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Preface

Thank you for opening the third edition of this monograph. The first edition [202]
was published in 1996 in the Lecture Notes in Control and Information Sciences
series (vol. 220), and the second edition [203] in 1999 in the Communications and
Control Engineering series, both at Springer Verlag London. The third edition,
written almost 20 years after the first one, is a significantly revised and updated
version. Indeed Nonsmooth Mechanics has witnessed intense research during the
last two decades, in the fields of Applied Mathematics (existence and uniqueness of
solutions, contact complementarity problem well-posedness, numerical analysis,
bifurcation analysis), Mechanics (impact modeling, Painlevé paradoxes analysis),
Systems and Control (regulation and trajectory tracking), Granular Matter,
Robotics, etc. Software packages dedicated to nonsmooth mechanical systems also
appeared here and there. It was therefore needed to report about all these novelties.

This book is devoted to the study of a class of nonsmooth dynamical systems
of the general form:

_xðtÞ ¼ gðxðtÞ; uÞ

f ðx; tÞ � 0;

8<
: ð1Þ

where xðtÞ 2 R
n is the system’s state vector, u 2 R

nu is the vector of inputs, and the
function f ð�; �Þ represents a set of mu unilateral constraints which are imposed on the
system. More precisely, the main topic is a subclass of such systems, namely
mechanical systems subject to unilateral and bilateral constraints on the position (with
or without friction), whose dynamical equations may be in a first instance written as:

MðqðtÞÞ€qðtÞþFðqðtÞ; _qðtÞ; t; λðtÞÞ ¼ 0

f ðqðtÞ; tÞ � 0; λuðtÞ � 0; λuðtÞT f ðqðtÞ; tÞ ¼ 0

hðqðtÞ; tÞ ¼ 0;

8>>>><
>>>>:

ð2Þ
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where qðtÞ 2 R
n is the vector of generalized coordinates of the system. The inertia

matrix MðqÞ will be assumed to be always symmetric, but not necessarily full rank
(it may be positive semi-definite). The system may be constrained by a set of mb

bilateral constraints hðq; tÞ ¼ 0 (this is the most common case in multibody
dynamics). The vector function f ðq; tÞ represents a signed distance between the
system and some environment, or more simply a condition for non-penetration
between the bodies that constitute the system. The contact forces are represented
through a Lagrange multiplier vector λ, which is split into λb for bilateral con-
straints, and λu for unilateral constraints. The multiplier λu satisfies a specific set of
conditions with the distance function: they have to be both nonnegative (excluding
penetrations between the bodies, as well as gluing effects, i.e., only nontensile
contact interactions are modeled), and they have to be orthogonal one to each other
(excluding distance effects like magnetic forces). These conditions are called
complementarity constraints, and we will write them more compactly as:

0 � f ðq; tÞ? λu � 0; ð3Þ

where inequalities are understood componentwise, so that we may equivalently
write 0 � fiðq; tÞ? λu;i � 0 for each i. Complementarity is an ubiquitous concept
all through this book. Mechanical systems composed of rigid bodies interacting
with each other, fall into this subclass of systems, and may be named nonsmooth
multibody systems. One particular feature of systems as in (2) is that they are of
variable structure, or changing topology, because their dimension may vary due to
complementarity constraints (from a certain point of view, this is similar to sliding
mode controlled systems where attractive sliding surfaces make the system’s
dimension decrease or increase, and is met when Coulomb’s friction or another
tangent forces model imposes sticking modes).

Another feature of systems as in (1) and (2) is that their solutions are nonsmooth
(with respect to time): nonsmoothness arises primarily from the occurrence of
impacts (or collisions, or percussions) in the dynamical behavior, when the tra-
jectories attain the surface f ðq; tÞ ¼ 0. They create velocity discontinuities, and are
necessary to keep the trajectories within the subspace ΦðtÞ ¼ fq 2 R

njf ðq; tÞ � 0g
of the system’s state space (or configuration space if one adopts a more geometrical
point of view). Nonsmoothness may also be due to frictional effects, like when
Coulomb’s friction model is adopted: then the acceleration may suffer from dis-
continuities. It is therefore necessary, when dealing with such classes of dynamical
systems, to focus on collision dynamics, with or without friction. But this is not
sufficient: indeed, another important feature of systems as in (2) is their hybridness,
where the word hybrid means that both continuous and discrete-event-like
dynamics are mixed. Roughly speaking, the continuous dynamics are due to the
vector field in (2), whereas the modes correspond to the algebraic constraints
(f ðq; tÞ in (2) may be a vector) that may be active or inactive. Without going into
further details at this stage (it is the goal of this monograph to provide a complete
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tour of such nonsmooth systems), let us already notice that the dynamics will
generally be composed of ODEs, DAEs, MDEs1 and finite automata. The particular
feature of nonsmooth systems is that the automaton dynamics is ruled by the
complementarity conditions. This renders their analysis so exciting, because it relies
on complementarity theory, convex analysis, nonsmooth analysis, and variational
inequalities. Actually, notice that nonsmooth models similar as the ones we shall
describe here overstep the framework of mechanical systems, since they also apply
for instance to electrical circuits [10].

What follows in this paragraph is a not an introduction to the history of nons-
mooth phenomena study in mechanics. It only aims at briefly recalling some cel-
ebrated names who have been involved one way or another in this topic. The
interested (French speaking) readers may have a look at [366, 1050, 1307] for a
more complete exposition of history of mechanics. It is worth noting that the
problems related to impact dynamics have attracted the interest of physicists for at
least three centuries (much more if one includes the studies of ancient Greek
engineers and mathematicians like Aristotle and Heron). In the “modern” times, a
strong interest about shock phenomena was motivated by the well-known contest
organized by the Royal Society of London in 1668. The impact physical laws were
in particular discussed, studied, and used initially by scientists like2 R. Descartes
(F, 1596–1650), G. Leibniz (D, 1646–1716), I. Newton (UK, 1642–1727) [246,
925], Jacob Bernoulli [135] (CH, 1654–1705) [519], Jean le Rond d’Alembert
(F, 1717–1783) [320] S.D. Poisson (F., 1781–1840) [1008], Ch. Huygens (NL,
1629–1695) [566], G. Coriolis (F., 1792–1843) [301, 302], J. Wallis (UK,
1616–1703), Ch. Wren (UK, 1632–1723), E. Mariotte (F, 1620–1684), L. Carnot
(F, 1753–1823), H. Navier (F, 1785–1836) [920], MacLaurin (Scotland, 1698–
1746) [920], the well-known Newton’s and Poisson’s restitution coefficients being
still well alive as basic models for rigid bodies collisions. Shock processes were
also widely used in the debates between Leibnizians and Newtonians or Cartesians
[434, 571, 572], in their controversies about the definition of forces. The first book
entirely dedicated to shock theory has been published by Edme Mariotte (F, 1620–
1684) intitled Traité de la Percussion ou Choc des Corps dans Lequel les
Principales Règles du Mouvement, Contraires à celles que M. Descartes et quel-
ques Autres Modernes ont Voulu Etablir, sont démontrées par leurs Véritables
Causes in 1673. He was inspired by Wallis, Huygens, and Wren.3 Huygens wrote
in Projet Inachevé d’un Préface pour un Traité sur le Choc des Corps et la Force
Centrifuge (1689) that he was irritated by Mariotte and accused him of plagiarism:

1Measure Differential Equations.
2In reality, it seems that the first “published” works on impact dynamics have been those of
Thomas Hariot (around 1610–1620) [640] and the Dutch scientist Beeckman (around November–
December 1618) who, contrarily to Descartes whose ideas on impact dynamics were almost all
false, proposed theories that were not so incoherent when replaced in the early seventeenth century
context [640, 1230].
3In Mariotte, savant et philosophe (1684): analyse d’une renommée, Librairie
Philosophique J. Vrin, Paris, 1986.
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“Mariotte a tout pris de moy… Je le luy dis un jour et il ne su que respondre.”
(Mariotte took everything from me… I told him once and he was not able to
answer).

Later G. Darboux (F, 1842–1917) [326, 327], E.J. Routh (UK, 1831–1907)
[1049], P. Appell (F, 1855–1930) [54], J.W. Gibbs (USA, 1839–1903) [446], A.M.
Lyapunov (Ru, 1857–1918) [776], L. Poinsot (F, 1777–1859) [1006, 1007], and
others [765, 904, 1265] worked on impact dynamics.4 Although this fact has been a
little forgotten now, rigid body (or more exactly particles) shock dynamics were
extensively used in the seventeenth century to study light models [566] and also by
artillerists [798] to predict the flight of cannon balls and their impacts. As we
pointed out above, much of this scientific excitation was due to the will of the Royal
Society of London whose scientists wanted to settle a coherent theory of motion.

Nonsmooth Mechanics belongs to Solid Mechanics. However, several other
scientific communities have strong interests in this field. Applied Mathematicians,
for problems related to existence and uniqueness of solutions, analysis of complex
dynamics of certain impacting systems like billiards,5 bifurcation analysis,
researchers from Mechanical and Civil Engineering, as well as Physicists (the study
of granular matter—sandpiles, gravels, planetary rings—has become a very
important field that involves these three scientific communities), Robotics (to study
the effect of impacts in the joints or the motion of the system after the impact, like in
robot manipulators, bipeds, juggling or hopping robots, multifingered hands, � � �),
Electromechanics (electromechanical contacts are a major source of failures in
many systems like automotives, aircraft, machine tools, consumer electronics, and
therefore motivate the study of accurate models for simulation and design pur-
poses), Computer Sciences (graphics, virtual reality) are scientific communities
interested in nonsmooth multibody dynamical systems. These models are also used
in Chemistry and Biology [285, 647, 1135, 1260, 1273], in Sports Dynamics for the
analysis of tennis ball/racket or golf ball/club dynamics [55, 200, 201, 311, 597,
1113], and in Ecology for forest fire modeling [264, 339, 786].

I would like to end this introduction by mentioning two papers that have been, in
my opinion, the most important ones in the field of “modern” nonsmooth
mechanics:

G. Darboux, 1880 “Etude géométrique sur les percussions et le choc des corps,”
Bulletin des Sciences Mathématiques et Astronomiques, deuxième série, tome 4,
pp. 126–160 and J.J. Moreau, 1988 “Unilateral contact and dry friction in finite
freedom dynamics”, in J.J. Moreau, P.D. Panagiotopoulos, (Eds.), Nonsmooth
Mechanics and Applications, CISM Courses and Lectures no 302, International
Centre for Mechanical Sciences, Springer-Verlag, pp. 1–82.

4It is worth recalling that so many great scientists found an interest in impact dynamics. Indeed
most of them are not known for their contributions in this field.
5In the literature, it seems that the word vibro-impact systems is used in the mechanical engineering
field to name various types of systems that involve percussions. The word billiards refers to
theoretical models of particles colliding in a closed domain, and is used mainly in mathematical
physics.
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The paper by the Mathematician Gaston Darboux (1842–1917) proposes a way
to model the shock process and analytical developments that have been, and are still
widely used in impact mechanics, more than one century later. The paper by Jean
Jacques Moreau (1923–2014), who is one of the foundators of Convex Analysis6

together with R.T. Rockfellar,7 settles a general framework for the modeling of
mechanical systems with unilateral constraints, based on convex analysis tools. It
has motivated subsequent works on both the mathematical (well-posedness) and the
numerical simulation sides (in particular concerning granular matter), which have
considerable importance in this field.

This choice (both are French…) only reflects my own opinion. Finally, readers
who want to learn more about frictionless multiple impact models should have a
look at [929], and those who desire to learn about the numerical analysis and
simulation of nonsmooth mechanical systems may read [13].

This book deals a lot with modeling. Let me quote the following:
Remember that all models are wrong; the practical question is how wrong do

they have to be to not be useful. (in G.E.P. Box and N.R. Draper, Empirical
Model-Building and Response Surfaces, 1987).

A deep (not superficial) understanding of engineering and physics is required to
develop useful mathematical and computational models; the importance of models
and their limitations is often given insufficient attention by control researchers.
(N.H. McClamroch, IEEE Control Systems Magazine, October 2014).

The way a scientist may describe contact laws depends on his research area,
and on the results he desires. [614]

Some authors, arguing that instantaneous forces do not exist, prefer not to use
the notion of percussion and subsequent theory that determine their effects. There
does not exist neither points nor straight lines in nature. Nevertheless we find such
abstract objects useful and interesting. Certainly when passing to applications one
has to quantify the errors that one may make by applying theorems derived from
pure Science. But this problem is independent of the development of Science itself.
[327]
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Notation

• A matrix M 2 R
n�n is positive (semi) definite if xTMx[ 0 for all x 6¼ 0

(resp. � 0 for all x): M � 0 (resp. M� 0). M is negative (semi) definite if
�M � 0 (resp. � 0): M 	 0 (resp. 
 0Þ. It is not necessarily symmetric.

• A matrix M is positive (resp. nonnegative) if all its entries Mij are positive
(resp. nonnegative).

• Let f : Rn ! R
p be a differentiable function. Its Jacobian at x is of

ox ðxÞ 2 R
p�n,

its gradient rf ðxÞ ¼ of
ox ðxÞ

� �T
2 R

n�p.

• Let x 2 R
n, then x[ 0 (resp. � 0) means that each component xi [ 0

(resp. � 0).
• The kinetic energy of a Lagrange system with generalized coordinate vector q,

velocity _q, and inertia matrix MðqÞ ¼ MðqÞT� 0, is denoted
Tðq; _qÞ ¼ 1

2 _q
TMðqÞ _q.

• The n� n identity matrix is In.
• Lexicographical inequalities: ðx1; x2; � � � ; xnÞ< 0 means that if x1 ¼ x2 ¼

� � � ¼ xi�1 ¼ 0 for i� 1\n, then xi � 0 (the first nonzero entry is [ 0, or all
entries are zero); ðx1; x2; � � � ; xnÞ� 0 means that not all entries are zero, and the
first nonzero entry xi [ 0.

• Let x 2 R
n, M ¼ MT� 0 a n� n matrix, and K�R

n a nonempty set. The
orthogonal projection of x on K in the metric defined by M is denoted as

projM ½K; x� ¼Δ argminz2K 1
2 z

TMz. If K is convex and M � 0 it is unique.
• The boundary of a nonempty set Φ is denoted as bdðΦÞ (perhaps rarely as oΦ

not to confuse with the subdifferential).
• The unit ball is B ¼ fx 2 R

nj jjxjj � 1g where jj � jj is a norm.
• Let u : R ! R

n be a function which has right and left limits at t. Then

σuðtÞ¼Δ uðtþ Þ � uðt�Þ.
• Subscripts λn refer to normal direction, λt to tangential directions, while in λn

the subscript n 2 N is for a sequence of reals.
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• The usual notation A: Rn�R
m is employed for multivalued functions, i.e.,

functions such that AðxÞ may be a subset of Rm for some x 2 R
n.

• A function such that
R
½a;b� jf ðtÞjpdt

� �1
p
\þ1, 1 � p\þ1, is said to belong

to the space Lpð½a; b�Þ (or sometimes denoted Lpð½a; b�Þ. When p ¼ þ1, the
space L1ð½a; b�Þ contains functions such that ess supjf ðtÞj\þ1, i.e., functions
which are bounded except on a set of measure zero.

• We say that f 2 CpðIÞ if it is p times differentiable on I, and f ðpÞð�Þ is continuous
on I.

• diagðx1; x2; � � � ; xmÞ, is the m� m diagonal matrix D with diagonal entry
Dii ¼ xi.

• Coefficients of restitution (CoRs): en: Newton (or kinematic) CoR, ep Poisson
(or kinetic) CoR, eI energetic CoR.

• Given a matrix A 2 R
n�n, its largest and smallest eigenvalues are denoted

λmaxðAÞ and λminðAÞ, respectively. Let A 2 R
n�m, singular values are defined as

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λiðAATÞp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λiðATAÞp
for 1 � i � minðn;mÞ, and the largest singular

value is σmaxðAÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðAATÞp

. One has σmaxðAÞ ¼ jjAjj2 where jj � jj2 is an
induced matrix norm, also denoted jj � jj2;2: jjAjj2;2 ¼ maxx2Rnnf0g

jjAxjj
jjxjj , where

jj � jj is the Euclidean norm.
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Chapter 1
Impulsive Dynamics and Measure
Differential Equations

This chapter is devoted to introducing themathematical basis onwhich various evolu-
tion problems involving impulsive terms rely. Impulsive forces in mechanics are first
presented disregarding what they may be produced by. It is shown on simple exam-
ples why impulsive mechanics involves only measures (Dirac “functions”), and no
distribution of higher degree (derivatives of the Dirac “function”). Various classes of
measure differential equations (MDEs), or impulsive systems, are introduced. Then
unilaterally constrained dynamical systems are presented, and the differences with
the foregoing MDEs are discussed. Variable changes that allow one to transform
MDEs into Carathéodory ordinary differential equations (ODEs) or unilaterally con-
strained mechanical systems into Filippov’s differential inclusions, are described in
the last section.

1.1 Impulsive Forces

Let us introduce the impacts as purely exogenous actions on a mechanical system,
without considering the way by which they may be produced. In other words, we
consider impulsive forces (which we may name also exogenous impacts or external
percussions). Simply speaking, an impact between two bodies (not necessarily rigid)
is a phenomenon of very short duration that implies a sudden change in the bodies
dynamics (fast velocity variation). Impacts are treated usually as very large forces
acting during an infinitely short time, i.e., if Δt represents the collision duration
and F(τ ) represents the force during the collision (F(·) may be viewed as a time

function whose support is K
Δ= [tk, tk + Δt], i.e., F(·) is zero outside K ), then the

force impulse pk due to the impact at time tk is:

pk = lim
Δt→0

∫ tk+Δt

tk

F(τ )dτ. (1.1)

© Springer International Publishing Switzerland 2016
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2 1 Impulsive Dynamics and Measure Differential Equations

In order for the right-hand side of (1.1) to be a nonzero quantity, and as Δt → 0,
the force F(τ ) must take infinite values, since the integration interval becomes of
zero Lebesgue measure. It follows that F(·) cannot be a function of time (it is almost
everywhere zero and its Lebesgue integral is not zero [1082]) andmust be considered
as a singular distribution or Dirac measure at time tk , denoted as δtk , with magnitude
pk , i.e., F = pkδtk which is an equality of measures. It is worth noting that this is
not just one way to represent the impulsive force which is an equality of measures
according to Eq. (1.1), but this is the only formulation of such a phenomenon that is
mathematically correct: “Analogy between mathematical and physical distributions
has not to be shown: mathematical distributions provide a correct mathematical
definition of distributions encountered in physics,” [1081, Chap.1, p. 84].
One of the main consequences of such an approach is that the impulsive forces
imply a discontinuity in the velocity while positions remain continuous. This can be
understood from simple examples.

Example 1.1 Assume that a massm moving on a line, with gravity center coordinate
x (the system is depicted in Fig. 1.1), is submitted to an impulsive force of magnitude
pk at the instant tk . The dynamical equation is given by:

mẍ = pkδtk , (1.2)

which is to be understood as an equality of distributions. Assume now that x and

ẋ possess (possibly zero) respective jumps σx (tk)
Δ= x(t+k ) − x(t−k ) and σẋ (tk)

Δ=
ẋ(t+k ) − ẋ(t−k ) at tk , where ẋ(t+k ) = limt→tk ,t>tk x(t), ẋ(t

−
k ) = limt→tk ,t<tk x(t). In

the following we shall prove that σx (tk) = 0 whereas if pk is not zero, then neither
is σẋ . We have: ⎧⎨

⎩
ẋ = {ẋ} + σx (tk)δtk

ẍ = {ẍ} + σx (tk)δ̇tk + σ{ẋ}(tk)δtk ,
(1.3)

where { ḟ } represents the derivative of f (·) calculated ignoring the points of discon-
tinuity of f (·), and which is not defined at the points of discontinuity [1082, Chap. 2,
Sect. 3]. For instance, the distributional derivative of the heavyside function h(t) ≡ 0
for t < tk , h(t) ≡ 1 for t ≥ tk is ḣ = {ḣ} + δtk = 0 + δtk = δtk . The notation Dh
instead of ḣ is generally used to denote the distributional derivative of a function h
[1076], so that Dh = δtk . The Eq. (1.2) should be written as the equality of distrib-

utions DX = AXdt + pkDH , with XT = (x, ẋ), HT = (0, h), and A =
(
0 1
0 0

)
.

Notice that writing σẋ (tk) in (1.3) is meaningless since ẋ is a priori a singular distri-

Fig. 1.1 Mass submitted to
an impulsive force

x

m

pkδk



1.1 Impulsive Forces 3

bution at t = tk . But σ{ẋ}(tk) has a meaning since {ẋ} is a function that might jump.
Some basic facts about distributions and measures are recalled in Appendix A.1. The
procedure we employ here makes use of the derivative of the Dirac measure, which
is not a measure [1082]. This justifies again that we choose Schwartz’s distributions
as an analytical tool for our study, although the analysis of nonsmooth dynamics for
collisions rests only on measures as it involves only signed distributions. We choose
here the notation employed in [1082]. Introducing (1.3) into (1.2) we get:

m{ẍ} = pkδtk − mσx (tk)δ̇tk − mσ{ẋ}(tk)δtk . (1.4)

Consider now (1.4). On [t0, tk), t0 < tk , the system has a smooth solution x(t), ẋ(t).
Thus m{ẍ} has support K1 contained in [t0, tk). The right-hand side of (1.4) has
support K2 = tk . Then we conclude that the only way to have (1.4) verified (i.e.,
m{ẍ}−(pk −mσ{ẋ}(tk))δtk +mσx δ̇tk = 0) is thatm{ẍ} = 0 and (pk −mσ{ẋ}(tk))δtk +
mσx δ̇tk = 0, because these two distributionsmust take the same value on any function
ϕ ∈ D whose support does not contain tk , i.e. zero. Recall that these equalities have
to be taken in the sense of distributions, and that the value of the function {ẍ} at
t = tk need not to be specified, as almost-everywhere equal functions define the
same distribution. Now we are left with (pk − mσ{ẋ}(tk))δtk + mσx δ̇tk = 0. If these
two singular distributions were equal, we should get for any function ϕ ∈ D with
support Kϕ containing tk : 〈(pk −mσ{ẋ})δtk −mσx δ̇tk , ϕ〉 = (pk −mσ{ẋ}(tk))ϕ(tk) +
mσx ϕ̇(tk) = 0.1 Take ϕtk ≡ ϕ(t − tk) where ϕ(·) is defined in (A.1) (see Appendix
A.1), and note that d

dt ϕtk (tk) = 0: we obtain pk − mσ{ẋ}(tk) = 0. Thus mσx (tk) = 0
as well. Note that we could have also taken two functions ϕ1, ϕ2 ∈ D such that the

matrix A
Δ=
(

ϕ1(tk) ϕ̇1(tk)
ϕ2(tk) ϕ̇2(tk)

)
is full-rank. Then one gets A

(
pk − mσ{ẋ}(tk)

mσx (tk)

)
= 0,

which implies that both components are zero. Hence we get:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m{ẍ} = 0

pk − mσ{ẋ}(tk) = 0

mσx (tk) = 0,

(1.5)

from which we conclude σx (tk) = 0 (x(·) is continuous at tk), σ{ẋ}(tk) = σẋ (tk)
pk
m

(ẋ(·) jumps at tk and is a function). From (1.5) we deduce that ẋ = ẋ(t−k ) = ẋ0
for t < tk , ẋ = ẋ(t+k ) = ẋ0 + pk

m for t ≥ tk , ẍ is zero almost everywhere and
is a Dirac measure of magnitude pk

m at tk , x(t) = ẋ0t + x0 for t < tk , x(t) =(
ẋ0 + pk

m

)
t − pk

m tk + x0 for t ≥ tk . The equalities in (1.5) are therefore necessary for
(1.4) to be true. Sufficiency is straightforward. Thus we have proved the following:

1Recall that distributions are indefinitely differentiable, and that the derivatives of theDiracmeasure
are defined as 〈δ(m)

tk , ϕ〉 = (−1)mϕ(m)(tk) for m ≥ 0, [1082].
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Proposition 1.1 Assume the mass is submitted to an impulsive force2 at t = tk . Then
there is a discontinuity σẋ (tk) in the velocity ẋ(·) at the time tk while the position
x(·) remains continuous. Conversely if the velocity is discontinuous at t = tk and the
position is continuous, then there is an impulsive force at t = tk , and the acceleration
is a Dirac measure.

Let us fix the following definitions [896]3:

Definition 1.1 A force F(t) acting on a system is the density with respect to the
Lebesgue measure dt of the contact impulsion measure d P , i.e., P(t) = ∫ t

t0
F(x)dx .

Definition 1.2 A contact percussion is an atom at the impact time tk of the contact
impulse measure d P . The percussion vector pk is the density of the atomwith respect
to the Dirac measure δtk , i.e., dP = F(t)dt + pkδtk .

Hence in Proposition 1.1we should have said contact percussion instead of impulsive
percussion. The term impulsive force is also currently used to mean contact percus-
sion. Some basic facts about measures are recalled in Appendix A.2. In particular
see Definition A.10. Although the use of such a vocabulary may appear too complex
and too mathematical, we shall see in Chaps. 2 and 5, Sect. 5.2, that shock dynamics
can be formulated as equalities of measures.

Remark 1.1 The solutions of differential equations with distributions can also be
studied by considering sequences of equations whose coefficients are functions that
tend towards the distributional coefficients [397]. For instance (1.2) is the limit of
ẍn(t) = pn(t), where {pn} is a sequence approximating the Dirac measure, see
Appendix A.1. Another point of view is to give the approximating problems an a
priori physical meaning by considering state-dependent forces Fn(xn) that possess
certain properties; one has to prove that the limit problem (with respect to a certain
notion of convergence) is a dynamical problem involving singular measures. These
results are presented in Chaps. 2 and 3.

Example 1.2 Consider a system composed of two masses m1 and m2 moving on a
horizontal line, with coordinates x1 and x2, linked with a spring of stiffness k (see
Fig. 1.2). This may represent a simple manipulator with flexible joints. We assume
that with a suitable coordinate x2 transformation, the spring is at rest when x1 = x2.
Also u is the (bounded) force applied on mass 1. The dynamical equations of the
system are given by

2For the moment, by impulsive force we mean something like pkδtk , for some real pk and some tk .
More precise definitions are given in Definitions 1.1 and 1.2.
3Note that in the following definition, we do not pretend to define the very basic notion of what
a force is. We just set what is meant by a “regular” force, in opposition to an “impulsive” force.
For a discussion on the basic definition of what forces are, see for instance [1218] and references
therein, who argue that in fact, forces in physics should be defined from basic axioms, just like real
numbers are in mathematics.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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Fig. 1.2 Coupled masses
submitted to an impulsive
force

u
m1

x1

k m2 p0δ0

x2
x

⎧⎨
⎩
m1 ẍ1 + k(x1 − x2) = u

m2 ẍ2 + k(x2 − x1) = p0δ0,
(1.6)

where we assume that the percussion on mass 2 occurs at t = 0, and for the moment
(1.6) is seen as an equality of distributions. Suppose that x1, ẋ1, x2, ẋ2 possess a
discontinuity at t = 0; we thus obtain from (1.6):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1{ẍ1} + k(x1 − x2) = u

m1σẋ1(0)δ0 + m1σx1(0)δ̇0 = 0

m2{ẍ2} + k(x2 − x1) = 0

m2σx2(0)δ̇0 + m2σẋ2(0)δ0 = p0δ0.

(1.7)

From the analysis done in Example 1.1 we deduce that x1, ẋ1, x2 are continuous-
time functions, whereas p0 = m2σẋ2(0). Let us push this example further by intro-
ducing some physics in it. Let us denote xc(t) = m1x1+m2(x2−l)

m1+m2
the position of the

center of mass of the system, where l is the spring length. Since ẋ1 is continuous, we
have: ⎧⎪⎨

⎪⎩
ẋc(0−) = m1 ẋ1(0)+m2 ẋ2(0−)

m1+m2

ẋc(0+) = m1 ẋ1(0)+m2 ẋ2(0+)

m1+m2
.

(1.8)

Thus m2σẋ2(0) = (m1 + m2)(ẋc(0+) − ẋc(0−)). Also from (1.6) and (1.8) we get:

(m1 + m2){ẍc} = p0δ0 − (m1 + m2)σẋc(0)δ0 + u, (1.9)

which governs the system’s center of gravity motion. If there is no loss of energy dur-
ing the impact, the post-impact kinetic energy T (0+) = 1

2m1 ẋ1(0+)2+m2 ẋ2(0+)2 =
T (0−) = 1

2m1 ẋ1(0−)2 + m2 ẋ2(0−)2, where T (t) denotes the kinetic energy of
the system (note that since the potential energy depends on the position only, it
does not change at the percussion instant). Thus we get ẋ2(0+) = −ẋ2(0−) and
p0 = 2m2 ẋ2(0+) (the other solution leads to ẋ2(0+) = ẋ2(0−) ⇒ p0 = 0: there is
no impulsive force applied at t = 0). When a unilateral constraint is added, we shall
see that the second solution yields an unfeasible motion and has to be eliminated.
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One sees that whatever u may be at the moment of impact, the motion of mass 2 is
independent of u. It can be easily verified that the same result holds (discontinuous
ẋ2) if a damper is added between the two masses.

Example 1.3 These ideas can be extended to the case of more complicated mechan-
ical systems such as rigid or flexible joint manipulators. For instance, a rigid manip-
ulator with generalized coordinates vector q ∈ R

n , submitted to a wrench of external
forces λ ∈ R

m , m ≤ n, admits the following state space representation:

{
ẋ1 = x2
ẋ2 = −M−1(x1)

[
C(x1, x2)x2 + g(x1) − u − J (x1)Tλ

]
,

(1.10)

where x1 = q, x2 = q̇ , M(x1) 
 0 is the symmetric inertia matrix, C(x1, x2)x2
contains centrifugal and Coriolis terms, g(x1) is the generalized gravity vector, J (x1)
is the Jacobian between the joint coordinates q space and the Cartesian space, i.e.,
if λ works on positions X ∈ R

m , then Ẋ = J (q)q̇ . We assume that J (x1) ∈ R
m×n

is full row rank m. The term u is the generalized torque vector applied at the joints,
which can be considered as a control input for the robot manipulator, and is assumed
to be a bounded function of t , x1, x2.
If the system is submitted to an impulsive force λ = pkδtk we can write:

⎧⎪⎪⎨
⎪⎪⎩

M(x1){ẋ2} + C(x1, {x2}){x2} + g(x1) = u

M(x1)
[
σq(tk)δ̇tk + σq̇(tk)δtk

]+ 2C(x1, {x2})σq(tk)δtk
+C(x1, σq(tk)δtk )σq(tk)δtk = J (x1)T pkδtk ,

(1.11)

where we have proceeded as in the foregoing examples to express the distributional
derivatives of x2 and x1, and we have used the properties of C(·, ·), i.e., C(x, y)z =
C(x, z)y and C(x, y + z)w = C(x, y)w + C(x, z)w: the first equation in (1.11) is
an equality of functions, whereas the second one is a relation between distributions.
Following the reasoning inExample 1.1,wededuce from (1.11) thatσq (tk) = q(t+k )−
q(t−k ) = 0.Moreover note that the last termof the left-hand side of the second equality
is not defined, as the product of two distributions does not exist in general: in this
particular case obviously δtk δtk has no mathematical meaning [1082, p. 117] [51,
§12.5]. Since the position jump is zero, the right-hand side of the second equation
in (1.11) is meaningful within the framework of classical distribution and measure
differential equations theories, as J (x1)T pkδtk is well defined, x1(·) being time-
continuous. Then it yields

M(q)(q̇(t+k ) − q̇(t−k )) = J (q)T pk, (1.12)
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because the acceleration q̈ is the measure σq̇(tk)δtk + {q̈}dt . From (1.12) and from
the row full-rank property of J (q), one infers:

pk = (J (q)J (q)T
)−1

J (q)M(q)(q̇(t+k ) − q̇(t−k )). (1.13)

Thus Proposition 1.1 is true for Lagrangian systems as well. These systems do not
fit within the class of systems studied in Sect. 1.2.1, since the singular measure is
premultiplied by a state- dependent term.

Example 1.4 The above analysis may be extended to flexible-joint rigid-link manip-
ulators subject to an impulsive input

{
M(q1)q̈1 + C(q1, q̇1)q̇1 + g(q1) = K (q2 − q1)
J q̈2 + K (q2 − q1) =∑n

i=0 pkδtk ,
(1.14)

for some n ∈ N ∪ {+∞}, where q = (qT
1 , qT

2 )T ∈ R
n × R

n , M(q) = diag
(M(q1), J ) 
 0, K ∈ R

n×n is the joint stiffness matrix. This model is common
in control and robotics. One infers that q̇2(·) is discontinuous at times tk , q̈2 is the
Dirac measure

∑n
i=0 σq̇2(tk)δtk , q2(·) is continuous piecewise differentiable, q̇1(·) is

continuously differentiable, q1(·) is continuously twice differentiable, and q̈1(·) is
continuous piecewise differentiable. It is quite interesting to compare these results
with those of Sect. 3.4.2, where unilateral constraints are included. This helps to
understand why controlling Lagrangian systems with impulsive control forces (see
for instance [605]) and controlling systems with unilateral constraints and impacts,
are quite different problems.

This brief analysis shows that in mechanical systems, continuous positions and dis-
continuous velocities are produced by impulsive forces, and vice versa. They make a
particular case of Measure Differential Equations,4 which are reviewed in the next
sections.

1.2 Measure Differential Equations (MDEs)

Roughly speaking,MDEs are ODEswith impulsive inputs. The state of such systems
may jump.Different classes of dynamical systemswith state jumps have been studied
in applied mathematics and in systems and control literature. We present some of
them now. Readers interested in mechanics and not on generalities on other types of
impulsive systems, may skip sections on MDEs.

4While systems subject to unilateral constraints will be embedded into measure differential
inclusions

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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1.2.1 A First Class of MDEs

Until now we have considered simple MDEs modeling mechanical systems subject
to exogenous impulsive forces. It is useful to have more insights on MDEs, and
which main similarities and discrepancies exist between ODEs and MDEs, as well
as between MDEs and dynamics of systems with unilateral constraints. Moreover
the MDEs in this section may describe control systems where the control input is
impulsive. The material in this section is taken from Schmaedeke [1076]. Let S be a
domain in the (t, x) spaceRn+1, f (t, x) be a real n−vector function defined on S. Let
u(t) be a real m−vector function of bounded variation (or BV, see Appendix A.3),
continuous from the right on a time interval I1, and let G(t) be a time-continuous
n × m matrix defined on I1. Let (t0, x0) be a point in S with t0 ∈ I1. Let us denote
byM , the differential equation:

Dx = f (t, x) + G(t)Du, x(t0) = x0. (1.15)

As we saw in Sect. 1.1, D denotes the operation of differentiation in the sense of
distribution derivatives, with respect to t . It is clear that since u(·) is BV, then Du
is a differential measure (see Appendix A.3.2), and so is Dx ; so we could use the
notation du and dx (we however keep the original notations in [1076]). Therefore
x(·)will not be a continuous function of time in general, but it will “copy” the jumps
in u(·). A solution x(t) toM in (1.15) is defined as follows:

Definition 1.3 A solution x(·) ofM is a real bounded variation n−vector together
with an interval I containing t0, such that x(t) is continuous from the right on I and

• (t, x(t)) ∈ S for t ∈ I .
• x(t0) = x0.
• The distributional derivative of x(t) on I is f (t, x) + G(t)Du.

Consider now the integral equation T :

x(t) = x0 +
∫ t

t0

f (s, x(s))ds +
∫

(t0,t]
G(s)du(s), (1.16)

where du denotes the Stieltjes measure determined by u(t). Then we have

Definition 1.4 A solution x(t) of T is a real bounded variation n−vector x(t)
together with an interval I such that:

• (t, x(t)) ∈ S for t ∈ I .
• x(t) satisfies the integral equation.

The following theoremgeneralizes awell-known result forCarathéodoryODEs [533,
1229], according to which the solution of an ODE ẋ(t) = f (t, x(t)), x(t0) = x0 is
also a solution of the integral equation x(t) = x0 + ∫ t

t0
f (y, x(y))dy and vice versa.
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Theorem 1.1 [1076] A solution x(t) of T is a solution x(t) ofM and conversely.

Remark 1.2 Notice that if u(t) is absolutely continuous, then all these definitions
reduce to the classical theory for Carathéodory differential equations. In fact in this
case the distributional derivative is just the usual derivative.

Theorem1.1 is useful to prove local existence anduniqueness results forMDEs asM ,
using the fixed point property of contraction mappings, see [1076, Theorems 2 and
3] quite similarly as for ODEs [1229]. Following Theorem 1.1, the state X = (x, ẋ)T

of the simple system in Example 1.1 is a solution of (1.2) if and only if it is a solution
of the integral equation

X (t) = X (t0) +
∫

[t0,t]
AX (τ )dτ +

∫
[t0,t]

(
0

Dh(τ )

)
, (1.17)

and X (·) (hence ẋ(·)) is necessarily continuous from the right with h(·) defined as
above (we could have also defined h(·) as a left-continuous function since Stieltjes
measures can indifferently be defined from functions left as well as right-continuous
[477, p.133]).
Theorems on existence and uniqueness of solutions are generalized to MDEs. Ordi-
nary Carathéodory differential equations are generalized to Carathéodory measure
systems (CMS) defined as follows:

Definition 1.5 [1076] Consider anMDE as inM . Let f (t, x) be defined in a neigh-
borhood of a domain S of Rn+1, such that for each point (t0, x0) ∈ S there is a
rectangle Rab centered at (t0, x0), a constant K > 0 and a function r(t) summable
on the interval [t0 − a, t0 + a] as
• f (t, x) is measurable in t for each fixed x such that (t, x) ∈ Rab.
• f (t, x) is locally Lipschitz continuous with constant K with respect to x , for all

(t, x) ∈ Rab.
• | f (t, x)| ≤ r(t) in Rab.
• || ∫ t

t0
G(s)du||� < b, where the norm is taken on [t0 − a, t0 + a].5

Then M is a CMS.

It can be checked thatM withG(t) continuous on an interval I , u(t) right-continuous
of bounded variation on I , [t0 − a, t0 + a] ⊂ I , is a CMS. What is remarkable in
Definition 1.5 is that the initial conditions are taken in a domain S, but one needs to
consider the dynamics outside S (indeed the rectangles Rab need not be contained
in S). This is not the case for ordinary Carathéodory equations (see Sect. 1.4.1). This
is intuitively explained by the fact that for any bounded domain within which the
initial conditions may lie, then the jump imposed on the state by Du(t) is likely to
take the state outside this domain (instantaneously). This jump G(tk)σu(tk ) is clearly

5The norm ||.||� is defined as || f ||� = ∑n
i=1 || fi || with || fi || = var( fi , I ) + | fi (a+)| for scalar

functions fi (·) on I = [a, b].
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independent of the initial conditions: it is an exogenous variable driven by u(t) and
G(t).
The following theorem is an extension of the global existence and uniqueness results
for ODEs to MDEs:

Theorem 1.2 [1076] Consider the MDE in M , satisfying the conditions in
Definition 1.5. Then there exists a unique solution ϕ(t, t0, x0) of M for every point
(t0, x0) ∈ S, where ϕ(t, t0, x0) is defined on a maximal open interval (a, b) � t0.

It can be easily checked that the systems we deal with in Examples 1.1 and 1.2 are
Carathéodory measure systems as long as we consider exogenous impulsive forces
of the form

∑
k≥0 pkδtk with

∑
k≥0 |pk | < +∞, and that Theorem 1.2 applies. The

classical results for ODEs concerning maximal extension of the solution, global
existence when f (t, x) is Lipschitz continuous, also extend to CMS. The result
according to which a maximal solution defined on an interval (a, b) with b < +∞
leaves any compact set of the domain of definition of f (t, x) (either it tends to the
boundary of that domain, or it escapes, or both [533, §5]) is generalized to CMS
[1076, Theorems 5, 6, and Corollaries 1, 2].
Let us note also from [1076, Theorem 9] that the solution of a MDE is generally
not continuous with respect to initial time t0 but of bounded variation in t0. Example
(4.5) in [1076] analyzes the first-order equation Dx = x + δ0, x scalar, where the
solutions ϕ1(t; t1, 1) starting at t1 < 0, x(t1) = 1, and ϕ2(t; t2, 1) starting at t2 > 0,
x(t2) = 1, are given by

• For t ∈ [t1, 0),ϕ(t; t1, 1) = exp(t − t1), and for t ∈ (0,+∞),ϕ(t; t1, 1) =
(exp(−t1) + 1) exp(t). The jump at t = 0 is equal to 1 as expected.

• On [t2,+∞), ϕ(t; t2, 1) = exp(t − t2), which is clearly not affected by the Dirac
measure.

The solutions are such that:

ϕ1(t2; t1, 1) − ϕ2(t2; t2, 1) = exp(t2){exp(−t1) + 1} − 1, (1.18)

that is close to 1 when t1 and t2 are close to zero. Clearly ϕ(0; ·, 1) is discontinuous
at t0 = 0. For ϕ(0; ·, 1) to be continuous at t0 = 0 would require that ϕ(0; t1, 1) −
ϕ(0; t2, 1) → 0 as t1 → 0 and t2 → 0. However if t1 < 0 < t2, and since we
specify that solutions are right-continuous, we have ϕ(0; t1, 1) = ϕ(0+; t1, 1) =
exp(−t1) + 1 while ϕ(0; t2, 1) = exp(−t2), so that one gets

ϕ(0; t1, 1) − ϕ(0; t2, 1) → 1. (1.19)

It is worth remarking the big difference between simple Carathéodory differential
equations, for which uniqueness and continuous dependence on initial data (t0, x0)
are both guaranteed by the local Lipschitz continuity of the vector field [397, Chap.1]
[262, §1.10, Chap.2] and measure differential equations for which this is not true.
However, continuity with respect to x0 is true [1076, Theorem 9] and is easily proved
following classical arguments for ODEs (see e.g., [1229]). Indeed, let us assume the
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existence of solutions ofM in (1.15) on an interval (a, b). Let us consider x0 = x(t0)
and y0 = y(t0), t0 ∈ (a, b). Then by (1.16) we have

ϕ(t; t0, x0) − ϕ(t; t0, y0) = x0 − y0 +
∫ t

t0

{ f (s, x(s)) − f (s, y(s))} ds, (1.20)

where x(t) = ϕ(t; t0, x0) and y(t) = ϕ(t; t0, y0). Hence from the properties in Def-
inition 1.5, the proof of Theorem 2.4.57 in [1229] applies directly, and the solutions
ofM depend continuously on the initial state condition, on any finite-time interval.

Example 1.5 Let f (t, x) = (x2, x3, 0)T ,G = (0, 0, 1)T then ẋ1(t) = x2(t), ẋ2(t) =
x3(t), Dx3 = Du. Since u ∈ BV then x3 ∈ BV , x2(·) is continuous, x1(·) is
continuously differentiable (use Theorem 1.1).

1.2.2 A Second Class of MDEs: ODEs Driven by Measure
Inputs

Consider the differential equation:

ẋ(t) = f (x(t)) + g(x(t))δtk , (1.21)

where x(t) ∈ R, f (·) and g(·) are smooth functions of x . According to the above
developments, we should get {ẋ} + σx (tk)δtk = f (x) + g(x)δtk , so that

• {ẋ} = f (x(tk))
• σx (tk) = g(x(tk)).

But the second equality is meaningless: indeed the term g(x)δtk represents in fact a
distribution, i.e., for any functionϕ(t)with support Kϕ containing tk and continuous at
tk , 〈g(x)δtk , ϕ〉 = ∫Kϕ

g(x)δtkϕ(t)dt = g(x(tk))ϕ(tk). Thuswe shouldwrite σx (tk) =
g(x(tk)). But x(tk) is not well defined and in general, neither is g(x(tk)) (of course
if g(x) is replaced by a function of time g(t) then the technique can be employed
provided g(t) is continuous at tk : this is what is described in Sect. 1.2). Intuitively,
what happens is that we expect x(·) to copy the jump in the “input” u(·) whose
derivative is δtk . However, we then obtain that g(x(t))may also jump and the product
g(x(t))δtk is not properly defined at t = tk : another path has to be followed to give
a meaning to (1.21). Such problems are treated, e.g., in [397, 690]: they do not have
in general a unique solution (independently of the choice of the initial data), and
the obtained solution strongly depends on the sequence of problems considered to
approximate the equation [690, Theorems 5.1 and 5.2] [397, Theorem 4, Chap.1, §3].
The Czech mathematician, Jaroslav Kurzweil, developed a theoretical framework on
a class of differential equations (Kurzweil Differential Equations, KDE) in [690].
Roughly speaking, the underlying idea is to consider ODEs whose right-hand side
may not converge to a differentiable function, or even not to a function (like when
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delta sequences are considered). Then one rather looks at the associated integral
equation (that is a KDE), just forgetting about the differential formulation that might
not be defined. Kurzweil provides conditions such that the integral has a meaning,
by defining a Kurzweil integral from Kurzweil–Riemann sums. One may construct
a KDE from any ODE that satisfies Carthéodory conditions. Then the solution of the
KDE and that of the ODE are equal. In this sense KDEs really represent an extension
of ODEs. Theorems 5.1 and 5.2 in [690] provide existence results for MDEs as in
(1.21), with solutions of bounded variation. It is shown that a solution exists outside
the critical point tk , in the sense that the solutions of an approximating sequence of
ODEs (where δtk is replaced by a delta sequence) converge uniformly outside tk .
The MDE in (1.21) belongs to a larger class of impulsive systems that may be
written as

ẋ(t) = f (x(t)) + g(x(t))u̇(t), x(0) = x0, (1.22)

x(t) ∈ R
n , u(·) is an m−input of local bounded variation, f : R

n → R
n , g :

R
n → R

m . It is assumed that the vector fields f (·), g1(·), …, gm(·) are continuously
differentiable. The input possesses a differential measure du (see Appendix A.3.2)
so that the dynamics (1.22) is better rewritten as an equality of measures

dx = f (x)dt + g(x)du, x(0) = x0 ∈ R
n. (1.23)

The theoretical framework for MDEs as in (1.23) is a bit tricky. It has been settled in
[187, 814, 1169]. Let us introduce it briefly now (as done for instance in [1182] where
the focus is put on stability). LetΦG(s; z0, v) denote the Carathéodory solution of the
ordinary differential equation ż(t) =∑m

j=1 v j g j (z(t)), z(0) = z0 at time t = s with
initial condition z0, i.e., ΦG(0; z0, v) = z0. It also follows that ΦG(s; z0, 0) = z0 for
each s ∈ R. Now let6 h j (z, v) := ∫ 1

0 g j (ΦG(s; z, v)) ds and to study the solutions
to system (1.22), the Cauchy problem we consider is

dx = f (x(t))dt +
m∑
j=1

h j (x(t
−), u(t+) − u(t−))du, x(t0) = x0. (1.24)

It is seen that the solution of (1.24) coincides with the solutions of (1.22) whenever
u(·) is continuous, since in that case u(t+) = u(t−) for all t , ΦG(s; z, v) = z and
h j (x, 0) = g j (x). Formally, the solution to system (1.22) is defined as follows:

Definition 1.6 For a given right-continuous locally BV input u : [t0, T ] → R
m , a

right-continuous locally BV7 function x : [t0, T ] → R
n is called a solution of (1.22)

if it satisfies the following:

6The choice of the interval [0, 1] is arbitrary and could be replaced by any other compact interval
without changing significantly the developments.
7RCLBV in short.
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∫
B
dx =

∫
B

f (x(t)) dt +
m∑
j=1

∫
B
h j (x(t

−), u(t+) − u(t−))du,

for every Borel measurable setB ⊂ [t0, T ].8
To study the existence and uniqueness of the Cauchy problemwith inputs of bounded
variation (1.24), the basic idea is to introduce a graph completion of the input u(·).
An auxiliary system is then introduced which is driven by this graph completion, and
the solution of this system can be studied in the classical sense. Once the existence
of solution is verified in the new coordinates, the solutions of the auxiliary system
are mapped back into the original coordinates. Some details of this development are
given in [1182], and for detailed proofs, we refer the reader to [814].
It is natural to ask in what sense the solutions of (1.24) generalize the classical
solutions of nonlinear ODEs. In particular, when the inputs are continuously differ-
entiable, do we recover the absolutely continuous solutions which are continuous
with respect to initial conditions, or inputs? The answer to this question appears in
the following result, where the variation is defined in Sect.A.3.1:

Proposition 1.2 [814, Theorem 4.2] Let u : [t0, T ] → R
m be a RCLBV function

and consider a sequence u j : [t0, T ] → R
m of RCLBV functions. Assume that

• for almost every t ∈ I , lim j→∞ u j (t) = u(t),
• lim j→∞ var(u j ; [t0, t]) = var(u; [t0, t]).
Let x j (·), x(·) be RCLBV functions obtained as solutions to (1.24) corresponding to
u j (·), and u(·), respectively. Then lim j→∞ x j (t) = x(t) for each t ∈ [t0, T ], where
u(·) is continuous.
As a consequence of this result, it is seen that if u j (·) is a sequence of continuously
differentiable inputs converging to a locally RCBV function u(·), so that the solution
of (1.22) and (1.24) with inputs u j (·) could be interpreted in classical sense, then the
solution x(·) corresponding to u(·) that we consider is the limit of the solutions x j (·)
obtained from differentiable inputs u j (·). Let us now specify how the solution of the
MDEs behave at discontinuities of u(·). From the system description in (1.24), the
solution x(·) at the discontinuities is characterized as follows:

Proposition 1.3 (Jump Characterization) At the atoms {tk} of du, we have

x(t+k ) = ΦG(1; x(t−k ), u(t+k ) − u(t−k )). (1.25)

To see how we arrive at the formula for x(t+k ), it follows from the definition of the
functions h j (·, ·) that

8See Appendix A.2.
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m∑
j=1

v j h j (z, v) =
∫ 1

0

m∑
j=1

v j g j (ΦG(s; z, v)) ds =
∫ 1

0

∂ΦG

∂s
(s; z, v) ds

= ΦG(1; z, v) − ΦG(0; z, v) = ΦG(1; z, v) − z.

If u(·) is discontinuous at tk , then (1.24) is interpreted as follows:

x(t+k ) − x(t−k ) =
m∑
j=1

h j (x(t
−
k ), u(t+k ) − u(t−k ))(u j (t

+
k ) − u j (t

−
k )) (1.26)

and from the above calculations it follows that x(t+k ) = ΦG(1; x(t−k ), u(t+k )−u(t−k )).
Some comments are necessary at this stage of the presentation. The notion of solution
introduced in Definition 1.6 is too abstract for engineers. Proposition 1.2 proves that
it leads to sound property of continuity of solutions, anyway. The next example taken
from [1182] illustrates what it implies in terms of state jumpmapping, i.e., it clarifies
the meaning of (1.25) and (1.26). Consider a scalar system (1.22) with f (x) = 0,

g(x) = x , and u(t) = cH(t), where c > 0, and H(t) =
{
0, t0 ≤ t < t1
1, t1 ≤ t < +∞ . This

gives du = cδt−t1 , where δ0 is the Dirac measure at time t = 0. It is clear that
x(t) = x(t0), for t0 ≤ t < t1. For t ≥ t1, if we pick x(t) = (1 + c)x(t0), then the
equation

∫
{t1} dx = x(t−1 )

∫
{t1} du holds, meaning that this solution corresponds to

the MDE:
dx = g(x(t−1 ))δt−t1 . (1.27)

Another candidate solution x(t) = x(t0)/(1 − c) satisfies
∫
{t1} dx = x(t+1 )

∫
{t1} du,

which results from solving the MDE:

dx = g(x(t+1 ))δt−t1 . (1.28)

A third solution is inspired from Proposition 1.2 by approximating u(·) with a
sequence {uk}∞k=1 of continuously differentiable functions. Then for each element
of the sequence, the resulting solution is obtained by solving ẋk

x (t) = u̇k(t), which
leads to xk(t) = xk(t0)euk (t).One then takes x(·) to be the limit of the sequence {xk}∞k=1
and let x(t) = x(t0)eu(t) to be the solution. In terms of the original system descrip-
tion in differential form, this last solution satisfies

∫
{t1} dx = x̃

∫
{t1} du, for some

x̃ ∈ [x(t−1 ), x(t+1 )]. To prove the last claim, we introduce the function Φ(v) = evx0,
for v ∈ [0, c]. Then by the mean value theorem, there exists ṽ ∈ [0, c] such that
∂Φ
∂v

∣∣
v=ṽ

= Φ(c)−Φ(0)
c , i.e., eṽx0 = ecx0−x0

c and we note that
∫
{t1} dx = ecx0 − x0,∫

{t1} du = c, and x̃ := eṽx0 ∈ [x(t−1 ), x(t+1 )]. This last argument indicates that at the

points of discontinuity of x(·) at tk , we have dx
du (tk) = g(x̃) and the corresponding

MDE is
dx = g(x̃)δt−t1 , (1.29)
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where x̃ is some point on the solution curve of the ODE ż = (u(t+k ) − u(t−k ))g(z)
solved over the interval [0, 1] with initial condition z(0) = x(t−k ).

� The MDE in (1.27) is in an explicit form, while the MDE in (1.28) is in an
implicit form. Definition 1.6 yields an intermediate form (1.29).

It is seen from the above that the implicit framework (adopted for instance in [961])
may give rise to unbounded jumps at t (choose c = 1). The explicit formulation was
chosen in [965] with a specific approximation of the vector field g(x) at jumps, in
order to obtain a jump mapping similar to I (·) in (1.31) in the next section.

1.2.3 Further Reading

The study of MDEs as in (1.23) is motivated by optimal control, quantum elec-
tronics, economics (see [1182, §1.3]), spiking models for synaptic activity [267].
Their input-to-state stability is deeply investigated in [1182], and summarized in
Sect. 7.1.2. Systems for which both the position and the velocity possess discontinu-
ities have been identified and studied by Bressan in [188, 190]. Such systems have
been named hyperimpulsive. The goal in hyperimpulsive systems is to find out gener-
alized coordinates γ1, . . . , γm such that the Hamiltonian system q̇ = Q(q, p, γi , γ̇i ),
ṗ = P(q, p, γi , γ̇i ) can be controlled via the γi ’s. Thus choosing a discontinuous
γi introduces a hyperimpulsive term in the dynamics. In general the γ̇i ’s appear
quadratically in the dynamical equations. Assume that m = 1. The general form of
the Lagrange dynamical equations is

ẋ(t) = f (t, x(t), γ (t)) + g(t, x(t), γ (t))γ̇ (t) + h(t, x(t), γ (t))γ̇ (t)2. (1.30)

There are two difficulties in the analysis of such systems when γ (t) possesses dis-
continuities: first, the second term on the right-hand side makes it similar to the
equation in (1.22). Second, γ̇ (t) is a Dirac distribution at the discontinuity times, so
that its square has nomeaning in the theory of distributions, see Appendix A.1. Other
works on MDEs similar to the one in (1.15) but with G = G(x, t) can be found in
[946, 947]. In [946] the notion of vibrocorrect solution is given. Roughly, a solu-
tion x(·) is vibrocorrect if the weak� convergence of a sequence of integrable inputs
vk = Duk towards v(·), results in the analogous weak� convergence of the solutions
xk(·) towards x(·), where x(·) is a solution of the MDE when the input is v(·). The
conditions for vibrocorrectness are shown to be related to the complete integrability
of the system dξ

dv = G(ξ, s) for any s ≥ 0 (we recover here the arguments of [814]
described in Sect. 1.2.2). The formula allowing the computation of the jump σx (in
case of an impulsive input Du) is given explicitly. Since this integrability condition
is quite stringent (it is not satisfied for mechanical systems), the notion of solution is
relaxed in [947]. Differential inclusions with measure inputs and their stability have
been tackled in [993].

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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1.2.4 A Third Class of MDEs: ODEs with State Jump
Mappings

Another type of MDEs has been studied extensively in the literature. For instance,
Bainov and Simeonov [75, 76] analyze ordinary differential equations with state
jumps which are described as

⎧⎨
⎩
ẋ(t) = f (x(t), t), t �= tk(x)

σx (tk) = I (x(t−k )), t = tk(x),
(1.31)

with σx (tk) = x(t+k )−x(t−k ), the vector field f (·, ·) is regular enough to guarantee the
existence and uniqueness of solutions between state jumps, and I (·) is a continuous
mapping. Some assumptions on the discontinuity times tk are made, the major one
being in general that they are separated and in finite number in any compact interval

of time, which implies the absence of finite accumulation, i.e., t∞
Δ= limk→+∞ tk =

+∞. This is related to what is named the beating phenomenon, which occurs when
the jump times are calculated from an equation s(t, x(t)) = 0: there is beating if this
equation has several finite or a countable number of solutions; there is no beating
if it has at most one solution. Sufficient conditions to avoid beating are that the
functions tk(·) are differentiable, ∂tk

∂x and f (t, x) are bounded, and sup0≤s≤1
∂tk
∂x (x +

s Ik(x))T Ik(x) ≤ 0 [75, Corollaries 2.1, 2.2]. As noted in [75], MDEs as in (1.31) do
not enjoy the semi-group (autonomy) property, even when the vector field f (·) does
not depend explicitly on time. Results on continuous dependence, existence, and
uniqueness of solutions (which are supposed to be left-continuous in time: x(tk) =
x(t−k )) with respect to initial data and parameters can be found in [75, 76]. For the
sake of briefness of the exposition we do not reproduce these results here. Let us
simply note that such systems are different from the MDEs in (1.15) since the jumps
magnitudes are state-dependent. As an illustration, let us consider the system

⎧⎨
⎩
ẋ(t) = 0 for t �= tk(x), x(0) = x0 ≥ 0
σx (tk) = 1
tk(x) = {t |t = x(t) + 2}.

(1.32)

Solutions are initially given by ϕ(t; τ0, x0) = x0, and the first discontinuity occurs at
t0 = ϕ(t0; τ0, x0)+ 2 = x0 + 2. Hence the solution jumps to x0 + 1 = ϕ(t+0 ; τ0, x0).
Then a second jump occurs at t1 = ϕ(t1; t+0 , x(t+0 )) + 2, i.e., t1 = x0 + 3, with
x(t+1 ) = x0 + 2, and so on. Let us consider a second example [546]

⎧⎨
⎩
ẋ(t) = cos t for t �= tk(x), x(0) = 0
σx (tk) = 1
tk(x) = {t |t = −(x + 1) + (2π + 1)k}.

(1.33)
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Then the solutions have jumps at the points of the extended state space (t, x) =
(2kπ, k − 1) for k = 1, 2, . . .. The sequence {tk}k≥0 has no finite left accumulation
point. Therefore the solutions are defined globally in time. Actually MDEs as in
(1.31), called impulsive ODEs, do not allow for finite accumulation of state jumps if
the solutions are to exist globally. This is not the case for MDEs as in (1.22) which
naturally incorporate such Zeno phenomena. In some cases it is possible to give
closed forms for the solutions of ODEs with state jumps. Let us consider a particular
case of (1.31), with inputs and outputs

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t) for t �= tk
σx (tk) = cx(t−k ) for t = tk
0 < t1 < t2 < . . . < tk < tk+1 < . . . , limk→+∞ tk = +∞
y = Cx + Du
x(0) = x0,

(1.34)

for some constant c, constant matrices A ∈ R
n×n , B ∈ R

n×m ,C ∈ R
p×n , D ∈ R

p×m .
The solutions may be expressed on t ∈ (tk−1, tk] as [1283, 1325]:

x(t) = eA(t−tk−1)(1 + c)k−2�1
i=k−1e

A(ti−ti−1)x0 + ∫ tk
tk−1

eA(t−s)Bu(s)ds

+∑k−1
i=1

(
(1 + c)k−1−i

∫ ti
ti−1

eA(t−tk−1)�i+1
r=k−1e

A(tr−tr−1)eA(ti−s)Bu(s)ds
)

.

(1.35)

The proof for obtaining (1.35) is done by integration over each interval [0, t1], then
(t1, t2], etc, and concatenation. It is clear from (1.35) that the impulsive system in
(1.34) is linear in x0 and u. Let us state controllability and observability criteria for
(1.34).

Definition 1.7 The system (1.34) is controllable on [0, t f ], t f > 0, if given any
initial state x0 there exists a piecewise continuous input u : [0, t f ] → R

m , such that
the corresponding solution satisfies x(t f ) = 0. It is observable on [0, t f ] if any initial
state x0 is uniquely determined by the corresponding system input u(·) and output
y(·) for t ∈ [0, t f ].
Then we have the following:

Theorem 1.3 (Controllability and observability of (1.34)) [486] (i) Assume that
c �= −1. The system (1.34) is controllable if and only if rank(B AB . . . An−1B) =
n. (ii) Assume that 1+c ≥ 0. The system (1.34) is observable if and only if rank(S) =

n, where S =

⎛
⎜⎜⎜⎝

C
CA
...

CAn−1

⎞
⎟⎟⎟⎠.

One sees that the controllability and observability of (1.34) rely on the rank of the
Kalmanmatrices, as in the non impulsive linear invariant case. TheLyapunov stability
of such impulsive ODEs is introduced in Sect. 7.1.

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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Remark 1.3 Which are the discrepancies betweenMDEsas in (1.23) and as in (1.31)?
Clearly not everymapping x �→ x+ I (x) in (1.31) satisfies the property of the flow of
some vector field (see (1.25)). Thus from the point of view of state jump mappings,
(1.31) is more general than (1.23), even if u(·) is chosen as a piecewise constant
function. However, (1.23) allows for finite accumulations of discontinuities in u(·),
hence in the sequence of state jump times, not hampering existence of solutions on
[0,+∞). On the contrary, impulsive ODEs (1.31) cannot cross a finite accumulation
of jump times because they are designed from an event-driven point of view. Also,
with a proper choice of u(·), theMDE in (1.22) can represent systems with switching
vector field [1182, §4.3].

1.2.5 Further Reading

There is a huge literature on ODEs with state jumps. Many extensions of (1.31) and
(1.34) with time-varying matrices A(t), B(t), C(t), D(t), piecewise-constant vec-
tor fields fk(x, t) and mappings Ik(·), retarded and hyperbolic systems, have been
studied. Stability, invariance of sets, controllability and observability have been ana-
lyzed deeply for all cases, see [125, 192, 281, 486, 1042, 1283, 1325] to cite a few. The
above observability criteria are extended to nonlinear vector fields and constant jump
times in [1042]. Extensions to infinite dimensional systems, time-delayed systems,
have also been the object of many articles. Applications may be found in epidemi-
ology, sampled-data systems, event-triggered control [515, §V.B], cancer therapy
[695], species food chain models [269], predator–prey models [73], pest control
[612, 1250], management of renewable resources [300], plankton allelopathy [510],
diabetic patients [128], etc. Dissipativity of MDEs with separated state-dependent
jump times has been investigated in [493]. Roughly speaking, the dissipation inequal-
ity and available storage function incorporate the contribution of the state jumps as an
infinite discrete sum. Similar extensions of dissipation inequalities are formulated for
nonsmooth Lagrangian systems with frictionless unilateral constraints and impacts
(see Sect. 7.5.3 and also [218, p. 382]). An extension of impulsive ODEs is proposed
in [460], which may be seen as an extension of the impulsive systems studied in
[494, Eqs. (2.25) (2.26)], and of the Impulsive Differential Inclusions (IDIs) –where
ẋ(t) = f (t, x(t)) is replaced by ẋ(t) ∈ F(t, x(t)) in (1.31) studied in [123]. The
generic form of these IDIs (that one may name “hybrid systems”) is

{
ẋ(t) ∈ F(x(t)) if x(t) ∈ C
x(t+) ∈ G(x(t)) if x(t) ∈ D,

(1.36)

where C and D are closed sets of Rn , F(·) and G(·) are outer semicontinuous
set-valued mappings, respectively locally bounded on C and D9 F(x) is convex

9A multivalued mapping F : R
n ⇒ R

n is said outer semicontinuous, if its graph {(x, y)|x ∈
R
n, y ∈ F(x)} ⊂ R

2n is closed. It is locally bounded on C if for each compact set S ⊂ C one has
F(S) bounded.

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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and nonempty for each x ∈ C , G(x) is nonempty for each x ∈ D. Existence,
uniqueness, continuous dependence, and stability of solutions are analyzed in [460].
Similar models of hybrid dynamical systems are considered in [68, 494]. As we
shall see later, all these mathematical formalisms are in fact unable to correctly
model mechanical systems subject to unilateral constraints and impacts (despite the
bouncing ball is always chosen as an illustrative example inmost articles). Indeed they
donot encapsulate the fundamental feature of unilaterally constrained systems,which
is the possible change of system’s dimension along the trajectories. This particular
feature, which is long well-known in mechanics and is also present in sliding mode
control, calls for other models involving the contact forces and complementarity
conditions, which in turn may be equivalently written with variational inequalities,
or specific differential inclusions whose right-hand sides are normal cones to convex
(or non-convex) sets. Normal cones cannot be taken into account neither in the setsC
or D, not in the locally bounded set-valued maps F(·) or G(·). See also Remark5.12
for a similar comment and Sect. 7.5.4.

1.3 Systems Subject to Unilateral Constraints

1.3.1 General Considerations

We have for the moment considered the impacts on the system as purely exogenous
signals having a particular form, namely a sequence of Dirac measures which we
named impulsive forces. This is in fact closely related to unilateral constraints.
Before going on with the relationships between such constraints and impulses, let us
define what is meant by a unilateral constraint.

Definition 1.8 Let a Lagrangian mechanical system be described by a set of gener-
alized coordinates q ∈ R

n , and let fi (q) = 0, i = 1, . . . ,m, be smooth submanifolds
of codimension 1 in the configuration space of the system, such that ∇ fi (q) �= 0 in
the neighborhood of fi (q) = 0. Then the inequality f (q) ≥ 0 defines a domain of the
configuration spaceQ, namelyΦ = {q ∈ Q| f (q) ≥ 0} = ∩m

i=1{q ∈ Q| fi (q) ≥ 0},
where the system is constrained to evolve. The domain Φ is named the admissible
domain, and is said to be finitely represented. The functions fi (q) are named the
gap functions. The unilateral constraint fi (q) ≥ 0 is said active if fi (q) = 0, and
inactive if fi (q) > 0.

Such unilateral constraints are sometimes called holonomic unilateral constraints
[466]. Note that there is no reason to havem < n: a simple object in a room is usually
constrained by several hundreds of surfaces (although in the modeling process one
often neglects most of them). For the definition of a submanifold, we refer the reader
to [3, 60, 533]. Roughly, if the ambient space is of dimension n, a submanifold of

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_7
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codimension m10 is simply a surface of dimension n − m (if m = 1 one speaks
of a hypersurface) that is embedded into the theoretical setting of manifolds, i.e.
is endowed with a special local coordinates structure (a manifold is a set which
has locally the structure of a Euclidean space, with linear coordinates). Smooth
submanifolds are those that admit a tangent space at each point q. We impose here
that the gradient of f (q)bedifferent fromzero at eachpoint of the submanifold, hence
the normal direction to the surface of constraint is well defined. This is important
when we consider the generalized interaction forces acting from the constraint on the
system (see Sect. 4.1.3). Note that we can also consider time-varying submanifolds
f (q, t) = 0, provided f (q, t) is continuous in t . Indeed it is important that at the
collision times, continuity with respect to t holds. Otherwise the normal direction to
the constraint surface may have a discontinuity at the same instant as bodies strike,
and this poses difficulties for the definition of the system’s evolution at the impact
(see Chap.6).

Remark 1.4 1. The unilateral constraints can be in general formulated either as
f (q) ≥ 0 or as g(q) ≤ 0. In the first case the normal vector ∇ f (q) ∈ R

n points
outwards the constraint surface. In the second case ∇g(q) points inwards. It is
therefore not very important to adopt one or the other convention. However, one
should be aware of that fact to compute the admissible normal interaction forces
or impulsions.

2. Constraints must be associated with contact forces. A contact model has to be
settled to define these forces. The so-called complementarity conditions will be
chosen in the sequel. They are introduced in Example 1.6 on a simple system,
together with some transformations using convex analysis, which show that the
dynamics may be expressed in various ways.

Example 1.6 (Cable-mass system) Consider as in Fig. 1.3a the system made of a
mass m attached at a point O with coordinate y(t) by a massless inextensible cable
of length L . The cable can transmit tensile forces, but negligible compressive forces
to the mass. This is a very simple example of a cable network [643], or of a cable-
driven system [395], or of a tensegrity structure [1061], or of tethered space systems
[551]. For the sake of simplicity, we assume a one-degree-of-freedom system with
vertical motion, and themass coordinate is x(t). The force exerted by the cable on the

10The codimension of a submanifold (a surface) is the difference between the dimension of the
ambient space and the dimension of the submanifold [60]. Recall that there are three ways of
defining a surface S of dimension n − m in an ambient space of dimension n [359]. We make use
only of one of them, which consists of defining S through m relationships like fi (q1, . . . , qn) = 0.

A non-singular point q0 is such that the Jacobian matrix
(

∂ f
∂q (q0)

)
∈ R

m×n has rank m. Then

the three definitions are equivalent in a neighborhood of q0. The codimension of the intersection
S1 ∩ S2 is the sum of the codimensions of S1 and S2, provided the intersection is transversal, (i.e.,
the tangent hyperplanes to each one of the surfaces at the intersection span the whole ambient space
[487, p. 50]. The reader can think of two planes in R

3 (codimension 1 surfaces): either they are
parallel, or they intersect transversally and the intersection is a straight line whose codimension
is 2).

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_6


1.3 Systems Subject to Unilateral Constraints 21
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Cable-mass system.
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Input-state characteristics (with and without cable stiffness).

Fig. 1.3 Mass suspended to a cable

mass is denoted λ(·). When the distance between the mass and O is strictly smaller
than L , the cable exerts no force on the mass. This is translated mathematically to:
λ(t) = 0 if x(t)−y(t) < L . On the other hand, if x(t)−y(t) = L , then the cablemay
exert a non zero force on the mass, moreover due to the tensile force transmission
assumption, this force is signed: λ(t) ≥ 0. The dynamics of the mass is therefore
written as:
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{
mẍ(t) = −λ(t) + F(t)
λ(t) ≥ 0, f (x(t), t) = L − x(t) + y(t) ≥ 0, λ(t) f (x(t), t) = 0,

(1.37)

where F(t) is some bounded external force applied on the mass (could be gravity).
The conditions in the second line of (1.37), which we rewrite compactly as

0 ≤ λ(t) ⊥ f (x(t), t) = L + y(t) − x(t) ≥ 0, (1.38)

are called complementarity conditions. They will be introduced more deeply in other
chapters. When the cable passes from the non-elongated state (x(t) < L) to the
maximum length state (x(t) − y(t) = L) an impact may occur. We will come back
on this in Sect. 1.3.1.2. Notice that the complementarity conditions (which are some
kind of nonsmooth constraints) have been derived from mechanical modeling, and
are quite natural if one admits that the above observations are reasonable. Readers
who are familiar with optimization know that complementarity conditions may stem
from the KKT conditions of optimality. Here no such conditions have been used,
only physical observation motivated (1.38). We may use the material in Sect.B.2.1
in order to rewrite (1.37) equivalently as a differential inclusion

mẍ(t) − F(t) ∈ NR+(L + y(t) − x(t)), (1.39)

where λ(t) ∈ −NR+(L + y(t)− x(t)) may be viewed as a selection of the set-valued
right-hand side. If there is a force u(t) exerted at O on the cable, and since the
string is supposed to be massless, one gets λ(t) = −u(t). The two variables y(t)
and u(t) can therefore be used to control the system. The inclusion u(t) ∈ NR+(L +
y(t) − x(t)) = −N(−∞,L+y(t)](x(t)) ⇔ L + y(t) − x(t) ∈ NR−(u(t)) ⇔ x(t) ∈
{L + y(t)} + NR+(−u(t)) ⇔ −u(t) ∈ N(−∞,L+y(t)](x(t)) represents a particular
constraint on the input. The graphs of both set-valued mappings −u(t) �→ x(t)
and x(t) �→ −u(t) are depicted in Fig. 1.3b. This is a simple case of set-valued
mapping inversion, using (B.16). Both mappings x �→ −u ∈ N(−∞,L+y(t)](x) and
−u �→ x ∈ {L + y(t)} + NR+(−u) are maximal monotone for fixed y(t) (see
Definition B.8). It is noteworthy that the dynamics is equivalently rewritten as the
differential inclusion

mẍ(t) − F(t) ∈ −N(−∞,L+y(t)](x(t)). (1.40)

As alluded to above, one has to complete this model with a suitable impact law. This
will further transform (1.40) into a measure differential inclusion, a topic treated in
Chaps. 2 and 5.

Remark 1.5 According to the model, the cable attains its maximum length if
u(t) < 0. If one wants to achieve control without impact or transitions from max-
imum length to slack state, then necessarily one has to guarantee that u(t) < 0 for
all times. A good controller may however be designed to be robust with respect to
detachment from the constraint and impacts.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Let us now end this example by adding some unilateral linear spring with stiffness
kc > 0 in the cable. The force exerted by the cable on the mass is then given by
λ(t) = 0 if x(t) ≤ L+ y(t) and λ(t) = kc(x(t)− L− y(t) if x(t) ≥ L+ y(t), which
is a piecewise-linear (hence nonlinear!) function of x . Still using u(t) = −λ(t), one
finds that−u(t) = max[0, kc(x(t)−L− y(t))], or equivalently−u(t) is the solution
of the linear complementarity problem (LCP)

0 ≤ −u(t) ⊥ −u(t) − kc(x(t) − L − y(t)) ≥ 0, (1.41)

(this can be checked by simple inspection). This is depicted in Fig. 1.3b. An
interesting point is that the case with cable stiffness may be interpreted as the
Yosida approximation, or regularization, of the above maximal monotone map-
pings with infinite rigidity (see Definition B.9 and Figs. B.2, B.4 for examples
of Yosida approximations). From the LCP (1.41) and using (B.19) we obtain
−u(t) ∈ NR+(−u(t)− kc(x(t)− y(t)− L)) which is equivalent still using (B.19) to
−u(t) ∈ kc(x(t)− y(t)−L)−∂ψ�

R+(−u(t)), whereψ�
R+(·) is the conjugate function

of the indicator of R+ (see Definition B.11), known as the support function of R+.
Another, equivalent formulation is −u(t) = max(0, kc(x(t)− L − y(t)), which may
also be obtained from (B.21) using the projection. Thus the cable-mass system’s
dynamics with stiff cable is

mẍ(t) = F(t) − max(0, kc(x(t) − L − y(t)), (1.42)

which is a piecewise-linear dynamical system with Lipschitz continuous, single-
valued right-hand side.11 In this simple casewe have thatψ�

R+(·) = ψR+(·). Therefore
−u(t) ∈ kc(x(t) − y(t) − L) − ∂ψR+(−u(t)), and proceeding similarly x(t) ∈
1
kc

(y(t) + L) − 1
kc
u(t) − NR+(−u(t)).12 This last equivalence could also be seen as

a consequence of (B.16). Existence of solutions for the cable-mass system may be
analyzed with the material of Sect. 2.4, in particular Theorem 2.1. It is also possible
to embed its dynamics into the so-called Moreau’s sweeping process that is the topic
of Sect. 5.2. The yoyo dynamics is similar to the cable-mass system [624, Eq. (2)].
From a control perspective, one has to choose a control input: should it be y(t) in
(1.37), or the multiplier λ (the tension in the cable)?13

Remark 1.6 (Nonsmooth Potentials) It is interesting to interpret the indicator func-
tionU : x �→ U (x) = ψ(−∞,L+y(t)](x) as a nonsmooth potential function associated
with the contact force λ, since λ ∈ ∂U (x) = ∂ψ(−∞,L+y(t)](x) = N(−∞,L+y(t)](x).14

11It is noteworthy that the system in (1.39) or (1.40) may also be seen as a piecewise-linear system,
however not single-valued due to the vertical branch in the graph of the right-hand side set-valued
function.
12From Definition B.7 we may use either the subdifferential of the indicator function, or the normal
cone.
13This may be justified for massless or near-massles cables, where the force exerted on one side of
the cable equals the tension in it.
14Such potentials were introduced by J.J. Moreau who called them superpotential functions [879].

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Using (B.16) this is equivalently rewritten as x ∈ ∂ψ�
(−∞,L+y(t)](λ) with

ψ�
(−∞,L+y(t)](·) the conjugate function of the indicator function of (−∞, L + y(t)],

that is the support function of this interval. Inverting the potential function one has
x : U �→ x(U ) = ψ�

(−∞,L+y(t)](U ) = +∞ if U < 0, and (L + y(t))U if U ≥ 0.
The Moreau–Yosida approximation of the potential function is Uλ(·) which corre-
sponds to the potential associated with the cable with stiffness, choosing λ = 1

kc
in

Definition B.9 (ii). It is equal to Uλ(x) = 0 if x ≤ L + y(t) and x2

2λ if x > L + y(t).
This proves that forbidden displacements x which violate the unilateral constraint,
create infinite potential U (x). Contact forces for the compliant model are given by
the Yosida approximation of the mapping ∂U (·) which is depicted in Fig. 1.3b. The
Moreau–Yosida approximation of the inverse potential x(U ) is xλ(U ) = (L+y(t))U
if U ≥ 0, and 1

2λU
2 if U < 0. This shows that negative potentials create infinite

displacements.

Remark 1.7 (Multivalued Stiffness) The stiffness may be seen as the gradient of the
contact forcewith respect to the indentation, or displacement. In case of the unilateral
linear spring, the characteristic (x,−u) of the Yosida approximation in Fig. 1.3b is
not differentiable at x = L + y. However, it is subdifferentiable and it admits
subgradients everywhere. Using the example of function f4(·) after Definition B.11
in Appendix B, one finds ∂λ(x) = 0 if x < L + y, −kc if x > L + y, and [−kc, 0]
if x = L + y. The stiffness of the unilateral spring is therefore, mathematically
speaking, set-valued at the point (−u, x) = (0, L + y) of its graph.

1.3.1.1 Loss of Linearity

One of the main consequences of the addition of unilateral constraints on a system
is that even if the unconstrained dynamics is linear, i.e.,

ẋ(t) = Ax(t) + Bu(t), (1.43)

x(t) ∈ R
n , the complete system with a set of m inequalities (i.e., C ∈ R

m×n):

Cx(t) ≥ D, for all t ≥ 0, (1.44)

defines a nonlinear system. Systems as in (1.43) and (1.44) are sometimes called
convex systems. If x(t) = ϕ(t; x0, u0) and z(t) = ϕ(t; x1, u1) are time-continuous
solutions of the controlled system in (1.43) and (1.44), then for all λ ∈ [0, 1],
w(t) = λx(t)+ (1−λ)z(t) is a time-continuous solution also [321]. They are called
convex conical if D = 0. The time-continuity is crucial in this definition. Indeed we
shall see that the unilateral constraints generally involve state discontinuities. Then if
x(t) possesses such a jump, there is no reason for w(t) to be a solution of the system,
as the jump will not occur at a contact time for z(·).
It is not difficult to understand where the nonlinearity comes from: indeed the solu-
tions of such systems possess (see Sect. 1.3.1.2) discontinuities at certain times tk .
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In turn, the tk’s are in general nonlinear functions of the initial conditions. Hence the
superposition principle for linear systems no longer holds. This may also be seen
by noting that if these systems were linear, then ϕ(t; λx0, λu0) would be equal to
λϕ(t; x0, u0). Now there is no reasonwhy λϕ(t; x0, u0) should be a solution of (1.43)
plus (1.44) for any λ ∈ R (think of the case C = I , D = 0 and take λ = −1). We
shall retrieve the nonlinearity whenwe deal with impact Poincarémaps (see Chap. 7).
Then the main and fundamental discrepancy between the classical discretization of
linear or nonlinear systems, and the calculation of such Poincaré maps lies in the
fact that the “sampling” times for the latter are (nonlinear) functions of the system’s
state. This introduces much difficulty in the dynamical analysis. Even in apparently
very simple cases, it is impossible to calculate explicitly the Poincaré map, whose
dynamics may display a very complex behavior.

1.3.1.2 The Collisions

Important events in the dynamics of a mechanical system submitted to unilateral
constraints are the collisions, which occur at some time instants that we denote
generically tk , k ∈ N. Those times are defined such that for some δ > 0, f (q(t)) >

0 for t ∈ [tk − δ, tk), and f (q(tk)) = 0 with q̇(t−k )T∇ f (q(tk)) < 0. Consider
Example1.6. When the string attains its maximum elongation at a time tk with a
positive velocity of the mass ẋ(t−k ) > 0, then an impact has to occur which reverses
the velocity sign to ẋ(t+k ) ≥ 0. Otherwise the string would exceed its maximum
length, which is not allowed in this model. In the general setting of a Lagrangian
system with a frictionless unilateral constraint f (q) ≥ 0, a necessary and sufficient
condition for the interaction force not to be impulsive is that q̇(t−k )T∇ f (q)(tk) = 0 at
the time when contact is established. If the generalized velocity q̇(·) points outwards
the admissible domain Φ at t = tk , i.e., ∇ f (q(tk))T q̇(t−k ) < 0, then a jump has to
occur in q̇(·) at tk in order to keep the trajectory insideΦ, with∇ f (q(tk))T q̇(t−k ) ≥ 0.
From the analysis we led in Sect. 1.1, we infer that theremust exist an impulsive force
in the right-hand side of the dynamics since the acceleration is a Dirac measure.
Suppose now that the system has never been in contact with the constraint, so that
the first impact time t0 is implicitly given by the equation:

f ◦ ϕq(t0; τ0, u0) = 0, (1.45)

where ϕq(t; τ0, u0) = q(t) is the solution at time t of the dynamical equation before
the impact at t0 with the vector field G(u), starting at u0 = (q0, q̇0) with q0 = q(τ0),
q̇0 = q̇(τ0) and with f (q0) > 0. The vector field G(u) between the impacts can
be supposed to be smooth, so that all smoothness properties for solutions of ODEs
hold. Assume the constraint is of codimension one (hence f (·) is smooth in the
region of interest, see Definition 1.8). Assume also that the equation in (1.45) pos-
sesses at least one solution t0, τ0, q0, q̇0: notice that existence of an impact time
depends on G(u) and on the constraint. Equation (1.45) provides us with a rela-
tionship between t0, τ0, q0 and q̇0, which we can denote as h(t0, τ0, u0) = 0. We

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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study this relationship and assume that ∂h
∂t0

exists for all t0, independently of the fact
that the solution ϕq will not be differentiable at t0, but rather possess a left and a
right bounded derivatives. We can use the implicit function theorem [262, 533] to
deduce that provided ∂h

∂t (t0) �= 0, then there is a smooth enough function g(·) such
that g(τ0, u0) = t0, and this relation is valid in a neighborhood of τ0, u0. In other
words the set h−1(0) = {(t, τ, q, q̇)|h(t, τ, q, q̇) = 0} is a smooth hypersurface of
the (2n + 2)-dimensional space of t, τ, q, q̇ , in the neighborhood of t0, τ0, q0, q̇0,
defined by the equation t = g(τ, q, q̇). Hence the impact time t0 clearly depends
continuously on the initial data under the stated assumptions.15 Notice that it makes
no sense to let τ0 tend towards t0 this time, contrarily to what we did in Sect. 1.2 to
show discontinuity of the solution of a simple MDE with respect to the initial time.
Given initial state data and the dynamics, necessarily t0 ≥ τ0, while t0 = τ0 if the
system is initialized on the constraint f (q) = 0.

Example 1.7 Consider the dynamics of a ball falling under the influence of gravity
on a rigid ground, i.e., q̈(t) = −g and the unilateral constraint q(t) ≥ 0 for all
t ≥ 0. Then ϕq(t; τ0, q0, q̇0) = − g

2 (t − τ0)
2 + (t − τ0)q̇0 + q0. Equation (1.45)

is h(t0, τ0, q0, q̇0) = − g
2 (t0 − τ0)

2 + (t0 − τ0)q̇0 + q0 = 0 which possesses two
solutions. Only one of them is of interest, such that t0 ≥ τ0, and is given by t0 =
min

{
2
q̇0±

√
q̇2
0+2gq0
g

}
+ τ0. Hence if q0 = 0 one gets t0 = τ0. It is easily checked that

∂h
∂t (t0) = −g(t0 − τ0) + q̇0 �= 0, except if q0 = q̇0 = 0 (then we have a so-called
grazing trajectory), so that the implicit function theorem applies in a neighborhood
of the root of h(t0, τ0, q0, q̇0) = 0. In this case the function g(τ, q, q̇) is defined
globally.

Remark 1.8 One of the differences between systems with unilateral constraints, for
which the jump times are defined from an equation as in (1.45), and systems as in
(1.31), is that for the former the jump times will often be defined implicitly only in
terms of the state (as solutions of unsolvable transcendental equations). Additionally,
the state of (1.31) is not a priori restricted to a subset of the state space, and the
dynamics is not of the variable structure type. This will be important when dealing
with various problems like mathematical analysis, stability, control, and simulation.

1.3.2 Flows with Collisions (Vibro-Impact Systems)

Let us assume that themechanical systemswe dealwith have one unilateral constraint

and they undergo a series of collisions {tk}k≥0, t∞
Δ= limk→+∞ tk , separated by

15In general, the equation in (1.45) possesses several real solutions, and one has to decide which one
is the right , e.g., the bouncing ball case in Chap.7, Eq. (7.7). In the degenerate case, the trajectories
in a neighborhood of t0 are on the manifold ∂h

∂t (t0) = 0, h = 0, f (q) = 0 and are tangent to the
surface f (q) = 0 [140]: those orbits are grazing trajectories.

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_7
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unconstrained phases where f (q(t)) > 0. Let u
Δ=
(
q
q̇

)
. The dynamical equations

can be written as
⎧⎪⎪⎨
⎪⎪⎩

u̇(t) = G(u(t)) if t �= tk
σq̇(tk) = Jk

(
q̇(t−k )

)
if t = tk

f (q(tk)) = 0, ∇ f (q(tk))T q̇(t−k ) < 0,
∇ f (q(tk))T q̇(t+k ) ≥ 0.

(1.46)

for some vector field G(·). This mimics (1.31), however the complete state jump
mapping comprises the last three lines of (1.46) and is therefore more complex. It is
crucial to see that without any further modeling, the solutions of (1.46) exist for all
t ≤ t∞. If t∞ < +∞, then solutions fail to exist globally in time, in a similar way to
(1.31). Persistent contact phases (that correspond to a static equilibrium in case of
Example 1.6) are not modeled. In the literature such systems are often called vibro-
impact systems. From the second line of (1.46)we obtain q̇(t+k ) = q̇(t−k )+Jk

(
q̇(t−k )

)
:

this is a restitution mapping.

1.3.2.1 Definition

A natural mathematical interpretation of (1.46) is the concatenation of flows and
mappings: the flows represent the dynamics between the impacts,16 and the map-
pings are for the relationships between pre and postimpact velocities. We shall study
in detail such mappings which are called restitution rules, in Chaps. 4 and 6. The ter-
minology flows with collisions is from [1274]. In practice they occur in vibro-impact
systems, juggling robots or running bipeds when no persistent contact phases occur
(thus there is no variation of the state space dimension).
As we shall see in Chap.2, Sect. 2.4, and in Chap.5 with the sweeping process
formulation, it is possible to define a tangent cone to the constraint, that we denote
following [894] as V (q): roughly speaking, this is the half subspace delimited by the
hyperplane tangent to the hypersurface f (q) = 0, “inside” the admissible domain
Φ (see Appendix B for details, Definitions B.2 and B.6). The negative half subspace
is denoted as −V (q).
When an impact occurs at tk , then q̇(t−k ) ∈ −V (q(tk)). After the collision, q̇(t+k ) ∈
V (q(tk)). Hence the collision mapping Fq(tk ),k at t = tk is defined as

16Recall that given an ODE: ẋ(t) = f (x(t)), its flow is a smooth function of t and x0 = x(τ0),
denoted as ϕt (x0), such that ∂ϕt (x0)

∂t = f (ϕt (x0)) and with ϕτ0 (x0) = x0. In other words, a vector
field f (x) allows the construction of a flow, and the flow is an integral curve of f (x) (then f (x) is
said to generate the flow ϕt (x0)). A flow may be local or global, and possesses several properties,
like invertibilty: ϕ−1

t (x0) = ϕ−t (x0), and the autonomy (or semi-group) property: ϕt+s(x0) =
ϕt (ϕs(x0)). There is a bijective relation between the set of flows and that of generating vector fields.
This means that given a priori a flow, there is one and only one vector field that generates it.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5


28 1 Impulsive Dynamics and Measure Differential Equations

Fq(tk ),k : bd(Φ) × {−V (q(tk))} → bd(Φ) × V (q(tk))

(
q(tk)
q̇(t−k )

)
�→
(
q(tk)
q̇(t+k )

)
= u(t−k ) + Jk

(
u(t−k )

)
.

(1.47)

We shall assume that the Fq(tk ),k’s are continuous and autonomous mappings (i.e.,
the state postimpact value depends only on the state preimpact value). They will not
always be invertible for some sort of collisions (named purely inelastic, or soft, or
plastic). They may also be defined implicitly only. Note that they are local in nature,
because the form of the mapping depends on the system’s generalized position at
the impact time. In other words, the part of the generalized velocity that jumps at
the collision may be modified from one impact to the other, similarly to the tangent
cone V (q). We shall also denote Fq(tk ),k as Fk for simplicity. Let us denote the
flow17 during flight times, defined by G(u), as ϕτ−τ0(u0). It can be defined either as a
mapping fromΩ � (τ, u) intoR2n [533], or as amapping fromR

2n intoR2n [61].We
adopt the latter definition. ϕ0 is the identity map, i.e. ϕ0(u0) = ϕ(τ0; τ0, u0) = u0.
Note that τ in ϕ(τ ; τ0, ·) may denote either the elapsed time from τ0, so that the
solution is evaluated at the absolute time t = τ + τ0, or the absolute time measured
from 0. In general (see [262, 533]) one takes τ0 = 0 so that the absolute value of time
and the elapsed time are equal. These are matters of convenience. We shall assume
in the following that the first argument in ϕ(·; ·, ·) is the absolute value of time, so
that u(t) = ϕ(t; ·, ·) for any initial data.
Just after the first shock, the solution is given at t = t+0 by

u(t+0 ) =
(
q(t0)
q̇(t+0 )

)
= F0

(
ϕq(t0; τ0, u0)
ϕq̇(t

−
0 ; τ0, u0)

)
= F0 ◦ ϕt−0 −τ0

(u0). (1.48)

Recall that f ◦ ϕq(t0; τ0, u0) = 0. Notice that the expressionFk ◦ ϕt−τ0(u) is mean-
ingful as soon as t is a collision time. The solution u(t) is obtained by the time-
concatenation of the successive values of ϕ(·; ·, ·) considered as a function of time
from τ0 to t−0 , t

−
0 to t+0 , t

+
0 to t−1 ,…. In terms of flow we have the composition

ϕ (t; τ, ϕ(τ1; τ0, u0)) = ϕt−τ

(
ϕτ1−τ0(u0)

) = ϕt−τ ◦ ϕτ1−τ0(u0).
Now during the flight time after the first shock, i.e., on an interval (t0, t0+δ) for some
δ > 0, the solution continues to evolve with new initial data q(t0), q̇(t+0 ) according
to the vector field G(u). The solution on this interval is given by ϕ(t; τ0, u0) =
ϕ(t; t+0 , u(t+0 )) = ϕ(t; t+0 ,F0 ◦ ϕ(t−0 ; τ0, u0)). With the above notation ϕ0

t−τ0
(u0) =

ϕt−t+0 (u(t+0 )) = ϕt−t+0

(
F0 ◦ ϕt−0 −τ0

(u0)
)

= ϕt−t+0 ◦F0 ◦ϕt−0 −τ0
(u0). The superscript

in ϕ0
t−τ0

is to indicate for themoment that this denotes the solution after one shock has
occurred. Proceeding similarly, after the second shock at t1, we canwrite ϕ1

t−τ0
(u0) =

ϕt−t+1 ◦ F1 ◦ ϕt−1 −t+0 oF0 ◦ ϕt−0 −τ0
(u0) = ϕt−t+1 ◦ F1 ◦ ϕ0

t−τ0
(u0). We denote now

the solution on (tk, tk+1) starting at (τ0, u0) as ϕc
t−τ0

(u0) = ϕk
t−τ0

(u0). Note that
ϕc
0(u0) = ϕ0(u0) = ϕ(τ0; τ0, u0) = u0 is the identity mapping. The candidate flow

17It is justified to speak of the flow between impacts since the dynamics is smooth on those period.



1.3 Systems Subject to Unilateral Constraints 29

with collisions ϕc
t (u0) is thus defined on (tk, tk+1) with τ0 = 0 as

ϕc
t (u0) = ϕt−t+k ◦ Fkoϕt−k −t+k−1

◦ Fk−1 ◦ ... ◦ ϕt−2 −t+1 ◦ F1oϕt−1 −t+0 ◦ F0 ◦ ϕt−0 (u0)

= ϕt−t+k ◦ Fk ◦ ϕk−1
t−k

(u0),

(1.49)
that is:

ϕc
t : R2n → bd(Φ) × {−V (q(t0))} → bd(Φ) × V (q(t0)) → bd(Φ) × {−V (q(t1))} → . . .

→ bd(Φ) × {−V (q(tk))} → bd(Φ) × V (q(tk)) → R
2n

u0 �→ ϕ(t−0 ; 0, u0) �→ ϕ(t+0 ; 0, u0) �→ ϕ(t−1 ; 0, u0) �→ . . . �→ ϕ(t−k ; 0, u0)

�→ ϕ(t+k ; 0, u0) �→ ϕ(t; 0, u0).
(1.50)

1.3.2.2 The Semi-Group Property

Recall that in order to prove that the solution ϕ(t; τ0, u0) defines a flow, we must
prove that the autonomy (or semi-group) property [262] is satisfied, i.e., the solution
(∈ R

2n) satisfies ϕ(t2+t1; 0, u0) = ϕ(t2; t1, ϕ(t1; 0, u0)) for all t2 and t1: the solution
at time t2 + t1, starting at t = 0, with initial condition u0, and the solution at time
t2 with initial condition ϕ(t1; 0, u0), coincide. Equivalently the semi-group property
can be stated as ϕ(t1; t0, u0) = ϕ(t1 − t0; 0, u0). The solution at time t1 starting at
time t0 with initial data u0, is equal to the solution at time t1−t0, starting at t = 0 with
the same initial state data, for any t0, t1. Of course two such solutions are not equal in
the extended state space � (x, t), but their orbits are equal in the state space (see e.g.,
[497, Fig. 4.5]). Uniqueness of solutions is the key property (and in turn, uniqueness
is implied by continuous dependence on initial conditions). In otherwords, autonomy
means that the absolute value of the initial time is not an important notion. It is rather
the elapsed time which has to be considered to compute the solution from a set of
initial data18 [61]. For the sake of simplification of the notations, in the following we
shall denote ϕ(t; 0, u0) as ϕ(t, u0). Our goal is therefore to show that if ϕ(t + τ, u0)
and ϕ(t, ϕ(τ, u0)) are two solutions of the system, they are equal for all t ≥ 0. The
first impact time t0 is given by f ◦ ϕq(t0, u0) = 0. Note that f ◦ ϕq(t + τ, u0) = 0
for t + τ = t0, i.e. t = t̄0 = t0 − τ .
If τ ≤ t0, then ϕ(t, ϕ(τ, u0)) jumps at t̄0 also, and ϕ(t̄−0 , ϕ(τ, u0)) = ϕ(t̄−0 + τ, u0)
because the equality is true before any jump occurs. We deduce the equality F0 ◦

18Clearly this property is not true in general for non-autonomous systems, since the initial vector
field, i.e., the slope of the curve (the orbit) in the two-dimensional case, changes if the initial time
changes. Therefore even if the initial state remains unchanged, there is no reason that after a certain
amount of time, both solutions coincide.
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ϕ(t̄−0 , ϕ(τ, u0)) = F0 ◦ ϕ(t̄−0 + τ, u0), i.e. ϕ0(t̄+0 , ϕ(τ, u0)) = ϕ0(t̄+0 + τ, u0) =
ϕc
t̄+0 +τ

(u0) = ϕc
t̄+0

◦ϕc
τ (u0). We deduce that ϕc

t+τ (u0) = ϕc
t ◦ϕc

τ (u0) for all t ≥ 0 (until
an eventual second impact occurs).
If τ > t0, the first impact time does not change but ϕ(τ, u0) has already jumped.
Hence we can attack the proof assuming that the semi-group property is true from
t = 0 until the second impact at t1, t1 > t0 and with f ◦ ϕq(t1, u0) = 0. Assume
that τ < t1. Then we can redo the same reasoning as above, replacing t0 by t1
and F0 by F1.
The reasoning can be extended for any τ > 0. The fact that both functionsϕ(t+τ, u0)
and ϕ(t, ϕ(τ, u0)) take the same values for all t and τ relies at each step that there
is a unique solution to the dynamical problem considered, for given initial data. As
we shall see in Chap.2, uniqueness for problems with unilateral constraints fails in
general if no restrictions are placed on the vector field G(u), on the hypersurface
f (q) and on the collision mapping energetical behavior (related to the invertibility of
Fk). We have assumed from the beginning that the vector field G(u) is autonomous.
This means that the possible external bounded actions on the system are constant
on [τ0,+∞). Theorem 5.3 in Chap.5 allows us to conclude that ϕc

t is a flow. It
is noteworthy that the time-independence of both the vector field and the collision
mapping is not sufficient to guarantee this result in general, as the conditions of
Theorem 5.3 show.
Contrarily to the case of autonomous ODEs, here ϕc

t (·) cannot be continuous in t . It
can be expected to be RCLBV (or piecewise continuous) in t . Furthermore in order
for ϕc

t to be a global flow, it must exist the inverse function
(
ϕc
t

)−1 = ϕc−t for all
t ≥ τ0. Invertibility of the Fk’s is then necessary, since one has

(
ϕc
t

)−1 = ϕc
−t = ϕτ0−t−0 ◦ F−1

0 ◦ ϕt+0 −t−1 ◦ . . . ◦ ϕt+k−1−t−k ◦ F−1
k ◦ ϕt+k −t . (1.51)

This places the dynamics of so-called soft or inelastic shocks (in a sense the shock
produces a maximal loss of kinetic energy) well apart from those of hard or elas-
tic shocks (the loss of kinetic energy is zero). For instance, in the case of the

bouncing ball, we get F (q(tk), q̇(t−k )) =
(
1 0
0 0

)(
q(tk)
q̇(t−k )

)
for the soft case, and

F (q(tk), q̇(t−k )) =
(
1 0
0 −1

)(
q(tk)
q̇(t−k )

)
for the elastic case.

1.3.2.3 Continuity of Solutions in the Initial Data

We have seen in Sect. 1.2 that the solutions of MDEs as defined in (1.15) are not con-
tinuous but of bounded variation in the initial time τ0. They are however continuous in
initial state data, and this is easily proved since the jump times are exogenous, hence
equal for any trajectory. What about continuity with respect to τ0, u0 of the solutions
ϕ(t; τ0, u0) of mechanical systems with unilateral constraints? Let us recall that we

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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assume a codimension one constraint, and that we suppose that solutions exist.19

Moreover continuity in the initial conditions implies uniqueness of solutions (but the
reverse is false: some nonsmooth mechanical systems possess unique solutions, yet
continuity in the initial data fails), so that non-uniqueness destroys the continuous
dependence.
On [τ0, t−0 ) continuity holds. Now at t+0 , ϕ(t+0 ; τ0, u0) = F ◦ ϕ(t−0 ; τ0, u0). From
the continuity of t0 in τ0 and u0, it follows that the last term can be written as
F ◦ m(τ0, u0) for some continuous function m(·, ·). Now since F is continuous,
it follows that ϕ(t+0 ; τ0, u0) is continuous in τ0 and u0. Therefore on (t0, t1), the
solution ϕ(t; t+0 , u(t+0 )) is also continuous in the initial data. Now the collision time

t1 is given by f ◦ϕ(t1; t+0 , u(t+0 ))
Δ= h1(t1, t0, u(t+0 )) = 0.Using similar arguments as

in Sect. 1.3.1.2 we deduce that t1 depends continuously on t0 and on u(t+0 ), hence on
τ0, u0. Thus on (t1, t2), ϕ(t; τ0, u0) = ϕ

(
t; t+1 ,F ◦ ϕ(t−1 ; τ0, u0)

)
. Since t1 depends

continuously on τ0, u0, the termF ◦ϕ(t−1 ; τ0, u0) is a continuous function of τ0, u0,
and so is ϕ(t; t+1 , u(t+1 )). Reiterating this reasoning, we deduce that the solution
depends continuously on τ0, u0 on intervals (tk, tk+1) � t .

The Jump-Times Mismatch: Let us now examine what happens at the jump
times. Let us further suppose first that tk+1 > tk + γ for some γ > 0, i.e., velocities
are piecewise time-continuous. In order for the solution to be a continuous function of
u at u0, it must be verified that for all t and for all τ0, for any ε > 0, there exists a δ > 0
such that for all u1 with ||u1−u0|| < δ, then ||ϕ(t; τ0, u1)−ϕ(t; τ0, u0)|| < ε. Let us
consider u0 such that f (q0) = 0 and q̇0 ∈ −V (q0), where the set V (q) is the tangent
cone to the admissible domainΦ at q0). In other words the system is initialized on the
constraint and with a velocity pointing outwardsΦ: a shock occurs at t0 = τ0 and the
solution ϕ(t; τ0, u0) jumps at τ0. Now consider u1 with f (q1) = μ > 0 and q̇1 = q̇0.
The solution may or may not jump, but anyway if it does, then it jumps at a time
t̄0 > t0 since the system has to attain the constraint. Hence ϕ(t; τ0, u1) is continuous
(in t) at t = t0. The quantity ||ϕ(t+0 ; τ0, u1) − ϕ(t+0 ; τ0, u0)|| thus cannot be made
arbitrarily small even for an arbitrarily small μ > 0. We conclude that for such a u0,
there exist ε > 0 and t ≥ τ0 such that for any τ0 and for any δ > 0, there exists u1
with ||u1 − u0|| < δ and ||ϕ(t; τ0, u1) − ϕ(t; τ0, u0)|| > ε. Another way of seeing
this fact is to consider sequences {un} that converge towards u0. Then ϕ(t; τ0, u) is
continuous at u0 if and only if, for any such sequence {un}, ϕ(t; τ0, un) converges
towards ϕ(t; τ0, u0), for all t ≥ τ0 and for all τ0. If this is true, then for all ε > 0, there
exists N > 0, N ∈ N, such that n > N implies ||ϕ(t; τ0, un) − ϕ(t; τ0, u0)|| < ε,
for all t, τ0. In particular this must hold at t = t+0 as defined above (the first time of
jump for ϕ(t; τ0, u0)). Consider for instance qn such that f (qn) = f (q0) + 1

n = 1
n .

Then clearly there exists ε > 0 such that for any N > 0, there exists n > N such
that ||ϕ(t+0 ; τ0, un) − ϕ(t+0 ; τ0, u0)|| > ε.
Notice that if we estimate the solutions at t ≥ t0 + α, α > 0, then it is always
possible to find u1 so close to u0 that ϕ(t; τ0, u1) has jumped before such t .

19Existence of solutions is a basic property, and we shall come back on existence results in the next
chapters (see Theorem 5.3). We take some freedom here with the mathematical logic, since our goal
is to highlight the differences between various sorts of measure differential equations.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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This is possible since the jump times depend continuously on the initial data. In
other words, ||ϕ(t0 +α; τ0, un)−ϕ(t0 +α; τ0, u0)|| can be made arbitrarily small by
taking n sufficiently large but finite. Indeed the first impact time t0,n associated with
the solution initialized at τ0 (i.e., un) can be made arbitrarily close to t0 by increasing
n. We retrieve the fact that if t �= t0, then the solution is continuous in u0. This
motivates us to define the closeness of two solutions as follows, where tk denotes the
discontinuities of ϕ(t; τ0, u0):

∀ ε > 0,∀ α > 0, ∃ η > 0 such that |t − tk | > α and ||u0 − u1|| ≤ η

⇒ ||ϕ(t; τ0, u0) − ϕ(t; τ0, u1)|| ≤ ε.

(1.52)

By letting u1 tend towards u0, both solutions become arbitrarily close one to each
other, except in a neighborhoodof their discontinuities. In conclusion the solutions are
continuous in the initial data, in the sense that limu1→u0 ϕ(t; τ0, u1) = ϕ(t; τ0, u0)
for all times outside the impact times. But the fact that basically the dynamical
system consists of flows and diffeomorphisms implies some modifications of the
“continuity” definition, taken from the continuous-time point of view only.

Remark 1.9 We shall retrieve in the definition of stability of trajectories (see Def-
inition 7.1) that two solutions cannot be arbitrarily close one to each other in the
neighborhood of the discontinuity times. Hence the classical Lyapunov stability def-
inition has to be modified. It is known (see [1229]) that the continuity with respect to
initial conditions and the stability are closely related, for solutions of ODEs. Hence
it is not surprising that both notions are related also for MDEs representing sys-
tems with unilateral constraints. The problem caused by impacts mismatch has been
noticed in a Lyapunov stability and trajectory tracking control context in [147, 221,
839] [730, pp. 124–125]. Indeed two trajectories with discontinuities may be close
one to each other in a graphical sense,20 while a mismatch as the above persists in
the neighborhood of impact times.

What happens now if the sequence {tk} is infinite and with a finite accumulation
point t∞? Although the above reasoning applies well for t < t∞, it is not clear how
we should study the behavior of the solution at t∞. Indeed the criterion in (1.52)
does not apply well in the limit as k → +∞, because it is no longer possible to
define neighborhoods of the impact times (α is strictly positive in (1.52)). One point
of view is to do a sort of time-scaling as follows. Since the sequence is infinite and
with t∞ < +∞, the flight times are bounded and the system’s state remains bounded
between each impact. Hence the total dynamics define (explicitly or implicitly) an
operator (or amapping) P : (u(t+k ), tk) �→ (u(t+k+1), tk+1).21 Let us denote (u(t+k ), tk)
as xk . Then xk = Pk(x0). We can therefore consider the finite collisions process as an
infinite discrete-time system in the k-time scale. From the above developments it is

20Consequently closedness of graphs with the Hausdorff distance may be the right notion [888].
21Which could as well be defined with preimpact values.

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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clear that xk
Δ= xk(x0) is continuous in x0 for all finite k. If it can be proved for instance

that the sequence of continuous functions {xk(·)} converges uniformly towards a limit
x(·), then x(·) is continuous. Clearly it is not sufficient that continuity holds for any
finite k to imply that it holds also at the limit, which might be discontinuous. Another
path might be to consider that if a finite accumulation exists in {tk} then the jumps
in q̇(·) vanish as k → +∞ since q̇(·) ∈ RCLBV . Hence the technical difficulties
mentioned above due to the discontinuities disappear when approaching the time t∞.

A Suitable Distance Function: These problems have been overcome for the one-
degree-of-freedom case in [1069] by replacing the state u = (q, q̇) by its equivalence
class u• = (q, q̇)• defined as follows (we assume that the unilateral constraint is
given by q ≥ 0): u1Ru2 if and only if { [u1 = u2] or [q1 = 0 and q̇1 < 0 and
q̇2 = −enq̇1] or [q2 = 0 and q̇2 < 0 and q̇2 = −enq̇1]}. The coefficient en ∈ [0, 1]
is a restitution coefficient, which we have not yet introduced but is needed at this
stage. In other words the pairs (q(tk), q̇(t−k )) and (q(tk), q̇(t+k )) are identified through
the equivalence relation R. Then continuous dependence with respect to the initial
data (t0, u0) is proved in the sense that if (t0n, u0n) converges towards (t0, u0) then
the equivalence class ϕn(·; t0n, u0n)• converges towards ϕ(·; t0, u0)•, uniformly on
compact subsets of [t0,+∞). The convergence is understood on R ×Ue, where Ue

is the quotient space22 of U = [0,+∞) × R � (q, q̇) by the equivalence relation
R, equipped with a suitable distance

de(u
•
1, u

•
2) = min[|q1 − q2| + |q̇1 − q̇2|, q1 + q2 + |ψ(q̇1) − ψ(q̇2)|], (1.53)

where ψ(q̇) =
{−enq̇ if q̇ < 0
q̇ if q̇ ≥ 0

}
. Uniqueness of solutions in Ue is also proved in

[1069]. This mathematical framework thus allows one to get rid of the above men-
tioned problems, at the price of more sophisticated mathematical tools. Interestingly
enough, a similar notion of hybrid distance (“hybrid” is for hybrid dynamical system)
is used in [147] for the design of feedback controllers for systems with state jumps.
Continuous dependence problems are more complex when the striked surface has
codimension ≥ 2, see Sect. 5.2.3 in Chap.5.

Remark 1.10 The MDEs formalisms in (1.23) and (1.31) are unable to model sys-
tems as in (1.46), except perhaps if one allows for an implicit definition of the velocity
jump tk(x) comprising the last three lines of (1.46). As pointed out in Sect. 1.2.4,
the MDE in (1.31) does not satisfy the semi-group property, and it is linear when
the vector field and mapping are: both properties are absent in (1.46), which may be
sufficient to convince oneself that “classical” MDEs and impulsive ODEs cannot
model mechanical systems with unilateral constraints and impacts, even if they do
not undergo variation of the state space dimension, ( i.e., there are no persistent con-
tact phases with bd(Φ) but only rebounds on bd(Φ)). The formalism in (1.36) has
been shown to encapsulate flows with collisions, see [460]. However since contact

22i.e., the space that consists of equivalence classes.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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34 1 Impulsive Dynamics and Measure Differential Equations

forces are absent from all these models,23 persistent contact with one or several con-
straints as well as static equilibrium are not modeled, and accumulations of impacts
cannot be passed. To be more specific, let us come back to Example 1.6. We can
learn at least two things from this simple example (see also Sects. 3.1.2 and (3.11)
for another basic example): (1) the complementarity model (1.38) is a quite natural
and ubiquitous contact force model, stemming from an extremely simple experimen-
tal observation (and it does not prevent the introduction of contact flexibilities, see
(1.41)), (2) it yields the dynamics represented by the differential inclusion (1.40),
whose right-hand side is a normal cone to a convex set. Suppose that y(t) is constant,
and let us rewrite this inclusion in a first-order setting ẋ(t) ∈ F(x(t)): the set-valued
right-hand side does not satisfy the basic assumptions listed after (1.36), as it is in
particular not locally bounded on the admissible domain Φ, being a non-trivial cone
on bd(Φ). Thus the set-valued right-hand side in (1.36) is not a suitable candidate
for selections which are contact forces.

1.3.3 Unilaterally Constrained Systems: A Geometric
Approach

Let us come back to the class of systems as in (1.43) and (1.44), with m = 1. In fact
we have mainly dealt in the foregoing paragraphs with mechanical systems. They are
however, only a subclass of systems as in (1.43) and (1.44) in the sense that only their
position is constrained, while any state component may be constrained in (1.44). We
deal with linear time-invariant systems in (1.43), the following developments apply
as well to nonlinear systems which are affine in the input [322]. It is therefore of
interest to investigate some general properties of the state space of such nonlinear
unilaterally constrained dynamical systems.Thedevelopments that followessentially
aim at understanding the behavior of the system on the set {x ∈ R

n|Cx = 0} and can
be considered as an extension of positive invariance theory for linear systems to this
class of restricted linear systems (which are nonlinear).24 This theory was developed
by ten Dam and co-workers in [322, 323].
The basic idea which is ubiquitous in systemswith unilateral constraints is to observe
the evolution of the derivatives of the “output”

di y

dt i
= y(i) = Cx (i) = CAiϕ(t; τ0, x0, u) + CAi−1Bu + · · · + CBu(i−1)

23To be more specific: the set-valued right-hand side in (1.36) is not a suitable set for contact forces
that stem from a complementarity modeling.
24Positive invariance theory is a field of control theory that deals with the invariance of polyhedral
sets under linear- state feedback.

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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on the set {x ∈ R
n|y = Cx = 0} = Ker(C). To this end let us define the mappings:

hi : Ker(C) × U N → R

(x, u) �→ CAiϕ(t; τ0, x0, u) +∑i
j=1 CA j−1Bui− j ,

(1.54)

where ui ∈ U N are smooth functions of time, (i.e., they are infinitely many times
differentiable) or maybe piecewise smooth. The function ϕ(t; τ0, x0, u) denotes the
solution of the systemwith input u, initial data τ0 and x0, at time t . If ui = u(i)(·) then
clearly hi (x(t), u(t)) = y(i)(t). The objective is to study subsets of Ker(C) in which
there exists a controller such that the trajectories can attain these subsets in a smooth
way, or transversally, or if they remain in them, or if they go through the boundary.
The study is led by assuming first that the constraints are purely mathematical (or
virtual). Then one proceeds to see how collision mappings may be introduced.

Definition 1.9 [323] Let us define the following characteristic numbers:

r : Ker(C) × U N → N ∪ {∞}
(x, u) �→ min[i ∈ N|hi (x, u) �= 0]

rc : Ker(C) → N

x �→ min[i ∈ N| ∃u ∈ U N : hi (x, u) �= 0]

r0 = min[i ∈ N|CAi−1B �= 0],

(1.55)

(when C ∈ R
1×n , r0 is the relative degree of the system with scalar “output” y = Cx

and input u).

Example 1.8 As an example let us consider the chain of integrators ẋ1(t) = x2(t),
ẋ2(t) = x3(t), ẋ3(t) = u(t), x1 ≥ 0. Then r0 = 3, and Ker(C) = {x ∈ R

3|x1 =
0}. Since r(x, u) is defined from Ker(C) × U N, in the following x1 = 0 always;
when not mentioned the other state variables are different from 0. Thus r(x, u) =
1, r(x2 = 0, u) = 2, r(x = 0, u) = 3, r(x = 0, u = 0) = +∞, r(x = 0,
u(i) = 0, ∀ 0 ≤ i ≤ k) = k + 4, rc(x) = 1, rc(x2 = 0) = 2, rc(x = 0) = 3.

Let us introduce the following sets, which are subsets of Ker(Cx):

Definition 1.10 [323] The contact setXcon and release setXrel are defined as

• Xcon = {x ∈ Ker(C)|∃ϕ(·; τ0, x0, u) and ∃ t� such that x0 = x and Cx(t) =
Cϕ(t; τ0, x0, u) > 0, ∀ t : t� < t < τ0}.

• Xrel = {x ∈ Ker(C)|∃ ϕ(·; τ0, x0, u) and ∃ t� such that x0 = x and Cx(t) =
Cϕ(·; τ0, x0, u) > 0, ∀ t : τ0 < t < t�}.

In words:Xcon is the subset of Ker(C) such that there exist trajectories coming from
inside the admissible domain Φ and which attain Ker(C) at time τ0; Xrel is the
subset of Ker(C) such that there exist trajectories which leave Ker(C) = bd(Φ) and
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reenter Φ. Those subsets are depicted in Fig. 7.4 in Chap.7 for simple mechanical
systems. Consider a one-degree-of-freedom system q̈(t) + λ1q̇(t) + λ2q(t) = u(t),
q ≥ 0, then Xcon = {(q, q̇)|q = 0, q̇ ≤ 0}, Xrel = {(q, q̇)|q = 0, q̇ ≥ 0}: this
just translates that the point makes contact with the constraint with a non positive
velocity, and leaves the constraint with a non negative velocity. The following is true:

Lemma 1.1 [323] The contact and release sets are given by

• Xcon = {x ∈ Ker(C)|∃ u ∈ U N such that [r(x, u) < +∞ and even, and
hr(x,u) > 0] or [r(x, u) < +∞ and odd, and hr(x,u) < 0]}.

• Xrel = {x ∈ Ker(C)|∃ u ∈ U N such that r(x, u) < +∞ and hr(x,u) > 0}.
Example 1.9 Continuing Example 1.8, one finds that Xcon consists of the states x
with x1 = 0, and there exists an input such that

• r(x, u) = 2 and ÿ > 0.
• r(x, u) = 1 and ẏ < 0.
• r(x, u) = 3 and y(3) < 0.
• r(x, u) = 2k + 4 and y(2k+4) = u(2k+1) > 0, k ∈ N.
• r(x, u) = 2k + 3 and y(2k+3) = u(2k+1) < 0, k ∈ N.

In the first item, the system attains the set x1 = x2 = 0 at t = 0, coming from x1 > 0.
Necessarily x2 < 0 on (−ε, 0), for some ε > 0, and necessarily ẋ2 = x3 > 0. In the
fourth item, the system attains the set x = 0, with u(i) = 0, 0 ≤ i ≤ 2k. Equivalently
it attains the set y(i) = 0, 0 ≤ i ≤ 2k + 3. One makes the same reasoning as for the
first item, with y(2k+2) and y(2k+3) and one concludes that necessarily y(2k+4) > 0
on (−ε, 0). For item 2, the system attains the set x1 = 0 with x1 > 0 on (−ε, 0):
necessarily x2 < 0 on (−ε, 0). For items 3 and 5, one makes the same reasoning
replacing x1 and x2 by x3 and u, u(2k) and u(2k+1) respectively. Clearly there is an
inversion of the sign each time an additional derivative is considered (see Fig. 1.4).

Remark 1.11 As said above, this geometric approach is based on observing the deriv-
atives of the constraint variable y(t) = Cx(t) on Ker(C) = bd(Φ). The numbers
introduced in Definition 1.9 are used to define some lexicographical inequalities on

x1

t

0-ε

x2

0
t

-ε
x3

-ε
t

0

Fig. 1.4 Orbit in Xcon attaining Ker(Cx)
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the derivatives of y = Cx along the system’s dynamics. Observing such deriva-
tives through lexicographical inequalities is ubiquitous in systems with unilateral
constraints, and we shall encounter it at several places of this book.

Definition 1.11 [323] Let us introduce the following sets:

• V � = {x ∈ Ker(C)|∃ u ∈ U N such that r(x, u) = +∞}.
• V f = {x ∈ Ker(C)|∀ ∈ U N, rc(x) is even, and hrc(x)(x, u) < 0}
• Xcon,v = {x ∈ Xcon|rc(x) = 1}.
• Xcon,h = {x ∈ Xcon|∀ u ∈ U N, rc(x) > 1, rc(x) is odd and hrc(x)(x, u) < 0}.
We have also V � = {x ∈ Ker(C)|rc(x) = r0}. The set V f contains the states in
bd(Φ) such that all trajectories of the controlled system passing through these states
do so coming from outsideΦ and remaining outsideΦ (one thing that is not possible
in mechanics with unilateral constraints, but that is quite possible if the constraints
are virtual). The subdivision of Xcon is motivated by mechanics: trajectories that
make contact in Xcon,h attain the boundary Ker(C) tangentially whereas those that
make contact inXcon,v do it transversally. Indeed rc(x) = 1 means that one can find
a controller such that ẏ < 0 in a neighborhood of Ker(C), hence the contact is made
with a nonzero velocity. On the contrary, orbits that make contact inXcon,h attain the
boundary with a zero velocity but nonzero higher order derivatives. Trajectories that
make contact inV � attain bd(Φ) tangentially and there exists at least one of them that
remains in Ker(C) (i.e., there exists one controller in U N such that ϕ(·; τ0, x0, u) ∈
Ker(C) after contact has been made). For the above one-degree-of-freedom system,
V � = {(0, 0)} = Xcon ∩ Xrel , the origin of the phase plane. In Sect. 7.4 we shall
see that orbits that make contact in the set V � correspond to grazing trajectories
which attain Ker(C) with a zero normal velocity. One notes that all trajectories that
make contact in Xcon\V � have the tendency to leave Φ = {x ∈ R

n|Cx ≥ 0}: if
the constraints are hard and a collision rule is adopted, then a shock occurs at those
points of Ker(C). In [322, 323] collision maps are proposed that relate subsets of
Xcon\V � with subsets ofXrel\V �. In this subset there is no bounded controller that
can keep the orbits insideΦ. One has either to apply an impulsive input that modifies
instantaneously the vector field, or to introduce a collision mapping in the model.
Algorithms that enable one to calculate the various above subspaces are provided in
[322].

Remark 1.12 The whole presentation has been made in Ker(C) ⊂ bd(Φ). It is clear
that if the system is to be analyzed on another part of bd(Φ) then Ker(C) may be
replaced by Ker(C̃) where C̃ is a submatrix of C . The case of multiple constraints
(m ≥ 2 in (1.44)) is much more intricate. A discussion on how collision maps may
be defined in such a case is made in [322, §VI], highlighting the difficulty which
may arise if at the intersection of two boundaries (a codimension-two constraint
boundary), one constraint is attained tangentially while the other one is attained
transversally: this is exactly the kind of issues raised in multiple impact modelling
when some contacts are lasting before a collision occurs at another contact point

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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(think of a chain of aligned balls like in Newton’s cradle). As alluded to above, the
theory applies also to a class of nonlinear affine-in-the-input systems, with smooth
vector fields. Quite related material is available in [353].

The above geometric approach has been used to analyze quadratic optimal control
under inequality state constraints in [208], in order to better understand the qualita-
tive properties of junction states. A notion of controllability, known as the control
holdability, may be stated for the unilaterally constrained system in (1.43) and (1.44).
A subset Φ of the state space is said control holdable if there exists an input u(·)
such that the system’s solutions x(t) = x(t; t0, x0, u) stay in Φ for all x0 ∈ Φ.

Proposition 1.4 [322, Proposition 6.5.1] Let A, B and C in (1.43) and (1.44) be
such that (A, B) is a controllable pair, Im(B) ⊆ Ker(C), C �= 0, Φ = {x ∈
R

n|Cx ≥ 0} �= ∅. Consider also bounded inputs, and m = 1. Then the admissible
domain Φ is a controlled holdable set for the system (1.43) and (1.44) if and only if
Xcon,v ∪ Xcon,h ∪ V f = ∅.
Mechanical systems do not satisfy the conditions of this proposition when unilateral
conditions on the position q are imposed [322, Corollaries 5.6.1, 6.5.11]. Then the
addition of a velocity jump rule (an impact law) is necessary to render Φ invariant.

1.3.4 Bilaterally Constrained Mechanical Systems
and Impulsive Dynamics

Let us consider mechanical systems with bilateral (equality) constraints h(q) = 0.
After tangent linearization these systems may be embedded into descriptor variable
systems Eẋ(t) = Ax(t) + Bu(t), where the matrix E is singular and u is the
control input. The solutions of these differential algebraic equations (DAE) possess
a jump in the initial condition, i.e., in general x(0−) and x(0+) are not equal, due to
nonadmissible initial conditions (which therefore have to jump to become compatible
with the constraints). It is possible to decompose descriptor variable systems as
[295, 296]

ẋs(t) = Esxs(t) + Bsu(t), (1.56)

E f ẋ f = x f + B f u, (1.57)

where E f is a nilpotent matrix with index of nilpotency p ≥ 2, i.e. E p
f = 0. Then

the solution can be written with some abuse of notation x = xs + x f , where:

xs(t) = exp(t Es)x0s + exp(t Es) � Bsu, (1.58)

x f = −
p−1∑
i=1

δ
(i−1)
0 Ei

f x0 f −
p−1∑
i=0

Ei
f B f u

(i), (1.59)



1.3 Systems Subject to Unilateral Constraints 39

where � is the convolution product. Notice that p = 1 means E f = 0 and B f = 0
so that x f = 0 and x(·) = xs(·) (see for instance [496, pp. 452–454]). We see that
in general, x f possesses a jump at t = 0 and x f (0+) = −∑p−1

i=0 Ei
f B f u(i)(0) pro-

vided that u(·) is sufficiently smooth. In the case of mechanical systems subject to
holonomic constraints h(q) = 0, the initial conditions can be chosen in accordance
with the constraint so that no impulsive behavior occurs. In fact, the only physically
and practically sound initial inconsistency may be due to initial velocity pointing
outwards the admissible domain Φ, because one cannot initialize the position out-
side Φ in practice: thus only Dirac measures may be involved in mechanics with
constraints on the position. The point of view of singular systems is used in [850,
851] where a quite interesting and detailed application of the theory in [295, 296]
to robotic systems with a linearized model of an n degree-of-freedom manipulator
with kinematic constraints is proposed.

Remark 1.13 From (1.59) the solution is a distribution of degree p (derivatives of
the Dirac measure), see [1214] for a survey on solution concepts for linear DAEs.
It is interesting at this stage to think of system with switching bilateral constraints.
At the switching instants, the constraints change, and the pre-switch state may not
be compatible with the new constraint after the switch has occurred: a suitable state
jump has to be incorporated in the model. This is true if the switches are exogenous
[1215], or state-dependent [15]. See Remark 5.23 for more comments on switching
DAEs.

1.4 Changes of Coordinates in MDEs

Let us investigate some tools which allow one to eliminate the impulsive effects from
MDEs, transforming MDEs into ODEs or (ordinary) differential inclusions. We first
consider ODEs with exogenous singular distributions in their right-hand side. Then
we investigate the case of mechanical systems subject to a single unilateral constraint
and impacts.

1.4.1 From Measure to Carathéodory Systems

Note that we could have proceeded in a different way to solve the dynamics of the
system inExample 1.1, Eq. (1.2). Let uswrite the state space equations for this system

(
ẋ1(t)
ẋ2(t)

)
=
(
x2(t)
0

)
+
(
0
pk
m ḣ(t)

)
, (1.60)

where h(t) ≡ 0 for 0 ≤ t < tk , h(t) ≡ 1 for tk ≤ t , x1 = x , x2 = ẋ . Following the
ideas in [397] on change of variables in differential equations with distributions in

http://dx.doi.org/10.1007/978-3-319-28664-8_5


40 1 Impulsive Dynamics and Measure Differential Equations

coefficients, let us consider now y = x2 − pk
m h; then in the (x, y) coordinates (1.60)

becomes: (
ẋ1(t)
ẏ(t)

)
=
(
y(t)
0

)
+
( pk

m h(t)
0

)
, (1.61)

from which it follows that y ≡ (t) = y(0) = y0 for all t ≥ 0, ẋ1(t) = y0 + pk
m h(t).

Thus x2(t) = ẋ(t) = pk
m h(t) + y0 and we retrieve the preceding results, i.e., the

velocity ẋ(·) is discontinuous at tk .
Still following [397] we can proceed as above to draw conclusions about existence
and uniqueness of solutions. Notice that we can write (1.10) as follows:

{
ẋ1(t) = x2(t)
ẋ2(t) = a(x1(t), x2(t), t) + b(x1(t))ḣ(t),

(1.62)

where a(·, ·, ·) and b(·) have obvious definitions, h(·) is as in (1.60). Now take
y2 = x2 − b(x1)h, then (1.62) becomes:

{
ẋ1(t) = y2(t) + b(x1(t))h(t)
ẏ2(t) = a(x1(t), y2(t), t) − ∂b

∂x1
(x1(t)) (y2(t) + b(x1(t))h(t)) h(t).

(1.63)

TheODE in (1.63) satisfies the Carathéodory conditions on existence and uniqueness
of solutions. Recall that considering (1.63) it is possible to assign an initial arbitrary
value to y2 at discontinuities of h(t), but since x2(t) = y2(t) + b(x1(t))h(t), this is
not possible for x2 as h(t) is not defined at those times. Only left and right limits
can be assigned to x2(t). If we write (1.63) compactly as ż(t) = g(z(t), t) then in a
domain S of the (t, x)-space:

• The function g(z, t) is defined and continuous in z for almost all t .
• The function g(z, t) is Lebesgue measurable in t for each z.
• |g(z, t)| ≤ m(t) for some measurable function m(t).

Thus there exists a maximal solution z(t) to the system in (1.63) and this solution
is a time-continuous function [397, Chap.1]. Therefore assuming the control input
u has been suitably designed, there is no finite escape time in the system, x1 and
y2 are continuous, and x2 jumps at the instant of the percussion. Thus clearly such
mechanical systems excited by impulses belong to the class of systems with sin-
gular distributions in coefficients that can be reduced to a Carathéodory (ordinary)
system by a change in the unknown function (see [397] for other examples of such
manipulations).

Remark 1.14 The above change of coordinates that allows us to transform a MDE
into a Carathéodory ODE is quite similar to generalized state vector transformations
in linear systems theory [638], which allow to write a state space representation
without derivatives of the input u(t), for systems with polynomial representation

A(D)y(t) = B(D)u(t), with D
Δ= d

dt , A(D) and B(D) are polynomials of D, with
orders n and m, respectively. Such transformations are of the form z = Mye + Muu,
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where ye = (y, ẏ, ẏ, . . . , y(n−1))T , M and Mu are constant matrices of suitable
dimensions. It is clear that if a discontinuous control u(t) is applied, then B(D)u(t)
contains the Dirac distribution and its derivatives up to order m − 1. In a suitable
state space representation (controllable canonical form for instance) such singular
terms are absent.

Let us come back on a simple nonlinear system as in (1.22), with f (·) and g(·)
smooth functions of x . Let us prove that there exists a change of coordinates of the
form z = Z(x, u) such that at least locally the system becomes in new coordinates
ż(t) = h(z(t), u(t)). Indeed one gets (time argument is dropped):

ż(t) = ∂Z

∂x
ẋ(t) + ∂Z

∂u
u̇(t) = ∂Z

∂x
[ f (x(t)) + g(x(t))u̇(t)] + ∂Z

∂u
u̇(t). (1.64)

A sufficient condition for the transformed system to be in the required form is thus
that:

∂Z

∂x
g(x) = −∂Z

∂u
. (1.65)

If we can express x = X (z, u), i.e. we can invert the coordinate change, then we get
∂Z
∂x f (x) = h(z, u). Now let us search for a solution to (1.65) of the form Z(x, u) =
a(x)b(u). We obtain:

da

dx
b(u)g(x) = −a(x)

db

du
, (1.66)

which we can rewrite as:

1

a(x)

da

dx
g(x) = − 1

b(u)

db

du
. (1.67)

Now note that since each side of the equality must be verified for all x and u, and
since the left-hand side is a function of x while the right-hand side is a function of
u, both sides must be equal to the same constant value. Therefore we can search for
a(x) and b(u) such that25:

da

dx
= −a(x)

g(x)
, (1.68)

db

du
= b(u), (1.69)

provided g(x) does not go through zero, which is necessary for the controllability of
the system. Suppose that the two ODEs in (1.68) and (1.69) possess solutions a(x)
and b(u) for any initial conditions x(0) and u(0). Then Z(x, u) = a(x)b(u) satisfies
(1.65) and (1.64) is ż(t) = ∂Z

∂x f (x(t)). Note however that the resulting system may
not be linear in the control input u. As an example, let us consider the system:

25The signs in (1.68) and (1.69) can be reversed.
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ẋ(t) = sin(x(t)) − cos(x(t))u̇(t), (1.70)

(this is inspired from a cart-pendulum system whose complete dynamical equations
are of higher order, but with the same nonlinearities). Then the coordinate change
z = | tan( x2 + π

4 )| exp(u) defined on
(− 3π

2 , π
2

)
transforms the system (1.70) into:

ż(t) = z(t)2 exp(−u(t)) − exp(u(t))

2
. (1.71)

Notice that the fixed point of (1.70) is given when u ≡ 0 by x� = 0 and corre-
sponds for (1.71) to z� = 1. However it is possible that other changes of coordinates
yield a system linear in the input. Notice that if Z(x, u) is continuous, then since
z(t) is continuous the jumps of u(t) must be “compensated” for in Z(x, u). This
is therefore a way to compute the jumps of x(t) at times of discontinuities of u(t):
Z(x(t+), u(t+)) = Z(x(t−), u(t−)) since z(t+) = z(t−).

Remark 1.15 This method does not apply to systems with unilateral constraints and
impacts. First, the impact times and hence h(·) are not known in advance. Second, the
complementarity conditions cannot be eliminated, rendering the transformed system
intrinsically set-valued.

1.4.2 Decoupling of the Impulsive Effects (Commutativity
Conditions)

Let us focus on measure driven systems as (1.22) or (1.23). Notions of solutions
have been described in Sect. 1.2.2. In some particular cases it is however possible to
transform such MDEs into ODEs.

Proposition 1.5 Consider the MDE

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t))u̇i (t), x(0) = x0, u(0) = u0, (1.72)

with x ∈ R
n, and ui ∈ RCLBV , 1 ≤ i ≤ m. If the vector fields gi (x) are continu-

ously differentiable, linearly independent, and if their Lie brackets satisfy [gi , g j ] = 0
for all i, j ∈ {1, . . . ,m} i �= j , then the system in (1.72) can be locally transformed
into an MDE as (1.15).

Proof First of all, let us recall that the Lie bracket of two vector fields is given by
[gi , g j ] = ∂g j

∂x gi − ∂gi
∂x g j . Now from the conditions of Proposition 1.5 (one says that

the vector fields gi (x) are commutative: starting from an initial condition, the flows of
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gi and of g j may be applied in any order to attain the same state.) and [930 Theorem
2.36], it follows that in suitable coordinates z ∈ R

n one has gi = ∂
∂zi

, i ∈ {1, . . . ,m}
(this is a kind of simultaneous rectification ofm vector fields via a suitable rectifying
diffeomorphism [49], see also [497, pp. 186–187] for an accessible proof of existence
of this diffeomorphism in the planar case). Notice that continuous differentiability
of the gi ’s implies that the trajectories of the systems ẋ(t) = gi (x(t)) have a well-
defined tangent at each x(t), which is an important point for the application of the
flow-box (rectification) theorem. Hence locally in the new coordinates one has:

ż(t) = f̄ (z(t)) +
m∑
i=1

εi u̇i (t), (1.73)

where εi ∈ R
m is the i th coordinate vector (in fact we could denote εi as ∂

∂zi
or ∂i ). It

appears clearly from (1.73) that the coordinate change performs a sort of decoupling
so that the problems mentioned in Sect. 1.2.2 disappear since one gets an MDE as
in (1.15) with constant G(t). Notice, however, that this result is true locally (in the
state) only, and the jumps induced by u(·) should therefore be small enough.

One may go a step further by suppressing u̇(·) in the dynamics. MDEs as in (1.72)
with vector fields gi (x, u)) are studied in [189]. The system is first augmented withm

integrators ż(t) = u̇(t), z(0) = u0. The new input vector fields g̃i (x)
Δ= [gi (x), εi ] ∈

R
n+m are assumed to commute. Let us introduce the map ϕ = (ϕ1, · · · , ϕn) as:

ϕ j (x, u) = π j ◦ exp

(
−

m∑
i=1

ui g̃i

)
(x, u), (1.74)

where π j (·) denotes the j th projection of Rn+m and ϕ(·,−u) = ϕ−1(·, u). Consider
the diffeomorphism ϕ̄(x, u) = (ϕ(x, u), u). Then the following is true:

Lemma 1.2 [189] For each i = 1, . . . ,m and for every (x, u) ∈ R
n+m, one has

∇(x,u)ϕ̄
T g̃i (x, u) = εn+i . (1.75)

Thus ϕ̄(x, u) = (ϕ(x, u), u) transforms the augmented vector fields given by f̃ (x) =
( f (x), 0, . . . , 0)T and g̃i (·), 1 ≤ i ≤ m, into (F, 0) and εn+i respectively. Hence
there are new coordinates (ξ, η) = ϕ̄(x, u) ∈ R

n+m in which the system in (1.72)
takes the form ξ̇ (t) = F(ξ(t), η(t)), η̇(t) = u̇(t), ξ(0) = ϕ(x0, u0) [189, Corollary
2.1]. This is further used in [189, Theorem2.1] to prove the continuous dependence of
the solutions on u(·). We see that the measure part of the system is put in η̇(t) = u̇(t)
while the ξ−dynamics is an ODE with a possibly discontinuous “input” η(·).
Remark 1.16 (Mechanical Systems) In case of a Lagrangian system as in (1.10)
subject to exogenous impulsive force inputs, the vector fields gi (x) possess the
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required smoothness and are functions of q only. They have the form gi (x) =
(

0
∗∗
)
,

whereas ∂gi
∂x =

(
∂gi
∂q , 0

)
. Hence the Lie brackets [gi , g j ] = 0. Since the gi (x) are

time-continuous, Proposition 1.5 applies in any neighborhood of q(t) such that
gi (q(t)) �= 0. This does not mean that collisions may be erased from mechani-
cal systems (see the introduction of the next section for an illustration of this fact).
Also the rectifying diffeomorphism is a generalized coordinate change, since the
vector fields gi (q) do not depend on q̇ . It is noteworthy that the above state space
change does not stem from a generalized coordinate transformation, and transforms
the system in an extended state space with dimension n + m.

The commutativity conditions are sufficient conditions for existence and uniqueness
of solutions, they are not necessary. Moreover they may not be robust with respect to
uncertainties in the vector fields, and thus may not be interesting for control purpose.
As we saw in Sect. 1.2.2 we can dispense with them.

1.4.3 From Unilaterally Constrained Mechanical Systems
to Filippov’s Differential Inclusions:
the Zhuravlev–Ivanov Method

The transformations of the foregoing sections are not well suited to systems with
unilateral constraints and impacts. As an example let us study the one-degree-of-
freedom complementarity systemmq̈(t) = F(t)+λ, 0 ≤ q(t) ⊥ λ(t) ≥ 0, q̇(t+k ) =
−enq̇(t−k ), q(tk) = 0, q̇(t−k ) < 0, q(0) = q0, q̇(0−) = q̇0. This is a particle with a
unilateral constraint, and the complementarity condition is introduced in the model
for the same reasons as for the cable-mass system of Example 1.6. Let us define
ξ1(t) = ∫ t

0 q(s)ds, ξ2(t) = q(t), ξ2(0) = q0, η(0) = mq̇0. Then we can rewrite the
dynamics as ξ̇1(t) = ξ2(t), ξ̇2(t) = ∫ t

0
F(s)
m ds+ 1

m η(t), η̇(t) = λ, 0 ≤ λ ⊥ ξ2(t) ≥ 0,
ξ̇2(t

+
k ) = −enξ̇2(t

−
k ), ξ2(tk) = 0, ξ̇2(t

−
k ) < 0. Since the complementarity conditions

cannot be eliminated using such an approach, and following the developments made
in Example 1.6, we have λ(t) ∈ −NR+(ξ2(t)) outside impacts. The complementarity
system is thus found equivalent to a specific differential inclusion ξ̇1(t) = ξ2(t),
ξ̇2(t) = ∫ t

0
F(s)
m ds + 1

m η(t), η̇(t) ∈ −NR+(ξ2(t)) outside impacts, and ξ̇2(t
+
k ) =

−enξ̇2(t
−
k ), ξ2(tk) = 0, ξ̇2(t

−
k ) < 0. We retrieve once again the fact that unilaterally

constrained systems may live on lower dimensional subspaces, and that impact times
are state-dependent.
A quite different approach which allows one to eliminate impulsive forces from
the dynamical equations of mechanical systems with unilateral constraints has been
proposed in [1336, 1337, 1338, 1339], and extended in [585, 596] for the analyt-
ical study of vibro-impact systems. Let us first describe the pioneering work of
Zhuravlev [1338]. An n-degree-of-freedom system with generalized coordinates
q = (q1, · · · , qn)T , Lagrangian function L(t, q, q̇) = T (q, q̇) − U (t, q) and a
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codimension one constraint f (q) = q1 ≥ 0 is considered. The Routh’s function
R(·) is introduced, as26:

R(p, q, q̇) = L(q, q̇, t) − pT ẏ, (1.76)

where y
Δ= (q2, · · · , qn)T , and p = ∂L

∂ ẏ is the (n−1)− vector of generalizedmomenta

(the quantities ∂L
∂q̇i

, 2 ≤ i ≤ n, are the generalized momenta associated to velocities
q̇i ). Then the nonsmooth transformation

q1 = |s| (1.77)

is introduced. From (1.77) we see that the basic idea is first to consider q1 as if it was
a cyclic variable and apply Routh’s method, second to consider the “mirror” system
such that on [t2k, t2k+1] the fictitious trajectory s(t) is symmetrical to the actual one
q1(t) with respect to the origin (the first impact occurs at t0). Notice at once that
since q1(tk) = s(tk) = 0, we obtain q̇1 = d

dt {s sgn(s)} +∑k≥0 σs sgn(s)(tk)δtk =
ṡ sgn(s). The inertia matrix is partitioned as M(q) =

[
a(q) b(q)T

b(q) A(q)−1

]

 0, and

R0
Δ= 1

2

(
a − bT Ab

)
ṡ2 − 1

2 p
T Ap + U (t, q), where a(q) − b(q)T A(q)b(q) > 0

by the Schur complement positivity. Then p = ṡb(q) + A(q)−1 ẏ, ẏ = A(q)(p −
ṡb(q)), and the Routh’s function is R(p, q, q̇) = R0 + ṡ pT A(q)b(q)sgn(s). The
dynamical equations are d

dt
∂R
∂ ṡ − ∂R

∂s = S, ẏ = − ∂R
∂p , ṗ = ∂R

∂y + Y , where

S ∈ R and Y ∈ R
n−1 are the generalized forces performing work on q1 and

y, respectively. The term ṡ pT A(q)b(q)sgn(s) in R(p, q, q̇) is treated as follows:
∂
∂ ṡ (ṡ p

T A(q)b(a)sgn(s)) = pT A(q)b(a)sgn(s), thus d
dt

∂
∂ ṡ (ṡ p

T A(q)b(q)sgn(s)) =
d
dt (p

T A(q)b(q))sgn(s)+ pT A(q)b(q)ṡ ∂
∂s (sgn(s)). The second term stemming from

− ∂R
∂s is − ∂

∂s (ṡ p
T A(q)b(q)sgn(s)) and after some calculations we find

−ṡ pT ∂(A(q)b(q))

∂s sgn(s) − ṡ pT A(q)b(q) ∂
∂s (sgn(s)). Therefore

(
d

dt

∂

∂ ṡ
− ∂

∂s

)
(ṡ pT A(q)b(q)sgn(s)) =

(
d

dt
(pT A(q)b(q)) − ṡ pT

∂(A(q)b(q))

∂s

)
sgn(s).

From these calculationswededuce that in the coordinates (s, q2, · · · , qn), the dynam-
ics becomes:

26TheRouth’s function is usually introduced for n-degree-of-freedom systems that possess nc cyclic
coordinates [1178] [845, §3.3] (i.e., coordinates q1, · · · , qnc that do not appear in the Lagrangian
function L or in the Hamiltonian function H ). Every cyclic coordinate yields a first integral of the
system since the corresponding momenta p1, · · · , pnc are invariant. Routh’s method consists of
applying a Legendre transformation only in the coordinates q1, · · · , qnc , i.e., the Routh’s function
is equal to R = L−∑nc

i=1 pi q̇i . Comparing this formula with (1.76) one sees that the unconstrained
coordinates play the role of the cyclic coordinates. The interest of the Routh’s function is that it
plays the role of a Hamiltonian function for the cyclic coordinates, i.e., ṗi = − ∂R

∂qi
and q̇i = ∂R

∂pi
.
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d

dt

∂R0

∂ ṡ
− ∂R0

∂s
∈
[
S(t) − d

dt

(
pT Ab

)+ ṡ pT
∂Ab

∂s

]
sgn(s), (1.78)

⎧⎪⎨
⎪⎩

ẏ(t) ∈ − ∂R0
∂p (t) − ṡ(q)A(t)b(q) sgn(s(t))

ṗ(t) ∈ ∂R0
∂y (t) + ṡ(t) ∂(pT Ab)

∂y sgn(s(t)) + Y (t).
(1.79)

Zhuravlev uses the Routh’s function as a descriptive function to write down the
dynamics precisely because it allows one to avoid the impulses in the final equations,
a goal that could not be reached with Lagrangian or Hamiltonian functions. Note that
the dynamics in (1.78) has a Lagrangian form, whereas the one in (1.79) has a Hamil-
tonian form. From (1.78) and (1.79) the dynamical equations may be embedded into
Filippov’s differential inclusions, consequently the state of the transformed system is
absolutely continuous, which implies that both s(·) and ṡ(·) are continuous. However
s̈(·) may have discontinuities. Since q̇1 = ṡsgn(s), at a shock instant q̇1(t

−
k ) = ṡ(tk)

and q̇1(t
+
k ) = −ṡ(tk), as long as s(tk) = 0 and the trajectories cross the “surface”

s = 0 at t = tk . Therefore q̇1(t
+
k ) = −q̇1(t

−
k ), q̇1(t

+
k )2 = q̇1(t

−
k )2, and from the fact

that the momenta pi , 2 ≤ i ≤ n, are time-continuous (this is easily proved from the
Lagrange dynamics and the form of the gradient ∇ f (q) = (1, 0, . . . , 0)T ∈ R

n),
it is possible to show that the total energy is conserved at impacts. The accelera-
tion is a measure q̈1 = {q̈1(t)}dt +∑k∈N σṡsgn(s)(tk)δtk , where the velocity jumps
σṡsgn(s)(tk) = σq̇1(tk).

Example 1.10 Let us consider the classical example of a linear oscillator constrained
by a rigid obstacle. The dynamical equations are given by

q̈(t) + λ2q(t) = A sin(ωt), f (q(t)) = q(t) ≥ 0. (1.80)

Applying the proposed method (in this case the variable y does not exist since all
the coordinates are unilaterally constrained) we get from (1.78):

s̈(t) + λ2s(t) ∈ A sin(ωt) sgn(s(t)), s(0) = s0. (1.81)

Indeed in this case ∂R0
∂ ṡ = ṡ. Existence of solutions for any s0 follows from [1120,

Theorem 4.7], noting in particular that the set-valued right-hand side takes compact
convex values for each t .

Example 1.11 As a second example we consider the bouncing ball dynamics:
mq̈(t) = −mg, q(t) ≥ 0, t ≥ 0, q̇(t+k ) = −q̇(t−k ), q(tk) = 0, q̇(t−k ) < 0. The trans-
formation yields ms̈(t) ∈ −mgsgn(s(t)). Let s(0) = s0 > 0 and ṡ(0) = ṡ0 = 0.

Then ṡ2 + 2gs − 2gs0 = 0 until the axis s = 0 is reached at time t0 =
√

2s0
g

with ṡ(t0) = −√
2gs0. After t0 the trajectories enter the left half plane s < 0 and

s = √
2s0

ṡ−√
2gs0√
g + (ṡ−√

2gs0)2

2g . At t = 2
√

2s0
g we have ṡ(t) = 0 and s(t) = −s0 and
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0

jump

(t2k)
(t0 =

2s0
g )

(t2k+1)
ṡ

q0 = s0

s

q̇

−s0

ṡ(t0) = −√
2gs0

ṡ(t1) =
√
2gs0

Fig. 1.5 The (q, q̇) and the (s, ṡ) phase portraits

at t1 = 3
√

2s0
g we have ṡ(t1) = √

2gs0 and s(t1) = 0. This is depicted in Fig. 1.5

where the correspondance between the transformed and the original trajectories are
shown.

Ivanov [585] extends the method to non-purely elastic shocks. He first considers the
one-degree-of-freedom system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ(t) = f (t, x(t), ẋ(t)) if x(t) ≥ 0

ẍ(t) = max(0, f (x(t), ẋ(t), t)) if ẋ(t+k ) = 0 and x(tk) = 0

ẋ(t+k ) = −en ẋ(t
−
k ) if ẋ(t−k ) < 0 and x(tk) = 0,

(1.82)

where x(t) ∈ R. As we shall see in Chap.4, the last algebraic equation in (1.82) is a
restitution law, and en is a kinematic restitution coefficient. Getting back to (1.46),
this gives Jk(ẋ(t

−
k )) = −(1 + en)ẋ(t

−
k ). Actually such way of writing the dynamics

could be equivalently formulated with a Lagrange multiplier modeling the contact
force and complementarity conditions as 0 ≤ x(t) ⊥ λ(t) ≥ 0, that we shall decribe
in detail in Chaps. 2 and 5. The nonsmooth coordinates change is given by:

⎧⎨
⎩
x = |s| ẋ = Rνsgn(s)

R = 1 − ksgn(sν), k = 1−en
1+en

.

(1.83)

Using (1.83), it can be shown that (1.82) is transformed into the differential inclusion:

⎧⎨
⎩
ṡ(t) = Rν(t)

ν̇(t) = R−1sgn(s(t)) f (t, |s(t)|, Rν(t) sgn(s(t))).
(1.84)

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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The trajectories of (1.84) may be understood in the sense of Filippov [397], and
are absolutely continuous.27 At the origin (s, ν) = (0, 0), the transformed system is
defined as ṡ = 0, ν̇ = (1 − k)−1 max (0, f (t, 0, 0)). From x = |s| = s sgn(s)
one deduces that ẋ = d

dt {s(t) sgn(s(t))} + σx (t j )δt j , where t j denotes generi-
cally an instant such that the sign of s(t) changes. From the fact that σx (t j ) =
s(t+j ) sgn(s(t+j )) − s(t−j ) sgn(s(t−j )) and since s(t) is continuous (because we
know that x(t) is), it follows that ẋ = ṡ sgn(s) = Rν sgn(s) by (1.83).
Hence the first equation is as in (1.84). Concerning the acceleration, one gets
ẍ = f (t, x, ẋ) + σẋ (tk)δtk = d

dt {Rν sgn(s)} + σRνsgn(s)(t j )δt j , where t j denotes
generically an instant where ẋ = Rνsgn(s) maybe discontinuous: inspection of
(1.83) shows that this can occur when s(t) or ν(t) crosses zero. If ν(t j ) = 0, then
it is clear that σẋ (t j ) = 0. Hence ẍ = Rν̇ sgn(s) so that ν̇ is given by the second
equation in (1.84). But if the trajectory intersects the ν-axis with ν �= 0, then the
change of sign is due to s and σẋ (t j ) = 2ν(t j ) sgn(s(t+j )) = σẋ (tk), where tk and
t j coincide. Hence starting from the transformed system in (1.84), we retrieve the
fact that if the (s, ν)-trajectory crosses the s-axis, no impact occurs. If it crosses the
ν-axis, then this occurs when s = 0 (i.e. x = 0, the constraint is attained), and an
impact takes place since σẋ �= 0 from (1.83).

Remark 1.17 In the case en = 1, the Zhuravlev–Ivanov coordinate change has also
been used in [466] to analyze motions with impacts via variational formulations and
d’Alembert’s principle. It is extended to en ∈ (0, 1], but considering another change
of variables: x = −s if s < 0 and x = ens if s ≥ 0. Examples are shown on billiards,
impacts of a particle against an inclined wall.
From (1.83) one sees that for plastic impacts (en = 0) the transformation is not well
defined, since R = 0 when sv > 0. Then a trajectory that attains the s = 0 axis
instantaneously reaches the equilibrium point (s, ν) = (0, 0). Whatever the coordi-
nate change may be, this fact is invariant since for a plastic impact, the equilibrium
(rest) position is attained immediately after the impact, which corresponds in the
(s, ν)-plane to intersecting s = 0. In addition (s, ν) = (0, 0) implies (x, ẋ) = (0, 0)
and x = 0 implies s = 0; now note that at s = x = 0, ẋ is not defined, but the right
and left limits when s → 0, s > 0 or s < 0, respectively, are defined. We retrieve
here the discontinuity in the velocity at impact times. Uniqueness of solutions of
(1.84) fails if s(τ0) = ν(τ0) = 0.

Remark 1.18 It is possible to deduce q0 from s0, but not the inverse. Thus the
Zhuravlev–Ivanov nonsmooth coordinate change should be seen as a way to design
the “standard” differential inclusions (1.79) or (1.84), and then recover the original
dynamics.

In fact the basic idea behind the coordinate change in (1.83) is to find out a function
F(s, ν) such that:

27If the function f (·) is nonlinear in its third argument, Filippov’s convexification and other frame-
works like Utkin’s equivalent control method for discontinuous ODEs may not be equivalent,
however.
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⎧⎨
⎩

F(0+, ν) = −enF(0−, ν) for ν > 0

F(0−, ν) = −enF(0+, ν) for ν < 0.
(1.85)

Then the coordinate change is defined as x = |s| and ẋ = F(s, ν). It is possible
to define other transformations, discontinuous in s = 0 only. Such another possible
function F(s, ν) is given by [585]:

F(s, ν) =
[
1 − 2

R

π
arctan

(ν

s

)]
ν sgn(s). (1.86)

Then the transformed system vector field has discontinuities only on the axis s = 0.

1.4.3.1 Additional Comments and Studies

Let us note that contrary to the method presented in Sect. 1.4.1 (see (1.63)), the
“impact function” h(t) does not appear in this coordinate change, so that no time-
dependence is added to the transformed system. This is at the price however of
obtaining a state-discontinuous vector field in (1.84), the surface of discontinuity
corresponding to the surface of constraint x = 0. Therefore the form in (1.84) ismuch
more suited for such analysis: some local stability analyses based on linearization
are led in [585]. Smooth [397] or nonsmooth [1106] generalized Lyapunov functions
could also be used in this setting. Ivanov [585] studies singular points, stability of
equilibria, stability of periodic motions and bifurcations in vibro-impact systems
using this setting. The techniques can be extended to n-dimensional systems with
a single constraint, and Coulomb’s friction can be considered. The work in [467]
has been inspired by Zhuravlev [1338] to study the motion of a simple mechanical
system with clearance and impacting via a nonsmooth coordinate change, and an
averagingmethod to study periodicmotions.Analytical, numerical, and experimental
results are presented in [467] and are in accordance. The finite-time stabilization of a
one-degree-of-freedom mechanical system with a unilateral constraint and impacts,
is studied in [950] using the Zhuravlev–Ivanov transformation (see Sect. 7.5.5 for
details). The dynamics of ships colliding ice barriers is analyzed in [476] using the
Zhuravlev-Ivanov transformation.
The nonsmooth Zhuravlev–Ivanov coordinate change is limited to constraints of
codimension one (several constraintsmay be considered, but then the variable change
is valid locally only in the neighborhood of one of the constraints). An important
particular case when several constraints may be considered is when the constraints
surfaces are mutually orthogonal in the kinetic metric (see Chap.6).

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_6


Chapter 2
Viscoelastic Contact/Impact Rheological
Models

Thefirst part of this chapter is dedicated to the analysis of viscoelastic andviscoelasto-
plastic rheological contact models (linear and nonlinear parallel spring-dashpot
assemblies). The linear spring-dashpot model is studied, and a detailed survey of
nonlinear models (like Simon-Hunt-Crossley model and its many variations) as well
as other types of assemblies with dry friction elements is made. Emphasis is put
on the model’s well-posedness, where complementarity systems may be used as a
nice mathematical framework. The second part presents somewell-posedness results
(existence and uniqueness of solutions) of Lagrange dynamics with unilateral con-
straints and impacts, considering them as the limit of compliant systemswhen contact
stiffness grows unbounded.

Bodies that collide possess a certain compliance and deform during an impact
(locally around the contact point, and globally due to vibrations in the bodies). The
collision duration is strictly positive.1 Vibrations may even play in some cases amore
important role than the local deformations. Consequently, rigid body dynamics may
be considered as a limit case only, which however does not at all preclude its practical
as well as theoretical utility. Moreover, the very short collision durations allow one
to safely work with two time-scales in many practical cases. Historically, it has very
often been difficult for certain scientists to accept the idea of perfect rigidity [1307].
For instance, Leibniz himself [721, 722] (and Bernoulli after him [134]) refused this
idea because rigidity yields violation of the “law of continuity” in nature. A strong
scientific debate motivated by the London Royal Society in 1668 also concerned the
concept of “hardness” (which is to be understood as rigidity in this context): is a hard
body able to rebound? Or is it necessary that the bodies possess some “springiness”?
Wallis andMariotte concluded that springs are necessary, while Huygens, Wren, and
Malebranche thought that hardness is sufficient [1307]. We know now the difference
between a model of nature and nature itself. We also have many more mathematical

1However, in many practical cases it is very short: 4.10−4 s for a shock between a golf ball and a
flat-nosed wooden projectile with a relative speed of 5.334 m/s [196], other authors report values
between 7.10−4 and 5.10−4 s for pre-impact velocities between 10 and 60m/s [55]; see other values
of the same order in Sect. 4.3.10 for slender rods against a massive steel table.
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Fig. 2.1 Linear
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contact-impact model m
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tools at our disposal to accept perfect rigidity and to study accurately the relationship
between compliant and rigid models.2

2.1 Simple Examples

This section is dedicated to the analysis of the simplest compliant contact model:
parallel linear spring-dashpot assemblies. Several of their properties are studied:
convergence when parameters tend to infinity (rigid body limit), equivalent resti-
tution coefficient, complementarity formalism, well-posedness of simple dynamics
incoportating such piecewise-linearmodels. The consideredmodels possess amathe-
matical interest where theymay be used for existence/uniqueness of solutions proofs,
as illustrated in the second part of this chapter. It is noteworthy that the following
analysis also holds for two particles moving on a line and colliding, adapting the
masses, stiffnesses and damping coefficients to their equivalent (or effective) values.
For instance, the effective mass is m = m1m2

m1+m2
, the equivalent stiffness is k = k1k2

k1+k2
,

the equivalent damping coefficient is f = f1 f2
f1+ f2

, for two spring-dashpot systems as
on Fig. 2.1 mounted in series.

2.1.1 From Elastic to Hard Impact

Consider that we attach a linear spring with stiffness k to the mass m moving on
a horizontal line, and that the mass collides with a wall (infinite mass) through the
spring, at time t0 (take f = 0 in Fig. 2.1). The position of the mass is z, and ξ = l
corresponds to the spring at rest. Let k > 0 be its stiffness,m is the mass. If the spring
was a bilateral spring capable of exerting positive and negative forces F on the mass,
one would have F = k(l − ξ), so that F > 0 if l − ξ > 0 (compressed spring,
repulsive contact force), and F < 0 if l − ξ < 0 (stretched spring, attractive contact
force). However, in our case the spring is unilateral, which means that it may detach
from the “wall”. During the contact phases of motion, the spring is compressed,
i.e., l − ξ > 0, while z = ξ , so that F = k(l − ξ) = k(l − z) > 0. During non

2Although, as we shall see, this still requires advanced mathematical studies.
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contact phases one has F = 0 and z > ξ , while ξ = l since the spring is massless
(it has no dynamics by itself). Doing the change of variable x = z − l one obtains
F(x) = 0 if x ≥ 0, and F(x) = −kx if x ≤ 0. The dynamics of the mass is given
by mẍ(t) = F(x(t)). Therefore one obtains:

⎧⎨
⎩
mẍ(t) = 0 if x(t) ≥ 0

mẍ(t) + kx(t) = 0 if x(t) ≤ 0.
(2.1)

This model yields a multivalued stiffness, as explained in Example 1.6, Remark 1.7.
Assume that the spring remains in contact with the wall on the time interval [t0, t1],
i.e. t0 is the instant when the mass/spring system makes contact with the wall, and
t1 the time when it detaches. One has x(t1) = x(t0) = 0, and ẋ(t0) = ẋ0 < 0
while ẋ(t0) > 0. Let us set t0 = 0. We obtain during the contact phase [0, t1]:
x(t) = ẋ0

√m
k sin(

√
k
m t). The first time instant after the impact such that x(t1) = 0

is the impact duration:

t1 =
√
m

k
π. (2.2)

(i.e. the spring is being crushed and then restores its potential energy). Note that
ẋ(t1) = −ẋ0 > 0. Consider now any sequence of stiffness values {kn}, n ∈ N,
kn < kn+1, kn → +∞ as n → +∞. Let us denote Fn(τ ) = −knxn(τ ) for
0 ≤ τ ≤ t1, Fn(τ ) ≡ 0 elsewhere. Note that the subscript n in xn(t) is to empha-
size that xn(t) is the solution of an approximating problem with stiffness kn . Then,∫ t1
0 Fn(τ )dτ = − ∫ t1

0 knxn(τ )dτ = 2|ẋ0|m > 0 for all n > 0. Now notice that
xn(τ ) → 0 on [0, t1] as n → +∞ and t1 → 0+ as n → +∞, i.e., if the stiffness is
infinite, x(·) remains unchanged during the impact3 and the impact duration is zero.
Moreover, the compliant elastic collision tends towards a hard (i.e., purely elastic
and instantaneous) collision. It is easy to verify that the sequence Fn(·) of contact
force functions converges to 2|ẋ0|mδ0 as n → +∞, by checking conditions i, ii and
iii for delta-sequences given in Appendix A.1, Sect. A.1.2.

Following the terminology used in most mathematical studies [241, 242, 260,
989, 990] we have chosen a penalizing function Fn(xn) = −knxn if xn > 0, 0 if
xn ≤ 0, that exactly fits within the conditions imposed by these authors.

2.1.1.1 The Work Performed by Contact Forces

The work effectuated by the contact force during the impact is given by W[0,t1] =∫ t1
0 ẋn(t)knxn(t)dt = mẋ20

2 [cos2(π) − 1] = 0 for any kn ∈ R
+. Thus, it seems

reasonable to consider that the work of the impulsive force at the impact time is zero.

3Constant positions is a common assumption in impact mechanics.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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This is consistent with the lossless property of this model. The maximum interaction
force value is given by:

Fmax = |ẋ0|
√
km, (2.3)

and therefore tends to infinity as the stiffness k grows unbounded. Thus, the intuitive
and widely spread idea of “very large” forces at impacts seems quite justified from
this mathematical model. The correct idea is to consider the effect of the interaction
force F(·) as a distribution inD�. One sees that the action on any function inD with
support containing 0 is finite, for any k, because the support of F(·) tends towards
zero so that F(·) becomes atomic. As we have already seen, what is to be considered
as the impactmagnitude for infinitely large k is themagnitude p of the impulse,which
exactly corresponds to the integral of the interaction force over the contact interval
(i.e., what is called the impulse of the interaction force during the contact period),
and not to the maximum value of this force, that makes no sense when k = +∞.
However, for practical purposes one may also argue that the maximum value of the
interaction force is important (to be able to prevent possible damage of the materials
in contact). Then it is clear that a rigid bodymodel cannot predict such value, and one
has to use a suitable compliant approximating model of the contact-impact process.

Remark 2.1 When a constant force F0 acts on the mass, it is still possible [591]
to calculate the solution as x(t) = F0

k (1 − cos(
√
kt)) + ẋ0√

k
sin(

√
kt), the impact

duration as t1 = 2√
k
arctan

(
−

√
k

F0
ẋ0
)
, and the impulsion of the contact force as

P(t1) = −2ẋ0 + 2 F0√
k
arctan

(√
k

F0
ẋ0
)
.

2.1.1.2 Complementarity Modelling

Unilaterality is present in the model since the contact force is set to zero when x > 0.
One says that the contact model is a unilateral linear spring. Let the dynamics be
expressed as: mẍ(t) − λ(x(t)) = 0, where λ(x) is defined as follows:

λ(x) =
{
0 if x ≥ 0
−kx if x ≤ 0

⇔ λ(x) = max(0,−kx)

⇔ 0 ≤ λ(x) ⊥ w(x) = λ(x) + kx ≥ 0 ⇔ λ(x) = argminz≥0
1
2 (z + kx)2,

(2.4)

where⊥means that the two variables λ(x) andw(x) have to be mutually orthogonal:
in the scalar case this is simply λ(x)w(x) = 0. The third formalism in (2.4) is called
a Linear Complementarity Problem (LCP), a formalism we already met in Example
1.6. The equivalences may be checked by inspection: if x > 0, then −kx < 0 and
the only solution is λ(x) = kx > 0. If x < 0 then −kx > 0 and the only solution
is λ(x) = 0. The case x = 0 yields λ(0) = 0. The equivalence with the quadratic
program is a consequence of the Karush-Kuhn-Tucker (KKT) conditions which yield

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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the equivalence between (5.107) and (5.109) inSect. 5.4.3. The equivalences in (B.19)
and (B.20) in theAppendixmay also be used. Thedynamics of themassmay therefore
be written as {

mẍ(t) + λ(t) = 0
0 ≤ λ(t) ⊥ w(λ(t), x(t)) = λ(t) + kx(t) ≥ 0,

(2.5)

which is a simple example of a Linear Complementarity System. Obviously the
multiplier λ in (2.5) is a function of x , being the solution of the above LCP. It is even
a Lipschitz continuous function of x , according to Theorem 5.4. To complete this
section, let us notice that the complementarity conditionsmay bewritten equivalently
as 0 ≤ w(t) ⊥ λ(t, x(t)) = w(t) − kx(t) ≥ 0, with mẍ(t) = w(t) − kx(t) and
λ(t) = w(t) − kx(t). The distance between the mass + spring-dashpot and the wall
is d(t) ≥ 0, with d(t) = x(t) if x(t) ≥ 0, and d(t) = 0 if x(t) < 0. So, we
have in fact w(t) = kd(t), so that 0 ≤ d(t) ⊥ d(t) − x(t) ≥ 0. In view of this,
since λ(t) = 1

k (d(t) − x(t)), we have that 0 ≤ d(t) ⊥ λ(t) ≥ 0, which states the
complementarity between the contact force and the distance between the mass and
the obstacle: this is a formalism which we will meet all through the book, especially
for rigid bodies.

2.1.2 From Damped to Plastic Impact

Let us now assume that only a damper is attached to the mass, with viscous friction
coefficient f > 0, as shown in Fig. 2.1. The contact force exerted by the viscous
friction is F(ż) = − f ξ̇ if z = ξ , F = 0 if z > ξ . Doing the same variable change
x = z − l as in Sect. 2.1.1, one obtains

⎧⎨
⎩
0 ≤ t ≤ tc : mẍ(t) = 0

tc ≤ t ≤ t1 : mẍ(t) + f ẋ(t) = 0,
(2.6)

where tc is the instant when the mass/dashpot system makes contact with the
wall. Proceeding as above, we obtain after the impact time ẋ(t) = ẋ0e− f

m t ,
x(t) = −mẋ0

f (1 − e− f
m t ). One sees that if f → +∞, then x(t) → x(0) = 0

and ẋ → 0 for all t > 0. For any sequence of values of damping coefficient { fn}
defined as in the preceding example, let us denote Fn(τ ) = fn ẋn(τ )+mẋ0

√
fn
m e−

√
fn
m

for 0 ≤ τ ≤
√

m
fn
, Fn(τ ) ≡ 0 elsewhere. Then,

∫√
m
fn

0 Fn(τ )dτ = ∫ +∞
0 fn ẋn(τ )dτ .

Note that this time the interaction impulse is calculated on thewhole interval [0,+∞)

since the body never detaches from the surface after contact has been established. It
is easy to check that Fn(·) satisfies conditions i, ii and iii in Appendix A.1. Hence,
we get Fn(·) → mẋ0δ0 as n → +∞. In the limit, the equation describing the sys-
tem with one impact at t = 0 becomes the MDE mẍ = {ẍ(t)}dt + mσẋ (0)δ0, with

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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{ẍ(t)} = 0 (null acceleration outside the impact time), σẋ (0) = −ẋ(0−) = −ẋ0
since ẋ(0+) = 0.

2.1.3 The General Case

2.1.3.1 The “Usual” Switching Conditions

Consider now that we attach a spring k > 0 and a damper f > 0 to the mass as in
Fig. 2.1.4 Proceeding exactly as in the previous two cases, the dynamics during the
contact phases of motion is given by

⎧⎨
⎩
mẍ(t) + f ẋ(t) + kx(t) = 0 if x(t) ≤ 0

mẍ(t) = 0 if x(t) > 0,
(2.7)

hence, a discontinuous vector field if ẋ(t) �= 0 at the transition time. Let us assume

that Δ
Δ= f 2 − 4 km < 0. Thus, we obtain with the same initial conditions as in

the undamped case x(t) = ẋ0
ω
ert sin(ωt), ẋ(t) = ẋ0ert

[
r
ω
sin(ωt) + cos(ωt)

]
, with

ẋ0 = ẋ(0) < 0, r = − f
2m , ω =

√−Δ

2m . The time instant

t1 = π

ω
= π

(
k

m
−

(
f

2m

)2
)− 1

2

(2.8)

at which x(t1) = 0 and ẋ(t1) = −ẋ0e
rπ
ω , furnishes the impact duration. Let us choose

0 < β ≤ 1, and let us see what happens if5:

f = 2|ln(β)|
(

km

π2 + ln2(β)

) 1
2

, (2.9)

when k → +∞ (Such an f guarantees Δ < 0 for 0 < β ≤ 1): we get t1 → 0
and e

rπ
ω → β. Thus, ẋ(t1) → −β ẋ0 as k → +∞ (if β = 1 then f ≡ 0 and we

retrieve the above case, and if 0 < β < 1, then f → ∞ as k → ∞). Simple

calculations show that
∫ π

ω

0 Fn(τ )dτ
Δ= − ∫ π

ω

0 ( fn ẋn(τ ) + knxn(τ )) dτ = m|ẋ0|(β +
1), where {kn} is a sequence of stiffness coefficients defined as previously, and fn =
2|ln(β)|

(
knm

π2+ln2(β)

) 1
2
. Thus, once again the sequence of force functions Fn(·) during

the collision time converges towards a Dirac distribution. Note that to show this, we
have considered a sequence of damping coefficients that depend on the massm. This

4This model is often called a linear spring-dashpot model, or the Kelvin-Voigt model.
5Let us note that the following relationship means that the damping coefficient is taken to be
proportional to the square root of the stiffness coefficient.
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is at first sight surprizing, as one can expect the nature of collision to be dependent
not only on the mass of the bodies that collide, but also on the approach velocity.
However, what really matters in this analysis is not how the sequences { fn} and {kn}
are defined but rather that they do exist, i.e., we are able to associate a sequence of
compliant models to the rigid limiting model.

Remark 2.2 (Impact duration) The above calculations show that the impact charac-
teristic time is O( 1√

k
). As shown in [969] this remains true for a Lagrangian system

with a single contact and a linear spring-dashpot model. This is only a crude approx-
imation of experimental data, where it is known that the impact time depends on the
pre-impact velocity, see Remark 4.6.

Note that when β → 0, β > 0, then Δ → 0, Δ < 0, f → 2
√
km, and as

k → +∞ (the sequence {kn} can be chosen of the form kn = k
′
n ln

2(β), with
k

′
n → +∞) then t1 → 0 and ẋ(t1) → 0 also. More formally, let us define a
sequence of positive coefficients β j , with β j → 0 as j → +∞. Hence we define
the functions pn, j (t) = − fn, j ẋn, j (t) − kn, j xn, j (t). Then, from the above it follows
that Fn, j (·) → mẋ0(β j + 1)δ0 = p jδ0 and trivially p jδ0 → m|ẋ0|δ0 as j → +∞
(convergence is always understood in the sense of distributions, see Appendix A.1,
Sect.A.1.3). Therefore, Fn, j (·) → mẋ0δ0 asn and j → +∞.Wehave thus found two
different sequences of interaction forces, both based on simple mechanical models of
contact-impact that both approximate the same limit problem, i.e., a purely inelastic
shock.

Remark 2.3 (Contact Force withWrong Sign) The contact force is F(x, ẋ) = −kx−
f ẋ for x ≤ 0. Normally, we should have F(x(t), ẋ(t)) ≥ 0 during an impact,
because no adhesive effects have been modeled with such a linear spring-dashpot
assembly. During the compression phase one has ẋ(t) < 0 so that − f ẋ(t) > 0 and
F(x(t), ẋ(t)) > 0: the acceleration ẍ(t) is positive, since ẋ(0) < 0 the velocity
increases until it vanishes (maximum compression time) and reverses its sign so that
the expansion phase starts. However, during the expansion phase ẋ(t) > 0 so that
the dissipative force − f ẋ(t) < 0. Close to the detachment position, x(t) is very
small and there always exists a position, hence a time, before the detachment occurs,
at which the dissipative force dominates the elastic one. Therefore, it is always the
case that before detachment, F(x(t), ẋ(t)) < 0 and this persists until the detachment
time occurs, see Fig. 2.4b. Notice anyway that if the contact model guarantees that the
impact finishes at some time t1 with ẋ(t1) ≥ 0, with an initial velocity ẋ(0) < 0, then
m(ẋ(t1) − ẋ(0)) = ∫

[0,t1] Fn(t)dt = pn(t1) > 0, despite possibly negative contact
force. This holds for any model satisfying such “collision” assumption.

We have calculated the final collision time as being the first time t1 when x(t1) = 0.
One drawback of this choice is that the force exerted by the spring-dashpot on the
mass, may become negative during the impact. This is a nonphysical behavior. This
has motivated the choice of another criterion for the end of the impact [239, 274,
474, 475, 1079, 1080], as the first time t = t f �= t1 when the contact force vanishes,

i.e.,6: f ẋ(t f )+ kx(t f ) = 0. This yields an expression for the ratio β = − ẋ(t f )
ẋ(t0)

of the

6We will see in Sect. 2.1.3.4 that this approach is to be embedded into a complementarity model.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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rebound velocity versus the initial one, called the restitution coefficient,7 different
from that in (2.9). One finds:

β = exp

(
− ζ√

1 − ζ 2
arccos

(
2ζ 2 − 1

))
(2.10)

where ζ = f
2mω

, ω =
√

k
m , and 0 ≤ ζ < 1. Further expressions may be calculated

for less damped systems with ζ ≥ 1 [274]. One obtains for ζ > 1:

β = 1

4ζ
√

ζ 2 − 1
η

− ζ√
ζ2−1

(
η − 1

η

)
, η =

√√√√2ζ 2 − 1 + 2ζ
√

ζ 2 − 1

2ζ 2 − 1 − 2ζ
√

ζ 2 − 1
, (2.11)

instead of (2.10). Let us come back to the switching conditions in (2.7). Inverting
(2.9) the restitution coefficient may be found as:

β = exp

(
− πζ√

1 − ζ 2

)
= exp

⎛
⎝− πμ√

ω2
0 − μ2

⎞
⎠ , (2.12)

where ζ = f
2
√
km

is supposed to be in [0, 1], ω0 =
√

k
m , μ = f

2m (if the dynamics is

equivalently written as ẍ(t) + 2μẋ(t) + ω2
0x(t) = 0). If ζ > 1 then the restitution

coefficient β = 0 [1080]. It is obvious that β in (2.12) varies from 1 (ζ = 0) to 0
(ζ = 1). It is remarkable that changing the switching surface, changes significantly
the equivalent restitution property. As will be seen next, the mathematical analysis
differs as well.

Let two one-degree-of-freedom particles collide each other, and one associates a
spring-dashpot contact model with each of them. The basic model we used above
may be recovered by setting equivalent stiffness k = k1k2

k1+k2
, equivalent damping

f = f1 f2
f1+ f2

, and equivalent mass m = m1m2
m1+m2

, with the coordinate x = x1 − x2.
Newton’s third law on action/reaction is used as well.

2.1.3.2 The Work Performed by Contact Forces

The work performed by the contact forces during the impact is given this time by

W[0,t1] = ∫ t1
0 ẋn(t)( fn ẋn(t) + knx(t))dt = 1

2
kẋ20

ω2+r2

[
e

2rπ
ω − 1

]
that tends towards

mẋ(0)2

2 (β2 − 1) < 0 when k → +∞. We will see later in the book that this quantity
is exactly the loss of kinetic energy TL at impact and can also be deduced from

7This restitution coefficient will be denoted as en in the rest of the book, where the subscript n is
for “normal”.
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the result in [1192] that states that the work performed by the impact of a particle
against a massive barrier is given by an “average” formula W[0,t1] = Pn(t1)

ẋ(t1)+ẋ(0)
2

where Pn(·) is the normal impulse of the percussion, i.e., the time integral of the
interaction force during the shock interval (thus Pn(0) = 0). See Chap.4 for further
developments on the Thomson and Tait formula.

Thus, once again the approximating model allows us to give a meaning to
the impulsive work that is consistent with the energetical behavior of the impact
(here a loss of energy as long as β < 1). Note that the distributional formula-
tion permits to calculate easily the loss of kinetic energy but not the impulsive
forces work. This is somewhat paradoxical since both quantities are equal and
represent the same physical process of energy dissipation. Actually, one needs
a generalization of the vis-viva Theorem which states (for smooth motions) that
W[t0,t1] = ∫ t1

t0
F(t)T ẋ(t)dt = T (t1) − T (t0). The work performed by impulsive

forces is sometimes deduced from (1.1) as Wk = limΔt→0
∫ tc+Δt
tc

pn(τ )ẋ(τ )dτ : it is
clear that without any approximating sequence of impact problems, the integrand is
meaningless in the distributional sense. Let us denote the restitution coefficient β as
en. We have proved the following:

Proposition 2.1 Consider the equation in (1.2) that represents the dynamics of a
rigid mass colliding a rigid environment, without any external action. Then, for
any energetical behavior of the materials at the impacts (namely for any restitution
coefficient 0 ≤ en ≤ 1) we can associate an approximating sequence of compliant
models such that the approximating solutions xn(·) converge uniformly towards the
solution of (1.2).

Roughly speaking, as we pointed out in Remark 1.1, we have approximated the limit
rigid problem by sequences of differential equations of the form mẍn(t) = Fn(t) for
a given sequence of functions {Fn(t)}, whose limit is a Dirac measure. Results for
convergence of this kindmay be found for instance in [397, Chap.1] (see in particular
Lemmas 4 and 5 §1, Theorem1, §2 in that book). Uniform convergence can be proved
by using the change of variables indicated in Examples 1.1 and 1.3 since the resulting
system is Carathéodory. This holds for xn(·) only since ẋn(·) is continuous and cannot
thus converge uniformly to a discontinuous ẋ(·). The result holds for more general
systems like the one in Example 1.3 as long as the “impact function” h(t) is of local
bounded variation.8 We have been able to prove the above because the considered
problem is integrable and the exit times can be calculated. As pointed out in the
previous section, in the general case the problem is much more involved. A possible
work is to find out arguments proving that sequences { fn} and {kn} exist that yield
the same results when for instance an external force u(t) acts on the system. As an
illustration, consider the classical bouncing ball problem, that corresponds to adding
a constant force (gravity) to the mass: then it can be shown that the impulsive force
acting on the ball for 0 < en < 1 has the form F = ∑+∞

k=0 pkδtk , where t∞ < +∞ is

8Strictly speaking, this fact has to be proved. In the simple examples we have treated, we have
been able to integrate the equations and to calculate the functions Fn(·). Obviously, in slightly more
complex cases this would not be possible.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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an accumulation point of the sequence {tk}. A fundamental property of this sequence

is that the step function h(t)
Δ= ∑n

k=0 pk on [tn, tn+1], n ≥ 0 is of bounded variation
on [t0, t∞]. Hence, from [1082, p. 25, Theorem 2, p. 53] p = ḣ can be considered as a
Schwartz’s distribution since it is a bounded measure. Then, from density ofD inD�

[1082, Theorem 15, Chap.3], we can approximate p and h by sequences of smooth
functions {pn} and {hn}. From [51, Lemma 2.2.5], ḣn = pn since the functions ḣn
are continuous. Are there sequences of damping and stiffness coefficients such that
the corresponding compliant model is an approximating sequence for this problem?
The work in [969] that we describe later yields a positive answer.

2.1.3.3 Well-Posedness of (2.7)

The system in (2.7) is a switching dynamical system, whose vector field is dis-
continuous on the switching surface Σ = {(x, ẋ)|x = 0}. It is easy to add an
external action F(t) to the dynamics (2.7). Let z1 = x and z2 = ẋ , then one may
rewrite (2.7) as a first-order switching system ż(t) = A1z(t) + BF(t) if z1(t) ≤ 0,
ż(t) = A2z(t) + BF(t) if z1(t) ≥ 0. On the switching surface Σ , the vector
field jumps with a discontinuity equal to (A1 − A2)z(t) and z1(t) = 0, so that
(A1 − A2)z(t) = (0 − f

m z2(t))T . It is possible to embed this system into the general
framework of Filippov’s differential inclusions, just as the systems of Sect. 1.4.3.
Then, one rewrites it as:

ż(t)

⎧⎪⎪⎨
⎪⎪⎩

= A1z(t) + BF(t) if z1(t) ≤ 0
= A2z(t) + BF(t) if z1(t) ≥ 0

∈ conv(A1z(t), A2z(t)) if z1(t) = 0,

(2.13)

where conv(A1z(t), A2z(t)) is the closure of the convex hull of the two vectors. It

is found to be conv(A1z(t), A2z(t)) = {v ∈ R
2|v =

(
z2(t)

−α f
m z2(t) + F(t)

)
, α ∈

[0, 1]}. It is noteworthy that the Filippov’s convexification, or regularization method,
disregards the value of the vector field on the switching surface Σ . It is therefore
not important whether the inequalities defining the switching conditions, are strict or
not in (2.7). Due to the way Filippov’s right-hand side is constructed, the following
holds:

Lemma 2.1 The differential inclusion in (2.13) possesses for each initial condition
(z1(0), z2(0)) an absolutely continuous solution which satisfies the inclusion for
almost all t ≥ 0.

The simplest example of a Filippov’s convexification is the discontinuous system
ż(t) = 1 if z(t) > 0, ż(t) = −1 if z(t) < 0. Then one obtains the differential
inclusion ż(t) ∈ sgn(z(t)) where sgn(·) is the set-valued signum function, equal
to ∂| · | (see Sect. B.1). There exist other ways to characterize the solutions of
(2.7), for instance considering that on Σ one has ż(t) ∈ {A1z(t), A2z(t)}, i.e., two

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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values are assigned to the vector field instead of a whole segment. This gives rise to
Carathéodory solutions [1197].

What about uniqueness property? The so-called one-sided Lipschitz condition for
set-valued mappings [13] secures uniqueness of solutions for differential inclusions.
However, one may check using [1197, Theorem 2.6] that the mapping in the right-
hand side of (2.13) is not one-sided Lipschitz continuous. The criteria in [1197,
Theorems 3.1, 3.3, 3.4, Corollary 3.5] may be used to test the uniqueness property.
If F(t) = 0 [1197 Corollary 3.5] applies and uniqueness of solutions of (2.13) in the
sense of Filippov holds. Carathéodory solutions are analyzed in [574].

The Zeno behavior may be characterized through [1197, Theorem 4.2]. Let us
remind that the system (2.13) is non-Zeno if the switches, i.e., the time instants when
Σ is crossed, are well-separated one from each other. In particular they never accu-
mulate. The criterion in [1197, Theorem 4.2] consists of constructing three equations
from “observability” matrices (CT CT A1 CT A2

1)
T and (CT CT A2 CT A2

2)
T , where

the switching function CT z = (1 0)z is seen as an output. When applied to (2.13) it
yields non-Zenoness provided F(t) = 0.

Remark 2.4 The criteria in [1197] rely strongly on observing the derivatives of the
switching function, on the switching surface, and characterizing them through lexi-
cographical inequalities. This is an ubiquitous tool for the analysis of switching and
unilaterally constrained systems.

2.1.3.4 Complementarity Modelling

The model in Sect. 2.1.1.2 assumes that the switches occur when x(·) crosses the
zero value, see (2.7). Let us consider now the other switching condition for the linear
spring-dashpot model that yields the restitution coefficient in (2.10). It allows one
to eliminate the phases of motion where the contact force may become negative,
a phenomenon that is observed with the “usual” swicthing conditions as noted in
Remark 2.3 (see also Fig. 2.4b). During the contact phases one still has z(t) = ξ(t)

and F(z, ż) = − f ż − k(z − l) = − f ẋ − kx with x
Δ= z − l, and x(t) ≤ 0. Let us

set the following dynamics:

⎧⎨
⎩

η̇(t) = Aη(t) + Bλ(t)

0 ≤ w(η(t)) = Cη(t) ⊥ λ(t) ≥ 0,
(2.14)

where ηT = (x, ẋ, ξ̄ ), ξ̄ = ξ − l, A =
⎛
⎝0 1 0
0 0 0
0 0 − k

f

⎞
⎠, BT =

(
0 1

m − 1
f

)
, C =

(
1 0 −1

)
. The matrix A has two zero eigenvalues and one eigenvalue equal to − k

f ,

and is thus marginally stable. The variable w(η) = z − ξ = x + l − ξ = x − ξ̄

represents the signed distance between the spring-dashpot system and the constraint,
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while ξ is the deformation of the spring and the damper. The contact and noncontact
phases correspond to w(η) = 0 (⇒ λ(η) ≥ 0) and w(η) > 0 (⇒ λ(η) = 0)
respectively. During noncontact phases, the spring-dashpot system has the dynamics
˙̄ξ(t) = − k

f ξ̄ (t), equivalently f ξ̇ (t) = −k(ξ(t) − l). Contarily to the undamped
case, where f = 0 implies ξ = l, it has its own dynamics, though it is massless.

The obtained system in (2.14) is a Linear Complementarity System. There is a
significant difference between (2.14) and (2.5): in (2.14) the multiplier λ(η) does
not appear in both sides of the complementarity conditions, hence one cannot use
straightforwardly the equivalences in (2.4) to compute its value. One has to differ-
entiate once the variable w(η) to recover a Linear Complementarity Problem (LCP,
see Definition 5.105). If w(η(t)) = Cη(t) = 0 on [t ′, t ′′], for some t ′′ > t ′, then
the complementarity condition 0 ≤ ẇ(t) = C η̇(t) ⊥ λ(η(t)) ≥ 0 holds on (t ′, t ′′).9
Since CB = 1

f > 0, λ(η(t)) is at time t ∈ [t ′, t ′′] the unique solution of the LCP:

0 ≤ λ(η(t)) ⊥ ẇ(t) = CAη(t) + CBλ(η(t)) ≥ 0, (2.15)

whose matrix CB = 1
f is obviously a P-matrix (see Theorems 5.4 and 5.5). Let

CAη(t) = ẋ(t) + k
f ξ̄ (t) ≤ 0, then the multiplier is given by λ(η) = − f C Aη(t) =

− f ẋ(t) − kx(t) ≥ 0, noting that during this phase of the motion one has z(t) =
x(t)+l = ξ(t). Ifwehave on the contraryCAη(t) ≥ 0 then themultiplier isλ(t) = 0:
there is a detachment from the obstacle at the time instant t f whenCAη(t f ) = 0, i.e.,
the force exerted by the obstacle (the spring-dashpot system) on the mass vanishes
and then takes negative values.

One may say that the relative degree between the “output” w(η) and the “input”
λ(η) is equal to zero in (2.5) and equal to one in (2.14).

� It is noteworthy that in both (2.14) and (2.5), transitions from noncontact to
contact occur with a continuous state and a bounded multiplier (contact force) λ.
There is no state jumps nor Dirac measure.

To summarize, noncontact phases of motion have the dynamics η̇(t) = Aη(t),

while contact phases have the dynamics η̇(t) =
⎛
⎝ 0 1 0

−k
m

− f
m 0

k
m 1 −k

m

⎞
⎠ η(t). Since in the

contact phase one has w(t) = 0 ⇔ z(t) = ξ(t) = x(t) + l, the ξ -dynamics reduces
to ξ̇ (t) = ż(t) = ẋ(t) which trivially holds. The rest of the dynamics is that of a
mass with stiffness and damping effects.

Well-Posedness Analysis

Let us refer to Theorem 5.4 in Sect. 5.4.2, which stipulates that λ(x) as a solution of
the LCP in (2.5), is a Lipschitz continuous function of x . It follows that the system in
(2.5) is an Ordinary Differential Equation with Lispchitz continuous vector field (this

9Here ẇ(t) = ∇w(η)T η̇(t).

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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continues to hold if an external action F(t) is added, provided F(t) is regular enough).
Hence general results about existence, uniqueness and continuous dependence apply
to the Linear Complementarity System (2.5), which possesses continuously differ-
entiable solutions. The system (2.5) may also be seen as a piecewise-linear system
with continuous vector field. Such straightforward conclusion cannot be drawn for
(2.14), which requires more analysis, as in particular its vector field is no longer
continuous at the switching surface. Let us first notice that using (B.19) one obtains
that (2.14) is equivalent to the differential inclusion:

η̇(t) − Aη(t) ∈ −B NR+(Cη(t)). (2.16)

A useful relation is that there exists a symmetric, positive definite matrix P such that
PB = CT .10 For instance the matrix:

P =
⎛
⎝

p11 m 0
m 1 f

m

0 f
m

f 2

m2 + f

⎞
⎠ , p11 > f + 1 (2.17)

is suitable. The matrix P has a symmetric positive definite square root R, such that
RR = P . Let ζ = Rη. The dynamics (2.16) becomes (time argument is dropped):

ζ̇ − RAR−1ζ ∈ −R−1CT NR+(CR−1ζ ) ⇔
⎧⎨
⎩

ζ̇ = RAR−1z + R−1CT λ

0 ≤ w = CR−1ζ ⊥ λ ≥ 0.
(2.18)

Using the symmetry of R (and thus of R−1) one may use Lemma B.1 and Theorem
B.2 to deduce that R−1CT NR+(CR−1ζ ) = ∂ f (ζ ), with f = ψR+ ◦ CR−1 : R3 →
R. Consequently the Linear Complementarity System (2.14) is equivalent to the
differential inclusion:

ζ̇ (t) − RAR−1ζ(t) ∈ −∂ f (ζ(t)). (2.19)

Now using Definition B.8, Lemma B.1 and TheoremB.4, one deduces the following:

Lemma 2.2 The differential inclusion in (2.19) possesses for each initial state
z(0) ∈ Dom(∂ f ) a unique Lipschitz continuous solution, with essentially bounded
derivatives.

10This property, which shall be used elsewhere in this book, is implied by the dissipativity of the
system, as a consequence of the passivity Linear Matrix Inequality [218, 254].
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From the fact that the system (2.5) possesses continuously differentiable solutions,
while Lemma 2.2 guarantees only Lipschitz continuous solutions, we may state that:

� The relative degree between the complementarity variables in (2.5) and (2.14)
influences the smoothness of the solution.

The constraint ζ(0) ∈ Dom(∂ f ) that applies to (2.14) means that initially z(0) ≥
ξ(0). This implies that the spring-dashpot cannot penetrate into the wall. The last
developments have been abundantly used in [22, 205, 213, 214, 215, 217, 226]
to analyse various types of nonsmooth systems, relying on dissipativity, maximal
monotonicity, and differential inclusions theory. The property PB = CT states in
fact the passivity of the system (2.14), where λ(η) and w(η) are seen as fictitious
input and output [218]. Other assemblies of linear springs, dashpots and dry friction
elements have been analysed in [100, 103] and shown to yield well-posed differential
inclusions whose set-valued part is amaximalmonotonemapping. Our short analysis
shows that there exist close links between dynamical systems with complementarity
conditions, some types of differential inclusions, and some types of piecewise-linear
systems.More details on the relationships between thesemathematical formalisms of
nonsmooth dynamical systems, may be found in [212, 438]. It is noteworthy that the
manipulations made to analyze the differential inclusion (2.16) do not easily extend
to nonlinear dissipative systems, like Lagrangian systems with a varyingmass matrix
M(q), see [25] for a detailed analysis of this case.

Remark 2.5 The complementarity system has been put in the equivalent form (2.18).
In particular thematrixmultiplying themultiplierλ is R−1CT , and thematrix defining
w is its transpose CR−1. This allows one to recast this system in the framework of
variational inequalities, for which extensions of Lyapunov stability tools exist [463].
This is quite different from systems with unilateral constraints as in (5.1) in Chap.5.
Indeed suppose that the unilateral constraints in (5.1) are of the form f (q) = Cq ≥ 0.

In the state space form of (5.1) with x
Δ= (qT , q̇T )T , one has w = Dx = (C 0)x .

However the contact force multiplier λn,u enters the state space dynamics through

the matrix B =
(

0
CT

)
. Clearly BT �= D. This is due to the fact that in (5.1),

the relative degree between w = f (q) and λ is, roughly speaking, equal to 2: two
differentiations of w(·) are necessary to recover λ(·).

Fixed Points of (2.14)

The matrix A is singular, so that the system η̇(t) = Aη(t) possesses an infinity of
equilibria. However, the equilibrium points of the differential inclusions (2.14) and
(2.18) are given as the solutions of the generalized equations (that take the form of
complementarity problems, or of inclusions into normal cones):

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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{
Aη� + Bλ� = 0
0 ≤ Cη� ⊥ λ� ≥ 0

⇔
{
PAη� + PBλ� = 0
λ� ∈ −NR+(Cη�)

⇔ PAη� ∈ −CT NR+(Cη�) ⇔ 0 ∈ PAη� + NΦ(η�)

⇔ 0 ∈ −RAR−1ζ � + ∂ f (ζ �) ⇔
⎧⎨
⎩
0 ∈ RAR−1ζ � + R−1CTλ�

0 ≤ CR−1ζ � ⊥ λ� ≥ 0,

(2.20)

where Φ = {y ∈ R
3|Cy ≥ 0}, and η� = (x�, 0, ξ̄ �)T . To get these equivalences we

used (B.19), Theorem B.2, Definition B.7, and the fact that P is full rank together
with PB = CT . Generally speaking, it could happen that A is singular while the
generalized equations in (2.20) possess a unique solution. Obviously in our case
there is an infinity of equilibrium points, which correspond to the noncontact phase
whose mass dynamics is ẍ(t) = 0. All the points x� = z� − l > 0 and ξ̄ � = 0
satisfy the generalized equation (2.20) with λ� = 0. We may modify the dynamics
by either adding a constant external force Fext acting on the mass, or with a feedback
u = −kpx−kvẋ , kp > 0, kv > 0. The first modificationmodifies the system in (2.14)
as η̇(t) = Aη(t) + Bλ(t) + EFext , with E = (0 1

m 0)T . Then if Fext < 0 one finds
that the only equilibrium is λ� = −Fext , ξ̄ � = Fext

k = x� (the equilibrium belongs to
the contact phase, the spring being compressed). If Fext > 0 there is no equilibrium

(the mass moves to the left). The second one modifies A to Ã =
⎛
⎝

0 1 0
−kp
m

−kv
m 0

0 0 − k
f

⎞
⎠

which is full rank. One can check that the only equilibrium is given by x� = ξ̄ � = 0
and λ� = 0, that corresponds to a degenerate solution of the generalized equations
in (2.20).

Dissipativity Properties

It is easy to check that PA + AT P with P in (2.17) is not definite. Hence the triplet
(A, B,C) is not dissipative, though PB = CT .

� It is noteworthy that we are not verifying the dissipativity of a simple double
integrator with PD feedback mẍ + kvẋ + kpx = u, which is dissipative with supply
rate 〈u, ż〉. The whole switching, complementarity system is studied.

Let us assume that (i) m > 1 + f , or (ii) m < 1 − f
m . Then one can show that

there exists (i) large enough kp for fixed bounded kv, or (ii) large enough kv for fixed
bounded kp, such that P Ã+ ÃT P is negative definite. Hence under such conditions
on the gains, the system ( Ã, B,C) is dissipative with the supply rate 〈w, λ〉, i.e.,
it is passive. It has the storage function V (η) = 1

2η
T Pη, and due to the negative

definiteness of P Ã+ ÃT P , the equilibrium point x� = ξ̄ � = 0 is globally, uniformly
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Fig. 2.2 Linear
complementarity system:
Lur’e set-valued system

−λ
w

−λ

0

w=Cx
η̇ = Ãη +Bλ

asymptotically stable in the sense of Lyapunov. The dissipation equality is satisfied
along trajectories

V (η(t1))︸ ︷︷ ︸
Energy at t1

− V (η(t0))︸ ︷︷ ︸
Energy at t0

=
∫ t1

t0
w(s)λ(s)ds

︸ ︷︷ ︸
Injected energy on [t0,t1]

+
∫ t1

t0
η(s)T Qη(s)ds

︸ ︷︷ ︸
Dissipated energy on [t0,t1]

,

(2.21)

with Q = P Ã + ÃT P < 0, and for any t0 ≤ t1. The LCS in (2.14) with the new
state matrix Ã thus has the negative feedback interconnection structure as in Fig. 2.2,
and may be interpreted as a Lur’e system with set-valued nonlinearity, where the
dynamics is dissipativewhile the set-valued static nonlinearity ismaximalmonotone.

