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  Pref ace   

 Sleep has often been an interesting subject for novelists, poets, painters, and other 
artists. From the antiquities to the Middle Ages up to the last centuries, several of 
them acknowledged the importance and the impact of sleep on behavior, emotions, 
performance, and overall health. Sleep was depicted as a mysterious part of life, 
bringing suggestions and premonitions, and always benefi cial for the humans by 
Aristotle, Cicero, Dante, and Shakespeare, among many others. 

 After the Middle Ages, some interest on the functions of sleep emerged and some 
specifi c pathologies linked to sleep were described, but little understanding of the 
physiology of sleep occurred until the twentieth century. 

 The beginning of sleep medicine as a scientifi c fi eld is linked to the discovery of 
the EEG by Hans Berger in 1929, which allowed the identifi cation of sleep stages 
by Loomis et al. in 1937, followed by the discovery of REM sleep in 1953 by 
Aserinsky and Kleitman, and has impressively progressed over the past 60 years, 
highlighting the importance of sleep for several physiological functions and stress-
ing the negative effects of sleep deprivation or disruption. 

 In the nineteenth century, doctors and pediatricians began to characterize sleep 
disorders in infants and children, but children’s sleep has been neglected until the 
end of the last century with the main textbooks of pediatrics reporting no chapters 
but only few paragraphs devoted to pediatric sleep. 

 Pediatric sleep medicine arose as an autonomous entity about 30 years ago, due 
to the huge increase of studies and publications in different fi elds of sleep disorders: 
obstructive sleep apnea and other sleep-related breathing disorders, sudden infant 
death syndrome (SIDS), insomnia, narcolepsy, parasomnias, etc. However, it was 
the gradual identifi cation of the importance of sleep for daytime dysfunction, such 
as neurobehavioral problems, learning diffi culties, and growth failure, which started 
to raise awareness on the importance of sleep in infancy and childhood 
development. 

 The link between sleep-disordered breathing or sleep-related movement disor-
ders and attention defi cit hyperactivity disorder (ADHD) or between sleep and 
depression or substance abuse in adolescence or between sleep deprivation and cog-
nitive dysfunctions and poor school performance has been widely recognized. 
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Furthermore, the vicious circle and interplay involving sleep apnea, infl ammation, 
and childhood obesity has been emphasized. Finally, recent research has identifi ed 
the specifi c features of hypersomnia and narcolepsy in children. 

 Sleep during the fi rst months of life occupies more than 50 % of the time of 
infants, and the brain and body maturation and changes are mainly driven by the 
sleep hours (i.e., synaptic reorganization or growth hormone secretion), highlight-
ing the fundamental role of sleep for optimal development. 

 Thus the proper diagnosis and treatment of sleep disorders in infancy and child-
hood is a priority for pediatricians or physicians in order to maintain an adequate 
growth of the brain and body. 

 Although the importance of sleep for development is now widely recognized, in 
the pediatric clinical practice, the evaluation and assessment of sleep problems con-
tinues to be neglected by most pediatricians, linked probably also to insuffi cient 
education programs in medical school and training courses. 

 The goal for this book is to review the clinical disorders of sleep for child neu-
rologists, psychiatrists, pulmonologists, pediatricians, and clinical practitioners of 
any specialty with an interest in sleep medicine.  

    Prague ,  Czech Republic      Soňa     Nevšímalová    
   Rome ,  Italy      Oliviero     Bruni       

Preface
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    Chapter 1   
 Ontogeny of Sleep and Its Functions 
in Infancy, Childhood, and Adolescence                     

     Madeleine     Marie     Grigg-Damberger     

    Abstract     We have long understood sleep as an active, not passive, process that 
serves many functions, some of which vary in importance across the human lifes-
pan. Ontogeny is the study of how a living organism develops from conception to 
birth and across its lifespan. This chapter reviews the ontogeny of sleep and its func-
tions from infancy through adolescence. Sleep in humans serves many functions 
including: (1) fostering optimal brain growth and development; (2) enhancing learn-
ing, attention, memory, synaptic effi ciency, and plasticity; (3) regulation of emo-
tion, appetite, feeding, body weight, risk-taking, and pleasure-seeking behaviors; 
(4) strengthening immune function; and (5) providing optimal time for clearing the 
brain of cellular debris and neurotoxins. The chapter provides summaries of grow-
ing evidence for each of these. Sleep/wake states are scored in polysomnography 
using electroencephalography (EEG), electromyography (EMG), and electroocu-
lography (EOG), and the ontogeny of these is also reviewed here.  

  Keywords     NREM disorder of arousal (DoA)   •   Parasomnias   •   Polysomnography   • 
  Polysomnogram (PSG)   •   REM sleep behavior disorder (RBD)   •   REM sleep without 
atonia (RSWA)   •   Sleepwalking  

      Introduction 

 We have long understood sleep is an active, not passive, process that serves many 
functions. The importance of one function or another varies with age and develop-
ment. Ontogeny (also called morphogenesis or ontogenesis) is the study of how a 
living organism develops from conception to birth and across its lifespan. This 

        M.  M.   Grigg-Damberger ,  MD       
  Department of Neurology ,  University of New Mexico School of Medicine , 
  MSC10 5620, One University of NM ,  Albuquerque ,  NM   87131-0001 ,  USA   
 e-mail: mgriggd@salud.unm.edu  

mailto:mgriggd@salud.unm.edu
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chapter provides a review of the ontogeny of sleep and its functions in infancy, 
childhood, and adolescence. 

 The word “ontogeny” comes from the Greek word  ontos  (ὄντoς, a present parti-
ciple genitive singular neuter of εἶναι, “to be”) and the suffi x - geny , which means a 
“mode of production”. The concept that “ontogeny recapitulates phylogeny” is a 
hypothesis that humans particularly during early embryonic development exhibit 
physical features or behaviors which resemble those seen during the stages of devel-
opment of other animal species.  

    Ontogeny of the Functions of Sleep 

 Sleep in humans serves many functions including: (1) fostering optimal brain 
growth and development [ 1 – 5 ]; (2) enhancing learning, attention, memory, synaptic 
effi ciency, and plasticity [ 6 – 17 ]; (3) regulating emotion, appetite, feeding, body 
weight, risk-taking, and pleasure-seeking behaviors [ 6 ,  18 – 26 ]; (4) strengthening 
immune function [ 27 – 30 ]; and (5) providing optimal time for clearing the brain of 
cellular debris and neurotoxins [ 31 – 33 ]. 

    Sleep Fosters Optimal Brain Growth and Development 

 Perhaps the most important function of sleep from an ontogenetic perspective is the 
role sleep plays in early brain development. Piaget thought play was the major 
“work” of children [ 34 – 36 ], but it is sleep for neonates and young infants. Term 
infants sleep 16–18 h per day, 50 % of it in REM sleep [ 37 ,  38 ]. Premature infants 
spend even more time sleep, 80 % of it in REM sleep. By age 2 years, the average 
child has spent 10,000 h asleep compared to 7,500 h awake [ 24 ]. 

 The greater time spent sleeping in infants and early childhood refl ects the crucial 
role sleep (especially REM sleep) plays in optimal brain development. The time 
course of REM sleep development (and decline) in humans corresponds well with 
critical periods of brain maturation [ 39 ]. From a historical perspective, Roffwarg 
et al. [ 38 ] were the fi rst to hypothesize that brain stem mechanisms that produce 
REM sleep provide direct ascending stimulation to the forebrain which promote 
brain development at ages when wake-related stimulation is low [ 2 ]. The time 
course of REM sleep development (and decline in the percentage of time spent in it) 
in humans corresponds well with critical periods of brain maturation [ 39 ]. 

 Recent animal and human studies confi rm that sleep in early life promotes opti-
mal neural and cognitive brain development, cortical maturation, and brain connec-
tivity [ 40 – 57 ]. Premature infants are seemingly whirling dervishes in REM sleep, 
constantly moving and twitching, far more than when they are nearer to term, and 
much more than adults do when sleeping. These myoclonic twitches of skeletal 
muscles (often tens of thousands per day) are neither random nor purposeless [ 4 ,  58 , 
 59 ]. Evidence from studies in human infants and infant animal models show that 

M.M. Grigg-Damberger



5

proprioceptive feedback from a twitching limb triggers bursts of oscillatory 
 electrical activity in the appropriate regions of the developing somatosensory cortex 
[ 1 – 4 ]. Blumberg et al. [ 60 ] argue that myoclonic twitches during REM sleep in 
infants represent a form of motor exploration which help human infants and other 
mammals explore limb biomechanics, build motor synergies, and lay a foundation 
for complex, automatic, and goal-directed movements when awake [ 4 ]. 

 Furthermore, studies show proprioceptive feedback from a twitching limb trig-
ger bursts of oscillatory electrical activity in the appropriate regions of the develop-
ing somatosensory cortex [ 1 – 4 ]. These bursts of EEG activity are none other than 
the quintessential EEG signature of premature infants, delta brushes. Scalp EEG 
recorded delta brushes refl ect bursts of 8–25 Hz electrical activity within the cortex 
which is most prominent and prevalent during the third trimester of gestation. 
Simultaneously recording scalp EEG and limb electromyographic (EMG) activity, 
Milh et al. showed that sporadic hand and foot movements in premature infants 
29–31 weeks CA herald the appearance of delta brushes in the corresponding areas 
of the lateral and medial contralateral central cortex, respectively [ 5 ]. Moreover, 
direct hand and foot stimulation reliably provoked the delta brushes in the same 
regions. 

 Still other studies have shown similar mapping of auditory [ 61 ], touch, pain, and 
smell in early development correlating delta brush activity with different sensory 
stimuli in premature infants [ 4 ,  44 ,  58 – 61 ]. For example, a longitudinal study evalu-
ated delta brush activity in 46 healthy premature infants between 31 and 38 weeks 
CA in response to low level auditory clicks and human voices during both quiet/
NREM and active/REM sleep [ 61 ]. Before 34 weeks, low volume auditory clicks or 
human voices evoked similar scalp-recorded EEG responses: delta brushes which 
localized particularly to the temporal scalp regions. Whereas, after 34 weeks CA, 
voices evoked delta brushes localized to the temporal region while auditory clicks 
elicited diffuse delta brushes. 

 Reduced time spent in REM sleep during early infancy has been shown to have 
lasting effects on later cognitive functioning [ 41 ,  54 ,  62 ]. Less REM sleep time in 
premature infants (32–36 weeks CA) was associated with poorer developmental 
outcomes on the Bayley II at 6 months in a prospective study of 81 infants born 
premature [ 41 ]. Whereas, better cognitive outcomes appeared in infants who had 
longer periods of sustained sleep, more time spent in REM sleep, and more periods 
of REM sleep with rapid eye movements. Another prospective study of 65 infants 
born premature found that those who slept poorly as neonates exhibited poorer 
attention and greater distractibility at 4 and 18 months than those who slept well 
[ 62 ]. Another study found sleep/wake transitions from NREM to wake were associ-
ated with greater neonatal neuromaturation, less negative emotionality, and better 
verbal, symbolic, and executive competences at age 5 in 143 infants born premature 
(mean age 32 weeks CA) [ 54 ]. REM sleep and cry, short episodes of REM, and 
NREM sleep were associated with poorer outcomes. 

 Such fi ndings have prompted interventions to improve premature sleep in neona-
tal intensive care units including environmental noise reduction, ear muffs when 
sleeping, lights on only from 7 am to 7 pm, and non-pharmacological treatments for 
pain less likely to disrupt REM sleep [ 63 – 68 ].  

1 Ontogeny of Sleep and Its Functions in Infancy, Childhood, and Adolescence
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    Sleep Crucial for Learning, Memory, and Attention 

 In order to learn a memory, task or skill, we must fi rst be trained, then encode and 
consolidate it if is to be retained. A wealth of research and medical literature has 
recently been published on the importance of sleep on learning using a variety of 
different tasks or particular types of memory. These and other studies have shown 
that consolidation of declarative/episodic, motor, emotional, sensory, and olfactory 
memories occur preferentially during sleep [ 6 – 13 ]. Sleep within a few hours after 
learning a new task, skill, or information enhances retention. New learning and 
memories acquired during wakefulness is initially stored (encoded) in the hippo-
campus. Some of these newly encoded memories are selected, reactivated, replayed, 
and redistributed during sleep toward other neuronal networks (neocortex) where 
they are processed. Processing of memories during sleep includes: (1) selecting 
some memories for retention, discarding others, (2) integrating new memories into 
preexisting networks of associated memories, (3) abstracting gist and rules from 
new memories, and (4) modifying memories to facilitate discovery of creative 
insights and future utilities [ 69 ,  70 ]. 

 Studies in adults have shown the suffi cient quantities and temporal sequences of 
NREM 2, 3 and REM sleep are needed to learn novel tasks and new memories [ 69 ] 
and reorganize memories [ 70 ]. For example, learning a visual texture discrimination 
task improved signifi cantly after a night’s sleep which contained suffi cient NREM 
3 in the fi rst half and REM sleep in the second [ 71 ]. Another study found NREM 2 
sleep spindles especially late in the night correlated with learning a particular motor 
task [ 72 ]. Even more intriguing are a handful of recent studies which correlate sleep 
spindles (or EEG power in the sigma band of sleep spindles) with cognitive and 
intellectual abilities in adolescents and adults [ 73 – 75 ]. Spindles and sigma power in 
children and adolescents have been linked to processing speed [ 76 ], full-scale and 
fl uid intelligence [ 73 ,  77 ], and overnight enhancement of motor task accuracy [ 74 ]. 

 Studies demonstrating sleep-related memory consolidation in infants and tod-
dlers are few but the results interesting [ 78 ,  79 ]. Fifteen-month-olds were better at 
recognizing previously presented auditory strings of an artifi cial language if they 
napped after these were fi rst presented [ 80 ]. Infants who napped after learning rec-
ognized the artifi cial language 25 h later, whereas the infants who did not nap did 
not [ 81 ]. Another study confi rmed 9- to 16-months old infants were able to better 
learn word pairs if they napped after training [ 82 ]. Three- to 5-year-olds who habit-
ually nap (≥5 days per week) were compared with those who usually napped less 
[ 79 ]. Nonhabitual nappers remembered less accurately in more challenging encod-
ing conditions suggesting they may still need naps to consolidate more fragile forms 
of learning. 

 Studies of memory consolidation in older children and adolescents have shown 
the benefi cial effects of sleep on consolidating declarative memories including 
vocabulary [ 83 – 86 ]. However, experimental studies evaluating where procedural 
memory is enhanced by sleep (as has been demonstrated in adults) have shown 
negative results in children. Learning of a visual-motor sequence in children 

M.M. Grigg-Damberger



7

improved less after post-training sleep than in wakefulness [ 87 ], or worse yet dete-
riorated with sleep in another study [ 88 ]. More studies may unravel these discrepan-
cies and inconsistencies between sleep and learning, particularly the impact of age 
upon them [ 89 ]. 

 Sleep deprivation preferentially affects creative, divergent, and innovative think-
ing and cognitive systems that rely upon emotional data learning [ 90 ]. Neuroimaging 
studies have shown the prefrontal cortex is particularly susceptible to the effects of 
sleep loss. Shortened sleep duration in children and adolescents predisposes them to 
inattention, hyperactivity, easy irritability, risk-taking, reward-seeking, distracted 
driving, accidental injuries, negative attitudes, poor appetite control, and frontal 
lobe executive dysfunction. Insuffi cient sleep particularly impairs alertness and 
attention, thereby impeding learning [ 90 ]. 

 Experimental studies in other mammalian species have confi rmed post-learning 
reactivation of learning-elicited neuronal network activity occurs during subsequent 
sleep. Processing of memories during sleep has also been demonstrated in nonmam-
malian species (e.g., fi lial imprinting in chicks and song learning in birds) suggest-
ing memory consolidation during sleep may be an evolutionary conserved function 
of sleep [ 91 ].  

    Sleep Enhances Synaptic Strength, Effi ciency, and Plasticity 

 Enhancing synaptic strength, effi ciency and plasticity is another increasingly recog-
nized function of sleep. As we learn new things awake, we add synaptic connec-
tions. If all synapses acquired awake were saved, over time synaptic effi ciency 
would be reduced. Sleep is the optimal time to maintain synaptic effi ciency by inte-
grating new neuronal fi ring patterns while pruning unneeded synapses [ 14 – 17 ]. 
Neuronal activity during learning triggers cortical plasticity that allows for reorga-
nization of the neuronal network and integration of new information [ 92 ]. 

 Sleep appears to play an important role in synaptic plasticity particularly in chil-
dren and adolescents [ 50 ,  89 ,  93 – 97 ]. At birth, an infant’s brain contains 100 billion 
neurons and the number of synapses per neuron is 2,500. As the infant learns, new 
synapses are added so by age 2 or 3 years, the number of synapses to neurons has 
grown to 15,000 per neuron. Such synaptic density places the brain at risk for syn-
aptic overload and reduced synaptic effi ciency. During adolescence, a massive 
pruning of synapses occurs, and again preferentially during sleep. Insuffi cient sleep 
during adolescence may lead to improper refi nement of neural circuits. If chronic, it 
may result in aberrant wiring (e.g., schizophrenia, autistic spectrum disorders) or 
inadequate consolidation of memory and learning [ 98 – 101 ]. Chronic sleep disrup-
tion in rats during critical periods of development impair synaptic pruning prevent-
ing proper refi nement of mature neural circuits [ 14 ,  15 ]. 

 The quantity and amplitude of SWA (0.5–4 Hz) of NREM 3 sleep across a night 
of sleep decreases throughout adolescence and has been thought to refl ect synaptic 
pruning which occurs then [ 50 ]. Synaptic pruning fi rst begins at 8 months in the 

1 Ontogeny of Sleep and Its Functions in Infancy, Childhood, and Adolescence
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visual cortex and 24 months in the frontal cerebral cortex during which unnecessary 
excitatory and inhibitory synaptic connections are removed to enhance synaptic 
effi ciency. Pruning is usually complete by age 11 with 40 % of synapses in the brain 
eliminated. NREM SWA is believed to refl ect the number of cortical neurons that 
participate, as well as the number and strength of the synaptic connections between 
them [ 102 – 105 ]. 

 Absolute values of SWA (EEG power between 0.5 and 4 Hz during NREM sleep) 
follow an inverted U curve in human development with a progressive increase 
between ages 6 and 8 years, a peak around 8 years of age, and a decline by more 
than 60 % with the highest decline between ages 12 and 16.5 years [ 106 – 108 ]. The 
massive decline in SWA refl ects extensive elimination of unnecessary cortical syn-
apses which occurs during adolescence, the fi nal step in brain neurodevelopment. 
Parallel declines in synaptic density, delta wave amplitude, and cortical metabolic 
rate during adolescence would suggest this. More evidence is needed to confi rm 
this.  

    Sleep and Emotional Brain Regulation 

 Another more recently recognized function of sleep is regulation of emotion. The 
amygdala and prefrontal cortex regulate and process emotional feelings, behaviors, 
reactions, and memories, and this appears to occur preferentially in sleep, especially 
REM sleep [ 6 ,  18 – 22 ]. REM sleep appears to play an important role in strengthen-
ing emotional memories but weakens their emotional overtones and recalibrates 
perceptions of complex social signals such as social threat [ 6 ,  20 ,  109 – 111 ]. 

 One study found young adults kept awake for approximately 35 h showed height-
ened responses when shown pictures of threatening faces which correlated with a 
60 % increase in amygdala responses in functional magnetic resonance imaging 
(fMRI) [ 111 ]. Sleep deprivation particularly affects frontal lobe executive func-
tions, impairing inhibition (ability to act on choice rather than impulse, resisting 
inappropriate behaviors and responding appropriately) and cognitive fl exibility 
(adapting behavior to changing conditions) [ 19 ]. Insuffi cient sleep, especially of 
REM sleep, weakens these processes. 

 Self-control is an important developmental skill acquired in early childhood. A 
recent study explored the effect of afternoon nap restriction on ability of 12 healthy 
toddlers to control their attention, behavior, and emotions when challenged by an 
unsolvable puzzle [ 112 ]. Depriving the children of an approximately 90 min nap 
resulted in moderate to large effects with the children resorting to less mature self- 
regulation strategies. Analysis of data from a large longitudinal multi-city cohort 
study of adolescents who were followed from birth through age 15 recently found 
sleep deprivation was positively related to low self-control; low self-control is posi-
tively related to delinquency even when accounting for common confounders [ 113 ]. 

 Another recent longitudinal study found bidirectional associations between bet-
ter sleep quality and more effective emotion regulation in college students [ 18 ]. 
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Poor sleep affects emotional well-being and certain emotions or negative moods 
may compromise sleep [ 19 ]. Better sleep quality led to more positive social rela-
tionships and more positive relationships to more effective emotion regulation and 
less sleep problems. It seems we sleep not only to remember but also to forget.  

    Sleep Regulates Appetite, Feeding, Body Weight, Risk-Taking, 
and Pleasure-Seeking Behaviors 

 Sleep regulates appetite and feeding. Animals faced with starvation or need to store 
food sleep less. Animals who suffer prolonged sleep deprivation markedly increase 
their food intake. Humans when sleep deprived or sleep restricted have: (1) impair-
ment in decision-making centers of brain, (2) increased stimulation of pleasure- 
seeking regions of brain, (3) glucose dysregulation, and (4) increased cravings and 
consumption of high-caloric foods, simple sugars, starch, and salty snacks [ 114 –
 116 ]. Insuffi cient or poor sleep in adolescents appears to exaggerate the normal 
balance between affective and cognitive control systems, leading to greater risk 
taking, diminished attentional and behavioral control, and poor emotion regulation 
[ 23 – 25 ]. Using functional MRI imaging, Telzer et al. demonstrated that adolescents 
who reported poorer sleep exhibited greater risk taking [ 26 ]. Moreover, this was 
associated with diminished recruitment of the dorsolateral prefrontal cortex during 
cognitive control, greater insular activation during reward processing, and reduced 
functional coupling between prefrontal cortex and affective regions in the insula and 
ventral striatum during reward processing.  

    Sleep Can Strengthen Immune Function 

 Less known even among sleep specialists is the close bidirectional reciprocal rela-
tionships between sleep and immune function [ 27 – 30 ]. Sleep (especially NREM 3) 
has an important role in the formation of immunologic memory. NREM 3 sleep 
and SWA are enhanced during infection, and REM sleep inhibited. Insuffi cient 
sleep can weaken immunity and increase susceptibility to bacterial, viral, and para-
sitic infections [ 29 ]. Cytokines (particularly interleukin-1 (IL-1) appear to regulate 
this. 

 Different immune cell types (macrophages, natural killer cells, and lymphocytes) 
exhibit circadian rhythms [ 30 ]. Insuffi cient and disrupted sleep in children second-
ary to obstructive sleep apnea, eczema, and asthma create pro-infl ammatory states 
[ 117 – 119 ]. Problematic internet use suffi cient to be called an addiction is an increas-
ingly common problem among adolescents and is associated with sleep problems 
and reduced self-reported immune function [ 120 ,  121 ]. Chronic misalignment with 
one’s internal circadian clock predisposes to a higher incidence of cancer and exac-
erbation of autoimmune illnesses [ 122 ].  
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    Preferential Cleaning of Brain Toxins During Sleep 

 The most recent proposed (and least confi rmed) sleep function is cleaning of neuro-
toxins and cellular debris by convective fl ow from the brain to the circulation occurs 
preferentially during sleep [ 33 ,  123 ]. This attribute resides in the newly discovered 
glymphatic system which clears endogenous neurotoxic waste products from the 
brain [ 32 ]. Regulated by astroglia, the glymphatic system appears to operate prefer-
entially during sleep [ 31 – 33 ]. This may be of more importance to middle-aged and 
older adults [ 33 ,  124 – 129 ]. For example, chronic complaints of inadequate and/or 
insuffi cient sleep increase the risk and severity of Alzheimer’s disease, limiting the 
time the brain has to clear amyloid-beta and tau from the brain [ 33 ,  130 ,  131 ].  

    Parasomnias and Local Sleep: Humans Sleep with Only Parts 
of Their Brain 

 Ontogeny may contribute to the appearance and/or disappearance of both normal 
and abnormal parasomnias in humans. Parasomnias are unusual or undesirable 
motor, behavioral, and/or experiential events which occur during (or in the transi-
tions from and to) sleep. Parasomnias are more common in young children and 
decrease with increasing age. 

 Parasomnias in humans may refl ect the protective role of sleeping with only parts 
of our brains at one time. So-called unihemispheric sleep in NREM is a phyloge-
netic adaptation observed in some marine mammals and birds. Sleeping with only 
one half of their brain at a time permits bottle-nosed dolphins, seals, beluga whales, 
and killer whales to surface to breathe. Moreover, their eye contralateral to the 
awake hemisphere is kept open and out of the water monitoring the environment 
while they continue to swim; the eye contralateral to the sleeping hemisphere 
remaining closed. Mallard ducks will sleep standing in a line with a duck on each 
end sleeping with the eye to outside open to guard the fl ock from invaders. The 
sentinel ducks have more unihemispheric sleep than those who sleep in the middle 
of the fl ock, and they can react to threatening stimuli seen by the one open eye. 

 Many parasomnias in humans may represent release or expression of neocortical 
inhibition of brain stem and spinal cord central pattern generators (CPGs) during 
sleep [ 132 ]. After infancy, CPGs are usually suppressed by the cerebral neocortex 
awake. Release or lack of inhibition of CPGs during sleep (combined with youth, a 
familial/genetic predisposition, made worse by sleep restriction, noise or light) per-
mit sleepwalking and sleep terrors. CPGs may underlie other sleep-related phenom-
ena such as periodic limb movements during sleep, sleep bruxism, sleep-related 
expiratory groaning, sleep-related eating, nocturnal tongue biting, faciomandibular 
myoclonus, and nocturnal hypermotor seizures [ 133 ,  134 ]. 

 Recent studies confi rm only parts of our brain sleep at a time (this termed local 
sleep) [ 135 – 138 ]. Which part sleeps depends upon which area got the most work or 
which cognitive tasks were performed in prior wakefulness [ 135 ,  139 ]. Which part 
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of the brain is activated during sleep in the process of memory consolidation has 
been shown to correlate with which cognitive tasks were performed in the period 
before sleep [ 139 ]. Using magnetoencephalography (MEG), the intensity of parietal- 
occipital SWA during NREM 3 sleep was recently shown in adult subjects to cor-
relate with their post-sleep performance of learning a novel visual-motor task [ 92 ]. 

 Functional MRI studies in human subjects showed particular and similar local-
ized patterns of brain activity when they learned a motor task and later during subse-
quent periods of REM sleep [ 140 ]. Moreover, the intensity of reactivation correlated 
with how well they performed the newly learned task following sleep [ 141 ]. Using 
high-density EEG recording techniques, another study showed a marked increase in 
SWA during NREM 3 sleep localized to the left frontoparietal region in 14 healthy 
10- to 16-year-olds’ sleep following 3 weeks of intensive working memory training 
[ 135 ]. The percentage increase in SWA correlated positively with increased working 
memory performance assessed immediately and 2–5 months after the training. The 
investigators suggested mapping of sleep SWA using high- density EEG recordings 
could be used to longitudinally monitor the effects of working memory training in 
children and adolescents with working memory defi ciencies [ 135 ].   

    Ontogeny of Polysomnographic Measures of Sleep/Wake States 

 Developmental sleep researchers continue to argue whether sleep at fi rst is an undif-
ferentiated behavioral state (pre-sleep). Leaving this unresolved debate aside, suf-
fi cient evidence has demonstrated that active sleep in human infants at 32 weeks GA 
is an immature form of REM sleep seen in older children and adults [ 142 – 144 ]. 
Elegant experimental studies have demonstrated that all the REM sleep generator 
mechanisms and connections are present in neonatal rats equivalent in developmen-
tal age to human infants 32 weeks CA and are similar to those seen in adult cats 
[ 145 ]. Whether quiet sleep is an immature form of NREM sleep remains undeter-
mined [ 146 ,  147 ]. For the sake of simplicity, I will usually use the term REM sleep 
for active sleep and NREM for quiet sleep. This section summarizes the develop-
ment of the biomarkers of sleep/wake states which are used to score sleep/wake 
states in polysomnography. The fi rst biomarkers to develop in utero are body, then 
limb, and fi nally eye movements; EEG correlates of sleep and wake appear last. 

    Ontogeny of Body and Limb Movements and Rest-Activity 
Cycles In Utero 

 The earliest signs of life in utero besides the beating heart are body and limb move-
ments. Fetal ultrasound studies show a human embryo by 6 weeks gestational age 
(GA) can arch its back and neck after striated muscle fi bers have developed. Refl ex- 
driven limb movements are fi rst seen by 7 weeks CA, independent limb movements 
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by 9 weeks after the spinal cord motor neurons controlling them have developed. 
Stretches and yawning are fi rst observed at 10 weeks, mouth opening and fi nger 
sucking by 11 weeks, and swallowing of amniotic fl uid by 12 weeks. The fi rst pur-
poseful fetal movements are observed by 18–20 weeks GA after the thalamus has 
completely formed. 

 Cycles of “rest-activity” are present as early as 20–21 weeks GA. These typically 
last 40–60 min at 24 weeks CA. Of note, the majority of kicking or jabbing move-
ments after 32–34 weeks CA occur when the fetus is sleeping. Premature infants 
spend more time moving than when nearer to term; median percent time spent in 
fetal body movements at 24 weeks was 17 %, decreasing to 7 % near term. Somewhat 
surprising is that the rest/activity periods of the fetus in utero do  not  correspond with 
those of the mother; fetuses in utero tend to be most active from 9 a.m. to 2 p.m. and 
again from 7 p.m. to 4 a.m. 

 As mentioned earlier, premature infants move much more than when they are 
nearer to term, still move a lot when sleeping as infants, and far more than adults do 
when sleeping [ 148 ,  149 ]. A longitudinal study examining the ontogeny of gross, 
localized, and phasic (twitches lasting <0.5 s) movements in healthy normal sub-
jects between age 30 weeks CA and 18 months term found: (1) all types of body 
movements decrease with increasing age; (2) phasic muscle activity was the fi rst to 
decrease, localized body movements next, but the frequency of gross body motor 
movements during sleep remained unchanged until a basal level of 9–13 months 
term; and (3) the number of epochs without body movements increased steadily 
until about 8 months term [ 150 ].  

    Ontogeny of Sleep-Related Eye Movements 

 Studies using fetal ultrasound have demonstrated that eye repositioning is observed 
as early as 16 weeks GA, rapid eye movements (REMs) as early as 18–20 weeks 
[ 151 ]. Eye movements occur almost continuously but at slow frequencies (1–4 per 
minute) between 28 and 30 weeks CA and unrelated to body movements, breathing, 
or heart rate patterns [ 152 ,  153 ]. By 32 weeks CA, REMs are much more frequent 
and occur in clusters with interburst intervals <1/s. These have been called REM 
storms or the burst pattern of REMs. They are fi rst seen after 28 weeks, maximal 
33–36 weeks, and decrease across the fi rst year of life [ 152 – 155 ].  

    Ontogeny of Chin Axial Muscle Tone Present During NREM 
Sleep 

 Loss of chin EMG activity is one of the most important PSG measures which 
identifi es REM sleep in a PSG (so-called REM sleep without atonia). Increased 
or preserved chin EMG tone during quiet/NREM sleep is fi rst seen in PSG of 
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infants at 34 weeks CA, but then becomes less reliably present between 37 and 
40 weeks, and then usually present after 40 weeks CA [ 152 ,  156 ]. Other studies 
have shown that 15–20 % of 30-s epochs of PSG in infants at age 6 months of age 
have inappropriate absence of chin EMG during NREM sleep (when by scoring 
criteria it should be present) [ 152 ,  156 – 159 ] and comparable to values of 20 % of 
NREM sleep in adults [ 160 ]. These studies suggest chin EMG will be absent 
when it should be present during 15–20 % of NREM sleep time from term to 
adulthood.  

    Ontogeny of Sleep/Wake EEG in Infants from 25 to 48 Weeks 
Conceptional Age 

 EEG background activity between 24 and 25 weeks GA are very discontinuous with 
bursts of higher amplitude (>50 μV) EEG activity lasting <60 s alternating with 
periods of relatively lower amplitude (15–50 μV) lasting 20–25 s. This EEG pattern 
is called trace discontinue. Cycles of rest and activity are seen, last 40–60 min, and 
are unrelated to those of the mother. EEG background does not change (unreactive) 
in relation to rest/activity cycles, tactile, or painful stimuli. 

 The EEG between 26 and 27 weeks CA cannot be used to distinguish active/
REM from quiet/NREM sleep [ 161 ]. Behavioral correlates better identify these: 
frequent eye movements and muscle twitches are present during active periods, no 
eye movements or muscle twitches during rest periods. The bursts of trace discon-
tinue at this CA last longer than earlier (80 s) as do the periods of inactivity (up to 
29–46 s). 

 By 28–29 weeks CA, three behavioral states are identifi able (wakefulness, REM 
and NREM sleep) but not by EEG criteria [ 161 ,  162 ]. The EEG is more continuous 
with runs of EEG activity lasting up 160 s alternating with periods of inactivity 
(interburst intervals [IBIs] which now only last ≤30 s). Most time is spent in active/
REM sleep, very little awake. Finally, by 30–31 weeks CA, the EEG can help dis-
tinguish wakefulness from active/REM and quiet/NREM sleep. The EEG during 
active/REM sleep is continuous, while in NREM sleep it remains discontinuous 
with bursts of activity lasting ≥3 s alternating with IBIs lasting ≤20 s. EEG now 
correlates with behavioral correlates of wakefulness, active/REM and quiet NREM 
sleep. Wakefulness is best recognized by muscle artifacts. Reactivity of EEG noted 
to stimuli. 

 By 32 and 35 weeks CA, the EEG is continuous both during wakefulness and 
REM sleep so these two states can only be distinguished by behavioral correlates. 
The EEG in NREM sleep remains discontinuous with lower values of normal for 
interburst intervals during NREM sleep at 32 weeks are ≤15 s and ≤10 s at 34 weeks 
GA. By 36 weeks CA, two different EEG patterns of REM sleep are seen; both are 
continuous but the EEG before a period of NREM sleep contains generous amounts 
of intermixed delta activity, REM sleep after a period of NREM sleep characterized 
by a predominance of theta activity. 
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 By 37 and 38 weeks GA (beginning maturational age for term infants), the EEG 
in wake and REM sleep is characterized by a continuous mixture of different 
frequencies ( activité moyene ). Because the EEG activity in wakefulness and REM 
sleep are so similar in appearance, behavioral correlates are needed to differentiate 
them. Two EEG patterns of NREM sleep are seen by 38 weeks CA:  trace alternant  
characterized by synchronous symmetrical bursts of 1–3 Hz delta on a continuous 
background of lower amplitude activity and high-voltage slow characterized by 
50–150 μV 1–3 Hz activity often with an occipital predominance. At this matura-
tional age, trace alternant is the dominant pattern of NREM sleep. 

 By 42–44 weeks CA, the bursts of trace alternant shorten to 1–2 s and the ampli-
tude difference between bursts and interburst intervals shortens. Trace alternant usu-
ally disappears by 44 to as late as 46 weeks CA, replaced by high-voltage slow 
activity. By 46 weeks CA, high-voltage slow in NREM sleep is characterized by 
continuous synchronous 100–150 μV 1–2 Hz delta activity, no (or rare vertical) eye 
movements, regular respiration and heart rates, and periodic chin EMG activation 
related to sucking. REM sleep is best identifi ed by reduced chin EMG, rapid eye 
movements, irregular respiration and heart rate, and continuous mixed frequencies 
especially near 3 Hz. 

 Many epochs of sleep in premature and term infants until 3 months post-term are 
best scored as indeterminate or transitional sleep. Transitional sleep represents “dis-
cordant” sleep where mixtures of two or more sleep/wake states are seen within a 
given PSG epoch. The percentage of transitional sleep rapidly falls beginning after 
36 weeks CA. Regular heart rate and respiration, no eye movements and elevated 
chin EMG tone are observed in epochs of well-differentiated NREM sleep in infants 
at 40 weeks CA [ 152 ,  156 ,  163 ]. Parmalee et al. (1967) reported that 67 % of total 
sleep time was best scored as indeterminate in an infant 30 weeks CA, 38 % at 
40 weeks CA, and falls to 29 % 3 months term [ 164 ]. 

 In 2010, Andre et al. published their defi nitive current review of developmental 
features of EEG in premature and full-term infants [ 165 ]. It provides the most cur-
rent comprehensive descriptions of the EEG features and neonatal behavioral states 
at different gestational ages for both normal and pathological EEGs based upon 
evidence and consensus. I recommend using this as a reference when reading and 
interpreting neonatal EEG and PSG.   

    Ontogeny of the Sleep/Wake EEG from Infancy to Young 
Adulthood 

 The fi rst major EEG feature of mature sleep to appear after birth are sleep spindles 
[ 166 ]. Sleep spindles are an EEG signature of NREM 2 sleep. They are sometimes 
seen as early as 43–44 weeks CA, often present by 46–48 weeks, and should be 
present by 3 months term [ 147 ,  167 – 170 ]. Spindles fi rst appear at a frequency of 
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12–14 Hz over the midline central derivations. Infants born premature show earlier 
development of spindles relative to their CA. Delayed appearance or abnormal 
appearing sleep spindles are an early biomarker of metabolic and/or brain 
abnormalities. 

 Fifty percent of sleep spindles are synchronous at 6 and 9 months, 70 % at 
12 months. Sleep spindles are usually symmetric by 2 years. Sleep spindles have 
a sharp surface negativity in central regions between ages 6 and 24 months. Sleep 
spindles in children can occur independently at two different EEG frequencies 
and maximal over two different scalp locations: 11–12.75 Hz maximal over the 
frontal and 12–14.75 Hz over the centroparietal regions. Frontal spindles 
decreased dramatically in power around age 13; they can be seen on occasion in 
young adults. 

    Development of the Dominant Posterior Rhythm 

 The next EEG marker to develop is a dominant posterior rhythm (DPR) of relaxed 
wakefulness. The frequency of the DPR increases from birth until young adulthood. 
The amplitude of the DPR increases after birth, reaches a maximum during adoles-
cence, and decreases thereafter [ 171 ]. The DPR is fi rst seen in 75 % of normally 
developing infants by 3–4 months term and then characterized by an irregular 
greater than 50–100 μv 3.5–4.5 Hz activity over occipital areas which is reactive 
(i.e., blocks with eye opening, appears with passive eye closure) [ 167 ]. Most infants 
by age 5–6 months have a DPR of 5–6 Hz. Seventy percent of typically developing 
children have 6 Hz by 12 months of age. By age 3 years, 82 % of normal term 
infants show a mean occipital frequency of 8 Hz (range 7.5–9.5 Hz). After age 3, the 
mean alpha frequency increases only 2 Hz over the next 6 years reaching 9 Hz by 
9–10 year. The mean alpha rhythm is 9 Hz in 65 % of 9-year-olds and 10 Hz in 65 % 
of normal 15-year-old controls. Reactivity of the DPR to eye opening (so-called 
reactivity of the EEG) is not observed until 2–6 months of age.  

    Age-Related Appearance of Other EEG Patterns of NREM 
and REM Sleep 

 Other EEG signatures of NREM sleep which develop with increasing age are: ver-
tex sharp waves, K-complexes, hypnagogic hypersynchrony, slow-wave activity 
(SWA), bioccipital delta slow activity, and fast activity of light sleep. The ages these 
appear (and sometimes disappear) and their EEG features are summarized in 
Table  1.1 .
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   Table 1.1    Age-related appearance of other EEG patterns of NREM and REM sleep   

 EEG feature  Developmental and EEG features 

 Vertex sharp waves  Seen in late NREM 1 and 2 sleep, maximal over the central EEG 
derivations, and predominantly surface electronegative. Infrequent broad 
immature vertex waves over the central derivations have been reported to 
be observed as early as 6 months term. However, vertex waves 
resembling those seen in older children and adults fi rst appear later at 
16 months term [ 172 ]. Beginning around 30 months of age, vertex waves 
in young children often occur in repetitive runs. Around 36 months of 
age, vertex waves are more often high amplitude (>250 μV) and sharply 
peaked, occasionally misidentifi ed as epileptiform. Vertex waves at this 
age have an initial negative phase (which only lasts 1/8th of a second 
followed by an aftercoming positive wave approximately 1/6th of a 
second, occasionally ending with slow negative afterswing. Between ages 
3–13 years, vertex waves evolve to sharply peaked primarily surface 
waveforms similar to those seen in adults [ 173 – 175 ] 

 K-complexes  K-complexes are (1) typically fi rst appear about 5 months term; (2) are 
usually present by 5–6 months and then characterized by a surface- 
negative 50–100 μV wave lasting 200 ms followed by a surface- positive 
30–50 μV 300–500 ms wave maximal over the prefrontal and frontal 
EEG derivations; (4) well-established by age 18 months; (5) the 
surface-negative component is of highest amplitude and most sharply 
contoured between ages 3–5 years; (5) occur in runs of 3–8 K-complexes 
in 1–3 s between ages 3 to years and later in the run the may consist 
primarily of an initial surface-negative component; (6) by adolescence, 
typically repeat at rates of one every 1–3 s permitting full expression of 
the biphasic or triphasic waveform [ 173 – 180 ] 

 Slow-wave activity 
of NREM 3 sleep 

 NREM 3 sleep is scored when ≥20% of a 30-s PSG epoch contains 
SWA in infants and children which is usually >150 μV [ 39 ]. SWA is 
often ≥300 μV in amplitude in young children [ 39 ,  181 ]. SWA can 
often be scored in a PSG as early as 3 months, more often 
4–4.5 months, and usually is present by 5–6 months of age [ 146 ,  147 , 
 168 ,  182 – 186 ]. NREM 1, 2, and 3 sleep can usually be distinguished 
between 3 and 6 months term [ 183 ,  187 – 190 ]. A study recording 
24-h PSG in 31 normal infants ≤6 months of age found that sleep 
spindles fi rst appeared approximately 8–12 weeks term and “true slow 
wave with delta waves” of slow-wave sleep between 3 and 6 months 
term [ 183 ] 

 Hypnagogic 
hypersynchrony 

 Paroxysmal bursts or runs of diffuse rhythmic high amplitude 75–350 μV 
3–5 Hz waves which typically begin abruptly and can occur 
intermittently or continuously for several minutes [ 174 ,  191 – 194 ]. Their 
appearance signals drowsiness and NREM 1 sleep. Widely distributed but 
often maximal over central, frontal, or frontocentral regions, HH 
typically disappears with deeper stages of NREM sleep, can be seen in 
NREM 2 sleep, but when seen in NREM 2 sleep, some call it 
hypersynchronous theta [ 195 ]. Hypnagogic hypersynchrony fi rst appears 
about age 3 months term (seen in about 30 % of infants at this age), tends 
to be most prominent between ages 3 and 11 months, present in 95 % of 
all normal infants and children between ages 6–8 months and 2–4 years, 
gradually disappearing (seen in only 10 % of 11-year-olds and rare after 
age 12 or 13 years of age) [ 174 ,  192 ,  193 ] 
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Table 1.1 (continued)

 EEG feature  Developmental and EEG features 

 Post-arousal 
hypersynchrony 

 Paroxysmal runs or bursts of diffuse bisynchronous 75–350 μV 3–5 Hz 
waves which signal arousal from sleep in young children [ 174 ,  191 ,  192 , 
 196 ,  197 ]. Often maximal over the central, frontal, or frontocentral 
derivations, it is most often seen between ages 3–4 months and 3–4 years 
with a peak incidence 1–2 years. Similar runs of hypnagogic 
hypersynchrony are seen when attempting to arouse infants and young 
children from sleep and have been called in the past hypnopompic 
hypersynchrony, more recently termed post-arousal hypersynchrony 

 Bioccipital delta 
slowing in NREM 
sleep 

 Runs of high voltage 1–2 Hz delta slowing over the occipital regions 
bilaterally. It is most often seen between ages 6 months and 4 years; 
may be seen as early as 2–3 months and uncommon after age 6 [ 198 ] 

 Fast activity of 
early NREM sleep 

 The abrupt onset of prominent 20–25 Hz beta activity typically maximal 
over the central and postcentral EEG derivations which appears with 
drowsiness and often persists into NREM 1 and 2 sleep is sometimes 
called fast activity of early sleep [ 173 ]. It fi rst appears 5–6 months term 
as 5 μV 20–25 Hz activity, reaches maximal expression between ages 12 
and 18 months when it averages 30–50 μV, declines after 30–60 months, 
and is rarely seen after age 7 years [ 174 ,  175 ] 

 Rhythmic anterior 
theta activity 

 Rhythmic runs of sinusoidal 6–7 Hz theta activity maximal over the 
frontal or frontocentral regions and fi rst seen around 5 years. It is 
common across the fi rst decade of life, maximal between 9 and 12 years 
of age, and still seen in 15 % of 16-year-olds 

 EEG of REM sleep  EEG in REM sleep in infants resembles that of adults but the dominant 
EEG frequency is slower and higher voltage than that seen in adults. The 
dominant frequency of REM sleep increases with age: 3 Hz at 7–8 weeks 
post-term, 4–5 Hz with bursts of saw tooth waves by about by 5 months 
of age, 4–6 Hz by 9 months, and prolonged runs of notched 5–7 Hz 
activity at 1–5 years of age [ 199 ]. After age 5–10 years, the EEG 
background of REM sleep resembles that seen in adults (although often 
of higher amplitude) and is characterized by mixed frequency activity 
with bursts of often notched 4–6 per second saw tooth waves usually 
maximal over the midline central region (Cz) 

        Developmental Changes in Sleep Architecture 

 In normal healthy infants, sleep cycles typically last a mean of 50–60 min (range 
30–70 min). Wakefulness represents only 8–10 % of a 24-h day in infants up to 
8 weeks post-term [ 200 ]. Until approximately 44 weeks CA, sleep cycles repeat in 
a polyphasic pattern across the 24-h day interrupted approximately every 3–4 h by 
an awakening for care and feeding [ 200 ]. Within a given sleep cycle, REM sleep 
lasts 10–45 (mean 25) minutes, NREM near to 20 min, and transitional about 10 min 
[ 200 ,  201 ]. The distribution of NREM and REM sleep are typically evenly distrib-
uted during the night [ 187 ]. 

 The most conspicuous changes in sleep architecture during infancy and early 
childhood are: (1) decrease in total sleep time; (2) gradual consolidation of periods 
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of sleep at night, wakefulness in the day; (3) decrease in the intensity of (EEG 
power) of NREM 3 slow-wave activity (SWA); and (4) a steady decline in the per-
centage of sleep time spent in REM sleep [ 202 ]. 

    Changes in Total Sleep Time, Sleep Cycle Length, Sleep 
Effi ciency, and Sleep Stage Distribution 

 The distribution of NREM and REM sleep are typically evenly distributed during 
the night in infants younger than 3 months of age [ 187 ] and sleep polyphasic. Until 
approximately 44 weeks CA, sleep cycles repeat in a polyphasic pattern across the 
24-h day interrupted approximately every 3–4 h by an awakening for care and feed-
ing [ 200 ]. Sleep cycles typically last a mean of 50–60 min (range 30–70 min). 
Wakefulness represents only 8–10 % of a 24-h day in infants up to 8 weeks post- 
term [ 200 ]. Within a given sleep cycle, REM sleep lasts 10–45 (mean 25) minutes, 
NREM near to 20 min, and transitional about 10 min [ 200 ,  201 ]. The distribution of 
NREM and REM sleep are typically evenly distributed during the night [ 187 ]. By 
age 6 months, NREM 3 sleep is preferentially present toward the beginning of the 
night and REM sleep in the latter. 

 The timing of different sleep stages changes from infancy to adolescence. 
Between 4 and 12 weeks term, most sleep onsets are REM sleep. However, NREM 
sleep onsets begin to occur more often beginning 10–12 weeks post-term [ 203 ]. 
After 3 months post-term, NREM sleep onsets are more frequent, and infrequent 
after age 6 months. Two-thirds of sleep onsets were REM sleep in infants 3 weeks 
term but only 18 % at age 6 months [ 204 ,  205 ]. REM latencies of 20–40 min are 
typical in infants 3–12 months and sleep cycles average 50 min (compared to 
100 min in adults) [ 203 ]. REM latencies increased from 15 ± 20 min at 3 months to 
70 ± 29 min at 24 months although sleep latencies did not change. REM latencies 
averaged 116 min in children ages 1–10 and 136 min ages 11–18 years. 

 Total sleep time also decreases across infancy, early childhood, and adolescence. 
The number and duration of naps decrease such that 82 % of children 18 months or 
older do not take naps on some or all days. Sleep cycle length increases from an 
average of 69 min in infants at term, 85–115 min between ages 8–12, and 90 min in 
adults. This results in fewer sleep cycles across a sleep period. Sleep effi ciency 
(percentage of time in bed spent sleeping) remains constant across infancy to 
adolescence. 

 Sleep stage distribution changes with age across the pediatric years. Premature 
infants spend 80 % of their sleep time in REM sleep, 50 % at term. The percentage 
of sleep time spent in REM sleep falls to 30 % at 1 year and reaches adult percent-
ages of 20–25 % by age 5. The proportion of sleep spent in NREM sleep increases 
while REM sleep decreases such that NREM 3 sleep occupies a greater proportion 
of sleep time than REM sleep at age 12 months. From ages 5 to 19 years, the per-
centage of REM sleep remains relatively stable while the percentage of NREM 2 
sleep increases with a concomitant decrease in NREM 3 sleep. 
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 Scholle et al. [ 206 ] published normative values for one-night PSG in children 
ages 1–18 years using AASM sleep scoring criteria [ 206 ]. They found sleep macro-
architecture showed signifi cant changes with increasing age. REM latency, awaken-
ing index, sleep effi ciency, mean sleep cycle duration, and number of sleep stage 
shifts increased with age. Total sleep time, wake after sleep onset, movement time, 
number of sleep cycles, NREM 3, and REM sleep decreased. Sleep parameters 
which showed a dependency on Tanner staging as well as corresponding age were: 
total sleep time, awakening index, REM latency, NREM 2, NREM 3, number of 
sleep cycles, and mean sleep cycle duration. No gender dependencies were found. 
The delta power of NREM 3 sleep activity decreases by more than 60 % between 
ages 10 and 20 years [ 207 ]. SWA also declines across recurring periods of NREM 
sleep within a night. Longitudinal studies have shown delta power of the sleep EEG 
begins to decrease around age 11.5, reduced by 60 % by age 16 years. The fall in 
delta power begins earlier in girls than boys (consistent with observed age-related 
changes in gray matter volume) but then slows so that the overall rate decline is 
similar between girls and boys at age 16.   

    Ontogeny of Circadian Rhythm 

 In the last 10 weeks of gestation, the circadian rhythm of the fetus is synchronized 
with the mother’s maternal rest-activity cycle, heart rate, cortisol, melatonin, and 
body temperature rhythms [ 39 ]. Newborn infants exhibit no rest-activity circadian 
rhythm independent of their mother before 1 month of age. By 5–6 weeks following 
birth, sleep is more concentrated during the night and wakefulness more prevalent 
during the day [ 208 ]. By 12–14 weeks, a diurnal pattern is established with a long 
nocturnal sleep period, shorter daytime naps and 1–3 h of wakefulness preceding 
the nocturnal sleep period . By 6 months of age, infants display a circadian pattern 
with period, amplitude, and phase activity similar to an adult. Providing cycles of 
dark and light in neonatal intensive care units may foster development of the rest- 
activity circadian rhythm [ 209 ,  210 ].  

    Ontogeny of Dreaming 

 Despite evidence that REM sleep appears early in utero and infancy we have no 
evidence or knowledge about whether infants dream. A recent review analyzing 
fi ndings of different studies of the ontogeny of dreaming found different methods 
for collecting dreams in children often result in highly variable and sometimes con-
tradictory assessments and outcomes [ 211 ]. Fairly consistent observations are that: 
(1) dream narratives in younger children are often shorter and simpler than those 
reported by older children and adults; (2) preschoolers when reporting their dreams 
often verbalize only one relevant aspect of the dream and may have diffi culty 
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distinguishing between internal and external events; (3) the highest prevalence of 
nightmares is between ages 6 and 10 years [ 212 ]. Schoolchildren in whom night-
mares are reported to occur often are more likely to have emotional problems or 
anxiety.  

    In Closing 

 We have long understood sleep as an active, not passive, process that serves many 
functions, some of which vary in relative importance at different ages across the 
human lifespan. Sleep in humans serves many functions including: (1) fostering 
optimal brain growth and development; (2) enhancing learning, attention, memory, 
synaptic effi ciency and plasticity; (3) regulating of emotion, appetite, feeding, body 
weight, risk-taking, and pleasure-seeking behaviors; (5) strengthening immune 
function; and (4) providing optimal time for clearing the brain of cellular debris and 
neurotoxins. Myoclonic twitches of skeletal muscles and delta brushes in premature 
infants appear to: (1) construct sensory and motor maps for auditory, motor, touch, 
and noxious topographic regions of brain; (2) sculpt nascent neuronal circuits in 
cerebral cortex and connecting neural circuits linking muscle, spinal cord, and 
brain; and (3) guide the formation, rearrangement, and elimination of synapses. 
Ontogeny often underlies the relative importance of a sleep function at particular 
age. Changes in sleep across infancy, childhood, and adolescence refl ect ongoing 
development of brain networks. The time course of REM sleep development (and 
decline) in humans corresponds well with critical periods of brain maturation [ 39 ].     
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    Chapter 2   
 The Discovery of Pediatric Sleep Medicine                     

     Oliviero     Bruni       and     Raffaele     Ferri   

    Abstract     The aim of this chapter is to depict the discovery of sleep physiology in 
infants and the emergence of the discipline of pediatric sleep as relatively autono-
mous entity. 

 The gradual awareness regarding sleep disorders in infants and children begins 
in the nineteenth century when the fi rst doctors and pediatricians begin to classify 
infants and children sleep disorders. The process that leads to the increasing under-
standing and knowledge of pediatric sleep disorders was not easy. Children’s sleep 
has been neglected until the end of the last century with the main textbook of pedi-
atrics reporting no chapters or only few paragraphs devoted to pediatric sleep. 

 It is interesting to note that the fi rst observation that leads to the discovery of 
rapid eye movement (REM) sleep was made on neonates and infants, and the fi rst 
study on the negative behavioral consequences of sleep apnea has been reported in 
children. 

 The story of the infants’ and children’s sleep behavior during the antiquity is 
briefl y delineated, and subsequently the fi rst recommendations on the sleep time 
duration are reported with surprisingly data. 

 This chapter also briefl y lists the fundamental contribution of researchers from 
different countries and their role in the development of pediatric sleep medicine. 

 Finally, the history and the establishment of the scientifi c associations related to 
the pediatric sleep medicine are delineated. 
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 This historical overview has limitations, and some fundamental researchers that 
greatly contributed to the birth of pediatric sleep medicine as an independent fi eld 
probably have been forgotten. However the last few years have acknowledged the 
growing interest on pediatric sleep, and different health providers (pediatric pulmo-
nologists, otolaryngologists, neurologists, orthodontists, and psychologists) become 
interested in recognizing the negative consequence of sleep disorders for child 
health and development.  

  Keywords     Sleep   •   Infant   •   Child   •   Adolescent   •   Development   •   Pediatric sleep 
associations  

      General Overview 

 Sleep medicine in adult as a scientifi c fi eld begins in the 1950s and has greatly and 
speedily evolved over the past 60 years. 

 The appearance of pediatric and adolescent sleep medicine as an autonomous 
entity begins about 30 years ago related to several important researches in different 
clinical fi elds: obstructive sleep apnea and other sleep-related breathing disorders, 
sudden infant death syndrome (SIDS), insomnia, and narcolepsy. However, it was 
the gradual identifi cation of the importance of sleep for several daytime dysfunc-
tions like neurobehavioral problems, learning diffi culties, growth failure, etc., which 
began to raise awareness on the importance of sleep in infancy and childhood devel-
opment [ 1 ]. 

 Beginning from the 1980s, there was a huge growth of pediatric and adolescent 
sleep medicine starting with two important publications. The fi rst book for parents 
entitled  Solve Your Child ’ s Sleep Problems  was written in 1985 by Richard Ferber 
[ 2 ] of the Boston Children’s Hospital that for the fi rst time described the behavioral 
treatment for pediatric insomnia and highlighted the developmental and behavioral 
aspects of pediatric sleep. Just 2 years later, Christian Guilleminault edited the book 
 Sleep and Its Disorders in Children  [ 3 ] that represented the reference for the pedi-
atric sleep for clinicians and healthcare providers involved with infants and chil-
dren. The contributions presented in that book provided the basis for the future 
development of a knowledge base for understanding normal and pathological sleep 
in infants and children. 

 The fi rst comprehensive pediatric sleep textbook  Pediatric Sleep Medicine  was 
published by Sheldon, Spire, and Levy in 1992 [ 4 ], followed in 1995 by the refer-
ence book  Principles and Practice of Sleep Medicine in the Child  by Richard Ferber 
and Meir Kryger [ 5 ]; then the revised edition  Principles and Practice of Pediatric 
Sleep Medicine  by Sheldon, Ferber, and Kryger in 2005 [ 6 ]); and fi nally the second 
edition of this book published in 2014 [ 7 ]. 
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 Notwithstanding the awareness of the importance of sleep for development, 
pediatricians slowly begin to recognize the importance of sleep physiology and 
sleep structure to human development and behavior. Gradually, over the past 
decade, pediatric pulmonologists, otolaryngologists, neurologists, orthodontists, 
and  psychologists have acknowledged the negative consequence of sleep disorders 
for child health and development and have integrated this into their clinical 
practice. 

 Although the growth of pediatric sleep medicine was tremendous, the classical 
pediatric textbooks almost ignored the topics of sleep disturbances with very few 
parts of the books dedicated to sleep disorders. 

 In 2002, the American Academy of Sleep Medicine (AASM) applied to the 
Accreditation Council on Graduate Medical Education (ACGME) for the estab-
lishment of sleep medicine training programs, and in 2003 sleep medicine was 
accepted as an independent medical specialty with a new multidisciplinary spe-
cialty examination in sleep medicine. In the first examination in 2007, consid-
erations and disorders unique to childhood comprised 2 % of the first 
examination. Several efforts have been made to increase the presence of child-
hood sleep, and actually many schools of sleep medicine, hospitals, and aca-
demic clinics set up training programs, residencies, and fellowships in pediatric 
sleep medicine and recognized the peculiarity and uniqueness of sleep during 
human development [ 1 ]. 

