its constituent algo-
rithms. In practice, the algorithms that are used to solve a problem in parallel are
typically assigned equal execution time or function evaluation budgets that remain
constant throughout the optimization process [7]. Also, it is frequently observed that
different algorithms perform better in different phases of the optimization procedure
or problem instances [7, 10].

Motivated by this observation, we propose an AP where the algorithms are
rewarded additional execution time on a performance basis. Specifically, the portfolio
adopts a trading-based mechanism that dynamically orchestrates the allocation of
the total available execution time among the AP’s constituent algorithms. Better-
performing algorithms are assigned higher fractions of execution time compared to
worse-performing ones, without modifying the AP’s total execution time. The core
idea behind the attained mechanism is inspired by stock trading models and involves
a number of algorithms-investors that invest on elite solutions that act as stocks,
using execution time as currency.

The performance of the proposed AP is evaluated on a well studied Operations
Research (OR) problem, namely the single-item dynamic lot sizing problem with
returns and remanufacturing [9, 12]. Its performance is compared to other meta-
heuristics [6] as well as state-of-the-art heuristics for the specific problem [9]. The
rest of the paper is structured as follows: Sect. 2 briefly describes the problem, while
Sect. 3 presents the proposed AP model. The experimental setting and results are
exposed in Sect. 4 and the paper concludes in Sect. 5.

2 Problem Formulation

The considered problem constitutes an extension of the well-known Wagner-Whitin
dynamic lot sizing problem [14]. It employs the dynamic lot sizing model with
separate manufacturing and remanufacturing setup costs as it was introduced in [12]
and further studied in [9]. The problem assumes a manufacturer that sells a single
type of product over a finite planning horizon of T time periods. In each time period
t = 1, 2, . . . , T , the consumers state their demand denoted by Dt , along with a
number of used products that are returned to the manufacturer. The fraction Rt of
returned products in period t that can be recovered and sold as new is stored at a
recoverables inventory with a holding cost h R per unit time. To satisfy the demand, a
number of zR

t and zM
t products are remanufactured andmanufactured, respectively, in

period t and then brought to a serviceables inventory with a holding cost hM per unit
time. Naturally, the manufacturing and remanufacturing process incur setup costs
denoted by K R and K M , respectively.

The target is to minimize the incurring setup and holding costs by determining the
exact number of manufactured and remanufactured items per period under a number
of constraints. The corresponding cost function is defined as follows [9]:
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C =
T∑

t=1

(
K Rγ R

t + K Mγ M
t + h R y R

t + hM yM
t

)
, (1)

where γ R
t and γ M

t are binary variables denoting the initiation of a remanufacturing
or manufacturing lot, respectively. The inventory levels of items that can be reman-
ufactured or manufactured in period t are denoted by y R

t and yM
t , respectively. The

operational constraints of the model are defined as follows:

y R
t = y R

t−1 + Rt − zR
t , yM

t = yM
t−1 + zR

t + zM
t − Dt , t = 1, 2, . . . , T, (2)

zR
t ≤ Q γ R

t , zM
t ≤ Q γ M

t , t = 1, 2, . . . , T, (3)

y R
0 = yM

0 = 0, γ R
t , γ M

t ∈ {0, 1}, y R
t , yM

t , zR
t , zM

t ≥ 0, t = 1, 2, . . . , T . (4)

Equation (2) guarantees the inventory balance, while Eq. (3) assures that fixed costs
are paidwhenever a new lot is initiated. In [9] the value ofQ is suggested to be equal to
the total demand of the planning horizon. Finally, Eq. (4) asserts that inventories are
initially empty and determines the domain of each variable. The decision variables
of the optimization problem are zM

t and zR
t for each period t . Thus, for a planning

horizon of T periods the corresponding problem is of dimension n = 2 T . More
details about the considered problem can be found in [6, 9, 12].

3 Proposed Algorithm Portfolio

We propose an AP that consists of metaheuristic algorithms that operate in parallel.
We denote with N the number of algorithms. The AP employs a typical master-
slave parallelization model, where each algorithm runs on a single slave node. Each
algorithm invests a percentage of its assigned running time to buy solutions from
the other algorithms of the AP. The remaining time is used for its own execution.
We assign equal initial execution time budgets, Ttot, and investment time budgets,
Tinv = α Ttot, for all algorithms. The parameter α ∈ (0, 1) tunes each algorithm’s
investment policy. Clearly, high values of α indicate a risky algorithm-investor, while
lower values characterize a more conservative one.

The master node retains in memory a solution archive that is asynchronously
accessed by the slaves via amessage passing communicationmechanism.The archive
holds the elite solution found by each algorithm. For their pricing, the solutions are
sorted in descending orderwith respect to their objective values. If pi is the position of
the i th solution after sorting, then its cost is defined asC Si = (pi × SBC)/N , where
SBC = β Tinv is a fixed base cost. The parameter β ∈ (0, 1) tunes each algorithm’s
elitism. High values of β limit the number of the best elite solutions each algorithm
can buy throughout the optimization process.

Whenever an algorithm cannot improve its elite solution for an amount of time,
it requests to buy a solution from another algorithm. The master node acts as a
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trading broker that applies a solution selection policy to help the buyer-algorithm
make the most profitable investment. In particular, the master node proposes to the
buyer-algorithm elite solutions that are better than its own and cost less or equal to
its current investment budget. Among the possible solutions, the algorithm opts to
buy the solution that maximizes the Return On Investment (ROI) index, defined as
RO I j = (C − C j )/C Sj , j ∈ {1, 2, . . . , N }, where C is the objective value of the
algorithm’s own elite solution, C j is the objective value of the candidate buying
solution and CS j is its corresponding cost. If the buyer-algorithm decides to buy the
j th elite solution, it pays its price of C Sj running time to the seller-algorithm (the
one that found this solution). The seller algorithm adds this time to its total execution
time budget. Thus, better-performing algorithms sell solutions more often, gaining
longer execution times. Yet, the total execution time of the AP remains constant.

In the present work, the proposed AP consists of 4 algorithms, namely Parti-
cle Swarm Optimization (PSO) [1], Differential Evolution (DE) [8], Tabu Search
(TS) [2], and Iterated Local Search (ILS) [5].

4 Experimental Results

The proposed approach was evaluated on the established test suite used in [9]. It
consists of a full factorial study of various problem instances with common planning
horizon T = 12. Table1 summarizes the configuration of the problem parameters

Table 1 Parameters of the considered problem and the employed algorithms

Problem parameter Value(s) Algorithm parameter Value(s)

Dimension n = 24 AP Number of slave
algorithms

N = 4

Setup costs K M , K R ∈
{200, 500, 2000}

Per algorithm
execution time

Ttot = 75000ms

Holding costs hM = 1, h R ∈
{0.2, 0.5, 0.8}

Constants α, β α = 0.1, β = 0.05

Demand for period t Dt ∼ N (μD, σ 2
D) PSO Model lbest (ring topology)

μD = 100 Swarm size 60

σ 2
D = 10% of μD

(small variance)
Constriction
coefficient

χ = 0.729

σ 2
D = 20% of μD

(large variance)
Cognitive/social
constants

c1 = c2 = 2.05

Returns for period t Rt ∼ N (μR, σ 2
R) DE Population size 60

μR ∈ {30, 50, 70} Operator DE/rand/1

σ 2
R = 10% of μR

(small variance)
Differential/crossover
constants

F = 0.7, CR = 0.3

σ 2
R = 20% of μR

(large variance)
TS Size of tabu list 24
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as well as the employed algorithm parameters for the AP. Further details on the
problem setting can be found in [9]. The proposed AP was compared against the
best-performing variant (SM+

4 ) of the state-of-the-art Silver-Meal heuristic [9], as
well as against the sequential versions of its constituent algorithms. The goal of the
experiments was to achieve the lowest possible percentage error [9] from the global
optimumwithin a predefined budget of total execution time Ttot. The global optimum
per problem was computed by CPLEX and was provided in the test suite.

Table2 shows the average (Avg), standard deviation (StD), and maximum (Max)
value of the percentage error for the different values of the problem parameters. A
first inspection of the results reveals superiority of the proposed AP, which achieves
the best overall mean percentage error (1.9%). The second lowest valuewas achieved
by SM+

4 (2.2%), followed by the sequential versions of DE (3.3%) and PSO (4.3%).
Specifically, AP prevails in 14 out of 17 considered parameter cases, while in the rest
3 cases SM+

4 is the dominant algorithm. The results of SM+
4 and PSO were directly

adopted from [9] and [6], respectively.
The results indicate that population-based algorithms (DE and PSO) outperform

(by far) the trajectory-based ones (TS and ILS). Moreover, when all algorithms are
integrated into the AP, the overall performance with respect to solution quality is
further enhanced. This can be attributed to the dynamics of the trading among the
algorithms. In particular, we observed that the population-based algorithms were
mainly the seller ones, using their exploration capability to discover high-quality
solutions. On the other hand, trajectory-based algorithms employed their exploitation
power to further fine-tune the vast number of acquired solutions. From this point of
view, the employed algorithms of the AP exhibited complementarity, which is a
desired property in APs [7, 13]. Also, we observed that between the two population-
based algorithms, PSO acquired a higher number of solutions than DE during the
optimization, whereas the solutions of the latter were of better quality.

5 Conclusions

We proposed an Algorithm Portfolio (AP) of metaheuristic algorithms that operate
in parallel and exchange solutions via a sophisticated trading-based time allocation
mechanism. This mechanism favors better-performing algorithms with more execu-
tion time than the others. Also, it combines the exploration/exploitation dynamics of
each individual constituent algorithm in an efficient way. We assessed our approach
on a well studied OR problem. The experimental results were promising, indicating
that the AP is highly competitive against its constituent algorithms, individually, as
well as against a state-of-the-art algorithm of the considered problem.
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Global Solution of Bilevel Programming
Problems

Sonja Steffensen

Abstract We discuss the global solution of Bilevel Programming Problems using
their reformulations as Mathematical Programs with Complementarity Constraints
and/or Mixed Integer Nonlinear Programs. We show that under suitable assumptions
the Bilevel Program can be reformulated and globally solved via MINLP refomula-
tion.We also briefly discuss some simplifications and suitable additional constraints.

1 Introduction

In this paper, we are interested in the global solution of the followingBilevel Program

(BP) minx,y F(x, y)
s.t. c(x, y) ≤ 0

y ∈ Σ(x) := argminy{f (x, y) | g(x, y) ≤ 0} ,

(1)

where (x, y) ∈ R
n × R

p, x denotes the upper-level variable (i.e. the leader) and y is the
lower-level variable (i.e. the follower). All inequalities aremeant componentwise and
throughout, we assume that F : Rn × R

p → R, f : Rn × R
p → R, c : Rn × R

p →
R

m and g : Rn × R
p → R

q are twice continuously differentiable functions. As can
be deduced from (1), we use the optimistic approach (i.e. ifΣ(x) is not single-valued,
we assume that y ∈ Σ(x) is chosen such that F(x, y) is smallest).

As indicated by the names of the variables, the Bilevel Program is a hierarchical
optimization problem that is mostly used to model a so-called Stackelberg game.
However, other applications are parameter identificationproblems,where thevariable
x then denotes the vector of parameters that parametrizes the optimization problem:

minyf (x, y) s.t. g(x, y) ≤ 0 . (2)
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Bracken and McGill [4, 5] first considered such kind of problems in the 1970th
having applications in the military field in mind. Recent applications comprise prob-
lems from economic sciences, such as problems arising from designing and planning
transportation networks (e.g. network design, toll-setting problem or the problem of
designing parking facilities for parkn ride trips [12]) or revenue management (e.g.
planning the pricing and seat allocation policies in the airline industry [7]), but
also engineering problems, where they appear as optimization problems that involve
chemical or physical equilibria.

For more information on bilevel programs, we refer the interested reader e.g. to
the two monographs [1, 8] and the survey paper [6].

Even in the case where, all functions involved are convex, i.e. both the upper-
and the lower-level problem are convex, the global solution of the resulting Bilevel
Problem is not trivial as the solution mapping Σ(x) might be nonconvex (it might
even be not compact). In this paper we will first describe the reformulations of (1)
as Mathematical Program with Complementarity Constraints (MPCC), as well as its
reformulation as Mixed Integer Nonlinear Program (MINLP) [2, 13, 20]. We will
then relate the feasible sets and give two results concerning the relationship between
the global solutions in the convex case of the original problem and its reformulations.
Furthermore, we briefly discuss some simplifications for some special type of (1)
and additional constraints for the nonconvex case.

2 Reformulations

The reformulations we propose here are such that the two-level problem (1) is
replaced by a single-level problem. The most often used reformulation of (1) is
to replace the lower-level problem (2) by its stationarity conditions [9]

∇yL (x, y, μ) = 0 (3)

g(x, y) ≤ 0, μ ≥ 0, μT g(x, y) = 0 , (4)

whereL (x, y, μ) = f (x, y) + g(x, y)Tμ denotes the Lagrangian function associated
with (2). The conditions (4) are also referred to as complementarity conditions.Hence
the resulting problem becomes a so-calledMathematical Programwith Complemen-
tarity Constraints

(MPCC) minx,y,μ F(x, y)
s.t. c(x, y) ≤ 0

∇yL (x, y, μ) = 0
g(x, y) ≤ 0, μ ≥ 0, μT g(x, y) = 0 .

(5)

These problems are inherently nonconvex, due to the complementarity constraints
and it is known, that they do not admit the MFCQ at any feasible point. There exist
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a variety of theoretical results (see e.g. [17, 21]), as well as local solution methods
for MPCC in the literature, ranging from relaxation and smoothing methods to SQP
methods and interior pointmethods (see e.g. [10, 11, 14, 16, 18, 19]). However, since
we are interested in the global solution of (1), we introduce another reformulation
which directly takes the decision structure of the complementarity constraints into
account. Note that (4) can be reformulated by

g(x, y) ≤ 0, μ ≥ 0 and (μi = 0 or gi(x, y) = 0, ∀ i = 1, .., q) . (6)

Assuming that g(x, y) and μ are bounded (6) can equivalently be replaced by

g(x, y) ≤ 0, μ ≥ 0 and μ ≤ Ms, g(x, y) ≥ M (1 − s), s ∈ {0, 1}q , (7)

where 1 := (1, 1, . . . , 1) ∈ R
q. This reformulation then yields the following Mixed

Integer Nonlinear Programming Problem as a reformulation of (1)

(MINLP) minx,y,μ,s F(x, y)
s.t. c(x, y) ≤ 0

∇yL (x, y, μ) = 0
g(x, y) ≤ 0, μ ≥ 0
μ ≤ Ms, g(x, y) ≥ −M (1 − s)
s ∈ {0, 1}q ,

(8)

where M is a positive scalar that is supposed to be larger than the corresponding
upper bounds on μ and |g(x, y)|.
Remark 1 If the lower-level problem is simply a convex, box-constrained problem,
we can omit the multiplier variable. Since either αi ≤ yi or yi ≤ βi might be satisfied
with equality but not both of them either μα,i = 0 or μβ,i = 0 and the conditions (3)
and (4) can be reduced to

α ≤ y, y ≤ β, y − α ≤ Ms1, β − y ≤ Ms2
∇yf (x, y) ≥ −M(1 − s2), ∇yf (x, y) ≤ M(1 − s1) s1, s2 ∈ {0, 1}p.

3 Relations of Global Solutions

In the following, we compare the set of global solutions of the original problem (1)
to the set of global solution of its reformulations. In [9] the global solutions of (5)
are compared to the ones of (1). In this paper, we therefore restrict ourselves to the
comparison of the global solutions of (8) to the ones of (1).
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As starting point, we compare the set of feasible upper- and lower-level variables.
Thus, define the following sets:

ZBP := {(x, y) ∈ R
n × R

p | c(x, y) ≤ 0, y ∈ Σ(x) }

ZMPCC := {(x, y) ∈ R
n × R

p | c(x, y) ≤ 0,

∃μ ∈ R
q
+ : ∇yL (x, y, μ) = 0, g(x, y) ≤ 0, μT g(x, y) = 0 }

ZMINLP := {(x, y) ∈ R
n × R

p | c(x, y) ≤ 0,

∃μ ∈ R
q
+, s ∈ {0, 1}q : ∇yL (x, y, μ) = 0

g(x, y) ≤ 0, μ ≤ Ms, g(x, y) ≥ −M (1 − s) }

Moreover, define the Slater CQ for the lower-level problem.

Definition 1 The Slater CQ is said to hold in x ∈ R
n for the lower-level problem

(2), if there exists z(x) such that gi(x, z(x)) < 0 for all i = 1, .., q.

Lemma 1 Let f and g be convex. Then it holds:

(x̄, ȳ) ∈ ZMINLP ⇔ (x̄, ȳ) ∈ ZMPCC ⇒ (x̄, ȳ) ∈ ZBP .

Furthermore, if the Slater CQ holds in (x̄, ȳ) then it also holds

(x̄, ȳ) ∈ ZBP ⇒ (x̄, ȳ) ∈ ZMPCC .

Proof First, assume that (x̄, ȳ) ∈ ZMINLP, then there exists μ̄ and s such that (7) is
satisfied so that either μ̄i = 0 (if si = 0) or gi(x̄, ȳ) = 0 (if si = 1) holds. Hence (4)
is satisfied and therefore (x̄, ȳ) ∈ ZMPCC.

