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Abstract. A detailed study of quantum correlations reveals that recon-
structions based on physical principles often fail to reproduce the quan-
tum bound in the general case of N -partite correlations. We read here
an indication that the notion of system, implicitly assumed in the oper-
ational approaches, becomes problematic. Our approach addresses this
issue using algebraic coding theory. If the observer is defined by a limit
on string complexity, information dynamics leads to an emergent con-
tinuous model in the critical regime. Restricting it to a family of binary
codes describing ‘bipartite systems,’ we find strong evidence of an upper
bound on bipartite correlations equal to 2.82537, which is measurably
lower than the Tsirelson bound.

1 Mathematics Guides Understanding

A large swath of new research in the foundations of quantum theory addresses
the problem of correlations between distant parties. It had been known since
the “second quantum revolution” started by John Bell [3] that the amount of
correlations is a decisive quantity distinguishing between local (classical) and
nonlocal physical theories. However, it was only noticed quite recently that the
amount of correlations or, more broadly, quantum bounds in Bell inequalities
are, by themselves, a formidable puzzle through which, once we are able to
understand it better, we may get an entirely new understanding of quantum
theory.

Quantum logical reconstructions have reached their peak when George
Mackey and, later, Constantin Piron gave examples of mathematical derivations
of the Hilbert space formalism from an orthomodular lattice with additional
assumptions [18,26]. After a decline of two decades, operational reconstructions
of quantum theory took over from quantum logic around the turn of the cen-
tury. Finite-dimensional Hilbert spaces came into focus of these reconstructions
as a result of the development of quantum information. To derive the Hilbert
space, one posits several physical principles that are given a mathematical for-
mulation with the operation framework [5,15,22]. Such reconstructions contain
an important insight: an assumption of continuity is a necessary, but not a suffi-
cient, ingredient of quantum mechanical axiomatic systems. Differently worded
continuity assumptions exist in every reconstruction [16,32]: a prominent repre-
sentative is the existence of a continuous reversible transformation between any
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two pure states of the system [8]. On their own, however, these assumptions are
insufficient for reconstructing quantum theory, as demonstrated by C∗-algebraic
approaches [7]. Moreover, quantum theory has emerged from the reconstruction
program [13], not only as a description of individual systems with continuous
state spaces, but also requiring an extra axiom about how such systems com-
pose [29]. This insight must be complemented with a quantitative bound on the
amount of correlations given by the Bell inequalities and explored in postquan-
tum models [2,30,31]. There exists a fundamental fact about nature: the amount
of correlations between distant subsystems is limited by a non-classical bound,
e.g., the Tsirelson bound for bipartite correlations [6]. All mathematical alter-
natives to the Hilbert space formalism must strive to predict its empirical value.

Reaching the Tsirelson bound of the CHSH inequality is not yes sufficient
for a complete reconstruction of quantum mechanics. Various attempts to char-
acterize this boundary have led, in particular, to the understanding that no
bipartite principle on how two systems compose can fully characterize the quan-
tum bound [12]. Further, many principles developed in the reconstruction pro-
gram [4,11,17,25] were shown to be satisfied by a set of correlations which is
larger than the quantum set [24]. This line of research, then, though stemming
from the reconstructions, comes to invalidate most, if not all, of the desiderata
on which the latter are built [23].

In our view, this points to a staggering evolution: the notion of system may
not be an essential building block of quantum theory. Like other formerly unques-
tionable fundamental concepts in physics, a ‘system’ is now amenable to analysis
and derivation. One is trying to imagine a quantum theory without systems. In
Sect. 2 we introduce a framework based on the algebraic coding theory. It pro-
vides a general model of communication and deals mathematically with errors
or ambiguity. The use of coding theory is enabled by the definition of observer in
information-theoretic terms introduced in Sect. 3. It involves a limit on the com-
plexity of strings, which (to use a common-language expression) the observer can
‘store and handle’. Strings contain all descriptions of states allowed by quantum
theory but also much more: they need not refer to systems or be interpretable in
terms of preparations or measurements. Using the work of Manin and Marcolli,
we show that symbolic dynamics on such strings leads to an emergent continuous
model in the critical regime (Sect. 4). Restricting this model to a subfamily of
‘quantum’ binary codes describing ‘bipartite systems’ (Sect. 5), we find strong
evidence of an upper bound on bipartite correlations equal to 2.82537. The dif-
ference between this number and the Tsirelson bound 2