 This acknowledgment leads to a gradual and huge growth of scientifi c papers 
in pediatric sleep, with special emphasis on respiratory disturbances during 
sleep, as revealed by the amount of publications indexed on PubMed from the 
1980s. 

 Figure  2.1  shows the number of publications that can be found in PubMed with 
the search word “sleep” limited to humans and all children (01–18 years). There 
was a steep increase in papers, especially in the last decade.

12000

10000

8000

6000

4000

2000

0
1950 1960 1970 1980 1990 2000 2010-2015

8079

9723

5469

3572

2400

825
56

  Fig. 2.1    Number of publications for each decade in PubMed with search word “sleep” limited to 
humans and all children (0–18 years)       

 

2 The Discovery of Pediatric Sleep Medicine



34

   In Fig.  2.2  the total number of publications on the major groups of sleep distur-
bances of childhood is reported based on PubMed search with the different words 
for each disorder limited to humans and all children (01–18 years).

   As reported above, over the past 30 years, there has also been an increasing aware-
ness of pediatric pulmonologists and pediatric otolaryngologists on the role of respi-
ratory sleep disturbances in their clinical work, with an increasing understanding of 
the importance of a comprehensive knowledge of sleep medicine, since without a 
global view of the different physiological parameters during sleep it is extremely dif-
fi cult to perform a correct diagnosis and a therapeutic decision. 

 Paralleling this consciousness, there was an increase of pediatric sleep centers in 
the USA and in Europe, and more and more countries are building up their own sleep 
centers. The need for specialized sleep laboratories is mandatory for the clear differ-
ences in sleep physiology and disturbances between adults and infants or children. 

 Besides the sleep medicine fi eld, sleep research in childhood has been greatly 
developed by psychologists especially related to the neurobehavioral and psychoso-
cial consequences of sleep disorders, with population studies on the effect of dis-
turbed sleep on mental and physical health. 

 The changes in the society and especially the advent of the new technologies 
have had a great impact on sleep and could have been an addictive role in the pro-
gressive decrease of sleep duration in the modern societies. 

 In the following paragraphs, we will describe how pediatric sleep medicine 
evolved beginning from the description of the studies on infant and child sleep that 
helped the discovery of rapid eye movement (REM) sleep and of the efforts of the 
researchers for defi ning the different sleep structures in newborns, infants, and chil-
dren. In the second part, we will review the clinical picture, analyzing studies on 
insomnia, parasomnias, respiratory disturbances, narcolepsy, disorders of move-
ments during sleep, and sudden infant death syndrome (SIDS). The third part will 
illustrate the fascinating stories of sleep researchers that made this process possible 
and that built the history of pediatric sleep medicine. The fi nal section will be 
devoted to the description of the birth of different pediatric sleep associations.  
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    Infant’s Eyes and the Discovery of REM Sleep 

 In 1926, during the Russian Academy of Sciences congress, the pediatricians 
Denisova and Figurin presented the results of their fi rst formal pediatric sleep 
research showing that, several times during sleep, infants presented episodes, last-
ing for 10–15 min every half an hour, during which respiration and pulse became 
irregular and fast and small muscles presented numerous twitches. This periodic 
instability of physiological functions was present in healthy children, and the 
authors concluded that “normal sleep is not a state of rest” [ 8 ]. 

 As reported by William Dement, this research inspired Kleitman and ultimately 
led to his decision to observe eye motility during sleep [ 9 ]:

  Kleitman had become very interested in what he termed the “basic rest-activity cycle”. 
Being able to read Russian, he was aware of the report of Denisova and Figurin (1926) 
which described an impressively regular respiratory cycle in infants with a period of 
50 minutes . He hypothesized that this short term periodicity ensured that a newborn infant 
would have frequent opportunities to respond to the stimulus of hunger pangs by waking up 
and crying, and would therefore get adequate nutrition… 

 …All of this suggested to Kleitman that eye motility could be the most sensitive mea-
sure of the basic rest-activity cycle and also be more representative of changing brain activ-
ity, i.e. changing depth of sleep. He then assigned graduate student, Eugene Aserinsky, to 
observe eye and body motility in infants. 

   However, the fi rst description that eye movements occur in sleep was reported 
by de Toni (1933) describing slow rolling eye movements at the onset of sleep 
which appeared to decrease as sleep continued and presumably deepened [ 10 ]. 
This observation precedes the landmark study that suggested that rapid eye 
movements represented a “lightening” of sleep and might indicate dreaming, 
due to the close association with irregular respiration and an increase in heart 
rate [ 11 ]. 

 Before the discovery of REM sleep in 1953, between 1949 and 1952, Aserinsky 
observed that sleeping infants exhibited a recurring “motility cycle manifested by 
ocular and gross bodily activity” paralleling the observation of Denisova and Figurin 
in 1926. 

 Aserinsky described “periods of motility” (writhing or twitching of the eyelids) 
and “periods of no motility.” The average duration of the periods of quiescence was 
about 23 min and of the entire motility cycle was approximately 50–60 min. This 
observation led Aserinsky and Kleitman to look for a similar phenomenon in adults 
and they discovered REM sleep. 

 After the description of REM sleep, the French school of Dreyfus-Brisac and 
Monod [ 12 ,  13 ] begins to study neonates and infants’ sleep. Since infants can be 
easily studied during daytime, Dreyfus-Brisac and Monod attempted to defi ne the 
specifi c sleep electroencephalographic (EEG) patterns of infants. N. Monod, invited 
to the USA by Parmelee, introduced neonatal polygraphic recording to the latter’s 
laboratory and highlighted the need of a full polygraphic investigation including the 
recording of eye movements, respiration rate, and the electromyogram in addition 
to the ECG. 
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 At the same time, sleep researchers in Prague described the development of sleep 
in infancy showing that “quiet” sleep (QS) (regular breathing with frequency of 30/
min, closed eyes without movements, disappearance of body movements, spindles, 
and slow waves in EEG) alternated with “active” sleep (AS) (irregular respiration, 
eyes alternatively closed, half-open, or there were movements of bulbus oculi, 
increased frequency of body movements) in about 50–60 min intervals. These authors 
stated that the most striking changes took place in the fi rst 12 weeks of life [ 14 ]. 

 In the following years, Parmelee [ 15 ,  16 ] fi rst showed two distinctive EEG pat-
terns of sleep in infants called “active” sleep (AS) and “quiet” sleep (QS). QS is 
characterized by preserved chin EMG, few body movements, regular respiration 
and heart rate, and no eye movements; AS is characterized by rapid eye movements, 
frequent small face and limb movements, irregular respiration and heart rate, and 
the absence of or minimal chin EMG activity [ 17 ]. 

 The same authors subsequently reported the changes of EEG in infants according 
to maturation related to conceptional age [ 18 ,  19 ] showing that QS in newborns at 
term is characterized by one of two EEG patterns:  tracé alternant  or high-voltage 
slow (HVS) activity:

  Tracé alternant is an EEG pattern in which 3–8 second bursts of moderate to high voltage 
0.5–3.0 Hz slow waves intermixed with 2–4 Hz sharply contoured waveforms alternate 
with 4- to 8-second intervals of attenuated mixed frequency EEG activity; because this pat-
tern alternates between activity and much less activity it is considered to be “discontinu-
ous.” In contrast, HVS consists of continuous moderately rhythmic 50–150 μV 0.5–4 Hz 
slow activity, without the bursting activity of the tracé alternant. HVS represents the more 
mature pattern of quiet sleep in infants. 

   Soon after the publication of the standards recommended by Rechtschaffen and 
Kales for the scoring of sleep stages in adults, it was clear that they were inappropri-
ate for the scoring sleep stages in newborn infants. Therefore, a committee cochaired 
by Anders, Emde, and Parmelee worked on the defi nition of criteria for sleep scor-
ing in infants that led to the publication of  A Manual for Standardized Techniques 
and Criteria for Scoring of States of Sleep and Wakefulness in Newborn Infants  in 
1971 [ 20 ]. Afterward, Guilleminault and Souquet published a manual on the scoring 
of sleep and respiration during infancy [ 21 ]. 

 In 1970, Dreyfus-Brisac [ 19 ] observed that active (REM) sleep could be identi-
fi ed in polygraphic tracings by 32 weeks of gestation because of the presence of 
frequent body movements, irregular respiration, and rapid eye movements while the 
eyes were closed. 

 In 1966 Roffwarg, Muzio, and Dement (1966) fi rstly described the ontogenesis 
of sleep states. They also tried to answer the question at what age do humans start 
having dreams. By observing infants, they confi rmed the richness of their rapid eye 
movements; they therefore supposed that REM sleep was fundamental for the opti-
mal development of the CNS. Roffwarg and colleagues found infants spent half of 
their total sleep time in REM sleep, leading to the theory that REM sleep must play 
an important role in the development and maturation of the immature brain [ 22 ]. 

 Petre-Quadens in 1970 [ 23 ] described for the fi rst time a decrease of REM sleep 
time and of rapid eye movements in mentally retarded subjects vs. normal children, 
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supporting the hypothesis of the importance of REM sleep for CNS development 
and learning. This and other observations led the researchers to investigate the rela-
tionships between REM sleep and cognition and memory for the next two decades. 

 Later on, a better defi nition of the evolution of different physiological parameters 
during sleep in infants was achieved by Curzi-Dascalova leading to the publication 
of a manual of methods for recordings and analyzing sleep-wakefulness states in 
preterm and full-term infants [ 24 ]. 

 The diffi culties of the defi nition of scoring rules for infants, children, and adoles-
cents are mainly related to rapid and dynamic changes that occur during the fi rst two 
decades of life and to the extreme interindividual variability. The comparison of 
polysomnographic variables needs serial longitudinal assessments linked to the nor-
mal progression of maturation, rather than a single polygraphic study at a single 
point in time [ 1 ]. 

 Besides these diffi culties, standards for evaluating sleep in older infants, tod-
dlers, children, and preadolescents have been published in the new American 
Academy of Sleep Medicine (AASM) manual in 2007 [ 25 ] in which a specifi c pedi-
atric task force was appointed. Not clearly in the manual, but in the associated 
papers published in the Journal of Clinical Sleep Medicine, a critical review and 
collection of data defi ned better the features of the sleep structure during develop-
ment [ 26 ]. Finally, a German group headed by Dr. Sabine Scholle published three 
papers attempting to defi ne the normative polysomnographic data during develop-
ment [ 27 – 29 ].  

    The Gradual Discovery of Sleep Disorders in Infants 
and Children 

 There are very few reports on the infant and child’s sleep in the antiquity. Aristotle’s 
treatises on sleep and dreaming reported only that “Children sleep more than other 
people” and that “Very young children do not dream at all” or “Children begin to 
dream from ages 4 or 5” [ 30 ]. 

 In the Roman era, the children were not allowed to get much sleep since it was 
believed that too much sleep decreased intelligence and stunted growth [ 31 ]. 

 According to medieval beliefs about beds and sleeping, between 7 and 9 h of 
sleep were recommended, but this depended upon individual body types; with all 
people categorized according to the Galenic four humors, too much or too little 
sleep could cause dangerous imbalances and lead to illness. Nor did children require 
more sleep: one late fi fteenth-century manual suggested 7 h was suffi cient. This 
would roughly equate to summertime daylight hours, with an extra hour in the win-
ter. In the mid-sixteenth century, physician Andrew Boorde was recommending two 
periods of sleep at night, with people rising briefl y between them. Sleepers should 
lie fi rst on one side and then on the other, in dry rooms to which snails, spiders, rats, 
and mice had no access [ 32 ]. 
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 During the Renaissance, children went to bed early, often before sunset. In 
boarding school, they slept two in a bed until the age of 14 when they were adults 
and slept alone. Poor children slept at home in the same bed with their siblings or 
parents. Children’s beds were more like a hay pillow in a frame called a crib or they 
slept on hay mattresses on the fl oor. After the age of 7, children only slept with 
 siblings of the same sex, a dog or two on cold nights. Even the aristocrat’s children 
shared their bedrooms with their siblings and their servants. Sleeping alone was 
considered odd, lonely, and sad. Until the industrial era, sharing the bed with infants 
and children was the norm: families in the lower ranks routinely slept two, three, or 
more to a mattress, with overnight visitors included to generate welcome warmth 
and even brought farm animals within sleeping quarters at night. Besides protecting 
cows, sheep, and other livestock from predators and thieves, boarding with beasts 
allowed greater warmth, notwithstanding the “nastiness of their excrement” [ 33 ]. 

 In the nineteenth century, there was an increasing interest for pediatric medicine, 
but the fi rst books published devoted no chapters or even paragraphs to sleep. Child- 
rearing manuals did not deal with sleep as a problem, despite or perhaps because of 
extensive health advice in other categories. Sleep was not considered as a problem 
at that time probably because most activities went on during the night and there 
were much more possibilities to recover sleep during daytime than actually in mod-
ern societies. Surely, individual parents faced children with unusual sleep diffi cul-
ties, but a sense of a larger category of issues did not emerge. 

 The reasons why people and doctors did not pay much attention to children’s 
sleep can be different: (a) naps were common; (b) sleep patterns were less rigid; (c) 
many parents undoubtedly used opiates or alcohol to help the child sleep; and (d) 
the absence of much artifi cial light reduced nighttime stimulation and facilitated 
getting children off to bed. 

 From the late nineteenth century onward, there have been specifi c changes in 
sleeping arrangements with babies increasingly placed in cribs at a fairly young age, 
rather than rocked in cradles as their parents worked or relaxed. The infants and 
children had to learn to sleep alone as soon as possible. 

 Recurrent advices in health columns in popular journals dealt primarily with 
health precautions during sleep, rather than with sleep itself. There was a discussion 
of how much covering to place on the child, with concern both about overheating 
and underprotection; it is interesting to read that cold feet were to be avoided: 
“neglect of this has often resulted in a dangerous attack of croup, diphtheria, or fatal 
sore throat.” 

 The fi rst generic recommendations and guidelines about infant sleep and expec-
tations with regard to “normal sleep” can be found in the medical books of the 
nineteenth century (e.g., “newborns don’t sleep for more than 2 hours at a time,” 
“children won’t sleep through regularly until about 17 months,” “by about six 
months of age, babies could get used to sleeping at specifi c times of the day and that 
mothers should not rush to comfort the baby immediately but should instead see if 
it resettles on its own). 

 Contrary to what is expected, the recourse to drug treatment was frequent: for 
children troubled in sleep, the easy access to and wide use of opiates surely reduced 
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the need for extensive expert comment on what to do to fi ght insomnia. At that time, 
however, there were recurrent warnings focused on the danger of opiates adminis-
tered to children with fatal events [ 34 ]. 

 Looking at the great debate on the adequate amount of sleep need for children, 
we could be really surprised in reading that in the nineteenth century, attitudes 
toward sleep involved surprisingly modest requirements of amount: (a) authorities 
urging early rising recommended going to bed by 10 pm, but then getting up as soon 
as the infant was compatible with not feeling sleepy or lethargic the next day; (b) 
infants, having slept uninterruptedly for 9 months in the womb, should sleep at least 
12 h; (c) afternoon naps could be abandoned around 2 years of age; (d) by age 3, 
children should sleep no more than 12 h, and after this, sleep time should be short-
ened by 1 h per year; thus a 7-year-old should sleep 8 h and certainly no more than 
9; (e) adolescents required less sleep still, and authorities explicitly discussing sleep 
sometimes advocated no more than 6–7 h for adults [ 35 ,  36 ]. 

 With the advent of the industrial revolution, the artifi cial light, and the regulation 
of working and school hours, a disrupted night became a highly disturbing event. 
Social habits have dramatically changed, and obtaining a healthy night sleep was 
mandatory for optimal social and work functioning. At the same time, sleep has 
become more and more consolidated into one single bout per night, and also the 
possibility of ad hoc naps in children was limited by the new social and school 
rules. 

 At the end of nineteenth century, doctors noted the importance of sleep in build-
ing up “nerve force” in neurasthenic patients. Hypnotics were particularly recom-
mended for sleepless patients, though drugs were often prescribed in the period as 
well, coming under more critical scrutiny by physicians only in the 1890s. 

 Problems of children’s insomnia began to receive explicit attention, with rec-
ommendations of special feeding. The frequency and fervor of advice against 
using opiates for children increased; parents who assimilated this warning become 
more concerned about what other remedies to employ. The fi rst tables with indica-
tions of sleep timing and duration begun to be published. The 1910 table, backed 
by the Bureau of Education, insisted on 13 h of sleep for children 5–6, 12 for those 
6–8, 11 for those 10–12, 10 1/2 for those 12–14, 10 for those 14–16, and still 9 1/2 
for those up to 18. These recommendations were strikingly different from the 
approach of the nineteenth century. A 1931 table called for 14–16 h for infants, 
13–14 for toddlers, 12–13 still until 8 years of age, and on clown to 9 for 
16-year-olds. 

 It was not until the 1920s that child-rearing manuals picked up the question of 
children’s sleep and doctors dispensed sleep advice and recommend increasing 
amounts of sleep. Establishing a nighttime routine became important with rituals 
like daily bathing, story reading, toys, or night lights. 

 The importance of sleep and naps routine was greatly emphasized in the 1920s 
and 1930s. The American Medical Association highlighted the signifi cance of a 
regular sleep schedule and even claimed that a “half-hour variation from this sched-
ule … may induce masturbation, surreptitious reading in bed, restlessness, and 
inability to concentrate in school.” 
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 Children’s sleep became a new kind of issue from around the 1920s. Nineteenth- 
century parents had undoubtedly worried about their charges’ sleep, at least in par-
ticularly diffi cult cases. 

 After 1920, specifi c advice increased the amount of sleep held to be essential and 
the explicit scheduling required. Children had been sleeping for hundreds of thou-
sands of years, with considerable apparent success. Why the new fuss, and new 
directives, early in this century? 

 An interesting paper tried to answer to these questions [ 34 ]. 
 An important contributing factor was the increase of specialists in children that 

delivered the guidelines for the “correct behavior of infants and children” and were 
eager to export the fi ndings of science to a parental audience. Further, the major 
improvements in infant health with the decrease of deaths in childbirth as well as the 
possibility of a novel arrangement for children’s beds determined that infants were 
increasingly isolated from adults for sleep, placed in their own bedrooms, and early 
separated not only from parents but also from the nurse. This leads to a decrease of 
parental controls on infant’s sleep behavior with the diffi culty to interpret the night-
time behavior (crying, awakenings). 

 Due to the decrease of the use of opiates, parental concerns about children’s 
sleep increased, and the opiates have been substituted by over-the-counter soporifi cs 
that had become the most widely prescribed of all drugs, as of today.  

    The First Scientifi c Publications on Sleep in Infants 
and Children 

 A specifi c search in PubMed looking at the fi rst scientifi c publications on pediatric 
sleep found some interesting papers that could give us a picture of how sleep in 
infants and children was considered in the fi rst decades of the last century. In one of 
these papers,  Sleep Requirements of Children  published in the California State 
Journal of Medicine in 1921, there were recommendations for the amount of sleep 
for each age and several statements of common sense that would have been demon-
strated scientifi cally several years later by the literature [ 37 ]:

  The Service commends the following precepts just issued by the London County Council: 
School children aged four years need twelve hours’ sleep a day; aged fi ve to seven, eleven 
to twelve hours; eight to eleven, ten to eleven hours; and twelve to fourteen, nine to ten 
hours. 

 Children grow mainly while sleeping or resting; do you want yours to grow up stunted? 
 Tired children learn badly and often drift to the bottom of the class; do you want yours 

to grow up stupid? 
 When children go to bed late their sleep is often disturbed by dreams and they do not get 

complete rest; do you want yours to sleep badly and become nervous? 
 Suffi cient sleep draws a child onward and upward in school and in home life; insuffi -

cient sleep drags it backward and downward. Which way do you want your child to go? 
 Tiresome children are often only tired children; test the truth of this. 
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 That a neighbor’s child is sent to bed late is not a good reason for sending your child to 
bed late; two wrongs do not make a right. Going to bed late is a bad habit which may be 
diffi cult to cure; persevere till you succeed in curing it. 

   In a meeting of the British and Canadian Medical Associations, in 1931, Dr. 
Cameron categorized sleep disturbances as follows: (1) sleeplessness and continuous 
crying in young infants, (2) sleeplessness in older children, (3) night terrors, and (4) 
enuresis. He identifi ed three causative factors for sleeplessness in infants: (a) pain 
(mainly colic or dyspepsia or aerophagy treated with chloral hydrate 10 min before 
each feed) or discomfort (nasal obstruction treated with few drops of adrenaline 
solution in the nostrils before the child is put to the breast), (b) inherited or constitu-
tional neuropathy (which resembles the description of neonatal hyperexcitability), 
and (c) faulty management (which resembles the description of behavioral insomnia 
of childhood) [ 38 ]. 

 Dr. Cameron affi rmed that most infants who are sleepless and who cry constantly 
without any specifi c pain or discomfort do so because the management is faulty. Dr. 
Cameron also suggested practices to help crying infants, such as the primitive habit 
in all countries of putting the crying infant in the swaddling clothes and enveloped 
in the steady pressure of a light and porous shawl or putting him up against the 
mother’s back (as in the African culture), so that he takes no part in the expression 
of her emotions, and divulging her thoughts from the child would lead the restless 
infant to soundly fall asleep. He fi nally expounded on a theory by which hypogly-
cemia or the presence of ketone bodies in the blood leads to enuresis, sleepwalking, 
and night terrors. 

 In a paper published in 1936 [ 39 ], the causes of disturbances of sleep in children 
had been classifi ed as:

    1.      Constitutional neuropathy  that included restless children who did not fall asleep 
easily and who were easily aroused by even trivial environmental stimuli; this 
was attributed to a calcium defi ciency and treated with calcium.   

   2.      Sleep disturbances accompanying disease : in infants painful conditions like oti-
tis media, pain of colic and intestinal disturbances, hunger, teething, and eczema 
and in older children, renal colic, rheumatic fever, cardiomyopathies, and respi-
ratory diffi culties. Preferred treatments were narcotics (codeine very effective) 
and the barbiturates were given freely, especially when there was considerable 
restlessness.   

   3.      Faulty physical and mental hygiene : disturbed sleep or failure to fall asleep may 
be due to uncomfortable or too much clothing or emotional disturbances. The 
author suggested that in infancy, faulty sleeping habits are easily established and 
diffi cult to overcome. Overstimulation, as represented by a too ambitious school 
program, too many extracurricular activities (dancing, music lessons, etc.), pre-
mature and untimely participation in social affairs and pleasures of the adult, 
unsuitable movies, and radio programs, is not conducive to restful sleep.   

   4.      Temperatures on the child : the high temperature would determine a tremendous 
increase of the child’s motor activity.   
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   5.      Heavy meals : a heavy meal at night is prone to cause not only excessive motor 
activity but terrifying dreams, crying out in sleep, and a constant turning in bed.    

  The famous pediatrician Benjamin Spock, in the late 1940s, made recommenda-
tions that have been greatly infl uential throughout the next several decades. The 
advices for getting the baby to sleep were “The cure is simple: Put the baby to bed 
at a reasonable hour. Say goodnight affectionately but fi rmly, walk out of the room, 
and don’t go back…” [ 40 ]. 

 In a following paper in pediatrics [ 41 ], Spock stated that chronic resistance to 
sleep in infancy is a behavior problem which was formerly rare but was becoming 
more frequent, and its frequency seems related to the trend toward self-regulation to 
babies and to confusion in how to apply this philosophy. The treatment of sleep 
problem in the baby less than 1 year of age with the crying out method showed that 
most of these babies would cry indignantly from 10 to 20 min the fi rst night and 
perhaps 5–10 min the second night, but a great majority of them would be cured of 
sleep disturbance within two nights. Spock emphasized that this policy of letting the 
baby “cry it out” is recommended only for chronic resistance to sleep in the infant 
up to the age of 1 or 1.5 years. 

 In 1949, an interesting paper analyzed for the fi rst time sleep disturbances in 100 
children (5–14 years old) with primary behavior and emotional disorders at Rockland 
State Hospital, Children’s Group. Sleep disorders were grouped into fi ve categories:

•    1. Restlessness and minor disturbed states of sleep were found in 46 cases, 
divided into two subgroups: (a) restlessness such as rolling, rocking, tossing, and 
jerky movements and (b) talking, mumbling, crying, and swearing.  

•   2. Nightmares were found in seven cases.  
•   3. Night terrors in two cases.  
•   4. Sleep walking in one case.  
•   5. Enuresis in 26 cases.    

 The most frequent disorders were restlessness and minor disturbed states of 
sleep and enuresis that apparently occurred frequently in rejected children, while 
nightmares, night terrors, and sleep walking were relatively infrequent [ 42 ]. 

 Kleitman in a paper entitled “Mental hygiene of sleep in children” [ 43 ] described 
perfectly for the fi rst time the features of behavioral insomnia of childhood stating 
that “the child is born with certain capacities for learning, including the ability to 
synchronize, with ease or diffi culty, the primitive sleep-wakefulness cycle with 
diurnal periodicity in his physical and social environment. To establish good sleep 
habits in children it is necessary to cooperate with the natural tendency to develop a 
persistent 24-hour rhythm, reinforcing the latter by the customary methods of con-
ditioning.” Moreover, he acknowledged the individual variability for the need of 
sleep and warned about the recommendations on the amount of sleep needed for the 
infants and children. He affi rmed that “the total time spent in sleep, out of each 
diurnal period, decreases with age, but not uniformly in all children nor in a particu-
lar child at different ages. Tables of hours of sleep provided as a guide to parents are 
misleading in that the fi gures suggested for all ages are arbitrarily high. Even if 
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more realistic, such fi gures could stand only for averages, which, by and large, are 
meaningless when the individual child is considered.” 

 During the period 1950–1970, the literature on sleep problems in children 
increased steadily. Ronald Illingworth published several papers attempting to cate-
gorize sleep disturbances in infants and children [ 44 ,  45 ]. 

 Concluding one paper on sleep problems in the fi rst 3 years of age, he indicated 
the diffi culties in treating sleep problems reporting that it is not suffi cient to instruct 
on sleep hygiene rules or to give a drug and fi nally acknowledged the complexities 
of the treatment of sleep problems. 

 In the 1966 paper [ 45 ], Illingworth summarized the causes of sleep problems in 
children as follows:

      1.     Problems Related to Parents.   
   2.     Habit Formation   
   3.     The Child’s Ego and Negativism   
   4.     Sleep Needs.   
   5.     Developmental Patterns.   
   6.     The Child’s Love for His Parents.   
   7.     Causes of awakenings   
   8.     Errors Concerning Bedtime   
   9.     Other Emotional Factors   
   10     Unknown Causes     

   The treatment of sleep problems at that time was based on common sense and on 
the beliefs of a single pediatrician. Illingworth suggested that it is wrong to pick a 
child up at the fi rst whimper but also that it is essential to go immediately to his 
room when a child wakens with a sudden scream because at these times it would be 
not only cruel but possibly dangerous not to go to him. He stated that drugs have 
little place in sleep problems and phenobarbital is useless with these children and 
suggests chloral hydrate given 0.5 h before bedtime as the best drug for this prob-
lem. Finally, he reported that, in some cases, unfortunately, the parents should 
accept the early morning awakenings as one of the penalties of having children. 

 In the 1950–1960s, different studies attempted to defi ne the normative parame-
ters of sleep in children as well as the frequency of sleep disturbances. A paper 
analyzed the frequency of night awakenings in 1957, fi nding a prevalence of 17 % 
at 6 months and 10 % at 12 months [ 46 ]. In a longitudinal study, Klackenberg in 
1968 defi ned the sleep behavior of children up to 3 years of age [ 47 ].  

    The New Era of Pediatric Sleep: Contribution by Researchers 
from Different Countries 

 There is no doubt that pediatric sleep medicine received a strong initial input from 
European researchers 50 years ago. In France, Belgium, Italy, and Germany, 
researchers begun to publish on the early development of the sleep cycle, sleep 
EEG, and sleep behavior in infants [ 48 ]. 
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 The French group (Dreyfus-Brisac, Monod, Curzi-Dascalova) worked on the 
defi nition of the features of the sleep EEG and respiratory and cardiovascular 
parameters in newborns and infants. The studies by the Italian group of Salzarulo 
and Fagioli shed light on sleep organization and sleep states during development. 
The French researchers also contributed to the characterization of sleep apnea, para-
somnias, and narcolepsy (Marie Jo Challamel) together with Sona Nevsimalova, 
from Prague (Czech Republic). In Belgium, André Kahn and his group (Patricia 
Franco and José Groswasser) made important advancements in clarifying the mech-
anisms of the sudden infant death syndrome (SIDS) and infant sleep apnea. 

 Thanks to André Kahn, in the 1990’s a medial campaign was launched about 
infant’s sleeping position (“back is best”), and therefore, the SIDS risk was greatly 
diminished. 

 In Germany, Prechtl described sleep patterns before and after birth, empha-
sizing the concept of “state”; other German groups made a big effort to charac-
terize the features of sleep EEG during development (Schölle), as well as the 
characterization of infant sleep apnea (Poets). In the UK, Stores investigated 
mainly sleep in children with mental retardation; other sleep researchers were 
also involved in the research in pediatric sleep (Wiggs, Gringras, Hill, Fleming, 
and others). 

 Halasz from Hungary published several papers on the neurophysiology of sleep 
and on the relationship between sleep and epilepsy in children. 

 Another group of Italian researchers (Bergonzi, Gigli, and Ferri) started to 
explore sleep neuro- and psychophysiology in children with mental retardation, in 
an international collaboration with Grubar in France and Petre-Quadens in Belgium. 

 The fi rst specifi c sleep questionnaires have been published in the last 1990s: the 
Sleep Disturbance Scale for Children by Oliviero Bruni [ 49 ], the Child Sleep Habits 
Questionnaire by Judith Owens [ 50 ], the Pediatric Sleep Questionnaire by Ronald 
Chervin [ 51 ], and several others. 

 In Italy, Oliviero Bruni and his group, in strict collaboration with Raffaele Ferri, 
made a great effort to advance the defi nition of sleep microstructure in children, 
characterizing the alterations of the cyclic alternating pattern in normal children and 
in those with neurodevelopmental disabilities. Giannotti and Cortesi explored the 
sleep habits in adolescents and the sleep problems in children with neurodevelop-
mental disabilities such as autism and epilepsy. In Sicily, Silvestri has contributed to 
the defi nition of sleep disorders in children with ADHD. Contributions on sleep 
apnea in children and on the treatment with orthodontic apparels have been reported 
by the group of Maria Pia Villa. In Spain an enthusiastic group of researchers gave 
a big contribution in the different fi elds of pediatric sleep. Among them, Rosa 
Peraita-Adrados, co-founder of the Iberian Association of Sleep Pathology and 
research fellow at the Stanford University, made contributions on infants’ sleep and 
neurological disorders and was editor of a Book “Trastornos de Sueño en la Infancia” 
(1992), with an important dissemination in the Spanish speaking community world-
wide. Eduard Estivill was a pioneer for treatment of pediatric insomnia; Teresa 
Sagales made contributions on epidemiology and pediatric neurology; Gonzalo Pin 
Arboledas as well as many other Spanish researchers on consensus documents for 
common pediatric sleep disorders. 
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 In Israel, following the input by Peretz Lavie, Avi Sadeh studied how to investi-
gate sleep in infants objectively and less invading and developed the actigraph and 
characterized the algorithm for scoring actigraphic recordings in infants and chil-
dren. Further, his studies on normative sleep data in children and on the relation-
ships between sleep and academic achievement made a great advancement in the 
pediatric sleep fi eld. 

 In the USA, Richard Ferber, from the Children’s Hospital of Boston, was the fi rst 
to publish a comprehensive book for treating behavioral insomnia in infants and 
children which had an enormous success, so that the acronym “ferberize the child” 
is currently used to indicate the application of the behavioral techniques to solve 
insomnia of infants and children. 

 At the University of California, Los Angeles, a child psychiatrist, Thomas Anders 
(coauthor of the manual for sleep scoring in infants together with Emde and 
Parmalee) focused his research on ontogenesis of sleep-wake states from infancy 
through early childhood and on sleep disorders in children with autism and other 
neurodevelopmental disorders. He classifi ed infants as self-soothers or signalers, 
depending upon whether they cry following a nighttime awakening or whether they 
put themselves back to sleep without signaling to their parents. 

 Christian Guilleminault at Stanford University is the researcher who established 
the branch of sleep medicine in childhood; he can be considered as a pioneer of 
pediatric sleep medicine, and there is no branch of pediatric sleep medicine to which 
he has not contributed. 

 Mary Carskadon started her career at the Stanford University and, along with Dr. 
William Dement, she developed the Multiple Sleep Latency Test. Her research on 
adolescent sleep-wake behavior and consequences of insuffi cient sleep in adoles-
cents raised public health issues and determined some changes in the public policy, 
such as a later school start time in secondary schools. 

 Another huge contributor to the fi eld of pediatric sleep is David Gozal with 
fundamental researches in the last 20 years that have revolutionized the studies 
on sleep apnea in children. He studied, in particular, the relationships between 
respiratory sleep disorders and neurobehavioral, cardiovascular, and metabolic 
diseases and the mechanisms that mediate defense responses that lead to com-
plications from low oxygen levels, disrupted sleep, and long-term health and 
developmental consequences of chronic sleep and breathing problems during 
childhood. 

 Carole Marcus’ studies shed light on diagnosis and management of childhood 
OSAS and on the use of positive airway pressure therapy in children heading the 
publication of several clinical practice guidelines on OSAS. 

 In the fi eld of insomnia in childhood, Judith Owens made signifi cant contribu-
tions on the pharmacologic treatment of sleep disorders in children and on the inter-
action between sleep and ADHD, as well as on the impact of delaying school start 
time on adolescent sleep, mood, and behavior. Jodi Mindell, a clinical psychologist 
specializing in pediatric sleep medicine, has published many papers on the treat-
ment of behavioral insomnia in childhood, on pharmacologic treatment of pediatric 
sleep disorders, on cultural issues impacting sleep, and on the cultural differences in 
sleep patterns and behaviors. 
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 Ronald Chervin made several important contributions on neurological and 
behavioral effects of sleep disorders; his studies highlighted the importance of dis-
rupted sleep and described an association between inattentive, hyperactive behavior 
and symptoms of two primary sleep disorders: OSAS and RLS. 

 In Canada, Brouillette, over the past 30 years, made major contributions to the 
understanding of childhood OSAS and other controls of breathing disorders; he also 
developed a specifi c scale to assess the clinical severity of OSAS and evaluated the 
utility of oximetry for the diagnosis of OSAS in children. 

 More recently, Gruber, from McGill University in Montreal, showed the impor-
tance of an adequate sleep duration for optimal functioning in children, demonstrat-
ing that even a small sleep deprivation has serious consequences for health and 
daytime functioning in normal and ADHD children. 

 Pediatric sleep researchers in Australia in the last years (Horne, Blunden, 
Matricciani, Olds, Lushington, Kennedy, Kohler, Gradisar, and others) have pro-
duced signifi cant and important papers on the cardiovascular control during sleep in 
neonates and children, on the declining trend of sleep duration in children and ado-
lescents, on cognitive functioning in normal children and in children and infants 
with sleep-disordered breathing, on the behavioral treatment of sleep disorders in 
children, and on the impact of technology in adolescents’ sleep. 

 South America, Brazil, and Chile had several prolifi c researchers: in Chile, 
Peirano and Algarin conducted several studies on the effect of iron defi ciency ane-
mia on sleep in children; in Brazil, several researchers such as Tufi k, Lahorgue- 
Nuñes, Lopes, and Alvés also made substantial contributions. 

 In Japan, Segawa, in collaboration with Nomura, after the discovery of 
dopamine- responsive dystonia, explored the body movements during sleep in 
infancy as indicators for the detection of normal or abnormal CNS develop-
ment. At the same time, Okawa defined the disorders of the circadian rhythm in 
brain-damaged children, while other sleep researchers such as Kohyama, 
Komada, Kato, and many others continued to work in the pediatric sleep medi-
cine field. 

 Many Asian countries are actually growing in the pediatric sleep medicine 
fi eld, as acknowledged by the increasing number of publications especially 
from China, Hong Kong, Taiwan, Singapore, and Thailand, and probably new 
insights and new developments from other developing countries should be 
expected [ 48 ].  

    The Establishment of the Pediatric Sleep Associations 

 The rise of pediatric sleep medicine as a specifi c fi eld was not an easy process. The 
marginal place in the sleep congresses in the 1970s was clear too strict for this 
emerging area, linked to the evidence that most of the adult sleep disorders begin in 
childhood or even in infancy with specifi c age-related clinical expressions. 
Therefore, it was immediately evident that a specifi c “pediatric sleep knowledge” 
would have been required in order to identify and treat correctly the different sleep 
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disorders of infants and children. Starting with small symposia or satellite meetings 
during the congresses of the main sleep adult societies like the European Sleep 
Research Society (ESRS) and the Associated Professional Sleep Societies (APSS), 
the exponential and huge growth of contributions by pediatric sleep researchers rise 
the exigency to develop independent pediatric sleep associations. 

    The European Pediatric Sleep Club 

 Pediatric sleep medicine in Europe started within the ESRS and paralleled the 
development of this society. In the late 1980s, a group of pediatricians, child neu-
rologists, psychiatrists, and psychologists interested in sleep during development 
began to join in informal meetings during the early ESRS congresses. They were 
represented by most eminent sleep researchers that made the history of pediatric 
sleep medicine: Dreyfus-Brisac, Monod, Curzi-Dascalova, Dittrichova, Mirmiran, 
Prechtl, Salzarulo, Fagioli, and Kahn worked together to start the European research 
of infant sleep. Other researchers joined this initial group like Navelet, Challamel, 
Guilleminault, Vecchierini, Gaultier, Stores, Peraita-Adrados, Nevsimalova, Katz 
Salomon, Poets, and many other scientists. After the preliminary informal meetings, 
this group of scientists subsequently constituted the European Pediatric Sleep Club 
(EPSC) as a part of the ESRS, aimed at consolidating the area of pediatric sleep 
medicine, with the goal to bring together clinicians and researchers from different 
disciplines. The EPSC had its own meeting every year since the fi rst one in 1991 in 
Paris and joins the ESRS Congress every 2 years. 

 The EPSC meetings were held in Paris (1991), Helsinki (1992), Prague (1993), 
Firenze (1994), Messina (1995), Brussels (1996), Lyon (1997), Madrid (1998), 
Dresden (1999), Istanbul (2000), Bled (2001), Reykjavik (2002), Rome (2003), and 
Prague (2004). Following the efforts by André Kahn, the International Pediatric 
Sleep Association (IPSA) blossomed in 2005 from the EPSC.  

    The Pediatric Sleep Medicine Conference 

 The inaugural Pediatric Sleep Medicine Conference was held in Amelia Island, 
Florida, in February 2005. The meeting was cofounded by Jodi Mindell and Judith 
Owens, with the objective of bringing together pediatric sleep experts from around 
the world to share sleep science. The meeting also sought to defi ne priorities for 
basic and clinical research, patient care, and public policy for the emerging fi eld of 
pediatric sleep medicine. The conferences included pediatricians, pulmonologists, 
psychologists, psychiatrists, and neurologists, as well as social workers and nurses. 
The meeting was held yearly until 2009, at which time it became a biannual meeting 
offset by biannual meetings of the IPSA. The meeting continues to be held in Amelia 
Island, Florida, and now includes courses on best practices in pediatric sleep medi-
cine and pediatric polysomnography.  
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    The International Pediatric Sleep Association 

 The story of IPSA is strictly linked to the EPSC, as mentioned above. The creation 
of this international association was the dream of André Kahn and was initiated in 
2003 by his efforts and by his dedication to the fi eld of pediatric sleep medicine. 
The author of this chapter has been involved in this project by Dr. Kahn and was 
honored to work with him. Unfortunately, shortly before his 61st birthday, André 
Kahn abruptly died on September 1, 2004, in Brussels, at the end of his usual karate 
training session. Despite his absence, but following his inspiration, during the last 
EPSC meeting in 2004 in Prague, it was decided to build up a new international 
association. It was not an easy step, since there were long debates about the nature 
of this association which was initially intended as a “clinically oriented” organi-
zation. Also there were other uncertainties about the lack of the strength and the 
power to build this association and several uncertainties about scientifi c and fi nan-
cial support. 

 However, the following year, during the World Association of Sleep Medicine 
(WASM) meeting in Berlin, the IPSA was founded on October 13, 2005, with the 
crucial contribution of Christian Guilleminault. The bylaws were created stating the 
mission of IPSA: (a) to promote basic and applied research in all areas of sleep in 
infants, children, and adolescents, (b) to provide topical information to the public 
about pediatric sleep, (c) to increase the knowledge of pediatric sleep problems and 
their consequences, (d) to promote teaching programs on pediatric sleep, (e) to hold 
scientifi c meetings, and (f) to provide information to the public about perspectives 
and applications of pediatric sleep research. 

 The fi rst board was elected and appointed in 2007, with the aim to represent 
nearly all the countries in the world in which pediatric sleep medicine was pursued, 
for a 4-year term, consisting of Oliviero Bruni as president, Christian Guilleminault 
as vice-president, and Patricia Franco as secretary. The Board of Directors com-
prised Ronald Chervin, David Gozal, Avi Sadeh, Patricio Peirano, Magda Lahorgue- 
Nuñes, Rosemary Horne, and Daniel Ng. 

 In 2007, IPSA has been affi liated with the Elsevier’s journal  Sleep Medicine , an 
affi liate of the World Association of Sleep Medicine (WASM), and in 2009, it joined 
the Pediatric Sleep Medicine Conference. 

 From 2007 to 2009, IPSA meetings were held as part of the WASM congresses, 
but in 2010 the fi rst independent IPSA congress was organized by Oliviero Bruni in 
Rome. The congress was a huge success in terms of participants and high scientifi c 
quality, with 203 abstracts, 64 symposia, 1 pediatric sleep course, 1 keynote lecture, 
and 34 countries represented worldwide. 

 After this successful meeting, it was decided to continue to have an IPSA meet-
ing every 2 years in different parts of the world. The second IPSA meeting was held 
in Manchester (UK) in December 2012, and the third IPSA meeting was held in 
Porto Alegre (Brazil) in 2014. The next meetings will be in Taiwan in 2016 and in 
Lille (France) in 2018. 
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 The IPSA congresses aim to lead to a substantial advancement of pediatric sleep 
medicine, collecting the most renowned international speakers and giving to all 
participants the opportunity to share knowledge in sleep medicine and research. 

 In 2012, with the help of Allan O’Bryan (WASM), the IPSA Foundation (a non-
profi t organization) has been created to raise funds from different sources, such as 
industries and pharmaceutical companies, in order to allow fund-raising for scien-
tifi c and charity purposes.   

    Conclusions 

 The historical overviews always have limitations, and also this representation of the 
birth of pediatric sleep medicine as an independent fi eld probably has forgotten to 
cite some fundamental researchers. The aim was to delineate the emergence of pedi-
atric sleep depicting the progressive awareness on sleep of infants, children, and 
adolescents. 

 A huge amount of studies in the last decades have demonstrated that almost all 
sleep disorders have a negative impact on the child health. 

 The fi eld of pediatric sleep medicine is currently growing in the different coun-
tries with huge possibilities of expansion. Innovative researches will highlight the 
role of sleep in brain plasticity and in integrating neural networks required for early 
brain development. Further, new studies will lead to a better knowledge of the 
development of sleep and of the effects of sleep disruption on behavioral disorders, 
problems of attention, and learning disabilities.     
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    Chapter 3   
 Epidemiology of Sleep Disorders in Children 
and Adolescents                     

     Teresa     Paiva     

    Abstract     Epidemiologic analysis of sleep disorders (SDs) in children and adoles-
cents faces several diffi culties. There is a marked interindividual variability during 
the fi rst years of life, which is more relevant in the fi rst 2 years, and consequently 
the defi nition of what is “normal” can become a diffi cult issue to which cultural and 
ethnic differences might add clear complexity. Furthermore many available survey 
lack objective data; this issue is particularly relevant whenever data are provided by 
the caregivers, since known discrepancies do exist between children and caregivers 
information, and the fact that data obtained from younger individual are subjected 
to important ethical regulations is likely to reduce the number of available studies. 
Other contributing issues are the position of pediatric sleep in the fi eld of sleep 
medicine and the successive classifi cations of sleep disorders and the methodologic 
modifi cations, rendering diffi cult comparisons across decades. 

 In spite of all diffi culties, robust data are essential both to understand disease 
mechanisms, comorbidities, and treatments and to plan strategic and healthcare 
plans.  

  Keyword     Epidemiology   •   Sleep disorders   •   Children   •   Adolescents   •   Insomnia   
•   Hypersomnia   •   Sleep-related breathing disorders   •   Sleep-related movement 
disorders   •   Parasomnias   •   Circadian disorders  

   Epidemiologic analysis of sleep disorders (SDs) in children and adolescents faces 
several diffi culties. There is a marked interindividual variability during the fi rst 
years of life, which is more relevant in the fi rst 2 years, and consequently the defi ni-
tion of what is “normal” can become a diffi cult issue to which cultural and ethnic 
differences might add clear complexity. Furthermore many available studies are 
based in qualitative survey and lack objective data; this issue is particularly relevant 
whenever data are provided by the caregivers, since known discrepancies do exist 
between children and caregivers information, and the fact that data obtained from 
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younger individual are subjected to important ethical regulations is likely to reduce 
the number of available studies. Other contributing issues are the position of pediat-
ric sleep in the fi eld of sleep medicine and the successive classifi cations of sleep 
disorders and the methodologic modifi cations, rendering diffi cult comparisons 
across decades. 

 In spite of all diffi culties, robust data are essential both to understand diseases 
mechanisms, comorbidities, and treatments and to plan strategic and healthcare plans. 

 In what concerns pediatric sleep disorders (PSDs), three aspects must be taken 
into account: one is the dimension of the problem itself, and the other is the already 
available knowledge of long-term effects of infancy, childhood, and adolescence 
disturbances and fi nally the impact of family behavior upon children sleep. 

 This is illustrated in the following examples:

•    The global percentage of sleep problems and sleep complaints in children and 
adolescents is very high, reaching 80 % in some world regions [ 1 ].  

•   Sleep problems of the newborn predict sleep problems in school age [ 2 ].  
•   Persistent sleep diffi culties in childhood predict psychiatric problems in adult 

life [ 3 ].  
•   Caregivers’ behaviors at sleep onset predict sleep patterns in babies and tod-

dlers [ 4 ].  
•   Parents’ sleep-wake patterns predict their children sleep-wake profi le [ 5 ].  
•   Parents stress is associated with behavioral problems in insomniac children [ 6 ].  
•   Sleep deprivation and irregular sleep habits increase the risk of health complaints 

and health and mental disorders, together with the risk of falls and domestic 
accidents and poor academic performance [ 7 ].  

•   Most medical, neurologic, and psychiatric disorders in children are associated 
with an increased risk of SD [ 7 ].    

 The subsequent text presents the prevalence of the pediatric SD according to the 
ICSD2 [ 8 ]: insomnias, hypersomnias of central origin, sleep-related breathing dis-
orders (SRBDs), parasomnias, sleep-related movement disorders (SRMDs), and 
circadian disorders. Furthermore, epidemiologic data concerning comorbidities and 
prevalence data of the different SDs in other pathologies will also be discussed. 

    Insomnia 

 In toddlers and preschoolers, insomnias express themselves either as “sleep-onset 
association or night wakings” or “insuffi cient limits and sleep resistance,” and with 
age progression chronic insomnia develops.

•    Sleep-onset association type or night wakings 
  It is present in 25–50 % between 6 and 12 months, in 30 % with 1 year, and in 

15–20 % between 1 and 3 years of age. 
  The risk factors are co-bedding, breastfeeding, colic, medical disorders, bad tem-

per, parent anxiety, and maternal depression.  
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•   Limit-setting type or bed resistance. 
  They occur in 10–30 % of the children. 
  The risk factors are parents’ permissiveness, parental confl icts concerning child edu-

cation, unrealistic parents’ expectations, age, bad temper, daytime-opposing behav-
iors, unstable domestic or family environment, and errors in circadian organization.  

•   Insomnia in school children and adolescents occurs in 9–13 % of the adolescents 
(see Table  3.1 ).

    The risk factors are sleep hygiene errors, sleep perception diffi culties, errors con-
cerning knowledge about sleep, personality characteristics, medical disorders, 
health perception and somatic complaints [ 9 ], psychiatric problems (insomnia 
occurs in 53.5 % of depressive adolescents [ 15 ], psychologic problems [ 9 ,  10 ], 
female gender after puberty, familial history of insomnia, low socioeconomic 
status, tobacco and alcohol consumption, TV in the room, insuffi cient communi-
cation with the parents [ 11 ,  16 ,  17 ], and excessive Internet use [ 10 ].     

    Hypersomnias of Central Origin 

 Narcolepsy and Kleine-Levin syndrome start/occur during the fi rst two decades. 
The Kleine-Levin syndrome is a rare disorder with unknown prevalence. 

 The prevalence of narcolepsy is also low but it is increasing in the last decades. 
Narcolepsy affects 3–16 in 10,000 children/adolescents, and the prevalence of nar-
colepsy with cataplexy is still lower 0.2–0.5 per 10,000; in Japan the prevalence is 
six times higher. 

   Table 3.1    Insomnia in adolescents   

 Authors   N   Age  Country  Prevalence  PSG 
 Gender 
differences 

 Roberts et al. 
(2008) [ 9 ] 

 4175  11–17  USA  26.8 % wave 2 
W1 –26.48 
 5.08 % W2 
W1 –6.55 

 No 

 Siomos et al. 
(2009) [ 10 ] 

 2195  13–18  Greece  11.43 %  No  No 

 Zhang et al. 
(2009) [ 11 ] 

 5695  6–13  Hong Kong  4 % preceding 
year 

 No  No 

 Pan et al. 
(2012) [ 12 ] 

 816  12–18  Guangdong  22.9  No 
 618  Macao  16.5  No 

 Amaral et al. 
(2013) [ 13 ] 

 6919  12–18  Portugal  Symptoms of 
insomnia – 21.4 
 Insomnia – 8.3 

 No  Yes 

 Calhoun et al. 
(2014) [ 14 ] 

 700  5–12  USA  19.3 %  Yes  Yes 
 Girls from 
11–12: 30.6 % 
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 Narcolepsy is currently considered an autoimmune disorder; the prevalence of 
autoimmune disorders, exception made for celiac disease, is rare among children. 
However, the narcolepsy prevalence, for not clarifi ed reasons, is increasing in the 
last decade. A clear risk factor was the vaccination against H1N1 fl u virus with 
Pandemrix, due to the adjuvant used (AS03) [ 18 ], with described cases in China 
[ 19 ], Sweden, Finland, Norway [ 20 ], and Portugal. During the 6 months following 
the winter vaccination, there was a signifi cant increase of the narcolepsy prevalence 
(13 times higher), mostly among children. 

 In China, even without vaccination, there was a signifi cant increase of the narco-
lepsy prevalence during March, April, and May, suggesting a seasonal fl uctuation 
and the winter viral infections as risk factors; these fl uctuations are superimposed in 
a positive trend of increased prevalence across the years [ 19 ]. 

 HLA-DQB1 *06:02 positivity is a risk factor for narcolepsy. Recently, in a mul-
ticenter study, an association between narcolepsy and allergic diseases has been 
observed but there are differences between patients with and without cataplexy 
since the frequency of allergic conditions, particularly asthma and allergic rhinitis, 
was markedly lower in narcolepsy with cataplexy (58/275) when compared with 
patients without cataplexy (94/193;  P  < 0.0001) [ 21 ].  

    Sleep-Related Breathing Disorders 

 The prevalence of primary snoring is 8 %; it varies with ethnicity and age, but it can 
be present since birth and it may occur in premature infants. 

 Snoring prevalence studies in children are usually based in parents/caregivers 
reports and lack objective confi rmation. 

 The snoring prevalence has been evaluated in several studies in infants, toddlers, 
and schoolchildren [ 22 – 26 ]; the prevalence of “habitual snoring” varies enormously 
between 3.2 % and 34.6 % of the children, although for most studies the prevalence 
varies between 3 % and 10 % [ 22 – 26 ]; the prevalence is higher in Italy [ 27 ] and in 
the USA [ 28 ] (see Table  3.2 ).

   Among Asian countries there are regional differences, with higher snoring preva-
lence in the fi rst years of life in Australia, New Zealand, and the Philippines [ 26 ]. 

 The prevalence of “habitual snoring” among schoolers and adolescents varies 
between 3.3 % and 15.1 % [ 23 ,  29 – 32 ] (see Table  3.3 ).

   The OSAS prevalence is lower than snoring prevalence and varies between 
0.69 % and 4.7 % [ 29 ,  32 ]; in most studies there are no gender differences (see 
Table  3.4 ). It is relevant since birth and it assumes special relevance in premature 
children [ 39 ]. The association with asthma has been proven in large epidemiologic 
studies and systematic reviews [ 40 ,  41 ].

   The risk factors of SRBD are:

•    Upper airway obstruction, namely, adenotonsillar hypertrophy; improper diag-
nosis of OSAS before adenotonsillectomy (the prevalence of OSAS raises to 
38%) [ 32 ,  42 ]; allergies [ 41 ]; craniofacial abnormalities, namely, Pierre Robin 
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syndrome, etc.; gastroesophageal refl ux; nasal deviation; chronic nasal obstruc-
tion and mouth breathing; obesity; cleft palate; and laryngomalacia since its 
prevalence in OSAS is 3.9 % [ 43 ].  

•   Floppy airway either due to neuromuscular disorders or due to hypothyroidism  

   Table 3.2    Prevalence of snoring in infants, toddlers, and preschoolers   

 Authors   N   Age  Country  % snoring 

 Gislason et al. (1995) 
[ 22 ] 

 454  6 months–6 years  Iceland  3.2 – habitual 

 Brunetti et al. (2001) 
[ 23 ] 

 895  3–11 years  Italy  4.9 – habitual 

 Castronovo et al. (2003) 
[ 27 ] 

 604  3–6 years  Italy  34.6 – habitual 
 12.0 – pathological? 

 Montgomery Downs 
et al. (2003) [ 28 ] 

 1010  3–5.3 years  USA  22 – habitual 

 Montgomery Downs 
et al. (2006) [ 24 ] 

 944  2W–2 years  USA  5.3 – habitual 

 Liukkonen (2008) [ 25 ]  1471  1–6 years  Finland  6.3 – habitual 
 Li et al. (2013) [ 26 ]  23,481  From birth to 

3 years 
 ASIA 
 14 
countries 

 Caucasian – 6.2 
 No Caucasian – 5.1 
 Au, NZ, Fil > 10 %; 
Korea=2.4 % 

   Table 3.3    Prevalence of snoring in schoolers and adolescents   

 Authors   N   Age  Country  % snoring 

 Auntaseree et al. (2001) [ 29 ]  1142  6–13  Thailand  8.5 – habitual 
 Ersu et al. (2004) [ 33 ]  2147  5–13  Turkey  7.0 – habitual 
 Kaditis et al. (2004) [ 34 ]  3680  1–18  Greece  5.3 – habitual 
 Sogut et al. (2005) [ 30 ]  1215  3–11  Turkey  3.3 – habitual 
 Gozal et al. (2008) [ 35 ]  16,321  5–7  USA  11.3 – habitual 
 Ferreira et al. (2009) [ 36 ]  976  6–10  Portugal  8.6 – habitual 
 Tafur et al. (2009) [ 37 ]  890  6–12  Ecuador  15.1 – habitual 
 Sogut et al. (2009) [ 38 ]  1030  12–17  Turkey  4.0 – habitual 
 Kitamura et al. (2014) [ 31 ]  170  6–8  Japan  12.9 – habitual 

   Table 3.4    Prevalence of OSAS   

 Authors   N   Age  Country  Prevalence 
 Gender 
differences 

 Auntaseree et al. (2001) [ 29 ]  1142  6–13  Thailand  0.69 %  No 
 Brunetti et al. (2001) [ 23 ]  895  3–11  Italy  1 %  Yes/males 
 Rosen et al. (2003) [ 32 ]  850  8–11  USA  4.7 % 

 2.2 of the population 
 Sogut et al. (2005) [ 30 ]  1215  3–11  Turkey  0.9 % among snorers  No 
 Kitamura et al. (2014) [ 31 ]  170  6–8  Japan  3.5  – 
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•   Reduced central ventilatory drive, as observed in Arnold-Chiari malformation, 
myelomeningocele, brain stem injuries, or tumors.  

•   Medical/developmental disorders such as Down syndrome (it affects 50–80 % of 
the patients [ 44 ], Prader-Willi syndrome (central apnea is more prevalent in 
infants, with a good response to oxygen therapy, while obstructive apnea is more 
common in older children) [ 45 ], and sickle cell anemia since OSAS occurs in 
10.6 % of the patients and has signifi cant negative correlations with the mean 
annual level of hemoglobin and with the total sleep time [ 46 ].    

 Data related to the long-term consequences of OSAS point to the increased prev-
alence of recurrent otitis in children from 5 to 7 years of age, with a prevalence of 
44.8 %, with a predominance of boys [ 35 ]. Furthermore, hypertension and obesity 
have been proved in a prospective study in 334 children: hypertension was present 
in 3.6 % of the children at the initial observation and in 4.2 % 5 years’ later; the same 
pattern was observed for obesity 15.0 % initially and 19.5 % latter on [ 47 ].  

    Parasomnias 

 This item will focus in NREM parasomnias, enuresis, and nightmares 

    NREM Parasomnias 

 Epidemiologic studies in parasomnias must take into account the frequency of the 
complaint by family members and the accuracy of the report, since confusion with 
other disorders is likely to occur as it is the case for epilepsy [ 48 ,  49 ], together with 
the occurrence of several parasomnias in the same individual; about one-third of the 
children with sleep terrors in younger ages will develop sleepwalking some years 
later [ 50 ]. The misdiagnosis with epilepsy is common in confusional arousals, sleep 
terrors, and sleepwalking. 

