
Chapter 6
Generalized Impact Laws and Multiple
Impacts

We speak of a multiple impact when several collisions occur at the same time in
a multibody system. Multiple impacts are complex phenomena which possess par-
ticular features, not shared by single impacts. In the first part of this chapter, these
specific properties are described. Then, two models of multiple impacts are pre-
sented: the first one extends kinematic laws (Newton’s and Moreau’s impact laws),
while the second one extends Darboux-Keller’s impact dynamics and uses energetic
coefficients of restitution at each contact/impact point. The extension of Poisson’s
kinetic law is briefly introduced. Chains of balls and the rocking block systems serve
as examples.

6.1 Particular Features of Multiple Impacts

A multiple impact occurs each time several contact points of a system may undergo
some (local) normal velocity jump (vn,i (t

+
k ) �= vn,i (t

−
k ), where i is the contacting

points index). This encompasses those contacts with vn,i (t
−
k ) = 0, i.e. some contacts

may be closed (or active) at the impact time, as is the case in the popular Newton’s
cradle where the balls touch each other at the shock instant (the same occurs for the
rocking block system). More rigorously we may state the following. Consider an
n-degree-of-freedom system with a configuration spaceQ, subjected to m unilateral
constraints f (q) ≥ 0. The admissible domain is Φ = {q ∈ Q| f (q) ≥ 0}, impacts

occur on its boundary bd(Φ). The boundary ismade of hypersurfacesΣl
Δ= ⋂l

i=1 Σi ,
withΣi ⊆ {q ∈ R

n| fi (q) = 0}which is a codimension one hypersurface (with some
abuse we will say thatΣi has also codimension one). Therefore,Σl has codimension
l ≥ 1. Physically, this means that l unilateral constraints boundaries are reached
at the same time tk , including situations where some of them become active (i.e.
fi (q(t)) > 0 in a left-neighborhood of tk , and vn,i (t

−
k ) = ∇ fi (q(tk))T q̇(t−

k ) < 0)
while others were already active (i.e. f j (q(t)) = 0 in a left-neighborhood of tk , and
vn, j (t

−
k ) = ∇ f j (q(tk))T q̇(t−

k ) = 0). The subtlety here is that the previously-lasting
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372 6 Generalized Impact Laws and Multiple Impacts

contacts may satisfy vn, j (t
+
k ) = ∇ f j (q(tk))T q̇(t+

k ) > 0, and this is why they are part
of the multiple impact phenomenon. We will see later that such “distance effects”
are due to wave transmission through the multibody system.

Definition 6.1 (Multiple Impact)We say that an l−multiple impact occurs each time
the attained boundary hypersurface Σl has codimension l ≥ 0.

Remark 6.1 Physically, and taking into account contact deformations, collisions at
different points of a system may be declared to be simultaneous when they overlap
and thus may influence each other. In a perfect rigid body model limit, they occur at
the same time.

6.1.1 Some Specific Features of Multiple Impacts

A typical case of a multiple impact is the collision of a chain of N aligned identical
balls with a rigid ground, as shown in Fig. 6.1. When the impact occurs, the balls
are all contacting each other and an N − 1-impact occurs. The chain is submitted
to gravity, and starts at a height h. The mass of a stainless steel bead used in the
experiment is m = 2.05 × 10−3 kg. The Young modulus and Poisson ratio for
stainless steel are E = 21×1010 N/m2 and νs = 0.276, respectively. Thus, the value
of the contact stiffness, Ki , i = 2, . . . , N for sphere/sphere contact is 6.9716 × 109

N/m3/2. For the contact between the bead and the wall made of stainless steel, the
value of the contact stiffness K1 for the sphere-plane contact is 9.858× 109 N/m3/2.

It is shown experimentally in [387] and numerically in [749] that the maximum
contact force during the impact process, is almost independent of N , i.e. of the total
mass of the chain. This is a rather counter-intuitive result. In Fig. 6.2a are depicted the
contact forces felt at the ground during the shock, for a column of N = 1, 2, . . . , 8
beads with fall height h = 3.1 mm (pre-impact velocity 0.246 m/s). In Fig. 6.2b
are depicted the contact forces felt at the ground during the shock, for a column of
N = 5, 6, . . . , 12 beads with fall height h = 5.1 mm (pre-impact velocity 0.316
m/s). The restitution coefficient between the beads is en,s = 0.96, and the restitution
coefficient between the last particle and the ground is en,p = 0.92. The numerical

Fig. 6.1 A column of beads
colliding against a wall
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Fig. 6.2 The contact force at the wall during the collision. Taken from [749, Figs. 2, 3]. a N =
1, . . . , 8. b N = 5, . . . , 12

results are obtained with the LZBmodel, that is described in Sect. 6.3. Notice that the
collisions durations in Fig. 6.2a, b are less than 32µs, and increase with increasing
N . Thus the contact force impulse varies with N .

� The physical phenomenon that is responsible for this observed and simulated
behavior, is the presence of nonlinear waves inside the column of beads during the
shock. These waves create some energy dispersion inside the chain.

It is noteworthy that due to the property of sphere/sphere collisions, waves inside the
bodies (bulk waves) are negligible (the impacts are quasi-static, see Sect. 4.2.4). Thus
an excellent model of the chain, consists of particles interacting with Hertz stiffness
(and some damping, the choice of which is crucial and not straightforward). What
happens during and after the shock? In a monodisperse chain (all identical, lossless
spheres) that is impacted by one of these spheres at one end (this is the “classical”
Newton’s cradle case study), the waves due to the local deformations of the beads
take the form of an almost-perfect solitary wave that travels through the chain (until
it arrives at the last “free” bead, which thus takes almost all of the initial kinetic
energy). In case of a chain colliding a ground, the wave effects are much less regular.

6.1.1.1 Discontinuity w.r.t. Initial Conditions

The fact that the impact outcome (the postimpact velocities) may depend on the way
the system is initialized, has been noticed a long time ago [422]. This is directly
related with the order of the pairwise collisions at the various contact points, and to
the kinetic angles between the hypersurfaces of constraints. Consider for instance a
chain as in Fig. 6.1, with N = 2, masses m1 and m2, radii R1 and R2, coordinates q1

and q2, respectively. Its dynamics is given by:

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m1q̈1(t) = −m1g + λ12(t)
m2q̈2(t) = −m2g − λ12(t) + λ2(t)

0 ≤ λ12 ⊥ f1(q) = q1 − q2 − R1 − R2 ≥ 0
0 ≤ λ2 ⊥ f2(q) = q2 − R2 ≥ 0,

(6.1)

where λ12 is the force exerted by ball 1 on ball 2, λ2 is the force exerted by the wall
on ball 2. The impact dynamics is given by:

{
m1(q̇1(t

+
k ) − q̇1(t

−
k )) = p1(tk)

m2(q̇2(t
+
k ) − q̇2(t

−
k )) = −p1(tk) + p2(tk).

(6.2)

We associate a Newton’s impact law with each contact, with restitution coefficients
en,1 and en,2, respectively. The superscript − means pre-impact velocity, whereas +
means postimpact velocity. When there are several impacts we indicate it as ++ or
+++. The sequence of impacts B2/wall (Σ2) and B1/B2 (Σ1) produces the outcome

⎧
⎨

⎩

q̇+
1 = m−en,1

1+m q̇−
1 − en,2

1+en,1
1+m q̇−

2

q̇++
2 = m(1+en,1)

1+m q̇−
1 − en,2

1−en,1m
1+m q̇−

2 ,

(6.3)

with m
Δ= m1

m2
. The sequence of impacts B1/B2 (Σ1) and B2/wall (Σ2) and then B1/B2

(Σ1) again, produces the outcome1:

⎧
⎪⎪⎨

⎪⎪⎩

q̇++
1 = m−en,1

1+m

(
m−en,1
1+m q̇−

1 + 1+en,1
1+m q̇−

2

)
− en,2

1+en,1
1+m

(
m(1+en,1)

1+m q̇−
1 + 1−en,1m

1+m q̇−
2

)

q̇+++
2 = m(1+en,1)

1+m

(
m−en,1
1+m q̇−

1 + 1+en,1
1+m q̇−

2

)
− en,2

1−en,1m
1+m

(
m(1+en,1)

1+m q̇−
1 + 1−en,1m

1+m q̇−
2

)
.

(6.4)

Clearly, the final values in (6.3) and (6.4) are not the same. Let us provide a second
example on a 3-ball chain as in Fig. 6.4, but where the initial gap between ball 1
and ball 2 is δ1 and the initial gap between ball 2 and ball 3 is δ2. Suppose that
q̇1(t

−
k ) = vs > 0, q̇3(t

−
k ) = −vs < 0, and q̇2(t

−
k ) = 0. Also let us choose m1 =

m3 = m
4 and m2 = m. If δ1 < δ2, one computes the outcome q̇1(t

+
k ) = − 6vs

10 m/s,
q̇2(t

+
k ) = − 4vs

25 m/s, q̇3(t
+
k ) = 31vs

25 m/s. Now if δ1 > δ2, one computes the outcome
q̇1(t

+
k ) = − 31vs

25 m/s, q̇2(t
+
k ) = 4vs

25 m/s, q̇3(t
+
k ) = 3vs

5 m/s. The problem is perfectly
symmetric, and one expects that if δ1 = δ2 the outcome is also symmetric. Energy
conservation yields q̇1(t

+
k ) = −vs m/s, q̇3(t

+
k ) = vs m/s, q̇2(t

+
k ) = 0 m/s. One sees

that if the impact occurs as a double impact (i.e. right at the codimension 2 singularity
of the admissible domain boundary), it is impossible to deduce it from the limit of
the impacts that occur in an arbitarily small neighborhood of this singularity. This

1It is implicitly assumed here that there exists initial velocities and positions such that these various
sequences of collisions exist, incorporating the kinematic admissibility of the postimpact velocities.
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second example shows that continuity in the initial data (see Sect. 1.3.2.3) may not
hold for systems with multiple unilateral constraints.

� Multiple surfaces of constraints (equivalently codimension ≥2 boundaries of the
admissible domain Φ) may create discontinuity of the solutions with respect to the
initial conditions. In this case, it is not possible to deduce the impact law at the
singularity (simultaneous impacts) by studying the limit as the initial data approach
the singularity.

This explains why binary collision models have to be used with some care.

6.1.1.2 Momentum Conservation

It is often taken for granted that the conservation of momentum (linear momentum
for a chain of aligned balls) is part of an impact law. Such a point of view is absolutely
wrong. Indeed, the conservation of linear momentum at an impact time, is a direct
consequence of Newton’s third law of action/reaction: When one body exerts a force
on a second body, the second body simultaneously exerts a force equal in magnitude
and opposite in direction on the first body. One has to assume that Newton’s third law
is still valid during collisions, which seems to be a reasonable assumption, though
historically subject to some controversy [434]. To illustrate this fact, consider the
dynamics of the 3-ball system as in Fig. 6.4, where the balls have radii R. Its dynamics
outside impacts is given by:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1q̈1(t) = −λ12(t)
m2q̈2(t) = λ12(t) − λ23(t)
m3q̈3(t) = λ23(t)

f1(q) = q2 − q1 − 2R ≥ 0
f2(q) = q3 − q2 − 2R ≥ 0.

(6.5)

Let us notice that both (6.1) and (6.5) fit within (5.1). Clearly from (6.5) one has
m1q̈1(t) + m2q̈2(t) + m3q̈3(t) = 0, from which it follows that the linear momentum
satisfiesm1q̇1(t)+m2q̇2(t)+m3q̇3(t) = m1q̇1(0)+m2q̇2(0)+m3q̇3(0). This property
is kept at the impact time, as shown in (6.9) that yields m1q̇1(t

+
k ) + m2q̇2(t

+
k ) +

m3q̇3(t
+
k ) = m1q̇1(t

−
k )+m2q̇2(t

−
k )+m3q̇3(t

−
k ). Such is not the case for (6.1), whose

impact dynamics is in (6.2).

� The linear momentum may or may not be conserved at an impact. The fact that
conservation holds for the 3-ball system, is just an illustration of momentum conser-
vation on a specific system. It is not part of any impact law.

The last point is illustrated in the next section. Historically, Newton’s third law has
been used for the first time to solve an impact problem, by ’sGravesand in 1721
[1091], who also suspected that plastic deformation could play a role. Leibniz was
the first to use kinetic energy conservation together with what we call todayNewton’s
restitution law (with en = 1) [434].

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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6.1.1.3 Single Versus Multiple Impacts

Let us make some computations which clarify the major discrepancy between sin-
gle and multiple impacts. Let us consider the 3-ball system, with initial conditions
q̇1(t

−
k ) = 1m/s, q̇2(t

−
k ) = q̇3(t

−
k ) = 0m/s, ball 2 and ball 3 touch each other initially,

m1 = m2 = m3 = 1 g. The set of equalities and inequalities which have to hold at
the impact time tk are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1(t
+
k ) − 1 = −p12(tk)

q̇2(t
+
k ) = p12(tk) − p23(tk)

q̇3(t
+
k ) = p23(tk)

p23(tk) ≥ 0, p12(tk) ≥ 0 (kinetic constraints)

∇ f1(q)T q̇(t+
k ) = q̇2(t

+
k ) − q̇1(t

+
k ) ≥ 0

∇ f2(q)T q̇(t+
k ) = q̇3(t

+
k ) − q̇2(t

+
k ) ≥ 0 (kinematic constraints)

q̇1(t
+
k )2 + q̇2(t

+
k )2 + q̇3(t

+
k )2 = 1 (energetic constraint).

(6.6)

It follows from the post-velocities admissibility that q̇3(t
+
k ) ≥ q̇2(t

+
k ) ≥ q̇1(t

+
k ).

From the energy constraint |q̇1(t
+
k )2| ≤ 1 so that p12(tk) = 1− q̇1(t

+
k ) ≥ 0. Assume

that q̇3(t
+
k ) ≤ 0, then q̇2(t

+
k ) ≤ 0 and q̇1(t

+
k ) ≤ 0: this is impossible from the linear

momentum conservation equation q̇1(t
+
k ) + q̇2(t

+
k ) + q̇3(t

+
k ) = 1. Thus necessarily

q̇3(t
+
k ) > 0, hence p23(tk) > 0: the kinetic constraints are automatically satisfied if

the other equalities and inequalities hold. We may therefore eliminate the impulses
via the momentum conservation and solve the problem with velocities only. We are
left with the system:

⎧
⎨

⎩

q̇1(t
+
k ) + q̇2(t

+
k ) + q̇3(t

+
k ) = 1

q̇1(t
+
k )2 + q̇2(t

+
k )2 + q̇3(t

+
k )2 = 1

q̇2(t
+
k ) − q̇1(t

+
k ) ≥ 0, q̇3(t

+
k ) − q̇2(t

+
k ) ≥ 0.

(6.7)

It happens that the system in (6.7) possesses an infinity of solutions, which are
“between” two “extremals”: (A) with (q̇1(t

+
k ), q̇2(t

+
k ), q̇3(t

+
k )) = (0, 0, 1) and (B)

with (q̇1(t
+
k ), q̇2(t

+
k ), q̇3(t

+
k )) = (− 1

3 ,
2
3 ,

2
3 ) (see Fig. 6.3b).

Let us consider now the impact between two balls. Doing a similar reasoning it is
easy to obtain the system:

⎧
⎨

⎩

q̇1(t
+
k ) + q̇2(t

+
k ) = 1

q̇1(t
+
k )2 + q̇2(t

+
k )2 = 1

q̇2(t
+
k ) − q̇1(t

+
k ) ≥ 0.

