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Preface

The 13th Workshop on Approximation and Online Algorithms (WAOA 2015) focused
on the design and analysis of approximation and online algorithms. These algorithms
have become a fundamental tool in several fields and in many applications that cope
with computationally hard problems and problems in which the input is gradually
disclosed over time.

WAOA 2015 took place in Patras (Greece) during September 17–18, 2015, and it
was part of ALGO 2015, which also hosted ESA, ALGOCLOUD, ALGOSENSORS,
ATMOS, IPEC, and MASSIVE. The previous WAOA workshops were held in
Budapest (2003), Rome (2004), Palma de Mallorca (2005), Zurich (2006), Eilat (2007),
Karlsruhe (2008), Copenhagen (2009), Liverpool (2010), Saarbrücken (2011),
Ljubljana (2012), Sophia Antipolis (2013), and Wraclaw (2014). The proceedings of all
these previous WAOA workshops have been published as LNCS volumes.

Topics of interest for WAOA 2015 were: algorithmic game theory, algorithmic
trading, coloring and partitioning, competitive analysis, computational advertising,
computational finance, cuts and connectivity, geometric problems, graph algorithms,
inapproximability, mechanism design, natural algorithms, network design, packing and
covering, paradigms for the design and analysis of approximation and online algo-
rithms, parameterized complexity, scheduling problems, and real-world applications.
In response to the call for papers, we received 40 submissions, one of which was
subsequently withdrawn. Each submission was reviewed by at least three referees, and
mainly judged on originality, technical quality, and relevance to the topics of the
conference. Based on the reviews, the Program Committee selected 17 papers. This
volume contains final revised versions of these papers.

We would like to thank all the authors who submitted papers to WAOA 2015, and
our plenary invited speaker Jochen Könemann for accepting our invitation. Further-
more, we are extremely grateful to the members of the Organizing Committee and its
chair, Christos Zaroliagis, for doing a superb job with organizing ALGO 2015.

October 2015 Laura Sanità
Martin Skutella
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Approximation Algorithms for k-Connected
Graph Factors

Bodo Manthey(B) and Marten Waanders

University of Twente, Enschede, The Netherlands
b.manthey@utwente.nl

Abstract. Finding low-cost spanning subgraphs with given degree and
connectivity requirements is a fundamental problem in the area of net-
work design. We consider the problem of finding d-regular spanning sub-
graphs (or d-factors) of minimum weight with connectivity requirements.
For the case of k-edge-connectedness, we present approximation algo-
rithms that achieve constant approximation ratios for all d ≥ 2 · �k/2�.
For the case of k-vertex-connectedness, we achieve constant approxi-
mation ratios for d ≥ 2k − 1. Our algorithms also work for arbitrary
degree sequences if the minimum degree is at least 2 · �k/2� (for k-edge-
connectivity) or 2k − 1 (for k-vertex-connectivity).

1 Introduction

Finding low-cost spanning subgraphs with given degree and connectivity require-
ments is a fundamental problem in the area of network design. The usual setting
is that there are connectivity and degree requirements. Then the goal is to find a
cheap subgraph that meets the connectivity requirements and the degree bounds.
Beyond simple connectedness, higher connectivity, such as k-vertex-connectivity
or k-edge-connectivity, has been considered in order to increase the reliability
of the network. Most variants of such problems are NP-hard. Because of this,
finding good approximation algorithms for such network design problems has
been the topic of a significant amount of research [1,4–10,14,16–20].

In this paper, we study the problem of finding low-cost spanning subgraphs
with given degrees that meet connectivity requirements (they should be k-edge-
connected or k-vertex-connected for a given k). Violation of the degree constraint
is not allowed. While d-regular, spanning subgraphs of minimum weight can be
found efficiently using Tutte’s reduction to the matching problem [21,23], even
asking for simple connectedness makes the problem NP-hard [2]. For instance,
asking for a 2-regular, connected graph of minimum weight is the NP-hard trav-
eling salesman problem (TSP) [11, ND22].

1.1 Problem Definitions and Preliminaries

Graphs and Connectivity. All graphs in this paper are undirected and simple.
Let G = (V,E) a graph. In the following, n = |V | is the number of vertices.
c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-28684-6 1



2 B. Manthey and M. Waanders

For a subset X ⊆ V of the vertices, let cutG(X) be the number of edges in G
with one endpoint in X and the other endpoint in X = V \ X. For two disjoint
sets X,Y ⊆ V of vertices, let cutG(X,Y ) be the number of edges in G with one
endpoint in X and the other endpoint in Y .

Two vertices u, v ∈ V are locally k-edge-connected in G if there are at least
k edge-disjoint paths from u to v in G. Equivalently, u and v are locally k-edge-
connected in G if cutG(X) ≥ k for all X ⊆ V with u ∈ X and v /∈ X. Local
k-edge-connectedness is an equivalence relation as it is symmetric, reflexive,
and transitive. A graph G is k-edge-connected if all pairs of vertices are locally
k-edge-connected in G.

Let X ⊆ V . We call X a k-edge-connected component of G if the graph
induced by X is k-edge-connected. We call X a locally k-edge-connected com-
ponent of G if all u, v ∈ X are locally k-edge-connected in G. Note that every
k-edge-connected component of G is also a locally k-edge-connected component,
but the reverse is not true.

A graph G is k-vertex-connected, if the graph induced by the vertices V \ K
is connected for all sets K ⊆ V with |K| ≤ k − 1. Equivalently, for any two non-
adjacent vertices u, v ∈ V , there exist at least k vertex-disjoint paths connecting
u to v in G.

For an overview of connectivity and algorithms for computing connectivity
and connected components, we refer to two surveys [13,15].

For a vertex v ∈ V , let NG(v) = N(v) = {u ∈ V | {u, v} ∈ E} be the
neighbors of v in G. The graph G is d-regular if |N(v)| = d for all v ∈ V . A
d-regular spanning subgraph of a graph is called a d-factor.

By abusing notation, we identify a set X ⊆ V of vertices with the subgraph
induced by X. Similarly, if the set V of vertices is clear from the context, we
identify a set F of edges with the graph (V, F ).

Problem Definitions. Let G = (V,E) be an undirected, complete graph with
non-negative edge weights w. The edge weights are assumed to satisfy the trian-
gle inequality, i.e., w({u, v}) ≤ w({u, x}) + w({x, v}) for all distinct u, v, x ∈ V .
For some set F ⊆ E of edges, we denote by w(F ) =

∑
e∈F w(e) the sum of its

edge weights. The weight of a subgraph is the weight of its edge set.
The problems considered in this paper are the following: as input, we are given

G and w as above. Then Min-dReg-kEdge denotes the problem of finding a k-
edge-connected d-factor of G of minimum weight. Similarly, Min-dReg-kVertex
denotes the problem of finding a k-vertex-connected d-factor of G of minimum
weight.

Some of these problems coincide:

– Min-dReg-1Edge and Min-dReg-1Vertex are identical for all d since 1-edge-
connectedness and 1-vertex-connectedness are simple connectedness.

– For k ∈ {1, 2}, the problems Min-2Reg-kEdge and Min-2Reg-kVertex are identi-
cal to the traveling salesman problem (TSP) because of the following:
2-regular graphs consist solely of simple cycles. If they are connected, they
are 2-vertex-connected and form Hamiltonian cycles.
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– For even d and k, the problems Min-dReg-(k − 1)Edge and Min-dReg-kEdge
are identical. For even d, every d-factor can be decomposed into d/2 2-factors.
Thus, the size of every cut is even. Therefore, every d-regular (k − 1)-edge-
connected graph is automatically k-edge-connected for even k.

– For k ∈ {1, 2, 3}, the two problems Min-3Reg-kEdge and Min-3Reg-kVertex are
identical since edge- and vertex-connectivity are equal in cubic graphs [24,
Theorem 4.1.11].

We also consider the generalizations of the problems Min-dReg-kEdge and
Min-dReg-kVertex to arbitrary degree sequences: for Min-dGen-kEdge, we are
given as additional input a degree requirement dv ∈ N for every vertex v. The
parameter d is a lower bound for the degree requirements, i.e., we have dv ≥ d
for all vertices v. The goal is to compute a k-edge-connected spanning subgraph
in which every vertex v is incident to exactly dv vertices. Min-dGen-kVertex
is analogously defined for k-vertex-connectivity. For the sake of readability, we
restrict the presentation of our algorithms in Sects. 2 and 3 to Min-dReg-dEdge
and Min-dReg-kVertex, respectively, and we state the generalized results for
Min-dGen-kEdge and Min-dGen-kVertex only in Sect. 4.

We use the following notation: OptEk denotes a k-edge-connected spanning
subgraph of minimum weight. OptVk denotes a k-vertex-connected spanning
subgraph of minimum weight. For both, no degree requirements have to be sat-
isfied. OptFd denotes a (not necessarily connected) d-factor of minimum weight.
OptEFk

d and OptVFk
d denote minimum-weight k-edge-connected and k-vertex-

connected d-factors, respectively.
We have w(OptFd) ≤ w(OptEFk

d) ≤ w(OptVFk
d) since every k-vertex-con-

nected graph is also k-edge-connected. Both w(OptEFk
d) and w(OptVFk

d) are
monotonically increasing in k. Furthermore, w(OptEk) ≤ w(OptEFk

d) for every
d and w(OptVk) ≤ w(OptVFk

d) for every d.
We denote by MST a minimum-weight spanning tree of G.

1.2 Previous and Related Results

Without the triangle inequality, the problem of computing minimum-weight
k-vertex-connected spanning subgraphs can be approximated with a factor of
O(log k) [3], and the problem of computing minimum-weight k-edge-connected
spanning subgraphs can be approximated with a factor of 2 [16]. However, no
approximation at all seems to be possible without the triangle inequality if we
ask for specific degrees. This follows from the inapproximability of non-metric
TSP [25, Sect. 2.4].

With the triangle inequality, we obtain the same factor of 2 for k-edge-
connected subgraphs of minimum weight without degree requirements [16]. For
k-vertex-connected spanning subgraphs of minimum weight without degree con-
straints, Kortsarz and Nutov [17] gave a

(
2 + k−1

n

)
-approximation algorithm.

Cornelissen et al. [5] gave a 2.5 approximation for Min-dReg-2Edge for even
d and a 3-approximation for Min-dReg-1Edge and Min-dReg-2Edge for all odd d.
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Table 1. Overview of approximation ratios for Min-dReg-kEdge. Cases of odd k and
even d are omitted as discussed in Sect. 1.1.

k d ratio reference

= 2 = 2 1.5 same problem as TSP [25, Sect. 2.4]

= 1 odd 3 Cornelissen et al. [5]

≥ 3 = k 2 + 1
k

Chan et al. [1]

≥ 2 ≥ k, even 2.5 Theorem 2.13 (k = 2 by Cornelissen et al. [5])

≥ 2 ≥ k + 1, odd 4 − 3
k

Theorem 2.13

Table 2. Overview of approximation ratios for Min-dReg-kVertex.

k d ratio reference

∈ {1, 2} = 2 1.5 same as problem as TSP [25, Sect. 2.4]

∈ {1, 2, 3} = 3 same as Min-dReg-kEdge

≥ 2 = k 2 + k−1
n

+ 1
k

Chan et al. [1]

≥ 2 = 2k − 1 5 + 2
n
k −2
n

+ 2
k

Theorem 3.2

≥ 2 ≥ 2k 5 + 2kn−2
n

Corollary 3.3

Also Min-kReg-kVertex and Min-kReg-kEdge admit constant factor approxima-
tions for all k ≥ 1 [1]. We refer to Tables 1 and 2 for an overview.

Fukunaga and Nagamochi [8] considered the problem of finding a minimum-
weight k-edge-connected spanning subgraph with given degree requirements. Dif-
ferent from the problem that we consider, they allow multiple edges between
vertices. This considerably simplifies the problem as one does not have to take
care to avoid multiple edges when constructing the approximate solution. For
this relaxed variant of the problem, they obtain approximation ratios of 2.5 for
even k and 2.5 + 1.5

k for odd k if the minimum degree requirement is at least
2. We remark that, although an optimal solution with multiple edges cannot
be heavier than an optimal solution without multiple edges, an approximation
algorithm for the variant with multiple edges does not imply an approximation
algorithm for the variant without multiple edges and vice versa.

In many cases of algorithms for network design with degree constraints, only
bounds on the degrees are given or some violation of the degree requirements
is allowed to simplify the problem. Fekete et al. [7] devised an approximation
algorithm for the bounded-degree spanning tree problem. Given lower and upper
bounds for the degree of every vertex, spanning trees can be computed that
violate every degree constraint by at most 1 and whose weight is no more than the
weight of an optimal solution [22]. Often, network design problems are considered
as bicriteria problems, where the goal is to simultaneously minimize the total
costs and the violation of the degree requirements [9,10,18–20]. In contrast, our
goal is to meet the degree requirements exactly.
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1.3 Our Contribution

We devise polynomial-time approximation algorithms for Min-dReg-kEdge
(Sect. 2) and for Min-dReg-kVertex (Sect. 3). This answers an open question
raised by Cornelissen et al. [5]. Our algorithms can be generalized to arbitrary
degree sequences, as long as the minimum degree requirement is at least 2�k/2�
for edge connectivity or at least 2k − 1 for vertex connectivity (Sect. 4).

We obtain an approximation ratio of 4 − 3
k for Min-dReg-kEdge for odd d ≥

k + 1, a ratio of 2.5 for Min-dReg-kEdge for even d ≥ k, and an approximation
ratio of about 5 for Min-dReg-kVertex for d ≥ 2k − 1. The precise approximation
ratios are summarized in Tables 1 and 2.

As far as we are aware, there do not exist any approximation results for
the problem of finding subgraphs with exact degree requirements besides simple
connectivity and 2-edge-connectivity [5]. The only exception that we are aware of
is the work by Fukunaga and Nagamochi [8]. However, they allow multiple edges
in their solutions, which seems to make the problem simpler to approximate.

The high-level ideas of our algorithms are as follows. For edge-connectivity,
our initial idea was to iteratively increase the connectivity from k − 1 to k by
considering the k-edge-connected components of the current solution and adding
edges carefully. However, this does not work as k-edge-connected components
are not guaranteed to exist in (k − 1)-edge-connected graphs. Instead, we intro-
duce k-special components (Definition 2.1). By connecting the k-special compo-
nents carefully, we can increase the edge-connectivity of the graph (Lemma 2.8).
Every increase of the edge-connectivity costs at most O(1/k) times the weight of
the optimal solution (Lemma 2.10), yielding constant factor approximations for
all k. Our algorithm for Min-dReg-kEdge generalizes the algorithm of Cornelissen
et al. [5] to arbitrary k. A more careful analysis yields that already their algo-
rithm achieves an approximation ratio of 2.5 for Min-dReg-2Edge also for odd d.

For vertex-connectivity, the idea is to compute a k-vertex-connected k-regular
graph and a (possibly not connected) d-factor. We iteratively add edges from the
k-vertex-connected graph to the d-factor while maintaining the degrees until we
obtain a k-vertex-connected d-factor. This works for d ≥ 2k − 1 (Lemma 3.1).

2 Edge-Connectivity

In this section, we present an approximation algorithm for Min-dReg-kEdge for
all combinations of d and k, provided that d ≥ 2�k/2�. This means that the
algorithm works for all d ≥ k with the only exception being the case of odd
d = k.

The main idea of our algorithm is as follows: We start by computing a
d-factor. Then we iteratively increase the connectivity as follows: First, we iden-
tify edges that we can safely remove without decreasing the connectivity. Second,
we find edges that we can add in order to increase the connectivity while repair-
ing the d-regularity that we have destroyed in the first step.

One might be tempted to use the k-edge-connected components of the
d-factor in order to increase the edge-connectivity from k − 1 to k. The catch is
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that there need not be enough k-edge-connected components, and it is in fact
possible to find (k−1)-edge-connected graphs that are d-regular with d ≥ k with-
out any k-edge-connected component. To circumvent this problem, we introduce
the notion of k-special components, which have the desired properties.

2.1 Graph-Theoretic Preparation

Different from the rest of the paper, the graph G = (V,E) is not necessarily
complete in this section. The following definition of k-special components is
crucial for the whole Sect. 2.

Definition 2.1. Let k ∈ N, and let G = (V,E) be a graph. We call L ⊆ V a
k-special component in G if cutG(L) ≤ k − 1 and L is locally k-edge connected
in G.

For k = 1, the k-special components are the connected components of G. The 2-
edge-connected components of a graph yield a tree with a vertex for every 2-edge-
connected component and an edge between any 2-edge-connected components
that are connected by an edge. The 2-special components of G correspond to
the leaves of this tree.

Let us collect some facts about k-special components.

Lemma 2.2. Let G have a minimum degree of at least k, and let L be a k-special
component in G. Then |L| ≥ k + 1.

Lemma 2.3. Let G be a graph. If L is a k-special component, then L is a
maximal locally k-edge-connected component. If L and L′ are k-special, then
either L = L′ or L ∩ L′ = ∅.

The following crucial lemma shows the existence of k-special components.

Lemma 2.4. Let k ≥ 1. Let G = (V,E) be a (k − 1)-edge-connected graph.
Then every non-empty vertex set X � V either contains a k-special component
or satisfies cutG(X) ≥ k.

The purpose of the next few lemmas is to show that we can always remove
an edge from a k-special component without decreasing the connectedness of
the whole graph. In the following, let m = �k/2� + 1. It turns out that the
graph induced by a k-special component contains a locally m-edge-connected
component.

Lemma 2.5. Let k ≥ 1. Let G = (V,E) be a (k − 1)-edge-connected graph of
minimum degree at least 2�k/2�, and let L be a k-special component of G. Then
there exists an X ⊆ L such that X is a locally m-edge-connected component in L
and |X| ≥ k + 1.

The edges {ui, vi} mentioned in the next lemma are the edges that we can
safely remove. The resulting graph will remain (k −1)-edge-connected according
to Lemma 2.7. The vertices ui and vi in the next lemma will be chosen from Xi ⊆
Li, where Xi is a locally m-edge-connected component in Li as in Lemma 2.5.
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Lemma 2.6. Let k ≥ 1. Let G = (V,E) be a (k − 1)-edge-connected graph of
minimum degree at least 2�k/2�. Let L1, . . . , Ls be the k-special components of G.
Then there exist vertices ui, vi ∈ Li for all i ∈ {1, . . . , s} such that the following
properties are met:

– {ui, vi} ∈ E for all i.
– {ui, vj} /∈ E for all i 
= j.
– There exist at least m edge-disjoint paths from ui to vi in the graph induced

by Li for every i.

Lemma 2.7. Let G = (V,E) be a (k − 1)-edge-connected graph of minimum
degree at least 2�k/2� with k-special components L1, . . . , Ls, and let u1, . . . , us

and v1, . . . , vs be chosen as in Lemma 2.6. Let Q =
{{ui, vi} | 1 ≤ i ≤ s

}
. Then

G − Q is (k − 1)-edge-connected.

By removing the edges {ui, vi} ∈ Q and adding the edges {ui, vi+1} ∈ S, we
construct a k-edge-connected graph from the (k − 1)-edge-connected graph G
according to the following lemma.

Lemma 2.8. Let G = (V,E) be a (k − 1)-edge-connected graph of minimum
degree at least 2�k/2� with k-special components L1, . . . , Ls, and let u1, . . . , us

and v1, . . . , vs be chosen as in Lemma 2.6. Let Q =
{{ui, vi} | 1 ≤ i ≤ s

}
, and

let S =
{{ui, vi+1} | 1 ≤ i ≤ s

}
, where arithmetic is modulo s.

Then the graph G̃ = G − Q + S is k-edge-connected.

To conclude this section, we remark that the k-special components of a graph
can be found in polynomial-time: local k-edge-connectedness can be tested in
polynomial time. Thus, we can find locally k-edge-connected components in poly-
nomial time. Since k-special components are maximal locally k-edge-connected
components, we just have to compute a partition of the graph into locally
k-edge-connected components and check whether less than k edges leave such a
component. Therefore, the sets Li and Xi ⊆ Li as well as the vertices ui and vi

with the properties as in Lemmas 2.5 and 2.6 can be computed in polynomial
time.

2.2 Algorithm and Analysis

Our approximation algorithm for Min-dReg-kEdge (Algorithm 1) starts with an
�-edge-connected d-factor F�. How we choose � and compute F� depends on the
parity of k, but it is possible that improved approximation algorithms for certain
small k lead to other initializations. (If k is even, we use � = 0 and F0 = OptFd.
If k is odd, we use � = 2 and approximate a 2-edge-connected d-factor F2 using
the algorithm of Cornelissen et al. [5].)

Then it iteratively uses a subroutine (Algorithm 2) that increases the connec-
tivity. To increase the connectivity, we compute a TSP tour (line 3). We do this
using Christofides’ algorithm [25, Sect. 2.4], which achieves an approximation
ratio of 1.5.
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input : undirected complete graph G = (V, E), edge weights w, integers k ≥ 3,
d ≥ 2�k/2�

output: k-edge-connected d-factor R of G
1 compute a minimum-weight �-edge-connected d-factor F� (or an approximation)
2 for p ← � + 1, . . . , k do
3 if Fp−1 is not p-edge-connected then
4 apply Algorithm 2 to obtain Fp

5 else
6 Fp ← Fp−1

7 end

8 end
9 R ← Fk

Algorithm 1. Approximation algorithm for Min-dReg-kEdge.

input : undirected complete graph G = (V, E), edge weights w, integer p ≥ 1,
(p − 1)-edge-connected subgraph Fp−1 of G with minimum degree at
least p + 1

output: p-edge-connected subgraph Fp of G with the same degree at every
vertex as Fp−1

1 find the p-special components of Fp−1; let L1, . . . , Ls be these p-special
components

2 find vertices ui, vi ∈ Li for all i ∈ {1, . . . , s} with the properties stated in
Lemma 2.6; Q ← {{ui, vi} | 1 ≤ i ≤ s

}

3 compute a TSP tour T on V using Christofides’ algorithm
4 take shortcuts to obtain a tour T ′ on u1, . . . , us (without loss of generality in

this order)
5 S ← {{ui, vi+1} | 1 ≤ i ≤ s

}
(arithmetic modulo s)

6 Fp ← Fp−1 − Q + S

Algorithm 2. Increasing the edge-connectivity of a graph by 1 while main-
taining d-regularity.

We analyze correctness and approximation ratio using a series of lemmas.

Lemma 2.9. Let k ≥ 1 be arbitrary, and let p ∈ {�, � + 1, . . . , k}. Let Fp be
computed by Algorithm 1. Then Fp is d-regular and p-edge-connected.

In order to analyze the approximation ratio and to achieve a constant approxi-
mation for all k, we exploit a result that Fukunaga and Nagamochi [8] attributed
to Goemans and Bertsimas [12] and Wolsey [26].

Lemma 2.10 (Fukunaga, Nagamochi [8, Theorem 2]). Let T be the TSP
tour obtained from Christofides’ algorithm. Then w(T ) ≤ 3

k · w(OptEk).

A consequence of Lemma 2.10 are the following two statements, which we need
to analyze the approximation ratio.
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Lemma 2.11. If, in Algorithm 1, we enter line 4 and call Algorithm 2, then

w(Fp) ≤ 3
k

· w(OptEFk
d) + w(Fp−1).

Lemma 2.12. If Algorithm 1 calls Algorithm 2 q times, then

w(Fk) ≤ 3q

k
· w(OptEFk

d) + w(F�).

Theorem 2.13. For k ≥ 2 and d ≥ 2�k/2�, Algorithm 1 is a polynomial-time
approximation algorithm for Min-dReg-kEdge. It achieves an approximation ratio
of 2.5 for even d and an approximation ratio of 4 − 3

k for odd d.

Algorithm 1 works also for the case of even d = k, but there exists already an
approximation algorithm with a ratio of 2+ 1

k for this special case [1]. Note that
the proof of Theorem 2.13 does not cover the case of odd d and k = 1, but it is
already known that this case can be approximated with a factor of 3 [5].

3 Vertex Connectivity

In this section, we consider Min-dReg-kVertex for d ≥ 2k − 1. The basis of
the algorithm (Algorithm 3) is the following: Assume that we have a k-vertex
connected k-factor H and a d-factor F that lacks k-vertex-connectedness. Then
we iteratively add edges from H to F to make F k-vertex-connected as well.
More precisely, we try to add an edge e ∈ H \ F to increase the connectivity of
F . To maintain that F is d-regular, we have to add another edge and remove
two edges of F . If, in the course of this process, we never have to remove an edge
of H from F , then the algorithm terminates with a k-vertex-connected d-regular
graph.

In Algorithm 3, the initial d-factor OptFd can be computed in polyno-
mial time (line 1). Kortsarz and Nutov showed that we can compute a k-
vertex-connected spanning subgraph K whose total weight is at most a factor of
2+ k−1

n larger than the weight of a k-vertex-connected graph of minimum weight
(line 2). Chan et al. [1] devised an algorithm that turns k-vertex-connected
graphs K into k-regular k-vertex-connected graphs H at the expense of an addi-
tive w(OptVk)/k.

With this initialization, we iteratively add edges from H to F while main-
taining d-regularity of F . This works as long as d is sufficiently large according
to the following lemma. We parametrize the maximum degree by � in order to
be able to get a slight improvement for larger d (Corollary 3.3).

Lemma 3.1. Let k, � ≥ 2 and d ≥ k + � − 1. Let G = (V,E) be an undirected
complete graph. Let F be a d-factor of G, and let H be a k-vertex-connected
graph subgraph of G that has a maximum degree of at most �. Assume that F is
not k-vertex-connected.

Then there exists an edge e = {u1, u2} ∈ H \ F such that u1 and u2 are
not connected via k vertex-disjoint paths in F . Furthermore, given such an edge
e = {u1, u2}, there exist vertices v1, v2 ∈ V with v1 
= v2 and the following
properties:
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input : undirected complete graph G = (V, E), edge weights w, integers k ≥ 2,
d ≥ 2k − 1

output: k-vertex-connected d-factor R of G
1 F ← OptFd

2 approximate a k-vertex connected graph K using the algorithm of Kortsarz and
Nutov [17]

3 compute a k-vertex-connected k-factor H from K using the algorithm of Chan
et al. [1]

4 while F is not k-vertex-connected do
5 select an edge e = {u1, u2} ∈ H \ F such that u1 and u2 are not connected

by k vertex-disjoint paths in F
6 choose vertices v1, v2 with {u1, v1}, {u2, v2} ∈ F \ H and {v1, v2} /∈ F
7 F ← (F \ {{u1, v1}, {u2, v2}

}) ∪ {{u1, u2}, {v1, v2}
}

8 end
9 R ← F

Algorithm 3. Approximation algorithm for Min-dReg-kVertex for d ≥
2k − 1.

1. {u1, v1}, {u2, v2} ∈ F \ H.
2. {v1, v2} /∈ F .

With this lemma, we can prove the main result of this section.

Theorem 3.2. For k, d ∈ N with k ≥ 2 and d ≥ 2k − 1, Algorithm 3 is a
polynomial-time approximation algorithm for Min-dReg-kVertex with an approx-
imation ratio of 5 + 2k−2

n + 2
k .

Algorithm 3 also works for k = 1, but there already exist better approximation
algorithms for this case (see Table 2). With the slightly stronger assumption
d ≥ 2k, we can get a slightly better approximation ratio.

Corollary 3.3. For k, d ∈ N with k ≥ 2 and d ≥ 2k, there exists a polynomial-
time approximation algorithm for Min-dReg-kVertex with an approximation ratio
of 5 + 2k−2

n .

4 Generalization to Arbitrary Degree Sequences

Both algorithms of Sects. 2 and 3 do not exploit d-regularity, but only that the
degree of each vertex is at least d. Thus, we immediately get approximation
algorithms for Min-dGen-kEdge and Min-dGen-kVertex, where we get a degree
requirement of at least d for each vertex.

For k-edge-connectedness, we require that the minimum degree requirement
is at least 2�k/2�.
Theorem 4.1. For k ≥ 2, Min-(2�k

2 �)Gen-kEdge can be approximated in poly-
nomial time with an approximation ratio of 4 − 3

k .
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For k-vertex-connectivity, we require that the minimum degree requirement is
at least 2k − 1. (For minimum degree at least 2k, we get a small improvement
similarly to Corollary 3.3.)

Theorem 4.2. For k ≥ 2, Min-(2k − 1)Gen-kVertex can be approximated in
polynomial time with an approximation ratio of 5 + 2k−2

n + 2
k .

Min-(2k)Gen-kVertex can be approximated in polynomial time with an approx-
imation ratio of 5 + 2k−2

n .

5 Conclusions and Open Problems

We conclude this paper with two questions for further research.
First, for edge-connectivity, we require d ≥ 2�k/2�. Since there exists an

approximation algorithm for Min-kReg-kEdge (for k ≥ 2) [1], the only case for
which it is unknown if a constant factor approximation algorithm exists is the
generalized problem Min-kGen-kEdge for odd values of k. We are particularly
curious about approximation algorithms for Min-1Gen-1Edge, where we want to
find a cheap connected graph with given vertex degrees. To get such algorithms,
vertices with degree requirement 1 seem to be bothersome. (This seems to be a
more general phenomenon in network design, as, for instance, the approximation
algorithms by Fekete et al. [7] for bounded-degree spanning trees and by Fuku-
naga and Nagamochi [8] for k-edge-connected subgraphs with multiple edges
both require that the minimum degree requirement is at least 2.) Still, we con-
jecture that constant factor approximation algorithms exist for these problems
as well.

Second, we would like to see constant factor approximation algorithms for
Min-dReg-kVertex for the case k + 1 ≤ d ≤ 2k − 2 and for the general prob-
lem Min-dGen-kVertex for k ≤ d ≤ 2k − 2. We conjecture that constant factor
approximation algorithms exist for these problems.
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Abstract. In the well-studied Unsplittable Flow on a Path problem
(UFP), we are given a path graph with edge capacities. Furthermore,
we are given a collection of n tasks, each one characterized by a sub-
path, a weight, and a demand. Our goal is to select a maximum weight
subset of tasks so that the total demand of selected tasks using each
edge is upper bounded by the corresponding capacity. Chakaravarthy et
al. [ESA’14] studied a generalization of UFP, bagUFP, where tasks are
partitioned into bags, and we can select at most one task per bag. Intu-
itively, bags model jobs that can be executed at different times (with
different duration, weight, and demand). They gave a O(log n) approx-
imation for bagUFP. This is also the best known ratio in the case of
uniform weights. In this paper we achieve the following main results:

• We present an LP-based O(log n/ log log n) approximation for bagUFP.
We remark that, prior to our work, the best known integrality gap (for a
non-extended formulation) was O(log n) even in the special case of UFP
[Chekuri et al., APPROX’09].
• We present an LP-based O(1) approximation for uniform-weight
bagUFP. This also generalizes the integrality gap bound for uniform-
weight UFP by Anagnostopoulos et al. [IPCO’13].
• We consider a relevant special case of bagUFP, twUFP, where tasks in a
bag model the possible ways in which we can schedule a job with a given
processing time within a given time window. We present a QPTAS for
twUFP with quasi-polynomial demands and under the Bounded Time-
Window Assumption, i.e. assuming that the time window size of each
job is within a constant factor from its processing time. This generalizes
the QPTAS for UFP by Bansal et al. [STOC’06].

1 Introduction

In the well-studied Unsplittable Flow on a Path problem (UFP) we are given a
path graph G = (V,E), V = {0, 1, . . . ,m}, with positive integer edge capacities
{ue}e∈E and a collection T of n tasks. Each task i ∈ T is associated with a
weight wi ∈ N

+, a demand di ∈ N
+, and a subpath Pi between nodes si and ti.

This work is partially supported by the ERC StG project NEWNET no. 279352.
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Let Te = {i ∈ T : e ∈ Pi} be the tasks containing edge e. Our goal is to select
a subset of tasks T ′ ⊆ T of maximum total weight w(T ′) :=

∑
i∈T ′ wi so that,

for each edge e, the total demand de(T ′) :=
∑

i∈T ′∩Te
di of selected tasks using

that edge is upper bounded by the corresponding capacity ue. Intuitively, edge
capacities model a given resource whose amount varies over a given time interval
(in a discrete fashion), and tasks demand for some amount of that resource. In
particular, the length of each subpath can be interpreted as a processing time.
By standard reductions [4,8], we can assume that m ≤ 2n and all edge capacities
are distinct.

UFP is strongly NP-hard [14]. Anagnostopoulos et al. [2] recently gave the cur-
rent best 2+ε approximation for the problem1, improving on [5,8]. This matched
a previously known [13] approximation for UFP under the No-Bottleneck Assump-
tion (NBA), i.e. assuming that the largest demand is upper bounded by the
smallest capacity. This matched also the best known approximation for the
uniform-capacity case [9].

The UFP with Bags problem (bagUFP) is the generalization of UFP where
tasks are partitioned into a set of h bags J = {B1, . . . ,Bh}, and we have the
extra constraint that at most one task per bag can be selected. Intuitively, bags
model jobs that we can execute at different points of time (and at each such
time one has a different demand, weight, and processing time). This problem is
APX-hard even in the case of unit demands and capacities [16]. Chakaravarthy
et al. [10] recently gave the current best O(log n) approximation for bagUFP.
The approximation factor remains the same in the case of uniform weights. The
same authors also presented a O(1) approximation under NBA.

1.1 Our Contribution.

In this paper we present an improved approximation for bagUFP (see Section 3).
In the special case of uniform weights, we can reduce the approximation factor
down to a constant (see Section 4).

Theorem 1. There is an expected O(log n/ log log n) approximation for bagUFP.

Theorem 2. There is an O(1) approximation for uniform-weight bagUFP.

Both our results are LP-based, and exploit a refined LP for bagUFP which is
inspired by the work on UFP in [1,8]. In more detail, let us define a task large if
it uses more than one half of the capacity of some edge along its subpath, and let
Tlarge be the large tasks. Bonsma et al. [8] introduced a geometric interpretation
of large tasks. They associate to each i ∈ Tlarge an axis-parallel rectangle Ri in
the 2D plane with top-left corner (si, bi) and bottom-right corner (ti, bi − di),
where bi = mine∈Pi

{ue} is the bottleneck capacity of task i. We call this set
of rectangles R the top-drawn representation of Tlarge. In [8, Lemma13] it is
shown that in any feasible UFP (hence bagUFP) solution at most 4 correspond-
ing rectangles can overlap at a given point (intuitively, those large tasks induce
1 Unless differently stated, ε denotes an arbitrarily small positive constant parameter.

Where needed, we also assume that 1/ε is integral and sufficiently large.
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an almost independent set of rectangles). This insight was later used by Anag-
nostopoulos et al. [1]. Consider the grid induced by the horizontal and vertical
lines containing the rectangle sides. Let P be the set of (representative) O(n2)
middle points of the (positive area) cells of this grid. Note that any subset of
rectangles that share a positive size area, will overlap on some point in P. The
authors consider the following (non-extended2) LP relaxation for UFP:

max
∑

i∈T wixi (LPUFP+)
s.t.

∑
i:e∈Pi

dixi ≤ ue ∀ e ∈ E (1)
∑

i∈Tlarge:p∈Ri
xi ≤ 4 ∀ p ∈ P (2)

xi ≥ 0 ∀ i ∈ T

We call the constraints of type (1) and (2) capacity and rectangle constraints,
respectively. The authors show that this relaxation has O(1) integrality gap in
the case of uniform weights. Note that one can preprocess the instance so that
the weights range between 1 and O(n/ε) while losing a factor 1+ε in the approx-
imation. By partitioning tasks in O(log(n/ε)) classes of almost uniform weight,
one obtains that LPUFP+ has O(log n) integrality gap for general weights3.

In this paper we consider the LP relaxation LPbagUFP+ for bagUFP which
is obtained from LPUFP+ by adding the following bag constraints:

∑
i∈Bj

xi ≤ 1 ∀ Bj ∈ J.

The standard LP relaxation LPbagUFP for bagUFP is obtained from bagUFP+

by removing the rectangle constraints. We show that LPbagUFP+ has constant
integrality gap in the uniform weight case, and integrality gap O(log n/ log log n)
in the general case. In particular, for the uniform-weight case we can adapt the
analysis in [1], while for the general case we can generalize the rounding proce-
dure of Chan and Har-Peled [11] for the maximum independent set of rectangles
problem. Note that the latter result slightly improves the best integrality gap
even in the case of UFP (for a compact, non-extended LP relaxation).

We also study a relevant special case of bagUFP (and generalization of UFP),
that we name UFP with Time Windows (twUFP). Here we are given a capaci-
tated path graph and a collection of jobs, where each job j is characterized by
a weight, a demand, a (positive, integer) processing time τj and a time window
Wj (i.e. a subpath between given nodes sj and tj). For each possible node σi

(starting time) so that sj ≤ σi ≤ tj −τj , we define a task i with the same weight
and demand as j, and whose subpath Pi has endpoint si = σi and ti = σi + τi.
The tasks corresponding to the same job j define a bag Bj . Intuitively, tasks
in Bj describe the possible ways in which we can process job j within its time
window. Our goal is to compute a maximum weight solution for the result-
ing bagUFP instance. We believe that in practice several instances of bagUFP
2 By non-extended we mean that it contains only decision variables for tasks. In the

same paper the authors present an extended formulation with O(1) integrality gap.
3 The same gap is proved by Chekuri et al. [12]. The authors claim a O(log2 n) gap,

and then refine it to O(log n) in an unpublished manuscript.
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are indeed instances of twUFP. The best-known approximation for twUFP is
also O(log n), where n is the number of tasks (O(log n/ log log n) considering
Theorem 1). In particular, the approach in [10] does not seem to benefit from
the special structure of twUFP, nor does the approach from Theorem 1.

We present a QPTAS4 for twUFP under the following Bounded Time-Window
Assumption (BTWA): for any job j, (tj − sj)/τj ≤ C = O(1) (in words, the
ratio between the time window size and the processing time is bounded by some
constant). Our result generalizes the QPTAS for UFP by Bansal et al. [4]. Here,
similarly to [4], we assume5 that demands are quasi-polynomially bounded in n.

Theorem 3. There is a QPTAS for twUFP under BTWA and assuming that
demands are quasi-polynomially bounded in n.

Indeed, our QPTAS generalizes to the special case of bagUFP where tasks in the
same bag have the same demand and weight (under the natural generalization
of BTWA, that is, under the assumption that the processing time of any task i
contained in bag Bj is at most a constant factor shorter than the length of the
bag maxi∈Bj

ti −mini∈Bj
si). Note that bagUFP is APX-hard, therefore there is

not much hope for a PTAS for it. In contrast, our result provides an evidence
that twUFP might be an easier problem, at least under BTWA. It is unclear to
us whether the general case of twUFP is as hard to approximate as bagUFP.

In order to understand our contribution, it is convenient to sketch how the
QPTAS for UFP in [4] works. Let us consider the tasks OPTmid in the optimum
solution OPT that use the middle edge emid. The authors show how to define a
capacity profile umid, dominated by the demand of OPTmid, which has a quasi-
polynomial number of steps, and such that there is a feasible solution APXmid

for capacities umid of cost close to OPTmid and which can be computed in QPT.
Thus one can guess umid, compute APXmid, and branch on a left and right
subproblem (where capacities are decreased by umid, and we consider only tasks
fully contained to the left/right of emid).

This approach does not work for twUFP since a time window might be split
by emid. In that case the left and right subproblems are not independent any
more (in particular, we cannot select two tasks from the same bag, one from the
left subproblem and the other from the right one). To circumvent this problem,
we exploit the randomized dissection technique by Grandoni and Rothvoß for the
related Highway problem [15]. We evenly split the path into a random constant
number of intervals, and iterate the process on each such interval. With prob-
ability close to one, the time window of each job j is fully contained in some
interval I of the dissection, and at the same time none of its tasks Bj is fully
contained in a subinterval of I (here we need the BTWA). Thus we can define a

4 We recall that a Quasi-Polynomial-Time Approximation Scheme (QPTAS) is an algo-
rithm that, given a constant parameter ε > 0, computes a 1 + ε approximation in
Quasi-Polynomial Time (QPT), i.e. in time 2poly log(s) where s is the input size.

5 We remark that Batra et al. [7] recently managed to remove this assumption on the
demands for UFP. Their approach does not seem to be compatible with our random-
ized dissection technique (at least not trivially).
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capacity reservation that combines a constant number of capacity profiles, and
use a proper algorithm (rather different from [4], due to bag constraints) to com-
pute a good approximation for the considered jobs. We can then branch on the
subproblems induced by the subintervals.

Omitted proofs are provided in the full version of this paper.

2 A QPTAS for the Bounded Time-Window Case

In this section we present a QPTAS for twUFP under BTWA, and assuming
that the largest demand Dmax is quasi-polynomially bounded in the number of
tasks n. By standard tricks, while losing only a factor 1+ε in the approximation
factor, we can assume that weights range between 1 and O(n/ε).

A capacity reservation r is simply a collection of edge capacities {re}e∈E with
re ≤ ue for all edges e. A solution is feasible w.r.t. r if it respects the capacity
constraints induced by r. We say that r has k-steps if, scanning edges from left to
right, the value of their capacity changes at most k times. For another capacity
reservation r′, we say that r dominates r′ if re ≥ r′

e for each edge e. For a set
of tasks S, we say that r is dominated by the demand of S if re ≤ ∑

i∈S : e∈Pi
di

for each edge e.
The following technical lemma is similar in spirit to results in [4].

Lemma 1. Let S be a collection of at least 2/ε3 tasks using a given edge e, and
with demand in [D, (1 + ε)D) and weight in [W, (1 + ε)W ). Then there exists a
capacity reservation r and a set of tasks R ⊆ S such that: (1) r is dominated by
the demand of S; (2) r has O(1/ε2) steps and its entries are integer multiples
of (1 + ε)D; (3) R is feasible for r, even if the paths of its tasks are expanded to
the left/right to reach the closest edge before a change of capacity in r and their
demand is increased to (1 + ε)D; (4) w(R) ≥ (1 − O(ε))w(S).

Next lemma will be used to partition the input problem into a quasi-polynomial
number of subproblems. For a given set of edges F , let JF be the set of jobs j
such that each task in Bj contains some edge in F , and let TF = ∪j∈JF

Bj . Note
that containing an edge in F is not sufficient for a task i to be in TF . We define
TF̄ = T \ TF .

Lemma 2. Consider a twUFP instance with optimal solution OPT , and let F
be a subset of O(1) edges. There exists a QPT algorithm that generates a set UF

of capacity reservations rF , and a feasible solution APXF ⊆ TF for each such rF

such that, for at least one such pair {r∗, APX∗}, APX := (OPT ∩TF̄ )∪APX∗

is a feasible twUFP solution and w(APX) ≥ (1 − O(ε))w(OPT ).

Proof. Let OPTF := OPT ∩ TF and OPTF̄ := OPT ∩ TF̄ . We first show how
to construct a capacity reservation r∗ which is dominated by the demand of
OPTF . Let T f,a,b be the class of tasks i ∈ TF with di ∈ [(1 + ε)a, (1 + ε)a+1)
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and wi ∈ [(1 + ε)b, (1 + ε)b+1) for a, b ∈ N, and such that f is the leftmost edge
in Pi ∩ F . Observe that there are Oε(log n log Dmax) (non-empty) such classes.
Define OPT f,a,b := OPT ∩ T f,a,b. Suppose that |OPT f,a,b| ≥ 2/ε3. Then we
apply Lemma 1 with S = OPT f,a,b and e = f , hence obtaining a capacity reser-
vation rf,a,b and a solution Rf,a,b. Otherwise, we simply let Rf,a,b = OPT f,a,b

and rf,a,b be the total demand of Rf,a,b. Let r∗ =
∑

f,a,b rf,a,b. Observe that r∗

has Oε(|F | log n log Dmax) steps, and each entry of r∗ is obtained from the total
demand of O(|F |/ε3) tasks plus an integer multiple of (1+ε)a+1 for Oε(log Dmax)
possible values of a. Therefore in QPT we can enumerate a set UF of capacity
reservations that includes r∗.

Our algorithm constructs (in QPT) a feasible solution for each capacity reser-
vation in UF . For the sake of simplicity, we next focus on the solution APX∗

corresponding to the reservation r∗ described before. Note that, since r∗ is dom-
inated by the demand of OPTF , APX∗ ∪ OPTF̄ has to satisfy the capacity
constraints. Furthermore, the bags of tasks in OPTF̄ are disjoint from the bags
of tasks in TF by definition (hence also bag constraints are satisfied). We will
later show that w(APX∗) ≥ (1 − O(ε))w(OPTF ). The claim follows.

Let us focus on a given pair (a, b). We guess6 the set F a,b
few of all the edges

f ∈ F such that |OPT f,a,b| < 2/ε3, and the corresponding tasks APXf,a,b :=
OPT f,a,b = Rf,a,b with demand rf,a,b. The corresponding jobs are removed from
the instance. Let F a,b

many := F \ F a,b
few. For any f ∈ F a,b

many, we guess the capacity
reservation rf,a,b.7 Note that this reservation has O(1/ε2) steps, and its entries
are integer multiples of (1+ε)D, D = (1+ε)a. We expand all the tasks in T f,a,b

to the left/right till the closest edge before a change in the capacity of rf,a,b and
increase their demand to (1 + ε)D.

Next we consider the bagUFP instance induced by rounded tasks T a,b
many :=

∪f∈Fa,b
many

T f,a,b, with edge capacities given by ra,b
many :=

∑
f∈Fa,b

many
rf,a,b. Observe

that all the tasks of a remaining job are considered in the same such instance8.
We also remark that Ra,b

many := ∪f∈Fa,b
many

Rf,a,b is a feasible solution to this
bagUFP instance by construction. We also remark that ra,b

many has O(|F |/ε2)
steps, hence by contracting edges one obtains an equivalent bagUFP instance
with a constant number of edges.

We next show how to compute the optimal solution APXa,b
many for this

bagUFP instance via dynamic programming. Let us sort the considered ha,b
many

jobs arbitrarily. In our dynamic program we have a table entry (h′, r′) for each
h′ = 1, . . . , ha,b

many and for each feasible capacity reservation r′ dominated by
ra,b
many and whose capacities are non-negative integer multiples of (1+ ε)D. Note

that there is a polynomial number of table entries. The value DP (h′, r′) of this
entry will be set to the maximum weight of a feasible bagUFP for r′ using tasks
from the first h′ jobs only. Table entries are filled in for increasing values of h′.

6 Throughout this paper, by guessing we mean trying all the possibilities.
7 In the guessing we of course guarantee that r∗ =

∑
f,a,b rf,a,b.

8 Here we exploit a property of twUFP not satisfied by bagUFP.
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It is easy to compute the values DP (1, r′) (base case). For any h′ > 1, one has9

DP (h′, r′) = max{DP (h′ − 1, r′),max
i∈Bj

{wj + DP (h′ − 1, r′
i)}},

where r′
i is obtained from r′ by subtracting the demand of task i. The desired

solution APXa,b
many is the one corresponding to DP (ha,b

many, ra,b
many).

Our global solution is APX∗ = ∪a,b(APXa,b
many ∪ (∪f∈Fa,b

few
APXf,a,b)), with

w(APX∗) =
∑

a,b,f∈F
a,b
few

w(OPT f,a,b) +
∑

a,b w(APXa,b
many)

≥∑
a,b,f∈F

a,b
few

w(OPT f,a,b) +
∑

a,b,f∈F
a,b
many

w(Rf,a,b)

Lem.1≥ ∑
a,b,f∈F

a,b
few

w(OPT f,a,b) +
∑

a,b,f∈F
a,b
many

(1 − O(ε))w(OPT f,a,b)

≥ (1 − O(ε))w(OPTF ). 	

We are now ready to describe the global algorithm, which is inspired by [15].

We first embed G into a longer random path G′ as follows. Let γ = (1/ε′)1/ε′
,

where 1/ε′ = �1/min{ε, 1/C})� (in particular, ε′ ≤ min{ε, 1/C}). Let m be the
number of edges in the input graph. By adding dummy edges, we can assume
that m = γ� for some integer �. We choose integers x ∈ {1, . . . , m} and y ∈
{1, . . . , 1/ε′} uniformly at random. Next we append x dummy edges to the left
of the path and m · ((1/ε′)y − 1)−x dummy edges to its right. All dummy edges
have capacity one. Let G′ be the resulting path graph, with m′ = γ�(1/ε′)y

edges. We remark that this step can be easily derandomized by considering all
the possible values for x and y.

We next consider the following recursive dissection of G′. We split G′ into
γ intervals of equal length (in terms of number of edges). Each such interval is
subdivided recursively in the same way, and we halt when we reach intervals of
length γ or less. We let I1, . . . , Iγ denote the (direct) subintervals of interval I. We
remark that intervals at level q ≥ 0 in this dissection have length αq := m′/γq.

We say that a job j is at level �(j) in this dissection if its time window Wj

is fully contained in an interval I(j) of level �(j), but not of level �(j) + 1. We
similarly define �(i) and I(i) for a task i. For a given interval I, let J(I) be
the jobs whose time window if fully contained in I, but not in any one of its
subintervals. Among them, we call good the jobs Gd(I) such that all their tasks
i have I(i) = I(j) (i.e., they are not fully contained in a subinterval of I), and
bad the remaining jobs Bd(I)10. We discard from the instance all the bad jobs
Bd := ∪IBd(I).

Then we apply the following recursive algorithm, that takes as input one
such interval I and a residual capacity u′ coming from earlier calls. In the root
call we use I = G′ and u′ = u. Let F (I) be the set of rightmost edges of the

9 Intuitively, the first term in the outer max corresponds to the case that the best
solution does not use job k, and the second term to the weight obtained by including
some task i ∈ Bk in the solution.

10 We call good the jobs of level � by definition.



20 F. Grandoni et al.

subintervals of I. We consider the twUFP instance induced by (I, u′) with jobs
j such that Wj ⊆ I (excluding the discarded bad jobs Bd(I)), and we apply to
this instance Lemma 2 with F = F (I). We remark that the tasks TF in this case
are precisely the tasks of good jobs Gd(I).

This generates a quasi-polynomial size set of pairs {r(I), APX(I)}. For
each such pair {r(I), APX(I)} the algorithm branches by solving recursively
each subproblem induced by each subinterval Ii, with capacity reservation u′

i

induced by u′ − r(I): let APX(Ii) be the resulting solution. The output of
this recursive call is the maximum weight solution among the solutions of type
APX(I)∪(∪iAPX(Ii)). The base case is given by intervals I of length at most γ.
A QPTAS for this instance is provided by Lemma 2: just choose F to be all the
edges in I.

It is not hard to see that the above recursive algorithm is QPT. Furthermore,
it outputs a 1 − O(ε) approximation of the optimal solution, restricted to the
subset of good jobs Gd := ∪IGd(I). Next lemma shows that each given job is
bad with sufficiently small probability. Theorem 3 follows.

Lemma 3. Each job is good with probability at least 1 − 3ε.

Proof. Let us upper bound the probability that a job j is bad. We next assume
that �(j) < �, otherwise j is deterministically good by definition and there is
nothing to show.

We say that j is risky if there exists q such that ε′αq ≤ tj − sj ≤ 1
ε′ αq.

We next bound the probability that j is risky. Consider a log-scale axis and
call segment the distance corresponding to a multiplicative factor of 1/ε′. The
regions of risky time-window lengths correspond to 2 segments for each value of
q, separated by 1/ε′ −2 segments which are not risky. By the random choice of y,
the risky regions are shifted randomly w.r.t. the time-window lengths. Therefore
each job is risky with probability at most 2/(1/ε′) = 2ε′ ≤ 2ε.

Let us next condition on the event that job j is not risky. Then there exists
a q such that 1

ε′ αq < tj − sj < ε′αq−1. If �(j) = q − 1, then j is good: indeed,
τj ≥ (tj − sj)/C ≥ ε′(tj − sj) > αq. Thus each path Pi, i ∈ Bj , is strictly longer
than the level q subintervals of I(j).

Due to the random choice of x, the endpoints of the intervals of level q − 1
are randomly shifted w.r.t the time window Wj , and �(j) < q − 1 only if Wj

crosses some interval of level q − 1. Therefore Pr[�(j) < q − 1] ≤ tj−sj

αq−1
≤ ε′ ≤ ε.

Altogether, job j is bad with probability at most 3ε.

Remark 1. The above QPTAS extends to the special case of bagUFP where tasks
in the same bag have the same demand and weight (under the natural analogue of
BTWA). In particular, it is sufficient to adapt the DP from Lemma 2. However,
it does not seem to extend to the case that weights and demands are arbitrary
(since in that case the same bag might influence different capacity profiles ra,b

many,
which therefore cannot be considered separately in the DP).
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3 An Improved Approximation for bagUFP

In the Maximum Independent Set of Rectangles problem (MISR) we are given a
collection R = {R1, . . . , Rn} of axis-parallel rectangles in the 2D plane, where
Ri has weight wi. Our goal is to find a maximum total weight subset of rectan-
gles which are pairwise non-overlapping11. We define bagMISR as the natural
generalization of MISR with bags J = {B1, . . . ,Bh}.

We first present a O(log n/ log log n) approximation for bagMISR, and then
show how to use it to achieve the same approximation factor for bagUFP.

Approximating bagMISR. Let P be the set of O(n2) representative points
for rectangles R obtained with the already mentioned construction. Consider
the following natural LP relaxation for bagMISR:

max
∑

Ri∈R wiyi (LPbagMISR)

s.t.
∑

Ri∈R:p∈Ri
yi ≤ 1 ∀ p ∈ P

∑
Ri∈Bj

yi ≤ 1 ∀ Bj ∈ J

yi ≥ 0 ∀Ri ∈ R
The standard LP relaxation LPMISR for MISR is obtained from the above LP
by removing the bag constraints. Let B(Ri) be the set of rectangles in the same
bag of Ri, and, for an arbitrary set of rectangles R′ ⊆ R, let y(R′) =

∑
i∈R′ yi.

For two overlapping, distinct rectangles Ri and Rj , we say that they corner-
intersect, and write Ri ⊗ Rj , if one rectangle contains at least one corner of the
other rectangle. Otherwise they cross. For an arbitrary set R′ ⊆ R and rectangle
Ri ∈ R, define the resistance η as:

η(Ri,R′) =
∑

Rj∈R′\B(Ri),
Ri⊗Rj

yj +
∑

Rj∈R′∩B(Ri)\{Ri}
yj

Let G1 and G2 be two undirected graphs with vertex set R constructed as
follows: if two distinct rectangles Ri and Rj are incompatible (i.e., they overlap
or are in the same bag), then the edge (Ri, Rj) is added to G1 if Ri ⊗ Rj or if
they are in the same bag, otherwise the edge (Ri, Rj) is added to G2. Of course,
a subset I ⊆ R is a feasible solution if and only if it induces an independent set
of nodes in both the graphs simultaneously.

Our approximation algorithm works as follows. First, a fractional optimum
solution y of LPbagMISR is found. Then a permutation Π of R is computed
in the following manner: given the first i rectangles Πi = {π1, . . . , πi} in the
permutation, the (i + 1)th element πi+1 (breaking ties arbitrarily) is:

πi+1 = arg min
Rj∈R\Πi

η(Rj ,R \ Πi)

11 For our goals, it is convenient to consider two rectangles as overlapping iff they
overlap on a positive value area. In particular, overlapping on rectangle boundaries
is allowed.
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We next compute a candidate set C and an independent set I ⊆ C of G1. Initially,
C and I are empty. Then, the members of the permutation are scanned in reverse
order: at iteration k, the rectangle πn−(k−1) is added to C independently with
probability y(πn−(k−1))/10. If πn−(k−1) is added to C and I ∪ {πn−(k−1)} is an
independent set in G1, then πn−(k−1) is also added to I.

Note that I might not be an independent set due to crossing intersections. Let
Δ be the maximum clique-size of the rectangles in G2[I], that is, the maximum
number of rectangle overlapping on the same point. Since the rectangles in I
only have crossing intersections, G2[I] can be colored in polynomial time using
Δ colors as shown in [3]. The algorithm then returns the color subclass I ′ of I
that has the largest total weight. Clearly, I ′ is an independent set in both G1

and G2, and thus it is a feasible solution. We can bound the approximation ratio
similarly to [11].

Lemma 4. There is an expected O(log n/ log log n) approximation for bagMISR.

Approximating bagUFP. Our algorithm works as follows. We first compute
an approximate solution APXsmall associated to small tasks Tsmall = T \Tlarge

using the algorithm in [10]. We recall that this algorithm computes a constant
approximation of the optimal fractional solution of LPbagUFP restricted to small
tasks [10, Lemma1]. Next we focus on large tasks, and on the corresponding
set of top-drawn rectangles R. We consider the bagMISR instance induced
by R. We compute a solution R′ for this instance using the algorithm from
Lemma 4. Let APXlarge be the tasks corresponding to R′ (observe that APXlarge

is a feasible bagUFP solution). We finally return the best solution APX between
APXsmall and APXlarge.

Proof (of Theorem 1). Consider the above algorithm. We prove that APX is
a O(log n/ log log n) approximation with respect to the cost opt of the optimal
fractional solution x to LPbagUFP+ . Let xsmall be the restriction of x to small
tasks, and optsmal be the corresponding weight. We define xlarge and optlarge

analogously for large tasks.
If optsmall ≥ opt/2, then APXsmall has the desired properties by [10]. Indeed,

xsmall if a feasible solution to LPbagUFP .
Otherwise, let ylarge = xlarge/4. Observe that ylarge is a feasible solution for

LPbagMISR. Therefore, APXlarge provides a O(log n/ log log n) approximation
of the weight of ylarge (hence of optlarge). The claim follows. 	


4 A O(1)-Approximation for Uniform Profits

In this section we present our O(1) approximation for bagUFP with uniform
weights, which also upper bounds the integrality gap of LPbagUFP+ in the same
case. By scaling, we can assume w.l.o.g. that weights are exactly one.