 Using the Quebec Longitudinal Study of Child Development, the peak age of 
occurrence for sleep terrors was 1.5 (34.4 % of the children) and 10 years (13.4 %) 
for sleepwalking [ 50 ]. The prevalence of sleep terrors and sleepwalking in children 
with ages ranging from 3 to 10 years is 14.7 % for sleep terrors and 9.2 for sleep-
walking [ 51 ]. Both parasomnias tend to cluster in the fi rst decade of life disappear-
ing in the fi rst years of the second decade. For sleepwalking their average age of 
onset is from 3 to 10 for 66.4 % of the children 17.2 % at 11 years of age, 12.9 % at 
12, and 3.5 % at 13; these values for sleep terrors are 84.6 %, 9.4 %, 4.0 %, and 2 %, 
respectively. The opposite trend occurs for the age of disappearance, which for 
23.8 % of the children is between 3 and 10 years of age, 18.1 % at 11, 34.5 % at 12, 
and 24.1 % at 13 years for sleepwalking, while for sleep terrors, the trend of 

T. Paiva



59

disappearance is similar to the onset trend with 67.1 % of the children having no 
more sleep terrors between 3 and 10 years, 14.8 % at 11, 11.4 % at 12, and 6.7 % at 
13 years [ 51 ]. 

 Another important issue of NREM parasomnias is the familial aggregation pat-
tern; in fact for sleepwalking, the prevalence increases with the degree of parental 
history: 22.5 % for children without a parental history, 47.4 % for children who had 
one parent with a history of sleepwalking, and 61.5 % for children whose both par-
ents had a history of sleepwalking [ 50 ]. 

 Sleep terrors are usually associated with anxiety [ 52 ], other sleep disorder, or 
psychiatric problems [ 50 ].  

    Enuresis 

 Enuresis prevalence values range from 4.6 % to 24.4 %, but in most studies, the 
prevalence value is close to 10 % (see Table  3.5 ). It is more common in boys [ 53 , 
 56 – 59 ], and the prevalence increases when there is a familial history of enuresis 
(OR = 2.8) [ 53 ,  58 ], when there are confusional arousals (OR = 2.4), or whenever the 
child is confused during night awakenings (OR = 3.4) and also whenever there is 
also daytime incontinence (OR = 3.0) [ 53 ].

   The prevalence of enuresis is signifi cantly higher in children with attention defi -
cit/hyperactivity disorder and oppositional defi ant disorder in preschool children 
[ 56 ] and sickle cell anemia [ 60 ].  

   Table 3.5    Prevalence of enuresis   

 Author  Country   N   Age  Prevalence 

 Neveus et al. (1999) [ 53 ]  Sweden  1390  6.2–10.9 years  Boys – 10.8 
 Girls – 5.3 

 Laberge et al. (2000) [ 51 ]  Canada  1353  3–13 years  15.7 % 
 12.4 (persisting) 

 Su et al. (2011) [ 54 ]  Hong Kong  6147  6–11 years 
 117 

 4.6 % 
 1.9 (at 11) 

 Mota et al. (2014) [ 55 ]  Brazil  3602  7 years  Boys – 11.7 
 Girls – 9.3 

 Niemczyk et al. (2015) [ 56 ]  Germany  1676  Mean 5.7 years  9.1 % 
 Sarici et al. (2015) [ 57 ]  Turkey  4250  6–13 years  9.52 

 Boys – 12.4 
 Girls – 6.5 

 Esezebor et al. (2015) [ 58 ]  Nigeria  928  5–17  24.4 
 Doganer et al. (2015) [ 59 ]  Turkey  2314  6–14  9.9 

 Boys – 10.7 
 Girls – 9.2 
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    Nightmares 

 Nightmares are quite common since 75 % of the children had at least one nightmare 
in their lifetime. 

 Chronic nightmare occurrence increases with age in the fi rst decade: it affects 
25 % of the children between 2 and 5 years of age and 41 % between 6 and 10 years. 
In younger ages there are no gender differences, but after age 12, nightmares are 
more common in girls; the peak prevalence is usually at age 10 [ 61 ]. 

 The risk factors include the previous existence of nightmares and bad dreams, 
stress or traumatic events, anxiety and anxiety disorders, sleep deprivation, insom-
nia, and REM-enhancing medication [ 5 ]. 

 Other risk factors to be considered are suicidal ideation, sleepwalking and sleep 
terrors, and behavioral dysfunction [ 62 ]. Furthermore, familial aggregation [ 63 ,  64 ], 
low family income, and the presence of comorbid insomnia affecting 20 % of the 
children with high nightmare frequency have been described [ 64 ]. 

 Many studies point to higher prevalence in girls, but some authors found it was 
higher in boys [ 63 ]. 

 Signifi cant short-term nightmare consequences are poor academic performance, 
mood disturbances and temper outbursts, and hyperactivity [ 64 ]. In spite of that, 
emotional features in nightmares are stable in longitudinal studies [ 65 ]. 

 There are many studies focused on nightmare prevalence in children; however 
methodologic issues are common especially in its exact defi nition, in the great vari-
ability of questionnaires used, and in the utilization of parents’ reports [ 62 ]. Table  3.6  
summarizes several nightmare epidemiologic studies in children and adolescents 
[ 63 ,  64 ,  66 – 78 ].

        Sleep-Related Movement Disorders 

 The REST study provided strong epidemiologic data of restless legs syndrome in 
children and adolescents; it was carried out in 10,000 families from the USA and the 
UK. The prevalence of defi nitive RLS was 2 % between 8 and 11 years and 3 % 
between 12 and 17 years; moderate-to-severe symptoms affected one-fourth to one- 
half of the children with no gender differences at these ages; female preponderance 
was only found after 15 years [ 79 ]. 

 In clinical samples the prevalence varies between 1.3 % and 5.9 % [ 80 ,  81 ]. 
 The risk factors are familial history since 70–80 % of the children have at least 

one parent with RLS while 16 % have both parents, sleep deprivation, medical con-
ditions with a special reference to renal insuffi ciency with prevalence ranging 
between 15.3 % and 35 % [ 82 ,  83 ], iron defi ciency, association with periodic limb 
movement of sleep (PLMS) in 74 % of the patients from sleep clinics [ 84 ], and 
association with growing pains (23 % of the twins with growing pains fulfi ll the 
criteria for RLS diagnosis [ 85 ] and 54.5 % of the RLS patients fulfi ll the criteria for 
growing pains) [ 86 ]. 
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 The determination of PLMS implies polysomnography recordings; therefore 
epidemiologic data are obtained mostly in clinical populations and reach values 
between 5 % and 27 % [ 87 – 89 ]; they are associated with RLS (in 28 % of the cases) 
[ 85 ] but the prevalence does not present gender differences; they are more prevalent 
in Caucasian and in attention defi cit and hyperactivity disorder (ADHD). 

 The PLMS risk factors are medical disorders (uremia and leukemia); iron defi -
ciency; neurologic and developmental disorders (ADHD, Williams syndrome, spi-
nal cord lesions); migraine [ 90 ]; sleep disturbances (OSAS and narcolepsy); 
medication, namely, the selective of serotonin reuptake inhibitor (SSRI); and posi-
tive familial history of RLS [ 85 ]. 

   Table 3.6    Prevalence of nightmares   

 Authors   N   Age  % nightmares 
 % high 
frequency  Gender diff 

 Simonds and 
Parraga (1982) [ 66 ] 

 309  5–18  17  1.7  No 

 Velabueno et al. 
(1985) [ 67 ] 

 487  6–12  22  –  No 

 Fischer & Wilson 
(1987) [ 68 ] 

 1695  5–18  55  16  No 

 Fischer et al. 
(1989) [ 69 ] 

 870  6–13  6.0–8.5 years – 
65 
 8.5–11.5 – 72 
 >11.5 – 65 

 >12  Yes 

 Hawkins and 
Williams (1992) 
[ 70 ] 

 163  3–5  33  14  – 

 Schredl et al. 
(1996) [ 71 ] 

 624  10–16  62  11  – 

 Smejde et al. 
(1998) [ 72 ] 

 378  5–6  62  3  – 

 Smejde et al. 
(1999) [ 73 ] 

 1844  5–7  62  3  Yes (frequent) 

 Nielsen et al. 
(2000) [ 74 ] 

 610  13–16  13y – 79M/90F 
 16y – 73M/90F 

 13 – 25M/37F 
 16 – 40M/20F 

 Yes 

 Liu (2004) [ 75 ]  1362  12–18  49  7  Yes 
 Abdel-Khalek 
(2006) [ 76 ] 

 6767  10–18  10y – 46M/38F 
 13y – 53M/49F 
 18y – 51M/51F 

 10 – 9M/12F 
 13 – 18M/15F 
 18 – 6M/18F 

 Yes at 15 

 Shang et al. 
(2006) [ 77 ] 

 1319  4–9  Past month 8 
 Lifetime 49 

 No 

 Schredl et al. 
(2008) [ 78 ] 

 4531  8–11  44  2.3  Yes 

 Coolidge et al. 
(2010) [ 63 ] 

 1318  4–17  –  6.4  Yes, higher in 
boys 

 Li et al. (2011) [ 64 ]  6359  Mean 9.2  –  5.2  – 
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 Bruxism prevalence varies between 14 % and 25 % until 11 years of age, without 
gender differences [ 4 ,  51 ,  91 ]. The risk factors are anxiety, depression, stress, tem-
poromandibular dysfunction, allergic conditions and nasal obstruction, cerebral 
palsy and mental retardation, toxics, stimulating medication and drugs, SSRIs, 
OSAS [ 91 ], positive familial history of bruxism, and ADHD [ 4 ,  51 ].  

    Circadian Disorders 

 Circadian preferences in Italian children and adolescents with ages ranging between 
8 and 14 years showed that 10.3 % are clearly evening types and 10.9 % clearly 
morning types [ 92 ]. 

 According to the ICSD2, the prevalence of sleep phase delay syndrome is 10 % 
(ICSD2) but the data vary in different studies: it affects 0. 4 % of the Europeans aged 
between 15 and 18 years [ 93 ], 0.13–3.1 % of the US population [ 94 ], and in the 
same country 7–16 % of the adolescents [ 4 ]; in Norway it affects 3.3 % of the 
youngsters between 16 and 18 years and has a higher prevalence in girls (3.7 %) and 
lower in boys (2.7 %) [ 95 ]. The syndrome often starts during adolescence. 

 Insomnia is commonly associated with circadian disorders (30 % of the subjects 
with sleep phase delay syndrome have at least one insomnia symptom) [ 93 ]; fur-
thermore, insomnia is present in 53.8 % of the boys and in 57.1 % of the girls [ 95 ]. 

 The short- and long-term consequences are quite relevant: missing classes 
(OR = 3.22 for boys and 1.87 for girls) [ 95 ], academic failure, loss of job, social and 
familiar diffi culties, and depression.     
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    Chapter 4   
 New Directions in the Link Between 
Technology Use and Sleep in Young People                     

     Kate     Bartel       and     Michael     Gradisar     

    Abstract     Young people have an affi nity for technological devices. Several reviews 
of more than 70 studies over the past 15 years have shown consistent links between 
young people’s use of technology and sleep. This has led the scientifi c and general 
communities to deduce that using technology before bed worsens sleep. However, 
the majority of studies performed have been correlational in nature, making causal 
inferences diffi cult. This chapter focuses on two important questions of “how” and 
“how much” technology use affects sleep. The former question details primarily 
experimental studies that have tested potential mechanisms, including technology 
use inducing physiological arousal, displacing bedtime, or screenlight disturbing 
sleep and circadian rhythms. While the latter question appears straightforward, new 
meta-analytic results suggest it is not. Furthermore, new studies are identifying 
important moderators for the link between technology use and sleep. Finally, we 
consider the reverse relationship – the possibility of technology use increasing in 
response to diffi culty sleeping. Our chapter concludes with a research agenda that 
does not necessarily point the fi nger at technology use as the reason why so many 
young people are sleeping too late and too little.  

  Keywords     Technology use   •   Sleep   •   Adolescents   •   Arousal   •   Screenlight   
•   Displacement   •   Bedtimes  

      Introduction 

 Apple cofounder Steve Jobs once said “People did not know what they want, but we’ll 
show them” [ 1 ]. Mr Jobs’ vision for enhancing our lives was laudable – but do you 
think he considered the cost of his choices on young people? One could easily argue 
he, or Apple, did not. Just watch the scene in Apple’s “Love” TV commercial where 
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a young boy’s room is brightly lit at night by the glow of his iPad 2. Sure he is loving 
his iPad, but when does he put it down to go to bed? How does he sleep afterward? 

 We should not be too unfair on Apple’s iconic inventor, for in the early 2000s, 
parents were advised to position computer screens in areas visible by all [ 2 ]. This 
was when home Internet was hardwired – before domestic Wi-Fi made it possible 
for Apple to develop iDevices that can be placed in any corner of the household 
(including the bedroom, which can lead to its use after lights off [ 3 – 6 ]). But more 
than a decade beyond the invention of Wi-Fi, with the introduction of touch screen 
“gorilla glass” in iPads and iPods (and associated copycat devices), is there a cost of 
this accelerated technology on young people’s sleep? 

 This chapter can only provide a snapshot in time of what we now know, but it 
does not pretend to assume that we know it all. Apple spent $1.68 billion in the 2014 
September quarter on research and development [ 7 ], and Samsung invested $13.4 
billion in 2013 [ 8 ], yet when one reviews the scientifi c literature of investigations 
into the harms to sleep health from technology use, the funding for such science 
pales in comparison. We will learn more over the next decade as the research 
attempts to catch up to the advances in technology. But what we aim to achieve in 
this chapter is to (1) convey what the data are currently telling us about the relation-
ship between technology use and young people’s sleep 1  (you may be surprised) and 
thus (2) provide direction to researchers for where future research should be focused. 

 In the hope of achieving these aims, we will concentrate on two key questions:

    1.    How much does technology use affect young people’s sleep?   
   2.    How does technology use affect young people’s sleep?     

 However, before addressing the “how much” question, let us turn our attention to 
the possible mechanisms between technology use and sleep.  

    How Technology Affects Sleep? 

 In 2010, both van den Bulck [ 9 ] and Cain and Gradisar [ 10 ] performed reviews of 
the scientifi c literature reporting links between various technological devices and 
sleep in school-aged children and adolescents. These reviews were later updated by 
Gradisar and Short [ 11 ] and more recently with a systematic review by Hale and 
Guan [ 12 ]. At the end of this section, we present an update of the original model, 
which now incorporates new moderating factors for the relationship between tech-
nology use and sleep. 

 After reviewing 36 papers, Cain and Gradisar [ 10 ] concluded that the majority of 
studies that investigated various devices, including televisions, computers/the Internet, 
and phones, found signifi cant relationships with primarily reduced total sleep time, 

1   By current data we mean that we wish to not provide an exhaustive review of studies in this area 
as this has already been performed; rather, we wish to focus on new studies that have provided new 
insights in this area. 
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but occasionally with a longer sleep latency and/or a later bedtime. The authors pre-
sented a model potentially explaining how technology use could affect sleep, which is 
not unlike the model presented at the end of this section. First was that technology use 
has been linked to a later bedtime. This was initially proposed by van den Bulck as the 
displacement hypothesis [ 13 ]. This hypothesis states that technology use displaces 
sleep by delaying bedtime. Second, some studies had provided evidence of increased 
physiological arousal (e.g., increased heart rate, body temperature, objective alertness 
via EEG trace) in the evening due to technology use (e.g., [ 14 ,  15 ]). This reduces the 
body’s preparedness for sleep [ 16 ]. The third potential mechanism was that the bright 
light from screens could potentially decrease evening levels of melatonin and even 
delay its onset. Finally, and although not contained within the model, Cain and 
Gradisar alluded to some evidence that electromagnetic radiation from devices (e.g., 
phones) had shown effects with altered sleep architecture and suppressing endoge-
nous melatonin [ 17 ,  18 ]. Cain and Gradisar [ 10 ] provided the fi rst illustrative frame-
work for future research to test these proposed mechanisms, yet explained:

  It would be useful for future studies to comprehensively test this model, using research 
designs that move beyond the correlational analyses which are prevalent in this area. (p.741) 

   Five years since this review, Hale and Guan [ 12 ] performed an updated systematic 
review of technology use and the sleep of children and adolescents. Their search 
results yielded a further 31 studies additional to those found in the Cain and Gradisar 
[ 10 ] review. This alone provided a clear indication of the popularity of researchers 
investigating this particular fi eld. Unfortunately, the vast majority of new studies 
were correlational in nature. Yet there had been some advances that not only helped 
to test Cain and Gradisar’s model but also began to fi nd that there were important 
moderators that heightened, or dampened, the link between technology use and sleep. 

 Several experimental studies have attempted to test the mechanism of  physiolog-
ical arousal  induced by technology use. For example, an increased heart rate was 
found in three studies [ 14 ,  19 ,  20 ], one testing Japanese young adults and two using 
older Swedish adolescents. However, the effects on sleep latency were anti- 
climactic, with an extension of objective sleep latency (via polysomnography 
[PSG]) of only 2.3 min and an extension of subjective sleep latency by up to 18 min. 
Two separate Australian studies could not detect differences in heart rate between 
their active and control conditions [ 15 ,  21 ], and both reported PSG sleep latency 
extensions of less than 5 min. It is worth noting that, for the exception of one study 
[ 14 ], studies asked participants to attempt sleep at their usual time. This avoids the 
confound of a buildup in sleep homeostatic pressure, which would decrease sleep 
latency the later young people attempted sleep. Thus, by holding bedtimes constant, 
researchers are able to more cleanly observe effects of physiological arousal on 
sleep due to technology use. However, as mentioned above, there has been little 
support for the physiological arousal-sleep mechanism. 

 The second mechanism to receive attention from experimental studies is the 
effect  screenlight  may have on the sleep of young people. Originally, Higuchi and 
colleagues [ 14 ] found little evidence for an effect on sleep from a dim vs bright 
screen, which was likely due to asking their young adult participants to attempt 

4 New Directions in the Link Between Technology Use and Sleep in Young People



72

sleep at 2 AM. In contrast, Cajochen et al. [ 22 ] found that compared to a dim lap-
top screen, using a bright screen for 5 h attenuated the natural rise in melatonin of 
their young adults and increased both objective and subjective alertness in the pre- 
bedtime period. This was possibly the fi rst evidence to confi rm bright screenlight’s 
effect on sleep. Unfortunately, sleep was not measured in this study. In 2012, Wood 
et al. [ 23 ] measured possible melatonin suppression effects from the screenlight of 
an iPad in their sample of young adults and adolescents. Although 1 h of screen-
light showed no signifi cant melatonin suppression, melatonin was signifi cantly 
suppressed after 2 h of bright screenlight. Again though, sleep was not measured. 
In 2014, Heath and colleagues [ 24 ] compared the effects from 1-h use of a dim vs 
bright iPad, as well as a fi ltered iPad screen (Fig.  4.1 ), on both pre-bedtime alert-
ness and subsequent sleep and next-morning functioning. Compared to the dim 
light condition, the bright screen induced greater cognitive alertness in the pre-
bedtime period, but no signifi cant effects were found for sleep (e.g., sleep latency, 
REM, or SWS sleep). However, the pre-bedtime alertness effects were of question-
able real- world signifi cance, with only a 23-ms difference for speed processing 
and 13 % difference in accuracy. Furthermore, pre-bedtime melatonin levels were 
not measured. Recently though, van der Lely and colleagues [ 25 ] designed an 
excellent study that measured the pre-bedtime alertness (subjective, objective, 
melatonin) as well as sleep and next-morning functioning of older adolescents. 
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  Fig. 4.1    Heath and colleagues [ 24 ] comparison of bright iPad screenlight ( left ) vs screen fi ltering 
short-wavelength light using the  f.lux  app ( right ;   stereopsis.com    )       
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Their fi ndings showed that 1.5 h (or more) of a bright screen attenuated the rise in 
evening melatonin and increased subjective alertness compared to wearing blue-
blocking glasses (designed to fi lter alerting short-wavelength light). However, no 
effects were found on sleep. The abovementioned studies all tested young people 
in a controlled laboratory setting on single nights, which thus suffer from poor 
external validity, as many adolescents use technological devices frequently 
throughout the week [ 26 ]. A study by Chang and colleagues [ 27 ] overcame this 
limitation by securing young adults in the laboratory for 14 consecutive days (and 
nights) and exposed them to either a brightly lit e-book or a printed book in dim 
light for 5 h each night for 5 days (counterbalanced). Their fi ndings not only con-
fi rmed a suppression of melatonin in the e-book condition but also a meaningful 
delay in circadian timing (by 1.5 h), providing the fi rst support for a circadian 
delay mechanism. Interestingly, although signifi cant effects were found for an 
increase in sleep latency from the e-book condition, this was only 10 min longer, 
which is not overly meaningful.

   Taken together, the abovementioned studies suggest that at least 1 h of bright 
screenlight can induce increased alertness (whether perceived or objective); 1.5 h of 
screenlight can suppress the natural rise in melatonin, but does not affect the sleep 
of young people. Thus, there is limited support for this mechanism in the relation-
ship between technology use and sleep. Chang et al. [ 27 ] have confi rmed a delay in 
circadian timing, yet these fi ndings require replication. Yet one question that remains 
is that if adolescents did use a bright screen and felt alert, would they continue to use 
their device beyond their usual bedtime? 

 There is a paucity of experimental research into the ability of technology use to 
 displace  young people’s bedtimes. Indeed, to our knowledge only one study has 
done so. Reynolds and colleagues [ 28 ] allowed older adolescents to play a novel 
video game for as long as they wanted. More importantly, the researchers antici-
pated that the teenagers would differ in when they would “switch off” and thus 
explored what characteristics might determine a later vs earlier bedtime. They found 
those adolescents who reported more consequences of risk-taking were more likely 
to cease video gaming and retire for bed. This study reinforces others which have 
shown that the link between technology use and sleep may be moderated by other 
characteristics, including gamer experience/habituation [ 20 ] and more recently 
parental involvement and fl ow [ 29 ] (Fig.  4.2 ).

   If we were asked to write this chapter a couple of years ago, this is where we 
would end, as we would not be considering the question: whether technology use 
affects the sleep of young people. However, our new work suggests otherwise.  

    How Much Technology Affects Sleep? 

 Much of the revised literature on technology use and sleep used binary signifi cance 
testing (which refl ects the nature of the science during this time). In other words, 
researchers were primarily testing whether there was a signifi cant relationship 
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between technology use and sleep, and signifi cance was usually defi ned as obtain-
ing a signifi cance level of  p  < 0.05. More recently, binary signifi cance testing has 
been criticized [ 30 ]. For example, a relationship may occur between two variables, 
but it may be so small that it does not mean much in the real world. 

 The fi eld of technology use and sleep seemingly neglected the size of the real- 
world effect between these two variables. However, a meta-analysis by Bartel et al. 
[ 31 ] was able to estimate the magnitude of the effects between various technologi-
cal devices and teenagers’ sleep, along with a multitude of other risk (and protec-
tive) factors. Surprisingly, the correlations between technological devices and sleep 
were negligible. The use of technology was not related to sleep latency, and only 
computer use was associated with a decrease in total sleep time. Technology did 
appear to correlate, to a small extent, with bedtime. Namely, as video gaming, 
phone use, computer use, and Internet use increased, bedtime became later [ 31 ]. 
Figure  4.3  provides an illustrative look of the relative protective and risk factors 
for adolescents’ sleep, including “technology use.” The segments of the pie chart 
demonstrate the percentage of variance from each factor. We have used the 
mean- weighted correlations between “technology use” and “sleep” (i.e., between 
Internet use and bedtime, which showed an  r  = 0.212) from the meta-analytical fi nd-
ings from Bartel and colleagues – thus, at best, technology use represents just a 
sliver of a contribution toward adolescents’ sleep. At a glance, there appear other 
more important contributions, including family infl uences (i.e., parent-set bed-
times, family environment). The most obvious piece is represented by the question 
mark. Normally, this would mean we do not know what this extra contribution is 
and may elect to claim it is a measurement error, other methodological anomalies, 
or simply things we do not know. However, Bartel and colleagues were unable to 
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meta- analyze biological contributions to teenagers’ sleep (i.e., circadian rhythm 
timing, sleep homeostasis, genetics), which are known to be major infl uences on 
teenagers’ sleep.

       Can Sleep Affect Technology Use? 

 At the outset of this chapter, we did state that we had two key questions, which we 
have addressed above. However, we knew, before the reader, that the current data are 
telling us that there is little effect between technology use and adolescents’ sleep. It 
follows then that we should not close our minds to the possibility that the relationship 
may occur the other way round – that increased technology use occurs  after  sleep 
becomes more problematic. After all, the majority of the scientifi c literature to date 
are correlational, and the limited experimental studies available suggest when one 
manipulates technology use, the resultant effect on sleep is small to meaningless. 

 Our insight into whether the technology use of adolescents occurs after sleep 
becomes problematic comes from a cross-sectional study of 2,546 Belgian adoles-
cents. The 2006 study, titled “Nodding off or switching off? The use of popular 
media as a sleep aid in secondary-school children,” was likely ahead of its time. 
Eggermont and van den Bulck [ 32 ] asked seventh- (13.2 years) and tenth-grade 
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  Fig. 4.3    Illustrative pie chart of the relative protective and risk factors for adolescents’ sleep 
(Derived from meta-analytic data from Bartel et al. [ 31 ])       
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(16.4 years) adolescents how often they used either computer games, television, 
books, 2  or music to  help them fall asleep . Respondents answered either  never , 
 rarely ,  sometimes , or  often . One in fi ve adolescents used television at least occasion-
ally as a sleep aid, one in ten used computer games, and one in three used books, but 
it was music that was used the most, with almost one in every two adolescents using 
music to help them fall asleep. Despite that only books led to an earlier bedtime, 
more sleep, and less next-day tiredness (compared to other sleeping aids), this was 
the fi rst study of teenagers exploring technology use as an aftereffect of trouble 
sleeping. We are likely overstating this claim, as technically adolescents were not 
asked to report if they had a sleep problem. We can only infer that by asking teenag-
ers if sleep onset was assisted with an associated technological activity, that at least 
for some adolescents, diffi culty initiating sleep may have occurred before the use of 
such technology. 

 Perhaps the best evidence to date attempting to answer the question about 
whether sleep can affect technology use comes from a prospective study of adults. 
Tavernier and Willoughby [ 33 ] followed 942 emerging adults (age at Time 
1 = 19.0 years) for 3 years and measured their average weekly hours of TV watch-
ing and online social networking (e.g., Facebook, Myspace, Twitter, e-mail, 
Messenger), as well as their typical sleep duration, as well as an adapted version of 
the Insomnia Severity Index (items included diffi culty initiating sleep, staying 
asleep, early morning awakening, and sleep satisfaction [ 34 ]), which provided a 
continuous variable known as “sleep problems.” Cross-lagged analyses showed 
that sleep problems at Time 1 predicted Time 2 television watching and online 
social networking, but the reverse relationship (i.e., technology use predicting later 
sleep problems) was not supported. Interestingly, no prospective relationships 
existed between technology use and sleep duration, which supports the meta-
analytical fi ndings in adolescents [ 31 ]. Nevertheless, these prospective fi ndings 
suggest young adults’ perceptions of their sleep, including perceived sleep diffi cul-
ties, are an important perspective for researchers to consider, as like bedtime data, 
diffi culties in sleeping appear to show signifi cant relationships with technology use 
(e.g., [ 35 ]).  

    Conclusions 

 When we began our fi rst discussions on planning this chapter about technology and 
sleep, we knew we wanted to “spin readers’ thinking” about this relationship. We 
do not mean to claim that using a technological device does not lead to sleep prob-
lems in young people. We have observed this, whether in our own children or 

2   Given the year of data collection, we presume the researchers referred to printed books as opposed 
to e-books. 

K. Bartel and M. Gradisar



77

teenagers presenting with sleep problems to our Child and Adolescent Sleep Clinic 
at Flinders University (Fig.  4.4 ), albeit temporarily. Instead, we believe we need to 
work harder than usual to convince readers that, overall, the effect between technol-
ogy use and sleep is small to negligible. If anything, we lack data to analyze whether 
technology use fi lls the void while young people wait for sleep onset to arrive [ 32 ]. 
Sleep problems may already exist in young people [ 36 ], and it is possibly better to 
avoid lying in the quiet darkness ruminating about past events and catastrophizing 
about future events [ 37 ,  38 ] by distracting oneself with a screen or the sound of 
music. The displacement hypothesis proposes that technology use may replace 
other activities, including sleeping [ 13 ]. So far, the data provide support for this 
hypothesis, as if anything, bedtime is related to technology use (more than sleep 
latency or sleep itself). However, there have been extremely few studies that have 
attempted to experimentally manipulate technology use and observe the effect on 
bedtimes [ 28 ]. If using technological devices accounts for at best 4 % of the varia-
tion in teenagers’ sleep (or more accurately, bedtimes; Fig.  4.3 ), then doesn’t this 
suggest we should turn our attention toward other culprits for why young people 
may sleep too little and too late [ 39 ]? We conclude this chapter by directing readers 
to Box  4.1 , which lists areas for future research – including areas that do not involve 
technology use.

  Fig. 4.4    ( Top ) Sleep diary of a 15-year-old male client who regularly plays online games in the 
evening. ( Bottom ) Sleep diary of the same client after treatment with motivational interviewing to 
reduce evening online gaming and a combination of evening melatonin and bright light therapy to 
phase advance his sleep timing       
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    Chapter 5   
 Sleep Laboratory Tests                     

     Suresh     Kotagal     

    Abstract     The spectrum of childhood sleep–wake disorders extends from sleep- 
disordered breathing to parasomnia, hypersomnias, and circadian rhythm disorders. 
Clinical history and examination help select the most appropriate diagnostic test. 
Nocturnal polysomnography is the gold standard for obstructive and central sleep 
apnea, while the multiple sleep latency test combined with polysomnography is 
utilized for the investigation of hypersomnias. Nocturnal seizures may mimic para-
somnias; hence, extended electroencephalographic monitoring may be required for 
investigating some nocturnal episodic phenomena. Practice parameters and 
evidence- based reviews on indications for polysomnography in children have been 
recently published. Actigraphy and sleep logs are helpful in investigating suspected 
circadian rhythm sleep disorders.  

  Keywords     Nocturnal polysomnography   •   Multiple sleep latency test (MSLT)   
•   Actigraphy   •   Sleep apnea   •   Hypersomnia   •   Parasomnias   •   Actigraphy  

      Introduction 

 Sleep disorders of infants and children are challenging to diagnose because of their 
diverse etio-pathology and changes in predilection of some disorders to specifi c 
age and developmental stage of the patient. Further, the clinical history varies in 
accuracy depending upon the perceptions, communication ability, and biases of the 
patient, or parent. Also, normal values for parameters of sleep–wake function tend 
to change with maturation of central nervous system (CNS) and respiratory control 
mechanisms. Clinical history and examination are often unable to enable accurate 
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diagnosis. Consequently, the sleep specialist has to periodically resort to labora-
tory tests to confi rm the diagnosis. The nature of the sleep laboratory test and 
specifi c, step-by-step instructions pertaining to the actual performance are heavily 
dependent upon the accuracy of the sleep history. Technological advances in 
sleep–wake monitoring systems hardware and software, combined with publica-
tion of adult and pediatric polysomnogram scoring guidelines [ 1 ], practice param-
eters on indications for polysomnography [ 2 ,  3 ], and older reviews of this topic [ 4 ] 
underscore the need for its reassessment. This chapter aims to provide an overview 
of tests commonly employed in the practice of pediatric sleep medicine. Figure  5.1  
helps to match sleep–wake symptoms with the appropriate type of investigation.

       Nocturnal Polysomnography 

    Technical Aspects 

 The test consists of the recording of multiple physiological parameters during sleep. 
Most often this includes two to three channels of electroencephalogram (EEG), eye 
movements, chin and leg electromyogram (EMG), oronasal airfl ow, nasal pressure, 
thoracic and abdominal respiratory effort, oxygen saturation, and end-tidal carbon 
dioxide. The scalp EEG montage generally consists of C4-M1, F4-M1, plus O2-M1. 
The International 10–20 system is utilized for appropriate placement of EEG elec-
trodes over the scalp [ 5 ]. Backup electrodes are placed at similar locations over the 
opposite scalp sites. Electrodes are fi xed using collodion or paste while ensuring 
that the electrode impedance is kept low, i.e., below 5 kΩ. This helps to minimize 
picking up of extraneous artifact by the electrodes. The centrally placed EEG elec-
trodes help to sample vertex sharp transients and sleep spindles, while occipital 
leads help to distinguish the waxing and waning amplitude alpha rhythm of wake-
fulness from the alpha to theta transition that is typical of stage N1 sleep as well as 
the predominant delta rhythm of stage N3, which is usually <4 Hz and >75 uv 
amplitude. In case of suspected nocturnal seizures, placement of a minimum 
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  Fig. 5.1    Matching sleep–wake disturbance to sleep laboratory tests       
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16-channel EEG montage is recommend. The usual sensitivity for EEG recording is 
7 uv/mm, though it may need to be decreased to 10–15 uv/mm if the amplitude of 
the activity is too high, as happens in preschool-age children. Eye movements are 
generally recorded using a left outer canthus–right outer canthus montage, with the 
electrodes being placed in a slightly oblique plane in order to capture both horizon-
tal and vertical eye movements. The transition from wakefulness into N1 sleep is 
associated with the onset of slow rolling eye movements, while transition to REM 
sleep is associated with rapid eye movements. Monitoring of end-tidal CO2 is 
essential in all patients to capture hypoventilation. If the EtCO2 sensor (it yields 
breath by breath values) is not tolerated by infants and toddlers due to anxiety or 
increased perioral sensitivity, a transcutaneous CO2 sensor can be utilized (this 
yields a trended value). For sampling the chin EMG, 2–3 electrodes need to be 
affi xed under the chin. The absolute amplitude of the EMG is not relevant, but the 
relative changes in amplitude help distinguish wakefulness, NREM sleep, and REM 
sleep from each other. 

 Data are recorded and stored in a computerized polysomnogram system which is 
composed of preamplifi ers for both alternative current (AC) and direct current (DC) 
input. The AC channels are useful for recording EEG, EMG, and eye movements, 
whereas the DC channels help record slow biopotentials like respiratory effort. 
Sleep is scored in 30 s epochs by the attending technologist, with subsequent verifi -
cation of the scored record by a certifi ed polysomnographer. Nap sleep studies are 
not recommended as the quantity and type of sleep sampled are variable. Only 
technician- attended, all night sleep studies are recommended. The technical guide-
lines for scoring sleep and sleep-related events have been published by the American 
Academy of Sleep Medicine. 

 For infants of age 2 months or less, sleep can be scored simply as active or 
quiet sleep, i.e., REM and NREM sleep. A low-voltage, irregular pattern is asso-
ciated with active sleep while a high-voltage, slow pattern is characteristic of 
quiet sleep. After age 2 months, the standard criteria that are utilized in children 
and adults can be applied, with breakdown of NREM sleep into N1, N2, and N3 
categories. For details about sleep scoring, the reader is again referred to the scor-
ing manual of the American Academy of Sleep Medicine [ 1 ]. Parameters scored 
in polysomnography include start time, stop time, total time in bed, total sleep 
time, sleep effi ciency, percentage of time spent in the various sleep stages, arous-
als per hour of sleep, percentage of arousals related to respiratory events, total 
number of apneas and hypopneas with attention to occurrence in REM or NREM 
sleep and relationship to body position, oxygen saturation nadir and mean, EtCO2 
nadir, high and mean, percent of time with EtCO2 greater than 50 mm, frequency 
of periodic limb movements, and comments about any unusual events observed in 
the simultaneous video recording. A fl attened contour on the nasal pressure trac-
ing may be indicative of the upper airway resistance type of obstructive sleep 
apnea. The polysomnogram report should provide data in a tabular form, coupled 
with narrative about the overall impression and recommendations of the 
polysomnographer.  
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    Indications 

 The defi nitions of levels of evidence utilized by the AASM and how emphatic the 
recommendation are for PSG in specifi c sleep disorders are shown in Table  5.1  [refs 
 2 – 4 ]. The investigation of sleep-disordered breathing is a major indication for PSG 
(Standard). This includes habitual snoring, suspected obstructive sleep apnea, 
obstructive hypoventilation, central sleep apnea, and congenital central hypoventi-
lation syndrome. Monitoring of end-tidal carbon dioxide (EtCO2) or, if this is not 
available, transcutaneous carbon dioxide is mandatory for assessing hypoventila-
tion – this is a major component of sleep-disordered breathing in Down syndrome, 
Prader–Willi syndrome, obesity, neuromuscular disorders, and kyphoscoliosis. 
Reference values for respiratory parameters differ from those of adults. For instance, 
the duration of obstructive apneas in children is generally in the 5–10 s range (two- 
breath duration), whereas in adults, scored obstructive apnea events are invariably 
10 s or longer in duration. The investigation of excessive daytime sleepiness, includ-
ing suspected narcolepsy, requires a PSG followed the next day by the multiple 
sleep latency test (MSLT). This recommendation is also at Standard level (Table  5.1 ). 
A key tenet in narcolepsy is that there is excessive daytime sleepiness despite ade-
quate sleep duration at night. PSG is also indicated in nonverbal children with sus-
pected restless legs syndrome/periodic limb movement disorder in order to document 

    Table 5.1    AASM level of recommendation for polysomnography and sleep disorder   

 Level  Defi nition  Disorder 

 Standard  This is a generally accepted 
patient care strategy that 
refl ects a high degree of 
clinical certainty and 
generally implies the use of 
level 1 evidence or 
overwhelming level 2 
evidence 

 Periodic limb movement disorder 
 Narcolepsy 
 Diagnosis of obstructive sleep apnea, to evaluate 
for residual obstructive sleep apnea after 
adeno-tonsillectomy; follow-up of children on 
chronic PAP support, for PAP titration 

 Guideline  This is a patient care strategy 
that refl ects a moderate 
degree of clinical certainty 
and implies the use of level 2 
evidence or a consensus of 
level 3 evidence 

 NREM parasomnias, epilepsy, nocturnal enuresis, 
assessment of sleep-related hypoventilation, 
apparent life-threatening event 

 Option  This is a patient care strategy 
that refl ects uncertain 
clinical use and implies 
either inconclusive or 
confl icting evidence or 
confl icting expert opinion 

 Restless legs syndrome, when supportive 
information is needed for diagnosis; hypersomnia 
from causes other than narcolepsy; follow-up of 
children needing oral appliance or rapid maxillary 
expansion; patients on mechanical ventilation for 
adjustment of their machine settings; tracheostomy 
patients being considered for decannulation, if 
there is suspicion of a sleep disorder in cystic 
fi brosis/asthma/kyphoscoliosis/pulmonary 
hypertension 
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presence of periodic limb movements in sleep. In this regard, preschool- age chil-
dren are often candidates for PSG. Reference values for the periodic limb move-
ment index in children have been extrapolated from adults at 5 or less. With regard 
to parasomnias, PSG is not indicated routinely as clinical history may be suffi cient 
to make a diagnosis. If there are recurrent parasomnia-like events or if one is unable 
to exclude the diagnosis of nocturnal seizures, however, PSG is indicated. The 
investigation of nocturnal seizures requires the utilization of a 16–18 channel EEG 
montage. REM sleep behavior disorder may accompany daytime sleepiness in chil-
dren with narcolepsy–cataplexy; hence, when PSG is being conducted for diagnos-
ing narcolepsy, it is important to carefully examine segments of REM sleep for the 
presence of the electrophysiological marker of RBD, i.e., persistence of muscle tone 
during REM sleep, which is also called REM sleep without atonia.

       Limitations 

 PSG is the gold standard procedure for the investigation of many childhood sleep 
disorders. It is however an expensive and labor-intensive tool. Patient and parent 
anxiety about the procedure may affect variables such as sleep latency, REM latency, 
and sleep effi ciency. There might also be some degree of night to night variability in 
parameters like periodic limb movement index. Alternative strategies for diagnos-
ing obstructive sleep apnea include home overnight oximetry. This procedure has 
limited sensitivity, however, and may be positive only in severe cases. Consequently, 
if oximetry is noninformative in a child with suspected OSA, one might still need to 
resort to PSG. The Pediatric Sleep Questionnaire (PSQ) and the Sleep Disturbance 
Scale for Children (SDSC) may be applied for screening for sleep-disordered 
breathing [ 6 ,  7 ], but PSG is unfortunately still necessary to confi rm the diagnosis.   

    Multiple Sleep Latency Test (MSLT) 

 In combination with the nocturnal polysomnogram, the MSLT forms the gold stan-
dard in the assessment of daytime sleepiness in both children and adults. This 
applies especially to the diagnosis of narcolepsy and idiopathic hypersomnia. The 
strengths of the test lie in its intuitive design (sleepy individuals are likely to fall 
asleep more quickly in the daytime than those who are not sleepy), its reliability, 
and the availability of normative data across various ages [ 8 ]. 

 The lower age limit at which one can apply the MSLT seems to be 5–6 years [ 9 ]. 
Application of the MSLT in children younger than this age is diffi cult because phys-
iological daytime napping is common in preschool-age children. To the extent pos-
sible, the total sleep time on the preceding night’s PSG must be similar to the sleep 
duration at home. As sleep loss in the days prior to the MSLT may infl uence the test 
fi ndings, the parents should be advised to keep a log of the patient’s sleep–wake 
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schedule for 1–2 weeks prior to the MSLT. Alternatively, wrist actigraphy for 
1–2 weeks prior to the PSG and MSLT can be utilized to gauge sleep time and sleep 
schedules at home. Medications that can infl uence sleep, such as stimulants/antide-
pressants/benzodiazepines/antihistamines, should be discontinued at least 2 weeks 
prior to the test. Long-acting selective serotonin reuptake inhibitors like fl uoxetine 
that suppress REM sleep may need to be stopped for 4–6 weeks prior to the PSG 
and MSLT. The decision to stop antidepressants for the purpose of obtaining valid 
PSG and MSLT should be carefully thought out after weighing the risks and bene-
fi ts. A discussion with the prescribing physician is also indicated in this regard. The 
patient’s general physical examination should include a Tanner staging of sexual 
development as normal values for the mean sleep latency in children vary according 
to individual stages (Table  5.2 ; [ 10 ]). The test consists of the provision of four or 
fi ve daytime nap opportunities at two hourly intervals, e.g., 0900, 1100, 1300, 1500, 
and 1700 h, during which the EEG, chin EMG, and horizontal as well as vertical eye 
movements (using at least two channels) are monitored. The time constant for the 
electrooculogram should be long enough to allow for the recording of slow, rolling 
eye movements seen at the onset of N1 sleep (250 ms). Electrode impedances 
should be below 5 kΩ.

   At the designated hour, usually starting 2 h after the fi nal morning awakening 
from the PSG, the lights are turned off, and the patient is encouraged to relax, close 
eyes, and to try to fall asleep while the electrophysiologic parameters are being 
monitored. For each nap, the time from “lights out” to sleep onset is termed the 
sleep latency. The nap is continued for 15 min after sleep onset. Thus, theoretically, 
if the patient does not fall asleep in the nap till min 19, the test is continued for a 
total of 34 min (15 + 19) from the time of commencement of the nap recording. If 
the patient does not fall asleep by min 20, the nap opportunity is terminated, the 
lights are turned on, and the sleep latency is designated as 20 min. An identical 
protocol is followed during all four to fi ve nap opportunities. The patient is kept 
awake in between the nap opportunities. The assistance of the parents is helpful in 
this regard. The mean sleep latency is the average of the sleep latency derived from 
all fi ve naps. Normal values for the pediatric MSLT that have been adapted from a 
single night’s polysomnogram are listed in Table  5.2 . Mean sleep latencies for pre-
pubertal children are higher than those of adults, approximating 16–18 min. The 

    Table 5.2    Reference values for the MSLT   

 Tanner stage 
 General corresponding age 
(years) 

 Mean sleep 
latency  Standard deviation 

 Stage 1  <10  18.8  1.8 
 Stage 2  10–12  18.3  2.1 
 Stage 3  11.5–13  16.5  2.8 
 Stage 4  13–14  15.5  3.3 
 Stage 5  >14  16.2  1.5 
 Older teenagers  >14  15.8  3.5 

  Data from Carskadon [ 10 ]  
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MSLT is however well suited for diagnosing narcolepsy, in which the mean sleep 
latency is invariably below 8 min [ 3 ]. Daytime sleep latencies for MSLT naps paral-
lel the circadian drive for wakefulness, with increased sleep propensity in the after-
noon (low sleep latency). 

 The MSLT also helps evaluate whether the transition from wakefulness into 
sleep is into REM or NREM sleep. A sleep-onset REM period (SOREMP) is defi ned 
by the occurrence of REM sleep within 15 min of sleep onset. About 80 % of patients 
with narcolepsy show two or more SOREMPs during the MSLT [ 11 ]. If the patient 
manifests a SOREMP on the polysomnogram obtained on the night prior to MSLT, 
one needs to document only one SOREMP on the latter study for making a diagno-
sis of narcolepsy [ 12 ]. False-negative results may occur in the early stages of child-
hood narcolepsy, when the patient may manifest daytime somnolence documented 
by reduced mean sleep latencies, but only 0–1 SOREMPs. Further, one must also 
recognize that otherwise healthy teens may at times show a SOREMP during the 
fi rst nap of the MSLT. 

 There is level 1 evidence regarding the clinical utility of MSLT in the diagnosis 
of narcolepsy. With regard to hypersomnia disorders other than narcolepsy, such 
as idiopathic hypersomnia or Kleine–Levin syndrome, however, there is less 
available evidence. Nevertheless, the MSLT is still utilized in diagnosis of these 
disorders based on empiric, clinical rationale. In adults, the sensitivity of the 
MSLT in the diagnosis of narcolepsy in adults has been reported to be around 
~61 % [ 13 ]. There was no major difference in the diagnostic sensitivity of the test 
between patients who manifested narcolepsy with cataplexy versus those having 
narcolepsy without cataplexy. The diagnostic specifi city for narcolepsy in adults 
has been reported to be ~94 % [ 13 ] when two or more SOREMPs are present. In 
children, the diagnostic sensitivity of the MSLT for the diagnosis of narcolepsy is 
79–100 % [ 3 ,  4 ]. 

    Merits and Limitations of the MSLT 

 One advantage of the MSLT is that it has been reliably validated as a tool for assess-
ing sleep propensity in several conditions such as sleep loss [ 8 ,  10 ] and sleep disrup-
tion [ 14 ] and the effects of hypnotics and alcohol [ 15 ,  16 ]. It measures the propensity 
for daytime sleepiness at multiple times of the day and provides numerical values 
which correlate with the level of sleepiness. A disadvantage is that it cannot accu-
rately assess the effects of treatment, e.g., if there is a reliable increase in sleep 
latency after starting stimulant medication for narcolepsy treatment. Also, while one 
can control external variables like noise and light that impact sleep latency, the 
MSLT can in no way control for intrinsic variables that impact sleep latency such as 
anxiety or emotional disturbance. The issue of whether the MSLT in children should 
consist of four naps or fi ve naps has not been adequately studied. Based on clinical 
experience, however, it is this author’s opinion that a four-nap test is generally suf-
fi cient to diagnose narcolepsy.   
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    Maintenance of Wakefulness Test (MWT) 

 The MWT is the mirror-image opposite of the MSLT. It measures the ability of the 
patient to stay awake in a darkened, quiet environment during the daytime [ 17 ]. 
Electrodes are applied for monitoring the EEG, eye movements, and chin EMG in a 
manner identical to the MSLT. The patient is provided fi ve nap opportunities at two 
hourly intervals. The patient is advised to take the usual sleep-related medications 
in the morning, including stimulants. The MWT has been found useful in adult 
subjects in the assessment of effects of medications on sleepiness; for example, in 
the follow-up of patients with narcolepsy for quantifying the level of improvement 
following therapy with stimulant medications, or to determine the presence of a 
“carryover” effect of daytime sleepiness after nighttime hypnotic administration. In 
the management of children and adolescents with narcolepsy, the test may provide 
an estimate of the degree of residual sleepiness despite taking medications such as 
stimulants. Information derived from the MWT may help in adjustment of the total 
daily dose or of the time of administration of narcolepsy-related medications [ 18 ]. 
On other occasions, teens with chronic daytime sleepiness may wish to drive, for 
which this test may provide guidance. While the driving issue is best dealt with on 
a case by case basis, the clinician may utilize MWT data to help decide whether or 
not it will be safe for the patient to drive (author’s opinion).  

    Actigraphy 

 This miniature device is about the size of a large wristwatch and can be conve-
niently strapped around the wrist. It consists of an acceleration sensor that translates 
physical motion into a numeric representation [ 19 ]. This numeric representation is 
sampled at regular intervals, e.g., every 0.1 s, and aggregated at a constant interval 
or epoch. Ambient illumination can also be recorded. The epoch length is usually 
1 min. The stored movement data may be transferred to a computer for display, 
scoring, interpretation, and printing of results. By convention, the device is usually 
strapped to the non-dominant wrist. For deriving meaningful inferences about 
sleep–wake schedules, the duration of actigraph recordings has to be 1–2 weeks. 
Actigraphy is able to provide reliable data about average values of total time in bed, 
total sleep time, sleep effi ciency, and sleep onset and offset times and if there has 
been excessive muscle activity during sleep. 

 Major indications for actigraphy include the investigation of insomnia and sus-
pected circadian rhythm sleep disorders, e.g., delayed sleep phase syndrome. In 
patients with suspected narcolepsy, the actigraph recording can help ascertain 
whether there was adequate sleep at night prior to conducting PSG and 
MSLT. Actigraphy is also indicated for the investigation of sleep–wake problems of 
children with neurodevelopmental disorders such as autism and attention defi cit 
hyperactivity disorders and to document treatment responses [ 20 ]. Conventional 
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polysomnography may be diffi cult to obtain in this patient population due to lack of 
cooperation. Sadeh et al. [ 19 ] have found that the minute-by-minute agreement 
between actigraphic scoring and polysomnographic scoring was 90.2 % for normal 
adults and 89.9 % for children [ 21 ]. 

    Utility and Limitations 

 Actigraphy is an excellent tool for the investigation of circadian rhythm disorders 
and insomnia. Advantages include its noninvasive nature and the ability to gather 
longitudinal information about sleep–wake function in the home environment over 
a 2–3-week period. It is relatively inexpensive when compared to nocturnal poly-
somnography. Actigraphy is however unable to reliably differentiate REM from 
NREM sleep or assess sleep-disordered breathing. In-depth information about sleep 
architecture, e.g., percentage of time spent in various sleep stages or sleep electro-
encephalographic events, also cannot be determined.   

    Dim Light Melatonin Onset (DLMO) 

 Melatonin is a major sleep-inducing and sleep-maintaining hormone that is pro-
duced in the pineal gland following sympathetic neural activation by the suprachi-
asmatic nucleus (SCN) of the hypothalamus. The SCN, in turn, is responsive to 
activation by light input from the retinohypothalamic pathway. There is generally 
good correlation between serum and salivary levels of melatonin. A rise in serum/
salivary levels of melatonin usually occurs 2–3 h prior to sleep onset (dim light 
melatonin onset or DMLO) and signals sleep onset. DLMO is the most reliable 
measure of the timing of the circadian clock [ 22 ,  23 ]. The melatonin secretion 
rhythm is not affected by the rest–activity cycle, prior sleep, activity, or stress [ 24 ]. 
Melatonin has low levels during the daytime. Onset of darkness brings on a gradual 
rise in melatonin secretion. Typically, salivary or serum samples are collected every 
30 min for 6 h prior to sleep onset. As melatonin secretion is very sensitive to per-
turbation by ambient light exposure, the sample gathering is done in dim light (less 
than 30 lx). The samples are analyzed using radioimmunoassay techniques. The 
time of the clock at which there is a rise in melatonin levels by two standard devia-
tions above the mean of three daytime values is termed DLMO [ 25 ]. The signifi -
cance of DLMO is that it is the most reliable measure of activity of the SCN. A 
disadvantage of the DLMO testing process is that it requires considerable patient 
cooperation as well as involvement of sleep laboratory technical staff if the patient 
has a neurodevelopmental disability. DLMO is indicated in the investigation of cir-
cadian rhythm disorders such as delayed sleep phase syndrome, advanced sleep 
phase syndrome, irregular sleep phase syndrome, and irregular sleep–wake rhythms. 
Disorders in which there is inversion of melatonin secretion, with low levels at night 
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and higher secretion during the daytime, such as Smith–Magenis syndrome, may 
require round-the-clock sampling. Based upon longitudinal studies of DLMO, 
Carskadon et al. have lately raised an intriguing possibility of a decline in the pineal 
secretion of melatonin around puberty [ 26 ]. This might be one of the mechanisms 
underlying the sleep-onset phase delay that occurs in adolescents.  

    Sleep Survey Instruments 

 There are several excellent, clinically validated survey instruments that can be uti-
lized in clinical practice and clinical sleep research. Only a few sleep survey instru-
ments are reviewed here. Detailed reviews of the approximately 70 published survey 
instruments are available [ 27 ,  28 ]. Based upon the nature of patients in the practice, 
the sleep clinician should become familiar and comfortable with use of at least two 
to three survey instruments. In this era of rising healthcare costs where expensive 
and labor-intensive tools like PSG have limited in access, it is critical for the clini-
cian to utilize survey instruments when possible. Assessment of treatment outcomes 
is also facilitated by the longitudinal use of sleep questionnaires. 

 The  Children’s Sleep Habits Questionnaire  (CSHQ) is a 45-item validated ques-
tionnaire that asks parents to respond to questions about sleep–wake function of 
their child in the preceding 2 weeks. It is applicable to children between 4 and 
10 years of age [ 29 ]. The eight domains of sleep disturbance that are addressed by 
CSHQ include bedtime resistance, sleep-onset delay, sleep duration, sleep anxiety, 
night awakenings, parasomnias, breathing disturbance, and daytime sleepiness. 
Responses are categorized as rarely, sometimes, or usually. Scores of 41 or greater 
correlate with a sleep disorder. The internal consistency of this questionnaire in a 
community sample of 4–10 year olds was 0.36–0.70, while the test–retest reliability 
over a 2-week period was 0.62–0.79 [ 29 ]. 

 The  Sleep Disturbance Scale for Children  [ 7 ] is applicable to children 5–15 years 
of age. It is completed by the parent. Time consumed for survey completion is about 
10 min. There are 27 items, with responses arranged on a 1–5 Likert scale. It is use-
ful for evaluating insomnia, hypersomnia, parasomnias, and sleep-related respira-
tory disturbances. The questionnaire was developed after study of a large, 
predominantly urban, working, and middle-class Caucasian population from four 
public schools in Rome. It has excellent internal reliability (Cronbach’s α 0.79 in a 
community sample and 0.71 in sleep disorder subjects). Test–retest reliability is also 
very good ( r  = 0.71). 

 The  Pediatric Sleep Questionnaire  [ 6 ] was developed for use in children ages 
2–18 years. It’s most commonly used 22-item sleep-disordered breathing subscale 
has sensitivity of 0.85 and specifi city of 0.87 for sleep-disordered breathing. The 
scale is completed by the parent. The sleep-disordered breathing subscale takes 
5–10 min for completion. Reference values for this scale are <0.33, and scores 
higher than this are generally associated with childhood obstructive sleep apnea. 
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 The  Pediatric Daytime Sleepiness Scale  [ 30 ] is a self-report questionnaire, appli-
cable to children 11–15 years of age. It was validated in a sample of 450, sixth to 
eighth grade students at a middle school, with 90 % of the sample being white, 
reminder being a mix of other ethnicities. It has eight items that are scored on a 0–4 
Likert scale, with scores higher than 16–18 indicative of sleepiness. It has good 
internal consistency (Cronbach’s α 0.81)  

    Conclusions 

 Sleep laboratory tests yield accurate information and help guide management when 
they are integrated into the overall clinical assessment along with history and physi-
cal examination. Survey instruments are valuable in baseline and longitudinal 
assessment and in assessing impairments in the quality of life. Though there has 
been a shift toward unattended in-home polysomnography in adults, the indications, 
utility, and limitations of home sleep studies in children need study. The MSLT 
remains the gold standard test for study of daytime sleepiness. It is likely that with 
advances in the biomedical fi eld, there will be further qualitative improvements in 
the assessment of sleep–wake function of children.     
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    Chapter 6   
 Sleep Structure and Scoring from Infancy 
to Adolescence                     

     Raffaele     Ferri      ,     Luana     Novelli     , and     Oliviero     Bruni    

    Abstract     From birth to adolescence, substantial changes occur in sleep temporal 
organization, percentage of stages, and electroencephalographic patterns. A well- 
developed circadian rhythm is evident after 3 months of age, subsequently enriched 
by the appearance of an adult ultradian sleep cycle, after 9 months of age. In new-
borns, the NREM/REM alternation is included in a “polycyclic” sleep-wake pat-
tern, as opposed to the “monocyclic” pattern, typical of adulthood/adolescence. 
While newborns sleep for about 60 % of the day, with increasing age the amount of 
daytime sleep shows a reduction and nighttime sleep becomes more stable and con-
tinuous, becoming somewhat consolidated starting from 12 months of life, when it 
lasts on average 12 h/night vs. 10 h of a 3-month-old baby. Sleep spindles appear as 
early as 4 weeks but are present in all subjects after 8 weeks of age; in infants and 
children, they are generally bilateral but asynchronous. K-complexes are well 
defi ned at 6 months of age, being most evident in the frontal areas. K-complex 
maturation progresses rapidly for the fi rst 2 years of life. Slow-wave activity, the 
major feature of sleep, appears around 2 months of age, and its amplitude increases 
abruptly during the fi rst years of life, peaking in childhood, and then declining 
across adolescence. After the manual developed by Anders et al. in 1971 for sleep 
scoring from birth to 4 months of age, the American Academy of Sleep Medicine 
more recently provided two sets of rules: one for scoring sleep in infants (<2 months) 
and another for scoring sleep in children. Finally, sleep microstructure can be 
assessed by the analysis of the cyclic alternating pattern (CAP) also in children; 
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CAP rate shows a clear increasing trend with age, but the distribution of the differ-
ent A subtypes (slow and fast) undergoes complex and different changes.  

  Keywords     Sleep stage development   •   Sleep spindles   •   K-complexes   •   Slow-wave 
EEG activity   •   Sleep scoring   •   Active sleep   •   Quiet sleep   •   Cyclic alternating pattern  

      Introduction 

 Age and development are probably the most important key factors that regulate human 
sleep. From birth to adolescence, substantial changes occur in quality and quantity of 
sleep, its temporal organization, percentage of states of vigilance, and electroencepha-
lographic (EEG) activity patterns. An important aspect is the fact that in infants, the 
features of the sleep EEG are determined not by chronological age (CA, number of 
days or weeks following birth) but by gestational age (GA, the time elapsed between 
the fi rst day of the mother’s last menstrual period and the day of delivery, expressed in 
completed weeks). Knowing an infant’s GA is crucial for interpreting normality, imma-
turity, or abnormality of a sleep EEG. In fact, both brain and EEG develop and mature 
at a similar rate, independent of whether the infant is in utero or postdelivery [ 1 ]. 

