
Shortest Augmenting Paths for Online
Matchings on Trees

Bart�lomiej Bosek1(B), Dariusz Leniowski2, Piotr Sankowski2, and Anna Zych2

1 Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,

Jagiellonian University, Kraków, Poland
bosek@tcs.uj.edu.pl

2 University of Warsaw,
Warsaw, Poland

Abstract. The shortest augmenting path (Sap) algorithm is one of the
most classical approaches to the maximum matching and maximum flow
problems, e.g., using it Edmonds and Karp in 1972 have shown the
first strongly polynomial time algorithm for the maximum flow problem.
Quite astonishingly, although is has been studied for many years already,
this approach is far from being fully understood. This is exemplified by
the online bipartite matching problem. In this problem a bipartite graph
G = (W � B, E) is being revealed online, i.e., in each round one ver-
tex from B with its incident edges arrives. After arrival of this vertex
we augment the current matching by using shortest augmenting path.
It was conjectured by Chaudhuri et al. (INFOCOM’09) that the total
length of all augmenting paths found by Sap is O(n log n). However, no
better bound than O(n2) is known even for trees. In this paper we prove
an O(n log2 n) upper bound for the total length of augmenting paths for
trees.

1 Introduction

The shortest augmenting path (Sap) algorithm is one of the most classical
approaches to the maximum matching and maximum flow problems. Using this
idea Edmonds and Karp in 1972 have shown the first strongly polynomial time
algorithm for the maximum flow problem [5]. Quite astonishingly, although this
idea is one of the most basic algorithmic techniques, it is far from being fully
understood. It is easier to talk about it by introducing the online bipartite match-
ing problem. In this problem a bipartite graph G = (W �B,E) is being revealed
online, i.e., in each round one vertex from B with its incident edges arrives.
After arrival of this vertex we augment this matching by using shortest aug-
menting path. It was conjectured by Chaudhuri et al. [4] that the total length of
augmenting paths found by Sap is O(n log n). However, no better bound than
O(n2) is known even for trees. Proving this conjecture would have quite striking

This work was supported by NCN Grant 2013/11/D/ST6/03100, ERC StG project
PAAl 259515 and FET IP project MULTIPLEX 317532.

c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 59–71, 2015.
DOI: 10.1007/978-3-319-28684-6 6

60 B. Bosek et al.

consequences even for maximum flow problem, as it would show that the total
length of augmenting paths in unit capacity networks in Edmonds-Karp algo-
rithm is O(m log n). This consequence is obtained via the bipartite line graph
construction that is used to reduce the max-flow problem to maximum matching
problem [10]. The obtained bipartite line graph has 2m vertices.

Our paper contributes to the study of Sap algorithm by showing that in the
case of trees the total length of all augmenting paths is bounded by O(n log2 n).
This result is obtained via the application of the heavy-light decomposition of
trees [15] combined with charging technique that carefully assigns shortest aug-
menting paths to the structure of the tree. Although, this result seems to be
restricted only to trees we be believe that it constitutes the first nontrivial
progress towards resolving the above conjecture. Moreover, we actually con-
jecture here that trees are the worst-case examples for this problem. It seems
that adding more edges can only help the Sap algorithm. In addition to that we
explain why Sap is harder to analyze than other augmenting path algorithms,
even though it seems way more natural.

2 Related Work

The online bipartite matching problem with augmentations has recently received
increasing research attention [3,4,6,7]. There are several reasons to study this
problem. First of all, it provides a simple solution to the online bipartite matching
algorithms used in many modern applications such as online advertising (e.g.
Google Ads) [11] or client-server assignment [4]. Secondly, they could give rise to
new effective offline bipartite matching algorithms as in [3]. This new algorithm
provides new insights to the old problem that was studied for decades.

In this paper we concentrate on bounding the total length of augmenting
paths and not on the running time. With this respect, it was shown that if the
vertices of B appear in a random order, the expected total paths’ length for Sap
is O(n log n) [4]. The worst-case total length of paths remains an open question
even for trees. In the class of trees the authors of [4] proposed a different aug-
menting path algorithm that achieves total paths’ length of O(n log n). On the
other hand, for general bipartite graphs greedy ranking algorithm [3] guarantees
O(n

√
n) total length of paths.