(6.8)

The system in (6.8) has a unique solution q̇1(t
+
k ) = 0 m/s, q̇2(t

+
k ) = 1 m/s. Imposing

Newton’s impact law with en = 1 implies the energy equality, see (4.41). On the
other hand, imposing TL(tk) = 0 and the kinematic constraint implies en = 1.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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(b)(a)

Fig. 6.3 Post-impact velocities domains (V +
i

Δ= q̇i (t
+
k )). Taken from [929, Figs. 1.1 and 1.2]. a

System in (6.8). b System in (6.7)

Graphically, the two systems in (6.7) and (6.8) are depicted in Fig. 6.3. In Fig. 6.3b,
momentum conservation defines the plane (P1) is defined from the points (0, 0, 1),
(0, 1, 0) and (1, 0, 0). Energy constraint defines the boundary of the sphere. The
kinematic constraints impose that the postimpact velocities must be located in front
of (P2) and above (P3)

� Energy conservation (or a simple impact law) is sufficient to make the impact
problem solvable with uniqueness for the central impact of two balls. It is not sufficient
to solve with uniqueness the 3-ball system at impact: a multiple impact law is needed.
The set of solutions of (6.7) corresponds to various dispersions of the kinetic energy
in the chain after the collision.

6.1.1.4 Kinetic Energy Dispersion

The outcome of the central impact between two spheres of masses m1 and m2, where
friction is neglected (an assumption that we obviously made from the beginning of
this section), where q̇1(t

−
k ) = 1 m/s and q̇2(t

−
k ) = 0 m/s, and energy is conserved,

is given using (4.42) by q̇1(t
+
k ) = q̇1(t

−
k ) − 2m2(q̇1(t

−
k )−q̇2(t

−
k ))

m1+m2
= 1 − 2m2

m1+m2
, and

q̇2(t
+
k ) = q̇2(t

−
k ) + 2m1(q̇1(t

−
k )−q̇2(t

−
k ))

m1+m2
= 2m1

m1+m2
. Consider now a chain of M aligned

identical balls in contact, that impacts a second chain of N identical balls which are
also in contact (we may call this an M : N -collision). Suppose that m1 = Mm,
m2 = Nm, where m is the mass of each ball. If the balls of each sub-chain are
glued together (and hence are equivalent to two solid rigid bodies), one obtains the
outcome q̇1(t

+
k ) = M−N

M+N and q̇2(t
+
k ) = 2M

M+N . It is noteworthy that this result holds
if a Hertz or linear stiffness is used to model the contact/impact between the two

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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spheres. Indeed these compliant models yield an equivalent restitution coefficient
en = 1, while energy and momentum (more exaclty, Newton’s third law) constraints
are unchanged. Thus the kinetic energy of the balls that move forward after the
collision, is equal to 1

2 Nm
(

2M
M+N

)2
if N ≥ M (only ball 2 moves forward), and to

1
2 Nm

(
2M

M+N

)2 + 1
2 Mm

(
M−N
M+N

)2
if N < M (both balls move forward). What happens

when the balls are not glued, but the contacts are unilateral? Extensive simulations
with Hertz unilateral springs2 are presented in [749, Table II] for M + N = 10
balls. They show that as the number of impacting balls M increases, there are M +2
balls that move forward after the shock (with positive velocity), while the remaining
balls on the left move backwards with very low negative velocities. Moreover the
postimpact kinetic energy of the M +2 “forward” balls is approximately 99% of the
total kinetic energy. Both systems (glued contacts and unilateral contacts) match if
and only if M + 2 = N and N

(
2M

N+M

)2 = 0.99M . This holds if and only if M = 9
and N = 11. The results are therefore in general quite different one from each other.
The reason is that the deformations at the contacts, and the unilaterality, allow the
creation of wave phenomena through the chain of N +M balls during the impact. The
nonlinear waves are quite irregular ones except if M = 1, even if the two sub-chains
are monodisperse. They are responsible for the dispersion (or the distribution) of
the energy within the chain after the collision. Similar numerical results on M : N
collisions with M + N = 50 and 100, N = 1, 2, 3, 4, 5, 6 are presented in [529, §5
(c)]. They show that there are M separated solitary waves which are created through
the chain, and which are responsible for the balls to fly off after the impact, each
solitary wave acting as a “collisional effect” for the last ball. The longer the chain,
the more separated the waves. They also show that when N = 5 and M = 1, 2, 3, 4,
then M + 1 balls move forward after the collision while the remaining ones move
backwards with very small velocities.

� Once again, nonlinear waves make the impacts in chains of balls—and more
generally in multibody systems—a quite complex phenomenon. The design of a rigid-
body-like model of multiple impacts, that would encapsulate such wave effects, is a
hard task.

Remark 6.2 The dispersion effect, is sometimes named the distance effect. Indeed
if the collision is assumed to be instantaneous, the impact at one edge of the chain
produces an effect at the other edge.

To be complete, we should also consider impacts between two elastic bodies, like
sphere/rod or rod/rod collisions, and compare the results with the above. The type
of elasticity, and the type of waves (planar displacement linear wave traveling along
the rods) is quite different from the nonlinear waves in chains of balls with unilateral
Hertz elasticity. Roughly speaking, linear waves in elastic rods follow the 1 dimen-
sional linear wave equation ∂2u

∂t2 = c2 ∂2u
∂x2 , where u(t, x) is the displacement of the

rod’s thin section, c =
√

E
ρ
is the speed of the uniform planar displacement wave,

2Which do represent an excellent, high-fidelity model for impacting spheres [387].



6.1 Particular Features of Multiple Impacts 379

E is the rod’s Young modulus and ρ its density. They may be considered as the
limit of chains with bilateral, linear springs, when the number of elements tends to
infinity (a spatial discretization of the linear wave equation). While nonlinear waves
in chains of aligned balls follow nonlinear partial differential equations [609], and
there may exist solitary waves in 1 : N collisions of monodisperse chains [1087].
These solitons have doubly exponential decay [275], so that they are concentrated
on a compact support of five balls in long enough chains.

� The linear waves—bulk vibrational effects—in elastic bodies, and the nonlinear
waves in chains of balls with unilateral Hertzian contact, are of quite different nature.

6.1.1.5 Equivalence of Rheological Compliant Models

When two bodies collide, two contact compliant models (visco-elastic, or elasto-
plastic) which provide the same restitution coefficient will give the same postimpact
velocity. From this point of view, they are equivalent, despite they may provide quite
different impact duration and contact force history. If the same compliant models
are used in a chain of balls to model the contact between each pair of balls, the
postimpact velocity of the balls may however drastically differ. The reason is that
despite they give the same restitution coefficient for pairwise collisions, the contact
force history, the impact duration and the maximum compression times that they
predict, may differ. These discrepancies may in turn produce quite different impact
outcomes, see Sect. 6.1.3 for the lossless case.

6.1.2 Han-Gilmore’s and Binary Collisions Models

Let us start with the method proposed by Han and Gilmore [500] that is an analyt-
ical computer-oriented method to analyze multiple impacts, including friction. The
method in [500] does not apply to closed kinematic-loops, but is rather devoted to
granular-like systems. The authors analyze the outcomes in multibody systems when
some contacts may break, due to internal impacts (see definition below). A compu-
tational algorithm is presented, based on a particular topological description of the
system: the distance k between contact-impact points is chosen to be the minimum
number of bodies that separate a given point and the prespecified reference point.
The algorithm uses the impact analysis between two bodies developed in [500] to
calculate, for each k (starting at k = 0) the postimpact motion. Then an exhaustive
procedure that considers all possible outcomes during the impact process is given.
Let us note that it is not stated in [500] that the proposed algorithm yields a solution
in all cases, and if it does whether it is unique or not. As the simple 3-ball system
shows in Sect. 6.1.3, uniqueness cannot be expected in general (the example we treat
corresponds to the perfectly elastic case; when the perfectly plastic case is chosen—
en = 0 at both contacts—then Han and Gilmore algorithm converges in an infinite
number of iterations [372], see also Sect. 6.1.4 below). A 5-ball system of elastic
beads—en = 1 at all contacts—is analysed in [929, p. 57] with non unique outcome.
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q1 q2
q3

(sliding, no friction)

Fig. 6.4 The 3-ball system

Let us consider the system depicted in Fig. 6.4. The three balls (or spheres, or parti-
cles) are sliding horizontally. There is no dissipation between the balls and the ground.
The notion of internal and sequential impacts is introduced in [500]: internal impacts
are impacts that occur between two bodies previously in contact, i.e. which occur
in fact through an internal transmission inside the bodies, and such that they create
detachment.3 The authors also assume the possibility of a certain chronology for the
possible impacts occuring in the system, hence sequential impacts. Although such
an analysis might appear natural for the treatment of multiple collisions, it will be
shown that multiple impact phenomena require deeper analysis because sequential
pairwise impacts are not sufficient to model them properly. Let us explain how solu-
tions (i.e. postimpact velocities) can be found. The shock dynamical equations are
given at the shock instant tk by:

⎧
⎨

⎩

q̇1(t
+
k ) − q̇1(t

−
k ) = −p12(tk)

q̇2(t
+
k ) − q̇2(t

−
k ) = p12(tk) − p23(tk)

q̇3(t
+
k ) − q̇3(t

−
k ) = p23(tk).

(6.9)

The masses are taken equal to one for simplicity, and the pre-impact velocities are
chosen as q̇1(t

−
k ) = 1, q̇2(t

−
k ) = q̇3(t

−
k ) = 0. It is supposed no energy loss (TL(tk) =

0) at impacts. Two postimpact sets of velocities are computed and are given by:

q̇1(t
+
k ) = − 1

3 , q̇2(t
+
k ) = q̇3(t

+
k ) = 2

3 m/s, (6.10)

and

q̇1(t
+
k ) = q̇3(t

+
k ) = 0, q̇2(t

+
k ) = 1 m/s. (6.11)

The solution in (6.10) can be found by applyingNewton’s restitution rule with en = 1
between bodies 1 and 2 (i.e. q̇1(t

+
k ) = −1 + q̇2(t

+
k )), and between bodies 2 and 3

(i.e. q̇2(t
+
k ) = q̇3(t

+
k )), and assuming a nonzero p23(tk) (i.e. implicitly assuming a

nonzero q̇3(t
+
k )). The solution in (6.11) can be found by assuming no shock between

bodies 2 and 3, i.e. p23(tk) = 0. Now notice that (6.10) can be set as definitive since
postimpactmotion is possible: the first body rebounds and the other two remain stuck.

3Internal impacts are due to distance effects, created by waves that travel through the multibody
system.
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But solution 2 is not feasible between bodies 2 and 3: that problem is overcome in
[500] by assuming a second impact between bodies 2 and 3. Applying Newton’s
rule between bodies 1 and 2 and bodies 2 and 3 yields another nonfeasible solution.
But assuming there is no impact between 1 and 2 (i.e. p12(tk) = 0) yields a feasible
motion. This solution is then given by:

q̇1(t
++
k ) = q̇2(t

++
k ) = 0, q̇3(t

++
k ) = 1 m/s. (6.12)

The superscript ++ is to distinguish the impacts chronologically. This solution is a
possible motion: bodies 1 and 2 remain stuck, body 3 moves to the right. In fact the
above reasoning relies on three rules:

• (i) The kinetic energy loss at impact is zero (energy constraint).
• (ii) The postimpact velocity must assure a feasible motion, i.e. point inwards the
domain inside the constraints (kinematic constraint).

• (iii) Let us denote qi and qi+1 the coordinates of two successive balls. Then if
q̇i (t

−
k ) > q̇i+1(t

−
k ), the percussion between these two bodies pi j �= 0. If q̇i (t

−
k ) <

q̇i+1(t
−
k ), pi j = 0. If q̇i (t

−
k ) = q̇i+1(t

−
k ), then two possibilities must be tested:

either pi j (tk) = 0 or pi j (tk) > 0 (kinetic constraint).

It can be shown that due to the particular choice of the initial conditions, (i) implies
that the restitution coefficients between the balls is equal to 1. (ii) allows one to decide
at each step whether a computed velocity is admissible or not. (iii) is a fundamental
rule which permits to decide the form of the percussion vector. It can be shown that
in this particular example, the algorithm has a finite number of iterations, and that
the only two possible postimpact velocities are the ones in (6.10) and (6.12). When
an admissible velocity has been found, it is considered as definitive. But all possible
paths have to be tested.

Thus the Han and Gilmore algorithm yields two possible solutions for the postim-
pact velocities, and it is a priori impossible to decide which one is the right one, just
relying on rigid body theory. Experimentally, monodisperse 3-ball chains with balls
made of very hard material, evolve closely to the solution in (6.12). However the
experimental outcome is different: although the third ball detaches quickly from
the second one and takes about 98% of the kinetic energy, the second and the first
balls possess nonzero postimpact velocity, and do have a motion after the shock
(for instance, values q̇1(t

+
k ) = −0.0605q̇1(t

−
k ) m/s, q̇2(t

+
k ) = 0.1049q̇1(t

−
k ) m/s and

q̇3(t
+
k ) = 0.9978q̇1(t

−
k ) m/s are reported from experiments in [985]). This is related

to kinetic energy dispersion inside the chain. The balls are commonly made of hard
material (iron) so that the rigid body assumption can be considered to be valid in this
case. However the small postimpact motion of the first and second balls should not
be neglected because it has a great influence on the long-term dynamics of the chain.

Close to the Han and Gilmore algorithm is the so-called binary collision model.
One starts assuming that the impacts are pairwise and sequential with an a priori
given order (e.g. for the 3-ball chain, a first impact between ball 1 and ball 2, then a
second impact between ball 2 and ball 3). The first collision gives a first postimpact
velocity q̇(t+). One has to check whether ∇ f (q)T q̇(t+) ≥ 0, which implies that the
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three balls do not collide again. If this condition is not satisfied, then another impact
occurs that gives q̇(t++). One then checks if ∇ f (q)T q̇(t++) ≥ 0 or not, and so
on. Such binary collision approach may yield an accumulation of impacts in a finite
time. Moreover it is meant to correctly model the wave effect inside the chain, but
does not always provide satisfactory results. Finally, changing the initial sequence of
impacts may change the final outcome, because of discontinuity of the trajectories
with respect to initial data, as shown in (6.2)–(6.4). For the 3-ball chain, one obtains
the following results. Let us assume that q̇1(t

−
0 ) = q̇0

1 > 0 m/s, q̇2(t
−
0 ) = q̇3(t

−
0 ) = 0

m/s, and that there is a first impact between balls 1 and 2, then between balls 2 and
3. One obtains [929]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1(t
++
0 ) =

1−
m2

m1
en,1

1+
m2

m1

q̇0
1

q̇2(T
++
0 ) =

(1−
m3

m2
en,2)(1+

m2

m1
en,1)

(1+
m2

m1
)(1+

m3

m2
)

q̇0
1

q̇3(t
++
0 ) = (1+en,1)(1+en,2)

(1+
m2

m1
)(1+

m3

m2
)

q̇0
1 .