 A well-developed circadian rhythm is evident after 3 months of age, which is 
subsequently enriched by the appearance of an adult ultradian sleep cycle, after 
9 months of age. Anders and Keener [ 2 ] described in newborns a NREM/REM 
alternation within a “polycyclic” sleep-wake pattern, as opposed to the “monocy-
clic” pattern, typical of adulthood/adolescence. 

 Easily measurable age-dependent changes are those concerning the sleep total 
amount and percentage distribution during the day. Newborns sleep for about 60 % 
of the day; with increasing age, the amount of daytime sleep shows a reduction and 
nighttime sleep becomes more stable and continuous [ 3 ]. The consolidation of noc-
turnal sleep starts to be evident from 12 months of life. At 12 months, a baby sleeps 
on average 12 h/night vs. 10 h of a 3-month-old baby [ 4 ]. 

 Also the duration of sleep cycles changes with age, 60 min at 3 years vs. 120 min 
at 7 years, as well as the duration of total sleep, characterized by a progressive 
decrease from birth to elderly [ 4 ].  

    Key Sleep EEG Features During Infancy and Adolescence 

    Sleep Spindles 

 During the fi rst 3 months of life, fundamental changes occur in the sleep EEG. Sleep 
spindles, a typical feature of stage 2 sleep, represent one of the EEG activities 
mostly infl uenced by age. Ellingson and Peters [ 5 ] reported that rolandic sleep spin-
dle bursts appear in some subjects as early as 4 weeks post-term but are present in 
all after 8 weeks of age. Also, sleep spindles in infants and children have been 
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reported to be generally bilateral but asynchronous [ 6 ]. Age-dependent changes also 
affect spindle duration and amount. Spindle density (number of spindles/min) 
reaches a peak between 4 and 9 months [ 7 ,  8 ]; subsequently, there is an evident 
increase that reaches a plateau at 5 years, persisting up to 16 years of age [ 9 ]. Jenni 
et al. [ 10 ] found, using spectral EEG analysis, a progressive increase in sigma activ-
ity from 3 to 9 months of age, confi rming the age-dependent upward trend. 

 Rudimentary sleep spindles fi rst appear at 43–48 weeks CA at the midline cen-
tral (vertex) region. In infants, sleep spindles are often low-voltage 12–14 Hz, not 
the wider range of 11–16 Hz seen at later ages [ 11 ]. With respect to their scalp topo-
graphic location, Gibbs et al. [ 12 ] fi rst reported the presence of two types of sleep 
spindles: slow (11–12 Hz) prevalent over the frontal regions and fast (14 Hz), peak-
ing over the central and parietal scalp regions. The two types of spindle activities 
seem to show different courses of maturation. The peak frequency of the centro- 
parietal spindles gradually increases with age, while frontal spindles decrease 
remarkably in power and become stable at about 13 years of age. The two types of 
spindles and the difference in their development may suggest the existence of dif-
ferent generators or a topographical difference during maturation in the thalamocor-
tical network; the above authors suggested that frontal spindle activity could be a 
good indicator to evaluate CNS maturation in young children and adolescents.  

    K-Complexes 

 Another important phasic activity typical of sleep is the K-complex. Metcalf et al. [ 13 ] 
reported that K-complexes usually appear at 5 months post-term but are well defi ned 
by 6 months, being most evident in the frontal areas. K-complex maturation pro-
gresses rapidly for the fi rst 2 years of life; then it slows down, although with increased 
variability, until the age of 5 years, progressing again toward a relative plateau in 
development at about 12 years of age [ 13 ]. At their fi rst appearance, K-complexes are 
often characterized by low amplitude and long duration, while the faster negative 
component appears between 3 and 5 years of age and becomes more evident in ado-
lescence [ 14 ]. From 3 to 9 years of age, K-complexes generally occur in rapid and 
repetitive runs, three to nine in 1–3 s, while from the adolescence their frequency 
decreases to 1/2–3 s [ 15 ]. K-complex frequency and amplitude decrease with age, in 
parallel with the decrease of spindle density and delta band power, and this fact can be 
attributed to the age-related changes of thalamocortical regulatory mechanisms [ 16 ].  

    Slow-Wave EEG Activity 

 Slow-wave activity (SWA) is probably the major feature of sleep and shows remark-
able age-dependent changes. SWA appears around 2 months of age [ 10 ], and the 
amplitude of sleep slow waves increases abruptly during the fi rst years of life [ 17 ], 
reaching a maximum in early childhood, and then declining markedly across 
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adolescence [ 18 – 21 ]. This observation encouraged the hypothesis that during ado-
lescence the human brain undergoes an extensive reorganization driven by synaptic 
elimination [ 22 ]. 

 Jenni et al. [ 23 ] showed also that the nocturnal dynamics of sleep homeostasis 
are independent of the EEG derivation and remain stable across puberty; in fact, in 
both Tanner 4/5 and Tanner 1/2 adolescents, the decay rate of the sleep homeostatic 
process (refl ected by the exponential decline of the 2 Hz EEG power band across the 
sleep episode) did not differ for derivations or groups. In this perspective, SWA may 
be considered to be a brain maturation index, and this fi nding might have several 
important clinical implication.   

    Sleep Staging 

 The manual developed by Anders et al. [ 24 ] in 1971 provides guidelines for sleep 
scoring from birth to 4 months of age, in normal full-term newborns. However, the 
increased knowledge of all the abovementioned age-dependent changes regarding 
the most important sleep activities has been central for the arrangement of more up- 
to- date criteria for sleep scoring, and the American Academy of Sleep Medicine 
[ 11 ] has more recently provided, in a new version of its scoring manual, two distinct 
sections: one concerning the criteria for scoring sleep in infants and another on the 
criteria of scoring sleep in children. 

 Sleep stage scoring is based on three basic measurements: the EEG, electroocu-
logram (EOG), and electromyogram (EMG). Also, especially in infants, heart rate, 
respiratory movements, airfl ow, and oxygen saturation are monitored and turn out 
to be essential for an appropriate sleep staging. 

    Anders Scoring Rules for Full-Term Newborns 

 Anders et al. [ 24 ] classifi ed sleep from birth to 4 months of age into three states: 
active sleep (AS), quiet sleep (QS), and indeterminate sleep (IS); they further pre-
sumed that QS and AS were, respectively, antecedents of NREM and REM sleep. 
They recognized and defi ned also three states of wakefulness (“crying,” “active 
awake,” and “quiet awake”). 

 Quiet sleep is characterized by minimal large or small muscle movements, and 
rhythmic breathing cycles, absence of eye movements; EEG shows typically slow 
waves and tracé alternant. 

 During active sleep, sucking motions, twitches, smiles, frowns, irregular breath-
ing, and gross limb movements (converse to the typical REM sleep paralysis seen at 
later ages) are seen. Figure  6.1  shows examples of QS and AS in a 3-month-old infant.

   Indeterminate sleep is the period of sleep that cannot be polysomnographically 
defi ned as either active or quiet sleep by predetermined criteria. EEG reveals low- 
voltage irregular activity or mixed activity.  
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    AASM Sleep Scoring Rules for Infants 

 The AASM manual recommends to apply these scoring rules in infants aged 
0–2 months post-term (37–48 weeks CA). Sleep and wakefulness in infants 
38–48 weeks CA are scored based on behavioral observation; regularity or irregu-
larity of respiration; and EEG, EOG, and chin EMG patterns. We can distinguish 
four behavioral stages:

•    Stage W (wakefulness)  
•   Stage N (NREM)  
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  Fig. 6.1    Quiet sleep and active sleep in a 3-month-old infant       
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•   Stage R (REM)  
•   Stage T (transitional)    

  Stage W  can be scored if the following features are detected: eyes open for the 
major part of the epoch, vocalization (whimpering, crying, etc.) or actively feeding, 
sustained chin EMG tone with bursts of muscle activity, irregular respiration, and 
EEG background of continuous, symmetrical, irregular, low-to-medium amplitude 
mixed frequencies. EEG frequencies may include (a) irregular theta and delta activ-
ity, (b) diffuse irregular alpha and beta activity, (c) rhythmic theta activity, or (d) 
artifacts from body movements and eye movements. 

  Stage N  ( NREM ) can be scored if four or more of the following features are pres-
ent for more than half the length of the epoch: (a) eyes closed with no eye move-
ments; (b) chin EMG tone present but lower than during W; (c) regular respiration; 
(d) tracé alternant (TA), high voltage slow (HVS), or sleep spindles; and (e) reduced 
movement relative to W. During this stage, sucking can occur. 

  Stage R  ( REM ) can be scored if four or more of the following criteria are present: 
(a) low chin EMG; (b) eyes closed with at least one rapid eye movement; (c) irregu-
lar respiration; (d) mouthing, sucking, twitches, or brief head movements; and (e) 
continuous EEG pattern, including low voltage irregular (LVI), high voltage slow 
(HVS), and mixed (M) without sleep spindles. 

  Stage T  (transitional) can be scored if an epoch contains either three NREM and 
two REM characteristics or two NREM and three REM characteristics. Most often, 
stage T occurs during transitions from stage W to stage R sleep, before awakening, 
and at sleep onset.  

    AASM Sleep Scoring Rules for Children 

 The AASM manual recommended applying the following scoring rules in children 
2 months post-term or older.

•    Stage W (wakefulness)  
•   Stage N1 (NREM 1)  
•   Stage N2 (NREM 2)  
•   Stage N3 (NREM 3)  
•   Stage N (NREM)  
•   Stage R (REM)    

  Stage W  is characterized by age-appropriate posterior dominant rhythm over the 
occipital regions, eye blinks, rapid eye movements, and normal or high chin muscle 
tone. Posterior dominant rhythm (PDR) frequency that with age: 3.5–4.5 Hz at 
3–4 months post-term, 5–6 Hz by 5–6 months, 7.5–9.5 Hz by 3 years of age, and 
alpha rhythm in older children. 

 The scoring rule for stage W is when more than 50 % of the epoch contains age- 
appropriate posterior dominant rhythm over the occipital region and/or if there is 
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eye blinks (0.5–2 Hz), reading eye movements, or rapid eye movements associated 
with normal or high chin muscle tone. 

  Stage N1  is characterized by the presence of slow eye movements (SEM); low- 
amplitude, mixed-frequency activity (4–7 Hz); vertex sharp waves (sharply con-
toured waves with duration <0.5 s, maximal over the central region); hypnagogic 
hypersynchrony; and posterior dominant rhythm or high-amplitude, rhythmic 
3–5 Hz activity. Stage N1 can be scored if the PDR is attenuated or replaced by low- 
amplitude, mixed-frequency activity for more than 50 % of the epoch or if it is 
associated with theta activity (4–7 Hz) or with the other EEG patterns described 
above (SEMs, vertex waves, hypnagogic hypersynchrony, 3–5 Hz diffuse activity). 

  Stage N2  begins (in the absence of criteria for N3) if K-complexes unassociated 
with arousals and/or sleep spindles occur during the fi rst half of one epoch or the 
last half of the previous epoch. 

  Stage N3  begins when ≥20 % of an epoch consists of SWA, irrespective of age. 
Sleep spindles may persist in stage N3 sleep while eye movements are not typically 
seen. An example of this sleep stage in a 4-year-old infant can be seen in Fig.  6.2 .

    Stage R  is characterized by the presence of rapid eye movements (REM), low 
chin EMG tone, sawtooth waves, transient muscle activity, and continuous, 
low- amplitude, mixed-frequency EEG activity. This EEG activity of stage R in 
infants and children looks like that of adults, although the dominant frequencies 
increase with age: 3 Hz activity at 7 weeks post-term, 4–5 Hz activity at 5 months, 
4–6 Hz at 9 months, and 5–7 Hz theta activity at 1–5 years of age. By the age of 
5–10 years, the low-amplitude, mixed-frequency activity in stage R is similar to that 
of adults [ 11 ]. 
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  Fig. 6.2    NREM sleep stage N3 in a 4-year-old child       
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  Stage N : Not all sleep waveforms are well developed by 2 months post-term; 
therefore, if all epochs of NREM sleep contain no recognizable sleep spindles, 
K-complexes, or high-amplitude 0.5–2 Hz slow-wave activity, score all epochs as 
stage N (NREM). However, NREM sleep can be scored as stage N1, N2, or N3 in 
most infants by age 5–6 months post-term and occasionally in infants as young as 
4 months post-term. 

  Arousals : The rules for scoring arousals are similar to those of adults. During all 
sleep stages, it is characterized by an abrupt shift of EEG frequency including alpha, 
theta, and/or frequencies greater than 16 Hz (but not spindles) that lasts for at least 
3 s, with at least 10 s of stable sleep preceding the change. In REM sleep, a concur-
rent increase in submental EMG lasting at least 1 s is required.   

    Cyclic Alternating Pattern (CAP) 

 CAP is an endogenous rhythm present in NREM sleep characterized by a periodic 
EEG activity with sequences of transient electrocortical activations (phase A of the 
cycle) that are distinct from the background EEG activity (phase B of the cycle). 
These sequences are repeated several times during the night and organized in a 
cyclic pattern interrupted by the presence of a stable sleep, without oscillations, 
called non-CAP (NCAP), longer than 60 s. CAP A phases have been subdivided 
into different subtypes: A1, A2, and A3, based on their frequency content [ 25 ,  26 ]. 
The A1 subtypes are composed prevalently by slow waves and the A3 subtype is 
generally composed of fast EEG activities, with subtype A2 presenting a combina-
tion of both. 

 In newborn and infants, CAP appears in a rudimentary form at 46–55 weeks CA, 
related to the emergence of an oscillating pattern of slow EEG activities, but the 
attainment of mature sleep EEG patterns is essential to score CAP. Miano et al. [ 27 ] 
suggested that two sleep EEG patterns are required to score CAP: (a) high-voltage 
slow activity (HVS) and rudimentary spindles and (b) SWS and spindles. In fact, 
CAP rate was 6.83 ± 3.58 S.D. in infants with the sleep EEG pattern (a) and increased 
to 12.9 ± 2.21 S.D. in children with pattern (b). The percentage of A1, A2, and A3 
showed nonsignifi cant variations with age, but an increase of A1 index (number of 
events/hour) was observed in children with pattern (b). The duration of CAP events 
was similar in all age groups considered, and similarly, the arousal indexes were not 
statistically different [ 27 ]. 

 In the preschool age, CAP rate clearly increases with highest values during SWS 
[ 28 ]. In comparison with infants and school-aged children, preschool subjects show 
a lower percentage of A1 and a corresponding increase in percentage of A2; this 
fi nding might represent an indirect marker of a more disturbed sleep or of the matu-
rational processes of sleep [ 26 ]. 

 The sleep structure in 6- to 10-year-old children is very stable and can be consid-
ered to be the “gold standard” for sleep quality because of its length, continuity, and 
restorative features [ 29 ]. Within this pattern of stable sleep architecture, CAP rate is 
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higher than at younger ages and shows a progressive increase with the deepness of 
sleep, with the highest values during SWS [ 30 ]. In school-aged children, A1 sub-
types are predominant (84.45 % of total) and occur mainly during SWS, followed by 
A3 (9.14 %) and A2 (6.44 %) subtypes. Similarly to preschool children and adults, 
CAP time structure shows the same periodicity of A1 subtypes, with a peak at 
around 25 s. The almost identical periodicity and time interval distribution of CAP 
A1 subtypes from infants to adults indicates that the periodicity of CAP compo-
nents can be considered very stable during development [ 28 ,  31 ]. 

 The way from preadolescence to adolescence is characterized by peculiar 
changes of the sleep EEG mainly represented by a decline of low EEG frequencies 
(theta and delta activities) in NREM [ 18 ]. These changes are convoyed by a great 
instability of sleep EEG that consequently affects CAP parameters. In fact, an 
important increase of CAP rate has been found in a group of peripubertal children 
(age 8–12 years; Tanner stage 2 and 3) who showed a CAP rate of 62.1 %; CAP A1 
subtypes were the most numerous (85.5 %), whereas A2 were 9.1 % and A3 were 
5 % [ 32 ]. Peripubertal and adolescents show the highest CAP rate among all life 
periods, if we exclude the elderly period [ 33 ] (Table  6.1 ).

   CAP rate shows a clear increasing trend with age in the pediatric population, but 
the distribution of the different A subtypes shows a differential tendency with the 
percentage of A1 slightly declining in preschool children and then increasing, reach-
ing the highest values during school age, and then decreasing again from school- 
aged children to adolescents (Fig.  6.3 ). On the contrary, A2 and A3 subtypes, apart 
from the preschool period, show a progressive increase from school age to elderly 
following the same trends of arousals [ 34 ]. The ratio between A1 and A2+A3 is 
highest in school-aged children, supporting the notion that sleep of these children is 
highly effi cient and restorative. On the other hand, the increase of the percentage of 
A2 subtypes in preschoolers might represent the higher sleep instability of this age 
period. The A1 index (number of A1 subtypes per hour of NREM sleep) has a ten-
dency to increase progressively until adolescence. This means that, although there is 
a decline of low EEG frequencies in this age period, the sleep process continues to 
produce the slow EEG oscillations needed for the restorative function of sleep and is 
probably related to the typical hormonal changes occurring during this phase of life.

   Table 6.1    Age-related changes of the main CAP parameters during development   

 1–4 months 
 Miano et al. 
[ 27 ] 

 Preschool age 
 Bruni et al. 
[ 28 ] 

 School age 
 Bruni et al. 
[ 30 ] 

 Peripubertal 
 Lopes et al. 
[ 32 ] 

 Adolescence 
 Parrino et al. 
[ 33 ] 

 CAP rate%  12.9  25.93  33.43  62.1  43.4 
 A1 %  85.2  63.2  84.45  85.5  – 
 A2 %  10.3  21.5  6.44  9.1  – 
 A3 %  4.4  15.3  9.14  3.2  – 
 A1 index  19.8  24.8  39.54  –  45 
 A2 Index  2.8  6.5  2.66  –  12.4 
 A3 Index  0.5  4.0  3.30  –  5.7 
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   Periodicity and interval distribution of CAP A1 subtypes are similar to those of 
school-aged children and adults, indicating that the periodicity of CAP components 
can be considered very stable during the whole life.  

    Conclusions 

 Cortical rhythms and functional networks change dramatically over infancy and 
childhood and provide a foundation upon which it is possible to understand better 
normal physiological brain development. These changes should be taken into 
account when approaching a sleep recording of an infant or a child since the varia-
tion of amplitude, frequency, and shape of the EEG waves should be fully consid-
ered in order to perform a correct scoring. 

 The power spectral analysis shows that the emergence of the peak in the NREM 
N2 sigma band corresponds with the development of sleep spindles, while lack of 
quantitative changes in the sigma band power after 3 months of age is consistent 
with the fi nding that sleep spindles are well developed by this age. The increase in 
the NREM N3 delta bandwidth may correspond with central brain maturation [ 35 ]. 

 In relation to modifi cations of the EEG spectra, the main EEG patterns (vertex 
waves, spindles, K-complexes, slow-wave activity) undergo signifi cant changes and 
follow a general pattern of maturation in which broadly distributed neuronal 
networks producing low-frequency oscillations increase in density, while net-
works characterized by high-frequency oscillations become sparser and highly 
clustered [ 36 ]. 

69.7

85.2

63.2

84.5 85.5

70

60 60

50

4037.537
30

12.3
15.5

36.8

21.8
14.7

HVS
SW

_S
pin

dle
s

1–
3 

YRS

Pre
sc

ho
ole

rs

Sch
oo

l-a
ge

d

Per
ipu

be
rta

l
Tee

na
ge

rs

You
g 

ad
ult

s

M
idd

le 
ag

ed

Elde
rly

A1 A2+A3

  Fig. 6.3    Evolution of CAP A1 and A2+A3 subtypes during the life-span       

 

R. Ferri et al.



103

 In conclusion, a correct scoring of sleep in infants and children cannot be per-
formed without a deep knowledge of cortical maturation and of its changes at spe-
cifi c ages.     
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    Chapter 7   
 Algorithm for Differential Diagnosis 
of Sleep Disorders in Children                     

     Stephen     H.     Sheldon     

    Abstract     Process of solving clinical problems begins with a complaint or chief 
complaint. This statement begins a cascade of events that occurs very rapidly and, 
for the experienced clinician, almost instantaneously and unconsciously. Theories 
about potential underlying etiologies are entertained, and a “list” of possible diag-
noses is created that guides all further clinical evaluation and inquiry. Following this 
key initial encounter with the patient and/or parents, questioning begins (history of 
the presenting problem). Questions are asked of the parents/patients  testing  each 
theory, based on symptoms of possible etiologies known to the clinician. Answers 
to these questions either support or refute a specifi c diagnosis. Questioning parents/
patients continues until possible diagnoses are eliminated or maintained then 
ordered on a list of probable diagnoses. When no further questioning can either 
confi rm or refute the presence of symptoms of particular diagnoses, the clinician 
then moves to reviewing various systems and obtaining other information that may 
have nothing to do with an initial hypothesis, but this questioning is required for 
completeness and because there are many sleep-related disorders with overlapping 
symptoms. Information regarding past medical history, family history, and social 
history is obtained as the clinician tests the original theories. There comes a point of 
diminishing returns when further questioning does not move the inquiry into the 
cause of the complaint further. A physical examination is then performed. Physical 
fi ndings associated with those theories/etiologies are searched for, and their pres-
ence or absence either supports or refutes the theory respectively. Observations of 
experienced clinicians conducting a clinical evaluation have shown this process is 
repeated between patients, and data collected by the clinician from each patient is 
 not  accomplished in a regimented sequential manner as most history and physical 
forms and electronic medical records require. In fact, the process is quite rapid, and 
a comprehensive assessment of patients’ complaints is accomplished in the fi rst 
quarter of the clinical encounter.  
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      Process of Solving Clinical Problems 

 Process of solving clinical problems begins with a complaint or chief complaint. 
This statement begins a cascade of events that occurs very rapidly and, for the expe-
rienced clinician, almost instantaneously and unconsciously [ 1 ]. Theories about 
potential underlying etiologies are entertained, and a “list” of possible diagnoses is 
created that guides all further clinical evaluation and inquiry. Following this key 
initial encounter with the patient and/or parents, questioning begins (history of the 
presenting problem). Questions are asked of the parents/patients  testing  each theory, 
based on symptoms of possible etiologies known to the clinician. Answers to these 
questions either support or refute a specifi c diagnosis. Questioning parents/patients 
continues until possible diagnoses are eliminated or maintained then ordered on a 
list of probable diagnoses. When no further questioning can either confi rm or refute 
the presence of symptoms of particular diagnoses, the clinician then moves to 
reviewing various systems and obtaining other information that may have nothing 
to do with an initial hypothesis, but this questioning is required for completeness 
and because there are many sleep-related disorders with overlapping symptoms. 
Information regarding past medical history, family history, and social history is 
obtained as the clinician tests the original theories. There comes a point of diminish-
ing returns when further questioning does not move the inquiry into the cause of the 
complaint further. A physical examination is then performed. Physical fi ndings 
associated with those theories/etiologies are searched for, and their presence or 
absence either supports or refutes the theory respectively. Observations of experi-
enced clinicians [ 1 ] conducting a clinical evaluations have shown this process is 
repeated between patients, and data collected by the clinician from each patient is 
 not  accomplished in a regimented sequential manner as most history and physical 
forms and electronic medical records require. In fact, the process is quite rapid, and 
a comprehensive assessment of patients’ complaints is accomplished in the fi rst 
quarter of the clinical encounter. 

 Following the history and physical examination, clinicians come to a point of 
closure, where no further clinical history or physical examination will contribute to 
defi ning the underlying diagnosis or refi ning those diagnoses that cannot be ruled 
out. What remains is termed a “differential diagnosis.” Laboratory testing may or 
may not be required to further refi ne the differential diagnosis, and many sleep- 
related problems in childhood may be diagnosis on history and physical examina-
tion alone. When laboratory testing is required, the examinations ordered are based 
on the remaining differential diagnoses. Testing can then either confi rm a main 
diagnosis and/or eliminate other diagnoses. 
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 Underlying this process is structured approach to searching the history, and con-
ducting a physical examination requires a wide knowledge base of presenting signs 
and symptoms of a large number of sleep-related disorders. The  International 
Classifi cation of Sleep Disorders  – 3rd Edition [ 2 ] published by the American 
Academy of Sleep Medicine provides a comprehensive overview of signs, symp-
toms, and laboratory evaluation of sleep disorders in adults and several variations in 
children. Nonetheless, this comprehensive compilation of methods of diagnosis of 
sleep disorders is diffi cult to use in the clinical encounter and is structured to be 
used as a reference not a tool to guide the clinical encounter and clinical problem- 
solving when the clinician is with the patient in the examination room. 

 Screening tools and questionnaires are helpful, but cannot replace the clinician. 
Few are standardized and rarely provide the necessary diagnostic capability alone 
[ 3 ]. Sleep logs can help observations that might otherwise be overlooked or misin-
terpreted by sleepy parents. A 2-week sleep diary can provide the clinician quasi- 
objective information regarding parental interpretations of the child’s sleep-wake 
schedule and can either confi rm their original observations or provide a better 
assessment of habitual sleep habits and schedules. The  BEARS  screening tool cre-
ated by Owens and Dalzell has a specifi c usefulness in the primary care setting and 
in the sleep clinic to help guide inquiry into the nightlife of children [ 4 ]. 

 The following algorithms are based on questions developed and modifi ed from 
the BEARS screening tool [ 4 ] and other suggested algorithms [ 5 – 7 ].  

    Bedtime 

 Inquiry Design:

    1.    What time does the child go to bed?   
   2.    Does the child have problems falling to sleep?   
   3.    How long does it take for the child to habitually fall to sleep?   
   4.    What activities occur prior to bedtime?     

  Bedtime 
 Complaint: Problems Going to Bed/Problems Falling To Sleep (See Fig.  7.1 )

   Parent or caretaker reports the child has one or more of the following 
symptoms:

 –    Diffi culty falling to sleep.  
 –   Diffi culty staying asleep.  
 –   Early morning wakings, earlier than desired.  
 –   Bedtime struggles at an age-appropriate time of the night.  
 –   Parental/caretaker intervention required for easy transitioning to sleep.  
 –   Daytime symptoms are present * .  
 –   There is adequate and appropriate environment and opportunity to sleep.  
 –   Symptoms are present for more than 3 nights per week.    
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  Acute Insomnia Disorder  ⇦ ⇨  Chronic Insomnia Disorder  
 Symptoms have been present for less than 3 weeks Symptoms have been pres-

ent for more than 3 weeks. 

Problems going to
bed; Problems
falling to sleep;

Prolonged sleep
latency

Acute (symptoms < 3
week in duration)

Chronic (Symptoms 3
or more weeks in

duration)

Conditioned Sleeplessness

Circadian rhythm
abnormality

Envionmental factors

Psychological problems

Inappropriate caretaker(s)
Expectations

Medical Disorders

Inadequate Sleep Hygiene

Medications

Adjustment Insomnia

Restless Limbs

Rare: Breathing Disorders

  Fig. 7.1    Bedtime. Complaint: problems going to bed/problems falling to sleep       
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  * Symptoms might include one or more of the following: complaint of daytime 
fatigue; attention, concentration, or memory problems; school learning diffi culties; 
socialization problems; mood diffi culties; behavior problems; hyperactivity; impul-
siveness; motor restlessness; fi dgetiness; unusual aggression; diffi culty with moti-
vation; accidents; and parents are dissatisfi ed with the youngster’s sleep. 

      

  Other Sleep Disorders  ( see  Table  7.1 )
   Although Environmental Sleep Disorders was listed in ICSD-2 (REF), it is unclear 

whether this is a specifi c sleep-related disorder or part of the home environment, such 
that when the environment is different, sleep complaints resolve. This, however, is 
not the case for many children with problem on sleeplessness, where a physiological 
conditioning has created a biological problem that may be developmentally related.   

   Table 7.1    Other pediatric sleep disorders (May present with problem sleeplessness, problem 
sleepiness, or both)   

 Symptoms 

 Sleeps well 
somewhere 
and/or under 
certain 
circumstances 

 Daytime 
dysfunction 

 Excessive 
noise, light, 
temperature 

 Medications 
(even over 
the counter) 

 Other medical/
psychological 
problems 

  Diagnoses  
 Conditioned 
sleeplessness 

 ++ a   +/−  −  −  − 

 Environmental 
factors 

 +  +/−  ++  −  − 

 Psychological 
problems 

 +/−  +/−  +/−  +/−  ++ 

 Inappropriate 
caretaker’s 
expectations 

 ++ b   +/−  −  −  − 

 Inadequate sleep 
hygiene 

 −  ++ c   +  +/−  +/− 

 Medications  −  +/−  −  ++  + 
 Adjustment 
sleep disorder 

 −  +  −  −  + d  

 Medical 
disorders 

 −  +/−  −  ++  + e  

  ++ = Cardinal symptom(s), + = Typically present, +/− = May or may not be initially reported as 
present, − = Typically absent 
  a The child can sleep well when transitional objects and/or situations are present; they cannot tran-
sition well into sleep or fall back to sleep until these transitional objects and/or conditions are 
retrieved at night 
  b Parent’s/caretaker’s expectations of the child’s sleep habits are signifi cant inconsistent with nor-
mal sleep/wake habits and patterns for the child’s chronological age 
  c Nighttime schedules and patterns are irregular and chaotic. Daytime schedules and patterns are 
also chaotic 
  d There may be situational stressors identifi ed, including but not limited to holidays, travel, social 
stressors, and school pressures 
  e Signs and/or symptoms of other medical disorders may be present  
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    Excessive Daytime Sleepiness (see Fig.  7.2 ) 

    Inquiry Design:

    1.     Does the child have diffi culty waking in the morning? 
 (Must differentiate whether the child “cannot wake up” or “does not want to 
wake up”.)   

   2.    Does the child experience unintentional sleep episodes or sleep attacks?   
   3.    If the child is over 6 years of age, does he/she habitually nap?   
   4.    Does the child fall, feel weak, become wobbly, or develop an unusual facial 

expression when laughing, giggling, or emotional?   
   5.    Are there nightmares (particularly at wake-sleep transition)?   
   6.    Does the child act out dreams?   
   7.    Does bedtime and morning wake time signifi cantly differ between school days 

and weekends?   
   8.    Are there problems paying attention? Frequent daydreaming?   
   9.    Are there school performance problems?   
   10.    Does the child wake at night? How long? How many times?   
   11.    Does the child walk or scream during sleep? Is there amnesia for the events?   
   12.    What is the typical length of total sleep each 24 h?   
   13.    Does the child have any acute or chronic medical illnesses or on any 

medication?   
   14.    Are symptoms recurrent?   
   15.    Does the child snore, pause, snort, gasp, choke, or cough during sleep?     

 Note: There is considerable overlap of symptoms and fi ndings. Similar symp-
toms and comorbidities are common. See specifi c sections for differential 
diagnosis. 

  Excessive Daytime Sleepiness (Hypersomnias) (See Table  7.2 ) 
    The parent(s) and/or caretaker(s) report the child has one or more of the follow-

ing symptoms:

   Falling asleep at unusual times

   The child may fall to sleep while eating meals, talking on the telephone, playing 
a game, at a party, or on the playground.  

  Note: Many children will fall to sleep as passengers in a car or watching televi-
sion. Falling to sleep at unusual times means the child is consolidating sleep 
at a time that is not expected for this youngster’s chronological and matura-
tional age.     

  The child feels sleepy during the day.  
  Teachers or other observers report the child looks sleepy during the day.  
  Attention problems/concentration problems.  
  Hyperactivity/motor restlessness/fi dgetiness.  
  Impulsiveness.  
  Learning diffi culties in school.  
  Diffi culty waking in the morning.      
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    Awakening (See Fig.  7.3 ) 

    Inquiry Design:

    1.    Does the child wake at night? How many times? At what time?   
   2.    How long does the child remain awake?   
   3.    Does the youngster seem fully awake or is the child confused/disoriented?   

Narcolepsy (Type 1 or Type 2)
(With or Without cataplexy)

Circadian Rhythm Disorder

Partial Arousal Disorder
Arousal Disorder

Movement Disorder

Idiopathic Hypersomnia

Recurrent Hypersomnia

Insufficiency Sleep

Medical Conditions

Medications/Drugs

Breathing Disorder

Excessive Daytime sleepiness

  Fig. 7.2    Excessive daytime sleepiness       
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   4.    Is there amnesia for the event?   
   5.    Does the child report a dream?   
   6.    Is there trouble falling back to sleep after the waking?   
   7.    What is the sleeping environment like?   
   8.    Are there lights on in the bedroom?   
   9.    Does the child have “screen time” before bed?   
   10.    Are there any acute or chronic illnesses?   
   11.    Is the child taking any medication?     

 Note: There is considerable overlap of symptoms and fi ndings. Similar symp-
toms and comorbidities are common. 

 See specifi c sections for differential diagnosis. 

  Awakenings During the Night (Parasomnias and Sleep-Related Movement 
Disorders) 
 Complaints/Symptoms 

 The patient exhibits and/or experiences one or more of the following symptoms:

•    Falls to sleep easily but wakes frequently during the night.  
•   Walks, talks, or screams during sleep.  
•   There may or may not be diffi culty falling back to sleep after waking at night.    

  Disorders of Arousal from NREM Sleep  
 The child exhibits the following general symptoms:

•    Episodes of incomplete waking are noted.  
•   There has been inappropriate or lack of responsiveness to efforts to intervene or 

redirect the child during the spell.  
•   There is limited or no associated free memory during the spell.  
•   There is amnesia for the event.  
•   The event typically occurs during the fi rst third to fi rst half of the major sleep 

period.  
•   Complex behaviors may occur.  
•   Behaviors are not better explained by another sleep disorder, psychological prob-

lem, or medications/substances.    

 See Table  7.3  diagnosis and differential diagnostic fi ndings.

        Regularity (See Fig.  7.4 ) 

    Inquiry Design:

    1.    Has a regular sleep schedule been established?   
   2.    Is the sleep schedule consistent from night to night?   
   3.    What time does the child habitually get into bed?   
   4.    What time does the child habitually wake in the morning?   
   5.    Are there signifi cant differences between bedtimes and wake times on week-

days, weekends, and/or holidays?     
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 Note: There is considerable overlap of symptoms and fi ndings. Similar symp-
toms and comorbidities are common. 

 See specifi c sections for differential diagnosis. 

  Regularity (Circadian Rhythm Sleep-Wake Disorders) 
 Complaints/Symptoms 

 The patient exhibits and/or experiences one or more of the following 
symptoms:

•    A regular sleep/wake schedule has not been established.  
•   Bedtime is either inappropriate for the child’s developmental level.  
•   Habitual time of morning sleep offset is inappropriate for the child’s develop-

mental level.  

Awakening
During the Night

Disorder of Arousal

Partial Arousal
Disorder

Nightmares

Periodic Lmb
Movement Disorder

Circadian Rhythm
Disorder

Sleep related
Breathing Disorder

Medical Disorder

Environmental
Sleep Disorder

Medication / Drugs

Short Sleeper

Conditioned

  Fig. 7.3    Awakening        
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Regularity
and

Duration of
Sleep

Circadian Rhythm
Disorders

Motivated Sleep
Phase Delay

Inappropriate Sleep
Hygiene

Insufficient Sleep

Environmental Sleep
Disorder

Medical Disorder

Medication/Drugs

Parental Shift Work

Jet Lag Sleep Disorder

Delayed Sleep Phase

Advanced Sleep
Phase

Irregular Sleep-Wake
Schedule

Non-24-Hour Sleep-
Wake Disorder

Weekday/Weekend
Phase Delay/Advance

  Fig. 7.4    Regularity       
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•   There is signifi cant difference between bedtime and morning time of sleep offset 
on school days when compared to weekends and/or holidays from school.    

 See Table  7.4  for diagnosis and differential diagnostic fi ndings.

        Snoring (See Fig.  7.5 ) 

    Inquiry Design:

    1.    Does the child snore three or more nights per week?   
   2.    Is snoring or breathing associated with pauses, snorts, gasps, choking, or 

coughing?   
   3.    Does the child breathe through his/her mouth at night? During the day?   
   4.    Is sleep restless?   
   5.    Does the child wake frequently at night?   
   6.    Does the child wake in the morning with headaches?   
   7.    Is the child excessively thirsty in the morning?   
   8.    Does the child wet the bed at night? Primary enuresis? Secondary enuresis?   
   9.    Are there reported witnessed apneas? Increased work of breathing? Paradoxical 

respiration?   
   10.    Is there sleep-related diaphoresis?   
   11.    Are there daytime symptoms of hyperactivity, attention problems, impulsivity, 

and/or learning diffi culties?   
   12.    Does hyperactivity and attention problems alternate with sleepiness?   
   13.    Are the tonsils enlarged?   
   14.    What is the child’s Mallampati classifi cation sitting and supine?     

 Note: There is considerable overlap of symptoms and fi ndings. Similar symp-
toms and comorbidities are common. 

 See specifi c sections for differential diagnosis. 

  Snoring (Sleep-Related Breathing Disorders in Children) 
 Complaints/Symptoms

•    Snoring for more than three nights per week  
•   Breathing punctuated by pauses, snorts, gasping, or choking  
•   Habitual mouth breathing  
•   Waking with morning headaches  
•   Sleep-related diaphoresis  
•   Inappropriate age-related secondary sleep enuresis  
•   Reported witnessed apneas  
•   Reported increased work of breathing  
•   Daytime sleepiness, inattention, hyperactivity  
•   Frequent nocturnal waking  
•   Sleep-related bruxism  
•   Habitual waking in the morning with a dry mouth    

 See Table  7.5  for diagnosis and differential diagnostic fi ndings.

7 Algorithm for Differential Diagnosis of Sleep Disorders in Children
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Snoring

Obstructive Sleep Apnea (Pediatric)

Complex Sleep Apnea

Sleep related hypoxemia

Snoring

Primary Central Sleep Apnea
of Prematurity

Primary Central Sleep Apnea of Infancy

Congerital Central Hypoventilation
Syndrome (CCHS)

Rapid onset obesity with Hypothalamic
Dysfunction, Hypoventilation, and

Autonomic Dysregulation (ROHHAD)

Central Sleep Apnea with cheyne-Strokes
Breathing

Idiopathic Central Hypoventilation

Obesity Hypoventilation Syndrome

Central Sleep Apnea Without Cheyne-
Strokes Breathing

Central Sleep Apnea due to High
Altiitude Periodic Breathing

Primary Central Sleep Apnea

Sleep Apnea Due to Medical
Disorder/Medication/Drugs

  Fig. 7.5    Snoring       

7 Algorithm for Differential Diagnosis of Sleep Disorders in Children
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    Chapter 8   
 Sleep Disorders in Newborns and Infants                     

     Rosemary     S.  C.     Horne     

    Abstract     During infancy, sleep is at a lifetime maximum, and  t he maturation of 
sleep is one of the most important physiological processes occurring during the fi rst 
year of life, particularly the fi rst 6 months. Sleep has a marked effect on cardiorespi-
ratory control which is also rapidly maturing during infancy. Immaturity of cardio-
respiratory control frequently leads to respiratory instability and prolonged pauses 
in breathing as manifest in apnea of prematurity and periodic breathing. During 
infancy, central apneas are common and obstructive apnea is rare. Although cur-
rently believed to be benign during this early period of development, there is grow-
ing evidence that they may be associated with developmental defi cits in 
neurocognition. A failure of cardiorespiratory control mechanisms, together with an 
impaired arousal from sleep response, is believed to play an important role in the 
fi nal event of the sudden infant death syndrome (SIDS). The “triple-risk model” 
describes SIDS as an event that results from the intersection of three overlapping 
factors: (1) a vulnerable infant, (2) a critical developmental period in homeostatic 
control, and (3) an exogenous stressor. In an attempt to understand how the triple- 
risk hypothesis is related to infant cardiorespiratory physiology, many researchers 
have examined how the known risk and protective factors for SIDS alter infant 
physiology and arousal, particularly during sleep. This review discusses the associa-
tion between the three components of the triple-risk hypothesis and major risk fac-
tors for SIDS, such as prone sleeping and maternal smoking, together with three 
“protective” factors, and cardiovascular control and arousability from sleep in 
infants, and discusses their potential involvement in SIDS.  
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      Development of Sleep 

 The maturation of sleep is one of the most important physiological processes occur-
ring during the fi rst year of life and is particularly rapid during the fi rst 6 months 
after birth [ 1 ]. Behavioral states are defi ned by physiological and behavioral vari-
ables that are stable over time and occur repeatedly in an individual infant and also 
across infants [ 2 ]. The emergence of sleep states is dependent on the central nervous 
system and is a good and reliable indicator of normal and abnormal development 
[ 3 ]. Sleep states and sleep architecture in infants are quite different to those in adults. 
In infants, sleep states are defi ned as active sleep (AS) and quiet sleep (QS), which 
are the precursors of adult rapid eye movement sleep (REM sleep) and non- rapid eye 
movement sleep (NREM sleep), respectively. QS is characterized by high- voltage 
low-amplitude electroencephalogram activity, the absence of eye movements, and 
regular heart rate and respiration. In contrast, AS is characterized by low-amplitude 
high-frequency electroencephalogram activity, eye movements, and irregular heart 
rate and respiration (Fig.  8.1 ). In addition a third state, that of indeterminate sleep 
(IS), is defi ned when criteria for AS and QS are not met. IS is usually considered a 
sign of immaturity and the incidence decreases with increasing postnatal age.

   Rhythmic cyclical rest activity patterns can be observed in the human fetus from 
28 weeks of gestation [ 4 ]. In infants born preterm, the infant sleep states cannot be 
distinguished in infants younger than 26 weeks of gestation [ 5 ]. By 28–30 weeks of 
gestation, AS can be recognized by the presence of eye movements, body 
 movements, and irregular breathing and heart rate. At this gestational age, QS is 

ACTIVE SLEEP QUIET SLEEP

ECG

EOG(R)

EOG(L)

EOG(R)

ECG

EMG

BP

EEG

RESP ABDO

RESP THOR

SpO2

10sec 10sec20sec 20sec30sec 30sec

  Fig. 8.1    Cardiorespiratory parameters in active and quiet sleep in an infant.  ECG  electrocardio-
graph,  EOG  electrooculograph,  EMG  electromyograph,  EEG  electroencephalograph,  BP  blood 
pressure,  RESP ABDO  abdominal respiratory effort,  RESP THOR  thoracic respiratory effort,  SpO2  
oxygen saturation,  HR  heart rate. Note regular breathing and heart rate in quiet sleep compared to 
active sleep       
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diffi cult to identify as chin hypotonia is diffi cult to evaluate, and the majority of the 
sleep period is spent in AS. QS does not become clearly identifi able until about 
36 weeks of gestational age [ 4 ]. The percentage of time spent in QS increases, and 
by term equal amounts of time are spent in both AS and QS with the two states 
alternating throughout each sleep period. The proportion of AS decreases across the 
fi rst 6 months to make up approximately 25 % of total sleep time similar to that in 
adults [ 6 ]. In contrast, the proportion of QS increases with age to make up about 
75 % of total sleep time by 6 months [ 6 ]. 

 At term, infants sleep for about 16–17 h out of every 24 [ 4 ]. There is a gradual 
decrease in total sleep time with infants sleeping 14–15 h at 16 months of age and 
13–14 h by 6–8 months of age. In the neonatal period, infants awaken every 2–6 h 
for feeding, regardless of the time of day, and stay awake for 1–2 h [ 7 ]. The major 
change in sleep/wake pattern occurs between 6 weeks and 3 months post term age 
[ 7 ]. During the fi rst 6 months after term, consolidation and entrainment of sleep at 
night develops and sleep periods lengthen. At 3 weeks of age, the mean length of the 
longest sleep period has been reported to be 211.7 min, increasing to 358.0 min by 
6 months of age [ 8 ]. The longest sleep period was randomly distributed between 
daytime and nighttime at 3 months but had moved to nighttime by 6 months [ 8 ]. 

 Dramatic changes in the sleep electroencephalographic (EEG) patterns of infants 
occur during early infancy as the brain matures. The EEG patterns of QS and AS 
differ with a relatively continuous pattern in AS and a relatively discontinuous pat-
tern in QS. A continuous pattern is defi ned by the presence of background activity 
throughout each 30 s epoch scored, and a discontinuous pattern is defi ned by the 
presence of higher amplitude EEG waves during <50 % of each epoch [ 9 ]. A semi- 
discontinuous EEG pattern of depressions and continuous delta activity during 
≤70 % each epoch is called a  tracé alternant  pattern and can be identifi ed at 
32–34 weeks of gestational age [ 9 ]. This pattern is prominent in preterm infants but 
also occurs in infants born at term and disappears after 1 month after term equiva-
lent age. Sleep spindles appear coincidentally with the disappearance of  tracé alter-
nant  [ 10 ]. True continuous delta frequency does not appear until 8–12 weeks of age, 
and it is not until this age that adult criteria for determining the stages of NREM 
sleep can be used [ 11 ]. 

 In summary, during infancy, sleep is at a lifetime maximum, and signifi cant 
changes occur in the maturation of sleep which refl ect maturation of the central 
nervous system. Sleep has a marked effect on cardiorespiratory control. 
Cardiorespiratory disturbances occur predominantly in AS sleep, so the predomi-
nance of AS in early infancy may increase the risk of cardiorespiratory disturbances 
during this period of development.  

    Apnea of Prematurity 

 One of the major problems facing preterm infants after birth is the immaturity of 
their cardiorespiratory system which often leads to repeated apneic events. Apnea 
of prematurity is defi ned as the cessation of breathing for >20 s, or if the breathing 
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pause is shorter in duration, it is associated with bradycardia, cyanosis, marked pallor, 
or hypotonia [ 12 ]. Apnea of prematurity is extremely common, occurring in more than 
85 % of infants born prior to 34 weeks of gestation. The incidence of apnea of prema-
turity is inversely related to gestational age: 3–5 % of term-born infants, 7 % of infants 
born at 34–35 weeks, 15 % of infants born at 32–33 weeks, 54 % of infants born at 
30–31 weeks, and nearly 100 % of infants born less than 29 weeks experience episodes 
of apnea of prematurity [ 13 ,  14 ]. There are also marked changes in apnea frequency 
with postnatal age, with few events in the fi rst week of life, then a progressive increase 
in weeks 2–3 which plateau in weeks 4–6, and then decrease in weeks 6–8 [ 15 ]. 

 Frequently, the magnitude and frequency of the apneic events are underesti-
mated due to the current clinical settings of pulse oximeter monitors, which often 
are set with long averaging times and to alarm at events longer than 20 s duration. 
In a study which used a 2 s averaging time and which counted apneas where oxygen 
saturation fell to ≤80 % for between 3 and 10 s, between 50 and 100 events/day 
were recorded [ 16 ]. It has recently been recommended that to take these frequent 
apneas which are associated with signifi cant desaturation into account, that all 
events longer than 5 s should be recorded [ 17 ]. 

 Studies have shown that excessive or persistent apnea and bradycardia are asso-
ciated with long-term neurodevelopmental problems [ 18 ]. It is well known that 
obstructive sleep apnea in children and adults is associated with neurocognitive 
defi cits, and the repetitive hypoxic events associated with this condition have been 
proposed as the primary mechanism. It is also possible that postnatal intermittent 
hypoxia can affect cardiovascular control beyond the neonatal period with studies in 
both rodent models [ 19 ] and human infants [ 20 ] demonstrating this. 

 Methylxanthines have been used since the 1970s for the treatment of apnea of 
prematurity and also to facilitate extubation and weaning off mechanical ventilation 
[ 21 ,  22 ]. Methylxanthines cross the blood-brain barrier [ 23 ], and their primary 
action is to antagonize the A 1 /A 2a  adenosine receptors in the CNS. Methylxanthines 
improve apnea of prematurity by increasing minute ventilation and improving both 
hypercapnic and hypoxic ventilatory drive [ 24 ,  25 ]. 

 Today, caffeine is the most commonly used methylxanthine in neonatal units 
worldwide. Caffeine’s universal acceptance followed the 2006 CAP (caffeine for 
apnea of prematurity) randomized control trial, which compared caffeine citrate 
(20 mg/kg loading dose of caffeine citrate followed by 5 mg/kg/day) with placebo 
in very low birth weight preterm infants. The study demonstrated both signifi cant 
short-term benefi ts of reduced incidence of bronchopulmonary dysplasia, medi-
cally and surgically treated ductus arteriosus, and long-term benefi ts of improved 
rates of survival without neurodevelopmental delay and signifi cantly reduced inci-
dences of cerebral palsy at 18–21 months [ 26 ,  27 ]. Improved microstructural devel-
opment of white matter has been demonstrated in a subsample of these children 
who  underwent brain magnetic resonance imaging (MRI) at term equivalent age, a 
fi nding which may explain the improved neurodevelopmental outcomes [ 28 ]. 
However, when reassessed at 5 years of age, there was no longer any difference in 
rate of survival without disability between children treated with caffeine and those 
that were not [ 29 ]. 
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 Apneas can occur in isolation or in a repetitive pattern termed periodic breathing. 
Repetitive short central apneas are termed periodic breathing (defi ned as three or 
more sequential central apneas each lasting ≥3 s) and are common in term babies in 
the fi rst 2 weeks of life but signifi cantly decrease with age [ 30 ]. In term babies, the 
frequency of periodic breathing is low, making up <1 % of total sleep time [ 30 ,  31 ]. 
Periodic breathing is signifi cantly more prevalent in ex-preterm infants compared to 
term-born infants at term equivalent age [ 32 ]. Because of its high prevalence, and 
the fact that it is not usually associated with life-threatening hypoxia or bradycardia, 
the traditional view of periodic breathing is that it is simply due to immaturity of 
respiratory control and is benign [ 33 ]. However, recent studies have shown that 
periodic breathing can be associated with signifi cant defi cits in cerebral oxygen-
ation [ 34 ] (Fig.  8.2 ), although any link to neurocognitive defi cits has yet to be 
elucidated.

       Sleep Apnea in Infants 

 Apneas are characterized as central, obstructive, or mixed.  Central  apneas are 
defi ned as a cessation of nasal and oral airfl ow in conjunction with an absence of 
respiratory effort.  Obstructive  apneas are defi ned as the cessation of nasal and oral 
airfl ow in the presence of continued respiratory effort against airway obstruction. 
Central apneas are common in infancy and can occur spontaneously but occur more 
frequently after a movement [ 35 ,  36 ]. Traditionally, they are considered benign as 
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  Fig. 8.2    Polysomnographic example of the effects of periodic breathing in an infant born at 
27 weeks of gestational age and studied at 2–4 weeks corrected age after discharge home. Periodic 
breathing is associated with repetitive oxygen desaturations, marked falls in cerebral tissue oxy-
genation index as measured with near-infrared spectroscopy, and repetitive bradycardias which 
worsen over time. This infant spent 28 % of his total sleep time in periodic breathing       
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they are not associated with signifi cant desaturation and occur in healthy infants 
[ 36 ]. The frequency of central apneas declines with age. In a study by Brockmann 
et al., the median number of events per hour declined from 5.5 (minimum 0.9; maxi-
mum 44.3) at 1 month of age to 4.1 (minimum 1.2; maximum 27.3) at 3 months 
[ 31 ]. The authors suggested these high rates of central apnea may be simply due to 
the fact that the current defi nitions for central apneas used for older children are not 
appropriate for young infants. 

 Obstructive apneas are reported to be rare in infancy [ 31 ,  37 ]. However, snoring 
is reported to be common, with prevalence rates ranging from 5.6 to 26 % [ 38 – 41 ]. 
These wide ranges in prevalence may have been due to confounders, with some 
studies including infants with colds and others studying different ethnicities. In a 
study of healthy predominantly Caucasian children aged 0–3 months, a prevalence 
of 9 % has been reported [ 42 ]. A signifi cantly greater proportion of 2–3-month-old 
infants were reported to snore habitually than 0–1-month-old infants [ 42 ]. Cognitive 
ability at 6 months of age was found to be lower in those infants who began snoring 
frequently (≥3 nights/week) within the fi rst month of life [ 43 ]. 

 In summary, central apnea is common in infants but obstructive apnea is rare. 
Both forms of apnea have been considered benign during infancy, but there is grow-
ing evidence that they may be associated with neurological defi cits.  

    Sudden Infant Death Syndrome 

 Sudden infant death syndrome (SIDS) is defi ned as “the sudden and unexpected 
death of an infant under 1 year of age, with the onset of the lethal episode apparently 
occurring during sleep, that remains unexplained after a thorough investigation 
including performance of a complete autopsy and review of the circumstances of 
death” [ 44 ]. The incidence of SIDS was more than halved after public health cam-
paigns publicized the known major risk factors of prone sleeping, maternal smok-
ing, and overheating [ 45 ]. However, SIDS still remains the leading cause of 
unexpected death in infants in Western countries, contributing to almost 50 % of all 
postneonatal deaths [ 46 ,  47 ]. 

 As SIDS is a diagnosis of exclusion, there has been considerable research into 
the underlying mechanisms which may underpin known risk factors. SIDS has long 
been believed to be multifactorial in origin. The triple-risk hypothesis [ 48 ] proposes 
that when a vulnerable infant, such as one born preterm or exposed to maternal 
smoking, is at a critical but unstable developmental period in homeostatic control 
and is exposed to an exogenous stressor, such as being placed prone to sleep, then 
SIDS may occur. The model proposes that infants will die of SIDS only if all three 
factors are present and that the vulnerability lies dormant until they enter the critical 
developmental period and are exposed to an exogenous stressor. SIDS usually 
occurs during sleep, and the peak incidence is between 2 and 4 months of age, when 
sleep patterns are rapidly maturing. The fi nal pathway to SIDS is widely believed to 
involve immature cardiorespiratory control, in conjunction with a failure of arousal 
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from sleep [ 45 ]. Support for this hypothesis comes from numerous physiological 
studies showing that the major risk factors for SIDS (prone sleeping, maternal 
smoking, prematurity, head covering) have signifi cant effects on blood pressure and 
heart rate and their control [ 49 ] and impair arousal from sleep [ 50 ]. 

    Vulnerable Infant 

 Neuropathologic fi ndings from SIDS victims show signifi cant defi cits in brainstem 
and cerebellar structures involved in the regulation of respiratory drive, cardiovas-
cular control, sleep/wake transition, and arousal from sleep [ 51 – 58 ]. Furthermore, 
genetic polymorphisms have been identifi ed in SIDS victims which affect genes 
involved in autonomic function, neurotransmission, energy metabolism, and the 
response to infection [ 59 – 63 ]. 

 Prenatal and/or postnatal exposure to cigarette smoke is one factor which 
increases infant vulnerability to SIDS [ 64 ,  65 ], with over 40 studies showing a posi-
tive association with risk ratios of between 0.7 and 4.85 [ 66 – 69 ]. This increased 
SIDS risk is likely to be due to the effects of nicotine exposure on autonomic control 
and arousal [ 58 ,  70 – 72 ]. In support of this idea, Duncan and colleagues [ 73 ] found 
that chronic exposure to nicotine in the prenatal baboon fetus altered serotonergic 
and nicotinic acetylcholine receptor binding in regions of the medulla, critical to 
cardiorespiratory control. Furthermore, they identifi ed that these alterations were 
associated with abnormalities in fetal heart rate variability, indicating altered car-
diovascular control [ 73 ]. Studies in infants exposed to maternal smoking have dem-
onstrated altered heart rate and blood pressure control compared with control infants 
[ 74 – 80 ]. Maternal tobacco smoking also decreases both total arousability and the 
proportion of cortical arousals. Arousal impairment was observed for both sponta-
neous arousals from sleep and responses induced by various stimuli [ 81 – 87 ]. Few 
mothers change their smoking behavior postpartum [ 88 ]; therefore, it is diffi cult to 
ascertain whether these physiological effects are caused by prenatal or postnatal 
smoke exposure. Environmental smoke (in the same room) independently increases 
the risk of SIDS [ 89 ,  90 ]. Importantly, a recent study has shown that before dis-
charge home from hospital, preterm infants of smoking mothers already exhibited 
disruptions in sleep patterns, prior to any postnatal smoke exposure [ 91 ]. Thus, 
there is considerable evidence from both animal and human studies suggesting that 
prenatal exposure to cigarette smoke has deleterious effects on the developing brain 
and cardiorespiratory system. It is suggested that these effects increase infant vul-
nerability to SIDS. 

 Maternal smoking may also be a confounding risk factor for SIDS due to its 
association with other risk factors, such as preterm birth and intrauterine growth 
restriction (IUGR) [ 92 – 95 ], which likely result from suboptimal intrauterine envi-
ronments. Impaired heart rate control, manifest as shorter cardiac R-R intervals and 
higher resting sympathetic tone, has been reported in term-born IUGR infants when 
compared with infants of appropriate size for gestational age [ 96 ,  97 ]. Similarly, 
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preterm infants demonstrated impaired autonomic control compared with term 
infants studied at or before term equivalent age, and this pattern was inversely 
related to gestational age at birth [ 98 – 103 ]. Longitudinal studies after term equiva-
lent age have identifi ed that preterm infants exhibited lower blood pressure, delayed 
blood pressure recovery following head-up tilting, and impaired barorefl ex control 
of blood pressure and heart rate across the fi rst 6 months corrected age, when com-
pared with age-matched term infants [ 104 – 108 ]. Furthermore, maturation of baro-
refl ex control of blood pressure during sleep is affected by gestational age at birth, 
with infants born very preterm (<32 weeks of gestation), having reduced increases 
in barorefl ex sensitivity compared to both preterm and term infants [ 109 ]. Recently, 
studies have also identifi ed that cerebral oxygenation is also lower in preterm com-
pared to term infants across the fi rst 6 months corrected age [ 110 ] and that cerebro-
vascular control after a head-up tilt is more variable [ 111 ], indicating immature or 
impaired control. 

 When compared with term infants at matched conceptional ages, preterm infants 
also exhibit decreased frequencies and durations of spontaneous arousals from sleep 
[ 112 – 114 ], together with decreased heart rate responses following arousal [ 115 ]. 
Furthermore, preterm infants exhibited longer arousal latencies after exposure to 
mild hypoxia (15 % inspired O 2 ), reaching signifi cantly lower oxygen saturations 
than term infants [ 116 ]. Cardiorespiratory complications commonly associated with 
prematurity, apnea, and bradycardia have also been shown to suppress total arous-
ability when these infants were compared to preterm infants with no history of 
apnea [ 117 ]. 