First of all, the above study of online bipartite matching with augmentations
should be related to the work of Gupta et al. [7] which shows an O(n) bound on
the total length of paths, but allows to exceed the capacity of each server by a
constant factor.

Another point of view is given by the dynamicmatching algorithms.Most papers
in this area consider edge updates in a general fully-dynamic model which allows
for both insertions and deletions intermixed with each other. We note, however,
that the exact results in this model [9,14] do not imply any bound on the number
of changes to the matching. Much faster update times can be achieved by con-
stant approximate algorithms, for example [1,13], which achieve polylogarithmic
and logarithmic update times. Yet, the 2-approximation can be obtained in our
setting by trivial greedy algorithm that preforms no changes at all.

Shortest Augmenting Paths for Online Matchings on Trees 61

Better approximation factor of 3
2 was achieved by [12] in O(

√
m) update time,

and then improved by Gupta and Peng to (1+ε) in O(
√

mε−2) [8]. The O(
√

m)
barrier was broken by Bernstein and Stein who gave a (32 + ε)-approximation
algorithm that achieves O(m1/4ε−2.5) update time [2]. The same paper proposes
an (1+ε)-approximation algorithm in very fast O(α(α+log n)+ε−4(α+log n)+
ε−6) update time for the special case of bipartite graphs with constant arboricity.
However, when allowing approximation in our model a much better results are
possible. An (1 + ε) approximation in O(mε−1) total time and with O(nε−1)
total length of paths was shown in [3].

3 Preliminaries

Let us define the matching problem we consider more formally. Let W and B
be two sets of vertices over which the bipartite graph will be formed. The set W
(called white vertices) is given up front to the algorithm, whereas the vertices in
B (black vertices) arrive online. We denote by Gt = 〈W � Bt, Et〉 the bipartite
graph after the t’th black vertex has arrived. The graph Gt is constructed online
in the following manner. We start with G0 = 〈W � B0, E0〉 = 〈W � ∅, ∅〉. In turn
t a new vertex bt ∈ B together with all its incident edges E(bt) is revealed and
Gt is defined as: {

Et = Et−1 ∪ E(bt),
Bt = Bt−1 ∪ {bt} ;

The goal of our algorithm is to compute for each Gt the maximum size matching
Mt. For simplicity we assume that we add in total |W | black vertices. The final
graph G|W | which is obtained in this process will be denoted by G = (W �B,E).
We denote n = |W | = |B| and m = |E|.

For every t ∈ [n], we add orientation to edges of the graph Gt. This orienta-
tion is induced by matching Mt: the matched edges are oriented towards black
vertices, while the unmatched edges are oriented towards white vertices. When a
new vertex bt arrives, we get an intermediate orientation Gint

t = (Eint
t , Bt), where

the edges of bt are oriented towards its neighbors, and the rest of the edges is
oriented according to Mt−1. Note that Gint

t and Gt−1 differ only by one vertex
bt. Any simple directed path in Gint

t from bt to some unmatched white vertex
is an augmenting path. In turn t, if bt can be matched, the edges of Gint

t are
reoriented along augmenting path πt chosen by the algorithm, and the resulting
orientation is Gt. The unmatched white vertices are called seeds. We denote the
set of seeds after turn t as

St = {w ∈ W : wb /∈ Mt for any b ∈ B} .

So in turn t the augmenting paths in Gint
t are the directed paths from bt to some

s ∈ St−1. We refer to the seed of the path πt from turn t as st, where st ∈ St−1.
We represent a path as a graph consisting of path vertices and path edges. We
use the notation v

π−→ v′ to denote that a (directed) path π starts in v and ends
in v′, and v −→ v′ to denote a connection via a directed edge. We use the notation

62 B. Bosek et al.

v ∈ π and ρ ⊆ π to state that a vertex v ∈ V (π) and that a path ρ is a subgraph
of π, respectively. We also denote the length of a path π as |π|. Throughout the
paper, when we write “at time t”, what we formally mean is “in Gint

t ”.
The next thing we define is a set of vertices Dt called dead at time t. The set

Dt is defined as the set of vertices in Gint
t that cannot reach St−1 via a directed

path in Gint
t . Observe, that if at some point there is no directed path from a

vertex to a seed, never again there will be such a path. If a vertex is dead, all
vertices reachable from it are dead as well. Hence, no alternating path can enter
such a dead region and reorient its edges to make some vertices alive. In other
words, Dt ⊆ Dt+1 for every time moment t. The vertices of Dt are called dead,
while the remaining vertices are called alive.