2.2 Viscoelastic Contact Models and Restitution
Coefficients

2.2.1 Linear Spring-Dashpot

The linear spring-dashpot model has serious flaws: discontinuity in the viscous fric-
tion term for nonzero approach velocity [522] producing discontinuous acceleration,
possible negative contact force (see Remark 2.3), and an equivalent restitution coef-
ficient en = β in (2.10), (2.11) or (2.12), that does not depend on the initial impact
velocity. All experiments show that the colliding velocity strongly influences the
restitution coefficient, that may vary from 0.9 for approach velocities ≈ 0.2 m/s,
to less than 0.5 for velocities ≈ 3–5 m/s (SUJ2 steel11 sphere/sphere impact [857]),
440c grade 100 wear resistant stainless steel sphere hitting a stainless steel puck with
no hardening effects [180]. Figures165 and 166 in [469] indicate a decrease of the
restitution coefficient from 0.9 to 0.2 for lead sphere/sphere impacts, for approach

11Steel used for journal bearing, Japanese Industrial Standards.
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velocities varyng between 0.1 and 1.6 m/s. In fact the model of Fig. 2.1 is often
too simplistic to reproduce experimental results, and has therefore little prediction
capabilities.

In [999] the spring-dashpot model as in Sect. 2.1.3 is used to calculate the optimal
f and k that minimize the maximum value of the interaction force, given the max-
imum deformation. Notice that the experimental determination of the contact force
represents in itself a topic of research [360, 361, 537, 713, 811]. This is typically an
inverse problem in which one knows the output (displacement, velocity, strain) and
the structure dynamics (a transfer function for instance [713]) and tries to compute
the input (the contact force). A simple experiment allowing one to observe the shape
of the curve force versus time is described in [72] for educational purpose. In [150] a
nonlinear spring action k(x) is used. The model is validated experimentally for low
impact velocities (≤ 8 m/s) of a solid cylindrical mass with blocks of polystyrene
aggregate concrete. The maximum force during an impact process between two flex-
ible bodies and using a linear spring-dashpot is calculated in [633]. Comparisons
are made with experimental results using various materials. One possibility is to
combine the rigid body approach (that provides one with pre and post-impact veloc-
ities and percussion) with a suitably chosen compliant model of contact/impact [1]:
the compliant model is identified with the supplied data and then used to calculate
the force history. Comparisons with calculations of the whole motion with methods
using compliant models show good reliability of such procedure. A similar method
has been used in [1122] to compare the results obtained from integration with a
finite-element code and those of a rigid body approach (namely Darboux-Keller’s
shock dynamics, see Chap.4).

The calculation of restitution coefficients has been considered in the mechanical
engineering literature for various types of spring-dashpot models. For instance the
authors in [1298] calculate en for a one degree-of-freedom system composed of a
mass related to the ground by a spring of stiffness k, and striking in a compliant
obstacle composed of a sprink k1 and a damping coefficient f . Then it is found that

en
Δ= ẋ(t f )

ẋ(t0)
= exp

(
ξπ√
1−ξ 2

)
, where ξ = f√

(k+k1)m
(compare with (2.12)). The model

of Zener consists of the linear spring-dashpot with stiffness k1, mounted in series
with another spring with stiffness k2, see Fig. 2.3b. When k1

k1+k2
� 1 , this gives the

restitution coefficient:

en = exp

((
− α√

1 − α2
+ η f1(α)

)(
arctan

(
2α

√
1 − α2

2α2 − 1

)
+ η f2(α)

))
,

(2.22)

with: α = k2 f
2(k1+k2)mω0

, ω0 =
√

k1k2
m(k1+k2)

, η = k1
k1+k2

, f1(α) = α − α3

2 + O(α5),

f2(α) = 2α − 3α2 + O(α5). The model of Maxwell consists of a linear spring
and a linear damper mounted in series. The contact force and the indentation satisfy
ξ̇ = Ḟ

k + F
f . This model lacks of physical meaning as far as Solid Mechanics is

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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k2

f

(a) (b)
k2

k1

k1m1 m2
m

Fig. 2.3 Hodgkinson’s and Zener’s models

considered, because there is no static equilibrium if a constant force is applied on
the system. It seems to be suited more to fluid-like behaviors. Hodgkinson [535]
considered the system in Fig. 2.3a, in order to analyse the influence of each body’s
stiffness on the restitution process. He proposed the formula for composite restitution
of coefficient en,12 = k2en,1+k1en,2

k1+k2
, where en,1 and en,2 are the coefficients obtained for

pairs of identical material masses.12 Though this composite coefficient may be fitted
with experiments, it may be energetically inconsistent [313, 1157]. An energetically

consistent expression is e2n,12 = k2e2n,1+k1e2n,2
k1+k2

[294].
It has been argued [364, 555] that spring-dashpot models for the contacting sur-

faces are well-suited, because the energy-loss at impacts is associated primarily with
damping rather than micro-plastic deformation or permanent strain: this is wrong
if the impact velocity is such that plastification occurs. It is pointed out in [1295]
after numerical and experimental investigations on impacts of a flexible arm against
a rigid obstacle, that although a spring-dashpot and a more sophisticated Hertzian-
like model with additional plastic effects provide similar results, the spring-dashpot
parameters are more difficult to identify: this is indeed a major drawback of these
models.

2.2.2 Nonlinear Elasticity and Viscous Friction:
Simon-Hunt-Crossley and Kuwabara-Kono
Dissipations

Let us remind that Hertz’ contact theory yields for sphere/sphere contact an elastic
force/indentation relation

F = 4

3
E�

√
Rx

3
2 , (2.23)

with 1
R = 1

R1
+ 1

R2
, 1
E� = 1−ν2

1
E1

+ 1−ν2
2

E2
, where R1 and R2 are the spheres radii, E1 and

E2 their Young elasticity modulii, ν1 and ν2 their Poisson’s ratios (see Sect. 4.2.1.1
for more details on Hertz’ contact theory). This provides an equivalent stiffness.

12In fact, Hodgkinson considered sphere/sphere impacts under Hertz’ elasticity, which we simplify
here to particle/particle impacts.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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Hunt and Crossley [555] proposed a unilateral nonlinear spring-dashpot model of
the form:

mẍ(t) = −γ x(t)p ẋ(t) − kx(t)p = −x(t)p(γ ẋ(t) + k), (2.24)

which we choose to apply during contact phases x(t) ≤ 0,13 where γ represents
a damping parameter,14 k is a stiffness parameter, and p is an exponent whose
choice is left to the designer (p = 3

2 is Hertz’ elasticity, in which case k = Kh

in (2.23)). If we consider bilateral contact then we have to write γ |x(t)|p ẋ(t) to
guarantee that this term has a meaning for any p. This model is an extension of
the model proposed in [1113, Eq. (5)] who wrote it for p = 3

2 and γ = k f for
some damping coefficient f , using experimental data in [196]: The Hunt-Crossley
model should thus better be called the Simon-Hunt-Crossley model, since authors in
sports science speak of the Simon’s model [492, p. 253]. It has been also proposed
in [1228].15 One sees that the factor x p in the damping term allows to pass con-
tinuously from the free to the contact motion. Let γ = 3

2αk . The model in (2.24)
yields en ≈ 1 − α|ẋ(t0)| (see [802] for a rigorous proof), with α ∈ [0.08, 0.32]
s/m for steel, bronze or ivory bodies [555].16 Various viscous friction terms may
be assigned to the model by changing γ , hence changing the equivalent coeffi-

cient of restitution en: γ = 6(1−en)
[(2en−1)2+3]

k
|ẋ(t0)| [522], γ = 3

4αk [716], γ = 3k(1−e2n)
4|ẋ(t0)|

[704], γ = 3(1−en)
2en|ẋ(t0)| [545], γ = 8(1−en)

5en|ẋ(t0)| [403], γ = 3(1−en)
2|ẋ(t0)| [555], an implicit

definition17: k ln
(

γ |ẋ(t0)|+k
−γ (1−αẋ(t0))|ẋ(t0)|+k

)
− 2γ |ẋ(t0)| + αγ ẋ(t0)2 = 0 [470, 1323].

The coefficient α is an empirical parameter that may be obtained by fitting with
experiments from the formula en ≈ 1 − α ẋ(t0). In practice one estimates en
via experiments, and deduces γ as in the above expressions, therefore obtain-
ing the right spring-dashpot model. Those nonlinear spring-dashpot models typi-
cally have the force/indentation responses shown on Fig. 2.4a [442, 471, 602, 705,
802], while the linear ones typically have the response shown on Fig. 2.4b [12].
The dashed areas represent the dissipated energy during the collision process. A
comparative study of all these Simon-Hunt-Crossley models is done in [38]. It fol-
lows from [38, Figs. 3, 4, 6, 7, 8, 9] that the contact force/indentation, indentation
velocity/indentation displacement, and force/time diagrams show little variations
from one model to the other (but the discrepancy with experimental data taken
from [1324] increases if the pre-impact velocity increases). All the above models
have a dissipation term of the form D(x, en, ẋ(t0), γ, k)ẋ . In [716], the expression

13Thus we assume implicitly that x(t)p exists, or we could just write |x(t)|p .
14Often called the hysteresis factor [782]. The spring assures the compression/expansion, while the
damping creates dissipation and the hysteresis shape.
15Notice that contrary to what is written just above [542, Eq. (1)] and could be misleading, the
contact model in (2.24) with p = 3

2 is not at all introduced in [1203].
16Such values should be checked and are given here just for the sake of providing an order of
magnitude.
17It is unclear how the models which include the pre-impact velocity ẋ(t0), may be used in the
context of multiple impacts, where some of the contact points are lasting before the collision.
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D(x, en, γ, k) = 2m
√

k
m

√
ln(en)2

ln(en)2+π2
x+|x |
2x exp

({(x − ε) − |x − ε|} Q
ε

)
is proposed,

where Q is a parameter, 0 ≤ ε ≤ xmax, and the contact force D(x, en,m, k, ε)ẋ+kx
3
2

has to remain nonnegative during the collision process.

Remark 2.6 It is noteworthy that all models with ẋ(t0) in the denominator, yield
dynamics which are ODEs of the form ż(t) = f (z(t), z(0)), which is unusual. In
fact this corresponds to adding one dimension to the system: ż(t) = f (z(t), y(t)),
ẏ(t) = 0, y(0) = z(0). Moreover since ẋ(t0) is in the denominator of the vector
field, some numerical problems may arise if the initial velocity is very small (think
of multiple impacts in chains of balls where some balls are at rest initially).

TheSimon-Hunt-Crossleymodel has becomepopular because it has someniceadhoc
mathematical properties, which in fact allow one to derive the above expressions for
en by varying γ [801, 802, 1157, 1186]. Choosing γ = 3

2αk, the dynamical equation

(2.24) is mẍ(t) + kx(t)p(1 + 3
2α ẋ(t)) = 0 and it is separable as

∫ ẋ(t f )
ẋ(t0)

ẋ
1+ 3

2 α ẋ
d ẋ +

k
m

∫ x(t f )
x(t0)

x pdx = 0. If the detachment instant is such that x(t f ) = x(t0) then the
second term vanishes. It is possible to show that the maximum compression occurs

at x(tc) such that x(tc)p+1 = − (p+1)|ẋ(t0)|
γ

+ k(p+1)
γ 2 ln

∣∣∣1 + γ |ẋ(t0)|
k

∣∣∣ [602]. This proves
that such an assumption renders ẋ(t f ) independent of the mass and the stiffness.
Introducing the restitution coefficient en and integrating the right-hand term, onefinds
3
2α|ẋ(t0)|− ln(1+ 3

2α|ẋ(t0)|)+en
3
2α|ẋ(t0)|+ ln(1−en

3
2α|ẋ(t0)|) = 0, which makes

an implicit equation for en. In the same vein, Chatterjee [274] computes that for p = 1
in (2.24) (a linear spring and a nonlinear dashpot) one obtains−en − 1

a ln(1−aen) =
1 − 1

a ln(1 + a), where a is a parameter that depends on m, f , k. The separation
property is used in [1186], who noticed that the restitution coefficient does not depend
on the elasticity coefficient, in case one takes it equal to kxn with n �= p and the
viscous friction force is −αxn|ẋ |q for some q and a parameter α. Then, one obtains

the implicit equation for en: ln
(

1+ξ

1−eqn ξ

)
= ∑ 2

q −1

j=1

(
(−1) j−1 ξ j

j + (eqn ξ) j

j

)
, with ξ =

α
k |ẋ(t0)|q and eqnξ < 1. The parameters q and α have to be fitted from experiments.

In case q = 1, the implicit equation reduces to ln
(

1+ξ

1−enξ

)
= (1 + en)ξ . This is

extended in [373], who consider an elasticity force f (x), f (0) = 0, f (·) increasing,
a damping force γ f (x)ẋ , and prove that the CoR satisfies the transcendental equation
γ ẋ(t0)(1 + en) − ln(1 + γ |ẋ(t0)|) + ln(1 − enγ |ẋ(t0)|) = 0. For small enough pre-
impact velocities, [373] find en ≈ 1− 2

3γ |ẋ(t0)|which agrees with previous findings.
� These results prove that in the presence of specific damping, the CoR does not

depend on the elasticity properties or the material, just as in the undamped (purely
elastic) case.

Experiments with two impacting spheres are reported in [373], showing q = 1
5

for lead spheres, q = 1 for agate, brass, and porcelain spheres. The authors of
[602] derive the implicit relationship between displacement and velocity as γ ẋ

k −



72 2 Viscoelastic Contact/Impact Rheological Models

ln
∣∣∣1 + γ ẋ

k

∣∣∣ = − γ 2(x(tc)p+1−x p+1)

k(p+1) and approximate the ln(·) by its Padé approximant.

Then, they compute the energetic restitution coefficient (see Sect. 4.3.6) and compare
experimental and numerical results. They show that nonlinear damping is necessary
to model their experimental setup.

In fact, despite it allows some dependence on the initial impact velocity and
avoids tensile contact forces,18 the Simon-Hunt-Crossleymodel may lack of physical
foundations. It has been experimentally shown to correctly predict the shock process
for spheres and plates in [509, 1228], but not for the case of cylinders and plates
[317]. In [1324] more precise conclusions have been obtained from experiments
with chrome-steel balls impacting steel cylindrical specimens. The measurements
concern the impact force response in terms of its peak, slope during compression
and expansion phases, times of maximum compression and force peak, and impact
duration

• All the above variations of the Simon-Hunt-Crossley model yield the same resti-
tution coefficient when viscous friction is small.

• They are valid for low pre-impact velocities ẋ(t0), for otherwise plastic deforma-
tions may occur.

• They yield excellent predictions if en > 0.95, that is nearly lossless impacts.
• Usually, the peak force for near-elastic impacts is well-predicted, however the
contact duration is poorly predicted.

• If plastic deformation occurs, they yield very poor prediction capabilities.

In [442], it is noticed that taking γ = 1
en

k
|ẋ(t0)| , allows to obtain a model that pro-

vides good results for en ≤ 0.3. Similar arguments are used in [403] who proposes
γ = k 8(1−en)

5en ẋ(t0)
. As pointed out in [602] theremay exist a lag between displacement and

force during impacts (detachment occurs while the bodies are still deformed; max-
imum contact force and maximum deformation do not match in time). The Simon-
Hunt-Crossley with classical detachment conditions does not incorporate this lag.
Another important issue is whether or not such models may be used in a multibody
multicontact framework. As pointed out in [347], the implementation of the Simon-
Hunt-Crossley model in a robotic system with unknown environment requires the
on-line estimation of k, γ and p. This may not be easy in general, especially if there
are many contact points involving various materials with different viscoelastic prop-
erties. A survey and comparative analysis of most of these compliant contact models
is done in [783], focussing mainly on the impact process.19

The power coefficient p in the Simon-Hunt-Crossley model seems to be the result
of some empirical idea, fitted with experiments. Starting from the theory of elasticity,

18This is true if no external force acts on the body. As shown in [802], when the objects are separated
by an external force, then Simon-Hunt-Crossleymodelmay yield sticky contact forces, as illustrated
in Fig. 2.4a.
19Indeed and most importantly, using such compliant models during persistent contact phases may
produce spurious, unphysical oscillations of the contact force and acceleration during numerical
simulations. This is visible on many numerical results presented in the literarure, e.g., systems with
clearances [403, 489, 679, 941, 1179, 1226]. It may be preferable to switch to other contact models
and numerical integrators outside collisions.

http://dx.doi.org/10.1007/978-3-319-28664-8_4


2.2 Viscoelastic Contact Models and Restitution Coefficients 73

and extending it to viscoelastic materials, one finds the so-called Kuwabara-Kono
model [197, 198, 199, 525, 691, 902]:

mẍ(t) = −γ k|x(t)| 1
2 ẋ(t) − kx(t)

3
2 , (2.25)

for contact phases x(t) ≤ 0, and which corresponds to choosing |x |p−1 ẋ instead of
x p ẋ in (2.24). This type of nonlinear spring-dashpot model agrees with some experi-
mental results [407]. Unfortunately, it has not been tested in [1324] for experimental
validation.

It is clear that the separability property associated with the Simon-Hunt-Crossley
models, is lost with the Kuwabara-Kono’s approach. Notice that the square root in
the right-hand side of (2.25) renders the vector field non-Lipschitz continuous. ODEs
with non-Lipschitz vector fields have specific features in general (non uniqueness of
solutions, finite-time convergence to equilibria, unbounded jacobians), which should
be taken into account for analysis and numerical simulation. It is in fact a little
surprizing that a viscoelastic continuum yields a non Lipschtiz continuous contact
force. It is also indicated in [199] that the contact force in the right-hand side of (2.25)
could be replaced when x(t) � γ ẋ(t) by −(x(t) + γ ẋ(t))

3
2 , providing equivalently

good results when compared to some experiments. The contact force in (2.25) is
almost only dissipative for small indentations, since γ k|x | 1

2 ẋ + kx
3
2 = √

x(γ ẋ +
kx3) ≈ γ ẋ

√
x at the very beginning or at the very end of the collision where

velocity is much larger than indentation: As noticed in [12 §7.1.3], this indicates
that contact forces during an impact, in the Kuwabara-Kono model, always become
negative during a small period before detachment occurs, while vanishing again at
the detachment time (this last property is not shared by the linear spring-dashpot with
the naive switching conditions which gives a detachment force with the wrong sign).
Such spurious behavior may be avoided by imposing complementarity conditions
between the contact force and the distance function.

Let the dissipative force be written as −2
√
R
D̃

√
x ẋ , then the Kuwabara-Kono’s

model for the collinear collision of two spheres gives a normal restitution en ≈
1 − 1.0095

2 κ̃
(

|ẋ(t0)|
κm2

) 1
5
, where m is the effective mass, κ = 4

5D

√
R, 1

R = 1
R1

+ 1
R2
,

D = 3
4

(
1−ν1
E1

+ 1−ν2
E2

)
= 3

4
1
E� , κ̃ = 4

5D̃

√
R, Ei are Young’s moduli, νi are Poisson’s

ratios, D̃ is a viscosity parameter to be measured [508]. The impact duration is

estimated as t f ≈ πR
c

√
ln

(
4c

|ẋ(t0)|
)
, with c =

√
E∗
ρ

the compressive sound velocity

and ρ the density.
The authors in [906, 1027, 1080] consider the shock of two viscoelastic spheres

and a Kuwabara-Kono’s model F(x, ẋ) = −ρx
3
2 − 3

2 Aρ
√
x ẋ , where ρ = 2E

√
R

3(1−ν2)
,

A = 1
3

(3η2−η1)
2

3η2+2η1

(
(1−ν2)(1−2ν)

Eν2

)
, with E the Young modulus, ν the Poisson ratio, R =

R1R2
R1+R2

the effective radius of the equivalent system, η1 and η2 are viscous material
constants relating the dissipative stress and the deformation rate tensors. This yields
dynamics as in (2.25). If the end of the impact is supposed to occur at the first
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instant t1 such that ẋ(t1) = 0, then one calculates en = 1 + c1v
1
5 + c2|ẋ(t0)| 2

5 + ...

for some coefficients c1, c2 that depend on k. If the end of the collision is the first
instant t f such that F(t f ) = 0, then one calculates en = 1 + ∑∞

k=0 hkv
k
10 , where

v = ẋ(t0)
4
5 and for some coefficients hk that depend on k. The parameter γ is chosen

as γ = λ�
√
R

k in [70], where λ� is a parameter to be fitted with experimental data.
It provides a restitution coefficient that varies linearly with ln(|ẋ(t0)|) (but not with
ẋ(t0)).More experimental validations seem to be necessary to confirm the allegations
in [70]. The Kuwabara-Kono’s model has been generalized in [386] with a damping
coefficient equal to μẋ |x |α , α > −1, and results in en = 1 − 4

5B[ 32 , 2
5 (α + 1)]ϕ,

with ϕ = μ

m

(
5m
4k

) 2(α+1)
5 |ẋ(t0)| (4α−1)

5 , and B[·, ·] is a Beta function.20 This expression
holds for en � 1. Another expression that applies to the nonlinear spring-dahspot

with damping term |x |α ẋ and elasticity term xβ is en ≈ 1 − |ẋ(t0)|
2α−β+1

β+1 for small
initial impact velocity ẋ(t0) [771]. Assemblies of spring and fractional order dashpot
elements are studied in [908, 1313]: such fractional-elastic rheological models apply
to polymermaterials. The usual dashpot element with force f ẋ is replaced by f Dαx ,
where Dα is the fractional derivative, α ∈ (0, 1). The linear dashpot is recovered in
the limit α → 1. The authors of [197] correct their previous results [906, 1027, 1080]
and find that the Kuwabara-Kono dissipative force coefficient in case of two spheres
of same viscoelastic material is equal to

√
R

(1−ν)2
[ 43η1(1− ν + ν2) + η2(1− 2ν2)], that

is different from the above one. In fact, multibody multicontact applications will in
general require some parameter estimation procedure. The form of the dissipative
force, (i.e., −γ x p ẋ for some p) may be more important than the analytical value of
the parameter γ , that will be fitted with experimental data for a particular system.

The Simon-Hunt-Crossley model improves the linear spring-dashpot models
since it allows for nonlinear elasticity, it avoids discontinuous contact forces and
usually has no spurious contact forces with wrong sign. However the dissipative
contact force accounts for an equivalent viscosity of the materials in contact and
has to be carefully designed. Kuwabara-Kono’s model for the dissipative part of
the contact force originates from elasticity theory, and produces contact forces
with wrong sign before the end of the collision. It is crucial to apply such models
to materials which are known to be viscoelastic in the operating conditions.

Remark 2.7 (Hamiltonian Interpretation of Simon-Hunt-Crossley and Kuwabara-
Kono Model)] Both dynamics with the Simon-Hunt-Crossley and the Kuwabara-

Kono’s models, may be expressed in a dissipative Hamiltonian form. Let p Δ= mq̇ be
the linear momentum, and the Hamiltonian is H (x, p) = 1

2
p2

m + 2
5kx

5
2 H(x), with

20B[p, q] = 2
∫ π

2
0 cos2p−1(x) sin2q−1(x)dx .
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H(x) = 1 if x ≤ 0, H(x) = 0 if x ≥ 0. Both (2.25) and (2.24) with p = 3
2 are

rewritten equivalently as21:

(
ẋ
ṗ

)
=

[(
0 1

−1 0

)
− R(x)

](
kx

3
2 H(x)

p
m

)

︸ ︷︷ ︸
= ∂H

∂(x,p)

, (2.26)

with R(x) =
(
0 0
0 γ

√|x |H(x)

)
� 0 for Kuwabara-Kono, and R(x) =

(
0 0
0 γ x

3
2 H(x)

)
� 0 for Simon-Hunt-Crossley. Adding external force inputs, and

defining a proper dissipative output, one finds a so-called port controlledHamiltonian
system with dissipation [218, Definition 6.37], which is dissipative inWillem’s sense
provided the Halmiltonian is bounded from below [218, Lemma 6.38].

A five-parameter viscoelastic model incorporating complementarity conditions has
been proposed in [1287]. It is meant to improve the Simon-Hunt-Crossley model,
avoiding sticky contact forces, and allowing for non zero remaining indentation. This
is particularly important in view of the fact that the Simon-Hunt-Crossley model is
known to overestimate the contact time, because the spring has to fully unload to
get detachment, if no nonnegativity of the contact force is imposed [602]. The new
model is formulated as follows:

⎧⎪⎪⎨
⎪⎪⎩
a(t) +

(
1
γ

+ β1 + β2a(t)
)
ȧ(t) ∈ −∂ψR+(γ (a(t) − δ(t)|δ(t)|λ−1) + ȧ(t))

F(t) = K
(
a(t) +

(
1
γ

+ β1 + β2a(t)
)
ȧ(t)

)
,

(2.27)
with λ ≥ 1, β1 ≥ 0 and β2 ≥ 0 are damping parameters, γ > 0 is a parameter, and
δ = −x is the indentation (i.e., the spring’s deformation). The variable a(t) is an
internal state. Let us remind that ∂ψR+(·) is the subdifferential in the sense of convex
analysis, of the indicator function ofR+ (see Appendix B). One may use the material
in Sect. B.2.1 to further develop (2.27). In particular complementarity conditions are
present in (2.27), since the first line of (2.27) is equivalent to:

0 ≤ a(t)+
(
1

γ
+ β1 + β2a(t)

)
ȧ(t) ⊥ γ (a(t)−δ(t)|δ(t)|λ−1)+ ȧ(t) ≥ 0, (2.28)

21For instance, polymers or metals with sufficiently high temperature are known to exhibit vis-
coelastic behaviors.
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letting Φ = R+ in (B.19). Let us assume that 1
γ

+ β1 + β2a(t) > 0.22 The first line
in (2.27) is equivalent to (time argument is dropped):

γ (a − δ|δ|λ−1) + ȧ + a−
(

1
γ
+β1+β2a

)
γ (a−δ|δ|λ−1)

1
γ
+β1+β2a

∈ −∂ψR+(γ (a − δ|δ|λ−1) + ȧ),

(2.29)

Using (B.20) this is equivalently rewritten as:

γ (a − δ|δ|λ−1) + ȧ = proj[R+; −γ a
1+γ (β1+β2a)

+ γ (a − δ|δ|λ−1)]

= max[0; −γ a
1+γ (β1+β2a)

+ γ (a − δ|δ|λ−1)].
(2.30)

Using the expression of F(t) in (2.27) one obtains:

F(t) = k
1 + γ (β1 + β2a(t))

γ
(z(t) + max[0;−z(t)]), (2.31)

with z(t) = γ a(t)
1+γ (β1+β2a(t)) − γ (a(t) − δ(t)|δ(t)|λ−1). Finally one obtains:

F(t) = K max(0;−δ(t)|δ(t)|λ−1 − γ (β1 + β2a(t))(δ(t)|δ(t)|λ−1 − a(t))) ≥ 0.
(2.32)

The expressions in (2.30) and (2.32) may be used to integrate the dynamics, that is
a piecewise nonlinear system. The inclusion in (2.27) secures the non negativity of
the contact force F(t) in a similar way as (2.15) does. One may rewrite equivalently
(2.32) as F(t) = Kλ, with λ the unique solution of the LCP:

0 ≤ λ ⊥ w(λ, δ, a) = λ + δ(t)|δ(t)|λ−1 + γ (β1 + β2a(t))(δ(t)|δ(t)|λ−1 − a(t)) ≥ 0.
(2.33)

The complementarity conditions in (2.5), (2.14) and (2.33) may all be depicted as in
Fig. 2.5a.

Setting β1 = 0 and β2 = 0 and λ = 3
2 , it follows that F(t) = kmax[0;−δ(t)|

δ(t)| 1
2 ], which we may rewrite as F(t) = 0 if x(t) ≥ 0, F(t) = −kx(t)|x(t)| 1

2

if x(t) ≤ 0 (in order to recover the conventions adopted above, one just has to set
δ = −x). Some comments arise: it seems from the simulations presented in [1287]
that the inequality 1

γ
+β1+β2a(t) > 0 is satisfied when a(0) = 0; β1 determines the

residual indentation; β2 influences the roundedness of the curves (F(t), x(t)) and
maymodel the displacement/force lag23; while γ influences the overall shape of these
curves; the internal statea(t) allows for somedependence of the restitution coefficient

22It is not mentioned in [1287] how this condition may be guaranteed.
23The shape in Fig. 2.5b for large β2 presents strong similarities with the experimental curves shown
in [602].
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F

Fig. 2.5 Force/distance and force/indentation curves. aComplementarity in (2.5), (2.14) and (2.33).
b For (2.32)

on the pre-impact velocity ẋ(t0). The force/indentation curves typically possess the
shape as in Fig. 2.5a. The various force/indentation curves depicted in Figs. 2.4 and
2.5a, have the same global shape as experimental curves shown for instance in [312,
Fig. 2], obtained from low-velocity impacts of tennis,24 golf, baseball, plasticene,
steel balls, and superball. In most of the cases, a permanent indentation exists after
the shock, indicating some plastification. Vibrations seem to play a role in tennis
balls collisions.

Let us end this (non exhaustive) presentation of viscoelastic contact models, by
mentioning a sphere/thin platemodel using the developments of Zener [1314]. Appli-
cations are in harvesting, in order to better understand the dynamics of fruits or
potatoes so that clods and stones may be separated from them [426, 430].

2.2.3 Conclusions

� Most of the above models are of limited practical use in a multibody system
context with many contact/impact points, mainly because it is difficult to estimate
the contact parameters (even if there is only one contact). Another reason may be
related to numerical issues (stability, stiff equations, constraints stabilization). It is
also noteworthy that most of them use an empirical, non physical parameter that has
to be fitted with experimental data.

� Let us remind that all these models assume low velocity impact, i.e., local
deformations only (this is sometimes called the stereomechanical impacts). Plasti-
fication effects are not taken into account. See section 4.2.1 for more details. As a
consequence they are valid for very small dissipation collisions only.

Let us tentatively classify pre-impact velocities, in a kind of “definition”.

24High-velocity impacts of tennis balls, which are not spheres but shells, involves some buckling
effects and cannot be modeled with such simple equations.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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Definition 2.1 (Pre-impact velocities) Very low velocity impacts occur for pre-
impact velocities ∈ (0 − 100) cm/s. Low-velocity impacts occur for pre-impact
velocities ∈ (1 − 10) m/s. So-called hypervelocity impacts occur for pre-impact
velocities ∈ [1 − 10] km/s [40, 550, 757]. Hypervelocity impacts induce material
failure, cracks, craters, debris. High-velocity impacts are in-between low-velocity
and hypervelocity impacts, with pre-impact velocities ≈ 100 m/s. Body vibrations,
temperature rise in the bodies, may not be neglected any longer.

The discrepancy between very low, and low velocities impacts, is that one may
observe that en increases when the pre-impact velocity increases for the former,
while en decreases as the pre-impact velocity increases for the latter. See Sect. 4.2.
In nonsmooth mechanics one usually deals with low-velocity impact. However very
low velocities and high velocities may be considered as well.

2.3 Viscoelastic Models with Dry Friction Elements:
Viscoelasto-Plastic Models

We have focused almost uniquely on very simple assemblies of one spring and one
dashpot. Many types of more complex assemblies and patterns have been proposed
and analyzed in the Solid Mechanics literature, like generalized Kelvin-Voigt, gen-
eralized Maxwell, ladder, Masing models, etc. [100, 103, 104, 1219]. Some of these
assemblies are made of springs, dashpots and dry friction elements which aim at
modeling plasticity. A “dry friction element”, also called a Saint-Venant element,
produces a force of the form F ∈ −Fcsgn(v), where sgn(v) = [−1, 1] when v = 0,
sgn(v) = 1 if v > 0 and sgn(v) = −1 if v < 0, and Fc ≥ 0 is known as a Coulomb’s
force.25 In the Systems and Control literature this is known as a relay function.
Bastien et al. [100, 103, 104] proved that some of these assemblies define maxi-
mal monotone mappings. This is a useful step for both mathematical (existence and
uniqueness of solutions of the dynamics with set-valued right-hand side) and phys-
ical (dissipativity of the contact model) viewpoints. We already tackled this issue
in Sect. 2.1.3.4, see Fig. 2.2. Let us focus on the assembly studied in [100], known
as Persoz’s gephyroidal model,26 introduced in [997] and depicted in Fig. 2.6. The
dry friction elements have the force/velocity set-valued laws Gi ∈ −αi sgn(v̇i ) for
i = 2, 3 and G1 ∈ −α1sgn(u̇1). The linear springs have the force/displacement laws
Fi = −kiui , i = 1, 2, 3. In order to derive the equations governing this system,
we need the following bilateral constraints: u0 + v3 + u2 = x , v2 + u3 + u0 = x ,
u1 + u3 = v3, plus the force balance equations G2 + F1 +G1 = F3, G3 + F3 = F0,
G3 + G1 + F1 = F2, and mẍ(t) = F0(t) + F(t). There are 14 unknowns and 14
equations. Then the following is true.

25Coulomb’s friction is introduced in more detail in Sect. 5.3.
26The word gephyroidal comes from the Greek “bridge”.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 2.6 Persoz’s rheological (gephyroidal) contact model

Proposition 2.2 [98, 100]Let K =
⎛
⎝ k0 + k2 k0 −(k0 + k2)

k0 k0 + k3 −(k0 + k3)
−(k0 + k2) −(k0 + k3) k0 + k1 + k2 + k3

⎞
⎠,

G
Δ=

⎛
⎝G2

G3

G1

⎞
⎠, φ(G)

Δ= ∑3
i=1 ψ[−αi ,αi ](Gi ), U = (1 1 − 1)T , E = k0UT K−1,

δ = k0(1 − EU ). Let also k0 = 0 and ki > 0, or k0 > 0 and at least two among k1,
k2, k3 are > 0 (⇔ K = KT � 0). Then the Persoz’s gephyroidal system dynamics
is given by: ⎧⎨

⎩
ẋ(t) = y(t)
ẏ(t) = 1

m (F(t) − δx(t) + EG(t))
Ġ(t) + k0Uy(t) ∈ −K ∂φ(G(t)),

(2.34)

which is a differential inclusion of the type dz
dt (t) − f (t, z(t)) ∈ −P ∂ϕ(z(t)),

z(0) = z0, P = PT � 0, with ϕ(·) a proper convex lower semicontinuous function,
∂ϕ(·) its subdifferential, and P = diag(1, 1, K ).

Apart from the elimination of some coordinates using the bilateral constraints, the
proof uses some tools from convex analysis like the inversion of the dry friction
laws (see Appendix B, Fig. B.4), which makes the indicator functions ψ[−αi ,αi ](Gi )

appear (that is, use is made of x ∈ sgn(y) ⇔ y ∈ ∂ψ[−1,1](x) = N[−1,1](x), or
the reader may also work with the function f4(·) defined just above Fig. B.4). The
obtained differential inclusion has a maximal monotone set-valued right-hand side, it
is similar to the differential inclusion in (2.19) and its well-posedness may be shown
using Theorem B.4. For this, one may perform a variable change as x = R−1z with
R = RT � 0 and R2 = P . Thus, ẋ(t) = R−1 ż(t) ∈ R−1 f (t, Rx(t))−R ∂ϕ(Rx(t)).
Using Theorem B.2 and Lemma B.1, the result follows.

In [1286], similar assemblies called generalized Maxwell-slip friction models are
proposed and analyzed for the sake of properly modeling frictional contact. Therein
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the Saint-Venant element is not inserted inside the assembly structure, but at the
interface between the assembly and the contact point. The Masing model with and
without viscosity is depicted in Fig. 2.8a, b. The viscoelasto-plastic model of [1286]
is in Fig. 2.8c. The dynamics of the viscousMasing model is given by the differential
inclusion [101]: ⎧⎪⎨

⎪⎩
F(t) = kw(t) + k0u(t) + f u̇(t) − k0l0
ẇ(t) − u̇(t) ∈ −∂ψ[−1,1]

(
w(t)
η

)
w(0) = w0,

(2.35)

wherew = us−l, η = α
k , u = us+ut , us is the spring deflection, ut is the dry friction

element deflection, l and l0 are the spring-free lengths. Once again the dry friction
laws are inversed in this formulation. The existence and uniqueness of solutions for
the differential inclusion in (2.35) may be proved using Theorem B.4. When u(·) is
periodic, both viscous-free and viscous Masing’s model possess a force/indentation
(F, u) characteristic with hysteresis stick/slip loop as in Fig. 2.7, which is analyzed
in [101]. Parameter identification is performed on a belt tensioner setup in [101].

The dynamics of the model in Fig. 2.8c is given by the differential inclusion:

⎧⎨
⎩
kiai (t) + fi ȧi (t) ∈ αiγ (t)sgn(v(t) − ȧi (t)), 1 ≤ i ≤ n
γ̇ (t) = g(v(t))−γ (t)

τd

Fc ≤ γ (0) ≤ Fs,

(2.36)

where each dry friction element produces the force αiγ (t)sgn(v(t) − ȧi (t)), τd > 0,

and g(v) = Fc + (Fs − Fc) exp

(
−

∣∣∣ v
vs

∣∣∣β
)

models the Stribeck effect during

sliding motions, where 0 < Fc < Fs so that g(v) > 0. This model captures
frictional lag with the added state variable γ (·). Starting the analysis of (2.36),
it is noteworthy that the first line involves ȧi (t) in both sides of the inclusion.

u

C

B

D

A stick

stick

Dashed lines: no viscosity
Solid curves: with viscosity

slip

slip

Fig. 2.7 Hysteresis loops in Masing’s models with and without viscosity
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Fig. 2.8 Masing and viscoelasto-plastic contact models

Inverting this inclusion following the tools in Appendix B (see (B.15) and (B.16))

we obtain −v(t) + ȧi (t) ∈ −N[−1,1]
(
ki ai (t)+ fi ȧi (t)

αiγ (t)

)
. Using (B.20) and the fact that

γ (t) > 0 we infer that fi ȧi (t) + kia(t) = αiγ (t)proj
(
[−1, 1]; fi v(t)+ai (t)

αiγ (t)

)
. The

projection operator is Lipschitz continuous, and one finds by inspection that it
may be rewritten using a saturation function sat(·), which is familiar to the Con-
trol scientific community. The friction contact force is therefore found to satisfy
F = ∑n

i=1(kiai + fi ȧi ) = ∑n
i=1 sat(αiγ (t), kiai (t) + fi v(t)). Here sat(z, x) = 1

if x ≥ z, −1 if x ≤ −z, z if |x | ≤ z, z ≥ 0. It is proved in [1286] that this model
guarantees that the nonviscous part of the frictional force is bounded, the friction
force is time-continuous, and most importantly it is dissipative with storage function
V (ai ) = ∑n

i=1
ki
2 a

2
i , and supply rate vF . It is also free of spurious drifting phenomena

during sticking modes. Further studies on the same type of assemblies may be found
in [1284, 1285]. They are used for energy transfer purpose in two-degree-of-freedom
systems in [1077]. All these models, which are encapsulated into differential inclu-
sions with maximal monotone set-valued right-hand side, can be discretized with
implicit Euler methods as described in Sect. 5.7.3.4, whose convergence is analyzed
in [97, 102].

Remark 2.8 (Saturation from relay) As pointed out in [664], the feedback sys-
tem in Fig. 2.9 realizes a saturation function. This is easily proved using conju-
gacy, inversion (Definition B.11, (B.16) and Fig. B.4), and (B.20). Let all vari-

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 2.9 Realization of
saturation via set-valued
relay

y
K

xu

−+
z

-1

1

ables be n−dimensional, and sgn(u)
Δ= (sgn(u1), sgn(u2), . . . , sgn(un))T .27 We

have x ∈ sgn(u) with u = z − y and y = Kx , thus x ∈ sgn(z − Kx) ⇔ Kx − z ∈
−N[−1,1]n (x)

K=KT �0⇐⇒ x = projK ([−1, 1]n; K−1z), showing that x is a Lipschitz
continuous function of z. Let K = 1 and n = 1, then x = proj([−1, 1]; z) which is
the classical saturation function sat(z).

2.3.1 Conclusions and Further Reading

The complementarity conditions and associated convex analysis results, prove to be
quite powerful tools to enhance the basic spring-dashpotmodel. It allows the designer
to guarantee some fundamental properties of the assemblies like dissipativity, well-
posedness, maximal monotonicity using results on complementarity dynamical sys-
tems, or differential inclusions with maximal monotone right-hand side (see (2.5),
(2.16), (2.27), (2.34), (2.35) and (2.36)). This has important consequences for Math-
ematical and Numerical Analysis, as well as for Control. Many other assemblies of
linear springs and Saint-Venant elements are studied in [103]. Such rheological mod-
els are introduced to represent elastoplastic behaviors of materials. The main issue
after their dissipativity is to determine whether these assemblies are well-posed, i.e.,
do they yield a unique contact force and do they define an operator which yields a
well-posed dynamical system. The differential inclusion framework adopted in [98,
99, 100, 101, 103] and in [1284, 1285, 1286] is very powerful. A tentative classifi-
cation of rheological models made of assemblies of linear springs, linear dashpots,
and dry friction elements, is made in [103, Table I] from the structure of the convex
functionϕ(·) as in Proposition 2.2. It is noteworthy that the analysis that yields Propo-
sition 2.2 as well as the dynamics in (2.35) does not take into account the unilateral
feature of the contact: a complementarity condition that rules detachment from the
constraint has to be added. It should in particular guarantee F(t) ≥ 0. Assemblies
of spring and fractional order dashpot elements are studied in [908, 1313]: such
fractional-elastic rheological models apply to polymer materials. It is noteworthy
that various types of assemblies quite similar to the above ones may be used for

27Such a definition is logical if one thinks of sgn(·) as the subdifferential of f (u) = |u1| + |u2| +
. . . + |un |.
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vibration absorbers design [545]. The various viscoelastic models reviewed above,
show an hysteretic force/indentation law. However the hysteresis phenomenon may
be velocity-independent and due only to Coulomb’s friction effects, like in felt where
the interacting fibers rub each other [817].

2.4 Penalizing Functions in Mathematical Analysis

The goal of the studies summarized below, is to prove that some sequence of second
order differential equationsPn,Q : q̈n(t)+Fn(qn(t), q̇n(t)) = Q(t, qn(t), q̇n(t)), that
is considered to represent the physical model of a body colliding with a compliant
constraint, converges towards a limit problem in which the constraints are rigid, i.e.,
unilateral. By convergence it is meant that solutions qn(·) converge as n → +∞.
The functions Fn(·) are called penalizing functions and aim at modeling the elasticity
and the viscous damping of the body’s surface. In all the results that follow, it is
assumed a constraint surface of codimension 1, i.e., f (q) ∈ R, and satisfying the
basic requirements of Definition 1.8. The case of multiple unilateral contacts is more
tricky, see Chaps. 5 and 6.

Remark 2.9 The dynamical systems that are studied as the limit of a sequence of
compliant, or penalized problems, belong to the class of Measure Differential Inclu-
sions: indeed they possess a set-valued right-hand side (due to the unilateral con-
straints and complementarity conditions), moreover they involve velocity disconti-
nuities at impacts, hence acceleration and contact force are Dirac measures at impact
times. Typically, a system like in Example 1.6 with fixed y(t) = y0 can be analyzed
with the following tools, showing that the inextensible cable is really a limit of stiff
cables.

2.4.1 The Elastic Rebound Case

The basic assumption is that energy is conserved at the impacts. The considered
problem is the following and deals with a one-degree-of-freedom system:

Problem 2.1 [260, 261] A locally Lipschitz function q(·) defined on [0, T ] is a
solution of the one-dimensional rebound problem PQ if:

(a) q(t) ≤ 0 on [0, T ].
(b) 〈q̈ − Q, ϕ〉 ≤ 0 for all ϕ ∈ D[0,T ], ϕ ≥ 0, Q ∈ L1([0, T ]).
(c) If q < 0 then q̈ − Q = 0 in the distributional sense.
(d) ∀t ∈ [0, T ], q̇(t+) and q̇(t−) exist, q̇(0+) and q̇(0−) exist, 1

2 [q̇(t+)]2 −
1
2 [q̇(0+)]2 = ∫ t

0 Q(τ )q̇(τ )dτ , and the equality holds also for q̇(t−).

The initial data are naturally assumed to be admissible, in particular if q(0) = 0
then q̇(0+) ≤ 0, in order not to violate the constraint. (a) is the unilateral constraint

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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condition; (b) means that the (impulsive) interaction force at impacts is a negative
measure, i.e., there is a measure μ such that q̈ − Q = μ and 〈μ, ϕ〉 is either negative
or zero if q < 0 as stated by (c), which merely means that the smooth dynamical
equations are verified (in Example 1.1 we have μ = pkδtk and pk = −2mq̇(t−k ) < 0
when the shock is lossless. Adopting the notations of Chap. 1, we get q̈ = {q̈} +∑

σq̇k δtk , so that (b) and (c) becomes σq̇(tk) < 0 and {q̈} = Q). (d) is a dissipation
equality which rules the energetical behavior of the system (including at impacts),
and the supply rate is the product Qq̇ , where Q is an external force applied on the
system.

One therefore realizes that except for trivial cases (Q ≥ 0 and q(0−) = 0 or
Q ≤ 0) μ is atomic with atoms the zeros of q. The first aim of these works is to
prove the existence of a solution toPQ . Existence is studied in [260] by choosing in
Pn,Q a continuous penalizing function Fn(qn(t)) such that the contact force satisfies
Fn(ζ ) = 0 if ζ ≤ 0, Fn(ζ ) > 0 for ζ > 0, Fn → +∞ on any compact interval of
(0,+∞), and limζ→0+ limn→+∞ Fn(ζ )

αn(ζ )
= +∞, with αn(ζ ) = ∫ ζ

0 Fn(τ )dτ . It is easy
to verify that the spring-like environment studied in the preceding part of this chapter
fits within this framework (thus clearly such penalizing functions aim at modeling a
spring, but other examples with no clear physical meaning may be found, see [260]).
Theorem 1 in [260] states that if qn(·) is a solution toPn,Q that tends uniformly to a
function q(·), then q(·) is a solution ofPQ , and that there exists at least one solution
toPQ for each initial data, which is the uniform limit of some sequence {qn(·)}.

Buttazzo and Percivale [241, 242, 989, 990] considered the same problem P as
Problem 2.1, however for n-degree-of-freedom systems. Similar results as in [260,
261] are obtained in [241] (a paper written between the other two) for the one-
dimensional case. Condition (c) is stated in [241] (as well as in [242, 989, 990] for
the higher-dimensional case) as supp(q̈ − Q) ⊆ {t ∈ [0, T ]|q(t) = 0}, i.e., the
support of the distribution q̈ − Q is contained in the set of zeros of q(t) when the
particle attains the constraint. The results in [242, 989, 990] incorporate a variational
formulation of the elastic bounce problem. We shall come back in more details on
these articles in Chap.3, Problem 3.1.

2.4.2 The Case with Dissipation (Linear Viscous Friction)

Let us describe now the work in [969], which considers a rebound problem with
possible dissipative collisions. The problem is the following:

Problem 2.2 (Constant Mass Matrix [969]) Let F : [0, T ] × R
n × R

n → R
n be

continuous in t , q, q̇ and Lipschitz in q, q̇ , uniformly with respect to q, Φ be a
closed convex domain ⊂ R

n , with nonempty interior and with smooth boundary
bd(Φ). Then, q : [0, T ] → R

n is a solution of the problem PF : q̈ + ∂ψΦ(q) �
F(t, q, q̇), q̇n(t

+
k ) = −enq̇n(t

−
k ) when q(tk) ∈ bd(Φ), where the subscript n denotes

the component normal to bd(Φ), en ∈ (0, 1], if q(·) fulfills the following:

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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(a) q(·) is Lipschitz continuous and q̇ is of bounded variation.
(b) q(t) ∈ Φ for all t ∈ [0, T ].
(c) for any continuous function v : [0, T ] → Φ, 〈v − q, F − q̈〉 ≤ 0.
(d) the initial data satisfy q̇n(0+) = −enq̇n(0−) when q̇(0−) points outwards Φ.

Condition (c) concerns the reaction on the constraint boundary bd(Φ). When q ∈
Int(Φ) then the subdifferential is reduced to {0} and the inequality is trivially satisfied.
When q ∈ bd(Φ), there is a reaction λ = q̈ − F acting on the particle to maintain it
inside Φ (mathematically speaking λ is a measure). Hence the inequality in (c) can
be rewritten as 〈v − q, λ〉 ≥ 0. Notice that v is a function that takes its values in Φ.
This permits to assert that (c) implies that −σq̇(tk) ∈ TΦ(q(tk)) (see Definition B.2
for the tangent cone to a closed convex set). The inequality (c) means that (F − q̈) is
a subgradient of the indicator functionψΦ(·), i.e.,ψΦ(v)−ψΦ(q) ≥ (F − q̈)(v−q)

for all v ∈ R. Thus (F − q̈) is a vector that belongs to the subdifferential ∂ψΦ(q),
by definition. See Appendix B for more details.

Example 2.1 Let us consider q(t) ∈ Φ = [a, b], b > a real numbers, for all
t ∈ [0, T ]. Then the following formulations are equivalent (impacts are disregarded):

⎧⎪⎪⎨
⎪⎪⎩

q̈ = F(t, q, q̇) + μ in the sense of distributions,
q ∈ C0 ([T, T ′];Φ

)
,

〈μ, v − u〉 ≤ 0, ∀ v ∈ C0 ([T, T ′];Φ
)
, or equivalently : supp(μ) ⊂ {t |u(t) ∈ bd(Φ)},

μ ≥ 0 on {t |u(t) = a}, μ ≤ 0 on {t |u(t) = b}.
(2.37)

or:
q̈(t) + ∂ψΦ(q(t)) � F(t, q(t), q̇(t)), (2.38)

where (see Appendix B) ∂ψΦ(q) = NΦ(q) =
⎧⎨
⎩

{0} if a < q < b
R

+ if q = b
R

− if q = a
. This can be

seen from the fact that since there are two constraints f1(q) = q − a ≥ 0 and
f2(q) = b − q ≥ 0, one gets ∇ f1(a) = 1, ∇ f2(b) = −1.

A solution q(·) to PF is shown to exist by studying the limit of the solutions of a
sequence of approximating problems Pn,F with penalizing function Fn(qn, q̇n) =
Fn,1(qn, q̇n)+Fn,2(qn) usingYosida’s approximants for the elastic term, and a discon-
tinuous function for the viscous friction term (such discontinuity is easily understand-
able looking at the example above: the total vector field of the system considering
both contact and noncontact phases is continuous if only elastic terms are present, but
it is not if viscous friction is added). It is worth noting that the viscous friction term
contains a coefficient ε that is equal to f

2
√
k
in the preceding section on approximation

when 0 < en ≤ 1, see (2.9). It is easy to show that Pn,F reduces to our example in
the particular one-dimensional case, although the meaning of the approximants in
higher dimensions is not obvious. Let us illustrate the theory developed in [969] on
this simple one degree-of-freedom case.
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Example 2.2 [969] In the case when n = 1, F ≡ 0 and Φ = R
+, the system can be

written as
⎧⎨
⎩
q̈(t) + ∂ψR+(q(t)) � 0

q̇(t+k ) = −enq̇(t−k ) for all tk such that q(tk) = 0, q̇(t−k ) < 0.
(2.39)

This is the dynamical equations of a point striking an horizontal obstacle, with no
external forces. The approximating problem chosen in [969] is

q̈n(t) + 2ε
√
knq̇n(t)sgn

−(qn(t)) + knqn(t)sgn
−(qn(t)) = 0 (2.40)

where kn → +∞ as n → +∞, sgn−(qn) =
{
0 if q ≥ 0
1 otherwise

, and ε = − ln(en)√
π2+ln2(en)

.28

The quantity en ∈ (0, 1] is the restitution coefficient. Note that the function sgn−(qn)
allows to write contact and noncontact dynamics in a single equation. The switching
conditions are therefore chosen when the position vanishes (as we know this may
yield negative reaction forces). The signs are reversed with respect to the examples
we have treated above, since freemotion occurs now for q ≥ 0. The initial conditions
are chosen as qn(0) = a > 0 and q̇n(0) = b < 0. Hence the mass point starts in the
free-motion space with a velocity directed towards the obstacle. Denoting τ = − a

b
and τn = τ + π√

kn(1−ε2)
, the solutions can be explicitly obtained and are (we recall

them for convenience although they have been already obtained above):

qn(t) =

⎧⎪⎪⎨
⎪⎪⎩

a + bt for t ∈ [0, τ ]
e−ε(t−τ)

√
k

n sin
[
(t − τ)

√
k(1 − ε2)

]
b√

k(1−ε2)
for t ∈ [τ, τn]

− exp
(
− πε√

1−ε2

)
b(t − τn) for t ∈ [τn,+∞[

(2.41)

Then clearly qn(t) in (2.41) converges towards

q(t) =
{
a + bt for t ∈ [0, τ ]
−enb(t − τ) for t ∈ [τ,+∞], (2.42)

whose derivative possesses a discontinuity at t = τ .

In case when there is some external force acting on the particle in the Example 2.2,
then in general the equations are not integrable. But [969, Theorem 2] guarantees that
the solution set of problem PF possess an element (not necessarily unique) whose
first derivative is of bounded variation. The theorem is stated as follows:

Theorem 2.1 (Constant mass matrix [969])Consider the system defined in Problem
2.2. This system admits a solution in the sense defined as in Problem 2.2, a, b, c, d.

28Compare the value of the damping in this sequence of approximating problems with the value of
the damping in (2.9). It is a common calculation to compute en for the spring-dashpot model, see
[175, Eq. (3.44)].
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This solution is obtained as the strong limit in W 1,p([0, T ],Rn) for all p ∈ [1,+∞),
and weak � limit in W 1,∞([0, T ],Rn),29 when n → +∞, of a subsequence of the
sequence of solutions of

q̈n(t) + 2ε
√
knG(qn(t) − PΦ(qn(t)), q̇n(t)) + kn(qn(t) − PΦ(qn(t))) = f (t, qn(t), q̇n(t))

(2.43)

with qn(0) = qn,0, q̇n(0) = q̇n,0. PΦ(·) denotes the projection onΦ,30 and G(v,w) ={
(vT w)v
vT v if v �= 0
0 if v = 0.

From the one-degree-of-freedom case in Example 2.2, the different terms of the
approximating problems correspond to spring and damper-like actions, with the
“usual” switching conditions of Sect. 2.1.3.1. It is clear that due to the chosen switch-
ing conditions, the damping term in (2.43) may induce discontinuities in the ODE
right-hand side. Onemay choose to embed (2.43) into Filippov’s framework of differ-
ential inclusions by convexifying the discontinuous vector field, hence guaranteeing
the existence of global absolutely continuous solutions (qn(·), q̇n(·)) (and, due to the
particular structure of amechanical system,qn(·) is even continuously differentiable).
The proof is redone from scratch in [969].

The proof proceeds in showing that Pn,F possesses L∞-bounded solutions that
converge to q, and that Fn,1(qn, q̇n) and Fn,2(qn) convergeweakly� towardsmeasures
P1 and P2 such that q̈ − F = P1 + P2, and (c) is true. The last part of the proof is
dedicated to study the rebound conditions. It is clear that since this study encompasses
the case of the bouncing ballwith 0 < en < 1, finite accumulation points in the impact
sequence PF are tolerated. This is in contrast with the results in Problems 2.1 and
3.1 that rely on energy preservation at impacts (see [260, Theorems 3 and 4] [989
Lemma 2.1], where it clearly appears that tk < tk+1 for all k is a crucial property for
uniqueness). Theorem 2.1 may also be used to study the existence of solutions for the
cable system dynamics in Example 1.6 when a restitution impact law is considered.

In Problem 2.2 and Theorem 2.1, the inertia matrix is supposed to be identity, so
that the gradient on the configuration manifold is the one inRn , and the configuration
space is Euclidean. On the other hand, the admissible domain Φ defined by the
unilateral constraint may not be convex as supposed in Problem 2.2. Actually the
convexity ofΦ is convenient to assure a unique projection PΦ(qn) in the penalization.
Some ideas allowing one to relax the convexity are given in [972, 973]. They are based

29W 1,p , 1 ≤ p ≤ ∞, denotes Sobolev spaces [191].
Definition 2.2 Let 1 ≤ p ≤ +∞. The Sobolev space W 1,p(I ), where I ⊂ R is an open interval
(bounded or not), is the set of functions f (·) such that

(i) f ∈ L p(I ).
(ii) There exists a function g ∈ L p(I ) such that

∫
I f ϕ̇ = − ∫

I gϕ for all ϕ ∈ D whose support
is contained in I .

Any function f ∈ L p possesses a distributional derivative that belongs to D� (see definitions in
Appendices A.1 and A.2). Then f ∈ W 1,p if this distributional -or generalized- derivative coincides
inD� with a function in L p . See also Sect. A.1.3 for basic facts about strong andweak� convergence.
30This why Φ is assumed to be convex: this secures a unique projection.

http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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on the use of a discretization of the dynamics, see Sect. 5.7.3. Schatzman relaxed
both assumptions in [1070], using the kinetic metric to define the restitution rule in
a specific transformed generalized velocity.31 In [1070] the projection is however
applied to positions, in order to enable one to formulate a penalized problem (i.e., a
sort of generalized spring-dashpot).

Problem 2.3 (Non-Trivial Mass Matrix [1070]) Let the constrained dynamics be
M(t, q)q̈ = F(t, q, q̇)+λ, where:M(t, q) is twice differentiable, F(·) is continuous
in all its arguments, locally Lipschitz continuous in q and q̇ . The admissible domain
Φ ⊆ [0, T ]×R

n , its boundary bd(Φ(t)) is a submanifold of classC3 of [0, T ]×R
n .

The vector valued measure λ and the position q satisfy:

• q(t) ∈ Φ for all t ∈ [0, T ],
• supp(λ) ⊂ {t ∈ [0, T ]|q(t) ∈ bd(Φ(t))},
• λ = λ̃M(·, q)m(·, q), where is the unitary exterior normal vector to Φ(t).

The vectorm(t, q) satisfiesm(t, q)T M(t, q)m(t, q) = 1, and when contact is active
it is the normal to bd(Φ(t)) in the kinetic metric (which we shall denote as nq in
Chap.6). In caseΦ is finitely represented as Φ = {q ∈ R

n| f (q) ≥ 0}, f : Rn → R,
then it is equal to M(q)1∇ f (q)√

∇ f (q)T M(q)−1∇ f (q)
on its boundary. Imposing C3 regularity on the

boundary bd(Φ) allows one to locally linearize it. The restitution law is applied to

the velocity q̇n
Δ= m(·, q) d

dt [m(·, q)T M(·, q)(q − Pbd(Φ)(·, q))], where Pbd(Φ)(·, q)

is the projection of q on the (time-varying) boundary. A generalized penalization
term is introduced and the sequence of solutions of the penalized problems is shown
to converge to solutions of the rigid body problem (uniformly for positions, strongly
in all spaces L p with 1 ≤ p < +∞ for velocities).

Theorem 2.1 might also be considered as a mathematical preliminary study for
dynamical analysis of systems like particles bouncing inside a closed32 curve which
are called in mathematical physics billiards [137, 683, 1114]. Thus the problem
is completely treated from the existence of solutions (but not uniqueness) to the
trajectories global behavior. It is noteworthy that the case of nonsmooth bd(Φ) is
treated also in [966], when the kinetic energy loss satisfies TL(tk) = 0 at impact times
tk . The shock conditions are then stated simply from the energy conservation equation
(see Problems 2.1 and 3.1), which avoids the difficulty encountered with restitution
rules at singularities, where the normal to the boundary bd(Φ) at q does not reduce
to a half-line in R

n , but is the normal cone NΦ(q). This proves the existence of a
solution in the sense of Problem 2.2, with q̇ ∈ RCLBV , for billiardswith nonsmooth
boundaries and elastic collisions (inside a polygon for instance, see [683, §6.4]).

31The use of the kinetic metric to analyze impact dynamics in Lagrangian systems, may be traced
back to [581, 589, 683], and in the first edition of this book [202]. It has been deeply used in [209,
210, 228].
32Note that closed is to be taken here in the physical or real-world meaning, whereas closed in the
Paoli-Schatzman’s problem is to be taken in the topological sense, i.e., the whole space itself is in
fact closed.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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The results of Paoli and Schatzman extend the results in [683, Chap.1, Theo-
rems 1, 2, 3 and 4] which possess a local-in-time nature only (they are based on
singular perturbation like analysis). Schatzman’s pioneering work in [1066] treated
the same problem, but with an energy conservation equality. It is based on the use
of Moreau-Yosida regularization arguments (intuitively, this consists of introducing
some penalization into the contact model, see Appendix B).

2.4.3 Uniqueness of Solutions

Since the preceding results deal with the existence of solutions, it is natural to say few
words on an other important property: the uniqueness of solutions. We will come
back later on this in Chap. 5, in particular Theorem 5.3 states general conditions
on the well-posedness of frictionless complementarity Lagrangian systems. In the
followingwe illustrate through an example given byAldoBressan in [186], improved
later in [80, 1066], how the external action on the system may imply non uniqueness
of solutions.

2.4.3.1 Aldo Bressan’s Counter-Example

We describe in this section a counter-example invented by Aldo Bressan [186] to
prove that the addition of unilateral constraints can, even in very simple cases, yield
nonuniqueness of solutions for some initial data, even if smooth (infinitely differ-
entiable) forces are considered. Similar counter-examples have been derived and
improved later in [80, 260, 1066]. Let us consider the one degree-of-freedom sys-
tem:

q̈(t) = Q(t), q(t) ≥ 0 for all t ≥ 0, q̇(t+k ) = −enq̇(t−k ), q(tk) = 0, q̇(t−k ) < 0,
(2.44)

and the function:

ϕ(t) =
⎧⎨
⎩
0 if t ≤ 0 or t = 1

2m
1

2nm f
[
2m f (t − 1

2m )
] = 1

2nm f (2mt − 1) if 1
2m < t < 1

2m−1

g(t) if t ≥ 1,
(2.45)

where m ∈ N, n ∈ N. The functions f (·) and g(·) satisfy the following conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f : [0, 1] → R f (t) > 0, f (0) = f (1) = 0

d f
dt (0) = −en21−n d f

dt (1), n ≥ 3, 0 < en ≤ 1

dk f
dtk (0) = 1

2n−k
dk f
dtk (1), k = 2, · · · , n − 1,

(2.46)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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and: ⎧⎨
⎩
g(t) > 0 for t ≥ 1, g(1) = 0, dg

dt (1) = −en
2n−1

d f
dt (1) > 0

dk g
dtk (1) = 1

2n−k
dk g
dtk (1), k = 2, 3, · · · , n.

(2.47)

Then the following is true:

Theorem 2.2 [186] The functions ϕ(t), ϕ̈(t),· · · , ϕ(n)(t) exist, are continuous and
ϕ(t) ≥ 0 for all t ∈ R, ϕ(t) > 0 for t > 0 and t �= 1

2m . The first derivative ϕ̇(t)
exists, is continuous for all t �= 1

2m and

ϕ̇

[(
1

2m

)+]
= −enϕ̇

[(
1

2m

)−]
. (2.48)

Hence one has defined a function ϕ(·) which is zero for negative times, then it
is composed on [0, 1] of the concatenation of arches whose length tend to zero
when t tends to zero (with a sort of reversed accumulation point at t = 0+, that one
usually calls a right-accumulation because the impacts accumulate on the right of the
accumulation time, here t = 0: the derivative ϕ̇(·) starts with a reversed accumulation
of jumps). Now assume that f̈ (t) < 0 and that g̈(t) ≤ 0. Then ϕ̈(t) ≤ 0 for all
t ∈ R. Roughly, the idea is to get q(t) ≡ ϕ(t) (hence Q(t) ≡ ϕ̈(t)), so that the mass
bounces against the constraint (see (2.48)) with a restitution coefficient en. This can
be obtained as proved in the following:

Theorem 2.3 [186] Let us choose Q(t) = ϕ̈(t) in (2.44). Then the functions Q(t),
Q̇(t), · · · , Q(n−3)(t) are continuous. The trajectory q(t) ≡ ϕ(t), t ∈ R, possesses
the initial conditions q(0) = q̇(0) = 0 and satisfies q̇(t+m ) = −enq̇(t−m ), m ∈ N, i.e.,
it is a trajectory of the dynamical system in (2.44). The trivial trajectory q(t) = 0
for all t ≥ 0 is also a solution of the dynamical equations in (2.44).

Such a result is surprizing, since the applied force is always negative. Hence, if one
initializes the system at rest on the surface q = 0, it should logically remain stuck
on it. The underlying idea is to consider an external action Q(t) which is negative,
but such that its double integral ϕ(t) is positive, is zero at t = 0, continuous, and
with a first integral ϕ̇(t) that jumps when ϕ(t) attains zero (tm = 1

2m ). Clearly such
a function is not obvious to construct, but Theorem 2.2 guarantees its existence (an
explicit construction of similar functions has been given for instance in [80, 260,
1066]). As shown in [80, 81] in a broader context admitting several frictionless
unilateral constraints and a generalized Newton’s restitution impact law, analytic
data eliminate such right-accumulations of impacts.
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2.4.3.2 Sufficient Conditions for Uniqueness

For the sake of completeness of the exposition of the existing mathematical studies
on systems with unilateral constraints, we provide now the conditions that have been
derived by some authors to prevent such nonuniqueness problems. Using a similar
counter-example as [186], [260, 1066] show that uniqueness of solutions toPQ may
fail even for smooth Q, and give some sufficient conditions for uniqueness to hold:

Theorem 2.4 [260] Let Q(·) be absolutely continuous in [0, T ], Q ∈ L1([0, T ])
and Q(t) ≥ 0 for all t ∈ [0, T ]. Then if Q(0) > 0 and x(0) �= 0, ẋ(0+) �= 0,
there exists a unique solution to the dynamical problem formulated as in Problem
2.1. If the initial conditions are admissible (i.e., if x(0) = 0 then ẋ(0+) ≤ 0) and if
ẋ(0+)2 − 2x(0)Q(0) > 0, then the solution is unique also on [0, T ].
Notice that the signs of the pre and post-impact velocities as well as those of the
contact force, are reversed here because the constraint is written as x ≤ 0 in Problem
2.1 (see Remark 1.4 in Sect. 1.3). The proof is based on several steps. The central
fact is that there is a finite number of impact times tk on [0, T ]. A sufficient condition
for this is that ẋ(t+k )2 (or equivalently ẋ(t−k )2) be strictly positive. The conditions
of Theorem 2.4 aim at guaranteeing such condition, which can be verified using the
conservation of energy equation. In another article [261] the same authors prove the
following result:

Theorem 2.5 [261] The uniqueness of solutions to the Cauchy Problem 2.1 is a
generic33 property in Q ∈ L1([0, T ],R).

This result shows the prevalence of problemsPQ , i.e., in fact of a particular type of
second order differential equations, with unique solutions, as it is the case for ODEs
with continuous right-hand sides as Orlicz showed (see [1229]). Note that when the
impact is lossless the simple dynamical problem studied in Chap.1, Example 1.1, is a
particular case of problemPQ in [261] with a zero external action: thus the results in
[261] on uniqueness of the solution trivially hold for that case. In [261] uniqueness is
studied as follows: it is shown that for every solution x(·) toPQ with force Q ∈ L1,
Q(·) simple34 there is a sequence Qn(·) → Q(·) in L1 so that PQn has a unique
solution qn(·) → q(·) uniformly in [0, T ]. Roughly one then uses density of the set
of simple and L1-bounded functions in the set of L1-bounded functions to obtain the
result in Theorem 2.5.

The first result on uniqueness that applies to n-dimensional System has apparently
been given by M. Schatzman in [1066], who established the following result, in
addition to existence of solutions in a more general context (external forces are
admitted). The problem is that of a system with constant (identity) mass matrix and
no external forces, constrained in a convex set.

33See [533, p. 154]: a property is generic in E if the set G of elements of E which possess it,
contains a dense (in E) open set. In a sense, one deduces from the property of density of a set in
another one that there are elements of G “almost everywhere” in E .
34i.e., Q([0, T ]) is finite, i.e., it consists of a finite set of numbers c1, · · · , cn . In other words, the
external action is piecewise-constant, with a finite number of values.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Theorem 2.6 [1066] Consider the differential inclusion q̈(t) ∈ −∂ψΦ(q(t)),
q(0) ∈ Φ, where Φ is a closed convex set. If the boundary bd(Φ) is of class C3

and has strictly positive Gaussian curvature,35 then the Cauchy problem admits
a unique global solution (i.e., on [0,+∞)) such that: q ∈ W 1,∞([0,+∞);Rn),
q(t) ∈ Φ for all t ≥ 0, the inclusion is satisfied in the sense of distributions, q̇(·) has
left and right limits everywhere, the energy is conserved. Moreover, if q(0) ∈ bd(Φ),
and q̇(0+) is tangent to bd(Φ), then q(·) runs along the geodesic of bd(Φ) passing
through q(0) and tangent to q̇(0+), with the speed ||q̇(0+)||. If the initial data do
not satisfy these constraints, then q(t) is never tangent to bd(Φ) and it has a finite
number of reflections in a finite time.

The considered system may be called a billiard. This result is extended in [989, 990]
who prove uniqueness of solutions under some analycity conditions.

2.4.4 Further Existence and Uniqueness Results

Let us make a short bibliography of well-posedness results obtained in the literature,
which do not necessarily rely on penalizing functions. The uniqueness problem has
also been studied for a one degree-of-freedom case in [1069], see Chap. 1, Sect. 1.3.2.
It applies to purely elastic as well as nonconservative collisions. A general unique-
ness result is proved in [80] who shows that if all the data (including external actions)
are piecewise analytical (which is not a restrictive assumption in most applications),
then uniqueness of solutions holds and right-accumulations of impacts created by
forces like in Bressan’s counter-example (see Theorem 2.3) cannot occur: only left-
accumulations of impact may exist [81, Proposition 4.11], like in the classical bounc-
ing ball system. Multiple, orthogonal (in the kinetic metric) constraints as well as
non conservative impacts are considered in [80]. A general well-posedness theorem
is stated in Theorem 5.3 in Chap.5, which summarizes various existence and unique-
ness results obtained after the pioneering results by Schatzman [1066] and Monteiro
Marques [866, 867]. Well-posedness problems can be attacked another way, using
explicitly the so-called complementarity conditions. This is the essence of the stud-
ies in [517, 759, 1063, 1064], which essentially focus on Linear Complementarity
Systems and are described elsewhere in the book. Other works may be situated in-
between differential inclusions and complementarity systems [205, 212, 214, 215,
226, 438].

35Let a surface S in R
3 be given by q3 = f (q1, q2), with

∂ f
∂q1

(q10, q20) = ∂ f
∂q2

(q10, q20) �= 0 (these
two vectors span the tangent plane to S at P) and the q3-axis is normal to S at P = (q10, q20, q30).
Then the Gauss or total curvature of S at P is equal to the determinant of the Hessian of f (q1, q2) at

P , i.e., thematrix ∂2 f
∂q1∂q2

∈ R
2×2. It is for instance easy to verify that a plane given by q3 = aq1+bq2

has zero total curvature at any of its points. The ideas generalize for higher dimensions.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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2.5 Some Comments on Compliant Models

As announced in the introduction of this chapter, all the above results andmodels deal
with one contact/impact point. The case of multiple contacts is much more tricky.
Analysing the limit as the stiffness diverges, of a compliant contact model when
several surfaces are hit at the same time, is a toughmathematical issue tackled in very
fewarticles [973, 975].As shown in [163] in the case of bilateral (equality) constraints
with penalization, very complex phenomena may be found at the limit. A specific
feature of unilateral constraints, is that if the boundary bd(Φ) of the admissible
domain Φ is not smooth (this is the case when multiple constraints are present),
then bd(Φ) cannot be transformed locally into a hyperplane with a diffeomorphism.
However it is locally identifiable with its tangent cone TΦ(q) at configuration q. As
we shall see later in this book, the geometry of unilaterally constrained Lagrangian
systems involves tangent and normal cones.

Penalization may also induce stiff differential equations. Usually, the character-
istic time of a spring-dashpot model, is of order O( 1√

k
). Some authors recommend

to compute at least 1000 points during a collision. If k is of order 1010 Nm, this
represents a collision duration of order 10−5 s, hence a time step h ≈ 10−8 s. Sim-
ulation may be quite time-consuming. Moreover the lack of continuity in the initial
data, or nonuniqueness of solutions, that is the common situation with multiple rigid
contacts, as well as unavoidable round-off numerical errors in contact detection algo-
rithms,may indicate that quite complex and unpredictable behaviorsmay occurwhen
penalizations are used. The limit solution usually depends significantly on how the
limit is reached, as demonstrated by simple chains of aligned balls (see an example
in Chap.6, Sects. 6.1.1.1 and 6.1.3). Mechanically, this is related to the duration of
impact (and the maximum compression times at each contact) that varies depend-
ing on the stiffness and influences the outcome. Let us end by mentioning a crucial
issue related to the stabilization of the normal accelerations and contact forces dur-
ing persistent contact phases: many numerical simulation results which are shown
in the Multibody Systems literature, prove that compliant contact models may yield
spurious oscillations which have noMechanical meaning (as proved by comparisons
with experimental data [401, Figs. 5, 6, 8, 11, 12]). The choice of the contact/impact
model has to incorporate such drawbacks as well, and the designer (or the Control
scientist) should have in mind that a good model is a model with a reliable, robust
numerical integration method.

http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_6


Chapter 3
Variational Principles

This chapter introduces the variational principles of mechanics in the case of
unilateral constraints and impacts. We start with virtual displacements and then pro-
ceed with variational inequalities formalisms (equivalently inclusions into normal
cones to tangent cones and convex sets), Fourier and Jourdain’s principles. The sec-
ond part is dedicated to the Lagrange dynamics. The case with exogenous impulsive
forces is obtained from the material of Chap. 1. Hamilton’s principle, which is far
more involved, is treated in the last part of the chapter. The chapter ends with some
comments about the link with optimal control under state inequality constraints.

3.1 Virtual Displacements, Velocities, and Accelerations
Principles

3.1.1 The “Classical” Presentation

The principle of virtual displacements is one of the most basic “principles” of clas-
sical mechanics. It is well known that in the case of bilateral frictionless holonomic
constraints h(q) = 0, a mechanical system is in static equilibrium if and only if the
total virtual work of the impressed forces is zero. In other words, if Q ∈ R

n denotes
the vector of generalized forces acting on the system1 (which are the forces that work
on the generalized displacements δq = q̇dt), and if q ∈ R

n is the corresponding
vector of generalized coordinates, one has:

QT δ1q = 0, (3.1)

where δ1q represents a virtual displacement compatible with the constraints. The
variation considered here is of the δ1-type, i.e., δ1t = 0 (this allows to compare the

1Often called the impressed forces.
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Fig. 3.1 A particle on a
plane
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state of the system in two fixed different configurations, i.e., this is a static equilib-
rium principle). For frictionless unilateral constraints f (q) ≥ 0 (hence irreversible
displacements on the constraint surface), this principle transforms to

QT δ1q ≤ 0, (3.2)

which is known as Fourier’s inequality [703, p. 87]. The inequality in (3.2) is
easily understood as follows: if the system is in free motion ( f (q) > 0) and in
static equilibrium, then (3.1) holds. But if f (q) = 0, then the only permitted dis-
placements are in the inward direction inside the admissible domain Φ, i.e., in a
direction opposite to that of the impressed forces (i.e., forces applied on the sys-
tem, but not the interaction forces). Hence a negative virtual work. One may also
see this by considering that the interaction force (the Lagrange multiplier) has the
same sign as the virtual displacement, and that the impressed forces must have
opposite sign (at least in the direction normal to the constraint) to the multiplier
to maintain static equlibrium. Consider for instance a ball on a plane in Fig. 3.1.
Clearly, if the ball is in static equilibrium (q = q0) then the virtual displacement
δ1q = q1 −q0 > 0 is such that (q1 −q0)Q = (q1 −q0)(−mg) < 0. The≤ in (3.2) is
to allow for infinitesimal displacements (q1 → q0). In a Lagrangian formalism one
has M(q)q̈ + C(q, q̇)q̇ = Q + P , where P represents the contact forces (due to the
constraints) and Q includes the forces that derive from a potential (gravity, elastic
forces). Since we deal with static equilibrium, we obtain Q + P = 0, i.e., P = −Q.
In terms of the contact forces, (3.1) and (3.2) write PT δ1q = 0 and PT δ1q ≥ 0,
respectively. The static equilibrium principles generalize dynamic equilibrium and
d’Alembert’s principle, i.e.,

[Q − C(q, q̇)q̇ − M(q)q̈︸ ︷︷ ︸
=−P

]T δ1q ≤ 0. (3.3)

D’Alembert’s principle can in turn be transformed into a minimum principle involv-
ing the acceleration as the unknown, i.e., Gauss’ principle that we shall see in
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Sect. 3.3. Gibbs [446] showed that in case of unilateral constraints, d’Alembert’s
principle generalizes to

[Q − C(q, q̇)q̇ − M(q)q̈︸ ︷︷ ︸
=−P

]T δ2q̈ ≤ 0, (3.4)

where the variation is of the δ2-type, i.e.,

δ2q = δ2q̇ = 0, δ2t = 0. (3.5)

This kind of variation means that one observes the system with a fixed position and
velocity at a time t = τ0, and allows for the acceleration to vary at τ

+
0 . This expresses

the necessary condition for extremum seeking of G(q̈) in (3.26) below. Gibbs proved
that for a system that consists of three particles q1, q2, and q3 one has

((3.4) + (3.5) + q1 ≥ 0) ⇐⇒
⎛
⎜⎝

q̈1 = max
(
0, Q1

m1

)

q̈2 = Q2
m2

, q̈3 = Q3
m3

⎞
⎟⎠ . (3.6)

This is to be understood as follows: assume that on an interval [τ0 − ε, τ0), ε > 0,
contact is permanently established, i.e., q1 ≡ 0. Then at time τ0 either Q1 ≤ 0
and contact does not cease, or Q1 > 0 and contact ceases. Gibbs shows that the
δ2-variation in (3.5) is suitable to establish the equivalence (3.6), whereas (3.3) is
not. In other words [(3.4)+(3.5)+(q1 ≥ 0)] uniquely determines the acceleration
at t = τ+

0 , whereas (3.3) instead of (3.4) does not permit this. We retrieve in (3.6)
the formulation of (1.82). Gibbs also derived that in case of shocks (although only
velocity discontinuities are mentioned in [446], without speaking of collisions), the
inequality in (3.4) becomes2

[Qimp − M(q)σq̇(tk)︸ ︷︷ ︸
Δ=−R

]T δ
(
σq̇(tk)

) ≤ 0. (3.7)

In (3.7) the variation is to be understood on q̇(t+
k ), i.e., the postimpact velocity,

and σq̇(tk) = q̇(t+
k ) − q̇(t−

k ) in the δ(·) term. If q̇(t+
k ) = q̇(t−

k ) then (3.7) implies
QT

impδ
(
σq̇(tk)

) ≤ 0, for all admissible q̇(t+
k ). Since in this case the velocity is

continuous (i.e., q1 > 0, or q ∈ Int(Φ)), δ
(
σq̇(tk)

)
is arbitrary and thus necessarily

Qimp = 0 and R = 0. If q̇(t+
k ) 	= q̇(t−

k ) then q1(tk) = 0 and necessarily q̇(t+
k ) ≥ 0

whereas q̇(t−
k ) < 0. Then all variations of q̇(t+

k ) are permitted with q̇(t+
k ) ≥ 0. One

has σq̇(tk) ≥ 0 and δ
(
σq̇(tk)

) ≥ 0. Thus (3.7) states RT δ
(
σq̇(tk)

) ≥ 0.

2According to our notation, σ f (t)
Δ= f (t+) − f (t−), and Qimp is a vector of impulsive forces, R

is the contact percussion vector (i.e., the density of P considered as a Dirac measure at the impact
time).

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Besides the two variations δ1 and δ2, there is in the literature a third type of variation
δ3 such that

δ3t = 0, δ3q = 0. (3.8)

In case of bilateral constraints (3.1) is equivalent to

QT δ3q̇ = 0, (3.9)

where it is assumed that positions are fixed and satisfy the constraints h(q) = 0,
while the virtual velocity variation δ3q̇ also satisfies the constraints at the velocity
level, i.e., ∇h(q)T δ3q̇ = 0. The δ3-variation is called a Jourdain variation [631] and
(3.9) is known as the Jourdain’s variational principle (JVP), or the virtual power
principle. In its dynamical form, it becomes

[Q − C(q, q̇)q̇ − M(q)q̈]T δ3q̇ = 0. (3.10)

The interest for the δ3-variation in (3.8) was originally to get a variation intermediate
between δ1 and δ2. As we shall see this is a very convenient variation for unilaterally
constrained systems with impacts. In particular, Moreau’s sweeping process is built
along Jourdain’s variations.

3.1.2 Using Variational and Quasi-Variational
Inequalities Formalisms

Let us resume the contents of the previous section, from another point of view.
To simplify the presentation, let us focus on the so-called bouncing ball system.
Using basic mechanical arguments its dynamics is given by

⎧⎨
⎩

(a) mq̈(t) = −mg + Q(t) + λ(t)
(b) 0 ≤ λ(t) ⊥ q(t) ≥ 0 for all t ≥ 0
(c) q(0) = q0 ≥ 0, q̇(0−) = q̇0,

(3.11)

where in the above notation λ(t) = P(t),m is the ball’s mass, g is the gravity acceler-
ation. The complementarity relations in (b) state a particular constitutive contact law
which we already introduced in Example 1.6: it says that the contact force exerted
by the ground on the ball, is always nonnegative (no adhesive or gluing effects), that
the ball cannot penetrate in the ground, that the contact force can be positive only if
the ball touches the ground, and that when the ball is not in contact with the ground,
then the ground exerts no force on the ball (no distance or magnetic effects). This is
therefore a very simple and natural model of contact, which applies in a realistic way
to many practical systems. For the moment collisions are disregarded. We assume

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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that q(·) and q̇(·) are continuous, while q̈(·) and λ(·)may be discontinuous, however
they are right-continuous (so q̈(t) = q̈(t+) and λ(t) = λ(t+) by definition). Using
(B.19), the dynamics (3.11) is equivalently rewritten as the differential inclusion

mq̈(t) + mg = λ(t) ∈ −NR+(q(t)), q(t) ∈ R
+ for all t ≥ 0. (3.12)

From the normal cone’s definition (B.5), this is equivalent to the variational inequal-
ity: Find q(t) ≥ 0 such that

〈mq̈(t) + mg − Q(t)︸ ︷︷ ︸
=λ(t)

, q	 − q(t)〉 ≥ 0, for all q	 ≥ 0. (3.13)

Interpreting q	 −q(t) as a virtual displacement, (3.13) is exactly (3.3) in a particular

case. Let q(t) = 0, then δq(t)
Δ= q	 − q(t) = q	 ≥ 0. Let q(t) > 0, then δq(t) is

unsigned, i.e., δq(t) ∈ R. We infer from this simple example that δq(t) ∈ TR+(q(t)),
the tangent cone to R

+ at q(t). From the fact that λ(t) ∈ −NR+(q(t)) and
δq(t) ∈ TR+(q(t)), and since the normal and tangent cones are polar one to each
other (Definition B.4), we infer that indeed the virtual work produced by λ(t) is
nonnegative. Let us now replace the normal cone NR+(q(t)) by the normal cone
NT

R+ (q(t))(q̇(t)), where the tangent cone TR+(q(t)) is defined in (B.3). Let us set

λ(t) ∈ −NT
R+ (q(t))(q̇(t)). (3.14)

If q(t) > 0, then NT
R+ (q(t))(q̇(t)) = NR(q̇(t)) = {0} and λ(t) = 0. If q(t) = 0,

NT
R+ (q(t))(q̇(t)) = NR+(q̇(t)). Consequently, if q(t) = 0 and q̇(t) > 0, one obtains

NT
R+ (q(t))(q̇(t)) = {0}: the ball starts to detach from the constraint, and the consti-

tutive law in velocity implies that the contact force is zero. Now if q(t) = 0 and
q̇(t) = 0, one gets NT

R+ (q(t))(q̇(t)) = R
−: the contact force may take positive values.

We have that 0 ≤ λ(t) ⊥ q̇(t) ≥ 0. Using this new representation of unilaterality in
velocity (instead of the first one that is in position), one obtains the differential inclu-
sion mq̈(t) + mg − Q(t) = λ(t) ∈ −NT

R+ (q(t))(q̇(t)), that is equivalently rewritten
as the quasi-variational inequality [385, Definition: p. 16]: Given q(t) ∈ R

+, find
q̇(t) ∈ TR+(q(t)) such that

〈mq̈(t) + mg − Q(t), q̇	 − q̇(t)〉 ≥ 0 for all q̇	 ∈ TR+(q(t)). (3.15)

The term q̇	 − q̇(t) may be interpreted as a virtual velocity, and is a Jourdain’s

variation as in (3.8). Simple calculations yield that when q(t) = 0 then δq̇(t)
Δ=

q̇	 − q̇(t) ∈ TR+(q̇(t)). When q(t) > 0 then δq̇(t) ∈ R. When q(t) = 0 and
q̇(t) = 0 then δq̇(t) = q̇	 ≥ 0. When q(t) = 0 and q̇(t) > 0 then δq̇(t) = q̇	 ∈ R.
Therefore, δq̇(t) ∈ TT

R+ (q(t))(q̇(t)).
Finally, let us investigate a third constitutive law for the contact force, defined as
λ(t) ∈ −NTT

R+ (q(t))(q̇(t)(q̈(t)). This time themain variable is the acceleration. If q(t) >

0 then the normal cone becomes NTR(q̇(t)(q̈(t)) = NR(q̈(t)) = {0}. If q(t) = 0 we
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obtain NT
R+ (q̇(t)(q̈(t)): if q̇(t) > 0 this gives NR(q̈(t)) = {0}, and if q̇(t) = 0 this

gives NR+(q̈(t)). Thus if q(t) = 0, q̇(t) = 0, and q̈(t) > 0 one gets the right-hand
side equal to NR+(q̈(t)) = {0}, while if q̈(t) = 0 one obtains NR+(q̈(t)) = R

−.
The differential inclusion mq̈(t) + mg − Q(t) = λ(t) ∈ −NTT

R+ (q(t))(q̇(t))(q̈(t)) is
equivalently rewritten as the quasi-variational inequality: Given q(t) ∈ R

+ and
q̇(t) ∈ TR+(q(t)), find q̈(t) ∈ TT

R+ (q(t))(q̇(t)) such that

〈mq̈(t+) + mg − Q(t), q̈	 − q̈(t)〉 ≥ 0 for all q̈	 ∈ TT
R+ (q(t))(q̇(t)). (3.16)

The term q̈	 − q̈(t) may be interpreted as a virtual acceleration, close to the δ2

variation in (3.4). Proceeding as in the two foregoing cases, one finds that δq̈(t)
Δ=

q̈	 − q̈(t) ∈ TTT
R+ (q(t))(q̇(t))(q̈(t)). The different cases can be analyzed similarly to

the first two variations. Let us now use (B.19), (B.20) to interpret the inclusion
q̈(t) + g − 1

m Q(t) ∈ −NTT
R+ (q(t))(q̇(t))(q̈(t)). It is equivalent to:

q̈(t) = proj[TT
R+ (q(t))(q̇(t));−g + 1

m
Q(t)]. (3.17)

One recognizes Gauss’ principle in (3.16). The formulation in (3.16) is therefore the
variational inequality form of Gauss’ principle.

Remark 3.1 (Lexicographical Inequalities) It is noteworthy that the number of tan-
gent cones introduced in the right-hand side of the dynamics, increases with the
derivative degree. This is needed to keep the system within the admissible domain
Φ. In [15] this idea is extended to systems where derivatives of degree larger
than two play a role, within the framework of a higher order Moreau’s sweep-
ing process (see Sect. 5.2 for a detailed description of the mechanical case). The
underlying idea is to impose lexicographical inequalities on the derivatives of the
gap function f (q), which is in our simple example equal to q. Consider the cone
NT

R+ (q(t))(q̇(t)): if q(t) > 0 then q̇(t) may take any value. If q(t) = 0 then
q̇(t) ≥ 0. Thus this formulation imposes (q(t), q̇(t)) � 0.3 Consider now the cone
NTT

R+ (q(t))(q̇(t)(q̈(t)). If q(t) > 0, then both q̇(t) and q̈(t) may take any real value. If
q(t) = 0, then q̇(t) ≥ 0 since TR+(q(t)) = R

+. If q(t) = 0 and q̇(t) = 0, then

T 1
R+(q(t), q̇(t))

Δ= TT
R+ (q(t))(q̇(t)) = TR+(0) = R

+, so q̈(t) ≥ 0. Thus this normal
cone inclusion imposes that (q(t), q̇(t), q̈(t)) � 0. It is proved in [15] that setting
the right-hand side as the normal cone to the tangent cone to the tangent cone to the
tangent cone... up to the system’s relative degree, implies lexicographical inequal-
ities on the gap function derivatives (see [15, Remark 16]). Moreover this allows
one to derive a sequence of variational inequalities, see [15, Eq. (62)], which may be
interpreted as a virtual displacement, velocity, acceleration, etc., principle if replaced
in a physical context. Notice finally that the above process can be continued with

higher degree derivatives by defining T 2
R+(q(t), q̇(t), q̈(t))

Δ= TTT
R+ (q(t))(q̇(t)(q̈(t)),

3For a vector x = (x1, x2, x3, . . .)T , x � 0 means that the first nonzero element xi is nonnegative.
Thus either all elements are zero, or the first nonzero element is positive.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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and NTTT
R+ (q(t))(q̇(t)(q̈(t))(q(3)(t)), and so on with T n(q(t), . . . , q(n)(t)). As shown in

[15, Lemma 3] one has

NT n(q(t),...,q(n)(t))(q
(n+1)(t)) ⊆ NT n−1(q(t),...,q(n−1)(t))(q

(n)(t)) (⊆ NR+(q(t))) (3.18)

with T 0
R+(q(t)) = TR+(q(t)), and all functions are supposed to be right-continuous,

which allowus to consider that these conesmay be computed on the right of a possible
instant of state jump. Nothing hampers one to write the dynamics as mq̈(t) + mg −
Q(t) = λ(t) ∈ −NT n(q(t),...,q(n)(t))(q(n+1)(t)), which may be useful in an event-
driven algorithm to test whether the system detaches from the constraint boundary
or not when the first n derivatives of the gap function vanish. The quasi-variational
inequality associated with such a differential inclusion is: Find q(t) ≥ 0, q̇(t) ∈
TR+(q(t)), q̈(t) ∈ TT

R+ (q(t))(q̇(t)),…, q(n+1)(t) ∈ T n(q(t), . . . , q(n)(t)) such that

〈mq̈(t) + mg − Q(t), q(n+1),	 − q(n+1)(t)〉 ≥ 0 for all q(n+1),	 ∈ T n(q(t), . . . , q(n)(t)).
(3.19)

Extending the above three cases of variations, we may infer that δq(n+1)(t)
Δ=

q(n+1),	 − q(n+1)(t) ∈ TT n(q(t),...,q(n)(t))(q(n+1)(t)) = T n+1(q(t), . . . , q(n+1)(t)).

3.1.2.1 Further Reading

Fourier’s and Jourdain’s principles are discussedwithin the general setting of systems
constrained in closed sets, in [448, 831, 832, 833]. Hemivariational inequalities are
used because the sets may not be convex, hence Clarke’s subgradient has to be used
instead of the subdifferential from convex analysis. A general form of the principle
of virtual work for unilaterally constrained systems, using convex analysis tools, is
provided in [466]. The virtual displacements are no longer required to be compatible
with the constraints nor time-independent: the formulation accomodates for that.
The principle of d’Alembert is also analyzed. The example of a unilateral pendulum
with a spring whose elastic force F(x) satisfies −F(x) = ∂U (x) for some C0

function U (x), is given. Glocker [449] gave an exposition of virtual displacement
principles in case the boundary bd(Φ) of the admissible domain is nonsmooth (or of
codimension ≥2). The major conclusion in [449] is that this principle can be stated
whenΦ has a smooth boundary, and in certain nonsmooth cases. Fourier’s inequality
is used in [964] to characterize the stability of rigid workpieces in contact with fixed
rigid bodies, with or without friction, and taking into account the unilaterality of the
contacts. The inclusions in Sect. 3.1.2 have been derived by Glocker [448, 452], in
the more general setting of right-continuous velocities. It is proved that for a given
nonempty set Φ one has

NΦ(q) ⊇ NTΦ(q)(q̇) ⊇ NTTΦ (q)(q̇)(q̈), (3.20)
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velocities and accelerations being assumed right-continuous (the first normal cone
inclusion is proved in [894, Proposition 5.1], see also (3.18)). This is quite related to
lexicographical inequalities, see Remark 3.1. Here the tangent cone TΦ(q) is defined
in (B.3), the normal cone is its polar cone in (B.5), and Φ needs not be convex. One
may find general formulations of what we presented for the simple system (3.11),
in Glocker’s monograph [452, Chap. 9]. It is in particular pointed out in [452] that
virtual displacements should in general be taken in the contingent cone (which is the
tangent cone for tangentially regular sets, which possess no reentrant corners, see
Fig.B.1). It has been found in [74] that the JVP is a suitable variational principle
because both the time and the position are fixed, whereas the velocity is allowed to
vary, this is exactly the case of impulsive dynamics. And it is indeed the case that
Jourdain’s variations are suitable for unilaterally constrained systems with impacts,
see Sect. 5.2.2.2.

3.2 A Coordinate Invariance Principle

As another “principle,” let us state the following:

The power generated by the scalar product of the contact forces with the veloc-
ities compatible with the constraints, is the same in any set of coordinates.

Let q and z be two sets of n generalized coordinates of the same Lagrangian system,
and let Fq and Fz be the generalized forces associated with q and z, respectively.
This “principle” says that P = q̇T Fq = żT Fz . Thus if z = Z(q) for some dif-
feomorphism Z(·), so that ż = ∂ Z

∂q (q)q̇ with full rank Jacobian matrix, one obtains

q̇T Fq = q̇T ∇Z(q)Fz , and consequently the generalized forces are related as follows:

Fq = ∇Z(q)Fz ⇔ Fz = (∇Z(q))−1Fq . (3.21)

Let us now assume that we are dealing with a mechanical system that has m contact
points. As we shall see in Chap.4, at each potential contact point i one may associate
a local Cartesian frame in which the contact force Fi ∈ R

3 may be expressed:

Fi =
⎛
⎝ Fn,i

Ft1,i

Ft2,i

⎞
⎠. The two vectors t1,i and t2,i span the tangent plane that “separates”

the bodies in contact at the contact point i , while the vector ni ∈ R
3 (or ∈ R

2

in the planar case) spans the common normal direction. Similarly, a local relative

velocity between the potential contact points is chosen and writen as vi =
⎛
⎝ vn,i

vt1,i
vt2,i

⎞
⎠

in the same local Cartesian frame. The power performed by Fi is equal to Pi =
vT

i Fi = vn,i Fn,i + vt1,i Ft1,i + vt2,i Ft2,i . If the contact i is open this is obviously zero.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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Let us assume first that there are no frictional effects, so that Ft1,i = Ft2,i = 0.
Suppose also that, as indicated in Sect. 4.1.3, the unilateral constraints are defined
with signed distance functions fi (q). Hence vn,i = ∇ fi (q)T q̇ . According to the
above “principle,” one obtains Pi = vn,i Fni = Fn,i∇ fi (q)T q̇ = q̇T Fq,i . One infers
that

Fq,i = ∇ fi (q)Fn,i . (3.22)

With this choice of the gap functions fi (q), the component Fn,i acts as the Lagrange
multiplier associated with the unilateral constraint fi (q) ≥ 0. If there are m con-
straints, the generalized force that is associated with them is given by

Fq = ∇ f (q)Fn =
m∑

i=1

∇ fi (q)Fn,i . (3.23)

If frictional effects are present, one has in the same manner vt1,i = Ht,1,i (q)T q̇ and
vt2,i = Ht,2,i (q)T q̇ for some vectors Ht,1,i (q) and Ht,2,i (q). Proceeding as above we
obtain that the right-hand side of the Lagrange dynamics is

Fq = ∇ f (q)Fn + Ht,1(q)Ft1 + Ht,2(q)Ft2 = ∇ f (q)Fn + Ht(q)Ft (3.24)

with Ht(q) = (Ht,1(q) Ht,2(q)), Ft =
(

Ft1
Ft2

)
. Usually, one denotes Fn as λn and

Ft as λt , to emphasize the fact that these quantities are Lagrange multipliers. These
ideas are developed in Sects. 4.1.2 and 4.1.3 for two frictionless bodies with one
contact point.

3.2.1 Perfect Constraints

(i) Assume that the constraints are holonomic bilateral, given by h(q) = 0 for some
differentiable function h : Rn → R

mb . This means that the system is constrained to
evolve in the submanifold {(q, q̇)|h(q) = 0,∇h(q)T q̇ = 0} of codimension 2mb.
These equality constraints translate the fact that at mb contact points i one may
associate a local frame such that vn,i = ∇hi (q)T q̇ = 0. If there are no tangential
effects (the joint is said perfect), then the power performed by Fi (t) satisfies Pi =
vi (t)T Fi (t) = 0. One deduces that Fi = (Fn,i 0 0)T , since the tangential local
velocities are free.
(ii) In case of mu unilateral constraints, let us assume that the velocities are right-
continuous functions of time and that we focus on phases of motion during which
there are no impacts, and the unilateral constraint i is active, i.e., fi (q(t)) = 0on some

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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open time interval I � t .4 Following (3.14) the contact force model is stated at the
velocity level as follows: 0 ≤ Fn,i (t) ⊥ vn,i (t+) ≥ 0, for all 1 ≤ i ≤ mu : the normal
contact force and local velocity have to satisfy complementarity conditions. More on
complementarity will be mentioned in Sect. 5.4. Still using the same “principle,” we
say that the constraints are perfect if Pi = vi (t+)T Fi (t) = 0. Once again we infer
that Fi = (Fn,i 0 0)T . The discrepancy compared to bilateral constraints, is that this
time Fn,i (t) ≥ 0, for all t ≥ 0. See also Remark 5.6 for some thoughts about virtual
power and perfect constraints.
(iii) In terms of virtual displacements δ1q, perfect unilateral constraints may be
defined as follows. Suppose that the system’s configuration q is restricted to the
set Φ, and that Φ is tangentially regular (see Appendix B for the definition). Then
δ1q ∈ TΦ(q): the admissible virtual displacements must belong to the tangent cone
to Φ5, a fact that we proved in Sect. 3.1.2 for the one degree-of-freedom system
(3.13). In a more general setting, let Φ be closed nonempty and convex, q ∈ Φ,

q	 ∈ Φ, and δ1q
Δ= q	 − q.6 Then using the first line in Definition B.2 it follows

that δ1q ∈ TΦ(q) without any restriction on δ1q (it may not be infinitesimal due to
convexity). If Φ is not convex the other definitions of tangent cone in Definition B.2
may be used, and δ1q has to be an infinitesimal variation. One says that unilateral
constraints are perfect if the contact force λ(t) satisfies λ(t) ∈ −NΦ(q(t)), for all
t ≥ 0. Then from the fact that the tangent and the normal cones are polar one to
each other (see Definitions B.4 and B.5), one obtains λ(t)T δ1q ≥ 0. This is the
generalization of Fourier’s inequality in (3.2), that may also be named the principle
of d’Alembert–Lagrange in inequality form.

The discrepancy between (ii) (zero contact force power) and (iii) (Fourier’s
inequality) is that the former stems from (3.14) while the latter is a consequence
of δ1q ∈ TΦ(q) and λ(t) ∈ −NΦ(q(t)), and of the fact that virtual displacements
δ1q are considered for fixed (or frozen) time. Since the inclusions (3.20) hold, we
deduce that Fourier’s inequality ismore general than the zeropower equality.Bilateral
constraints and unconstrained systems may be recovered following the arguments of
Remark 3.2 in Sect. 3.5.1.

3.3 Gauss’ Principle

Gauss’ least action principle is one of the several variational principles of mechan-
ics, within which one can interpret the dynamics of classical mechanical systems
(by classical we mean mainly here systems with smooth dynamics). Let us first

4It is preferable to take I as an open interval, in order to encompass the right limit at possible impact
times.
5J.J. Moreau [891] points out that Fourier’s inequality in (3.2) is not always equivalent to Q ∈
NΦ(q). One has to assure that TΦ(q) 	= ∅ to secure this.
6It is reasonable to define such a virtual displacement vector, since a virtual displacement is an
infinitesimal change of coordinates.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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recall its formulation for systems subject to holonomic (bilateral) constraints.
In fact, Gauss’s principle is a reinterpretation of d’Alembert’s principle into a mini-
mum principle. For a system of n particles with coordinates qi ∈ R

3 and masses mi ,
submitted to external forces Fi , Gauss’ principle states that the function

G(q̈)
Δ=

n∑
i=1

1

2mi
(Fi − mi q̈i )

2 (3.25)

is minimum for the actual motion. This recasts the research of acceleration at each
instant of time into a quadratic programming problem. If the system is free of any
constraints, then trivially one retrieves Newton’s law ofmotion, i.e.,mi q̈i (t) = Fi (t).
In the case of a general n-degree-of-freedom Lagrangian system, the function G(q̈)

takes the form

G(q̈) = 1

2
[M(q)q̈ − C(q, q̇)q̇ − g(q) + Q]T M−1(q) [M(q)q̈ − C(q, q̇)q̇ − g(q) + Q]

(3.26)

where the different terms are defined in Example 1.3, Eq. (1.10), and Q stands for
generalized exogenous forces. The vector g(q) may contain gravity torques and
other conservative generalized forces. Let us recall that it is assumed that at the time
when (3.26) is considered, all the variables are constant except the acceleration with
respect to which the minimization is performed, this is close to a δ2 variation. It turns
out that Gauss’ principle is also valid for systems subject to unilateral constraints
(when the system performs a constrained motion phase), or to bilateral (holonomic)
constraints, or subjected to both. We already saw its extension for perfect unilateral
constraints in (3.17), and its extension is possible using (3.20). This will be seen
in more detail in Sect. 5.1. Let us mention that Moreau was the first to prove that
Gauss’ principle applies to frictionlessLagrangian systemswith unilateral constraints
[877, 878], using convex analysis tools like conjugacy (Definition B.11) and prox-
imality (Definition B.10). Gauss’ principle is used in the context of cable-driven
robots in [395].

3.3.1 Further Reading

Sinitsyn [1115] studied a system composed of n mass points. He showed that the
real acceleration of the system q̈i , satisfies

∑n
i=1 mi (q̈i − q̈o

i )2 ≤ ∑n
i=1 mi (q̈ ′

i − q̈o
i )2,

where q̈o
i is the acceleration the system would have with no constraint, and the

virtual acceleration q̈ ′
i corresponds to virtual displacements δq consistent with

the constraints (i.e., ∇ f j (q)T δq ≤ 0). Other variational principles, like Mauper-
tuis’, can be derived for systems with unilateral constraints. This is investigated
in [683] for elastic impacts. Papastavridis [976] shows that the impulsive form of
some well-known finite motion equations, like Routh–Voss’, Maggi’s, Hadamard’s,

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Boltzmann–Hamel’s, Chaplygin–Voronets’, and Appell’s equations can be derived.
Bahar [74] studies the extension of the differential variational principle of Jourdain
(JVP) to rigid body shock dynamics, making use of quasi-velocities. Starting from
a JVP formulation of the shock dynamics (it is assumed that at shock instants the
postimpact velocity should be such that this equality is satisfied): σ T

q̇ M(q)δ3q̇ = 0,
and taking into account that preimpact velocities are constants of the problem, this is
equivalent to

δ3

{
1

2
σ T

q̇ M(q)σq̇

}
= 0. (3.27)

The postimpact velocities have to be taken compatible with the constraints, i.e.,
q̇(t+

k )T ∇ f (q) ≥ 0. The extremum of the function in (3.27) is in fact shown to
be a minimum. One recognizes in (3.27) that the term between brackets is Gauss’
function in (3.26) expressed in its impulsive form. In fact, and we shall come back on
this in Sect. 5.4, other authors [763] calculate the impulsive Lagrangian multiplier λ

associated with the active constraints f (q) = 0, as

min
λ≥0

1

2
λT ∇ f (q)T M−1(q)∇ f (q) + λT ∇ f (q)q̇(t−

k ) (3.28)

which is equivalent using impact dynamics and (5.107) to (5.108)

min
q̇(t+

k )
σ T

q̇ M(q)σq̇ (3.29)

subject to ∇ f (q)T q̇(t+
k ) ≥ 0 (a constraint which means that the postimpact velocity

must be admissible). Bahar also points out the possible applications of such theo-
retical results, reconstruction of preimpact velocities from postimpact data (which
is very important in studying for instance vehicle accidents, see also Brach [175]
for such an application). This is the object of the study in [1272], who proposes
to reconstruct preimpact velocities of jack-knifed tractor semitrailers using Gauss’
principle and energy balance. An estimation of the lost velocity during the period
after the impact must be given, as well as the estimation of lost velocity due to crush,
the vehicle geometry after and before the collision, and the brake side distance after
sideswipe. Kirgetov [667, 668, 669] studies dynamics of systems of n particles sub-
ject to frictionless unilateral constraints. The collisions are assumed to be elastic. It
is shown [669] that among all the states consistent with the constraints f (q) ≥ 0,
and satisfying ∇ f (q)T q̇(t+

k ) = −∇ f (q)T q̇(t−
k ), the real state (q, q̇) is the one that

minimizes the function
∑n

i=1
mi
2

(
q̇i (t

+
k ) − q̇i (t

−
k )
)2
. This is again quite similar to the

above minimization problems and Jourdain’s principle.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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3.4 Lagrange Dynamics

From a general point of view, a variational problem in mechanics can be formulated
as follows [1306]: Given a Lagrangian function L(·), a suitable class of admissible
curves q(·) with given endpoints, find the minimum of some quantity called the
action integral:

I (q) =
∫ t1

t0

L(t, q(t), q̇(t))dt. (3.30)

In the unconstrained case, the extremization of I (q) yields the first-order condition

called the Euler–Lagrange dynamics: d
dt

(
∂L
∂q̇

)
− ∂L

∂q = 0. Actually, in most cases,

so-called least action principles are not minimum principles, but only stationary
principles. In this section, we first treat this problem as if there were no difficulties
in applying variational techniques to systems subject to impacts, i.e., we simply
consider directly the Lagrange equations and we suppose that a generalized external
impulsive force acts on the system (we have already noted a significant difference
between this problem and the problem with unilateral constraints in Chap. 1). Then
we discuss about the variational approach to systems with unilateral constraints.

3.4.1 External Impulsive Forces

The Lagrange equations of the system submitted to a generalized force Fq = F +
pkδtk , where F = {Fq} represents all the generalized forces without taking into

account the impulsive ones, are given by d
dt

(
∂L
∂q̇

)
− ∂L

∂q = F + pkδtk . Thus using the

notations introduced in Chap.1 we get

∂2T

∂q̇2

({q̈} + σq̇δtk + σq δ̇tk

)+ ∂2T

∂q∂ q̇

({q̇} + σqδtk

)− ∂(T − U )

∂q
= F+ pkδtk , (3.31)

from which we deduce7

∂2T
∂q̇2 σq(tk) = 0 and ∂2T

∂q∂q̇ σq(tk) + ∂2T
∂q̇2 σq̇(tk) = pk . (3.32)

In case the kinetic energy is a quadratic form of the velocity and the problem is not
degenerated, ∂2T

∂q̇2 � 0 is the inertia matrix and we obtain

σq(tk) = 0 and ∂2T
∂q̇2 σq̇(tk) = ∂T

∂q̇ (t+
k ) − ∂T

∂q̇ (t−
k ), (3.33)

7The term δtk δtk (see (1.11)) does not appear explicitly in (3.31) but is contained in the second term
of the left-hand side.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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so that finally the Lagrange equations become in case of external impact

⎧⎨
⎩

∂2T
∂q̇2

{q̈} + ∂2T
∂q∂q̇

q̇ − ∂(T −U )

∂q = F

∂T
∂q̇ (t+

k ) − ∂T
∂q̇ (t−

k ) = pk .
(3.34)

Note that (1.11) is a particular case of (3.34), and that (3.34) can be extended to the
case when the impulsive forces are any distribution in D	 (see Appendix A.1 for a
definition). The extension of Lagrange dynamics to systems with impulsive forces,
has been the object of research since a long time ago [52, 53, 120, 1223].

3.4.2 Example: Flexible Joint Manipulators

Let us illustrate Eq. (3.34) with the case of elastic joint manipulators. These systems
have been deeply studied in the robots control literature since they represent a nice
example of Lagrangian systems with less inputs than degrees of freedom (the inputs
are the torques at the joints) [223]. Two dynamical models have been used to design
stabilizing controllers for such systems. The first model has been obtained in [1133]:

{
M(q1(t))q̈1(t) + C(q1(t), q̇1(t))q̇1(t) + g(q1(t)) = K (q2(t) − q1(t))
Jmq̈2(t) + K (q2(t) − q1(t)) = u(t),

(3.35)

where q1 ∈ R
n are the links angles, q2 ∈ R

n are the motorshafts angles, K ∈ R
n×n is

the joint stiffness matrix, constant and diagonal, Jm is the motor inertia matrix, u is
the control input vector. Note at once that the control problem for such systems has
been more challenging than for rigid manipulators. Mainly this is due to the fact that
the coordinates to be stabilized appear in the first equation in (3.35), and the control
appears in the second equation.

Let us now assume that the system is submitted to a unilateral constraint f (q1) ≥
0, with f (q1) ∈ R and smooth. Hence the Euclidean gradient ∇ f (q1) = ∂ f

∂q (q1)
T =( ∂ f

∂q1
(q1)

T

0

)
, and the dynamical equations at the impact time tk are given by

{
M(q1)σq̇1(tk) = ∂ f

∂q1
(q1(tk)T pn,k

Jmσq̇2(tk) = 0,
(3.36)

where pn,k ∈ R is the impulsive Lagrange multiplier corresponding to the normal
interaction impulse at the impact (we assume a frictionless surface {q ∈ R

2n| f (q1) =
0}). One concludes that q̇2 remains continuous at the impact. Themodel in (3.35) is in
fact obtained by neglecting the effects of the link velocities q̇1 in the kinetic energy
of the motorshafts. When these effects are taken into account, then one obtains a
more complex model [1204], given by

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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⎧⎨
⎩

M11(q1)q̈1 + M21(q1)q̈2 + C11(q1, q̇1)q̇1 + C12(q1, q̇1)q̇2 + g(q1) = K (q2 − q1)

M21(q1)
T q̈1 + M22q̈2 + C21(q1, q̇1)q̇1 + K (q2 − q1) = u

(3.37)

where M22 = Jm . The difference between the two models in (3.35) and (3.37) is that
in (3.37) the inertia matrix is no longer block diagonal. Hence there are acceleration
cross terms in the dynamical equations. Note that from a control point of view,
this drastically complicates the problem. For instance, the model in (3.35) is static
state feedback linearizable, whereas the one in (3.37) is dynamic state feedback
linearizable only (see [930] for definitions). Now the impact dynamical equations
for (3.37) are given by

{
M11(q1)σq̇1(tk) + M21(q1)σq̇2(tk) = ∂ f

∂q1
(q1)

T pn,k

M21(q1)
T σq̇1(tk) + M22σq̇2(tk) = 0.

(3.38)

It is obvious from (3.38) that q̇2 may be this time discontinuous at the impact time,
contrarily to the previous case where we deduced from (3.36) that it had to remain
continuous. This is rather surprizing if we think a little of the mechanical structure
of such systems, the impact usually occurs between the last link (the end effector)
and the environment. By which dynamical effect could the motorshafts (which are in
some sense “protected” by the elasticity) possess a discontinuous velocity? Now let
us go a little deeper into the structure of the matrix M21(q1). It can be shown [1204]
that this matrix has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 M21,12 M21,13 . . M21,1n

0 0 M21,23 . . M21,2n

. . . . .

. . . . . .

0 0 . . 0 M21,n−1,n

0 0 0 . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.39)

Let us take the transpose of the matrix in (3.39) and introduce it in the second
dynamical equation in (3.38). From the fact that M22 is diagonal, it follows that
σq̇2,1(tk) = 0. But the rest of the components of q̇2 may possess a discontinuity at
the impact time. Indeed, we get M21,12σq̇1,1(tk) + J22σq̇2,2(tk) = 0, M21,13σq̇1,1(tk) +
M21,23σq̇1,2(tk) + M22,33σq̇2,3(tk) = 0, and so on. The only component of σq̇1 which
does not influence q̇2 is q̇1,n . As we shall see in Chap.4, some collision rules will have
to be applied to q̇1. Hence in general some components of q̇1 will be discontinuous.
The jumps in q̇2 have then to be computed from the second equation in (3.38), and
the percussion is deduced from the first equation in (3.38).
In conclusion, the simplified model in (3.35) always yields continuous motorshaft
velocities, whereas the completemodel in (3.37)may yield discontinuousmotorshaft
velocities. This is due to dynamical coupling that exists in the robotwith elastic joints.
This may have some practical consequences, since it means that joint compliance

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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does not really prevents the impulsive force from acting on the actuators angles
(this of course does not mean at all that the actuators suffer from an impulsive force,
see the second equation in (3.38)). Note that in certain cases, like parallel drive
manipulators [1304], where all the actuators are mounted at the fixed base of the
robot, then the simplified model is the exact one. In this sense it can be stated that
parallel drive manipulators are less sensitive to impacts.

3.5 Hamilton’s Principle and Unilateral Constraints

We now turn our attention to a much more difficult problem: the variational formu-
lation of unilaterally constrained dynamics.

3.5.1 Hamilton’s Principle Without Impacts

Let us start with the case when no impact acts on the system, i.e., the system is either
in an unconstrained mode f (q(t)) > 0, or some of the constraints are persistently
active: fi (q(t)) = 0 for some 1 ≤ i ≤ mu and t ∈ I , I = [t0, t1], t1 > t0.

Proposition 3.1 [724] Let us assume that q(·) and q̇(·) are both absolutely contin-
uous while q̈(·) exists almost everywhere on I . Then −δ

∫
I L(q(t), q̇(t))dt ≥ 0, for

all δq ∈ TΦ(q), q(t0) = q0, q(t1) = q1, implies that M(q)q̈(t)+C(q(t), q̇(t))q̇(t)+
g(q(t)) = Q(t), with Q(t) ∈ −NΦ(q(t)) almost everywhere on I .

Remind from Definition 1.8 that Φ = {q ∈ Q| f (q) ≥ 0}. As seen previously in this
chapter, the generalized contact force takes the generic form Q = ∇ f (q)λ for some
Lagrange multiplier λ ∈ R

mu , and it satisfies the complementarity conditions 0 ≤
f (q(t)) ⊥ λ(t) ≥ 0. Using (B.19) we obtain equivalently λ(t) ∈ −NR

+
mu

( f (q(t)).
Moreover we have ∇ f (q) = ∂ψR

+
mu

( f (q). From Theorem B.3 we deduce that Q ∈
−NΦ(q). This may also be written in a variational inequality formalism.

Remark 3.2 Bilateral constraints h(q) = 0 can be written as f1(q) = h(q) ≥ 0
and f2(q) = −h(q) ≥ 0. Let us assume that a suitable constraint qualification is
satisfied so that the tangent cone is given as in (B.7). Both unilateral constraints are
active, so that we obtain TΦ(q) = {z ∈ R

n|∇ f1(q)T z ≥ 0 and ∇ f2(q)T z ≥ 0} =
ker(∇h(q)T ). Also NΦ(q) = ker⊥(∇h(q)T ) = Im(∇h(q)). Unconstrained systems
are recovered with Φ = R

n in which case TΦ(q) = R
n and NΦ(q) = {0}, for all q

in the configuration space.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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3.5.2 Hamilton’s Principle With Impacts

Hamilton’s principle extension to impacting trajectories may be motivated by the
close relationships between Fermat’s and Maupertuis’ principles [60, p. 252]. The
same relationships should hold when reflections are present. Classically, two prob-
lems arise in such minimization problems [1306]: (i) Nature of the curves (i.e., in
which space have the admissible curves q to be defined?) to ensure existence of an
extremum (minimum) of the integral action8 (ii) Necessary and sufficient conditions
to be satisfied by the extremals (Lagrange equations, transversality, and Erdmann–
Weierstrass corner conditions).

Roughly, point (i) requires that the nature of the admissible curves be specified as
well as the topology associated with the space to which they belong, since existence
result can be proved via compactness of the level sets and lower semicontinuity of
the functional to be minimized, which is known as Tonelli’s direct method [813].
The direct method of variational calculus is based on the fact that a function F(·)
defined on a compact set C and lower semicontinuous9 on C , attains its lowerbound
on C , i.e., there exists x0 ∈ C such that F(x0) = inf x∈C F(x). This also applies to
functionals I (q), and is known as Tonelli’s direct method which allows to prove the
existence of a minimizing curve q.

Theorem 3.1 (Tonelli [813]) Assume that I : E → R̄
10 is coercive and lower

semicontinuous. Then I (·) has a minimum point in E.

Bypoint it ismeant here an element of E , i.e., a curve if I is a functional and E a space
of functions. In case E is ametric space, then I is coercive if its level sets , i.e., the sets
{q ∈ E |I (q) ≤ α}, α ∈ R, have a compact closure [813, Definition 1.12].11 Also a
bilinear form a(u, y) : L2× L2 → R is coercive if a(u, u) ≥ α||u||22 for some α > 0
[191]. Of course the great difficulty in proving such existence results lies in the choice
of suitable spaces of admissible curves E , together with a suitable topology (i.e., a
notion of convergence) that allows to prove coercivity and lower semicontinuity of
I in E . It is another problem to derive necessary and/or sufficient conditions that
an extremal point must satisfy: this is point (ii). A less mathematical formulation of
Tonelli’s existence theorem is as follows: if theLagrangian L(·, ·, ·) isC2 and satisfies
(a) L(t, q, v) ≥ a||v||1+b + c, for all (t, q, v) and for some constants a, b > 0
and c ∈ R, (b) ∂2L

∂v2 (t, q, v) ≥ 0, for all (t, q, v), then an absolutely continuous
solution that minimizes the action integral I (q) with fixed end points exists. One
realizes that these conditions are satisfied in the classical mechanical case where

8“Every problem of the calculus of variations has a solution, provided the word “solution” is
suitably understood.” (D. Hilbert), so that ... in variational problems the original setting must be
modified in accordance with the needs of an existence theory. [1306, p. 218].
9see Definition B.12 in Appendix B.
10
R̄ = R + {−∞,+∞}.

11Recall that if the level sets are compact, the function is said to be proper [1129, Definition 4.6.1].
Hence properness implies coerciveness.
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L(q, v) = 1
2vT M(q)v + U (q), with M(q) � 0 and provided U (q) ≥ Umin > −∞.

A natural set for such variational problems is a subset of

Q = {q(·)|q ∈ AC([t0, t1],Rn), q̇ ∈ RC L BV ([t0, t1],Rn), q̈ ∈ D	}, (3.40)

endowed with a suitable topology for compactness (in view of the existence results
described in Chap.2, we can even impose q(·) Lipschitz continuous). Note that
it is also customary in variational calculus to use as basic spaces of admissible
curves Sobolev spaces [191, 813], i.e., q ∈ W 1,p([t0, t1]), see Appendix A.3 for
the definition of such spaces of functions. In some other more general problems
[909] that could fit with ours if q(·) was allowed to be discontinuous (thus L(·)
would contain singular distributions like in Bressan’s hyperimpulsive systems), the
basic space is that of equivalent classes of RC L BV functions. In order to get more
insight on this point, consider the following one degree-of-freedom simple example,
where the dynamics can be integrated at hand. Let a disk with radius d

2 move without
friction on a horizontal plane between two parallel rigid “walls,” situated at a distance
d + 2ε one from each other. This may represent the dynamics of a mechanism
with clearance, or with a “bi-unilateral” constraint of the form c1 ≤ f (x) ≤ c2,
considered for instance in [1003, Chap. 3], or a simplified Fermi accelerator model
[540]. There is conservation of energy, and the initial conditions on position and
velocity are such that the problem is well-posed. Then the graph of the position of
the disk center with respect to time is a “saw-toothed” or “zigzag” diagram. The
singular points correspond to the impact times, with tk = (2k+1)ε

ẋ0
(assuming x0 = 0).

By letting ε approach zero, this curve tends toward an infinitesimal zigzag curve,
that is not a curve, but a generalized curve [1306, Chap. 6], i.e., an element of the
dual space of continuous functions (Young’s generalized curves [1306]) or smooth
functions (Schwartz’s distributions).12 It is worth noting that in this limit case of
zigzag curve with no loss of kinetic energy at impacts, the corresponding velocity
ẋ is not of bounded variation on any interval of strictly positive measure as ε → 0,
since the percussion magnitude is 2m|ẋ0| > 0 at each impact and the flight time

is Δk
Δ= 2

n|ẋ0| . Hence by letting n → +∞, the total variation of the velocity on a
bounded interval I grows unbounded. Since anyway the zigzag curve is measurable,
it defines a Schwartz’ distribution and thus possesses infinitely many distributional
(or generalized) derivatives. This may not be of interest for us, since we are rather
interested (mainly for stability notions and control purposes) by solutions which are
RC L BV . It seems that this “pathological” saw-toothed case has not been revealed
elsewhere in the literature on impact dynamics. One may be tempted to conjecture

12Let us define n = 1
ε
. The saw-toothed functions xn(t) converge uniformly toward the function

x ≡ 0 [397, p. 64], indeed supt∈R |xn(t)| = 1
n → 0 when n → +∞. However, the sequence

{ẋn} does not converge toward ẋ ≡ 0, not even pointwisely since |ẋn(t)| = 1 for almost all t .
Note that this is reassuring for a mechanician: if ẋn → 0 then ẍn → 0 in the distributional sense
so that no impacts occur in the limit. Another point of view is that the infinitesimal zigzag curve
can be described by assigning the pair of slope +1 and −1 at each point with a probability 1

2
[1306, p. 160]. This makes it clear that the saw-toothed function does not converge to the function
x ≡ ẋ ≡ ẍ ≡ ... ≡ 0 but to something else in a space of “generalized curves”.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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that problems with unilateral constraints f (q) ≥ 0 always possess a solution in Q,
provided some mild conditions are imposed on the constraint f (q). For instance,
this pathological case does not fit with the assumptions of Theorem 5.3 in Chap.5.
Recall that it is difficult in general to assert that the solutions are in Q in (3.40):
existence results need deep mathematical investigations, see Chap.2, and Sect. 5.2.
For instance, it is true that for all I ⊂ R, I compact, then

∫
I T (t)dt < +∞, i.e., the

kinetic energy is locally integrable. However, this implies that q̇ ∈ L2[I ], which in
turn does not imply that q̇(·) is of bounded variation. One could think of the solution
as being a measurable function, but then we lose the interpretation of the interaction
impulses as being countable. As we shall see, velocities of bounded variation lend
themselves very well to some sort of stability results, and are from this point of view
quite convenient to work with.

The problem has to be well formulated, this is what we discuss now. Let us
illustrate how corners13 may naturally be contained in a variational problem. For
instance, assume that the integrand of I (x) is equal to L(x, ẋ) = (1+ x2)(1+[ẋ2 −
1]2), with endpoint conditions 0, 1, x(0) = x(1) = 0. Then the minimizing curve
is “naturally” an infinitesimal zigzag [1306, p. 159]. We may say that the integral
action “contains” the irregularities. This is not the case for a mechanical problem if
a classical Lagrangian is considered as the Erdmann–Weierstrass corner conditions
[1003] show. These conditions yield

∂L

∂q̇
(t+

k ) = ∂L

∂q̇
(t−

k ) (3.41)

and
(

L − q̇T ∂L

∂q̇

)
(t+

k ) =
(

L − q̇T ∂L

∂ q̇

)
(t−

k ). (3.42)

Using that L(q, q̇) = T (q, q̇) − U (q), condition (3.41) yields M(q)q̇(t+
k ) =

M(q)q̇(t−
k ), while condition (3.42) yields T (t+

k ) = T (t−
k ), where T (q, q̇) =

1
2 q̇T M(q)q̇ . From the first condition, the generalized momentum satisfies
M(q(tk))q̇(t+

k ) = M(q(tk))q̇(t−
k ) so that the corresponding percussion is zero also,

see Example 1.3. Hence q̇(·) is continuous.
Remark 3.3 (Weak and Strong Extrema [724]) The conditions in (3.41) and (3.42)
correspond to weak or strong extrema of the action integral in (3.30) [724]: weak
extrema fulfill the Euler–Lagrange equations and (3.41), strong extrema fulfill the
Euler–Lagrange equations, (3.41) and (3.42). Weak extrema are in the weak norm
which roughly is given by maxx∈I || f (x)|| + ess supx∈I || ḟ (x)||, while the strong
norm is maxx∈I || f (x)||.
Consider the bouncing ball (on a fixed table) classical example, whose dynamics is
in (3.11). Assume that one wants to search for the extremals of a classical variational

13i.e., nondifferentiable points of the curves.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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problem I (q) = ∫ t1
t0

L(q, q̇)dt , with fixed endpoints and the unilateral condition
q ≥ 0, then for any t0, t1, q(t0) > 0, q(t1) ≥ 0,14 the minimization process will
always lead to a smooth solution curve, because the endpoint conditions uniquely
determine the initial data. Roughly speaking, the solution will always be such that
it takes the whole interval [t0, t1] to reach the constraint q = 0. As a consequence
the impacts will always be absent of such a formulation! It is therefore necessary
for the solution curve to contain impacts that the endpoint conditions be modified
by fixing for instance t0, t1, q(t0), and q̇(t0), a choice that is also made in [242], see
Problem 3.1 below.15 Notice that this a priori fixes q(t1) if we assume uniqueness
of the solutions. Then the constraint q = 0 will in general be reached at t2 < t1 and
with a nonzero left velocity q̇(t−

2 ). Still this is not sufficient as the corner conditions
indicate. The problem thusmust be transformed to one of the form in (a) or (b) below.
Let us now formulate the variational problem. First, notice that in order for this
problem to make sense, either the integral action to be minimized must “contain” the
impacts, or the space of admissible curves Q in (3.40) has to be modified. Basically,
two paths may be followed:

(a) m Q̄(I ) = min I (q), q ∈ Q̄
Δ= {q ∈ Q| f (q) ≥ 0, q̇n(t

+
k ) = −enq̇n(t

−
k ) with

f (q(tk)) = 0,∇ f (q(tk))T q̇(t−
k ) ≤ 0, admissible initial conditions}

(b) m Q Ī (q) = min Ī (q), q ∈ Q, with Ī (q) = ∫ t1
t0

L̄(q, q̇, τ )dτ , where L̄(·) is a
suitably modified Lagrangian function.

In otherwords, one can a priori eithermodify the set of curveswithinwhich the action
is to be minimized, without modifying the Lagrangian, or modify the Lagrangian
at once.16 In the sequel we shall describe two solutions that have been proposed
by Kozlov and Treshchev [683], Panagiotopoulos and Glocker [960], and Buttazzo
and Percivale [242]. The first ones follow path (a), whereas the third ones rather
follow path (b). These studies do not aim at showing existence of a minimizing
curve. The ones in [683, 960] prove that in a modified space of admissible curves,
the classical action is extremal for the motion of the system (i.e., for the motion that
satisfies Hamilton’s principle outside the impacts, and shock conditions at the impact
time). The third one [242] proves that the motion of a rigid problem is an extremal
of a modified action, which contains the singular measure that corresponds to the
impulsive force at impact times.

14Obviously if the endpoint conditions do not satisfy the constraints, this problem possesses no
solution.
15Hamilton’s principle with fixed t0, t1, q(t0), and q̇(t0) has been studied in [30]. It is shown that
the Lagrangian has to be modified to K = − 1

2 q̇T M(q)q̇(t − t1) − qT K q(t − t1) + 2FT q(t − t1)
in the action integral, where the last two terms account for the potential energy.
16In (a) and (b), one may replace min I (q) by extr I (q). Indeed searching for the minimizing curve
is very hard even in the nonconstrained case. In general one finds the Euler–Lagrange equations
which are only necessary conditions to be satisfied by the extremalizing curve. Whether or not
these curves define a minimum point of the action is another problem. Additional assumptions
about convexity (i.e., forces derived from a convex potential) permit to derive Hamilton’s principle
as a minimum principle [958].
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3.5.3 Modified Set of Curves

Let us describe the studies proposed in [683, 960]. This way of doing is closer to
the usual formulation for smooth motions that one can find in mechanical textbooks,
than the mathematical work of [242]. This is the reason why we introduce it first. Let
us consider an n degree-of-freedom system, with a unilateral constraint f (q) ≥ 0.
Assume that the shocks are perfectly elastic, i.e., we have q̇(t+

k )T M(q)q̇(t+
k ) =

q̇(t−
k )T M(q)q̇(t−

k ) ⇒ TL(tk) = 0. Let us consider some motion q0(t) : [t1, t2] �→
R

n , with f (q0(t)) > 0 for t ∈ [t1, t2] \ {t0}, f (q0(t0)) = 0.

Remark 3.4 Note that if kinetic energy is conserved at the impacts, then the impact
times satisfy tk+1 > tk + δ, for some δ > 0 depending on initial data q(t1), q̇(t1), see
Theorem 5.3 in Chap.5. Hence one can consider without loss of generality only one
impact on the interval [t1, t2], chosen sufficiently small. If there was some energy
loss at tk , such an assumption would not be possible due to the eventual accumulation
point of the impact times sequence {tk} (in that case for any interval [t1, t2], there
exists initial data at t1 and external forces such that there is an infinity of rebounds
in [t1, t2]).
Let us now consider the set of varied curves qα(t) : [t1, t2] �→ R

n , with α ∈ (−ε, ε)

and

• qα(t1) = q0(t1), qα(t2) = q0(t2).
• qα(t) is a smooth function of α and t in (−ε, ε) × {[t1, tα) ∪ (tα, t2]}.
• f (qα(tα)) = 0, where tα : (−ε, ε) �→ [t1, t2] is a smooth function of the
parameter α.

Kozlov and Treshchev choose the integral action

I (α) =
∫ t2

t1

L(q̇α(t), qα(t))dt, (3.43)

where L(q̇, q) is the Lagrangian of the system. It is therefore clear now that the
Lagrangian function is not modified, but that the set of varied curves is changed to
curves with possible discontinuous derivatives at the times tα . It is noteworthy that
both the curves and the impact times are varied, and that the varied curves attain
the constraint. This is illustrated in Fig. 3.2. A first necessary step is to compute the
variation of the action. The following is true:

Lemma 3.1 [683] The variation of the action in (3.43) is given by

δ I (0) = d I
dα

(0) = σq̇0(t0)
T M(q(t0))

d[qα(tα)]
dα

(0)

− 1
2

[
q̇0(t

−
0 )T M(q(t0))q̇0(t

−
0 ) − q̇0(t

+
0 )T M(q(t0))q̇0(t

+
0 )
] dtα

dα
(0)

+ ∫ t2
t1

[
∂L
∂q − d

dt

(
∂L
∂q̇

)]
q=q0

∂qα(t)
∂α

(0)dt.

(3.44)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 3.2 Varied curves q0 (t2)

q0 (t1)

qα (t)
t0

tα

f(q)=0

f(q)<0

f(q)>0

Let us note that qα(tα), qα(t), and tα are to be considered as functions of α, and their
derivatives are calculated at α = 0. Note also that the second term in the variation
of the action is in fact the kinetic energy loss at impact at time t0 (if q0 represents
a motion of the system). The proof of Lemma 3.1 can be found in [683, p. 12] and
[959]. For the sake of clarity of the exposition, let us investigate it. This is a bit lengthy
but is worth following at least once. Since the varied curves qα are not differentiable
at tα , the first step is to write

d I

dα
(0) = d

dα

(∫ tα

t1

L(q̇α(t), qα(t)) +
∫ t2

tα

L(q̇α(t), qα(t))

)
. (3.45)

Now consider only the first term between brackets in (3.45), and calculate

d
dα

∫ tα
t1

L(q̇α(t), qα(t)) = limα→α0
1
α0

∫ tα
t1

[
L(q̇α+α0 (t), qα+α0 (t)) − L(q̇α(t), qα(t)

]
dt

+ limα→α0
1
α0

∫ tα+α0
t1 L(q̇α+α0 (t), qα+α0 (t))dt

− ∫ tα
t1

L(q̇α+α0 (t), qα+α0 )(t)dt.
(3.46)

The first term in the right-hand side of (3.46) is found through standard calculations
to be equal to ∫ tα

t1

(
∂L

∂q̇α

∂q̇α

∂α
+ ∂L

∂qα

∂qα

∂α

)
dt (3.47)

while the second one is

limα→α0
1
α0

∫ tα+α0−tα
t1

L(q̇α+α0(t), qα+α0)(t)dt = L(q̇α(t), qα(t) limα→α0

tα+α0−tα
α0

= L(q̇α(t), qα(t)) dtα
dα

.

(3.48)
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Integrating (3.47) by parts one finds

[
∂L

∂q̇α

∂qα

∂α

]tα

t1

+
∫ tα

t1

{
∂L

∂qα

∂qα

∂α
− d

dt

(
∂L

∂ q̇α

)
∂qα

∂α

}
dt. (3.49)

Now let us rewrite

∂qα

∂α
(tα) = d

dα
(qα(tα)) − ∂qα

∂tα

dtα
dα

, (3.50)

and notice that

∂qα

∂α
(t1) = 0, (3.51)

because qα(t1) = q0(t1) and is therefore a quantity that does not depend on α. Using
(3.50) and (3.51) one gets

∂L

∂q̇α

∂qα

∂α
(tα) + L(q̇α, qα)

dtα
dα

= ∂L

∂q̇α

d

dα
(qα(tα)) +

[
L(q̇α, qα) − ∂L

∂q̇α

dqα

dtα

]
dtα
dα

.

(3.52)
Introducing (3.50), (3.51), (3.49), (3.52), and (3.48) into (3.46) one obtains

d
dα

∫ tα
t1

L(q̇α, qα)dt = ∂L
∂q̇α

d
dα

(qα(tα)) +
[

L(q̇α, qα) − ∂L
∂q̇α

dqα

dtα

]
dtα
dα

∫ tα
t1

[
d
dt

(
∂L
∂q̇α

)
∂qα

∂α
+ ∂L

∂qα

∂qα

∂α

]
dt.

(3.53)

Now use the following equalities17

⎧⎪⎨
⎪⎩

∂L
∂q̇α

dqα(tα)

dtα
(0) = q̇T (t−

0 )M(q(t0))q̇(t−
0 )

L[q̇α(tα), qα(tα)](0) = 1
2 q̇T

0 (t−
0 )M(q0(t0))q̇0(t

−
0 ) − U (q0(t0))

∂L
∂q̇α

d
dα

(qα(tα))(0) = q̇T (t−
0 )M(q(t0))

d
dα

qα(tα)(0).
(3.54)

We finally obtain

d
dα

(∫ tα
t1

L(q̇α, qα)dt
)

(0) = q̇T
0 (t−

0 )M(q(t0))
d

dα
qα(tα)(0)

− [
q̇T
0 (t−

0 )M(q(t0))q̇0(t
−
0 ) + U (q0(t0))

] dtα
dα

(0)

∫ tα
t1

[
∂L
∂q − d

dt

(
∂L
∂q̇

)]
(q̇0, q0)

∂qα

∂α
(0)dt.

(3.55)

17Notice that the notation · (0) means that the considered function of α is evaluated at α = 0. It is
clear that since we analyze the action on the interval [t1, tα), then tα(0) = t−0 .
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Now one can treat the second term in (3.45) exactly in the same manner, and get the
sum of both (in particular the potential energy U (q) vanishes in the sum) to finally
obtain (3.44).
The next step is to prove that if q0 is a motion of the system, then it is an extremal of
the action, and vice versa. The following result is true.

Lemma 3.2 [960] Let us consider a time interval (t1, t2) incuding one elastic impact,
with bd(Φ) smooth and Φ a convex set. The curve q0(·) is a motion of the dynam-
ical system with Lagrangian L(q̇, q), unilateral constraint f (q) ≥ 0 and elastic
collisions, if and only if δ I (0) ≥ 0 for any small variation δq such that q + δq ∈ Φ.

The complete proof can be found in [960]. The variational formulation including an
impact time tk ∈ (t1, t2) can be derived using some manipulations (like Moreau’s
formula providing the derivative of f T g when f (·) and g(·) are of bounded varia-
tion (hence f T g ∈ BV ), and d f is the differential measure, see Appendix A.3.2:
d[ f T g] = d f T g+ + ( f −)T dg = d f T g− + ( f +)T dg [884, 886]). It is then possible
to derive a variational formulation providing necessary and sufficient conditions for
a function to be a solution of the problem, without variation of the impact time. Let
us consider a function in the set Q in (3.40), or with the acceleration being a measure
[960]. Then such a function is a solution of the considered mechanical system with
unilateral constraints if and only if it satisfies on the required time interval:

−[q̇T M(q)(q	 − q)](t2) + [q̇T M(q)(q	 − q)](t1) + ∫ t−
k

t1
∇T T (q̇	 − q̇)dt

+ ∫ t2
t+
k

∇T T (q̇	 − q̇)dt + ∫ t2
t1

F T (q	 − q)dt ≥ 0
(3.56)

for all functions q	 ∈ Φ, where F represents all generalized bounded forces. The
inclusion of the impact time variation, that renders the result more general, requires
the calculations made above. The longest part of the proof is sufficiency (⇐=).
Necessity (the equations of motion imply δ I (0) ≥ 0) is easier to check. If the forces
derive from a potential, this inequality can in turn be written as− ∫ t2

t1
δL(q, q̇)dt ≥ 0

where the δ is the variation in the sense of the classical calculus of variations, and
δq = q	 − q is small enough and satisfies δq = 0 at the end points t1 and t2. These
expressions do not yet incorporate a variation of the impact time tk . The inclusion
of this variation can be done as explained above, and enables one to prove that
δ I (0) ≥ 0. Some facts are important in the proof:

(i) The kinetic energy loss at t0 is zero (hence the second term in δ I (0) is zero as
well).

(ii) The term d[qα(tα)]
dα

(0) is orthogonal (in the kinetic metric sense) to ∇ f (q0),
whereasσq̇0(t0) is orthogonal to the surface f (q) = 0 atq0. These results can be easily
provedusing the particular decompositionof the generalizedvelocity that is described
in Chap.6. Indeed one can show that σq̇0(t0) = (

q̇norm(t+
0 ) − q̇norm(t−

0 )
)
nq , with

nq as in (6.22). Since by assumption f (qα(tα)) = 0, for all α ∈ (−ε, ε), it follows

that ∂ f
∂q

T d[qα(tα)]
dα

= 0, for all α as well, in particular for α = 0.
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Remark 3.5 A deep analysis of Hamilton’s principle is proposed in the seminal
article [724]. As alluded to above (see Remark 3.3), it shows that two main forms of
variations of the action integral may be considered: weak and strong variations.

3.5.4 Modified Lagrangian Function

Let us choose now path (b). It remains to examine how the integral action whose
extremals are the solution of the impact problem can be written. As suggested by the
studies presented in Chap. 2, the perfectly rigid case can be regarded as the limit of
sequences of continuous dynamics problems Pn . Problems Pn are typically prob-
lems where the integrand of the integral action possesses different values depending
on whether a given function f (q) is positive, zero, or negative.
An interesting formulation in direction (b) is the one in [242, 989, 900]. We have
already considered such approaches in Chap.2. These authors consider approximat-
ing variational problems Pn with Lagrangian:

L(qn, q̇n) = T (qn, q̇n) − U (qn) − αn( f (qn)), (3.57)

where the last term accounts for the potential elastic energy when there is contact and
will be defined below. The limiting or bounce problemP has Lagrangian L(q, q̇) =
T (q, q̇) − U (q) + f (q)μ, where the unilateral constraint is R � f (q) ≥ 0, and μ

is a bounded positive measure that represents the contact force (possibly impulsive).
The problem is stated as follows:

Problem 3.1 [242] Let us consider a Lagrangian mechanical system, with Q the
system’s configuration space. The vector q(t) ∈ Q is the generalized position, sub-
ject to the constraint f (q) ≥ 0, and to a potential U (q). The kinetic metric of the
system defines a scalar product on its tangent space at every q. The configuration
spaceQ is assumed to be be an n-dimensional manifold of class C3, without bound-
ary. Let f : Q → R be a function of class C3 such that ∇ f (q) is not zero on the set
{q ∈ Q| f (q) = 0}. Given T > 0, Lip(0, T ;Q) denotes the space of Lipschitz con-
tinuous functions from [0, T ] intoQ. L1 is the space of L1[0, T ]-bounded functions,
twice differentiable. Then a pair (U, q) ∈ L1 x Lip solves the bounce problem P
(or equivalently q is a solution of P with potential U (t, q)) if

(i) f (q(t)) ≥ 0 for every t ∈ [0, T ].
(ii) There exists a finite positive measure μ on (0, T ) such that q is an extremal

for the functional

Ī (q) =
∫ T

0

[
1

2
q̇T M(q(t))q̇ − U (q(t))

]
dt +

∫ T

0
f (q(t))dμ (3.58)

and the support of μ satisfies supp (μ) ⊆ {t ∈ [0, T ] | f (q(t)) = 0}.
(iii) For every t1, t2 ∈ [0, T ] the following energy relation holds

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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2
∫ t2

t1
∇U (q(t))T q̇(t)dt = q̇(t+

2 )T M(q(t2))q̇(t+
2 ) − q̇(t+

1 )T M(q(t1))q̇(t+
1 )

= q̇(t−
2 )T M(q(t2))q̇(t−

2 ) − q̇(t−
1 )T M(q(t1))q̇(t−

1 ).

(3.59)

Similarly to the Problem 2.1, (i) is the unilateral constraint, (iii) means that the
system is conservative (or passive, or lossless in Control Theory language), during
smooth motions and at the collisions with f (q) = 0: If t2 is a collision time, then one
deduces from (iii) that the kinetic energy loss is T (t+

2 ) = T (t−
2 ), by taking t1 during

a smooth motion period. In other words, the function T : t → q̇(t)T M(q(t))q̇(t) is
continuous. From (ii), a solution q(t) must satisfy

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + ∂U

∂q
(q(t)) = ∇ f (q(t))ḣ(t). (3.60)

Recall that the generalized torque C(q, q̇)q̇ represents workless gyroscopic iner-
tial forces, not dissipative forces. The last integral term in (3.58) can be written as∫ T
0 f (q(t))ḣ, where using our preceding notations h(t) denotes the “impact” step
function such that dh = ḣ = σh(tk)δtk is a singular distribution. In other words
σh(tk) is the density of μ with respect to the Dirac measure δtk , see Definition 1.2.
The notation dμ (= dh) is a shorthand for σh(tk)δtk . As we shall see in the sweeping
process formulation, the Lagrange equations of the system, which we wrote in (3.60)
as an equality between functions, is an equality of measures which has to be written
as

M(q(t))dq̇ +
[

C(q(t), q̇(t))q̇(t) + ∂U

∂q
(q(t))

]
dt = ∇ f (q(t))dμ, (3.61)

where dq̇ is the measure18 defined by the generalized (or distributional) derivative
of q̇ . It is clear that (3.61) can equivalently be rewritten as [1142]

∫
ϕT M(q)du +

∫
ϕT

[
C(q, q̇)q̇ + ∂U

∂q
(q)

]
dt =

∫
ϕT ∇ f (q)λ, (3.62)

where du is the measure defined from u = dq̇
dt with v ∈ RC L BV and λ is the

Lagrange multiplier. We modified the notations between (3.61) and (3.62) because
the latter are often used in the related literature on Measure Differential Inclusions,
see Sect. 5.2. A reader who is not familiar with all those notations might be troubled.
Evidentlyϕ in (3.62) is a test function,which can be taken here in the set of continuous
functions (one needs not working with Schwartz distributions since as we noted
before only signed distributions are involved). From the developments in Chap. 1 this

18In Chap.1 we indicated that distributional derivatives of a function f (·) are sometimes denoted
as D f . The notation d f is also used in nonsmooth dynamics to denote the measure associated with
a function RC L BV [894] and is called the differential measure of f (·), see Sect.A.3.2.
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http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1


3.5 Hamilton’s Principle and Unilateral Constraints 121

is equivalent outside the atoms of μ and of dq̇ to the classical Lagrange equations.
The formulation as in (3.61) is at the base of nonsmooth dynamics. Similarly as for
Problem 2.2, the solutions of the limit problem are such that q̇ ∈ RC L BV .

Remark 3.6 Time-dependent potential terms U (t, q(t)) can also be considered.

The analysis proceeds to prove that any limit of a sequence of solutions of Pn

converges toward a solution of P , and that any solution of P is the limit of such
an approximating sequence. The approximating sequences are chosen as the pairs
(U, qn) ∈ L1 × Lip such that qn(·) is the extremal of the functional

Īn(qn) =
∫ T

0
L(qn(t), q̇n(t))dt, (3.63)

where L(qn, q̇n) is defined in (3.57) and the function αn(·) satisfies
• αn(x) = ∫ 0

x Fn(y)dy, limn→+∞,x→0− Fn(x)

αn(x)
= +∞

• Fn → +∞ uniformly on any compact subset of (−∞, 0)
• Fn(·) is continuous, Fn ≥ 0, Fn(x) = 0 if x ≥ 0.

These conditions are similar to those in Problem 2.1: Fn(x) = −kn x with kn > 0
and kn → +∞ as n → +∞ is suitable. Notice that Īn(qn) in (3.63) and the action
Iα in (3.43), Sect. 3.5.3, are of different natures. The first one is a sequence of actions
(hence countable set), whereas the second one is a family of actions corresponding
to a family of varied curves (α is a real taking values in an open interval).
Convergence of the approximating problems Pn toward P is understood in the
sense of Γ -convergence [813]. The initial data of the problem are taken as described
in Chap.2. The main result of Buttazzo and Percivale is the following. Let us define
the sets

A (τ0) = {(b, U, q) |(U, q) ∈ E,T (τ0, q) = b} (3.64)

and

An(τ0) = {(bn, Un, qn) |(Un, qn) ∈ En,Tn(τ0, qn) = bn} (3.65)

where the sets E , En ,T ,Tn are defined as follows. Let us define the function (called
the trace in [990])T : [0, T ]× E → R

3n+2 as (we drop the time argument in q and
q̇ for simplicity)

T (t, q) =
(
1

2
q̇T M(q)q̇, q, q̇τ (t), f (q)q̇, 0

)
(3.66)

where q̇τ (t) = ∇ f (q)T M(q)∇ f (q)q̇ − ∇ f (q)T M(q)q̇∇ f (q). The set E is the set
of functions q(·) such that q(·) is Lipschitz continuous on [0, T ] and is a solution of
Problem 3.1. The interest for defining such initial data for the Cauchy problem is that
the usual initial data q(τ0), q̇(τ0) are not stable when one considers the convergence

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2


122 3 Variational Principles

of an approximating problem Pn toward the limit rigid problem P . Indeed, if the
function qn is a solution ofPn , and if the sequence {qn} converges uniformly toward
q(t) which is a solution of P , then it is not guaranteed that the initial data of Pn

(i.e., qn(τ0), q̇n(τ0)) converge uniformly toward q(τ0), q̇(τ0), because of possible
discontinuities in the velocity. The initial trace in (3.66) allows one to avoid this
difficulty. The trace for Pn is defined as

Tn(t, qn) =
(
1

2
q̇T

n M(qn)q̇n + αn ( f (qn)) , qn, q̇n,τ (t), f (qn)q̇n,
1

n
q̇n

)
(3.67)

The traces T and Tn are continuous with respect to t for every q ∈ E and qn ∈ En ,
respectively, (En is the set of functions qn(t) such that qn(t) is Lipschitz continuous
on [0, T ] and is a solution of the dynamical problem Pn). When f (q) > 0, i.e.,
when the dynamics are smooth, assigning T (τ0, q(τ0)) is equivalent to assigning
the Cauchy data q(τ0), q̇(τ0) [242]. Then,

Theorem 3.2 [242] For every τ0 ∈ [0, T ], (b, U, q) ∈ A (τ0) if and only if there
exist bn → b, Un → U, qn → q such that (bn, Un, qn) ∈ An(τ0), for all n large
enough.

In other words, it is proved that if the problemsPn possess suitable solutions, these
solutions converge toward limits which are in turn solution of the limit problemP .
Vice versa, if a problem P possesses a solution, then there exists a sequence of
approximating problems Pn whose solutions converge toward that of P .

Remark 3.7 Uniqueness of solutions of Problem 3.1 is proved in [989, 990] under
some analycity conditions on the data (analycity, or piecewise analycity of the
data is a necessary and sufficient condition to obtain uniqueness of solutions, see
Theorem 5.3). The results in [242, 683, 989, 900] are restricted to conservative
systems. However, it is known from the inverse problem in dynamics that one
can associate a Lagrangian function with dissipative systems. A possible research
work is the extension of these studies to dissipative problems Pn , by consider-
ing such modified Lagrangians (in the above simple case, we get L(xn, ẋn) =(
1
2mẋ2

n − 1
2kn x2

n

)
exp

(
fn t
m

)
).

3.5.5 Additional Comments and Studies

A study on variational problems where the integral action has an integrand which
varies, can be found, e.g., in [431]: the solution curves (extremaloids in the language
of [431]) will in general possess refraction or reflection corners that correspond
to jumps in the velocity; Garfinkel [431] proposes a systematic procedure based
on necessary and sufficient conditions that the minimizing curves must satisfy to
construct explicitly such a curve. However, it is not clear howwe should use the work
in [431] to study the transition between the compliant and rigid cases. Variational

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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problemswith unilateral constraints are studied in [432, 490] but the solutions possess
a continuous first derivative, so that impact dynamics are excluded from these studies.
Brief ideas and a sketch of approach are proposed in [1003, §3.8], about themethod of
penalizing functions (denoted method of elastic stops in [1003]). A pioneering work
can also be found in Valentine [1225], where so-called slack variables are introduced
as time functions γi (t) such that fi (q) − γ 2

i (t) = 0. Tornambé [64, pp. 219–233]
[1208] made use of the Valentine’s slack variables in a control context. Murray
[909] considers a classical Bolza variational problem, i.e., minimization of I (q) =
l(q(t0), q(t1)) + ∫ t1

t0
L(q, q̇, t)dt , with L(t, q, v) convex in v for each t, q and l(·, ·)

lower semicontinuous. The trajectories q(t) are allowed to possess discontinuities.
Hence the velocity may contain singular distributions. The trajectories considered in
[909] are too irregular for an impact problem (where q(·) is absolutely continuous
whereas the velocity is of bounded variation). Ivanov and Markeev [596] apply the
nonsmooth change of variable described in Sect. 1.4.3 to an n degree-of-freedom
system with an ideal constraint q0 ≥ 0, and elastic reflections. They prove that in the
new coordinates, the curve q	(·) = (q	

0(t), q1(t), . . . , qn(t)), with q0(t) = |q	
0(t)|,

is an extremal of the action

∫ t2

t1

L	(q	(t), q̇	(t), t)dt.

Hamilton’s principle for systems with unilateral constraints has also received atten-
tion in the works by Moreau [895] and Panagiotopoulos [959] (extension of Hamil-
ton’s principle to the impact problem for deformable bodies). All those studies are
restricted to the case TL(tk) = 0 for all impact times tk .

3.5.5.1 Optimal Control with Unilateral (Inequality) State Constraints

Hamilton’s principle of mechanics and optimal control are known to be closely
related problems. The quadratic problem of control, for linear time-invariant systems
subjected to linear unilateral constraints, has been analyzed in [208]. The following
Bolza problem is of interest

minimizeu(·)∈U I (u) = 1

2

∫ T1

0
[x(t)T Qx(t) + u(t)T Ru(t)]dt + 1

2
x(T1)

T Fx(T1)

(3.68)
subject to

{
ẋ(t) = Ax(t) + Bu(t), x(0) = x̄0, x(T1) = x̄1
w(t) = Cx(t) + D ≥ 0,

(3.69)

where A, B, C , and D are constant matrices, (A, B, C) is a minimal state space
representation (i.e., (A, B) is controllable and (C, A) is observable), x̄0, x̄1 ∈ Φ =
{x ∈ R

n| Cx + D ≥ 0}, U is the set of admissible inputs, w(t) ∈ R
m , u(t) ∈ R

nu ,

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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x(t) ∈ R
n and Q = QT ≥ 0, R = RT > 0 (the Legendre–Clebsch condition). In

(3.69) the constraints are “virtual,” and one has to find a control input u(·) such that
the trajectories x(t; u, x̄0) with x(T1; u, x̄0) = x̄1 of the controlled system, satisfy
w(x(t; u, x̄0)) ≥ 0, for all t ∈ [0, T1]. Intuitively, we see that in general the optimal
controller must contain distributions of higher degree, except if restrictions are put
on the optimal trajectories at the junction times (i.e., on w(t) and its derivatives at
junction times). The first-order necessary conditions for the optimal control problem
in (3.68), (3.69) can be formulated as a Boundary Value Linear Complementarity
System (BVLCS) [504, 1065]

⎧⎪⎪⎨
⎪⎪⎩

(
ẋ(t)
η̇(t)

)
=
(

A B R−1BT

Q −AT

)(
x(t)
η(t)

)
+
(

0
−CT

)
λ(t) (a)

x(0) = x̄0, η(T1) = Fx(T1) + CT γ + β = Fx̄1 + CT γ + β = η1 (b)

0 ≤ w(t) = Cx(t) + D ⊥ λ(t) ≥ 0, (c)

(3.70)

where η(t) ∈ R
n , 0 ≤ γ ∈ R

m , γ T (Cx(T1) + D) = 0, β ∈ R
n , and the optimal

control is given on intervals where η(·) is a function by

u(t) = argmaxu∈U

[
−1

2
uT Ru + η(t)T Bu

]
= R−1BT η(t). (3.71)

An implicit assumption which allows one to write (3.68), (3.70), and (3.71) is that the
multiplier λ is a measure, whose support satisfies supp(λ) ⊂ {t | Cx(t)+ D = 0}. Let
us denote x̃ = (xT , ηT )T , ( Ã, B̃, C̃) the triple associated with the system in (3.70)
(a) (c), then the dynamical system in (3.70) (a) (c) may be viewed as the differential
inclusion ˙̃x(t) − Ãx̃(t) ∈ ∂ψΦ̃(x̃(t)), with Φ̃ = {x̃ ∈ R

2n| C̃ x̃ + D ≥ 0}.19 It
is interesting to see that complementarity conditions are present in the necessary
conditions, rendering the system (3.70) similar to an LCS as in (5.128). However,
this time complementarity is not motivated by the physics but stems from optimality
under inequality constraints, thus extending KKT conditions. Moreover, the LCS
(3.70) has some particular structural features, see Example 5.20 and Lemma 5.4. We
should keep in mind, however, that solutions of an initial value problem and of a
boundary value problem may drastically differ, though the dynamics are the same in
both problems.
Many studies have been devoted to the problem of optimal control either when some
virtual unilateral constraints20 are imposed on the state and/or the control. The idea is
to use the close relationship between variational calculus and optimal control [1306]:
instead of minimizing I (q) with Lagrangian L(q, q̇, t), one minimizes I (u), with
Lagrangian L(q, u, t), subject to q̇ = u. Then q(·) is recovered by integration. Let

19There is no minus sign before ∂ψΦ̃(x̃(t)) because of the presence of a minus sign in

(
0

−CT

)
in

(3.70(a)).
20By virtual we mean that the control input has to be such that the state will not escape from a
certain given set. However, the system’s model itself does not contain unilateral constraints like in
mechanics with physical obstacles, or circuits with ideal diodes.
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us mention the studies in [129] (restricted to constraints of the form f (q, u, t) ≥ 0)
and in [130] where constraints f (t, q) ≥ 0 are considered. For the results of the
Russian school on the extension of Pontryagin’s principle to systems with unilateral
state constraints, see, e.g., [62] and references therein. A common fact to all those
results is that the solutions possess discontinuities when the boundary of the domain
is attained transversally. The existence results in [62] are formulated as a Mayer
problem, but apply to integral-type functionals.

Open Problems: The optimal control of complementarity systems has apparently
never been tackled. The formulation is the same as in (3.68)–(3.69), except that the
dynamical system in (3.69) should be replaced by an LCS as in (5.128). The problem
is therefore quite different, because the multiplier λ is designed to keep trajectories
intialized inside the admissible domain Φ, inside Φ for all times. The controller u(·)
no longer has to do this job, unlike the above problem. One should first start with
LCS with continuous solutions, then move to complementarity mechanical systems.
A first step in this direction may be found in [193], where differential inclusions
with maximal monotonone set-valued right-hand sides are studied. The first-order
sweeping process belongs to this class of systems. An optimal control problem is
studied and applied to a simple, controlled circuit with an ideal diode inspired from
examples in [28], themselves taken from [9, 10, 13, 22, 23, 213, 214, 226], see
Sect. 5.4.4 for examples of nonsmooth circuits. It is shown in [193] that the solutions
of sequences of approximated problems, converge to the solution of the limit problem.

3.5.5.2 Bilateral Holonomic Constraints

The main part of this chapter was dedicated to unilateral constraints. Bilateral con-
straints are treated in Remark 3.2. Let a Lagrangian systemwith Lagrangian function
L(q, q̇) be subjected to a set of bilateral holonomic constraints hi (q) = 0, 1 ≤ i ≤
mb. Onemay augment the Lagrangian function to L̄(q, q̇, λ) = L(q, q̇)+λT h(q) for
some Lagrange multiplier vector λ ∈ R

mb . Then Hamilton’s principle applies to the
integral action Ī (q) = ∫ t1

t0
L̄(q(s), q̇(s), λ(s))ds and the first-order necessary condi-

tions are d
dt

(
∂ L̄
∂ q̇

)
− ∂ L̄

∂q = 0, which is rewritten equivalently d
dt

(
∂L
∂q̇

)
− ∂L

∂q = ∇h(q)λ.

In this extremization process, λ is considered as an independent variable. One sees
that the result of Proposition 3.1 is recovered.
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Chapter 4
Two Rigid Bodies Colliding

This chapter starts with the dynamics of two rigid bodies with one contact/impact
point, including the local kinematics which allow one to define the unilateral con-
straint between the two bodies. Rigid body impact laws with or without friction are
reviewed in details. Kinematic (Newton), kinetic (Poisson), and energetic (Stronge)
coefficients of restitution are analyzed. Several examples are presented in details,
as well as the Darboux-Keller’s impact dynamics with Coulomb’s friction. Models
based on Hertz’ contact theory and its extension to elastoplastic materials (with or
without adhesive or frictional effects) are described, completing the presentation of
viscoelastic rheological models made in Chap. 2. A brief introduction to impacts in
flexible structures ends the chapter.

4.1 Dynamical Equations of Two Rigid Bodies Colliding

4.1.1 General Considerations

Let each body be represented by a set of generalized coordinates qi =
[
Xi

ξi

]
, where

Xi ∈ R
3 represents the gravity center Gi coordinates in some Galilean frame (O,G ),

and ξi ∈ R
3 is a set of three Euler angles for the bodies orientation. The kinetic energy

of each body is given as:

Ti (Ẋi ,Ωi ) = 1

2
mi Ẋ

T
i Ẋi + 1

2
ΩT

i IiΩi , (4.1)

where Ii is the constant inertia tensor expressed in a suitable body coordinate frame
Bi , and Ωi ∈ R

3, Ωi = (ωi1 ωi2 ωi3)
T , is the instantaneous angular velocity in the

same body frame. The vector Ωi is related to ξ̇i by Ωi = Jξi (ξi )ξ̇i , for some locally
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nonsingular matrix Jξi (ξi ). It is well-known that Jξi (ξi ) is not in general a Jacobian.1

When Ωi is expressed in a coordinate frame attached to the body, and when ξi is
a set of three z, x, z-Euler angles Φi , θi , ψi , then the so-called Rodrigues2 formula
sets that:

Jξi (qi ) =
⎛
⎝ sin(ψi ) sin(θi ) cos(ψi ) 0

sin(θi ) cos(ψi ) − sin(ψi ) 0
cos(θi ) 0 1

⎞
⎠ , (4.2)

whose determinant vanishes at θi = kπ , k ∈ Z. From ΩT
i IiΩi = ξ̇ T

i J T
ξi
Ii Jξi ξ̇i and

Ti (Ẋi ,Ωi ) = Ti (qi , q̇i ) = 1
2 q̇

T
i Mi (qi )q̇i , we obtain that the inertia matrix of body i

is given by:

Mi (qi ) =
(
mi I3 0

0 J T
ξi
Ii Jξi

)
∈ R

6×6. (4.3)

It is symmetric positive (semi) definite. The body’s Lagrangian function is Li (qi , q̇i )
= 1

2 q̇
T
i Mi (qi )q̇i−U (qi ), whereU (qi ) is the potential energy of body i . The Lagrange

equations of bodies 1 and 2 are therefore derived from d
dt

(
∂Li
∂q̇i

)
− ∂Li

∂qi
= Qtot

i as:

Mi (qi )q̈i + Ci (qi , q̇i )q̇i + ∂Ui

∂qi
(qi ) = Qtot

i , (4.4)

which is similar to the equation derived in Example 1.3, and Qtot
i ∈ R

6 denotes
the generalized exogenous forces working on q̇i . It gathers external (exogenous) as
well as contact forces and torques: Qtot

i = Qext
i + Qcon

i . The vector Ci (qi , q̇i )q̇i =(
0

d
dt (Jξi (qi )

TIi Jξ (qi ))ξ̇i

)
, represents centrifugal forces. The mass matrix Mi (qi )

becomes singular when Jξi (qi ) is not full rank. As, we shall see later in the book
(see Chap. 5), some contact problems are less easy to solve in case of singular mass
matrix. Rotations can be represented by other parameters than the three Euler angles.
For instance, quaternions [863] or the four Euler parameters [1092] may be used. The
price to pay is the addition of an equality (perfect bilateral, nonlinear) constraint that
relates the parameters, which are indeed no longer independent quantities. Moreover,
the obtained dynamics may have singular mass matrix [1092, Eq. (9)].

Remark 4.1 When Ωi is expressed in a frame fixed Bi with respect to body i and
composed of the principal axes, centered either at the gravity center Gi or at a fixed
point of the body, then the so-called Euler equations are given by [60]:

d

dt
(Ma,i ) = Ma,i × Ωi (4.5)

1That is, there does not exist any function ζi (ξi ) such that ∂ζi
∂ξi

= Jξi (ξi ). However, since ∂Ωi
∂ξ̇i

=
Jξi (ξi ), the matrix Jξi (ξi ) is sometimes called a Jacobian [978].
2Benjamin-Olinde Rodrigues (1795–1851), French mathematician and mechanician, known as
Olinde Rodrigues.
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where Ma,i denotes the angular momentum of body i , or, since Ma,i (t) = IiΩi (t)
in that frame:

Ii
d

dt
(Ωi ) = IiΩi × Ωi . (4.6)

These equations relate the angular momentum variation to the instantaneous velocity.
If some torques Ci act on the body, then we get:

Ii
d

dt
(Ωi ) = IiΩi × Ωi + Ci . (4.7)

If the torques Ci are impulsive and equal to pkδtk , we obtain from the analysis of
Sect. 1.1 in Chap. 1:

IiσΩi (tk) = pk, (4.8)

which provides the instantaneous velocity jump at t = tk . We have also σξ̇i
(tk) =

Jξi (ξi )
−1σΩi (tk).

4.1.2 The Local Kinematics

In Fig. 4.1, two locally convex bodies with smooth boundary are approaching one
each other. One defines two points A1 ∈ bd(S1) and A2 ∈ bd(S2), such that they
minimize the distance between S1 and S2; the points A1 and A2 are defined from

||A1A2|| = min
P1∈bd(S1),P2∈bd(S2)

||P1P2||. (4.9)

n2

t11

t12

t22

t21

n1

A2

A1

i0

P2

P1

O j0

contact tangent plane

k0

body S2

body S1

G1

G2

Fig. 4.1 Local frames at the contact point
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The minimization may be performed from the knowledge of the vectors OP1 and
OP2 in a Galilean frame (O, i0, j0,k0), see (4.18) for a simple case. When the two
bodies make contact, there is a common point A = A1 = A2 at which they touch
one each other. Let us suppose for the moment that the bodies’ surfaces are smooth
enough so that a common normal direction n ∈ R

3 (or R
2 for the planar case) can be

defined. We can define two orthonormal local frames (A1,L1) = (A1,n1, t11, t12)

and (A2,L2) = (A2,n2, t21, t22), where n1 = −n2 are colinear to n and point
outward the respective bodies, whereas ni × ti1 = ti2, ti1 × ti2 = ni , see Fig. 4.1.3

When one of the bodies is fixed (say S2), then we set n2 = n, t21 = t1 and t22 = t2.
Now we have:

VAi = VGi + AiGi × Ωi , (4.10)

where all the vectors are expressed in the same frame, and the instantaneous angular

velocity is written as Ωi =
⎛
⎝ωi1

ωi2

ωi3

⎞
⎠. In other words, the twist calculated atGi is given

by TGi = J(qi )q̇i =
[

Ωi

VGi

]
=
[

Ωi

Ẋ i

]
, with J(qi ) =

[
0 Jξi (qi )
I3 0

]
, and calculated

at Ai using (4.10) by TAi =
[

Ωi

VAi

]
. These twists can be expressed in the frames

(Ai ,Li ) defined above. When dealing with two bodies and contact kinematics and
forces to define the gap function, it is preferable to choose either L1 or L2 and to
express all quantities in a unique frame. In the following, we shall choose without loss
of generality the frame (A2,L2), which we denote as (A,L ), i.e., we fix A = A2 as
the origin of the local contact frame, but the other choice is possible as well. Hence,
vr,n = v1,n − v2,n is the component along n of the relative normal velocity between
both bodies, while the relative tangential velocity is vr,t1 t21 + vr,t2 t22. We shall write
for simplicity in the (A,L ) frame VAi = vi,nn + vi,t1 t1 + vi,t2 t2. We can now write
the transformation between the twists and the generalized velocities as:

TAi =
[

Ω̃i

VAi

]
= Mi (qi )q̇i , (4.11)

for some (locally) nonsingular transformation matrix Mi (qi ) ∈ R
6×6. If the rotation

matrix from L to G is Ti (qi ) ∈ R
3×3, the rotation matrix from L to Bi is Ri (qi ) ∈

R
3×3, and if AiGi =

⎛
⎝ r1i

r2i

r3i

⎞
⎠,4 which means that AiGi = r1in + r2i t1 + r3i t2, then

it follows from (4.10) that Mi (qi ) is given by:

3In the following, we shall denote the local normal and tangential vectors ∈ R
2 or ∈ R

3 in boldface n
and t to avoid possible confusion with the number of degrees of freedom n or some other subscripts.
4It may, for instance, be assumed that r ji = r ji (ξi ), j = 1, 2, 3, if the bodies’ shape lends itself to
analytic description.
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Mi (qi ) =
⎡
⎣ 0 Ri (qi )T Jξi (qi )

Ti (qi )T −Ri (qi )TRi (qi )T Jξi (qi )

⎤
⎦ = ∂TAi

∂ q̇i
(qi ) (4.12)

where Ri =
⎛
⎝ 0 −r3i r2i

r3i 0 −r1i

−r2i r1i 0

⎞
⎠ is the vector product matrix, Ω̃i = Ri (qi )T Jξi (qi )ξ̇i

so that ΩT
i IiΩi = Ω̃iĨiΩ̃i with Ĩi = Ri (qi )TIiRi (qi ) is the inertial tensor in

(Gi ,L ). The wrench of all actions acting on body Bi , expressed in the same frame
takes the form:

W tot
Ai

=
[
Ftot
i

C tot
Ai

]
, (4.13)

where Ftot
i ∈ R

3 is the resulting applied force, and C tot
Ai

∈ R
3 the resulting torque

applied to body i at Ai . Recall that the wrench can be written in its contravariant
form as in (4.13) (in which case it is simply a vector of the linear space R

6), or in

its covariant form W tot,
Ai

=
[
C tot

Ai

Ftot
i

]
, in which case it belongs to the dual space to

that linear space (which is the space of the body’s twist). Also the scalar product
of the twist and the wrench W tot,

Ai
is an invariant, and represents the power of the

forces and torques acting on the body. When this scalar product is zero, then the twist
and the wrench are said to be reciprocal. This is the case when we consider only
contact interactions and the constraints are frictionless and when the velocities are
compatible with the constraints (see Sect. 3.2.1). Then the normal (force) subspace
and the tangential (velocities) subspace at A are dual subspaces. We can split W tot

Ai
=

W ext
Ai

+ W con
Ai

as we did for the generalized forces.
Starting from (4.11) and using the invariance principle exposed in Sect. 3.2, the

following relationship relates the covariant components of the contact interaction
force Qtot

i to the interaction wrench W tot,
Ai

, as:

Qtot
i = Mi (qi )TW

tot,
Ai

= ∂TAi
∂q̇i

T
W 

Ai

=
[

0 Ti (qi )
Jξi (qi )

TRi (qi ) −Jξi (qi )
TRi (qi )Ri (qi )

] [
C tot

Ai

Ftot
i

]

=
[

∂Ωi
∂q̇i

T ∂VAi
∂q̇i

T
] [C tot

Ai

Ftot
i

]
,

(4.14)

where use was made of (4.12). The power equality Qtot,T
i q̇i = T T

Ai
W tot,

Ai
holds

whatever the conditions (perfect, or frictional, or contact point moment-free, or
nonmoment-free, constraints). Let us now write down the Lagrange dynamics of
the body i . We have T (qi , q̇i ) = 1

2mi Ẋ T
i Ẋi + 1

2 ξ̇ T
i J T

ξ Ii Jξ ξ̇i , from which we may
calculate:

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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Mi (qi )q̈i +
(

0
2J T

ξi
Ii J̇ξi ξ̇ − 1

2
∂

∂ξi
(ξ̇ T

i J T
ξi
Ii Jξi ξ̇i )

)
+ ∂Ui

∂qi
(qi ) = Qtot

i , (4.15)

where Qtot
i =

(
Fext
i + Fcon

i
J T
ξi

(C ext
i + C con

i )

)
, the forces (resultant of the wrench) are

expressed in (O,G ), the torques (moment of the wrench) are expressed in (Gi ,Bi ).
Let us focus on the contact actions. The moments are transformed as C con

i,(Gi ,Bi )
=

Ri (qi )C con
i,(Gi ,L ) = Ri (qi )[C con

i,(Ai ,L ) +Gi Ai × Fcon
i,(Ai ,L )]. Using the relation Gi Ai ×

Fcon
i,(Ai ,L ) = −Ri (qi )Fcon

i,(Ai ,L ) we obtain C con
i,(Gi ,Bi )

= Ri (qi )[C con
i,(Ai ,L ) − Ri (qi )

Fcon
i,(Ai ,L )], so that Qcon

i =
(
Ti (qi )Fcon

i,(Ai ,L )

Jξi (qi )
TRi (qi )[C con

i,(Ai ,L ) − Ri (qi )Fcon
i,(Ai ,L )]

)
. There-

fore, we obtain the reciprocal of (4.11):

Qcon
i = Mi (qi )

TW con,
i,(Ai ,L ). (4.16)

The dynamics in (4.15), (4.16) is identical to (4.4). The advantage of the foregoing
developments, is that the local contact force components (Fi,n, Fi,t1 , Fi,t2) explicitly
appear in the generalized forces, considering Qcon

i and W con
Ai

in the right-hand side.
We may use (4.14) to replace the wrench torque by some equivalent expression

involving only the instantaneous angular velocity. The last equality in (4.14) is often
preferred in the Solid Mechanics literature to link Lagrangian generalized forces to
the wrench of interaction forces and torques. This is used in the so-called Kane’s
equations (see for instance [978, Eqs. (1), (2) (3)]), which are a particular way of
writing the dynamical equilibrium of a solid.5

4.1.3 The Gap Function

Consider the above local kinematics defined at the potential contact/impact points
A1 and A2. Let us suppose that a parameterization of bd(S1) and bd(S2) exists. Let
Gi be a point fixed with respect to body Si (it may be the gravity center). One may
write OPi = OGi + Gi Pi , where OGi = fi,1(Xi ) and Gi Pi = fi,2(ζi , qi ), ζi is a
parameterization of bd(Si ), i = 1, 2. For given bodies positions and orientations, one
can perform the minimization (4.9) over ζ1 and ζ2. Then one can define a unilateral
constraint which expresses the nonpenetrability of the two bodies from the signed
distance between them:

f (q1, q2) = (A2A1)
Tn (4.17)

5There is an incredible number of different ways of writing down the dynamics of rigid bodies, see for
instance the survey [523]. Most of them are motivated by computing constraints, or by eliminating
constraints from the dynamics. Another one is described in details in Chap. 6, which is well suited
to systems with unilateral constraints and impacts. In Chap. 8, we shall use the transformation of
McClamroch and Wang [835] which is a coordinate partitioning method that keeps the Lagrangian
structure and is therefore well suited for Control purpose.

http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_8
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Fig. 4.2 Distance between
two balls
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P2
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A1

ζ1

j1

i2

for some function f : R
12 → R, assumed to be smooth enough, q =

(
q1

q2

)
. If

both vectors are expressed in the Galilean frame, one has to determine A2A1 and
n as a function of q1 and q2. Then d

dt f (q) = ∇ f (q)T q̇ = d
dt (A2A1(q))Tn +

(A2A1(q))T d
dt (n(q)). The velocities VAi can be expressed in both frames G =

(O, i0, j0,k0) or (A,n, t1, t2). In particular, VAi = vi,nn + vi,t1 t1 + vi,t2 t2, but
vi,n �= V T

Ai
n in general, except if n is fixed in G . The term (A2A1)

T∇n(q)T q̇ has to
be taken into account. This is incorporated in the matrices Mi (qi ) which transport
local kinematics to generalized coordinates derivatives in (4.11).

A simple example is depicted in Fig. 4.2. The circles with radii R1 and R2 are
parameterized by the angles ζ1 and ζ2, respectively. One has ||P1P2|| = ((x1 −
x2 + R1 cos(ζ1) − R2 cos(ζ2))

2 + (y1 − y2 + R1 sin(ζ1) − R2 sin(ζ2))
2)

1
2 , and the

minimization is performed over ζ1 ∈ [0, 2π ], ζ2 ∈ [0, 2π ]. From simple geometric
arguments A1 and A2 must belong to the segment G1G2, and on this segment one
has ζ1 − ζ2 = π . Then the minimization problem in (4.9) reduces to:

min
ζ2∈[0,2π]

√
(x1 − x2 − (R1 + R2) cos(ζ2))2 + (y1 − y2 − (R1 + R2) sin(ζ2))2

(4.18)

which is a function of X1 = (x1, y1)
T and X2 = (x2, y2)

T , the coordinates of G1 and
G2 in (O, i0, j0) respectively. Once the value of ζ2 which minimizes the objective
function in (4.18) is known (the so-called argmin value), the coordinates of A1 and
A2 can be calculated and the signed distance in (4.17) can be obtained as a function
of X1 and X2.

Remark 4.2 We assume that there is a unique possible contact point between bodies
1 and 2, i.e., the minimization problem in (4.9) has a unique solution (A1, A2),
so that the surface f (q1, q2) = 0 is of codimension 1 in R

12. As we shall see in
the next chapters, this is an important assumption because it means that only single
impacts are to be considered between the two bodies. If two points were to be reached
simultaneously, one would have to treat a multiple impact, see Chaps. 5 and 6. The

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_6
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Fig. 4.3 Distances between two bodies. a Anvil/block distance. b Particle/non-convex body
distance

fact that the minimization problem in (4.9) is well-defined and possesses a unique
solution pair (A1, A2), may be true even if the bodies are not both smooth, see
Fig. 4.3a for the case of a planar block and a massive anvil when θ �= 0 there is a
unique pair of closest points A1 and A2, however when θ = 0 there is an infinity
of such points (a whole segment), and if θ < 0 the distance has to be computed
with the other edge of the block, this system has in fact two unilateral constraints. If
θ > 0 as in Fig. 4.3a, and if the block has its gravity center G at the geometric center
with coordinates x and y, then f (q) = y − l

2 cos(θ) − L
2 sin(θ) when y ≤

√
l2+L2

2 .
Also convexity may be relaxed to the so-called r -prox-regularity (see Sect. B.2.3),
guaranteeing that if the bodies are close enough one to each other, the solution is
still unique. See Fig. 4.3b for the case of a particle and a body in the plane (in this
case finding A1 and A2 boils down to finding the projection of the particle on the
body’s boundary): the body in case (i) is not prox-regular, and the particle when in
positions P2 and P3 on the bissector of the re-entrant corner, has two projections on
the body’s boundary, however close to the point B it may be. In case (ii) the body is
an r -prox-regular set and P4 has a unique projection on the body’s boundary while
both P1 and P3 have two projections.

Another important issue concerns the gradients of the gap function. Let us consider
the system made of two spheres aligned on the (O, i0)-axis, with gravity centers
coordinates x1 and x2, respectively. Another choice for the coordinates is z1 =
x1 + R1, z2 = x2 − R2. One may express the inpenetrability between bodies as (i)
f (x) = x2 − x1 − (R1 + R2) ≥ 0, or (ii) f (x) = (x2 − x1)

2 − (R1 + R2)
2 ≥ 0,

or (iii) f (z) = z2 − z1 ≥ 0. However, writing |z2 − z1| ≥ 0 is meaningless since
such an inequality is always satisfied. It is clear that the mechanical meaning of
the multiplier associated with the unilateral constraint, depends on the chosen gap
function. If the gap function is defined from the so-called local kinematics (i.e., one
defines a local Cartesian frame at each contact point as in Fig. 4.1, and a normal
relative velocity vr,n), then the associated multiplier λn represents the contact force.
Indeed, from the virtual work principle, and denoting P(q) the generalized force
due to the contact with generalized coordinates q (here q denotes any generalized
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coordinate vector, i.e., in our case q = (x1 x2)
T or q = (z1 z2)

T ), one obtains

that the virtual work satisfies W = P(q)T q̇dt = λT
n vr,ndt , where δq

�= q̇dt and
vr,ndt are virtual displacements. Thus, if vr,n = d

dt ( f (q)) = ∇ f (q)T q̇ , one obtains
P(q)T q̇dt = λT

n ∇ f (q)T q̇dt so that P(q) = ∇ f (q)λn. In the two-sphere system, the
relative normal velocity is given by vr,n = ẋ2−ẋ1 = ż2−ż1. One has vr,n = ∇ f (q)T q̇
if the gap function is defined as in (i) and (iii), but not in case (ii). In case (ii), one
obtains ∇ f (q)T q̇ = −2(x2 − x1)ẋ1 + 2(x2 − x1)ẋ2 = 2(x2 − x1)vr,n. When contact
is established one has ∇ f (q)T q̇ = 2(R1 + R2)vr,n, the multiplier associated with
this gap function is scaled by 1

2(R1+R2)
. The gap function as in (i) and (iii) is a signed

distance between the two bodies. This last comment leads us to notice that the gap
function f (q) that defines the unilateral constraint, may be scaled by any scalar

α > 0. Defining fα(q)
�= α f (q), the associated multiplier becomes λα = 1

α
λn.

Let us end this paragraph with a last observation. Consider now a system made of
a sphere with radius R > 0, that is constained to evolve above the rigid ground
(this is the so-called bouncing ball). Its coordinate is q. The unilateral constraint
which describes the inpenetrability of the two bodies (ball and ground) may be (i)
f (q) = q − R ≥ 0, or (ii) f (q) = q2 − R2. In case (i) one has ∇ f (q) = 1, in
case (ii) one has ∇ f (q) = 2q. Suppose as usual that the coordinate system is chosen
such that contact is established at q = 0. In case (ii) one has ∇ f (0) = 0. If we admit
from the above reasoning that the generalized force associated with the contact force
between the ball and the ground is given by P(q) = ∇ f (q)λn for some multiplier λn,
then at contact P(0) = 0; this is not acceptable because it means that the multiplier
either takes infinite values, or that the contact force has no influence on the ball’s
dynamics. This is the reason why it was indicated in Definition 1.8 that the gradients
should not vanish in a neighborhood of the boundary of the admissible domain Φ.

The choice of the gap function that is used to define the unilateral constraints,
is a crucial modeling step.

4.1.4 The Two-Body System Dynamics

Let the surfaces be frictionless. This means that the hypersurface defined in the
12-dimensional configuration space f (q1, q2) = 0 is perfect. By the virtual work
principle (see Chap. 3), it must be that when contact is established, all motions
compatible with the constraints produce zero work, i.e., δqT Qcon = 0, where

Qcon =
[
Qcon

1
Qcon

2

]
∈ R

12 and δq is an arbitrary virtual displacement of q, com-

patible with the constraints. In other words, since such motion is tangential to the
surface f (q1, q2) = 0, one must have Qcon = λn∇ f (q1, q2) for some λn ∈ R. Using
the coordinate invariance “principle” of Sect. 3.2, as well as (4.15), (4.16) for i = 1
and i = 2, we may write:

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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λn∇ f (q1, q2) =
⎡
⎣M1(q1)

TW con,
A1

M2(q2)
TW con,

A2

⎤
⎦ = M (q)TW con, (4.19)

with M (q)T =
[
M1(q1)

T 0
0 M2(q2)

T

]
∈ R

12×12, and W con, =
[
W con,

A1

W con,
A2

]
∈

R
12×1. Furthermore, note that the bodies are perfectly rigid and we shall not intro-

duce any moment at the contact point since surfaces are frictionless. Hence C con
Ai

= 0

and Fcon
i = Fi,nn for some Fi,n ∈ R, i.e., Fi =

⎛
⎝ Fi,n

0
0

⎞
⎠ in the local frame (A,L ).

From the fact that the constraints are perfect, the following has to be satisfied:

2∑
i=1

(W con
Ai

)TTAi = q̇T Qcon =
2∑

i=1

V T
Ai
Fcon
i =

2∑
i=1

vi,nFi,n = 0. (4.20)

From the principle of mutual actions,6 one has F1,n = −F2,n, so that from the last
equality in (4.20) we infer that vr,nF2,n = 0. The tangential components vi,t1 and
vi,t2 do not play a role in the frictionless case, since Fi,t1 = Fi,t2 = 0. However,
they will be incorporated later when friction is present at the contact. Let F2,n = λn,
then the equality in (4.19) allows one to link ∇ f (q1, q2) with M1(q1) and M2(q2).
One obtains vr,nF2,n = q̇T∇ f (q1, q2)λn, which implies that vr,n = ∇ f (q1, q2)

T q̇;
this is consistent with the way we have calculated the gap function in (4.17). If
the contact is broken then f (q) > 0 and Fi,n = 0, so that (4.20) is still verified
despite A1 �= A2 and the relative velocity vr,n may be nonzero. We recover here the
complementarity between the contact force and the gap function, and between the
contact force and the gap function derivative when the contact is closed. If the bodies
boundaries are rough, the tangential components Fi,t1 and Fi,t2 may be nonzero,
and produce a non-null work Fi,t1vi,t1 + Fi,t2vi,t2 . We then have to introduce two
multipliers λt,1 and λt,2, as well as a mapping Ht(q1, q2) such that the power equality
q̇T Qcon

t = Fi,t1vi,t1 + Fi,t2vi,t2 , and Qcon
t = Ht(q1, q2)λt while vr,t = Ht(q1, q2)

T q̇ .
Using (4.15), (4.16), let us concatenate the dynamics of the two bodies:

(
M1(q1) 0

0 M2(q2)

)(
q̈1

q̈2

)
+
(
C1(q1, q̇1)q̇1

C2(q2, q̇2)q̇2

)
=

=
(
M1(q1)

T 0
0 M2(q2)

T

)(
W ext,

A1
+ W con,

A1

W ext,
A2

+ W con,
A2

)

=
(
M1(q1)

T 0
0 M2(q2)

T

)(
W ext,

A1

W ext,
A2

)
+ ∇ f (q1, q2)λn + Ht(q1, q2)λt. (4.21)

6This is Newton’s third law, which will be supposed later to be true for impulsive interactions also.
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The contact wrenches have a specific feature: when contact is not active
(⇔ A1 �= A2), they are zero; this will be reflected formally into complementar-
ity conditions for the normal part 0 ≤ f (q1, q2) ⊥ λn ≥ 0, and friction model for
the tangential part which will have to incorporate that f (q1, q2) > 0 ⇒ λt = 0.
They can therefore be expressed at the common point A. We also assumed implicitly
that the contact moments CA are zero.

Remark 4.3 When there are mu potential unilateral-contact points A j
i on body i ,

1 ≤ j ≤ mu , then we have Qcon = ∑mu
j=1 λn, j∇ f j (q1, q2) = ∇ f (q1, q2)λn, with

f : R
12 → R

mu and λn ∈ R
mu . The contact forces acting on body i may be denoted

as Fcon, j
i , and the contact interaction torques C con

A j , 1 ≤ j ≤ mu . The contact
wrenches W con

A j have to be transported to the contact points A j as we did above,
or the gravity center Gi . Then W con

A = ∑mu
i=1 W

con
A j . The local contact forces can

be grouped together in a single vector so as to link the generalized and the local
kinematics formalisms. The right-hand side of (4.15) is modified accordingly.

Let us now rewrite the Lagrange dynamics in (4.21) compactly as M(q)q̈ +
F(q, q̇, t) = H(q)λ, with λ = (λn, λ

T
t )T and H(q) = (∇ f (q), Ht(q)), q =

(qT
1 , qT

2 )T . Let TG =
(
TG1

TG2

)
, then TG = T (q)q̇ for some matrix T (q). From the

coordinate invariance virtual power principle, q̇T H(q)λ = T T
G W con

G from which
we infer that T (q)TW con

G = H(q)λ. If T (q) is a full rank matrix, we can transform
the Lagrange dynamics into:

M̃(q)
d

dt
(TG) + F̃(q, q̇, t) = W con

G = T (q)−T H(q)λ (4.22)

with M̃(q) = T (q)−T M(q)T (q)−1, F̃(q, q̇, t) = −T (q)−T M(q)T (q)−1 d
dt

(T (q))q̇ + T (q)−T F(q, q̇, t). This kind of manipulation holds in a general context
of n bodies with m contact points.

4.1.5 Dynamical Equations and Energy Loss at Collision
Times

4.1.5.1 Impact Dynamics

Since we have assumed that the bodies’ surfaces are frictionless, the constraints are
perfect and interaction at the contact point is along n ∈ R

3. We deal with a system
with a unilateral constraint, this implies some impulsive behavior when the bodies
make contact with nonzero (positive) approach normal relative velocity. Here, we
get that each time contact is made at t = tk with preimpact relative velocity between
the two bodies vr,n(t

−
k ) < 0, a shock occurs between both bodies at A. From (4.15),
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(4.16), and (4.11), we obtain the Newton–Euler dynamical equations7 (arguments
are dropped):

M̄Ai

d

dt

(
TAi

)− (MiM
T )−1 d

dt
(Mi )q̇i + M−T

i

(
C(q, q̇i )q̇i + ∂Ui

∂qi
)

)
= W tot,

Ai

(4.23)

where Qtot
i contains bounded as well as impulsive contact forces and the last equality

comes from (4.14). The matrix M̄Ai (qi ) is calculated as Mi (qi )−T Mi (qi )Mi (qi )−1,
where Mi (qi ) is defined in (4.11). The interaction wrench can be split as W con

Ai
=

W reg
Ai

+ W imp
Ai

, where W reg
Ai

corresponds to bounded contact forces and moments,

whileW imp
Ai

contains the impulsive torques and forces at impact times tk . As alluded to

above, we haveW imp
A1

= −W imp
A2

, because Newton’s third law holds true at collisions.
Hence, following the developments in Chap. 1, one deduces that at a shock instant tk
the following algebraic equations are satisfied:

M̄Ai (qi (tk))

[
σΩi (tk)
σVAi

(tk)

]
=

⎡
⎢⎢⎢⎢⎣

03×1

...

pi,n(tk)
pi,t1(tk)
pi,t2(tk)

⎤
⎥⎥⎥⎥⎦ (= W imp,

Ai
(tk)), (4.24)

where the quantities are expressed in the local frame (A,L ) (at an impact time A1 =
A2 = A), and it is assumed that there is no impulsive moment at the contact point. If
there are no tangential effects (like Coulomb’s friction), then pi,t1 = pi,t2 = 0. It is
noteworthy that (4.24) is true independently of the fact that the frame (A,L ) used to
express the dynamics is Galilean or not. In other words, if the used local frame is not
Galilean, the velocity of a point M with respect to G expressed in G (the absolute
velocity VM/G ,G ) is equal to:

VM/G = V (M/L ,G ) + V (A/G ,G ) + Ω × (OM − OA), (4.25)

where Ω is the angular velocity of L with respect to G , and O denotes the origin
of G . The first term in the right-hand side of (4.25) is the relative velocity, the second
term is the velocity of motion of the moving coordinate system in G , the third one is
the transferred velocity. This is well developed in [60, §26, 27]. Hence, if the motion
of the local frame L with respect to G is smooth enough,8 one gets from (4.25)

7The expression in (4.23) is certainly not the best way to write the Newton–Euler dynamics, in
particular the nonlinearities are not written in a very tractable way. However, we will use (4.23)
mainly for collisions, in which case smooth nonlinearities disappear.
8Note that this implies in particular that the frame, we have defined above to express the dynamics is
not attached to body 1, since the velocity of body 1 undergoes discontinuities at tk . It is just chosen
so that its origin A coincides with the contact point at the shock instant. But it may be mobile, with
nonzero acceleration.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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that σVM/G (tk) = σV (M/L ,G )(tk). In other words, the inertial forces do not play any
role in the velocity jump calculation, because such accelerations are merely bounded
functions of time, and the jump of the absolute velocity is that of the relative velocity.
To avoid getting too cumbersome expressions, let us abusively assume that at the
collision time tk we have L = Bi = G , that is Ti (qi ) = Ri (qi ) = I3 (see anyway
(4.35)). Then:

M̄Ai (qi ) =
(
mi RT

i Ri + Ii mi RT
i

mi Ri mi I3

)
, M̄Ai (qi )

−1 =
⎛
⎝ I −1

i −I −1
i Ri

−RT
i I

−1
i

1
mi

I3 + RT
i I

−1
i Ri

⎞
⎠ .

(4.26)
Consequently, using (4.24):

σVAi
(tk) =

[
1

mi
I3 + RT

i I
−1
i Ri

]
Pi (tk) (4.27)

σΩi (tk) = −I −1
i Ri Pi (tk) (4.28)

with Pi (tk) =
⎡
⎣ pi,n(tk)
pi,t1(tk)
pi,t2(tk)

⎤
⎦. Notice that det(M̄Ai (qi )) = miIi > 0. The inertia center

Gi velocity jump is given by:

miσẊi
(tk) = Pi (tk), (4.29)

and the Euler angles derivatives jumps are given by:

σξ̇i
(tk) = −J−1

ξi
I −1

i Ri Pi (tk). (4.30)

The relationship in (4.24) relates the jump in the twist of body i to the impulsive
wrench at t = tk . Also recall that we have pk1,n = −pk2,n from the mutual actions
principle of Newton. The equality in (4.24) is to be compared with the one in (1.12) in
Example 1.3. It is nothing else than the generalization to three-dimensional bodies of
the equations of two particles colliding, moving on a line, which gives m1σẋ1(tk) =
p12(tk) and m2σẋ2(tk) = −p12(tk) = p21(tk) at the impact time. Using W imp

A1
=

−W imp
A2

, equation m1σẋ1(tk) + m2σẋ2(tk) = 0 is extended to:

M̄A1(q1)

[
σΩ1(tk)
σVA1

(tk)

]
+ M̄A2(q2)

[
σΩ2(tk)
σVA2

(tk)

]
= 0 (4.31)

which is known as the linear and angular momenta conservation equations. Let us
recall that (4.31) contains the conservation of the two-body system’s center of mass
velocity.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Remark 4.4 The impact equations for two bodies colliding can be written in different
ways, one of which is (4.31). In the particular case of two bodies colliding in the
plane, the equation in (4.31) can be written as [667]:

σẋ1(tk) = σẋ2(tk) = m1σẏ1(tk) + m2σẏ2(tk) = 0, (4.32)

where xi , yi are body i gravity center Gi coordinates in the frame (A, t,n), and:

σMa,i (tk) = 0, i = 1, 2, (4.33)

where Ma,i is body i angular momentum computed at point Oi , where Oi belongs
to the axis (A,n), and Oi has coordinates (0, ai ) in the frame (A, t,n). Ma,i =
IiΩi +mi AGi × VGi = IiΩi +mi [xi ẏi − ẋi (yi − ai )]. This in turn can be rewritten
as:

IiσΩi (tk) + mi xiσẏi (tk) = 0, i = 1, 2. (4.34)

There are 13 unknowns in this dynamical algebraic problem: 12 postimpact velocities
(the q̇i ’s or equivalently the Ωi ’s and the VAi ’s components), and the percussion
component pn = p1,n = −p2,n. For the moment, we have only 12 equations given
by (4.24) for i = 1, 2. Clearly, one additional equation is needed to render the impact
problem solvable, i.e., calculate the postimpact velocities and the percussion vector.
In the following, we discuss the various ways proposed in the literature to model the
collisions, i.e., in fact to associate with the dynamical problem suitable relationships
that allow to calculate postimpact values. It is noteworthy that linear and angular
momenta balance relations cannot be considered as a part of the collision rule; they
are just a consequence of the assumption that the mutual action principle holds in
the limit of perfectly rigid body impacts, and they may help in calculating the impact
outcome.

A Small Aside: If we do not make the simplifying assumption L = B = G ,
then (4.27) and (4.28) are replaced by:

{
σΩi (tk) = RiI

−1
i RiCi (tk) − RiI

−1
i Ri Ri Pi (tk)

σVAi
(tk) = −RiI

−1
i Ci (tk) +

(
1
mi
T T
i Ti + RT

i I
−1
i Ri

)
Pi (tk)

(4.35)

where Ci (tk) ∈ R
3 is the vector of impulsive moments at the contact point in the

local frame.