 In summary, these alterations in cardiorespiratory control and arousability dur-
ing sleep support the classifi cation of prenatal smoke exposure and preterm birth as 
factors strongly linked with the idea of a preexisting vulnerability to SIDS. Such 
physiological disturbances may be further exacerbated during a critical develop-
mental period within infancy and by exposure to exogenous stressors.  

    Critical Developmental Period 

 Approximately 90 % of SIDS deaths occur in infants aged less than 6 months [ 45 , 
 118 ]. During this period, the central nervous system undergoes dramatic matura-
tional changes which are refl ected in extensive alterations to sleep architecture, 
electroencephalogram characteristics, and autonomic control. The 2–4-month 
period, in particular, has been described as a “developmental window of 
vulnerability” [ 119 ,  120 ] and coincides with the age where a distinct peak in SIDS 
incidence occurs [ 45 ,  118 ]. 

 A number of other signifi cant developmental factors may make an infant more 
vulnerable to a cardiorespiratory challenge during this critical developmental 
period. Studies in both preterm [ 105 ,  110 ] and term [ 121 ] infants have identifi ed a 
nadir in basal blood pressure during sleep at 2–4 months of age, when compared to 
both earlier (2–4 weeks) and later (5–6 months) ages studied; a nadir in physiological 
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anemia also occurs at this age. Blood pressure responses to a cardiovascular chal-
lenge (head-up tilting) are also impaired at 2–4 months compared to younger 
(2–4 weeks) and older (5–6 months) ages [ 122 ]. The maturational reduction in cere-
bral oxygenation is most marked between 2–4 weeks and 2–4 months of age, which 
may be due to limited or inadequate fl ow-metabolism coupling at this age [ 123 ]. 
Thus, the 2–4-month age represents a critical time period when the effects of low 
blood pressure could accentuate decrements in oxygen-carrying capacity and deliv-
ery to critical organs [ 124 ]. These studies suggest that there is a postnatal age effect 
on cardiovascular control, with critical maturational changes occurring when the 
risk of SIDS is greatest. 

 Infant arousal responses from sleep are also affected by postnatal age, although 
these maturational effects are sleep state dependent. Previous studies have demon-
strated that in response to respiratory (mild hypoxia), tactile (nasal air-jet), and 
auditory stimulation, total arousability is reduced with increasing age during quiet 
sleep while remaining unchanged in active sleep [ 124 – 126 ]. Following the intro-
duction of standard scoring criteria for subcortical activation and cortical arousal as 
separate entities, a recent study noted that spontaneous subcortical activations 
decreased with increasing postnatal age, while cortical arousals increased [ 127 ]. 
Conversely, another study analyzed both spontaneous and nasal air-jet-induced 
arousability during supine sleep and found no change in the percentage of cortical 
arousals (from total responses) throughout the fi rst 6 months of life [ 128 ]. 
Interestingly, when the same infants slept in the prone position, an increased pro-
pensity of cortical arousal was identifi ed at 2–3 months, the age when SIDS is most 
common [ 87 ,  128 ]. This increase in cortical arousals may refl ect an innate protec-
tive response to ensure an appropriate level of arousal for restoring homeostasis, not 
only during a vulnerable period of development but also in the presence of an exog-
enous stressor (e.g., the prone sleeping position).  

    Exogenous Stressor(s) 

 An exogenous stressor constitutes the third aspect of the triple-risk model for 
SIDS. Epidemiological studies have identifi ed numerous factors common to SIDS 
victims, such as the prone sleeping position, overheating, and recent infection, 
which may disrupt homeostasis [ 45 ,  59 ,  129 ,  130 ]. 

 The prone sleeping position has long been considered the major risk factor for 
SIDS [ 94 ,  131 – 134 ], with some studies suggesting a causal relation between prone 
sleep and SIDS [ 135 ,  136 ]. Several physiological changes ensue when infants sleep 
prone, including increased peripheral skin temperature and increased baseline heart 
rate, together with decreased heart rate variability [ 121 ,  137 – 145 ]. In an effort to 
identify changes in autonomic cardiovascular control with sleeping position, stud-
ies examining heart rate responses to auditory and nasal air-jet stimuli have sug-
gested an increase in sympathetic and a decrease in parasympathetic tone in the 
prone sleeping position [ 146 ,  147 ]. Furthermore, sympathetic effects on blood 
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pressure and vasomotor tone are decreased in the prone sleeping position. Lower 
resting blood pressure and altered cardiovascular responses to head-up tilting have 
also been identifi ed in term infants when sleeping in the prone position, compared 
with the supine position [ 121 ,  122 ]. Furthermore, cerebral oxygenation is reduced 
and cerebrovascular control impaired in the prone position in both term [ 123 ,  148 ] 
and preterm infants [ 110 ,  149 ]. In addition, prone sleeping infants exhibit reduced 
cardiac and respiratory responses when arousing from sleep, when compared to 
sleeping in the supine position [ 146 ,  147 ]. Previous studies of both term and pre-
term infants have consistently identifi ed increases in sleep time, with signifi cant 
reductions in spontaneous arousability, associated with prone sleeping when com-
pared with the supine position [ 150 – 153 ]. Furthermore, in other studies, the prone 
sleeping position depressed arousal responses provoked by postural change [ 137 ] 
and auditory [ 154 ] and somatosensory challenges [ 86 ,  138 ,  155 ]. It has been dem-
onstrated that both spontaneous and induced arousal responses are similarly 
affected by sleep state and SIDS risk factors, suggesting that they are mediated 
through the same pathways [ 156 ]. Despite this well-documented decrease in total 
arousability, examining subcortical and cortical responses separately has produced 
confl icting results. Although one study reported a decreased frequency of sponta-
neous cortical arousals in the prone position [ 153 ], more recent studies have found 
an increased proportion of cortical arousals (of total responses) in both nonsmoking 
and smoking exposed infants when sleeping prone [ 87 ,  128 ]. This apparent promo-
tion of full cortical arousal, demonstrated for both spontaneous and stimulus-
induced responses, may protectively compensate against the threat of altered 
autonomic control and the already blunted total arousability imposed by the prone 
position. 

 The prone sleeping position also potentiates the risk of overheating, by reducing 
the exposed surface area available for radiant heat loss and reducing respiratory heat 
loss when the infants face is covered [ 157 ]. Both physiological studies in healthy 
infants and theoretical model studies of heat balance have observed a decreased 
ability to lose heat when in the prone position [ 158 – 160 ]. Early studies observed 
decreased variation in behavior and respiratory pattern, increased heart rate, and 
increased peripheral skin temperature during prone compared with supine sleep 
[ 159 ]. These studies suggest that infants are less able to maintain adequate respira-
tory and metabolic homoeostasis when sleeping prone. 

 Increased sweating occurs in SIDS victims, regardless of whether infants slept 
prone or supine; these cases were predominantly associated with a covered face 
[ 118 ,  161 ]. A history of profuse sweating in SIDS victims has been postulated to be 
a phenomenon representing an abnormality of function of the autonomic nervous 
system [ 162 ]. The involvement of thermal stress with SIDS is further supported by 
the fi nding of similar odds ratios for both too much and too little bedding [ 163 ] and 
the suggestion that future SIDS victims may have had atypical temperature regula-
tion [ 164 ]. Infant arousability is also affected by body and room temperature; 
decreased sleep continuity and increased body movements have been associated 
with exposure to cooler temperatures [ 165 ], while infants sleeping in warmer 
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environments (28 °C vs. 24 °C) exhibited increased arousal thresholds to auditory 
stimuli [ 166 ]. Furthermore, based on studies assessing blood pressure control in 
infants [ 139 ,  144 ], it has been suggested that in response to the increased peripheral 
skin temperature when infants sleep prone, thermoregulatory vasodilatation of the 
peripheral microvasculature occurs, resulting in a decrease in blood pressure and a 
reduction in vasomotor tone. Recent studies in preterm infants have shown that 
increased ambient temperature led to signifi cant changes in autonomic control with 
elevated heart rates and lower heart rate variability compared to thermoneutral or 
cooler temperature [ 167 ]. 

 Head covering has been identifi ed as a major risk for SIDS with between 16 % 
and 28 % of SIDS infants found with their heads covered. Although a causal rela-
tionship with SIDS has not been established [ 168 ,  169 ], it appears likely that 
rebreathing and impaired arousal are involved. It has been suggested that the 
increased SIDS risk associated with head covering may result from hypoxia and 
hypercapnia via rebreathing of expired air [ 168 ,  170 ]. Head covering in healthy 
infants has profound effects on autonomic control during sleep [ 171 ]. Franco and 
colleagues [ 171 ] found that infants sleeping supine with their head covered by a 
bedsheet exhibited decreased parasympathetic activity, increased sympathetic activ-
ity, and increased body temperature when compared with head-free periods. In 
addition, arousal responses in active sleep were also depressed when the head was 
covered [ 172 ]. 

 Bed-sharing or co-sleeping has also been reported to signifi cantly increase the 
risk of SIDS, particularly when the mother smokes [ 118 ,  173 – 175 ] with more than 
50 % of SIDS deaths occurring in this situation between 1997 and 2006 [ 176 ,  177 ]. 
There have been few studies investigating the physiology behind this risk factor. In 
infants from nonsmoking families who were studied on successive bed-sharing and 
solitary sleeping nights, bed-sharing was associated with increased awakenings and 
transient arousals during slow wave sleep compared to solitary nights [ 178 ]. In con-
trast, another study found that bed-sharing infants spent less time moving and were 
more likely to have their heads partially or fully covered by bedding than cot- 
sleeping infants [ 179 ]. Thus more studies are required to identify the exact physio-
logical changes which occur during bed-sharing. 

 Other external stressors, such as infection, fever, and minor respiratory and gas-
trointestinal illnesses, commonly occur in the days to weeks preceding death of 
SIDS victims [ 180 – 182 ]. Although not identifi ed as an independent risk factor for 
SIDS, minor infections have been associated with an increased likelihood of SIDS 
when combined with head covering or prone sleeping [ 183 ,  184 ]. In the prone 
sleeping position, minor infection, in combination with fever, could further 
 exacerbate thermoregulatory effects on peripheral vasculature, which could increase 
the susceptibility of a hypotensive episode. Thus, hypotension, in combination with 
a decreased ability to arouse from sleep, which has been documented in term infants 
immediately following an infection [ 185 ], could potentially further impair an 
infant’s ability to appropriately respond to a life-threatening challenge such as cir-
culatory failure or an asphyxial insult.   
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    SIDS “Protective” Factors and Autonomic Control 

 Some studies have suggested that infant care practices, such as breastfeeding, 
dummy/pacifi er use, and swaddling (tight wrapping), decrease the risk of 
SIDS. These potentially protective factors for SIDS have all been associated with 
alterations to both cardiovascular autonomic control and arousal responses during 
sleep. However, results are often inconsistent, and supporting evidence is less exten-
sive than for the risk factors discussed above; thus, these potentially preventative 
factors remain controversial among researchers. 

    Breastfeeding 

 Breastfeeding reduces the incidence of SIDS by approximately half (OR 0.52, 95 % 
CI: 0.46–0.60), even after multivariate analyses accounted for potentially confound-
ing socioeconomic factors [ 180 ,  186 ,  187 ]. This apparent protection may be a bio-
logical effect, given that breastfeeding has been associated with a decreased 
incidence of diarrhea, vomiting, colds, and other infections; in addition, breast milk 
is rich in antibodies and many micronutrients [ 180 ,  188 ,  189 ]. Only one study has 
assessed the effects of breastfeeding on the cardiovascular system during sleep in 
term infants, and this study found that heart rate was signifi cantly lower in breast- 
fed infants when compared with formula-fed infants [ 190 ]. Although little is known 
about the effects of breastfeeding vs. formula feeding on cardiovascular control in 
infants, physiological studies have demonstrated an apparent promotion of arousal 
from sleep associated with breastfeeding. One study found that breast-fed infants 
spent more time awake during the night, thus requiring more frequent parental visits 
[ 191 ]. Another study showed that healthy breast-fed infants aroused more readily 
from active sleep than formula-fed infants in response to nasal air-jet stimulation at 
2–3 months postnatal age [ 192 ]. Although there is a general consensus that breast-
feeding should be encouraged, the relationship between breastfeeding for SIDS pre-
vention remains unclear.  

    Pacifi er/Dummy Use 

 The fi nding that the use of a dummy/pacifi er has a protective effect for SIDS has 
consistently emerged from epidemiological studies, with signifi cant associations 
being described for both usage during the fi nal sleep and “dummy ever used” (OR: 
0.46. CI 0.36–0.59) [ 118 ,  193 – 198 ]. Studies have suggested that a likely mechanism 
for this protection against SIDS is increased heart rate variability which has been 
demonstrated during sucking periods [ 199 ,  200 ]. Conversely, dummy sucking has 
also been shown to have no effect on heart rate, heart rate variability, respiratory 
frequency, or oxygen saturation in term infants [ 201 ,  202 ]. In addition, dummy 
sucking has been shown to elicit increases in blood pressure in quietly awake or 
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sleeping term infants [ 203 ]. Another potential mechanism for the protective nature 
of dummy use against SIDS is an enhanced arousability from sleep. However, results 
of the few studies which have been conducted are confl icting, with one study report-
ing decreased arousal thresholds to auditory stimulation observed in infants who 
regularly used a dummy, when compared with those who did not use a dummy 
[ 204 ]. In contrast, other studies have reported no effect of dummy use on either the 
frequency or duration of spontaneous arousals in sleeping infants, when studied both 
with and without a dummy in the mouth [ 205 ,  206 ]. It has also been hypothesized 
that sucking on a dummy during sleep may assist in maintaining airway patency, 
thus preventing a pharyngeal vacuum and the consequent sealing of the airway [ 207 , 
 208 ]. Thus, the risk of oropharyngeal obstruction may be reduced due to the forward 
positioning of the tongue when sucking on a dummy [ 208 ]. Although epidemiologi-
cal studies have provided strong support for dummy use to be protective for SIDS, 
the physiological mechanisms responsible for this protection remain uncertain.  

    Swaddling 

 Swaddling, or fi rm wrapping, is a traditional infant care practice which, according 
to an extensive historical review, has been used in some form or another by various 
cultures since medieval times [ 209 ]. Low incidences of SIDS in populations where 
swaddling is common have led to the proposal that swaddling may be protective 
[ 210 ,  211 ], and on this basis, a number of SIDS prevention organizations recom-
mend it. Several studies have documented a “tranquil” behavioral state with longer 
sleep periods in swaddled infants; therefore, despite a disparity between studies on 
the risk for SIDS [ 174 ,  183 ,  212 ], swaddling has become increasingly popular as a 
soothing technique throughout the world [ 213 ,  214 ]. Swaddling is a common prac-
tice in infants throughout the fi rst 6 months of life, during the period of increased 
SIDS risk. The duration of swaddling and the age of initiation of the practice vary 
widely. Currently, it is unclear if swaddling is protective against SIDS or is indeed 
a risk. In the United Kingdom during the mid-1990s, swaddling during the last sleep 
was more common among SIDS infants than age-matched controls (14 % vs. 9 %); 
furthermore, a more recent study showed that this difference has since become more 
marked (19 % vs. 6 %) [ 174 ]. 

 Studies investigating the effect of swaddling on cardiovascular control are lim-
ited. Swaddling elicits a mild increase in respiratory frequency, most likely due to 
restricted tidal volumes imposed by the fi rm wrapping [ 215 – 217 ]. No signifi cant 
effects have been documented on baseline heart rate, skin temperature, or oxygen 
saturation in term infants when swaddled during sleep [ 216 ,  218 ]. Studies which 
compared infants who were routinely swaddled to those who were unused to this 
practice found that sleep time and heart rate variability were only altered in those 
naïve-to-swaddling infants [ 219 ]. Several studies investigated the effects of 
swaddling in relation to infant arousability; however, divergent results have been 
published. The commonly observed decreases in spontaneous movements and star-
tle responses with swaddling are in contrast to effects of other protective factors for 
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SIDS [ 209 ,  220 ]. One study reported that when infants were swaddled, fewer startle 
responses progressed to a full awakening, indicating an inhibition of the cortical 
arousal process [ 221 ]. More recent studies reported that swaddled infants exhibited 
increased arousal thresholds in response to nasal air-jet stimulation; furthermore, a 
decreased frequency of full cortical arousals was observed primarily in infants who 
were unaccustomed to being swaddled, at 3 months of age [ 216 ]. Spontaneous corti-
cal arousals were also decreased in those infants unaccustomed to being swaddled, 
at 3 months of age [ 219 ]. These arousal differences between routinely swaddled and 
naïve-to-swaddling infants, only at this age of peak SIDS risk, may explain the 
contradictory fi ndings of another group which found decreased auditory arousal 
thresholds in swaddled infants when compared to infants who were free to move 
[ 218 ]. The authors attributed these effects of swaddling on arousal to the greater 
autonomic changes found after auditory stimulation in swaddled conditions [ 222 ]. 
As with the other protective factors discussed above, the mechanisms whereby 
swaddling is protective for SIDS remain unclear, and further research is required.   

    Conclusions 

 In summary, the assessment of cardiovascular control and arousal processes during 
sleep is important in understanding sleep-related pathologies such as SIDS. In oth-
erwise healthy infants, studies have demonstrated impairment of these physiologi-
cal mechanisms in association with all three aspects of the triple-risk model, thus 
demonstrating the heterogeneous nature of SIDS. Altered cardiovascular and cere-
brovascular control, in conjunction with a failure to arouse from sleep, could poten-
tially impair an infant’s ability to appropriately compensate for life- threatening 
challenges, such as prolonged hypotension or asphyxia during sleep. The concept of 
a close relationship between SIDS and autonomic dysfunction becomes more com-
pelling with the demonstration of an apparent promotion of arousal from sleep by 
protective factors for SIDS. Despite successful public awareness campaigns dra-
matically reducing SIDS rates, this decline in SIDS incidence may have stabilized 
[ 223 – 226 ]. Thus, further research is imperative to elucidate the exact mechanisms 
involved in the fi nal events of SIDS, allowing identifi cation of “at-risk” infants in 
the future. The ability to identify these infants would have the potential to increase 
awareness of both parents and clinicians while minimizing the incidence of SIDS 
with close monitoring and early intervention.     
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    Chapter 9   
 Pediatric Insomnia                     

     Oliviero     Bruni      and     Marco     Angriman    

    Abstract     Sleep disorders in children can compromise quality of life of both chil-
dren and families, and chronic sleep deprivations are associated with poorer devel-
opmental outcome, overweight, and behavioral disturbances. 

 Assessment should follow medical approach and examining primary and sec-
ondary contributing factors and maladaptive behaviors related to sleep, and clini-
cians should incorporate questions about sleep into their routine health assessment 
of children, examining the sleep/wake schedule, abnormal movements or behavior 
during sleep, and daytime consequences of sleep deprivation. 

 Sleeping environment and bedtime routines should be examined to identify 
behavioral issues related to sleep. 

 Polysomnography is not routinely indicated for children with insomnia, but 
actigraphy can give an estimation of objective sleep parameters. 

 Treatment options include sleep hygiene, behavioral strategies, and pharmaco-
logical treatment for selected cases.  

  Keywords     Pediatric insomnia   •   Diagnosis   •   Pharmacological treatment   •   Behavioral 
treatment  

 Box 
   That a child needs proper sleep and longer hours of sleep than an adult is such a well 
recognized fact among common-sense people that it seems strange it should be still 
necessary to preach it out to the public.  Nature March 18, 1909    
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       Introduction 

 Sleep is one of the most discussed topics during a child visit [ 1 ].

   Identifi cation and treatment of sleep problems in children is important since a grow-
ing body of evidence suggests a link between sleep disorders and physical, cog-
nitive, emotional, and social development.  

  Different epidemiological studies indicate that up to 50 % of children experience a 
sleep problem [ 2 – 4 ], and about 4 % have a formal sleep disorder diagnosis [ 5 ].  

  The presentation, natural history, and response to treatment of insomnia may differ con-
siderably between adults and children, and even within the pediatric age group, the 
clinical manifestations of sleep problems may vary by age and developmental level.     

    Prevalence of Insomnia 

 About 20–30 % of children under the age of 3 years were reported by parents as 
problematic for bedtime diffi culties and frequent night wakings [ 6 ] that tend to per-
sist in a large percentage of children [ 7 ]. 

 There is a large data variability that is related to study methodology, defi nition of 
insomnia, and inclusion criteria (parental report of problematic sleep or strict defi ni-
tion of insomnia as more than three awakenings per night, and sleep latency higher 
than 30 minutes). 

 For parents of infants and toddlers, night awakenings are the most common sleep 
complaints, with 25–50 % of children older than 6 months of age continuing to 
awaken during the night. Bedtime resistance is found in 10–15 % of toddlers. A 
recent longitudinal study in the fi rst year of life showed that about 10 % of the 
infants were reported by parents as having a problematic sleep. Approximately 50 % 
of infants had an average of 1–2 awakenings per night, while >2 awakenings were 
present in 9 % at 3 months, 21 % at 6 months, 26 % at 9 months, and 17 % at 
12 months. 

 Infants with >2 nighttime awakenings slept more often in the parent bed than 
infants without awakenings, at 3 months and 9 months. From this study also emerges 
that parental perception of sleep problem at all ages signifi cantly correlated with 
nocturnal awakenings and diffi culties falling asleep [ 8 ]. 

 Diffi culties falling asleep and night wakings are also common in preschoolers 
(15–30 %). In older children the main insomnia symptoms reported are sleep-onset 
diffi culty (15 %) and sleep-related anxiety (11 %) [ 9 ]. 

 The majority of adolescents sleep less than recommended on school nights and 
suffer from chronic sleep deprivation [ 10 ]; the tendency to delay sleep onset results 
in bedtimes that are too late to permit habitually suffi cient nighttime sleep, and 
evening-time use of electronic devices such as computers, smart phones, televi-
sions, or video games can delay bedtime or contrast melatonin secretion resulting in 
delayed sleep onset even after cessation of the activity; moreover, consumption of 
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caffeinated beverages is another contributing factor that can disrupt sleep hygiene 
resulting in poor sleep quality [ 11 – 13 ]. 

 The exact rate of insomnia among adolescents is uncertain [ 14 ]: 20–26 % of 
adolescents took more than 30 min to fall asleep [ 15 ]. 

 A high prevalence of insomnia ranging from 23.8 to 18.5 to 13.6 % was found 
most pronounced in girls than boys [ 16 ]. 

 A recent study showed that adolescent sleep generally declined over 20 years 
with the largest change occurred between 1991–1995 and 1996–2000 [ 17 ]. 

 A clear approximately twofold increasing trend in insomnia symptoms and tired-
ness was found from the mid-1990s to the end of the 2000s, but after 2008, the 
increase seems to have stopped. Insomnia symptoms and tiredness were associated 
with lower school performance, and they were more prevalent among girls (11.9 
and 18.4 %) compared to boys (6.9 and 9.0 %, respectively) [ 18 ]. 

 Sleep patterns of adolescents between 16 and 19 years were characterized by late 
bedtimes, long sleep latency, and short sleep duration, contributing to a daily sleep 
defi ciency of about 2 h on weekdays, including a sleep-phase shift to later bedtimes 
during weekends [ 15 ,  19 ]. 

 Declines in self-reported adolescent sleep across the last 20 years are concerning 
since chronic insuffi cient sleep in adolescents has been associated with declines in 
school and occupational performances; decreased attention and altered regulation of 
impulses; the use of caffeine, alcohol, stimulant meds, cannabis, and other drugs; 
increased risk-taking behaviors; depression; suicide ideation; and somatic health 
and psychological problems [ 20 ]. 

 In general, the total sleep duration of children and adolescents seems to be decreas-
ing over time compared with previous generations [ 21 ], and the reason why children 
and adolescents are getting less sleep is in part related to changes of social habits. 

 Environmental and psychosocial factors such as the increased use of electronic 
media have a considerable infl uence on the amount of sleep obtained by children 
and adolescents. 

 The intrusion of technology in the sleep of children and adolescents is an emerg-
ing problem. It should be taken into account that mobile telephone technology has 
evolved at such a rate that children and adolescents now use their mobile telephone 
to access the internet, send and receive emails, engage in social networking, listen 
to music, and play games [ 22 ]. Among a range of technologies, interactive techno-
logical devices are most strongly associated with sleep complaints [ 23 ]. 

 A recent research comparing preadolescents and adolescents sleep pattern in 
relation to the use of technology showed that adolescents reported more sleep prob-
lems, more eveningness, increase of Internet, social network and phone activities, 
while preadolescents were more involved in gaming console and TV. The transition 
from preadolescence to adolescence should be considered at high risk for the devel-
opment of sleep problems and bad sleep habits. Therefore, it is extremely important 
to focus on the preadolescence period to inform about the risks related to the use of 
technology at bedtime in order to prevent sleep problems in adolescence [ 24 ,  25 ]. 

 Apart from the environmental factors (i.e., technologies), some studies highlighted 
also the infl uence of cultural background, since prevalence of insomnia varied greatly 
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in relation to the different countries: for example, sleep problems ranged from 10 % 
in Vietnam and Thailand to 25–30 % in the United States and Australia and even 75 % 
in China and Taiwan [ 26 ]. 

 Specifi c pediatric populations have an increased incidence of insomnia, espe-
cially children with neurodevelopmental and chronic medical and psychiatric con-
ditions [ 9 ,  27 ,  28 ].  

    Consequences of Insomnia 

 Several data from the literature indicates that pediatricians and parents should be 
aware of the consequences of insomnia in infants, children, and adolescents:

    (a)    Longitudinal studies have demonstrated that sleep problems often persist 
throughout childhood and adolescence [ 11 ,  12 ,  29 – 31 ].   

   (b)    Inadequate sleep quality and quantity in children and adolescents is associated 
with negative functional outcomes, including sleepiness, inattention, and other 
cognitive and behavioral defi cits [ 32 ], as well as psychiatric and health out-
comes, such as obesity and metabolic consequences [ 33 ,  34 ].   

   (c)    Insomnia and sleep disturbances increase the risk of depression, as well as sui-
cide and self-harm behaviors [ 35 – 37 ].   

   (d)    There is also a signifi cant impact on families, with negative effects on daytime 
function and well-being, as well as elevated levels of family stress [ 38 – 43 ].     

 A recent meta-analysis of 11 longitudinal studies, comprising 24,821 partici-
pants, revealed that children and adolescents with short sleep duration had twice the 
risk of being overweight/obese, compared with subjects sleeping for long duration, 
providing evidence that short sleep duration in young subjects is signifi cantly asso-
ciated with future overweight/obesity [ 44 ].  

    Defi nition of Pediatric Insomnia 

 Pediatric insomnia represents a complex combination of biological, circadian, neu-
rodevelopmental, environmental, and behavioral variables; insomnia is defi ned as a 
persistent diffi culty with sleep initiation, duration, consolidation, or quality that 
occurs despite adequate opportunity and circumstances for sleep, and results in 
some form of daytime impairment [ 45 ]. 

 According to the previous ICSD-2 [ 46 ], “pediatric insomnia” was defi ned as a 
“repeated diffi culty with sleep initiation, duration, consolidation, or quality that 
occurs despite age-appropriate time and opportunity for sleep and results in daytime 
functional impairment for the child and/or family.” 

 The diagnosis of behavioral insomnia of childhood (BIC) was introduced in 
2005 in ICSD-2 as a unique diagnostic entity to emphasize sleep diffi culties that 
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result from inappropriate sleep associations or inadequate parental limit setting. The 
diagnosis of sleep-onset behavioral insomnia was characterized by reliance on mal-
adaptive and inappropriate sleep associations such as rocking, watching television, 
falling asleep in the parents’ bed, and so forth. The child is usually unable to fall 
asleep in the absence of these conditions at both bedtime and following nocturnal 
arousals. Inadequate parental limit setting can also result in a form of behavioral 
insomnia characterized by sleep-onset delay secondary to a child’s refusing to go to 
bed or stalling. 

 The ICSD-3 [ 45 ] describes chronic insomnia disorder with no specifi c pediatric 
classifi cation; as a consequence, a related unresolved issue is whether the current 
global classifi cation promotes a generic approach to insomnia therapy that ulti-
mately fails to benefi t some insomnia subgroups. The ICSD-3 defi nes chronic 
insomnia as “a persistent diffi culty with sleep initiation, duration, consolidation, or 
quality that occurs despite adequate opportunity and circumstances for sleep, and 
results in some form of daytime impairment” 

 The criteria include the report from patient or parents/caregivers of diffi culty 
initiating or maintaining sleep, early morning awakenings, resistance to go to 
bed on appropriate schedule, and diffi culty sleeping without parent or caregiver 
intervention. 

 The nighttime sleep diffi culty determined fatigue/malaise; attention, concentra-
tion, or memory impairment; impaired social, family, occupational, or academic 
performance; mood disturbance/irritability; daytime sleepiness; behavioral prob-
lems; reduced motivation/energy/initiative; proneness for errors/accidents; and con-
cerns about sleep. The sleep disturbance and associated daytime symptoms occur at 
least three times per week and should have been present for at least 3 months. 

 Based on the ICSD-3, there are several issues that should be considered when 
approaching an infant/child with insomnia [ 45 ]:

    1.    Parents may have unrealistic sleep expectations for their children and predispose 
them to insomnia by putting them in bed too early or assigning them too much 
time in bed each night.   

   2.    Child insomnia is often comorbid with diffi cult temperament or other comorbid 
medical and psychiatric conditions.   

   3.    There should be risk factors like diffi cult home situations, safety concerns, care-
giver relationship, and domestic abuse that should be considered or excluded.   

   4.    If the children had a current or past history of medical problems, parents may 
have diffi culty setting limits, because of guilt, a sense that the child is “vulnera-
ble,” or concerns about doing psychological harm.   

   5.    Environmental factors such as the child sharing a room with others and cramped 
living accommodations may contribute to negative sleep-onset associations or 
poor limit setting.   

   6.    The psychological asset of the parents (especially depressive symptoms) should 
be always evaluated.    

  A debated issue is at what age the diagnosis of insomnia could be done: because 
children are not expected to sleep through the night with regularity until they are 
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3–6 months of age, 6 months is a reasonable age to fi rst consider a diagnosis of 
chronic insomnia disorder, unless the sleeplessness is very marked at an earlier age. 

 The Diagnostic and Statistical Manual of Mental Disorders, 5th edition, DSM-5 
[ 47 ] does not present any classifi cation of sleep disorders specifi c for childhood; it 
includes sleep disorders defi ned according to criteria that are common for children 
and adults, although, in some instances, they specify developmental features of par-
ticular sleep disorders. The DSM-5 integrated pediatric and developmental criteria 
and also replaced “primary insomnia” with the diagnosis of “insomnia disorder,” a 
switch to avoid the primary/secondary designation when this disorder co-occurs 
with other conditions and to refl ect changes throughout the classifi cation. 
Furthermore, it introduced a temporal criterion (more than three “bad nights” a 
week for the last 3 months). DSM-5 underscores the need for independent clinical 
attention of a sleep disorder regardless of mental or other medical problems that 
may be present. 

 The most apparent change in ICSD-3 is the collapse of all previous chronic 
insomnia diagnoses into a single  chronic insomnia disorder  diagnosis. 

 Based on duration of symptoms, three insomnia diagnostic categories are identi-
fi able: chronic insomnia disorder, short-term insomnia disorder, and other insomnia 
disorder. These diagnoses apply to patients with and without comorbidities. 

 “Chronic insomnia disorder” is characterized by chronic sleep onset and/or sleep 
maintenance complaints with associated daytime impairment and is reserved for 
individuals whose sleep diffi culties exceed minimal frequency and duration thresh-
olds shown to be associated with clinically signifi cant morbidity outcomes. “Short- 
term insomnia disorder” is characterized by sleep/wake diffi culties that fail to meet 
the minimal frequency and duration criteria of chronic insomnia disorder. 
Nonetheless, short-term insomnia disorder is associated with clinically signifi cant 
sleep dissatisfaction or waking impairment. 

 “Other insomnia disorders” category should be assigned to those rare cases that 
fail to meet criteria for short-term insomnia disorder, yet are thought to have suffi -
cient symptoms of insomnia to warrant clinical attention. 

 The ICSD-3 integrates pediatric insomnia into the major clinical diagnosis of 
“chronic insomnia disorder” and includes parent/caregiver report of sleep distur-
bances and associated impairments in daytime function in the child and family. In 
this classifi cation, however, the differentiation into two different categories of 
insomnia representing the main clinical manifestations is maintained: the sleep- 
onset association and the limit-setting disorder. 

 The “sleep-onset association type” is characterized by the child’s inability or 
unwillingness to fall asleep or return to sleep in the absence of specifi c conditions 
(i.e., inappropriate associations), such as a parent rocking the child to sleep, watch-
ing television, feeding, and the presence of parents in the room; in the absence of 
these conditions, sleep onset is signifi cantly delayed, and when the conditions asso-
ciated with falling asleep are re-established, the child usually resumes sleep rela-
tively quickly. 

 Because sleep-onset associations are highly prevalent in young children, the phe-
nomenon is defi ned as a disorder only if (1) the associations are highly problematic 
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or demanding (e.g., extended rocking, car rides); (2) sleep onset is signifi cantly 
delayed or sleep is otherwise disrupted in the absence of the associated conditions; 
and (3) caregiver intervention is frequently required to aid the onset or resumption 
of sleep. 

 “Limit-setting” issues are characterized by bedtime stalling or bedtime refusal 
that is met with and reinforced by inadequate limit setting by a caregiver. Sleep 
problems occur when caregivers institute no or few limits or when limits are insti-
tuted inconsistently or in an unpredictable manner, such as when the parents allow 
the child to sleep in their bed when the child refuses to sleep. 

 Fear of sleeping alone, being in the dark, or having nightmares may lead some 
children to demand certain sleep-promoting conditions (the presence of parent in 
the bedroom) or to repeatedly delay their bedtimes. 

 Complications may result from the consequent sleep loss and include irritability, 
mood dysregulation, inattention, and poor school performance, together with 
increased family tensions with negative feelings toward the child, parental confl icts, 
and caregiver sleep loss.  

    Clinical Approach to Pediatric Insomnia 

 A thorough knowledge of normal sleep ranges and expected developmental changes 
is required; since children are not expected to sleep through the night with regularity 
until they are 3–6 months of age, 6 months is a reasonable age to fi rst consider a 
diagnosis of insomnia disorder, unless the sleeplessness is very marked at an earlier 
age [ 45 ]. However, when sleep diffi culties are persistent and pronounced in infants, 
underlying medical causes should be considered (like sleep-disordered breathing, 
gastroesophageal refl ux, otitis, allergies, pain, etc.) [ 48 ]. 

 The physician must be aware that medical insomnia can be aggravated in combi-
nation with behavioral insomnia due to the early alteration of sleep quality inducing 
wrong associations at bedtime: caregivers may eventually do whatever it takes for 
everyone to get to sleep, facilitating the development of negative sleep associations. 

 Multiple night awakenings, mainly in the fi rst year of life, may suggest the pres-
ence of gastroesophageal refl ux (GERD) or food allergies; diurnal hypersomno-
lence constitutes an important clinical sign, which suggests another possible 
diagnosis, such as metabolic or endocrinologic disorders [ 48 ]. 

 Sleep-related GERD may present with nocturnal awakenings with a sour taste in 
the mouth or breath, burning discomfort in the chest, and increased nocturnal arousals 
leading to sleep fragmentation. Other associated symptoms include abdominal pain, 
regurgitation, cough, feeding problems, failure to thrive, and respiratory problems. 

 Many chronic pain conditions – including fi bromyalgia, rheumatologic disor-
ders, and other causes of musculoskeletal pain, functional abdominal pain, head-
aches and migraine, cancer, and spasticity-related pain in cerebral palsy – have been 
linked to both disturbed sleep and daytime fatigue in children and adolescents 
[ 49 – 53 ]. 
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    Assessment 

 The assessment of sleep and sleep disturbances in children is performed through 
subjective (i.e., information reported by the child and/or parents, questionnaires) or 
objective (i.e., measure of motor or neurophysiologic parameters) tools. 

 Clinical evaluation is the most important part of the process of assessment and 
diagnosis of insomnia in the pediatric patients. 

 An important fi rst step is obtaining information regarding the typical/habitual 
sleep patterns and diffi culties. A sleep history obtained from a frustrated, sleepy 
parent can be vague and inaccurate, with the parent focusing, at times, on the wrong 
details. For example, parents often describe the child’s sleep pattern only for the 
most severe or most recent night or period. A more accurate description of the sleep 
patterns across time can be obtained from a 2-week sleep diary, log, or chart. 

 It is also important to assess daytime consequences of sleep disruption and 
comorbid conditions such as depression, anxiety, chronic medical conditions, and 
other primary sleep disorders. 

 Physical examination and laboratory assessment may be valuable as well, though 
they are not always necessary. 

 The physical examination depends on the medical history, the specifi cs of the 
sleep complaint, and the hypotheses generated during assessment, but some aspects 
are mandatory to evaluate especially if insomnia is comorbid with other sleep disor-
ders: auxologic parameters (obesity or failure to thrive), neurologic examination, 
abnormal skull or facial features, oropharyngeal crowding, palatal abnormalities, 
and chest or spine abnormalities. 

 A number of screening tools have been developed to assist the child healthcare prac-
titioner in assessing for sleep-related disorders and also for insomnia: a quick memory 
aid to assess sleep is known as BEARS, which provides a comprehensive screening tool 
usefulness in the primary care setting as well as in the sleep medicine center. 

 It consisted of different questions regarding  b edtime,  e xcessive daytime sleepi-
ness,  a wakenings at night,  r egularity/duration, and  s noring that could suggest a 
series of possible diagnoses [ 54 ]. 

 Specifi c questionnaires can be very helpful both in clinical and research settings, 
to complete sleep history and focus the parents on specifi c aspects of her child sleep, 
for example, the Sleep Disturbance Scale for Children [ 55 ], the Brief Infant Sleep 
Questionnaire (BISQ) [ 56 ] or the Children’s Sleep Habits Questionnaire [ 2 ,  3 ], or 
the Pediatric Sleep Questionnaire [ 57 ]. 

 Tests including laboratory and radiographic procedures are not routinely indi-
cated in chronic insomnia, and overnight polysomnography is helpful only to 
exclude other sleep disorders, such as obstructive sleep apnea, sleep-related move-
ment disorders, or parasomnias. 

 According to American Academy of Sleep Medicine practice parameters [ 58 ], 
PSG is not indicated for the routine evaluation of insomnia, in the context of an 
insomnia complaint; it is appropriate if the clinical evaluation raises the suspicion 
of sleep-related breathing disorders and periodic limb movements. 

O. Bruni and M. Angriman



163

 Actigraphy, although not regarded as a replacement for polysomnography, repre-
sents a useful and cost-effective tool to assess pediatric insomnia and response to 
treatment. It is based on small wristwatch-like devices that monitor movements for 
extended periods of time. The raw activity scores (i.e., epochs) are translated to 
sleep/wake scores based on computerized scoring algorithms. There are different 
commercial devices in the market, and each device has its own measurement char-
acteristics [ 59 ]. 

 Actigraphy can be placed on the nondominant wrist, but may also be placed on 
the dominant wrist, the ankles, or the trunk; extended monitoring (5 days or longer) 
reduces the inherent measurement errors in actigraphy and increases reliability. 

 Sleep parameters most closely estimated by actigraphy include sleep duration, 
sleep effi ciency, and waking time after initial sleep onset. A concomitantly maintained 
sleep log provides important supplemental data for accurate interpretation of actigra-
phy. Actigraphy-documented improvement in sleep may constitute a strong positive 
feedback for parents to constantly implement and apply behavioral strategies. 

 Finally, in adolescence it could be important also to evaluate the body clock 
type of the patient to exclude circadian rhythm disorders: (a)  Morning chronotypes , 
also referred to as  larks  or  early risers , prefer relatively early bed and wake-up 
times, and they describe their optimal mental and physical performance to be in the 
early part of the wake episode; (b)  evening chronotypes , sometimes referred to as 
 owls  or  late sleepers , prefer relatively late bed and wake-up times, and they 
describe their period of optimal mental and physical performance to be late in the 
wake episode. The hallmark of circadian rhythm disorders is that when the child is 
allowed to sleep at his or her desired schedule, sleep is normal and daytime sleepi-
ness rapidly subsides.   

    Hypothesis on a Clinical Classifi cation of Pediatric Insomnia 

 Although several studies have been published on the treatment of insomnia in 
infants and children, the translation of research fi ndings to practice settings remains 
unclear for several reasons:

    (a)    Most treatment studies defi ne sleep problems by symptoms and fail to classify 
using diagnostic criteria [ 60 ,  61 ].   

   (b)    There is no indication on the appropriate treatment for specifi c insomnia sub-
types [ 62 ].   

   (c)    There is no clear evidence on frequency and duration of non-pharmacological 
and pharmacological treatment [ 41 ].   

   (d)    There are no long-term follow-up studies either for non-pharmacological and 
pharmacological treatment.   

   (e)    No specifi c instruments for assessing the severity of insomnia are available.     

 The generic classifi cation insomnia in ICSD-3 and DSM-V incorporating adult 
and pediatric insomnia into a unique entity might be misleading for clinicians and 
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might be diffi cult to defi ne the exact type of insomnia and to fi nd the correct patient- 
oriented treatment approach, either non-pharmacological or pharmacological. 

 In order to guide the decision on the best treatment approach of pediatric insom-
nia, we hypothesize a clinical categorization of childhood insomnia that might be 
conceptualized as follows [ 63 – 65 ]:

•    Insomnia with motor hyperactivity  
•   Insomnia with prevalent middle-of-the-night awakenings  
•   Insomnia with multiple night awakenings and falling asleep diffi culties    

 These three different types are the most commonly encountered in the pediatric 
sleep fi eld and can be easily identifi ed in the clinical practice. They might be related 
to different pathophysiological mechanisms:

    (a)    The  insomnia characterized by motor hyperactivity  (parental report of a child 
that kicks the legs or described as a “horse in the bed”) is probably linked to a 
dopaminergic dysfunction since it could represent the early manifestations of 
the restless legs syndrome reported by Picchietti et al. [ 66 ]. In a recent study, it 
has been shown that symptoms of restless legs syndrome may already start in 
the fi rst year of life and are related to low serum ferritin level. The authors 
showed that the most striking single symptom was awakening after 1–3 h of 
sleep followed by screaming, crying, kicking, and slapping the legs or by ver-
bally expressing that the legs “hurt” with a seemingly comforting effect of mas-
sage and cycling movements performed by the parents [ 67 ]. Recently, we 
described the case of a toddler with severe insomnia, bedtime and nocturnal 
hyperactivity, and night awakenings associated with leg kicking and rubbing, 
highly suggestive of restless legs syndrome but presenting as severe insomnia 
responsive to gabapentin [ 64 ,  65 ].   

   (b)    The  insomnia with prevalent middle-of-the-night awakenings  could resemble 
the insomnia of people with mood disorders, that is, mainly characterized by no 
falling asleep troubles but prolonged midnight awakening with diffi culty return-
ing to sleep. Recent studies have demonstrated a link between sleep diffi culties 
in childhood and depression in mid-adolescence [ 68 ] and in adulthood [ 69 ] and 
an improvement of sleep quality with the administration of some antidepres-
sants: 5HT2A receptor antagonists determined an increase of slow-wave sleep, 
a reduction of REM, and an improvement of sleep continuity [ 70 ].   

   (c)    The  insomnia with multiple night awakenings and falling asleep diffi culties  is 
often a symptom related to infants who present with milk allergy or gastro-
esophageal refl ux and therefore are highly suspected to be related to a histamin-
ergic dysfunction. The histaminergic system in the brain is exclusively localized 
within the posterior hypothalamus with projection to almost all the major 
regions of the central nervous system. Administration of histamine or H1 recep-
tor agonists induces wakefulness, whereas administration of H1 receptor antag-
onists promotes sleep. The fi rst generation of antihistamines easily penetrates 
the blood-brain barrier and causes drowsiness and sedation. Several of these 
antihistamines, including the nonselective H1 receptor antagonists from the 
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phenothiazine class and “over the counter” diphenhydramine, have positive 
effects on subjective and objective measures of nocturnal sleep in healthy 
human subjects [ 71 ].     

 This kind of categorization has important implications for treatment and could 
allow the clinicians to personalize pharmacological therapy, based on the hypothe-
sized neurotransmitter dysfunction. 

 This approach is also based on the results of recent genetic studies suggesting 
that genetic factors play an important role on the development of insomnia of child-
hood. For example, heritability contributed for 30.8 % on nocturnal sleep duration, 
for 36.3 % on diurnal sleep duration, and for 35.3 % on night wakings [ 72 ]. 
Furthermore, the variance in consolidated nighttime sleep duration is largely infl u-
enced by genetic factors with a critical environmental time-window infl uence at 
around 18 months. A strong heritability (71 %) was observed for the short-persistent 
nighttime sleep duration trajectory [ 73 ]. 

 In order to correctly categorize the specifi c type of insomnia, a careful family 
and personal history should be collected to evaluate the presence of symptoms/dis-
eases that could be associated with the hypothesized classifi cation of insomnia. 
LeBlanc et al. [ 74 ] point out that family history was the second strongest predictive 
factor in new cases of insomnia syndrome with the implication that there may be a 
familial predisposition and, in other words, a vulnerable phenotype. Further, there 
was a trend toward a higher familial incidence in those reporting earlier onset vs. 
those reporting a later onset. Furthermore, evidence suggests that the expression of 
5HTTLPR, which affects synaptic serotonin levels, is critical in the development of 
the neonatal brain, and also the 5HTTLPR contributes to the onset of insomnia 
rather than the severity [ 75 ]. 

 However, also several epigenetic mechanisms seem to be involved in the regula-
tion of sleep and in the development of insomnia: stressful experiences during 
prenatal/early life development may contribute to changes in stress reactivity that 
may persist into adulthood through epigenetic mechanisms. If epigenetic mecha-
nisms are potentially reversible via environmental or pharmacological interven-
tions, it might be hypothesized that both cognitive behavioral treatment for 
insomnia and pharmacological interventions might infl uence epigenetic modifi ca-
tion in insomnia [ 76 ]. 

 From the previous studies, it is clear that a predisposition to insomnia seems to 
exist, driven by factors associated with response to stress at both a psychological 
and physiological level. Understanding vulnerability to insomnia will inform our 
understanding of the etiology of other disorders, specifi cally depression. 

 To summarize our hypothesis on the different types of insomnia reported above, 
we propose the following treatment approach:

    (a)    An infant who presents with no particular diffi culties in falling asleep but pro-
longed middle-of-the-night awakenings and a family and clinical history of 
insomnia, parasomnias, headache/migraine, depression, and mood disorders 
probably underlies a serotonergic dysfunction and therefore should be treated 
with serotonergic drugs. Obviously selective serotonin reuptake inhibitors 
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(SSRI) are not indicated in infants and children, and therefore L-5- 
hydroxytryptophan could be the choice for this type of insomnia.   

   (b)    An infant presenting with diffi culty in falling asleep linked to restless legs or 
kicking legs and with nocturnal hyperactivity and a family and clinical history 
of restless legs syndrome or periodic limb movements during sleep, iron defi -
ciency anemia, and growing pains might indicate a dopaminergic dysfunction 
and should be evaluated for anemia and eventually treated with iron.   

   (c)    An infant showing multiple night awakenings and falling asleep diffi culties 
with a clinical history of atopic dermatitis or milk allergy or gastroesopha-
geal refl ux and with a high presence of allergies in the family might reveal a 
histaminergic dysfunction. In this case obviously the treatment of choice 
should be the fi rst generation of antihistamines with high affi nity for the H1 
receptor.      

    Treatment of Pediatric Insomnia 

 Prevention is the best treatment for behavioral insomnia of childhood, but unfortu-
nately, most frequently parents request an evaluation when the disorder is chronic. 
Good sleep practices and behavioral interventions are the fi rst recommended treat-
ments for pediatric insomnia [ 27 ]. It is important to discuss parents’ knowledge and 
beliefs as well as strategies they have used to help address their child’s sleep prob-
lems. For example, in the case of multiple night awakenings, it assumes crucial 
importance to clarify age-appropriate sleep structure: although parents often per-
ceive that their children with night wakings have more frequent arousals than do 
other children, arousals are a normal part of sleep architecture and are experienced 
equally by children with and without reported night waking. It is the child’s signal-
ing at times of waking – by crying, calling, or getting out of bed (because of diffi -
culty returning to sleep independently) – that makes the parents aware of, and thus 
report as frequent, the night wakings [ 77 ]. 

    Sleep Hygiene 

 Sleep hygiene plays an important role in virtually all sleep interventions and typi-
cally involves a combination of creating an environment that is conducive to sleep 
and engaging in healthy sleep habits. In terms of environment, the bedroom should 
be quiet and dark and have a cool temperature [ 78 ]. 

 Scheduling regular, appropriate sleep and wake times allows an adequate sleep 
opportunity. In addition, the bedroom should be envisioned as a calming, relaxing 
sleep sanctuary. For this reason, televisions, video games, and other electronic 
devices should not be kept in the bedroom, and parents should not use the bedroom 
as a place to send the child when they are punished [ 79 ,  80 ]. 
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 The above strategies will work best when used in combination with healthy sleep 
hygiene habits. These include implementing a regular bedtime routine (e.g., bathe, 
get in pajamas, brush teeth, read a book, say goodnight) and a consistent sleep 
schedule, avoiding stimulating activities (e.g., watching television or playing video 
games) prior to bedtime, limiting caffeine (e.g., cola and chocolate) intake before 
bed, and engaging in daily physical activity [ 81 ]. 

 As with infants and toddlers, parents play a crucial role in treating sleep prob-
lems in this age group. It is important that parents model and begin to teach their 
preschoolers about healthy sleep hygiene. With their parents’ help, preschoolers can 
begin to play a more active role in choosing appropriate sleep hygiene options (e.g., 
choosing to read a book rather than watch television right before going to sleep). 
The earlier sleep hygiene habits are established, the better, as sleep habits developed 
in childhood shape sleep habits exhibited in adulthood. 

 Addressing nighttime fears in this age group can help reduce negative associations 
with sleep and may be another important aspect of intervention that should be consid-
ered. A common intervention for nighttime fears in children is for the parent to make the 
child feel safe and secure by co-sleeping (e.g., allowing the child to sleep in the parent’s 
bed). Although this intervention offers short-term alleviation of symptoms, parents often 
fi nd themselves co-sleeping for extended periods of time. This habit can be challenging 
to change and often results in the need for an intervention for co-sleeping. 

 Healthy sleep practices include daytime and nighttime sleep practices that posi-
tively impact sleep initiation/maintenance and sleep quantity and quality; it usually 
includes bedtime routine, consistent bedtime and wake time, a quiet, dark, and cool 
bedroom, avoidance of caffeinated products, and daily physical activity (Table  9.1 ). 
A critical aspect of sleep hygiene is the use of technology in the bedroom (com-
puter, TV, cell phone, video games), which is clearly associated with decreased 
sleep quantity and quality in children [ 82 ].

        Non-pharmacological Treatment 

 Behavioral treatment for bedtime problems and night wakings is claimed to be 
highly effective in improving child sleep [ 27 ]; no published studies have shown any 
adverse effects of behavioral interventions for bedtime problems and night waking 

   Table 9.1    Healthy sleep practices   

 Infants and children should be put to bed wide awake 
 Bedtime and wake time should remain as consistent as possible 
 Naps should be timed early enough in the afternoon so as to allow for adequate sleep pressure to 
accumulate by bedtime 
 Enhance morning light exposure and limit light exposure in the evening, including light from 
television, video games, and computer screens, to reinforce physiologic circadian and melatonin 
rhythm 
 Avoid chocolate, energy drinks, or caffeinated beverages in the evening 
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in young children, including interventions involving periods of crying in infants and 
toddlers [ 83 ,  84 ]. 

 The American Academy of Sleep Medicine published recommendations for behav-
ioral treatment of bedtime problems and night awakenings in infants and young chil-
dren [ 60 – 62 ]; cardinal elements of a behavioral treatment plan for infant and young 
children are optimization of sleep hygiene, maintaining a regular sleep schedule, and 
structured bedtime routines appropriate for age, such as bathing, toothbrushing, or 
reading stories. Exposure to ambient light at bedtime and during the night should be 
minimized except for small night lights in cases of children with fear of the dark. 

 Recent studies showed parent education to be effi cacious [ 85 ]. 
 For more specifi c behavioral interventions, there is no evidence to suggest any 

one approach is more effective than another. Thus parents should be presented with 
different options and select an approach that matches the infant’s temperament and 
family’s preferences. With any strategy, it is important to problem solve with par-
ents how to handle child distress (e.g., parent engages in a distracting activity during 
infant crying or contact with another supportive adult during the process). With all 
behavioral interventions, it is important to explain to parents that although the fi rst 
night will be challenging, the second night will be worse, and that the parents must 
persist and remain consistent [ 27 ]. 

 Treatment of insomnia for older children and adolescents is seldom successful 
unless all pertinent infl uences are addressed and the child is motivated enough to 
make the lifestyle and sleep schedule changes that are usually necessary to correct 
the problem [ 13 ]; consumption of caffeinated beverages should be reduced and any 
late-day intake should be eliminated. The use of electronic devices should be moved 
to alternative times and optimally replaced with a structured pre-bedtime routine 
incorporating less stimulating activities. Efforts should be made to keep bedtime 
and waking time on non-school days consistent with those on school days to elimi-
nate irregularity of sleep schedule. Daytime napping should be eliminated. 

 Several behavioral techniques are available, and the clinician should propose to 
the family the most appropriate, based on parental preferences and child tempera-
ment [ 86 ]; consistent and sustained application of these interventions is usually 
necessary to achieve sustained clinical improvement in children with more severe 
forms of bedtime resistance and night waking. 

    Positive Routines 

 Positive routines involve the parents developing a set bedtime routine characterized 
by quiet activities that the child enjoys. Faded bedtime with response cost involves 
taking the child out of bed for prescribed periods of time when the child does not 
fall asleep. Bedtime is also delayed to ensure rapid sleep initiation and that appro-
priate cues for sleep onset are paired with positive parent-child interactions. Once 
the behavioral chain is well established and the child is falling asleep quickly, the 
bedtime is moved earlier by 15–30 min over successive nights until a preestablished 
bedtime goal is achieved.  
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    Unmodifi ed Extinction 

 Extinction has been found to be an effective intervention for sleep problems in 
infants and very young children [ 87 ]. 

 In fact, most behavioral methods for treating sleep problems in these age groups 
incorporate principles of extinction. Extinction is based on the hypothesis that night 
wakings and attention-seeking behaviors are positively reinforced by parental atten-
tion and other behaviors. Thus, extinction involves parents helping their children to 
establish self-soothing skills (e.g., parents are told to put their infants to bed drowsy, 
but not asleep, which helps the child learn to settle to sleep on his/her own). The 
parent is not to respond to their child’s attempts at reengaging the parent to provide 
external soothing techniques (e.g., feeding, rocking, singing). The goal is for the 
child to learn to self-soothe. 

 The biggest obstacle associated with extinction is lack of parental consistency. 
Parents must ignore their child’s cries every night, no matter how long it lasts. Many 
parents are unable to ignore crying long enough for the procedure to be effective. 

 Tikotzky and Sadeh [ 87 ] reported that it can be helpful and encouraging to inform 
parents that research has not found that limiting parental involvement in order to 
promote self-soothing results in adverse effects on the infant’s emotional well-being 
or on the parent-child relationship. The child is placed in bed while awake, left alone 
until asleep, and night wakings are ignored. The infant learns to self-soothe once 
realizing that nighttime crying does not result in parental attention. 

 If parents respond after a certain amount of time, the child will only learn to cry lon-
ger the next time. Parents are also instructed that post-extinction response bursts may 
occur. That is, often at some later date, there is a return of the original problematic 
behavior. Parents are instructed to avoid inadvertently reinforcing this inappropriate 
behavior following such an extinction burst. The common term used in the media and 
self-help books to describe unmodifi ed extinction techniques is the “cry it out” approach. 

 As a variant to unmodifi ed extinction, some studies have utilized  extinction with 
parental presence.  (The parent remains in the room during extinction, acting as a reas-
surance for the child but providing little interaction.) This procedure involves the par-
ents staying in the child’s room at bedtime but ignoring the child and his/her behavior. 
Some parents fi nd this approach more acceptable and are able to be more consistent.  

    Graduated Extinction 

 For parents who are opposed to unmodifi ed extinction, other variants of extinction, 
such as graduated extinction or parental presence extinction, may be a better inter-
vention alternative. Graduated extinction involves parents ignoring disruptive bed-
time behaviors for a predetermined period. If the child has not settled at the end of 
that time, the parent settles the child back in bed, but minimizes interaction with the 
child. Extinction with parental presence involves the parent lying down in a separate 
bed in the infant’s room during settling and awakening. Parents feign sleep and do 
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not attend to the infant directly. Parents follow this procedure for 1 week, after which 
they follow an unmodifi ed extinction procedure. This technique has been found to 
reduce the extinction burst (increase in signaling behaviors) that is typically seen 
when using unmodifi ed extinction. This involves ignoring negative behaviors (i.e., 
crying) for a given amount of time before checking on the child. The parent gradually 
increases the amount of time between crying and parental response. Parents provide 
reassurance through their presence for short durations and with minimal interaction. 

 Either parents can employ a fi xed schedule (e.g., every 5 min), or they can wait 
progressively longer intervals (e.g., 5 min, 10 min, then 15 min) before checking on 
their child. With incremental graduated extinction, the intervals increase across suc-
cessive checks within the same night or across successive nights. The checking 
procedure itself involves the parents comforting their child for a brief period, usu-
ally 15 s to a minute. The parents are instructed to minimize interactions during 
check-ins that may reinforce their child’s attention-seeking behavior. 

 The goal of graduated extinction is to enable a child to develop “self-soothing” 
skills in order for the child to fall asleep independently without undesirable sleep 
associations (e.g., nursing, drinking from a bottle, rocking by parent). Once these 
skills are established, the child should be able to independently fall asleep at bed-
time and return to sleep following normal nighttime arousals.  

    Scheduled Awakenings 

 Scheduled awakening entails establishing a baseline of the number and timing of 
spontaneous night wakings. Then a preemptive waking schedule wherein parents 
awaken their child approximately 15–30 min before typical spontaneous night wak-
ing is implemented. As the treatment progresses, the time between scheduled awak-
enings is increased until eventually there are no awakenings. When parents awaken 
the child, they are instructed to engage in their typical behaviors (e.g., feeding, 
rocking, soothing) as if the child had awakened spontaneously. 

