
Scheduling with State-Dependent
Machine Speed

Veerle Timmermans(B) and Tjark Vredeveld

Maastricht University, Maastricht, The Netherlands
{v.timmermans,t.vredeveld}@maastrichtuniversity.nl

Abstract. We study a preemptive single machine scheduling problem
where the machine speed is externally given and depends on the number
unfinished jobs. The objective is to minimize the sum of weighted com-
pletion times. We develop a greedy algorithm that solves the problem
to optimality when we work with either unit weights or unit processing
times. If both weights and processing times are arbitrary, we show the
problem is NP-hard by making a reduction from 3-partition.

1 Introduction

In queueing theory, many studies have been made about queues with state-
dependent service speeds, see e.g. Bekker and Boxma [4] or Bekker, Borst, Boxma
and Kella [13] and the references therein. This model is among others motivated
by Bertrand and Van Ooijen [5] through human servers who may be slow when
there is much work to do, due to stress, or when there is little work to do due to
laziness. For state-dependent server speeds in packet-switched communication
systems, we refer to [6,7,11,14].

Although these models have been extensively studied in queueing theory, not
much is known about algorithms that solve these models to optimality nor the
computational complexity of this type of problem. During the 2013 Scheduling
workshop in Dagstuhl, Urtzi Ayesta [3] posed it as an open question how optimal
policies look like and what the computational complexity is. In this paper, we
settle this open problem for one variant of state-dependent machine speeds,
namely when the speed of the machine varies with the number of jobs in the
system. This number of jobs is a good measure for the total workload in the
system, when the service requirements of the jobs are i.i.d. Moreover, in this
setting the speed of the server only changes at discrete times, see e.g. [4].

1.1 Previous Work

Models with workload dependent server speeds originate from queueing theory.
Bertrand and Van Ooijen [5] assume in their paper that the workload level
affects the effective processing times in a job shop. This assumption is based on
the results of empirical research on the relationship between workload and shop
performance. Bekker, Borst, Boxma and Kella [13] consider two types of queues
c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 196–208, 2015.
DOI: 10.1007/978-3-319-28684-6 17



Scheduling with State-Dependent Machine Speed 197

with workload dependent arrival rate and service speed. Bekker and Boxma
[4] consider a queueing system where feedback information about the level of
congestion is given right after arrival instants. When the amount of work right
after arrival is at most some threshold, then the server works at a low speed
until the next arrival instant.

Related work in deterministic scheduling with varying machine speeds includes
the following. Research into speed scaling algorithms started with the work of Yao,
Demers and Shenker [8], where each job is to be executed between its arrival time
and deadline by a single processor with variable speed. The difference with the
previous mentioned models as well as ours is that the scheduler in this setting
also needs to decide on the speed of the machine at any time t. A review paper on
speed scaling algorithms is written by Albers [1].

Megow and Verschae [12] also study scheduling problems on a machine of
varying speed, but they assume a speed function that depends on the time which
is known a priori. They developed a PTAS for minimizing the total weighted
completion time.

The machine speed model we consider, was previously investigated by Gaw-
iejnowicz [10] and Alidaee and Ahmadian [2]. Though both papers discussed
the non-preemptive case instead of the preemptive case we are looking at. Here
Gawiejnowicz considered the makespan objective whereas we study the goal to
minimize the sum of (weighted) completion. Alidaee and Ahmadian studied the
sum of completion times where jobs have equal weights.

1.2 Problem Definition

In the model under consideration, n jobs need to be scheduled on a single
machine. A job j is associated with a strictly positive processing requirement
denoted by pj and depending on the variant that we consider also with a weight
wj . All jobs as well as the machine are available from the beginning. The machine
is allowed to preempt a job, i.e., the processing of a job may be interrupted and
resumed later on the machine. By allowing infinitesimally small processing on a
job before preempting it, the preemption model can be viewed as one in which
during each time interval the processing capacity of the machine is divided over
one or more jobs. The goal is to minimize the total (weighted) completion time,∑

wjCj , where Cj denotes the completion time of job j. In our scheduling model,
the speed at which the machine processes its jobs varies with the number of jobs
in the system. For notational convenience, we represent the speed at which the
machine is processing as a function of the number of completed jobs. Hereto, we
are given a speed function si (i = 1, . . . , n), where si denotes the speed of the
machine between the (i− 1)th and ith completion. From now on we refer to this
problem as JDMS.