By the same argument as in the proof of Theorem 1, it is sufficient to provide
a O(1) approximation for the (uniform-weight) bagMISR instance induced by
the top-drawn rectangles R corresponding to large tasks. We use as a black box
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the following result proved (implicitly) in [1]. We recall that in the Maximum
Independent Set of Intervals problem (MISI) we are given a collection I of inter-
vals along a line, each one with an associated weight, and our goal is to compute
a maximum weight subset of intervals I ′ so that the intervals in I ′ are pairwise
non-overlapping. By bagMISI we denote the natural generalization of MISI with
bag constraints. We let LPMISI be the standard LP for MISI, which is defined
analogously to LPMISR.

Lemma 5. Let R′ be a set of top-drawn rectangles corresponding to a subset
of large tasks in an UFP instance, and let Rmax be any maximal indepen-
dent set of rectangles in R′. There is a polynomial-time algorithm that com-
putes up to 10 points Pi in the plane for each Ri ∈ Rmax, and four subsets
Rpoint,Rtop,Rleft,Rright ⊆ R′ that cover R′ so that:

1. Rpoint = {Ri ∈ R′ : Ri ∩ P �= ∅} with P = ∪Ri∈Rmax
Pi.

2. For each x ∈ {top, left, right}, there exists a bijection between Rx and a
collection Ix of intervals along a line, so that the corresponding set of feasible
fractional solutions to LPMISR and LPMISI , respectively, is the same.

Our approximation algorithm for uniform-weight bagMISR works as follows.
We compute any maximal feasible solution APXmax for the bagMISR instance
induced by R. Consider the rectangles Rbag ⊆ R \ APXmax such that at least
one (indeed, precisely one) task in the same bag is contained in APXmax.

We apply the algorithm from Lemma 5 with Rmax = APXmax and R′ =
R \ Rbag

12. This way we obtain the sets Rpoint,Rtop,Rleft,Rright. For any x ∈
{top, left, right}, we consider the instance of (uniform weight) bagMISI induced
by Ix (where the bags are defined by the corresponding bijection). We apply the
LP-based 2-approximation algorithm for bagMISI in [6] to this instance, hence
obtaining an approximate solution APXx. Finally, we output the best solution
APX among the solutions APXmax, APXtop, APXleft, and APXright.

Lemma 6. The above algorithm is a 17 approximation for the bagMISR
instances induced by large tasks of a bagUFP instance.

Proof. Let y be the optimal fractional solution to LPbagMISR with weight opt.
For x ∈ {top, left, right, bag, point}, let yx be the restriction of y to rectangles
Rx, and let optx be the corresponding fractional weight.

Suppose that optx ≥ 2opt/17 for some x ∈ {top, left, right}. Since yx is
feasible for LPbagMISI on intervals Ix, then |APXx| ≥ optx/2 ≥ opt/17.

Suppose next that optbag ≥ opt/17. Let Bj be a bag corresponding to some
task i ∈ APXmax. The total weight in ybag for this bag is at most 1 by the bag
constraints. Therefore |APXmax| ≥ optbag ≥ opt/17.

Finally, assume optpoint ≥ 10opt/17. Next let Rp ⊆ Rpoint be the rectangles
containing some point p ∈ Pi for some rectangle Ri ∈ APXmax. The optimal
12 Observe that, by construction, APXmax is a maximal independent set w.r.t R′.

This might not be the case w.r.t. R since bag constraints might prevent some non-
overlapping rectangle to be included in the maximal solution.
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fractional weight associated to Rp is at most 1 due to the LP constraints. There-
fore, optpoint ≤ ∑

Ri∈APXmax

∑
p∈Pi

1 ≤ 10
∑

Ri∈APXmax
1 = 10|APXmax|.

Thus |APXmax| ≥ optpoint/10 ≥ opt/17. 	

Theorem 2 follows from Lemma 6 and the above discussion.

Acknowledgements. The authors wish to thank Andreas Wiese for very helpful dis-
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Abstract. We present a fast combinatorial 3/4-approximation algo-
rithm for the maximum asymmetric TSP with weights zero and one. The
approximation factor of this algorithm matches the currently best one
given by Bläser in 2004 and based on linear programming. Our algorithm
first computes a maximum size matching and a maximum weight cycle
cover without certain cycles of length two but possibly with half-edges - a
half-edge of a given edge e is informally speaking a half of e that contains
one of the endpoints of e. Then from the computed matching and cycle
cover it extracts a set of paths, whose weight is large enough to be able
to construct a traveling salesman tour with the claimed guarantee.

1 Introduction

We study the maximum asymmetric traveling salesman problem with weights
zero and one (Max (0,1)-ATSP), which is defined as follows. Given a complete
loopless directed graph G with edge weights zero and one, we wish to compute a
traveling salesman tour of maximum weight. Traveling salesman problems with
weights one and two are an important special case of traveling salesman problems
with triangle inequality. Max (0,1)-ATSP is connected to Min (1,2)-ATSP (the
minimum asymmetric traveling salesman problem with weights one and two)
in the following way. It has been shown by Vishvanathan [17] that a (1 − α)-
approximation algorithm for Max (0,1)-ATSP yields a (1 + α)-approximation
algorithm for Min (1,2)-ATSP by replacing weight two with weight zero.

Approximating Max (0,1)-ATSP with the ratio 1/2 is easy – it suffices to com-
pute a maximum weight matching of the graph G and patch the edges arbitrarily
into a tour. The first nontrivial approximation of Max (0,1)-ATSP was given
by Vishvanathan [17] and has the approximation factor 7/12. It was improved
on by Kosaraju, Park, and Stein [8] in 1994, who gave a 48/63-approximation
algorithm that also worked for Max ATSP with arbitrary nonnegative weights.
Later, Bläser and Siebert [4] obtained a 4/3-approximation algorithm for Min
(1,2)-ATSP, which can be modified to give a 2/3-approximation algorithm for
Max (0,1)-ATSP. 2/3-approximation algorithms are also known for the general
Max ATSP and have been given in [6] and [14]. The currently best published
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approximation algorithm for Max (0,1)-ATSP achieving ratio 3/4 is due to Bläser
[2]. It uses linear programming to obtain a multigraph GM of weight at least
3/2 times the weight of an optimal traveling salesman tour (OPT) such that
GM can be path-2-colored. A multigraph is called path-2-colorable if its edges
can be colored with two colors so that each color class consists of vertex-disjoint
paths. The algorithm by Bläser has a polynomial running time but the degree
of the polynomial is high. A 3/4-approximation algorithm for Max ATSP with
arbitrary nonnegative weights has been given in [15]. The algorithm presented
here for Max (0,1)-ATSP is much simpler than the one in [15].

Karpinski and Schmied have shown in [7] that it is NP-hard to approximate
Min (1,2)-ATSP with an approximation factor less than 207/206 and for the
general Max ATSP that it is NP-hard to obtain an approximation better than
203/204.

Our Approach and Results. We present a simple combinatorial 3/4-
approximation algorithm for Max (0,1)-ATSP. First we compute a maximum
weight matching Mmax of G. By a matching of G we mean any vertex-disjoint
collection of edges. The weight of Mmax is clearly at least OPT/2, where OPT
denotes the weight on an optimal tour. Next, we compute a maximum weight
cycle cover that evades the matching Mmax. A cycle cover of a directed graph
is a collection of directed cycles such that each vertex belongs to exactly one
cycle of the collection. A cycle cover of a graph G that evades a matching M
is a cycle cover of G which does not contain any length two cycle (called a 2-
cycle) going through two vertices that are connected by some edge of M but it
may contain half-edges - a half-edge of a given edge e is informally speaking a
half of e that contains one of the endpoints of e. Half-edges have already been
introduced in [14]. The task of finding a maximum weight cycle cover Cmax

that evades a matching M can be reduced to finding a maximum size matching
in an appropriately constructed graph. The weight of Cmax is an upper bound
on OPT. Further on we show that a maximum weight matching Mmax and a
maximum weight cycle cover that evades Mmax can be easily transformed into a
path-2-colorable multigraph. For completeness we give also our own linear time
procedure of path-2-coloring. This method takes advantage of the fact that the
edge weights are zero and one. A more general algorithm for path-2-coloring that
runs in O(n3) has been given in [2].

This way the main results of this paper can be stated as

Theorem 1. There exists a combinatorial 3/4-approximation algorithm for Max
(0,1)-ATSP. Its running time is O(n1/2m), where n and m denote the number
of respectively vertices and edges of weight one in the graph.

Corollary 1. There exists a combinatorial 5/4-approximation algorithm for Min
(1,2)-ATSP. Its running time is O(n1/2m).

2 Cycle Cover that Evades Matching M

The algorithm for Max (0,1)-ATSP starts from computing a maximum weight
perfect matching Mmax of G. By a 0-edge and a 1-edge we will mean an edge of
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weight, respectively, zero or one. By G1 we denote the subgraph of G consisting
of all 1-edges of G. In order to obtain a maximum weight perfect matching
Mmax of G, it is enough to compute a maximum size matching M1 in G1 and,
if necessary, complete it arbitrarily with 0-edges so that the resulting matching
is perfect.

Next, we would like to find a maximum weight cycle cover of G that does not
contain any 2-cycle in G1, whose one edge belongs to Mmax. Since computing
such a cycle cover is NP-hard, which follows from a similar result proved in [4],
we are going to relax the notion of a cycle cover and allow it to contain half-
edges - a half-edge of edge (u, v) is informally speaking “half of the edge (u, v)
that contains either a head or a tail of (u, v)”.

Now, we are going to give a precise definition of a cycle cover that evades
a matching M . We say that a 2-cycle c in G1 is M-hit if one of the edges
of c belongs to M . We introduce a graph G̃M . G̃M = (Ṽ , Ẽ) is the graph
obtained from G by splitting each edge (u, v) belonging to an M -hit 2-cycle
of G1 with a vertex x(u,v) into two edges (u, x(u,v)) and (x(u,v), v), each with
weight 1

2w(u, v), where w(u, v) denotes the weight of the edge (u, v). Each of the
edges (u, x(u,v)), (x(u,v), v) is called a half-edge (of (u, v)). For any subset of
edges E′ ⊆ E by w(E′) we mean

∑
e∈E′ w(e).

Definition 1. A cycle cover that evades a matching M is a subset C̃ ⊆ Ẽ
such that

(i) each vertex in V has exactly one outgoing and one incoming edge in C̃;
(ii) for each M -hit 2-cycle of G1 connecting vertices u and v C̃ contains either

zero or two edges from
{(u, x(u,v)), (x(u,v), v), (v, x(v,u)), (x(v,u), u)}. Moreover, if C̃ contains only
one half-edge of (u, v), then it also contains one half-edge of (v, u), and one
of these half-edges is incident with u and the other with v.

To compute a cycle cover C1 that evades Mmax we construct the follow-
ing undirected graph G′ = (V ′, E′). For each vertex v of G we add two ver-
tices vin, vout to V ′. For each edge (u, v) ∈ E we add vertices e1uv, e

2
uv, an edge

(e1uv, e
2
uv) of weight 0 and edges (uout, e

1
uv), (vin, e2uv), each of weight 1

2w(u, v).
Next we build so-called gadgets.

For each M -hit 2-cycle in G1 on vertices u and v we add vertices a{u,v}, b{u,v}
and edges (a{u,v}, e1uv), (a{u,v}, e2vu), (b{u,v}, e1vu), (b{u,v}, e2uv) having weight 0.

Theorem 2. Any perfect matching of G′ yields a cycle cover C1 that evades
Mmax. A maximum weight perfect matching of G′ yields a cycle cover Cmax

that evades Mmax such that w(Cmax) ≥ OPT .

Proof. The proof of the first statement is very similar to the proof of Lemma
2 in [14]. We include it here for completeness. Suppose that a 2-cycle in G1 on
vertices u and v is Mmax-hit. Then in G′ there exists a gadget with vertices
a{u,v} and b{u,v}. In a perfect matching of G′ vertex a{u,v} can be matched only
with e1uv or e2vu. Similarly, vertex b{u,v} can be matched only with e2uv or e1vu.
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Let us consider the case when a{u,v} is matched with e1uv and b{u,v} is matched
with e2uv. Then either e2vu is matched with e1vu or e2vu is matched with uin and
e1vu is matched with vout. The first of these scenarios means that C1 does not
contain any half-edge of (u, v) or any half-edge of (v, u). The second of these
scenarios means that C1 contains a whole edge (v, u) (both of its half-edges) and
none of the half-edges of (u, v).

Suppose now that in a perfect matching of G′ vertex a{u,v} is matched with
e1uv and b{u,v} is matched with e1vu. Then e2uv must be matched with vin and e2vu
with uin. This means that C1 contains one half-edge of (u, v) (the one incident
with v) and one half-edge of (v, u) (incident with u). This way we have shown
that C1 satisfies property (ii) of Definition 1. Property (i) is also satisfied because
a perfect matching of G′ matches each vertex vin and vout.

The second statement of the lemma follows from the fact that a traveling
salesman tour is also a cycle cover that evades Mmax. �

In the following by a half-edge of a cycle cover C we will mean such a half-
edge of a certain edge e contained in C that C contains only one half-edge of
e. A cycle cover that evades a matching M consists of directed cycles and/or
directed paths, where each of the directed paths begins and ends with a half-
edge. From a matching Mmax and a cycle cover Cmax that evades Mmax we build
a multigraph Gm as follows. Basically Gm consists of one copy of Mmax and one
copy of Cmax. However, we do not want Gm to contain half-edges. Therefore we
modify Cmax by replacing each pair of half-edges of edges connecting vertices u
and v that are contained in Cmax with an edge (u, v), if Mmax contains (v, u)
and otherwise with an edge (v, u). As a result Gm contains a 2-cycle on each
such pair of vertices u, v. After this modification Cmax contains only whole edges
and may contain directed paths with a common endpoint i.e., some vertices may
have indegree two and outdegree zero or vice versa. However, the overall weight
of Cmax is unchanged. Now, Gm is going to contain two copies of an edge e if e
belongs both to Mmax and Cmax and one copy of an edge e if e belongs either to
Mmax or to Cmax. This way we obtain a multigraph that satisfies the following
conditions:

– each vertex in Gm has degree three,
– each vertex in Gm has indegree at most two and outdegree at most two,
– for each pair of vertices u and v, Gm contains at most two edges connecting

u and v.

In [2] Bläser shows how to slightly modify such a multigraph so that it has the
same number of 1-edges and is path-2-colorable. Path-2-coloring of the modified
graph is based on a variant of the path-2-coloring lemma given by Lewenstein
and Sviridenko [11], which in turn is a reduction to the path-2-coloring lemma
of Kosaraju, Park, and Stein, whose proof was given in [1]. The running time of
the path-2-coloring algorithm is O(n3).

If the number of vertices in the graph is odd, then the above approach
does not give a 3/4-approximation. We can either add a new additional vertex,
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that is connected to every other vertex by a 0-edge and obtain a 3/4(1 − 1/n)-
approximation, or guess one edge of an optimal traveling salesman tour and con-
tract it. In the latter case, the running time of the algorithm becomes O(n3/2m).

3 Path-2-coloring

In this section we present a simple linear time algorithm of path-2-coloring the
multigraph Gm computed in the previous section.

From Gm we are going to obtain another multigraph that contains the same
number of 1-edges as Gm and additionally allows a simple method of path-2-
coloring.

3.1 Eliminating 2-cycles

First we deal with 2-cycles on cycles and paths of Cmax. For any 1-edge e = (u, v)
contained in a cycle c of Cmax such that Mmax contains a 1-edge e′ = (v, u), we
replace the edge e′ with another copy of e. Similarly, for any 1-edge e = (u, v)
contained in a path p of Cmax such that e has not been obtained from a half-
edge and Mmax contains a 1-edge e′ = (v, u), we replace the edge e′ with another
copy of e. So far, clearly, we have not diminished the number of 1-edges contained
in Gm. Next, we discard all 0-edges from Gm. This way, some cycles of Cmax

disintegrate into paths and some paths of Cmax give rise to shorter paths. In
what follows, by a cycle of Cmax we will mean a cycle of Cmax consisting solely
of 1-edges and by a path of Cmax we will mean a maximal (under inclusion)
directed path, whose every edge belongs to Cmax and has weight one.

Let e = (u, v) be an edge of G1, c a cycle and p a path of Cmax. Then we
say that e is an inray of c (corr. p) if u /∈ c and v ∈ c (corr. u /∈ p and v ∈ p).
If u ∈ c and v /∈ c (corr. u ∈ p and v /∈ p), then we say that e is an outray of
c (corr. p). A ray of c (p) is any inray or outray of c (p). If both endpoints
of e belong to c (corr. p) and e does not belong to c (corr. p), then e is called a
chord of c (corr. p). If e is a copy of some edge belonging to c (corr. p), then e
is called an ichord .

Let us notice that any 2-cycle which is present at this stage of Gm is either a
2-cycle of Cmax or a 2-cycle obtained from a pair of half-edges of Cmax and an
edge of Mmax. Now, we construct from Gm a new multigraph G1

m by eliminating
all remaining 2-cycles as follows. If c is a 2-cycle of Cmax on vertices u and v that
has an inray incident to u and an outray incident to v, then in Gm we replace
the edge (v, u) with another copy of edge (u, v) and in G1

m we shrink the two
copies of an edge (u, v) into a single vertex. By shrinking an edge (u, v) into a
vertex we mean removing an edge (u, v), replacing vertices u and v with one new
vertex and replacing any edge of Gm incident to u or v with an edge incident to
the newly added vertex. Every remaining 2-cycle of Cmax or a 2-cycle obtained
from a pair of half-edges of Cmax and an edge of Mmax is also shrunk into a
single vertex in G1

m. We continue such shrinking until G1
m contains no 2-cycles.

We make the following observation.
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Observation 1. From any path-2-coloring of G1
m we can obtain a path-2-coloring

of Gm without changing the color of any edge of G1
m.

3.2 Flipping of Edges

Next we are going to further flip some of the edges of G1
m and obtain a graph

G2
m such that the task of its path-2-coloring is very easy.

For each cycle c of Cmax we are going to flip either its inrays and chords or
outrays and chords so that c has either only outrays and ichords or only inrays
and ichords. Let c be any cycle of Cmax. Let us notice that its length is at least
three. Suppose that the number of inrays of c is not smaller than the number
of outrays of c. Then we replace the outrays and chords of c with ichords of c
in such a way that the indegree and outdegree of each vertex of c is at most
two. More precisely, the replacement is carried out as follows. Let Fc be a set of
free edges of c, where we say that an edge (u, v) of c is free if no inray of c is
incident with v. The number of free edges of c is not smaller than the number of
outrays and chords of c. Moreover, the number of outrays and chords of c is not
bigger than |c|−2, where |c| denotes the length of c. It follows from the fact that
the number of chords of c is not greater than |c|/2 and the number of outrays
of c does not exceed the number of inrays of c. Each chord and outray of c is
then replaced with a copy of some distinct edge of Fc. Let us notice that it may
happen that as a result of this operation some vertex of c has both indegree and
outdegree equal to two.

If the number of outrays of c outnumbers the number of inrays of c, then
we replace the inrays and chords of c with ichords of c in an analogous way as
above.

fact 1. Let c be any cycle that has either only inrays and/or ichords or only
outrays and/or ichords. Moreover, (1) the number of rays of c is at least two or
c has at most |c|− 2 ichords and (2) the indegree and outdegree of each vertex of
c is at most two. Assume also that each ray of c has already been colored with 1
or 2. If c has at least two rays, then it is possible to path-2-color the edges and
ichords of c provided that two rays of c are colored differently. If c has at most
one ray, then it is always possible to path-2-color the edges and ichords of c.

Proof. Any two copies of the same edge must be colored differently. Similarly
any two outgoing edges of some vertex of c or any two incoming edges of some
vertex of c must be colored differently. If c has two rays that are colored differ-
ently, then two edges of c incident to these rays must also be colored differently
and it follows that no monochromatic cycle can arise out of the edges or ichords
of c. If c has exactly one ray colored with, say 1, then we must see to it that
not for every edge (u, v) of c it is that at least one copy of (u, v) is colored with
2. Since c has at most |c| − 2 ichords, there exists an edge e of c such that G2

m

contains only one copy of e and which can be colored with 1. If c has no rays,
then we can easily path-2-color its edges and ichords. �
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The situation with paths is slightly more complicated. We are going to dis-
tinguish paths that are bound and free . A path of Cmax is said to be bound if it
shares at least one of its endpoints with another path of Cmax. A path of Cmax

that is not bound is said to be free. A bound path can be 1-bound – if exactly
one of its endpoints is also an endpoint of another path of Cmax or 2-bound –
if each of its endpoints is an endpoint of another path of Cmax. We say that an
edge e = (u, v) of p of Cmax is a rayter if u is incident with an outray of p and
v is incident with an inray of p.

We are going to flip the rays and chords of each bound path p in such a way
that besides possible ichords p either has at most one ray or exactly two rays
incident to a rayter. As for free paths we are going to flip the rays and chords
of each free path p in such a way that besides possible ichords p either has only
inrays or only outrays or exactly two rays incident to a rayter.

Let p be any path of Cmax with endpoints u and v. By |p| we denote the
length of p i.e., the number of edges of p. An endpoint of p which is not an
endpoint of any other path of Cmax is said to be a border vertex of p. If an
endpoint u of p belongs also to some other path of Cmax, then the edge of p
incident to u is called a border edge of p. The endpoint of a border edge of
p that is not an endpoint of any path of Cmax different from p is also called a
border vertex of p. It may happen that a path p of Cmax does not have any
border vertex – if |p| = 1 and both endpoints of p belong also to some other
path(s) of Cmax. We say that a path p has a good ray if it has a ray e incident
to a border vertex v of p such that either (1) v is an endpoint of p and e together
with p form a directed path of length |p|+1 or (2) v is not an endpoint of p and e
forms a directed path of length two with e′, where e′ is an edge of p incident to v
and is not a border edge of p. For example, let p be a 2-bound path (u, v1, v2, v)
directed from u to v and suppose that p has a ray e = (v2, v3). Then e is a good
ray of p. Let us notice that the maximum number of edges of Mmax incident to
a path p of Cmax is: (1) |p| − 1, if p is 2-bound, (2) |p|, if p is 1-bound and (3)
|p|+1, if p is free. It is so because no edge of Mmax is incident to a vertex which
is an endpoint of two different paths of Cmax – because such an endpoint is in
fact a shrunk 2-cycle.

The flipping of rays and ichords of paths proceeds as follows. If the number
of edges of Mmax incident to a given path p is (1) fewer than |p| − 1 and p is
2-bound or (2) fewer than |p| and p is 1-bound or (3) fewer than |p| + 1 and p
is free, then we replace all chords and rays of p with ichords of p but not with a
copy of any border edge of p. (Also, of course, no edge of p is allowed to occur
in more than two copies). Otherwise, if a path p has a good ray, we keep any
one good ray of p and replace all the other rays and chords of p with ichords of
p but not with a copy of any border edge of p. In the remaining case, we keep
some two rays of p that are incident to a rayter and replace the rest of rays and
chords of p with ichords.

fact 2. Graphs G1
m and Gm

2 are on the same set of vertices and have the same
number of edges.
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3.3 Path-2-coloring of G2
m

Suppose that e1 and e2 are good rays of paths p1, p2 having a common endpoint
u such that both e1 and e2 is incident to the border edge (of respectively p1 or
p2) incident with u. Then the rays e1 and e2 are said to be allied .

We make the following two observations.

fact 3. In any path-2-coloring of G2
m the rays incident to the same rayter are

colored with the same color.

Proof. Let e = (u, v) be a rayter of p. Then in any path-2-coloring of G2
m the

edge e must be colored with a different color than an outray of p incident to u
and also with a different color than an inray of p incident to v. Since there are
only two colors, it follows that the rays incident to e must be colored with the
same color. �

fact 4. In any path-2-coloring of G2
m the allied rays are colored with different

colors.

Proof. Let v be a vertex which is an endpoint of two different paths p1, p2 of
Cmax and let e1, e2 be two border edges incident to v. Then, clearly e1 and e2
must be colored with different colors as either both are incoming edges of v or
both are outgoing edges of v. The ray incident to e1 must be colored differently
than e1. Similarly the ray incident to e2 must be colored differently than e2. �

After all the flipping, the multigraph G2
m is quite easy to path-2-color. In

fact, it suffices to appropriately color the rays and then the coloring of the rest
of the edges is straightforward. From the rays in G2

m we build the following graph
H. At the beginning H has the same vertex set as G2

m and contains all the rays
in G2

m, i.e., (u, v) is an edge in H if and only if (u, v) is a ray of some path or
cycle of Cmax in G2

m. Thus every two edges of H are vertex-disjoint at this stage.
Next, for each cycle c of Cmax we choose two arbitrary rays e1, e2 of c and merge
together their endpoints belonging to c i.e., if u1 ∈ e1 ∩ c and u2 ∈ e2 ∩ c, then
we replace u1 and u2 with one vertex and as a result e1 and e2 have (at least)
one common endpoint. Further, each pair of rays incident to the same rayter is
replaced with one edge as follows. Let e1 = (u1, v1), e2 = (u2, v2) be a pair of
rays incident to some edge e = (u2, v1) in G2

m. Then e1, e2 are replaced in H
with one edge e = (u1, v2). Such replacements are done exhaustively. We also
merge together the endpoints of certain pairs of good rays. Suppose that e1 and
e2 are allied rays of paths p1, p2. Then we merge together the endpoint of e1
belonging to p1 with the endpoint of e2 belonging to p2.

At this stage, ignoring the directions H consists of paths, cycles and isolated
vertices i.e., each vertex is either isolated or belongs to exactly one path or cycle.
Moreover, every two edges of H sharing a vertex v are either both incoming edges
of v or are both ougoing-edges of v. Hence each cycle of H has even length. We
color the edges of each cycle and each path of H with 1 and 2 in such a way that
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no two incoming edges of any vertex are colored with the same color or no two
outgoing edge of any vertex are colored with the same color. In other words, we
path-2-color H.

Lemma 1. Any path-2-coloring of H can be extended to a path-2-coloring of
G2

m.

Proof. Each ray in G2
m is colored with the same color as in H. In the case when

some edge e in H was obtained from several rays in G2
m, each such ray in G2

m

is colored in the same way as e in H. Thus, by the way we constructed H, each
pair of rays incident to one rayter is colored in the same way, allied rays are
colored with different colors and for each cycle c of Cmax that has at least two
rays, there exist two rays of c colored differently. By Fact 1 we already know how
to color the edges and ichords of each cycle of Cmax. Any edge e = (u, v) of any
path of Cmax which is incident to an outray r1 incident to u is colored differently
than r1. Similarly any edge e = (u, v) of any path of Cmax which is incident to
an inray r2 incident to v is colored differently than r2. Also two border edges of
two different paths of Cmax incident to the same vertex are colored differently.
Two copies of the same edge are clearly colored differently. The remaining edges
can be colored arbitrarily. �

Observation 2. From any path-2-coloring of G2
m we can obtain a path-2-coloring

of Gm without changing the color of any edge of G2
m.
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1 Introduction

One of the most popular ways to decompose a graph into smaller pieces is given
by the notion of a tree decomposition. Intuitively, a graph G has a tree decom-
position of small width if it can be decomposed into small (possibly overlapping)
pieces that are altogether arranged in a tree-like structure. The width of such a
decomposition is defined as the minimum size of these pieces. The graph invari-
ant of treewidth corresponds to the minimum width of all possible tree decom-
positions and, that way, serves as a measure of the topological resemblance of
a graph to the structure of a tree. The importance of tree decompositions and
treewidth in graph algorithms resides in the fact that a wide family of NP-hard
graph problems admits FPT-algorithms, i.e., algorithms that run in f(w) · nO(1)

steps, when parameterized by the treewidth w of their input graph. According to
the celebrated theorem of Courcelle, for every problem that can be expressed in
Monadic Second Order Logic (MSOL) [5] it is possible to design an f(w) ·n-step
algorithm on graphs of treewidth at most w. Moreover, towards improving the
parametric dependence, i.e., the function f , of this algorithm for specific prob-
lems, it is possible to design tailor-made dynamic programming algorithms on
the corresponding tree decompositions. Treewidth has also been important from
the combinatorial point of view. This is mostly due to the celebrated “planar
graph exclusion theorem” [14,15]. This theorem asserts that:

(*) Every graph that does not contain some fixed wall1 as a topological
minor2 has bounded treewidth.

The above result had a considerable algorithmic impact as every problem
for which a negative (or positive) answer can be certified by the existence of
some sufficiently big wall in its input, is reduced to its resolution on graphs
of bounded treewidth. This induced a lot of research on the derivation of fast
parameterized algorithms that can construct (optimally or approximately) these
decompositions. For instance, according to [1], treewidth can be computed in
f(OPT ) · n steps where f(w) = 2O(w3) while, more recently, a 5-approximation
for treewidth was given in [2] that runs in 2O(OPT ) · n steps.

Unfortunately, the aforementioned success stories about treewidth have some
natural limitations. In fact, it is not always possible to use treewidth for improv-
ing the tractability of NP-hard problems. In particular, there are interesting
cases of problems where no such an FPT-algorithm is expected to exist [6,7,10].
Therefore, it is an interesting question whether there are alternative, but still
general, graph invariants that can provide tractable parameterizations for such
problems.

A promising candidate in this direction is the graph invariant of tree-cut
width that was recently introduced by Wollan in [23]. Tree-cut width can be
1 We avoid the formal definition of a wall in this extended abstract. Instead, we provide

the following image that, we believe, provides the necessary intuition.
2 A graph H is a topological minor of a graph G if a subdivision of H is a subgraph

of G.
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seen as an “edge” analogue of treewidth. It is defined using a different type
of decompositions, namely, tree-cut decompositions that are roughly tree-like
partitions of a graph into mutually disjoint pieces such that both the size of
some “essential” extension of these pieces and the number of edges crossing
two neighboring pieces are bounded (see Sect. 2 for the formal definition). Our
first result is that it is NP-hard to decide, given a graph G and an integer w,
whether the input graph G has tree-cut width at most w. This follows from a
reduction from the Min Bisection problem that is presented in Subsect. 2.2.
This encourages us to consider a parameterized algorithm for this problem.

Fig. 1. The relations between classes with bounded treewidth (tw) and tree-cut width
(tcw).

Another tree-like parameter that can be seen as an edge-counterpart of tree-
width is carving-width, defined in [18]. It is known that a graph has bounded
carving-width if and only if both its treewidth and its maximum degree are
bounded. We stress that this is not the case for tree-cut width, which can also
capture graphs with unbounded maximum degree and, thus, is more general
than carving-width. There are two reasons why tree-cut width might be a good
alternative for treewidth. We expose them below.

(1) Tree-cut Width as a Parameter. From now on we denote by tcw(G)
(resp. tw(G)) the tree-cut width (resp. treewidth) of a graph G. As it is shown
in [23] tcw(G) = O(tw(G) ·Δ(G)). Moreover, in [8], it was proven that tw(G) =
O((tcw(G))2) and in Subsect. 2.3, we prove that the latter upper bound is
asymptotically tight. The graph class inclusions generated by the aforementioned
relations are depicted in Fig. 1. As tree-cut width is a “larger” parameter than
treewidth, one may expect that some problems that are intractable when para-
meterized by treewidth (known to be W[1]-hard or open) become tractable when
parameterized by tree-cut width. Indeed, some recent progress on the develop-
ment of a dynamic programming framework for tree-cut width (see [8]) con-
firms that assumption. According to [8], such problems include Capacitated

Dominating Set problem, Capacitated Vertex Cover [6], and Balanced

Vertex-Ordering problem. We expect that more problems will fall into this
category.

(2) Combinatorics of Tree-cut Width. In [23] Wollan proved the following
counterpart of (*):
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(**) Every graph that does not contain some fixed wall as an immersion3

has bounded tree-cut width.

Notice that (*) yields (**) if we replace “topological minor” by “immersion” and
“treewidth” by “tree-cut width”. This implies that tree-cut width has combina-
torial properties analogous to those of treewidth. It follows that every problem
where a negative (or positive) answer can be certified by the existence of a wall as
an immersion, can be reduced to the design of a suitable dynamic programming
algorithm for this problem on graphs of bounded tree-cut width.

Computing Tree-cut Width. It follows that designing dynamic programming
algorithms on tree-cut decompositions might be a promising task when this
is not possible (or promising) on tree-decompositions. Clearly, this makes it
imperative to have an efficient algorithm that, given a graph G and an integer
w, constructs tree-cut decompositions of width at most w or reports that this is
not possible. Interestingly, an f(w) · n3-time algorithm for the decision version
of the problem is known to exist but this is not done in a constructive way.
Indeed, for every fixed w, the class of graphs with tree-cut width at most w
is closed under immersions [23]. By the fact that graphs are well-quasi-ordered
under immersions [16], for every w, there exists a finite set Rw of graphs such
that G has tree-cut width at most w if and only if it does not contain any of the
graphs in Rw as an immersion. From [11], checking whether an h-vertex graph H
is contained as an immersion in some n-vertex graph G can be done in f(w) ·n3

steps. It follows that, for every fixed w, there exists a polynomial algorithm
checking whether the tree-cut width of a graph is at most w. Unfortunately, the
construction of this algorithm requires the knowledge of the set Rw for every w,
which is not provided by the results in [16]. Even if we knew Rw, it is not clear
how to construct a tree-cut decomposition of width at most w, if one exists.

In this paper we make a first step towards a constructive parameterized
algorithm for tree-cut width by giving an FPT 2-approximation for it. Given
a graph G and an integer w, our algorithm either reports that G has tree-cut
width more than w or outputs a tree-cut decomposition of width at most 2w in
2O(w2 log w)n2 steps. The algorithm is presented in Sect. 3.

2 Problem Definition and Preliminary Results

Unless specified otherwise, every graph in this paper is undirected and loopless
and may have multiple edges. By V (G) and E(G) we denote the vertex set
and the edge set, respectively, of a graph G. Given a vertex x ∈ V (G), the
neighborhood of x is N(x) = {y ∈ V (G) | xy ∈ E(G)}. Given two disjoint sets
X and Y of V (G), we denote δG(X,Y ) = {xy ∈ E(G) | x ∈ X, y ∈ Y }. For a
subset X of V (G), we define ∂G(X) = {x ∈ X | N(x) \ X �= ∅}.

3 A graph H is an immersion of a graph G if H can be obtained from some subgraph
of G after replacing edge-disjoint paths with edges.
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2.1 Tree-cut Width and Treewidth

Tree-cut width. A tree-cut decomposition of G is a pair (T,X ) where T is a
tree and X = {Xt ⊆ V (G) | t ∈ V (T )} such that

• Xt ∩ Xt′ = ∅ for all distinct t and t′ in V (T ),
• ⋃

t∈V (T ) Xt = V (G).

From now on we refer to the vertices of T as nodes. The sets in X are called
the bags of the tree-cut decomposition. Observe that the conditions above allow
to assign an empty bag for some node of T . Such nodes are called trivial nodes.
Observe that we can always assume that trivial nodes are internal nodes.

Let L(T ) be the set of leaf nodes of T . For every tree-edge e = {u, v} of E(T ),
we let Tu and Tv be the subtrees of T \ e which contain u and v, respectively.

We define the adhesion of a tree-edge e = {u, v} of T as follows:

δT (e) = δG(
⋃

t∈V (Tu)

Xt,
⋃

t∈V (Tv)

Xt).

For a graph G and a set X ⊆ V (G), the 3-center of (G,X) is the graph
obtained from G by repetitively dissolving every vertex v ∈ V (G) \ X that has
two neighbors and degree 2 and removing every vertex w ∈ V (G) \ X that has
degree at most 2 and one neighbor (dissolving a vertex x of degree two with
exactly two neighbors y and z is the operation of removing x and adding the
edge {y, z} – if this edge already exists then its multiplicity is increased by one).

Given a tree-cut decomposition (T,X ) of G and node t ∈ V (T ), let T1, . . . , T�

be the connected components of T \ t. The torso of G at t, denoted by Ht,
is a graph obtained from G by identifying each non-empty vertex set Zi :=⋃

b∈V (Ti)
Xb into a single vertex zi (in this process, parallel edges are kept). We

denote by H̄t the 3-center of (Ht,Xt). Then the width of (T,X ) equals

max ({|δT (e)| : e ∈ E(T )} ∪ {|V (H̄t)| : t ∈ V (T )}).

The tree-cut width of G, or tcw(G) in short, is the minimum width of (T,X )
over all tree-cut decompositions (T,X ) of G.

The following definitions will be used in the approximation algorithm. Let
(T,X ) be a tree-cut decomposition of G. It is non-trivial if it contains at least
two non-empty bags, and trivial otherwise. We will assume that every leaf of a
tree-cut decomposition has a non-empty bag. The internal-width of a non-trivial
tree-cut decomposition (T,X ) is

in-tcw(T,X ) = max ({|δT (e)| : e ∈ E(T )} ∪ {|V (H̄t)| : t ∈ V (T ) \ L(T )}).

If (T,X ) is trivial, then we set in-tcw(T,X ) = 0.

We decision problem corresponding to tree-cut width is the following:

Tree-cut Width

Input: a graph G and a non-negative integer k.
Question: tcw(G) ≤ k?
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Treewidth. A tree decomposition of a graph G is a pair (T,Y) = {Yx : x ∈
V (T )}) such that T is a tree and Y is a collection of subsets of V (G) where

• ⋃
x∈V (T ) Yx = V (G);

• for every edge {u, v} ∈ E(G) there exists x ∈ V (T ) such that u, v ∈ Yx; and
• for every vertex u ∈ V (G) the set of nodes {x ∈ V (T ) : u ∈ Yx} induces a

subtree of T .

The vertices of T are called nodes of (T,Y) and the sets Yx are called bags. The
width of a tree decomposition is the size of the largest bag minus one. The
treewidth of a graph, denoted by tw(G), is the smallest width of a tree decom-
position of G.

2.2 Computing Tree-cut Width Is NP-complete

We prove that Tree-cut Width is NP-hard by a polynomial-time reduction
from Min Bisection, which is known to be NP-hard [9]. The input of Min

Bisection is a graph G and a non-negative integer k, and the question is
whether there exists a bipartition (V1, V2) of V (G) such that |V1| = |V2| and
|δG(V1, V2)| � k.

Theorem 1 (�). Tree-cut Width is NP-complete.

2.3 Tree-cut Width Vs Treewidth

In this section we investigate the relation between treewidth and tree-cut width.
The following was proved in [8].

Proposition 1. For a graph of tree-cut width at most w, its treewidth is at most
2w2 + 3w.

We now prove that the bound of Proposition 1 is asymptotically optimal.
We define the family of graphs H = {Hw : w ∈ N�1} as follows. The vertex

set of Hw is a disjoint union of w cliques, Q1, . . . , Qw, each containing w vertices.
For each 1 � i � w, the vertices of Qi are labeled as (i, j), 1 � j � w. Besides
the edges lying inside the cliques Qi’s, we add an edge between (i, j) ∈ Qi and
(j, i) ∈ Qj for every 1 � i < j � w. Notice that the vertex (i, i) does not have a
neighbor outside Qi. The graph H4 is depicted in Fig. 2.

Lemma 1. The tree-cut width of Hw is at most w + 1.

Proof: Consider the tree-cut decomposition (T,X ), in which T is a star with t
as the center and q1, . . . , qw as leaves. For the bags, we set Xt = ∅, and Xqi = Qi

for 1 � i � w. It is straightforward to verify that the tree-cut width of (T,X ) is
w + 1. �	
We need some definitions that will be used in the proof of the next lemma.
Let G be a graph. Two subgraphs X and Y of G touch each other if either
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Fig. 2. The graph H4.

V (X) ∩ V (Y ) �= ∅ or there is an edge e = {x, y} ∈ E(G) with x ∈ V (X) and
y ∈ V (Y ). A bramble B is a collection of connected subgraphs of G pairwise
touching each other. The order of a bramble B is the minimum size of a hitting
set S of B, that is a set S ⊆ V (G) such that for every B ∈ B, S ∩ V (B) �= ∅.
In Seymour and Thomas [17], it is known that the treewidth of a graph equals
the maximum order over all brambles of G minus one. Therefore, a bramble of
order k is a certificate that the treewidth is at least k − 1.

Lemma 2 (�). For any positive integer w, the treewidth of Hw ∈ H is at least
1
16w2 − 1.

From Lemmas 1 and 2, we conclude to the following.

Theorem 2. For every w ∈ N�1 there exists a graph Hw such that tw(Hw) =
Ω((tcw(Hw))2).

3 The 2-Approximation Algorithm

We present a 2-approximation of Tree-cut Width running in time 2O(w2 log w) ·
n2. As stated in Lemma 3 below, we first observe that computing the tree-cut
width of G reduces to computing the tree-cut width of 3-edge-connected graphs.
This property can be easily derived from [23, Lemmas10–11].

Lemma 3 (�). Given a connected graph G, let {V1, V2} be a partition of V (G)
such that δG(V1, V2) is a minimal cut of size at most two and let w � 2 be a
positive integer. For i = 1, 2, let Gi be the graph obtained from G by identifying
the vertex set V3−i into a single vertex v3−i. Then G has tree-cut width at most
w if and only if both G1 and G2 have tree-cut width at most w.

The proof of the next lemma is easy and is omitted.

Lemma 4. Let G be a graph and let v be a vertex of G with degree 1 (resp. 2).
Let also G′ be the graph obtained from G after removing (resp. dissolving) v.
Then tcw(G) = tcw(G′).
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From now on, based on Lemmas 3 and 4, we assume that the input graph is
3-edge-connected. In this special case, the following observation is not difficult
to verify. It allows us to work with a slightly simplified definition of the 3-centers
in a tree-cut decomposition.

Observation 1. Let G be a 3-edge-connected graph and let (T,X ) be a tree-cut
decomposition of G. Consider an arbitrary node t of V (T ) and let T be the set
containing every connected component T ′ of T \ t such that

⋃
s∈V (T ′) Xs �= ∅.

Then |V (H̄t)| = |Xt| + |T |, that is |V (H̄t)| = |V (Ht)|.
We observe that the proof of Lemma 3 provides a way to construct a desired
tree-cut decomposition for G from decompositions of smaller graphs. Given an
input graph G for Tree-cut Width, we find a minimal cut (V1, V2) with
|δ(V1, V2)| � 2 and create a graph Gi as in Lemma 3, with the vertex v3−i

marked as distinguished. We recursively find such a minimal cut in the smaller
graphs created until either one becomes 3-edge-connected or has at most w ver-
tices.

Therefore, a key feature of an algorithm for Tree-cut Width lies in how
to handle 3-edge-connected graphs. Our algorithm iteratively refines a tree-cut
decomposition (T,X ) of the input graph G and either guarantees that the fol-
lowing invariant is satisfied or returns that tcw(G) > ω.

Invariant: (T,X )is a tree-cut decomposition of G where in-tcw(T,X ) � 2·w.

Clearly the trivial tree-cut decomposition satisfies the Invariant. A leaf t of T
such that |Xt| � 2 · ω is called a large leaf. At each step, the algorithm picks
a large leaf and refines the current tree-cut decomposition by breaking this leaf
bag into smaller pieces. The process repeats until we finally obtain a tree-cut
decomposition of width at most 2w, or encounter a certificate that tcw(G) > w.

3.1 Refining a Large Leaf of a Tree-cut Decomposition

A large leaf will be further decomposed into a star. To that aim, we will solve
the following problem:

Constrained Star-Cut Decomposition

Input: An undirected graph G, an integer w ∈ N, a set B ⊆ V (G), and a weight
function γ : B → N.
Parameter: w.
Output: A non-trivial tree-cut decomposition (T,X ) of G such that

1. T is a star with central node tc and with � leaves for some � ∈ N
+,

2. in-tcw(T,X ) � w, and
3. |Xtc | + � � w and for every leaf node t, γ(B ∩ Xt) � w,

or report that such a tree-cut decomposition does not exist.
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Observe that a Yes-instance satisfies, for every x ∈ B, γ(x) � w. We also
notice that as the output of the algorithm is a non-trivial tree-cut decomposi-
tion, T contains at least two nodes with non-empty bags and every leaf node is
non-empty.

Given a subset S ⊆ V (G), we define the instance of the Constrained Star-

Cut Decomposition problem I(S,G) = (G[S], w, ∂G(S), γS) where for every
x ∈ ∂G(S), γS(x) = |δG({x}, V (G) \ S)|.
Lemma 5 (�). Let G be a 3-edge-connected graph, w ∈ Z�2, and let S ⊆ V (G)
be a set of vertices such that |S| � w + 1 and |δG(S, V (G) \ S)| � 2w. If
tcw(G) � w, then I(S,G) = (G[S], w, ∂G(S), γS) is a Yes-instance of Con-

strained Star-Cut Decomposition.

Given a 3-edge-connected graph, applying Lemma 5 on a large leaf of a tree-cut
decomposition that satisfies the Invariant, we obtain:

Corollary 1. Let G be a 3-edge-connected graph G such that tcw(G) � w, and
let t be a large leaf of a tree-cut decomposition (T,X ) satisfying the Invariant.
Then I(Xt, G) = (G[Xt], w, ∂G(Xt), γXt

) is a Yes-instance of Constrained

Star-cut Decomposition.

The next lemma shows that if a large leaf bag Xt of a tree-cut decomposition
(T,X ) satisfying the Invariant defines a Yes-instance of the Constraint Tree-
Cut Decomposition problem, then (T,X ) can be further refined.

Lemma 6 (�). Let G be a 3-edge-connected graph G and (T,X ) be tree-cut
decomposition of satisfying the Invariant. If (T ∗,X ∗) is a solution of Con-

strained Star-Cut Decomposition on the instance I(Xt, G) = (G[Xt], w,
∂G(Xt), γXt

) where t is a large leaf of (T,X ), then the pair (T̃ , X̃ ) where

• V (T̃ ) = (V (T ) \ {t}) ∪ V (T ∗),
• E(T̃ ) = (E(T ) \ {(t, t′)}) ∪ E(T ∗) ∪ {(tc, t′)}, where t′ is the unique neighbor

of t in T and tc is the central node of T ∗,
• X̃ = (X \ {Xt}) ∪ X ∗

is a tree-cut decomposition of G satisfying the Invariant. Moreover the number
of non-empty bags is strictly larger in (T̃ , X̃ ) than in (T,X ).

3.2 An FPT Algorithm for Constrained Star-Cut Decomposition

Lemma 1 provides a quadratic bound on the treewidth of a graph in term of
its tree-cut width. This allows us to develop a dynamic programming algorithm
for solving Constrained Star-Cut Decomposition on graphs of bounded
treewidth. To obtain a tree-decomposition, we use the 5-approximation FPT-
algorithm of the following proposition.

Proposition 2 (see [2]). There exists an algorithm which, given a graph G
and an integer k, either correctly decides that tw(G) > w or outputs a tree-
decomposition of width at most 5w + 4 in time 2O(w) · n.
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If tcw(G) � w, then by Lemma 1 tw(G) � 2w2 + 3w. From Proposition 2, we
may assume that G has treewidth O(w2) and, based on this and the next lemma,
solve Constrained Star-Cut Decomposition in 2O(w2·log w) · n steps.

A rooted tree decomposition (T,X , r) is a tree decomposition with a distin-
guished node r selected as the root. A nice tree decomposition (T,Y, r) (see [13])
is a rooted tree decomposition where T is binary, the bag at the root is ∅, and
for each node x with two children y, z it holds Yx = Yy = Yz, and for each node
x with one child y it holds Yx = Yy ∪ {u} or Yx = Yy \ {u} for some u ∈ V (G).
Notice that a nice tree decomposition is always a rooted tree decomposition. We
need the following proposition.

Proposition 3 (see [1]). For any constant k � 1, given a tree decomposition
of a graph G of width � k and O(|V (G)|) nodes, there exists an algorithm that,
in O(|V (G)|) time, constructs a nice tree decomposition of G of width � k and
with at most 4|V (G)| nodes.
Lemma 7 (�). Let (G,w,B, γ) be an input of Constrained Star-Cut

Decomposition and let tw(G) � q. There exists an algorithm that given
(G,w,B, γ) outputs, if one exists, a solution of (G,w,B, γ) in 2O((q+w) log w) · n
steps.

3.3 Piecing Everything Together

We now present a 2-approximation algorithm for Tree-cut Width leading to
the following result.

Theorem 3. There exists an algorithm that, given a graph G and a w ∈ Z�0,
either outputs a tree-cut decomposition of G with width at most 2w or cor-
rectly reports that no tree-cut decomposition of G with width at most w exists in
2O(w2·log w) · n2 steps.

Proof: Recall that, by Lemmas 3 and 4, we can assume that G is 3-edge-
connected. If not, we iteratively decompose G into 3-edge-connected components
using the linear-time algorithm of [22]. A tree-cut decomposition of G can easily
built from the tree-cut decomposition of its 3-edge-connected components using
Lemma 3. As mentioned earlier, the trivial tree-cut decomposition satisfies the
Invariant. Let (T,X ) be a tree-cut decomposition satisfying the Invariant. As
long as the current tree-cut decomposition (T,X ) contains a large leaf �, the
algorithm applies the following steps repeatedly:

1. Let X� ∈ X be the bag associated to a large leaf �. Compute a nice tree-
decomposition of G[X�] of width at most O(w2) in 2O(w2) · n time. If such a
decomposition does not exist, as G[X�] is a subgraph of G, Lemma 1 implies
tcw(G) > w and the algorithm stops.

2. Solve Constrained Star-Cut Decomposition on I(Xt, G) using the
dynamic programming of Lemma 7 for q = O(w2) in time 2O(w2·log w) · n.
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3. If I(Xt, G) is a NO-instance, then by Corollary 1, tcw(G) > w and the
algorithm stops.

4. Otherwise, by Lemma 6, (T,X ) can be refined into a new tree-cut decompo-
sition satisfying the Invariant.

The algorithm either stops when we can correctly report that tcw(G) > w
(step 1 or 3) or when the current tree-cut decomposition has no large leaf.
In the latter case, as (T,X ) satisfies (*), it holds that tcw(T,X ) � 2 · w.
Observe that each refinement step (step 4) strictly increases the number of non-
empty bags (see Lemma 6). It follows that the above steps are repeated at most
n times, implying that the running time of the 2-approximation algorithm is
2O(w2·log w) · n2. �	

4 Open Problems

The main open question is on the possibility of improving the running time or
the approximation factor of our algorithm. Notice that the parameter depen-
dence 2O(w2·log w) is based on the fact that the tree-cut width is bounded by a
quadratic function of treewidth. As we proved (Theorem 2), there is no hope
of improving this upper bound. Therefore any improvement of the parametric
dependence should avoid dynamic programming on tree-decompositions or sig-
nificantly improve the running time. Another issue is whether we can improve
the quadratic dependence on n to a linear one. In this direction we actually
believe that an exact FPT-algorithm for the tree-cut width can be constructed
using the “set of characteristic sequences” technique, as this was done for other
width parameters [3,4,12,19–21]. However, as this technique is more involved,
we believe that it would imply a higher parametric dependence than the one of
our algorithm.
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Abstract. We study the Double Coverage (DC) algorithm for the
k-server problem in the (h, k)-setting, i.e. when DC with k servers is
compared against an offline optimum algorithm with h ≤ k servers. It is
well-known that DC is k-competitive for h = k. We prove that even if
k > h the competitive ratio of DC does not improve; in fact, it increases
up to h+1 as k grows. In particular, we show matching upper and lower
bounds of k(h+1)

k+1
on the competitive ratio of DC on any tree metric.

1 Introduction

We consider the k-server problem defined as follows. There are k servers located
on points of a metric space. In each step, a request arrives at some point of the
metric space and must be served by moving some server to that point. The goal
is to minimize the total distance travelled by the servers.

The k-server problem was defined by Manasse et al. [7] as a far reaching
generalization of various online problems. The most well-studied of those is the
paging (caching) problem, which corresponds to k-server on a uniform metric
space. Sleator and Tarjan [8] gave several k-competitive algorithms for paging
and showed that this is the best possible ratio for any deterministic algorithm.

Interestingly, the k-server problem does not seem to get harder on more general
metrics and the celebrated k-server conjecture states that a k-competitive deter-
ministic algorithm exists for every metric space. In a breakthrough result, Kout-
soupias and Papadimitriou [6] showed that the work function algorithm (WFA)
is 2k − 1 competitive for every metric space, almost resolving the conjecture. The
conjecture has been settled for several special metrics (an excellent reference is [2]).
In particular for the line metric, Chrobak et al. [3] gave an elegant k-competitive
algorithm called Double Coverage (DC). This algorithm was later extended and
shown to be k-competitive for all tree metrics [4]. Additionally, in [1] it was shown
that WFA is k-competitive for some special metrics, including the line.
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(h, k)-Server Problem: In this paper, we consider the (h, k)-setting, where
the online algorithm has k servers, but its performance is compared to an offline
optimal algorithm with h ≤ k servers. This is also known as the weak adversaries
model [5], or the resource augmentation version of k-server. The (h, k)-server
setting turns out to be much more intriguing and is much less understood.

For the uniform metric (the (h, k)-paging problem), k/(k−h+1)-competitive
algorithms are known [8] and no deterministic algorithm can achieve a better
ratio. Note that this guarantee equals k for h = k, and tends to 1 as the ratio of
the number of online to offline servers k/h becomes arbitrarily large. The same
competitive ratio can also be achieved for the weighted caching problem [9].

However, unlike for k-server, the underlying metric space seems to play a
very important role in the (h, k)-setting. Bar-Noy and Schieber (see [2], page
175) showed that for the (2, k)-server problem on a line metric, no deterministic
algorithm can be better than 2-competitive for any k. In particular, the ratio
does not tend to 1 as k increases.

In fact, there is huge gap in our understanding of the problem, even for very
special metrics. For example, for the line no guarantee better than h is known
even when k/h → ∞. On the other hand, the only lower bounds known are the
result of Bar-Noy and Schieber mentioned above and a general lower bound of
k/(k − h + 1) for any metric space with at least k + 1 points (cf. [2] for both
results). In particular, no lower bound better than 2 is known for any metric
space and any h > 2, if we let k/h → ∞. The only general upper bound is due
to Koutsoupias [5], who showed that WFA is at most 2h-competitive1 for the
(h, k)-server problem on any metric2.

The DC Algorithm: This situation motivates us to consider the (h, k)-server
problem on the line and more generally on trees. In particular, we consider the
DC algorithm [3], defined as follows.

DC-Line: If the current request r lies outside the convex hull of current servers,
serve it with the nearest server. Otherwise, we move the two servers adjacent to
r towards it with equal speed until some server reaches r. If there are multiple
adjacent servers at the same location, we move one of them arbitrarily.
DC-Tree: We move all the servers adjacent to r towards it at equal speed until
some server reaches r. (Note that the set of adjacent servers can change during
the move, and is constantly updated.)

There are several natural reasons to consider DC for line and trees. For
paging (and weighted paging), all known k-competitive algorithms also attain the
optimal ratio for the (h, k) version. This suggests that k-competitive algorithms
for the k-server on the line might attain the “right” ratio for the (h, k)-setting.
DC is the only (other than WFA) deterministic k-server algorithm known for

1 Actually [5] shows a slightly stronger upper bound WFAk ≤ 2hOPTh−OPTk+ const
where OPTk and OPTh are the optimal cost using k and h servers respectively.

2 If the online algorithm knows h, it can simply disable its k − h extra servers and be
2h − 1 competitive (which is slightly better than 2h). However, Koutsoupias (and
also us) consider the setting where the online algorithm does not know h.
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the line and trees. Moreover, DC obtains the optimum k/(k−h+1)-competitive
ratio for the (h, k)-paging problem3.

It seems plausible that WFA might perform very well for lines and trees as
k increases, but no o(h) bound is known. Most known upper bounds, including
[5], bound the extended cost instead of the actual cost of the algorithm. Using
this approach we can easily show that WFA is (h+1)-competitive for the line4.

Our Results: We determine the exact competitive ratio of DC on lines and
trees in the (h, k)-setting.

Theorem 1. The competitive ratio of DC is at least k(h+1)
(k+1) , even for a line.

Note that for a fixed h, the competitive ratio worsens as the number of online
servers k increases! In particular, it equals h for k = h and it approaches h + 1
as k → ∞.

Consider the (seemingly trivial) case of h = 1. If k = 1, clearly DC is 1-
competitive. However, for k = 2 it becomes 4/3 competitive5. Generalizing this
example to (1, k) already becomes quite involved. Our lower bound in Theorem1
for general h and k is based on an adversarial strategy obtained by a careful
recursive construction.

Next, we give a matching upper bound.

Theorem 2. For any tree, the competitive ratio of DC is at most k(h+1)
(k+1) .

This generalizes the previous results for h = k [3,4]. Our proof also follows
similar ideas, but our potential function is more involved (it has three terms
instead of two) and the analysis is more subtle. To keep the main ideas clear,
we first prove Theorem 2 for the simpler case of a line in Sect. 3. The proof for
trees is analogous but more involved, and is described in Sect. 4.

2 Lower Bound

We now prove Theorem 1. We will describe an adversarial strategy Sk for the
setting where DC has k servers and the offline optimum (adversary) has h servers
and then show that the competitive ratio of DC can be made arbitrarily close
to k(h + 1)/(k + 1).

Roughly speaking (and ignoring some details), the strategy Sk works as fol-
lows. Let I = [0, bk] be the working interval associated with Sk. Let L = [0, εbk]
3 Here, we view the uniform metric as a star graph where requests appear to the leaves.

A proof of this result will be given in the full version of the paper.
4 In [1] it is shown that for the line ExtCosth ≤ (h+1) OPTh+ const. Moreover in [5]

the monotonicity of extended cost was proven: ExtCostk ≤ ExtCosth. Using same
arguments as in [5] it follows that WFAk ≤ (h + 1)OPTh− OPTk+ const.

