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Abstract. We discuss an online discrete optimization problem called
the buyback problem. In the literature of the buyback problem, the val-
uation function representing the value of a set of selected elements is
given by a linear function. In this paper, we consider a generalization of
the buyback problem using a nonlinear valuation function. We propose
an online algorithm for the problem with a discrete concave valuation
function, and show that it achieves the same competitive ratio as the
best possible ratio for a linear valuation function.

1 Introduction

We discuss an online discrete optimization problem called the buyback problem.
In the literature of the buyback problem, the valuation function representing
the value of a set of elements is given by a linear (or additive) function. We
refer to this variant of the buyback problem as the linear buyback problem. In
this paper, we consider the nonlinear buyback problem, a generalization of the
buyback problem with a nonlinear valuation function.

1.1 Model of Nonlinear Buyback Problem

To explain the nonlinear buyback problem, we consider a situation where a com-
pany wants to hire some workers from a set N of n applicants. Each applicant
arrives one by one sequentially, and an interviewer of the company, which corre-
sponds to an online algorithm, must decide immediately whether or not to hire
the applicant. The company can hire at most m > 0 applicants; in addition,
there may be some other constraints for a set of hired applicants due to their job
skills and/or their human relationship. We denote by F C 2N the set of feasible
combinations of applicants. The interviewer wants to maximize the profit v(X)
obtained from a set X € F of hired applicants. The function v is a nonlinear
function in X in general since the job skill of applicants may overlap. It is nat-
ural to assume that function v is monotone nondecreasing and satisfies v(f)) = 0
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and v(X) > 0 for X # (. It is often the case that a good applicant comes
for an interview but addition of the applicant violates the feasibility. In such a
case, the interviewer can add the applicant by canceling the contract with some
previously hired applicant at the cost of some compensatory payment. In this
paper, we assume that cancellation cost is given by a constant ¢ > 0. It should
be noted that applicants that are rejected at the interview or once accepted but
canceled cannot be recovered later. The goal of the interviewer is to make an
online decision to maximize the value v(X) of hired applicants X, minus the
total cancellation cost.

This online problem is called the buyback problem. More formally, the buy-
back problem is formulated as an online version of the following discrete opti-
mization problem:

Maximize v(A \ C) — ¢|C]| subject to C CAC N, A\C e F,

where A (resp., C) corresponds to a set of accepted (resp., once accepted but
later canceled) elements, respectively. It is assumed that the set family F and the
function v are accessible via appropriate oracles; that is, for a given set X C N,
whether X € F or not can be checked in constant time, and if X € F then the
function value v(X) can be obtained in constant time.

For a special case of the buyback problem with a linear valuation function
given as v(X) = > .. v w(i) and a matroid constraint, Kawase, Han, and Makino
[17] obtained the following result. It is assumed that a value £ > 0 with ¢ <
min;e y w(?) is known in advance, and let

V2 +4

Note that the value r*(¢, ¢) is dependent only on the ratio £/c. For example, if
¢/c =2 then r*(¢,c) = 2, and if ¢/c = 6 then r*(¢,c) = 1.5.

Theorem 1.1 ([17]). Suppose that v : 2V — R is a linear valuation function
and F C 2N is the family of independent sets of a matroid. Then, the buyback
problem admits an online algorithm with the competitive ratio r*(¢, ¢). Moreover,
there exists no online deterministic algorithm with a competitive ratio smaller
than r*(¢,c), even in the special case with F = {X C N | |X| < 1}.

The main aim of this paper is to generalize this result to the buyback problem
with discrete concave valuation functions.

1.2 Our Result

In this paper, we present the first online algorithm for the nonlinear buyback
problem and analyze its competitive ratio theoretically. Our main results given
in Theorems 1.2 and 1.3 are proved in Sect. 3 by generalizing the approach used
in [17] for the linear buyback problem. The analysis of competitive ratio in our
setting, however, is much more difficult due to the nonlinearity of valuation func-
tion. We overcome this difficulty by utilizing discrete concavity of the function
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called M?-concavity. M?-concavity of the valuation function plays a crucial role
in the analysis of competitive ratio of our online algorithm. It should be noted
that while M%-concave functions satisfy some kind of submodular inequality,
submodularity alone is not enough to obtain the current result; see Concluding
Remarks.