(6.13)

For a monodisperse conservative chain (en,1 = en,2 = 1, m1 = m2 = m3), the
outcome q̇1(t

++
0 ) = q̇2(t

++
0 ) = 0 and q̇3(t

++
0 ) = q̇0

1 m/s is found, that corresponds

to (6.12). If en,1 = en,2 = 0 then q̇1(t
++
0 ) = q̇0

1
2 m/s, q̇2(t

++
0 ) = q̇3(t

++
0 ) = q̇0

1
4 m/s:

it does not satisfy the criterion ∇ f (q)T q̇(t++) ≥ 0, thus other impacts have to be
calculated. It happens that the postimpact velocities outcome domain when both en,1
and en,2 are varied between 0 and 1, does not fill in the whole quarter disk in Fig. 5.5,
but just the portion of it denoted (II), see [929, Fig. 3.7]. It is therefore not clear
why in general it should be preferred to Moreau’s rule, which is much simpler to
implement in a code. Experiments on the 2-ball system hitting a wall (take N = 2 in
Fig. 6.1), are performed in [126] with varying initial gap between the two balls (this
is known as the basketball-tennis ball problem4). It is shown that as the initial gap
becomes very small (the collision approaches a 2-impact), then prediction of binary
collision model and experimental results diverge significantly [126, Fig. 3]. It is also
striking that the impact duration for positive gap, is quite different from the impact
duration for nearly zero gap [126, Fig. 9]. It is shown also in [982] that the binary
collisionmodel is valid for certain range ofmass and stiffness ratios only: this proves,
if needed, that multiple impacts involve internal mechanisms related to wave effects,
which may significantly depart from sequential, binary collisions. Fundamentally,
the fact that the balls’ gap is strictly positive, or if it vanishes, drastically modifies

4An experiment anyone can do. Put a tennis ball on the top of a basketball, and drop both on a
rigid ground. The tennis ball rebounds violently and very high, while the basketball almost does not
rebound at all: the whole energy is transferred to the tennis ball during the impact with the ground.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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the impact wave that travels through the balls. Further results on the basketball-tennis
ball problem, may be found in [315, 906]. It is noteworthy that both balls are shells
with internal pressure, and may not obey Hertz’ elasticity, nor classical damping (see
[751, Sect. 8] and [126]).

Remark 6.3 The analysis of multiple impacts using binary collision models, is
closely related to the study of impacts of a particle in a two-dimensional wedge,
and to the analysis of billiards. Indeed the 3-ball system is equivalent, after some
suitable transformation, to a particle striking a corner, see [929, Appendix A] for a
complete analysis. See also Sect. 6.1.4.

6.1.3 Penalization at Contacts (Compliance)

Let us consider the 3-ball system as depicted in Fig. 6.5. The studywhich followsmay
be seen as an extension of the contents of Sect. 2.1.1, in a multiple impact context.
The dynamical equations are given by:

⎧
⎪⎪⎨

⎪⎪⎩

m1 ẍ1(t) = k1(x2(t) − x1(t))
m2 ẍ2(t) = k1(x1(t) − x2(t)) + k2(x3(t) − x2(t))
m3 ẍ3(t) = k2(x2(t) − x3(t))
x1(0) = x2(0) = x3(0) = 0, ẋ1(0) = 1 m/s, ẋ2(0) = ẋ3(0) = 0 m/s.

(6.14)

Let us denote k1 = k, k2
k1

= γ , m1 = m2 = m3 = m, Δ = √
γ 2 − γ + 1, α1 =

√−Δ + γ + 1, α2 = √
Δ + γ + 1, ω =

√
k
m , ω1 = α1ω, ω2 = α2ω. The solution

of (6.14) is given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t) = 1
ω1

(
1
3 − 1−2γ

6Δ

)
sin(ω1t) + 1

ω2

(
1
3 + 1−2γ

6Δ

)
sin(ω2t) + t

3

x2(t) = − 1
ω1

(
1
6 − 2−γ

6Δ

)
sin(ω1t) − 1

ω2

(
1
6 + 2−γ

6Δ

)
sin(ω2t) + t

3

x3(t) = − 1
ω1

(
1
6 + 1+γ

6Δ

)
sin(ω1t) − 1

ω2

(
1
6 − 1+γ

6Δ

)
sin(ω2t) + t

3 .

(6.15)

The balls 1 and 2 separate at time t1 such that x1(t1) = x2(t1), and the balls 2 and 3
separate at time t2 such that x3(t2) = x2(t2), with:

{
(Δ − 1 − γ )α2 sin(ω1t1) + (Δ + 1 − γ )α1 sin(ω2t1) = 0
α2 sin(ω1t2) − α1 sin(ω2t2) = 0.

(6.16)

Fig. 6.5 Three-ball system
with unilateral elastic
contacts

k1 k2
m3

m2m1

x1 x2 x3

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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It is noteworthy that the solutionsω1t1,ω2t1,ω1t2 andω2t2 of these two transcendental
equations, do not depend on k since their coefficients do not depend on k.

� Thus from (6.15) it follows that the velocities at separation times, are independent
of k, but depend only on the stiffness ratio γ .

This was already noticed in [202, 203], as well as in [622, 623] for the two-ball
system hitting a wall (for which the outcome depends also on the mass ratio only).
Let us now study two extreme cases, where γ = 0 and γ = +∞. In the first case
γ = 0, one can show that ω1 = 0, ω2 = √

2ω, sin(ω2t1) = 0 and t1 = π√
2ω

(compare with (2.2)). Consequently, t1 < t2 and ẋ1(t1) = 0 m/s, ẋ2(t1) = 1 m/s,
ẋ3(t1) = 0 m/s. Therefore, balls 2 and 3 continue their collision, and it is easily
obtained that at the end of this collision (which is the end of the multiple shock)
one has ẋ1(t f ) = 0 m/s, ẋ2(t f ) = 0 m/s, ẋ3(t f ) = 1 m/s. When γ = +∞ we find
ω1 = ω, ω2 = +∞, sin(ω1t1) = 0, sin(ω1t2) = 0, t1 = t2 = π

ω
(compare again with

(2.2): this time the 2-impact behaves like a single impact!). Then ẋ1(t f ) = − 1
3 m/s,

ẋ2(t f ) = ẋ3(t f ) = 2
3 m/s. This last outcome is the one obtained applying Moreau’s

impact law (or Newton’s impact law at each contact) with a CoR en = 1, see Example
5.5. It is important to see that these two extreme cases, can be obtained by letting the
stiffnesses k1 and k2 both diverge to infinity, but at different rates. This proves that
even in the limit of a rigid body model, the outcome of this multiple impact depends
strongly on the relative stiffnesses, though they do not depend on the absolute value
of the stiffnesses. It is noteworthy that the two extreme cases for the stiffness ratio
γ , give the solutions in (6.10) and (6.12).

� The energetical behavior of the system, plus the kinetic and kinematic constraints,
are not sufficient to characterize the impact outcome in a multiple impact. The results
of the lossless, penalized 3-ball system when the stiffness ratio γ varies, confirms the
analysis of Sect.6.1.1.3: varying γ allows to span the portion of arc AB in Fig.6.3b;
in Fig.5.5, it allows to span the curve AB for K E R = 1, while Moreau’s law is
“stuck” at B.

More calculations with different assumptions on the parameters, may be found in
[929, Appendix C].

Remark 6.4 (Zero Dispersion Chains) We consider the initial velocities in (6.14).
Reinsch [1035] has shown that a symmetric chain of n + 1 aligned beads, with
unilateral linear elastic contacts, is totally dispersion-free (that is, the last bead takes
exactly all the energy of the impacting one, and the other beads have zero postimpact
velocity) if the masses and the stiffnesses are properly chosen [929, Appendix D].
For a 3-ball chain, one finds equal stiffnesses k1 = k2 and m1 = m3 = m, m2 =
2
3m. Newby [632] investigates a 3-ball chain with equal masses, and whether it is
possible to recover γ from the postimpact velocities (this is called in [632] the inverse
scattering problem): this is not always possible. He finds that all possible postimpact
outcomes are described with compliant models such that γ ∈ (0, γmax), for some
γmax. There is therefore a periodicity in γ in the dynamics. In particular the solution
ẋ1(t f ) = − 1

3 m/s, ẋ2(t f ) = ẋ3(t f ) = 2
3 m/s, occurs for an infinite number of γ ’s,

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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not only for γ = ∞. Newby also finds that balls 1 and 2 separate at the same
time as balls 2 and 3 (a sort of symmetrical double collision with t1 = t2) when

γ = (3n4−2n2+3)+√
9n8−12n6−42n4−12n2+9

8n2 , n = 2, 3, 4 . . ..

6.1.4 Multiplicity of Multiple Impacts

When a particle hits an angle in the plane, it may rebound successively on both
the surfaces in various ways, depending on the CoRs and the angle value. This is a
binary collision model including possible secondary impacts, which gives outcomes
for collision that occur near the singularity (a 2-impact in the sense of Definition
6.1). Let us summarize here the results of Towne and Hadlock [1211], who deal
with a three-ball chain (that is equivalent to the particle hitting an angle, see [929,
Sect.A.1]). The two Newton’s CoRs are chosen equal (en,1 = en,2 = en). The first
ball collides the two other balls at rest. The number of collisions and the postimpact
velocities depend on the following variable:

z = ζ(en)η(m1,2, m3,2), (6.17)

where ζ(en) and η(m1,2, m3,2) are defined as:

⎧
⎨

⎩

ζ(en) = 1
2

(√
en + 1√

en

)
≥ 1 for all en ∈ (0, 1]

η(m1,2, m3,2) = 1√
(1+m2,1)(1+m2,3)

< 1 for all m1,2, m3,2,
(6.18)

with m j,i = m j/mi . We see that z > 0 and can diverge to infinity as en → 0. The
variable z consists of two distinct parts ζ(en) and η(m1,2, m3,2): ζ(en) is related to the
dissipative behavior of the chain, while η(m1,2, m3,2) is related to the kinetic angle
θ12 of the chain defined by η(m1,2, m3,2) = cos(θ12) (this can be calculated from
(6.66), see [929, Eq. (A.4)]). The number of binary collisions is given as follows:

• When 0 < z < 1, the number of collisions N is finite and computed as:

N =
⌊ π

arccos(z)
− 1

⌋
(6.19)

• When z ≥ 1, the number of collisions N is infinite.

The above results show that N ≤ 3 when z > 1/2, i.e. secondary collisions occur
when z > 1/2. Moreover, the number of collisions N increases as z increases and
it becomes infinite when z ≥ 1. Consider the case when en = 1 ⇒ z = cos(θ12).
From (6.19), the number N of collisions is given by:

N =
⌊π − θ12

θ12

⌋
. (6.20)
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The condition for which N is infinite (z ≥ 1) can be rewritten as:

1

2

(√
en + 1√

en

)
cos(θ12) ≥ 1. (6.21)

More on this topic may be found in [683, 936], see also [929, §3.4, Appendix A].
Extending this type of analysis to en,1 �= en,2 or tomore than three balls (equivalently,
to particles in three dimensions hitting a “pyramidal” angle), seems to be at best very
difficult.5 It nevertheless shows that the binary collision model may indeed involve,
even in simple systems, an infinity of successive impacts. If this infinity occurs
in a finite time, a Zeno phenomenon occurs which may create difficulty for time-
integration with an event-driven code.

6.2 Kinematic Multiple-Impact Law (Generalized Newton)

This section is devoted to investigate how we may extend kinematic impact laws
like Newton’s or Moreau’s laws, in order to obtain an impact law which is able to
span the whole set of admissible outcomes. To this aim we proceed with a particular
transformation of the Lagrange equations in (5.1).

6.2.1 The Quasi-Lagrange Equations

Let us remind that the mb bilateral constraints are denoted as hi (q) for i ∈
{1, . . . , mb}, and themu unilateral constraints are fi (q) ≥ 0 for i ∈ {mb+1, . . . , mu +
mb}, and we assume that mu + mb ≤ n. We also assume that M(q)  0, and all
the constraints fi (q) and hi (q) are functionally independent at any q ∈ Q, that

is the (mu + mb) × n gradient matrix

(∇ f (q)

∇h(q)

)

has full column rank mu + mb.

This in particular precludes that the gradients vanish in the domain of interest on the
configuration space Q. The mu + mb normal unitary vectors to the codimension 1
constraints manifolds Σi = {q ∈ Q|hi (q) = 0}, 1 ≤ i ≤ mb, equipped with the
kinetic metric are defined as:

nq,i = M−1(q)∇hi (q)
√

∇hT
i (q)M−1(q)∇hi (q)

, 1 ≤ i ≤ mb, (6.22)

and similarly for Σi = {q ∈ Q| fi (q) = 0}, mb + 1 ≤ i ≤ mb + mu . Clearly the
normal vectors nq,i ∈ R

n are independent. If mb + mu < n we have to complete the

5It has to the best of the author’s knowledge, never been tackled, despite Towne and Hadlock’s
article was published in 1977.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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set (nq,1, . . . , nq,m+p) by n − mb − mu mutually independent vectors tq,i in order to
make a basis. The tq,i vectors are chosen such that 〈tq,i , nq, j 〉q = tT

q,i M(q)nq, j = 0
for all i ∈ {1, . . . , n − mu − mb}, j ∈ {1, . . . , mu + mb}. We notice that the vectors
tT
q,i are orthogonal to the kinetic gradients nq, j in the kinetic metric, and orthogonal
to the Euclidean gradients ∇hi (q) and ∇ fi (q) in the Euclidean metric. One may
choose unitary vectors tq,i , i.e. tT

q,i M(q)tq,i = 1. Therefore the vectors tq,i span
TqQ whereas the vectors nq,i span the normal cone NΦ(q) to the admissible domain

Φ of Q. This admissible domain for q is defined as follows: Φ
Δ= Φb × Φu with

Φb = {q ∈ Q|hi (q) = 0, i ∈ {1, . . . , mb}} and Φu = {q ∈ Q| fi (q) ≥ 0, i ∈
{mb + 1, . . . , mb + mu}}. Thus Φb is the bilateral holonomic constraints manifold
with codimensionm,Φb = ∩mb

i=1Σi , whereasΦu is the admissible domain defined by
the unilateral constraints, Φu = ∩mb+mu

i=mb+1Φu,i , with Φu,i = {q ∈ Q| fi (q) ≥ 0, i ∈
{mb + 1, . . . , mb + mu}}. For obvious reasons we assume that Φu contains a ball of
radius > 0. One has NΦ(q) = NΦb(q) × NΦu (q), where NΦb(q) = {w ∈ R

n|w =∑mb
i=1 αi nq,i , αi ∈ R} is the normal cone in the kinetic metric.

6.2.1.1 Frictionless Systems

Let us define the n × n matrix Ξ(q) =
(

nT
q

tT
q

)

, where nq = (nq,1, . . . , nq,mu+mb)

and tq = (tq,1, . . . , tq,n−mu−mb). The kinetic quasi-velocities are defined as:

v
Δ=
(

q̇norm

q̇tan

)

= Ξ(q)M(q)q̇ (6.23)

where the notation norm and tan come from the fact that v in (6.23) is the Euclid-
ean projection of the generalized momentum p = M(q)q̇ on the basis nq and tq

(equivalently the projection of q̇ on nq and tq in the kinetic metric). One could
therefore call the kinetic quasi-velocities, the mass-projected momentum. From
(6.23) q̇norm = nT

q M(q)q̇ has dimension mu + mb and q̇tan = tT
q M(q)q̇ has

dimension n − mu − mb. Notice that the (mu + mb) × n matrix nT
q M(q) has

rows ∇hT
i (q)

||∇hi (q)||M−1
and ∇ f T

i (q)

||∇ fi (q)||M−1
. Thus it follows that q̇norm,i = ∇hT

i (q)q̇
||∇hi (q)||M−1

, and

nq = M−1(q)(∇h(q),∇ f (q))diag
(

1
||∇hi (q)||M−1

, 1
||∇ fi (q)||M−1

)
.

Remark 6.5 The developments presented in this section extend the material in the
first and second editions of this book [202, 203], and have been investigated in [210,
228]. The use of the kinetic metric for the study of multiple impacts was perhaps
first advocated in [581]. It is also implicitly present in Moreau’s works [890, 894]
where the tangent and normal cones are defined in a generic way, independently
of the metric, see also [454, §4]. The kinetic metrix is also used in mathematical
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proofs for convergence of numerical schemes [375]. Notice that far as one analyses
the system at a fixed q (like for impacts), then M(q) is constant and the metric is
Euclidean.