When the machine speed does not vary, i.e. si = 1 for all i, the problem is a
standard problem where the total weighted completion time should be minimized
on a single machine. This problem is solved by Smith’s rule [15].



198 V. Timmermans and T. Vredeveld

1.3 Our Results

When we know the order in which the jobs complete, we can formulate the
problem as an LP with two types of constraints. The first type of constraints
ensures that the amount of processing done during an interval is not more than
the capacity of the machine in that interval. The second type of constraints
ensures that the jobs complete in the order that is assumed. Any solution to our
scheduling problem can be represented as a solution to the LP and vice versa.
Using this fact, we can prove that there exists an optimal solution such that at
every completion time Cj , any job k is already completed by time Cj or it has
not received any processing yet by this time.

Intuitively this lemma means that there exists an optimal solution where the
jobs are partitioned in groups and all jobs in a group start and finish at the
same time. Given the order of job completions, we still need to decide on how
to partition the jobs into groups. Although this follows from the optimal LP
solution, we also develop a combinatorial greedy algorithm. For the case of the
total completion time objective, it is easy to show that jobs will complete in
shortest processing time (SPT) order, whereas the case of unit processing times
the optimal order will be sorting according to non-increasing weight. When both
weight and processing times can be arbitrary, the problem is strongly NP-hard
and we make a reduction from 3-partition.

2 Structural Property

In this section we show that an optimal schedule has a certain block structure
in which the jobs are processed in groups and that the jobs in one group start
and finish at the same time. Note that we view the preemption model as one
in which the processing capacity of the machine is divided over one or more
jobs. Therefore, we may assume that a set of jobs can complete at exactly the
same time. In case that the order in which the jobs need to complete is given,
we can formulate the problem of minimizing the total weighted completion time
as a linear program. Assuming w.l.o.g. that the order of completion is given by
the index of jobs, i.e., C1 ≤ · · · ≤ Cn, the variables in the LP denote the time
between the ith and the i + 1st completion. That is, we use variable Δi, where:

Δi =
{

C1 if i = 1,
Ci − Ci−1 if 1 < i ≤ n.

Hence, the completion time of job j can be written as Cj =
∑j

i=1 Δi. At the
interval [0, C1], the machine is operating at speed s1 and during the intervals
[Ci−1, Ci], the machine is operating at speed si. The sum of weighted completion
times can be rewritten as:

n∑

j=1

wjCj =
n∑

j=1

wj

j∑

i=1

Δi =
n∑

i=1

⎛

⎝
n∑

j=i

wj · Δi

⎞

⎠ .



Scheduling with State-Dependent Machine Speed 199

To make sure the requested order on the completion times is enforced, we have
the constraint Δi ≥ 0 for all i. Lastly we want to make sure that by time Ci at
least jobs 1, . . . , i have been fully processed. Thus the total amount of processing
up to time Ci needs to be at least the processing requirements of the first i jobs:

i∑

k=1

Δk · sk ≥
i∑

k=1

pk, 0 ≤ i ≤ n.

The LP is as follows:

minimize
n∑

i=1

⎛

⎝
n∑

j=i

wj · Δi

⎞

⎠

subject to
i∑

k=1

Δk · sk ≥
i∑

j=1

pj , 1 ≤ i ≤ n

Δi ≥ 0, 1 ≤ i ≤ n.

Note that a feasible solution for this LP does not correspond to a unique
schedule, but with a non-empty set of schedules for which the completion times
are set. Any feasible schedule leads to a unique solution of the LP. For any given
order on the completion times, we can find an optimal schedule in polynomial
time using this LP.

We use this LP to show that an optimal solution to the general JDMS has a
block structure. We first prove that there exists an optimal solution, such that
at all completion times, each job that has started is finished.