√
2 can be tested. The

Hilbert space formalism, then, emerges from this mathematical approach as an
effective description of a fundamental discrete theory of ‘quantum’ languages in
the critical regime, somewhat similarly to the description of phase transitions
by the effective Landau theory.

2 Codes

Communication implies that messages are encoded and transmitted in suitable
codes using an alphabet shared between the parties involved in communication.
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An alphabet is a finite set A of cardinality q ≥ 2. A code is a subset C ⊂ An

consisting of some of the words of length n ≥ 1. A language is an ensemble of
codes of different lengths using the same alphabet. As an example, take binary
codes of length n based on a two-letter alphabet, say, {0, 1}. Strings of zeros
and ones of arbitrary length belong to a language formed by binary codes with
different values of n.

In full generality, nothing can be stipulated about message semantics, mater-
ial support of the encoding and decoding operations or their practical efficiency.
One can observe, however, that decoding a message is less prone to error if the
number of words in the code is small. On the other hand, reducing the number
of code words requires the words to be longer. The number

R =
logq #C

n
(1)

is called the (transmission) rate of code C.
One can associate a fractal to any code in the following way [20,21]. Define

a rarified interval (0, 1)q = [0, 1] \ {m/qn|m,n ∈ Z}. Points x = (x1, . . . , xn) ∈
(0, 1)n

q can be identified with (∞ × n) matrices whose k-th column is the q-ary
decomposition of xk. For a code C define SC ⊂ (0, 1)n

q as the set of all matrices
with rows in C. It is a Sierpinski fractal and its Hausdorff dimension is R. The
closure of SC inside the cube [0, 1]n includes the rational points with q-ary digits.
This new fractal ŜC is a metric space in the induced topology from [0, 1]n. Now
consider a family of codes Cr of #Cr = qkr words of length nr, with rates:

kr

nr
↗ R. (2)

They define a fractal SR =
⋃

r SCr
of Hausdorff dimension dimH(SR) = R.

3 Bounded Complexity

Any observer’s memory is limited in size. While their material constitution may
be radically different, different observers with the same memory size should
demonstrate similar performance in handling information. This intuition serves
as a motivation for the following information-theoretic definition of observer.

Definition. An observer is a subset of strings of bounded complexity, i.e., strings
compressible below a certain threshold.

This limit can be viewed as the length of observer’s memory. If a string has
high complexity, it cannot describe an observer with a memory smaller that the
minimal length required to store it; but it remains admissible for an observer
with a larger memory.

The definition of observer requires a notion of string complexity independent
of the observer’s material organization. Kolmogorov complexity is a suitable
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candidate, for it strives to grasp complexity in a machine-independent way. For
a set of strings that are code words of code C with rate R, the lower Kolmogorov
complexity satisfies [20]:

sup
x∈ŜC

κ(x) = R. (3)

For all words x ∈ SR in a language formed by codes Cr, the lower Kolmogorov
complexity is bounded by κ(x) ≤ R. Hence the closure ŜR of the fractal SR

is a metric space that describes the handling of words of bounded Kolmogorov
complexity. It is a ‘minimal’ geometric structure corresponding to the notion of
observer.