4.1.5.2 Kinetic Energy Loss at Impacts

Before going on with restitution laws, let us derive the form of the kinetic energy

loss at impacts. We denote the wrench of impulses as W imp �=
(
W imp

1

W imp
2

)
∈ R

12,



4.1 Dynamical Equations of Two Rigid Bodies Colliding 141

M̄(q)
�= diag(M̄A1(q1), M̄A2(q2)) ∈ R

12×12, the twists T =
(
TA1

TA2

)
∈ R

12. The

kinetic energy of the system is given by T (t) = 1
2

∑2
i=1 TAi (t)

T M̄Ai (q)TAi (t). From

(4.23), we deduce that M̄Ai (qi (tk))(TAi (t
+
k ) − TAi (t

−
k )) = W imp,

Ai
(tk) for i = 1, 2.

Therefore, TAi (t
+
k ) = TAi (t

−
k ) + M̄Ai (qi (tk))

−1W imp,
Ai

(tk), and the kinetic energy
loss is calculated as follows:

TL (tk) = 1
2
∑

i=1,2

[
W

imp,
i (tk) + M̄AiTAi (t

−
k )
]T

M̄−1
Ai

[
W

imp,
i (tk) + M̄AiTAi (t

−
k )
]

= 1
2

[
W imp,(tk) + M̄T (t−k )

]T
M̄−1

[
W imp,(tk) + M̄T (t−k )

]
.

(4.36)
Assume that TL(tk) is bounded. Given that the preimpact values are constants of the
problems, one sees from (4.36) that the impulsive wrench W imp,(tk) is constrained
to lie in an ellipsoid ⊂ R

12, in fact in R
6 since W imp,

1 (tk) = −W imp,
2 (tk). In case,

there is no impulsive torque, this reduces to a three-dimensional ellipsoid in the P-

space (P
�= P1 = −P2). Its equation can be derived from (4.36) and using (4.26),

(4.27), (4.28). These are straightforward but lengthy calculations. The interest of this
manipulation is that one realizes that whatever the shock process may be (frictionless
or with friction), the percussion vector has to remain inside a closed domain (whose
size evidently depends on preimpact conditions). This can be used to characterize
various impact rules that we describe in the next sections, in terms of the set of
points that the percussion vector may attain inside the ellipsoid [279]. Another form

of TL(tk) can be obtained using the equality M̄Ai (qi (tk))σTAi
(tk) =

[
0

Pi (tk)

]
, as:

TL(tk) =
∑
i=1,2

1

2

[
0

Pi (tk)

]T (
TAi (t

+
k ) + TAi (t

−
k )
)
, (4.37)

which is known as Kelvin’s formula. We may derive this expression using directly the
above relations for linear and angular velocity jumps. To simplify the presentation,
we assume there is a unique body that collides a massive anvil (i.e., body 2 is fixed).
We have VA = VG + RΩ , from which it follows that:

TL(tk) = 1
2m(VG(t+k ) − VG(t−k ))(VG(t+k ) + VG(t−k ))

+ 1
2 (Ω(t+k ) − Ω(t−k ))I (Ω(t+k ) + Ω(t−k ))

= 1
2 P

T (VA(t
+
k ) + VA(t

−
k )) − 1

2 P
T R(Ω(t+k ) + Ω(t−k ))

+ 1
2 (Ω(t+k ) + Ω(t−k ))RT P

= 1
2 P

T (VA(t
+
k ) + VA(t

−
k )),

(4.38)
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with P = (pn pt1 pt2)
T and VA = (vn vt1 vt2)

T . This shows that indeed the kinetic
energy loss is due to the (negative) work of the contact forces during the collision, and
is closely related to the Thomson and Tait formula (Sect. 4.3.12). Other expressions
of energy loss at impacts will be given in Chap. 6.

4.1.6 The Percussion Center

The percussion center [1049, §120], is a notion that is often used in the design of
tools that perform colliding tasks, and with a fixed axis (hammers, tennis rackets).
Its definition is as follows:

Definition 4.1 Given a rigid body with a fixed axis OO
′
and gravity center G, mass

m, the center of percussion is the point C such that

• There exists a point O
′′

such that OO
′
is the principal axis of inertia for O

′′
.

• C lies in a plane containing G and OO
′
, and proj(OO

′ ;C) = O
′′
.

• The radius of inertia ρ with respect to OO
′ 9 is the geometric mean of the distances

from G and C to OO
′
, denoted as d and dc, respectively.

Let us denote GO = r0, e = OO
′

||OO ′ || , r = GC . Then the following is true:

Proposition 4.1 [590] C as in Definition 4.1 exists if and only if

⎧⎨
⎩

(I e × e)T r0 = 0
r TI e = 0
ddc = ρ2,

(4.39)

where I is the body’s inertia tensor.

For instance, if the inertia tensor is diagonal with entries satisfying I11 = I22 = I33,
then a center of percussion exists for any fixed axis. This supplements a result by
Lyapunov [776] according to whom every impact on a spherically symmetric body
imparts a revolution motion to the body about a certain axis. The center of percussion
also finds more exotic applications, like in tennis dynamics: the so-called sweet spot
[201] is a special impact point on the racket strings used to prevent jarring of the hand.
It is defined either as a vibration node, or as the center of percussion, or as the point
where the restitution coefficient (see a definition in the next section) is maximum and
vibrations are minimum [201]. The definition as the center of percussion is natural;
since the hand more or less corresponds to the rotation axis of the racket, the fact that
the impact point coincides with the center of percussion means that this axis is fixed,
hence the player does not have to counteract a large torque at the collision instant.
Another special impact point is the dead spot [311] that corresponds to the point at

9ρ is the distance from OO
′

at which all the mass of the body could be concentrated without
modifying the moment of inertia with respect to OO

′
[1178].

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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which a rotating racket stops dead on a stationary ball; hence, a tennis player should
serve hitting the dead spot, but induced vibrations and large interaction wrench lead
most players to strike closer to the center of the strings.

4.2 Restitution Laws

The rules that one may associate to a collision process, and that we shall deal with in
the sequel, all aim at making a reasonable prediction of the impact outcome, using
a phenomenological model. Since the mechanics of interaction are often simplified
or ignored, one cannot expect to get very accurate predictions over a wide range of
collisions. However, some basic properties must be satisfied by any restitution rule.
Chatterjee [279] provided a tentative listing of such desirable properties:

1. Physical and mechanical constraints (energy loss, frame invariance. . .).
2. Generality (it should apply to various shapes, mass distribution, velocities, mate-

rial, surface properties. . .).
3. Consistency with other physical laws (for instance, it should incorporate dry

friction effects and not contradict Coulomb’s model).
4. Applicability to simple objects (it should be able to reproduce tangential velocity

reversal, like in the superball dynamics,10 and for certain choices of the parame-
ters).

5. Simplicity (too many parameters are not desirable).
6. Physical interpretation of the parameters.
7. Independently measurable parameters, (i.e., the parameters should be measurable

via different experiments, and their value should not vary from one experiment
to the other).

Such a program is quite ambitious, and it is not an easy task to derive macroscopic
rules which satisfy all the above requirements, because restitution laws remain quite
simple models aiming at predicting an incredibly complex phenomenon. In the fol-
lowing, we try to give an overview of the existing models for simple impacts between
two rigid bodies. The basic and most widely used restitution law for frictionless
shocks between rigid bodies is the so-called Newton’s rule, which uses a kinematic
Coefficient of Restitution (CoR). It relates the relative normal velocities after and
before the shock as follows:

en = −v1,n(t
+
k ) − v2,n(t

+
k )

v1,n(t
−
k ) − v2,n(t

−
k )

= −vr,n(t
+
k )

vr,n(t
−
k )

. (4.40)

The CoR en is an experimental coefficient, and has a clear energetical meaning. Note
that for en = 1 then vr,n is reversed. It is important to record that the restitution

10The superball-like behavior is observed in some balls made of a special rubber, which rebound
in a apparently erratic way on the ground and the walls [433].
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coefficient is defined for a set of two bodies; speaking of the restitution coefficient
of one body is meaningless. For two frictionless particles with mass m1 and m2

colliding, one can show that the kinetic energy loss at impacts is given by:

TL(tk)
�= T (t+k ) − T (t−k ) = 1

2

m1m2

m1 + m2
(e2

n − 1)
(
vr,n(t

−
k )
)2

, (4.41)

from which it follows that in this particular case en ∈ [0, 1] (negative values produce
nonadmissible postimpact velocities). Using the impact dynamic, the postimpact
velocities are given by:

⎧⎪⎨
⎪⎩
v1,n(t

+
k ) = v1,n(t

−
k ) − (1 + en)

m2(v1,n(t
−
k )−v2,n(t

−
k ))

m1+m2

v2,n(t
+
k ) = v2,n(t

−
k ) + (1 + en)

m1(v1,n(t
−
k )−v2,n(t

−
k ))

m1+m2
.

(4.42)

Notice that in this case, the velocities at the contact point are the particles gravity cen-
ters velocities, and this also applies to smooth or nonrotating spheres. It is noteworthy
that’s Gravesand [1090] almost derived (4.41) for en = 0. The impact problem is
always energetically consistent in this case since there cannot be a positive gain of
energy at impact. The energetical considerations make it clear why en is less than
unity to insure TL(tk) ≤ 0.11 Let us note that in general the kinetic energy loss is not
an easy expression to obtain, due to the dynamical couplings between the various
velocity variables, see (4.24).

Remark 4.5 At some places of this book, we shall say that the notion of restitution
coefficients is necessary to render the impact problem solvable. This is not entirely
true. More exactly they are sufficient. Indeed one may argue that energy and momen-
tum conservation laws12 may serve as well to solve the shock dynamical equations.13

It was indeed the underlying basic idea used for instance by Huygens, as well as Wren
and Wallis (who both based their developments on momentum conservation) when
answering to a suggestion of the Royal Society of London in 1668, about impact
dynamics. Huygens’ work is recalled in [683]: it relies on both momentum and ener-
getical arguments (clearly, adding an energy constraint like TL(tk) = 0 provides one
more equation to the 12 equations in (4.24)). Most importantly, it is pointed out in
[683] that Huygens’ arguments are not based on the law of mutual actions, but rather

11Some authors [273, 1315] define a restitution coefficient by considering the energy transferred
into the “impacted” object as being lost, and by taking into account only the rebound velocity of the
“impacting” mass. Hence, an elastic collision without any global kinetic energy loss has a restitution
less than 1. See Sect. 4.2.4 for more details.
12Most importantly, let us recall that there is no so-called principle of conservation of momentum.
We saw above that (4.31) is only a consequence of the shock dynamics and of Newton’s law on
mutual actions. Any other “principle of conservation of momentum” corresponds in fact to an
additional assumption on the impact process.
13Some authors [308] use the a priori knowledge of the percussion vector to solve the shock process
dynamics.
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use Galilean principle of relativity together with the assumption that the shocks are
purely inelastic. One difference between Huygens and Leibniz or Bernoulli, is that he
did not use the conservation of the so-called, vis-viva (i.e., twice the kinetic energy)
as a principle [565]. On the contrary, Leibniz formulated three basic laws for impacts:
the law of the conservation of absolute forces (vis-viva), the law of conservation of
direction (conservation of momentum), and the law of the conservation of the relative
velocity [519]. He was followed by Bernoulli [134]. In order to understand the source
of such misconceptions and a priori nonexperimentally motivated “laws,” one has
to replace those studies in their historical context. A complete description is outside
the scope of this book. The interested reader may have a look at [519, 571, 572]
for detailed analysis of the Newtonians and Leibnizians controversy. Let us end this
short historical parenthesis by insisting on the fact that collisions were at the center
of many scientific debates at that time [376, 784, 785, 834, 1089–1091].

The dependence of the restitution upon several parameters has been known and
studied for a long time. The restitution coefficient depends mainly on the following
physical effects:

• The relative approach velocity vr,n(0) (which we also denote vr,n(t
−
k )): en usually

decreases when vr,n(0) increases, [44]. Experimental studies can be found in [272,
564, 627, 1166, 1175, 1186]. For instance, at moderate contact velocities vr,n(0)

(but high enough so that plastification is attained; for otherwise, the impact is purely
elastic), Johnson [627] finds the empirical law en = |vr,n(0)|− 1

4 , in accordance with
some experimental results in [469], confirmed in [194, 469, 691, 1126], but recently
authors indicate a dependence as |vr,n(0)|− 1

6 [778]. See Sect. 4.2.1 for more details.
Hunt and Crossley [555] find the restitution coefficient en = 1 − αvr,n(0) from
the contact/impact model in (2.24) for collisions between nonlinear viscoelastic
bodies with low-approach velocities. Ice spheres collision experiments show the
same tendency [195, 505, 528, 1168], and fitted empirical power laws show en =
α|vr,n(0)|−β with β = 0.19 or β = 0.15 [1168], or en = ene

( |vr,n(0)|
vc

)− ln
( |vr,n (0)|

vc

)
,

where vc is a critical velocity separating a quasielastic and an inelastic regimes (an
expression of vc as a function of the sphere radius and temperature is given in [528,
Eq. (24)]), ene fits with en in the elastic region. Similar results are given in [1165]
for snow particles. Though it is commonly admitted and confirmed experimentally
in an impressive number of studies, that en decreases with increasing vr,n(0), this
may not be the case at very low approach velocities where an increase of en may
be observed as the approach velocity increases14 [478, 666]. Other results on rock
materials [573], or apple fruit [346] corroborate the general tendency.

• The shapes of the bodies [84, 468, 1033, 1056]. For instance, two spheres may
possess a certain restitution. Now a rigid block striking a rigid horizontal surface,
both made of the same material as the spheres, will exhibit in general a completely

14[666] reports experiments of brass, copper, aluminum, delrin, steel spheres bouncing on granite
or steel plates, with vr,n(0) ∈ [0.001, 1] m/s. [478] shows experimental data on iron beads with the
same preimpact velocities.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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different behavior. In particular, Goldsmith [468] studied analytically the effect of
the shape on the energy transformed into vibrations,15 and found that the minimum
value occurs for spheres.

• The sizes of the bodies [44, 468, 524, 528]. Experimental results in [63] on steel
spheres/steel plates indicate that restitution depends on the spheres radii.16 Similar
conclusions are drawn experimentally in [528] for ice sphere/ice block impacts.
The viscoelastic model in (2.12) is used in [342] with ζ = ζ0(1 + γ 3)K (1 +
γ )0.2

(
r

2.5

)−3K−0.2 |vr,n(0)|p, where ζ0, p, and K are parameters to be fitted from
experimental data, r is the sphere radius.

• The masses of the bodies [44, 468, 524], as confirmed by the studies reported in
Sect. 4.2.1.

• The elastic modulii of the bodies [44, 468, 524], as confirmed by the studies
reported in Sect. 4.2.1.

• The density of the medium in which they collide [338], as confirmed by the studies
reported in Sect. 4.2.1.

• The temperature ([196] reported variations between 0.65 and 0.28 for en between
a golf ball and a flat-nosed wooden projectile, vr,n(0−) = 5.334 m/s, with temper-
atures varying between −75 and +40◦C). [1014] reports experimental results of
collisions between a spherical indentor (tungstene carbide) against a PVC target,
with varying temperature of the indentor between −20 and +80◦C, for various
preimpact velocities between 1.2 and 0.3 m/s. The restitution coefficient varies
from 0.91 to 0.75 for the smallest velocity, and from 0.83 to 0.6 for the largest one.
This indicates that the restitution coefficient decreases with increasing temperature
of the colliding bodies. This is confirmed in [527, Fig. 6] for ice sphere/ice block
collisions.

• The number of repeated impacts for a given preimpact velocity: at the first impacts
the restitution coefficient increases, then plastification effects may vanish after
several collisions, and the coefficient of restitution becomes constant (for constant
approach velocity) [50, 859, 1083, 1084, 1260].

• The external force applied on the system during the collision, see Theorem 4.1.

It is often accepted that the restitution coefficients (Newton’s as well as Poisson’s)
are material dependent; this is clearly only very partially true. Tatara [1185] shows
experimentally that when an external force acts on the considered system at the impact
time, the period of the shock and the restitution coefficient are different than when
no external force is present. In [917], several manners of measuring the kinematic
restitution en between two spheres were investigated. Depending on the experiment
(shock of the spheres in the air, or shock of one sphere on a steel lathe bed), the
value of en was found to vary of approximately 5 % around an average value. In fact,
it may be considered that restitution coefficients are to be considered as “process
constants”, i.e., for a given process they take a certain value, that may be modified
when one of these values changes.

15Concerning the importance of vibrations during collisions, see the section below on microcolli-
sions, and Sect. 4.2.4.
16However the source of the variations is not clearly identified in [63].

http://dx.doi.org/10.1007/978-3-319-28664-8_2


4.2 Restitution Laws 147

4.2.1 Elastoplastic Impacts and Restitution Coefficients

Viscoelastic rheological models of impacts with the associated restitution coefficients
have been reviewed in Chap. 2, Sect. 2.2. As we pointed out, these models possess
poor prediction capabilities when plastic deformation is present during the shock,
and are restricted to (very) low-impact velocities with en � 0.95. Let us make in this
section, a short overview of the extension of Hertz’ theory for elastoplastic material
behaviors.

4.2.1.1 Extension of Hertz’ Theory: Plasticity

The fundamentals of these calculations rely on Hertz’ elasticity theory and plasticity
[469, 627, 826, 1175] in Tribology, where quasistatic equilibrium of the colliding
bodies is assumed, see Sect. 4.2.4. The approach thus mixes geometrical and material
aspects. Hertz’ contact theory relies on several basic assumptions: (i) the contacting
bodies can be replaced by elastic half-spaces for small domains of contact, (ii) the
contacting surfaces are smooth (frictionless) and non conforming,17 so that the con-
tact surface can be simplified as a plane, (iii) the contact area is very small compared
to the bodies dimensions, stresses, and strains are localized in a neighborhood of the
contact point, and the forces applied on the bodies do not influence what happens,18

(iv) the pressure at contact is normal to the contact surface and there is no tensile
stress, (v) the loading phase is quasistatic, and (vi) the materials of the contacting
bodies are isotropic and homogeneous, and linearly elastic. A very good introduction
of Hertz’ theory may be found in [826, §4.4]. Clearly, Hertz’ theory relies on drastic
assumptions, most of which are never satisfied in practice. However, on one hand it
is possible to extend it to cases with viscous friction, Coulomb’s friction, plasticity,
and adhesion. On the other hand, some assumptions are legitimate in many cases,
like (ii): the contact surface curvature may be taken into account, but its influence on
the impact duration is negligible [1231].

The next results concern low-velocity colinear impacts19 between two spheres
(with masses m1 and m2, radii R1 and R2), where the elastic deformation is fol-
lowed by plastic deformation, then restitution. The relative velocity is denoted as
vn(tk) at the impact time. The frictional effects that may play a role at the con-
tact interface are usually neglected. The onset of yield is therefore a crucial para-

meter. Let 1
E = (1−ν2

1 )

E1
+ (1−ν2

2 )

E2
, Ei and νi are the Young modulus and Poisson

ratio of each sphere, respectively, 1
m = 1

m1
+ 1

m2
, 1

R = 1
R1

+ 1
R2

(for sphere/flat
contact one takes R2 = +∞, m2 = +∞). The relative approach velocity is

17Typically, sphere/sphere or sphere/plane. The words “conforming” or “conformal” can be used
[1251].
18For a sphere, all points outside the contact regions have the same velocity as the center.
19Let us remind that an impact is said colinear if the contact/impact point belongs to the line passing
through the two gravity centers of the bodies. In Fig. 4.1, A belongs to, the line passing through G1
and G2.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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vn(t
−
k )(= vr,n(t

−
k )) = v1,n(t

−
k ) − v2,n(t

−
k ), and the relative postimpact velocity is

vr,n(t f ) = v1,n(t f ) − v2,n(t f ).20 Let us recall that the identation δ in Hertz’ theory is
equal to the relative displacement of the gravity centers of each sphere, which deform
around the contact point, see Fig. 4.4a, b. The contact surface is supposed to be a disk

whose radius is a = ( 3FR
4E

) 1
3 = √

Rδ (⇔ δ = a2

R ), where F is the contact force and

δ =
(

9F2

16(E)2R

) 1
3

is the indentation (⇔ F = 4
3 E


√
Rδ

3
2 , hence the Hertz’ stiffness

is equal to Kh = 4
3 E


√
R). The normal pressure is given at a point of a distance r

from the center of the contact area, by p(r) = p0

(
1 − ( ra

)2) 1
2
, with the maximum

pressure p0 = 3F
2πa2 = 3

2π

(
4
3

) 2
3

(
F(E)2

R2

) 1
3 = 3

2 pm , where pm = 1
π

(
4E

3R

) 2
3 F

1
3 is

the mean contact pressure (normal stress), see Fig. 4.4. During an elastic impact one

has p0 = 3
2π

(
4E

3R
3
4

) 4
5 ( 5

4mvn(t
−
k )2
) 1

5 [627, Eq. (11.37)]. This serves to determine the

contact force, depending on various assumptions to be made on the contact pressure.
From Hertz’ elasticity theory, the maximum indentation obtained at zero relative
velocity (end of the elastic compression phase) is given by:

δmax =
(

15mvn(t
−
k )2

16
√
RE

) 2
5

=
(

15T (t−k )

8
√
RE

) 2
5

=
(

5m

4Kh

) 2
5

(vn(t
−
k ))

4
5 , (4.43)

where T (t−k ) is the preimpact (initial) kinetic energy. This expression allows one
to express the preimpact velocity as a function of the maximum indentation. The
minimal velocity such that plastification occurs is deduced as:

20Thus the impact occurs on [tk , t f ] and we keep the notation t−k for the preimpact velocity, to be
consistent with the rigid body case. As a convention thoughout the book, we have vn(t

−
k ) < 0.
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vy =
√

16
√
RE

15m
δ

5
2
y . (4.44)

The velocity vy is the so-called yield velocity, i.e., the relative impact velocity below
which the interaction behavior is assumed to be elastic. Let δy be the normal dis-
placement that initiates yield. To get (4.44), one has set δy = δmax in (4.43). It is in
fact possible to express (4.44) as:

vy =
(

16R3E

15m

) 1
2
(

3π

4

) 5
2
(
Cyσy

E

) 5
2

, (4.45)

where σy is the uniaxial yielding stress related to the mean yield pressure21 (or cutoff
pressure, or critical yield pressure) in the contact region by py = Cyσy . The value
of σy is the one of the material that yields first, i.e., σy = min(σy,1, σy,2), and is
a function of the Poisson’s ratio ν (from the von Mises criterion, for ν = 0.3 one
has Cy = 1.613, for ν = 0.4 one has Cy = 1.738 [1322]). It is also possible

to relate σy to the yield normal load Fy as [1322] Fy = π3R2(1−ν2)2

6(E)2 (Cy(ν)σy)
3.

The dynamic yield stress is a material constant,22 or it is related to the static yield
stress σys as σy = β(ε̇)σys , where β(·) is a coefficient function of the strain rate ε̇

[857, Fig. 6] [1084, Fig. 3]. Another expression of vy is given by [627, Eq. (11.38)]:

vy ≈
√

53
0.5m R3 σ 5

y

(E)4 where Cy ≈ 1.6. For hard steel sphere impacting a medium hard
steel, one has vy ≈ 0.14 m/s [627, 1260] (experimental validations may be found in
[1175]). Numerical results reported in [181], and validated by careful comparisons
with the experimental data in [857] for steel sphere/sphere impacts, indicate that
onset of yield occurs at δy = 0.39µm, with penetration depths from 13µm for
|vn(t

−
k )| = 0.25 m/s, to 244µm for |vn(t

−
k )| = 5 m/s. Other numerical figures in

[181] concern experiments on aluminum oxide spheres against aluminum alloy [656].
Then δy = 0.21µm, with penetration depths from 3.40µm for |vn(t

−
k )| = 0.5 m/s,

to 35.74µm for |vn(t
−
k )| = 6 m/s. These data prove that plastic deformation may be

easily reached. The parameter Cy plays an important role for the collision outcome
prediction, and has to be fitted with experiments [858, Fig. 14] [857, 1140, 1279]. It
may depend on the contact pressure, which in turn depends on the impact velocity
vn(t

−
k ), and hence should not be just a material constant [858]. Based on the von

Mises plasticity criterion, one should haveCy = 1.6. In [270], a linear approximation
Cy = 1.282 + 1.158ν is obtained for the collision of a sphere with Poisson’s ratio ν

against a rigid surface. In [600] one finds Cy = 1.29 exp(0.736ν) for a sphere/sphere
impact. Tabor [1174] found that the onset of fully plastic behavior is expected to occur
when the stress in the material equals 2.5σy . For elastic-perfectly plastic materials,
this is confirmed in [154, 503, 714]. The following results assume that an elastic
phase is followed by a plastification regime during the loading (sometimes divided

21This is the collision maximum contact pressure for the onset of plastic deformation.
22Though this is only a very crude approximation, because the dynamic yield stress usually depends
on work-hardening of materials; it tends to increase during a collision [1175, p. 121].
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into a mixed elastoplastic regime and a fully plastic regime [181]). Then unloading
occurs, usually supposed to be elastic with no reverse yielding. Johnson [627, §11.5]
assumes three phases with full plasticity, and derives the expression of the restitution
coefficient without the elastic loading phase:

en = − vn(t f )

vn(t
−
k )

=
√

3
√

2π
5
4

5

(
3σy

E

) 1
2
(

0.5mvn(t
−
k )2

3σy R3

)− 1
2

, (4.46)

where Cy = 3 for nonstrain-hardening material.23 The work done as plastic energy
in producing the remaining indentation after impact has occurred, is given by Wy =
pyVr , where Vr is the volume of the remaining permanent indentation. Wy is the
difference between the energy of impact and the energy of rebound. It is assumed
in [627] that the maximum average contact pressures during loading and unloading
are identical. Johnson’s model usually overestimates vn(t f ) and may yield en > 1
for too small vn(t

−
k ), this being attributed to a bad choice of the (py, σy) relation that

should be equal to py = 1.24σy [272]. Even for large enough vn(t
−
k ), en in (4.46)

overestimates vn(t f ). Tabor [1175] derives the expression (implicit in en):

p5
y = e8

nvn(t
−
k )2

(1 − 3
8e

2
n)

3

m(E)4

317.2R3
. (4.47)

Tabor’s model (4.47) overestimates vn(t f ) for too high vn(t
−
k ), and has good predic-

tion capabilities for |vn(t−k )| ≈ vy . The kinematic restitution coefficient calculated
in Thornton [1194] assumes an elastic stage (with Hertz’ law of elasticity) followed
by a perfectly plastic stage with linear force/indentation law, followed by elastic
unloading. The first assumption is that the onset of yield occurs when the preimpact
kinetic energy of a sphere is equal to the work performed during the elasting loading

phase, until the yield point is reached. This gives δy =
(

πCyσy

2E

)2
R = 1

4
R

(E)2 π
2 p2

y .

The yield force therefore follows from Hertz’ contact as Fy = 4
3 E


√
Rδ

3
2
y (see

(2.23)). The next assumption is that the pressure distribution is truncated for all
pressures above the yield stress, i.e., Fp(δ) = Fy + πRCyσy(δ − δy) for all
δ ≥ δy and δ̇ ≥ 0 (compression phase). As a consequence, the maximum pres-

sure satisfies pmax ≤ py . The residual values for R and δ are Re = R
4
3 E


√
Rδ

3
2
y

Fmax

and δe = δmax −
(

3Fmax

4E
√
Re

) 2
3
, where Fmax is the maximum contact force dur-

ing the loading phase. The contact force during the elastic unloading phase is
Funl = 4

3 E

√
Re(δ − δe)

3
2 , with δ̇ ≤ 0 (restitution phase). See Fig. 4.5a. The yield

23The yield stress that enters Equation (11.44) in Johnson’s book, is the dynamic yield stress denoted
σd , and he states that pd = 3.0σd where pd is the mean contact pressure during dynamic loading.
It is often assumed that pd = Cdσy in (4.46) [272].

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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velocity is given as vy = ( π
2E

)2 ( 8πR3 p5
y

15m

) 1
2

in [1194]. It is noteworthy that in all the

above cases vy = C
√

p5
y R

3

(E)4m for some constant C .

Remark 4.6 (Impact Duration) Neglecting the elastic loading phase, the impact

duration according to Thornton’s model is estimated as t f = 1.118
(

m2

REvy

) 1
5
(1+√

5
4en

)
. If the model is energetically conservative, then t f = 2.368

(
m2

R(E)2|vn(t
−
k )|
) 1

5
.

Compare with t1 = π

(
k
m −

(
f

2m

)2
)− 1

2

in (2.8) for the linear spring-dashpot model

of Sect. 2.1.3. Hertz’ model predicts a duration t f ≈ 2.87
(

m2

R(E)2

) 1
5 |vn(t

−
k )|− 1

5 ≈
2.87

(
m2

9
16 K

2
h

) 1
5 |vr,n(t−k )|− 1

5 ≈ 3.21
(

m2

K 2
h

) 1
5 |vr,n(t−k )|− 1

5 [627, Eq. (11.24)] [469,

Eq. (4.27)(4.30)]. We note that Tabor gives the same expression, but with a con-
stant 2.74, and indicates that this holds for Poisson’s ratios ν1 = ν2 = 0.3 [1175,
Eq. (14)]. Since for most materials ν ∈ [0.3, 0.4] and it appears as (1−ν2), such terms
are often neglected in the calculations. However, a more accurate impact duration of

Hertz impact between two elastic spheres is t f = 3.29(1−ν2)
2
5

(
m2

R(E)2

) 1
5 |vn(t

−
k )|− 1

5

[733, Eq. (25)].

Thornton’s restitution coefficient has the value:

en =
(

6
√

3

5

) 1
2
[

1 − 1

6

(
vy

vn(t
−
k )

)2
] 1

2

⎡
⎢⎢⎣

(
vy

vn(t
−
k )

)

vy
vn(t

−
k )

+ 2

√
6
5 − 1

5

(
vy

vn(t
−
k )

)2

⎤
⎥⎥⎦

1
4

. (4.48)

This expression provides an analytical form for en in the range vy < vn(t
−
k ) < 10vy .

This is shown to provide good predictions if Cy = 1.6 and vn(t
−
k ) ≈ vy , while

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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Cy = 2.8 and vn(t
−
k ) > vy . It is assumed in [1194] that en = 1 if there is no

plastic deformation, i.e., there is no other dissipation source.24 Stronge [1154, 1155]
calculates:

en = vy
|vn(t

−
k )|

[
8

5

(
vn(t

−
k )

vy

)2

− 3

5

] 3
8

. (4.49)

It is argued in [1194] that in most cases, this value is less realistic than the one
in (4.48) because it leads to en > 1 for vy < |vn(t

−
k )| < 1.59vy , and in many

practical problems vn(t
−
k ) is larger than this upperbound. Extensive experiments are

reported in [1140] for stainless and hard chrome steel sphere/sphere impacts, with
vn(t

−
k ) ∈ [0.3, 2.1] m/s. Thornton’s model is shown to provide good prediction if

Cy is fitted to Cy = 9.14 instead of 2.8 as recommended in [1279]. In [1246, Fig. 8]
Thornton’s model is fitted with Cy = 4.7 to match with experiments on brass alloy
260, and Cy = 4.3 for Al alloy 2017.25 Thornton’s model is improved in [738]
by allowing py to depend on the contact area radius. In [956], Thornton’s CoR is
compared with finite element simulations; it significantly underpredicts the contact
force during the plastic loading phase. This is attributed in [956] to two factors: the
maximum contact pressure does not satisfy pmax ≤ py but can reached 2.31 times
that assumed in [1194], and the contact area is about 2.1 times that assumed in [1194].

Another expression is calculated in [796] for elastic, perfectly plastic with strain
hardening, impact:

en = 3π

√
3

10

(
σ 2
y

E
ul

(x + y)
3

2n+4

) 1
2 (15E

l

16R2
(x + y)

5
2n+4 + kπ

(2 + n)Rn+1
y

)− 1
2

,

(4.50)

where x =
(

9πRσy

4E
l

)2n+4
, y = (2n+4)Rn+1

kπ

(
mvn(t

−
k )2

2 − 885735R3σ 5
y

16394(E
l )

4

)
, k, E

l , E
ul , n

and k are elasticity material parameters to be fitted with experiments. Johnson’s and
Tabor’s models are improved in [272], where a more general elastoplastic model is
used for loading, and a purely elastic model is used for unloading:

en = 1.704
( σy

E

) 1
2

(
σy R3

0.5mvn(t
−
k )2

) 1
8

, (4.51)

where it is assumed that Cy = 1.629. Other expressions of en may be found [469,
Eq. (4.54)] and [1260] (see Sect. 4.2.4). Assuming a power law behavior and a vis-
coplastic phase, Storakers and Larsson derive [1145]:

24One has to keep in mind that all the expressions of en in elastoplastic impacts, assume a first
phase of deformation that is purely elastic, so that en = 1 for preimpact velocities less than the
yield velocity.
25These two materials are rate insensitive and thus fit with Thorton’s hypothesis. On the contrary
stainless steels show a highly strain rate sensitive behavior (stainless steel 302 and 440 C are tested
in [1246]).
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en = 4
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π
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3

m(E)4vn(t
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) 1
8

. (4.52)

This coefficient and Johnson’s one differ by 20 %, up to a constant [1145]. Finite
element results together with Hertz’ elastoplasticity are used in [601] to derive a fitted

expression as en = 1−0.1 ln
( |vn(t

−
k )|

vy

) ( |vn(t
−
k )|−vy

59vy

)0.156
if vy < |vn(t

−
k )| ≤ 60vy , and

en = 1 − 0.1 ln(60) − 0.11 ln
( |vn(t

−
k )|

60vy

) ( |vn(t
−
k )|

vy
− 60

)2.36
σy
E

if 60vy ≤ |vn(t
−
k )| ≤

1000vy with vy =
√

2
m

√
(πcyσy)5R3

60(E)4 and Cy = 1.295 exp(0.736ν).
Tabor’s, Johnson’s and Thornton’s models have been improved by Brake [180,

181]. In addition to the fully plastic phase, a mixed elastic-plastic phase is added
before unloading. The model inputs are the spheres radii, elastic modulus Ei , Pois-
son’s ratios νi , yield stresses σy,i , densities ρi , and (a novelty compared to the above

approaches) Brinell’s hardness Hi .26 Tabor defines the hardness as H = T (t−k )

Vr
=

1
2
mvn(t

−
k )2

Vr
, where Vr is the residual imprint volume. According to [1175, 1177] the

Brinell hardness H of the metals satisfies σy = 0.354H . The constant is a mate-
rial property (for oxygen-free copper one has H ≈ σy [1171]). Usually one sets
py = θHmin (Hmin = min(H1, H2)), and fits θ with experiments. Values θ = 0.6
[271], θ = 0.4 [1326], θ = 0.577 [677] may be found in the literature. More
on hardness (Brinell, Meier, Vickers) and its relationships with contact mechan-
ics may be found in [627, 855, 856, 1175, 1177]. In [181] it is proposed to take

H =
(

2
H1

+ 2
H2

)−1
. Brake assumes four phases: elastic loading, mixed elastic-plastic

regime, fully plastic regime, then unloading with no reverse yielding. Plastification
starts at the indentation δy = (πσy

2E

)2 R
f (ν)

, where ν is the Poisson’s ratio of the mate-
rial that yields first, and f (ν) defines the maximum amplitude of the stress field into
the surface. The mixed phase is modeled by interpolating the contact force F and the
contact area radius a, with an order 3 polynomial, so as to guarantee some continuity
and differentiability properties of the force/indentation function (it may be argued
anyway that other fitting functions could be found for the mixed elastoplastic phase,
as done, e.g., in [183]). To summarize:

Elastic regime: F(δ) = 4
3 E


√
Rδ

3
2 ,

Mixed elastic-plastic regime: F(δ) = (2Fy − 2Fp + (δp − δy)(Ḟy − Ḟp))
(

δ−δy
δp−δy

)3 +
(−3Fy + 3Fp + (δp − δy) − 2Ḟy − Ḟp))

(
δ−δy
δp−δy

)2

+(δp − δy)Ḟy
(

δ−δy
δp−δy

)
+ Fy,

Plastic regime: F(δ) = p0π(2Rδ + ξ),

Restitution phase: F(δ) = 4
3 E


√
Re(δ − δe)

3
2 ,

(4.53)

26Brinell’s hardness H is homogenous to a pressure, units Pa.
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where p0 = Hg106 is the maximum contact pressure (assumed to be uniform over

the contact area), δp =
(

p0

σy

)2
δy is the indentation at the beginning of the plastic

regime, ξ =
(
R 3πp0

4E

)2 − 2
(

p0

σy

)2
δp, Fy = F(δy) = 4

3 E

√
Rδ

4
3
y , Fp = F(δp) =

p0π(2Rδp + ξ), δe is the residual indentation and Re is the radius of the residual
crater. Their values depend on whether the unloading occurs during the elastic, the
mixed elastoplastic, or the plastic phases.

A similar approach is proposed in [676], where initiation of yields occurs at δy =(
K H
2E

)2
R, K is a hardness coefficient related to Poisson’s ratio as K = 0.454+0.41ν.

The authors take into account three different plastifications zones in the material,

define the contact force as F(δ) = C
(

δ
δy

)n
, and fit three values of both parameters

C andn in each zone, with finite element simulations. The unloading phase is obtained
similarly. It is, however, noteworthy that neither Brake’s [181] nor Kogut-Etsion’s
[676] approaches lead to a simple expression of en as the ones presented above. They
require the time-integration of the dynamics, however the piecewise-continuous law
in (4.53) should lend itself to numerical integration. A close Hertzian elastoplastic
model with three regimes is proposed in [1296].

Brake’s model is validated using experimental data found in [34, 95, 607, 656, 857,
949, 1156] in terms of force/indentation curves, contact area as a function of inden-
tation and contact force, and coefficient of restitution. It is found that the proposed
four-phase model provides through simulations, excellent matching with the exper-
imental data. Nine other models are also simulated [271, 363, 598, 600, 676, 1156,
1194, 1322, 1326], and it is shown that they do not possess comparable prediction
capabilities. The mixed elastic-plastic phase seems to play a crucial role in central
(colinear without body rotation) impacts. Several restitution laws are compared in
[180] in terms of their influence on the dynamics of systems (stability, wear, response
severity, response frequency range, peaks in the frequency response). It is concluded
that different restitution models may yield quite different qualitative and quantitative
results. Ma and Liu [778] take into account the elastic, mixed elastic-plastic, fully
plastic regimes during loading, and an unloading phase with strain hardening (incor-
porated in the model via a change of the contact radius in Hertz’ approach). They
impose that the force/indentation curve be continuously differentiable. They derive
an expression for the energetic CoR (see Sect. 4.3.6 for a definition):

e =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if δmax ≤ δy√
16
15 E


√
Re(δmax−δr )

5
2

mvr,n(t
−
k )2 if δy < δmax < δp√

16
15 E


√

Rp
e (δmax−δr )

5
2

mvr,n(t
−
k )2 if δmax ≥ δp

(4.54)

where δr is the residual indentation due to plasticity, Re is the effective radius
modified by Fmax to account for strain hardening, Rp

e corresponds to the case
where the loading phase ends in a fully plastic regime, δp is the identation at
the onset of fully plastic regime. An interesting point is that they find the closed
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expression e = 0.81(E)− 1
5 (Rp

e )− 1
6 k

5
12
1 m− 1

12 vr,n(t
−
k )− 1

6 , where k1 is the slope of the
loading force/indentation curve approximated as a straight line. The dependence in
the preimpact velocity is therefore different from previous results, in which a depen-
dence vr,n(t

−
k )− 1

4 is observed. The results are validated with many comparisons with
experimental data found elsewhere in the literature [184, 656, 857, 1276]. Further
comparisons between various models in [181, 183, 383, 444, 599–601, 675, 676,
1156, 1194, 1294] and experimental data produced by the authors, are presented in
[443] for a stainless steel rod colliding a low-carbon iron flat. The model called MJG
in [443], taken from [444] fits the best with experiments. The other models (includ-
ing Brake’s) predict larger values of en for small preimpact velocities (vr,n(t

−
k ) varies

between 4 and 0.5 m/s). The role of friction during the collision is not analyzed in
[443]. It is noteworthy however that the analysis in [180, 443] concern systems with
few degrees of freedom. When systems with a large number of contacts and degrees
of freedom are considered, other important constraints may appear, like the choice
of a suitable numerical method which in turn relies on a suitable model.

� The choice of the right restitution law is a crucial step for the dynamical
analysis of a mechanical system. All the above elastoplastic impact models apply
to frictionless collisions. Some provide a closed form of the CoR, some require the
integration of piecewise-continuous dynamics.

Remark 4.7 As alluded to above, plasticity effects may no longer play any role in
the impact process after a certain number of loading/unloading sequences. The loss
of kinetic energy once plastification disappears may be due to body vibrations (steel
sphere/aluminum rod impacts in [859, 1083, 1084]), or to a small viscosity for zeolite
13X27 sphere/sphere impacts [50, Figs. 22, 23 and 26]. It may be clever in that case to
use a value of the restitution coefficient that takes this into account: plasticity during
the first impacts, small viscosity for the remaining impacts. A similar phenomenon
is observed for small ice spheres (radii 2.5 to 5 cm) impacting at low velocities (0.2,
0.3 and 0.8 cm/s) [505]. It is attributed to the presence for small frost particles which
become pulverized after few collisions.

4.2.1.2 Bistiffness Models: Crook’s Approach

A different class of models, conceptually simpler and empirical, is based on the idea
that the permanent residual deformation (due to plasticity, or damage) may be repre-
sented by a variation of the contact stiffness between the loading and the unloading
phases, as shown in Fig. 4.6a. It seems that this class of continuous, piecewise-
smooth models was first introduced by Crook in 1952 [310], who reported exper-
imental results with copper and ebonite cylinders impacting an anvil. Such load-
ing/unloading curves have since then been used and experimentally validated many
times [50, 181, 469, 573, 575, 576, 816, 857, 858, 1073, 1084, 1242, 1244, 1247,

27Microporous, aluminosilicate minerals.
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Fig. 4.6 Bistiffness contact/impact models. a (i) bilinear, (ii) bi-nonlinear. b With adhesive forces

1260, 1279, 1280, 1322]. One however should keep in mind that these models are
intended to approximate with two phases, a force/indentation law as in Fig. 4.5a
which intrinsically contains three, or four phases. As a consequence, the bistiffness,
or two-phase models, are often shown to overestimate the maximum contact force
during the loading/unloading process, because they match with Hertz’ elasticity only
in a small portion of the loading curve, see Fig. 4.5b, and [1322, Fig. 14] [50, Figs. 19
and 21] [857, Fig. 15]. The bistiffness impact laws model dissipation through a varia-
tion of the stiffness from the loading to the unloading phases, the rheological models
of Sect. 2.2 dissipate through a linear or nonlinear damper, the “contact mechanics”
laws of Sect. 4.2.1.1 dissipate with plasticity.

The bilinear model is sometimes called the Walton and Braun model: F = k1δ

in the compression phase (loading, δ̇ > 0), F = k2(δ − δr ) in the expansion phase

(unloading, δ̇ < 0). The restitution coefficient is then given by en =
√

k1
k2

, showing

in passing that k2 ≥ k1 to guarantee en ≤ 1. The same holds in the bi-nonlinear
model of Fig. 4.6a (ii) if Hertz’ elasticity is adopted. Another expression of Walton
and Braun’s bistiffness model is obtained setting F = k2(δ − δr ) in the expansion
phase, with k2 = k1 + SFmax where Fmax is the maximum force achieved before
unloading. Then en =

√
ω

Sδ̇(t−k )+ω
, ω = 2

√
k1

m [1243], i.e., the restitution depends

on the preimpact velocity, while S is a parameter to be fitted. Another model was
proposed in [705] with28: F = kδn in compression, F = kδn

(δc−δr )n
(δ − δr )

n in the
expansion phase, for some coefficient n. The restitution coefficient may be obtained

from δr = (n+1)δ̇(t−k )2

2kδnc
m(1 − e2

n), where δ̇(t−k ) = vn(t
−
k ) is the indentation velocity at

the beginning of the collision. Piano hammer impacts against a rigid stop are modeled
with a bistiffness approach in [816] where the contact force during the loading phase
is chosen as F(δ) = aδ exp(bδ) + cδ for some constants a, b, c, to be fitted with

28A quite similar model is presented in [469, §4.3], reporting results from Crook [310] and Barnhart
[93].

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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Fig. 4.7 Bistiffness contact/impact models. a (a) Different impact velocities v1 < v2 < v3, (b)
repeated impacts (loading/unloading phases). b Bistiffness with force jump

experiments. Comparisons between the models of Hertz, Simon-Hunt-Crossley and
[704] (see Sect. 2.2) are made in [782] for knee joint modeling.

Figure 4.7a (a) depicts typical loading/unloading curves for various approach
velocities (see, e.g., [1246, Figs. 5 and 6] [50, Fig. 19] [1247, Fig. 5] [1280, Fig. 5]
[1279, Fig. 3] [181, Fig. 4] [573, Fig. 2] [1322, Figs. 13 and 14] [445, Fig. 3] [469,
Figs. 189, 190] [312, Figs. 2 and 5] [816, Fig. 4] [532, Fig. 4]). Figure 4.7a (b) rep-
resents typical repeated loading/unloading force/indentation curves, see, e.g., [50,
Fig. 21]. Most of these results are experimental ones. In view of the limitations
alluded to above, it is likely that the experimental curves reported in these refer-
ences, could be only approximated if a two-phase bistiffness model is used.

The above variations of Crook’s approach, may be named elastoplastic, as they
intend to model some kind of permanent deformation, while the loading and unload-
ing phases are elastic. Ismail and Stronge [575, 576] proposed bistiffness viscoelas-
tic models, using Maxwell’s rheological model (a linear spring and a linear dashpot
mounted in series), thus mixing viscoelastic models as described in Chap. 2 and
bistiffness. The spring stiffness is k during compression, k

γ 2 during restitution. The

damping factor is ζ = mω0
2 f , f is the dashpot coefficient, ω0 =

√
k
m . The kinetic

coefficient of restitution (Poisson’s definition in (4.155) below), is calculated as:

• ζ < γ : ep = γ exp
(

ζ

γ 2 [(1 − γ 2)ω0tc − ω0t f ]
)

,

• γ < ζ < 1 : ep = −γ 2

2ζ

√
1− γ 2

ζ2

exp(−ζω0tc){exp
(
− ζ

γ 2 (1 +
√

1 − γ 2

ζ 2 )ω0(t f − tc)
)

− exp
(
− ζ

γ 2 (1 −
√

1 − γ 2

ζ 2 )ω0(t f − tc)
)
},

(4.55)

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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with: tc = 1

ω0

√
1−ζ 2

(
π − arctan

(√
1−ζ 2

ζ

))
is the time of transition from compres-

sion to expansion, the time of end of the restitution is given by t f = − γφ

ω0

√
1− ζ2

γ 2

if

ζ < γ , t f = − γ 2

2ω0

√
1− γ 2

ζ2

ln

⎛
⎝ 1−

√
1− γ 2

ζ2

1+
√

1− γ 2

ζ2

exp
(
−2 ζ

γ 2

√
1 − γ 2

ζ 2 ω0tc
)⎞⎠ if γ < ζ < 1,

and φ = arctan
(
− γ

ζ

√
1 − γ 2

ζ 2

)
− 1

γ

√
1 − γ 2

ζ 2 ω0tc. The coefficient in (4.55) tends to

zero as ζ → 1 (high damping). If ζ = 0 then ep = γ . Some experimental valida-
tions are made in [575], using the data in [312], for low-velocity impacts of golf balls
and super ball. The restitution (4.55) does not apply if the compression phase fol-
lows Hertz’ elasticity. A similar bilinear stiffness rheological model is presented in
[1297]. The coefficient γ is however not a priori given as a parameter, but calculated

as γ 2 = 2
3

k
Kh

(
k

mδ̇(t−k )2

) 1
4 = en where Kh = 4

3

√
RE is the Hertzian stiffness. We

recover here an expression which involves the preimpact velocity in the dynamics
denominator, as we already met in Sect. 2.2.2. Hence the linear unloading stiffness
depends on the collision initial energy 1

2mδ̇(t−k )2, where we remind that according
to Hertz’ theory, δ̇(t) = vr,n(t). Let us finally notice that another type of bistiffness
model, with zero residual deformation but a contact force jump as in Fig. 4.7b, is
sometimes used [864, 1039]. It is shown in these articles that, given a contact model,
the shape, size and geometry of the bodies (the grains) may significantly influence
the dynamics of granular matter modeling avalanches.

The bistiffness contact model has been used in the context of multiple impacts in
[748–750, 753, 928, 929, 1318–1320, 1327], and this will be presented in Sect. 6.3.
A thorough comparison between Thornton’s contact model, and various bistiffness
models, is made in [1195, 1196] for oblique impacts where friction plays a crucial
role. We will come back on friction in Sect. 4.2.5.

� All the models of Sect. 4.2.1, how sophisticated they may be, are local: they
do not incorporate the possible influence of vibrational effects in the bodies during
the shock. It has been known since a long time [556, 1033, 1056] that vibrations can
play a significant role in the shock process. Moreover they completely neglect the
influence of friction or adhesive effects, which quite often have to be modeled.

4.2.2 Adhesive Effects

Some of the viscoelastic models of Sects. 2.1.3 and 2.2 may be rejected in most
cases because they may create negative contact forces. It is however noteworthy
that adhesive forces may exist between colliding bodies [627, 770, 822]. Usually,
adhesive contact forces occur at low loads, and one observes that Hertz’ theory has
to be adapted because its predictions do not match with experimental data (adhesion

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2


4.2 Restitution Laws 159

0

co
m

pr
es

si
on

te
ns

io
n

Lennard-Jones model

Dugdale model

distance

F

5

Fnorm β = 0
β = 1

β = 2

δnorm

06

3

4 1

2

(a) (b)

Fig. 4.8 Force/indentation and force/distance curves. a Force/distance law with adhesive forces.
b Force/indentation response for (4.57)

increases the contact area, and modifies the stored elastic energy). Typical curves
for adhesive contact forces as function of the “distance” of the solid to the obstacle,
are depicted in Fig. 4.8a. They result for instance from the Lennard–Jones potential
function, or the Dugdale potential well [628, Fig. 1].

Brach and Dunn [179] study the collisions of microparticles against a rigid obsta-
cle (where adhesion forces play a significant role in the contact-impact process) with
the Hertzian model:

mẍ(t) = −4

3
E

√
Rx(t)

3
2 − √

Rkx(t)
3
2 ch ẋ(t) + 2πa f0 + 2πa f0ca ẋ(t), (4.56)

where f0 is the magnitude of the adhesion line force, a is the contact area radius,
ch and ca are dissipation coefficients. In summary, the first term in the right-hand
side is the classical Hertzian restoring force, the second is a dissipation term à la
Simon-Hunt-Crossley, the third one is an idealized adhesion attraction force term,
the fourth one accounts for dissipation due to adhesion. Another approach is in [65],
starting from the so-called Johnson–Kendall–Roberts (JKR) theory. Hertz’ contact
theory is adapted, and it is assumed that the normal contact pressure is given by

p(r) = p0

(
1 − ( ra

)2) 1
2 + p1

(
1 − ( ra

)2)− 1
2
, where a is the contact radius [627, §5.5]

(see Sect. 4.2.1.1 for more details on Hertz’ contact and the expression of p(r)without
adhesion). It is assumed that the effect of contact pressure and adhesion occurs only
inside the area of contact, but this area differs from that predicted by Hertz: it is bigger
as the bodies do not deform in the same way. Said otherwise, the Hertz’ contact radius
without adhesion aH is smaller that a. The term p1 accounts for the adhesion and

p1 = −
(

2γ E

πa

) 1
2
, where γ is the surface energy (or surface tension29) [822], related

to the work of adhesion between the two materials as Wadh = γ1 + γ2 − γ12 = 2γ if

29Quoted from [826, p. 57]: The dissymetry of interactions at the surface of a solid causes a
modification of the lattice parameters of the first atomic planes of the order1–2 %. This variation
of interatomic distances can occur perpendicularly to the surface (normal relaxation) or parallel
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both spheres are made of the same material and the interfacial energy γ12 is zero. The
surface energy is a material constant. Also one has p0 = 2aE

πR = 3F
2πa2 . The contact

force is derived as [627, Eq. (5.49)]:

F = −4a3E

3R
+ 4
√

γ Ea3π, (4.57)

where the first term in the right-hand side is merely a rewriting of the expres-
sion giving the contact area radius (see the introduction of Sect. 4.2.1.1). The
second term accounts for adhesion (in general this is given by

√
8πa3Wadh =√

8πa3(γ1 + γ2 − γ12), which gives the expression in (4.57) if γ12 = 0 and
γ1 = γ2 = γ ). The shape of the force/indentation curves depends a lot on a para-

meter β = b
√

γ , with b = 3
α

(
πa
E

) 1
2 , α = 1

R

(
3mR2vn(t

−
0 )2

4E

) 2
5
. Typical shapes are in

Fig. 4.8b, where δnorm = δ
α

is a normalized maximal indentation related to a nor-
malized contact area radius anorm = a√

Rα
as δnorm = a2

norm − 2
3β

√
anorm . Here

vn(t) = δ̇(t). When β = 0 (no adhesion) one recovers that δ2 = a2

R (an expres-
sion for a given in Sect. 4.2.1.1). It is noteworthy that the indentation may become
negative because of adhesion in this model. The curves in Fig. 4.8b are defined

parametrically (the parameter being anorm) as Fnorm(anorm) = a3
norm − βa

3
2
norm , with

Fnorm = F 1
mRvn(t

−
0 )2

(
3mR2vn(t

−
0 )2

4E

) 2
5
, and the normalized dynamics is δ̈norm = −Fnorm

(in a new time scale τ = vn(t
−
0 )

α
t). They possess the typical shape of force/indentation

curves for the adhesive case, see [825, Fig. 7] [94, Fig. 3] [629, Fig. 8]. An impact
takes place as follows in Fig. 4.8b: compression is along the path marked by
0-1-2-3; expansion is along 3-2-1-4-5-6. Between 5 and 6 an abrupt pull-off occurs.
This model of adhesive impact has been extended to a chain of three aligned balls
in [1132]. Several other models have been developed for adhesion, with different
assumptions than the JKR model, like the Derjaguin-Muller-Toporov (DMT) model
[340] which assumes that the surface of contact satisfies Hertz’ theory, and the adhe-
sive forces (like van der Walls’ forces) act outside this area, but without deforming
the profile which remains Hertzian (while JKR model has a total area of contact that
is bigger than Hertz’ area [826, §4.5.5 and 4.6]). The main results of the DMT model
are that the adherence force 2πWadh R is attained when the area of contact vanishes,
that the adhesion forces around the contact add to the applied load a force which
decreases from 2πWadh R to πWadh R when indentation increases, and that the radius

of contact under zero load is equal to a0 =
(

πWadh R2

K

) 1
3
, K = 4

3 E
. Another model

relies on the Maugis–Dugdale (MD) theory [825], which unifies both DMT and JKR
theories (Tabor’s coefficient [1176] also bridges both JKR and DMT models). It uses
the Dugdale potential well, whose force/distance law is shown in Fig. 4.8a. In the

to it (tangential relaxation). A form of residual stress is set up at the surface, and leads to surface
tension.
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MD model it is assumed that the adhesive forces act on a surface with radius c > a.
Let K = 4

3 E
. Following [825] we define the dimensionless parameters:

⎧⎪⎪⎨
⎪⎪⎩

A = a(
πWadh R

2

K

) 1
3
, F̄ = F

πWadh R
, � = δ(

π2W2
adh R

K2

) 1
3

λ = 2σ0(
πWadh K

2

R

) 1
3
,

(4.58)

where σ0 is the constant stress of the Dugdale model outside the area of radius a
(and inside the disk of radius c). Hertz theory gives A3 = F̄ , � = A2 = F̄

2
3 , the

DMT theory30 gives A3 = F̄ + 2, � = A2, the JKR theory gives A3 = F̄ + A
√

6A,
� = A3+2F̄

3A = A2 − 2
3

√
6A. The MD theory gives:

(a) λA2

2 [√m2 − 1 + (m2 − 2) arctan(
√
m2 − 1)]

+ 4λ2 A
3 [√m2 − 1 arctan(

√
m2 − 1) − m + 1] = 1

(b) F̄ = A3 − λA2[√m2 − 1 + m2 arctan(
√
m2 − 1)]

(c) � = A2 − 4
3 Aλ

√
m2 − 1,

(4.59)

with m = c
a . The equation in (4.59) (c) reduces to JKR when λ → +∞, and to DMT

when λ → 0. These various models yield quite different load/indentation curves,
as shown in [629]. Further comparisons between DMT, JKR and MD are in [1108]
where it is pointed out that the work of adhesion Wadh is more prominent in JKR
than in DMT, DMT is more appropriate when E is large (MT theory applies to
small, stiff spheres), while JKR is more appropriate when E is small (it applies
to large and compliant spheres). Actually the parameter λ in (4.58) is known as
the Maugis’ parameter. Finally let us mention extensions of the linear bistiffness
model that include adhesive effects [770, 979]. The force/indentation characteristic
is depicted in Fig. 4.6b for the basic model, but more sophisticated characteristics are
studied in [979]. One notices that initially F0 < 0, because of van de Waals attractive
forces. Such piecewise-linear models may be simpler to implement in a code when
the number of contacts is large (like in granular materials), provided the number
of parameters is kept small. They are meant to include elastic, plastic and adhesive
effects. Similar approaches were proposed previously by Acary, Monerie and Jean
in [5, 18, 616, 865] and implemented in a time-stepping numerical algorithm. See
[13, §3.9.4.4] for a detailed description.

30JKR and DMT are called “approximations”, not theories, in [825], and are said to lack of foun-
dations in the general theory of Contact Mechanics.
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4.2.3 Beyond Hertz: Conformal Contact Models

Let us briefly mention some few other contact models that do not fall into the
sphere/sphere or sphere/flat class, and for which Hertz’ theory does not apply because
the shape, the size of the bodies, and the way they are supported have to be taken
into account. Contact between cylinders which make contact along a whole long
strip parallel to the cylinders axis, of width 2a and acted upon by a force F per unit
length, is of interest in many applications, like joint clearances. According to the

developments in [627, §4.2 (c)], one has a = 2
(

FR
πE

) 1
2 , the Hertz’ contact pressure

is given by p(x) = 2F
πa2 (a2 − x2)

1
2 = p0

(
1 − x2

a2

) 1
2

(x is the coordinate along an axis

perpendicular to the strip of contact, i.e., measuring the strip’s width), the maximum

contact pressure is p0 = 2F
πa = (

FE

πR

) 1
2 , the mean contact pressure is pm = π

4 p0.
Johnson considers a cylinder in nonconformal contact with two other surfaces. His
theory may be adapted to cylinder/cylinder contact. After some manipulations and
assumptions on the stress distribution, one arrives at the indentation/force relation
[754, 991, 992]

δ = F

πE

(
ln

(
4πE�R

F

)
− 1

)
, (4.60)

where the radial clearance is �R = R2 − R1 in case of a pin-in-a-hole (in an infinite
plate), R1 is the pin’s radius, R2 is the hole’s radius, while �R = R1 + R2 in case
an external contact geometry is considered. Several severe issues are associated with
this model: it is not efficient when inserted in a numerical code, it does not take into
account dissipation, it applies only if the contact surfaces are nonconformal (while
internal contact surfaces as in a pin-in-a-hole clearance may become conformal).
Comparisons between (4.60) and FEM simulations are performed in [754], for inter-
nal pin-in-a-hole contacts with R2 = 100 mm. When �R ≤ 0.5 mm is too small,
both solutions drastically differ, while correct matching is obtained for large enough
�R ≈ 1 mm. The discrepancy between both solutions increases with increasing
load F . The Hertz’ (or Johnson’s) model in (4.60) has been improved in [754, 791]
(a power law incorporating a Crook’s like model with restitution coefficient), and
Persson’s model as recalled in [754]. Other approaches include Radsimovsky and
Goldsmith’s models [991].

� All these models are compared through extensive numerical simulations in [991,
992]. The conclusions are not extremely clear, in the sense that the models provide
diverging results for most of the values of �R (see [992, Fig.2]).

In order to highlight the great complexity that is encountered when relaxing the basic
Hertz contact assumptions, let us consider the contact problem of a rigid conical frus-
tum indenting a half space [427]. The system is depicted in Fig. 4.9. Let F be the
axial force applied on the punch, δ the identation depth of the punch (which does
not deform during the process), a the radius of the contact area, ab the radius of
the flat-end area of the punch. Starting from the stress–strain relations in cylindrical



4.2 Restitution Laws 163

Fig. 4.9 Conical frustum
punch with transversally
isotropic elastic half-space

ab

a

F α

δ

coordinates system for a transversally isotropic elastic material, which is an axisym-
metric indentation problem, and assuming that ab = 0 (conical indentation with
δ = πa

2
1

tan(α)
), the (F, δ) relation is found to be linear:

F = 2Ma

N
δ, (4.61)

where: M = (l
3
2

1 −l
3
2

2 )d−(
√
l1−√

l2)md−(l1
√
l2−√

l1l2)mn+(l1l
3
2

2 −l
3
2

1 l2)n
√
l1(l1−m)l

3
2

2

, m = s13(s11−s12)

s11s33−s2
13

, n =
s11s44+s13(s11−s12)

s11s33−s2
13

, l1, l2 = −c13(2c44+c13)+c11c33±
√

[c13(2c44+c13)−c11c33]2−4c11c33c2
44

2c11c44
, c11 =

1−νT LνLT
ET EL�

, c12 = νT +νLT νT L
ET EL�

, c13 = νLT +νT νLT
ET EL�

, c33 = 1−ν2
T

E2
T �

, c44 = μLT , � =
(1+νT )(1−νT −2νLT νT L )

E2
T EL

, d = s2
11−s2

12

s11s33−s2
13

, s11 = 1
ET

, s12 = − νT
ET

, s13 = − νLT
EL

, s33 = 1
EL

,

s44 = 1
μLT

, N = e(s11−s12)(d−mn)(l1−l2)
d(l1−m)l2

, e = s11+s12
s11

, ET is the Young’s modulus and
νT is the Poisson ratio of the transverse isotropic plane, EL is the Young’s modulus,
νT L is the Poisson’s ratio, μLT is the shear modulus, in the longitudinal direction,
and νLT

ET
= νLT

EL
. When the punch is a cylinder (α = 0) then F = 4Ma

N δ which is also
linear. The contact between a sphere and a spherical cavity is studied in [388].31 The
boundary of the contact region is a circle, the problem is axisymmetric, the contact
area is a curved surface with center the initial contact point. The Hertz’ assumption

on the contact pressure is generalized to p(r) = p0

(
1 − ( ra

)2)n
, where p0 is the

maximum contact pressure, r is a projective distance from the symmetry axis, a is the
projective radius of the boundary of the contact area. Let R2 be the radius of the spher-
ical cavity. Finite element simulations with fine mesh (between 250.103 and 350.103

elements) and material parameters for steel/steel and steel/beryllium bronze are used

to determine the variation of n by fitting n = 1
2 − 0.24 exp(−15.08

(
1 − a

R2

)
). If a

R2

31Whose title is too enthusiastic, since no model appears to be “universal”.



164 4 Two Rigid Bodies Colliding

is small one recovers Hertz’ coefficient n = 1
2 . The maximum pressure is given by

p0 = (n + 1) F
πa2 , F is the force applied on the sphere. The indentation of points far

enough from the symmetry axis is also given.
A more detailed summary on conformal contact and extension of Hertz’s the-

ory can be found in [12, §6], with plane/cylinder/plane, cylinder/cantilever beam,
contacts. Let us mention contact between hollow spheres (shells) and flat, where the
elasticity coefficient is different from 1 (linear elasticity) or 3

2 (Hertz’ elasticity) [926,
983]. A specific feature of such impacts is the possible occurrence of buckling phe-
nomena, (i.e., the creation of a hollow, or concave shape, at the contact area during
the collision process). See [1288] for nice photographs of aluminum alloy 6061-T6
circular rings colliding a rigid target, showing the high deformation of the rings at
high impact velocities (≈ 90 m/s) (see Definition 2.1). The kinematic restitution
coefficient is experimentally shown to decrease linearly from en = 0.5 to 0.05 for
the ratio |vn(0)|

vy
∈ [0.9, 4.5], with a plateau at en = 0.05 for vn(0)

vy
∈ [4.5, 6] at high

preimpact velocities vn(0) much larger than the yield velocity, plastic deformation
absorbs almost all the kinetic energy of the rings. The restitution seems to be inde-
pendent of the nondimensional wall thickness of the rings. Values of the elasticity
coefficient obtained via finite element simulations are reported in [926], and range
from 1.222 to 1.504 depending on the ratio between the outer and the inner radii of
the spheres.

4.2.4 Conditions for Quasistatic Impacts

In case of sphere/sphere or sphere/anvil impacting at low velocities, body vibrations
are negligible, hence the local deformation and dissipation assumption is valid.32

In fact what one means by low-velocity impacts, precisely refers to cases where the
vibrations into the colliding bodies can be neglected compared to the other effects due
to the collision. Hence the bodies that collide may be assumed to be in a quasistatic
equilibrium during the impact (in particular Hertz’ theory may be applied if the
contacting surfaces are nonconforming). Determining such cases is certainly a hard
problem in general. Vibrations play a role in collisions involving rods, beams, thin
plates, see Sect. 4.3.10. The importance of body vibrations in shock dynamics was
pointed out by G. Coriolis [302] and M. de Saint Venant [1056]. Goldsmith dedicates
a whole chapter to vibrational effects in collisions [469, Chap. III], see also [627,
Chap. 11]. For a sphere/sphere impact at moderate velocity, one finds [469, p. 23]
[1033]

vibrational energy

total energy
= 1

50

|vn(t
−
k )|

c0
, c0 =

√
E

ρ
, (4.62)

32For a sphere/flat impact, it is indicated in [386] that en may have variations between 0.7 and 2.5
% if vibrations of the sphere and of the flat (calculated from Zener’s theory) are taken into account.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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where ρ is the mass density, and c0 is the velocity of the pulse, that may be considered
as a characteristic of the material [627, p. 341]. Love [764] proposed an empirical
criterion to guarantee quasistaticity of the collision, as:

( |vn(t
−
k )|

c0

) 1
5

� 1. (4.63)

The rationale behind Love’s criterion is that there must be sufficient time for the pas-
sage of a large number of elastic waves back and forth along the directions involving
compression in the contact region, of the two bodies. In other words, the impact
duration should be large enough compared to the body vibration period. The total
time of impact between two spheres, under Hertz’ theory (quasistatic equilibrium,

circular frictionless area of contact), is given by t f = 2.87
(

m2

R(E)2|vn(t
−
k )|
) 1

5
[627, p.

354] [556, Eq. (34) (35)], where R = R1R2
R1+R2

and m = m1m2
m1+m2

(the 2.87 is 2.94 in

[556]).33 The time it takes for the wave to travel through the spheres is 4R
c0

s. Thus
4R
c0
t f

is proportional to
( |vn(t

−
k )|

c0

) 1
5

and it is small if Love’s criterion holds, showing

some consistency between Hertz’ assumptions and (4.63). Love’s criterion is recov-
ered by Hunter [556, Eq. (37)] for sphere/flat impacts. Hunter supposed an isotropic
elastic semi-infinite flat, and calculated that for sphere/flat impacts, the ratio of total
vibrational energy W over the initial kinetic energy, is given by

W

T (t−k )
= 2τ( 4π

3 )− 1
5 ρ

− 1
5

1 (E)
6
5 |vn(t

−
k )| 3

5

ρc3
0

(4.64)

for some material parameters. This gives W
T (t−k )

= 1.04
( |vn(t

−
k )|

c0

) 3
5

for steel sphere/steel

flat, W
T (t−k )

= 1.27
(
vn(t

−
k )

c0

) 3
5

for hard steel sphere/glass flat. Thus if Love’s criterion is

satisfied this ratio is very small. All this remains valid if impacts are elastic. Exten-
sion when plastic deformation occurs may be found in [563]. As noted by Johnson,
(Love’s criterion) clearly leads to logical difficulties when one of the bodies is large
so that no reflected waves return to the point of impact!

If waves inside the bodies are not neglected, the restitution coefficient (more
exactly, an apparent CoR) may be < 1 even if bodies are perfectly elastic. Weir
and Tallon [1260] take into account loss of energy due to shear waves inside the

impacting spheres. The velocity of shear waves is c2 =
√

G
ρ

, where G = E

2(1+ν)

is the elastic shear modulus. Then en ≈ exp

(
−0.6 c0

c2

( |vn(t
−
k )|

c0

) 3
5

)
. For low impact

velocities vn(t
−
k )

c0
� 1 and en � 1. Two models of perfectly elastic disks that hit a rigid

33For identical spheres the expression t f = 5.6R

(
1

c4
0 |vn(t−k )|

) 1
5

is given in [556, Eq. (37)].
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wall are simulated in [507]. The restitution coefficient is shown to vary from 0.98 for
|vn(t

−
k )|

c0
≈ 0.01 to 0.93 for |vn(t

−
k )|

c0
≈ 0.2. An estimation of the normal CoR incorpo-

rating wave effects in spheres is proposed in [508] as en ≈ 0.5827 κ
6
5

ρm
1
5 (E)

3
2
|vn(t

−
k )| 1

5

where the constants are defined in Sect. 2.2.2 on Kuwabara-Kono’s model, with Pois-
son’s ratio νi = 1

4 ; this CoR approximation behaves essentially as the one obtained
from a quasistatic assumption and Kuwabara-Kono’s model. Collisions between elas-
tic disks are analyzed and simulated in [439]. The restitution coefficient decreases
from 1 to 0.65 as the preimpact relative velocity increases, because of potential energy
stored in the disks. Experiments of sphere/sphere, steel spring/steel spring, rod/rod
collisions have been reported in [316] which demonstrate the role of body vibrations
for bodies other than spherical. Related results are in [1184] who shows with statisti-
cal physics tools, that the coefficient of restitution of an elastic object made of particles
linked by some potential, and striking a rigid elastic wall, both frictionless, satisfies
en ≤ 1. Other results may be found in [1058, 1072]. Steel sphere/aluminum rod, half-
circular plate, ball, and beam impacts are analyzed numerically and experimentally
in [1072]. Elastic linear wave propagation (see Sect. 6.1.1.4), modal approach, finite
elements are used for simulations. Wave propagation is negligible in the sphere/ball
impact, significant in the sphere/beam impact (80 % of the energy transformed into
bulk vibrations). In [1058], simulations with two different models (one-dimensional
linear elasticity wave propagation, and finite element method) of two rods impact-
ing axially at a rounded edge, show good agreement with experiments. The impact
between aluminum alloy circular rings and a rigid flat, is investigated through finite
element simulations in [85]. Three parameters are shown to govern the collision
process: the nondimensional thickness h

R (h is the ring width, R is its radius), the

yield strain of the material σy

E , and the nondimensional initial velocity v
�= |vn(t

−
k )|

vy
(where vy is the yield velocity). Four different impact regimes are determined:
(i) v < 0.2 (elastic deformation), (ii) 0.2 < v < 0.8 (plastification near the impact
point), (iii) 0.8 < v < 2 (formation of a four-hinge crushing mode), (iv) v > 2.0
(five-hinge crushing mode). The translational kinetic energy of the ring after the
shock, (i.e., the kinetic energy due to the ring’s gravity center velocity), is equal to
9
16T (t−k ) in regime (i), 1

16T (t−k ) in regime (iii), 1
100T (t−k ) in regime (i). The rest of

the initial kinetic energy is transferred into vibrations of the ring, and dissipated via
plastic deformations. Here plastification occurs not only at the contact point, but also
in the global deformation of the ring, at the crushing hinges. It is found that even in
regime (i), the impact process differs significantly from that of a sphere/flat system:
transfer of energy into body vibrations, and asymmetry of the impact force (the com-
pression phase is 3

4 of the impact duration, while compression and expansion are of
equal duration for sphere/sphere or sphere/flat collisions). Due to the predominancy
of the bending moment over the axial compression force, the plastic deformation in
the circular ring occurs for impact velocities much smaller that vy , possibly 0.3vy .
The restitution coefficient, calculated with the pre- and postimpact velocity of the
ring’s gravity center, is depicted as a function of v in Fig. 4.10 (this is a summary of
[85, Fig. 9a–c]). The most remarkable feature compared to sphere/sphere impacts, is

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_6
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Fig. 4.10 Ring/flat collision: en(v) (inspired from [85])

that en does not tend to 1 when the preimpact velocity tends to 0 m/s. The collision
of a sphere against a thin plate is studied in [1126, 1314] [469, §4.9 and 6.2]. The
plate span is supposed to be large enough so that the time required for the flexural
wave to travel to the plate boundaries and be reflected back to the loading point,
is larger than the contact time. It is concluded that most of the preimpact kinetic
energy is converted into plate’s vibrations, (i.e., no energy is recovered from the
traveling wave). Hertz’ theory is used to model the contact between the sphere and
the plate. An expression of en is given in [469, Eq. (4.179)]. See also Theorem 4.1 in
Sect. 4.4. An extension of Zener’s model is developed in [426], with applications in
fruit collision with an elastic plate. Section 4.3.10 is dedicated to a particular effect
of body vibration, called microcollisions, and how these microcollisions produce
energy transfer to the bending mode. The collision of an elastic bar with an elastic
beam is analyzed and experimentally verified in [918]. The apparent CoR is shown
to vary between 0.25 and 1 depending on the position at which the bar collides with
the beam. This confirms the study in [557, 1144] summarized in Sect. 4.3.10, that
vibrations may play a significant role in impacts of elongated bodies.

Remark 4.8 The fact that body vibrations may be neglected in sphere/sphere impacts
for small enough impacting velocity, allows one to consider that impacting spheres
may be modeled as point masses with unilateral Hertzian springs (plus plasticity
and/or viscosity dissipation if needed). This is crucial for studying multiple impacts
in chains of balls and nonlinear wave effects in such systems. It has been validated by
careful comparisons between experimental data and numerical simulations [306, 387,
749] for chains of aligned beads falling under the effect of gravity. As alluded to in
Sect. 6.1.1.4, these nonlinear waves should not be confused with the linear elasticity
bulk waves that create vibration in the bodies during and after impact. Quasistaticity
refers to linear elastic waves inside the rigid bodies.

http://dx.doi.org/10.1007/978-3-319-28664-8_6


168 4 Two Rigid Bodies Colliding

4.2.5 Incorporating Friction Effects

One of the fundamental assumptions of Hertz’ theory is that the surfaces are smooth
enough so that friction can be neglected in the contact/impact process. Obviously
friction is often present in real applications. We make in this section a very brief
summary of the extension of Hertz’ contact to the frictional case.

4.2.5.1 Hertz–Mindlin–Deresiewicz’ Approach: Tangential Restitution

Let us consider two identical spheres which collide as in Fig. 4.4b. In addition to
the normal compressive force Fn, one considers now a tangential force Ft acting
on both spheres. A circular zone of contact with radius a is created. When friction
is present at the contact, one may assume following Mindlin–Deresiewicz (MD)
[861] that microslip effects exist, and that the contact zone has two parts: an annu-
lar microslip zone at the contact perimeter with radius c ≤ r ≤ a, and a central
sticking (adherence) disk with radius c. As long as c > 0, one has Ft < μFn

and the microslip regime occurs. When c = 0 we get Ft = μFn and the (gross)
sliding regime occurs. The MD approach yields dFt

dt (t) = −Kt
dδt
dt , where the stiff-

ness Kt = Kt(δn, δt, E,G, R, μ, path), and the equivalent shear modulus G is
defined below. Thus the tangential stiffness depends on both normal δn and tangential
δt indentations, and on the path followed by the system during the loading phase.
Using the Mindlin–Deresiewicz theory, the tangential displacement relative to the
centers of the contacting spheres is given during microslip by [78]:

δt = 3(2 − ν)μFn

16Ga

(
1 − c2

a2

)
= 3(2 − ν)μFn

16Ga

(
1 −

(
1 − Fn

μFt

) 2
3

)
(4.65)

whereG = E
2(1+ν)

. The sliding regime starts when c = 0 at δt,s = (2−ν)μa2

4(1−ν)R = (2−ν)μ

4(1−ν)
δ,

where δ = a2

R . In a collision problem, an important parameter is the impact angle γ −

such that tan(γ −) = vt(t
−
k )

|vn(t
−
k )| . Assuming that the microslip displacement is colinear

with the velocity vector, it follows that tan(γ −) = (2−ν)μ

2(1−ν)

(
1 − c2

a2

)
. Inverting one

gets c2

a2 = 1 − 2 tan(γ −)(1−ν)

μ(2−ν)
. One infers that sliding regime occurs when the impact

incidence angle satisfies tan(γ −) ≥ (2−ν)μ

2(1−ν)
≈ μ

4 (2+ν)
�= tan(γ −

s ), i.e., the tangential
velocity is large enough (“inclined collision”). While the microslip regime occurs
for small enough γ − (“close to normal collision”). The following conclusions are
stated in [78]: For 0 ≤ δt ≤ δt,s and δt,s � δ, the Mindlin–Deresiewicz approach
can be applied for the microslip regime; when δt > δt,s (or γ − > γ −

s ), it cannot be
applied. The dynamical case is analyzed in [79]. It is assumed that the upper sphere
(number 2 in Fig. 4.4b) has a controlled horizontal motion with horizontal (tangential)
preimpact velocity vt(t

−
k ), while the bottom one is stationary. After a rather complex
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analysis, an expression of the tangential restitution coefficient is found as

et = ±
(

1 − 2
16

√
2

3m(vt(t
−
k ))2

μkr Kh(2R)
5
2

√
1 + kr ((kr + 3)K (k) − 4E(k))

) 1
2

(4.66)

with kr = 1− δ
R , Kh is the Hertz’ stiffness, K (k) = F(1, k) and E(k) = E(1, k) are

first and second kind complete elliptic integrals, k =
√

1−k2
r

1+kr
is the elliptic modulus.

The coefficient may be positive or negative to allow for tangential velocity reversal.
The critical velocity vt,c(t

−
k ) such that the moving (upper) sphere dissipates all the

initial kinetic energy at the separating contact point (hence for vt(t
−
k ) < vt,c(t

−
k ) the

upper sphere stops before separation may occur) is given by et = 0:

vt,c(t
−
k ) = ±

(
2

16
√

2

3m
μkr Kh(2R)

5
2

√
1 + kr ((kr + 3)K (k) − 4E(k))

) 1
2

. (4.67)

Figure 7 in [79] shows that |et| varies from a small value (≈ 0.12) to 1 as the ratio
vt(t

−
k )

vt,c(t
−
k )

varies from 1.01 to 3. Notice that as vt(t
−
k ) → 0 there is no singularity in

(4.66) because a zero tangential initial velocity implies a zero indentation δ, hence
kr = 1 and k = 0, so that (kr + 3)K (k) − 4E(k) → 4K (0) − 4E(0) = 0 since
K (0) = E(0) = π

2 .

4.2.5.2 Further Studies

The extension of Hertz contact to the frictional case with improvement of the
Mindlin–Deresiewicz theory has received attention in [78, 79, 788, 828, 1036, 1037,
1195, 1196]. Maw et al. [828] improve the Hertz–Mindlin–Deresiewicz (HMD) the-
ory by considering a summation of contribution of several annuli (instead of just two
zones in HMD) in the tangential plane area. This gives accurate modeling [657, 1036],
but it is very time-consuming in a code, and may be too sophisticated in applications
whenever geometry and material parameters are prone to inaccuracies. HMD is in
fact an improvement of Mindlin’s original results [860] who neglected all slipping
effects and considered Ft(t) = −Kt,0(t)δt(t) with Kt,0(t) = 8G

√
Rδn(t) (thus

the stiffness depends on the normal indentation δn), and G =
(

1−ν1
G1

+ 1−ν2
G2

)−1
,

Gi is the shear modulus of sphere i , νi is its Poisson ratio. Mindlin’s stiffness is
used in [1220]. Di Renzo and Di Maio [788, 1036, 1037] compare a linear stiffness
model, Hertz-Mindlin (HM), HMD and [1220] through numerical simulations and
the experimental data of [657]. They conclude that HMD is the more accurate in
terms of prediction of the CoR and contact force history but is very complex to insert
in a numerical code, the no-slip assumption of HM yields an overestimate of Ft , so
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that the all-linear model may give better results. In [1037] they propose a variation
of the HM model as Ft(t) = − 2

3 (8G
√
Rδn(t))δt(t) (named HDD in [1037]) and

show that it gives results close to the HMD for small or large collision incidence
angles, being much simpler to implement in a code. An approximation of the HMD
model consists of the so-called incremental slipping friction [1036, 1195, 1196].
Let us describe it when the normal indentation δn is constant. One starts the loading

phase with Ft(t) = Ft(0) + Kt(t)(δt(t) − δt(0)), with Kt(t) = Kt,0

(
1 − 2

3 Kt,0δt

μFn

) 1
2
,

and then increments this relation at future time steps to get the portion AB. When
δt starts to decrease, a turning point is attained with a turning force FT P

t and one

uses Kt = Kt,0

(
1 − FT P

t −Ft

2μFn

) 1
3
, and similarly for δT P

t , to get the curve BC . Then a

complete unloading curve is calculated, until a reloading phase starts when δt starts to

increase again, with tangential force FTT P
t . One sets Kt = Kt,0

(
1 − Ft−FTT P

t
2μFn

) 1
3

and

the curve CD. During the whole process it is checked that ||Ft|| ≤ Fn. This gives
rise to a loading-unloading-reloading cycle, a typical form of which is depicted
in Fig. 4.11a. The HMD model is further simplified in [539] to be inserted in a
granular matter code, with complete linearization yielding a path independent force-
indentation relation. HMD, HM, linear models typically provide the rebound angle
as a function of the incidence angle, as depicted in Fig. 4.11b, however HMD has the
best accuracy [1036, Figs. 6, 7]. We will see in Sect. 4.3.1.1 that this can be fairly well
approached (except for very small incidence angles) using another type of impact
law with Coulomb’s friction model.

A very detailed analysis of the gross sliding regime (γ − > γ −
s ) is made in [78]

when the upper sphere displacement is imposed to be horizontal (we refer to Fig. 4.4b
while sphere 1 is fixed at its center). Expressions for the contact zone radius, contact
tractions, contact geometries are calculated. Detailed analysis of oblique impacts
relying on normal and tangential compliances and Poisson’s CoR are proposed in
[688, 1157]. The three regimes of collision depending on the incidence angle, are

B
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C
FTTP

t

µFn D
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δt
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slidingrolling
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3

vt(t−k )
|vn(t−k )|

vt(t+k )
|vn(t+k )|

Fig. 4.11 Incremental slipping friction with constant normal indentation
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verifiable from material and geometrical parameters as well as the CoR. This is further
investigated in [621]: Coulomb friction and tangential compliance are considered for
three-dimensional two-body collisions in [621] with a lumped parameter model of
contact, where a bistiffness linear compliance is used in both normal and tangential
directions, and the energetic CoR rules dissipation. A very detailed analysis of the
various contact modes is made. It is pointed out in [526] that the energy dissipated
by friction has to be correctly calculated with the true sliding speed for this type of
contact model.

4.2.6 Conclusions

We see from Sects. 2.1.3, 2.2, 4.2.1.1, 4.2.1.2, 4.2.4, 4.2.5, Theorem 4.1 in Sect. 4.4,
that there is a proliferation (“a myriad of models, many of which represent various
modifications of the basic theory” according to [20]) of contact models for friction-
less and frictional single impacts.34 Extensive comparisons between numerical and
experimental data are available in [180, 1036, 1140], in terms of restitution coeffi-
cients, contact force history (duration, maximal force), and evolution of velocities
and displacements, for several models. It is sometimes concluded that simple models
perform as good as more involved ones in term of postimpact velocity calculation,
however more sophisticated models provide better accuracy for the contact force,
velocities or displacements (e.g., predicted contact durations may be used to sepa-
rate models35). Comparisons between different contact models have been done in
[182, 992]: they show that the dynamical responses of systems may vary a lot if
the model is changed. The authors of [996, 1040] conclude that the choice of the
damping model depends on the type of external excitation (harmonic or random).
The choice of a model has to take into account the nature of the elasticity at the
contact/impact points (linear, Hertz, or else), the nature of the dissipation (viscosity,
plasticity, vibratory, frictional, or else), and whether or not bulk vibrational effects
(linear elasticity) play a role. The fact that the contact model yields an explicit expres-
sion of the restitution coefficient, may also be important in some fields like Control,
or Robotics, because it enables one to make stability analysis. But piecewise-linear
or piecewise-smooth models may be suitable as well, as long as they may be easily
incorporated in a multibody systems code. Parameter estimation is a crucial step.
One advantage of the models that stem from Contact Mechanics and Hertz’ theory
is that most of their parameters are material constants, and they require the fitting of
none or very few remaining parameters (like the yield constant Cy).

Remark 4.9 What about finite element methods? Let us quote [182]: . . . single degree
of freedom constitutive models . . . enable significantly more efficient simulations of

34Recall that an impact is said to be a single impact if there is only one collision occurring in the
system at time tk . If several collisions occur at the same time (or during overlapping periods of
time), one speaks of a multiple impact.
35This is even more true in case of multiple impacts.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2


172 4 Two Rigid Bodies Colliding

Table 4.1 Material parameters values

E (GPa) G (GPa) ν σy (MPa)

Soda-Glass lime 70 28 0.25

Aluminum oxyde 370–380 154 0.22–0.23

Brass alloy 260 115 0.3 550

Aluminum Alloy 2017 70 26 0.30–0.35 300–500

Stainless steels 190–210 79 0.3 170–1000

PTFE Liner 52 0.37

Apple skin 12 MPa 0.35

Apple Cortex 5 MPa 0.15 MPa 0.35

Apple Core 7 MPa 0.15 MPa 0.35

Aluminum-Bronze UNS C61300 115 44 0.312 240–400

Copper (Ultra-Fine-Grained) 110–128 48 0.34 350

E52100 Steel 190–210 80 0.27–0.30 350

Polymer (Polycarbonate) 2.0–2.6 0.38 59–70

Polymer (reinforced ABS) 1.4–3.1 0.35 18.5–51

Gneiss 53–79 0.267

Ceramic (Al2O3) 200–400 0.23 600–5500

impact events than high fidelity finite element simulations as only quantities such as
the contact forces and contact areas as functions of penetration depth are calculated.
In contrast to the single degree of freedom employed by these models, high-fidelity
finite element models of the same phenomena can require up to millions of degrees
of freedom to ensure a convergent response.

4.2.7 Material Parameters: Some Values

Since the Contact Mechanics approach relies on the knowledge of material parame-
ters, it may be useful to recall few typical numerical figures, see Table 4.1. It is out
of the question to provide an accurate and complete set of data, which can be found
in specialized reports for a great number of materials.36 Our objective is just to easy
the life of nonspecialists readers in Control, Robotics, Multibody, who would like
to quickly access to realistic data for simulations. Hardness is also often considered
as a material parameter, that may be found in materials descriptions. Values for the
apple fruits are taken from [346].

36http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf.

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf
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4.3 Impacts with Friction

In Sect. 4.2.5 we have seen how Hertz’ contact theory may be extended to incorporate
frictional effects, using sophisticated contact theories like Mindlin–Deresiewicz. In
this part we focus on rigid body models for impacts with Coulomb’s friction between
two bodies, where the three basic CoRs (kinematic, kinetic, energetic) may be used
combined with tangential models. The main discrepancy with respect to compliant
contact/impact models, is that we will not integrate second order differential equa-
tions during the impact. Of course, the values for restitution coefficient as in (2.10),
(2.11), (2.12), (4.46), (4.48), (4.49), (4.50), (4.51), (4.55) or (4.66) may be used in the
rigid body context if the required parameters are available. Pioneering results on this
topic may be found in [327, 337, 994, 1049], see also [995, Chap. 10] for a thorough
treatment of shocks with or without friction, in two- and three-dimensional cases,
using graphical tools (some are described in Sect. 4.3.13). It has been the topic of
an active research area, after Brach noticed that unrealistic solutions may occur with
an improper treatment of the tangential impulse and Kane’s example [641, 642] on
energetical inconsistencies in some impact problems based on Whittaker’s method
[1265] and Newton’s coefficient, when there is slip reversal at the impact, i.e., the
final and initial relative tangential velocity have opposite signs; see for instance [106,
112, 119, 173, 174, 176, 178, 651, 815, 1116, 1121, 1122, 1148, 1149, 1151, 1153,
1254, 1255]. Notice that such energy gains are at first sight surprising since both
models (rebound with a kinematic restitution coefficient and Coulomb’s friction)
are dissipative when considered separately. This phenomenon is actually due to an
approximation of the friction law at the impulse level.

4.3.1 Simple Examples

Let us start with some classical examples of impacts of simple bodies with a rough
anvil. As usual positions are assumed to be continuous at the impacts, while velocities
undergo a jump (see Chap. 1 for the mathematical justification).

4.3.1.1 Two-Dimensional Sphere/Plane Impact

Let us consider a sphere with radius r colliding a rigid rough barrier as in Fig. 4.12a.
The Galilean frame and the local frame (A,n, t1, t2) are chosen such that n =
(1, 0, 0)T , t1 = (0, 1, 0)T , t2 = (0, 0, 1)T . Since we analyze the system at an impact
time and the system is planar, we may choose the local frame so that one tangent unit
vector, say t1, matches with the preimpact tangent velocity orientation, and we denote
for simplicity in the plane (A,n, t1): n = (1, 0)T and t1 = (0, 1)T the normal and
tangential unit vectors at the contact point A. The normal and tangential components
of the velocity of the contact point A are denoted as vn and vt , the angular velocity

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Fig. 4.12 Sphere/plane and rod/plane impacts

component along t2 as ω, i.e., Ω = ωt2, x and y are the gravity center coordinates,
I = 2

5mr2 is the sphere moment of inertia along the z axis spanned by t2. One has
vt = ẏ − rω37 and vn = ẋ . We also assume that due to the particular form of the
angular velocity Ω the postimpact tangent velocity is colinear to the preimpact one,
and we can work in the plane (A,n, t1) (the velocity component ż remains null).
This is not true for general three-dimensional collisions. Let r > 0, then the shock
dynamical equations are

⎧⎨
⎩
mσẋ (tk) = pn(tk)
mσẏ(tk) = pt(tk)
Iσω(tk) = −rpt(tk)

⇐⇒
⎧⎨
⎩
mσvn(tk) = pn(tk)
mσvt (tk) = 7

2 pt(tk)
2
5mr2σω(tk) = −rpt(tk).

(4.68)

This may be calculated from (4.27) and (4.28). To this we have to add the normal
restitution law: vn(t

+
k ) = −envn(t

−
k ) if vn(t

−
k ) ≤ 0 and x(tk) = r (the gap function

is equal to f (q) = x − r ≥ 0), and a tangential contact force model:

pt(tk) ∈ −μ|pn(tk)|sgn(ṽt) (4.69)

for some ṽt to be chosen, and sgn(·) is the set-valued signum function (notice that this
implies that P = (pt, pn)

T is in the friction cone). Here we assume that pn(tk) ≥ 0,
this may be guaranteed by imposing complementarity conditions at a time of impact:
0 ≤ vn(t

+
k ) + envn(t

−
k ) ⊥ pn(tk) ≥ 0.38 Using the impact dynamics one finds

0 ≤ 1
m pn(tk) + (1 + en)vn(t

−
k ) ⊥ pn(tk) ≥ 0. One may check by inspection that

provided en > 0, then vn(t
−
k ) < 0 ⇒ vn(t

+
k )) = −envn(t

−
k ) > 0 and pn(tk) =

−m(1 + en)vn(t
−
k ) > 0, while vn(t

−
k ) ≥ 0 ⇒ pn(tk) = 0 and vn(t

+
k ) = vn(t

−
k ).

Inserting this into (4.68), we rewrite the dynamics at an impact time as:

37With respect to the notations of Sect. 4.1.2, we set here r = r21 in the matrix R1.
38We will see this kind of formulation in a broader context in Sect. 5.2.2.5.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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⎧⎨
⎩
mσvn(tk) = −m(1 + en)vn(t

−
k )

mσvt (tk) ∈ 7
2μm(1 + en)vn(t

−
k )sgn(ṽt)

2
5mr2σω(tk) ∈ −rμm(1 + en)vn(t

−
k )sgn(ṽt).

(4.70)

Proposition 4.2 Consider the impact dynamics in (4.70), and assume that ṽt =
ṽt(vt(t

+
k )) is a strictly monotone continuous function of vt(t

+
k ). Then the postimpact

tangential velocity is given as the unique solution of the generalized equation:

0 ∈ ṽt(vt(t
+
k )) + N[vt(t

−
k )−β,vt(t

−
k )+β](vt(t

+
k )), (4.71)

where β
�= − 7

2μ(1 + en)vn(t
−
k ) > 0.

Proof we have −vt(t
+
k ) + vt(t

−
k ) ∈ βsgn(ṽt(vt(t

+
k )), that is equivalent using (B.16)

to ṽt(vt(t
+
k ) ∈ N[−β,β](−vt(t

+
k ) + vt(t

−
k )). Let g(vt(t

+
k ))

�= ψ[vt(t
−
k )−β,vt(t

−
k )+β](vt(t

+
k ))

one finds ψ[−β,β](−vt(t
+
k ) + vt(t

−
k )) = g(vt(t

+
k )), and from Theorem B.2 we have

∂g(vt(t
+
k )) = −N[vt(t

−
k )−β,vt(t

+
k )+β](vt(t

+
k )). The result follows from [385, Theorem

2.3.3, Corollary 2.2.5] since [vt(t
−
k ) − β, vt(t

−
k ) + β] is compact convex and ṽ(·) is

continuous.

We note that the continuity of ṽt(vt(t
+
k )) is enough for the existence of a solution.

The strict monotonicity assures the uniqueness.

Corollary 4.1 Let ṽt(vt(t
+
k ))=vt(t

+
k ), then vt(t

+
k ) = vt(t

−
k ) − proj([−β, β]; vt(t

−
k )).

Proof From (4.71) equivalently (−vt(t
+
k ) + vt(t

−
k )) − vt(t

−
k ) ∈ −N[−β,β](−vt(t

+
k ) +

vt(t
−
k )), using (B.20) the result follows.

We infer that when ṽt(vt(t
+
k )) = vt(t

+
k ) (recall that by assumption vn(t

−
k ) ≤ 0)

1. If |vt(t
−
k )| ≤ − 7

2μ(1 + en)vn(t
−
k ), then vt(t

+
k ) = 0 (sticking impact).

2. If vt(t
−
k ) < 7

2μ(1+ en)vn(t
−
k ) < 0, then vt(t

+
k ) = vt(t

−
k )− 7

2μ(1+ en)vn(t
−
k ) < 0

(negative sliding impact).
3. If vt(t

−
k ) > − 7

2μ(1+en)vn(t
−
k ) > 0, then vt(t

+
k ) = vt(t

−
k )+ 7

2μ(1+en)vn(t
−
k ) > 0

(positive sliding impact).

The post- and preimpact tangential velocities have the same sign in the sliding mode,
which means that the tangential velocity cannot be reversed in such an impact with
this model.

Corollary 4.2 In the case of sticking, the postimpact angular velocity is given by
ω(t+k ) = ω− − 5

7r vt(t
−
k ).

Proof We have from (4.70) and setting vt(t
+
k ) = 0 that the selection ξ ∈ sgn(vt(t

+
k ))

is equal to ξ = 2
7μ(1+en)

vt(t
−
k )

|vn(t
−
k )| . Thus ω(t+k ) = ω(t−k ) − 5

2
μ

r (1 + en)vn(t
−
k )ξ .
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We employ on purpose the word “selection” for the set-valued sign function. Con-
trarily to what one might think, despite the fact that the right-hand side of the
third equation in (4.70) is set-valued at vt(t

+
k ) = 0, the selection inside [−1, 1]

is unique. Let us now pass to the dissipativity of the impact law. The kinetic energy
of the system is T (ẋ, ẏ, ω) = 1

2mẋ2 + 1
2mẏ2 + 1

2 Iω
2, which gives T (vn, vt, ω) =

1
2m(vt + rω)2 + 1

2mv2
n + 1

2 Iω
2. After some easy but lengthy calculations, one finds

TL(tk) = −1

2
m(1 + en)(vn(t

−
k ))2

{
(1 − en) + 2μ

vt(t
−
k )

vn(t
−
k )

ξ + 7

2
μ2(1 + en)ξ

2

}

(4.72)
with ξ ∈ sgn(ṽt) (⇒ ξ 2 = 1 in sliding mode), and we recall that r > 0.

Corollary 4.3 Let ṽt(vt(t
+
k )) = vt(t

+
k ) and en ∈ [0, 1], then TL(tk) ≤ 0.

Proof In case of sliding, the conclusion follows since sgn(vt(t
+
k )) =sgn(vt(t

−
k )),

hence the term between brackets in (4.72) is always nonnegative. In case of sticking
mode, there always exist a selection ξ ∈ [−1, 1] with the right sign such that the
term between brackets is nonnegative as well.

In the sticking mode, the existence of a selection ξ means the existence of an impulse
inside the friction cone, see (4.69). Consider items 1, 2, 3 after Corollary 4.1. We
may rewrite them as follows:

1. If |vt(t
−
k )|

|vn(t
−
k )| ≤ 7

2μ(1 + en), then vt(t
+
k ) = 0 (sticking impact).

2. If vt(t
−
k )

|vn(t
−
k )| < − 7

2μ(1+en) < 0, then vt(t
+
k )

|vn(t
+
k )| = 1

en

vt(t
−
k )

|vn(t
−
k )| + 7

2μ 1+en
en

(negative sliding
impact).

3. If vt(t
−
k )

|vn(t
−
k )| > 7

2μ(1 + en), then vt(t
+
k )

|vn(t
+
k )| = 1

en

vt(t
−
k )

|vn(t
−
k )| − 7

2μ 1+en
en

(positive sliding
impact).

The interest for this equivalent rewriting, is that it relates the incidence (preimpact)

angle defined as tan(γ −)
�= vt(t

−
k )

|vn(t
−
k )| to the postimpact angle tan(γ +)

�= vt(t
+
k )

|vn(t
+
k )| . Exam-

ining this relationship proves that the choice ṽt = vt(t
+
k ) is to be too simplistic and

cannot match experimental data, see a discussion on this point in Sect. 4.3.3.1. Indeed
for small incidence angles γ −, the impact sticks and the graph (tan(γ −), tan(γ +))

starts with a null slope, while experiments show that it should start with a neg-
ative slope. Notice that ṽt(·) may be changed to any function of vt(t

+
k ) provided

the conditions for existence/uniqueness and dissipativity are still satisfied. However
adding parameters with no clear physical may not always be wanted. Let us try
ṽt = vt(t

+
k ) + etvt(t

−
k ) for some tangential restitution coefficient et . Redoing the

above calculations we obtain

vt(t
+
k ) = proj([vt(t

−
k ) − β, vt(t

−
k ) + β];−etvt(t

−
k )), (4.73)

so that:
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0

0

− 7
2 μ(1+ en)

vt(t+k )

|vn(t+k )|

7
2 μ(1+ en)

vt(t−k )

|vn(t−k )|

vt(t+k )

|vn(t+k )|
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|vn(t−k )|

7
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− 7
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Fig. 4.13 Pre- and postimpact angles relationships: a ṽt = vt(t
+
k ), b ṽt = vt(t

+
k ) + etvt(t

−
k )

1. If |vt(t
−
k )|

|vn(t
−
k )| ≤ 7

2μ 1+en
1+et

, then vt(t
+
k ) = −etvt(t

−
k ).

2. vt(t
−
k )

|vn(t
−
k )| < − 7

2μ 1+en
1+et

(< 0), then vt(t
+
k )

|vn(t
+
k )| = 1

en

vt(t
−
k )

|vn(t
−
k )| + 7

2μ 1+en
en

, and vt(t
+
k ) < 0.

3. vt(t
−
k )

|vn(t
−
k )| > 7

2μ 1+en
1+et

(> 0), then vt(t
+
k )

|vn(t
+
k )| = 1

en

vt(t
−
k )

|vn(t
−
k )| − 7

2μ 1+en
en

, and vt(t
+
k ) > 0.

The two graphs are depicted in Fig. 4.13, with et > 0. The graph in Fig. 4.13b fits
well with the experimental data in [829, Fig. 1], though a finer examination of [828,
Fig. 2] reveals that the tangent at the origin should vanish to better model the microslip
phase. This is obtained with the more sophisticated but numerically less tractable,
models of Sect. 4.2.5. The first case now corresponds to a kind of “average” sticking
over the impact with vt(t

+
k ) + etvt(t

−
k ) = 0. It may also be interpreted as a crude

model for a phase of microslip phenomena (see Sect. 4.2.5), before gross slip may
occur. The first impact law involves two parameters en and μ, the second one involves
three parameters en, et , and μ; since it is “richer,” it may model more mechanical
effects. It is noteworthy that in modes 2 and 3 there is no tangential velocity reversal.

Remark 4.10 It is sometimes set vt(t
+
k ) = −etvt(t

−
k ), see Sect. 4.3.2. In such

a case we get from the shock dynamics pt(tk) = − 2
7m(1 + et)vt(t

−
k ), while

vt(t
+
k )

vn(t
−
k )

= −et
vt(t

−
k )

vn(t
−
k )

− 7
2μ(1+en) in sliding regime and vt(t

+
k )

vn(t
−
k )

= −(1+et)
vt(t

−
k )

vn(t
−
k )

in stick-

ing regime [352]. Transitions between stick and slip occur at vt(t
−
k )

vn(t
−
k )

= ± 7
2μ(1 + en).

This is different from the above model which takes its roots in Coulomb’s friction.

The next step is to check the energetical constraint. In the first mode (“average
sticking”) we get

TL(tk) = 1
2mvn(t

−
k )2

{
e2

n − 1 + (e2
t − 1)

(
vt(t

−
k )

vn(t
−
k )

)2
}

− 5
14mvn(t

−
k )2 − mrω(t−k )et|vn(t

−
k )| vt(t

−
k )

|vn(t
−
k )| .

(4.74)
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When et = 0 we are back to the first case and TL(tk) ≤ 0 for all en and et ∈ [−1, 1].
For the case of a particle r = 0 and TL(tk) ≤ 0 for all en and et ∈ [−1, 1]. If
ω(t−k )vt(t

−
k ) ≥ 0, the last term in (4.74) is always nonpositive. Equivalently, since

the tangential restitution reverses the tangential velocity, ω(t−k )vt(t
+
k ) ≤ 0. This

means that if vt(t
+
k ) > 0 then the sphere should rotate initially negatively (see the

frames in Fig. 4.12a), i.e., the angular velocity contributes positively in vt = ẏ − rω.
And if vt(t

+
k ) < 0 the angular velocity should contribute negatively in vt = ẏ − rω

with ω > 0. It seems therefore relatively easy to find conditions that yield kinetic
energy gain, if no restrictions are put on the restitution and friction coefficients. In
the mode 2, we obtain:

TL(tk) ≤ 1
2mvn(t

−
k )2
{

49
4

(et−1)(1+en)
2μ2

et+1 + e2
n − 1

}
− 35

2 mμ2(1 + en)
2vn(t

−
k )2 7+3et

4(1+et)
,

(4.75)

and a similar expression for mode 3. We see that TL(tk) ≤ 0 for en ∈ [−1, 1]
and et ≤ 1 (however, dissipation may hold for other choices of the coefficients:
nothing tells us from (4.75) that en has to be in this interval). We infer that the choice
ṽt = vt(t

+
k ) + etvt(t

−
k ) is dissipative for a large choice of the restitution coefficients.

Remark 4.11 It is of interest for some applications [314] to investigate whether
or not the above choices for ṽt allow one to model observed phenomena like sign
reversal of ẏ(t−k ) and ω(t−k ). For instance, is it possible to get ẏ(t−k ) > 0, ω(t−k ) <

0, and ẏ(t+k ) < 0, ω(t+k ) > 0? We note also that positive as well as negative
tangential coefficient restitution are reported in [314]. Let us consider ṽt = vt(t

+
k )

and denote tan(β+) = ẏ(t+k )

|vn(t
+
k )| and tan(β−) = ẏ(t−k )

|vn(t
−
k )| the rebound and incidence

angles, respectively (see Fig. 4.14a). If |vt(t
−
k )| > 7

2μ(1+en)|vn(t
−
k )|, then tan(β+) =

1
en

tan(β−)−μ 1+en
en

sgn(vt(t
+
k )). If |vt(t

−
k )| ≤ 7

2μ(1+en)|vn(t
−
k )|, we are in a sticking
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Fig. 4.14 2-D and 3-D spheres
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mode and tan(β+) = 1
en

tan(β−) − 2
7en

vt(t
−
k )

|vn(t
−
k )| , where the selection ξ is calculated

from mσvt (tk) = −mvt(t
−
k ) = − 7

2mμ(1+en)|vn(t
−
k )|ξ . In the latter case, tan(β+) ≤

1
en

tan(β−)−μ 1+en
en

. Take for instance β− = π
4 , en = 1, and μ = 0.7, then tan(β+) ≤

−0.4; the sphere rebounds backward.

The three-dimensional sphere/anvil impact with a preimpact angular velocity Ω =
ωnn + ωt1 t1 + ωt2 t2 is more involved. In particular the tangential velocity may not
only reverse, but change its direction during the shock.

4.3.1.2 Three-Dimensional Sphere/Plane Impact

Let us consider a generalization of the above case, as depicted in Fig. 4.14b. The
Galilean frame axis and the local frame axis at the impact time, are chosen equal:

i = n, j = t1, k = t2. The twist is given by T (t−k ) =
[

Ω(t−k )

VG(t−k )

]
G

=
[

Ω(t−k )

VG(t−k ) + AG × Ω(t−k )

]
A

, AG = rn = r i, Ω(t−k ) = ωn(t
−
k )n + ωt1(t

−
k )t1 +

ωt2(t
−
k )t2, VA = (ẋ, ẏ − rωt2 , ż + rωt1)

T = (vn, vt1 , vt2)
T . The wrench is W (tk) =[

FA(tk)
0

]
A

=
[

FA(tk)
GA × FA(tk)

]
G

, GA = −rn, GA × FA = r Ft2 t2 − r Ft1t1.

The inertia tensor is equal to diag(I ), I = 2
5mr2. The unilateral constraint is

f (q) = x − r ≥ 0. The shock dynamics is therefore given as:

⎧⎨
⎩
mσẋ (tk) = mσvn(tk) = pn(tk)
mσẏ(tk) = pt1(tk)
mσż(tk) = pt2(tk)

⎧⎨
⎩

Iσωn(tk) = 0
Iσωt1

(tk) = rpt2(tk)
Iσωt2

(tk) = −rpt1(tk).
(4.76)

Using Newton’s restitution law and the kinematics, we deduce

⎧⎨
⎩

σvn(tk) = −(1 + en)vn(t
−
k )

σvt1(tk) = I+mr2

mI pt1(tk)
σvt2

(tk) = I+mr2

mI pt2(tk)

⎧⎨
⎩

Iσωn(tk) = 0
σωt1(tk) = r

I pt2(tk)
σωt2

(tk) = − r
I pt1(tk).

(4.77)

The first set of equalities shows that sphere/plane collisions have decoupled normal
and tangential effects (in the terminology of [106, 107] they are balanced collisions,
see Sect. 4.3.5.6).We now have to formulate three-dimensional Coulomb’s friction
at the impulse level. To this aim we rely on the material of Sect. 5.3, taking some
advance. Let us start with De Saxcé’s formulation (Sect. 5.3.3) which states that (here
we state it at the impulse level):

ṽt1 t1 + ṽt2 t2 + (ṽn + μ||ṽt||)n ∈ −NC (P), (4.78)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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where C = {P = (pTt , pn)
T | ||pt|| ≤ μpn} is the convex friction cone, and ṽt has

to be chosen. Recall that NC (P) is the normal cone to the cone C , computed at P .
Using now (B.19), we can rewrite (4.78) equivalently as

P ∈ −NC 

⎛
⎝ ṽt1

ṽt2
ṽn + μ||ṽt||

⎞
⎠ (4.79)

and as the cone complementarity problem:

C  � (ṽt1 , ṽt2 , ṽn + μ||ṽt||)T ⊥ (pt1 , pt2 , pn)
T ∈ C . (4.80)

An important discrepancy compared with the case of sliding motion, is that we can
set ṽn(tk) = vn(t

+
k ) + envn(t

−
k ), which is Newton’s restitution law. Hence stated, the

friction law at the impulse level is equivalent to (we drop the argument tk):

1. If ṽt = 0 then ||pt|| ≤ μpn (“sticking”).
2. If ṽt �= 0 then pt = −μpn

ṽt
||ṽt || (“sliding”).

3. 0 ≤ pn ⊥ ṽn ≥ 0.

Recall that the normal complementarity problem can be rewritten using the collision
dynamics as the Linear Complementarity Problem 0 ≤ vn(t

+
k ) − vn(t

−
k ) ⊥ vn(t

+
k ) +

envn(t
−
k ) ≥ 0, whose solution is vn(t

+
k ) = vn(t

−
k ) if vn(t

−
k ) ≥ 0, while vn(t

+
k ) =

−envn(t
−
k ) if vn(t

−
k ) < 0. Taking this into account, pn(tk) and vn(t

+
k ) are no longer

unknowns of the impact problem.
Now at an impact we can write pt(tk) = μm(1 + en)vn(t

−
k ) ṽt(tk )

||ṽt(tk )|| , which results

in vti (t
+
k ) = vti (t

−
k ) + 7

2mμ(1 + en)mvn(t
−
k )

ṽti (tk )
||ṽti || , i = 1, 2. If we denote φ̃ the angle

such that cos(φ̃) = ṽt1
||ṽt1 || and sin(φ̃) = ṽt2

||ṽt2 || , then vt1(t
+
k ) = vt1(t

−
k ) + 7

2μ(1 +
en)mvn(t

−
k ) cos(φ̃) and vt2(t

+
k ) = vt2(t

−
k ) + 7

2μ(1 + en)mvn(t
−
k ) sin(φ̃). Let us now

see how we may derive a generalized equation for the tangential velocity, similar to
the one we obtained in the two-dimensional case. Suppose that ṽt = vt(t

+
k )+Etvt(t

−
k ).

Since ṽn = 0 we obtain from (4.78):

(
vt(t

+
k ) + Etvt(t

−
k )

μ||vt(t
+
k ) + Etvt(t

−
k )||

)
∈ −NC

(
2m
7 (vt(t

+
k ) − vt(t

−
k ))

−(1 + en)mvn(t
−
k )

)
. (4.81)

It is noteworthy that the knowledge of vn(t
−
k ) implies the knowledge via Newton’s

restitution law of pn(tk) and hence of Coulomb’s disk in Fig. 4.15 (see Sect. 5.3.2). It is
therefore convenient to take advantage of this, and to rewrite −ṽt ∈ ∂ψD(pn)(pt(tk)),
equivalently pt(tk) ∈ ∂ψ

D(pn)
(−ṽt), where the conjugate function of the indica-

tor function is given by ψ
D(pn)

(·) = μpn(tk)|| · ||. Here the Coulomb’s disk is

D(pn(tk)) = {pt ∈ R
2|√pTt pt ≤ μ(1 + en)m|vn(t

−
k )|}. We get:

vt(t
+
k ) + Etvt(t

−
k ) ∈ −ND(pn(tk ))

(
2

7
(vt(t

+
k ) − vt(t

−
k ))

)
, (4.82)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 4.15 Coulomb’s disk

A

pn

t2

t1

n

(pn)

from which we infer that:

vt(t
+
k ) = vt(t

−
k ) + 7

2m
proj[D(pn(tk));−2m

7
(I2 + Et) vt(t

−
k )]. (4.83)

This means that the postimpact tangential velocity can be computed by solving a
quadratic program with convex constraints, which certainly is a nice feature for
numerical simulations. The two-dimensional case can be recovered from (4.83) as a
special case. The impulse pt(tk) is obtained from the collision dynamics, as well as
σωt1(tk) and σωt2(tk). Let Et = 0, then the sticking mode, (i.e., vt(t

+
k ) = 0) occurs if

and only if ||vt(t
−
k )|| ≤ 7

2μ(1 + en)|vn(t
−
k )|. Let us now pass to the analysis of the

kinetic energy loss at the impact time. The kinetic energy is given by T (VG,Ω) =
1
2mV T

G VG + 1
2ΩTIΩ , where I = diag( 2

5mr2) ∈ R
3×3. After some calculations

we obtain the following:

TL(tk) = 1

2
pn(tk)(vn(t

+
k ) + vn(t

−
k )) + 1

2
pt(tk)

T (vt(t
+
k ) + vt(t

−
k )) (4.84)

with vt = vt1t1 + vt2t2. Notice that if μ = 0 then pt(tk) = 0 while both vt(·) and
Ω(·) are continuous at tk , and TL(tk) = 1

2 pn(tk)(vn(t
+
k ) + vn(t

−
k )): we recover the

Thomson and Tait formula in (4.184). Starting from (4.84) we state the following:

Proposition 4.3 Assume that themappings vn(t
+
k )+vn(t

−
k ) → −pn(tk) and vt(t

+
k )+

vt(t
−
k ) → −pt(tk) are monotone. Then TL(tk) ≤ 0.

Indeed the monotonicity implies that pn(tk)(vn(t
+
k )+vn(t

−
k )) ≤ 0 and pt(tk)T (vt(t

+
k )

+ vt(t
−
k )) ≤ 0. Using Newton’s restitution law one gets pn(tk) ≥ 0 and vn(t

+
k ) +

vn(t
−
k ) = (1 − en)vn(t

−
k ) ≤ 0 for all en ∈ [0, 1], thus Newton’s law guarantees

the monotonicity of the above mapping. Suppose that Et = I2, and that ṽt �= 0
(the “sliding” mode), then the monotonicity of the second mapping is guaranteed as
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well. It is noteworthy that imposing such conditions yields energy consistency in all
tangential modes.

4.3.1.3 Disk/Plane Impact

If the sphere is replaced by a disk with radius r > 0, the moment of inertia is changed
to I = mr2

2 . The impact dynamics in (4.68) becomes:

⎧⎪⎨
⎪⎩
mσvn(tk) = pn(tk)

mσvt (tk) =
(

1 + mr2

I

)
pt(tk) = 3pt(tk)

Iσω(tk) = −rpt(tk).

(4.85)

The kinetic energy loss is given by:

TL(tk) = 1

2
m(1 + en)(vn(t

−
k ))2

{
en − 1 − 2μ

vt(t
−
k )

vn(t
−
k )

ξ − I + mr2

I
μ2(1 + en)ξ

2

}

(4.86)

with ξ ∈ sgn(ṽt). The constant β in the generalized equation of Proposition 4.2
has also to be adapted accordingly. The conclusions are the same as for the two-
dimensional sphere.

4.3.1.4 Particle/Plane Impact

In this case there is no rotational effect, so that the third equation in the left-hand side
of (4.68) disappears. The generalized equation of Proposition 4.2 becomes vt(t

+
k ) −

vt(t
−
k ) ∈ −μ(1 + en)vn(t

−
k )sgn(ṽt(vt(t

+
k )). The kinetic energy loss is:

TL(tk) = −1

2
m(1 + en)(vn(t

−
k ))2

{
1 − en − μ2(1 + en)ξ − 2μ

vt(t
−
k )

vn(t
−
k )

}
(4.87)

with ξ ∈ sgn(ṽt). If ṽt(vt(t
+
k )) = vt(t

+
k ) or ṽt(vt(t

+
k )) = vt(t

+
k ) + etvt(t

−
k ) then the

above analysis are led in a similar way.

4.3.1.5 Rigid Rod/Plane Impact

Let us now consider a rigid rod with massm that collides an anvil as in Fig. 4.12b. The
dynamics involves tangential/normal couplings, which render the analysis far more
involved (this fact will be encountered again in Sects. 5.5 and 5.6). The objective of
this section is to illustrate this fact. The rod’s tip has radius zero and its moment of
inertia at G is I = mL2

12 with L = l+ l ′, and q = (x, y, θ)T . The unilateral constraint
is f (q) = y − l sin(θ) ≥ 0. The impact dynamics is given by:

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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⎧⎨
⎩
mσẋ (tk) = pt(tk)
mσẏ(tk) = pn(tk)
Iσθ̇ (tk) = −l cos(θ(tk))pn(tk) + l sin(θ(tk))pt(tk).

(4.88)

We have vt = ẋ + l sin(θ)ω and vn = ẏ− l cos(θ)ω, ω = θ̇ . After some calculations
one arrives at
⎧⎪⎪⎨
⎪⎪⎩

σvt (tk) = − l2

I sin(θ(tk)) cos(θ(tk))pn(tk) +
(

1
m + l2

I sin(θ(tk))2
)
pt(tk)

σvn(tk) =
(

1
m + l2

I cos(θ(tk))2
)
pn(tk) − l2

I sin(θ(tk)) cos(θ(tk))pt(tk)

σθ̇ (tk) = − l cos(θ(tk ))
I pn(tk) + l sin(θ(tk ))

I pt(tk).

(4.89)

The restitution law vn(t
−
k ) = −envn(t

−
k ) and the tangential model in (4.69) yield:

pn(tk) = −mI (1 + en)vn(t
−
k )

I + ml2 cos(θ(tk))2 + ml2 sin(θ(tk)) cos(θ(tk))μξ
(4.90)

with ξ ∈ sgn(ṽt). A novelty appears here, that is a kinetic constraint pn(tk) ≥ 0
which is not automatically guaranteed.

Lemma 4.1 Let vn(t
−
k ) < 0 and (4.69) hold. Let θ ∈ (0, π

2 ) (resp. θ ∈ ( π
2 , π)). (i)

If ξ > 0 (resp. ξ < 0) then pn(tk ) in (4.90) is positive for any μ ≥ 0. (ii) If ξ < 0

(resp. ξ > 0), then pn(tk) in (4.90) is positive if and only ifμ < I+ml2 cos(θ(tk ))2

−ml2 sin(θ(tk )) cos(θ(tk ))ξ
.

(iii) If ξ ∈ [−1, 1], there exists a ξ ∗ ∈ [−1, 1] such that pn(tk) ≥ 0. (iv) If μ <

μmax(θ(tk))
�= I+ml2 cos(θ(tk ))2

ml2 sin(θ(tk ))| cos(θ(tk ))| then pn(tk) > 0.

The fourth condition is sufficient only, hence it may be conservative. Item (iii) means
that there exists an impulse inside the friction cone such that the kinetic constraint
is satisfied. Obviously when θ = π

2 friction plays no role, from (4.89) the normal
and tangential effects are decoupled. Suppose that ṽt(vt(t

+
k )) = vt(t

+
k ), then ξ < 0

means that ξ = −1, so vt(t
+
k ) < 0; the rod is pulled toward the left in Fig. 4.12. While

ξ > 0 means ξ = 1, so vt(t
+
k ) > 0, the rod is pushed toward the right. Everyday-life

experiments show that pulling is easier than pushing. We note that when l = l ′ and
θ ∈ (0, π

2 ) then μmax(θ(tk)) = 1+3 cos(θ(tk ))2

3 sin(θ(tk )) cos(θ(tk ))
. Proceeding as in Sect. 4.3.1.1, we

set the following.

Proposition 4.4 Let (4.69) hold. Then vt(t
+
k ) is the solution of the generalized equa-

tion39:

A(θ)vt(t
+
k ) + B(θ)sgn(ṽt)vt(t

+
k ) + C(θ) ∈ −(1 + D(θ))sgn(ṽt) (4.91)

where we have A(θ) = I+ml2 cos(θ)2

−μ(I+ml2 sin(θ)2)(1+en)vn(t
−
k )
, B(θ) = −ml2 sin(θ) cos(θ)

(I+ml2 sin(θ)2)(1+en)vn(t
−
k )
,

C(θ) = (I+ml2 cos(θ)2)vt(t
−
k )

μ(I+ml2 sin(θ)2)(1+en)vn(t
−
k )

+ ml2 sin(θ) cos(θ)

μ(I+ml2 sin(θ)2)
, D(θ) = ml2 sin(θ) cos(θ)vt(t

−
k )

(I+ml2 sin(θ)2)(1+en)vn(t
−
k )
.

39The argument tk is dropped in θ .
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We have A(θ) > 0, B(θ) > 0, C(θ) and D(θ) depend on the ratio vt(t
−
k )

vn(t
−
k )

. Let

ṽt(vt(t
+
k )) = vt(t

+
k ), then we obtain the generalized equation

A(θ(tk))vt(t
+
k ) + B(θ(tk))|vt(t

+
k )| + C(θ(tk)) ∈ −(1 + D(θ))sgn(vt(t

+
k )) (4.92)

whose left-hand side is continuous, single-valued piecewise-linear function of vt(t
+
k ),

while the right-hand side is set-valued. The solution is unique if the two graphs have
a unique intersection. The analysis of the generalized equation ax + b|x | + c ∈
−(1 + d)sgn(x) is necessary. The objective is to calculate the conditions such that
the intersection between the graph of the single-valued mapping x �→ ax + b|x | + c
and the graph of the set-valued mapping x �→ −(1 + d)sgn(x), exists and is unique.
This may be done in this simple case by inspection. Let us use however some general
tools from variational inequalities, as we did in the proof of Proposition 4.2. Let us

first assume that a + b > 0, a − b > 0, 1 + d > 0. Let g(x)
�= (1 + d)sgn(x).

Then its conjugate function is g(y) = N[−(1+d),1+d](y). Let us now invert f (x) =
ax + b|x | + c as x = h(y) = y−c

a+b if y ≥ c and x = h(y) = y−c
a−b if y ≤ c. Then

using (B.16) we obtain the equivalent generalized equation

0 ∈ h(y) + N[−(1+d),1+d](y)
�

Find y ∈ [−(1 + d), 1 + d] such that 〈h(y), z − y〉 ≥ 0 for all z ∈ [−(1 + d), 1 + d]
(4.93)

which is a standard form of generalized equations and variational inequalities [385,
Definition 1.1.1, Eq. (1.1.3)]. This is depicted in Fig. 4.16 (see Fig.5.22 in Chap. 5
for a similar graphical analysis of another generalized equation). Clearly there is a
unique solution y∗ whatever the value of c, a conclusion we could get from [385, The-
orem 2.3.3] from the fact that the mapping h(y) is continuous and strictly monotone
(showing in passing that we could consider more general mappings, relying on [385,

0

1+d y

c c c

slope 1
a−b > 0

slope 1
a+b > 0

slope 1
a−b < 0

−N[−(1+d),1+d](y)

h(y)

y∗ = −(1+d) −(1+d)

y∗ = 1+d

Fig. 4.16 Generalized equation 0 ∈ h(y) + N[−(1+d),1+d](y)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Corollary 2.2.5, Theorem 2.3.3] for existence/uniqueness conditions). If y∗ > c then
x∗ = y∗−c

a+b > 0, if y∗ < c then x∗ = y∗−c
a−b < 0. We may treat other cases in a similar

way. If for instance a − b < 0 instead, then we obtain existence of solutions, but
uniqueness is usually lost. Notice that x∗ = 0 is equivalent to y∗ ∈ [−1 − d, 1 + d],
which is in turn equivalent to −1 − d < c < 1 + d. This may be used to calcu-
late conditions for sticking impact: vt(t

+
k ) = 0 and ξ ∈ [−1, 1] (which means that

p = (pt, pn)
T may lie anywhere inside the friction cone). Now if c > 1 + d, we get

y∗ = 1 + d so y∗ < c and x∗ = y∗−c
a−b = 1+d−c

a−b < 0, while if c < −(1 + d), we get

y∗ = −(1 + d) < 0 so y∗ > c and x∗ = y∗−c
a+b = −1−d−c

a+b > 0.

Proposition 4.5 Let θ ∈ (0, π
2 ),0 ≤ μ < μmax, l = l ′ (⇒ I = ml2

3 ) and ṽt = vt(t
+
k ).

Let also vt(t
−
k )

|vn(t
−
k )| < μmax(θ(tk)). Then

1. vt(t
+
k ) = 0 if

(1 + en)
−3 sin(θ) cos(θ)−μ(1+3 sin(θ)2)

1+3 cos(θ)2+3μ cos(θ) sin(θ)
≤ vt(t

−
k )

vn(t
−
k )

≤ (1 + en)
−3 sin(θ) cos(θ)+μ(1+3 sin(θ)2)

1+3 cos(θ)2−3μ cos(θ) sin(θ)
.

(4.94)

2. vt(t
+
k ) < 0 if vt(t

−
k )

vn(t
−
k )

> (1 + en)
−3 sin(θ) cos(θ)+μ(1+3 sin(θ)2)

1+3 cos(θ)2−3μ cos(θ) sin(θ)
.

3. vt(t
+
k ) > 0 if vt(t

−
k )

vn(t
−
k )

< (1 + en)
−3 sin(θ) cos(θ)−μ(1+3 sin(θ)2)

1+3 cos(θ)2+3μ cos(θ) sin(θ)
.

Proof The proof follows from applying 1−D(θ) ≤ C(θ) ≤ 1+D(θ), then C(θ) >

1 + D(θ), then C(θ) < −(1 + D(θ), and noticing that μ < μmax ⇔ A(θ) > B(θ),

while vt(t
−
k )

|vn(t
−
k )| < μmax(θ) ⇔ 1 + D(θ) > 0.

This shows logically that a sticking collision occurs in case the preimpact velocity of

the tip is not too far from the vertical. Take θ = π
4 and denote tan(γ −)

�= vt(t
−
k )

vn(t
−
k )

, then

we obtain (1 + en)
−3−5μ

5+3μ
≤ tan(γ −) ≤ (1 + en)

−3+5μ

5−3μ
, under 0 < μ < μmax = 5

3 .

For instance for μ = 1
2 and en = 0 we obtain −1 ≤ tan(γ −) ≤ 1 (see Fig. 4.17a). On

the contrary sliding collisions with vt(t
+
k ) �= 0 occur when the preimpact velocity is

“horizontal enough”. Here two comments arise: first, we should check whether the
various conditions in Proposition 4.5 are compatible (it may be that for some θ(tk)
and some μ some of the three regimes do not exist); second, we should also analyze
the case when the generalized equation (4.92) has more than one solution, because
it is possible that the complete problem, including energy constraints, nevertheless
has a unique solution. Therefore we propose here only a partial analysis of the whole
problem.

Remark 4.12 In the frictionless case μ = 0, one obtains multiplying both sides of
(4.92) by μ, or directly from (4.89) and (4.90) that

vt(t
+
k ) = vt(t

−
k ) + ml2 sin(θ(tk)) cos(θ(tk))

I + ml2 cos(θ(tk))2
(1 + en)vn(t

−
k ) (4.95)
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θ

f (q)

G

l

r

x

y

vt(t−k )vt(t−k )

vn(t−k )

(a) (b)

γ− γ−

Fig. 4.17 a Sticking impact, b rod with rounded tip

which shows normal/tangental couplings effects. This is also compatible with (4.94):

vt(t
+
k ) = 0 ⇔ vt(t

−
k )

vn(t
−
k )

= −(1 + en)
3 sin(θ(tk )) cos(θ(tk ))

1+3 sin(θ(tk ))2 .

Let us now pass to the analysis of the kinetic energy loss TL(tk). Let l = l ′. After
calculations we get

TL(tk) = 1
2 pt(tk)[vt(t

+
k ) + vt(t

−
k )] + 1

2 pn(tk)[vn(t
+
k ) + vn(t

−
k )]

= 1
2 pn(tk)

{−μξ [vt(t
+
k ) + vt(t

−
k )] + (1 − en)vn(t

−
k )
}
.

(4.96)

This expression is the Thomson and Tait formula (see Sect. 4.3.12) with friction.
Developing more

TL (tk) = pt(tk)vt(t
−
k ) + pn(tk)vn(t−k ) + 3

m sin(θ(tk)) cos(θ(tk))pt(tk)pn(tk)
+ 1

2m (1 + 3 sin(θ(tk))
2)pt(tk)

2 + 1
2m (1 + 3 cos(θ(tk))

2)pn(tk)
2

= m
2 (e2

n − 1)(vn(t−k ))2

+
(

3
2 sin(θ(tk)) cos(θ(tk))pn(tk) + (1 + 3 sin(θ(tk))

2)pt(tk)
)

(vt(t
+
k ) + vt(t

−
k ))

+2l[cos(θ(tk))pn(tk) + sin(θ(tk))pt(tk)](θ̇(t+k ) + θ̇ (t−k )),

(4.97)

with pn(tk) = −m(1+en)vn(t
−
k )

1+3 cos(θ(tk ))2+3 sin(θ(tk )) cos(θ(tk ))μξ
, pt(tk) = −μpnξ , vt(t

+
k ) + vt(t

−
k ) =

2vt(t
−
k )+ 3

m sin(θ(tk)) cos(θ(tk))pn(tk)+ 1
m (1+3 sin(θ(tk))2)pt(tk), θ̇ (t+k )+θ̇ (t−k ) =

2θ̇ (t−k ) + 3
ml cos(θ(tk))pn(tk) + 3

ml sin(θ(tk))pt(tk), ξ ∈ sgn(vt(t
+
k )).

Proposition 4.6 (Sticking impact) Let the conditions of Proposition 4.5 hold,
vn(t

−
k ) < 0 and en ∈ [0, 1). Then there exists an impulse P = (pt, pn)

T inside
the friction cone (equivalently there exists ξ ∈ [−1, 1]) such that TL(tk) ≤ 0.

Proof The proof uses (4.96), which simplifies in the sticking impact case to TL(tk) =
1
2 pt(tk)vt(t

−
k ) + 1

2 pn(tk)(1 − en)vn(t
−
k ), consequently TL(tk) = 1

2 pn(tk)[(en −
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1)|vn(t
−
k )| −μvt(t

−
k )ξ ]. For ξ small enough (precisely it has to satisfy −μvt(t

−
k )ξ <

(1 − en)|vn(t
−
k )|) , the term between brackets can always be made negative.

If μ = 0 the expression in (4.97) simplifies to

TL(tk) = 1

2

m(e2
n − 1)(vn(t

−
k ))2

1 + 3 cos(θ(tk))2
, (4.98)

which is nonpositive for all en ∈ [0, 1]. The kinetic energy loss is the same as for a
particle, however with an equivalent mass m

1+3 cos(θ(tk ))2 . This is different from what
shall be exposed in Sect. 4.3.10.2, where it is the CoR that will vary depending
on the angle. It may be a rather cumbersome task to analyze the conditions that
yield dissipativity with μ > 0, i.e., TL(tk) ≤ 0, when vt(t

+
k ) �= 0.40 Here we

may nevertheless use the second expression in (4.96) which helps us to prove the
following.

Proposition 4.7 Let a collision occur at tk , i.e., vn(t
−
k ) < 0, en ∈ [0, 1], and assume

that pn(tk) > 0. (i) Let ṽt = vt(t
+
k ). If there is no tangential velocity reversal, then

TL(tk) < 0. (ii) If ṽt = vt(t
+
k ) + vt(t

−
k ), then TL(tk) < 0.

Proof (i) No velocity reversal means that vt(t
−
k ) > 0 ⇒ vt(t

+
k ) > 0 and vt(t

−
k ) <

0 ⇒ vt(t
+
k ) < 0. Since ξ = sgn(vt(t

+
k ), the result follows. (ii) We get ξ [vt(t

+
k ) +

vt(t
−
k )] = |vt(t

+
k ) + vt(t

−
k )| > 0, which proves the dissipation.

The slight modification of ṽt allows to take into account a kind of average impact
velocity, which has better dissipativity properties than using only the postimpact
velocity (a purely implicit definition). The choice ṽt(tk) = vt(t

+
k )+ vt(t

−
k ) is made in

[416, Chap. 4], who treats the falling-rod problem in great details. Case (ii) encom-
passes both sticking and sliding impacts. We see from Proposition 4.5 that the pre-
and postimpact tangential velocities may not always have the same sign, so applying
ṽt(tk) = vt(t

+
k ) may not always be energetically consistent.

� The planar collision of a rigid rod with a rough rigid anvil, yields surprizingly
complex postimpact existence and uniqueness, and kinetic energy loss analysis, com-
pared with the foregoing examples. This is due to normal/tangential couplings, which
are not met in the foregoing examples.

To summarize, the rod/plane impact problem boils down to solve the following
problem: given (vn(t

−
k ), vt(t

−
k )), μ > 0, en, find a unique (vn(t

+
k ), vt(t

+
k )) such that:

pn(tk) ≥ 0 (kinetic constraint), TL(tk) ≤ 0 (energetic constraint), vn(t
+
k ) ≥ 0 (kine-

matic constraint, normal restitution), vt(t
+
k ) is a solution of the generalized equation

(4.91), and pt(tk) ∈ −μpn(tk)sgn(ṽt) (tangential model). But, an impact law that
satisfies all these requirements may still need to be improved in order to have good
predictability properties; they are just necessary. Such constraints appear to be uni-
versal in any collision problem (single or multiple impacts).

40This is the reason which motivates the development of general modeling frameworks, which
guarantee a priori energetical consistency.
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Remark 4.13 The value μmax(θ(tk)) in Lemma 4.1 is usually too large to be of
practical importance (for instance let θ(tk) = π

4 and l = l ′, then μmax(π/4) = 5
3 ).

Let us however slightly modify the rod’s tip with a rounded tip of radius r > 0 (see
Fig. 4.17b). The unilateral constraint is now f (q) = y − r − l sin(θ) ≥ 0, and from
Varignon’s formula one finds vt = ẋ + (r + l sin(θ))θ̇ , vn = ẏ − l θ̇ cos(θ). After
some calculations, we obtain

{
σvt (tk) = I+m(r+l sin(θ)2)

mI pt(tk) − l(r+l sin(θ)) cos(θ)

I pn(tk)

σvn(tk) = I+m(r+l cos(θ)2)

mI pn(tk) − l(r+l sin(θ)) cos(θ)

I pt(tk).
(4.99)

It follows that pn(tk) = −(1+en)mIvn(t
−
k )

I+ml2 cos(θ(tk ))2+ml cos(θ(tk ))(r+l sin(θ(tk )))μξ
. Therefore pn(tk) ≥ 0

for all ξ is equivalent to μ < μmax = I+ml2 cos(θ(tk )2

ml cos(θ(tk ))(r+l sin(θ(tk )))
, and simplifying μmax =

(1+3 cos(θ(tk ))2)l
3 cos(θ(tk ))(r+l sin(θ(tk ))

. Consider θ(tk) = π
4 . Then μmax = 5l

3
√

2r+3l
. For r = 10l we get

μmax ≈ 0.110, for r = 3l we get μmax ≈ 0.31.

Such issues are quite similar to what will be described in Sect. 5.6 on Painlevé
paradoxes in sliding motion. The rounded tip case shows that they can occur for
arbitrarily small coefficients of friction, and that the contact geometry plays a crucial
role. Thus, pretending that these “paradoxes” are of purely theoretical interest, is
wrong. The other, important comment, is about the validity of the used contact model
that yields such singularities.

4.3.2 Kinematic CoR: Brach’s Method

Brach deals in [173–175, 178] with the planar and three-dimensional cases, and
derives TL as a nonlinear (second order polynomial) function of Newton’s coeffi-
cient en, and of an equivalent coefficient of friction or impulse ratio μ. In the two-

dimensional case, this ratio is defined as μ
�= pt

pn
, where pt and pn are the tangential

and normal impulses respectively at the contact point, i.e., pn = pi,n and pt = pi,t1 ,
where it is assumed that the axis are chosen such that pi,t2 = 0. Let us denote here
the coefficient of friction as f , then μ = − f ξ where ξ ∈ sgn(ṽt) (notations of
the previous sections). In the more general three-dimensional case [174, 175], the
impulse on body i is Pi = pi,nn+ pi,t1 t1 + pi,t2 t2. It is then possible to define 2 ratios
μ1 and μ2 such that Pi = pi,n(n + μ1t1 + μ2t2) (recall that from the law of mutual
actions one has P1 = −P2, i.e., p1,n = −p2,n, p1,t1 = −p2,t1 , p1,t2 = −p2,t2 ). For
the case of two particles moving in a plane and colliding with friction, the starting
point of the analysis is [173, 469]

TL(tk) = 1

2

m1m2

m1 + m2

(
vr,n(t

−
k )
)2

(1+en)
[
(en − 1) + 2μα + (1 + en)μ

2
]
, (4.100)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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where α = v1,t1 (t−k )−v2,t1 (t−k )

vr,n(t
−
k )

. It is supposed that vi,t2(t
−
k ) = 0, i.e., the initial tangential

velocity is along t1 (more exactly, the local frame at the contact point is chosen
such that t2 is normal to the common plane in which the two particles evolve). The
expression in (4.100) is similar to (4.72), using the ratio μ instead of Coulomb’s law.
More complex collisions are treated like the rod/plane or rod/sphere impacts, with
the corresponding expressions of TL [175, Chaps. 5, 6].

Remark 4.14 (Friction at the impulse level) Pérès [995] stated the following for
impacts with dry friction

• If there is a unidirectional sliding velocity during the collision, then pt

pn
= μ. In

other words, the impulse vector lies on the boundary bd(C ) of the friction cone.
• If there is a change of the direction of sliding (or tangential velocity reversal), then

||pt|| ≤ μpn, (i.e., the impulse lies inside the friction cone, i.e., in Int(C ))

This is consistent with (4.78), (4.79) and (4.80). Whittaker [1265] states that if
vt(t

+
k ) = 0 then the percussion vector P ∈ Int(C ), whereas if vt(t

+
k ) �= 0 then

P ∈ bd(C ): in the planar case, this is (4.69) with ṽt = vt(t
+
k ); as we evidenced

from the kinetic energy loss (see (4.38)), such a rule is likely to be energetically
inconsistent since the mapping −pt �→ vt(t

+
k ) + vt(t

−
k ) is not monotone with this

choice. Kane and Levinson [642] use a similar idea but with a static and a dynamic
friction coefficients (see Fig. 5.9b). Smith [1121] proposes another rule to relate
tangential and normal components of the percussion vector, see Sect. 4.3.3.

Therefore Pérès’ approach treats the coefficient μ similarly as a Coulomb’s friction
coefficient, and is different from that in [175], according to whom μ is the impulse
ratio and is to be determined so that it yields TL(en, μ) ≤ 0. In a practical impact
problem, one can use this criteria to check whether the set of coefficients associated
a priori or after experiments to the bodies is energetically consistent [175, §5.4];
if it is not, it may signify that the coefficients are wrong, but the work in [173,
174] does not propose any method to a priori compute the value of the coefficient
for a given problem [176]. Bounds on the impulse ratio are rather derived, that
guarantee energetical consistency of the model; they are called critical values [175].
Consider now the energy loss in (4.100). As we pointed out in the introduction of this
section, one might think at first sight that since both phenomena (normal process and
Coulomb’s friction) are dissipative, their combination model will always dissipate
energy. As shown in [175, §3.4], such is not the case. For en ∈ [0, 1], TL(tk) decreases
when μ increases, but this is true only for μ ≤ μm = α

1+en
. This is simply found

by setting ∂TL
∂μ

= 0. For two-particle collisions, this value corresponds to the value

μ0 such that the relative tangential velocity is zero at separation, (i.e., at t+k ), and is
clearly a limit value below which unidirectional slip occurs.

The determination of μ is thoroughly covered in [175, §6.3.1], where many differ-
ent experimental data are analyzed. Experimental results for the determination of the
impulse ratio can also be found in [1232] (impacts of steel spheres on plane surfaces
made of various alloys-zinc, armco-iron, steel, high-alloyed steel of the austenitic
type), [1164] (impacts of hard particles with plastic and rubber specimens), [736]

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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(impacts of steel spheres against a heavy steel plate, at low speeds -between 0.01
and 0.05 m/s-; the results are confirmed analytically in using a simple approximating
model), [564] (impacts of hard steel spheres on mild steel target), [1166] (same exper-
iment as in [564] but with different target materials; both led at high speeds -between
50 and 300 m/s.), [1144] (falling slender rods, but their goal was not to validate the
frictional model). All those experiments concluded that the impulse ratio is roughly
a constant. In [175, §6.3.1] it is shown that they fit with the model in (4.113) (4.114)
below. Note that all the effects that play a role in the determination of μ are specific to
the collision process, where in particular high pressure may exist at the contact point.
Hence the friction models for shock processes may be quite different from those used
when only sliding occurs, see, e.g., [58]. Although it has been often reported from
experimental data that μ = pt

pn
is constant, this may not always be the case even for

very simple bodies. This may be related to the incidence angle (which is constant in
[1144], the preimpact velocity being normal to the surface). In [248, 274] results that
concern shocks of thin disks with heavy steel plates, and without slip reversal, show
that the ratio μ can vary by a factor two. The impulse ratio value depends essentially
on the incidence angle, for fairly low approach velocities (between 0.5 and 1.0 m/s),
whereas the normal restitution en seems constant in all the reported experiments
(in agreement with the results in [830, 407]). The transition from sticking to sliding
without reversal is responsible for the dependence on the incidence angle. μ becomes
equal to the friction coefficient (measured independently) only for grazing incidence
impacts. In connection with the experimental results on slender rods in [1144], see
Sect. 4.3.10, it is interesting to notice that the conclusions in [1144] are exactly the
inverse ones, i.e., μ is independent of the incidence angle, whereas en varies with it.
Therefore the type of objects that collide may induce very different variations in the
shock model parameters.

Remark 4.15 As we shall see in Sect. 4.3.3.1, a natural consequence of the algebraic
form of the shock dynamics is that in general the various coefficients that one may
define to model the normal and tangential effects are not independent. It is clear for
instance that μ and a tangential restitution coefficient et must be related, although
they relate different quantities (velocities or impulses). See Sect. 4.3.3.1.

In the planar case [173], the value of TL that corresponds to the sliding case TL ,s

is used, i.e., when α �= 0 in (4.100). Then it is argued that for μ < μm (where μm

minimizes TL for fixed en) there is sliding when the bodies separate, and that μ ≥ μm

implies equal final tangential velocities. The reasoning in [173] is the following: for
μ < μm , the sliding hypothesis works; for μ = μm the loss of energy is maximum
and this is the first case when final velocities are equal, since an amount of friction
tends to “slow down” the bodies; now for any additional amount of friction, the
bodies stick before the end of the impact, hence it is incorrect to use TL ,s with
μ > μm : this last point is supported in [173] by the fact that there cannot be velocity
reversal due to passivity of the frictional model, a statement that is true for colinear
collisions (hence in particular point mass or particles collisions), as pointed out in
[174, 1148], see also [995, Chap. 10 §21]. Recall that colinear collisions between two
bodies occur when the vectors G1A and G2A are colinear to the common normal
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to the tangent plane n at the contact point A (which, by the way, does not mean
at all that the inertia matrix is diagonal).41 This work is generalized in [174] to the
three-dimensional case. Of particular interest is the slender rod tip impact problem,
where the kinematical equations show that tangential velocity reversal occurs for
small enough initial value (in general the slip process depends on the values of the
coefficients, the initial velocities and the kinematics [1148]). It is assumed in [174]
that 0 ≤ en ≤ 1 but as pointed out in [1121], it is not evident why this should be true
in general contrarily to the frictionless or central impact cases where TL implies it.42

In fact as we shall see further Brach’s method is rather useful to determine lower and
upperbounds on restitution coefficients that yield a consistent impact process. In the
case of general two-dimensional planar collisions, Brach [174] proposes to choose
the sign of μ as the sign of the calculated value μmax that maximizes TL when en = 0.
The impulse ratio should also be upperbounded by a critical value μc, i.e.,

|μ| ≤ |μc| = min [ f, |μ0|, |μT |] , (4.101)

where f is the Coulomb friction coefficient,43 μ0 = μ0(en) is the impulse ratio
corresponding to zero final relative tangential velocity, and μT = μT (en) is the
impulse ratio such that TL = 0. One has μT (1) = μ0(0) = μmax. For planar
collisions between 2 bodies, the value μc is the maximum value that any μ may take,
without violating the kinetic energy constraint TL ≤ 0. The method is extended in
[175] to finite contact areas, with an additional moment coefficient of restitution that
seems necessary to solve the impact problem (see also [173]). An interesting point
in [175] is the consideration of a tangential coefficient of restitution et to account
for tangential compliance when a hard object strikes a compliant surface, see [175,
p. 30] (two particle shocks) and [175, pp.132–134] (planar object striking a massive
surface). The need for considering such tangential compliance is pointed out for

41Central impacts may be defined as colinear impacts for nonrotating bodies. The two terms –central
and colinear– are often used to denote the same type of collision. There are in fact three types of
impacts: (i) no tangential effects, (ii) decoupled normal and tangential effects, (iii) coupled normal
and tangential effects. These notions are gathered into balanced collisions defined later.
42This fact has been asserted sometimes: in [196] experiments with a golf ball rebounding on a
corrugated inclined plate indicated values of en > 1 and were automatically rejected. Although the
calculations in [196] neglected the postimpact spin of the balls, one cannot assert that en > 1 is
impossible when there is friction. This clearly dissociates collisions with friction from frictionless
or central impacts. Similarly, it has been shown [174, 500] that in some cases, TL increases as en
increases for certain friction coefficient values. It is also pointed out in [1122] an experiment that
consists of a superball (a kind of ball made of rubber and that possesses a high restitution coefficient
when colliding almost any rigid material, so that it rebounds very high when dropped on the ground)
bonded at the end of a slender rod. When collision occurs against a rigid surface, measurements
provided values of Newton’s coefficient en ∈ [0.7, 1.4] depending on the initial orientation of the
rod and on friction. Some experimental results on thin disks colliding a heavy steel plate [248]
indicate en = 1.08 for collisions approaching grazing incidence. It is nevertheless argued in [905]
that this may have been due to rounded edges of the disks. Finite element simulations of a disk
impacting a wall, with friction, indicate values en ≈ 1.3 for some incidence angles of impact [689]:
this is attributed to the local deformation of the wall, while the disk is much harder.
43Denoted f here to avoid confusion with the impulse ratio μ.
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instance in [773, 775, 1121, 1148], and has been experimentally evidenced in [407,
620, 760, 774, 829, 830], as well as in [603, 604] using sophisticated theories of
elastic impacts. From our above discussion on “rigid” slippage (i.e., jumps in the
tangential velocity), it seems quite natural to consider such a coefficient. This is
introduced in [175, Eq. (2.28)] exactly as Newton’s rule, replacing normal velocities
by tangential ones. In summary, discontinuities in the tangential velocity may arise
from different sources

• Inertial effects (even for frictionless constraints).
• Effects related to Coulomb’s friction (or one of its extensions).
• Effects related to tangential compliance, that may be modeled through a tangential

restitution.

Further generalizations for the three-dimensional case are presented in [178], not
a priori assuming en ≤ 1 and incorporating some results in [1148]. To conclude this
part, let us summarize Brach’s approach [178]:

(a) Use linear and angular momenta theorems (see (4.24) and (4.31)) for rigid bodies
collisions, that yield algebraic linear relationships between pre- and postimpact
velocities.

(b) Use kinematic and kinetic restitution rules to complete the set of equations so
that there are as many equations as unknowns.

(c) These equations provide postimpact velocities and TL in terms of preimpact
ones, inertial properties, initial conditions and coefficients, and can be used to
develop bounds on the coefficients using kinematic constraints and/or work and
energy conditions. Critical values μm, μ0, μT of the impulse ratio, such that
TL(μT ) = 0, ∂TL

∂μ
(μm) = 0 and relative tangential velocity zero for μ0, are at

the core of the treatment.
(d) The postimpact velocities and the coefficients bounds are not restricted to point

contact (recall there may be rigid surface contacts), are independent of the spe-
cific nature of the contact processes, unless a contact process condition is used
to establish one of the bounds.

(e) Specific contact process models can be used to relate the above general expres-
sions (the equations, TL and coefficients bounds) to the physical process and ana-
lytically, numerically or experimentally evaluate the coefficients. For instance
Hertzian, vibrations or finite element theories [603, 604, 1335] can be used to
relate TL to the dimensions, elastic Young modulus . . . and then deduce the
coefficients from them.

Concerning step (a), recall that the impulse vector in (4.24) has the form:

Pi = (pi1 pi2 pi3 pi,n pi,t1 pi,t2)
T , (4.102)

where pi1, pi2 and pi3 are impulsive moments. Then from (4.24) it follows that in
order to be able to calculate the postimpact velocities and all the components of
Pi , (i.e., 12 + 6 = 18 unknowns to the problem), one must add some relationships
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between known values and unknown ones. One solution that comes naturally to one’s
spirit is to extend Newton’s conjecture to all the velocities, i.e., to set:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω11(t
+
k ) − ω21(t

+
k ) = −eω,1(ω11(t

−
k ) − ω21(t

−
k ))

ω12(t
+
k ) − ω22(t

+
k ) = −eω,2(ω12(t

−
k ) − ω22(t

−
k ))

ω13(t
+
k ) − ω23(t

+
k ) = −eω,3(ω13(t

−
k ) − ω23(t

−
k ))

vr,n(t
+
k ) = −envr,n(t

−
k )

v1,t1(t
+
k ) − v2,t1(t

+
k ) = et,1(v1,t1(t

−
k ) − v2,t1(t

−
k ))

v1,t2(t
+
k ) − v2,t2(t

+
k ) = et,2(v1,t2(t

−
k ) − v2,t2(t

−
k ))

(4.103)

which is step (b). Applying (4.103) corresponds to using a diagonal restitution matrix
for the twist in (4.11), see (4.104). For instance torsional restitution is introduced in
[175, §6.5] (see also [43]), motivated by experimental results in [541]. It is noteworthy
that a diagonal restitution matrix is not always sufficient, see Sect. 6.2 and comments
in Sect. 6.2.7 about rockfall modeling. Hence there are 12+6 equations (dynamics
and restitution laws). Notice that the first three (kinematic) coefficients in (4.103) are
related but not equal to the moment coefficients proposed in [175] (see the paragraph
below on equivalence of coefficients). Also the eω,i ’s above do not have to be positive,
allowing for nonreversal of the angular velocity. As we will see below the introduction
of coefficients et,i is closely related to friction. Corollary 4.2 shows that eω,i and
Coulomb’s friction are also related.

4.3.3 Additional Comments and Studies

Brach’s approach for the treatment of rigid body impact problems has been used in
[1301] to study impacts between two free-floating space kinematic chains. The impact
occurs between the two end-effectors. Equations similar to (4.23), (4.24) and (4.31)
can be derived using the action-reaction law. The author uses a restitution matrix (see
(4.103)) to model the shock. From (4.24) and (4.102) one has M̄Ai (qi (tk))στi (tk) =(

03×1

Pi (tk)

)
, with P1(tk) = −P2(tk). From (4.103) one has

TA1(t
+
k ) − TA2(t

+
k ) = E

(
TA1(t

−
k ) − TA2(t

−
k )
)

(4.104)

for some restitution matrix E = diag(−eω,1,−eω,2,−eω,3,−en, et,1, et,2). From
(4.31) one infers M̄A1(q1(tk))σTA1

(tk) + M̄A2(q2(tk))σTA2
(tk) = 0. The follow-

ing equalities hold M̄A1(q1(tk))−1P1(tk) = σTA1
(tk) and M̄A2(q2(tk))−1P1(tk) =

−σTA2
(tk), from which

(
M̄A1(q1(tk))−1 + M̄A2(q2(tk))−1

)
P1(tk) = (

σTA1
(tk)−

σTA2
(tk)
)
. Hence the impulse magnitude is given by:

(
M̄A1(q1(tk))

−1 + M̄A2(q2(tk))
−1
)
P1(tk) = (E − I )

(
TA1(t

−
k ) − TA2(t

−
k )
)
,

(4.105)

http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_6
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which is an expression sometimes used for shock dynamics of free-floating space
structures [1301]. Remind from the kinetic energy expression (4.36) that the impul-
sive wrench has to lie in an ellipsoid TL(tk) ≤ 0. We can again find an expression
for TL(tk) in which P1(tk) appears quadratically, using material similar to that in
Sect. 4.1.5.2. Other applications of rigid body shock dynamics in space structures
can be found in [399, 735]. Newton’s rule is also used in the study of crash phe-
nomena (like when a train hits an obstacle) and the consequence on the motion of a
passenger [362]. Experimental results confirm the analysis. Cohen and Mac Sithig
[297] also used Brach’s philosophy to model shocks between so-called pseudorigid
bodies (in which the deformation that occurs inside the bodies is assumed to be
represented by a linear field, and is homogeneous). As pointed out above, Kane and
Levinson [642] modify Whittaker’s method and propose to apply the following rule
for impacts with Coulomb’s friction

||Pt|| ≤ μ0|pn|, (4.106)

if and only if vr,t(t
+
k ) = 0, and:

Pt = −μ|pn| vr,t(t
+
k )

||vr,t(t+k )|| , (4.107)

in case the inequality in (4.106) is not satisfied. Therefore it is conjectured that
the tangential impulse Pt = pt1 t1 + pt2 t2 depends only on the normal impulse
Pn = pnn and on the separation velocity (notice that ||Pn|| = |pn|, and if we make
the hypothesis that pt2 = 0 from a specific choice of the local frame, then ||Pt|| = |pt1 |
). Motivated by the fact that during the shock process, the tangential velocity may
change its direction, Smith [1121] introduces a new definition of μ that involves an
“average” of the final and initial values of vr,t = (v1,t1 − v2,t1)t1 + (v1,t2 − v2,t2)t2,
i.e., μ is replaced by

μ
||vr,t(t−k )||vr,t(t−k ) + ||vr,t(t+k )||vr (t+k )

||vr (t−k )||2 + ||vr (t+k )||2 . (4.108)

It is then shown that TL(tk) ≤ 0 for Newton’s coefficient en ≤ 1 and with the impulse
ratio as in (4.108). It is shown on Kane’s example for a particular fixed value of μ that
the new definition predicts loss of energy whereas the other one in (4.106), (4.107)
predicts a gain. Note that the basic idea in [642] is to choose a definition of μ such
that its sign is that of the final value of vr,t , whereas the new definition in [1121]
does not neglect what happens initially. It is shown in [279, §5.1.3] that Smith’s rule
always has at least one solution (percussion vector). Let us denote the mass matrix
in the right-hand side of (4.27) as M−1

i = 1
mi
I3 + RT

i Ii Ri . From (4.27) and the fact
that P1 = −P2 = P , we can write:

σVA,r (tk) = (M1(q1(tk))
−1 + M2(q2(tk))

−1
)
P(tk) (4.109)
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where VA,r = VA,1 − VA,2 is the relative velocity between the two bodies, at the

contact point. Denoting M−1 �= (M−1
1 + M−1

2

)
, and introducing (4.108) into (4.109),

one gets

pn

{
1

−μ
||vr,t(t−k )||vr,t(t−k )+||vr,t(t+k )||vr (t+k )

||vr (t−k )||2+||vr (t+k )||2

}
− M

{−(1 + en)vr,n(t
−
k )

σvr,t (tk)

}
= 0. (4.110)

The problem is to study the existence of a solution (pn, vr,t(t
+
k )) ∈ R

3 (recall that
vr,t = vr,t1 t1 + vr,t2 t2) to the algebraic nonlinear equation in (4.110). When μ = 0
this reduces to a linear algebraic equation that is easily solved. When μ is small,
the implicit function theorem allows one to conclude about existence, in terms of
functions pn(μ) and vr,t(μ). In order to prove existence for any μ > 0, use is made
in [279] of the degree theory for differentiable maps.44 But uniqueness has not been
proved (it is said in [1117] that Smith’s model may yield several possible outcomes,
but no such counterexample is given). The main difficulty is that the law in (4.108)
introduces a strong nonlinearity so that solutions can be found numerically only, by
iterative methods.

Note that both philosophies in [173, 174, 178, 1121] are different since the first one
examines the possible sets of values of en and μ that yield a consistent solution and
can be used in the actual solution (μ being nevertheless by assumption upperbounded
by some “critical” values), whereas the second one proposes a more or less ad hoc
expression of μ that is shown to be always consistent, and thus should fit within the
former’s framework. The choice of the impulse ratio in (4.108) is shown in [1121]
to fit quite well (for the case of two spheres colliding) with the experimental results
in [828].

4.3.3.1 Equivalence of Coefficients

In a tangential coordinate direction, one may choose equivalently a kinetic coefficient
μ (that may be positive or negative to control velocity sign changes) or a kinematic
one et [175, p. 30]. It may be shown [175, §2] that μ and et can be related for two
particle collisions as45

μ = 1 + et

1 + en

vr,t(t
−
k )

vr,n(t
−
k )

, (4.111)

or equivalently:

44The development of the degree theory is outside the scope of this monograph. Let us just point
out that this is a technique which allows one to prove existence and to explicitly calculate solutions
of nonlinear equations, whereas the implicit function theorem, for instance, merely allows one to
prove existence.
45Most importantly let us recall that for particles the tangential velocity jump cannot be due to
inertial effects. It must then be a consequence of another physical phenomenon, like friction or
tangential compliance.
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et = −1 + (1 + en)μ
vr,n(t

−
k )

vr,t(t
−
k )

. (4.112)

Recall velocities and impulses magnitude are algebraically related, see (4.24) and
(4.103), although they represent different physical effects, so that in fact the choice
of either one coefficient or another is a matter of convenience [176] in the rigid body
problems case. In particular et may take negative values that represent the fact that
there may be slip reversal or not (the relative slippage velocity sign changes). Notice
that a negative normal restitution is forbidden (this would imply penetration), but in
case of tangential motion such negative values must be permitted to allow nonreversal
consideration. Actually (4.111) and (4.112) are true for particle collisions only (some
experimental data in [773, 828] corroborate such a model). For instance [774, 1242]
consider Coulomb’s friction and choose to fix et = et,0 ∈ [0, 1] when there is no
sliding, whereas et = et( f, en, relative velocity, inertia) when there is sliding, where
f is the Coulomb friction coefficient. This option is also taken in [274]. These authors
thus a priori associate tangential restitution to friction. This is not always the case
elsewhere [175, 1148]. More precisely, consider the planar case of a disk with radius
r striking a rigid and fixed rough barrier (then vr,t = vt and vr,n = vn). Applying a
tangential restitution coefficient, we get

vt(t
+
k ) = −et,0vt(t

−
k ). (4.113)

This coefficient may be calculated from Mindlin–Deresiewicz theory as in (4.66),
incorporating microslip effects at the contact zone. Now starting from the definition
of an impulse ratio μ and using the shock dynamical equations, one gets:

vt(t
+
k ) = vt(t

−
k ) − μ(1 + en)

(
1 + mr2

I

)
vn(t

−
k ). (4.114)

For the moment we have not indicated in (4.114) whether there is sliding or sticking
at the shock instant. In fact as indicated just above the authors in [774] choose to apply
(4.113) when there is sticking, and (4.114) for (gross) sliding. This is in agreement
with the conclusions drawn in Sect. 4.2.5. If one assumes that μ = − f sgn(vt(t

−
k )),

then (4.114) becomes:
vt(t

+
k ) = −etvt(t

−
k ) (4.115)

with

et = −1 + f (1 + en)

(
1 + mr2

I

) |vn(t
−
k )|

|vt(t
−
k )| , (4.116)

since vn(t
−
k ) < 0. It is shown in [175, Fig. 6.23] that experimental results from [829]

validate the existence of tangential restitution as in (4.113) for collisions such that
sliding ends before separation (i.e., vt(t

+
k ) = 0). Several authors [328, 407, 760,

774, 820] led experiments, showing the validity of the model in (4.113) (4.114)
for spheres colliding a fixed wall. The model based on the use of three restitution
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coefficients (normal Newton en, impulse ratio μ and tangential compliance et,0) has
been experimentally tested in [407] (3 mm glass and 6 mm cellulose spheres against
a plane), [328] (25 mm nylon spheres), [820] (190 and 90µm spheres in a wind
tunnel), [290] (steel disks of mass 4.87 g, radius 1 cm, thickness 2 mm against a
massive table), [274] (steel disks of mass 67 g, radius 4.91 cm, thickness 6.4 mm)
and found to correctly represent the real process. The experiments were refined
in [760] taking into account the surface reflectivity, slight asphericity and surface
damage, and still it was concluded about its validity. Other studies on (kinematic)
tangential restitution coefficient can be found in [149] : et is defined as an exponential
function of the friction coefficient and the ratio of normal and tangential components
of incident velocity. In [910] the above model for Coulomb’s friction is taken to
study the motion of a sphere colliding a rough inclined plane. In this case sticking
occurs if the incidence angle is ≤ 7μ(1+en)

2(1+et,0)
, otherwise sliding occurs. This is what

we obtained in Sect. 4.3.1.1 with ṽt = vt(t
+
k ) + etvt(t

−
k ). The authors are then able

to derive an iterative mapping for the quantity vk
�= vt(t

−
k )

|vn(t
−
k )| as vk+1 = − et,0

en
vk +

2 tan(α) where α is a parameter. Depending on the value of α with respect to a certain
critical value, the collision process may end up in sticking, or sliding, or in a chaotic
intermittence between both. In [198, 199] the tangential restitution is also associated
with Coulomb’s friction, but μ is deduced from a contact model with asperities that
may vary in shape and size. The numerical calculations for et(vr,n(t

−
k ), vr,t(t

−
k )),

agree well with the experimental data of [194] (collisions between ice balls).
In some cases, when the contact process is better known, it may be better to

tailor the model, see [175, Chap. 6, Figs. 6.23 and 6.24] for a bilinear model. Let us
consider the case of impacts of the edge of a disk with radius r against a flat block of
like material (both made of hard steel). It can be shown (see Sect. 4.3.1.1, especially

Fig. 4.13, see also [175, 828, 829]) that the curve y = tan(γ +) = vt(t
+
k )

vn(t
+
k )

as a function

of x = tan(γ −) = vt(t
−
k )

|vn(t
−
k )| consists of two straight lines, one with negative (crossing

(x, y) = (0, 0)) and the other with positive slopes, where γ + and γ − are the post-
and preimpact incidence angles. Consider one of the last two equations in (4.103).
It yields after some developments and with the notations of Sect. 4.1 to:

vt(t
+
k ) = −et(ẋ2(t

−
k ) + rω3(t

−
k )), (4.117)

which can be rewritten using (4.112) as

vt(t
+
k ) = ẋ2(t

−
k ) + rω3(t

−
k ) − μ(1 + en)

(
1 + mr2

I

)
vn(t

−
k ). (4.118)

From (4.118) one has y = x − μ(1 + en)
(

1 + mr2

I

)
so that a negative slope portion

cannot be described by (4.118) (notice also that the application of Whittaker’s rule
yields a bilinear curve with a portion y = 0 and a linear portion with positive
slope, see Sect. 4.3.1.1 and Corollary 4.1, therefore it cannot incorporate the negative
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slope portion evidenced in [290, 829, 830]). Hence both (4.117) and (4.118) possess
their own limited initial velocity x range of applicability; the first one is needed
to model low initial tangential velocities effects. The second one models sliding
impacts. Let us note that this is a three-parameter law of impact: f or μ, en, et . In
some other cases where only colinear collisions exist (spheres colliding), tangential
reversals are always due to tangential compliance, and not to Coulomb’s friction,
as we proved in Sect. 4.3.1. Further discussions on modeling of tangential effects
can be found in [769] (the intersection of the two linear portions occurs at a critical
value of the incidence angle) [1244] (an upperbound on et is proposed to hamper
TL(tk) > 0), elastic tangential springs have been introduced in [828, 830, 1244].
Maw et al. [828, 830] propose a rather complex modeling approach which enables to
avoid the nondifferentiable point on the curve in Fig. 4.13b. The expression for the
tangential restitution is rather intricate and requires the knowledge of the compression
phase duration.

In summary the three-parameter impact law for shocks of disks or spheres against
a massive surface, provides a correct approximation of some complicated local phe-
nomena in the zone of collision, that mainly depend on the angle of approach. It is
simple enough to be incorporated in a numerical code, or to be used in a control
context.

4.3.4 Kinematic CoR: Frémond’s approach

Let us introduce another approach for rigid body collisions, proposed by Frémond
[413–415]. It aims at modeling the impact process with one (single impact) or more
than two (multiple impact) points of contact. In this section we deal with two-body
collisions and single impacts. This approach mainly consists in the derivation of
general collision rules taking into account the various physical effects at impacts
(normal restitution, tangential effects, influence of geometrical parameters). The
proposed rules are implicit in the postimpact velocity, and great care is taken of exis-
tence and uniqueness of the impact outcome using maximal monotone operators to
guarantee not only energetical consistency, but existence and uniqueness of postim-
pact velocity. It is assumed that the shock impulse is given by a general rule written
as

P[vr (t+k ), vr (t
−
k )] ∈ ∂Γ [vr (t+k ), vr (t

−
k )] + P reac, (4.119)

for some Γ (·) that may be a function (in the normal direction) or a dissipation
pseudopotential (in the tangential direction). P reac corresponds to nondissipative
terms in the normal direction of the percussional reaction. The derivation bases on
thermodynamical considerations. In the normal direction one may choose:

Γn[(vr,n(t+k ), vr,n(t
−
k )] = kn

p
|vr,n(t+k ) + vr,n(t

−
k )|p, (4.120)
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for p ∈ R, p > 1 and kn ≥ 0. Another choice is

Γn[(vr,n(t+k ), vr,n(t
−
k )] = kn

p
[sup{0,−c − vr,n(t

+
k ) − vr,n(t

−
k )}]p, (4.121)

for p > 1 and c ≥ 0. For (4.121) one gets ∂Γn(z) = kn sup(0,−c − z)|c + z|p−2.
In the case p = 2 and for the first law, one gets: pn = pn(vr,n(t

+
k ), vr,n(t

−
k )) =

−kn(vr,n(t
+
k ) + vr,n(t

−
k )) +

⎧⎨
⎩

0 if vr,n(t
+
k ) > 0

R
+ if vr,n(t

+
k ) = 0

∅ if vr,n(t
+
k ) < 0

. In the bouncing ball case with

mass m, one finds two possible outcomes after the shock: vr,n(t
+
k ) = m−kn

m+kn
vr,n(t

−
k )

and P reac = 0 if kn ≥ m, or vr,n(t
+
k ) = 0 and P reac = (m − kn)vr,n(t

−
k ) if kn ≤ m.

When rebound is described by the model, then en = −m−kn
m+kn

. One sees that this model
uses several parameters in the normal direction (p, kn, c plus the form of Γ (·)) and
thus allows for various types of motion to be described. For p < 2, one can model
shocks with jamming effect, i.e., rebound for a small approach velocity and plastic
impact for high approach velocity. For p > 2 the model predicts plastic impacts for
low vr (t

−
k ) and rebound for larger vr (t

−
k ).

Tangential viscous friction effects are modeled by choosing a pseudopotential
Γt(z) = kt[sup(0, |z|−ρ)]q with q > 1 and ρ ≥ 0. Then the percussion due to those
effects in the tangential direction is given by pdt [(vr,t(t+k ), vr,t(t

−
k )] ∈ ∂Γ d

t [vr,t(t+k )+
vr,t(t

−
k )]. It is shown [290] that the parameter q influences the sign of vr,t(t

+
k ), whereas

ρ allows one to describe collisions without reversal of vr,t(t
+
k ) below a critical vr,t(t

−
k ).

Coulomb’s friction effects at the percussion level are modeled as

pt(tk) = μ|pn(tk)|Γt[vr,t(t+k ) + vr,t(t
−
k )], (4.122)

which generalizes (4.69). A possible choice is Γt[z] = min{kt[sup(0, |z|−ρ)]q−1, 1}
sgn(z), with q > 1 and r ≥ 0. Bilinear behaviors as the ones observed in certain
experiments (see Sect. 4.3.3.1) are recovered with such a rule, and trilinear models
may even be obtained by a proper choice of the coefficient ρ.

Remark 4.16 These rules yield implicit equations for the postimpact velocity.
Similarly as for the Smith’s model, it is important to study the existence and unique-
ness of the solution. This is done in [290] using functional and convex analy-
sis tools. Evidently, the properties of the function Γ in (4.119)—convexity, lower
semicontinuity—are quite fundamental: we illustrated this point in Sect. 4.3.1 with
various choices of the variable ṽt(tk). Proofs can be found in [290] for the rocking
block and granular material systems.

Experimental validations have been reported in [290]. They concern collisions
of disks, triangles and rectangles of small size and weight against a massive steel
table. One conclusion is that when there is sticking ( pt

|pn| < μ) then pt

|pn| depends

on vr (t
+
k ) + vr (t

−
k ), which is a choice of ṽt found to be energetically consistent

in Sect. 4.3.1.5. The angle between AG and the vertical line is incorporated in the
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percussion behavioral laws for the triangle, rectangle and slender rod cases (the
experimental data of Stoianovici and Hurmuzlu [1144] are used in the latter case).
The friction cone is observed from the experiments, as in [1144].

4.3.5 First Order Impact Dynamics: Darboux-Keller’s Shock
Equations

4.3.5.1 General Introduction

Let us now pass to another class of models, which are not algebraic but rely on
some differential equations and in which the kinetic (Poisson) and energetic CoRs
are used. In order to introduce the Darboux-Keller’s equations,46 let us first deal with
a one-degree-of-freedom system

mq̈(t) = F(t) + Q(t), (4.123)

where F(t) and Q(t) are the forces acting on the particle. Assume that the shock starts
at t = tk . Then one makes the assumption that the duration of the shock process is
small and that the shock occurs on [tk, tk + t f ]. Let us do the time scaling t ′ = t−tk

t f
.47

Let us further assume that as t f → 0, then t f F(t) � 0 whereas t f Q(t) → 0. In
other words F(t) is the interaction force that is assumed to be much larger than all
other forces Q(t) acting on the particle, and p = ∫ tk+t f

tk
F(τ )dτ = ∫ 1

0 t f F(t ′)dt ′ �= 0

whereas
∫ tk+t f
tk

Q(τ )dτ = 0. We can thus write that q̇(t) = q̇(t f t ′ + tk) = q̇ ◦ t (t ′) �=
q̇(t ′), and dq̇

dt = dq̇
dt ′

1
t f

. Now since F > 0 during the shock, p(t) = ∫ t
tk
F(τ )dτ is

a strictly increasing function of time, i.e., p(t) = f (t) for some strictly increasing
f (·). Hence f (·) in invertible, and dt = dp

d f . Also q̇(t) = q̇ ◦ f −1(p) that we may
denote simply as q̇(p). We thus obtain

m
dq̇(t ′)
dt ′

= t f F(t) + t f Q(t) = t f
dp

dt
= dp

,
dt ′ (4.124)

where t f Q(t) is considered to be 0, and the shock process takes place on t
′ ∈ [0, 1].

Going a step further and noting that q̇(t ′) = q̇ ◦ t ′(p) so that dq̇(t ′)
dt ′ = dq̇(p)

dp
dp(t ′)
dt ′

yields
dq̇

dp
(p) = 1

m
, (4.125)

46This form of the shock dynamics are also sometimes calledRouth’s incremental model [279] in the
planar case. We should perhaps name the model described in this part as the Routh-Darboux-Keller
model.
47The idea of deriving the Darboux-Keller shock dynamics using this time scaling is due to Keller
[651]. Most likely Keller was not aware of Darboux’s paper [327] written in French.
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where this time the shock process is considered on p ∈ [0, p(tk + t f )] = [0, p(t ′ =
1)]. One sees at once that the shock duration will be determined provided one knows
when the impulsion p(t ′) attains its final value p(1): Poisson’s kinematic CoR ep

in (4.155) may be used. If t ′c = tc−tk
t f

, then it tells us that p(1) = (1 + ep)p(t ′c).
One may thus start integrating (4.125): t ′c corresponds to pc such that q̇(pc) = 0
(termination of the compression phase). Finally notice that the dynamics in (4.125)
really possesses the form of shock dynamics (the only variables that change from
one impact to another are the initial velocity and the mass, like in pure rigid body
algebraic shock equations), but this is an ODE, not an algebraic relationship. Let us
state the basic assumptions under which a more general form as in (4.125) will be
derived

• The impact forces are so high that all other forces acting on the bodies are negli-
gible.

• The shock process consists of a compression and an expansion phases.
• The positions remain constant during the shock.
• The tangential stiffness is infinite.

As will be seen later, the second assumption may not be satisfied experimentally,
even for simple systems like the falling rod. The fourth one neither. This does not
call into question the fact that for systems (that certainly exist) for which they are
satisfied, then all the conclusions drawn from the use of Darboux-Keller’s dynamics
are valid and useful.

Let us now deal with the general three-dimensional case. One may start by rewrit-
ing (4.29) and (4.28): as

{
dΩi
dt (t) = I −1

i RT
i (t)Fi (t)

d Ẋi
dt (t) = 1

mi
Fi (t),

(4.126)

where i is the body index (i = 1 or 2). Let us make the same assumption and the
same time scaling as above. Then we obtain since dt ′ = dt

t f

[
dΩi
dt ′ (t f t ′′) = t fI

−1
i RT

i (t f t ′′)Fi (t f t ′′)
d Ẋi
dt ′ (t f t ′′) = t f

mi
Fi (t f t ′′)

(4.127)

where t ′′ = tk
t f

+ t ′. When t f → 0, Ri (t ′)
�= Ri (t f t ′′) = Ri (tk + t f t ′) → Ri (tk) =

Ri (t ′ = 0) = Ri (0). Note that t ′(tk) = 0, t ′(tk + t f ) = 1. Hence, by integrating
(4.127) between 0 and 1 one gets:

σΩi (tk) = Ωi (tk + t f ) − Ωi (tk) = −I −1
i Ri (tk)Pi (tk + t f ), (4.128)
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that we can rewrite in t ′-scale as:

σΩi (0) = −I −1
i Ri (0)Pi (1) (4.129)

with Pi (1) = Pi (t = tk + t f ) = ∫ 1
0 t f Fi (t ′)dt ′ = Pi (t ′ = 1).48 Similarly,

σẊi
(tk) = 1

mi
Pi (tk) (4.130)

or equivalently in the t ′-scale:

σẊi
(0) = 1

mi
Pi (1). (4.131)

Let us now focus on the relative velocity of the bodies at the contact point A expressed
in the local frame (A,L ), i.e.,

Vr,A
�= VA1 − VA2 =

⎛
⎝ v1,n − v2,n

v1,t1 − v2,t1
v1,t2 − v2,t2

⎞
⎠ =

⎛
⎝ vr,n
vr,t1
vr,t2

⎞
⎠ . (4.132)

Supposing a compression–extension shock process, one finds that v1,n(tc)−v2,n(tc) =
vr,n(tc) = 0, where tc is when the compression phase ends. Poisson’s CoR gives

pi,n(1) = (1+ep)pi,n(t ′c), with t ′c = tc−tk
t f

. From the fact that pi,n(t ′) = ∫ t ′
0 Fi,n(u)du,

one has dpi,n
dt ′ (t ′) = Fi,n(t ′). The interaction force is given by Fi =

⎛
⎝ Fi,n

Fi,t1
Fi,t2

⎞
⎠ =

Fi,nn + Fi,t1 t1 + Fi,t2 t2. Define the vector t = cos(ζ )t1 + sin(ζ )t2 that is colinear
to the relative tangential velocity vr,t . Applying Coulomb’s friction law we have

||Fi,t|| =
√
F2
i,t1 + F2

i,t1 = μ|Fi,n|, i.e., Fi,t
|Fi,n| = −μt when there is sliding, and Fi lies

inside the friction cone when sticking occurs. Hence when sliding occurs one has

Fi (t) =
⎡
⎢⎣

Fi,n
−μ

vr,t1
||vr,t || Fi,n

−μ
vr,t2

||vr,t || Fi,n

⎤
⎥⎦ =

⎡
⎣ 1

−μ cos(ζ )

−μ sin(ζ )

⎤
⎦ dpi,n

dt ′ . One finds:

Pi (1) = pi,n(1)n − μ

∫ pi,n(1)

0
t(pi,n)dpi,n, (4.133)

where we note that since we are dealing with a differential analysis, t and ζ are
allowed to vary on [tk, tk + t f ] (or on [0, 1] in t ′-scale), whereas n is assumed to

48Implicitly one supposes that t f Fi � 0 as t f → 0. This allows to consider all other external
actions Fe as negligible during the shock process, since for them t f Fe → 0 as t f → 0.
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remain constant during the collision.49 Introducing Poisson’s rule into (4.133) it
follows that:

Pi (1) = (1 + ep)pi,n(t
′
c)n − μ

∫ (1+ep)pi,n(t ′c)

0
t(pi,n)dpi,n (4.134)

One can now introduce (4.134) into (4.129) and (4.131) to obtain the expression
relating σΩi (0) and σẊi

(0) to Poisson’s coefficient ep, μ and pi,n(t ′c). Using (4.27)
one also finds that

σVAi
(0) =

[
1

mi
I3 + Ri (0)TI −1

i Ri (0)

]
Pi (1), (4.135)

and we can use (4.132) to relate σvr (0) to ep, μ and pi,n(t ′c). Now from (4.132) and
the time-equivalent of (4.27), i.e.,

dVAi

dt
(t) =

[
1

mi
I3 + Ri (t)

TI −1
i Ri (t)

]
Fi (t), (4.136)

one finds by introducing dt ′ = dt
t f

, dpi,n = Fi,ndt
′

and Coulomb’s friction rule into
(4.136):

dVAi

dpi,n
(t ′) =

[
1

mi
I3 + Ri (t

′)TI −1
i Ri (t

′)
]

(−μt + n) , (4.137)

where it is understood that either one deals with a sliding regime, i.e., the impulse
ratio may be identified with Coulomb’s coefficient and Ft = −μ|Fn|t, or one adopts
Brach’s formulation where μ relates the normal and tangential components and

is in general time-varying. Let us denote 1
mi
I3 + Ri (t ′)I −1

i Ri (t ′)T
�= M−1

i (t ′).
Then it follows that

dVA1
dp1,n

− dVA2
dp2,n

= M−1
1 (−μt + n) − M−1

2 (μt − n) (recall that
dp1,n = −dp2,n, F1,t1 = −F2,t1 from Newton’s principle of mutual actions). One
obtains Darboux-Keller’s shock equations:

⎧⎪⎨
⎪⎩

dvr,n
dpn

=
[∑2

i=1 M
−1
i (−μt + n)

]T
n

dvr,t
dpn

=
[∑2

i=1 M
−1
i (−μt + n)

]T
t,

(4.138)

49Such an assumption is not always realistic, as shown in [907] for granular materials with spherical
beads and Kuwabara-Kono viscoelastic model; the normal angle may vary significantly during some
collisions.
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whith pn
�= p1,n, vr,t = vr,t1 t1 + vr,t2 t2 = ||vr,t||(cos(ζ )t1 + sin(ζ )t2), Mi

�=
Mi (t ′ = 0). The dynamics in (4.138) thus corresponds to a time scaling based
on the fact that pn(·) is a monotonic function.50

Remark 4.17 According to Darboux [327], Phillips [1002] has been the first to con-
sider the problem of collisions with friction by integrating the differential equations
during the shock. Other studies were done in [326, 630, 920, 1038]. Morin [904]
conducted experiences that showed that friction during shocks satisfies quite well
Coulomb’s friction model. In [162] the geometric approach of Darboux has been
developed. But Darboux was certainly the first to take into account the fact that the
vector t = t(ζ ) may vary during the shock, and that this would introduce severe
difficulties in the shock process analysis. This is reported in his 1880 seminal paper
[327].

Coulomb’s friction model applies as dpt = −μ|dpn| vt
||vt || = −μ|dpn|(cos(ζ )t1 +

sin(ζ )t2) for sliding. From (4.138) Darboux [327, Eq. (25)] obtained the shock
dynamics under the form:

⎛
⎜⎝

dvr,n
dpn
dvr,t1
dpn
dvr,t2
dpn

⎞
⎟⎠ = M−1

⎛
⎝ 1

−μ cos(ζ )

−μ sin(ζ )

⎞
⎠ , (4.139)

where according to the above notations ζ is the angle made by vr,t1 and vr,t2 in the

tangent plane (t1, t2), i.e., ζ = arctan
(
vr,t2
vr,t1

)
. This is true when there is sliding, for if

sticking occurs the right-hand side has to be multivalued with ||dpt|| ≤ μ|dpn|, that
is dp ∈ C with C the Coulomb’s cone.

Let us denote the symmetric matrix M−1 � 0 in (4.139) as

M−1 =
⎛
⎜⎝
m−1

11 m−1
12 m−1

13

m−1
12 m−1

22 m−1
23

m−1
13 m−1

23 m−1
33

⎞
⎟⎠ =

⎛
⎝ M−1

nn (q) M−1
nt (q)

(M−1
nt (q))T M−1

tt (q)

⎞
⎠ . (4.140)

Let us remind that the superscript −1 does not mean that M−1 is the inverse of
a matrix M , but that it is homogeneous to a mass inverse. The first notation in
(4.140) is often used in the literature, while the second one emphasizes the subma-
trices which correspond to couplings between normal and tangent directions, with
dependence on the bodies coordinates m−1

11 = M−1
nn (q) ∈ R, M−1

tt (q) ∈ R
2×2.51 It

50Consider an ODE ẋ = f (x, t). Assume that τ = g(t) for some strictly increasing function g(·).
Hence g−1(·) exists and is strictly increasing as well. Simple calculations then allow one to write

the ODE as dx
dτ

= f̄ (x(τ ), τ ) with f̄ (x(τ ), τ ) =
[(

dg
dt ◦ g−1

)
(τ )
]−1

f (x ◦g−1(τ ), g−1(τ )). Such

manipulations can be sometimes useful in the study of ODEs, see, e.g., [1057] and Proposition 5.27
in Chap. 5.
51For the readers who wish to look at Darboux’s paper, let us mention that the first, second and
third rows of M−1 are given by a′′, b′′, c′′, a, b, c and a′, b′, c′ in Darboux’s notations.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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follows from the well-known Schur complement on positive definite matrices that
M−1

nn (q) > 0, M−1
tt (q) � 0, M−1

tt (q)− (M−1
nt (q))T (M−1

nn )−1M−1
nt (q) � 0, M−1

nn (q)−
M−1

nt (q)(M−1
tt )−1(M−1

nt (q))T > 0. From (4.138), M−1 = M−1
1 +M−1

2 where M−1
i is

defined after (4.137) as 1
mi
I3 +RT

i I
−1
i Ri . It is then possible to give complete expres-

sions for the entries m−1
i j . For instance one has M−1

nn (q1, q2) = ∑
i=1,2 r

2
3i j22,i +

r2
2i j33,i + 1

mi
, M−1

nt (q1, q2) = ∑
i=1,2[

=m−1
12,i︷ ︸︸ ︷

r3i (−r3i j12,i + r2i j13,i ) − r1i (−r3i j23,i + r2i j33,i ),

=m−1
13,i︷ ︸︸ ︷

−r2i (−r3i j12,i + r2i j13,i ) + r1i (−r3i j22,i + r2i j23,i )], where jkl,i are the entries of
I −1

i (the inverse of the constant inertia tensor Ii of body i , expressed in a
frame fixed w.r.t. the body). For two spheres we get M−1

i = 1
mi

diag
(
1, 7

2 , 7
2

)
,

M−1 = m1+m2
m1m2

diag
(
1, 7

2 , 7
2

)
, and I −1

i RT
i =

⎛
⎝

0 0 0
0 0 5

2miri
0 −5

2miri
0

⎞
⎠, where ri = r1i .

4.3.5.2 The Darboux-Keller’s Impact Dynamics

To summarize the two-body collision dynamics with Coulomb’s friction is given by
the following set of nonlinear equations on t ∈ [tk, t f ] (or pn ∈ [0, pn, f ], with pn, f =
pn(t f ), pn(tk) = 0, and pn,c = pn(tc) is the impulse at maximum compression
time tc):

⎛
⎜⎝

dvr,n
dpn

dvr,t
dpn

⎞
⎟⎠ =

⎛
⎝ M−1

nn (q(tk)) M−1
nt (q(tk))

(M−1
nt (q(tk)))T M−1

tt (q(tk))

⎞
⎠
⎛
⎝

1

dpt

dpn

⎞
⎠

dΩi
dpn

= I −1
i RT

i

(
1
dpt

dpn

)
, i = 1, 2

⎧⎨
⎩
dpt = −μdpn

vr,t
||vr,t || if vr,t �= 0

||dpt|| ≤ μdpn if vr,t = 0

Restitution law: kinematic (vr,n(pn, f ) = −envr,n(0))

kinetic (pn, f = (1 + ep)pn,c),

energetic (see Sect. 4.3.6)

(4.141)
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Let us recall that the subscript r in vr,n and vr,t is for “relative velocity”. If one
considers that body 2 is fixed with infinite mass, the r may be dropped for con-
venience. If we compare this dynamics to restitution mappings like Newton’s or
Moreau’s ones (see Chap. 5.1), and to compliant contact models as in Chap. 2, we
see that we have three main types of impact laws: order zero (algebraic impact map-
pings), order one (Darboux-Keller equations), and order two (compliant models).
It is important to notice that (4.141) is not an ordinary differential equation: it is a
nonsmooth set-valued system. The equations in (4.141) are integrated with respect
to the time scale pn. The parameters are q(tk), a restitution law, μ ≥ 0, and the initial
condition is Vr,A(t

−
k ), with vr,n(0) < 0 for an impact to occur. The first question

that comes to any mathematically oriented brain is: is the dynamics in (4.141) well-
posed (that is, does there exist solutions over pn ∈ R

+, and are solutions unique for
given initial conditions)? The first question that comes to any mechanically oriented
brain is: how does the contact point status (sticking, sliding, changing direction of
sliding) evolve during the impact process, and are all CoRs equivalent? What we
describe in the next sections rather deals with the second question.52 It is notewor-
thy that dvr,t

dpn
∈ (M−1

nt )T + M−1
tt

dpt

dpn
, so that the tangent velocity vt(pn) evolves in

an autonomous way, while the normal velocity does not in general. Let us define
Dμ = {z ∈ R

2|√zT z ≤ μ}. Then the Coulomb’s law in (4.141) can be written as

−vr,t ∈ NDμ

(
dpt

dpn

)
, equivalently dpt

dpn
∈ −∂ψ

Dμ
(vr,t), where the conjugate function

of the indicator function ψDμ
is ψ

Dμ
(·) = μ|| · || (see the function f2(·) after Defin-

ition B.11 in Appendix B, and (B.16)). We can therefore rewrite the first equations
in (4.141) as the differential inclusion:

dVr

dpn
∈ M−1

(
1

−∂ψ
Dμ

(vr,t)

)
. (4.142)

The tangent part of the dynamics is dvr,t
dpn

∈ (M−1
nt )T −M−1

tt ∂ψ
Dμ

(vr,t): since M−1
tt � 0

it can be shown that this differential inclusion satisfies the assumptions for Theo-
rem B.4 to apply, since Dμ is a convex set. We infer that the tangential velocity
vt(pn) exists and is unique as a Lipschitz continuous function. Consequently for
any initial condition there exists a selection ξ(pn) of the set-valued subdifferential
∂ψ

Dμ
(vr,t) such that dvr,t

dpn
= (M−1

nt )T −M−1
tt ξ(pn), and then dvr,n

dpn
= M−1

nn −M−1
nt ξ(pn):

vr,n(pn) exists with uniqueness as a continuously differentiable function. This does
not explain how the relative velocity evolves during the shock, but is a good prereq-
uisite for subsequent analysis. The time-discretization of (4.141) will be analyzed in
Sect. 5.7.3.4.

52The same questions are posed for the Painlevé paradoxes described in Sect. 5.6.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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0

mode 5: A+ < 0, A− = 0

mode 1: A+ > 0, A− > 0

mode 4: A+ = 0, A− > 0

mode 3: A+ < 0, A− < 0

−(1+ ep)
A+
B+

− A+
B+

mode 2: A+ < 0, A− < 0

sticking during compression
sticking during
expansion gross slip

μM−1
tt

M−1
nt

vr,t
|vr,n|

(a)

(b)

(submodes of mode 2)

Fig. 4.18 The modes of the vr,t−dynamics

4.3.5.3 Preliminary Results for the Planar Case

Let us restrict ourselves to vr,t = vr,t1 t1, thus M−1
nt = M−1

tn is a scalar and
dpt

dpn
= −μsgn(vr,t), sgn(0) = [−1, 1]. For simplicity we denote also vr,t1 as vr,t .

The Darboux-Keller’s dynamics reduces to53 dvr,n
dpn

= M−1
nn − μM−1

nt sgn(vr,t) and
dvr,t
dpn

= M−1
nt −μM−1

tt sgn(vr,t). Suppose also that M−1
nn −μM−1

nt > 0 ⇔
(
μ <

M−1
nn

M−1
nt

)
in case M−1

nt > 0, or (always true if M−1
nt < 0): these conditions allow to avoid jam-

ming, and guarantee a strictly increasing normal velocity. Let us adopt the notations

in [1160] and denote A+
�= M−1

nt −μM−1
tt , A−

�= M−1
nt +μM−1

tt , B+
�= M−1

nn −μM−1
nt ,

B−
�= M−1

nn +μM−1
nt , where the signs + and − just match with the tangential velocity

sign. Let us focus on the autonomous differential inclusion satisfied by vr,t(pn). Its
vector field is equal to A+ for vr,t > 0, and to A− for vr,t < 0, where the surface
vr,t = 0 separates the state space in two parts. We see that the discontinuity in the
vector field at vr,t = 0 is A+ − A− = −2μM−1

tt < 0, and the convex hull of the
vector fields at the discontinuity is always [A+, A−] (hence Filippov’s mathematical
framework for differential inclusions may be used [397, 398]). This system has five
modes which are depicted in Fig. 4.18a:

53Here we should once again acknowledge Routh and call the planar Darboux-Keller’s dynamics,
the Routh’s incremental model.
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1. Mode 1 (gross slip or slip reversal): A+ > 0 and A− > 0, equivalently M−1
nt > 0

and 0 < μ <
M−1

nt

M−1
tt

. In this mode {0} /∈ [A+, A−]. The tangent velocity strictly

increases, so if vr,t(0) < 0 there is a time pn,zc such that vt(pn,zc) = 0 and
vr,t(pn) > 0 for pn > pn,zc provided pn,zc is smaller than the collision termination
time pn, f .

2. Mode 2 (gross slip or stable sticking): A+ < 0 and A− > 0, equivalently M−1
nt

M−1
tt

∈
(−μ,μ) and μ > 0. In this mode {0} ∈ [A+, A−]. If vr,t(0) �= 0, the tangent
velocity strictly decreases until vr,t(pn,st ) = 0 provided that 0 < pn,st ≤ pn, f . If
vr,t(0) = 0 sticking persists during the whole collision process. In the language of
Filippov’s differential inclusions, one says that the sticking state is an attractive
invariant sliding surface. The vr,t−dynamics at vr,t = 0 is dvr,t

dpn
= ξ , with ξ ∈

[A+, A−] a selection of the set-valued right-hand side.
3. Mode 3 (gross slip or slip reversal): A+ < 0 and A− < 0, equivalently M−1

nt < 0

and 0 < μ <
−M−1

nt

M−1
tt

. In this mode {0} /∈ [A+, A−]. The tangent velocity strictly

decreases, so if vr,t(0) > 0 there is a time pn,zc such that vr,t(pn,zc) = 0 and
vr,t(pn) < 0 for pn > pn,zc provided pn,zc is smaller than the collision termination
time pn, f . In this mode and in mode 1, the switching surface vr,t = 0 is of the
crossing type.

4. Mode 4 (gross slip or semi-sticking): A+ = 0 and A− > 0, equivalently μ = M−1
nt

M−1
tt

and M−1
nt > 0. We have [A+, A−] = [0, A−]. If vr,t(0) ≤ 0 the sticking mode

may be attained at pn,st , however if vr,t(0) > 0 then vr,t(pn) = vr,t(0) during the
whole collision process.

5. Mode 5 (gross slip or semi-sticking): A+ < 0 and A− = 0, equivalently μ =
−M−1

nt

M−1
tt

and M−1
nt < 0. We have [A+, A−] = [A+, 0]. If vr,t(0) ≥ 0 the sticking

mode may be attained at pn,st , however if vr,t(0) < 0 then vr,t(pn) = vr,t(0)

during the whole collision process.

Modes 2, 4 and 5 do not exist if μ = 0. The next step is to analyze the system’s dynam-
ics mode by mode. Let us start the analysis with mode 2, which allows for persistent
sticking in certain cases. First we notice that nonjamming and mode 2 is a possible

mode, since M−1 � 0 which is equivalent to M−1
nn

M−1
nt

>
M−1

nt

M−1
tt

. Assume that vr,t(0) > 0,

then dvr,t
dpn

= A+ > 0, hence vr,t(pn,st ) − vr,t(0) = A+ pn,st ⇒ pn,st = −vr,t(0)

A+ > 0. In
the same way if vr,t keeps its positive sign then the maximum compression occurs at
vr,n(pn,c) = 0 ⇒ pn,c = −vr,n(0)

B+ . Thus sticking occurs during the compression phase,

i.e., pn,st < pn,c, if and only if vr,t(0)

|vr,n(0)| < − A+
B+ = M−1

tt

M−1
nn

μ− M−1
nt

M−1
tt

M−1
nn

M−1
nt

−μ
. We have vr,n(pn,st ) =

vr,n(0)− B+
A+ vr,t(0) < 0. Then after pn,st sticking occurs, with dvr,t

dpn
= M−1

nt −μM−1
tt ξ

and ξ = M−1
nt

μM−1
tt

∈ (−1, 1). Thus dvr,n
dpn

= M−1
nn − (M−1

nt )2

M−1
tt

> 0 (by the Schur complement

of M−1 � 0). It follows that vr,n(pn,c)−vr,n(pn,st ) =
(
M−1

nn − (M−1
nt )2

M−1
tt

)
(pn,c− pn,st ),
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so that after some calculations pn,c = M−1
nt vr,t(0)+M−1

tt |vr,n(0)|
M−1

nn M−1
tt −(M−1

nt )2 . If Poisson’s CoR is used,

we infer that the collision ends at pn, f = (1 + ep)
M−1

nt vr,t(0)+M−1
tt |vr,n(0)|

M−1
nn M−1

tt −(M−1
nt )2 .

Sticking occurs during the expansion phase when pn,st > pn,c = −vr,n(0)

B+ , which

occurs only if vr,t(0)

|vr,n(0)| > − A+
B+ = M−1

tt

M−1
nn

μ− M−1
nt

M−1
tt

M−1
nn

M−1
nt

−μ
. Then pn, f = (1 + ep)

−vr,n(0)

B+ . Using

pn,st ≤ pn, f we infer that sticking occurs during the expansion phase if and only if
− A+

B+ <
vr,t(0)

|vr,n(0)| ≤ −(1 + ep)
A+
B+ . We also have vr,n(pn,st ) = vr,n(0) − B+

A+ vr,t(0), and

vr,n(pn, f ) = − B+
A+ vr,t(0) + vr,n(0) + M−1

nn M−1
tt −(M−1

nt )2

M−1
tt

(
− 1+ep

B+ vr,n(0) + vr,t(0)

A+

)
.