We now define the effective degree of a black vertex b in turn t as the number
of it’s non-dead out-neighbors:

degefft(b) = |Γt(b) \ Dt|

where Γt(b) is the set of vertices v such that b −→ v in Gint
t , referred to sometimes

as out-neighbours of b. In particular degefft(bt) is the number of all non-dead
neighbors (in the undirected sense) of bt, as all the edges adjacent to bt are
directed towards its neighbors.

Since we consider in this paper the special case when Gt is a tree at any time t,
we will refer to G as T , and to Gt as Tt from now on.

4 Run-away-from-the-root Algorithm

In this section we present the algorithm for trees given in [4], whose total
augmenting paths’ length amounts to O(n log n). We refer to this algorithm as
Rafr or as the run-away algorithm. We briefly explain why their analysis does
not apply to the Sap algorithm.

The Rafr algorithm maintains a forest F , which is exactly the set of trees
composed of the edges and vertices already revealed. Each tree of the forest is
rooted. Initially, the trees are all singleton vertices of W . In turn t, vertex bt

connects to some trees of F . Three cases are distinguished:

1. degefft(bt) > 1: in this case bt connects at least two trees, in which there are
two disjoint directed paths connecting bt with a seed. We pick the smallest
such tree and route the alternating path over there. The root of the newly
connected tree is the root of the largest such tree.

2. degefft(bt) = 1: we pick a path that minimizes the number of edges traversed
towards the root. In other words, we choose a path that runs away from the
root as soon as possible.

3. degefft(bt) = 0: no path is possible, bt immediately becomes a member of a
dead region.

The analysis of the above algorithm in terms of the total length of the aug-
menting paths is as follows. We count, for every edge, how many times this edge

Shortest Augmenting Paths for Online Matchings on Trees 63

is traversed via augmenting paths. The edge can be either traversed when Case 1
applies (we refer to such traversal as connecting) or when Case 2 applies (we refer
to such traversal as non-connecting). The edge can be connecting-traversed no
more than log n times, as each augmenting path applied in Case 1 implies that
the tree containing this edge doubles its size. We now observe, that between
two connecting traversals or after/before the last/first connecting traversal of
an edge there can be at most two non-connecting traversals. The edge, before it
changes its root (Case 1 applies again), can be traversed towards the root (and
reversed the opposite direction) only once. This is because after such reversal the
endpoint of the traversed edge becomes dead. As a consequence, every edge is
reversed O(log n) number of times and the total length O(n log n) of all applied
augmenting paths follows.

This algorithm cleverly plans the uniform distribution of work between the
edges. By running away from the root, it distributes the work to the edges
furthest from the root, and does not do unnecessarily pass through the edges that
are closer to the root. In the following sections we analyze a shortest augmenting
path algorithm, which is not as clever. In particular, there are examples where a
single edge can be traversed Ω(

√
n) times. Hence, the simple charging techniques

for Rafr do not apply to Sap.

5 Shortest Paths on Trees

In this section we study the shortest augmenting path (Sap) algorithm, which in
each turn chooses the shortest among all available augmenting paths. We start
by giving an easy argument, that the total length of augmenting paths for Sap
is O(n log n) if all vertices bt satisfy degefft(bt) > 1. This shows that the difficult
case is to deal with vertices of effective degree 1.

Lemma 1. If for each t ∈ [n] it holds that degefft(bt) > 1, then the total length
of all augmenting paths applied by Sap is O(n log n).

Proof. Due to the definition of effective degree, every vertex bt connects at least
two trees T1 and T2 that contain a directed path connecting bt with a seed. Let
T1 be a smaller of the two trees. The length of the shortest path πt from bt to a
seed is at most the size of T1. We charge the cost of πt to |πt| arbitrary vertices
of T1. During the course of the Sap algorithm, every vertex can be charged at
most log n times, as each time it is charged, the size of its tree doubles. The total
charge is hence O(n log n). ��
The main result of this paper and the subject of the remainder of this section is
the bound for the general case, stated in the following theorem.