 Scheduled awakenings appear to increase the duration of consolidated sleep, but 
the mechanisms behind why this intervention decreases nighttime awakenings are 
not well understood. Scheduled awakenings are a treatment option for frequent 
nighttime awakenings, but are not appropriate for problems with sleep initiation. 
Also, compared to extinction, it can be more complicated to carry out and may take 
several weeks rather than days before improvements are seen.  

    Bedtime Fading 

 Faded bedtime, often used in combination with sleep hygiene, involves determining 
a time at which it is likely the child will fall asleep within about 15 min of going to 
bed [ 88 ]. 
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 Once the child falls asleep at this time with little resistance, the bedtime is set 
earlier after a series of successful nights until the desired bedtime is achieved. 
Also, the child’s wake time is set at the same time each day, and the child is not 
allowed to sleep outside the prescribed sleep times. A modifi ed version of this 
technique, faded bedtime with response cost, involves bedtime fading, as 
described above. However, if the child does not fall asleep within a certain 
period of time, the child is removed from bed (response cost) to decrease the 
negative association between being in bed and awake and to increase the likeli-
hood that the child will fall asleep. After a predetermined time (typically about 
30 min during which time the child engages in a non-arousing activity), the 
child returns to bed. This procedure is repeated until the child falls asleep. Once 
successful at the target bedtime, an earlier bedtime is set as the goal. The aims 
of the treatment are in line with the goals of extinction: to increase appropriate 
behaviors and positive associations with sleep and to decrease arousal by 
helping the child to develop self-soothing skills and fall asleep independently. 
This technique involves delaying bedtime closer to the child’s target bedtime. 
The goal of this treatment is for the child to develop a positive association 
between being in bed and falling asleep rapidly. Bedtimes can be gradually 
moved earlier.  

    Effi cacy Studies on Behavioral Treatments 

 It should be taken into account that the long-term effi cacy of behavioral treat-
ment is not completely assessed: a systematic review, although acknowledging 
the effi cacy in short term, reported fi nally that moderate-level evidence supports 
behavioral interventions for pediatric insomnia in young children and even low 
evidence in adolescents and in children with neurodevelopmental disabilities. 
This review showed that only four studies assessed sleep-onset latency, with 
a signifi cant overall effect and small to medium effect size at posttreatment. 
Also the evaluation of the effi cacy on the frequency of night wakings (seven 
studies), and on the night waking duration (four studies), resulted in a signifi -
cant effect but with a small to medium effect size. Finally, a nonsignifi cant 
overall effect on night wakings was found at 3–12-month follow-up across fi ve 
studies [ 89 ]. 

 Following the results of this study, we should reconsider the claimed “effi cacy” 
of behavioral interventions; more studies are needed to identify factors that may 
predict treatment success and to tailor behavioral interventions for young children 
based on child (e.g., temperament, age), parental, and environmental factors [ 86 ]. 
Finally, more longitudinal studies are needed to demonstrate whether treatment 
benefi ts for insomnia are maintained over time and to examine other functional 
outcomes (child mood, behavior, health, as well as parental mood, marital satisfac-
tion, and family functioning). 
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   For waiting times in case of nocturnal awakenings, follow those indications: 

 1° awakening (s)  2° awakening (s)  3° awakening (s) 

 Day 1  10  15  20 
 Day 2  20  25  30 
 Day 3  30  35  40 
 Day 4  40  45  50 
 Day 5  50  55  60 
 Day 6  60  65  70 
 Day 7  70  75  80 

        Pharmacological Treatment 

 Children who do not respond to behavioral interventions could be candidates for 
pharmacological treatment of insomnia. Currently, there are no US Food and Drug 
Administration (FDA)-approved medications for the treatment of insomnia in chil-
dren, and pharmacological treatment should always be considered in combination 
with behavioral treatment [ 26 ,  90 ]. 

 Box: Behavioral Strategies for Insomnia of Childhood 
     1.    Create solid and positive bedtime routines (e.g., songs, books, relaxing 

activities).   
   2.    If possible, put the child in bed sleepy but not fully asleep.   
   3.    Put in the child’s bed only few familial objects he can use to sooth him-

self in the case of nocturnal awakenings (avoid plushes or dangerous 
objects).   

   4.    Establish a constant “good-bye phrase,” for example, “You can sleep 
alone here with your favorite toys.”   

   5.    Before leaving the child’s room, give a plausible explanation (“mama 
will go to the kitchen to drink some water and then come back to you”).   

   6.    Speak to the child from the other room to reassure him.   
   7.    If he begins to cry, let him cry for a brief period (5–10 s) before returning 

in the room.   
   8.    Reassure the child, letting him in his bed and remain in the room until he 

has calmed down; reduce as much as possible the direct interaction with 
the child.   

   9.    Leave the room repeating point 4.   
   10.    If the child cries, return in the room and repeat point 7 awaiting a little 

more time (10–15 s).   
   11.    Next night, repeat from point 1 to 10, increasing time of awaiting of 10 s.     
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 Due to the lack of studies and of empirical evidence, different drugs have been 
traditionally used in pediatric insomnia and especially in children with special 
needs. Most used medications are sedating antihistamines (e.g., diphenhydramine 
and hydroxyzine), melatonin, benzodiazepines, α-2-receptor agonists (e.g., cloni-
dine), pyrimidine derivatives (e.g., zaleplon and zolpidem), antipsychotics (e.g., 
risperidone and quetiapine), and sedating antidepressants (e.g., trazodone and mir-
tazapine) [ 90 ]. 

 Clear, well-defi ned treatment goals must be established with the patient and fam-
ily. Treatment goals should be realistic, clearly defi ned, and measurable, for exam-
ple, it has to be clarifi ed that the immediate goal of treatment will usually be to 
alleviate or improve ,  rather than to completely eliminate, sleep problems. Close 
communication with the family, including during frequent follow-up visits, is a key 
component of successful and safe management. 

 It should be taken into account that drugs could be initially useful for parent and 
child’s relief, and in general it is better not to wait a long time to treat insomnia; it 
is better to implement a brief drug trial than act later on a chronic insomnia. Also 
when a drug has been administered, abrupt discontinuation should be avoided, and 
the treatment should be carefully monitored since there is a natural inclination of the 
parents to give the lowest dose [ 91 ]. Finally, it should be reminded that cognitive 
behavioral therapy should always be associated to drug treatment to ensure the best 
long-term effi cacy [ 41 ]. 

 It is of interest that about 50–60 % of pediatricians use drugs for insomnia in 
infants and children [ 92 – 95 ], but despite the widespread use of prescription thera-
pies such as clonidine, antidepressants, mood stabilizers, and antihistamines, little 
data exist on their effi cacy for the treatment of insomnia in children and adolescents 
[ 60 ,  61 ]. Few studies have evaluated pharmacologic interventions for childhood 
insomnia refractory to behavioral interventions, and even fewer have included chil-
dren with neurodevelopmental or neuropsychiatric disorders. 

 Commonly, parents who ask for consultation for insomnia of the infant/child 
have already tried homeopathic, non-prescription, and off-label prescription agents, 
because of safety, economy, and evidence. 

 In the following paragraphs, different homeopathic, off-label prescription agents 
and drugs commonly used for insomnia are listed. 

    Tryptophan 

 Tryptophan is a precursor of serotonin and melatonin widely used in the 1980s for 
treatment of sleep disorders and headache prophylaxis. It does not have opioid-like 
effects and does not limit cognitive performance or inhibit arousal from sleep [ 96 ]. 
In the literature, several positive effects on sleep are reported: improvement of sleep 
latency [ 97 – 99 ]. 

 The exact mechanism of action of the sedative effects of L-tryptophan is 
unknown, but the effect is not mediated by the conversion in serotonin.  
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    5-Hydroxytryptophan (5-HTP) 

 5-HTP is the intermediate metabolite of the essential amino acid L-tryptophan (LT) 
in the biosynthesis of serotonin. 5-HTP is not found in the foods and eating foods 
with tryptophan slightly increases 5-HTP levels. It easily crosses the blood-brain 
barrier and effectively increases central nervous system (CNS) synthesis of sero-
tonin. The effects of 5-HTP on sleep structure are confl icting: increase or decrease 
of REM and increase of SWS [ 100 ]. 

 In 1989, the presence of a contaminant called Peak X was found in tryptophan 
supplements that could determine eosinophilia-myalgia syndrome (EMS); however, 
a recent study reported that there is no evidence to implement 5-HTP intake as a 
cause of any illness, especially the EMS or its related disorders [ 101 ]. 

 Very limited data are available on the effects of 5-HTP on insomnia 
symptoms. 

 There is clear evidence of therapeutical effect for sleep terrors in children at dos-
age of 2 mg/kg [ 92 ,  93 ].  

    Antihistamines 

 Histamine is a wake-promoting neurotransmitter, and inactivation or suppression 
in various animal models has led to sedation and disrupted wakefulness patterns 
[ 102 ]. 

 The fi rst generations of antihistamines are lipid soluble and pass through the 
blood-brain barrier; they bind to H1 receptors in the CNS and have minimal effects 
on sleep architecture. They are often the more acceptable choice for many families, 
commonly well tolerated, and may acutely improve sleep and speed up behavioral 
programs. 

 These agents may worsen obstructive sleep apnea (OSA), and also may suppress 
rapid eye movement (REM) sleep [ 90 ]. 

 Diphenhydramine is the most commonly used and is a competitive H1-histamine 
receptor blocker. Peak blood and tissue levels are achieved within 2 h of ingestion. 
The recommended dosage for adults is 25–50 mg, whereas in children the effective 
dose is between 0.5 mg/kg and 25 mg. A study showed a signifi cant decrease in 
sleep latency time and number of awakenings [ 103 ], while other studies reported no 
more effectiveness than placebo [ 104 ,  105 ]. 

 Very few studies have been conducted with other antihistamines in children with 
insomnia, reporting confl icting results. Trimeprazine was used in 22 children with 
night wakings showing a moderate improvement [ 106 ]; niaprazine showed a 
decrease of sleep-onset latency and an increase of sleep duration [ 107 ] even if com-
pared with benzodiazepines [ 108 ]. 

 The most common adverse reaction to antihistamines at therapeutic doses is 
impaired consciousness. The predominant features in an overdose are anticholinergic 
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effects, including fever, blurred vision, dry mouth, constipation, urinary retention, 
tachycardia, dystonia, and confusion.  

    Melatonin 

 Melatonin (N-acetyl-5-methoxytryptamine) is a chronobiotic drug crucial for the 
regulation of the sleep/wake cycle. In older children and adults, its production and 
secretion begin in the evening and peak during the night between 2:00 and 4:00 AM; 
its production and release are inhibited by light. There is now a greater understanding 
that low doses (0.5 mg) can be effective for some children, with diminishing benefi t 
with doses exceeding 6 mg, and unlike traditional hypnotics such as chloral hydrate 
and the benzodiazepines, melatonin does not affect sleep architecture [ 24 ]. 

 In general MLT for treatment of chronic sleep-onset insomnia in children is effec-
tive in a dosage of 0.05 mg/kg given at least 1–2 h before desired bedtime [ 109 ]. 

 Systematic reviews and meta-analyses of placebo-controlled, randomized con-
trolled trials (RCTs) in children with neurodevelopmental disabilities, especially 
autism, have demonstrated that exogenous melatonin improves sleep, either by 
reducing the time taken to fall asleep (sleep-onset latency) or by increasing total 
sleep time (sleep maintenance and sleep effi ciency), or both [ 110 ,  111 ]. 

 Further, MLT at a dosage of 5 mg was effective in ADHD children with delayed 
sleep-phase syndrome (DSPS) and insomnia [ 112 – 115 ]. 

 These effects have been also observed in typically developing children with 
delayed sleep-phase syndrome. 

 Melatonin is increasingly prescribed to many children using a wide range of 
doses, demonstrating effi cacy in improving sleep quality, by reducing sleep-onset 
latency or slightly increasing total sleep time. 

 A large clinical trial confi rmed the effi cacy of melatonin in the treatment of sleep 
impairment in children with NDDs, using different doses, ranging from 0.5 to 
12 mg; the main effects of melatonin were reduced sleep latency (from 102 to 
55 min in 12 weeks) and increased total sleep time (40 min) [ 116 ]. 

 Headaches, confusion, dizziness, cough, and rashes have been reported, but these 
are common symptoms in children and are likely to be coincidental or caused by 
impurities in the many imported and often unregulated formulations of melatonin. 
Previous reports of poor seizure control, poor asthma control, and adverse endocri-
nological problems during puberty have not been confi rmed. The systematic reviews 
and meta-analyses of RCTs all suggest that there are no signifi cant adverse side 
effects associated with the use of melatonin [ 24 ]. 

 Further research is required to evaluate the metabolism of melatonin, the func-
tion of its receptors, and its value in specifi c neurodevelopmental disorders. 
Unanswered clinical questions include whether slow-release preparations are supe-
rior to immediate-release in increasing total sleep time, and whether a more rational 
and optimal prescription of melatonin might be achieved by measuring salivary 
melatonin before its use.  
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    Iron 

 Iron is a cofactor for tyrosine hydroxylase, the enzyme responsible for catalyzing 
the conversion of the amino acid L-tyrosine to dopamine. 

 Iron defi ciency anemia was reported to be associated with higher motor activity 
during sleep, shorter night sleep duration, and higher frequency of night waking 
[ 117 ], and supplemental iron was associated with longer sleep duration [ 118 ]. 

 In some cases, night awakenings starting in the fi rst year of life might be an early 
sign of restless legs syndrome [ 119 ,  120 ]. 

 This kind of insomnia with motor hyperactivity and characterized by awakening 
after 1–3 h of sleep followed by screaming, crying, kicking, and slapping the legs or 
by verbally expressing that the legs “hurt” with a seemingly comforting effect of 
massage and cycling movements performed by the parents is reported to be related 
to low serum ferritin level [ 67 ]. 

 Because iron defi ciency is common in children, measuring the ferritin level is 
reasonable. Iron replacement should be initiated if ferritin levels are less than 
50 mcg per L, and they should be rechecked in 3 months [ 121 ]; although the risk of 
iron overload is very low, parents should be asked for a personal and family history 
of hemochromatosis or unexplained liver disease.  

    Vitamin D 

 Clinical research on the relation between vitamin D and sleep is ongoing, and few 
studies have been published on the role of vitamin D metabolism and sleep disor-
ders. Preliminary data suggest the possibility that altered vitamin D metabolism 
could play an important role in the presentation and severity of sleep disorders 
[ 122 ]. Vitamin D is related to dopamine metabolism; it could be useful to investi-
gate vitamin levels in association with iron parameters in children with motor 
hyperactivity during sleep.  

    Clonidine 

 Clonidine is a central α 2  agonist that has been widely used in treating sleep distur-
bances (mainly sleep-onset delay) in children with ADHD [ 123 ]. 

 Clonidine is rapidly absorbed and has onset of action within 1 h and peak effects 
in 2–4 h. Starting dose is usually 50 μg, increased in 50 μg increments. 

 Tolerance to the sedating effects may develop with sedative effects tending to 
decrease over time, thus necessitating gradual increases in dose and associated 
increased potential for adverse effects. 
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 No randomized trials of clonidine specifi cally for children with insomnia exist, 
but the few studies showed a certain effi cacy on sleep latency and night wakings. 
Side effects include hypotension, bradycardia, irritability, anticholinergic effects 
(e.g., dry mouth), and REM suppression [ 124 ].  

    Clonazepam 

 Benzodiazepines bind to the benzodiazepine subunit of the gamma aminobutyric 
acid (GABA) chloride receptor complex, facilitating the action of the inhibitory 
neurotransmitter GABA. These hypnotics have long been the fi rst-choice treatment 
for insomnia in adults, but raise concerns about cognitive impairment, rebound 
insomnia, and the potential risk for dependence. These concerns, and little evidence- 
based data availability in the pediatric population, contribute to limit their use in 
children [ 125 ]. Possible side effects include daytime sedation, hypotonia, rebound 
insomnia on discontinuation, psychomotor/cognitive impairment, and impairment 
of respiratory function [ 126 ].  

    Zolpidem 

 It is a non-benzodiazepine receptor agonist (NBzRA) that binds preferentially to 
GABA A  receptor complexes containing α 1  subunits; it has minimal effects on sleep 
architecture with a slight increase to slow-wave sleep [ 127 ]. 

 There are very few studies conducted in children. A study on 6–11 years or 
12–17 years children with ADHD and insomnia received treatment with zolpidem 
at 0.25 mg/kg per day (max 10 mg/day) vs. placebo. Mean change in latency to 
persistent sleep at week 4 did not differ between zolpidem and placebo groups. No 
next-day residual effects of treatment and no rebound phenomena occurred after 
treatment discontinuation. Most-frequent adverse events (>5 %) were dizziness, 
headache, and hallucinations [ 128 ]; also disinhibition and hallucinations have been 
reported [ 129 ]. .   

    Mirtazapine 

 Mirtazapine is an α 2 -adrenergic, 5-HT receptor agonist with a high degree of seda-
tion at low doses; this may result in residual daytime sleepiness [ 130 ]. It has been 
shown to decrease sleep-onset latency, increase sleep duration, and reduce wake 
after sleep onset (WASO), with relatively little effect on REM [ 131 ].  
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    Trazodone 

 Trazodone is one of the most sedating antidepressants and the most widely studied 
of antidepressants in terms of sleep. It is a 5-HT 2A/C  antagonist and inhibits postsyn-
aptic binding of serotonin and blocks histamine receptors. Trazodone suppresses 
REM sleep and increases slow-wave sleep; side effects are represented by morning 
hangover (common), hypotension, arrhythmias, and serotonin syndrome [ 132 ]. 

 A resume of dosage, side effects, and indications is reported in Table  9.2 .

   Table 9.2    Selected medications for the treatment of insomnia   

 Medication  Dosage  Common adverse effects  Indications 

 Diphenhydramine  0.5 mg/kg  Sedation, anticholinergic 
effects 

 Primary insomnia with 
delayed sleep onset and/
or frequent nocturnal 
awakenings 

 Hydroxyzine  1 mg/kg  Sedation, anticholinergic 
effects 

 Primary insomnia with 
delayed sleep onset and/
or frequent nocturnal 
awakenings 

 Niaprazine  1 mg/kg  Sedation, anticholinergic 
effects 

 Primary insomnia with 
delayed sleep onset and/
or frequent nocturnal 
awakenings 

 Melatonin  0.5–6 mg  Headache, nausea  Circadian rhythm 
disorders, primary 
insomnia with delayed 
sleep onset 

 Zolpidem  5–10 mg  Sedation, dizziness  Primary insomnia with 
delayed sleep onset 

 Trazodone  1 mg/kg  Sedation, anticholinergic 
effects, priapism 

 Primary insomnia; 
frequent nocturnal 
awakenings 

 Clonidine  0.05–0.1 mg  Sedation, cardiac 
arrhythmias 

 ADHD, disruptive 
behavior disorders 

 Gabapentin  3–5 mg/kg  Sedation, leukopenia  Restless legs syndrome, 
epilepsy, resistant 
sleep-onset insomnia 

 Clonazepam  0.25–0.5 mg  Sedation, dizziness  Epilepsy, restless legs 
syndrome, resistant 
sleep-onset insomnia, 
bruxism, rhythmic 
movement disorder 

 Mirtazapine  7.5–15 mg  Sedation, weight gain, 
xerostomia, may 
esacerbate restless legs 
syndrome 

 Sleep onset and sleep 
maintenance diffi culties, 
Autism spectrum 
disorders insomnia in 
comorbidity with 
depression or anxiety 
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        Conclusions 

 Insomnia in children has multifactorial origin and can cause impairment in quality 
of life of both patients and families. 

 The medical approach should follow the pathway of sleep medicine, examining 
medical and genetic contributing factors to fi nd a patient-oriented treatment 
approach. Behavioral treatment strategies and pharmacological options are avail-
able. Despite the widespread use of pharmacological treatment, the lack of 
 well- designed, controlled studies concerning the effi cacy, tolerability, dosage, and 
safety profi le of hypnotic medications in children raise the need of further research 
in this fi eld of sleep medicine.     
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    Chapter 10   
 Obstructive Sleep Apnea in Children: 
A Short Primer                     
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    Abstract     Since the modern description of obstructive sleep apnea (OSA) in the 
mid-1970s, this disease has rapidly emerged as a highly prevalent condition in chil-
dren. Its major importance derives from the vast array of end-organ morbidities 
associated with pediatric OSA, as knowledge and understanding on such adverse 
consequences and their pathophysiological mechanisms have accrued over the last 
several decades. In parallel, a remarkable transition is currently underway to radi-
cally change the diagnostic and therapeutic approaches for OSA in children. This 
chapter will not only provide a succinct review of the clinical aspects of childhood 
OSA but also examine some of the newer directions that unavoidably will transition 
our practices from “one size fi ts all” to endotype- and phenotype-based precision 
approaches.  
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      Introduction 

 Obstructive sleep-disordered breathing (SDB) is one of the most common disorders 
of sleep during childhood. It is defi ned as “a syndrome of upper airway dysfunction 
during sleep, characterized by snoring and/or increased respiratory effort that results 
from increased upper airway resistance and pharyngeal collapsibility” [ 1 ], and its 
phenotypic spectrum ranges from primary snoring through upper airway resistance 
syndrome to obstructive sleep apnea (OSA) and obstructive hypoventilation. Each 
of these disease severity categories is strictly defi ned with the following:

    (a)     Primary snoring  comprising habitual snoring (>3 nights a week) without 
apneas, hypopneas, frequent arousals, or gas exchange abnormalities.   

   (b)     Upper airways resistance syndrome  being defi ned as habitual snoring, com-
bined with increased respiratory effort and work of breathing resulting in arous-
als (i.e., sleep fragmentation), but no recognizable obstructive events or gas 
exchange abnormalities.   

   (c)     OSA  is the recurrent occurrence of either partial or complete obstruction of the 
upper airway during sleep (hypopneas, obstructive, or mixed apneas) with 
resultant disruption of normal oxygenation, ventilation, and sleep pattern.   

   (d)    Lastly,  obstructive hypoventilation  is defi ned as snoring and abnormally ele-
vated end-expiratory carbon dioxide partial pressure in the absence of recogniz-
able obstructive events.    

  Obstructive sleep-disordered breathing in children was recognized back in the 
nineteenth century, as was the relief afforded by “nasopharyngeal scarifi cations.” 
However, it was not until the mid-1970s that the fi rst case series was described by 
Guilleminault et al. documenting the impact of OSA in eight children with symp-
toms of excessive daytime sleepiness, nighttime snoring, nocturnal enuresis, 
decreased school performance, morning headaches, mood and personality changes, 
weight problems, and pulmonary hypertension [ 2 ]. Nocturnal polygraphic record-
ings confi rmed the diagnosis of OSA. Treatment with adenotonsillectomy or trache-
ostomy signifi cantly improved their symptoms. As the early case series highlighted, 
the typical nocturnal symptoms of OSA include snoring, excessive sweating, rest-
less sleep, mouth breathing, apneas, gasping, labored or paradoxical breathing, and 
hyperextension of the neck during sleep, along with night terrors or nightmares. 
Daytime symptoms in turn are usually more subtle and can include behavioral 
hyperactivity, diffi culty concentrating and learning, conduct problems, morning 
headaches, excessive daytime sleepiness, and failure to thrive [ 3 ]. However, since 
the symptoms of OSA in children often are indistinct from other conditions, effec-
tive diagnosis is dependent upon either a high index of suspicion from experienced 
clinicians or requires the systematic implementation of explorative screening strate-
gies in targeted populations. 

 Estimates of the true prevalence and incidence vary depending on the popula-
tions studied and the stringency of the diagnostic criteria used, but typically range 
between 1 and 5 % in the general pediatric population. However, the prevalence is 

H.-L. Tan et al.



187

appreciably increased in certain high-risk groups such as obese children or those 
with craniofacial syndromes. The peak prevalence occurs between 2 and 8 years of 
age [ 4 – 7 ]. 

 The clinical relevance of OSA and to a certain extent in milder and of course 
more severe SDB categories resides in its impact on the neurocognitive, cardiovas-
cular, and metabolic systems. In this chapter, we highlight the major concepts 
regarding the pathophysiology of OSA, its morbidity, diagnosis, and treatment.  

    Pathophysiology of OSA 

 The pathophysiological factors involved in OSA can be broadly divided into two 
major themes, those anatomical factors that result in reduced airway caliber and 
those that promote increased upper airway collapsibility. Examples of the former 
include adenotonsillar hypertrophy, micrognathia, and macroglossia; in turn, exam-
ples of the latter include the presence of upper airway infl ammation and alterations 
in the neurological refl exes coordinating the upper airway musculature. In the 
majority of children, several factors will coexist to a greater or lesser degree, and 
there are usually a composite of complex pathophysiological processes which ulti-
mately lead to upper airway dysfunction during sleep. Therefore, the situation 
clearly exists whereby children with “kissing tonsils” have no evidence of any SDB, 
even PS, while other children with relatively normal adenotonsillar and other upper 
airway lymphoid tissues will present severe OSA in their sleep studies. Thus, risk 
factors for OSA include craniofacial syndromes (e.g., Crouzon’s syndrome, Apert’s 
syndrome, Pierre Robin sequence, Treacher Collins syndrome), achondroplasia, 
micrognathia, mucopolysaccharidoses, macroglossia cerebral palsy, neuromuscular 
disorders, myelomeningocele, sickle cell disease, trisomy 21, allergic rhinitis, 
asthma, Afro-Caribbean ethnicity, and obesity [ 8 ]. 

 Arens et al. have pioneered and extensively used MRI approaches to better 
understand the relative contributions of the various craniofacial structures and soft 
tissues in the context of SDB. These investigators compared the upper airway struc-
tures in otherwise healthy young children with OSA aged 3–7 years old with 
matched controls [ 9 ]. The volumetric measurements obtained revealed that in chil-
dren with OSA, the tonsils and adenoids were signifi cantly larger, as was the soft 
palate, with resultant smaller upper airway cross-sectional area and volumes. 
Schwab et al. performed a similar study in adolescents aged 12–16 years old, divid-
ing them into three groups: obese adolescents with OSA, obese controls, and lean 
controls [ 10 ]. Surprisingly, results were similar to those found in the younger chil-
dren, suggesting that adolescents with OSA have an anatomic risk profi le more akin 
to that of children, rather than the one typically seen in adult OSA patients. In addi-
tion, obese adolescents with OSA had larger adenotonsillar tissues with concur-
rently smaller nasopharyngeal airways compared with the two control groups. 
Gender differences were also noted, whereby boys had larger tonsils and girls had 
larger adenoids. The new implementation of computational fl uid dynamics to upper 
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airway imaging [ 11 – 16 ] should yield very important insights in the near future 
regarding OSA heterogeneous endotypes and enable planning of their treatment 
with more individualized approaches [ 17 ,  18 ]. 

 These fi ndings, which have now been extensively confi rmed across multiple 
studies, underpin the strategies for OSA management in childhood since they imply 
that either surgical removal or pharmacologically induced size reduction of upper 
airway lymphoid tissues should be the initial strategy for children including adoles-
cents, rather than opt for immediate implementation of positive pressure therapy, 
which is the fi rst-line therapy in adults. Indeed, not only do children with OSA usu-
ally present with enlarged adenoids and tonsils, they also have hypertrophy/hyper-
plasia of lymphoid tissues in other regions of the airway, such as the deep cervical 
lymph nodes [ 19 ] and lingual tonsils [ 20 – 23 ]. 

 The mechanisms underlying follicular lymphoid proliferation and resultant 
hyperplasia in OSA children remain poorly understood. The in vitro culture of CD3, 
CD4, and CD8 cells derived from the tonsillar tissue of children with OSA showed 
higher proliferative rates compared with cells derived from the tonsillar tissue of 
children with recurrent tonsillitis [ 24 ,  25 ]. Pro-infl ammatory cytokines TNF-α, 
IL-6, and IL-1α were more highly expressed in the OSA-derived tonsillar cells. It 
has been postulated that the recurrent vibration of the upper airway wall during 
snoring and/or respiratory viruses may promote localized infl ammation [ 26 – 28 ]. 
Certainly exhaled breath condensate levels of leukotriene B4 (LTB4) and cysteinyl 
leukotrienes are higher in children with OSA [ 29 ], while induced sputum from chil-
dren with OSA has increased neutrophilia compared with controls [ 30 ]. 

 Prominent inferior nasal turbinates, deviation of the nasal septum, middle ear 
effusions, and opacifi cation of the sinuses [ 31 ] have led some to hypothesize that 
OSA may in fact be a broader disorder affecting the airway as a whole, mediated by 
infl ammatory processes, chronic or recurrent infectious processes, or a combination 
thereof [ 32 ]. 

 However, other factors apart from anatomical ones must also play a role, since as 
mentioned above not all children with adenotonsillar hypertrophy have OSA and, 
conversely, some children without obvious anatomical risk factors have OSA. Indeed, 
the obstructive apnea-hypopnea index (AHI), the most frequently used measure of 
OSA severity, does not directly correlate with airway volume [ 9 ], and coeffi cients 
of correlation between AHI and adenotonsillar size are usually relatively weak, 
albeit statistically signifi cant [ 33 ,  34 ]. This paradox has led to the concept of airway 
collapsibility as an important and critical determinant in OSA and has traditionally 
taken the approach that the upper airway should be modeled as a Starling resistor. 
The Starling resistor model posits that under conditions of fl ow limitation, the maxi-
mum inspiratory airfl ow is determined by the pressure changes upstream to a col-
lapsible locus in the upper airway and is independent of the downstream pressure 
generated by the diaphragm. The pressure at which the upper airway collapses has 
been termed the critical closing pressure ( P  crit ) and is an objective measure of airway 
collapsibility. A study by Marcus and colleagues found that  P  crit  was 1 ± 3 cmH 2 O in 
children with OSA compared with −20 ± 9 cmH 2 O in primary snorers. These fi nd-
ings indicate that children with OSA essentially had demonstrably more collapsible 
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upper airways during sleep. Interestingly,  P  crit  has been shown to become more 
negative, i.e., the airways become less collapsible, following treatment with adeno-
tonsillectomy [ 35 ]. 

 During wakefulness, however, active neural processes preserve upper airway 
patency and make it diffi cult to recognize such increased collapsibility. Gozal and 
Burnside used acoustic pharyngometry to study the upper airway dynamics before 
and after application of local anesthetic to the pharyngeal introitus in the awake 
child [ 36 ]. Upper airway collapsibility was determined from the percentage change 
in cross-sectional area (UAC) before and after topical anesthesia, and a change in 
UAC ≤ −30 % proved to be highly sensitive and specifi c in the identifi cation of 
children with an AHI > 5/h TST. 

 Further evidence for airway collapsibility came from Carrera et al. who used the 
negative expiratory pressure (NEP) technique in awake children and showed that 
those children with OSA had upper airways that were more easily prone to collapse 
than controls [ 37 ]. This is mirrored by work in adult patients, whereby the degree of 
upper airway collapse when performing the Müller maneuver has been shown to 
correlate with AHI severity [ 38 ]. 

 McGinley et al. aimed to identify surrogate markers of upper airway collaps-
ibility by performing analyses of inspiratory fl ow patterns, attempting to derive 
fl ow limitation metrics from the nasal cannula fl ow-pressure signal during standard 
PSG recordings [ 39 ]. In REM sleep, children with OSA exhibited a higher %IFL 
(percentage of time with inspiratory fl ow-limited breathing) and lower %VI max  
(maximal inspiratory airfl ow during fl ow-limited breaths), and these parameters 
improved following adenotonsillectomy. These fi ndings are thought to be a refl ec-
tion of decreased compensatory neuromuscular responses to upper airway obstruc-
tion in children with OSA during REM sleep. Limitations of this approach included 
the fact that quantitative changes in airfl ow can be markedly affected by mouth 
breathing and cannula displacement, such that the ability to detect these phenom-
ena may be precluded during extensive periods of sleep among habitual mouth 
breathers. However, the concept is innovative, and further validation and explora-
tion of its inherent value in relation to the clinical phenotypic variance of OSA 
should be of interest.  

    Obesity 

 With the current worldwide obesity epidemic, we are also seeing a change in the 
demographics of children with OSA. Previously, the archetypal presentation was a 
child aged between 2 and 8 years old with adenotonsillar hypertrophy and failure to 
thrive, whereas nowadays, the proportion of children with OSA who are obese is 
rapidly increasing and in many centers such as ours represents the majority of 
patients being referred for consultation. Indeed, obesity is undoubtedly one of the 
most signifi cant risk factors for OSA in children [ 40 ]. Each 1 kg/m 2  increment in 
BMI above the 50th percentile is associated with a 12 % increased risk of OSA [ 40 ]. 
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These children often present at a slightly older age, and their clinical presentation 
more resembles that of the adult OSA phenotype with more prominent excessive 
daytime sleepiness symptoms [ 41 ]. While all the abovementioned pathophysiologi-
cal mechanisms are still just as applicable in the context of obesity, there are some 
additional obesity-specifi c factors thought to be in play that deserve mention. As 
might be expected, when the upper airways of obese children with OSA were exam-
ined using MRI volumetric approaches, an increase in the size of the upper airway 
lymphoid tissues, parapharyngeal fat pads, and abdominal visceral fat was noted 
[ 42 ]. However, the size of the adenotonsillar tissues in obese children with OSA was 
smaller than in nonobese children with OSA who were gender, age, race, and 
obstructive AHI matched, while their Mallampati scores were higher. Overall, these 
fi ndings indicated that the presence of obesity increases the risk for OSA not only 
via increased lymphadenoid tissue proliferation and hypertrophy but also by restrict-
ing the overall pharyngeal space [ 33 ]. Indeed, the percentage of obese children who 
have residual OSA post-adenotonsillectomy is signifi cantly higher than in nonobese 
children [ 43 ]. 

 The second additional burden as a consequence of obesity seems to be potential 
alterations in the functional mechanisms regulating upper airway patency resulting 
in increased collapsibility, with these changes stemming from the increase in fatty 
infi ltrates within the neck and upper airway structures. Central obesity also reduces 
the functional residual capacity of the lungs due to abdominal visceral fat impinging 
on the chest cavity, limiting diaphragmatic descent, particularly when lying in the 
supine position [ 44 ]. Furthermore, thoracic fat weighing on the chest wall can lead 
to a decrease in the overall compliance of the respiratory system, which may con-
tribute to hypoventilation, atelectasis, and ventilation-perfusion mismatch. The 
reduced lung volumes potentially decrease airway stiffness by reducing the tracheal 
tethering effect, further increasing the risk of upper airway collapse during sleep. 
When MRI scans were performed pre- and post-adenotonsillectomy in obese chil-
dren with OSA, there was not only increased residual adenoidal tissue, but the vol-
ume of the tongue and soft palate were also greater after adenotonsillectomy [ 45 ]. 
The abovementioned factors may well underlie the relatively low success rate of 
adenotonsillectomy that has consistently been reported in obese children with OSA 
[ 43 ,  46 – 48 ]. 

 An important guide to the impact of obesity on OSA in children is exemplifi ed 
by the NANOS study, a cross-sectional, prospective multicenter study, which exam-
ined 248 obese children aged 3–14 years recruited from the community [ 49 ]. The 
study consisted of two phases, with phase 1 assessing the prevalence and risk factors 
for OSA, while phase 2 examined the treatment outcomes. The prevalence of OSA 
was high at 21.5 % when OSA was defi ned as an obstructive AHI ≥ 3/h TST, and 
this increased to 39.5 % when a respiratory disturbance index (RDI) ≥ 3/h TST was 
used [ 49 ]. Adenoidal and tonsillar hypertrophy still emerged as the most important 
risk factor for OSA. In phase 2, outcomes of 117 children from the original cohort 
were reported [ 50 ]. In group 1, the obese children without OSA, 21 % developed 
OSA on their follow-up sleep study (PSG). In group 2, obese children with mild 
OSA without adenotonsillar hypertrophy, managed with dietary modifi cation to 

H.-L. Tan et al.



191

encourage weight loss, improvements in the sleep study parameters emerged, and 
half of this cohort no longer had evidence of OSA at follow-up. In group 3, the 
obese children with moderate/severe OSA with signifi cant adenotonsillar hypertro-
phy who underwent AT, the severity of OSA improved post-AT, but 43.5 % still had 
residual OSA. Older age emerged as a signifi cant risk factor for residual OSA, a 
fi nding that was consistent with fi ndings from earlier studies [ 43 ,  45 ,  46 ,  48 ,  51 –
 54 ]. The fi nal group consisted of obese children with moderate/severe OSA who did 
not have adenotonsillar hypertrophy, and these patients were treated with 
CPAP. Overall, the authors concluded that at younger ages, the major determinant 
of OSA appears to be adenotonsillar hypertrophy, with BMI-adipose tissue mass 
apparently operating as an OSA enhancer, rather than as a causal contributor. 
However, in older children, obesity becomes a more prominent OSA contributor 
and appears to be an independent causal factor. 

 Such fi ndings were overall not surprising, considering that OSA and obesity are 
both conditions in which low-grade systemic infl ammation is present [ 55 ] and but-
tresses the potential for positive reinforcement and exacerbation. Kheirandish- 
Gozal et al. examined 100 obese children with OSA, measuring a panel of plasma 
infl ammatory markers before and after treatment with adenotonsillectomy, and 
showed that when OSA was successfully treated, IL-6, IL-18, PAI-1, MCP-1, 
MMP-9, adropin, and leptin plasma levels decreased, whereas adiponectin levels 
increased [ 56 ]. These improvements were not seen in the 30 children whose postop-
erative OAHI remained >5/hTST, and leptin levels in fact increased, rather than 
decreased. This study would suggest that in obese children, not only does OSA 
amplify the underlying systemic infl ammatory pathways that have been a priori 
activated by obesity, but more importantly, effective treatment of the OSA results in 
improvements in the overall infl ammatory status. A recent study further provided 
confi rmatory evidence that the personalized trajectory of an infl ammatory marker 
such as high-sensitivity CRP in the context of adenotonsillectomy treatment of OSA 
provides a robust predictor of residual postoperative OSA [ 57 ]. Thus, future studies 
exploring panels of relevant and validated infl ammatory biomarkers may provide 
opportunities for the establishment of robust surrogate reporters of OSA morbidity 
and also enable the identifi cation of residual OSA after treatment. 

 A reciprocal interaction between obesity and OSA has also been suggested, 
whereby not only is obesity a major risk factor for OSA, but OSA may also contrib-
ute to the development of obesity. The excessive daytime sleepiness that can result 
from the presence of OSA likely reduces the commitment to and engagement in 
exercise and physical activity, and as such may reduce the overall energy expendi-
ture [ 58 ]. Leptin, a key hormonal regulator of appetite and metabolism, promotes 
satiety and reduces food intake; in contrast, ghrelin is an appetite-stimulating hor-
mone secreted in the gut. OSA can induce leptin resistance and increase ghrelin 
levels, both of which can potentiate obesogenic behaviors, in particular, the intake 
of high calorie comfort foods [ 58 ]. Thus, the end product of OSA, namely, reduced 
energy expenditure along with increased energy intake may promote the emergence 
of obesity, particularly when less severe hypoxemia is present, the latter potentially 
activating and fostering reduced activity of somatic growth pathways [ 59 ,  60 ].  
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    OSA and Asthma 

 Given the interrelationship between obesity and OSA, it is perhaps unsurprising that 
a prominently pro-infl ammatory disease such as asthma also appears to interact 
with OSA. Certainly, the prevalence of OSA in asthmatic children is higher than in 
non-asthmatic children and has been reported to increase with increasing asthma 
severity [ 61 ]. A history of poorly controlled asthma is associated with more severe 
OSA [ 62 ], and improved asthma control was demonstrated in a group of poorly 
controlled asthmatics following treatment of their OSA [ 63 ]. Asthma has also been 
identifi ed as one of the risk factors for residual OSA post-AT [ 43 ]. It is worth noting 
that there was a high proportion of obese children in all of these cohorts, an observa-
tion that was anticipated, considering that obesity is an important risk factor for 
OSA, and that an epidemiological link has also been described between obesity and 
asthma, thereby suggesting an interplay between the three conditions [ 64 ]. 

 The strongest evidence thus far for the presence of an association between OSA 
and asthma has been from work by Bhattacharjee et al. who examined this link by 
performing an electronic database analysis of 13,506 children with asthma in the 
US who underwent adenotonsillectomy, by examining their asthma control the year 
before and the year after surgery [ 65 ]. The authors found a 30 % reduction in asthma 
exacerbations, a 25 % decrease in the number of asthma-related emergency room 
visits, and a 36 % reduction in asthma-related hospital admissions after adenotonsil-
lectomy. These fi ndings contrasted with a 2 % reduction in asthma exacerbations 
seen in the 27,012 age-, sex-, and geographically matched control children with 
asthma who did not undergo adenotonsillectomy. Notwithstanding, the limitations 
emanating from database analyses must be acknowledged, more particularly the 
lack of information on obesity and ethnicity. However, the fi ndings provide compel-
ling real-life evidence that adenotonsillectomy is associated with improved asthma 
control, and many respiratory centers have already started screening for OSA in 
their diffi cult asthma programs. The mechanisms underlying this potential link 
between OSA and asthma are still poorly understood; however, one of the more 
attractive current hypotheses linking OSA and asthma is the united airway hypoth-
esis [ 32 ]. There certainly appears to be biological plausibility that infl ammation of 
the upper airway from OSA may exacerbate infl ammation in the lower airways, 
with resultant deterioration in asthma control. Conversely, exhaled breath conden-
sate containing infl ammatory cytokines originating from the lower airways in poorly 
controlled asthmatics may initiate or contribute to the proliferation of upper airway 
lymphoid tissues and also promote upper airway collapsibility and thus OSA.  

    OSA and Infl ammation 

 Much of the pathogenesis of OSA is thought to result from its activation and propa-
gation of systemic infl ammatory responses [ 66 ]. Microarray analyses of RNA from 
peripheral leukocytes of children with OSA have revealed the upregulation of gene 
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clusters involved in infl ammatory pathways [ 67 ]. Levels of the anti-infl ammatory 
cytokine IL-10 have been reported to be reduced in children with OSA [ 68 ], whereas 
levels of pro-infl ammatory cytokines, e.g., IL-6, IFN-γ, and TNF-α, have been 
reported to be increased [ 69 – 71 ], though not all studies have been uniformly consis-
tent in these fi ndings. 

 Increased high-sensitivity C-reactive protein (CRP) levels have also been 
demonstrated, correlating with OSA severity and evidence of decreased levels 
following treatment [ 72 – 75 ]. However, once again, not all children with OSA 
have raised CRP levels, and this may refl ect the inherent genetic variations 
impact on phenotypic expression now being recognized in such factors as IL-6 
and CRP [ 75 ,  76 ]. Indeed, it has been demonstrated that the promoter region of 
the FOXP3 gene which regulates the differentiation of lymphocytes into regula-
tory T lymphocytes (Tregs) exhibits severity-dependent increases in methylation 
in pediatric OSA [ 77 ]. Tregs play an important role in the suppression of infl am-
mation. The concept that OSA can induce epigenetic changes, which then have 
downstream consequences on infl ammation, was supported by the fi nding that 
numbers of Tregs in the peripheral blood and lymphoid tissue of children with 
OSA were decreased [ 78 ].  

    Environmental Modifi ers 

 There is accumulating evidence that environmental modifi ers contribute to the 
variance of phenotypic expression of OSA. Exposures to passive cigarette smok-
ing have emerged as an independent risk factor for habitual snoring in preschool 
children with a dose-dependent relationship identifi ed between urinary cotinine 
concentrations and frequency of snoring [ 79 ]. Environmental tobacco exposure 
has also been linked to increased severity of disease, with an associated 20 % 
increase in AHI [ 80 ]. Environmental air quality and low family social economic 
status have emerged as signifi cant contributors, with the frequency of habitual 
snoring in school-aged children residing in neighborhoods with greatest air pollu-
tion reported as threefold higher than those who reside in neighborhoods with less 
air pollution [ 81 ,  82 ].  

    Morbidity of OSA 

 OSA can result in intermittent hypoxia, hypercapnia, swings in intrathoracic pres-
sure, and sleep fragmentation. These physiological alterations trigger activation of 
infl ammatory cascades and induction of oxidative stress as detailed, with resultant 
cellular injury, dysfunction, and even death. The resultant morbidities fall into the 
following main areas: 
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    Neurocognitive and Behavioral Consequences 

 Considerable neurocognitive growth and development occurs during childhood. 
Therefore, any negative effects of OSA on behavior, attention, and learning can 
signifi cantly negatively impact on the children’s ability to fulfi ll their potential. One 
of the fi rst papers to highlight the causative link between OSA and its negative 
impact on academic performance was a prospective study of 297 fi rst-grade chil-
dren whose school performance was in the lowest tenth percentile of their class 
[ 83 ]. Screening for OSA revealed a higher than expected prevalence of 18 %. More 
compellingly, the children with OSA who were treated showed signifi cant improve-
ments in their school grades in their subsequent academic year, whereas children 
with untreated OSA did not. 

 The association between OSA and neurocognitive and behavioral morbidity has 
received extensive attention in the last two decades [ 48 ,  84 – 95 ]. In the largest study 
to date that included both polysomnography (PSG) and cognitive testing, a 
community- based approach was implemented in 1010 children aged between 5 and 
7 years [ 96 ]. These children were divided into four groups: controls who did not 
snore and had an AHI < 1/hrTST on PSG; primary snorers, i.e., children with habit-
ual snoring (>3 nights/week) but normal sleep study (AHI < 1/hrTST); mild OSA (1 
< AHI < 5/hrTST); and children who had moderate-to-severe OSA (AHI > 5/
hrTST). There were signifi cant differences in Differential Ability Scales verbal and 
nonverbal performance scores, Global Conceptual Ability scores, and NEPSY 
attention and executive-function subscores across the groups. A dose-response 
effect of OSA was seen, with performance of the children in the moderate-to-severe 
OSA group being signifi cantly more impaired than the performance among the 
other three groups in these neurocognitive tests. An exception to this pattern was in 
the NEPSY Visual Attention subtest, where the group of primary snorers performed 
more poorly than the children with OSA. 

 Further evidence for the global neurocognitive impact of OSA comes from the 
fi ndings that children with OSA require more learning opportunities and take longer 
to learn a pictorial-based short-term and long-term declarative memory test [ 97 ]. 
Preliminary functional MRI data show that children with OSA demonstrate greater 
neural recruitment of brain regions implicated in cognitive control, confl ict moni-
toring, and attention in order to perform at the same level as children without OSA 
[ 98 ]. The fi ndings complement electrophysiological data from EEG event-related 
potentials [ 99 ]. 

 Some investigators have hypothesized that changes in regional cerebral blood 
fl ow during sleep as a result of OSA may also contribute to the degree of neurocog-
nitive impairment. Children with mild OSA (AHI < 5/h) exhibit signifi cantly raised 
middle cerebral artery blood fl ow velocities [ 100 ]. The situation is not straightfor-
ward, for example, both increased arousal indices and mean arterial pressure are 
strongly associated with OSA severity, and while increasing arousal indices 
are associated with decreased regional cerebral oxygenation, increasing mean arte-
rial blood pressure is associated with increased regional brain oxygenation. 
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One research group has proposed a model to explain the sources of variability in 
cognitive function of children with sleep-disordered breathing. In this model, age, 
mean arterial pressure, oxygen saturation, and REM sleep have a positive effect on 
regional cerebral oxygen saturation during sleep, while male sex, arousal index, 
and NREM sleep are negative factors diminishing cerebral oxygenation [ 101 ]. 
Furthermore, the signifi cantly higher degree of coexistence of endothelial dysfunc-
tion and neurocognitive impairment in children with OSA, an overlap whose likeli-
hood is markedly greater than what might be predicted from random association 
alone [ 102 ], suggests that endothelial and cognitive dysfunction may either share 
similar pathophysiological mechanisms or even potential causative associations, 
i.e., endothelial dysfunction may lead to neurocognitive defi cits. 

 Pediatric OSA can be associated with hyperactivity, attention and concentration 
defi cits, and impulsivity [ 99 ,  103 ,  104 ]. These symptoms are remarkably similar to 
attention defi cit hyperactivity disorder (ADHD), and clinicians should remember to 
consider OSA or even primary snoring, as one of the differential diagnoses when 
assessing a child for ADHD. A good example of such associations is refl ected by the 
fi ndings of the Tucson Children’s Assessment of Sleep Apnea (TuCASA) study, a 
community-based observational cohort study of 6–12-year-old Caucasian and 
Hispanic children. While assessment of neurocognitive outcomes showed that OSA 
had a negative correlation between AHI and Full Scale IQ, Performance IQ, math 
achievement, and immediate recall [ 105 ], OSA was also clearly associated with 
behavioral morbidity. Thus, children in the upper 15 % respiratory disturbance index 
(RDI) had higher (i.e., worse) scores in the Aggressive, Attention Problems, Social 
Problems, Thought Problems, Total and Externalizing domains of the Child Behavior 
Checklist, as well as in the Oppositional, Cognitive Problems, Social Problems, 
Psychosomatic, ADHD Index on the Conners’ Parent Rating Scale [ 106 ]. In Hong 
Kong, Lau et al. studied 23 children with OSA (mean obstructive AHI: 5.6/hrTST) 
and compared them with 22 matched controls. The children with OSA performed 
less well in both the basic storage and central executive components of working 
memory in the verbal domain than the controls [ 107 ]. The most prominent recent 
study to examine neurobehavioral outcomes as the primary outcome of interest was 
the CHildhood AdenoTonsillectomy (CHAT study) [ 108 ]. It was the fi rst multicenter 
randomized controlled trial to compare adenotonsillectomy with watchful waiting in 
the management of pediatric OSA in school-aged children. No differences emerged 
between the two arms of the trial in the primary outcome – change in the attention 
and executive-function score in the Developmental Neuropsychological Assessment 
[ 48 ]. However, adenotonsillectomy resulted in signifi cant improvements in symp-
toms, behavior, PSG parameters as well as parent- rated generic and OSA-specifi c 
quality-of-life measures [ 109 ]. It is important to note that due to ethical consider-
ations, the children recruited only had mild OSA (median AHI 4.7/hTST) with no 
signifi cant oxygen desaturations and were aged 5–9 years, and the follow-up period 
was relatively short at 7 months. Generalizations to children of other ages and severi-
ties of OSA are thus not possible. Furthermore, considering the overall fi ndings indi-
cating increased risk for cognitive defi cits, but not the presence of universal defi cits 
in pediatric OSA, the CHAT study may have been underpowered to identify small 
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improvements in cognition when a large proportion of the children included was not 
cognitively affected. Therefore, sub- analyses of the changes in cognition among 
those with lower cognitive scores would be of interest and might confi rm previous 
studies supporting improvements in cognitive measures. 

 As inferred from the above comments, it is important to emphasize that not all 
children with OSA exhibit cognitive or behavioral defi cits. Genetic and environ-
mental factors likely play a role in modifying the phenotypic expression of this 
morbidity [ 110 ]. Differences in systemic infl ammatory responses as refl ected by 
plasma CRP levels appear to differentiate children of similar OSA severity with and 
without cognitive defi cits [ 111 ]. Furthermore, NADPH oxidase p22 subunit gene 
polymorphisms, IGF-1, and apoliprotein E allelic variants have all been identifi ed 
as being potential modifi ers of the risk for cognitive defi cits in the context of OSA 
in children and account for discrepancies in the functional cognitive performance in 
children with OSA [ 112 ,  113 ].  

    Long-Term Neurobehavioral Follow-Up 

 This is still an area of some controversy with no clear consensus being reached. A 
subgroup of 43 children from the TuCASA study, when followed up 5 years later 
on, revealed no differences in the performance in the working memory, reaction 
time, and attention tests of the Sustained Working Memory Task between the OSA 
and control groups [ 114 ]. The OSA group did however show lower P300 evoked 
potential amplitudes, a marker used in the evaluation of an individual’s neurocogni-
tive processing of external stimuli, during the Simple Reaction Time and 
Multiplexing Tasks. Peak alpha power during the Multiplexing Task was also lower 
in the OSA group. In other words, the long-term impact of pediatric OSA may cause 
subtle long-term changes in executive function, which are not detectable with con-
ventional functional neurocognitive testing but are evident on neuroelectrophysio-
logic testing. Long-term follow-up of behavioral indices in this cohort revealed that 
children with untreated OSA exhibit hyperactivity, have problems with attention, 
and display aggressive behaviors, lower social competencies, poorer communica-
tion, and diminished adaptive skills in adolescence [ 115 ]. 

 More worryingly, an Australian study examining the long-term outcomes 3 years 
after the resolution of OSA in preschool children also found that behavioral func-
tioning remained signifi cantly worse in children who had been diagnosed with OSA 
compared with controls. 

 Cognitive function also decreased between baseline and follow-up, regardless of 
whether there had been resolution of the OSA [ 116 ]. Similarly, long-term follow-up 
of older school-aged children demonstrated no improvement in behavioral function-
ing; while there was improvement in performance IQ, there was no improvement in 
verbal IQ or overall academic outcomes [ 117 ]. These fi ndings essentially confi rm 
our initial observations that the presence of snoring in early childhood translates 
into reduced school performance at ages 13–14 years [ 118 ]. 
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 These studies somewhat challenge the current paradigm generated from shorter- 
term follow-up studies, which have generally shown improvements in neurobehav-
ioral outcomes following OSA treatment [ 119 ,  120 ]. One possible explanation for 
these a priori discrepancies may be that in the short term, there is a “placebo-like” 
treatment effect, whereby the expectation of improvement with adenotonsillectomy 
may have biased parental responses when completing behavioral questionnaires, 
but since such “placebo” effect wears off with time, or since initial perceptions of 
behavior are a refl ection of improved sleep, the re-emergence of the problems may 
occur at least in a subset of the patients. Alternatively, it is possible that an insult to 
a developing brain during a vulnerable period may result in long-term sequelae, 
particularly in children who are genetically at risk. Thus, some neurocognitive 
sequelae may only be partially reversible if OSA is left untreated for too long [ 118 ], 
highlighting the importance of early diagnosis and prompt effective treatment.  

    Cardiovascular System 

 Early case reports of pediatric OSA described consequences such as pulmonary 
hypertension and cor pulmonale [ 2 ,  121 ,  122 ]. Fortunately, with increased aware-
ness and earlier diagnosis, the frequency of such cases has apparently lessened. It is 
still unclear however whether pulmonary hypertension will develop only in the most 
severe cases or whether the current techniques for noninvasive assessment of the 
pulmonary circulation in children are insuffi ciently sensitive to detect much milder 
involvement of the pulmonary vasculature. It is also uncertain whether exposures to 
chronic mild intermittent hypoxia may result in lesser recruitment of the pulmonary 
vascular network than sustained hypoxia of similar duration [ 123 ,  124 ]. These are 
important concepts to clarify, because potentially the occurrence of intermittent 
hypoxia and mobilization of the lung capillary endothelial network may promote 
long-term susceptibility to pulmonary hypertension even during adulthood [ 125 ]. 

 Notwithstanding the development of pulmonary hypertension, there is increas-
ing evidence that OSA can impose subclinical effects on the autonomic and cardio-
vascular systems, promoting disturbances in blood pressure regulation, left 
ventricular remodeling and endothelial dysfunction, all of which can lead to far 
reaching detrimental consequences if left unattended. 

 Of the three major cardiovascular morbidities, the effects of OSA on blood pres-
sure are best explored to date. Marcus et al. found that children with OSA tend to 
have higher diastolic blood pressure during sleep compared with children with pri-
mary snoring [ 126 ]. The degree of increase in blood pressure during REM sleep has 
also been shown to correlate with the severity of OSA [ 127 ], which is perhaps to be 
expected considering OSA, in the majority of children, tends to occur during REM 
sleep and surges in arterial BP have been shown to occur after respiratory event 
termination [ 128 ]. Amin et al. studied slightly older children (mean age 
10.8 ± 3.5 years) and found that children with OSA had evidence of blood pressure 
dysregulation: having signifi cantly greater mean BP variability during both 
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wakefulness and sleep, a higher night-to-day systolic BP, and reduction in nocturnal 
dipping of the mean BP when transitioning from wake to sleep [ 129 ]. In fact, these 
children had night-to-day systolic BP ratios that surpassed the established cutoff 
ratios of 0.899 for females and 0.9009 for males, which in adults is a risk factor for 
cardiovascular morbidity [ 130 ]. The research group subsequently reported that chil-
dren with OSA exhibit increases in morning blood pressure surges, blood pressure 
load, and 24-h ambulatory blood pressures compared with healthy controls [ 131 ]. 
These differences were associated with left ventricular remodeling, and the effects 
were apparent even in children with mild OSA. Notably, even children who were 
just primary snorers were found to be at higher risk for elevations in systemic BP 
[ 132 – 134 ]. Walter et al. examined outcomes 3 years after the resolution of OSA in 
preschool children. Power spectral analysis of heart rate variability and measure-
ment of urinary catecholamines were performed to assess autonomic function [ 135 ]. 
Overall, the resolution of OSA resulted in the normalization of previously increased 
heart rate variability to levels similar to controls. In contrast, children with residual 
OSA exhibited increased high-frequency HRV, suggesting signifi cantly increased 
respiratory effort. Similar fi ndings were observed even in children with primary 
snoring. A positive correlation between urinary catecholamines and low-frequency 
power in children with unresolved OSA was also noted, suggesting increased sym-
pathetic activity in children with increasing severity of the OSA. 

 Although the left ventricular changes may merely refl ect an adaptive response to 
higher blood pressures, the degree of the left-sided cardiac strain seen in OSA is 
refl ected in the changes in brain natriuretic peptide (BNP) levels seen in OSA 
patients. This peptide is released by cardiac myocytes in response to cardiac wall 
distension, and overnight changes in BNP levels have been shown to be greater in 
children with moderate/severe OSA compared with mild OSA and controls [ 136 ]. 
This is thought to be most likely related to the increased and more frequent negative 
intrathoracic pressure swings seen in more severe OSA. 