4 Critical Language Dynamics

A change in the observer’s information can be modeled via dynamical evolution
on the fractal set SR. In quantum theory, new information enters when a projec-
tive or a POVM measurement produce a new string in the observer’s memory.
Taking inspiration from Manin and Marcolli [20], we represent this process as a
statistical mechanical system evolving on the set of all possible strings in codes
Cr. A change in the observer’s information corresponds to a change in the ‘occu-
pation numbers’ λa of words a ∈ ⋃

r Cr. The evolution of λa is described via
Hamiltonian dynamics on the Fock space:

Hstatεa1...am
= (λa1 + . . . + λam

)εa1...am
, (4)

with the Keane ‘ergodicity’ condition:
∑

a∈∪rCr

e−Rλa = 1, (5)

where vectors εa1...am
belong to the Fock space representation l2(W (

⋃
r Cr))

of the set W of all words in the codes Cr. To be precise, the Fock space is a
representation of the algebra defined below in (7); at this stage it is justified
by the completeness of W , which by construction includes all possible observer
information states. If the observer’s information remains within W , then the
Keane condition gives a meaning to the weights λa as normalized logarithms of
inverse probabilities that a is stored in the observer’s memory. This evolution
has a partition function:

Z(β) =
1

1 − ∑

a∈∪rCr

e−βλa
. (6)

Manin and Marcolli show that at the critical temperature (equivalently, string
complexity) β = R, the behaviour of this system is given by a KMS state on an
algebra respecting unitarity [20]. This algebra is built out of a geometric object,
namely the fractal ŜC , as follows. Consider characteristic functions χŜC(w), where

w = w1 . . . wm runs over finite words composed of wi ∈ C and ŜC(w) denotes
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the subset of infinite words x ∈ ŜC that begin with w. These functions can be
identified with the range projections

Pw = TwT ∗
w = Tw1 . . . Twm

T ∗
wm

. . . T ∗
w1

. (7)

At the low temperature β > R there exists a unique type I∞ KMS-state φR

on the statistical system of codes, which is a Toeplitz-Cuntz algebra with time
evolution:

σt(Tw) = qitnTw. (8)

The partition function is:

ZC(β) = (1 − q(R−β)n)−1. (9)

However, the isometries in the algebra do not add up to unity. Only at the critical
temperature β = R, where a phase transition occurs for all codes Cr, is there a
unique KMS state on the Cuntz algebra, i.e., an algebra such that, importantly
for our argument, isometries add up to unity:

∑
a TaT ∗

a = 1.
Critical behavior of the original discrete linguistic model is described at

β = R by a field theory on the metric space ŜR, which obeys unitarity. By
construction, this fractal also has scaling symmetry. This yields a field theory
respecting scaling and unitarity. While there has been some discussion of mod-
els that are scale invariant but not conformal, we assume that, in agreement
with Polyakov’s general conjecture [28], this field theory is conformal. The field
it describes is clearly an emergent phenomenon, for its underlying dynamics is
given in terms of codes. However, within the conformal field theory this field,
now a basic object, is to be considered fundamental. Due to the properties of
continuity, unitarity and to the geometric character of its state space, the con-
formal model becomes a tentative candidate for a reconstruction of quantum
theory.

5 Amount of Correlations

Since quaternionic quantum mechanics or, in some limited cases, real-number
quantum mechanics can be represented in the Hilbert space [1], one should expect
that continuity and unitarity alone do not single out quantum theory. In other
words, the conformal model of Sect. 4 likely contains more than a description of
‘quantum’ languages. In this section, we do not seek to provide a necessary and
sufficient condition that selects only code words generated by quantum theory.
Rather, we pick out a particular example, namely a class of models correspond-
ing to the critical regime of binary codes describing measurements on bipartite
quantum systems in the usual 3-dimensional Euclidean space.

First we define an informational analog of ‘bipartite.’ In quantum theory,
subsystems that are entangled can be materially different but they are described
by the same number of entangled degrees of freedom. Their informational content
is represented by strings of identical complexity. For example, measurements in a
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CHSH-type experiment produce binary strings of results for a choice of σx, σy, σz

measurements. The no-signalling condition implies that the probability of 0 on
Alice’s side is independent of Bob’s settings, and vice versa. Hence the strings
resemble Bernoulli distributions with a Kolmogorov complexity equal to the
binary entropy of the probability of 0, plus a correction due to the existence
of non-zero mutual information between Alice’s and Bob’s outputs. Since both
sides enter symmetrically in the CHSH inequality, this correction to Kolmogorov
complexity is a priori the same on Alice’s and Bob’s sides. We use this argument
to replace Eq. (4) with a class of Hamiltonians assumed to describe a ‘bipartite
system’ in the framework of codes.