Example 6.1 For the rocking block system in Sect. 6.3.2.2, we have: q̇norm,1 =
ẏ+( l

2 sin(θ)+ L
2 cos(θ))θ̇

√
1
m + 1

4IG
(l sin(θ)+L cos(θ))2

, q̇norm,2 = ẏ+( l
2 sin(θ)− L

2 cos(θ))θ̇
√

1
m + 1

4IG
(l sin(θ)+L cos(θ))2

, q̇tan = √
mẋ . For a

monodisperse chain of four aligned balls with mass m and radius R, f1(q) =
q2 −q1 −2R ≥ 0, f2(q) = q3 −q2 −2R ≥ 0, f3(q) = q4 −q3 −2R ≥ 0. Therefore
∇ f1(q) = (−1 1 0 0)T , ∇ f2(q) = (0 − 1 1 0)T , ∇ f3(q) = (0 0 − 1 1)T . After
some calculations one finds q̇norm,1 = 1√

2m
(−q̇1 + q̇2), q̇norm,2 = 1√

2m
(−q̇2 + q̇3),

q̇norm,3 = 1√
2m

(−q̇3 + q̇4), and q̇tan =
√

m
2 (q̇1 + q̇2 + q̇3 + q̇4). It becomes clear

from these two examples that in general, q̇tan does not correspond to the “real-world”
tangent velocity at contact points: generalized and local point of views may not
match.

Let us denote F(q, q̇, t)
Δ= C(q, q̇)q̇ + G(q) − Fext in (5.1). Let us now perform

the kinetic quasi-velocity transformation of the constrained Lagrange dynamics (5.1)
with Ht,u(q, t)λt,u + Ht,b(q, t)λt,b = 0. First notice that:

(
q̈norm

q̈tan

)

= Ξ(q)M(q)q̈ + d

dt
(Ξ(q)M(q))q̇ (6.24)

Pre-multipyling both sides of (5.1) (a) by Ξ(q) and grouping the normal multipliers

as λn =
(

λn,b

λn,u

)

, one obtains:

(
q̈norm

q̈tan

)

+ Ξ(q)F(q, q̇, t) − d

dt
(Ξ(q)M(q))q̇ =

(
nT

q (∇h(q),∇ f (q))λn

tT
q (∇h(q),∇ f (q))λn

)

(6.25)

Let us define λ̄n such that λ̄n,b,i
Δ= ||∇hi (q)||M−1λn,b,i , λ̄n,u,i

Δ= ||∇ fi (q)||M−1λn,u,i ,
i.e. λ̄n = diag(||∇hi (q)||M−1 , ||∇ fi (q)||M−1)λn.6 From the definition of tq,i it follows
that tT

q (∇h(q),∇ f (q))λn = 0, therefore (6.25) becomes:

q̈norm(t) + Fnorm(q(t), q̇norm(t), q̇tan(t), t) = [nq(t)T M(q(t))nq(t)] λ̄n(t)

q̈tan(t) + Ftan(q(t), q̇norm(t), q̇tan(t), t) = 0
(6.26)

6Notice that the assumption that the constraints are functionally independent, guarantees that the
norms ||∇hi (q)||M−1 and ||∇ fi (q)||M−1 never vanish, so diag(||∇hi (q)||M−1 , ||∇ fi (q)||M−1 ) is
positive definite.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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with obvious definitions for Fnorm(q, q̇norm, q̇tan, t) and Ftan(q, q̇norm, q̇tan, t). This
canonical form of the dynamics is remarkable because it splits the velocities in a
“normal” and a “tangential” parts, similarly to the case of a particle hitting a single
frictionless constraint: this is a generalized particle dynamics. This is however at
the price of introducing additional nonlinearities (stemming from the constraints) in
the inertial generalized forces (see the left-hand side in (6.25)). The terms indexed
by tan are not affected by the contact force and may be thought of as some kind of
tangential dynamics. We may choose to call the first line of (6.26) the quasi-normal
dynamics and the second line the quasi-tangential dynamics. The dynamics in (6.23)
(6.26) is consequently a particular case of:

⎧
⎨

⎩

q̇(t) = A(q(t))−1v(t)
M̄(q(t))v̇(t) = G(q(t), v(t), t) + A(q(t))−T H(q(t))λ
v = A(q)q̇,

(6.27)

where G(q, v, t) gathers inertial forces (centrifugal, Coriolis), forces that derive
from the potential energy (gravity, elasticity), external and dissipative forces (control
inputs, disturbances, Raileygh dissipation), the mass matrix M̄(q) in (6.27) is not
necessarily equal to M(q), v has dimension n, A(q) is invertible but not necessarily
integrable, and H(q)λ groups all contact forces in the right-hand side of (5.1). In
other words, there does not necessarily exist any quasi-position q̄ = g(q) such that
dq̄
dt = ∂g

∂q (q)q̇ , so that A(q) is not the Jacobian of any mapping g(q). It is clear that v
may correspond to some non-holonomic constraints, hence the name non-holonomic
velocities that is sometimes given to quasi-velocities.
It is clear that (6.26) usually is not a Lagrange dynamics since M̄ is constant (the
identity) whereas nonlinear inertial forces do not vanish (such dynamics are some-
times called Lagrange’s equations in quasi-velocities, or Boltzmann-Hamel equa-
tions [155], and they may be written in a Lagrangian-like form [367, 417]). Remind
that the Delassus’ matrix defined when mb = 0 (only unilateral constraints) is equal
to ∇ f (q)T M(q)−1∇ f (q). The matrix nT

q M(q)nq may be seen as a normalized
Delassus’ matrix,7 whose diagonal entries are equal to 1. It is positive definite if and

only if nq has full rank mu + mb. Notice that we can split q̇norm as q̇norm =
(

q̇b
norm

q̇u
norm

)

with q̇b
norm ∈ R

mb corresponds to bilateral constraints, and q̇u
norm ∈ R

mu corresponds
to unilateral constraints. Similarly one has

nT
q M(q)nq =

⎛

⎝
nb,T

q M(q)nb
q nb,T

q M(q)nu
q

nu,T
q M(q)nb

q nu,T
q M(q)nu

q

⎞

⎠ (6.28)

7The Delassus’ operator is sometimes called the fundamental matrix [185].

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Thus the first line in (6.26) can be rewritten as (we drop the time argument in the
right-hand side):

⎧
⎪⎨

⎪⎩

q̈b
norm(t) + Fb

norm(q(t), q̇norm(t), q̇tan(t), t) = nb,T
q M(q)nb

q λ̄n,b + nb,T
q M(q)nu

q λ̄n,u

q̈u
norm(t) + Fu

norm(q(t), q̇norm(t), q̇tan(t), t) = nu,T
q M(q)nb

q λ̄n,b + nu,T
q M(q)nu

q λ̄n,u
(6.29)

Since q̇b
norm = 0 at all times because the system evolves on the codimension 2mb

manifold {q ∈ Q|hi (q) = 0,∇hT
i (q)q̇ = 0, i ∈ {1, . . . , mb}}, the first equation in

(6.29) is equal to Fb
norm(q, q̇u

norm, q̇tan, t) = nb,T
q M(q)nb

q λ̄n,b + nb,T
q M(q)nu

q λ̄n,u . If
the mb × mb matrix nb,T

q M(q)nb
q is invertible one may obtain λb

n from this equation
and insert it into the second equation in (6.29) to obtain a dynamics that no longer
depends on λ̄n,b. This modifies the unilateral part of the dynamics (and in particular
one obtains a new Delassus’ matrix given in (6.35) below). A detailed analysis of
the couplings between unilateral and bilateral constraints is made in [209].

6.2.1.2 Systems with Friction

We now incorporate the generalized forces Ht(q)λt
Δ= Ht,u(q, t)λt,u + Ht,b(q, t)

λt,b = 0 in the analysis. Then (6.26) becomes:

q̈norm − d
dt (n

T
q M(q))q̇ + nT

q F(q, q̇, t) = nT
q M(q)nq λ̄n + nT

q Ht(q) λt

q̈tan − d
dt (t

T
q M(q))q̇ + tT

q F(q, q̇, t) = tT
q Ht(q) λt

(6.30)

It is remarkable in (6.30) that there is no reason in general that nT
q Ht(q) = 0, i.e.

nq is not in general an anihilator of Ht(q). This means that the quasi-tangential
dynamics may influence the quasi-normal dynamics, but the reverse never holds
since by construction of the basis (nq , tq) one has tT

q ∇h(q) = tT
q ∇ f (q) = 0.

This is what makes the strong difference between systems with normal/tangential
couplings (like the Painlevé example analysed in Sect. 5.6), and systems without
normal/tangential couplings.Wemay say that generalized particles dynamics usually
have normal/tangential inertial couplings, with nT

q Ht(q) �= 0.

6.2.2 The Kinetic Energy

Clearly q̇b
norm does not play any role in the kinetic energy, being zero. We will see

later that the same applies to q̇tan when one considers the kinetic energy variation at

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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an impact. Let us assume that Ξ(q) has full rank n. One has:

Ξ(q)M(q)Ξ T (q) =
(

nT
q

tT
q

)

M(q)(nq tq) =
⎛

⎝
nT

q M(q)nq 0

0 tT
q M(q)tq

⎞

⎠ , (6.31)

from which one deduces the inverse matrix:

Ξ−T (q)M−1(q)Ξ−1(q) =
⎛

⎝
(nT

q M(q)nq)
−1 0

0 (tT
q M(q)tq)

−1

⎞

⎠ (6.32)

which holds provided the normalized Delassus’ matrix has full rank n. Nowwe have:

T (q, q̇) = 1
2 q̇T M(q)q̇ = 1

2 q̇T M(q)Ξ T (q)Ξ−T (q)M−1(q)Ξ−1(q)Ξ(q)M(q)q̇

= 1
2v

T

⎛

⎝
(nT

q M(q)nq)
−1 0

0 (tT
q M(q)tq)

−1

⎞

⎠ v

= 1
2 q̇T

norm(nT
q M(q)nq)

−1q̇norm + 1
2 q̇T

tan(t
T
q M(q)tq)

−1q̇tan = T (q, v)

(6.33)

Now one may use (6.28) and the Schur complement [218, §A.5] to deduce:

T (q, q̇) = 1
2 q̇u,T

normG−1(q)q̇u
norm + 1

2 q̇T
tan(t

T
q M(q)tq)

−1q̇tan (6.34)

with:

G(q) = nu,T
q M(q)nu

q − nu,T
q M(q)nb

q(n
b,T
q M(q)nb

q)
−1nb,T

q M(q)nu
q (6.35)

We see that this matrix has the same structure as D̃bu(q(t), t) in (5.20), and rep-
resents the distorsion of the Delassus’ matrix due to bilateral constraints. Due to
the assumption that the constraints are independent, G(q) has full rank and is
even positive definite.8 If mb = 0 (no bilateral constraints) and mu = 1, then
q̇u
norm = q̇norm and one recovers the result in [203, Eq. (6.11)] that T (q, q̇) =

1
2 q̇2

norm + 1
2 q̇T

tan(t
T
q M(q)tq)

−1q̇tan.
It is noteworthy that the basis (nq , tq) is not orthonormal, because the vectors

nq,i , i ∈ {1, . . . , mb + mu}, and tq,i , i ∈ {1, . . . , n − mb − mu} are not neces-
sarily orthogonal to one another (except if the constraints are orthogonal). Thus,

8Its properties are studied in [209, §4] without noticing, anyway, that it is a Schur complement.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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despite the quasi-mass matrix M̄(q) in (6.26) is the identity, the kinetic energy in
(6.34) does not have the simple form 2T (q, v) = vT v as is for instance the case in
[155, Eq. (20)].

6.2.3 The Contact Forces Power

6.2.3.1 Normal Contact Forces Power

Let Fn(q)
Δ= ∇ f (q)λn. Let us investigate now the power performed by the gener-

alized contact force: Pn = F T
n (q)q̇ where q̇ is assumed to be compatible with the

bilateral and the unilateral constraints (i.e. we consider virtual velocities q̇ such that
the virtual displacement δq = q̇dt is compatible with the constraints and such that
the virtual work is Wn = Pndt). Then from the above developments we obtain:

Pn = Fn(q)T q̇ = λT
n ∇ f (q)T q̇ = λT

n diag(||∇hi (q)||M−1 , ||∇ fi (q)||M−1)nT
q M(q)q̇

= λ̄T
n nT

q M(q)q̇ = λ̄T
n q̇norm = λ̄T

n,uq̇u
norm,

(6.36)

where we used that q̇b
norm = 0 always. Now, one has 0 ≤ λn,u ⊥ f (q) ≥ 0,

therefore if the system lies in the interior of the admissible domain Φu one has
λn,u = 0 and Pn = 0. If the system evolves smoothly on a part of the boundary
bd(Φu) that is finitely represented by the active constraints indexed in J (q), one
has 0 ≤ q̇norm,i ⊥ λn,u,i ≥ 0 for all i ∈ J (q). Consequently in this case also
Pn = 0. Since the constraints are all perfect, the power developed by the contact
forces outside possible impacts is always zero, as expected. The interest of (6.36) is
to highlight the fact that the “forces” that perform work on the quasi-velocities q̇u

norm
are the multipliers λ̄n,u .

Let us denote Fn
norm(q)

Δ= nT
q M(q)nq λ̄n and Dn(q)

Δ= (nT
q M(q)nq)

−1. Then from
(6.36) one gets:

Pn = λ̄T
n q̇norm = 〈Fn

norm(q), q̇norm〉Dn (6.37)

Let us also denote Dt(q)
Δ= (tT

q M(q)tq)
−1.9 As a result, one finds that the frictionless

Lagrangian system with a set of holonomic bilateral and unilateral constraints is
equivalently represented as a generalized particle with dynamics:

{
q̈norm(t) + Fnorm(q, q̇norm(t), q̇tan(t), t) = Fn

norm(q(t))
q̈tan(t) + Ftan(q, q̇norm(t), q̇tan(t), t) = 0

(6.38)

9If the vectors tq,i are chosen mutually orthogonal then Dt(q) = I .
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and the kinetic metric D(q) =diag(Dn(q), Dt(q)) (see (6.33)), while q̇normdt per-
forms work on Fn

norm(q) in the metric of Dn(q).