 Endothelial dysfunction is believed to be a precursor to atherosclerosis. 
Assessment of endothelial function using various methodologies, such as fl ow- 
mediated dilation (FMD), pulse arterial tonometry (PAT), and laser-Doppler 
reperfusion kinetics [ 137 – 140 ] has revealed signifi cant risk for impairments in 
endothelial function among children with OSA compared with controls. What is 
of concern is that although the majority of these children demonstrated resolution 
of endothelial dysfunction following treatment of their OSA [ 137 ], a subgroup did 
not show the anticipated improvements. They were noted to have a strong family 
history of early- onset cardiovascular disease, suggesting that the effects of OSA 
in a genetically susceptible subset of children may persist for unknown periods of 
time, potentially into adulthood. It should be stressed however that not every child 
with OSA manifests endothelial dysfunction [ 141 ]. Much research has focused on 
identifying the factors contributing to this phenotypic variation, both in the pres-
ence of endothelial dysfunction and the lack of resolution following OSA treat-
ment. The severity of endothelial dysfunction is greater in obese children who 
have OSA, compared with either condition in isolation, once again, suggesting 
the convergence of the deleterious consequences of obesity and OSA [ 141 ]. 
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The ability to recruit endothelial progenitors for endothelial repair [ 138 ,  142 ], 
numbers and function of T regulatory lymphocytes [ 143 ], epigenetic alterations in 
genes such as endothelial nitric oxide synthase, as well as polymorphisms in 
endothelin gene families are some of the factors recently identifi ed as modifi ers of 
the phenotypic variance in endothelial function [ 144 ,  145 ]. 

 CRP, an acute phase reaction protein, is now recognized as a robust and inde-
pendent predictor of cardiovascular morbidity and is extensively used to stratify 
risk for ischemic heart disease [ 146 ]. It has even been postulated that CRP may 
participate directly in atheromatous lesion formation through reduction of nitric 
oxide synthesis and induction of the expression of adhesion molecules on endothe-
lial cells [ 147 ,  148 ]. It may be surmised that children with OSA in whom CRP 
levels are elevated may constitute a higher-risk group for the development of long-
term cardiovascular complications. Indeed, markers of vascular injury and endo-
thelial activation such as myeloid-related protein 8/14, plasma adhesion molecules, 
fatty-acid-binding protein, and circulating microparticles have all been shown to 
be elevated in children with OSA and are associated with the presence of endothe-
lial dysfunction [ 149 – 152 ]. To what extent genetic and environmental factors con-
fer protection or increase vulnerability and the identifi cation of surrogate markers 
of endothelial dysfunction in the plasma are avenues of research currently being 
actively pursued [ 110 ,  153 ].  

    Metabolic System 

 Unlike in adult cohorts where OSA is an important risk factor for insulin resistance, 
diabetes, and dyslipidemia [ 154 – 160 ], this association in children is less clear-cut, 
with its effects moderated by such factors as age, ethnicity, pubertal status, degree 
of infl ammatory response, and obesity. In postpubertal adolescents, strong associa-
tions have been demonstrated between OSA and the metabolic syndrome, as well as 
with individual metabolic parameters such as fasting insulin and HOMA [ 44 ,  161 , 
 162 ]. Intermittent hypoxia and sleep fragmentation were also found to be associated 
with decreased insulin sensitivity in obese adolescent boys [ 163 ]. In younger chil-
dren however, OSA was associated with reduced insulin sensitivity only when obe-
sity was concurrently present [ 164 ,  165 ], and effective treatment of OSA improved 
insulin sensitivity in these children [ 166 ]. Any residual metabolic dysfunction 
appears to be associated with the degree of adiposity, rather than that of residual 
OSA severity [ 167 ]. These changes were seen in both obese and nonobese children, 
suggesting that OSA is causally involved in creating an adverse metabolic environ-
ment that is independent of obesity. Interestingly, when highly sensitive bioinfor-
matics approaches and pathway analyses were employed to analyze transcriptomic 
microarrays in children with primary snoring, alterations in insulin homeostatic 
mechanisms emerged, suggesting that even mild perturbations in sleep may impose 
subclinical changes in peripheral tissue insulin receptor sensitivity [ 168 ]. OSA has 
also been associated with rises in LDL cholesterol with concomitant decreases in 
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HDL cholesterol in both obese and nonobese children [ 166 ,  169 ]. Signifi cant 
improvements in lipid profi le were observed after treatment of OSA. 

 Even as early as in childhood, evidence of end-organ morbidity in the form of 
fatty liver disease has been demonstrated in obese children with OSA [ 170 – 172 ]. 
OSA/nocturnal hypoxemia is present in up to 60 % of obese children with biopsy 
proven nonalcoholic fatty liver disease (NAFLD), and the severity of the OSA/dura-
tion of the hypoxemia was associated with biochemical and histological features of 
NAFLD severity, independent of BMI, abdominal adiposity, metabolic syndrome, 
and insulin resistance [ 173 ]. The percentage of time with oxygen saturation ≤90 % 
was also found to be associated with increased intrahepatic leukocytes, activated 
Kupffer cells, and circulating markers of hepatocyte apoptosis and fi brogenesis 
[ 174 ]. Treatment of OSA usually with adenotonsillectomy followed by CPAP in a 
large subset of these obese children resulted in improved liver serum aminotransfer-
ases in the vast majority [ 170 ]. 

 The factors that may mediate these changes include Fas and FasL, which are part 
of the extrinsic apoptosis pathway, and their soluble forms are considered inhibitors 
of apoptosis because they effectively compete with the binding of FasL to Fas on the 
cell membrane. sCD163 is a marker of macrophage activation and has also been 
shown to be associated with hepatic steatosis and fi brosis in children with 
NAFLD. Alkhouri et al. showed that plasma levels of sFas and sFasL were lower in 
obese children with OSA compared with those who did not have OSA, and sCD163 
levels were correlated with OSA severity [ 175 ]. There was a signifi cant decrease in 
sCD163 levels after OSA treatment. These fi ndings suggest the presence of higher 
levels of hepatic cellular apoptosis in OSA patients who are obese and that hepato-
cyte apoptosis and macrophage activation are possible mechanisms by which 
NAFLD develops in the context of OSA in obese children. 

 Animal models of OSA have expanded our understanding of the potential mech-
anisms mediating the metabolic dysfunction. Oxidative stress, elevated sympathetic 
activity, and infl ammation have emerged as leading candidate pathways underlying 
disruption of homeostatic metabolic processes in several critical target organs such 
as the adipose tissue, pancreas, muscle, and liver (for in-depth review, see Gileles- 
Hillel et al.) [ 176 ]. 

 Another potential mechanism may involve the impact of OSA on the gut microbi-
ome. The infl uence of the gut microbiota in the modulation of nutrient absorption, 
control of appetite, and organ-specifi c changes that contribute to glucose homeostasis 
and hence its contribution to the pathogenesis of obesity and the metabolic syndrome 
has gained substantial attention in recent years. Little is yet known about changes to 
the gut microbiota in patients with OSA or the contribution of such changes to the 
metabolic consequences seen. However, initial data have revealed that OSA is associ-
ated with low-grade endotoxemia and impaired gut-barrier integrity. LPS-binding 
protein (LBP) is often used as a surrogate marker of underlying low-grade endotox-
emia by LPS from the gut. Children with OSA have LBP plasma levels comparable to 
obese children without OSA, and both are signifi cantly higher compared with healthy 
controls [ 177 ]. When both obesity and OSA were concurrently present, LBP levels 
were further augmented. LBP levels also correlated with HOMA. Similarly, in 
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children with NAFLD and OSA, duration of SaO 2  < 90 % independently predicted 
intestinal permeability, plasma LPS, and TLR-4 expression by hepatocytes, Kupffer 
cells, and hepatic stellate cells [ 178 ]. These fi ndings suggest that OSA may promote 
liver injury by impairing intestinal barrier function and by promoting endotoxemia 
while also sensitizing the liver to endotoxin and pro- infl ammatory stimuli.  

    Excessive Daytime Sleepiness 

 Although excessive daytime sleepiness (EDS) is described in pediatric OSA, it 
often is not as prominent a symptom as in adults with the condition, and indeed 
hyperactivity rather than EDS is more often reported by the parents. Melendres 
et al. showed by administering the Epworth sleepiness scale (ESS) score and the 
Conners Abbreviated Symptom Questionnaire in 180 children that children with 
OSA were both sleepier and more hyperactive than control subjects [ 179 ]. Only 
28 % of the children with OSA had ESS >10, and the mean ESS score of the OSA 
group was 8.1 ± 4.9, which is far lower than that typically described in adult OSA 
patients, though statistically higher than the ESS score of control subjects (5.3 ± 3.9). 
Interestingly, subgroup analysis of the ESS scores in children aged <5 years showed 
no signifi cant differences between the OSA and control groups, and a possible 
explanation could be because this younger group often still nap during the day. 

 Objective measurements of EDS using the Multiple Sleep Latency Test have 
shown that children with OSA do have shortened sleep latencies compared with 
controls (20.0 ± 7.1 min vs 23.7 ± 3.0), but EDS is infrequent and tends to be seen in 
the more obese patients and in those with more severe OSA [ 180 ]. The magnitude 
of sleep latency reduction appears to be associated with measures of systemic 
infl ammation, in particular, plasma TNF-α levels, which have been shown to be 
modulated by polymorphisms in the TNF-α gene [ 70 ,  181 ].  

    Healthcare Utilization 

 OSA has been reported to be a risk factor for community-acquired pneumonia in chil-
dren aged <5 years [ 182 ]. It is also reported that children with OSA have increased 
healthcare utilization predominantly for respiratory infections and symptoms, com-
pared with their peers [ 183 ,  184 ]. From their fi rst year of life to time of diagnosis of 
OSA, children ultimately diagnosed with OSA had 40 % more hospital visits, 20 % 
more repeated visits, and higher prescriptions for respiratory system and antimicrobial 
medications [ 183 ]. While association does not necessarily equate to causation and the 
reasons for these fi ndings still need to be elucidated, following adenotonsillectomy 
treatment of OSA, healthcare utilization was signifi cantly reduced and total annual 
healthcare costs were reduced by as much as a third [ 185 ]. These fi ndings have also 
been independently confi rmed in another population-based cohort in Taiwan [ 186 ].  
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    Nocturnal Enuresis 

 A high prevalence of nocturnal enuresis has been reported in children with OSA 
[ 187 – 189 ]. 

 It has been postulated that enuresis may be due to the dampening effects of OSA 
on arousal responses to changes in bladder pressure or potentially associated with 
secretion of hormones involved in fl uid regulation. BNP increases sodium and water 
excretion and also infl uences hormones in the renin-angiotensin pathway and vaso-
pressin. Children with OSA have elevated morning BNP levels, and children with 
nocturnal enuresis have higher BNP levels compared with those without enuresis, at 
any degree of OSA severity, providing support to the hypothesis that sleep fragmen-
tation and increased BNP secretion secondary to OSA may increase the risk of 
nocturnal enuresis [ 190 ]. 

 A systematic review examining the association between sleep-disordered breath-
ing and nocturnal enuresis in children identifi ed 14 studies, in which a third of the 
3550 children with OSA had a diagnosis of nocturnal enuresis [ 188 ]. Follow-up 
data was available in seven of the studies, demonstrating improvements in nocturnal 
enuresis post-adenotonsillectomy. However, several studies were weak in their 
experimental design and included skewed cohorts, such that randomized controlled 
trials are still needed to establish more defi nitive cause-effect relationships between 
pediatric OSA and nocturnal enuresis.  

    Somatic Growth 

 Failure to thrive (FTT) was identifi ed in the fi rst initial reports of pediatric 
OSA. Factors contributing to FTT include (a) increases in energy expenditure from 
increased work of breathing during sleep, (b) decreased caloric intake in children 
with large tonsils which are affecting swallowing, and (c) impairments of growth 
hormone secretion and tissue activity in children with OSA. Growth hormone secre-
tory bursts occur during slow-wave sleep, and sleep fragmentation may impact the 
tightly regulated release of growth hormone [ 191 ]. Both insulin-like growth factor-1 
(IGF-1) and IGF-binding protein 3 (IGFBP-3) concentrations have been reported to 
increase signifi cantly posttreatment with adenotonsillectomy [ 192 ,  193 ]. Indeed in 
a study of 16 toddlers (6–36 months) pre- and post-adenotonsillectomy, there was a 
signifi cant increase in BMI z-score and caloric intake with a corresponding decrease 
in hsCRP levels following surgery [ 60 ]. Multivariate analysis demonstrated that the 
improvement in somatic growth correlated with the improvement in systemic 
infl ammation, rather than with changes in caloric intake. 

 Statistical modeling of anthropomorphic data from the CHAT study also showed 
that the BMI z-score increased more in the children who underwent adenotonsil-
lectomy than in those who were randomly assigned to watchful waiting, even among 
the children who were already overweight at baseline [ 194 ]. The long-term effects 
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of OSA on adipose tissue and weight are still unknown, but these fi ndings highlight 
the importance of careful weight monitoring, nutritional counseling, and encour-
agement of physical activity after adenotonsillectomy for OSA.   

    Clinical Evaluation 

 When evaluating a child for OSA, both nocturnal and daytime symptoms should be 
elicited in the history. Physical examination should include assessment of tonsillar 
size, nasal patency, and other anatomical factors that may predispose to OSA such 
as relative size and position of the mandible. OSA-associated morbidities such as 
failure to thrive, hypertension, and neurocognitive defi cits should also be elicited 
(summarized in Table  10.1 ).

   Table 10.1    Summary of most recent AAP and ERS guidelines   

 AAP guidelines  ERS guidelines 

 In a child who snores and has signs or 
symptoms of OSA, clinicians should 
perform a more focused evaluation 

 Step 1,2,3 – identifi cation of a child at risk of OSA, 
morbidity and conditions co-existing with OSA, 
recognition of factors predicting persistence of OSA 

 PSG is the gold standard diagnostic test 
for OSA 

 Step 4 – objective diagnosis and assessment of 
disease severity PSG or RP study 

 If PSG is not available, alternative 
diagnostic tests (such as nocturnal video 
recording, nocturnal oximetry, daytime 
nap PSG, or ambulatory PSG) or 
referral to a specialist for more 
extensive evaluation should be 
considered 

 If not available, alternatives include ambulatory PSG/
RP, nocturnal oximetry, sleep clinical record, or 
pediatric sleep questionnaire 

 Adenotonsillectomy is the fi rst-line 
treatment in children with OSA who 
have associated adenotonsillar 
hypertrophy. Other treatments can be 
considered if the child does not have 
adenotonsillar hypertrophy 
 Postoperatively, high-risk patients 
should be monitored as inpatients 
 CPAP is recommended if 
adenotonsillectomy is not performed or 
if there is residual OSA 
 Intranasal corticosteroids should be 
considered in children with mild OSA 
in whom AT is contraindicated or for 
mild residual OSA post-AT 
 Weight loss should be recommended in 
patients who are overweight/obese 

 Step 5 – indications for treatment: 
  If AHI > 5/hrTST 
  If 1 > AHI > 5/hrTST, treatment may be warranted 
if any OSA-associated morbidities present 
  Treatment should be a priority in conditions such as 
craniofacial syndromes, trisomy 21, neuromuscular 
conditions, Prader-Willi syndrome, 
mucopolysaccharidoses, achondroplasia, Chiari 
malformation 
 Step 6 – treatment interventions should be 
implemented in a stepwise manner addressing all 
abnormalities that predispose to OSA: 
   Weight loss in children who are overweight/obese 
   Medical therapy (nasal steroids/montelukast) 
   Adenotonsillectomy 
   Rapid maxillary expansion/orthodontic appliances 
 CPAP/bilevel positive pressure ventilation 
 Tracheostomy 

(continued)
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       Diagnosis 

 As already alluded to earlier in this chapter, clinical history and examination unfor-
tunately have poor sensitivity and specifi city for the diagnosis of OSA. Objective 
testing is therefore recommended for children with symptoms of OSA, and the 
American Academy of Pediatrics suggests that the gold standard investigation is a 
nocturnal, in-lab polysomnography (PSG) study [ 195 ]. A typical montage would 
include EEG, chin and anterior tibial EMG, bilateral electrooculogram, pulse oxim-
etry and pulse waveform, nasal pressure transducer, oronasal airfl ow thermistor, 
end-tidal capnography, chest and abdominal respiratory inductance plethysmogra-
phy, body position sensor, microphone, and videomonitoring. Pediatric scoring cri-
teria should be used, and most sleep laboratories score according to the American 
Academy of Sleep Medicine (AASM) guidelines [ 196 ]. PSGs provide objective 
quantitative data regarding respiratory parameters and sleep patterns, thus allowing 
patients to be stratifi ed into disease severities, while also enabling clinicians to tailor 
clinical management accordingly. 

 In countries where PSGs are not readily available, alternative options include:

    (a)     Respiratory Polygraphy Studies  – These are essentially PSGs without the EEG, 
EMG, and EOG sensors, and they are the standard study performed in many 
countries in Europe. The experience however is limited and relatively higher 
technical failure rates are reported [ 197 ,  198 ].   

   (b)     Nocturnal Oximetry Studies  – Oximetry studies have a high specifi city but low 
sensitivity for the diagnosis of pediatric OSA. A recent systematic review 
revealed that in otherwise healthy children with no symptoms of OSA, noctur-
nal SpO 2  drops <90 %, greater than two clusters of desaturations events (≥4 %), 

Table 10.1 (continued)

 AAP guidelines  ERS guidelines 

 Patients should be reevaluated 
postoperatively to determine whether 
there is residual OSA and if further 
treatment is required 
 Objective testing should be performed 
in patients who are high risk or have 
symptoms/signs of residual disease after 
therapy 

 Step 7 – recognition and management of residual 
OSA 
 Reevaluation following intervention: 
 If OSA symptoms persist or at risk of residual OSA, 
PSG ≥ 6 weeks after AT or ≥12 weeks after medical 
therapy 
 PSG 12 months after rapid maxillary expansion, 
6 months with an oral appliance 
 PSG for initial titration of CPAP/NIV, then at least 
yearly 
 Monitoring with PSG to guide tracheostomy 
decannulation 
 When residual OSA is demonstrated, airway 
evaluation by drug-induced sleep endoscopy, 
nasopharyngoscopy, or MRI may help identify site/s 
of obstruction 

  Adapted from Refs. [ 1 ,  6 ]  
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and oxyhemoglobin desaturation index (≥4 %) >2.2/h are rare [ 199 ]. At least 
three clusters of desaturations and at least three SpO 2  drops below 90 % in a 
nocturnal oximetry recording of at least 6-h duration (McGill oximetry score 
>1) are suggestive of moderate-to-severe OSA (Fig.  10.1 ). An oxyhemoglobin 
desaturation index (≥4 %) >2/h combined with OSA symptoms also exhibits 
high positive predictive value for AHI >1/h. Children with normal oximetry, 
aged >3 years, and with no comorbidities have very low risk of major respira-
tory complications following adenotonsillectomy. Overnight oximetry can 
help in the prioritization of treatment and determining whether children need 
to be admitted overnight for observation following adenotonsillectomy. It has 
an important role in resource-poor countries where PSGs or RPs are not avail-
able. Improvements in oximetry-based approaches using neural networks sug-
gest that this methodological approach can improve the accuracy of the 
diagnosis [ 200 ].

       (c)     Sleep Clinical Record  – The sleep clinical record (SCR) is an instrument that 
has been developed to screen children for OSA and incorporates multidimen-
sional data obtained from case history and physical examination [ 201 ]. A score 

a

b

  Fig. 10.1    ( a ) Example of abnormal overnight oximetry study in child with OSA. ( b ) 2-min epoch 
from a respiratory polygraphy study of the same patient performed the same night       
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of ≥ 6.5 is considered positive for OSA, with a reported sensitivity of 96.05 % 
and specifi city of 67 %. Combining results from the SCR score and nocturnal 
oximetry has moderate success in predicting sleep-disordered breathing sever-
ity and is potentially useful in settings where resources are limited and PSG 
testing is not readily available [ 202 ].     

 In general and pragmatically speaking, while these investigations may not have 
the sensitivity and specifi city of PSGs, provided clinicians recognize their limita-
tions, the information they provide can still be highly valuable. 

  Home sleep apnea testing     There has been a lot of interest in home sleep apnea test-
ing, and it is a direction that adult sleep medicine has readily adopted. Compared 
with in-lab PSGs, home sleep apnea testing has the potential to measure a more 
typical night’s sleep as the child is sleeping at home, could be substantially less 
expensive, and more accessible to more children. Most of the interest in home sleep 
apnea testing has been in the use of home RPs. Unsurprisingly, the signal most at 
risk of disruption is the nasal fl ow signal, but overall, home RPs are feasible to per-
form, even in young preschool children [ 203 ,  204 ]. The probability of obtaining a 
successful study appears to be higher if the studies are set up by trained staff with 
the attendant logistic implications. Though results from the various published stud-
ies have been discordant [ 197 ], on the whole, the sensitivity and specifi city of home 
RPs appear to be good for the diagnosis of moderate and severe OSA in children 
who have a high pretest probability of having the condition [ 205 ]. More research is 
required into how to further optimize the sensitivity and specifi city of home sleep 
apnea testing in children with mild OSA.  

 CO 2  monitoring is important in children in whom there is concern regarding 
nocturnal hypoventilation, such as children with neuromuscular disease, underlying 
lung disease, or obesity hypoventilation. Not all home testing devices have a trans-
cutaneous or end-tidal CO 2  channel, and therefore, home sleep apnea testing may 
not be suitable in these children.  

    Treatment 

 Most clinicians consider a PSG obstructive AHI ≤1/hrTST to be normal, 1 < OAHI 
≤5/hrTST as mild OSA, 5 < OAHI ≤10/hrTST as moderate OSA, and OAHI >10/
hrTST as severe OSA. Most sleep specialists would institute treatment in children 
with moderate/severe OSA, but there is considerable variability in current practice 
for the management of mild OSA. It is important to remember that treatment deci-
sions should not only be guided by PSG results in isolation, and the overall clinical 
picture needs to be taken into consideration. Thus, symptom severity, examination 
fi ndings, presence of risk factors, and associated disease morbidity need to be care-
fully evaluated and incorporated prior to the formulation and implementation of an 
individualized treatment plan.  
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    Adenotonsillectomy 

 In contrast to adults with OSA, adenotonsillectomy is the recommended fi rst-line 
treatment for pediatric OSA in children with adenotonsillar hypertrophy [ 195 ]. It is 
now clearly established that adenotonsillectomy results in improvements in the 
severity of OSA in the majority of children. While adenotonsillectomy is an effec-
tive treatment, recent studies have demonstrated that although the majority of chil-
dren show marked improvements in their PSG parameters following surgery, a 
signifi cant proportion do not achieve complete normalization of the PSG and have 
residual OSA [ 206 ]. 

 Risk factors for signifi cant residual postoperative OSA include obesity, severity 
of OSA presurgery, age (risk being higher in those aged >7 years), underlying 
asthma or allergic rhinitis, African-American ethnicity, and children who have pri-
mary genetic conditions leading to structural abnormalities, e.g., craniofacial anom-
alies/chromosomal defects, and those with neuromuscular diseases. In low-risk 
populations, the percentage of children with residual OSA is approximately 
20–25 %, while in high-risk populations, it is signifi cantly higher [ 43 ,  46 ]. Clinicians 
should be alert to this problem, and those children at high risk for residual OSA 
should be reevaluated post-adenotonsillectomy. However, even in low-risk patients, 
an open-minded approach should be implemented, with the recurrence of OSA 
symptoms warranting reevaluation. 

 While adenotonsillectomy is generally considered a safe procedure, as with all 
surgical procedures, there can be complications, the most common being respira-
tory compromise and secondary hemorrhage [ 207 ]. It is now apparent that children 
with OSA have an increased risk of respiratory complications after adenotonsillec-
tomy when compared to children who are having adenotonsillectomy for other 
clinical indications (odds ratio 4.9). However, they appear less likely to have post-
operative bleeding compared with children without OSA (odds ratio 0.41). A pos-
sible explanation is that recurrent tonsillitis, the other main indication for 
adenotonsillectomy, may be a risk factor for secondary hemorrhage, not that OSA 
is a protective factor. Of note, in the CHAT study, none of the PSG or demographic 
parameters were predictive of postoperative complications [ 208 ]. 

 There has been a gradual shift in the past few years by some ENT surgeons 
toward performing tonsillotomies in preference to tonsillectomies because of the 
benefi ts of lower postoperative complication rates such as hemorrhage, less postsur-
gical pain, and shorter recovery time. A recent meta-analysis comparing tonsillec-
tomy versus tonsillotomy for sleep-disordered breathing in children included ten 
studies and demonstrated that there was no signifi cant difference in outcomes such 
as resolution of OSA symptoms, quality of life, and postoperative immune function 
[ 209 ]. However, the risk ratio of OSA recurrence was 3.33 times higher for tonsil-
lotomy especially in younger children who appear to have a small risk of symptom- 
recurrence requiring repeat surgery within 2 years after tonsillotomy due to tonsillar 
regrowth [ 210 ]. The 2012 American Academy of Pediatrics guidelines suggest that 
data are currently insuffi cient to defi nitively recommend one surgical technique 
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over the other [ 195 ]. However, children undergoing tonsillotomy should be moni-
tored carefully long term to ensure that OSA symptoms do not recur, and families 
should be counseled about the possibility of OSA recurrence secondary to tonsillar 
regrowth. In a population-based study, the risk of recurrent surgical intervention 
was signifi cantly higher when tonsillotomy was used [ 211 ]. 

 A recent Cochrane systematic review to examine the evidence comparing adeno-
tonsillectomy versus nonsurgical management of pediatric OSA identifi ed only 
three prospective trials that met the inclusion criteria [ 212 ]. The previously men-
tioned CHAT study provided the highest-quality evidence and was the main basis 
for the recommendation that in healthy children with mild/moderate OSA, adeno-
tonsillectomy was of benefi t. It is still the duty of the physicians to carefully weigh 
the benefi ts and risks of adenotonsillectomy against watchful waiting, as it is pos-
sible the condition may recover spontaneously over time. Certainly one of the most 
striking fi ndings of the CHAT study was that in the watchful waiting group, 42 % 
were found to have resolution of their OSA on follow-up PSG 7 months later [ 48 ]. 
This was particularly true in the children with milder disease (lower initial AHI) and 
with waist circumference <90 % percentile [ 213 ]. It should be pointed out that 
despite normalization of their PSG AHI, only 15 % of the 167 patients with a base-
line PSQ > 0.33 experienced symptomatic resolution, and the independent predic-
tors for symptom resolution included lower initial pediatric sleep questionnaire and 
snoring scores.  

    Positive Airway Pressure Therapy 

 In children who manifest residual OSA after adenotonsillectomy or in those who 
present minimally enlarged upper airway lymphadenoid tissues or opt not to undergo 
surgery, positive airway pressure therapy is recommended (provided nasal obstruc-
tion is not present). The aim is to maintain airway patency throughout the respira-
tory cycle, improve functional residual capacity (FRC), and thus decrease the work 
of breathing. This is usually delivered in the form of continuous positive airway 
pressure (CPAP), but in some children who require very high positive end- expiratory 
pressures or who also have nocturnal hypoventilation, for example, children with 
neuromuscular disease or obesity hypoventilation syndrome, bilevel PAP ventila-
tion may be required (Fig.  10.2 ). While PAP is an effective therapy, achieving ade-
quate adherence can be a major challenge in children.

   When adherence and effectiveness were studied in a prospective multicenter 
study of children randomly assigned to 6 months of bilevel PAP ventilation or 
CPAP, a third of the subjects had already dropped out before 6 months [ 214 ]. 
There was no statistical difference between bilevel PAP ventilation and CPAP, 
both being highly effi cacious, even though adherence, even in a research setting, 
was suboptimal with a mean nightly use of just 5.3 ± 2.5 (SD) hours. Nonetheless, 
achieving good adherence is not impossible, as evidenced by Ramirez et al. whose 
patients used PAP therapy for a mean of 8 h 17 min ± 2 h 30 min per night [ 215 ]. 
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This impressive outcome is most likely a refl ection of the available resources, with 
the PAP therapy being initiated in a designated pediatric inpatient unit by experi-
enced staff, very frequent home visits, and frequent inpatient follow-up sleep stud-
ies. However, even with suboptimal adherence (mean use just 170 ± 145 min/
night), a study of 52 children found that there was still signifi cant improvement 
after just 3 months of PAP therapy in several neurobehavioral domains, including 
attention defi cits, sleepiness on the Epworth sleepiness scale, internalizing and 
total behavior symptom scores, and quality-of-life questionnaires [ 119 ]. 

 PAP therapy does however require regular long-term follow-up in children as 
pressure requirements will change, and the interface will need to be upsized and 
adjusted, with the growth and development of the child. Side effects also need to 
be monitored, and these can include nasal bridge pressure sores from the mask, 
discomfort from air leak especially to the eyes, abdominal distension, and orona-
sal dryness. In the longer term, young children may develop fl attening of the mid-
face or maxillary retrusion from the effect of pressure of the mask on growing 
facial structures.  

a

b

  Fig. 10.2    ( a ) Children can take a little while to get used to PAP therapy, but once they get into a 
routine, they can feel symptomatically much better when they adhere to this therapy. ( b ) Example 
of adherence data from a child with OSA receiving CPAP therapy at home       
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    Medical Therapy 

 Most clinicians would now consider a trial of anti-infl ammatory medication, 
namely, leukotriene receptor antagonists such as montelukast and intranasal ste-
roids in children with mild OSA [ 216 ]. Tonsils from children with OSA have been 
shown to express increased levels of leukotriene receptors 1 and 2 compared with 
tonsils from children with recurrent tonsillitis [ 217 ]. Consequently, the application 
of leukotriene antagonists to an in vitro cell culture system of cells obtained from 
tonsillar tissues of children with OSA elicited dose-dependent reductions in cell 
proliferation and reductions in the secretion of the cytokines TNF-α, IL-6, and 
IL-12 [ 218 ]. In an initial open-label intervention study where children with mild 
OSA received 16 weeks of montelukast, signifi cant reductions in adenoidal size 
and respiratory- related sleep disturbances were demonstrated [ 219 ]; these fi ndings 
have subsequently been reproduced in a double-blind, randomized, placebo-con-
trolled trial [ 220 ]. 

 Similarly, the addition of steroids to this in vitro cell culture system resulted in 
decreased proliferative rates of the cells, increased apoptosis, and reduction in the 
secretion of the pro-infl ammatory cytokines IL-6, IL-8, and TNF-α [ 221 ]. A ran-
domized crossover trial of 6 weeks of treatment with intranasal budesonide in chil-
dren with mild OSA showed improvements in the severity of OSA and reduction in 
the size of adenoidal tissues. Importantly, discontinuation of therapy for 8 weeks, in 
the group of children who started with the medication and then had a 2-week wash-
out period followed by 6 weeks of placebo, did not promote the occurrence of 
rebound symptoms [ 222 ]. Intranasal fl uticasone and mometasone have shown simi-
lar results [ 223 ,  224 ]. The use of both montelukast and nasal budesonide for 
12 weeks in children who had residual mild residual OSA after adenotonsillectomy 
led to signifi cant improvements in AHI, nadir oxygen saturation, and respiratory 
arousal index, whereas no signifi cant changes occurred over this time period in the 
control subjects [ 225 ]. Recently, a large retrospective review of 752 children with 
mild OSA who received nasal steroids and montelukast showed an overall success 
rate of 80.5 % [ 226 ]. A subset of 445 patients had follow-up PSG and normalization 
of sleep parameters was seen in 62 %. Older children (aged > 7 years) and obese 
children were however less likely to respond favorably. Studies to determine opti-
mal duration of treatment, optimal combinatorial approaches, longer-term out-
comes, and optimal patient selection are critically needed.  

    Weight Loss 

 Weight loss should be encouraged in obese children with OSA, both as a therapy for 
their OSA and also for its benefi cial effects on their overall health. In the NANOS 
study, the group of obese children with mild OSA without adenotonsillar hypertro-
phy who were managed with dietary modifi cation to encourage weight loss 
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demonstrated improvements in their respiratory parameters with 50 % showing OSA 
resolution at follow-up [ 50 ], while the weight loss required for such benefi cial effects 
to be demonstrated was encouragingly small. A study in Belgium recruited 61 obese 
teenagers admitted to a weight loss camp where the children underwent a multimo-
dality treatment program consisting of moderate dietary restriction, regular physical 
activity, as well as group and individual psychological support [ 227 ]. Sixty-two per-
cent had OSA when they started the program, and after a median weight loss of 
24 kg, repeat sleep screening revealed a signifi cant improvement in the severity of 
OSA including the AHI, ODI, mean SpO 2 , SpO 2  nadir, and time SpO 2  < 90 %, while 
the relative decrease in BMI z-score correlated with the change in AHI.  

    Rapid Maxillary Expansion 

 In rapid maxillary expansion (RME), a fi xed appliance with an expansion screw 
anchored to opposing teeth is used to open the midpalatal suture, gradually increas-
ing the transverse diameter of the hard palate over the course of several months. 
Data on RME are limited to small uncontrolled studies, but they suggest that it may 
have a role to play in carefully selected patients, such as children with OSA who 
have clinical signs of malocclusion (high, narrow palate associated with deep bite, 
retrusive bite, or crossbite) [ 228 ]. Results appear to be more promising when treat-
ment is started at a younger age during the phase of late primary dentition or early 
mixed dentition [ 229 ]. In a pilot study of 31 children with OSA who had both nar-
row maxilla and moderately enlarged tonsils and OSA, half the children (group 1) 
had adenotonsillectomy performed followed by RME, and the other half (group 2) 
had RME, followed by adenotonsillectomy [ 230 ]. The AHI decreased after the fi rst 
intervention, but it was only after the reciprocal intervention was performed that the 
AHI normalized. Complete resolution of OSA following just a single intervention 
alone (RME) occurred in only one child, and there were no signifi cant differences 
as to which treatment was started fi rst, as ultimately both treatments were needed in 
the vast majority of patients.  

    Myofunctional Reeducation 

 There has been recent interest in myofunctional reeducation to prevent the recur-
rence of OSA post-adenotonsillectomy or in the treatment of mild persistent 
OSA. Myofunctional reeducation involves teaching the patients oropharyngeal exer-
cises aimed at improving labial seal and lip tone, facilitating nasal breathing rehabili-
tation, and improving tongue posture. These exercises need to be performed daily, 
with the aim of strengthening the tongue and orofacial muscles and realigning them 
in the correct position. In a retrospective review of 24 patients after adenotonsillec-
tomy, 11 of whom had received myofunctional reeducation, those children who had 
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not received myofunctional therapy developed recurrence of mild OSA symptomati-
cally and on PSG, whereas those undergoing myofunctional reeducation had no 
recurrence [ 231 ]. Another study of 14 children who had residual OSA post-adeno-
tonsillectomy demonstrated improvement in their AHI after treatment with oropha-
ryngeal exercises for 2 months [ 232 ]. Morphofunctional evaluation also demonstrated 
improvements including reduction in oral breathing and increased labial seal and lip 
tone. One hypothesis is that residual OSA may be due to incomplete recovery of 
neuromuscular function after surgery, and myofunctional reeducation may help with 
this problem. However, studies so far have been small and uncontrolled, and there-
fore, larger prospective, multicenter controlled studies are required.  

    High-Flow Nasal Cannula Oxygen 

 A possible alternative to CPAP is high-fl ow nasal cannula oxygen (HFNC). This 
form of respiratory support has gained widespread use in the acute setting for the 
treatment of respiratory distress syndrome and bronchiolitis, and anecdotally appears 
to be better tolerated in infants than mask-based positive airway pressure. There has 
only been 1 study so far of 12 patients on HFNC for the treatment of OSA [ 233 ]. 
Results were promising, and the reduction in AHI was comparable to that of CPAP 
leading the authors to postulate that HFNC may be a gentler alternative to CPAP.  

    Newer Investigational Techniques 

  Drug-induced sleep endoscopy     Drug-induced sleep endoscopy (DISE) is a tech-
nique whereby the upper airway is evaluated via a fl exible fi ber-optic endoscope 
inserted nasally during spontaneous breathing while the patient is under light seda-
tion. The aim is to recreate the upper airway conditions during natural sleep, thus 
allowing the exact level of obstruction in the child to be identifi ed and facilitating 
site-specifi c surgical therapy [ 234 ,  235 ]. It can be very useful in the assessment of 
children who have residual OSA after adenotonsillectomy, or in complex OSA 
cases, such as that seen in children with cerebral palsy, craniofacial syndromes, 
trisomy 21, etc. Common sites of obstruction include the tongue base, primarily due 
to lingual tonsillar hypertrophy, adenoid regrowth, inferior turbinate hypertrophy, 
and laryngomalacia.  

  Cine MRI     Another technology potentially useful for the evaluation of children with 
complex upper airway obstruction is cine MRI. This approach provides high- 
resolution imaging of the dynamic airway without the need for ionizing radiation 
making it ideal for use in children. Cine MRI proponents advocate that this imaging 
modality allows for a better view of the airway in its entirety and enables observa-
tion of both the primary and secondary effects of obstruction. When Shott et al. 
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used cine MRI to evaluate the airways of 15 children with trisomy 21 who had 
persistent OSA following adenotonsillectomy, the cine MRI identifi ed different 
areas and levels of obstruction including regrowth of adenoidal tissue, glossoptosis, 
soft palate collapse, hypopharyngeal collapse, and enlarged lingual tonsils, and 
treatment could thus be tailored to the individual patient [ 236 ,  237 ].   

    Guidelines 

 The most recent American and European guidelines for the diagnosis and manage-
ment of pediatric OSA were published in 2012 and 2015, respectively. The American 
Academy of Pediatrics (AAP) focused on uncomplicated OSA, i.e., OSA associated 
with adenotonsillar hypertrophy or obesity in otherwise healthy children [ 6 ]. Upon 
reviewing the data from publications between 1999 and 2010, their main recom-
mendations are summarized in Table  10.2 .

   In addition to the management of uncomplicated OSA, the European Respiratory 
Society guidelines also included recommendations regarding the management of 
obstructive sleep-disordered breathing in children with conditions such as craniofa-
cial anomalies and neuromuscular disorders [ 1 ]. The variability in diagnostic facili-
ties available in different European countries was also taken into consideration. 
Reviewing publications until 2014, a stepwise approach to the diagnosis and man-
agement of obstructive sleep-disordered breathing was suggested, and these are also 
summarized in Table  10.2 .  

    Future Developments 

 PSGs are poorly predictive of OSA-associated morbidities: not every child fulfi lling 
PSG criteria for OSA manifests end-organ morbidity, and conversely, some children 
with primary snoring already display sequelae despite a normal sleep study. As with 
many diseases, factors such as individual genetic susceptibility and environmental 
exposures/lifestyle will contribute to this phenotypic variance. Therefore, improv-
ing overall therapy requires individualization of evaluation and treatment and is 
dependent on patient-specifi c requirements. The development of potential biomark-
ers of susceptibility to and severity of OSA morbidity is therefore of critical impor-
tance. Proteomic interrogations coupled with the requisite bioinformatic analyses 
have revealed that OSA is associated with specifi c and consistent alterations in cer-
tain urinary proteins [ 238 ]. Increased levels of urinary catecholamines epinephrine 
and norepinephrine have been identifi ed, and overnight increases in GABA and 
decreases in taurine and β-phenylethylamine (PEA) appear to differentiate children 
with OSA who have neurocognitive defi cits from those without [ 239 ]. There is also 
emergent data that exosomal miRNAs may be a potential biomarker of cardiovascu-
lar risk in children with OSA [ 240 ]. 
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    Table 10.2    Pertinent symptoms and signs when evaluating a child for possible OSA   

  Clinical history  
 Are there any of the following symptoms? 
  During sleep  
 Snoring (is it loud? How frequently) 
 Heavy/loud/noisy breathing 
 Struggling to breath 
 Gasping 
 Mouth breathing 
 Witnessed apneas 
 Restless sleep 
 Frequent awakenings 
 Hyperextension of neck when asleep 
 Sleeps in sitting position 
 Excessive sweating when asleep 
 Cyanosis 
 What is the typical bedtime, wake time? 
 Is the child easy to wake in the mornings? 
 Does the child wake unrefreshed? 
 Nocturnal enuresis (especially if secondary) 
 Wake with morning headaches 
 Any other sleep symptoms, e.g., parasomnias or night terrors? 
  During wake  
 Nasal congestion 
 Mouth breathing when awake 
 Chronic rhinorrhea 
 Diffi culty swallowing 
 Neurocognitive morbidity, e.g., academic impairment, excessive daytime sleepiness (consider 
questionnaire such as modifi ed Epworth sleepiness scale), inattention, hyperactivity, behavioral 
problems 
 Are there any risk factors for OSA such as prematurity or family history of OSA? 
 Are there any other medical conditions, e.g., oromotor dysfunction, asthma, metabolic 
syndrome, recurrent otitis media, allergic rhinitis, recurrent chest infections, depression/ low self 
esteem, sickle cell disease, or previous cleft palate repair? 
 Is the child on any medications which can impact on sleep? 
  Physical examination  
 Tonsillar hypertrophy 
 Mandibular hypoplasia/micrognathia/retrognathia/midface defi ciency/high-arched palate 
 Macroglossia 
 Pectus excavatum 
 Adenoidal facies 
 Examination of nose – nasal patency, any obvious causes of obstruction 
 Plot on growth chart 
 Calculate BMI percentile or z-score 
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 The era of personalized medicine will require the development of coordinated 
combinatorial or multiplexed approaches, so that diagnosis and treatment can be 
tailored to the individual patient. In the future, algorithms that incorporate measures 
derived from the sleep study, from blood or urine tests, and from clinical elements 
obtained during history and physical examination may provide improved approaches 
to defi ne those at risk of OSA, together with the timing and the nature of their 
required intervention. This unifi ed approach is endorsed by an offi cial American 
Thoracic Society statement on the importance of healthy sleep released in 2015 
[ 241 ]. The research priorities are highlighted to include determining the molecular 
basis for OSA, using knowledge of these pathways to develop effective therapies, 
identifying the etiological role of OSA in the development of comorbidities, and 
determining the impact of OSA treatment on these comorbidities.     
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    Chapter 11   
 Sleep Disorders in Children: Simple Sleep- 
Related Movement Disorders                     

     Pamela     E.     Hamilton-Stubbs       and     Arthur     S.     Walters     

    Abstract     Simple sleep-related movement disorders are a group of conditions that 
must be differentiated from parasomnias which are more complex sleep-related 
movement disorders and appear goal directed but are outside the conscious aware-
ness of the individual. Simple sleep-related movement disorders must also be distin-
guished from movement disorders that occur predominantly during wakefulness but 
may occur to a minor degree in sleep. A detailed medical history including the 
patient’s age at onset of symptoms and a meticulous description of the movement 
help to differentiate these conditions. In some cases, polysomnography and video 
recording are essential diagnostic tools. 

 There is an expanding body of research identifying genes, chromosomes, and 
neurotransmitters in the pathophysiology of simple sleep-related movement disor-
ders. Some of these disorders, such as isolated periodic limb movements in sleep, 
need not be treated at all unless they are associated with sleep disruption of the bed 
partner or are a presumptive cause of daytime fatigue when other causes of fatigue 
have been excluded. Others, including restless legs syndrome, leg cramps, and 
sleep-related bruxism, may require pharmacotherapy. Treatment of sleep-related 
movement disorders has evolved to include new collaborative roles for physicians, 
dentists, and other health professionals.  

  Keywords     Restless legs syndrome   •   Periodic limb movement disorder   •   Leg 
cramps   •   Bruxism   •   Rhythmic movement disorder   •   Hypnagogic foot tremor   
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      Introduction 

 Simple sleep-related movement disorders are primarily monophasic, frequently ste-
reotyped movements that occur predominantly around the sleep period and interrupt 
sleep [ 1 ]. The simple sleep-related movement disorders must be differentiated from 
more complex sleep-related movement disorders called the parasomnias that appear 
goal directed but are outside the conscious awareness of the individual and are 
therefore inappropriate. Examples of the parasomnias include the REM sleep 
behavior disorder and the non-REM parasomnias such as the disorders of partial 
arousal which include sleepwalking, sleep terrors, and confusional arousals. Other 
movement disorders which may disrupt sleep occur predominantly during the day-
time with a minor component during sleep. Some of the movement disorders which 
are symptomatic primarily during the day but may also disrupt sleep include 
Tourette’s syndrome and tics of other types, Huntington’s disease and choreas of 
other types, Parkinson’s disease and other forms of parkinsonism, myoclonus, dys-
tonia, essential tremor, tardive dyskinesia, akathisia, ataxia, hemifacial spasm, and 
hemiballismus. These disorders sometimes are associated with changes in sleep 
architecture, increased wakefulness after sleep onset, or poor sleep effi ciency. The 
focus of this chapter, however, revolves around the simple sleep-related movement 
disorders which are predominantly nocturnal and the relationship of such disorders 
to pediatric sleep. The parasomnias are covered in another chapter. 

 Although varying defi nitions of the disorders in this chapter exist, for purposes 
of simplicity, only defi nitions from the International Classifi cation of Sleep Disorder 
third edition and the AASM polysomnographic scoring manual are included.  

    Restless Legs Syndrome (RLS)/Willis-Ekbom Disease (WED) 

 Restless legs syndrome (RLS)/Willis-Ekbom Disease (WED) is a neurological dis-
order initially described by Sir Thomas Willis [ 2 ]. In 1923, Oppenheim suggested 
RLS could be a genetic disorder [ 3 ]. Genome-wide association studies of restless 
legs syndrome identifi ed common variants in genomic regions [ 4 ]. According to 
Rye, six candidate genes have been described although more have been added 
recently [ 5 ]. Rye also states, “two independent segregation analyses propose domi-
nant inheritance infl uenced by a highly penetrant (90–100 %) single gene in families 
with symptom onset at a young age” [ 5 ]. 

 The etiology of RLS is unknown. There is growing evidence of involvement of 
three areas: a genetic factor, involvement of the monoaminergic system, and intra-
cerebral iron metabolism. Early onset RLS, defi ned as symptoms occurring before 
45 years of age, has a familial pattern. Among children with RLS, 40–92 % are 
reported to have affected family members [ 1 ]. Improvement in symptoms with iron 
and dopaminergic agents suggests iron and/or monoaminergic systems as sites of 
pathology in RLS. There is a large body of literature showing comorbidity or RLS 
with ADHD and comorbidity with growing pains. 
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 There is a growing body of research suggesting at least some involvement of 
peripheral microvascular circulation. Salminen et al. studied patients by monitoring 
oxygen levels in the lower extremities of patients treated with pramipexole both while 
off medication and when on medications as compared with controls. The authors 
found that the blood oxygen level increased when patients took pramipexole [ 6 ]. 

 RLS most often affects the legs but can involve the arms, trunk, or face. Symptoms 
may lateralize or affect both limbs [ 7 ]. The most defi ning symptom is an almost 
irresistible urge to move the legs or involved body part. This urge to move is due to 
paresthesias which have been described as ranging from annoying sensations deep 
within the muscle to painful events. The paresthesias have a circadian pattern, 
occurring more frequently in the evening or night, but paresthesias have also been 
reported to occur during the day. Movement is associated with immediate, although 
sometimes temporary, relief or decrease in paresthesias [ 1 ]. 

 Pediatric RLS was fi rst described in the literature in 1994 [ 8 ]. Diagnostic criteria 
for pediatric onset RLS was introduced in 2003 and updated in 2010 and again in 
2013 [ 9 ]. In 2013 the pediatric diagnostic criteria was updated to integrate diagnos-
tic measures for children less than 12 years of age with those of adults and older 
children. The updated diagnostic criteria allows the use of descriptive terms and 
words commonly expressed by children, outlines specifi c considerations for the 
diagnosis of pediatric restless legs syndrome, and clarifi es diagnostic criteria for 
probable and possible pediatric restless legs syndrome. 

 The updated diagnostic criteria for RLS (as previously) does not require leg sen-
sations although they are usually present. The primary feature is the urge to move 
the legs with or without accompanying leg sensations. If sensations are present, they 
invariably involve the legs although the arms and sometimes other body parts can be 
added later in the clinical course. The current criteria from ICSD-3 for RLS are 
comprised of the following:

    A.    An urge to move the legs, usually accompanied by or thought to be caused by 
uncomfortable and unpleasant sensations in the legs. These symptoms must:

    1.    Begin or worsen during periods of rest or inactivity such as lying down or 
sitting   

   2.    Be partially or totally relieved by movement, such as walking or stretching, 
as least as long as the activity continues   

   3.    Occur exclusively or predominantly in the evening or night rather than dur-
ing the day       

   B.     A new criterion that has been added is the need to exclude mimics of RLS 
which are disorders which may meet all of the above criteria but not be RLS and 
must therefore be distinguished from RLS by other historical features or a phys-
ical examination. Some of these mimics include leg cramps, positional discom-
fort, leg edema, venous stasis, myalgias, and habitual foot tapping.   

   C.    In addition, symptoms must have clinical signifi cance and cannot be better 
explained by other disorders, medication use, or substance use disorder [ 1 ]. 
Clinical signifi cance has been defi ned as causing concern, distress, sleep 
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disturbance, or impairment in mental, physical, social, occupational, educa-
tional, behavioral, or other important areas of functioning. The ICSD-3 also 
states that for certain research applications, such as genetic or epidemiological 
studies, it may be appropriate to omit this criterion. If so the ICSD-3 recom-
mends that this should be clearly stated in the research report [ 1 ].     

 Because young children have diffi culty describing symptoms in their own words, 
diagnosing RLS in children is challenging. The ICSD-3 clearly states that “for chil-
dren, the description of these symptoms should be in the child’s own words.” 
Children at least 6 years of age and developmentally normal have been shown to 
adequately report symptoms of RLS. The use of pediatric prompts during the diag-
nostic interview may be helpful. Pediatric prompts should be straightforward inter-
view questions phrased using words developmentally appropriate for the child. 
Additional special considerations are listed in Table  11.1  [ 1 ].

   Periodic limb movements occurring with a frequency greater than 5 per hour in 
the child or a fi rst-degree family member supports the diagnosis of RLS. The diag-
nosis of pediatric RLS is also supported if the child has a fi rst-degree family mem-
ber with RLS [ 1 ]. 

 In children, an increase in symptoms during the evening or at night may not be 
reported. The majority of children with RLS, 66 %, report daytime leg discomfort. 
One explanation is the number of hours children sit during the school day [ 1 ]. 

 Restless legs syndrome affects 1.9 % of children 8–11 years of age and 4 % of 
children 12–17 years of age [ 10 ]. During early childhood, most children are thought 
to have mild symptoms that do not require medical care, and therefore RLS goes 
unreported [ 11 ]. Most people seeking medical treatment for RLS are adults, but 
25 % of adults diagnosed with RLS report the onset of symptoms between 10 and 
20 years of age [ 9 ]. In addition, adult patients with RLS frequently report onset in 
childhood that remitted during adolescence only to return in adulthood often with 
recurrent onset in pregnancy. Among adults with RLS, many studies report a higher 
prevalence of RLS in women compared to men [ 12 ]. There is no signifi cant gender 
difference among children. 

 Restless legs syndrome is associated with insomnia, impaired comprehension, 
impaired semantic/phonemic fl uency, poor sleep quality, and decreased ability to 
sustain focused attention [ 9 ]. The neurocognitive defi cits associated in short- and long-

   Table 11.1    Special considerations when diagnosing RLS in pediatric patients   

 1. A description of the symptoms should be provided in the child’s own words 
 2. Periodic limb movement disorder may develop before symptoms of RLS 
 3.  The interviewer must be familiar with words typically used by children and adolescents to 

describe symptoms of RLS 
 4.  Language and cognitive development determine the applicability of the RLS diagnostic 

criteria, rather than age 
 5.  The interviewer must be mindful that adult specifi ers for clinical course may not be applicable 

to the pediatric patient 
 6. Symptoms of RLS must be of clinical signifi cance 

  Adapted from Picchietti et al. [ 9 ]  
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term memory, working memory, attention and executive functions, and semantic/pho-
nemic fl uency improve after 3 months of therapy with dopaminergic agents [ 13 ]. 

 There is an overlap between RLS and attention defi cit hyperactivity disorders 
(ADHD). Pullen et al. found 25 % of children with RLS met diagnostic criteria for 
ADHD [ 14 ]. Sleep deprivation does not solely explain the association between RLS 
and ADHD. Both disorders involve disruption in the dopaminergic system [ 15 ]. It has 
long been hypothesized that RLS involves dopamine dysfunction [ 16 ]. Most patients 
with RLS benefi t from dopaminergic agents. It is also known that children with ADHD 
benefi t from stimulants and these stimulants increase cerebral levels of dopamine [ 17 ]. 
Ernst et al. [ 18 ] studied dopaminergic pathways of children with ADHD. The research-
ers used dopamine tracers with positron emission tomography scans and documented 
decreased dopaminergic function in the brains of children with ADHD. 

 Children with RLS are more likely to suffer mood disorders than children who 
do not have RLS [ 19 ]. Pullen et al. studied 239 children with RLS. Sixty-four per-
cent of children with RLS had one or more comorbid psychiatric disorders. Mood 
disturbances occurred in 29.1 %. Attention defi cit hyperactivity disorder occurred in 
25 %. Anxiety disorder occurred in 11.5 % and 10.9 % had behavioral disturbances. 
A gender difference was observed. Male children were more likely to have ADHD 
and disruptive behavior disorders. Female children had a higher incidence of mood 
disturbances and anxiety disorders [ 14 ]. 

 A higher incidence of obstructive sleep apnea syndrome and parasomnias has 
been reported. Similar to adults, children with chronic renal disease have a high 
incidence of RLS. In adults, the incidence of RLS increases in the presence of type 
2 diabetes and peripheral neuropathy. Children with these disorders may be at 
increased risk for developing RLS but scientifi c evidence has not been established. 

 The prevalence of growing pains among children is unknown, but a conservative 
estimate is that growing pains affect 4.7 % of children [ 20 ]. Halliwell et al. estimate 
that children with growing pains represent 7 % of offi ce visits in a general pediatric 
medical practice [ 21 ]. Accurately differentiating growing pains from RLS is chal-
lenging [ 22 ]. One reason is the lack of universally accepted diagnostic criteria for 
diagnosing growing pains. Walters et al. reviewed the suggested diagnostic criteria 
for growing pains published by Evans et al. and Peterson [ 23 – 25 ]. Walters et al. 
documented an overlap in the symptoms of growing pains and RLS [ 20 ] (See 
Table  11.2 ). Halliwell et al. suggest important symptoms that differentiate the two 
disorders: growing pains are always described as painful, they do not affect the 
arms, and symptoms resolve around 12 years of age [ 21 ]. However, these distinc-
tions do not help in cases of childhood RLS where isolated leg pain may occur in a 
not insignifi cant minority of children with RLS according to Picchietti et al. [ 9 ,  10 ]. 
The literature reviewed recently by Walters et al. [ 20 ] suggests that children with 
growing pains do not have symptoms made worse by rest, do not have a desire to 
move the legs to get relief by activity, nor do they get any relief by activity, whereas 
the exact opposite is true of RLS. However, these contentions have not been for-
mally studied and could well be the basis of further investigational research [ 20 ].

   Treatment of RLS involves non-pharmacologic and pharmacologic therapies. In 
all cases, non-pharmacologic therapies may help reduce or eliminate symptoms at 
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least temporarily. Non-pharmacologic treatments are considered fi rst-line therapy 
and should be considered prior to initiation of prescription medications. When med-
ically possible, consider discontinuing medications that trigger RLS symptoms: 
antihistamines, antidepressants, antiemetics, and antipsychotics [ 26 ]. Discontinuing 
commonly prescribed medications such as selective serotonin reuptake inhibitors 
(SSRI), metoclopramide, and diphenhydramine may improve RLS symptoms [ 27 ]. 
Abstinence from alcohol and caffeine may be helpful [ 28 ]. 

 Massaging the legs may reduce discomfort. Massage increases dopamine levels 
and this may explain effi cacy. Exercise is associated with decreased RLS symp-
toms. Avoid prolonged standing or sitting. Avoid artifi cial sweeteners, caffeine, and 
alcohol. Over-the-counter supplements and vitamins have been used to treat RLS in 
adults with variable results. Iron supplements have been found to reduce symptoms 
in children with low iron or low ferritin levels. Simakajornboon et al. induced the 
reduction of symptoms for a period of 1–2 years in children who were iron defi cient. 
Children were administered 3 mg of elemental iron/kg/day for 3 months. Iron was 
then tapered over a period of 1 year [ 27 ]. Vitamin C enhances iron absorption [ 29 ]. 
Lee et al. found an association between low folate levels and RLS in pregnant 
women [ 30 ]. Folate (B9) synthesizes tetrahydrobiopterin. Sagheb et al. reported that 
a combination of vitamin C and vitamin E or either alone was found to decrease 
severity of RLS [ 31 ]. Melatonin may help induce sleep, but there is no evidence of 
decreased melatonin levels in patients with RLS [ 32 ]. There is no evidence support-
ing the use of homeopathic therapies as treatment for RLS [ 26 ]. 

 The usefulness of magnesium is controversial. Horynyak et al. reported improve-
ment in RLS symptoms in patients given 300 mg of elemental magnesium each 
evening for 4–6 weeks [ 33 ]. Walters et al. measured serum and CSF magnesium 
levels in patients with RLS and controls and found no statistically signifi cant differ-
ence between the groups [ 34 ]. It is possible that magnesium may affect RLS symp-
toms at the muscular level because magnesium is associated with muscle relaxation 
and dilation of blood vessels [ 35 ]. Improved blood circulation is also thought to be 
the mechanism for the benefi cial effects of exercise. 

   Table 11.2    Shared symptoms of RLS and growing pains (GP)   

  1. Pain occurs in the legs 
  2. Onset of symptoms starts between 3 and 12 years of age 
  3.  The unpleasant sensations are worse in the evening or at night or only occur at night or in 

the evening 
  4. There are no signifi cant limitations in activity or weight bearing 
  5.  Pain usually affects the anterior thigh, calf, and posterior knee. The pain is felt in the 

muscles and not in the joints 
  6. The pain is intermittent with some pain-free days and nights 
  7. Physical examination is normal 
  8.  Diagnostic tests such as erythrocyte sedimentation rate, radiograph, and bone scan are within 

normal values 
  9. Pain persists at least 3 months 
 10. There is no associated lack of well-being 

  Adapted from Walters et al. [ 20 ]  
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 The pharmacologic choices for children are limited. Dopaminergic agents have 
documented effectiveness in treatment of adult RLS. But dopaminergic agents are 
not FDA approved for use in children with RLS. In a multicenter double-blind 
study, carbidopa/L-DOPA (25/100 CR) was found to effectively treat RLS/PLMs in 
children, and few side effects occurred [ 36 ]. Pramipexole and ropinirole are selec-
tive dopamine agonists and less likely to cause side effects such as augmentation 
compared to carbidopa/levodopa. Either pramipexole or ropinirole can be used to 
treat RLS in children. Start with the lowest available dose and titrate upward as 
needed weekly. In adults the maximum dose is 1.5 mg and may be effective at lower 
doses [ 29 ]. 