On the other hand, if (x̄, ȳ) ∈ ZMPCC, then there exists a multiplier μ̄ such that
(3) and (4) hold. Now choose s ∈ {0, 1}q such that si = 0 if μ̄i = 0 and gi(x̄, ȳ) < 0
and si = 1 if gi(x̄, ȳ) = 0 and μ̄i > 0. In case that both μ̄i = 0 and gi(x̄, ȳ) = 0 one
might choose si ∈ {0, 1}. Thus (x̄, ȳ, μ̄, s) satisfies (7), i.e. (x̄, ȳ) ∈ ZMINLP.

Next the last direction of the first part is clear since, due to the convexity assump-
tion, the stationarity conditions (3) and (4) are sufficient for ȳ to be a globalminimizer.

Finally, if (x̄, ȳ) ∈ ZBP, then ȳ ∈ Σ(x̄). Hence by convexity of f and g and the
Slater CQ, we know there exists a multiplier μ̄ such that (x̄, ȳ, μ̄) satisfies (3) and
(4), i.e. (x̄, ȳ) ∈ ZMPCC. �

Remark 2 Note that for the first part of the Lemma the assumptions of convexity and
Slater CQ are crucial. However, they might obviously be replaced by the assumption
that f and g are linear or by a stronger regularity condition as e.g. MFCQ or LICQ,
respectively.

Theorem 1 Assume that f and g are convex and let (x̄, ȳ) be a global solution of
(BP) such that the Slater CQ holds in x̄ for the lower-level problem (2). Then for
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any μ̄, s̄, so that (x̄, ȳ, μ̄, s̄) is feasible for the associated (MINLP), (x̄, ȳ, μ̄, s̄) is a
global optimal solution of (MINLP).

Proof Since (x̄, ȳ) ∈ ZBP, it follows byLemma1 that (x̄, ȳ) ∈ ZMINLP, i.e. there exist
μ̄, s̄, such that (x̄, ȳ, μ̄, s̄) is feasible for the associated (MINLP). Assume that there
exists (x̂, ŷ) ∈ ZMINLP with F(x̂, ŷ) < F(x̄, ȳ) then by Lemma1 (x̂, ŷ) ∈ ZBP which
contradicts the global optimality of (x̄, ȳ) for (BP), which concludes the proof. �

For the opposite direction we have to slightly strengthen the assumption in the
way that the Slater CQ is supposed to hold for (2) for any feasible x̄.

Theorem 2 Assume that f and g are convex and let (x̄, ȳ, μ̄, s̄) be a global solution of
(MINLP). Furthermore assume that the Slater CQ is satisfied for (2) for any feasible
x (i.e. there exist y ∈ R

p so that c(x, y) ≤ 0 and g(x, y) ≤ 0). Then (x̄, ȳ) is a global
optimal solution of (BP).

Proof Since (x̄, ȳ) ∈ ZMINLP, it follows by Lemma1 and the assumptions that
(x̄, ȳ) ∈ ZBP, i.e. (x̄, ȳ) is feasible for (BP). Assume that there exists a feasible
(x̂, ŷ) for (BP) so that F(x̂, ŷ) < F(x̄, ȳ) then by Lemma it also holds that Lemma1
(x̂, ŷ) ∈ ZMINLP and hence there exist μ̂, ŝ, so that (x̂, ŷ, μ̂, ŝ) is feasible for the asso-
ciated (MINLP) which contradicts the global optimality of (x̄, ȳ, μ̄, s̄) for (BP). This
concludes the proof. �

Remark 3 Note that these results do not transfer to local solutions as the discussion
in [9] already shows.

Remark 4 Taking into account that in general the global solution of MINLP can be
guaranteed to be found under the convexity assumption of the objective function
and all constraint functions [2, 3, 13], by the results presented, it becomes clear,
that a general purpose MINLP solver (e.g. DICOPT) can guarantee to solve the
MINLP (and hence the BP), if f is quadratic and convex in y for all feasible x (e.g.
f (x, y) = yT Ay + xT By + b(x)), F and c are convex, g is linear and the Slater CQ is
satisfied for (2) for any feasible x.

Remark 5 In the case of a convex upper-level program, however, a nonconvex lower-
level program the discussed approach might not be able to find the correct global
solution. In particular, if the lower-level problem is nonconvex, the reformulation
of the BP as an MPCC (and hence as a MINLP) is not exact anymore (in the sense
of Lemma1), as the stationarity conditions are not sufficient anymore. Thus even if
the lower-level problem satisfies a regularity assumption (as e.g. LICQ), the MPCC
reformulation is in fact a relaxation. However, if further constraints on the curvature
of the function f are included in the reformulation, the computation of a global
solution (x̄, ȳ) where y is a saddlepoint or even worse a local maximum of (2) can
be prevented. Another option for such cases are specialized algorithms as presented
e.g. in [15].
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Robustness to Time Discretization Errors
in Water Network Optimization

Nicole Taheri, Fabian R. Wirth, Bradley J. Eck, Martin Mevissen
and Robert N. Shorten

Abstract Water network optimization problems requiremodeling the progression of
flow and pressure over time. The time discretization step for the resulting differential
algebraic equation must be chosen carefully; a large time step can result in a solution
that bears little relevance to the physical system, and small time steps impact a
problem’s tractability. We show that a large time step can result in meaningless
results and we construct an upper bound on the error in the tank pressures when
using a forward Euler scheme. We provide an optimization formulation that is robust
to this discretization error; robustness to model uncertainty is novel in water network
optimization.

1 Introduction

Addressing uncertainty is an important aspect of many optimization applications.
Most robust optimization work focuses on data uncertainty, e.g., inaccurate para-
meters or neglected terms [1, 2], including for water network applications [3, 4].
Uncertainty in the problem modeling receives little attention, even though the dis-
cretization can add uncertainty to a perfect model.

Water network optimization requires modeling flow and pressure in discrete time.
The time step chosen is a critical part of this model: a large time step may result in a
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simulation that is feasible for the model, but unsuitable for the real system, while a
small time step can result in a large intractable problem. We show an example where
errors in the simulated tank levels lead to a solution that inaccurately describes the
physical system, and we provide a method to compute the upper bound on the error
introduced by a forward Euler scheme. We construct an optimization formulation
that is robust to the discretization error. The robust counterpart of the optimization
formulation can drastically reduce the energy cost given the worst-case error.

2 Problem Description

Awater network consists of a set of nodes N and links L . There are 3 types of nodes:
demand nodes, reservoirs and tanks. A link j connects 2 nodes i1 �= i2 ∈ N and a
subset of links are pumps. Table1 defines the terminology.

Define A ∈ R|N |×|L| as the network’s directed node-link incidence matrix and
partition A� = [

A�
D

A�
T

A�
R

]
, where rows correspond to demand nodes, tanks and

reservoirs. Similarly, partition p = (pD , pT , pR ), where pR is assumed to be constant.
For a pump j ∈ P , let Ŝ j ∈ {0, 1}tend be a pump schedule. For ease in explanation,
we define a diagonal matrix S(t) ∈ {0, 1}|L|×|L|, ∀t ∈ [0, tend], where Sj j (t) := Ŝ j (t)
if j ∈ P , and Sj j (t) := 1 if j ∈ L\P .

At a given time t , the dynamics of a network can be described by:

(I − S(t))q(t) = 0 (1a)

S(t)(H(q(t)) + A�
D

pD (t)) = −S(t)
(

A�
T

pT (t) + A�
R

pR (t) + A�e
)

(1b)

AD q(t) = d(t), (1c)

where the unknowns q(t) and pD (t) are on the left-hand side. Equation (1a) ensures
there is flow in a pump only if it is on. Equations (1b) and (1c) describe energy and

Table 1 List of constants and sets

Sets Constants

Name Description Name Description

N Nodes tend ∈ R Time horizon

T Tanks, T ⊂ N h ∈ R Size of time Step (h = 1/tend)

D Demand nodes, D ⊂ N e ∈ R|N | Node elevation (m)

L Links q, q ∈ R|L| Bounds on flow (m3/day)

P Pumps, P ⊂ L p, p ∈ R|N | Bounds on pressure (m)

Variables p0 ∈ R|R| Initial tank pressure (m)

q(t) ∈ R|L| Flow at time t (m3/day) λ ∈ R|R| Tank areas (m2)

p(t) ∈ R|N | Pressure at time t (m) d ∈ R|D|×T Demand (m3/day)

Ŝ(t) ∈ R|P| Pump schedule at time t ({0,1}) A ∈ Z|N |×|L| Directed incidence matrix
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mass balance, respectively. Given d(t), S(t) and pT (t), under mild conditions there
is a unique solution to (1) [5, 6]. However, uniqueness does not necessarily imply
that solutions are physically meaningful.

Define the change in tank pressure with the function:

ṗT (t) = f (pT (t), S(t), d(t)) := Λ−1AT q(pT (t), S(t), d(t)) , (2)

or equivalently, by the integral equation,

pT (t + h) = pT (t) +
∫ t+h

t
f (pT (s), S(s), d(s))ds. (3)

To stay consistent with the field standard [7], we consider a discretization of (3)
with forward Euler, which gives the discretization:

p̂T (t + h) = p̂T (t) + h · f ( p̂T (t), S(t), d(t)). (4)

The choice of h adjusts the trade-off of approximation to the differential and
computational burden.

Define the set Ω(S, d) of feasible pressures and flows for a given network:

Ω(S, d) =
{
(p, q) ∈ R|N |×|L|

∣∣∣ (1a)–(1c) are satisfied
p ∈ [p, p], q ∈ [q, q]

}
. (FEAS)

And define the following sets of feasible points given a subset of the values:
ΩT (S, d) = { p̂T |∃( p̂, q) ∈ Ω(S, d) }, Ωq(S, d) = { q̂| ∃ (p, q̂) ∈ Ω(S, d) }. Let
φ(p, q, S, d) ∈ R be a chosen convex objective function, and define the general
water network optimization formulation:

minimize
p, q, S

φ(p, q, S, d)

subject to pT (t + h) = pT (t) + h · f (pT (t), S(t), d(t))

(p(t), q(t)) ∈ Ω(S(t), d(t))

pT (0) = p0,

(OPT)

where the constraints hold for all t ∈ {0, h, . . . , tend}.

3 Time Discretization

Todifferentiate solutions of theODE (2) anddiscretization (4), denote by pT (·; t0, p0)

solutions of (2) with initial tank pressure p0, and p̂T (·; t0, p0) by solutions of (4)
with the same initial pressures. The local error describes the error due to a single
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time step:

E L(h) := sup
{∥∥pT (h : 0, p0) − p̂T (h; 0, p0)

∥∥∞ |p0 ∈ ΩT (S, d)
}

. (5)

The global error gives the cumulative error at time kh ∈ [0, tend], k > 1:

E(h, t0, tend) := sup
p0∈ΩT (S,d)

max
k∈N

{∥∥pT (kh; 0, p0) − p̂T (kh; 0, p0)
∥∥∞

}
. (6)

If this global error is too large, a modeled pump schedule may be unsuitable in the
physical system. For our test network, we found an example where a pump schedule
is feasible for a larger (30-min) time step, but results in tank overflow for smaller,
more accurate time steps (Fig. 1).

We now find bounds on the local and global discretization errors. Our bound
on the local error E L(h) depends on the maximum value of f (·) and the Lipschitz
constant of f (·) with respect to the tank pressures. An upper bound on the Lipschitz
constant, L, of f (·, S, d), with respect to pT , bounds the relative change in f (·).
We use the ∞-norm here to get the maximum error in pressure for all tanks. The
Lipschitz constant L is defined as

L(S, d) := sup

{‖ f (pT 1, S, d) − f (pT 2, S, d)‖∞
‖pT 1 − pT 2‖∞

∣∣∣pT 1, pT 2 ∈ ΩT (S, d)

}
.

A bound on f (·) is found by norm maximization over the feasible set:

c� := sup
(p,q)∈Ω(S,d)

{‖ f (pT (t), S(t), d(t))‖∞
} =

{
maximize

p,q,S,d
‖Λ−1Aq‖∞

subject to (p, q) ∈ Ω(S, d)

}
,

where c� can be used to bound the difference in tank pressures in time h,

Fig. 1 Tank pressures using different time discretizations with the same schedule
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Fig. 2 Comparison of errors using different time steps h

‖pT (t + h) − pT (t)‖∞ ≤
∥∥∥∥
∫ t+h

t
f (pT (s), S(s), d(s))ds

∥∥∥∥∞
≤ h · c�.

Lemma 1 Let S, d be fixed on [0, tend]andL = L(S, d). Then the local discretization
error E L(h) at any tank is bounded above by (h2 · L · c�).

Proof

E L (h) = ‖(pT (h) − p0) − ( p̂T (h) − p0)‖∞ ≤
∫ h

0
‖ f (pT (s)) − f (pT (0))‖∞ds ≤ h2L c� .

�
Figure2 shows the bound on E L(h) for different values h on a test network.
Lemma 1 gives an upper bound on the local error, which is only relevant at t = 0;

the differential (4) and algebraic equations (1) lead to propagating errors over time.
The global error analysis follows established principles [8] that are used to find the
bound in Theorem 1. We omit the proof for brevity.

Theorem 1 Let S, d be fixed on [0, tend], L = L(S, d), and 0 = h0 < h1 < . . . <

tend = tend. The global discretization error E(h) is bounded above by

E(h, t0, hk) ≤ hc�
(
eLhk − 1

)
.

Comment: This is a theoretical upper bound that is much larger than the practical
bound. A more realistic bound can be found by simulating the water network with
different hydraulic time steps; the error can be measured by the difference in tank
pressures from those of the finest possible discretization.

4 Robustness to Discretization Error

A discretization error may lead to errors in the objective, which can result in a subop-
timal solution implemented in the physical system. We present a robust counterpart
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to (OPT) that takes into account the effect of the worst-case modeling error on the
objective:

minimize
p̂,̂q,S

maximize
p,q

φ(p, q, S, d)

subject to (p, q) ∈ Ω(S, d), ( p̂, q̂) ∈ Ω(S, d)

p̂T (t + h) = p̂T (t) + h · f ( p̂T (t), S(t), d(t))
p̂(0) = p(0) = p0

pT (t) ∈ [ p̂T (t) − E(h, t0, t), p̂T (t) + E(h, t0, t)].

(ROB)

The robust counterpart of a convex optimization problem is intractable in general,
but is tractable when the optimality of the objective can be easily checked [1, 9].
As shown below, this will be true for a number of practical cases in water network
optimization. We consider two simple but common cases that result in a tractable
robust counterpart (ROB):

Case 1: φ(p, q, S, d) = ψ(p), ψ is convex and increasing in p (C1)

Case 2: φ(p, q, S, d) = ψ(q), ψ is convex and increasing in q. (C2)

Many water network optimization problems will have such objectives, such as
pump scheduling [10] or valve settings problems [11].

Lemma 2 If either (C1) or (C2) is true, then solving (ROB) is equivalent to solving
(OPT) with a different objective; the robust counterpart evaluates ψ(·) at the pressure
or flow added to the respective error bound.

Proof Assume (C2) is true. Define the upper bound on the flow error at time t with
the optimization problem:

EQ (t) := maximize
p,q, p̂,̂q,S

‖q̂(t) − q(t)‖∞
subject to (p, q), ( p̂, q̂) ∈ Ω(S, d)

‖ p̂T (t) − pT (t)‖ ≤ E(h, t0, t).

(7)

Because the value of EQ (t) increases with the value of E(h, t0, t), and ψ(·) is
convex and increasing, (ROB) is equivalent to

minimize
p,q,S

ψ(q + EQ )

subject to pT (t + h) = pT (t) + h · f (pT (t), S(t), d(t))
(p(t), q(t)) ∈ Ω(S(t), d(t)), ∀t ∈ {0, h, . . . , tend}
p(0) = p0.

(8)

Similarly, if (C1) is true and the maximum flow error at time t is ED (t) (with a
definition analogous to (7)), replacing the objective in (8) with ψ((pD + ED , pT +
E(h), pR )) gives similar results. �
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Fig. 3 Comparison of
worst-case cost of (ROB)
versus (OPT) pump
schedules

We tested (ROB) for a pump scheduling optimization problem, where the cost-
minimization objective is convex and increasing in q. In our test network (of 1
reservoir, 2 pumps, 2 tanks and 1 demand node) the pumps flow from a reservoir
directly into tanks, where the pump flow increases as tank pressure decreases.
Thus, the worst-case flow error accounted for in (ROB) occurs when pT (t) =(

p̂T (t) − E(h, t0, t)
)
, for all t ∈ [0, tend].

We compared the energy cost in the scenario of the worst-case error for pump
schedules optimal for (ROB) and (OPT). We tested 3 different time steps with 5 dif-
ferent possible global error values that increase linearly with time; results are shown
in Fig. 3. The average difference in worst-case energy cost comparing optimal sched-
ules of (ROB) and (OPT) was 9.25%, which shows the potential benefit of taking
into account discretization-based modeling error in the optimization formulation.

5 Conclusion

The time step chosen in water network optimization problems is critically important;
a large time step can result in a simulation that is inaccurate or physically unsuitable.
We provide an upper bound on the time discretization error caused by using forward
Euler to update tank pressures and a formulation to find the optimal solution that is
robust to the worst-case error.
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Forecasting Intermittent Demand
with Generalized State-Space Model

Kei Takahashi, Marina Fujita, Kishiko Maruyama, Toshiko Aizono
and Koji Ara

Abstract We propose a method for forecasting intermittent demand with general-
ized state-space model using time series data. Specifically, we employ mixture of
zero and Poisson distributions. To show the superiority of our method to the Cros-
ton, Log Croston and DECOMP models, we conducted a comparison analysis using
actual data for a grocery store. The results of this analysis show the superiority of
our method to the other models in highly intermittent demand cases.