The Kolmogorov order is an arrangement of words ai ∈ ⋃
r Cr in the increas-

ing order of complexity [19]. It is not computable and it differs radically from any
numbering of ai based on the Hamming distance in the codes Cr. Words that
are adjacent in the Kolmogorov order have similar complexity. We now select an
Ising-type Hamiltonian:

H2 = −
∑

ij

ai × aj , (10)

as a dynamical model on the language that describes bipartite quantum systems.
The sum is taken over N neighbors in the Kolmogorov order, i.e. all strings of
identical complexity. The result of multiplication on binary words is a new word
with letters isomorphic to multiplication results in a two-element group {±1}.
Hence, for a two-letter alphabet {a, b},

a × a = b × b = b, a × b = b × a = a. (11)

A binary language with N = 6 using H2 gives rises to information dynamics
which is, on the one hand, equivalent to information dynamics of a bipartite
quantum system and, on the other hand, equivalent to the dynamics of a 3-dim
Ising model. This is because a class of Hamiltonians with N = 6 has the same
number of terms as in three spatial dimensions, although the codes that belong
to this class are uncomputable due to the properties of Kolmogorov complexity.
Plainly, one cannot tell which binary codes give rise to the N = 6 situation
nor should one expect that Hamiltonians Hstat and H2 belong to the same
universality class. However, the equivalence of (10) with a 3-dim Ising model
suggests that, just like the Ising model itself, the Hamiltonian H2 also exhibits
critical behaviour described by a conformal field theory.

As it is usually the case in statistical mechanics, the critical regime can
be studied without knowing the details of the dynamics. Correlations of order
2 in this regime are described by the lowest-dimensional even primary scalar
ε = σ × σ in the conformal field theory. This field is symmetric; hence it pro-
vides a good candidate to describe the symmetry of bipartite correlations in the
CHSH inequality under the switch between Alice and Bob. Following the above
intuition, we assume that it provides a description of ‘bipartiteness’ within the
conformal model. The operator dimension of ε is

Δε = 3 − 1
ν

, (12)

where ν is a well-known critical exponent describing the correlation length [9].
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The 3-dim Ising equivalence has its limitations since the true metric space of
code evolution is not flat space but the fractal ŜC . Still, it provides significant
evidence that H2 has a critical regime. Further, the exponential character of the
mapping that links the fractal embedded in the unit cube with flat Euclidean
space hints at the existence of a connection between the critical behaviours of the
Ising model and the code. The correlation length in the fractal representation of
a language describes a logarithmic distance in ŜC from which words are brought
in groups of equal complexity by the Kolmogorov reordering. If H2 exhibits a
critical behaviour similar to that of Hstat, then correlations in the critical regime
at string complexity β = R come from the entire fractal. The Ising analogy with
the scaling of the correlator of the lowest primary even field suggests a power
law for the amount of correlations on the words of equal complexity:

〈ε(a)ε(0)〉 ∼ a−2Δε . (13)

We conjecture that, due to the exponential mapping between spaces, the cor-
responding correlations in the fractal are limited by the logarithm of the RHS
of (13). Their maximum strength 2Δε can be computed based on the value
ν = 0.62999(5) in [10]:

2Δε = 2.82537(2). (14)

An attempt to test the difference between this value and the Tsirelson bound
is currently in progress [14,27].

6 Conclusion

Historically, quantum logical reconstructions of quantum theory drive home the
importance of the assumptions of continuity and composition rule. These are
two pillars of quantum theory. A detailed study of quantum correlations reveals,
however, that reconstructions based on physical principles often fail to lead to
the quantum bound in the general case of N -partite correlations. We take this
seriously as an indication that the notion of system, implicitly assumed in the
operational approaches, becomes problematic. Using a model based on codes, we
suggest an approach free of the observer-system distinction. Although our model
is highly speculative, we believe that it demonstrates the interest to explore
quantum theory via novel mathematical formalisms.
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