Lemma 1. There exists an optimal schedule such that at every completion time
Ci, for every job j one of the following holds:

1. Job j is already completed at time Ci.
2. At time Ci job j has not received any processing yet.

Proof. Given an order of completion times, we make a corresponding LP and
reformulate this lemma in terms of this linear program. For this linear program
we prove that for each job k one of the following holds:

– Δk+1 = 0, and thus Ck = Ck+1.
– If Ck+1 > Ck, then it has to hold that

∑k
j=1 sjΔj =

∑k
j=1 pj . If that is not

the case, we use the fact that a solution must satisfy the requested order on
the completion times in combination with the assumption that a machine is
always working at full speed. Then there exists a job l ≥ k + 1 that is not yet
completed, but already received some processing.

Thus we want to prove that for k = 1, . . . , n − 1 either:

Δk+1 = 0 (1) or
k∑

j=1

sjΔj =
k∑

j=1

pj . (2)



200 V. Timmermans and T. Vredeveld

Suppose we have an optimal solution σ such that there exists a k with:

Δk+1 > 0 and
k∑

j=1

sjΔj >

k∑

j=1

pj .

We define � as:
� = max{j ≤ k|Δj > 0}.

Note that � exists as prosessing times are strictly positive. We define two new
feasible solutions, for some ε > 0:

1. We define σ′ as the solution where Δσ′
� = Δσ

� − ε
s�

and Δσ′
k+1 = Δσ

k+1 + ε
sk+1

.
The change in the objection value is:

n∑

i=1

wiC
σ′
i −

n∑

i=1

wiC
σ
i =

∑

1≤i≤j≤n

wjΔ
σ′
i −

∑

1≤i≤j≤n

wjΔ
σ
i

=

(
n∑

i=k+1

wi

)
ε

sk+1
−

(
n∑

i=�

wi

)
ε

s�
.

Note that σ′ is still feasible, as we can do ε amount of work less in Δσ′
�

compared to Δσ
� , but ε amount of work extra in Δσ′

k+1 compared to Δσ
k+1.

2. We define σ′′ as the solution where Δσ′′
� = Δ� + ε

s�
and Δσ′′

k+1 = Δk+1 − ε
sk+1

.
The change in the objection value is:

n∑

i=1

wiC
σ′′
i −

n∑

i=1

wiC
σ
i =

∑

1≤i≤j≤n

wjΔ
σ′′
i −

∑

1≤i≤j≤n

wjΔ
σ
i

=

(
n∑

i=�

wi

)
ε

s�
−

(
n∑

i=k+1

wi

)
ε

sk+1
.

Note that σ′′ is still feasible, as we can do ε amount of work extra in Δσ′′
�

compared to Δσ
� , but ε amount of work less in Δσ′′

k+1 compared to Δσ
k+1.

As:
n∑

i=1

wiC
σ′
i −

n∑

i=1

wiC
σ
i = −

(
n∑

i=1

wiC
σ′′
i −

n∑

i=1

wiC
σ
i

)

,

at least one of the two solutions is better than or equal to σ. As σ is optimal,
we actually know that both new solutions are also optimal.

Suppose k is the smallest value such that neither (1) or (2) holds. Let:

ε = min{Δk+1,
k∑

j=1

sjΔj −
k∑

j=1

pj},



Scheduling with State-Dependent Machine Speed 201

then either σ′ or σ′′ will give an optimal solution where either (1) or (2) holds
for job k. We repeat this procedure until this property holds for all k ∈ {0 . . . n}.

Thus given an order on the completion times, we can find an optimal schedule
satisfying the requested order such that for all i, j, where 1 ≤ i, j ≤ n it holds
that at time Cj either job i is completed or did not receive any processing time
yet. As this holds for any order, this will also hold for the order of some optimal
solution. Therefore there exists an optimal solution such that or all i, j, where
1 ≤ i, j ≤ n, it holds that yi(Cj) ∈ {0, pi}. ��
Lemma 1 implies that we can divide the jobs into groups of consecutive jobs,
such that all jobs in a group will start and end at the same time. We use Gi to
denote the ith group of jobs and we denote an optimal solution as [G1, . . . , Gk]
(Fig. 1).

Fig. 1. Schedule in which the jobs are divided into k groups.

3 JDMS is Strongly NP-hard

From the previous section it follows that once we know the order in which the
jobs complete in an optimal solution, we can find such an optimal solution in
polynomial time. The only question that remains is how to find an order such
that there exists an optimal solution that satisfies this order? When there are
no restrictions on weights and processing times, it is strongly NP-hard to find
such an order.