Buyback Problem with Gross Substitutes Valuations and Matching
Weight Valuations. We first consider a nonlinear valuation function called a
gross substitutes valuation. A valuation function v : 2% — R on 2% is called a
gross substitutes valuation (GS valuation, for short) if it satisfies the following
condition:

N . .

Vp,q € RY with p < ¢, VX € arg rUné:%{v(U) — Z%[:Jp(z)},

JY € arg Um&%{v(U) - ;q(z)} such that {i € X | p(i)=q(i)} C Y.
Intuitively, this condition is understood as follows, where N is regarded as a set
of discrete items, and p and ¢ are price vectors: if a buyer wants a set X of items
at price p but some of the item prices are increased, then the buyer still wants
items in X with unchanged prices (and possibly other items not in X).

A natural but nontrivial example of GS valuations arises from the maximum-
weight matching problem on a complete bipartite graph, called assignment val-
uations [28] (or OXS wvaluation [20]). Going back to the situation at a company
in Sect. 1.1, we suppose that the company has a set J of m jobs, to which hired
workers are assigned. Each worker is assigned to at most one job in J, each job
is assigned to at most one worker, and if worker ¢ € N is assigned to a job
j € J, then profit p(i,j) € Ry is obtained. Given a set X C N of workers,
the maximum total profit v(X) obtained by assigning workers in X to jobs in
J can be formulated as the maximum-weight matching problem on a complete
bipartite graph G with the vertex sets N and J:

v(X) = max{ Z p(i,7) ‘ M : matching in G s.t. ONM = X}, (2)
(4,5)eM

where Oy M denotes the set of vertices in NV covered by edges in M. It is known
that this function v : 2V — R is a GS valuation function [20,28].

The concept of GS valuation is introduced in Kelso and Crawford [18], where
the existence of a Walrasian equilibrium is shown in a fairly general two-sided
matching model. Since then, this concept plays a central role in mathemati-
cal economics and in auction theory, and is widely used in various economic
models (see, e.g., [5,6,11-13,20]). The class of GS valuations is a proper sub-
class of submodular functions, and includes natural classes of valuations such as
weighted rank functions of matroids [7,9] and laminar concave function [23] (or
S-valuation [5]), in addition to assignment valuations explained above. While
GS valuation is a sufficient condition for the existence of a Walrasian equilib-
rium [18], it is also a necessary condition in some sense [13]. GS valuation is also
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related to desirable properties in the auction design [6,11,20]. See also [26,30]
for more details on GS valuations as well as other related concepts.

We propose an online algorithm for the nonlinear buyback problem with a GS
valuation and a cardinality constraint. We assume that a positive real number /¢
satisfying

¢ <min{v(X)/|X]|0# X € F} (3)

is known in advance. Note that this condition is a natural generalization of
the condition used in [17]; indeed, for a linear valuation function, condition (3)
is equivalent to ¢ < min;ey w(i). In addition, if v is an assignment valuation
function in (2), then every ¢ with £ < min{p(i,j) | ¢ € N, j € J} satisfies (3).

Theorem 1.2. For a gross substitutes valuation function v : 2¥ — R and a
cardinality constraint F = {X C N | |X| < m}, the nonlinear buyback problem
admits an online algorithm with the competitive ratio r*(¢,c) in (1).

It should be noted that our online algorithm does not require the information
about the number of elements in N and the integer m.

Buyback Problem with Discrete Concave Valuations. Moreover, we
consider a more general setting where F is a matroid and valuation function
v : F — R is a discrete concave function called M?9-concave function. It is
known that a family F C 2N of matroid independent sets satisfies the following
property [25]:

(B —EXC) VX,Y € F, Vi€ X \Y, at least one of (i) and (ii) holds:
) X—ieF, Y+ieF, (i) eVY\X: X —itjeF,Y+i—jeF,

where X — i + j is a short-hand notation for (X \ {i}) U {j}. We consider a
function v : F — R defined on matroid independent sets F. A function v is said
to be M¥-concave [25] (read “M-natural-concave”) if it satisfies the following:

(MP —EXC) VX,Y € F, Vi€ X\, at least one of (i) and (ii) holds:
() X—-ieF, Y+ieF,and v(X)+ o) <ov(X —i)+ oY +1),
(i) JeY\X: X —i+jeF, Y+i—je T,

and v(X) +v(Y) <o(X —i+j)+ oY +i—j).