6.2.3.2 Tangential Contact Forces Power

Let us compute the virtual power developed by the tangential forces. Let Ft(q)
Δ=

Ξ(q)Ht(q)λt =
(

F t
norm(q)

F t
tan(q)

)

. Then:

Pt = q̇T Ht(q)λt = vT Ξ−T (q)M−1(q)Ξ−1(q)Ξ(q)Ht(q)λt

= 〈v, Ft(q)〉D = 〈q̇norm, F t
norm(q)〉Dn + 〈q̇tan, F t

tan(q)〉Dt

(6.39)

Thus, the total virtual power of the contact forces of the dynamics in (6.30) is equal
to:

P = 〈Fn
norm(q), q̇norm〉Dn + 〈q̇norm, F t

norm(q)〉Dn + 〈q̇tan, F t
tan(q)〉Dt (6.40)

The matrices Dn(q)  0 and Dt(q)  0 define natural metrics for the system
analysed in kinetic quasi-velocities. The coupling between normal and tangential
directions appears in the second term in (6.40). There is no orthogonality of the quasi-

generalized contact forces

(
F t
norm(q)

F t
tan(q)

)

and

(
Fc
norm(q)

0

)

in the inner product defined

by the metric D(q)  0. This is in contrast with what happens at the local kinematics
level at the contact points. Following Sect. 4.1, let us denote the orthonormal local
frame at contact point i as (ni , ti,1, ti,2),withni ∈ R

3, ti, j ∈ R
3.Onehas 〈ni , ti, j 〉 = 0

in the Euclidean metric. Each contact force can be denoted as Fi = Fi,n + Fi,t with
Fi,n = Fn,i ni and Fi,t = Ft,1,i ti,1 + Ft,2,i ti,2. The Coulomb’s cones are denoted
as Ci , with Fi ∈ Ci . Let Ui ∈ R

3 be the local velocity, decomposed naturally as
Ui = Un,i + Ut,i = un,i ni + ut,1,i ti,1 + ut,2,i ti,2. We may thus define virtual local
velocities that are compatible with the constraints, and the virtual power at contact i
is given by Pi = 〈Ui , Fc

i 〉 = 〈Ui,n, Fi,n〉 + 〈Ui,t, Fi,t〉, while

P =
p∑

i=1

Pi,n + Pi,t = Pn + Pt. (6.41)

Thus, in the local kinematics there is a decoupling between tangential and normal
virtual powers, which does not transport very well into generalized frameworks,
because of the term nT

q Ht(q) in (6.30). Notice that if un,i = ∇ fi (q)T q̇ , then the
multiplier vector λn satisfies λn,i = Fn,i , and thusPn in (6.36) andPn in (6.41) are
the same.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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6.2.4 Restitution Law for Frictionless Systems

Let us assume for simplicity that there are no bilateral constraints (i.e. mb = 0).
Thus G(q) = Dn(q)−1 and in the sequel we shall use both notations equally.
We also assume that q̇norm is constructed from the active constraints at the impact
time tk , i.e. with the constraints whose index belongs to J (q(tk)) = {i ∈
{1, . . . , mu}| fi (q(tk)) = 0}. It is noteworthy that we allow for contacts which are
active with zero relative pre-impact velocity (like in a chain of balls or a Newton’s
cradle). We denote m ′

u = card(J (q(tk))). The impact dynamics at an instant tk such
that there is at least one i ∈ {1, . . . , m ′

u} such that q̇norm,i(t
−
k ) < 0 and fi (q(tk)) = 010

is given by (using (6.26)):

{
q̇norm(t+

k ) − q̇norm(t−
k ) = nT

q M(q)nq p̄n(tk)
q̇tan(t

+
k ) − q̇tan(t

−
k ) = 0,

(6.42)

where p̄n,i = ||∇ fi (q)||M−1 pn,i , i.e. p̄n = diag(||∇ fi (q)||M−1)pn, and pn,i (tk) is the
impulse of the contact force multiplier λn,i at the impact instant tk . More rigorously
λn,i is a measure at tk and pn,i (t) is its density with respect to the Dirac measure at the
atom tk . The role played by the projection of the generalized momentum on the basis
tq clearly appears in (6.42): the quasi-velocities q̇tan are conserved at the impacts
when friction is absent (the constraints are said perfect). It is important to notice that
despite there may be q̇norm,i(t

−
k ) = 0 for some i ∈ J (q(tk)), all the terms q̇norm,i,

i ∈ {1, . . . , m ′
u} may undergo a jump because of the inertial couplings between the

constraints, as reflected by the normalized Delassus’ matrix nT
q M(q)nq which is not

diagonal in general. It readily follows from the impact dynamics in (6.42) and (6.34)

that the kinetic energy loss TL(tk)
Δ= T (q(tk), q̇(t+

k )) − T (q(tk), q̇(t−
k )) at a time tk

of impact is given by:

TL(tk) = 1

2
q̇u
norm(t+

k )T G(q)−1q̇u
norm(t+

k ) − 1

2
q̇u
norm(t−

k )T G(q)−1q̇u
norm(t−

k ) (6.43)

where q denotes q(tk). From now on we will drop the superscript u since there are
no bilateral constraints. The framework in (6.42) is suitable to formulate a kinematic
impact law as:

v(t+) =
(

q̇norm(t+
k )

q̇tan(t
+
k )

)

= −E

(
q̇norm(t−

k )

q̇tan(t
−
k )

)

(6.44)

where E is a generalized n × n restitution matrix. Its entries will be named the
coefficients of restitution. Let us decompose it as:

E =
(
Enn Ent
Etn Ett

)

(6.45)

10This is equivalently stated as q̇(t−k ) ∈ −TΦu (q(tk)).
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with obvious dimensions of the four submatrices: Enn ∈ R
m′

u×m′
u , Ett ∈ R

(n−m′
u )×(n−m′

u ).
In the frictionless case one has q̇tan(t+) = q̇tan(t−) for any pre-impact velocity
q̇norm(t−), so necessarily Etn = 0 and Ett = −I . The restitution law in (6.44) is very
general as the next result shows:

Proposition 6.1 Suppose that at least one component of q̇norm(t−
k ) or of q̇tan(t

−
k ) is

nonzero. Then given any postimpact kinetic quasi-velocity, there exists a value of E
such that (6.44) is satisfied. If at least one component of q̇norm(t−

k ) is negative, then
there exists a value of Enn such that q̇norm(t+

k ) = −Ennq̇norm(t−
k ).

Proof Without loss of generality suppose that v1(t
−
k ) �= 0 while vi (t

−
k ) = 0 for all

i ≥ 2. Then it suffices to choose εi1 = − vi (t
+
k )

v1(t
−
k )
.

As we know there are three types of consistencies that an impact law has to satisfy:
kinematic (admissible postimpact velocities), kinetic (non negative impulses), and
energetic.

Proposition 6.2 Let a frictionless impact occur at tk . It is necessary and sufficient
that:

• (i) Enn is nonnegative (kinematic consistency),
• (ii) G−1(q)(I + Enn) is nonnegative (kinetic consistency),

for Enn to be an admissible restitution matrix for any pre-impact velocity q̇norm(t−
k ).

Proof (i) assures that q̇norm(t+
k ) = −Ennq̇norm(t−

k ) ≥ 0 for any q̇norm(t−
k ) ≤ 0, (ii)

guarantees that p̄n(tk) = G(q)−1(q̇norm(t+
k ) − q̇norm(t−

k )) ≥ 0 (kinetic consistency).

We are now going to analyze the energetical consistency, and for that we need equiv-
alent expressions of TL(tk):

TL(tk) = 1

2
(q̇norm(t+

k ) + q̇norm(t−
k ))T p̄n(tk), (6.46)

which is the Thomson and Tait formula, or:

TL(tk) = 1

2
q̇norm(t−

k )T (Enn − I )T G(q)−1(Enn + I )q̇norm(t−
k ), (6.47)

or, using the symmetry of G(q)11:

TL(tk) = 1

2
q̇norm(t−

k )T (E T
nnG(q)−1Enn − G(q)−1)q̇norm(t−

k ), (6.48)

or, following [455] and with ξ(tk) = q̇norm(t+
k ) + Ennq̇norm(t−

k ):

TL(tk) = 1

2
p̄n(tk)

T (2ξ(tk) − (I − Enn)G(q) p̄n(tk)). (6.49)

11xT E T
nnG(q)−1x = xT (E T

nnG(q)−1)T x = xT G(q)−1Ennx for any vector x ∈ R
p .
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We then have several results stating conditions such that the generalized impact law
is energetically consistent.

Proposition 6.3 Suppose that −(Enn − I )T G(q)−1(Enn + I ) or −(E T
nnG(q)−1Enn −

G(q))−1 are copositive matrices. Then TL(tk) ≤ 0. If they are strictly copositive then
TL(tk) < 0 for any nonzero pre-impact velocity.

Proof Due to the impact conditions one has q̇norm(t−
k ) ≤ 0, in other words the p

dimensional vector −q̇norm(t−) belongs to R
p
+. From the definition of copositivity

the results follow.

Proposition 6.4 Suppose that Enn = G(q)E T
nnG(q)−1 and G(q) is positive definite.

Then a necessary and sufficient condition for TL(t) ≤ 0 for any vector q̇norm(t−
k ) is

that |λmax(Enn)| ≤ 1.

Proof From (6.48) we have TL(tk) ≤ 0 for any q̇norm(t−
k ) if and only if E T

nnG(q)−1

Enn ≤ G(q)−1. Let G
1
2 (q) be the symmetric positive definite square root of G(q).

This inequality is equivalent to G
1
2 (q)E T

nnG(q)−1EnnG
1
2 (q) ≤ I , using Proposi-

tion 8.1.2 xi) and xiii) in [136]. Let us denote B(q) = G
1
2 (q)E T

nnG− 1
2 (q). By the

assumption of the proposition we have G− 1
2 (q)EnnG

1
2 (q) = G

1
2 (q)E T

nnG− 1
2 (q) so

B(q) = BT (q), and since BT (q) = G− 1
2 (q)EnnG

1
2 (q) we obtain B2(q) ≤ I .

Using [136, Lemma 8.4.1] it follows that equivalently λmax(B2(q)) ≤ 1, because
B2(q) = B(q)BT (q) is positive semi definite and symmetric. Now we have that
B2(q) = G

1
2 (q)(E T

nn)
2G− 1

2 (q), and since it is a symmetric matrix one obtains
B2(q) = G− 1

2 (q)E 2
nnG

1
2 (q). Therefore B2(q) and E 2

nn are similar matrices so they
have the same eigenvalues [700, Proposition 1, p. 152]. Therefore λmax(E 2

nn(q)) ≤ 1.
Since the eigenvalues of E 2

nn are the squares of those of Enn the result follows.

The condition imposed in Proposition 6.4 holds if for instance Enn =diag(en). In fact
Enn = G(q)E T

nnG(q)−1 is equivalent to G(q)−1Enn = E T
nnG(q)−1, which allows us

to rewrite (6.48) as:

TL(t) = 1

2
q̇norm(t−

k )T [(E T
nnEnn − I )G(q)−1]q̇norm(t−

k ) (6.50)

Proposition 6.5 Let G(q) > 0. Then TL(tk) ≤ 0 if σmax(Enn) ≤ 1√
λmax(G(q))λmax(G−1(q))

,

which implies that σmax(Enn) ≤ 1.

Proof The proof begins similarly to the proof of Proposition 6.4, and we obtain
that TL(t) ≤ 0 ⇔ B(q)BT (q) ≤ I with B(q) = G

1
2 (q)E T

nnG− 1
2 (q). By [136,

Lemma 8.4.1] one has equivalently λmax(B(q)BT (q)) = σ 2
max(B(q)) ≤ 1. From

[136, Corollary 9.6.5] one has σmax(B(q)) ≤ σmax(G
1
2 (q))σmax(G− 1

2 (q))σmax(Enn).
Therefore σmax(G

1
2 (q))σmax(G− 1

2 (q))σmax(Enn) ≤ 1 implies that σ 2
max(B(q)) ≤ 1.

From the symmetry and positive definiteness of G(q) and of its square root,
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one has σmax(G
1
2 (q)) = √

λmax(G(q)), so the result follows. For the last state-
ment notice that I = G− 1

2 (q)G
1
2 (q) so again from [136, Corollary 9.6.5] 1 ≤

σmax(G
1
2 (q))σmax(G− 1

2 (q)) = √
λmax(G(q))λmax(G−1(q)).

Remark 6.6 Propositions 6.4 and 6.5 state in a correct way Proposition 1 in [228],
which wrongly asserts that |λmax(Enn)| ≤ 1 is a sufficient condition for TL(t) ≤ 0
under symmetry of Enn. The energy consistency of an extended frictionlessMoreau’s
law with Enn =diag(en,i ) is analysed in [730, Sect. 7.1] [455], starting from the
Thomson and Tait formula (6.46), or from (6.47), or from (6.49). Actually one may
use Propositions 7.1 and 7.2 in [730] to analyze (6.50). The condition of Proposition
6.4 is quite close to the commuting conditions of [730, p. 159]. Finally let us remind
that in the case Poisson coefficients are used (kinetic impact law) one obtains similar
expressions for the loss of kinetic energy (see Eq.(43) in [458]). The quadratic forms
in (6.47)–(6.49) therefore possess a general interest for both kinematic and kinetic
impact laws. As shown in [210, Sect. 3.1.1], when Enn = diag(en) for some CoR
en ∈ [0, 1], then we recover Moreau’s impact law, which is always kinematically
and kinetically consistent from Proposition 6.2.

Remark 6.7 From (6.42), the quasi-velocity q̇tan(·) is conserved at frictionless
impacts. The physical meaning of q̇tan(·) may change from a system to another
one. For a particle hitting a plane, this is the tangent velocity at the contact point vt ,
for a chain of aligned beads this is the velocity of the gravity center of the chain.

Remark 6.8 Starting from (6.42) and (6.44), and assuming kinematic, kinetic and
energetic consistencies hold, we can rewrite equivalently the restitution law as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ q̇norm(t+
k ) + Ennq̇norm(t−

k ) ⊥ p̄n(tk) ≥ 0

⇐⇒ (if Dn(q(tk))  0)

0 ≤ Dn(q(tk))−1 p̄n(tk) + (I + Ennq̇norm(t−
k ) ⊥ p̄n(tk) ≥ 0,

(6.51)

which is quite similar to (5.67) and (5.68), (5.70). Going a step further:

Dn(q(tk))[q̇norm(t+
k ) − q̇norm(t−

k )] ∈ −NR
mu+ (q̇norm(t+

k ) + Ennq̇norm(t−
k )). (6.52)

Let us end this section with Carnot’s Theorem:

Theorem 6.1 (Carnot’s Theorem) A frictionless impact after which persistent con-
tact is established, is always accompanied by a kinetic energy loss.

Proof From (6.42) and (6.46), and taking q̇norm(t+
k ) = 0 (i.e. without loss of

generality, we suppose that m contacts are established), it follows that TL(tk) =
− 1

2 q̇norm(t−
k )T Dn(q(tk))q̇norm(t−

k ) ≤ 0, and this holds even if the constraints are not
independent, because Dn(q) � 0.12

12Recall however that we assume that M(q)  0, for the basic definition of the vectors nq,i .

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5


398 6 Generalized Impact Laws and Multiple Impacts

A geometric interpretation of Carnot’s Theorem is given in [569]. It is noteworthy
that Theorem 6.1 is stated without chosing any particular restitution mapping.

6.2.5 Restitution Law with Tangential Effects

The impact dynamics is in this case equal to:

{
q̇norm(t+) − q̇norm(t−) = nT

q M(q)nq p̄n(t) + nT
q HT(q) pt

q̇tan(t+) − q̇tan(t−) = tT
q HT(q) pt.

(6.53)

We saw in Sect. 4.3 that tangential effects may be introduced in kinematic restitution
laws in three ways: tangential restitution, Coulomb’s law at the impulse level, and a
mixture of both. Tangential restitution can be readily inserted in (6.45), by defining
non null restitution submatrices Ent, Etn and Ett . For the sake of briefness we present
next an extension of the model studied in Sects. 4.3.1.1, 4.3.1.2 and 4.3.1.5, with
ṽt(tk) = vt(t

+
k )+etvt(t

−
k ), and Ent = 0, Etn = 0 and Ett = 0 in the restitutiuon matrix

E : the tangential restitution submatrix Ett is introduced thorugh Coulomb’s law. We
restrict ourselves to planar friction at each contact point i , and write Coulomb’s law
at the impulse level as:

pt,i ∈ −μi pn,i sgn(vt,i (t
+
k ) + et,ivt,i (t

−
k )) (6.54)

for some tangential CoRs et,i, 1 ≤ i ≤ m ′
u , which copies (4.69). In the examples

studied in Sects. 4.3.1.1, 4.3.1.2 and 4.3.1.5, we proved that it was always possible to
compute a unique vt(t

+
k ) when this tangential model is used (see (4.73) and (4.83)).

In the general case the mere existence issue if more complex. Inserting (6.54) into
(6.42) we find:

⎧
⎪⎪⎨

⎪⎪⎩

−(I + Enn)q̇norm(t−k ) ∈ G(q) p̄n(tk ) − nT
q Ht(q)[μ̄][ p̄n(tk )]Sgn(vt(t+k ) + Ettvt(t

−
k ))

q̇tan(t
+
k ) − q̇tan(t

−
k ) ∈ −tT

q Ht(q)[μ̄][ p̄n(tk )]Sgn(

Δ=Ṽt(tk )
︷ ︸︸ ︷

vt(t
+
k ) + Ettvt(t

−
k ))

(6.55)

with: [μ̄] =diag
(

μi

||∇ fi (q)||M−1

)
∈ R

m ′
u×m ′

u , [ p̄n] =diag( p̄n,i ), Ett =diag(et,i ), vt =
Ht(q)T Ξ T (q)v (v is in (6.23)), Sgn(Ṽt(tk)) = (sgn(ṽt,1(k), . . . , sgn(ṽt,m ′

u
(tk))T .