Theorem 1. The total length of augmenting paths applied by Sap is O(n log2 n).

In order to prove Theorem 1 we introduce a few definitions and observations.
The core of our proof is the concept of a dispatching vertex.

64 B. Bosek et al.

Definition 1. A black vertex b is called dispatching at time t if degefft(b) > 1
and b is the first from bt such vertex on πt. In such case we write b = dis(πt).
If there is no such black vertex on πt, we define st to be the dispatching vertex
at time t. We also define, for every dispatching black vertex b, the time moment
tlast(b), when b is dispatching for the last time.

So every path πt applied by Sap is assigned a uniquely defined dispatching vertex
dis(πt). The first observation we make is that we only have to care about suffixes
of πt’s starting with dis(πt).

Definition 2. We define the split of πt = μtρt, where ρt is the suffix of πt such
that dis(πt)

ρt−→ st. Path μt = πt\ρt is the remaining part of πt (a possibly empty
prefix that ends in a vertex preceding dis(πt)). We sometimes refer to the above
defined suffixes as dispatching paths.

Lemma 2. The total length of paths μt is linear in the size of the tree T , i.e.,∑
t∈[n] |μt| ∈ O(n)

Proof. The lemma holds due to Observation 2, proven below, which states that
vertices of μt die at the time t when πt is applied. With this observation it is
clear that the time μt passes through a vertex is the last time Sap visits that
vertex. So every vertex in the tree is visited by μt for any t at most once. ��
Observation 2. Vertices of μt die at the time t when πt is applied.

Proof. At the time when πt is applied, all vertices on μt have effective degree
equal to 1, i.e., they have only one alive directed out-neighbour — their successor
on μt. If we reverse the edges, the only chance for the vertices of μt to be alive
is the last vertex bt. This vertex however becomes dead, because its only alive
out-neighbour is removed. As a consequence the whole path dies. ��

To bound the total length of augmenting paths πt, it remains to bound the
total length of dispatching paths:

∑
t∈[n] |ρt|. Observe, that ρt = st if st =

dis(πt), so there is no need to worry about such paths. It is enough to consider
the sum over all dispatching paths ρt that start in a black dispatching vertex,
so from now on we focus our attention on those. As a consequence, our goal is
to bound the following sum.

Lemma 3. The total length of non-trivial dispatching paths is O(n log2 n), i.e.,∑
t∈[n]:

dis(πt)∈B

|ρt| ∈ O(n log2 n)

The proof of Lemma 3 constitutes of two steps presented by the following
two lemmas. We first bound the total length of dispatching paths which start
with a dispatching vertex b ∈ B at a time before b is dispatching for the last
time (such paths are called non-final):

Shortest Augmenting Paths for Online Matchings on Trees 65

Lemma 4. The total length of non-final dispatching paths is O(n log n), i.e.,∑
t∈[n]:

b=dis(πt)∈B
t<tlast(b)

|ρt| ∈ O(n log n)

Then we move on to bounding the sum of dispatching paths starting in a
dispatching vertex b ∈ B at a time when b is dispatching for the last time (such
paths are called final):

Lemma 5. The total length of final dispatching paths is O(n log2 n), i.e.,∑
t∈[n]:

b=dis(πt)∈B
t=tlast(b)

|ρt| ∈ O(n log2 n)

The distinction between final and non-final dispatching paths is made for the
sake of clarity of our proofs. We now continue with the proof of Lemma 4, stated
again below:

Lemma 4 The total length of non-final dispatching paths is O(n log n), i.e.,∑
t∈[n]:

b=dis(πt)∈B
t<tlast(b)

|ρt| ∈ O(n log n)

Proof. We first observe that every time some vertex b ∈ B is dispatching not for
the first time, one of its neighbours dies. To be more specific, if b = dis(πt) and
πt does not start in b (what happens every but the first time b is dispatching),
then w −→ b ⊆ μt for some neighbour w of b. Based on Observation 2, the vertex
w dies.