If vr,t(0)

|vr,n(0)| > −(1 + ep)
A+
B+ there is unidirectional slip with positive vr,t(pn) on

[0, pn, f ]. We conclude that if vr,t(0) is small, sticking occurs during the compression
phase, if it increases sticking occurs during the expansion phase, and if it is large
enough sticking never occurs during the impact which undergoes a gross slip mode
(see Fig. 4.18b).

If one uses Newton’s CoR instead, then vr,n(pn, f ) = −envr,n(0) = en|vr,n(0)|.
Let sticking occur during the expansion phase. There is sticking on [pn, f , pn,st ],
thus vr,n(pn, f ) − vr,n(pn,st ) =

(
M−1

nn − (M−1
nt )2

M−1
tt

)
(pn, f − pn,st ). We deduce the value

for pn, f = (1+en)M
−1
tt |vr,n(0)|+M−1

nt vr,t(0)

M−1
nn M−1

tt −(M−1
nt )2 , which clearly is not equal to the value obtained

from Poisson’s CoR, in general. The final velocity vr,n(pn, f ) obtained with Poisson’s
CoR, is different from −envr,n(0). It is anyway noteworthy that if M−1

nt = 0 (in this
case the collision is said to be balanced, see Sect. 4.3.5.6), then the two values are the
same and en = ep (when μ = 0 conditions of mode 2 imply M−1

nt = 0 so the collision
is balanced) . In the same way, in case of unidirectional slip (whatever the mode),
one easily finds using the value of pn,c that vr,n(pn, f ) = ep|vr,n(0)| so that ep = en as
well. Mode 1 may be studied similarly. Let us consider this time that vr,t(0) < 0. The
impulse at which the tangential velocity may vanish is pn,zc = −vr,t(0)

A− > 0. Assume

that pn,zc < pn,c. Then dvr,n
dpn

= B− on [0, pn,zc] and we deduce vr,n(pn,zc) = vr,n(0)−
B−
A− vr,t(0) and vr,n(pn,zc) < 0 ⇔ |vr,t(0)|

|vr,n(0)| <
A−
B− . On [pn,zc, pn,c] one has vr,t(pn) −

vr,t(pn,zc) = A+(pn − pn,zc), so pn,c = pn,zc − vr,n(pn,zc)

B+ = 2μM−1
nt

A−B+ vr,t(0)+ |vr,n(0)|
B+ . Let

now pn,c < pn,zc, then pn,c = |vr,n(0)|
B− . On [pn,c, pn,zc] we have vr,n(pn) = B−(pn,zc−

pn,c) hence vr,n(pn,zc) = vr,n(0) − B−
A− vr,t(0). On [pn,zc, pn, f ] we have dvr,n

dpn
= B−

hence vr,n(pn, f ) = vr,n(pn,zc) + B+(pn, f − pn,zc). After some calculations we find

that if pn,c < pn,zc then vr,n(pn, f ) =
(

B+
B− (1 + ep) − 1

)
|vr,n(0)| − 2μM−1

nt
A− vr,t(0).

If pn,c > pn,zc then vr,n(pn, f ) = ep|vr,n(0)| + 2μM−1
nt

A− vr,t(0). Equalling the values
obtained for the final velocity using either Poisson or Newton’s CoR, we also find

that if vr,t(0) < 0 and pn,c < pn,zc then en = ep
B+
B− − 2μM−1

nt
B− + 2μM−1

nt
A−

|vr,t(0)|
|vr,n(0)| . If

pn,c > pn,zc then en = ep − 2μM−1
nt

A−
|vr,t(0)|
|vr,n(0)| : interestingly enough, we recover here that

the CoRs are not independent quantities but have to satisfy some relationships, in a
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way quite similar to what we found in Sect. 4.3.3.1 between en, et , friction coefficient
and impulse ratio. This will be extended to a third CoR in Sect. 4.3.6.

Remark 4.18 Let M−1
nt > 0 and μ = 0, which is included in mode 1. Using

vr,t(pn) = vr,t(0) + M−1
nt pn and Poisson’s CoR one finds that the tangential velocity

may vanish at pn,zc = − vr,t(0)

M−1
nt

which is positive if and only if vr,t(0) < 0. The condi-
tion pn,zc ≤ pn, f yields that the tangent velocity may cross zero and reverse its sign

if and only if |vr,t(0)|
|vr,n(0)| < (1 + ep)

M−1
nt

M−1
nn

.

The other modes can be analyzed similarly. The previous analysis could be led within
the framework of Routh’s graphical method, introduced in Sect. 4.3.13. However
there is more mathematical rigor with the analysis of the differential inclusion. It is
surprizing that an apparently simple differential inclusion as in (4.141), yields (just
in the planar case) such a variety of behaviors. We have not examined energetical
properties. We will summarize some results about this later.

4.3.5.4 Some Results from Darboux

We now consider the three-dimensional case. Let us assume that the impact consists
of a compression phase followed by an expansion phase. Results on the Darboux-
Keller’s dynamics have been obtained in [1116], where it is pointed out following
Keller [651] that the equations governing the tangential velocity evolution in (4.138)
have the general form: {

d||vr,t ||
dpn

= g(μ, ζ )

||vr,t|| dζ

dpn
= h(μ, ζ ),

(4.143)

where the relative tangential velocity vr,t = ||vr,t||(cos(ζ )t1 + sin(ζ )t2). The form of
g(μ, ζ ) is given by noting that vr,t1 and vr,t2 can be rewritten as cos(ζ )d||vr,t ||−||vr,t || sin(ζ )dζ

dpn

and sin(ζ )d||vr,t ||+||vr,t || cos(ζ )dζ

dpn
, respectively. Similarly for h(μ, ζ ). Darboux analyzed

these expressions [327, p. 150]. He noted (see also [651, Eq. (4.17)]) that the normal
impulse can be obtained eliminating ||vr,t|| from (4.143) as:

pn(ζ ) = ||vr,t(0)||
∫ ζ

ζ(0)

1

h(μ, ζ ′)
exp

(∫ ζ ′

ζ

g(μ, ζ ′′)
h(μ, ζ ′′)

dζ ′′
)
dζ ′ (4.144)

and

||vr,t|| = ||vr,t(0)|| exp

(∫ ζ

ζ(0)

g(μ, ζ ′)
h(μ, ζ ′)

dζ ′
)

. (4.145)

From (4.145) Darboux stated the following which is true as long as sliding occurs at
the contact point A:
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Proposition 4.8 (Darboux [327]) In the tangent plane (A, t1, t2), there exists a curve
(C) containing the contact point A and that gives the shock process law. Its radius
represents the tangential percussion due to friction pt = pt1 t1 + pt2 t2. Its tangent
has the direction of the relative velocity and its curvilinear coordinate s(t) is s(t) =
μpn(t) + s(0).

This is illustrated in Fig. 4.19. The next step studied by Darboux is about the deter-
mination of the end of the shock process. He points out that if the bodies rebound,
then one possibility is to use a Poisson-like rule (but he does not name it explicitly).
He concentrates on soft (purely inelastic) shocks for which the condition reduces
to vr,n(pn) = 0 and suffices to determine pn(t f ). First he notices that h(μ, ζ ) =
A′ cos(ζ ) − A sin(ζ ), with A = A(μ, ζ )

(
= dvr,t1

dpn
= m−1

12 − m−1
22 μ cos(ζ ) − m−1

13

sin(ζ )
)

and A′ = A′(μ, ζ )
(
= dvr,t2

dpn
= m−1

13 − m−1
23 μ cos(ζ ) − m−1

33 μ sin(ζ )
)

are

obtained from (4.139) and (4.140). From (4.143) one has:

dpn = ||vr,t||dζ

h(μ, ζ )
, (4.146)

and we conclude that since Fn ≥ 0 on [0, t f ], ζ must vary such that dζ

h(μ,ζ )
≥ 0. One

important parameter of the shock process is therefore the first value of ζ , say ζ1, such
that h(μ, ζ1) = 0. Now from (4.139) one has

vr,n(pn) = vr,n(0) +
∫ ζ(pn)

ζ(0)

A
′′ ||vr,t||dζ

h(μ, ζ )
(4.147)

A

(C)

pt

n1

t12

t11

y

x

Fig. 4.19 The tangential percussion curve
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where A′′ = A′′(μ, ζ )
(
= dvr,n

dpn
= m−1

11 − m−1
12 μ cos(ζ ) − m−1

13 μ sin(ζ )
)

. Darboux

shows that when g(μ, ζ1) ≥ 0, the equation in (4.147) possesses a root between 0
and ζ1. In other words the shock occurs without h(μ, ζ ) attaining zero. Then the
formulas (4.139) can be used to integrate the motion over the whole shock duration.
Indeed in that case sliding occurs on the whole time interval [0, t f ]. But it may happen
also that g(μ, ζ ) attains 0 at ζ2 before ζ = ζ1

54 and that g(μ, ζ ) < 0 on [ζ2, ζ1].
In this case it is possible that ||vr,t|| attains zero before the end of the collision, at
ζ = ζ1. Then two outcomes are possible: either vr,t remains zero during the rest of
the shock process (which is likely to occur if the initial velocity is small enough and
the friction coefficient is large enough), or slip resumes after stopping. Both cases
are analyzed by Darboux. Denote the normal impulse such that ||vr,t||(pn) = 0 as
pn,e; pn,e > 0 if |vr,n|(0) > 0. Since ||vr,t||(pn,e) = 0 (hence ζ(pn,e) = ζ1 from the
second equation in (4.143)), it follows that

h(μ, ζ )d||vr,t|| = ||vr,t||g(μ, θ)dζ. (4.148)

The left-hand side of (4.148) is to be interpreted as a function of ||vr,t||, whereas the
right-hand side is a function of ζ . Hence both sides must be equal to a constant value.
Since ||vr,t||(pn,e) = 0 (hence ζ(pn,e) = ζ1 from the second equation in (4.143)), one
deduces that on [pn,e, pn(t f )], this constant value must be zero. However g(μ, ζ )

cannot be identically zero otherwise ||vr,t|| would remain zero, a case now excluded.
One concludes that necessarily both dζ = 0 and h(μ, ζ ) = 0 on [pn,e, pn(t f )]. This
means that the slip must occur in a constant direction and orientation in the motion
following sliding vanishing. Hence Darboux proved the following:

Proposition 4.9 (Darboux [327]) If during a soft shock process a sliding phase
ends, and if sliding resumes before the end of the collision, then the direction and
orientation of the relative tangential velocity on this subsequent period is constant.

This result is also proved in [1153]. Darboux studies at the end of his seminal article,
all possibilities after the sticking instant: in particular can the tangential velocity take
nonzero values again ? The proof is too long to be reproduced here, it is based on the
analysis of the sign of g(μ, ζ ) in terms of the roots of h(μ, ζ ) = 0, and shows that
in certain cases vt may become zero at pn,st during the shock, while sliding motion
restarts after pn,st . Finally it is shown in [327] that the problem never contains any
indetermination, i.e., those differential equations possess a unique solution for any
initial data, a result which we have confirmed in Sect. 4.3.5.2.

4.3.5.5 Further Results

After Darboux several French Mechanicians dealt with collisions with friction [118,
337, 994]. More recently the conditions of slipping during the impact are discussed

54This case is precisely the one that had not been studied before [327].
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in [1116]. In particular it is pointed out that the three-dimensional case analyzed
for instance in [1153] is more complex than the planar case (treated in [1148], see
Sect. 4.3.6). Indeed as we saw above, a problem that arises is that if slipping stops
during the collision (which may happen if vt(t

−
k ) is small enough), then in a second

phase of slip, the tangential velocity may not be directly opposite to the tangential
impulse. An interesting work has been proposed [141, 142, 143] to study the pos-
sible outcomes of the three-dimensional impact process based on Darboux-Keller’s
equations as in (4.143), using dynamical systems and bifurcation theory. Their work
allows one to determine the regions in parameter space in which typical behaviors
occur (sliding, sticking, reversal with or without resume). The various fixed points
of those dynamical equations are characterized in [143]. It is noted that the point of
sticking corresponds to a singularity in the right-hand side of the differential equation,

where
√
v2

t1 + v2
t2 → 0 (this term appears in the denominator of the sliding direction

vector). It is known that one way to cope with such singularities is to perform a
time-rescaling of the differential equations as follows. Let us consider the system:

{
ẋ(t) = f (x(t), y(t))
ẏ(t) = g(x(t),y(t))

h(x(t),y(t)) ,
(4.149)

and assume thath(x, y) = 0 is a codimension 1 space of the state space. Then one may
study what happens in the neighborhood of this surface by studying (numerically)
the associated system: { dx

dτ
= f (x, y)h(x, y)

dy
dτ

= g(x, y)
(4.150)

in the new time scale τ , with dτ = 1
h(x,y)dt . Both vector fields in (4.149) and (4.150)

are parallel. One thus expects that in the vicinity of singularities, the behavior of the
system in (4.150) will bring insight on that of system in (4.149). Concerning Darboux-
Keller’s equations in the vicinity of sticking, one may perform dτ = μ√

v2
t1

+v2
t2

dpn.

Such time-rescaling has been used for instance to prove Proposition 5.27 in Chap. 5.
Darboux-Keller’s dynamical equations have been investigated in [108], where μ is

chosen as the bifurcation parameter. Batlle [112] starts from the Lagrange dynamics
to construct (4.140) (we shall see in Sect. 4.3.5.6 how this may be done). The work
in [108] concentrates on the sliding velocity flow, that is an autonomous flow (see
(4.145)) given by dvr,t

dpn
= M−1

nt − μM−1
tt

vr,t
|vr,t | , whereas dvr,n

dpn
= M−1

nn − μ(M−1
nt )T

vr,t
|vr,t |

for sliding and dvr,n
dpn

= M−1
nn − (M−1

nt )T (M−1
tt )−1M−1

nt for sticking. The qualitative
behavior of this flow is investigated. The paper [111] rather focuses on the jam
phenomenon. In [932] it is supposed that the impact is made of a compression and
an expansion phases, then three different mappings relating VA,r (t f ) to initial data
and M−1

nn , M−1
tt , M−1

nt are calculated. The regularity of these impact laws (continuous
or continuously differentiable) is shown to depend on when sticking occurs.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Let us now briefly discuss the phenomenon called jam in a collision process
[109–111, 761, 1148].55 It is in a sense a phenomenon similar to Painlevé paradoxes,
because it is created by “too large” friction56 (or too big normal/tangential couplings)

and yields some inconsistent dynamical situations (as we saw above μ <
M−1

nn

M−1
nt

suffices
to avoid such cases). Let us consider the Darboux-Keller shock dynamics in (4.141):
jam occurs whenever dvr,n

dpn
< 0, i.e., the tangential force creates a net decrease in vr,n.

Contrary to the above, one has M−1
nn − μM−1

nt < 0, which means that dvr,n
dpn

(0) < 0.
Intuitively speaking, there has to be a tangential velocity mode change during the
impact, for otherwise vr,n(pn) keeps on decreasing and it is not clear which CoR may
be used to determine the collision end. Jam is analyzed for planar systems in [1148].
A detailed analysis of jam conditions in three-dimensional problems is done by Batlle
and coauthors in [109–111]. It uses some results on the velocity-flow analysis of the
Darboux-Keller’s shock dynamics as provided in [108, 112, 141–143]. An important
finding is that the collision may not consist of a compression–expansion phase, but
that a second compression may start during the expansion phase (a phenomenon
which is also met in multiple impacts and is called repeated impacts, but is more
surprizing in the context of one-point collisions).

Let us analyze jam in the planar case, continuing the analysis of Sect. 4.3.5.3.
We take the same initial data vr,n(0) < 0 and vr,t(0) > 0. However we assume that

M−1
nn − μM−1

nt < 0 ⇒ M−1
nt > 0 and then μ >

M−1
nn

M−1
nt

, i.e., initially dvr,n
dpn

< 0. We have
dvr,t
dpn

= M−1
nt − μM−1

tt < 0 (using that M−1 � 0 and the Schur complement), so that

vr,t(pn) decreases until pn,st with vr,t(pn,st ) = 0. One finds pn,st = −vr,t(0)

M−1
nt −μM−1

tt
> 0.

On [0, pn,st ) the normal velocity decreases strictly to vr,n(pn,st ) = vn(0) + (M−1
nn −

μM−1
nt )pn,st < vn(0) < 0. At pn,st one has dvr,t

dpn
= 0 = M−1

nt − μM−1
tt ξ with

ξ = M−1
nt

μM−1
tt

and ξ ∈ [−1, 1]. Since M−1
nt − μM−1

tt < 0 we have that μ >
M−1

nt

M−1
tt

⇒
ξ ≤ 1. Therefore at pn,st then tangential dynamics attains its equilibrium and it
stays there afterward. We infer that after pn,st the normal velocity increases because
dvr,n
dpn

= M−1
nn − μM−1

nt ξ = M−1
nn − (M−1

nt )2

M−1
tt

> 0 still using the Schur complement

of M−1 � 0. Thus there exists a maximum compression at pn,c and the impact
termination may be calculated with Poisson’s CoR.

Remark 4.19 When three-dimensional collisions are considered, the matrix Mtt ∈
R

2×2 may not be diagonal, hence some couplings may exist between the two tangent
directions dvr,t

dpn
∈ (M−1

nt )T −μM−1
tt ∂||vt||, where the subdifferential in that of convex

analysis. So it is possible that vr,t1 attains zero but not vr,t2 , and then through the
coupling in M−1

tt , vr,t1 takes immediately a nonzero value.

55Sometimes also called dynamic wedging, or self-locking, or jamb.
56However examples show that the required upperbound for the friction coefficient may not be very
large, this is why we put too large between quotation marks.
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4.3.5.6 Balanced Collisions: Kinematic and Kinetic CoRs Equivalence

Batlle has defined in [106, 107] the so-called balanced collisions, an example of
which we already met in Sect. 4.3.1. This is a concept which generalizes collinear
or central collisions. To properly define balanced collisions in the broad context of
Lagrange dynamics, we use the notations in (5.1) at the very beginning of Chap. 5.
Since we deal with a single unilateral constraint at a contact point A, we drop the
subscript u. Using the results of Sect. 1.1 in Chap.1, we infer that at an impact time
tk we may rewrite (5.1) as:

M(q(tk))[q̇(t+k ) − q̇(t−k )] = ∇ f (q(tk))pn(tk) + Ht(q(tk))pt(tk), (4.151)

where we recall that Ht(q) ∈ R
n×p with p = 1 (2D friction) or p = 2 (3D friction), is

obtained from the local kinematics which allows us to compute VA as a function of the
system’s generalized coordinates q ∈ R

n and their derivatives, so that vt = Ht(q)T q̇ .
In addition we have vn = ∇ f (q)T q̇ still due to the way the gap function is defined.
Some easy manipulations then yield (the time argument tk is dropped inside the
matrix):

⎛
⎝σvn(tk)

σvt (tk)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

=M−1
nn (q)︷ ︸︸ ︷

∇ f (q)T M(q)−1∇ f (q)

=M−1
nt (q)︷ ︸︸ ︷

∇ f (q)T M(q)−1Ht(q)

Ht(q)T M(q)−1∇ f (q)

=M−1
tt (q)︷ ︸︸ ︷

Ht(q)T M(q)−1Ht(q)

⎞
⎟⎟⎟⎟⎟⎟⎠

P(tk)

(4.152)

where P = (pn, pt1 , pt2)
T , and the notations adopted in (4.140) are recalled. If we

write (4.152) along Darboux-Keller’s shock dynamics, we obtain

⎛
⎝

dvn
dpn

dvt
dpn

⎞
⎠ =

⎛
⎝∇ f (q)T M(q)−1∇ f (q) ∇ f (q)T M(q)−1Ht(q)

Ht(q)T M(q)−1∇ f (q) Ht(q)T M(q)−1Ht(q)

⎞
⎠
⎛
⎝

1

dpt

dpn

⎞
⎠ (4.153)

with constant position q = q(tk) over the impact period [tk, t f ], t f > tk . The collision
dynamics in (4.153) is, as far as a two-body impact is considered, equivalent to
(4.139), and the collision matrix is equal to the one in (4.140).

Definition 4.2 A collision is said balanced if there are no couplings between the
normal and the tangential directions at the impact time, i.e., the diagonal terms
Ht(q(tk))T M(q(tk))−1∇ f (q(tk)) = 0. In other words, the vectors M(q(tk)−1∇
f (q(tk)) and M(q(tk)−1Ht(q(tk) are orthogonal in the kinetic metric.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Notice that this definition readily extends to the multicontact case,57 and this is the
reason why we chose to present it in a Lagrange dynamics framework.

Corollary 4.4 Consider the collision of a body against a massive, fixed anvil (that
is, take body 2 as a fixed body with infinite mass). Using the notations of Sect. 4.1.5,
it follows that a collision is balanced if and only if:

{
r3(−r3 j12 + r2 j13) = r1(−r3 j23 + r2 j33)

r1(−r3 j22 + r2 j23) = r2(−r3 j12 + r2 j13),
(4.154)

where jkl denote the entries of the inertia tensor of the body I −1, 1 ≤ k ≤ 3,
1 ≤ l ≤ 3.

Lemma 4.2 Suppose that the collision is balanced. Then there exists a compression
phase during which vn(t) < 0, which ends at a finite time tc such that vn(tc) = 0,
and an expansion phase during which vn(t) > 0. The end of the expansion phase is
determined from a restitution rule.

The proof uses that dvn
dpn

= M−1
nn (q) > 0 while the preimpact normal velocity satisfies

vn(tk) < 0. The results hold in the time scale pn, and in time t provided pn(t) is
strictly increasing. In case of unbalanced collision, the shock process may be a priori
more complex. For the last statement, notice that Poisson’s CoR gives pn(t f ) =
(1 + ep)pn(tc).

Starting from Coulomb’s friction dpt ∈ −μdpn
vt

||vt || , there exists in all cases
(sliding or sticking) a scalar η such that dpn = ηdvn during the collision [106].
For sliding ηsl = 1

M−1
nn −μ(M−1

nt )T
vt

||vt ||
and for sticking ηst = 1

M−1
nn −(M−1

nt )T (M−1
tt )−1M−1

nt
.

During a collision process, the coefficient η keeps a constant value in the following
cases: μ = 0, permanent sticking, permanent sliding with constant sliding direction
vt

||vt || , balanced collision. Let us now introduce the so-called Poisson coefficient of
restitution. For this we need to assume that the shock is divided into a compression
phase on [tk, tc] and an expansion phase on [tc, t f ]. The kinetic CoR is defined as
the ratio of the contact force impulse during the expansion phase and during the
compression phase:

ep = pn(t f ) − pn(tc)

pn(tc)
⇐⇒ pn(t f )

pn(tc)
= 1 + ep (4.155)

It is called a kinetic CoR because it relates impulses, not velocities.

Proposition 4.10 [106] Assume that the coefficient η is constant over the collision
process. Then Newton en and Poisson ep CoRs are equal.

It appears from Proposition 4.10 that depending on the collision process, various
definitions of the CoR may yield the same impact outcome. However this is not
always the case, see Sect. 4.3.6.

57It is easy to check that the kinetic metric orthogonality is preserved after any diffeomorphic change
of generalized coordinates.
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Remark 4.20 The superball phenomenon which we briefly describe in Remark 4.23
(tangential velocity reversal in a sphere/anvil impact) cannot be modeled with the
Darboux-Keller dynamics because of the assumption of infinite tangential stiffness.

4.3.6 The Energetic Coefficient of Restitution

Newton’s CoR is kinematic (it relates velocities), Poisson’s CoR is kinetic (it relates
impulses). It is natural to think of an energetic CoR relating kinetic energies. The ener-
getic CoR has been introduced by Routh for smooth bodies [1049] and by Boulanger
in [164], see also Pérès [995, Chap. 10, pp. 326–328] where it is proved that in the
frictionless case, the kinematic and the energetic CoRs are equal. It is clear neverthe-
less that Stronge is the one who studied it most deeply, so that the energetic CoR is
often named Stronge’s coefficient: Stronge [1148, 1149] studied the two-dimensional
dynamics of a lamina striking a massive plane (i.e., body 2 in Fig. 4.1 is fixed and
plays the role of a constraint, so that vr,n = v1,n = vn with the notations chosen
above). Darboux-Keller’s shock dynamics is adopted. The main goal of the work
is to prove that the inconsistency of some impact problems comes from neglecting
the dependence of en on the slip process. The impact process is divided in com-
pression [0, tc] with vn(tc) = 0, and expansion phases [tc, t f ]. Unidirectional slip
is assumed on [0, tc]. In [1148] is introduced the concept of characteristic normal
impulse pn, j = m jvn(0), j =sign(vt(0)), and m j is an equivalent normal mass at the

contact point A: m j = mρ2

ρ2+x2+ jμxy , where x and y are the mass center coordinates
in the local frame, and ρ is the radius of inertia. To clarify how these dynamical
equations are obtained, let us recall that the equation of motion applied to the gravity
center Fndt = mẏ can be rewritten as Fndt = mρ2

ρ2+x2 dvr,n in the frictionless case,
hence the denomination equivalent mass. Note that pn, j corresponds to the normal
impulse that terminates the compression phase. Indeed the dynamics of the system
leads to vn(t) = vn(0) − pn, j (t)

m j
and noting that vn(tc) = 0 the result follows. Let

us note however that pn, j and pn,− j are just normalizing factors which are applied
to the dynamical equations during the various phases of variation of vt . It is shown
that velocities variations on [0, tc] are proportional to the relative impulse pn(t)

pn, j
,

where pn(t) is the normal impulse at time t (indeed from the above one finds that
vn(t)
vn(0)

= 1− pn(t)
pn, j

). Then two coefficients γ and τ are introduced that quantify the part

γ pn, j of pn, j that stops slip58 and the rest of the characteristic impulse (τ − γ )pn,− j

on [tc, t f ]. Hence the final impulse is pn(t f ) = γ pn, j + (τ − γ )pn,− j , with τ ≥ 1
(see Fig. 4.20b for a graphical illustration). If 0 ≤ γ ≤ 1 slip stops on [0, tc]. If
1 < γ and τ > γ slip stops during expansion. After the time when vt = 0, either
sticking or reverse sliding occur. If the tangential velocity reverses during the shock
process this yields for γ pn, j < pn < pn(t f ):

58γ pn, j can be calculated from the equations of motion [1153].
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Fig. 4.20 Velocities versus normal impulse. a Normal relative velocity versus normal impulse.
b Tangential velocity vs normal impulse

{
vn

vn(0)
= 1 − γ − pn−γ pn, j

pn,− j
vt

vn(0)
= jμm− j

pn−γ pn, j

n− j pn,− j
,

(4.156)

where n j is the tangential equivalent mass at the contact point: n j = mρ2

ρ2+y2+ jμ−1xy

From (4.156) and the expression of pn(t f ), one deduces that:

{
vn(t f )
vn(0)

= 1 − τ
vt(t f )
vn(0)

= (τ−γ ) jμm− j

n− j
.

(4.157)

Both reversal and stick cases are encompassed. Then Stronge [1147] calculates
the work Wn and Wt performed by the normal and tangential forces in term of Pj ,
γ , τ , vt(0), vt(t f ), vn(0), vn(t f ):

{
Wn = 1

2 pn, j vn(0)γ (2 − γ ) + 1
2 pn,− j vn(0)

[
(1 − γ )2 − (τ − 1)2

]
Wt = 1

2 jμpn, j vt(0)γ − 1
2 jμpn,− j vt(t f )(τ − γ ),

(4.158)

where TL = Wn+Wt . The rest of the study is devoted to compare the three definitions
of the coefficient of restitution: Newton’s CoR (kinematic), Poisson’s CoR (kinetic),
and the energetic CoR defined as:

e2
 = elastic energy released on[tc, t f ]

elastic energy absorbed on[0, tc] . (4.159)

The coefficient e is found [1148] to be e2
 = Wn,e

Wn,c
when there is no tangential

compliance, where Wn,e and Wn,c are the works performed by the normal contact
force during expansion and compression phases respectively. Such result is natural
since in the absence of tangential compliance, the elastic effects are normal only.
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Another way to express the energetic coefficient is

∫ pn(t f )

pn(tc)
vn(pn)dpn = −e2



∫ pn(tc)

0
vn(pn)dpn(t), (4.160)

where we have used the fact that the impulsion of the normal force is given by
pn(t) = ∫ t

0 Fn(t)dt , hence dpn = Fn(t)dt (see also Definition 1.1 in Chap. 1). Thus
Fn(t)vn(t)dt = vn(pn)dpn.

Remark 4.21 In the case of the system depicted in Fig. 2.1 the impulse during the
compression phase is Pc = ∫ tc

0 −k(x(t)−x(t0))dt = −mẋ(0) and during the expan-
sion phase Pe = ∫ t1

tc
−k(x(t) − x(tc))dt = mẋ(t1) since ẋ(tc) = 0, tc the time of

maximum compression. This suggests that the Poisson’s rule may also be given a
signification when k → +∞ by defining Pc = −mẋ(0−) and Pe = mẋ(0+). How-
ever we have also seen that the distribution theory does not allow to give a meaning
to the work at impact times, because it involves the product of a discontinuous func-
tion with a Dirac measure. Hence it seems that the energetic coefficient could be
given a meaning in the rigid case by replacing the work of the forces by the kinetic
energy. One may split the translational velocity kinetic energy into two terms, one
for normal velocities and the second for tangential ones. Then Stronge’s coefficient
is a constraint on the normal kinetic energy loss. Following this reasoning, let us
note that the energetic coefficient may be seen as a work-energy constraint saying
that Wn,e = e2

Wn,c. The role of friction is not really clear in these developments
since Wn is likely to depend on friction when tangential and normal directions are
dynamically coupled, although it is claimed in [1149] that e is independent on fric-
tion. This point of view has in fact historical roots according to which the normal
process is independent of the frictional-tangential effects (this reasoning fails if tan-
gential compliance exists, since in this case the tangential process is no longer a
consequence of the normal one). However it is shown in [1154, 1155, 1291], still
relying on Darboux-Keller’s shock dynamics, that e actually depends on friction.
This is obtained by calculating the work done by the normal force during the impact
from a Hertz’ compliant model and taking plastic deformations into account. The
computation of the work done by the normal force hinges on the result presented
in [1150], see Sect. 4.3.12 and (4.185) for details. For further informations on the
dependence of e on initial conditions see Sect. 4.3.8.

Remark 4.22 It is convenient to visualize the definition of the three restitution coeffi-
cients (kinematic, kinetic and energetic) on a diagram as in Fig. 4.20a [247]. Newton’s
conjecture is that the ratio ab

de is constant, Poisson’s conjecture is that the ratio dc
cb is

constant, and Stronge’s claim is that the ratio area(A)

area(B)
is constant. Note that such a rep-

resentation relies on the basic assumption that the positions remain constant during

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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the shock. Then one has vn = vn(0) − 1
m j

pn
59 [1148]. This is precisely this type of

diagram that is used in [1148] to calculate the three different coefficients depending
on the tangential velocity reversal. The simplest case is depicted in Fig. 4.20a, when
there is no tangential velocity reversal. Otherwise vn(pn) is no longer a straight line,
but is made of two segments whose slopes depend on the effective mass m j and the
initial tangential velocity.

Based on the foregoing developments, each value of the restitution coefficient
(Newton, Poisson and energetic) is calculated as a function of τ , γ and Pj , depending
on whether there is slip reversal or not, and the works Wn = ∫ pn

0 vr,n(pn)dpn and
Wt = ∫ pn

0 vr,t(pn)dpt are computed in each case. For instance, Newton’s coefficient

is calculated as en = − vr,n(t f )
vr,n(0)

and is found to be en = τ − 1, see (4.157) above.
The kinetic Poisson’s coefficient of restitution in (4.155) has a value which depends
on the slip process: for example when there is slip reversal and γ < 1, one finds
ep = τ−1

(1−γ )+γ
Pn, j
Pn,− j

. When slip is unidirectional then ep = τ − 1 so that in this

case Newton’s and Poisson’s conjectures are equivalent. However when slip stops or
reverses then ep �= en, which is consistent with the analysis we led in Sect. 4.3.5.3.
Finally the same operation is done to compute e: for γ < 1 and slip reversal,
one finds e = (τ−1)2

(1−γ )2+γ (2−γ )
Pn, j
Pn,− j

. For unidirectional slip, then e = τ − 1, which

confirms that all three coefficients are the same when there is no tangential velocity
reversal (the equality between en and e is established in [995, Chap. 10 §24] for the
frictionless case). In summary, the coefficients are related as follows:

1. When there is slip reversal and slip stops on [0, tc]:

ep = en pn,− j

(1 − γ )pn,− j + γ pn, j
(4.161)

e2
 = e2

n pn,− j

(1 − γ )2 pn,− j + γ (2 − γ )pn, j
. (4.162)

2. When there is slip reversal and slip stops on [tc, t f ]:

ep = (en + 1 − γ )pn,− j + (γ − 1)pn, j

pn, j
(4.163)

e2
 = e2

n pn,− j − (γ − 1)2(pn,− j − pn, j )

pn, j
. (4.164)

59The frames are chosen in [1148] in such a way that vn > 0 during the compression and thus
initially as well, while vn > 0 during expansion. Referring to Fig. 4.1, one chooses n = n2 and
body 2 is supposed to be fixed. The minus sign in the right-hand side is to keep the non negativity
of pn.
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One sees from (4.157) that τ − 1 equals the ratio of rebound to incident normal
relative velocity components, even when sticking or reverse sliding occurs. But in
this latter case the values of τ differ from one definition of the coefficient to the
other (by considering a coefficient as constant, one may calculate τ in each case and
indeed find different values). Since τ is defined as the remaining part of the impulse
after slip stops (recall that if there is unidirectional slip and |vt(o)| > |vt(t f )| > 0
then γ = τ ), it can be interpreted as a factor for evaluating the dissipation during
the shock process: the larger τ , the smaller the dissipation. It happens that

τ(Poisson) ≤ τ(Stronge) ≤ τ(Newton),

which explains why Poisson’s conjecture is always dissipative while Newton’s one
may not be.

The energetic CoR is shown to be the only one that is always energetically con-
sistent: Newton’s rule can result in TL > 0 when slip reverses, Poisson’s rule always
dissipates energy (this is consistent with the conclusions in [584]) but is claimed
to be unsatisfactory since nonfrictional dissipation does not vanish when the coef-
ficient equals 1. The above relations between the three CoRs are not very con-
venient. More explicit relations are calculated in [1160]. Let us recall the notations

A+
�= M−1

nt −μM−1
tt , A−

�= M−1
nt +μM−1

tt , B+
�= M−1

nn −μM−1
nt , B−

�= M−1
nn +μM−1

nt ,

Ψ0
�= B+

A+
vt(0)

vn(0)
. Following [1159, 1160], we have:

1. If initial slip stops on pn ∈ [0, pn,c]:

• en = e

√
B−
B+ +

(
1 − B−

B+

)
(1 − Ψ0)2,

• ep = e

√
B−
B+ +

(
1− B−

B+
)
(1−Ψ0)2

1−Ψ0+ B−
B+ Ψ0

.

2. If initial slip stops on pn ∈ [pn,c, pn, f ]:

• en =
√(

1 − B−
B+

)
(1 − Ψ0)2 + B−

B+ e
2
 ,

• ep =
(

B+
B− − 1

)
(1 − Ψ0) + B+

B−

√(
1 − B−

B+

)
(1 − Ψ0)2 + B−

B+ e
2
 .

3. If sliding lasts the whole collision en = ep = e.

If e is treated as the CoR, then en and ep vary with μ and system’s parameters. We
see that in any case, balanced collisions (with M−1

nt = 0) also yield en = ep = e,
completing Proposition 4.10. Again the works performed by the normal and the
tangential forces are computed (explicit expressions are given in [1160]) to test the
energetic consistency.
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4.3.7 Examples

In order to illustrate some of the above developments (which may remain at a too
abstract level), let us present in details simple examples.

4.3.7.1 Planar Impact of a Particle on an Anvil

The dynamics is:

{
mdẋ = mdvt = dpt

md ẏ = mdvn = dpn
, with dpt ∈ −μ|dpn|sgn(ẋ) and vn(0) <

0. From Lemma 4.2 the shock is made of a compression phase on [0, tc] and an
expansion phase on [tc, t f ]. Since dpn > 0 on (0, t f ] we have dvn > 0 ⇒ vn strictly
increases during the collision with vn < 0 on [0, tc) and vn > 0 on (tc, t f ). From
vn(tc) = 0 we deduce that pn(tc)) = −mvn(0) > 0 since vn(0) < 0. The expansion
lasts until vn(t f ) = −envn(0) ⇒ pn(t f ) = −m(1 + en)vn(0) if Newton’s CoR is
used. If Poisson’s CoR is used then pn(t f ) = (1 + ep)pn(tc) = −m(1 + ep)vn(0). If
the energetic CoR is used and μ = 0 then dvt = 0 so the kinetic energy is T (ẋ, ẏ) =
1
2mv2

n, and e2
 = − T (t f )−T (tc)

T (tc)−T (0)
= − vn(t f )2−vn(tc)2

vn(tc)2−vn(0)2 = , thus vn(t f )2 = (1 + e2
)vn(tc)2 +

e2
vn(0)2 = e2

vn(0)2 since vn(tc) = 0. Since vn(t f ) ≥ 0 (admissible postimpact
normal velocity) we have vn(t f ) = −evn(0) and pn(t f ) = −m(1 + e)vn(0). From
the three expressions for pn(t f ) we infer that if μ = 0 then en = ep = e. This
collision is balanced, thus even with friction the equality still holds.

4.3.7.2 Planar Impact of a Compound Pendulum

Consider the dynamics of a planar lamina striking a rigid rough plane, and rotating
around a fixed point O , depicted in Fig. 4.21. Let us arbitrarily fix tk = 0 and thus
denote the shock interval as [0, t f ], with tc the time of maximum compression,

Fig. 4.21 Planar impact of a
compound pendulum

O

θ

f0

h0
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(i.e., we assume that the collision consists in a compression phase followed by an
expansion phase). The kinematics of the contact point A velocities yields:

vn(t) = f0θ̇ , (4.165)

and:
vt = −h0θ̇ . (4.166)

The relationships in (4.165) and (4.166) show in particular that if f0 �= 0 and h0 �= 0,
vn(tc) = 0 implies vt(tc) = 0. Hence the end of the compression phase corresponds
to the end of a sliding phase. Notice that this is a one-degree-of-freedom system,
with coordinate θ . The kinetic energy loss is given by:

TL = 1

2
I
(
θ̇2(t f ) − θ̇2(0)

) �= −1

2
I δ2, (4.167)

with 0 ≤ δ ≤ θ̇ (0), and I is the inertia with respect to O . In view of (4.165), we can
write Newton’s restitution law as

θ̇ (t f ) = −enθ̇ (0), (4.168)

with en = ±
√

1 − δ2

θ̇ (0)
. It follows that vn(t f ) = −envn(0) and vt(t f ) = −envt(0).

Let us follow Brach’s philosophy, i.e., let us express the relationship between the
normal and the tangential percussions as pt = μpn, that is, μ is the impulse ratio
(different from the friction coefficient). From the shock dynamics expressed at O
one has60:

Iσθ̇ (0) = I [θ̇ (t f ) − θ̇ (0)] = ( f0 + μh0)pn. (4.169)

Thus from (4.168) one deduces pn = −(1 + en)
I θ̇ (0)

f0+μh0
. From (4.165) and (4.166)

we know that the shock process consists of a compression plus expansion phases,
with two unidirectional sliding phases. This allows to apply the Thomson and Tait
formula (see Sects. 4.3.12 and (4.185) for details) on each phase separately in order to
express e2

 = Wn,e

Wn,c
= [pn(t f )−pn(tc)][vn(t f )−vn(tc)]

[pn(tc)−pn(0)][vn(t f )+vn(tc)] = [pn(t f )−pn(tc)]vn(t f )
pn(tc)vn(t f )

. From the dynamics
in (4.169) and recalling that positions are assumed to be constant during the shock,
one finds also that:

pn(t f ) − pn(tc) = I θ̇ (t f )

f0 + μeh0
, (4.170)

and:

pn(tc) = − I θ̇ (0)

f0 − μch0
. (4.171)

60The shock is assumed to occur instantaneously so it is logical to denote the jump at time t = 0,
i.e., the beginning of the collision.
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One has μe = f and μc = − f , where f ≥ 0 is the Coulomb friction coefficient
(recall that in Brach’s approach, the impulse ratio μ may not be constant, which is
the case here since there is slip reversal from one phase to the other). One deduces
the following formulas relating the three coefficients of restitution61:

ep = pn(t f ) − pn(tc)

pn(tc)
= f0 + f h0

f0 − f h0
en, (4.172)

and:

e2
 = e2

n
f0 + f h0

f0 − f h0
= epen. (4.173)

Notice the simplicity of the relationships in (4.172) and (4.173), due to the special
kinematics of the problem (the lamina is rotating around a fixed point O), which
are not supposed to hold in (4.161) through (4.164). Some bounds can be derived
on the CoRs may be found from the above developments [767]. The kinetic energy

loss is TL = − 1
2 θ̇ (0)2

(
1 − e2

p
( f0− f h0)

2

( f0+ f h0)2

)
, from which ep ≤ f0+μh0

f0− f h0
. Imposing e ≤ 1,

one finds using the above relations between the CoRs the same upperbound for ep.

For f0 − f h0 > 0 one finds ep ≤
(

1 + 2 f h0

f0− f h0

) 1
2
, and en ≤

(
1 − 2 f h0

f0+ f h0

) 1
2
. One

also has pn(t f )
pn(tc)

= 1 +
(

f0+ f h0

f0− f h0

) 1
2
e if f0 − f h0 > 0. Finally one may relate Brach’s

impulse ratio μ =
∫ t f

0 Ft(t)dt∫ t f
0 Fn(t)dt

to the friction coefficient f as μ = f (1−ep)

1+ep
. It satisfies

− f0
h0

(1 −
√

1 − f 2h2
0

f 2
0

) ≤ μ ≤ f : the lower bound is reached when e = 1 and

the upper bound when ep = 0. It is noteworthy that the lower bound on μ may be
negative.

Remark 4.23 (The Superball example) The superball behavior shows that Darboux-
Keller’s model cannot apply in this case, because it is a balanced collision (sphere
on plane) so that no velocity reversal is possible with that model. For instance a
superball that is launched diagonally toward the floor with zero spin may bounce
off the floor, then strike the underside of a table, then rebound again on the floor
and return to the launcher’s hand [308]. Such surprizing motions have led some
people (essentially physics teachers) to use it as a counterexample to usual models
of impacts [308, 433, 626]. The basic assumptions are TL(tk) = 0 and no slip
at the contact point. This, together with the momenta conservation equation and
vr,n(t

+
k ) = −vr,n(t

−
k ) (which is a consequence of TL(tk) = 0) is shown [433] to be

sufficient to describe a typical superball motion. In fact it allows one to deduce a

restitution matrix E =
⎛
⎝

1−α
1+α

−2α
1+α

0
−2α
1+α

1−α
1+α

0
0 0 −1

⎞
⎠, with VG(t+k ) = E VG(t−k ), and the moment

of inertia I = αmr2. For uniform spheres α = 2
5 , and E 2 = I3. Hence two bounces

61These expressions are valid for the considered particular shock process.
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with the floor should restore the initial spin ω and tangential velocity vt [308]. Such
collisions are called retrodirective in [308]. Contrarily to [308, 433], use is made in
[626] of an impulse ratio μ. It is shown that the rigid body theory does not permit
VG(t+k )T t < 0 and ω(t+k ) < 0. But resorting to a more sophisticated analysis of the
contact/impact process as done in [828, 830] allows one to recover the experimental
data. When there is sliding during the whole contact process, then those results
provide the same postimpact data as the rigid body theory with pt = μpn. Other
studies related to the superball dynamics may be found in [57, 309].

4.3.8 Other Energetical Coefficients

Ivanov [584] introduces the definition of a new restitution coefficient as follows:

η2 = T (t f ) − Tm
T (0) − Tm

(4.174)

where Tm is the lowest value of the kinetic energy during the impact. If there is no
friction (μ = 0) then η = e = en = ep. The coefficient in (4.174) is calculated in
[1051] using a different analysis. In [110, 111], Batlle and Cardona have shown that
the basic compression–restitution process of the three-dimensional Darboux-Keller’s
model could be replaced by a more complex sequence of compression and restitution

phases, in case of jam (see Sect. 4.3.5.3). They introduce the CoR ν = 1−e2


1+e2

.

4.3.9 Additional Comments and Studies

[645] derives conditions under which Newton’s and Poisson’s coefficients are equal
for two bodies colliding, relying on Darboux-Keller’s shock equations. Keller’s work
is extended in [652] to include frictional moments. In [1122] simplifying assump-
tions on the shock process are made to express the ratios between Newton’s en,
Poisson’s ep and Stronge’s e coefficients, which are shown to depend on friction,
inertia and initial velocities, i.e., en

e
= e

ep
= f (λ, μ, θ), where μ is the Coulomb’s

coefficient, θ is the rod initial orientation, and λ is an inertial term. A comparison
of the theoretical results obtained via restitution coefficients and via a numerical
simulation based on a finite elements method is made. The results in [1122] show
a clear discrepancy between the outcomes of Darboux-Keller’s model (that neglects
tangential compliance) and those of the finite elements code, especially in the tan-
gential percussion. The works in [176, 603, 604, 1122] are steps in this direction.
Djerassi [349] leads a complete analysis of two-body impact with the three CoRs
and Coulomb’s friction, using Routh’s graphical method (outlined in Sect. 4.3.13).
He concludes that Poisson’s CoR supersedes the other two, though this is criticized
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in [1158]. The work is extended to three-dimensional two-body collisions in [350],
using Darboux-Keller shock dynamics. Stronge [1160] exhibits cases where TL > 0
even when ep is used (while it is generally believed that ep always yields TL ≤ 0,
contrarily to en). Najafabadi et al. [914] rediscover ideas in [203, Chap. 6] and [202,
Chap. 6] on the use of the kinetic metric to analyze frictionless impacts (see Sect. 6.2
in Chap. 6 for more details). A general expression of the energetic CoR is calculated
in [1291] for impacts with planar Coulomb friction, using an expression equivalent
to (4.49) involving the normal contact forces work during compression. The CoR e

is shown to depend on the incidence angle, as well as on friction.
Brach [176] proposes to compare theoretical predictions with rigid model and

simulation results based on an approximation procedure (the Simon-Hunt-Crossley
model in (2.24), plus Coulomb friction) of the impulse ratio μ, for a compliant model.
The benchmark example of a lamina striking a wall is chosen. Quite interestingly,
some simulation results yield e > 1. We are tempted to relate this with the fact that
in certain cases, increasing the kinematic normal coefficient (i.e., the normal velocity
increases during impact) yields a decreasing TL , because at the same time friction
dissipates more energy [174, 500]. The comparative results in [176] show that there
is agreement between the compliant and rigid body assumptions in most of the tested
cases, although as recognized in [176] much more work is needed: in fact the problem
attacked in [176] is that of studying the validity of a limit problem (rigid bodies) by
comparing it with a compliant problem to see if both agree. Routh’s graphical method
is used in [1255] to determine the total impulse. This work is discussed by Stronge
(see the same reference in our bibliography), who argues that in case of eccentric
collisions or velocity slip reversal, the coefficients as introduced by [1255] depend
on initial orientation of the bodies, friction, vr,t(0) and internal sources of dissipation.
Thus Newton’s and Poisson’s rules cannot be constant and are therefore useless in
practice since they depend on too many conditions. These facts are however noted
by the authors [1255] not to contradict their results. [1130] makes similar basic
hypothesis about rigid dynamics. The impact process is analyzed at 0 and t f only.
TL is expressed as a function of restitution coefficient, final and initial velocities, and
normal impulse Pn,c during compression phase (similarly as in [1255] the impulse is
split into the two phases); two expressions are given depending on whether vr,t(0) �= 0
(initial slip) or no slip occurs on [0, t f ]. Several examples are given to illustrate the
results. In [21] the authors show that the coefficient of restitution for eccentric impacts
depend on an “effective” approach velocity (that is the ratio of vn(0) and a coefficient
depending on kinematics and friction, similar to the “effective” masses m j and n j

in [1148]), thus extending the results in [272, 627, 1175] on dependence of en on
the approach velocity. [580] introduces in the constraints function f (q) a stochastic
term g(q) � 1 that represents the microstructure of the surface. A Kelvin–Voigt
(linear spring-dashpot) model is used for the interaction forces. Then a probabilistic
restitution rule for q̇(t+k ) as a function of g and preimpact velocities is deduced,
which reduces to Newton’s rule for smooth surfaces. The equivalent coefficient of
friction μ is also proved to be dependent of the inertia matrix M(q) and preimpact
velocities. No mention is made in [580] on the energetical behavior of the proposed
model.

http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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4.3.10 Multiple Microcollisions Phenomenon: Toward
a Global Coefficient

4.3.10.1 The Falling-Rod Benchmark Example Revisited

The vibrations induced by an impact between two bodies do not always play a major
role on the collision outcome. This is, for instance, the case of a sphere colliding a
massive surface: a very little part of the energy is dissipated in the global deformations
[556, 1034], see Sect. 4.2.4 for more details. Such is not always the case, and as
guessed by G. Coriolis [302] and M. de Saint Venant [1056], body vibrations have to
be taken into account in some collisions analysis. Stoianovici and Hurmuzlu [1144]
present experimental results of a slender rod falling on a rigid obstacle. They show
that Newton’s restitution coefficient varies with the orientation of the rod at the
impact time, and hence question the validity of the rigid body assumption for their
system. In particular, they point out the importance of the multiple microcollision
phenomenon that occurs at the impact time: the impact in fact involves successive
small collisions between the rod’s tip and the obstacle (the phenomenon had also been
noticed in [1202]—calculation in closed form of a double microcollision, Chap. 12—
[469, 1298] and is due to the flexibility in the bodies: the shock induces vibrations
which in turn produce high frequency waves, and subsequent contact instants between
the two bodies). This phenomenon is not modeled if perfect rigidity is assumed and
if the period during which the microcollisions occur is taken as an instant of time tk .
However, this last assumption can be considered as legitimate due to the very short
time of the multiple collisions62 for instance, a slender rod of length 600 mm typically
rebounds in 4×10−3 s, and with 15 microcollisions in [1144, Fig. 5e]). A rod of length
100 mm has a shock duration of 13 × 10−5 s, accompanied by two microcollisions.
Those values are obtained for an angle of approach θ ≤ 35 deg. They are shown to
depend a lot on θ . Other experimental results for aluminum bars colliding vertically
a flat report shock durations that varies linearly with the bars’ lengthes [319, Fig. 6],
and vary between 10−4 s and 8 × 10−4 s for preimpact velocities between 5 and 30
m/s [319, Fig. 12]. Phenomena close to microcollisions are noticed in [1239] (named
therein multiple impact spikes). The problem will therefore be to keep the rigid body
assumption while introducing the vibrations in the model. The authors also show that
a compliant model of the system, composed of a spring-dashpot obstacle and a rod
modeled by several elements related with springs and dampers, provides numerical
results close to the experimental ones.63 We may name such approximating models
global, in opposition with those that locate the deformations at the contact point only.

62Be careful: those multiple collisions are quite distinct from the multiple impact problem that we
shall deal with in Chap. 6, which concern shocks with codimension ≥ 2 surfaces, i.e., at several
contact/impact points. For the moment, the shocks occur at a single contact point.
63An open problem is the optimal choice of the number n of rigid elements that constitute the rod.
This might be related to waves travel velocity in the colliding bodies. It is for instance argued in
[650] that it is justified to use spring-dashpot like contact/impact models for wave travel velocities
between 46 m/s and 5200 m/s, which is the case for most applications [627].

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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Roughly, the main conclusions from Stoianovici and Hurmuzlu’s experiments are
that the kinematic restitution coefficient depends on the approach angle of the bar, and
that the energy dissipation is not located at the shock, but takes place in the whole rod
via vibrations: each microcollision excites transversal modes which dissipate energy
in the body’s bulk. Even more this is the main source of energy dissipation. Do
these experimental results tell us that rigid body impact laws should be abandoned?
Certainly this is not the case, as recognized by the authors themselves, and despite
some controversy [277]. In fact, the lesson is that when noncentral impacts are to
occur, then great caution must be taken in applying Newton’s restitution law. In the
case of the falling slender rod tested in [1144], it may be argued that if the dropping
surface was softer, then the restitution coefficient would not have varied as much as
reported, mainly because the vibrations would have been reduced. Note, however,
that we arrive here at a paradoxical situation: rigid body assumptions work better if
the bodies are less rigid!

Other experimental results for the same system have been obtained in [650]. They
use a different (local) approximating problem as depicted in Fig. 4.22: the tangential
compliance is located in the rod’s tip, with stiffness kx , and the contact is modeled
by a rigid sledge that slides with Coulomb friction on a rigid ground. It is shown
numerically in [650] that the matching between rigid body theories (Poisson, Newton,
Stronge) and this compliant contact/impact model, depends a lot on the ratio α = kx

ky
.

When α → +∞ (α = 100 in [650]), the energetical coefficient provides results
close to those obtained via the approximating model (called a regularized model
in [650]). But Newton and Poisson conjectures do not. However, when α is small
(α = 1) then the rigid body models results drastically differ from that obtained via the
regularized one (discrepancy ≥ 40 %). Experimental results are presented in [768].
They concern a bar with length 613 mm, mass 0.0471 kg, endowed with a rubber
tip, falling on a glass plane inclined by 45 degrees. The bar slides on the plane and
collides a steel gate mounted on the plane. Five different configurations are tested,
and the results are compared with the predicted ones. In the central impact case,

kx/2 kx/2

ky
Coulomb friction

no friction

Fig. 4.22 Approximating problem for the slender rod collision
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rigid body, regularized prediction and experiments fit quite well. Otherwise, they
may differ significantly. Concerning the normal contact velocity, both models seem
to provide similar prediction of the postimpact value. For the tangential and angular
velocities, the approximating problem provides much better results. Stronge [1152]
uses a similar local deformation model as in Fig. 4.22 to analyze the contact/impact
process (sticking and slipping conditions) for low collision speeds (which allows one
to state that e is still given by (4.160)), and colinear shocks. The numerical results are
shown to fit with experimental ones in [736] concerning the maximum normal and
tangential contact forces. Let us note that the experiments in [736] concern spheres
colliding a heavy steel plate. It is, therefore, not surprizing that a local approximating
model provides accurate results, since vibrational effects are minimized for colliding
spheres [468, 469]. Notice, that vibrations in tennis rackets have been experimentally
shown not to perturb the shock process [201] because their frequency is much larger
that the impact duration (this contradicts Love’s criterion for quasistatic impacts):
hence a free racket and a clamped head provide almost the same data in terms of
restitution coefficients [200]. Also since modern rackets are so stiff, the soft human
hand hardly influences the shock process. Therefore, a simple application of Newton’s
conjecture proves to provide good predictions. The main facts that influence en are
the place of the collision on the strings (en decreases at the periphery), the ball speed
and the string tension.

4.3.10.2 Restitution Coefficient and Microcollisions

Let us, however, stop this digression on tennis and go back to the slender rod problem.
The moral of the tale might be the following: microcollisions play a crucial role in
impact phenomena between rigid bodies. They are induced by vibrations in the rod
“during” the shock, and may in turn excite vibrational modes. Those vibrations are
responsible for loss of energy. At the same time, the shock duration remains so small
compared with the overall system’s dynamics that it seems quite reasonable to keep
the instantaneous feature of the process. The solution to this apparent paradoxical
situation is to define a restitution coefficient that incorporates the vibrational loss of
energy,, i.e., which does not only represents local phenomena at the contact point, but
contains enough informations about the global behavior of the rod. We already saw
such modifications of en in Sect. 4.2.4, see Sect. 4.4 for related material. Motivated by
the experimental results in [1144], the authors of [557] introduced a new definition
of the energetical restitution. Roughly speaking, the new coefficient is defined as
follows: the kinetic energy loss during the shock is the consequence of (i) friction
with the ground which produces a loss T f , (ii) a local loss of energy at the contact
point that is modeled through a coefficient e equal to that of Stronge, and produces
a loss of kinetic energy Tl , (iii) a coefficient eG that represents the loss of energy due
to vibrations in the bar, and produces a loss of kinetic energy TG = eGT (0), where
T (0) is the initial kinetic energy.
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It is worth remarking that it is postulated that the energy loss due to local defor-
mations can actually be calculated from the work of the normal force, relying on
Darboux-Keller’s like assumptions (in particular, there exists a time of maximum
compression). Let us outline how the coefficient eG is derived in [557]. First one
considers so-called supercritical collisions, for which only one bounce occurs. In
this case, it is possible to use analytical tools from continuous mechanics to derive
an expression of the energy stored internally in the bar, as a function of two parame-
ters r = cos(θ)

cos θc
and ε. θ is the initial angle of the bar, θc is a so-called critical angle

(the angle θ at which the internally stored energy is maximum, θc exists from exper-
imental and numerical results [1144]), and ε is a parameter depending on contact
properties and the bar geometry. It is noted using a finite element like model that
one has:

cos(θc) = 0.25 + 2.61Hr (4.175)

and
ε = 0.67 − 2.31Hr, (4.176)

for a certain parameter Hr = ( E I
kL3 )

1
3 , with E the Young modulus, I the moment of

inertia, L the length of the bar, and k the ground stiffness. It is clear from (4.175) that
this formula is valid only for a certain range of rods, for which 0.25 + 2.61Hr ≤ 1.
For such supercritical collisions (θ ≥ θc), it is concluded that:

eG = r2

(1 − r2)2 + r2

ε

. (4.177)

Given a bar and contact properties, one can thus compute Hr , then θc and ε, and
r . We recall that for the moment, the expression of eG in (4.177) is a consequence
of an analytical derivation of the stored energy in a static bar under compression,
confirmed by numerical and experimental results. Now for subcritical collisions
(θ ≤ θc), microcollisions do exist. They drastically complicate the way one may
analytically derive an expression for the stored energy. It is proposed in [557] to
simply extend the form in (4.177), with a new critical angle and parameter ε derived
from numerical and experimental curves. Similar to (4.175) and (4.176), but different,
formulas for their computation are proposed. This yields a coefficient eG for θ ≤ θc
that completes the one in (4.177). The expression for eG when θ ≤ θc is given by:

eG = max

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
ε[

(1 − r2)2 + r2

ε

]2

⎤
⎥⎦

2

,

r̄3

(ε̄)
1
2[

(1 − r̄2)2 + r̄2

ε̄

] 3
2

⎫⎪⎬
⎪⎭ , (4.178)

where r̄ = cos(θ)

cos(θ̄c)
, cos(θ̄c) = min[0.21 + 5.32Hr, 0.38], ε̄ = min[0.63 −

6.98Hr, 0.41]. Let us note that due to the way the equation is tailored, the vibrational
effects become zero when Hr becomes smaller than a certain value.
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In summary, when a slender bar is chosen together with ground parameters, one
can compute eG from Hr , (4.175), (4.176), and (4.177), or (4.178). The total kinetic
energy loss is then given by the sum of the three effects enumerated above: T (t f ) =
(1−eG)T (0)−(1−e2)

∫ pn(tc)
0 vn(pn)dpn −T f , where we recall that vn is the normal

velocity of the contact point.

Remark 4.24 (Lowerbound for TL(tk)) It seems that only the upperbound 0 on TL
has been used as a criterion to investigate (or invent) new impact models and analysis
tools. However, in a particular impact process there must also exist a lowerbound
for the energy loss. For instance, two particles of masses m1 = m2 = 1 that strike
satisfy the dynamical equations (ẋ1(t

+
k ) − ẋ2(t

+
k )) = −en(ẋ1(t

−
k ) − ẋ2(t

−
k )) and

ẋ1(t
+
k ) − ẋ1(t

−
k ) = p12, ẋ2(t

+
k ) − ẋ−

2 = −p12. Assume that ẋ−
2 = 0, ẋ1(t

−
k ) = 1.

Then one gets ẋ1(t
+
k ) − ẋ2(t

+
k ) = −en, ẋ1(t

+
k ) = p12, ẋ2(t

+
k ) = −p12. If en = 0,

TL(tk) is maximum (see (4.41)) and we get ẋ+
1 = ẋ+

2 = 1
2 . Hence TL ,max(tk) = − 1

4 . It
is not possible to get more loss of energy at the impact using Newton’s restitution rule.
In case of a shock of two bodies moving on a line one has TL ,max(tk) = T1(t

−
k ) (1−r)2

1+ m1
m2

,

with r = ẋ2(t
−
k )

ẋ1(t
−
k )

that corresponds to an inelastic shock [1028].

4.3.11 Conclusion

It appears clearly from the results in [122, 274, 278, 1001] and in the previous sec-
tions, that the tendency is to develop multiparameter (or multicoefficient) collision
rules. This permits to describe exhaustively the impact outcomes and to incorporate
local physical effects like normal restitution, tangential compliance, Coulomb’s fric-
tion, as well as global –vibrational– effects (see Sect. 4.3.10). For instance, the need
for separating the effects of dissipation due to sliding from those due to normal and
tangential compliance was pointed out in [1122] by comparing results obtained from
Darboux-Keller’s model (no tangential compliance) and from more sophisticated
models (finite elements code). As a consequence one has to identify more parame-
ters from experimental data. Also one should keep in mind that it is not sufficient to
propose a rule that has enough degrees of freedom so that it spans the whole postim-
pact outcome space. The parameters have to possess a physical meaning, justified
by experiments or by simulations led with sophisticated (e.g., FEM) contact models.
The now classical three-parameter law (μ, et0, en) has been shown to satisfy these
requirements for collisions between spheres.
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4.3.12 The Thomson-and-Tait Formula

From (4.136) and Newton’s third law, we have:

dVA,r

dt
= (M−1

1 + M−1
2

) dP
dt

, (4.179)

with VA,r = VA,1 − VA,2 ∈ R
3 is the relative spatial velocity at the contact point,

and the matrices M−1 are defined after (4.137). Hence, the work performed by the
interaction force during the collision is:

W[0,t f ] =
∫ t f

0
VA,r (t)

T F(t)dt =
∫ t f

0
VA,r (t)

T d P(t). (4.180)

From (4.179), it follows that:

W[0,t f ] =
∫ t f

0
VA,r (t)

T
(
M−1

1 + M−1
2

)−1 dVA,r

dt
dt, (4.181)

that is:

W[0,t f ] = 1

2

[
VA,r (t)

T
(
M−1

1 + M−1
2

)−1
VA,r (t)

]t f
0

. (4.182)

From the fact that VA,r (t f ) − VA,r (0) = (M−1
1 + M−1

2

)
P(t f ) (note that P(0) = 0),

we obtain using the identity a2 − b2 = (a + b)(a − b)64:

W[0,t f ] = 1

2
P(t f )

T
(
VA,r (t f ) + VA,r (0)

)
. (4.183)

In case there is no friction at the contact point, the identity in (4.183) reduces to the
normal components only, and is known as the Thomson-and-Tait formula65 [1192]:

W[0,t f ] = 1

2
pn(t f )[vr,n(t f ) + vr,n(0)]. (4.184)

Remark 4.25 The formulas in (4.183) and (4.184) are closely related to the ther-
modynamical Clausius–Duhem inequality for collisions [414, 415], where P should
represent the internal percussion (acting for instance at joints) in a system of rigid
bodies.

It is pointed out in [1122] that (4.184) does not hold for any collision process
when friction exists. Stronge [1150] proved that, in general, the identity in (4.183)
can be extended on intervals [t1, t2] as

64This is indeed the only basic mathematical tool used to derive this result.
65Which is also sometimes referred to as the Kelvin-and-Tait formula [592, 653].
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W[t1,t2] = 1

2
[P(t2 − P(t1)]

T
[
VA,r (t2) + VA,r (t1)

]
(4.185)

only if slip is unidirectional on [t1, t2]. But the formula in (4.183) remains valid
whatever the shock process may be since it concerns the whole shock interval. Ivanov
[592] studied the conditions under which the Thomson-and-Tait’s formula can be
extended to the case of a body subject to several impulsive forces. Let us assume that
a rigid body of mass m and mass center G is submitted to forces Fk(t) on a short time
interval [0, t f ], each force acting at a point Ak . The goal is to investigate whether the
formula

W[0,t f ] = 1

2

∑
k

Pk(t f )
T
(
VAk ,r (t f ) + VAk ,r (0)

)
(4.186)

is valid or not. The result in [592] is that this is the case when:

• Fk is always parallel to GAk while Fj , j �= k, satisfy Fj⊥Fk . This may be written
as

Fk(t)⊥
[
Fj (s) + m

[
I−1(GA j × Fj (s)) × GA j

]]
(4.187)

for all s, t ∈ [0, t f ] and all j �= k.
• All Fk’s have constant directions and Fk(t) = ϕ(t)lk for some ϕ(t) ∈ R and
lk ∈ R

3.

Those conditions apply for instance to the case of one body which collides simulta-
neously with two other rigid bodies at two points A1 and A2. Then formula (4.186)
applies to represent the work of the shock interaction forces if G1A1//n1, which
in turn implies n1⊥n2 (the normal directions to the tangent plane at each contact
point). The second condition may be used to the case of a lamina colliding a rigid
ground with Coulomb’s friction. Then formula (4.184) represents the work of the
normal interaction force if GA⊥t or if there is unidirectional sliding on [0, t f ] (hence
corroborating the above result by Stronge [1150]).

4.3.13 Graphical Analysis of the Shock Dynamics

4.3.13.1 Routh’s Graphical Method

Let us describe a graphical analysis for two-dimensional shock processes between
two rigid bodies with friction. This is due to Routh [1049, pp. 154–162] and it solves
the impact problem by constructing the total impulse P(t f ), in the (pn, pt) plane,
basing on the same assumptions as the Darboux-Keller’s dynamics. The arguments
that follow are directly taken from Routh’s book [1049]. Let us choose notations
consistent with those in Sect. 4.1. Let us assume that the Galilean and local frames

satisfy G = L . The gravity centers velocities are VGi =
(
Ẋi,t

Ẋi,n

)
, i = 1, 2. For

t ∈ [0, t f ], the dynamics of each body is
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⎧⎨
⎩
mi
(
Ẋi,t(t) − Ẋi,t(0)

) = pi,t
mi
(
Ẋi,n(t) − Ẋi,n(0)

) = pi,n
miρ

2
i (ωi (t) − ωi (0)) = pi,tXi,n − pi,nXi,t

(4.188)

plus Coulomb’s friction rule. Recall that p1,t = −p2,t , p1,n = −p2,n, ρi is the radius
of inertia. One also has:

{
vr,t = Ẋ1,t − Ẋ2,t + X1,nω1 − X2,nω2

�= S

vr,n = Ẋ1,n − Ẋ2,n + X1,tω1 − X2,tω2
�= C.

(4.189)

Combining both sets of equations, one finds:

{
S = S0 + m−1

11 pt − m−1
12 pn

C = C0 − m−1
12 pt + m−1

22 pn,
(4.190)

which is the same dynamics as in (4.139) written in a different way. We chose the
same notations to emphasize that the m−1

i j are proportional to a mass inverse, and
pn = p1,n, pt = p1,t . One has [1255]:

⎧⎪⎪⎨
⎪⎪⎩

m−1
11 = 1

m1
+ 1

m2
+ X2

1,n

m1ρ
2
1

+ X2
2,n

m2ρ
2
2

m−1
22 = 1

m1
+ 1

m2
+ X2

1,t

m1ρ
2
1

+ X2
2,t

m2ρ
2
2

m−1
12 = X1,nX1,t

m1ρ
2
1

− X2,nX2,t

m2ρ
2
2

.

(4.191)

Routh’s method consists of tracing the point P =
(

pt

pn

)
in the impulse plane that

coincides geometrically withL (in a more pedantic language one would state that the
impulse and velocity spaces are dual but both isomorphic to R

2). Notice that C = 0
means that the maximum compression has been attained, while S = 0 means that the
mode “no sliding” has been entered. The corresponding lines are denoted as MC and
NS in Fig. 4.23. Assume that on [0, ε), for some ε > 0, the bodies slide over each
other. Then P moves along a straight line since pt = μpn, until P reaches NS: sliding
stops at P0. If pt0 < 0 as in Fig. 4.23 (2) then sticking occurs right at t = 0. After P0

is reached in Fig. 4.23 (1), two cases may occur: if α < Arctanμ, then along MC one
has pt < μpn, hence sticking continues to hold and P moves on MC in the direction
of increasing pn, see Fig. 4.23 (1). If α > Arctan(μ) then the motion of P along
MC is not possible because the condition |pt| < μpn is not true in this case. Hence
there is a sticking point after which sliding continues but with reversed velocity; thus
P follows a straight line whose angle β with n is equal to ̂(AP0, t), see Fig. 4.23
(3). The compression line MC is actually used only to determine the impact process
termination: relying on Poisson’s rule, one has pn(t f ) = (1 + ep)pn(tc), where tc
corresponds to the intersection of P with MC, and this provides the value of pn at
the end of the collision. One is able to calculate pt(t f ) and pn(t f ) for all the possible
processes (sliding, sticking during the compression or the restitution phases, reverse
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pt 0
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Arctan (μ)
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t

P0

NS

β

β
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Fig. 4.23 Routh’s geometric method

sliding during the compression or the restitution phases—in which cases one also
uses MC). If Newton’s rule is chosen the shock ends when vr,n(t

+
k ) = −envr,n(t

−
k )

which gives the line of termination T equation: (1 + en)S0 − m−1
12 pt + m−1

22 pn = 0.
Only three cases (sliding, sticking, reverse sliding) have to be studied, since the line
of maximum compression does not have to be used to determine the termination. If
the line NS is attained before T, then one has to determine whether NS or the line of
reverse sliding RS are followed by P .

Various other cases are described by Routh. Wang and Mason [1255] provide a
detailed analysis of the impact process using Routh’s method, and show that when
vr,n(0) = 0, one has to resort to impulsive forces to prevent penetration. The contact
modes of impact (sliding, sticking on [0, tc] or on [tc, t f ], reversed sliding on [0, tc] or
on [tc, t f ]) are studied as functions of the system physical and geometrical parameters.
Another method is due to Pérès [995] and aims at constructing the contact point
relative velocity (vn, vt) evolution during the shock. It happens that Routh’s two-
dimensional model is algebraic because the governing differential equations can be
solved in closed form. Unfortunately, it cannot be extended to the three-dimensional
case because the Darboux-Keller’s dynamics are not integrable explicitly.
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4.3.13.2 Frictionless Two-Body Collisions

One can also associate diagrams to the frictionless collision process between two
rigid bodies. Such diagrams may possess a didactical usefulness since they simplify
the algebraic calculations that one needs to perform to solve an impact problem
[57, 234, 1005, 1028, 1146]. Basically one combines the kinetic energy constraint
TL(tk) ≤ 0 with the conservation of momentum equations. In the velocity space (for
the one degree-of-freedom case), the former gives rise to ellipses and the latter to
straight lines. The intersections between both represent the initial and final velocities.
See Fig. 6.3a for an illustration.

4.4 Impacts in Flexible Structures

4.4.1 Multimodal Modeling Approach

We briefly mentioned at the end of Sect. 4.2.4, that impacts may be modeled between
flexible and rigid bodies (like a rigid sphere colliding a thin flat [1314]). A “rigid
body” impact model can be used even in this setting. Wagg et al. [1236, 1237]
study the impact of linear systems Mẍ(t) + Cẋ(t) + Kx(t) = Fimp(t) with a rigid
obstacle, where M = mI , C = cD and K = kE are the constant mass, damping and
stiffness matrices, respectively, D is a damping coupling matrix, E is the stiffness
coupling matrix, m > 0, c ≥ 0, k ≥ 0. The impact occurs at the coordinate xi
that is subjected to a unilateral constraint xi ≥ xs . A system as in Fig. 4.24, which
may be called an n-degree-of-freedom impact oscillator, possesses such dynamics.
This dynamics intends to approximate infinite dimensional systems (like beams),
hence the choice of the dimension of x , (i.e., of the number of modes) is a crucial
step. A multimodal transformation is applied which puts the dynamics in the form
q̈(t)+Ξ q̇(t)+Ωq(t) = 1

mΨ T Fimp(t), for some diagonal matrices Ξ and Ω , while
Ψ is the orthogonal modal matrix. One has Ω = k

mΓ , where Γ is the diagonal
eigenvalue matrix. Suppose that the impact occurs over the time interval [t0, t f ]. The
energy balance (that is quite close to the so-called dissipation equality of Dissipative
Systems Theory [218]) is:

m1 m2 m3 mn

Fig. 4.24 Longitudinal shock in a bar

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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=T (t f )−T (t0)︷ ︸︸ ︷
1

2
m[q̇(t f )

T q̇(t f ) − q̇(t0)
T q̇(t0)] +

=�PE︷ ︸︸ ︷
1

2
k[qTΓ q(t f ) − qTΓ q(t0)]

=
∫ t f

t0

q̇(t)TΨ T Fimp(t)dt

︸ ︷︷ ︸
=�Eext

−m
∫ t f

t0

q̇(t)TΞ q̇(t)dt

︸ ︷︷ ︸
=DE

,

(4.192)

where T (t f ) − T (t0) is the kinetic energy variation during the collision, �PE is the
elastic potential energy variation, �Eext is the energy injected in the system by the
contact force (and 〈q̇, Ψ T Fimp〉 is the system’s supply rate), DE is the energy dissi-
pated by the system due to its internal damping. It is noteworthy that the Thomson-
and-Tait’s formula in Sect. 4.3.12, is a particular case of this energy balance. It is
postulated that the impact obeys a restitution law of the form ẋ(t f ) = E ẋ(t0),
where E = diag(1, 1, 1 . . . ,−en, 1, 1, . . . , 1), en ∈ [0, 1] is the i th entry. There-
fore T (t f ) − T (t0) = −m

2 ẋ(t0)
2(1 − e2

n), in a way similar to (4.41). Equalling this
expression with the one obtained from (4.192), we get:

en =
√

1 − 2

mẋ(t0)2
(�PE + �Eext − �Eext ). (4.193)

Vibrational effects are present in (4.193), which however does not provide a closed
form of en. From (4.193) one sees that even if the body is perfectly elastic, (i.e.,
there is no internal dissipation: �Eext = 0), one may have en < 1 due to the
body vibration. The case of a flexible beam impacting transversally a rigid obstacle
is treated in [1236, 1238], while longitudinal impacts are experimentally analyzed
in [1239]. The instantaneous collision assumption is justified experimentally for
longitudinal impact of a cantilever beam against a rigid obstacle in [1239], where
it is shown that the system spends less than 2.5 % of the total time in the impact
phase. Such multimodal approach of impacts, is applied to cantilever beams colliding
transversally a rigid obstacle at x = b, with harmonic excitation. Experiments are
made in [1238]. The above restitution law approximates u̇(b, t+k ) = −enu̇(b, t−k )

and u̇(s, t+k ) = −enu̇(s, t−k ), s �= b, when u(b, tk) = a. Contrarily to [870, 1097]
who assume that the contact occurs during a sufficiently large time so that the modal
properties of the beam are changed during the impact, in [1238] it is assumed that
the impact is so short that mode shapes of the beam during collision are not those of
a clamped-pinned beam. A Galerkin approach is used to reduce the Euler–Bernoulli
beam equation E I

L4
∂4u
∂s4 + η ∂u

∂t + ρA ∂2u
∂t2 = f (s, t), u < a. Comparisons between

experimental and numerical results show good agreement [1238, Fig. 7]. Interestingly
enough, the simulations show the existence of accumulation of impacts before the
beam sticks on the obstacle, a behavior commonly observed in the bouncing ball
system.
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4.4.2 Infinite Dimensional System Approach

Infinite dimensional models stemming from continuum mechanics and elasticity
with unilateral constraints have been investigated, see, e.g., [83, 711, 1067, 1068,
1203]. The usual basic assumptions are that the stress components other than the
axial one are negligible, and that the axial stress is uniform across the rod’s cross
section [1203]. The longitudinal impact of two bars is treated in [1203, §169], as well
as the impact of a bar clamped at one end and struck by a mass at the other end. It
may be assumed that both bodies are elastic [1058], or that one perfectly rigid body
hits an elastic body [1072]. Inspired by [711], Shi [1107] computes the restitution
coefficient of an elastic rod acted upon by a force Fext and axially colliding a rigid
obstacle.

Theorem 4.1 [1107] Let u(x, t) be the displacement field of the rod, with the initial
data u(x, 0) = 0, ut (x, 0) = −v0. At x = 0 the Signorini conditions σ(0, t) ≤ 0,
u(0, t) ≥ −h, σ(0, t)[u(0, t) + h] = 0 are imposed, where σ(x, t) is the stress field
and h is the initial distance between the rod and the obstacle. The rod at rest has
total length l. One defines t− = inf{t |u(0, t) = −h} as the time of the first impact
and t+ = inf{t |t ≥ t−, u(0, t) > −h} as the time of first rebound. It is assumed that
t− =

√
v2

0+2Fext h−v0

Fext
< 2l

c , where c =
√

E
ρ
, E is the Young’s modulus, ρ is the constant

density. Then en
�= − limt→t+ ,t>t+ ut (0,t)

limt→t− ,t<t− ut (0,t) = max[0;c
√

v2
0+2Fext h−2Fext l]

c
√

v2
0+2Fext h

. In case Fext = 0

(free impact), the impact duration is equal to 2l
c , and en = 1. If v2

0 ≤ Fext (
4l2

c2 − 2h)

then en = 0.

It is interesting to notice that for a large enough external force, the bar remains stuck
on the obstacle. There exists a variety of cases where the bar rebounds with en < 1:
part of the kinetic energy is trapped in the bar through vibrations. Obviously, if the
rod is clamped at one end, the results are likely to change.

Remark 4.26 It may be argued that the notion of restitution loses its meaning for the
impact of a bar in the longitudinal direction: consider a system with constant total
mass as in Fig. 4.24 and letn → +∞: thenmn → 0 and the dynamical effects of colli-
sions disappear (this is not the case for transversal impacts). Glocker gives a nice inter-
pretation of this effect in [454, §5.7], where he shows that the kinetic angle between
the generalized preimpact velocity of the approximated bar in Fig. 4.24 and the unilat-

eral constraint normal, is equal to −q̇(t−k )T M(q(tk ))∇ f (q(tk ))√
q̇(t−k )T M(q(tk ))q̇(t−k )

√
∇ f (q(tk ))T M(q(tk ))∇ f (q(tk ))

= 1√
n

.

Hence, as the number of elements n → +∞, the impact becomes tangential and the
contact impulse vanishes.
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4.4.3 Further Reading

Narabayashi et al. [918] study the impact of a 1-D (longitudinal) elastic flexible bar
with a (transversal) both-ends-supported elastic beam. Using the eigenfunctions of
both elastic bodies, which allow one to derive the elastic deformation in the bar and
the beam’s deflection during collision as infinite series, they derive an expression for
the apparent CoR which is defined from the bar’s gravity center velocity. Depending
on collision parameters, this apparent CoR may range from 0.25 to 1. Multiple
microcollisions are analyzed. Bakr et al [77, 660] study the behavior of general
multibody systems with both rigid and flexible parts under an impulsive action,
using a model based on a finite element procedure. They use a kinematic restitution
coefficient to describe the shock process. As an example of possible application,
they analyze the dynamics of an aircraft at touch down impact. Other works on the
topic and using a restitution coefficient can be found in [544, 659, 661, 1295, 1298].
The theoretical results are validated in [957, 1041]. The so-called Nonlinear Normal
Modes approach (which is an extension of the classical Linear Normal Modes [655],
as nontrivial periodic solutions of the autonomous dynamical system) is used in [707]
to analyze the dynamics of a 1-D rod clamped at one end and hitting a rigid wall at the
other end, and of a turbomachinery blade in contact at its tip edge. The applicability of
the prediction based on the use of a restitution coefficient is examined in [1298]. These
studies show that for the considered systems, experimental and theoretical results
fit quite well. Other studies use compliant models of the contact-impact process
[273, 662, 1295, 1299]. In [1295], Yigit compares numerically and experimentally
three different models (restitution coefficient, spring-dashpot and Hertzian like) and
concludes that they provide quite similar results. The Hertzian-like model possesses
the advantage that its coefficients are computable from the physical characteristics
of the materials. The applications in switches, connectors and electrical contacts are
also a strong motivation for contact/impact models study. Indeed contacts provide
a major source of failures in automotives, aircraft, machine tools, computers and
consumer electronics. Since such electromechanical contacts are often accompanied
by large deformations of the bodies, the models used may be deformable slender
rods contacting massive tables [800]. Some other electromechanical systems with
more complex kinematics motivate the development of specific software packages
taking into account their nonsmooth features [1].

4.5 General Comments

All through this chapter as well as Chap. 2, restitution coefficients have been stud-
ied and often associated with some constitutive contact/impact models (viscoelastic,
elastoplastic, adhesive, with friction, etc.). Nothing hampers that different constitu-
tive models yield the same restitution coefficient for particular parameters tuning.
As alluded to before, a restitution coefficient is a parameter that is meant to incor-

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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porate so many different physical effects occurring during the collision that such a
fact should not come as a surprise. Impact models should not be validated only with
restitution coefficients, but also with the collision duration, impact force history and
maximum value, dependence on initial impacting velocity, etc. In case of a multiple
impact, wave effects may also play a crucial role and should be predicted properly.
Multiple impacts are the topic of Chap. 6.

http://dx.doi.org/10.1007/978-3-319-28664-8_6


Chapter 5
Nonsmooth Lagrangian Systems

This chapter is dedicated to Lagrangian dynamical systems subject to bilateral and
unilateral constraints, which we may name Complementarity Lagrangian Systems.
It starts with the analysis of the contact problem, for perfect bilateral and unilat-
eral constraints. Then Moreau’s sweeping process is introduced in detail. Coulomb’s
model of friction is described, and complementarity problems and systems are pre-
sented with examples from Mechanics, Circuits and Optimal Control. The chapter
continues with the analysis of the contact problem when friction acts on the system,
with a particular emphasis on the so-called Painlevé paradoxes. An introduction to
various existing methods for the numerical integration of nonsmooth systems with
complementarity relations ends the chapter.

5.1 Lagrange Dynamics with Multiple Constraints

The class of Lagrangian systems that we are going to deal with in the sequel is the
following one, with q(0) = q0, q̇(0−) = q̇0:

(a) M(q)q̈ + C(q, q̇)q̇ + G(q) = ∇ f (q, t)λn,u +∇h(q, t)λn,b + Ht,u(q, t)λt,u

+Ht,b(q, t)λt,b + Fext

(b) 0 ≤ f (q, t) ⊥ λn,u ≥ 0, f (q0, 0) ≥ 0

(c) h(q, t) = 0

(d) Impact law and friction law
(5.1)

© Springer International Publishing Switzerland 2016
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where: q is a vector of n generalized coordinates, M(q) = M(q)T � 0 is the inertia
matrix,C(q, q̇)q̇ contains the Coriolis and centrifugal torques,G(q) contains torques
that derive from a potential, i.e., G(q) = ∂U

∂q (q) for some differentiable potential
function U (q), Fext represents external forces as well as possible dissipative terms
(like Rayleigh dissipation), f : Rn × R+ → R

mu , each unilateral constraint fi (·) is
as in Definition 1.8, h : Rn × R+ → R

mb are bilateral constraints, and the total num-
ber of constraints m = mu + mb. The tangential effects are incorporated through the
matrices Ht,u(q, t) and Ht,b(q, t). It is assumed that the initial data are coherent with
the bilateral constraints, i.e., h(q0, 0) = 0 and ḣ(q0, q̇0, 0) = 0. The multipliers λn,u ,
λn,b, λt,u , and λt,b account for the contact forces in the normal and tangential direc-
tions, respectively. Line (b) imposes complementarity conditions between f (q, t)
and λn,u , hence excluding gluing and magnetic effects. Impact models have already
been studied in Chap. 4 for two rigid bodies colliding. Other models that apply to
systems with several points colliding at the same time will be analyzed in this chapter
and in Chap. 6. Friction will mainly consist of Coulomb’s friction model, both for
smooth and impacting motions. Let us summarize the general methodology used to
obtain the unilateral part of the right-hand side of (5.1) (a) for a multibody system:

• (i) Determine potential contact/impact points using (4.9), providing mu pairs
(A1,i , A2,i );

• (ii) Define the local kinematics frames (Ai , ni , t1,i , t2,i ) at each contact1;
• (iii) Calculate the gap functions fi (q), 1 ≤ i ≤ mu , using the signed distances

(4.17), so that the normal component of the relative velocities is given by vn,u,i =
∇ fi (q)T q̇;

• (iv) Calculate the matrices Ht,u,i (q) from the tangential relative velocities vt,i =
Ht,u,i (q)T q̇ at each contact.

• (v) Group the normal components λn,u,i (= Fn,i ) of the contact forces in the
frames (Ai , ni , t1,i , t2,i ) into an mu-vector λn,u , and the tangential components
λt,u,i (= (Ft1,i , Ft2,i )) into a 2mu (three-dimensional) case or an mu-vector (two-
dimensional case) λt,u . Therefore, we obtain after suitable renumbering of the
components, the following vectors: λt,b = (F1,t1 , F1,t2 , . . . , Fmb,t1 , Fmb,t2)

T , λt,u =
(Fmb+1,t1 , Fmb+1,t2 , . . . , Fm,t1 , Fm,t2)

T , λn,b = (λ1,n, λ2,n, . . . , λmb,n)
T , while

finally λn,u = (λmb+1,n, λmb+2,n, . . . , λm,n)
T .

• (vi) From the invariance principle of Sect. 3.2, the generalized contact force virtual
power (outside impact times) Pcont = 〈Fcont , q̇〉 = 〈vn,u, λn,u〉 + 〈vt,u, λt,u〉 =
〈∇ f (q)T q̇, λn,u〉 + 〈Ht,u(q)T q̇, λt,u〉 = 〈q̇,∇ f (q)λn,u〉 + 〈q̇, Ht,u(q)λt,u〉. Since
this equality has to be satisfied for all q̇, one deduces that Fcont = ∇ f (q)λn,u +
Ht,u(q)λt,u .

The steps (iii) and (iv) may not be trivial for bodies with a complex geometry, and
efficient numerical tools may be necessary for contact detection and gap function
calculations.

1The index i refers here to the contact number, not to the body 1 or 2 as in Sect. 4.1.2 and Fig. 4.1.
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Fig. 5.1 A system with two manipulators

� The Lagrangian dynamics in (5.1) is a very complex nonsmooth dynami-
cal system. It raises problems in Mathematics (existence, uniqueness, continuous
dependence),Mechanics (impact and frictionmodeling), Control (stability, stabiliza-
tion, trajectory tracking), Numerical Analysis (discrete-time methods convergence,
order, precision), Bifurcation Theory, and so on.

In this section we tackle only the frictionless case. The contact problem when
Coulomb’s friction is taken into account is treated in Sect. 5.5.

Example 5.1 Let us consider the system in Fig. 5.1. Here q = (θ1, θ2, α1, α2)
T .

The unilateral constraint is between the sphere held by the left robot, and the

plate held by right robot. We have OG =
(−l1 + l cos(θ1)+ (l + R) cos(θ2)

l sin(θ1)+ (l + R) sin(θ2)

)
,

GA2 =
(

R cos(α2)

−R sin(α2)

)
, OO5 =

(
l2 − l cos(α1)− l cos(α2)

l sin(α1)+ l sin(α2)

)
, in the Galilean

frame (O, i0, j0). The coordinates of A1 may be obtained from the intersection of the
two straight lines yA1 = − tan(α2)xA1 + (yG + tan(α2)xG) and yA1 = 1

tan(α2)
xA1 +(

yO5 − xO5
tan(α2)

)
. We deduce xA1 = (xO5 + (yG − yO5) tan(α2)+ xG tan(α2)

2)

cos(α2)
2, and yA1 = sin(α2) cos(α2)(−xO5 + (yO5 − yG) tan(α2)− xG tan(α2)

2)+
yG + xG tan(α2). This allows us to calculate the vector A2A1 =

(
xA1 − xA2

yA1 − yA2

)
. From

the fact that n = (cos(α2),− sin(α2))
T , we can apply (4.17) to deduce the signed

distance f (q) = (xA1 − xA2) cos(α2)− (yA1 − yA2) sin(α2) ≥ 0. We can also define
the tangent vector in the local frame as t = (− sin(α2),− cos(α2))

T , and deduce from
(A2A1)

T t the tangent relative velocity d
dt (A2A1)

T t + (A2A1)
T d
dt (t) = Ht(q)T q̇ ,

while the normal relative velocity is d
dt ( f (q)) = ∇ f (q)T q̇ = d

dt (A2A1)
T n +

(A2A1)
T d
dt (n), in the Galilean frame. We can therefore deduce the complemen-

tarity Lagrange dynamics of this system as M(q)q̈(t)+ F(q(t), q̇(t)) = Fext (t)+
∇ f (q(t))λn,u(t)+ Ht(q(t))λt,u(t), where λn,u and λt,u are the components of the
contact force in the frame (A, n, t). Indeed from the contact force power invariance

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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principle 〈Fcont , q̇〉 = 〈Fnn + Ftt, vnn + vtt〉 = Fnvn + Ftvt . Thus lettingλn,u = Fn

and λt,u = Ft , we obtain q̇T∇ f (q)Fn + q̇T Ht(q)Ft = Fnvn + Ftvt , and since this
holds for any velocity and contact force it follows that vn = ∇ f (q)T q̇ and vt =
Ht(q)T q̇ . For such a system it is also possible to do as follows: open the joints at
O2 and O4, work with redundant coordinates q ∈ R

8 incorporating the gravity cen-
ters coordinates of both end-bodies, add four bilateral constraints to close the two
joints and the associated multipliers λn,b,i , and apply the results of Sects. 4.1 and
5.4.1 for the two end-bodies. This provides a systematic way to write the nonsmooth
dynamics, with the drawback of adding coordinates and bilateral constraints.2

5.1.1 Frictionless Bilateral Constraints: The Contact
Problem

Assume first that there are no unilateral constraints (hence no complementarity con-
ditions as in (5.1) (b)), and no friction. Differentiating (5.1) (c) twice one obtains:

d2

dt2
h(q(t), t) = ∂h

∂q
(q, t)q̈ + d

dt

(
∂h

∂q
(q, t)

)
q̇ + ∂

∂q

(
∂h

∂t
(q, t)

)
q̇ + ∂2h

∂t2
(q, t)

︸ ︷︷ ︸
Δ=wb(q,q̇,t)

= 0

(5.2)

We remind that ∂h
∂q (q, t) = ∇qh(q, t)T , by definition. For simplicity we denote

∇qh(q, t) as ∇h(q, t). After few manipulations one obtains:

(
M(q) −∇h(q, t)

∇h(q, t)T 0

)
︸ ︷︷ ︸

Δ=Mb(q,t)

(
q̈

λn,b

)
=
(
Fext − Finer (q, q̇)

−wb(q, q̇, t)

)
(5.3)

where Finer (q, q̇) = C(q, q̇)q̇ + G(q). The natural question is: does the system in
(5.3) possess a unique solution for any value of the right-hand side? Clearly M(q)

need not be full rank (think of the system

(
0 1
−1 0

)(
x
y

)
= z). The following holds:

Theorem 5.1 [429] Let Fext and Finer (q, q̇) be arbitrary. Assume that ker(M(q)) ∩
ker(∇h(q, t)T ) = {0}, then the solution q̈ and∇h(q, t)λn,b of system (5.3) is unique.
If in addition ∇h(q, t) has full column rank, then λn,b is unique too.

This theorem holds true when it is assumed that the system lives on the constraint
submanifold {(q, q̇)|h(q) = 0, ∇h(q)T q̇ = 0}, i.e., the initial conditions are chosen

2This may render Control or Numerics less easy.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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in the submanifold. The matrix Mb(q, t) is called the KKT (Karush–Kuhn–Tucker)
matrix of the system. Indeed, consider the optimization problem:

min
1

2
q̈T M(q)q̈ + q̈T (Finer (q, q̇)− Fext ), subject to: ∇h(q, t)T q̈ + wb(q, q̇, t) = 0.

(5.4)

The Lagrangian of this problem is L(q̈, λ) = 1
2 q̈

T M(q)q̈ + q̈T (Finer (q, q̇)− Fext )+
λT (∇h(q, t)T q̈ + wb(q, q̇, t). The necessary and sufficient conditions for the existence
of a minimizer are ∂L

∂q̈ = 0, ∂L
∂λ
= 0, ∂2L

∂q̈2 � 0. The third condition is satisfied since
M(q) � 0. The other two conditions yield (5.3), with λn,b = λ.

� A Lagrangian system subject to bilateral constraints is a differential algebraic
equation (DAE). The above differentiation operations permit to reduce its index from
3 to 1.

This shows in passing that Gauss’ principle applies to Lagrangian systems subject
to bilateral constraints in their index 1 formulation. One may recover similar condi-
tions to those of Theorem 5.1 from the optimization problem, applying for instance
the conditions for nonsingularity of the KKT matrix in [172, p. 523] (which are any-
way stronger than the conditions stated in Theorem 5.1 where it is not assumed that
∇h(q, t) has full column rank, but that the system evolves on its constraint manifold).
Starting from the optimization problem in (5.4) whose KKT system is in (5.3), we
may state the following, using [172, p.523].

Proposition 5.1 Let∇h(q, t) have full column rank. Then the KKT matrix Mb(q, t)
is nonsingular if and only if M(q) is positive definite on the kernel of ∇h(q, t)T .
Equivalently, (∇h(q, t)T x = 0, x �= 0)⇒ xT M(q)x > 0.

Assume now that M(q) is invertible and ∇h(q, t) has full column rank3. Then one
may calculate λn,b as

λn,b = (∇h(q, t)T M(q)−1∇h(q, t))−1∇h(q, t)M(q)−1(Finer − Fext )

−∇h(q, t)Twb(q, q̇, t)
(5.5)

Proposition 5.2 Consider the dynamical system in (5.1) (a) with only frictionless,
bilateral constraints. The multiplier λn,b in (5.5) renders the submanifold {(q, q̇) ∈
R

n × R
n|h(q, t) = 0, d

dt h(q, t) = 0} invariant.
Proof Inserting (5.5) into (5.1) (a) with only frictionless, bilateral constraints yields
∇h(q, t)T q̈ + w(q, q̇, t) = 0. Therefore, if the initial data q(0) and q̇(0) satisfy
h(q(0), 0) = 0 and∇h(q(0), 0)T q̇(0) = 0, the trajectory stays in the submanifold. In
other words, let x1 = q and x2 = q̇ , and rewrite the dynamics as a first-order differen-
tial equation ẋ = f (x, t, λn,b). The constraint is given by g1(x, t) = h(x1, t) = 0 and
g2(x1, x2, t) = ∇h(x1, t)T x2 + w(x1, x2, t) = 0. Invariance holds if ∂g1

∂x f (x, t) = 0
and ∂g2

∂x f (x, t) = 0, which is indeed the case with λn,b in (5.5).

3I.e. the vectors ∇hi (q, t) are independent in R
n .
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The matrix ∇h(q, t)T M(q)−1∇h(q, t) plays an important role in the above devel-
opments. Notice that it is the Schur complement of M(q) in Mb(q, t).4 Inserting
the expression in (5.5) into the dynamics (5.1), therefore, yields a dynamical system
which is invariant on the constraint manifold:

M(q)q̈ + P(q)(C(q, q̇)q̇ + G(q))+ ∇h(q)[∇h(q)T M(q)−1∇h(q)]−1 d

dt
(∇h(q)T )q̇ = 0

(5.6)

with P(q) = I +∇h(q)[∇h(q)T M(q)−1∇h(q)]−1∇h(q)M(q)−1, and we assumed
for the sake of simplicity that the constraints do not depend explicitly on time,
and Fext = 0. Is the dynamics in (5.6) a Lagrange system? The answer is no in
general. Consider for instance that M(q) = M , so that the “free-motion” Coriolis
and centrifugal torques C(q, q̇)q̇ = 0. However, if the constraints are not constant,
then the term d

dt (∇h(q)T )q̇ brings quadratic terms in q̇: this is in contradiction with
the structure of Lagrange dynamics.

Further reading: the KKT system (5.3) is ubiquitous in multibody system dynam-
ics. It has raised a quantity of studies for its analysis and numerical solvers, see
[113, 160, 409, 429, 706, 803, 1275] to cite a few. In particular, a detailed analysis
of existence/uniqueness of solutions is made in [160]. It is noteworthy that a basic
assumption that is made implicitly in this section is that the function h(q, t) is smooth
enough. More precisely, it should be smooth enough so that the evolution problem
obtained by inserting (5.5) into (5.1) (a) with bilateral frictionless contacts is well-
posed (existence and uniqueness of solutions) so that Proposition 5.2 is meaningful.
Some care has to be taken if the constraints are of class C1 (continuously differen-
tiable) or less (C0 constraints). In case of C1 constraints it may happen that their
second derivative is not continuous because wb(q, q̇, t) jumps. Then λn,b jumps as
well, and the obtained evolution problem may be embedded into the mathematical
formalism of differential inclusions (using for instance Filippov’s convexification
method). In case of C0 constraints, there exists some configurations at which the
gradient ∇h(q, t) may jump. The correct way to handle the problem is then to split
the constraints into two sufficiently smooth constraints per discontinuous constraint:
the system is subjected to a switching constraint, or is a switching DAE. When attain-
ing the point of discontinuous gradient, the velocity has to be reinitialized in order for
the system to continue its motion along the second constraint. This is an issue quite
similar to what is described in Sect. 1.3.4. Glocker proposed to use an extension of
Moreau’s framework (see Sect. 5.2) to cope with such velocity reinitialization issues
in systems subjected to C0 bilateral constraints [450].

4The Schur complement of the invertible matrix A11 in the m × n matrix A =
(
A11A12
A21A22

)
is the

matrix A22 − A21 A−1
11 A12. The Schur complement of the invertible matrix A22 in A is the matrix

A11 − A12 A−1
22 A21.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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5.1.2 Frictionless Unilateral Constraints: The Contact
Problem

5.1.2.1 Construction of the Contact LCP

Let us investigate now the case where there are only frictionless unilateral constraints,
i.e., we consider (5.1) (a) and (b). Is it possible to redo the DAE index reduction as in
Sect. 5.1.1? The answer is yes, though the context differs. Due to the complementarity
conditions in (5.1) (b) it is clear that f (q, t) > 0 ⇒ λn,u = 0. The two remaining
cases occur either (i) at an impact time, or (ii) during persistent contact. Let us focus
on case (ii) now. To simplify let us assume that all the constraints are active, i.e.,
fi (q(t), t) = 0 for all 1 ≤ i ≤ mu and for all t ∈ [t1, t2], t2 > t1. Let us assume that
the velocity is continuous. One has d

dt fi (q(t), t) = ∇ fi (q, t)q̇ + ∂
∂t fi (q(t), t) = 0

for all 1 ≤ i ≤ mu and for all t ∈ [t1, t2]. We however admit that the acceleration
may be discontinuous, because a discontinuous external force may be applied to the
system (think of a ball at rest on the ground and subject to gravity, and which is
suddenly acted upon by an external action that pulls it up, i.e., a discontinuous Fext ).
Thus one has d2

dt2 fi (q(t), t) = ∇ fi (q, t)q̈ + wi (q, q̇, t) = 0 for all 1 ≤ i ≤ mu and
for all t ∈ (t1, t2), and not for all t ∈ [t1, t2]: on the left of t1 an impact may have
occurred before the stabilization on the boundary bd(Φ), while on the right of t2
a detachment may occur where the gap function “acceleration” d2

dt2 fi (q(t), t) may
jump from 0 to a positive value. The objective is to analyze what happens at time t2.

In an arbitrarily small right neighborhood of t2, one necessarily has d
dt fi (q(t), t) ≥

0 and d2

dt2 fi (q(t), t) ≥ 0. Indeed, since fi (q(t2, t2) = 0, by continuity d
dt fi (q(t), t) <

0 would imply a violation of the nonnegativity fi (q(t), t) ≥ 0. Similarly, since
d
dt fi (q(t2), t2) = 0, having d2

dt2 fi (q(t2), t
+
2 ) < 0 and also in the arbitrarily small

neighborhood of t2, would imply by continuity a violation of the nonnegativity
d
dt fi (q(t2), t2) ≥ 0, and of fi (q(t), t) ≥ 0. Therefore, we infer that both d

dt fi (q(t), t)

and d2

dt2 fi (q(t), t) are nonnegative in any arbitrarily small neighborhood of t2. Now

let us notice that if d2

dt2 fi (q(t2), t
+
2 ) > 0, then d

dt fi (q(t), t) > 0 and consequently
fi (q(t), t) > 0 in any arbitrarily small neighborhood of t2. Therefore, λn,u,i (t) = 0 in
the same neighborhood. We conclude that necessarily 0 ≤ d2

dt2 fi (q(t2), t
+
2 ) ⊥ λi (t),

still in the same neighborhood.
We thus have shown that it is legitimate to assert that the following complemen-

tarity conditions hold during persistent contact phases, i.e., on (t1, t2]:

0 ≤ d2

dt2 fi (q(t), t+) = ∇ fi (q(t), t)T q̈ + wu,i (q, q̇, t) ⊥ λn,u,i (t) ≥ 0, 1 ≤ i ≤ mu (5.7)

where wu(q, q̇, t) has the same form as w(q, q̇, t) in (5.2). More formally and com-
pactly we may state the following:

Proposition 5.3 Let h(·) and λ(·) be two functions of time, and let 0 ≤ h(t) ⊥
λ(t) ≥ 0 for all t . Assume that h(·) is continuous, ḣ(·), ḧ(·) and λ(·) are
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right-continuous at some time t. (i) Let h(t) = 0, then 0 ≤ ḣ(t) ⊥ λ(t) ≥ 0. (ii)
Let h(t) = 0 and ḣ(t) = 0, then 0 ≤ ḧ(t) ⊥ λ(t) ≥ 0.

Proof (i) For any t ′ ≥ t one has h(t ′)− h(t) = ∫ t ′
t ḣ(s)ds. Suppose that ḣ(t) < 0.

Since ḣ(·) is right-continuous, there exists ε > 0 such that ḣ(s) < 0 for all s ∈
[t, t + ε). Thus for any t ′ ∈ [t, t + ε) one has h(t ′) < 0 which is impossible. Thus
one has ḣ(t) ≥ 0. Now let ḣ(t) > 0, by continuity there exists ε > 0 such that for
all t ′ ∈ (t, t + ε), one has ḣ(t ′) > 0. Consequently, h(t ′) > 0 for all t ′ ∈ (t, t + ε),
and λ(t) = 0. Now suppose that λ(t) > 0, thus h(t) = 0. Assume that ḣ(t) > 0 so
that h(t ′) > 0 for all t ′ ∈ (t, t + ε), so that λ(t ′) = 0 for all t ′ ∈ (t, t + ε): this is
a contradiction and consequently ḣ(t) ≤ 0. From the nonnegativeness, one infers
ḣ(t) = 0. Hence (i) is proved. Part (ii) is proved in a similar way, noting that ḣ(t ′)−
ḣ(t) = ∫ t ′

t ḧ(s)ds and ḣ(·) is locally continuous in a neighborhood of t .

It is noteworthy that Proposition 5.3 implies the lexicographical inequality

(h(t), ḣ(t), ḧ(t)) � 0.

The dynamical equation plus the m complementarity conditions in (5.7) form the
following mixed linear complementarity problem (mLCP):

⎧⎨
⎩

M(q)q̈ + Finer (q, q̇)− Fext −∇ f (q, t)λn,u = 0

0 ≤ ∇ f (q, t)T q̈ + wu(q, q̇, t) ⊥ λn,u(t) ≥ 0.

(5.8)

The mLCP in (5.8) is the counterpart of the linear system (5.3), for unilaterally
constrained systems in persistent contact motion. In case M(q) is full rank,5 q̈ can
be eliminated and this mLCP can be transformed into an LCP with unknown λn,u(t):

0 ≤ ∇ f (q(t), t)T M(q(t))−1∇ f (q(t), t)λn,u(t)+ b(q, q̇, t) ⊥ λn,u(t) ≥ 0, (5.9)

where b(q, q̇, t) = ∇ f (q(t), t)T M(q)−1[Fext − Finer (q, q̇)] + wu(q, q̇, t). The

matrix Du(q, t)
Δ= ∇ f (q, t)T M(q)−1∇ f (q, t), which is at least positive semi-

definite, is called the Delassus’ matrix.6 The LCP in (5.9) is named the contact
LCP.

Some comments arise:

• In order to construct the LCP in (5.9) we had to differentiate the gap function
twice: we say that the system has a relative degree between the “input” λn,u and
the “output” w(q, t) = f (q, t), equal to 2. In fact, rigorously speaking, this is true

5This is often assumed, but may not be satisfied in practice, especially for systems with bilateral
constraints.
6In the honor of Etienne Delassus who was the first to deeply analyze the unilateral contact problem
with multiple constraints [333, 335].
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only if the Delassus’ matrix has full rank. The index of DAE and the relative degree
are similar notions.

• According to Theorem 5.4, the LCP in (5.9) is well-posed (it has a unique solution
for any b(q, q̇, t)) if and only if the Delassus’ matrix is a P-matrix, which in this
case means that it is positive definite (because it is symmetric), equivalently the
gradients ∇ fi (q, t) are independent vectors of Rn .

Proposition 5.4 Suppose that the gradients∇ fi (q(t), t) are independent vectors of
R

n. Then the solution of the LCP in (5.9) is given by

λn,u(t) = projDu(q(t),t)[Rmu+ ;−Du(q(t), t)−1b(q, q̇, t)]. (5.10)

The proof follows from (B.19) and (B.20). The expression in (5.10) is the coun-
terpart of (5.5).

• If the constraints are not independent, then Du(q, t) = ∇ f (q, t)T M(q)−1∇
f (q, t) � 0 (it is positive semi-definite). Hence, it is copositive, because a positive
semi-definite matrix is copositive. We can therefore apply Theorem 5.6 to analyze
the solvability of the contact LCP, following [209, Proposition 3].

Proposition 5.5 Let n and mu be arbitrary. Assume that for any v solution of:
0 ≤ v ⊥ Du(q, t)v ≥ 0 one has vT b(q, q̇, t) ≥ 0. Then the contact LCP in (5.9) is
solvable.

In case ∇ f (q, t) has full column rank, then the only solution of the homogenous
LCP is v = 0, and the implication always holds. Due to the particular structure
of the problem (i.e., of the LCP matrix and of b(q, q̇, t)), one may formulate
necessary and sufficient conditions for solvability, a fact noticed first in [963]. The
next result follows from Theorem 5.7, and is proved in [209, Proposition 2].

Proposition 5.6 Let n and mu be arbitrary, and let λn,u,1 and λn,u,2 be two
solutions of the LCP in (5.9). Then ∇ f (q, t)(λn,u,1 − λn,u,2) = 0, and (λn,u,1 −
λn,u,2)

T b(q, q̇, t) = 0.

The first equality says that for any two solutions the force that appears in the
dynamics, i.e., ∇ f (q, t)λn,u , is unique. Therefore, the acceleration q̈ is unique as
well. If in addition ∇ f (q, t) has full column rank, then λn,u is unique. We recover
here some results shown by Moreau in [877, 878], see also [762].

� The fundamental discrepancy between bilateral and unilateral constraints is that
the former give rise to a linear equation, while the latter give rise to an LCP. In the
first case the rank of the system’s matrix is the crucial property, while in the second
case some “positivity” is required (P-matrix, or positive definite, or copositive).
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5.1.2.2 Gauss’ Principle

The projection in (5.10) almost shows that Gauss’ principle extends to systems with
unilateral constraints. Indeed using (B.20) it follows that (5.10) is equivalent to
(we drop the time argument in q(t)):

λn,u(t) = argminz∈Rmu+
1
2 (z + Du(q, t)−1b(q, q̇, t))T Du(q(t), t)(z + Du(q, t)−1b(q, q̇, t))

= argminz∈Rmu+
1
2 z

T Du(q, t)z + zT b(q, q̇, t).

(5.11)

Proposition 5.7 [209] Let n and mu be arbitrary. The quadratic program in (5.11)
has a solution (is solvable) if (i) b(q, q̇, t) ∈ Im(Du(q, t)), or if (ii) wu(q, q̇, t) = 0.

Proof Since Du(q, t) is positive semi-definite and symmetric, it follows from
[307, Exercise 2.10.25 (b)] that condition (i) guarantees the boundedness from
below of the quadratic function. The result follows from [307, Theorem 2.8.1]
which states that a quadratic function that is bounded from below attains its
minimum on a nonempty polyhedron. Condition (ii) implies that b(q, q̇, t) =
∇ f (q(t), t)T M(q)−1[Fext − Finer (q, q̇)]. Since Im(Du(q, t)) = Im(∇ f (q, t)T ),7

this implies in turn that b(q, q̇, t) ∈ Im(Du(q, t)), so (i) applies.

Let us denote f̈
Δ= d2

dt2 f (q(t), t). Few manipulations (using the dynamical equation
in (5.1) (a)) yield that (5.9) is equivalent, when Du(q, t) is full rank, to

0 ≤ f̈ ⊥ Du(q, t)−1[ f̈ − b(q, q̇, t)] ≥ 0. (5.12)

Using (B.20), this is equivalent to

f̈ = projDu (q,t)−1 [Rmu+ ; b(q, q̇, t)] ⇔ f̈ = argminz∈Rmu+
1
2 z

T Du(q, t)−1z − zT b(q, q̇, t)

⇔ f̈ = argminz∈Rmu+
1
2 (z − b(q, q̇, t))T Du(q, t)−1(z − b(q, q̇, t)).

(5.13)
It is noteworthy that the equivalent of Proposition 5.7 is not possible here, because
we assumed that Du(q, t) is positive definite. Let us now investigate what happens
with the acceleration q̈ . From Dorn’s duality Theorem (see Theorem 5.10), it follows
that the quadratic program in (5.11) has the dual program:

⎧⎨
⎩

min 1
2λT

n,u Du(q, t)λn,u

subject to: Du(q, t)λn,u + b(q, q̇, t) ≥ 0.

(5.14)

Dorn’s duality theorem says that if λ∗∗u solves (5.14) then there exists λ∗u that solves
(5.11) with Du(q, t)(λ∗u − λ∗∗u ) = 0. In case Du(q, t) � 0 then λ∗u = λ∗∗u . Conversely,

7This follows using for instance Exercise 6 page 180 and Exercise 7 page 78 in [700].
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if λ∗u solves (5.11) then it solves (5.14) and the two extrema are equal. Using the
dynamical equation in (5.1) (a) it follows that the acceleration is the unique solution
of the minimization problem:

⎧⎨
⎩

min 1
2 (q̈ + M−1(q)[Finer (q, q̇)− Fext ])T M(q)(q̈ + M−1(q)[Finer (q, q̇)− Fext ])

subject to: ∇ f T (q, t)q̈ + wu(q, q̇, t) ≥ 0.

(5.15)

The last optimization problem was obtained in [762, 877, 878]. Several other min-
imization problems for the acceleration have been derived in [209]. Finally, notice
that we may use (B.22). Consider the quadratic program:

⎧⎨
⎩

min λT
n,u Du(q, t)λn,u + λT

n,ub(q, q̇, t)

subject to: λn,u ≥ 0, Du(q, t)λn,u + b(q, q̇, t) ≥ 0.

(5.16)

Since Du(q, t) � 0, it is row sufficient. Thus any solution of the quadratic program
(5.16) solves the LCP in (5.9).

Remark 5.1 As we have seen in Sect. 3.1.2, Gauss’ principle may be written as in
(3.16) and (3.17). In a more general setting, the normal cone in the right-hand side
is equal to NTTΦ (q)(q̇)(q̈). The dynamics is written as M(q)q̈ + Finer (q, q̇)− Fext ∈
−NTTΦ (q)(q̇)(q̈). Applying (B.20) one finds the extension of (3.17): Given t , q(t) and
q̇(t), the acceleration satisfies

q̈ = projM(q)[TTΦ(q)(q̇);−M−1(q)(Finer (q, q̇)− Fext )]. (5.17)

The discrepancy between (5.15) and (5.17) is that the latter holds for all q(t) ∈
Φ = {q ∈ R

n| f (q) ≥ 0} and all q̇(t) ∈ TΦ(q(t)), while the developments in this
section (and in particular (5.15)) are led for f (q(t)) = 0 ⇔ q(t) ∈ bd(Φ) and
∇ f (q(t))T q̇(t) = 0 ⇔ (q̇(t) ∈ bd(TΦ(q(t))) and K (q̇) =J (q)), where the
index sets K (q̇) and J (q) are as in Sect. B.2.2. This allows us to construct
the contact LCP. In case K (q̇) ⊂J (q) the contact LCP has to be constructed with
the contacts satisfying fi (q) = 0 and∇ fi (q)T q̇ = 0 only (for indeed, fk(q) = 0 and
∇ fk(q)T q̇ > 0 imply that λn,u,k = 0).

5.1.3 Mixed Bilateral/Unilateral Frictionless Constraints:
The Contact Problem

5.1.3.1 Construction of the Contact Complementarity Problem

Let us now consider a frictionless Lagrangian system as in (5.1) (a)–(c). The same
manipulations as in Sects. 5.1.1 and 5.1.2 will be performed, with index and relative
degree reduction from 3 to 1. We therefore assume that the mu unilateral constraints

http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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are active. The constrained Lagrangian system is rewritten as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) M(q)q̈ + Finer (q, q̇)− Fext −∇ f (q, t)λn,u − ∇h(q, t)λn,b = 0

(b) ∇h(q, t)T q̈ + wb(q, q̇, t) = 0

(c) 0 ≤ λn,u ⊥ ∇ f (q, t)T q̈ + wu(q, q̇, t) ≥ 0.

(5.18)

Let us assume that M(q) has full rank and denote Db(q, t)
Δ= ∇

h(q, t)T M(q)−1∇h(q, t), and Dbu(q, t)
Δ= ∇h(q, t)T M(q)−1∇ f (q, t). One obtains

⎧⎨
⎩

Db(q, t)λn,b + Dbu(q, t)λn,u + w̄b(q, q̇, t) = 0

0 ≤ λn,u ⊥ Du(q, t)λn,u + Dbu(q, t)Tλn,b + w̄u(q, q̇, t) ≥ 0,

(5.19)

with w̄b(q, q̇, t)
Δ= ∇h(q, t)T M(q)−1(Fext − Finer (q, q̇))+ wb(q, q̇, t) and

w̄u(q, q̇, t)
Δ= ∇ f (q, t)T M(q)−1(Fext − Finer (q, q̇))+ wu(q, q̇, t). The problem in

(5.19) is again a mixed LCP as (5.8), but with unknowns the multipliers λn,b and λn,u

instead of q̈ and λn,u . Let us state a result that assumes that the bilateral constraints
are independent.

Proposition 5.8 Let M(q) and Db(q(t), t) have full rank. Then the mLCP in (5.19)
is equivalent to the LCP:

0 ≤ λn,u ⊥ [Du(q(t), t)− Dbu(q(t), t)T Db(q(t), t)−1Dbu(q(t), t)]︸ ︷︷ ︸
Δ=D̃bu (q(t),t)

λn,u + w̄bu(q, q̇, t) ≥ 0

(5.20)
where w̄bu(q, q̇, t) = −Dbu(q(t), t)T Db(q(t), t)−1w̄b(q, q̇, t)+ w̄u(q, q̇, t).

Some comments [209]:

• The LCP matrix D̃bu(q, t) is the Schur complement of Db(q, t) in the matrix(
Db(q, t) Dbu(q, t)
Dbu(q, t)T Du(q, t)

)
=
( ∇h(q, t)T

∇ f (q, t)T

)
M(q)−1(∇h(q, t) ∇ f (q, t)).8

• The LCP matrix D̃bu(q, t) can be factorized as D̃bu(q, t) = ∇ f (q, t)T Mc(q)−1∇
f (q, t), with M−1

c (q)
Δ= M(q)−1[I − G(q)M(q)−1]∇ f (q, t) (this is a

non-invertible matrix, the superscript−1 is just to mimic the case without bilateral
constraints), and G(q) = ∇h(q, t)Db(q, t)−1∇h(q, t)T .

• Propositions 5.4 and 5.5 extend to the LCP in (5.20). The interesting point here is
to analyze the rank of D̃bu(q, t).

Proposition 5.9 [209] Let Db(q, t) � 0. Then the following assertions are true:

• (i) The matrix M−1
c (q) � 0.

8This fact was not noticed in [209], but in [606] in another context.
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• (ii) Let λn,u,1 and λn,u,2 be two solutions of the LCP (5.20). Then λn,u,1 − λn,u,2 ∈
ker(M−1

c (q)) and (λn,u,1 − λn,u,2)
T w̄bu(q, q̇, t) = 0.

• (iii) Let M
− 1

2
c (q) be the unique symmetric positive semi-definite square root of

M−1
c (q). Then D̃bu(q, t) � 0 if and only if the vectors M

− 1
2

c (q)∇ fi (q, t), 1 ≤ i ≤
mu are independent vectors of Rn.

• (iv) The matrix D̃bu(q, t) � 0 if and only if the matrix (∇h(q, t) ∇ f (q, t)) has
full column rank (i.e., the mu + mb columns are independent vectors of Rn).

Item (ii) can be proved using Theorem 5.7. Item (iv) follows from the fact that since

Db(q, t) � 0, the matrix

(
Db(q, t) Dbu(q, t)
Dbu(q, t)T Du(q, t)

)
is positive definite if and only if

its Schur complement is positive definite [218, Theorem A.61]. We may state the
counterpart of Proposition 5.8. This time the unilateral constraints are supposed to
be independent.

Proposition 5.10 Let Du(q, t) � 0. Then the mLCP in (5.19) is equivalent to the
equation with unknown λn,b:

Db(q, t)λn,b + Dbu(q, t)projDu(q,t)[Rmu+ ;−Du(q, t)−1(Dbu(q, t)T λn,b + w̄u(q, q̇, t)]

+w̄b(q, q̇, t) = 0.

(5.21)

The proof uses (B.19), (B.20), and (B.21).

5.1.3.2 The mLCP in (5.18) as an Inclusion

Using (B.19) and Theorem B.2 and (5.18) (c), one may write equivalently that
∇ f (q, t)λn,u ∈ −∂ψKu (q̈), with Ku = {z ∈ R

n|∇ f (q, t)T z + wu(q, q̇, t) ≥ 0},
where we assume that Ku is nonempty. Similarly, the generalized force∇h(q, t)λn,b ∈
∂ψ{0}(∇h(q, t)T q̈ + wb(q, q̇, t)), which is rewritten equivalently as ∇h(q, t)λn,b ∈
∂ψKb(q̈), with Kb = {z ∈ R

n|∇h(q, t)T z + wb(q, q̇, t) = 0}. Let us recall from
(B.10) that the sets in both right-hand sides are normal cones. Therefore, the mLCP
in (5.18) is rewritten equivalently as

M(q)q̈ + Finer (q, q̇)− Fext ∈ −∂ψKu (q̈)− ∂ψKb(q̈) = −∂ψKu∩Kb(q̈). (5.22)

The signum before the bilateral constraints cone is not defined since the multipliers
λn,b,i are unsigned. The equality in the right-hand side of (5.22) is obtained from
[1045, Theorem 23.8], under the condition that Ku ∩ Kb is nonempty. Under the
stated assumptions of nonemptyness, it readily follows from (5.22) and (B.21) that
if M(q) has full rank then

q̈ = projM(q)[Ku ∩ Kb;−M(q)−1(Finer (q, q̇)− Fext )]. (5.23)



254 5 Nonsmooth Lagrangian Systems

What about the case when M(q) is only positive semi-definite? To answer this ques-
tion one may use the material in [216] that is based on results in [23].

Proposition 5.11 Assume that Ku ∩ Kb is nonempty, and that the Mangasarian–
Fromowitz constraint qualification holds for the constraints fi (q), i ∈J (q). Then
the inclusion in (5.22) has a solution (solvability) if

TS(q) ∩ ker(∇h(q)T ) ∩ ker(M(q)) = {0}, (5.24)

where S = {q ∈ R
n| fi (q) ≥ 0, i ∈J (q)}.

It is noteworthy that if the unilateral constraints are transformed into bilateral ones,
then Ts(q) = ker(∇ f (q)T and one recovers the conditions of Theorem 5.1. Remind
that TS(q) is the tangent cone to S at q.

5.1.3.3 Gauss’ Principle

The basic principle for showing that the acceleration and the multiplier may be
calculated as the solution of some quadratic program under constraints is identical to
the developments in Sect. 5.1.2.2 starting from the LCP in (5.20) and the assumptions
of Proposition 5.8.

5.1.4 Singular Mass Matrix: From Singular Lagrange’s to
Singular Hamilton’s Dynamics

In this section we suppose that rank(M(q)) = r ≤ n. The theory of singular
Lagrangian and Hamiltonian systems has a long history in Physics, where geo-
metrical, coordinate-free analysis is led. In particular, equivalence between both
approaches is shown in [105]. Let us adopt here a different path with generalized
(local) coordinates q and quasi-Lagrange dynamics, where basic convex analysis
allows us to extend the Legendre transformation to the singular case. It is com-
monly admitted that Lagrangian and Hamiltonian formalisms are equivalent, and
the Fenchel (or Legendre–Fenchel) transformation in Definition B.11 applied to the
system’s lagrangian function allows one to pass from one formalism to the other,
under the condition of strict convexity of the Lagrangian function with respect to
q̇ [60, §15.A]. When M(q) has full rank n, the Legendre–Fenchel transform of
the Lagrangian function L(q, q̇, λ), defines the Hamiltonian function H(q, p, λ),
which is the total mechanical energy of the system. One may write L(q, q̇, λ) =
1
2 q̇

T M(q)q̇ − P(q)+ f (q)Tλ and H(q, p, λ) = 1
2 p

T M(q)−1 p + P(q)− f (q)Tλ

where P(q) is the potential energy. The complementarity Hamiltonian system is
given by
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⎧⎨
⎩
q̇ = ∂H

∂p = M(q)−1 p
ṗ = − ∂H

∂q = − ∂
∂q

(
1
2 p

T M(q)−1 p + P(q)
)+∇ f (q)λ

0 ≤ λ ⊥ f (q) ≥ 0.

(5.25)

When r < n the strict convexity is lost, so that the Lagrangian function is a convex
degenerate quadratic function of q̇ . Its Legendre–Fenchel transform L
(q, q̇, λ) may
be calculated following the material in [531, Chap. E, Example 1.1.4]. One obtains

{
H(q, p, λ) = 1

2 p
T M(q)† p + P(q)− f (q)Tλ

p ∈ Im(M(q))
(5.26)

where M(q)† is the Moore–Penrose generalized inverse of M(q). Since M(q)† is
symmetric positive semi-definite, the Hamiltonian function H(q, p, λ) is convex in
p, so its conjugate function is the original Lagrangian function by Theorem B.1, under
the constraint q̇ ∈ Im(M(q)†). A constraint appears in (5.26), reflecting the loss of
rank of M(q) that makes the Lagrangian function degenerate, i.e., ∂2

∂q̇2 L(q, q̇, λ) is
not full rank. Consequently, the Lagrange dynamics is an implicit system. If this con-
straint is not satisfied then H(q, p, λ) = +∞. The basic idea is to use the diagonaliza-
tion of M(q), so that the kinetic energy (more exactly the kinetic co-energy) expressed
in the new variable (a quasi-velocity) has a simple form. There exists a unitary matrix

U (q) ∈ R
n×n ,U (q)U (q)T = In , such thatU (q)M(q)U (q)T =

(
Mr (q) 0

0 0

)
, where

Mr (q) is symmetric positive definite (it is even diagonal) [136, Corollary 5.4.4]. To

this end let us introduce the quasi-velocity v = U (q)q̇ =
(

vr
vn−r

)
. Then the kinetic

energy becomes:

T (q, q̇) = 1
2 q̇

T M(q)q̇ = 1
2 q̇

T U (q)TU (q)M(q)U (q)TU (q)q̇

= 1
2 q̇

T U (q)T
(
Mr (q) 0

0 0

)
U (q)q̇ = 1

2 v
T
r Mr (q)vr = T (q, vr ).

(5.27)

One has M(q)† = U (q)T
(
Mr (q)−1 0

0 0

)
U (q) [136, Fact 8.15.1 and §6.2]. Thus the

kinetic energy is given by

T (q, p) = 1
2 p

T M(q)† p = 1
2 p

TU (q)TU (q)M(q)†U (q)TUp

= 1
2 p

TU (q)T
(
Mr (q)−1 0

0 0

)
U (q)p.

(5.28)

Let m = U (q)p. Doing the same partition as for the quasi-velocity, one obtains

T (q, p) = 1

2
mT

(
Mr (q)−1 0

0 0

)
m = 1

2
mT

r Mr (q)−1mr . (5.29)
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Equalling the kinetic energy in (5.29) and co-energy in (5.27), one finds that mr =
Mr (q)vr , which extends the relation between the generalized momentum and the
generalized velocity for full rank M(q), to quasi-momentum m and quasi-velocity
v. The quasi-Lagrange dynamics is obtained as follows:

{
Mr (q)v̇r − Mr (q)(U̇ (q)U (q)T v)r + (U (q)F(q,U (q)T v, t))r = (U (q)∇ f (q))rλ

(U (q)F(q,U (q)T v, t))n−r = (U (q)∇ f (q))n−rλ.

(5.30)

It is clear that the loss of rank of M(q) imposes an equality constraint in the system,
represented by the last n − r lines in (5.30). From the fact that q̇ = ∂H

∂p = ∂p
∂m

∂H
∂m and

p = U (q)Tm, one obtains the quasi-Hamilton dynamics:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̇ = U (q)T ∂H
∂m

ṁ = −U (q) ∂H
∂q −U (q)U̇ (q)m

m ∈ U (q)Im(M(q)) = Im(U (q)M(q)) = Im(U (q)M(q)U (q)T )⇔ m =
(

mr
0n−r

)
.

(5.31)
where the equality constraint appears clearly. More developments may be found in
[216].

5.2 Moreau’s Sweeping Process

Jean Jacques Moreau introduced the sweeping process at the Convex Analysis Sem-
inar of the university of Montpellier in 1971, 1972, and 1973 [880, 881, 882] and
in [887]. We briefly describe the so-called first-order sweeping process (which we
shall meet again later in this chapter when we deal with complementarity dynamical
systems), and then spend significant time on its second-order version which models
nonsmooth multibody systems and was introduced in [890].

5.2.1 First-Order Sweeping Process

Given a convex “moving” (i.e., time-dependent) set C(t) ⊆ R
n , a moving point x(·)

is a solution to the first-order sweeping process by C(t) if:

• (i) x(0) ∈ C(0),
• (ii) x(t) ∈ C(t) for all t > 0,
• (iii) There exists a positive measure μ, relative to which the Stieltjes measure dx

possesses a density ẋ(·),9 i.e., dx = ẋ(t)dμ, and

− ẋ(t) ∈ NC(t)(x(t)). (5.32)

9See Appendix A.2 for definitions.
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Items (i) and (ii) have an obvious meaning; (iii) means that if x(t) is on the boundary
of C(t) then its derivative points inward the set C(t); NC(t)(x) denotes the outward
normal cone toC(t) at x(t) and can also be denoted as ∂ψC(t)(x), where ψC(t)(·) is the
indicator function ofC(t), see Definitions B.2 and B.7. The name “sweeping process”
comes from the fact that if x(t) ∈ Int(C(t)), then NC(t)(x(t)) = {0} ⇒ ẋ(t) = 0:
the point does not move. Now if x(t) ∈ bd(C(t)), there exists an element λ(t) in
NC(t)(x(t)) (which is in this case a convex cone not reduced to the singleton {0}), such
that −λ(t) points inward C(t), such that ẋ(t) = −λ(t): the point x(t) is “swept” by
the moving setC(t), and thus cannot escape from it: x(0) ∈ C(0)⇒ x(t) ∈ C(t) for
all t ≥ 0. We shall see in Sect. 5.4.4.3 how such a selection λ(t) may be calculated,
for particular forms of C(t). When C(t) is a nonempty convex cone, then using
(B.19) one finds that λ(t) ∈ NC(t)(x(t))⇔ C(t) � x(t) ⊥ −λ(t) ∈ C
(t). Then the
differential inclusion in (5.32) is equivalently rewritten as a cone complementarity
system: ẋ(t) = −λ(t), C(t) � x(t) ⊥ −λ(t) ∈ C
(t).

The sweeping process is therefore a particular first-order differential inclusion.
The proof of existence and uniqueness of solutions of the first-order sweeping process
has been done when C(t) possesses different properties [867, 887]: using the so-
called Moreau–Yosida’s approximants (which may be seen as a mathematical path
to represent contact stiffness, as we saw in Example 1.6 and in Appendix B) and show-
ing convergence in the filled-in graphs sense when C(t) is a right-continuous func-
tion of bounded variation,10 using the so-called catching-up algorithm xk+1 − xk ∈
−NC(tk+1)(xk+1)⇔ xk+1 = proj[C(tk+1); xk] using (B.20).11 This allows one to con-
struct uniformly convergent approximants (in the sense of discretization of the solu-
tion [891] when C(t) is Hausdorff continuous and has nonempty interior, or when
C(t) is right lower semi-continuous with nonempty interior. The first-order sweep-
ing process is extended to its perturbed version as−ẋ(t)+ f (x(t), t) ∈ NC(t)(x(t)),
and to state-dependent moving sets as −ẋ(t)+ f (x(t), t) ∈ NC(t,x(t))(x(t)) [71].
Applications are in crowd motion [827, 986], problems such as water falling in
a cavity [887], plasticity, and the evolution of elastoplastic systems [883, 885]
which were the original motivations of the first-order sweeping process, economics
[304, 521].

Remark 5.2 Consider (5.32). If initially x(0−) /∈ C(0), then one can apply a jump
as x(0+) = proj(C(0); x(0−)) so that x(t) ∈ C(t) for all t > 0. Rigorously, one
has to allow for the existence of a measure in the system (hence, the differential
inclusion (5.32) becomes a measure differential inclusion) and work with the dif-
ferential measure associated with the function x(·) (supposed to be right-continuous
of local bounded variation). One obtains x(0+)− x(0−) ∈ −NC(0)(x(0+)), which
from (B.20) gives the projection. We will give more details in (5.144) and (5.145).

10See Sect. A.3.1 for definitions.
11The name catching-up comes from the fact that the solution has the tendency to catch-up with the
moving set, see Fig. 9.6 in [13]. Notice also that the time step h does not appear explicitly since the
right-hand side is a cone.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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m

−g

xe(t)x(t)

k
i(t) R

D

L

i(t) x(t)− i(t)

v(t)

(a) (b)

Fig. 5.2 Mechanical and electrical examples. aMass and spring with Coulomb’s friction. b Circuit
with ideal diode and current source

Example 5.2 Consider the circuit in Fig. 5.2b. Its dynamics is given by [10, 226]:

{
ẋ(t) = − R

L x(t)+ v(t)
L

0 ≤ w(t) = x(t)− i(t) ⊥ v(t) ≥ 0.
(5.33)

The signal w(t) is the current through the diode, v(t) is the voltage across the diode
D, x(t) is the current through the inductor/resistor, and i(t) is a current source. The
complementarity conditions are similar to those in Example 1.6, (1.37). They form the
current/voltage characteristic of an ideal diode, whose graph is depicted in Fig. 5.22.
Few manipulations using (B.19) yield an equivalent dynamics: −ẋ(t)− R

L x(t) ∈
N[i(t),+∞)(x(t)).

Example 5.3 Consider the mechanical system depicted in Fig. 5.2a. The linear spring
with stiffness k > 0 is acted upon by two forces that balance: the elastic force k(x −
xe(t)) with xe(t) a forced displacement, and the friction force−μmg sgn(ẋ), where
μ > 0 is the coefficient of friction, g is the gravity acceleration. The equilibrium
of the massless spring states that k(x − xe(t)) ∈ −μmg sgn(ẋ). Using (B.16) and
examples of conjugacy f2(·) or f6(·) in the Appendix, this is rewritten equivalently
as ẋ(t) ∈ −N[− μmg

k +xe(t), μmg
k +xe(t)](x(t)).

5.2.2 Second-Order Sweeping Process: Frictionless
Mechanical Systems

Following closely [894], we explain how one may construct an evolution problem
representing as fairly as possible nonsmooth multibody dynamics, in the setting of
the sweeping process. The admissible domain, or feasible region, is supposed to be
finitely represented, i.e., it is given as Φ = {q ∈ R

n| fi (q) ≥ 0, 1 ≤ i ≤ m}, for some
functions fi (·) which satisfy the basic requirements of Definition 1.8. Therefore,
the mechanical system is submitted to a set of frictionless unilateral constraints
fi (q) ≥ 0, i = 1, . . . ,m, and it is assumed that the gradients ∇ fi (q) are not zero

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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in some neighborhood of the surfaces fi (q) = 0. In this section we do not consider
bilateral constraints, and thus mu = m.

5.2.2.1 Smooth Motions

It is convenient to consider first the smooth motions of the system. It is also necessary
to have in mind some definitions and notations used in the following. The tangent
space to the system’s configuration space Q ⊇ Φ at a point q is denoted as E(q) or
TqQ, to which right velocities q̇(t+) belong (i.e., right derivatives of q(t)). In fact,
E(q) can be identified with R

n .

Definition 5.1 (Tangent cone) The convex polyhedral tangent cone V (q)12 to the
region Φ at point q is given by

V (q) = {
v ∈ E(q)| ∀i ∈J (q), vT∇ fi (q) ≥ 0

}
, (5.34)

where
J (q) = {i ∈ {1, . . . ,m} | fi (q) ≤ 0} . (5.35)

Note that V (q) = E(q) = R
n when J (q) = ∅, i.e., when fi (q) > 0 for all 1 ≤ i ≤

m.13

Suppose that the contact index set J (q) is reduced to one element i . Then V (q)

is the half-space
{
v ∈ R

n | vT∇ fi (q) ≥ 0
}
. In this case the hyperplane tangent to

fi (q) = 0 is given by

T (q) = {
v ∈ R

n | vT∇ fi (q) = 0
}
. (5.36)

Note that the cones in Definition 5.1 and in Definition B.6 are not identical: they
are if q(t) ∈ Φ, but not if q /∈ Φ: in fact the tangent cone is commonly taken as
Ø if q is outside Φ, whereas V (q) is not empty in this case (see (5.35) which
means that one has to take into account those positions q such that the constraints
are violated). As far as impact dynamics are concerned, this distinction is purely
formal, because in fact q will be forced to never leave Φ. By doing the assumption
that q(t) ∈ Φ for all t ≥ τ0,14 one could therefore define J (q) in (5.35) writing
fi (q) = 0. The definition in (5.35) can be useful in some existence of solutions results
where approximating problems will imply some penetration into the constraints, see
[867, Chap. 3]. Then one needs to define the tangent cone for points outside Φ. If
the unilateral constraints are time-varying, f (q, t) ≥ 0, then one replaces the above

12The notation V (q) is for velocity, since V (q) will appear to be a set of velocities.
13In other words, the system is inside the domain Φ and does not touch any constraint hypersurface.
14We prefer to denote the initial time as τ0 instead of t0, to avoid confusions with the notation for
impact times tk .
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tangent cone by T (q, t) = {
v ∈ E(q)| ∀i ∈J (q, t), vT∇ fi (q)+ ∂

∂t fi (q, t) ≥ 0
}
,

with J (q) = {i ∈ {1, . . . ,m} | fi (q, t) ≤ 0}.
Polarity is a notion that permits to go from the tangent to the normal cones: it

generalizes orthogonality that relates normal and tangent directions. The polar cone
to V (q) is defined as follows:

Definition 5.2 (Normal cone) The closed convex polyhedral cone N (q) is given by

N (q) = {
r ∈ E ′(q) | ∀v ∈ V (q), vT r ≤ 0

}
(5.37)

where E ′(q) denotes the dual space of E(q) (which we can safely take in our setting
equal to R

n since it contains n-dimensional generalized force vectors), to which
generalized reaction forces belong. N (q) is the outward normal cone to Φ at q, and
is generated by the vectors ∇ fi (q), i ∈J (q). N (q) = {0} if J (q) = ∅, i.e., if
q ∈ Int(Φ).

The tangent and normal cones as defined above are called the linearization cones,
see Sect. B.1 and Definition B.6. Under some constraint qualification like the
Mangasarian–Fromovitz CQ (see (B.9)), these cones are equal to the usual tangent
and normal cones as defined from Definition B.2 (b), (c) and polarity. In the sweeping
process formulation, the unknown will not be the position q, but its derivative, i.e.,
the velocities. More exactly, the unknown will be denoted as a time function u such
that

q(t) = q(τ0)+
∫ t

τ0

u(τ )dτ. (5.38)

Such a u(·) is assumed to be Lebesgue integrable, and it will be supposed for the
moment locally absolutely continuous. The following propositions are in order:

Proposition 5.12 [894] If q(t) ∈ Φ for every t ≥ τ0, then

u(t+) ∈ V (q(t)) and u(t−) ∈ −V (q(t)). (5.39)

Note that if q(t) is in the interior of Φ, this simply reduces to both right and left
velocities to be in R

n . Also, for a smooth motion, u(t) is continuous so that its left
and right limits are the same; hence, u(t) ∈ V (q(t)) ∩ −V (q(t)), which is the linear
subspace of Rn orthogonal to N (q) (hence the whole of Rn if q ∈ Int(Φ)). In case
of a single constraint, this set equals T (q(t)) in (5.36) if f (q) = 0, and otherwise
the whole of Rn .

Now if the boundary of Φ is attained at tk , necessarily u(t+k )T∇ fi (q(tk)) ≥ 0
and u(t−k )T∇ fi (q(tk)) ≤ 0 for some i . Roughly, the system must have attained some
constraint fi (q) = 0 and must either leave it or remain on it.

Lemma 5.1 (Viability Lemma [894]) Let q(t) and u(t) be associated as in (5.38).
Suppose q(τ0) ∈ Φ, and that u(t) ∈ V (q(t)) Lebesgue-almost everywhere. Then
q(t) ∈ Φ for all t ≥ τ0.
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Remark 5.3 Notice that we do not care about the possible local existence problems,
and we set for simplicity relationships on the whole of R+. In all the definitions and
propositions, one may replace “for all t ≥ τ0” by “for all t ∈ I ,” for some interval I .

Let us now consider the Lagrange equations of the system. The total reaction P ∈ R
n

must be along the surface Euclidean normal for the case of one constraint, which
generalizes to

− P ∈ N (q) (5.40)

for several constraints. It is equivalent (see Definition 5.2 and (B.8)) to write

P =
∑

i∈J (q)

λi∇ fi (q) (5.41)

with λi ≥ 0. Hence, the Lagrange equations can be written as

− M(q(t))q̈(t)+ Q(t, q(t), q̇(t)) ∈ N (q(t)), (5.42)

that is a second-order differential inclusion.15 We write Q(t, q, q̇) to shorten the
notations for Coriolis, centrifugal, gravity, and bounded torques, see Example 1.3.
The dynamics in (5.42) is for the moment simply a rewriting of classical dynami-
cal equations. Then a smooth motion agrees with the stated mechanical conditions
(system inside the domain Φ, reaction in the normal cone to Φ) if an only if (5.42)
is satisfied and q(t) ∈ Φ for all t ≥ τ0. It is possible to show that every solution of
the inclusion (5.42) in fact satisfies a stronger inclusion16:

Proposition 5.13 [894] A smooth motion with initial condition q(τ0) ∈ Φ is a solu-
tion of (5.42) and satisfies q(t) ∈ Φ for all t ≥ τ0, if and only if the velocity function
associated to q in (5.38) satisfies Lebesgue-almost everywhere the differential inclu-
sion

− M(q(t))q̈(t)+ Q(t, q(t), u(t)) ∈ ∂ψV (q(t))(u(t)) (= NV (q(t))(u(t))), (5.43)

where the set in the right-hand side is named Moreau’s set.

The subdifferential in the sense of convex analysis is defined in Definition B.7. The
sweeping process is therefore an expression of the dynamics in terms of the velocity
u. The trick (actually, this is not a trick but a rigorous mathematical setting) is to start
from (5.42) and to arrive at (5.43). It is important to notice that N (q) in (5.42),which
is the normal cone to Φ (and is closely related to ∂ψΦ(q), see Definitions B.5 and
B.7), is replaced by ∂ψV (q)(u) which is the normal cone in a velocity space (no longer
in Φ ⊂ the configuration space). In Problem 2.2 we had ∂ψΦ(q), whereas here we

15See Corollary B.2 for comments on the right-hand side of (5.42).
16As proved in [894, Proposition 5.1] one has ∂ψV (q)(u) ⊆ N (q), and strict inclusion in gen-
eral. This can be seen by drawing some planar examples, e.g., when bd(Φ) is an angle. See also
Sect. B.2.2.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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have ∂ψV (q)(u), because the former is written at the acceleration–force level. Recall
that at this stage, u is locally absolutely continuous: jumps are not yet considered. If
m = 1, then on the boundary of Φ the cone NV (q(t))(u(t+)) is contained in the outward
normal half-line spanned by−∇ f (q). Some examples are depicted in Appendix B.

Remark 5.4 It is crucial to understand that the set-valued right-hand side in (5.43) is a
constitutivemodel relating the contact forces and impulses to velocities and positions.
As such linear or nonlinear spring-dashpot models, Moreau’s set, or complementarity
relations, have to be placed on an equal footing: they just are different models.
Moreau’s set implies some lexicographical inequality on the position and velocity.

It is noteworthy that in view of (B.19) we may equivalently rewrite the dynamics in
(5.43) as the cone complementarity system:

⎧⎨
⎩

M(q(t))q̈(t)− Q(t, q(t), u(t)) = −P(t)

V (q(t)) � u(t) ⊥ P(t) ∈ N (q(t)).
(5.44)

5.2.2.2 Sweeping Process and Jourdain’s Variations

Let us recall the developments made in Sect. 3.1.2 on the bouncing ball system. It
is apparent from (3.15) that the sweeping process corresponds, when expressed in a
variational inequality form, to a Jourdain’s variation. Indeed from the normal cone
definition in (B.6), it follows that (5.43) is equivalently rewritten as follows: Given
q(t) ∈ Φ, find u(t) ∈ V (q(t)) such that

〈M(q(t))q̈(t)− Q(t, q(t), u(t)), v − u(t)〉 ≥ 0 for all v ∈ V (q(t)). (5.45)

The Jourdain’s variation is δu = v − u and it belongs to TV (q)(u) (noting that V (q)

is convex, this can be proved using for instance the first definition of the tangent cone
in Definition B.2, hence generalizing the developments made in Sect. 3.1.2 for the
dynamics as in (3.15)). The great advantage of Jourdain’s variations is that they allow
for velocity jumps. More precisely, they allow for an impact mapping calculation as a
direct consequence of a simple convex analysis rule. Another advantage of the sweep-
ing process formulation is that given q ∈ Φ, the mapping u �→ ξ ∈ NV (q)(u) is max-
imal monotone provided V (q) �= ∅, while q �→ λ ∈ NΦ(q) is maximal monotone
only if Φ is closed convex nonempty. Furthermore, V (q) is a polyhedral convex cone.
From a computational point of view this is a great advantage because the normal cone
NV (q)(u) is easier to calculate as (see Sect. B.2.2):

NV (q)(u) = {w ∈ R
n|w = −

∑
i∈K (u)

λi∇gi (u), λi ≥ 0} (5.46)

where K (u) = {i ∈J (q)|gi (u) = 0} ⊆J (q), gi (u) = ∇ fi (q)T u, so that
∇gi (u) = ∇ fi (q). Moreover, 0 ≤ λi ⊥ uT∇ fi (q) ≥ 0 for i ∈J (q): the multipliers

http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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λi that correspond to velocities pointing inward V (q) (thus inward Φ) are zero. Those
that correspond to velocities tangent to V (q) (hence tangent to Φ) are nonnegative
(thus may be positive). It is noteworthy that the multipliers λi in (5.46) and in (5.41)
are the same. So according to the notation in (5.1), we should write them as λn,u,i .
Moreau’s right-hand side is depicted in simple cases in Figure B.1.

5.2.2.3 Practical Construction of Moreau’s Set

The normal cone in (5.46) already provides us with a concrete form of Moreau’s
set, which allows one to calculate it. In addition, we have NV (q)(u) = {0} when
q ∈ Int(Φ) (⇔ f (q) > 0), or whenq ∈ bd(Φ) andu ∈ Int(V (q)). Whenq ∈ bd(Φ)

and u ∈ bd(V (q)) then (5.46) applies. Notice that the elements w inside NV (q)(u) in
(5.46) may be written asw = −∑

i∈J (u) λi∇ fi (q), 0 ≤ λi ⊥ ∇ fi (q)T u ≥ 0. While
those in the normal cone N (q) are equal tow = −∑m

i=1 λi∇ fi (q), 0 ≤ λi ⊥ fi (q) ≥
0. It is also noteworthy that

P ∈ −NV (q)(u)⇔ V (q) � u ⊥ P ∈ −N (q),

using (B.19), Definition B.4 and polarity of the normal and tangent cones. This
implies that the mapping u �→ P is maximal monotone, a property that is very useful
for stability analysis purpose (see Chap. 7, Sect. 7.5). Notice that from (5.41) we may
write that P = ∇ f (q)λ, keeping in mind that the components of the multiplier λ

satisfy complementarity constraints and may therefore vanish depending on the gap
functions and on the velocity u = q̇ .

5.2.2.4 Nonsmooth Motions

To deal with possible collisions, one needs to enlarge the space of functions u(·) to
discontinuous functions. The space of functions of local bounded variation functions
is quite suitable. Due to velocity jumps, the classical Lagrange equations which are
equality of functions will have to be replaced by equality of measures (this should
be clear from the developments of Chap. 1). Right-continuous functions of local
bounded variation (in short, RCLBV functions) possess derivatives which can be
identified with Stieltjes measures [1076], and are a natural and convenient setting
for the study of measure of differential equations (we already met such functions in
MDEs of Sect. 1.2.1). If one associates with such u(·) the measure du (called the
differential measure of u in [894], and noted as Du in [1076]), then one has that for
any compact interval [t1, t2] on which u(·) exists,

∫
[t1,t2] du = u(t+2 )− u(t−1 ), and∫

(t1,t2)
du = u(t−2 )− u(t+1 ). In particular, if u(·) is discontinuous at t = t1 = t2, then

du possesses an atom at this point, i.e., it is a Dirac distribution (see Sects. A.2 and
A.3 in Appendix for more details). Now using (5.38) the Lagrange equations of the
system can be written as:

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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M(q)du + Q(t, q, u)dt = Pdt, (5.47)

which is an equality of measures, and dt is the Lebesgue measure. All-time func-
tions possess the required smoothness so that the products in (5.47) are well defined.
Clearly, the term M(q(t))du in the left-hand side of (5.47) is meaningful only because
q(·) is continuous, as we have previously, respectively, noticed and proved, see
Example 1.3. This way of writing the dynamics makes sense when u ∈ RCLBV.
Also, one can replace the right-hand side of (5.47) by some real measures dP ,
which represent the total impulse exerted on the system. This allows to encompass
impulsive forces and torques. Thus the right-hand side of (5.47) can be written as
dP = F(t, q, u)dt + dR, where F(t, q, u) are the bounded Lebesgue integrable
generalized contact forces, and dR are the contact impulses (see Chap. 1, Sect. 1.1
and Appendix A.2 for the terminology associated to reactions at the contact point).
Clearly, in most applications we have:

dR =
+∞∑
k=0

pkδtk dt, (5.48)

where the times tk correspond to the instants when u(·) is discontinuous. In other
words, we may disregard the nonatomic, non-Lebesgue integrable part of the differen-
tial measure representing the acceleration,17 if a practical point of view is adopted.18

Since u ∈ RCLBV, the set of velocity-jump times is countable (we shall use this
important property of functions of bounded variation when we deal with stability of
controlled systems with unilateral constraints in Chap. 8). Hence, the general form
of dR in (5.48).

With this material in mind, one easily deduces that the evolution problem at the
times of discontinuity in u(·) can be written as

M(q)du − Q(t, q, u)dt = dR. (5.49)

Consider smooth motions. From Proposition 5.13 it follows that for Lebesgue-almost
every t , one has:

− P(t) ∈ ∂ψV (q(t))(u(t)). (5.50)

This secures that q(t) ∈ Φ for all t ≥ τ0, see Lemma 5.1 and Proposition 5.13, and
Eq. (5.42). One also has that u(t) ∈ V (q(t)) for every t . Now at the discontinuities
of u(·) one must choose how to replace u(t) in the right-hand side of (5.50). The
following definition is then proposed:

Definition 5.3 (Soft shocks [894]) The set of unilateral constraints f (q) ≥ 0 is said
to be frictionless and soft if the total contact impulsion admits a representation dR =
R′μdμ, where μ denotes a nonnegative real measure, and R′μ is locally integrable

17See Appendix A.3, Remark A.4.
18Such a point of view is certainly not satisfying for purists and mathematicians.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_8
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(with respect to dμ), such that for every t :

− R′μ(t) ∈ ∂ψV (q)(u(t+)) (= NV (q)(u(t+))). (5.51)

Thus, one replacesu(·) in the right-hand side of (5.50) by its right limitu(t+), whereas
the term P(t) is replaced by the contact percussion−R′μ(t), that is, the density of the
atom of the contact impulse measure at the impact time tk (recall that a density of a
measure is a function, see Appendix A.2, Definition A.10). Furthermore, R′μ(tk) = pk
where pk is given in (5.48). One feature of the sweeping process formulation is
that the way one writes the dynamics is independent of the measure with respect
to which the densities of the contact impulse and of the acceleration (i.e., du) are
expressed, provided this measure is nonnegative, [894, Proposition 8.2]. Let us recall
that the measure μ may encompass singular (Dirac) as well as nonsingular measures
(functions of time). This depends on whether the system is in a permanent contact
phase, a noncontact mode, or at an impact time tk .

This type of evolution problem is called a soft shock because it reduces when
the surface of constraint has codimension one to the classical inelastic impact, i.e.,
a coefficient of restitution en = 0 (see Example 5.4 below). We shall see in the
following that the expression in (5.51) is equivalent to some more familiar impact
dynamics expressions we have derived before.

Remark 5.5 Notice that (5.51) is stronger than (5.40), because the latter is true for
any impact process, whereas (5.51) implies a particular impact process. This is even
more noticeable on the equivalent formulations of the sweeping process given below.

From the foregoing developments, the sweeping process problem is mathematically
expressed as follows [867, 890]:

Problem 5.1 (Frictionless sweeping process) Find a RCLBV function u(·) such that
u(·) and q(·) defined by (5.38) satisfy the following:

• q(τ0) = q0,
• u(τ0) = u0,
• q(t) ∈ Φ for all t ≥ τ0,
• u(t) ∈ V (q(t)) for all t ≥ τ0,
• Q(t, q(t), u(t))dt − M(q(t))du ∈ NV (q(t))(u(t)),

in the sense of differential measures: there is a (nonunique) positive measure μ with
respect to which the Lebesgue measure dt and the Stieltjes measure du both possess
densities, respectively, t ′μ = dt

dμ
and u′μ = du

dμ
such that:

Q(t, q(t), u(t))t ′μ − M(q(t))u′μ ∈ NV (q(t))(u(t)) (5.52)

μ-almost everywhere.

See Appendix A.2, Definition A.10 for details about the notations for densities. The
notation t ′μ = dt

dμ
is called the Radon–Nikodym derivative of the Lebesgue measure
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λ with respect to the measure μ. We do not want to go into mathematical details at
this stage, since this is actually not fundamental to understand the sweeping process.
Let us notice that the introduction of positive measures μ simply means that since
sweeping processes are differential inclusions whose right-hand side is a cone, one
may multiply the left-hand side by a positive term without violating the inclusion.
In case of an impact at t = tk , then (5.51) holds and Problem 5.1 becomes:

− M(q(tk))σu(tk) = −M(q(tk))[u(t+k )− u(t−k )] = −R′μ(tk) ∈ NV (q(tk ))(u(t+k )).

(5.53)

The inclusion in (5.53) can be deduced noticing that the Lebesgue measure has no
atoms. Indeed at the times of discontinuities, one has du = [u(t+k )− u(t−k )]δtk =
σu(tk)δtk = νku′μ(tk), and νk t ′μ(tk) = 0 (in other words the Lebesgue dt and Dirac du
measures are mutually singular and one has dt ({tk}) = 0). Hence, multiplying both
sides of (5.52) by νk , one gets (5.53).

From Problem 5.1 and (5.53), one might think that the postimpact velocity must
be known to integrate pre-impact motion (i.e., the dynamics is anticipative); however,
this is not the case at all:

Proposition 5.14 [894] For any motion satisfying (5.52), one has

u(t+) = projM(q(t))(V (q(t)); u(t−)), (5.54)

where the projection is understood in the sense of the kinetic metric.

The proof follows from (5.53), using (B.20). We shall find again the same manipu-
lation with time-stepping (event-capturing) methods.

Hence, the velocity after the shock is the vector closest (in the kinetic met-
ric distance sense so that coordinate invariance is guaranteed) to the velocity
before the shock, inside V (q(t)). If u(t−) ∈ V (q(t)) then u(t+) = u(t−) so that
no impact occurs. Some examples are illustrated in Fig. 5.3.19 From the fact that
u(t−) ∈ −V (q(t)), see Proposition 5.12, u(t+) lies on the boundary of V (q(t)), i.e.,
generalized dissipative impacts are treated that correspond to a restitution coefficient
en = 0 in the one-dimensional case.

Equations (5.51) and (5.53) may also be used to understand where the apparently
complex formulation of Problem 5.1 comes from. In case when M(q) is the identity,
(5.51) and (5.53) are equivalent to the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

u(t+k ) ∈ V (q(tk))
−R′μ(tk) ∈ N (q(tk))
u(t+k )T R′μ(tk) = 0
σu(tk) = R′μ(tk).

(5.55)

19In this figure and others, we draw the cone q + V (q) rather than V (q), and so on for the other
cones. This is not a major issue since velocities belong to V (q).
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Fig. 5.3 Collision at a singularity (sweeping process)

The equations in (5.55) possess the form of aConeComplementarity Problem (CCP),
since they can be rewritten as

V (q(tk)) � u(t+k ) ⊥ R′μ(tk) ∈ −N (q(tk)), (5.56)

where the two cones are dual cones. We shall come back in more details on such
formulations later in this chapter (see Remark 5.7 below). The equivalence between
(5.55) and −R′μ(t) ∈ ∂ψV (q(t)(u(t+))⇔ −u(t+) ∈ ∂ψ


V (q(t))(R
′
μ(t)) can be shown

using the definitions of the various terms appearing in those formulas, and convex
analysis tools. The equations in (5.55) are in turn equivalent to

⎧⎨
⎩
u(t+k ) = proj (V (q(tk)), u(t−k ))

R′μ(tk) = −proj (N (q(tk)), u(t−k ))

u(t+k )T R′μ(tk) = 0.

(5.57)

The equivalence between (5.55) and (5.57) can be shown via direct application
Moreau’s Lemma of the two cones, see Lemma B.2, by identifying x with u(t+k )

and y with −R′μ(tk), recalling that V (q(tk)) and N (q(tk)) are a pair of mutually
polar closed convex cones of the Euclidean space R

n (recall that the inertia matrix
is considered to be the identity matrix since we work at fixed q(tk), so the kinetic
metric is the Euclidean one). The sweeping process collision mapping is illustrated
in Fig. 5.4 for two different cases.20

In case of a nontrivial mass matrix at t = tk , we obtain the following, starting from

(5.53) and (5.56). Let us define NMk (q)
Δ= M(q(tk))−1N (q), that is, the normal cone

in the kinetic metric, and R̄′μ(tk)
Δ= M(q(tk))−1R′μ(tk). Then we can rewrite (5.56)

as (NM(q(tk)))◦ = V (q(tk)) � u(t+k ) ⊥Mk R̄′μ(tk) ∈ −NMk (q(tk)), where x ⊥Mk y

20Same comment as for Fig. 5.3.
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Fig. 5.4 Multiple impacts
rule (sweeping process)
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N(q)

V(q)

u(tk
+)=0

u1(tk
-)

u2(tk
-)

-R'
1μ(tk)

-R'
2μ(tk)

M(q)=I2

means that 〈x, y〉Mk = xT Mk y = 0. Notice that V (q) = {z ∈ R
n| zT y ≤ 0, y ∈

N (q)} = {z ∈ R
n| zT Mk ȳ ≤ 0, ȳ ∈ NMk (q)}, so that indeed V (q) = (NMk (q))◦. It

follows that u(t+k )− u(t−k ) ∈ −NMk
V (q(tk ))

(u(t+k )) (from which (5.54) is recovered),

equivalently u(t+k ) ∈ −NMk

−NMk (q(tk ))
(u(t+k )− u(t−k )), equivalently R̄′μ(tk)+ u(t+k ) ∈

−NMk

−NMk (q(tk ))
(R̄′μ(tk)). We infer that R̄′μ(tk) = projMk

(−NMk (q(tk));−u(t−k )) so

that R̄′μ(tk) = −projMk
(NMk (q(tk)); u(t−k )), so that finally

R′μ(tk) = −M(q(tk))projMk
(NMk (q(tk)); u(t−k ))

= −M(q(tk)) argminz∈NMk (q(tk ))
1
2 (z − u(t−k ))T M(q(tk))(z − u(t−k )).

(5.58)
Of course, we can also obtain R′μ(tk) directly from (5.53) and (5.54).
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Remark 5.6 (Virtual powers) The generalized velocities u(·) belong to the tangent
space TqQ to the configuration space Q of the system. In case of frictionless (or
perfect) bilaterally constrained systems (one considers only the bilateral constraints in

(5.1)), the velocities which are compatible with the constraints are in the set Sq
Δ= {u ∈

TqQ|〈∇hi (q), u〉 = 0, i ∈ {1, 2, . . . ,mb}}. In other words, the admissible virtual
velocities are velocities in TqQ, which are also tangent to the bilateral constraints.
In a geometrical context, one may take instead of the Euclidean gradients ∇hi (q),
the gradients in the Riemannian kinetic metric defined as xT M(q)y for two vectors
x and y, which are given by dhi (q) = M(q)−1∇hi (q). Then the inner product is
defined as 〈dhi (q), u〉q = 0, where 〈x, y〉q = xT M(q)y. The fact that the constraints
are supposed perfect means that the contact force R satisfies P = 〈R, u〉 = 0, for
all u ∈ Sq . Equivalently, R =∑mb

i λi∇hi (q) for some (unsigned) multipliers λi .
If the geometrical path is used, one writes equivalently P = 〈R
, u〉q = 0 where
R
 = M(q)−1R: vanishing virtual power may be seen as a constitutive law for perfect
bilateral constraints. The cone complementarity problem in (5.56) (see also (8.6) in
a slightly broader context) generalizes this “virtual power principle” to unilateral
constraints.

Example 5.4 Let us consider the dynamics of a ball falling vertically on a soft rigid
ground within this framework. We have Φ = {x ∈ R|x ≥ 0}, and the dynamics can
be written as

−mdu + g ∈ ∂ψV (x(t))
(
u(t+)

)
, (5.59)

where x(t) is the vertical coordinate of the ball, u(·) equals ẋ(·) almost everywhere,
and ∂ψV (x(t))

(
u(t+)

)
is contained in the outward normal half-line to the contact

point when there is contact: if x(t) = 0 and u(t+) > 0 then ∂ψV (x(t))
(
u(t+)

) =
NR+

(
u(t+)

) = {0}, if x(t) = 0 and u(t+) = 0 then ∂ψV (x(t))
(
u(t+)

) = NR+ (0)) =
R
−. The cone ∂ψV (x(t))

(
u(t+)

)
is the singleton {0} when there is no contact

x > 0. We notice in passing that Moreau’s set imposes a lexicographical inequal-
ity (x(t), u(t+)) � 0 (see Remark 3.1 for some arguments about lexicographical
inequalities). In a more general setting, consider (5.54). If q is in the interior of
Φ, then V (q) = R

n so that u(t+) can take any value (it is in fact continuous). If
q ∈ bd(Φ), then u(t+) is constrained by (5.54), which may be understood as a kind
of nonnegativity condition (in a suitable coordinate frame, the normal components
of u(t+) are nonnegative).

Remark 5.7 The case of non-purely dissipative percussions may be treated by replac-
ing u(t+k ) by a weighted mean uδ(tk) = 1+δ

2 u(t+k )+ 1−δ
2 u(t−k ) of u(t+k ) and u(t−k )

in the right-hand side of (5.51) [894], as NV (q(t))(uδ(t)). The number δ is called a
dissipation index. At an impact (5.53) becomes

http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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M(q(tk))[u(t+k )− u(t−k )] ∈ −NV (q(tk ))(uδ(tk))

⇔ u(t+k )− u(t−k ) ∈ −M(q(tk))−1NV (q(tk ))(uδ(tk))

⇔ 1+δ
2 (u(t+k )− u(t−k )) ∈ −M(q(tk))−1NV (q(tk ))(uδ(tk))

⇔ 1+δ
2 u(t+k )+ 1−δ

2 u(t−k )− 1−δ
2 u(t−k )− 1+δ

2 u(t−k ) ∈ −M(q(tk))−1NV (q(tk ))(uδ(tk))

⇔ uδ(tk)− u(t−k ) ∈ −M(q(tk))−1NV (q(tk ))(uδ(tk))

⇔ uδ(tk) = projM(q(tk ))(V (q(tk)); u(t−k ))

⇔ u(t+k ) = δ−1
δ+1u(t−k )+ 2

1+δ
projM(q(tk ))(V (q(tk)); u(t−k ))

⇔ u(t+k ) = u(t−k )− 2
1+δ

projM(q(tk ))(N (q(tk)); u(t−k )).

(5.60)

In these calculations we used the fact that a cone is invariant under multipli-
cation by a positive scalar, and we used also (B.18) which is a corollary of
Moreau’s Lemma of the two cones. In case of impact u(t−k ) ∈ −V (q(tk)), thus
projM(q(tk ))(V (q(tk)); u(t−k )) ∈ bd(V (q(tk))). In the one degree-of-freedom case of
Remark 5.4, u(t−k ) ≤ 0 and one gets for the energy conservation case 1

2u(t+k )+
1
2u(t−k ) = proj(R+; u(t−k )) = 0. Hence, u(t+k ) = −u(t−k ) as expected. In the max-
imum dissipation case δ = 1 and u(t+k ) = proj(R+; u(t−k )) = 0. The relation with
the classical restitution coefficient is δ = 1−en

1+en
, or equivalently en = 1−δ

1+δ
, so that

u(t+k ) = −enu(t−k )+ (1+ en)projM(q(tk ))(V (q(tk)); u(t−k )). The following equiva-
lences hold also [780]:

1
1+en

{u(t+k )+ enu(t−k )} = proj(V (q(tk)); u(t−k ))

⇔ − R′μ(tk )
1+en

= proj(N (q(tk)); u(t−k ))

⇔ −R′μ(tk) ∈ NV (q(tk ))(u(t+k )+ enu(t−k ))

⇔ R′μ(tk )T

1+en
[u(t+k )+ enu(t−k )] = 0

⇔ T (t+k )− T (t−k ) = − 1
2

1−en
1+en

σu(tk)T M(q(tk))σu(tk).

(5.61)

We can redo the same manipulations as above to express these equivalences in the
kinetic metric. The first line in (5.61) is just the last-but-one line in (5.60), while
the second line in (5.61) is obtained from the last line in (5.60), using the dynamics
at impact. The inclusion in the third line in (5.61) uses Moreau’s Lemma of the
two cones, plus (B.19) noting that V (q) and N (q) are polar cones. The last line is
very interesting as it gives the kinetic energy variation induced by Moreau’s set at
an impact. As an exercise one may check that in case of two particles colliding the
expression (4.41) is recovered.

Example 5.5 Consider the 3-ball system with all masses equal to unity so that the
inertia matrix is the identity. Let the first ball hit the other two, assumed to be in

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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contact before the shock: q̇1(t
−
k ) = 1 m/s, q̇2(t

−
k ) = q̇3(t

−
k ) = 0 m/s. Let us take

δ = 0 ⇔ en = 1, i.e., the kinetic energy loss TL(tk) = 0. Then using (5.60) q̇(t+k ) is
calculated from

1

2

(
q̇(t+k )+ q̇(t−k )

) = proj
(
V (q(tk)); q̇(t−k )

)
, (5.62)

where the proximation is in the Euclidean norm since the inertia matrix is the identity

3× 3 matrix. We have 1
2

(
q̇(t+k )+ q̇(t−k )

) = 1
2

⎛
⎝ q̇1(t

+
k )+ 1

q̇2(t
+
k )

q̇2(t
+
k )

⎞
⎠. We can therefore

look for a vector 1
2

(
q̇(t+k )+ q̇(t−k )

)
that belongs to the boundary of V (q), and such

that ||q̇(t+k )− q̇(t−k )|| is minimum. This leads us to minimize the last quantity under
the constraints q̇2(t

+
k ) = q̇1(t

+
k )+ 1, q̇3(t

+
k ) = q̇2(t

+
k ), i.e., minimize the following:

1

4

(
q̇1(t

+
k )− 1

)2 + 1

2

(
q̇1(t

+
k )+ 1

)2 = 3q̇2
1 (t+k )+ 2q̇1(t

+
k )+ 3. (5.63)

This yields finally the outcome q̇1(t
+
k ) = − 1

3 m/s, q̇2(t
+
k ) = q̇3(t

+
k ) = 2

3 m/s. This
corresponds to the first solution found by the Han and Gilmore algorithm in Chap. 6,
Sect. 6.1.2.

Let us now calculate the postimpact velocity with δ = 1 ⇔ en = 0. We have to
compute q̇(t+k ) = proj

(
V (q(tk)), q̇(t−k )

)
. The result is that of minimizing ||q̇(t+k )−

q̇(t−k )|| under the constraint q̇(t+k ) ∈ V (q(tk)). Therefore, it follows that ||q̇(t+k )−
q̇(t−k )||2 = (

q̇1(t
+
k )− 1

)2 + q̇2
2 (t+k )+ q̇2

3 (t+k ), which is equal to 3q̇2
1 (t+k )− 2q̇2(t

+
k )+

1 on the boundary of V (q(tk)). It follows that q̇1(t
+
k ) = q̇2(t

+
k ) = q̇3(t

+
k ) = 1

3 m/s.
One checks that TL(tk) < 0.

Remark 5.8 Moreau’s set yields an impact mapping which may not fit well with
experimental results in many instances, see Example 5.6. However, it clarifies the
geometry of unilaterally constrained Lagrangian systems, and settles a general frame-
work which may be enhanced, in particular with better impact mappings. From a more
general point of view, it serves as a theoretical basis for the NSCD numerical method
(with or without friction) in Sect. 5.7.3.1, which is very efficient for systems which
undergo a lot of stick/slip transitions, and few collisions (some granular materials
behave like this).

Remark 5.9 As alluded to in Example 5.5, the sweeping process shock rule is equiv-
alent to solving a QP under unilateral constraints. In fact (5.54) is equivalent to

u(t+k ) = arg min
w∈V (q)

1

2
[w− u(t−k )]T M(q(tk))[w− u(t−k )]. (5.64)

The Kuhn–Tucker’s conditions (see Sect. 5.4) tell us that it is then necessary that there
exists λ ∈ R

card(J (q(tk ))), whereJ (q(tk)) is the set of active constraints indices, such
that

http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_6


272 5 Nonsmooth Lagrangian Systems

⎧⎨
⎩

M(q(tk))[u(t+k )− u(t−k )] −∑
i∈J (q(tk ))

∇ fi (q(tk))λi = 0

λi ≥ 0, ∇ fi (q(tk))T u(t+k ) ≥ 0, λi∇ fi (q(tk))T u(t+k ) = 0, i ∈J (q(tk)).
(5.65)

It is clear from the third complementarity condition that this rule yields plastic shocks,
in the sense that the postimpact generalized velocity is on the boundary of the admis-
sible domain Φ. Notice that λi in (5.65) is equal to R

′
μ(tk), i.e., the density of the

atomic contact percussion distribution at t = tk . It is important to understand the
relationships between shock rules and complementarity formulations, since this is at
the core of many studies, see Sect. 5.4.

5.2.2.5 Further Results on Moreau’s Impact Law

Let us consider the following set of relations at an impact time tk :

(a) M(q(tk))(q̇(t+k )− q̇(t−k )) = pn,k

(b) Un(t
+
k ) = ∇ f (q(tk))T q̇(t+k )

(c) Un(t
−
k ) = ∇ f (q(tk))T q̇(t−k )

(d) pn,k = ∇ f (q(tk))Pn,k

(e) 0 ≤ Un(t
+
k )+ EnnUn(t

−
k ) ⊥ Pn,k ≥ 0,

(5.66)

where it is assumed that the local velocity vector Un(t
−
k ) ≤ 0 (componentwise

inequality), i.e., all m contacts collide at the same time. In fact, following the nota-
tions adopted in Chap. 4 that stem from the local kinematics at the m contact points,
one has Un = (vr,n,1, vr,n,2, . . . , vr,n,m)T , where the subscript i refers to the contact
point number. What is denoted as pk in (5.66) is the same as R′μ(tk) in (5.57), while
Pn,k collects the multipliers λi in (5.65) . The reason for different notations of the
same mechanical variable comes from the context. The matrix Enn = diag(en,i ) is
the restitution matrix.21 The velocity Un(t) ∈ R

m is the vector collecting the contact
points relative normal velocities, which are defined from the gap function (the signed
distances) f (q) ≥ 0. The problem in (5.66) is a mixed LCP (mLCP). Indeed, it can
be rewritten as

⎧⎨
⎩

Du(q(tk))Pn,k −Un(t
+
k )+Un(t

−
k ) = 0

0 ≤ Un(t
+
k )+ EnnUn(t

−
k ) ⊥ Pn,k ≥ 0.

(5.67)

Without loss of generality we suppose in (5.66) that the m constraints are hitted at
the same time tk . If this is not the case one simply has to work with the subset of
striked constraints.

21The reason for the nn subscript will become clear in Sect. 6.2 when we deal with generalizations
of this impact law.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_6


5.2 Moreau’s Sweeping Process 273

Proposition 5.15 Let (i) en,i = en for all1 ≤ i ≤ m,and (ii) suppose that there exists
z0 such that ∇ f (q(tk))z0 ∈ R

m+. The problem in (5.66) is equivalent to Moreau’s
impact law.

Proof The proof uses (B.19), (B.20), (B.21), and Theorem B.2. From (5.66) (b)
(c) (e) one deduces pn,k ∈ −∇ f (q(tk)) NR

m+(∇ f (q(tk))T (q̇(t+k )+ enq̇(t−k )), where
assumption (i) was used. Using assumption (ii), this is found to be equivalent to
pn,k ∈ −NK (q(tk ))(q̇(t+k )+ enq̇(t−k )), with K (q(tk)) = {z ∈ R

m |∇ f (q(tk))T z ≥ 0},
which is equal to the tangent cone V (q(tk)) in (5.34). One therefore recovers (5.51)
(for the case en = 0), see Remark 5.7 for the general case.

It is noteworthy that assumption (i) in the proposition could be replaced by the matri-
ces Enn and∇ f (q(tk)) commute. Similar results may also be found, in a geometrical
context, in [454]. Now from (5.67) one infers that

0 ≤ Du(q(tk))Pn,k + (I + Enn)Un(t
−
k ) ⊥ Pn,k ≥ 0. (5.68)

The well-posedness of this LCP depends on whether Du(q(tk)) is positive definite,
or semi-definite. Theorems 5.4, 5.6, and 5.7 may be used.

Lemma 5.2 Let n and mu be arbitrary positive integers. Assume that Enn and
∇ f (q(tk))T commute and let M(q) be full rank. Then the LCP in (5.68) is solv-
able.

Proof The proof relies on Theorem 5.6. We drop the time argument in q(tk). The
associated homogenous LCP writes as 0 ≤ ∇ f (q)T M(q)−1∇ f (q)z ⊥ z ≥ 0. Its
solutions satisfy zT∇ f (q)T M(q)−1∇ f (q)z = 0, so that z ∈ ker(∇ f (q)). Thus zT

(I + Enn)Un(t
−
k ) = zT∇ f (q)T (I + Enn)q̇(t−k ) = 0. Since∇ f (q)T M(q)−1∇ f (q) is

(at least) positive semi-definite, hence copositive, from Theorem 5.6 the LCP is
solvable.

Lemma 5.2 is important because it proves that a postimpact velocity can always be
computed: indeed from (5.66) a value of Pn,k yields a value of pn,k , thus a value of
q̇(t+k ). Uniqueness also holds for the local velocities:

Corollary 5.1 Let n and mu be arbitrary positive integers. Assume that Enn and
∇ f (q(tk))T commute and M(q(tk)) be full rank. Then Un(t

+
k ) is unique.

Proof Using Theorem 5.7 (or item (c) of [23, Corollary 4]), one has Pn,k,1 − Pn,k,2 ∈
ker(∇ f (q)T M(q)−1∇ f (q)) for any two solutions Pn,k,1 and Pn,k,2 of the LCP (5.68).
Using (5.66) one deduces that the corresponding velocities Un,1(t

+
k ) and Un,2(t

+
k )

satisfy Un,1(t
+
k )−Un,2(t

+
k ) = ∇ f (q)T M(q)−1∇ f (q)(Pn,k,1 − Pn,k,2) = 0.

However, one has that ∇ f (q)T (q̇1(t
+
k )− q̇2(t

+
k )) = 0 for the corresponding gener-

alized velocities, which are unique only if dependency restrictions are put on the
unilateral constraints. In fact we may do differently, as follows. From (5.66) one
infers that:
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M(q)(q̇(t+k )− q̇(t−k )) ∈ −∇ f (q)∂ψR
m+(∇ f (q)T q̇(t+k )+ EnnUn(t

−
k )

= −NK (q,q̇(t−k ))(q̇(t+k )),
(5.69)

where ψR
m+(·) is the indicator function of Rm+, and K (q, q̇(t−k )) = {z ∈ R

n|∇ f (q)T

z + EnnUn(t
−
k ) ≥ 0}. The equality in the right-hand side of (5.69) is obtained under

the constraint qualification (CQ): there exists z0 such that ∇ f (q)T z + EnnUn(t
−
k ) ≥

0. Then Theorem B.2 can be used, as well as Definition B.7. The inclusion in (5.69)
has the form as in (B.20), and K (q, q̇(t−k )) is convex nonempty (due to the CQ)
and closed. One infers that if the CQ holds and if M(q(tk) is full rank, the postim-
pact velocity is uniquely calculated as a projection on K (q(tk), q̇(t−k )) in the metric
defined by M(q(tk).22 If the mass matrix is singular, one may use [23, Corollary 4]
to derive some results. The most immediate one follows from [23, Corollary 4 (c)]: if
q̇1(t

+
k ) and q̇2(t

+
k ) are two solutions of (5.69), then q̇1(t

+
k )− q̇2(t

+
k ) ∈ ker(M(q(tk)).

A solvability result may also be stated:

Proposition 5.16 Let n and m be arbitrary, and assume that the above CQ holds.
Suppose also that {z ∈ R

n|∇ f (q(tk))T z ≥ 0} ∩ ker(M(q(tk)) = {0}. Then the gen-
eralized equation in (5.69) has at least a solution q̇(t+k ).

Proof The proof relies on [23, Corollary 4 (a)]. The domain of the normal cone in
the right-hand side of (5.69) is the closed convex set K (q, q̇(t−k )), whose recession
cone is given by K∞(q, q̇(t−k )) = {z ∈ R

n|∇ f (q)T z ≥ 0}. The result follows.

One sees that the set {z ∈ R
n|∇ f (q(tk))T z ≥ 0} is the linearization cone V (q(tk))

of Definition 5.34, which is equal to the tangent cone if the MFCQ in (B.9) holds.
Thus the solvability result of Proposition 5.16 means that there is no element of the
mass matrix kernel, which produces a motion inside the admissible domain. Said
otherwise: a nonzero postimpact velocity that produces motion (hence, a positive
kinetic energy) should not be in the mass matrix kernel. This may be seen as a
generalization of the results in [429] (see Theorem 5.1) which apply to systems with
holonomic, bilateral constraints, and smooth motions (hence the postimpact velocity
is replaced by the acceleration). Uniqueness is more stringent, and [23, Corollary
4 (d)] sufficient conditions for uniqueness do not apply to (5.69), because one has
q̇(t−k )T M(q(tk))z = 0 for all z ∈ ker(M(q(tk))).

If Du(q(tk)) is positive definite, then one may write equivalently a well-posed
LCP with unknown w(tk) = Du(q(tk))Pn,k + (I + Enn)Un(t

−
k ) as

0 ≤ w(tk) ⊥ Du(q(tk))
−1w(tk)− Du(q(tk))

−1(I + Enn)Un(t
−
k ) ≥ 0. (5.70)

� The Proposition 5.15 shows that if all restitution coefficients are equal, then
Moreau’s impact law and Newton’s restitution law applied at each constraint are
the same. It also shows how Moreau’s impact law may be solved with an LCP, which
possesses nice properties.

22Which is the kinetic metric, however, since we deal with a given impact time, the mass matrix is
fixed and this is a problem with a Euclidean metric.
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In numerical simulations with time-stepping methods, one forms a so-called one-
step nonsmooth problem, which is close to the mLCP in (5.67), see [13, Chap. 10].

Remark 5.10 The above results were stated under the collision assumption, i.e.,
Un,i (t

−
k ) ≤ 0 for all 1 ≤ i ≤ m. Equivalently, q̇(t−k ) ∈ −V (q(tk)).

Example 5.6 (Example 5.5, continued) The system of three aligned balls (called
in the Granular Matter scientific community a monodisperse chain when there is
no energy dissipation) may be used to show the limitations of both Moreau and

Newton’s laws. This is depicted in Fig. 5.5, where γ+1
Δ= q̇2(t

+
k )− q̇1(t

+
k ), γ+2

Δ=
q̇3(t

+
k )− q̇2(t

+
k ), Vs = q̇1(t

−
k ), q̇3(t

−
k ) = q̇2(t

−
k ) = 0 m/s. In this figure the quantity

K ER
Δ= T (q(tk), q̇(t+k ))

T (q(tk), q̇(t−k ))
(5.71)

characterizes the kinetic energy loss, while the quantity

CKE = 1

T̄+

√√√√1

3

3∑
i=1

(Ti (t
+
k )− T̄+)2, (5.72)

with T̄+ = 1
3

∑3
i=1

1
2mi q̇i (t

+
k )2 characterizes the kinetic energy dispersion in the

chain. Moreau’s impact law allows to span only the segment denoted as Moreau’s
line [O, B]. In other words, it cannot separate balls 2 and 3 after the collision, for
this choice of the initial velocities, which is not observed in many experiments. A
“good” impact law should be able to span the whole area that is parameterized by
K ER andCKE . It is noteworthy that the limitation of Newton’s or Moreau’s laws has
an intrinsic feature, in the sense that it cannot be overcome by choosing nonconstant
restitution coefficients. These limitations have been pointed out in [276]23, while
Moreau’s line is pointed out in the analysis of [454]. Chapter 6 is dedicated to the
extension of such kinematic impact laws.

Example 5.7 [Moreau’s impact law as a minimization problem] Let us consider a
chain made of three aligned balls, with masses m1, m2, and m3, respectively, and the
first ball hits at time tk the other two which are initially in contact. The following is
proved in [929, Appendix C], and shows that in some cases Moreau’s impact law can
be given a meaning in terms of energy dispersion, in addition to energy dissipation.

Proposition 5.17 Let 0 < en ≤ 1 and m2 ≤ m3. The outcome calculated from
Moreau’s impact law, i.e., q̇1(t

+
k ) = m1−(m2+m3)en

m1+m2+m3
q̇1(t

−
k ), q̇2(t

+
k ) = m1(1+en)

m1+m2+m3
q̇1(t

−
k ),

q̇3(t
+
k ) = m1(1+en)

m1+m2+m3
q̇1(t

−
k ), is the solution of the minimization problem:

23…complementarity conditions at the velocity level should be viewed as typically inaccurate, but
algorithmically convenient, constitutive assumptions.

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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Fig. 5.5 Three-ball chain: Impact geometry (taken from [929, Fig. 2.6])

minimize CK E (q̇1(t
+
k ), q̇2(t

+
k ), q̇2(t

+
k ))

subjected to:
∑3

i=1 mi q̇i (t
+
k )− m1q̇1(t

−
k ) = 0∑3

i=1 mi q̇i (t
+
k )2 − K ER m1q̇1(t

−
k )2 = 0

q̇3(t
+
k )− q̇2(t

+
k ) ≥ 0, q̇2(t

+
k )− q̇1(t

+
k ) ≥ 0

(5.73)

where CK E in (5.72) is the dispersion of energy measure, and K ER is in (5.71). If
en = 0 then Moreau’s outcome is the unique solution of the minimization problem
(5.73).

Remark 5.11 A nice example of a multibody system with unilateral constraints (and
friction) is a bipedal robot [560]. Impact laws are used in the control design of such
systems. Starting from (5.66) (a) and Un(t

+
k )+ EUn(t

−
k ) = 0 one forms the system

[483, Eq. (47)]:

⎛
⎝ M(q(tk)) −∇ f (q(tk))

∇ f (q(tk)) 0

⎞
⎠
⎛
⎝ q̇(t+k )

Pn,k

⎞
⎠ =

⎛
⎝M(q(tk))q̇(t−k )

−EUn(t
−
k )

⎞
⎠ (5.74)
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Usually, one takes E = 0 because the assumption is that impacts are plastic. It is
noteworthy that the positivity of Pn,k is not at all guaranteed when solving the problem
(5.74), which is similar to the problem in (5.3). Thus it is in essence a “bilateral”
calculation of impacts.

Let us end this long aside on Moreau’s impact law by mentioning that it may be
approximated with some kind of over-damped compliant contact model similar to
those presented in Sect. 2.4, with convergence to Moreau’s law as some stiffness
parameter diverges [973, 975].

Moreau’s sweeping process is a quite interesting evolution problem, because it
settles the correct geometrical framework of Lagrange dynamics with unilateral
constraints, despite it yields a weak (in terms of its practical usefulness) collision
mapping.

5.2.3 Well-Posedness Results

The first existence of solution proofs for the second-order sweeping process was
published by Monteiro Marques in the Convex Analysis Seminar of the Mathematics
Department of the University of Montpellier (France) between 1983 and 1987, and
can be found in [866, 867].

Theorem 5.2 [867] Suppose that there is a unique unilateral constraint m = 1, f (·)
is of class C1, the vector Q = Q(t, q) in Problem 5.1 is continuous and globally
bounded, i.e., ||Q(t, q)|| < M for some constant M > 0 and all t ≥ τ0 and all q ∈
R

n. Let us take also M(q) the identity matrix. Let q(τ0) = q0 ∈ Φ and u(τ0) = u0 ∈
V (q0) be the initial data. Then there exist δ > 0 and T ′ > 0 such that

Int
(∩||q−q0||≤δV (q)

) �= ∅, (5.75)

and T ′ = min
{
T, δ

M ′
}
, M ′ = ||u0|| + 2T M. On the interval [τ0, T ′], Problem 5.1

has at least one solution q(t) with right-continuous velocity u(·) that satisfies:

||u(t)|| ≤ ||u0|| + Mt (5.76)

so that:

||q(t)|| ≤ ||q0|| + ||u0||t + 1

2
Mt2. (5.77)

Theorem 5.2 assures local existence, i.e., for some T ′ strictly positive. Global exis-
tence can also be proved, i.e., a solution exists on [τ0, T ] for T ≥ τ0, arbitrary.
Uniqueness is not discussed in [867], but it is pointed out that nonuniqueness may

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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occur, see Bressan’s counterexample in Chap. 2. This seems to be the only class of
counterexamples to nonuniqueness known in the mathematical literature [80, 186,
1066] (that is however to be considered more as a pathological case than as a deep
practical problem). Theorem 5.2 has been extended to the partially elastic rebound
case en > 0, and Q = Q(t, q, q̇) in [780, 781], with Q(·, ·, ·) globally Lipschitz in
q and q̇ , and uniformly continuous t . The fact that en > 0 complicates the analysis
and f (q) is required to be C1,β with β > 1

2 ,24 and this is equivalent to impose some
conditions on the curvature of bd(Φ) (similarly as in some results for uniqueness
conditions, see Chap. 2, Sect. 2.4.3). As we saw in Example 5.4, the sweeping process
then reads

Q(t, q, u)dt − du ∈ ∂ψV (q)(ue), (5.78)

where ue = u++enu−
1+en

is named an en − average of u (equal to u at continuity points).
The proof of existence is divided into four steps, and is based, following [867], on an
implicit discretization reminiscent of the catching-up algorithm briefly introduced
in Sect. 5.2.1, as

ti+1 − ti
1+ en

Q(ti+1, q(ti+1), ui+1)− ui+1 − ui
1+ en

∈ ∂ψV (q(ti+1))

(
ui+1 + enui

1+ en

)
.

(5.79)

Using (B.20) this is equivalent to

ui+1 + enui
1+ en

= proj

(
V (q(ti+1)), ui + ti+1 − ti

1+ en
Q(ti+1, q(ti+1), ui+1)

)
. (5.80)

The time interval [0, T ] on which existence is to be shown is divided with a constant
step h = T

n , and ti = ih. Then one constructs the approximating sequences:

{
qi+1 = qi + hui
ui+1 = −enui + (1+ en)proj

(
V (qi+1), ui + h

1+en
Q(ti+1, q(ti+1), ui+1)

)
(5.81)

and the approximating step functions:

⎧⎨
⎩
un(t) = ui if t ∈ [ti , ti+1), 0 ≤ i ≤ n − 1
un(T ) = un
qn(t) = q0 +

∫ t
0 un(τ )dτ.

(5.82)

24This means that f (·) is C1 and ḟ (·) is continuous and satisfies supx,y
| ḟ (x)− ḟ (y)|
|x−y|α < +∞, with

0 < α < 1 [191].

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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The fist step of the proof consists of showing that the sequences {un} and {qn} are
uniformly bounded. In the second step one calculates a majoration of the measures
dun . This in particular allows one to use a result that guarantees that the sequence {un}
converges everywhere toward a function u ∈ RCLBV, whereas {qn} converges toward
a function q(·) that satisfies f (q(t)) ≥ 0, i.e., q(t) ∈ Φ. The third step is devoted to
prove that the limit u(·) satisfies the sweeping process inclusion almost everywhere,
provided f (·) ∈ C1, 1

2 . The last step is devoted to study the jump conditions in u(·).
Let us end this section on well-posedness issues of frictionless sweeping process,

by mentioning the results in [374, 375, 967, 968] which extend the above results
to multiple independent constraints (hence a full-rank Delassus’ matrix25), and/or
nontrivial mass matrix M(q). The proofs rely on similar implicit time discretizations
as the one we described above. The results in [80, 81] can be used to assert the
uniqueness of solutions, under mild assumptions like the piecewise analycity of the
data and en ∈ [0, 1] (hence extending the results stated in Sect. 2.4.3 where analycity
plays a crucial role). As pointed out in Sect. 2.4.3.1, in such a case right accumulations
of impacts cannot exist. Moreover, if en = 1, then impact instants are isolated and
infinite number in any compact interval of time [81, Proposition 4.11]. We may
summarize all these results as well as those in Sect. 2.4 in the following, which is
the most general well-posedness result on frictionless complementarity Lagrangian
systems.

Assumption 5.1 Consider the Lagrangian system in (5.1). Let us denote the impact
mapping as q̇(t−k ) �→ q̇(t+k ) = F (q(tk), q̇(t−k )). Assume further that

• (a) The impact mapping satisfies (i) kinematic, (ii) kinetic, and (iii) energetic
constraints:

– (i) F (q(tk), q̇(t−k )) ∈ V (q(tk)),
– (ii) F (q(tk), q̇(t−k ))− q̇(t−k ) ∈ −M(q(tk))−1NΦ(q(tk)),
– (iii) F (q(tk), q̇(t−k ))T M(q(tk))F (q(tk), q̇(t−k )) ≤ q̇(t−k )T M(q(tk))q̇(t−k ).

• (b) M(q) = M(q)T � 0.
• (c) The Delassus’ matrix of the active constraints is positive definite (i.e.,, active

constraints are functionally independent).
• (d) The data (i.e., M(q), C(q, q̇), G(q), Fext (t), f (q)) are piecewise analytic.
• (e) The gradients ∇ fi (q) do not vanish in a neighborhood of {q ∈ R

n| fi (q) = 0}.
We see that the impact mapping may be different from Moreau’s mapping. But
Moreau’s mapping satisfies the requirements (i)–(iii).

25It is important to remind here that only the active constraints have to be independent.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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Theorem 5.3 (Existence and uniqueness of solutions) Consider the
Lagrangian system in (5.1) without friction and only unilateral constraints. Sup-
pose that Assumption 5.1 holds. Let f (q(t0)) ≥ 0, q̇(t+0 ) ∈ TΦ(q(t0)). Then the
system admits a uniquemaximal solution (q(·), q̇(·)) on [t0, T ) for some T > t0,
q(·) is absolutely continuous such that q̇(·) = u(·) almost everywhere, where
u(·) is right-continuous of local bounded variations, q(t) = q(t0)+

∫ t
t0
u(s)ds

for all t ≥ t0, the acceleration is the differential measure of the velocity, i.e.,

q̈ = du. Let F(q, q̇, t)
Δ= C(q, q̇)+ G(q)− Fext (t). The additional condition√

F(q, q̇, t)T M(q)F(q, q̇, t) ≤ l(t)(1+ d(q, q(0))+√
q̇T M(q)q̇) for some

nonnegative Lebesgue integrable function l(·) and where d(·, ·) is the Rie-
mannian distance guarantees the global existence of solutions.

Right accumulations of impacts do not occur, and impact times are separated
if en = 1 (i.e., there is only a finite number of impacts in any compact time
interval). Moreover, if (i)∇ fi (q)T M(q)−1∇ f j (q) ≤ 0 for all active constraints
i and j , i �= j , when en = 0, or if (ii)∇ fi (q)T M(q)−1∇ f j (q) = 0 for all active
constraints i and j , i �= j , when en ∈ [0, 1], then solutions depend continuously
on the initial data. Finally, Moreau’s sweeping process measure differential

inclusion in (5.52) with set-valued right-hand side NV (q(t))

(
u(t+)+enu(t−)

1+en

)
is

well-posed for all en ∈ [0, 1].

An impact may occur initially. The piecewise analycity of the data is imposed if
one wants uniqueness, as it prevents right accumulations of impacts to occur as
in Bressan’s counterexample of Sect. 2.4.3.1. For mere existence (which may be
sufficient in many control applications), one may relax analycity to continuity and
local Lipschitz continuity of all forces (inertial and external), while M(q) should
be at least continuously differentiable (this is a very tiny requirement for practical
applications) [968]. Item (a) allows for Moreau’s impact law, but opens the door to
other, more general laws. This is important since it means that impact laws like those
presented in Chap. 6 could be used without altering the systems’s well-posedness.
The conditions for continuous dependence mean that (i) the active constraints should
make acute angles for en = 0 or (ii) be orthogonal in the kinetic metric. The result
guarantees the existence and uniqueness of a maximal solution. If the inertial and
external forces satisfy some classical global Lipschitz continuity, global solutions
exist on [t0,+∞). This is also the case if a Lyapunov function (the total energy)
exists for the system (in which case solutions can be continued indefinitely).

Remark 5.12 Second-order sweeping processes of the form ẍ(t)+ F(t, x(t),
ẋ(t)) ∈ −NK (x(t))(ẋ(t)) are studied in [165]. It is assumed that K (x) may be noncon-
vex, but strictly included in some compact convex set. Then Lipschitz continuous
solutions (x(·), ẋ(·)) are proved to exist under some other regularity assumptions
on the multivalued mapping F(t, x(t), ẋ(t)). The major discrepancy with respect to

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_6
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unilaterally constrained mechanical systems is that the tangent coneV (q) in Moreau’s
set is not compact. Hence, Lipschitz continuous solutions do not exist.

Example 5.8 Let us state a tricky case in which the assumption (c) is not satisfied at
infinity. Let q = (x, y)T ∈ R

2, and f1(q) = xy + 1 ≥ 0, f2(q) = 1− xy ≥ 0. This
is a hyperbolic billiard. The gradients of the constraints satisfy (e), however, when
x →+∞ then the two constraints become active (the particle is jammed in a funnel
with both h1(q) = h2(q) = 0) and since∇h1(q) = −∇h2(q) always, the Delassus’s
matrix becomes a 2× 2 singular matrix at infinity. The same holds asymptotically as
x →−∞, y →+∞ and y →−∞. It is noteworthy that such an issue does not exist
in a corner with an acute angle, where both constraints always remain independent.

Example 5.9 Moreau [891] gives the following example for a three-degree-of-
freedom system: f1(q) = q1 ≥ 0, f2(q) = q2q3 − q1 ≥ 0, f3(q) = q2 + q3 ≥ 0.
At q(0) = (0, 0, 0)T and with an admissible velocity (i.e., pointing inward Φ)
q̇(0) = (0 2 − 1)T , no subsequent motion is possible: the system is “pinched”
between the boundaries of Φ. Indeed, one has q1(t) = O(t2), q2(t) = 2t + O(t2),
q3(t) = −t + O(t2). Thus f2(q(t)) = −2t2 + O(t3) is violated in any right neigh-
borhood of 0. It is easily checked that condition (c) is not satisfied at the origin
because ∇ f1(0) = −∇ f2(0).

Example 5.10 Let us consider the bouncing ball system with continuously differen-
tiable external force F(t) on the ball: mẍ(t) = F(t)+ λ(t), 0 ≤ λ(t) ⊥ x(t) ≥ 0.
Assume that at some time t = τ one has x(τ ) = ẋ(τ ) = ẍ(τ ) = x (3)(τ ) = 0. Then
λ(τ) = −F(τ ), and λ̇(τ ) = −Ḟ(τ ). Let Ḟ(τ ) > 0 then λ̇(τ ) < 0: it seems impos-
sible to continue the integration in a right neighborhood of τ , since this would
violate the nonnegativity of the contact force. However, notice that mx (3)(τ ) =
Ḟ(τ )+ λ̇(τ ). Thus if we admit that 0 ≤ λ̇(τ+) ⊥ x (3)(τ+) ≥ 0 holds, and that we
also have mx (3)(τ+) = Ḟ(τ )+ λ̇(τ+), we obtain from the linear complementar-
ity problem (LCP) 0 ≤ λ̇(τ+) ⊥ 1

m (Ḟ(τ )+ λ̇(τ+)) ≥ 0 that the unique solution is
λ̇(τ+) = 0 while x (3)(τ+) = Ḟ(τ ) > 0: the dynamics becomes coherent by consid-
ering right limits and complementarity between derivatives, and tells us that the
ball detaches from the constraint in a right neighborhood of τ . The trick here is
that (doing proper assumptions on the data as in Proposition 5.3) we should have
written x(τ ) = ẋ(τ+) = ẍ(τ−) = x (3)(τ−) = 0, while 0 ≤ λ(τ+) ⊥ ẍ(τ+) ≥ 0 and
mẍ(τ+) = F(τ )+ λ(τ+) both hold. Then the contact complementarity problem
introduced in Sect. 5.1.2 provides the unique solution λ(τ+) = 0. In the right neigh-
borhood of τ , since Ḟ(τ ) > 0, one has F(τ + ε) > 0 for some arbitrarily small
ε > 0 and thus the same complementarity problem yields λ(τ + ε) = 0 while
ẍ(τ + ε) > 0, which in turn implies positivity of ẋ(τ + ε). During the persistent con-
tact phase of motion, the sweeping process does not help computing explicit values of
λ. But its well-posedness guarantees that such a λ exists (as a selection of Moreau’s
set), uniquely from Assumption 5.1 (c).Actually, the system’s well-posedness as well
as its numerical integration (see Sect.5.7.3) do not need the explicit knowledge of
the contact forces.
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Remark 5.13 It is assumed that initial velocities satisfy the right limit condition
q̇(t+0 ) ∈ TΦ(q(t0)). This is in agreement with Proposition 5.12 and Lemma 5.1. Note
also that q̇(t−0 ) ∈ −TΦ(q(t0)), which is less intuitive to understand. In fact initial
velocities such that q̇(t−0 ) /∈ −TΦ(q(t0)) may be seen as pathological and quite dif-
ficult to realize experimentally. For instance, in a chain of three aligned balls, such
velocity is obtained if q̇2(0−) < 0, q̇3(0−) > 0, and q̇1(0−) > 0: the second and third
balls tend to separate with positive relative velocity, while the first ball hits the second
one at the same time.