The concept of Mf-concave function is introduced by Murota and Shioura [25]
(independently of GS valuations) as a class of discrete concave functions. M?-
concavity is originally introduced for functions defined on integer lattice points
(see, e.g., [23]), and the present definition of M*-concavity for set functions can
be obtained by specializing the original definition through the one-to-one cor-
respondence between set functions and functions defined on {0, 1}-vectors. The
concept of MP-concave function is an extension of the concept of M-concave func-
tion introduced by Murota [21,22]. The concepts of Mé-concavity /M-concavity
play primary roles in the theory of discrete convex analysis [23], which provides
a framework for tractable nonlinear discrete optimization problems.
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Mb-concave functions have various desirable properties as discrete concavity.
Global optimality is characterized by local optimality, which implies the validity
of a greedy algorithm for Mf-concave function maximization. Maximization of
an MP-concave function can be done efficiently in polynomial time (see, e.g.,
[23,25]).

The class of Mf-concave functions includes linear functions on matroids.
Hence, the M?-concave buyback problem (i.e., the buyback problem with an
M?-concave valuation) is a proper generalization of the linear buyback problem
with a matroid constraint discussed in Kawase et al. [17]. Furthermore, the M-
concave buyback problem also includes the problem with a GS valuation function
and a cardinality constraint as a special case.

In this paper, we show the following result for the Mf-concave buyback
problem.

Theorem 1.3. If F C 2V is the family of independent sets of a matroid and
v: F — R is an M*-concave function, then the nonlinear buyback problem admits
an online algorithm with the competitive ratio r*(£,¢) in (1).

This theorem implies Theorem 1.2 as a corollary. In addition, this theorem also
implies the former statement of Theorem 1.1, hence generalizing the result of
Kawase et al. [17]. The latter statement in Theorem 1.1 shows that our com-
petitive ratio in Theorem 1.3 is the best possible for the M?-concave buyback
problem.

1.3 Related Work

We review some previous results on the linear buyback problem and some related
results. In the literature of the linear buyback problem, two types of cancellation
cost are considered so far: proportional cost and unit cost; the latter one is used
in this paper. In the case of proportional cost, we are given a constant f > 0 and
the cancellation cost of each element u is equal to fw(u) if w(u) is the value of .
In the case of unit cost, we are given a constant ¢ > 0 and the cancellation cost
of each element u is equal to c. Note that in the nonlinear buyback problem, unit
cancellation cost is more suitable since proportional cancellation cost is heavily
dependent on the linearity of a valuation function.

The linear buyback problem is originally modeled by using proportional cost.
In this setting, Babaioff et al. [3] and Constantin et al. [10] independently pro-
posed deterministic online algorithms for the problem with single matroid con-
straint, where the competitive ratio is 1 + 2f + 24/ f(1 + f). Babaioff et al. [4]
also showed that this competitive ratio is the best possible bound for determinis-
tic algorithms, and presented a randomized algorithm with a better competitive
ratio in the case of small f. Later, Ashwinkumar and Kleinberg [2] proposed a
randomized algorithm with an improved competitive ratio, which is shown to be
the best possible. Ashwinkumar [1] considered a more general constraints such as
the intersection of multiple matroids, and proposed online algorithms with the-
oretical bounds for the competitive ratio. Some variants of knapsack constraint
were also considered in [3,4,14].
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The linear buyback problem with unit cost was first introduced by Han
et al. [14]. Some variants of knapsack constraints are considered in [14,17], while
single matroid constraint is considered by Kawase et al. [17] (see Theorem 1.1).

Variants of the buyback problem with zero cancellation cost are also exten-
sively discussed in the literature. One such example is the problem under a
knapsack constraint, which is referred to as the online removal knapsack prob-
lem (see, e.g., [15,16]). Recently, the nonlinear buyback problem with zero can-
cellation cost and submodular valuation function (called the online submodular
mazimization with preemption) is considered by Buchbinder et al. [8]. Note that
the linear buyback problem with a single matroid constraint is trivial if the can-
cellation cost is zero; indeed, existing online algorithms for this problem reduce
to variants of greedy algorithms that find an (offline) optimal solutions.