The unknowns of the generalized equation (6.55) are the m ′
u impulses p̄n,i , and

the n − m ′
u quasi-velocities q̇tan,i (t

+
k ), with the constraints p̄n,i ≥ 0 and q̇norm(t+

k ) =
−Ennq̇norm(t−

k ). The first inclusion in (6.55) may be used to find an extension of
(4.90), and we may look for a generalized Lemma 4.1 for the kinetic constraint
satisfaction. It may be rewritten equivalently as13:

13Notice that we recover here a matrix Gμ(q, vt(t
+
k )) which has the same structure as Dμ(q) in

(5.158).

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Δ=Gμ(q,vt(t
+
k ))

︷ ︸︸ ︷
(G(q) − nT

q Ht(q)[μ̄][ξi ]) p̄n(tk) � −(I + Enn)q̇norm(t−
k ) (6.56)

with [ξi ] = diag(ξi ) and ξi ∈ sgn(ṽt,i (tk)). We can use Theorem 5.8 to guarantee that
for small enough friction μi ≤ μmax(q), 1 ≤ i ≤ mu , then Gμ(q, vt(t

+
k ))  0 for

any frictional mode (i.e. any ξi ∈ [-1, 1]), and then insert the found value of p̄n(tk)
in the second inclusion of (6.55). This gives rise to the program: Given the data q(tk)
and q̇(t−

k ), and the parameters Enn, Ett , find q̇(t+
k ) such that:

tT
q M(q)q̇(t+k ) = q̇tan(t

−
k ) + tT

q Ht(q)[μ̄](Gμ(q, Ht(q)T q̇(t+k )))−1(I + Enn)q̇norm(t−k )ξ

with: ∇ f (q)T q̇(t+k ) = −Ennq̇norm(t−k )

ξ ∈ Sgn(Ht(q)T q̇(t+k ) + Ettvt(t
−
k )) ⇔ Ht(q)T q̇(t+k ) ∈ −Ettvt(t

−
k ) + N[−1,1](ξ)

(6.57)

where we recall that vt = Ht(q)T q̇ from the local kinematics, and we denoted
q(tk) as q. If this program possesses a solution q̇(t+

k ), then the impact problem with
friction is solvable with kinematic and kinetic constraints satisfied. See Sect. 4.3.1.5
for an example, with normal/tangential couplings. The generalized equation is rather
tricky since it can hardly be put in a canonical form 0 ∈ F(x) + NK (x), with F(·)
continuous and K = [-1, 1]m ′

u , so that [385, Corollary 2.2.5] may be applied.14 This
fact is not surprizing because the original problem in (6.55) is already nonlinear in
its unknowns, due to the products between p̄n(tk) and Sgn(Ṽt(tk)).
Let us pass now to the energetical behavior of this impact lawwith friction, assuming
that we could find at least one solution to (6.57). Choosing one of these solutions
provides us with Ṽt(tk) and most importantly with a selection ξ ∈ Sgn(Ṽt(tk)).
Extension of (6.46) through (6.49) is:

TL(tk) = 1
2 q̇norm(t+

k )T Dn(q)q̇norm(t+
k ) − 1

2 q̇norm(t−
k )T Dn(q)q̇norm(t−)

+ 1
2 q̇tan(t

+
k )T Dt(q)q̇tan(t

+
k ) − 1

2 q̇tan(t
−
k )T Dt(q)q̇tan(t

−
k )

= 1
2 (q̇norm(t+

k ) + q̇norm(t−))T Dn(q)(q̇norm(t+
k ) − q̇norm(t−

k ))

+ 1
2 (q̇tan(t

+
k ) + q̇tan(t

−
k ))T Dt(q)(q̇tan(t

+
k ) − q̇tan(t

−
k ))

= 1
2 (q̇norm(t+

k ) + q̇norm(t−
k ))T [ p̄n(tk) + G(q)nT

q Ht(q)pt(tk)]

+ 1
2 (q̇tan(t

+
k ) + q̇tan(t

−
k ))T Dt(q)tT

q Ht(q)pt(tk).

(6.58)

14Corollary 6.1 [385, Corollary 2.2.5] Let K ⊆ R
n be compact convex, and F : K → R

n be
continuous. Then, the set of solutions to the generalized equation 0 ∈ F(x) + NK (x) is nonempty
and compact.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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We assume that the problem (6.55) has been solved for at least one p̄n(tk) and one
q̇(t+

k ). Then after few manipulations we obtain:

TL(tk) = − 1
2 q̇norm(t−

k )T

Δ=M̄(q,μ,vt)
︷ ︸︸ ︷
(I − Enn)

T M(q, μ, vt(t
+
k ))(I + Enn) q̇norm(t−

k )

+q̇tan(t
−
k )T Dt(q)tT

q Ht(q)[μ̄][ξ ]Gμ(q, vt(t
+
k )))−1(I + Enn)q̇norm(t−

k )

+ 1
2 q̇norm(t−

k )T K (q, μ, vtt(t
+
k ))q̇norm(t−

k )

(6.59)

with M(q, μ, vt)
Δ= Gμ(q, vt)

−1 − G(q)nT
q Ht(q)[μ̄][ξ ]Gμ(q, vt)

−1 and

K (q, μ, vt(t
+
k ))

Δ= (I + Enn)T Gμ(q, vt(t
+
k ))−T [μ̄][ξ ]Ht(q)T tq Dt(q)tT

q Ht(q)[μ̄][ξ ]
Gμ(q, vt(t

+
k ))−1(I + Enn). Let us investigate the positive definiteness of the matrix

M̄(M(q, μ, vt).

Proposition 6.6 [210] Assume that G(q)  0. Then:

1. If ||G(q)−1||2||nT
q Ht(q)||2||[μ̄]||2 < 1, one has Gμ(q, vt(t

+
k ))−1  0.

2. If ||Gμ(q, vt(t
+
k ))||2||Gμ(q, vt(t

+
k ))−1||2||G(q)||2||nT

q Ht(q)||2||[μ̄]||2 < 1 is
satisfied, then M(q, μ, vt))  0.

3. If ||Enn||2(1 + 2||Enn||2) < 1
||M(q,μ,vt)||2

1∣
∣
∣
∣

∣
∣
∣
∣

(
M(q,μ,vt ))+MT (q,μ,vt ))

2

)−1
∣
∣
∣
∣

∣
∣
∣
∣
2

is satisfied, then

M̄(q, μ, vt)  0.

Proof (1) G(q) is symmetric positive definite. Applying Theorem 5.8 with N =
G(q) and D = G(q) − nT

q HT(q)[μ̄][ξ ] one finds that the inequality in 1 guaran-
tees that G(q) − nT

q HT(q)[μ̄][ξ ] is positive definite. Then this matrix has a posi-
tive definite inverse which is Gμ(q, vt). (2) The proof follows from Corollary 5.2,
with M = Gμ(q, vt)

−1, B = I − G(q)nT
q Ht(q)[μ̄][ξ ] and A = M(q, μ, vt).

Applying Proposition 9.3.5 in [136] to upper-bound ||G(q)nT
q Ht(q)[μ̄][ξ ]||2 by

the product of norms, the result follows. (3) One has (I − Enn)T M(q, μ, vt)(I +
Enn) = M(q, μ, vt) + H(q, μ, en,i), with H(q, μ, en,i) = −E T

nnM(q, μ, vt)Enn −
E T
nnM(q, μ, vt) + M(q, μ, vt)Enn. Consider Theorem 5.8, with M = M(q, μ, vt)

and A = M(q, μ, vt) + H(q, μ, en,i). Using Proposition 9.3.5 in [136] and the tri-
angular inequality of norms one finds ||H(q, μ, en,i)||2 ≤ ||Enn||22||M(q, μ, vt)||2 +
2||Enn||2||M(q, μ, vt)||2. Thus it suffices that
∣
∣
∣
∣

∣
∣
∣
∣

(
M(q,μ,vt)+MT (q,μ,vt)

2

)−1
∣
∣
∣
∣

∣
∣
∣
∣
2

(||Enn||22||M(q, μ, vt)||2 + 2||Enn||2||M(q, μ, vt)||2)
< 1

and the result follows.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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From (6.59) the following holds:

TL(tk) ≤ − 1
2λmin(M̄(q, μ, vt))||q̇norm(t−

k )||2 + 1
2λmax(K (q, μ, vt))||q̇norm(t−

k )||2

+||Dt(q)tT
q Ht(q)||2||[μ̄]||2||I + Enn||2||q̇norm(t−

k )|| ||q̇tan(t
−
k )||

(6.60)

Theorem 6.2 [210] Provided that

(i) λmin(M̄(q, μ, vt(t
+
k ))) > λmax(K (q, μi , vt(t

+
k )))

(i i) ||q̇norm(t−
k )||

||q̇tan(t−
k )|| ≥ 2

||Dt(q)tT
q Ht(q)||2||[μ̄]||2||I+Enn||2

λmin(M̄(q,μ,vt(t
+
k )))−λmax(K (q,μ,vt(t

+
k )))

,

(6.61)

one has TL(tk) ≤ 0.

Proof Follows directly from (6.60).

Example 6.2 Let us illustrate the above developments on the simplest case of a
planar particle hitting a line. The horizontal position is x , the vertical one (normal
to the line) is y. One has q̇norm = √

mẏ, q̇tan = √
mẋ , p̄n = 1√

m
pn, Gμ(q, vt) = 1,

M(q, μ) = 1, M̄(q, μ) = 1−e2n, K (q, μi , x(t+
k )) = μ2(1+en)2, Dt = 1, tT

q Dttq =
1
m , tT

q Ht(q) = 1√
m
, G(q) = 1, p̄n = −(1 + en)q̇norm(t−

k ), q̈norm = p̄n, q̈tan = 1√
m

pt ,

q̇tan(t+) − q̇tan(t
−
k ) = 1√

m
(1+ en)q̇norm(t−

k )μ̄ξ , with ξ ∈ sgn(ẋ(t+
k ) + et ẋ(t−)). The

conditions of the Theorems imply that en ≤ 1, while the kinematic admissibility
implies that en ≥ 0. The direct application of Theorem 6.2 gives:

(i) 1 − en > μ2(1 + en)

(i i) |ẏ(t−
k )|

|ẋ(t−
k )| ≥ 2μ

1−en−μ2(1+en)
.

(6.62)

Notice that condition (i) implies that en < 1. If en = 0 thenμ < 1 and |ẏ(t−
k )|

|ẋ(t−
k )| ≥ 2μ

1−μ2 .

If en = 1 only the frictionless case is admitted, because in that case M̄(q, μ, vt) = 0,
and we have excluded this case from the beginning.

Remark 6.9 The major drawback of the generalized kinematic impact law, is that
in most cases one has to identify the parameters for a given collision, i.e. for a
given set of initial data and mechanical parameters: this is mainly due to the lack
of information on contact flexibility in the model, which hampers to predict wave
effects inside the multibody system. The LZB law introduced in Sect. 6.3 is from this
point of view, much better. A possible way to enhance the generalized kinematic law,
could be to use the information about the postimpact pattern, which is sometimes
available (see Fig. 5.5 where two general patterns appear, see also [621, Fig. 1] for a
two-ball system hitting a wall). Another drawback is related with its insertion in a

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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time-stepping algorithm for simulation: does it have to be used only in event-driven
integrators?

6.2.6 Tangential Restitution

Motivated by the models described in Sects. 4.3.1, 4.3.2 and 4.3.3, where a tan-
gential restitution coefficient is discussed vs. Coulomb’s friction at the impulse
level, we may introduce a generalized restitution as follows. We may impose p̄n ∈
−NVn(q)(Γn(q̇norm(t+)+Λnq̇norm(t−))) and pt ∈ −NVt(q)

(Γt(q̇tan(t+)+Λtq̇tan(t−))),
for some matrices Λn, Λt , Γn, Γt , and convex sets Vn(q) and Vt(q). Inserting this
into (6.53) one obtains the generalized equation:

v(t+) − v(t−) ∈ −Ḡ(q)

(
NVn(q)(Γn(q̇norm(t+) + Λnq̇norm(t−)))

NVt(q)
(Γt(q̇tan(t+) + Λtq̇tan(t−)))

)

. (6.63)

Defining the convex set W (q)
Δ= Vn(q) × Vt(q) and Λ =diag(Λn,Λt), Γ =diag

(Γn, Γt), we get :

v(t+) − v(t−) ∈ −Ḡ(q) NW (q)(Γ (v(t+) + Λv(t−))), (6.64)

with Ḡ(q) =
(

G(q) nT
q HT(q)

0 tT
q HT(q)

)

. Existence and uniqueness of a solution v(t+) to

the generalized equation in (6.64) depend on the matrices Ḡ(q), Γ , Λ, and on the
convex sets Vn(q) and Vt(q). Suppose that there exists a symmetric positive definite
matrix P such that PḠ(q) = Γ T , and let us denote R its symmetric square root
R2 = P . Then, using Convex Analysis tools (which we already used a lot throughout
this book) we get:

v(t+) = −Λv(t−) + R−1proj[W̄ (q); R(Λ + I )v(t−)] (6.65)

with W̄ (q) = {x |ḠT Rx ∈ W (q)} a convex set.

6.2.7 Comments

The generalized restitution law (6.44) and (6.45) has been studied in detail when
applied on the planar rocking block and chains of aligned balls, in [228]
(see Sect. 6.3.2.2). The domains where the entries of Enn have to lie in order for kine-
matic, kinetic and energetic consistencies to hold, are summarized in [228, Table1]

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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in several cases: free rocking with or without sliding, half-rocking. It is also shown
that the three consistency constraints plus the pre-impact velocity, do not define a
unique set of CoRs (entries of Enn) in general, or that some of the CoRs are admissible
while >1. As noted by Moreau [900], adding a tangential CoR within a generalized
framework, is more a trick than the result of deep modeling. The normalized Delas-
sus’s matrix is the matrix of kinetic angles between the constraints. More precisely,
the kinetic angle between two constraints is defined as

θi j (q) = π −arccos
∇ fi (q)T M−1(q)∇ f j (q)

√∇ fi (q)T M−1(q)∇ fi (q)
√∇ f j (q)T M−1(q)∇ f j (q)

. (6.66)

Kinetic angles are quantities that reflect the couplings between the inertial and the
geometrical properties of the system with unilateral constraints. It readily follows that
nT

q M(q)nq = [cos(π − θi j )] = −[cos(θi j )]. In particular θi i = π and the diagonal
entries are− cos(θi i ) = 1. Kinetic angles play a major role in continuity of solutions
w.r.t. initial data (see Sect. 5.2.4). Obviously they also play a major role in multiple
impacts, for if constraints are pairwise orthogonal, then the Delassus’s matrix is
diagonal and collisions are decoupled. We based the definition of the generalized
impact law in (6.44) and (6.45) on geometrical arguments, starting from the normal
vectors nq,i in (6.22), which have the interpretation of normals to the constraint
boundary where fi (q) = 0 in the kinetic metric. This is the only little piece of
differential geometry in this book. For readers who like to swim in geometrical
waters, let us refer to [305, 568, 980, 981]. The tangential restitution operator in
Sect. 6.2.6 is strongly inspired from Frémond [414, 415] and close results have also
been stated in [455, 730]. Sufficient conditions about energetic consistency may be
found in [228, Sect. 3.2]. The most general restitution matrix (with tangential Ett and
normal/tangential couplings Ent and Etn) may be seen as an extension of Brach’s
approach in (4.103), formulated in a Lagrange dynamics context instead of Newton-
Euler’s dynamics. Interestingly enough, it happens in some applications like rockfalls
[169] that a diagonal restitution matrix like in (4.103) is not sufficient: couplings
have to be considered [169, Eq. (4)], and stochastic model of the CoRs is needed
[168, 169, 170].