5 Consider the instance where all servers are at x = 0 initially. A request arrives at
x = 2, upon which both DC and offline move a server there and pay 2. Then a
request arrives at x = 1. DC moves both servers there and pays 2 while offline pays
1. All servers are now at x = 1 and the instance repeats.
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and R = [(1−ε)bk, bk] denote the (tiny) left front and right front of I. Initially, all
offline and online servers are located in L. The adversary moves all its h servers
to R and starts requesting points in R, until DC eventually moves all its servers
to R. The strategy inside R is defined recursively depending on the number of
DC servers currently in R. Roughly, if DC has i servers in R, the adversary exe-
cutes the strategy Si repeatedly inside R, until another DC server moves there,
at which point it switches to the strategy Si+1. When all DC servers reach R, the
adversary moves all its h servers back to L and repeats the symmetric version of
the above instance until all servers move from R to L. This defines a phase. To
show the desired lower bound, we recursively bound the online and offline costs
during a phase of Sk in terms of costs incurred by strategies S1, S2, . . . , Sk−1.

A crucial parameter of a strategy will be the pull. Recall that DC moves
some server qL closer to R if and only if qL is the rightmost DC server outside R
and a request is placed to the left of qR, the leftmost DC server in R, as shown
in Fig. 1. In this situation qR moves by δ to the left and qL moves to the right
by the same distance, and we say that the instance in R exerts a pull of δ on
qL. We will be interested in the amount of pull exerted by a strategy during one
phase.

Fig. 1. DC server is pulled to the right by δ

Formal Description: We now give a formal definition of the instance. We begin
by defining the following quantities associated with each strategy Si during a
single phase:

– di, lower bound for the cost of DC inside the working interval.
– Ai, upper bound for the cost of the adversary.
– pi, Pi, lower resp. upper bound for the “pull” exerted on any external DC

servers located to the left of the working interval of Si. Note that, as will be
clear later, by symmetry the same pull is exerted to the right.

For i ≥ h, the ratio ri = di

Ai
is a lower bound for the competitive ratio of DC

with i servers against adversary with h servers.
We now define the right and left front precisely. Let ε > 0 be a sufficiently

small constant. For i ≥ h, we define the size of working intervals for strategy Si

as sh := h and si+1 := si/ε. Note that sk = h/εk−h. The working interval for
strategy Sk is [0, sk] and inside it we have two working intervals for strategies
Sk−1: [0, sk−1] and [sk −sk−1, sk]. We continue this construction recursively and
the nesting of these intervals creates a tree-like structure as shown in Fig. 2. For
i ≥ h, the working intervals for strategy Si are called type-i intervals. Strategies
Si, for i ≤ h, are special and are executed in type-h intervals.
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Fig. 2. Representation of strategies and the areas that they define using a binary tree.

Strategies Si for i ≤ h: For i ≤ h, strategies Si are performed in a type-h
interval (recall this has length h). Let Q be h+1 points in such an interval, with
distance 1 between consecutive points.

There are two variants of Si that we call
→
Si and

←
Si. We describe

→
Si in detail,

and the construction of
←
Si will be exactly symmetric. At the beginning of

→
Si, we

will ensure that DC servers occupy the rightmost i points of Q and offline servers
occupy the rightmost h points of Q as shown in Fig. 3. The adversary requests
the sequence qi+1, qi, . . . , q1. It is easily verified that DC incurs cost di = 2i, and

its servers will return to the initial position qi, . . . , q1, so we can iterate
→
Si again.

Moreover, a pull of pi = 1 = Pi is exerted in both directions.
For i < h, the adversary does not have to move at all, thus Ai = 0. For i = h,

the offline can serve the sequence with cost Ah = 2, by using the server in qh to
serve request in qh+1 and then moving it back to qh.

For strategy
←
Si we just number the points of Q in the opposite direction

(q1 will be leftmost and qh+1 rightmost). The request sequence, analysis, and
assumptions about initial position are the same.

Fig. 3. Strategy
→
S3, where h ≥ 3.

Strategies Si for i > h : We define the strategy Si for i > h, assuming that
S1, . . . , Si−1 are defined. Let I denote the working interval for Si. We assume
that, initially, all offline and DC servers lie in the leftmost (or analogously right-
most) type-(i−1) interval of I. Indeed, for Sk this is achieved by the initial con-
figuration, and for i < k we will ensure this condition before applying strategy
Si. In this case our phase consists of left-to-right step followed by right-to-left
step (analogously, if all servers start in the rightmost interval, we apply first
right-to-left step followed by left-to-right step to complete the phase).
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Let Lj and Rj denote the leftmost and the rightmost type-j interval con-
tained in I, for h ≤ j < i.

Left-to-right step:

1. Adversary moves all its servers from Li−1 to Rh, specifically to the points

q1, . . . , qh to prepare for the strategy
→
S1. Next, point q1 is requested which

forces DC to move one server to q1 and initial conditions of
→
S1 are satisfied.

2. For j = 1 to h: apply
→
S j to interval Rh until (j +1)-th server arrives to point

qj+1 in Rh. After server j + 1 arrives, we finish the already started request

sequence of
→
Sj , so that DC servers will be lined in points qj+1, . . . , q1 — ready

for strategy
→

Sj+1.

3. For h < j < i: apply
→
Sj to interval Rj until (j + 1)-th server arrives to Rj .

Note that it was the only DC server moving from Li−1 towards Rj . The rest
are either still in Li−1 or in Rj . Since Rj is the rightmost interval of Rj+1

and Li−1 ∩ Rj+1 = ∅, our configuration is ready for strategy
→

Sj+1.

Right-to-left step: Same as Left-to-right, just replace
→
Sj by

←
Sj , Rj intervals by

Lj , and Lj by Rj .

Bounding Costs: We begin with a simple but useful observation that follows
directly from the definition of DC.For any subset X of i ≤ k consecutive DC
servers, let us call center of mass of X the average position of servers in X. We
call a request external with respect to X, when it is outside the convex hull of
X and internal otherwise.

Lemma 1. For any sequence of internal requests with respect to X, the center
of mass of X remains the same.

Proof. Follows trivially since for any internal request, DC moves precisely two
servers by an equal amount in opposite directions. �	
Let us derive values di, Ai, pi, and Pi assuming that they were already computed
for all j < i. We claim that the offline cost Ai for strategy Si during a phase can
be upper bounded as follows.

Ai ≤ 2
(

sih +
i−1∑

j=1

Aj
si

pj

)

= 2si

(

h +
i−1∑

j=h

Aj

pj

)

(1)

The term 2sih follows as offline initially moves the h serves from left of I to
right of I and the then back. The costs Aj

si

pj
are incurred during the phases Sj

for j = 1, . . . , i − 1, because Aj is an upper bound on offline cost during a phase
of strategy Sj and si

pj
is an upper bound on the number of iterations of Sj during

Si. This follows because Sj (during left to right phase) executes as long as the
(j + 1)-th server moves from left of I to right of I. It travels distance at most si
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and feels a pull of pj while Sj is executed in R. The equality above follows, as
Aj = 0 for j < h.

We now lower bound the cost of DC. Let us denote δ := (1− 2ε). The length
of I \ (Li−1 ∪ Ri−1) is δsi and all DC servers moving from right to left have to
travel at least this distance. Furthermore, as δsj

Pj
is a lower bound for the number

of iterations of strategy Sj , we obtain:

di ≥ 2
(

δsii +
i−1∑

j=1

dj
δsi

Pj

)

= 2δsi

(

i +
i−1∑

j=1

dj

Pj

)

(2)

It remains to show the upper and lower bounds on the pull Pi and pi exerted
on external servers due to the (right-to-left step of) strategy Si. Suppose Si is
executing in interval I. Let x denote the closest DC server strictly to the left
of I. Let X denote the set containing x and all DC servers located in I. The
crucial point is, that during the right-to-left step of Si all requests are internal
with respect to X. So by Lemma 1, the center of the mass of X stays unchanged.
As i servers moved from right to left during right-to-left step of Si, this implies
that q should have been pulled to the left by the same total amount, which is at
least iδsi and at most isi.

Pi := isi pi := iδsi (3)

Due to a symmetric argument, during the left-to-right step, the same amount of
pull is exerted to the right.

Proof (of Theorem 1). The proof is by induction. In particular, for each i ∈ [h, k]
we will show inductively that

di

Pi
≥ 2iδi−h and Ai

pi
≤ 2(i + 1)

h + 1
δ−(i−h) (4)

Setting i = k, this implies the theorem as the competitive ratio rk satisfies

rk ≥ dk

Ak
≥ dk/Pk

Ak/pk
≥ 2k

2(k+1)
h+1

δk−h

δ−(k−h)
=

k(h + 1)
k + 1

δ2(k−h)

Choosing ε � 1/(k−h) small enough, δ = (1−2ε) can be made arbitrarily close
to 1, which implies the result.

Induction base i = h. For the base case we have the exact values of ah and dh,
and, in particular, dh

Ph
= 2h and Ah

ph
= 2.

Induction step i > h. Using (1), (2), and (3) we obtain:

di

Pi
=

2δ

i

(

i +
i−1∑

j=1

dj

Pj

)

≥ 2δ

i

(

i +
i−1∑

j=1

2jδj−h

)

≥ 2δ

i
δi−1−h(i + i(i − 1)) = 2iδi−h
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Ai

pi
=

2
iδ

(

h +
i−1∑

j=h

Aj

pj

)

≤ 2
iδ

(

h +
i−1∑

j=h

2(j + 1)
h + 1

δ−(j−h)

)

≤ 2
iδ

δ−(i−1−h)

(
h(h + 1) + 2

∑i−1
j=h(j + 1)

h + 1

)

=
2

iδi−h

i(i + 1)
h + 1

=
2(i + 1)
h + 1

δ−(i−h)

The last inequality follows as 2
∑i−1

j=h(j + 1) = i(i + 1) − h(h + 1). �	

3 Upper Bound

In this section, we give an algorithm that matches the lower bound from the
previous section. By OPT we denote the optimal offline algorithm.

Let r be a request issued at time t. Let X denote the configuration of DC (i.e.
the set of points in the line where DC servers are located) and Y the configuration
of OPT before serving request r. Similarly, let X ′ and Y ′ be the corresponding
configurations after serving r. In order to prove our upper bound, we define a
potential function Φ(X,Y ) such that

DC(t) + Φ(X ′, Y ′) − Φ(X,Y ) ≤ c · OPT (t), (5)

where c = k(h+1)
k+1 is the desired competitive ratio, and DC(t) and OPT (t) denote

the cost incurred by DC and OPT at time t.
Let M ⊆ X be some fixed set of h servers of DC and M(M,Y ) denote the

cost of the minimum weight perfect matching between M and Y . We denote

ΨM (X,Y ) :=
k(h + 1)

k + 1
· M(M,Y ) +

k

k + 1
· DM .

Here, for a set of points A, DA denotes the sum of all
(|A|

2

)
pairwise distances

between points in A. The potential function is defined as follows:

Φ(X,Y ) = min
M

ΨM (X,Y ) +
1

k + 1
· DX

= min
M

(
k(h + 1)

k + 1
· M(M,Y ) +

k

k + 1
· DM

)

+
1

k + 1
· DX .

Note this generalizes the potential considered in [3] for the case of h = k.
In that setting, all the online servers are matched and hence DM = DX and is
independent of M , and thus the potential above becomes k times that minimum
cost matching between X and Y plus Dx. On the other hand in our setting, we
need to select the right set M of DC servers to be matched to the offline servers
based on minimizing ΨM (X,Y ).

Let us first give a useful property concerning minimizers of Ψ , which will be
crucial later in our analysis. Note that ΨM (X,Y ) is not simply the best matching
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between X and Y , but also includes the term DM which makes the argument
slightly subtle. We prove this lemma directly for trees, since it will be also useful
in the following section.

Lemma 2. Let X and Y be the configurations of DC and OPT and consider
some fixed offline server at location y ∈ Y . There exists a minimizer M of Ψ
that contains some DC server x which is adjacent to y. Moreover, there is a
minimum cost matching M between M and Y that matches x to y6.

Proof. Let M ′ be some minimizer of ΨM (X,Y ) and M′ be some associated
minimum cost matching between M ′ and Y . Let x′ denote the online server
currently matched to y in M′ and suppose that x′ is not adjacent to y. We
denote x the adjacent server to y, in the path from y to x′.

We will show that we can always modify the matching (and M ′) without
increasing the cost of Φ, so that y is matched to x. We consider two cases
depending on whether x is matched or unmatched.

1. If x ∈ M ′: Let us call y′ the offline server which is matched to x in M′.
We swap the edges and match x to y and x′ to y′. The cost of the edge
connecting y in the matching reduces by exactly d(x′, y) − d(x, y) = d(x′, x).
On the other hand, the cost of the matching edge for y′ increases by d(x′, y′)−
d(x, y′) ≤ d(x, x′). Thus, the new matching has no larger cost. Moreover, the
set of matched servers M = M ′ and hence DM = DM ′ , which implies that
ΨM (X,Y ) ≤ ΨM ′(X,Y ).

2. If x /∈ M ′: In this case, we set M = M ′ \ {x′} ∪ {x} and we form M, where y
is matched to x and all other offline servers are matched to the same server as
in M′. Now, the cost of the matching reduces by d(x′, y) − d(x, y) = d(x, x′)
and DM ≤ DM ′ +(h−1) ·d(x, x′) (as the distance of each server in M ′ \{x′}
to x can be greater than the distance to x′ by at most d(x, x′)). This gives

ΨM (X,Y ) − ΨM ′(X,Y ) ≤ − (h + 1)k
k + 1

· d(x, x′) +
k(h − 1)

k + 1
· d(x, x′)

= − 2k

k + 1
· d(x, x′) < 0 ,

and hence ΨM (X,Y ) is strictly smaller than ΨM ′(X,Y ). �	
We are now ready to prove Theorem 2 for the line.

Proof. Recall, that we are at time t and request r is arriving. We divide the
analysis into two steps: (i) the offline serves r and then (ii) the online serves it.
As a consequence, whenever a server of DC serves r, we can assume that a server
of OPT is already there.

For all following steps considered, M will be the minimizer of ΨM (X,Y ) in
the beginning of the step. It might happen that, after change of X,Y during the

6 We remark that this property does not hold (simultaneously) for every offline server,
but only for a single fixed offline server y.
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step, better minimizer can be found. However, upper bound for ΔΨM (X,Y ) is
sufficient to bound the change in the first term of the potential function.

Offline moves: If offline moves one of its servers by distance d to serve r the
value of ΨM (X,Y ) increases by at most k(h+1)

k+1 d. As OPT (t) = d and X does
not change, it follows that

ΔΦ(X,Y ) ≤ k(h + 1)
k + 1

· OPT (t) ,

and hence (5) holds. We now consider the second step when DC moves.

DC moves: We consider two cases depending on whether DC moves a single
server or two servers.

1. Suppose DC moves its rightmost server (the leftmost server case is identical)
by distance d. Let y denote the offline server at r. By Lemma 2 we can
assume that y is matched to the rightmost server of DC. Thus, the cost of
the minimum cost matching between M and Y decreases by d. Moreover DM

increases by exactly (h − 1)d (as the distance to rightmost server increases
by d for all servers of DC). Thus, ΨM (X,Y ) changes by

−k(h + 1)
k + 1

· d +
k(h − 1)

k + 1
· d = − 2k

k + 1
· d .

Similarly, DX increases by exactly (k − 1)d. This gives us that

ΔΦ(X,Y ) ≤ − 2k

k + 1
· d +

k − 1
k + 1

· d = −d .

As DC(t) = d, this implies that (5) holds.
2. We now consider the case when DC moves 2 servers x and x′, each by distance

d. Let y denote the offline server at the request r. By Lemma 2 applied to y,
we can assume that M contains at least one of x or x′, and that y is matched
to one of them (say x) in some minimum cost matching M of M to Y .
We note that DX decreases by precisely 2d. In particular, the distance
between x and x′ decreases by 2d, and for any other server of X \ {x, x′}
its total distance to other servers does not change. Moreover, DC(t) = 2d.
Hence, to prove (5), it suffices to show

ΔΨM (X,Y ) ≤ − k

k + 1
· 2d . (6)

To this end, we consider two sub-cases.
(a) Both x and x′ are matched: In this case, the cost of the matching M does

not go up as the cost of the matching edge (x, y) decreases by d and the
move of x′ can increase the cost of matching by at most d. Moreover,
DM decreases by precisely 2d (due to x and x′ moving closer). Thus,
ΔΨM (X,Y ) ≤ − k

k+1 · 2d, and hence (6) holds.
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(b) Only x is matched (to y) and x′ is unmatched: In this case, the cost of
the matching M decreases by d. Moreover, DM can increase by at most
(h − 1)d, as x can move away from each server in M \ {x} by distance at
most d. So

ΔΨM (X,Y ) ≤ − (h + 1)k
k + 1

· d +
k(h − 1)

k + 1
· d = − 2k

k + 1
· d ,

i.e., (6) holds. �	

4 Extension to Trees

We now consider tree metrics. Specifically, we prove Theorem 2. Part of the
analysis carries over from the previous section. We use the same potential func-
tion as for the line. Observe that Lemma 2 holds for trees: We only used the
triangle inequality and the fact that there exists a unique path between any two
points.

Proof (of Theorem 2). The analysis of the step when offline moves is exactly the
same as for the line. In particular, if the offline algorithm moves by distance d,
only the matching cost is affected in the potential function and it can increase
by at most d · k(h + 1)/(k + 1).

It remains to analyze the change in the potential caused by the moves of
DC. In that case, we break down the DC move into elementary moves. Let us
call active the servers adjacent to the requested point r, i.e., the ones which are
moving. An elementary move ends when any server reaches either the request r
or a vertex of the tree. In the latter case, another elementary move immediately
follows, perhaps with a different set of active servers. We are going to prove
that (5) holds for every elementary move. By summation, this implies that it
holds for the entire DC move.

Consider an elementary move where q servers are moving by distance d. We
need to establish some notation first: Let M be a minimizer of ΨM (X,Y ) at the
beginning of the step and A be the set of active servers. Let us imagine for now,
that the requested point r is the root of the whole tree. For a ∈ A let Qa denote
the set of DC servers in the subtree below a (but including a). We set qa := |Qa|
and ha := |Qa ∩ M |. Finally, let AM := A ∩ M .

By Lemma 2, we can assume that one of the active servers is matched to
offline server in r. We get that M(M,Y ) increases by at most (|AM | − 2) · d.

In order to calculate the change in DX and DM , it is convenient to consider
the moves of active servers sequentially rather than simultaneously.

For DX , it is clear that each a ∈ A, moves further away from qa − 1 DC
servers by distance d and gets closer to k − qa by the same distance. Thus, the
change of DX associated with a is (qa − 1− (k − qa))d = (2qa − k − 1)d. Overall,

ΔDX =
∑

a∈A

(2qa − k − 1)d = (2k − q(k + 1)) d, as
∑

a∈A
qa = k.
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Similarly, for DM , we first note that it can change only due to moves of servers
in AM . Specifically, each a ∈ AM , moves further away from ha − 1 matched DC
servers and gets closer to the rest h − ha of them. Thus, the change of DM

associated with a is (2ha − h − 1)d, so overall we have

ΔDM =
∑

a∈AM

(2ha − h − 1)d ≤ (2h − |AM |(h + 1)) d,

as
∑

a∈AM
ha ≤ ∑

a∈A ha = h.

Using above inequalities, we see that the change of potential is at most

ΔΦ(X, Y ) ≤ d

k + 1
(k(h + 1)(|AM | − 2) + k (2h − |AM |(h + 1)) + (2k − q(k + 1)))

=
d

k + 1
(−2k(h + 1) + 2kh + (2k − q(k + 1)))

=
d

k + 1
(−q(k + 1)) = −q · d ,

As the cost of DC is q · d, we get that (5) holds, which completes the proof. �	
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Abstract. The shortest augmenting path (Sap) algorithm is one of the
most classical approaches to the maximum matching and maximum flow
problems, e.g., using it Edmonds and Karp in 1972 have shown the
first strongly polynomial time algorithm for the maximum flow problem.
Quite astonishingly, although is has been studied for many years already,
this approach is far from being fully understood. This is exemplified by
the online bipartite matching problem. In this problem a bipartite graph
G = (W � B, E) is being revealed online, i.e., in each round one ver-
tex from B with its incident edges arrives. After arrival of this vertex
we augment the current matching by using shortest augmenting path.
It was conjectured by Chaudhuri et al. (INFOCOM’09) that the total
length of all augmenting paths found by Sap is O(n log n). However, no
better bound than O(n2) is known even for trees. In this paper we prove
an O(n log2 n) upper bound for the total length of augmenting paths for
trees.

1 Introduction

The shortest augmenting path (Sap) algorithm is one of the most classical
approaches to the maximum matching and maximum flow problems. Using this
idea Edmonds and Karp in 1972 have shown the first strongly polynomial time
algorithm for the maximum flow problem [5]. Quite astonishingly, although this
idea is one of the most basic algorithmic techniques, it is far from being fully
understood. It is easier to talk about it by introducing the online bipartite match-
ing problem. In this problem a bipartite graph G = (W �B,E) is being revealed
online, i.e., in each round one vertex from B with its incident edges arrives.
After arrival of this vertex we augment this matching by using shortest aug-
menting path. It was conjectured by Chaudhuri et al. [4] that the total length of
augmenting paths found by Sap is O(n log n). However, no better bound than
O(n2) is known even for trees. Proving this conjecture would have quite striking
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consequences even for maximum flow problem, as it would show that the total
length of augmenting paths in unit capacity networks in Edmonds-Karp algo-
rithm is O(m log n). This consequence is obtained via the bipartite line graph
construction that is used to reduce the max-flow problem to maximum matching
problem [10]. The obtained bipartite line graph has 2m vertices.

Our paper contributes to the study of Sap algorithm by showing that in the
case of trees the total length of all augmenting paths is bounded by O(n log2 n).
This result is obtained via the application of the heavy-light decomposition of
trees [15] combined with charging technique that carefully assigns shortest aug-
menting paths to the structure of the tree. Although, this result seems to be
restricted only to trees we be believe that it constitutes the first nontrivial
progress towards resolving the above conjecture. Moreover, we actually con-
jecture here that trees are the worst-case examples for this problem. It seems
that adding more edges can only help the Sap algorithm. In addition to that we
explain why Sap is harder to analyze than other augmenting path algorithms,
even though it seems way more natural.

2 Related Work

The online bipartite matching problem with augmentations has recently received
increasing research attention [3,4,6,7]. There are several reasons to study this
problem. First of all, it provides a simple solution to the online bipartite matching
algorithms used in many modern applications such as online advertising (e.g.
Google Ads) [11] or client-server assignment [4]. Secondly, they could give rise to
new effective offline bipartite matching algorithms as in [3]. This new algorithm
provides new insights to the old problem that was studied for decades.

In this paper we concentrate on bounding the total length of augmenting
paths and not on the running time. With this respect, it was shown that if the
vertices of B appear in a random order, the expected total paths’ length for Sap
is O(n log n) [4]. The worst-case total length of paths remains an open question
even for trees. In the class of trees the authors of [4] proposed a different aug-
menting path algorithm that achieves total paths’ length of O(n log n). On the
other hand, for general bipartite graphs greedy ranking algorithm [3] guarantees
O(n

√
n) total length of paths.

First of all, the above study of online bipartite matching with augmentations
should be related to the work of Gupta et al. [7] which shows an O(n) bound on
the total length of paths, but allows to exceed the capacity of each server by a
constant factor.

Another point of view is given by the dynamicmatching algorithms.Most papers
in this area consider edge updates in a general fully-dynamic model which allows
for both insertions and deletions intermixed with each other. We note, however,
that the exact results in this model [9,14] do not imply any bound on the number
of changes to the matching. Much faster update times can be achieved by con-
stant approximate algorithms, for example [1,13], which achieve polylogarithmic
and logarithmic update times. Yet, the 2-approximation can be obtained in our
setting by trivial greedy algorithm that preforms no changes at all.
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Better approximation factor of 3
2 was achieved by [12] in O(

√
m) update time,

and then improved by Gupta and Peng to (1+ε) in O(
√

mε−2) [8]. The O(
√

m)
barrier was broken by Bernstein and Stein who gave a (32 + ε)-approximation
algorithm that achieves O(m1/4ε−2.5) update time [2]. The same paper proposes
an (1+ε)-approximation algorithm in very fast O(α(α+log n)+ε−4(α+log n)+
ε−6) update time for the special case of bipartite graphs with constant arboricity.
However, when allowing approximation in our model a much better results are
possible. An (1 + ε) approximation in O(mε−1) total time and with O(nε−1)
total length of paths was shown in [3].

3 Preliminaries

Let us define the matching problem we consider more formally. Let W and B
be two sets of vertices over which the bipartite graph will be formed. The set W
(called white vertices) is given up front to the algorithm, whereas the vertices in
B (black vertices) arrive online. We denote by Gt = 〈W � Bt, Et〉 the bipartite
graph after the t’th black vertex has arrived. The graph Gt is constructed online
in the following manner. We start with G0 = 〈W � B0, E0〉 = 〈W � ∅, ∅〉. In turn
t a new vertex bt ∈ B together with all its incident edges E(bt) is revealed and
Gt is defined as: {

Et = Et−1 ∪ E(bt),
Bt = Bt−1 ∪ {bt} ;

The goal of our algorithm is to compute for each Gt the maximum size matching
Mt. For simplicity we assume that we add in total |W | black vertices. The final
graph G|W | which is obtained in this process will be denoted by G = (W �B,E).
We denote n = |W | = |B| and m = |E|.

For every t ∈ [n], we add orientation to edges of the graph Gt. This orienta-
tion is induced by matching Mt: the matched edges are oriented towards black
vertices, while the unmatched edges are oriented towards white vertices. When a
new vertex bt arrives, we get an intermediate orientation Gint

t = (Eint
t , Bt), where

the edges of bt are oriented towards its neighbors, and the rest of the edges is
oriented according to Mt−1. Note that Gint

t and Gt−1 differ only by one vertex
bt. Any simple directed path in Gint

t from bt to some unmatched white vertex
is an augmenting path. In turn t, if bt can be matched, the edges of Gint

t are
reoriented along augmenting path πt chosen by the algorithm, and the resulting
orientation is Gt. The unmatched white vertices are called seeds. We denote the
set of seeds after turn t as

St = {w ∈ W : wb /∈ Mt for any b ∈ B} .

So in turn t the augmenting paths in Gint
t are the directed paths from bt to some

s ∈ St−1. We refer to the seed of the path πt from turn t as st, where st ∈ St−1.
We represent a path as a graph consisting of path vertices and path edges. We
use the notation v

π−→ v′ to denote that a (directed) path π starts in v and ends
in v′, and v −→ v′ to denote a connection via a directed edge. We use the notation
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v ∈ π and ρ ⊆ π to state that a vertex v ∈ V (π) and that a path ρ is a subgraph
of π, respectively. We also denote the length of a path π as |π|. Throughout the
paper, when we write “at time t”, what we formally mean is “in Gint

t ”.
The next thing we define is a set of vertices Dt called dead at time t. The set

Dt is defined as the set of vertices in Gint
t that cannot reach St−1 via a directed

path in Gint
t . Observe, that if at some point there is no directed path from a

vertex to a seed, never again there will be such a path. If a vertex is dead, all
vertices reachable from it are dead as well. Hence, no alternating path can enter
such a dead region and reorient its edges to make some vertices alive. In other
words, Dt ⊆ Dt+1 for every time moment t. The vertices of Dt are called dead,
while the remaining vertices are called alive.

We now define the effective degree of a black vertex b in turn t as the number
of it’s non-dead out-neighbors:

degefft(b) = |Γt(b) \ Dt|

where Γt(b) is the set of vertices v such that b −→ v in Gint
t , referred to sometimes

as out-neighbours of b. In particular degefft(bt) is the number of all non-dead
neighbors (in the undirected sense) of bt, as all the edges adjacent to bt are
directed towards its neighbors.

Since we consider in this paper the special case when Gt is a tree at any time t,
we will refer to G as T , and to Gt as Tt from now on.

4 Run-away-from-the-root Algorithm

In this section we present the algorithm for trees given in [4], whose total
augmenting paths’ length amounts to O(n log n). We refer to this algorithm as
Rafr or as the run-away algorithm. We briefly explain why their analysis does
not apply to the Sap algorithm.

The Rafr algorithm maintains a forest F , which is exactly the set of trees
composed of the edges and vertices already revealed. Each tree of the forest is
rooted. Initially, the trees are all singleton vertices of W . In turn t, vertex bt

connects to some trees of F . Three cases are distinguished:

1. degefft(bt) > 1: in this case bt connects at least two trees, in which there are
two disjoint directed paths connecting bt with a seed. We pick the smallest
such tree and route the alternating path over there. The root of the newly
connected tree is the root of the largest such tree.

2. degefft(bt) = 1: we pick a path that minimizes the number of edges traversed
towards the root. In other words, we choose a path that runs away from the
root as soon as possible.

3. degefft(bt) = 0: no path is possible, bt immediately becomes a member of a
dead region.

The analysis of the above algorithm in terms of the total length of the aug-
menting paths is as follows. We count, for every edge, how many times this edge
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is traversed via augmenting paths. The edge can be either traversed when Case 1
applies (we refer to such traversal as connecting) or when Case 2 applies (we refer
to such traversal as non-connecting). The edge can be connecting-traversed no
more than log n times, as each augmenting path applied in Case 1 implies that
the tree containing this edge doubles its size. We now observe, that between
two connecting traversals or after/before the last/first connecting traversal of
an edge there can be at most two non-connecting traversals. The edge, before it
changes its root (Case 1 applies again), can be traversed towards the root (and
reversed the opposite direction) only once. This is because after such reversal the
endpoint of the traversed edge becomes dead. As a consequence, every edge is
reversed O(log n) number of times and the total length O(n log n) of all applied
augmenting paths follows.

This algorithm cleverly plans the uniform distribution of work between the
edges. By running away from the root, it distributes the work to the edges
furthest from the root, and does not do unnecessarily pass through the edges that
are closer to the root. In the following sections we analyze a shortest augmenting
path algorithm, which is not as clever. In particular, there are examples where a
single edge can be traversed Ω(

√
n) times. Hence, the simple charging techniques

for Rafr do not apply to Sap.

5 Shortest Paths on Trees

In this section we study the shortest augmenting path (Sap) algorithm, which in
each turn chooses the shortest among all available augmenting paths. We start
by giving an easy argument, that the total length of augmenting paths for Sap
is O(n log n) if all vertices bt satisfy degefft(bt) > 1. This shows that the difficult
case is to deal with vertices of effective degree 1.

Lemma 1. If for each t ∈ [n] it holds that degefft(bt) > 1, then the total length
of all augmenting paths applied by Sap is O(n log n).

Proof. Due to the definition of effective degree, every vertex bt connects at least
two trees T1 and T2 that contain a directed path connecting bt with a seed. Let
T1 be a smaller of the two trees. The length of the shortest path πt from bt to a
seed is at most the size of T1. We charge the cost of πt to |πt| arbitrary vertices
of T1. During the course of the Sap algorithm, every vertex can be charged at
most log n times, as each time it is charged, the size of its tree doubles. The total
charge is hence O(n log n). ��
The main result of this paper and the subject of the remainder of this section is
the bound for the general case, stated in the following theorem.

Theorem 1. The total length of augmenting paths applied by Sap is O(n log2 n).

In order to prove Theorem 1 we introduce a few definitions and observations.
The core of our proof is the concept of a dispatching vertex.
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Definition 1. A black vertex b is called dispatching at time t if degefft(b) > 1
and b is the first from bt such vertex on πt. In such case we write b = dis(πt).
If there is no such black vertex on πt, we define st to be the dispatching vertex
at time t. We also define, for every dispatching black vertex b, the time moment
tlast(b), when b is dispatching for the last time.

So every path πt applied by Sap is assigned a uniquely defined dispatching vertex
dis(πt). The first observation we make is that we only have to care about suffixes
of πt’s starting with dis(πt).

Definition 2. We define the split of πt = μtρt, where ρt is the suffix of πt such
that dis(πt)

ρt−→ st. Path μt = πt\ρt is the remaining part of πt (a possibly empty
prefix that ends in a vertex preceding dis(πt)). We sometimes refer to the above
defined suffixes as dispatching paths.

Lemma 2. The total length of paths μt is linear in the size of the tree T , i.e.,
∑

t∈[n] |μt| ∈ O(n)

Proof. The lemma holds due to Observation 2, proven below, which states that
vertices of μt die at the time t when πt is applied. With this observation it is
clear that the time μt passes through a vertex is the last time Sap visits that
vertex. So every vertex in the tree is visited by μt for any t at most once. ��
Observation 2. Vertices of μt die at the time t when πt is applied.

Proof. At the time when πt is applied, all vertices on μt have effective degree
equal to 1, i.e., they have only one alive directed out-neighbour — their successor
on μt. If we reverse the edges, the only chance for the vertices of μt to be alive
is the last vertex bt. This vertex however becomes dead, because its only alive
out-neighbour is removed. As a consequence the whole path dies. ��

To bound the total length of augmenting paths πt, it remains to bound the
total length of dispatching paths:

∑
t∈[n] |ρt|. Observe, that ρt = st if st =

dis(πt), so there is no need to worry about such paths. It is enough to consider
the sum over all dispatching paths ρt that start in a black dispatching vertex,
so from now on we focus our attention on those. As a consequence, our goal is
to bound the following sum.

Lemma 3. The total length of non-trivial dispatching paths is O(n log2 n), i.e.,
∑

t∈[n]:
dis(πt)∈B

|ρt| ∈ O(n log2 n)

The proof of Lemma 3 constitutes of two steps presented by the following
two lemmas. We first bound the total length of dispatching paths which start
with a dispatching vertex b ∈ B at a time before b is dispatching for the last
time (such paths are called non-final):
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Lemma 4. The total length of non-final dispatching paths is O(n log n), i.e.,
∑

t∈[n]:
b=dis(πt)∈B

t<tlast(b)

|ρt| ∈ O(n log n)

Then we move on to bounding the sum of dispatching paths starting in a
dispatching vertex b ∈ B at a time when b is dispatching for the last time (such
paths are called final):

Lemma 5. The total length of final dispatching paths is O(n log2 n), i.e.,
∑

t∈[n]:
b=dis(πt)∈B

t=tlast(b)

|ρt| ∈ O(n log2 n)

The distinction between final and non-final dispatching paths is made for the
sake of clarity of our proofs. We now continue with the proof of Lemma 4, stated
again below:

Lemma 4 The total length of non-final dispatching paths is O(n log n), i.e.,
∑

t∈[n]:
b=dis(πt)∈B

t<tlast(b)

|ρt| ∈ O(n log n)

Proof. We first observe that every time some vertex b ∈ B is dispatching not for
the first time, one of its neighbours dies. To be more specific, if b = dis(πt) and
πt does not start in b (what happens every but the first time b is dispatching),
then w −→ b ⊆ μt for some neighbour w of b. Based on Observation 2, the vertex
w dies.

Hence, if b is a dispatching vertex for the k-th out of l times at some time
moment, then it has at least l − k + 2 alive white out-neighbours at that time.
We say that a subtree hangs in the neighbour w of b, if it is obtained by the
removal of b from T and it contains w. Suppose that we discard two neighbors
of b with the heaviest trees hanging in them, i.e., two heaviest neighbours. Then
for k = l − 1 we have at least one alive neighbor, for k = l − 2 we have at least
two alive neighbors, that is, at least one alive neighbor other than the neighbor
used at k = l−1, and so on. In other words, for any k < l we can find a distinct,
not already assigned, alive neighbor w different than the two heaviest neighbors
of b. However, the size of the subtree hanging in that neighbour bounds the
length of the shortest augmenting path starting at b. Therefore, we can bound
the total length of non-final paths dispatching at b by the total size of all subtrees
of b except the two heaviest. Summing that up over the whole tree gives us a
O(n log n) upper bound, as shown by the next lemma. ��
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Lemma 6. Let T be any unrooted tree of size n. For any vertex v let Sv =
〈Sv

0 , Sv
1 , . . .〉 be the sequence of subtrees of v (i.e., the connected components of

T \ {v}) ordered descending by their size, that is, |V (Sv
i )| ≥ |V (Sv

i+1)|. Then for

Ψ(v) =
∑|Sv|−1

i=2 |V (Sv
i )|

we have
∑

v∈V (T ) Ψ(v) ∈ O(n log n).

Proof. Let r be a centroid point of T , that is, a vertex such that |V (Sr
0)| ≤

1
2 |V (T )|. We root T at r, and perform the heavy-light decomposition of T (see
Definition 3). Observe that for all vertices v �= r we have that Sv

0 contains r (it
corresponds to the parent of v) and Sv

1 corresponds to the biggest child of v. In
other words, at most Sv

0 and Sv
1 can be connected by heavy edges, all the other

subtrees Sv
2 , Sv

3 , . . . are connected by light edges.
Now we take an arbitrary vertex w and calculate how many times it can

appear in
∑

v∈V (T ) Ψ(v). Suppose v is a vertex that counts w in Ψ(v), then the
first edge on the path from v to w has to be light, moreover, Sv

0 is not counted
in Ψ(v), so that path cannot pass through the parent of v. Because of that v
has to be an ancestor of w, however, there are at most O(log n) light edges on
any path from w to the root r for any w. In other words, there can be at most
O(log n) vertices that count w in its sum of Ψ . Summing that for all vertices of
T we get the desired bound of O(n log n). ��
We continue with the proof of Lemma 5, stated again below.

Lemma 5 The total length of final dispatching paths is O(n log2 n), i.e.,
∑

t∈[n]:
b=dis(πt)∈B

t=tlast(b)

|ρt| ∈ O(n log2 n)

Proof. In order to bound the sum as claimed, we introduce some additional
structure on T . We decompose T into paths which cover T . We pick an arbitrary
vertex of T as a root. We adopt the heavy-light decomposition defined below.

Definition 3. In the heavy-light decomposition each non-leaf node selects one
heavy edge - the edge to the child that has the greatest number of descendants
(breaking ties arbitrarily). The selected edges form the paths of the decomposition
(called heavy paths). These heavy paths partition the vertices of T . Let pheavy(v)
denote the heavy path containing v. A light edge is an edge of T that is not heavy.

By construction, every path in T contains at most O(log n) light edges. In Fig. 1,
the heavy paths in the tree are marked bold.

Now fix a black dispatching vertex b and the last time t = tlast(b) when b
is dispatching. We bound the length of ρt by the length of λt, which is a path
from b to a seed in St−1, that leaves each heavy path as soon as possible.

To be more precise, we define closestt(v) as the closest vertex reachable from v
at time t (in T int

t ), which belongs to pheavy(v) and has a light directed edge to an
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alive child at time t. Note that such a vertex exists if v is black and dispatching.
Let light-childt(v) be the alive light child of v such that v −→ light-childt(v) at
time t if such child exists. We now define a sequence of vertices:

⎧
⎪⎨

⎪⎩

f0 = b

ei = closestt(fi−1) for i = 1 . . . k

fi = light-childt(ei) for i = 1 . . . k

where k is the index when we reach a seed, i.e., either ei ∈ St−1 or fi ∈ St−1.
We define λt = f0 −→ e1 −→ f1 −→ . . . −→ ek/fk, see Fig. 1 for an illustration. Note,
that λt is only defined for such t, that t = tlast(b) for some black dispatching
vertex b. We introduce a useful observation before we proceed.

Fig. 1. The heavy-light decomposition and the definition of λt

Observation 3. Any λt move towards the root only via heavy edges.

As mentioned before, as ρt is the shortest path to a seed, we charge the cost
of ρt onto the vertices of λt, which is certainly at least as long. The argument we
are pursuing is going to be completed by the claim that every vertex is charged
at most O(log2 n) times during the runtime of Sap.

To that end we introduce the last definitions and observations. For any vertex
v we define heavy-charge(v) to be the set of black dispatching vertices b ∈
pheavy(v) such that at time t = tlast(b) paths λt charge onto v:

heavy-charge(v) = {b ∈ pheavy(v)∩B : b = dis(πt) and t = tlast(b) and v ∈ λt}

We emphasize here that a black dispatching vertex b = dis(πt) of pheavy(v) can
charge λt onto v at most once, and hence heavy-charge(v) is not a multiset.
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Now fix a vertex w. We count how many times w is charged. Let charge(w)
be the set of all black dispatching vertices that charge onto w the last time when
they are dispatching:

charge(w) = {b ∈ B : b = dis(πt) and t = tlast(b) and w ∈ λt}
Clearly, |charge(w)| is the total number of times the vertex w is charged and
that is what we want to bound. To complete the argument, we introduce one
more definition.

Definition 4. The head of a heavy path π, denoted as head(π), is the closest to
the root vertex of π (closest in the undirected sense). A light ancestor of a vertex
v, denoted as light-ancestor(v), is the parent in the tree T of the head of the
heavy path containing v, i.e., light-ancestor(v) is a parent of head(pheavy(v)).

We now define a sequence of vertices starting with w0 = w, such that wi =
light-ancestor(wi−1), for i = 1 . . . l, where l is such that head(pheavy(wl)) is the
root of T . By the definition of the heavy-light decomposition, l ∈ O(log n). We
observe that the black dispatching vertices that can potentially charge onto w
are the vertices in V (pheavy(w0)) ∪ . . . ∪ V (pheavy(wl))). Moreover,

charge(w) ⊆ ⋃l
i=0 heavy-charge(wi)

since every black dispatching vertex that charges onto w that is in V (pheavy(wi))
charges also onto wi. Since sets V (pheavy(wi)) are pairwise disjoint, this implies

| charge(w)| ≤ ∑l
i=0 |heavy-charge(wi)|

For the illustration of our construction of the charging scheme see Fig. 2. The
black arrows mark the heavy charges of vertices wi, which sum up to the total
charge of w.

Fig. 2. The charging scheme

Below we prove Lemma 7, which states that for all v ∈ V (T ) it holds that
|heavy-charge(v)| ∈ O(log(|pheavy(v)|)). Having Lemma 7 at our disposal,
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we have | charge(w)| ≤ ∑l
i=0 |heavy-charge(wi)| ∈ O(log2 n). This completes

the proof of Lemma 5. ��
Lemma 7. For all v ∈ V (T ) it holds that |heavy-charge(v)| ∈ O(log
(|pheavy(v)|)).

Fig. 3. The illustration to the proof of Lemma 7

Proof. We partition vertices of heavy-charge(v) = X∪Y ∪Z into pairwise disjoint
sets X,Y,Z. We let X = {x0 . . . xp} be the ancestors of v in heavy-charge(v)
ordered in a way that xi+1 is the ancestor of xi. Similarly, let Y = {y0, . . . yq}
be the descendants of v in heavy-charge(v) ordered in a way that yi+1 is a
descendant of yi. Finally we set Z = {v} if v is a black dispatching vertex,
otherwise Z = ∅. We focus on the number of vertices in X first. We use here
d(•, •) to denote the distance between two vertices in T in the undirected sense.
Let a = d(v, x0). We prove inductively that d(xi, v) ≥ 2ia, see Fig. 3 for an
illustration. The claim clearly holds for i = 0. Now assume it holds for j ≤ i
for some i. Consider xi and xi+1. Let ti = tlast(xi) and ti+1 = tlast(xi+1). We
distinguish two cases:

1. ti < ti+1. By definition of λti , it holds that d(closestti(xi), xi) ≥ d(xi, v) ≥
2ia. Because xi is dispatching at time ti, there is at time t an alternative path
λ′

ti (going up the tree towards xi+1) from xi to a seed. Consider again two
cases:
(a) λ′

ti does not cross xi+1. This means that λ′
ti leaves pheavy(v) in a vertex

u that has a directed edge to a light alive child at time ti. Hence,

d(xi, xi+1) ≥ d(xi, u) ≥ d(closestti(xi), xi) ≥ 2ia

so d(xi+1, v) ≥ 2i+1a.
(b) λ′

ti crosses xi+1. Then, xi+1 at time ti has a directed edge to an alive
light child. This holds because if all reachable light children of xi+1 at
time ti are dead, then degefft(xi+1) ≤ 1 remains for t ≥ ti, so xi+1 cannot
be dispatching at time ti+1. So, since xi+1 does have a directed edge to
an alive light child at time ti, we get d(xi+1, xi) ≥ d(xi, v) and thus
d(xi+1, v) ≥ 2i+1a.

2. ti+1 < ti. By definition, λti+1 crosses xi. By a similar argument as above,
at time ti+1 vertex xi has a directed edge to a light alive child. This is a
contradiction, as in such case λti+1 leaves pheavy(v) in xi.
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The claim that we proved implies that |X| ∈ O(log |pheavy(v)|). We analogously
show that |Y | ∈ O(log |pheavy(v)|). Since |Z| ≤ 1, we obtain |heavy-charge(v)| =
|X ∪ Y ∪ Z| ∈ O(log |pheavy(v)|). This completes the proof of Lemma 7 and the
proof of Theorem 1. ��
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Abstract. We discuss an online discrete optimization problem called
the buyback problem. In the literature of the buyback problem, the val-
uation function representing the value of a set of selected elements is
given by a linear function. In this paper, we consider a generalization of
the buyback problem using a nonlinear valuation function. We propose
an online algorithm for the problem with a discrete concave valuation
function, and show that it achieves the same competitive ratio as the
best possible ratio for a linear valuation function.

1 Introduction

We discuss an online discrete optimization problem called the buyback problem.
In the literature of the buyback problem, the valuation function representing
the value of a set of elements is given by a linear (or additive) function. We
refer to this variant of the buyback problem as the linear buyback problem. In
this paper, we consider the nonlinear buyback problem, a generalization of the
buyback problem with a nonlinear valuation function.

1.1 Model of Nonlinear Buyback Problem

To explain the nonlinear buyback problem, we consider a situation where a com-
pany wants to hire some workers from a set N of n applicants. Each applicant
arrives one by one sequentially, and an interviewer of the company, which corre-
sponds to an online algorithm, must decide immediately whether or not to hire
the applicant. The company can hire at most m > 0 applicants; in addition,
there may be some other constraints for a set of hired applicants due to their job
skills and/or their human relationship. We denote by F ⊆ 2N the set of feasible
combinations of applicants. The interviewer wants to maximize the profit v(X)
obtained from a set X ∈ F of hired applicants. The function v is a nonlinear
function in X in general since the job skill of applicants may overlap. It is nat-
ural to assume that function v is monotone nondecreasing and satisfies v(∅) = 0

c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 72–83, 2015.
DOI: 10.1007/978-3-319-28684-6 7
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and v(X) > 0 for X �= ∅. It is often the case that a good applicant comes
for an interview but addition of the applicant violates the feasibility. In such a
case, the interviewer can add the applicant by canceling the contract with some
previously hired applicant at the cost of some compensatory payment. In this
paper, we assume that cancellation cost is given by a constant c > 0. It should
be noted that applicants that are rejected at the interview or once accepted but
canceled cannot be recovered later. The goal of the interviewer is to make an
online decision to maximize the value v(X) of hired applicants X, minus the
total cancellation cost.

This online problem is called the buyback problem. More formally, the buy-
back problem is formulated as an online version of the following discrete opti-
mization problem:

Maximize v(A \ C) − c|C| subject to C ⊆ A ⊆ N, A \ C ∈ F ,

where A (resp., C) corresponds to a set of accepted (resp., once accepted but
later canceled) elements, respectively. It is assumed that the set family F and the
function v are accessible via appropriate oracles; that is, for a given set X ⊆ N ,
whether X ∈ F or not can be checked in constant time, and if X ∈ F then the
function value v(X) can be obtained in constant time.

For a special case of the buyback problem with a linear valuation function
given as v(X) =

∑
i∈X w(i) and a matroid constraint, Kawase, Han, and Makino

[17] obtained the following result. It is assumed that a value � > 0 with � ≤
mini∈N w(i) is known in advance, and let

r∗(�, c) = 1 +
c +

√
c2 + 4�c

2�
. (1)

Note that the value r∗(�, c) is dependent only on the ratio �/c. For example, if
�/c = 2 then r∗(�, c) = 2, and if �/c = 6 then r∗(�, c) = 1.5.

Theorem 1.1 ([17]). Suppose that v : 2N → R is a linear valuation function
and F ⊆ 2N is the family of independent sets of a matroid. Then, the buyback
problem admits an online algorithm with the competitive ratio r∗(�, c). Moreover,
there exists no online deterministic algorithm with a competitive ratio smaller
than r∗(�, c), even in the special case with F = {X ⊆ N | |X| ≤ 1}.
The main aim of this paper is to generalize this result to the buyback problem
with discrete concave valuation functions.

1.2 Our Result

In this paper, we present the first online algorithm for the nonlinear buyback
problem and analyze its competitive ratio theoretically. Our main results given
in Theorems 1.2 and 1.3 are proved in Sect. 3 by generalizing the approach used
in [17] for the linear buyback problem. The analysis of competitive ratio in our
setting, however, is much more difficult due to the nonlinearity of valuation func-
tion. We overcome this difficulty by utilizing discrete concavity of the function
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called M�-concavity. M�-concavity of the valuation function plays a crucial role
in the analysis of competitive ratio of our online algorithm. It should be noted
that while M�-concave functions satisfy some kind of submodular inequality,
submodularity alone is not enough to obtain the current result; see Concluding
Remarks.

Buyback Problem with Gross Substitutes Valuations and Matching
Weight Valuations. We first consider a nonlinear valuation function called a
gross substitutes valuation. A valuation function v : 2N → R on 2N is called a
gross substitutes valuation (GS valuation, for short) if it satisfies the following
condition:

∀p, q ∈ R
N with p ≤ q, ∀X ∈ arg max

U⊆N
{v(U) −

∑

i∈U

p(i)},

∃Y ∈ arg max
U⊆N

{v(U) −
∑

i∈U

q(i)} such that {i ∈ X | p(i)=q(i)} ⊆ Y .

Intuitively, this condition is understood as follows, where N is regarded as a set
of discrete items, and p and q are price vectors: if a buyer wants a set X of items
at price p but some of the item prices are increased, then the buyer still wants
items in X with unchanged prices (and possibly other items not in X).

A natural but nontrivial example of GS valuations arises from the maximum-
weight matching problem on a complete bipartite graph, called assignment val-
uations [28] (or OXS valuation [20]). Going back to the situation at a company
in Sect. 1.1, we suppose that the company has a set J of m jobs, to which hired
workers are assigned. Each worker is assigned to at most one job in J , each job
is assigned to at most one worker, and if worker i ∈ N is assigned to a job
j ∈ J , then profit p(i, j) ∈ R++ is obtained. Given a set X ⊆ N of workers,
the maximum total profit v(X) obtained by assigning workers in X to jobs in
J can be formulated as the maximum-weight matching problem on a complete
bipartite graph G with the vertex sets N and J :

v(X) = max
{ ∑

(i,j)∈M

p(i, j)
∣
∣
∣
∣ M : matching in G s.t. ∂NM = X

}

, (2)

where ∂NM denotes the set of vertices in N covered by edges in M . It is known
that this function v : 2N → R is a GS valuation function [20,28].

The concept of GS valuation is introduced in Kelso and Crawford [18], where
the existence of a Walrasian equilibrium is shown in a fairly general two-sided
matching model. Since then, this concept plays a central role in mathemati-
cal economics and in auction theory, and is widely used in various economic
models (see, e.g., [5,6,11–13,20]). The class of GS valuations is a proper sub-
class of submodular functions, and includes natural classes of valuations such as
weighted rank functions of matroids [7,9] and laminar concave function [23] (or
S-valuation [5]), in addition to assignment valuations explained above. While
GS valuation is a sufficient condition for the existence of a Walrasian equilib-
rium [18], it is also a necessary condition in some sense [13]. GS valuation is also



Buyback Problem with Discrete Concave Valuation Functions 75

related to desirable properties in the auction design [6,11,20]. See also [26,30]
for more details on GS valuations as well as other related concepts.

We propose an online algorithm for the nonlinear buyback problem with a GS
valuation and a cardinality constraint. We assume that a positive real number �
satisfying

� ≤ min{v(X)/|X| | ∅ �= X ∈ F} (3)

is known in advance. Note that this condition is a natural generalization of
the condition used in [17]; indeed, for a linear valuation function, condition (3)
is equivalent to � ≤ mini∈N w(i). In addition, if v is an assignment valuation
function in (2), then every � with � ≤ min{p(i, j) | i ∈ N, j ∈ J} satisfies (3).

Theorem 1.2. For a gross substitutes valuation function v : 2N → R and a
cardinality constraint F = {X ⊆ N | |X| ≤ m}, the nonlinear buyback problem
admits an online algorithm with the competitive ratio r∗(�, c) in (1).

It should be noted that our online algorithm does not require the information
about the number of elements in N and the integer m.

Buyback Problem with Discrete Concave Valuations. Moreover, we
consider a more general setting where F is a matroid and valuation function
v : F → R is a discrete concave function called M �-concave function. It is
known that a family F ⊆ 2N of matroid independent sets satisfies the following
property [25]:

(B� − EXC) ∀X,Y ∈ F , ∀i ∈ X \ Y , at least one of (i) and (ii) holds:
(i) X − i ∈ F , Y + i ∈ F , (ii) ∃j ∈ Y \X: X − i+ j ∈ F , Y + i− j ∈ F ,

where X − i + j is a short-hand notation for (X \ {i}) ∪ {j}. We consider a
function v : F → R defined on matroid independent sets F . A function v is said
to be M �-concave [25] (read “M-natural-concave”) if it satisfies the following:

(M� − EXC) ∀X,Y ∈ F , ∀i ∈ X \ Y , at least one of (i) and (ii) holds:
(i) X − i ∈ F , Y + i ∈ F , and v(X) + v(Y ) ≤ v(X − i) + v(Y + i),
(ii) ∃j ∈ Y \ X: X − i + j ∈ F , Y + i − j ∈ F ,
and v(X) + v(Y ) ≤ v(X − i + j) + v(Y + i − j).

The concept of M�-concave function is introduced by Murota and Shioura [25]
(independently of GS valuations) as a class of discrete concave functions. M�-
concavity is originally introduced for functions defined on integer lattice points
(see, e.g., [23]), and the present definition of M�-concavity for set functions can
be obtained by specializing the original definition through the one-to-one cor-
respondence between set functions and functions defined on {0, 1}-vectors. The
concept of M�-concave function is an extension of the concept of M-concave func-
tion introduced by Murota [21,22]. The concepts of M�-concavity/M-concavity
play primary roles in the theory of discrete convex analysis [23], which provides
a framework for tractable nonlinear discrete optimization problems.
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M�-concave functions have various desirable properties as discrete concavity.
Global optimality is characterized by local optimality, which implies the validity
of a greedy algorithm for M�-concave function maximization. Maximization of
an M�-concave function can be done efficiently in polynomial time (see, e.g.,
[23,25]).

The class of M�-concave functions includes linear functions on matroids.
Hence, the M�-concave buyback problem (i.e., the buyback problem with an
M�-concave valuation) is a proper generalization of the linear buyback problem
with a matroid constraint discussed in Kawase et al. [17]. Furthermore, the M�-
concave buyback problem also includes the problem with a GS valuation function
and a cardinality constraint as a special case.

In this paper, we show the following result for the M�-concave buyback
problem.

Theorem 1.3. If F ⊆ 2N is the family of independent sets of a matroid and
v : F → R is an M�-concave function, then the nonlinear buyback problem admits
an online algorithm with the competitive ratio r∗(�, c) in (1).

This theorem implies Theorem 1.2 as a corollary. In addition, this theorem also
implies the former statement of Theorem 1.1, hence generalizing the result of
Kawase et al. [17]. The latter statement in Theorem 1.1 shows that our com-
petitive ratio in Theorem1.3 is the best possible for the M�-concave buyback
problem.

1.3 Related Work

We review some previous results on the linear buyback problem and some related
results. In the literature of the linear buyback problem, two types of cancellation
cost are considered so far: proportional cost and unit cost; the latter one is used
in this paper. In the case of proportional cost, we are given a constant f > 0 and
the cancellation cost of each element u is equal to fw(u) if w(u) is the value of u.
In the case of unit cost, we are given a constant c > 0 and the cancellation cost
of each element u is equal to c. Note that in the nonlinear buyback problem, unit
cancellation cost is more suitable since proportional cancellation cost is heavily
dependent on the linearity of a valuation function.

The linear buyback problem is originally modeled by using proportional cost.
In this setting, Babaioff et al. [3] and Constantin et al. [10] independently pro-
posed deterministic online algorithms for the problem with single matroid con-
straint, where the competitive ratio is 1 + 2f + 2

√
f(1 + f). Babaioff et al. [4]

also showed that this competitive ratio is the best possible bound for determinis-
tic algorithms, and presented a randomized algorithm with a better competitive
ratio in the case of small f . Later, Ashwinkumar and Kleinberg [2] proposed a
randomized algorithm with an improved competitive ratio, which is shown to be
the best possible. Ashwinkumar [1] considered a more general constraints such as
the intersection of multiple matroids, and proposed online algorithms with the-
oretical bounds for the competitive ratio. Some variants of knapsack constraint
were also considered in [3,4,14].
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The linear buyback problem with unit cost was first introduced by Han
et al. [14]. Some variants of knapsack constraints are considered in [14,17], while
single matroid constraint is considered by Kawase et al. [17] (see Theorem 1.1).

Variants of the buyback problem with zero cancellation cost are also exten-
sively discussed in the literature. One such example is the problem under a
knapsack constraint, which is referred to as the online removal knapsack prob-
lem (see, e.g., [15,16]). Recently, the nonlinear buyback problem with zero can-
cellation cost and submodular valuation function (called the online submodular
maximization with preemption) is considered by Buchbinder et al. [8]. Note that
the linear buyback problem with a single matroid constraint is trivial if the can-
cellation cost is zero; indeed, existing online algorithms for this problem reduce
to variants of greedy algorithms that find an (offline) optimal solutions.