1 Introduction

Accurately forecasting intermittent demand is important for manufacturers, transport
businesses, and retailers [3] because of the diversification of consumer preferences
and the consequent small production lots of the highly diversified products. There
are many models for forecasting intermittent demand. Croston’s model [2] is one
of the most popular and has many variant models, including log-Croston and mod-
ified Croston. However, Croston’s model has an inconsistency in its assumptions
as pointed out by Shenstone and Hyndman [9]. Further, Croston’s model generally
needs round-up approximation on the inter-arrival time to estimate the parameters
from discrete time-series data.

We employ non-Gaussian nonlinear state-space models to forecast intermit-
tent demand. Specifically, we employ a mixture of zero and Poisson distributions
because the occurrence of an intermittent phenomenon generally implies low aver-
age demand. As in DECOMP [5, 6], time series are broken down into trend, seasonal,
auto-regression, and external terms in our model. Therefore, we cannot obtain para-
meters via ordinalmaximum likelihood estimators because the number of parameters
exceeds the number of data items owing to non-stationary assumptions on the para-
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meters. Therefore, we adopt the Bayesian framework, which is similar to DECOMP.
We employ a particle filter [7] for our filtering method instead of the Kalman filter
in DECOMP because of the non-Gaussianness of the system, and the observation
noises and nonlinearity in these models. To show the superiority of our method to
other typical intermittent demand forecasting methods, we conduct a comparison
analysis using actual data for a grocery store.

2 Model

2.1 Mixture Distribution and Components

Let the observation of a time series for discrete product demand be yn (n =
1, 2, . . . , N ). We assume that demand for a product at arbitrary time step n follows
a mixture distribution, considering the non-negativity of product demand. We do not
need to conduct any approximating operations as in Croston’s model. This mixture
distribution is composed of a discrete probability distribution with a value of 0 with
weight wn and a Poisson distribution that has parameter λn with weight 1 − wn:

yn ∼ wn · 0 + (1 − wn)y′
n, (1)

y′
n ∼ eλn λ

y
n

y! . (2)

From the expectation property of the Poisson distribution, the expected value of the
mixture distribution becomes (1 − wn)λn .

Now assume that parameter λn has trend component tn , seasonal component sn ,
steady component dn , and external component en:

λn = exp(tn + sn + dn + en). (3)

Specifically, the fluctuations in each component are as follows:

Δkwn = v0,n, (4)

Δl tn = v1,n, (5)

Δm
q sn = v2,n, (6)

dn =
I∑

i=1

ai dn−i + v3,n, (7)

en =
J∑

j=1

(
γ j ck,n + ve, j,n

)
. (8)

Here, Δm
q indicates the difference between cycle q and degree m in the trend term.

k and l are the degrees of differences in the weight and the seasonal component,
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respectively. I is the auto-regression order and J is the number of external variables.
ai is the j th auto-regression coefficient. v0,n , v1,n , v2,n , v3,n and ve, j,n are the noise
terms for the components, and they follow Gaussian distributions:

vi,n ∼ N (0, τ 2
i ) ∀ i = 0, 1, . . . , 3, (9)

ve, j,n ∼ N (0, τ 2
e, j ), (10)

where N (0, σ 2) is a Gaussian distribution with mean 0 and variance σ 2. In the
seasonal component, we can employmultiple components simultaneously. However,
the introduction of plural components often leads to mistakes in practice. Therefore,
we employ singular components in the seasonal component. The external component
corresponds to variables and parameters such as price and promotion variables. In
addition, we utilize the external component to consider the holiday effect via dummy
variables.

2.2 State-Space Expression

It is meaningless to estimate the time-varying parameter λn via ordinary maximum
likelihood estimators. In the simplest setting, the number of unknown variables λn

equals the number of data items yn . Furthermore, we cannot estimate the parameters
in our settings via ordinary maximum likelihood estimators because the number of
unknown variables tn , sn , dn , and en exceeds the number of data items yn .

We introduce the state-space expression to resolve the above formulation. Let
the model be expressed as a state-space model. When k = 2, l = 2, m = 1, q = 7,
I = 2, and J = 1, we can write the state vector as

xn = [wn, wn−1, tn, tn−1, sn, . . . , sn−5, dn, dn−1, en]T . (11)

Therefore, the system and observation models are described as

[System Model] xn = Fn(xn−1) + Gnvn, (12)

Fn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0 . . . 0 0 0 0
1 0 0 0 0 0 . . . 0 0 0 0
0 0 2 −1 0 0 . . . 0 0 0 0
0 0 1 0 0 0 . . . 0 0 0 0
0 0 0 0 −1 −1 . . . −1 0 0 0
0 0 0 0 1 0 . . . 0 0 0 0
...

...
...

...
. . .

. . .
...

...
...

...

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 . . . 0 a1 a2 0
0 0 0 0 0 0 . . . 0 1 0 0
0 0 0 0 0 0 . . . 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

[Observation Model] yn ∼ Zero–inflated Poisson(·|xn), (14)
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where vn is an independent and identically distributed noise term vector correspond-
ing to v0,n , v1,n , v2,n , v3,n , and ve, j,n . The observationmodel is not linear, and therefore,
we cannot employ a Kalman filter and have to go with a particle filter.

2.3 Parameter Estimation

In the above setting, the elements in Fn (with the exception of ai ) are given; however,
we need to estimate the other (hyper) parameters, τi , τe, j , and ai . Let R(yn|xn) be
the likelihood at arbitrary time n; then, the likelihood with all data (y1, . . . , yN ) is
given by

L =
N∏

n=1

R(yn|xn). (15)

We estimate the parameters by maximizing Eq. (15).
We employ a grid search algorithm tomaximize Eq. (15), because of the existence

of Monte Carlo errors in calculating the likelihood via particle filters, which varies
in each trial. Therefore, we cannot employ gradient methods such as the Newton
method. Within the particle filter, we use residual resampling [8] and sequential
importance sampling [4] to update the particles.

3 Comparison Analysis

3.1 Analyzing Data, and Models for Comparison

To show the superiority of our method, we conduct a comparison analysis of our
method and typical intermittent demand forecasting and other relevant methods,
including Croston, log-Croston [10], and DECOMP. The estimation methods used
in the Croston and log-Croston methods are those shown in Syntetos and Boylan
[11]. The smoothing parameter in the Croston model is set as α = 0.5. The data
analyzed here comprise fifty days of daily retail data for four SKU-level products
in a Japanese grocery store. Further details of the data are shown in Table1. #1 and
#4 have relative higher intermittent demand than #2 and #3. Owing to differences in
the estimation schemes, we compare forecast accuracy among these models by root
mean squares (RMS).

To shorten the calculation time, the number of particles in each time step is fixed as
10, 000 in this paper. The setting of the degrees and cycles in ourmodel andDECOMP
are k = 2, l = 2, m = 1, q = 7, I = 2, and J = 1 (the external variable is the daily
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price for an objective product,which is not used inDECOMP). In the grid search, each
hyperparameter of the error term has five nodes (vi = 0.003125, 0.00625, . . . , 0.05)
and each auto-regression coefficient has 10 nodes (ai = −1.0,−0.8, . . . , 1.0).

3.2 Results

Table2 shows the results for each data set. The overall RMS for our model is less
than those of the other three models. For #1, the RMS for our model is the lowest.
Thus, our method is superior to the other threemodels. For #4, our method is superior
to Croston and log-Croston, but inferior to DECOMP. However, DECOMP predicts
negative demand that never happens (five-ahead forecast). Therefore, our method
can be concluded to be superior to the other models in highly intermittent demand
situations.

In contrast to the highly intermittent demand situation, we cannot show substantial
superiority of our model to the other three models for #2 and #3. It is conceivable
that the degree of non-Gaussianness in the data influences these differences. If the
data have high Gaussianness, Croston and DECOMP are suitable. On the other hand,
log-Croston and our model are suitable if the data have low demand (namely low
Gaussianness).

4 Conclusions

This paper proposed a method to forecast intermittent demand with non-Gaussian
nonlinear state-space models using a particle filter. To show the superiority of our
method to other typical intermittent demand forecasting methods, we conducted a
comparison analysis using actual data for a grocery store. The results of this com-
parison analysis show the superiority of our method to the Croston, log-Croston,
and DECOMPmodels in highly intermittent demand cases. In the furture, we intend
to shorten the calculation time, and the MCMC filter [1] is a promising method by
which to overcome the problem.
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Optimal Renewal and Electrification Strategy
for Commercial Car Fleets in Germany

Ricardo Tejada and Reinhard Madlener

Abstract In this paper we model the uncertainty inherent in oil, electricity, and
battery prices, in order to find the optimal renewal strategy for transport fleets in
Germany from a car fleet operator’s perspective. We present a comprehensive statis-
tical model of total operating costs for the usage of light duty vehicles in the transport
industry. Themodel takes into consideration current and future power train technolo-
gies, such as internal combustion and electric engines. The framework allows for the
calculation of sensitivities of the relevant explanatory variables (fuel price, interest
rate, inflation rate, economic lifetime, subsidy/tax policies, and economic develop-
ment). We also calculate and evaluate relevant diffusion scenarios for commercially
used e-vehicles.

1 Introduction

In Germany, internal combustion engine vehicles (ICEV) directly cause over 14%
of the yearly CO2 emissions [1]. The increasing usage of fossil fuels, such as oil and
gas, is one of the major driving forces of climate change [2, 3]. Increasing renewable
energy supply, combined with the proliferation of electric vehicles (EV), might help
to alleviate some of these problems. However, network externalities of the incumbent
technology and the low degree of internalization of its external costs present a great
obstacle. The required investments in electric vehicle supply equipment (EVSE)
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infrastructure for the usage of battery electric vehicles (BEV) can only be financed
for a high number of BEV, and the mass adoption of BEV can only be triggered
by large investments in the charging infrastructure. Still, some niche markets exist
already today where BEV are full substitutes for ICEV. Especially interesting are
commercial applications, where scheduled routes and planned working hours allow
the unreserved usage of BEV.

Our study aims at modeling the optimal diffusion of electric light duty vehicles
(LDV), depending on various endogenous factors (e.g. a company’s driving profile
and fleet size) and exogenous factors (e.g. energy and gasoline prices and government
subsidies). In our study, we take a closer look into the main cost factors and the way
they influence the viability of BEV usage in commercial applications. Further, we
perform an extensive sensitivity analysis of the explanatory variables and forecast
the yearly sales and fleet structure of a company using various scenarios.

2 Methodology

The main aim of this study is to determine the optimal strategy for the introduction
of BEV in the commercial sector in Germany from a fleet operator’s perspective.
The economic comparison of ICEV and EV is challenging, since there are direct
and indirect factors that influence the benefits and costs of each technology. Similar
to [4], we concentrate on the measurable and quantifiable factors. This means that
we ignore the effects of non-monetizable gains since these are company-specific.
For the sake of simplicity, we assume that the benefits (B) from owning a vehicle
are constant independently of the engine technology used. Furthermore, we assume
that the supply side of the BEV market is able to provide fitting solutions for each
requirement set, i.e. the matching level of requirements and performance (M) is also
assumed constant. In case that these assumptions hold, the value comparison of both
technologies is reduced to a comparison of the total cost of ownership (TCO) of the
competing technologies.

The resulting TCO model is an integrated analytical model to determine the eco-
nomic viability of the usage of EV in the commercial sector. The model concentrates
solely on the monetizable factors that influence the vehicle’s TCO. Neither the exter-
nal costs nor the network externalities of ICEVs have been considered. This design
decision was taken to enhance the robustness of the results, since there is currently no
generally accepted guideline in place for the quantification of the above-mentioned
externalities, especially considering the lack of policies for their internalization. The
TCO model consists of five independent statistical models (oil price model, battery
cost model, electricity price model, inflation rate model, and interest rate model),
a deterministic model (TCO calculation module), two integrated databases (COST
and CIA), and a managing handler algorithm (the Fleet Renewal Algorithm). The
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Fig. 1 TCO model
architecture

overall model structure is shown in Fig. 1; for a description of the individual model
components and their interrelatedness see [5].

3 The Data

A major challenge in performing this analysis arises from the limited information
available regarding technical characteristics and pricing ofBEV.Although some elec-
tric LDV are already commercially available today, the current models do not match
all the possible requirements of the industry. In order to overcome this obstacle we
have defined artificial vehicles by using the available information of similar ICEV
and extrapolated known characteristics of already commercially available electric
LDV. Even though the presented model allows for the analysis of vehicles indepen-
dently of their technical characteristics to obtain reasonable results, we have defined
three vehicle sizes in two versions. The first version of the vehicles has an electric
engine (EE), the latter an ICE. The complete set of characteristics relevant to our
model is listed in Table1. The data used has been collected from various studies (e.g.
[6–8]), EEX, Datastream, and vehicle manufacturers (Renault, Iveco).

In order to find the most relevant factors for the diffusion of BEV we performed
an extensive analysis of the collected data. The analysis consists of three parts: (1) a
normalized sensitivity analysis of the TCO of ICEV and BEV and their difference;
(2) an analysis of the evolution of the TCO over timewhile parameterizing the results
for different variations of the describing variables; and (3) an analysis of the changes
in the TCO when varying the most relevant factors simultaneously (for a complete
list of tested variables and parameters see Table2).
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Table 1 BEV and ICEV base model characteristics

N o Characteristic Unit BEV ICEV

Large Medium Small Largea Mediumb Small

1 Pricec [1000 e] 50 40 20 42 35 16

2 Fuel typed [–] E E E D D D

3 Diesel
consumption

[l/100km] – – – 13 9 6

4 Electricity
consumption

[kWh/100km] 30 22 15.5 – – –

5 Battery size [kWh] 42 32 22 0 0 0

6 Fuel tank [l] – – – 60 70 60

7 Range [km] 140 140 140 500 500 500

8 ICE
performance

[kW(hp)] – – – 93(126) 78(106) 66(90)

9 EE performance [kW] 84 60 44 – – –

10 Trunk
(min./max.)

[m3] 15/17 7/10 3/3.5 15/17 7/10 3/3.5

11 Weight [t] 3.7 2.4 1.48 3.5 2.2 1.35
a IVECO Daily 35C 11V; b IVECO Daily 29L 11V; c excl. battery; d E = electric, D = diesel

Table 2 Parameter definition

N o Variable Name Lower limit Upper limit Step size Unit

1 L Economic life 4 10 2 [a]

2 Gsub Subsidies 0 7000 1000 [e]

3 Coil Oil price 50 +150 5 [%]

4 Cele Electricity price 50 +150 5 [%]

5 Cbat Battery price 50 +150 10 [%]

6 cfuel Fuel consumption 80 +180 20 [%]

7 Bat Battery size 4 10 1 [kWh]

8 kmY Annual mileage 10 40 5 [1000 km]

9 it Discount rate 2 8 1 [%]

4 Results

4.1 Normalized Sensitivity and Scenario Analysis

The sensitivity analysis is based on a small-sized LDV, the Renault Kangoo, cur-
rently the only mass-produced commercially available vehicle with diesel and elec-
tric engines. Unless stated otherwise, the assumed values of the variables match the
ones of the scenario described further below. First, we systematically vary one vari-
able value cet. par. and test for the impact of this change on the TCO normalized
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ICEV

BEV

(a) (b)

2013 2025

ICEV

BEV

Fig. 2 Normalized sensitivity of the TCO of a small LDV in electric and diesel version. a 2013. b
2025

to the economic life of the vehicle. Figure2a, b show the results for the years 2013
and 2025. As expected, the annual mileage and the duration of the service life of the
vehicles are the most influential factors. Furthermore, the TCO of the BEV is more
sensitive to the electricity price changes than to battery prices. For the analogous
analysis for differences in the TCO, see [5].

Based on the results of the sensitivity analysis, we selected three variables to
define plausible scenarios (oil, electricity, and battery prices) for predicting their joint
impact on overall cost. Scen. 1 represents the base case, in which current trends are
projected into the future. The environmental awareness of the customers is reflected
in lower average CO2 emissions for new vehicles. Oil prices rise in accordance with
the statistical average to about US$110 per barrel in 2020. No new policies for the
reduction of CO2 emissions are introduced, but already passed bills are enforced. No
revolutionary innovation takes place in battery technology. The base case scenario
is founded on the results of statistical analysis of the three key variables (omitting
any cross correlations of the variables). It is the development expected when neither
major policy change nor technical breakthrough take place. Scen. 2 represents the
acceleration case, in which oil prices rise to US$180 in 2020. The environmental
problems are defining governmental policy-making; as a result, new and stricter
regulations of CO2 emissions are put in place. Governmental research funding has
triggered a technological breakthrough, enabling a substantial battery cost reduction.
The large-scale usage of BEV has allowed for the increased integration of volatile
renewable energy sources, thereby reducing the electricity price. Scen. 3 represents
the deceleration case, in which environmental concerns are assumed to diminish in
the transport industry. Sizable new oil fields are being discovered. The price of oil is
only US$60 per barrel in 2020. CO2 emission reduction efforts come to a standstill
due to low prices of CO2 certificates. The low incentives to purchase BEV reduce
the forecasted market size for batteries. We assume that the business requirements
remain constant during the time of observation, and that the decisions on the vehicle
acquisitions are solely based on vehicle replacement requirements. Furthermore,
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note that we assume that these decisions are taken annually and that the vehicles’
age is uniformly distributed over the economic lifetime of the vehicles. The economic
lifetime is assumed to be six years and the annual milage 30,000km. Further details
can be found in [5].