We do not enter into details on the mathematical reasons which make it true that
analycity implies nonexistence of right accumulations of impacts and uniqueness of
solutions. As a hint let us just recall that if an analytic function f (t) =∑

i≥0 ai t
i

for a sequence of scalars {ai }i≥0 and t ≥ 0, then f (t) = 0 for all t small enough
is equivalent to ai = 0 for all i ≥ 0. Then all derivatives of any order of f (·) are
also zero. Also, f (t) > 0 for all t small enough is equivalent to the lexicographic
inequality (a1 a2 . . . an an+1 . . .) � 0. In a sense, either the trajectory stays on the
constraint, or it leaves it. But it cannot “hesitate” between the two solutions as in
Bressan’s counterexample.

Remark 5.14 What is very important in Theorem 5.3 is that right accumulations
of impacts can be avoided under might conditions on the data. This justifies some
assumptions made for control in Chaps. 7 and 8. And this makes a big discrepancy
with the MDEs of Sect. 1.2.2. It is noteworthy that in most applications, the piecewise
analycity should hold only during small portions of the system’s trajectories (when
contact is established). This is particularly true for the tasks analyzed in Sects. 8.1.1
and 8.3.1 and decomposed as in (8.4) and (8.37): during free-motion phases, the
dynamics is a classical ODE and external actions may just satisfy classical regularity
conditions for Caratheodory systems.

Remark 5.15 (Ideal play) The constraints are supposed to be independent in the
set of the active constraints J (q) in [967]. If the system is subject to dependent
constraints which cannot be activated at the same time, then the results in [967]
hold. This is the case for systems with so-called ideal clearance as in Fig. 5.6a. Its
dynamics is

m1

2ε

m2

q1 q20

(a) (b)

0

λ1 λ2

q1 −q20−ε ε

Φ

Fig. 5.6 Mechanical clearance

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_8
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
m1 0
0 m2

)(
q̈1(t)
q̈2(t)

)
=
(

1 −1
−1 1

)(
λ1(t)
λ2(t)

)

0 ≤ λ1 ⊥ f1(q) = q1 − q2 + ε ≥ 0
0 ≤ λ2 ⊥ f2(q) = q2 − q1 + ε ≥ 0.

(5.83)

If one embeds this system into the sweeping process, Moreau’s impact law is
applied, which boils down to applying Newton’s impact law at each constraint
with the same CoR en. One notices that the two constraints are linearly depen-
dent since ∇ f1(q) = −∇ f2(q). However they cannot be active at the same time,
because Φ is a strip defined by two parallel lines in the plane. The system is well-
posed from Theorem 5.3. The results in [80] may then be applied to conclude about
the uniqueness of solutions. Forces F(q, q̇, t) may be considered without altering
the conclusions, provided they satisfy some basic regularity properties (piecewise
analycity to avoid Bressan’s counterexamples of Sect. 2.4.3, and Lipschitz conti-
nuity in q and q̇). This answers a question raised in [282, 1071] about the well-
posedness of systems like (5.83). Notice incidentally that from (5.83) one obtains
q̈1(t)− q̈2(t) ∈ −N[−ε,ε](q1(t)− q2(t)). The elements of the normal cone are equal
to λ2(t)− λ1(t). This requires the use of (B.19), as well as [1045, Theorem 23.8]
applied to the sum of indicator functions. The characteristic of the ideal play is
depicted in Fig. 5.6b. Let us write the dynamics in (5.83) into the sweeping process
framework. The admissible domain is Φ = {q ∈ R

2|q1 − q2 ∈ [−ε, ε]}. The tangent
cone V (q) to Φ at the configuration q is given by:

V (q) =
⎧⎨
⎩
z ∈ R

2 : z1 − z2 ≥ 0 if f1(q) = 0 and f2(q) > 0
z ∈ R

2 : z2 − z1 ≥ 0 if f2(q) = 0 and f1(q) > 0
R

2 if f1(q) > 0 and f2(q) > 0.

(5.84)

Therefore, Moreau’s set (the right-hand side of the sweeping process) is given by:

NV (q)(q̇(t+)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if f1(q) > 0 and f2(q) > 0

if f1(q) = 0 and f2(q) > 0 :
⎧⎨
⎩
{0} if q̇1(t+)− q̇(t+2 ) > 0

cone

(−1
1

)
if q̇1(t+)− q̇(t+2 ) = 0

if f2(q) = 0 and f1(q) > 0 :
⎧⎨
⎩
{0} if q̇2(t+)− q̇(t+1 ) > 0

cone

(
1
−1

)
if q̇1(t+)− q̇(t+2 ) = 0

(5.85)

where cone(v) is the half-line generated by the vector v. Notice from (5.40) and (5.41)
that the generalized contact force satisfies P = ∇ f1λ1 if constraint 1 is active f1(q) =
0 and P = ∇ f2λ2 if constraint 2 is active f2(q) = 0. Clearly, both constraints cannot
be active at the same time. Very few analysis for such ideal play mechanisms have
been proposed, see [821] for a specific switching controller which guarantees the

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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tracking of some trajectories. The state observer design for such systems has been
investigated in [843, 844].

5.2.4 Continuous Dependence on Initial Data

The continuous dependence of the solution in the initial conditions fails in general:
this is easily understandable from the following example [867, p.129]: imagine in
dimension two a convex constraint surface whose boundary is composed of two
straight lines that intersect at P , as depicted in Fig. 5.7. Assume that each surface
has zero restitution (plastic shock), and that Moreau’s impact law is used at the
singularity. If the singularity is attained directly along the bissector, then the system
remains at rest at x = y = 0 for all future times. Now assume that the system is
initialized close to the bissector. It first strikes one of the surfaces of the multiple
constraint, then it moves along this surface up to the origin, and starts moving along
the other surface. This is an example of constraint with nonsmooth boundary. As we
shall see in Chap. 6, this kind of singularity occurs also in higher dimension spaces
when we consider Lagrangian systems in configuration spaces. As another example
of discontinuity with respect to initial data, let us consider the two-cart-with-hook
system in Fig. 5.8 [517]. It is assumed that the coordinates have been chosen so that
contact occurs with both stops when q1 = 0 and q1 = q2. In other words, the system
is subject to two unilateral constraints f1(q) = q1 ≥ 0 and f2(q) = q1 − q2 ≥ 0.
When both stops are attained at the same time, then J (q) = {1, 2} in Definition
5.1. The initial data (q1, q2, q̇1, q̇2) = (ε, ε,−2, 1) yield for ε = 0 a jump to the
equilibrium (0, 0, 0, 0). Now for ε > 0, the constraint f2(q) (the hook) becomes
active first, and the state jumps to (ε, 0,− 1

2 ,− 1
2 ). Then the motion continues in

the persistent constrained mode f2(q) ≡ 0, until the surface f1(q) = 0 is attained,
with pre-impact state (0, 0,− 1

2 + g(ε),− 1
2 + g(ε)) for some continuous function

Fig. 5.7 Collision of a
particle in an angle
((dis)continuity in the initial
data)

q0

qε

u0
-

uε
-

y

x

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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q1 q2

ε

ε

Fig. 5.8 A two-cart system with a hook

g(ε), g(0) = 0. Then a velocity jump occurs to (0, 0, 0,− 1
2 + g(ε)). If ε → 0+,

the final state is therefore (0, 0, 0,− 1
2 ). Clearly, there is a discontinuity of the flow

considered as a function of the initial data at (0, 0,−2, 1). Similar conclusions can be
drawn from the initial state (0,−ε,−2, 1): after two velocity jumps the final state is
(0, 0, 1

2 , 1
2 ). It is worth recalling that discontinuity with respect to initial data may not

be an obstacle to well-posedness (existence and uniqueness of solutions) as shown
in [517]: continuous dependence implies uniqueness, but uniqueness does not imply
continuous dependence. For another example, see Sect. 6.1.1.1.

Sufficient conditions for continuous dependence are given in [967]. Let us assume
that the conditions in Theorem 5.3 are fulfilled. For all indices i and j in J (q),
i �= j , let ∇ fi (q)T M(q)−1∇ f j (q) ≥ 0 if en = 0, or ∇ fi (q)T M(q)−1∇ f j (q) = 0
if en ∈ [0, 1]. Then trajectories are continuous in the initial conditions. The first
conditions mean that the constraint boundary makes an acute angle, and the second
one that they are orthogonal (in the metric defined by the kinetic energy).

� From an experimental point of view, discontinuity of solutions in the initial
data indicates a high sensitivity with respect to the initial position and velocity. This
sensitivity may be further studied by choosing a suitable compliant contact model.

5.3 Coulomb’s Friction

The sweeping process may be extended to constraints with friction. First, let us intro-
duce Coulomb’s friction model, sometimes also called the Amontons–Coulomb’s
model, in details.26

26Guillaume Amontons (1663–1705) and Charles Augustin de Coulomb (1736–1806), both French
scientists. What is usually named the Coulomb friction, stemmed from previous analysis by
Leonardo Da Vinci (1452–1519), then Amontons after him (and certainly many others at that
time). It seems that Coulomb is the one who formulated it in a modern way as ||Ft|| ≤ μ|Fn|, while
Amontons stated that Ft is proportional to Fn and is independent of the contact area. We will adopt
the usual way of naming dry friction as Coulomb’s friction, though Amontons–Coulomb or Da
Vinci–Amontons–Coulomb would be quite suitable.

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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5.3.1 Coulomb’s Friction Model

The local kinematics between two bodies S1 and S2 have been investigated in
Sect. 4.1.2 (see Fig. 4.1). To lighten the notations, we shall write VA for the rel-
ative velocity (here it is assumed that contact is established, so A1 and A2 coin-
cide). Then VA = vnn + vt1 t1 + vt2 t2, where n ∈ R

3 is the common normal vector
at A of S1 and S2, while the common tangent plane is spanned by t1 and t2. Thus
VA = (vn, vt1 , vt2)

T = (vn, vTt )T , with vt = (vt1 , vt2)
T , all vectors being expressed in

the frame (A,L ). To simplify further, one may consider that body S2 is fixed in the
Galilean frame, without altering much what follows, and we drop the subscript r in
vr,n and vr,t . As we have seen in Chap. 4, Sect. 4.1, VA is a linear function of q̇1 (the
generalized velocity of S1), i.e., VA = E3M1q̇1, E3 = [03×3 I3], see (4.11). There
is at A an interaction force exerted by S2 on S1, denoted as

F = Ft + Fnn ∈ R
3. (5.86)

Compared to Sect. 4.1.1, the contact force is not denoted as F1 to simplify the nota-
tions. The vector Ft ∈ R

2 is the component of the interaction force in the tangent
plane T between S1 and S2 at A, i.e., Ft = Ft1 t1 + Ft2 t2. From (4.14) one has Q1 =
M1(q1)

TW 

A =M1(q1)

T

[
0
F

]
=M1(q1)

T ET
3 F = ∇ f (q)λn,u + Ht,u(q)λt,u in the

notations of (5.1), λn,u = Fn and λt,u = (Ft,1, Ft,2), where Q1 is the generalized force
on S1 (see (4.4)). It is assumed that there is no torque at A due to friction or other
contact effect (like for instance compliance). The friction cone is a convex cone with
apex at A, symmetric with respect to n, defined as C = {F ∈ R

3| ||Ft|| ≤ μ|Fn|},
where μ ≥ 0 is the coefficient of friction. Thus the angle between n and the cone
boundary is arctan(μ). The cone is depicted in Fig. 5.10. Coulomb’s model of friction
reads as follows:

• (sticking) If vt = 0 then F ∈ C .
• (sliding) If vt �= 0, then ||Ft|| = μ|Fn| and there exists a scalar α ≥ 0 such that

Ft = −α vt .

It is equivalently formulated as [13, §3.9.1.1]:

• ||Ft|| ≤ μ|Fn| and

– (sticking) ||Ft|| < μ|Fn| ⇒ vt = 0.
– (sliding) ||Ft|| = μ|Fn| ⇒ there exists a scalar β ≥ 0 such that vt = −β Ft .

In the planar case, Ft = Ft1 t1 one may rewrite it equivalently as Ft,1 ∈ −μ|Fn|
sgn(vt), where sgn(·) is the set-valued signum function. To simplify in the planar
case we should denote Ft1 as Ft .

Remark 5.16 A constant friction coefficient may be too restrictive for some appli-
cations, and one has to account for various effects [1340].27 It is quite possible to

27I often met colleagues who at the same time would peremptorily reject Coulomb’s friction model
(arguing that it lacks physical meaning because it does not encapsulate “crucial” effects—some of

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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μ μ
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0
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−vt

(a) (b)

Fig. 5.9 Varying coefficients of friction. a Stribeck effect μ(vt). b Dynamic/static friction

consider a tangential velocity-dependent coefficient μ(vt), as for instance depicted in
Fig. 5.9a in the two-dimensional case. This does not really change the problem since
such a friction law can be written as the sum of the Coulomb’s set-valued model, and
of a (at least continuous) function of vt . In many instances (mathematical analysis,
time discretization and numerical analysis, stability analysis), such extension does
not pose any problem. One well-known model that may be recast in this framework
is Stribeck’s friction. These models may be considered as being too simple from
the tribologist’s point of view. However, in the framework of multibody dynamics
with possibly large number of contact points, they prove to be extremely useful and
with surprisingly good prediction capabilities. Another extension is with a dynamic
μd (for sliding modes) and a static μs > μd (for stick-to-slip transitions) coeffi-
cients of friction, see Fig. 5.9b. A memory has to be added so that the trajectories
follow the arrows in the figure for stick/slip and slip/stick transitions. The Coulomb–
Contensou friction, which includes a friction torque, is formulated in [726] in a
set-valued nonsmooth framework (using extensions of the pseudopotential approach
described in Sect. 5.3.2). It is indicated in [726] how to use this model in a multibody,
time-stepping method. Other variants of Coulomb’s friction are Coulomb–Orowan
and Coulomb–Shaw models [1032, §1.4.5]. Finally, the “ice-cream” cone may be
extended to cones with sections which are not disks but convex sets (ellipses), for
anisotropic friction.

which may easily be added to the basic model, like Stribeck effect), and had thoroughly used non-
holonomic equality constraints g(q, q̇) = 0 for control purpose. These people, themselves lacking
of Mechanical culture, could not realize that non-holonomic constraints are obtained assuming
a perfect sticking contact, that is, a sub-case of Coulomb’s friction, and did not hesitate to use
a regularization procedure which suppresses sticking modes …Systems with Coulomb’s friction
may be seen as an extension of non-holonomic systems, and sticking (⇔ set-valuedness at zero
tangential velocity) is here to stay in most multibody applications.



288 5 Nonsmooth Lagrangian Systems

Fn,1 F1

A

arctan(μ)

radius = μFn,1

(Fn,2 )

(Fn,1radius = μFn,2

Fn,2
F2

)

Fig. 5.10 Coulomb–Moreau’s disks

5.3.2 Coulomb–Moreau’s Disk

Jean Jacques Moreau used convex analysis in [889] to derive an original point of
view on Coulomb’s model. It relies on what we call next the Coulomb–Moreau’s
disks. Let us assume that Fn is known. The condition F ∈ C is then equivalent to:

Ft ∈ D(Fn), (5.87)

with Ft = Ft1 t1 + Ft2 t2, and

D(Fn) =
{
FnD1 if Fn ≥ 0
∅ otherwise,

(5.88)

whereD1 is the orthogonal projection on the tangent planeT between both bodies at
A, of the plane section of C . More clearly, if the Coulomb’s law is chosen isotropic,
thenD1 is a disk of radius equal to the friction coefficient, centered at A, see Fig. 5.10.
Then from (5.86) together with (5.87) Coulomb’s friction law can be expressed as
the variational inequality [889]: Find Ft ∈ D(Fn) such that

∀ y ∈ D(Fn), V T
A,t(y − Ft) ≥ 0, (5.89)

where VA,t = vt1 t1 + vt2 t2 is the tangential velocity in the tangent contact plane at
A, following the notations of Chap. 4.1 (in a broader context one works with the
relative tangential velocity between two bodies). By drawing little pictures one can
convince oneself that the relationships in (5.89) are equivalent to Coulomb’s model:
if VA = 0 then Ft may lie anywhere in the interior of D(Fn). If VA,t �= 0, then
necessarily Ft ∈ bd(D(Fn)) and with opposite direction to VA,t . Actually, (5.89)
means that given a velocity VA, the tangential forces that satisfy those relationships

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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are those where the function y �→ 〈y, VA,t〉, y ∈ D(Fn) attains its infimum relative to
D in (5.88): thus Coulomb’s law hinges on a principle of maximum dissipation: the
(tangential) contact force has to be “as opposite as possible” to the tangential velocity.
Notice that 〈Ft, VA,t〉 ≤ 0, while 〈Ft,−VA,t〉 ≥ 0 is equal to the mechanical power
transformed by friction. Using convex analysis tools, the formulation in (5.89) can
in turn be shown to be equivalent to:

− VA,t ∈ ∂ψD(Fn)(Ft) = ND(Fn)(Ft) (5.90)

and to:
− VA,t ∈ projT ∂ψC (F) = projT NC (F) (5.91)

(which means that the velocity belongs to the projection on the tangent plane T of
the outward normal cone to C at F) and to:

− Ft ∈ ∂ϕ(VA,t), (5.92)

where ϕ(·) = μ |Fn| || · ||, with μ the friction coefficient. It is worth noting that the
formulation in (5.91) is valid for any reaction λF , λ > 0: only the direction of F is
involved [867, p.79]. If F is in the interior of C , then NC (F) = {0} and VA,t = 0.
These features are shown to be essential to formulate the dynamics in terms of
differential measures, see Problem 5.2.

The proof of the above developments is given in [892, 894]. For instance, the
equivalence between (5.90) and (5.92) can be shown using the fact that the dual
function of || · || is the indicator function of the ball ||y|| ≤ 1 (see Appendix B), and
that the velocity and the interaction force belong to dual spaces (that can, anyway,
both be identified with R

3). In other words, consider the function ϕ(·) in (5.92). Its
dual function is given by ϕ
(y) = ψμ|Fn|||y||≤1(y). The dual function of the indicator
function (see Theorem B.1) is given by ψ


μ|Fn|||y||≤1(u) = ϕ(u), so that ∂ϕ(u) =
∂ψ


μ|Fn|||y||≤1(u) is the subdifferential of the support function28 of the convex set
μ|Fn|||y|| ≤ 1.29 It therefore follows that (5.92) is equivalently rewritten for any
ρ > 0 as:

Ft ∈ ∂ψ

D(Fn)

(−VA,t) ⇔ Ft = proj[D(Fn); Ft − ρVA,t] (5.93)

where we used (B.20) and the fact that (5.90) is equivalent to (5.93) and to Ft − Ft +
ρVA,t ∈ −∂ψD(Fn)(Ft). Note that those equivalences hold because D(Fn) in (5.88)

28The support function of a set C is defined as the conjugate function of the indicator of C , i.e.,
ψ

C (x) = supy∈C 〈y, x〉. The function ϕ(x) in (5.92) is called the dissipation function [889], and

ϕ(x) = ψ

C (−x) = − inf y∈C 〈x, y〉. In Chap. A.1 after Definition B.11, an example is given where

C = [−a, b]. The name dissipation function is motivated by the fact that Coulomb’s law can be
formulated as Ft ∈ D , −〈VA, Ft〉 = ϕ(VA) which represents the dissipated power.
29The variables u and y belong to spaces respectively dual one to each other: if u is a velocity then
y is a force.



290 5 Nonsmooth Lagrangian Systems

is a convex set. The second expression in (5.93) is implicit in Ft and should be solved
with a fixed point algorithm, the projection being a Lipschitz continuous function.
Extensions are therefore possible for anisotropic friction replacing the disks by other
convex sets.

Remark 5.17 Using the notations of Chap. 4, we may write equivalently Ft =
argmin||F̃t ||≤μFn

〈F̃t1 t1 + F̃t2 t2, vt1 t1 + vt2 t2〉 = argmin||F̃t ||≤μFn
F̃ T

t vt . If we let vt =
Ht(q)T q̇ we obtain Ft = argmin||F̃t ||≤μFn

q̇T Ht(q)F̃t , which is again a form of max-
imum dissipation. See [1163] for the use of (5.93) in a broader context and its
numerical analysis.

Remark 5.18 There are similarities between two-dimensional Coulomb’s friction
with known normal force, sliding mode controllers, and Fuller’s phenomenon in
optimal control, in the sense that they all involve the set-valued relay function.
Their numerical simulation or discrete-time implementation therefore requires sim-
ilar algorithms. Advanced sliding mode controllers like the so-called twisting con-
troller yield a closed-loop system of the form mq̈(t) ∈ −asgn(q(t))− bsgn(q̇(t))
for some gains a > 0, b > 0. It is proved that under suitable choice of a and b, the
origin is finite-time asymptotically stable. This suggests a way to stabilize systems
subjected to dry friction.

5.3.3 De Saxcé’s Associated Formulation

Coulomb’s law together with Signorini-in-velocity conditions cannot be expressed
with a convex pseudopotential (i.e., it cannot be formulated as an inclusion in the
normal cone to a convex set [534, 1062]: one says it is nonassociated; a proof is given
below). This has motivated De Saxcé to modify the velocity in order to recover a
convex pseudopotential formulation, using the so-called bi-potential function [1062].
Here we adopt the above notation for the relative velocity at a contact point A (as done
in Sect. 4.1.1), but we focus on the planar case only and thus simplify it as V = VA =
vnn + vtt, while F = Fnn + Ftt. The basic idea is that despite that the velocity V /∈
NC (F), the modified velocity V̂

Δ=
(
vn + μ|vt|

vt

)
(i.e., V̂ = (vn + μ|vt|)n + vtt)

satisfies V̂ ∈ −NC (F) as depicted in Fig. 5.11a for vn = 0. Conversely and using
(B.16), one finds F ∈ −NC 
 (V̂ ) where C 
 is the dual cone of C (its semi-angle is

equal to arctan
(

1
μ

)
as depicted in Fig. 5.11a while the polar cone C ◦ = −C 
. And

equivalentlyC 
 � V̂ ⊥ F ∈ C (see (B.19)). The complete friction model taking into
account unilateral contact is as follows (see the developments in Sect. 5.1.2.1 and in

particular Proposition 5.3), where R =
(
Fn

Ft

)
and the contact is active:

⎧⎨
⎩

0 ≤ vn ⊥ Fn ≥ 0 ⇔ vn ∈ −NR+(Fn)

C 
 � V̂ ⊥ F ∈ C
(5.94)

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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Clearly, the velocity V does not satisfy the cone complementarity conditions in
(5.94), for if it was the case the system could not even slide, with V pointing strictly
inward the admissible domain. Let us now analyze (5.94):

• If Fn > 0, then vn = 0 so V̂ =
(

μ|vt|
vt

)
.

– If vt = 0, then V̂ = 0 so that F ∈ C .
– If vt �= 0: V̂ ⊥ F ⇒ μ|vt|Fn + vtFt = 0 ⇔ Ft = −μFn

|vt |
vt
= −μFnsgn(vt).

• If Fn = 0 (⇒ Ft = 0), then vn ≥ 0:

– If vn > 0 then detachment from the constraint occurs with V̂ ∈ C 
.
– If vn = 0 step 1 may be redone to find Ft = 0.

One may take it the other way round:

• If vn > 0:⇒ Fn = 0, and detachment occurs with V̂ ∈ C 
.
• If vn = 0:⇒ Fn ≥ 0.

– If Fn > 0: V̂ ⊥ F ⇔ μ|vt|Fn + vtFt = 0:
· If vt �= 0: Ft = −μFn

|vt |
vt

, so F ∈ C (sliding contact).

· If vt = 0: V̂ = 0 and F ∈ C (sticking contact).
– If Fn = 0:⇒ vtFt = 0.

· If vt = 0: sticking occurs with F ∈ C ⇒ Ft = 0 (grazing sticking contact).
· If vt �= 0: sliding occurs with Ft = 0 because F ∈ C and Fn = 0 (grazing

sliding contact).

This holds also in the three-dimensional case as shown in [1062]. Let us now prove
that it is indeed the case that Coulomb’s friction cannot be written as a convex
pseudopotential. If this was true then the mapping Cμ : V �→ F that incorporates
both unilaterality and friction would be monotone. Consider the system in Fig. 5.11b
where v = (ẋ ẏ)T , and the unilateral constraint is given by 0 ≤ y ⊥ Fn ≥ 0. The
mapping Cμ is defined by the relations (5.94), i.e.,

⎧⎨
⎩

Fn ∈ −NR+(ẏ) ⇔ 0 ≤ ẏ ⊥ Fn ≥ 0

Ft ∈ −μFnsgn(ẋ) ⇔ F ∈ C ,

(5.95)

with sgn(0) = [−1, 1]. Monotonicity means that for all V1 and V2, all F1 ∈ Cμ(V1)

and all F2 ∈ Cμ(V2), one has 〈F1 − F2, V1 − V2〉 ≥ 0. Take V1 = 0 ⇒ Fn,1 ≥ 0 and
Ft1 ∈ −μFn,1[−1, 1]. Take also V2 > 0 ⇒ Fn,2 = 0 and Ft2 = −μFn,2 = 0. Thus
we get 〈F1,−V2〉 = −Fn,1 ẋ2 − Ft1 ẏ2. The first term of the left-hand side is negative
for any Fn,1 > 0. The second term has the sign of −Ft,1, which may be chosen in
the set −μFn,1(0, 1]. Thus one concludes that there exists two pairs (V1, F1) and
(V2, F2) such that 〈F1 − F2, V1 − V2〉 < 0. The mapping Cμ(·) is not monotone,
thus cannot be a convex pseudopotential. Other proofs may be found in [1062, §5]
and [534, §4].
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Fig. 5.11 Planar Coulomb’s friction. a Modified velocity for associated Coulomb’s law. b A point
mass with Coulomb’s friction

5.3.4 Coulomb’s Friction at the Acceleration Level

An extension of the classical Coulomb’s friction has been proposed [452, 963] for
sticking contact points, in order to deal with possible stick → slip transitions. It
writes as follows for a unilateral contact:

• If vn > 0: then Fn = 0 from 0 ≤ vn ⊥ Fn ≥ 0, and detachment occurs.
• If vn = 0, then Fn ≥ 0 and:

– (sliding) If vt �= 0 then ||Ft|| = μFn and there exists a scalar α ≥ 0 such that
Ft = −αvt .

– If vt = 0:
· (stick → slip) If v̇t �= 0: then ||Ft|| = μFn and there exists a scalar β ≥ 0

such that Ft = −β v̇t .
· (sticking) If v̇t = 0: then F ∈ C .

This model is useful for instance in event-driven numerical schemes, in order to cope
with transitions from sticking to sliding modes. In the planar (two-dimensional) case,
this becomes for the tangential part [211]:

• (sliding) If vt �= 0, then Ft = −μFnsgn(vt).
• If vt = 0:

– (stick→ slip) If v̇t �= 0, then Ft = −μFnsgn(v̇t).
– (sticking) If v̇t = 0, then F ∈ C ⇔ |Ft| ≤ μFn.
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It is noteworthy that this model, when incorporated in the dynamical equations,
makes the acceleration appear on both sides of the dynamics. Hence, it becomes
possible to use (B.16) and (B.20) to express the acceleration v̇t from a quadratic
program with constraints. As an illustration, for a two-degree-of-freedom particle we
obtain ẍ(t+)+ Fext (t) ∈ −μ|Fn(t)|sgn(ẍ(t+) when x(t) = 0 and ẋ(t) = 0, where
vt(t) = ẋ(t). We find the following:

ẍ(t+) ∈ N[−1,1]
(
− ẍ(t+)+Fext (t)

μ|Fn(t)|
)

⇔ ẍ(t+) = −Fext − μFn(t)proj
(
[−1, 1];− Fext (t)

μFn(t)

) (5.96)

It follows that Fext
μFn

∈ [−1, 1] ⇒ ẍ(t+) = 0, and
∣∣∣ FextμFn

∣∣∣ < 1 ⇒ ẍ(t+) = −Fext (t)±
μFn(t).

5.3.5 Further Comments on Friction Models

As alluded to in Remark 5.16, the basic Coulomb’s friction model may be easily
modified with varying sliding friction coefficient, while remaining in a set-valued
setting to properly model sticking phases. Some viscoelastoplastic models have been
presented in Sect. 2.3. In particular, the model in (2.36) is a frictional model that
improves Coulomb’s model while not calling into question its set-valuedness at zero
tangential velocity. Many other friction models have been proposed in the literature
(see e.g., [428]), not necessarily stemming from clever motivations. For instance,
the Karnopp model has been proposed to cope with the supposedly unsolvable issue
related to the impossibility to numerically simulate the set-valued signum function.
The idea is therefore to replace the vertical branch of the relay function at zero by some
dead zone around zero tangential velocity, or by some regularization procedure,30

thus avoiding “unsolvable” numerical simulation problems. Doing so, one introduces
parameters which may not possess clear physical meaning. It is noteworthy that
these numerical issues are exactly the same as those encountered in discrete-time
sliding mode control. It is known that an explicit Euler discretization of the basic
sliding mode controllers yields spurious oscillations around the attractive sliding
surface [424, 425, 1308], while an implicit (or backward Euler) discretization allows
one to avoid such numerical chattering [14, 16, 664]. In the context of contact
mechanics, it has long been known that a suitable, implicit discretization allows
one to properly simulate Coulomb’s friction [617, 892]. More details are given in
Sect. 5.7.3. Numerical comparisons between friction models as done in [428] would
certainly be drastically improved if a correct numerical solver was used. Interesting
analysis dealing with such issue (and using backward Euler discretization) is done

30This may be done with Moreau–Yosida approximations, see Sect. B.1.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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in [663], with both numerical and experimental results on several friction models
found suitable for haptic interfaces. See also [1286] for a clever discussion on several
frictional models used in friction compensation schemes, and new models improving
[663]. A complete survey (though not tackling numerical simulation issues very
deeply) on friction models and their domains of application is proposed in [127].

5.3.6 Sweeping Process with Friction

5.3.6.1 General Formulation

A general formulation of the sweeping process with dry friction for an n-degree-of-
freedom system with a single unilateral constraint is given as follows:

Problem 5.2 (Sweeping Process with Friction [867]) Find an RCLBV function u(·)
such that u(·) and the function q(·) defined by (5.38) satisfy the following:

• q(τ0) = q0, u(τ0) = u0,
• q(t) ∈ Φ for all t ≥ τ0,
• u(t) ∈ V (q(t)) for all t ≥ τ0,

and the following implications are true μ-almost everywhere:

• f (q(t)) < 0 ⇒ R′μ(t) = 0,
• f (q(t)) = 0 and u(t)T∇ f (q(t)) < 0 ⇒ R′μ(t) = 0,
• f (q(t)) = 0 and u(t)T∇ f (q(t)) = 0 ⇒ −u(t) ∈ projT (q(t))NC (q(t))

(
R′μ(t)

)
• Q(t, q, u)dt − M(q(t))du = dR,

whereμ is any positive measure such that R′μ can be defined with (5.49) and R′μ = dR
dμ

.

The density function R′μ denotes as above the interaction force at the contact point,
T (q(t)) denotes the tangent hyperplane at the contact point, and C (q(t)) is a gen-
eralized friction cone. From (5.90), (5.91), and (5.92), the right-hand side of the
last implication can be written differently. The first implication means that when
the bodies are not in contact, then the interaction force is zero. The second impli-
cation means that if there is contact, but the velocity points inward the admissible
domain Φ, the interaction force is zero also (this is a kind of grazing point). The
third statement means that when the velocity is tangential to the constraint surface,
then its opposite belongs to the tangent hypersurface T (q(t)) at the contact point
q(t), and is in this hypersurface the point the closest to the outward normal cone
of C (q(t)) at R′μ(t). For instance, consider the two-dimensional case. In particular,
when R′(μ)(t) ∈ Int(C (q(t))), the tangent cone to C (q(t)) at R′μ(t) is the whole
of R2, so that the normal cone reduces to the zero 2-vector. Consequently, one gets
−u(t) ∈ projT (q(t)){0} = 0, and one retrieves that when the interaction force lies
(strictly) inside the friction cone, the tangential velocity is zero. When the reaction
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Fig. 5.12 Sweeping process with friction (collision case)

lies on the boundary of the friction cone, indeed (5.91) holds. Notice that this for-
mulation encompasses all possible motions, with or without shocks. When there is
a collision, the last condition in Problem 5.2 is equivalent to

u(t+k ) = proj
(
0, [u(t−k )+ C (q(t))] ∩ T (q(t))

)
. (5.97)

Different situations are depicted in Fig. 5.12. The major assumption done in [867] is
that the real-world isotropic friction law is transported into a generalized isotropic
friction law in the configuration space. In other words, the friction cone C (q) in
the configuration space is revolving about ∇ f (q), with vertex at the contact point.31

This allows to prove the global existence of a solution to problem 5.2, without facing
singularities such as Painlevé paradoxes.

5.3.6.2 Impacts with Friction: Local Kinematics

Let us come back to local kinematics. In order to prepare the dynamical equations,
we first have to recall the local kinematics of the problem which allow us to define
the m gap functions fi (q), the vector of normal velocities Un with Un,i = vr,n,i at
contact point i , and the vector of tangential velocities Ut = (vr,t,1, vr,t,2, . . . , vr,t,m)T

and each vr,t,i is either a scalar (two-dimensional friction) or a two-vector (three-
dimensional friction). In turn, we have vr,n,i = ∇ fi (q)T q̇ and vr,t,i = Ht,i (q)T q̇ ,
where Ht(q) is as in (5.1), and is obtained from the local kinematics and the derivation
of velocities VAi at each contact point i (see Chap. 4, Sects. 4.1.2 and 4.1.3). First,

consider the Lagrangian dynamics (5.1) where we write for simplicity F(q, q̇, t)
Δ=

C(q, q̇)q̇ + G(q)− Fext (t) and we do not consider bilateral constraints. We have
(the time argument is dropped):

31In general, the transportation of the real-world friction cone into the configuration space results in
a cone that does not satisfy such assumptions [381, 436, 437]. This result of existence is therefore
restricted to material point systems, and does not apply to the Painlevé’s example that we shall
analyze later.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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q̈ = M(q)−1(∇ f (q), Ht(q))

(
λn

λt

)
− M(q)−1F(q, q̇, t)

⇒
(∇ f (q)T

Ht(q)T

)
q̈ =

(∇ f (q)T M(q)−1∇ f (q) ∇ f (q)T M(q)−1Ht(q)

Ht(q)T M(q)−1∇ f (q) Ht(q)T M(q)−1Ht(q)

)(
λn

λt

)

−
(∇ f (q)T

Ht(q)T

)
M(q)−1F(q, q̇, t)

(5.98)

i.e.:

(∇ f (q)T

Ht(q)T

)
q̈ =

Δ=D(q)︷ ︸︸ ︷(
Dnn(q) Dnt(q)

Dnt(q)T Dtt(q)

)(
λn
λt

)
−
(∇ f (q)T

Ht(q)T

)
M(q)−1F(q, q̇, t)

⇒
(
U̇n
U̇t

)
= D(q)λ+ G(q, q̇, t),

(5.99)

where G(q, q̇) collects all the nonlinear terms, including d
dt {

(∇ f (q)T

Ht(q)T

)
}q̇ which

comes from differentiating ∇ f (q)T q̇ and Ht(q)T q̇ . The matrix Dnn(q) is the Delas-
sus’ matrix, which we denoted before as Du(q), and we emphasize here with the
nn subscript that it represents only normal/normal couplings. The matrix D(q) may
be viewed as an extension of M−1 in (4.140) for the case of multibody multicontact
systems, see also (4.152). Now we may use the above as well as (4.79) and (4.80) to
extend (5.66) as follows, at an impact time t = tk with m active unilateral constraints
such that Un(t

−
k ) = ∇ f (q(tk))T q̇(t−k ) ≤ 0:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Un(t

+
k )−Un(t

−
k )

Ut(t
+
k )−Ut(t

−
k )

)
= D(q(tk))

(
Pn(tk)
Pt(tk)

)

0 ≤ Un(t
+
k )+ EUn(t

−
k ) ⊥ Pn(tk) ≥ 0

C 

i � V̂i (tk) ⊥ Pi (tk) ∈ Ci , 1 ≤ i ≤ m

(5.100)

with V̂i (tk) =
(

Ũt,i (tk)
Ũn,i (tk)+ μ||Ũt,i (tk)||

)
, i is the i th contact, pn(tk) = ∇ f (q(tk))

Pn(tk), pt(tk) = Ht(q(tk))Pt(tk), Ci is the Coulomb’s cone at contact point i , Pi =(
Pt,i

Pn,i

)
. The velocities Ũt,i may be chosen following the material in Sect. 4.3.1.2

(where in particular some tangential CoR may be included), and Ũn,i = Un,i (t
+
k )+

en,iUn(t
−
k ) when E = diag(en,i ). It is noteworthy that there is no guarantee that

TL(tk) ≤ 0 with (5.100) in the general case.

Remark 5.19 Depending on the tangential/normal couplings through the matrix
Dnt(q(tk)), the tangential components Ut(tk) may well be discontinuous (in fact, the
whole vector q̇(·) may jump at tk). We retrieve here a comment made for two-body

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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collisions in Sect. 4.3.2 that tangential velocities may be discontinuous for various
reasons, including inertial couplings.

5.3.7 Additional Comments and Studies

Some related existence of solutions problems have been presented in
[692, 693, 694]: the system consists of a particle moving on a rigid surface with
Coulomb’s friction, and acted upon by impulsive forces (i.e., the external force act-
ing on the particle has the general form F = Facdt + Fimpdμ, where dμ is a series of
Dirac measures, whereas dt is the Lebesgue’s measure). A solution is shown to exist
for sufficiently small friction coefficient. A one-degree-of-freedom system described
by a differential inclusion is studied in [868]:

M(q(t))q̈(t)+ F(t, q(t), q̇(t)) ∈ Γ (−q̇(t)), (5.101)

where q is the system’s coordinate, and Γ (u) = −a if u < 0, Γ (u) = b if u > 0,
Γ (0) = [−a, b] represents the friction force. Equivalently, one may write an ODE
with discontinuous right-hand side as:

M(q(t))q̈(t)+ F(t, q(t), q̇(t)) = projΓ (−q̇(t))F(t, q(t), q̇(t)), (5.102)

It is shown in [868] via a discretization procedure that a global solution exists, with
q(·) and q̇(·) are continuous, whereas q̈(·) is of local bounded variation. The results
are extended to n-degree-of-freedom systems, with the assumption that the normal
component of the interaction force is known and constant.32 Other well-posedness
results making similar assumption on the normal contact force may be found in [27]
for linear mechanical systems. Linear mechanical systems with bilateral constraints
and Coulomb’s friction are analyzed in [82] when the normal contact force is a
given Lebesgue integrable function. The only mathematical analysis showing the
well-posedness without further assumptions on the normal contact force and on the
mass matrix M(q) may be that of Stewart [1141, 1142], which concerns the Painlevé
system of Sect. 5.6.

5.4 Complementarity Formulations

At several places of the foregoing chapters, we have met complementarity conditions,
which we introduced from mechanical observations about how the contact (interac-
tion) force behaves. Since complementarity conditions and normal cones to finitely

32This in particular precludes the application of the result in [868] to the Painlevé’s example
described in Sect. 5.6.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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represented sets are closely related, we also saw that Moreau’s sweeping process is a
kind of complementarity Lagrangian system (see e.g., (5.44), (5.55), and (5.66)). In
this (long) section, we first summarize complementarity conditions, and then expend
on complementarity problems, complementarity systems, their well-posedness, dis-
sipativity, controllability.

5.4.1 Two Bodies: Signorini’s Conditions

Consider the two-body problem as in Sect. 4.1. The component of the contact force
along n is Fn. The so-called Signorini’s conditions are complementarity conditions
which state that:

Fn ≥ 0, (A2A1)
T n ≥ 0, Fn(A2A1)

T n = 0 ⇔ 0 ≤ Fn ⊥ (A2A1)
T n ≥ 0.

(5.103)

The complementarity conditions in (5.103) rely on four fundamental modeling
assumptions:

• The contact force exerted by body 1 on body 2 can be positive (Fn > 0) only
if contact is closed ((A2A1)

T n = 0 ⇔ A = A1 = A2).
• If the contact is open ((A2A1)

T n > 0), then the contact force exerted by body
1 on body 2 is zero (Fn = 0).

• The contact force can take only nonnegative values (Fn ≥ 0).
• The bodies cannot interpenetrate ((A2A1)

T n ≥ 0).

This is indeed all what the complementarity condition between the contact force and
the gap function means. As we saw in Chap. 2, this does not preclude flexibility since
some spring-dashpot models lend themselves to such formalisms. Other possible
complementarity formulations equivalent to the one in (5.103) are given by:

{
Fn ≥ 0
∀pn ≥ 0, (pn − Fn)(A2A1)

T n ≥ 0
or

{
(A2A1)

T n ≥ 0
∀sn ≥ 0, (sn − (A2A1)

T n)Fn ≥ 0.

(5.104)

They can be deduced from convex analysis tools as described in Appendix B.
In case of N contact/impact points in a system of n rigid bodies, one collects

all the normal contact forces in a vector λn ∈ R
N , and the gap function f (q) is

constructed similarly by noting that x2,n above is a function of the generalized

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_2


5.4 Complementarity Formulations 299

coordinate vector q ∈ R
6n of the system.33 Then the complementarity conditions

generalize to 0 ≤ λn ⊥ f (q) ≥ 0. Due to the nonnegativity, the orthogonality holds
componentwise. This is a coordinate invariant property. Indeed, let q = Q(z) for

some diffeomorphism Q : R6n → R
6n . Then f (q) = f ◦ Q(z)

Δ= g(z) ≥ 0. Also
∇g(q) = ∇Q(z)∇ f (q) = ∇Q(z)∇ f (Q(z)). In the Lagrange dynamics and accord-
ing to the invariance “principle” of Sect. 3.2, the power equality q̇T∇ f (q)λn =
żT∇Q(z)∇ f (q)λn = żT∇g(z)λn holds. Therefore the vector of multipliers λn is
unchanged by coordinate change, and one obtains 0 ≤ g(z) ⊥ λn ≥ 0.

5.4.2 Linear Complementarity Problem (LCP)

The complementarity between two variables z and w writes as 0 ≤ z ⊥ w ≥ 0. This
becomes an LCP when w is a linear function of z, so that z is the unknown of the
problem. Thus an LCP may be seen as a nonsmooth equation, whose well-posedness
(existence and uniqueness of solutions) has to be analyzed. The next theorem is a
central result of complementarity theory.

Theorem 5.4 [307] Consider the LCP(r, M) defined as

⎧⎨
⎩
z ≥ 0
w = r + Mz ≥ 0
zT (r + Mz) = 0

⇔ 0 ≤ z ⊥ w = Mz + r ≥ 0. (5.105)

M is a n × n P-matrix if and only if the LCP(r, M) has a unique solution for every
r ∈ R

n. This solution z is a piecewise-linear functionof r , henceLipschitz continuous.

The set of relations in (5.105) defines what is named an LCP. The variable w is
called a slack variable in optimization theory. Notice that since both z and r + Mz
are positive, zT (r + Mz) = 0 is equivalent to zi (r + Mz)i = 0 for each i . Themodes
of the LCP are given by the various combinations zi ≥ 0 and wi = 0, or zi = 0 and
wi ≥ 0, 1 ≤ i ≤ n. Thus there are 2n LCP modes. Let us state the following:

Theorem 5.5 A matrix is a P-matrix if all its principal minors are positive.34

The inverse of a P-matrix is a P-matrix. The proof is rather simple: let M be a
P-matrix, and 0 ≤ r ⊥ w = Mr + q ≥ 0, then r = M−1w− M−1q so we obtain
equivalently (since M is square full rank) 0 ≤ r = M−1w− M−1q ⊥ w ≥ 0; since
M is a P-matrix there is a unique solution r 
 for any vector q, hence a unique w for
any q. Since both LCPs are equivalent, there is also a unique solution w
 for any
M−1q for the second LCP. Thus M−1 is a P-matrix. There may exist some couples

33Such a calculation may not be trivial, depending on the bodies’ shapes.
34A positive definite matrix (possibly nonsymmetric) is a P-matrix [307, Theorem 3.1.6], a sym-
metric matrix is positive definite if and only if it is a P-matrix [307, p.147], but nonsymmetric
P-matrices may not be positive definite [307, Example 3.3.2].

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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(r, M) with M not being a P−matrix, such that the LCP possesses a unique solution.
However, the LCP has a unique solution for every r if and only if M is a P-matrix.
Actually, another result is also quite powerful. It concerns the solvability of an LCP,
i.e., the existence of solutions.

Theorem 5.6 [307, Theorem 3.8.6] Consider the linear complementarity problem
0 ≤ z ⊥ w = Mz + r ≥ 0. Suppose that the matrix M is copositive, and let r be
given. If the implication 0 ≤ v ⊥ Mv ≥ 0 ⇒ r T v ≥ 0 holds, the LCP(r, M) has a
solution.

In other words, if the solutions of the homogeneous LCP(0, M) satisfy the required
inequality, then the original LCP has a solution. Let us recall the following:

Definition 5.4 A matrix M ∈ R
n×n is said copositive if xT Mx ≥ 0 for all x ∈ R

n+.

Thus copositivity is positive semi-definiteness tested on the first orthant. Conse-
quently, a positive semi-definite matrix is automatically copositive. But the inverse
is not true: some copositive matrices are not definite. The frictionless contact prob-
lem yields an LCP whose matrix M in (5.105) is equal to the Delassus’ matrix
D(q) = ∇ f (q)T M−1(q)∇ f (q). One has to rewrite the complementarity conditions
in (5.1) (b) at the acceleration level to get such an LCP whose unknown is the
Lagrange multiplier λn,u , see Sect. 5.1.2. Another useful result from complementar-
ity theory is the following one:

Theorem 5.7 [307, Theorem 3.1.7] Consider the LCP(r, M): 0 ≤ z ⊥ w = Mz +
r ≥ 0. Suppose that the matrix M is positive semi-definite, and let r be given. Then

• If z1 and z2 are two solutions of the LCP(r, M), one has zT1 (r + Mz2) = zT2 (r +
Mz1) = 0.

• If M is symmetric, then M(z1 − z2) = 0 for any two solutions z1 and z2.

Many LCPs therefore possess multiple solutions. In some cases, it is useful to focus
on a particular solution within the set of all solutions.

Proposition 5.18 [307, 502] Consider the LCP(r, M).

• Suppose that M is a Z-matrix35 and that the set of solutions of LCP(r, M) is
nonempty. Then there is a unique least-element solution z∗ satisfying z∗ ≤ z for
any other solution z.

• Suppose that M � 0 and the set of solutions is nonempty. Then the set of solutions
is convex and contains a unique least-norm solution z∗ satisfying ||z∗|| ≤ ||z|| for
any other solution z.

• Suppose that M � 0 and there exists z such that z ≥ 0 and Mz + r ≥ 0 (the LCP is
feasible). Then there existsλ such that 0 ≤ λ ⊥ Mλ+ r ≥ 0 (the LCP is solvable).

Such results are useful in the context of LCS with a positive semi-definite matrix
D (see (5.119)). Indeed, though the multiplier λ may not be unique, the least-norm
solution λ is unique and may serve to define some solutions of the LCS.

35A square matrix is a Z-matrix if its off-diagonal entries are all nonpositive.
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Fig. 5.13 Graphical interpretation of the LCP in Example 5.11

Example 5.11 Consider the two-dimensional LCP with M =
(

0 1
−1 0

)
� 0 and r =(

r1

r2

)
. The solvability of this LCP holds if and only if r2 ≥ 0. Indeed, it is easy to see

that if r2 < 0 then one obtains z1 = r2, which is impossible. Conversely, if r2 > 0
then the unique solution is z1 = r2 and z2 = −r1 if r1 < 0 (point A), or z1 = 0
and z2 = 0 if r1 > 0 (point B). If r2 = 0 then the set of solutions is z1 = 0 and
z2 ≥ max(0,−r1). This is depicted in Fig. 5.13.

Example 5.12 Consider M = −1 and r = −1: this LCP has no solution since−z −
1 ≥ 0 ⇔ 0 > −1 ≥ z.

Let us also state the next result which may be useful in the context of dynamical
complementarity systems. The Hadamard product of two vectors a and b is denoted
as a ◦ b, that is, a vector with i th component aibi .

Proposition 5.19 [256] Consider the LCP(r, M) and suppose that the set of its
solutions SOL(r, M) �= ∅. If z ◦ Mz ≤ 0 ⇒ Bz = 0 then B SOL(r, M) is a singleton
for all r . Equivalently for any two solutions z1 and z2 of LCP(r, M), then Bz1 = Bz2

⇔ z1 − z2 ∈ ker(B).

Finally, we end this section with a quite useful result taken from [284], which
applies to matrices of the form N + P , where N � 0 or N is a P-matrix, while
P is a perturbation. The norm || · ||2 is the induced matricial norm such that
||M ||2 = σmax(A) = √

λmax(AAT ), where λmax is the largest eigenvalue, while σmax

is the largest singular value.
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Theorem 5.8 [284] Let N ∈ R
n×n be � 0. Then every matrix

D ∈ {D |
∣∣∣∣∣
∣∣∣∣∣
(
N + NT

2

)−1
∣∣∣∣∣
∣∣∣∣∣
2

||N − D||2 < 1}

satisfies D � 0. As a consequence let D = P + N, where D, P, and N are n × n
real matrices, and N � 0, not necessarily symmetric. If

||P||2 <
1

‖
(

N+NT

2

)−1 ‖2

(5.106)

then D � 0. If N is a P-matrix, then all matrices D such that β2(N )||N − D||2 < 1
are P-matrices, where β2(N ) := maxc∈[0,1]n ||(I − C + CN )−1C ||2, C =diag(c).
When N = NT � 0, β2(N ) = ||N−1||2. If D = P + N the condition becomes
||P||2 < 1

β2(N )
.

Corollary 5.2 Let M ∈ R
n×n be a symmetric positive definite matrix. Let A = BM

for some matrix B. If
||M−1||2||M ||2||I − B||2 < 1,

then A � 0.

Proof Since M = MT applying Theorem 5.8 gives that ||M−1||2||M − BM ||2 < 1
guarantees that A � 0. Now from [136, Proposition 9.3.5] one has ||M − BM ||2 ≤
||M ||2||I − B||2: the result follows.

5.4.3 Relationships with Quadratic Problems

At several places of this book we saw that there are close relationships between
complementarity problems and quadratic problems in optimization (the classical
monograph [307] starts with such statements). The so-called Karush–Kuhn–Tucker
conditions are at the core of the equivalence between LCPs and QPs. The following
two QPs can be considered, where M = MT � 0:

QP1

{
minz

1
2 z

T Mz + zT r
subject to: z ≥ 0,

(5.107)

and:

QP2

{
minz

1
2 z

T Mz
subject to: Mz + r ≥ 0.

(5.108)
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Consider for instance QP1 in (5.107). The Lagrangian of this QP is L1(z, λ) =
1
2 z

T Mz + zT r − λT z. Then the Karush–Kuhn–Tucker’s conditions for z to be a min-
imizer of the QP are given by:

{
∂L1
∂z = Mz + r − λ = 0
z ≥ 0, λ ≥ 0, zTλ = 0.

(5.109)

Concerning QP2, one has L2(z, λ) = 1
2 z

T Mz − λT (Mz + r). Kuhn–Tucker’s con-
ditions become:

{
∂L2
∂z = Mz − MTλ = 0
Mz + r ≥ 0, λ ≥ 0, λT (Mz + r) = 0.

(5.110)

Note that since M is symmetric, then from the first condition in (5.110) one gets
z = λ, hence, one gets Mz + r ≥ 0, z ≥ 0 and zT (Mz + r) = 0 which is an LCP.
The QP2 is named dual to the QP1 because the multiplier λ of the QP is equal this
time to the minimizing value of z, whereas in QP1 it was equal to Mz + r .

Remark 5.20 Let us relate this result to the nonuniqueness of solutions in Problems
2.1 and 3.1. Assuming that one has q(τ0) = 0 and q̇(τ0) = 0, i.e., the mass is at rest
on the constraint at τ0, it is evident to write an LCP whose unknown is the interaction
force μ, as follows:

f + μ ≤ 0, μ ≤ 0, ( f + μ)μ = 0. (5.111)

Theorem 5.4 guarantees that at each instant, and for any applied force f ∈ R, there
is a unique μ satisfying the set of conditions in (5.111). Trivially, one finds μ = − f .
Notice that this does not contradict the fact that depending on f , there may be
nonuniqueness of the solution (q(t), q̇(t)) whose initial value at τ0 is (0, 0). This
is the case with the external action constructed by Aldo Bressan (see Sect. 2.4.3):
two different solutions arise from the same initial state. However, at time τ0 one has
Q(τ0) = ϕ̈(τ0) = 0 uniquely determined. This shows that solving a force LCP at an
instant is just one part of the job in the overall system’s well-posedness problem.

The above results extend to nonlinear problems:

minh(q)≤0 f (q) (5.112)

with h(q) = [h1(q), · · · , hm(q)]T . Assume that ∇h(q) has rank m. Then we have
(see for instance [481, p.12]):

Theorem 5.9 If q0 is a relative minimum point for (5.112), there is a vector λ ∈ R
m

such that:
{∇ f (q0)+ λT∇h(q0) = 0

λ ≥ 0, λT h(q0) = 0.
(5.113)

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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The complementarity conditions between λ and h(q0) clearly appear in (5.113)
as 0 ≤ λ ⊥ −h(q0) ≥ 0. If f (q) = 1

2q
T Qq for Q = QT � 0 and h(q) = Aq + B,

then (5.113) yields the LCP: 0 ≤ λ ⊥ AQ−1AT − B ≥ 0. If the m constraints are
independent, then AQ−1AT � 0 and this LCP has a unique solution by Theorems
5.5 and 5.5.

Let us end this section with a recall on Dorn’s duality and converse duality theo-
rems, which we used in Sect. 5.1.2.2.

Theorem 5.10 [795, Theorems 8.2.4, 8.2.6] Let Q = QT � 0. Consider the two
quadratic programs:

{
min 1

2 z
T Qz + bT z

subject to: Az ≥ c,
(5.114)

and
{

min 1
2 z

T Qz − cTw
subject to: ATw− Qz = b, w ≥ 0.

(5.115)

Then:

• If z̄ solves the program (5.114) then there exists w̄ such that (z̄, w̄) solves the
program (5.115). Moreover, the two extrema are equal.

• If (z̄, w̄) solves the program (5.115) then there exists ẑ with ẑ − z̄ ∈ ker(Q) such
that ẑ solves the program (5.114).

5.4.4 Linear Complementarity Systems (LCS)

When coupled to a linear invariant system ẋ(t) = Ax(t)+ Bλ(t)+ Eu(t), comple-
mentarity conditions like 0 ≤ Cx(t)+ Dλ(t)+ Fu(t) ⊥ λ(t) ≥ 0 give rise to LCS.
The complementarity conditions are a particular kind of nonsmooth constraint.

5.4.4.1 Introduction

We already met linear complementarity systems in (2.5) and (2.14), for mechanical
systems with unilateral springs and dampers. Let us consider the following system
[1063]:

⎧⎪⎪⎨
⎪⎪⎩

q̇1(t) = q2(t)
q̇2(t) = q3(t)
q̇3(t) = −λ(t)
0 ≤ w(t) = q1(t)+ q2(t)+ q3(t) ⊥ λ(t) ≥ 0,

(5.116)

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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where λ(t) ∈ R,w ∈ R, q1(t), q2(t), q3(t) are scalar variables. It has a relative degree
1 between the “input” λ and the “output” w, since ẇ = q2 + q3 − λ. Consider now
the initial data [q1(0), q2(0), q3(0), λ(0)] = (0, 1,−1, 0). Notice that this is typically
a configuration for which the constraint is undetermined: it is not possible to know
if the system is in an active or inactive constraint mode. Using Proposition 5.3 is
therefore possible at time t = 0 to express the complementarity condition as:

0 ≤ ẇ(t) ⊥ λ(t) ≥ 0. (5.117)

Let us check whether the system can remain in the unconstrained mode λ ≡ 0: at
time t = 0, one has ẇ(0) = 0 and, from this assumption, ẅ(0) = −λ(0)+ q3(0)−
λ̇(0) = q3(0) = −1. Hence, the assumption is wrong: the system cannot remain in
the mode λ ≡ 0 (“free-motion” mode). What about the mode w ≡ 0? Then one
computes that λ̇(0) = q3(0)− λ(0)− ẅ(0) = −q2(0) = −1: thus this continuation
is also impossible since otherwise λ(t) would become negative for t > 0. One can
consequently think of pulling the system off this “trap” by defining some suitable
shock rule: but notice that a collision mapping has to make the state jump when there
is a shock, i.e., here if ẇ(0) < 0, which is not the case. In other words, a “consistent”
collision mapping must be one that forces the system to jump from a configuration
such that the inequality constraint w ≥ 0 is going to be violated. Still this is not the
case here at t = 0. Hence, this configuration constitutes a fixed point of the collision
mapping. Notice that the LCP in (5.117) is of the form:

0 ≤ q2(t)+ q3(t)− λ(t) ⊥ λ(t) ≥ 0. (5.118)

Hence, the requirements of Theorem 5.4 are not fulfilled. At time t = 0 and with the
above initial data, there is nevertheless a unique solution given by λ = 0. Replacing
the −1 premultiplying λ in (5.116) by +1, then the LCP in (5.118) has a unique
solution in terms of the multiplier λ. A stronger result in [1063] assures the existence
of a solution to systems like the one in (5.116) if the leading Markov parameter is
positive: it is therefore a surprising and nice feature of such that the conditions for
existence and uniqueness of a solution λ to the LCP coincide with those for existence
and uniqueness of a solution q(t) to the whole dynamical system.36 Let us summarize
the main results in [517, 759, 1063, 1064]. Autonomous linear complementarity
systems are governed by the equations:

ẋ(t) = Ax(t)+ Bλ(t)

0 ≤ λ(t) ⊥ w(x(t), λ(t)) = Cx(t)+ Dλ(t) ≥ 0
(5.119)

36Though the system is different, this is consistent with Theorem 5.3, since all the data in (5.116)
are analytic.
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Notice that linear complementarity Lagrangian systems are a subclass of (5.119), with
D = 0, x = (qT , q̇T )T ,C = (In, 0). The modes of this nonsmooth dynamical system
(there are 2m modes, w and λ ∈ R

m) correspond to yi = 0 for i ∈ I ⊆ {1, . . . ,m},
λi = 0 for i ∈ I c, where I c is the complement of I in {1, . . . ,m}. It is assumed
that each mode is autonomous, which means that to every consistent state x0 there
corresponds a unique couple (x(t), λ(t)), with λ(·) smooth (this is a well-posedness
condition). The subspace of all consistent states is denoted as V (A, B,C, D). The
problem is posed as follows: let us initialize the system in a particular mode i . Then
the state evolves as long as the complementarity rules are satisfied. Now if at a
given time instant (called an event time) it happens that those rules can no longer
be satisfied, the state has to be reinitialized in order to enable one to continue the
integration in another mode. The jump rule is based on the decomposition of the state
space as Rn = V (A, B,C, D)⊕ T (A, B,C, D). Roughly speaking, V is the space
“tangent” to the constraint, while N is the “normal” space. Such decomposition is
closely related to the DAE analysis of Sect. 1.3.4, also used in the framework of
switched DAEs (see however Remark 5.23). The state is reinitialized with a jump.
Does the continuation in another mode exist and is it unique? Well-posedness means
here that after each event time, continuation is possible on a strictly positive measure
interval, and with a unique couple (x, λ). This does not preclude finite accumulation
of reinitializations, and thus does not guarantee the global existence of solutions on
R
+. Moreover, solutions may be discontinuous with respect to initial data, as shown

elsewhere in this book for mechanical systems. Let us denote the Markov parameters
of the linear system in (5.119) as H 0 = D, Hi = CAi−1B for i ≥ 1. Their j th column
is denoted as Hi

• j , and their j th row as Hi
j•. Consider now the column indices

η j = inf{i ∈ N |Hi
• j �= 0}, and the row indices ρ j = inf{i ∈ N |Hi

j• �= 0}. Let us

form the matrices M =
⎛
⎜⎝

Hρ1
1•
...

Hρm
m•

⎞
⎟⎠ and N = (H 1•1, . . . , Hm•m). Then the following is

true:

Lemma 5.3 [517] If the matricesM andN are P-matrices, then the linear com-
plementarity system in (5.119) is well-posed. Moreover, from each initial condition,
smooth continuation is possible after at most one jump.

This result uses only properties of the “free-motion” system to test the well-posedness
of the overall nonsmooth system. The underlying idea for the proof is to consider
the Laplace transforms of w(t) and λ(t), i.e., W (s) and Λ(s) respectively, and to
notice that f (t) ≥ 0 ⇒ F(s) ≥ 0 for s ∈ R

+ large enough. Then one can form a so-
called Rational Complementarity Problem (RCP) as follows: find rational functions
W (s), Λ(s) such that W (s) ≥ 0, Λ(s) ≥ 0 for s large enough, and W (s)TΛ(s) = 0
for all s ∈ R. Such a procedure is limited to linear invariant systems, which pre-
cludes its application to nonlinear systems like most mechanical systems. It is note-
worthy that only the local existence and uniqueness is shown by Lemma 5.3. The
global existence may nevertheless be proved [516]. The extension of the above to
nonlinear complementarity systems ẋ(t) = f (x(t))+ g(x(t))λ(t)),w(t) = h(x(t)),

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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0 ≤ λ(t) ⊥ w(t) ≥ 0, f (·), g(·), h(·) analytic functions is tackled in [1064]. Let
the system possess a uniform relative degree between λ and w equal to r at x0,
which means that the so-called decoupling matrix LgL

r−1
f h(x0) is full rank, while

LgL
i−1
f h(x0) = 0 for all 1 ≤ i < r (thus all the successive derivatives of the “out-

puts” wi (t) are independent of λ, up to the differentiation degree r where they are all
depend on λ). It is shown that well-posedness holds (local existence and uniqueness
of an analytic solution in a right neighborhood of a time t0, with state x0) provided
that the lexicographical inequality (w(x0), ẇ(x0), . . . ,w(r−1)(x0)) � 0 holds, and the
matrix LgL

r−1
f h(x0)

37 is a P-matrix. Some comments arise:

• For complementarity systems with uniform relative degree r , it is not worth looking
at the derivatives of w(t) of degree larger than r to conclude about well-posedness.

• Systems with several inputs and outputs and with a uniform relative degree are rare.
However, frictionless complementarity Lagrangian systems38 with independent
constraints fi (q) possess a uniform relative degree between w = f (q) and λn,u

equal to r = 2, for any q. The decoupling matrix LgL f h(q) is the Delassus’ matrix
∇ f (q)T M(q)−1∇ f (q).

• Analycity of the data once again plays a crucial role for uniqueness. External
actions (or inputs) are not considered in the above results. Motivated by the case
of Mechanics and Theorem 5.3, we conjecture that piecewise-analytic inputs would
not alter the existence and uniqueness results.

� This shows that it is not worth looking at derivatives higher than the acceleration,
to analyze Lagrangian systems subject to unilateral constraints.

The well-posedness results summarized in Sect. 2.4 all assume a positive definite
Delassus’ matrix. As seen in Sect. 5.1.2, the fact that the Delassus’ matrix is full
rank or positive semi-definite only39 has a strong influence on the contact problem
well-posedness. The condition PB = CT , P = PT � 0 also implies in case B has
full column rank that the matrix CB � 0 and the system has uniform relative degree
r = 1.

Remark 5.21 The reinitialization rule chosen in [517] reduces in the case of linear
mechanical systems to Moreau’s sweeping process inelastic frictionless shocks. It
is also pointed out in [517] that well-posedness may be difficult to prove with other
ad hoc rules as in [1063], which lack of physical foundations. State jumps in LCS
involve solutions which may be measures or Schwarz’ distributions. It is notewor-
thy that a general class of LCS has been embedded into an extension of Moreau’s
sweeping process named higher order sweeping process, but which should better be
named higher relative degree sweeping process [15]. Describing such Distribution

37For two smooth vector fields f (x) and g(x), one has L f g(x) = ∂g
∂x f (x), and recursively for

Li
f g(x) = ∂g(x)

∂x Li−1
f g(x), with L0

f g(x) = f (x).
38With only perfectly rigid contacts, since the presence of unilateral springs may change the con-
clusion, see Example 5.14.
39Recall that the Delassus’ matrix is symmetric; hence, if it is not positive definite it cannot be full
rank.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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Fig. 5.14 Complementarity mechanical systems. a Mixed rigid/compliant contacts. b Rigid con-
tacts and friction

Differential Inclusion is outside the scope of this book. We just mention that the
functional framework of [15] contains that in [517], and that the basic idea consists
of extending Moreau’s set in (5.43) to take into account that higher degree derivatives
may jump. Well-posedness analysis and a time-stepping discretization are presented
in [15]. This framework allows to give a meaning to a problem like ẋ1(t) = x2(t),
ẋ2(t) = x3(t), ẋ3(t) = u(t)+ λ(t), x1(t) ≥ 0 for all t ≥ 0.

5.4.4.2 Examples from Mechanics, Electricity, and Optimal Control

Let us illustrate LCS with examples from Mechanics, Circuits and Optimal Control
with state constraints.

Example 5.13 (A mechanical complementarity system) Let us consider the example
depicted in Fig. 5.14b, analyzed in [371]. It is assumed that the whole mass m is
concentrated at the end-point. Also, the system at rest takes the configuration AB0O .
Two torsional springs act at the joints A and B. The length of the bar OB is l1, and that
of the bar AB is l2. The point A is assumed to have a horizontal motion, with velocity
v(t). The goal is therefore to study the motion of this two-degree-of-freedom system,
in particular, investigate whether the contact will persist or break. The free-motion
dynamics is given by (the time argument is dropped):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ml1l2 sin(β − α)β̈ + ml2
1 α̈ + ml1l2 cos(β − α)β̇2 + k(α − β)+ mgl1 sin(α)

= λtl1 cos(α)+ λnl1 sin(α)

ml1l2 sin(β − α)α̈ + ml2
2 β̈ − ml1l2 cos(β − α)α̇2 + k(2β − α)− mgl2 cos(β)

= λtl2 sin(β)− λnl2 cos(β),

(5.120)

where λt and λn are the tangential and normal components of the contact force. It
is more convenient to write down those equations in the coordinates of the contact
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point (q1, q2), where q1 is the abscissa and q2 along the normal to the rough rigid
ground. One has q1 = l2 − l2 cos(β)+ l1 sin(α) and q2 = l1 − l2 sin(β)− l1 cos(α).
Linearizing (5.120) around (α, β) = (0, 0) and introducing the coordinate change
one gets:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ml1q̈1(t)+ k
(
q1(t)
l1
+ q2(t)

l2

)
= l1Ft(t)

ml2q̈2(t)+ k
(
q1(t)
l1
+ 2q2(t)

l2

)
= l2Fn(t)

0 ≤ f (q(t)) = q2(t) ⊥ Fn(t) ≥ 0

Ft(t) ∈ −μFn(t) sgn(q̇1(t)), μ > 0.

(5.121)

The dynamics in (5.121) fits within the framework in (5.1). If friction is for the
moment disregarded (just take μ = 0), it is also an LCS as (5.119). The “∈” is
important for Ft because the sign function is multivalued atq1 = 0: sgn(0) = [−1, 1].
We can also write the Coulomb friction model in a complementarity formalism [13,
249, 671, 1064]. Indeed, using (B.16) the following holds: x ∈ −sgn(y)⇔ y ∈
−N[−1,1](x), and these two inclusions are in turn equivalent to:

⎧⎨
⎩
x = λ1−λ2

2 , λ1 + λ2 = 2
0 ≤ λ1 ⊥ y + |y| ≥ 0
0 ≤ λ2 ⊥ −y + |y| ≥ 0

⇔

⎧⎪⎪⎨
⎪⎪⎩

y = λ1 − λ2

u1 = 1+ x, u2 = 1− x
0 ≤ u1 ⊥ λ1 ≥ 0
0 ≤ u2 ⊥ λ2 ≥ 0.

(5.122)

The two formalisms in (5.122) are the inverse of one each other. Let us check this by
inspection. Let y > 0, then λ1 = 0, so λ2 = 2, and x = −1. Let y < 0, then λ2 = 0,
so λ1 = 2, and x = 1. Now let y = 0, then λ1 = 2− λ2 and x = 1− λ2 ≤ 1, also
λ2 = 2− λ1 and x = λ1 − 1 ≥ −1. Thus x ∈ [−1, 1]. The second equivalence is
proved as follows: let x = 1, then λ1 = 0 while λ2 ≥ 0, thus y ≤ 0. Let x = −1,
then λ2 = 0 while λ1 ≥ 0, thus y ≥ 0. Let x ∈ (−1, 1), then u1 > 0, u2 > 0, thus
λ1 = λ2 = y = 0. In both cases, the complementarity relations allow one to recover
the graph of the set-valued sign function. To express Coulomb’s friction in a comple-
mentarity framework, one just has to set x = Ft

μFn
and y = q̇1. The variables λ1 and λ2

in (5.122) are multipliers which are just some intermediate variables. It is noteworthy
that using (B.16), one also has x ∈ −sgn(y)⇔ x ∈ −∂|y|. However, Fn in (5.121)
has no reason to be constant. Hence, there does not exist, in general, any convex,
proper lower semi-continuous function f (·) such that Ft ∈ ∂ f (q̇1): Coulomb’s law
coupled with normal conditions is usually nonassociated (see Sect. 5.3.3).

� Coulomb’s friction in planar systems—2D friction—lends itself to a repre-
sentation as linear complementarity conditions. However, in general mechanical
systems with unilateral constraints and Coulomb’s friction are not LCS.



310 5 Nonsmooth Lagrangian Systems

The dynamical Eq. (5.121) must be completed by a suitable impact rule. The one
chosen in [371] is similar to Moreau’s rule (see Sect. 5.6), i.e., an inelastic shock
(en = 0) together with Whittaker’s rule for relating pt and pn. It is shown in [371]

that depending on the value of μ with respect to a critical value μc = l1
l2

(
mg2l2

2
kv2−1

)
,

the motion with q1(0) = 0 and q̇1(0) = −v starts with sticking, and then evolves
in a sliding motion (μ < μc), and detaches (μ > μc). If μ = μc, then λn vanishes
but the system grazes the constraint. Detachment conditions are given by the sign
of the first nonzero derivative q(i)

2 , which is found to be q(3)
2 when μ > μc, and q(4)

2
when μ = μc. Numerical results tend to show that the case of elastic shocks yields a
much more complex behavior (finite accumulation of impact times) than the plastic
one. Let us notice in relationship with the discussions in Sect. 5.6 that there is no
problem of unbounded λn in this system, when the system is in a sliding motion phase
(recall however for the sake of comparisons with the slender rod problem analyzed
in Sect. 5.6 that the mass is concentrated at the contact point and that the motion of
A is constrained to be purely horizontal).

Example 5.14 (A mixed rigid/flexible contacts system) Consider the two degrees of
freedom system in Fig. 5.14a. Its dynamics is given by

⎧⎪⎪⎨
⎪⎪⎩

m1q̈1(t)+ k1(q1(t)− q2(t)− l1) = λ1
m2q̈2(t)+ k2(q2(t)− q1(t)+ l1) = λ2
λ1(t) = max(0, k2(l2 − q1(t)) ⇔ 0 ≤ λ1(t) ⊥ w1 = λ1(t)− k2(l2 − q1(t)) ≥ 0
0 ≤ λ2(t) ⊥ w2 = q2(t)− L ≥ 0,

(5.123)

where the bilateral spring with stiffness k1 is at rest for q1(t)− q2(t) = l1, the equiv-
alence for the contact force due to the unilateral spring with stiffness k2 comes
from Sect. 2.1.1.2, i.e., the contact force switches to zero when q1 ≤ l2. It is easy
to see that w1 = λ1(t)− k2(l2 − q1(t)), while ẅ2 = q̈2 = λ2

m2
− k1

m2
(q2 − q1 + l1).

Thus this complementarity system has a vector relative degree between the “input”
λ = (λ1 λ2)

T and the “output” w = (w1 w2)
T equal to r = (0 2)T . The question

which arises is whether or not mechanical systems with mixed rigid/unilateral spring
contacts always possess a well-defined relative degree or not. For a specific choice of
the generalized coordinates, one obtains the following dynamics (we drop the time
argument and disregard impacts):

⎧⎨
⎩

M(q)q̈ + F(q, q̇, t) = ∇h1(q)λ1 +∇h2(q)λ2
λ1,i = max(0, ki (li − qi )) ⇔ 0 ≤ λ1,i ⊥ w1,i = λ1,i − ki (li − qi ) ≥ 0, 1 ≤ i ≤ m1
0 ≤ λ2 ⊥ w2 = h2(q) ≥ 0,

(5.124)

where we assumed that the first m1 contacts are the flexible ones, and the last m2

ones are the rigid contacts, while m1 + m2 = m. One calculates that:

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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(
w1

ẅ2

)
=
(

Im1 0
∇h2(q)T M(q)−1∇h1(q) ∇h2(q)T M(q)−1∇h2(q)

)
︸ ︷︷ ︸

Decoupling m×m matrix D12(q)

(
λ1

λ2

)

+
(−K (l − q̄m1)

−∇h2(q)T M(q)−1F(q, q̇, t)+ d
dt (∇h2(q)T )q̇

)
︸ ︷︷ ︸

Δ=w12(q,q̇,t)

(5.125)

where l = (l1 . . . lm1)
T , q̄m1 = (q1 . . . .qm1)

T , K =diag(ki ). If the unilateral con-
straints are independent, the vector relative degree is well defined since the so-called
decoupling matrix has full rank m. It is noteworthy that the couplings between the
compliant and the rigid contacts play no role in the relative degree well-posedness
which involves only rank conditions. However, they may play a role for the contact
LCP well-posedness, since the contact LCP matrix is the decoupling matrix. Indeed,
the contact LCP is given by:

0 ≤ λ ⊥ D12(q)λ+ w12(q, q̇, t) ≥ 0. (5.126)

We may apply Theorems 5.4, 5.6, and 5.7 to study this contact LCP. It is required
that D12(q) be a P-matrix for this LCP to possess a unique solution for any value of
w12(q, q̇, t).

Proposition 5.20 Thematrix D12(q) is a P-matrix if and only if theDelassus’matrix
∇h2(q)T M(q)−1∇h2(q) � 0 (equivalently the constraint functions h2,i (q) are func-
tionally independent).

Proof The multiplier λ1 is uniquely determined whatever −K (l − q̄m1). Inserting
its value in the second line of the contact LCP, one finds that the multiplier λ2 is
uniquely determined whatever w12(q, q̇, t) if and only if ∇h2(q)T M(q)−1∇h2(q) is
a P-matrix, i.e., it is positive definite. The result follows from Theorem 5.4.

Example 5.15 (A first complementarity circuit) The so-called ideal diodes possess a
voltage/current characteristic that translate a physical observation: when the current
through the diode is positive, the voltage is zero. When the voltage is positive, the
current is zero. Equivalently, the voltage λ across the diode and the current i through
the diode satisfy the complementarity constraint 0 ≤ i ⊥ λ ≥ 0. Electrical networks
with ideal diodes fit within the class of dynamical systems with unilateral constraints
and complementarity conditions, see [10,13,22,226,252,378,720,1063,1064,1227].
Let us consider the circuit with ideal diodes, resistance R, inductance L , and an
capacitance C in Fig. 5.15. Its dynamics is given by:
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Fig. 5.15 A circuit with two
ideal diodes and a voltage
source

u(t)

λ1 λ2

i1

C

i2

D2

L

D1

i1 + i2

R

R

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1(t) = −R
2L x1(t)− 1

2LC x2(t)+ 1
2L u(t)+ 1

2L (λ1(t)− λ2(t))
ẋ2(t) = − 1

2 x1(t)− 1
2RC x2(t)+ 1

2R u(t)+ 1
2R (λ1(t)+ λ2(t))

0 ≤ λ1(t) ⊥ w1 = 1
2 x1(t)− 1

2RC x2(t)+ 1
2R u(t)+ 1

2R (λ1(t)+ λ2(t)) ≥ 0
0 ≤ λ2(t) ⊥ w2 = − 1

2 x1(t)− 1
2RC x2(t)+ 1

2R u(t)+ 1
2R (λ1(t)+ λ2(t)) ≥ 0

(5.127)

where x1(t) = i2(t), x2(t) =
∫ t

0 i1(s)ds. The two complementarity conditions rep-
resent the set-valued current–voltage laws of the diodes. This fits within nonau-
tonomous LCS (one adds exogenous terms in (5.119)):

ẋ(t) = Ax(t)+ Bλ(t)+ Eu(t)

0 ≤ λ(t) ⊥ w(x(t), λ(t), u(t)) = Cx(t)+ Dλ(t)+ Fu(t) ≥ 0
(5.128)

where D =
( 1

2R
1

2R
1

2R
1

2R

)
is positive semi-definite, B =

( 1
2L − 1

2L
1

2R
1

2R

)
,C =

( 1
2

−1
2RC−1

2
−1

2RC

)
.

The LCS in (5.128) can be recast into set-valued Lur’e systems with a static feedback
nonlinearity of the form −λ(t) ∈ ∂ψR

+
m
(w(x(t), λ(t), u(t))). We shall see later how

this static nonlinearity may be further expressed depending on D, see (5.135), (5.140)
and (5.146).

Example 5.16 (A second complementarity circuit) The first circuit has a matrix
D � 0. Let us give an example of a circuit with D = 0. Consider the circuit in
Fig. 5.16a. Let x1 be the charge of the capacitor, so that ẋ1 = x2 = i . Its dynamics is

⎧⎨
⎩
ẋ1(t) = x2(t)
ẋ2(t) = −1

LC x1(t)− R
L x2(t)− 1

L λ(t)+ 1
L u(t)

0 ≤ w(x(t)) = −x2(t) ⊥ λ(t) ≥ 0.

(5.129)
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u(t)
D

λ

R

L

C

i

(a)

L

C

R

D
u2(t)

u1(t)i2

i1
(b)

Fig. 5.16 Circuits with an ideal diode and voltage sources

One also has F = 0, i.e., the exogenous excitation does not enter the complementarity
conditions.

Example 5.17 (A third complementarity circuit) Let us give an example of a circuit
with D � 0. Consider the circuit in Fig. 5.16b. The charge of the capacitor is ẋ1 = i1,
and we let x2 = i2. The dynamics is given by:

⎧⎪⎨
⎪⎩
ẋ1(t) = −1

RC x1(t)+ x2(t)− 1
R λ(t)+ 1

R (u2(t)− u1(t))
ẋ2(t) = −1

LC x1(t)− 1
L λ(t)+ 1

L u2(t)
0 ≤ w(x(t), λ(t), t) = 1

RC x1(t)− x2(t)+ 1
R λ(t)− 1

R (u2(t)− u1(t)) ⊥ λ(t) ≥ 0.

(5.130)
In (5.130) one has D � 0, E �= 0, F �= 0.

There are some major discrepancies between these three circuits: (i) the relative
degree between λ and w is equal to zero in (5.130), to one in (5.129); the rela-
tive degree “à la Isidori” of the bivariable system in (5.127) is not well defined
since D � 0; however, one may speak of the index of its transfer function H(s) =
C(s I − A)−1B + D, s ∈ C. (ii) The exogenous excitation u(t) does not appear in the
complementarity conditions in (5.129), and appears in (5.127) and (5.130). Together
with (2.5) and (2.14), the above three circuits show that LCS may embed several
classes of mechanical and electrical systems. More on embedding power converters
with ideal diodes and switches into complementarity systems can be found in [1088].
Most importantly, the LCS formalism allows one to get rid of the a priori knowl-
edge of the system’s sequence of modes and of the switching time instants, both for
the analysis (existence of solutions, stability), and for the numerical simulation (see
Sect. 5.7.3.5). It is noteworthy that including some feedback law in the model, usu-
ally destroys the dissipativity of the overall LCS (see for instance the buck DC–DC
converter in [1088, Eq. (48a)–(48h)] that has a nondefinite D matrix).

Example 5.18 (A fourth complementarity circuit) We now deal with ideal Zener
diodes and we will generalize (5.122). The ideal Zener diodes of the circuit in
Fig. 5.17 (a) have the voltage–current characteristic depicted in Fig. 5.17 (b). This

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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may be expressed as ii (t) ∈ N[−Vi ,Ui ](vi (t)), or its inverse vi (t) ∈ ∂ψ

[−Vi ,Ui ](ii (t)),

where ψ

[−Vi ,Ui ](ii ) = Uiii if ii ≥ 0,−Vi ii if ii ≤ 0 (see Appendix B, Definition B.11

and after). Let us derive the characteristic (v, i) of the two Zener diodes in series. We
have v = v1 − v2, and i = i1 = −i2. Also, we assume thatU1 < V1,U2 < V2 (Ui are
leakage voltages, much smaller in practice than the breakdown voltages Vi ). Thus v ∈
∂ψ


[−V1,U1](i)− ∂ψ

[−V2,U2](−i). Let us set f (i) = ∂ψ


[−V2,U2](−i), then from Theo-
rem B.2 we get ∂ f (i) = −∂ψ


[−V2,U2](−i). Therefore, using [1045, Theorem23.8]
for the sum of subdifferentials, and defining g(i) = ψ


[−V1,U1](i)+ f (i) we obtain
v(t) ∈ ∂g(i(t)) or equivalently i(t) ∈ ∂g
(v(t)), where g
(v) = ψ[−V1−U2,U1+V2](v)
and ∂g
(v) = N[−V1−U2,U1+V2](v). The graph of the set-valued mapping i �→ v is
depicted in Fig. 5.17 (c) (it is a relay multifunction). Complementarity formalisms
which extend (5.122) of the two mappings i �→ v and v �→ i are given by:

⎧⎨
⎩
i = −λ1 + λ2

0 ≤ λ1 ⊥ v + V1 +U2 ≥ 0
0 ≤ λ2 ⊥ U1 + V2 − v ≥ 0

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

v = −V1−U2
γ

λ1 + U1+V2
γ

λ2

λ1 + λ2 = γ, γ > 0
0 ≤ i + |i | ⊥ λ1 ≥ 0
0 ≤ |i | − i ⊥ λ2 ≥ 0.

(5.131)

It is noteworthy that the formalism in the left-hand side of (5.131) can be obtained
directly from the expression of the normal cone to the convex set [−V1 −U2,U1 +
V2)] using (B.8). We have L > 0, R > 0, C > 0, and u(t) a voltage source. The
circuit dynamics is given by the differential inclusion

L
di

dt
(t)+ Ri(t)+ 1

C

∫ t

0
i(s)ds + u(t) ∈ −∂g(i(t)), i(0) = i0, (5.132)

where i �→ v ∈ ∂g(i) is maximal monotone from Lemma B.1. This may be recast
into Lur’e set-valued systems as in Fig. 2.2, with a different static multivalued nonlin-
earity in the feedback loop. This is quite a similar dynamics as a particle acted upon
by dry friction, viscous friction, and linear spring. Letting x1(t) =

∫ t
0 i(s)ds be the

charge of the capacitor, equilibria of this dynamics are solutions of the generalized
equation 1

C x
∗
1 ∈ −∂g(0) = [−U1 − V2,U2 + V1]. The voltage v(t) across the two-

diode assembly is a selection of the set-valued right-hand side. The well-posedness of
such a set-valued circuit may be analyzed from several points of view : complemen-
tarity systems if u(t) = 0 [745, 759] with piecewise-analytic solutions, differential
inclusions with Theorem B.4 (let x2(t) = i(t), the right-hand side of the circuit
dynamics can be written as in (B.24) defining a(x1, x2) = ψR(x1)+ g(x2), hence

A(x1, x2) = ∂a(x1, x2) =
(

∂ψR(x1) = {0}
∂g(x2)

)
), or using Filippov’s framework. It is

noteworthy that the finite accumulation of events (switching times) is permitted by
all these models and mathematical frameworks.

Example 5.19 (A fifth set-valued circuit) Let us continue with Zener diodes. Con-
sider the circuit in Fig. 5.17 (a), with R = 0 andC = ∞. Its dynamics reads L di

dt (t)+
u(t) ∈ −∂g(i(t)). We now design two circuits Li

dii
dt (t)+ ui (t) ∈ −∂gi (i(t)),

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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−V1 −U2

i
z1 z2

vi

ii

i1 i2

v ∈ ∂g(i)

Fig. 5.17 A circuit with two ideal Zener diodes in series (relay multifunction)

i = 1, 2, and we set u1(t) = −α1v̄2(t), u2(t) = −α2v̄1(t), where v̄i = vi,1 − vi,2 is
the voltage across the Zener diode assembly of circuit i (i.e., in Fig. 5.17 (a): v̄ is v).
We therefore obtain the closed-loop dynamics:

⎧⎪⎨
⎪⎩
L1

di1
dt (t) = −v̄1(t)+ α1v̄2(t)

L2
di2
dt (t) = −v̄2(t)+ α2v̄1(t)

v̄1(t) ∈ ∂g1(i1(t)), v̄2(t) ∈ ∂g2(i2(t)).

(5.133)

The dynamics in (5.133) is written compactly as ẋ(t) ∈ −Av̄(t), v̄(t) ∈ ∂g(x(t)),

A =
( 1

L1
− α1

L1− α2
L2

1
L2

)
, g(x) = g1(x1)+ g2(x2), x = (i1 i2)T , and can be recast into

Lur’e set-valued systems. Depending on the feedback gains α1 and α2 such a cir-
cuit may possess quite different properties. If L1 = L2 = 1, g1(·) = g2(·) = sgn(·),
α1 = 2, α2 = −2, the origin i1 = i2 = 0 is globally finite-time Lyapunov stable and
is reached after a finite accumulation of switching times, where trajectories spiral
around the origin [397]. The mapping x �→ A∂g(x) may be maximal monotone
(if A = I2) but monotonicity is not preserved in general so Theorem B.4 does not
apply. However, Filippov’s framework for existence of solutions applies. Further
applications of the complementarity, differential inclusion, and variational inequal-
ity formalisms for more complex circuits may be found in [9, 10, 24, 251, 348,
1227]. The so-called compartmental approach, which consists in splitting a cir-
cuit into several blocks, is used in [24] and uses the variational inequality tools
of [23] to analyze the well-posedness of equilibria equations. Other circuits with
set-valued dynamics are analyzed in [10] and [453], where it is shown that DC–DC
buck converters can be cast into linear complementarity Lagrangian systems whose
mass matrix is the matrix of inductors [453, Eqs. (32) (33)]. The classical mechani-
cal/electrical analogies mass/inductivity, damping/resistance, and stiffness/capacity
are extended to nonsmooth elements sparg clutch/diode and dry friction/spark gaps in
[453, Table II].
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Example 5.20 (Optimal control with state inequality constraints) The first-order
necessary conditions in (3.70) are an LCS (more exactly this is a boundary value
LCS). Its feature is that the relative degree between the two complementary variables
may be large.

Lemma 5.4 [208] Consider the optimal control problem in (3.68) and (3.69), with
m = 1. If rwu = 1, then the leading Markov parameter of the triple ( Ã, B̃, C̃)

is M (2) = −CBBTCT < 0. More generally, if the transfer function of the triple
(A, B,C) in (3.69) has a relative degree rwu ≥ 2, the leading Markov parameter of
the triple ( Ã, B̃, C̃) is M (2rwu) = (−1)r

wu
C Arwu−1B(CArwu−1B)T (= C̃ Ãr−1 B̃).

The fact that the relative degree of the LCS in (3.70) may be≥ 3 implies that solutions
may be distributions of higher degree (derivatives of the Dirac measure). The objec-
tive of the analysis in [208] is to take this fact into account by embedding (3.70) into
the so-called higher order sweeping process [15], which is a Distribution Differential
Inclusion (a generalization of measure differential inclusions). The geometrical tools
of [322, 323] (see Sect. 1.3.3) are used for a qualitative analysis of junction states
and controllers. The link with Mechanics is made in [208]. See also [204, 512] for a
survey on LCS.

5.4.4.3 Well-Posedness

A well-posedness analysis is proposed in Sect. 2.1.3.2, which consists of interpreting
the LCS as a differential inclusion. Let us present its general version, which bridges
the gap between LCS and Moreau’s sweeping process. Here we consider the LCS in
(5.128). The Lyapunov stability is treated in Sect. 7.7.

Assumption 5.2 The feedthrough matrix D = 0, and there exists P = PT � 0 such
that PB = CT .

This “input/output” constraint is satisfied for dissipative systems for which D +
DT = 0, see [218]. It implies that BT PB = BTCT = (CB)T , thus CB is at least
positive semi-definite, and positive definite if B has full column rank.40 In control,
the input matrix B is usually considered full column rank to avoid redundant inputs.
In nonsmooth set-valued circuits λ is not a real input, and has no reason to have
dimension smaller that the state. Thus B is in general not full column rank. The
constraint of Assumption 5.2 is therefore a kind of relative degree constraint. Defining
R as R2 = P , the symmetric positive definite square root of P , and letting z = Rx ,
one gets from (5.128):

40Clearly, Assumption 5.2 impliesCB is symmetric and� 0. Theorem 2.2 in [547] states necessary
and sufficient conditions such that BT PB = D has a symmetric � 0 or � 0 solution P . Lemma
1 in [258] states that P = CT (CB)† + (In − (BT )†BT )U (In − (BT )†BT )T , with U = UT � 0
arbitrary, and † denotes the generalized inverse.

http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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⎧⎨
⎩
ż(t) = Rẋ(t) = RAR−1z(t)+ REu(t)+ RBλ(t)

0 ≤ λ(t) ⊥ w(z(t), t) = CR−1z(t)+ Fu(t) ≥ 0.

(5.134)

Let us assume for the moment that both λ(·) and w(·) are functions of time. From
(B.21) and (B.7) one may write

0 ≤ λ(t) ⊥ CR−1z(t)+ Fu(t) ≥ 0 ⇔ −λ(t) ∈ ∂ψQ(CR−1z(t)+ Fu(t))
(5.135)

for Q = R
m+, where ψQ(·) denotes the indicator function of the set Q. Consequently,

one equivalently rewrites (5.134) as

−ż(t) ∈ −RAR−1z(t)− REu(t)+ RB ∂ψR
m+(CR−1z(t)+ Fu(t)).

The equivalence means here that the two formalisms are strictly the same way of
writing a mathematical object like a complementarity problem between two variables,
without further consideration on the solutions. Now using R2B = CT it follows that

− ż(t) ∈ −RAR−1z(t)− REu(t)+ R−1CT ∂ψR
m+(CR−1z(t)+ Fu(t)). (5.136)

For each t ∈ [0,+∞[ the closed set

K (t)
Δ= {x ∈ R

n | Cx + Fu(t) ≥ 0} (5.137)

and R
m+ are convex polyhedral, and ψK (t)(x) = (ψR

m+−Fu(t) ◦ C)(x). Therefore, from
Theorem B.2, we have

CT ∂ψR
m+(Cx + Fu(t)) = ∂ψK (t)(x),

for any x ∈ R
n . So the inclusion in (5.136) is equivalent to the differential inclusion

− ż(t)+ RAR−1z(t)+ REu(t) ∈ R−1∂ψK (t)(R
−1z(t)). (5.138)

Considering the closed convex polyhedral set

S(t)
Δ= R(K (t)) = {Rx | x ∈ K (t)}, (5.139)

it is easy to see that ψS(t)(x) = (ψK (t) ◦ R−1)(x) for all x ∈ R
n . Since R is invertible

and symmetric we have

∂ψS(t)(x) = R−1(∂ψK (t))(R
−1x) for all x ∈ R

n,

and hence, since NS(t)(x) = ∂ψS(t)(x) (see (B.7)), the differential inclusion (5.138)
may be written in the form
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− ż(t)+ RAR−1z(t)+ REu(t) ∈ NS(t)(z(t)). (5.140)

The inclusion (5.140), which takes the form of a first-order perturbed Moreau’s
sweeping process, is in turn equivalent to the evolution variational inequality

〈ż(t)− RAR−1z(t)− REu(t), v − z(t)〉 ≥ 0, for all v ∈ S(t), with z(t) ∈ S(t).

Proposition 5.21 [226] Assume that the set-valued mapping K (·) is nonempty-
valued, i.e., all the sets S(t) are nonempty (which holds in particular whenever the
constraint qualification

Rge (C)− R
m
+ = R

m (5.141)

is fulfilled41). If the component mapping Fu(·) has a local bounded variation (resp.
is locally absolutely continuous) on [0,+∞[ (which obviously holds whenever so
is the mapping u(·)), then the closed convex set-valued mapping S(·) has a local
bounded variation (resp. is locally absolutely continuous) too.42 In the same way,
S(·) is right-continuous with respect to the Hausdorff distance whenever Fu(·) is
right-continuous.

Theorem 5.11 [226] Assume that u(·) ∈ L1
loc([0,+∞[, dt;Rp), and that the set-

valued mapping S(·) = R(K (·)) is locally absolutely continuous (resp. locally
RCBV) with nonempty values. Then the perturbed differential inclusion (5.140)
with initial condition z(0) = z0 ∈ R(K (0)) has one and only one locally absolutely
continuous (resp. locally RCBV) solution z(·) on [0,+∞[.
Obviously, the theorem applies equivalently to the LCS in (5.128) with Assumption
5.2. It is noteworthy that we never introduced the initial conditions in the above
dynamical systems. The initial state is constrained to be in the initial set in Theorem
5.11. Thus if the set S(t) is locally absolutely continuous, the theorem stipulates that
the solutions have no discontinuity. In other words, there is always a element of the
normal cone in the right-hand side of (5.140), that is, a function of time, and such that
the system can be integrated while always respecting the unilateral constraint (i.e., the
state remains in the admissible domain, equivalentlyw(z(t), t) remains nonnegative).
If the initial condition satisfies z(0−) /∈ R(K (0)), then an initial jump has to be
imposed on z such that z(0+) ∈ R(K (0)).43 Consequently, in the locally absolutely
continuous case, there is at most one initial jump. At the initial time, the multiplier λ

has to be a distribution (a Dirac measure, or a distribution of higher degree). In case
of bounded variation, solutions may jump and the dynamics has to be interpreted as
a measure differential inclusion, similarly as in Problem 5.1 and (5.52). This is more

41The equality in (5.141) means that for all x ∈ R
m , there exists y ∈ Rge (C) and z ∈ R

m+ such that
z − y = x . Obviously, it holds whenever the linear mapping associated with C is onto, i.e.,, the
matrix C has rank m, but also in many other cases. It is noteworthy that due to Assumption 5.2, the
rank of C and the rank of B are not independent quantities.
42See Sect. A.3.1 for definitions.
43We do not discuss here about the physical realization of such a jump.
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involved and we are not going to provide all mathematical details about it. The only
thing we may say is that the differential inclusion in (5.140) has to be rewritten as a
measure differential inclusion, using the notion of the differential measure dz, that is,
a generalized derivative associated with right-continuous functions of local bounded
variation (see Appendix A.3.2). We already encountered a differential measure in
Sect. 5.2.2.4, with the acceleration du. It satisfies:

z(t) = z(s)+
∫
]s,t]

dz for all s, t ∈ I with s ≤ t. (5.142)

This is a generalization of the fundamental result for absolutely continuous functions
with an almost-everywhere derivative (like in (5.38)): the almost-everywhere deriv-
ative is replaced with dz. The differential inclusion in (5.140) may be interpreted as
the measure differential inclusion:

{−dz ∈ NS(t)(z(t))+ f (t, z(t)) dt
z(0) = z0 ∈ S(0),

(5.143)

where f (t, y)
Δ= −RAR−1y − REu(t) for all y ∈ R

n . The jump rule may be
deduced from (5.143) by noting that state jumps correspond to atoms of the measure
dz, so that (5.143) may be rewritten at such atoms as

− z(t+)+ z(t−) ∈ NS(t+)(z(t
+)), (5.144)

that is equivalent, provided S(t) is a nonempty convex set, to

z(t+) = proj [S(t+); z(t−)] ⇔ z(t+) = argminz∈S(t+)
1
2 ||z − z(t−)||2

⇔ x(t+) = argminx∈K (t+)
1
2 (x − x(t−))T P(x − x(t−))

⇔ K (t+) � x(t+) ⊥ P(x(t+)− x(t−)) ∈ K 
(t+)

⇔ P(x(t+)− x(t−)) ∈ −NK (t+)(x(t+)),

(5.145)

i.e., z(t+) (= z(t)) is the (unique) closest vector to z(t−) inside S(t+) (equivalently,
the projection of z(t−) on S(t+) in the Euclidean metric). These equivalences may be
deduced from (B.19) and (B.20), and remind that K 
 is the dual cone of K . The third
line in (5.145) is a cone complementarity problem. It is interesting to notice from
(5.145) that the state jump is solved by minimizing an “energy” function defined
from the matrix P . In case of a dissipative system, P defines the so-called storage
function [218]. One may parallel (5.145) with Moreau’s impact law, see for instance
(5.64) and (5.53). It is clear that the same interpretation as a Lur’e set-valued system
applies for these electrical circuits, as shown in Figs. 2.2 and 7.6.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_7
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Notice that in case u(·) is time-continuous, then S(t+) = S(t−) = S(t) and
z(t−) ∈ S(t). It follows from the above that z(t+) = z(t−). A state jump may then
occur only initially, in case z(0−) /∈ S(0). This is in agreement with Theorem 5.11.

Further Results

The above state jump rule is the same as in Remark 5.2 in Sect. 5.2.1. Existence
and uniqueness of solutions is one thing, how to calculate the multiplier λ(t) is
also of interest. Let us proceed as for the case of Mechanics in Proposition 5.3. To
simplify the presentation we assume that the complementarity conditions in (5.134)
collect only active constraints wi (x) = 0, for which λi (t) ≥ 0. The other multi-
pliers satisfy λ j (t) = 0. We also assume that all functions are right-continuous as
well as u̇(·). Then we obtain the LCP: 0 ≤ λ(t) ⊥ ẇ(t) = CAR−1z(t)+ CEu(t)+
Fu̇(t)+ CBλ(t) ≥ 0, from which λ(t) may be computed (at least numerically, see
[13] for suitable algorithms). In view of the properties stated above, CB � 0 or
CB � 0. One may thus apply one of the results stated in Sect. 5.4.2 for the LCP
well-posedness.

Consider the LCS in (5.128) with D = DT � 0. Using (B.21), one finds that:

λ(t) = projD[Rm
+;−D−1(Cx(t)+ Fu(t))]. (5.146)

The orthogonal projection is a Lipschitz continuous mapping. Hence, injecting
(5.146) into (5.128), one obtains an ordinary differential equation with Lipschitz
right-hand side: the well-posedness (existence and uniqueness of a continuously
differentiable solution, or of an absolutely continuous solution if the input u(·) is
just locally integrable) follows from classical results on ODEs. It is noteworthy
that if D is a P-matrix, the same result holds since the multiplier is then a Lip-
schitz continuous function of the state, see Theorem 5.4 (however, one cannot write
(5.146)). In both cases, we also obtain a so-called piecewise-linear system. The case
D � 0 is somewhat in-between D � 0 and D = 0. It is treated in [214, 215] under
an “input-output” constraint PB = CT for some matrix P = PT � 0, F = 0, and
D = diag(D1, 0), D1 � 0, and in [252, 258] under a dissipativity condition of the
quadruplet (A, B,C, D). The state jump rule in (5.145) is written in a broader con-
text with D � 0 in [251, 254, 411, 412, 513] [10, §2.4.3.2]. See also [1227]. A class
of nonlinear complementarity systems is analyzed in [214]. LCS are extended to
Lur’e set-valued systems in [214], noticing that (5.128) may be embedded into:

⎧⎨
⎩
ẋ(t)− Ax(t)− Eu(t) = Bλ(t)

λ(t) ∈ −(D · +∂φ)−1(Cx(t)+ Fu(t)),
(5.147)

where φ(·) is convex proper lower semi-continuous. In LCS we have φ(·) = ψR
m+(·).

The analysis relies on properties of the operator B(D · +∂φ)−1(C ·), and various
cases are studied in [214, 215]. For instance, if D � 0 (not necessarily symmetric),
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φ(·) = ψR
p
+(·), aff(−DT

R
p
+ + Int(Im(D + DT )+ R

p
+)) = aff(Im(D + NR

p
+)),

44

and Assumption 5.2 holds, then B(D · +∂φ)−1(C ·) is maximal monotone [215,
§6.1].

The results of [214, 215] are extended in [258] to general maximal monotone
operators (instead of subdifferentials ∂φ(·)) and passive (A, B,C, D), whose matri-
ces necessarily satisfy ker(D + DT ) ⊆ ker(PB − CT ) [258, Proposition 3], which
is an extension of the condition of Assumption 5.2. See also [1180] for the output reg-
ulation problem using such condition. It is noteworthy that (5.147) represents a rather
large class of systems, since depending on the D matrix it may range from a nonlinear
ODE to a differential inclusion with noncompact set-valued right-hand side.

A general result about the well-posedness of autonomous LCS (i.e., u(t) ≡ 0 in
(5.128), which yields (5.119)) is stated in [256].

Proposition 5.22 [256] Consider the LCS in (5.128) with zero input u, and initial
condition x(0) = x0. The following statements are equivalent:

• For every x0 ∈ R
n, the LCS has a unique continuously differentiable solution

x(·, x0) on [0,+∞).
• For every x0 ∈ R

n, the set B SOL(Cx0, D) is a singleton, where SOL(Cx0, D)

denotes the set of solutions of the LCP 0 ≤ λ ⊥ w0 = Cx0 + Dλ ≥ 0.

Therefore, a test on the initial LCP is sufficient to infer the global well-posedness
of the autonomous LCS. It is clear that if D � 0 or is a P-matrix, then the con-
ditions of Proposition 5.22 hold. However, these properties may be relaxed if one
takes B into account, see Proposition 5.19. Let us finally notice again that similar
results as the ones obtained in Sect. 5.1.2 are obtained for passive LCS in [254]. In
particular Proposition 5.6 becomes [254, Theorem7] for passive LCS. It says that
if λ1 and λ2 are two multipliers associated with a solution of the LCS in (5.128),
where (A, B,C, D) is a passive system with a positive definite storage function

(i.e.,, the above P-matrix is positive definite), then λ1 − λ2 ∈ ker

(
B

D + DT

)
. LCS

as in (5.119) in an infinite-dimensional setting are studied in [491] as a particular
case of differential variational inequalities. When particularized to finite dimension,
it shows that approximations (An, Bn,Cn, Dn) of the system’s matrices which con-
verge to (A, B,C, D) as n→+∞ yield solutions (xn, λn)→ (x, λ) solutions of
(5.119), provided that Dn � 0 for all n. The infinite-dimensional case is also analyzed
in [29]. Notice that K (t) and S(t) in (5.137) and (5.139) may be written as K (u)

and S(u) where u(·) may be seen as a control input. One therefore obtains in (5.140)
a set-valued right-hand side NS(u)(z(t)). If u is a feedback u(x), then we obtain a
state-dependent sweeping process . If E = 0 the system may be controlled only via
its moving set which may sweep the state (said otherwise, by the complementarity
constraints). In Sect. 5.4.5 the presented LCS are controlled in different ways. As

44The set aff(K ) is the affine hull of the set K , i.e., the smallest affine set that contains K : aff(K ) =
{∑n

i=1 αi xi , xi ∈ K ,
∑n

i=1 αi = 1, αi ∈ R, n ∈ N}.
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alluded to above (see Example 5.20), LCS with higher relative degree between the
complementary variables have distributional solutions. This is closely linked with
solutions of switching DAEs (see Sect. 1.3.4), excepted that the switching conditions
and the state jump mappings are ruled by complementarity conditions in LCS. The
well-posedness of higher relative degree LCS is analyzed in [15] and [517]. In [15]
LCS are embedded in a generalization of Moreau’s sweeping process (which is a
distribution differential inclusion), and in [517] rational complementarity problems
are used.

5.4.4.4 Zeno Behavior in LCS

In addition to knowing if the solutions are continuous, or of bounded variations (hence
with possible discontinuities), it is interesting for control purpose and numerical
integration to know if switches between different modes may occur often or not. The
modes are defined in LCS with continuous solutions, by the activation/deactivation
of the constraintswi (x, λ, u) = 0. Intuitively, it is clear that the switching behavior of
the LCS will depend on the properties of the complementarity problem 0 ≤ λ(t) ⊥
w(x(t), λ, u(t)) = Cx(t)+ Dλ(t)+ Fu(t) ≥ 0. The Zeno behavior refers to the
existence of finite accumulations of events. Such a phenomenon has been known
since quite a long time in Mechanics (the impacts accumulation in the bouncing ball
of Sect. 7.2.1 is a classical undergraduate exercise). For piecewise-linear systems and
LCS, its study is more recent [257, 501, 962, 1102].

Theorem 5.12 [1102] Consider the LCS in (5.128), with u(t) ≡ 0. Assume that D
is a P-matrix. Then all the states of (5.128) are strongly non-Zeno.

As we know, when D is a P-matrix the complementarity conditions in (5.128) make
a well-posed LCP whose solution λ is a Lipschitz continuous function of x (see
Theorem 5.105). Consider a solution (x(t), λ(t)) of the LCS, with x(t
) = x
. The
state x
 is said strongly non-Zeno relative to (x(t), λ(t)) if the system stays in the
same mode for all t ∈ [t
 − ε, t
 + ε]. The modes are defined as the index sets such
that λi (t) > 0 and wi (t) = 0, λi (t) = 0 and wi (t) > 0, λi (t) = wi (t) = 0.

5.4.4.5 Dissipativity of LCS: Generalized Supply Rate

The supply rate of the LCS is the product 〈w, λ〉 = wTλ. Suppose that w = Cx ,
and that a jump occurs at time t . Then in the framework of MDIs, λ is a Dirac
measure and the product xTCTλ is not well defined (a similar issue has been met
in impulsive ODEs in Sect. 1.2.2). It is, however, possible to give a meaning to
the integral term

∫
wTλ by constructing a measure from a functional [226]. More

precisely let λ = δt , the Dirac measure at time t , and let w(·) be right-continuous
at t . The space of functions which are δt -integrable contains functions continuous
at t , and also all the functions w(·) which are δt -almost everywhere equal to an
integrable (continuous) function g(·). Since the support of δt is {t}, it is sufficient that
w(t) = g(t). Then

∫
wdδt =

∫
gdδt = g(t) = w(t) = w(t+). This may be a path to

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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properly define the complementary-slackness variables product over any time interval
[0, τ ]with τ > 0. However, as shown in [226] this issue can be solved without going
into such abstract measure considerations. At atoms of dz (impact times t) one
has dz = β(z(t+)− z(t−))δt for some β > 0, while the Lebesgue measure dt has
no atom. Then (5.143) is equivalent to (5.144) or (5.145). In other words, there is a
λ̄(t) ∈ −NS(t)(z(t+)) such that z(t+)− z(t−) = λ̄(t). The function λ̄(t) is the density
of λ at the atom t with respect to dδt , i.e., the magnitude of the Dirac measure λ.
We may consequently write the input–output product associated with the differential
inclusion (5.143) as:

〈 dλ
dδt

(t),w(t)〉 = 〈 dλ
dδt

(t), 1
2CR−1(z(t+)+ z(t−))+ Fu(t) dt

dδt
(t)〉

= 〈 dλ
dδt

(t), 1
2CR−1(z(t+)+ z(t−))〉.

(5.148)

Let us place ourselves in the perspective of dissipative systems [218], which satisfy
Assumption 5.2 (at the beginning of Sect. 5.4.4.3) for some matrix P = PT � 0, and
also the Lyapunov equation PA + AT P = Q " 0. Let V (x) = 1

2 x
T Px be a storage

function for the triple (A, B,C). The infinitesimal dissipation equality is equal at
the atoms t of dz to:

V (t+)− V (t−) = λ̄Tw(t) = 1

2
λ̄TCR−1(z(t+)− z(t−)). (5.149)

Using C = BT P = BT R2, where R � 0 is the symmetric square root of P , and the
algebraic form of the dynamics at atoms of dz (i.e., z(t+)− z(t−) = RBλ̄(t)), this
can be rewritten as:

V (t+)− V (t−) = 1
2 z(t

+)T z(t+)− 1
2 z(t

−)T z(t−)

= 1
2 x(t

+)T Px(t+)− 1
2 x(t

−)T Px(t−).

(5.150)

It is possible to work with densities with respect to some measure μ which encom-
passes all phases of motion, as done with the sweeping process (see Problem 5.1,
see also Sect. 7.5.1). More details may be found in [226]. These ideas are applied to
Lagrangian systems in Sect. 7.5.3, where a generalized supply rate is introduced.

Remark 5.22 The passivity of (A, B,C, D) is a strong property, which is
omnipresent in the LCS analysis (either directly or through the input–output con-
straint PB = CT 45). We saw here and there in this book that the relative degree
between the complementarity variables w and λ plays a significant role in the sys-
tem’s behavior, in particular, the nature of the solutions. Passivity is known to con-
strain the relative degree. In the multivariable case (w ∈ R

m and m ≥ 2 in (5.128)),

45The quadruple (A, B,C, D) is passive if and only if there exists P = PT � 0 such that(
AT P + PA PB − CT

BT P − C −(D + DT )

)
" 0. If D + DT = 0 this LMI implies that PB = CT , using

[217, Proposition A.63].

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_7
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the relative degree of (A, B,C, D) may be replaced by the near notion of index of the
rational transfer matrix H(s) = C(s In − A)−1B + D, s ∈ C. H(s) has index r if it
is invertible as a rationale matrix and s−r H(s)−1 is proper. It is of total index r if all its
principal submatrices have index r .46 Passive systems with storage function matrix

P = PT � 0 and

(
B

D + DT

)
full column rank have a transfer matrix with total

index r = 1 [514, Theorem 3.14]. This generalizes the well-known fact that positive
real transfer functions have a relative degree 1, 0 or −1 [218]. As shown in [514,
Theorem 3.17], LCS as in (5.128) and with a transfer matrix C(s In − A)−1B + D
of total index 1 possess state jumps only initially and at times when Fu(·) jumps.
This is again in agreement with Theorem 5.11 (which nevertheless does not require
the same rank condition): if Fu(·) is continuous, then S(t) is continuous and there
is no state jump, except possibly initially.

5.4.5 Controllability of LCS

The controllability of LCS as in (5.128) has been tackled in [250, 253] and [206].
Closely related is the analysis in [219] which, however, focuses on the use of impacts
in linear complementarity mechanical systems. Let us state the results in [250] and
[206], which together with juggling systems controllability highlights the big dis-
crepancies that may exist between various types of LCS. Suppose that there is no
unilateral constraint in (5.128), i.e., the admissible domain Φ = R

n . Classically,
one says that the LCS in (5.128) is completely controllable if for any pair of states
(x0, x f ) there exists a locally integrable control u(·) such that the trajectory of the
LCS x(·, t0, u, x0) satisfies x(t, t0, u, x0) = x f for some t > 0.

Theorem 5.13 [250] Assume that D is a P-matrix, and that the transfer matrix F +
C(s I − A)−1E is invertible as a rational matrix (s ∈ C). Then the LCS in (5.128)
is completely controllable if and only if (i) the pair (A, [E, B]) is controllable, and
(ii) the system of inequalities η ≥ 0, (ξ T ηT )

(
A − s I E
C F

)
= 0, (ξ T ηT )

(
B
D

)
≤ 0

admits no solution s ∈ R and 0 �= (ξ η) ∈ R
n+m.

Theorem 5.13 therefore applies to LCS with absolutely continuous state trajecto-
ries.47 We may say that it applies to a particular class of piecewise-linear systems
which lend themselves to a complementarity modeling of the nonlinearity. Let us
now state a result that is at the same time more restrictive (it applies to planar systems
n = 2, with B = CT ) and more general (it does not need D as a P-matrix). In fact,
while Theorem 5.13 considers systems with a constant state dimension, the next

46Conjecture (for Control people): if the decoupling matrix is nonsingular, and the vector relative
degree is (r1, r2, . . . , rm)T , then ri ≤ r for all 1 ≤ i ≤ m.
47Remind that as we saw in Sect. 5.4.4.3, if D is a P-matrix then λ is a Lipschitz continuous function
of both x and u, so that the LCS is an ODE ẋ(t) = f (x(t), u(t)) for a Lipschitz continuous vector
field.

http://dx.doi.org/10.1007/978-3-319-28664-8_3
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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result considers lower dimensional regions of the state space. More precisely, let us
consider the LCS:

⎧⎨
⎩
ẋ1(t) = x2(t)+ CT

1 λ(t)
ẋ2(t) = u(t)+ CT

2 λ(t)
0 ≤ λ(t) ⊥ Cx(t)+ d ≥ 0

⇔
⎧⎨
⎩
〈ẋ(t)− Ax(t)− Eu(t), v − x(t)〉 ≥ 0, ∀v ∈ Φ

x(t) ∈ Φ, ∀ t ≥ 0

⇔ ẋ(t)− Ax(t)− Eu(t) ∈ −NΦ(x(t)),
(5.151)

where C = (C1 C2) ∈ R
m×2, C1 ∈ R

m , and C2 ∈ R
m are the two columns of C , d ∈

R
m , λ ∈ R

m , x = (x1, x2)
T ∈ R

2, A =
(

0 1
0 0

)
, E =

(
0
1

)
, Φ = {x ∈ R

2| Cx +
d ≥ 0} = {(x1, x2) ∈ R

2|C1x1 + C2x2 + d ≥ 0}. We have B = CT so the well-
posedness results of Sect. 5.4.4.3 apply. The equivalence between the three
formalisms in (5.151) may be obtained using the material in Sect. B.2.1. The sys-
tem in (5.151) is said to be Φ−controllable, if any state x f ∈ Φ can be reached
from any state x0 ∈ Φ, in a finite or infinite time T , x(t) ∈ Φ for all 0 ≤ t ≤ T ,48

and with an admissible input u(·).49 Let C1 = (a1, . . . , am)T , C2 = (b1, . . . , bm)T ,
d = (d1, . . . , dm)T and let us denote the faces of the convex set Φ as Di , such that
Di ⊆ {x ∈ R

2|ai x1 + bi x2 + di = 0} and D̄i = {x ∈ R
2|ai x1 + bi x2 + di = 0}. In

other words, the faces are segments Di (possibly unbounded, like in the case Φ is
a cone, or if Φ is defined as a half-space), and the segments can be extended to
straight lines D̄i whose equations in the plane are ai x1 + bi x2 + di = 0, 1 ≤ i ≤ m.
In Fig. 5.18 and considering the set Φ1, one has D1 = A′A whereas D̄1 is the line
passing through A′ and A and intersecting {x ∈ R

2|x2 = 0} at B.

Proposition 5.23 [206] The system in (5.151) isΦ−controllable if and only if there
is no face of Φ such that

• there is a portion of Di with finite negative slope on the right (resp. left) of the
point D̄i ∩ {x ∈ R

2|x1 = 0}, when Φ is below (resp. above) Di .
• Di is vertical and above (resp. below) {x ∈ R

2|x2 = 0} if Φ is on the right (resp.
left) of Di .

• Di is horizontal and in the half-space {x ∈ R
2|x2 < 0} (resp. {x ∈ R

2|x2 > 0}) if
Φ is below (resp. above) Di .

• Di = {x ∈ R
2|x2 = 0}.

This result shows that controllability may be obtained because the dynamics changes
when the system evolves on bd(Φ) of the admissible domain, which may be viewed
as a lower dimensional subspace. This is not the case for other types of switching

48The dynamics implies that the trajectories starting in Φ remain in Φ.
49Admissibility means that the system is well-posed.
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Fig. 5.18 Examples of Φ−controllable and Φ−uncontrollable systems

systems with constant dimension, like ẋ1(t) = x2(t) if x2(t) ≤ 0, ẋ1(t) = −x2(t) if
x2(t) ≥ 0, ẋ2(t) = u(t). Here the derivative of x1(·) is always ≤ 0 (< 0 for x2 �= 0),
so this system cannot be completely controllable. Some examples are depicted in
Fig. 5.18. The boundary of the domain Φ3 in Fig. 5.18 can be tracked clockwise.
Consequently, any point x f on the right of the line (l) can be attained from any
point x0 on the left of (l). There has to be a portion of the trajectory that evolves on
bd(Φ3) to reach x f from x0. Let us consider the set Φ1 in Fig. 5.18. The system is
not Φ1−controllable because the only way to attain a point on the left of the vertical
line (l) from a point on the right of (l) is to follow the boundary bd(Φ1). However,
once the point A has been reached, it is impossible to move on bd(Φ1) toward A′.
The system can be steered on the line AA′ only in the direction of B. Consequently,
all points of Φ1 which are situated on the left of (l) cannot be attained from points
in Φ1 on the right of (l). It is noteworthy that even local controllability may fail. For
instance, two arbitrarily close states x0 and x f in Φ1, with x0 on the right of (l) and
x f on the left of (l), cannot be joined by a solution of (5.151) with some control
u(·). Consider now Φ2. Then trajectories can be controlled from E to C , though C is
reachable in infinite time only. Assume thatC is just below the axis {x ∈ R

2|x2 = 0}.
bd(Φ2) can be tracked clockwise by applying some suitable control input. Thus, the
points on the right of the vertical line (l ′) can be steered to anywhere in Φ2 by first
moving on FE . One may say that the dynamics is suitably modified on the boundary
FE so that x1 can decrease in the first quadrant. In the same way the system is
Φ5−controllable, but it is not Φ4−controllable (the states on the left of the line (l)
cannot be reached from the states in Φ2). The system is Φ5−controllable since as
illustrated a state x f that cannot be attained from x0 via a trajectory which remains in
Φ5 \ bd(Φ5) can be attained via a path x0ABx f . The fact that the dynamics changes
on the lower dimensional boundary makes it possible to decrease x1 while being in
the first quadrant.
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Further Reading

The above two results concern two “extreme” cases: D a P-matrix, and D = 0.
The cases D � 0, or D a P0-matrix deserve future investigations. Also, E and F have
a great importance for controllability. For instance, F nonzero may be interpreted, if
some assumptions hold, as a controlled, moving admissible set Φ(t) in the sweeping
process, while E nonzero means that the system can be controlled inside Φ. It is clear
that if the sets of Fig. 5.18 are controlled, the overall controllability problem is quite
different. The optimal control of first-order Moreau’s sweeping process is tackled
in [229, 298, 299]. Both the existence of an optimal control [298] and discrete-
time approximations [299] in case the control input u(·) appears only in the moving
set (equivalently only in the complementarity constraints for an LCS) are treated,
while [229] analyzed the case when the control input appears only in the differential
equation (and not in the moving set S(t)). These results are therefore an important
step toward the optimal control of both LCS and Moreau’s sweeping processes,
though in most applications like circuits, the feedthrough matrix D is not zero but
only � 0 so that the developments of Sect. 5.4.4.3 which link LCS and sweeping
processes do not apply straightforwardly. We may infer that the optimal control of
circuits modeled as LCS requires more.

5.4.6 Observability and Observers for LCS

The design of state observers for LCS has been tackled in [214, 217, 358, 514] inspired
by [205] , with extensions toward set-valued Lur’e systems (as differential inclusions
into normal cones to prox-regular time-varying sets) in [1181] and complementarity
Lagrangian systems in [1183].50 All these results make strong use of passivity, and
take great care of the observer’s well-posedness. The separation principle is shown
to hold in [514]. Observability has been studied in [255].

5.4.7 Complementarity Systems and Hybrid Dynamical
Systems

Hybrid dynamical systems (HDS) consist of any system that combines, one way
or another, continuous-time dynamics (differential equations) and some “events”
which are seen as discrete-time dynamics. It is therefore a huge class of dynamical
systems. They are usually described by modes, switches between modes, possi-
bly state jump rules. Obviously, complementarity conditions coupled to continuous
dynamics (linear system, nonlinear system like Lagrangian dynamics), with or with-
out state jumps, can be considered as HDS, whose “modes” or “regimes,” as well as

50Both [1181, 1183] embed the systems into Moreau’s sweeping process.
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transitions between them, and are ruled by the complementarity conditions. How-
ever, the class of general HDS is too large to constitute an interesting class. Comple-
mentarity systems, on the contrary, form a specific class of hybrid (or nonsmooth, or
discontinuous) dynamical systems, very rich in terms of its dynamics. It is a compact
formalism, with roots in modeling (contact and impact mechanics, circuits with set-
valued components), control (optimal control with state inequality constraints), and
in optimization (KKT conditions). It relies on mathematical tools from complemen-
tarity theory, variational inequalities, differential inclusions, convex and nonsmooth
analysis, and maximal monotone operators. This allows one to perform deep analy-
sis for their well-posedness, numerical analysis and simulation, stability and control,
and dynamical analysis. It allows also to treat specific phenomena like Zeno behav-
ior, variable structure systems encompassing switches between lower dimensional
state subspaces, and large quantities of constraints and switches, which can hardly
be taken into account in other, seemingly more general frameworks. Consider for
instance a complementarity system with several hundreds, or even several thousands
of constraints (a common case in practice, think of a granular system with thousands
of grains, unilateral contacts, and Coulomb’s friction): on one hand it is impossible
to describe such a complementarity system using “if” and “then” conditions (as in
a so-called hybrid automaton), since the number of modes increases exponentially
with the complementarity variables dimension. On the other hand, such a hybrid
point of view would hide the system’s structure and properties (to recall a few: the
fact that the normal cone to a convex set defines a maximal monotone mapping, or
the fact that very efficient numerical solvers exist to compute solutions of comple-
mentarity problems and their extensions). We conclude that it is at best useless to
describe complementarity systems within a hybrid system formalism based on hybrid
automata.51

Remark 5.23 Switching DAEs of the form Eσ ẋ(t) = fσ (x(t)) as studied in [1215]
allow for varying dimensions along system’s trajectories, coupled to state reinitial-
ization mappings at the switching times [1215]. This is clearly a nice feature not
shared by the various MDEs in (1.15), (1.23), (1.31), and (1.36). Complementarity
dynamical systems (CDS), which are equivalently rewritten as measure differen-
tial inclusions, or as evolution variational inequalities, may be seen as a particular
kind of switching DAEs (though this is not always the case, if for instance the
feedthrough matrix D � 0; and what about the case D � 0?). However, on one
hand the switching conditions in CDS are ruled by the complementarity conditions
which yield complementarity problems (a particularly compact and powerful way of
handling the switches); on the other hand, complementarity problems (equivalently
inclusions in normal cones to convex sets like Moreau’s set) make it possible to
get rid of the switching rules to study global properties like dissipativity, maximal

51Similar conclusions hold for other fields of control and systems, for example, sliding mode control
(SMC). Continuous plants controlled by SMC make hybrid closed-loop systems. However, they
possess specific features (set-valuedness of the input, existence of finite-time attractive surfaces)
and one would not gain anything by embedding them into a general HDS framework. The same
holds for switching systems with continuous vector field.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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monotonicity, existence and uniqueness of solutions (both to the switching rules and
to the dynamical system), etc.. Moreover, the switching signals σ in [1215] do not
allow for accumulations of switching instants (a common situation in CDS), and
are not state dependent, while they are in CDS. We conclude that switching DAEs
may be a very interesting mathematical framework in applications where the equal-
ity constraints change according to some exogenous signal (like in some chemical
process dynamics); however, they are not adapted to complementarity systems.

5.5 The Contact Problem with Coulomb’s Friction

5.5.1 Introduction

What about Lagrangian systems subject to Coulomb’s friction? As we saw in fore-
going sections, Coulomb’s law may be expressed in a linear complementarity frame-
work. However, this does not mean that Coulomb’s friction yields either an LCS or a
differential inclusion with maximal monotone right-hand side, when inserted in the
dynamics. This is the case in very simple cases, where the normal contact force at the
frictional contacts is constant. Consider the terms Ht,u(q, t)λt,u and Ht,b(q, t)λt,b in
(5.1). Suppose that each frictional contact is planar, i.e., we consider two-dimensional
friction. The vectors λt,u and λt,b collect the tangential components of the reaction
forces λt,u,i and λt,b,i , see the introduction of Sect. 5.1. According to Coulomb’s law
(see Sects. 5.3.1 and 5.3.2),

λt,u,i ∈ −μiλn,u,i sgn(Ht,u,i (q, t)T q̇) = −μiλn,u,i ∂|Ht,u,i (q, t)T q̇| (5.152)

and

λt,b,i ∈ −μi |λn,b,i | sgn(Ht,b,i (q, t)T q̇) = −μi |λn,b,i | ∂|Ht,b,i (q, t)T q̇|. (5.153)

Use has been made of (5.92), and of the fact that the local tangential velocities can be
expressed as vt,i = Ht,i (q)T q̇ , according to the invariance principle of Sect. 3.2. One
has Ht,u(q, t)λt,u =∑mu

i=1 Ht,u,i (q, t)λt,u,i , where Ht,u,i (q, t) is the i-th column of
Ht,u(q, t), and Ht,b(q, t)λt,u,b =∑mb

i=1 Ht,b,i (q, t)λt,b,i . The next step is to examine
the terms

Ht,u,i (q, t)λt,u,i ∈ −μiλt,u,i Ht,u,i (q, t) ∂|Ht,u,i (q, t)T q̇|

and
Ht,b,i (q, t)λt,b,i ∈ −μi |λt,b,i |Ht,b,i (q, t) ∂|Ht,b,i (q, t)T q̇|.

Notice that the subdifferential is calculated with respect to the components of the
tangential velocity, i.e., vt,i = Ht,i (q, t)T q̇. Suppose that for some reason, the normal
contact forces are known, bounded functions of time. Using Theorem B.2, it appears

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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that Ht,u,i (q, t)λt,u,i ∈ −∂gu,i (q̇) and Ht,b,i (q, t)λt,b,i ∈ −∂gb,i (q̇) where gu,i (·) and
gb,i (·) are convex, proper functions. Inserting these expressions in the dynamical
equations (5.1), one obtains the set-valued system:

M(q)q̈ + C(q, q̇)q̇ + G(q) = ∇ f (q, t)λn,u +∇h(q, t)λn,b + Fext + ∂g(q̇),

(5.154)
where g(q̇) = gu,1(q̇)+ . . .+ gu,mu (q̇)+ gb,1(q̇)+ . . .+ gu,mb(q̇).52 The
set-valued part of the right-hand side is a maximal monotone operator, being the sub-
differential of a proper convex function, see Lemma B.1. Proving the well-posedness
of the differential inclusion in (5.154) may be done, following [25], or [27] in the lin-
ear Lagrangian dynamics case. However, the conditions under which (5.154) holds
are quite stringent, rarely verified in practice where normal forces usually vary. These
developments may be led in the three-dimensional case where Ft ∈ R

2, using (5.93).

5.5.2 Dissipativity of the Constrained Lagrange Dynamics

Coulomb’s law is not associated, which means that the relationship satisfied by the
contact reaction force and the local frame velocity cannot be written as an inclusion
into the subdifferential of the indicator of a convex closed set (or more generally,
into the subdifferential of a proper, convex function). Despite of this fact, unilateral
contact with Coulomb’s friction defines a contact model that dissipates. Consider
that contact holds, so that from Proposition 5.3 one has 0 ≤ ∇ f (q)T q̇ ⊥ λn,u ≥ 0
(Signorini-in-velocity conditions). Then using the chain rule theorem B.2 one finds
that∇ f (q)λn,u ∈ −NTu(q)(q̇) where Tu(q) = {z ∈ R

n|∇ f (q)T z ≥ 0}. We know that
under the Mangasarian–Fromovitz constraint qualification in (B.9), this is the tangent
cone to the set Φu = {q ∈ R

n| f (q) ≥ 0}. Anyway, the interesting property here is
that it is nonempty and convex, so that λT

n,u∇ f (q)q̇ ≤ 0 since the normal cone map-
ping q̇ �→ −∇ f (q)λn,u is maximal monotone. Using (5.1), (5.152), and (5.153), pos-
ing Fext = u, and assuming the property that q̇(t)T

[
1
2

d
dt (M(q(t))− C(q(t), q̇(t))

]
q̇(t) = 0 (the matrix between brackets is skew-symmetric provided the Coriolis and
centrifugal forces are written with the Christoffel’s symbols associated with M(q)

[218, §6.1.2]), we find the following dissipation equality including friction, with
E(q, q̇) = T (q, q̇)+U (q) the total mechanical energy:

E(t2)− E(t1) =
∫ t2

t1

u(t)T q̇(t)dt −
∫ t2

t1

D(q(t), q̇(t))dt, (5.155)

52The subdifferential of a sum of convex proper functions (which is itself convex proper [1045,
Theorem 5.2]) is equal to the sum of their subdifferentials, under some mild conditions [1045,
Theorem 23.8] which are satisfied here.
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for all t2 ≥ t1 ≥ 0, and the dissipation function is

D(q, q̇) = −q̇T∇ f (q)λn,u +∑mb
i=1 |λb,i |μi Ht,b,i (qi )q̇i sgn(Ht,b,i (qi )q̇i )

+∑mb+mu
i=mb+1 |λu,i |μi Ht,u,i (qi )q̇i sgn(Ht,u,i (qi )q̇i ) ≥ 0.

(5.156)

Remark 5.24 In view of the complementarity conditions, we could just write that
λT

n,u∇ f (q)T q̇ = 0. We have left here an ambiguity because it is not clear whether
q̇ means q̇(t−) or q̇(t+), and whether λn,u means λn,u(t−) or λn,u(t+). This could
be important if we want to take impact times into account. If we work with right
velocities and right multipliers, then λn,u(t+)T∇ f (q)T q̇(t+) = 0. Using the material
in Sect. 7.5.3, it is possible to extend the dissipation equality to impact times, but
taking care of conditions such that the collision rule is indeed dissipative.

�Wehavenot analyzed theproblemof existenceanduniqueness of themultipliersλn,
and we have implicitly assumed that the dynamics is well-posed to get the dissipation
equality. This is not guaranteed, even if we look at the system just locally in time
during a permanent contact phase. In the next section a partial answer is given.

5.5.3 Extension of the Results of Sects. 5.1.1, 5.1.2, 5.1.3?

The question mark in the section’s title is intentional. In these sections, the well-
posedness of the contact problem is tackled. The symmetry and positive definiteness
of the LCP matrices are central properties which allow one to infer existence, unique-
ness, as well as Gauss’ principle extensions. Consider the case with only unilateral
constraint and M(q) � 0. Using (5.1), the contact complementarity problem takes
the following form:

0 ≤ λn,u ⊥ f̈ (q) = ∇ f (q)T M(q)−1(∇ f (q)λn,u + Ht,u(q)λt,u)+ b(q, q̇, t) ≥ 0,

(5.157)

where b(q, q̇, t) is as in (5.9). One then has to use the expression for λt,u from
Coulomb’s law to find the contact LCP. Let us suppose for simplicity that the friction
is planar at each contact i , i.e., λt,u,i ∈ −μiλn,u,i sgn(vt,u,i ). Grouping terms we can
rewrite more compactly λt,u ∈ −[μi sgn(vt,u,i )]λn,u , where [ai ]=diag(ai ). Thus the
contact complementarity problem (5.157) is rewritten as

0 ≤ λn,u ⊥ ∇ f (q)T M(q)−1(∇ f (q)

Δ=Pμ(q)︷ ︸︸ ︷
−Ht,u(q)[μi sgn(vt,u,i )])︸ ︷︷ ︸

Δ=Dμ
u (q)

λn,u + b(q, q̇, t) ≥ 0.

(5.158)

http://dx.doi.org/10.1007/978-3-319-28664-8_7
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It is therefore apparent that the contact LCP matrix Dμ
u (q) is the frictionless Delassus’

matrix Du(q) in (5.9), plus a perturbation Pμ(q) due to friction. Obviously, both the
coefficient of friction and the tangent velocity sign will play a role in the contact LCP
well-posedness. Since the Delassus’ matrix Du(q) = D0

u(q) � 0, it is natural to look
for perturbations which do not destroy the positive (semi) definiteness, though the
symmetry will generally be lost (however, the symmetry is not necessary for the LCP
well-posedness). Here we use Theorem 5.8, which has practical interest because it
involves maximum singular values of known matrices.

Proposition 5.24 Assume that the active unilateral constraints are independent
(⇒ Du(q) � 0). Then if σmax(Pμ(q)) < σmin(Du(q)), one has Dμ

u (q) � 0.

The proof follows from Theorem 5.8, noting that σmin(Du(q)) = 1
σmax(Du(q)−1)

. It is
clear that if the coefficients μi are small enough, the proposition’s inequality is
satisfied. An upperbound μmax can be calculated from the expression of Pμ(q) in
(5.158). Obviously, such criterion is in general conservative; however, this is the
price to pay for generality. Another result is as follows:

Proposition 5.25 Assume that the active unilateral constraints are independent, and
that q, vt,u = Ht,u(q)T q̇ andμi , 1 ≤ i ≤ mu are such that all the entries of Pμ(q) are
nonnegative. Suppose further that 0 ≤ z ⊥ Dμ

u (q)z ≥ 0 ⇒ q̇T b(q, q̇, t) ≥ 0. Then
the contact LCP in (5.158) is solvable.

The proof uses Theorem 5.6, noting that the conditions of the proposition guarantee
that Dμ

u (q) is copositive. Both Propositions can be used to guarantee that the contact
LCP possesses a solution λn for any b(q, q̇, t) in sliding regimes. In sticking regimes
the LCP alone cannot yield λn because the selection of sgn(vt) =sgn(0) remains to
be determined.

Remark 5.25 It is noteworthy that Dμ
u (q) has no reason to be symmetric in general.

Thus the equivalence between the LCP and a quadratic program no longer holds
(more precisely, the LCP does not represent the necessary conditions of optimality
of a quadratic program via the Karush–Kuhn–Tucker conditions). This is related to
Gauss’ principle of Solid Mechanics, which usually does not hold when Coulomb’s
friction is present (though some relaxation of it may be proposed [160, Sect. 3.3.2]).
When Tresca’s friction is modeled, then Gauss’ principle extends with a specific cost
function [1015] (see [595, Eq. (3.6)]).

5.5.4 The Contact Problem for a Planar Particle

Let us analyze the system in Fig. 5.19a, which consists of a particle P subject to a
unilateral constraint with Coulomb friction and coefficient μ > 0, Coulomb’s cone
C , and acted upon by a force F = (Fx Fy)

T , i.e., F = Fx i+ Fyj. The contact reac-
tion force is R = λnn + λtt ∈ C . The objective is to study all the modes of this
system: static equilibrium, sliding, detachment, depending on the angles α, and
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β = arctan(μ), as well as the applied force F . The particle is subject to a unilat-
eral constraint f (q) = y cos(α)− x sin(α) ≥ 0, with α ∈ (0, π

2 ). In fact f (q) cor-
responds to the second coordinate xn of P in the frame (t, n), which obviously
satisfies xn ≥ 0. Thus 0 ≤ f (q) ⊥ λn ≥ 0. One has ∇ f (q) = (− sin(α) cos(α))T ,
and Ht = (∇ f (q))⊥ = (cos(α) sin(α))T . The contact force is also given by R =
(−λn sin(α)+ λt cos(α))i+ (λn cos(α)+ λt sin(α))j. We may also introduce the

rotation matrix between the two frames:

(
Rx

Ry

)
=
(

cos(α) − sin(α)

sin(α) cos(α)

)(
λt

λn

)
.

Therefore, the dynamics of the particle is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mq̈ =
(− sin(α)

cos(α)

)
λn +

(
cos(α)

sin(α)

)
λt +

(
Fx

Fy

)
=
(
Rx

Ry

)
+
(
Fx

Fy

)

0 ≤ f (q) ⊥ λn ≥ 0
λt ∈ −μλnsgn(HT

t q̇)

q(0) = q0, q̇(0) = q̇0,

(5.159)

with M =diag(m), and vt = HT
t q̇ = cos(α)ẋ + sin(α)ẏ. Notice that we could equiv-

alently write the dynamics directly in the frame (t, n): M

(
v̇t

v̇n

)
=
(

Ft + λt

Fn + λn

)
, with

F = Ftt + Fnn, vn = ∇ f (q)T q̇; however, this does not change the next analysis. As
we are going to see through rigorous calculations and analysis, the regimes of the
particle depend as expected on whether F(t) is outside or inside the friction cone.

5.5.4.1 The Contact LCP and System’s Modes

Few calculations show that the contact LCP is given by

0 ≤ λn + cos(α)Fy − sin(α)Fx︸ ︷︷ ︸
=Fn

⊥ λn ≥ 0 (5.160)

where the factor 1
m has been dropped. The LCP matrix is Du = 1, thus from Theorem

5.4 there is always a unique solution. It is noteworthy that the tangential reaction does
not appear in the contact LCP: there is a dynamical normal/tangential decoupling
because HT

t M−1∇ f (q) = 0. We infer that the contact mode is assured provided
that cos(α)Fy − sin(α)Fx < 0 ⇒ λn = − cos(α)Fy + sin(α)Fx > 0: in the contact
mode the normal multiplier is a function of the applied force F only, and is indepen-
dent of λt . It follows that λn = −Fn in the contact mode, which is merely the particle
equilibrium in the normal direction. Thus the contact mode is active in the following
cases:

• Fy < 0 and Fx ≥ 0,
• Fy ≥ 0 and Fx > 0 and Fy

Fx
< tan(α),

• Fy < 0 and Fx < 0 and Fy

Fx
> tan(α).
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In case Fy > 0 and Fx ≤ 0 there is detachment from the constraint since λn = 0
and f̈ (q) > 0 (recall that we are working with right-continuous accelerations and
multipliers). Notice that during contact one has f (q) = ∇ f (q)T q̇ = 0, that is
ẏ cos(α) = ẋ sin(α). Therefore vt = ẋ

cos(α)
= ẏ

sin(α)
. Let us now determine whether

the contact is in sticking or sliding mode. For this let us calculate using (5.159):
mv̇t = ẍ

cos(α)
= sin(α)Fy + cos(α)Fx + λt . If vt �= 0 the contact is sliding. If vt = 0

and v̇t = 0, the contact is in persistent sticking, if vt = 0 and v̇t �= 0 the contact is in
transition from sticking to sliding.

Let us assume that the particle tangentially sticks, i.e., vt = 0 ⇔ ẋ = ẏ = 0.
Let us use the Coulomb-in-acceleration model introduced in Sect. 5.3.4 to deter-
mine the stick/slip transition conditions. One has λt ∈ −μλnsgn(v̇t) if v̇t �= 0. From
the above we obtain λt ∈ μ(cos(α)Fy − sin(α)Fx )sgn(sin(α)Fy + cos(α)Fx + λt).
This is equivalent, using the material in Appendix B (in particular, the fact that sup-
port functions are conjugate of the indicator function, as well as equivalences in Sect.
B.2.1), to (recall that Ft = sin(α)Fy + cos(α)Fx and Fn = − sin(α)Fx + cos(α)Fy ,
so that mv̇t = Ft + λt)

sin(α)Fy + cos(α)Fx + λt ∈ N[−1,1]
(

λt
μ(cos(α)Fy−sin(α)Fx )

)
#

λt = μ(cos(α)Fy − sin(α)Fx )proj
(
[−1, 1];− sin(α)Fy+cos(α)Fx

μ(cos(α)Fy−sin(α)Fx )

)
#

λt = μFnproj
(
[−1, 1]; −Ft

μFn

)
.

(5.161)

We can now examine the conditions such that indeed v̇t �= 0 using (5.161). (i)

Suppose that
∣∣∣ sin(α)Fy+cos(α)Fx

μ(cos(α)Fy−sin(α)Fx )

∣∣∣ ≤ 1, equivalently |Ft |
|Fn| ≤ μ⇔ F ∈ C , then λt =

− sin(α)Fy − cos(α)Fx = −Ft , and v̇t = 0. Thus this case does not correspond to a
stick/slip transition. (ii) Suppose that −Ft

μFn
< −1 ⇔ Ft < μFn < 0, then mv̇t = Ft −

μFn < 0. (iii) Suppose that −Ft
μFn

> 1 ⇔ Ft > −μFn > 0, thenmv̇t = Ft + μFn > 0.
We infer that cases (ii) and (iii) correspond to a transition from stick to slip with vt = 0
and v̇t �= 0, while case (i) corresponds to persistent sticking mode with vt = 0, v̇t = 0
and tangential equilibrium Ft + λt = 0.

Let us now deal with the sliding regime vt �= 0. In this case λt = −μλn(±1) =
μ(cos(α)Fy − sin(α)Fx )(±1). If the initial conditions are such that vt(0) �= 0, then
the sliding mode will persist during a certain time, depending on the applied
force F .

The transition from sliding to sticking involves the integration of the dynamics.
The sticking mode may be attained via an infinity of trajectories. This is quite similar
to the normal stabilization on the constraint boundary (e.g., after a sequence of
impacts). This is related to the fact that such events render the dynamics irreversible
in time.

Remark 5.26 Let F(t) ∈ Int(C ) for all t ≥ 0 and vt(0−) �= 0. Is there a contradiction
with the above analysis? This analysis says that if vt(0) = 0 and if F is in the friction



5.5 The Contact Problem with Coulomb’s Friction 335

cone, then the sticking mode persists because the tangential acceleration v̇t = 0 as
well. However, it is quite possible that the system slides on the constraint boundary
while all forces balance each other: F + R = 0.

5.5.4.2 Well-Posedness of the Contact Dynamics

Proposition 5.26 Let f (q(0)) = 0,∇ f (q(0))T q̇(0) = 0, and Fn(t) < 0 ⇔ λn(t) >

0 for all t ≥ 0. Let also F(·) be a bounded locally integrable function. Then the sys-
tem (5.159) has a global solution with absolutely continuous q̇(·) and continuously
differentiable q(·) for any initial vt(0).

Proof Under the stated assumptions, the particle is in persistent contact with the
constraint boundary, and λn(t) = −Fn(t). Consider the dynamics in the frame (t, n).
The tangential part reads as mv̇t ∈ {Ft(t)} − μFn(t)sgn(vt). This is a differential
inclusion of the form ż(t) ∈ F(t, z(t)). Using the assumption on F(t), the set-valued

function z �→ G(t, z) is upper semi-continuous for all t ≥ 0. Moreover, g(t)
Δ= Ft +

μFn(t) ⊂ G(t, z) for any z with g(·) Lebesgue measurable. Third, |g(t)| ≤ b for
some bounded b. Thus [1120, Theorem 4.7] applies to the tangential part of the
dynamics. The normal part reduces to mv̇n(t) = 0.

Here we could prove the proposition because the dynamics is first-order in vt .
In general, it is second order because the position is present in the dynamics. Then
the well-posedness is more complex to show, see [82] for a system of the form
üt(t)+ Ktut(t) ∈ ∂ψ


I (t)(−u̇t(t)), where u̇t = vt and I (t) is an interval that depends
on ut(t) and λn(t).

5.5.5 A Second Simple Mechanism with Friction

We now consider the mechanism depicted in Fig. 5.19b. The objective is to determine
the conditions under which the vertical rod’s tip P may slide on the horizontally
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Fig. 5.19 Two simple systems with Coulomb’s friction and unilateral contact. a Particle P with
unilateral contact and Coulomb friction. b A 2-degree-of-freedom mechanism
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moving workpiece with mass m1, or may stick on it, when contact is established and
a force F = (Fx , 0)T acts on the workpiece. The rod’s mass is m2, and α ∈ [0, π

2 ]. It
is constrained by a frictionless prismatic joint. The coordinates of P in the Galilean
frame (O0, i0, j0) are x0 = l and y0, and in (O1, i1, j1) they are x1 = l − q1 and
y1 = y0 − h, where the coordinates of O1 in (O0, i0, j0) are q1 and h. Both l and
h are arbitrary constants. The system has generalized coordinates q = (q1, y0)

T .
Starting from the coordinates (xt, xn) of P in the frame (O1, t, n)T , one obtains from
xn = − sin(α)x1 + cos(α)y1 ≥ 0 the unilateral constraint f (q) = (q1 − l) sin(α)+
(y0 − h) cos(α) ≥ 0. Thus ∇ f (q) = (sin(α) cos(α))T . We infer that the dynamics
is given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
m1q̈1

m2 ÿ0

)
=
(

sin(α)

cos(α)

)
λn +

(− cos(α)

sin(α)

)
λt +

(
Fx

0

)

0 ≤ f (q) ⊥ λn ≥ 0
λt ∈ −μλnsgn(HT

t q̇)

q(0) = q0, q̇(0) = q̇0,

(5.162)

where vt = HT
t q̇ = − cos(α)q̇1 + sin(α)ẏ0. From the expression of d2

dt2 f (q(t)) =
∇ f (q)T q̈ one obtains the contact LCP:

0 ≤ m1 cos(α)2 + m2 sin(α)2

m1m2
λn + m1 − m2

m1m2
cos(α) sin(α)λt + sin(α)

m1
Fx ⊥ λn ≥ 0

(5.163)
Excepted if m1 = m2, the tangential reaction appears in the contact LCP: there is no
decoupling, unlike the foregoing case. Therefore, the LCP matrix may be modified
by the tangential effects.

5.5.5.1 Sliding Contact

Let the contact slide, i.e., vt �= 0 and λt = −sgn(vt)μ λn. The LCP matrix (here a
scalar) is calculated to be

Dμ
u (vt,m1,m2, α)

Δ= m1 cos(α)2 + m2 sin(α)2 − sgn(vt)μ(m1 − m2) cos(α) sin(α)

m1m2
(5.164)

Several cases have to be considered:

• (i) Dμ
u > 0 ⇔ m1 cos(α)2 + m2 sin(α)2 > sgn(vt) μ (m1 − m2) cos(α) sin(α):

there is a unique solution λn. (ia) If sin(α)Fx > 0 then λn = 0 and there is a
transition from contact to noncontact mode. (ib) If sin(α)Fx < 0 then λn > 0 and
contact is kept. (ic) If Fx = 0 then λn = 0: the system is grazing the constraint
boundary. Higher order derivatives have to be examined to determine if contact is
kept or not.

• (ii) Dμ
u < 0 ⇔ m1 cos(α)2 + m2 sin(α)2 < sgn(vt) μ (m1 − m2) cos(α) sin(α):

(iia) the contact LCP has the solution λn = 0 if and only if sin(α)Fx ≥ 0 (in
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this case there is a transition from contact to noncontact mode). (iib) Otherwise,
there is no solution for the normal multiplier.

• (iii) Dμ
u = 0 ⇔ m1 cos(α)2 + m2 sin(α)2 = sgn(vt) μ (m1 − m2) cos(α) sin(α).

The contact LCP is 0 ≤ sin(α)

m1
Fx ⊥ λn ≥ 0. Three cases may be considered (iiia)

sin(α)Fx = 0, (iiib) sin(α)Fx > 0, (iiic) sin(α)Fx < 0.

The novelties with respect to the particle system are cases (iib) and (iii). Suppose
that the system is initialized at time t in a sliding mode such that case (iib) occurs.
What happens in such an inconsistent case (no solution)? One solution is to augment
the model, and to allow the system to jump to a sticking mode with the right velocity
vt(t+) = 0. Suppose indeed that Dμ

u (vt(t−)) < 0 with vt(t−) �= 0. Without loss of
generality let vt(t−) > 0 (⇒ m1 > m2). Then sgn(vt(t+)) =sgn(0) = [−1, 1]. Thus
there is a selection ξ(t) ∈ [−1, 1] such that Dμ

u (vt(t+)) > 0, since it suffices to choose
ξ(t) < 0 to get the desired result, with (λt(t+), λn(t+))T ∈ C . The same applies if
vt(t−) < 0 (⇒ m2 > m1), and ξ(t) > 0. The next step is to examine whether or not
the contact remains sticking, or if it could slide again after this “tangential impact”.53

Let m1 > 0 and m2 > 0. Case (iii) can occur only if sgn(vt) (m1 − m2) cos(α)

sin(α) > 0, so that α ∈ (0, π
2 ) and either (a) (vt > 0 and m2 > m1), or (b) (vt < 0

and m1 < m2). This case (iiia) implies Fx = 0. Consider case (a). Calculations from
Dμ

u = 0 yield μ = tan(α)+ m1
m1−m2

1+tan(α)2

tan(α)
, hence tan(β) = μ > tan(α), equiva-

lently β > α: the cone is as in Fig. 5.19b with the dashed lines. The contact LCP
in case (iiia) is 0 ≤ 0 ⊥ λn ≥ 0. A value λn > 0 occurs if the system is initialized
in a sliding mode with vt > 0: the contact force lies on the boundary ∂C , and the
accelerations q̈1 and ÿ0 create the inertial forces that dynamically balance the system.
The value λn = 0 is also possible, from the dynamics and Coulomb’s law it implies
q̈1 = ÿ0 = 0 and hence v̇t = 0 as well. Thus the system just grazes the constraint
boundary (the rod’s tip grazes the mass m1) with constant vt , and vn = 0 if initially
∇ f (q)T q̈ = v̇n = 0 (for otherwise if v̇n > 0 detachment from the constraint occurs).
A similar reasoning applies in case (b). Consider now case (iiib), i.e., Fx > 0. Then
we obtain ∇ f (q)T q̈ = v̇n > 0 and λn = 0: detachment from the constraint occurs
because one pulls the mass m1 toward the right. Assume now that initially case
(iiic) occurs for some vt . The only solution (at least from the mathematical point of
view) is to escape from such a situation. Let us try the rule that consists of impos-
ing a jump in vt so that vt(t+) = 0. In fact if the conditions for Dμ

u = 0 hold with
say, vt(t−) > 0, then there always exists a selection ξ(t) ∈ [−1, 1] = sgn(vt(t+))

such that they no longer hold on the right of this instant: it suffices that ξ(t) < 0.
Even better, there always exist such a ξ(t) such that Dμ

u > 0: it suffices to choose
it small enough so thatm1 cos(α)2 + m2 sin(α)2 > ξ(t) μ (m1 − m2) cos(α) sin(α).
It remains to determine ξ(t).

53As we shall see later with the Painlevé’s paradoxes, such jump in the tangential velocity may be
given a physical meaning, using a compliant model in the normal direction and letting the contact
stiffness diverge to infinity.
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Remark 5.27 It is noteworthy that a small enough μ < μmax can cure all the above
diseases by guaranteeing Dμ

u > 0 whenever vt �= 0 and for anym1,m2 andα, in accor-
dance with Proposition 5.24. Here μmax = m1 cos(α)2+m2 sin(α)2

|m1−m2| cos(α) sin(α)
(if m1 = m2 clearly

Dμ
u = Du > 0 whatever μ: in such a case the mass matrix is mI2 and the normal and

tangential directions make a kinetic angle π
2 , hence are dynamically decoupled).

5.5.5.2 Sticking Contact

Let us now assume that the contact is established with λn > 0 and is in a sticking
mode vt = 0 (and f (q) = 0). As for the foregoing system, our objective is to use
the acceleration Coulomb’s law to determine the conditions for stick/slip transitions
with v̇t �= 0, or such that sticking persists with v̇t = 0. Additional conditions are
f (q) = 0 and ∇ f (q)T q̇ = vn = 0 (for if vn > 0 the constraint is deactivated and
λn(t+) = 0). If one wants to study the conditions under which contact persists then
one adds ∇ f (q)T q̈ = v̇n = 0, which forces a particular mode of the contact LCP
(we call it the normal/tangential stick/stick mode). But if one admits that the system
may detach from the constraint then v̇n ≥ 0 and the contact LCP holds.

The normal/tangential stick/stick mode implies that q̈1 = ÿ0 = 0, and using the
dynamical equation one finds λn = − sin(α)Fx , λt = − cos(α)Fx . The constraint of
the friction cone then implies that 1

tan(θ)
< μ = tan(β), hence β > π

2 − α. In such a

case F = (Fx , 0)T ∈ C .
One has v̇t = cos(α)q̈1 − sin(α)ÿ0 = aλn + bλt + cFx , with a = m1−m2

m1m2
cos(α)

sin(α), b = m2 cos(α)2+m1 sin(α)2

m1m2
, c = cos(α)

m1
, where the first equation in (5.162) has

been used. When v̇t �= 0 Coulomb’s law in acceleration states that λt = −μλnsgn(v̇t).
Therefore, the stick/slip transition may occur if and only if the following generalized
equation: ⎧⎨

⎩
0 ≤ Duλn + aλt + sin(α)

m1
Fx ⊥ λn ≥ 0

λt ∈ −μλnsgn(aλn + bλt + cFx )

v̇t = aλn + bλt + cFx ,

(5.165)

is solvable (recall Du = D0
u). If it has a solution with aλn + bλt + cFx = 0 then the

normal/tangential stick/stick mode may occur (notice that for the previous particle
case, problem (5.165) was greatly simplified since it was possible to choose the
external forces such that the contact LCP holds with λn explicitly known). If v̇t > 0
then the LCP matrix in (5.165) is Du − aμ. If v̇t < 0 then it is equal to Du + aμ. One
infers that there is always a possible mode where λn is unique, provided sgn(v̇t) =
−sgn(a). The LCP matrix is equal to Dμ

u (v̇t,m1,m2, α) in (5.164). The situation
is, however, different here because the system in (5.162) is an initial value problem
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(IVP) for which the initial velocities and positions are arbitrary. Now we are in the
process of choosing the acceleration, that is not a priori imposed. This is why we
can safely choose a mode in which Dμ

u (v̇t,m1,m2, α) > 0, and such a mode always
exists.

Using (B.10), the support function definition and the material in Sect. B.2.1, let
us rewrite (5.165) equivalently as:

⎧⎨
⎩
aλn + bλt + cFx ∈ −∂Ψ[−μλn,μλn](λt)

Duλn + aλt + sin(α)
m1

Fx ∈ −∂ΨR+ (λt)

⇔

⎧⎪⎨
⎪⎩

λt = proj
([−μλn, μλn];− a

b λn − c
b Fx

)

λn = proj
(
R
+;−D−1

u (aλt + sin(α)
m1

Fx )
)

(5.166)

It may be checked using (5.166) that v̇t > 0 ⇔ aλn + cFx > −bλt ⇒ − a
bλn −

c
b Fx < −μλn ⇒ λt = −μλn. Similarly for v̇t > 0 and v̇t = 0. Starting from (5.157)
an extension of (5.166) may be obtained, which provides a general way to treat the
frictional contact problem in sticking mode.

5.5.6 Non-Uniqueness of the Contact Force

Let us consider the system depicted in Fig. 5.20. Friction acts at each contact point
A1 and A2, with coefficients μ1 and μ2. The friction cones are depicted with dashed
lines. Each friction cone has therefore a half-angle θi = arctan(μi ), or tan(θi ) = μi .
In Fig. 5.20 (a) we have θi < π

2 − α, while in Fig. 5.20 (b) we have θi > π
2 − α.

The question is to know whether there exists none, a unique, or several contact
forces which enable to keep the disk in contact with both points, while gravity
is present and tends to pull the disk downward. In other words, can we find a

m

α

O

−mg

f1(q) = 0

1
2

α

j

j

α

A1 A2 A1

t2

α

A2

1

n1
n2

2

m

t1

f2(q) = 0

−mg

f2(q)> 0
f1(q)> 0

(a) (b)

Fig. 5.20 A disk jammed in an angle
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contact force inside the friction cones which can compensate for gravity? Clearly
in case (a) no contact force inside the cones may compensate for gravity: the disk
falls down. In case (b) an infinity of admissible contact forces may compensate for
gravity and keep the disk jammed in the angle. Let the coordinates of the disk geo-
metric center be x and y in the frame (O, i, j), and the disk orientation is θ , i.e.,
q = (x, y, θ)T . The local kinematics are defined with the frames (A1, t1, n1) and
(A2, t2, n2). There are two unilateral constraints which express the signed distances
at each contact point A1 and A2: f1(q) = sin(α)x − cos(α)y − r ≥ 0 and f2(q) =
− sin(α)x − cos(α)y − r ≥ 0. Thus ∇ f1(q) = (sin(α),− cos(α))T and ∇ f2(q) =
(− sin(α),− cos(α))T . We assume that α ∈ [0, π

2 ]. From Varignon’s formula we
infer the expression ofVA1 which yields vt,1 = Ht,1(q)T q̇ = − cos(α)ẋ − ẏ sin(α)+
(x sin(α)− y cos(α))θ̇ . Similarly for the other contact with VA2 which yields
vt,2 = Ht,2(q)T q̇ = − cos(α)ẋ + ẏ sin(α)− (x sin(α)+ y cos(α))θ̇ . The dynamics
is written as follows:

⎛
⎝mẍ(t)
mÿ(t)
I θ̈ (t)

⎞
⎠ =

⎛
⎝ sin(α) − cos(α)

− cos(α) − sin(α)

0 x sin(α)− y cos(α)

⎞
⎠
(

λn,1(t)
λt,1(t)

)

+
⎛
⎝− sin(α) − cos(α)

− cos(α) sin(α)

0 −x cos(α)− y sin(α)

⎞
⎠
(

λn,2(t)
λt,2(t)

)
+
⎛
⎝ 0
−mg

0

⎞
⎠

0 ≤ λn,1(t) ⊥ f1(q(t)) ≥ 0, 0 ≤ λn,2(t) ⊥ f2(q(t)) ≥ 0.

(5.167)

Let us investigate the conditions that yield a static equilibrium with both contacts
active. For that it is necessary that the two contact forces compensate for gravity.
Taking ÿ(t) = 0 this yields the following equation:

− cos(α)λn,1 − sin(α)λt,1 − cos(α)λn,2 + sin(α)λt,2 = mg
#

λn,1 cos(α)[tan(α) tan(θ1)ξ1 − 1] − λn,2 cos(α)[tan(α) tan(θ2)ξ2 + 1] = mg,
(5.168)

with ξ1 ∈ sgn(vt,1) and ξ2 ∈ sgn(vt,2) (here both vt,1 = vt,2 = 0 and there is no rea-
son that ξ1 = ξ2

54), and λt,i = −μiλn,iξi . The case of Fig. 5.20 (a) corresponds
to tan(α) tan(θ1) < 1 and tan(α) tan(θ2) < 1. Then tan(α) tan(θ1)ξ1 − 1 < 0 and
− tan(α) tan(θ2)ξ2 + 1 < 0 for any ξ1, ξ2 ∈ [−1, 1]. Therefore, the Eq. (5.168) has
no solution and there are no reaction forces which may compensate for gravity. Now
suppose that tan(α) tan(θ1) > 1 and tan(α) tan(θ2) > 1, which is the case in Fig. 5.20
(b). Then there exists ξ1 ∈ [−1, 1] and ξ2 ∈ [−1, 1] such that tan(α) tan(θ1)ξ1 − 1 >

0 and tan(α) tan(θ2)ξ2 + 1 < 0. We can now solve the equation in (5.168) as
λn,1 = mg+cos(α)[tan(α) tan(θ2)ξ2+1]λn,2

cos(α)[tan(α) tan(θ1)ξ1−1] . Due to the symmetry of the geometry we may take

λn,1 = λn,2 = λn which leads to λn = 1
cos(α)

mg
tan(α) tan(θ1)ξ1−1−tan(α) tan(θ2)ξ2−1 > 0. If

λn,1 = λn,2 = λn the static equilibrium along the (O, i) axis yields the

54A common mistake is to state that ξ1 = ξ2 because they both belong to sgn(0), which is wrong.
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necessary and sufficient condition tan(θ1)ξ1 = − tan(θ2)ξ2 ⇔ μ1ξ1 = −μ2ξ2.
Therefore, λn(t) = 1

cos(α)

mg
tan(α) tan(θ1)[ξ1(t)+ξ2(t)]−2 . We see using the above conditions

that in case (b) there is an infinity of choices for ξ1 + ξ2 such that λn(t) > 0.
We may also want to analyze the contact LCP as in (5.158). Certainly, the con-

ditions of Proposition 5.24 will hamper the static equilibrium since they guarantee
uniqueness.

5.5.7 Comments

1. The above problem was treated in details (most probably for the first time, when
complementarity theory was not yet born) in the frictionless case by Etienne
Delassus [333, 335].

2. From the point of view of the dynamics’ well-posedness, such contact force
nonuniqueness issues may not have serious consequences if the motion is unique.
From this point of view this is the same as a hyperstatic system (a chair with
four legs in static equilibrium on a rigid ground) for which an infinity of contact
forces guarantees the equilibrium. Hyperstaticity is, however, due to dependent
constraints yielding a singular contact gradient matrix, while here it is rather the
set-valued feature of Coulomb’s friction which is the cause of non-uniqueness.
Moreover, non-uniqueness issues due to hyperstaticity may be cured by intro-
ducing compliance at the contacts. This is not the case for the problem we just
studied: normal compliance at A1 and A2 will not imply uniqueness of the con-
tact forces, because Coulomb’s friction is the source of the problem. One should
also regularize Coulomb’s friction law, thereby destroying set-valued sticking
modes.

3. As is known one way to recover uniqueness of contact forces is to introduce
some compliance at the contact in the normal direction, or to consider a flexible
body. However, first the choice of a good compliant model may not always be
obvious; second, this may yield stiff differential equations; third, the estimation
of the compliant model parameters may not be straightforward.

4. The behavior of numerical algorithms facing such situations also has to be con-
sidered. This is discussed in [899] for time-stepping schemes (see Sect. 5.7.3):
the iterative solver used to solve the one-step nonsmooth problem (for instance
a Gauss–Seidel algorithm) chooses one particular contact force which depends
on the initial guess.

5. A general analysis of three-dimensional sticking unilateral contact with face-
tized friction cone is made in the seminal article [963] and others [1216, 1217].
Coulomb in acceleration is used for stick-to-slip transition analysis. An LCP
0 ≤ λ ⊥ Aλ+ q ≥ 0 (whose unknowns are the contact force multipliers λ) is
built and it is proved that under the assumption that qTλ ≥ 0 for all λ inside
the friction cones minus the kernel of the contact matrices, then the all-sticking
case is always solvable. In [46], sliding friction is assumed and the notion of
disassemblable system is introduced, which implies the copositivity of the LCP
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matrix and the solvability of the contact LCP for small enough friction coeffi-
cient.

5.6 Painlevé’s Paradoxes: Sliding Rod Example

The system of Sect. 5.5.4 has no couplings between tangential and normal directions
at contact (see the contact LCP in (5.160), while the system in Sect. 5.5.5 has nonzero
couplings (see the contact LCP in (5.163) and the LCP matrix in (5.164)). The
consequences are a more complex behavior, and some inconsistent configurations.
Let us now analyze a system which has couplings also, and in addition the LCP
matrix depends on the configuration q, which is not the case of Dμ

u in (5.164).
Inconsistencies and indeterminacies due to Coulomb’s friction have been known

for a long time [116, 117, 161, 334, 336, 498, 499, 619, 674, 712, 761, 862, 955,
1016]. They may be considered as the dynamical counterpart of the well-known
locking phenomenon of statics.55 Historically, they have been noticed by Jellet [619]
and have been made popular by the French scientist Paul Painlevé [954, 955]. The
possibility of solutions with velocity discontinuities (which may be thought of as
tangential impacts) has been first recognized by Lecornu [712], or perhaps more or
less at the same time by Bolotov [161]. For this reason Moreau named tangential
impacts Lecornu’s frictional catastrophes [894]. As we shall see next, the classical
sliding rod system has indeterminacies (the contact LCP has several solutions) and
inconsistencies (the contact LCP has no solution). There is a peculiarity of this
system: if initialized in a well-posed sliding regime where its dynamics is an ODE,
it may reach the neighborhood of a point in the (θ, θ̇ ) plane (θ is the rod orientation)
where the ODE has a singularity. Moreover, this singular ODE cannot be analyzed
with the results available in the mathematical literature on singular ODEs. The first
detailed results on this particular feature of the Painlevé classical example were
published in [436, 437].

5.6.1 The Dynamics of Painlevé’s Example

Let us consider the example of a planar slender rod sliding on a rigid surface, with
Coulomb’s friction at the contact point A, as depicted in Fig. 5.21. We have ||AG|| =
l, the half length of the rod, and we suppose for simplicity that m = 1 kg, so that the
inertia moment along (G, z) is I = l2

3 kg m2. We introduce two sets of generalized
coordinates: q = (x, y, θ)T and z = (xa, ya, θ)T . In q-coordinates, the constraint is
given by:

55Which is, by the way, extremely useful in some practical instances, where one desires to prevent
any relative motion between two bodies.
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Fig. 5.21 Painlevé’s
example
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−g
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θ

l

f (q) = y − l sin(θ) ≥ 0, (5.169)

and by
f (z) = ya ≥ 0 (5.170)

in z-coordinates.56 The external actions on the rod are gravity plus the reaction at

the contact point A, i.e.,

(
λt

λn

)
, in the Galilean frame.57 The friction coefficient is

μ ≥ 0. We assume that contact is established, and that ẋa is negative (one “pushes” the
rod), hence λt ∈ −μλnsgn(ẋa) = μλn. It is also supposed that the orientation satisfies
θ ∈ (0, π

2 ), for otherwise a negative ẋa would correspond to “pulling” the rod instead

of “pushing”). The Jacobian between q̇ and ż is given by J (θ) =
⎛
⎝ 1 0 l sin(θ)

0 1 −l cos(θ)

0 0 1

⎞
⎠,

i.e., ż = J (θ)q̇ . Since there is no torque acting on the rod at point A, the dynamical
equations in a sliding regime are given by:

⎧⎨
⎩
ẍ(t) = μλn(t)
ÿ(t) = −g + λn(t)
I θ̈ (t) = (μ sin(θ(t))− cos(θ(t))) lλn(t)

(5.171)

in q-coordinates, and by (time argument is dropped):

⎛
⎝ 1 0 −l sin(θ)

0 1 l cos(θ)

−l sin(θ) l cos(θ) l2 + I

⎞
⎠
⎛
⎝ ẍa

ÿa
θ̈

⎞
⎠ =

⎛
⎝ l θ̇2 cos(θ)

l θ̇2 sin(θ)

0

⎞
⎠

+
⎛
⎝ 0

−g
−gl cos(θ)

⎞
⎠+

⎛
⎝μλn

λn

0

⎞
⎠

(5.172)

in z-coordinates. The inverse of the inertia matrix in z-coordinates is given by:

56With our previous notations, we clearly have ẏa = vn, and ẋa = vt .
57The subscript u for unilateral is dropped to simplify the notations.



344 5 Nonsmooth Lagrangian Systems

M−1
z =

⎛
⎝ 1+ l2

I sin2(θ) − l2

I sin(θ) cos(θ) l
I sin(θ)

− l2

I sin(θ) cos(θ) 1+ l2

I cos2(θ) − l
I cos(θ)

l
I sin(θ) − l

I cos(θ) 1
I

⎞
⎠ (5.173)

from which it can be calculated that:
⎧⎪⎨
⎪⎩
ẍa = l θ̇2 cos(θ)+

(
μ+ μ l2

I sin2(θ)− l2

I sin(θ) cos(θ)
)

λn

ÿa = A(θ)θ̇2 + B(θ, μ)λn − g
θ̈ = (μ sin(θ)− cos(θ)) l

I λn,

(5.174)

with:

{
A(θ) = l sin(θ)

B(θ, μ) = 1+ l2

I cos(θ)(cos(θ)− μ sin(θ)).
(5.175)

The identification of the various terms in (5.1) (a) is easy from the above, in q or z
generalized coordinates.

5.6.2 The Contact LCP

The contact LCP is constructed from the complementarity condition and then using
(5.158):

0 ≤ λn ⊥ ÿa ≥ 0 ⇐⇒ 0 ≤ ÿa = Dμ
u (θ)λn − b(θ, θ̇ ) ⊥ λn ≥ 0, (5.176)

where Dμ
u (θ) = eT2 M

−1
z e2 = 1+ l2

I cos2(θ) = Du > 0 if there is no friction, eT2 =

(0, 1, 0) = ∇ f (z), and Dμ
u (θ) = eT2 M

−1
z

⎛
⎝μ

1
0

⎞
⎠ = B(θ, μ) if there is sliding friction

with negative ẋa . The term b(θ, θ̇ ) = g − A(θ)θ̇2. Provided its matrix is symmetric
� 0, the contact LCP can be phrased as a quadratic program as follows:

minimizeλn λ2
n − bλn, subject to

{
Dμ

u (θ)λn ≥ b
λn ≥ 0.

(5.177)

The function Dμ
u (θ)λ2

n − bλn is zero for every λn that satisfies the LCP. The contact
LCP is also equivalently rewritten as the generalized equation: Dμ

u (θ)λn − b(θ, θ̇ ) ∈
−∂ψR+(λn).

The whole problem for the calculation of the interaction force is to find whether
the LCP possesses a solution, several solutions, or no solution. One sees that the big
discrepancy between the LCP matrix in (5.164) and the one of Painlevé’s examples is
that the latter depends on the system’s coordinate θ . Hence, the properties of Dμ

u (θ)
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may change along the trajectories. Several solutions correspond to an undetermined
problem, something commonly encountered in rigid body dynamics. No solution
(in the space of bounded λn) corresponds to an inconsistent problem: the space of
possible solutions has to be modified in order to render the LCP solvable.

5.6.2.1 Indeterminacy

Let us assume that the configuration at time t is such that(we drop the argument t
for convenience) A(θ)θ̇2 − g = 1, and that ẏa = 0 (i.e., there is no normal relative
initial velocity). Let us further assume that B(θ, μ) = −1 (this is possible with
suitable choice of μ > 0). Then the LCP in (5.176) becomes:

0 ≤ −λn + 1 ⊥ λn ≥ 0. (5.178)

There are two solutions to (5.178): the first one is λn = 0 (no reaction at the contact
point, and the rod is grazing the constraint), and the second one is λn = 1 (the two
bodies do not break contact). It is a priori impossible to choose among these two
solutions: the rigid body model tells us that they are both likely to occur. Let us relate
this to the integration of the dynamical system in Fig. 5.21. In a sliding regime ya ≡ 0,
as long as B(θ, μ) > 0 and A(θ)θ̇2 − g < 0, then one can compute in a unique way
λn = − A(θ)θ̇2−g

B(θ,μ)
> 0. Now if it happens that both B(θ, μ) and A(θ)θ̇ − g tend to zero

simultaneously (or if the numerator tends to zero more rapidly than the denominator),
then λn remains positive and the system can go through this singularity without any
problem. However, if after this time one finds B(θ, μ) < 0 and A(θ)θ̇2 − g > 0,
both λn = 0 and λn = − A(θ)θ̇2−g

B(θ,μ)
are solutions to the LCP.

5.6.2.2 Inconsistency

Let us now assume that the configuration is such that θ̇ = 0. The rod is sliding
horizontally. The LCP in (5.176) hence becomes:

0 ≤ B(θ, μ)λn − g ⊥ λn ≥ 0. (5.179)

For the first inequality in (5.179) to be verified together with the second one, one
must have B(θ, μ) > 0: this is a feasibility condition. If feasibility holds, there exists
a bounded λn ≥ 0 solution of the LCP. Otherwise, if μ is such that B(θ, μ) < 0, no
bounded positive λn can assure that ÿa ≥ 0. In other words, any bounded positive
reaction at the contact point will not be sufficient to prevent interpenetration of the two
bodies. Intuitively, if one tries to simulate such a configuration using a compliant
approximating problem (replacing the surface by a linear spring–damper so that
λn = −kya − f ẏa), then (5.174) will become:
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0

b(θ , θ̇)< 0
Dμ
u (θ)< 0

ÿa

b(θ , θ̇)< 0
Dμ
u (θ)> 0

b(θ , θ̇)> 0
Dμ
u (θ)> 0λn,u

Dμ
u (θ)< 0

b(θ , θ̇)> 0

Fig. 5.22 Inconsistencies and indeterminacies for the contact LCP in (5.176)

ÿa(t) = −B(θ(t), μ)(kya(t)− f ẏa(t))− g, (5.180)

which represents an unstable order two system. Hence, ya may have the tendency
to grow without bound, and the interaction force will do as well. If we let k grow
without bound, we see that by continuity of B(θ, μ) as a function of θ , there will be
a nonzero time interval during which the interaction force will grow unbounded as
well, since B(θ, μ) < 0 on this interval so that ya(·) continues to decrease. A deep
analysis of the system’s behavior as k →+∞ is made in [1329]. Anyway, what is
interesting and noteworthy is the fact that Coulomb’s law of friction creates this sort
of positive feedback, which would be impossible without friction, see Remark 5.28.

In summary, given μ and the system’s physical parameters, an indeterminacy
occurs for couples (θ, θ̇ ) such that the LCP in (5.176) has more than one solution.
An inconsistency occurs for couples (θ, θ̇ ) such that the LCP has no solution. Various
cases are depicted in Fig. 5.22.

Remark 5.28 (Varying Coefficient of Friction, and Other Models) First of all notice
that if μ = 0, then B(θ, 0) = l2

I cos2(θ)+ 1 > 0. Hence, the frictionless case is
always consistent and determinate. In fact it may be calculated that the con-
tact LCP matrix B(θ, μ) > 0 for all μ ∈ [0, 4

3 ). Hence, if μ < μc = 4
3 , the con-

tact LCP is always well-posed with a unique solution, whatever the position
and velocity. Assume now that the friction model incorporates a varying coeffi-
cient μ(ẋa) as depicted in Fig. 5.9a. The contact LCP matrix is B(θ, μ(ẋa)) =
1+ l2

I cos(θ)(cos(θ)− μ(ẋa) sin(θ)), with μ(ẋa) > 0 and λt(t) = μ(ẋa(t))λn(t) for
ẋa(t) < 0. Looking at (5.182) we see that the value ofB(θ, μ) is affected by the vari-
ation of the coefficient of friction, and therefore the critical angles in (5.183) will be
affected too. It seems that the extension of Painlevé paradoxes analysis to such case
has never been tackled. In the same vein , the Coulomb–Orowan’s and Coulomb–
Shaw’s models could be inserted in the study. These models take the following form.
||Ft|| ≤ μ̄ with if ||Ft|| < μ̄ then vr,t = 0, if ||Ft|| = μ̄ then there exists β ≥ 0 such
that vr,t = −βFt . In Coulomb–Orowan’s law, μ̄ = min(μFn, κ), where κ is usually
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taken as the elastic limit of the material. In Coulomb–Shaw’s law, μ̄ = ακ , where α is
related to the contact surface involved in the asperities flattening and depends on the
normal pressure at contact. Seen in the planar case, both models modify Coulomb’s
friction with a saturation of Ft after a certain threshold.

5.6.3 Analysis of the Dynamical Singularities

Let us introduce the problem another way. Assume the system is initialized in a
sliding regime where the LCP and the dynamical system possess unique solutions
on an interval [0, t0) with t0 > 0. In particular on t ∈ [0, t0) one has λn(t) ≥ 0 and
ÿa(t) = 0. Classically, one calculates λn from (5.174) to get

λn = 1

B(θ, μ)
(g − A(θ)θ̇2). (5.181)

Introducing (5.181) into the dynamics of the sliding regime toward the left (ẋa(t)< 0),
one gets [437]:

θ̈ (t) = 3
l [− cos(θ(t))+ μ sin(θ(t))] g−l θ̇ (t)2 sin(θ(t))

1+3 cos(θ(t))[cos(θ(t))−μ sin(θ(t))]

Δ= C (θ(t), μ)A (θ(t),θ̇ (t))
B(θ(t),μ)

(5.182)

This ordinary differential equation (ODE) is central in the study of the Painlevé rod
system. It is singular since the vector field may diverge to infinity in the vicinity of
the critical angle values given by:

θc1(μ) = arctan

(
3μ−√

9μ2 − 16

2

)
, θc2(μ) = arctan

(
3μ+√

9μ2 − 16

2

)
.

(5.183)

We may define the four singular points of the contact LCP as P±c1
=
(

θc1

θ̇c1

)
and P±c2

=
(

θc2

θ̇c2

)
, θ̇c1 = ±

√
g

l sin(θc1 )
, θ̇c2 = ±

√
g

l sin(θc2 )
, see Fig. 5.23. Singular ODEs have been

analyzed in the mathematical literature. However, it is noteworthy that the singular
ODE in (5.182) does not satisfy the assumptions usually required in well-posedness
analysis [144, Hypotheses4–8]. Figure 5.23 shows the various modes of the LCP that
corresponds to this sliding regime. The LCP modes are constructed from (5.174)–
(5.176), by studying the signs of B(θ, μ) and b(θ, θ̇ ) = g − l θ̇2 sin(θ), see (5.174).
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Fig. 5.23 The sliding regime LCP modes

InM1 andM3 the LCP has a unique solution λn. InM2 there is no solution at all, and
in M4 there are two solutions. The superscript + is for positive θ̇ , the superscript −
is for negative θ̇ . Now our problem is to investigate how the orbits in the (θ, θ̇ )

plane evolve. Notice that the vector field in (5.182) does not depend on the other
state variables. Two main questions arise when looking at Fig. 5.23: what happens
when the trajectories start in a mode with a well-posed LCP (like M1) and evolve
toward a neighborhood of the singular points P±ci ? What can be done if trajectories
are initialized in, or enter mode M2?58

The first question is tricky, mainly because in (5.182) both B(θ, μ) and A (θ, θ̇ )

tend to zero when orbits approach the critical points P±ci . Moreover, below those
points, the vector field is tangent to the line θ = θc1 . Hence, the results on singular
ODEs that based on some transversality conditions in the vicinity of the singular
subspace [398] cannot be used here. The following results are proved in [437], and
are useful to understand how the system behaves in the neighborhood of the critical
points.

Proposition 5.27 [437] Assume that there exists t1 ≥ 0 such that (q, q̇) ∈M+
1 ∪

M−
4 , with arctan( 1

μ
) < θ(t1) < θc1 .

58It seems that Painlevé paradoxes are reduced in the relevant literature to the second issue, while
the first one remained ignored until [436, 437].
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• If 4
3 ≤ μ < 8

3
√

3
, then detachment or sticking occurs and the contact force λn(t) =

A (t)
B(t) always remains bounded.

• If μ ≥ 8
3
√

3
, then

– either the orbit passes above the critical line passing through P±c1
and with slope

θ̇c1−θ̇ (tν )
θc1−θ(tν )

= α±2
α±1 −α±3

, and the rod stops sliding or detaches.

– or the orbit passes below the same critical line in the neighborhood of P±c1
and

· If ẋa(tν) < ẋ stick
a (tν), then the rod keeps sliding and the orbit passes through

P±c1
. The contact force becomes infinite but its impulse is bounded.

· If ẋa(tν) ≥ ẋ stick
a (tν), then A sticks before P±c1

is reached. The contact force
remains bounded.

– or the orbit lies on the critical line and reaches P±c1
at t = tc1 with

lim
t→t−c1

λn(t) = α±1 α±2
α±4 C (θc1 , μ)

(
α±1 − α±3

) < +∞. (5.184)

where:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α±1 = ∂B
∂θ

(θc1 , μ)θ̇±c1
= 3θ̇±c1

m [μ2 cos θc1(sin θc1 + μ cos θc1)]
α±2 = C (θc1 , μ) ∂A

∂θ
(θc1 , θ̇

±
c1

) = − ˙θ±2
c1
m

α±3 = C (θc1, μ) ∂A
∂θ̇

(θc1 , θ̇
±
c1

) = 6
m (cos θc1 − μ sin θc1)θ̇

±
c1

sin θc1

α±4 = ∂B
∂θ

(θc1 , μ) = 3
m [μ− 2 cos θc1(sin θc1 + μ cos θc1)]

ẋ stick
a (tν)

Δ= l(θ̇(tν) sin(θ(tν)− θ̇±c1
sin(θc1))− μ

m pn(tc1).

(5.185)

The time tν is such that the system enters a sufficiently small neighborhood of P±c1
,

tc1 is the time when the orbits attain P+c1
, and the impulse pn(t) is defined in the next

Lemma.

An interesting point here is that the “critical” friction coefficient is bigger than μc

in Remark 5.28. The analysis allows to refine the friction upperbound. We also have
the following.

Lemma 5.5 [437] Suppose that the trajectory attains P±c1
at time tc1 . There exists

tν such that on [tν, tc1 ] the nonlinear system (5.186) is equivalent to its tangent
linearization. Then

• If 4
3 < μ < 8

3
√

3
, limt→tc1

θ̈±(t) = α±1 α±2
α±4 (α±1 −α±3 )

< 0.

• If μ > 8
3
√

3
:

– If
θ̇±c1
−θ̇ (tν )

θc1−θ(tν )
>

α±2
α±1 −α±3

, then limt→tc1 ,t<tc1
θ̈±(t) = ±∞.

– If
θ̇±c1
−θ̇ (tν )

θc1−θ(tν )
<

α±2
α±1 −α±3

, then limt→tc1 ,t<tc1
θ̈±(t) = ∓∞.

– If
θ̇±c1
−θ̇ (tν )

θc1−θ(tν )
= α±2

α±1 −α±3
, then limt→tc1 ,t<tc1

θ̈±(t) = α±1 α±2
α±4 (α±1 −α±3

> 0.
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• If μ = 8
3
√

3
then limt→tc1 ,t<tc1

θ̈±(t) = ∓∞.

If it happens that limt→tc1
θ̈±(t) = +∞, then limτ→tc1 ,τ<tc1

pn(τ )
Δ= ∫ τ

tν
λn(t)dt <

+∞, and

• If ẋa(tν) < ẋ stick
a (tν), then the rod keeps sliding and P±c1

is reached.
• If ẋa(tν) > (=)ẋ stick

a (tν), then the contact point A sticks at t = t∗ < (=)tc1 , and

– if the trajectory is inM+
1 , then ya(t∗,+) = 0 and ẋa(t∗,+) = 0,

– if the trajectory is in M+
4 , then ya(t∗,+ > 0 and the rod detaches at the same

time t∗.
Proposition 5.27 and Lemma 5.5 allow one to determine how the trajectories behave
in the vicinity of singular points. Their proofs mainly rely on the study of the following
nonlinear system in the neighborhood of the critical points P±c1:

⎧⎪⎨
⎪⎩

dx1
ds = B(x1, μ)x2

dx2
ds = C (x1, μ)A (x1, x2)

dt
ds = B(x1, s).

(5.186)

This system is obtained from (5.182) after a suitable timescale. Such a procedure is
classical for the study of singular ODEs [398]. The time tν is such that the linearization
of the system in (5.186) around the critical point (that now corresponds to a fixed point
of the system in (5.186)) is valid. The center manifold theorem is used in the analysis,
because the linearization is degenerated (the fixed point is not hyperbolic, some
eigenvalues of the Jacobian are always equal to 0). These results are in accordance
with the mathematical result in [1142] who uses a quite different way to show that
the velocity q̇ ∈ RCLBV (hence, it possesses right and left limits, but this does not
hamper q̈ to be unbounded).

Remind that the contact LCP is 0 ≤ B(θ, μ)λn −A (θ, θ̇ ) ⊥ λn ≥ 0. Concerning
the second question (what if orbits tend to enter the LCP mode M2, or if the system
is initialized therein), notice the following: inconsistency in mode M2 in the rod
example comes from the fact that the configuration is such that B(θ, μ) < 0 and
θ̇ = 0. Now it is clear from (5.174) that there is always a value of θ̇ �= 0 such that
even if B(θ, μ) < 0, then λn ≥ 0 and ÿa ≥ 0 are solutions of the LCP (this is true
at least in the first quadrant for θ , since then A (θ, θ̇ ) > 0). This means that if the
configuration is inconsistent at time t0, there exists at least a jump of the velocity θ̇

such that θ̇ (t+0 ) renders the LCP solvable on an interval (t0, t0 + δ), for some δ > 0.
But obviously from the developments on MDEs in Chap. 1 such a jump must be
accompanied by an impulsive reaction at the contact point: this is an impact without
collision, or IW/OC. Then λn = pn(tk)δtk and Ft = pt(tk)δtk for some time tk .59 Some
questions arise:

• Should an IW/OC occur only when there is inconsistency?

59We adopt here the notation tk for an eventual time of tangential impact to remain consistent with
the rest of the book.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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• How can we compute the velocity jump?
• Is it unique?
• If a system is initialized in a sliding regime, will it attain an inconsistent configu-

ration M2 of its LCP or not?
• If such an IW/OC occurs, where does it originates from? What is the physical

phenomenon that produces it?

The fourth question has been examined in [436]. As pointed out above, one should not
confuse inconsistencies with configurations at which the contact force may diverge
to infinity in finite time: IW/OCs are not be related to finite escape of λn(t). The fifth
question has been analyzed by Le Suan An in [708] and [709, §4.3,4.4] for the case
of a bilateral constraint with Coulomb friction (a typical benchmark is depicted in
Fig. 5.24). Therein, IW/OCs have been justified as the limit behavior of a sequence
of penalized problems. We shall come back on those studies later in this section.
Concerning the second question, Baraff [89, §8.1] proposed the following rules,
similar to others long before him [161, 954]:

• (a) Since inconsistency is caused by dynamic friction, the impulse must convert
at least one of the contact points to static friction.

• (b) The contact impulse must be such that the bodies do not separate after the
discontinuity.

The first statement signifies in the sliding rod example that the jump in θ̇ must be
such that the rod stops sliding, i.e., ẋa(t

+
k ) = 0. It is proven with detailed calculations

in [436, Annexe B] that various scenarii can be envisaged from (θ(tk), θ̇ (t−k )) ∈M2.
The sticking case ẋa(t

+
k ) = 0 corresponds to the maximal dissipation solution which

pulls the system out of M2. The effects of tangential impacts were also connected
with stoppage of slipping in [161, 954]. However, other authors [579] argue that
in general there is no reason for such sticking to occur after an IW/OC, basing
on Darboux–Keller’s shock dynamics and analyzing what happens after a shock
when the normal approach velocity tends to zero. The second statement (b) means
ẏa(t

+
k ) = 0. One way to elucidate what may happen is to study an approximate, or

regularized problem, where the unilateral constraint is replaced by a linear stiffness,
as done in [1329] where a detailed analysis is proposed. It confirms that a slip-to-stick
transition occurs, that is, an IW/OC solves the inconsistency issue of mode M2.

Remark 5.29 The critical values for μ ( 4
3 and 8

3
√

3
) are not very realistic, since

friction coefficients measured between materials usually take much smaller values.
However, depending on the contact geometry (for instance a nonzero radius at the
edge), inconsistencies and indeterminacies can occur for much smaller values, see
[436,725,725,792,894,944]. For instance, the sliding rod with rounded tip with radius
r = l has a critical friction coefficient μc ≈ 0.625 [436, Annexe C]. In [944] critical
values μ ≈ 0.44 are reported for another system, with a sliding mechanism mounted
at the rod’s tip. A planar rigid body with point contact A, inertia I , massm, ||AG|| = l,

has μc = 2
√

I
ml2

(
1+ I

ml2

)
[792, 942]. A planar two-degree-of-freedom robot is also

shown to exhibit paradoxes for μ ≈ 0.9 in [36]. The Painlevé paradoxes analysis is
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therefore not purely academic but can be encountered in practical situations. This is
related to the comments in Remark 4.13 about similar phenomena in impact laws.

Remark 5.30 If the friction coefficient is small enough (μ < μc), then there are no
indeterminacies nor inconsistencies in the dynamics with sliding friction. Getting
the critical value of friction is not straightforward in general, especially when there
are multiple bilateral and unilateral constraints with friction. A general analysis is
made in [160], relying on the use of Theorem 5.8, where explicit and calculable (but
conservative) upperbounds on the coefficients of friction are given, below which the
contact LCP is well-posed. Other sufficient conditions for existence of accelerations
may be found in [823, 824], but the friction upperbounds are not given explicitly.

5.6.4 Further Reading

A mathematical analysis of the slender rod example, extending well-posedness results
which are summarized in Theorem 5.3, has been made in [1141, 1142] who proved
that the system has absolutely continuous positions, velocities of local bounded vari-
ations, hence admitting measure accelerations. Ivanov [594] constructs the contact
mixed LCP and states its well-posedness in terms of the P-property of a matrix.
Most importantly the multi-contact case is tackled in [594] and the Painlevé-Klein
system (see below) is analyzed. Experimental results have been reported in [1127,
1224, 1331] which prove that Painlevé paradoxes can occur in practice. The clas-
sical example of the chalk sliding and bouncing on a black board, drawing dashed
lines, [334, 617, 894] is often cited as an illustration of the consequences of Painlevé
paradoxes, which produces chatter (known as broutement or broutage in French):
the sliding/sticking/detachment cycles when the rod is acted upon by some exter-
nal action result in chatter. An approximating compliant problem is studied in
[370, 1127], using singular perturbations techniques to investigate the contact dynam-
ics when the stiffness and damping tend to infinity. Their analysis permits to eliminate
one solution in case the contact LCP is indeterminate. A detailed analysis of the slid-
ing rod example with a compliant (linear spring) normal contact with Coulomb’s
friction is made in [1329] about states in M2 (confirming [755, Theorem1]). It
shows that the IW/OC is made of three phases of motion: initial slip, a period of
stick, and a reverse slip phase, whose durations all vanish as the contact stiffness
diverges. A Hertz’s compliance is used in [1328] for a three-dimensional sliding
slender rod. A study of the so-called Painlevé-Klein systems (i.e., with one bilateral
constraint with Coulomb friction) via a penalization is done in [708]. It is shown that
the limit velocity as k →+∞ possesses a jump when the configuration corresponds
to undetermined or inconsistent modes, which exactly represents an IW/OC: hence,
IW/OCs can be given a physical meaning, and the rigid body case just encapsulates
the difficulties one may encounter when simulating numerically a penalized system,
with high stiffness’s values (which often occur in practice). In [1103] the effect of
the flexibilities in the whole body on critical friction coefficients is studied with a

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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finite-element simulation: critical friction depends on the compliance of the rod. A
detailed analysis of a compliant approximation of the sliding rod is made in [933],
who show that trajectories cannot enter M2 coming from M4. Matrosov and Fino-
genko [823] analyze n-degree-of-freedom systems subject to unilateral constraints of
the form qi ≥ 0 and assume that Coulomb’s friction law applies directly to these con-
straints (like in the z-coordinates in (5.172)). The authors derive a condition which
asserts that if the friction coefficient is small enough, then the mapping which allows
to calculate q̈ from the dynamics is contractive; hence, there is a unique generalized
acceleration. These results are hence of the same nature as those in [1216] who estab-
lish existence and uniqueness of a solution to NCPs when the friction coefficient is
small enough. Jean and Pratt [618] also derived sufficient conditions guaranteeing
the local existence of a solution with continuous position and velocity. They show
on an example that the considered evolution problem possesses in general a solution
only if discontinuous velocities are admitted. Painlevé paradoxes are shown to occur
in more complex systems like biped robots [942], or lead screw drives [1224]. The
analysis in [436, 437] has been extended in [944] for a rod with a sliding mechanism
at the tip, in [792] who proposed a detailed study of regions of possible motions in the
(θ, θ̇ ) phase plane, in [942] for a simple walking robot, in [1271] who made a very
detailed analysis of the Painlevé-Klein and the slender rod systems, and in [1271] for
rotating shafts. Bifurcations in the context of Painlevé paradoxes have been studied
in [701, 725]. Indeterminacies also appear in granular materials [1023].

Strange behavior of the models with friction can also be given an explanation
via the transportation of real-world friction cones into the configuration space [381,
892]. When the configuration space friction cone (i.e., the image of the three- or
two-dimensional real-world cone in the configuration space) dips below the tangent
space to the constraint boundary at the contact point, the model may possess zero,
one, or more solutions.

Consider the system in Fig. 5.24 which is known as the Painlevé-Klein system,
and was introduced in [674]. This one-degree-of-freedom system consists of a bar
of length 2l that slides on two parallel guides. Coulomb friction acts only at one of

Fig. 5.24 The
Painlevé-Klein example

G

Afriction μ > 0

no friction

n

F

−λn

−λt

vt

θ

λn

t
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the guides, while the other one is assumed frictionless. The dynamical equations and
the bilateral holonomic constraints yield

μl|λn,b|sgn(vt) = 2l − b

tan(θ)
λn,b + bF (5.187)

where vt is the tangential velocity of the bottom contact, equal to the horizontal
velocity of the bar, F is an exogenous force acting at A with GA = b taken positive
as shown in the figure, and G is the gravity center. Also, the static equilibrium yields
that λn,b,1 = −λn,b,2 = λn,b. The equality (5.187) is a piecewise-linear equation for
λn. Due to its simplicity it may be analyzed by inspection. In particular, this nonlinear
equation has no solution if μ > 2

tan(θ
and bF − bλn

tan(θ)
= −sgn(vt): this is an incon-

sistent mode. A very detailed analysis of the Painlevé-Klein system is made in [416,
Chap. 4]. It is shown that the system may escape from inconsistent configurations if a
suitable velocity jump is applied (which is consistent with the analysis made in [708,
709]). Similar systems have been studied in [240, 416, 419, 708, 922, 1267, 1268,
1269, 1270, 1271]. The monograph [709] is dedicated entirely to systems with bilat-
eral constraints with friction like Painlevé-Klein system. Tangential impacts yielding
a slip/stick transition are justified in [709, §4.3,4.4] from the analysis of a system
with normal linear elasticity. Let us note that non-existence and non-uniqueness prob-
lems also arise in quasistatic problems (q̈ = 0) with complementarity conditions and
Coulomb friction [673, 741].