The buyback problem with an assignment valuation function can be seen
as a variant of online bipartite matching problems, where vertices on the one
side of a bipartite graph (corresponding to applicants) arrive online one by one
(see, e.g., [19] and the references therein). Among many variants of such online
matching problems, our problem setting is different in the following two points.
First, we allow re-assignment of previously accepted vertices to the vertices on
the other side whenever a newly arrived vertex is accepted. Second, we allow
exchange of a previously accepted vertex with a newly arrived vertex by paying
a cancellation cost. Without a cancellation cost, our online matching problem
is trivial since we allow re-assignment; indeed, it is easy to construct an online
algorithm that finds an (offline) optimal matching under this setting.

2 M�-concave Functions and GS Valuations

In this section we review the concept of M�-concavity and its connection with
GS valuation.

Let F be the family of independent sets of a matroid. A function v : F → R

is said to be M �-concave if it satisfies the condition (M�-EXC). It is known
that every M�-concave function is a submodular function in the following sense
(cf. [23]):

Proposition 2.1 ([23, Theorem 6.19]). Let f : F → R be an M�-concave
function defined on a family F ⊆ 2N of matroid independent sets. For X,Y ∈ F
with X ∪ Y ∈ F , it holds that v(X) + v(Y ) ≥ v(X ∪ Y ) + v(X ∩ Y ).

From the condition (M�-EXC) we can obtain the following property.

Proposition 2.2 ([25, Theorem 4.2]). Let f : F → R be an M�-concave
function defined on matroid independent sets F . For every X,Y ∈ F with |X| =
|Y | and u ∈ X \ Y , there exists some v ∈ Y \ X such that f(X) + f(Y ) ≤
f(X − u + v) + f(Y + u − v).

Note that the sum of an M�-concave function and a linear function is again
an M�-concave function, while the sum of two M�-concave functions is not M�-
concave in general.
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The next property shows the connection between M�-concavity and gross
substitute valuation. In particular, the property below shows that the buyback
problem with a gross substitute valuation function is a special case of M�-concave
buyback problem.

Theorem 2.1 (cf. [12]). Let v : 2N → R be a function defined on 2N .
(i) v is a GS valuation function if and only if it is M�-concave.
(ii) Suppose that v is a GS valuation function and let m be a nonnegative integer.
Then, the function vm : Fm → R given by Fm = {X ∈ 2N | |X| ≤ m} and
vm(X) = v(X) (X ∈ Fm) is an M�-concave function.

A simple example of M�-concave function is a linear function f(X) = w(X)
(X ∈ F) defined on a family F ⊆ 2N of matroid independent sets, where w ∈
R

N . In particular, if F = 2N then f is a GS valuation function. Below we give
some nontrivial examples of M�-concave functions and GS valuation functions.
See [23,24] for more examples.

Example 2.1 (Maximum-weight bipartite matching). In Sect. 1.2 we explained an
assignment valuation as an example of GS valuations, where a complete bipartite
graph is used. By using a non-complete bipartite graph instead, we can obtain
an example of M�-concave functions as follows.

Consider a bipartite graph G with two vertex sets N, J and an edge set
E (⊆ N × J), where N and J correspond to workers and jobs, respectively. An
edge (i, j) ∈ E means that worker i ∈ N has ability to process job j ∈ J , and
profit p(i, j) ∈ R++ can be obtained by assigning worker i to job j. Consider a
matching between workers and jobs, and define F ⊆ 2N by

F = {X ⊆ N | ∃M : matching in G s.t. ∂NM = X}.

It is well known that F is a family of independent sets in a transversal matroid
(see, e.g., [27]). Define v : F → R by

v(X) = max
{ ∑

(i,j)∈M

p(i, j)
∣
∣ M : matching in G s.t. ∂NM = X

}
(X ∈ F).

Then, v is an M�-concave function [24, Sect. 11.4.2]. ��
Example 2.2 (Laminar concave functions). Let T ⊆ 2N be a laminar family,
i.e., X ∩ Y = ∅ or X ⊆ Y or X ⊇ Y holds for every X,Y ∈ T . For Y ∈ T , let
ϕY : Z+ → R be a univariate concave function. Define a function v : 2N → R by

v(X) =
∑

Y ∈T
ϕY (|X ∩ Y |) (X ∈ 2N ),

which is called a laminar concave function [23, Sect. 6.3] (also called an S-
valuation in [5]). Special cases of laminar concave functions are a downward
sloping symmetric function [11] given as v(X) = ϕ(|X|) and a nested concave
function given as

v(X) =
n∑

i=1

ϕi(|X ∩ {1, 2, . . . , i}|),



Buyback Problem with Discrete Concave Valuation Functions 79

where ϕ and ϕi (i ∈ N) are univariate concave functions. Every laminar concave
function is a GS valuation function. ��
Example 2.3 (Weighted rank functions). Let I ⊆ 2N be the family of indepen-
dent sets of a matroid, and w ∈ R

N
+ . Define a function v : 2N → R+ by

v(X) = max{w(Y ) | Y ⊆ X, Y ∈ I} (X ∈ 2N ),

which is called the weighted rank function [9]. If w(i) = 1 (i ∈ N), then v is an
ordinary rank function of the matroid (N, I). Every weighted rank function is a
GS valuation function [29]. ��

3 Our Online Algorithm and Analysis

In this section, we propose an online algorithm for M�-concave buyback problem
and analyze its competitive ratio.

3.1 Algorithm

Recall that the cancellation cost c and the value � satisfying (3) is known in
advance. We assume that N = {i1, i2, . . . , in} and the elements in N arrive in
this order. In each iteration, the algorithm maintains a set Bk ∈ F . To control
the number of cancellations, we use an increasing sequence of real numbers ψ(t)
(t = 1, 2, . . .) as parameters, which will be determined later by using c and �. We
assume that ψ(1) = 0 and ψ(t + 1) − ψ(t) is nondecreasing with respect to t.

In the k-th iteration, the algorithm adds an element ik (i.e., set Bk = Bk−1+
ik) if Bk−1 + ik ∈ F and v(Bk−1 + ik) > v(Bk−1). Otherwise, the algorithm tries
to exchange an element jk in Bk−1 satisfying Bk−1 − jk + ik ∈ F and

v(Bk−1 − jk + ik) = max{v(Bk−1 − j + ik) | j ∈ Bk−1, Bk−1 − j + ik ∈ F}. (4)

If the value v(Bk−1 − jk + ik) is large enough compared to v(Bk−1), then the
algorithm replace jk with ik; otherwise, the algorithm does not add and sets
Bk = Bk−1. A detailed description of the algorithm is as follows.

AlgorithmM�BP
Step 0: Set B0 = ∅.
Step 1: For each element ik, k = 1, 2, . . . , n, in order of arrival, do the following:
[Case 1: Bk−1 + ik ∈ F ] Set Bk = Bk−1 + ik.
[Case 2: Bk−1 + ik �∈ F ] Let jk ∈ Bk−1 be an element satisfying (4).
If v(Bk−1 − jk + ik) ≥ ψ(t) + � · |Bk−1| > v(Bk−1) for some t, then
set Bk = Bk−1 − jk + ik (“cancel jk”); otherwise, set Bk = Bk−1 (“reject ik”).
Step 2: Output Bn. ��
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3.2 Bounding the Optimal Value

Let B∗ ∈ F be an (offline) optimal solution of M�-concave buyback problem.
That is, B∗ ∈ arg max{v(B) | B ∈ F}. To analyze the competitive ratio of the
algorithm above, we need to bound the value of v(B∗) from above.

For k = 1, 2, . . . , n, let tk be the integer with v(Bk) − � · |Bk| ∈ [ψ(tk), ψ
(tk + 1)). We will derive the following upper bound of v(B∗).

Lemma 3.1. v(B∗) ≤ v(Bn) + m(ψ(tn + 1) − ψ(tn)).

To prove Lemma 3.1, we first show that the value v(B∗) can be bounded from
above in terms of the output Bn of the algorithm.

For two sets B,B′ ∈ F with |B| = |B′|, we define G(B,B′), called the
exchangeability graph, as a bipartite graph having (B \ B′, B′ \ B) as the vertex
bipartition and

{(j, i) | j ∈ B \ B′, i ∈ B′ \ B, B − j + i ∈ F}
as the edge set. Note that |B \ B′| = |B′ \ B| holds since B and B′ have the
same cardinality, and G(B,B′) has a perfect matching (see, e.g., [27, Corollary
39.12a]).

For each edge (j, i) in G(B,B′), we define the weight of (j, i) by v(B, j, i)
given by

v(B, j, i) = v(B − j + i) − v(B).

Denote by v̂(B,B′) the maximum weight of a perfect matching in G(B,B′) with
respect to the edge weight v(B, j, i). We can bound the value v(B′) from above
by using v(B) and v̂(B,B′) as follows.

Lemma 3.2 [cf. [21, Lemma 3.4]]. For B,B′ ∈ F with |B| = |B′|, it holds that
v(B′) ≤ v(B) + v̂(B,B′).

We denote m = max{|X| | X ∈ F}. Note that |Bn| = |B∗| = m holds since
F is a family of matroid independent sets and v is monotone nondecreasing.
Hence, the following inequality follows immediately from Lemma3.2.

Lemma 3.3. v(B∗) ≤ v(Bn) +
∑

i∈B∗\Bn
max{v(Bn, j, i) | j ∈ Bn}.

To bound the value max{v(Bn, j, i) | j ∈ Bn} in Lemma 3.3, we show a useful
inequality for the value v(Bk, j, i), which plays a key role in the analysis. For
k = 1, 2, . . . , n, let

Ck = {jt | jt is canceled in Case 2 of the h-th iteration, 1 ≤ h ≤ k},

Rk = {it | it is rejected in Case 2 of the h-th iteration, 1 ≤ h ≤ k}.

Note that the sets Bk, Ck, and Rk provide a partition of set {1, 2, . . . , k}.

Lemma 3.4. For k = 1, 2, . . . , n, j ∈ Bk, and i ∈ Ck ∪ Rk, it holds that

v(Bk, j, i) ≤
{

0 (if i ∈ Ck),
max{v(Bh−1, j

′, ih) | j′ ∈ Bh−1} (if i = ih ∈ Rk with h ≤ k).
(5)
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Using Lemma 3.4, we get a bound for max{v(Bn, j, i) | j ∈ Bn}.

Lemma 3.5. For i ∈ N \ Bn, max{v(Bn, j, i) | j ∈ Bn} ≤ ψ(tn + 1) − ψ(tn).

Lemma 3.1 follows immediately from Lemmas 3.3 and 3.5.

3.3 Analysis of Competitive Ratio

We now prove that our online algorithm achieves the competitive ratio r∗(�, c)
in (1) by setting values ψ(t) (t = 1, 2, . . .) appropriately.

We consider the set of intervals given by values ψ(t), and denote the length
of the t-th interval as λ(t) = ψ(t + 1) − ψ(t). Note that whenever some element
is canceled in some iteration of our algorithm, the value v(Bk) − �|Bk| moves
to some upper interval. Since v(Bn) − �m ∈ [ψ(tn), ψ(tn + 1)), our algorithm
cancels some elements at most tn − 1 times, and therefore the payoff obtained
by the algorithm is at least v(Bn) − (tn − 1)c. By this fact and Lemma 3.1, the
competitive ratio of the algorithm is at most

v(B∗)
v(Bn) − (tn − 1)c

≤ v(Bn) + mλ(tn)
v(Bn) − (tn − 1)c

≤ (ψ(tn) + �m) + mλ(tn)
(ψ(tn) + �m) − (tn − 1)c

≤ max
t≥1

(ψ(t) + �m) + mλ(t)
(ψ(t) + �m) − (t − 1)c

, (6)

where the second inequality follows from the inequality ψ(tn)+ �m ≤ v(Bn) and
the fact that for p, q ∈ R+ the function (x + p)/(x − q) in x is nonincreasing in
the interval (q,+∞). We denote by r the ratio in the last term of (6). In the
following, we analyze the minimum value r of the ratio. Note that r > 1.

We will set values ψ(t) so that

(ψ(t) + �m) + mλ(t)
(ψ(t) + �m) − (t − 1)c

=
(ψ(t) + �m) + m(ψ(t + 1) − ψ(t))

(ψ(t) + �m) − (t − 1)c
= r

holds for all t ≥ 1. This implies the following recursive formula for ψ(t):

ψ(1) = 0, ψ(t + 1) =
m − 1 + r

m
(ψ(t) + �m) − cr

m
(t − 1) + �. (7)

By solving this recursive formula, we have r = 1 + c+
√

c2+4�c
2� = r∗(�, c), i.e.,

the competitive ratio of our algorithm is r∗(�, c). This concludes the proof of
Theorem 1.3.

4 Concluding Remarks

We have shown that the competitive ratio of our online algorithm for M�-concave
buyback problem is r∗(�, c). Note that r∗(�, 0) = 1, which means that our online
algorithm finds an offline optimal solution by setting c = 0.
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It should be noted that our approach does not extend to the nonlinear buy-
back problem with a submodular valuation function. To illustrate this, let us
consider an instance of the buyback problem, where N = {i1, i2, i3, i4}, the
valuation function v : 2N → R is given by

v(∅) = 0, v({i1}) = v({i2}) = 2, v({i3}) = v({i4}) = 3,
v(X) = 6 if |X| ≥ 2 and X ⊇ {i3, i4}
v(X) = 4 if |X| = 2 and X �= {i3, i4},

v(N \ {i3}) = v(N \ {i4}) = 5,

and the constraint is F = {X ∈ 2N | |X| ≤ 2}. It can be checked that the
function v is submodular but not M�-concave.

Suppose that our online algorithm is applied to this instance, where the ele-
ments i1, i2, i3, i4 arrive in this order. Then, the algorithm first accepts elements
i1 and i2, and then rejects i3 and i4 since the function value cannot be increased
by swapping new elements with old elements one by one. Hence, the value of the
output is v({i1, i2}) = 4. Note that this behavior of the algorithm is irrelevant
to the choice of the cancellation cost c. On the other hand, an offline optimal
solution is B∗ = {i3, i4}, for which v(B∗) = 6. Hence, the competitive ratio of
our algorithm is at least 6/4 = 1.5, while the ratio r∗(�, c) can be close to 1 if
we choose a sufficiently small positive c. This fact shows that our algorithm and
analysis in this paper do not extend to submodular valuation functions.
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Abstract. We study the design of small cost temporally connected
graphs, under various constraints. We mainly consider undirected graphs
of n vertices, where each edge has an associated set of discrete availabil-
ity instances (labels). A journey from vertex u to vertex v is a path
from u to v where successive path edges have strictly increasing labels.
A graph is temporally connected iff there is a (u, v)-journey for any pair
of vertices u, v, u �= v. We first give a simple polynomial-time algorithm
to check whether a given temporal graph is temporally connected. We
then consider the case in which a designer of temporal graphs can freely
choose availability instances for all edges and aims for temporal connec-
tivity with very small cost ; the cost is the total number of availability
instances used. We achieve this via a simple polynomial-time procedure
which derives designs of cost linear in n, and at most the optimal cost
plus 2. To show this, we prove a lower bound on the cost for any undi-
rected graph. However, there are pragmatic cases where one is not free
to design a temporally connected graph anew, but is instead given a
temporal graph design with the claim that it is temporally connected,
and wishes to make it more cost-efficient by removing labels without
destroying temporal connectivity (redundant labels). Our main techni-
cal result is that computing the maximum number of redundant labels
is APX-hard, i.e., there is no PTAS unless P = NP . On the positive
side, we show that in dense graphs with random edge availabilities, all
but Θ(n) labels are redundant whp. A temporal design may, however,
be minimal, i.e., no redundant labels exist. We show the existence of
minimal temporal designs with at least n log n labels.

1 Introduction and Motivation

A temporal network is, roughly speaking, a network that changes with time.
A great variety of modern and traditional networks are dynamic, e.g., social
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networks, wireless networks, transport networks. Dynamic networks have been
attracting attention over the past years [3,4,7,9,21], exactly because they model
real-life applications. Following the model of [1,13,20], we consider discrete time
and restrict attention to systems in which the connections between the partici-
pating entities may change but the entities remain unchanged. This assumption
is clearly natural when the dynamicity of the system is inherently discrete and
gives a purely combinatorial flavor to the resulting models and problems.

In several such dynamic settings, maintaining connections may come at a
cost; consider a transport network or an unstable chemical or physical structure,
where energy is required to keep a link available. We define the cost as the total
number of discrete time instances, e.g., days or hours, at which the network
links become available, i.e., the sum over all edges of the number of the edge’s
availability instances. We focus on design issues of temporal networks that are
temporally connected; a temporal network is temporally connected if informa-
tion can travel over time from any node to any other node following journeys, i.e.,
paths whose successive edges have strictly increasing availability time instances.
If one has absolute freedom to design a small cost temporally connected tempo-
ral network on an underlying static network, i.e., choose the edge availabilities,
then a reasonable design would be to select a rooted spanning tree and choose
appropriate availabilities to construct time-respecting paths from the leaves to
the root and then from the root back to the leaves. However, in more compli-
cated scenarios one might not be free to choose edge availabilities arbitrarily
but instead specific link availabilities might pre-exist for the network. Imagine a
hostile network on a complete graph where availability of a link means a break
in its security, e.g., when the guards change shifts, and only then are we able to
pass a message through the link. So, if we wish to send information through the
network, we may only use the times when the shifts change and it is reasonable
to try and do so by using as few of these breaks as possible. In such scenarios, we
may need to first verify that the pre-existing edge availabilities indeed define a
temporally connected temporal network. Then, we may try to reduce the cost of
the design by removing unnecessary (redundant) edge availabilities if possible,
without loosing temporal connectivity. Consider, again, the clique network of n
vertices with one time availability per edge; it is clearly temporally connected
with cost Θ(n2). However, it is not straightforward if all these edge availabili-
ties are necessary for temporal connectivity. We resolve here the complexity of
finding the maximum number of redundant labels in any given temporal graph.

1.1 The Model and Definitions

It is generally accepted to describe a network topology using a graph, the vertices
and edges of which represent the communicating entities and the communica-
tion opportunities between them respectively. We consider graphs whose edge
availabilities are described by sets of positive integers (labels), one set per edge.
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Definition 1 (Temporal Graph). Let G = (V,E) be a (di)graph. A temporal
graph on G is an ordered triplet G(L) = (V,E,L), where L = {Le ⊆ N : e ∈ E}
is an assignment of labels1 to the edges (arcs) of G. L is called a labeling of G.

Definition 2 (Time Edge). Let e = {u, v} (resp. e = (u, v)) be an edge (resp.
arc) of the underlying (di)graph of a temporal graph and consider a label l ∈ Le.
The ordered triplet (u, v, l) is called time edge.2

Definition 3 (Cost of a Labeling). Let G(L) = (V,E,L) be a temporal
(di)graph and L be its labeling. The cost of L is defined as c(L) =

∑
e∈E |Le|.

A basic assumption that we follow here is that when a message or an entity
passes through an available link at time t, then it can pass through a subsequent
link only at some time t′ > t and only at a time at which that link is available.

Definition 4 (Journey). A temporal path or journey j from a vertex u to a
vertex v ((u, v)-journey) is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . . ,
(uk−1, v, lk), such that li < li+1, for each 1 ≤ i ≤ k − 1. We call the last time
label, lk, arrival time of the journey.

Definition 5 (Foremost Journey). A (u, v)-journey j in a temporal graph
is called foremost journey if its arrival time is the minimum arrival time of all
(u, v)-journeys’ arrival times, under the labels assigned to the underlying graph’s
edges. We call this arrival time the temporal distance, δ(u, v), of v from u.

In this work, we focus on temporally connected temporal graphs:

Definition 6 (Property TC). A temporal (di)graph G(L) = (V,E,L) satisfies
the property TC, or equivalently L satisfies TC on G, if for any pair of vertices
u, v ∈ V, u �= v, there is a (u, v)-journey and a (v, u)-journey in G(L). A tem-
poral (di)graph that satisfies the property TC is called temporally connected.

Definition 7 (Minimal Temporal Graph). A temporal graph G(L) = (V,E,
L) over a (strongly) connected (di)graph is minimal if G(L) has the property
TC, and the removal of any label from any Le, e ∈ E, results in a G(L′) that
does not have the property TC.

Definition 8 (Removal Profit). Let G(L) = (V,E,L) be a temporally con-
nected temporal graph. The removal profit r(G,L) is the largest total number of
labels that can be removed from L without violating TC on G.3

1 The labels of an edge (arc) are the discrete time instances at which it is available.
2 Note that an undirected edge e = {u, v} is associated with 2 · |Le| time edges, namely

both (u, v, l) and (v, u, l) for every l ∈ Le.
3 Here, removal of a label l from L refers to the removal of l only from a particular

edge and not from all edges that are assigned label l, that is, if l ∈ Le1 ∩Le2 and we
remove l from both Le1 and Le2 , it counts as two labels removed from L.
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1.2 Previous Work and Our Contribution

In recent years, there is a growing interest in distributed computing systems
that are inherently dynamic. For example, temporal dynamics of network flow
problems were considered in a set of pioneering papers [10,11,14,15]. The model
we consider here is a direct extension of the one considered in the seminal paper
of [13] and its sequel [20]. In [13], the authors consider the case of one label per
edge and examines how basic graph properties change in the temporal setting.
In [20], this model is extended to many labels per edge and the number of labels
needed for a temporal design of a network to guarantee several graph properties
with certainty is examined. The latter also defined the cost notion and, amongst
other results, gave an algorithm to compute foremost journeys which can be
used to decide property TC. However, the time complexity of that algorithm
was pseudo-polynomial, as it was dominated by the cube of the maximum label
used in the given labeling. Random edge availabilities were first considered in
[1] in order to study the Expected Temporal Diameter of temporal graphs.

Here, we show that if the designer of a temporal graph can select edge avail-
abilities freely, then an almost optimal linear-cost (in the size of the graph) design
that satisfies TC can be easily obtained (cf. Sect. 3). We give an almost matching
lower bound to indicate optimality. However, there are pragmatic cases where
one is not free to design a temporal graph anew, but is given a set of possible
availabilities per edge with the claim that they satisfy TC and the constraint
that she may only use them or a subset of them for her design. We show that we
can verify TC in low polynomial time (cf. Sect. 2). The given design may also
be minimal; we partially characterize minimal designs in Sect. 4. On the other
hand, there may be some labels of the initial design that can be removed without
violating TC (and also result in a lower cost). In this case, how many labels can
we remove at best? Our main technical result is that this problem is APX-hard,
i.e. it has no PTAS unless P = NP . On the positive side, we show that in the
case of complete graphs and random graphs, if the labels are also assigned at
random, we can remove all but O(n) labels.

Stochastic aspects and/or survivability of network design were also consid-
ered in [12,18,19]. An extended report of related work [3–9,16,17,21–23] can be
found in our full paper (cf. Appendix).

2 Property TC Is Decidable in Low Polynomial Time

In this section, we give a simple polynomial-time algorithm which, given a tem-
poral (di)graph G(L) and a source vertex s, computes a foremost (s, v)-journey,
for every v �= s, if such a journey exists. Curiously enough, the previously known
algorithm was pseudo-polynomial [20]. Our algorithm significantly improves the
running time. In fact, we conjecture it is optimal.

Theorem 1. Algorithm 1 satisfies the following, for every vertex v �= s:

(a) If arrival time[v] < +∞, then there exists a foremost journey from s to
v, the arrival time of which is exactly arrival time[v]. This journey can be
constructed by following the parent[v] pointers in reverse order.
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(b) If arrival time[v] = +∞, then no (s, v)-journey exists.
(c) The time complexity of Algorithm 1 is dominated by the sorting time of the

set of time edges (resp. time arcs).

Corollary 1. The time complexity of Algorithm 1 is O
(
c(L) · log c(L)

)
.

Conjecture. We conjecture that any algorithm that computes journeys out of
a vertex s must sort the time edges (arcs) by their labels, i.e., we conjecture that
Algorithm 1 is asymptotically optimal with respect to the running time.

Note that Algorithm 1 can even compute foremost (s, v)-journeys, if they
exist, that start from a given time tstart > 0 onward. Simply, one ignores the
time edges (arcs) with labels smaller than the start time.

Algorithm 1. Foremost journey algorithm
Input: A temporal (di)graph G(L) = (V, E, L) of n vertices, the set of all time edges

(arcs) of which is denoted by S(L); a designated source vertex s ∈ V
Output: A foremost (s, v)-journey from s to all v ∈ V \ {s}, where such a journey

exists; if no (s, v)-journey exists, then the algorithm reports it.

1: Sort S(L) in increasing order of labels; // Note that |S(L)| = c(L)

2: Let S′ be the sorted array of time edges (resp. time arcs) according to time labels;
3: R := {s}; // The set of vertices to which s has a foremost journey

4: for each v ∈ V \ {s} do
5: parent[v] := ∅;
6: arrival time[v] := +∞;
7: Proceed sequentially in S′, examining each time edge (resp. time arc) only once;
8: for the current time edge (resp. time arc) (a, b, l) do
9: if a ∈ R and b �∈ R then

10: parent[b] := a;
11: arrival time[b] := l;
12: R := R ∪ {b};

3 Nearly Cost-Optimal Design for TC
in Undirected Graphs

In this section, we study temporal design on connected undirected graphs, so
that the resulting temporal graphs satisfy TC. In this scenario, the designer has
absolute freedom to choose the edge availabilities of the underlying graph.

Theorem 2. (a) Given a connected undirected graph G = (V,E) of n vertices,
we can design a labeling L of cost c(L) = 2(n − 1) that satisfies the property
TC on G. L can be computed in polynomial time.

(b) For any connected undirected graph G = (V,E) of n ≥ 2 vertices and for any
labeling L that satisfies the property TC on G, the cost of L is c(L) ≥ 2n−4.
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4 Minimal Temporal Designs

Suppose now that a temporal graph on a (strongly) connected (di)graph G =
(V,E) is given4 to a designer with the claim that it satisfies TC. If the given
design is not minimal, she may wish to remove as many labels as possible, thus
reducing the cost. Minimality of a design can be verified using Algorithm 1.

4.1 Minimal Designs of Non Linear Cost in the Number of Vertices

Notice that if many edges have the same label(s), we can encounter trivial cases
of minimal temporal graphs. For example, the complete graph where all edges are
assigned the same label is minimal, but there are no journeys of length larger
than 1. Here, we focus on minimal temporal graphs, where minimality is not
caused merely because of the use of the same labels on every edge. Consider
graphs every edge of which only becomes available at most one moment in time
and no two different edges become available at the same time. Are there minimal
temporal graphs of the above scenario with non linear (in the size of the graph)
cost? For example, any complete graph with a single label per edge, different
labels to different edges, satisfies TC. Are all these Θ(n2) labels needed for TC,
i.e., are there minimal temporal complete graphs? As we prove in Theorem 4,
the answer is negative. However, we give below a minimal temporal graph on n
vertices with non-linear in n cost, namely with O(n log n) labels.

A minimal temporal design of n log n cost

Definition 9 (Hypercube Graph). The k-hypercube graph, commonly
denoted Qk, is the k-regular graph of 2k vertices and 2k−1 · k edges.

Theorem 3. There exists an infinite class of minimal temporal graphs on n
vertices with Θ(n · log n) edges and Θ(n · log n) labels, such that different edges
have different labels.

Sketch of Proof. We present a minimal temporal graph on the hypercube.
Consider Protocol 2 for labeling the edges of G = Qk. The temporal graph,
G(L), that this labeling procedure produces on the hypercube is minimal. �	

Cliques of at Least 4 Vertices are not Minimal. The complete graph on
n vertices, Kn, with a labeling L that assigns a single, different for every edge,
label per edge is an interesting case, since Kn(L) always satisfies TC. However,
it is not minimal as the theorem below shows.

Theorem 4. Let n ∈ N, n ≥ 4 and denote by Kn the complete graph on n
vertices. Any labeling L that assigns a single label to every edge of Kn, different
label per edge produces a temporal graph Kn(L) that is not minimal. In fact,
∃S ⊆ ∪e∈E(Kn)Le, |S| = �n

4 , such that when we remove all the labels of S

4 In this scenario, the designer is allowed to only use the given set of edge availabilities,
or a subset of them.
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Protocol 2. Labeling the hypercube graph, G = Qk

Consider the k dimensions of the hypercube G = Qk, x1, x2, . . . , xk;
for i = 1 . . . k do

Let Xi := {ei1, ei2, . . . , ei2k−1} be the list of edges in dimension xi, in an arbitrary
order;
Let Li be the (sorted from smallest to largest) list of labels Li := {(i − 1) · 2k−1 +
1, (i − 1) · 2k−1 + 2, . . . , i · 2k−1} ;

for i = 1 . . . k do
for j = 1 . . . 2k−1 do

Assign the (current) first label of Li to the (current) first edge of Xi ;
Remove the (current) first label of Li from the list;
Remove the (current) first edge of Xi from the list;

return the produced temporal graph, G(L);

from L, the resulting temporal graph still satisfies TC. Note that by the union
∪e∈E(Kn)Le we denote the multiset of all labels used in L.

Proof. The proof is divided in two parts, as follows:

(a) We show that the theorem holds for K4. Without loss of generality, we use
labels 1 to 6, one label per edge, and show that we can always remove a
label and still satisfy TC. The proof requires an exhaustive check of 720
permutations of the labels and is done via a computer program (code can be
found online here: http://cgi.csc.liv.ac.uk/∼akridel/research-results.html).

(b) Now, consider the complete graph on n ≥ 4 vertices, Kn = (V,E). Partition
V arbitrarily into �n

4 � subsets V1, V2, . . . , V� n
4 �, such that |Vi| = 4,∀i =

1, 2, . . . , �n
4 � − 1 and |V� n

4 �| ≤ 4. In each 4-clique defined by Vi, i = 1, 2, . . . ,
�n
4 , we can remove a “redundant” label, as shown in (a). The resulting

temporal graph on Kn still preserves TC since for every ordered pair of
vertices u, v ∈ V :

– if u, v are in the same Vi, i = 1, 2, . . . , �n
4 , then there is a (u, v)-journey

that uses time edges within the 4-clique on Vi, as proven in (a).
– if u ∈ Vi and v ∈ Vj , i �= j, then there is a (u, v)-journey that uses the

(direct) time edge on {u, v}. �	

4.2 Computing the Removal Profit is APX-hard

Recall that the removal profit is the largest number of labels that can be removed
from a temporally connected graph without destroying TC. We now show that it
is hard to arbitrarily approximate the value of the removal profit for an arbitrary
graph, i.e., there exists no PTAS5 for this problem, unless P=NP. It is worth
noting here that, in our hardness proof below, we consider undirected graphs.

We prove our hardness result by providing an approximation preserving poly-
nomial reduction from a variant of the maximum satisfiability problem, namely

5 PTAS stands for Polynomial-Time Approximation Scheme.

http://cgi.csc.liv.ac.uk/~akridel/research-results.html
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from the monotone Max-XOR(3) problem. Consider a monotone XOR-boolean
formula φ with variables x1, x2, . . . , xn.6 The clause α = (xi ⊕ xj) is XOR-
satisfied by a truth assignment τ iff xi �= xj in τ . The number of clauses of φ
that are XOR-satisfied in τ is denoted by |τ(φ)|. If every variable xi appears in
exactly k XOR-clauses in φ, then φ is called a monotone XOR( k) formula. The
monotone Max-XOR( k) problem is, given a monotone XOR(k) formula φ, to
compute a truth assignment τ of the variables x1, x2, . . . , xn that XOR-satisfies
the largest possible number of clauses, i.e., an assignment τ such that |τ(φ)| is
maximized. The monotone Max-XOR(3) problem essentially encodes the Max-
Cut problem on 3 -regular (cubic) graphs, which is known to be APX-hard [2].

Lemma 1 [2]. The monotone Max-XOR(3) problem is APX-hard.

Now we provide our reduction from the monotone Max-XOR(3) problem to
the problem of computing r(G,L). Let φ be an arbitrary instance of monotone
Max-XOR(3) with n variables x1, x2, . . . , xn and m clauses. Since every variable
xi appears in φ in exactly 3 clauses, it follows that m = 3

2n. We will construct
from φ a graph Gφ = (Vφ, Eφ) and a labeling Lφ of Gφ.

For every i = 1, 2, . . . , n we construct the graph Gφ,i and the labeling Lφ,i

of Fig. 1. In this figure, the labels of every edge in Lφ,i are drawn next to the
edge. We call the induced subgraph of Gφ,i on the 4 vertices {sxi , uxi

0 , wxi
0 , vxi

0 }
the base of Gφ,i. Also, for every p ∈ {1, 2, 3}, we call the induced subgraph of
Gφ,i on the 4 vertices {txi

p , uxi
p , wxi

p , vxi
p } the pth branch of Gφ,i. Finally, we call

the edges {uxi
0 , wxi

0 } and {wxi
0 , vxi

0 } the transition edges of the base of Gφ,i and,
for every p ∈ {1, 2, 3}, we call the edges {uxi

p , wxi
p } and {wxi

p , vxi
p } the transition

edges of the pth branch of Gφ,i. For every p ∈ {1, 2, 3} we associate the pth
appearance of the variable xi in a clause of φ with the pth branch of Gφ,i.

We continue the construction of Gφ,i and Lφ,i as follows. First, we add an
edge between any possible pair of vertices wxi

p , w
xj
q , where p, q ∈ {0, 1, 2, 3} and

i, j ∈ {1, 2, . . . , n}, and we assign to this new edge e = {wxi
p , w

xj
q } the unique

Fig. 1. The gadget Gφ,i for the variable xi.

6 A monotone XOR-boolean formula is a conjunction of XOR-clauses of the form
(xi ⊕ xj), where no variable is negated.
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label Lφ(e) = {7}. Note here that we add this edge {wxi
p , w

xj
q } also in the case

where i = j (and p �= q). Moreover, we add an edge between any possible pair of
vertices txi

p , t
xj
q , where i �= j, i, j ∈ {1, 2, . . . , n}, and p, q ∈ {1, 2, 3}. We assign

to this new edge e = {txi
p , t

xj
q } the unique label Lφ(e) = {7}.

Furthermore we add a new vertex t0 which is adjacent to vertex wxn
0 and to

all vertices in the set {sxi , txi
1 , txi

2 , txi
3 , uxi

p , vxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}. First we

assign to the edge {t0, w
xn
0 } the unique label Lφ({t0, w

xn
0 }) = {5}. Furthermore,

for every vertex txi
p , where 1 ≤ i ≤ n and 1 ≤ p ≤ 3, we assign to the edge

{t0, t
xi
p } the unique label Lφ({t0, t

xi
p }) = {5}. Finally, for each of the vertices

z ∈ {sxi , uxi
p , vxi

p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3} we assign to the edge {t0, z} the
unique label Lφ({t0, z}) = {6} . The addition of the vertex t0 and the labels of
the (dashed) edges incident to t0 are illustrated in Figure 2(a).

Consider now a clause α = (xi ⊕ xj) of φ. Assume that the variable xi

(resp. xj) of the clause α corresponds to the pth (resp. qth) appearance of xi

(resp. xj) in φ. Then we identify the vertices uxi
p , vxi

p , wxi
p , txi

p of the pth branch
of Gφ,i with the vertices vxi

q , uxi
q , wxi

q , txi
q of the qth branch of Gφ,j , respectively

(cf. Figure 2(b)). This completes the construction of Gφ and its labeling Lφ.
Denote the vertex sets A = {sxi , uxi

p , vxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}, B =

{wxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}, and C = {txi

p : 1 ≤ i ≤ n, 1 ≤ p ≤ 3}.
Note that Vφ = A ∪ B ∪ C ∪ {t0}. Furthermore, for every i ∈ {1, 2, . . . , n}
and every p ∈ {1, 2, 3} we define for simplicity of notation the temporal paths
Pi,p = (sxi , uxi

0 , uxi
p , txi

p ) and Qi,p = (sxi , vxi
0 , vxi

p , txi
p ). For every i ∈ {1, 2, . . . , n}

the graph Gφ,i has 16 vertices. Furthermore, for every p ∈ {1, 2, 3}, the 4 vertices
of the pth branch of Gφ,i also belong to a branch of Gφ,j , for some j �= i.
Therefore, together with the vertex t0, the graph Gφ has in total 10n+1 vertices.

To provide some intuition about the correctness of Theorem 5, we now briefly
describe how we can construct a labeling L of Gφ by removing 9n+k labels from
Lφ, given a truth assignment τ of φ with |τ(φ)| ≥ k. First we keep in L all labels
of Lφ on the edges incident to t0. Furthermore we keep in L the label {7} of all
the edges {txi

p , t
xj
q } and the label {7} of all the edges wxi

p w
xj
q . Moreover we keep

Fig. 2. (a) The addition of vertex t0. There exists in Gφ also the edge {t0, w
xn
0 } with

label Lφ({t0, w
xn
0 }) = {5}. (b) The gadget for the clause (xi ⊕ xj).
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in L the label {1} of all the edges {txi
p , wxi

p }. Let now i = 1, 2, . . . , n. If xi = 0 in
τ , we keep in L the labels of the edges of the paths Pi,1, Pi,2, Pi,3, as well as the
label 1 of the edge {vxi

0 , wxi
0 } and the label 2 of the edge {wxi

0 , uxi
0 }. Otherwise,

if xi = 1 in τ , we keep in L the labels of the edges of the paths Qi,1, Qi,2, Qi,3, as
well as the label 1 of the edge {uxi

0 , wxi
0 } and the label 2 of the edge {wxi

0 , vxi
0 }.

We now continue the labeling L as follows. Consider an arbitrary clause
α = (xi ⊕ xj) of φ. Assume that the variable xi (resp. xj) of α corresponds to
the pth (resp. to the qth) appearance of variable xi (resp. xj) in φ. Then, by the
construction of Gφ, the pth branch of Gφ,i coincides with the qth branch of Gφ,j ,
i.e., uxi

p = v
xj
q , vxi

p = u
xj
q , wxi

p = w
xj
q , and txi

p = t
xj
q . Let α be XOR-satisfied

in τ , i.e., xi = xj . If xi = xj = 0 (i.e., xi = 0 and xj = 1) then we keep in L
the label 1 of the edge {vxi

p , wxi
p } and the label 2 of the edge {wxi

p , uxi
p }. In the

symmetric case, where xi = xj = 1 (i.e., xi = 1 and xj = 0), we keep in L the
label 1 of the edge {uxi

p , wxi
p } and the label 2 of the edge {wxi

p , vxi
p }. Let now α be

XOR-unsatisfied in τ , i.e., xi = xj . Then, in both cases where xi = xj = 0 and
xi = xj = 1, we keep in L the label 1 of both edges {vxi

p , wxi
p } and {wxi

p , uxi
p }.

This finalizes the construction of L from the truth assignment τ of φ.
Theorem 5. There is an assignment τ of φ with |τ(φ)| ≥ k iff r(G,L) ≥ 9n+k.

Theorem 6. The problem of computing r(G,L) on a graph G is APX-hard.

Proof. Denote now by OPTmon-Max-XOR(3)(φ) the greatest number of clauses
that can be simultaneously XOR-satisfied by a truth assignment of φ. Then
Theorem 5 implies that r(Gφ, Lφ) ≥ 9n + OPT mon-Max-XOR(3)(φ). Note that
a random truth assignment XOR-satisfies each clause of φ with probabil-
ity 1

2 , and thus there exists an assignment τ that XOR-satisfies at least m
2

clauses of φ. Therefore OPTmon-Max-XOR(3)(φ) ≥ m
2 = 3

4n, and thus, n ≤
4
3OPTmon-Max-XOR(3)(φ). Assume that there is a PTAS for computing r(G,L).
Then, for every ε > 0 we can compute in polynomial time a labeling L ⊆ Lφ

for the graph Gφ, such that |Lφ \ L| ≥ (1 − ε) · r(Gφ, Lφ). Given such a labeling
L ⊆ Lφ we can compute by the sufficiency part (⇐) of the proof of Theorem 5 a
truth assignment τ of φ so that |Lφ \L| ≤ 9n+ |τ(φ)| , i.e., |τ(φ)| ≥ |Lφ \L|−9n.
Therefore it follows that:

|τ(φ)| ≥ (1 − ε) · r(Gφ, Lφ) − 9n

≥ (1 − ε) · (
9n + OPTmon-Max-XOR(3)(φ)

) − 9n

≥ (1 − ε) · (
OPTmon-Max-XOR(3)(φ)

) − 9ε · 4
3
OPTmon-Max-XOR(3)(φ)

= (1 − 13ε) · (
OPTmon-Max-XOR(3)(φ)

)

That is, assuming a PTAS for computing r(G,L), we obtain a PTAS for the
monotone Max-XOR(3) problem, which is a contradiction by Lemma 1, unless
P = NP . So, computing r(G,L) on an undirected graph G is APX-hard. �	

4.3 Random Labelings on Dense Graphs Have High Removal Profit

We show here that dense graphs with random labels satisfy TC and have a very
high removal profit with high probability (whp).
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Definition 10. We call normalized uniform random temporal graph any graph
on n ∈ N vertices, each edge of which receives exactly one label uniformly at
random, and independently of other edges, from the set {1, . . . , n}.
Theorem 7. (a) In the normalized uniform random temporal clique of n ver-

tices, we can delete all but 2n + O(log n) labels without violating TC whp.
(b) Let G = (V,E) be an instance of the Erdös-Renyi model of random graphs,

Gn,p, with p ≥ a
√

n log n
n , where a is constant, and consider a normalized

uniform random temporal graph, G(L), on G. We can delete all but 2n +
O(

√
n) labels of G(L) without violating TC whp.

Sketch of Proof. We provide a sketch of the proof of (a). Partition the set
of available labels {1, 2, . . . , n} into 4 consecutive equisized subsets A1, . . . , A4.
Each edge receives a single random label l, with Pr[l ∈ Ai] = 1

4 , ∀i = 1, 2, 3, 4.
Color green(g), yellow(y), blue(b) and red(r) the edges that are assigned a label
in A1, A2, A3 and A4 respectively. A temporal router is a subgraph of the clique
consisting of a central vertex with a number of yellow incident edges and a
number of blue incident edges. Fix a vertex u of the graph. By use of Chernoff
bounds, we show the following:

Lemma 2. There is a set S1 of at least n
4 yellow edges incident to u and a set

S2 of at least n
4 blue edges incident to u, with probability at least 1 − 2e− n

16 .

Conditioning on the above property of u, we arbitrarily select a subset Di of Si

with |Di| = α log n, i = 1, 2. R = D1 ∪D2 ∪{u} is then a O(log n)-size temporal
router.

Lemma 3. Any vertex w ∈ V \ R has an incident g edge to a vertex in D1 and
an incident r edge to a vertex in D2 with probability at least 1 − 2e− α log n

4 .

Using Lemma 3, we show that whp, we can remove all the labels from the random
labeling on the graph except for the labels on the edges of the “router” and the
two incident edges of any w ∈ V , one g connecting it to a vertex in D1 and one
r connecting it to a vertex in D2, and still satisfy the property TC. �	

Acknowledgments. We wish to thank Thomas Gorry for co-implementing the code
used in the proof of Theorem 4.
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Abstract. We consider distance queries in vertex labeled planar graphs.
For any fixed 0 < ε ≤ 1/2 we show how to preprocess an undirected
planar graph with vertex labels and edge lengths to answer queries of
the following form. Given a vertex u and a label λ return a (1 + ε)-
approximation of the distance between u and its closest vertex with
label λ. The query time of our data structure is O(lg lg n+ ε−1), where n
is the number of vertices. The space and preprocessing time of our data
structure are nearly linear. We give a similar data structure for directed
planar graphs with slightly worse performance. The best prior result
for the undirected case has similar space and preprocessing bounds, but
exponentially slower query time. No nontrivial results were previously
considered for the directed case.

1 Introduction

Imagine you are driving your car and suddenly notice you are about to run out
of gas. What should you do? Obviously, you should find the closest gas station.
This is the vertex-to-label distance query problem. Various software applications
like Waze and Google maps attempt to provide such a functionality. The idea is
to preprocess the locations of service providers, such as gas stations, hospitals,
pubs and metro stations in advance, so that when a user, whose location is
not known a priori, asks for the distance to the closest service provider, the
information can be retrieved as quickly as possible.

We study this problem from a theoretical point of view. We model the net-
work as a planar graph with labeled vertices (some papers refer to labels as
colors). For example, a vertex can be labeled as a gas station. We study dis-
tance oracles for such graphs. A vertex-label distance oracle is a data structure
that represents the input graph and can be queried for the distance between
any vertex and the closest vertex with a desired label. We consider approximate
distance oracles, which, for any given fixed parameter ε > 0, return a distance
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L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 97–109, 2015.
DOI: 10.1007/978-3-319-28684-6 9

http://arxiv.org/abs/1504.04690
http://arxiv.org/abs/1504.04690


98 S. Mozes and E.E. Skop

estimate that is at least the true distance queried, and at most (1 + ε) times the
true distance (this is also called (1 + ε)-stretch). One would like an oracle with
the following properties; queries should be answered quickly, the oracle should
consume little space, and the construction of the oracle should take as little
time as possible. We use the notation 〈O(S(n))space, O(T (n))time〉 to express
the space requirement and query time of a distance oracle.

Our Results and Approach. Our results are summarized as follows:

Theorem 1. A (1 + ε)-stretch 〈O(ε−1n lg n)space, O(lg lg n + ε−1)time〉 vertex-
label distance oracle can be constructed in O(ε−2n lg3 n) time for an undirected
planar graph with n vertices.

Theorem 2. A (1 + ε)-stretch 〈O(ε−1n lg n lg(nN))space, O(lg lg n lg lg (nN) +
ε−1)time〉 vertex-label distance oracle can be constructed in O(ε−2n lg3 n lg(nN))
time for a directed planar graph with n vertices and maximum integer arc
length N .

Consider a vertex-to-vertex distance oracle and a graph with label set L. If
the oracle works for general directed graphs then the vertex-to-label problem
can be solved easily; add a distinct apex vλ for each label λ ∈ L, and connect
every λ-labeled vertex to vλ with a zero length arc. Finding the distance from a
vertex u to label λ is now equivalent to finding the distance between u and vλ.
This approach presents two main difficulties when designing efficient oracles for
planar graphs. First, adding apices breaks planarity. In particular, it affects the
separability of the graph. Thus, the reduction does not work with oracles that
depend on planarity or on the existence of separators, which are more efficient
than oracles for general graphs. Second, the reduction uses directed arcs, so it
is unsuitable for oracles for undirected graphs. Using arcs in the reduction is
crucial since connecting an apex with undirected zero length edges changes the
distances in the graph. This is because the apex can be used to teleport between
vertices with the same label.

Our contribution is in realizing and showing that the internal workings of
vertex-to-vertex distances oracles for planar graphs due to Thorup [11] can be
extended to support vertex labels. Achieving this modification is non-trivial since
introducing the apices needs to be done in a manner that guarantees correct-
ness without compromising efficiency. Thorup’s oracles rely on the existence of
fundamental cycle separators in planar graphs, a property that breaks when
apices are added to the graph. We observe, however, that once the graph is sep-
arated, Thorup’s oracle does not depend on planarity. We therefore postpone
the addition of the apices till a later stage in the construction of the distance
oracle, when the graph has already been separated. We show that, nonetheless,
approximate distances from any vertex to any label in the entire graph can be
efficiently approximated. Furthermore, we extend a technique of Thorup, orig-
inally intended to reduce the amount of information stored for a single vertex,
to handle all vertices with the same label as if they were a single vertex.
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Related Work. We first summarize related work on approximate vertex-vertex
distance oracles for planar graphs. Thorup [11] gave a 〈O(ε−1n lg n lg(nN))space,
O(lg lg (nN) + ε−1)time〉 stretch (1 + ε) directed distance oracle, and a
〈O(ε−1n lg n)space, O(ε−1)time〉 undirected (simplified) distance oracle. Our
result is based on Thorup’s oracles, which are described in Sect. 3.
Klein [7] independently gave an undirected distance oracle with the same
bounds. Kawarabayashi, Klein and Sommer [5] have shown a 〈O(n)space,
O(ε−2 lg−2(n))time〉 undirected (1 + ε)-stretch distance oracle constructed in
O(n lg2 n) time, inspired by [11]. For a parameter r they give a trade-off
of 〈O( ε−1n lg n√

r
)space, O(r +

√
rε−1 lg n)time〉 oracle algorithms. Kawarabayashi,

Sommer and Thorup [6] have shown better tradeoffs for undirected oracles. For
the case where N ∈ poly(n), they achieve 〈O∗(n lg n)space, O∗(ε−1)time〉 oracle,
where O∗ hides lg(ε−1) and lg∗(n) factors.

The vertex-to-label distance query problem was introduced by Hermelin,
Levy, Weimann and Yuster [4]. For any integer k ≥ 2, they gave a (4k − 5)-
stretch 〈O(kn1+1/k)space, O(k)time〉 vertex-label distance oracle (expected space)
for undirected general (i.e., non-planar) graphs. This is not efficient when the
number l of distinct labels is o(n1/k). They also presented a (2k − 1)-stretch
〈O(knl1/k)space, O(k)time〉 undirected oracle, and showed how to maintain label
changes in sub-linear time. Chechik [2] improved the latter two results to (4k−5)-
stretch and similar space/time bounds.

For planar graphs, Li, Ma and Ning [8], building on [7], construct a (1 + ε)-
stretch vertex-labeled oracle with 〈O(ε−1n lg n)space, O(ε−1 lg n lg ρ)time〉 bounds
for undirected graphs. Here, ρ is the radius of the graph, which can be θ(n). It is
also shown in [8] how to avoid the lg ρ factor when ρ = O(lg n). The construction
time of their oracle is O(ε−1n log2 n). In comparison, the query time of our
undirected oracle is lower by roughly a log2 n factor. I.e., exponentially faster.
The space requirement is the same, but our preprocessing is slower by an ε−1 log n
factor.

It was recently brought to our attention that �L ↪acki, Oćwieja, Pilipczuk,
Sankowski, and Zych [10] developed dynamic vertex-labeled distance ora-
cles for undirected general and planar graphs, and used them to maintain
approximate solutions for dynamic Steiner and subgraph TSP problems. They
describe a generic scheme for converting certain undirected distance oracles
into dynamic undirected vertex-label distance oracle. Applying their scheme
to one of the slower variants of Thorup’s distance oracles, they obtain a
〈O(ε−1n log n log(nN))space, O(ε−1 log n log(nN))time〉 (1+ε)-stretch undirected
vertex-labeled distance oracle that also supports merging labels. Our result for
undirected graphs has exponentially faster query time, but our preprocessing is
slower by a constant ε−1 factor. Our work does not address dynamic operations
on the labels. We believe, however, that extending our scheme to support merges
in logarithmic amortized time is possible using similar arguments to [10].

Another recent related work is the one by Abraham, Chechik, Krauthgamer
and Wieder [1], who considered approximate nearest neighbor search in planar
graph metrics. This is the special case of vertex-labeled distance oracle with
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only one label. for this weaker problem they obtain a data structure whose size
is nearly linear in the number of labeled vertices. However, they assume an exact
vertex-to-vertex distance oracle is provided.

To the best of our knowledge, no non-trivial directed vertex-label distance
oracles were proposed prior to the current work.

Roadmap. In this extended abstract we focus on the undirected case. The
remainder of this paper is organized as follows. We describe the scheme of the
vertex-to-vertex distance oracle of Thorup in Sect. 3. In Sect. 4, we describe a
vertex-labeled oracle for undirected planar graphs. Our description goes into
some of the details that are missing in the treatment of the undirected case
in [11]. See the full version for ellaboration. Due to space constraints, our vertex-
labeled distance oracle for directed planar graphs is described in the full version
of the paper. Its construction is similar to the undirected oracle, but relies on
some additional reductions from [11] that we use without change.

2 Preliminaries

Let V (G) denote the vertex set of a graph G. We use the terms arcs and edges
to distinguish directed and undirected graphs. Let A(G) (E(G)) denote the arc
(edge) set of a directed (undirected) graph. We denote the concatenation of two
paths P1 and P2 that share an endpoint by P1 ◦ P2.

For a simple path Q and a vertex set U ⊆ V (Q) with |U | ≥ 2, we define Q̄,
the reduction of Q to U as follows. Repeatedly apply the following procedure to
Q. Let wv be an edge of Q s.t. v /∈ U . Contract wv, and add the length of wv
to the length of the other edge of Q incident to w. Note that |V (Q̄)| = O(|U |).

Let T be a rooted spanning tree of a graph G. For u ∈ V (G), let T [u] denote
the unique root-to-u path in T . The fundamental cycle of e = (u1, u2) /∈ E(T )
is the (not necessarily simple) undirected cycle composed of E(T [u1]), E(T [u2]),
and e.

Let L = {λi}l
i=1 be a set of l labels. A vertex-labeled graph is a graph

G = (V,A), equipped with a function f : V → L. Let Vλ = {v ∈ V (G)|f(v) = λ}
to be set of vertices with label λ.

Let G be a graph with arc lengths. For u, v ∈ V (G), let δG(u, v) denote the
u-to-v distance in G. For a vertex-labeled G, we define δG(u, λ) = min

w∈Vλ

δG(u,w).

We assume basic familiarity with planar graphs. In particular, it is well known
that if G is planar then |A(G)| = O(|V (G)|), and that a simple cycle separates
a planar graph G into an interior and an exterior parts.

A vertex-label distance oracle is a data structure that, given a vertex v ∈ V
and a label λ ∈ L, outputs an (approximation of) δG(v, λ). We note that this
problem is a generalization of the basic distance oracle problem in which each
vertex is given a unique label. Constructing an O(nl)-space vertex-label distance
oracle is trivial. Simply precompute and store the distance between each vertex
and each possible label. The goal is, therefore, to devise an oracle which requires
substantially less than nl space, while allowing for fast queries.
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3 Thorup’s Approximate Distance Oracle

In this section we outline the distance oracle of Thorup [11]. This is necessary for
understanding our results. The oracle we describe differs from the original in [11]
in some of the details. See the full version for an explanation of the differences.

The main idea is to store just a subset of the pairwise distances in the graph,
from which all distances can be approximately computed efficiently. Given an
undirected graph H, and a shortest path Q ∈ H, Thorup shows that for every
vertex v ∈ H, there exists a set of O(ε−1) vertices on Q, called connections, such
that the distances (called connection lengths) between every vertex of H and its
connections on Q can be used to approximate, in O(ε−1) time, the length of any
shortest path in H that intersects Q. Thorup essentially proves the following:1

Lemma 1. Let Q be any shortest path in an undirected graph H. There exist
sets C(u,Q) of O(ε−1) vertices of Q for all u ∈ H, where:

1. C(u,Q) are called the connections of u on Q.
2. The distance between u and a connection q ∈ C(u,Q) is called the connection

length of u and q.
3. For every u,w ∈ H, if a shortest u-to-w path in H intersects Q, then

δHuw
Q

(u,w) ≤ (1 + ε)δH(u,w).
Here Huw

Q is the graph with vertices u,w, and the vertices of the reduction
of Q to C(u,Q) ∪ C(w,Q), and with u-to-Q and Q-to-w edges whose lengths
are the corresponding connection lengths of C(u,Q) and C(w,Q).

Note that, since for every v |C(v,Q)| = O(ε−1), computing δHuw
Q

(u,w) can be
done in time that only depends on ε−1 (in fact in O(ε−1) time). Lemmas 2, 3,
and 4 establish the correctness of Lemma 1.

For efficiency reasons, instead of storing exact connection lengths δ(·, ·), the
algorithm computes approximate connection lengths, which we denote by �(·, ·).

This following definition captures the intuitive idea that if a v-to-q path that
goes through q∗ is not too much longer than the shortest v-to-q path, then it
suffices to store the distance from v to q∗ and the distance from q∗ to q.

Definition 1. q∗ ε-covers q w.r.t. v if �(v, q∗) + δ(q∗, q) ≤ (1 + ε)δ(v, q).

Thorup [11] uses a different notion of covering.2

Definition 2. q∗ quasi ε-covers q w.r.t. v if �(v, q∗) + δ(q∗, q) ≤ δ(v, q) +
ε�(v, q∗).

Let Q be a path. A set C of vertices of Q is a (quasi)-ε-covering of Q w.r.t. v if
for every q ∈ Q there is a connection q∗ ∈ C that (quasi)-ε-covers q w.r.t. v.

A covering set is called clean if it is inclusion-wise minimal and ordered if
it is sorted by the order of connections along the path Q (The endpoint of
1 Thorup’s treatment [11] of the undirected step does not contain the full details. See

the full version of this paper for ellaboration.
2 The term quasi-ε-cover is not used by Thorup. He uses ε-covers for this notion.



102 S. Mozes and E.E. Skop

Q considered as the first vertex of Q can be arbitrarily chosen). Observe that
keeping the distance of every q ∈ Q from the first vertex of Q, allows computing
δQ(q, q′) for any q, q′ ∈ Q in constant time.

The notions of ε-covering sets and quasi-ε-covering sets are related by the
following proposition:

Proposition 1. Let C(v,Q) be a quasi ε-covering set for some ε ∈ (0, 1
2 ). Then

C(v,Q) is a 2ε-covering set.

Proof. If q∗ quasi ε-covers q then �(q∗, v) ≤ 1
1−εδ(q, v) ≤ 2δ(q, v). Hence δ(q, q∗)+

�(q∗, v) ≤ δ(q, v) + ε�(q∗, v) ≤ (1 + 2ε)δ(q, v). Therefore, if C(v,Q) is a quasi ε-
covering set, it is a 2ε-covering set. �
The following lemma shows that, in order to prove Lemma 1, it is suffices that
the sets C(v,Q) be ε-covering sets of size O(ε−1).