5 Conclusions

The results show that the oil prices are the dominating factor in the calculation of the
TCO, contributing almost 40% of the total costs of an ICEV. The total mileage, as a
product of annual mileage and the service life, is the second-most important factor.
Higher total milages allow the BEV to reduce themonetary gap incurred by its higher
TCA through lower operating costs. However, the results of our analysis on future
oil and electricity prices show that the electricity prices will increase at a higher
rate than the oil prices, thereby reducing the attractiveness of BEV. While BEV are
able to match the requirements of certain commercial applications in range, secu-
rity, and reliability, the slow market penetration limits the leveraging of economies
of scale. Despite of this, the predicted gap between the TCO of ICEV and BEV
is relatively small (5–10%, depending on the framework conditions). The battery
accounts for almost 40% of the BEV purchase costs (ca. 20% of the total lifecycle
vehicle cost). Battery price development remains the biggest unknown for the TCO
for electric LDV. Further R&D investment could trigger the technological break-
through necessary to render BEV economical. Investment in EVSE is not considered
to be crucial for the diffusion of electric LDV, but would enable the wider usage of
BEV, thus increasing the battery market size and lowering manufacturing costs due
to economies of scale.

We can conclude that the economic introduction of small electric LDV cannot be
achieved in the near futurewithout incentives in the formof subsidies or newpollution
regulation policies. The current tax advantages of BEV are totally insufficient for
accelerating the diffusion of electric LDV. Furthermore, the results show that low
capital costs positively influence the diffusion of BEV. Government loans at low
interest rates could have the politically desired effect.

There remains scope for further research. For instance, the model presented can
be expanded to take into consideration the actual driving profiles of the companies,
in order to present company-specific results. Furthermore, by assessing the overall
structure of the LDVmarket in Germany, the current model could be used to forecast
the adoption rate of the BEV technology on the country level.
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A Time-Indexed Generalized
Vehicle Routing Model for Military
Aircraft Mission Planning

Jorne Van den Bergh, Nils-Hassan Quttineh, Torbjörn Larsson
and Jeroen Beliën

Abstract We introduce a time-indexed mixed integer linear programming model
for a military aircraft mission planning problem, where a fleet of cooperating aircraft
should attack a number of ground targets so that the expected effect is maximized.
The model is a rich vehicle routing problem and the direct application of a general
solver is only practical for scenarios of very moderate sizes. Therefore, a Dantzig–
Wolfe decomposition and column generation approach is considered. A column here
represents a specific sequence of tasks for one aircraft, and to generate columns,
a longest path problem with side constraints is solved. We compare the column
generation approach with the time-indexed model with respect to upper bounding
quality and conclude that the Dantzig–Wolfe decomposition yields a much stronger
formulation of the problem.

1 Introduction

We study a military aircraft mission planning problem (MAMPP) which was intro-
duced by Quttineh et al. [5]. In general, a military mission might involve various
tasks, such as surveillance, rescue assistance, or an attack. We only consider the
situation where a set of ground targets needs to be attacked with a fleet of aircraft.
The studied problem can be classified as a generalized vehicle routing problem with
synchronization, in space and time between aircraft, and precedence relations.

Synchronization in vehicle routing problems (VRPs) might be exhibited with
regard to spatial, temporal, and load aspects. A recent survey of VRPs with synchro-
nization constraints is given by Drexl [2] and shows that this topic is emerging and
challenging. Following the definitions in that paper, the synchronization in MAMPP
can be classified as operation synchronization, in which one has to decide about time
and location of some interaction between vehicles. A general framework for VRPs
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with time windows and temporal dependencies, including exact synchronization,
is given by Dohn et al. [1]. In the context of generalized vehicle routing, the time
windows extension is considered by Moccia et al. [3]. Their work concerns an appli-
cation to the design of home-to-work transportation plans. We believe to contribute
to the literature by taking into account multiple non-standard characteristics of the
generalized VRP, such as operation synchronization and precedence relations.

2 Problem Setting

The geographical area of interest for an aircraft mission is known as the target scene,
and it includes the targets that need to be attacked and other objects such as enemy
defense positions and protected objects, like hospitals and schools. The diameter of
a target scene is typically of the order of 100 km, while the target distances are of the
order of a few kilometers. Typically, a mission involves 6–8 targets and 4–6 aircraft.
The timespan of a mission is of the order of a quarter of an hour.

The objective of a mission is to gain maximal expected effect against the targets
within short timespan. Themission time is defined by the time the first aircraft passes
an entry line of the target scene and the time the last aircraft passes an exit line. Each
aircraft has an armament capacity, limiting the number of attacks it can perform. It
can also be equipped with an illumination laser pod to guide weapons. Each target
needs to be attacked exactly once, and requires one aircraft that illuminates the target
with a laser beam and one aircraft that launches the weapon. Since an attack requires
continuous illumination from the launch of the weapon until its impact, both aircraft
need to team up. This rendez-vous shall take place both in time and space.

Fig. 1 The feasible attack
space defined by inner and
outer radii, and divided into
six sectors, each with three
attack and two illumination
alternatives. A pair of
compatible attack and
illumination positions is
marked, where the arrows
indicate the flight directions X
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Figure1 shows how a target is modeled. The feasible attack space is represented
by inner and outer radii and divided into six sectors, which each holds at most three
discretized attack positions and two compatible illumination positions. For any attack
position, the expected effect on the target can be calculated. The expected effect
depends mainly on the kind of weapon being used, which is decided in advance, and
its kinetic energy.Dependingon thewinddirection and the proximity between targets,
dust and debris might reduce the visibility of the illumination. Hence, precedence
constraints are given, specifying which targets are not allowed to be attacked before
other targets.

A detailed report on the problem setting is found in [5]. Below we present
a network-based time-indexed mixed integer linear programming model for the
MAMPP. It is derived from a continuous-time model in the same reference.

3 Mathematical Model

We divide the nomenclature into indices and sets, parameters, and decision variables,
given in Tables1, 2 and 3, respectively.

The goal is to maximize the expected effect against all the targets, while also
minimizing the mission timespan. We choose to optimize a weighted combination
of these conflicting objectives, which yields a solution that is Pareto optimal.

The time-indexed mathematical model for the MAMPP is given below.

max
∑

r∈R

∑

(i, j)∈A

cr
i j x

r
i j − μtend (1)

Table 1 Indices and sets

R Fleet of aircraft, r

M Set of targets, m, to be attacked

N Set of nodes in the network, excluding the origin (orig) and destination (dest)
nodes

G, Gm Set of all sectors for all targets and for target m, respectively

NA
m , NI

m Set of feasible attack (A) and illumination (I ) nodes, respectively, for target m

A, Ag, Ig Set of arcs in the network (including from orig and to dest) and sets of arcs
(i, j) such that node j is an attack (A) node or illumination (I) node in sector g,
respectively

P Set of ordered pairs (m, n) of targets such that target m cannot be attacked before
target n

S Set of time periods within a discretized planning horizon, each of step length Δt
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Table 2 Parameters

cr
i j For arcs (i, j) with i ∈ NA

m , that is, for arcs leaving attack nodes, the value of cr
i j is

the expected effect of the attack, and otherwise the value is zero

Sr
i j The time needed for aircraft r to traverse arc (i, j), expressed in number of time

periods; equals actual time to traverse the arc divided by Δt , rounded upwards

Ts The ending time of period s, which equals s · Δt , s = 0, 1, . . . , |S|
Γ r Armament capacity of aircraft r

qm Weapon capacity needed towards target m

μ Positive parameter, used to weigh mission timespan against expected effect on targets

Table 3 Decision variables

xr
i j Routing variable, equals 1 if aircraft r traverses arc (i, j), and 0 otherwise

yr
is Equals 1 if node i is visited by aircraft r in time period s, and 0 otherwise

tend Time the last aircraft passes the exit line

subject to

∑

(orig, j)∈A

xr
orig, j = 1, r ∈ R (2)

∑

(i,dest)∈A

xr
i,dest = 1, r ∈ R (3)

∑

(i,k)∈A

xr
ik =

∑

(k, j)∈A

xr
k j , k ∈ N, r ∈ R (4)

∑

r∈R

∑

g∈Gm

∑

(i, j)∈Ag

xr
i j = 1, m ∈ M (5)

∑

r∈R

∑

g∈Gm

∑

(i, j)∈Ig

xr
i j = 1, m ∈ M (6)

∑

r∈R

∑

(i, j)∈Ag

xr
i j =

∑

r∈R

∑

(i, j)∈Ig

xr
i j , g ∈ G (7)

∑

m∈M

∑

g∈Gm

∑

(i, j)∈Ag

qm xr
i j ≤ Γ r , r ∈ R (8)

yr
orig,0 = 1, r ∈ R (9)

|S|∑

t=s+Sr
i j

yr
j t ≥ xr

i j + yr
is − 1, (i, j) ∈ A, s ∈ {0} ∪ S, r ∈ R (10)

∑

s∈S

yr
ks =

∑

(k, j)∈A

xr
k j , k ∈ N, r ∈ R (11)

∑

r∈R

∑

i∈NA
m

yr
is =

∑

r∈R

∑

i∈NI
m

yr
is , m ∈ M, s ∈ S (12)
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∑

r∈R

|S|∑

t=s

∑

i∈NA
m

yr
it ≥

∑

r∈R

∑

i∈NA
n

yr
is , (m, n) ∈ P, s ∈ S (13)

∑

s∈{0}∪S

Ts yr
dest,s ≤ tend , r ∈ R (14)

xr
i j ∈ {0, 1}, (i, j) ∈ A, r ∈ R (15)

yr
is ∈ {0, 1} i ∈ N ∪ {orig, dest}, s ∈ {0} ∪ S, r ∈ R (16)

Constraints (2)–(3) force each aircraft to leave and enter the target scene via the
origin and destination nodes, respectively, and constraint (4) is flow conservation.
The requirement that each target shall be attacked and illuminated exactly once is
implied by constraints (5) and (6), respectively, while constraint (7) synchronizes
these tasks to the same sector. Constraint (8) is armament limitation. Constraint (9)
states that each aircraft is leaving the origin at time zero. Constraint (10) ensures that
if aircraft r is visiting node j directly after node i , then the time of visiting node j
cannot be earlier than the time of visiting node i plus the time needed to traverse
arc (i, j). Constraint (11) enforces that if node i is not visited by an aircraft, no
outgoing arc (i, j) from that node can be traversed by the aircraft. Constraint (12)
states that the attack and the illumination of a target need to be synchronized in time.
Constraint (13) imposes the precedence restrictions on the attack times of pairs of
targets. Constraint (14) defines the total mission time, since all aircraft end up at the
destination node. Finally, (15)–(16) are definitional constraints.

4 Dantzig–Wolfe Decomposition

As indicated by Quttineh et al. [5], solving the continuous time version of MAMPP
to optimality takes a general solver several hours already for problem instances of
moderate sizes. To meet the expectations of this application in a real-life decision
support setting, with limited planning time available, more efficient algorithms are
needed. Especially the upper bounding quality of the continuous-time MAMPP is
very poor; we therefore propose a Dantzig–Wolfe decomposition and column gener-
ation approach for the time-indexed model given above, as a means for constructing
a stronger formulation of MAMPP and thereby find stronger upper bounds.

Our decomposition approach follows the well known route generation paradigm
for the solution of vehicle routing problems. Constraints associated with the tar-
gets and the mission timespan, that is, (5)–(7) and (12)–(14), are coupling and thus
included in themaster problem. The remaining constraints hold for individual aircraft
and are included in |R| column generation subproblems. Each column represents a
route for an aircraft, and is defined by a target sequence, timing, the task to be
performed (attack or illumination) at each target, and from which position.
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The restricted master problem optimally combines the available routes, while the
pricing problem, which amounts to a side constrained longest path problem, finds
profitable new routes for individual aircraft. Upper bounds on the optimal value
of the master problem are calculated in a standard way. To improve the practical
performance of the column generation scheme, a stabilization, see e.g. [4], is used.

5 Results and Conclusion

We have made a preliminary assessment of the time-indexed model of MAMPP and
the column generation approach by using a few small problem instances that are
identical to, or slight modifications of, instances used in [5].

Table4 shows problem characteristics and results obtained with the continuous-
time model of MAMPP in [5] and the above time-indexed model. Even for rather
large time steps, the optimal solutions found by the continuous-time and time-indexed
models are very similar, with respect to attack sequences and to attack and illumi-
nation nodes. Although not reported in the table, we also observe that the solution
times of the continuous-time and time-indexed models are similar for large time
steps while the latter is much more demanding when the steps are small. Further, the
upper bounds given by the linear programming relaxations of the continuous time
and time-indexed version of MAMPP are very similar, independent of the sizes of
the time steps, and very weak. Table5 shows a comparison between the time-indexed
model and the column generation approach. Clearly, the column generation approach
provides vastly superior upper bounds.

Our main conclusion is that the Dantzig–Wolfe decomposition gives rise to a very
strong formulation of the MAMPP. The solution times of our first implementation
of the column generation approach are not competitive compared to direct methods.
There are however many opportunities for tailoring and streamlining the computa-
tions. A great advantage of the column generation approach to MAMPP in a real-life
planning situation would be its creation of many possible routes for the aircraft. This
is of practical interest since a real-life MAMPP can never be expected to include

Table 4 Problem characteristics and comparison of the continuous-time and time-indexed models

Problem Cont. Δt = 60 Δt = 45 Δt = 30

No. |M| Prec. Γ Eff. tend Eff. tend Eff. tend Eff. tend

1 3 – 3 0.974 333 0.808 420 0.974 405 0.974 390

2 3 – 2 0.974 338 0.808 420 0.974 405 0.974 390

3 3 {1|23} 3 0.863 352 0.808 420 0.863 405 0.808 390

4 4 {1|2|3|4} 3 0.917 628 1.000 840 0.917 720 0.917 720

5 4 {1|2|3|4} 2 0.917 638 1.000 840 0.917 720 0.917 720

Here, μ = 0.005 and all instances include two aircraft. The notation {1|23} means that target 1 is
attacked before targets 2 and 3. The maximal possible total effect on targets is 1.000
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Table 5 Comparison of the time-indexed model and column generation

Time-indexed CG: Δt = 45 CG: Δt = 30

No. LP IP45 IP30 LP IP Iter. LP IP Iter.

1 23.173 1.933 2.683 1.933 1.933 16 2.683 2.683 22

2 23.173 1.887 2.674 1.887 1.887 11 2.674 2.674 15

3 22.813 0.346 0.080 0.346 0.346 22 1.271 – 22

4 30.117 −7.677 −7.730 −6.532 – 37 −4.744 – 37

5 30.115 −7.730 −7.730 −7.083 – 29 −6.002 – 60

The LP optimal values of the time-indexed model vary very little with the step size; we give the
value for Δt = 60. The columns IP45 and IP30 are the optimal values of the time-indexed model
with different time steps. Further, IP are the objective values obtained when solving the integer
version of the final master problem (if a feasible solution exists), and Iter. is the number of column
generation iterations needed to reach optimality

all possible aspects of the mission to be planned, and because of the multi-objective
nature of the problem. The access to multiple aircraft routes can then be exploited in
an interactive decision support system.
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Adapting Exact and Heuristic Procedures
in Solving an NP-Hard Sequencing Problem

Andreas Wiehl

Abstract The paper on hand focuses on the development of computerized solutions
for a particular class within the area of shunting yard optimization. Our aim is to
determine a humping sequence to shunt freight cars from inbound trains to outbound
trains. The objective is to minimize the total weighted tardiness. We present a simple
mixed integer problem formulation, two heuristic approaches and an implementation
in CPLEX for the study. In addition, we compare the CPU and objective value of the
proposed algorithms with the results of CPLEX optimizer in a computational study.

1 Introduction

Shunting yards are used to separate freight cars on to several tracks and the associated
new directions. They represent important nodes in freight rail networks.

Figure1 shows a schematic layout of a hump yard. At the receiving tracks, there
are inbound trains that contain freight cars going fromone origin to one destination. In
order to transport each freight car to its destination, the inbound trains are decoupled
and disassembled into individual freight cars. Then an inbound train is humped
as a whole over a hump track, whose inclination accelerates the freight cars by
gravity. Via a system of tracks and switching points the freight cars are humped to
given classification tracks, where they can be reassembled such that homogeneous
outbound trains with freight cars in a shunting-dependent order can be generated.
Finally, a train is pulled as a whole from the classification tracks to the departure
tracks.

The paper on hand focuses on the development of computerized solutions for a
particular class within the area of railway optimization. Our aim is to determine a
humping sequence to shunt freight cars from inbound trains to outbound trains. The
objective is to minimize the total weighted tardiness. We consider the sum of all
priority values assigned to the outbound trains multiplied by the time units that have
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Fig. 1 A schematic layout of a typical hump yard [3]

exceeded the given due date. It should be noted that this article is a brief review of the
paper ‘Minimizing delays in a shunting yard’ by Jaehn et al. submitted in 2015 [7].
In the context of shunting yard operations, the objective of total weighted tardiness
has, despite of its high practical relevance, only partially been investigated by Kraft
[8–10]. In the last two decades, literature on operational problems at shunting yards
has significantly grown. Just recently, a broad survey on shunting yard operations
has been presented by Boysen et al. [3]. A situation in which the freight cars can
be humped again, is analyzed by Bohlin et al. [1] and [2]. We call this multi stage
shunting. The paper on hand focuses on a single stage shunting problem, for a detailed
literature survey on other shunting problems, the readermay refer to thework ofGatto
et al. [4], Hansmann and Zimmermann [5] and the seminal paper of Jacob et al. [6].