Theorem 1. JDMS is strongly NP-hard.

Proof. We make a reduction from 3-partition [9] to JDMS. We take an instance
of 3-partition with 3m elements of size aj , and B = 1

m

∑3m
i=1 aj . The reduction

to JDMS is as follows: we define 3m jobs, with pj = wj = aj . The machine speed
is 1 when there are 0 (mod 3) jobs completed, and 0 otherwise. Now we claim
that there is a solution for 3-partition if and only if we can find a schedule where
the sum of weighted completion times is at most 1

2m(m + 1)B2.
Suppose we have a yes-instance for 3-partition, then there are sets S1, . . . , Sm

that contain exactly three elements, and
∑

i∈Sj
aj = B for all j. Then for JDMS

we make the schedule where we process the jobs in groups [S1, . . . Sm]. In this
schedule the machine runs always at speed 1, as we always process three jobs at
the same time. Group Si has weight B and completion time iB, thus the objective



202 V. Timmermans and T. Vredeveld

value is in this case
∑m

i=1 iB2, which equals 1
2m(m + 1)B2. Thus indeed there

exists a schedule with completion time at most 1
2m(m + 1)B2.

Suppose we have a schedule in JDMS with objective value at most 1
2m(m +

1)B2. According to Lemma 1 the jobs are processed in groups, and the sizes
of these groups have to be a multiples of three. Therefore we have at most m
groups. Now let xi be the length of group i, then the total weighted cost is:

m∑

i=1

⎛

⎝xi ∗
∑

1≤j≤i

xj

⎞

⎠ .

This can be rewritten as:

1
2

(

(
m∑

i=1

xi)2 +
m∑

i=1

x2
i

)

.

We know that
∑m

i=1 xi = mB, thus we have objective value:

1
2

(

m2B2 +
m∑

i=1

x2
i

)

.

The sum of squares is minimized when x1 = · · · = xn = mB
m = B. Note

that this will give us exactly objective value 1
2m(m + 1)B2, and is therefore the

only schedule we could have found. This implies that every group has exactly
processing time B. Note that we need to use all m groups, and we know that
every group has to contain a multiple of 3 jobs. As we have 3m jobs in total, every
group has to contain exactly three jobs. Thus these groups form a 3-partition of
the jobs aj .

This implies that the decision variant of JDMS is NP-complete, and therefore
JDMS is NP-hard. ��

4 Combinatorial Algorithm for Special Cases

In the previous section we proved that JDMS is strongly NP-hard. As the par-
titioning problem can be solved within polynomial time, the problem lies in
finding a suitable order on the job completions. In some special cases, when
working with either unit weights or unit processing requirements, such an order
can be found within polynomial time.

4.1 Solving the Sequencing Problem in Special Cases

In the first special case we assume all jobs have an equal weight.

Theorem 2. Suppose w1 = · · · = wn, then there exists an optimal schedule
for JDMS in which the jobs are completed in order of non-decreasing processing
time.



Scheduling with State-Dependent Machine Speed 203

Proof. Assume w.l.o.g that p1 ≤ · · · ≤ pn and we have an optimal schedule σ for
which it does not hold that Cσ

1 ≤ · · · ≤ Cσ
n . Then we look at the smallest i such

that Cσ
i+1 < Cσ

i . We change σ to σ∗ by only changing σ at job i and i + 1. We
let job i finish at time Cσ∗

i = Cσ
i+1 and job i + 1 finish at time Cσ∗

i+1 = Cσ
i . As

pi ≤ pi+1 and Cσ
i+1 < Cσ

i , we know that there needs to be a time t at which in
schedule σ the remaining processing time of a job i is the same as the remaining
processing time of job i + 1. We define the schedule σ∗ as follows. It processes
all jobs j �= i, i + 1 the same as in σ as it does with jobs i and i + 1 up to time
t. From time t onwards, σ∗ processes job i + 1 whenever σ processes job i and it
processes job i whenever job i+1 is processed by σ. All other jobs are processed
in σ∗ the same way as in σ.