6.3 Energetic-CoR Multiple-Impact Law

We describe in this section an extension of the Darboux-Keller’s shock dynamics,
which applies to multiple impacts. Like for the Darboux-Keller’s approach, the posi-
tions are assumed to be constant during the impact, and the dynamics is integrated
with respect to the contact force impulse. This was introduced in [749, 750, 753,
1327], and is named the LZB impact dynamics.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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6.3.1 Presentation of the LZB Impact Dynamics

The LZB approach yields an extension of the Darboux-Keller’s impact dynamics,
in case of multiple contacts/impacts. Thus basic assumptions are constant position
q, and negligible forces (other than the impact forces) during the shock. It uses a
bistiffness model as in Fig. 4.6a. We recall that this model is a crude approximation
of the force/indentation law for elasto-plastic rate-independent materials, because
it does not limit the contact force, and it dissipates energy even for very low pre-
impact velocity (hence, for very low impact velocities which are below the minimum
plastification velocity, a monostiffness model should be used). Moreover, it mod-
els dissipation during the expansion phase, while plasticification occurs during the
compression phase (loading), see Sect. 4.2.1. An improvement is proposed in [929,
Sect. 4.2.7] which we do not describe here.

Let Fj be the contact force at contact point j , and δ j the normal indentation
(whence δ̇ j = ∇ f j (q)T q̇). During the compression (loading) phase, Fc, j = k j

(δc, j )
η j , and during the expansion (unloading) phase, Fe, j = Fmax, j

(
δe, j −δr, j

δc, j −δr, j

)η j

. The

corresponding works are given by Wc, j = ∫ δc, j

0 Fc, j (δc, j )dδc, j = 1
1+η j

k j (δc, j )
η j +1,

and We, j = ∫ δr, j

δc, j
Fe, j (δe, j )dδe, j = − 1

1+η j
k(δc, j )

η j (δc, j − δr, j ). Using the energetical

CoR e�, j as defined in (4.159), we infer that δr, j = δc, j (1 − e2�, j ), which relates
the CoR and the residual indentation. Notice that δc, j is the maximum compression
indentation, so it is not a parameter of the impact dynamics, it is computed by
integration of the collision dynamics. Few manipulations show that we also have

e2�, j = δc, j −δr, j

δc, j
=

(
kc, j

ke, j

) 1
η j ,15 where kc, j = k j is the stiffness during compression,

ke, j = kc, j

(
δc, j

δc, j −δr, j

)η j

is the stiffness during expansion. According to the bistiffness

model, the work done by the contact force during compression, is entirely converted
into elastic potential energy stored in the bodies. Thus, the potential energy at the
“instant” p j during compression is E j (p j ) = ∫ p j

0 δ̇ j (p j )dp j , 0 ≤ p j ≤ pc, j ,
where pc, j corresponds tomaximal compression.16 Then the residual potential energy
during the expansion phase, is E j (p j ) = ∫ pc, j

0 δ̇ j (p j )dp j + 1
e2�, j

∫ pi

pc, j
δ̇ j (p j )dp j =

Wc, j + 1
e2�, j

∫ pi

pc, j
δ̇ j (p j )dp j , pc, j ≤ p j ≤ p f, j , where p f, j is the normal contact force

impulse at the end of the expansion phase. The proof of this is given in [750, Sect. 3
(b)].

The normal contact force satisfies during the compression phase d Fj

dt = d Fj

dp j

dp j

dt =
Fj

d Fj

dp j
, hence using that d Fj

dt = η j k j (δ j )
η j −1∇ f j (q)T q̇ , we deduce that F

1
η j

j d Fj =

η j k
1
η j

j ∇ f j (q)T q̇ dp j . We finally obtain Fj (p j ) =
(

(η j + 1)
∫ p j
0 k

1
η j
j ∇ f j (q)T q̇ dp j

)
η j

1+η j
.

We remind that these calculations are possible because it is assumed that the position

15This is consistent with what is stated in Sect. 4.2.1.2.
16We should denote pn, j to be consistent with the notations adopted elsewhere in the book.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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q is constant, q = q(0). One can then deduce that the ratio of two normal impulses at

contact points j and i is given by dp j

dpi
= (η j +1)

η j
η j +1 k

1
η j +1

j

(∫ p j
0 ∇ f j (q)T q̇ dp j

) η j
η j +1

(ηi +1)
ηi

ηi +1 k
1

ηi +1
i (

∫ pi
0 ∇ fi (q)T q̇ dpi ))

ηi
ηi +1

. Noting

that the potential energy E j (p j ) at contact point j equals
∫ p j

0 ∇ f j (q)T q̇ dp j , we can

rewrite the impulse ratio as dp j

dpi
= (η j +1)

η j
η j +1 k

1
η j +1

j (E j (p j ))
η j

η j +1

(ηi +1)
ηi

ηi +1 k
1

ηi +1
i (Ei (pi ))

ηi
ηi +1

. The next question is

whether this continues to hold during the whole compression/expansion cycle. The
answer is yes, as shown in [750, Sect. 3(d)].

In general there may be either a precompression at the contact point j , or a
repeated collision: a first collision starts (compression, then expansion), but a second
compression phase starts again before the expansion phase terminates (i.e., before the
contact j opens), followed by an expansion phase. Suppose that the force/indentation
relationship remains unchanged during repeated impacts, as depicted in Fig. 6.6. It
is possible to prove the following, during a repeated impact at contact j :

E j (p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E0 + ∫ p j

0 δ̇ j (p j ) dp j if Q ∈ Ô Mc,1

EMc,1 + 1
e2�, j

∫ p j

pMc,1
δ̇ j (p j ) dp j if Q ∈ M̂c,1R

ER + ∫ p j

pR
δ̇ j (p j ) dp j if Q ∈ R̂Mc,2

EMc,2 + 1
e2�, j

∫ p j

pMc,2
δ̇ j (p j ) dp j if Q ∈ M̂c,2B,

(6.67)

where the cycle is as in Fig. 6.6 and Q is a generic point on the force/indentation curve
corresponding to time p j . The quantities E0, EMc,1 , ER and EMc,2 are the residual
potential energies at the points O , Mc,1, R and Mc,2, respectively. If the initial con-
tact force at contact j is F0, j with indentation δ0, j , then, the initial potential energy

is E0, j = ∫ δ0, j

0 λc, j (δ j )dδ j = (F0, j )

η j +1
η j

(η j +1)k
1

η j +1

j

. From the above expression of Fj (p j ),

we infer that Fj (p j ) = (1+η j )
η j

η j +1 k
1

η j +1

j

(
(F0, j )

η j +1
η j

(η j +1)k
1

η j +1

j

+ ∫ p j

0 δ̇ j (p j )dp j

) η j
η j +1

, where

one sees from (6.67) that the term between brackets is the potential enery E j (p j ).
After some calculations the contact force during the expansion phase satisfies

Fe, j d Fe, j = η j Fmax, j

(
δ j −δr, j

δc, j −δr, j

)η j −1
δ̇ j

δc, j −δr, j
dp j , and using that δc, j − δr, j = e2�, jδc, j ,

one finds (Fe, j )
1
η j d Fe, j = η j (Fe, j )

1
η j

δ̇ j

e2�, j δc, j
dp j . At the end of the compression phase

we have Fc, j = k j (δc, j )
η j
, hence (Fe, j )

1
η j d Fe, j = 1

e2�, j
η j (k j )

1
η j δ̇ j dp j . At the begin-

ning of the expansion phase, we have p j = pc, j and δ̇ j = 0, and Fj (pc, j ) =
(1 + η j )

η j
1+η j k

1
η j

+1

j (E j (pc, j ))
η j

η j +1 . Integrating one obtains (Fe, j (p j ))
η j +1

η j = (η j +
1)k

1
η j +1

j E j (p j ). Thus the contact force during expansion at the impulse instant p j is
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Fig. 6.6 A repeated impact
(linear elasticity: η = 1) Mc,1

Mc,2

R

A B δ

F

0

loading
unloading

loading

unloading

given by Fe, j = (1 + η j )
η j

1+η j k
1

1+η j

j (E j (p j ))
η j

1+η j . This is the same expression as for
the compression phase.
We therefore deduce that the ratios of the normal contact forces impulses at contact
points j and i , are given generically by the distributing rule:

Γ j i = dp j

dpi
= (1 + η j )

η j
η j +1 k

1
1+η j

j E
η j

1+η j

j

(1 + ηi )
ηi

ηi +1 k
1

1+ηi
i E

ηi
1+ηi
i

. (6.68)

It follows that if the elasticity constants η j = η − i = η, then Γi j does depend
only on the stiffness ratio γ j i = k j

ki
, not on the absolute values of the stiffnesses.

This is coherent with what we already noticed in Sect. 6.1.3 on a particular case.
It is interesting to see now that this is not true if the elasticity coefficients are not
identical. The multiple impact terminates when all the potential energy that has
been stored during the compression phases, is entirely released or dissipated and all
contacts open, that is E j (p f, j ) = 0 and δ̇ j (p f, j ) ≥ 0 for all j that participate into
the collision. The LZB impact dynamics is summarized as follows:

• Contact parameters e�, j , η j , 1 ≤ j ≤ m, γi j , precompression potential energies
E0, j and indentations δ0, j .

• Darboux-Keller’s dynamics:

M(q)
d q̇
dpi

= ∇ f (q)Γ , (6.69)

with contact i being the primary contact.

• Ratio Γ j i = dp j

dpi
of the normal impulse increment at contact j to that at the

primary contact i :

Γ j i = (1 + η j )
η j /(η j +1)

(1 + ηi )
ηi /(ηi +1)

k
1/(1+η j )

j

k1/(1+ηi )

i

E
η j /(η j +1)
j

Eηi /(ηi +1)
i

. (6.70)
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and Γ = (Γ1i , Γ2i , .., Γi−1,i , 1, Γi+1,i , . . . , Γmi )
T .

• Potential energy E j :

E j (p j ) =
∫ p j

0
δ̇ j (p j )dp j , if 0 ≤ p j ≤ pc, j , (6.71)

E j (p j ) = Wc, j + 1

e2�, j

∫ p j

pc, j

δ̇ j (p j )dp j , if pc
j ≤ p j ≤ p f, j , (6.72)

with δ̇ j = ∇ f j (q)T q̇ , pc, j is the impulse at the end of the compression phase
(δ̇ j (pc, j ) = 0), and p f, j is the terminal impulse.

• Impact termination condition:

E j = 0, δ̇ j ≤ 0, for all j = 1, 2, . . . , m. (6.73)

where m is the number of impacting points.

The primary impulse pi has to be chosen properly, for in particular it should not van-
ish, and may be changed during the collision integration. Its choice for the numerical
integration of the LZB impact dynamics, is explained in [753], and in [929, Algo-
rithm 3, page 90]. A numerical algorithm is detailed in [753] which explains how
the LZB impact dynamics may be integrated. See also [929, Sects. 4.2, 4.3] for a
very detailed presentation of the LZB dynamics integration and its insertion in an
event-driven algorithm. The case with friction is detailed in [752]. Possible numeri-
cal instability due to the elasticity coefficients η j that make the LZB dynamics stiff,
is studied in [929, §4.2.9].

6.3.2 Applications and Validations

The LZBmodel has been validated through numerous comparisons with experimen-
tal data.

6.3.2.1 Chains of Aligned Beads

Probably the most fundamental microscopic property of granular materials is irre-
versible energy dissipation in the course of interaction (collision) between particles
[56]. A correct modeling of the dissipation at impacts (and also outside impacts
during persistent contact phases of motion), and a correct numerical algorithm for
simulation, are therefore of utmost importance in granular matter. Chains of balls are
a first, simple instance of granular mechanical systems. Numerical results with the
LZB model have been compared to experimental results obtained on various types
of chains of aligned balls [387, 625, 838, 915, 1059], in [749, 753, 928, 929, 1331].
Some of them have been presented in Figs. 6.1 and 6.2a, b. The comparisons concern
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not only the postimpact velocities and kinetic energy, but also and most importantly
the waves that travel through the chains, maximum impact force and force pulse
amplitude for monodisperse as well as tapered and stepped chains [753, 928, 929].
They prove that the LZBmodel encapsulates the main phenomena (nonlinear waves)
which are responsible for themultiple impact. As we said above, this is due to the fact
that the LZB model contains the information on stiffness ratios between the contact
points. A complete exposition of the event-driven codes used to simulate the chains,
is made in [929]. The LZB model for multiple impacts may be the very first instance
where it is proved experimentally that the energetic CoR supersedes the kinematic
and the kinetic CoRs.

Further Reading: Newton’s cradle and chains of balls are apparently simple, almost
toy-systems, however thet have received a lot of attention since a long time, especially
in the Physics teachers literature. Since the appearance of Granular Matter as a
scientific field, and the discoveries of their great complexity from the point of view of
nonlinear waves transmission, they serve as an example of one-dimensional granular
material. We do not survey all the results about chains of aligned beads in this book.
Let us mention that the discovery of nonlinear solitary waves in monodisperse chains
(identical balls) is due to Nesterenko [924], and justified experimentally in [306].
Since then nonlinear waves have been studied in several types of chains, varying the
radii (hence the masses) of the balls, the contact interaction potentials, and the curve
of the chain [145, 245, 529, 608, 609, 610, 613, 772, 956, 1012, 1086] to cite a few.

6.3.2.2 Rocking Block

We consider the system in Fig. 6.7a, which has two unilateral constraints (provided
the base line is assumed to be concave) when y ≤

√
l2+L2

2 : f1(q) = y − l
2 cos(θ) +

L
2 sin(θ) ≥ 0, and f2(q) = y − l

2 cos(θ) − L
2 sin(θ) ≥ 0. It is interesting to notice

that the admissible domain Φ which depicted in Fig. 6.7b, is not convex. Assuming
that the dynamical effects of the block on the base are negligible, the dynamics of
the block with Coulomb friction is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ(t) = λt,1(t) + λt,2(t)
mÿ(t) = λn,1(t) + λn,2(t) − mg

IG θ̈ (t) = λn,1(t)
(

l
2 sin(θ(t)) + L

2 cos(θ(t))
)

+ λn,2(t)
(

l
2 sin(θ(t)) − L

2 cos(θ(t))
)

+
(

l
2 cos(θ(t)) − L

2 sin(θ(t))
)

λt,1 +
(

l
2 cos(θ(t)) + L

2 sin(θ(t))
)

λt,2

0 ≤ λn(t) ⊥ f (q(t)) ≥ 0
λt,i (t) ∈ −μi λn,i (t) sgn(vt,i (t) − vb(t)), i = 1, 2,

(6.74)

where vb(t) = ẋb(t) is the base horizontal velocity, μi > 0 is the friction coef-
ficient at contact i , and vt,i is the tangential velocity at the point i , i.e. vt,1 =
ẋ + (

l
2 cos(θ) − L

2 sin(θ)
)
θ̇ at B and vt,2 = ẋ + (

l
2 cos(θ) + L

2 sin(θ)
)
θ̇ at A (from

which vt,1 = vt,2 when θ = 0). With q = (x, y, θ)T , one can identify M , Fext ,
∇ f (q) and Ht(q) in (5.1) from (6.74).