2 Modeling the Problem

In this section we provide a detailed description and the mathematical program of
our single stage shunting problem considering weighted tardiness (SSSW T ). Our
problem restricts on forming single-destination trains with arbitrary freight car order.
The freight cars of each outbound train o ∈ {1 . . . O} are served by one or many
inbound trains t (t = 1 . . . T ). Trains can only leave the yard after an inbound train
has been fully processed and all freight cars dedicated to this outbound train have been
shunted. Hence, the possible departure times are represented by steps s = 1 . . . T .
The time of each step is determined by the time for shunting the according inbound
train. Hence, outbound trains may leave the yard simultaneously leading to the same
departure time. The processing time of one inbound train consists of the constant
setup time su and processing times pt of each freight car assigned to train t . Each
freight car has a fixed dedicated outbound train.

We have to find a humping sequence of all inbound trains t = 1 . . . T so that we
can determine the departure time of the outbound trains. The sequence of freight cars
within an in- or outbound train is not relevant. At the starting point of the shunting
process all inbound trains are already located on the receiving tracks of the shunting
yard, i.e. we do not consider release dates. The parameter gt represents the number
of freight cars of each inbound train t (t = 1 . . . T ). The outbound trains have to be
formed on the classification tracks. We do not allow further rearranging of freight
cars using the switches between classification tracks and departure tracks. There is
a sufficient number of tracks, i.e. at least T receiving and O classification tracks



Adapting Exact and Heuristic Procedures in Solving an NP-Hard Sequencing Problem 615

Table 1 Notation

T Number of inbound trains (indices t , s and q)

O Number of outbound trains (index o)

su Setup time for each train in time units

pt Processing time for one freight car in time units

at,o Number of freight cars from inbound train t to outbound train o

gt Number of freight cars of inbound train t (gt := ∑O
o=1 at,o)

fo Number of freight cars of outbound train o ( fo := ∑T
t=1 at,o)

wo Sum of all priority values assigned to outbound Train o

do Due date of outbound train o in time units

xs,t Binary variable: 1, if inbound train t is shunted in step s; 0, otherwise

ys,o Binary variable: 1, if outbound train o has not left the yard until step s; 0, otherwise

zt,o Binary variable: 1, if inbound train t is processed before the departure of o; 0, otherwise

and no length restrictions. Hence, every in- and outbound train can be located on a
separate track.The hump represents the only bottleneck of this optimization problem.
Only one inbound train can be pushed over the hump at once and all freight cars
of an inbound train are shunted before the next train is shunted. Additionally each
freight car receives a non-negative weight, depending on priority aspects of the cargo.
The weight wo of an outbound train o ∈ {1 . . . O} then corresponds to the sum of
the freight car weights. An inbound train can serve many outbound trains and an
outbound train may receive freight cars from several inbound trains. The departure
time of an outbound train is the point in time inwhich an outbound train is completely
build up on a classification track and is ready to be moved to a departure track. For
the departure time of every outbound train o ∈ {1 . . . O}, a due date do is given. If
the train departs later than its due date, the tardiness (measured in time units) is
multiplied with the train’s weight wo so that we receive a value for the impact of
this train’s tardiness. Summing up these values for all outbound trains defines our
objective function.

Using the notation summarized in Table1, (SSSWT) consists of constraints (2) to
(6) and objective function (1):

Minimize

O∑

o=1

(
wo · max

{
0,

T∑

t=1

(
zt,o · (gt · pt + su)

) − do

})
(1)

subject to

T∑

t=1

xs,t = 1 ∀s = 1 . . . T (2)
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T∑

s=1

xs,t = 1 ∀t = 1 . . . T (3)

T∑

t=1

s−1∑

q=1

xq,t · at,o

fo
≥ 1 − ys,o ∀o = 1 . . . O; ∀s = 1 . . . T (4)

ys,o + xs,t − 1 ≤ zt,o ∀t = 1 . . . T ; ∀o = 1 . . . O; ∀s = 1 . . . T (5)

xs,t , ys,o, zt,o ∈ {0, 1} ∀t = 1 . . . T ; ∀o = 1 . . . O; ∀s = 1 . . . T (6)

Objective function (1) minimizes the weighted tardiness of all outbound trains
within an instance of (SSSWT). Therefore, we sum up the time units (gt · pt + su)

of all inbound trains t that are processed before the departure of outbound train o and
subtract it by the due date do. Since we only consider tardiness (and not lateness),
this value must not be negative. Obviously, this equation can easily be linearized.

Equalities (2) and (3) ensure that an inbound train can only be processed once
and only one train can be assigned to each step s. The assignment is defined by
the binary variable xs,t , which receives the value one, whenever train t is sorted in
step s, otherwise 0. Constraints (4) force binary variables ys,o to receive the value
one, whenever outbound train o is not fully sorted before step s and is still waiting
on one of the classification tracks (0, if a train already left the yard by step s). This
holds true whenever the number of sorted freight cars until step s, divided by the total
number of freight cars assigned to train o, is smaller than one. Thus, no outbound
train can depart before the first step is completed and thus, the departure time of
every outbound train is greater zero. Constraints (5) ensure that binary variables zt,o

receive value 1,whenever ys,o and xs,t both receive value 1 in a single step s = 1 . . . T .
Hence, zt,o = 1 indicates a train t that is processed before the departure of train o and
thus affecting the departure time of o (0, otherwise). Finally, constraints (6) force
xs,t , ys,o, and zt,o to be binary.

3 Algorithm

We generate an effective sorting for the decision variable xs,t . After testing several
different sorting procedures, the following SORT approach has the most promising
results: The priority value consists of the sum of all penalty costs assigned to the
outbound trains o that are served by a train t , if all outbound trains o would leave the
yard at the same time step h. Additionally, we sum up the values of each time step h
between 0 to the processing time for an instance. We sort the priority values non-
increasingly. This sorting presents a far better solution than the simple First Come
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First Serve (FCFS) approach. In the next step we try to improve the initial solution as
obtained with SORT using a hill climbing algorithm combined with tabu search. Our
neighborhood solution consists of all possible interchanges of two arbitrary trains
within the sequence of inbound trainsΥ . As a result, we obtain a set of feasible sorted
solutionsΦ with |Φ| = T · ( T −1

2 ). After computing all sequences ofΦ, we select the
one with the lowest objective function score Υ ′, which is not part of the tabu list Ψ
and add it to the list. Afterwards we start the next iteration with the new solution Υ ′
in step one. Once we reached 100 iterations with no improvement (noimp = 100) to
the current best solutions scoreU B, the procedure ends and deliversU B as the result.
Obviously, a solution with objective function score U B can easily be determined in
the course of the algorithm. The tabu search algorithm offers a good solution in very
short time. Usually the heuristic stops after 200 iterations on average. Further, we
managed to improve the Tabu Search (TS) algorithm by letting it run with various
initial solutions.

4 Solution

In this section we present a numerical study that investigates the efficiency of the
presented algorithms. The parameters for the number of in- and outbound trains
{10, 20, 30, 40}, the departure times {early, middle, late} and the maximum number
of different trains that an incoming train can deliver {5, 10, 15}, are linked in a
fully factorial design. With 30 instances per combination, we obtain 1080 different
instances for the study. The maximum number for the tracks (40) arises from the fact
that European shunting yards usually never have more than 40 directional tracks.
We have implemented (SSSW T ) in ILOG using model (1)–(6) and used CPLEX
v12.3 for solving the instances with the standard MIP-Gap. Unfortunately, the CPU
rises sharply for only ten trains, with a maximum computation time of 1878 s for
only one instance. Hence, we used CPLEX with a time limit of 30 s in our study.
Table2 shows the objective value and CPU in seconds for all procedures on the 1080
instances. The total objective function score of CPLEX is on average 49.57 % above
the result of the TS approach, which is close to the least efficient ‘first come first
serve’ method with 80.07 % (FCFS).

SORT delivers a significantly better score in a negligible time with an average gap
of 28.84 % above the optimum. Interestingly, the tabu search (TS) delivers a very
promising result in a relatively short amount of time. Further, the gap of SORT in
regard to TS rises with the number of in- and outbound trains from 14.90 to 28.84 %.
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Strategic Deterrence of Terrorist Attacks

Marcus Wiens, Sascha Meng and Frank Schultmann

Abstract Protection against terrorist threats has become an integral part of organ-
isational and national security strategies. But research on adversarial risks is still
dominated by approaches which focus too much on historical frequencies and which
do not sufficiently account for the terrorists motives and the strategic component of
the interaction. In this paperwemodel the classical risk analysis approach using a spe-
cific variant of adaptive play and compare it with a direct implementation approach.
We find that the latter allows for a more purposeful use of security measures as
defenders avoid to get caught in a “hare-tortoise-trap”. We specify the conditions
under which the direct implementation outperforms adaptive play in the sense that it
lowers the cost of defence at a given rate of deterrence. We analyse the robustness of
our results and discuss the implications and requirements for practical application.

1 Introduction

Terrorist attacks frequently happen. Since 9/11, organisations and countries (“defend-
ers”) have heavily adapted their security measures to it. Analysing terrorist risks
(“adversarial risks”) has been a largely unknown terrain for security authorities.
Inevitably, well-known standard risk analysis approaches have initially been used
as blueprints [5, 6]. The idea is to use historical data, interpreting risks as random
outcomes based on historical distributions. However, different risk types call for
different “logics of protection”. While risks arising from natural events or accidents
can be modelled using historical frequencies, adversarial risks have a strong strategic
component which need to be considered. Protection measures certainly can be antic-
ipated by terrorists (“offenders”). Thus, pure history-orientated approaches play into
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offenders hands. As a result, the systems vulnerability and the offenders intention
are both partly endogenous.

The remainder of the paper is organised as follows. In Sect. 2 we present themodel
and the basic assumptions. In Sect. 3 we analyse the dynamic behaviour of themodel,
derive the stationary solution and compare the results with a direct implementation
mechanism. In Sect. 4 we discuss the implications of our result and suggest some
needs for future research.

2 The Basic Model

We set up a simple defender-offender game. The defender wants to protect his assets
and the offender seeks to attack them. Keeping it simple, we restrict the model to
three targets j ∈ {1, 2, 3}. Target j = 1 represents a human target where an attack
predominantly implies personal injuries and fatalities; j = 2 is associated with high
economic and immaterial loss; and j = 3 implies minor material damage which can
be overcome within a short period of inconvenience. The game is a sequential move
game, with the defender as the first-mover and the offender as the second-mover.

Thedefender has incomplete information about the offender’smotivation.Accord-
ing to [7], we consider two offenders i ∈ {1, 2}. Offender T1 (i = 1) wants to change
the political order or societal system and, thus, regards persons or institutions which
fulfil systemic key functions or symbolizes the systems strength as enemies. He val-
ues the three targets according to his pay-offs (uij) as follows: u12 > u11 > u13 > 0.
Offender T2 (i = 2) views society fundamentally different and is characterized by
deep hatred with regard to peoples way of life and value systems. The latter wants to
destroy the prevailing system, maximising damage and causing widespread fear. He
values the three targets according to his pay-offs as follows: u21 > u22 > u23 > 0.

The defender faces T1 with probability θ and T2 with probability (1 − θ). His
preferences (vj) over the targets (if the attack succeeds) are ordered as follows: 0 >

v3 > v2 > v1. If an attack is successful, the defender realises losses which are highest
for fatalities, lower for high material damages and lowest for marginal damages.
Table1 summarises the respective pay-offs and gives an example.

The defender’s objective is to protect all targets by allocating defence-unitsdj ∈ D,
with D being the maximum amount of defence-units available to him. The defence-
units represent the costs of protection. That are the expenditures to install, maintain

Table 1 Target-dependent pay-offs of defender and terrorist in the case of a successful attack

Target Defender Anti-system T1 Fanatic T2

(1) High number of fatalities v1 = −6 u11 = +3 u21 = +7

(2) High material loss v2 = −3 u12 = +5 u22 = +3

(3) Low material loss v3 = −1 u13 = +1 u31 = +1
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and operate security measures. The defence-units act as barriers (obstacles) for the
offender, reducing the attractiveness of particular attack strategies. The offender as a
second-mover observes the installed defence-units and accordingly decides. His net
pay-off (unet

ij ) is a combination of his pay-off minus the defence-units: unet
ij = uij − dj.

The offender only attacks if unet
ij > 0. By using defence-units the defender can prevent

an attack, but he cannot attenuate the impact of an attack. He seeks to minimize
his expected loss according to Eq. (1). The outcomes are evaluated by VNM-utility
functions.

min
d

3∑

j=1

vj subject to 0 <

3∑

j=1

dj ≤ D (1)

3 Traditional Risk Analysis as Adaptive Play

We aim at identifying weaknesses of risk analysis approaches for adversarial risks
which are exclusively history-orientated. A way to model such an approach is to
apply adaptive or fictitious play [3, 4]. These are essentially learning procedures
where the players update their beliefs along with empirical frequency distributions
of past strategies. This is the continuation of our previous work presented in [7].

In a first step we set up the dynamic equations for the offender and the defender,
getting a system of recurrence equations. It is impossible to derive a particular solu-
tion in closed form. Thus, we focus on the stationary (steady-state) solution. This
solution can be interpreted as long-term equilibrium where all learning rests. We
show that a static allocation mechanism can outperform the adaptive play from the
defenders point of view.

The offender’s attack-strategy is represented by aij. For the sake of simplicity
we allow just one attack per period of either T1 or T2. We define aij as a binary
strategy variable; it takes the value aij = 1 if an attack occurs, and aij = 0 if no attack
occurs. The offender will attack if and only if two conditions are fulfilled: unet

ij > 0
and unet

ij > max. Equation (2) states the dynamic attack-strategy for the subsequent
period t + 1, given a distribution of defence-units d[t] = {d1[t], d2[t], d3[t]} in t.

aij[t + 1] =
{
1, for uij − dj = max {ui1 − d1[t], ui2 − d2[t], ui3 − d3[t], ε}
0, else

(2)

The auxiliary parameter ε > 0 represents the smallest possible value for uij − dj,
assuring a strictly positive utility for any attack. Let āij be the average rate of attack
until period t, executed by the offender against a particular target. The defender
then allocates defence-units with respect to the experienced damage according to
equation (3).

dj[t + 1] · D = āij[t] · Sj

3∑
j=1

āij[t] · Sj

(3)
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The defenders reaction causes the adaptive play property of the model in the first
place. Although the offender reacts to the defenders preceding decision, he is not
aggregating historical data in a statistical sense. In contrast to “pure” fictitious play
the defenders strategy is not based on the offenders strategy distribution alone, but
also on the distribution of the expected damage (average attack rate and target-related
damage). The dynamic interaction between offender and defender can be described
by Eqs. (2) and (3). Figure1 illustrates a simulation of this dynamic interaction for
the parameter constellation of our example (see Table1) and θ = 0.

Average and expected damage follow an iterating damped oscillation with one
curve permanently overtaking the other. In Fig. 1, regions of excess damage are
shaded. These are the critical periods where the defender is caught off guard due
to the sequential and adaptive procedure, corresponding to the well-known ‘hare-
tortoise-trap’. Too adaptive defence strategies run the risk of just ‘reacting’, forcing
the defender into the inferior role.

The process involves adaptive learning with steadily declining expectation errors.
In the long run the system approaches a stationary equilibrium where the proportion
of defence-units for j converges to Eq. (4) and the attack rate to Eq. (5).

d∗
j · D = āij · Sj

3∑
k=1

āik · Sk

(4)

ā∗
ij =

2∏

k �=j
(dk · D − uik)

(
2∏

k �=j
(dk · D2 − uik) + dj · D2

2∑

k �=j
dk + uij

2∑

k �=j
uik

)
−

[
3∑

j=1
dj ·

3∑
j=1

uij −
3∑

j=1
uij

]
· D

(5)

Fig. 1 Sequence of expected and realized damage (Adaptive Play)
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Evaluating Eqs. (4) and (5), we get d∗ = {
d∗
1 = 0.67, d∗

2 = 0.27, d∗
3 = 0.06

}

and a∗ = {
a∗
1 = 0.42, a∗

2 = 0.35, a∗
3 = 0.23

}
as optimal long run strategies for the

defender and the offender, respectively. In the long run the defender will assign two
third of all defence-units to the most vulnerable target, but he cannot fully prevent
attacks by this. In 42%of all cases the offender chooses j = 1.With 35% the offender
goes for j = 2, mainly due to its increased vulnerability. The defender just assigns
27% of his defence-units to j = 2. The same argument applies for j = 3 which is
least attractive for the offender, but also unprotected and therefore an easy task.