As the time points where jobs finish stay the same, it holds that the speed of
the machine is equal in σ and σ∗ at every point in time. Therefore per time unit
the same amount of work can be done in σ and σ∗. So there is exactly enough
space for job i + 1 to be finished at time Cσ

i . Thus
∑n

i=1 Cσ
i =

∑n
i=1 Cσ∗

i and
σ∗ will remain optimal.

Iterating this process implies that there is an optimal schedule σ′ such that
Cσ′

1 ≤ · · · ≤ Cσ′
n . ��

Thus for JDMS with equal weights there exists an optimal solution that satisfies
the SPT order.

When we work with unit processing requirements instead of weights, we again
can find an order on the completion times that guarantees an optimal solution.

Theorem 3. Suppose p1 = · · · = pn, then there exists an optimal schedule for
JDMS in which the jobs completed in order of non-increasing weights

Proof. Suppose we have an optimal schedule σ and it does not hold that Cσ
1 ≤

· · · ≤ Cσ
n . Then we look at the smallest i such that Cσ

i+1 < Cσ
i and wi > wi+1 (if

wi = wi+1 then job i and i + 1 are identical and therefore switching job i with
job j will result in an optimal schedule as well). We change σ to σ∗ by processing
job i + 1 whenever σ processes job i and job i whenever σ processes job i + 1.
All other jobs are processed as in σ. As pi = pi+1, we know that Cσ∗

i+1 = Cσ
i

and Cσ∗
i = Cσ

i+1 and Cσ∗
j = Cσ

j for all j �= i, i + 1. Thus wjC
σ
j = wjC

σ∗
j

for all j �= i, i + 1. Furthermore, as wi > wi+1, Cσ∗
i+1 > Cσ∗

i , Cσ
i = Cσ∗

i+1 and
Cσ

i+1 = Cσ∗
i , some simple rewriting learns us that:

wiC
σ
i + wi+1C

σ
i+1 = wi+1C

σ∗
i + wiC

σ∗
i+1

= wi+1C
σ∗
i + wiC

σ∗
i+1 − (wiC

σ∗
i + wi+1C

σ∗
i+1)

+(wiC
σ∗
i + wi+1C

σ∗
i+1)

= (wi − wi+1)(Cσ∗
i+1 − Cσ∗

i ) + (wiC
σ∗
i + wi+1C

σ∗
i+1)

> wiC
σ∗
i + wi+1C

σ∗
i+1.

Thus
∑n

i=1 wiC
σ
i >

∑n
i=1 wiC

σ∗
i , which contradicts the fact that σ is

optimal. ��



204 V. Timmermans and T. Vredeveld

So when we number the jobs in order of non-increasing weights we know that
there exists an optimal solution satisfying this order.

4.2 Combinatorial Algorithm

We have split the problem up in two parts: we need to find a good sequence for
the order on the job completions (secuencing problem) and then decide how to
make the groups (partitioning problem). In Sect. 4.1 we solved the sequencing
problem for some special cases. To find an optimal solution it remains to solve
the partitioning problem. In Sect. 2 we showed that we can rewrite the problem
as an LP to find the exact completion times, and hence make an optimal solution.
In this section we develop a combinatorial algorithm that solves the partitioning
problem in linear time. We first give a intuitive explanation of this algorithm,
and thereafter a formal definition of the algorithm in pseudo code is given.

The algorithm finds an sequence of groups that fits in the block structure of
an optimal solution for the given order. This sequence indicates which groups
of jobs should be processed in what order. Again we assume w.l.o.g. that the
order on the completion times is C1 ≤ · · · ≤ Cn. The algorithm determines for
each job i, whether it is better to schedule this job in the same group as job
i − 1 or to start a new group for job i. Hereto, we determine what the effect
of job i is on the total weighted completion time is when it is scheduled in the
same group as job i − 1 and also for the case when a new group is started for
job i. When job i is scheduled in the same group as job i − 1 the contribution is
(
∑

j∈Gk
wj +

∑n
j=i wj)(pi/sGk

), as it delays all jobs processed in or after group
Gk. Here we use sGk

to refer to the speed at which Gk is processed. When job
i starts a new group the contribution is (

∑n
j=i wj)(pi/si), as it delays job i and

all jobs that complete after job i. Therefore we determine whether or not the
following equation holds:

∑
j∈Gk

wj +
∑n

j=i wj

sGk

≤
∑n

j=i wj

si
. (1)

If so, then job i is scheduled to be processed together with the group of i − 1.
Otherwise a new group is started. The pseudo code of this greedy algorithm can
be found in Algorithm 1.