Hence, if b is a dispatching vertex for the k-th out of l times at some time
moment, then it has at least l − k + 2 alive white out-neighbours at that time.
We say that a subtree hangs in the neighbour w of b, if it is obtained by the
removal of b from T and it contains w. Suppose that we discard two neighbors
of b with the heaviest trees hanging in them, i.e., two heaviest neighbours. Then
for k = l − 1 we have at least one alive neighbor, for k = l − 2 we have at least
two alive neighbors, that is, at least one alive neighbor other than the neighbor
used at k = l−1, and so on. In other words, for any k < l we can find a distinct,
not already assigned, alive neighbor w different than the two heaviest neighbors
of b. However, the size of the subtree hanging in that neighbour bounds the
length of the shortest augmenting path starting at b. Therefore, we can bound
the total length of non-final paths dispatching at b by the total size of all subtrees
of b except the two heaviest. Summing that up over the whole tree gives us a
O(n log n) upper bound, as shown by the next lemma. ��

66 B. Bosek et al.

Lemma 6. Let T be any unrooted tree of size n. For any vertex v let Sv =
〈Sv

0 , Sv
1 , . . .〉 be the sequence of subtrees of v (i.e., the connected components of

T \ {v}) ordered descending by their size, that is, |V (Sv
i)| ≥ |V (Sv

i+1)|. Then for

Ψ(v) =
∑|Sv|−1

i=2 |V (Sv
i)|

we have
∑

v∈V (T) Ψ(v) ∈ O(n log n).

Proof. Let r be a centroid point of T , that is, a vertex such that |V (Sr
0)| ≤

1
2 |V (T)|. We root T at r, and perform the heavy-light decomposition of T (see
Definition 3). Observe that for all vertices v �= r we have that Sv

0 contains r (it
corresponds to the parent of v) and Sv

1 corresponds to the biggest child of v. In
other words, at most Sv

0 and Sv
1 can be connected by heavy edges, all the other

subtrees Sv
2 , Sv

3 , . . . are connected by light edges.
Now we take an arbitrary vertex w and calculate how many times it can

appear in
∑

v∈V (T) Ψ(v). Suppose v is a vertex that counts w in Ψ(v), then the
first edge on the path from v to w has to be light, moreover, Sv

0 is not counted
in Ψ(v), so that path cannot pass through the parent of v. Because of that v
has to be an ancestor of w, however, there are at most O(log n) light edges on
any path from w to the root r for any w. In other words, there can be at most
O(log n) vertices that count w in its sum of Ψ . Summing that for all vertices of
T we get the desired bound of O(n log n). ��
We continue with the proof of Lemma 5, stated again below.

Lemma 5 The total length of final dispatching paths is O(n log2 n), i.e.,∑
t∈[n]:

b=dis(πt)∈B
t=tlast(b)

|ρt| ∈ O(n log2 n)

Proof. In order to bound the sum as claimed, we introduce some additional
structure on T . We decompose T into paths which cover T . We pick an arbitrary
vertex of T as a root. We adopt the heavy-light decomposition defined below.

Definition 3. In the heavy-light decomposition each non-leaf node selects one
heavy edge - the edge to the child that has the greatest number of descendants
(breaking ties arbitrarily). The selected edges form the paths of the decomposition
(called heavy paths). These heavy paths partition the vertices of T . Let pheavy(v)
denote the heavy path containing v. A light edge is an edge of T that is not heavy.

By construction, every path in T contains at most O(log n) light edges. In Fig. 1,
the heavy paths in the tree are marked bold.

Now fix a black dispatching vertex b and the last time t = tlast(b) when b
is dispatching. We bound the length of ρt by the length of λt, which is a path
from b to a seed in St−1, that leaves each heavy path as soon as possible.

To be more precise, we define closestt(v) as the closest vertex reachable from v
at time t (in T int

t), which belongs to pheavy(v) and has a light directed edge to an

Shortest Augmenting Paths for Online Matchings on Trees 67

alive child at time t. Note that such a vertex exists if v is black and dispatching.
Let light-childt(v) be the alive light child of v such that v −→ light-childt(v) at
time t if such child exists. We now define a sequence of vertices:⎧⎪⎨

⎪⎩
f0 = b

ei = closestt(fi−1) for i = 1 . . . k

fi = light-childt(ei) for i = 1 . . . k

where k is the index when we reach a seed, i.e., either ei ∈ St−1 or fi ∈ St−1.
We define λt = f0 −→ e1 −→ f1 −→ . . . −→ ek/fk, see Fig. 1 for an illustration. Note,
that λt is only defined for such t, that t = tlast(b) for some black dispatching
vertex b. We introduce a useful observation before we proceed.