The buyback problem with an assignment valuation function can be seen
as a variant of online bipartite matching problems, where vertices on the one
side of a bipartite graph (corresponding to applicants) arrive online one by one
(see, e.g., [19] and the references therein). Among many variants of such online
matching problems, our problem setting is different in the following two points.
First, we allow re-assignment of previously accepted vertices to the vertices on
the other side whenever a newly arrived vertex is accepted. Second, we allow
exchange of a previously accepted vertex with a newly arrived vertex by paying
a cancellation cost. Without a cancellation cost, our online matching problem
is trivial since we allow re-assignment; indeed, it is easy to construct an online
algorithm that finds an (offline) optimal matching under this setting.

2 Mb-concave Functions and GS Valuations

In this section we review the concept of Mf-concavity and its connection with
GS valuation.

Let F be the family of independent sets of a matroid. A function v : F — R
is said to be M%-concave if it satisfies the condition (M!-EXC). It is known
that every Mf-concave function is a submodular function in the following sense
(ct. [23]):

Proposition 2.1 ([23, Theorem 6.19]). Let f : F — R be an M?-concave
function defined on a family F C 2V of matroid independent sets. For X,Y € F
with X UY € F, it holds that v(X) +v(Y) > v(XUY)+0v(X NY).

From the condition (M!-EXC) we can obtain the following property.

Proposition 2.2 ([25, Theorem 4.2]). Let f : F — R be an M?-concave
function defined on matroid independent sets F. For every X, Y € F with | X| =
Y| and w € X \ 'Y, there exists some v € Y \ X such that f(X)+ f(Y) <
X —u+v)+ f(Y +u—v).

Note that the sum of an M¥-concave function and a linear function is again
an MP-concave function, while the sum of two Mf-concave functions is not M®-
concave in general.
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The next property shows the connection between MP-concavity and gross
substitute valuation. In particular, the property below shows that the buyback
problem with a gross substitute valuation function is a special case of Mf-concave
buyback problem.

Theorem 2.1 (cf. [12]). Let v : 2 — R be a function defined on 2.

(i) v is a GS valuation function if and only if it is MP-concave.

(ii) Suppose that v is a GS valuation function and let m be a nonnegative integer.
Then, the function vy, : Fp — R given by Fp, = {X € 2V | | X] < m} and
O (X) = v(X) (X € Fp) is an MP-concave function.

A simple example of M-concave function is a linear function f(X) = w(X)
(X € F) defined on a family F C 2V of matroid independent sets, where w €
RY. In particular, if F = 2V then f is a GS valuation function. Below we give
some nontrivial examples of M?-concave functions and GS valuation functions.
See [23,24] for more examples.

Ezample 2.1 (Mazimum-weight bipartite matching). In Sect. 1.2 we explained an
assignment valuation as an example of GS valuations, where a complete bipartite
graph is used. By using a non-complete bipartite graph instead, we can obtain
an example of MP-concave functions as follows.

Consider a bipartite graph G with two vertex sets N,J and an edge set
E (C N x J), where N and J correspond to workers and jobs, respectively. An
edge (i,7) € E means that worker ¢ € N has ability to process job j € J, and
profit p(i,7) € Ry can be obtained by assigning worker ¢ to job j. Consider a
matching between workers and jobs, and define F C 2V by

F ={X C N |3M : matching in G s.t. OnM = X }.

It is well known that F is a family of independent sets in a transversal matroid
(see, e.g., [27]). Define v : F — R by

v(X) = max { Z p(i,j) | M : matching in G s.t. OyM = X} (X € F).
(i,5)eM

Then, v is an M"-concave function [24, Sect. 11.4.2]. O

Example 2.2 (Laminar concave functions). Let T C 2V be a laminar family,
ie, XNY =0or X CY or X DY holds for every X,Y € T.For Y € 7, let
¢y : Z; — R be a univariate concave function. Define a function v : 2V — R by

v(X) =) er(XNY]) (X e2V),
YeT

which is called a laminar concave function [23, Sect.6.3] (also called an S-
valuation in [5]). Special cases of laminar concave functions are a downward
sloping symmetric function [11] given as v(X) = ¢(|X]|) and a nested concave

function given as
n

v(X) =) @i XN{L2,....i})),

=1
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where ¢ and ¢; (i € N) are univariate concave functions. Every laminar concave
function is a GS valuation function. ad

Example 2.8 (Weighted rank functions). Let T C 2V be the family of indepen-
dent sets of a matroid, and w € Rf. Define a function v : 2V — R, by

v(X)=max{w(Y)|Y C X, Y eI} (Xe2V),

which is called the weighted rank function [9]. If w(i) =1 (i € N), then v is an
ordinary rank function of the matroid (N,Z). Every weighted rank function is a
GS valuation function [29]. O

3 Owur Online Algorithm and Analysis

In this section, we propose an online algorithm for Mf-concave buyback problem
and analyze its competitive ratio.