Lemma 2 ( [7, Lemma 4.1]3). Let u,w be vertices in an undirected graph H.
Let Q be a shortest path in H such that a u-to-w shortest path intersects Q. Let
C(u,Q), C(w,Q) be ε-covering sets of Q w.r.t. u,w, respectively. Let Huw

Q be as
in the statement of Lemma 1. Then,

δHuw
Q

(u,w) ≤ (1 + ε)δH(u,w) (1)

Thorup shows how to efficiently construct quasi-ε-covering sets. Let Q be a short-
est path in an undirected graph H. Let sssp(Q,H) be the smallest number s.t.
for any subgraph H0 of H, and any vertex q ∈ Q0, where Q0 is the reduction of Q
to H0, we can compute single source shortest paths from q in the graph Q0 ∪H0

in O(sssp(Q,H)|E(H0)|) time. It is easy to see that a standard implementation
of Dijkstra’s algorithm with priority queues implies sssp(Q,H) = O(lg |E(H)|).
If H is planar, then sssp(Q,H) = O(1) by [3].

Lemma 3 ([11, Lemma 3.18]). Given an undirected graph H and shortest path
Q, quasi ε-covering sets of Q with respect to all vertices of H, each of size
O(ε−1 lg n), can be constructed in O(ε−1sssp(Q,H)|E(H)| lg(|V (Q)|)) time.

By Proposition 1 the quasi ε-covers produced by Lemma 3 are 2ε-covering sets.
However, their sizes are too large. The sizes can be decreased using the following
thinning procedure. The proof appears in the full version.4

Lemma 4. Let Q be a path in an undirected graph, and let v be a vertex. Let
D(v,Q) be an ordered ε0-cover of Q w.r.t. v. For any ε1 ≤ 1, a clean and
ordered (2ε0 + ε1)-cover C(v,Q) ⊆ D(v,Q) of size O(ε−1

1 ) can be constructed in
O(|D(v,Q)|) time.

3 Klein showed this lemma for ε-covering sets, while Thorup showed a similar lemma
using a different notion of ε-covering sets.

4 In [11] a thinning procedure is given only for the directed case, and it is claimed
that quasi-ε-covering sets can be thinned. We believe this is not correct. See the full
version. Instead, we give here a thinning procedure for ε-covering sets.
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Thus, by combining Lemma 3, Proposition 1, and Lemma 4, we get the following
corollary, which, along with Lemma 2, establishes Lemma 1.

Corollary 1. Given an undirected graph H and a shortest path Q, ε-covering
sets of Q with respect to all vertices of H, each of size O(ε−1), can be constructed
in O(ε−1sssp(Q,H)|E(H)| lg(|V (Q)|)) time.

We now describe Thorup’s distance oracle. The construction is recursive, using
shortest path separators.

Lemma 5 (Fundamental Cycle Separator [9]). Let H be a triangulated undi-
rected planar graph with a rooted spanning tree T and function w assigning non-
negative weights to edges. One can find an edge e /∈ T such that neither the weight
strictly enclosed by the fundamental cycle of e nor the weight not enclosed by the
fundamental cycle of e exceeds 2

3 the weight of H.

A planar graph G can be decomposed by computing a shortest path tree for
an arbitrary vertex, and applying Lemma 5 recursively. Choosing the spanning
tree in Lemma 5 to be a shortest path tree guarantees that each fundamental
cycle separator found consists of two shortest paths. The decomposition can be
represented by a binary tree T in the following manner.5

– Each node r of T is associated with a subgraph Gr of G. The subgraph
associated with the root of T is all of G.

– Each non-leaf node r of T is associated with Sr, the set of two shortest paths
in the fundamental cycle separator found by invoking Lemma 5 on Gr.

– Each non-leaf node r has two children, whose associated subgraphs are the
interior and exterior of Sr. The vertices and edges of the separator belong to
both subgraphs.

Let r be a node of T . The frame Fr of Gr is the set of (shortest) paths in⋃
r′(E(Sr′)∩Gr), where the union is over strict ancestors r′ of r in T . Each non-

leaf node r stores its frame Fr. A standard argument shows that, by alternating
the separation criteria between number of edges in the graph and number of
paths in the frame, one can get frames consisting of a constant number of paths.

For r ∈ T , let G◦
r denote the subgraph of Gr \ Fr. That is, G◦

r is the graph
obtained from Gr by removing the edges of the frame Fr as well as any vertices of
Fr that become isolated as a result of the removal. The sizes of the G◦

r ’s decrease
by a constant factor along T , while the sizes of the Gr’s need not because there
is no bound on the size of the fundamental cycle in Lemma 5. This may pose
a problem, since the frame Fr is stored by every node r. To overcome this, the
algorithm stores the reduction of Fr to G◦

r instead of Fr itself.
Let u,w be vertices of G. Let ru, rw be leaves of T such that u ∈ Gru

and
w ∈ Grw

. Let r be the LCA of ru and rw in T . Observe that u and w are
separated by Sr. Hence, every u-to-w path in G must intersect Sr. However, a
u-to-w path may or may not intersect Fr.
5 We refer to the vertices of T as nodes to distinguish them from the vertices of G.
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Suppose first that a shortest u-to-w path P (in G) does intersect Fr. We
write P = P0 ◦ P1. Path P0 is a maximal prefix of P whose vertices belong to
G◦

r . We call this kind of paths local paths. Note that local paths start at a vertex
of G◦

r , end at a vertex of Fr and are confined to G◦
r . Path P1 consists of the

remainder of P , and is referred to as a global path. Note that global paths start
at a vertex of Fr ∩ G◦

r , end at a vertex of G◦
r , but are not confined to G◦

r . It
is not difficult to convince oneself that, to be able to approximate δG(u,w), it
suffices to keep, for every Q ∈ Fr, local connections C(u,Q) (i.e. the connection
lengths are relative to G◦

r , not the entire G) and global connections C(w,Q) of
(i.e. the connection lengths are relative to the entire graph G).

Now suppose that no shortest u-to-w path P (in G) intersects Fr. Then every
u-to-w path P (in G) intersects Sr and is confined to G◦

r . Then, to approximate
P it suffices to keep, for every Q ∈ Sr, local connections C(u,Q) and C(w,Q).

The distance oracle therefore keeps, for each r ∈ T , for each vertex u ∈ G◦
r :

1. local connections C(u,Q) for all Q ∈ Fr.6

2. global connections C(u,Q) for all Q ∈ Fr.
3. local connections C(u,Q) for all Q ∈ Sr.

These connections, over all u ∈ Gr and all paths in Fr ∪ Sr are called the (local
or global) connections of r. In addition, the data structure stores:

– A mapping of each vertex v ∈ G to a leaf node rv ∈ T s.t. v ∈ Grv
.

– A least common ancestor data structure over T .

The space bottleneck is the size of the sets maintained. Each vertex v belongs
to G◦

r for O(lg n) nodes r of T . For each of the O(1) paths in the frame and
separator of each such node r, v has a set of O(ε−1) connections. Hence the total
space required by Thorup’s oracle is O(ε−1n lg n).

We next describe how a query is performed. Given a u-to-w distance query, let
r be the least common ancestor of ru and rw in T . The algorithm computes, for
each path Q of Sr∪Fr the length of a shortest u-to-w path that intersects Q using
the connections C(u,Q) and C(w,Q) (both local and global). By construction
of T , the number of such paths Q is constant. It is easy to see that computing
the distance estimate for each Q can be done in O(ε−1) time. Thus, an (1 + ε)-
approximate distance is produced in O(ε−1) time.

Efficient Construction. We now mention some, but not all the details of
Thorup’s O(ε−2n lg3 n)-time construction algorithm. Refer to [11, Subsect. 3.6]
for the full details. The computation of the connections and connection lengths is
done top-down the decomposition tree T . Naively using Corollary 1 on G◦

r for all
r ∈ T is efficient, but only generates local connections on Sr. Using Corollary 1
on Gr would produce local connections on Fr, but is not efficient since |Fr| can
be much larger than |G◦

r |. Instead, For each path Q in Fr, the algorithm uses the
reduction Q̄ of Q to the vertices of Q that belong to G◦

r . Let GQ
r be the graph

composed of G◦
r and Q̄. Note that |GQ

r | = O(|G◦
r |). The local connections on Fr

can now be computed by applying Corollary 1 to GQ
r .

6 These connections are only required for the efficient construction.
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It remains to compute global connections. Recall that these connection
lengths reflect distances in the entire graph, not just in Gr. Clearly, applying
Corollary 1 on G for every r is inefficient. Instead, the computation is done top-
down T using an auxiliary construction. This construction augments G◦

r with
ε-covers of the separators of all ancestors of r in T w.r.t the vertices of G◦

r .
These ε-covers have already been computed (local connections at the ancestor),
and represent distances outside Gr. Due to space constraints we defer the details
to the next section, where we handle the more general case of vertex labels.

4 Undirected Approximate Vertex-Label Distance Oracle

The idea is to adapt Thorup’s oracle (Sect. 3) to the vertex-label case. Thorup’s
oracle supports one-to-one (vertex-to-vertex) distance queries, whereas here we
need one-to-many distance queries. Given two vertices u, v, Thorup’s oracle finds
the LCA of ru and rv in T , and uses its connections to produce the answer. In
a one-to-many query, there is no analogue for v. We do know, however, that a
shortest u-to-λ path must intersect the separator of the leafmost node r in T
that contains u and some λ-labeled vertex. The node r takes the role of the
LCA of ru and rv. In order to be able to use r’s connections in a distance query
one must make sure that r’s connections represent approximate distances to
λ-labeled vertices in the entire graph, not just in G◦

r .
We define a set L of new (artificial) vertices, one per label. For every r ∈ T ,

let Lr = {λ ∈ L|G◦
r ∩ Vλ �= ∅} be the restriction of L to labels in G◦

r .
Simply connecting each vertex of Vλ to an artificial vertex representing the

label λ is bound to fail. To see why, suppose vertices u and v both have label
λ. Adding an artificial vertex λ and zero-length undirected edges vλ and uλ
creates a zero-length path between u and v that does not exist in the original
graph. While this does not change the distance between any vertex and its closest
λ-labeled vertex, it may change distances between a vertex and its closest λ′-
labeled vertex (λ′ �= λ). Therefore, we would have liked to add, for each label λ
separately, a single artificial vertex λ, and compute the connection sets C(λ,Q).
Doing so would result in correct distance estimates, but is not efficient. We
show how to compute the connections C(λ,Q) without actually performing this
inefficient procedure. Instead of having a single artificial vertex per label, it
is split into many artificial vertices (one for each incident edge). The problem
with this approach is that the number of connections becomes too large (each
split vertex has its own set of O(ε−1) connections). We use an extension of the
thinning procedure (Lemma 4) to select a small subset of these connections and
still get the desired approximation.

Another point that we must address is that, for λ ∈ Lr, the global connections
C(λ,Q) should reflect the minimum distances between the connections of λ on
Q to the closest vertex with label λ in G, not just to vertices with label λ in G◦

r .
We show how to achieve this by an extension of the auxiliary construction used
to compute the global connections in Thorup’s unlabeled oracle. We start with
the extended thinning lemma.
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Lemma 6 Let {ui} be vertices and Q be a shortest path. Given ordered ε-
covering sets {D(ui, Q)} it is possible to compute in linear time a clean and
ordered 3ε-covering connections set C of size O(ε−1) which represent approxi-
mated distances from any q ∈ Q to its closest vertex among {ui}.
Proof We first convert every connection length �(ui, q) for every q in D(ui, Q)
to reflect an approximated length from q to its closest vertex u∗ ∈ {uj}, rather
than to ui. We obtain these lengths using the fact that q is ε-covered with respect
to u∗ by some connection in D(u∗, Q). Let Zu be the graph composed of:

1. Q̄, the reduced form of Q to connections of all {D(ui, Q)}.
2. vertices {ui}, along with edges between each ui to its connections, with

lengths equal to the corresponding connection lengths.
3. vertex u, connected with zero-length edges to all {ui}.

By the ε-covering property, the distances between every q ∈ Q̄ and u in
Zu represent approximate distances between q and its closest vertex u∗ ∈ {uj}
in G. To see this, assume q ∈ Q̄ is a connection of u1, and is closest to u∗.
Let q∗ be a connection of u∗ which ε-covers q w.r.t. u∗. Then δZu

(q, u∗) ≤
δQ(q, q∗) + �(q∗, u∗) = δG(q, q∗) + �(q∗, u∗) ≤ (1 + ε)δG(q, u∗).

All shortest paths from u in Zu can be computed in linear time; first, relax
all edges incident to u and {ui}. Then, relax the edges of Q̄ by going first in one
direction along Q and then relaxing the same edges again in the other direction.
For connection p on Q̄, a u-to-p shortest path first reaches Q along one of {ui}
edges and then walks along Q toward p. Hence the relaxation was done in the
correct order. We update the connection lengths to the distances thus computed.

Let D̃(u,Q) denote the ordered union of all connections, along with the
updated connection lengths. Since all {D(ui, Q)} were ordered, it is possible to
order their union in linear time. Let Gu be the graph obtained from G by adding
an apex u connected with zero length edges to all {ui}. We stress that Gu is not
constructed by the algorithm, but only used in the proof. D̃(u,Q) is an ε-cover
of Q with respect to u in Gu. Now apply Lemma 4 to D̃(v,Q) with ε0 = ε1 = ε
to obtain a 3ε-cover of Q with respect to u in Gu of size O(ε−1). �

Vertex-Label Distance Oracle for Undirected Graphs. The vertex
labeled distance oracle is very similar to the unlabeled one (Sect. 3). It uses
the same decomposition tree T , and stores, for each r ∈ T , the same covering
sets. The only difference is that, in addition to the covering sets C(u,Q) for each
vertex u ∈ G◦

r , the oracle also stores connection information for labels as we now
explain.

For every r ∈ T and λ ∈ Lr, the oracle stores local and global connections
C(λ,Q). The local connections C(λ,Q) are connections in the graph obtained
from G◦

r by adding an artificial vertex λ, along with zero length edges from all
λ-labeled vertices in G◦

r to λ. The global connections C(λ,Q) are connections
in the graph obtained from G by adding an artificial vertex λ, along with zero
length edges from all λ-labeled vertices in G to λ. Before explaining how to
compute these connections we discuss how a distance query is performed.
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Obtaining the distance from u to λ is done by finding the lowest ancestor r
of ru with λ ∈ Lr. A shortest u-to-λ path must cross Sr, and perhaps also Fr.
The algorithm estimates, for each path Q of Sr ∪ Fr, the length of a shortest
u-to-λ path that intersects Q, using the connections C(u,Q) and C(λ,Q) stored
for r (Since λ ∈ Lr, r does store Q-to-λ connections).

Finding r can be done by binary search on the path from ru to the root of T .
The number of steps of the binay search is O(lg lg n). Finding whether a node
r′ has a vertex with label λ can be done, e.g., by storing all unique labels in
G◦

r′ in a binary search tree, or by hashing. In the former case finding r takes
O(lg lg n lg |L|) time, and in the latter O(lg lg n), (in the word-RAM model).

It remains to show how the connections are computed. We begin with the
local connections. For every r ∈ T , for every Q ∈ Fr∪Sr, the algorithm computes
ordered ε-covering sets of connections on Q w.r.t. each vertex of G◦

r to Q by
invoking Corollary 1 to G◦

r . This takes O(ε−1|V (G◦
r)| lg n) time (using [3] for

shortest path computation). For each λ ∈ Lr, let nλ denote the number of
λ-labeled vertices in G◦

r . The total number of connections to λ-labeled vertices
in G◦

r is O(ε−1nλ). The algorithm next applies the extended thinning lemma
(Lemma 6) to get a connections set C(λ,Q) of size O(ε−1) in O(ε−1nλ) time.
Since

∑
λ nλ = O(|V (G◦

r)|), the runtime for a single r and Q is O(ε−1|V (G◦
r)|).

We now show how to compute the global connections without invoking
Corollary 1 to the entire input graph G at every call.

Lemma 7. Let r ∈ T . Global connections for r can be computed using just the
(local) connections of strict ancestors of r. Computing all global connections for
all r ∈ T can be done in O(ε−2n lg3 n) time.

Proof. Let Q be a path in Fr. Let XQ
r be the graph composed of the following:

– The vertices Lr

– The vertices and edges of Q̄, the reduction of Q to V (Q) ∩ V (G◦
r).

– For each strict ancestor r′ of r, for each path Q′ ∈ Sr′ , the vertices and edges
of Q̄′, the reduction of Q′ to vertices that are (local) connections (in G◦

r′) of
Q′ w.r.t. vertices in Q ∪ Lr, along with edges representing the corresponding
connection lengths.

The algorithm creates a graph X̂Q
r from XQ

r by breaking every artificial
vertex λ in XQ

r into many copies {λe}, one per incident edge of λ. We stress
that the artificial vertices λe are not directly connected to each other in X̂Q

r .
Hence, the problem of shortcuts mentioned earlier is avoided.

Note that splitting vertices in this way does not increase the number of edges
in the X̂Q

r . The algorithm applies Corollary 1 to X̂Q
r and Q, obtaining a small

sized ε-cover C(λe, Q) for every λe.
Let q be any vertex of Q̄, and let λ be a label in G◦

r . Let P be a shortest q-to-λ
path in G. Let r′ be the rootmost strict ancestor of r such that Sr′ is intersected
by P . Note that r′ must exist since q ∈ Fr, so q belongs to the separator of
some strict ancestor of r. Thus P is entirely contained in G◦

r′ . Let Q′ be a path
in Sr′ intersected by P . By construction of X̂Q

r , it contains an ε-covering set of



108 S. Mozes and E.E. Skop

connections of Q′ with respect to q in G◦
r′ , as well as the edges of Q̄′ and an

ε-covering set of connections of Q′ with respect to λ in G◦
r′ . Hence, by Lemma 2,

there exists a shortest q-to-λe path (for some artificial vertex λe) in X̂Q
r whose

length is at most (1 + ε) times the length of P . On the other hand, because the
vertices λe (for any λ ∈ Lr) are not directly connected to each other in X̂Q

r ,
every path in X̂Q

r corresponds to some path in G, so shortest paths in X̂Q
r are at

least as long as those in G. This proves that X̂Q
r correctly represents all desired

global connection lengths.
We proceed with describing the construction of the connection sets of the

appropriate sizes. To bound the size of the connections {C(λe, Q)}, we count
the number of edges incident to λ in XQ

r (i.e., before it is split). There is an
edge for each of the O(ε−1) connections of λ on each of the O(lg n) paths of
separators of ancestors of r. For each such edge there is a vertex λe with an
ε-covering set of Q̄ of size O(ε−1). Thus, the total number of connections of Q̄
for all λe vertices is O(ε−2 lg n). The algorithm applies Lemma 6, the extended
thinning procedure, to {C(λe, Q)}e to get C(λ,Q) of size O(ε−1). Doing so for
all labels in G◦

r requires O(ε−2 lg n + ε−1|Lr|) space.
We now bound the running time. Since splitting vertices does not increase

the number of edges, applying Corollary 1 to X̂Q
r takes O(ε−2|V (G◦

r)| lg2 n) time.
Applying Lemma 6 is done within the same time bound. To conclude, the total
runtime over all nodes of T is O(ε−2n lg3 n). �
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Abstract. Local computation algorithms (LCAs) produce small parts
of a single solution to a given search problem using time and space sub-
linear in the size of the input. In this work we present LCAs whose time
complexity (and usually also space complexity) is independent of the
input size. Specifically, we give (1) a (1 − ε)-approximation LCA to the
maximal weighted base of a graphic matroid (i.e., maximal acyclic edge
set), (2) LCAs for approximating multicut and integer multicommodity
flow on trees, and (3) a local reduction of weighted matching to any
unweighted matching LCA, such that the running time of the weighted
matching LCA is also independent of the edge weight function.

1 Introduction

Local computation algorithms (LCAs) provide a solution to situations in which
we require fast and space-efficient access to part of a solution to a large compu-
tational problem, but we never need the entire solution at once. Consider, for
instance, a database describing a network with millions of nodes and edges, on
which we would like to compute a maximal matching. At any point in time, the
algorithm may be queried about an edge, and is expected to reply “yes” or “no”,
depending on whether the edge part of a maximal matching. The algorithm may
never be required to compute the entire solution. However, replies to queries are
expected to be consistent with a single matching.

LCA Measures. Typically, LCAs use polylog(n) space, and are required to reply
to each query in polylog(n) time. 1 Some papers on LCAs (e.g., [12]) give three
criteria for measuring LCAs: running time per query, the total space required,
and failure probability. 2 Others (e.g., [2]), consider only the number of times
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the input is probed, and the amount of information the LCA needs to store
between queries. In this paper we propose a more comprehensive model that
unifies the two approaches. The idea is to distinguish between computational
time and probe complexities, and between enduring and transient memory. More
specifically, a probe to the input graph consists of asking a vertex for a list of its
neighbors.3 The point is that the cost of a probe may sometimes be much higher
than the cost of a computational step. Regarding space, we assume that there
is an enduring memory, which is written only once by the algorithm, before the
first query is presented. We think about it as an augmentation of the input.
Enduring memory is useful in randomized LCAs (e.g., [1,7,12]), where the LCA
must use the same randomness each time it is invoked to ensure consistency.
This can be done by storing a random seed in the enduring memory. Transient
memory is simply the memory required to compute a reply to each query. Note
that in our formulation, the algorithm’s reply to a query depends only on the
input and the enduring memory, and not on the history. Formal definitions are
provided in Sect. 2.

New LCAs. In this paper we give constant-time, constant-probe LCAs to the
following graph problems, assuming graphs with constant maximal degree.

• Graphic Matroids. Given a weighted graph, the task is to find an acyclic edge
set (forest) of approximately the maximum possible weight. In the correspond-
ing LCA, a query specifies an edge, and the algorithm says whether the given
edge is in the solution forest. We present a deterministic (1 − ε)-approximate
LCA for graphic matroids, whose running time and space are independent of
the size of the matroid (see Sect. 2 for formal definitions).

• Integer Multi-commodity Flow (IMCF) and Multicut on Trees. Given a tree
with capacitated edges and source-destination pairs, the goal of IMCF is to
route the greatest possible total flow where each pair represents a different
commodity, subject to edge capacity constraints. Multicut is the dual problem
where the goal is to pick an edge set of minimal total capacity so that no source
can be connected to its destination without using a selected edge. We give a
deterministic LCA for IMCF and multicut on trees that runs in constant time
and gives a (1/4)-approximation to the optimal IMCF and a 4-approximation
to the minimum multicut. We also give a randomized LCA to IMCF, with
constant running time, very little enduring memory (less than a word), and
expected approximation ratio 1

2 − ε for any constant ε > 0.
• Weighted Matching. Given a weighted graph, we would like to approximate

the maximum weight matching. We design a deterministic reduction from any
(possibly randomized) LCA A for unweighted matching with approximation
ratio α to weighted matching with approximation ratio α/8. Our reduction
invokes A a constant number of times. Both the running time and approxi-
mation ratio are independent of the magnitude of the edge weights.

Related Work. LCAs were introduced by Rubinfeld et al. [12]. Alon et al. [1]
described LCAs for hypergraph 2-coloring and maximal independent set (MIS)
3 We typically assume that vertex degrees are bounded by a constant.
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on graphs of bounded degree, using a reduction from parallel and distributed
algorithms. Mansour et al. [6], extending results of [1], showed how to convert
a large class of online algorithms to LCAs using the technique of Nguyen and
Onak [9], in which a random ordering is generated over the vertices, and this
ordering is used to simulate the online algorithm: in order to reply to a query
about a vertex, we need to simulate the online algorithm on all vertices that
come before it in the ordering. The main challenge is to bound the number of
vertices that one needs to probe per query. Recently, Reingold and Vardi [11]
extended these results to a much wider class of graphs, and obtained stronger
bounds.

For graphs of bounded degree, Even et al. [2] showed how to obtain acyclic
orientations of the edges using the distributed coloring algorithms of Linial [4]
and Panconesi and Rizzi [10]. They were thus able to obtain deterministic LCAs
with running time dependent on log∗ n. They also give algorithms with simi-
lar running times for approximate maximum cardinality (MCM) and maximum
weight matchings (MWM). Their results for MWM depend logarithmically on
the ratio of the maximum to the minimum weight.4

The reader may also find it interesting to compare the results of this paper
with other algorithms that run in constant time, such as distributed constant-
time algorithms (see [13] for a recent survey), or constant-time approximation
algorithms (e.g., [9,18]).

We give more problem-specific related work in the relevant sections.

2 Preliminaries

General Concepts. We denote the set {1, 2, . . . n} by [n].

Graph Concepts. Let G = (V,E) be a simple undirected graph. The neighbor-
hood of a vertex v, denoted N(v), is the set of vertices that share an edge with
v: N(v) = {u : (u, v) ∈ E}. The degree of a vertex v, is |N(v)|. The distance
between two vertices u and v, denoted dist(u, v), is the minimal number of edges
required to reach one from the other. For any vertex v, its k-neighborhood,
denoted Nk(v) is the set of all vertices at distance at most k from v. (Note that
N(v) = N1(v)\N0(v).) For any edge e = (u, v), its k-neighborhood is defined as
Nk(e) = Nk(u) ∪ Nk(v). Given a non-empty vertex set S �= V , a cut (S, V \ S)
is the set of edges with exactly one endpoint in S.

Throughout this paper, we assume that the maximal degree in G is upper
bounded by some constant parameter d. For simplicity of presentation, we
assume that G is d-regular and that |V | and d are powers of 2. All our results
hold without these assumptions.
4 We note that while our algorithm for MWM runs in constant time, independently of

the size of the graph and of the edge weights, its approximation guarantee is much
worse than that of [2], whose approximation factor is (1 − ε).
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Approximation Algorithms. We define approximation algorithms as follows.

Definition 1. Given a maximization problem over graphs and a real number
0 ≤ α ≤ 1, a (possibly randomized) α-approximation algorithm A is guaranteed,
for any input graph G, to output a feasible solution whose (possibly expected)
value is at least an α fraction of the value of an optimal solution.5 The definition
of approximation algorithms to minimization problems is analogous, with α ≥ 1.

LCAs. We extend the model of [12] for local computation algorithms (LCAs)
to distinguish between time and probe complexity, and between enduring and
transient memory.

Definition 2 (LCA). A (t(n), p(n), em(n), tm(n), δ(n))-local computation
algorithm A for a computational problem is a (possibly randomized) algorithm
that receives an input of size n and a query x. Before the first query, A is allowed
to write em(n) bits to the enduring memory, and may only read from it there-
after. Algorithm A makes at most p(n) probes to the input in order to reply to
any query x, and does so in time t(n) using tm(n) bits of transient memory
(in addition to the enduring memory). The probability that A deviates from the
probe, time or transient memory bounds6 (i.e., uses more than the prescribed
amounts) is at most δ(n), which is called A’s failure probability. Algorithm A
must be consistent, that is, the algorithm’s replies to all possible queries conform
to a single feasible solution to the problem.

Remark 3. All LCAs of this paper have failure probability 0; we include it in the
model for compatibility with previous models, but omit it from the statements for
brevity. Furthermore, all the algorithms presented in this paper have a constant
running time, and hence the transient memory is guaranteed to be of constant
size; we omit this measure from the statements as well.

3 Graphic Matroids

In this section we consider the problem of finding the maximum weight basis of
a graphic matroid, defined as follows.

Definition 4 (Graphic Matroid). A graphic matroid is a matroid whose
independent sets are forests in an undirected graph.

We are given a graphic matroid M = (E , I), and would like to find an indepen-
dent set of (approximately) maximal weight. In graph terminology, we are given
a graph G = (V,E), with non-negative edge weights, w : E → R

+; we would
like to find an acyclic set of edges of (approximately) maximal weight. That is,
we seek a forest whose weight is close to the weight of a maximal spanning tree
(MaxST). Without loss of generality, we assume edge weights are distinct, as

5 In case of a randomized algorithm, expectation is over its random choices.
6 Note that the LCA is not allowed to deviate from the enduring memory bound.
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it is always possible to break ties by ID Recall that when the edge weights are
distinct, there is a unique MaxST.

We first describe a parallel algorithm for finding a MaxST in a graph, and
then explain how to adapt it to an LCA. We note that our parallel algorithm
is less efficient than others (say, the Bor̊uvka’s algorithm [8]), if it is used as a
parallel algorithm. In fact, there is no instance on which it would out-perform
Bor̊uvka’s algorithm. Nevertheless, it is useful as adapting it to an LCA and
analyzing its local properties are simple.

We first need a few definitions. Define the distance between a vertex v and
an edge e = (u,w), denoted dist(v, e), to be min{dist(v, u),dist(v, w)}.

Definition 5 (Connected Component, Truncated CC). Let G = (V,E)
be a simple undirected graph. For a vertex v ∈ V , and a subset of edges S ⊆ E,
the connected component of v with respect to S is CCS(v) ⊆ S which includes
the edges e ∈ S that have a path from e to v using only edges in S. (Note that
CCS(·) is a partition of S.) The k-truncated connected component of v is the
set of all vertices in the connected component of v at distance at most k from v
(w.r.t. G). We denote it by k TCCS(v).

Algorithm 1 works as follows. We maintain a forest S, initially empty. For any
vertex v, denote Γ k

v = k TCCS(v). In round k, vertex v considers the cut
(Γ k

v , V \ Γ k
v ) and adds the heaviest edge of the cut, say e, to S. (Note that

k is both the round number and the radius parameter of the truncated con-
nected component.) In contrast to many MaxST algorithms (such as Prim’s and
Kruskal’s algorithms), an edge can be considered more than once, and it is possi-
ble that an edge e is considered—and even added—when it is already in S (if we
add e to S when e ∈ S, S remains the same).

Algorithm 1. Parallel (CREW) MaxST Approximation Algorithm.
Input : G = (V, E) with weight function w : E → R

+, ε > 0
Output: a forest S
//assume all edge weights are distinct

For all v ∈ V , S(v) = ∅;
for round k = 0 to 1/ε do

For each vertex v, let Γ k
v = k TCCS(v) ;

for all vertices v ∈ V in parallel do

if e is the heaviest edge of the cut (Γ k
v , V \ Γ k

v ) then
S(v) = S(v) ∪ {e};

Return S =
⋃

v∈V S(v).

Correctness of Algorithm1.The correctness of Algorithm 1 relies on the so-
called “blue rule” [14].
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Fig. 1. The situation considered in the proof of Proposition 8, for k = 2. The edge
e = (u, v) is in Rk. Solid edges are in S, dashed edges are in E \ S. The shaded area
represents CC2

e , and the dotted red arc represents the distance 2 range. Edges marked
by � are considered by v in round 2 (Color figure online).

Lemma 6 ([14]). Let C be any cut of the graph. Then the heaviest edge in C
belongs to MaxST.

Corollary 7. All edges added to S by Algorithm 1 are in MaxST.

Corollary 7 establishes the correctness of Algorithm 1.

Approximation Ratio. We now turn to analyze the approximation ratio
of Algorithm 1. To this end, define Sk to be the set of edges of MaxST
that were added to S in rounds 1, 2, . . . , k (implying that Sk ⊆ Sk+1). Let
Rk = MaxST \Sk (see Fig. 1).

Consider the component tree of MaxST, defined as follows: the node set is
{CCSk

(v) | v ∈ V }, and the edge set is {(CCSk
(v), CCSk

(u)) | (v, u) ∈ Rk}. In
words, there is a node in the component tree for each connected component of Sk,
and there is an edge in the component tree iff there is an edge in Rk connecting
nodes in the corresponding components. We choose an arbitrary component as
the root of the component tree, and direct all the edges towards it; this way, each
edge e ∈ Rk is outgoing from exactly one connected component of Sk. We denote
this component by CCk

e . Note that CCi
e ⊆ CCj

e for i < j because components
only grow. For any set of edges S, let w(S) =

∑
e∈S w(e).

The following proposition is the key to the analysis.

Proposition 8. For any k ≥ 1, ∀e ∈ Rk, w(e) ≤ w(CCk
e )

k .

Proof. If Rk is empty, the claim holds trivially. Let e = (v, u) be any edge in Rk

(directed from v to u). Edge e was not chosen by vertex v in rounds 1, . . . , k.
For i ∈ [k], let ei be the edge chosen by v in round i. It suffices to show that (1)
all edges ei are heavier than e, i.e. ∀i ∈ [k], w(ei) > w(e), and that (2) the edges
ei are distinct, i.e., ∀i, j ∈ [k], i �= j ⇒ ei �= ej .
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The proof of (1) is straightforward: e was in the cut (Γ i
v, V \Γ i

v) in all rounds
i ∈ [k], but it was never chosen. This must be because v chose a heavier edge in
each round.

To prove (2), we show by induction that ei is distinct from {e1, e2, . . . , ei−1}.
The base of the induction is trivial. For the inductive step, consider the two
possible cases. If ei /∈ CCi−1

e , then clearly, ei cannot be any edge that was
previously added. And if ei ∈ CCi−1

e , then ei must be at distance exactly i from
v, otherwise it would not have been in the cut (Γ i

v, V \ Γ i
v) and could not have

been added. But e1, . . . , ei−1 are all at distance at most i − 1 (w.r.t. G). ��

Corollary 9. For k ≥ 0, w(Rk) ≤ w(Sk)
k .

Proof.

w(Rk) =
∑

e∈Rk

w(e)

≤
∑

e∈Rk

w(CCk
e )

k
by Prop. 8

≤ w(Sk)
k

. e �= e′ ⇒ CCk
e �= CCk

e′ , and
⋃

e∈Rk

CCk
e ⊆ Sk

��
This enables us to prove our approximation bound. Denote the weight of MaxST
by OPT.

Lemma 10. w(Sk) ≥ (1 − 1
k+1 )OPT.

Proof. As Rk = MaxST \Sk,

w(Sk)
OPT

=
w(Sk)

w(Sk) + w(Rk)
≥ w(Sk)

w(Sk) + w(Sk)/k
=

k

k + 1
,

where the inequality is due to Corollary 9. ��
This concludes the analysis of Algorithm 1. We now describe the LCA we derive
from it.

Adaptation to an LCA and Complexity Analysis. Given a graph G =
(V,E) and a query e = (u, v) ∈ E, the implementation of Algorithm 1 as an
LCA is as follows. Consider iteration k of Algorithm 1. Probe G to discover
N2k(u) and N2k(v). Simulate Algorithm 1 on all vertices in Nk(u) ∪ Nk(v) for
k rounds. In each round i, for each node s ∈ Nk(u) ∪ Nk(v), the algorithm
computes Γ i

v = iTCCS(v), finds the heaviest edge e in the cut (Γ i
v, V \ Γ i

v), and
adds it to the solution. This gives the following lemma.

Lemma 11. The time required to simulate the execution of Algorithm 1 for k
rounds as an LCA is kdO(k), and the probe complexity is dO(k).
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Proof. The time to discover N2k(v) ∪ N2k(u) by probing the graph is bounded
by dO(k). Each vertex in z ∈ Nk(v) ∪ Nk(u) executes Algorithm 1 k rounds: in
round j, it constructs Sz, by exploring N j(z) ⊆ N2k(v) ∪ N2k(u). Overall, the
time complexity is

dO(k) +
∑

z∈Nk(v)∪Nk(u)

k|Nk(z)| = kdO(k).

��
Combining Lemmas 10 and 11 gives our first main result.

Theorem 12. There exists a deterministic LCA, that for any graph G whose
degree is bounded by d and every ε > 0, computes a forest whose weight is a
(1−ε)-approximation to the maximal spanning tree of G in time t(n) = 1

ε dO(1/ε),
probe complexity p(n) = dO(1/ε), and enduring memory em(n) = 0.

4 Multicut and Integer Multicommodity Flow in Trees

In this section we consider the integer multicommodity flow (IMCF) and mul-
ticut problems in trees. While simple, our LCAs demonstrate how, under some
circumstances, one can find constant-time LCAs for apparently global problems.

The input is an undirected graph G = (V,E) with a positive integer capacity
c(e) for each e ∈ E, and a set of pairs of vertices {(s1, t1), . . . , (sk, tk)}. (The
pairs are distinct, but the vertices are not necessarily distinct.)

In the Integer Muticommodity Flow Problem, the goal is to route commodity
i from si to ti so as to maximize the sum of the commodities routed, subject
to edge capacity constraints. (There is no a priori upper or lower bound on the
amount of flow for each commodity.) Note that in a tree, the only question is how
much to route: the route is uniquely determined anyway. In the dual Multicut
Problem, the goal is to find a minimum capacity multicut, where a multicut is
an edge set that separates si from ti for all 1 ≤ i ≤ k.

We make the following assumptions about the input to allow for appropriately
bound the time and space complexity of the algorithms. First, we assume that
in the given tree each node has at most d = O(1) children, and that T is rooted
in the sense that the depth of each vertex is known, and is part of the properties
that are found by querying the vertex. Second, we assume that the distances
from si to ti are bounded by some given parameter �; i.e., ∀i,dist(si, ti) ≤ �.
Our bounds will be a function of �, so that if � is independent of tree size, then
so are the time and space complexity of our algorithms.

In the local version of IMCF (multicut), we are queried on an edge, and are
required to output how much of each resource is routed on it (whether it is part
of the cut). As before, we adapt a classical algorithm to an LCA. This time we
use the known algorithm of Garg et al. [3] as a subroutine (denoted Algorithm 2,
and presented below for completeness). Note that this is a primal-dual algorithm,
that solves IMCF and multicut simultaneously.
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Theorem 13 [16]. Algorithm 2 achieves approximation factors of 2 for the mul-
ticut problem and 1/2 for the IMCF problem on trees.

Algorithm 2. Multicut and IMCF in trees [3,16]
Input : A rooted tree T
Output: a flow f and a cut D

Initialize f = 0,D = ∅;
for each vertex v in nonincreasing order of depth do

for each pair (si, ti) s.t. lowest common ancestor(si, ti) = v, do
Greedily route flow from si to ti if possible;
Add all saturated edges to D in arbitrary order;

Let e1, . . . , ek be the ordered list of edges in D;
for j = k down to 1 do

If D − {ej} is a multicut, then remove ej from D;

Our deterministic LCA finds a (4 + ε)-approximation to the multicut problem,
and in trees with minimum capacity cmin ≥ 2, the same algorithm finds an
IMCF with approximation factor �cmin/2�

2cmin
≥ 1

6 .7 We also present a randomized
Algorithm, that gives an approximation factor of (12 −ε) to IMCF for any desired
ε > 0 (the running time depends on 1/ε). The algorithms are similar, in that
they partition the tree to subtrees and apply Algorithm 2 to each subtree. The
randomized algorithm requires a very small amount of enduring memory, namely
O(log(�/ε)) bits.

4.1 Deterministic LCA

We first describe the deterministic LCA. An edge is said to be at depth z if
it connects vertices at depths z − 1 and z. The deterministic algorithm (whose
pseudocode appears in the full version) for multicut is as follows. We consider
two overlapping decompositions of the tree into subtrees of height 2�: the first
decomposition is obtained by removing all edges at depth k� for even values of
k, and the second is by removing all edges at depth k� for odd values of k. Now,
given an edge e, we run Algorithm 2 on the subtrees that contain e (there is
at least one such tree and at most two). Let the output of the “even” instance
be De, and the output of the “odd” instance be Do. The output is De ∪ Do.
Correctness follows from the fact that each (si, ti) pair is completely contained in
(at least) one of the subtrees by the assumption that dist(si, ti) ≤ �. Regarding
the approximation ratio, recall that by Theorem 13, the capacity of each of
De,Do is no larger than twice the minimum multicut capacity, the capacity in
the overall output is at most 4 times that of the minimal capacity multicut.

To obtain a feasible flow, we start by splitting the capacity of each edge e ∈ D
between the subtrees it is a member of, such that in each subtree there are at
7 The ratio is 1

4
when all capacities are even, and it tends to 1

4
as cmin → ∞. For

cmin = 1 the approximation ratio is 0.
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least � ce
2 � capacity units. This is possible because each edge is a member in at

most 2 subtrees. Now, given a query e to the LCA, we run Algorithm 2 on the
trees e is a member of, obtaining flow values fe(e) for the “even” subtree and
fo(e) for the “odd” subtree. The LCA outputs fe(e) + fo(e).

The following is out main theorem for this section. Its proof appears in the
full version of the paper.

Theorem 14. Given a tree T with maximal degree d, integer edge capacities at
least cmin and source-destination pairs with maximal distance at most � > 0, there
are LCAs with t(n) = dO(�), p(n) = dO(�) and em(n) = 0, for 4-approximate mul-
ticut and ( 14 − 1

4cmin
)-approximate IMCF. If all capacities are even, the approxi-

mation ratio to IMCF is 1
4 .

4.2 Randomized LCA

We now turn to the randomized setting. Our randomized algorithm (see the full
version for a more in-depth description and pseudocode) is similar: instead of
an overlapping decomposition, we use a random one as follows. Let H = � �

ε�.
We pick an integer j uniformly at random from [H], and remove all edges whose
depth modulo H is j − 1. The result is a collection of subtrees of depth at most
H − 1 each. Now, given an edge e, we run Algorithm 2 on the subtree that
contains e and output the output of Algorithm 2 (with probability 1/H, the
edge queried, e, is not in any tree; in this case, e carries 0 flow).

Theorem 15. Given a tree T with maximal degree d, integer edge capacities and
vertex pairs with maximal distance at most � > 0, there is an LCA with t(n) =
dO(�/ε), p(n) = dO(�/ε), and em(n) = O(log �/ε), that achieves an approximation
ratio of (1/2 − ε) to IMCF.

5 Weighted Matchings

In this section we present a different kind of an LCA: a reduction. Specifically,
we consider the task of computing a maximum weight matching (MWM), and
show how to locally reduce it to maximum cardinality matching (MCM). Our
construction, given any graph of maximal degree d and a t-time α-approximation
LCA for MCM, yields an O(td)-time, α

8 -approximation LCA for MWM.
Formally, in MWM we are given a graph G = (V,E) with a weight function

w : E → N, and we need to output a set of disjoint edges of (approximately)
maximum total weight. In MCM, the task is to find a set of disjoint edges of
(approximately) the largest possible cardinality.

The main idea in our reduction is a variant of the well-known technique of
scaling (e.g., [5,15,17]): partition the edges into classes of more-or-less uniform
weight, run an MCM instance for each class, and somehow combine the MCM
outputs. Motivated by local computation, however, we use a very crude combin-
ing rule that lends itself naturally to LCAs.
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Specifically, the algorithm is as follows (the “global” algorithm is presented
as Algorithm 3). Let γ = 4. Partition the edges by weight to sets Ei, such that
Ei = {e : w(e) ∈ [γi−1, γi)}. For each i, find a maximum cardinality matching
Mi on the graph Gi = (V,Ei), using any MCM algorithm. Let M = ∪iMi.
Given an edge e, our LCA for MWM returns “yes” iff e is a local maximum in
M , i.e., iff (1) e is in M , and (2) for any edge e′ in M which shares a node with
e, w(e′) < w(e) (no ties can occur).

Algorithm 3. Reduction of MWM to MCM
Input : A graph G = (V,E), with w : E → N, and γ > 2
Output: A matching M

Partition the edges into classes
Ei = {e : w(e) ∈ [γi−1, γi)} for i = 1, 2, . . .
In parallel, compute an unweighted matching Mi for each level i;
M =

⋃
i Mi;

for each edge e ∈ M do
if e has a neighbor e′ ∈ M , with class(e′) < class(e) then

Remove e from M ;

Return M .

Our main result for this section is the following theorem, whose proof can be
found in the full version of the paper.

Theorem 16. Let A be a LCA for unweighted matching, requiring t(n) time,
p(n) probes and em(n) enduring memory, and producing an α-approximation to
the maximum matching. Then given a graph G = (V,E) with maximal degree
d and arbitrary weights on the edges, there is a LCA that computes a α/8-
approximation to the maximum weighted matching, requiring O(d · t(n)) time,
O(d · p(n)) probes and O(d · em(n)) enduring memory.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their useful feedback.
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Abstract. Let CH be the class of graphs containing some fixed graph H
as a minor. We define cvH(G) (resp. ceH(G)) as the minimun number of
vertices (resp. edges) whose removal from G produces a graph without
any subgraph isomorphic to a graph in CH . Also pv

H(G) (resp. pe
H(G)) is

the the maximum number of vertex- (resp. edge-) disjoint subgraphs of
G that are isomorphic to some graph in CH . We denote by θr the graph
with two vertices and r parallel edges between them. When H = θr, the
parameters c

v/e
H and p

v/e
H are NP-complete to compute (for sufficiently

large r). In this paper we prove a series of combinatorial and algorithmic

lemmata that imply that if p
v/e
θr

(G) ≤ k, then c
v/e
θr

(G) = O(k log k). This
means that for every r, the class Cθr has the vertex/edge Erdős-Pósa
property. Using the combinatorial ideas from our proofs we introduce a
unified approach for the design of an O(log OPT)-approximation algo-
rithm for cvθr , pv

θr , ceθr and pe
θr that runs in O(n · log(n) · m) steps.

Keywords: Erdős-Pósa properties · Minors · Graph packing · Covering

1 Introduction

All graphs in this paper are undirected, do not have loops but they may contain
multiple edges. We denote by θr the graph containing two vertices x and y
connected by r parallel edges. Given a graph class C and a graph G, we call
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C-subgraph of G any subgraph of G that is isomorphic to some graph in C. In
this paper, when giving the running time of an algorithm with input some graph
G, we agree that n = |V (G)| and m = |E(G)|.

Coverings and Packings. Paul Erdős and Lajos Pósa, proved in 1965 [12] that
there is a function f : N → N such that for each positive integer k, every graph
either contains k vertex-disjoint cycles or it contains f(k) vertices that intersect
every cycle in G. Moreover, they proved that the “gap” of this min-max relation
is f(k) = O(k · log k). This result initiated an interesting line of research on the
duality between coverings and packings of combinatorial objects. To formulate
this duality, given a class C of connected graphs, we define by cvC(G) (resp. ceC(G))
the minimun cardinality of a set S of vertices (resp. edges) such that each C-
subgraph of G contains some element of S. Also, we define pv

C(G) (resp. pe
C(G))

as the maximum number of vetex- (resp. edge-) disjoint C-subgraphs of G.
We say that C has the vertex Erdős-Pósa property (resp. the edge Erdős-

Pósa property) if there is a function f : N → N, called gap function, such that
for every graph G, cvC(G) ≤ f(pv

C(G)) (resp. ceC(G) ≤ f(pe
C(G))). Using this

terminology, the original result of Erdős and Pósa says that the set of all cycles
has the vertex Erdős-Pósa property with gap O(k · log k). The general question
in this branch of Graph Theory is to detect instantiations of G which have the
vertex/edge Erdős-Pósa property (in short, v/e-EP-property) and, when this is
the case, minimize the gap function f . Several theorems of this type have been
proved concerning different instantiations of G such as odd cycles [22,28], long
cycles [3], and graphs containing cliques as minors [11] (see also [17,20,30] for
results on more general combinatorial structures).

A general class that is known to have the v-EP-property is the class CH of
the graphs that contain some fixed planar graph H as a minor1. This fact was
proven by Robertson and Seymour in [31] and the best known general gap is
f(k) = O(k · logO(1) k) due to the results of [9] (see also [14,15] for better gaps
for particular instantiations of H). Moreover, the planarity of H appears to be
the right dichotomy, as for non-planar H, CH does not have the v-EP-property.
Besides the near-optimality of the general upper bound of [9], it is open whether
the lower bound Ω(k · log k) can be matched for the general gap function, while
this is indeed the case when H = θr [14].

The question about classes that have the e-EP-property has also attracted
some attention (see [3]). According to [10, Exercice 23 of Chapter7], the original
proof of Erdős and Pósa implies that cycles have the e-EP-property with gap
O(k · log k). Moreover, as proved in [29], the class Cθr

has the e-EP-property with
the (non-optimal) gap f(k) = O(k2 · logO(1) k). Interestingly, not much more is
known on the graphs H for which GH has the e-EP-property and it is tempting
to conjecture that the planarity of H provides again the right dichotomy. Other
graph classes that are known to have the e-EP-property are rooted cycles (here
the cycles to be covered and packed are required to intersect some particular set
1 A graph H is a minor of a graph G if it can be obtained from some subgraph of G

by contracting edges.
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of terminals of G) [27] and odd cycles for the case where G is a 4-edge-connected
graph [21], or a planar graph [24], or a graph embeddable in an orientable
surface [22].

Approximation Algorithms. The four graph parameters defined above are already
quite general when C := CH . For simplicity, form now on, we use the notations
cvH , ceH , pv

H , and pe
H instead of cvCH

, ceCH
, pv

CH
, and pe

CH
. From the algorith-

mic point of view, the computation of pv/e
H corresponds to the general family

of graph packing problems while the computation of cv/eH belongs to the gen-
eral family of graph modification problems where the modification operation is
the removal of vertices/edges. Interestingly, particular instantiations of H = θr

generate known, well studied, NP-hard problems. For instance, asking whether
cvθr

≤ k generates Vertex Cover for r = 1, Feedback Vertex Set for
r = 2, and Diamond Hitting Set for r = 3 [13,16]. Moreover, asking whether
px

θ2
(G) ≥ k corresponds to Vertex Cycle Packing [6,23] and Edge Cycle

Packing [1,25] when x = v and x = e respectively. Finally, asking whether
|E(G)| − ceθ3

(G) ≤ k corresponds to the Maximum Cactus Subgraph
2. All

parameters keep being NP-complete because the aforementioned base cases can
be reduced to the general one by replacing each edge by one of multiplicity r−1.

From the approximation point of view, it was proven in [16], that when H
is a planar graph, there is a randomized polynomial O(1)-approximation algo-
rithm for cvH . For the cases of cvθr

and pv
θr

, O(log n)-approximations are known
for every r ≥ 1 because of [19] (see also [32]). Moreover, cvθ3

admits a determin-
istic 9-approximation [13]. About pe

θr
(G) it is known, from [26], that there is a

polynomial O(
√

log n)-approximation algorithm for the case where r = 2. Notice
also that, it is trivial to compute ceθ2

(G) in polynomial time. However, to our
knowledge, nothing is known about the computation of ceθr

(G) for r ≥ 3.

Our Results. We introduce a unified approach for the study of the combinatorial
interconnections and the approximability of the parameters cvθr

, ceθr
, pv

θr
, and

pe
θr

. Our main combinatorial result is the following.

Theorem 1. For every r ∈ N≥2 and every x ∈ {v, e} the graph class Cθr
has

the x-EP-property with (optimal) gap function f(k) = O(k · log k).

Our proof is unified and treats simultaneously the covering and the packing
parameters for both the vertex and the edge cases. This verifies the best, so far,
combinatorial bound for the case where x = v [14] and optimally improves the
previous bound in [29] for the case where x = e. Based on the proof of Theorem 1,
we prove the following algorithmic result.
2 The Maximum Cactus Subgraph problem asks, given a graph G and an integer

k, whether G contains a subgraph of k edges where no two cycles share an edge. It
is easy to reduce to this problem the Vertex Cycle Packing problem on cubic
graphs which, in turn, can be proved to be NP-complete using a simple variant of
the NP-completeness proof of the Exact Cover by 2-Sets [18]).



An O(log OPT)-Approximation for Covering/Packing Minor Models of θr 125

Theorem 2. For every r ∈ N≥2 and every x ∈ {v, e} there exists an O(n·log(n)·
m)-step algorithm that, given a graph G, outputs a O(log OPT)-approximation
for cxθr

and px
θr
.

Theorem 2 improves the results in [19] for the cases of cvθr
and pv

θr
and, to our

knowledge, is the first approximation algorithm for ceθr
and pe

θr
for r ≥ 3.

OurTechniques. Our proofs are based on two lemmata: a combinatorial (Lemma 1)
and an algorithmic one (Lemma 2). The combinatorial Lemma 1 asserts that given
a graph G, one of the following holds:

1. either G contains k disjoint Cθr
-subgraphs; or

2. it contains a Cθr
-subgraph J of at most O(log k) edges; or

3. it contains a subset X on at least f(r) vertices that induces a “tree-like”
subgraph that is separated by 2r−2 edges from the rest of the graph (we call
these subgraphs edge-protrusions, in analogy to the notion of vertex protru-
sions that where introduced in [4,5]).

Moreover, each of the three above possible outcomes can be produced in |E(G)|
steps.

Intuitively, the above result says that we can reduce the inputs of the problem
of computing cxθr

or px
θr

to “loosely connected” graphs, i.e., graphs where the
removal of O(r) edges cannot break them into two parts of “big” size (as a
function of r). In such graphs, we can restrict our attention to packings or
coverings of Cθr

-subgraphs that have at most O(log(px
θr

(G))) edges. This easily
yields that Cθr

has the x-EP-property for every x ∈ {v, e} with gap O(k · log k).
Our main algorithm is doing the following for each k ≤ |V (G)|. If the first case
of the above combinatorial result applies on G, we can safely output a packing
of k Cθr

-subgraphs in G. In the second case, we make some progress as we may
remove the vertices/edges of J from G and then set k := k−1. In the third case,
we again progress as we can prove that if X is big enough then we can replace
G, in a linear number of steps, by another smaller graph G′ where both packing
and covering numbers stay the same.

Notice that the second step reduces the packing number of the current graph
by 1 to the price of reducing the covering number by O(log k) and this is the
main argument that supports the claimed O(log OPT)-approximation algorithm.
Finally, the third step is supported on the algorithmic Lemma 2 whose proof is
based on a dynamic programming encoding of partial packings and coverings
that is designed especially for the corresponding tree-like graphs.

2 Definitions and Preliminaries

As graphs in this paper may have multi-edges, they are represented by a pair
G = (V,E) where V is its vertex set, denoted by V (G) and E is its edge multi-set,
denoted by E(G).

Let x ∈ {v, e} where v is interpreted as “vertex” and e will be interpreted as
“edge”. Given a graph G, we denote by Ax(G) the set of vertices or edges of G
depending on whether x = v or x = e. We set n(G) = |V (G)| and m(G) = |E(G)|.
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Topological Minors. Two paths of a graph P are internally vertex disjoint if the
one does not contain any of the internal vertices of the other. We say that H is
a topological minor of G if there exits some collection P of pairwise internally
vertex disjoint paths in G and a injection φ : V (H) → V (G) such that

– no path in P has an internal vertex that belong to some other path in P;
– φ(V (H)) is the set of endpoints of the paths in P; and
– for every two distinct v, u ∈ V (H), {v, u} is an edge of H of multiplicity l if

and only if there are l paths in P between φ(v) and φ(u).

Packings and Coverings. If G is a graph and H is a (finite) class of connected
graphs, an H-model of G is a subgraph M of G that is a subdivision of a graph,
denoted by M̂ , that is isomorphic to a member of H. Clearly, the vertices of M̂
are vertices of G and its edges correspond to paths in G between their endpoints
such that internal vertices of a path do not appear in any other path. We refer
to the vertices of M̂ in G as the branch vertices of the H-model M , whereas
internal vertices of the paths between branch vertices will be called subdivision
vertices of M . A graph which contains no H-model is said to be H-free. Notice
that G has a H-model iff G contains a graph of H as topological minor. Given
a x ∈ {v, e}, an x-H-packing of a graph G is a collection of pairwise x-disjoint
H-models of G. We define P≥k

x,H(G) as the set of all x-H-packings of G of size at
least k. An x-H-covering of a graph G is a set C ⊆ Ax(G) such that G \ C does
not contain any H-model. We define C≤k

x,H(G) as the set of all x-H-coverings
of G of size at most k. We define x-coverH(G) = min{k, C≤k

x,H(G) �= ∅} and
x-packH(G) = max{k, P≥k

x,H(G) �= ∅}. Given a graph H, we define by ex(H)
the set of all topologically-minor minimal graphs that contain H as a minor.
Notice that the size of ex(H) is bounded by some function of m(H). It is easy
to verify that H is a minor of G if and only if it contains a member of ex(H) as
a topological minor. An H-minor model of G is every minimal subgraph of G
that contains a member of ex(H) as a topological minor. Notice that

cxH(G) = x-coverex(H)(G) and px
H(G) = x-packex(H)(G). (1)

The above equalities gives us the right, in the rest of this paper, to deal with
our results and describe proofs in terms of x-coverex(H) and x-packex(H) instead
of cxH and px

H .

Edge-protrusions and Tree Partitions. A rooted tree is a pair (T, s) such that
s ∈ V (T ). A rooted tree partition of a graph G is a triple D = (X , T, s) where
(T, s) is a rooted tree and X = {Xi, i ∈ V (T )} is a partition of V (G) where
either n(T ) = 1 or for every {x, y} ∈ E(G), there exists an edge {i, j} ∈ E(T )
such that {x, y} ⊆ Xi ∪ Xj . Given an edge f = {i, j} ∈ E(T ), we define Ef

as the set of edges with one endpoint in Xi and the other in Xj . Notice that
all edges in Ef are non-loop edges. The width of D is defined as max{|Xi|, i ∈
V (T )} ∪ {|Ef |, f ∈ E(T )}.
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Let G be a graph and let Y ⊆ V (G). We say that Y is a t-edge-protrusion
of G with extension w if the graph G[Y ∪ NG(Y )] has a rooted tree partition
D = (X , T, s) of width at most t and such that NG(Y ) = Xs and n(T) ≥ w.

2.1 Two Basic Lemmata

Let x1, . . . , xl ∈ N and ψ, χ : N → N. We say that χ(n) = Ox1,...,xl
(ψ(n)) if there

exists a computable function φ : Nl → N such that χ(n) = O(φ(x1, . . . , xl)·ψ(n)).
Our results are based on the following two lemmata (the fool proofs are in [7]

and [8] respectively).

Lemma 1 (Combinatorial Lemma – Theorem 3 in [7]). There is an algo-
rithm that, with input three positive integers r, w, z and an n-vertex graph W ,
outputs one of the following:

– a θr-model of W of at most z edges;
– a connected (2r − 2)-edge-protrusion Y of W with extension > w; or
– an H-minor model of W for some graph H where δ(H) ≥ 1

r−12
z−5r

4r(2w+1) ,

in Or(m) steps.