Fig. 1. The heavy-light decomposition and the definition of λt

Observation 3. Any λt move towards the root only via heavy edges.

As mentioned before, as ρt is the shortest path to a seed, we charge the cost
of ρt onto the vertices of λt, which is certainly at least as long. The argument we
are pursuing is going to be completed by the claim that every vertex is charged
at most O(log2 n) times during the runtime of Sap.

To that end we introduce the last definitions and observations. For any vertex
v we define heavy-charge(v) to be the set of black dispatching vertices b ∈
pheavy(v) such that at time t = tlast(b) paths λt charge onto v:

heavy-charge(v) = {b ∈ pheavy(v)∩B : b = dis(πt) and t = tlast(b) and v ∈ λt}

We emphasize here that a black dispatching vertex b = dis(πt) of pheavy(v) can
charge λt onto v at most once, and hence heavy-charge(v) is not a multiset.

68 B. Bosek et al.

Now fix a vertex w. We count how many times w is charged. Let charge(w)
be the set of all black dispatching vertices that charge onto w the last time when
they are dispatching:

charge(w) = {b ∈ B : b = dis(πt) and t = tlast(b) and w ∈ λt}
Clearly, |charge(w)| is the total number of times the vertex w is charged and
that is what we want to bound. To complete the argument, we introduce one
more definition.

Definition 4. The head of a heavy path π, denoted as head(π), is the closest to
the root vertex of π (closest in the undirected sense). A light ancestor of a vertex
v, denoted as light-ancestor(v), is the parent in the tree T of the head of the
heavy path containing v, i.e., light-ancestor(v) is a parent of head(pheavy(v)).

We now define a sequence of vertices starting with w0 = w, such that wi =
light-ancestor(wi−1), for i = 1 . . . l, where l is such that head(pheavy(wl)) is the
root of T . By the definition of the heavy-light decomposition, l ∈ O(log n). We
observe that the black dispatching vertices that can potentially charge onto w
are the vertices in V (pheavy(w0)) ∪ . . . ∪ V (pheavy(wl))). Moreover,

charge(w) ⊆ ⋃l
i=0 heavy-charge(wi)

since every black dispatching vertex that charges onto w that is in V (pheavy(wi))
charges also onto wi. Since sets V (pheavy(wi)) are pairwise disjoint, this implies

| charge(w)| ≤ ∑l
i=0 |heavy-charge(wi)|

For the illustration of our construction of the charging scheme see Fig. 2. The
black arrows mark the heavy charges of vertices wi, which sum up to the total
charge of w.

Fig. 2. The charging scheme

Below we prove Lemma 7, which states that for all v ∈ V (T) it holds that
|heavy-charge(v)| ∈ O(log(|pheavy(v)|)). Having Lemma 7 at our disposal,

Shortest Augmenting Paths for Online Matchings on Trees 69

we have | charge(w)| ≤ ∑l
i=0 |heavy-charge(wi)| ∈ O(log2 n). This completes

the proof of Lemma 5. ��
Lemma 7. For all v ∈ V (T) it holds that |heavy-charge(v)| ∈ O(log
(|pheavy(v)|)).

Fig. 3. The illustration to the proof of Lemma 7

Proof. We partition vertices of heavy-charge(v) = X∪Y ∪Z into pairwise disjoint
sets X,Y,Z. We let X = {x0 . . . xp} be the ancestors of v in heavy-charge(v)
ordered in a way that xi+1 is the ancestor of xi. Similarly, let Y = {y0, . . . yq}
be the descendants of v in heavy-charge(v) ordered in a way that yi+1 is a
descendant of yi. Finally we set Z = {v} if v is a black dispatching vertex,
otherwise Z = ∅. We focus on the number of vertices in X first. We use here
d(•, •) to denote the distance between two vertices in T in the undirected sense.
Let a = d(v, x0). We prove inductively that d(xi, v) ≥ 2ia, see Fig. 3 for an
illustration. The claim clearly holds for i = 0. Now assume it holds for j ≤ i
for some i. Consider xi and xi+1. Let ti = tlast(xi) and ti+1 = tlast(xi+1). We
distinguish two cases:

1. ti < ti+1. By definition of λti , it holds that d(closestti(xi), xi) ≥ d(xi, v) ≥
2ia. Because xi is dispatching at time ti, there is at time t an alternative path
λ′

ti (going up the tree towards xi+1) from xi to a seed. Consider again two
cases:
(a) λ′

ti does not cross xi+1. This means that λ′
ti leaves pheavy(v) in a vertex

u that has a directed edge to a light alive child at time ti. Hence,

d(xi, xi+1) ≥ d(xi, u) ≥ d(closestti(xi), xi) ≥ 2ia

so d(xi+1, v) ≥ 2i+1a.
(b) λ′

ti crosses xi+1. Then, xi+1 at time ti has a directed edge to an alive
light child. This holds because if all reachable light children of xi+1 at
time ti are dead, then degefft(xi+1) ≤ 1 remains for t ≥ ti, so xi+1 cannot
be dispatching at time ti+1. So, since xi+1 does have a directed edge to
an alive light child at time ti, we get d(xi+1, xi) ≥ d(xi, v) and thus
d(xi+1, v) ≥ 2i+1a.

2. ti+1 < ti. By definition, λti+1 crosses xi. By a similar argument as above,
at time ti+1 vertex xi has a directed edge to a light alive child. This is a
contradiction, as in such case λti+1 leaves pheavy(v) in xi.

70 B. Bosek et al.

The claim that we proved implies that |X| ∈ O(log |pheavy(v)|). We analogously
show that |Y | ∈ O(log |pheavy(v)|). Since |Z| ≤ 1, we obtain |heavy-charge(v)| =
|X ∪ Y ∪ Z| ∈ O(log |pheavy(v)|). This completes the proof of Lemma 7 and the
proof of Theorem 1. ��

References

1. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n)
update time. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, ppp. 383–392. IEEE Computer Society,
Washington, DC, USA (2011)

2. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 167–179. Springer, Heidelberg (2015)

3. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online bipartite matching in
offline time. In: 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 384–393. IEEE
Computer Society (2014)

4. Chaudhuri, K., Daskalakis, C., Kleinberg, R.D., Lin, H.: Online bipartite per-
fect matching with augmentations. In: INFOCOM 2009, 28th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Com-
puter and Communications Societies, 19–25 April 2009, Rio de Janeiro, Brazil,
pp. 1044–1052. IEEE (2009)

5. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248–264 (1972)

6. Grove, E.F., Kao, M.Y., Krishnan, P., Vitter, J.S.: Online perfect matching and
mobile computing. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) Algo-
rithms and Data Structures. Lecture Notes in Computer Science, vol. 955, pp.
194–205. Springer, Heidelberg (1995)

7. Gupta, A., Kumar, A., Stein, C.: Maintaining assignments online: matching,
scheduling, and flows. In: Chekuri, C., (ed.) Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, 5–7 January 2014, pp. 468–479. SIAM (2014)

8. Gupta, M., Peng, R.: Fully dynamic (1+e)-approximate matchings. In: IEEE 54th
Annual Symposium on Foundations of Computer. Science, pp 548–557 (2013)

9. Ivković, Z., Lloyd, E.L.: Fully dynamic maintenance of vertex cover. In: Leeuwen, J.
(ed.) Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer
Science, vol. 790, pp. 99–111. Springer, Heidelberg (1994)

10. Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect matching is in ran-
dom NC. Combinatorica 6(1), 35–48 (1986)

11. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line
matching. In: 46th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2005, pp. 264–273, October 2005

12. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic maxi-
mal matching. In: Proceedings of the Forty-fifth Annual ACM Symposium on The-
ory of Computing, STOC 2013, pp. 745–754. ACM, New York, NY, USA (2013)

13. Onak, K., Rubinfeld, R.: Dynamic approximate vertex cover and maximum match-
ing. In: Goldreich, O. (ed.) Property Testing, vol. 6390, pp. 341–345. Springer,
Heidelberg (2010)

Shortest Augmenting Paths for Online Matchings on Trees 71

14. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, pp. 118–126. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA (2007)

15. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

	Shortest Augmenting Paths for Online Matchings on Trees
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Run-away-from-the-root Algorithm
	5 Shortest Paths on Trees
	References