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 6.7 The rocking block. a The system. b Admissible domain (taken from [1318])

The contact LCP is 0 ≤ λn ⊥ Dnn(θ)λn + ∇ f (θ)T M−1Ht(θ)λt + B(θ, θ̇ ) ≥ 0 with

Dnn(θ) =
(

1
m + 1

4IG
(l sin(θ) + L cos(θ))2 1

m + 1
4IG

(l2 sin2(θ) − L2 cos2(θ))
1
m + 1

4IG
(l2 sin2(θ) − L2 cos2(θ)) 1

m + 1
4IG

(l sin(θ) − L cos(θ))2

)

and B(θ, θ̇ ) =
(−g + 1

2 θ̇
2(l cos(θ) − L sin(θ))

−g + 1
2 θ̇

2(l cos(θ) + L sin(θ))

)

. The Delassus’ matrix Dnn(θ) 
0 except at θ = ±π

2 .

Remark 6.10 (Kinetic Angles) The kinetic angle θ12 between the two constraints is
given by:

θ12 = π − arccos

(
l2 − 2L2

l2 + 4L2

)

(6.75)

at θ = 0. Denoting the aspect ratio as a
Δ= l/L we may rewrite it as θ12 = π −

arccos
(
(a2 − 2)/(a2 + 4)

)
: there is a one-to-one correspondence between a and θ12.

It satisfies θ12 = π/2 if l = √
2L , 0 < θ12 < π/2 if 0 < l <

√
2L (flat block), and

π > θ12 > π/2 if l >
√
2L (slender block). When a varies from 0 (infinitely flat

block with infinite width L) to +∞ (infinitely slender block with infinite height l)
then θ12 varies fromπ/4 toπ . The fact that θ12 ∈ [π/4, π ]means that one expects that
the block/ground system possesses a rich dynamics, and may serve as a nice example
of multiple impact with friction. The interest of studying the block dynamics as a
function of the kinetic angle between the two boundaries at θ = 0, is that it allows
us to determine that a block is not of the slender type just if l > L . As shown in

[1318] using the LZBmodel with friction, the dispersion factor d
Δ= ẏA(t+

k )

ẏB (t−
k )

displays a
particular V −shaped as a function of θ12 (equivalently of a) and for varying friction
[1318, Figs. 6, 7, 12], and there exists a critical kinetic angle at which d is minimum,
which is independent of the CoR [1318, Fig. 10], see Fig. 6.8b.



410 6 Generalized Impact Laws and Multiple Impacts

LR

R

f2(q)
f1(q)y

x
0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

l
L

ẏ+
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Fig. 6.8 The dimer, and rocking block’s critical aspect ratio. a The bouncing dimer. b Critical
kinetic angle for the rocking block’s energy dispersion (taken from [1318])

Remark 6.11 (Kinetic Angles (continued)) A system that is close to the classical
rocking block, is the bouncing dimer studied in [357, 1327] and depicted in Fig. 6.8a.
The dimer is made of two identical spheres with radius R connected by a rigid
rod with length L . Using the same notations as for the block, the two unilateral
constraints for the dimer are f1(q) = y + (L/2 + R) sin(θ) − R ≥ 0 and f2(q) =
y − (L/2 + R) sin(θ) − R ≥ 0. Some calculations yield that the kinetic angle
between the two constraints at θ = 0 (double impact) and with all masses equal
to 1 for simplicity, is given by θ12 = π − arccos ((1/3 − α)/(1/3 + α)) with α =
(1+2a)2/(16a2/5+1/3+2(1+2a)2)), a = R/L . The flatest dimer has L = +∞,
and the less flat one has L = 0 (the two balls are stuck together). The two kinetic angle
values that correspond to these extreme cases are θ12 = π − arccos (−1/8) ≈ 1.445
rad and θ12 = π −arccos (−1/29) ≈ 1.536 rad, which are both slightly smaller than
π/2 ≈ 1.571 rad. This means that the dimer and the block, despite their apparent
similarity, possess different dynamical behaviors in the sense that the dimer kinetic
angle varies little and never exceeds π/2 (the dimer is always flat), while the block
kinetic angle may vary much more.

The LZB model applied to the block/anvil system for rocking, onset of rocking,
with harmonic base excitations, is validated in [1319] with thorough comparisons
between numerical simulations and the experimental data obtained on blue granite
stone blocks reported in [987, 988].17 The masses of the blocks are estimated from
their dimensions and density, and are given by 503, 228, 120, 245kg, demonstrating
the scope of the experiments. The overturning phenomenon is also analysed in [1319].

17All the experimental data used for the comparisons with numerical data presented in [1319] have
been made available to the authors by Dr F. Pena from Instituto di Ingenieria, UNAM, Mexico.
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It is noteworthy that the parameters (equivalent width and length, CoRs) have been
fitted from the free-rocking experimental data, and then used without modification
for the other comparisons with an excited base (onset of rocking).

Further Reading, Comments and Perspectives: The rocking block dynamics
has been studied since a long time in the Earthquake Engineering literature, because
of its interest in better understanding buildings dynamics under seismic excitation,
see e.g. [19, 41, 42, 379, 543, 747, 1010, 1017, 1131]. The restitution law that is
widely used is θ̇ (t+

k ) = eθ θ̇ (t−
k ) for some CoR eθ . This seems to be an ad hoc

restitution law, however this is not quite the case. The link between E in (6.44) and
(6.45) and eθ as well as local tangential restitution is made in [228]. It is found that
in case of rocking motion (the block rotates around A, hits the ground at B without
rebound, then rotates around B, hits the ground at A without rebound, etc), we have

E =
⎛

⎝
0 −eθ 0

−eθ 0 0
0 0 eθ

⎞

⎠. Therefore, the angular velocity CoR is interpreted via the

generalized restitution law, as a tangential CoR for q̇tan. Moreover, let vt,i (t
+
k ) =

etvt,i (t
+
k ), i = 1, 2 at A and B, where et is the local tangential CoR. Then it can be

shown that et = −et,3 = −en,1 +en,21 [228, Sect. 6]. It follows that if one imposes in
addition that there is no slip at the impacting point, then et = 0, while no rebound at
the impacting point implies en,1 = 0.We infer that necessarilyE = 0. It is also proved
in [228, Sect. 3.6] that Coulomb’s friction (at the impulse level) with ṽt(tk) = vt(t

+
k )

in (4.69) and a diagonal Enn, cannot model rocking motion: off-diagonal terms in
Enn and tangential restitution CoR are needed. It is nevertheless noteworthy that such
impact law cannot model very finely the real block motion. In practice, one observes
usually rebounds at both A and B even during a rocking global motion, and slip/stick
phases.

Some experiments in [987, 988] show the existence of non-negligible three-
dimensional effects, due to body vibrations and torsion. This proves the need to
go beyond planar systems. The study of three-dimensional rocking blocks with flex-
ibilities is an interesting topic for future investigations. The rocking block system
involves line/line impact (or plane/plane impact in the thee-dimensional case), for
which the two-point contact model is a crude approximation (implying in particular
the estimation of an equivalent width which does not necessarily match with the
geometrical width). Line/line impacts modeling is investigated in [1330].

6.3.2.3 Other Experimental Validations of the LZB Model

The LZBmodel has been further validated with careful comparisons between exper-
imental and numerical data, in [1248, 1249] (three-dimensional bouncing dimer),
[1327] (two-dimensional bouncing dimer), a disk-ball system [748, 1321].

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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Fig. 6.9 Relation CK E - k2/k1 for different values of η: Moreau, binary collisions, LZB (taken
from [929, Fig. 6.12])

6.3.3 Comparison of Different Multiple Impact Mappings

A thorough comparison between Moreau’s law, the binary collision model, and the
LZB approach, is made on the monodisperse three-ball chain in [929, Chap.6]. The
comparisons aremade by varying elasticity coefficients,masses, and stiffnesses ratio,
with the “usual” initial conditions (the first bead hits the other two, in contact and
at rest). We present in Fig. 6.9 the kinetic energy dispersion variable CK E defined in
(5.72) in Chap.5, as a function of the stiffness ratio k2

k1
and the elasticity coefficient

η (η = 1 for linear elasticity, η = 3
2 for Hertz’ elasticity, etc). This figure shows

that the energy dispersion varies significantly with η and k2
k1
, and that Moreau’s

law applies for low CK E index18 (i.e. high dispersion, “large” k2
k1

and “small” η),

while the binary collision applies to high CK E index (i.e. low dispersion, “small” k2
k1

and “large” η). Such analysis would deserve an extension to more general chains,
in order to determine validity areas for Moreau/Newton, binary collision, Pfeiffer-
Glocker/Poisson approaches. Once again it is clear that the great advantage of the
LZB approach is that it encapsulates information on the stiffness ratio. The domains
of validity of theMoreau’s or binary collisions laws, depend in turn on the form of the
waves created by the collision between the first and the second balls, which varies
depending on η j [529, 1086]. Let us mention an interesting comparative analysis
between visco-elastic models (see Chap. 2), binary collisions approach, bistiffness
model and elasto-plastic approaches (see Sect. 4.2.1), when applied on the three-ball
system in [354].

18In agreement with Proposition 5.17 which states that Moreau’s law minimizes CK E .

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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6.4 Further Reading

6.4.1 Kinetic Restitution (Poisson)

Pfeiffer and Glocker introduced a generalization of Poisson’s impact law in [1001].
It consists of solving a two-stage LCP at each contact point. Let us illustrate it
on a simple case of two aligned balls hitting a wall. A crucial assumption is that
the maximum compression times at each contact/impact point, are equal (see [929,
Sect. 3.1.2] for detailed calculations on a 3-ball chain, showing the necessity of this
assumption). This may be the main and less realistic hypothesis of this approach,
because in most cases maximum compression times do not match, and there may
even exist repeated impacts. Let us apply the method to the case of a chain of two
balls, that strikes a rigid wall (i.e., take N = 2 in Fig. 6.1). Roughly, the problem is
solved by constructing two LCPs, one for the end of the compression phase (t = tc),
the second one for the end of the expansion phase (t = t f ). Coefficients ep,1 and ep,2
are associated with each contact. The LCPs at each contact, i = 1, 2, are as follows:

• At t = tc: ⎧
⎨

⎩

pi (t) ḟi (q(t)) = 0
ḟi (q(t)) ≥ 0
pi (t) ≥ 0

(6.76)

• At t = t f : ⎧
⎨

⎩

pi (t f ) − pi (tc) − ep,i pi (tc) ≥ 0
ḟi (q(t f )) ≥ 0
{pi (t f ) − pi (tc) − ep,i pi (tc)} ḟi (q(t f )) = 0

(6.77)

where f1(q) = q1−q2 and f2(q) = q2 are the two unilateral constraints. Introducing
the impact dynamics (we use the same initial data and masses as above) q̇1(tc)+1 =
p1(tc), q̇2(tc) = −p1(tc)+ p2(tc), q̇1(t f )−q̇1(tc) = p1(t f )− p1(tc), q̇2(t f )−q̇2(tc) =
−p1(t f )+p1(tc)+p2(t f )−p2(tc), one therefore gets fourLCPs (two for each contact)

⎧
⎨

⎩

p1(tc)(q̇1 − q̇2)(tc) = 0
(q̇1 − q̇2)(tc) ≥ 0
p1(tc) ≥ 0

,

⎧
⎨

⎩

p2(tc)q̇2(tc) = 0
q̇2(tc) ≥ 0
p2(tc) ≥ 0

(6.78)

⎧
⎨

⎩

p1(t f ) − p1(tc) − ep,1 p1(tc) ≥ 0
(q̇1 − q̇2)(t f ) ≥ 0
{p1(t f ) − p1(tc) − ep,1 p1(tc)}(q̇1 − q̇2)(tc) = 0

⎧
⎨

⎩

p2(t f ) − p2(tc) − ep,2 p2(tc) ≥ 0
q̇2(t f ) ≥ 0
(p2(t f ) − p2(tc) − ep,2 p2(tc))(q̇1 − q̇2)(t f ) = 0.

(6.79)
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If both CoR’s are equal to 1, it is easily checked that there is a unique solution given
by (q̇1 − q̇2)(t f ) = 1, q̇2(t f ) = 0, so that q̇1(t f ) = 1 and q̇2(t f ) = 0. The case with
friction is discussed in [1000]. It is shown in [929, Fig. 3.1] that in order to fill in the
whole admissible postimpact velocity domain of Fig. 5.5, it is necessary to consider
CoRs ep,i > 1, which may lack of physical meaning. Pfeiffer-Glocker’s approach
with a two-stage LCP is used in [47, 48] in a three-dimensional setting and Coulomb
friction with facetized cone. A thorough analysis of the energetic consistency of
Pfeiffer-Glocker’s law with or without friction, is made in [456]. It has also been
implemented in [1022] for ice floes simulation with an event-driven code.

6.4.2 Kinematic Restitution (Newton and Moreau)

Inspired by Frémond whose framework introduced in Sect. 4.3.4 extends to multiple
shocks [266, 290, 836] [415, Chap.8] [416, Chapitre 5], Glocker has introduced in
[451, 454, 985] a restitution matrix similar to Enn in (6.45), and makes a thorough
geometrical analysis of Moreau’s impact law, he also extends it to re-entrant corners
[454, Sect. 5.4], which are excluded from Moreau’s framework which is based on
finitely represented admissible domainsΦ. Leine and van deWouw [730, 732] extend
Moreau’s framework by formulating impact lawswith friction as inclusions in normal
cones to convex sets (or the reverse inclusions in subdifferentials of support functions)
[730, Chap. 5]. Restitution matrices are allowed, and conditions for dissipativity are
given [730, pp.159–160] which are used for stability purpose [730, Theorem 7.6]. In
[1026], a kinematic restitutionmatrix is introduced (in away similar to our Enn above,
or to Glocker’s matrix in [451, 454, 985], see also the formulations in [730] which
accomodate for restitution matrices and also friction), while friction is modeled at
the impulse level with a friction cone faceting procedure.

6.4.3 Other Approaches

Bowling and Rodriguez [1048] use Routh’s incremental approach and energetical
CoRs at each contact in a chain of aligned balls to solve the multiple impact: energy
dispersion ismodeled. The same authors formulate in [171, 1047] themultiple impact
with friction as an optimization problem which includes kinetic and energetic con-
straints, starting from the maximum dissipation principle of friction, and a diag-
onal restitution matrix with kinematic CoRs (this may be seen as a rewriting of
Moreau’s rule with friction). Barjau et al. [90, 91] use a stiff unilateral compliant
normal contact model, combined with a modal analysis, for frictionless redundant
contacts. Bistiffness-like models are used in [91] to account for energy loss. Jia
[622, 623] presents a very detailed analysis close to the one in Sect. 6.3.1, with a
state-transition diagram to describe the multiple impact. Their approach is close to
the one in Sect. 6.3.1: a linear bistiffness law is chosen, repeated impacts are taken

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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into account, and the distributing law is derived in a particular case [623, Eq. (15)].
Hurmuzlu and co-authors introduced in [268, 441, 558, 1187, 1300] a method which
consists of using Routh’s incremental two-dimensional approach, with so-called
impulse correlation ratios (ICR), which are constants relating the impact forces
impulses (the percussion pn,i at each contact i , in the sense of Definition 1.2).
The ICRs permit to introduce some distance effects (or energy dispersion) in the
impact dynamics. However as shown on numerical simulations in [11] and in the
above distributing rule (6.68), impulse ratios are not be constant in general but could
vary a lot depending on the initial data and parameters, and should therefore be
fitted with experiments. Hurmuzlu and Marghitu [561] deal with planar kinematic
chains with multiple contact/impact points (see also [559] for a preliminary result).
Collisions are treated with Routh’ incremental method (two-dimensional Darboux-
Keller’s dynamics), and an event-driven-like algorithm is proposed to calculate the
postimpact velocity, testing all possible cases (stick-slip transitions in both directions,
constraint deactivation).

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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