Tangential Impacts from Shock Dynamics

Wang and Mason [815, 1255] show that in certain cases, the consideration of an
impulsive force is the only possible solution to this dynamical problem, which oth-
erwise possesses no solution at all, thus retrieving a result by Pères in [995, Chap.
10] based on a graphical analysis of a two-dimensional shock process. The three-
dimensional case with friction is also treated in [995], using Delassus’ Lemma.60

Other graphical analysis can be found in [369]. The Darboux–Keller impact dynam-
ics is used in [1328] to analyze the three-dimensional slender sliding rod: the sticking
phase is proved to exist at paradoxes. A similar study is proposed in [1104]. The study
in [1255] is based on Routh’s two-dimensional graphical method (see Sect. 4.3.13).
Batlle [106] analyzes the same example and assumes that jamb occurs (see paragraph
below for a definition of the jamb phenomenon) and that the collision consists of a
first phase in which vr,n evolves from 0 to a negative value until slip stops, a second

60Let (S) be a n-dimensional multibody system with generalized coordinate vector q, in contact
through its part S1 with a body S2 at the point I . Let Ẋ = J (q)q̇ be the velocity of I in a frame
centered at I (A task-space frame in robotics language). Then Delassus’s lemma states that Ẋ =
∇u,v,wΦq (u, v,w) for some quadratic function Φ of the interaction force components u, v, and w
in the same frame.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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phase in which compression continues and then an expansion phase with sliding.
Stronge’s energetical coefficient is used to determine the shock termination (from
the shock dynamics, one calculates the impulse pn(t f )− pn(tc), and deduces the
value of the final velocity, which provides a termination criterion). Brach [177] used
the kinetic energy loss TL(tk) to show that in fact, en does not influence tangential
impacts. The two-dimensional analysis in [106, 177, 1255] is not based on an LCP,
but on shock dynamics and looking at the outcome when ẏa(t

−
k )→ 0. Chatterjee

[274, 278] also studies the behavior of a two-dimensional algebraic collision law
based on the calculation of a suitable percussion vector P . This impact rule uses, in
addition to the impulse ratio μ, two restitution coefficients, therefore enlarging the
space spanned by the possible percussion vectors (recall that Whittaker’s, Kane and
Levinson’s or Smith’s models use only one coefficient in addition to μ). It is shown in
[278] that given parameters and initial data, the proposed shock rule yields a line of
accessible percussions, whereas the others yield a point (i.e., a unique percussion). In
[579], Ivanov directly analyzes the contact LCP via tangential collisions with small
vr,n(0). He uses the Darboux–Keller’s shock dynamics, and analyzes what happens
in the different LCP modes, when a collision occurs with a small approach velocity
vr,n(0) = −ε < 0.

5.6.5 Conclusions

Paul Painlevé wrote in [955]: On voit que les lois empiriques du frottement sont
logiquement inadmissibles …dés que le frottement devient assez notable. Il y aurait
peut-être quelque intérêt à reprendre à ce point de vue leur étude expérimentale,
which may be translated as We see that empirical laws of friction are inadmissible
from a logical point of view …as soon as friction becomes too large. Consequently,
it would be interesting to reconsider their experimental analysis. Such a point of
view was given up soon after him, for instance Delassus admitted in [334] that para-
doxes could be solved by sliding/sticking transitions yielding chatter, which have a
mechanical meaning. Hopefully, the material in this section is enough to convince
the reader that Painlevé paradoxes are no longer (in fact have never been) para-
doxical! Despite there remains many open issues to be clarified (like the extension
of the above to the multicontact case), the results summarized in this section prove
that the rigid body model with Coulomb’s friction is perfectly sound. It provides a
compact way of writing the Lagrange dynamics with contact and impact, which can
be used for the mechanical design (reliable numerical methods are available, see the
next section), and for the design of control algorithms. Finally, we may comment
about two features of rigid body dynamics with Coulomb’s friction: nonuniqueness
of solutions, and discontinuous dependence of solutions on the initial conditions.
Roughly speaking, nonuniqueness corresponds in stiff compliant approximations to
a great instability of solutions, while discontinuous dependence stems from a great
sensitivity of solutions.
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5.7 Numerical Simulation

The design of reliable software packages, which rely on robust numerical algorithms,
is nowadays crucial for virtual prototyping. This section is dedicated to introduce
numerical schemes which are taylored for complementarity Lagrangian systems. We
only touch upon this topic (in particular, nothing is said about the iterative algorithms
for solving the OSNSP); interested readers may read [13] that is dedicated to the
numerical simulation of mechanical systems.

5.7.1 Event-Driven Algorithms

The most basic idea is to integrate the motion between events like impacts or stick/slip
transitions, then determine the event time, compute the velocity or acceleration jump,
and start again the integration until another event is detected. This is known as event-
driven algorithms. The main drawbacks of event-driven numerical schemes are on
one hand that they are unable to handle accumulations, or large quantities of events,
and on the other hand, the thresholds which are necessary for their implementation
are not easy to tune. But for simple systems with few events, they may be useful
because one may use a very accurate integration method between the event times.
The event detection is usually performed with some zero-crossing solver (and it
may, in theory, involve an infinity of such zero-crossing detections as well as the
construction of an infinity of index sets, see Remark B.2). It has been investigated
for instance in [396, 506, 1259, 1281]. The direct extension of Coulomb’s law for
impacts (see Whittaker’s method in Chap. 4, Sect. 4.3.2) is generally adopted. Other
methods have been presented in [447, 872, 1253]. In particular, it is emphasized in
[1253] that if an explicit form of the impact Poincaré map is available (see Chap. 7),
then one can advantageously use this discrete-time system to compute the motion
during repeated collisions. A very few convergence and order analysis have been
performed for event-driven algorithms. Janin and Lamarque [611] [13, §8.6.5.2]
proved on a simple one degree-of-freedom system without accumulations of impacts
that the scheme order is related to the order of the method used between impacts and
the precision of the interpolation method used to approximate the impact times. A
similar work is done in [344] for impulsive ODEs as in (1.31), with separated jump
times. Several polynomial extensions are used to locate the state jump times, and
a Runge–Kutta method with order p is used to integrate between the jumps. The
overall method is proved to be of order p.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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5.7.2 Compliant Contact/Impact Models

The second “natural” idea is to replace the constraint by a compliant model
(see Chap. 2) like a spring-dashpot model. Then one has to integrate ODEs (except
when a right-hand side discontinuous in the state, if damping is nonzero, then the
dynamics may be embedded into differential inclusions with continuous solutions61).
One drawback is that this yields in general stiff ODEs. Therefore, the integration step
has to be reduced and the simulation length becomes large, otherwise the simula-
tion is prone to large numerical errors. For instance, it was found in [1144] that
suitable stiffness and damping values to model the ground on which a slender rod
falls were k = 5.5× 107 N/m and f = 2.0× 107 Ns/m2 (these values being identi-
fied from central collisions of a 200 mm bar). Stiffness and damping values for the
contact/impact process in an impact beam system used to model and test shocks in
bearings with clearance have been found to be k = 9.6× 106 N/m and f = 7 Ns/m
for aluminum and k = 1.5× 107 N/m, f = 20 Ns/m for steel [331]. Contact stiff-
ness of 1010 N/m is usual in gears and pinions [1123]. Similar values are given for
a spatial slider crank mechanism.62 The least requirement to get reliable numerical
results is that during a rebound or a collision phases, the algorithm calculates sev-

eral points. The length Δ of such phases typically satisfies 0 ≤ Δ ≤ α

√
1
k for some

constant α. Hence, for the above values one finds that a good integration step should
be chosen smaller h = 10−5 s, for 10 points per phase. Some authors [199] suggest
to calculate 1000 points to get satisfying numerical accuracy. This clearly hampers
one to simulate systems with too many degrees of freedom (n < 3000 particles in
three dimensions and n < 104 particles in two dimensions for granular materials
[199]—systems for which the free motion between collisions is particularly simple).
Easily reproducible numerical results concerning the system in Fig. 2.1 and with a
constant force acting on the mass (this is nothing else than a ball subject to gravity and
rebounding on an elastic ground) show that for h = 10−3 s, a strange behavior of the
solution x(t) occurs as soon as k ≥ 7× 105 N/m (in theory, the energy is conserved
and the motion is periodic: for those values the motion starts to oscillate more or less
erratically around the ideal trajectory. For k = 7× 106 N/m, the results totally dete-
riorate and x(t) has the tendency to converge to zero!). Similar results were found
in [1004]. On the other hand, when dealing with complex systems and disregarding
such numerical problems, it may not be evident to determine which effects the flex-
ibilities have on the motion of the system, and how they have to be chosen to obtain
results close to the real motion. The sensitivity of the impact outcomes with respect
to the contact stiffness may be very high: it may then become quite impossible to
get reliable simulations. Finally, another major drawback is that the contact parame-
ters may not be easy to estimate, either because they are too many, or they lack of

61Recall that in this case the Carathéodory conditions for well-posedness of ODEs no longer apply,
and specific analysis is necessary.
62Looking at (2.9), one may get an idea of the restitution coefficient that corresponds to such
spring-dashpot models. With those numerical values en is very close to 1.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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mechanical meaning (try to fit parameters of a viscoelastic model with experiments
led on an elastoplastic material …), or the experimental data are too noisy.

Remark 5.31 (Systems with Clearance) A constant difficulty in the simulation
of systems with constraints (bilateral or unilateral) is the numerical stabilization
of the constraints, i.e., the suppression of the drift. This is true for the simulation of
rigid-body models and the associated numerical schemes (where suitable projections
have to be implemented). This is also true for compliant models as Simon–Hunt–
Crossley’s and its various modifications (see Sect. 2.2.2), which are widely used for
systems with clearance [489]. For instance, the literature on systems with joint clear-
ance is full of simulation results that display spurious unrealistic high-frequency
oscillations of the contact normal acceleration and of the contact force, due to the
model’s flexibility [400, Figs. 4.22, 4.23] [779, Figs.9, 10, 11, 12], [489, Figs.7, 8, 9],
see also [679, 941, 1179, 1226] to cite a few. It is not clear at this stage whether the
contact/impact model, and/or the numerical methods, has to be changed to suppress
such unacceptable numerical simulation results (the experimental data reported in
[401, Figs. 5, 6, 8, 11, 12] prove that the oscillations have no mechanical meaning at
all). In fact the time-stepping methods associated with a rigid body complementarity
model which we describe in the next section have proved to supersede compliant
models for systems with mechanical play, and have been shown to possess quite
good prediction capabilities, see numerous careful comparisons between numerical
and experimental data in [685, 1173, 1198, 1199, 1200, 1201]. It is also noteworthy,
as we already pointed out elsewhere in this book, that contrarily to what is sometimes
still stated [489], efficient numerical methods exist that do enable designers to model
sticking (i.e., multivalued at vt = 0) Coulomb’s friction, and adding varying sliding
friction coefficient is an easy task. See the next section and [33, 402].

5.7.3 Time-Stepping (Event-Capturing) Numerical
Algorithms

Let us introduce a class of discretization methods which prove to be in many instances
a nice (and close to necessary) alternative to event-driven schemes.

5.7.3.1 The Moreau–Jean Time-Stepping Scheme (Non-Smooth
Contact Dynamics Method)

The so-called time-stepping or event-capturing schemes have been introduced by
J.J. Moreau and M. Jean [615, 617, 891, 892, 894, 896, 897] and have been subse-
quently developed in [6, 7, 8, 47, 232, 283, 1074, 1075, 1143, 1143, 1162]. They
have been implemented in engineering software packages for multibody system

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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simulation like siconos and lmgc9063: this is what one usually calls the NSCD
(Non-Smooth Contact Dynamics) method. Roughly speaking, time-stepping meth-
ods approximate the impulse–velocity dynamics on one step of integration. The
Moreau–Jean method, originating from Moreau’s catching-up algorithm for the dis-
cretization of the first-order sweeping process [887], was used in many studies to
prove existence of solutions of the continuous-time dynamics, see (5.79), (5.80),
(5.81), and (5.82) in Sect. 5.2.3. We now present the NSCD method for systems sub-
jected to unilateral constraints and Coulomb’s friction, using De Saxcé’s approach
(see Sect. 5.3.3). We will just provide the reader in this section with the basic ideas.
Interested readers may have a look at [13, Chaps. 10, 12–14] for a very detailed
exposition of the NSCD method, in particular, the iterative solvers used to solve the
one-step nonsmooth problem (that may take the form of an LCP, or a NCP, or a vari-
ational inequality, or an inclusion into a normal cone). The NSCD scheme is similar
to the implicit method in (5.79)–(5.81), which is nevertheless rarely used for calcu-
lations but preferred for Mathematical Analysis. When formulated for frictionless
systems and with a θ−method, the NSCD algorithm is given by [6]

M(q j+θ )(u j+1 − u j )+ hF(t j+θ , q j+θ , u j+θ ) = ∇ f (q j+θ )Pn, j+1,

q j+1 = q j + h u j+θ ,

Un, j+1 = ∇ f (q j+θ )
T u j+1,

−Pn, j+1 ∈ NTRm+ ( f̄ j+γ )(Un, j+1 + EnnUn, j ),

f̄ j+γ = f (q j )+ hγUn, j ,

(5.188)

with h = t j+1 − t j , θ ∈ [0, 1], γ ∈ [0, 1], Enn = diag(en,i ), x j+θ = (1− θ)x j +
θx j+1, where the following approximations are made: u j+1 ≈ u(t+j+1), Un, j+1 ≈
Un(t

+
j+1), Pn, j+1 ≈ λn((t j , t j+1]). The nonlinear forces F(t, q, q̇) gather

Finer (q, q̇)− Fext (t) in (5.1). The last approximation is fundamental because it
means that the primary variable of the NSCD method is not, at an impact time
which is an atom of the measure λn, the impulsive impact force (which is impossible
to approximate with such a scheme), but the measure of the interval (t j , t j+1] by this
impulsive (Dirac) force, a bounded quantity. The constraint f̄ j+γ is called a fully
explicit forecast, and other choices are possible [7].

63http://siconos.gforge.inria.fr/ and https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/
wikis/git_access.

http://siconos.gforge.inria.fr/
https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/git_access
https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/git_access
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Remark 5.32 Throughout this section, the discrete times will be denoted t j . It is
clear that they should not be confused with the impact times tk which concern the
continuous-time models.

We also used implicitly a new characterization of Moreau’s set (see Sects. 5.2.2.2
and 5.2.2.3), which we more or less already saw in the proof of Proposition 5.15. Let
Enn = diag(en), or more generally let Enn and ∇ f (q) commute. Then NV (q)(w) =
∇ f (q)∂ψTRm+ ( f (q))(∇ f (q)w), with w = u(t+)+ enu(t−). The proof is as follows:

TRm+( f (q)) = {v ∈ R
m+|vT ei ≥ 0, for all i ∈J (q)}, ei the i-th unit vector of R

m+,

J (q) = {i | fi (q) = 0}. Let ρ(w)
Δ= ψTRm+ ( f (q))(∇ f (q)Tw). From Theorem B.2 and

under some constraint qualification, ∂ρ(w) = ∇ f (q)∂ψTRm+ ( f (q))(∇ f (q)Tw). Now

∇ f (q)Tw ∈ TRm+( f (q))⇒ (∇(q)Tw)T ei ≥ 0, for all i ∈J (q) ⇔ wT∇ f (q)ei ≥
0, for all i ∈J (q)⇔ wT∇ fi (q) ≥ 0, for all i ∈J (q)⇒ w ∈ V (q). The converse
holds true as well, so the equivalence holds. We infer that ψTRm+ ( f (q))(∇ f (q)Tw) =
ψV (q)(w), and then ∂ρ(w) = NV (q)(w).

Using (B.20), and after few manipulations, we deduce from (5.188) that

Un, j+1 = −EnnUn, j

+projDu(q j+θ )−1

[
TRm+( f̄ j+γ );EnnUn, j −∇ f (q j+θ )(−u j + hM(q j+θ )

−1Fj+θ )
]

(5.189)

where Du(q j+θ ) = ∇ f (q j+θ )
T M(q j+θ )

−1∇ f (q j+θ ) is the Delassus’s matrix,
Fj+θ = F(t j+θ , q j+θ , u j+θ ). Depending on θ this equation may be explicit or
implicit, and may necessitate the use of a specific iterative solver. Inverting the
inclusion in the fourth line of (5.188), using (B.16) and the polarity between the
normal and tangential cones, we find Un, j+1 + EnnUn, j ∈ NNR

m+ ( f̄ j+γ
(−Pn, j+1) from

which it follows:

Pn, j+1 = −projDu(q j+θ )[NR
m+( f̄ j+θ ); Du(q j+θ )−1(EnnUn, j + u j − hM(q j+θ )−1Fj+θ )]

(5.190)

When inserted into the first two lines of (5.188), (5.190) allows one to compute u j+1

and q j+1, possibly with the help of a suitable iterative solver. In practice, one usually
solves (5.190) because (5.189) requires independent constraints.

The inclusion in the fourth line of (5.188) can be rewritten in a more explicit way,
allowing for calculations: if f̄i, j+γ ≤ 0 then 0 ≤ Un,i, j+1 + en,iUn,i, j ⊥ Pn,i, j+1 ≥ 0,
where the index i refers to the constraint fi (q), 1 ≤ i ≤ m, otherwise if f̄i, j+γ >

0 then Pn,i, j+1 = 0 . We notice the similarity between the time-stepping method
equations, and the impact dynamics in (5.66). Solving (5.188) depends on the choice
of θ , which in turn may depend on the nonlinear forces (e.g., the system may be stiff).
Let us take θ = 0 (explicit case), and let us group the possibly positive components
Pn,i, j+1 in the vector Pact

n, j+1, and the corresponding local velocities in the vectorUact
n, j

(where act stands for “active”). Then we obtain 0 ≤ Uact
n, j+1 + E act

n Uact
n, j ⊥ Pact

n, j+1 ≥
0. From the first line of (5.188) we deduce that:
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Uact
n, j+1 = (∇ f (q j )

act )T u j+1 = (∇ f (q j )
act )T u j − (∇ f (q j )

act )T M(q j )
−1hF(t j , q j , u j )

+ (∇ f (q j )
act )T M(q j )

−1∇ f (q j )
act

︸ ︷︷ ︸
Δ=Dact

u (q j )

Pact
n, j+1

(5.191)

It is clear that we obtain an LCP with unknown Pact
n, j+1. Once this one-step non-

smooth problem (OSNSP) is solved,64 the value of Pact
n, j+1 can be inserted in the

first line of (5.188) to compute u j+1 and advance the algorithm to step j + 1. The
convergence of this class of algorithms has been investigated for various cases in
[374, 375, 781, 867]. It is noteworthy that the complementarity conditions are not
implemented numerically as 0 ≤ f (q j+1) ⊥ λn, j+1 ≥ 0, as one would expect from
a direct discretization of (5.1). Such a scheme does not work, as may be checked
on a simple example like the bouncing ball.65 However, working with velocity
introduces problems of drift, well known in the simulation of DAEs. The issue
related to the stabilization of the active constraints to avoid the drift phenomenon
is tackled in [7], inspired by the Gear–Gupta–Leimkuhler approach of adding an
artificial multiplier at the position level as q j+1 = q j + h u j+θ + ∇ f (q j+θ )τ j+1,
τ j+1 ∈ NR

m+( f̄ j+γ )⇔ 0 ≤ τ j+1 ⊥ f̄ j+γ ≥ 0. An analysis of the local orders of con-
sistency is made in [6, Propositions1,2,3] which we roughly summarize as: the
scheme is of order 1 in positions, and of order 0 in velocities. A modified time-
stepping method is proposed in [6] to get higher order. The energy dissipation prop-
erties of the Moreau–Jean scheme are studied in [8].

Proposition 5.28 [8, Proposition 5.2] Let F(t, q, q̇) = Cq̇ + Kq − Fext (t) and
denote Fdamp = Cq̇. The discrete work done by external forces with a step is
Wext

j+1 = huT
j+θ F

ext
j+θ ≈

∫ t j+1

t j
F(t)u(t)dt, and the discrete work done by the damp-

ing forces is Wdamp
j+1 = −huT

j+θCu j+θ ≈ −
∫ t j+1

t j
u(t)TCu(t)dt. If E(q, q̇) is the total

mechanical energy of the system, then theMoreau–Jeanmethod satisfies the discrete-
time dissipation inequality: E(t j+1)− E(t j ) ≤ Wext

j+1 +Wdamp
j+1 if 1

2 ≤ θ ≤ 1
1+ēn

≤
1, ēn = max1≤i≤m en,i . If ēn = 0 (plastic impacts at all contacts), then the condi-
tion becomes 1

2 ≤ θ ≤ 1, and if ēn = 1 (elastic lossless impacts at all contacts) then
θ = 1

2 .

Some comments to finish the frictionless part: (1) The Moreau–Jean event-capturing
time-stepping method allows to simulate accumulations of impacts (the so-called
Zeno phenomenon) without difficulty. More precisely, if there is an accumulation
on the left of t∞ < +∞, then the scheme computes a finite number nimp of impacts
before t∞ (the number of calculated collisions depends on h), and there is one time

64This is precisely where we need to use an LCP solver.
65Fundamentally, this is due to the fact that the relative degree between q and λn,u is equal to 2.
Working with velocities allows to reduce it to 1. Another way to interpret this is that positions and
forces are not dual quantities from the point of view of the power, while velocities and forces are
reciprocal one to each other: they form a suitable supply rate for dissipation. We retrieve in the
discrete-time context the importance of passivity, see Remark 5.22.
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step during which an infinity of impacts is neglected before the constraint is activated.
One can have a look at [13, Table 14.2] for an example of the variation of nimp with h.
(2) The fact that energy is preserved with the midpoint scheme for lossless systems
is also found for LCS [408] (discretization of LCS is treated in Sect. 5.7.3.5).

When friction is considered, we may work either in generalized coordinates, or
in local coordinates, and express Coulomb’s friction using De Saxcé’s framework.
The resulting one-step nonsmooth problems for the linear or the nonlinear cases
are described in detail in the monograph [13, §10.1], and we recall one of them
for the sake of completeness. We assume that F(t, q, q̇) = Cq̇ + Kq − Fext (t),
and the inertia matrix is a constant matrix M . Let us define the iteration matrix
M̂ = M + hθC + h2θ2K , and the “free” velocity u f ree = u j + M̂−1[−hCu j −
hKq j − h2θKu j + h(θFext

j+1 + (1− θ)Fext
j )], which corresponds to the approxi-

mated velocity when the reaction forces vanish. Then the following scheme is imple-
mented, which is the discrete-time counterpart of the impact dynamics in (5.100):

Uj+1 = D̂(q j , θ)Pj+1 +U f ree

U f ree =
(∇ f (q j )

T

Ht(q j )
T

)
u f ree +∑

i �=l D̂il(q j , θ)Pl, j+1.

If fi (q j + hu j ) ≤ 0 then:

•
⎧⎨
⎩
C 

i � V̂i, j+1 ⊥

(
Pt,i, j+1

Pn,i, j+1

)
∈ Ci ,

V̂i, j+1 = (UT
t,i, j+1,Un,i, j+1 + en,iUn,i, j + μi ||Ut,i, j+1||)T , 1 ≤ i ≤ m,

• If fi (q j + hu j ) > 0 then: Pi, j+1 = 0.

(5.192)

with D̂(q) like D(q) in (5.99) with M̂−1 instead of M(q)−1. The tools that may be
used to solve such a OSNSP are described in detail in [13, Chaps. 12, 13].

Remark 5.33 Just to give some quick insight on the implicit discretization of
Coulomb’s friction, we consider the simplest case ẋ(t) ∈ −sgn(x(t)), where x(t)
may be thought of as a velocity. An Euler implicit discretization yields x j+1 − x j ∈
−hsgn(x j+1). Let us set wj+1 = −x j+1. Applying the equivalences in (B.16),
(B.20), and (B.21), we see that wj+1 ∈ −N[−h−x j ,h−x j ](wj+1), equivalently wj+1 =
proj([−h − x j , h − x j ]; 0). If 0 ∈ [−h − x j , h − x j ] then wj+1 = x j+1 = 0. If h −
x j < 0, then wj+1 = h − x j , and if−h − x j > 0, then wj+1 = −h − x j . The gener-
alized equation under the form 0 ∈ x j+1 − x j + hsgn(x j+1) is depicted in Fig. 5.25
(compare Figs. 5.25 and 5.22: two different generalized equations are solved graph-
ically). In case 1, x j < −h and x j+1 < 0, in cases 2, 3, 4, x j ∈ [−h, h] and
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Fig. 5.25 Solving the
generalized equation 0 ∈
x j+1 − x j + hsgn(x j+1).
Dashed lines graph of
z �→ z − x j , solid lines
graph of z �→ −h sgn(z)
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x j+1 = 0, in case 5, x j > h and x j+1 > 0. Let ϕ(x) = |x |, we also have x j+1 =
(Id + h∂ϕ)−1(x j ), where the resolvent operator J ∂ϕ

h (·) = (Id + h∂ϕ)−1(·) is single
valued and non-expansive since ϕ(·) is continuous convex proper onR, see Definition
B.9. It is then not difficult to prove that the discrete-time system has a globally, finite-
time Lyapunov stable fixed point x
 = 0, just as its time-continuous counterpart. An
explicit discretization x j+1 − x j ∈ −hsgn(x j ) does not share such nice feature [424,
425]. The time discretization of the Darboux–Keller’s dynamics in Sect. 5.7.3.4 is
quite similar.

Remark 5.34 (Explicit vs. Implicit Discretization) Let us consider the simplest case
of the first-order sweeping process: ẋ(t) ∈ −NC(t)(x(t)). An explicit Euler dis-
cretization yields x j+1 − x j ∈ −NC(t j+1)(x j ) (the value given to C(t) is not impor-
tant here). There is clearly no way, in general, to calculate x j+1 from this inclusion
(though one may impose a selection criterion like minimum norm solution, or a
randomly chosen selection, or a projection on the set-valued right-hand side [355,
356, 649]). Indeed, if it happens that x j /∈ Int(C(t j+1)), then the normal cone is set-
valued and one needs a selection procedure to compute a selection λ j ∈ NC(t j+1)(x j ).
If we now set x j+1 − x j ∈ −NC(t j+1)(x j+1), the equivalences in (B.20) and (B.21)
tell us immediately that x j+1 can be computed as a projection on C(t j+1), which in
turn allows us to obtain a selection of the right-hand side. In addition, the implicit
discretization yields smooth stabilization on attractive sliding surfaces, while the
explicit discretization usually does not, see [356, Figs. 3, 4, 5 and 6] and Fig. 5.26
below.

5.7.3.2 Applications Using the NSCD Method

These time-stepping schemes have been used with success in various applications:
Robotics [912, 1212, 1213], Computer Graphics [138], Granular Matter [896, 1023,
1024, 1025], Masonry Structures [5, 616], Circuits with set-valued components
[9, 10], Bifurcations analysis [725, 728], Rockfall simulation [729], Gene regula-
tory networks [17], Grand piano mechanism [66, 1193], Haptics [846], Geosciences
[1136, 1137], etc..

Remark 5.35 It is interesting to note that the same system as in [725] is used in
[701, 702]. The NSCD method is used in [725], while an event-driven code is
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apparently used in [701, 702]. The results of [725] are used in [701, 702] as a
benchmark to test the accuracy of their event-driven code (and most probably to tune
some numerical parameters like the unavoidable thresholds). Most probably, some
kind of hybrid time-stepping/event-driven code could represent the best compromise
accuracy/robustness for such nonsmooth systems.

5.7.3.3 Other Time-Stepping Algorithms

• It is worth looking at [459, 1162] for details on the implementation and formulation
of the NSCD method.
•Let us describe the general form of the algorithm proposed in [1143], which applies
to an n-degree-of-freedom system with a single constraint (m = 1, but those schemes
work for m ≥ 2 [1142]) and with Coulomb friction. This method is a Moreau–Jean
scheme, where the friction cone (in the three-dimensional case) is facetized along
the ideas in [671, 672]:

⎧⎨
⎩

λn, j+1 ≥ 0, n(q j )
T q̇ j+1 ≥ 0, λn, j+1n(q j )

T q̇ j+1 = 0
β j+1 ≥ 0, λ j+1e + D(q j )

T q̇ j+1 ≥ 0, βT
j+1[λ j+1e+ D(q j )

T q̇ j+1] = 0
λ j+1 ≥ 0, μλn, j+1 − eTβ j+1 ≥ 0, λ j+1[μλn, j+1 − eTβ j+1] = 0

(5.193)

where n(q) = ∇ f (q) ∈ R
n , h > 0 is the integration step, eT = [1, 1, . . . , 1] ∈ R

l

where l is the number of edges of the polyhedral approximation of the friction cone.
Hence,β ∈ R

l as well. Notice thatλn, j andβ j are to be considered as impulsions since
they are proportional to forces times h. Actually, the friction cone is approximated by
the polyhedral set Ĉ (q) = {λnn + D(q)β, λn ≥ 0, β ≥ 0, eTβ ≤ μλn}. The rows
DT

i of the matrix D(q) are vectors that span the tangent subspace at the contact
point. It is also assumed that there is always i and l such that Di = −Dl . The last
two sets of complementarity conditions represent the frictional effects. The third
complementarity relations can be understood as follows [47, 1141]: if μλn − eTβ >

0 then λ = 0 and D(q)T q̇ j+1 ≥ 0. Now if DT
i q̇ j+1 > 0 necessarily there is an l with

DT
l q̇ j+1 = −DT

i q̇ j+1 < 0, which contradicts D(q)T q̇ j+1 ≥ 0. Thus D(q)T q̇ j+1 =
0. Since the vectors Di span the tangent plane at the contact point (at least for the
motion of particles), one deduces that the tangential velocity is zero. Consequently,
if the interaction force is inside Ĉ (which is the case if μλn − eTβ > 0), the relative
velocity between the two systems in contact is zero, as expected. Now if there is some
relative motion at the contact point, necessarily there is at least one i with DT

i q̇ j+1 >

0. Thus λ > 0 since the complementarity relations can be taken componentwise,
which forces μλn = eTβ, i.e., the contact force lies on bd(C ). One may deduce this
form of the Coulomb friction from Kuhn–Tucker conditions, since this law obeys
the principle of maximum dissipation, see Sect. 5.3. It can therefore be formulated
as the maximization of the quantity−Ftvr,t (in one contact case) under the constraint
that Ft belongs to the set in (5.88).
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Some comments arise:

1. The variable λ ∈ R is a slack variable with no real physical meaning.
2. Cone faceting may yield unrealistic behaviors [13, §13.3.7].
3. The unilateral constraint is formulated as n(q j )

T q j ≥ α0 in [1143]. Assume also
that the inertia matrix M is constant [47]. Then the LCP resulting from (5.193)
and with unknowns β, λn, and λ always possess a solution that can be computed
via Lemke’s algorithm. Notice also that in (5.193) M(q) is calculated at step
j + 1 using q j+1 which is in turn a function of q̇ j+1. Then one gets from (5.193) a
nonlinear complementarity problem [1142]. Instead, in [1141] the inertia matrix
is computed with q j + hq̇ j , i.e., with quantities known at step j . Also, [47] use
q j+1 = q j + hq̇ j instead of the velocity discretization in (5.193). The work in
[1142] uses the scheme in (5.193) to prove existence results. This is an improve-
ment with respect to Problem 5.2 in which the inertia matrix is assumed to be
constant. External forces reduce to conservative ones, and the potential energy is
assumed to be globally Lipschitz continuous in q.

4. Impact rules have to be chosen in addition to (5.193). In [47] the method in [1001]
is taken, whereas [1141, 1142] base on Moreau’s inelastic rule. In his pioneering
work [763] Lötstedt proposed to extend Gauss’ principle to the case of multiple
shocks with friction, but his solution lacks of physical meaning.

• Schatzman and Paoli proposed a specific numerical scheme devoted to the inte-
gration of systems with unilateral constraints [966, 970]. The nice feature of the
proposed discretization is that it is proved that the solution of the approximating
problem converges uniformly on any finite time interval toward that of the original
system in proportion as the step converges to zero. This numerical scheme applies to
particles evolving in a convex set Φ and follows the well-posedness developments
of Problem 2.2. It is formulated in a θ -method framework as [7]

⎧⎪⎨
⎪⎩

M(q j+1)(q j+1 − 2q j + q j−1)+ h2F(t j+θ , q j+θ , q̇ j+θ ) = p j+1,

q j+1 = q j+1−q j−1

2h ,

p j+1 ∈ −NΦ

(
q j+1+enq j−1

2h

)
.

(5.194)

The mechanical meaning of p j+1 is not clear with such a choice of the normal cone
argument. One advantage of this scheme may be that for en = 0 the constraint is sat-
isfied at the position level (in the NSCD method it is satisfied at the velocity level).
A weakness is that Φ appears in the normal cone, while V (q) is always convex
polyhedral in the sweeping process’s right-hand side (consequently in the NSCD
method). When the constraint is attained, the discrete-time velocity reverses after
two steps. Since this may induce too large numerical errors, some modifications
implying a one-step velocity reversal have been proposed [936]. It is noteworthy
that extensive numerical testing in [971] on systems ranging from 1 to 29 degrees of
freedom has concluded that except in very simple systems, there is no advantage in
using a penalization with respect to the numerical scheme in (5.194). A qualitative
comparison between the Schatzman–Paoli and the Moreau–Jean schemes is made

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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in [7]. Extensions have been published in [974] for the one-degree-of-freedom and the
n-degree-of-freedom cases with classC3 boundary bd(Φ). The authors of [368] claim
that they improve the Schatzman–Paoli’s scheme, using a nonstandard finite differ-
ence method that renders it unconditionally stable, and it preserves energy between
impacts. The nonstandard method mainly consists of replacing h2 (in the one-degree-
of-freedom case or a harmonic oscillator with F(t, q, q̇) = ω2q) by 4

ω2 sin(ω h
2 )2.

5.7.3.4 Time-Stepping Algorithm for the Darboux–Keller Impact
Dynamics

Let us consider the discretization of (4.141) with an implicit time-stepping scheme.
For this let us start from (4.142). We consider the discretization in the pn timescale, on
an interval [0, P], pn, j+1 = pn, j + h, 0 ≤ j ≤ N − 1, pn,0 = 0, pn,N = P , h > 0.
We denote vr,n(pn, j ) as v j

r,n, and so on. An implicit Euler discretization is applied:

{
v j+1
r,n − v j

r,n ∈ hM−1
nn − hM−1

nt ∂ψ

Dμ

(v j+1
r,t )

v j+1
r,t − v j

r,t ∈ hM−1
nt − hM−1

tt ∂ψ

Dμ

(v j+1
r,t ).

(5.195)

The next proposition shows that the one-step nonsmooth problem for (5.195) is
uniquely solvable, where the matrices are assumed to be full rank.

Proposition 5.29 Given v j
r,n and v j

r,t, the algorithm in (5.195) gives

v j+1
r,t = v j

r,t + hM−1
nt − hM−1

tt projM−1
tt

[
Dμ; (M−1

tt )−1

h
(v j

r,t + hM−1
nt )

]
(5.196)

and

v j+1
r,n = v j

r,n + hM−1
nn − hM−1

nt projM−1
tt

[
Dμ; (M−1

tt )−1

h
(v j

r,t + hM−1
nt )

]
(5.197)

Proof We have (M−1
tt )−1

h [v j+1
r,t − v j

r,t − hM−1
nt ] ∈ ∂ψ


Dμ
(v j+1

r,t ), which is found using

(B.16) to be equivalent to v j+1
r,t ∈ NDμ

(
− (M−1

tt )−1

h (v j+1
r,t − v j

r,t − hM−1
nt )

)
. Let z j+1 Δ=

− (M−1
tt )−1

h v j+1
r,t , and ζ j = (M−1

tt )−1

h (v j
r,t + hM−1

nt ). We obtain M−1
tt (z j+1 + ζ j+1)−

M−1
tt ζ j ∈ −NDμ

(z j+1 + ζ j ). Using (B.20), this gives z j+1 = ζ j + projM−1
tt
[Dμ; ζ j ],

and thus z j+1 = (M−1
tt )−1

h (v j
r,t + hM−1

nt )+ projM−1
tt
[Dμ; ζ j ]. This shows (5.196).

To prove (5.196), we need to calculate a selection ξ j+1 of the set-valued term
∂ψ


Dμ
(v j+1

r,t ). To this aim we can use (5.196) and the second inclusion in

(5.195). We find that ξ j+1 = projM−1
tt

[
Dμ; (M−1

tt )−1

h (v j
r,t + hM−1

nt )
]
, from which (5.197)

follows.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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It is interesting to see that v j+1
r,t can be obtained at each step by solving a quadratic

problem under convex constraints, using the equivalences in (B.20). Notice that if
(M−1

tt )−1

h (v j
r,t + hM−1

nt ) ∈ Dμ then v j+1
r,t = 0: the sticking mode is attained at j + 1.

The next step is about the convergence of this implicit Euler scheme. For that we

first notice that the coordinate change ṽr,t
Δ= R−1vr,t , with R the positive definite

symmetric square root of M−1
tt , allows us to recast the differential inclusion dvr,t

dpn
∈

M−1
nt − M−1

tt ∂Dmu (vr,t) into the general framework of (B.24), since Dμ is closed
convex (hence, so is ψDμ

(·) and its conjugate function). The implicit algorithm
in (5.195) is analyzed in [97, 102]. Then from [102, Proposition 4.4], the algorithm
converges and has order 1

2 : there exists a constant c such that for all h > 0, we have for
all pn ∈ [0, P]: ||vr,t(pn)− vhr,t(pn)|| ≤ c

√
h, where vhr,t(·) is the linear interpolation

of the vkr,t’s at times tk . Moreover, limh→0,h>0 vhr,t(·) = vr,t(·) where vr,t(·) is a solution
of the differential inclusion. Moreover, and perhaps most importantly, the sticking
phases are simulated without the spurious oscillations around vr,t = 0 which are
observed when an explicit Euler scheme is used. This fact has been first observed
and proved in [617], see Sect. 5.7.3.7 for similar ideas in discrete-time sliding mode
control.

5.7.3.5 Time-Stepping Algorithm for Linear Complementarity Systems

The LCS in (5.128) completed with a state jump rule (5.145) may be discretized
with a time-stepping method that is very close to Moreau’s catching-up algorithm.
Starting from (5.128) we set:

{ x j+1−x j

h = Ax j+1 + Eu j+1 + Bλ j+1

0 ≤ λ j+1 ⊥ wj+1 = Cx j+1 + Fu j+1 + Dλ j+1 ≥ 0.
(5.198)

The first equation is rewritten as (In − hA)x j+1 = x j + hEu j+1 + B(hλ j+1), thus
if (In − hA) is invertible, we obtain the LCP:

0 ≤ λ j+1 ⊥ wj+1 =
Δ=M(h)︷ ︸︸ ︷

[C(In − hA)−1hB + D] λ j+1 + G(x j , u j+1) ≥ 0, (5.199)

with G(x j , u j+1) = C(In − hA)−1(x j + hEu j+1)+ Fu j+1. Notice that if the
term Ax is discretized explicitly, we obtain instead of (5.199): 0 ≤ λ j+1 ⊥
wj+1 = (hCB + D)λ j+1 + H(x j , u j+1) ≥ 0, with H(x j , u j+1) = C(In + hA)x j +
hCEu j+1 + Fu j+1. The difference between both schemes is that the LCP matrix
M(h) is changed to N (h) = hCB + D. In both cases from Theorem 5.105, the
one-step nonsmooth problem (OSNSP) is solved uniquely for any x j and u j+1, if
and only if M(h) (or N (h)) is a P-matrix. Preliminary results on time-stepping dis-
cretization of circuits with ideal diodes are in [720] (a brief historical introduction
to nonsmooth circuits modeling, analysis, and simulation is in [10, §1.5]). Results
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on the convergence of piecewise interpolations {x̂ h(·)} = of {x j } and {λ̂h(·)} of {λ j }
are stated in [502], when state trajectories x(·) are continuous and λ(·) is Lebesgue
integrable. A major conclusion is that if (A, B,C, D) is passive (equivalently it
satisfies the passivity linear matrix inequality (LMI)), and Cx0 ∈ LCP − Im(D),66

then the OSNSP is solvable for h small enough, x̂ h(·)→ x(·) as h → 0 uniformly
on the interval of integration [0, T ], λ̂h(·)→ λ(·) as h → 0 weakly in L2(0, T ),
and the limit functions are weak solutions of the continuous-time LCS. This shows
once again that passive LCS have continuous solutions, except perhaps initially if
x(0−) does not satisfy Cx(0−) ∈ LCP − Im(D). Then a jump has to be applied so
that Cx(0+) ∈ LCP − Im(D). We have seen elsewhere that LCS with a “passivity-
like” input–output constraint are quite related to differential inclusions with maximal
monotone set-valued right-hand side. In this case, the algorithm in (5.198) is similar
to the numerical scheme in [102] where orders 1

2 or 1 are proved. Remind also that
passivity constrains the relative degree between the two complementary variables
(or the index in the multivariable case m ≥ 2).

� Implicit (also called backward Euler) schemes as in (5.198) are well suited to
LCS whose transfer matrix C(s In − A)−1B + D has index ≤ 1.

The unknown of the LCP in (5.199) is λ j+1, whose interpolation is meant to approx-
imate λ(·). If the multiplier is a function this is sound. However, if the LCS has
state jumps, λ is a distribution. Consider the material in Sect. 5.4.4.3, which applies
when D = 0. It shows that under certain conditions an LCS can be transformed into
a Moreau’s first-order sweeping process (5.140). Then the catching-up algorithm
may be applied, in the case of RCLBV solutions (which yield a measure differential
inclusion, i.e., λ is a measure). However, the LCP variable, which then becomes a
selection of the set-valued right-hand side (a normal cone), is no longer λ j+1, but

ξ j+1
Δ= hλ j+1. The interpretation is that ξ j+1 approximates the measure λ([t j , t j+1))

of an interval [t j , t j+1) by the measure λ: this is a bounded real number, and it makes
sense to calculate it numerically. This is the same issue as we met for Mechanics and
impacts. When the LCS are such that λ is a higher degree distributions, we face a
distribution differential inclusion, and the framework settled in [15] applies, where
a time-stepping scheme extending the catching-up algorithm is proposed.

Remark 5.36 The system in (2.14) is an LCS which models a linear spring-dashpot
system with the switching conditions indicated just below Remark 2.2, i.e.,

{
mẍ(t)+ f ẋ(t)+ kx(t) = u(t) if − f ẋ(t)− kx(t) > 0
mẍ(t) = u(t) if − f ẋ(t)− kx(t) ≤ 0

(5.200)

66The set LCP − Im(D) denotes all vectors q such that the LCP 0 ≤ λ ⊥ Dλ+ q ≥ 0 is solvable.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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where the switching surface is not equal to {(x, ẋ)|x = 0} but {(x, ẋ)| f ẋ + kx = 0}.
With an external action u(t) we have

{
η̇(t) = Aη(t)+ Bλ(t)+ Eu(t)
0 ≤ w(η(t)) = Cη(t) ⊥ λ(t) ≥ 0

(5.201)

with E = (0, 1, 0)T . This perfectly fits with (5.128) with D = 0 and F = 0. The
time discretization of Lagrange dynamics with spring-dashpot normal contact, and
Coulomb’s friction, has been analyzed in [1128] using complementarity. The limit
to the rigid case is studied in [1128, Theorem6], and a condition related to “positive
linear independence” of ∇ f (q) and Ht(q) is imposed, which prevents unbounded
contact forces in the limit.

One good question is: does there exist a numerical method which preserves the
dissipativity properties of the continuous-time LCS? When a θ−method is used
instead of the Euler implicit in (5.198), the answer is in [480]67.

5.7.3.6 Time-Stepping Algorithm for Impulsive ODEs

We consider in this section the time discretization of impulsive ODEs as in (1.31).
This is a topic that has received very little attention in the related mathematical
literature [345, 755, 1029, 1030], which has focused almost uniquely on stability
issues. Time-stepping algorithms are studied in [345, 755, 1029], for impulsive ODEs
with fixed state jump times tk . Euler, θ−method, and Runge–Kutta algorithms are
analyzed. Since the jump times are known, the discretization grid {tk,l} is constructed
such that the time step h = 1

m , tk,l = tk + hl, 0 ≤ l ≤ m. Hence, the jump mapping is
approximated as x(tk,0)− x(tk−1,m) = Ik(tk−1,m). Stability and convergence results
are proved in these references.

5.7.3.7 Discrete-Time Sliding Mode Control

The implicit Euler discretization of Coulomb’s friction is able to suppress spurious
oscillations during the sticking phases of motion which appear when an explicit
method is used (see [617] for an early proof of this fact). In sliding mode control,
such oscillations are called chattering in the neighborhood of the sliding (attractive)
surface: they affect the output and the input, which takes the form of a high-frequency
bang–bang controller as depicted in Fig. 5.26. The similarity between Coulomb’s
model and set-valued sliding mode controllers has motivated the analysis of implicit
discrete-time sliding mode controllers [14, 16] (see also the close results in [663,
664]), which prove to be quite efficient in practice as they suppress the output and the
input chattering phenomena [553, 554, 1245]. The time discretization of set-valued

67Which to the best of the author’s knowledge is the first article where a rigorous definition of
numerical dissipation is given, using Willems’ dissipativity in both continuous and discrete-time.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Fig. 5.26 Numerical
chattering in the input and
the output, with an explicit
Euler discretization
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controlled Lagrange dynamics is considered in [26], with convergence and order
results. Both Euler and zero-order-hold may be considered. Continuing the analogy
with Coulomb’s friction, the control input in a sliding mode controlled system is a
selection of the signum multifunction.



Chapter 6
Generalized Impact Laws and Multiple
Impacts

We speak of a multiple impact when several collisions occur at the same time in
a multibody system. Multiple impacts are complex phenomena which possess par-
ticular features, not shared by single impacts. In the first part of this chapter, these
specific properties are described. Then, two models of multiple impacts are pre-
sented: the first one extends kinematic laws (Newton’s and Moreau’s impact laws),
while the second one extends Darboux-Keller’s impact dynamics and uses energetic
coefficients of restitution at each contact/impact point. The extension of Poisson’s
kinetic law is briefly introduced. Chains of balls and the rocking block systems serve
as examples.

6.1 Particular Features of Multiple Impacts

A multiple impact occurs each time several contact points of a system may undergo
some (local) normal velocity jump (vn,i (t

+
k ) �= vn,i (t

−
k ), where i is the contacting

points index). This encompasses those contacts with vn,i (t
−
k ) = 0, i.e. some contacts

may be closed (or active) at the impact time, as is the case in the popular Newton’s
cradle where the balls touch each other at the shock instant (the same occurs for the
rocking block system). More rigorously we may state the following. Consider an
n-degree-of-freedom system with a configuration spaceQ, subjected tom unilateral
constraints f (q) ≥ 0. The admissible domain is Φ = {q ∈ Q| f (q) ≥ 0}, impacts

occur on its boundary bd(Φ). The boundary ismade of hypersurfacesΣl
Δ= ⋂l

i=1 Σi ,
withΣi ⊆ {q ∈ R

n| fi (q) = 0}which is a codimension one hypersurface (with some
abuse we will say thatΣi has also codimension one). Therefore,Σl has codimension
l ≥ 1. Physically, this means that l unilateral constraints boundaries are reached
at the same time tk , including situations where some of them become active (i.e.
fi (q(t)) > 0 in a left-neighborhood of tk , and vn,i (t

−
k ) = ∇ fi (q(tk))T q̇(t−k ) < 0)

while others were already active (i.e. f j (q(t)) = 0 in a left-neighborhood of tk , and
vn, j (t

−
k ) = ∇ f j (q(tk))T q̇(t−k ) = 0). The subtlety here is that the previously-lasting
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contacts may satisfy vn, j (t
+
k ) = ∇ f j (q(tk))T q̇(t+k ) > 0, and this is why they are part

of the multiple impact phenomenon. We will see later that such “distance effects”
are due to wave transmission through the multibody system.

Definition 6.1 (Multiple Impact)We say that an l−multiple impact occurs each time
the attained boundary hypersurface Σl has codimension l ≥ 0.

Remark 6.1 Physically, and taking into account contact deformations, collisions at
different points of a system may be declared to be simultaneous when they overlap
and thus may influence each other. In a perfect rigid body model limit, they occur at
the same time.

6.1.1 Some Specific Features of Multiple Impacts

A typical case of a multiple impact is the collision of a chain of N aligned identical
balls with a rigid ground, as shown in Fig. 6.1. When the impact occurs, the balls
are all contacting each other and an N − 1-impact occurs. The chain is submitted
to gravity, and starts at a height h. The mass of a stainless steel bead used in the
experiment is m = 2.05 × 10−3 kg. The Young modulus and Poisson ratio for
stainless steel are E = 21×1010 N/m2 and νs = 0.276, respectively. Thus, the value
of the contact stiffness, Ki , i = 2, . . . , N for sphere/sphere contact is 6.9716 × 109

N/m3/2. For the contact between the bead and the wall made of stainless steel, the
value of the contact stiffness K1 for the sphere-plane contact is 9.858× 109 N/m3/2.

It is shown experimentally in [387] and numerically in [749] that the maximum
contact force during the impact process, is almost independent of N , i.e. of the total
mass of the chain. This is a rather counter-intuitive result. In Fig. 6.2a are depicted the
contact forces felt at the ground during the shock, for a column of N = 1, 2, . . . , 8
beads with fall height h = 3.1 mm (pre-impact velocity 0.246 m/s). In Fig. 6.2b
are depicted the contact forces felt at the ground during the shock, for a column of
N = 5, 6, . . . , 12 beads with fall height h = 5.1 mm (pre-impact velocity 0.316
m/s). The restitution coefficient between the beads is en,s = 0.96, and the restitution
coefficient between the last particle and the ground is en,p = 0.92. The numerical

Fig. 6.1 A column of beads
colliding against a wall

h

N 1

g
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Fig. 6.2 The contact force at the wall during the collision. Taken from [749, Figs. 2, 3]. a N =
1, . . . , 8. b N = 5, . . . , 12

results are obtained with the LZBmodel, that is described in Sect. 6.3. Notice that the
collisions durations in Fig. 6.2a, b are less than 32µs, and increase with increasing
N . Thus the contact force impulse varies with N .

� The physical phenomenon that is responsible for this observed and simulated
behavior, is the presence of nonlinear waves inside the column of beads during the
shock. These waves create some energy dispersion inside the chain.

It is noteworthy that due to the property of sphere/sphere collisions, waves inside the
bodies (bulk waves) are negligible (the impacts are quasi-static, see Sect. 4.2.4). Thus
an excellent model of the chain, consists of particles interacting with Hertz stiffness
(and some damping, the choice of which is crucial and not straightforward). What
happens during and after the shock? In a monodisperse chain (all identical, lossless
spheres) that is impacted by one of these spheres at one end (this is the “classical”
Newton’s cradle case study), the waves due to the local deformations of the beads
take the form of an almost-perfect solitary wave that travels through the chain (until
it arrives at the last “free” bead, which thus takes almost all of the initial kinetic
energy). In case of a chain colliding a ground, the wave effects are much less regular.

6.1.1.1 Discontinuity w.r.t. Initial Conditions

The fact that the impact outcome (the postimpact velocities) may depend on the way
the system is initialized, has been noticed a long time ago [422]. This is directly
related with the order of the pairwise collisions at the various contact points, and to
the kinetic angles between the hypersurfaces of constraints. Consider for instance a
chain as in Fig. 6.1, with N = 2, masses m1 and m2, radii R1 and R2, coordinates q1
and q2, respectively. Its dynamics is given by:

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1q̈1(t) = −m1g + λ12(t)
m2q̈2(t) = −m2g − λ12(t) + λ2(t)

0 ≤ λ12 ⊥ f1(q) = q1 − q2 − R1 − R2 ≥ 0
0 ≤ λ2 ⊥ f2(q) = q2 − R2 ≥ 0,

(6.1)

where λ12 is the force exerted by ball 1 on ball 2, λ2 is the force exerted by the wall
on ball 2. The impact dynamics is given by:

{
m1(q̇1(t

+
k ) − q̇1(t

−
k )) = p1(tk)

m2(q̇2(t
+
k ) − q̇2(t

−
k )) = −p1(tk) + p2(tk).

(6.2)

We associate a Newton’s impact law with each contact, with restitution coefficients
en,1 and en,2, respectively. The superscript − means pre-impact velocity, whereas +
means postimpact velocity. When there are several impacts we indicate it as ++ or
+++. The sequence of impacts B2/wall (Σ2) and B1/B2 (Σ1) produces the outcome

⎧⎨
⎩
q̇+
1 = m−en,1

1+m q̇−
1 − en,2

1+en,1
1+m q̇−

2

q̇++
2 = m(1+en,1)

1+m q̇−
1 − en,2

1−en,1m
1+m q̇−

2 ,

(6.3)

withm
Δ= m1

m2
. The sequence of impacts B1/B2 (Σ1) and B2/wall (Σ2) and then B1/B2

(Σ1) again, produces the outcome1:

⎧⎪⎪⎨
⎪⎪⎩
q̇++
1 = m−en,1

1+m

(
m−en,1
1+m q̇−

1 + 1+en,1
1+m q̇−

2

)
− en,2

1+en,1
1+m

(
m(1+en,1)

1+m q̇−
1 + 1−en,1m

1+m q̇−
2

)

q̇+++
2 = m(1+en,1)

1+m

(
m−en,1
1+m q̇−

1 + 1+en,1
1+m q̇−

2

)
− en,2

1−en,1m
1+m

(
m(1+en,1)

1+m q̇−
1 + 1−en,1m

1+m q̇−
2

)
.

(6.4)

Clearly, the final values in (6.3) and (6.4) are not the same. Let us provide a second
example on a 3-ball chain as in Fig. 6.4, but where the initial gap between ball 1
and ball 2 is δ1 and the initial gap between ball 2 and ball 3 is δ2. Suppose that
q̇1(t

−
k ) = vs > 0, q̇3(t

−
k ) = −vs < 0, and q̇2(t

−
k ) = 0. Also let us choose m1 =

m3 = m
4 and m2 = m. If δ1 < δ2, one computes the outcome q̇1(t

+
k ) = − 6vs

10 m/s,
q̇2(t

+
k ) = − 4vs

25 m/s, q̇3(t
+
k ) = 31vs

25 m/s. Now if δ1 > δ2, one computes the outcome
q̇1(t

+
k ) = − 31vs

25 m/s, q̇2(t
+
k ) = 4vs

25 m/s, q̇3(t
+
k ) = 3vs

5 m/s. The problem is perfectly
symmetric, and one expects that if δ1 = δ2 the outcome is also symmetric. Energy
conservation yields q̇1(t

+
k ) = −vs m/s, q̇3(t

+
k ) = vs m/s, q̇2(t

+
k ) = 0 m/s. One sees

that if the impact occurs as a double impact (i.e. right at the codimension 2 singularity
of the admissible domain boundary), it is impossible to deduce it from the limit of
the impacts that occur in an arbitarily small neighborhood of this singularity. This

1It is implicitly assumed here that there exists initial velocities and positions such that these various
sequences of collisions exist, incorporating the kinematic admissibility of the postimpact velocities.
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second example shows that continuity in the initial data (see Sect. 1.3.2.3) may not
hold for systems with multiple unilateral constraints.

� Multiple surfaces of constraints (equivalently codimension ≥2 boundaries of the
admissible domain Φ) may create discontinuity of the solutions with respect to the
initial conditions. In this case, it is not possible to deduce the impact law at the
singularity (simultaneous impacts) by studying the limit as the initial data approach
the singularity.

This explains why binary collision models have to be used with some care.

6.1.1.2 Momentum Conservation

It is often taken for granted that the conservation of momentum (linear momentum
for a chain of aligned balls) is part of an impact law. Such a point of view is absolutely
wrong. Indeed, the conservation of linear momentum at an impact time, is a direct
consequence of Newton’s third law of action/reaction:When one body exerts a force
on a second body, the second body simultaneously exerts a force equal in magnitude
and opposite in direction on the first body. One has to assume that Newton’s third law
is still valid during collisions, which seems to be a reasonable assumption, though
historically subject to some controversy [434]. To illustrate this fact, consider the
dynamics of the 3-ball system as in Fig. 6.4, where the balls have radii R. Its dynamics
outside impacts is given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m1q̈1(t) = −λ12(t)
m2q̈2(t) = λ12(t) − λ23(t)
m3q̈3(t) = λ23(t)

f1(q) = q2 − q1 − 2R ≥ 0
f2(q) = q3 − q2 − 2R ≥ 0.

(6.5)

Let us notice that both (6.1) and (6.5) fit within (5.1). Clearly from (6.5) one has
m1q̈1(t) +m2q̈2(t) +m3q̈3(t) = 0, from which it follows that the linear momentum
satisfiesm1q̇1(t)+m2q̇2(t)+m3q̇3(t) = m1q̇1(0)+m2q̇2(0)+m3q̇3(0). This property
is kept at the impact time, as shown in (6.9) that yields m1q̇1(t

+
k ) + m2q̇2(t

+
k ) +

m3q̇3(t
+
k ) = m1q̇1(t

−
k )+m2q̇2(t

−
k )+m3q̇3(t

−
k ). Such is not the case for (6.1), whose

impact dynamics is in (6.2).

� The linear momentum may or may not be conserved at an impact. The fact that
conservation holds for the 3-ball system, is just an illustration of momentum conser-
vation on a specific system. It is not part of any impact law.

The last point is illustrated in the next section. Historically, Newton’s third law has
been used for the first time to solve an impact problem, by ’sGravesand in 1721
[1091], who also suspected that plastic deformation could play a role. Leibniz was
the first to use kinetic energy conservation together with what we call todayNewton’s
restitution law (with en = 1) [434].

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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6.1.1.3 Single Versus Multiple Impacts

Let us make some computations which clarify the major discrepancy between sin-
gle and multiple impacts. Let us consider the 3-ball system, with initial conditions
q̇1(t

−
k ) = 1m/s, q̇2(t

−
k ) = q̇3(t

−
k ) = 0m/s, ball 2 and ball 3 touch each other initially,

m1 = m2 = m3 = 1 g. The set of equalities and inequalities which have to hold at
the impact time tk are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1(t
+
k ) − 1 = −p12(tk)

q̇2(t
+
k ) = p12(tk) − p23(tk)

q̇3(t
+
k ) = p23(tk)

p23(tk) ≥ 0, p12(tk) ≥ 0 (kinetic constraints)

∇ f1(q)T q̇(t+k ) = q̇2(t
+
k ) − q̇1(t

+
k ) ≥ 0

∇ f2(q)T q̇(t+k ) = q̇3(t
+
k ) − q̇2(t

+
k ) ≥ 0 (kinematic constraints)

q̇1(t
+
k )2 + q̇2(t

+
k )2 + q̇3(t

+
k )2 = 1 (energetic constraint).

(6.6)

It follows from the post-velocities admissibility that q̇3(t
+
k ) ≥ q̇2(t

+
k ) ≥ q̇1(t

+
k ).

From the energy constraint |q̇1(t+k )2| ≤ 1 so that p12(tk) = 1− q̇1(t
+
k ) ≥ 0. Assume

that q̇3(t
+
k ) ≤ 0, then q̇2(t

+
k ) ≤ 0 and q̇1(t

+
k ) ≤ 0: this is impossible from the linear

momentum conservation equation q̇1(t
+
k ) + q̇2(t

+
k ) + q̇3(t

+
k ) = 1. Thus necessarily

q̇3(t
+
k ) > 0, hence p23(tk) > 0: the kinetic constraints are automatically satisfied if

the other equalities and inequalities hold. We may therefore eliminate the impulses
via the momentum conservation and solve the problem with velocities only. We are
left with the system:

⎧⎨
⎩
q̇1(t

+
k ) + q̇2(t

+
k ) + q̇3(t

+
k ) = 1

q̇1(t
+
k )2 + q̇2(t

+
k )2 + q̇3(t

+
k )2 = 1

q̇2(t
+
k ) − q̇1(t

+
k ) ≥ 0, q̇3(t

+
k ) − q̇2(t

+
k ) ≥ 0.

(6.7)

It happens that the system in (6.7) possesses an infinity of solutions, which are
“between” two “extremals”: (A) with (q̇1(t

+
k ), q̇2(t

+
k ), q̇3(t

+
k )) = (0, 0, 1) and (B)

with (q̇1(t
+
k ), q̇2(t

+
k ), q̇3(t

+
k )) = (− 1

3 ,
2
3 ,

2
3 ) (see Fig. 6.3b).

Let us consider now the impact between two balls. Doing a similar reasoning it is
easy to obtain the system:

⎧⎨
⎩
q̇1(t

+
k ) + q̇2(t

+
k ) = 1

q̇1(t
+
k )2 + q̇2(t

+
k )2 = 1

q̇2(t
+
k ) − q̇1(t

+
k ) ≥ 0.

(6.8)

The system in (6.8) has a unique solution q̇1(t
+
k ) = 0 m/s, q̇2(t

+
k ) = 1 m/s. Imposing

Newton’s impact law with en = 1 implies the energy equality, see (4.41). On the
other hand, imposing TL(tk) = 0 and the kinematic constraint implies en = 1.

http://dx.doi.org/10.1007/978-3-319-28664-8_4


6.1 Particular Features of Multiple Impacts 377

(b)(a)

Fig. 6.3 Post-impact velocities domains (V+
i

Δ= q̇i (t
+
k )). Taken from [929, Figs. 1.1 and 1.2]. a

System in (6.8). b System in (6.7)

Graphically, the two systems in (6.7) and (6.8) are depicted in Fig. 6.3. In Fig. 6.3b,
momentum conservation defines the plane (P1) is defined from the points (0, 0, 1),
(0, 1, 0) and (1, 0, 0). Energy constraint defines the boundary of the sphere. The
kinematic constraints impose that the postimpact velocities must be located in front
of (P2) and above (P3)

� Energy conservation (or a simple impact law) is sufficient to make the impact
problem solvablewith uniqueness for the central impact of twoballs. It is not sufficient
to solve with uniqueness the 3-ball system at impact: a multiple impact law is needed.
The set of solutions of (6.7) corresponds to various dispersions of the kinetic energy
in the chain after the collision.

6.1.1.4 Kinetic Energy Dispersion

The outcome of the central impact between two spheres of massesm1 andm2, where
friction is neglected (an assumption that we obviously made from the beginning of
this section), where q̇1(t

−
k ) = 1 m/s and q̇2(t

−
k ) = 0 m/s, and energy is conserved,

is given using (4.42) by q̇1(t
+
k ) = q̇1(t

−
k ) − 2m2(q̇1(t

−
k )−q̇2(t

−
k ))

m1+m2
= 1 − 2m2

m1+m2
, and

q̇2(t
+
k ) = q̇2(t

−
k ) + 2m1(q̇1(t

−
k )−q̇2(t

−
k ))

m1+m2
= 2m1

m1+m2
. Consider now a chain of M aligned

identical balls in contact, that impacts a second chain of N identical balls which are
also in contact (we may call this an M : N -collision). Suppose that m1 = Mm,
m2 = Nm, where m is the mass of each ball. If the balls of each sub-chain are
glued together (and hence are equivalent to two solid rigid bodies), one obtains the
outcome q̇1(t

+
k ) = M−N

M+N and q̇2(t
+
k ) = 2M

M+N . It is noteworthy that this result holds
if a Hertz or linear stiffness is used to model the contact/impact between the two

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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spheres. Indeed these compliant models yield an equivalent restitution coefficient
en = 1, while energy and momentum (more exaclty, Newton’s third law) constraints
are unchanged. Thus the kinetic energy of the balls that move forward after the
collision, is equal to 1

2Nm
(

2M
M+N

)2
if N ≥ M (only ball 2 moves forward), and to

1
2Nm

(
2M
M+N

)2 + 1
2Mm

(
M−N
M+N

)2
if N < M (both balls move forward). What happens

when the balls are not glued, but the contacts are unilateral? Extensive simulations
with Hertz unilateral springs2 are presented in [749, Table II] for M + N = 10
balls. They show that as the number of impacting balls M increases, there are M +2
balls that move forward after the shock (with positive velocity), while the remaining
balls on the left move backwards with very low negative velocities. Moreover the
postimpact kinetic energy of the M +2 “forward” balls is approximately 99% of the
total kinetic energy. Both systems (glued contacts and unilateral contacts) match if
and only if M + 2 = N and N

(
2M
N+M

)2 = 0.99M . This holds if and only if M = 9
and N = 11. The results are therefore in general quite different one from each other.
The reason is that the deformations at the contacts, and the unilaterality, allow the
creation of wave phenomena through the chain of N+M balls during the impact. The
nonlinear waves are quite irregular ones except if M = 1, even if the two sub-chains
are monodisperse. They are responsible for the dispersion (or the distribution) of
the energy within the chain after the collision. Similar numerical results on M : N
collisions with M + N = 50 and 100, N = 1, 2, 3, 4, 5, 6 are presented in [529, §5
(c)]. They show that there are M separated solitary waves which are created through
the chain, and which are responsible for the balls to fly off after the impact, each
solitary wave acting as a “collisional effect” for the last ball. The longer the chain,
the more separated the waves. They also show that when N = 5 and M = 1, 2, 3, 4,
then M + 1 balls move forward after the collision while the remaining ones move
backwards with very small velocities.

� Once again, nonlinear waves make the impacts in chains of balls—and more
generally in multibody systems—a quite complex phenomenon. The design of a rigid-
body-like model of multiple impacts, that would encapsulate such wave effects, is a
hard task.

Remark 6.2 The dispersion effect, is sometimes named the distance effect. Indeed
if the collision is assumed to be instantaneous, the impact at one edge of the chain
produces an effect at the other edge.

To be complete, we should also consider impacts between two elastic bodies, like
sphere/rod or rod/rod collisions, and compare the results with the above. The type
of elasticity, and the type of waves (planar displacement linear wave traveling along
the rods) is quite different from the nonlinear waves in chains of balls with unilateral
Hertz elasticity. Roughly speaking, linear waves in elastic rods follow the 1 dimen-
sional linear wave equation ∂2u

∂t2 = c2 ∂2u
∂x2 , where u(t, x) is the displacement of the

rod’s thin section, c =
√

E
ρ
is the speed of the uniform planar displacement wave,

2Which do represent an excellent, high-fidelity model for impacting spheres [387].
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E is the rod’s Young modulus and ρ its density. They may be considered as the
limit of chains with bilateral, linear springs, when the number of elements tends to
infinity (a spatial discretization of the linear wave equation). While nonlinear waves
in chains of aligned balls follow nonlinear partial differential equations [609], and
there may exist solitary waves in 1 : N collisions of monodisperse chains [1087].
These solitons have doubly exponential decay [275], so that they are concentrated
on a compact support of five balls in long enough chains.

� The linear waves—bulk vibrational effects—in elastic bodies, and the nonlinear
waves in chains of balls with unilateral Hertzian contact, are of quite different nature.

6.1.1.5 Equivalence of Rheological Compliant Models

When two bodies collide, two contact compliant models (visco-elastic, or elasto-
plastic) which provide the same restitution coefficient will give the same postimpact
velocity. From this point of view, they are equivalent, despite they may provide quite
different impact duration and contact force history. If the same compliant models
are used in a chain of balls to model the contact between each pair of balls, the
postimpact velocity of the balls may however drastically differ. The reason is that
despite they give the same restitution coefficient for pairwise collisions, the contact
force history, the impact duration and the maximum compression times that they
predict, may differ. These discrepancies may in turn produce quite different impact
outcomes, see Sect. 6.1.3 for the lossless case.

6.1.2 Han-Gilmore’s and Binary Collisions Models

Let us start with the method proposed by Han and Gilmore [500] that is an analyt-
ical computer-oriented method to analyze multiple impacts, including friction. The
method in [500] does not apply to closed kinematic-loops, but is rather devoted to
granular-like systems. The authors analyze the outcomes in multibody systems when
some contacts may break, due to internal impacts (see definition below). A compu-
tational algorithm is presented, based on a particular topological description of the
system: the distance k between contact-impact points is chosen to be the minimum
number of bodies that separate a given point and the prespecified reference point.
The algorithm uses the impact analysis between two bodies developed in [500] to
calculate, for each k (starting at k = 0) the postimpact motion. Then an exhaustive
procedure that considers all possible outcomes during the impact process is given.
Let us note that it is not stated in [500] that the proposed algorithm yields a solution
in all cases, and if it does whether it is unique or not. As the simple 3-ball system
shows in Sect. 6.1.3, uniqueness cannot be expected in general (the example we treat
corresponds to the perfectly elastic case; when the perfectly plastic case is chosen—
en = 0 at both contacts—then Han and Gilmore algorithm converges in an infinite
number of iterations [372], see also Sect. 6.1.4 below). A 5-ball system of elastic
beads—en = 1 at all contacts—is analysed in [929, p. 57] with non unique outcome.
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q1 q2
q3

(sliding, no friction)

Fig. 6.4 The 3-ball system

Let us consider the system depicted in Fig. 6.4. The three balls (or spheres, or parti-
cles) are sliding horizontally. There is no dissipation between the balls and the ground.
The notion of internal and sequential impacts is introduced in [500]: internal impacts
are impacts that occur between two bodies previously in contact, i.e. which occur
in fact through an internal transmission inside the bodies, and such that they create
detachment.3 The authors also assume the possibility of a certain chronology for the
possible impacts occuring in the system, hence sequential impacts. Although such
an analysis might appear natural for the treatment of multiple collisions, it will be
shown that multiple impact phenomena require deeper analysis because sequential
pairwise impacts are not sufficient to model them properly. Let us explain how solu-
tions (i.e. postimpact velocities) can be found. The shock dynamical equations are
given at the shock instant tk by:

⎧⎨
⎩
q̇1(t

+
k ) − q̇1(t

−
k ) = −p12(tk)

q̇2(t
+
k ) − q̇2(t

−
k ) = p12(tk) − p23(tk)

q̇3(t
+
k ) − q̇3(t

−
k ) = p23(tk).

(6.9)

The masses are taken equal to one for simplicity, and the pre-impact velocities are
chosen as q̇1(t

−
k ) = 1, q̇2(t

−
k ) = q̇3(t

−
k ) = 0. It is supposed no energy loss (TL(tk) =

0) at impacts. Two postimpact sets of velocities are computed and are given by:

q̇1(t
+
k ) = − 1

3 , q̇2(t
+
k ) = q̇3(t

+
k ) = 2

3 m/s, (6.10)

and

q̇1(t
+
k ) = q̇3(t

+
k ) = 0, q̇2(t

+
k ) = 1 m/s. (6.11)

The solution in (6.10) can be found by applyingNewton’s restitution rule with en = 1
between bodies 1 and 2 (i.e. q̇1(t

+
k ) = −1 + q̇2(t

+
k )), and between bodies 2 and 3

(i.e. q̇2(t
+
k ) = q̇3(t

+
k )), and assuming a nonzero p23(tk) (i.e. implicitly assuming a

nonzero q̇3(t
+
k )). The solution in (6.11) can be found by assuming no shock between

bodies 2 and 3, i.e. p23(tk) = 0. Now notice that (6.10) can be set as definitive since
postimpactmotion is possible: the first body rebounds and the other two remain stuck.

3Internal impacts are due to distance effects, created by waves that travel through the multibody
system.
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But solution 2 is not feasible between bodies 2 and 3: that problem is overcome in
[500] by assuming a second impact between bodies 2 and 3. Applying Newton’s
rule between bodies 1 and 2 and bodies 2 and 3 yields another nonfeasible solution.
But assuming there is no impact between 1 and 2 (i.e. p12(tk) = 0) yields a feasible
motion. This solution is then given by:

q̇1(t
++
k ) = q̇2(t

++
k ) = 0, q̇3(t

++
k ) = 1 m/s. (6.12)

The superscript ++ is to distinguish the impacts chronologically. This solution is a
possible motion: bodies 1 and 2 remain stuck, body 3 moves to the right. In fact the
above reasoning relies on three rules:

• (i) The kinetic energy loss at impact is zero (energy constraint).
• (ii) The postimpact velocity must assure a feasible motion, i.e. point inwards the
domain inside the constraints (kinematic constraint).

• (iii) Let us denote qi and qi+1 the coordinates of two successive balls. Then if
q̇i (t

−
k ) > q̇i+1(t

−
k ), the percussion between these two bodies pi j �= 0. If q̇i (t

−
k ) <

q̇i+1(t
−
k ), pi j = 0. If q̇i (t

−
k ) = q̇i+1(t

−
k ), then two possibilities must be tested:

either pi j (tk) = 0 or pi j (tk) > 0 (kinetic constraint).

It can be shown that due to the particular choice of the initial conditions, (i) implies
that the restitution coefficients between the balls is equal to 1. (ii) allows one to decide
at each step whether a computed velocity is admissible or not. (iii) is a fundamental
rule which permits to decide the form of the percussion vector. It can be shown that
in this particular example, the algorithm has a finite number of iterations, and that
the only two possible postimpact velocities are the ones in (6.10) and (6.12). When
an admissible velocity has been found, it is considered as definitive. But all possible
paths have to be tested.

Thus the Han and Gilmore algorithm yields two possible solutions for the postim-
pact velocities, and it is a priori impossible to decide which one is the right one, just
relying on rigid body theory. Experimentally, monodisperse 3-ball chains with balls
made of very hard material, evolve closely to the solution in (6.12). However the
experimental outcome is different: although the third ball detaches quickly from
the second one and takes about 98% of the kinetic energy, the second and the first
balls possess nonzero postimpact velocity, and do have a motion after the shock
(for instance, values q̇1(t

+
k ) = −0.0605q̇1(t

−
k ) m/s, q̇2(t

+
k ) = 0.1049q̇1(t

−
k ) m/s and

q̇3(t
+
k ) = 0.9978q̇1(t

−
k ) m/s are reported from experiments in [985]). This is related

to kinetic energy dispersion inside the chain. The balls are commonly made of hard
material (iron) so that the rigid body assumption can be considered to be valid in this
case. However the small postimpact motion of the first and second balls should not
be neglected because it has a great influence on the long-term dynamics of the chain.

Close to the Han and Gilmore algorithm is the so-called binary collision model.
One starts assuming that the impacts are pairwise and sequential with an a priori
given order (e.g. for the 3-ball chain, a first impact between ball 1 and ball 2, then a
second impact between ball 2 and ball 3). The first collision gives a first postimpact
velocity q̇(t+). One has to check whether ∇ f (q)T q̇(t+) ≥ 0, which implies that the
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three balls do not collide again. If this condition is not satisfied, then another impact
occurs that gives q̇(t++). One then checks if ∇ f (q)T q̇(t++) ≥ 0 or not, and so
on. Such binary collision approach may yield an accumulation of impacts in a finite
time. Moreover it is meant to correctly model the wave effect inside the chain, but
does not always provide satisfactory results. Finally, changing the initial sequence of
impacts may change the final outcome, because of discontinuity of the trajectories
with respect to initial data, as shown in (6.2)–(6.4). For the 3-ball chain, one obtains
the following results. Let us assume that q̇1(t

−
0 ) = q̇0

1 > 0 m/s, q̇2(t
−
0 ) = q̇3(t

−
0 ) = 0

m/s, and that there is a first impact between balls 1 and 2, then between balls 2 and
3. One obtains [929]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1(t
++
0 ) =

1−
m2

m1
en,1

1+
m2

m1

q̇0
1

q̇2(T
++
0 ) =

(1−
m3

m2
en,2)(1+

m2

m1
en,1)

(1+
m2

m1
)(1+

m3

m2
)

q̇0
1

q̇3(t
++
0 ) = (1+en,1)(1+en,2)

(1+
m2

m1
)(1+

m3

m2
)

q̇0
1 .

(6.13)

For a monodisperse conservative chain (en,1 = en,2 = 1, m1 = m2 = m3), the
outcome q̇1(t

++
0 ) = q̇2(t

++
0 ) = 0 and q̇3(t

++
0 ) = q̇0

1 m/s is found, that corresponds

to (6.12). If en,1 = en,2 = 0 then q̇1(t
++
0 ) = q̇0

1
2 m/s, q̇2(t

++
0 ) = q̇3(t

++
0 ) = q̇0

1
4 m/s:

it does not satisfy the criterion ∇ f (q)T q̇(t++) ≥ 0, thus other impacts have to be
calculated. It happens that the postimpact velocities outcome domain when both en,1
and en,2 are varied between 0 and 1, does not fill in the whole quarter disk in Fig. 5.5,
but just the portion of it denoted (II), see [929, Fig. 3.7]. It is therefore not clear
why in general it should be preferred to Moreau’s rule, which is much simpler to
implement in a code. Experiments on the 2-ball system hitting a wall (take N = 2 in
Fig. 6.1), are performed in [126] with varying initial gap between the two balls (this
is known as the basketball-tennis ball problem4). It is shown that as the initial gap
becomes very small (the collision approaches a 2-impact), then prediction of binary
collision model and experimental results diverge significantly [126, Fig. 3]. It is also
striking that the impact duration for positive gap, is quite different from the impact
duration for nearly zero gap [126, Fig. 9]. It is shown also in [982] that the binary
collisionmodel is valid for certain range ofmass and stiffness ratios only: this proves,
if needed, that multiple impacts involve internal mechanisms related to wave effects,
which may significantly depart from sequential, binary collisions. Fundamentally,
the fact that the balls’ gap is strictly positive, or if it vanishes, drastically modifies

4An experiment anyone can do. Put a tennis ball on the top of a basketball, and drop both on a
rigid ground. The tennis ball rebounds violently and very high, while the basketball almost does not
rebound at all: the whole energy is transferred to the tennis ball during the impact with the ground.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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the impact wave that travels through the balls. Further results on the basketball-tennis
ball problem, may be found in [315, 906]. It is noteworthy that both balls are shells
with internal pressure, and may not obey Hertz’ elasticity, nor classical damping (see
[751, Sect. 8] and [126]).

Remark 6.3 The analysis of multiple impacts using binary collision models, is
closely related to the study of impacts of a particle in a two-dimensional wedge,
and to the analysis of billiards. Indeed the 3-ball system is equivalent, after some
suitable transformation, to a particle striking a corner, see [929, Appendix A] for a
complete analysis. See also Sect. 6.1.4.

6.1.3 Penalization at Contacts (Compliance)

Let us consider the 3-ball system as depicted in Fig. 6.5. The studywhich followsmay
be seen as an extension of the contents of Sect. 2.1.1, in a multiple impact context.
The dynamical equations are given by:

⎧⎪⎪⎨
⎪⎪⎩

m1 ẍ1(t) = k1(x2(t) − x1(t))
m2 ẍ2(t) = k1(x1(t) − x2(t)) + k2(x3(t) − x2(t))
m3 ẍ3(t) = k2(x2(t) − x3(t))
x1(0) = x2(0) = x3(0) = 0, ẋ1(0) = 1 m/s, ẋ2(0) = ẋ3(0) = 0 m/s.

(6.14)

Let us denote k1 = k, k2
k1

= γ , m1 = m2 = m3 = m, Δ = √
γ 2 − γ + 1, α1 =

√−Δ + γ + 1, α2 = √
Δ + γ + 1, ω =

√
k
m , ω1 = α1ω, ω2 = α2ω. The solution

of (6.14) is given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t) = 1
ω1

(
1
3 − 1−2γ

6Δ

)
sin(ω1t) + 1

ω2

(
1
3 + 1−2γ

6Δ

)
sin(ω2t) + t

3

x2(t) = − 1
ω1

(
1
6 − 2−γ

6Δ

)
sin(ω1t) − 1

ω2

(
1
6 + 2−γ

6Δ

)
sin(ω2t) + t

3

x3(t) = − 1
ω1

(
1
6 + 1+γ

6Δ

)
sin(ω1t) − 1

ω2

(
1
6 − 1+γ

6Δ

)
sin(ω2t) + t

3 .

(6.15)

The balls 1 and 2 separate at time t1 such that x1(t1) = x2(t1), and the balls 2 and 3
separate at time t2 such that x3(t2) = x2(t2), with:

{
(Δ − 1 − γ )α2 sin(ω1t1) + (Δ + 1 − γ )α1 sin(ω2t1) = 0
α2 sin(ω1t2) − α1 sin(ω2t2) = 0.

(6.16)

Fig. 6.5 Three-ball system
with unilateral elastic
contacts

k1 k2
m3

m2m1

x1 x2 x3

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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It is noteworthy that the solutionsω1t1,ω2t1,ω1t2 andω2t2 of these two transcendental
equations, do not depend on k since their coefficients do not depend on k.

� Thus from (6.15) it follows that the velocities at separation times, are independent
of k, but depend only on the stiffness ratio γ .

This was already noticed in [202, 203], as well as in [622, 623] for the two-ball
system hitting a wall (for which the outcome depends also on the mass ratio only).
Let us now study two extreme cases, where γ = 0 and γ = +∞. In the first case
γ = 0, one can show that ω1 = 0, ω2 = √

2ω, sin(ω2t1) = 0 and t1 = π√
2ω

(compare with (2.2)). Consequently, t1 < t2 and ẋ1(t1) = 0 m/s, ẋ2(t1) = 1 m/s,
ẋ3(t1) = 0 m/s. Therefore, balls 2 and 3 continue their collision, and it is easily
obtained that at the end of this collision (which is the end of the multiple shock)
one has ẋ1(t f ) = 0 m/s, ẋ2(t f ) = 0 m/s, ẋ3(t f ) = 1 m/s. When γ = +∞ we find
ω1 = ω, ω2 = +∞, sin(ω1t1) = 0, sin(ω1t2) = 0, t1 = t2 = π

ω
(compare again with

(2.2): this time the 2-impact behaves like a single impact!). Then ẋ1(t f ) = − 1
3 m/s,

ẋ2(t f ) = ẋ3(t f ) = 2
3 m/s. This last outcome is the one obtained applying Moreau’s

impact law (or Newton’s impact law at each contact) with a CoR en = 1, see Example
5.5. It is important to see that these two extreme cases, can be obtained by letting the
stiffnesses k1 and k2 both diverge to infinity, but at different rates. This proves that
even in the limit of a rigid body model, the outcome of this multiple impact depends
strongly on the relative stiffnesses, though they do not depend on the absolute value
of the stiffnesses. It is noteworthy that the two extreme cases for the stiffness ratio
γ , give the solutions in (6.10) and (6.12).

� The energetical behavior of the system, plus the kinetic and kinematic constraints,
are not sufficient to characterize the impact outcome in a multiple impact. The results
of the lossless, penalized 3-ball system when the stiffness ratio γ varies, confirms the
analysis of Sect.6.1.1.3: varying γ allows to span the portion of arc AB in Fig.6.3b;
in Fig.5.5, it allows to span the curve AB for K ER = 1, while Moreau’s law is
“stuck” at B.

More calculations with different assumptions on the parameters, may be found in
[929, Appendix C].

Remark 6.4 (Zero Dispersion Chains) We consider the initial velocities in (6.14).
Reinsch [1035] has shown that a symmetric chain of n + 1 aligned beads, with
unilateral linear elastic contacts, is totally dispersion-free (that is, the last bead takes
exactly all the energy of the impacting one, and the other beads have zero postimpact
velocity) if the masses and the stiffnesses are properly chosen [929, Appendix D].
For a 3-ball chain, one finds equal stiffnesses k1 = k2 and m1 = m3 = m, m2 =
2
3m. Newby [632] investigates a 3-ball chain with equal masses, and whether it is
possible to recover γ from the postimpact velocities (this is called in [632] the inverse
scattering problem): this is not always possible. He finds that all possible postimpact
outcomes are described with compliant models such that γ ∈ (0, γmax), for some
γmax. There is therefore a periodicity in γ in the dynamics. In particular the solution
ẋ1(t f ) = − 1

3 m/s, ẋ2(t f ) = ẋ3(t f ) = 2
3 m/s, occurs for an infinite number of γ ’s,

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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not only for γ = ∞. Newby also finds that balls 1 and 2 separate at the same
time as balls 2 and 3 (a sort of symmetrical double collision with t1 = t2) when

γ = (3n4−2n2+3)+√
9n8−12n6−42n4−12n2+9

8n2 , n = 2, 3, 4 . . ..

6.1.4 Multiplicity of Multiple Impacts

When a particle hits an angle in the plane, it may rebound successively on both
the surfaces in various ways, depending on the CoRs and the angle value. This is a
binary collision model including possible secondary impacts, which gives outcomes
for collision that occur near the singularity (a 2-impact in the sense of Definition
6.1). Let us summarize here the results of Towne and Hadlock [1211], who deal
with a three-ball chain (that is equivalent to the particle hitting an angle, see [929,
Sect.A.1]). The two Newton’s CoRs are chosen equal (en,1 = en,2 = en). The first
ball collides the two other balls at rest. The number of collisions and the postimpact
velocities depend on the following variable:

z = ζ(en)η(m1,2,m3,2), (6.17)

where ζ(en) and η(m1,2,m3,2) are defined as:

⎧⎨
⎩

ζ(en) = 1
2

(√
en + 1√

en

)
≥ 1 for all en ∈ (0, 1]

η(m1,2,m3,2) = 1√
(1+m2,1)(1+m2,3)

< 1 for all m1,2, m3,2,
(6.18)

with m j,i = m j/mi . We see that z > 0 and can diverge to infinity as en → 0. The
variable z consists of two distinct parts ζ(en) and η(m1,2,m3,2): ζ(en) is related to the
dissipative behavior of the chain, while η(m1,2,m3,2) is related to the kinetic angle
θ12 of the chain defined by η(m1,2,m3,2) = cos(θ12) (this can be calculated from
(6.66), see [929, Eq. (A.4)]). The number of binary collisions is given as follows:

• When 0 < z < 1, the number of collisions N is finite and computed as:

N =
⌊ π

arccos(z)
− 1

⌋
(6.19)

• When z ≥ 1, the number of collisions N is infinite.

The above results show that N ≤ 3 when z > 1/2, i.e. secondary collisions occur
when z > 1/2. Moreover, the number of collisions N increases as z increases and
it becomes infinite when z ≥ 1. Consider the case when en = 1 ⇒ z = cos(θ12).
From (6.19), the number N of collisions is given by:

N =
⌊π − θ12

θ12

⌋
. (6.20)
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The condition for which N is infinite (z ≥ 1) can be rewritten as:

1

2

(√
en + 1√

en

)
cos(θ12) ≥ 1. (6.21)

More on this topic may be found in [683, 936], see also [929, §3.4, Appendix A].
Extending this type of analysis to en,1 �= en,2 or tomore than three balls (equivalently,
to particles in three dimensions hitting a “pyramidal” angle), seems to be at best very
difficult.5 It nevertheless shows that the binary collision model may indeed involve,
even in simple systems, an infinity of successive impacts. If this infinity occurs
in a finite time, a Zeno phenomenon occurs which may create difficulty for time-
integration with an event-driven code.

6.2 Kinematic Multiple-Impact Law (Generalized Newton)

This section is devoted to investigate how we may extend kinematic impact laws
like Newton’s or Moreau’s laws, in order to obtain an impact law which is able to
span the whole set of admissible outcomes. To this aim we proceed with a particular
transformation of the Lagrange equations in (5.1).

6.2.1 The Quasi-Lagrange Equations

Let us remind that the mb bilateral constraints are denoted as hi (q) for i ∈
{1, . . . ,mb}, and themu unilateral constraints are fi (q) ≥ 0 for i ∈ {mb+1, . . . ,mu+
mb}, and we assume that mu + mb ≤ n. We also assume that M(q)  0, and all
the constraints fi (q) and hi (q) are functionally independent at any q ∈ Q, that

is the (mu + mb) × n gradient matrix

(∇ f (q)

∇h(q)

)
has full column rank mu + mb.

This in particular precludes that the gradients vanish in the domain of interest on the
configuration space Q. The mu + mb normal unitary vectors to the codimension 1
constraints manifolds Σi = {q ∈ Q|hi (q) = 0}, 1 ≤ i ≤ mb, equipped with the
kinetic metric are defined as:

nq,i = M−1(q)∇hi (q)√
∇hT

i (q)M−1(q)∇hi (q)

, 1 ≤ i ≤ mb, (6.22)

and similarly for Σi = {q ∈ Q| fi (q) = 0}, mb + 1 ≤ i ≤ mb + mu . Clearly the
normal vectors nq,i ∈ R

n are independent. If mb +mu < n we have to complete the

5It has to the best of the author’s knowledge, never been tackled, despite Towne and Hadlock’s
article was published in 1977.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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set (nq,1, . . . ,nq,m+p) by n −mb −mu mutually independent vectors tq,i in order to
make a basis. The tq,i vectors are chosen such that 〈tq,i ,nq, j 〉q = tTq,i M(q)nq, j = 0
for all i ∈ {1, . . . , n −mu −mb}, j ∈ {1, . . . ,mu +mb}. We notice that the vectors
tTq,i are orthogonal to the kinetic gradients nq, j in the kinetic metric, and orthogonal
to the Euclidean gradients ∇hi (q) and ∇ fi (q) in the Euclidean metric. One may
choose unitary vectors tq,i , i.e. tTq,i M(q)tq,i = 1. Therefore the vectors tq,i span
TqQ whereas the vectors nq,i span the normal cone NΦ(q) to the admissible domain

Φ of Q. This admissible domain for q is defined as follows: Φ
Δ= Φb × Φu with

Φb = {q ∈ Q|hi (q) = 0, i ∈ {1, . . . ,mb}} and Φu = {q ∈ Q| fi (q) ≥ 0, i ∈
{mb + 1, . . . ,mb + mu}}. Thus Φb is the bilateral holonomic constraints manifold
with codimensionm,Φb = ∩mb

i=1Σi , whereasΦu is the admissible domain defined by
the unilateral constraints, Φu = ∩mb+mu

i=mb+1Φu,i , with Φu,i = {q ∈ Q| fi (q) ≥ 0, i ∈
{mb + 1, . . . ,mb +mu}}. For obvious reasons we assume that Φu contains a ball of
radius > 0. One has NΦ(q) = NΦb(q) × NΦu (q), where NΦb(q) = {w ∈ R

n|w =∑mb
i=1 αinq,i , αi ∈ R} is the normal cone in the kinetic metric.

6.2.1.1 Frictionless Systems

Let us define the n × n matrix Ξ(q) =
(
nT
q

tTq

)
, where nq = (nq,1, . . . ,nq,mu+mb)

and tq = (tq,1, . . . , tq,n−mu−mb). The kinetic quasi-velocities are defined as:

v
Δ=
(
q̇norm
q̇tan

)
= Ξ(q)M(q)q̇ (6.23)

where the notation norm and tan come from the fact that v in (6.23) is the Euclid-
ean projection of the generalized momentum p = M(q)q̇ on the basis nq and tq
(equivalently the projection of q̇ on nq and tq in the kinetic metric). One could
therefore call the kinetic quasi-velocities, the mass-projected momentum. From
(6.23) q̇norm = nT

q M(q)q̇ has dimension mu + mb and q̇tan = tTq M(q)q̇ has
dimension n − mu − mb. Notice that the (mu + mb) × n matrix nT

q M(q) has

rows ∇hTi (q)

||∇hi (q)||M−1
and ∇ f Ti (q)

||∇ fi (q)||M−1
. Thus it follows that q̇norm,i = ∇hTi (q)q̇

||∇hi (q)||M−1
, and

nq = M−1(q)(∇h(q),∇ f (q))diag
(

1
||∇hi (q)||M−1

, 1
||∇ fi (q)||M−1

)
.

Remark 6.5 The developments presented in this section extend the material in the
first and second editions of this book [202, 203], and have been investigated in [210,
228]. The use of the kinetic metric for the study of multiple impacts was perhaps
first advocated in [581]. It is also implicitly present in Moreau’s works [890, 894]
where the tangent and normal cones are defined in a generic way, independently
of the metric, see also [454, §4]. The kinetic metrix is also used in mathematical
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proofs for convergence of numerical schemes [375]. Notice that far as one analyses
the system at a fixed q (like for impacts), then M(q) is constant and the metric is
Euclidean.

Example 6.1 For the rocking block system in Sect. 6.3.2.2, we have: q̇norm,1 =
ẏ+( l

2 sin(θ)+ L
2 cos(θ))θ̇√

1
m + 1

4IG
(l sin(θ)+L cos(θ))2

, q̇norm,2 = ẏ+( l
2 sin(θ)− L

2 cos(θ))θ̇√
1
m + 1

4IG
(l sin(θ)+L cos(θ))2

, q̇tan = √
mẋ . For a

monodisperse chain of four aligned balls with mass m and radius R, f1(q) =
q2 −q1 −2R ≥ 0, f2(q) = q3 −q2 −2R ≥ 0, f3(q) = q4 −q3 −2R ≥ 0. Therefore
∇ f1(q) = (−1 1 0 0)T , ∇ f2(q) = (0 − 1 1 0)T , ∇ f3(q) = (0 0 − 1 1)T . After
some calculations one finds q̇norm,1 = 1√

2m
(−q̇1 + q̇2), q̇norm,2 = 1√

2m
(−q̇2 + q̇3),

q̇norm,3 = 1√
2m

(−q̇3 + q̇4), and q̇tan =
√
m
2 (q̇1 + q̇2 + q̇3 + q̇4). It becomes clear

from these two examples that in general, q̇tan does not correspond to the “real-world”
tangent velocity at contact points: generalized and local point of views may not
match.

Let us denote F(q, q̇, t)
Δ= C(q, q̇)q̇ + G(q) − Fext in (5.1). Let us now perform

the kinetic quasi-velocity transformation of the constrained Lagrange dynamics (5.1)
with Ht,u(q, t)λt,u + Ht,b(q, t)λt,b = 0. First notice that:

(
q̈norm
q̈tan

)
= Ξ(q)M(q)q̈ + d

dt
(Ξ(q)M(q))q̇ (6.24)

Pre-multipyling both sides of (5.1) (a) by Ξ(q) and grouping the normal multipliers

as λn =
(

λn,b

λn,u

)
, one obtains:

(
q̈norm
q̈tan

)
+ Ξ(q)F(q, q̇, t) − d

dt
(Ξ(q)M(q))q̇ =

(
nT
q (∇h(q),∇ f (q))λn

tTq (∇h(q),∇ f (q))λn

)

(6.25)

Let us define λ̄n such that λ̄n,b,i
Δ= ||∇hi (q)||M−1λn,b,i , λ̄n,u,i

Δ= ||∇ fi (q)||M−1λn,u,i ,
i.e. λ̄n = diag(||∇hi (q)||M−1 , ||∇ fi (q)||M−1)λn.6 From the definition of tq,i it follows
that tTq (∇h(q),∇ f (q))λn = 0, therefore (6.25) becomes:

q̈norm(t) + Fnorm(q(t), q̇norm(t), q̇tan(t), t) = [nq(t)T M(q(t))nq(t)] λ̄n(t)

q̈tan(t) + Ftan(q(t), q̇norm(t), q̇tan(t), t) = 0
(6.26)

6Notice that the assumption that the constraints are functionally independent, guarantees that the
norms ||∇hi (q)||M−1 and ||∇ fi (q)||M−1 never vanish, so diag(||∇hi (q)||M−1 , ||∇ fi (q)||M−1 ) is
positive definite.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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with obvious definitions for Fnorm(q, q̇norm, q̇tan, t) and Ftan(q, q̇norm, q̇tan, t). This
canonical form of the dynamics is remarkable because it splits the velocities in a
“normal” and a “tangential” parts, similarly to the case of a particle hitting a single
frictionless constraint: this is a generalized particle dynamics. This is however at
the price of introducing additional nonlinearities (stemming from the constraints) in
the inertial generalized forces (see the left-hand side in (6.25)). The terms indexed
by tan are not affected by the contact force and may be thought of as some kind of
tangential dynamics. We may choose to call the first line of (6.26) the quasi-normal
dynamics and the second line the quasi-tangential dynamics. The dynamics in (6.23)
(6.26) is consequently a particular case of:

⎧⎨
⎩
q̇(t) = A(q(t))−1v(t)
M̄(q(t))v̇(t) = G(q(t), v(t), t) + A(q(t))−T H(q(t))λ
v = A(q)q̇,

(6.27)

where G(q, v, t) gathers inertial forces (centrifugal, Coriolis), forces that derive
from the potential energy (gravity, elasticity), external and dissipative forces (control
inputs, disturbances, Raileygh dissipation), the mass matrix M̄(q) in (6.27) is not
necessarily equal to M(q), v has dimension n, A(q) is invertible but not necessarily
integrable, and H(q)λ groups all contact forces in the right-hand side of (5.1). In
other words, there does not necessarily exist any quasi-position q̄ = g(q) such that
dq̄
dt = ∂g

∂q (q)q̇ , so that A(q) is not the Jacobian of any mapping g(q). It is clear that v
may correspond to some non-holonomic constraints, hence the name non-holonomic
velocities that is sometimes given to quasi-velocities.
It is clear that (6.26) usually is not a Lagrange dynamics since M̄ is constant (the
identity) whereas nonlinear inertial forces do not vanish (such dynamics are some-
times called Lagrange’s equations in quasi-velocities, or Boltzmann-Hamel equa-
tions [155], and they may be written in a Lagrangian-like form [367, 417]). Remind
that the Delassus’ matrix defined when mb = 0 (only unilateral constraints) is equal
to ∇ f (q)T M(q)−1∇ f (q). The matrix nT

q M(q)nq may be seen as a normalized
Delassus’ matrix,7 whose diagonal entries are equal to 1. It is positive definite if and

only if nq has full rank mu +mb. Notice that we can split q̇norm as q̇norm =
(
q̇b
norm

q̇u
norm

)

with q̇b
norm ∈ R

mb corresponds to bilateral constraints, and q̇u
norm ∈ R

mu corresponds
to unilateral constraints. Similarly one has

nT
q M(q)nq =

⎛
⎝nb,T

q M(q)nb
q nb,T

q M(q)nu
q

nu,T
q M(q)nb

q nu,T
q M(q)nu

q

⎞
⎠ (6.28)

7The Delassus’ operator is sometimes called the fundamental matrix [185].

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Thus the first line in (6.26) can be rewritten as (we drop the time argument in the
right-hand side):

⎧⎪⎨
⎪⎩
q̈bnorm(t) + Fb

norm(q(t), q̇norm(t), q̇tan(t), t) = nb,Tq M(q)nbq λ̄n,b + nb,Tq M(q)nuq λ̄n,u

q̈unorm(t) + Fu
norm(q(t), q̇norm(t), q̇tan(t), t) = nu,T

q M(q)nbq λ̄n,b + nu,T
q M(q)nuq λ̄n,u

(6.29)

Since q̇b
norm = 0 at all times because the system evolves on the codimension 2mb

manifold {q ∈ Q|hi (q) = 0,∇hT
i (q)q̇ = 0, i ∈ {1, . . . ,mb}}, the first equation in

(6.29) is equal to Fb
norm(q, q̇u

norm, q̇tan, t) = nb,T
q M(q)nb

q λ̄n,b + nb,T
q M(q)nu

q λ̄n,u . If
the mb ×mb matrix nb,T

q M(q)nb
q is invertible one may obtain λb

n from this equation
and insert it into the second equation in (6.29) to obtain a dynamics that no longer
depends on λ̄n,b. This modifies the unilateral part of the dynamics (and in particular
one obtains a new Delassus’ matrix given in (6.35) below). A detailed analysis of
the couplings between unilateral and bilateral constraints is made in [209].

6.2.1.2 Systems with Friction

We now incorporate the generalized forces Ht(q)λt
Δ= Ht,u(q, t)λt,u + Ht,b(q, t)

λt,b = 0 in the analysis. Then (6.26) becomes:

q̈norm − d
dt (n

T
q M(q))q̇ + nT

q F(q, q̇, t) = nT
q M(q)nq λ̄n + nT

q Ht(q) λt

q̈tan − d
dt (t

T
q M(q))q̇ + tTq F(q, q̇, t) = tTq Ht(q) λt

(6.30)

It is remarkable in (6.30) that there is no reason in general that nT
q Ht(q) = 0, i.e.

nq is not in general an anihilator of Ht(q). This means that the quasi-tangential
dynamics may influence the quasi-normal dynamics, but the reverse never holds
since by construction of the basis (nq , tq) one has tTq ∇h(q) = tTq ∇ f (q) = 0.
This is what makes the strong difference between systems with normal/tangential
couplings (like the Painlevé example analysed in Sect. 5.6), and systems without
normal/tangential couplings.Wemay say that generalized particles dynamics usually
have normal/tangential inertial couplings, with nT

q Ht(q) �= 0.

6.2.2 The Kinetic Energy

Clearly q̇b
norm does not play any role in the kinetic energy, being zero. We will see

later that the same applies to q̇tan when one considers the kinetic energy variation at

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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an impact. Let us assume that Ξ(q) has full rank n. One has:

Ξ(q)M(q)Ξ T (q) =
(
nT
q

tTq

)
M(q)(nq tq) =

⎛
⎝nT

q M(q)nq 0

0 tTq M(q)tq

⎞
⎠ , (6.31)

from which one deduces the inverse matrix:

Ξ−T (q)M−1(q)Ξ−1(q) =
⎛
⎝ (nT

q M(q)nq)−1 0

0 (tTq M(q)tq)−1

⎞
⎠ (6.32)

which holds provided the normalized Delassus’ matrix has full rank n. Nowwe have:

T (q, q̇) = 1
2 q̇

T M(q)q̇ = 1
2 q̇

T M(q)Ξ T (q)Ξ−T (q)M−1(q)Ξ−1(q)Ξ(q)M(q)q̇

= 1
2v

T

⎛
⎝ (nT

q M(q)nq)−1 0

0 (tTq M(q)tq)−1

⎞
⎠ v

= 1
2 q̇

T
norm(nT

q M(q)nq)−1q̇norm + 1
2 q̇

T
tan(t

T
q M(q)tq)−1q̇tan = T (q, v)

(6.33)

Now one may use (6.28) and the Schur complement [218, §A.5] to deduce:

T (q, q̇) = 1
2 q̇

u,T
normG

−1(q)q̇u
norm + 1

2 q̇
T
tan(t

T
q M(q)tq)−1q̇tan (6.34)

with:

G(q) = nu,T
q M(q)nu

q − nu,T
q M(q)nb

q(n
b,T
q M(q)nb

q)
−1nb,T

q M(q)nu
q (6.35)

We see that this matrix has the same structure as D̃bu(q(t), t) in (5.20), and rep-
resents the distorsion of the Delassus’ matrix due to bilateral constraints. Due to
the assumption that the constraints are independent, G(q) has full rank and is
even positive definite.8 If mb = 0 (no bilateral constraints) and mu = 1, then
q̇u
norm = q̇norm and one recovers the result in [203, Eq. (6.11)] that T (q, q̇) =

1
2 q̇

2
norm + 1

2 q̇
T
tan(t

T
q M(q)tq)−1q̇tan.

It is noteworthy that the basis (nq , tq) is not orthonormal, because the vectors
nq,i , i ∈ {1, . . . ,mb + mu}, and tq,i , i ∈ {1, . . . , n − mb − mu} are not neces-
sarily orthogonal to one another (except if the constraints are orthogonal). Thus,

8Its properties are studied in [209, §4] without noticing, anyway, that it is a Schur complement.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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despite the quasi-mass matrix M̄(q) in (6.26) is the identity, the kinetic energy in
(6.34) does not have the simple form 2T (q, v) = vT v as is for instance the case in
[155, Eq. (20)].

6.2.3 The Contact Forces Power

6.2.3.1 Normal Contact Forces Power

Let Fn(q)
Δ= ∇ f (q)λn. Let us investigate now the power performed by the gener-

alized contact force: Pn = FT
n (q)q̇ where q̇ is assumed to be compatible with the

bilateral and the unilateral constraints (i.e. we consider virtual velocities q̇ such that
the virtual displacement δq = q̇dt is compatible with the constraints and such that
the virtual work is Wn = Pndt). Then from the above developments we obtain:

Pn = Fn(q)T q̇ = λT
n ∇ f (q)T q̇ = λT

n diag(||∇hi (q)||M−1 , ||∇ fi (q)||M−1)nT
q M(q)q̇

= λ̄T
n n

T
q M(q)q̇ = λ̄T

n q̇norm = λ̄T
n,uq̇

u
norm,

(6.36)

where we used that q̇b
norm = 0 always. Now, one has 0 ≤ λn,u ⊥ f (q) ≥ 0,

therefore if the system lies in the interior of the admissible domain Φu one has
λn,u = 0 and Pn = 0. If the system evolves smoothly on a part of the boundary
bd(Φu) that is finitely represented by the active constraints indexed in J (q), one
has 0 ≤ q̇norm,i ⊥ λn,u,i ≥ 0 for all i ∈ J (q). Consequently in this case also
Pn = 0. Since the constraints are all perfect, the power developed by the contact
forces outside possible impacts is always zero, as expected. The interest of (6.36) is
to highlight the fact that the “forces” that perform work on the quasi-velocities q̇u

norm
are the multipliers λ̄n,u .

Let us denote Fn
norm(q)

Δ= nT
q M(q)nq λ̄n and Dn(q)

Δ= (nT
q M(q)nq)−1. Then from

(6.36) one gets:
Pn = λ̄T

n q̇norm = 〈Fn
norm(q), q̇norm〉Dn (6.37)

Let us also denote Dt(q)
Δ= (tTq M(q)tq)−1.9 As a result, one finds that the frictionless

Lagrangian system with a set of holonomic bilateral and unilateral constraints is
equivalently represented as a generalized particle with dynamics:

{
q̈norm(t) + Fnorm(q, q̇norm(t), q̇tan(t), t) = Fn

norm(q(t))
q̈tan(t) + Ftan(q, q̇norm(t), q̇tan(t), t) = 0

(6.38)

9If the vectors tq,i are chosen mutually orthogonal then Dt(q) = I .
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and the kinetic metric D(q) =diag(Dn(q), Dt(q)) (see (6.33)), while q̇normdt per-
forms work on Fn

norm(q) in the metric of Dn(q).

6.2.3.2 Tangential Contact Forces Power

Let us compute the virtual power developed by the tangential forces. Let Ft(q)
Δ=

Ξ(q)Ht(q)λt =
(
F t
norm(q)

F t
tan(q)

)
. Then:

Pt = q̇T Ht(q)λt = vTΞ−T (q)M−1(q)Ξ−1(q)Ξ(q)Ht(q)λt

= 〈v, Ft(q)〉D = 〈q̇norm, F t
norm(q)〉Dn + 〈q̇tan, F t

tan(q)〉Dt

(6.39)

Thus, the total virtual power of the contact forces of the dynamics in (6.30) is equal
to:

P = 〈Fn
norm(q), q̇norm〉Dn + 〈q̇norm, F t

norm(q)〉Dn + 〈q̇tan, F t
tan(q)〉Dt (6.40)

The matrices Dn(q)  0 and Dt(q)  0 define natural metrics for the system
analysed in kinetic quasi-velocities. The coupling between normal and tangential
directions appears in the second term in (6.40). There is no orthogonality of the quasi-

generalized contact forces

(
F t
norm(q)

F t
tan(q)

)
and

(
Fc
norm(q)

0

)
in the inner product defined

by the metric D(q)  0. This is in contrast with what happens at the local kinematics
level at the contact points. Following Sect. 4.1, let us denote the orthonormal local
frame at contact point i as (ni , ti,1, ti,2),withni ∈ R

3, ti, j ∈ R
3.Onehas 〈ni , ti, j 〉 = 0

in the Euclidean metric. Each contact force can be denoted as Fi = Fi,n + Fi,t with
Fi,n = Fn,ini and Fi,t = Ft,1,i ti,1 + Ft,2,i ti,2. The Coulomb’s cones are denoted
as Ci , with Fi ∈ Ci . Let Ui ∈ R

3 be the local velocity, decomposed naturally as
Ui = Un,i + Ut,i = un,ini + ut,1,i ti,1 + ut,2,i ti,2. We may thus define virtual local
velocities that are compatible with the constraints, and the virtual power at contact i
is given by Pi = 〈Ui , Fc

i 〉 = 〈Ui,n, Fi,n〉 + 〈Ui,t, Fi,t〉, while

P =
p∑

i=1

Pi,n + Pi,t = Pn + Pt. (6.41)

Thus, in the local kinematics there is a decoupling between tangential and normal
virtual powers, which does not transport very well into generalized frameworks,
because of the term nT

q Ht(q) in (6.30). Notice that if un,i = ∇ fi (q)T q̇ , then the
multiplier vector λn satisfies λn,i = Fn,i , and thusPn in (6.36) andPn in (6.41) are
the same.

http://dx.doi.org/10.1007/978-3-319-28664-8_4


394 6 Generalized Impact Laws and Multiple Impacts

6.2.4 Restitution Law for Frictionless Systems

Let us assume for simplicity that there are no bilateral constraints (i.e. mb = 0).
Thus G(q) = Dn(q)−1 and in the sequel we shall use both notations equally.
We also assume that q̇norm is constructed from the active constraints at the impact
time tk , i.e. with the constraints whose index belongs to J (q(tk)) = {i ∈
{1, . . . ,mu}| fi (q(tk)) = 0}. It is noteworthy that we allow for contacts which are
active with zero relative pre-impact velocity (like in a chain of balls or a Newton’s
cradle). We denotem ′

u = card(J (q(tk))). The impact dynamics at an instant tk such
that there is at least one i ∈ {1, . . . ,m ′

u} such that q̇norm,i(t
−
k ) < 0 and fi (q(tk)) = 010

is given by (using (6.26)):

{
q̇norm(t+k ) − q̇norm(t−k ) = nT

q M(q)nq p̄n(tk)
q̇tan(t

+
k ) − q̇tan(t

−
k ) = 0,

(6.42)

where p̄n,i = ||∇ fi (q)||M−1 pn,i , i.e. p̄n = diag(||∇ fi (q)||M−1)pn, and pn,i (tk) is the
impulse of the contact force multiplier λn,i at the impact instant tk . More rigorously
λn,i is a measure at tk and pn,i (t) is its density with respect to the Dirac measure at the
atom tk . The role played by the projection of the generalized momentum on the basis
tq clearly appears in (6.42): the quasi-velocities q̇tan are conserved at the impacts
when friction is absent (the constraints are said perfect). It is important to notice that
despite there may be q̇norm,i(t

−
k ) = 0 for some i ∈ J (q(tk)), all the terms q̇norm,i,

i ∈ {1, . . . ,m ′
u} may undergo a jump because of the inertial couplings between the

constraints, as reflected by the normalized Delassus’ matrix nT
q M(q)nq which is not

diagonal in general. It readily follows from the impact dynamics in (6.42) and (6.34)

that the kinetic energy loss TL(tk)
Δ= T (q(tk), q̇(t+k )) − T (q(tk), q̇(t−k )) at a time tk

of impact is given by:

TL(tk) = 1

2
q̇u
norm(t+k )T G(q)−1q̇u

norm(t+k ) − 1

2
q̇u
norm(t−k )T G(q)−1q̇u

norm(t−k ) (6.43)

where q denotes q(tk). From now on we will drop the superscript u since there are
no bilateral constraints. The framework in (6.42) is suitable to formulate a kinematic
impact law as:

v(t+) =
(
q̇norm(t+k )

q̇tan(t
+
k )

)
= −E

(
q̇norm(t−k )

q̇tan(t
−
k )

)
(6.44)

where E is a generalized n × n restitution matrix. Its entries will be named the
coefficients of restitution. Let us decompose it as:

E =
(
Enn Ent
Etn Ett

)
(6.45)

10This is equivalently stated as q̇(t−k ) ∈ −TΦu (q(tk)).
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with obvious dimensions of the four submatrices: Enn ∈ R
m′
u×m′

u , Ett ∈ R
(n−m′

u )×(n−m′
u ).

In the frictionless case one has q̇tan(t+) = q̇tan(t−) for any pre-impact velocity
q̇norm(t−), so necessarily Etn = 0 and Ett = −I . The restitution law in (6.44) is very
general as the next result shows:

Proposition 6.1 Suppose that at least one component of q̇norm(t−k ) or of q̇tan(t
−
k ) is

nonzero. Then given any postimpact kinetic quasi-velocity, there exists a value of E
such that (6.44) is satisfied. If at least one component of q̇norm(t−k ) is negative, then
there exists a value of Enn such that q̇norm(t+k ) = −Ennq̇norm(t−k ).

Proof Without loss of generality suppose that v1(t
−
k ) �= 0 while vi (t

−
k ) = 0 for all

i ≥ 2. Then it suffices to choose εi1 = − vi (t
+
k )

v1(t
−
k )
.

As we know there are three types of consistencies that an impact law has to satisfy:
kinematic (admissible postimpact velocities), kinetic (non negative impulses), and
energetic.

Proposition 6.2 Let a frictionless impact occur at tk . It is necessary and sufficient
that:

• (i) Enn is nonnegative (kinematic consistency),
• (ii) G−1(q)(I + Enn) is nonnegative (kinetic consistency),

for Enn to be an admissible restitution matrix for any pre-impact velocity q̇norm(t−k ).

Proof (i) assures that q̇norm(t+k ) = −Ennq̇norm(t−k ) ≥ 0 for any q̇norm(t−k ) ≤ 0, (ii)
guarantees that p̄n(tk) = G(q)−1(q̇norm(t+k ) − q̇norm(t−k )) ≥ 0 (kinetic consistency).

We are now going to analyze the energetical consistency, and for that we need equiv-
alent expressions of TL(tk):

TL(tk) = 1

2
(q̇norm(t+k ) + q̇norm(t−k ))T p̄n(tk), (6.46)

which is the Thomson and Tait formula, or:

TL(tk) = 1

2
q̇norm(t−k )T (Enn − I )T G(q)−1(Enn + I )q̇norm(t−k ), (6.47)

or, using the symmetry of G(q)11:

TL(tk) = 1

2
q̇norm(t−k )T (E T

nnG(q)−1Enn − G(q)−1)q̇norm(t−k ), (6.48)

or, following [455] and with ξ(tk) = q̇norm(t+k ) + Ennq̇norm(t−k ):

TL(tk) = 1

2
p̄n(tk)

T (2ξ(tk) − (I − Enn)G(q) p̄n(tk)). (6.49)

11xT E T
nnG(q)−1x = xT (E T

nnG(q)−1)T x = xT G(q)−1Ennx for any vector x ∈ R
p .
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We then have several results stating conditions such that the generalized impact law
is energetically consistent.

Proposition 6.3 Suppose that −(Enn − I )T G(q)−1(Enn + I ) or −(E T
nnG(q)−1Enn −

G(q))−1 are copositive matrices. Then TL(tk) ≤ 0. If they are strictly copositive then
TL(tk) < 0 for any nonzero pre-impact velocity.

Proof Due to the impact conditions one has q̇norm(t−k ) ≤ 0, in other words the p
dimensional vector −q̇norm(t−) belongs to R

p
+. From the definition of copositivity

the results follow.

Proposition 6.4 Suppose that Enn = G(q)E T
nnG(q)−1 and G(q) is positive definite.

Then a necessary and sufficient condition for TL(t) ≤ 0 for any vector q̇norm(t−k ) is
that |λmax(Enn)| ≤ 1.

Proof From (6.48) we have TL(tk) ≤ 0 for any q̇norm(t−k ) if and only if E T
nnG(q)−1

Enn ≤ G(q)−1. Let G
1
2 (q) be the symmetric positive definite square root of G(q).

This inequality is equivalent to G
1
2 (q)E T

nnG(q)−1EnnG
1
2 (q) ≤ I , using Proposi-

tion 8.1.2 xi) and xiii) in [136]. Let us denote B(q) = G
1
2 (q)E T

nnG
− 1

2 (q). By the
assumption of the proposition we have G− 1

2 (q)EnnG
1
2 (q) = G

1
2 (q)E T

nnG
− 1

2 (q) so
B(q) = BT (q), and since BT (q) = G− 1

2 (q)EnnG
1
2 (q) we obtain B2(q) ≤ I .

Using [136, Lemma 8.4.1] it follows that equivalently λmax(B2(q)) ≤ 1, because
B2(q) = B(q)BT (q) is positive semi definite and symmetric. Now we have that
B2(q) = G

1
2 (q)(E T

nn)
2G− 1

2 (q), and since it is a symmetric matrix one obtains
B2(q) = G− 1

2 (q)E 2
nnG

1
2 (q). Therefore B2(q) and E 2

nn are similar matrices so they
have the same eigenvalues [700, Proposition 1, p. 152]. Therefore λmax(E 2

nn(q)) ≤ 1.
Since the eigenvalues of E 2

nn are the squares of those of Enn the result follows.

The condition imposed in Proposition 6.4 holds if for instance Enn =diag(en). In fact
Enn = G(q)E T

nnG(q)−1 is equivalent to G(q)−1Enn = E T
nnG(q)−1, which allows us

to rewrite (6.48) as:

TL(t) = 1

2
q̇norm(t−k )T [(E T

nnEnn − I )G(q)−1]q̇norm(t−k ) (6.50)

Proposition 6.5 LetG(q) > 0. Then TL(tk) ≤ 0 if σmax(Enn) ≤ 1√
λmax(G(q))λmax(G−1(q))

,

which implies that σmax(Enn) ≤ 1.

Proof The proof begins similarly to the proof of Proposition 6.4, and we obtain
that TL(t) ≤ 0 ⇔ B(q)BT (q) ≤ I with B(q) = G

1
2 (q)E T

nnG
− 1

2 (q). By [136,
Lemma 8.4.1] one has equivalently λmax(B(q)BT (q)) = σ 2

max(B(q)) ≤ 1. From
[136, Corollary 9.6.5] one has σmax(B(q)) ≤ σmax(G

1
2 (q))σmax(G− 1

2 (q))σmax(Enn).
Therefore σmax(G

1
2 (q))σmax(G− 1

2 (q))σmax(Enn) ≤ 1 implies that σ 2
max(B(q)) ≤ 1.

From the symmetry and positive definiteness of G(q) and of its square root,
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one has σmax(G
1
2 (q)) = √

λmax(G(q)), so the result follows. For the last state-
ment notice that I = G− 1

2 (q)G
1
2 (q) so again from [136, Corollary 9.6.5] 1 ≤

σmax(G
1
2 (q))σmax(G− 1

2 (q)) = √
λmax(G(q))λmax(G−1(q)).

Remark 6.6 Propositions 6.4 and 6.5 state in a correct way Proposition 1 in [228],
which wrongly asserts that |λmax(Enn)| ≤ 1 is a sufficient condition for TL(t) ≤ 0
under symmetry of Enn. The energy consistency of an extended frictionlessMoreau’s
law with Enn =diag(en,i ) is analysed in [730, Sect. 7.1] [455], starting from the
Thomson and Tait formula (6.46), or from (6.47), or from (6.49). Actually one may
use Propositions 7.1 and 7.2 in [730] to analyze (6.50). The condition of Proposition
6.4 is quite close to the commuting conditions of [730, p. 159]. Finally let us remind
that in the case Poisson coefficients are used (kinetic impact law) one obtains similar
expressions for the loss of kinetic energy (see Eq.(43) in [458]). The quadratic forms
in (6.47)–(6.49) therefore possess a general interest for both kinematic and kinetic
impact laws. As shown in [210, Sect. 3.1.1], when Enn = diag(en) for some CoR
en ∈ [0, 1], then we recover Moreau’s impact law, which is always kinematically
and kinetically consistent from Proposition 6.2.

Remark 6.7 From (6.42), the quasi-velocity q̇tan(·) is conserved at frictionless
impacts. The physical meaning of q̇tan(·) may change from a system to another
one. For a particle hitting a plane, this is the tangent velocity at the contact point vt ,
for a chain of aligned beads this is the velocity of the gravity center of the chain.

Remark 6.8 Starting from (6.42) and (6.44), and assuming kinematic, kinetic and
energetic consistencies hold, we can rewrite equivalently the restitution law as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ q̇norm(t+k ) + Ennq̇norm(t−k ) ⊥ p̄n(tk) ≥ 0

⇐⇒ (if Dn(q(tk))  0)

0 ≤ Dn(q(tk))−1 p̄n(tk) + (I + Ennq̇norm(t−k ) ⊥ p̄n(tk) ≥ 0,

(6.51)

which is quite similar to (5.67) and (5.68), (5.70). Going a step further:

Dn(q(tk))[q̇norm(t+k ) − q̇norm(t−k )] ∈ −NR
mu+ (q̇norm(t+k ) + Ennq̇norm(t−k )). (6.52)

Let us end this section with Carnot’s Theorem:

Theorem 6.1 (Carnot’s Theorem) A frictionless impact after which persistent con-
tact is established, is always accompanied by a kinetic energy loss.

Proof From (6.42) and (6.46), and taking q̇norm(t+k ) = 0 (i.e. without loss of
generality, we suppose that m contacts are established), it follows that TL(tk) =
− 1

2 q̇norm(t−k )T Dn(q(tk))q̇norm(t−k ) ≤ 0, and this holds even if the constraints are not
independent, because Dn(q) � 0.12

12Recall however that we assume that M(q)  0, for the basic definition of the vectors nq,i .

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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A geometric interpretation of Carnot’s Theorem is given in [569]. It is noteworthy
that Theorem 6.1 is stated without chosing any particular restitution mapping.

6.2.5 Restitution Law with Tangential Effects

The impact dynamics is in this case equal to:

{
q̇norm(t+) − q̇norm(t−) = nT

q M(q)nq p̄n(t) + nT
q HT(q) pt

q̇tan(t+) − q̇tan(t−) = tTq HT(q) pt.
(6.53)

We saw in Sect. 4.3 that tangential effects may be introduced in kinematic restitution
laws in three ways: tangential restitution, Coulomb’s law at the impulse level, and a
mixture of both. Tangential restitution can be readily inserted in (6.45), by defining
non null restitution submatrices Ent, Etn and Ett . For the sake of briefness we present
next an extension of the model studied in Sects. 4.3.1.1, 4.3.1.2 and 4.3.1.5, with
ṽt(tk) = vt(t

+
k )+etvt(t

−
k ), and Ent = 0, Etn = 0 and Ett = 0 in the restitutiuon matrix

E : the tangential restitution submatrix Ett is introduced thorugh Coulomb’s law. We
restrict ourselves to planar friction at each contact point i , and write Coulomb’s law
at the impulse level as:

pt,i ∈ −μi pn,i sgn(vt,i (t
+
k ) + et,ivt,i (t

−
k )) (6.54)

for some tangential CoRs et,i, 1 ≤ i ≤ m ′
u , which copies (4.69). In the examples

studied in Sects. 4.3.1.1, 4.3.1.2 and 4.3.1.5, we proved that it was always possible to
compute a unique vt(t

+
k ) when this tangential model is used (see (4.73) and (4.83)).

In the general case the mere existence issue if more complex. Inserting (6.54) into
(6.42) we find:

⎧⎪⎪⎨
⎪⎪⎩

−(I + Enn)q̇norm(t−k ) ∈ G(q) p̄n(tk ) − nTq Ht(q)[μ̄][ p̄n(tk )]Sgn(vt(t+k ) + Ettvt(t
−
k ))

q̇tan(t
+
k ) − q̇tan(t

−
k ) ∈ −tTq Ht(q)[μ̄][ p̄n(tk )]Sgn(

Δ=Ṽt(tk )︷ ︸︸ ︷
vt(t

+
k ) + Ettvt(t

−
k ))

(6.55)

with: [μ̄] =diag
(

μi

||∇ fi (q)||M−1

)
∈ R

m ′
u×m ′

u , [ p̄n] =diag( p̄n,i ), Ett =diag(et,i ), vt =
Ht(q)TΞ T (q)v (v is in (6.23)), Sgn(Ṽt(tk)) = (sgn(ṽt,1(k), . . . , sgn(ṽt,m ′

u
(tk))T .

The unknowns of the generalized equation (6.55) are the m ′
u impulses p̄n,i , and

the n −m ′
u quasi-velocities q̇tan,i (t

+
k ), with the constraints p̄n,i ≥ 0 and q̇norm(t+k ) =

−Ennq̇norm(t−k ). The first inclusion in (6.55) may be used to find an extension of
(4.90), and we may look for a generalized Lemma 4.1 for the kinetic constraint
satisfaction. It may be rewritten equivalently as13:

13Notice that we recover here a matrix Gμ(q, vt(t
+
k )) which has the same structure as Dμ(q) in

(5.158).

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Δ=Gμ(q,vt(t
+
k ))︷ ︸︸ ︷

(G(q) − nT
q Ht(q)[μ̄][ξi ]) p̄n(tk) � −(I + Enn)q̇norm(t−k ) (6.56)

with [ξi ] = diag(ξi ) and ξi ∈ sgn(ṽt,i (tk)). We can use Theorem 5.8 to guarantee that
for small enough friction μi ≤ μmax(q), 1 ≤ i ≤ mu , then Gμ(q, vt(t

+
k ))  0 for

any frictional mode (i.e. any ξi ∈ [-1, 1]), and then insert the found value of p̄n(tk)
in the second inclusion of (6.55). This gives rise to the program: Given the data q(tk)
and q̇(t−k ), and the parameters Enn, Ett , find q̇(t+k ) such that:

tTq M(q)q̇(t+k ) = q̇tan(t
−
k ) + tTq Ht(q)[μ̄](Gμ(q, Ht(q)T q̇(t+k )))−1(I + Enn)q̇norm(t−k )ξ

with: ∇ f (q)T q̇(t+k ) = −Ennq̇norm(t−k )

ξ ∈ Sgn(Ht(q)T q̇(t+k ) + Ettvt(t
−
k )) ⇔ Ht(q)T q̇(t+k ) ∈ −Ettvt(t

−
k ) + N[−1,1](ξ)

(6.57)

where we recall that vt = Ht(q)T q̇ from the local kinematics, and we denoted
q(tk) as q. If this program possesses a solution q̇(t+k ), then the impact problem with
friction is solvable with kinematic and kinetic constraints satisfied. See Sect. 4.3.1.5
for an example, with normal/tangential couplings. The generalized equation is rather
tricky since it can hardly be put in a canonical form 0 ∈ F(x) + NK (x), with F(·)
continuous and K = [-1, 1]m ′

u , so that [385, Corollary 2.2.5] may be applied.14 This
fact is not surprizing because the original problem in (6.55) is already nonlinear in
its unknowns, due to the products between p̄n(tk) and Sgn(Ṽt(tk)).
Let us pass now to the energetical behavior of this impact lawwith friction, assuming
that we could find at least one solution to (6.57). Choosing one of these solutions
provides us with Ṽt(tk) and most importantly with a selection ξ ∈ Sgn(Ṽt(tk)).
Extension of (6.46) through (6.49) is:

TL(tk) = 1
2 q̇norm(t+k )T Dn(q)q̇norm(t+k ) − 1

2 q̇norm(t−k )T Dn(q)q̇norm(t−)

+ 1
2 q̇tan(t

+
k )T Dt(q)q̇tan(t

+
k ) − 1

2 q̇tan(t
−
k )T Dt(q)q̇tan(t

−
k )

= 1
2 (q̇norm(t+k ) + q̇norm(t−))T Dn(q)(q̇norm(t+k ) − q̇norm(t−k ))

+ 1
2 (q̇tan(t

+
k ) + q̇tan(t

−
k ))T Dt(q)(q̇tan(t

+
k ) − q̇tan(t

−
k ))

= 1
2 (q̇norm(t+k ) + q̇norm(t−k ))T [ p̄n(tk) + G(q)nT

q Ht(q)pt(tk)]

+ 1
2 (q̇tan(t

+
k ) + q̇tan(t

−
k ))T Dt(q)tTq Ht(q)pt(tk).

(6.58)

14Corollary 6.1 [385, Corollary 2.2.5] Let K ⊆ R
n be compact convex, and F : K → R

n be
continuous. Then, the set of solutions to the generalized equation 0 ∈ F(x) + NK (x) is nonempty
and compact.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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We assume that the problem (6.55) has been solved for at least one p̄n(tk) and one
q̇(t+k ). Then after few manipulations we obtain:

TL(tk) = − 1
2 q̇norm(t−k )T

Δ=M̄(q,μ,vt)︷ ︸︸ ︷
(I − Enn)

T M(q, μ, vt(t
+
k ))(I + Enn) q̇norm(t−k )

+q̇tan(t
−
k )T Dt(q)tTq Ht(q)[μ̄][ξ ]Gμ(q, vt(t

+
k )))−1(I + Enn)q̇norm(t−k )

+ 1
2 q̇norm(t−k )T K (q, μ, vtt(t

+
k ))q̇norm(t−k )

(6.59)

with M(q, μ, vt)
Δ= Gμ(q, vt)

−1 − G(q)nT
q Ht(q)[μ̄][ξ ]Gμ(q, vt)

−1 and

K (q, μ, vt(t
+
k ))

Δ= (I + Enn)T Gμ(q, vt(t
+
k ))−T [μ̄][ξ ]Ht(q)T tq Dt(q)tTq Ht(q)[μ̄][ξ ]

Gμ(q, vt(t
+
k ))−1(I + Enn). Let us investigate the positive definiteness of the matrix

M̄(M(q, μ, vt).

Proposition 6.6 [210] Assume that G(q)  0. Then:

1. If ||G(q)−1||2||nT
q Ht(q)||2||[μ̄]||2 < 1, one has Gμ(q, vt(t

+
k ))−1  0.

2. If ||Gμ(q, vt(t
+
k ))||2||Gμ(q, vt(t

+
k ))−1||2||G(q)||2||nT

q Ht(q)||2||[μ̄]||2 < 1 is
satisfied, then M(q, μ, vt))  0.

3. If ||Enn||2(1 + 2||Enn||2) < 1
||M(q,μ,vt)||2

1∣∣∣∣
∣∣∣∣
(

M(q,μ,vt ))+MT (q,μ,vt ))
2

)−1
∣∣∣∣
∣∣∣∣
2

is satisfied, then

M̄(q, μ, vt)  0.

Proof (1) G(q) is symmetric positive definite. Applying Theorem 5.8 with N =
G(q) and D = G(q) − nT

q HT(q)[μ̄][ξ ] one finds that the inequality in 1 guaran-
tees that G(q) − nT

q HT(q)[μ̄][ξ ] is positive definite. Then this matrix has a posi-
tive definite inverse which is Gμ(q, vt). (2) The proof follows from Corollary 5.2,
with M = Gμ(q, vt)

−1, B = I − G(q)nT
q Ht(q)[μ̄][ξ ] and A = M(q, μ, vt).

Applying Proposition 9.3.5 in [136] to upper-bound ||G(q)nT
q Ht(q)[μ̄][ξ ]||2 by

the product of norms, the result follows. (3) One has (I − Enn)T M(q, μ, vt)(I +
Enn) = M(q, μ, vt) + H(q, μ, en,i), with H(q, μ, en,i) = −E T

nnM(q, μ, vt)Enn −
E T
nnM(q, μ, vt) + M(q, μ, vt)Enn. Consider Theorem 5.8, with M = M(q, μ, vt)

and A = M(q, μ, vt) + H(q, μ, en,i). Using Proposition 9.3.5 in [136] and the tri-
angular inequality of norms one finds ||H(q, μ, en,i)||2 ≤ ||Enn||22||M(q, μ, vt)||2 +
2||Enn||2||M(q, μ, vt)||2. Thus it suffices that
∣∣∣∣
∣∣∣∣
(

M(q,μ,vt)+MT (q,μ,vt)

2

)−1
∣∣∣∣
∣∣∣∣
2

(||Enn||22||M(q, μ, vt)||2 + 2||Enn||2||M(q, μ, vt)||2)
< 1

and the result follows.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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From (6.59) the following holds:

TL(tk) ≤ − 1
2λmin(M̄(q, μ, vt))||q̇norm(t−k )||2 + 1

2λmax(K (q, μ, vt))||q̇norm(t−k )||2

+||Dt(q)tTq Ht(q)||2||[μ̄]||2||I + Enn||2||q̇norm(t−k )|| ||q̇tan(t−k )||
(6.60)

Theorem 6.2 [210] Provided that

(i) λmin(M̄(q, μ, vt(t
+
k ))) > λmax(K (q, μi , vt(t

+
k )))

(i i) ||q̇norm(t−k )||
||q̇tan(t−k )|| ≥ 2

||Dt(q)tTq Ht(q)||2||[μ̄]||2||I+Enn||2
λmin(M̄(q,μ,vt(t

+
k )))−λmax(K (q,μ,vt(t

+
k )))

,

(6.61)

one has TL(tk) ≤ 0.

Proof Follows directly from (6.60).

Example 6.2 Let us illustrate the above developments on the simplest case of a
planar particle hitting a line. The horizontal position is x , the vertical one (normal
to the line) is y. One has q̇norm = √

mẏ, q̇tan = √
mẋ , p̄n = 1√

m
pn, Gμ(q, vt) = 1,

M(q, μ) = 1, M̄(q, μ) = 1−e2n, K (q, μi , x(t
+
k )) = μ2(1+en)2, Dt = 1, tTq Dttq =

1
m , t

T
q Ht(q) = 1√

m
, G(q) = 1, p̄n = −(1 + en)q̇norm(t−k ), q̈norm = p̄n, q̈tan = 1√

m
pt ,

q̇tan(t+) − q̇tan(t
−
k ) = 1√

m
(1+ en)q̇norm(t−k )μ̄ξ , with ξ ∈ sgn(ẋ(t+k ) + et ẋ(t−)). The

conditions of the Theorems imply that en ≤ 1, while the kinematic admissibility
implies that en ≥ 0. The direct application of Theorem 6.2 gives:

(i) 1 − en > μ2(1 + en)

(i i) |ẏ(t−k )|
|ẋ(t−k )| ≥ 2μ

1−en−μ2(1+en)
.

(6.62)

Notice that condition (i) implies that en < 1. If en = 0 thenμ < 1 and |ẏ(t−k )|
|ẋ(t−k )| ≥ 2μ

1−μ2 .

If en = 1 only the frictionless case is admitted, because in that case M̄(q, μ, vt) = 0,
and we have excluded this case from the beginning.

Remark 6.9 The major drawback of the generalized kinematic impact law, is that
in most cases one has to identify the parameters for a given collision, i.e. for a
given set of initial data and mechanical parameters: this is mainly due to the lack
of information on contact flexibility in the model, which hampers to predict wave
effects inside the multibody system. The LZB law introduced in Sect. 6.3 is from this
point of view, much better. A possible way to enhance the generalized kinematic law,
could be to use the information about the postimpact pattern, which is sometimes
available (see Fig. 5.5 where two general patterns appear, see also [621, Fig. 1] for a
two-ball system hitting a wall). Another drawback is related with its insertion in a

http://dx.doi.org/10.1007/978-3-319-28664-8_5


402 6 Generalized Impact Laws and Multiple Impacts

time-stepping algorithm for simulation: does it have to be used only in event-driven
integrators?

6.2.6 Tangential Restitution

Motivated by the models described in Sects. 4.3.1, 4.3.2 and 4.3.3, where a tan-
gential restitution coefficient is discussed vs. Coulomb’s friction at the impulse
level, we may introduce a generalized restitution as follows. We may impose p̄n ∈
−NVn(q)(Γn(q̇norm(t+)+Λnq̇norm(t−))) and pt ∈ −NVt(q)

(Γt(q̇tan(t+)+Λtq̇tan(t−))),
for some matrices Λn, Λt , Γn, Γt , and convex sets Vn(q) and Vt(q). Inserting this
into (6.53) one obtains the generalized equation:

v(t+) − v(t−) ∈ −Ḡ(q)

(
NVn(q)(Γn(q̇norm(t+) + Λnq̇norm(t−)))

NVt(q)
(Γt(q̇tan(t+) + Λtq̇tan(t−)))

)
. (6.63)

Defining the convex set W (q)
Δ= Vn(q) × Vt(q) and Λ =diag(Λn,Λt), Γ =diag

(Γn, Γt), we get :

v(t+) − v(t−) ∈ −Ḡ(q) NW (q)(Γ (v(t+) + Λv(t−))), (6.64)

with Ḡ(q) =
(
G(q) nT

q HT(q)

0 tTq HT(q)

)
. Existence and uniqueness of a solution v(t+) to

the generalized equation in (6.64) depend on the matrices Ḡ(q), Γ , Λ, and on the
convex sets Vn(q) and Vt(q). Suppose that there exists a symmetric positive definite
matrix P such that PḠ(q) = Γ T , and let us denote R its symmetric square root
R2 = P . Then, using Convex Analysis tools (which we already used a lot throughout
this book) we get:

v(t+) = −Λv(t−) + R−1proj[W̄ (q); R(Λ + I )v(t−)] (6.65)

with W̄ (q) = {x |ḠT Rx ∈ W (q)} a convex set.

6.2.7 Comments

The generalized restitution law (6.44) and (6.45) has been studied in detail when
applied on the planar rocking block and chains of aligned balls, in [228]
(see Sect. 6.3.2.2). The domains where the entries of Enn have to lie in order for kine-
matic, kinetic and energetic consistencies to hold, are summarized in [228, Table1]

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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in several cases: free rocking with or without sliding, half-rocking. It is also shown
that the three consistency constraints plus the pre-impact velocity, do not define a
unique set of CoRs (entries of Enn) in general, or that some of the CoRs are admissible
while >1. As noted by Moreau [900], adding a tangential CoR within a generalized
framework, is more a trick than the result of deep modeling. The normalized Delas-
sus’s matrix is the matrix of kinetic angles between the constraints. More precisely,
the kinetic angle between two constraints is defined as

θi j (q) = π −arccos
∇ fi (q)T M−1(q)∇ f j (q)√∇ fi (q)T M−1(q)∇ fi (q)

√∇ f j (q)T M−1(q)∇ f j (q)
. (6.66)

Kinetic angles are quantities that reflect the couplings between the inertial and the
geometrical properties of the systemwith unilateral constraints. It readily follows that
nT
q M(q)nq = [cos(π − θi j )] = −[cos(θi j )]. In particular θi i = π and the diagonal

entries are− cos(θi i ) = 1. Kinetic angles play a major role in continuity of solutions
w.r.t. initial data (see Sect. 5.2.4). Obviously they also play a major role in multiple
impacts, for if constraints are pairwise orthogonal, then the Delassus’s matrix is
diagonal and collisions are decoupled. We based the definition of the generalized
impact law in (6.44) and (6.45) on geometrical arguments, starting from the normal
vectors nq,i in (6.22), which have the interpretation of normals to the constraint
boundary where fi (q) = 0 in the kinetic metric. This is the only little piece of
differential geometry in this book. For readers who like to swim in geometrical
waters, let us refer to [305, 568, 980, 981]. The tangential restitution operator in
Sect. 6.2.6 is strongly inspired from Frémond [414, 415] and close results have also
been stated in [455, 730]. Sufficient conditions about energetic consistency may be
found in [228, Sect. 3.2]. The most general restitution matrix (with tangential Ett and
normal/tangential couplings Ent and Etn) may be seen as an extension of Brach’s
approach in (4.103), formulated in a Lagrange dynamics context instead of Newton-
Euler’s dynamics. Interestingly enough, it happens in some applications like rockfalls
[169] that a diagonal restitution matrix like in (4.103) is not sufficient: couplings
have to be considered [169, Eq. (4)], and stochastic model of the CoRs is needed
[168, 169, 170].

6.3 Energetic-CoR Multiple-Impact Law

We describe in this section an extension of the Darboux-Keller’s shock dynamics,
which applies to multiple impacts. Like for the Darboux-Keller’s approach, the posi-
tions are assumed to be constant during the impact, and the dynamics is integrated
with respect to the contact force impulse. This was introduced in [749, 750, 753,
1327], and is named the LZB impact dynamics.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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6.3.1 Presentation of the LZB Impact Dynamics

The LZB approach yields an extension of the Darboux-Keller’s impact dynamics,
in case of multiple contacts/impacts. Thus basic assumptions are constant position
q, and negligible forces (other than the impact forces) during the shock. It uses a
bistiffness model as in Fig. 4.6a. We recall that this model is a crude approximation
of the force/indentation law for elasto-plastic rate-independent materials, because
it does not limit the contact force, and it dissipates energy even for very low pre-
impact velocity (hence, for very low impact velocities which are below the minimum
plastification velocity, a monostiffness model should be used). Moreover, it mod-
els dissipation during the expansion phase, while plasticification occurs during the
compression phase (loading), see Sect. 4.2.1. An improvement is proposed in [929,
Sect. 4.2.7] which we do not describe here.

Let Fj be the contact force at contact point j , and δ j the normal indentation
(whence δ̇ j = ∇ f j (q)T q̇). During the compression (loading) phase, Fc, j = k j

(δc, j )
η j , and during the expansion (unloading) phase, Fe, j = Fmax, j

(
δe, j−δr, j
δc, j−δr, j

)η j

. The

corresponding works are given by Wc, j = ∫ δc, j
0 Fc, j (δc, j )dδc, j = 1

1+η j
k j (δc, j )

η j+1,

andWe, j = ∫ δr, j
δc, j

Fe, j (δe, j )dδe, j = − 1
1+η j

k(δc, j )η j (δc, j − δr, j ). Using the energetical

CoR e�, j as defined in (4.159), we infer that δr, j = δc, j (1 − e2�, j ), which relates
the CoR and the residual indentation. Notice that δc, j is the maximum compression
indentation, so it is not a parameter of the impact dynamics, it is computed by
integration of the collision dynamics. Few manipulations show that we also have

e2�, j = δc, j−δr, j
δc, j

=
(
kc, j
ke, j

) 1
η j ,15 where kc, j = k j is the stiffness during compression,

ke, j = kc, j
(

δc, j
δc, j−δr, j

)η j

is the stiffness during expansion. According to the bistiffness

model, the work done by the contact force during compression, is entirely converted
into elastic potential energy stored in the bodies. Thus, the potential energy at the
“instant” p j during compression is E j (p j ) = ∫ p j

0 δ̇ j (p j )dp j , 0 ≤ p j ≤ pc, j ,
where pc, j corresponds tomaximal compression.16 Then the residual potential energy
during the expansion phase, is E j (p j ) = ∫ pc, j

0 δ̇ j (p j )dp j + 1
e2�, j

∫ pi
pc, j

δ̇ j (p j )dp j =
Wc, j + 1

e2�, j

∫ pi
pc, j

δ̇ j (p j )dp j , pc, j ≤ p j ≤ p f, j , where p f, j is the normal contact force

impulse at the end of the expansion phase. The proof of this is given in [750, Sect. 3
(b)].

The normal contact force satisfies during the compression phase dFj

dt = dFj

dp j

dp j

dt =
Fj

dFj

dp j
, hence using that dFj

dt = η j k j (δ j )
η j−1∇ f j (q)T q̇ , we deduce that F

1
η j

j d Fj =

η j k
1
η j

j ∇ f j (q)T q̇ dp j . We finally obtain Fj (p j ) =
(

(η j + 1)
∫ p j
0 k

1
η j
j ∇ f j (q)T q̇ dp j

) η j
1+η j

.

We remind that these calculations are possible because it is assumed that the position

15This is consistent with what is stated in Sect. 4.2.1.2.
16We should denote pn, j to be consistent with the notations adopted elsewhere in the book.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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q is constant, q = q(0). One can then deduce that the ratio of two normal impulses at

contact points j and i is given by dp j

dpi
= (η j+1)

η j
η j+1 k

1
η j+1

j

(∫ p j
0 ∇ f j (q)T q̇ dp j

) η j
η j+1

(ηi+1)
ηi

ηi+1 k
1

ηi+1
i (

∫ pi
0 ∇ fi (q)T q̇ dpi ))

ηi
ηi+1

. Noting

that the potential energy E j (p j ) at contact point j equals
∫ p j

0 ∇ f j (q)T q̇ dp j , we can

rewrite the impulse ratio as dp j

dpi
= (η j+1)

η j
η j+1 k

1
η j+1

j (E j (p j ))
η j

η j+1

(ηi+1)
ηi

ηi+1 k
1

ηi+1
i (Ei (pi ))

ηi
ηi+1

. The next question is

whether this continues to hold during the whole compression/expansion cycle. The
answer is yes, as shown in [750, Sect. 3(d)].

In general there may be either a precompression at the contact point j , or a
repeated collision: a first collision starts (compression, then expansion), but a second
compression phase starts again before the expansion phase terminates (i.e., before the
contact j opens), followed by an expansion phase. Suppose that the force/indentation
relationship remains unchanged during repeated impacts, as depicted in Fig. 6.6. It
is possible to prove the following, during a repeated impact at contact j :

E j (p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0 + ∫ p j

0 δ̇ j (p j ) dp j if Q ∈ ÔMc,1

EMc,1 + 1
e2�, j

∫ p j

pMc,1
δ̇ j (p j ) dp j if Q ∈ M̂c,1R

ER + ∫ p j

pR
δ̇ j (p j ) dp j if Q ∈ R̂Mc,2

EMc,2 + 1
e2�, j

∫ p j

pMc,2
δ̇ j (p j ) dp j if Q ∈ M̂c,2B,

(6.67)

where the cycle is as in Fig. 6.6 and Q is a generic point on the force/indentation curve
corresponding to time p j . The quantities E0, EMc,1 , ER and EMc,2 are the residual
potential energies at the points O , Mc,1, R and Mc,2, respectively. If the initial con-
tact force at contact j is F0, j with indentation δ0, j , then, the initial potential energy

is E0, j = ∫ δ0, j
0 λc, j (δ j )dδ j = (F0, j )

η j+1
η j

(η j+1)k
1

η j+1

j

. From the above expression of Fj (p j ),

we infer that Fj (p j ) = (1+η j )
η j

η j+1 k
1

η j+1

j

(
(F0, j )

η j+1
η j

(η j+1)k
1

η j+1

j

+ ∫ p j

0 δ̇ j (p j )dp j

) η j
η j+1

, where

one sees from (6.67) that the term between brackets is the potential enery E j (p j ).
After some calculations the contact force during the expansion phase satisfies

Fe, j d Fe, j = η j Fmax, j

(
δ j−δr, j
δc, j−δr, j

)η j−1
δ̇ j

δc, j−δr, j
dp j , and using that δc, j − δr, j = e2�, jδc, j ,

one finds (Fe, j )
1
η j d Fe, j = η j (Fe, j )

1
η j

δ̇ j

e2�, j δc, j
dp j . At the end of the compression phase

we have Fc, j = k j (δc, j )
η j
, hence (Fe, j )

1
η j d Fe, j = 1

e2�, j
η j (k j )

1
η j δ̇ j dp j . At the begin-

ning of the expansion phase, we have p j = pc, j and δ̇ j = 0, and Fj (pc, j ) =
(1 + η j )

η j
1+η j k

1
η j

+1

j (E j (pc, j ))
η j

η j+1 . Integrating one obtains (Fe, j (p j ))
η j+1

η j = (η j +
1)k

1
η j+1

j E j (p j ). Thus the contact force during expansion at the impulse instant p j is
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Fig. 6.6 A repeated impact
(linear elasticity: η = 1) Mc,1

Mc,2

R

A B δ

F

0

loading
unloading

loading

unloading

given by Fe, j = (1 + η j )
η j

1+η j k
1

1+η j

j (E j (p j ))
η j

1+η j . This is the same expression as for
the compression phase.
We therefore deduce that the ratios of the normal contact forces impulses at contact
points j and i , are given generically by the distributing rule:

Γ j i = dp j

dpi
= (1 + η j )

η j
η j+1 k

1
1+η j

j E
η j

1+η j

j

(1 + ηi )
ηi

ηi+1 k
1

1+ηi
i E

ηi
1+ηi
i

. (6.68)

It follows that if the elasticity constants η j = η − i = η, then Γi j does depend
only on the stiffness ratio γ j i = k j

ki
, not on the absolute values of the stiffnesses.

This is coherent with what we already noticed in Sect. 6.1.3 on a particular case.
It is interesting to see now that this is not true if the elasticity coefficients are not
identical. The multiple impact terminates when all the potential energy that has
been stored during the compression phases, is entirely released or dissipated and all
contacts open, that is E j (p f, j ) = 0 and δ̇ j (p f, j ) ≥ 0 for all j that participate into
the collision. The LZB impact dynamics is summarized as follows:

• Contact parameters e�, j , η j , 1 ≤ j ≤ m, γi j , precompression potential energies
E0, j and indentations δ0, j .

• Darboux-Keller’s dynamics:

M(q)
d q̇
dpi

= ∇ f (q)Γ , (6.69)

with contact i being the primary contact.

• Ratio Γ j i = dp j

dpi
of the normal impulse increment at contact j to that at the

primary contact i :

Γ j i = (1 + η j )
η j/(η j+1)

(1 + ηi )
ηi/(ηi+1)

k
1/(1+η j )

j

k1/(1+ηi )

i

E
η j/(η j+1)
j

Eηi/(ηi+1)
i

. (6.70)
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and Γ = (Γ1i , Γ2i , .., Γi−1,i , 1, Γi+1,i , . . . , Γmi )
T .

• Potential energy E j :

E j (p j ) =
∫ p j

0
δ̇ j (p j )dp j , if 0 ≤ p j ≤ pc, j , (6.71)

E j (p j ) = Wc, j + 1

e2�, j

∫ p j

pc, j

δ̇ j (p j )dp j , if pcj ≤ p j ≤ p f, j , (6.72)

with δ̇ j = ∇ f j (q)T q̇ , pc, j is the impulse at the end of the compression phase
(δ̇ j (pc, j ) = 0), and p f, j is the terminal impulse.

• Impact termination condition:

E j = 0, δ̇ j ≤ 0, for all j = 1, 2, . . . ,m. (6.73)

where m is the number of impacting points.

The primary impulse pi has to be chosen properly, for in particular it should not van-
ish, and may be changed during the collision integration. Its choice for the numerical
integration of the LZB impact dynamics, is explained in [753], and in [929, Algo-
rithm 3, page 90]. A numerical algorithm is detailed in [753] which explains how
the LZB impact dynamics may be integrated. See also [929, Sects. 4.2, 4.3] for a
very detailed presentation of the LZB dynamics integration and its insertion in an
event-driven algorithm. The case with friction is detailed in [752]. Possible numeri-
cal instability due to the elasticity coefficients η j that make the LZB dynamics stiff,
is studied in [929, §4.2.9].

6.3.2 Applications and Validations

The LZBmodel has been validated through numerous comparisons with experimen-
tal data.

6.3.2.1 Chains of Aligned Beads

Probably the most fundamental microscopic property of granular materials is irre-
versible energy dissipation in the course of interaction (collision) between particles
[56]. A correct modeling of the dissipation at impacts (and also outside impacts
during persistent contact phases of motion), and a correct numerical algorithm for
simulation, are therefore of utmost importance in granular matter. Chains of balls are
a first, simple instance of granular mechanical systems. Numerical results with the
LZB model have been compared to experimental results obtained on various types
of chains of aligned balls [387, 625, 838, 915, 1059], in [749, 753, 928, 929, 1331].
Some of them have been presented in Figs. 6.1 and 6.2a, b. The comparisons concern
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not only the postimpact velocities and kinetic energy, but also and most importantly
the waves that travel through the chains, maximum impact force and force pulse
amplitude for monodisperse as well as tapered and stepped chains [753, 928, 929].
They prove that the LZBmodel encapsulates the main phenomena (nonlinear waves)
which are responsible for themultiple impact. As we said above, this is due to the fact
that the LZB model contains the information on stiffness ratios between the contact
points. A complete exposition of the event-driven codes used to simulate the chains,
is made in [929]. The LZB model for multiple impacts may be the very first instance
where it is proved experimentally that the energetic CoR supersedes the kinematic
and the kinetic CoRs.

Further Reading: Newton’s cradle and chains of balls are apparently simple, almost
toy-systems, however thet have received a lot of attention since a long time, especially
in the Physics teachers literature. Since the appearance of Granular Matter as a
scientific field, and the discoveries of their great complexity from the point of view of
nonlinear waves transmission, they serve as an example of one-dimensional granular
material. We do not survey all the results about chains of aligned beads in this book.
Let us mention that the discovery of nonlinear solitary waves in monodisperse chains
(identical balls) is due to Nesterenko [924], and justified experimentally in [306].
Since then nonlinear waves have been studied in several types of chains, varying the
radii (hence the masses) of the balls, the contact interaction potentials, and the curve
of the chain [145, 245, 529, 608, 609, 610, 613, 772, 956, 1012, 1086] to cite a few.

6.3.2.2 Rocking Block

We consider the system in Fig. 6.7a, which has two unilateral constraints (provided
the base line is assumed to be concave) when y ≤

√
l2+L2

2 : f1(q) = y − l
2 cos(θ) +

L
2 sin(θ) ≥ 0, and f2(q) = y − l

2 cos(θ) − L
2 sin(θ) ≥ 0. It is interesting to notice

that the admissible domain Φ which depicted in Fig. 6.7b, is not convex. Assuming
that the dynamical effects of the block on the base are negligible, the dynamics of
the block with Coulomb friction is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ(t) = λt,1(t) + λt,2(t)
mÿ(t) = λn,1(t) + λn,2(t) − mg

IG θ̈ (t) = λn,1(t)
(
l
2 sin(θ(t)) + L

2 cos(θ(t))
)

+ λn,2(t)
(
l
2 sin(θ(t)) − L

2 cos(θ(t))
)

+
(
l
2 cos(θ(t)) − L

2 sin(θ(t))
)

λt,1 +
(
l
2 cos(θ(t)) + L

2 sin(θ(t))
)

λt,2

0 ≤ λn(t) ⊥ f (q(t)) ≥ 0
λt,i (t) ∈ −μiλn,i (t) sgn(vt,i (t) − vb(t)), i = 1, 2,

(6.74)

where vb(t) = ẋb(t) is the base horizontal velocity, μi > 0 is the friction coef-
ficient at contact i , and vt,i is the tangential velocity at the point i , i.e. vt,1 =
ẋ + (

l
2 cos(θ) − L

2 sin(θ)
)
θ̇ at B and vt,2 = ẋ + (

l
2 cos(θ) + L

2 sin(θ)
)
θ̇ at A (from

which vt,1 = vt,2 when θ = 0). With q = (x, y, θ)T , one can identify M , Fext ,
∇ f (q) and Ht(q) in (5.1) from (6.74).

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 6.7 The rocking block. a The system. b Admissible domain (taken from [1318])

The contact LCP is 0 ≤ λn ⊥ Dnn(θ)λn + ∇ f (θ)T M−1Ht(θ)λt + B(θ, θ̇ ) ≥ 0 with

Dnn(θ) =
(

1
m + 1

4IG
(l sin(θ) + L cos(θ))2 1

m + 1
4IG

(l2 sin2(θ) − L2 cos2(θ))
1
m + 1

4IG
(l2 sin2(θ) − L2 cos2(θ)) 1

m + 1
4IG

(l sin(θ) − L cos(θ))2

)

and B(θ, θ̇ ) =
(−g + 1

2 θ̇
2(l cos(θ) − L sin(θ))

−g + 1
2 θ̇

2(l cos(θ) + L sin(θ))

)
. The Delassus’ matrix Dnn(θ) 

0 except at θ = ±π
2 .

Remark 6.10 (Kinetic Angles) The kinetic angle θ12 between the two constraints is
given by:

θ12 = π − arccos

(
l2 − 2L2

l2 + 4L2

)
(6.75)

at θ = 0. Denoting the aspect ratio as a
Δ= l/L we may rewrite it as θ12 = π −

arccos
(
(a2 − 2)/(a2 + 4)

)
: there is a one-to-one correspondence between a and θ12.

It satisfies θ12 = π/2 if l = √
2L , 0 < θ12 < π/2 if 0 < l <

√
2L (flat block), and

π > θ12 > π/2 if l >
√
2L (slender block). When a varies from 0 (infinitely flat

block with infinite width L) to +∞ (infinitely slender block with infinite height l)
then θ12 varies fromπ/4 toπ . The fact that θ12 ∈ [π/4, π ]means that one expects that
the block/ground system possesses a rich dynamics, and may serve as a nice example
of multiple impact with friction. The interest of studying the block dynamics as a
function of the kinetic angle between the two boundaries at θ = 0, is that it allows
us to determine that a block is not of the slender type just if l > L . As shown in

[1318] using the LZBmodel with friction, the dispersion factor d
Δ= ẏA(t+k )

ẏB (t−k )
displays a

particular V−shaped as a function of θ12 (equivalently of a) and for varying friction
[1318, Figs. 6, 7, 12], and there exists a critical kinetic angle at which d is minimum,
which is independent of the CoR [1318, Fig. 10], see Fig. 6.8b.
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Fig. 6.8 The dimer, and rocking block’s critical aspect ratio. a The bouncing dimer. b Critical
kinetic angle for the rocking block’s energy dispersion (taken from [1318])

Remark 6.11 (Kinetic Angles (continued)) A system that is close to the classical
rocking block, is the bouncing dimer studied in [357, 1327] and depicted in Fig. 6.8a.
The dimer is made of two identical spheres with radius R connected by a rigid
rod with length L . Using the same notations as for the block, the two unilateral
constraints for the dimer are f1(q) = y + (L/2 + R) sin(θ) − R ≥ 0 and f2(q) =
y − (L/2 + R) sin(θ) − R ≥ 0. Some calculations yield that the kinetic angle
between the two constraints at θ = 0 (double impact) and with all masses equal
to 1 for simplicity, is given by θ12 = π − arccos ((1/3 − α)/(1/3 + α)) with α =
(1+2a)2/(16a2/5+1/3+2(1+2a)2)), a = R/L . The flatest dimer has L = +∞,
and the less flat one has L = 0 (the two balls are stuck together). The two kinetic angle
values that correspond to these extreme cases are θ12 = π − arccos (−1/8) ≈ 1.445
rad and θ12 = π −arccos (−1/29) ≈ 1.536 rad, which are both slightly smaller than
π/2 ≈ 1.571 rad. This means that the dimer and the block, despite their apparent
similarity, possess different dynamical behaviors in the sense that the dimer kinetic
angle varies little and never exceeds π/2 (the dimer is always flat), while the block
kinetic angle may vary much more.

The LZB model applied to the block/anvil system for rocking, onset of rocking,
with harmonic base excitations, is validated in [1319] with thorough comparisons
between numerical simulations and the experimental data obtained on blue granite
stone blocks reported in [987, 988].17 The masses of the blocks are estimated from
their dimensions and density, and are given by 503, 228, 120, 245kg, demonstrating
the scope of the experiments. The overturning phenomenon is also analysed in [1319].

17All the experimental data used for the comparisons with numerical data presented in [1319] have
been made available to the authors by Dr F. Pena from Instituto di Ingenieria, UNAM, Mexico.
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It is noteworthy that the parameters (equivalent width and length, CoRs) have been
fitted from the free-rocking experimental data, and then used without modification
for the other comparisons with an excited base (onset of rocking).

Further Reading, Comments and Perspectives: The rocking block dynamics
has been studied since a long time in the Earthquake Engineering literature, because
of its interest in better understanding buildings dynamics under seismic excitation,
see e.g. [19, 41, 42, 379, 543, 747, 1010, 1017, 1131]. The restitution law that is
widely used is θ̇ (t+k ) = eθ θ̇ (t−k ) for some CoR eθ . This seems to be an ad hoc
restitution law, however this is not quite the case. The link between E in (6.44) and
(6.45) and eθ as well as local tangential restitution is made in [228]. It is found that
in case of rocking motion (the block rotates around A, hits the ground at B without
rebound, then rotates around B, hits the ground at A without rebound, etc), we have

E =
⎛
⎝ 0 −eθ 0

−eθ 0 0
0 0 eθ

⎞
⎠. Therefore, the angular velocity CoR is interpreted via the

generalized restitution law, as a tangential CoR for q̇tan. Moreover, let vt,i (t
+
k ) =

etvt,i (t
+
k ), i = 1, 2 at A and B, where et is the local tangential CoR. Then it can be

shown that et = −et,3 = −en,1 +en,21 [228, Sect. 6]. It follows that if one imposes in
addition that there is no slip at the impacting point, then et = 0, while no rebound at
the impacting point implies en,1 = 0.We infer that necessarilyE = 0. It is also proved
in [228, Sect. 3.6] that Coulomb’s friction (at the impulse level) with ṽt(tk) = vt(t

+
k )

in (4.69) and a diagonal Enn, cannot model rocking motion: off-diagonal terms in
Enn and tangential restitution CoR are needed. It is nevertheless noteworthy that such
impact law cannot model very finely the real block motion. In practice, one observes
usually rebounds at both A and B even during a rocking global motion, and slip/stick
phases.

Some experiments in [987, 988] show the existence of non-negligible three-
dimensional effects, due to body vibrations and torsion. This proves the need to
go beyond planar systems. The study of three-dimensional rocking blocks with flex-
ibilities is an interesting topic for future investigations. The rocking block system
involves line/line impact (or plane/plane impact in the thee-dimensional case), for
which the two-point contact model is a crude approximation (implying in particular
the estimation of an equivalent width which does not necessarily match with the
geometrical width). Line/line impacts modeling is investigated in [1330].

6.3.2.3 Other Experimental Validations of the LZB Model

The LZBmodel has been further validated with careful comparisons between exper-
imental and numerical data, in [1248, 1249] (three-dimensional bouncing dimer),
[1327] (two-dimensional bouncing dimer), a disk-ball system [748, 1321].

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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Fig. 6.9 Relation CKE - k2/k1 for different values of η: Moreau, binary collisions, LZB (taken
from [929, Fig. 6.12])

6.3.3 Comparison of Different Multiple Impact Mappings

A thorough comparison between Moreau’s law, the binary collision model, and the
LZB approach, is made on the monodisperse three-ball chain in [929, Chap.6]. The
comparisons aremade by varying elasticity coefficients,masses, and stiffnesses ratio,
with the “usual” initial conditions (the first bead hits the other two, in contact and
at rest). We present in Fig. 6.9 the kinetic energy dispersion variable CKE defined in
(5.72) in Chap.5, as a function of the stiffness ratio k2

k1
and the elasticity coefficient

η (η = 1 for linear elasticity, η = 3
2 for Hertz’ elasticity, etc). This figure shows

that the energy dispersion varies significantly with η and k2
k1
, and that Moreau’s

law applies for low CKE index18 (i.e. high dispersion, “large” k2
k1

and “small” η),

while the binary collision applies to high CKE index (i.e. low dispersion, “small” k2
k1

and “large” η). Such analysis would deserve an extension to more general chains,
in order to determine validity areas for Moreau/Newton, binary collision, Pfeiffer-
Glocker/Poisson approaches. Once again it is clear that the great advantage of the
LZB approach is that it encapsulates information on the stiffness ratio. The domains
of validity of theMoreau’s or binary collisions laws, depend in turn on the form of the
waves created by the collision between the first and the second balls, which varies
depending on η j [529, 1086]. Let us mention an interesting comparative analysis
between visco-elastic models (see Chap. 2), binary collisions approach, bistiffness
model and elasto-plastic approaches (see Sect. 4.2.1), when applied on the three-ball
system in [354].

18In agreement with Proposition 5.17 which states that Moreau’s law minimizes CKE .
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6.4 Further Reading

6.4.1 Kinetic Restitution (Poisson)

Pfeiffer and Glocker introduced a generalization of Poisson’s impact law in [1001].
It consists of solving a two-stage LCP at each contact point. Let us illustrate it
on a simple case of two aligned balls hitting a wall. A crucial assumption is that
the maximum compression times at each contact/impact point, are equal (see [929,
Sect. 3.1.2] for detailed calculations on a 3-ball chain, showing the necessity of this
assumption). This may be the main and less realistic hypothesis of this approach,
because in most cases maximum compression times do not match, and there may
even exist repeated impacts. Let us apply the method to the case of a chain of two
balls, that strikes a rigid wall (i.e., take N = 2 in Fig. 6.1). Roughly, the problem is
solved by constructing two LCPs, one for the end of the compression phase (t = tc),
the second one for the end of the expansion phase (t = t f ). Coefficients ep,1 and ep,2
are associated with each contact. The LCPs at each contact, i = 1, 2, are as follows:

• At t = tc: ⎧⎨
⎩

pi (t) ḟi (q(t)) = 0
ḟi (q(t)) ≥ 0
pi (t) ≥ 0

(6.76)

• At t = t f : ⎧⎨
⎩

pi (t f ) − pi (tc) − ep,i pi (tc) ≥ 0
ḟi (q(t f )) ≥ 0
{pi (t f ) − pi (tc) − ep,i pi (tc)} ḟi (q(t f )) = 0

(6.77)

where f1(q) = q1−q2 and f2(q) = q2 are the two unilateral constraints. Introducing
the impact dynamics (we use the same initial data and masses as above) q̇1(tc)+1 =
p1(tc), q̇2(tc) = −p1(tc)+ p2(tc), q̇1(t f )−q̇1(tc) = p1(t f )− p1(tc), q̇2(t f )−q̇2(tc) =
−p1(t f )+p1(tc)+p2(t f )−p2(tc), one therefore gets fourLCPs (two for each contact)

⎧⎨
⎩

p1(tc)(q̇1 − q̇2)(tc) = 0
(q̇1 − q̇2)(tc) ≥ 0
p1(tc) ≥ 0

,

⎧⎨
⎩

p2(tc)q̇2(tc) = 0
q̇2(tc) ≥ 0
p2(tc) ≥ 0

(6.78)

⎧⎨
⎩

p1(t f ) − p1(tc) − ep,1 p1(tc) ≥ 0
(q̇1 − q̇2)(t f ) ≥ 0
{p1(t f ) − p1(tc) − ep,1 p1(tc)}(q̇1 − q̇2)(tc) = 0

⎧⎨
⎩

p2(t f ) − p2(tc) − ep,2 p2(tc) ≥ 0
q̇2(t f ) ≥ 0
(p2(t f ) − p2(tc) − ep,2 p2(tc))(q̇1 − q̇2)(t f ) = 0.

(6.79)
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If both CoR’s are equal to 1, it is easily checked that there is a unique solution given
by (q̇1 − q̇2)(t f ) = 1, q̇2(t f ) = 0, so that q̇1(t f ) = 1 and q̇2(t f ) = 0. The case with
friction is discussed in [1000]. It is shown in [929, Fig. 3.1] that in order to fill in the
whole admissible postimpact velocity domain of Fig. 5.5, it is necessary to consider
CoRs ep,i > 1, which may lack of physical meaning. Pfeiffer-Glocker’s approach
with a two-stage LCP is used in [47, 48] in a three-dimensional setting and Coulomb
friction with facetized cone. A thorough analysis of the energetic consistency of
Pfeiffer-Glocker’s law with or without friction, is made in [456]. It has also been
implemented in [1022] for ice floes simulation with an event-driven code.

6.4.2 Kinematic Restitution (Newton and Moreau)

Inspired by Frémond whose framework introduced in Sect. 4.3.4 extends to multiple
shocks [266, 290, 836] [415, Chap.8] [416, Chapitre 5], Glocker has introduced in
[451, 454, 985] a restitution matrix similar to Enn in (6.45), and makes a thorough
geometrical analysis of Moreau’s impact law, he also extends it to re-entrant corners
[454, Sect. 5.4], which are excluded from Moreau’s framework which is based on
finitely represented admissible domainsΦ. Leine and van deWouw [730, 732] extend
Moreau’s framework by formulating impact lawswith friction as inclusions in normal
cones to convex sets (or the reverse inclusions in subdifferentials of support functions)
[730, Chap. 5]. Restitution matrices are allowed, and conditions for dissipativity are
given [730, pp.159–160] which are used for stability purpose [730, Theorem 7.6]. In
[1026], a kinematic restitutionmatrix is introduced (in away similar to our Enn above,
or to Glocker’s matrix in [451, 454, 985], see also the formulations in [730] which
accomodate for restitution matrices and also friction), while friction is modeled at
the impulse level with a friction cone faceting procedure.

6.4.3 Other Approaches

Bowling and Rodriguez [1048] use Routh’s incremental approach and energetical
CoRs at each contact in a chain of aligned balls to solve the multiple impact: energy
dispersion ismodeled. The same authors formulate in [171, 1047] themultiple impact
with friction as an optimization problem which includes kinetic and energetic con-
straints, starting from the maximum dissipation principle of friction, and a diag-
onal restitution matrix with kinematic CoRs (this may be seen as a rewriting of
Moreau’s rule with friction). Barjau et al. [90, 91] use a stiff unilateral compliant
normal contact model, combined with a modal analysis, for frictionless redundant
contacts. Bistiffness-like models are used in [91] to account for energy loss. Jia
[622, 623] presents a very detailed analysis close to the one in Sect. 6.3.1, with a
state-transition diagram to describe the multiple impact. Their approach is close to
the one in Sect. 6.3.1: a linear bistiffness law is chosen, repeated impacts are taken

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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into account, and the distributing law is derived in a particular case [623, Eq. (15)].
Hurmuzlu and co-authors introduced in [268, 441, 558, 1187, 1300] a method which
consists of using Routh’s incremental two-dimensional approach, with so-called
impulse correlation ratios (ICR), which are constants relating the impact forces
impulses (the percussion pn,i at each contact i , in the sense of Definition 1.2).
The ICRs permit to introduce some distance effects (or energy dispersion) in the
impact dynamics. However as shown on numerical simulations in [11] and in the
above distributing rule (6.68), impulse ratios are not be constant in general but could
vary a lot depending on the initial data and parameters, and should therefore be
fitted with experiments. Hurmuzlu and Marghitu [561] deal with planar kinematic
chains with multiple contact/impact points (see also [559] for a preliminary result).
Collisions are treated with Routh’ incremental method (two-dimensional Darboux-
Keller’s dynamics), and an event-driven-like algorithm is proposed to calculate the
postimpact velocity, testing all possible cases (stick-slip transitions in both directions,
constraint deactivation).

http://dx.doi.org/10.1007/978-3-319-28664-8_1


Chapter 7
Stability of Nonsmooth Dynamical Systems

This chapter starts with stability of various systems with state jumps: Lyapunov
stability of Measure Differential Equations, vibro-impact systems, and impact oscil-
lators. Then the so-called grazing bifurcations are introduced. The Lyapunov stability
of complementarity Lagrangian mechanical systems is analyzed in detail, and it is
shown how the Zhuravlev-Ivanov nonsmooth transformation introduced in Chap.1
may be used for finite-time stabilization with a sliding-mode controller. The chapter
ends with the analysis of Lyapunov stability of a simple system hitting a unilateral
spring-like environment, and the use of copositive matrices for studying the stability
of linear complementarity systems.

7.1 Stability of Measure Differential Equations

In this section we briefly review some stability concepts for theMDEs we introduced
in Chap.1.

7.1.1 Stability of Impulsive ODEs

Let us consider the following class of MDEs, which we introduced in Sect. 1.2.4:

{
ẋ(t) = f (x(t), t), t �= tk(x)
σx (tk) = Ik(x(t

−
k )), t = tk(x),

(7.1)

and x(0−) = x0. Let the following conditions be satisfied:

• The function f (x, t) satisfies the basic conditions for existence, uniqueness, and
continuous dependence of the ODE ẋ(t) = f (x(t), t), f (t, 0) = 0.

• The functions Ik(·) are continuous and Ik(0) = 0 for k ∈ N.
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• There exists a constant h < +∞ such that if ||x || ≤ h, then x + Ik(x) < +∞.
• The discontinuity times of any solution x(t) satisfy 0 = t0 < t1(x) < t2(x) < . . .,
limk→+∞ tk(x) = +∞. The functions tk(·) are continuous. Moreover, in the
extended state space (t, x), there is no beating, i.e. trajectories do not meet
infinitely often the same hypersurface where state jumps occur, i.e. surfaces
Sk = {(t, x)|t = tk(x)}.

One has to analyze the system during continuous motion on intervals (tk, tk+1) and at
discontinuity instants tk . Derivatives of Lyapunov functions V (·) have to be under-
stood as V̇rd(t) = limh→0+ sup V (t+h)−V (t)

h (the upper right Dini derivative of V (·))
almost everywhere, and V̇ (tk) = σV (tk)δtk .

1 Lyapunov’s second method extends by
stating V̇rd(t) ≤ 0 and σV (tk) ≤ 0.

Definition 7.1 [76] The solution x(t) of system (7.1) is stable if for all ε > 0, for
all η > 0, for all τ0 ≥ 0 such that |τ0 − tk | > η, there exists a δ > 0 such that for
all x0 ∈ R

n with |x0 − x(τ0)| < δ, for all t ∈ J+(τ0, x0) with |t − tk | > η, then
|ϕ(t; τ0, x0) − x(t)| < ε.

The set J+(τ0, x0) denotes the maximal interval of existence of the solution
ϕ(t; τ0, x0) with initial conditions (τ0, x0). Similar definitions can be adapted to
uniform, asymptotic stability, as in the classical non-impulsive case. Note that in
general (when the tk’s are not fixed but depend on the state), two different solutions
x(t) and ϕ(t) will possess discontinuities at different times: this is the mismatch
issue described in Sect. 1.3.2.3. For the case when we study the stabilty of a fixed
point x(t) = x� (note that x� = 0 is a fixed point of the system (7.1)), one can
define Lyapunov stability in the classical way. This is also the case if the tk’s are
fixed, since then all solutions have discontinuities simultaneously. Let us recall some
classical definitions: a function α : [0,∞) → [0,∞) belongs to class K if it is
continuous, strictly increasing, and α(0) = 0. If, in addition, α(·) is unbounded then
α(·) belongs to class K∞. A function β : [0,∞) × [0,∞) → [0,∞) belongs to
classK L if β(·, t) ∈ K for each t ≥ 0, β(r, ·) is strictly decreasing for each r ≥ 0
and β(r, t) → 0 as t → ∞.

The Lyapunov second method extends to such systems.

Theorem 7.1 (Lyapunov second method [76, Theorem 13.1]) Let the above condi-
tions be satisfied, and let functions V (t, x)andα(·)of classK exist, with V (t, 0) = 0
for all t ≥ τ0, such that along the system’s trajectories we have:

⎧⎨
⎩

α(||x(t)||) ≤ V (t, x(t)) for all t ≥ τ0 and x ∈ R
n,

V̇rd(t, x(t)),≤ 0 for all t �= tk(x)
σV (tk) ≤ 0 for t = tk(x).

(7.2)

1Notice that in general we do not have V̇ = ∂V
∂x

({ẋ} + σxδtk
)
, but we do have V̇ = {V̇ } +

σV (tk)δtk . If V (·) is quadratic in x and x ∈ RCLBV, then Moreau’s rule can be applied to get
dV = d(xT Px) = (x+ + x−)T Pdx [867]. Outside jumps dV = 2xT Pdx and at discontinuity
instants dV = (x+ + x−)T P(x+ − x−)δt = [(x+)T Px+ − (x−)T Px−]δt = σV δt . dV and dx
are called differential measures or Stieltjes measures of V (·) and x ∈ RCLBV.

http://dx.doi.org/10.1007/978-3-319-28664-8_1


7.1 Stability of Measure Differential Equations 419

Then the trivial solution x� = 0 of the system (7.1) is stable in the sense of
Definition 7.1.

Theorem 7.1 can be extended to guarantee uniform, asymptotic, exponential stability,
see [76, Theorems 13.2–13.5].

7.1.2 Stability of Measure Driven ODEs (MDEs)

Let us focus on theMDEs introduced in Sect. 1.2.2, in particular (1.22). The following
notion of stability is considered.

Definition 7.2 [1182] We call the system (1.23) uniformly asymptotically stable
over a set of inputs U if there exists a class K L function β(·, ·) such that every
state trajectory x(·) resulting from the input u ∈ U as a solution of (1.23) satisfies
|x(t)| ≤ β(|x(t0)|, t − t0).

We recall that u(·) is an m−input of local bounded variation. The following holds:

Theorem 7.2 (Asymptotic Stability [1182]) Assume that there exist a continuously
differentiable function V : Rn → R+, some class K∞ functions α1(·), α2(·), and
some constants a, b, b̄ ∈ R such that the following holds for each x ∈ R

n:

⎧⎨
⎩

α1(|x |) ≤ V (x) ≤ α2(|x |),
〈∇V (x), f (x)〉 ≤ aV (x),
b j V (x) ≤ 〈∇V (x), g j (x)

〉 ≤ b̄ j V (x), j = 1, . . . ,m.

(7.3)

For some c ∈ R and θ(·) ∈ K∞, let Uc,θ denote the class of inputs satisfying:

a(t − t0) +
m∑
j=1

b̄ jμ
+
j ([t0, t]) −

m∑
j=1

b jμ
−
j ([t0, t]) ≤ c − θ(t − t0), (7.4)

for every t ≥ t0, t0 ∈ R. Then, system (1.23) is uniformly asymptotically stable over
Uc,θ . Let UM denote the class of inputs for which the total variation of the inputs is
bounded by some constant M > 0. Suppose the above hypotheses hold with a < 0
in (7.3). Then system (1.23) is uniformly asymptotically stable over UM.

In the Theorem,μ+
j (resp.μ

−
j ) is the differentialmeasure associatedwith the function

u+
j (·) (resp. u−(·)), which is the increasing (resp. the decreasing) part of the entry

u j (·)ofu(·). The proof ofTheorem7.2 is too long to be given here.Roughly speaking,
the solution of system (1.23) could be seen as flows along the vector fields f (·) and
g j (·). Condition (7.4) in Theorem 7.2 basically assigns the weight on how long each
of these vector fields should be active for the system to be asymptotically stable.
For this, neither f (·) nor any of the control vector fields g j (·) need to be stable in
the classical sense. However, an appropriate choice of u(·) may render the system

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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asymptotically stable depending on the signs of the scalars a, b j , b̄ j appearing in
(7.4). Corollaries of Theorem 7.2 show how to characterize the stability of switched
and impulsive systems.

Another notion of stability, important in Control, is that of input-to-state stability
(ISS). In the following, du is the differential measure associated with u(·) and |du| is
its total variation, i.e. |du|([t0, t]) = var(u, [t0, t]) (see Sect. A.3.1). The motivation
is to consider systems that are not necessarily asymptotically stable but themaximum
value of the state trajectories depends on some norm of the driving input. This may
be interesting when u(·) models additive noise or there are undesired impulsive
perturbations in the state trajectory.

Definition 7.3 [1182] System (1.23) is called input-to-state stable (ISS)with respect
to variation of the input u(·) if there exist a class K L function β(·, ·) and a class
K∞ function γ (·) such that

|x(t)| ≤ β(|x(t0)|, t − t0) + γ (|du|[t0,t]) t ≥ t0. (7.5)

Sincewe are dealingwith inputs that have finite variation on every compact interval, it
means that the state trajectories satisfying the estimate (7.5) belong to some compact
set in the state space at each time in the interval over which they are defined.

Theorem 7.3 (ISS with Variation [1182]) Suppose there exist a continuously differ-
entiable function V : Rn → R+, some class K∞ functions α1(·), α2(·), and some
positive constants a, b, c > 0 such that for each x ∈ R

n:

⎧⎨
⎩

α1(|x |) ≤ V (x) ≤ α2(|x |)
〈∇V (x), f (x)〉 ≤ −aV (x)
−bV (x) − c ≤ 〈∇V (x), gi (x)〉 ≤ bV (x) + c, i = 1, . . . ,m,

(7.6)

then the system (1.23) is ISS with respect to the variation of u(·).

7.1.3 Additional Comments and Studies

Liu [696, 756] extends the definition of stability of impulsive ODEs in the spirit of
[76], and considers stability in terms of twomeasures (here the wordmeasure has not
the common meaning of a measure as a function from a set of subsets into [0,+∞)

[477]: it refers to functions h(t, x) having certain properties). Roughly, the fixed point
of the system (still given by the smooth part of the dynamics) is (h0, h)-stable if for
any ε > 0, there exists a δ(ε) > 0 such that h0(t0, x0) < δ implies h(t, x(t)) < ε,
for any solution x(t) of the system. By considering different sorts of functions
h0(·) and h(·), one can encompass various types of stability (in particular classical
Lyapunov stability if h(·) and h0(·) are the Euclidean norms). [756] gives sufficient
conditions that guarantee stability (see e.g. [76, Corollary 3.6]). Interestingly, [76,
Theorem13.3] and [756] consider the situations inwhich V̇rd(·) is only semi-negative

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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definite and one wants to prove asymptotic stability, extending Matrosov’s result for
non-autonomous continuous vector fields. Other stability criteria have been proposed
in Michel et al. [847, 1293], for systems as in (7.1). It is shown that the existence of
a positive definite function V (t, x), γ1(||x ||) ≤ V (t, x) ≤ γ2(||x ||), γi (·) class-K
functions, such that (i) V (t, x) ≤ h(V (t+k , x(t+k )) on (tk, tk+1], (ii) V (t+k ) ≤ V (t+k−1),
where h(·) is a continuous function, h(0) = 0, ensures stability of the fixed point
x� = 0. The additional condition (iii) V (t+k ) − V (t+k−1) ≤ −Δk+1γ3(||x(t−k )||), with
γ3(·) a class-K function, ensures the asymptotic stability. Results close in spirit to
these can be found in [739]. They aim at relaxing the requirements previous results
by allowing the function V (t, x) to increase between two jumps. Note that the jump
times are not assumed to be fixed but may be state-dependent [847, 1293]. In this
case it is important to study conditions under which the beating phenomenon does
not occur. For instance the system in (1.33) has no beating, i.e. its solutions have no
finite-accumulations of jumps. Sufficient conditions for no-beating are given in [75,
Theorem 2.1,Corollaries 2.1, 2.2] and [696]. Maximum and minimum dwell times
which guarantee global asymptotic stability are characterized in [192] for linear
impulsive ODEs with fixed state-jump times, using Lyapunov equations and non-
monotonic Lyapunov functions.2 The articles [719, 1031] consider the impulses Du
as a perturbation of a Lyapunov stable smooth system with u an exogenous func-
tion in RCLBV, and study conditions on Du (see hypothesis (H4) through (H8) in
[719], Definition 2.1 in [1031]) such that stability is preserved (roughly the jumps
in u(·) must converge sufficiently fast to zero; notice that similarly the conditons
Ik(0) = 0 and Ik(·) continuous in (7.1) imply that as the state approaches the fixed
point, the autonomous jumps vanish). Lyapunov functions are defined for measure
systems, and can be used to prove asymptotic-self-invariance (ASI) [718] of the equi-
librium point x� = 0 of the smooth dynamics. (ASI is a stability concept adapted to
perturbed systems with asymptotically vanishing disturbances: for instance, the set
{x ∈ R

n|x = 0} is ASI relative to ẋ = −x + e−t [718]).

7.2 Stability of the Discrete Dynamic Equations

One way to characterize the stability of impacting systems is to study the discrete-
time system associated to the overall dynamics. More precisely, by integrating the
smooth vector field and incorporating the impact conditions, one is theoretically able
to derive the impact Poincarémap of the system.3 This is usually only one part only of
the stability analysis of the mechanical complementarity system, where one focuses
solely on the “vibro-impact” behavior. In other words, only the rebounding phases
are considered.

2Nonmonotonic Lyapunov functions are often met in systems with state jumps, see Chap.8. This
is because possible strict decrease at state-jump times may compensate for (not too big) increase
between the jumps.
3Such maps are also called first-return mapping, monodromy operator, successor mapping.
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7.2.1 The Bouncing-Ball with Fixed Obstacle

To illustrate this in a simple case, let us consider the bouncing-ball dynamics, when
the flat is motionless and has infinite mass. We may write it as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mdv = −mgdt + ∑+∞
k=0 pkδtk + λ(t)dt

x(0) = x0 ≥ 0, ẋ(0−) = ẋ0
m[ẋ(t+k ) − ẋ(t−k )] = pk, x(tk) = 0, ẋ(t−k ) < 0

ẋ(t+k ) = −en ẋ(t
−
k )

0 ≤ λ(t) ⊥ x(t) ≥ 0,

(7.7)

where λ(t) is the function part of the contact force, and dv = ẍ(t)dt+∑
k≥0[ẋ(t+k )−

ẋ(t−k )]δtk is the differential measure of the velocity, i.e. the acceleration is seen as a
measure, and δtk is the Dirac measure with atom t = tk .4 The contact force impulse
has magnitude pk = pn(tk) with our previous notations. The initial data and the
collision rule in (7.7) secure that x(t) ≥ 0 for all t ≥ 0 (even without stating the non
negativeness in the complementarity conditions). It may be deduced from (7.7) that
the total time of rebounding is bounded. In other words, the impact times sequence
{tk}k∈N possesses a finite accumulation time t∞ < +∞, and an infinity of impacts
occurs within a finite time interval: this is a left-accumulation of impacts (and of
velocity jumps). Let Δk+1 = tk+1 − tk , k ≥ 0, be the time elapsed between two
impacts. Integrating the motion from the post-impact motion at tk until the pre-
impact motion at tk+1, using x(tk) = x(tk+1) = 0 and Newton’s impact law, one
finds Δk+1 = 2

g ẋ(t
+
k ) = − 2

g en ẋ(t
−
k ), and ẋ(t−k+1) = −ẋ(t−k ) (the flight motion is

lossless, so the kinetic energy is conserved). Thus Δk+1 = − 2
g e

m
n ẋ(t

−
k−m+1). Letting

m = k+1 one getsΔk+1 = − 2
g e

k+1
n ẋ(t−0 ) = 2

g e
k
n ẋ(t

+
0 ). One then infers that the total

time of rebounds [t0, t∞] is given by t∞ − t0 = ∑
k≥0 Δk+1 = 2

g ẋ(t
+
0 ) 1+en

1−en
. If the ball

falls from a height h, then one obtains Δk+1 = ek+1
n

√
8h
g and t∞ − t0 = 1+en

1−en

√
8h
g .

When the restitution coefficient varies from one shock to the next, in which case
we shall denote it as en,k , then the ball comes to rest after a period Δ = ∑+∞

k=1 =√
8h
g

(
1
2 + ∑+∞

k=1

∏k
j=1 en, j

)
[479]. Finite accumulations of impacts have been stud-

ied in more general settings in [243, 727, 1253]. In [286] it is shown that a finite
accumulation of impacts still exists if en = 1 − α ẋ(t−k )

1
5 .

7.2.1.1 Lyapunov Stability

Let us analyze the Lyapunov stability of the bouncing ball. Here two paths may be
followed. The first path is to study the stability of the fixed point (x�, ẋ�) = (0, 0)

4Due to its simplicity, the bouncing-ball dynamics velocity is of special bounded variation, which
allows one to get rid of the third term of its derivative as a measure, denoted μna in Remark A.4.



7.2 Stability of the Discrete Dynamic Equations 423

of the complete nonsmooth mechanical system, including all phases of motion (free,
contact, impact): this will be done in Sect. 7.5 in a general framework. The second
path is to consider only the rebounding phase, i.e. the interval [t0, t∞).

Let us consider the system’s total energy V (x, ẋ) = 1
2mẋ2+mgx . Obviously, this

function is not positive definite over R×R, because of the gravity potential energy.
We may however circumvent this obstacle as follows. Consider the impact Poincaré
surfaceΣ+ = {(x, ẋ)|x(tk) = 0, ẋ(t+k ) > 0}, i.e. one looks at the system on the right
of each impact. We easily calculate that V (t+k+1) − V (t+k ) = V (t+k+1) − V (t−k+1) +
V (t−k+1) − V (t+k ),5 hence V (t+k+1) − V (t+k ) = 1

2mẋ(t−k+1)
2 +

∫
(tk ,tk+1)

V̇ (t)

︸ ︷︷ ︸
=0

dt , hence

V (t+k+1) − V (t+k ) = 1
2m(e2n − 1)ẋ(t−k+1)

2 < 0 for any ẋ(t−k+1) �= 0 and en ∈ (0, 1).
Notice that the restriction of V (·) to Σ+ satisfies the same inequality and equals
VΣ(x(tk), ẋ(t

+
k )) = VΣ(0, ẋ(t+k )) = VΣ(ẋ(t+k )) = 1

2mẋ(t+k )2. Hence, the impact
Poincaré map of the bouncing ball, considered as a mapping ẋ(t+k ) → ẋ(t+k+1),
defined on the sequence of impact times {tk}k≥0, has a globally asymptoticaly stable
equilibrium ẋ� = 0 in the sense of Lyapunov.

What about the complete system’s equilibrium stability? From the above analysis
one has V̇ (t) = 0 during flight phases t ∈ (tk, tk+1), and V (t+k ) − V (t−k ) ≤ 0 at
impact times. During persistent contact motion, the dynamics is given by mẍ(t) =
−mg + λ(t) = 0, where λ(t) ≥ 0 from the complementarity conditions, and is in
this simple case explicitly calculable as λ = mg > 0. On persistent contact phases
of motion, one finds V̇ (t) = ẋ(t+)λ = mgẋ(t+) = 0 since ẋ(t+) = 0 (here we have
to consider the right-velocity, because we want to encapsulate the velocities after an
impact time). In a more general setting, complementarity 0 ≤ ẋ(t+) ⊥ λ(t+) ≥ 0
holds on persistent contact phases (see Sect. 5.1.2.1), and implies that λ(t+) > 0 ⇒
ẋ(t+) = 0. This will be used more systematically in Sect. 7.5. Therefore V (·) is a
nonincreasing function. If we restrict its analysis in the domainΦ = {x ∈ R|x ≥ 0},
then V (x, ẋ) ≥ 0. This is equivalent to modifying it to the nonsmooth function
V (x, ẋ) = 1

2mẋ2+mgx+ψR+(x), whereψR+(·) is the indicator function ofR+. We
can then conclude about the Lyapunov stability of the fixed point (x�, ẋ�) = (0, 0).

It is noteworthy that the stability analysis of the impact Poincaré map, may be
interpreted as the analysis of the system over a discrete time space made of the
infinite number of impact times. This is the approach taken in [462, 943, 945]. They

propose the Lyapunov function candidate V (x, ẋ) = ẋ+k
√

1
2 ẋ

2 + gx , k >
√
21+en
1−en

.

This function is positive definite in Φ, satisfies V̇ (t) < 0 for all x and ẋ outside
impact times, and V (t+k ) − V (t−k ) ≤ 0 at impact times. The system’s equilibrium is
said uniformly Zeno asymptotically stable. A kind of robustness stability analysis is
proposed in [945], where the constant force (the gravity) is assumed to be in a given
interval. It is a priori not surprising that the magnitude of this force, does not modify
the stability of the bouncing ball’s fixed point. It is noteworthy that the analysis in

5To simplify the presentation, we denote V (x(t), ẋ(t)) as V (t), and its derivative along the system’s
trajectories as V̇ (t).

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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[462, 945] relies on a partial model that does incorporates neither the contact forces
outside impacts, nor the complementarity conditions. The notion of Zenon equilibria
is introduced in [943] as fixed points of the impact Poincaré map, together with the
notion of bounded-time local stability, which is shown to depend on the signum of
ḧ(q�, q̇�).

7.2.1.2 Dissipativity

The above developments strongly suggest a dissipativity interpretation of the ball’s
dynamics, where themechanical energy plays the role of a storage function (see [218]
for a complete exposition of dissipativity theory). Let us consider two time-instants
T1 ≥ T0 ≥ 0, and the total mechanical energy as the Lyapunov function, then:

V (T1) − V (T0)︸ ︷︷ ︸
energy variation on [T0,T1]

=
∫

[T0,T1]\{tk }k∈[k0 ,k1 ]
V̇ (t)dt

︸ ︷︷ ︸
energy dissipated outside impacts

+
∑

k∈[k0,k1]
σV (tk)

︸ ︷︷ ︸
energy dissipated at impact times

+
∫

[T0,T1]\{tk }k∈[k0 ,k1]
ẋ(t)λ(t)dt

︸ ︷︷ ︸
energy “injected” in the ball outside impacts:=0

(7.8)

where tk0 , tk0+1, …, tk1 are impact times in [T0, T1]. One may use the developments
in Sects. 5.4.4.5 and 7.5.3 to group the last two terms on the right-hand side, with a
generalized supply rate as in (5.148) or (7.60).

Remark 7.1 Real systems do not show an infinity of impacts in a finite time, because
they possess some flexibility and plastic deformation at the contact area. Thus any
experiment of a ball bouncingon aflatwoulddemonstrate afinite number of collisions
before the ball rests on the flat [386]. The rigid body model is an approximation
of the real process, and its Zeno behavior is to be considered as a model artifact.
However, one one hand it does represent the fact that if the ball and the flat are made
of very hard materials with some dissipation, there will nevertheless exist many
collisions with increasing frequency. On the other hand, such models are widely
used for mathematical and numerical analysis, feedback control, simulation, and
one has to incorporate in the analysis the existence of finite accumulations. Finally,
it is noteworthy that time-stepping numerical methods (Sect. 5.7.3) compute only a
finite number of collisions even in the presence of an accumulation of impact times,
and therefore reproduce the physics of the real system: in a sense the discretization
corrects the model’s behavior. A “flexible” bouncing ball is studied in [286], which
consists of two particles linked with a linear spring, moving vertically, one of them
colliding with the ground. A restitution coefficient models the impacts. For almost all
initial conditions, the system reaches its static equilibrium asymptotically only. This
proves that considering body flexibilities may influence significantly the system’s
behavior.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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7.2.2 Lyapunov Stability of Discrete-Time Systems

The stability of systems with impulses can therefore be attacked via the discrete
system (or impact map, or Poincaré impact map) associated to the total system.
Notice that this map is different from the discrete map considered in Definition 7.1,
which was simply the jump map of the system: the integration of the trajectories
between the jumps is needed to get the Poincaré impact map. Stability definitions
and criteria for such maps are given in [421]. Let it be given as:

xn+1 = f (xn). (7.9)

Assume that f (x�) = x� for some fixed point x� of the map. Then we have:

Definition 7.4 [421] The fixed point x� of the map in (7.9) is stable in the sense of
Lyapunov if and only if for all n0 ∈ N, for all ε > 0, there exists δ > 0 such that if
||x0 − x�|| < δ, then for all n ≥ n0, ||xn(x0, n0) − x�|| < ε.

Here, x0 denotes xn0 , and xn(x0, n0) denotes the n-th iterated value starting with
initial conditions x0, n0. Then Lyapunov’s second method provides the following
result:

Theorem 7.4 [421] The fixed point x� of the map in (7.9) is Lyapunov stable if and
only if there exist a continuous function V (·) and a class K function α(·), a ball
Br (x�) with radius r , centered at x�, such that for all xn ∈ Br (x�)

• V (xn) ≥ α||xn − x�||
• V (xn+1) − V (xn) ≤ 0
• V (x�) = 0

Let us reiterate that both stability Definitions 7.4 and 7.1 are not equivalent. First
of all, the stability in Definition 7.1 concerns the whole system with state vector
x ∈ R

n . On the contrary, the second stability definition concerns a reduced order
system (this is indeed the aim of Poincarémaps to reduce the dimension of the system
by analyzing it only in one Poincaré section of the state space. For the bouncing ball
the section we chose is x = 0). Furthermore, the bouncing ball example shows that
in certain cases, the impact Poincaré map is easily derived, and Lyapunov stability
as in Theorem 7.4 can be proved. Notice that the state variables for the discrete-
time associated system may be chosen as ẋ(t+k ) and Δk [639]. The discrete mapping
fixed point is given for the times tk as t∞ or as 0 for the flight-times Δk+1. This is
equivalent to studying the trajectories through the section x = 0 of the extended
state space (t, x, ẋ). It is apparent from (7.7) that the bouncing ball problem includes
a finite accumulation point of rebounds, i.e. the sequence {tk} is infinite and has a
finite limit t∞ < +∞. This is really created by the discrete (or impulsive) dynamics
themselves. It is a general fact that the impulsive dynamics may drastically modify
the total dynamics. Let us consider as an additional proof of this fact the following:
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Example 7.1 Let us consider the following system [756]:

{
ẋ(t) = 1 + x(t)2, x(0) = 0, t �= tk
σx (tk) = −1, tk = kπ

4 , k = 1, 2, . . .
(7.10)

Then the solution of the smooth dynamics, without any impulse, is given by x(t) =
tan(t), and therefore escapes in finite time. On the contrary, the solution of the whole
system is given as

x(t) = tan
(
t − kπ

4

)
, kπ

4 < t < (k+1)π
4 k = 1, 2, . . . (7.11)

The solution in (7.11) is periodic with period π
4 , and jumps from 1 to 0 at tk . We have

x(t+k ) = 0 and x(t−k+1) = 1. By choosing either the post or the pre-impulse values,
it is easily visualized that the corresponding discrete map has a unique value at 0
or at 1.