In the example the defender assigns all 10 defence-units and the average damage
amounts to 3.8 units (long run). But can the damage further be reduced by con-
centrating on the most vulnerable target? The defender could allocate the necessary
defence-units to j = 1, just to inhibit all attacks once and for all. He should deter T2
because j = 1 is most vulnerable to him. The defender can achieve this by allocating
d1 · D = u21 defence-units to j = 1. In our example, he should spend 7 units to j = 1
to fully deter both types. The remaining defence-units should be assigned to j = 2.
By doing this he can deter T2 again but not T1 in this case, because T1 has a higher
utility in attacking j = 2. The expected damage 3θ + (1 − θ) is strictly less than 3.8
(average damage of the adaptive play scenario). It becomes apparent that a direct
implementation mechanism which starts at the offenders motivation structure can
lead to a more purposeful allocation of defence resources. In a last step we derive a
condition under which the direct implementation mechanism outperforms the adap-
tive play approach. In order to avoid the complex allocation problem for lower-range
targets, we set the maximum amount of resources equal to the T2-utility for target
1 (D = u21). This leads to a unique optimal implementation of defence-units, given
by the vector d∗ = {

d∗
1 = 1, d∗

2 = 0, d∗
3 = 0

}
and the optimal (unique) attack rates

a∗ = {
a∗
1 = 0, a∗

2 = 1, a∗
3 = 0

}
for T1 and T2. This leads to a certain damage of

S2 units. We now need to look for critical conditions which have to be fulfilled so
that the implementation mechanism outperforms the adaptive play approach. This is
formally expressed through inequality (6).

a∗
1S1 + a∗

2S2 + a∗
3S3 > S2 with D = u21 (6)

This inequality holds if both u21 and S1 are sufficiently high, but also when u23
and S3 are sufficiently low. Thus, if there is an extremely critical target in the sense
that the defender is enormously hurt by an attack, but also if the offender puts a very
high priority on it, then the direct implementation should be preferred. Under these
conditions the adaptive play approach is too risky, because even a minimal frequency
of attack against j = 1 leads to a sharp increase in average damage.

4 Discussion

The adaptive play model allows for a precise analysis of history-orientated risk
analysis strategies vis–vis human adversaries which has been criticized by [1, 2] and
others. It highlights the main weakness of this approach: The defender permanently
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reacts and lags behind which leads to recurrent episodes of excess damage. This
can quickly lead to a severe loss of resources, but also to significant damages of
reputation. We showed that this aspect is highly relevant if very critical targets are in
the crosshair of fanatic terrorists. By contrast, the direct implementation mechanism
takes some kind of “illusion of control” from the defending institution. It compels
that there are inevitably natural limits to risk reduction due to limited resources.
The most vulnerable parts are the systems limits, urging the defender to establish
clear priorities. However, the direct implementation mechanism requires sufficient
knowledge about possible motives, targets and restrictions of offenders. They should
thoroughly be analysed to get a clearer picture of the offenders’ incentive structures.
In this sense, historical data are an important input. It is essential to investigate pos-
sible intentions and motives of offenders by carving out clear motivation structures
of potential offender-types. We conclude that it is more important to concentrate on
profiling activities with regard to current threats rather than to reproduce and analyse
bygone menace.
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Optimal Airline Networks, Flight Volumes,
and the Number of Crafts for New
Low-Cost Carrier in Japan

Ryosuke Yabe and Yudai Honma

Abstract Recently, numerous low-cost carriers (LCCs) have been established and
have become popular as a new style of airline service. In Japan, PeachAviation began
business as an LCC in 2012. However, while it is true that some airline companies
are suffering from a slump in business, Peach Aviation has succeeded because it
set up a hub airport at Kansai International Airport and runs many cash-cow routes.
To establish a new LCC, consideration of airline networks is most important for
success. Therefore, in this study, we propose a mathematical model to optimize the
airline network, flight volume, and number of aircrafts for maximizing a new LCC’s
profit supposing a hub-spoke style network, and solve the model as a mathematical
programming problem. First, we investigate the case of a single-hub network, and
subsequently consider a two-hub network. It was determined that, when both Narita
and Kansai International Airports are chosen as hub airports, a new LCC’s profit
is maximized.

1 Introduction

Recently, many airlines that offer low fares by simplifying services have been
established and are referred to as low-cost carriers (LCCs); this has resulted in a
greater number of transportation choices for travelers. When a new LCC is founded,
it is essential for the LCC to consider optimum routes. From this viewpoint, in this
study, we consider an LCC that has newly entered the domestic airline network in
Japan. We evaluate the optimal airline network with simultaneous consideration of
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flight volume and number of aircrafts that will maximize the new LCC’s profit. In
particular, we consider a hub-spoke network used by many LCCs.

An earlier study by Sohn and Park [1, 2] is considered as a fundamental basis for
the present study. Sohn discussed themeans to formulate and obtain an exact solution
for the problem of which link between a spoke airport and a hub airport should be
connected when the location of the hub airport is given to minimize transportation
cost. Sohn’s model indicated that every spoke airport must be connected to a hub
airport. In our model, however, it is possible, under optimum conditions, that some
spoke airports are not connected to any hub airport. Furthermore, Sohn considered
a comparatively simple objective function involving strictly the minimization of
transportation cost; the model did not include the parameters of airline volume or
number of aircrafts. Many differences exist therefore between Sohn’s model and the
model proposed in this study. In what follows, we propose an optimal airline network
to maximize a new LCC’s profit, and apply the model to Japan’s domestic airlines.

2 Proposed Model

In this section, we assume a new LCC that gains access to Japan’s domestic airline
network, and simultaneously determine the optimal network, flight volume, and
number of aircrafts that maximize the new LCC’s profit.

First, we suppose a total of I hub airports indexed by i(i = {1, 2, · · · , I }) and
a total of J − I spoke airports indexed by j ( j = {I + 1, I + 2, · · · , J }). In the
proposed network model, the hub airport is given and each spoke airport can be
arbitrarily connected to other hub airports resulting in a hub-spoke network (which
suggests that we assume a multiple allocation model). Within the proposed network,
hub-hub connections are possible but spoke-spoke connections are not allowed. As
such, in this network model there are

I × (J − I ) +
(

I

2

)
(1)

possible flight links.
In this study, we propose flight volumes Ri j from a given hub airport to each

hub-spoke airport and number of aircrafts A as decision variables. Additionally, we
suppose a hub-spoke network, so that Ri j = 1 indicates a single service trip both
outward and homeward between airports i and j . Furthermore, in this study, we
suppose that the same aircraft can be used in any flight.

In this study, we consider both income and cost to maximize the profit of the
new LCC. First, fare income and incidental business income are considered for
the total income. Incidental business income is earned by charging food/drink or
seat assignments. This income, given by the parameter β (%), is attached to the fare
income.When the fare for link i is Yi (Yen) and the number of embarkations between
airports i and j is mi j , the total income REV is formulated as given by Eq. (2).
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REV = (1 + β)

I∑

i=1

J∑

j=i+1

{
Yi j

(
mi j + m ji

)}
(2)

By calculating the summation in (2), every link in (1) is considered.
Next, the costs of airport use (C H

i and C S
j , Yen/year), sales management (K ,

Yen/year), aircraft (M , Yen/year), fuel and employment ( f , Yen/flight·minute), and
traveling, maintenance, and shipping (L , Yen/flight) are considered. Here, the super-
scripts H and S respectively indicate hub and spoke. The parameter L also includes
the cost to employees for airport use.

When ti j is the traveling time between airports i and j , and Q is 365 (days), the
total expenditures C O ST is formulated as given in Eq. (3).

C O ST =
I∑

i=1

C H
i +

J∑

j=I+1

b j C
S
j +

I∑

i=1

J∑

j=i+1

ei j K + AM + Q
I∑

i=1

J∑

j=i+1

Ri j
{

f
(
ti j + t j i

) + 2L
}

(3)

Furthermore, ei j , in the above equation, indicates whether there is more than one
flight between airports i and j , where ei j = 0 for no flight and ei j = 1 for more
than one flight. Additionally, b j indicates whether a spoke airport is placed at airport
j , where b j = 0 when airport j is not used and b j = 1 if airport j is placed as a
spoke airport.

Under the above assumptions, the proposed formulation for maximizing the new
LCC profit is given by Eqs. (4)–(16).

max . REV − C O ST (4)
I∑

i=1

J∑

j=i+1

{
Ri j

(
ti j + t ji + 2θ

)} ≤ T A (5)

mi j ≤ ni j ∀i, j (6)

mi j ≤ QG Ri j ∀i, j (7)

m ji ≤ n ji ∀i, j (8)

m ji ≤ QG R ji ∀i, j (9)

Ri j ≤ 99ei j ∀i, j (10)
I∑

i=1

ei j ≤ I b j ∀i, j (11)

0 ≤ mi j∀i, j (12)

Ri j ∈ {0, 1, 2, · · · } (13)

A ∈ {0, 1, 2, · · · } (14)

ei j ∈ {0, 1} (15)

b j ∈ {0, 1} (16)
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In the above equations, T indicates the maximum operation time (minutes.), θ

indicates the shuttle time (min.), ni j indicates the predicted number of people using
traveling in an airplane between airports i airport and j airport, and G indicates the
number of seats of one in an aircraft. Incidentally, the coefficients of determination
of this mathematical programming are Ri j , A, ei j , and b j .

3 Method of Parameter Assignments

To calculate revenues and costs, we must assign a value to each parameter. In this
section, we describe the parameter setting method employed.

To assign a value to ni j , we use data from the “Domestic Passenger Record per
each route and month” [3] and “Inter-Regional Travel Survey” [4] produced by the
Ministry of Land, Infrastructure, Transport and Tourism.

The Domestic Passenger Record contains data regarding the number of people for
each route among existing airlines and the total number of all airlines for each route
in 2012. The Inter-Regional Travel Survey contains the number of people traveling
by airplane between arbitrary prefectures in 2010. We use these data based on the
rule above to set ni j .

If the new LCC obtains a route wherein an existing LCC is already in service,
we ascertain the number of people using that route and divide that number by the
number of competing LCCs. In this case, we do not consider an increase in demand.

When only a legacy carrier is in service, we ascertain the number of legacy carrier
customers on that route and consider an increase in demand owing to the new LCC
service. We subsequently employ a logit model to calculate the rate of LCC use. We
incorporated travel fee and travel time as utility functions. Finally, we multiply the
number of legacy carrier customers including the assumed increase in demand by
the obtained rate of LCC use.

Because Inter-Regional Travel Survey data indicate air traffic between arbitrary
prefectures, we first allocate airports to each prefecture. We already calculated the
rate of LCCuse for each route by the logitmodel, andwe calculate an average for each
airport. Then, we multiply the number of travelers derived from the Inter-Regional
Travel Survey by the average from the logit model for each airport and arrive at a
value for ni j .

If an existing LCC is in service between airport i and j , we use this value for
Yi j . We ascertain this value from each LCC’s homepage and use an average over one
month. If an existing LCC is not in service, we employ the relationship given by
Eq. (17) below, where distance is the air travel distance between airports.

Yi j (calc.) = 872.96 × distance−0.731. (17)
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We omit details about rental fees C H
i and C S

j , the cost of sales management K ,
cost of aircraft M , and traveling, maintenance, and shipping cost L , but these data
are mainly derived from Skymark Airlines Inc. [5], one of Japan’s largest LCCs.

4 Example Calculations

In this section, we provide a specific calculation using our profit maximizationmodel
for a new LCC given in Sect. 2, and the method of parameter assignment given in
Sect. 3 in the case of a domestic airline network in Japan.

There are more than 100 airports in Japan, but in this study we restrict our inves-
tigation to the Narita Airport and 15 other airports, and attempt to obtain an exact
solution by employing a branch and bound approach using Mathematica 9. It is
not possible to consider all airports owing to limitations in calculational resources.
Therefore, we chose airports that is ranked in the top 16 based upon the number
of incoming and outgoing passengers. Furthermore, we chose Narita, Shinchitose,
Fukuoka, Kansai, Naha, and Chubu from these 16 airports as possible hub airports.

First, we list the results of single-hub calculations, where I = 1, in Table1.
From Table1, the new LCC’s profit is maximized when Narita Airport is the

chosen hub airport.
Subsequently, we list the results of two-hub calculations, where I = 2, in

Table2 when Narita-Kansai, Narita-Chubu, Narita-Shinchitose, Narita-Fukuoka, or
Shinchitose-Kansai are chosen as the pair of hub airports.

Table 1 Results of single-hub calculations (Million Yen)

Hub Profit Revenue Cost Number
of aircraft

Hub Profit Revenue Cost Number
of aircraft

Narita 449 7,783 7,334 4 Fukuoka −148 1,771 1,919 1

Kansai 71 2,045 1,975 1 Shinchitose −149 1,690 1,839 1

Chubu −58 1,778 1,836 1 Naha −203 0 2,032 0

Table 2 Results of two-hub calculations (Million Yen)

Hub pair Profit Revenue Cost Aircraft Hub pair Profit Revenue Cost Aircraft

Narita-
Kansai

740 9,931 9,191 5 Narita-
Fukuoka

433 9,727 9,293 5

Narita-
Chubu

636 7,922 7,285 4 Shinchitose-
Kansai

377 7,616 7,240 4

Narita-
Shinchitose

465 9,637 9,172 5 Chubu-
Kansai

283 5,815 5,532 3
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Table 3 Flight volumes from Narita and Kansai International Airports (Flights)

Narita Kansai Chubu Shinchitose Fukuoka Naha Kagoshima Sendai

Narita • • 0 0 0 0 0 1 0

Kansai 0 • • 0 0 0 0 1 1

Hiroshima Kumamoto Miyazaki Kobe Matsuyama Nagasaki Komatsu Oita

Narita 2 2 1 0 1 0 1 1

Kansai 0 0 1 0 0 0 0 0

As shown in Table2, profit is maximized when Narita and Kansai International
Airports are chosen as the hub airports. Flight volumes from Narita and Kansai
International Airports are listed in Table3 below.

Similar to the case of the single-hub calculations, numerous links connect to small
airports in rural areas, and, the rental fees affect the results. In fact, the primary reason
that the top twomost profitable hub airport pairs are Narita-Kansai and Narita-Chubu
is that these three airports are the top three airports based on the number of incoming
and outgoing passengers with the lowest rental fees.

5 Conclusion

In this study, we consider a new LCC that has gained access to Japan’s domestic
airline network, and establish an airline network that maximizes the new LCC’s
profit. We consider a hub-spoke network that numerous existing LCCs presently
use, and we investigate a multi-hub network using simultaneous decision of flight
volume and number of aircrafts.

Furthermore, we found that rental fees profoundly affect connection choices. As
such, it would be most beneficial to establish more accurate rental fees to increase
the accuracy of our calculations because the top three airports based on the number
of incoming and outgoing passengers with the lowest rental fees were chosen for
hub airports as a result.

A source of inaccuracy in our calculations, which could be rectified in the future,
is the use of 2012 data. Use of 2013 data would allow us the calculation which is
closer to today’s situation if the data were disclosed to the public.
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Variable Speed in Vertical Flight Planning

Zhi Yuan, Armin Fügenschuh, Anton Kaier and Swen Schlobach

Abstract Vertical flight planning concerns assigning cruise speed and altitude to
segments that compose a trajectory, such that the fuel consumption is minimized and
the time constraints are satisfied. The fuel consumption over each segment is usually
given as a black-box function depending on aircraft speed, weight, and altitude.
Without time consideration, it is known that it is fuel-optimal to fly at a constant
speed. If an aircraft is under time pressure to speed up, the industrial standard of cost
index cannot handle it explicitly, while research literature suggest using a constant
speed. In this work, we formulate the vertical flight planning with variable cruise
speed into a mixed integer linear programming (MILP) model, and experimentally
investigate the fuel saving potential over a constant speed.

1 Introduction and Motivation

Planning a fuel-efficient flight trajectory connecting a departure and an arrival air-
port is a hard optimization problem. The solution space of a flight trajectory is
four-dimensional: a 2D horizontal space on the earth surface, a vertical dimension
consisting of discrete altitude levels, and a time dimension controlled by aircraft
speed. In practice, the flight planning problem is solved in two separate phases: a
horizontal phase that finds an optimal 2D trajectory consisting of a series of seg-
ments; followed by a vertical phase that assigns optimal flight altitude and speed to
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each segment. The altitude and speed can be changed only at the beginning of each
segment. This work focuses on the vertical phase. A vertical flight profile consists
of five stages: take-off, climb, cruise, descend, and landing. Here we focus on the
cruise stage, since it consumes most of the fuel and time during a flight, while the
other stages are relatively short and have relatively fixed procedures due to safety
considerations. Lovegren and Hansman [5] considered assigning optimal speed and
altitude for the cruise stage, and comparing the optimal vertical profile to the real
operating vertical profiles in USA.A potential fuel saving of up to 3.6%was reported
by the vertical profile optimization. However, no time constraint is taken into account
in their computation as in real life. Note that in such case, it is known that the fuel-
optimal speed assignment is to use a constant optimal cruise speed throughout the
flight.