Lemma 2 (Algorithmic Lemma – Lemma 1 in [8]). Let x ∈ {v, e}, h, t ∈
N. There exists a function f1 : N2 → N and an algorithm that receives as input
a collection H of connected graphs that, in total, have h edges, a graph W, and
a t-edge protrusion Y of W with extension at least f1(h, t) and outputs

– either an H-model of W of at most f1(h, t) edges;
– or a graph W ′ where x-coverH(W ) = x-coverH(W ′), x-packH(W ) =

x-packH(W ′), and n(W ′) < n(W ),

in Oh(n(Y )) steps.

3 Algorithms for Theorems 1 and 2

For the purposes of this section we define Θr = ex(θr). In this section we give
the proofs of Theorems 1 and 2. Because of (1), all proofs will use the terms
x-coverΘr

and x-packΘr
instead of cxθr

(G) and px
θr

(G). For every i, j ∈ N, we use
�i, j� to denote the interval {t ∈ N, i ≤ t ≤ j}.

3.1 Erdő-Pósa propery for θr

We need the following result.

Proposition 1 (Theorem 12 of [2]). Given k, r ∈ N≥1 and an input graph
G such that δ(G) ≥ k(r + 1) − 1, a partition (V1, . . . , Vk) of V (G) satisfying
∀i ∈ �1, k�, δ(G[Vi]) ≥ r can be found in O(nc) steps for some c ∈ N.

Combining Lemmas 1 and 2, we get the following result.
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Lemma 3. There is an algorithm that, with input x ∈ {v, e}, r ∈ N≥2, k ∈ N

and an n-vertex graph W , outputs one of the following:

– a Θr-model of W of at most Or(log k) edges;
– a graph W ′ where n(W ′) < n(W ), x-coverH(W ′) = x-coverH(W ), and x-packH

(W ′) = x-packH(W );
– an H-minor model in W for some graph H where δ(H) ≥ k(r + 1),

in Or(m) steps.

Proof. We set t = 2r − 2, w = f1(h, t), z = 2r(w − 1) log(k(r + 1)(r − 1)) + 5r
and h = m(Θr). Remark that z = Or(log k) and h, t, w = Or(1). Also observe
that our choice of z ensures that 2

z−5r
2r(w−1) /(r − 1) = k(r + 1).

By applying the algorithm of Lemma 1 to r, w, z and W , we obtain in
Or(m(W ))-time:

First case: either a Θr-model in W of at most z edges;
Second case: or a (2r − 2)-edge-protrusion Y of W with extension > w;
Third case: or an H-minor model M in W for some graph H where
δ(H) ≥ k(r + 1).

• In the first case, we return the obtained Θr-model.
• In the second case, by applying the algorithm of Lemma 2 on Y , we get in

O(n(W ))-time either a Θr-model of W on at most w = Or(1) vertices, or a
graph W ′ where, for x ∈ {v, e}, x-coverH(W ′) = x-coverH(W ), x-packH(W ′) =
x-packH(W ) and n(W ′) < n(W ).

• In the third case, we return the model M .

In each of the above cases, we get after O(m) steps either a model of a graph
with minimum degree more than k(r + 1), or a Θr-model in W of at most z
edges, or an equivalent graph of smaller size. �
It might not be clear yet to what purpose the the model of a graph of degree
more than k(r+1) output by the algorithm of Lemma 3 can be used. An answer
is given by the following lemmata, which state that such a graph contains a
packing of at least k models of Θr. These lemmata will be used below for the
design of the approximation algorithms.

Lemma 4. There is an algorithm that, given k, r ∈ N≥1 and a graph G with
δ(G) ≥ kr, returns a member of P≥k

e,Θr
(G) in G in O(m) steps.

Proof. Starting from any vertex u, we grow a maximal path P in G by iteratively
adding to P a vertex that is adjacent to the previously added vertices but does
not belong to P . Since δ(G) ≥ kr, any such path will have length at least kr+1.
At the end, all the neighbors of the last vertex v of P belong to P (otherwise P
could be extended). Since v has degree at least kr, v has at least kr neighbors
in P . Let w0, . . . , wkr−1 be an enumeration of the kr first neighbors of v in
the order given by P , starting from u. For every i ∈ �0, k − 1�, let Si be the
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subgraph of G induced by v and the subpath of P starting at wir and ending
at w(i+1)r−1. Observe that for every i ∈ �0, k − 1�, Si contains a Θr-model and
that the intersection of every pair of graphs from {Si}i∈�0,k−1� is {v}. Hence P

contains a member of P≥k
e,Θr

(G), as desired. Every edge of G is crossed at most
once in this algorithm, yielding to a running time of O(m) steps. �
Corollary 1. There is an algorithm that, given r ∈ N≥1 and a graph G with
δ(G) ≥ r, returns a Θr-model in G in O(m)-steps.

An analogue of Lemma 4 for vertex-disjoint packings can be proved using
Proposition 1.

Lemma 5. There is an algorithm that, given k, r ∈ N≥1 and a graph G with
δ(G) ≥ k(r + 1) − 1, outputs a member of P≥k

v,Θr
(G) in O(nc + m) steps, where

c is the constant of Proposition 1.

Proof. After applying the algorithm of Proposition 1 on G to obtain in O(nc)-
time k graphs G[V1], . . . , G[Vk], we extract a Θr-model from each of them using
Corollary 1. �
Theorem 1 follows immediately from the following more general result.

Theorem 3. There is a function f2 : N → N and an algorithm that, with input
x ∈ {v, e}, r ∈ N≥2, k ∈ N and an n-vertex graph W , outputs either a x-Θr-
packing of W of size k or an x-Θr-covering of W of size f2(r)·k ·log k. Moreover,
this algorithm runs in O(n ·m) steps if x = e and in O(nc +n ·m) steps if x = v,
where c is the constant Proposition 1.

Proof. Let f2 be a function such that each Θr-model output by the algorithm
of Lemma 3 has size at most f2(r) · log k. We consider the following procedure.

1. G := W ; P := ∅;
2. apply the algorithm of Lemma 3 on (x, r, k,G):

Progress: if the output is a Θr-model M , let G := G \ Ax(M) and P =
P ∪ {M};

Win: if the output is a H-minor model M in W for some graph H where
δ(H) ≥ k(r + 1), apply the algorithm of Lemma 4 (if x = e) or the one
of Lemma 5 (if x = v) to H to obtain a member of P≥k

x,Θr
(H). Using M ,

translate this packing into a member of P≥k
x,Θr

(W ) and return this new
packing;

Reduce: otherwise, the output is a graph G′ then let G := G′.
3. if |P | = k then return P which is a member of P≥k

x,Θr
(W );

4. if n(W ) = 0 then return P which, in this case, is a member of C≤f2(r)k log k
x,Θr

(W );
5. otherwise, loop to line 2.

This algorithm clearly returns the desired result. Furthermore, the loop is exe-
cuted at most n(W ) times and each call of the algorithm of Lemma 3 takes
O(m(W )) steps. When the algorithm reaches the “Win” case (which happen
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at most once), the calls to the algorithm of Lemma 4 (if x = e) or the one of
Lemma 5 (if x = v) respectively take O(m(H)) and O ((n(H))c) steps. Therefore
in total, this algorithm terminates in O(n·m) steps if x = e and in O (nc + n · m)
steps if x = v. �

3.2 An Approximation Algorithm for Theorem 2

Observe that if the algorithm of Theorem 3 reaches the “Win” case, then the
input graph is known to contains a x-Θr-packing of size at least k. As a conse-
quence, if we are only interested in the existence of a packing or covering, the
call to the algorithm of Lemmas 4 or 5 is not necessary.

Corollary 2. There is an algorithm that, with input x ∈ {v, e}, r ∈ N≥2, k ∈ N

and an graph W , outputs 0 if W has a x-Θr-packing of G of size k or 1 if W
has a x-Θr-covering of G of size f2(r) ·k · log k. Furthermore this algorithm runs
in O(n · m) steps.

We are now ready to prove Theorem 2.

Proof. (Proof of Theorem 2). Let us call A the algorithm of Corollary 2. Let k0 ∈
�1, n(W )� be an integer such that A((x, r, k0,W ) = 1 and A(x, r, k0 − 1,W ) = 0.
Our purpose is to prove that the value k0 log k0 is a O(log OPT )-approximation
of p(W ).

First, notice that for every k>x-packΘr
(W ), the value returned byA(x, r, k,W )

is 1. Symmetrically it holds that, for every k such that k log k < x-coverΘr
(W ), the

value ofA(x, r, k,W ) is 0. Therefore, the value k0 is such that: k0−1 ≤ x-packΘr
(W )

and x-coverΘr
(W ) ≤ k0 log k0.

As every minimal covering must contain at least one vertex or edge (depend-
ing whether x = v or x = e) of each model of a maximal packing x-packΘr

(W ) ≤
x-coverΘr

(W ), we have the two following equations:

x-packΘr
(W ) ≤ k0 log k0 ≤ (x-packΘr

(W ) + 1) log(x-packΘr
(W ) + 1) (2)

x-coverΘr
(W ) ≤ k0 log k0 ≤ (x-coverΘr

(W ) + 1) log(x-coverΘr
(W ) + 1) (3)

Dividing (2) by x-packΘr
(W ) and (3) by coverΘr

(W ), we have that: 1 ≤
k0 log k0

x-packΘr
(W ) ≤ log(x-packΘr

(W ) + 1) + log x-packΘr
(W )

x-packΘr
(W ) = O(log(x-packΘr

(W ))).

Moreover, 1 ≤ k0 log k0
x-coverΘr (W ) ≤ log(x-coverΘr

(W ) + 1) + log x-coverΘr (W )
x-coverΘr (W ) =

O(log(x-coverΘr
(W ))). Therefore the value k0 log k0 is both a O(log OPT )-

approximation of x-packΘr
(W ) and coverΘr

(W ). The value k0 can be found by a
binary search in the interval �1, n�, in O(log n) calls to Algorithm A. Hence our
approximation runs in O(n · log(n) · m) steps. �

4 Discussion

Notice that Lemma 2 holds for every finite collection H of connected graphs.
This means that the approximation algorithms of this paper could be extended
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for x-packex(H) for every connected graph H, provided that Lemma 1 holds for
H instead of θr. We conjecture that this is the case for every planar graph H.
This would also imply that the class of graphs containing H as a minor has
the vertex/edge Erdős-Pósa property if and only of H is a planar graph. In our
opinion this is one of the more general open questions on the combinatorics of
Erdős–Pósa dualities.
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Abstract. We consider the problem of maximizing a submodular func-
tion on the bounded integer lattice. As a direct generalization of submod-
ular set functions, f : {0, . . . , C}n → R+ is submodular, if f(x)+ f(y) ≥
f(x∧y)+f(x∨y) for all x, y ∈ {0, . . . , C}n where ∧ and ∨ denote element-
wise minimum and maximum. The objective is finding a vector x maxi-
mizing f(x). In this paper, we present a deterministic 1

3
-approximation

using a framework inspired by [2]. We also provide an example that
shows the analysis is tight and yields additional insight into the possibil-
ities of modifying the algorithm. Moreover, we examine some structural
differences to maximization of submodular set functions which make our
problem harder to solve.

1 Introduction

Recall that a set function f : 2N → R is called submodular if f(U) + f(W ) ≥
f(U ∩ W ) + f(U ∪ W ) for all U,W ⊆ N . Optimization problems with submod-
ular objective functions have received a lot of attention in recent years. Sub-
modular objectives are motivated by the principle of economy of scale, and thus
find many applications in real-world problems. Moreover, submodular functions
play a major role in combinatorial optimization. Several combinatorial optimiza-
tion problems have some underlying submodular structure, for example, cuts in
graphs and hypergraphs, or rank functions of matroids.

As a breakthrough result, the problem to find a subset S ⊆ N minimizing
a submodular function f has been shown to be solvable in strongly polynomial
time in [11]. In contrast, the corresponding maximization problem

max{f(S) : S ⊆ N} (1)

for a nonnegative submodular function f is easily seen to be NP-hard, as it con-
tains, for example, max cut as a special case. We refer to (1) as unconstrained
submodular maximization (USM). For USM, Buchbinder et al. presented a
deterministic 1

3 -approximation and a randomized 1
2 -approximation in [2]. Both

algorithms use a “Double Greedy” framework that starts with two different sets
and, for a fixed order of the elements, decides in each step which of the two sets
should be modified using the given element. On the other hand, Feige et al. [5]
showed that no approximation ratio better than 1

2 can be achieved.
c© Springer International Publishing Switzerland 2015
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We consider a generalization of submodular set functions: Submodular func-
tions on a subset of the integer lattice Z

n. For x, y ∈ Z
n let (x ∨ y)e denote

max{xe, ye} and (x∧y)e denote min{xe, ye} for e ∈ {1, . . . , n}. Then, a function
f : D → R on a finite set D of the form D = {x ∈ Z

n|li ≤ xi ≤ ui ∀i ∈
{1, . . . , n}} is called submodular if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) ∀x, y ∈ D.

Clearly, this captures submodular set functions since vectors with entries 0 and
1 can be seen as incidence vectors of sets and in that case ∧ and ∨ correspond
to intersection and union. D is called bounded integer lattice.

Submodular functions on the integer lattice have been studied before, for
example, in discrete convex analysis, L�-convex functions are of this type. We
provide more details in “Related Work”.

Submodular Maximization on Integer Lattices. Given a bounded integer
lattice D = {x ∈ Z

n|li ≤ xi ≤ ui ∀i ∈ {1, . . . , n}} and a submodular function
f : D → R+, we consider the problem of maximizing f on D:

max{f(x) : x ∈ D}. (2)

We will refer to (2) as Submodular maximization on a bounded integer

lattice (SMBIL). For ease of notation, we will from now on assume that li = 0
and ui = C ∀i ∈ {1, . . . , n}. Thus, we prove all results for a bounded integer
lattice of the form {0, 1, . . . , C}n, but all results in this paper can be easily
generalized to any bounded integer lattice as defined above.

As mentioned before, SMBIL generalizes USM, thus the hardness of approx-
imation holds as well.

There is another way to interpret the bounded integer lattice as well: Let
x ∈ Z

n
+ denote the incidence vector of a multiset where entries in x specify the

multiplicity of individual elements. Then SMBIL can be seen as maximizing a
submodular function on multisets containing at most C copies of each element
which gives rise to possible applications. Consider for example, a version of the
sensor deployment problem presented in [9] where we also can decide how many
sensors we want to deploy at a location, perhaps operating under the assumption
that a sensor can malfunction and thus backup sensors at vital points make sense.

Our Contribution. Interestingly, SMBIL turns out to be considerably harder
than USM. In contrast, minimization of submodular functions on the bounded
integer lattice can be solved in pseudopolynomial time since the bounded inte-
ger lattice is a distributive lattice over which a submodular function can be
minimized efficiently (see e.g. [7]).

As our main result, we present a pseudopolynomial 1
3 -approximation for

SMBIL which is tight in the sense that there exists an instance for which the
performance ratio is achieved. Notice that the pseudpolynomial running time
depends on C, i.e. in a multiset interpretation of SMBIL, it depends on the
maximal possible number of elements in a multiset.
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Our algorithm generalizes the Double Greedy approach from [2], but the
tightness example we provide for SMBIL is in some sense stronger than the one
presented for the algorithm in [2]: While that example relies on a specific bad
order in which the elements are processed, our example remains tight even if the
order of elements is not prescribed but instead the next element to be processed
is the one that improves the objective function the most.

While a randomized version of the Double Greedy provides a 1
2 -

approximation for the Boolean case, the question whether we can achieve
that approximation guarantee for SMBIL remains open. We discuss several
approaches for randomizing our algorithm and identify the underlying struc-
tures that render SMBIL considerably harder than USM. For example, [5] relies
upon a property of local maxima for submodular functions which does not hold
for SMBIL.

Related Work. The study of USM goes back to the sixties and has occupied
researchers ever since. A comprehensive study on USM has been done by Feige,
Mirrokni and Vondrák in [5] who provide and analyze several constant approx-
imation algorithms for USM. In particular, they present a simple Local Search
algorithm that yields a 1

3 -approximation. Using a noisy version of f as objective
function, they could improve the performance guarantee to 2

5 . Feige et al. in [5]
also showed that we cannot hope for a performance guarantee lower than 1

2 .
They could prove that any 1

2 + ε -approximation would require an exponen-
tial number of queries to the oracle. For symmetric submodular functions, they
already show that the ratio is tight. Subsequently, Oveis Gharan and Vondrak
[14] and Feldmann, Naor and Schwartz [6] improved the approximation ratio to
0.41 and 0.42 respectively and finally Buchbinder, Feldmann, Naor and Schwartz
closed the gap and gave a randomzied 1

2 -approximation for USM in [2]. Recently,
Buchbinder and Feldman ([3]) also showed how to derandomize this algorithm
to obtain a deterministic 1

2 -approximation.
Inaba et al. ([12]) examined the problem of maximizing monotone submodu-

lar functions subject to a knapsack constraint on the bounded integer lattice and
obtained an approximation guarantee of 1− 1

e , which is identical to the guarantee
for set functions. Soma and Yoshida considered maximizing monotone submod-
ular functions that satisfy an additional property subject to various constraints
in ([16]).

While our main interest in SMBIL is of a theoretical nature with the ulti-
mate goal to gain a better understanding of submodular function maximization,
there are applications where submodular functions on the integer lattice play
a crucial role. For example, Bolandnazar et al. ([1]) showed that Assemble-to-
Order Systems for supply chain management can be optimized by minimizing a
submodular function on the integer lattice. [12] discusses several applications of
their problem as well, e.g. budget allocation and sensor placement.

In discrete convex analysis, several special cases of submodular functions
on the integer lattice have been investigated. For example, L�-convex and M �-
concave functions are submodular and M �-concave functions can be maximized
in polynomial time ([13]).
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Preliminaries. As usual, we assume that a submodular function f is given
by an oracle. Moreover, Feige et al. mention in [5] that for general submodular
functions, it is NP-hard to decide whether there exists a set S such that f(S) > 0.
Since our main goal is finding good approximation algorithms, restricting to non-
negative submodular functions makes sense.

For a vector x ∈ Z
n we denote by (x|xj = k) the vector where all but

the entry xj remain the same and xj is set to k. As usual, [n] denotes the set
{0, 1, . . . , n} and ei ∈ {0, 1}n denotes the vector where ei

i = 1 and ei
j = 0 for all

j �= i.

2 Approximating SMBIL

In this section, we first present a 1
3 -approximation for SMBIL which is inspired

by [2]. Then, we show that our analysis is tight and discuss approaches for a
randomized Double Greedy algorithm. “Double Greedy” refers to the idea that
we start with two vectors a and b and modify them until both vectors are equal,
while ensuring f never decreases. In the beginning ai = 0 and bi = C ∀i ∈
{1, . . . , n}, i.e. initially, a (resp. b) is the unique minimal (maximal) element in
D. Now, we traverse the components in a fixed order: For a given index i, we
change ai and bi while maintaining a ≤ b without decreasing the submodular
function f .

In the scenario where the integer lattice is bounded by 1, our Algorithm 1
coincides to the one in [2] when vectors are interpreted as characteristic vectors
of sets.

Theorem 1. Let f : [C]n → R+ be a nonnegative submodular function. Then
Algorithm 1 is a 1

3 -approximation for SMBIL and has running time O(CnT )
where T is the time for one call to the oracle representing f .

2.1 Proof of Theorem 1

The proof of Theorem 1 relies upon two lemmas. First, we show that Algorithm 1
really is a Greedy algorithm in the sense that f never decreases:

Lemma 1. Let f : [C]n → R+ be a submodular function. Then for all 1 ≤ i ≤
2n and vectors ai, bi as in Algorithm 1 the following holds: f(ai) ≥ f(ai−1) and
f(bi) ≥ f(bi−1).

Proof. Let k be the component in which the vectors ai−1 and bi−1 will be changed
in an iteration of the loop.

By definition, δa,i and δb,i are nonnegative. Suppose that a is changed first,
i.e. δa,i ≥ δb,i, then clearly, the lemma holds for ai−1 and ai and bi = bi−1. Now
we show that the change from bi to bi+1 does not lead to a decrease in f :
We have f(bi−1|bi−1

k = ai
k) + f(ai−1|ai−1

k = C) ≥ f(ai−1|ai−1
k = ai

k) + f(bi−1)
by submodularity of f .



Submodular Function Maximization on the Bounded Integer Lattice 137

Algorithm 1. Generalized Double Greedy for SMBIL
Input: A bounded integer lattice defined by a bound C and a dimension n, a
nonnegative submodular function f on [C]n Output: A vector a ∈ [C]n Choose
an order l1, . . . , ln of the n components of the vectors. Set
a0
j = 0, b0j = C ∀1 ≤ j ≤ n, i = 1

for k = 1 to n do
δa,i = maxc∈[C] f(ai−1|ai−1

lk
= c) − f(ai−1)

δb,i = maxc∈[C] f(bi−1|bi−1
lk

= c) − f(bi−1)

if δa,i ≥ δb,i then
Let c′ be the maximal number among those for which δa,i is obtained.
ai = (ai−1|ai−1

lk
= c′), bi = bi−1

ai+1 = ai, bi+1 = (bi|bilk = c′)

else
Let c′ be the minimal number among those for which δb,i is obtained.
ai = ai−1, bi = (bi−1|bi−1

lk
= c′)

bi+1 = bi, ai+1 = (ai|ai
lk

= c′)

i = i + 2

return a2n

As f(ai−1|ai−1
k = ai

k) ≥ f(ai−1|ai−1
k = c) ∀ ai−1

k ≤ c ≤ C, the above implies

f(bi−1|bi−1
k = ai

k) − f(bi−1) ≥ f(ai−1|ai−1
k = ai

k) − f(ai−1|ai−1
k = C) ≥ 0.

Since bi−1 = bi and bi+1 = (bi−1|bi−1
k = ai

k), it follows that f(bi+1) ≥ f(bi) as
desired.

Moreover, defining bi+1 as in the algorithm also yields the biggest increase
in f : Assume there exists c > ai

k such that f(bi|bi
k = c) > f(bi|bi

k = ai
j). Then,

by submodularity,

0 > f(bi|bi
k = ai

k) − f(bi−1|bi
k = c) ≥ f(ai) − f(ai|ai

k = c),

which contradicts the definition of δa,i as the maximal increase in f for ai−1.
The case where δb,i > δa,i can be shown in the same way. �

Let OPT denote a fixed optimal solution for SMBIL. In order to bound
the value of a solution of Algorithm 1 with respect to the optimum, we define
OPT i = (OPT ∨ ai) ∧ bi analogous to [2]. Consequently, OPT 0 = OPT and
OPT 2n = a2n = b2n. In Lemma 2, we show f(OPT i−1) − f(OPT i) ≤ f(ai) −
f(ai−1) + f(bi) − f(bi−1), i.e. the increase in OPT i is bounded for each change
of the vectors a or b.

Then, we can use Lemma 2 to prove Theorem 1: f(OPT 0) − f(OPT 2n) =
2n∑

i=1

(f(OPT i−1) − f(OPT i)) ≤
2n∑

i=1

(
f(ai) − f(ai−1)

)
+

2n∑

i=1

(
f(bi) − f(bi−1)

)
=

f(a2n)+f(b2n)−f(a0)−f(b0) ≤ f(a2n)+f(b2n). This is equivalent to f(OPT ) ≤
3f(a2n) and the algorithm returns a2n. Since the running time is obvious, this
concludes the proof of Theorem 1 except for Lemma 2:
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Lemma 2. For a submodular function f : [C]n → R+ the following holds in
Algorithm 1 for all 1 ≤ i ≤ 2n where OPT i := (OPT ∨ ai) ∧ bi:

f(OPT i−1) − f(OPT i) ≤ f(ai) − f(ai−1) + f(bi) − f(bi−1).

Proof. Let us consider the case where ai �= ai−1 and let k be the index, where
the vectors differ. If ai

k ≤ OPTk then OPT i−1
k = OPT i

k since bi
k = bi−1

k and
thus OPT i−1 = OPT i. Since Lemma 1 implies that the right-hand side of the
equation is nonnegative, the inequality holds.

So we assume now that ai
k > OPTk. Since bi

k ≥ ai
k, we have OPT i

k = ai
k, all

other entries of OPT i−1 remain unchanged. Moreover, ai−1
k = 0, so OPT i−1

k =
OPTk.

Submodularity of f implies

f(OPT i) + f(bi−1|bi−1
k = OPTk) ≥ f(OPT i−1) + f(bi−1|bi−1

k = ai
k) (3)

⇔ f(OPT i) + f(bi−1|bi−1
k = OPTk) − f(bi−1)

≥ f(OPT i−1) + f(bi−1|bi−1
k = ai

k) − f(bi−1).

Suppose that f(OPT i−1) − f(OPT i) > f(ai) − f(ai−1), otherwise we are done.
Using this assumption and (3) yields

f(bi−1|bi−1
k = OPTk) − f(bi−1) + f(OPT i−1) − (f(ai) − f(ai−1))

>f(bi−1|bi−1
k = OPTk) − f(bi−1) + f(OPT i)

≥f(OPT i−1) + f(bi−1|bi−1
k = ai

k) − f(bi−1).

But we have f(ai) − f(ai−1) ≥ f(bi−1|bi−1
k = c) − f(bi−1) ∀ ai−1

k ≤ c ≤ bi−1
k .

This is true by design of the algorithm for the first change in an iteration of
the loop. For the second change in an iteration, the other vector cannot improve
further, so the claim holds as well.

This implies

0 ≥ f(bi−1|bi−1
k = OPTk) − f(bi−1) − (f(ai) − f(ai−1)) (4)

> f(bi−1|bi−1
k = ai

k) − f(bi−1).

But in the proof of Lemma 1, we have shown that f(bi−1|bi−1
k = ai

k)−f(bi−1) ≥ 0,
so (4) is a contradiction.

The case bi �= bi−1 can be treated analogously and if neither case applies,
then clearly OPT i = OPT i−1 as well. �

2.2 The Guarantee of 1
3

is tight

Since Algorithm 1 generalizes the deterministic algorithm in [2], the tight exam-
ple they provide also works for our algorithm. But our example has a few addi-
tional properties: First, even if we do not prescribe the order of the components
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in advance and instead choose the index that results in the biggest increase in
f for each step, the algorithm does not yield a better solution (see Theorem 2
below) which is not true for the example provided in [2]. Second, we will show in
the next section that our example also implies that an analogue to the analysis
of the randomized algorithm in [2] is not possible for bounded integer lattices.

Theorem 2. For an arbitrarily small constant ε > 0 there exists a submodu-
lar function for which Algorithm 1 provides only a 1

3 + ε-approximation. This
result still holds if the components are ordered such that at any time the chosen
component yields the biggest increase in f .

Fig. 1. Each node corresponds to a vector in {0, 1, 2}3, written next to it, with the
value of f within the node. The picture can be read similar to Hasse diagrams of
posets: There is a line connecting two vectors, if their L1-distance equals 1. If we think
of the edges as being directed upwards, then the meet of two vectors is their biggest
common predecessor, and their join the smallest common successor.

Proof. Consider the following submodular function f : {0, 1, 2}3 → R+. Let
f ′(a) = min{|{ai : ai > 0}|, |{ai : ai < 2}|}. Now we define f(a) = 1 + ε if
a consists of either the entries 2, 0, 2 or 2, 0, 0 in any order. We set f(2, 1, 0) =
f(0, 1, 2) = 1 + ε. For all other vectors, we set f(a) = f ′(a). It can be checked
that f is indeed submodular. To give a better intuition, Fig. 1 illustrates this
function.
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We analyze Algorithm 1 for this instance: Obviously, the optimum is the
vector (1, 1, 1) of value 3, but depending on the order in which the entries of the
vectors are processed, Algorithm 1 may terminate with a set of value 1 + ε: Let
l1, l2, l3 be the predetermined order. In the first iteration, the maximal possible
gain in f is 1 + ε = δa,1 = δb,1. So we we set a1

l1
= 2 and b2l1 = 2. Next,

δb,3 = 1 + ε > δa,3 and thus b3l2 = 0 and a4
l2

= 0. What happens now depends on
the chosen order of indices, consider 1, 3, 2. Then a4 = (2, 0, 0) and b4 = (2, 2, 0),
both of value 1 + ε and the algorithm returns the vector a6 = b6 = (2, 2, 0) of
value 1+ ε. Since the maximal possible gain in f is 1+ ε for the first two indices
we consider, independent of the order, the same order could have been chosen
by an algorithm that always processes the index which maximizes the gain in f .

Notice that the order 3, 1, 2 works analogously and that the tie-braking rule
for δ does not influence the value of the output, independent of the order of
indices. �

2.3 Difficulties in Randomizing the Algorithm

For the USM case, [2] also presents a randomized “Double Greedy” algorithm
which gives a guarantee of 1

2 : They decide with probability proportional to the
increase in f whether to add a given element to one set or delete it from the
other. In our context, this is equivalent to choosing whether entries ai and bi

are set to 0 or 1. We show that a similar analysis cannot work if we adapt their
idea to our algorithm. We consider two possible strategies of generalizing the
algorithm above. One is the following: For given vectors a, b and an index i we
can consider all possibilities to increase ai or decrease bi such that a ≤ b remains
true and choose one of these possibilities at random (again proportional to the
increase in f). We will show this leads to arbitrarily bad solutions.

The other alternative is more similar to our previous algorithm: We deter-
mine the best choice for a and b and then choose between the two options with
probability proportional to the δ-values, i.e. the maximal possible gain in f .
While it is possible that this actually is a 1

2 -approximation, we can so far only
show that this randomized algorithm gives the same guarantee as the deter-
ministic version. Indeed, we will show that an analysis as in [2] which bounds
the expected decrease of f(OPT i) in each step cannot prove a guarantee better
than 1

3 by examining the tight example for the deterministic algorithm which
was given in Sect. 2.2. So, while it might still be true that this randomized ver-
sion of our algorithm actually is a 1

2 -approximation (for example, the worst case
expected value in the given example is 1.5 + ε), we would require an analysis
that takes a more global view.

We should note that for the Boolean lattice, both these approaches are iden-
tical and correspond to the randomized algorithm in [2].

Randomized Choice over All Possible Solutions

Lemma 3. Consider the following randomized version of Algorithm 1: Assume
an order in which we iterate over the indices is given, consider index i. While
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ai < bi, randomly set either a = (a|ai = c) or b = (b|bi = c) where the choice is
made over all ai ≤ c ≤ bi proportional to the increase in f if it is positive. If the
increase in f is non-positive for all possibilities, we arbitrarily choose an option
where the increase in f is 0, but a or b are changed. This algorithm for SMBIL
can perform arbitrarily bad.

Proof. First, we remark that in the case where the increase in f is non-positive
everywhere, a choice as above exists. We now analyze the following instance:
Given C ∈ N, ε > 0, define a submodular function f : [C]2 → R as follows:

f(x) =

⎧
⎪⎨

⎪⎩

0, if x = (0, 0) or x = (C,C)
1 if x = (C, 0)
ε else

.

Our randomized algorithm starts with a = (0, 0) and b = (C,C). We fix an
index, say 1. Until a1 = b1, we change entry a1 or b1 and choose a value such
that a1 ≤ b1 at random proportional to the increase in f . I.e., for the first step,
we have 2C options where the increase in f is positive, all but one (setting
a1 = C) will be taken with probability ε

(2C−1)ε+1 .
After the first step, either b1 < C or a1 > 0. In the second case, if a1 < C,

the only options now to increase f are changing b1 or setting a1 = C. Therefore,
after two steps either a1 = C or b1 < C and depending on which of these holds,
the return value will be 1 or ε. Thus, the probability for the algorithm to return
a vector of value ε is

Pr[b is changed first] +
C−1∑

i=1

Pr[a1 is set to i first, then b is changed]

=
Cε

(2C − 1)ε + 1
+

ε

(2C − 1)ε + 1

C−1∑

i=1

(C − i)ε
(C − i)ε + 1 − ε

Since for C → ∞ this expression converges to 1, the expected return value of
the algorithm converges to ε, for details we refer to the extended version. �
Note that variations like randomizing over combinations of values for ai and
bi and choosing proportional to the sum of the increases in f show a similar
behavior.

Randomized Choice over the Best Possible Solutions

Lemma 4. Consider the following randomized version of Algorithm 1: Instead
of deciding to change ai−1 or bi−1 depending on whether δa,i ≥ δb,i, randomly
change a or b proportional to max{0, δa,i} and max{0, δb,i}. Then adapt the
other vector as before. For this algorithm, there is no constant c < 1 such that
E[f(OPT i−1) − f(OPT i)] ≤ c · E[f(ai) − f(ai−1) + f(bi) − f(bi−1)].
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In particular, unlike in [2], an analysis that bounds the expected decrease of
OPT i by the expected increase in a and b in each step can not yield an approx-
imation factor better than 1

3 .

Proof. As before, OPT i is defined as (OPT ∨ai)∧bi for a fixed optimal solution
OPT . Consider the example presented in the previous section in Fig. 1. No mat-
ter how we choose the first index j, aj = 2 or bj = 0 both with equal probability.
Thus, OPT 1 consists of the entries 0, 1, 1 or 2, 1, 1 and thus has value 2 in both
scenarios which implies E[f(OPT 0) − f(OPT 1)] = 1

2 · ((3 − 2) + (3 − 2)) = 1
and E[f(a1) − f(a0) + f(b1) − f(b0)] = 2 · 1

2 · (1 + ε). Note that the statement
is true no matter how the order of indices is chosen. �

3 Structural Differences in SMBIL and USM

There are a number of interesting differences between properties of submodular
set functions and of submodular functions on the integer lattice. First of all,
note that for n = 1 we cannot expect f to have any structure since all functions
are submodular for n = 1. Therefore, we investigate the case where n > 1. We
will present a examples to give an intuition what are the challenges of SMBIL
compared to USM. First of all, note that for n = 1 we cannot expect f to have
any structure, since in that case, all functions are submodular. Therefore, we
investigate the case where n > 1.

The local search approach presented in [5] uses a generalization of the
following result (Theorem 3) about local optima. For a submodular function
f : [C]n → R+, we follow the definition used in [13] and say that x is a local
optimum if f(x) ≥ max{f((x − p) ∨ 0), f((x + p) ∧C)} for all p ∈ {0, 1}n. Here,
0 (resp. C) denote the vectors consisting of all 0s, (resp Cs). These ensure that
all values are within the domain of f . This definition is more general than the
one commonly used on the Boolean lattice, where a local optimum is compared
to all sets that can be constructed by adding or deleting one element.

Theorem 3 [8]. Given a submodular function f : {0, 1}n → R+, if x is a
local optimum (w.r.t. the Boolean lattice) of f and if y ≥ x or y ≤ x, then
f(x) ≥ f(y).

But the above theorem is no longer true for the integer lattice even for the
stronger definition of local optima:

Proposition 1. There exists a submodular function f : [C]n → R+, n > 1 with
a local optimum x and a vector y with y ≥ x such that f(y) > f(x).

Consider a submodular function f : {0, 1, 2}2 → R
+ defined as follows: f(0, 0) =

1, f(1, 0) = 2, f(2, 0) = 1. Now f(i, 1) = f(i, 0) − 1, f(i, 2) = f(i, 0) + 1 except
for f(0, 2) = λ for some λ ≥ 2. This function is submodular and (1, 0) is a local
optimum, but 3 = f(1, 2) > 2 = f(1, 0). For an illustration, see Fig. 2.
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Fig. 2. Each node cor-
responds to a vector in
{0, 1, 2}2, the values in the
nodes define a submodular
function f for any λ ≥ 2.

Moreover, a simple Greedy algorithm also shows
different behaviors for USM and SMBIL:

Proposition 2. Let f : [C]n → R+ be a submod-
ular function. Consider the following Greedy algo-
rithm: Start with the all-zero vector a = (0, . . . , 0).
While it is possible to not decrease a by increasing
an entry by one (i.e. there exists i with f(a + ei) ≥
f(a)), choose the best variant and update a (i.e. set
a = a + ei for i = argmax1≤i≤n

(
f(a + ei) − f(a)

)
).

This is an O(n)-approximation for C = 1 and arbi-
trarily bad for C > 1.

In the Boolean case, this is the simplest possible
Greedy: We start with the empty set and add the
best element as long as that is possible without
decreasing f . It is folklore that this is an O(n)-

approximation and there are instances where this bound is tight even for the
special case of Directed max cut. For SMBIL on the other hand, such an
algorithm can be arbitrarily bad, as we can see by examining the previous sub-
modular function. Such a Greedy algorithm will never increase the second entry
in the vector from 0, so it can never reach the element of value λ, no matter how
large λ is.

4 Discussion and Open Problems

One of the main remaining questions is, of course, whether there is a 1/2- approxi-
mation for SMBIL or whether the problem is harder to approximate than USM.
One could rightfully ask why we use a Greedy strategy instead of e.g. using
multilinear relaxation introduced in [4] which was successfully applied to USM.
Generalizing this to our setting, however, induces several problems. In partic-
ular, for the natural generalization of the multilinear relaxation to the domain
[0, C]n the partial derivatives do not exist everywhere.

Furthermore, maximizing a submodular function on distributive lattices is
an interesting generalization of SMBIL with connections to algorithmic game
theory: In [15] Schulz et al. used USM as a subroutine to approximate the least
core in cooperative games with supermodular costs. If we consider this problem
for distributive games as introduced by Grabisch et al. ([10]) with supermodular
cost functions, a good approximation for maximizing submodular functions on
distributive lattices would be helpful. Unfortunately, our results do not easily
generalize to submodular functions on distributive lattices.

Acknowledgement. We thank S.Thomas McCormick and Kazuo Murota for fruitful
discussions.
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5. Feige, M.: Vondrák: Maximizing Non-Monotone Submodular Functions. SIAM
Journal on Computing 40(4), 1133–1153 (2011)

6. Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization
via a structural continuous greedy algorithm. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 342–353. Springer, Heidelberg
(2011)

7. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Math-
ematics, vol. 58, 2nd edn, pp. 305–308. Elsevier, New York (2005)

8. Goldengorin, B., Tijssen, G., Tso, M.: The maximization of submodular functions:
old and new proofs for the correctness of the dichotomy algorithm. Technical report
99A17, University of Groningenm Research Institute SOM (1999)

9. Golovin, D., Krause, A.: Submodular function maximization. In: Bordeaux, L.,
Hamadi, Y., Kohli, P. (eds.) Tractability: Practical Approaches to Hard Problems.
Cambridge University Press, Cambridge (2014)

10. Grabisch, M., Xie, L.: The restricted core of games on distributive lattices: how to
share benefits in a hierarchy. Math. Methods Oper. Res. 73, 189–208 (2011)

11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin (1988)

12. Inaba, K., Kakimura, N., K., K., Soma, T.: Optimal budget allocation: Theoret-
ical guarantee and efficient algorithm. In: Proceedings of the 31st International
Conference on Machine Learning, pp. 351–359 (2014). JMLR.org

13. Murota, K.: Submodular function minimization and maximization in discrete con-
vex analysis. RIMS Kokyuroku Bessatsu B23, 193–211 (2010)

14. Oveis Gharan, S., Vondrák, J.: Submodular maximization by simulated annealing.
In: SODA, pp. 1098–1117 (2011)

15. Schulz, A., Uhan, N.: Approximating the least core value and least core of coop-
erative games with supermodular costs. Discrete Optim. 10(2), 163–180 (2013)

16. Soma, T., Yoshida, Y.: Maximizing submodular functions with the diminishing
return property over the integer lattice. CoRR 2015. abs/1503.01218

http://arxiv.org/abs/1508.02157
http://www.JMLR.org
http://arxiv.org/abs/1503.01218


Geometric Hitting Set for Segments
of Few Orientations

Sándor P. Fekete1, Kan Huang2, Joseph S.B. Mitchell2, Ojas Parekh3,
and Cynthia A. Phillips3(B)

1 TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

2 Stony Brook University, Stony Brook, NY, USA
{khuang,jsbm}@ams.sunysb.edu

3 Sandia National Labs, Albuquerque, NM, USA
{odparek,caphill}@sandia.gov

Abstract. We study several natural instances of the geometric hitting
set problem for input consisting of sets of line segments (and rays, lines)
having a small number of distinct slopes. These problems model path
monitoring (e.g., on road networks) using the fewest sensors (the “hitting
points”). We give approximation algorithms for cases including (i) lines
of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii)
pairs of horizontal/vertical segments. We give hardness and hardness of
approximation results for these problems. We prove that the hitting set
problem for vertical lines and horizontal rays is polynomially solvable.

1 Introduction

The set cover problem is fundamental in combinatorial optimization. It is NP-
hard and has an O(log n)-approximation algorithm, which is best possible (unless
P = NP , [13]). Equivalently, set cover can be cast as a hitting set problem:
given a collection, C, of subsets of set U , find a smallest cardinality set H ⊆ U
such that every set in C contains at least one element of H. Numerous special
instances of set cover/hitting set have been studied. Our focus in this paper is on
geometric instances that arise in covering (hitting) sets of (possibly overlapping)
line segments using the fewest points (“hit points”). A closely related problem is
the “Guarding a Set of Segments” (GSS) problem [3,5,6,25], in which the seg-
ments may cross arbitrarily, but do not overlap. Since this problem is strongly
NP-complete [5] in general, our focus is on special cases, primarily those in which
the segments come from a small number of orientations (e.g., horizontal, verti-
cal). We provide several new results on hardness and approximation algorithms.

We also are motivated by the path monitoring problem: given a set of trajec-
tories, each a path of line segments in the plane, place the fewest sensors (points)
to observe (hit) all trajectories. To gain theoretical insight into this challeng-
ing problem, we examine cleaner, but progressively harder, versions of hitting
trajectory/line-like objects with points. If the trajectories are on a Manhattan
road network, the paths are (possibly overlapping) horizontal/vertical segments.
c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 145–157, 2015.
DOI: 10.1007/978-3-319-28684-6 13



146 S.P. Fekete et al.

Alternatively, one wishes to place the fewest vendors or service stations in a road
network to service a set of customer trajectories.

Our Results. We give complexity and approximation results for several geo-
metric hitting set problems on inputs S of line “segments” of special classes,
mostly of fixed orientations. The segments are allowed to overlap arbitrarily.
We consider various cases of “segments” that may be bounded (line segments),
semi-infinite (rays), or unbounded in both directions (lines). Our results are:

(1) Hitting lines of 3 slopes in the plane is NP-hard (greedy is optimal for 2
slopes). For set cover with set size at most 3, standard analysis of the greedy
algorithm gives an approximation factor of H(3) = 1+(1/2)+(1/3) = (11/6),
and there is a 4/3-approximation based on semi-local optimization [15]. We
prove that the greedy algorithm in this special geometric case is a (7/5)-
approximation.

(2) Hitting vertical lines and horizontal rays is polytime solvable.
(3) Hitting vertical lines and horizontal (even unit-length) segments is NP-hard.

Our proof shows hitting horizontal and vertical unit-length segments is
also NP-hard. We prove APX-hardness for hitting horizontal and vertical
segments.

(4) Hitting vertical lines and horizontal segments has a (5/3)-approximation
algorithm. (This problem has a straightforward 2-approximation).

(5) Hitting pairs of horizontal/vertical segments has a 4-approximation. Hitting
pairs having one vertical and one horizontal segment has a (10/3)-approx-
imation. These results are based on LP-rounding. More generally, hitting
sets of k segments from r orientations has a (k · r)-approximation algorithm.

(6) We give (in the full paper) a linear-time combinatorial 3-approximation
algorithm for hitting triangle-free sets of (non-overlapping) segments. A 3-
approximation for this version of GSS was recently given [25] using linear
programming.

Related Work. There is a wealth of related work on geometric set cover and
hitting set problems; we do not attempt here to give an exhaustive survey. The
point line cover (PLC) problem (see [23,27]) asks for a smallest set of lines to
cover a given set of points; it is equivalent, via point-line duality, to the hitting
problem for a set of lines. The PLC (and thus the hitting problem for lines) was
shown to be NP-hard [30]; in fact, it is APX-hard [7] and Max-SNP Hard [28].
The problem has an O(log OPT )-approximation (e.g., greedy – see [26]); in fact,
the greedy algorithm for PLC has worst-case performance ratio Ω(log n) [16].

Hassin and Megiddo [22] considered hitting geometric objects with the fewest
lines having a small number of distinct slopes. They observed that, even for cov-
ering with axis-parallel lines, the greedy algorithm has an approximation ratio
that grows logarithmically. They gave approximations for the problem of hitting
horizontal/vertical segments with the fewest axis-parallel lines (and, more gen-
erally, with lines of a few slopes). Gaur and Bhattacharya [19] consider covering
points with axis-parallel lines in d-dimensions; they give a (d−1)-approximation
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based on rounding the corresponding linear program (LP) formulation. Many
other stabbing problems (find a small set of lines that stab a given set of objects)
have been studied; see, e.g., [14,17,20,21,26,29].

A recent paper [25] gives a 3-approximation for hitting sets of “triangle-
free”segments. Brimkov et al. [3,5,6] have studied the hitting set problem on line
segments, including various special cases; they refer to the problem as “Guarding
a Set of Segments”, or GSS. GSS is a special case of the “art gallery problem:”
place a small number of “guards” (e.g., points) so that every point within a geo-
metric domain is “seen” by at least one guard [32,34]. Brimkov et al. [4] provide
experimental results for three GSS heuristics, including two variants of “greedy,”
showing that in practice the algorithms perform well and are often optimal or
very close to optimal. They prove, however, that, in theory, the methods do not
provide worst-case constant-factor approximation bounds. For the special case
that the segments are “almost tree (1)” (a connected graph is an almost tree (k)
if each biconnected component has at most k edges not in a spanning tree of the
component), a (2 − ε)-approximation is known [3].

An important distinction between GSS and our problems is that allow over-
lapping (or partially overlapping) segments (rays, and lines), while, in GSS, each
line segment is maximal in the input set of line segments (the union of two dis-
tinct input segments is not a segment). A special case of our problem is interval
stabbing on a line: Given a set of segments (intervals), arbitrarily overlapping on
a line, find a smallest hitting set of points that hit all segments. A simple sweep
along the line solves this problem optimally: when a segment ends, place a point
and remove all segments covered by that point.

If no point lies within three or more objects, then the hitting set problem
is an edge cover problem in the intersection graph of the objects. In particular,
if no three segments pass through a common point, the problem can be solved
optimally in polynomial time. (This implies that in an arrangement of “random”
segments, the GSS problem is almost surely polynomially solvable; see [3]).

Hitting axis-aligned rectangles is related to hitting horizontal and ver-
tical segments. Aronov, Ezra, and Sharir [2] provide an O(log log OPT )-
approximation for hitting set for axis-aligned rectangles (and axis-aligned
boxes in 3D), by proving a bound of O(ε−1 log log(ε−1)) on the ε-net size of
the corresponding range space. The connection between hitting sets and ε-
nets [8,11,12,18] implies a c-approximation for hitting set if one can compute an
ε-net of size c/ε; recent major advances [1,33] on lower bounds on ε-nets imply
that associated range spaces (rectangles and points, lines and points, points and
rectangles) have ε-nets of size superlinear in 1/ε. Remarkably, improved (1+ ε)-
approximation algorithms (i.e., PTASs) for certain geometric hitting set and set
cover problems are possible with simple local search. For example, Mustafa and
Ray [31] give a local search PTAS for computing a smallest subset, of a given
set of disks, that covers a given set of points. Hochbaum and Maas [24] used
grid shifting to obtain a much earlier PTAS for the minimum unit disk cover
problem when disks can be placed anywhere in the plane, not restricted to a
discrete input set.
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2 Hitting Segments

Suppose S is a set of line segments in the plane. If all segments are horizontal,
then we can compute an optimal hitting set by independently solving the interval
stabbing problem along each of the horizontal lines determined by the input.

If the segments are of two different orientations (slopes), then the problem
becomes significantly harder. Without loss of generality, assume the segments
are horizontal and vertical. We show the problem is hard even if the axis-parallel
segments are all the same length. This result (Corollary 1) is a consequence of
an even stronger result, Theorem 4, which we establish in Sect. 5.

We get an immediate 2-approximation algorithm by solving optimally each
of the two orientations, and using the union of the hitting points for both. (This
generalizes to a k-approximation for hitting sets of segments of k orientations).

3 Hitting Lines

When S is a set of n lines in the plane, greedy gives an O(log OPT ) approxi-
mation factor; any approximation factor better than logarithmic would be quite
interesting. (See [16,27].) If the lines have only 2 slopes, then greedy is optimal.

3.1 Hardness of Hitting Lines of 3 Slopes in 2D

We prove that the hitting set problem is NP-hard when lines have more than
two orientations. Consider the dual formulation: (3-Slope-Line-Cover, 3SLC)
Find a minimum-cardinality set of non-vertical lines to cover a set P of points
(duals to the set S of lines), which are known to lie on three vertical lines.

We prove (in the full paper) that 3SLC is NP-hard from 3-SAT, using variable
gadgets and clause gadgets that rely on carefully placed points on three vertical
lines. “Propagation” of variable assignments is determined by triples of points
on distinct vertical lines coverable by a single line.

Theorem 1. The problem 3SLC is NP-complete.

3.2 Analysis of the Greedy Hitting Set Algorithm for Lines of 3
Slopes in 2D

If no point lies in more than k sets, the greedy algorithm’s approximation factor
is H(k) =

∑k
i=1(1/i) [10]. This property holds for lines of 3 slopes with k = 3,

giving a greedy approximation factor H(3) = 11/6. We give a new analysis,
exploiting the special geometric structure of the hitting set problem for lines of
3 slopes, to obtain an approximation factor (7/5); see the full paper.

3.3 Axis-Parallel Lines in 3D

While in 2D the hitting set problem for axis-parallel lines is easily solved, in
3D we prove (in the full paper) that the corresponding hitting set problem is
NP-hard, using a reduction from 3-SAT.

Theorem 2. Hitting set for axis-parallel lines in 3D is NP-complete.
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4 Hitting Rays and Lines

Hitting rays is “harder” than hitting lines, since any instance of hitting lines has
a corresponding equivalent instance as a hitting rays problem (place the apices of
the rays far enough away that they are effectively lines). Unlike lines, there can
be many different collinear rays. Divide collinear rays into two groups according
to the direction they point along the containing line, �; because of nesting, we
need keep only one of the rays pointing in each of the two directions along �.

We show that the special case with horizontal rays and vertical lines (abbre-
viated HRVL) is exactly solvable in polynomial time:

Theorem 3. The hitting set problem for vertical lines and horizontal rays can
be solved in O(nT ) time, where n is the number of entities and T is the time for
computing a maximum matching in a bipartite graph with n nodes.

We begin with a high-level overview of the algorithm. A point can cover at most
3 objects: a vertical line, a left-facing ray, and a right-facing ray. This requires
the two rays to intersect in a segment, and the vertical line to intersect this
segment. We call these points 3-hitters. We can compute the maximum possible
number of 3-hitters via maximum matching in a bipartite graph, where edges
represent intersections between vertical lines and horizontal segments. We prove
there exists an optimal solution with this maximum number of 3-hitters. The
algorithm performs a sweep inward from the left and right, finding a suitable
set of 3-hitters, ensuring the remaining lines have the best possible chance to
share a point with the remaining rays. Once everything that is 3-hit is removed,
the remaining objects intersect in at most pairs. So we can finish the hitting by
solving an edge cover problem between rays and lines. We prove this is optimal.

We now give additional algorithmic and proof details. We call a horizontal
ray to the left (resp., right) an l-ray (resp. r-ray). In this section, all lines are
vertical. If two collinear rays are disjoint, we shift one ray slightly up or down,
so no two disjoint rays are collinear. These rays cannot be covered by a single
point, so this does not fundamentally alter the optimal solution.

If a line only contains one ray, we add a ray to pair with it. For example, if an
r-ray intersects no l-ray, we add an intersecting l-ray whose right endpoint is to
the right of all vertical input lines. This additional ray won’t change the optimal
solution. If an l-ray and r-ray intersect, their intersection is a segment. Since all
rays intersect another ray, we represent each pair of rays by their segment.

Let H and V denote the number of segments and lines respectively. Any solu-
tion requires V points to cover the lines. Those points can help “hit” segments in
two possible ways: (1) Place a point on the segment. We call the corresponding
line a 3-hitter and say the segment is 3-hit by the line. (2) Hit each ray outside
its intersecting segment. This requires two points. We call the left(right) line an
l-hitter(r-hitter). We say the segment is double-hit by those two lines.

Let v1 and v2 be the number of segments hit by the V points in the first and
second ways respectively. Then the number of points in the solution is H + V −
v1 − v2. We must put a point on each line to hit as many segments as possible.
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Given an instance of HRVL, we can calculate the maximum number of 3-
hitters. We construct a bipartite graph G where one set of nodes is the lines and
the other set of nodes is the segments. There is an edge between two nodes if
and only if the line and segment they represent intersect. Maximum matching
in a bipartite graph is solvable in polynomial time. A matching in the graph
represents a set of independent intersections in the corresponding HRVL. That
is, a set of M edges in a matching corresponds to a way to cover M segments and
M lines with M points. These are coverages of type 1. The following intuitive
lemma shows it is better to adopt the first way to hit segment.

Lemma 1. For any instance of HRVL, there is a maximum matching between
lines and segments that can be augmented to be an optimal solution.

Proof Sketch. We use contradiction. Let v∗
1 be the largest v1 for any minimum

hitting set. We assume that v∗
1 is less than m, the cardinality of the maximum

matching between lines and segments. Thus, there is an augmenting path in
the bipartite graph G, such as the green path in Fig. 1. Because the current
solution is optimal, any augmenting path cannot improve it. This allows us to
infer some properties of the first segment and the last line on the augmenting
path. We consider the augmenting path P with the shortest length and the
shortest horizontal distance between the last two lines. Then by case analysis
on path P , we argue there exists another augmenting path that increases v∗

1 or
violates a minimality condition of P . The proof appears in the full paper.

Fig. 1. A green augmenting path: the
matching size increases by replacing
blue circles with red crosses (Color
figure online).

Fig. 2. Swapping l2 and l3 makes
both of them more useful (Color figure
online).

Lemma 2. Given an optimal solution S, there is an optimal solution S ′ that
has the same set of 3-hitters as S, with its l-hitters all left of its r-hitters.
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Proof. In Fig. 2 two segments are double-hit by two pairs of lines; the blue lines
are l-hitters and the red lines are r-hitters. When we pair l1 to l3 and pair l2
to l4, the two segments are still double-hit, because this swap moves the l-hitter
further left and the r-hitter further right. A sequence of such swaps moves all
l-hitters to the left of all r-hitters. ��
In the full paper, we give details of an algorithm for HRVL. The algorithm
maximizes the number of 3-intersections and “balances” the remaining lines
between the left and right sides as much as possible. In the algorithm, we test
the criticality of a line: given the previous choices, if a critical line is not used as a
3-hitter, there is no way to extend the previous choices to a maximum matching.

We now argue that the left-right-balanced approach gives lines that obey
Lemma 2. Let S be the solution given by our HRVL algorithm, and let S′ be
an optimal solution with the maximum set of 3-hitters. We know that S and S′

have the same number of 3-hitters. Let D and D′ denote the lines left behind
(not 3-hitters) in S and S′ respectively. We order lines in D and D′ from left to
right. Let k be � |D|

2 �. Thus, there are at most k pairs of double-hitters in S and
S′. Let lhi (resp., lh′

i) be the ith line of D (resp., D′).
Given a solution P and a line l, let E(l, P ) denote the number of segments

on the left side of l not hit by 3-hitters in P . A line having more segments on its
right side is more likely to be an l-hitter. We will show that line lhi is at least
as capable of being an l-hitter as is line lh′

i.

E(lhi, S) ≤ E(lh′
i, S

′), i = 1, 2, .., k (1)

We split the proof of (1) into two lemmas; proofs appear in the full paper.

Lemma 3. lhi cannot be on the right side of lh′
i, i = 1, 2, .., k.

An immediate result from this lemma is

E(lhi, S
′) ≤ E(lh′

i, S
′). (2)

Given a solution P and a line l, let C(l, P ) denote the number of segments
on the left side of l that have been 3-hit in P . Let N(l) be the total number of
segments on the left of line l. The following lemma shows that the segments that
S leaves to be used as 2-hitters are the segments that are easier to double-hit.

Lemma 4. C(lhi, S) ≥ C(lhi, S
′), i = 1, 2, .., k.

Therefore we obtain

E(lhi, S) = N(lhi) − C(lhi, S)
≤ N(lhi) − C(lhi, S

′) = E(lhi, S
′) ≤ E(lh′

i, S
′).

.
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5 Hitting Lines and Segments

5.1 Hardness

Theorem 4. Hitting set for horizontal unit segments and vertical lines is NP-
complete.

Proof. The reduction is from 3SAT. See Fig. 3.
Each variable is represented by a collinear connected set of horizontal unit

segments, and each clause is represented by a red vertical line that intersects
appropriate pairs of horizontal variable segments (if that variable occurs in a
clause) or just single segments (in case a variable does not occur in a clause).
Setting appropriate parities for the literals in a clause is achieved by appropriate
horizontal shifting of the segments, as shown in the figure. This results in a
construction in which the only place where three of the elements (segments or
lines) can be hit involves a vertical line representing a clause, corresponding

Fig. 3. A set of horizontal unit segments and vertical lines that represents the 3SAT

instance I = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). For better visibility,
collinear segments are slightly shifted vertically, with red and green points indicating
overlapping segments. In an optimal hitting set, the point covering a labeled horizontal
segment induces a truth value for the corresponding variable: selecting one of its grey
points (e.g., in the indicated green manner) assigns a value of “true”; selecting a red
point, a value of “false”. Overall, truth assignments for each variable correspond to a
set of green or red points, respectively. Literals occurring in clauses are indicated by
magenta circles; these are the only places where a point can hit three segments or lines
at once (Color figure online).
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to literals occurring in the respective clauses. (These are indicated by magenta
circles in the figure). The N elements excluding the red vertical lines associated
with clauses are called variable components.