7.3 Impact Oscillators

The study of the dynamical behavior of impact oscillators is an important application
of shock dynamics. Let us start with a tentative definition of what is meant by impact
oscillators in the literature:

Definition 7.5 (Impact oscillators [151]) An impact oscillator is a system which is
driven in some way and which also undergoes intermittent or a continuous sequence
of contacts with motion limiting constraints.

Aswe shall see in the sequel,many simplemechanical systems fall into this definition.
Impact oscillators are also often called vibro-impact systems. One of the goals is
prediction of the possible different regimes that may occur in a real system, in order
to “capture” part or all of the vibrational energy which is unwanted in the main
structure. We mention many applications later. We focus mainly on the following in
the research of periodic trajectories in impact oscillators.

7.3.1 Existence of Periodic Trajectories

A logical method to prove the existence of periodic trajectories in an impacting
system is the following: assume that one seeks for trajectories with period T and two
impacts per period. First, calculate the solution ϕ(·) of the system on (tk, tk+1) and
on (tk+1, tk+2), with tk+1 = tk + T

2 for all k ≥ 0. Then search which conditions the
system’s parameters have to satisfy so that ϕ(t+k+2; tk, uk) = ϕ(t+k ; tk, uk) with uk
the solution at t−k . This provides a set of initial data uk and of parameters such that
there exists such periodic trajectory (or there does not exist!).
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Fig. 7.1 The viability
conditions and grazing orbits
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Remark 7.2 (Viability of Trajectories) If there are several constraints, say two, and if
one looks for trajectories that collide one surfaceΣ1 at tk and then the otherΣ2 at tk+1

before a third impact withΣ1 at tk+2, one must take care of the fact that the existence
conditions have to incorporate that there is no impact with Σ1 on (tk, tk+1), and not
only the fact that there exists a strictly positiveΔk+1 = tk+1−tk such that the trajectory
attainsΣ2 at tk+1. In other words, certain existence results may include the possibility
of trajectories which indeed attain Σ2 after a strictly positive flight-time Δk+1, but
which have to cross Σ1 on (tk, tk+1), see Fig. 7.1. It seems that the works described
in this section did not take into account such a constraint on the trajectory between
the collisions. The conditions that guarantee no such accidental collisions may be
called viability conditions [518], a term that is quite consistent with the language of
differential inclusions theory [67]. In case of a codimension one constraint, the shock
necessarily occurs with the same surface. However, the viability conditions also have
to be checked before stating any necessary and sufficient existence condition.

This classical technique has been employed inmany studies to prove the existence
of periodic trajectories, and mainly relies on the ability to calculate the solution
between the shocks. Note that one implicitly chooses one constraint surface (there
may be several) as the Poincaré section, and with velocities pointing inwards the
admissible domain Φ. Let us now describe in some detail pioneering work in the
field, by Masri and Caughey [819].6 The system is depicted in Fig. 7.2, and consists
of a free mass m, sliding without friction on a block of mass M . The free mass is
constrained by two limiting rigid stops (a mechanical play). Notice that Theorem 5.3
applies to this impact damper, as noted in Remark 5.15. The absolute coordinates
are denoted as ya and x for the free mass and the block respectively. The relative
coordinate of the free mass in a frame fixed with respect to the block is denoted as
yr = ya − x . Hence, − d

2 ≤ yr ≤ d
2 define the two unilateral constraints on yr .

We denote q = (x, ya)T the vector of generalized coordinates, the two unilateral
constraints are f1(q) = −yr + d

2 ≥ 0, f2(q) = yr + d
2 ≥ 0. Finally, we employ

6A similar study was also published at the same time by Feigin [390].

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 7.2 The impact-damper
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the notation t1k for impacts with f1(q) = 0, and t2k for impacts with f2(q) = 0. The
dynamical equations of the system can be written as

⎧⎪⎨
⎪⎩

Mẍ(t) + cẋ(t) + kx(t) = A0 sin(Ωt + α) when |yr (t)| > d
2

mÿa(t) = 0 when |yr (t)| > d
2

q̇(t i,+k )T∇ fi (q) = −enq̇(t i,−k )T∇ fi (q) where fi (q(t ik)) = 0, q̇(t i,−k )T∇ fi (q) < 0.
(7.12)

The block motion between impacts is given as

x(t) = exp(−δωt) (B1 sin(ηωt) + B2 cos(ηωt)) + A sin(Ωt + τ), (7.13)

where B1 and B2 depend on initial data, and δ = c
2
√
kM

, ω = √
kM , η = √

1 − δ2,

r = Ω
ω
, A = A0

k
√

(1−r2)2+4δ2r2
, τ = α − Ψ , tan(Ψ ) = 2δr

1−r2 , 0 < Ψ < π . The goal is

to find out conditions on the system’s parameters (physical parameters, initial data,
external excitation) such that there exists a trajectory with two impacts per period,
i.e. t ik+1 = t jk + π

Ω
, i, j = 1, 2, i �= j . Such a trajectory will exist if one is able to

show the existence of B1, B2 and τ which determine the block motion. The analysis
proceeds first by fixing the following objectives:

{
ẏa(t

1,+
k ) = −v, ẏa(t

1,−
k ) = v, ẏa(t

2,−
k ) = −v,

ẏa(t) = (d + 2x(t1k ))
Ω
π

= v for t1k < t < t2k .
(7.14)

The third condition comes from the assumption that the mass m evolves freely
between collisions, with velocity magnitude v, and has to slide on a distance equal
to d + 2x(t1k ) (in the absolute coordinate frame). These conditions impose some
symmetry restrictions on the type of periodic trajectories one is looking for.7 Indeed
one fixes not only the number of impacts per period, but also the pre- and post-impact

7Notice that it is not possible in this case to have a periodic trajectory with collisions occuring
repeatedly on the same constraint, since the mass m is horizontally free between impacts. This
however is possible with other systems, like the inverted pendulum in a box.
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absolute velocities of the ball.8 Using the shock dynamical equations, one can com-
pute the postimpact velocities of the ball and of the block. Then using the conditions
in (7.14), it is possible to derive expressions relating x(t1k ) to ẋ(t

1,−
k ) or to ẋ(t1,+k ), as

⎧⎨
⎩
x(t1k ) = − π

2Ω

(
1+en

1−en+2κ

)
ẋ(t1,−k ) − d

2

x(t1k ) = − π
2Ω

(
1+en

1−en+2κen

)
ẋ(t1,−k ) − d

2 ,
(7.15)

where κ = m
M . The next step is to use the block equation of motion obtained from

(7.12): if we replace the block position and velocity in (7.15) by the calculated ones
from the first equation in (7.12), we find a complex set of equations which relate all
the system’s parameters with the clearance size d

2 , of the form:

P(δ, ω,Ω, r, τ, η, κ, e)ζ = d̄, (7.16)

where: ζ =
(
x(t1k ), ẋ(t

1,−
k ), ẋ(t1,+k ), B1, B2, A

)T
and d̄ = (

0, 0, 0, 0,− d
2 ,− d

2

)T
.

P is a 6× 6 matrix. The aim is to determine whether this system admits a solution,
or not. For the sake of brevity, we do not recall here the explicit form of the matrix
P (see Masri and Caughey [819] for details). We simply mention that this system
of algebraic equations can be solved, and one obtains:

⎧⎪⎨
⎪⎩

A = d
2Δ [h1(σ1θ2) − (σ1θ1 + ησ2ω)(1 + h2)]

B1 = d
2 (1 + h2)(σ2 − σ1)C

B2 = d
2 h1(σ1 − σ2)C,

(7.17)

with:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ = h1 [C(σ1 − σ2) − (S + Cσ2)σ1θ1 + (S + Cσ1)δωσ2]

+(1 + h2) [(S + Cσ2)σ1θ1 + (S + Cσ1 − ηωσ2] ,

S = sin(τ ), C = Ω cos(τ ),

h1 = exp
(− δπ

r

)
sin

(
ηπ

r

)
, h2 = exp

(− δπ
r

)
cos

(
ηπ

r

)
,

σ1 = π
2Ω

1+e
1−e+2κ , σ2 = π

2Ω
1+e

1−e−2κe ,

θ1 = ω exp
(− δπ

r

) [−δ sin
(
ηπ

r

) + η cos
(
ηπ

r

)]
,

θ2 = ω exp
(− δπ

r

) [−δ cos
(
ηπ

r

) − η sin
(
ηπ

r

)]
.

(7.18)

8In relationship with the fact that the calculated jump in the velocity, is independent of the fact that
the used frame is Galilean or not (see Chap.4, Sect. 4.1.5), it is clear here that the frame fixed with
respect to the block is not Galilean, and does not satisfy the smoothness requirements discussed in
Sect. 4.1.5, Eq. (4.25), since ẋ is discontinuous at impacts. In other words, the jump of the absolute
velocity ẏa(·) is clearly different from that of the relative velocity ẏr (·).

http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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It can be seen that the last two equations in (7.17) directly define the set of initial
data which are needed to obtain a periodic trajectory with two impacts per period.
The first equation in (7.17) is put in [819] under the form:

2 sin(τ ) + H cos(τ ) = − d

A
, (7.19)

for some H(σ1, σ2, δ, ω, h1, h2, θ1, θ2,Ω). For the searched trajectories to exist, one
must be able to compute sin(τ ) and cos(τ ). This implies conditions on the coefficients
of the equation in (7.19). In particular one finds the condition

(
d
A

)2 ≤ H 2 +4, which
means that the clearance d should not be too large. Then the motion of the block
is entirely known (since B1, B2, A and τ are known), and that of the mass also. It
is therefore shown that periodic symmetric trajectories with two impacts per period
and period 2π

Ω
exist only if the parameters satisfy the suitable conditions.

Remark 7.3 The technique that consists of verifying the existence of T−periodic
trajectories checking that ϕ(t + T ; τ0, u0) = ϕ(t; τ0, u0) has also been employed in
the context of impulsive ODEs as in (7.1), see [76, Example 10.3] for the case of a
species-food system.

Remark 7.4 (Passive Nonlinear Energy Pumping) It is noteworthy that a complete
dynamical analysis has to include not only the dynamics of the impact damper,
but also the dynamics of the system whose vibrations are to be damped out, and on
which the impact damper is mounted: this is the problem of passive nonlinear energy
pumping. The dynamical couplings between both subsystems have to be analyzed
carefully, so that the vibrational energy transfer from the system to the impact damper
is guaranteed. The objective may be summarized as follows [938]: Design a set of
Nonlinear Energy Sinks (NESs) that are locally attached to a main structure, with
the purpose of passively absorbing a significant part of the applied seismic energy,
locally confining it and then dissipating it in the smallest possible time . This is the
object of the studies in [435, 697, 717, 938, 1077]. A typical example [938] of a
two-degree-of-freedom system coupled to two NESs is depicted in Fig. 7.3. Here the
NESs take the form of impact ocillators.

7.3.2 Further Reading

We have reproduced in some detail the results in [819] to illustrate once again the gap
between the simplicity of the reasoning used to search for periodic trajectories, the
(apparent) simplicity of the dynamical equations, and the complexity of the calcula-
tions. The system as in [819] that consists of a loose auxiliary massm which impacts
against the ends of a container fixed to the primary mass M is called an impact
damper, because its practical usefulness is often to damp vibrations. When there are
several loose masses mi , this is a multi-unit impact damper (see [159] for a classi-
fication of one and two-degree-of-freedom impact oscillators). Due to collisions, an
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Fig. 7.3 Passive control via coupling with two NESs

attenuation of the amplitude of vibration of the principal mass M may be achieved
within a certain range of the forcing term frequency. For instance, it is shown in
[280] that an autonomous van der Pol oscillator (i.e. a second order oscillator with a
specific nonlinear damping) can have its natural limit cycle amplitude decreased by
a suitable choice of impact damper parameters. In other words, replace the damp-
ing coefficient c in Fig. 7.2 by a nonlinear coefficient εẋ(x2 − 1). The autonomous
system hence obtained possesses, in the absence of the loose mass m, a limit cycle
whose amplitude A does not depend on the parameter ε. The goal may be to reduce
A by properly choosing the impact damper. It is concluded in [280] that for fixed
restitution en = 0.2, and for fixed ratio m

M , the plot A versus d (the value of the clear-
ance) presents a jump: a good design should therefore be outside this jump zone,
and this may not be obvious in practice due to uncertainties on the system parame-
ters. The potential applications of such devices are to reduce vibrations in switching
relays, turbine buckets, antennas, lathe tools, airplane ailerons, helicopter tension
rods, machines used in pile driving, compacting, crushing, rivetting, rock drilling,
impact printing · · · , and also the study of dynamics of systems with clearance, of
the effects of snubbers and baffle plates which limit deflection of piping, tubes in
power, chemical and nuclear industries, and marine structures · · · . Impact dampers
can also be used in an effective manner to limit disturbance amplitudes in some space
applications [230, 1054]. Models as in Fig. 7.2 can be used to represent sloshing of
liquid in containers [570]. Other references to the impact damper are [390] (numer-
ical study to show resonance behavior) [391] (conditions of existence and stability
of periodic trajectories with two impacts per period, where the impacts are repre-
sented by instantaneous coupling between the two masses, corresponding to plastic
impact as in [648]) [518] (basically use the Poincaré map Jacobian DPΣ to study the
stability of two impacts per period motions, and derives numerically a bifurcation
analysis) [87, 1011] (derive closed-form solutions as Masri and Caughey, but for
other kinds of periodic trajectories, and present numerical and experimental results)
[86] (considers a two-stops one degree-of-freedom oscillator, and develops exact
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closed form expressions for one and two equispaced and non-equispaced impact per
cycle motions) and also [472] (present a more accurate way than simple integration
to investigate bifurcations, and finds a cascade of subharmonic bifurcations leading
to chaos) [418] (study of the dynamics of a percussive rock-drilling machine), [1167]
(show the existence of various types of local -pitchfork, saddle-node, Hopf...- and
global bifurcations, and a period-doubling sequence leading to chaos in the impact
damper), [279] (investigate thoroughly the dynamics of the impact damper, and show
the existence of various periodic regimes, separated by complex motions, in function
of physical parameters; these are confirmed experimentally in [158, 797] (multi-unit
dampers with Coulomb friction effects between the loose mass and the principal
mass) [1055, 1118, 1222] (application to printing machines). In [1139] similar cal-
culations are made for the existence problem, but with a slightly different impact
damper. The main motivation therein is about robotic manipulators and possible
clearance in the joint. Other systems that may be submitted to impacts are vibra-
tion hammers, machinery for driving, compacting, milling and forming, vibratory
conveyers, platforms and shaking grizzlies, heat exchangers, and fuel elements of
nuclear reactors. In all these systems collisions play a significant role. This may be a
positive action (as for a juggling robot: one uses the impacts to create motion), or a
negative action (impacts as disturbances that create wear and fatigue, failures, noise,
and shorter service life · · · ).

7.3.3 Comments on the Poincaré Impact Map Stability
Analysis

The global transformation of the dynamics into recurrence equations relies on strong
properties of the trajectories (e.g. boundedness, periodicity) and on the ability of
explicitly obtaining the solutions between impacts. This is a hard task except in very
simple cases. In slightly more complex cases, the recurrence equations may still be
obtained in an implicit form (because the flight-times durations cannot be obtained
explicitly), see e.g. [1252]. Thismay be illustrated as follows:we have seen inChap.1
that a vibro-impact system with a unilateral constraint can be considered as a flow
with collisions, see Sect. 1.3:

ϕc
t : R2n → bd(Φ) × {−V (q(t0))} → bd(Φ) × V (q(t0)) → bd(Φ) × {−V (q(t1))} → . . .

→ bd(Φ) × {−V (q(tk))} → bd(Φ) × V (q(tk)) → R
2n,

u0 �→ ϕ(t−0 ; 0, u0) F0�→ ϕ(t+0 ; 0, u0) �→ ϕ(t−1 ; 0, u0) F1�→ . . . �→ ϕ(t−k ; 0, u0)
Fk�→ ϕ(t+k ; 0, u0) �→ ϕ(t; 0, u0).

(7.20)

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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To go from the flow with collisions ϕc
t (·) to the impact Poincaré map PΣ(·) one

may consider the following steps:

• Let us denote

P : bd(Φ) × V (q(tk)) → bd(Φ) × V (q(tk+1))

u(t+k+1) = P(u(t+k ))
(7.21)

the mapping such that P(u(t+k )) = ϕc
t+k

(u0), u0 the initial data. Notice that u0
need not belong to bd(Φ) × V (q). This equality merely means that the value of
P at t+k is given by the value of the flow with collisions with an admissible initial
data u0, considered at t+k . P(·) may be called the section map of the flow ϕc

t .
Clearly, u(t+k+1) = P(u(t+k )) = Fk+1 ◦ ϕc

t−k+1−τ0
(u0) = Fk+1 ◦ ϕc

t−k+1−t+k
(u(t+k )),

where τ0 is the initial time, i.e. u0 = u(τ0). If we want to consider the Poincaré
map from tk to tk+2 (two impacts per period for instance, which could be named
the second return map instead of the first return map) then we have to compute
u(t+k+2) = P(u(t+k )) = Fk+2◦ϕt−k+2−t+k+1

oFk+1◦ϕt−k+1−t+k (u(t+k )). Then by the chain
rule one gets:

DP(u(t+k )) = DFk+2Dϕt−k+2−t+k+1
DFk+1Dϕt−k+1−t+k (u(t+k )), (7.22)

where DP(u0) denotes the linear differential operator of P(·) calculated at u0,
such that DP(u0) = ∂P

∂u (u0)T . Notice that Fk(·) may not be constant but may in
general depend on q.

• To compute the impact Poincaré map PΣ(·) one has to first clarify the definition
of its state vector which we denote as ūΣ .9 The section is Σ = {u| f (q) = 0}
(with a codimension one constraint f (q) ∈ R, but one may imagine to define
a codimension ≥ 2 section if the system is assured to strike it repeatedly). The

most natural way to proceed is to introduce the quasi-coordinate q̄1
Δ= f (q) and

to assume that the transformation:

Ḡ : R2n → R
2n

u �→ ūT = (q̄1, q2, . . . , qn, ˙̄q1, q̇2, . . . , q̇n) (7.23)

is a global diffeomorphism.10 Hence, ū = Ḡ(u) and u = Ḡ−1(ū). Therefore,
P(u(t+k )) = PoḠ−1(ū(t+k )). Now notice that:

ū(t+k )T = (0, q2, . . . , qn, ˙̄q1(t+k ), q̇2(t
+
k ), . . . , q̇n(t

+
k )), (7.24)

9The reason for this apparently complicated notation is that we shall need several steps to go from
u to ūΣ .
10In most cases it is clear that this will imply a reordering of the generalized coordinates. For
instance if f (q) = q2, then evidently one will not define G(·) as above, but rather first exchange
q1 and q2 in q, or simply define G(·) with q̄1 as the second component of ū.
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and define:

ūT
Σ,k = (q2(tk), . . . , qn(tk), ˙̄q1(t+k ), q̇2(t

+
k ), . . . , q̇n(t

+
k )). (7.25)

Then the impact Poincaré map value at ūΣ,k is given as:

PΣ(ūΣ,k) = P ◦ Ḡ−1(ū(t+k )), (7.26)

i.e. PΣ(·) is the restriction of P ◦ Ḡ−1(·) to Σ = {
ū|q̄1 = 0, ˙̄q1 > 0

} = bd(Φ) ×
V (q(tk)), and PΣ : Σ → Σ .

• Finally, although the value taken by PΣ(·) at ūΣ,k is given by (7.26), its explicit
calculation requires to be able to express ūΣ,k+1 as a function of ūΣ,k , i.e.
ūΣ,k+1 = PΣ(ūΣ,k). This is in general impossible, because this hinges on the
explicit calculation of the impact times tk , which usually cannot be obtained.
However as we shall see below, in certain cases the Jacobian of PΣ(·) can be
explicitly calculated.

Remark 7.5 A nice property of the impact map is that contrary to the flow with
collisions, it does not depend explicitly on the collision times. Hence its Jacobian
can be calculated.

Thus in order to explicitly obtain the impact Poincaré map PΣ(·), one must be
able to calculate the impact times t0, t1, · · · When this is not possible, these times
can be obtained in an implicit form, see (1.45). In a more general setting, the impact
section map and the impact Poincaré map are implicitly expressed from (1.46) as:

⎧⎨
⎩

f ◦ ϕq(tk+1; tk, uk) = 0 with uk = u(t+k )

uk+1 = Ik+1(u(t−k+1))

u(t−k+1) = uk + ∫
(tk ,tk+1)

G(u(t))dt.
(7.27)

It is also possible to make the flight-times Δk+1 = tk+1 − tk explicitly appear in this
formulation by simply replacing tk+1 by tk + Δk+1.11 Now notice that PΣ(·) can be
expressed as PΣ = Pr,k ◦ Pf,k , where Pr,k(·) corresponds to the restitution mapping
Fk , whereas Pf,k(·) corresponds to the flow between impacts. For instance, assume
that f (q) = q̄1 as above. Then Pf,k : ūΣ,k �→ ūΣ(t−k ) and Pr,k : ūΣ(t−k ) �→ ūΣ,k+1.
Clearly Pr,k(·) can be simply expressed from the restitution mapping Fk(·). The
problem is to calculate tk+1 to get the explicit form of Pf,k(·). This may be done via
an implicit equation of the form:

h(tk+1, tk, uk) = 0, (7.28)

11Apart from the examples presented here, the interested reader may have a look at [911] Eq. (1.3),
[1252] Eq. (1.3), [1252] Eqs. (24)–(29), [998] Eq. (4), [1100] Eq. (2), [1095] equations (4) (5) for
examples of implicit Poincaré maps as in (7.27).

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1


7.3 Impact Oscillators 435

similar to (1.45). Notice that the Jacobian of PΣ(·) at a point ūΣ,0 is given from

the chain rule by12 DPΣ
Δ= ∂PΣ

∂ ūΣ

T
(ūΣ,0) = ∂Pr,k

∂ ūΣ

T
(y) ∂Pf,k

∂ ūΣ

T
(ūΣ,0) = DPr,k(y)

DPf,k(ūΣ,0), with y = Pf,k(ūΣ,0). Obviously, we have not made a big advance
if these Jacobians are not known explicitly. It is noteworthy that in certain cases,
tk+1 may be known only implicitly, while DPΣ is known explicitly. For instance, an
example is treated in [869] where the equation in (7.28) cannot be solved to yield
tk+1 as a function of tk and uk . But one is able to derive conditions on the system’s
parameters such that a periodic motion, with specified period T , exists (similarly as
for the Masri and Caughey example above). Hence, one is able to express DPΣ as a
function of T and tk , ūΣ,k and calculate its eigenvalues (to apply Floquet’s theory to
check the stability of the fixed point of P , or to investigate the type of bifurcation that
occurs when parameters are varied). It happens that the bifurcation condition on the
excitation magnitude is independent of tk [737, 1100]. The eigenvalues of the Flo-
quet’s matrix can thus be investigated in function of the system’s parameters (input
magnitude and period, dissipation coefficient, restitution coefficient), and the type of
local bifurcation can be deduced. A multiple degree-of-freedom impact oscillator is
studied in [1209], using the eigenbase of the linear free-motion structure to compute
an analytical form of the response to harmonic and impulsive periodic inputs. The
determination of κ-impact q-periodic motions then amounts to solving an algebraic
equation F(μ, {pk}, {tk}) = Pκ

Σ(μ, xΣ) − xΣ = 0, where {pk}, {tk} denote the per-
cussions and impact times sequences, 1 ≤ k ≤ κ , μ denotes the varied parameters
(restitution coefficient, excitation magnitude and frequency, equilibrium position of
the structure without obstacle). Various bifurcations are investigated in [1209]. It is
pointed out that Hopf bifurcations in impacting motions can be encountered in the
multiple degree-of-freedom case, whereas they cannot in the one degree-of-freedom
case: indeed in that case the Jacobian is a 2×2matrixwhosedeterminant is e2κn < 1 for
a (κ, q) orbit. Hence the two eigenvalues cannot havemodulus 1 at the same time. The
central tools for the numerical investigations in [472, 1209] are continuationmethods
to solve F(μ, {pk}, {tk}) = 0: one starts with an initial solution and then proceeds
to generate a curve in the phase-parameter space by finding a neighboring solution
and iterating the process. It is argued in [472, 1209] that the proposed method yields
much better numerical accuracy than the classical ones. In [1210] the authors focus
on sticking periodic motions (i.e. motions that consist of a succession of free-motion
and permanently constrained-motion phases, possibly separated by a sequence of
infinite impacts). They identify a new type of bifurcation called rising bifurcation:
when a sticking periodic orbit with transition through an infinite sequence of impacts
is settled, it may happen by varying some parameter that the contact force during the
constrained-motion phase goes to zero. This may give rise to a new periodic orbit
with two or three sticking phases per period. These bifurcations are similar in nature
to the grazing ones (see Sect. 7.4). The determinant of the Jacobian of the impact

12If g = f ◦ h with h : Rn → R
p , f : Rp → R

k , then ∇g(x0) = ∇h(x0)∇ f (y0) and Dg(x0) =
Df (y0)Dh(x0), where y0 = h(x0).

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Poincaré map around a (locally) stable periodic trajectory is equal to e2pn , where p
denotes the number of impacts per period. The trace of the Jacobian is equal to the
sum of the eigenvalues [472]. This in particular means that some types of bifurcations
cannot occur in certain impacting systems. To see this, let us consider a two-degree-
of-freedom nonautonomous system q̈(t) + q(t) = A sin(ωt), q ≥ 1. The Poincaré
application has two eigenvalues, whose product equals det(DPΣ ). The characteristic
polynomial of DPΣ can therefore be written as λ2 − tr(DPΣ)λ + det(DPΣ). When
a local bifurcation occurs, which means that at least one of the eigenvalues passes
through a value with magnitude 1, the eigenvalues cannot be complex conjugate as
long as en < 1: otherwise, they would have same magnitude equal to 1, hence a
contradiction. This in particular hampers the occurence of a Hopf bifurcation, but
saddle-node or flip bifurcations can exist [472].

7.3.4 Other Studies on Stability

Wang [1253] deals with a lamina submitted to a time-varying unilateral constraint,
in relation with catching tasks in robotics. The flight-times are given implicitly only
in general, from the first equation in (7.27). He linearizes PΣ(·) and assumes that
conclusions about the linearized map can be carried to the nonlinear system in the
degenerate case when there is a continuum of fixed points. The global analysis that
takes into account the nonlinearities effects will generally require a numerical pro-
cedure [1253]. Wang’s analysis is extended in [243]. Many other studies contain
a stability analysis of periodic trajectories, see e.g. [391] (stability analysis of an
impact damper), Markeev [804, 806–808] (stability of periodic motions of an ellip-
soid of revolution colliding with a fixed smooth plane, using Poincaré map analysis)
[583] (studies trajectories which attain the constraint tangentially, i.e. collision free
trajectories, and their stability) [585] (uses the Zhuravlev-Ivanov nonsmooth coor-
dinate change to study the local stability via tangent linearization, of fixed point and
periodic trajectories) [582, 596] (orbital stability of periodic motions of n degree-
of-freedom systems with TL(tk) = 0 and a codimension one unilateral constraint;
use of Lyapunov’s holomorphic integral theorem13 to prove via local arguments the
existence of periodic trajectories), see also [683]. Impulsive ODEs, with jump times
defined as x(t−k ) ∈ S for some hypersurface S of the state space, are used in [482]
to model biped robots. Impact Poincaré maps are used to analyze the stability of
feedback controllers.

13In the case of Hamiltonian (i.e. conservative) systems with an analytic Hamiltonian function,
Lyapunov’s holomorphic integral theorem states that for every pair of pure imaginary roots ± jλ
of the system’s characteristic equation, and when there are no other roots, a family of periodic
solutions exists whose period tend to 2π

λ
as their amplitude tends to zero.
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7.3.5 Bouncing-Ball with Moving Base

The benchmark example of the bouncing ball has been thoroughly studied. The
model of the bouncing ball when the table is moving is often simplified in order to
explicitly get a two-dimensional Poincaré map from (7.27). In fact, all the external
effects acting on the table are neglected to consider the table’smotion, so that it simply
appears in the model as a time-dependent unilateral constraint (such assumption has
also been made in some studies on juggling robots [237, 238, 1043, 1044]). Let the
table motion be given as x2(t) = −A sin(ωt), while x1(·) denotes the ball’s position.
Here one does not care about how such motion may be created, by which control.
The assumption that the mass of the table is infinite (equivalently the mass of the ball
is close to zero) allows to disregard the effects of the shocks on its velocity. Assume

further that tk+1 − tk = 2ẋ1(t
+
k )

g , and that ẋ1(t
−
k+1) = −ẋ1(t

+
k ). These assumptions

are satisfied if it is supposed that the ball strikes the table at the same height at each
impact,14 and that the displacements of the table are negligible compared to those
of the table. In other words although the true dynamics cannot be explicitly solved,
such hypotheses allow one to approximate (7.27). Then it is possible to derive the
following impact map:

{
Φk+1 = Φk + ẋk
ẋk+1 = en ẋk − γ cos(Φk + ẋk),

(7.29)

where ẋk = 2ωẋ1(t
+
k )

g , Φk = ωtk , and γ = 2ω2(1+en)A
g . It is noteworthy that since the

system is nonautonomous, the Poincaré impact mapmust explicitly contain the time:
indeed the flight-times a priori depend on the exogenous excitation of the table, and
are not only a function of the postimpact state values. Such a map can be shown to
possess a complex dynamical behavior, and has been the object of many publications
[88, 384, 410, 487, 538, 681, 684, 837, 871, 1019, 1020, 1095, 1191, 1221, 1266,
1277]. If en < 1, the velocity remains bounded and there exists a trapping region
in the plane (Φ, ẋ) [487], which hampers unboundedness results as in the following
( f (t) = f (t + T ) is a periodic analytic function representing the table position):

Theorem 7.5 [1019] Assume that en = 1 and that there is an integer N > 0 and
a time t0 such that ḟ (t0) = TgN

2 , −g < f̈ (t0) < 0. Assume also that f̈ (t0) �=
− g

2 + g
2 cos

(
2π m

n

)
, m = 0,±1, . . . ,±n, n = 1, 2, . . . , 262, and that there exist two

functions a0(·) and a1(·) such that a0( f̈ (t0))
d4 f
dt4 (t0) + a1( f̈ (t0))

d3 f
dt3 (t0) �= 0, with

a0( f̈ (t0)) �= 0. Then there exists in the plane (t, ẋ) a set of positive measure of initial
data such that the post-impact velocity tends to infinity.15

14This, in case of feedback control of a juggling robot, should be guaranteed by the controller, but
not a priori supposed.
15In other words, the trajectories of the impact Poincaré map increase in velocity to infinity.
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This result is true for purely elastic impacts, hence it may lack in practical impor-
tance.16 However, it completes the dynamics study of the bouncing ball. Notice that
these studies prove that the time-dependence of the unilateral constraints f (q, t) ≥ 0
has great influence on the system’s dynamics (which is not so apparent by compar-
ing (7.7)–(7.29), but it is a property of certain apparently simple systems to have a
complex “hidden” behavior). The bouncing-ball dynamical system may be seen as
a simplified version of the Fermi accelerator model: a ball bounces between a fixed
and a sinusoidally moving walls [540, 742].

7.3.6 Additional Comments and Studies

The major difficulty in studying impacting systems is that in general, not only are
the impact Poincaré maps difficult to obtain explicitly (but this is not specific to
those systems), but they are of dimension ≥ 2. Hence all the tools that apply to one-
dimensional systems, like the celebrated Sarkovskii’s ordering theorem [487], do not
apply. Pioneering works on the dynamics of simple impacting systems can be found
in [59, 365, 382, 484, 485, 743, 744, 819, 1256]. Among the first papers containing a
study on existence of periodic trajectories and their stability, see the works by Masri
and Caughey [819], which we described above, and Feigin [390]. More recently, the
dynamical analysis of simple impacting devices (impacting oscillator, damper · · · )
has received attention in numerous works, see e.g. [115, 121,157, 291, 329, 472,
518, 530, 577, 578, 582, 583, 586, 587, 639, 644, 680, 787, 805–809, 818, 927,
934, 998, 1094, 1096, 1098–1101, 1209, 1210, 1228, 1241, 1257, 1263, 1339]. For
instance, it is concluded in [157] that the bifurcation diagram of the impact damper,
with dry friction between the two masses, seems independent of the chosen friction
model (Coulomb or a more sophisticated model). But the qualitative behavior of the
system is highly sensitive to the value of the physical parameters (like the restitution
coefficient, and the friction model parameters): the authors conclude that for such
impacting systemswith friction, it is almost impossible to build mathematical models
that can qualitatively describe experimental results for all possible values of system
parameters. Experimental results are presented in [869, 871, 1138], and in [158] for
simple impact dampers. The dynamics of a shaft rotating inside an annular guard,
both being supported from the base by spring-dashpot systems, is studied in [1290].
In [121] the numerical study of a one-degree-of-freedom oscillator with two elastic
compliant stops with Coulomb friction is proposed, and experimental results show
good accordance with theory (the stops are made of rubber which explains the need

16Note anyway that as pointed out in [92], if the case en = 1 did not exist in nature, then all
molecular motion would long since have ceased. But we leave here engineering. Such problems
were discussed by Huygens and Leibniz at a time when scientists were trying to discover whether
springiness or hardness (to be understood here as non-penetrability) is the real physical phenomenon
that produces rebound [1050].
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for taking compliance into account in the model). Contrary to [157], it is concluded
in [1138] that the model allows the designer to predict motion with good accuracy
even if uncertainties are present in the parameters. A numerical study showed that
for the values of the experiment, the system’s behavior is not very sensitive to forcing
amplitude, damping of CoRs values. Also, the numerical and experimental results in
[1138] clearly show the existence of C-bifurcations (see Sect. 7.4). The form of the
attractors correspond to that found in other studies, using different models [1097,
1191].

The research on dynamics of impacting simple systems was motivated by appli-
cations: mechanisms with clearance, see [156, 289, 495, 634, 637] like gearboxes
[540, 635, 636, 646, 1060] and references therein (let us also mention the work of
A.E. Kobrinskii cited in [87] on dynamics of systems with clearance),17 the use of
pin joints in space truss structures and chaotic dynamics of these systems [737, 869],
drilling machines [457], motion of fluid tanks [919], motion in print hammers [520],
rotor systems [921], vibrations in high speed machinery [330, 377], heat exchang-
ers tubes subject to aerodynamic excitation [953, 1263], doorbells [31], and have
been verified experimentally, see e.g. among others [681, 871]. In [1172] the motion
of a two degree-of-freedom gyropendulum that strikes a rough rigid wall through
the rim of its wheel is studied numerically. This may represent the dynamics of a
Kaplan-turbine which rubs along its labyrinth seals, or when a magnetically sus-
pended rotor touches upon its emergency bearing. Preliminary experimental results
are presented. Applications can also be found in practical devices used to generate
aerosol streams: the model is a particle bouncing between two charged diverging
plates, see [175, §9.1] and [940]. The French company Electricité de France (EDF)
conducted research on the dynamics of assembly devices where impacts play an
important role [966, Chap.2] [1209, 1210], and also in nuclear plants [45]. The study
of impact oscillators has also been motivated by dynamics of offshore environment
impacting as a result of wave forcing [1189, 1190]: oil is transferred from an offshore
platform to a tanker, via an articulated columnmaintained by a tether, which becomes
infinitely stiff when stretched, hence impacts (see Example 1.6 in Chap.1). Other
examples exist in marine technology [710]: rattling resonances often occur between
the leg of the platform and pre-drilled piles during docking procedures, when new
offshore platforms are constructed [151]. Chaos in impacting systems is apparently
not restricted to values of en close to 1, but can appear for inelastic impacts (en = 0.6
in [998]). Let us finally mention the study in [678] about the dynamical behavior
of n degree-of-freedom systems with smooth unilateral constraints, TL(tk) = 0, and
acted upon by external forces of stochastic nature.

17The study of rattling-noise in gearboxes is fundamental to reduce the noise level and the vibrations
in engines.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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7.4 Grazing or C-Bifurcations

The stroboscopic Poincaré map can have a singular Jacobian at certain points. This
is related to so-called C-bifurcations (or grazing bifurcations), which occur when
the system evolves from a free regime of motion to an impacting regime, through a
grazing trajectory. More precisely, in a one-degree-of-freedom case with unilateral
constraint q ≥ 0, a C-bifurcation occurs in a configuration such that q0 = 0, q̇0 = 0
and the normal component of the force points inwards the admissible domain Φ, i.e.
q̈0 ≥ 0. In this case the system may evolve from an impact-free periodic motion,
to a low-velocity-impacting motion, and a bifurcation corresponds to this particular
evolution.

Before going into the calculations needed to show that the section map P(·)
(or the stroboscopic Poincaré map) can possess a discontinuity at such a point, let
us investigate the difficulties in properly defining a Poincaré map close to grazing
trajectories, considering a system in the plane. To this end it is useful to split the

sectionΣ
Δ= {(q, q̇)|q = c} into three parts (see Fig. 7.4):Σ = Xcon∪Xrel∪V �, see

Sect. 1.3.3 for the definition of the various subspaces. In Fig. 7.4 x1 = q and x2 = q̇ .
Also Xrel = {x ∈ R

2|x1 = c, x2 ≤ 0}, Xcon = {x ∈ R
2|x1 = c, x2 ≥ 0}, V � =

{x ∈ R
2|x1 = x2 = 0}. Orbits that make contact in V � have a local extremum at this

point (disregarding collisions for the moment). In [1262] the set V � is subsequently
divided into A+ = {x ∈ V � | ẋ2(t

−
k ) > 0}, A− = {x ∈ V � | ẋ2(t

−
k ) < 0}

and A0 = {x ∈ V � | ẋ2(t
−
k ) = 0} (A is for Acceleration). Orbits that make

contact in A0 correspond to degenerate impacts (contact with zero velocity) which
are a point of inflexion for the trajectory. They remain in bd(Φ) for a non zero time
interval, i.e. these degenerate impacts yield trapping, until the acceleration ẋ2 next

A0

A-

A+
Xrel

Xcon

V*

x2

x1
0

x1=c

(grazing trajectories)

Fig. 7.4 The phase space around grazing orbits

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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passes through 0. Whiston [1262] introduces a mapping P : Xrel\V � → Xcon and
the pre-images sets P−1(A+), P−1(A−), P−1(A0). Roughly, P(·) maps post-impact
velocities at tk to pre-impact ones at tk+1. One has P−1(A+) = ∅: there is no state
in Φ whose image is in A+. P−1(A−) is the set of initial conditions inXrel\V � that
yield a grazing orbit. P−1(A0) is the set of initial conditions in Xrel\V � that drive
the system at rest on the constraint, in V �. P(x) is grazing if ẋ2(t

−
k ) < 0, and has an

inflexion point for x1(t) at t = tk if x2(tk) = ẋ2(t
−
k ) = 0 (in which case the trajectory

that emerges from such x attains Σ in A0). Hence, if ẍ2(t
−
k ) > 0 the impacts are

trapped and the system remains stuck on bd(Φ): this is calledα-points. If ẍ2(t
−
k ) < 0:

impacts are released and there is detachment: this is ω-points. The sets A+, A− and
A0 are calculated in [1262] for the simple system ẋ2(t)+ x1(t) = β cos(ωt), x1 ≤ c,
x2(t

+
k ) = −enx2(t

−
k ), en ∈ (0, 1). Let Nc ⊂ Xrel denote those states that do not

eventualy collide: it is proved in [1262] that Xrel ∪ Nc = ∅, i.e. all initial data in
Xrel with x2 < 0 (i.e. initial data in Xrel\V �) yield impacts: this is indeed crucial
to assure that the map P well-defined.

Proposition 7.1 [1262] For the above one-degree-of-freedom system, one has (the
value of the positions is given between parentheses):

• If 0 ≤ c < β: A− = (
π
ω

− τ, π
ω

+ τ
)
, with τ increasing monotically from π

2ω to π
ω

as c varies from 0 to β; A0 = (
π
ω

− τ, π
ω

+ τ
)
; π

ω
+ τ is an α−point, π

ω
− τ is an

ω-point.
• If c = β: A− = (0, 2π); A0 = {0} is both an α- and an ω-point.
• If c > β: A− = V �, A0 = ∅.
There is a problem in extending the mapping P(·) to the whole of Xrel because in
V � the velocity is zero, hence injectivity and invertibility are lost (several states may
be mapped to V �). Denote all times (for states in V �) such that the velocity is zero
as τz . Let τ0 denote the next zero-crossing time of the acceleration (ẋ2(τ0) = 0),
i.e. P(x1, x2, t) = P(c, 0, τz) = P(c, 0, τ0) for all trapped τz (the image of all the
points when the system is constrained is the same). Such a case occurs when the
system remains stuck on the constraint for a while (i.e. in V �): during this interval
of time all the states (x1, x2, τz) = (0, 0, τz) will be mapped via P(·) to some other
state. Obviously P is no longer injective in this case. In other words τ0 is the time
when detachment conditions are fulfilled. The conclusion of this is that in general, for
such unilaterally constrained systems, the Poincaré map will be difficult to construct
properly, since its definition involves that of P(·) (corresponding to flight-times).
Whiston proposes to extend P(·) to an injective map as follows:

• – If V � contains α- and ω-points, define Σ−
c = Xrel\A+, i.e. substract all states

inXrel ⊃ V � with positive acceleration ẍ2.
– If x ∈ A− or x = ω-point, P2(x) is the succeeding impact and P2(α − point) =

ω-point.
• Σ−

c = Xrel if A− = V � or if an α − ω-point exists. Then P(x) is the succeeding
impact state if x ∈ A− or x = α-point.
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• Σ+
c is constructed similarly (asXcon\A+ orXcon) and P : Σ−

c → Σ+
c is bijective

and differentiable almost everywhere.
• Now let P2 : Xcon → Xrel be the impact rule and restrict it to Σ+

c → Σ−
c in

order to give a meaning to the Poincaré map PΣ = P ◦ P2 which is singular at
grazing orbits. The restriction of P2 leaves A− ∪ A0 invariant because one does not
want that states in V � and with zero or negative acceleration jump, from obvious
physical arguments.

In summary, [1262] clarifies the definition of the different sets of the extended
phase-space which are useful in understanding the difficulties for constructing a
nice Poincaré mapping for systems with possible grazing orbits. He shows how to
construct a bijective Poincaré mapping despite “singularities” due to grazing trajec-
tories. In the following we shall rather concentrate on the study of the singularities
of the mapping P(·) and on its explicit form.

7.4.1 The Stroboscopic Poincaré Map Discontinuities

In order to show how a singularity appears in the Jacobian of a stroboscopic Poincaré
map PΣi (·), let us consider the simplest example of a one degree-of-freedom system
as in (7.43) below [934, 937]. In particular we assume that the constraint is written
as f (q) = q − q0 ≥ 0. Recall that the only difference between the stroboscopic and
the impact Poincaré maps, is of the order of concatenation of the continuous flow
and the restitution map. If Pf (·) generically denotes a map associated to the flow
between impacts whereas Pr (·) denotes the restitution map (or collision mapping),
then one roughly has in general PΣi = Pf,1 ◦ Pr ◦ Pf,2. The mappings Pf,1(·) and
Pf,2(·) map respectively Xrel × S1 → Σ0 and Σ1 → Xcon × S1, where S1 is the
2π -unit circle (the space of the phase Ω = ωt), whereas Σi denotes generically a
constant phase plane. The impact Poincaré map has the general form PΣ = Pf ◦ Pr
(this evidently holds only when such maps are defined). Let us note that despite the
fact that the impact Poincaré map PΣ(·) does not exist for non-impacting motions, its
Jacobian for low pre-impact velocities can be computed. The following calculations
show once again the fundamental difference between systems as in (7.1) (namely
ODEs with impulsive perturbations) and systems with unilateral constraints.

Let us consider (1.45) with f (q) = q − q0, and for simplicity we take τ0 = 0.
Thus we have:

ϕq(t0; 0, u0) − q0 = 0, (7.30)

from which it follows that:

Du0ϕq(t0; 0, u0) = ∂ϕq

∂t0
(t−0 )

dt0
du0

(u0) + ∂ϕq

∂u0
(u0) +

(
1
0

)
= 0. (7.31)
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Noting that ∂ϕq

∂t0
(t−0 ) = q̇(t−0 ) one obtains:

dt0
du0

(u0) = − 1

q̇(t−0 )

{
∂ϕq

∂u0
(u0) −

(
1
0

)}
. (7.32)

It is therefore clear from (7.32) that the impact-time gradient with respect to the initial
state diverges as soon as the pre-impact velocity tends to zero. Let us now compute
the Jacobian of the flow with collisions ϕc

t−k −t+k−1
(u(t+k−1)) = ϕ(t−k ; t+k−1, u(t+k−1)) =

ϕ(t−k ; 0, u0) = ϕc
t−k

(u0) = u(t−k ) = P(u(t+k−1)), see Sect. 1.3.2 and (7.21) and (7.22)
(the following calculation corresponds to computing the last term in (7.22)). We get:

Duϕ
c
t−k −t+k−1

(u(t+k−1)) = Duϕ(t−k ; t+k−1, u(t+k−1))

= ∂ϕ

∂t

T
(t−k ) dtkdu

T
(u(t+k−1)) + ∂ϕ

∂u

T
(u(t+k−1)).

(7.33)

Introducing (7.32) into (7.33) we obtain:

Duϕ
c
t−k −t+k−1

(u(t+k−1)) = − ∂ϕ

∂t

T
(t−k ) 1

q̇(t−k )

[
∂ϕq

∂u

T
(u(t+k−1)) +

(−1
0

)]

+ ∂ϕ

∂u

T
(u(t+k−1)) ∈ R

2×2,

(7.34)

where ϕ(·) and ϕq(·) denote ϕ(t−k ; t+k−1, u(t+k−1)) and ϕq(t
−
k ; t+k−1, u(t+k−1)), respec-

tively, and the gradient ∂ϕ

∂t ∈ R
2×1 , whereas its transpose is the Jacobian Dtϕ ∈ R

2×1.
In practice, one integrates the system from t+k−1 to t−k and then computes the corre-
sponding gradients. It appears from (7.34) that whatevermanner one uses to calculate
the Poincaré map, a singular term will always be present in its Jacobian, because of
the gradient of the impact times in (7.32).

Notice from (7.34) that we can continue the calculations further to obtain the
Jacobian of the flow with collisions from t+k−1 to t+k , incorporating the restitution

matrix E =
(
1 0
0 −en

)
. We obtain

Duϕ
c
t+k −t+k−1

(u(t+k−1)) = E

⎛
⎜⎝

− ∂ϕq

∂q + ∂ϕq

∂q + 1 − ∂ϕq

∂q̇ + ∂ϕq

∂q̇

− g(t−k )

q̇(t−k )

∂ϕq

∂q + ∂ϕq̇

∂q + g(t−k )

q̇(t−k )
− g(t−k )

q̇(t−k )

∂ϕq

∂q̇ + ∂ϕq̇

∂q̇

⎞
⎟⎠ (7.35)

i.e.:

Duϕ
c
t+k −t+k−1

(u(t+k−1)) =
⎛
⎜⎝

1 0

en
(
g(t−k )

q̇(t−k )

∂ϕq

∂q − ∂ϕq̇

∂q + g(t−k )

q̇(t−k )

)
en
(
g(t−k )

q̇(t−k )

∂ϕq

∂q̇ − ∂ϕq̇

∂q̇

)
⎞
⎟⎠
(7.36)
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where we have dropped the arguments for convenience. In (7.35) and (7.36), g(t−k )

denotes the second component of the vector field G(u(t−k )) in (1.46). Therefore,
one eigenvalue of the Jacobian is always equal to 1, whereas the other eigenvalue is

−en
(
g(t−k )

q̇(t−k )

∂ϕq

∂q̇ (t+k−1) + ∂ϕq̇

∂q̇ (t+k−1)
)
. This indicates that the flow is computed between

two instants at which the position ϕq(·) takes the same value. If we had chosen a
constant phase section, hence a stroboscopic map, we would have had to compute
the Jacobian of ϕc

τ1−τ0
(u0) = ϕτ1−t+k ◦ Fk ◦ ϕt−k −τ0

(u0), where τ0 < tk < τ1 and
τ0, τ1 are the times of first return of the phase Ω to the Poincaré section Σi . For
instance if the external excitation has period T = 2π

ω
, then τ1 = τ0 +T andΩ(τ1) =

Ω(τ0) mod 2π . The conclusions would not have been modified since the gradient
in (7.32) necessarily appears in the Jacobian calculated on the impacting side Σ−

i .
Let us also add that these conclusions are independent of the fact that the vector field
G(u) be autonomous or nonautonomous. In the second case one has to incorporate
the time tk in the Poincaré mapping state, but one row of the section map Jacobian
remains equal to (1, 0 . . . , 0) (the one that corresponds to the coordinate transversal
to the section).

Example 7.2 Let us consider as an example the bouncing ball with damping during
flight-times. Calculations yield:

dtk
du

(u(t+k−1)) = − 1

q̇(t−k )

⎛
⎝ 0

m
λ+c

[
exp

(− λ+c
m (tk+1 − tk)

) − 1
]
⎞
⎠ (7.37)

When λ + c → 0, one retrieves that ∂tk
∂q̇(t+k )

= tk−tk−1

q̇(t−k )
= 2m

Fd
. It also follows that

en
g(t−k )

q̇(t−k )

∂ϕq

∂q̇ (t+k−1) − en
∂ϕq̇

∂q̇ (t+k−1) = −en
Fd

mq̇(t−k )

m
λ+c

[
exp

(− λ+c
m (tk − tk−1)

) − 1
] + en.

When λ+c → 0 one finds that this term is equal to−en
Fd

mq̇(t−k )
(tk − tk−1)+en = −en,

hence the second eigenvalue is equal to en ≤ 1.

Example 7.3 Following [591], let us consider a one degree-of-freedom system
q̈(t) = f (t, q(t), q̇(t)), q ≥ 0, with Newton’s impact rule. Assume that there
exists a periodic solution q0(·) with period T = 2nπ and k shocks per period.
Between impacts it is easy to calculate the flow of the linearized perturbed system

as ˙(δx) = A(τ0, t)δx , with δx =
(
q − q0
q̇ − q̇0

)
, A is the fundamental solution matrix

of the linearized system satisfying Ȧ = B(t)A, B(t) =
(
0 1
∂ f
∂q (q0, q̇0)

∂ f
∂q̇ (q0, q̇0)

)
,

B(τ0, τ0) = I2. The impact instants over one period are denoted as t0, t1, . . . , tk−1.
The perturbed motion will not collide at t0 but at t0 + Δt0 for some Δt0. One can
show using a Taylor expansion and neglecting higher order terms that q(t0 +Δt0) =
q(t0)+ q̇0(t

−
0 )Δt0 = 0. Also from the dynamics and the expression ofΔt0 = − q(t0)

q̇(t−0 )
,

it follows that q̇[(t0 + Δt0)−] = q̇(t−0 ) − Δt0 f (t0, 0, q̇0(t
−
0 )). Using the impact rule

one can now calculate q̇[(t0 + Δt0)+], i.e. the value of the velocity of the perturbed

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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periodic orbit after its collision with q = 0. There follows an expression of the form

˙(δx) = B0δx , with B0 =
(

−en 0
1

q̇(t−0 )
f (t0, 0,−enq̇0(t

−
0 )) + en f (t0, 0, q̇(t−0 )) −en

)
.

Similar expressions may be computed for the other jumps. Then the Floquet mul-
tipliers of the periodic motion q0(·) are the eigenvalues of the matrix A(tk−1, τ0 +
2nπ)Bk−1A(tk−2, tk−3) · · · B0A(τ0, t0).We recover that the linearized system (around
q0(·)) defines a flow with collisions with an alternation of matrices calculated from
the continuous phases of motion and matrices corresponding to the discontinuities.
These calculations were already made in (7.22) and (7.33). Once again it is apparent
that stability and bifurcation analysis can be done for periodic motions using the
Floquet theory as long as the matrices Bj are bounded. When the approach velocity
tends to zero, these matrices grow unbounded.

In conclusion, although the determinant of the Jacobian always remains≤ 1 since
the system is dissipative and contracts volumes in state space, see [742, pp. 459–
460],18 there is an entry of the Jacobian that depends inversely on the velocity at
impact: for low velocities, this entry tends to infinity. The result is a large stretching
and compression of areas in phase space due to the mappings Pf,1(·) and Pf,2(·)
which define the stroboscopic Poincaré map PΣi (·) [934].

To finish this section, notice that a particular feature of grazing bifurcations is
that, contrary to bifurcations in smooth vector fields or mappings, they cannot be
predicted from the observation of the Jacobian, i.e. by looking at the local properties
of the orbit (say periodic) just before the bifurcation [935].

7.4.2 The Stroboscopic Poincaré Map Around
Grazing-Motions

The above singularity concerns the Jacobian of the mapping on the impacting side. It
results in important stretching and compression of areas in a constant-phase section
region, under the action of the Poincaré mapping. Let us now investigate the form of
a stroboscopic Poincaré mapping in the vicinity of grazing trajectories [406, 934],
for a two-dimensional impact oscillator, with f (q) = q − q0 ≤ 0. To this end, let us
consider a low-velocity contacting point P0 = (q, q̇, t) = (q0, q̇(t−k ), tk), and two
points of the trajectory: P1 = (q(t1), q̇(t1), t1) and P2 = (q(t2), q̇(t2), t2) which are

arbitrarily close to (q0, q̇(t−k ), tk), i.e. Δt1
Δ= tk − t1 > 0 and Δt2

Δ= t2 − tk > 0 are
very small quantities (in other words, the surfaces Σ0 and Σ1 needed to define the
mappings Pf,1(·) and Pf,2(·) above are chosenvery close to the impacting surfaceC j ).

18Dissipativity holds between the harmonic force input and the velocity, i.e. with supply rate
w(u, y) = F(t)q̇(t). Dissipative systems with no input define Lyapunov stable systems [218].
Hence the eigenvalues of the system’s matrix A must have magnitude ≤ 1.
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The first point thus belongs to the trajectory before the shock, and the second point
is after the shock. Expanding in Taylor series around tk one finds:

{
q(t1) = q0 − q̇(t−k )Δt1 + 1

2 q̈(t−k )Δt21 + O(Δt31 )
q̇(t1) = q̇(t−k ) − q̈(t−k )Δt1 + O(Δt21 ),

(7.38)

and: {
q(t2) = q0 − enq̇(t−k )Δt2 + 1

2 q̈(t+k )Δt22 + O(Δt32 )
q̇(t2) = −enq̇(t−k ) − q̈(t+k )Δt2 + O(Δt22 ).

(7.39)

We assume that the trajectory we are studying possesses only one grazing impact on
(t1, t2). Since our goal is to obtain a local form of a stroboscopic Poincaré mapping
around a grazing trajectory, we can combine the expressions in (7.38) and (7.39),
take Δt1 = Δt2 and neglect high-order terms to get the following [406]:

⎧⎨
⎩
q(t2) = (q0 − q(t1))

(
2en + q̈(t−k )

q̈(t+k )

)
+ q0 − enq̇(t1)

q̇(t2) = −
√
q̇2(t1) − 2q̈(t−k )(q(t1) − q0)

(
q̈(t+k )

q̈(t−k )
+ en

)
+ q̇(t1)

q̈(t+k )

q̈(t−k )
.

(7.40)

We note that the vector field between Σ1 and Σ0 is linear and thus will not modify
the characteristics of the mapping. Combining the two equations in (7.38) it is also
possible to calculate that:

q̇2(t−k ) = q̇2(t1) − 2q̈(t−k )(q(t1) − q0) + . . . (7.41)

where ... = Δt
q̈(t−k )

. Note from (7.41) that the term on the right-hand side must be

positive for the expression of q̇(t2) in (7.40) to make sense. Also q̇(t−k ) ≥ 0, which is
deduced from the fact that q ≤ q0 is the unilateral constraint, see Remark 1.4. From
(7.41) one also deduces that if q̇(t−k ) → 0, then the right-hand side expression does
the same. From (7.40) and the fact that we have assumed that the trajectory returns
after one period to the constant phase section t1 (mod 2π ), one therefore realizes that
for low-velocity impacts, the derivative of the Poincaré mapping takes very large
values, and possesses a square-root type singularity. Indeed, ∂q̇(t2)

∂q̇(t1)
and ∂q̇(t2)

∂q(t1)
both

contain q̇(t−k ) in their denominator. One therefore retrieves the above derivation and
singularity of the Jacobian. The interest for deriving a formal expression for the
Poincaré mapping in the neighborhood of grazing trajectories evidently lies in the
ability of studying whether the system can cross a C-bifurcation without losing its
stability, see for instance [934].

Let us summarize: assume that the system evolves around an impactless peri-
odic trajectory. Then a parameter that guides the magnitude of the periodic orbit is
varied such that the trajectory (the iterates of the Poincaré mapping) approaches a
grazing trajectory. At the grazing time, the form of the Poincaré mapping suddenly
jumps from a linear form to the nonlinear form in (7.40). Introducing a suitable state
transformation into local normal/tangential coordinates (xΣi ,n, xΣi ,t), the Poincaré
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mapping takes the form [287, 934]:

{
xΣi ,n(k + 1) = −γ e2nxΣi ,t(k)
xΣi ,t(k + 1) = b

√−xΣi ,t(k) + xΣi ,n(k).
(7.42)

7.4.3 Further Comments and Studies

Major references about bifurcations and chaos in nonsmooth dynamical systems
are [69, 132, 728], which interested readers have to read. The survey article [789]
as well as the Special Issue [790] are also worth reading. Perhaps one of the first
study on bifurcations in nonsmooth systems goes back to [233], in which the authors
investigated the transition from a periodic orbit to another one, or merging of both,
or disappearance. More recently the study of grazing-bifurcations, mainly related
to impact oscillators, has received attention in [152, 235, 236, 265, 287, 392–394,
404–406, 585, 587, 699, 934, 939, 1262, 1264]. When the parameters of the system
are varied (for instance the forcing term magnitude or frequency), the trajectories’
behavior can change suddenly at the grazing trajectory. A periodic trajectory can be
changed into chaotic motion, followed by a period adding cascade, or the creation
of a large number of periodic trajectories. In the literature, researches have been
mainly focused on one-degree-of-freedom systems with one limiting stop (or two
stops [404]), i.e. whose dynamics can be reduced to:

q̈(t) + cq̇(t) + kq(t) = A cos(ωt), q(t) ≥ 0 for all t ≥ 0, en ∈ [0, 1]. (7.43)

Let us mention that the study of grazing orbits for another class of dynamical systems
of higher dimension and with a scalar unilateral constraint and a specific structure
can be found in [473]. Ivanov [587] studies this problem using an approximating
problem Pn and results on convergence of solutions of Pn [682, 683]. The same
philosophy is adopted in [405], who compare the results obtainedwhen the rigid body
assumption is replaced by a compliant Hertz model. The numerical results in [405]
show that when the stiffness is high enough, k = 2000 N/m, then the respective
behaviors of both models are quite similar in terms of bifurcations. The authors
conclude that the observed C-bifurcation must be, in some sense, the limit of the
bifurcation for the compliant model. Notice that this is not surprising, since these
systems belong to the class of systems studied by Paoli and Schatzman, see Problem
2.2: the trajectories of the compliant model converge towards those of the rigid one
when k → +∞. Hence C-bifurcations are indeed the limit of more conventional
types of bifurcations. In [591] Ivanov presents an analysis of grazing impacts of
periodic orbits using a general form of compliant contact model. Various bifurcations
are discovered: disappearance, survival with or without stability. The results are not
related to those in [934], although once again convergence of solutions should bridge
the gap between compliance and rigidity. In [588] the nonsmooth coordinate change
of Sect. 1.4.3 is used to investigate C-bifurcations. Chin et al. [287] consider the

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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Nordmark map given as:

{
xn+1 = αxn + yn + ρ

yn+1 = −γ xn
for xn ≤ 0,

{
xn+1 = −√

xn + yn + ρ

yn+1 = −γ e2nxn
for xn > 0,

(7.44)

and observe three major types of C-bifurcations in a simple impact oscillator: from
stable period-1 orbits to a reversed infinite period adding cascade, or to attracting
chaos occupying a full interval of the bifurcation parameter, and collision of an
unstable maximal periodic orbit and a period-1 orbit. They all are unconventional, in
the sense that they do not occur in smooth systems. TheNordmarkmap is also studied
in [265]. In [404] two distinct types of C-bifurcations are observed: in the first one,
the stable orbit disappears and the system stabilizes onto an already existing stable
trajectory. In the second one, there is an immediate jump to a chaotic motion. In both
cases the subsequent motion has a large amplitude. An experimental validation has
been presented in [153]. Budd et al. [235, 699], Foale and Bishop [405], Nusse et al.
[287, 939] propose to refine the study of C-bifurcations by using one-dimensional
mappings with the same square-root type singularity as that of grazing-bifurcations,
given as:

Fε(χ) =
{

αχ + ε if χ ≤ 0
βχd + ε if χ > 0,

(7.45)

with 0 < α < 1, β < −1 and 0 < d < 1, whereas ε is the parameter that is
to be varied and gives rise to a bifurcation. Near-grazing dynamics in frictionless
impact oscillators are controlled by feedack strategies in [324, 325]. A one-degree-
of-freedom mass acted upon by Coulomb friction and a linear spring, and impacted
by a controlled mass, is studied in [1170]. Feedback control of the Poincaré map
at grazing impacts is designed by controlling the distance between the two masses,
to regulate the grazing-induced bifurcation scenario. We end this short survey by
mentioning application in the modeling of forest fire regimes [264, 339, 786]. It is
shown that impact mechanics can very well reproduce the qualitative features of
the periodic fire regimes of savannas and boreal forests, as well as the chaotic fire
dynamics of Meditarranean forest.

7.5 Complementarity Lagrangian Systems:
Stability of Fixed Points

In this section we study the stability of the second-order sweeping process, that was
presented in Sect. 5.2.2. Although it implies a restitution lawwith quite limited scope,
it does represent an interesting class of nonsmooth Lagrangian systems, because it
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settles the global geometrical framework of complementarity Lagrangian systems
(moreover, see Remark 7.6 below).

7.5.1 The Dynamical System

Let us consider the following subclass of nonsmooth mechanical systems in (5.1),
with no friction and no bilateral holonomic constraints:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M(q)q̈(t) + F(q(t), q̇(t)) = ∇ f (q(t))λn,u(t),

q(0) = q0, q̇(0−) = q̇0,

0 ≤ f (q(t)) ⊥ λn,u(t) ≥ 0 for all t ≥ 0,

q̇(t+k ) = −enq̇(t−k ) + (1 + en)projM(q(tk ))[V (q(tk)); q̇(t−k )],
(7.46)

with F(q, q̇) = C(q, q̇)q̇+ ∂U
∂q (q),C(q, q̇)q̇ collects Coriolis and centrifugal forces,

U (q) is a smooth potential energy from which conservative forces derive, f : Rn �→
R

m . We assume that f (q0) ≥ 0. The impact times are denoted as usual as tk , the
left-limit q̇(t−k ) ∈ −V (q(tk)) whereas the right-limit q̇(t+k ) ∈ V (q(tk)). The third
line in (7.46) is Moreau’s collision mapping, see Sect. 5.2.2.

Remark 7.6 Instead of Moreau’s law, we could use the generalized impact law in
(6.44) and (6.45) with Ent = 0, Etn = 0, Ett = 0, together with the restrictions on Enn
which guarantee energetic, kinetic, and kinematic consistencies (Propositions 6.2,
6.3, 6.4 and 6.5). This does not change the analysis much since (7.55) below it is
satisfied while the Lagrangian system is well-posed according to Theorem 5.3. The
MDI would not change outside impacts, anyway.

The impact law in (7.46) implies that the kinetic energy loss at time tk satisfies:

TL(tk) = −1

2

1 − en
1 + en

(
q̇(t+k ) − q̇(t−k )

)T
M(q(tk))

(
q̇(t+k ) − q̇(t−k )

) ≤ 0 (7.47)

Note that the tangent cone V (q(t)) is assumed to have its origin at q(t) so that
0 ∈ V (q(t)) to allow for post-impact velocities tangential to the admissible set
boundary bd(Φ). We first need to guarantee the well-posedness of the dynamics.
To this aim we may rely on Theorem 5.3 and we are thus led to make the next
assumption.

Assumption 7.3 The gradients∇ fi (q) are not zero and are independent at the active
contacts fi (q) = 0. Furthermore the functions f (·), F(q, q̇), M(q) and the system’s
configuration manifold are real analytic, and ||F(q, q̇)||q ≤ d(q, q(0)) + ||q̇||q ,
where d(·, ·) is the Riemannian distance and || · ||q is the norm induced by the kinetic
metric.
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It is then reasonable to assume that the next properties hold:

(i) Solutions of (7.46) exist on [0,+∞) such that q(·) is absolutely continuous
(AC), whereas q̇(·) is right-continuous of local bounded variation (RCLBV).
In particular, the left and right-limits of these functions exist everywhere.

(ii) The function q(·) cannot be supposed to be everywhere differentiable. One has
q(t) = q(0) + ∫ t

0 u(s)ds for some function u(·) a.e.= q̇(·). Moreover q̇(t+) =
u(t+) and q̇(t−) = u(t−).

(iii) Solutions are unique (however, in general they do not depend continuously on
the initial conditions).

(iv) The acceleration q̈ is ameasure du, which is the sumof twomeasures: an atomic
measure dμa , and a Lebesgue integrable function which we denote q̈(·), i.e.
du = dμa + q̈(t)dt . The atoms correspond to the impact times.

(v) The set of impact times is countable. In many applications one has dμa =∑
k≥0[q̇(t+k ) − q̇(t−k )]δtk , where δt is the Dirac measure at t and the sequence

{tk}k≥0 can be ordered, i.e. tk+1 > tk . However, phenomena like accumulations
of left-accumulations of impacts may exist (at least bounded variation does not
preclude them). This is a sort of complex Zeno behavior.19 In the case of elastic
impacts (en = 1) it follows from [80, Proposition 4.11] that impact times are
in finite number in any compact time interval: there exists ρ(q(0), q̇(0)) > 0
such that tk+1 − tk ≥ ρ(q(0), q̇(0)). This is some kind of piecewise-continuity
of the solutions, though the constant ρ(q(0), q̇(0)) may be arbitrarily small.

We remind that any quadratic functionW (·) of q̇ is itself RCLBV, hence its derivative
is ameasure dW . Consequently, dW ≤ 0 has ameaning and implies that the function
W (·) does not increase. As we know from Sect. 5.2.2, the Lagrangian dynamics in
(7.46) can be written as the following Measure Differential Inclusion (MDI), which
is the second order sweeping process:

− M(q(t))du − F(q(t), u(t+))dt ∈ ∂ψV (q(t))(w(t)) ⊆ ∂ψΦ(q(t)), (7.48)

where w(t) = u(t+)+eu(t−)

1+en
from (7.46). If en = 0 then w(t) = u(t+), if en = 1

then w(t) = u(t+)+u(t−)

2 . Moreover, when u(·) is continuous then w(t) = u(t). When
q̇(t) is discontinuous, (7.48) implies that Moreau’s collision rule is satisfied. The
term ψV (q(t))(w(t)) can be interpreted as a velocity potential and its subdifferen-
tial ∂ψV (q(t))(w(t)). Let us recall some facts from Sect. 5.2.2. The MDI in (7.48),
whose left-hand side is a measure and whose right-hand side is a cone, has the
following meaning: there exists a positive measure dμ such that both dt and du
possess densities with respect to dμ, denoted respectively as dt

dμ
(·) and du

dμ
(·). One

has dt
dμ

(t) = limε→0,ε>0
dt ([t,t+ε])
dμ([t,t+ε]) , which shows the link with the usual notion of

a derivative. The choice of dμ is not unique because the right-hand side is a cone.
However, by the Lebesgue-Radon-NikodymTheorem [1053], the densities dt

dμ
(·) and

du
dμ

(·) are unique functions for a given dμ. To shed some light on this, let us consider

19i.e. all phenomena involving an infinity of events in a finite time interval.
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for instance dμ = dt + Σk≥0δtk , which corresponds to applications where the sys-
tem is subject to impacts at times tk and otherwise evolves freely. Then dt

dμ
(tk) = 0

(the Lebesgue measure dt and the Dirac measure δt are mutually singular), whereas
du
dμ

(tk) = u(t+k ) − u(t−k ) (tk is an atom of the measure du). When t �= tk then
dt
dμ

(t) = 1 and du
dμ

(t) = v̇(t). Therefore, the meaning of (7.48) is that there exists a
positive measure dμ with respect to which both dt and du possess densities, and

− M(q(t))
du

dμ
(t) − F(q(t), u(t+))

dt

dμ
(t) ∈ ∂ψV (q(t))(w(t)) (7.49)

holds dμ−almost everywhere. In a sense, densities replace derivatives, for measures.
When dealing with measure differential equations or inclusions, it is then natural to
manipulate densities instead of derivatives. In general one can choose dμ = |du|+dt
[867, p.90], where |du| is the absolute value of du, or dμ = ||u(t)||dt + dμa , or
dμ = dt + dμa . It is fundamental to recall at this stage that the solution of (7.49)
does not depend on this choice. For instance, if dμ = ||u(t)||dt + dμa then for all
t �= tk , dt

dμ
(t) = 1

||u(t)|| and
du
dμ

(t) = q̈(t)
||u(t)|| . Whereas if dμ = dt + dμa then for

all t �= tk , dt
dμ

(t) = 1 and du
dμ

(t) = q̈(t).

Remark 7.7 It is fundamental to keep in mind that the contact force multipliers
λn,u are still present in the inclusion in (7.49): the terms ∇ f (q)λn,u represent
selections of the set-valued right-hand side ∂ψV (q(t))(w(t)) ⊆ ∂ψΦ(q(t)). The
right-hand side is in turn constructed in such a way that these selections sat-
isfy complementarity relations with the gap function f (q), see Sect. 5.2.2.3.
Therefore, the stability analysis holds for all phases of motion: unconstrained
( f (q) > 0), constrained ( f (q) = 0), and at impact times.

7.5.2 The Stability Analysis

In the case of unconstrained Lagrangian mechanical systems, the Lagrange-Dirichlet
(or Lejeune-Dirichlet) Theorem states that the equilibrium point (q, q̇) = (q∗, 0) is
locally stable if the potential energyU (q) has a strict minimum at q�. First notice that
since F(q, 0) = ∂U

∂q (q) and 0 ∈ V (q), fixed points of (7.48) satisfy the generalized
equation

0 ∈ ∂ψΦ(q�) + ∂U

∂q
(q�), (7.50)

which in particular implies q� ∈ Φ. Equivalently starting from (7.46) the equilibrium
pair (q�, λ�

n,u) is the solution of

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 7.5 Nonconvex
(prox-regular) and convex
admissible sets

spring

−g

Φ

Φ

{
F(q�, 0) = ∇ f (q�)λ�

n,u
0 ≤ f (q� ⊥ λ�

n,u ≥ 0.
(7.51)

It follows from the material in Sect. B.2.1 that both (7.50) and (7.51) are in turn
equivalent to the optimization problem:

q� = argmin
q∈Rn

ψΦ(q) +U (q) = argmin
q∈Φ

U (q). (7.52)

In the followingwe shall assume for simplicity that the equilibria are isolated, or even
that the two equations in (7.50) and (7.51) have a unique solution q�. The second
characterization suggests that one should better speak of the equilibrium as the triple
(q, q̇, λn,u) = (q�, 0, λ�

n,u). The generalized equations in (7.51) are quite similar to
the ones in (2.20), which characterize the fixed points of mechanical systems with
compliant unilateral contact.

Lemma 7.1 Consider a mechanical system as in (7.46). Suppose that U (q) ≥
γ (||q||) for some class K function γ (·) and all q ∈ Φ. Then if ψΦ(q) + U (q)

has a strict minimum at q�, the equilibrium point (q�, 0) is Lyapunov stable.20

Let us note thatΦ need not be convex in general. The equilibriummay exist in Int(Φ),
or it may belong to bd(Φ) but be forced by the continuous dynamics; see Fig. 7.5 for
planar examples with both convex and nonconvexΦ. It is obvious that in the depicted
nonconvex case all points (q�, 0) with q� ∈ bd(Φ) are fixed points of the dynamics.
The nonconvex domain is described by Φ = {(q1, q2)| f (q) = q2

1 + q2
2 − r2 ≥ 0}

for some r > 0. This is an r−prox-regular domain, see Sect. B.2.3, for which the
Mangasarian-Fromovitz CQ in (B.9) is satisfied: one has ∇ f (q) = (2q1 2q2)T .
Since q1 and q2 cannot vanish simultaneously on the disk boundary, the gradient
is nonzero and a vector v as in (B.9) can always be found. For such a domain Φ,

20The asymptotic Lyapunov stability is not shown.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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Definition B.6 applies and the normal and tangent cones are equal to their respective
linearization cones (see Remark B.1).

Proof The proof of Lemma 7.1may be led as follows. Let us consider the nonsmooth
Lyapunov candidate function:

W (q, q̇) = 1

2
q̇T M(q)q̇ + ψΦ(q) +U (q) −U (q�). (7.53)

Since the potential ψΦ(q) +U (q) has a strict minimum at q� equal to U (q�), W (·)
is positive definite on the whole state space. Also α(||q||, ||q̇||) ≤ W (q, q̇) ≤
β(||q||, ||q̇||) for some classK functions α(·) and β(·), is satisfied on Φ (� q(t) for
all t ≥ 0). The potential function ψΦ(q) +U (q) is continuous on Φ. Thus W (q, q̇)

in (7.53) satisfies the requirements of a Lyapunov function candidate on Φ, despite
the indicator function has a discontinuity on bd(Φ), but is continuous on the closed
set Φ. Moreover, since (7.48) secures that q(t) ∈ Φ for all t ≥ 0, it follows that
ψΦ(q(t)) = 0 for all t ≥ 0. In view of this one can safely discard the indicator func-
tion in the subsequent stability analysis. Let us examine the variation of W (q, q̇)

along trajectories of (7.49). In view of the above discussion, one can characterize
the measure dW by its density with respect to dμ and the function W (·) decreases
if its density dW

dμ
(t) ≤ 0 for all t ≥ 0. We recall Moreau’s rule for differentiation

of quadratic functions of RCLVB functions [867, p.8-9]: let u(·) be RCLBV, then
d(u2) = (u+ + u−)du where u+ and u− are the right-limit and left-limit functions
of u(·). Let us now compute the density of the measure dW with respect to dμ:

dW
dμ

(t) = 1
2

[
q̇(t+) + q̇(t−)

]T
M(q(t)) dv

dμ
(t) + ∂U

∂q
dq
dμ

(t)

+ 1
2

∂
∂q

(
q̇(t+)T M(q(t))q̇(t+)

) dq
dμ

(t),
(7.54)

where dq = u(t)dt since the function u(·) is Lebesgue integrable. Let us now
choose dμ = dt + dμa . Since dt

dμ
(tk) = 0 and dq

dμ
(tk) = 0, whereas dv

dμ
(tk) =

u(t+k )−u(t−k ) = q̇(t+k )− q̇(t−k ), it follows from (7.54) that at impact times one gets:

dW

dμ
(tk) = 1

2

[
q̇(t+k ) + q̇(t−k )

]T
M(q(t))

[
q̇(t+k ) − q̇(t−k )

] = TL(tk) ≤ 0, (7.55)

where TL(tk) is in (7.47). Let the matrix function Ṁ(q, q̇) be defined by Ṁ(q(t),
q̇(t)) = d

dt M(q(t)). Let us use the expression of F(q, q̇) given after (7.46), and let
us assume that Christoffel’s symbols of the first kind are used to express the vector

C(q, q̇)q̇ = Ṁ(q, q̇)− 1
2

[
∂
∂q

(
q̇T M(q(t))q̇

)]T
. Then thematrix Ṁ(q, q̇)−2C(q, q̇)

is skew-symmetric [218]. Now if t �= tk , one gets du
dμ

(t) = u̇(t) = q̈(t) and dt
dμ

(t) = 1
[867, p.76] and one can calculate from (7.54), using the dynamics and the skew-
symmetry property:
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dW
dμ

(t) = dW
dt (t) = −q̇(t)T C(q(t), q̇(t))q̇(t) + 1

2 q̇(t)T Ṁ(q(t), q̇(t))q̇(t) − q̇(t)T z1(t)

= −q̇(t)T z1(t),
(7.56)

where z1(t) ∈ −∂ψV (q(t))(w(t)) and W (·) is defined in (7.53). Notice that q̇ is to be
understood as q̇(t) = q̇(t+) since t �= tk . Now since for all t ≥ 0 q̇(t+) ∈ V (q(t))
which is polar to ∂ψΦ(q(t)), and from the inclusion in Appendix B.2.2 it follows
that z1(t)T q̇(t+) ≥ 0. Therefore, themeasure dW is non-positive. Consequently, the
function W (·) is nonincreasing [341, p.101], and Lemma 7.1 is proved.

Remark 7.8 • The inclusion of the indicator function ψΦ(q(t)) in the Lyapunov
function not only guarantees its positive definiteness (which anyway is assured
along solutions of (7.49)which remain inΦ), but it also allowsone to consider cases
where the smooth potential has a minimum that is outside Φ. Saying “ψΦ(q) +
U (q) has a strict minimum at q�” is the same as saying “U (q) has a strict minimum
at q� inside Φ.” Since the indicator function has originally been introduced by
Moreau as a potential associated to unilateral constraints, it finds here its natural
use. In fact we could have kept the indicator function in the stability analysis. This
would just add a null term q̇(t+)T z2(t)

dt
dμ

(t) in the right-hand side of (7.54), with
z2(t) ∈ ∂ψΦ(q(t)).

• As alluded to above, taking en = 1 in (7.46) assures that there is no accumulation of
impacts, thus the sequence of impact times {tk}k≥0 can be ordered,dμa = ∑

k≥0 δtk ,
and velocities are piecewise continuous. Then a much simpler formulation can be
adopted by separating continuous motion phases occurring on intervals (tk, tk+1)

from impact times. The system is therefore non-Zeno for en = 1 and if Assump-
tion 7.3 holds.

• One does not need to make further assumptions on the measure dμa to conclude,
andwe see that this conclusion is obtained directly applying general differentiation
rules of RCLBV functions. The dynamicsmight even contain dense sets of velocity
discontinuities, (7.54) and (7.55) would continue to hold. This shows that using
the MDI formalism in (7.48) or (7.49) places the stability analysis in a much more
general perspective than, say, restricting q̇(·) to be piecewise continuous.

• The continuity with respect to initial data is used nowhere in the stability proof.

7.5.3 Dissipativity Properties

The dynamics in (7.48) has the interpretation in Fig. 7.6 with ξ ∈ ∂ψV (q(t))(w(t)).
Since ∂ψV (q(t))(w(t)) ⊆ NΦ(q(t)) = V ◦(q(t)) (the cone polar to V (q(t))), the
feedback loop in Fig. 7.6 contains the cone complementarity problem

NΦ(q(t)) ⊇ ∂ψV (q(t))(w(t)) � ξ ⊥ w(t) ∈ V (q(t)). (7.57)
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Fig. 7.6 Unilaterally
constrained Lagrangian
system: Passive
interconnection as a
set-valued nonsmooth Lur’e
system

–

ξ
0

w(t)

w(t) ∈V (q(t))

Lagrangian
dynamics

ξ ∈ ∂ψV (q)(w(t))
w(t)

When m = 1 and q ∈ bd(Φ), one has V (q) = R
+ and NΦ(q) = R

− in a suitable
frame attached to q, and the graph of the multivalued mapping is the so-called corner
law. In general, this is an example of an m-dimensional monotone multivalued map-
ping w(t) �→ ξ . Thus Lemma 7.1 extends the absolute stability problem and (7.48)
(or (7.49)) is interpreted as a Lur’e set-valued dynamical system. It is noteworthy
that the feedback loop in Fig. 7.6 contains both the complementarity conditions and
the collision mapping in (7.46). It is natural then to write a dissipation equality, fol-
lowing the developments of Sect. 5.4.4.5. To that end let us take advantage of the
compact formalism (7.49). We consider a Lebesgue measurable input τ(·) so that
(7.49) becomes:

− M(q(t))
du

dμ
(t) − F(q(t), u(t+))

dt

dμ
(t) − τ(t)

dt

dμ
∈ ∂ψV (q(t))(w(t)). (7.58)

Let ξ denote a measure that belongs to the normal cone to the tangent cone
∂ψV (q(t))(w(t)), and let us denote dR

dμ
(·) its density with respect to μ. The system in

(7.58) is dissipative with respect to the generalized supply rate:

〈1
2
(u(t+) + u(t−)), τ (t)

dt

dμ
+ dR

dμ
(t)〉, (7.59)

where 〈, ·, ·〉 denotes the scalar product. Noting that ξ = ∇ f (q(t))λn,u for some
measure λn,u we obtain

〈1
2
(u(t+) + u(t−)), τ (t)

dt

dμ
+ ∇ f (q(t))

dλn,u

dμ
(t)〉, (7.60)

where we recall that outside impacts (i.e. outside atoms of the measure dR) one has
dt
dμ

= 0 because the Lebesgue measure has no atom. It is noteworthy that (7.60) is a
generalization of the Thomson-Tait’s Formula, which expresses the work performed
by the contact forces during an impact. The supply rate in (7.60) may be split into two
parts: a function part and a measure part. The function part describes what happens
outside impacts, and one has 1

2 (u(t+) + u(t−) = u(t) = q̇(t). The measure part
describes what happens at impacts tk . Then one gets:

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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〈(u(t+k ) + u(t−k )), ∇ f (q(t)) dλn,u
dμ

(tk)〉 = 〈(u(t+k ) + u(t−k )), M(q(tk)(u(t+k ) − u(t−k ))〉
= u(t+k )T M(q(tk))u(t+k ) − u(t−k )T M(q(tk))u(t−k ) = 2TL (tk) ≤ 0,

(7.61)

where we used the fact that the dynamics at an impact time is algebraic:

M(q(tk))(u(t+k ) − u(t−k )) = ∇ f (q(t))
dλn,u

dμ
(tk),

with a suitable choice of the basis measure μ. The storage function of the system
is nothing else but its total energy. It may be viewed as the usual smooth energy
1
2 q̇

T M(q)q̇ +U (q), or as the unilateral energy 1
2 q̇

T M(q)q̇ +U (q)+ψΦ(q), which
is nonsmooth onRn ×R

n . It is worth remarking, however, that the nonsmoothness of
the storage function is not a consequence of the impacts, but of the complementarity
condition 0 ≤ f (q) ⊥ λ ≥ 0. Using the generalized supply rate in (7.59), and using
the calculations made in the proof of Lemma 7.1 (in particular the skew-symmetry
property used to get (7.56)), one can write down the dissipation equality: for any
time instants T1 ≥ T0 ≥ 0:

W (T1) − W (T0) = 〈 12 (u(t+) + u(t−)), τ (t) dt
dμ

+ dR
dμ

(t)〉
= 〈 12 (u(t+) + u(t−)), dR

dμ
(t)〉 + 〈u(t), τ (t) dt

dμ
〉

= ∑
k∈{k0,k1}〈(u(t+k ) + u(t−k )),∇ f (q) dλ

dμ
(tk)〉 + 〈u(t), τ (t) dt

dμ
〉

= ∑
k∈{k0,k1}TL(tk) + 〈u(t), τ (t) dt

dμ
〉,

(7.62)
where tk0 , tk0+1, …, tk1 are impact times in [T0, T1].
Remark 7.9 The difference between LCS as in (5.128) and Lagrangian complemen-
tarity systems is that the external input u(t) and the multiplier λn,u(t) in (5.128)
do not enter the dynamics through the same matrix (in general B �= E). Thus the
dissipativity may hold with the supply rate 〈λn,u, w〉while it does not with 〈u, w〉. In
Lagrangian systems both the control input τ(t) and the generalized contact force R
enter the dynamics similarly. This is why they both appear in the generalized supply
rate in (7.59). Let us finally note that if the Lagrangian dynamics contains a dissi-
pative force like a Rayleigh dissipation, then this has to be added in (7.62). Energy
balance equalities similar to the dissipation equality (7.62) have been derived in [80,
Proposition 7] and [243, Proposition 2.3], see also [218, Sect. 7.2].

Example 7.4 Let us consider the system in Fig. 7.7 whose dynamics is given as

⎧⎨
⎩
mẍ(t) = − f ẋ(t) − kx(t)
mÿ(t) = −mg + λ(t), 0 ≤ y(t) ⊥ λ(t) ≥ 0
ẏ(t+k ) = −en ẏ(t

−
k ) when y(tk) = 0, ẏ(t−k ) < 0,

(7.63)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 7.7 A simple two-dof
system

f

k

m

x

−g

y

where f > 0 is the damping, k > 0 is the stiffness of the spring-dashpot apparatus.
Obviously (q, q̇) = (0, 0) is the unique fixed point of (7.63) and one can check
that the same dynamics with y ≤ 0 no longer possesses any fixed point. For any
y(0) > 0 and en ∈ (0, 1) the sequence of impact times has a finite accumulation t∞.
The function in (7.53) is equal to:

W (q, q̇) = 1

2
mẋ2 + 1

2
mẏ2 + ψR+(y) + mgy + 1

2
kx2. (7.64)

One may check that this function has the properties required in the proof of
Lemma 7.1.

7.5.4 Further Reading and Comments

A complete exposition of Lyapunov stability, invariance principle for measure dif-
ferential inclusions, and their application to nonsmooth Lagrangian systems, is made
by Leine and van de Wouw in [730]. See in particular [730, Sects. 7.2 and 7.3] for
further extensions of Lemma 7.1. For instance [730, Theorem 7.6] may be used to
prove the asymptotic stability under certain conditions (like en ∈ [0, 1), and contin-
uous dependence of solutions with respect to initial data).21 Tangential effects like
Coulomb’s friction are taken into account in [730]. In this case one should not expect

21Basically, this is a sufficient condition for the Krasovskii-LaSalle invariance principle to hold,
because it implies that positive limit sets of solutions are positively invariant [730, Proposition
6.12]. The autonomy property is central in the proof of [730, Proposition 6.12], and recall from
Sect. 1.3.2 that it is implied by the uniqueness of solutions which is itself assured by the continuous
dependence on initial data.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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the uniqueness of fixed points, but rather the existence of equilibrium sets (and in
fact, the mere issue of the existence and uniqueness of an equilibrium, which is a
static equilibrium of the system, requires investigations [595, 964], see Sect. 5.5).
The attractivity of equilibrium sets for unilateral constraints and Coulomb’s friction
is tackled in [730, §7.3.1]. See also [96] for a complete stability analysis of a sim-
ple planar system with one unilateral contact with friction, and [593], who shows
that the uniqueness of q̈ and ∇ f (q)λ at the equilibrium (q�, 0)22 is necessary for
its stability. Further results are in [595]. The uniform, global asymptotic Lyapunov
stability of the Hill’s equation with unilateral constraints and impacts, is studied in
[723] (Hill’s equation is a system with varying parameter: ẍ(t) + g(t)x(t) = 0,
g(t) = g(t +π)). It is found [723, Theorem 2] that the restitution coefficient should
be small enough (i.e. impacts have to dissipate enough energy), depending on some
characteristics of the unconstrained Hill’s equation. Another analysis on a similar
system may be found in [1021]. Section7.3.5 summarizes results on the dynami-
cal behavior of the bouncing ball with an excited base. Results of the Lyapunov
stability of the bouncing-ball have been published in [462, 727, 945]. The study in
[727] concerns a bouncing-ball with excited base. It is made in the framework of
Moreau’s sweeping process, hence the dynamics encapsulates all phases of motion,
includingpersistent contact phases and accumulations of impacts (Zenopheomenon):
mdv +mgdt +më(t)dt ∈ −NT

R+ (q(t))(w(t)), amin ≤ ë(t) ≤ amax for all t , and w is
as in (7.48). The authors introduce the terminology of symptotic stability to denote
that the system’s fixed point is not only attractive but the trajectories converge to it
in finite time. They use nonmonotonic (or almost decreasing) Lyapunov functions,
but the requirements on the variation of the Lyapunov functions differ from those
in Propositions 8.1 and 8.5: it has to be upperbounded by a step function (the steps
being defined from the impact times) which decreases.

Proposition 7.2 [727] Suppose that 0 ≤ en ≤ ēn < 1. Let g+amax

g+amin
ē2n < 1, then the

fixed point q� = 0, q̇� = 0 of the excited bouncing-ball system is globally uniformly
symptotically attractively stable.

Related results are in [460, 462, 916, 943, 945], who nevertheless do not consider a
complete mechanical model, because the contact forces are not taken into account
(see comments in Remark 1.10). Thus only some kind of vibro-impact model is
studied (or flows with collisions, see Sect. 1.3.2), and in case of finite accumulation
of impacts, the stability analysis “stops” when the accumulation is attained. This
is named Zeno stability. The analysis in [146, 147] also use this hybrid dynamical
systems framework.

22See Sects. 5.1.1, 5.1.2, 5.1.3, 5.5, 5.5.6, for results in this direction.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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When considering mechanical systems, the main issue with the approaches
based on impulsive ODEs, impulsive Differential Inclusions or measure-
driven differential equations (see Chap.1), is either the absence of contact
forces, or a set-valued right-hand side which is not a suitable set for con-
tact forces. Indeed the equilibrium is a static mechanical equilibrium of the
ball on the ground, stating that the gravity force and the contact force bal-
ance each other (by Newton’s third law of action/reaction). Such an equilibrium
cannot exist without suitably chosen contact forces in the model. Introducing
contact force multiplier λn,u implies, however, the consideration of the comple-
mentarity conditions 0 ≤ λn,u ⊥ q ≥ 0 (equivalently the inclusion into normal
cones like Moreau’s set). This is the same, in fact, for all complementarity
dynamical systems.

Similar problems aremet in [777], see [207]. As alluded to inRemark 7.7, theMDI
in (7.49) does not share such drawback. This is clear if one follows the developments
of Sect. 5.2.2. Roughly speaking, the fundamental meaning of a differential inclusion
like ẋ(t) ∈ G(x(t)), disregarding any property to be assigned to the set G(x) for
securing the well-posedness, is that there exists an element of G(x(t)), say λ(t),
such that ẋ(t) = λ(t) for all t ≥ 0. Such an element λ(t) is called a selection of
the inclusion’s right-hand side. Consider for instance the differential inclusion (DI)
in (5.42), which models only smooth phases of motion. The meaning of this DI is
that there exists a selection P satisfying (5.40). Due to the particular structure of
the normal cone, this selection satisfies complementarity conditions with the gap
function f (q). Introducing the contact force and the complementarity conditions,
allows one to trivially answer the question: “is there a life after Zeno?” [39], since
the switch to a holonomically constrained system is automatically handled by the
complementarity conditions. One should however not disregard the fact that once
this switch has occurred, the contact is handled by a complementarity problem, see
Sect. 5.1.2, and that the constraints, even if closed, are not bilateral constraints.

� The same remark applies to the electrical circuits with ideal diodes in Sect. 5.4.4.

A Lyapunov function is derived in [462, 945] for the excited-base bouncing-

ball as V (q, q̇) = 1
g + k

√
1
2 q̇

2 + gq, where k >
√
21+en
1−en

. Roughly speaking, it is
required to strictly decrease outside impacts and not to increase at impact times [945,
Proposition 1]. An interesting question is whether or not such Lyapunov function
could be used in the trajectory tracking framework described in Sect. 8.1, during the
transition phases. One would obtain what was called the strong stability in [220].

� It is noteworthy that contrary to some other results which do not take into account
contact forces and complementarity conditions (hence which basically deal with
vibro-impact systems that involve ODEs and velocity jumps), the stability results

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_8
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in [727, 730], in Sects. 7.5, 8.1 and 8.3, do incorporate all phases of motion and a
correct modelling of the contact forces.

Most of these results nevertheless show asymptotic stability only, while onewould
expect inmany instances finite-time stabilization on the constraint boundary, as is the
case for the “basic” bouncing-ball. Apart from the already cited work [727], results
in this direction may be found in [243, 1252, 1253].

7.5.5 Global Finite-Time Stability via the Zhuravlev-Ivanov
Transformation

Let us illustrate how the nonsmooth Zhuravlev-Ivanov transformation of Sect. 1.4.3
may be used to design a finite-time stable controller for a double integrator subjected
to a unilateral constraint, as done by Oza, Orlov, and Spurgeon in [950]. The plant
dynamics is given as:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = x2(t)
ẋ2(t) = u(x1(t), x2(t)) + ω(x1(t), x2(t), t)
x1(t) ≥ 0 for all t ≥ 0
x2(t

+
k ) = −enx2(t

−
k ), x1(tk) = 0, x2(t

−
k ) < 0, en ∈ (0, 1),

(7.65)

where ω(·) is a piecewise continuous disturbance, |ω(x1, x2, t)| ≤ M . The proposed
controller is a twisting sliding-mode input23 of the form:

u(x1, x2) = −μ1sgn(x2) − μ2sgn(x1), (7.66)

with μ2 > μ1 > M > 0. The Zhuravlev-Ivanov change of state space in (1.83) is
used to transform (7.65) and (7.66) into:

⎧⎨
⎩
ṡ(t) = Rv(t)
v̇(t) ∈ R−1sgn(s(t))[u(|s(t)|, Rv(t)sgn(s(t))) + ω(|s(t)|, Rv(t)sgn(s(t)), t)]
u(s, v) = −μ1sgn(sv) − μ2,

(7.67)
which we rewrite as the differential inclusion:
{
ṡ(t) = Rv(t)
v̇(t) ∈ −μ1R−1sgn(v(t)) − μ2R−1sgn(s(t)) + R−1sgn(s(t))ω(s(t), v(t), t).

(7.68)

We see that (s, v) = (0, 0) is the unique fixed point of the closed-loop system (7.68),
since the conditions on the gains and the disturbance guarantee that the generalized
equation 0 = −μ1ξ2(t) − μ2ξ1(t) + ξ1(t)ω(0, 0, t), ξ1(t) ∈ sgn(v = 0) = [−1, 1],

23This type of set-valued controller is quite popular in the Sliding Mode Control scientific commu-
nity, was introduced in [734] and its finite-time stability studied in [948].

http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_8
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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ξ2(t) ∈ sgn(s = 0) = [−1, 1], has the solution ξ1 = ξ2 = 0. Moreover, (s, v) =
0 ⇒ (x1, x2) = (0, 0). Therefore, if the controller drives the trajectories of (7.68)
to the origin in finite-time, the origin of (7.65) and (7.66) is also attained in finite
time. If in addition the Lyapunov function used for the proof is a Lyapunov function
in the original coordinates, stability holds for both systems. The next result shows
finite-time stability and is inspired by [948].

Theorem 7.6 [950] Let en ∈ (0, 1). (i) Let M = 0 (no disturbance), then both sys-
tems (7.68) and (7.65), (7.66) are globally finite-time stable, and (7.68) is uniformly
globally finite-time stable. (ii) Let M < μ1 < μ2 − M, then both systems (7.68) and
(7.65), (7.66) are globally finite-time stable.

Proof (i) The Lyapunov function candidate V (s, v) = μ2|s| + 1
2v

2 is chosen. After
some calculations one obtains V̇ (s, v) ≤ −μ2|v||R − R−1| − μ1R−1v along the
trajectories of (7.68). The invariance principle for differential inclusions [37, 1106]
applied on the manifold v = 0 allows one to conclude the global uniform asymp-
totic stability of (7.68). Homogeneity arguments for the differential inclusion (7.68)
allow one to use [948, Theorem 3.1] to conclude the finite-time stability. (ii) The
global stability is proved similarly as in (i), using the same Lyapunov function.24

The rest of the proof proceeds in three steps. (a) One starts with the function

Ṽ (s, v) = V (s, v) + κsv, with κ < min

{
1, 2μ2

2

R̃
,

μ2|R1−R−1
1 |+R−1

1 (μ1−M)

R1

√
2R̃

}
, R1 = 2

1+en

if sgn(sv) = −1. It is possible to show that Ṽ (s, v) is positive definite on the com-

pact sets D = {(s, v)|V (s, v) ≤ R̃}, and inside D one has |s| ≤ R̃
μ2
, |v| ≤

√
2R̃.

Moreover we have ˙̃V (s, v) ≤ −K Ṽ (s, v) on the sets D, with K (μ1, μ2) =
c

[
max

{
2μ2

2+κ R̃
2μ2

,

√
R̃
.
2(1 + κ)

}]−1

> 0 and c = min(κR−1
1 (μ2−μ1−M), μ2|R1−

R−1
1 | + (μ1 − M)R−1

1 − κR1

√
2R̃). (b) We infer that V (s, v) decreases exponen-

tially fast: Ṽ (s(t), v(t)) ≤ Ṽ (s(0), v(0)) exp(−K (μ1μ2)t)where the initial time has
been taken zero. On the compact sets D the following holds: LV (s, v) ≤ Ṽ (s, v) ≤
MV (s, v), with 0 < L < min

{
2μ2

2−R̃κ

2μ2
2

, 1 − κ
}
, M > max

{
2μ2

2+R̃κ

2μ2
2

, 1 + κ
}

> 0.

Thus we get V (s(t), v(t)) ≤ L−1MR̃ exp(−K (μ1μ2)t) along the trajectories of
(7.68). Thus since all the above holds for arbitrary R̃ > 0, the origin of the system
with disturbance is globally uniformy asymptotically stable. (c) Homogeneity is used
again to prove the finite-time stability with [948, Theorem 3.2].

The origin of (7.68) is also shown to be reached after trajectories make an infi-
nite number of revolutions around it, which corresponds to a finite accumulation of
impacts in (7.65) and (7.66), and an estimate of the settling time is computed.

24At this step, one may also invoke LaSalle’s invariance principle, though the differential inclusion
is time-dependent, transforming the perturbed time-varying differential inclusion in an equivalent
autonomous differential equation with rectangular uncertainties [948, §2].
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Remark 7.10 Aone-degree-of-freedom system consisting of amassmoving on a flat
plane, with Coulomb’s friction is considered in [1278]. The controller is an impul-
sive force which creates a finite accumulation of tangential velocity discontinuities.
Therefore the closed-loop system is quite similar to (7.65) and (7.66), in that it
mixes set-valued terms like sign function and impulsive terms. The MDEs described
in Chap.1 do not encapsulate such nonsmooth dynamics.

7.6 Stabilization of Impacting Systems: From Compliant
to Rigid Models

The goal of the study in this section is to point out some problems related with sta-
bilization of motion-controlled manipulators that come in contact with a compliant
environment (in particular, the sufficient conditions guaranteeing asymptotic conver-
gence of the solutions towards the steady-state solution), and to propose a particular
stability analysis that applies to both the compliant and the rigid cases. The moti-
vations for doing this are clear: since one is able to prove that the trajectories of
compliant models converge towards those of rigid models, stability properties and
analysis should apply to both cases. We restrict ourselves to a simple continuous PD
motion controller, and to the case of a purely elastic environment (that corresponds
to the limit case when the impact itself does not dissipate energy). The material in
this section is consequently close to the one in Sect. 2.1.

7.6.1 System’s Dynamics

The systemdepicted in Fig. 7.8 consists of a simplemassmoving horizontallywithout
friction,whose position is given by x(t), and a compliant environment at x = 0whose
model is a massless spring with stiffness k > 0. This is the model that was used in
Sect. 2.1.1. The control law is given by u(x, ẋ, xd) = −λ2 ẋ − λ1(x − xd), xd ≥ 0,
λ1 > 0, λ2 > 0. The equations that govern our system are

{
mẍ(t) + λ2 ẋ(t) + λ1x(t) = λ1xd if x(t) < 0
mẍ(t) + λ2 ẋ(t) + (λ1 + k)x(t) = λ1xd if x(t) ≥ 0,

(7.69)

Fig. 7.8 Controlled mass
colliding an elastic wall

x(t)

m ku(t)

0

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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which according to the material of Sect. 2.1.1.2, can be rewritten equivalently as
a linear complementarity system: mẍ(t) + λ2 ẋ(t) + λ1x(t) − λ1xd = −λ(t),
0 ≤ λ(t) ⊥ λ(t)− kx(t) ≥ 0. Although this system consists of two switching vector
fields, the transition between both is continuous: this is called a continuous switching
system. If damping is added in the environment model, then the system is a discontin-
uous switching system that may be embedded into Filippov’s differential inclusions,
see Sect. 2.1.3. Convergence of the state (x, ẋ) towards the fixed point (x�, 0) of the
second equation in (7.69) may be investigated by considering the associated equiv-
alent total energy of the closed-loop system in (7.69). If one assumes that contact
persists, then a Lyapunov function of the form V (x, ẋ) = T (x, ẋ) +U (x) −U (x�),
where U (x) is the elastic potential energy, can be used to show via the Lagrange-
Dirichlet [60, §22B] and Krasovskii-LaSalle’s Lemma [1229] that the fixed point
(x�, 0) is asymptotically stable. But in the unilateral case it happens that the equiv-
alent closed-loop energy is not so simple since U (x) possesses a discontinuity at
x = 0. One therefore has to explicitly calculate a storage function of the complete
system. To this aim let us choose the input u = −λ2 ẋ−λ1(x−xd)+v. The so-called
available storage function is then defined as Va(x0, ẋ0) = supt,v − ∫ t

t0
v(r)ẋ(r)dr . In

our case the available storage is given by [218]:

Va(x0, ẋ0) =
⎧⎨
⎩

ẋ20
2 + λ1x20

2 − λ1xd x0 + λ2
1x

2
d

2(λ1+k) if x0 ≤ 0

ẋ20
2 + (λ1+k)

2

(
x0 − λ1xd

λ1+k

)2
if x0 > 0.

(7.70)

This function is a Lyapunov function for the system in (7.69), and it can be used
to prove the global asymptotic stability of the systems fixed point. However in the
sequel we focus on a particular stability property of this equilibrium point. The moti-
vation for studying this type of stability is evident if one thinks of more complicated
tasks as considered for instance in [852], where tracking is considered and hence
hampers the direct application of invariance principles. Also, the equivalence with a
mechanical system may no longer be possible in certain cases, e.g. when the feed-
back loop contains time-delays. From the mathematical results presented in Chap. 2,
see Theorem 2.1, it follows that as k → +∞, the solutions of the dynamical system
in (7.69) converge towards the solution of the system:

⎧⎪⎪⎨
⎪⎪⎩

mẍ(t) + λ2 ẋ(t) + λ1x(t) = λ1xd
ẍ(tk) = min(0,−λ2 ẋ(tk) − λ1x(tk) + λ1xd) if ẋ(t+k ) = 0, x(tk) = 0
x(t) ≤ 0 for all t ≥ 0
ẋ(t+k ) = −ẋ(t−k ) if x(tk) = 0, ẋ(t−k ) > 0.

(7.71)

Note that this convergence remains true even if damping is added, introducing a suit-
able restitution coefficient. Our main goal is therefore to look for a stability analysis
that is able to encompass both systems in (7.69) and (7.71). Since the solutions xn(t),
ẋn(t) of (7.69) (with k = kn , {kn} a strictly increasing sequence) tend as n → +∞

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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towards a solution of (7.71), there should logically exist a way to analyze their sta-
bility within a common framework.

7.6.2 Lyapunov Stability Analysis

In the following we analyze the stability of system (7.69) using a single Lyapunov
function. To begin with, we show how the stability analysis of the closed-loop system
in (7.69) can be led with a particular Lyapunov function candidate. Let us consider:

V (x, ẋ) = 1

2
mẋ2 + 1

2
λx̃2 + cx̃ ẋ, (7.72)

with λ = λ1 + k + λ2c
m , c > 0 is such that c2 − λ2c − m(λ1 + k) < 0 (since

Δ = λ2
2 + 4m(λ1 + k) > 0, and

√
Δ − λ2 > 0, such a c can always be chosen

arbitrarily small), and x̃ = x − λ1xd
λ1+k . λ and c guarantee that V (x, ẋ) is positive

definite. We obtain:

• x < 0 (noncontact phase)

V̇ (t) ≤ (−λ2+c+ 1

2
k2+ 1

2
)ẋ2+(− cλ1

m
+1)x̃2+

Δ=R(λ1,k,xd )︷ ︸︸ ︷
1

2

(
λ1k

λ1 + k
xd

)2
+ 1

2

(
cλ1k

(λ1 + k)m
xd

)2

(7.73)
or in compact form:

V̇ (t) = −anc(k, λ2)ẋ(t)
2 − bnc(λ1)x̃(t)

2 + R(λ1, k, xd). (7.74)

• x > 0 (contact phase)

V̇ (t) = (−λ2 + c)ẋ(t)2 − λ1 + k

m
cx̃(t)2 = −ac(λ2)ẋ(t)

2 − bc(k, λ1)x̃(t)
2. (7.75)

We denote z = (x̃, ẋ)T .

Proposition 7.3 (Quadratic Stability) [222] For any stiffness 0 < k < +∞ there
exist P = PT > 0, Q = QT > 0, λ�

1 < +∞, λ�
2 < +∞ such that λ1 > λ�

1, λ2 > λ�
2

implies that for all t ≥ 0, V (z) = zT Pz, and V̇ (z) ≤ −zT Qz along the trajectories
of (7.69). Thus the equilibrium point z = 0 is globally asymptotically stable in the
sense of Lyapunov and the system in (7.69) is quadratically stable.

Proof The control gains λ1 and λ2 can be chosen such that anc > 0 and bnc > 0. Thus
we conclude that for all x : V̇ (t) ≤ −α ẋ(t)2 − β x̃(t)2 + R, with α = min(anc, ac),
β = min(bnc, bc). Following the arguments in [303], we deduce that the state (x̃, ẋ)
converges in finite time in a ball with radius r , with r → 0 as λ1 and λ2 tend
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to +∞. Therefore for all t ≥ t̄ , t̄ < +∞, we get |x̃ | < r . Now notice (see (7.73))
that R → 1

2k
2x2d (1 + c2

m2 ) as λ1 → +∞. Since by taking λ1 and λ2 large enough
r can be made arbitrarily small and since λ1xd

λ1+k → xd when λ1 → +∞, it follows
that for λ1 and λ2 large enough, |x̃(t)| < r for t ≥ t̄ implies x(t) > 0 for t ≥ t̄ .
Then (7.75) implies that both ẋ and x̃ converge asymptotically to zero. Notice that
outside some ball BR̄ we have for some Q = QT > 0: V̇ (t) ≤ −zT Qz. This
can be easily deduced by spliting α and β into α1 and α2, β1 and β2: then V̇ (t) ≤
−α1 ẋ(t)2 − β1 x̃(t)2 − α2 ẋ(t)2 − β2 x̃(t)2 + R, so that outside the ball BR̄ with
R̄ = R

min(α2,β2)
, we get V̇ (t) ≤ −α1 ẋ(t)2 − β1 x̃(t)2. Still λ1 and λ2 can be chosen

large enough so that R̄ is as small as desired. Thus we deduce that for 0 ≤ t ≤ t̄ ,

‖ z(t) ‖≤
√

V (0)
λminP

exp(− λminQ
λmaxP

t), i.e. the ball BR̄ is reached exponentially fast.

7.6.3 Analysis of Quadratic Stability Conditions for Large
Stiffness Values

Weshall be contentwith the existence results on the feedback gains in Proposition 7.3.
However, note that if one takes the sufficient conditions for stability deduced from
this analysis, then λ1 and λ2 → +∞ as k → +∞. In other words, the sufficient
conditions imply feedback gains growing without bound as k → +∞. This suggests
that in order to obtain quadratic Lyapunov stability of (7.69) one has to choose
feedback gains proportional to the stiffness k as k becomes large. The aim of this
section is to prove that this is true. Notice that such a result is not satisfying, because
the solutions of (7.71) are bounded and in a sense are Lyapunov stable. This can be
shown by taking k = +∞ for V (·) in (7.72), so that x̃ = x : then one computes that
V (t−k+1) − V (t+k ) ≤ 0 and that σV (tk) = 0, using the fact that x(tk) = 0, x(t) < 0
on (tk, tk+1) and that the sequence {tk} exists.25 Then one notes that the restriction of
V (·) to Σ , i.e. VΣ(·), satisfies these inequalities also since VΣ(tk) = V (tk), hence
Lyapunov stability of the fixed point ẋ(tk) = 0 of PΣ (although PΣ is not calculable
explicitly). Since this stability is obtained for bounded feedback gains, one logically
expects to be able to find out a stability criterion that works “uniformly” with respect
to k, including k = +∞. Let us rewrite (7.69) in state space form as

⎧⎨
⎩
z ∈ (N C )

Δ= {x |x < 0} : ż(t) = Acz(t) +
(

0
k
m x(t)

)

z ∈ (C )
Δ= {x |x ≥ 0} : ż(t) = Acz(t),

(7.76)

25This last point will be important to assure via a suitable controller when one wants to stabilize a
system on a surface.
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where z =
(
x − λ1xd

λ1+k , ẋ
)T

, Ac =
(

0 1
−1
m (λ1 + k) −λ2

m

)
. Clearly, the choice of the

first component of z stems from the fact that we want to stabilize the system in
contact with the environment. Moreover, from (7.69) one sees that the equilibrium
point of the first equation belongs to (C ), which means that the system in (7.76)
possesses in fact only one equilibrium point, i.e. zT = (0, 0) (the uniqueness holds
for any value of xd ; when xd = 0 both equations in (7.69) have the same equilibrium
point (x, ẋ) = (0, 0)). Stability of Ac is independent of k since its eigenvalues
are either real strictly negative or with real part equal to −λ2

2m . In this way, for any
Qc = QT

c > 0 there always exists P = PT > 0 such that AT
c P + PAc = −Qc.

Since we want to stabilize the equilibrium point z = 0, we choose a Lyapunov
function candidate as V (z) = zT Pz. Along trajectories in (N C ) we get V̇ (t) =
−z(t)T Qcz(t) + z(t)T P

(
0

2k
m x(t)

)
. For simplicity of the analysis, let us choose

xd = 0. Then we can write V̇ (t) = −z(t)T Qcz(t)+ z(t)T PK z(t)
Δ= −z(t)T Q̄cz(t),

with K
Δ=
(

0 0
2k
m 0

)
. Simple calculations yield:

Qc =
⎡
⎣ 2 λ1+k

m p12
λ2
m p12 + λ1+k

m p22 − p11

λ2
m p12 + λ1+k

m p22 − p11 2
(

λ2
m p22 − p12

)
⎤
⎦ (7.77)

Qnc =
⎡
⎣

2λ1
m p12

λ2
m p12 + λ1

m p22 − p11

λ2
m p12 + λ1

m p22 − p11 2
(

λ2
m p22 − p12

)
⎤
⎦ , (7.78)

where Qnc is the symmetric part of the matrix Q̄c, that is independent of k. It is worth
noting that only the skew-symmetric part of Q̄c depends on k. Thus a necessary
condition for Qc to be positive definite is that:

• λ1+k
m p12 > 0

• det(Qc) = 4 λ1+k
m p12

(
λ2
m p22 − p12

) − (
λ2
m p12 + λ1+k

m p22 − p11
)2

> 0.

For Qnc the necessary conditions are the following:

• 2λ1
m p12 > 0

• det(Qnc) = 4 λ1
m p12

(
λ2
m p22 − p12

) − (
λ2
m p12 + λ1

m p22 − p11
)2

> 0.

Our aim in this section is to examine the conditions such that the simple system
(7.69) is Lyapunov quadratically stable, and in particular to find out which kind of
conditions this implies on the feedback gains. As shown below, the following result
is true (λmin(P) denotes the minimum eigenvalue of the matrix P):

Proposition 7.4 [222] Consider the one degree-of-freedom closed-loop equations
in (7.69) with xd = 0. Then quadratic stability of the system implies conditions
such that when the environment’s stiffness k grows unbounded, then the feedback
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gains λ1 and/or λ2 have to be chosen of order ≥ kβ , β ≥ 1
2 to guarantee that the

solution P of the Lyapunov equation remains bounded away from singularities (i.e.,
λmin(P) ≥ δ > 0 for some δ) and that the matrices Qc and Qnc remain positive
definite.

Remark 7.11 Clearly when xd = 0 the system in (7.69) can be analyzed considering
the first equation only provided the initial condition x(0) is negative (which is the
only possible choicewhen k = +∞). Then a simple choice of feedback gains implies
that the mass never collides with the environment. The above conclusions come from
the fact that the analysis is led considering both equations in (7.69), i.e. we require
the derivative of a Lyapunov function to be negative definite along two vector fields
at the same time.

Proof (of Proposition 7.4) Starting from the Lyapunov equation, one may first fix
Qc as a positive definite matrix and then try to calculate the unique corresponding
positive definite P [1229, Lemma 42, Chap.5] . A second way to attack the problem
is to pick a P > 0 and study the properties of the resulting Qc [1229, p.198]. In fact,
instead of choosing a Qc > 0 and solving the Lyapunov equation for P , we rather
consider a matrix P and find conditions such that the corresponding Qc is positive
definite, together with Qnc. Thuswe prove that the onlyway for P not to tend towards
a singular matrix while keeping Qc > 0 and Qnc > 0 when k increases is to take the
gain λ1 of order k2. The above determinants can be written in the following way:

det(Qnc) = 4
λ1

m
(p11 p22 − p212) − (

λ1

m
p22 + p11 − λ2

m
p12)

2

det(Qc) = 4
λ1 + k

m
(p11 p22 − p212) − (

λ1 + k

m
p22 + p11 − λ2

m
p12)

2

= − 1

m2
(λ1 p22 + mp11 − λ2 p12)

2 − 2
kp22
m2

(λ1 p22 + mp11 − λ2 p12)

+ 4
λ1 + k

m
(p11 p22 − p212) −

(
kp22
m

)2

.

Let us denote Y
Δ= λ1 p22 + mp11 − λ2 p12 and |P| = p11 p22 − p212 then :

• det(Qnc) > 0 ⇐⇒ 4λ1m|P| − Y 2 > 0
• det(Qc) > 0 ⇐⇒ Y 2 + 2kp22Y − 4(λ1 + k)m|P| + (kp22)2 < 0.

We deduce that Y has to satisfy the following inequalities:

{−2
√
mλ1|P| < Y < 2

√
mλ1|P|

−k p22 − 2
√
m(λ1 + k)|P| < Y < −k p22 + 2

√
m(λ1 + k)|P|. (7.79)

Since −k p22 − 2
√
m(λ1 + k)|P| < −2

√
mλ1|P| there exists a solution for Y if

and only if −2
√
mλ1|P| < −k p22 + 2

√
m(λ1 + k)|P|, which is found after some
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manipulations to be equivalent to the following conditions:

{
2Λ2

k p11 − 2
√

Λ2
k(Λ

2
k p

2
11 − p212) < p22 < 2Λ2

k p11 + 2
√

Λ2
k(Λ

2
k p

2
11 − p212)

p12 < Λk p11.
(7.80)

withΛk =
√
m(λ1+k)+√

mλ1

k . Notice that by choosing p22 = 2Λ2
k p11 we can find P that

satisfies (7.80) and that is positive-definite. From (7.79), Y satisfies the following
inequalities:

− 2
√
mλ1|P| < Y < min(−k p22 + 2

√
m(λ1 + k)|P|, 2√mλ1|P|). (7.81)

We can prove that λmin(P) ≤ p22 and λmax(P) ≥ p11 from which we deduce that:

λmax(P)

λmin(P)
≥ p11

p22
. (7.82)

From (7.80), we can write p22 < 4Λ2
k p11, thus P has bounded entries when p11 is

bounded and the above conditions are fulfilled. Then if p11 is a finite real number the
conditions of existence of Y imply that the coefficients p12 and p22 tend to zero when
the stiffness of the environment becomes infinite, rendering thematrix P singular. Let
us note that the stability analysis then becomes asymptotically (i.e. when k → +∞)
meaningless since Qnc in (7.78) has bounded entries. The only way to avoid this
problem is to increase the gain λ1 such that the coefficient Λk does not tend towards
zero when the stiffness increases, i.e. λ1 has to be chosen of order ≥ k2. Assume
that this is done so that P is well conditioned, and let us examine how λ2 has to be
chosen. λ2 may be found by using (7.81):

mp11 + λ1 p22 − Ymax

p12
< λ2 <

mp11 + λ1 p22 + 2
√
mλ1|P|

p12
, (7.83)

where Ymax = min(−k p22 +2
√
m(λ1 + k)|P|, 2√mλ1|P|). This implies that when

λ1 is of order k2 and k grows unbounded, the gain λ2 becomes infinite too. Let us
examine what happens if we allow p11 to be proportional to kα , α > 1. Then p22
may be chosen of order ≤ kα−1 from (7.80). Also, p12 will be of order ≤ kα− 1

2

from the second condition in (7.80). Now from (7.83) we have the following: if
Ymax ≤ 0 then obviously λ2 is of order k

1
2 as k → +∞. If Ymax > 0, let us

analyze the case when Ymax = 2
√
mλ1|P|: this value is maximum when p12 is

minimum, hence bounded, andwhen both p11 and p22 aremaximum, i.e. respectively,
of orders kα and kα−1; then Ymax is of order kα− 1

2 so that λ2 grows as k
1
2 . Now if

Ymax
Δ= A = −k p22 + 2

√
m(λ1 + k)|P| that we assume > 0: then necessarily

since p22 ≥ 0, the second term in A is at least of the same order as kp22 in k as k
grows unbounded. Thus at most the order of Ymax will be that of the second term
2
√
m(λ1 + k)|P|, which is found to be at most kα . But if this is the case then this
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term dominates 2
√
mλ1|P| and asymptotically (in k) Ymax will necessarily be equal

to this last term, hence we are back to the previous case. Now if the order of A is
kγ with γ < α then p11 will asymptotically dominate Ymax and the left-hand side
of (7.83) is asymptotically of order k

1
2 . Thus λ1 may be chosen bounded but λ2 will

grow unbounded to guarantee λminP ≥ δ > 0 for any arbitrarily small but fixed δ

and Qc > 0, Qnc > 0.

7.6.4 A Stiffness-Independent Convergence Analysis

First, let us consider the system in (7.71). Let us take the Poincaré section Σ+ ={
(x, ẋ)|x = 0, ẋ(t+k )

}
. Notice that if x(0) > 0, then the sequence of impact times

{tk} is infinite (this can be easily shown by studying the vector field between the
impacts, which forces the system to attain in finite time the constraint surface x = 0
whatever bounded initial conditions onemay choose). The impact Poincarémap PΣ :
ẋ(t+k ) → ẋ(t+k+1) is thus well defined. However it is not explicitly calculable, despite
the simplicity of the dynamics. This is due to the nonzero dissipation during flight-
times. Let us choose VΣ(k) = 1

2mẋ2(t+k ). We prove that PΣ(·) is Lyapunov stable
with VΣ(·) as a Lyapunov function as follows. Consider the function V (x − xd , ẋ) =
1
2mẋ2 + 1

2λ1(x − xd)2. Along free-motion trajectories of (7.71) one obtains V̇ (t) =
−λ2 ẋ(t)2 and at the impact times the jump σV (tk) = 1

2

[
ẋ2(t+k ) − ẋ2(t−k )

] = 0.
Hence we obtain:

V (t+k+1) − V (t+k ) = −λ2

∫
(tk ,tk+1)

ẋ(τ )2dτ ≤ 0. (7.84)

Now from the fact that V (t+k+1)−V (t+k ) = VΣ(k+1)−VΣ(k) ≤ 0, we conclude the
proof. This stability result suggests26 that one should be able to analyze the stability
of the system in (7.69) for any k ≥ 0, without the drawbacks encountered in the
previous section.

7.6.4.1 Asymptotic Convergence Analysis

Let us propose now a convergence analysis different from the one in Sect. 7.6.3 to
prove that the equilibrium point of (7.69) is asymptotically reached for any initial
condition and any value of the feedback gains, independently of the value of k. The
particular feature of the analysis is that it extends naturally to the rigid environment
case (i.e. k = +∞), contrary to the foregoing one. Roughly speaking, we consider
a particular section of the phase-plane: x = 0. Then we analyze the mass velocity

26Notice that we have not proved the asymptotic stability of PΣ .
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Fig. 7.9 Times ti and t+k

at the instants ti when the trajectories cross this section.27 We use the fact that these
times define a sequence along which the kinetic energy is nonincreasing. It follows
that if {ti } is an infinite sequence, the velocity must converge to zero when i → +∞.
This leads to a contradiction and there is a finite number of bounces, so that both
x̃ and ẋ converge to zero. To clarify the notations the instants ti and tk are depicted
in Fig. 7.9. We assume that the mass makes contact with the environment at t = ti ,
loses contact at t = ti+1, i ∈ N, and that contact occurs at x = 0. Thus contact occurs
on intervals [t2i , t2i+1], and free motion on intervals [t2i+1, t2i+2]. Let us consider the
positive definite functions:

Vc(x, ẋ) = 1

2
mẋ2 + 1

2
(λ1 + k)

(
x − λ1xd

λ1 + k

)2

(7.85)

and:

Vnc(x, ẋ) = 1

2
mẋ2 + 1

2
λ1(x − xd)

2. (7.86)

On intervals [t2i , t2i+1], V̇c(t) = −λ2 ẋ(t)2. On intervals [t2i+1, t2i+2], V̇nc(t) =
−λ2 ẋ(t)2. Let T (t) denote the system’s kinetic energy. From the fact that Vc(t2i+1)−
Vc(t2i ) = T (t2i+1) − T (t2i ) and Vnc(t2i+2) − Vnc(t2i+1) = T (t2i+2) − T (t2i+1), we
deduce that for all i , T (ti+1) − T (ti ) < 0, hence |ẋ(ti+1)| < |ẋ(ti )|. The same
inequalities hold for Vc and Vnc. Now notice that there are two situations: either the
sequence of instants ti is finite (the bounces stop after a finite time t2N , N < +∞,
and since xd > 0, x(t) > 0 for all t > t2N ), or this sequence is infinite i.e. N = +∞.

• If N < +∞, then for t > t2N the system is governed by the second equation in
(7.69) (indeed each time themass is “outside” the environment, it necessarily collides

27We do not use the notation tk because the ti ’s may correspond to detachment. In fact if contact is
made at t2i and lost at t2i+1, then tk = t2i .
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again after a finite time) and we conclude that x → λ1xd
λ1+k , ẋ → 0 asymptotically,

globally, and uniformly.
•Assume that N = +∞. Since the kinetic energy is a positive definite function of the
velocity that is nonincreasing at times ti , T (ti ) converges as i → +∞, and so does
ẋ(ti ). Suppose that |ẋ(ti )| → |ẋss | with |ẋss | ≥ δ > 0 (the ss subscript is for steady-
state value). Now δ > 0 and since sgn(ẋ(ti )) = −sgn(ẋ(ti+1)), x(ti ) = x(ti+1) = 0,
the length of the orbit between ti and ti+1 is strictly positive. Since the flow of
both equations in (7.69) is exponential and bounded for bounded feedback gains

and stiffness k, clearly λ[ti , ti+1] Δ= μi+1 > 0 and T (ti ) − T (ti+1)
Δ= βi+1 =

λ2
∫ ti+1

ti
ẋ2dt > 0. Note that for fixed and bounded coefficients in (7.69) μi and

βi depend only on δ (the other “initial” condition on the position remaining fixed
at the times ti ) so that in particular βi ≥ β(δ) > 0 for all i ≥ 0 and δ > 0.
Since T (ti ) is nonincreasing, its limit value is its minimum value and for all i ≥ 0,
|ẋ(ti )| ≥ |ẋss | > δ. From the strictly positive variation of the kinetic energy we
deduce that ẋ2(ti+1) = ẋ2(ti ) − 2βi

m , so that ẋ2i = ẋ20 − ∑ j=i−1
j=0 β j . Therefore, from

the fact that the βi ’s are strictly positive, we deduce that |ẋ(ti )| cannot converge
towards a strictly positive |ẋss |. Since however T (ti ) and thus ẋ(ti ) converge, we
deduce that the only possible limit value for the velocity is ẋss = 0. Notice that if
δ = 0, then both μi and βi may asymptotically take arbitrarily small values and
ẋ2i = ẋ20 − ∑ j=i−1

j=0 β j no longer leads to a contradiction. Thus we have shown that
if there is an infinite number of bounces, the value of the velocity when contact is
established or lost (x(ti ) = 0) is bounded and tends to zero.

Let us now consider an arbitrarily large integer i such that |ẋ(ti )| is arbitrarily
small, or in other words, for any ε > 0, there exists N (ε) > 0 such that i > N

implies |ẋ(ti )| < ε. We shall denote Δi+1
Δ= ti+1 − ti . First note that from any of the

two dynamic equations in (7.69) we get Δi ≤ Δmax < +∞ for some Δmax since the
“initial” velocities at times ti are bounded and tend towards zero. Now we use the
fact that both vector fields in (7.69) are explicitly integrable; assume that we place
ourselves at t2i such that ẋ(t2i ) = ε > 0, hence the system is in a contact phase
for some time since ẍ(ti ) = λ1xd − λ2ε > 0 for some ε > 0. We thus consider
the second equation in (7.69); If the negative roots r1 and r2 of the characteristic
equation are real and separated, r1 < r2, then the solution can be expressed as (recall
that x(ti ) = 0 for all i): x(t) = γ1er1(t−t2i ) + γ2er2(t−t2i ) + x̄d , with x̄d = λ1xd

λ1+k , and
γ1 = −γ2 − x̄d , γ1r1 = −γ2r2 + ε. Since we assume a priori that the sequence {ti }
is infinite, t2i+1 exists and we get:

ẋ(t2i+1) = γ1r1(e
r1Δ2i+1 − (1 − ε)er2Δ2i+1). (7.87)

From themonotonicity of {|ẋ(ti )|} and its convergence,we deduce that |ẋ(t2i+1)| ≤ ε.
Assume now that the sequence {Δ2i+1} does not converge towards zero, i.e. there
exists Δ > 0 such that Δ2i+1 ≥ Δ for all i . Then we get for any ε > 0:

|(1 − ε

γ1r1
)e(r2−r1)Δ2i+1 − 1| ≥ η(r1, r2,Δ) > 0, (7.88)
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and er1Δ2i+1 ≥ κ(Δmax, r1) > 0. From (7.87) we get |γ1r1κ(Δmax, r1)η(r1, r2,Δ)| <

ε, which cannot be true for ε small enough (note that the roots as well as Δ and
Δmax do not depend on ε). Since ε is arbitrarily small, we deduce that Δ2i+1 → 0
as i → +∞. A similar reasoning may be done for the case when r1 = r2. When
the roots are complex conjugate r1 = r + jω, r2 = r − jω, the solution is given by
x(t) = γ er(t−t2i ) cos(ω(t − t2i ) + ϕ) + x̄d , with γ = − x̄d

cosϕ
and tan ϕ = ε+x̄d r

x̄dω
. Now

we obtain:

ẋ(t2i+1) = γ erΔ2i+1
√
r2 + ω2 cos(ωΔ2i+1 + ϕ + Φ), (7.89)

with tanΦ = ω
r . Using the same arguments as in the real roots case, one sees that

for ẋ(t2i+1) to be arbitrarily small, we must have cos(ωΔ2i+1 + ϕ + Φ) arbitrarily
small, from which we deduce that ωΔ2i+1 +ϕ +Φ is arbitrarily close to π

2 . Now for
ε arbitrarily small, tan ϕ → r

ω
, and tan(ϕ +Φ) → +∞. But since Δ2i+1 is assumed

to be bounded away from zero (and strictly positive by definition), tan( π
2 −ωΔ2i+1)

is clearly bounded. Thus by contradiction we deduce that {Δ2i+1} converges to zero.
Now exactly the same reasoning may be done for the case of noncontact phases. It
follows that if the velocities at times ti converge towards zero, so do the intervals
Δi . Since again the sequence {ti } is infinite, if its limit is infinite also then (0, 0) is
an equilibrium point of the system in (7.69). Clearly this is not the case, except if
xd = 0 (for the sake of brevity this case is not analyzed here; the analysis can be
done using similar arguments). In conclusion, we have proved that the sequence {ti }
is either finite, or possesses a finite accumulation point. In both cases, we deduce
that the equilibrium point of the system in (7.69) is asymptotically attained.

7.6.4.2 Relationship with the Case of a Rigid Environment

In Sects. 7.6.2 and 7.6.3, we have seen that some stability analysismay not be suitable
in the sense that the conditions deduced on the feedback gains are obviously useless
in practice as soon as the stiffness becomes too large. However, the analysis in
Sect. 7.6.4.1 proves that the equilibrium point of the system in (7.69) will be attained
for any (strictly positive) value of the feedback gains, and any (bounded but arbitrarily
large) value of the stiffness k. In the rigid limit case, the system is described by the
equations in (7.71). Note that by considering the elastic dynamical problem in (7.71)
we get as long as contact ismaintained x ≡ ẋ ≡ 0, so that Vc(x, ẋ) = 1

2kx
2 = 0 since

the elastic potential energy vanishes. The only things that are modified in the rigid
case are that since the intervals [t2i , t2i+1] → {t2i }, the distinction between instants
t2i and t2i+1 becomes worthless (we can take the notation t2i = tk). Consequently,
μ2i+1 = β2i+1 = 0 while μ2i > 0 and β2i > 0. Basing on the analytical tools we
have outlined one can easily adapt the above analysis when k = +∞. If N < +∞,
then necessarily after a finite time x ≡ ẋ ≡ 0. Notice that as long as the restitution
coefficient en > 0, then {tk} is an infinite sequence except if ẋ(0−) = 0 and x(0) = 0.
If N = +∞, T (tk) converges as i → +∞, hence ẋ(tk) → 0. Note that only the flow
of the first equation in (7.69) has to be considered in the reasoning. The remaining
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arguments are the same. One sees that the stability analysis is simpler in the rigid
case, due to the fact that the contact equations are algebraic, no longer dynamical.
This enables us to study the variation of Vnc(·) not only on smooth dynamics but
also “during” contact, i.e. at impact times, i.e. in fact for all t ≥ 0.28 Hence only
Vnc(·) is needed to study the limit rigid case, since the contact phases reduce to
instants tk and with σVc(tk) = 0. It is finally noteworthy that since V̇nc(t) ≤ 0 on
(tk, tk+1) and σVnc(tk) = TL(tk) = 0, one gets Vnc(t

+
k+1) ≤ Vnc(t

+
k ) for all k ≥ 0.

Now since the restriction of Vnc(·) to the surface Σ = {(x, ẋ)|x = 0}, is such that
Vnc,Σ(tk) = Vnc(tk), one deduces that Vnc,Σ(·) is a Lyapunov function for the impact
Poincaré map PΣ . Therefore, the stability analysis made in Sect. 7.6.4 yields in the
limit as k → +∞ Lyapunov stability of the map PΣ . We thus have proved the
following:

Proposition 7.5 [222] Consider the closed-loop equations in (7.69). Then for any
λ1 > 0, λ2 > 0, k ∈ [0,+∞], and for all initial conditions x(0), ẋ(0), x → λ1xd

λ1+k
and ẋ → 0 as t → +∞.

A distinction has to be made between two different cases of analysis: we may con-
sider (i) either an arbitrarily large but bounded k, (ii) a k that tends to infinity (that is
implicitly a sequence of stiffnesses kn with unbounded limit together with the cor-
responding dynamics). Clearly Proposition 7.5 can be concluded from the analysis
in Sects. 7.6.2 and 7.6.3 in case (i), but not in case (ii). The utility of the analysis
proposed in Sect. 7.6.4 is to enable us to draw conclusions in both the compliant and
the rigid environment cases within a unique framework.

7.7 Stability of Linear Complementarity Systems

Sections7.5 and 7.6 deal with mechanical systems with unilateral constraints and
impacts. Let us focus on LCS as introduced in Sect. 5.4.4, where their well-posedness
and controllability have been analysed. The Lyapunov stability of equilibria for
various kinds of LCS has been tackled in [213–215, 252, 256, 463]. Consider the
dynamical system in (5.128) with zero input u(t). Some of these results assume that
the feedthrough matrix D is a P-matrix [256], some others that D = 0 [463], or that
the quadruple (A, B,C, D) is dissipative [252], which allows for D � 0. First of all
recall that the fixed points of the autonomous LCS in (5.128) are the solutions of the
generalized equation (given here as a mixed LCP):

{
0 = Ax� + Bλ�

0 ≤ λ� ⊥ w� = Cx� + Dλ� ≥ 0.
(7.90)

28This is not the case for the compliant model since V̇nc(t) = −λ2 ẋ(t)2 − kẋ(t)x(t) during contact
phases and V̇c(t) = −λ2 ẋ(t)2 + kẋ(t)x(t) during free-motion phases.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Let us summarize results from [256] on one hand, and from [463] on the other
hand. D being a P-matrix implies that the complementarity conditions of the LCS
form a uniquely solvable LCP, whose solution is a piecewise linear function of the
state. D = 0 means that the LCS is a differential inclusion of the generic form
ẋ(t) + f (x(t), t) ∈ −NK (x(t)), with K a closed convex set. In both cases we
deal with continuous solutions, see Theorem 5.11. The first result which we will
state, needs few definitions which extend the classical, unconstrained, Lyapunov’s
second method. They apply to a general convex closed set K ⊂ R

n and nonlinear
single-valued vector fields f (·, ·); however, we choose here a particular case where
K = {z ∈ R

n|Cz + d ≥ 0} for some d ∈ R
n , i.e. K is not necessarily a cone, and

the vector field is linear invariant. First, we extend the notion of copositive matrices
of Definition 5.4. A matrix P ∈ R

n×n is said to be copositive on K if xT Px ≥ 0, for
all x ∈ K . It is said to be strictly copositive on K if xT Px > 0 for all x ∈ K\{0}.
Let us denote by PK (resp. P+

K ) the set of copositive (resp. strictly copositive)
matrices on K . Let us also denote by P++

K the set of matrices satisfying P++
K ={

B ∈ R
n×n | inf x∈K\{0} xT Bx

‖x‖2 > 0
}
. It is clear that P++

K ⊂ P+
K ⊂ PK , and

K1 ⊂ K2 ⇒ P++
K2

⊂ P++
K1

. If K is a cone then P++
K = P+

K [463, Proposition 1].
Let us now denote byLK the set of Lyapunov positive stable matrices on K and by
L ++

K the set of Lyapunov positive strictly-stable matrices on K . They are defined as

LK = {
A ∈ IRn×n|∃P ∈ P++

K such that (I − [P + PT ])(∂K ) ⊂ K

and PA + AT P ∈ PK
}
.

L ++
K = {

A ∈ IRn×n|∃P ∈ P++
K such that (I − [P + PT ])(∂K ) ⊂ K

and PA + AT P ∈ P++
K

}
. (7.91)

We have (I − [P + PT ])(∂K ) = {z ∈ R
n|z = (I − [P + PT ])y for y ∈ ∂K }.

Let V (x) = 1
2 x

T (P + PT )x . The condition (I − [P + PT ])(∂K ) ⊂ K implies that
−∇V (x) ∈ TK (x)29 on ∂K : it characterizes the orientation of the level sets of V (x)
on the boundary ∂K . If K satisfies the requirements (B.7) may be used to rewrite
this condition. Let us note that P needs not be symmetric.

Theorem 7.7 (463, Theorems 1 and 5) Consider the multivalued complementarity
system ẋ(t) = Ax(t) + Bλ(t), 0 ≤ λ(t) ⊥ w(x(t)) = Cx(t) + d ≥ 0, x(0) = x0.
Suppose that 0 ∈ K, x0 ∈ K, and B = CT . The system has unique continuous
solutions with right-continuous derivatives. If A ∈ LK the trivial solution x∗ = 0 is
Lyapunov stable. If A ∈ L ++

K it is asymptotically Lyapunov stable.

The systems we consider in Theorem 7.7 are as in (5.134) and can therefore be
obtained from LCS doing Assumption 2. They are differential inclusions. As alluded
to above, Theorem 7.7 also applies to systems with nonlinear vector field [463,
Theorem 7] and with general closed convex set K (not necessarily polyhedral).
Jumps are not included in the stability analysis, they should be with state jump rules
as in (5.144) and (5.145).

29The tangent cone to K at x .

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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The next result assumes the feedthrough matrix D is a P-matrix. This secures that
the multiplier λ(·) is a Lipschitz continuous function of the state x , see Theorem

5.4. Thus λ(x) has a directional derivative λ′(x; d)
Δ= limτ→0,τ>0

λ(x+τd)−λ(x)
τ

. The

LCS map is defined as SOL′
LCS(x) =

(
λ(x)

λ′(x; dx)
)
, with the direction dx

Δ= Ax +
Bλ(x). Its graph is denoted GrSOL′

LCS(x). The Lyapunov function is designed as

V (x) = (xT , λ(x)T )M

(
x

λ(x)

)
, M =

(
P Q
QT R

)
, P = PT , R = RT . Let also

N =
⎛
⎝ AT P + PA PB + AT Q Q

BT P + QT A QT B + BT Q R
QT R 0

⎞
⎠. One also needs to define GrSOLCD =

{(x, λ(x))|0 ≤ λ(x) ⊥ Cx + Dλ(x) ≥ 0}.
Theorem 7.8 [256] Consider the autonomous LCS in (5.119), x(0) = x0. Let D be
a P-matrix. Assume that M is strictly copositive on GrSOLCD. If−N is copositive on
GrSOL′

LCS(x), the fixed point x
∗ = 0 is Lyapunov stable. If−N is strictly copositive

on GrSOL′
LCS(x), the fixed point x∗ = 0 is exponentially stable.

It is interesting to see that both Theorems use copositive matrices, instead of the
usual positive (semi) definite matrices of the Lyapunov equation.

7.8 Further Reading

It is shown in [147], using a similar “hybrid distance” as the one defined in (1.53)
that a switching PD controller applied to the bouncing ball allows to asymptotically
locally track some reference trajectory (xr (t), ẋr (t)), which is itself a bouncing ball
trajectory. The switching times are defined from the comparison of two quadratic
functions of (x − xr , ẋ − ẋr ) and (x + xr , ẋ + ẋr ), respectively. Preliminary stud-
ies on rotorcrafts and aerial robots that may interact with compliant environments
(unilateral spring) or rigid environment (complementarity conditions and kinematic
restitution coefficient) may be found in [35, 420, 562, 799]. The same system as in
Sect. 7.6 is considered in [511], with a linear spring-dashpot and discontinuous con-
tact force (see Sect. 2.1.3.1). A switching contact/noncontact controller is designed
for trajectory tracking, and the piecewise-linear closed-loop system is shown to be
globally uniformly asymptotically stable under certain conditions relating the feed-
back gains and the contact parameters (stiffness and damping coefficients). Mills
and co-workers studied the stability of manipulators colliding compliant environ-
ments in [758, 849, 852–854]. A Maxwell model in parallel with a linear spring is
used in [852], and is augmented with a spring/daspot mounted in series with it and
connected with a mass in [853]. This may be very rare instances in Control where
authors consider compliant contact models which are not the basic spring-dahspot
model with naive switching conditions (see Sect. 2.1.3). A linear dynamic model of
the environment is also chosen in [849]. We note that the analysis made in Sect. 7.6.3

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
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was originally motivated by the (sufficient) conditions of stability in [852], which
indeed imply that the control gains diverge as the contact stiffness goes to infinity.
Similar issues exist in [740].

� In view of the different rheological models presented in Sects. 2.1, 2.2, 2.3 and
4.2.1, 4.2.2, it could be useful to derive controllers which guarantee the stability of
general tasks, for larger classes of contact/impact models.

Further results on Lyapunov stability and LaSalle invariance of LCS and differen-
tial inclusions into normal cones to convex sets, may be found in [213–215, 252,
256, 463]. Some necessary conditions for stability known for smooth systems, are
extended to a class of LCS in [464]. In particular the case where D � 0 may be
treated using dissipativity [214, 252]. The results in [214, 215] hold for larger classes
of Lur’e set-valued systems. Closely related to complementarity systems and their
stability, are projected dynamical systems [1316], see [212] for a complete analysis
of the equivalences between these formalisms. An interesting topic concerns the use
of the LCS formalism of the mass-spring-dashpot system we derived in Chap.2,
and the results on observability, observer design and closed-loop stability in [217,
514]. More generally, we try to take advantage of the maximal monotonicity of some
compliant viscoelastoplastic models (see Sect. 2.3 for an introduction) for the sake
of stabilization of contact–noncontact robotic tasks.

http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_2
http://dx.doi.org/10.1007/978-3-319-28664-8_2


Chapter 8
Trajectory Tracking Feedback Control

This chapter is dedicated to the trajectory tracking control of a large class of
frictionless Lagrangian systems with multiple unilateral constraints, complemen-
tarity conditions and impacts: rigid-joint rigid-body systems and flexible-joint rigid-
body systems. The proposed controllers originate from [166, 220, 221], and aim at
settling a general framework for the stability analysis of tracking control of comple-
mentarity Lagrangian systems. The complete stability analysis was achieved in [873,
874]. They may be considered as the extension of the fixed parameters, passivity-
based controllers designed in [1119] and [223, 766] for Lagrangian systems without
constraints. Juggling systems dynamics and observability issues are briefly reviewed
at the end of the chapter.

8.1 Trajectory Tracking: Rigid-Joint Rigid-Body Systems

This section focuses on the problem of tracking control of complementarity
Lagrangian systems subject to frictionless unilateral constraints whose dynamics
are expressed as:

⎧⎨
⎩

M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = U + ∇ f (X)λX ,

0 ≤ λX ⊥ F(X) ≥ 0,

Collision rule,
(8.1)

where X (t) ∈ R
n is the vector of generalized coordinates, M(X) = MT (X) ∈ R

n×n

is the positive definite inertia matrix, f (X) ∈ R
m represents the signed distances

to the constraints, C(X, Ẋ) is the matrix containing Coriolis and centripetal forces,
G(X) contains conservative forces which derive from a potential, λX ∈ R

m is the
vector of the Lagrangian multipliers associated with the constraints,1 and U ∈ R

n

1We denoted it λn,u in (5.1). In this chapter we adopt a new notation because we will make a
generalized coordinate change.
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B. Brogliato, Nonsmooth Mechanics, Communications and Control Engineering,
DOI 10.1007/978-3-319-28664-8_8

477

http://dx.doi.org/10.1007/978-3-319-28664-8_5


478 8 Trajectory Tracking Feedback Control

is the vector of generalized torque inputs. For the sake of completeness we precise
that ∇ denotes the Euclidean gradient ∇ f (X) = (∇ f1(X), . . . ,∇ fm(X)) ∈ R

n×m

where ∇ fi (X) ∈ R
n represents the vector of partial derivatives of fi (·) w.r.t. the

components of X . We assume that the functions fi (·) are continuously differentiable
and that ∇ fi (X) �= 0 for all X with fi (X) = 0, according to Definition 1.8. For any
function f (·) the limit to the right at the instant t will be denoted by g(t+) and the
limit to the left will be denoted by g(t−). A simple jump of the function g(·) at the
moment t = t� is denoted as usual as: σg(t�) = g(t+

� ) − g(t−
� ). The Dirac measure

at time t is δt . The admissible domain associated with the system (8.1) is the closed
set Φ where the system can evolve and it is described as the finitely represented set:

Φ = {X ∈ R
n | f (X) ≥ 0} =

⋂
1≤i≤m

Φi ,

where Φi = {X ∈ R
n | fi (X) ≥ 0} considering that a vector is nonnegative if and

only if all its components are nonnegative. In order to have a well-posed problem
with a physical meaning we consider that Φ contains at least a closed ball of positive
radius.

Definition 8.1 A singularity of the boundary bd(Φ) of Φ is the intersection of two
or more codimension one surfaces Σi ⊆ {X ∈ R

n | fi (X) = 0}.
It is obvious that m > 1 allows both simple impacts (when one constraint is

involved) and multiple impacts (when singularities or surfaces of codimension larger
than 1 are involved). Let us introduce the following notion of pε-impact, which will
be useful for stability analysis.

Definition 8.2 Let ε ≥ 0 be a fixed real number. We say that a pε-impact occurs at
the instant t if

|| f I (X (t))|| ≤ ε,
∏
i∈I

fi (X (t)) = 0

where I = {i1, i2, . . . , i p} ⊂ 1, . . . , m, f I (X) = ( fi1(X), fi2(X), ..., fi p (X))T .

If ε = 0 the p surfaces Σi , i ∈ I are stroked simultaneously and a p−impact
occurs. When ε > 0 the system collides bd(Φ) in a neighborhood of the intersection⋂

i∈I Σi .
Let us briefly recall that in Moreau’s sweeping process framework, the tangent

cone to Φ = {X ∈ R
n | fi (X) ≥ 0, ∀i = 1, . . . , m} at X ∈ R

n is defined as:

TΦ(X) = {z ∈ R
n | zT ∇ fi (X) ≥ 0, ∀i = J (X)}

where J (X) � {i ∈ {1, . . . , m} | fi (X) ≤ 0} is the index set of active constraints.
When X ∈ Φ \ bd(Φ) one has J (X) = ∅ and TΦ(X) = R

n . The normal cone to Φ

at X is defined as the polar cone to TΦ(X):

NΦ(X) = {y ∈ R
n | ∀z ∈ TΦ(X), yT z ≤ 0} = (TΦ(X))◦.

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Contrarily to Sect. 5.2, we do not use the notation V (X) for the tangent cone,
in order to avoid confusion with Lyapunov functions. Throughout this section the
collision rule will be defined by Moreau’s relation (see Sect. 5.2, Remark 5.7):

Ẋ(t+
� ) = −en Ẋ(t−

� ) + arg min
z∈TΦ(X (t�))

(1 + en)

2
[z − Ẋ(t−

� )]T M(X (t�))[z − Ẋ(t−
� )] (8.2)

where Ẋ(t+
� ) is the postimpact velocity, Ẋ(t−

� ) is the pre-impact velocity and en ∈
[0, 1] is the restitution coefficient. Denoting by T (X, Ẋ) the kinetic energy of the
system, we can compute the kinetic energy loss at the impact time t� as2:

TL(t�) = T (X (t+
� ), Ẋ(t+

� )) − T (X (t−
� ), Ẋ(t−

� ))

= − 1−en
2(1+en)

[
[Ẋ(t+

� ) − Ẋ(t−
� )]T M(X (t�))[Ẋ(t+

� ) − Ẋ(t−
� )]
]

≤ 0.
(8.3)

However as noted in Remark 7.6 for the case of stability, we could enlarge the
analysis and use the generalized impact law in (6.44) and (6.45).

8.1.1 Basic Concepts

The following notations will be adopted: bp ∈ R
p and bn−p ∈ R

n−p are the vectors
formed with the first p and the last n− p components of b ∈ R

n , respectively, λmin(·)
and λmax (·) represent the smallest and the largest eigenvalues of a symmetric positive
definite matrix, respectively.

8.1.1.1 Typical Task

The time axis can be split into intervals Ωk and Ik corresponding to specific phases of
motion. Due to the singularities of bd(Φ), the constrained motion phases need to be
decomposed in subphases where some specific constraints are active. Between two
such subphases a transition phase occurs only when the number of active constraints
increases. This means that a typical task can be represented in the time domain as:

t ∈ R
+ = Ω∅

0 ∪
[⋃

k≥1

(
Ik ∪

(
mk⋃
i=1

Ω
Jk,i

k

))]

Jk,mk ⊂ Jk+1,1, Jk,mk ⊂ Jk,mk−1,⊂ . . . ⊂ Jk,1

(8.4)

2In this section and the next one, impact times are denoted as tl instead of tk , since the subscript k
is kept for the cycles in (8.4).

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_6
http://dx.doi.org/10.1007/978-3-319-28664-8_6
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where the superscript Jk,i = {
j ∈ {1, . . . , m} | f j (X) = 0

}
represents the set of

active constraints during the corresponding motion phase, and Ik denotes the transient
between two Ωk phases when the number of active constraints increases. Inside⋃mk

i=1 Ω
Jk,i

k , the number of active constraints decreases. Thus there is no need for

transition phases between Ω
Jk,i

k and Ω
Jk,i+1

k . Without loss of generality we suppose
that the system is initialized in the interior of Φ at a free-motion phase. The impacts
during Ik involve p = |Jk,1| constraints (pε-impacts). Furthermore we shall prove
that the first impact of Ik is a pε-impact with ε bounded by a parameter chosen by
the designer. When the number of active constraints decreases there is no impact,
thus no other transition phases are needed. We note that Jk,i = ∅ corresponds to
free-motion ( f (X) > 0). It is assumed in (8.4) that the system is initialized in a
free-motion mode.

Since the tracking control problem involves no difficulty during the Ωk phases, the
central issue is the study of the passages between them (the design of transition phases
Ik and detachment conditions), and the stability of the trajectories evolving along
(8.4) (i.e., an infinity of cycles). As alluded to above, the passage Ω

Jk,i

k → Ω
Jk,i+1

k
consists of detachments from some constraints. In Sect. 8.1.5 we consider that p
constraints are active and we give the conditions to smoothly take off from r of
them. It is clear that once we know how to do that, we can manage all the transitions

mentioned above. Throughout this section, the sequence Ik ∪
(⋃mk

i=1 Ω
Jk,i

k

)
will be

referred to as the cycle Ck of the system’s evolution, hence R+ = Ω∅
0

⋃
k≥1 Ck . From

cycle k to cycle k +1, the number of active constraints increases: a transition phase is
needed. For robustness reasons during transition phases Ik we impose a closed-loop
dynamics (containing impacts) that mimics somehow the bouncing ball dynamics
(thus avoiding the precise knowledge of the constraint position and of the coefficient
of restitution).

8.1.1.2 Exogenous Signals Entering the Dynamics

In this section we introduce the trajectories playing a role in the dynamics and the
design of the controller. Some instants that will be used further are also defined.

• Xnc(·) denotes the desired trajectory of the unconstrained system (i.e., the trajec-
tory that the system should track if there were no constraints). We suppose that
f (Xnc(t) < 0 for some t , otherwise the problem reduces to the tracking control
of a system with no constraints.

• X∗
d(·) denotes the signal entering the control input and playing the role of the

desired trajectory during some parts of the motion.
• Xd(·) represents the signal entering the Lyapunov function. This signal is set on

bd(Φ) after the first impact of each cycle.
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The signals X∗
d(·) and Xd(·) coincide on the Ωk phases while Xnc(·) is used to define

everywhere X∗
d(·) and Xd(·). These three functions coincide only on the Ω∅

k phases.
Throughout the section we consider Ik = [τ k

0 , t k
f ], where τ k

0 is chosen by the
designer as the start of the transition phase Ik and t k

f is the end of Ik . We note that
all superscripts (·)k will refer to the cycle k of the system motion. We also use the
following notations:

• t k
0 is the first impact during the cycle k,

• t k∞ is the accumulation point of the sequence {t k
� }�≥0 of the impact instants during

the cycle k (t k
f ≥ t k∞),

• τ k
1 will be explicitly defined later and represents the instant when the signal X∗

d(·)
reaches a given value chosen by the designer in order to impose a closed-loop
dynamics with impacts during the transition phases,

• t k,i
d is the desired detachment instant at the end of the phase Ω

Jk,i

k .

It is noteworthy that t k
0 , t k∞ are state dependent, whereas τ k

0 , τ k
1 and t k,i

d are exogenous
and imposed by the designer. To better understand the definition of these specific
instants, in Fig. 8.1 we represent the exogenous signals Xnc(·), Xd(·), X∗

d(·) during

a sequence Ω
Jk−1
k−1 ∪ Ik ∪ Ω

Jk,1

k ∪ Ω
Jk,2

k when the motion is simplified as follows:

• during the transition phase we take into account only the constraints that must be
activated Jk,1 \ Jk−1,mk−1 .

• at the end of the phase Ω
Jk,1

k we take into account only the constraints that must
be deactivated Jk,1 \ Jk,2.

The points A, A′, A′′ and C in Fig. 8.1 correspond to the moments τ k
0 , t k

0 , t k
f and

t k,1
d respectively. We have seen that the choice of τ k

0 plays an important role in the
stability criterion given by Proposition 8.1. On the other hand in Fig. 8.1 we see that
starting from A the desired trajectory Xd(·) = X∗

d(·) is deformed compared to Xnc(·).

Fig. 8.1 The closed-loop
desired trajectory and control
signals (∂Φ = bd(Φ))

A
A’’

BA’

C

Φ

∂Φ

X∗
d (t) = Xd(t)

Xd(t)
X∗

d (t)

Xnc(t) = X∗
d (t) = Xd(t)

Xnc(t)



482 8 Trajectory Tracking Feedback Control

In order to reduce this deformation, the time τ k
0 and implicitly the point A must be

close to bd(Φ) (see also Fig. 8.4). Further details on the choice of τ k
0 will be given

later. Taking into account just the constraints Jk,1 \ Jk,2 we can identify t k,1
d with the

moment when Xd(·) and Xnc(·) rejoin at C . See also Fig. 8.4 for an illustration on
an example.

8.1.1.3 Stability Analysis Criteria

The system (8.1) is a complex nonsmooth and nonlinear dynamical system which
involves continuous and discrete time phases. A stability framework for this type of
systems has been proposed in [220] and extended in [166]. This is an extension of the
Lyapunov second method adapted to closed-loop mechanical systems with unilateral
constraints. Since we use this criterion in the following tracking control strategy it
is worth to clarify the framework and to introduce some definitions.

Let us define Ω as the complement in R
+ of I =

⋃
k≥1

Ik and assume that the

Lebesgue measure of Ω , denoted η[Ω], equals infinity. Consider x(·) the state of the
closed-loop system in (8.1) with some feedback controller U (X, Ẋ , X∗

d , Ẋ∗
d , Ẍ∗

d).

Definition 8.3 (Weakly Stable System [166]) The closed-loop system is called
weakly stable if for each ε > 0 there exists δ(ε) > 0 such that ||x(0)|| ≤ δ(ε) ⇒
||x(t)|| ≤ ε for all t ≥ 0, t ∈ Ω . The system is asymptotically weakly stable
if it is weakly stable and lim

t∈Ω, t→∞ x(t) = 0. Finally, the practical weak stability

holds if there exists 0 < R < +∞ and t∗ < +∞ such that ||x(t)|| < R for all
t > t∗, t ∈ Ω .

Weak stability is therefore Lyapunov stability without looking at the transition
phases. Consider V (·) such that there exists class K functions α(·) and β(·) such
that α(||x ||) ≤ V (x, t) ≤ β(||x ||).
Definition 8.4 A transition phase Ik is called finite if it involves a sequence of
impact times (t k

� )0≤�≤N , N ≤ ∞ with the accumulation point t k
N < ∞ (for the sake

of simplicity we shall denote the accumulation point by t k∞ even if N < ∞).

In the sequel all the transition phases are supposed finite, which implies that
en < 1 (in [81] it is shown that e = 1 implies that t k∞ = +∞). The following
criterion will be used to study the stability of the closed-loop system (8.1), with U
given in Sect. 8.1.2.
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Proposition 8.1 (Weak Stability) Assume that the task admits the representa-
tion (8.4) and that

(a) η[Ik] < +∞, ∀k ∈ N,
(b) outside the impact accumulation phases [t k

0 , t k∞] one has V̇ (x(t), t) ≤
−γ V (x(t), t) for some constant γ > 0,

(c)
∑
�≥0

[
V (t k−

�+1) − V (t k+
� )
] ≤ K1V p1(τ k

0 ), ∀k ∈ N for some p1 ≥ 0, K1 ≥ 0,

(d) the system is initialized on Ω0 such that V (τ 1
0 ) ≤ 1,

(e)
∑
�≥0

σV (t k
� ) ≤ K2V p2(τ k

0 )+ξ, ∀k ∈ N for some p2 ≥ 0, K2 ≥ 0 and ξ ≥ 0.

If p = min{p1, p2} < 1 then V (τ k
0 ) ≤ δ(γ, ξ), ∀k ≥ 2, where δ(γ, ξ) is a

function that can be made arbitrarily small by increasing the value of γ . The
system is practically weakly stable with R = α−1(δ(γ, ξ)).

Proof From assumption (b) one has

V (t k
f ) ≤ V (t k

∞)e−γ (t k
f −t k∞).

It is clear that condition (c) combined with (e) leads to

V (t k
∞) ≤ V (τ k

0 ) + K1V p1(τ k
0 ) + K2V p2(τ k

0 ) + ξ.

Considering p < 1, the assumption (d) guarantees that max{V (τ k
0 ), V p1(τ k

0 ),

V p2(τ k
0 )} ≤ V p(τ k

0 ) ≤ 1 and we get:

V (t k
f ) ≤ e−γ (t k

f −t k∞) [1 + K1 + K2 + ξ ] � δ(γ, ξ).

From assumption (b) one has V (τ k+1
0 ) ≤ V (t k

f ) and thus V (τ k
0 ) ≤ δ(γ, ξ), ∀k ≥ 2.

The term δ(γ, ξ) can be made as small as desired increasing either γ or the length of
the interval [t k∞, t k

f ]. The proof is completed by the relation α(||x ||) ≤ V (x, t), ∀x, t .

Remark 8.1 Since the Lyapunov function is exponentially decreasing on the Ωk

phases, assumption (d) in Proposition 8.1 means that the system is initialized on Ω0

sufficiently far from the moment when the trajectory Xnc(·) leaves the admissible
domain.



484 8 Trajectory Tracking Feedback Control

Fig. 8.2 Typical evolution
of the Lyapunov function of
weakly stable systems

Precisely, the weak stability is characterized by an “almost decreasing” Lyapunov
function V (x(·).·) as illustrated in Fig. 8.2.

Remark 8.2 It is worth to point out the local character of the stability criterion
proposed by Proposition 8.1. This character is first given by condition (d) of the
statement and second by the synchronization constraints of the control law and the
motion phase of the system (see (8.4) and (8.7) below).

The practical stability is very useful because attaining asymptotic stability is not
an easy task for the unilaterally constrained systems described by (8.1) especially
when n ≥ 2 and M(q) is not a diagonal matrix (i.e., there are inertial couplings,
which is the general case).

8.1.1.4 Dissipativity and Tracking Versus Stabilization

Let us make a parenthesis to highlight the major discrepancy between the trajectory
tracking problem and the stabilization problem treated in Sect. 7.5. To this aim let us
first recall that the dynamics in (8.1) and (8.2) can be equivalently rewritten as the
sweeping process Measure Differential Inclusion (see Sect. 5.2 for details):

{−M(q(t))dv − [C(X (t), v(t+))v(t+) − G(X (t)) + U (t)]dt ∈ NTΦ(X (t))(w(t))
w(t) = v(t+)+env(t−)

1+en
,

(8.5)

where dv is the differential measure associated with the velocity v(·) that is a
right-continuous function of local bounded variation, v(·) is equal almost every-
where to Ẋ(·), X (·) is absolutely continuous and X (t) − X (0) = ∫

[0,t] v(s)ds. The
right-hand side is the normal cone to the tangent cone, also named Moreau’s set

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_5


8.1 Trajectory Tracking: Rigid-Joint Rigid-Body Systems 485

(see (5.43)). As shown in Sect. 7.5, a crucial property for stabilization is that the
Cone Complementarity Problem:

NTΦ(X (t))(w(t)) � ξ ⊥ w(t) ∈ TΦ(X (t)) (8.6)

defines a maximal monotone mapping ξ �→ w, because the two cones TΦ(·) and
NΦ(·) are polar cones, and NTΦ(X (t))(·) ⊆ NΦ(·) (see section B.2.2 for a proof).
This maximal monotonicity property allows one to use dissipativity arguments in
an absolute stability framework to derive a Lyapunov function, as ilustrated in
Figure 7.6. Let us consider now the tracking control problem. The new closed-

loop state vector is (X̃ ,
˙̃X). Therefore the right-hand side of the closed-loop measure

differential inclusion becomes the normal cone NTΦ(X̃(t)+Xd (t))(w̃(t) + wd(t)), with

wd(t) = vd (t+)+envd (t−)

1+en
. The sets TΦt (·) Δ= TΦ(·+Xd(t)) and NT t

Φt
(·) Δ= NTΦt

(·+wd(t))
are now time varying, and the monotonicity property is generally lost. This explains
why the trajectory tracking problem is much more intricate than its stabilization
counterpart.

8.1.2 Controller Design

In order to overcome some difficulties that can appear in the controller definition,
the dynamical equations (8.1) will be expressed in the generalized coordinates intro-
duced by McClamroch and Wang [835], which allow one to split the generalized
coordinates into “normal” and “tangential” parts, with a suitable diffeomorphic trans-
formation q = Q(X). This is a coordinate partitioning method, however, preserving
the Lagrangian structure of the dynamical equations since it uses a diffeomorphic
generalized coordinate transformation.3 We suppose that the generalized coordinates
transformation holds globally in Φ, which may obviously not be the case in general.

Let us consider D = [Im
... O] ∈ R

m×n , Im ∈ R
m×m the identity matrix. The new

coordinates will be q = Q(X) ∈ R
n , with q =

[
q1

q2

]
, q1 =

⎡
⎢⎣

q1
1
...

qm
1

⎤
⎥⎦ such that

Φ = {q | Dq ≥ 0}.4 The tangent cone TΦ(q1 = 0) = {v ∈ R
n|Dv ≥ 0} is the space

of admissible velocities on bd(Φ) at q1 = 0. More generally, if only p components
of q1 satisfy qi

1 = 0, then TΦ(q1) = {v ∈ R
n|Dpv ≥ 0} for the corresponding

submatrix Dp ∈ R
p×n .

3The Lagrangian dynamics is preserved by diffeomorphic generalized coordinates transformations.
4In particular it is implicitly assumed that the functions fi (·) in (8.1) are linearly independent, i.e.,
the gradients ∇ fi (X) are independent vectors, 1 ≤ i ≤ m.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_7
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The controller used here consists of different low-level control laws for each phase
of the system. More precisely, the switching controller can be expressed as

W (q)U =
⎧⎨
⎩

Unc for t ∈ Ω∅
k

U J
t for t ∈ Ik

U J
c for t ∈ Ω J

k ,

(8.7)

where W (q) =
(

W1(q)

W2(q)

)
∈ R

n×n is fullrank under some basic assumptions like

independency of the constraints [835]. The subscript nc is for non-contact, t is for
transition, and c is for contact. The dynamics becomes:

⎧⎪⎪⎨
⎪⎪⎩

M11(q)q̈1 + M12(q)q̈2 + C1(q, q̇)q̇ + g1(q) = W1(q)U + λ

M21(q)q̈1 + M22(q)q̈2 + C2(q, q̇)q̇ + g2(q) = W2(q)U
qi

1 ≥ 0, qi
1λi = 0, λi ≥ 0, 1 ≤ i ≤ m

Collision rule,

(8.8)

where the set of complementary relations can be written more compactly as 0 ≤ λ ⊥
Dq ≥ 0. One sees that the proposed coordinate change allows one to simplify the
form of the unilateral constraints. It is noteworthy that this is not a quasi-coordinate
change: the dynamics in (8.8) is a complementarity Lagrangian system. Again one
may write (8.8) as a Moreau’s sweeping process in the q-coordinates. For control
design purpose, it is however more convenient to work within the complementarity
framework, because LCPs can be analyzed.

Remark 8.3 The McClamroch and Wang [835] transformation was introduced orig-
inaly for bilateral holonomic frictionless constraints h(q) = 0. Then the dynamics
is reduced since q1(·) is identically null along the constraint manifold.

In the sequel Unc coincides with the fixed-parameter controller proposed in [1119]
and the closed-loop stability analysis of the system is based on Proposition 8.1. First,
let us introduce some notations: q̃ = q − qd , q̄ = q − q∗

d , s = ˙̃q + γ2q̃, s̄ =
˙̄q + γ2q̄, q̇e = q̇d − γ2q̃ where γ2 > 0 is a scalar gain and qd(·), q∗

d (·) represent the
desired trajectories defined in the previous section in the X -coordinates. Using the
above notations the controller is given by:

W (q)U �

⎧⎪⎪⎨
⎪⎪⎩

Unc = M(q)q̈e + C(q, q̇)q̇e + G(q) − γ1s
U J

t = Unc, t ≤ t k
0

U J
t = M(q)q̈e + C(q, q̇)q̇e + G(q) − γ1s̄, t > t k

0
U J

c = Unc − Pd + K f (Pq − Pd),

(8.9)

where γ1 > 0 is a scalar gain, K f � 0, Pq = DT λ and Pd = DT λd is the desired
contact force during persistently constrained motion. It is clear that during Ω J

k not
all the constraints are active and, therefore, some components of λ and λd are zero.
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In order to prove the stability of the closed-loop system (8.7)–(8.9) we will use
the following positive definite function:

V (t, s, q̃) = 1

2
sT M(q)s + γ1γ2q̃T q̃. (8.10)

8.1.3 Tracking Control Framework

8.1.3.1 Design of the Desired Trajectories

The tracking control problem for the closed-loop dynamical system (8.7)–(8.9) is
analyzed with the complete desired path, a priori taking into account the comple-
mentarity conditions and the impacts. In order to define the desired trajectory let
us consider the motion of a virtual and unconstrained particle perfectly following a
trajectory (represented by Xnc(·) in Fig. 8.1) with an orbit that leaves the admissible
domain for a given period. Therefore, the orbit of the virtual particle can be split
into two parts, one of them belonging to the admissible domain (inner part) and the
other one outside the admissible domain (outer part). In the sequel we deal with the
tracking control strategy when the desired trajectory is constructed such that:

(i) when no activated constraints, it coincides with the trajectory of the virtual
particle (the desired path and velocity are defined by the path and velocity of
the virtual particle, respectively),

(ii) when p ≤ m constraints are active, its orbit coincides with the projection of the
outer part of the virtual particle’s orbit on the surface of codimension p defined
by the activated constraints (Xd between A′′ and C in Fig. 8.1),

(iii) the desired detachment moment and the moment when the virtual particle
re-enters the admissible domain (with respect to p ≤ m constraints) are syn-
chronized.

Therefore we have not only to track a desired path but also to impose a desired
velocity allowing the motion synchronization on the admissible domain. The main
difficulties here consist of:

• stabilizing the system on bd(Φ) during the transition phases Ik and incorporating
the velocity jumps in the overall stability analysis;

• deactivating some constraints at the moment when the unconstrained trajectory
re-enters the admissible domain with respect to them;

• maintaining a persistently constrained motion between the moment when the sys-
tem was stabilized on bd(Φ) and the detachment moment.

Remark 8.4 The problem can be relaxed considering that we want to track only a
desired path like Xnc(·) (without imposing a desired velocity on the inner part of
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the desired trajectory and/or a given period to complete a cycle). In this way the
synchronization problem (iii) disappears and we can assume there exists a twice
differentiable desired trajectory outside [t k

0 , t k
f ] that assures the detachment when the

force control is dropped. In other words, in this case we have to design the desired
trajectory only during Ik phases.

8.1.3.2 Design of q∗
d (·) and qd(·) on the Phases Ik

During the transition phases the system must be stabilized on bd(Φ). Obviously, this
does not mean that all the constraints have to be activated (i.e., qi

1(t) = 0, ∀i =
1, . . . , m). Let us consider that only the first p constraints (eventually reordering
the coordinates) define the boundary of Φ where the system must be stabilized. The
following methodology will be used to define q∗

d (·):
(1) During a small period δ > 0 chosen by the designer the desired velocity becomes

zero preserving the twice differentiability of q∗
d (·). For instance we can use the

following definition:

q∗
d (t) = qnc

(
τ k

0 + (t − τ k
0 − δ)2(t − τ k

0 )

δ2

)
, t ∈ [τ k

0 , τ k
0 + δ],

which means q∗
d (τ k

0 + δ) = q∗
d (τ k

0 ) = qnc(τ k
0 ), q̇∗

d (τ k
0 + δ) = 0 and q̇∗

d (τ k
0 ) =

q̇nc(τ k
0 ).

(2) The last n − p components of q∗
d (·) are frozen:

(
q∗

d

)
n−p (t) = qnc

n−p(τ
k
0 ), t ∈ (τ k

0 + δ, t k
f ]. (8.11)

(3) For a fixed ϕ > 0 the moment τ k
1 is chosen by the designer as the instant when

the limit conditions
(
qi

d

)∗
(τ k

1 ) = −νV 1/3(τ k
0 ),

(
q̇ i

d

)∗
(τ k

1 ) = 0, ∀i = 1, . . . , p,
hold. On [τ k

0 + δ, τ k
1 ) we define q∗

d (·) as a twice differentiable decreasing signal.

Precisely, denoting t ′ = t−(τ k
0 +δ)

τ k
1 −(τ k

0 +δ)
, the components

(
qi

d

)∗
(·), i = 1, . . . , p of(

q∗
d

)
p (·) are defined as:

(
qi

d

)∗
(t) =

{
ai

3(t
′)3 + ai

2(t
′)2 + ai

0, t ∈ [τ k
0 + δ, min{τ k

1 ; t k
0 }]

−ϕV 1/3(τ k
0 ), t ∈ (min{τ k

1 ; t k
0 }, t k

f ], (8.12)

where V (·) is defined in (8.10) and the coefficients are:

⎧⎨
⎩

ai
3 = 2[(qi

)nc
(τ k

0 ) + ϕV 1/3(τ k
0 )]

ai
2 = −3[(qi

)nc
(τ k

0 ) + ϕV 1/3(τ k
0 )]

ai
0 = (

qi
)nc

(τ k
0 )

(8.13)
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The rationale behind the choice of q∗
d (·) is on one hand to assure a robust sta-

bilization on bd(Φ), mimicking the bouncing ball dynamics; on the other hand
to enable one to compute suitable upper bounds that will help using Proposition
8.1, hence the V 1/3(·) terms in (8.12) with V (·) in (8.10).

� The idea of inserting the Lyapunov function V (·) in the definition of the desired
trajectory was first introduced in [221]. In case the closed-loop system is asymp-
totically weakly stable, this implies that collisions vanish asymptotically (i.e., as
k → ∞ where k is the cycles index). The rationale behind this choice is that impacts
necessarily imply positive jumps in the Lyapunov function if V = 0, thus preventing
asymptotic stability.

Remark 8.5 Two different situations are possible. The first one is given by t k
0 > τ k

1
(see Fig. 8.3) and we shall prove that in this situation all the jumps of the Lyapunov
function in (8.10) are negative. The second situation was pointed out in [166] and
is given by t k

0 < τ k
1 . In this situation the first jump at t k

0 in the Lyapunov function
may be positive. It is noteworthy that q∗

d (·) will then have a jump at the time t k
0 since

(qi
d)

∗(t k+
0 ) = −ϕV 1/3(τ k

0 ), ∀i = 1, . . . , p (see (8.12)).

In order to limit the deformation of the desired trajectory q∗
d (·) w.r.t. the uncon-

strained trajectory qnc(·) during the Ik phases (see Figs. 8.1 and 8.3), we impose in
the sequel

||qnc
p (τ k

0 )|| ≤ ψ, (8.14)

where ψ > 0 is chosen by the designer. It is obvious that a smaller ψ leads to
smaller deformation of the desired trajectory and to smaller deformation of the real
trajectory as we shall see in Sect. 8.1.7. Nevertheless, due to the tracking error, ψ

cannot be chosen zero. We also note that ||qnc
p (τ k

0 )|| ≤ ψ is a practical way to choose
τ k

0 . During the transition phases Ik we define (qd)n−p (t) = (
q∗

d

)
n−p (t). Assuming

Fig. 8.3 The design of q∗
1d on the transition phases Ik



490 8 Trajectory Tracking Feedback Control

a finite accumulation of impact times, the impact process can be considered in some
way equivalent to a plastic impact. Therefore, (qd)p (·) and (q̇d)p (·) are set to zero
on the right of t k

0 .

8.1.4 Design of the Desired Contact Force
During Constraint Phases

For the sake of simplicity we consider the case of the constraint phase Ω J
k , J �= ∅

with J = {1, . . . , p}. Obviously, a sufficiently large desired contact force Pd assures a
constrained movement on Ω J

k . Nevertheless at the end of the Ω J
k phases a detachment

from some surfaces Σi has to take place. It is clear that a takeoff implies not only
a well-defined desired trajectory but also some small values of the corresponding
contact force components. On the other hand, if the components of the desired contact
force decrease too much a detachment can take place before the end of the Ω J

k phases
which can generate other impacts. Therefore we need a lower bound of the desired
force which assures the contact during the Ω J

k phases. Dropping the time argument,
the dynamics of the system on Ω J

k can be written as the complementarity Lagrangian
system: {

M(q)q̈ + F(q, q̇) = Uc + DT
p λp

0 ≤ qp ⊥ λp ≥ 0,
(8.15)

where F(q, q̇) = C(q, q̇)q̇ + G(q) and Dp = [Ip
... O] ∈ R

p×n . The mass matrix
M(q) is given in (8.8). On Ω J

k the system is permanently constrained which implies
qp(·) = 0 and q̇p(·) = 0. In order to assure these conditions it is sufficient to have
λp > 0.

In the following let us denote M(q)−1 =
( [M(q)−1]p,p [M(q)−1]p,n−p

[M(q)−1]n−p,p [M(q)−1]n−p,n−p

)

and

C(q, q̇) =
(

C(q, q̇)p,p C(q, q̇)p,n−p

C(q, q̇)n−p,p C(q, q̇)n−p,n−p

)
where the meaning of each component

is obvious.

Proposition 8.2 OnΩ J
k the constraint motion of the closed-loop system (8.15), (8.7),

and (8.9) is assured if the desired contact force is defined by

(λd)p � β − M̄p,p(q)

1 + K f

([M(q)−1]p,pC p,n−p(q, q̇)+
+ [M(q)−1]p,n−pCn−p,n−p(q, q̇) + γ1[M(q)−1]p,n−p

)
sn−p,

(8.16)

where M̄p,p(q) = ([M(q)−1]p,p
)−1 = (

Dp M(q)−1 DT
p

)−1
is the inverse of the

Delassus’ matrix and β ∈ R
p, β > 0.
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Proof First, we notice that the second relation in (8.15) implies on Ω J
k complemen-

tarity at the acceleration level:

0 ≤ q̈p ⊥ λp ≥ 0 ⇔ 0 ≤ Dpq̈ ⊥ λp ≥ 0. (8.17)

From (8.15) and (8.9) one easily gets:

q̈ = M(q)−1[− F(q, q̇) + Unc + (1 + K f )DT
p (λ − λd)p

]
.

Combining the last two equations we obtain the following LCP with unknown λp:

0 ≤ Dp M(q)−1
[− F(q, q̇) + Unc − (1 + K f )DT

p (λd)p

]
+(1 + K f )Dp M(q)−1 DT

p λp ⊥ λp ≥ 0.
(8.18)

Since (1 + K f )Dp M(q)−1 DT
p � 0 and hence is a P-matrix, the LCP (8.18) has a

unique solution and one deduces that λp > 0 if and only if:

M̄p,p(q)

1+K f
Dp M(q)−1

[
Unc − F(q, q̇) − (1 + K f )DT

p (λd)p

]
< 0

⇔ (λd)p >
M̄p,p(q)

1+K f
Dp M(q)−1

[
Unc − F(q, q̇)

]
⇔ (λd)p = β + M̄p,p(q)

1+K f
Dp M(q)−1

[
Unc − F(q, q̇)

]
,

(8.19)

with β ∈ R
p, β > 0. Indeed the LCP 0 ≤ x ⊥ Ax + b ≥ 0 has a solution x > 0

(componentwise) only if Ax + b = 0. If A is a P-matrix, uniqueness of the solution
guarantees the “if”. Since Unc − F(q, q̇) = M(q)q̈e − C(q, q̇)s − γ1s, (q̈e)p = 0
and sp = 0, (8.19) rewrites as (8.16) and the proof is finished. It is noteworthy that:

λp = − M̄p,p(q)

1 + K f
Dp M(q)−1

[
Unc − F(q, q̇)

− (1 + K f )DT
p (λd)p

]

= (λd)p − M̄p,p(q)

1 + K f
Dp M(q)−1

[
Unc − F(q, q̇)

] = β.

Remark 8.6 The control law used in this section with the design of λd described
above leads to the following closed-loop dynamics on Ω J

k .

⎧⎨
⎩

Mp,n−p(q)ṡn−p + C p,n−p(q, q̇)sn−p = (1 + K f )(λ − λd)p

Mn−p,n−p(q)ṡn−p + Cn−p,n−p(q, q̇)sn−p + γ1sn−p = 0
qp = 0, λp = β.

It is noteworthy that the closed-loop dynamics is nonlinear and therefore the feedback
stabilization proposed in [835] is not used.
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8.1.5 Strategy for Takeoff at the End of Constraint
Phases Ω J

k

We have discussed in the previous sections the necessity of a trajectory with impacts
in order to assure the robust stabilization on bd(Φ) in finite time, and the design of
the desired trajectory to stabilize the system on bd(Φ). Now, we are interested in
finding the conditions on the control signal U J

c that assure the takeoff at the end of
the constrained phases Ω J

k . We consider the phase Ω J
k expressed as the time interval

[t k
f , t k

d ). The dynamics on [t k
f , t k

d ) is given by (8.15) and the system is permanently
constrained, which implies qp(·) = 0 and q̇p(·) = 0. Let us also consider that the
first r constraints (r < p) have to be deactivated. Thus, the detachment takes place
at t k

d if q̈r (t
k+
d ) > 0 which requires λr (t

k−
d ) = 0. The last p − r constraints remain

active which means λp−r (t
k−
d ) > 0. To simplify the notation we drop the arguments

t and q in many equations of this section. We decompose the LCP matrix (which is
the Delassus’ matrix Dp M(q)−1 DT

p multiplied by (1 + K f )) as:

(1 + K f )Dp M(q)−1 DT
p =

(
A1(q) A2(q)

A2(q)T A3(q)

)
,

with A1 ∈ R
r×r , A2 ∈ R

r×(p−r) and A3 ∈ R
(p−r)×(p−r).

Proposition 8.3 For the closed-loop system (8.15), (8.7), and (8.9) the decrease of
the active constraints number from p to p − r (with r < p), is possible if

(
(λd)r (t k

d )

(λd)p−r (t k
d )

)
=
((

A1 − A2 A−1
3 AT

2

)−1 (
br − A2 A−1

3 bp−r
)− C1

C2 + A−1
3

(
bp−r − AT

2 (λd)r

)
)

(8.20)

where
bp � b(q, q̇, Unc) � Dp M−1(q)[Unc − F(q, q̇)] ≥ 0,

and C1 ∈ R
r , C2 ∈ R

p−r such that C1 ≥ 0, C2 > 0.

Proof From (8.9) and (8.15) one gets

q̈p(t) = bp + (1 + K f )Dp M(q)−1 DT
p (λ − λd).

Therefore the LCP (8.17) rewrites as:

0 ≤
(

λr

λp−r

)
⊥
(

br + A1(λ − λd)r + A2(λ − λd)p−r

bp−r + AT
2 (λ − λd)r + A3(λ − λd)p−r

)
≥ 0. (8.21)
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Under the conditions λr = 0 and λp−r > 0 one has

0 ≤ λp−r ⊥ bp−r − AT
2 (λd)r + A3(λ − λd)p−r ≥ 0.

with the solution

λp−r = −A−1
3

(
bp−r − AT

2 (λd)r − A3(λd)p−r
)
. (8.22)

Thus λp−r > 0 is equivalent to

(λd)p−r > A−1
3

(
bp−r − AT

2 (λd)r

)
,

which leads to the second part of definition (8.20). Furthermore, replacing (λd)p−r

in (8.22) we get λp−r = C2 and br + A1(λ − λd)r + A2(λ − λd)p−r ≥ 0 yields
the first part of definition (8.20). To conclude, the solution of the LCP (8.21) is

λp =
(

0
C2

)
∈ R

p and (λd)p is defined by (8.20).

Proposition 8.4 The closed-loop system (8.15), (8.7), and(8.9) is permanently con-
strained on [t k

f , t k
d ) and a smooth detachment is guaranteed on [t k

d , t k
d + ε̄) (ε̄ is a

small positive real number chosen by the designer) if

(i) (λd)p (·) is defined on [t k
f , t k

d ) by (8.20) where C1 is replaced by C1(t − t k
d ).

(ii) On [t k
d , t k

d + ε̄)

q∗
d (t) = qd(t) =

(
q∗

r (t)
qnc

n−r (t)

)
,

where q∗
r (·) is a twice differentiable function such that

{
q∗

r (t k
d ) = 0, q∗

r (t k
d + ε̄) = qnc

r (t k
d + ε̄),

q̇∗
r (t k

d ) = 0, q̇∗
r (t k

d + ε̄) = q̇nc
r (t k

d + ε̄),
(8.23)

and q̈∗
r (t k+

d ) = a > max
(
0, −A1(q) (λd)r (t k−

d )
)
.

Proof (i) The uniqueness of solution of the LCP (8.17) guarantees that (8.16) and
(8.20) agree if C1 < 0. In other words, replacing C1 by C1(t − t k

d ) in (8.20) we
assure a constrained motion on [t k

f , t k
d ) and the necessary conditions for detachment

on [t k
d , t k

d + ε̄).
(ii) Obviously (8.23) is imposed in order to assure the twice differentiability of the
desired trajectory. Finally, straightforward computations show that

σq̈r (t k
d ) = q̈∗

r (t k+
d ) + A1(q) (λd)r (t k−

d ),
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which means that the detachment is guaranteed and no other impacts occur when the
desired acceleration satisfies q̈∗

r (t k+
d ) > max

(
0, −A1(q) (λd)r (t k−

d )
)
.

8.1.6 Closed-Loop Stability Analysis

In the case Φ = R
n , the function V (t, s, q̃) in (8.10) can be used in order to prove

the closed-loop stability of the system (8.8) and (8.9), as shown in [1134]. In the case
studied here (Φ ⊂ R

n) the analysis becomes more complex.
To simplify the notation V (t, s(t), q̃(t)) is denoted as V (t). In order to introduce

the main result of this section we make the next assumption, which is verified in
practice for dissipative systems.

Assumption 4 The controller Ut in (8.9) assures that all the transition phases are
finite (see Definition 8.4) and the accumulation point t k∞ is smaller than t k,1

d for all
k ∈ N.

Assumption 5 The Christoffel’s symbols asociated with the inertia matrix M(q)

are used to write (8.8), so that the matrix d
dt (M(q)) − 2C(q, q̇) is skew symmetric.

Since outside [t k
0 , t k

f ] we will show that the Lyapunov function exponentially
decreases, we may presume that all the impacts take place during Ik .

Lemma 8.1 Consider the closed-loop system (8.7)–(8.9) with (q∗
d )p(·) defined on

the interval [τ k
0 , t k

0 ] as in (8.12)–(8.11). Let us also suppose that condition (b) of
Proposition 8.1 is satisfied. The following inequalities hold:

⎧⎨
⎩

||q̃(t k−
0 )|| ≤

√
V (τ k

0 )

γ1γ2
, ||s(t k−

0 )|| ≤
√

2V (τ k
0 )

λmin(M(q))

|| ˙̃q(t k−
0 )|| ≤

(√
2

λmin(M(q))
+
√

γ2

γ1

)
V 1/2(τ k

0 ).
(8.24)

Furthermore, if t k
0 ≤ τ k

1 and tk
0 is a pεk -impact one has:

||(qd)p(t
k−
0 )|| ≤ εk +

√
V (τ k

0 )

γ1γ2
, and ||(q̇d)p(t

k−
0 )|| ≤ K + K ′V 1/3(τ k

0 ), (8.25)

where εk ≤ max{ψ,
√

pϕV 1/3(τ k
0 )} +

√
V (τ k

0 )

γ1γ2
}, and K , K ′ > 0 are some constant

real numbers that will be defined in the proof.
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Proof See Sect. 8.1.8.

The main result of this section can be stated as follows.

Theorem 8.1 Let Assumptions 4 and 5 hold, en ∈ [0, 1) and (q∗
d )p(·) defined

as in (8.12)–(8.11). The closed-loop system (8.7)–(8.9) initialized on Ω0 such
that V (τ 0

0 ) ≤ 1, satisfies the requirements of Proposition 8.1 and is therefore
practically weakly stable with the closed-loop state x(·) = [s(·), q̃(·)] and

R =
√

e−γ (t k
f −t k∞)(1 + K1 + K2 + ξ)/ρ where ρ = min{λmin(M(q))/2; γ1γ2}

and K1, K2 are defined in the proof.

Proof See Sect. 8.1.9.

Since the closed-loop system (8.7)–(8.9) satisfies the requirements of Proposition

8.1 one also deduces V (τ k
0 ) ≤ δ(γ, ξ), so εk ≤ max{ψ,

√
pϕδ(γ, ξ)1/3} +

√
δ(γ,ξ)

γ1γ2
},

for all k ≥ 1. In other words the sequence {εk}k is uniformly upperbounded and the
upperbound can be decreased by adjusting the parameters ψ and γ .

8.1.7 Illustrative Examples

8.1.7.1 A Planar Two-Link Rigid-Joint Manipulator
with One Constraint

The main issues of the control scheme proposed in this section are first emphasized
simulating the behavior of a planar two-link rigid-joint manipulator in the presence
of one unilateral constraint. The lengths l1, l2 of the manipulator’s links are set
to 0.5m, and their masses m1, m2 are set to 1 kg, g is the gravity acceleration.
Denoting by θi the joint angle of the link i and Ii the moment of inertia of link i
about the axis that passes through the center of mass and is parallel to the O Z axis,

the dynamics of the two-link manipulator is given by (8.1) with M =
[

M11 M12

M21 M22

]
,

C =
[

C11 C12

C21 C22

]
, G =

[
G1

G1

]
and:

⎧⎪⎪⎨
⎪⎪⎩

M11 = m1l2
1

4
+ m2

(
l2
1 + l2

2

4
l1l2 cos θ2

)
+ I1 + I2

M12 = M21 = m2l2
2

4
+ m2l1l2

2
cos θ2 + I2, M22 = m2l2

2

4
+ I2
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⎧⎪⎨
⎪⎩

C11 = −m2l1l2θ̇2 sin θ2, C12 = −m2l1l2

2
θ̇2 sin θ2

C21 = m2l1l2

2
θ̇1 sin θ2, C22 = 0

⎧⎨
⎩

G1 = g

2
[l1(2m1 + m2) cos θ1 + m2l2 cos(θ1 + θ2)]

G2 = m2gl2

2
cos(θ1 + θ2).

The dynamics can be rewritten in the cartesian coordinates using the change of
variables:

q =
(

y
x

)
=
(

l1 sin(θ1) + l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2)

)
= Q(X). (8.26)

The admissible domain is the upper half plane y ≥ 0 (here m = 1 and q1 = y)
and the unconstrained desired trajectory qnc(·) is given by a circle that violates
the constraint. Precisely, the end effector must follow a half-circle, stabilize on the
constraint (y = 0) and move on the constraint until the point where the circle qnc(·)
re-enters the admissible domain. Thus (8.4) writes as

R
+ = Ω∅

0 ∪ I1 ∪ Ω
{1}
1 ∪ Ω∅

1 ∪ I2 ∪ Ω
{1}
2 ∪ Ω∅

2 ∪ ...

with mk = 2 for all k ≥ 0, Jk,1 = {1}, Jk,2 = ∅. Using the q−coordinates x∗
d is frozen

during the transition phases Ik while y∗
d is defined by (8.12)–(8.13). Furthermore,

the controller W (q)U is computed by (8.9) where K f is set to 0.5 and (λd)y (i.e., the
desired contact force corresponding to the constraint y = 0) is given by (8.16) where
β has a decreasing profile like in item (i) of Proposition 8.4). The impacts are imposed
using the parameter ϕ = 100 in (8.12)–(8.13). The numerical simulations are done
with the Moreau’s time-stepping algorithm of the Siconos software platform (http://
siconos.gforge.inria.fr). The choice of a time-stepping algorithm was mainly dictated
by the presence of accumulations of impacts which render the use of event-driven
methods difficult, as we discussed in Sect. 5.7.1. A further reason to choose the
Siconos software platform for the simulation of the complementarity systems is its
capability to solve LCPs.5

Let us set en = 0.7, γ1 = 8, γ2 = 7, 10 seconds the period of each cycle and 30
seconds the final simulation time. First, let us point out (Fig. 8.4 (left)) the influence
of ψ (i.e., the choice of τ k

0 ) on the deformation of the real trajectory w.r.t. the desired
unconstrained one. As we have pointed out in Sect. 8.1.3 the deformation gets smaller
when ψ > 0 decreases. It is noteworthy that the tangential approach corresponding
to ψ = 0 lacks of robustness and is unreliable due to the nonzero initial tracking
errors.

In Fig. 8.4 (right) one sees that since qd(·) = q∗
d (·) before the first impact t k

0 of
each cycle and t k

0 < τ k
1 , there exists a jump at the moment t k

0 ≈ 6s in qd(·), q∗
d (·),

5The control scheme proposed in this section may require to solve an LCP of dimension p̄ ≈ 10
(reasonable in some control applications). But this requires a specific solver since the usual “hybrid”
methods must treat 2 p̄ cases and quickly become inefficient [13].

http://siconos.gforge.inria.fr
http://siconos.gforge.inria.fr
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Fig. 8.4 Up The influence
of ψ on the real trajectory’s
deformation for controller’s
gains set to γ1 = 8, γ2 = 7.
Down y(t) = q1(t) (dashed)
and y∗

d (t) = (q1
d )∗(t) (solid)

during the first cycle
(ψ = 0.01)

y
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respectively, and both signals are set to zero at t ≈ 7.2s. The jump of qd(·) induces
a positive jump in the variation of V (·) (details are in Sect. 8.1.9). The switches of
the controller during the first 10 seconds are depicted in Fig. 8.5 (left). Clearly since
the velocity jumps, the controller jumps as well.

The Fig. 8.5 (right) presents the variation of the contact force λ. One sees that
λ remains 0 during the free-motion phases. The contact force λ is designed as a
decreasing linear function during constrained motion phases Ω

{1}
k in order to allow

a smooth detachment at the end of these phases. It is worth to mention that the
magnitude of λ depends indirectly on V (τ k

0 ). Precisely, when V (τ k
0 ) approaches

zero the system tends to a tangential stabilization on the boundary bd(Φ), which
implies larger values of t k

0 and consequently smaller length of [t k
f , t k,1

d ] and smaller
magnitude of the contact force measured by λ (see Proposition 8.4).

Figure 8.6 shows that the tracking error described by the Lyapunov function
rapidly decreases and remains close to 0. In other words the practical weak sta-
bility of Proposition 8.1 is guaranteed. On the zoom made in Fig. 8.6 one can also
observe the behavior of V (·) during the stabilization on bd(Φ), that is an almost
decreasing function.
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Fig. 8.5 Up The switching
controller during the first 10
seconds; Down Variation of
the contact force λ
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Fig. 8.6 Variation of the
Lyapunov function for
γ1 = 8, γ2 = 7; Zoom:
Variation of the Lyapunov
function during the phase I0
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8.1.7.2 A Planar Two-Link Rigid-Joint Manipulator
with Two Constraints

In the sequel we introduce another constraint into the previous dynamics. Precisely,
we impose an admissible domain Φ = {(x, y) | y ≥ 0, 0.7 − x ≥ 0}. Let us
also consider an unconstrained desired trajectory given by the circle {(x, y) | (x −
0.7)2 + y2 = 0.5} that violates both constraints. In other words, the two-link planar
manipulator must track a quarter-circle; stabilize on and then follow the line Σ1 =
{(x, y) | y = 0}; stabilize on the intersection of Σ1 and Σ2 = {(x, y) | x = 0.7};
detach from Σ1 and follow Σ2 until the unconstrained circle re-enters Φ and finally
takeoff from Σ2 in order to repeat the previous steps. Therefore, we have:

R
+ = Ω∅

0 ∪ I1 ∪ Ω
J1,1

1 ∪ I2 ∪ Ω
J2,1

2 ∪ Ω
J2,2

2 ∪ Ω
J2,3

2 ∪ I3 ∪ Ω
J3,1

2 ∪ I4 ∪ ...

with J1,1 = {1}, J2,1 = {1, 2}, J2,2 = {2}, J2,3 = ∅, etc. We note that during I2k+1

the system is stabilized on Σ1 (1-impacts) while during I2k the system is stabilized
on Σ1 ∩ Σ2 (2εk −impacts).

The numerical values used for the dynamical model are again l1 = l2 =
0.5m, I1 = I2 = 1 kg m2, m1 = m2 = 1 kg and the restitution coefficient en = 0.7.
The impacts are imposed by ϕ = 100 in (8.12) and (8.13) and the beginning of
transition phases are defined using ψ = 0.05 in (8.14). We impose a period of 10
seconds for two consecutive cycles and we simulate the dynamics during 60 sec-
onds. Setting the controller gains γ1 = 15, γ2 = 15 we see in Fig. 8.7 (left) that the
desired trajectory is accurately followed. The jumps in the variation of the Lyapunov
function are pointed out in Fig. 8.7 (right).

In this case we have imposed a constant contactforce λ1 during the motion on the
surface Σ1 (see Fig. 8.8 (left)) and a decreasing contactforce, that allows a smooth
detachment, during the motion on Σ2 (see Fig. 8.8 (right)). In Fig. 8.9 the values of
the multipliers λ1 and λ2 during the transition phase I2 (stabilization in the corner)
are depicted.

8.1.8 Proof of Lemma 8.1

From (8.10) we can deduce on one hand that

V (t k−
0 ) ≥ γ1γ2||q̃(t k−

0 )||2,

and on the other hand

V (t k−
0 ) ≥ 1

2
s(t k−

0 )T M(q(t k−
0 ))s(t k−

0 ).
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Fig. 8.7 Up The trajectory of the system during 6 cycles; Down Zoom on the variation of the
Lyapunov function on the first two transition phases

Since condition (b) of Proposition 8.1 is satisfied one has V (τ k
0 ) ≥ V (t k−

0 ) and the
first two inequalities in (8.24) become trivial. Let us recall that s(t) = ˙̃q(t) + γ2q̃(t)
which implies || ˙̃q(t k−

0 )|| ≤ ||s(t k−
0 )|| + γ2||q̃(t k−

0 )||. Combining this with the first
two inequalities in (8.24) we derive the third inequality in (8.24).

For the rest of the proof we assume that t k
0 ≤ τ k

1 . Therefore (qd)p(t
k−
0 ) =

(q∗
d )p(t k

0 ). Since (qd)p(·) is a continuous function with all the components qi
d(·)

defined as decreasing functions on [τ k
0 + δ, τ k

1 ], it is obvious that ||(qd)p(t
k−
0 )|| ≤

max{||(qd)p(τ
k
0 + δ)||, ||(qd)p(τ

k
1 )||} = max{ψ,

√
pϕV 1/3(τ k

0 )}. Furthermore:
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Fig. 8.8 Up Variation of the contact force during the motion on Σ1; Down Variation of the contact
force during the motion on Σ2
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Fig. 8.9 Zoom on the transition phase I2 with 2ε−impacts (dots are the impulsive force magnitude
at impacts)

||qp(t
k
0 )|| ≤ ||q̃p(t

k−
0 )|| + ||(qd)p(t

k−
0 )||

≤
√

V (τ k
0 )

γ1γ2
+ max{ψ,

√
pϕV 1/3(τ k

0 )}.