Theorem 4. Algorithm 1 finds an optimal solution for a given order of job
completions in JDMS.

Proof. Suppose σ is an optimal schedule for an instance of JDMS with n jobs
satisfying C1 ≤ · · · ≤ Cn. Let σ∗ be the solution according to the algorithm.
Then we want to show that a schedule according to the algorithm will give a
solution with an equal objective value. Let job i be the first job in σ that is not
scheduled according to the algorithm. Then there are two possible situations:

1. In σ, job i is scheduled in a new group Gk, whereas in σ∗ it is still processed
in group Gk−1.



Scheduling with State-Dependent Machine Speed 205

Input: n jobs with processing requirements p1, . . . , pn, weights w1, . . . wn,
speeds s1, . . . , sn and an order on the completion times C1 ≤ · · · ≤ Cn.

Output: an optimal sequence of groups [G1, . . . , Gk]
initialization: G1 = {1}, k = 1, E = w1, s = s1 ;
for i = 2 until i = n do

if (E +
∑n

j=i wj)si ≤ (
∑n

j=i wj)s then

E → E + wi, ;
Gk → Gk ∪ {i};

else
E → wi;
s → si;
Gk+1 → {i};
k → k + 1;

end

end
Return [G1, . . . , Gk]

Algorithm 1. Greedy algorithm

2. Job i is scheduled in the previous group Gk, while it should be scheduled in
a new group.

Suppose we are in the first situation: in σ, job i is scheduled in a new group
Gk, whereas in σ∗ it is still processed in group Gk−1. Then we change σ to σ′

by merging Gk and Gk−1. Then in σ′ , jobs 1, . . . , i are scheduled the same as
in σ∗.

We look at the total value that groups Gk, Gk−1 and Gk ∪ Gk−1 contribute
to the objective value of σ and σ′. Here the contribution of a group S is not∑

j∈S wjCj , but instead the time it takes to process all jobs in the group mul-
tiplied by the weight of all unfinished jobs at that point. As the other groups in
σ′ are the same as in σ, the contribution of these groups are the same in both σ
and σ′. Let c be the function that computes the value that a group contributes
to the objective value. Let W be the total weight of all the jobs scheduled after
Gk. Then:

cσ(Gk) + cσ(Gk−1) =

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk−1

pj

sGk−1

+

⎛

⎝
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk

, (2)

cσ′(Gk ∪ Gk−1) =

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk∪ Gk−1

pj

sGk−1

. (3)



206 V. Timmermans and T. Vredeveld

According to Algorithm 1 it should hold that:
∑

j∈Gk−1
wj +

∑n
j=i wj

∑n
j=i wj

≤ sGk−1

si
. (4)

Combining the fact that
∑

j∈Gk
wj + W =

∑n
j=i wj and (4) we know that:

∑
j∈Gk−1

wj +
∑

j∈Gk
wj + W

∑
j∈Gk

wj + W
≤ sGk−1

si
. (5)

We rewrite (5), and as job i is the first job of Gk we can replace si by sGk
:

∑
j∈Gk−1

wj +
∑

j∈Gk
wj + W

sGk−1

≤
∑

j∈Gk
wj + W

sGk

. (6)

Multiplying both sides with
∑

j∈Gk
pj :

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk−1

≤
⎛

⎝
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk

. (7)

Adding
(∑

j∈Gk−1
wj +

∑
j∈Gk

wj + W
) ∑

j∈Gk−1
pj

sGk−1
yields:

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk∪ Gk−1

pj

sGk−1

≤
⎛

⎝
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk

+

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk−1

pj

sGk−1

. (8)

Combining (2), (3) and (8) yields:

cσ′(Gk ∪ Gk−1) ≤ cσ(Gk) + cσ(Gk−1). (9)

Thus the value of our changed schedule σ′ is smaller or equal than the objec-
tive value of σ, thus σ′ is optimal as well. The proof for the second situation is
similar and will therefore not be fully written out here. ��

5 Concluding Remarks

In this paper, we considered the problem JDMS in which jobs need to be sched-
uled preemptively on a single machine of which the speed varies with the number
of jobs that have been completed. We showed this problem to be NP-hard and
that the main issue is to decide in which order the jobs need to complete. Once
this order is known, we can find the optimal schedule in polynomial time through



Scheduling with State-Dependent Machine Speed 207

a greedy algorithm. This algorithm uses a structural property that tells that the
jobs are processed in blocks. For two special cases, JDMS with unit weights or
unit processing times, we found the orders that guarantee us to find an optimal
solution. The optimal order to complete unit weight jobs is shortest processing
time and the one for unit processing times is largest weight.

One question that remains is how well the general problem can be approxi-
mated. In case that the speed is constant, it is well known that the WSPT rule
that processes the jobs in order of non-increasing ratio of weight over processing
time is optimal [15]. However, the following example shows that this order can
be arbitrarily bad for JDMS.

Example 1. In this example, there are two jobs with w1 = 0, p1 = ε and w2 =
p2 = A. According to the WSPT order job 2 precedes job 1, and the optimal
schedule has value A2. If we consider the opposite order the optimal schedule
has value A

1+ε . Letting ε go to 0 and A be arbitrarily large, we see that this ratio
can be arbitrarily large.

Acknowledgements. We thank Urtzi Ayesta for helpful discussion after posing this
open question during the Daghstuhl Seminar 13111 “Scheduling” in 2013. Furthermore,
we thank the organizers of this seminar and Schloss Daghstuhl for providing the right
atmosphere to facilitate research.

References

1. Albers, S.: Review articles: energy-efficient algorithms. Commun. ACM 53(5), 86–
96 (2010)

2. Alidaee, B., Ahmadian, A.: Scheduling on a single processor with variable speed.
Inf. Process. Lett. 60, 189–193 (1996)

3. Ayesta, U.: Scheduling (dagstuhl seminar 13111): scheduling with time-varying
capacities. Dagstuhl Rep. 3(3), 29 (2013)

4. Bekker, R., Boxma, O.J.: An M/G/1 queue with adaptable service speed. Stochas-
tic Models 23(3), 373–396 (2007)

5. Bertrand, J.W.M., Ooijen, H.P.G.: Workload based order release and productivity :
a missing link. Prod. Plan. Control : The Manage. Oper. 13(7), 665–678 (2002)

6. Ewalid, A., Mintra, D.: Analysis and design of rate-based congestion control of
high-speed networks, i: stochastic fluid models, access regulation. Queueing Syst.
9, 29–64 (1991)

7. Ewalid, A., Mintra, D.: Statistical multiplexing with loss priorities in rate-based
congestion control of high-speed networks. IEEE Trans. Commun. 42, 2989–3002
(1994)

8. Demers, A.J., Yao, F.F., Shenker, S.: A scheduling model for reduced CPU energy.
In: FOCS, pp. 374–382 (1995)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York (1979)

10. Gawiejnowicz, S.: A note on scheduling on a single processor with speed dependent
on a number of executed jobs. Inf. Process. Lett. 57, 297–300 (1996)

11. Mandjes, M., Mintra, D.: A simple model of network access: feedback adaptation
of rates and admission control. In: Proceedings of Infocom, pp. 3–12 (2002)



208 V. Timmermans and T. Vredeveld

12. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. In: Fomin, F.V., Freivalds, R.U., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013)

13. Boxma, O.J., Bekker, R., Borst, S.C., Kelly, O.: Queues with workload-dependent
arrival and service rates. Queueing Syst. 46(3–4), 537–556 (2004)

14. Ramanan, K.A., Weiss, A.: Sharing bandwidth in ATM. In: Proceedings of the
Allerton Conference, pp. 732–740 (1997)

15. Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logist. Q.
3, 59–66 (1956)


	Scheduling with State-Dependent Machine Speed
	1 Introduction
	1.1 Previous Work
	1.2 Problem Definition
	1.3 Our Results

	2 Structural Property
	3 JDMS is Strongly NP-hard
	4 Combinatorial Algorithm for Special Cases
	4.1 Solving the Sequencing Problem in Special Cases
	4.2 Combinatorial Algorithm

	5 Concluding Remarks
	References