A practical challenge in airline operations is to handle delays due to disruptions
such as undesirable weather conditions and unexpected maintenance requirements.
Such delays are typically recovered by increasing the cruise speed, such that the next
connection for passengers as well as for the aircraft can be caught. Speeding up an
aircraft may also be useful, for example, to enter a time-dependent restricted airspace
before it is closed, or when an aircraft is reassigned to a flight which used to be served
by a faster aircraft. The industrial standard cost index was introduced by aircraft
manufacturers to input a value (e.g., between 0–999) that reflects the importance
between time-related cost and fuel-related cost, such that optimal flight speed is
controlled. However, this approach cannot handle explicitly hard time constraints
such as the about-to-close airspace. Aktürk et al. [1] considered increasing cruise
speed in the context of aircraft rescheduling, andhandled time constraint explicitly for
scheduling purpose. However, their mathematical model only considered assigning
a constant speed for the whole flight. It leaves an open research question: given
a flight to be accelerated from its optimal speed, is it more fuel-efficient to allow
variable speed on each segment? We formulate this problem as a mixed integer
nonlinear programming (MINLP) model, and present linearization techniques in
Sect. 2, examine its computational scalability in Sect. 3 and empirically investigate
the question above using data for various aircrafts.

2 Mathematical Model

The unit distance fuel consumption of an aircraft depends on its speed, altitude, and
weight. Each aircraft’s unit distance fuel consumption data is measured at discrete
levels of each of the three factors. Given speed and weight, the optimal altitude can
be precomputed by enumerating all possible altitudes. Thus the unit distance fuel
consumption Fv,w defined for a speed level v ∈ V between optimal and maximal
speed, and a weight level w ∈ W can be illustrated in Fig. 1. Other input parameters
include a set of n segments S := {1, . . . , n}with length Li for all i ∈ S; theminimum
andmaximum trip duration T and T ; and the dry aircraft weight W dry , i.e. the weight
of a loaded aircraft without trip fuel (reserve fuel for safety is included in the dry
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Fig. 1 The unit distance fuel
consumption (kg per nautical
mile) by aircraft speed (mach
number, from optimal speed
to maximal speed) and
weight (kg) for Airbus 320

weight). The variables include the time vector ti for i ∈ S ∪ {0}, where ti−1 and ti
denote the start and end time of segment i ; the travel time Δti spent on a segment
i ∈ S; the weight vector wi for i ∈ S ∪ {0} and wmid

i for i ∈ S where wi−1, wmid
i , and

wi denote the start, middle, and end weight at a segment i ; the speed vi on a segment
i ∈ S; and the fuel fi consumed on a segment i ∈ S. A general mathematical model
for the vertical flight planning problem can be stated as follows:

min w0 − wn (1)

s.t. t0 = 0, T ≤ tn ≤ T (2)

Δti = ti − ti−1 ∀i ∈ S (3)

Li = vi · Δti ∀i ∈ S (4)

wn = W dry (5)

wi−1 = wi + fi ∀i ∈ S (6)

wi−1 + wi = 2 · wmid
i ∀i ∈ S (7)

fi = Li · F̃(vi , wmid
i ) ∀i ∈ S. (8)

Equation (1) minimizes the total fuel consumption; (2) enforces the flight duration
within a given interval; (3) ensures the time consistency; the basic equation of motion
on each segment is given in (4); the weight vector is initialized in (5) by assuming
all trip fuel is burnt during the flight; weight consistency is ensured in (6), and the
middle weight of each segment calculated in (7) will be used in the calculation of
fuel consumption in (8), where F̃(v, w) is a piecewise linear function interpolating
F for all the continuous values of v and w within the given grid of V × W . F̃ can
be formulated as a MILP submodel using Danzig’s convex combination method [3].
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Here we present one of its variants, and drop the index i hereafter for simplification.
The grids of V × W are first partitioned by a set of triangles K . The grid indices of
the three vertices of each triangle k ∈ K is stored in Nk . Each triangle is assigned
a binary variable yk , yk equals 1 if (v, w) is inside triangle k. We further introduce
three continuous variables for each triangle λk,n ∈ R

+ for k ∈ K , n ∈ Nk such that

∑

k∈K

yk = 1 (9a)

∑

n∈Nk

λk,n = yk ∀k ∈ K (9b)

∑

k∈K ,n∈Nk

λk,n · Vk,n = v (9c)

∑

k∈K ,n∈Nk

λk,n · Wk,n = w (9d)

∑

k∈K ,n∈Nk

λk,n · F(Vn, Wn) = F̃(v, w) (9e)

where (9a) ensures only one triangle is selected, (9b) sums λ of each triangle to 1
only if the triangle is selected, together with (9c) and (9d), the value of non-zero
lambda is determined, such that the fuel estimation at a (v, w) is given by (9e) as a
convex combination of λ and the grid value.

Another difficulty in the model is to handle the quadratic constraint in Eq. (4).
It can be linearized by quadratic cone approximations. First we can rewrite the
equality (4) into an equivalent inequality L ≤ v · Δt , since neither increasing v nor
Δt leads to fuel saving. Applying the variable transformation α = 1

2 (v − Δt), τ =
1
2 (v + Δt), β = √

L yields
√

α2 + β2 ≤ τ , which defines a second-order cone, and
thus can be approximated by linear inequality system as introduced by Ben-Tal
and Nemirovski [2] and refined by Glineur [4]. We introduce continuous variables
α j , β j ∈ R for j = 0, 1, . . . , J , and initialize by setting α0 = 1

2 (v − Δt) and β0 =√
L . The approximation level parameter J controls the approximation accuracy. Then

the following constraints can be added:

α j+1 = cos
( π

2 j

)
· α j + sin

( π

2 j

)
· β j , j = 0, 1, . . . , J − 1, (10a)

β j+1 ≥ − sin
( π

2 j

)
· α j + cos

( π

2 j

)
· β j , j = 0, 1, . . . , J − 1, (10b)

β j+1 ≥ sin
( π

2 j

)
· α j − cos

( π

2 j

)
· β j , j = 0, 1, . . . , J − 1, (10c)

1

2
(v + Δt) = cos

( π

2J

)
· αJ + sin

( π

2J

)
· βJ . (10d)
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3 Experiments and Results

Four different aircrafts are used for our study: Airbus 320, 380 and Boeing 737
and 777. The characteristics of these aircrafts are listed in Table1. Our preliminary
experiments for fuel estimation accuracy test confirmed that when dividing a longest
possible 7500 nautical miles (NM) trip into equidistance segments of 100 NM, the
total fuel estimation error is under 1kg in 200 tons consumption (i.e. a relative error
of under 5 · 10−6). With the same 1kg error threshold, we experimentally determine
J = 10 for A320 and B737, J = 11 for B777 and J = 12 for A380.

We set up instances for each of the four aircraft types by considering different
levels of speed-up and different travel distances. Two levels of speed-up are used: 2.5
and 5%, since the maximum possible speed-up is around 7.2 to 8.5% as shown in
Table1, higher speed-up settings also do not leavemuch room for speed variation. For
each aircraft, different typical travel distances are tested, ranging from 800 NM for
B737, which is around the distance from Frankfurt to Madrid, to 7500 NM for A380
and B777, which is around the distance from Frankfurt to west coast of Australia.
Each trip is divided into equidistance segments of 100 NM each.

These instances were first tried to be solved without conic reformulation, and
SCIP 3.1 was used as a MINLP solver. Each run was performed on a computing
node with 12-core Intel Xeon X5675 at 3.07 GHz and 48 GB RAM. Only single
thread was used for SCIP. These realistic instances cannot be solved by SCIP within
24h. We reduced the number of segments and coarsened the weight grid, and found
the largest instance solved is with 10 segments and 4 weight levels (|W | = 4).

With the conic reformulation, the MINLP model becomes MILP model, so com-
mercial MILP solver such as CPLEX can be applied. We applied CPLEX 12.6, and
each run was performed on the same computing node, with 12 threads per run. The
computational results including the computation time and the gap (if cut off at 24h)
was shown in Table2. All the real-world instances are solved to provable optimality
or near-optimality (less than 0.05%). Instances with no more than 25 segments can
typically be solved within one minute. Increasing the number of segments seems to
increase the computational difficulty noticeably.

Table 1 Four aircraft types, Airbus 320, 380, Boeing 737, 777, and their characteristics, such as
optimal andmaximal speed (inMach number), dryweight andmaximalweight (in kg), andmaximal
distance (in NM)

Type Opt.
speed

Max.
speed

Dry
weight

Max.
weight

Max.
distance

|V | |W | J

A320 0.76 0.82 56614 76990 3500 7 15 10

A380 0.83 0.89 349750 569000 7500 7 24 12

B737 0.70 0.76 43190 54000 1800 7 12 10

B777 0.82 0.89 183240 294835 7500 8 16 11

The number of speed grids |V | (between optimal and maximal speed) and weight grids |W |, and
the empirically determined conic approximation level J are also listed
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Table 2 Instances and their computational results on four aircraft types, with two speed-up factors
2.5 or 5%, and various numbers of segments |S|
Aircraft |S| 2.5% Speed up 5% Speed up

Comp.
time

Gap Fuel
saving (%)

Comp.
time

Gap Fuel
saving (%)

A320 15 16 0 0.009 21 0 0.007

20 28 0 0.009 32 0 0.009

25 57 0 0.009 43 0 0.009

30 191 0 0.009 23901 0 0.009

35 735 0 0.005 34631 0 0.010

A380 30 525 0 0.008 276 0 0.053

40 1691 0 0.005 360 0 0.093

50 4952 0 0.012 14043 0 0.117

60 86400 0.02% 0.013 86400 0.02% 0.121

70 86400 0.02% 0.013 86400 0.03% 0.180

75 86400 0.03% 0.017 86400 0.03% 0.177

B737 8 2 0 0.013 4 0 0.020

12 9 0 0.015 11 0 0.014

15 15 0 0.011 22 0 0.016

18 17 0 0.013 31 0 0.023

B777 25 275 0 0.011 69 0 0.007

35 4759 0 0.001 425 0 0.005

45 86400 0.02% 0.004 86400 0.03% 0.015

55 13552 0 0.001 86400 0.02% 0.013

65 86400 0.04% 0.005 86400 0.05% 0.020

75 86400 0.05% 0.023 86400 0.03% 0.020

Each segment is 100 NM, so the total distance is 100 × |S|. Computation time (seconds), gap from
optimality, and potential fuel saving are listed

We compared also the optimal value of using variable speed as computed above
with an optimal constant speed. Since the fuel consumption is a monotone function
of speed, the optimal constant speed can be computed as 2.5 or 5% over the optimal
speed, respectively. As shown in Table2, the potential fuel savings of using variable
speed compared to a constant speed are rather small for the relativelymature aircrafts
A320, B737, andB777. The rather newA380 shows the highest potential fuel savings
of up to 0.18%. Although this number seems small, it means a lot in the highly
competitive market of the airline industry. It also shows that there is room for Airbus
to improve the performance of their new flagship airplane.

Our current experiments do not consider the influence of theweather, in particular,
the wind. As also suggested in [5], a strong head wind may favor higher speed, while
flying slowermay be advantageous in a strong tail wind. The currentMILPmodel can
be easily extended to include wind influence. Practically, the current MILP approach
may require undesirable long computation time, but its optimal solution may be used
to assess the quality of further heuristic approaches.
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A Fast Greedy Algorithm for the Relocation
Problem

Rabih Zakaria, Laurent Moalic, Mohammad Dib
and Alexandre Caminada

Abstract In this paper, we present three relocation policies for the relocation prob-
lem in one carsharing system. We implement these policies in a greedy algorithm to
evaluate their performance. Compared with CPLEX, greedy algorithm proved that it
is able to solve the most difficult system configurations in at most one second while
providing good quality solutions. On the other side, greedy algorithm results show
that relocation policies that do not rely on historical data, will not be very efficient
in reducing rejected user demands, on the contrary they can contribute in increasing
their number while increasing the total number of relocation operations.

1 Introduction

It’s safe to say, vehicle-sharing systems are among the top modern-world up and
coming transportation innovations. In our study, we focused on carsharing systems
and more precisely, one-way carsharing system. Carsharing operators offer many
cars for public use by system users, generally for short-term rentals. Cars are located
in different stations all over urban areas; each station has a fixed number of parking
spaces. Users can pick up a car from a station at time t and drop it off in any other
station. Issues may arise however during the day, when many one-way trips are
done, the system tends to become imbalanced [1]. Stations that are popular points of
departure become empty, preventing users who want to make a ride at those stations,
from using the system. Consequently, other stations are full. Thus, users who want
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to return the car are compelled to look for another station or to wait until a place is
free. Ultimately, users tend to lose interest in using this system that often appears to
be unavailable and unreliable when they need it. To solve the imbalance problem,
carsharing operators recruit employees to relocate cars from the saturated stations
to the empty stations or to the stations that need more cars to satisfy user demands.
We call these operations: Car Relocation and we refer to the employees that perform
these operations by “Jockeys”.

There are many related works in the literature dealing with this problem, both for
carsharing and bikesharing. In [2], they proposed to use the client himself to con-
tribute in the relocation operation; although this approach was successful in reducing
42% of the overall number of relocation operations, this only works when 100%
of clients participate, which is obviously not always guaranteed. In another paper,
[4] presented a decision support system for carsharing companies to determine a
set near-optimal operating parameters for the vehicle relocation problem. Suggested
parameters lead to a reduction in staff cost of 50%, a reduction in zero-vehicle-time
ranging between 4.6 and 13.0%, a maintenance of the already low full-port-time
and a reduction in number of relocations ranging between 37.1 and 41.1% of staff
and operating parameters for the car relocation problem. Furthermore, The impor-
tance of relocation operations in increasing the carsharing operator profit has been
demonstrated in [3].

In next sections, we provide a brief system description. Then we present our
relocation policies. After that, we present our results and analyze them. Finally, we
sum up by a conclusion and perspectives.

2 System Description

We represent a carsharing system by a time-space network where a day is subdivided
into 96 time steps, each time-step covers 15min. For each time step, we have the
number of arriving, departing and available cars at each station.We obtain the system
data by using a platform developed by our team [5], which enables us to generate dif-
ferent carsharing system configurations by varying input parameters such as number
of stations, number of parking spaces in each station and the average number of trips
per car. This platform takes advantage of real mobility data collected by professional
in regional planning, in addition to socio-economic information and GIS shape files
for the region of the study. Using google maps, the platform calculates the time and
distance needed to move from one station to another.

3 Greedy Algorithm

In a previous work, we modeled the relocation problem as an Integer Linear Pro-
gramming model [6]. We solved the model using CPLEX. After running the model
through different configurations, we noticed that the execution time tends to increase



A Fast Greedy Algorithm for the Relocation Problem 645

dramatically when we increase the number of jockeys involved in the relocation
operations. For some configurations, CPLEX takes more than two days to deliver a
solution and for other configurations, we could not get any results using this solver.
The long execution time to solve the relocation problem using CPLEX, pushed us to
think about a different approach that solves the relocation problem in a faster time.
For this sake, we developed a greedy algorithm that tries to reduce the number of
rejected demands using the minimum number of relocation operations. Our greedy
algorithm proves that is able to deliver, in at most one second, good quality solutions
when compared with CPLEX results.

4 Relocation Policies

In this section, we propose three relocation policies and then we implement these
approaches using a greedy algorithm in a policy pattern to measure the effect of each
policy on the total number of rejected demands. Each relocation operation consists
of two steps: in the first step, the jockey chooses the station where he will take a car.
Then in the second step, he chooses the station where he will drop that car in order
to regain the balance of the system. The choice of relocation policy plays a major
role in reducing the number of rejected user demands and therefore in increasing the
client satisfaction.

4.1 Policy 1

In this approach, as the first step of the relocation operation, the jockey tries to find
the nearest stations to his current location. If he finds many stations having the same
distance, he chooses the station that has the maximum number of cars. Then, in the
second step, the jockey looks for the nearest stations to his location. If he finds many
stations having the same distance, he chooses the station that has the least number of
cars. As we see in Fig. 1 each station is represented by a disc that contains the station
name and the number of available cars at the specified time. In this example, during
the first step, the jockey finds two stations S2 and S3 that are on the same distance
from his current station, but he goes to station S3 since it has a bigger number of cars.
Then, during the second step, the jockey goes to station S1, since it is the nearest
station at first and because it has the minimum number of cars knowing that we have
the matrix of distance between each pair of stations. In this policy, the priority is
given to the distance between the stations with the aim of minimizing the total time
of relocation operations.
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Fig. 1 Simple relocation
operation using policy 1

4.2 Policy 2

This approach is similar to the previous one, but here,we reverse the order of choosing
the stations at each step. As the first step of the relocation operation, the jockey tries
finding the list of stations having the maximum number of cars, and then chooses the
nearest station amongst this list. Then, in the second step, the jockey looks for the
list of stations having the minimum number of cars, and then he chooses the nearest
station amongst this list. In this policy, the priority is given to rebalance the number
of cars at each station instead of the distance as in the policy 1 described earlier, with
the aim of regain balance for the stations.