3.1 Algorithm

Recall that the cancellation cost ¢ and the value ¢ satisfying (3) is known in
advance. We assume that N = {iy,is,...,4,} and the elements in N arrive in
this order. In each iteration, the algorithm maintains a set By € F. To control
the number of cancellations, we use an increasing sequence of real numbers ()
(t =1,2,...) as parameters, which will be determined later by using ¢ and ¢. We
assume that ¥(1) = 0 and (¢t + 1) — ¢(¢) is nondecreasing with respect to ¢.

In the k-th iteration, the algorithm adds an element iy, (i.e., set By = Bi_1+
i) if B—1+ip € F and v(Bg_1+1ix) > v(Bg—1). Otherwise, the algorithm tries
to exchange an element jj in Bjy_1 satisfying By_1 — ji + ix € F and

’U(Bk_l —Jk Jrik-) = max{v(Bk_l *j+ik) ‘ j € Bg_1, Bp_1—j+1i € f} (4)

If the value v(Bk_1 — ji + i) is large enough compared to v(By—_1), then the
algorithm replace ji with iy; otherwise, the algorithm does not add and sets
By = Bj_1. A detailed description of the algorithm is as follows.

Algorithm M"BP

Step 0: Set By = 0.

Step 1: For each element i, k = 1,2,...,n, in order of arrival, do the following;:
[Case 1: By_1 +ix € F] Set By = By—1 + ig.

[Case 2: Bi_1 + i € F] Let ji € Br_1 be an element satisfying (4).

If v(Bi—1 — jk +ix) > ¢Y(t) + £ |Bg_1| > v(Bgk_1) for some ¢, then

set By, = Brp—1 — ji + ir (“cancel j;”); otherwise, set By = Br_1 (“reject ig”).
Step 2: Output B,,. a
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3.2 Bounding the Optimal Value

Let B* € F be an (offline) optimal solution of Mf-concave buyback problem.
That is, B* € argmax{v(B) | B € F}. To analyze the competitive ratio of the
algorithm above, we need to bound the value of v(B*) from above.

For k = 1,2,...,n, let t; be the integer with v(By) — € - |Bg| € [¢(tk), ¢
(tr +1)). We will derive the following upper bound of v(B*).

Lemma 3.1. v(B*) < v(B,) + m@(t, + 1) — ¥(tn)).

To prove Lemma 3.1, we first show that the value v(B*) can be bounded from
above in terms of the output B,, of the algorithm.

For two sets B,B’ € F with |B| = |B’|, we define G(B, B’), called the
exchangeability graph, as a bipartite graph having (B \ B’, B’ \ B) as the vertex
bipartition and

{(j,i)|je B\B', ie B\B, B—j+i€F}

as the edge set. Note that |B\ B’| = |B’ \ B] holds since B and B’ have the
same cardinality, and G(B, B’) has a perfect matching (see, e.g., [27, Corollary
39.12al).
For each edge (j,¢) in G(B, B’), we define the weight of (j,7) by v(B,j,1)
given by
v(B,j,i) =v(B—j+1i) —v(B).
Denote by ©(B, B’) the maximum weight of a perfect matching in G(B, B) with

respect to the edge weight v(B, j,i). We can bound the value v(B’) from above
by using v(B) and 9(B, B’) as follows.

Lemma 3.2 [cf. [21, Lemma 3.4]]. For B,B’ € F with |B| = |B’|, it holds that
v(B') <v(B) +9(B, B").

We denote m = max{|X| | X € F}. Note that |B,| = |B*| = m holds since
F is a family of matroid independent sets and v is monotone nondecreasing.
Hence, the following inequality follows immediately from Lemma 3.2.

Lemma 3.3. v(B*) < v(By) + X icp-\ p, max{v(By, j,4) | j € Bn}.

To bound the value max{v(B,, j,¢) | j € By} in Lemma 3.3, we show a useful
inequality for the value v(By,7,4), which plays a key role in the analysis. For
k=1,2,...,n, let

Cr = {Jt | ji is canceled in Case 2 of the h-th iteration, 1 < h < k},
Ry, = {is | i; is rejected in Case 2 of the h-th iteration, 1 < h < k}.
Note that the sets By, C, and Ry provide a partition of set {1,2,...,k}.