We show that any feasible hitting set with exactly N/2 points induces a truth
assignment and vice versa. There is no point that hits more than two of the vari-
able components at once. Therefore, stabbing all N of them requires at least
N/2 points, and any solution consisting of exactly N/2 points must hit each vari-
able component exactly once. Consequently, the black vertical lines and the black
collinear sets of connected horizontal segments in Fig. 3 may be reordered so that,
without loss of generality, a solution with exactly N/2 points does not pick any
of the gray points. Eliminating the gray points results in a natural partition of
the instance into point-disjoint even-cardinality loops of variable components for
each variable, where the points in each loop alternate between red and green. Thus
any solution of size N/2 hitting the variable components must select all red or all
green points from each variable’s loop, corresponding to a truth assignment. We
get an overall feasible hitting set if and only if the points also stab the vertical
clause lines, corresponding to a satisfying truth assignment. ��
After appropriate vertical scaling, we can replace the vertical lines by vertical
unit segments, immediately giving the following corollary.

Corollary 1. Deciding if there exists a set of k points in the plane that hit a
given set S of unit-length axis-parallel segments is NP-complete.

We show in the full paper, using a reduction from MAX-2SAT(3), that the
hitting set problem is APX-hard for vertical lines and horizontal segments.

5.2 Approximation

We give a 5/3-approximation for hitting a set V of vertical lines and a set H
of horizontal segments. We start by looking at the lower bounds: v = |V | is the
number of vertical lines. It is a lower bound. Let h be the lower bound on hitting
horizontal segments only. We can compute h exactly; it is the minimum number
of hit points for the horizontal segments (computed on each horizontal line). At
any stage of the algorithm, we let h and v be the current values of these lower
bounds for hitting the current (remaining unhit) sets H and V .

In stage 1, we place two kinds of points:

(a) We place hitting points on vertical lines that reduce h (and v) by one. These
points are “maximally productive” since no single hitting point can do more
than to reduce h and v each by one. As vertical lines are hit, we remove
them from V . Similarly, as horizontal segments are hit, we remove them
from H.

(b) Look for pairs (if any) of points, on the same horizontal line and on two
vertical lines (from among the current set V ), that decrease h by one.
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Let k1 and k2 be the number of type(a) and type(b) points placed in this
stage, respectively. Therefore, for the remaining instance, the lower bound h
decreases by k1 + k2/2, and v decreases by k1 + k2.

In stage 2, we now have a set of vertical lines V and horizontal segments H
such that no single point at the intersection of a vertical line and a horizontal
segment (or segments) reduces h, and no pair of points on two distinct vertical
lines reduces h.

Lemma 5. For such sets V and H as in stage 2, an optimal hitting set has size
at least v + h, where v = |V | and h is the minimum number of points to hit H.

Proof. The hit points we place on V (one per line) might conceivably decrease
h. We claim that this cannot happen. Assume to the contrary that it happens.
Let {q1, q2, . . . , qK} be a minimum-cardinality set such that each of them is on
some line of V from left to right and h is decreased by 1 after placing the set.
Since the set is minimum, the points in it should be on a horizontal line L.

Since we have found all productive points and pairs of points in stage 1, K
should be at least 3. Consider the hit point q2. The segments on L that are
not hit by q2 are either completely left or right of q2; let Hl and Hr be the
corresponding sets. Points to the left of q2 do not hit Hr, and points to the
right of q2 to not hit Hl. If adding q1 decreases H, that means q1 and q2 is a
productive pair, which should be found in stage 1; otherwise this means that the
point q1 is unnecessary, contradicting the minimality of K.

Theorem 5. There is a polynomial-time 5/3-approximation algorithm for geo-
metric hitting set for a set of vertical lines and horizontal segments.

Proof. The total number of points selected by our algorithm is k1 + k2 from the
first stage and h − k1 − k2/2 + v − k1 − k2 from the second stage. By Lemma 5,
the points chosen in stage 2 is a lower bound on the cost of an optimal solution:

h − k1 − k2/2 + v − k1 − k2 ≤ OPT. (3)

We also have h ≤ OPT and v ≤ OPT . There are two cases.

(i) k1 + k2 ≤ 2/3 · OPT : In this case we select at most 2/3 · OPT points in
Stages 1, and we use (3) to bound the number of points selected in Stage 2.
We conclude that our algorithm selects at most 5/3 · OPT points.

(ii) k1 + k2 > 2/3 · OPT : The total number of points selected by our algorithm
is h−k1 −k2/2+v ≤ 2 ·OPT − (k1 +k2/2). Since k1 +k2/2 ≥ k1/2+k2/2 >
1/3 · OPT , we obtain a 5/3-approximation in this case as well. ��

Theorem 6. There is a polynomial-time 5/3-approximation algorithm for geo-
metric hitting set for a set of vertical (downward) rays and horizontal segments.

Proof. The 2-stage approximation algorithm described above works for this case
as well. The key observation is that among any set of collinear downward rays,
we may remove all but the one with the lowest apex from the instance. Therefore
after Stage 1, the hitting points we place on the rays not yet hit will not decrease
h. The argument is analogous to that in Lemma 5.
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6 Hitting Pairs of Segments

We consider now the hitting set problem for inputs that are unions of two seg-
ments, one horizontal and one vertical. While we are motivated by pairs (and
larger sets) of segments that form paths, our methods apply to general pairs of
segments, which might meet to form an “L” shape, a “+”, or a “T” shape, or
they may be disjoint. This hitting set problem is NP-hard, since it generalizes
the case of horizontal and vertical segments.

Theorem 7. For objects that are unions of a horizontal and a vertical segment,
the hitting set problem has a polynomial-time 4-approximation.

Proof Sketch. For ease of discussion, we call the union of two segments an “L.”
We use a method similar to those used in [9,20]. Solve the natural set-cover linear
programming (LP) relaxation. Create two new problems: one that has only the
horizontal piece of some of the Ls and another that has only the vertical pieces of
the remaining Ls. Place an L into the vertical problem if the LP vertical segment
has value at least 1/2, and into the horizontal problem otherwise. Solve the two
new problems in polynomial time using the combinatorial method for the 1D
problem, or solving the LPs, which are totally unimodular, and thus will return
integer solutions. Take all the points selected by either new problem. We prove
in the full paper that these points are a 4-approximation.

The above idea naturally extends to a 4-approximation for the weighted
version of the problem. For unions consisting of at most k segments drawn from
r orientations, the approach yields a (k·r)-approximation. Using similar methods
and a stronger version of Theorem 5, we also have the following (see full paper):

Theorem 8. For objects that are unions of a horizontal segment and a vertical
line, the hitting set problem has a polynomial-time 10/3-approximation.
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Abstract. In this paper we consider the Maximum Independent Set
problem (MIS) on B1-EPG graphs. EPG (for Edge intersection graphs
of Paths on a Grid) was introduced in [8] as the class of graphs whose
vertices can be represented as simple paths on a rectangular grid so that
two vertices are adjacent if and only if the corresponding paths share
at least one edge of the underlying grid. The restricted class Bk-EPG
denotes EPG-graphs where every path has at most k bends. The study
of MIS on B1-EPG graphs has been initiated in [6] where authors prove
that MIS is NP-complete on B1-EPG graphs, and provide a polynomial
4-approximation. In this article we study the approximability and the
fixed parameter tractability of MIS on B1-EPG. We show that there
is no PTAS for MIS on B1-EPG unless P=NP, even if there is only one
shape of path, and even if each path has its vertical part or its horizontal
part of length at most 3. This is optimal, as we show that if all paths have
their horizontal part bounded by a constant, then MIS admits a PTAS.
Finally, we show that MIS is FPT in the standard parameterization on
B1-EPG restricted to only three shapes of path, and W1-hard on B2-
EPG. The status for general B1-EPG (with the four shapes) is left open.

1 Introduction and Related Work

In this paper we consider the Maximum Independent Set (MIS) on B1-EPG
graphs. EPG (for Edge intersection graphs of Paths on a Grid) was introduced
in [8] as the class of graphs whose vertices can be represented as simple paths on a
rectangular grid so that two vertices are adjacent if and only if the corresponding
paths share at least one edge of the grid. More precisely, for every EPG-graph
G = (V,E), there exists an EPG-representation 〈P,G〉 where P = {Pv, v ∈ V }
is a set of paths on the grid G, and two paths Pu, Pv share a grid edge of G if and
only if {u, v} ∈ E (see example depicted Fig. 1). Notice that two paths can cross
on a grid vertex without creating an edge. Thus, given an EPG-representation,
the objective of the MIS is to find the largest set of paths that do not share a
common grid edge. For any integer k ≥ 0, the class Bk-EPG denotes EPG-graphs
having an EPG-representation where every path has at most k bends. Moreover,
the class X-EPG ⊆ B1-EPG (with X ⊆ {�, �, �, �}) denotes the subset of B1-
EPG graphs where the paths can only have shapes in X (and thus B1-EPG =
{����}-EPG).
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Fig. 1. B1-EPG representation of G = ({1, 2, 3, 4}, {{1, 4}, {2, 4}, {3, 4}}) where
ver(P1) = [3, 4], ver(P1) lies on column 1, hor(P1) = [1, 3], hor(P1) lies on row 3,
and cor(P1) = (1, 3). P1 and P2 do not create an edge: even if hor(P2) = [3, 5] and
hor(P2) also lies on row 3, P1 and P2 do not share a common grid edge. P2 and P3 do
not create an edge either.

For any path P with 0 or 1 bend, we define hor(P ) (resp. ver(P )) as the
interval corresponding to the projection of P on the horizontal (resp. vertical)
axis. Moreover, to describe the position of a path we will say that hor(P ) (resp.
ver(P )) lies on a given row (resp. column) (see Fig. 1). Finally, we denote by
cor(P ) = (x, y) the coordinates of the corner of P . If P has no corner, let cor(P )
be the coordinates of some end of P .

Related work on class inclusions. It is proved in [8] that every graph G is an
EPG-graph, and that the size of the underlying grid is polynomial in the size of
G. The maximum number of bends used in the representation has been improved
in [10] where authors show that every graph of maximum degree Δ is in BΔ-
EPG.

Let us now consider graphs with small number of bends. Notice first that
B0-EPG graphs coincide with interval graphs. Several recent papers started the
study EPG graphs with small number of bends. For example, it has been proved
that B1-EPG contains trees [8], and that B2-EPG and B4-EPG respectively
contain outerplanar graphs and planar graphs [9]. We can also mention that the
recognition of B1-EPG graphs is NP-hard, even when only one shape of path is
allowed [4].

In terms of forbidden induced subgraphs, it is also known that B1-EPG
graphs exclude induced suns Sn with n ≥ 4, K3,3, and K3,3 − e [8].

There is also a close relation between EPG graphs and multiple interval
graphs. A t-interval is the union of t disjoint intervals in the real line. A t-track
interval is the union of t disjoint intervals on t disjoint parallel lines (called
tracks), one interval on each track. Then, a t-interval graph (resp. a t-track
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Fig. 2. (Left) B1-EPG ⊆ 2-track: one track (horizontal here) is used for the horizontal
parts, and the second track (vertical here) is used for the vertical parts. (Right) 2-track
⊆ B3-EPG

graph) is the intersection graph of a set of t-intervals (resp. t-track intervals).
Notice that t-track interval graphs is a subclass of t-interval graphs. It is not hard
to see that t-interval graphs are B4(t−1)-EPG graphs, and that Bt-EPG graphs
are (t+1)-interval graphs [10]. Note also that B1-EPG graphs are 2-track graphs
(use one track for the rows and one track for the columns), which in turn are
B3-EPG graphs (see Fig. 2).

Related work on MIS: Approximability. The main related article is [6] where
authors show that MIS is NP-complete on B1-EPG graphs, and provide a poly-
nomial 4-approximation. As B1-EPG graphs are 2-track graphs, related work
on MIS on t-track graph is of interest as well. MWIS (the generalization of
MIS where each vertex have an arbitrary weight) admits a 2t-approximation
on t-interval graphs [2] (see also [7]). Notice that this answers the open problem
of [6] about finding approximation algorithm for maximum weighted indepen-
dent set on B1-EPG graphs. It is also proved in [2] that MIS is APX-hard
on 2-track graphs, even when every vertex is represented by two intervals
of length 2. We can also mention [12] that aggregates and classifies several
approximation algorithms for MIS on intersection graphs by introducing several
parameters. In particular the authors define the notion of k-simplicial graphs.
A graph is k-simplicial if and only if there exists an order v1, . . . , vn of the ver-
tices such that, for each vertex vi, the subset of neighbors of vi contained in
{vj |j > i} can be partitioned into k sets S1, . . . , Sk such that G[Sj

⋃{vi}] is a
clique for each j ∈ {1, . . . , k}. Then they recall that MWIS is k-approximable
in k-simplicial graphs. The k-simplicial graphs are related to B1-EPG graphs.
Indeed the proof of the 4-approximation of MIS on B1-EPG graphs [6] amounts
to showing that {��}-EPG graphs are 2-simplicial graphs, and thus that MIS
has a 2-approximation on {��}-EPG graphs, and a 4-approximation on B1-EPG
graphs. Finally, notice that the known approximation algorithms for maximum
independent set on pseudo disks intersection graphs [5] do not directly apply
here, as two paths can cross on a grid vertex without creating an edge.
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Related work on MIS: Fixed Parameter Tractability. In this article we only
consider the decision problem OPT ≤ k ? parameterized by k. The main related
result is [11] where the author proves that MIS is W [1]-complete on unit 2-track
graphs. This immediately implies that MIS is W [1]-hard on B3-EPG graphs.
About positive results (FPT algorithm), to the best of our knowledge it seems
that there is no known FPT algorithm on B1-EPG or a superclass of it.

Contributions. In this article we study the approximability (in Sect. 2) and the
fixed parameter tractability (in Sect. 3) of MIS on B1-EPG. Our main results are
the following. We first show that there is no PTAS for MIS on {�}-EPG unless
P=NP, even if each path has its vertical part or its horizontal part of length
at most 3 (i.e. ∀P, (|hor(P )| ≤ 3 or |ver(P )| ≤ 3)). This improves the NP-
hardness of [6]. Then, we show that this result cannot be improved by showing
that if ∀P, |hor(P )| ≤ c, or if ∀P, |ver(P )| ≤ c (where c is a constant), then MIS
admits a PTAS on B1-EPG graphs. In Sect. 3, we show that MIS is FPT on
B1-EPG restricted to only three shapes of paths, and W1-hard on B2-EPG. The
status for general B1-EPG (with the four shapes) is left open. Proofs marked
with a � are omitted due to space constraints, and we refer the reader to [3] for
the full version of this article.

2 Approximability

The objective of this section is to prove that there is no PTAS for MIS on {�}-
EPG graphs. Let us first recall that the NP-hardness proof of MIS on {����}-
EPG graphs of [6] is a reduction from MIS on planar graphs. As there is a
PTAS for MIS on planar graphs, this is not a good candidate to reduce from
when looking for inapproximability. Moreover, the proof of [2] showing the APX-
hardness of MIS on unit 2-track graph cannot be adapted too. Indeed, this proof
consists in proving that the class of unit 2-track graphs (more precisely 2-track
graphs where every vertex is represented by two intervals of length 2) contains all
graphs of degree at most 3 (for which MIS is APX-hard), but this class contains
K3,3 and is hence not included in B1-EPG [10].

Our reduction is based on the classical approximation preserving reduction
from MAX-3-SAT to MIS (see for example [14], Theorem 29.13).

Let us define MAX-3-SAT(3):

– Input:
• A set of nvar variables {xi, 1 ≤ i ≤ nvar}.
• A set of mcl clauses {Cj , 1 ≤ j ≤ mcl}, where each clause is of the form

lj1 ∨ lj2 ∨ lj3, where for any 1 ≤ t ≤ 3, ∃i such that ljt = xi or ljt = not(xi)
(in both cases we say that Cj contains variable xi).

• Furthermore, each variable appears at most 3 times (∀i, |{Cj |Cj contains
xi}| ≤ 3). Moreover, we can assume that for any i, the positive form xi

appears exactly 2 times, and the negative form appears exactly 1 time.
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– Output: a truth assignment of the variables that maximizes the number of
satisfied clauses

Let us define the same function f as in [14] (Theorem 29.13) that maps any
instance Isat of MAX-3-SAT(3) to a graph f(Isat) = G, where G = (V,E).
For each clause lj1 ∨ lj2 ∨ lj3 we create a triangle {vj

1, v
j
2, v

j
3}, and thus we have

|V | = 3mcl. For any j and t, we say that vj
t corresponds to variable xi (resp. to

the negation of variable xi) if and only if ljt = xi (resp. ljt = not(xi)). For any
i, 1 ≤ i ≤ nvar, we add an edge {vj

t , v
j′
t′ } if and only if ∃i such that ljt corresponds

to xi and lj
′

t′ corresponds to the negation of xi.
Let F = {f(Isat), Isat instance of MAX-3-SAT(3)} be the set of graphs

obtained from instances of MAX-3-SAT(3).

Proposition 1 (� Folklore). There is a strict reduction from MAX-3-SAT(3)
to MIS on graphs F .

Proposition 2. F ⊆ {��}-EPG.

Proof. Let us draw a graph G ∈ F using only paths of the form {�, �}. See Fig. 3
for an example. Informally, each clause j corresponds to column 3j, and each
variable xi corresponds to line i. Let us now define more precisely the shapes of
the paths.

Fig. 3. Example for C1 = not(x1) ∨ x2 ∨ x3, C2 = x1 ∨ not(x2) ∨ x3, and C3 =
x1 ∨ x2 ∨ not(x3)}

Let (V,E) be the vertex and edge set of G, with |V | = n. For each vertex
vj

t ∈ V corresponding to a variable xi or its negation, we define a path Pvj
t
, with

ver(Pvj
t
) = [0, i] lying on column 3j. Notice that we already have all the vertices

of V , and the edges corresponding to the n
3 triangles. It remains now to define

the horizontal parts of the paths to encode the adjacencies between a variable
and its negation. Let i in {1, . . . , nvar}, and let {vj1

t1 , vj2
t2 , vj3

t3 } be the vertices of
G corresponding to variable xi or to its negation, with j1 < j2 < j3. There are
now three cases, according to the position of the clause containing the negative
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form of xi (recall that without loss of generality we suppose that not(xi) appears
exactly one time).

Recall that the horizontal part of {vj1
t1 , vj2

t2 , vj3
t3 } will lie one line i, and thus

we just have to define the corresponding intervals. If Cj1 contains not(xi), then
hor(vj1

t1 ) = [3j1, 3j3 + 1], hor(vj2
t2 ) = [3j2, 3j2 + 1], hor(vj1

t1 ) = [3j3, 3j3 + 1]. If
Cj2 contains not(xi), then hor(vj1

t1 ) = [3j1, 3j2 + 1], hor(vj2
t2 ) = [3j2, 3j3 + 1],

hor(vj1
t1 ) = [3j3, 3j3 + 1]. If Cj3 contains not(xi), then hor(vj1

t1 ) = [3j1, 3j1 + 1],
hor(vj2

t2 ) = [3j2, 3j2 + 1], hor(vj1
t1 ) = [3j1, 3j3]. This concludes the description of

G as an {��}-EPG graph. ��
Notice that this construction is not possible from instances of MAX-3-SAT(4),
as we could have for example C1 containing x1, C2 containing not(x1), C3 con-
taining x1, and C4 containing not(x1).

As MAX-3-SAT(3) remains MAXSNP-complete [13] (Theorem 13.10), we get
the following corollary.

Corollary 1. Any (1+ε)-approximation for MIS on {��}-EPG implies a (1+ε)-
approximation for MAX-3-SAT(3), and thus there is no PTAS for MIS on {��}-
EPG graphs unless P=NP.

Our objective is now to prove that there is no PTAS for MIS, even when only
one type of shape is allowed. Notice that the only case we need the � shape in
the previous reduction is when Cj3 contains not(xi).

Let G ∈ F , G = (V,E), with |V | = n and |E| = m. Let us partition
E = E1

⋃
E2, where E1 contains the n edges corresponding to the n

3 triangles,
and E2 contains the remaining edges corresponding to edges between a variable
and its negation. To avoid using �, we will subdivide each edge of E2 into 5 edges,
introducing thus 4 new vertices for each such edge. More formally, let us define
G′ = f ′(G), G′ = (V ′, E′). We start by setting V ′ = V and E′ = E. Moreover,
for any e = {vj

t , v
j′
t′ } ∈ E2 (with j = j′), we add four new vertices we

1, w
e
2, w

e
3, w

e
4

to V ′, and we add edges {vj
t , w

e
1}, {{we

i , w
e
i+1}, 1 ≤ i ≤ 3}, {we

4, v
j′
t′ } to E′.

Finally, let F ′ = {f ′(G), G ∈ F}.

Observation 1. Let G = (V,E) ∈ F , G′ = f ′(G). Let m = |E|.
• For any solution S of G, there is a solution S′ of G′ such that |S′| ≥ |S|+2m,
and thus Opt(G′) ≥ Opt(G) + 2m

• For any solution S′ of G′, we can find in polynomial time a solution S of G
such that |S| ≥ |S′| − 2m

From the previous observation we see that solutions of G and G′ are simply
shifted by an additive term of 2m. This extra term may look too large to preserve
approximability. However, the next observation shows that it only represents a
constant fraction of Opt(G).

Observation 2. Let G = (V,E) = f(Isat) ∈ F , with n = |V |, m = |E|, nvar

the number of variables of Isat, and mcl the number of clauses of Isat. As G has
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maximum degree 4, m ≤ 2n. By construction n = 3mcl. For any 3-SAT instance
it is known that 7

8mcl ≤ Opt(Isat). Finally, as Opt(Isat) = Opt(G), one obtains
that 7

48m ≤ Opt(G).

For the next proposition, the reader might refer themselves to [3] where we recall
the definition of an AP-reduction.

Proposition 3. There is an AP-reduction from MIS on F to MIS on F ′.

Proof. Point (1), (2) and (3) of the definition of an AP reduction are clearly
verified. Let us prove (4) with r = 1 + ε. Let S′ be a solution of an instance G′

such that |S′| ≥ Opt(G′)
(1+ε) . According to Observation 1, we get a solution S of size

at least |S′| − 2m = Opt(G′)
1+ε − 2m ≥ Opt(G)

1+ε − 2m( ε
1+ε ). Using Observatio 2, we

deduce |S| ≥ Opt(G)
1+ε (1 − 2ε 48

7 ), which concludes the proof. ��
Proposition 4. (�). F ′ ⊆ {�}-EPG.

We are ready to state the main inapproximability result, whose proof is now
immediate.

Theorem 1. There is no PTAS for MIS on {�}-EPG unless P=NP, even
if each path has its vertical part or its horizontal part of length at most 3
(i.e. ∀P, (|hor(P )| ≤ 3 or |ver(P )| ≤ 3)).

As MIS is APX-hard on 2-track graphs [2], even when every vertex is represented
by two intervals of length 2, it is natural to ask the same question here, i.e. to
determine if Theorem 1 can be extended to paths whose vertical and horizontal
intervals have constant length. Let us first notice that this restriction remains
NP-hard.

Proposition 5 (�). MIS remains NP-hard on {�}-EPG graphs, even if all
the paths have their horizontal part and their vertical part of length at most
2 (i.e. ∀P, |hor(P )| ≤ 2 and |ver(P )| ≤ 2).

As shown in the following theorem, it is not possible to improve the inapprox-
imability, even if only one direction (but always the same) is bounded, and even
if the four shapes are allowed.

Theorem 2. MIS admits a PTAS on B1-EPG graphs where all the paths have a
horizontal part of length at most c, where c is a constant (i.e. ∀P, |hor(P )| ≤ c).
More precisely, we can find an independent set of size at least (1 − ε)|OPT | in
O∗(n3c 1

ε ) time.

We will prove Theorem 2 using the classical Baker shifting technique [1]. We
could expect that such a PTAS is already known, as MIS has been widely studied
on intersection graphs (see for example the PTAS of [5] for MIS on intersection
of Pseudo-Disks). However, as two paths can cross without creating an edge in
the EPG model, this requires an ad-hoc adaptation of the shifting technique.
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Fig. 4. Rd is the set of paths crossing one of the gray strips. We solve MIS exactly in
all the white strips, i.e. between column d+ ack + 1 and d+ (a+ 1)ck with a ≥ −1.

Proof. Let G = (V,E) be a B1-EPG graph where all the paths have an horizontal
part of length at most c. Without loss of generality, let us suppose that all
the paths are drawn in the positive quadrant of the plane (i.e. with positive
coordinates), and that the underlying grid is a square of size s ≤ poly(n), where
n = |V |.

Let us consider a given optimal solution OPT . Let k ∈ N
∗. Our goal is to

get a solution of size at least |OPT |(1 − 1
k ).

For any integers i ∈ N, let Xi be the set of paths P of G such that [i, i+1] ⊆
hor(P ). For any d ∈ {0, . . . , kc − 1}, let Rd =

⋃
a∈N

Xd+akc (see Fig. 4). Let
OPTd = OPT

⋂
Rd, i.e. OPTd is the set of all paths of OPT which cross one

of the vertical strips, between column d + akc and d + akc + 1 for some a ∈ N.
Let d0 = mind|OPTd|. Observe first that |OPTd0 | ≤ 1

k |OPT |. Indeed,
∑kc−1

d=0 |OPTd| ≤ c|OPT |, as each vertex v∗ of OPT belongs to at most c differ-
ent Rl, and thus kc|OPTd0 | ≤ c|OPT |.

Thus, for each d the algorithm solves optimally the problem on G \ Rd and
gets a solution Ad. Then, it returns the largest solution among the Ad. Let us
now see how we solve MIS optimally on G′ = G \ Rd.

Observe that removing the vertices of Rd disconnects the graph. Indeed, paths
at the left of the strip (i.e. P such that hor(P ) ⊆ [0, d+akc]) cannot be connected
to paths on the right of the strip (i.e. P such that hor(P ) ⊆ [d + akc + 1,+∞]).
Thus, each connected component of G′ correspond to a B1-EPG graph defined
on a grid with β = kc columns. Naturally, we compute an optimal solution on
G′ by taking the union of optimal solutions of each connected component.
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It remains now to solve MIS on a B1-EPG graph where the underlying grid
has a constant number β of columns. To that end we write a dynamic program-
ming algorithm and refer the reader to [3] where we provide the details. ��

3 Fixed Parameter Tractability

In this section we consider the MIS problem in the standard parameterization,
and thus we consider the decision problem OPT ≤ k ? parameterized by k.
Recall first that as B1-EPG ⊆ 2-track ⊆ B3-EPG and as it is proved in [11]
that MIS is W1-hard in unit 2-track graphs, we already know that MIS is W1-
hard in B3-EPG graphs.

In this section we prove that MIS is FPT on B1-EPG restricted to only
three shapes of paths, and W1-hard on B2-EPG graphs. The status for general
B1-EPG (with the four shapes) is left open.

3.1 FPT Algorithm for MIS on B1-EPG with Three Shapes

The principle of our FPT algorithm is to repeat the following process: locate
a set of 17k2 paths of the instance which contains an element of an optimal
solution, and then branch on these 17k2. If the instance is positive (i.e. has a
MIS of size at most k) then the algorithm will find a solution after at most
17k2k choices. Before detailing the algorithm, we need the following definitions
and lemmas which will useful to find an element of an optimal solution.

We refer the reader to Fig. 5 for the next definitions. Notice that a purely
vertical path P with ver(P ) = [a, b] lying on column c is considered as a path of
shape � with hor(P ) = [c, c] lying on row a. In the same way, a purely horizontal
path P with hor(P ) = [a, b] lying on row r is considered as a path of shape �
with ver(P ) = [r, r] lying on column a.

Notice also that if G is a B1-EPG with a path P entirely containing another
path P ′ then Opt(G) = Opt(G \ {P}) for the MIS problem. Indeed, if an inde-
pendent set I of G contains P then (I \ {P}) ∪ {P ′} is also an independent set
of G with the same size than I. Thus in every B1-EPG instance of MIS we will
consider, we assume that there is no path entirely contained in another path.

A subset G∗ of paths is a group if and only if all paths of G∗ have the same
shape and the same corner (i.e. ∀ P1, P2 ∈ G∗ cor(P1) = cor(P2)).

Let G∗ be a group of paths of shape �. As we can remove from the instance
any path P that contains entirely another path P ′, we have for any P, P ′ ∈ G∗,
hor(P ) ⊆ hor(P ′) ⇒ ver(P ′) ⊆ ver(P ). We say that P ∈ G∗ is the rightmost
path of G∗ (resp. topmost) if and only if for every P ′ ∈ G∗ we have hor(P ′) ⊆
hor(P ) (resp. ver(P ′) ⊆ ver(P )). We also adapt the definition for the three other
shapes of groups (for example for a group of shape �, we define the leftmost and
the downmost path).

Let S be an independent set of a B1-EPG. Let x ∈ S with hor(x) = [a, b],
lying on row r. We say that the right side of x is free in S (or simply that
the right side of x is free) if there is no y ∈ S, y = x, lying on row r such
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that hor(y) = [c, d] and c ≥ b. We define in the same way that the left, up, and
down side of x is free in S.

The main sides of a path are the ones given by its shape: a path of shape
� (resp. �, � or �) has main sides up and right (resp. down and right, down and
left or up and left).

The two following lemmas provide conditions allowing us to guess in FPT
time a vertex of an optimal solution.

Lemma 1. Let r be a fixed row, and let X be a subset of paths such that every
P ∈ X has shape � and hor(P ) lies on row r. We can construct in polynomial
time a set f1(X) = X ′ ⊆ X with |X ′| ≤ k verifying the following property.

If there exists an independent set S, |S| = k and a x∗ ∈ S ∩ X such that the
right side of x∗ is free in S, then there exists S′, |S′| = k such that S′ ∩ X ′ = ∅.
Proof. Let {ai : 1 ≤ i ≤ imax} = {j : ∃P ∈ X with ver(P ) lying on column
j} be the set of columns used by the vertical parts of paths of X. Let us suppose
without loss of generality that ai > ai+1 for any i. We partition X into (maximal)
groups Gi for 1 ≤ i ≤ imax: we define Gi as the set of all paths of X having
their corner at coordinates ci = (ai, r) (see Fig. 5). We denote by i∗ the index of
the group of x∗ (i.e. x∗ ∈ Gi∗). Let X ′ = {P ′

1, . . . , P
′
min(imax,k)}, where P ′

i is the
rightmost path of Gi. Finally, let hor(P ′

i ) = [ai, bi] and hor(x∗) = [a∗, b∗].

Fig. 5. Example of a group and of the case where the right of x∗ is free, and x∗ ∈ Gi∗

with i∗ > k in Lemma 1.

Suppose first that i∗ ≤ k. As the right side of x∗ is free in S, we can remove
x∗ from S and chose P ′

i∗ to get another solution S′ of size k.
Suppose now that i∗ > k. Notice first that in this case by construction of

the groups, we have a∗ < ai for any i ≤ k (as we collected first paths with
rightmost left endpoint). If there exists x ∈ S \ {x∗} with hor(x) lying on row
r, then we have hor(x) = [a, b] with b < a∗ (because the right side of x∗ is
free in OPT ). So we have b < ai for any i ≤ k and x does not intersect paths
of X ′. Equivalently paths of X ′ can only intersect S \ {x∗} by sharing vertical
edges of the underlying grid. Thus as |S| = k, there exists i0 ≤ k such that
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(S \ {x∗})∪{P ′
i0

} is an independent set (i.e. we swap x∗ and P ′
i0

to get S′), and
X ′ satisfies the claimed property.

��
Lemma 2 (�). Let r be a fixed row, and let X be a subset of paths such that
every P ∈ X has shape � and hor(P ) lies on row r. We can construct in polyno-
mial time a set f2(X) = X ′ ⊆ X with |X ′| ≤ k verifying the following property.

If there exists an independent set S, |S| = k and a x∗ ∈ S ∩ X such that the
right side and the top side of x∗ are free in S, then there exists S′, |S′| = k such
that S′ ∩ X ′ = ∅.
Lemma 3. Let X be a subset of paths such that every P ∈ X has shape �.
We can construct in polynomial time a set f3(X) = X ′ ⊆ X with |X ′| ≤ 4k2

verifying the following property.
If there exists an independent set S, |S| = k and a x∗ ∈ S ∩ X such that

the two orthogonal sides of x∗ are free in S, and one of this side is a main side
of x∗ (i.e. the free sides of x∗ are right/up, right/down or up/left), then there
exists S′, |S′| = k such that S′ ∩ X ′ = ∅.
Proof. Let x∗ ∈ S. We first construct greedily, in polynomial time, a maximal
independent set A = {P1, . . . , P|A|}, |A| ≤ k (if |A| > k we define X ′ as k
arbitrary vertices of A). Let Sver

i be the set of paths P in the input with shape �
and which intersects Pi by sharing a vertical edge of the underlying grid. Let also
Shor

i be defined in the same way for horizontal edges (notice that we may have
Sver

i ∩ Shor
i = ∅). As A is maximal, there exists i0 such that x∗ intersects Pi0 ,

and thus such that x∗ ∈ Sver
i0

or x∗ ∈ Shor
i0

. Let us suppose first that x∗ ∈ Shor
i0

.
If the right side of x∗ is free in S, then by Lemma 1 we know that we can

replace x∗ by a x∗′ ∈ f1(Shor
i0

). Otherwise, the topside and the leftside of x∗

are free in S. In this case we know by Lemma 2 that we can replace x∗ by a
x∗′ ∈ f2(Shor

i0
).

Considering also the case x∗ ∈ Sver
i0

, we know that x∗′
can be chosen in

X ′ =
⋃|A|

i=1(f1(S
hor
i ) ∪ f2(Shor

i ) ∪ f1(Sver
i ) ∪ f2(Sver

i )) which of size at most 4k2.
��
Lemma 4. Let (G, k) be a instance of MIS on {���}-EPG graphs. We can con-
struct in polynomial time a set X ′ with |X ′| ≤ 17k2 verifying the following
property.

If there exists an independent set S, |S| = k, then there exists S′, |S′| = k
such that S′ ∩ X ′ = ∅.
Proof. Let x∗ ∈ S (with cor(x∗) = (a∗, b∗)) be the top-right most path of S
(i.e. for any x ∈ S with cor(x) = (a, b), either b < b∗ (Case 1) or b = b∗ and
a ≤ a∗ (Case 2). Notice that the only case where b = b∗ and a = a∗ is when x∗

has shape � and there exists a unique x ∈ S with shape �, and cor(x) = cor(x∗).
(Case 1) Let us first consider the case where for any x ∈ S with cor(x) =

(a, b), either b < b∗ or (b = b∗ and a < a∗). Whatever the shape of x∗, x∗

has always two orthogonal free sides in S, and one of this side is a main side
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(for instance, if x∗ has shape � then his two main directions are free, if x∗ has
shape � or �, one of his main direction and another orthogonal direction are
free). Thus, we apply three times Lemma 3 (one time for X containing all the
paths of a given shape), and we construct in polynomial time a set Y of size at
most 12k2 verifying the desired property.

(Case 2) This case is treated in the full version [3].
To summarize, if we want to ensure that we capture a vertex of a solution S′

of size k, we set X ′ = Y ∪ Z, leading to set of at most 17k2 paths. ��
We are now ready to prove the main result of this section whose proof is imme-
diate using Lemma 4.

Theorem 3. The question OPT ≥ k can be solved in time O(k2kpoly(n)) in
B1-EPG graph with three shapes of paths.

3.2 W[1]-Hardness of MIS on B2-EPG Graphs

Theorem 4 (�). MIS is W[1]-hard, even restricted to B2-EPG graphs.
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Abstract. We study the smoothness of paging algorithms. How much
can the number of page faults increase due to a perturbation of the
request sequence? We call a paging algorithm smooth if the maximal
increase in page faults is proportional to the number of changes in the
request sequence. We also introduce quantitative smoothness notions
that measure the smoothness of an algorithm.

We derive lower and upper bounds on the smoothness of determinis-
tic and randomized demand-paging and competitive algorithms. Among
strongly-competitive deterministic algorithms LRU matches the lower
bound, while FIFO matches the upper bound.

Well-known randomized algorithms like Partition, Equitable, or
Mark are shown not to be smooth. We introduce two new randomized
algorithms, called Smoothed-LRU and LRU-Random. Smoothed-

LRU allows to sacrifice competitiveness for smoothness, where the trade-
off is controlled by a parameter. LRU-Random is at least as competitive
as any deterministic algorithm while smoother.

1 Introduction

Due to their strong influence on system performance, paging algorithms have
been studied extensively since the 1960s. Early studies were based on probabilis-
tic request models [1–3]. In their seminal work, Sleator and Tarjan [4] introduced
the notion of competitiveness, which relates the performance of an online algo-
rithm to that of the optimal offline algorithm. By now, the competitiveness of
well-known deterministic and randomized paging algorithms is well understood,
and various optimal online algorithms [5,6] have been identified.

In this paper, we study the smoothness of paging algorithms. We seek to
answer the following question: How strongly may the performance of a paging
algorithm change when the sequence of memory requests is slightly perturbed?
This question is relevant in various domains: Can the cache performance of
an algorithm suffer significantly due to the occasional execution of interrupt
handling code? Can the execution time of a safety-critical real-time application
be safely and tightly bounded in the presence of interference on the cache? Can
secret-dependent memory requests have a significant influence on the number
of cache misses of a cryptographic protocol and thus give rise to a timing side-
channel attack?

We formalize the notion of smoothness by identifying the performance of
a paging algorithm with the number of page faults and the magnitude of a
perturbation with the edit distance between two request sequences.
c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 170–182, 2015.
DOI: 10.1007/978-3-319-28684-6 15
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We show that for any deterministic, demand-paging or competitive algo-
rithm, a single additional memory request may cause k + 1 additional faults,
where k is the size of the cache. Least-recently-used (LRU) matches this lower
bound, indicating that there is no trade-off between competitiveness and smooth-
ness for deterministic algorithms. In contrast, First-in first-out (FIFO) is shown
to be least smooth among all strongly-competitive deterministic algorithms.

Randomized algorithms have been shown to be more competitive than
deterministic ones. We derive lower bounds for the smoothness of randomized,
demand-paging and randomized strongly-competitive algorithms that indicate
that randomization might also help with smoothness. However, we show that
none of the well-known randomized algorithms Mark, Equitable, and Parti-

tion is smooth. The simple randomized algorithm that evicts one of the cached
pages uniformly at random is shown to be as smooth as LRU, but not more.

We then introduce a new parameterized randomized algorithm, Smoothed-
LRU, that allows to sacrifice competitiveness for smoothness. For some
parameter values Smoothed-LRU is smoother than any randomized strongly-
competitive algorithm can possibly be, indicating a trade-off between smooth-
ness and competitiveness for randomized algorithms. This leaves the question
whether there is a randomized algorithms that is smoother than any determin-
istic algorithm without sacrificing competitiveness. We answer this question in
the affirmative by introducing LRU-Random, a randomized version of LRU

that evicts older pages with a higher probability than younger ones. We show
that LRU-Random is smoother than any deterministic algorithm for k = 2.
While we conjecture that this is the case as well for general k, this remains an
open problem.

The notion of smoothness we present is not meant to be an alternative to
competitive analysis for the evaluation of the performance of a paging algorithm;
rather, it is a complementary quantitative measure that provides guarantees
about the performance of an algorithm under uncertainty of the input. In general,
smoothness is useful in both testing and verification:

– In testing: if a system is smooth, then a successful test run is indicative of the
system’s correct behavior not only on the particular test input, but also in its
neighborhood.

– In verification, systems are shown to behave correctly under some assumption
on their environment. Due to incomplete environment specifications, operator
errors, faulty implementations, or other causes, the environment assumption
may not always hold completely. In such a case, if the system is smooth,
“small” violations of the environment assumptions will, in the worst case,
result in “small” deviations from correct behavior.

An example of the latter case that motivates our present work appears in
safety-critical real-time systems, where static analyses are employed to derive
guarantees on the worst-case execution time (WCET) of a program on a par-
ticular microarchitecture [7]. While state-of-the-art WCET analyses are able
to derive fairly precise bounds on execution times, they usually only hold for
the uninterrupted execution of a single program with no interference from the
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environment whatsoever. These assumptions are increasingly difficult to satisfy
with the adoption of preemptive scheduling or even multi-core architectures,
which may introduce interference on shared resources such as caches and buses.
Given a smooth cache hierarchy, it is possible to separately analyze the effects of
interference on the cache, e.g. due to interrupts, preemptions, or even co-running
programs on other cores. Our results may thus inform the design and analysis
of microarchitectures for real-time systems [8].

Interestingly, our model shows a significant difference between LRU and
FIFO, two algorithms whose theoretical performance has proven difficult to
separate.

Our results are summarized in Table 1. An algorithm A is (α, β, δ)-smooth,
if the number of page faults A(σ′) of A on request sequence σ′ is bounded by
α · A(σ) + β whenever σ can be transformed into σ′ by at most δ insertions,
deletions, or substitutions of individual requests. Often, our results apply to a
generic value of δ. In such cases, we express the smoothness of a paging algorithm
by a pair (α, β), where α and β are functions of δ, and A is (α(δ), β(δ), δ)-smooth
for every δ. Usually, the smoothness of an algorithm depends on the size of the
cache, which we denote by k. As an example, under LRU the number of faults
may increase by at most δ(k + 1), where δ is the number of changes in the
sequence. A precise definition of these notions is given in Sect. 3.

Table 1. Upper and lower bounds on the smoothness of paging algorithms. In the
table, k is the size of the cache, δ is the distance between input sequences, Hk denotes
the kth harmonic number, and γ is an arbitrary constant.

Algorithm Lower bound Upper bound

Deterministic, demand-paging (1, δ(k + 1)) ∞
Det. c-competitive with additive constant β (1, δ(k + 1)) (c, 2δc + β)

Deterministic, strongly-competitive (1, δ(k + 1)) (k, 2δk)

Optimal offline (1, 2δ) (1, 2δ)

LRU (1, δ(k + 1)) (1, δ(k + 1))

FWF (1, 2δk) (1, 2δk)

FIFO (k, γ, 1) (k, 2δk)

Randomized, demand-paging (1, Hk + 1
k
, 1) ∞

Randomized, strongly-competitive (1, δHk) (Hk, 2δHk)

Equitable, Partition (1 + ε, γ, 1) (Hk, 2δHk)

Mark (Ω(Hk), γ, 1) (2Hk − 1, δ(4Hk − 2))

Random (1, δ(k + 1)) (1, δ(k + 1))

Evict-On-Access (1, δ(1 + k
2k−1

)) (1, δ(1 + k
2k−1

))

Smoothed-LRUk,i (1, δ( k+i
2i+1

+ 1)) (1, δ( k+i
2i+1

+ 1))
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2 Related Work

2.1 Notions of Smoothness

Robust control is a branch of control theory that explicitly deals with uncer-
tainty in its approach to controller design. Informally, a controller designed for
a particular set of parameters is said to be robust if it would also work well
under a slightly different set of assumptions. In computer science, the focus has
long been on the binary property of correctness, as well as on average- and
worst-case performance. Lately, however, various notions of smoothness have
received increasing attention: Chaudhuri et al. [9] develop analysis techniques to
determine whether a given program computes a Lipschitz-continuous function.
Lipschitz continuity is a special case of our notion of smoothness. Continuity is
also strongly related to differential privacy [10], where the result of a query may
not depend strongly on the information about any particular individual. Differ-
ential privacy proofs with respect to cache side channels [11] may be achievable
in a compositional manner for caches employing smooth paging algorithms.

Doyen et al. [12] consider the robustness of sequential circuits. They deter-
mine how long into the future a single disturbance in the inputs of a sequential
circuit may affect the circuit’s outputs. Much earlier, but in a similar vein,
Kleene [13], Perles, Rabin, Shamir [14], and Liu [15] developed the theory of
definite events and definite automata. The outputs of a definite automaton are
determined by a fixed-length suffix of its inputs. Definiteness is a sufficient con-
dition for smoothness.

The work of Reineke and Grund [16] is closest to ours: they study the maxi-
mal difference in the number of page faults on the same request sequence starting
from two different initial states for various deterministic paging algorithms. In
contrast, here, we study the effect of differences in the request sequences on the
number of faults. Also, in addition to only studying particular deterministic algo-
rithms as in [16], in this paper we determine smoothness properties that apply to
classes of algorithms, such as all demand-paging or strongly-competitive ones,
as well as to randomized algorithms. One motivation to consider randomized
algorithms in this work are recent efforts to employ randomized caches in the
context of hard real-time systems [17].

2.2 The Paging Problem

Paging models a two-level memory system with a small fast memory known
as cache, and a large but slow memory, usually referred to simply as memory.
During a program’s execution, data is transferred between the cache and memory
in units of data known as pages. The size of the cache in pages is usually referred
to as k. The size of the memory can be assumed to be infinite. The input to the
paging problem is a sequence of page requests which must be made available
in the cache as they arrive. When a request for a page arrives and this page is
already in the cache, then no action is required. This is known as a hit. Otherwise,
the page must be brought from memory to the cache, possibly requiring the
eviction of another page from the cache. This is known as a page fault or miss.
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A paging algorithm must decide which pages to keep in the cache in order to
minimize the number of faults.

A paging algorithm is said to be demand paging if it only evicts a page from
the cache upon a fault with a full cache. Any non-demand paging algorithm can
be made to be demand paging without sacrificing performance [18].

In general, paging algorithms must make decisions as requests arrive, with
no knowledge of future requests. That is, paging is an online problem. The most
prevalent way to analyze online algorithms is competitive analysis [4]. In this
framework, the performance of an online algorithm is measured against an algo-
rithm with full knowledge of the input sequence, known as optimal offline or
OPT. We denote by A(σ) the number of misses of an algorithm when process-
ing the request sequence σ. A paging algorithm A is said to be c-competitive if
for all sequences σ, A(σ) ≤ c ·OPT(σ)+β, where β is a constant independent of
σ. The competitive ratio of an algorithm is the infimum over all possible values
of c satisfying the inequality above. An algorithm is called competitive if it has
a constant competitive ratio and strongly competitive if its competitive ratio is
the best possible [5].

Traditional paging algorithm are Least-recently-used (LRU)—evict the page
in the cache that has been requested least recently— and First-in first-out
(FIFO)—evict the page in the cache that was brought into cache the earli-
est. Another simple algorithm often considered is Flush-when-full (FWF)—
empty the cache if the cache is full and a fault occurs. These algorithms are
k-competitive, which is the best ratio that can be achieved for deterministic
online algorithms [4]. An optimal offline algorithm for paging is Furthest-in-the-
future, also known as Longest-forward-distance and Belady’s algorithm [1]. This
algorithm evicts the page in the cache that will be requested at the latest time
in the future.

A competitive ratio less than k can be achieved by the use of randomization.
Important randomized paging algorithms are Random—evict a page chosen
uniformly at random— and Mark [19]—mark a page when it is unmarked and
requested, and upon a fault evict a page chosen uniformly at random among
unmarked pages (unmarking all pages first if no unmarked pages remain). Ran-

dom achieves a competitive ratio of k, while Mark’s competitive ratio is 2Hk−1,
where Hk =

∑k
i=1

1
i is the kth harmonic number. The strongly-competitive algo-

rithms Partition [5] and Equitable [6] achieve the optimal ratio of Hk.

3 Smoothness of Paging Algorithms

We now formalize the notion of smoothness of paging algorithms. We are inter-
ested in answering the following question: How does the number of misses of
a paging algorithm vary as its inputs vary? We quantify the similarity of two
request sequences by their edit distance:

Definition 1 (Distance). Let σ = x1, . . . , xn and σ′ = x′
1, . . . , x

′
m be two

request sequences. Then we denote by Δ(σ, σ′) their edit distance, defined as
the minimum number of substitutions, insertions, or deletions to transform σ
into σ′.
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This is also referred to as the Levenshtein distance. Based on this notion of
distance we define (α, β, δ)-smoothness:

Definition 2 ((α, β, δ)-Smoothness). Given a paging algorithm A, we say that
A is (α, β, δ)-smooth, if for all pairs of sequences σ, σ′ with Δ(σ, σ′) ≤ δ,

A(σ′) ≤ α · A(σ) + β

For randomized algorithms, A(σ) denotes the algorithm’s expected number of
faults when serving σ.

An algorithm that is (α, β, δ)-smooth may also be (α′, β′, δ)-smooth for α′ >
α and β′ < β. As the multiplicative factor α dominates the additive constant β
in the long run, when analyzing the smoothness of an algorithm, we first look
for the minimal α such that the algorithm is (α, β, δ)-smooth for any β.

We say that an algorithm is smooth if it is (1, β, 1)-smooth for some β. In this
case, the maximal increase in the number of page faults is proportional to the
number of changes in the request sequence. This is called Lipschitz continuity
in mathematical analysis. For smooth algorithms, we also analyze the Lipschitz
constant, i.e., the additive part β in detail, otherwise we concentrate the analysis
on the multiplicative factor α.

We use the above notation when referring to a specific distance δ. For a
generic value of δ we omit this parameter and express the smoothness of a
paging algorithm with a pair (α, β), where both α and β are functions of δ.

Definition 3 ((α, β)-Smoothness). Given a paging algorithm A, we say that
A is (α, β)-smooth, if for all pairs of sequences σ, σ′,

A(σ′) ≤ α(δ) · A(σ) + β(δ),

where α and β are functions, and δ = Δ(σ, σ′).

Often, it is enough to determine the effects of one change in the inputs to
characterize the smoothness of an algorithm A.

Lemma 1. If A is (α, β, 1)-smooth, then A is (αδ, β
∑δ−1

i=0 αi)-smooth.

All proofs can be found in the full version of this paper [20].

Corollary 1. If A is (1, β, 1)-smooth, then A is (1, δβ)-smooth.

4 Smoothness of Deterministic Paging Algorithms

4.1 Bounds on the Smoothness of Deterministic Paging Algorithms

Before considering particular deterministic online algorithms, we determine
upper and lower bounds for several important classes of algorithms. Many nat-
ural algorithms are demand paging.
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Theorem 1 (Lower Bound for Deterministic, Demand-Paging
Algorithms). No deterministic,demand-paging algorithm is (1,δ(k+1−ε))-
smooth for any ε>0.

The idea of the proof is to first construct a sequence of length k + δ(k + 1)
containing k+1 distinct pages, such that A faults on every request. This sequence
can then be transformed into a sequence containing only k distinct pages by
removing all requests to the page that occurs least often, which reduces the
overall number of misses to k, while requiring at most δ changes. While most
algorithms are demand paging, it is not a necessary condition for an algorithm to
be competitive, as demonstrated by FWF. However, we obtain the same lower
bound for competitive algorithms as for demand-paging ones.

Theorem 2 (Lower Bound for Deterministic, Competitive Paging
Algorithms). No deterministic, competitive paging algorithm is (1, δ(k+1−ε))-
smooth for any ε > 0.

By contraposition of Corollary 1, the two previous theorems show that no deter-
ministic, demand-paging or competitive algorithm is (1, k + 1 − ε, 1)-smooth for
any ε > 0.

Intuitively, the optimal offline algorithm should be very smooth, and this is
indeed the case as we show next:

Theorem 3 (Smoothness of OPT). OPT is (1, 2δ)-smooth. This is tight.

With Theorem 3 it is easy to show the following upper bound on the smoothness
of any competitive algorithm:

Theorem 4 (Smoothness of Competitive Algorithms). Let A be any pag-
ing algorithm such that for all sequences σ, A(σ) ≤ c · OPT(σ) + β. Then A is
(c, 2δc + β)-smooth.

Note that the above theorem applies to both deterministic and randomized algo-
rithms. Given that every competitive algorithm is (α, β)-smooth for some α
and β, the natural question to ask is whether the converse also holds. Below,
we answer this question in the affirmative for deterministic bounded-memory,
demand-paging algorithms. By bounded memory we mean algorithms that, in
addition to the contents of their fast memory, only have a finite amount of addi-
tional state. For a more formal definition consult [18, page 93]. Paging algorithms
implemented in hardware caches are bounded memory.

Theorem 5 (Competitiveness of Smooth Algorithms). If algorithm A
is deterministic bounded-memory, demand-paging, and (α, β)-smooth for some
α and β, then A is also competitive.

4.2 Smoothness of Particular Deterministic Algorithms

Now let us turn to the analysis of three well-known deterministic algorithms:
LRU, FWF, and FIFO. We show that both LRU and FWF are smooth. On
the other hand, FIFO is not smooth, as a single change in the request sequence
may increase the number of misses by a factor of k.
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Theorem 6 (Smoothness of Least-Recently-Used).
LRU is (1, δ(k + 1))-smooth. This is tight.

So LRU matches the lower bound for both demand-paging and competitive
paging algorithms. We now show that FWF is also smooth, with a factor that is
almost twice that of LRU. The smoothness of FWF follows from the fact that
it always misses k times per phase, and the number of phases can only change
marginally when perturbing a sequence.

Theorem 7 (Smoothness of Flush-When-Full).
FWF is (1, 2δk)-smooth. This is tight.

We now show that FIFO is not smooth. In fact, we show that with only a single
difference in the sequences, the number of misses of FIFO can be k times higher
than the number of misses in the original sequence. On the other hand, since
FIFO is strongly competitive, the multiplicative factor k is also an upper bound
for FIFO’s smoothness.

Theorem 8 (Smoothness of First-in First-Out).
FIFO is (k, 2δk)-smooth. FIFO is not (k − ε, γ, 1)-smooth for any ε > 0 and γ.

FIFO matches the upper bound for strongly-competitive deterministic paging
algorithms. With the result for LRU, this demonstrates that the upper and lower
bounds for the smoothness of strongly-competitive algorithms are tight.

5 Smoothness of Randomized Paging Algorithms

5.1 Bounds on the Smoothness of Randomized Paging Algorithms

Similarly to deterministic algorithms, we can show a lower bound on the smooth-
ness of any randomized demand-paging algorithm. The proof is strongly inspired
by the proof of a lower bound for the competitiveness of randomized algorithms
by Fiat et al. [19]. The high-level idea is to construct a sequence using k + 1
distinct pages on which any randomized algorithm faults at least k + Hk + 1

k
times that can be converted into a sequence containing only k distinct pages by
deleting a single request.Notice that the lower bound only applies to δ = 1 and
so additional disturbances might have a smaller effect than the first one.

Theorem 9 (Lower Bound for Randomized, Demand-Paging Algo-
rithms). No randomized, demand-paging algorithm is (1,Hk+ 1

k−ε, 1)-smooth
for any ε>0.

For strongly-competitive randomized algorithms we can show a similar statement
using a similar yet more complex construction:

Theorem 10 (Lower Bound for Strongly-Competitive Randomized
Paging Algorithms). No strongly-competitive, randomized paging algorithm
is (1, δ(Hk − ε))-smooth for any ε > 0.
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In contrast to the deterministic case, this lower bound only applies to strongly-
competitive algorithms, as opposed to simply competitive. So with randomiza-
tion there might be a trade-off between competitiveness and smoothness. There
might be competitive algorithms that are smoother than all strongly-competitive
ones.

5.2 Smoothness of Particular Randomized Algorithms

Two known strongly-competitive randomized paging algorithms are Parti-

tion [5] and Equitable [6]. We show that neither of the two algorithms is
smooth.

Theorem 11 (Smoothness of Partition and Equitable). For any cache
size k ≥ 2, there is an ε > 0, such that neither Partition nor Equitable is
(1+ε, γ, 1)-smooth for any γ. Also, Partition and Equitable are (Hk, 2δHk)-
smooth.

The lower bound in the theorem above is not tight, but it shows that neither of
the two algorithms matches the lower bound from Theorem 10. This leaves open
the question whether the lower bound from Theorem 10 is tight.

Mark [19] is a simpler randomized algorithm that is (2Hk − 1)-competitive.
We show that it is not smooth either.

Theorem 12 (Smoothness of Mark). Let α = max1<�≤k

{
�(1+Hk−H�)

�−1+Hk−H�−1

}
=

Ω(Hk), where k is the cache size. Mark is not (α− ε, γ, 1)-smooth for any ε > 0
and any γ. Also, Mark is (2Hk − 1, δ(4Hk − 2))-smooth.

We conjecture that the lower bound for Mark is tight, i.e., that Mark is (α, β)-
smooth for α as defined in Theorem 12 and some β.

We now prove that Random achieves the same bounds for smoothness as
LRU and the best possible for any deterministic, demand-paging or competitive
algorithm. For simplicity, we prove the theorem for a non-demand-paging defin-
ition of Random in which each page gets evicted upon a miss with probability
1/k even if the cache is not yet full. Intuitively, the additive term k + 1 in the
smoothness of Random is explained by the fact that a single difference between
two sequences can make the caches of both executions differ by one page p. Since
Random evicts a page with probability 1/k, the expected number of faults until
p is evicted is k.

Theorem 13 (Smoothness of Random).
Random is (1, δ(k + 1))-smooth. This is tight.

5.3 Trading Competitiveness for Smoothness

We have seen that none of the well-known randomized algorithms are particularly
smooth. Random is the only known randomized algorithm that is (1, δc)-smooth
for some c. However, it is neither smoother nor more competitive than LRU, the



On the Smoothness of Paging Algorithms 179

smoothest deterministic algorithm. In this section we show that greater smooth-
ness can be achieved at the expense of competitiveness. First, as an extreme
example of this, we show that Evict-on-access (EOA) [17]—the policy that evicts
each page with a probability of 1

k upon every request, i.e., not only on faults
but also on hits—beats the lower bounds of Theorems 9 and 10 and is strictly
smoother than OPT. This policy is non-demand paging and it is obviously not
competitive. We then introduce Smoothed-LRU, a parameterized randomized
algorithm that trades competitiveness for smoothness.