Thus t k
0 is a pεk -impact with εk ≤ max{ψ,

√
pϕV 1/3(τ k

0 )}+
√

V (τ k
0 )

γ1γ2
}. From Definition

8.2 one has ||qp(t k
0 )|| ≤ εk and using:
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||(qd)p(t
k−
0 )|| ≤ ||q̃p(t

k−
0 )|| + ||qp(t

k
0 )||,

one obtains the first inequality (8.25). Let us denote t ′
k = t k

0 −τ k
0 −δ

τ k
1 −τ k

0 −δ
∈ [0, 1]. We recall

here that τ k
0 was chosen such that ||qnc

p (τ k
0 )|| ≤ ψ . From (8.12) and (8.13) and the

first inequality in (8.25), for i = 1, . . . , p one has:

qi
d(t

k−
0 ) = [

(qi )nc(τ k
0 ) + ϕV 1/3(τ k

0 )
] (

2(t ′
k)

3 − 3(t ′
k)

2
)+ (qi )nc(τ k

0 )

≤ εk +
√

V (τ k
0 )

γ1γ2
.

It follows that:

3(t ′
k)

2 − 2(t ′
k)

3 ≥
(qi )nc(τ k

0 ) − εk −
√

V (τ k
0 )

γ1γ2

(qi )nc(τ k
0 ) + ϕV 1/3(τ k

0 )
.

For t > 0 one has 2t − t2 ≥ 3t2 − 2t3, therefore:

2t ′
k − (t ′

k)
2 ≥

(qi )nc(τ k
0 ) − εk −

√
V (τ k

0 )

γ1γ2

(qi )nc(τ k
0 ) + ϕV 1/3(τ k

0 )
,

which means that

(1 − t ′
k)

2 ≤
√

V (τ k
0 )

γ1γ2
+ ϕV 1/3(τ k

0 ) + εk

(qi )nc(τ k
0 ) + ϕV 1/3(τ k

0 )
.

Straightforward computations lead to

|q̇ i
d(t

k−
0 )| = 6((qi )nc(τ k

0 ) + ϕV 1/3(τ k
0 ))

τ k
1 − τ k

0 − δ

(
t ′
k − (t ′

k)
2
)
.

Since t ′
k − (t ′

k)
2 ≤ 1 − t ′

k and from (8.14) one has (qi )nc(τ k
0 ) ≤ ψ , one arrives at:

|q̇ i
d(t

k−
0 )| ≤ 6((qi )nc(τ k

0 ) + ϕV 1/3(τ k
0 ))

τ k
1 − τ k

0 − δ
(1 − t ′

k)

≤
6

√
(ψ + ϕV 1/3(τ k

0 ))

(√
V (τ k

0 )

γ1γ2
+ ϕV 1/3(τ k

0 ) + εk

)

τ k
1 − τ k

0 − δ

= 6

τ k
1 − τ k

0 − δ

√{
ψεk + (ψϕ + εkϕ)V 1/3(τ k

0 )+

ϕ2V 2/3(τ k
0 ) + ϕV 5/6(τ k

0 ) + ψV 1/2(τ k
0 )√

γ1γ2

}
.
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Since V (τ k
0 ) < 1 (thus V p1(τ k

0 ) > V p2(τ k
0 ) for p1 < p2) we obtain:

|q̇ i
d(t

k−
0 )| ≤

6

√
ψεk +

[(
1√
γ1γ2

+ ϕ
)

(ϕ + ψ) + εkϕ
]

V 1/3(τ k
0 )

τ k
1 − τ k

0 − δ
.

Furthermore εk ≤ ψ + √
pϕV 1/3(τ k

0 ) +
√

V (τ k
0 )

γ1γ2
and

|q̇ i
d(t

k−
0 )| ≤ 6ψ

τ k
1 − τ k

0 − δ
+

6

√(
2√
γ1γ2

+ (1 + √
p)ϕ

)
(ϕ + ψ) + ψϕ

τ k
1 − τ k

0 − δ
V 1/3(τ k

0 ).

Consequently, the second inequality in (8.25) holds with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K = 6pψ

τ k
1 − τ k

0 − δ
,

K ′ = 6
√

p

τ k
1 − τ k

0 − δ

√(
2√
γ1γ2

+ (1 + √
p)ϕ

)
(ϕ + ψ) + ψϕ.

8.1.9 Proof of Theorem 8.1

First we observe that conditions (a) and (d) of Proposition 8.1 hold when the hypoth-
esis of the Theorem are verified. Thus in order to prove Theorem 8.1 it is sufficient
to verify the conditions (b), (c) and (e) of Proposition 8.1. To this aim we shall also
use the function V1(t, s) = 1

2 s(t)T M(q)s(t).
(b) Using that Ṁ(q) − 2C(q, q̇)) is a skew-symmetric matrix from Assumption 5,
straightforward computations show that on R+ \⋃k≥1[t k

0 , t k
f ] the time derivative of

the Lyapunov function is given by

V̇ (t) = −γ1sT s + 2γ1γ2q̃T ˙̃q = −γ1|| ˙̃q||2 − γ1γ
2
2 ||q̃||2.

On the other hand

V (t) ≤ λmax (M(q))

2
||s||2 + γ1γ2||q̃||2 ≤ γ −1[γ1|| ˙̃q||2 + γ1γ

2
2 ||q̃||2],

where γ −1 = max
{
λmax(M(q))

1+2γ2

2γ1
; λmax (M(q))(γ2+2)+2γ1

2γ1γ2

}
> 0. Therefore V̇ (t) ≤

−γ −1V (t) on R+ \⋃k≥1[t k
0 , t k

f ].
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(c) By definition

V (tk−
�+1) − V (tk+

�
) = V1(tk−

�+1) − V1(tk+
�

) + γ1γ2[q̃(tk−
�+1)T q̃(tk−

�+1) − q̃(tk+
�

)T q̃(tk+
�

)].
(8.27)

On the other hand, straightforward computations show that

V1(t
k−
�+1) − V1(t

k+
� ) = ∫

(t k
� ,t k

�+1)
V̇1(t)dt

= γ1γ2
∫
(t k

� ,t k
�+1)

sp(t)T (q∗
d )p(t)dt − γ1

∫
(t k

� ,t k
�+1)

s(t)T s(t)dt
(8.28)

Furthermore,
∫
(t k

� ,t k
�+1)

s(t)T s(t)dt = ∫
(t k

� ,t k
�+1)

|| ˙̃q(t)||2 + γ 2
2 ||q̃(t)||2dt

+γ2[q̃(t k−
�+1)

T q̃(t k−
�+1) − q̃(t k+

� )T q̃(t k+
� )]. (8.29)

Therefore, inserting successively (8.29) in (8.28) and (8.28) in (8.27) we arrive at:

V (t k−
�+1) − V (t k+

� ) ≤ γ1γ2

∫
(t k

� ,t k
�+1)

sp(t)
T (q∗

d )p(t)dt. (8.30)

In the sequel let us denote by S(v) the sum of all the components of a vector v. Taking
into account the definition (8.12) and the fact that (qd)p and (q̇d)p are set to zero at
t k+
0 one obtains:

∫
(tk

�
,tk

�+1)
sp(t)T (q∗

d )p(t)dt = −ϕV 1/3(τ k
0 )

(∫
(tk

�
,tk

�+1)
S(q̇ p(t))dt + γ2

∫
(tk

�
,tk

�+1)
S(qp(t))dt

)
.

Since ϕγ2V 1/3(τ k
0 ) ≥ 0 and S(qp(t)) ≥ 0 it follows that

∫ t k
�+1

t k
�

sp(t)
T (q∗

d )p(t)dt ≤ ϕV 1/3(τ k
0 )[S(qp(t

k
� )) − S(qp(t

k
�+1))].

Thus: ∑
�≥0

[
V (t k−

�+1) − V (t k+
� )
] ≤ γ1γ2ϕV 1/3(τ k

0 )S(qp(t
k
0 ))

≤ γ1γ2ϕV 1/3(τ k
0 )

√
3||qp(t

k
0 )||.

Since t k
0 is a pεk -impact and εk ≤ ψ + √

pϕV 1/3(τ k
0 ) +

√
V (τ k

0 )

γ1γ2
one gets

∑
�≥0

[
V (t k−

�+1) − V (t k+
� )
] ≤ K1V p1(τ k

0 ),

where K1 = √
3γ1γ2ϕ(ψ + √

pϕ + 1√
γ1γ 2

) > 0 and p1 = 2
3 .



8.1 Trajectory Tracking: Rigid-Joint Rigid-Body Systems 505

(e) First, let us compute the Lyapunov function’s jumps at the instants t k
� , � ≥ 1.

Using the continuity of the position q(·) and the definition of the desired trajectory
qd(·) on the Ik phases (i.e. qd(t

k+
� ) = qd(t

k−
� ), q̇d(t

k+
� ) = 0 = q̇d(t

k−
� )) we obtain:

σV (t k
� ) = V (t k+

� ) − V (t k−
� )

= γ1γ2σ||q̃||2(t k
� ) + + s(t k+

� )T Mk
� s(t k+

� ) − s(t k−
� )T Mk

� s(t k−
� )

2
= TL(t k

� ) + γ2q̃(t k
� )T Mk

� σq̇(t
k
� ),

(8.31)

where Mk
� denotes the inertia matrix M(q(t k

� )) and TL(t k
l ) is the kinetic energy

loss at the impact time t k
� . From Eq. (8.3) we have TL(t k

� ) ≤ 0 and Eq. (8.31)
becomes σV (t k

� ) ≤ γ2q̃(t k
� )T Mk

� σq̇(t k
� ). Let us recall that Mk

� σq̇(t k
� ) is the magnitude

of the impulsive contact force (or its impulse), denoted here as P (see Chap. 1).
In the generalized coordinates introduced in Sect. 8.1.2 one obtains Mk

� σq̇(t k
� ) =

DTP with λ = Pδt k
�
. The vector q̇tan (see Chap. 6) is equal to q̇n−m (i.e. σq̇(t k

� ) =(
σq̇m (t k

� )

0n−m

)
where 0n−m denotes the n−m vector with all its components equal zero).

Therefore:
σV (t k

� ) ≤ γ2q̃(t k
� )T Mk

� σq̇(t
k
� ) = γ2qp(t

k
� )TP = 0, (8.32)

where we have used (qd)p(t
k+
� ) = 0 = (qd)p(t

k−
� ) and the last equality is stated

using the complementarity relation entering the dynamics, which impose that P is
orthogonal to bd(Φ).

The Lyapunov function’s jump corresponding to the first impact of each cycle can
be computed as:

σV (t k
0 ) = V (t k+

0 ) − V (t k−
0 )

= γ1γ2σ||q̃||2(t k
0 ) + + s(t k+

0 )T M0s(t k+
0 ) − s(t k−

0 )T M0s(t k−
0 )

2
.

(8.33)

• It is clear that t k
0 > τ k

1 implies qd(t
k+
0 ) = qd(t

k−
0 ) and q̇d(t

k+
0 ) = 0 = q̇d(t

k−
0 ).

Thus, the computations for t k
� , � ≥ 1 hold also for t k

0 .
• If t k

0 ≤ τ k
1 one has (qd)p(t

k−
0 ) �= (qd)p(t

k+
0 ) = 0 and (q̇d)p(t

k−
0 ) �= (q̇d)p

(t k+
0 ) = 0. Then the initial jump of each cycle is given by:

σV (t k
0 ) = TL(t k

0 ) + q̇d(t
k−
0 )T M0q̇(t k−

0 )

+ γ 2
2

2

(
q̃(t k+

0 )T M0q̃(t k+
0 ) − q̃(t k−

0 )T M0q̃(t k−
0 )
)

+ γ2

(
q̇(t k+

0 )T M0q̃(t k+
0 ) − ˙̃q(t k−

0 )T M0q̃(t k−
0 )
)

− 1

2
q̇d(t

k−
0 )T M0q̇d(t

k−
0 ).

(8.34)

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_6
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Since TL(t k
0 ) ≤ 0 the Eq. (8.34) rewrites as:

σV (t k
0 ) ≤ λmax (M(q))

[
γ2
(||(q̇d)p(t

k−
0 )|| · ||q̃(t k−

0 )||

+ ||q̇(t k−
0 )|| · ||(qd)p(t

k−
0 )||)+ 1

2
||(q̇d)p(t

k−
0 )||2

+ γ 2
2

2

(||qp(t
k
0 )||2 + ||q̃p(t

k−
0 )||2

+ 2||(qd)p(t
k−
0 )|| · ||q̃n−p(t

k−
0 )||)+ ||(q̇d)p(t

k−
0 )|| · ||q̇(t k−

0 )||.
]

(8.35)

Obviously ||q̇(t k−
0 )|| = || ˙̃q(t k−

0 ) + (q̇d)p(t
k−
0 )|| and Lemma 8.1 combined with

V (τ k
0 ) < 1 yields:

||q̇(t k−
0 )|| ≤ K +

(√
2

λmin(M)
+
√

γ2

γ1
+ K ′

)
V 1/3(τ k

0 ).

Therefore
σV (t k

0 ) ≤ K2V p2(τ k
0 ) + ξ,

where p2 = 1
3 , ξ = 3

2 K 2 + γ2ψ K + γ 2
2 ψ2

2 and

K2 = λmax (M(q))
[
3K K ′ + 3

2 (K ′)2 + γ2ψ K +
√

2γ2

λmin(M(q))γ1

+(K ′ + K )
(
γ2

√
pϕ + 3

√
γ2

γ1
+
√

2
λmin(M(q))

)

+γ2

(√
2

λmin(M(q))
+ 3

√
γ2

γ1

)
(ψ + √

pϕ) + γ 2
2 ψϕ

√
p + γ 2

2 ϕ2 p
2 + 4γ2

γ1

+ψγ2

(
2
√

γ2

γ1
+
√

2
λmin(M(q))

+ K ′
) ]

.

Defining α : R+ �→ R+, α(ω) = ρω2 we get α(0) = 0 and α(||[s(t), q̃(t)]||) ≤
V (t, s, q̃). Thus, Proposition 8.1 also yields

R = α−1(e−γ (t k
f −t k∞)(1 + K1 + K2 + ξ)) =

√
e−γ (t k

f −t k∞)(1 + K1 + K2 + ξ)/ρ,

which ends the proof.

8.2 Short Bibliography

The control of mechanical systems subject to unilateral constraints has been the object
of many studies. Theoretical aspects of their Lyapunov stability and the related stabi-
lization issues have been studied in [205, 730, 731, 1208]. The specific, yet important
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task of the stabilization of impacting transition phases was analyzed and experimen-
tally tested in [715, 952, 1085, 1233, 1234, 1289], see also Sect. 8.5.1. From the
point of view of tracking control of complementarity Lagrangian systems along gen-
eral constrained/unconstrained paths, such studies focus on a module of the overall
control problem. The problem of robust impact detection with only position mea-
surement received attention in [167]. One of the first results formulating the control
of complete robotic tasks via unilateral constraints and complementarity conditions
was presented in [548, 549]. In that work the impacts were considered inelastic and
the control problem was solved using a time optimal problem. Other results can be
found in [244, 351, 793, 794, 810, 849, 853, 854, 984, 1205, 1206, 1207, 1282,
1332, 1333]. The tracking control problem under consideration, involving systems
that undergo transitions from free to constrained motions, and vice versa, along an
infinity of cycles, was formulated and studied in [220, 221] for the one-degree-of-
freedom case and in [166] for the n-degree-of-freedom case. These articles consider
systems with only one unilateral frictionless constraint, and the stability framework
is more stringent than those used above. The results presented in this section not
only consider the multiconstraint case, but the results in Sect. 8.1.6 relax some very
hard to verify conditions imposed in [166] to assure the stability. Moreover the accu-
rate design of the control law that guarantees the detachment from the constraints is
formulated and incorporated in the stability analysis for the first time. Considering
multiple constraints may be quite important in applications like virtual reality and
haptic systems, where typical tasks involve manipulating objects modeled as rigid
bodies [389] in complex environments with many unilateral constraints. We note that
in the case of a single nonsmooth impact the exponential stability and bounded-input
bounded-state (BIBS) stability was studied in [841] using a state feedback control
law. A study for a multiple-degree-of-freedom linear systems subject to nonsmooth
impacts can be found in [840]. That approach proposes a proportional-derivative con-
trol law in order to study BIBS stability via Lyapunov techniques. State observers
for systems without finite accumulations of impacts have been studied in [843, 844].
Other approaches for the tracking control of nonsmooth mechanical systems in a
more restricted context than the one above can be found in [147, 148, 408, 423, 839,
916, 951] and in [732]. Most of these articles focus on vibro-impact systems, i.e., they
disregard contact phases and/or contact forces (hence the crucial complementarity
conditions), and assume that impact times are separated (no finite accumulations).
The underlying stability concept may anyway be different from the one we chose
above, see for instance [147] where a hybrid distance function as in (1.53) is used. An
interesting direction of research could be to use the ideas in [147] for the transition
phase control. The analysis and control of systems subject to unilateral constraints
also received attention in [124]. Almost decreasing Lyapunov functions (also called
nonmonotonic) seem to have been introduced first in [220, 1292, 1293], later in [192,
263, 848, 1112]. Interesting results have been obtained in [243, 1253], which extend
the bouncing ball dynamics with finite accumulation of impact times, toward more
general systems. Such asymptotic analysis could be used to prove that the transi-
tion controller Ut guarantees that Assumption 4 holds. Lyapunov functions for the
impacting phase of bouncing ball dynamics, are proposed in [461, 462, 727, 945],

http://dx.doi.org/10.1007/978-3-319-28664-8_1
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see more detailed comments in Sect. 7.5.4. Results in the same vein are in [1188]
(it is noteworthy that the hybrid systems dynamical framework in [461, 1188] does
not encapsulates complementarity Lagrangian systems). See also the material in
Sect. 7.6.4.2.

8.3 Trajectory Tracking: Flexible-Joint Rigid-Link Systems

Impacts may excite vibrational modes in structures, due to the system’s flexibilities.
It is therefore important to compensate for flexibilities effects via the feedback con-
troller, as shown experimentally in [224, 225] for free-motion tasks. Let us deal with
a class of Lagrangian systems with lumped flexibilities (encompassing flexible-joint
rigid-link manipulators) subject to frictionless unilateral constraints, whose dynam-
ics is supposed to be expressed as:

⎧⎪⎪⎨
⎪⎪⎩

M(q)q̈ + C(q, q̇)q̇ + G(q) + K (q − θ) = DT λ

J θ̈ + K (θ − q) − K (q, θ) = U
q1 ≥ 0, (q1)T λ = 0, λ ≥ 0
Collision rule,

(8.36)

where q ∈ R
n is the vector of rigid links angles, θ ∈ R

n is the vector of motor
shaft angles, M(q) = M(q)T ∈ R

n×n is the positive definite inertia matrix, C(q, q̇)

is the matrix containing Coriolis and centripetal forces, G(q) contains conservative
forces, λ ∈ R

m is the vector of Lagrangian multipliers associated with the constraints,
J ∈ R

n×n is the diagonal and constant matrix of actuator inertia, K = K T >

0, K ∈ R
n×n represents the stiffness matrix, U ∈ R

n is the vector of generalized
torque inputs, and q1 = Dq ∈ R

m with D = [Im 0m×(n−m)]. As usual constraint
i is said to be active if q1

i = 0, and inactive if q1
i > 0. The dynamics in (8.36)

is a simplified dynamics obtained from more general Lagrangian systems using the
generalized coordinate transformation which allowed us to transform (8.1) into (8.8).
The system’s mass matrix is now given by M̄(q) = diag(M(q), J ) ∈ R

2n×2n . It is
supposed to hold globally in the configuration space. Notice that a nonlinear stiffness
K (q, θ) may appear due to the transformation, see [875, §3] for details about this.
The same impact law as in (8.2) is used, however, one has to adapt the tangent
cones calculations [875, Definition 4]. In particular we have a continuous θ̇ (·) at
impacts, in agreement with the results of Sect. 3.4.2. The dynamical system in (8.36)
is underactuated.

The following notations will be adopted in this section: for a real-valued function
f :R+ �→ R one denotes by S( f ) the set of all real-valued function g:R+ �→ R such
that there exists a positive real constant 0 < c < ∞ satisfying g(t) ≤ c f (t), for all
t ≥ 0. One writes g ∈ S(1) ≡ L∞ if f (t) = 1, for all t ≥ 0. 0n is the n-vector with
entries 0, and 0n×m is the n × m-zero matrix. Im is the m × m identity matrix.

The admissible domain associated to the system (8.36) is the finitely represented
closed subset of R2n: Φ � {(q, θ) ∈ R

2n | q1 ≥ 0} = (⋂
1≤i≤m Φi

) × R
n where

http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_7
http://dx.doi.org/10.1007/978-3-319-28664-8_3
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Φi = {q ∈ R
n | q1

i ≥ 0}. In the sequel
(⋂

1≤i≤m Φi
)

will be denoted by Φ ⊂ R
n .

Mimicking the rigid link–rigid joint case, let us introduce the following notion of
pε-impact, that is similar to Definition 8.2.

Definition 8.5 Let ε ≥ 0 be a fixed real number. We say that a pε-impact occurs at
the instant t if

||(q1
i

)
i∈I (t)|| ≤ ε,

∏
i∈I

q1
i (t) = 0

where I ⊂ {1, . . . , m}, card(I ) = p.

If ε = 0 all p surfaces Σi ⊆ bd(Φi ) = {q ∈ R
n | q1

i = 0}, i ∈ I are struck
simultaneously and we get a p−impact in the sense of Definition 6.1. When ε > 0
the system collides bd(Φ) in a neighborhood of the intersection

⋂
i∈I Σi .

8.3.1 Basic Concepts

8.3.1.1 Typical Task

Since the system’s dynamics does not change when the number of active constraints
decreases one gets the following typical task representation:

R
+ =

⋃
k≥0

(
Ω

Bk
2k ∪ I Bk

k ∪
(

mk⋃
i=1

Ω
Bk,i

2k+1

))

Bk ⊂ Bk,1; Bk+1 ⊂ Bk,mk ⊂ Bk,mk−1 ⊂ . . . Bk,1

(8.37)

where the superscript Bk represents the set of active constraints during the corre-
sponding motion phase, and I Bk

k denotes the transient between two Ωk phases when
the number of active constraints increases. We note that Bk = ∅ corresponds to free
motion. When the number of active constraints decreases no transition phases are

needed, thus, for the sake of simplicity we replace
⋃mk

i=1 Ω
Bk,i

2k+1 by Ω
B ′

k
2k+1 and the

typical task representation simplifies as follows:

R
+ =

⋃
k≥0

(
Ω

Bk
2k ∪ I Bk

k ∪ Ω
B ′

k
2k+1

)

Bk ⊂ B ′
k, Bk+1 ⊂ B ′

k

(8.38)

Similarly to what we stated in Sect. 8.1.1.3, since the tracking control problem
involves no difficulty during the Ωk-phases, the central issue is once again the study
of the passages between them (the design of transition phases Ik and detachment con-
ditions), and the stability of the trajectories evolving along (8.38) (i.e., an infinity of

cycles). Throughout the section, the sequence Ω
Bk
2k ∪ I Bk

k ∪ Ω
B ′

k
2k+1 will be referred to

http://dx.doi.org/10.1007/978-3-319-28664-8_6
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as the cycle Ck of the system’s evolution: R+ = ⋃
k≥0 Ck . It is noteworthy that the

descriptions in (8.4) and (8.37) are the same, but the cycles are defined differently.
More precisely, one has respectively:

R
+ = Ω∅

0 ∪

C1︷ ︸︸ ︷
I1

m1⋃
1

Ω
J1,i

1 ∪

C2︷ ︸︸ ︷
I2

m2⋃
1

Ω
J2,i

2 ∪

C3︷ ︸︸ ︷
I3

m3⋃
1

Ω
J3,i

3 ∪... (8.39)

and

R
+ =

C0︷ ︸︸ ︷
Ω

B0
0 ∪ I B0

0

m0⋃
i=1

Ω
B0,i

1 ∪

C1︷ ︸︸ ︷
Ω

B1
2 ∪ I B1

1

m1⋃
i=1

Ω
B1,i

3 ∪

C2︷ ︸︸ ︷
Ω

B2
4 ∪ I B2

2

m2⋃
i=1

Ω
B2,i

1 ∪...

(8.40)
with B0 ⊂ B0,1, B1 ⊂ B0,m0 ⊂ B0,m0−1 ⊂ ... ⊂ B0,1, J1,m1 ⊂ J2,1, J1,m1 ⊂
J1,m1−1 ⊂ ... ⊂ J1,1. There is therefore a certain freedom in the choice of the task
framework.

8.3.1.2 System Properties

For kinematic chains with prismatic or revolute joints the following properties hold,
if Christoffel’s symbols associated with the mass matrix are used to write C(q, q̇).

Property 8.1 The matrix d
dt M(q) − 2C(q, q̇) is skew symmetric, equivalently

Ṁ(q) � d
dt M(q) = C(q, q̇) + C(q, q̇)T . Furthermore the matrix C(q, q̇) is a

smooth function of q and q̇ with the well-known properties ||C(q, q̇)|| ∈ S(||q̇||)
and C(q, y)z = C(q, z)y, for all q, y, z ∈ R

n .

Property 8.2 The conservative forces vector G(q) is such that
∣∣∣
∣∣∣ ∂G(q)

∂q

∣∣∣
∣∣∣ ∈ S(1)

which implies by the mean value theorem ||G(q1) − G(q2)|| ∈ S(||q1 − q2||), for
all q1, q2 ∈ R

n .

Property 8.3 The matrix C(q, q̇) is such that
∣∣∣
∣∣∣ ∂C(q,q̇)

∂q

∣∣∣
∣∣∣ ∈ S(||q̇||) and

∣∣∣
∣∣∣ ∂C(q,q̇)

∂q̇

∣∣∣
∣∣∣ ∈

S(1).

8.3.1.3 Stability Analysis Criteria

The system (8.36) is a complex nonsmooth and nonlinear dynamical system. Let us
introduce the framework the stability analysis framework as well as some definitions.
Let us define Ω as the complement inR+ of I =

⋃
k≥0

I Bk
k and assume that the Lebesgue
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measure η[Ω], equals infinity. Let x(·) be the state of the closed-loop system in (8.36)
with some feedback controller U (q, q̇, θ, θ̇ , t).

Consider I Bk
k � [τ k

0 , t k
f ] and V (·) such that there exists class K functions α(·)

and β(·) such that α(||x ||) ≤ V (x, t) ≤ β(||x ||). In the sequel, we consider that
for each cycle the sequence of impact instants {t k

� }�≥0 has an accumulation point t k∞.
Stability in the sense of Definition 8.3 is guaranteed by the following proposition,
which slightly differs from Proposition 8.1.

Proposition 8.5 (Weak Stability) Assume that the task admits the representa-
tion (8.38) and that

(a) η[I Bk
k ] < +∞, ∀k ∈ N,

(b) outside the impact accumulation phases [t k
0 , t k∞] one has V̇ (x(t), t) ≤

−γ V (x(t), t) for some constant γ > 0,
(c) the system is initialized on Ω0 such that V (τ 0

0 ) ≤ 1,
(d) V (t k∞) ≤ ρ∗V (τ k

0 ) + ξ where ρ∗, ξ ∈ R+.

Then V (τ k
0 ) ≤ δ(γ, ξ), ∀k ≥ 1 where δ(γ, ξ) is a function that can be made

arbitrarily small by increasing either the value of γ or the length of the time inter-
val [t∞, t f ]. Thus, the system is practically weakly stable with R = α−1(δ(γ, ξ)).

Proof From assumption (b) one has

V (t k
f ) ≤ V (t k

∞)e−γ (t k
f −t k∞),

and using condition (d) and (c) we arrive at

V (t k
f ) ≤ e−γ (t k

f −t k∞)(ρ∗ + ξ) � δ(γ, ξ).

Assumption (b) also guarantees that V (τ k+1
0 ) ≤ V (t k

f ) and thus V (τ k+1
0 ) ≤ δ(γ, ξ),

for all k ≥ 1. The term δ(γ, ξ) can be made as small as desired increasing either γ or
the length of the interval [t k∞, t k

f ]. The proof is completed by the relation α(||x ||) ≤
V (x, t), for all x, t .

It is worth to point out the local character of the stability criterion in Proposition
8.5. This is first due to condition (c) and second by the synchronization constraints
of the control law and the motion phase of the system (see (8.38) and (8.7)–(8.42)
below). Once again the weak stability relies on almost decreasing functions. Condi-
tion (d) means that the impacts may be considered as a kind of disturbance that can
be suitably upper bounded. This is certainly the most crucial point in Proposition
8.5.
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8.3.2 Tracking Control Framework

Similarly as in Sect. 8.1.1.2, the following trajectories will play a role in the closed-
loop dynamics:

• qnc(·) denotes the desired trajectory that the system should track if there were
no constraints. We suppose that q1,nc(t) < 0 for some t , otherwise the problem
reduces to the tracking control of a system with no constraints.

• q∗
d (·) denotes the signal entering the control input and playing the role of the

desired trajectory during some parts of the motion.
• qd(·) represents the signal entering the Lyapunov function V (·). This signal is set

on the boundary bd(Φ) after the first impact of each cycle.

These signals may coincide on some time intervals as we shall see later. Let us remind

that ψ̃ =
(

q̃
θ̃

)
= ψ − ψd and introduce the following tracking control variables,

which are classically used in passivity-based control algorithms: s1 = ˙̃q +γ2q̃, s2 =
˙̃
θ + γ2θ̃ , s =

(
s1

s2

)
, q̇r = q̇d − γ2q̃, q = q − q∗

d and s1 = q̇ + γ2q , where γ2 > 0

is a scalar gain and ψd =
(

qd

θd

)
.

8.3.2.1 Controller Design

The tracking problem is solved using a generalization of the backstepping passivity-
based controller proposed in [223, Eq. (28)] and the closed-loop stability analysis of
the system is based on Proposition 8.5. the controller is defined by

{
U = J θ̈r + K (θd − qd) − γ1s2 − K (ψ)

θd = qd + K −1Ur ,
(8.41)

i.e. the nonlinear flexible term is supposed to be exactly known and compensated
for, where Ur is given by:

Ur =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U∅
c � Unc = M(q)q̈r + C(q, q̇)q̇r + G(q) − γ1s1 for t ∈ Ω∅

2k ,

U Bk
c = Unc − Pd + K f (Pq − Pd ) for t ∈ Ω

Bk
k ,

U Bk
c for t ∈ I Bk

k before the first impact,

U Bk
t = M(q)q̈r + C(q, q̇)q̇r + G(q) − γ1s1 for I Bk

k � t > first impact time,
(8.42)

where γ1 > 0 is a scalar gain, K f � 0, Pq = DT λ and Pd = DT λd is the desired
contact force during the persistently constrained motion. It is clear that during Ω

Bk
k

not all the constraints are active and, therefore, some components of λ and λd are zero.
Notice that on impacting phases no force feedback is applied. Also U is a function
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of q, θ , q̇ , θ̇ only (no acceleration feedback). The closed-loop error dynamics on Ω∅
2k

is given by: {
M(q)ṡ1 + C(q, q̇)s1 + γ1s1 + K (q̃ − θ̃ ) = 0
J ṡ2 + γ1s2 + K (θ̃ − q̃) = 0.

The rationale behind the change of structure of Ur after the first impact, is that it
facilitates the calculation of some upper bounds which are necessary to recast the
closed-loop stability analysis into Proposition 8.5.

In order to prove the stability of the closed-loop system (8.36), (8.41) and (8.42)
we will use the following positive definite function:

V (t, s, ψ̃) = 1

2
sT

1 M(q)s1 + 1

2
sT

2 Js2 + γ1γ2q̃T q̃

+ γ1γ2θ̃
T θ̃ + 1

2
(q̃ − θ̃ )T K (q̃ − θ̃ ).

(8.43)

One of the difficulties of the flexible-joint case, compared with the rigid case, is
that the jumps in the function V (·) in (8.43) are less easy to characterize. Indeed
the terms θd(·) and θ̇d(·) are designed from a backstepping procedure and cannot
be given arbitrary values, contrarily to other desired trajectories. The calculations of
various upper bounds are consequently intricate.

8.3.2.2 Design of the Exogenous Trajectory

Globally the same framework as depicted in Fig. 8.1 holds. We consider that the
unconstrained desired trajectory qnc(·) can be split into two parts, one of them belong-
ing to the admissible domain (inner part) and the other one outside the admissible
domain (outer part). Throughout the analysis we consider I Bk

k = [τ k
0 , t k

f ] where τ k
0

is chosen by the designer as the start of the transition phase I Bk
k and t k

f is the end
of this phase. During the transition phases the system must be stabilized on the
intersection of some surfaces Σi . This will be done by mimicking the behavior of
a ball falling on the ground under gravity. Therefore all the components except the
ones that are normal to the constraints belonging to Bk will be frozen. Moreover
for robustness reasons one avoids a tangential approach and imposes some impacts
defining a exogenous signal q∗

d that violates the constraints. In the sequel we deal
with the tracking control strategy when the trajectory qd(·) is constructed such that:

(i) when no activated constraint the orbit of qd(·) coincides with the orbit of qnc(·)
and q̇d(τ

k
0 ) = 0,

(ii) when p ≤ m constraints are active, its orbit coincides with the projection of the
outer part of qnc(·) on the surface of codimension p defined by the activated
constraints.
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In order to simplify the presentation we introduce the following notations (where all
superscripts (·)k will refer to the cycle k of the system motion):

• t k
0 is the first impact during the cycle k,

• t k∞ is the accumulation point of the sequence {t k
� }�≥0 of the impact instants during

the cycle k (t k
f ≥ t k∞),

• τ k
1 will be explicitly defined later and represents the instant when the exogenous

signal q∗
d reaches a given value chosen by the designer in order to impose a closed-

loop dynamics with impacts during the transition phases,
• t k

d is the desired detachment instant.

It is noteworthy that t k
0 , t k∞, t k

d are state dependent, whereas τ k
1 and τ k

0 are exogenous
and imposed by the designer.

8.3.2.3 Design of q∗
d (·) and qd(·) During the Phases I Bk

k

During the impacting transition phases the system must be stabilized on the boundary
bd(Φ). Obviously, this does not mean that all the constraints have to be activated
(i.e., q1

i (t) = 0, for all i = 1, . . . , m). Let us consider that only the first p constraints
(eventually reordering the coordinates) define the border of Φ where the system must
be stabilized. The signal q∗

d (·) will be then defined as follows:

• choosing ν > 0 and denoting t ′ = t−τ k
0

τ k
1 −τ k

0
, the components

(
qi

d

)∗
, i = 1, . . . , p of(

q∗
d

)
p are defined as:

(
qi

d

)∗
(t) =

{
a3(t ′)3 + a2(t ′)2 + a0, t ∈ [τ k

0 , min{τ k
1 ; t k

0 }]
−νV 1/3(τ k

0 ), t ∈ (min{τ k
1 ; t k

0 }, t k
f ], (8.44)

where V (·) is defined in (8.43) and τ k
1 is chosen by the designer such that the

limit conditions
(
qi

d

)∗
(τ k

1 ) = −νV 1/3(τ k
0 ),

(
q̇ i

d

)∗
(τ k

1 ) = 0 hold, which allows the
computation of the previous coefficients as:

⎧⎨
⎩

a3 = 2[(qi
)nc

(τ k
0 ) + νV 1/2(τ k

0 )]
a2 = −3[(qi

)nc
(τ k

0 ) + νV 1/2(τ k
0 )]

a0 = (
qi
)nc

(τ k
0 ).

(8.45)

• all the other components of q∗
d (·) are frozen:

(
q∗

d

)
n−p (t) = qnc

n−p(τ
k
0 ), t ∈ (τ k

0 , t k
f ]. (8.46)

As we said before, behind the choice of q∗
d (·) is the strategy to assure a robust

stabilization on bd(Φ) by mimicking the bouncing ball dynamics. On the other hand
this enables one to compute suitable upper bounds that will help using Proposition 8.5.
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In order to limit the deformation of the desired trajectory q∗
d (·) w.r.t. qnc(·) during

the Ik phases, we impose in the sequel

||qnc
p (τ k

0 )|| ≤ ν1, (8.47)

where ν1 > 0 is chosen by the designer. It is obvious that a smaller ν1 leads to smaller
deformation of the desired trajectory and to smaller deformation of the real trajectory
as we shall see in Sect. 8.1.7. Nevertheless, due to the tracking error, ν1 cannot be
chosen zero. We also note that (8.47) is a practical way to choose τ k

0 .
During the transition phases Ik we define (qd)n−p (t) = (

q∗
d

)
n−p

(t). Assuming
a finite accumulation period, the impact process can be considered in some way
equivalent to a plastic impact. Therefore, (qd)p (·) and (q̇d)p (·) are set to zero on
the right of t k

0 . It is worth to recall that the first impact time t k
0 of each cycle k, is

unknown.

8.3.3 Desired Contact Force During Constraint Phases

The desired contact force Pd = DT λd must be designed such that it is large enough
to assure the constraint motion on the Ω

Bk
2k+1-phases. Some contact force components

have also to be decreased at the end of the Ω
Bk
2k+1-phases in order to allow the

detachment. Therefore we need a lower bound of the desired force which assures both
the contact (without any undesired detachment which can generate other impacts)
during the Ω

Bk
2k+1 phases and a smooth detachment at the end of Ω

Bk
2k+1. Dropping

the time argument, the dynamics of the system on Ω
Bk
2k+1 can be written as the

complementarity system:

⎧⎨
⎩

M(q)q̈ + F(q, q̇, q̃, ˙̃q, θ̃ ) = (1 + K f )DT
p (λ − λd)

J ṡ2 + γ1s2 + K (θ̃ − q̃) = 0
0 ≤ qp ⊥ λp ≥ 0,

(8.48)

with F(q, q̇, q̃, ˙̃q, θ̃ ) = −M(q)q̈r + C(q, q̇)s1 + γ1s1 + K (q̃ − θ̃ ), Dp = [Ip
...

Op×(n−p)] ∈ R
p×n . On Ω

Bk
2k+1 the system has to be permanently constrained which

is equivalent to qp(·) = 0 and q̇p(·) = 0. In order to assure these conditions it is suf-

ficient to have λp > 0. We denote M(q)−1 =
( [M−1(q)]p,p [M−1(q)]p,n−p

[M−1(q)]n−p,p [M−1(q)]n−p,n−p

)

and C(q, q̇) =
(

C(q, q̇)p,p C(q, q̇)p,n−p

C(q, q̇)n−p,p C(q, q̇)n−p,n−p

)
where the meaning of each com-

ponent is obvious. Let us also denote by K p the matrix made of the first p rows and
p columns of K .
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Proposition 8.6 On Ω
Bk
k the constraint motion of the closed-loop system (8.48),

(8.7) and (8.42) is assured if the desired contact force is defined by:

(λd)p �νp + K p θ̃p

1 + K f
− M̄p,p(q)

1 + K f

(
[M(q)−1]p,pC p,n−p(q, q̇)

+ [M(q)−1]p,n−p(Cn−p,n−p(q, q̇) + γ1 In−p)
)
(s1)n−p,

(8.49)

where M̄p,p(q) = ([M(q)−1]p,p
)−1 = (

Dp M(q)T DT
p

)−1
is the inverse of the so-

called Delassus’ matrix and νp ∈ R
p, νp > 0.

Proof It is noteworthy that the third relation in (8.48) implies on Ω
Bk
2k+1 that com-

plementarity holds at the acceleration level:

0 ≤ q̈p ⊥ λp ≥ 0 ⇔ 0 ≤ Dpq̈ ⊥ λp ≥ 0. (8.50)

From (8.48) one easily gets:

q̈ = M(q)−1
[− F + (1 + K f )DT

p (λ − λd)p
]
.

Combining the last two equations we obtain the following LCP with unknown λ:

0 ≤ Dp M(q)−1[− F − (1 + K f )DT
p (λd )p

]+ (1 + K f )Dp M(q)−1 DT
p λp ⊥ λp ≥ 0

(8.51)
Since (1 + K f )Dp M(q)−1 DT

p � 0 and hence is a P-matrix, the LCP (8.51) has a
unique solution and one deduces that λp > 0 if and only if

M̄p,p(q)

1 + K f
Dp M−1(q)

[− F − (1 + K f )DT
p (λd)p

]
< 0 ⇔

(λd)p > − M̄p,p(q)

1 + K f
Dp M(q)−1 F ⇔ (λd)p = νp − M̄p,p(q)

1 + K f
Dp M−1(q)F,

with νp ∈ R
p, νp > 0. Since F = −M(q)q̈r +C(q, q̇)s1+γ1s1+K (q̃−θ̃ ), (q̈r )p =

0 and (s1)p = 0, (8.19) rewrites as (8.16) and the proof is finished. It is noteworthy
that the unique solution of the LCP (8.18) is:

λp = M̄p,p(q)

1 + K f
Dp M(q)−1

[
F + (1 + K f )DT

p (λd)p
]

= (λd)p + M̄p,p(q)

1 + K f
Dp M(q)−1 F = νp,

(8.52)

where (8.49) has been used.
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8.3.4 Strategy for Takeoff at the End of Constraint
Phases Ω

Bk
2k+1

In this section we are interested in finding the conditions on the control signal U Bk
c

that assures the takeoff at the end of constraint phases Ω
Bk
2k+1. As we have already

seen before, the phase Ω
Bk
2k+1 corresponds to the time interval [t k

f , t k
d ). The dynamics

on [t k
f , t k

d ) is given by (8.15) and the system is permanently constrained, which
implies qp(·) = 0 and q̇p(·) = 0. Let us also consider that the first h constraints
(h < p) have to be deactivated. Thus, the detachment takes place at t k

d if q̈h(t
k+
d ) > 0

which requires λh(t
k−
d ) = 0. The last p − h constraints remain active which means

λp−h(t
k−
d ) > 0.

To simplify the notation we drop the time argument in many equations of this
section. We decompose the LCP matrix (which is the Delassus’ matrix multiplied
by 1 + K f ) as:

(1 + K f )Dp M(q)−1 DT
p =

(
A1(q) A2(q)

A2(q)T A3(q)

)
, (8.53)

with A1 ∈ R
h×h , A2 ∈ R

h×(p−h) and A3 ∈ R
(p−h)×(p−h)

Proposition 8.7 The closed-loop system (8.15), (8.7) and (8.42) is permanently
constrained on [t k

f , t k
d ) and a smooth detachment is guaranteed on [t k

d , t k
d + ε) (ε is

a small positive real number chosen by the designer) if

(i)

(
(λd)h (t k

d )

(λd)p−h (t k
d )

)
=
((

A1 − A2 A−1
3 AT

2

)−1 (
bh − A2 A−1

3 bp−h
)− C1(t − t k

d )

C2 + A−1
3

(
bp−h − AT

2 (λd)h

)
)

(8.54)
where

bp � b(q, q̇, U∅
c ) � −Dp M(q)−1 F ≥ 0,

and C1 ∈ R
h, C2 ∈ R

p−h such that C1 ≥ 0, C2 > 0.

(ii) On [t k
d , t k

d +ε)q∗
d (t) = qd(t) =

(
q∗

h (t)
qnc

n−h(t)

)
, where q∗

h (·) is a twice differentiable

function such that

{
q∗

h (t k
d ) = 0, q∗

h (t k
d + ε) = qnc

h (t k
d + ε),

q̇∗
h (t k

d ) = 0, q̇∗
h (t k

d + ε) = q̇nc
h (t k

d + ε),
(8.55)

and q̈∗
h (t k+

d ) = a > max
(
0, −A1(q)(λd)h(t

k−
d )
)
.

Proof See Sect. 8.3.7.
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8.3.5 Closed-Loop Stability Analysis

To simplify the notation V (t, s(t), ψ̃(t)) is denoted as V (t). In order to introduce the
main result of this section we make the next assumption, which is verified in practice
for dissipative systems with en ∈ [0, 1).

Assumption 6 The controller U in (8.7) and (8.42) assures that all the transition
phases are finite.

Lemma 8.2 Consider the closed-loop system (8.36), (8.41) and (8.42) with (q∗
d )p(·)

defined on the interval [τ k
0 , t k

0 ] as in (8.12)–(8.11). Let us also suppose that condition
(b) of Proposition 8.5 is satisfied. The following inequalities hold:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

||q̃(t k−
0 )|| ≤

√
V (τ k

0 )

γ1γ2
, ||s1(t

k−
0 )|| ≤

√
2V (τ k

0 )

λmin(M(q))
,

||θ̃ (t k−
0 )|| ≤

√
V (τ k

0 )

γ1γ2
, ||s2(t

k−
0 )|| ≤

√
2V (τ k

0 )

λmin(J )
,

(8.56)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|| ˙̃q(t k−
0 )|| ≤

(√
2

λmin(M(q))
+
√

γ2

γ1

)
V 1/2(τ k

0 )

|| ˙̃θ(t k−
0 )|| ≤

(√
2

λmin(J )
+
√

γ2

γ1

)
V 1/2(τ k

0 )

(8.57)

Furthermore, if t k
0 ≤ τ k

1 one has

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

||(qd)p(t
k−
0 )|| ≤ ε +

√
V (τ k

0 )

γ1γ2

||(q̇d)p(t
k−
0 )|| ≤ k̄ + k∗V 1/6(τ k

0 )

||(q̈d)p(t
k−
0 )|| ≤ 6

√
2
(||qnc

p (τ k
0 )|| + √

pνV 1/2(τ k
0 )
)

||(q(3)
d )p(t

k−
0 )|| ≤ 6

√
2
(||qnc

p (τ k
0 )|| + √

pνV 1/2(τ k
0 )
)
,

where ε is the real constant fixed in Definition 8.2 and k̄, k∗ > 0 are some constant
real numbers that will be defined in the proof.

Proof See Sect. 8.3.8.

It is noteworthy that q(·) is a continuous signal. Nevertheless the velocity q̇(·)presents
discontinuities of the first kind at the impact times. From (8.42) one deduces that the
controller Ur jumps also at the impact times generating a jump in the desired signal
θd(·) in (8.41). Therefore, in order to study the evolution of the Lyapunov function
candidate (8.10) one has to analyze the jumps σθ̃ (·) and σ ˙̃

θ
(·).
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� The backstepping passivity-based method requires particular care about the
behavior of the “fictitious” controller θd(·) at the impact times. Though θ̇ (·) is con-
tinuous at impact times, θd(·) and θ̇d(·) may not be.

Lemma 8.3 The controllerU in (8.7) and (8.42) guarantees that ||σθ̃ (·)||, ||σ ˙̃
θ
(·)|| ∈

S(1) ≡ L∞.

Proof See Sect. 8.3.9.

We now state the main result of this section.

Theorem 8.2 Let Assumption 1 hold, en = 0 and q∗
d (·) defined as in (8.12)–

(8.11). The closed-loop system (8.36), (8.41) and (8.42) initialized on Ω0 such
that V (τ 0

0 ) ≤ 1, satisfies the requirements of Proposition 8.1 and is therefore
practically weakly stable with the closed-loop state x(·) = [ψ̃(·), s(·)] and

R =
√

e−γ (t k
f −t k∞)(ρ∗ + ξ)/ρ̄ where ρ∗, ρ̄ and ξ are defined in the proof.

Proof See Sect. 8.3.10.

8.3.6 Illustrative Example

Some experimental results are obtained by simulating the behavior of a planar two-
link flexible-joint manipulator in the presence of two constraints. As in Sect. 8.1.7,
we impose an admissible domain Φ = {(x, y) | y ≥ 0, 0.7 − x ≥ 0}. Let us
also consider an unconstrained desired trajectory qnc(·) whose orbit is given by the
circle {(x, y) | (x − 0.7)2 + y2 = 0.5}. It violates both constraints. In other words,
the two-link planar manipulator must track a quarter-circle; stabilize on and then
follow the line Σ1 = {(x, y) | y = 0}; stabilize on the intersection of Σ1 and
Σ2 = {(x, y) | x = 0.7}; detach from Σ1 and follow Σ2 until the unconstrained
circle reenters Φ and finally takeoff from Σ2 in order to repeat the previous steps.

The task representation here is given by (see (8.4)) B2k = ∅, m2k = 1, B2k,1 =
{1}, B2k+1 = {1}, m2k+1 = 2, B2k+1,1 = {1, 2}, B2k+1,2 = {2}. The numerical val-
ues used for the dynamical model are l1 = l2 = 0.5 m, m1 = m2 = 1 kg, I1 = I2 =
0.5 kg m2, J1 = J2 = 0.1 kg m2 and the impacts are imposed by ν = 10 in (8.12)
and (8.13). The stiffness matrix is defined by K = diag(2000 N/m, 2000 N/m). Let
us say that the quarter-circle is completely tracked in one round. We set the period
of each round to 10 seconds and we simulate the dynamics during 6 rounds using
the Moreau’s time-stepping algorithm of the siconos software platform. We set the
controller gains γ1 = 10, γ2 = 1 and we choose ν1 = 0.1 (like this we implicitly set
τ k

0 see (8.14)) in order to better point out the deformation of qd(·) on the transition
phases (Figs. 8.7 (left) and 8.10). In Fig. 8.11 we have shifted backward the desired
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trajectory on I B2
2 to highlight that the Lyapunov function at the instant τ k

0 is smaller
when k increases.

The behavior of the system during one round is emphasized in Fig. 8.10 (right)
and the shape of the control law is depicted in Fig. 8.12.

Compensation of Flexibilities

As noticed in [224, 225] the control laws designed for rigid systems behave well
for manipulators with large joint stiffness (see also Fig. 8.13 for the multi-constraint
case).

In order to highlight the importance of flexibilities’ compensation we keep the
numerical values used in the previous Subsection with one exception, the stiffness
matrix is defined by K = diag(200 N/m, 200 N/m). Using the control with no
flexibility compensation (named the “rigid controller”) one obtains a completely
deteriorated behavior (see Fig. 8.14). Furthermore, the control signal oscillates very
much after the first impact (Fig. 8.15).
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Fig. 8.10 Left The trajectory of the system during 6 rounds; Right The variation of the almost
nonincreasing Lyapunov function during the first round

Fig. 8.11 Zoom on the
transition phases I B2k
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Fig. 8.15 The rigid control applied to θ1 during the first round
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Fig. 8.16 The variation of the end-effector coordinates using the controller (8.41) and (8.42)

On the other hand using the controller designed in this section the desired trajec-
tory is well tracked (see Fig. 8.16) and the control signal is quickly stabilized during
the Ik phases (see Fig. 8.17). More numerical results can be found in [875].

Fig. 8.17 The control law
applied to θ1 during the first
round
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8.3.7 Proof of Proposition 8.7

The necessary condition for takeoff after the instant t k
d is given by λh(t

k−
d ) = 0 and

λp−h(t
k−
d ) > 0. Precisely, we impose a positive contact force on [t k

f , t k
d ) with the

first h components approaching 0 when t approaches t k
d . From (8.53) and (8.15) it is

straightforward that the LCP (8.17) rewrites as:

0 ≤
(

λh

λp−h

)
⊥
(

bh + A1(λ − λd)h + A2(λ − λd)p−h

bp−h + AT
2 (λ − λd)h + A3(λ − λd)p−h

)
≥ 0. (8.58)

Since (1 + K f )Dp M(q)−1 DT
p � 0, the LCP (8.50) (or the equivalent one (8.58))

has a unique solution. Imposing λh = 0 one gets:

0 ≤ λp−h ⊥ bp−h − AT
2 (λd)r + A3(λ − λd)p−h ≥ 0,

with the solution

λp−h = −A−1
3

(
bp−h − AT

2 (λd)h − A3(λd)p−h
)
. (8.59)

Thus λp−h > 0 is equivalent to:

(λd)p−h > A−1
3

(
bp−h − AT

2 (λd)h

)
,

which leads to the second part of the definition in (8.54). Furthermore, replacing
(λd)p−h in (8.59) we get λp−h = C2 and bh + A1(λ − λd)h + A2(λ − λd)p−h ≥ 0
yields the first part of the definition in (8.54). Consequently the solution of the LCP

(8.58) is λp =
(

0
C2

)
∈ R

p when (λd)p is defined by (8.54).

The jumps in the Lyapunov function are avoided during the detachment phase
using a twice differentiable desired trajectory qd(·) defined as in item (ii) of Propo-
sition 8.7. In order to assure a smooth detachment (without impacts) on [t k

d , t k
d + ε)

we need a large enough positive desired acceleration (q̈d)h . At t k−
d one has

q̈h(t
k−
d ) = −Dh M(q)−1

[
F + (1 + K f )DT

h (λd)h
]
,

while at t k+
d one has q̈p−h(t

k+
d ) = Dh M(q)−1 F . Since (q̈d)h(t

k−
d ) = 0 we arrive at

σq̈h(t k
d ) = (q̈d)h(t

k+
d ) + A1(q)(λd)h(t

k−
d ).

Therefore q̈1d(t
k+
d ) has to be positive and large enough in order to compensate

for −A1(q)(λd)h(t
k−
d ) at the instant t k

d . Consequently one defines q̈∗
1 (t k+

d ) = a >

max
(
0, −A1(q)(λd)h(t

k−
d )
)

and the detachment is assured.
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8.3.8 Proof of Lemma 8.2

From (8.43) one deduces V (t k−
0 ) ≥ γ1γ2||q̃(t k−

0 )||2, V (t k−
0 ) ≥ 1

2 s1(t
k−
0 )T M(q(t k−

0 ))

s1(t
k−
0 ) and

V (t k−
0 ) ≥ γ1γ2||θ̃ (t k−

0 )||2, V (t k−
0 ) ≥ 1

2
s2(t

k−
0 )T Js2(t

k−
0 ).

Since condition (b) of Proposition 8.5 is satisfied one has V (τ k
0 ) ≥ V (t k−

0 ) and (8.56)

becomes trivial. Let us recall that s1(t) = ˙̃q(t) + γ2q̃(t) and s2(t) = ˙̃
θ(t) + γ2θ̃ (t)

which implies || ˙̃q(t k−
0 )|| ≤ ||s1(t

k−
0 )|| + γ2||q̃(t k−

0 )|| and || ˙̃θ(t k−
0 )|| ≤ ||s2(t

k−
0 )|| +

γ2||θ̃ (t k−
0 )|| respectively. Combining this with (8.56) we derive (8.57).

The proof of (8.2) follows the ideas presented in Sect. 8.1. Roughly the first
inequality in (8.2) is based on the definition of pε-impacts (see Definition 8.5).
The remaining inequalities in (8.2) are based on the particular definition of (q∗

d )p(·)
(see (8.44), (8.45)). The upper bound of ||(q̇d)p(t

k−
0 )|| was derived in Sect. 8.1 (see

Sect. 8.1.8) with k̄ = 6
√

pν1ε

τ k
1 − τ k

0

and:

k∗ = 6
√

p

τ k
1 − τ k

0

√(
1√
γ1γ2

+ ν

)
(ν + ν1) + εν.

Finally, differentiating (8.44) two and three times respectively one obtains:

⎧⎨
⎩

q̈ i
d(t

k−
0 ) = limt→t k

0 ,t<t k
0

6((qi )nc(τ k
0 ) + νV 1/2(τ k

0 ))(2t ′ − 1)

≤ limt→t k
0 ,t<t k

0
6((qi )nc(τ k

0 ) + νV 1/2(τ k
0 )),

(qi
d)

(3)(t k−
0 ) = limt→t k

0 ,t<t k
0

6((qi )nc(τ k
0 ) + νV 1/2(τ k

0 )),

(8.60)

which leads to the upper bounds of ||(q̈d)p(t
k−
0 )|| and ||(q(3)

d )p(t
k−
0 )|| respectively.

8.3.9 Proof of Lemma 8.3

Since θ(·), θ̇ (·) are continuous on R+ and θd(·), θ̇d(·) are continuous on R+ \ {t k
0 |

k ∈ Z} one deduces that σθ̃ (t) = 0 = σ ˙̃
θ
(t), ∀t �= t k

0 . Therefore Lemma 8.3 holds if
there exist some real constants that upper bound ||σθ̃ (t

k
0 )||, ||σ ˙̃

θ
(t k

0 )||, for all k ∈ Z.
The definition of θd(·) (see (8.41)) allows us to write:
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σθ̃ (t
k
0 ) = −σθd (t

k
0 ) = −σqd (t

k
0 ) − K −1σUr (t

k
0 )

=
(

(qd)p(t
k−
0 )

0

)
− K −1σUr (t

k
0 )

σ ˙̃
θ
(t k

0 ) = −σθ̇d
(t k

0 ) = −σq̇d (t
k
0 ) − K −1σU̇r

(t k
0 )

=
(

(q̇d)p(t
k−
0 )

0

)
− K −1σU̇r

(t k
0 ).

(8.61)

Therefore:
||σθ̃ (t

k
0 )|| ≤ ||(qd)p(t

k−
0 )|| + λmax (K −1)||σUr (t

k
0 )||

||σ ˙̃
θ
(t k

0 )|| ≤ ||(q̇d)p(t
k−
0 )|| + λmax (K −1)||σU̇r

(t k
0 )||.

Using (8.42) one obtains:

σUr (t
k
0 ) = M(q)σq̈r (t

k
0 ) + σC(q,q̇)q̇r (t

k
0 ) − γ1σs1(t

k
0 ).

From (8.46) one has (q̇d)n−p(t) = 0, (q̈d)n−p(t) = 0, for all t ∈ [τ k
0 , t k

f ]. Moreover,
as we have mentioned at the end of Sect. 8.3.2, (qd)p(·), (q̇d)p(·) and implicitly
(q̈d)p(·) are set to zero on (t k

0 , t k
f ]. Thus taking into account the relation ||q̇(t k+

0 )|| ≤
w||q̇(t k−

0 )|| (where w =
√

λmax (M)

λmin(M)
) and Property 8.1 one arrives at

||σq̈r (t
k
0 )|| ≤||(q̈d)p(t

k−
0 )|| + γ2||(q̇d)p(t

k−
0 )|| + γ2(1 + w)||q̇(t k−

0 )||
||σC(q,q̇)q̇r (t

k
0 )|| ≤||σC(q,q̇)q̇r (t

k−
0 )|| + ||C(q, q̇(t k+

0 ))σq̇r (t
k
0 )||

∈ S
(
2(1 + γ2)||q̇(t k−

0 )|| ||(q̇d)p(t
k−
0 )|| + γ2||(qd)p(t

k−
0 )||)

||σs1(t
k
0 )|| ≤(1 + w)||q̇(t k−

0 )|| + ||(q̇d)p(t
k−
0 )||

+ γ2||(qd)p(t
k−
0 )||.

(8.62)

When V (τ k
0 ) ≤ 1, Lemma 8.2 states that ||(q̇d)p(t

k−
0 )||, ||(qd)p(t

k−
0 )|| and ||q̇(t k−

0 )||
are bounded by some constants. Thus all the quantities in (8.62) are bounded by some
constants independent of the cycle index k. This means that ||σUr (t

k
0 )|| is bounded

by a constant independent of the cycle index, which implies the same for ||σθ̃ (t
k
0 )||.

In other words ||σθ̃ (t)|| ∈ S(1). Differentiating (8.42) we obtain:

U̇r (t) = M(q)q(3)
r (t) + Ṁ(q)q̈r (t) + C(q, q̇)q̈r (t)

+ Ċ(q, q̇)q̇r (t) + ∂G

∂q
q̇(t) − γ1ṡ1(t),

(8.63)

where Ṁ, Ċ stand for d M
dt and dC

dt respectively. It is clear that

Ċ(q, q̇)(t) = ∂C

∂q
(q, q̇)q̇(t) + ∂C

∂ q̇
(q, q̇)q̈(t),
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and using Properties 8.1 and 8.3 one derives:

||Ċ(q, q̇)(t)|| ∈ S(||q̇(t)||2 + ||q̈(t)||).

Furthermore, Lemma 8.2 and the first equation in (8.36) assure that ||q̇(t)||2, ||q̈(t)|| ∈
S(1). Thus ||Ċ(q, q̇)(·)||, ||σĊ(q,q̇)(·)|| ∈ S(1) and one derives that

||σĊ(q,q̇)(t
k
0 )q̇r (t

k
0 )|| ≤ ||σĊ(q,q̇)(t

k
0 )|| ||q̇r (t

k+
0 )||

+ ||Ċ(q, q̇)(t k−
0 )|| ||σq̇r (t

k
0 )|| ∈ S(1).

(8.64)

Property 8.1 allows us to replace Ṁ(q) by C(q, q̇) + C(q, q̇)T which leads to:

Ṁ(q)q̈r (t) + C(q, q̇)q̈r (t) = (2C(q, q̇) + C(q, q̇))T q̈r (t) ⇒
||Ṁ(q)q̈r (t) + C(q, q̇)q̈r (t)|| ≤ 3||C(q, q̇)||.||q̈r (t)|| ⇒
||Ṁ(q)q̈r (t) + C(q, q̇)q̈r (t)|| ∈ S(||q̇||.||q̈r (t))||).

Since ||q̈r (t))|| ≤ ||q̈d(t)|| + γ2|| ˙̃q(t)||, using Lemma 8.2 one gets:

||Ṁ(q)q̈r (t) + C(q, q̇)q̈r (t)|| ∈ S(1). (8.65)

The definitions (8.44)–(8.46) and the first equation in (8.36) assure that ||q(3)
r (t)|| ∈

S(1). Therefore:

||M(q)q(3)
r (t)|| ≤ λmax(M)||q(3)

r (t)|| ∈ S(1). (8.66)

Property 8.2 states that || ∂G
∂q || ∈ S(1), which implies

∣∣∣
∣∣∣ ∂G

∂q q̇(t)
∣∣∣
∣∣∣ ∈ S(||q̇(t)||)

||q̇(t)|| ∈ S(1)

}
⇒
∣∣∣∣
∣∣∣∣∂G

∂q
q̇(t)

∣∣∣∣
∣∣∣∣ ∈ S(1). (8.67)

Introducing (8.64)–(8.67) in (8.63) and taking into account the last inequality in
(8.62) we arrive at ||σU̇r

(t)|| ∈ S(1) and thus ||σ ˙̃
θ
(t)|| ∈ S(1).

8.3.10 Proof of Theorem 8.2

First we observe that conditions (a) and (c) of Proposition 8.5 hold when the hypoth-
esis of the Theorem are verified. Thus Theorem 8.2 holds if the conditions (b), (d)
of Proposition 8.5 are verified.
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(b) Using that Ṁ(q) − 2C(q, q̇) is a skew-symmetric matrix (see Property 8.1),
straightforward computations show that on R+ \⋃k≥0[t k

0 , t k
f ] the time derivative of

the Lyapunov function is given by:

V̇ (t) = − γ1|| ˙̃q||2 − γ1γ
2
2 ||q̃||2 − γ1|| ˙̃θ ||2 − γ1γ

2
2 ||θ̃ ||2

− γ2(q̃ − θ̃ )T K (q̃ − θ̃ ) + (1 + K f )s
T
1 DT

p (λ − λd)p

= − γ1|| ˙̃q||2 − γ1γ
2
2 ||q̃||2 − γ1|| ˙̃θ ||2 − γ1γ

2
2 ||θ̃ ||2

− γ2(q̃ − θ̃ )T K (q̃ − θ̃ ) ≤ 0,

where we have used the fact that (qd)p ≡ 0, (q̇d)p ≡ 0, qp ≡ 0, q̇p ≡ 0, thus
(s1)p ≡ 0 on constraint phases and λp ≡ 0, (λd)p ≡ 0 on free-motion phases. On
the other hand

V (t) ≤ λmax (M(q))

2
||s1||2 + λmax (J )

2
||s2||2 + γ1γ2||q̃||2

+ γ1γ2||θ̃ ||2 + 1

2
(q̃ − θ̃ )T K (q̃ − θ̃ )

≤ γ −1[γ1|| ˙̃q||2 + γ1γ
2
2 ||q̃||2 + γ1|| ˙̃θ ||2 + γ1γ

2
2 ||θ̃ ||2

+ γ2(q̃ − θ̃ )T K (q̃ − θ̃ )],

where

γ −1 = max

{
λmax(M(q))

1 + 2γ2

2γ1
; λmax (M(q))(γ2 + 2) + 2γ1

2γ1γ2
; 1

2γ2

}
> 0,

with M(q) =
(

M(q) 0n×n

0n×n J

)
. Therefore V̇ (t) ≤ −γ −1V (t) on R+ \⋃k≥0[t k

0 , t k
f ].

(d) There is only one impact during each transition phase since en = 0 and with
the choice of U B

t in (8.42). Therefore V (t k∞) = V (t k−
0 )+σV (t k

0 ) ≤ V (τ k
0 )+σV (t k

0 ).
We compute now the jump of the Lyapunov function at the impact time t k

0 . Let

K =
(

K −K
−K K

)
and ψ = (qT , θT )T .

V (t k+
0 ) − V (t k−

0 ) = γ1γ2σψ̃T ψ̃ (t k
0 )

+ 1
2

(
s(t k+

0 )TM(q)s(t k+
0 ) − s(t k−

0 )TM(q)s(t k−
0 )
)

+ 1
2

(
ψ̃(t k+

0 )TK ψ̃(t k+
0 ) − ψ̃(t k−

0 )TK ψ̃(t k−
0 )
)

.

(8.68)

Replacing ψ̃(t k+
0 ) by ψ̃(t k−

0 ) + σψ̃(t k
0 ), the second term of the right-hand side of

(8.68) becomes

1

2

(
2ψ̃(t k−

0 )TK σψ̃(t k
0 ) + σψ̃(t k

0 )TK σψ̃(t k
0 )
)
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which is upperbounded by:

λmax (K )(||ψ̃(t k−
0 )|| ||σψ̃(t k

0 )|| + 1

2
||σψ̃(t k

0 )||2).

Therefore Lemmas 8.1 and 8.3 imply that there exists a real positive constant c1 such
that

1

2

(
ψ̃(t k+

0 )TK ψ̃(t k+
0 ) − ψ̃(t k−

0 )TK ψ̃(t k−
0 )
)

≤ c1, for all k ≥ 0. (8.69)

On the other hand

s(t k+
0 )TM(q)s(t k+

0 ) − s(t k−
0 )TM(q)s(t k−

0 ) = σsT
1 M(q)s1

(t k
0 ) + σsT

2 Js2
(t k

0 ).

It is easy to see that

σsT
2 Js2

(t k
0 ) = 2s2(t

k−
0 )T Jσs2(t

k
0 ) + σs2(t

k
0 )T Jσs2(t

k
0 ),

and using Lemmas 8.2 and 8.3 and the relation σs2(t
k
0 ) = σ ˙̃

θ
(t k

0 ) + γ2σθ̃ (t
k
0 ), one

deduces that there exist a real positive constant c2 such that:

σsT
2 Js2

(t k
0 ) ≤ c2, for all k ≥ 0. (8.70)

As proved in Sect. 8.1, there exists a real positive constant c3 such that:

σsT
1 M(q)s1

(t k
0 ) + γ1γ2σq̃T q̃(t

k
0 ) ≤ c3, for all k ≥ 0 (8.71)

Finally, Lemma 8.3 assures the existence of c4 ∈ R+ such that:

γ1γ2σθ̃T θ̃ (t
k
0 ) ≤ c4, for all k ≥ 0. (8.72)

In conclusion, inserting (8.69), (8.70), (8.71) and (8.72) in (8.68) one gets

V (t k+
0 ) − V (t k−

0 ) ≤ c1 + c2 + c3 + c4, for all k ≥ 0 (8.73)

Thus condition (d) of Proposition 8.5 is verified for ρ∗ = 1, ξ = c1 + c2 + c3 + c4

and the closed-loop system (8.36), (8.41) and (8.42) is practically weakly stable with
R = α−1

(
e−γ (t k

f −t k∞)(1 + ξ)
)
.

Let us consider ρ̄ = min{λmin(M(q))/2; γ1γ2}. Defining α : R+ �→ R+, α(ω) =
ρ̄ω2 we get α(0) = 0, α(||[s(t), q̃(t)]||) ≤ V (t, s, q̃) and the proof is finished.
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Fig. 8.18 Structure of the controller

8.4 A Unified Point of View

The block-diagram structure of the switching feedback controllers in (8.9) and (8.42)
is depicted in Fig. 8.18. The block “Nonlinear controller” is for Unc in (8.9) and (8.42).
The block “Lagrangian System” is for (8.1) and (8.36), respectively.

A complete analysis would include frictional effects, including at impacts (a step in
this direction may be found in [1013]), and bilateral constraints h(q) = 0. Hopefully,
the framework proposed in this chapter, paves the way toward such extensions.

8.5 Further Results

8.5.1 Experimental Control of the Transition Phase

In [536] an experimental evaluation of impedance control during a contact task is
presented; the strategy proves to behave stably during the transition phase, even if
the environment is very rigid. The main drawback of the method is that as the same
feedback gains are used during the whole task, the position tracking performances
are poor. In [1305], experiments on a one-degree-of-freedom robot are reported. An
integral force controller that acts as a low-pass filter for high-frequency components
of impact transients plus velocity feedback that damps the system is shown to perform
well during the transition phase. These results are contradicted in [1234] who show
that integral force control behaves at best with oscillations during the transition phase:
due to the integrator wind-up, the second impact has larger magnitude than the first
one. Moreover too large integral gains lead to instability. The discrepancy between
the results in [1305, 1234] mainly comes from the fact that the environment is either
rigid [1305] or compliant [1234]. The work in [1305] contains simulations based
on a rigid impact model and compared with experiences. In [1234], several control
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strategies are tested. In particular, it appears that integral force control leads to a
poorly behaved transition phase, whereas proportional gain force feedback behaves
correctly (notice that it is shown in [380] that for flexible-joint one-degree-of-freedom
robots, proportional force feedback always yields limit cycles when the gain is high
enough). However, integral action is needed when contact is established to get good
force regulation. The main conclusion in [1234] is that three distinct controllers have
to be used: position control, impact control and proportional gain force feedback.
No general stability analysis is given to corroborate these experimental results. In
[1334] the effects of impacts in the joints of a rigid manipulator are studied, using
a Netwon–Euler recursive algorithm to describe the dynamics. The authors of [4]
also investigated the collisions effects in n-degree-of-freedom manipulators. They
studied the distribution of kinetic energy after the impact in the robot links. In [658],
the authors propose to increase damping (velocity feedback) during a transitory stage
after the first impact has occurred. This so-called impact transition control stage [658]
aims at dissipating the impact energy to avoid excessive bouncing, and minimizes
force overshoot at the moment of impact. Experimental results on a one axis impact
testbed are presented in [567]: several control strategies available in the literature
are implemented and shown to improve the transition phase behavior. In [670], a
simple switching strategy which consists of a proportional force-velocity feedback
(contact mode) and a velocity feedback (non-contact mode) is tested. Experimental
results are presented. Unfortunately, the value of the contact stiffness is not provided:
it seems indeed that if the shocks have a small duration (typically of the order of
1 ms, see [1144]), the impacts will act as a disturbance for the force sensor, and
incorporating its response in the controller will necessarily decrease the performance.
Other related studies can be found in [288, 1111] (use of stochastic methods to derive
controllers robust with respect to collisions) [903, 1078, 1093, 1261] (methods to
reduce impact forces after one collision has been detected) [1124, 1125] (impact
detection via acceleration measurement and high-level control in insertion tasks).
Experiments have also been led in [1109, 1110] in the framework of multifingered
hands. Collisions of fingers of different nature (plastic, rubber, gel, paste, powder,
sponge) with a rigid obstacle are tested. Newton’s kinematic restitution coefficient en

was measured in each case. Apparently the influence of the pre-impact velocity value
on en was not investigated. The results show how the peak impact forces vary with
the materials in contact. Similar investigations were led in [32, 654]. Some results
in [1110] show that large force peaks may exist at the collisions. The specific yet
important task of the stabilization of impacting transition phases was analyzed and
experimentally tested in [715, 952, 1085, 1233, 1289].

Purely kinematic solutions to reduce impact effects are studied in [292, 440, 665,
746, 1240, 1333], mainly using the relationship between the impulsive force and the
generalized velocities jump, see Example 1.3. Possible redundancy of the manipu-
lator provides more freedom to reduce the impact magnitude [292, 746, 1240]. The
impacts effects in space manipulators have been investigated [2, 318, 343, 552, 755,
913, 923, 1258, 1301, 1302, 1303], see Sect. 4.3.3. Application in landing aircrafts
are in [1309]. Impact devices have been built to estimate the collision effects. They
are composed of piezoelectric sensor to measure the impact force and encoder to

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_4
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measure pre- and postimpact velocities. The improvement of the impact control via
the addition of compliance at the contact has been studied in [977]. Flexible-joint
manipulators subject to collision are studied in [1317] using Denavit–Hartenberg
coordinate frames.

Let us summarize the main conclusions that can be drawn from the experimental
works that have been conducted in impact control, and which are in agreement with
the controllers presented in Sects. 8.1 and 8.3:

• The approach velocity plays a crucial role and should be decreased. This may be
done via the control (damping during the approach) or via kinematic solutions
(manipulator configuration). Impacts may be destabilizing and have to be taken
into account in the control design.

• When the contact stiffness is small enough (i.e., the impact duration is large
enough), force plus velocity feedback control during the transition phase pro-
vides good results (shocks attenuation). However in many cases where the contact
duration during the bouncing phase is very small (of the order of 1 ms), measuring
and using the force during the impact in the controller, is meaningless (the contact
force peak is too high to be compensated for by the control, and the sensor plus
motor bandwidth is too low to avoid delays in the compensation).

• Three different controllers have to be used in general that correspond to the
three phases of motion (free motion, constrained motion and transition phase).
In particular integral force feedback seems to be suitable for constrained motion
phases, whereas proportional force feedback is more suitable for bouncing phases
(although non-colocated modes may introduce limit cycles – bouncing phases –
for high enough gains).

8.5.2 Juggling Robots Analysis and Control

Juggling mechanical systems form a particular class of complementarity Lagrangian
systems, whose dynamics is a subclass of (5.1). Juggling systems dynamics can be
split into two subparts:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M1(q1(t))q̈1(t) + F1(q1(t), q̇1(t)) = ∂ f
∂q1

(q1(t), q2(t))T λn,u

M2(q2(t))q̈2(t) + F2(q1(t), q̇1(t), q2(t), q̇2(t) = ∂ f
∂q2

(q1(t), q2(t))T λn,u + E(q)u(t)

0 ≤ λn,u(t) ⊥ f (q1(t), q2(t)) ≥ 0
Contact law.

(8.74)
The (q1, q̇1) may be named the object dynamics (which may be a real object as a in
real juggling system, or the gravity center of a jumping robot, etc.), and the (q2, q̇2)

is the controlled robot dynamics. The only way to control the object is through the
multiplier λn,u , either at impacts or during persistent contact phases. The control, the
controllability and the state observation of juggling systems have been analyzed in
[219, 227, 843, 1310, 1311, 1312].

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Remark 8.7 It is interesting here to make the link with the cable-mass system of
Example 1.6, where the control appears in the complementarity conditions (should it
be λ, or y(t), or ÿ(t)). From the point of view of Control, we therefore face two quite
different subclasses of nonsmooth Lagrangian systems: jugglers and cable-driven
systems (whose control is of interest in the Robotics scientific community [139, 259,
395], [231, Parts VII and VIII]), as well as biped robots which may nevertheless
involve additional constraints [1105]. This motivates us to propose a general control
framework for complementarity Lagrangian systems, which mimics that of LCS
(compare (8.75) and (5.128)):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(q)q̈ + F(q, q̇) = E(q)τ + ∇h(q)λn,b + ∇ f cont (q, v)λn,u + ∇ f f ree(q)w
0 ≤ λn,u ⊥ f cont (q, v) ≥ 0
0 ≤ w ⊥ f f ree(q) ≥ 0
h(q) = 0, q(0) ∈ Φ, q̇(0+) ∈ TΦ(q(0)),

Collision and friction model
(8.75)

where τ , v and w are control inputs, and we recall that gradients are calculated with
respect to q, while Assumption 1 in Sect. 5.2.3 has to be satisfied for Theorem 5.3 to
apply.

8.5.3 Mechanisms with Joint Clearance

Joint clearances are a major issue in the design and the control of mechanisms. Indeed
they not only introduce nonsmooth phenomena like collisions, but they add degrees
of freedom in the system. For instance, a four-bar planar mechanism has one degree
of freedom (DOF) in the perfect case. If one joint has mechanical play, it has three
DOFs, if two joints have play, it has five DOFs: each clearance adds two DOFs. Both
the modeling and the numerical simulation of systems with clearances, are tough
issues, especially in the three-dimensional case where cylinder/bore conformal con-
tacts may occur if the clearances are not large enough. The slider-crank mechanism
has been widely studied as a benchmark example in the Mechanical Engineering
literature, see [400] and references therein, and the various contact/impact models
described in Chap. 4 have been tried (some of these with the drawbacks alluded
to in Remark 5.31, Sect. 5.7.2, for the numerical simulation). The control of such
mechanisms is limited in most of the Systems and Control literature, to very sim-
ple systems with oversimplifying contact modeling assumption, which neglects all
dynamical effects (in short, clearances are supposed to be static hysteresis or dead
zone). A switching control strategy taking into account dynamical effects of impacts,
has been proposed in [821] to control a system as in Fig. 5.6a. See also [33] for a
numerical analysis of the robustness of various collocated and non-collocated feed-
back controllers (PD, feedback linearization, passivity-based control) applied on a
planar four-bar mechanism with joint clearance. The NSCD method described in

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_4
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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Sect. 5.7.3.1 and implemented in the INRIA siconos software,6 is used in [33], with
Coulomb’s friction, and constraint stabilization [7]. Other control strategies to com-
pensate for mechanical play in parallel mechanisms consist in redundant actuation,
which however requires some care because of “mutual fighting” of the actuators
[1018].

8.5.4 Observability and State Observers

Let us quote an interesting example form [843], which shows how impacts may
render a system observable. We consider a system with mechanical play:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1q̈1(t) = λ1(t) − λ2(t)
m2q̈2(t) = λ2(t) − λ1(t) + u(t)
y(t) = q2(t)
0 ≤ f (q1(t), q2(t)) ⊥ λ(t) ≥ 0
q̇(t+

k ) = E q̇(t−
k ),

(8.76)

where q = (q1, q2)
T , f (q1, q2) =

(
q2 − q1

q2 − q1 − 1

)
. Suppose that u(t) = 1 for all

t ≥ 0, with q1(0) = q2(0) = 1, 0 < q̇1(0+) − q̇2(0+) <
√

2. Assume that both

constraints have a CoR en = 1, i.e. E =
(

0 1
1 0

)
. From these conditions it follows

that tk+1 − tk = 2(q̇1(0+) − q̇2(0+)), and that all impacts occur with the constraint
boundary f2(q) = 0. Then the following impact Poincaré map can be derived:

{
z(t+

k+1) = A1(A2z(t+
k ) + B2) + B1

y(t+
k ) = Cz(t+

k )
(8.77)

where z = (q1, q̇1, q2, q̇2)
T , A1 and B1 take into account the impact conditions, A2

and B2 come from the continuous, unconstrained part of the dynamics. It happens
that the pair (C, A2) is not observable, but the pair (C, A1 A2) is observable: impacts
may provide the system with some observability property.

The design of state observers for complementarity Lagrangian systems, taking into
account all phases of motion (unconstrained, constrained) as well as topology changes
(switches between spaces of lower dimensions than n), has been tackled in [1183]
and [114] in a general dynamical setting, relying on Measure Differential Inclusions
similar to Moreau’s second-order sweeping process. The state observers designed in
[1183] are a particular, new type of first order perturbed sweeping processes whose
well-posedness, inspired by the results in [375] which use an implicit algorithm as in
(5.81) and (5.82), is carefully checked by studying the limit of discretized solutions.
Accumulations of impacts (Zeno phenomenon) are allowed in the plant velocity.

6http://siconos.gforge.inria.fr/.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://siconos.gforge.inria.fr/


534 8 Trajectory Tracking Feedback Control

Specifically and very briefly, the state observers in [1183] take the form:

⎧⎨
⎩

ż1(t) = F1(t, q(t), z(t))

M(q(t))dz2 + F2(t, q(t), z(t))dt ∈ −NV (q(t))(v̂e(t)),
(8.78)

where v̂e(t) = v̂(t+)+en v̂(t−)

1+en
, and the state estimate is defined as q̂(t) = f1(z1(t), q(t)),

v̂(t) = z2(t) + f2(z1(t), q(t)). The functions F1(·), F2(·), f1(·), f2(·), are part of
the design procedure. It also possible to rewrite the observer (8.78) in the (q̂, v̂)
coordinates. The second line in (8.78) is a Measure Differential Inclusion (state
jumps are allowed in both the plant and the observer dynamics), and q(t) is seen as
an external input to the observer dynamics. See also [812, 842, 843, 844] for other
state observers design.
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Erratum to: B. Brogliato, Nonsmooth Mechanics,
Communications and Control Engineering,
DOI 10.1007/978-3-319-28664-8

The original version of the book was inadvertently published with incorrect text,
figures and equations. The incorrect text, figures and equations were corrected. The
erratum chapters and the book have been updated with the changes.

• Page 21: Figure 1.3 (b) has a severe shortcut in the right curved arrow indicating “Yosida
approximation”. A better view of the transformations is depicted in Figure 1 below. In the
same vein it is worth reading [1].

• Page 49, Section 1.4.3.1: other studies using the Zhuravlev-Ivanov nonsmooth transforma-
tion may be found in [3–6].

• Pages 71-72: A first comment is that the damping coefficients that incorporate en (as those
listed page 71), may be seen as extensions to the nonlinear spring-dashpot model, of (2.9)
page 56 which also involves the CoR. We note that in reference 1220, the coefficient p in
(2.24) is found heuristically to be p = 1

4 . Thus their model has a dissipative force equal

to α
√
mKhx

1
4 ẋ if x is the normal indentation, with α = −ln(en)

√
5

π2+ln(e2n)
(compare

with the expression in (2.9) dropping km outside the parantheses). In [7] it is proposed
to enlarge the right-hand side of (2.24) to −γx(t)p ẋ(t) − kx(t)w, and γ is chosen as

αmẋ(t0)
( k
mẋ(t0)2

) 1+p
1+w . They find that p = 1−w

2 yields α = −ln(en)

√
2(1+w)

π2+ln(en)2
. Accord-

ing to [7, Figure 2], their model has a loading-unloading curve similar to Figure 2.4 (a)
page 70, with no negative contact force near zero indentation. Several nonlinear spring-
dashpot models (Kuwabara-Kono, Hu et al, Tsuji et al) are further compared in [8] in terms
of variation of en with respect to the damping coefficient, acceleration histories, accelera-
tion/identation loading/unloading curves, etc, for the case of two spheres colliding. Then

The updated original online version for this book can be found at 10.1007/978-3-319-28664-8
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Fig. 1 Enhanced Fig. 1.3 (b)

[8] investigates the influence of the spring-dashpot models on a multiple impact process in
a chain of aligned balls. To this aim they rely on the experimental data in reference 625. In
particular [8, Figure 11] is exactly Figure 20 in [9] (reference 928) and Figure 29 in [10]
(reference 629), where the numerical results are obtained with the LZBmodel (section 6.3).
More work is necessary to determine the domains of validity (in terms of applications, ease
of numerical simulation, etc) of these models.

• Page 75: footnote 21 should be on page 74, at the end of the framed paragraph.
• Page 99, line 5: replace (B.5) by (B.6). The calculations after (3.13) are in fact the proof in

this particular case, that the normal cone can also be written as in (B.5) page 549.
• Page 102, line -5: replace ni ∈ IR3 by n ∈ IR3 (the subscript i in Fn,i refers to the contact

point number).
• Page 103, line 4: Pi = vn,i Fn,i = . . .

• Page 113: Equation (3.41) is obtained assuming that at an impact instant all virtual
displacements and velocities are allowed. This indeed results in zero impact because
M(q(tk))(q̇(t+k ) − q̇(t−k )) = 0 ⇒ q̇(t+k ) − q̇(t−k ) = 0 (the mass matrix is assumed
to be full rank). In reference 724 it is supposed that the generalized momentum satisfies
p(t+k ) − p(t−k ) ∈ −N�(q(tk)), as a modelling assumption since constraints are perfect
during impacts (see (iii) page 104). It is shown in reference 724 that this inclusion is
equivalent to the variational inequality 〈p(t+k ) − p(t−k ), δ̄q 〉 ≥ 0 for all δ̄q ∈ T�(q(tk),
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where the virtual displacements δ̄q are continuous (we can therefore see these develop-
ments as the extension of the material in (3.13) and below, to the case with elastic im-
pacts). This equivalence is not surprizing when we consider the normal cone definition in
(B.5), recalling that this definition remains true even for nonconvex sets, see Remark B.1
page 550. Using that p(t) = M(q(t))q̇(t) and Moreau’s set inclusion in Section B.2.2,
we may impose the stricter inclusion M(q(tk))(q̇(t+k ) − q̇(t−k )) ∈ −NT�(q(tk ))

(q̇(t+k ))

which is equivalently rewritten as the variational inequality: find q̇(t+k ) ∈ T�(q(tk)) such

that 〈M(q(tk))(q̇(t+k ) − q̇(t−k )), v − q̇(t+k )〉 ≥ 0 for all v ∈ T�(q(tk)) (see (5.53) and
(5.60) in Section 5.2). Thus we obtain this time the extension of (3.7) where virtual ve-
locities are considered, and the extension of (5.45) for the case of impacting motions. We
note in passing that the arguments that yield [13, Equation (1a)] (which is the same as
p(t+k ) − p(t−k ) ∈ −N�(q(tk)) with missing mass matrix and minus sign in the right-hand
side) are spurious: there is a shortcoming in the reasoning in [13] because of the use of the
condition δq (tk) + q̇(tk)δtk ∈ Tq(tk) bd(�), while q̇(·) jumps at tk , and Tq(tk) bd(�) de-
notes the tangent plane at q(tk) (and not the tangent cone) to the boundary of the admissible
domain (the correct way to derive the material page 385 in [13], is in Section 6 of reference
724 by Leine et al).

The above basic assumption yields Theorem 3 in reference 724 which is a Hamilton prin-
ciple in strong norm, or strong Hamilton principle. There exists a weak norm for a weak
Hamilton’s principle which somewhat relaxes the assumption on the generalized momenta
at impact times, see Theorem 4 and condition (99) in reference 724.

• Page 130, about the calculation of the normal and tangential vectors at the contact point A
(local kinematics): the starting point is that if a 3D surface is defined by two parameters
u and v and a differentiable function r(u, v), r : IR2 → IR3, then ∂r

∂u (u1, v1) ∈ IR3 and
∂r
∂v (u1, v1) ∈ IR3 span the tangent plane at the point A1 parameterized by u1 and v1, and

one can then define the normal vector as the cross productn1 = ∂r
∂u

T
(u1, v1)× ∂r

∂v
T
(u1, v1)

(one should take care of the correct order to get the right orientation of the normal).
• Page 133, about the time-derivative of the right-hand side of (4.17): Let us denote the

Galilean frame as L0 = G and the local frame as L. The angular velocity vector be-
tween both frames is denoted as �L/L0 . We obtain d

dt [(A2A1)T n] = d
dt [(A2A1)T ]n +

(A2A1)
T d
dt n = d

dt [(A2A1)T ]n + (A2A1)
T d
dt n. Assume that the vectors are expressed

in L0. Then basic kinematics say that d
dt n = d

dt n|L + �L/L0 × n = �L/L0 × n

since n is constant in L. Thus (A2A1)
T d
dt n = (A2A1)

T (�L/L0 × n) = 0 since
the vector product is orthogonal to n and the vector (A2A1) is along n. Therefore
d
dt [(A2A1)T n] = d

dt [(A2A1)T ]n. The vector d
dt [(A2A1)T ] is the time derivative of

(A2A1) in L0 and may be named the relative velocity between both bodies. The sentence
“In particular..., except if n is fixed in G” is meaningless and should be deleted. It becomes
true if stated in terms of the acceleration d

dt VAi and v̇i,n.
• Page 162, Section 4.2.3 (also page 169, section 4.2.5.2): [25] study the force/identation rela-

tion f (δ) = kδn for an elastic bodywith a rough surface in contactwith a rigid flat surface.A
three-dimensional rough surface is constructed using a modified two-variable Weierstrass-
Mandelbrot fractal function. Results in [25, Table 2] show that n can vary between 2.11
and 1.19 depending on some parameters (like fractal dimension, fractal roughness, root-
mean-square roughness and arithmetic average height Ra). Thus the elasticity is found to be
superlinear and even sometimes super-Hertz. Compared with the study described in Section
4.2.3 where n = 1 in (4.61), it seems that surface roughness increases n. The interest of
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Fig. 2 Sweeping process with friction

such study is to show that Hertz’ fundamental assumption (ii) page 147 (introduction of
Section 4.2.1.1) on smooth contacting surfaces, may play a role in the elasticity coefficient.
However we should also note that the surfaces in contact considered in [25] are conforming
in addition to be rough, and that contrary to (4.61) the flat is considered non-deformable.

• Page 164, Section 4.2.4: see a comment below (page 384).
• Page 165: Hurmuzlu’s analysis of the micro-impact phenomenon (Section 4.3.10.2) seems

to contradict Love’s criterion, because micro-collisions excite transversal modes in the
beam (page 228) and these vibrations dissipate energy.

• Pages 165-166: estimations of the CoR for harmonic chains of aligned beads colliding a
wall, and taking into account sequences of repeated impacts aswell as the vibrational energy
trapped in the chain, are given in [28, 29].

• Page 200, Equation (4.124): the last term is dp
dt ′ ,.• Page 245, line 6: . . . + wb(q, q̇, t).

• Pages 247-248, Proposition 5.3: The equality h(t ′) − h(t) = ∫ t ′
t ḣ(s)ds used in the proof

means that h(·) is absolutely continuous (not just continuous) and that what is denoted
as ḣ(·) is its almost-everywhere derivative. The same holds for (ii), where ḣ(·) has to be
absolutely continuous as well.

• Page 270, line above (5.61): [780, 781].
• Page 280, in Theorem 5.3, line 3: replace T�(q(t0)) by V (q(t0)), as it is not guaranteed in

general that both tangent cones are equal. Same page 282 in Remark 5.13.
• Page 286, aboutCoulomb’s friction: notice that in the slidingmodeone has‖Ft‖ = α‖vt‖ =

μ‖Fn‖ ⇔ α = μ‖Fn‖‖vt‖ . Hence we recover the equivalent classical way of expressing sliding

Coulomb’s friction as Ft = −μ‖Fn‖ vt‖vt‖ .
• Page 293, line 5: . . . sgn (ẍ(t+)) when ẋ(t) = 0, . . .
• Page 295: in case of non trivial mass matrix, Equation (5.97) becomes u(t+k ) =

proj(0, [u(t−k )+M(q(t))−1C(q(t))]∩T (q(t)) [15]. Proposition 3.3 in [16] extends (5.97),
and Figure 5.12 which depicts the algorithm in case of a trivial mass matrix. Additional
figures which complete Fig. 5.12 page 295, are in Figure 2. Case (a) shows that if the mass
matrix is trivial (the identity matrix) then when u(t−) is tangent to the constraint boundary,
there is no velocity jump (no impact without collision). Case (b) shows that when the mass
matrix is not trivial and the generalized friction cone dips below the tangent hyperplane,
then the velocity may jump. But case (c) shows that depending on the tangent velocity
signum, the velocity may remain continuous. It is noteworthy that the zero vector in (5.97)
refers to velocities, not positions.

• Page 298, last line: replace x2,n by (A2A1)
T n.
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• Page 299, more details about P-matrices and the difference with positive definite matrices.
Principal minors are the determinants of the principal submatrices, they are sometimes
also called principal subdeterminants. Principal submatrices of a matrix M ∈ IRn×n

are constructed as follows: let the index set I = {1, 2, . . . , n}, and consider any subset
J ⊆ I. Let us denote J = {i1, i2, . . . , im}, with m ≤ n, and ik ∈ I for all 1 ≤ k ≤ m.
Delete all rows and columns of M which are indexed by i with i∈/ J . The obtained matrix
MJ ∈ IRm×m is a principal submatrix of M. A leading principal submatrix of M is
obtained by considering ik = k, k = 1, 2, . . . ,m. The determinant of a leading principal
submatrix is a leading principal minor.
Theorem 5.5 states that a P-matrix has to have all its principal submatrices with positive
determinant, i.e. all positive principalminors. A (real)matrixM (nor necessarily symmetric)
is positive definite if and only if MT + M has all its leading principal minors positive (and
also its leading principal submatrices are positive definitematrices). If in additionM = MT ,

then M � 0 if and only if all its principal minors are positive (and another characterization
is: if and only if all its leading principal minors are positive, showing in passing that a
positive definite matrix is a P-matrix). A (real) matrix M (nor necessarily symmetric) is
positive semidefinite if and only if MT + M has all its principal minors non negative. Thus
for positive definiteness it is sufficient to check the leading principal submatrices, while for
positive semi definiteness all principal submatrices have to be checked.
Another characterization of P-matrices is as follows [2, Lemma 16, Theorem 59]: if M is
a P- matrix, the inequalities Mx ≤ 0 and x ≥ 0 have only the trivial solution x = 0. Also
there exists x > 0 such that Ax > 0.

• Section 5.4.2: I said nothing on cone linear complementarity problems of the form K �
z ⊥ w = Mz + r ∈ K ∗ where K is a closed convex cone. See Theorem 8 and Corollary 5
in reference 23 for the existence of solutions to CLCP.

• Section 5.4.2. Another result that completes this section concerns the number of solutions to
LCPs for which uniqueness fails. This is tackled in [14]. A matrix is said to be anN -matrix
if its all principal minors are negative. For such matrices, the LCP (5.105) has either 0, 1, 2
or 3 solutions. A solution z∗ is degenerate if z∗i = 0 and wi = (Mz∗)i + ri = 0 for some i .

Lemma 1 [14, Lemma 2.4, Theorem 3.2, Theorem 3.3, Theorem 3.4] (i) Let M be an N -
matrix and M ≺ 0. Then for each r ≥ 0, the LCP in (5.105) has a solution, and has no solution
for r � 0 (componentwise inequality). The LCP has exactly two solutions for r > 0. (ii) Let
M be anN -matrix and r ∈ IRn. Then if M is not negative definite and r � 0, the LCP (5.105)
has a unique solution. (iii) Let M be an N -matrix, non negative definite, and r > 0. Then
if all solutions of the LCP (5.105) are non degenerate, the LCP has exactly three solutions.
Otherwise it has exactly two solutions. (iv) Let M be anN -matrix, non negative definite, and
0 �= r ≥ 0, with ri = 0 for some i . Then the LCP (5.105) has exactly two solutions, with one
solution degenerate.

• Page 313: replace u2(t) — u1(t) by u2(t), and replace u2(t) by u2(t) — u1(t), in the
dynamical equations (5.130).

• Pages 320–321: further studies on the stability of nonsmooth circuits (characterization of
equilibria, Lyapunov stability) may be found in [20, 21].

• Page 322: in the paragraph after Theorem 5.12: E > 0.
• Page 323: in (5.150) it happens that V (t+) − V (t−) ≤ 0 provided that 0 ∈ S(t), with S(t)

in (5.139). See reference 480, Lemma 3.
• Page 328, line 1: delete the “and”.
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nq = M−1∇f(q)

∇f(q)

q

T (q) in Problem 5.2
page 294 e+

e−

Φ

Fig. 3 Painlevé paradox and generalized friction cone

• Page 332, Proposition 5.24 and Equation (5.158): the matrix Pμ(q) is defined as

−∇ f (q)T M(q)−1Ht,u(q)[μi sgn(νt,u,i )].

• Page 352, Section 5.6.4. Mathematical results on the existence of solutions (velocity u(.) of
local bounded variation, q(t) = q(0) + ∫ t

0 u(s)ds) which extend results in both references
867 and 1141, 1142, can be found in [15, 16]. It incorporates Painlevé paradoxes, in the
sense that the generalized friction cone may dip below the tangent cone boundary at the
considered contact point (as pointed out in footnote 31 page 295, and in a paragraph above
Figure 5.24 page 353). An example of calculation of the generalized friction cone for the
Painlevé sliding rod system, may be found in [17, Section 2.2] . Using the notation of
Equation (5.1) and of Section 6.2, the Painlevé sliding rod example of Section 5.6.1 may be
written as q̈ = nqλn + M−1Ht(q)λt. The generalized friction cone is the cone generated

by nq = 1
m (0, 1, − 3

l cos(θ))
T and ±μM−1Ht (q), Ht (q) = M(1, 0, 3

l sin(0))
T , M =

diag(m,m, I ), with the edges e± = nq ±μM−1Ht(q). It is not symmetric around nq , and
nTq Me+ = ∇ f (q)T e+ = B(θ,μ) in (5.175) so that the generalized cone may dip below
the tangent hyperplane T (q), this reflects normal/tangential couplings as in Equation (6.30).
This is depicted in Figure 3.

• Page 352, Section 5.6.4, line 18: replace [755, Theorem 1] by [1328, Theorem 1].
• Page 352, Section 5.6.4: the article [11] is worth reading.
• Pages 367 and 430 (Sections 5.7.3.5 and 7.3.2): a (θ, γ) time stepping scheme is used in

[12] to calculate periodic solutions of set-valued Lur’e systems (as in Figure 2.2 but with
a feedback setvalued nonlinearity of the more general form (w,λ) ∈ R). After discretiza-
tion a mixed quadratic complementarity problem (MQCP) is constructed. State jumps are
incorporated in the problem (remind that LCS may have state discontinuities, see Section
5.4.4.3). The period, the state and the multiplier λ are unknowns of the MQCP. A MQCP
is a complementarity problem of the form: Find z,w, v such that
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ϕ(z) + Mz + q = w − v

l ≤ z ≤ u, (z − l)T w = 0, (u − z)T v = 0 (1)

where ϕ(·) is a vector of quadratic forms in z. The solver PATH is used to solve the
discretized MQCP.

• Page 363, Section 5.7.3.2: an interesting application of theNSCDmethod is in [24] that deals
with collapse mechanism of ancient stone arches. Though the NSCD method (the Moreau-
Jean algorithm in Section 5.7.3.1) has several shortcomings (like a simplistic impact law
as explained in Example 5.6 page 275, see also Section 6.3.3 and the comments page 411),
it is interesting for complex systems with many degrees of freedom and unilateral contacts
and seems to encapsulate essential modeling features in this case. For a finer analysis of
stacked blocks dynamics under base excitation, one should certainly use more sophisticated
models like LZB.

• Page 384: it is shown that varying the stiffness ratio γ in the 3-ball system, changes a
lot the impact outcome, and this is also true when the mass ratios are varied (the kinetic
angle between the two constraints surfaces). This is also true for the 2-ball system hitting
a rigid wall (take m3 = +∞ in Figure 6.5 page 383). The analysis in [27] shows that the
mass ratio and the stiffness ratio have a great influence on the kinematic CoR, which varies
between 0.2 and 1 (the possibility of several impacts before definitive separation -a kind of
micro-collisions effect-between the first ball and the wall is taken into account1). For the

2-ball system hitting a wall, the kinematic CoR is defined as− v(t f )
v(t0)

where v = m1v1+m2v2
m1+m2

is the center of mass velocity, t0 is the time of the first impact, t f is the time of the last
impact before complete separation of the 2-ball system and the wall. Thus depending on
these ratios, the system made of the two beads (which we can see as an approximation
of the flexibilities in a rigid body like a rod) will rebound with a low or a high velocity.
The apparently loss kinetic energy is in fact transformed into potential energy stored in
the system’s spring under the form of vibrations that persist after the impact is ended.
This is therefore also quite related to Sections 4.2.4 and 4.4 material. It is also interesting
to compare this result to Theorem 4.1 page 238, which stipulates that an elastic rod that
collides a wall with zero external force, has en = 1. Thus the 2-ball system is not in general
a good approximation of the infinite dimensional model. However the results in [27, Figure
2a] show that with equal masses and equal stiffnesses, then en ≈ 1. This is extended to
N -ball systems (see also [28, 29]). One assumption that is made in these studies, and might
make the analysed chains behaviour different from an elastic rod impacting axially a wall,
is that it is assumed that the first (colliding) ball reverses its velocity instantaneously [29].

• Page 394 (relations between Moreau’s impact law in (5.60) (5.61), and the restitution
mapping in (6.44) (6.45)). Here I also refer to the reference [210, Section 3.1.1], with some
inaccuracies in Equation (44). Let I(q(t)) be the index set of active constraints at position
q(t). Moreau’s law states that q̇(t+) = q̇(t−) − (1 + en)projM(q (t ))

[N (q(t)); q̇(t−)], see
(5.60). Clearly if q̇(t−) is in the interior of N (q(t)) then q̇(t+) = −enq̇(t−). If this is
not the case, one has to project q̇(t−) onto the normal cone, which is a polyhedral cone
generated by the normals nq,i , i ∈ I(q(t)). In case N (q(t)) is a so-called latticial cone,
then the material in [210, Section 3.1.1] is correct. We recall that N (q(t)) is a latticial
cone if dim(q(t)) = card(I(q(t)), in other words the number of active constraints is equal

1In [27] this is called multiple impacts, however in our terminology multiple impacts are simulta-
neous collisions, not a sequence of separated collisions.
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to the dimension of q(t)) (the configuration space), and the active constraints (hence the
vectors nq,i , i ∈ I(q(t))) are independent (see Németh and Németh, How to project onto
an isotone projection cone, Linear Algebra and its Applications, vol.433, 41-51, 2010). In
this case the projection of q̇(t−) onto NM

�u
(q) in [210, Section 3.1.1, line 8 after (43)], is

correct according to Theorem 2 in Németh and Németh.
One difference between the impact law in (6.44) (6.45), and Moreau’s impact rule, is first
on the choice of the vectors q̇norm and q̇tan. This explains some discrepancies between both
models, as demonstrated for instance on the rocking block problem, see [228, Section 3.4]
which shows that with a specific choice of q̇norm,1 and q̇norm,2 , rocking motion is possible
only if off-diagonal terms in the restitution matrix in (6.45) are introduced, whatever the
kinetic angle value. On the contrary Moreau’s law allows for rocking in some situations
when the kinetic angle between the two active constraints, is larger than π/2, see [31].
In practice one uses the equivalent form of Moreau’s law in (5.66) and solves a LCP or a
mLCP. Using (5.67) and assuming that Du(q(tk)) � 0, it is easy to construct a LCP with
unknown W (tk) � Un(t

+
k ) + EnnUn(t

−
k ):

0 ≤ W (tk) ⊥ Du(q(tk))
−1W (tk) − Du(q(tk))

−1(Im + Enn)Un(t
−
k ) ≥ 0. (2)

This LCP always has a unique solution. If Du(q(tk))
−1(Im + Enn)Un(t−) < 0, then

Un(t
+
k )+EnnUn(t

−
k ) = 0 which gives Newton’s law at each contact with CoR en if Enn =

diag(en) (see Proposition 5.15 for the link between Moreau’s impact law and Newton’s
law at each contact with complementarity, see also the seminal reference [454]). The next
step is to write down Moreau’s law when q̇(t−) is not in the interior of N (q(t)), but has to
be projected on it. When the constraints are not independent, one can still use a numerical
solver that computes a solution for LCPs with positive semi-deifnite matrices (like Lemke’s
algorithm).

• Page 398, line 2: choosing
• Page 400, line just above Proposition 6.6: replace M̄(M(q,μ, vt) by M̄(q,μ, vt).
• Page 406, line 7 after (6.68): δ̇ j (p f, j ) ≤ 0 (here we assume that compression occurs with

positive identation velocity δ̇ j > 0 and expansion occurs with negative identation velocity
δ̇ j < 0), in agreement with Figure 6.6. Thus indentation increases during compression and
decreases during expansion (or restitution).

• Page 407: Notice that Equations (6.71) (6.72) can be rewritten in a differential form
dE j
dp j

(p j ) = δ̇ j (p j )dp j and similarly for (6.72), so that the whole LZB dynamics is a

first-order dynamics with augmented state variable (the potential energy becomes a state
variable). Thus the calculation of the positions (assumed to be constant in the LZB ap-
proach) is not at all needed to integrate the system (see reference 929 Equations (4.42) and
(4.43) where a midpoint rule is used to approximate the potential energies). Notice further
that (6.72) indeed stipulates that according to the energetic constraint We, j = −e2∗, j Wc, j
(using (4.159)), then at the end of the impact E j (p f, j ) = 0.

• Page 407 Section 6.3.2: another interesting application of the LZB model is in [26].
• Page 415, line 8: drop the “be”.
• Page 429, Equation (7.18): replace e in σ1 and σ2 by en.
• Page 452, Equation (7.51): 0 ≤ f (q∗)⊥λ∗

n,u ≥ 0.
• Page 456, Equation (7.62), last two lines: �k∈[k0,k1] instead of �k∈[k0,k1] which might let

one think that only the two values k0 and k1 are taken into account.
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• Pages 457-458: The stability (finite-time convergence to a fixed point, plus Lyapunov stabil-
ity) of simple systemswith set-valued terms encompassingCoulomb’s frictionwith constant
normal force, is analysed in [22]. The discretisation of the same dynamics is studied in [23],
where it is shown that the sequence of discrete solutions converges in a finite number of
steps to its limit. This is quite similar to the results mentioned in Section 5.7.3.7 about
implicit discretetime sliding mode control (though control has its own peculiarities like the
fact that one wants to study robustness with respect to parameter uncertainties, unmatched
disturbances, more complex attractive surfaces, etc). It may also be seen as a generalization
of the case treated in Remark 5.33 pages 362-363.

• Pages 457-458: it is clear that the fixed points of a system with unilateral contact and
Coulomb friction are also solutions of a generalized equation, extending (7.51). As said
page 458, in general uniqueness of the equilibrium is lost. Consider for instance (5.162)
page 336. For this system the equilibria (q, q̇) = (q∗, 0) satisfy the generalized equation:

⎧⎪⎪⎨
⎪⎪⎩

(
0
0

)
=

(
sin(α)

cos(α)

)
λ∗
n +

(−cos(α)

sin(α)

)
λ∗
t +

(
Fx
0

)

0 ≤ f (q∗)⊥λ∗
n ≥ 0

λ∗
t ∈ −μλ∗

nsgn(0)

(3)

with sgn(0) = [-1, 1]. It is noteworthy that usually the generalized equation for equilibria
and the generalized equation for sticking contacts, are not the same (in this example they are
the same because sticking contact implies that the system does not move, and conversely).
Also this is different from the generalized equation in (5.165) which is obtained from the
acceleration Coulomb’s friction model.

• Page 462: Chapter 7 could ne nicely completed with the study in [32] which analyzes the
contact stability of a simple system, with a force feedback controller, and subject to delay
in the force feedback. These theoretical results were experimentally validated by Tornambé
in [33].

• Page 531, Section 8.5.2: controllability of juggling systems (with the important assumption
that the robot dynamics in (8.74) has much bigger mass than the object, so that q̇2 is
continuous at impacts) as well as their stabilization, is studied in [30].

• Page 551, Lemma B.1: it is more appropriate to write f : dom( f ) ⊆ IRn → IR ∪ {+∞}
(though one might understand that IR contains the infinity).

• Page 552, figure B.2: in the first figure on the left, replace fλ(x) by — fλ(x). The Moreau-
Yosida approximation is a convex function. It becomes obvious also from this figure, that
the function — fλ(·) represents the potential energy function of a unilateral spring, and has
to be compared with the indicator function which represents the potential energy associated
with complementarity conditions (which are a particular contact model).

• Page 553: For better clarity replace the set � in the paragraph after (B.12), by C.
• Page 560, Section B.2.2: line 3: replace (5.35) by (5.35), line 6: replace Definition 5.34 by

(5.34).
• Pages 561-562, about prox-regular sets. Characterizations of finitely represented sets which

are prox-regular are given in [18, Theorems 3.1, 4.1] , in addition to Theorem B.5. An inter-
esting result about the preservation of prox-regularity under an inverse linear transformation
S′ = H−1(S) = {z|Hz ∈ S}, is in [19, Lemma 2.7] (reference 1181 in the book’s bibli-
ography). If S ⊂ IRl is r—prox-regular, and if S is in the range space of H : IRn → IRl ,
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then S′ is r ′—prox-regular with r ′ = rσ+
H

‖H‖2 , where σ+
H is the least positive singular value

of H and ‖H‖ is an induced matrix norm. An extension is in [18, Corollary 6.5].
• Page 622, index for G, add for Gauss’s principle: systems with friction, 332.
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Appendix A
Distributions, Measures, Functions
of Bounded Variations

SectionsA.1 and A.2 are given for the sake of completeness because some notions
are used in Chaps. 1 and 2, but may be safely skipped since their implication on
understanding Nonsmooth Mechanics is weak. By contrast, Sects.A.3 and B survey
useful mathematical tools that cannot be ignored.

A.1 Schwartz’ Distributions

A.1.1 The Functional Approach

In this section we first briefly introduce the functional notion of a distribution as
defined in [1082].

Definition A.1 D is the subspace of smooth1 functions ϕ : Rn → C, with bounded
support.

Thus a function ϕ(·) on R
n belongs to D , if and only if ϕ(·) is smooth, and there

exists a bounded set Kϕ of Rn outside of which ϕ ≡ 0. As an example, L. Schwartz
gives the following function [1082, Chap.1,§2], with n = 1, Kϕ = [−1, 1]:

ϕ(t) =
{
0 if |t | ≥ 1

e
−1
1−t2 if |t | < 1

(A.1)

Definition A.2 A distribution D is a continuous linear form defined on the vector
space D .

This means that to any ϕ ∈ D , D associates a complex number D(ϕ), noted 〈D,ϕ〉.
The space of distributions onD is the dual space ofD and is notedD�. The functions
in D are sometimes called test-functions.

1i.e., indefinitely differentiable.
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Two distributions D1, D2 are equal on an open interval Δ if D1 − D2 = 0
on Δ, i.e., if for any ϕ ∈ D whose support Kϕ is contained in Δ, then 〈D1 −
D2,ϕ〉 = 0. In fact, one can generate a distribution from any locally integrable
function f , via the integral

∫
Kϕ

f (x)ϕ(x)dx . However, some distributions cannot
be generated by locally integrable functions, like for instance, the Dirac distribution
and its derivatives. They are called singular distributions (or sometimes generalized
functions).

Contrarily to functions, all distributions (i.e., elements of D�) are infinitely dif-
ferentiable. The mth derivative of T ∈ D� is given by 〈T (m),ϕ〉 = (−1)m〈T,ϕ(m)〉,
for all m ∈ N. An important feature of distributions is that, in general, the product
of two distributions does not define a distribution.

A.1.2 The Sequential Approach

Schwartz’ distributions can be defined via the sequential approach [51, §4.3].
Roughly, one starts by defining fundamental sequences of continuous functions on
a fixed interval (a, b), and then a relation of equivalence between fundamental se-
quences. Distributions can thus be defined as limits of sequences of continuous
functions, but there are sequences of continuous functions that do not converge to-
ward a function, as it is well known for the Dirac distribution. This shows that the
space of functions has to be completed by other mathematical objects, which one
calls distributions.

Definition A.3 A sequence { fn(·)} of continuous functions defined on (a, b) is fun-
damental if there exist a sequence of functions {Fn(·)} and an integer k ∈ N such
that

• F (k)
n (x) = fn(x) for all x ∈ (a, b).

• {Fn(·)} converges almost uniformly

A sequence of functions converges almost uniformly (a.u.) on (a, b) if it converges
uniformly on any interval [c, d] ⊂ (a, b) (for instance, { xn } converges a.u. toward 0
on (−∞,+∞). Before defining distributions, one needs to define equivalent funda-
mental sequences:

Definition A.4 Two fundamental sequences { fn(·)}, {gn(·)} are equivalent if there
exist {Fn(·)}, {Gn(·)} and k ∈ N such that

• F (k)
n (x) = fn(x) and G(k)

n (x) = gn(x).
• {Fn(·)} and {Gn(·)} converge a.u. toward the same limit.

One denotes { fn(·)} ∼ {gn(·)}. A distribution on (a, b) is an equivalent class in the
set of all fundamental sequences on (a, b).

For instance, the Dirac distribution has to be seen as the limit of a sequence of
continuous functions δn(·) with support Kn = [tc, tc +Δtn], Δtn → 0 as n →+∞,
and:
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• (i) δn(·) ≥ 0
• (ii) for all n ∈ N,

∫ +∞
−∞ δn(τ )dτ = 1

• (iii) for all a > 0, limn→+∞
∫
|τ |>a+tc δn(τ )dτ = 0

Then δn(·) → δtc as n →+∞, and we know that there exists a sequence of contin-
uous functions Pn(t) and k such that P (k)

n = δn , and {Pn} converges uniformly. Note
that such a fundamental sequence (called a delta-sequence) that determines the Dirac
measure is by far not unique. Examples of functions δn that belong to this equiva-

lent class are given in [51, Chaps. 1,2]: δt=0 =
[√

n
2π exp

(
−n x2

2

)]
=

[
sin(nx)

πx

]
=[

n
2 exp(−n|x |)

] = [
1
π

n
exp(nx)+exp(−nx)

]
.

Distributions have derivatives of any order:

Definition A.5 If a fundamental sequence { fn(·)} consists of functions with contin-
uous mth derivatives (i.e., fn ∈ Cm(a, b)) then the distribution [ f (m)

n (·)] is the mth
derivative of the distribution [ fn(·)].
Each distribution has derivatives of all orders as one can always choose a fundamental
sequence of functions which are differentiable up to an arbitrary order. For instance,

if fn(x) =
√

n
2π exp

(
−n x2

2

)
, [ f (m)

n (·)] = δ(m)
t=0. From [51, Theorem2.2.5], the mth

derivative of the Dirac distribution δ0 is given by [δ(m)
n ]where {δn} is a delta sequence

with continuous first m derivatives.

A.1.3 Notions of Convergence

Some existence of solution results presented in Chap.2 use the notion of strong and
weak� convergence. Let us explain here what this means. For simplicity, we restrict
ourselves to the spaces D and D�. The definitions also exist for other spaces of
functions and their dual spaces like Sobolev spaces, see [191].

Definition A.6 A sequence of functions ϕn ∈ D is weakly convergent to ϕ ∈ D if
for each T ∈ D� one has

lim
n→+∞〈T,ϕn〉 = 〈T,ϕ〉 (A.2)

The sequence ϕn ∈ D is convergent to ϕ(·) in the topology ofD if their supports are
contained in a fixed compact set, ϕn → ϕ uniformly and all derivatives ϕ(k)

n → ϕ(k)

uniformly, for all k ≥ 1.

Definition A.7 Asequence of functionals Tn ∈ D� isweakly� convergent to T ∈ D�

if for each ϕ ∈ D one has
lim

n→+∞〈Tn,ϕ〉 = 〈T,ϕ〉 (A.3)

It is also possible to define a strong convergence in D�. However, in D and D�,
strong and weak convergences coincide [1082] [488, §6.3,Theorem2].

http://dx.doi.org/10.1007/978-3-319-28664-8_2
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The notation weak� is to recall that this applies to elements of D�. As an example,
consider the sequence of functions fn(x) = n cos(nx). Clearly, supx∈R | fn(x)| = n
so that this sequence does not converge uniformly. However, − 1

n 〈cos(nx), ϕ̈〉 =〈sin(nx), ϕ̇〉 = 〈n cos(nx),ϕ〉 = 〈 fn,ϕ〉 → 0 as n → +∞. Hence { fn} → 0 in a
weak� sense. One says that fn converges strongly to f in L p if || fn − f ||L p → 0
as n → +∞. One says that fn converges weakly� in L p to f if

∫
fnϕ →

∫
f ϕ as

n →+∞, for ϕ ∈ Lq , 1
p + 1

q = 1, p < +∞. For 1 < p < +∞, weak� and strong
convergences are the same.

Consider the proofs of existence of solutions based on discretization of the mea-
sure differential inclusions, like those in [867] or [1142]. The constructed discrete-
time solutions are such that the acceleration is a function. Now, a sequence of func-
tions converges strongly in the sense ofmeasures toward a limit that is also a function.
Hence, the only way to get a limit that is a singular measure (thus not identifiable
with a function) is to consider its weak� convergence, because weak� convergence
permits functions (considered as measures) to tend to singular measures. Without
this notion of convergence it would be hopeless to get a limit with discontinuous
velocity.

A.2 Measures and Integrals

We have seen that a proper statement of nonsmooth shock dynamics involves to
consider bounded forces as density with respect to the Lebesgue measure dx of
the contact impulse measure, whereas contact percussions are atoms of the contact
impulse measure, and the impulse magnitude is the density of these atoms with
respect to the Dirac measure at the impact time δtk . The aim of this appendix is to
introduce all these notions.

Let us start by defining abruptly what is meant by a measure [477]:

Definition A.8 Let (X,R) be a measurable space. A positive measure (or simply
measure) on (X,R) is a mapping μ : R → [0,+∞] with the following properties:
• μ(∅) = 0.
• μ

(∪n≥1An
) = ∑

n≥1 μ(An) for any sequence {An} of subsets of R, with An ∩
Am = ∅ for n �= m.

Such a mapping that satisfies the second property is called countably additive.

Engineers should recall that a measure is defined as a function of sets of X that
belong to a family of setsR, i.e., it assigns to a set a positive real number.

Remark A.1 In fact it would be preferable to denote (X,R,μ) a measurable space,
to emphasize that it is attached to a measure μ.

An example of measurable space is (N,R) whereR is a σ-ring of subsets of N, and
the measure is defined as μ(A) =(the number of elements of A), with A ⊂ R. One
has for any A and B ∈ R [477, p.78]:
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μ(A)+ μ(B) = μ(A ∪ B)+ μ(A ∩ B)

μ(A − B) = μ(A)− μ(A ∩ B)

(A.4)

Now we are ready to introduce what is called the Lebesgue measure:

Theorem A.1 [477] There exists a unique measure λ on the measurable space
(R,B) such that λ [[a, b)] = b − a for all couples (a, b) of real numbers, with
a ≤ b.

Before introducing the Lebesgue’s integral, let us recall what is meant by a measur-
able function.

Definition A.9 Let (X,R) be a measurable space, and Y a topological space. Then
f : X → Y is measurable if for all open subsets B ⊂ Y , the set f −1(B) belongs to
R.

Recall that a set that belongs to R is called measurable. Hence a function is mea-
surable if its inverse sends any open set into a measurable set. It is important to note
that measurability is characterized by starting from the image space Y . This we shall
retrieve in the definition of Lebesgue’s sums below. This allows to treat functions
that seem very complex when considered from the source space, but rather simple
when considered from the image space.

Example A.1 For instance, let us consider the following well-known example f :
[0, 1] → [0, 1], f (x) = 0 if x is rational, f (x) = 1 otherwise. It seems that f (·) is
very irregular, since it is everywhere discontinuous, hence not Riemann integrable (or
not Riemann measurable) [477, p.4]. But f (·) is a very simple measurable function.
Indeed, consider for instance the set f −1

(
(− 1

2 ,
1
2 )

)
: this is the set of rational numbers

on [0, 1]. Such a set is negligible (it is countable2), so it is measurable. One can take
other examples and checkmeasurability in all cases. It is a simplematter to prove that
this function is not Riemann integrable [477]: indeed for any subdivision of [0, 1],
as fine as desired, the difference between the Riemann’s sums is always 1, due to
density of rationals in R.

Remark A.2 Since this function f (·) is measurable, it defines a distribution. Thus it
admits a generalized derivative,3 or a derivative in the sense of distributions, defined
as 〈 ḟ (x),ϕ(x)〉 = − ∫

Kϕ
f (x)ϕ̇(x)dx . Apparently, it is not easy to visualize what

such a ḟ is: recall that this is not a function. However since f ≡ 1 (except on a
countable, negligible set), one has 〈 ḟ ,ϕ〉 = − ∫

Kϕ
ϕ̇(x)dx = 0 because ϕ(·) is zero

outside Kϕ. Thus ḟ (·) is the zero distribution.

As a matter of fact, and to stress that all these notions have a purely theoretical
interest, one can only prove that there exists nonmeasurable functions [1081]. But

2Recall that a set is said to be countable when there is a bijection between the set and N.
3Some authors [931, 1235] introduce the notion of distributions through so-called generalized
derivatives.
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it is not possible to explicitly construct them. Lebesgue’s integration theory relies
on measure theory. Let us introduce the relationship between measures, which are
notions attached to sets, and integrals which are notions attached to functions. To
beginwith, let us consider a bounded and positive simple function u : X → [0,+∞],
u = ∑n

i=1 ciχCi , where {c1, · · · , cn} is the (finite) set of values taken by u, Ci =
u−1(ci ), χCi (·) is the indicator function of the setCi : χCi (x) = 1 if x ∈ Ci , χCi (x) =
0 if x /∈ Ci . The integral of u is defined as the number:

∫
u

Δ=
n∑

i=1
ciμ(Ci ) (A.5)

where μ is a measure. Note that this definition a priori attaches the integral to a
particular measure. Consider now a positive function f : X → [0,+∞]. Then the
integral of f (·) is given by ∫

f
Δ= sup

u∈U

(∫
u

)
(A.6)

where U is the set of simple functions u : X → [0,+∞] with u ≤ f . One
generally denotes the integral of f as

∫
f dμ when μ is not the Lebesgue measure.

One generally denotes the Lebesgue measure as λ[·], or as dx , and the Lebesgue
integral of a measurable function f on [a, b] as ∫

[a,b] f dλ or as
∫ b
a f (x)dx . All

these notations denote the same object. Also, the Lebesgue measure (or the length)
of an interval [a, b) is the number λ[[a, b)] = ∫

R
χ[a,b]dλ = ∫ b

a dx , where χ[a,b] is
the indicator function of the interval [a, b) (that is measurable if the interval is, since
χ−1[a,b](I ) is either ∅, [a, b) or R depending on I 4).

It could seem at first sight that the consideration of positive functions is restrictive.
It is not, because every function can be decomposed into its positive and negative
parts f + and f −, with f = f + − f −. Then f is integrable if and only if f + and
f − are. In other words, f is μ-integrable if the number

∫ | f |dμ is finite. In Example
A.1,

∫
[0,1] f (x)dx = 1.

The density of a measure is defined as follows [477, p.145]:

Definition A.10 Let μ be a measure, and let g(·) be μ-integrable function. Let μ
be defined as μ(E) = ∫

E f (x)dx for any measurable set E , and for some Lebesgue
measurable function f : R→ [0,+∞] = R̄

+. Then f (·) is called the density of μ
and ∫

gdμ =
∫

g(x) f (x)dx (A.7)

If f (·) is continuous, then the function F : x �→ ∫ x
0 f (t)dt is differentiable and dF

dx =
f (x). One denotes the measure μ as dF or as μ f . Notice that F(·) is nondecreasing
which is necessary for dF to be a measure.

4Recall that f −1(I ) = {x | f (x) ∈ I }.
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For instance inChap.5, Sect. 5.2, we saw that the sweeping process can be formulated
with respect to any measure. It was then necessary to define the densities of the
Lebesgue and the Stieltjes measures dt and du with respect to a measure μ. These
densities are denoted as t ′μ and u′μ respectively. In view of Definition A.10, these
notations mean that for some function f as in Definition A.10, dμ = f dt so that
t ′μ(t) = dt

dμ
= 1

f (t) , whereas u
′
μ = du

dμ
= u̇(t)

f (t) for t �= tk , and u′μ(tk) = 1
f (tk )

σu(tk). In
relationshipwith the formulation of the sweeping process in Problem5.1where terms
likeu′μ = du

dμ
appear, let us roughlydefine themeaningof such a ratio. If one considers

two measures μ and ν such that μ satisfies: μ(Γ ) = 0 each time ν(Γ ) = 0 for all
measurable sets Γ (in which case μ is said to be absolutely continuous with respect
to ν), then there exists a function f (·) ≥ 0 such that μ(Γ ) = ∫

Γ
f dν –so f (·) is the

density of μ–. The notation f = dμ
dν

which denotes the Radon–Nikodym derivative

of μ with respect to ν, is also motivated by the fact that f (t) = limε→0
μ([t,t+ε])
ν([t,t+ε]) .

Let us consider some examples of measures:

• If f (x) = 1, then dF = dx(= λ), dF is the Lebesgue measure.
• If f (x) is a continuous function, dF is a Lebesgue–Stieltjes measure. The length
of an interval [a, b] is equal to ∫

[a,b] dx (i.e., the Lebesgue integral of its indi-
cator function). The Lebesgue–Stieltjes integral generalizes the notion of length
to

∫
[a,b] dF =

∫
[a,b] f (x)dx = F(b) − F(a) = μ f [[a, b)] ≥ 0 (this is assured

because f takes nonnegative values, see Definition A.10).
• The Dirac measure δ0 is the distributional derivative and Stieltjes measure of the
Heaviside function h(·), i.e., δ0 = dh = ḣ. In fact if ϕ ∈ D , then 〈δ0,ϕ〉 = ϕ(0)
(by definition) and:

〈ḣ,ϕ〉 = −
∫

h(t)ϕ̇(t)dt = −
∫ +∞

0
h(t)ϕ̇(t)dt = ϕ(0) (A.8)

Looking at the equation from another angle, we know that

δ0([a, b)) =
⎧⎨
⎩
0 if {0} /∈ [a, b)

1 if {0} ∈ [a, b)
(A.9)

To find the integral of a continuous function f with respect to δ0, we ap-
proximate it by a sequence {un} of step functions such that un → f point-
wise. From [1052, Theorem11.30], if un(x) = cn,i on [cn,i , cn,i+1), one gets∫
undδ0 = ∑m

i=0 cn,iδ0([cn,i , cn,i+1)) = cn,k , where 0 ∈ [cn,k, cn,k+1). Since
un(0) = cn,k → f (0) we conclude that:

∫
f dδ0 = lim

n→+∞

∫
undδ0 = lim

n→+∞ cn,k = f (0) (A.10)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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as expected. This is one of the ways in which Dirac measures can be introduced,
besides the distributional interpretation as the limit of fundamental sequences of
continuous functions, see Sect.A.1.2.

Remark A.3 A measure μ possesses an atom at x ∈ X if μ(A) > 0 for any set
A ⊂ B which contains x . If outside the atoms μ = 0 (i.e., for any set A containing
no atoms, μ(A) = 0), then μ is said to be purely atomic. In other words, a measure
is purely atomic if it is concentrated on a countable set. For instance, the Dirac
measure or any sum of Dirac measures are atomic measures. A measure with no
atoms is said non-atomic, i.e., μ({x}) = 0 for all point x ∈ X . An atomic μa and a
non-atomic μna measures are alwaysmutually singular, i.e., there exists a set B ∈ B
with complement CB such that μa(B) = μna(CB) = 0. As another example of a
measure, let us consider the mass of a body B defined as m(B) = ∫

B dm. When B
reduces to a material point, then the measure m is atomic since B has zero Lebesgue
measure while the mass is positive.

In relationshipwithDefinitionA.10, notice that if F(·) is a bounded, right-continuous
and nondecreasing function, then dF (or μ f ) is nonatomic if and only if F(·) is
continuous. This is easily seen as follows: consider a point x ∈ (X,R,μ):

dF({x}) = limε→0,ε>0 dF ((x − ε, x]) = limε→0,ε>0 (F(x)− F(x − ε))

= F(x)− F(x−)

(A.11)

Hence dF({x}) > 0 ⇐⇒ σF (x) > 0. In this latter case dF has a density with
respect to the Dirac measure at x , equal to σF (x). Thus dF has an atom at x , or x is
an atom of dF .

A.2.1 Zero-Measure, Almost-Everywhere

There is a notion that is often used and that deserves to be defined: when one says
that some property is true almost everywhere (a.e.). A set A is of zero-measure (or μ-
negligible, or of μ-measure 0) if it is contained in a measurable set B with μ-measure
0 (i.e.,

∫
χBdμ = 0). A property is true μ-a.e. if the set for which the property fails

has μ-measure 0.A function is a.e. zero if the set f −1(0) is the complement of a zero-
measure set, and two functions f (·) and g(·) are μ-a.e. equal if

∫ | f − g|dμ = 0.
Note that a countable set has Lebesgue measure zero: for instance the set of rational
numbers in R. Sets of measure zero may be different for different measures.

A necessary and sufficient condition for a bounded function on a bounded interval
to be Riemann integrable, is that its set of discontinuity points be of zero Lebesgue
measure. Note that although the set of rational numbers is countable, the function in
Example A.1 is not Riemann integrable, because it is discontinuous everywhere.
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A.3 Functions of Bounded Variation in Time

A.3.1 Definition and Generalities

Roughly speaking, a function of local bounded variation (LBV ) is a function that
does not vary too much on any bounded interval of its domain of definition. More
rigorously, let f (·)be a single-valued function I ⊆ R→ R

n . Let x0 < x1 < · · · < xn
be any subdivision Sn of I . Then f (·) has bounded variation on I if

var(Sn, f, I )
Δ=

n∑
i=0
|| f (xi+1)− f (xi )|| ≤ C (A.12)

for some bounded constant C . The number var( f, I )
Δ= supSn var(Sn, f, I ) is called

the total variation of f (·) on I . If f (·) has bounded total variation on any compact
subinterval of I , it is said of local bounded variation ( f ∈ LBV ). If it is in addition
right-continuous, we denote it as f ∈ RCLBV .

Let us provide some intuitive thoughts on such functions, before introducing other
equivalent definitions. When f (·) is simple (i.e., f (I ) consists of a finite set of real
numbers, or in other words f (·) is piecewise constant with finite number of values),
then one easily sees that f (·) is LBV means that the jumps of f (·) are bounded.
On the other hand, if this same f (·) possesses very large number of discontinuities,
one intuitively deduces that the jumps magnitudes necessarily have to become very
small. If the number of jumps becomes infinite, most of them have to be almost zero,
otherwise a constant C as in (A.12) cannot be found. Obviously, it is necessary to be
more accurate on what is meant by an infinite number of jumps. In fact, a function
that satisfies (A.12) can be shown to possess at most a countable set of discontinuity
points. This means that one is able to associate an integer n ∈ N to each x ∈ I
at which f (·) jumps. In other words, the discontinuity points constitute a sequence
{xn}, n ∈ N, possibly infinite. It follows that in the case of functions of one variable
only, bounded variation implies that the function has only points of continuity or
jump points. No other sort of point can be encountered. The property in (A.12) is
equivalent to anyone of the following statements:

(i) There exists a constant C < +∞ such that for all ϕ ∈ D , one has |〈 f, ϕ̇〉| =
| ∫Kϕ

f (t)ϕ̇(t)dt | ≤ Csupt∈Kϕ
||ϕ(t)||,

(ii) f ∈ L1(I ) and the generalized derivative of f (·) (or equivalently its distrib-
utional derivative) is a bounded measure.

(iii) There exist two nondecreasing functions f1 and f2 such that f = f2 − f1.
(iv) There exist a continuous function g(·) of bounded variation and a piecewise

constant function s(·) (called the jump function) such that f = g + s.
Let I = [a, b]. A function f (·) of bounded variation in I has right-limits on

[a, b), left-limits on (a, b] and is bounded on I . Moreover:
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(v) Every function ϕ ∈ C0(I ) is Riemann integrable with respect to f and one
has | ∫I ϕ(x)d f (x)| ≤ K supx∈I ||ϕ(x)|| for some K < +∞. Moreover, var( f, I ) is
the smallest K such that the inequality is satisfied.

The number
∫
I ϕ(x)d f (x) is called the Riemann–Stieltjes integral of ϕ on I with

respect to d f . Roughly speaking, the Riemann–Stieltjes integral of a function is
defined similarly as the Riemann integral. Riemann’s sums are defined as R(ϕ, I ) =∑n

i=1 ϕ(ξi )(xi − xi−1), where the xi ’s form a subdivision of I and ξi ∈ [xi , xi−1).
Riemann–Stieltjes’ sums are defined as RS(ϕ, I ) =∑n

i=1 ϕ(ξi ) ( f (xi )− f (xi−1)).
Under certain conditions on the functions ϕ(·) and f (·), it can be proved that by
taking the supremum of these sums over all possible subdivisions of I , one obtains
a unique number called the integral of f (·) on I .

Remark A.4 The distributional derivative of f (·) is the sum of three terms: an atomic
measure μa which is the derivative of the jump function s, a Lebesgue integrable
function ḟ and a singular (with respect to the Lebesguemeasure) nonatomicmeasure
μna . The sum of μna with ḟ dt is the derivative of g(·).
The above extends to set-valuedmappings as follows. Consider a set-valuedmapping
S : I → R

n and replace the expression in (A.12) ‖ f (xi+1)− f (xi )‖ by theHausdorff
distance haus (S(ti+1), S(ti )). One obtains the concept of set-valued mappings with
bounded variation on I . The Hausdorff distance between two subsets Q1 and Q2 in
R

n is given as usual by

haus (Q1, Q2)
Δ= max{ sup

x∈Q1

d(x, Q2), sup
x∈Q2

d(x, Q1)},

where d(x, Q) = inf{‖x − y‖ y ∈ Q}. Denote by varS(t) the variation of S(·)
over [0, t]. When the variation function varS(·) is locally absolutely continuous on
[0,+∞[, the set-valued mapping S(·) is said to be locally absolutely continuous

on [0,+∞). As usual the local absolute continuity of the function v(·) Δ= varS(·)
means that for each T ∈ [0,+∞) and for any positive number ε there exists some
positive number η such that

∑k
i=1 |v(ti ) − v(si )| < ε whenever

∑k
i=1(ti − si ) < η

with si < ti < si+1 in [0, T ].

A.3.2 Differential Measures

Let x : I → R
n be a function with bounded variation, I �= ∅, I ⊆ R. With x(·)

is associated its differential measure dx . If x(·) is constant, dx = 0. If dx = 0 and
x(·) is right continuous in the interior of I , then x(·) is constant. If x(·) is a step
function, then dx is the sum of a finite collection of Dirac measures with atoms at
the discontinuity points of x(·). For a ≤ b, a, b ∈ I :

dx([a, b]) = x(b+)− x(a−), dx([a, b)) = x(b−)− x(a−)

dx((a, b]) = x(b+)− x(a+), dx((a, b)) = x(b−)− x(a+)
(A.13)
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In particular, we have

dx({a}) = x(a+)− x(a−)

� In most of the applications we deal with in this book, one may think of the
differential measure associated with a right-continuous LBV function, as the sum
of an absolutely continuous function and a sum of Dirac measures. This may be
sufficient for most engineering problems.

Remark A.5 Notice that not all continuous functions are LBV . For instance, the
function f : [0, 1] → R, f (0) = 0, f (x) = x sin( π

x ) is continuous on [0, 1], but
it is not of bounded variation. This is easy to see intuitively since as x approaches
zero, f (·) oscillates infinitely often between −1 and +1.
More details on functions of bounded variation may be found in [893, 1161, 1235].



Appendix B
Elements of Convex Analysis

As we have seen throughout the book, an important class of studies devoted to
mechanical systems with unilateral constraints uses mathematical tools from con-
vex analysis. This is the case, for example, for the Moreau’s sweeping process and
the results in [969, 1066]. We recall here some basic definitions used in this set-
ting. Roughly speaking, convex analysis is that part of nonlinear and variational
analysis, dealing with convex sets and functions [898]. As we noticed in Sect. 5.2,
all those mathematical tools aim at generalizing to nonsmooth functions the simple
well-known notions of tangent space, normal direction, in order to get a powerful
framework to study evolution problems, one of which is the dynamics of systems
subject to unilateral constraints. But there are other applications, see the book [901].
Nonsmooth analysis is also used in the framework of nonsmoothLyapunov functions,
with Clarke’s generalized derivative. One important tool is the so-called subdifferen-
tial of a function. Roughly, the goal is to replace the notion of the slope at a point by
introducing a set of vectors. It is known that if f : Rn → R is convex and smooth at
x0, then f (x)− f (x0) ≥ ∇ f T (x0)[x − x0], for all x . If f (·) is not differentiable at
x0, one introduces a vector γ, that is called a subgradient if it satisfies the subgradient
inequality:

f (x)− f (x0) ≥ γT (x − x0) (B.1)

for all x . The set of all such subgradients forms the subdifferential at x0: ∂ f (x0) =
{γ ∈ R

n| f (x) − f (x0) ≥ γT (x − x0), for all x ∈ R
n}. This generalization also

applies to nonconvex functions, see [293]. The material that follows is mainly taken
from the classical references [385, 465, 531, 1045].

B.1 Definitions and Examples

Let us now introduce the tools which we need in mechanics with unilateral con-
straints.
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Definition B.1 (Indicator Function) Let Φ ⊂ R
n . Then the indicator function of Φ

is given by:

ψΦ(q) =
⎧⎨
⎩
0 if q ∈ Φ

+∞ otherwise.
(B.2)

The indicator function ψΦ(q) is convex if and only if Φ is a convex set [898, p.11].
J.J.Moreau introduced the indicator function in order tomathematically represent the
potential associated with unilateral constraints. Such potential is sometimes named
hard wall potential in the literature [822, p.138], or superpotential.

Definition B.2 (Tangent Cone) Let Φ be convex, closed nonempty subset of Rn .
The tangent cone to Φ at a point q ∈ Φ is defined as:

TΦ(q) = cl{d ∈ R
n|d = λ(y − q), y ∈ Φ,λ ≥ 0} (a)

= {y ∈ R
n|∃{qn} ⊂ Φ, {λn} ⊂ R+,λn ↘ 0, qn → q,

qn−q
λn

→ y} (b)

= {y ∈ R
n| for μn ↘ 0 and qn → q, {qn} ⊂ Φ, ∃ yn → y

with qn + μn yn ∈ Φ}. (c)
(B.3)

When q /∈ Φ, one normally defines TΦ(q) = ∅.
The tangent cone is a closed convex cone. The cl denotes the closure: tangent

cones are closed. The elements of the tangent cone, are the tangent vectors to Φ

at q. Let us give a simple example. Let Φ = [a, b], a < b. Then TΦ(a) = R
+,

TΦ(b) = R
−, and TΦ(x) = R if a < x < b. As pointed out in Sect. 3.1.2.1, the

following may also be useful in the virtual displacements method:

Definition B.3 (Contingent Cone) The contingent or Bouligand cone to a subset
Φ ⊂ R

n (not necessarily convex) at q is defined as the closed cone:

KΦ(q) = {y ∈ R
n| for μn ↘ 0 ∃ yn → y with q + μn yn ∈ Φ}. (B.4)

One has KΦ(q) = ∅ if q /∈ Φ, and TΦ(q) ⊆ KΦ(q).

Other formulations of the definitions of the tangent and contingent cones exist, using
the notion of distance from a point to a set, and which may be more tractable when
one wants to draw simple figures, see [293] for details. When TΦ(q) = KΦ(q) for
all q ∈ Φ, the set Φ is called tangentially regular. This is the case of convex sets.
If Φ is nonconvex, one usually has TΦ ⊂ KΦ . For instance sets with re-entrant
corner points are not tangentially regular, see Fig.B.1. Virtual displacements for
unilaterally constrained mechanical systems have generally to be taken in KΦ [449].

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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Another important class of nonconvex sets which have no re-entrant corners, and are
tangentially regular, are prox-regular sets, see Sect.B.2.3.

Definition B.4 (Polarity and Duality) Let Φ be a convex, closed nonempty cone of
R

n . Its polar cone is defined byΦ◦ = {s ∈ R
n|sT y ≤ 0 ∀ y ∈ Φ}, and (Φ◦)◦ = Φ.

Its dual cone is Φ� = −Φ◦.

Polarity and duality extend to convex closed sets containing the origin. The polar
of a closed convex set containing 0, is another closed convex set containing 0. The
polar of the polar is the set itself. One has Φ1 ⊂ Φ2 ⇔ Φ�

2 ⊂ Φ�
1 ⇔ Φ◦

2 ⊂ Φ◦
1 .

Definition B.5 (Normal Cone) Let Φ be a convex, closed and nonempty set of Rn .
The normal cone to Φ at q is defined as the polar cone to the tangent cone, i.e.:

NΦ(q) = {
y ∈ R

n| yT z ≤ 0 for all z ∈ TΦ(q)
}
. (B.5)

Equivalently:
NΦ(q) = {

y ∈ R
n|yT (s − q) ≤ 0, ∀ s ∈ Φ

}
. (B.6)

The normal cone is closed convex.

Let Φ = [a, b], a < b. Then NΦ(a) = R
−, NΦ(b) = R

+, and NΦ(x) = {0} if
a < x < b. The tangent cone in definition B.2 can be equivalently defined as the
polar cone to the normal cone defined as in (B.6), as long as the set Φ is nonempty
closed convex. One has NΦ1(q) ⊂ NΦ2(q) ⇔ TΦ2(q) ⊂ TΦ1(q) as a consequence
of polarity. For finitely represented sets as Φ = {z ∈ R

n| f (z) ≥ 0} for some
continuously differentiable function f : Rn �→ R

m , the notion of linearization
cones of NΦ(q) and TΦ(q) are defined as follows:

Definition B.6 (Tangent and Normal Cones Linearization) Let Φ = {z ∈ R
n|

f (z) ≥ 0} be a finitely represented set of R
n for some continuously differen-

tiable function f : R
n �→ R

m , Φ not necessarily convex. Let J (z) = {i ∈
{1, 2, . . . ,m}| fi (z) = 0} be the set of active constraints indices. The tangent cone
linearization cone at z ∈ Φ is:

T h
Φ(z) = {y ∈ R

n|∇ fi (z)
T y ≥ 0, for all i ∈J (z)}. (B.7)

The normal cone linearization cone at z ∈ Φ is:

Nh
Φ(z) = (T h

Φ(z))◦ = {y ∈ R
n|y = −

∑
i∈J (z)

λi∇ fi (z), i ∈J (z),λi ≥ 0}. (B.8)

Both are convex polyhedral cones. One always has TΦ(z) ⊆ T h
Φ(z), i.e., the lineariza-

tion tangent cone is a “bigger” cone. On the contrary by polarity Nh
Φ(z) ⊆ NΦ(q):

the linearization normal cone is a “smaller” cone.
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Then tangent and normal cones are equal to their respective linearization cones, if
some constraint qualifications are satisfied.Oneof these is the so-calledMangasarian-
Fromovitz CQ (the MFCQ). The MFCQ holds at a point z if:

(MFCQ) There exists a vector v ∈ R
n such that ∇ fi (z)

T v > 0 for all i ∈J (z)
(B.9)

Thus, one observes the gradients at z for constraints such that fi (z) = 0. If the
gradients are lineary independent at z, then the MFCQ is satisfied. If the set Φ

is represented by both equality (bilateral) and inequality (unilateral) constraints,
the MFCQ requires in addition that the equality constraints gradients be linearly
independent. Relaxation of the MFCQ exist [686], however, the MFCQ has the
advantage of being verifiable while some other constraint qualification conditions
may not.

Remark B.1 (Nonconvex sets) In fact the tangent cone definitions in (B.3) (b) and
(c), which is the set of all tangent vectors to Φ at q, do not require that Φ be convex,
but are applicable to any set Φ [686]. It still holds that it is closed convex even if Φ

is not convex and, if not empty, it contains {0}. The normal cone may also be defined
for a nonconvex set as in (B.5), it is still closed convex and, if not empty, it contains
{0}. The same holds for the linearization cones in Definition B.6. However, there is
equivalence between (B.5) and (B.6) only if Φ is convex. The tangent and normal
cones in Definitions 5.1 and 5.2, are linearization cones.

The following definition states that the subdifferential of indicator functions of con-
vex sets, is in fact the normal cone.

Definition B.7 Let Φ be closed and convex. The subdifferential of ψΦ(·), denoted
as ∂ψΦ(·), is defined as:

∂ψΦ(q) =
⎧⎨
⎩
{0} if q ∈ Int (Φ)

NΦ(q) if q ∈ (Φ).

(B.10)

One may also directly define NΦ(q) = {0} if q ∈ Int(Φ). In case of a smooth
codimension one constraint, the normal cone reduces to the classical normal direction
to the considered surface bd(Φ) at the considered point q. The tangent, contingent,
and normal cones are illustrated on simple cases in Fig.B.1, together with Moreau’s
right-hand side, where the expression in (5.46) is illustrated.

The notion of a maximal monotone operator is important in the theory of differ-
ential inclusions.

Definition B.8 (Maximal Monotone Mapping) Let A : Rn ⇒ R
m be a multivalued

operator, with domain Dom(A) = {x ∈ R
n|A(x) �= ∅}. Let y1 ∈ A(x1), y2 ∈ A(x2)

for arbitrary x1 and x2 ∈ Dom(A). Then A(·) is said monotone if:

〈x1 − x2, y1 − y2〉 ≥ 0. (B.11)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5


Appendix B: Elements of Convex Analysis 551

NΦ (q2)

q2

v

NTΦ(q2)
(v)

TΦ (q1)

q1
v

NTΦ(q1)
(v)

NΦ (q1)
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Fig. B.1 Tangent, contingent, normal cones, and Moreau’s cone

It is saidmaximal (monotone) if there is no monotone operator that properly contains
the graph of A. It is said ξ-monotone if 〈x1 − x2, y1 − y2〉 ≥ c||x1 − x2||ξ for some
c > 0 and some ξ > 1, and strictly monotone if 〈x1 − x2, y1 − y2〉 > 0 for all
x1 �= x2.

For instance, the sign multifunction sgn(x) =
⎧⎨
⎩
+1 if x > 0
−1 if x < 0
[ − 1, 1] if x = 0

, is monotone. Its

graph cannot be extendedwithout losing themonotonicity, so it ismaximalmonotone.
The subdifferential of a convex function has an interesting property:

Lemma B.1 Let f : dom( f ) ⊆ R
n → R be a convex, proper, lower semicontinuous

function. Then ∂ f : Dom(∂ f ) ⊆ R
n ⇒ R

n is a maximal monotone operator.

In fact it is even true that if an operator A ismaximalmonotone, then it is a subgradient
if and only if it is cyclically monotone: for all yi ∈ A(xi ), 〈y1, x2 − x1〉 + · · · +
〈yn−1, xn − xn−1〉 + 〈yn, x1 − xn〉 ≥ 0. One has sgn(x) = ∂|x |, and the absolute
value function satisfies the requirements of the lemma.The samehold for the indicator
function of a closed convex set and its subdifferential in Definitions B.1 and B.7.
Usually the closedness of the function is required, however closedness is implied by
proper lower semicontinuity. Let us remind that a nonlinearity φ(x) is said to belong
to the sector [a, b] if φ(0) = 0 and (φ(x)− ax)T (bx − φ(x)) ≥ 0 for all x ∈ R

n .

Corollary B.1 Let A : R
n ⇒ R

m be a multivalued operator, with domain
Dom(A) = {x ∈ R

n|A(x) �= ∅}. Assume that 0 ∈ A(0) (equivalently (0, 0) be-
longs to the graph of A(·)). Then A(·) lies in the sector [0,+∞].
The proof follows from (B.11) with x2 = y2 = 0. It is noteworthy that the allowed
sectors include infinite values, which correspond to vertical segments of the graph
at the origin (hence including indicator functions or relay functions).
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An important tool of convex analysis is the so-called Yosida approximation of
maximal monotone mappings. For a multivaluyed mapping A : Rn ⇒ R

m , the graph
Gr(A) = {(x, y) ∈ R

n × R
m |y ∈ A(x)}. The inverse mapping is A−1 : Rm ⇒ R

n

such that y ∈ A(x) ⇔ x ∈ A−1(y), or equivalently (x, y) ∈ Gr(A) ⇔ (y, x) ∈
Gr(A−1).

Definition B.9 (Yosida and Moreau–Yosida Approximations) (i) Let A : Rn ⇒ R
m

be a maximal monotone multivalued operator, with domain Dom(A), and λ > 0.

The resolvent of A is the non-expansive and single-valued mapping J A
λ (·) Δ= (I +

λA)−1(·). The Yosida approximation of A is Aλ(·) Δ= 1
λ
(I − J A

λ )(·) = (λI +
A−1)−1(·). It is Lipschitz continuous with constant 1

λ
and it is maximal monotone.

(ii) Let f : dom( f ) ⊆ R
n → R be a convex proper function. For each λ > 0, its

Moreau–Yosida approximation is the function fλ(·) = inf z∈Rn

{
f (z)+ 1

2λ ||z − ·||2
}
.

As Example 1.6 shows, Yosida approximations correspond to some regularization
of set-valued characteristics. Let f : x �→ y = ψR+(x), and A = ∂ f : x �→ y ∈
∂ψR+(x) = NR+(x). Then A−1 : y �→ x ∈ ∂ψR−(x), Aλ(x) = (λ+∂ψR−)

−1(x) = 0
if x ≥ 0, x

λ
if x < 0, fλ(x) = 0 if x ≥ 0, x2

2λ if x < 0. This is depicted in Fig.B.2.
Let f (x) = |x |, then A(x) = ∂ f (x) = 1 if x > 0, −1 if x < 0 and [−1, 1] if
x = 0, Aλ(x) = x

λ
if |x | ≤ λ, 1 if x > λ, −1 if x < −λ, and fλ(x) = x2

2λ if |x | ≤ λ,
|x | − λ

2 if |x | > λ. This is depicted in Fig.B.4. If f (x) = ψ[−1,1](x), then fλ(x) = 0

if |x | ≤ λ, x2

2λ if |x | > λ. It subdifferential denoted B(·) is depicted in Fig.B.4, and
its Yosida approximation is denoted Bλ(·).

In relationship with some equivalences needed in the sweeping process formula-
tion, let us introduce the following definitions and lemma:

Definition B.10 (Proximal points [878]) Given a linear space E � x and a convex,
lower semicontinuous, nonidentically infinite function f (·), the proximal point of z
with respect to f , denoted as prox f (z), is the point where the function

y ∈ A(x) x ∈ A−1(y)

y

A−1
λ with slope: λ

0x

0

Aλ with slope: 1
λ

fλ (x)

x

f (x) = ψ +(x)+∞

0

Fig. B.2 Yosida and Moreau–Yosida approximations (dashed lines: Yosida approximations)

http://dx.doi.org/10.1007/978-3-319-28664-8_1


Appendix B: Elements of Convex Analysis 553

z1

z2 u

C

(a) (b)

C

z2

z1

u0

x

y

ψc +  8

+  8

o

Fig. B.3 Proximal points and indicator function of a cone. a Proximal points. b The cone and its
indicator function

u �→ 1

2
||z − u||2 + f (u) (B.12)

attains its minimum, i.e., prox f (z) = argmin( f (·)+ 1
2 ||z − ·||2).

If f (·) is the indicator function of a closed convex set C , i.e., f (·) = ψC (·), then
prox f z is the nearest point from z that belongs to C , denoted as proj(C ; z). Also,
for a convex set Φ one has −x ∈ ∂ψΦ(u) ⇔ u = proj(Φ; (u − ρx)) ⇔ u =
proxψΦ

(u − ρx) for all ρ > 0.5 As an illustration let us consider the case when C is
a cone as in Fig.B.3a.

Let z1 /∈ C and z2 ∈ C . The calculations yield:

minu 1
2 ||z1 − u||2 + ψC (u) = minu∈C 1

2 ||z1 − u||2 + ψC (u)

= minu∈C 1
2 ||z1 − u||2

=⇒ u = proxψC
z1 = proj(C ; z1) = u0

(B.13)

Similarly:

minu 1
2 ||z2 − u||2 + ψC (u) = minu∈C 1

2 ||z2 − u||2 = 0
=⇒ z2 = u0

(B.14)

In Fig.B.3b the indicator function of the coneC is depicted. The following definition
may be found in [191, 878, 898].

Definition B.11 (Conjugate Function, Fenchel Transformation) Let E be a linear
space equipped with a scalar product 〈·, ·〉. To any convex, lower semicontinuous
function f (x) not identically infinite (i.e., proper), one associates its conjugate func-
tion

f �(y)
Δ= sup

x∈E
[〈x, y〉 − f (x)]

5Such formulation are used when one deals with complementarity formulations of normal and
frictional directions, see Chap.5, Sects. 5.3 and 5.4.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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which is closed convex proper. The function f �(·) is thus the smallest function
for which f (x) + f �(y) ≥ 〈x, y〉. The mapping f �→ f � is called the Fenchel
transformation, or the Fenchel–Legendre transformation.

The inequality f (x) + f �(y) ≥ 〈x, y〉 when f (·) and f �(·) are dual functions,
is called the Young’s inequality [60, p.64], or more classically in convex analysis
the Fenchel inequality. Notice that it is sufficient that f (·) in Definition B.11 be
nonidentically +∞ to define its conjugate [191, p.9]. If f (·) is convex and lower
semicontinuous, then Fenchel–Moreau Theorem (see below) applies. As an illustra-
tion of such dual functions, let us consider the following examples:
• If f1(x) = x2, one finds that f �

1 (y) = y2

4

• If f2(x) = ||x ||, then f �
2 (y) =

⎧⎨
⎩
0 if ||y|| ≤ 1

+∞ if ||y|| > 1
. Note that this function

f �
2 (·) is the indicator function of the ball ||y|| ≤ 1, i.e., ψ||y||≤1(·).
• If f3(x) = xα

α
, then f �

3 (y) = yβ

β
, with 1

α
+ 1

β
= 1, α > 1, β > 1.

• Consider the function f4(x) =
⎧⎨
⎩
−a if x < 0
b if x > 0
[ − a, b] if x = 0

. Consider also the indi-

cator function ψ[−a,b](y) of the interval [−a, b]. Its conjugate function is the sup-
port function of the set [−a, b] and is given by ψ�

[−a,b](x) = supy∈[−a,b]〈x, y〉 ={−ax if x < 0
bx if x ≥ 0

[898, Example6.c]. Then f4(x) = ∂ψ�
[−a,b](x), the subdifferential

(or Clarke’s gradient) of ψ�
[−a,b](·) at x . One recognizes the expression of a sim-

plified Coulomb’s friction law in the definition of the function f4(x). If x is the
velocity then the tangential force Ft satisfies Ft ∈ ∂ψ�

[−a,b](−x) which is equivalent
to −x ∈ ∂ψ[−a,b](Ft ), with a = b = |Fn(t)|μ, and the normal reaction is supposed
to be known.
• Let f5(x) = ψ(−∞,a](x), then f �

5 (y) = ψ�
(−∞,a](y) = ay if y ≥ 0, and +∞ if

y < 0. This case can be applied to Example 1.6 (see Remark 1.6) where f5(·) plays
the role of the potential function associated with the unilateral constraint contact
force.
• Let f6(x) = |x1| + |x2| + . . .+ |xn|. Then:

⎧⎨
⎩

∂ f6(x) = (sgn(x1) sgn(x2) . . . sgn(xn))T

f �
6 (x) = ψ[−1,1](x1)+ ψ[−1,1](x2)+ . . .+ ψ[−1,1](xn)

∂ f �
6 (x) = (N[−1,1](x1) N[−1,1](x2) . . . N[−1,1](xn))T

(B.15)

Subdifferentiation, conjugacy, inversion, support function, Moreau–Yosida and
Yosida approximations, are illustrated in Fig.B.4. The absolute value function is
taken as an example, and from the above one has f (x) = |x | = ψ�

[−1,1](x).
It is a general result [898] that if f (·) and f �(·) are 2 dual functions, then for any

x and y in their respective domains, one has:

y ∈ ∂ f (x) ⇔ x ∈ ∂ f �(y) ⇔ f (x)+ f �(y) = 〈x, y〉 (B.16)

http://dx.doi.org/10.1007/978-3-319-28664-8_1
http://dx.doi.org/10.1007/978-3-319-28664-8_1
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Fig. B.4 Subdifferentiation, conjugacy, inversion, Moreau–Yosida, and Yosida approximations

In other words, the subdifferential of f (·) at x is the set ∂ f = {y| f (x) + f �(y) =
〈x, y〉}. These equivalencies may be used to express the same law of motion in vari-
ous manners, either using a function or its conjugate. Getting back to the sweep-
ing process formulation, one has y ∈ ∂ψV (q)(x) = {y|ψV (q)(x) + ψ�

V (q)(y) −
〈x, y〉} that is equivalent to x = proj[V (q); x + y]. If pk = M(q(tk))[q̇(t+k ) −
q̇(t−k )], then q̇(t+k ) = projM(q)[V (q); q̇(t−k )] = projM(q)[V (q);−M(q)−1 pk +
q̇(t+k )] so that M(q)[−M(q)−1 pk] = −pk ∈ ∂ψV (q)(q̇(t+k )), and ψV (q)(q̇(t+k )) +
ψ�
V (q)(−M(q)−1 pk) = q̇T (t+k )M(q)[−M(q)−1 pk]. We dropped some arguments,

but all quantities are calculated at t = tk . This is why considering the kinetic metric
as M(q) = In does not influence much the formulation. Also, one deduces that if a
function f (x) possesses a minimum at x0, then one has:

0 ∈ ∂ f (x0)⇔ x0 ∈ ∂ f �(0)⇔ f (x0)+ f �(0) = 0 (B.17)

which means that f �(·) must be subdifferentiable at y = 0 for x0 to be a minimum
point of f , and vice versa [898, p.60]. The equivalences in (B.17) are a particular case
of the so-called conjugate subgradient theorem of convex analysis. As an example
consider f (x) = x2 and f �(y) = y2

4 as above. Then y ∈ ∂ f (x) = 2x and x ∈
∂ f �(y) = y

2 , f (x) + f �(y) = y2

2 = 2x2 = 〈x, y〉, where 〈x, y〉 = xy. The proof
that x0 minimizes f (·) if and only if 0 ∈ ∂ f (x0) is simple using the definition of the
subdifferential as a set of vectors γ satisfying: γ ∈ ∂ f (x0) if by definition f (x) ≥
f (x0) + γT (x − x0), ∀x ∈ R

n . Actually, such an x0 must satisfy f (x) ≥ f (x0),
∀x ∈ R

n . Note that 0 ∈ ∂ f (x0) ⇐⇒ f (x) ≥ f (x0) + 0T (x − x0), which ends the
proof.
• Let K be a closed convex cone, and NK (·) its normal cone mapping. Then for all

x ∈ K , (NK (x))� = −(NK (x))◦ = −TK (x). On the other hand, let f (x) = ψK (x),
then f �(y) = ψ�

K (y) = ψK ◦(y), and thus ∂ f �(y) = ∂ψ�
K (y) = NK ◦(y). The

function f �(·) is the support function of the set K .
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• In Mechanics, the dual function is obtained through the so-called Legendre
transformation [60, §14], which allows one to construct the Hamiltonian function
from the Lagrangian, where the Lagrangian is seen as a function of q̇ , whereas
the Hamiltonian is seen as a function of generalized momentum p. If L(q, q̇) =
1
2 q̇

T M(q)q̇−U (q) and M(q) � 0, then H(p, q) = 1
2 p

T M−1 p+U (q). It is known
that the Legendre transformation is involutive (i.e., when applied twice, it is the
identity) [60, §14,C]. Extensions when M(q) � 0 may be found in [216]. In fact,
the following is true.

Theorem B.1 (Fenchel–Moreau [191]) Assume that f (·) is convex, lower semicon-
tinuous, and f �≡ +∞. Then f �� = f , i.e., the dual function of the dual function of
f , is f itself.

Hence from the example above, one deduces that ||x || = supy∈E�,||y||≤1 |〈y, x〉|,
which is in fact the definition of the norm of x ∈ E [191]. In classical mechanics,
one obtains that the Legendre transformation of the Hamiltonian is the Lagrangian.
It is clear in this context why the function f �(y) is called the dual function of f (x),
since the Hamiltonian formulation of dynamics involves generalized momenta p,
which belong to the dual space T �

q Q of the tangent space TqQ � q̇ of the system’s
configuration space Q at the point q. T �

q Q is also called the cotangent space to Q at
q [60, p.202].

Recall that given a cone V (q), it polar cone N (q) is defined as N (q) = {u|∀v ∈
V (q), 〈v, u〉 ≤ 0}, where it is understood that u belongs to the space dual of that of
v [891]. The normal cone in Definition B.5 is the polar cone of the tangent cone in
Definition B.2. Polarity may be seen as a generalization of orthogonality. One has
ψ�
V (q)(·) = ψN (q)(·), i.e., the indicator function of the tangent cone is the dual of the

indicator of the normal cone, because they are polar one to each other. The following
lemma is a fundamental result of convex analysis, and it is useful to write down the
different formulations of the sweeping process:

Lemma B.2 (Moreau’s Lemma of the Two Cones [876]) If V and N denote a pair
of mutually polar closed convex cones of a Euclidean linear space E, and if x, y, z
are three points of E, the following assertions are equivalent:

• x = proj (V ; z), y = proj (N ; z)
• z = x + y, x ∈ V , y ∈ N, xT y = 0

One notices that x and y satisfy a cone complementarity relation, and may be iden-
tified with u(t+k ) and −R′μ(tk) in (5.57), whereas z plays the role of u(t−k ). It also
follows as a corollary that:

x = proj (V ; z) ⇔ z − x = proj (N ; z) (B.18)

Lower semicontinuous functions are used in several places of this book.

Definition B.12 A function f : E → (−∞,+∞] is lower semicontinuous (lsc) if
the set epi( f )

Δ= {(x,α) ∈ E × R| f (x) ≤ α} is closed. In other words, f is lsc at

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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x0 if for all b ∈ R̄ such that b < f (x0), there exists a neighborhood V of x0 such
that for all x ∈ V , b < f (x). f (·) is lsc on E if it is lsc for all x0 ∈ E .

For instance, the characteristic function χI of an open interval I = (a, b) is lsc.
Indeed since I is open, for any x ∈ I there exists a ball B(x, r) centered at x , of
radius r > 0, such that for all y ∈ B(x, r), theny ∈ I (i.e., B(x, r) ⊂ I ). Hence
take b < 1: clearly for any x ∈ I , it suffices to take V = B(x, r) as a neighborhood
of x . And if x /∈ I , and b < 0 = χI , it suffices to take V = R. Also, the indicator
function of a closed convex nonempty domain is lsc [191].

B.2 Further Useful Results

B.2.1 From Convex Analysis

Let us state the following equivalences. Let Φ ⊆ R
n be a closed, convex cone.

Φ � x ⊥ y ∈ Φ� ⇔ x ∈ −NΦ�(y) ⇔ y ∈ −NΦ(x), (B.19)

where Φ� is the dual cone. In many practical cases Φ = Φ� = R
n+. Let now

y = Mx + q, for some matrix M = MT � 0 and a vector q, both with appropriate
dimensions. Let also Φ be a convex, closed nonempty set (not necessarily a cone).

Mx + q ∈ −NΦ(x) ⇔ x = projM [Φ;−M−1q]

⇔ x = argminz∈Φ
1
2 (z + M−1q)T M(z + M−1q)

⇔ 〈Mx + q, v − x〉 + ψΦ(v)− ψΦ(x) ≥ 0 for all v ∈ R
n,

(B.20)

where projM [Φ; z] is the orthogonal projection of z onΦ. Such a projection is unique
since Φ is convex. The last line of (B.20) is a variational inequality, which comes
from the definition of a subgradient. From the definition of the indicator function, it
is equivalent to: find x ∈ Φ such that 〈Mx + q, v − x〉 ≥ 0 for all v ∈ Φ. When
Φ = R

m+ = {z ∈ R
m |zi ≥ 0 for all 1 ≤ i ≤ m} = Φ�, then:

minx≥0 1
2 x

T Mx + qT x
M = MT � 0⇔ 0 ≤ Mx + q ⊥ x ≥ 0

Mx + q ∈ −NR
m+(x)

M = MT � 0⇔ x = projM [Rm+;−M−1q]

⇔ x = argminz≥0
1
2 (z + M−1q)T M(z + M−1q).

(B.21)

Some positive definiteness and symmetry is imposed on M in these equivalences,
that is, the quadratic functions are convex. In fact one has also the following that re-
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laxes convexity of the objective function. Consider the quadratic programme (Notice
that the quadratic function in (B.22) is not equal to the one in the first equivalence
in (B.21)):

min xT Mx + xT q

subject to: x ≥ 0 and Mx + q ≥ 0.
(B.22)

Then for every q such that the programme (B.22) is feasible, every stationary point
of (B.22) solves the LCP 0 ≤ Mx + q ⊥ x ≥ 0. Equivalently, M is a row-sufficient
matrix, i.e., [xi (MT x)i ≤ 0 for all i] ⇒ [xi (MT x)i = 0 for all i]. A row-sufficient

matrix may not be positive semi-definite (e.g., M =
(
0 0
1 1

)
). Since a positive semi-

definite matrix is row sufficient, this applies if M � 0. If M � 0 then the LCP
has always a unique solution (see Theorem 5.4) so the programme (B.22) and the
LCP(q, M) are equivalent.

To finish with equivalences, let us state the following: let M = MT be positive
semi-definite and φ : Rn → R ∪ {+∞} be a proper, convex, lower semicontinuous
function with closed domain. Then:

minx∈Rn
1
2 x

T Mx + qT x + φ(x) ⇔ Mx + q ∈ −∂φ(x)

⇔ 〈Mx + q, v − x〉 + φ(v)− φ(x) ≥ 0 for all v ∈ R
n

(B.23)
in the sense that if x� solves one of these problems, it solves the other ones.

The next result is an extension of the chain rule, for convex functions.

Theorem B.2 Let f (x) = h(Ax), where h(·) is a proper convex function on R
m

and A is a linear transformation fromR
n toRm. If the image of A contains a point in

the relative interior of dom(h), of if h(·) is polyhedral and the image of A contains
a point of dom(h), then ∂ f (x) = AT∂ f (Ax) for all x.

Recall that dom(h) = {x ∈ R
m |h(x) < +∞}, and that a function is polyhedral if its

epigraph is polyhedral. We usually work with polyhedral functions (like indicator
functions of polyhedral sets), or with functions with domain equal to the whole of
R

m . Thus the first assertion of the theorem is not really useful to us, in general. Let
us just mention that the relative interior of a convex set, is its interior for the topology
relative to its affine hull. For instance, consider a two-dimensional disk with radius
R > 0, lying in R

3: its interior in R
3 is clearly empty. However if we consider that

the disk belongs to a plane of R3, and view it as a domain of this plane, its interior
is the usual interior of a disk with area (Lebesgue measure) equal to πR2: this is its
relative interior. Extension of Theorem B.2 to the nonconvex case exists.

Theorem B.3 Let g(q) = ψR
m+ ◦ f (q) for a mapping f : R

n �→ R
m that

is continuously differentiable at a point q such that f (q) ≥ 0. Then ∂g(q) =
∇ f (q)T∂ψR

m+( f (q)).

The proof follows from [1046, Theorem10.6], noting that the conditions stated
therein hold since ψR

m+(·) is convex and the range of the mapping q → f (q) +

http://dx.doi.org/10.1007/978-3-319-28664-8_5
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∇ f (q)w cannot be separated from R
m+ for f (q) ≥ 0. Moreover, ψR

m+(·) being con-
vex Clarke regularity [1046, Definition6.3] holds.

Corollary B.2 The right-hand side of frictionless unilaterally constrainedLagrange
equations as in (5.1), i.e., ∇ f (q)Tλn,u, and with continuously differentiable con-
straint functions fi (q), can be equivalently rewritten as −NΦ(q).

Notice that since g(q) = ψΦ(q) with Φ = {q ∈ R
n| f (q) ≥ 0}, then ∂g(q) =

NΦ(q). Now one has 0 ≤ λn,u ⊥ f (q) ≥ 0⇔ λn,u ∈ −∂ψR
m+( f (q)), which proves

the result. Let us consider now (5.42), where the normal cone is the linearization
normal cone Nh(q). Since Nh(q) ⊆ NΦ(q) it follows that the differential inclusion
in (5.42) has a smaller set-valued right-hand side than (5.1) (when considering only
perfect unilateral constraints). If some constraint qualification is imposed (like the
MFCQ) then both right-hand sides are identical.

Let us state a result used for instance to show the energetic consistency of some
impact laws [455], or Fourier’s inequality with unilateral constraints.

Proposition B.1 Let K be a closed, nonempty, and convex set, with 0 ∈ K. If
x ∈ −NK (λ), then xTλ ≤ 0.

Proof By the monotonicity of the mapping λ → NK (λ), one has for all λ1, λ2,
y1 ∈ NK (λ1), y2 ∈ NK (λ2): 〈λ1 − λ2, y1 − y2〉 ≥ 0. Since 0 ∈ K we may take
λ1 = 0, and also y1 = 0. Then 〈λ2, y2〉 ≥ 0. Take x2 = −λ2 to infer that for all λ2

and x2 with x2 ∈ −NK (λ2), one has xT2 λ2 ≤ 0.

The next theorem states the well-posedness of a class of differential inclusions:

{
ẋ(t) ∈ −A(x(t))+ f (t, x(t)), a.e. on (0, T )

x(0) = x0.
(B.24)

The following assumption is made:

Assumption 7 The following items hold:

• (i) A(·) is amultivaluedmaximalmonotone operator fromR
n intoRn , with domain

dom(A).
• (ii) There exists L ≥ 0 such that for all t ∈ [0, T ], for all x1, x2 ∈ R

n , one has
|| f (t, x1)− f (t, x2)|| ≤ L||x1 − x2||.

• (iii) There exists a function ϕ(·) such that for all R ≥ 0:

ϕ(R) = sup

{
‖ ∂ f

∂t
(·, v) ‖L2((0,T );Rn) | ‖ v ‖L2((0,T );Rn)≤ R

}
< +∞

.

The following is proved in [104].

Theorem B.4 Let Assumption 7 hold, and let x0 ∈ dom(A). Then the differential
inclusion (B.24) has a unique solution x : (0, T ) → R

n that is Lipschitz continuous.

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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This does not straighforwardly extend when the set-valued right-hand side depends
explicitly on time: A(t, x), even if it is maximal monotone for each t . Corollary
9.2 and Theorem 10.5 in [332] may be used. Sufficient conditions for existence of
absolutely continuous solutions in of ẋ(t) ∈ −A(t, x(t)) on an interval I , x(0) ∈
dom(A), are:

• (i) A(·, x) has a strongly measurable selection, A(t, ·) is upper semicontinuous.
• One of the following holds:

– (ii-1) For all y1 ∈ A(t, x1) and all y2 ∈ A(t, x2): 〈y1−y2, x1−x2〉 ≥ −k(t)||x1−
x2||2, k ∈ L1(I ).

– (ii-2) A(t, x) has closed convex values.

• (iii) || f (t, x)|| ≤ c(t)(1+ ||x ||) for all f (t, x) ∈ A(t, x), t ∈ I .

In addition (ii-1) guarantees the uniqueness of solutions. We recalls that a selection
is any function f (t, x) ∈ −A(t, x) for all t ∈ I and x . A set-valued mapping
F(·) is upper semicontinuous if F−1(S) = {x ∈ dom(F)|F(x) ∈ S} is closed for
any closed set S. If F(·) is single-valued, then this definition of upper semicontinuity
implies the usual continuity. The set-valued map x �→ α(t)sgn(x) for a non negative
bounded function α(t), satisfies all the above properties (if α(t) is unsigned, then
(ii-1) does not hold and only existence without uniqueness can be assured, think
of ẋ(t) ∈ sgn(x(t))). Moreover, if α(t) ≥ δ > 0 for some δ and all t , then the
differential inclusion ẋ(t) ∈ −α(t)sgn(x(t)) has a global, finite-time Lyapunov
stable fixed point x∗ = 0. Indeed let V (x) = 1

2 x
2, then along trajectories of theDIwe

have V̇ (x(t)) = −α(t)x(t)sgn(x(t)) = −α(t)|x(t)| ≤ −δ|x(t)| = −δ
√

V (x(t))
2 . It

follows that |x(t)| ≤ −2δt+|x(0)|. Thus there exists t∗ <
|x(0)|
2δ such that x(t∗) = 0.

After t∗ the state stays at the origin which is an attractive point.

B.2.2 Moreau’s Set Inclusion

The inclusion NV (q)(w) ⊆ NΦ(q) is proved in [894, Proposition5.1] for finitely
represented sets Φ as in Sect. 5.2.2. It uses the definition of the (linearized) tan-
gent cone in (5.35) to a finitely represented set, which is a convex polyhedral set
(however this time Φ itself needs not be convex). Let us assume that Φ is fi-
nitely represented by inequalities f (q) ≥ 0, and that the MFCQ holds. One has
V (q) = {v ∈ R

n|vT∇ fi (q) ≥ 0, i ∈ J (q)} (see Definition 5.34), so denoting

gi (v)
Δ= vT∇ fi (q) we obtain V (q) = {v ∈ R

n|gi (v) ≥ 0, i ∈ J (q)}. Therefore,
for all v ∈ bd(V (q)) one has (using (B.8) and replacing Φ by V (q) that is a velocity
set): ∂ψV (q)(v) = NV (q)(v) = {w ∈ R

n|w = −∑
i∈K (v) λi∇gi (v),λi ≥ 0}, where

K (v) = {i ∈ J (q)|gi (v) = vT∇ fi (q) = 0} is the set of active constraints at the
velocity level (thus both K (v) and J (q) are indices sets, and K (v) ⊆ J (q),
the equality being true if and only if all velocities at the active contact points, are
tangent to the admissible domain Φ). Noting that ∇gi (v) = ∇ fi (q) and using (B.8)

http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
http://dx.doi.org/10.1007/978-3-319-28664-8_5
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the inclusion is proved. Thus, for q ∈ bd(Φ) and w ∈ bd(V (q)), the equality
NV (q)(w) = NΦ(q) holds if and only if ∇ fi (q)T v = 0 for all i ∈ J (q) (i.e.,
K (v) =J (q)). Notice that if q ∈ Int(Φ) then both cones are equal to {0}.

The inclusions in (3.20) could be proved in a similar way, introducing the set
of indices L (w) = {k ∈ K (v)|hk(w) = ∇ fk(q)Tw + d

dt (∇ fk(q)T )v = 0} ⊆
K (v) ⊆ J (q). First notice that TV (q)(v) = {w ∈ R

n|hk(w) ≥ 0, k ∈ K (v)}.
Then NTV (q)(v)(w) = {z ∈ R

n|z = −∑
k∈L (w) ∇hk(w)λk,λk ≥ 0}. Noting that

∇hk(w) = ∇gk(v) = ∇ fk(q) the result follows.
Such type of inclusions have also been shown in the broader context of distribution

differential inclusions in [15], see in particular [15, Lemma3] and (3.18) in Chap.3.

Remark B.2 As alluded to in Remark 3.1, the normal cones inclusions could be used
in an event-driven scheme to detect detachment from bd(Φ)when the first derivatives
vanish. It is clear from the above developments that this implies the construction of
various index sets (in theory, the process should be continued as long as the derivatives
of the gap function are zero).

B.2.3 Prox-Regular Sets

Tangent and normal cones in (B.3) and (B.5) are defined for general sets (convex
or non convex, see Remark B.1). For the particular case of finitely represented sets,
one may also define the linearization tangent and normal cones in (B.7) and (B.8).
Under theMFCQ the linearization cones and the normal and tangent cones, are equal.
Let us now briefly introduce the so-called r−prox-regular sets. Roughly speaking,
a set Φ is convex if and only if any point y has a unique projection on it: a set Φ

is r−prox-regular if the same holds, for all points y close enough to Φ, where the
closeness is measured by r . To start with let us define Fréchet normals. For a closed
set Φ ⊂ R

n , and x ∈ Φ, the vector w ∈ R
n is called a Fréchet normal to Φ at x if,

for every ε > 0, there exists δ > 0 such that 〈w, x ′ − x〉 ≤ ε||x ′ − x || for all x ′ ∈ Φ,
||x ′ − x || < δ. The set of all Fréchet normals at x ∈ Φ make a cone which we denote
as usual NΦ(x).

Definition B.13 (r-prox-regular set [1009]) The closed set Φ is r−prox-regular if
and only if for any xi ∈ Φ (i = 1, 2), the inequality

〈v1 − v2, x1 − x2〉 ≥ −||x1 − x2||2 (B.25)

holds whenever vi ∈ NΦ(xi ) with ||vi || < r . Equivalently, for each w ∈ NΦ(x):

〈 w

||w|| , x − x ′〉 ≥ − 1

2r
||x − x ′||2, for all x ′ ∈ Φ. (B.26)

http://dx.doi.org/10.1007/978-3-319-28664-8_3
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Any closed convex setΦ is r−prox-regular with r = +∞, andw in (B.26) becomes
a subgradient of the indicator function ψΦ at x in the sense of convex analysis.
The set represented by the dashed area in Fig. 4.3b (ii) is r -prox-regular, see also
Fig.B.5. Let PΦ(x) denote the set of all nearest points of Φ to x . If x belongs to
the open r -tube around Φ, given by {z ∈ R

n|0 < dΦ(z) < r} where dΦ(z) =
inf{||z − y||, y ∈ Φ} is the distance from x to Φ, then PΦ(x) is unique (and is
the projection of x on Φ) [131, Theorem6.2]. The normal cone NΦ(x) can also
be, under some constraint qualifications, written in its linearization form (B.8), see
[1046, Theorem6.14]. In particular, this holds since a prox-regular set is also Clarke
regular [1046, Definition6.3].

Remark B.3 The tangent cone to an r−prox-regular set can be defined as in (B.3).
From [1046, Corollary6.29] the normal and tangent cones are mutually polar.6 There
are many different notions of a normal cone to a set. For prox-regular sets they all
coincide (Clarke, Mordukovich, Fréchet cones are the same [226, §A.1]). Since
one can always define the tangent cone as the polar cone to the normal cone, one
infers that there is also a unique definition of tangent cones to prox-regular sets. In
particular the contingent and the tangent cones in (B.3) and (B.2) respectively, are
equal: prox-regular sets are tangentially regular and have no re-entrant corners.

The relationships between finitely represented sets, and prox-regular sets are not so
well-known. A result in this direction is given in [133, Theorem4.1].

Theorem B.5 [133] Let Ci = {q ∈ R
n| fi (x) ≥ 0} and C = ∩1ı≤mCi . Assume that

for all x ∈ Ci + κB one has α ≤ ||∇ fi (x)|| ≤ β and ||D2 fi (x)|| ≤ M, for some
positive constants α, β, M and κ. Let Iρ(x) = {i ∈ [1,m]| fi (x) ≤ ρ}, for some
positive constant ρ. Assume there exists γ > 0 and nonnegative reals λi such that∑

i∈Iρ(x) λi ||∇ fi (x)|| ≤ γ||∑i∈Iρ(x) λi∇ fi (x)||. Then there exists η(α, M, γ) such
that the set C is η−prox-regular.

Fig. B.5 Two prox-regular
sets Φ (dashed areas)

Φ

(a) (b)

Φ

Φ

6Here the normal cone is to be understood as the proximal normal cone.

http://dx.doi.org/10.1007/978-3-319-28664-8_4
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well-posedness, 318
with ideal switch, 313
with Zener diodes, 314

Energetic CoR, 218
Energy balance, 66, 236, 323, 424, 456
Energy pumping (passive control), 430
Equilibrium point

complementarity problem, 64, 451
generalized equation, 64, 314, 451, 474
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Fourier’s inequality, 96, 104
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scaling, 135
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quasi-Hamilton equations, 256
Hamilton’s principle
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singular, 254
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High velocity impact, 78
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Hybrid Lyapunov stability, 483, 511
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Hypervelocity impact, 78
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accumulation, 237, 422, 458
balanced, 179, 215
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disk/plane, 182
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low velocity, 77
multimodal approach, 237
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Poincaré map, 421, 425, 433, 437
Poincaré map calculation, 433
Poincaré map stability, 432
quasistatic, 164
reduction, 530
repeated, 214
right-accumulation, 90
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termination criterion, 355
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very low velocity, 78, 145
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with friction, 173
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definition, 426

Impulse distributing rule (LZB model), 406
Impulse ellipsoid, 141
Impulse ratio, 188, 194, 224
Impulsive controller, 7, 8, 12, 462
Impulsive force, 4
Impulsive ODE

applications, 18
controllability, 17
definition, 16
dwell-times for stability, 421
Lyapunov stability, 417
observability, 17

time discretization, 356, 369
Indeterminacies, 354
Indeterminate constraint, 305
Index

passive system, 324
transfer matrix, 324

Indicator function, 548
contact force potential, 24
subdifferential, 550

Inequality state constraints
optimal control, 123, 316

Inertia matrix
singular, 244, 254

J
Jam (self-locking), 214, 225
Johnson–Kendall–Roberts (JKR) model,

159
Jourdain variation, 98
Juggling systemss, 531

K
Kane’s equations, 132
Karnopp friction model, 293
Karush–Kuhn–Tucker

conditions, 54, 303
matrix, 245

Kelvin’s formula, 141
Kinematic CoR, 143
Kinetic angle, 238, 285, 338, 385

bouncing dimer, 410
definition, 403
rocking block, 409

Kinetic constraint, 183
Kinetic CoR, 216
Kinetic energy, 390

dispersion, 275, 377, 412
loss, 141, 144, 176, 182, 186, 189, 237,
270, 395, 399

loss (lowerbound), 231
Kinetic metric, 88, 269
Kinetic quasi-velocities, 387
Kurzweil differential equations, 11
Kuwabara-Kono contact model

definition, 73
Hamiltonian form, 75

L
Lagrange dynamics

complementarity, 477, 508
equilibrium, 452
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exogenous impulsive forces, 107
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Quasi-Lagrange equations, 256, 386
singular, 254
stability, 452
stability with Coulomb’s friction, 457

Lagrange-Dirichlet Theorem, 451
LBV function, 543
Least action principles, 107
Lebesgue measure, 539
Lebesgue’s integral, 540
Legendre transformation, 556
Lemke’s algorithm, 365
Lexicographical inequality, xxi, 37, 61, 100,

269, 307
Linear Complementarity Problem (LCP),

23, 54, 248, 491, 493, 516, 523
constrained control, 491
contact, 248
contact with friction, 332
definition, 299
mixed, 248, 252, 272, 473
quadratic programming, 302
slack variable, 299
solvability, 300
well-posedness, 299
with copositive matrix, 300
with P-matrix, 299
with positive semi-definite matrix, 300

Linear Complementarity System (LCS), 55,
62, 304, 463

autonomous, 305, 321
Boundary Value, 124
controllability, 324
dissipative, 65, 322
equilibrium point, 474
infinite-dimensional, 321
Lur’e set-valued system, 312
Lyapunov stability, 473
Moreau’s sweeping process, 318
nonautonomous, 312
observability, 327
observer design, 327
optimal control, 326
state jump rule, 319
time discretization, 367
vs. hybrid systems, 327
vs. piecewise-linear system, 320
well-posedness, 316, 321

Love’s criterion, 165, 229
Low velocity impact, 77, 164
Lower semicontinuity, 556

Lur’e set-valued system, 66, 312, 314, 315,
320, 455, 456

Lyapunov, A.M., x
Lyapunov function

almost decreasing, 458, 484, 507, 511
nonmonotonic, 421, 507
weakly stable system, 484

Lyapunov second method, 418
Lyapunov stability, 418, 423, 464, 474

finite-time, 560
LZB multiple impact dynamics , 403

chains of balls, 407
experimental validations, 411
numerical integration, 407
rocking block, 408

M
MacLaurin, ix
Mangasarian-Fromovitz CQ, 550
Manipulator

flexible joints, 4, 7, 108, 508
rigid joints, 6, 477

Mass matrix
singular, 128, 244, 254

Matrix
copositive, 300
copositive on a set, 474
P-matrix, 299

Maugis–Dugdale (MD) theory, 161
Maupertuis’ principle, 105
Maximal dissipation, 351
Maximal monotone operator, 262, 485, 551
Maximum dissipation principle, 289
Measurable function, 539
Measurable set, 539
Measure, 538
Measure differential equation, 1, 16
Measure differential equation (MDE), 7

commutative vector fields, 43
continuity w.r.t. initial data, 10, 30
controllability, 17
coordinate change, 39
definition, 8
dissipativity, 18
existence of solutions, 10, 11
input-to-state stability, 420
observability, 17
stability, 418, 420
switching system, 18
time discretization, 369

Measure Differential Inclusion, 83, 450, 484
Microcollisions, 227
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Monodromy operator, 421
Monotone operator
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Monteiro-Marques, M.D.P, 277
Moreau, J.J., xi, 359
Moreau’s differentiation rule, 418, 453
Moreau’s impact law, 397, 412

energy dispersion minimization, 275
penalized contacts, 277
solvable LCP, 273
vs Newton’s impact law, 273

Moreau’s set, 261, 263, 360
extensions, 101
global restitution coefficient, 269
inclusion in normal cone, 560

Moreau’s sweeping process
as variational inequality, 318
complementarity conditions, 263
cone complementarity system, 257, 262
crowd motion, 257
electrical circuits, 258, 318
first order, 256, 318
first order perturbed, 257
frictionless, 265
higher order, 308
impact law, 264, 266, 270, 307, 479
Jourdain’s variation, 262
LCS, 318
link with LCS, 316
optimal control, 326
second order, 265, 449
state jump rule, 257, 319
state-dependent set, 257, 321
well-posedness, 279
with controlled moving set, 321
with friction, 294

Moreau’s viability Lemma, 260
Moreau–Jean’s method

convergence, 361
dissipation properties, 361
projected algorithm, 361
with Coulomb’s friction, 362
with impact accumulations, 362

Moreau–Jean’s time-stepping algorithm,
358

Moreau–Yosida approximation, 24, 89, 257,
552

potential function, 24
Multiple impact

binary collision model, 379, 412

definition, 372
discontinuity w.r.t. initial data, 280, 284,
373

generalized kinematic law, 386
Han-Gilmore’s model, 379
impulse distributing rule, 406
LZB energetic-CoR law, 403
momentum conservation, 375
Moreau’s law, 272
Newton’s law, 272
penalized contacts, 277, 383
Pfeiffer-Glocker’s kinetic law, 413
repeated collision, 405
specific features, 372
wave effects, 373, 378

Mutual actions principle, 136, 139

N
Navier, ix
Newton

cradle, 270, 380, 408
restitution law, 143
third law, 375

Newton, I., ix
Nonconvex sets, 550, 561
Nonlinear complementarity problem, 365
Nonlinear complementarity system, 307
Nonlinear energy sink (NES), 430
Nonlinear Normal Modes, 239
Nonsmooth coordinate change, 44
Nonsmooth potential function, 24
Nordmark map, 448
Normal cone , 549

kinetic metric, 267, 387
linearization cone, 260, 549

Numerical integration, 356
Numerical methods

event-driven scheme, 356, 408
Moreau–Jean’s scheme, 359
NSCD method, 358
Schatzman–Paoli scheme, 365
Stewart–Trinkle scheme, 364
time-stepping schemes, 358

O
Observability

impulsive ODE, 17
LCS, 327
through impacts, 533

One-step-nonsmooth-problem (OSNSP),
361, 366, 367

Optimal control
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P
P-matrix

definition, 299
perturbation of, 301

Painlevé paradoxes
biped robots, 353
chatter, 352
critical friction, 352
critical points, 348
impact without collision, 350, 352
inconsistencies, 345
indeterminacies, 345
lead screw drive, 353
Painlevé-Klein system, 353
singular ODE, 347
tangential impacts, 351
varying friction coefficient, 346

Painlevé-Klein system
inconsistencies, 354
tangential impacts, 352

Painlevé’s example, 297
3-parameter impact law, 198
Passive operator, 119
Passive system

index, 324
LMI, 323

PB = CT , 62, 307, 316
Penalizing functions, 53, 83
pε-impact, 478
Percussion center, 142
Percussion vector, 4
Perfect constraint, 103, 269
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existence, 426
Piecewise-linear system, 23, 63, 320
Piecewise nonlinear system, 76
p-impact, 478
Plastic impacts, 55, 263
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Poinsot, L., x
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definition, 216
Poisson, S.D., ix
Polar cone, 549, 556
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Positive definite matrix

definition, xxi
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definition, xxi
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Principle of maximum dissipation, 289
Principle of virtual power, 98
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Prox-regular set, 452, 561

finitely represented, 562
Proximal point, 552
Punch/half space contact, 163

Q
Quadratic BV functions

Moreau’s differentiation rule, 418, 453
Quadratic programming, 302
Quasi-coordinates, 433
Quasi-Hamilton dynamics, 256
Quasi-Lagrange dynamics, 256, 386
Quasi-momentum, 256
Quasistatic impacts, 164
Quasi-variational inequality, 99
Quasi-velocity, 255, 387

R
Rate insensitive material, 152
Rate sensitive material, 152
Rational Complementarity Problem, 306
RCLBV function, 543
Re-entrant corner point, 548
Reciprocal

twist and wrench, 131
Redundant constraints, 249
Regularized model, 228
Relative degree, 35, 62, 248, 307, 313

complementarity Lagrangian systems,
307

in LCS, 316
mixed rigid/flexible contacts, 310
vector, 311

Relay multifunction, 78, 314
saturation realization, 81

Repeated impact, 214
Restitution coefficient
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body size dependence, 146
bounds, 191, 224
Chang and Ling’s definition, 152
comparison, 220
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equivalence, 195
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impact velocity dependence, 145, 164
Ivanov’s definition, 225
Johnson’s definition, 150
Kuwabara-Kono’s model, 73
Mangwandi’s definition, 152
necessity, 144
Newton’s definition (kinematic), 143
parameter dependence, 145, 530
Poisson’s definition (kinetic), 216
repeated impacts, 146, 155
ring impact, 164
size dependent, 146
snow particles, 145
spring-dahspot model, 58, 67
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Tabor’s definition, 150
tangential, 169, 176, 192
temperature dependence, 146
Thornton’s definition, 151
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viscoelastic materials, 66, 146
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comparison, 218
comparison (Newton and Poisson), 210
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equivalence (Newton and Poisson), 216
general comments on, 239

Restitution law
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two-phase, 150, 156
uniqueness of solutions, 199

Restitution matrix, 193, 394
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fractional-elastic, 74
linear damping, 55
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linear viscoelastic, 56, 66
nonlinear viscoelastic, 68
viscoelasto-plastic, 78

Riemann–Stieltjes integral, 544
Rising bifurcations, 435
Rocking block, 134, 408

aspect ratio, 409
kinetic angle, 409

slender and flat, 409
Rodrigues formula, 128
Routh, E.J., x
Routh’s function, 45
Routh’s graphical method, 226
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S
Saint-Venant element, 78
Saturation function

from set-valued relay, 81
Schur complement, 246, 252
Schwartz distribution

convergence, 538
functional, 535

Schwartz’ distribution, 3
sequential, 536

Screw
of external forces, 131
twist or kinetic screw, 130

Section map, 433
Sector condition

maximal monotone operator, 66, 456,
551

Semicontinuity
lower, 557
upper, 560

’sGravesand, W.J., 375
Shell/flat contact

elasticity coefficient, 164
Shock dynamics (two bodies), 138
siconos software platform, 496, 519
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Signorini’s conditions, 238, 298
Signum function

set-valued, 48, 60
Simon-Hunt-Crossley contact model

definition, 69
Hamiltonian form, 75

Singular ODE, 347
Singular value
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Singularities and sticking point, 213
Sliding mode control

discrete-time, 293, 369
twisting algorithm, 460

Sobolev spaces, 87, 112
Software packages
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siconos, 359, 533

Space structures, 530
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Kuwabara-Kono, 73
linear, 56, 146
Maxwell, 68, 157
numerical simulation, 93
Simon-Hunt-Crossley, 69
time discretization, 369
Zener, 67

Square-root singularity, 446
Stability

input-to-State (MDE), 420
Lyapunov, 425, 464
symptotic, 458
weak, 482
With Coulomb’s friction, 457
Zeno, 458
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complementarity Lagrangian systems,
533

Stationary principles, 107
Stereomechanical impact, 77
Stieltjes measure, 8, 541
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equivalent, 52
multivalued, 24, 53

Storage function, 65, 319, 456, 463
Stronge’s restitution coefficient, 217
Subgradients, 547
Successor mapping, 421
Supply rate

generalized, 322, 424, 455
in LCS, 65
shock dynamics, 237

Support function
definition, 289
of a set, 555
of an interval, 554

Surface
energy, 159
tension, 159

Sweeping process
circuit, 258
cone complementarity system, 257, 262
frictionless, 258
Moreau’s set, 261
State observer, 534
with friction, 285

Switch
complementarity formalism, 313

Switching system
MDE formalism, 18
switching DAEs, 39, 246, 328

T
Tangent cone, 93, 548

linearization cone, 259, 549
Tangential impacts, 337, 351
Tangential restitution coefficient, 169, 176,

192, 196
Tangential restitution mapping, 398
Tangential velocity jump, 192
Tangential velocity reversal, 189, 213, 218,

220
Tangentially regular set, 104, 548
Test-functions, 535
Thomson and Tait’s formula, 186, 223, 232,

237, 455
Time scale, 213
Time-stepping algorithm

complementarity Lagrangian systems,
358

Darboux–Keller’s impact dynamics, 366
explicit vs. implicit discretizations, 363
impulsive ODE, 369
LCS, 367
Moreau–Jean (NSCD) scheme, 358

Timescale, 350
Tonelli’s theorem, 111
Torsional restitution, 193
Two cones lemma, 556

U
Underactuated system, 508
Unilateral constraint

active or inactive, 19, 508
choice of gap function, 132
definition, 19
redundant constraints, 249

Uniqueness of solutions, 33, 89, 91, 279, 305
Bressan’s counter-example, 89
elastic impacts, 91
via analycity, 282, 307

Upper semicontinuity, 560

V
Variational inequality, 318
Varignon’s formula, 130
Velocity discontinuities, 4
Very low velocity impact, 78, 145
Vibrations
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effect on en, 165, 228, 229

Vibro-impact system, x, 27, 533
Virtual displacements, 95
Virtual power, 103, 269
Viscoelastic contact, 66

hysteresis factor, 69
Kelvin-Voigt model, 56
Kuwabara-Kono’s model, 73
Maxwell model, 67
numerical simulation, 93
Simon-Hunt-Crossley’s model, 69
with adhesion, 76, 159
with dry friction, 78
Zener model, 67

Visco-elasto-plastic contact
hysteresis loop, 80
Masing’s model, 80
Persoz’ gephyroidal model, 78

Visco-elasto-plastic models, 78

W
Weak stability

criterion, 483, 511
definition, 482

Well-posedness
frictionless complementarity Lagrangian
system, 279

LCS, 62, 306, 316
penalized constraints, 83

sweeping process, 277
sweeping process with friction, 294
systems with clearance, 282

Work, 53, 58, 218
Wrench, 131

X
ξ-monotone operator, 551

Y
Yield velocity, 149
Yosida approximation, 23, 552

Z
Zener diode, 313
Zener diode assembly

complementarity formalism, 314
Zeno behavior

impacts accumulation, 237, 422, 459
in LCS, 322
in switching systems, 61
left accumulations of impacts, 280
right accumulations of impacts, 280

Zeno phenomenon
simulation of, 362

Zero-measure set, 542
Zhuravlev-Ivanov method, 44, 447, 460
Zigzag curve, 112
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