Lemma 3.4. Fork=1,2,...,n, j € By, and i € Cyx U Ry, it holds that
.. 0 (Zfl S Ck),
<
v(Bx, 5i) < {maX{U(Bh_l,j’,ih) |/ € Bu_1} (if i = in € Ry, with h < k).
(5)
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Using Lemma 3.4, we get a bound for max{v(By,J,) | j € Bn}.
Lemma 3.5. Fori € N\ B, max{v(By,j,i) | j € Bp} < ¢(tn +1) —¥(tn).

Lemma 3.1 follows immediately from Lemmas 3.3 and 3.5.

3.3 Analysis of Competitive Ratio

We now prove that our online algorithm achieves the competitive ratio r*(¥, ¢)
in (1) by setting values ¥(t) (t =1,2,...) appropriately.

We counsider the set of intervals given by values ¥(t), and denote the length
of the t-th interval as A(¢) = ¢ (¢t + 1) — ¢ (¢). Note that whenever some element
is canceled in some iteration of our algorithm, the value v(By) — ¢|Bj| moves
to some upper interval. Since v(By) — ¢m € [¢(t,), ¥ (t, + 1)), our algorithm
cancels some elements at most t, — 1 times, and therefore the payoff obtained
by the algorithm is at least v(B,,) — (t, — 1)c. By this fact and Lemma3.1, the
competitive ratio of the algorithm is at most

v(B*) - v(Bp) +mA(ty) < (¥(tn) + m) + mA(ty,)
v(By) = (tn —1)e = v(Bpn) = (tn — 1) = (¥(tn) +€m) — (t, — 1)c
< i (200 fm) + mA(H)
~ 21 (P(t) +m) — (t—1)c’

(6)

where the second inequality follows from the inequality ¥ (¢,) 4+ ¢m < v(B,,) and
the fact that for p,q € R4 the function (x + p)/(x — ¢q) in x is nonincreasing in
the interval (g, +00). We denote by r the ratio in the last term of (6). In the
following, we analyze the minimum value r of the ratio. Note that r > 1.

We will set values () so that

() + tm) +mA(t) _ (@) +bm) + mpE+1) —9(E) _

(WY(t) +m) — (t — e (P(t) +tm) — (t — 1)c

holds for all ¢ > 1. This implies the following recursive formula for ¢ (t):

p=0, e+ ="+ om - LTe-nre @)

By solving this recursive formula, we have r = 1 4 ¢hve tite ngfuc = r*({,c), ie.,
the competitive ratio of our algorithm is r*(¢,¢). This concludes the proof of

Theorem 1.3.

4 Concluding Remarks

We have shown that the competitive ratio of our online algorithm for M-concave
buyback problem is 7*(¥, ¢). Note that r*(¢,0) = 1, which means that our online
algorithm finds an offline optimal solution by setting ¢ = 0.
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It should be noted that our approach does not extend to the nonlinear buy-
back problem with a submodular valuation function. To illustrate this, let us
consider an instance of the buyback problem, where N = {i1,12,43,44}, the
valuation function v : 2% — R is given by

o) =0, v({ir}) = vl{ia}) =2, v({is}) = v({is}) =3,
v(X)=61if | X|>2and X D {i3,i4}

v(X)=4if |X| =2 and X # {i3,i4},

v(N\{is}) = v(N \ {is}) =5,

and the constraint is F = {X € 2V | |X| < 2}. It can be checked that the
function v is submodular but not Mf-concave.

Suppose that our online algorithm is applied to this instance, where the ele-
ments i1, i2, 13, 94 arrive in this order. Then, the algorithm first accepts elements
i1 and 49, and then rejects i3 and i4 since the function value cannot be increased
by swapping new elements with old elements one by one. Hence, the value of the
output is v({i1,42}) = 4. Note that this behavior of the algorithm is irrelevant
to the choice of the cancellation cost ¢. On the other hand, an offline optimal
solution is B* = {i3,i4}, for which v(B*) = 6. Hence, the competitive ratio of
our algorithm is at least 6/4 = 1.5, while the ratio r*(¢,¢) can be close to 1 if
we choose a sufficiently small positive c¢. This fact shows that our algorithm and
analysis in this paper do not extend to submodular valuation functions.
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