Theorem 14 (Smoothness of EOA).
EOA is (1, δ(1 + k

2k−1 ))-smooth. This is tight.

Smoothed-LRU. We now describe Smoothed-LRU. The main idea of this
algorithm is to smooth out the transition from the hit to the miss case.

The following notion of age is convenient in the analysis of LRU: The age
of page p is the number of distinct pages that have been requested since the
previous request to p. LRU faults if and only if the requested page’s age is
greater than or equal to k, the size of the cache. An additional request may
increase the ages of k cached pages by one. At the next request to each of these
pages, the page’s age may thus increase from k − 1 to k, and turn the request
from a hit into a miss, resulting in k additional misses.

By construction, under Smoothed-LRU, the hit probability of a request
decreases only gradually with increasing age. The speed of the transition from
definite hit to definite miss is controlled by a parameter i, with 0 ≤ i < k. Under
Smoothed-LRU, the hit probability P (hitSmoothed-LRUk,i

(a)) of a request to a
page with age a is:

P (hitSmoothed-LRUk,i
(a)) =

⎧
⎪⎨

⎪⎩

1 : a < k − i
k+i−a
2i+1 : k − i ≤ a < k + i

0 : a ≥ k + i

(1)

where k is the size of the cache. Figure 1 illustrates this graphically in relation
to LRU for cache size k = 8 and i = 4.

Fig. 1. Hit probabilities of LRU and Smoothed-LRU in terms of the age of the
requested page
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Theorem 15 (Smoothness of Smoothed-LRU).
Smoothed-LRUk,i is (1, δ( k+i

2i+1 + 1))-smooth. This is tight.

For i = 0, Smoothed-LRU is identical to LRU and (1, δ(k+1))-smooth. At the
other extreme, for i = k − 1, Smoothed-LRU is (1, 2δ)-smooth, like the opti-
mal offline algorithm. However, for larger i, Smoothed-LRU is less competitive
than LRU:

Lemma 2 (Competitiveness of Smoothed-LRU). For any sequence σ and
l ≤ k − i,

Smoothed-LRUk,i(σ) ≤ k − i

k − i − l + 1
· OPTl(σ) + l,

where OPTl(σ) denotes the number of faults of the optimal offline algorithm
processing σ on a fast memory of size l. For l > k − i and any α and β there is
a sequence σ, such that Smoothed-LRUk,i(σ) > α · OPTl(σ) + β.

So far we have analyzed Smoothed-LRU based on the hit probabilities given
in (1). We have yet to show that a randomized algorithm satisfying (1) can
be realized. In the full version of the paper [20], we construct a probability
distribution on the set of all deterministic algorithms using a fast memory of
size k that satisfies (1). This is commonly referred to as a mixed strategy.

5.4 A Competitive and Smooth Randomized Paging Algorithm:
LRU-Random

In this section we introduce and analyze LRU-Random, a competitive random-
ized algorithm that is smoother than any competitive deterministic algorithm.
LRU-Random orders the pages in the fast memory by their recency of use; like
LRU. Upon a miss, LRU-Random evicts older pages with a higher probability
than younger pages. More precisely, the ith oldest page in the cache is evicted
with probability 1

i·Hk
. By construction the eviction probabilities sum up to 1:

∑k
i=1

1
i·Hk

= 1
Hk

· ∑k
i=1

1
i = 1. LRU-Random is not demand paging: if the

cache is not yet entirely filled, it may still evict cached pages according to the
probabilities mentioned above.

LRU-Random is at least as competitive as strongly-competitive determin-
istic algorithms:

Theorem 16 (Competitiveness of LRU-Random). For any sequence σ,

LRU-Random(σ) ≤ k · OPT(σ).

The proof of Theorem 16 applies to an adaptive online adversary. An analysis
for an oblivious adversary might yield a lower competitive ratio.

For k = 2, we also show that LRU-Random is (1, δc)-smooth, where c is
less than k + 1, which is the best possible among deterministic, demand-paging
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or competitive algorithms. Specifically, c is 1 + 11/6 = 2.83̄. Although our proof
technique does not scale beyond k = 2, we conjecture that this algorithm is in
fact smoother than (1, δ(k + 1)) for all k.

Theorem 17 (Smoothness of LRU-Random).
Let k = 2. LRU-Random is (1, 17

6 δ)-smooth.

Conjecture 1 (Smoothness of LRU-Random).
LRU-Random is (1, Θ(H2

k)δ)-smooth.

6 Discussion

We have determined fundamental limits on the smoothness of deterministic and
randomized paging algorithms. No deterministic competitive algorithm can be
smoother than (1, δ(k + 1))-smooth. Under the restriction to bounded-memory
algorithms, which is natural for hardware implementations of caches, smoothness
implies competitiveness. LRU is strongly competitive, and it matches the lower
bound for deterministic competitive algorithms. LRU is strongly competitive,
and it matches the lower bound for deterministic competitive algorithms, while
FIFO matches the upper bound. There is no trade-off between smoothness and
competitiveness for deterministic algorithms.

In contrast, among randomized algorithms, we have identified Smoothed-

LRU, an algorithm that is very smooth, but not competitive. In particular,
it is smoother than any strongly-competitive randomized algorithm may be. The
well-known randomized algorithms Mark, Partition, and Equitable are not
smooth. It is an open question, whether there is a randomized “LRU sibling”

Fig. 2. Schematic view of the smoothness and competitiveness landscape. Crosses indi-
cate tight results, whereas ellipses indicate upper bounds. Braces denote upper and
lower bounds on the smoothness or competitiveness of classes of algorithms. For sim-
plicity of exposition, γ1 and γ2 are left unspecified; γ can be chosen arbitrarily. More
precise statements are provided in the respective theorems.
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that is both strongly-competitive and (1, δHk)-smooth. With LRU-Random

we introduce a randomized algorithm that is at least as competitive as any
deterministic algorithm, yet provably smoother, at least for k = 2. Its exact
smoothness remains open. Figure 2 schematically illustrates many of our results.
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Abstract. Online scheduling of parallelizable jobs has received a signif-
icant amount of attention recently. Scalable algorithms are known—that
is, algorithms that are (1+ε)-speed O(1)-competitive for any fixed ε > 0.
Previous research has focused on the case where each job’s parallelizabil-
ity can be expressed as a concave speedup curve. However, there are cases
where a job’s speedup curve can be convex. Considering convex speedup
curves has received attention in the offline setting, but, to date, there
are no positive results in the online model. In this work, we consider
scheduling jobs with convex or concave speedup curves for the first time
in the online setting. We give a new algorithm that is (1+ε)-speed O(1)-
competitive. There are strong lower bounds on the competitive ratio if
the algorithm is not given resource augmentation over the adversary,
and thus this is essentially the best positive result one can show for this
setting.

Keywords: Online scheduling · Convex and concave parallelizability ·
Competitive analysis

1 Introduction

Scheduling jobs online arises in numerous applications and, for this reason, there
has been extensive research on the topic. See [14,20] for an overview of recent
work. In general, there are n jobs that arrive over time. Each job Ji has a
processing time pi and a release date ri. Each job Ji can only be processed after
its release date and is completed once it receives pi units of processing. In the
online setting, the scheduler is only aware of the job after it is released.

In this study, the objective is to minimize average (total) flow time, the
most popular and well-studied objective in the online setting. If a scheduler A
completes job Ji at time CA

i the flow time for job Ji is FA
i = CA

i − ri. This is
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the amount of time the job waits to be satisfied. A scheduler A that minimizes
average flow time optimizes

∑
i FA

i /n, which is the average waiting time of jobs.
In the most basic setting, the jobs are to be scheduled on a single machine.

In this case, it is well-known that the simple algorithm Shortest-Remaining-
Processing-Time (SRPT) is optimal. Recently, there have been many results
focusing on optimizing average flow time in a variety of multiple machine models;
for example, see [5,6,11,13]. Much of this work has focused on the case where
jobs are to be scheduled on at most one machine at any point in time. However,
a significant amount of attention has also been paid to scheduling jobs that are
parallelizable across m identical processors.

One of the most popular models is the arbitrary speedup curves model [7],
where each job Ji has a speedup function Γ (x) : m → R

+. Here Γi(x) is the rate
at which job Ji is processed when given x processing units.

It is assumed in previous work on online scheduling that the speedup Γi

is a non-decreasing concave function. It is interesting to note that this model
captures the classic identical machine scheduling setting where a job can only be
processed by at most one machine any point in time. To see this, let Γi(x) = x
for x ∈ [0, 1] and 1 for x > 1 for all jobs Ji.

Since no algorithm can be O(1)-competitive for the arbitrary speedup curve
model [17], previous work has focused on the resource augmentation model [16],
where a job is given faster processors than the adversary. An algorithm is said
to be s-speed c-competitive if the algorithm is given processors of speed s, the
adversary has processors of speed 1 and the competitive ratio is c. In the speedup
curve setting, this can be interpreted as Γi(x) being increased by a factor s for
the algorithm. An ideal algorithm is one that is (1 + ε)-speed O(1)-competitive
for every fixed ε > 0. That is, the algorithm has a constant competitive ratio
while using an arbitrarily small amount of extra resources over the adversary.
Such an algorithm is called scalable.

It was first shown that the algorithm Round Robin, or processor sharing,
is (2 + ε)-speed O(1)-competitive for any fixed ε > 0 [7]. This was the best
positive result for roughly a decade, until a breakthrough result of Edmonds
and Pruhs [9] showed an algorithm, called LAPS, is scalable. This algorithm
has been extremely influential since its introduction, being shown to be the best
possible algorithm in numerous scheduling environments [1,8,12].

Recently, there has also been work on determining the best competitive ratio
that can be achieved if the algorithm is not given resource augmentation [15].
In this model, for concave polynomial speedup functions, there is an O(log P )-
competitive algorithm that is a hybrid algorithm between SRPT and Round
Robin (here P is the size of the largest job); this bound is essentially tight.

Convex Speedup Functions. We offer a model of online scheduling for arbi-
trary speedup curves which allows speedup functions to be convex as well as
concave. All of the previous work on the online arbitrary speedup curves set-
ting only allow speedup functions to be concave. However, several works have
considered convex speedup functions in the the malleable task model, the offline
equivalent of our setting [3,4,18].
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Blazewicz et al. in [4] give some examples of applications of parallel computer
systems in scientific computing of highly parallelizable tasks to justify the consid-
eration of convex speedup curves. Their examples include (1) simulation of mole-
cular dynamics, (2) Cholesky factorization, and (3) operational oceanography.

For completeness, we summarize the molecular dynamics problem and why it
experiences convex speedup. Simulation of molecular dynamics of large organic
molecules (like proteins) is usually a very complicated task, because the simula-
tion must calculate interactions between hundreds of thousands of atoms at each
step. These simulations require massive amounts of space, and when an instance
does not fit in main memory the cost of repeatedly writing/reading from disk
dictates the time of execution. As a result, increasing the number of processors
working on the problem decreases these disk accesses. This leads to a convex
speedup (see Fig. 1 in [4]).

Several other studies report convex speedup curves in practice. For example,
Beaumont and Guermouche in [2] report that implementing the sparse matrix
factorization method of Prasanna and Musicus [19] in a real multifrontal solver
results in a measured speedup function of p1.15. They state that this superlin-
ear speedup originates from unusual requirements on processor utilization: the
algorithm generates master and slave tasks which must be scheduled on different
processors.

Our Contributions. In this work, we consider scheduling jobs in the online
setting with speedup curves that may be convex or concave for the first time.
In our model, each job Ji is comprised of phases 〈J1

i , J2
i , · · · , Jqi

i 〉 and each
phase can have an arbitrary speedup curve. We assume that the parallelizability
of phase μ of job i, Jμ

i is either a convex or concave function and each job
must be assigned an integral number of processing units at each time. Note
that each phase of each job can have different parallelizability, and can change
from convex to concave or visa versa. Since this setting is more general than
the parallel identical machines setting, there are strong lower bounds on the
competitive ratio of any online algorithm.1 Thus, we consider algorithms in the
resource-augmentation model.

We assume the scheduler is online and does not know of a job until it arrives.
We further assume that the scheduling algorithm does not know the size of a
job nor the specific function of its speedup curve. However, we assume that the
algorithm knows whether Γi,μ for each phase μ of job i, Jμ

i is convex or concave.
That is, while that algorithm unaware of Γi,μ for each job Ji and phase μ, it is
aware if Γi,μ is convex or concave. We refer to such an scheduler as a convexity-
sensitive scheduler . We note that a convexity-sensitive scheduler has only one
bit per phase of each job more information than non-clairvoyant LAPS algorithm
in [9]. Here we show the following result.

Theorem 1. There exists a (1+λε)-speedO( 1
λε4 )-competitive convexity-sensitive

scheduling algorithm for minimizing average flow time in the arbitrary speedup
1 Specifically, [17] gives an Ω(log n/m) lower bound.
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curves setting when the speedup curves can be a concave or convex function, for
any 0 < ε ≤ 1/2 and λ > 7/3.

Thus, for any fixed ε′, we can achieve a (1 + ε′) speed, O(1)-competitive algo-
rithm by appropriately choosing ε and λ in the above theorem. Given the strong
lower bound on the competitive ratio for any algorithm without resource aug-
mentation, this is essentially the best positive result that can be shown in the
worst-case analysis setting.

Organization. Section 2 outlines some preliminary tools for our analysis. In
Sect. 3, we present our convexity-sensitive algorithm. Section 4 provides the proof
for Theorem 1.

2 Preliminaries

In our setup we consider n jobs that arrive over time. Each job Ji has a release
time ri and a sequence of phases χi = 〈J1

i , J2
i , · · · , Jqi

i 〉. Each phase μ of job i
has a processing time pi,µ which means that it needs this amount of process-
ing to be completed. We assume that there are m available processing units
and that when phase μ of job i is given x (integral) units of processing it is
processed at a rate of Γi,µ(x). We assume that Γi,μ(0) = 0. If the algorithm
is given resource augmentation s, then we assume Γi,μ(x) is scaled by s for
the algorithm (whose performance is then compared to the unscaled optimal
solution).

Our algorithm assigns fractional units of processing units to jobs, which might
seem to contradict the model described above. We describe how this assumption
is justifiable. First, since Γi,μ(x) is only defined on integral x, we can extend the
definition to where x can be fractional. This is naturally defined by making Γi,μ

a piecewise linear function. Consider any fractional x = x′ + λ where λ ∈ (0, 1)
and x′ is fractional. We assume that Γi,μ(x) = (1 − λ)Γi,μ(x′) + λΓi,μ(x′ +
1). Note that this preserves convexity and concavity of Γi,μ. In this case, [10]
has shown that an online O(c)-competitive algorithm that fractionally assigns
processors to jobs can be converted to an O(c)-competitive online algorithm that
integrally assigns processors to the jobs without knowing the functions Γi,μ. In
short, one can simulate fractional processor assignments by assigning jobs to an
additional processor for a small amount of time, leading to equivalent speedup.
Thus, we assume WLOG that our algorithm can assign processors fractionally to
the jobs. Furthermore, by scaling Γi,μ, we may assume that m = 1 throughout
the analysis.

We will also extend this problem definition to allow phases of jobs Jμ
i where

Γi,µ(x) = 1 for all x ∈ [0, ∞). We note that this implies that phase μ of job
i, Jμ

i is processed even though no processor is assigned to it. Although this is
not realistic in practice, this only makes our problem harder, yet, in fact, it will
help to simplify our analysis. We will call such phases sequential . Note that in
this case, these phases are not explicitly identified to the algorithm (since it is
convexity-sensitive and does not know the functions Γi,μ), so the algorithm may
waste processing power on them.



Scheduling Parallel Jobs Online with Convex and Concave Parallelizability 187

The following simple proposition about concave and convex functions will be
useful throughout the analysis.

Proposition 1. – For any positive value x, any positive α < 1, and any con-
cave function f where f(0) = 0, we have that αf(x) ≤ f(αx).

– Also, for any values a and b where b ≥ a > 0, we have that f(b)
f(a) ≤ b

a .
– Likewise, for any positive value x, any positive value α < 1, and any convex

function g where g(0) = 0, we have that αg(x) ≥ g(αx).
– Also, we have that for b ≥ a > 0 g(b)

g(a) ≥ b
a .

2.1 Amortized Local Competitiveness

We let FA(I) and FO(I) refer to the objective values of the algorithm and OPT
on input I. A scheduling algorithm is said to be d-competitive if

max
I

FA(I)
FO(I)

≤ d.

To prove the competitiveness of an online algorithm, we use an amortized local
competitiveness argument. See [14] for a tutorial on this technique. To incorpo-
rate such an argument it suffices to show for an algorithm A that a potential
function Φ(t) with the following properties exists, where Φ(t) is continuous at
all times except possibly when jobs arrive or are completed:

Boundary Condition: Before any job is released Φ(0) = 0, and after all jobs
are finished Φ(∞) ≥ 0.

Completion Condition: Summing over all job completions by the optimal
solution and the algorithm, Φ does not increase by more than α1F

O for some
α1 ≥ 0.

Arrival Condition: Summing over the arrival of all jobs, Φ does not increase
by more than α2F

O for some α2 ≥ 0.

Running Condition: At any time t when no job arrives nor is completed,

∂FA(t)
∂t

+
∂Φ(t)

∂t
≤ α3

∂FO(t)
∂t

. (1)

By integrating Eq. 1 over time and applying the boundary, arrival, and com-
pletion conditions we get

FA − Φ(0) + Φ(∞) ≤ (α1 + α2 + α3)FO (2)

FA ≤ (α1 + α2 + α3)FO − Φ(∞).

Equation 2 implies that algorithm A is (α1 + α2 + α3)-competitive.
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3 A Convexity-Sensitive Scheduling Algorithm

In this section, we present a convexity-sensitive scheduling algorithm that is
O(1/λε4)-competitive with (1 + λε)-speed augmentation for every 0 < ε ≤ 1/2
and λ > 7/3. Note that ε can be set independent of λ. For the remaining portion
of the algorithm definition and analysis, fix a pair of such λ and ε.

We introduce some definitions and then present our scheduling algorithm.

Definition 1. We say that phase μ of job i, Jμ
i is sequential if ∀x ≥ 0, Γi,μ

(x) = 1. A linear phase of job j is a phase Jμ
j with speed-up function Γj,μ(x) =

x. We define both of these phases to be concave.

Definition 2. Fix a unit time step at time t. For a given scheduling algorithm,
we let A(t) be the set of unsatisfied jobs at time t. Also let A′(t) be the εA(t)
latest arriving jobs. Let (1 − γt) be the fraction of alive jobs that are currently
in a convex phase at time t and a γt fraction are in a concave phase at time t.

Algorithm 1. The Convexity-sensitive Scheduling Algorithm.
1: On each time step t do the following:
2: Give each of the (1 − γt)|A′(t)| jobs in a convex phase all of the processing units

for 1/|A′(t)| fraction of the unit time slot.
3: Give each of the jobs in a concave phase 1/(γt|A′(t)|) of the processing units for a

γt fraction of the unit time slot.

4 Proof of Theorem 1

We first define our potential function in Subsect. 4.1. Then, in Subsect. 4.2 we
argue the amortized local competitiveness conditions for our potential function,
proving that the convexity-sensitive scheduling algorithm is O(1)-competitive.

4.1 The Potential Function Φ

Definition 3. Let pA
i,µ(t), and pO

i,µ(t) be the remaining processing time for Ji’s
μ-th phase in the algorithm’s schedule, and OPT’s schedule at time t respectively.

If job Ji is processed using xi processing units by the algorithm when it is in
phase μ in the algorithm’s schedule at time t then pA

i,μ(t) decreases at a rate of
(1+λε)Γi,μ(xi). Similarly, if job Ji is processed using xi processing units by the
optimal solution in phase μ at time t then pO

i,μ(t) decreases at a rate of Γi,μ(xi)

Definition 4. We define the lag of the algorithm on job Ji’s μ-th phase, Jμ
i ,

compared to OPT as following:

zi,μ(t) = max{pA
i,μ(t) − pO

i,μ(t), 0}.

Note that zi,μ is never negative.
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Definition 5. We define the rank of job Ji, ranki(t), as the number of jobs
in A(t) that arrived before job Ji in the system.

Definition 6. We define βi,µ(x) to be equal to

βi,μ(x) =

{
Γi,μ (1/εx) if Γi,μ is concave;
Γi,μ(1)/εx if Γi,μ is convex.

Finally, we are ready to define our potential function.

Definition 7. Let c = 20/ε2(9λ − 21). We define the potential function Φ(t)

Φ(t) = c
∑

i∈A(t)

∑

μ∈χi

zi,μ(t)
βi,μ(ranki(t))

.

4.2 Amortized Local Competitiveness of Φ

In this subsection, we show that our potential function Φ satisfies the four condi-
tions laid out in the Sect. 2 and thus the convexity-sensitive scheduling algorithm
is constant competitive.

The following lemma shows that the algorithm has the first three conditions.
Its proof is rather straightforward and is omitted due to space constraints.

Lemma 1. The potential function, Φ(t), satisfies the boundary, arrival and
completion conditions. In particular, the potential does not increase at any of
these events.

To prove Theorem 1, we need to show the running condition for Φ. To
do this, we show that we can focus on certain classes of problem instances. The
following is a simple extension of a lemma proven in [9].

Lemma 2. Let S be a convexity-sensitive scheduler with s-speed augmentation.
Let I be an instance of jobs with phases that have concave or convex speed up
functions. There exists an instance I ′ that includes the same set of convex phases
for jobs in I, and for every concave phase Jμ

i in I ′ it is the case that either Jμ
i

is sequential (Γi,μ = 1), or linear (Γi,μ(x) = x). Furthermore, such an I ′ exists
where FS(I) = FS(I ′) and FO(I ′) ≤ FO(I) where FO is the objective of the
optimal solution and FS is the objective of the convexity-sensitive scheduler.

The proof of the above lemma is implied immediately by the proof of Lemma 3.1
in [9]. Specifically, the proof proceeds constructively, by substituting each con-
cave phase that is not sequential or linear with one that is; in each case, the
objective of the optimal solution decreases, while that of the convexity-sensitive
scheduler stays the same. Our construction does not change the convex phases.

This lemma implies that if an instance has concave phases that are not
sequential or linear, the performance of our algorithm can only improve rela-
tive to the optimal solution. Thus we assume throughout the proof that concave
phases are either sequential or linear.
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Definition 8. Let U(t) be the set of unsatisfied jobs in the optimal solution,
OPT, at time t.

First we show how much Φ can increase at time t due to the optimal solu-
tion processing jobs. Then, later, we bound the decrease due to the algorithm
processing separately.

Recall that for total flow time, the increase in the objective at any point in
time is the number of unsatisfied jobs. Thus, for an instantaneous time t we have

∂FA(t)
∂t

= |A(t)|, ∂FO(t)
∂t

= |U(t)|.

Lemma 3. The total increase in Φ(t) at any time t due to the optimal solution
processing jobs is at most c|U(t)| + cε|A(t)|.
Proof. Our goal is to show that the optimal solution cannot increase the potential
function too much. To show this, consider the number of processing units the
optimal solution assigns to the jobs.

Definition 9. Let mO
i (t) be the number of processing units OPT assigns to job

Ji at time t.

Let μO
i (t) be the phase of job Ji in OPT’s schedule at time t. Job Ji is processed

by OPT at the rate of Γi,μO
i (t)(mO

i (t)) (the remaining processing time pO
i,μO

i (t)
(t)

of phase μO
i (t) for job i would decrease at this rate). Then zi,μO

i (t)(t) could
increase by this amount in the worst case. Hence,

∂Φ(t)
∂t

≤ c
∑

i∈U(t)

Γi,μO
i (t)(mO

i (t))

βi,μO
i (t)(ranki(t))

.

Let Uv(t) be the alive jobs in OPT at time t that are in a convex phase at
time t in OPT’s schedule and Uc(t) be ones that are in a concave phase.

∂Φ(t)
∂t

≤ c
∑

i∈U(t)

Γi,μO
i (t)(mO

i (t))

βi,μO
i (t)(ranki(t))

≤ c

⎛

⎝
∑

i∈Uc(t)

Γi,μO
i (t)(mO

i (t))

βi,μO
i (t)(ranki(t))

+
∑

i∈Uv(t)

Γi,μO
i (t)(mO

i (t))

βi,μO
i (t)(ranki(t))

⎞

⎠

≤ c

⎛

⎝
∑

i∈Uc(t)

Γi,μO
i (t)(mO

i (t))

Γi,μO
i (t)(1/εranki(t))

+ε
∑

i∈Uv(t)

ranki(t)Γi,μO
i (t)(mO

i (t))

Γi,μO
i (t)(1)

⎞

⎠ .

We now bound each of these terms separately.

First Summation Term. If mO
i (t) ≤ 1/(εranki(t)), then the corresponding

term in the first summation is at most 1. Note that this is true even if the job
is in a sequential phase and we can assume OPT does not assign any processors
to sequential jobs since it does not increase the rate they are processed.
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On the other hand, if mO
i (t) > 1/(εranki(t)), then by Proposition 1, we have

Γi,μO
i (t)(mO

i (t))

Γi,μO
i (t)(1/εranki(t))

≤ εranki(t)mO
i (t).

due to the concavity of any job Ji’s phase in the first sum. Therefore,

∑

i∈Uc(t)

Γi,μO
i (t)(mO

i (t))

Γi,μO
i (t)(1/εranki(t))

≤ |Uc(t)| +
∑

i∈Uc(t)

εranki(t)mO
i (t).

Second Summation Term. As for the second term we know that mO
i (t) ≤ 1.

Hence, due to the convexity of the jobs phases, Proposition 1 implies that

Γi,μO
i (t)(mO

i (t))

Γi,μO
i (t)(1)

≤ mO
i (t).

Thus, we get that

∑

i∈Uv(t)

ranki(t)Γi,μO
i (t)(mO

i (t))

Γi,μO
i (t)(1)

≤
∑

i∈Uv(t)

ranki(t)mO
i (t).

Substituting the above simplifications, we get

∂Φ(t)
∂t

≤ cεranki(t)

⎛

⎝
∑

i∈Uc(t)

mO
i (t) +

∑

i∈Uv(t)

mO
i (t)

⎞

⎠ + c|Uc(t)|

≤ c|Uc(t)| + cε|A(t)|
∑

i∈U(t)

mO
i (t).

The last line follows because the rank of each job is at most A(t) at time t, by
definition of the ranks of the jobs and because there are only A(t) unsatisfied
jobs in the algorithm’s schedule at time t.

Finally, we know that
∑

i∈U(t) mO
i (t) ≤ 1, because the amount of processing

units divided between jobs at any time can not exceed m = 1. Hence,

∂Φ(t)
∂t

≤ c|Uc(t)| + cε|A(t)| ≤ c|U(t)| + cε|A(t)|.


�
We divide the rest of the analysis into two cases depending on the relation-
ship between U(t) and A(t). First, we consider the easier case where |U(t)| ≥
ε2|A(t)|/10.

Lemma 4. If |U(t)| ≥ ε2|A(t)|/10, then ∂FA(t)/∂t + ∂Φ(t)/∂t is at most
O(1/λε4)

(
∂FO(t)/∂t

)
.
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Proof. By Lemma 3 we know that the most OPT can increase Φ(t) is c|U(t)| +
cε|A(t)|. Hence,

c|U(t)| + cε|A(t)| ≤ c(1 + 10/ε)|U(t)| since ε|A(t)| ≤ 10|U(t)|/ε.

Therefore we have,

∂FA(t)
∂t

+
∂Φ(t)

∂t
≤ A(t) + c(1 + 10/ε)|U(t)|
≤ c(1 + 10/ε + 10/ε2)|U(t)| since |A(t)| ≤ 10|U(t)|/ε2,

≤ O(1/λε4)
(

∂FO(t)
∂t

)

since c =
20

ε2(9λ − 21)
.

Now we consider the more challenging case where |U(t)| < ε2|A(t)|/10.

Lemma 5. If |U(t)| < v2|A(t)|/10, then ∂FA(t)/∂t + ∂Φ(t)/∂t is at most
O(1/λε4)

(
∂FO(t)/∂t

)
.

Proof. In the proof of Lemma 4 we focused on how OPT can increase Φ (by
assuming that the algorithm didn’t decrease the pA

i,μO
i (t)

(t) variables at all). Let

μA
i (t) be the phase job Ji is in at time t in the algorithm’s schedule. In this

proof, we focus on how the algorithm can decrease zi,μA
i (t)(t) and thus Φ(t)

as well as OPT increasing Φ(t). Let CO(t) be the change in Φ(t) due to the
optimal solution processing jobs at time t and let CA(t) denote the change
in Φ(t) due to the algorithm processing of jobs at time t. Lemma 3 says that
CO(t) ≤ c|U(t)| + cε|A(t)|.

Now, we bound CA(t) at a time t where |U(t)| < ε2|A(t)|/10. Recall that
zi,μA

i (t)(t) = max{pA
i,μA

i (t)
(t)−pO

i,μA
i (t)

(t), 0}. Therefore, zi,μA
i (t) can only decrease

due to the algorithm’s processing. Further, zi,μA
i (t)(t) will decrease at the rate

the algorithm process job Ji at time t if the optimal solution has completed Ji

by time t. That is, for jobs not in U(t). Since OPT only has U(t) < ε2|A(t)|/10
unfinished jobs, the algorithm’s processing on at least a (1 − ε/10) fraction of
the jobs in A′(t) causes zi,μA

i (t) to decrease at the rate they are processed.
Let Ac(t) be the set of jobs in A′(t) that are in a concave phase at time t

in the algorithm’s schedule. Let Av(t) be the set of jobs in A′(t) that are in a
convex phase at time t in the algorithm’s schedule. A′(t) = Ac(t) ∪ Av(t). We
assume that at time t a (1 − γt) fraction of jobs in A′(t) are in Av(t) and a γt

fraction are in Ac(t)
By Lemma 2, we may assume that any concave phase for a job is either

sequential or linear. Therefore, to bound CA(t) we can assume that all the jobs
in Ac(t) are either sequential or linear. Let Sc(t) be the jobs in Ac(t) that are in
a sequential phase at time t and the others are in Lc(t). Ac(t) = Sc(t) ∪ Lc(t).
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Here are the progress rates of the algorithm on Av(t), Sc(t), and Lc(t).

– The algorithm processes each convex job in Av(t) at a rate of Γi,μA
i (t)(1)/ε|A(t)|.

– For each linear job in Lc(t), the rate of progress is γtΓi,μA
i (t)(1/γtε|A(t)|) =

1/ε|A(t)|.
– For each sequential job in Sc(t), the rate of progress is always 1 no matter

how many processing units are assigned to the job (even if there are 0 units
assigned).
The algorithm is (1+λε)-speed augmented; therefore we multiply its change

in the potential function by (1 + λε). Combining all the above, we get

C(t)A ≤ −c(1 + λε)

⎛

⎝
∑

i∈Av(t)\U(t)

Γi,µA
i (t)(1)/ε|A(t)|

βi,µA
i (t)(ranki(t))

+
∑

i∈Sc(t)\U(t)

1

βi,µA
i (t)(ranki(t))

+
∑

i∈Lc(t)\U(t)

1/ε|A(t)|
βi,µA

i (t)(ranki(t))

⎞

⎠ . (3)

Note that since the algorithm works on the latest A′(t) arriving jobs, the
rank of each job in A′(t) is bounded between

(|A(t)| − |A′(t)|) ≤ ranki(t) ≤ |A(t)|
(1 − ε)|A(t)| ≤ ranki(t) ≤ |A(t)|.

By starting from Inequality 3, replacing the definition of βi,μA
i (t), and using

the above bounds on the rank of each job in A′(t), we can show the following
proposition. The proof is omitted.

Proposition 2. Let CA(t) be the change in Φ(t) due to the algorithm processing
of jobs at time t. For ε < 1/2 and |U(t)| < ε2|A(t)|/10 we have

CA(t) ≤ −cε|A(t)|
(
1 + (9λ − 21)

ε

20

)
.

Using Proposition 2, we can upper bound ∂Φ(t)/∂t.

∂Φ(t)
∂t

= CO(t) + CA(t)

≤ (c|U(t)| + cε|A(t)|) −
(

cε|A(t)| + cε2
(

9λ − 21
20

)

|A(t)|
)

≤ c|U(t)| − cε2
(

9λ − 21
20

)

|A(t)|.

With this we get the running condition (Eq. 1) which finishes the proof of
Lemma 5:
∂FA(t)

∂t
+

∂Φ(t)
∂t

≤ c|U(t)| + |A(t)|
(

1 − cε2
(

9λ − 21
20

))

≤ c|U(t)| = c

(
∂FO(t)

∂t

)

since c =
20

ε2(9λ − 21)
, λ > 7/3.


�
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Lemmas 4 and 5 together imply the running condition and complete the proof
of Theorem 1.
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Abstract. We study a preemptive single machine scheduling problem
where the machine speed is externally given and depends on the number
unfinished jobs. The objective is to minimize the sum of weighted com-
pletion times. We develop a greedy algorithm that solves the problem
to optimality when we work with either unit weights or unit processing
times. If both weights and processing times are arbitrary, we show the
problem is NP-hard by making a reduction from 3-partition.

1 Introduction

In queueing theory, many studies have been made about queues with state-
dependent service speeds, see e.g. Bekker and Boxma [4] or Bekker, Borst, Boxma
and Kella [13] and the references therein. This model is among others motivated
by Bertrand and Van Ooijen [5] through human servers who may be slow when
there is much work to do, due to stress, or when there is little work to do due to
laziness. For state-dependent server speeds in packet-switched communication
systems, we refer to [6,7,11,14].

Although these models have been extensively studied in queueing theory, not
much is known about algorithms that solve these models to optimality nor the
computational complexity of this type of problem. During the 2013 Scheduling
workshop in Dagstuhl, Urtzi Ayesta [3] posed it as an open question how optimal
policies look like and what the computational complexity is. In this paper, we
settle this open problem for one variant of state-dependent machine speeds,
namely when the speed of the machine varies with the number of jobs in the
system. This number of jobs is a good measure for the total workload in the
system, when the service requirements of the jobs are i.i.d. Moreover, in this
setting the speed of the server only changes at discrete times, see e.g. [4].

1.1 Previous Work

Models with workload dependent server speeds originate from queueing theory.
Bertrand and Van Ooijen [5] assume in their paper that the workload level
affects the effective processing times in a job shop. This assumption is based on
the results of empirical research on the relationship between workload and shop
performance. Bekker, Borst, Boxma and Kella [13] consider two types of queues
c© Springer International Publishing Switzerland 2015
L. Sanità and M. Skutella (Eds.): WAOA 2015, LNCS 9499, pp. 196–208, 2015.
DOI: 10.1007/978-3-319-28684-6 17
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with workload dependent arrival rate and service speed. Bekker and Boxma
[4] consider a queueing system where feedback information about the level of
congestion is given right after arrival instants. When the amount of work right
after arrival is at most some threshold, then the server works at a low speed
until the next arrival instant.

Related work in deterministic scheduling with varying machine speeds includes
the following. Research into speed scaling algorithms started with the work of Yao,
Demers and Shenker [8], where each job is to be executed between its arrival time
and deadline by a single processor with variable speed. The difference with the
previous mentioned models as well as ours is that the scheduler in this setting
also needs to decide on the speed of the machine at any time t. A review paper on
speed scaling algorithms is written by Albers [1].

Megow and Verschae [12] also study scheduling problems on a machine of
varying speed, but they assume a speed function that depends on the time which
is known a priori. They developed a PTAS for minimizing the total weighted
completion time.

The machine speed model we consider, was previously investigated by Gaw-
iejnowicz [10] and Alidaee and Ahmadian [2]. Though both papers discussed
the non-preemptive case instead of the preemptive case we are looking at. Here
Gawiejnowicz considered the makespan objective whereas we study the goal to
minimize the sum of (weighted) completion. Alidaee and Ahmadian studied the
sum of completion times where jobs have equal weights.

1.2 Problem Definition

In the model under consideration, n jobs need to be scheduled on a single
machine. A job j is associated with a strictly positive processing requirement
denoted by pj and depending on the variant that we consider also with a weight
wj . All jobs as well as the machine are available from the beginning. The machine
is allowed to preempt a job, i.e., the processing of a job may be interrupted and
resumed later on the machine. By allowing infinitesimally small processing on a
job before preempting it, the preemption model can be viewed as one in which
during each time interval the processing capacity of the machine is divided over
one or more jobs. The goal is to minimize the total (weighted) completion time,∑

wjCj , where Cj denotes the completion time of job j. In our scheduling model,
the speed at which the machine processes its jobs varies with the number of jobs
in the system. For notational convenience, we represent the speed at which the
machine is processing as a function of the number of completed jobs. Hereto, we
are given a speed function si (i = 1, . . . , n), where si denotes the speed of the
machine between the (i− 1)th and ith completion. From now on we refer to this
problem as JDMS.

When the machine speed does not vary, i.e. si = 1 for all i, the problem is a
standard problem where the total weighted completion time should be minimized
on a single machine. This problem is solved by Smith’s rule [15].
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1.3 Our Results

When we know the order in which the jobs complete, we can formulate the
problem as an LP with two types of constraints. The first type of constraints
ensures that the amount of processing done during an interval is not more than
the capacity of the machine in that interval. The second type of constraints
ensures that the jobs complete in the order that is assumed. Any solution to our
scheduling problem can be represented as a solution to the LP and vice versa.
Using this fact, we can prove that there exists an optimal solution such that at
every completion time Cj , any job k is already completed by time Cj or it has
not received any processing yet by this time.

Intuitively this lemma means that there exists an optimal solution where the
jobs are partitioned in groups and all jobs in a group start and finish at the
same time. Given the order of job completions, we still need to decide on how
to partition the jobs into groups. Although this follows from the optimal LP
solution, we also develop a combinatorial greedy algorithm. For the case of the
total completion time objective, it is easy to show that jobs will complete in
shortest processing time (SPT) order, whereas the case of unit processing times
the optimal order will be sorting according to non-increasing weight. When both
weight and processing times can be arbitrary, the problem is strongly NP-hard
and we make a reduction from 3-partition.

2 Structural Property

In this section we show that an optimal schedule has a certain block structure
in which the jobs are processed in groups and that the jobs in one group start
and finish at the same time. Note that we view the preemption model as one
in which the processing capacity of the machine is divided over one or more
jobs. Therefore, we may assume that a set of jobs can complete at exactly the
same time. In case that the order in which the jobs need to complete is given,
we can formulate the problem of minimizing the total weighted completion time
as a linear program. Assuming w.l.o.g. that the order of completion is given by
the index of jobs, i.e., C1 ≤ · · · ≤ Cn, the variables in the LP denote the time
between the ith and the i + 1st completion. That is, we use variable Δi, where:

Δi =
{

C1 if i = 1,
Ci − Ci−1 if 1 < i ≤ n.

Hence, the completion time of job j can be written as Cj =
∑j

i=1 Δi. At the
interval [0, C1], the machine is operating at speed s1 and during the intervals
[Ci−1, Ci], the machine is operating at speed si. The sum of weighted completion
times can be rewritten as:

n∑

j=1

wjCj =
n∑

j=1

wj

j∑

i=1

Δi =
n∑

i=1

⎛

⎝
n∑

j=i

wj · Δi

⎞

⎠ .
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To make sure the requested order on the completion times is enforced, we have
the constraint Δi ≥ 0 for all i. Lastly we want to make sure that by time Ci at
least jobs 1, . . . , i have been fully processed. Thus the total amount of processing
up to time Ci needs to be at least the processing requirements of the first i jobs:

i∑

k=1

Δk · sk ≥
i∑

k=1

pk, 0 ≤ i ≤ n.

The LP is as follows:

minimize
n∑

i=1

⎛

⎝
n∑

j=i

wj · Δi

⎞

⎠

subject to
i∑

k=1

Δk · sk ≥
i∑

j=1

pj , 1 ≤ i ≤ n

Δi ≥ 0, 1 ≤ i ≤ n.

Note that a feasible solution for this LP does not correspond to a unique
schedule, but with a non-empty set of schedules for which the completion times
are set. Any feasible schedule leads to a unique solution of the LP. For any given
order on the completion times, we can find an optimal schedule in polynomial
time using this LP.

We use this LP to show that an optimal solution to the general JDMS has a
block structure. We first prove that there exists an optimal solution, such that
at all completion times, each job that has started is finished.

Lemma 1. There exists an optimal schedule such that at every completion time
Ci, for every job j one of the following holds:

1. Job j is already completed at time Ci.
2. At time Ci job j has not received any processing yet.

Proof. Given an order of completion times, we make a corresponding LP and
reformulate this lemma in terms of this linear program. For this linear program
we prove that for each job k one of the following holds:

– Δk+1 = 0, and thus Ck = Ck+1.
– If Ck+1 > Ck, then it has to hold that

∑k
j=1 sjΔj =

∑k
j=1 pj . If that is not

the case, we use the fact that a solution must satisfy the requested order on
the completion times in combination with the assumption that a machine is
always working at full speed. Then there exists a job l ≥ k + 1 that is not yet
completed, but already received some processing.

Thus we want to prove that for k = 1, . . . , n − 1 either:

Δk+1 = 0 (1) or
k∑

j=1

sjΔj =
k∑

j=1

pj . (2)
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Suppose we have an optimal solution σ such that there exists a k with:

Δk+1 > 0 and
k∑

j=1

sjΔj >

k∑

j=1

pj .

We define � as:
� = max{j ≤ k|Δj > 0}.

Note that � exists as prosessing times are strictly positive. We define two new
feasible solutions, for some ε > 0:

1. We define σ′ as the solution where Δσ′
� = Δσ

� − ε
s�

and Δσ′
k+1 = Δσ

k+1 + ε
sk+1

.
The change in the objection value is:

n∑

i=1

wiC
σ′
i −

n∑

i=1

wiC
σ
i =

∑

1≤i≤j≤n

wjΔ
σ′
i −

∑

1≤i≤j≤n

wjΔ
σ
i

=

(
n∑

i=k+1

wi

)
ε

sk+1
−

(
n∑

i=�

wi

)
ε

s�
.

Note that σ′ is still feasible, as we can do ε amount of work less in Δσ′
�

compared to Δσ
� , but ε amount of work extra in Δσ′

k+1 compared to Δσ
k+1.

2. We define σ′′ as the solution where Δσ′′
� = Δ� + ε

s�
and Δσ′′

k+1 = Δk+1 − ε
sk+1

.
The change in the objection value is:

n∑

i=1

wiC
σ′′
i −

n∑

i=1

wiC
σ
i =

∑

1≤i≤j≤n

wjΔ
σ′′
i −

∑

1≤i≤j≤n

wjΔ
σ
i

=

(
n∑

i=�

wi

)
ε

s�
−

(
n∑

i=k+1

wi

)
ε

sk+1
.

Note that σ′′ is still feasible, as we can do ε amount of work extra in Δσ′′
�

compared to Δσ
� , but ε amount of work less in Δσ′′

k+1 compared to Δσ
k+1.

As:
n∑

i=1

wiC
σ′
i −

n∑

i=1

wiC
σ
i = −

(
n∑

i=1

wiC
σ′′
i −

n∑

i=1

wiC
σ
i

)

,

at least one of the two solutions is better than or equal to σ. As σ is optimal,
we actually know that both new solutions are also optimal.

Suppose k is the smallest value such that neither (1) or (2) holds. Let:

ε = min{Δk+1,
k∑

j=1

sjΔj −
k∑

j=1

pj},
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then either σ′ or σ′′ will give an optimal solution where either (1) or (2) holds
for job k. We repeat this procedure until this property holds for all k ∈ {0 . . . n}.

Thus given an order on the completion times, we can find an optimal schedule
satisfying the requested order such that for all i, j, where 1 ≤ i, j ≤ n it holds
that at time Cj either job i is completed or did not receive any processing time
yet. As this holds for any order, this will also hold for the order of some optimal
solution. Therefore there exists an optimal solution such that or all i, j, where
1 ≤ i, j ≤ n, it holds that yi(Cj) ∈ {0, pi}. ��
Lemma 1 implies that we can divide the jobs into groups of consecutive jobs,
such that all jobs in a group will start and end at the same time. We use Gi to
denote the ith group of jobs and we denote an optimal solution as [G1, . . . , Gk]
(Fig. 1).

Fig. 1. Schedule in which the jobs are divided into k groups.

3 JDMS is Strongly NP-hard

From the previous section it follows that once we know the order in which the
jobs complete in an optimal solution, we can find such an optimal solution in
polynomial time. The only question that remains is how to find an order such
that there exists an optimal solution that satisfies this order? When there are
no restrictions on weights and processing times, it is strongly NP-hard to find
such an order.

Theorem 1. JDMS is strongly NP-hard.

Proof. We make a reduction from 3-partition [9] to JDMS. We take an instance
of 3-partition with 3m elements of size aj , and B = 1

m

∑3m
i=1 aj . The reduction

to JDMS is as follows: we define 3m jobs, with pj = wj = aj . The machine speed
is 1 when there are 0 (mod 3) jobs completed, and 0 otherwise. Now we claim
that there is a solution for 3-partition if and only if we can find a schedule where
the sum of weighted completion times is at most 1

2m(m + 1)B2.
Suppose we have a yes-instance for 3-partition, then there are sets S1, . . . , Sm

that contain exactly three elements, and
∑

i∈Sj
aj = B for all j. Then for JDMS

we make the schedule where we process the jobs in groups [S1, . . . Sm]. In this
schedule the machine runs always at speed 1, as we always process three jobs at
the same time. Group Si has weight B and completion time iB, thus the objective
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value is in this case
∑m

i=1 iB2, which equals 1
2m(m + 1)B2. Thus indeed there

exists a schedule with completion time at most 1
2m(m + 1)B2.

Suppose we have a schedule in JDMS with objective value at most 1
2m(m +

1)B2. According to Lemma 1 the jobs are processed in groups, and the sizes
of these groups have to be a multiples of three. Therefore we have at most m
groups. Now let xi be the length of group i, then the total weighted cost is:

m∑

i=1

⎛

⎝xi ∗
∑

1≤j≤i

xj

⎞

⎠ .

This can be rewritten as:

1
2

(

(
m∑

i=1

xi)2 +
m∑

i=1

x2
i

)

.

We know that
∑m

i=1 xi = mB, thus we have objective value:

1
2

(

m2B2 +
m∑

i=1

x2
i

)

.

The sum of squares is minimized when x1 = · · · = xn = mB
m = B. Note

that this will give us exactly objective value 1
2m(m + 1)B2, and is therefore the

only schedule we could have found. This implies that every group has exactly
processing time B. Note that we need to use all m groups, and we know that
every group has to contain a multiple of 3 jobs. As we have 3m jobs in total, every
group has to contain exactly three jobs. Thus these groups form a 3-partition of
the jobs aj .

This implies that the decision variant of JDMS is NP-complete, and therefore
JDMS is NP-hard. ��

4 Combinatorial Algorithm for Special Cases

In the previous section we proved that JDMS is strongly NP-hard. As the par-
titioning problem can be solved within polynomial time, the problem lies in
finding a suitable order on the job completions. In some special cases, when
working with either unit weights or unit processing requirements, such an order
can be found within polynomial time.

4.1 Solving the Sequencing Problem in Special Cases

In the first special case we assume all jobs have an equal weight.

Theorem 2. Suppose w1 = · · · = wn, then there exists an optimal schedule
for JDMS in which the jobs are completed in order of non-decreasing processing
time.
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Proof. Assume w.l.o.g that p1 ≤ · · · ≤ pn and we have an optimal schedule σ for
which it does not hold that Cσ

1 ≤ · · · ≤ Cσ
n . Then we look at the smallest i such

that Cσ
i+1 < Cσ

i . We change σ to σ∗ by only changing σ at job i and i + 1. We
let job i finish at time Cσ∗

i = Cσ
i+1 and job i + 1 finish at time Cσ∗

i+1 = Cσ
i . As

pi ≤ pi+1 and Cσ
i+1 < Cσ

i , we know that there needs to be a time t at which in
schedule σ the remaining processing time of a job i is the same as the remaining
processing time of job i + 1. We define the schedule σ∗ as follows. It processes
all jobs j �= i, i + 1 the same as in σ as it does with jobs i and i + 1 up to time
t. From time t onwards, σ∗ processes job i + 1 whenever σ processes job i and it
processes job i whenever job i+1 is processed by σ. All other jobs are processed
in σ∗ the same way as in σ.

As the time points where jobs finish stay the same, it holds that the speed of
the machine is equal in σ and σ∗ at every point in time. Therefore per time unit
the same amount of work can be done in σ and σ∗. So there is exactly enough
space for job i + 1 to be finished at time Cσ

i . Thus
∑n

i=1 Cσ
i =

∑n
i=1 Cσ∗

i and
σ∗ will remain optimal.

Iterating this process implies that there is an optimal schedule σ′ such that
Cσ′

1 ≤ · · · ≤ Cσ′
n . ��

Thus for JDMS with equal weights there exists an optimal solution that satisfies
the SPT order.

When we work with unit processing requirements instead of weights, we again
can find an order on the completion times that guarantees an optimal solution.

Theorem 3. Suppose p1 = · · · = pn, then there exists an optimal schedule for
JDMS in which the jobs completed in order of non-increasing weights

Proof. Suppose we have an optimal schedule σ and it does not hold that Cσ
1 ≤

· · · ≤ Cσ
n . Then we look at the smallest i such that Cσ

i+1 < Cσ
i and wi > wi+1 (if

wi = wi+1 then job i and i + 1 are identical and therefore switching job i with
job j will result in an optimal schedule as well). We change σ to σ∗ by processing
job i + 1 whenever σ processes job i and job i whenever σ processes job i + 1.
All other jobs are processed as in σ. As pi = pi+1, we know that Cσ∗

i+1 = Cσ
i

and Cσ∗
i = Cσ

i+1 and Cσ∗
j = Cσ

j for all j �= i, i + 1. Thus wjC
σ
j = wjC

σ∗
j

for all j �= i, i + 1. Furthermore, as wi > wi+1, Cσ∗
i+1 > Cσ∗

i , Cσ
i = Cσ∗

i+1 and
Cσ

i+1 = Cσ∗
i , some simple rewriting learns us that:

wiC
σ
i + wi+1C

σ
i+1 = wi+1C

σ∗
i + wiC

σ∗
i+1

= wi+1C
σ∗
i + wiC

σ∗
i+1 − (wiC

σ∗
i + wi+1C

σ∗
i+1)

+(wiC
σ∗
i + wi+1C

σ∗
i+1)

= (wi − wi+1)(Cσ∗
i+1 − Cσ∗

i ) + (wiC
σ∗
i + wi+1C

σ∗
i+1)

> wiC
σ∗
i + wi+1C

σ∗
i+1.

Thus
∑n

i=1 wiC
σ
i >

∑n
i=1 wiC

σ∗
i , which contradicts the fact that σ is

optimal. ��
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So when we number the jobs in order of non-increasing weights we know that
there exists an optimal solution satisfying this order.

4.2 Combinatorial Algorithm

We have split the problem up in two parts: we need to find a good sequence for
the order on the job completions (secuencing problem) and then decide how to
make the groups (partitioning problem). In Sect. 4.1 we solved the sequencing
problem for some special cases. To find an optimal solution it remains to solve
the partitioning problem. In Sect. 2 we showed that we can rewrite the problem
as an LP to find the exact completion times, and hence make an optimal solution.
In this section we develop a combinatorial algorithm that solves the partitioning
problem in linear time. We first give a intuitive explanation of this algorithm,
and thereafter a formal definition of the algorithm in pseudo code is given.

The algorithm finds an sequence of groups that fits in the block structure of
an optimal solution for the given order. This sequence indicates which groups
of jobs should be processed in what order. Again we assume w.l.o.g. that the
order on the completion times is C1 ≤ · · · ≤ Cn. The algorithm determines for
each job i, whether it is better to schedule this job in the same group as job
i − 1 or to start a new group for job i. Hereto, we determine what the effect
of job i is on the total weighted completion time is when it is scheduled in the
same group as job i − 1 and also for the case when a new group is started for
job i. When job i is scheduled in the same group as job i − 1 the contribution is
(
∑

j∈Gk
wj +

∑n
j=i wj)(pi/sGk

), as it delays all jobs processed in or after group
Gk. Here we use sGk

to refer to the speed at which Gk is processed. When job
i starts a new group the contribution is (

∑n
j=i wj)(pi/si), as it delays job i and

all jobs that complete after job i. Therefore we determine whether or not the
following equation holds:

∑
j∈Gk

wj +
∑n

j=i wj

sGk

≤
∑n

j=i wj

si
. (1)

If so, then job i is scheduled to be processed together with the group of i − 1.
Otherwise a new group is started. The pseudo code of this greedy algorithm can
be found in Algorithm 1.

Theorem 4. Algorithm 1 finds an optimal solution for a given order of job
completions in JDMS.

Proof. Suppose σ is an optimal schedule for an instance of JDMS with n jobs
satisfying C1 ≤ · · · ≤ Cn. Let σ∗ be the solution according to the algorithm.
Then we want to show that a schedule according to the algorithm will give a
solution with an equal objective value. Let job i be the first job in σ that is not
scheduled according to the algorithm. Then there are two possible situations:

1. In σ, job i is scheduled in a new group Gk, whereas in σ∗ it is still processed
in group Gk−1.
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Input: n jobs with processing requirements p1, . . . , pn, weights w1, . . . wn,
speeds s1, . . . , sn and an order on the completion times C1 ≤ · · · ≤ Cn.

Output: an optimal sequence of groups [G1, . . . , Gk]
initialization: G1 = {1}, k = 1, E = w1, s = s1 ;
for i = 2 until i = n do

if (E +
∑n

j=i wj)si ≤ (
∑n

j=i wj)s then

E → E + wi, ;
Gk → Gk ∪ {i};

else
E → wi;
s → si;
Gk+1 → {i};
k → k + 1;

end

end
Return [G1, . . . , Gk]

Algorithm 1. Greedy algorithm

2. Job i is scheduled in the previous group Gk, while it should be scheduled in
a new group.

Suppose we are in the first situation: in σ, job i is scheduled in a new group
Gk, whereas in σ∗ it is still processed in group Gk−1. Then we change σ to σ′

by merging Gk and Gk−1. Then in σ′ , jobs 1, . . . , i are scheduled the same as
in σ∗.

We look at the total value that groups Gk, Gk−1 and Gk ∪ Gk−1 contribute
to the objective value of σ and σ′. Here the contribution of a group S is not∑

j∈S wjCj , but instead the time it takes to process all jobs in the group mul-
tiplied by the weight of all unfinished jobs at that point. As the other groups in
σ′ are the same as in σ, the contribution of these groups are the same in both σ
and σ′. Let c be the function that computes the value that a group contributes
to the objective value. Let W be the total weight of all the jobs scheduled after
Gk. Then:

cσ(Gk) + cσ(Gk−1) =

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk−1

pj

sGk−1

+

⎛

⎝
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk

, (2)

cσ′(Gk ∪ Gk−1) =

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk∪ Gk−1

pj

sGk−1

. (3)



206 V. Timmermans and T. Vredeveld

According to Algorithm 1 it should hold that:
∑

j∈Gk−1
wj +

∑n
j=i wj

∑n
j=i wj

≤ sGk−1

si
. (4)

Combining the fact that
∑

j∈Gk
wj + W =

∑n
j=i wj and (4) we know that:

∑
j∈Gk−1

wj +
∑

j∈Gk
wj + W

∑
j∈Gk

wj + W
≤ sGk−1

si
. (5)

We rewrite (5), and as job i is the first job of Gk we can replace si by sGk
:

∑
j∈Gk−1

wj +
∑

j∈Gk
wj + W

sGk−1

≤
∑

j∈Gk
wj + W

sGk

. (6)

Multiplying both sides with
∑

j∈Gk
pj :

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk−1

≤
⎛

⎝
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk

. (7)

Adding
(∑

j∈Gk−1
wj +

∑
j∈Gk

wj + W
) ∑

j∈Gk−1
pj

sGk−1
yields:

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk∪ Gk−1

pj

sGk−1

≤
⎛

⎝
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk

pj

sGk

+

⎛

⎝
∑

j∈Gk−1

wj +
∑

j∈Gk

wj + W

⎞

⎠

∑
j∈Gk−1

pj

sGk−1

. (8)

Combining (2), (3) and (8) yields:

cσ′(Gk ∪ Gk−1) ≤ cσ(Gk) + cσ(Gk−1). (9)

Thus the value of our changed schedule σ′ is smaller or equal than the objec-
tive value of σ, thus σ′ is optimal as well. The proof for the second situation is
similar and will therefore not be fully written out here. ��

5 Concluding Remarks

In this paper, we considered the problem JDMS in which jobs need to be sched-
uled preemptively on a single machine of which the speed varies with the number
of jobs that have been completed. We showed this problem to be NP-hard and
that the main issue is to decide in which order the jobs need to complete. Once
this order is known, we can find the optimal schedule in polynomial time through
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a greedy algorithm. This algorithm uses a structural property that tells that the
jobs are processed in blocks. For two special cases, JDMS with unit weights or
unit processing times, we found the orders that guarantee us to find an optimal
solution. The optimal order to complete unit weight jobs is shortest processing
time and the one for unit processing times is largest weight.

One question that remains is how well the general problem can be approxi-
mated. In case that the speed is constant, it is well known that the WSPT rule
that processes the jobs in order of non-increasing ratio of weight over processing
time is optimal [15]. However, the following example shows that this order can
be arbitrarily bad for JDMS.

Example 1. In this example, there are two jobs with w1 = 0, p1 = ε and w2 =
p2 = A. According to the WSPT order job 2 precedes job 1, and the optimal
schedule has value A2. If we consider the opposite order the optimal schedule
has value A

1+ε . Letting ε go to 0 and A be arbitrarily large, we see that this ratio
can be arbitrarily large.
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