4.3 Policy 3

In this approach, the jockey tries to solve the maximum number of rejected demands
in each relocation operation. As the first step, the jockey looks for the list of stations
that will have the soonest expected rejected demands because stations are full and
the list of stations that can provide cars for other stations. Then, in a second step,
the jockey looks for the list of stations that will have the soonest expected rejected
demands because stations are empty and the list of stations that may need cars in
the future. When the jockey gets these lists, he plans the relocation operation in a
way that reduces the maximum number of rejected demand while avoiding that these
operations cause future rejected demands in the affected stations. In this policy, we
consider that the jockey has a perfect knowledge of what will happen in the future,
so he can avoid removing or adding cars to some stations when it can lead to cars
shortage or cars saturation respectively.
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5 Results and Experimentation

In Fig. 2, we see a comparison of the three policies described earlier. Results are
shown for a carsharing system having 20 stations of 10 parking places for each, using
150 cars with 9 trips per day as an average. Aswe can see, the performance of policy 1
is slightly better than policy 2 at first, then when we increase the number of jockeys
over 19, Policy 2 performs better in reducing the number of rejected demands. This
difference is expected, since policy 2 prioritizes the relocation operations that tends to
rebalance the systems vehicle inventory. In addition, when using both of policy 1 and
policy 2,we observe thatwhenwe increase the number of jockeys over 20, the number
of remaining rejected demands increases. This is due to bad relocation decisions that
cause new rejected demands to appear in the future. However, policy 3 appears to
be the best. We can explain this by the fact that the jockey has perfect knowledge
of the future. Which enables him to take better relocation decisions that reduce the
maximum number of rejected demands without causing new rejected demands in
the future. Using this policy, the jockey relocates cars only when he is sure that
the relocation operation will reduce the number of rejected demands, otherwise he
waits for the right moment for the relocation operations. This is clear in Fig. 2, we
see that the number of relocation operations using policy 1 and policy 2 is kind off
constant, but policy 2 uses less relocation operations than policy 1. However, the
number of relocation operations in Policy 3, tends to decrease along with the number
of remaining rejected demands.

Fig. 2 Comparison of the performance of the relocation operations using the three policies
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6 Conclusion and Future Works

One-way carsharing systems are attractive to users who want to do one-way trips,
since it is flexible and available on the go. However, the imbalance in cars inventory
that occurs during the day due to the one-way trips in some stations, makes the
system unavailable for users when they need it. Car relocation operations seems
to be essential to mitigate this problem and thus to increase client satisfaction. In
this paper, we compare three different car relocation policies. We found that the
performance of policy 1 and policy 2 are near at first, and then policy 2 performs
better after the number of jockeys surpasses a limit of 20. However, the performance
of Policy 3 where the jockey has a perfect knowledge of the future is much better
than the two other policies. We can conclude that applying policies that are based on
intuitive decisions, such as distance and number of cars at stations, without taking
into consideration the effect of these relocation operations on the whole system,
will not be very efficient in reducing the number of rejected demands. In addition,
these policies lead to bigger number of relocation operations, which increases the
total operation cost. A relocation policy that takes into consideration historical data
seems to be promising in reducing the number of rejected demands. In future works,
we aim to develop a stochastic heuristic approach to solve the relocation problem
based on historical data, in a simulation environment that takes real life factors into
consideration.
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Multicriteria Group Choice via Majority
Preference Relation Based on Cone
Individual Preference Relations

Alexey Zakharov

Abstract A multicriteria group choice problem that is considered in the article
includes: a set of feasible decisions; a vector criterion reflecting general goals of a
group of DecisionMakers (DMs); asymmetric binary relations of DMs, which reflect
individual preferences. Individual preferences are given by “quanta” of information,
which indicate a compromise between twocomponents of vector criterion.Amajority
preference relation is also considered. It is proved that such majority relation is a
cone one, and the cone, generally speaking, is not convex. The property of convex
is equivalent to transitivity of the corresponding relation. The goal of the research
is to construct a convex part of a majority preference relation cone, which gives a
transitive part of this relation. The case of group of three DMs and three components
of criteria is considered. It is shown how to specify a convex part of a majority
preference relation cone, and construct a set of nondominated vectors.

1 Introduction

A group of people makes decisions in various spheres of human life: economics,
politics, engineering, science, etc. Generally problems are considered from different
points of view, and each person, theDecisionMaker (DM), has their own preferences.
Here the following problem arises: how we should aggregate individual preferences
to satisfy as many members of the group as possible. Also, preferences could be
expressed in different ways: ranking, utility function, preference relation.

Bergson and Samuelson proposed a social welfare function which was consid-
ered as a rule of aggregation of individual ordering. The problem of constructing
of a “reasonable” rule of aggregation was widely discussed by Arrow [3, 4]. He
formulated axioms (5 conditions) for social welfare function, which strict rational-
ity of individual and group behavior. Also, he proved that if there are at least three
alternatives, then an aggregation ordering rule (social welfare function) satisfying
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these axioms does not exist. Having analyzed the construction of group choice func-
tion upon individual choice functions, Aizerman and Aleskerov proposed axioms
of “rational” behavior for the choice functions [1, 2]. Nowadays there exist many
methods to solve a multicriteria group choice problem [5–7, 12].

The simplest rule of individual preferences aggregation is the majority rule: a
group chooses a decision if it is the “best” according to the preferences of half of
the group. Arrow proved that a majority rule could be not of a weak order (not
connected or not transitive) [3]. In this paper individual preferences are expressed in
notation of cone preference relations with particular properties, and such individual
preference relations are aggregated by the majority relation. It is proved that it is a
cone relation. Some properties of such majority preference relation are considered,
and the problemof nontransitivity is discussed. It is shown how to use the information
about individual preference relations (“quanta” of information) in a group choice
when the group consists of three members.

2 Model of Multicriteria Individual Choice Problem

Let the group of DMs consists of n members. Denote them by DM1, . . . , DMn .
The group of DMs should make the choice among some set of feasible alternatives,
solutions X ⊆ R

k . The goals of the group are reflected by components of the vec-
tor criterion f , which is defined on X , Y = f(X). For example, a vector criterion
has such components: profit, loss, ecological impact, etc. The tastes of each DMl ,
l ∈ {1, . . . , n}, are reflected using the individual preference relation �l . Expression
y(1) �l y(2) for any vectors y(1), y(2) ∈ R

m means that for DMl variant y(1) is more
preferable than variant y(2). Thus, a multicriteria group choice model consists of the
following objects:

• a set of feasible vectors Y ;
• n preference relations �1, . . . ,�n , defined on Y , of DM1, . . . , DMn .

In [9, 10] axioms of “reasonable” individual choice, which restrict the behavior
of any DM, are introduced. Further, we assume that each preference relation �l

satisfies these axioms. The Pareto set reduction axiomatic approach applied to this
class of multicriteria individual choice problems restricted by this axioms [8–11] is
developed by Noghin.

Definition 1 [9–11] It is said that we have a “quantum” of information about a
DMl ’s preference relation with groups of criteria A and B and with two sets of
positive parameters w(l)

i for all i ∈ A and w(l)
j for all j ∈ B if for vector y ∈ R

m such
that

yi = w(l)
i , y j = −w(l)

j , ys = 0 ∀i ∈ A,∀ j ∈ B,∀s ∈ I \ (A ∪ B) ,
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where I = 1, . . . ,m, A, B ⊂ I, A �= ∅, B �= ∅, A ∩ B = ∅, the following relation
is valid: y �l 0. In such case the group of criteria A is called more important, and
the group B is called less important with the given positive parameters w(l)

i (profit),
w(l)

j (loss).

Thus, the existence of “quantum” of information means that a vector y ∈ N m ,
N m = R

m \(Rm+ ∪(− R
m+) ∪ {0m}), is given such that y �l 0. Here, set N m is the set

of the vectors, which have at least one positive component and at least one negative
component. The collection of “quantum” of information is defined by the sequence
of vectors y(s) ∈ N m , s = 1, . . . , pl . In papers [8–11] it is shown how to use
such collections of different types in individual choice process that allows to reduce
bounds of this choice. It lets a DM to choose the “best” alternative frommore narrow
set than the initial set (before using the information). Now it is of interest to consider
how to use individual information in terms of “quantum” in group decision making
process.

3 Majority Preference Relation and Its Properties

In this section the group relation,which aggregates individual relations, is introduced,
and properties of such relation are investigated.

Definition 2 A binary relation R defined on R
m is called a cone relation if there

exists a cone K such that the following equivalence holds for any y(1) , y(2) ∈ R
m :

y(1)Ry(2) ⇔ y(1) − y(2) ∈ K . Note, that the inclusion y(1) − y(2) ∈ K is the same to
y(1) ∈ y(2) + K .

According to [8, 9], the preference relation �l of DMl for any l ∈ {1, . . . , n},
which satisfies the axioms of “reasonable” choice, is a cone relation with a pointed
convex cone Kl (without the origin 0) that contains the nonnegative orthant R

m+.

Definition 3 Let us call the group preference relation�maj defined onR
m themajor-

ity preference relation if for any vectors y(1), y(2) ∈ R
m relation y(1) �maj y(2) is

equivalent to the existence of subset {l1, . . . , l p} such that relations y(1) �l j y(2) are
valid for all j ∈ {1, . . . , p}, where p = [(n + 1)/2].

Here by [a] we denote an integer part of number a. According to Definition3, the
majority preference relation �maj takes into account intentions of at least a half of
the group. Consider the cone

K =
C p

n⋃

l=1

p⋂

j=1

Kl j , (1)

where {Kl1, . . . , Klp} is the subset of the set of the cones {K1, . . . , Kn}. Note, that
for any l, k ∈ {1, . . . ,C p

n }, l �= k, subsets {Kl1, . . . , Klp} and {Kk1, . . . , Kkp} do not
coincide, C p

n is a p-combination of the set {1, . . . , n}. It is easy to check that K is a
cone as a union and intersection of cones.
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Lemma 1 The majority preference relation �maj is a cone relation with cone K .

Proof To prove the lemma it is sufficient to establish the following equivalence:
y(1) �maj y(2) ⇔ y(1) − y(2) ∈ K .

Necessity. Due to Definition3, if the relation y(1) �maj y(2) is valid, then
there exists subset {l1, . . . , l p} such that the relations y(1) �l j y(2) hold for all
j ∈ {1, . . . , p}, where p = [(n + 1)/2]. Since the preference relation �s of DMs

for any s ∈ {1, . . . , n} is a cone relation with the appropriate cone Ks , there exists a
subset {Kl1, . . . , Klp} such that y(1) − y(2) ∈ Kl j for all j ∈ {1, . . . , p}. This implies
the inclusion y(1) − y(2) ∈ ⋂p

j=1 Kl j , and we obtain y(1) − y(2) ∈ K .
Sufficiency. Let the inclusion y(1) − y(2) ∈ K holds. Using the inverse transfor-

mations we obtain that the relation y(1) �maj y(2) is valid. �

Lemma 2 The majority preference relation �maj is an irreflexive relation, invariant
under a linear positive transformation, and its cone K contains the nonnegative
orthant R

m+ and does not contain the origin 0.

One can obtain that an arbitrary cone is convex, if and only if the correspond-
ing cone relation is transitive [8]. In general, the cone K is not convex. There-
fore, the majority relation �maj is not transitive. Let K̂ be a convex cone, such that
K̂ ⊆ K , R

m+ ⊆ K̂ , call this cone K̂ the transitive part of the cone K . And if a
convex cone K̃ , such that K̃ ⊆ K , K̃ ⊂ K̂ , K̃ �= K̂ , does not exist, then call
this cone K̂ the maximum transitive part of the cone K . In general, it is not unique
for particular cone K . Similarly, let us call the corresponding cone relations �tr and
�maxtr the transitive part and themaximum transitive part of the majority preference
relation �maj .

Let us denote by Ndom�tr (Y ) the set of nondominated vectors of the set Y accord-
ing to the relation �tr , i.e. Ndom�tr (Y ) = {y∗ ∈ Y | �y ∈ Y : y �tr y∗}. It forms a
group choice as a set of unimprovable vectors.

The inclusion R
m+ ⊆ K̂ implies the inclusion Ndom�tr (Y ) ⊆ P(Y ), where P(Y )

is the set of Pareto-optimal vectors (the Pareto set), P(Y ) = {y∗ ∈ Y | �y ∈ Y : y ≥
y∗}. Note, that if each DM does not have any “quantum” of information, then K =
K̂ = R

m+, and, therefore, the equality Ndom�tr (Y ) = P(Y ) holds, i.e. in such case
the group choice is the Pareto set P(Y ). Thus, the inclusion Ndom�tr (Y ) ⊆ P(Y )

reduces the bounds of group choice according to the majority rule and the given
“quanta” of information.

4 Using “Quanta” of Information in Case of 3 DMs

Let the group of DMs consists of three members: DM1, DM2, DM3. Each DMl has
its individual preference relation �l , which satisfies axioms of “reasonable” choice,
and each relation �l is associated with cone Kl for any l ∈ {1, 2, 3}. Note, that
cone Kl is pointed, convex, R

m+ ⊆ Kl , 0 /∈ Kl for any l ∈ {1, 2, 3}. According
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to Lemma1 and formula (1), the majority preference relation �maj has cone K =
(K1 ∩ K2) ∪ (K1 ∩ K3) ∪ (K2 ∩ K3).

Let m = 3. Consider information about individual preferences (I): each DM has
two “quanta” of information as follows. The vectors y(l), u(l) by DMl are given
such that y(l) �l 0, u(l) �l 0 for any l ∈ {1, 2, 3}, where y(1) = (w(1)

1 ,−w(1)
2 , 0)T ,

u(1) = (0, v(1)2 ,−v
(1)
3 )T , y(2) = (0,w(2)

2 ,−w(2)
3 )T , u(2) = (−v

(2)
1 , 0, v(2)3 )T , y(3) =

(−w(3)
1 , 0,w(3)

3 )T , u(3) = (v
(3)
1 ,−v

(3)
2 , 0)T .

For example, for DM1 it means the following: (1) the first criterion is more impor-
tant, the second criterion is less important with positive parameters w(1)

1 (profit), w(1)
2

(loss); (2) the second criterion is more important, the third criterion is less important
with positive parameters v(1)2 (profit), v(1)3 (loss). Similar interpretations for DM2 and
DM3 can be done.

Theorem 1 Let information (I) is given. Then the inclusion

P̂12(Y ) ∩ P̂13(Y ) ∩ P̂23(Y ) ⊆ P(Y ) (2)

holds, where P̂lk(Y ) = f(Pglk (X)), glk =
(

Al

Ak

)
f for any l, k ∈ {1, 2, 3}, l �= k. The

intersections P̂12(Y )∩ P̂13(Y )∩ P̂23(Y ) form a group choice according to information
(I). Here matrices A1, A2, and A3 are the following

A1 =
⎛

⎝
1 0 0

w(1)
2 w(1)

1 0
w(1)
2 v

(1)
3 w(1)

1 v
(1)
3 w(1)

1 v
(1)
2

⎞

⎠ , A2 =
⎛

⎝
w(2)
2 v

(2)
3 w(2)

3 v
(2)
1 w(2)

2 v
(2)
1

0 1 0
0 w(2)

3 w(2)
2

⎞

⎠ ,

A3 =
⎛

⎝
w(3)
3 0 w(3)

1

w(3)
3 v

(3)
2 w(3)

3 v
(3)
1 w(3)

1 v
(3)
2

0 0 1

⎞

⎠ .

Proof Consider cone Ml = {e1, e2, e3, y(l),u(l)} \ 0 for any l ∈ {1, 2, 3}, and let
M = (M1∩ M2)∪(M1∩ M3)∪(M2∩ M3). Obviously, Ml ⊆ Kl for any l ∈ {1, 2, 3},
M ⊆ K .

It can be proved that the cone Ml coincides with the set of all nonzero solutions of
the system Aly ≥ 0 for any l ∈ {1, 2, 3}. From here the inclusion y ∈ Ml ∩ Mk holds,

if and only if vector y satisfies the system

(
Al

Ak

)
y ≥ 0 for any l, k ∈ {1, 2, 3}, l �= k.

Intersections M1 ∩ M2, M1 ∩ M3, and M2 ∩ M3 are convex cones. Cone M is
not convex, and we should specify the convex part of it. Consider this problem from
another point of view. The set of nondominated vectors NdomMl Mk (Y ) = {y∗ ∈ Y |
�y ∈ Y : y−y∗ ∈ Ml ∩Mk} according to cone Ml ∩Mk for any l, k ∈ {1, 2, 3}, l �= k.
If the inclusion y−y∗ ∈ Ml ∩Mk is valid for some vectors y, y∗ ∈ Y and some indices

l, k ∈ {1, 2, 3}, l �= k, then

(
Al

Ak

)
(y − y∗) ≥ 0. It implies P̂lk(Y ) = NdomMl Mk (Y ).
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Then, due to M = (M1 ∩ M2) ∪ (M1 ∩ M3) ∪ (M2 ∩ M3), the equality
NdomM(Y ) = NdomM1M2(Y ) ∩ NdomM1M3(Y ) ∩ NdomM2M3(Y ) is true, where
NdomM(Y ) is the set of nondominated vectors according to cone M . And we obtain
NdomM(Y ) = P̂12(Y )∩ P̂13(Y )∩ P̂23(Y ). The inclusionR

3+ ⊆ Ml ∩Mk for any l, k ∈
{1, 2, 3}, l �= k implies the inclusion NdomMl Mk (Y ) ⊆ P(Y ). As a result we obtain
that inclusion (2) is valid.We can conclude that the set P̂12(Y )∩ P̂13(Y )∩ P̂23(Y ) is an
“optimal” group choice according to the individual preferences (I) and the majority
preference relation �maj , as a principle of aggregation. �

Theorem1 shows how to aggregate information about individual preferences (I)
using the majority rule. Note, that intersections in inclusion (2) should be nonempty.

5 Conclusion

The majority preference relation constructed upon cone preference relations is con-
sidered. Due to nontransitivity of this relation, one should specify a transitive part.
The case of group of three DMs and criteria with three components is studied. It
is shown how to aggregate “quanta” of information of each DM, and construct an
“optimal” group choice upon this information. Moreover, this result reduces bounds
of “optimal” group choice in comparison with the situation when DMs do not have
a “quantum” of information.
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