 Clonidine has been reported to effectively treat RLS in children. Gabapentin and 
clonazepam have been shown to reduce symptoms, but clonazepam may increase 
symptoms of ADHD [ 27 ]. The Pediatric RLS Severity Scale offers a mechanism to 
document improvement of symptoms after treatment [ 37 ].  

    Periodic Limb Movements 

 Periodic limb movements (PLMs) are common but periodic limb movement disorder 
(PLMD) is not. PLMs are repetitive kicking movements in sleep usually of the legs, 
but have been reported to involve the arms. PLMD is defi ned as the presence of 
PLMS when there is accompanying fatigue or sleep disruption that can defi nitely be 
related to the PLMS. Even though PLMS are common in RLS (occur in up to 80 % 
of adult RLS patients), PLMD cannot be diagnosed in the presence of any other sleep 
disorder such as RLS which might account for the sleep disruption and daytime 
fatigue. PLMD is usually a diagnosis of exclusion since PLMS are a very common 
fi nding on polysomnography done for unrelated purposes such as ruling out sleep 
apnea. Insomnia as a cause of sleep disruption and daytime fatigue is also common 
and may be coincidental to the PLMS. A good history will usually reveal that the 
insomnia is due to something other than the PLMS in which case a diagnosis of 
PLMD cannot be made. Similarly hypersomnia is not uncommonly seen in a sleep 
disorders practice. A good sleep history may also reveal that the fatigue or hyper-
somnia is due to sleep apnea, medications, and other medical or psychiatric prob-
lems rather than any accompanying PLMS. A multiple sleep latency test (MSLT) 
may reveal evidence of idiopathic hypersomnia or narcolepsy as a cause of the 
hypersomnia. Again, in these cases, if PLMS co-occur, the diagnosis of PLMD can-
not be made. Although excessive sleepiness and sleep disturbance has been reported 
in the past, newer data do not fi nd signifi cantly elevated Epworth sleepiness scale 
scores or multiple sleep latency test (MSLT) values in subjects with PLMS [ 1 ]. 

 Periodic limb movements are common in adults but rarely occur in children [ 38 ]. 
PLMs occur most often during sleep, but can occur during wakefulness as an 
accompaniment of RLS. Movements involve the stereotypic extension of the great 
toe frequently with simultaneous fl exion of the ankle, knee, and hip. Movements 
last at least 0.5 s but not longer than 10 s. Arousals may precede, coincide with, or 
follow PLMs [ 1 ]. 
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 Periodic limb movement disorder requires the presence of periodic limb move-
ments at a frequency of greater than 5 per hour in children and greater than 15 per 
hour in adults. Periodic limb movements must be associated with sleep disturbance 
or impairment of mental, physical, social, occupational, educational, behavioral, or 
other areas of important functioning [ 1 ]. The diagnosis of periodic limb movement 
disorder requires polysomnography or actigraphy. The polysomnogram montage 
should include surface electrodes on both legs and preferentially recorded on sepa-
rate channels. The electrodes are placed longitudinally and symmetrically around 
the middle of the muscle 2–3 cm apart or one-third of the length of the anterior tibi-
alis muscle, whichever is shorter. A periodic limb movement is defi ned as an 8 uV 
elevation above baseline in the EMG channel with a duration ≥0.5 s and ≤10 s. A 
series of four or more limb movements defi ned as ≥ 4 limb movements must be 
recorded. The limb movements must occur between 5 s and not longer than 90 s. The 
duration of each individual limb movement is anywhere from 0.5 to 10 s. In addition 
to occurring commonly in RLS, PLMS also occur commonly in obstructive sleep 
apnea, REM sleep behavior disorder, and narcolepsy and as a side effect to medica-
tions [ 39 ]. For aforementioned reasons, PLMD cannot be diagnosed in the presence 
of any of these conditions [ 1 ]. The etiology of PLMs is unknown but several hypoth-
eses exist. One hypothesis implicates dopamine. According to Montplaisir et al., 
“there is a high occurrence of PLMs in RLS/WED, REM behavior disorder (RBD) 
and narcolepsy. Data suggest that these conditions are associated with impaired cen-
tral dopaminergic transmission. Neuroleptics and gamma-hydroxybutyrate, medica-
tions that decrease dopamine, have been reported to trigger PLMs” [ 39 ]. 

 The incidence of PLMs in children increases in the presence of obstructive sleep 
apnea syndrome. Hartzell et al. [ 40 ] quantifi ed the frequency and severity of sleep 
disorders in a population of hypertensive pediatric patients. The researchers found 
64 % of the children had obstructive sleep apnea and or PLMD [ 40 ]. Qubly et al. 
[ 41 ] studied 139 infants with obstructive sleep apnea and found 42 % also have 
periodic limb movements [ 41 ]. 

 Asymptomatic periodic limb movements may be helpful in establishing a diag-
nosis of RLS/WED or narcolepsy in patients who do not clearly meet diagnostic 
criteria for RLS/WED or narcolepsy. 

 Treatment of periodic limb movement disorder is similar to the treatment of 
RLS. Asymptomatic periodic limb movements do not warrant treatment. 

 See Fig.  11.1  for examples of periodic limb movements in sleep.

  Fig. 11.1    Periodic limb movements in sleep (PLMS) (three epochs at 30, 60, and 120 s). The burst 
duration of a single leg movement is ≥0.5 s and ≤10 s. Four or more limb movements in a row 
5–90 s apart are needed for any of the movements to be counted as PLMS. In the fi rst 30 s epoch, 
the two movements meet the burst duration and movement interval criteria for PLMS but would not 
be counted as PLMS unless there were at least four such movements 5–90 s apart. One would need 
to search the pages directly before and directly after to look for at least an additional two move-
ments. PLMS can be discriminated from HFT and ALMA because the burst duration of PLMS is 
much longer (0.5–10 s), and the interval between PLMS is also much longer (5–90 s apart)         
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       Sleep-Related Rhythmic Movement Disorder 

 These commonly manifest in children as repetitive body rocking or repetitive head 
banging (jactatio capitis nocturna). Sleep-related rhythmic movements are also 
referred to as stereotypies [ 42 ]. Sleep-related rhythmic movements are only consid-
ered a disorder if the movements are associated with clinical symptoms. Sleep- 
related rhythmic movements involve large muscle groups in any part of the body but 
most commonly the head, torso, and legs. The movements are nonfunctional, repeti-
tive, stereotyped behaviors that predominantly occur during sleep or at the transition 
from wakefulness to sleep. Movements may occur during quiet wakefulness [ 1 ]. 

 Rhythmic movements are distinguished from tremors and other types of move-
ments by a frequency of 0.5–2 Hz and duration of less than 15 min. Nevertheless, 
some reports exist of head banging lasting for 30 min to 1.5 h [ 43 ]. The movements 
are fi xed in fashion, form, amplitude, and location. Movements stop with distraction 
[ 44 ]. 

 The diagnostic criteria for sleep-related rhythmic movement disorders include all 
of the following: repetitive, stereotypic, and rhythmic motor behaviors of large mus-
cle groups. Movements occur during times of sleepiness or around naps or bedtime 

Fig. 11.1 (continued)
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and must interfere with sleep or impair daytime functioning or be associated with or 
have a high probability of associations with self-infl icted injury [ 1 ]. 

 Although sleep-related rhythmic movements are common, sleep-related move-
ment disorder which implies impairment of sleep, daytime function, or bodily injury 
is rare. Peak age of onset of the benign form of the condition occurs before a child’s 
fi rst birthday and decreases with increasing age. Almost 60 % of infants have sleep- 
related rhythmic movements, but the disorder occurs in only 5 % of children who 
have reached 5 years of age. Sleep-related rhythmic movements can persist into 
adulthood in normal adults, but more commonly persistence occurs in children with 
neurological or developmental disorders. 

 Each patient has his/her own pattern of stereotypic behavior. Although body 
rocking or rolling or head banging is the classic forms of the condition, the behav-
iors vary widely, and more than one type of movement may occur in the same 
patient. In younger children, the behaviors may also include sucking the thumb or 
arm fl apping or hand washing movements characteristic of Rett’s syndrome. Older 
children and young adults have behaviors such as nail biting, foot tapping, and hair 
twirling [ 45 ]. 

 Sleep-related rhythmic movement disorders can be classifi ed as primary or sec-
ondary. Primary sleep-related rhythmic movements occur in children who are devel-
oping normally and do not have behavioral or neurologic disorders. Secondary 
sleep-related rhythmic movements occur in the presence of signs or symptoms of 
behavioral or neurological diseases and commonly occur in children with degenera-
tive disorders affecting the brain, pervasive developmental disorders such as autism 
spectrum disorders and Rett’s syndrome. Secondary sleep-related rhythmic move-
ments can be present in children who have Tourette’s syndrome. Secondary sleep- 
related rhythmic movements may be associated with structural defects, autoimmune 
disorders, or an adverse drug reaction [ 46 ]. 

 The etiology of sleep-related rhythmic movements is unknown. There are several 
theories. One popular hypothesis is that the movements are self-soothing behaviors. 
Sleep-related rhythmic movements appear to be related to the A phases of the cyclic 
alternating pattern (CAP cycle) [ 47 ]. 

 Kohyama et al. studied the polysomnograms of two children with sleep-related 
rhythmic movements and retrospectively studied 31 additional children with sleep- 
related rhythmic movements who had been evaluated by polysomnography. 
Kohyama et al. found that the movements associated with head banging and head 
rolling rarely resulted in wakefulness. Both head banging and head rolling occurred 
in clusters. The frequency was increased during N1 and REM sleep. Kohyama et al. 
found that head banging was not limited to periods of sleep transitions. Head 
banging occurred during wakefulness but was not recorded during N3 and REM 
sleep [ 48 ]. 

 In comparison, Mayer et al. found head rolling occurred during the transition to 
sleep and when transitioning to wakefulness. Mayer et al. also noted sleep-related 
rhythmic movements occurred during wakefulness, in all stages of sleep and was 
associated with arousals [ 42 ]. 
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 Treatment is not necessary unless SRMD is associated with sleep disturbance, 
bodily harm or could result in injury if not controlled. However, the main preventive 
measure is to make sure that the parent keeps the child in a safe sleeping environment 
to prevent injury. For violent forms of SRMD, protective measures such as wearing 
helmets are indicated. Behavioral therapy has been reported to decrease SRMD. 
Treatment with benzodiazepines, citalopram, and imipramine may be helpful [ 49 ]. 

 See Fig.  11.2  for examples of rhythmic movement disorder.
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  Fig. 11.2    Two examples of rhythmic movement disorder are provided. ( a ) In the fi rst example of 
head banging in a 10-year-old male, artifact can be seen in the EEG and EOG. Here the patient is 
in a prone position putting his elbows on the bed. He forces his face on the pillow so the movement 
is of the entire head on the pillow. Although not in this case but in similar cases, movement can 
sometimes be seen on the chin EMG. ( b ) In the example of body rolling in an 18-year-old male, 
the patient is on the left side and there is rolling of the trunk from side to side. The artifact is promi-
nent in the EEG and EOG, and there is some activation of the right tibialis anterior muscle as well         
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       Sleep-Related Bruxism 

 Sleep-related bruxism involves contraction of masticatory muscles characterized by 
arousal from sleep associated with teeth grinding or clenching of the teeth. Diagnosis 
requires regular auditory tooth grinding during sleep in association with abnormal 
wear on the teeth and/or morning jaw muscle pain, jaw locking, or jaw muscle 
fatigue and/or temporal headache [ 1 ]. 

 When sleep-related bruxism involves rhythmic activity of the masseter and tem-
poralis muscles, the condition is called rhythmic masticatory muscle activity 
(RMMA). RMMA occurs in a cyclic pattern at 1Hz frequency. RMMA is thought 
to be the intensifi cation of normal orofacial activity and is associated with phase A 
of the cyclic alternating pattern (CAP). RMMA occurs most often during NREM 
sleep with increased occurrence during N1 and N2 sleep and is associated with 
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Fig. 11.2 (continued)
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arousals and transitioning to wakefulness. Less common, sleep bruxism (SB) has 
been reported to occur during REM sleep. 

 There are three types of sleep-related bruxism. An episode of phasic RMMA is 
defi ned as a minimum of three EMG bursts with a duration of ≥0.2 s and <2 s. 
When the EMG burst is continuous for more than 2 s, the bruxism is considered 
tonic sleep-related bruxism which is characterized as teeth clenching. Mixed sleep-
related bruxism is a combination of phasic and tonic activity. Severity of sleep-
related bruxism is described by frequency of EMG burst. One event per hour is 
normal [ 50 ]. When a single episode comprised of three or more individual EMG 
bursts occur and is followed by more than 3 s of EMG silence, one starts counting 
new EMG bursts as part of a separate episode. There must be at least two episodes 
of audible grinding on video with audio as part of the overnight sleep study to meet 
polysomnographic criteria for a diagnosis of sleep-related bruxism [ 51 ]. 

 In the general population, the prevalence of bruxism ranges from 6 to 20 % [ 52 ]. 
Sleep-related bruxism can start at any age. But onset of SRB most often occurs dur-
ing childhood and decreases with increasing age [ 53 ]. Between the ages of 18 and 29, 
the prevalence of bruxism is 13 %. Among patients over 60 years of age, the preva-
lence of bruxism decreases to 3 %. Although SRB may resolve spontaneously, nearly 
66 % of children with bruxism continue to have teeth grinding in adulthood [ 1 ]. 

 The etiology of sleep-related bruxism is unknown. It is no longer accepted that 
bruxism is secondary to misalignment of teeth. Genetic factors may be involved. 
Among people with SRB, 20–50 % have a biological relative with a history of teeth 
grinding, and genetics may be a factor. A serotonin gene has been described in 
patients with bruxism [ 1 ]. One hypothesis is that sleep-related bruxism is secondary 
to an imbalance of neurochemicals and neurotransmitters such as dopamine and sero-
tonin. Other possible explanations for sleep-related bruxism include sleep arousal 
mechanisms, sympathetic nervous system activation, and psychosocial factors. 

 Comorbidities associated with sleep-related bruxism include parasomnias, obstruc-
tive sleep apnea, periodic limb movements, epilepsy, Tourette’s syndrome, allergies, 
Parkinson’s disease, mental health disorders, and stress. Antipsychotics, neuroleptics, 
and antidepressants can trigger sleep-related bruxism. However, in the case of some 
of these disorders, the bruxism will be prominent in the day also. Bruxism must be 
differentiated from nocturnal facio-mandibular myoclonus which is characterized by 
rapid jerks of the jaw muscles or rapid tooth tapping. Facio- mandibular myoclonus, 
however, not infrequently accompanies sleep-related bruxism. 

 Evaluation requires a comprehensive medical history inclusive of symptoms 
suggestive of comorbid conditions or triggers. A detailed family medical history is 
necessary because a diagnosis of sleep-related bruxism in biological relatives sug-
gests a genetic component. Twenty to 50 % of children with sleep-related bruxism 
have a family member with a history of tooth grinding or bruxism. Medications 
should be reviewed for side effects such as onset of bruxism. 

 A polysomnogram is not required for the diagnosis of sleep-related bruxism but 
helps to quantify the frequency. If bruxism occurs at a low frequency, bruxism may 
not be recorded on the polysomnogram due to night to night variability. The poly-
somnogram should include at least one channel over the masseter muscle and audio-
visual recording. 
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 Medical treatment should be coordinated with a dentist. The dentist is responsi-
ble for treatment and prevention of oral health complications. Treatment is divided 
into non-pharmacologic therapies and pharmacologic therapies. 

 Dietary change is one form of non-pharmacologic therapy. Lavigne et al. 
described the following major risk factors thought to exacerbate sleep-related brux-
ism: smoking, caffeine and heavy alcohol drinking, type A personality, anxiety, and 
sleep disorders such as snoring, sleep apnea or PLMS [ 50 ]. Dietary changes that 
eliminate caffeine, alcohol, and tobacco may decrease the frequency of bruxism. In 
the presence of medical conditions such as anxiety and sleep disorders, treating 
these conditions may decrease sleep-related bruxism. 

 In addition to dietary changes, other non-pharmacologic treatments include mas-
sage and occlusal devices. 

 Pharmacologic treatment is reserved for severe sleep-related bruxism. There is 
no FDA-approved medication for treatment of bruxism. In children, clonidine is 
frequently used off label as a sleep aid and may help reduce the frequency of brux-
ism. Other medications reported to help with symptoms include gabapentin, 
tiagabine, buspirone, topiramate, botulinum toxin, and benzodiazepines [ 54 ]. 

 See Fig.  11.3  for an example of bruxism.
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  Fig. 11.3    Bruxism (one 30 s epoch). The epoch represents phasic bruxism. An episode of phasic 
bruxism is defi ned as a minimum of 3 EMG bursts with a duration of ≥0.2 s and <2 s. Note the 
bruxism on the chin EMG and note the artifact from the bruxism on the EEG channels. This is 
commonly seen       
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       Comparison of Polysomnographic Findings in Sleep-Related 
Rhythmic Movement Disorder and Sleep-Related Bruxism 

 Compare Figs.  11.2a, b  and  11.3 . Bruxism and sleep-related rhythmic movement 
disorder may look very similar on polysomnography. If masseter EMG is added to 
the montage, bruxism will typically show activation of this muscle. If body rocking 
is a component of rhythmic movement disorder, then the leg muscles will often be 
activated. However, in some instances, movement artifact may obscure the origin of 
the EMG pattern in both disorders, and a recognizable EMG artifact refl ected into 
the EEG of similar burst duration and frequency of 0.5–2 Hz may also occur in both 
disorders. In these circumstances, the accompanying audio and video may be neces-
sary to discriminate the two conditions from one another.  

    Sleep-Related Leg Cramps 

 Sleep-related leg cramps, also known as rest cramps, charley horse, and nocturnal 
leg cramps, are abrupt spontaneous painful sensations of the legs or feet associated 
with strong muscle contractions that cause a characteristic hardening of the affected 
muscle [ 55 ]. The associated hardening of the muscle helps differentiate cramps 
from tetany. Sleep-related leg cramps arise during sleep but can occur during wake-
fulness. Calf muscles and plantar muscle of the feet are most commonly involved in 
sleep-related leg cramps. Cramps are most often unilateral but may be bilateral. 

 While nearly all adults over 50 years of age have experienced sleep-related leg 
cramps, the incidence of such leg cramps in children is age dependent. Leung et al. 
evaluated 2,527 children 3–18 years of age for nocturnal leg cramps. The researchers 
reported the overall incidence of sleep-related leg cramps in children was 7.3 %. When 
divided by age, the researchers found no reports of nocturnal leg cramps in children 
less than 8 years of age. By 12 years of age, the incidence of sleep-related leg cramps 
was nearly 25 %. The incidence of sleep-related leg cramps peaked at 16–18 years of 
age. The frequency of nocturnal leg cramps was one to four times per year [ 56 ]. 

 In both pediatric and adult populations, sleep-related leg cramps can be a side 
effect of medications or occur in conditions such as McArdle’s disease, endocrine 
disorders, electrolyte imbalances, and lead toxicity [ 55 ]. Chronic myelopathy, mul-
tiple sclerosis, peripheral neuropathy, akathisia, muscular pain-fasciculation syn-
drome, and disorders of calcium metabolism must also be considered [ 1 ]. 
Sleep-related leg cramps may occur in association with other sleep disorders, for 
example, Willis-Ekbom disease and periodic limb movement disorder. Pregnancy 
and strenuous exercise are normal conditions associated with increased occurrence 
of sleep-related leg cramps. 

 The pathophysiology of sleep-related leg cramps is unknown. Likewise, the site of 
origin of sleep-related leg cramps is not known. The origin may be multifactorial or 
dependent upon associated comorbidities [ 57 ]. There are several hypotheses. One 
hypothesis places origin at the motor unit. “During muscle cramps, the electromyo-
gram records repetitive fi ring of motor unit action potentials. The number of motor 
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units involved increases gradually then subsides when cramps cease” [ 57 ]. This 
hypothesis is bolstered by the absence of cramps in diseases of the muscle and an 
association of cramps in disease resulting in pathology of peripheral nerves, as well 
as diseases associated with loss of lower motor neurons. Another hypothesis suggests 
cramps are due to irritation of myofascial trigger points in calf and foot muscles. 

 Another hypothesis involves magnesium. Hypomagnesemia is associated with 
leg cramps [ 58 ]. Magnesium inhibits the release of acetylcholine and low levels of 
magnesium lead to muscle contraction [ 59 ]. But clinical documentation of hypo-
magnesemia is challenging. Magnesium is largely intracellular, and serum magne-
sium levels may not accurately refl ect the body stores. In addition absorption of 
magnesium is complex requiring adequate amounts of selenium, parathyroid hor-
mone, pyridoxine (B6), and vitamin D [ 59 ]. Defi ciency in any of these decreases 
magnesium absorption. In addition, magnesium bioavailability decreases with 
increasing age. Issues of absorption were addressed by Garrison et al. To address 
concerns about absorption, researchers studied the effects of intravenous magne-
sium upon sleep-related leg cramps and did not fi nd magnesium helpful [ 60 ]. 

 The history and physical examination helps to differentiate cramps from tetany 
and dystonia. Routine testing of sodium, potassium, calcium, and magnesium levels 
is not indicated [ 61 ]. However, if the patient has conditions that could lead to elec-
trolyte defi ciencies, the defi cit should be corrected. Spinal imaging to evaluate for 
nerve root entrapment and nerve conduction studies and EMG to identify motor 
neuron disease may be helpful. A review of medications and laboratory testing for 
associated endocrine and metabolic disorders may be indicated. On a polysomno-
gram, sleep-related cramps appear as nonrhythmic burst of EMG activity with no 
preceding evidence of physiologic changes [ 1 ]. 

 Non-pharmacologic therapy is recommended as initial treatment and includes 
massage, application of heat, and stretching the muscle. 

 In the United States, there are no Food and Drug Administration (FDA)-approved 
pharmacologic treatments for sleep-related leg cramps. The off-label use of gaba-
pentin and verapamil has been used with some measure of success. 

 Although quinine is commonly used by adults for treatment of sleep-related leg 
cramps, the FDA withdrew approval of quinine for treatment of sleep-related leg 
cramps due to severe adverse side effects including thrombocytopenia, hemolytic- 
uremic syndrome, and hepatitis [ 62 – 64 ]. 

 Few authors have documented effi cacy of magnesium in the treatment of noctur-
nal leg cramps. Sebo et al. completed a systematic review with meta-analysis using 
simulations and did not fi nd objective evidence of usefulness of magnesium [ 65 ]. 
Adult patients with nocturnal leg cramps were administered 900 mg magnesium 
citrate twice a day for 1 month with no evidence of a decrease in leg cramps [ 66 ]. 
There is also debate as to which forms of magnesium should be administered with 
some authors favoring magnesium citrate and others favoring magnesium oxide. 
Nevertheless, because magnesium is inexpensive and relatively safe in patients with 
normal renal function, an empirical trial of magnesium can be given [ 67 ]. Magnesium 
is used as over-the-counter therapy but research demonstrates variable effi cacy. The 
type of magnesium affects absorption. Saris et al. reported that only 4 % of a dose of 
magnesium oxide is absorbed [ 68 ]. Some researchers have observed some measure 
of success using magnesium citrate 300 mg per day. Patients should avoid caffeine, 
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alcohol, high-fat diets, and dehydration, all dietary factors that increase elimination 
of magnesium [ 59 ]. 

 There are no features on polysomnography that are specifi c for leg cramps, and 
a polysomnographic example of leg cramps is not provided.  

    Benign Sleep Myoclonus of Infancy 

 Benign sleep myoclonus of infancy (BSMI) is also termed benign neonatal sleep 
myoclonus. This non-epileptic condition occurs in neurologically normal children. 
Benign sleep myoclonus of infancy manifests as repetitive myoclonic jerks of the 
extremities, upper more so than lower, in a unilateral or symmetrical pattern. Myoclonic 
jerks may also involve the trunk or the entire body. The movements only occur during 
sleep. The incidence has been estimated at 3.7 per 10,000 live births, and more than 
200 cases have been reported in the literature. Peak age of onset is birth to 1 month of 
age. In almost all children, BSMI resolves by 12 months of age with no sequelae [ 1 ]. 

 Although an EEG may be ordered because of concerns about possible epilepsy, the 
EEG is normal but may show muscle artifact. Movements usually occur in clusters of 
four to fi ve jerks per second, with a duration lasting 40–300 ms. Jerks are most often 
observed during quiet sleep but can occur during all stages of sleep. Jerks do not occur 
during wakefulness [ 69 ]. Wakefulness causes abrupt termination of movements. 
Rocking of the infant can precipitate myoclonus [ 1 ]. The etiology of BSMI is unknown. 

 BSMI must be differentiated from epilepsy, pyridoxine-dependency seizures, 
infantile spasms, PLMs, phasic REM muscle activity, and symptoms of neonatal 
drug withdrawal. BSMI must also be distinguished from benign myoclonus of early 
infancy. Symptoms of benign myoclonus of early infancy typically begin after 
3 months of age and include myoclonic jerks, spasms, brief tonic contractions, and 
shuddering, all of which occur only during wakefulness [ 70 ]. 

 In the absence of severe sleep disturbance, treatment of BSMI is not warranted. 
When treatment is indicated, clonazepam may be useful. 

 Benign sleep myoclonus of infancy does not have specifi c polysomnographic 
features, and a fi gure is not provided.  

    Hypnagogic Foot Tremor 

 Hypnagogic foot tremor is a common fi nding on polysomnography performed for 
other purposes. It manifests as oscillating movements of the whole foot or of the 
toes while falling asleep [ 71 ]. Tremors last between 10 and 15 s and have a fre-
quency of 0.3–4 Hz with a burst duration of 250–1,000 ms [ 51 ]. It usually occurs 
repetitively in a single leg. 

 HFT affects both genders equally and has been reported in patients from 14 to 
72 years of age. HFT is most commonly diagnosed in patients 40–65 years. 
Prevalence in children is unknown [ 52 ]. 
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 Since there is no known sequelae of this condition, treatment is unnecessary. It 
may cause minor disruption in the sleep of the bed partner. 

 See Fig.  11.4 , for an example of hypnagogic foot tremor.

       Alternating Leg Muscle Activation (ALMA) 

 “Alternating leg muscle activation (ALMA) describes brief activations of the anterior 
tibialis muscle in one leg followed by similar activation in the other leg during sleep or 
in association with an arousal” [ 72 ]. This may simply be a variant of hypnagogic foot 
tremor since it has a similar burst duration and frequency as HFT with the only excep-
tion being that the movements alternate from 1 ft to the other on a one-to-one basis. 
Again, it is found not uncommonly on polysomnography as an incidental fi nding. 
Similar to HFT it is to our current knowledge a benign disorder and may not require 
treatment. As with HFT, there may be some minor disruption of the bed partner’s sleep. 

 The etiology of ALMA is unknown. Chervin et al. postulate ALMA is due to a 
spinal cord generator related to serotonin or dopamine because the researchers 
observed ALMA occurring in patients exposed to antidepressant medications [ 73 ]. 
Chervin’s hypothesis is supported by the research of Cosentino et al. who  documented 
by polysomnogram a reduction in wake after sleep onset (WASO) in patients with 
ALMA treated with dopaminergic agents [ 74 ]. 

  Fig. 11.4    Hypnagogic foot tremor (HFT) (one 30 s epoch). Tremors last between 10 and 15 s and 
have a frequency of 0.3–4 Hz with a burst duration of 250–1,000 ms. HFT is a commonly occur-
ring benign condition. PLMS can be discriminated from HFT because the burst duration of PLMS 
is much longer (0.5–10 s), and the interval between PLMS is also much longer (5–90 s apart)       
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 Alternating leg muscle activation is thought to affect 1.1 % of the general popula-
tion presenting to sleep disorders centers for polysomnography. It affects both gen-
ders but occurs more often in males. ALMA has been reported in patients ranging in 
age from 12 to 70 years of age. The peak age range of onset occurs between the ages 
of 35–55 years with a mean age of onset of 41 years. There is at least one reported 
case of ALMA responding to treatment with a dopamine agonist [ 1 ]. 

 A polysomnogram is required to document ALMA. The polysomnogram record-
ing of ALMA requires a minimum of four discrete and alternating EMG bursts of 
leg muscle activity between the frequency of 0.5–3 Hz. The usual duration of 
ALMA is 100–500 s [ 75 ]. 

 Although HFT and ALMA are repetitive leg movements in sleep, they can be 
discriminated from periodic limb movements in sleep (PLMS) because the burst 
duration of PLMS is much longer (0.5–10 s) and the interval between PLMS is also 
much longer (5–90 s apart). 

 See Fig.  11.5  for an example of ALMA.

  Fig. 11.5    Alternating leg muscle activation (ALMA) (one 30 s epoch). ALMA is similar to HFT 
except movements alternate from one foot to the other on a one-to-one basis. ALMA requires a mini-
mum of four discrete and alternating EMG bursts of leg muscle activity between the frequency of 0.5 
and 3 Hz. The usual duration of ALMA is 100–500 s. HFT and ALMA may represent benign vari-
ants of the same disorder. PLMS can be discriminated from ALMA because the burst duration of 
PLMS is much longer (0.5–10 s) and the interval between PLMS is also much longer (5–90 s apart)       
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       Excessive Fragmentary Myoclonus (EFM) 

 EFM, also referred to as physiologic hypnic fragmentary myoclonus (PHM), is an 
NREM phenomenon characterized by small asynchronous, asymmetrical move-
ments of the fi ngers, toes, or corners of the mouth. However, visible movements 
may be absent. EFM is often an incidental polysomnographic fi nding commonly 
occurring in the presence of other sleep disorders. 

 EFM is prominent in babies and infants [ 76 ]. EFM has been reported in children 
diagnosed with Niemann-Pick type C [ 1 ]. 

 Polysomnographic criteria for scoring EFM includes a recording of at least 
20 min of NREM with EMG burst usually of 150 msec duration and a minimum of 
5 EMG potentials per minute of recording [ 51 ]. 

 In adults, EFM has been associated with excessive daytime sleepiness. The con-
dition is thought to be benign in children. 

 See Fig.  11.6  for a polysomnographic example of excessive fragmentary 
myoclonus.

  Fig. 11.6    This is a 30 s epoch showing excessive fragmentary myoclonus (EFM). The individual 
EMG muscle bursts are usually 150 ms in duration on average. EFM must be present for at least 
20 min in NREM sleep with at least 5 EMG bursts/min. These tiny discharges are usually accom-
panied by small or no visible movement       

 

11 Sleep Disorders in Children: Simple Sleep-Related Movement Disorders



248

       Propriospinal Myoclonus at Sleep Onset 

 Propriospinal myoclonus at sleep onset involves sudden muscle jerks initially 
occurring in muscles of the abdomen and trunk followed by spreading to the proxi-
mal muscles of the limbs and neck. Symptoms usually occur during the transition 
from wakefulness to sleep and rarely during other phases of sleep [ 1 ]. 

 Polysomnography documents brief EMG burst originating from spinal muscles 
and spreading caudally and rostrally. Jerks terminate during wakefulness and with 
the progression of sleep beyond N1. 

 Propriospinal myoclonus at sleep onset presents most often in adults and more 
frequently in men. We found one report of propriospinal myoclonus diagnosed in a 
6-year-old girl who had sustained a back injury during the fi rst year of life. Jerks 
were not limited to sleep onset [ 77 ]. 

 Propriospinal myoclonus at sleep onset must be differentiated from PLMs, sleep 
starts, phasic REM twitches, EFM, and epileptic myoclonus [ 1 ]. 

 There is no specifi c polysomnographic pattern for propriospinal myoclonus at 
sleep onset, and a fi gure is not provided.     
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    Chapter 12   
 Circadian Rhythm Disorders in Childhood                     

     Silvia     Miano    

    Abstract     Chronobiology is a science that studies the physiology and pathology of 
circadian phenomena. In the last 50 years, numerous studies have been published on 
sleep changes during puberty and adolescence, which largely consist of delays in 
the timing of sleep. The most notable consequence of these shifts is a sleep debt due 
to a forced early wake-up during school days, despite no change in sleep require-
ments (around 9 h), and diurnal hypersomnolence. All these changes explain why 
teenagers are particularly vulnerable to delayed sleep phase syndrome, which is 
known to peak during adolescence (prevalence ranging from 7 % to 16 % compared 
with 0.15 % during adulthood). Advanced sleep phase disorder (ASPD), delayed 
sleep-wake phase disorder (DSWPD), irregular sleep-wake rhythm (ISWR), and the 
non-24-h sleep-wake syndrome or free-running disorder (non-entrained type) are 
referred to as “endogenous” circadian rhythm sleep disorders. The clinical features 
of each sleep circadian disorder are discussed together with the recommended treat-
ment. Pediatric categories of subjects that are at risk of developing circadian disor-
ders, such as those with a developmental disability, autism, attention-defi cit 
hyperactivity disorders, and mood disorders, are investigated. Lastly, two case 
reports that provide examples of clinical practice are also presented.  
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      Introduction 

    The Circadian Biology and Physiology 

 Chronobiology is a science that studies the physiology and pathology of circadian 
phenomena. The circadian system provides temporal organization of sleep-wake 
cycles, feeding, and reproduction. Many fundamental biological events are charac-
terized by a regular interval and duration, with the cycle being referred to as circa-
dian if they occur periodically 24 h, ultradian if the periods are shorter than 24 h, 
and infradian if longer. Evolution has selected species whose physiological rhythm 
corresponds approximately to the time it takes the Earth to rotate once. Circadian 
oscillations are genetically determined, their occurrence being controlled by endog-
enous and exogenous stimuli that act as an orchestra. The suprachiasmatic nucleus 
(SCN) is considered the endogenous master circadian pacemaker brain clock, which 
comprises a feed-forward circuit of similar cells that can auto-depolarize and that 
produce a coherent circadian rhythm output for the rest of the body, whereas the 
light-dark (LD) alternation is considered the most signifi cant endogenous factor that 
infl uences circadian biological rhythms [ 1 ]. The majority of human cells display the 
same molecular clockwork and are synchronized to one another via redundant sys-
temic signals that create an accurate correspondence with the environment. These 
cues originate mostly from the SCN either through autonomous nervous control of 
hormones, such as glucocorticoids, or through direct innervation of other brain 
regions. The SCN is synchronized with light via the retino-hypothalamic tract, the 
result being a fl exible system of clocks, each of which has an intrinsic duration of 
about 1 day that is constantly readjusted to the timing of environmental light [ 2 ]. 
This synchronization is largely due to the light activation of retina photoreceptors, 
which are not linked to visual function. Light activation stimulates the retino- 
hypothalamic tract, which terminates in the SCN, as well as the genicolohypotha-
lamic tract, which terminates in the thalamus. Retinal rod and cone cells are not 
required for photo-entrainment, but a subset of retinal cells containing a light- 
sensing pigment, melanopsin, which is involved in circadian photo-entrainment 
does exist [ 3 ]. 

 Light is not the only exogenous entrainment of the circadian rhythm, though it is 
the strongest. Many social cues, and other biological factors such as food intake and 
locomotor activity, may infl uence and reset circadian physiological phenomena, 
especially in humans: the rhythmic control of the digestive function and detoxica-
tion can be synchronized with rhythmic food intake by sleep-wakefulness alterna-
tion and diurnal cardiac function control changes in energy needs on a systemic 
level, while mitochondrial cells optimize the regulation of circadian energy produc-
tion on a cellular level [ 2 ]. The oscillatory property of SCN cells persists even when 
they are isolated from all exogenous factors, in both in vivo and in vitro experi-
ments, maintaining their oscillatory capacity for approximately 24 h (free-running 
rhythm), which may be prolonged up to 25.5 h [ 4 ,  5 ]. The free-running period (τ) 
differs according to race, with African Americans displaying a shorter τ than 

S. Miano



255

Caucasians [ 6 ]. When the free-running period is forced for an extended period of 
time, some circadian functions, such as body temperature, cortisol secretion, and 
REM sleep, become desynchronized, whereas others, such as food intake and loco-
motor activity, do not, thereby suggesting that other endogenous pacemakers exist 
[ 1 ]. It should be borne in mind that the SNC is a very small hypothalamic nucleus 
that executes a single function, and if damaged, its function cannot be executed by 
any other tissue [ 7 ]. An orderly and reproducible spatiotemporal pattern of oscilla-
tory gene expression that requires the integrity of the ventrolateral core region has 
been demonstrated in the SCN. When this core region is absent, the behavioral 
rhythm is abolished in vivo, although a low-amplitude rhythm can be detected in 
SCN slices in vitro [ 7 ]. These oscillatory genes are called “clock” genes and are a 
family of loci involved in circadian physiology and pathology, with a clear circadian 
rhythm of transcription [ 8 ]. Some cells within the SCN rhythmically express “clock” 
genes, whereas others express these genes upon exposure to light [ 8 ]. The clock 
genes are also considered tumor suppressor genes because they regulate cell divi-
sion and cell differentiation by segregating DNA replication from periods of maxi-
mum respiration and by optimizing the time available for the DNA repair process. 
The direct consequences of in vitro abolition of SCN is tumor growth that is two to 
three times faster, while mice without the circadian clock genes develop a range of 
pathologies, including diabetes, arthritis, and cancer [ 2 ]. Most of these circadian 
clock gene functions are unexpressed during embryogenetic life, possibly owing to 
the rapid rate of cell division, which disrupts the circadian regulation [ 2 ]. 

 In humans sleep occurs during darkness, usually 2 h before the melatonin (MLT) 
peak and 4 h before the temperature nadir. The MLT and body temperature are com-
monly used as markers of the master pacemaker, since it is impossible to measure 
SCN activity in vivo [ 1 ]. The MLT, which is produced by the pineal gland, controls 
circadian physiology, seasonal reproductive function, and stimulation of amphibian 
skin melanophores. Its role in regulating the immune system, gastrointestinal, ret-
ina, antioxidant, and antiaging functions is still debated [ 1 ]. It is also involved in the 
early development of neurons and glia and in the ontogenetic establishment of diur-
nal rhythms [ 9 ]. It regulates sleep states through the activation of two receptors: 
MT2 during NREM sleep and MT1 receptors during REM sleep [ 10 ]. The secretion 
of serum MLT concentrations starts at 3 months of age, reaches its highest nocturnal 
levels at 1–3 years of age, and steadily declines thereafter by 80 % to attain adult 
levels at puberty; levels remain stable during adulthood before decreasing in elderly 
age depending on a general increase in body size as opposed to decreasing pineal 
secretion (decreasing from 210 pg/ml in preschoolers to 130 pg/ml in school-aged 
children and to 50 pg/ml in young adults) [ 11 ,  12 ]. One study identifi ed two patterns 
of early secretion in infants: one mature, with dim light melatonin onset (DLMO) in 
the evening, and one immature, with a fl at distribution or rise in the morning, associ-
ated with early sleep problems [ 13 ]. Another study demonstrated that MLT levels at 
16 weeks of age are signifi cantly lower in infants with abnormal development than 
in those with normal development at 3 and 6 months of age [ 14 ]. The synthesis of 
MLT involves the pathway of serotonin anabolism, which is acetylated by arylalkyl-
amine (AANAT), and methylated to MLT by the acetylserotonin O-methyltransferase 
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(ASMT) enzyme. MLT has a short half-life, lasting approximately 30 min, and is 
fi rst metabolized in the liver by cytochrome P450 1A2 (CYP1A2) and then degraded 
by cytochrome 450 in the liver, sulfonated, and secreted by the kidney in the urine 
[ 15 ]. Secretion of MLT, which occurs prevalently during the night, is controlled by 
the SCN and in particular by the retino-hypothalamic-pineal tracts. Output from the 
pineal gland includes MLT receptors in non-neuronal tissues (gut, ovaries and ves-
sels, among others) and neuronal tissue, where their concentration is highest, with 
MLT2 in particular having been implicated in phase shift mechanisms and being 
widespread throughout retina and brain cells. MLT synthesis is strongly inhibited 
by light and dopamine, whereas MLT inhibits dopamine secretion [ 1 ]. A widely 
used technique to determine the circadian phase is the assessment of the secretory 
pattern of MLT, according to which circulating MLT is normally low during the 
daytime, increases abruptly close to bedtime, and once again drops to daytime lev-
els close to wake-up time. Since light suppresses MLT secretion, it is measured in 
dim light conditions, when the dim light onset of MLT is usually identifi ed (DLMO) 
[ 16 ]. Simultaneous salivary and plasma MLT concentrations have shown that the 
saliva concentration of MLT corresponds to 40 % of that in the plasma. Thus, if the 
plasma level threshold for MLT is 10 pg mL −1 , the saliva level threshold is consid-
ered to be 4 pg mL −1  [ 16 ]. 

 Desynchronized and disorganized mammalian sleep persists after SCN ablation 
because another mechanism controls sleep: the homeostatic process S, which 
refl ects sleep pressure, i.e., the buildup during wakefulness and dissipation during 
sleep [ 17 ]. Sleep propensity increases in a nonlinear fashion during the day; sleep 
deprivation increases sleep pressure, thereby inducing sleep even during the circa-
dian window, which does not usually allow sleep, and overcoming the circadian 
drive. Both the circadian and homeostatic processes (the so-called C and S pro-
cesses, respectively) interact to modulate the intensity and the possibility to sleep 
[ 1 ]. In addition, the thalamus synchronizes and transfers the summation of the oscil-
latory cortical signals via the intergeniculate leafl ets to the hypothalamus. Here, the 
release of neuropeptide y results in several non-photic inputs that regulate sleep. 
The afferent and efferent projections of the SCN and of the intergeniculate leafl ets 
are widespread [ 18 ]. Lastly, the SCN is a nonhomogeneous structure made up of 
various types of neurons, one of which responds to photic inputs, one to non-photic 
stimuli, and another to MLT feedback, whereas only some cells exhibit intrinsic 
rhythmicity [ 18 ].  

    Changes in the Circadian and Homeostatic Processes 
During Adolescence 

 Adolescents start going to bed later as they get older. In the last 50 years, numerous 
studies have been published on sleep changes that occur during puberty and adoles-
cence, which largely consist of delays in the timing of sleep. The most notable 
consequence of these shifts is a sleep debt due to a forced early wake-up during 
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school days, despite no change in sleep requirements (around 9 h), together with 
diurnal hypersomnolence. Studies from several countries have reported similar 
trends [ 19 ]. Adolescents consistently report going to bed later on weekend nights 
than on school nights and being forced to rise early during schooldays [ 19 ]. This 
shift has been attributed to either psychosocial exogenous factors, such as peer cul-
ture, family environment, academic demands, new jobs, and enjoying late-night 
activities (e.g., television or the Internet) or to changes in endogenous circadian 
clocks. The intrinsic circadian change, supported by data demonstrating a cross- 
cultural sleep phase delay during adolescence, may increase the capacity of adoles-
cents to participate in evening activities, thereby reinforcing the changes in sleep 
timing. A National Sleep Foundation poll in the United States found that 45 % of 
adolescents report inadequate sleep [ 20 ]. A recent cross-sectional survey of adoles-
cents in the United States conducted from 1991 to 2012 indicates that adolescent 
sleep generally declined over 20 years; the biggest change occurred in the years 
1991–1995 and 1996–2000 [ 21 ]. 

 Numerous papers have been published on this issue by Carskadon M. and co- 
workers during the so-called Stanford Summer Camps. The researchers hypothe-
size that human adolescence is associated with a physiological phase delay and a 
reduction in sleep pressure drive (around puberty) [ 22 ]. The authors found that the 
timing of MLT secretion was progressively shifted according to the pubertal stage, 
which is correlated with the circadian phase as defi ned by the timing of the MLT 
secretion: more mature children display a later MLT secretion offset phase [ 22 ]. A 
possible explanation for this fi nding is a longer τ during adolescence, which facili-
tates the delay in the circadian phase. Alternative explanations for the delayed 
sleep phase during puberty are an increased sensitivity and response to evening 
light and a reduced sensitivity to morning light [ 23 ]. One of the fi rst studies con-
ducted was designed to determine whether the typical daytime sleepiness reported 
by adolescents even occurs in the absence of sleep deprivation [ 24 ]. The authors 
found that total sleep time and REM sleep time during the night were stable across 
the Tanner stages, under controlled conditions in which sleep deprivation was 
absent (according to the pubertal development rating and secondary sexual charac-
teristics) [ 26 ], while slow-wave sleep time declined, with a 40 % reduction from 
prepuberty to maturity, and daytime sleepiness increased [ 25 ]. Sleep timing, as 
explained above, is derived from the interaction between the circadian system and 
homeostatic process. The delay in pubertal sleep might also be caused by sleep 
pressure changes. The marker of sleep pressure changes is widely considered to be 
slow-wave activity (SWA, electroencephalogram, spectral power frequency range 
of 0.75–4.5 Hz), which is high during the fi rst cycle of non-rapid eye movement 
(NREM) sleep, but declines progressively during the night in parallel with the drop 
in sleep pressure. A spectral analysis of a scalp sleep electroencephalogram 
(EEG) during adolescence conducted to compare the nocturnal dynamics of 
SWA in prepubertal and mature adolescents demonstrated a 40.1 % reduction in 
slow-wave sleep associated with a greater degree of sleep stage 2 NREM in 
mature adolescents compared with prepubertal adolescents. NREM sleep EEG 
power was lower in the frequency ranges <7 Hz, 11.8–12.6 Hz, and 16.2–16.8 Hz 
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in mature adolescents. The dynamics of SWA were identical within the NREM 
sleep episodes and across the night in both developmental groups, indicating that 
the homeostatic recuperative drive during sleep remains unchanged across puberty 
and that the decline in slow-wave sleep during adolescence may refl ect develop-
mental changes within the brain rather than changes in sleep regulatory processes 
[ 25 ]. Similar results were obtained when regional sleep EEG power was analyzed 
in adolescents: the sleep-state-independent reduction in EEG power over almost 
the entire frequency range was greater in more mature though not in prepubertal 
adolescents, whereas the decay rate of the sleep homeostatic process did not differ 
between the two groups [ 27 ]. Another study demonstrated that, following 36 h of 
forced sleep deprivation, the buildup of homeostatic sleep pressure during wake-
fulness was slower in mature than in prepubertal adolescents, whereas the decline 
in the homeostatic process remained similar in both groups [ 28 ]. In addition, sleep 
tendency (assessed by measuring latency to sleep onset) was examined during 
extended waking in prepubertal and mature adolescents to determine whether sleep 
pressure was lower near bedtime in the latter group, with saliva samples of MTL 
also being obtained. The saliva sample DLMO was earlier in Tanner 1 group (mean 
clock time around 20:33 h) than in Tanner 5 group (mean clock time around 
21:29 h), and sleep latencies were shorter in Tanner 1 group at 22:30 h, 00:30 h, 
and 02:30 h [ 29 ]. This study indicates that adolescents display a delayed circadian 
(or internal clock) phase, assessed according to daily endocrine rhythms, even sev-
eral weeks following the introduction of regulated schedules that allow for suffi -
cient sleep and are maintained under controlled laboratory conditions in which 
social infl uences are reduced to a minimum, and correlates with secondary-sex 
development [ 29 ]. Pubertal humans may have a blunted phase advance response to 
light exposure in the morning and an exaggerated phase delay response to light 
exposure in the evening [ 30 ]. Although girls start displaying a sleep delay 1 year 
earlier than boys, paralleling their younger pubertal onset [ 30 ], the magnitude of 
the delay is greater in boy than girls, as has been demonstrated by a large epide-
miological study performed in Germany and Switzerland [ 31 ]. A recent review 
designed to analyze cross-culture differences found that Asian adolescents’ bed-
times were later than those of peers from North America and Europe, while week-
end sleep data were generally consistent worldwide, with bedtimes 2+ hours later. 
The magnitude of the school night-to-weekend discrepancy is associated to prob-
lematic outcomes, including impaired school performance and depressed mood. 
The authors noted a worldwide delayed sleep-wake behavior pattern that was con-
sistent with symptoms of delayed sleep phase disorder, which may be exacerbated 
by cultural factors [ 32 ]. In addition, the delayed timing of sleep during human 
adolescence is likely to represent a developmental change shared by mammalian 
species [ 29 ]. All these changes explain why teenagers are particularly vulnerable 
to delayed sleep phase syndrome, which is known to peak during adolescence (a 
prevalence ranging from 7 to 16 % compared with 0.15 % during adulthood) [ 28 ]. 
The Carskadon laboratory developed a model of delayed sleep phase during ado-
lescence that takes into account developmental changes in homeostatic drive and 
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circadian timing: human adolescents become resistant to sleep pressure, allowing 
them to stay up later. At the same time, their circadian phase is delayed somewhat, 
which gives them the drive to stay awake later in the evening and to sleep later in 
the morning [ 33 ]. These fi ndings should be borne in mind when measures need to 
be taken to avoid the negative effects of sleep deprivation on grades, the risk of car 
accidents, and mood [ 31 ]. A number of school districts have postponed middle and 
high school starting times in an attempt to reduce teenage sleep deprivation [ 34 ]. 
Teaching sleep and circadian principles in middle and high school health education 
is fundamental, instructing adolescents to minimize exposure to light at night and 
to reduce computer or TV usage immediately before bedtime, adding an outdoor 
morning activity into a teenage schedule [ 30 ] and reducing consumption of com-
mon beverages that contain caffeine in view of the long-lasting psychoactive 
effects of caffeine [ 35 ]. Consumption of common beverages that contain caffeine 
is known to have increased in childhood and adolescence. One recent cross-sec-
tional study conducted on 4243 school-aged children found a twofold increased 
risk of sleep disturbances in school- aged and adolescent children who drank either 
coffee or soft drinks [ 36 ]. Children are very often unaware of the caffeine content 
in common drinks. Sodas are a common source of caffeine among adolescents and 
are associated with daytime sleepiness, insuffi cient sleep, and poorer sleep quality 
[ 36 ]. Environmental factors (such as decreased parental monitoring) and psycho-
social factors (such as increased use of electronic media) exert a considerable infl u-
ence on the amount of time adolescents sleep, despite reports in the press and 
information given by clinicians on the negative impact of electronic media on sleep 
[ 37 ]. Media use might impact sleep quality and quantity because it directly dis-
places not only sleep but even other activities related to good sleep hygiene (such 
as physical activity). Media use in the evenings may cause children to become 
physiologically aroused, making it more diffi cult for them to relax before they go 
to bed. In addition, evening exposure to bright light from television or computer 
screens, as well as electromagnetic radiation from mobile telephones, may sup-
press MLT secretion and consequently delay the circadian rhythm [ 37 ]. Almost all 
American adolescents (97 %) were found to have at least one electronic media 
device in their bedroom, consisting of music players (90 %), televisions (57 %), 
video game consoles (43 %), mobile (42 %) or fi xed-line telephones (34 %), com-
puters (28 %), and Internet access (21 %). Older adolescents had more media 
devices in their bedrooms than younger adolescents [ 37 ]. Television viewing 
among children and adolescents should be limited, especially in the evenings, with 
a recommended maximum of 2 h per day, and televisions should be kept out of 
bedrooms [ 38 ]. Children using electronic media as a sleep aid to relax at night have 
been reported to have later weekday bedtimes, experience fewer hours of sleep per 
week, and complain more of daytime sleepiness [ 39 ]. Time spent playing computer 
or electronic games should be restricted both during the day and in the evening for 
school-aged children and adolescents, with a viewing limit of 2 h per day, though 
a distinction may need to be made between violent and nonviolent games as play-
ing nonviolent games in the evening appears to have positive effects on sleep [ 38 ].   
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    Circadian Rhythm Sleep-Wake Disorders (CRSWDs) 

 The International Classifi cation of Sleep Disorder – third edition [ 40 ] classifi es 
CRSD as dyssomnias, with six subtypes: advanced sleep-wake phase disorder, 
delayed sleep phase disorder, irregular sleep-wake disorder, non-24-h sleep-wake 
rhythm disorder, jet lag disorder, and shift work disorder. The primary clinical char-
acteristic of all CRSDs is an inability to fall asleep and wake at the desired time, 
caused by a problem with the internal biological clock (circadian timing system) 
and/or misalignment between the circadian timing system and the external 24-h 
environment, such as timing of patient’s school, work, or social activities. A number 
of tools are available to assess sleep-wake patterns: sleep log and actigraphy are 
recommended to evaluate CRSWDs and should be conducted for at least 7 days, 
preferably for 14 days; circadian chronotype (Morningness-Eveningness 
Questionnaires) and physiological measures of endogenous circadian timing (sali-
vary or plasma DLMO and urinary 6-sulfatoxymelatonin) are considered optional, 
though signifi cant, additional tools when making a diagnosis. The most common 
presenting symptoms are diffi culty in initiating and maintaining sleep and excessive 
sleepiness associated with signifi cant impairments in important areas of functioning 
[ 40 ]. Advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase 
disorder (DSWPD), irregular sleep-wake rhythm (ISWR), and the non-24-h sleep- 
wake syndrome or free-running disorder (non-entrained type, N24SWD) are consid-
ered the “endogenous” circadian rhythm sleep disorders, whereas jet lag disorder 
and shift work disorder are considered the “exogenous” circadian rhythm sleep dis-
orders. The endogenous and exogenous factors in each disorder are, however, always 
combined to some extent [ 41 ]. Jet lag disorder and shift work disorder will not be 
discussed here because they are typical of adulthood and not adolescence. According 
to the practice parameters for the clinical evaluation and treatment of CRSWDs 
drawn up by the American Academy of Sleep Medicine [ 41 ], polysomnography is 
not routinely recommended to diagnose CRSWDs (standard), specifi c question-
naires such as the Morningness-Eveningness Questionnaire cannot be recommended 
because evidence pointing to their usefulness is insuffi cient, and circadian phase 
markers are indicated to diagnose non-24-h sleep-wake rhythm disorder (option), 
though not other circadian disorders because evidence of their usefulness is insuffi -
cient in this case as well. Actigraphy is recommended for the diagnosis of advanced 
and delayed sleep phase disorders (guidelines), as well as of non-24-h sleep-wake 
rhythm disorder and irregular sleep-wake rhythm (option), while sleep log or diary 
is recommended (guideline) to diagnose all endogenous circadian sleep disorders 
and actigraphy (guideline) to monitor the response to therapy in these disorders [ 41 ]. 

 These following criteria must be met [ 40 ]:

    1.    Features:

    (a)    DSWPD: signifi cant delay in the phase of main sleep (habitual sleep-wake 
timing delayed ≥2 h, relative to conventional or socially acceptable timing, 
excessive morning sleep inertia, increased rates of psychiatric disturbances. 
An overlap with non-24-h sleep-wake disorder is possible).   
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   (b)    ASWPD: advance (early timing) in the phase of main sleep. Complaints of 
early morning or maintenance insomnia and excessive evening sleepiness, 
and chronic sleep debt.   

   (c)    N24SWD: there is a history of insomnia, excessive daytime sleepiness, or 
both, which alternate with asymptomatic episodes, due to misalignment 
between the 24-h light-dark cycle and the endogenous sleep-wake circadian 
rhythm. The magnitude of the daily delay may range from <30 min (period 
is close to 24 h) to >1 h (period is longer than 25 h). The symptomatic epi-
sode will typically begin with a gradual increase in sleep latency and delayed 
sleep onset. Most individuals are totally blind. In sighted people, social and 
behavioral factors and psychiatric disorders play an important role. 
Occasionally, the disorder is associated with developmental intellectual dis-
ability or dementia. In sighted patients with N24SWD, the circadian period 
is about 25 h or longer; in totally blind patients, it is closer to 24 h and may 
rarely be shorter.   

   (d)    ISWR: chronic or recurrent pattern of irregular sleep and wake episodes 
throughout the 24-h period, characterized by symptoms of insomnia during 
the scheduled sleep period, excessive sleepiness (napping) during the day, or 
both. The chronic or recurring sleep-wake pattern is temporally disorga-
nized; sleep and wake episodes are variable throughout the 24-h cycle. It is 
more commonly observed in neurodegenerative disorders, such as dementia, 
and in children with developmental disorders. Total sleep time across the 
24 h may be normal for age.       

   2.    The symptoms are present for ≥3 months.   
   3.    Sleep quality and duration improve when sleep schedule can be chosen.   
   4.    Sleep log and actigraphy monitoring demonstrate a delay in the habitual sleep 

period. Both work/school days and days off must be included.   
   5.    The sleep disturbance is not better explained by another current sleep, medical or 

neurological disorder, mental disorder, medication use, or substance use disorder.    

     Additional Pediatric Features of CRSWDs 

 Validated instruments are available for assessing phase preference in pediatric pop-
ulations, including the Children’s Chronotype Questionnaire (CCTQ) (parent 
report), the Morningness-Eveningness Scale for Children (self-report), and the 
Morningness-Eveningness Questionnaire for Children and Adolescents [ 40 ]. 

    Delayed Sleep-Wake Phase Disorder 

 Weitzman and colleagues [ 42 ] fi rst described delayed sleep phase insomnia, 
which is characterized by a cluster of features, including a chronic inability to 
fall asleep and wake at a desired clock time, and consequently locks patients into 
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a sleep schedule that is out of phase with normal activities. Although it is preva-
lent above all among adolescents and young adults, onset in early childhood has 
been described, especially in familial cases. In younger children, DSWPD may 
present primarily as bedtime resistance, as caregivers attempt to establish bed-
times in confl ict with the child’s circadian time for sleep. A long history of 
repeated school absences, chronic tardiness, and/or school failure, rather than 
sleep complaints per se, is usually reported. Children and adolescents with 
DSWPD display higher rates of behavioral/emotional problems, including 
depression and suicidality, academic problems, and a higher likelihood of sub-
stance abuse. School avoidance, social maladjustment, and family dysfunction 
are contributing factors. Motivated DSWPD is a subtype belonging to adoles-
cence, with little intrinsic motivation to successfully complete treatment to 
obtain a normal lifestyle, which is usually associated with a history of mood or 
anxiety disorder (school phobia and separation and social anxiety) or learning 
disorders. DSWPD is commonly associated with specifi c categories: mood dis-
orders, severe obsessive-compulsive disorder, attention-defi cit hyperactivity dis-
order, and autistic spectrum disorders [ 40 ]. Ill-defi ned medical issues may 
occasionally be a trigger or may complicate the course of DSWPD. This disorder 
is more common in the United States, a fi nding that may be due to the fact that 
school starting times in other countries, such as those in Europe, are later (08:00–
08:30 h) and may thus be more suited to the delaying patterns of adolescence 
[ 19 ]. In adolescents and young adults, prevalence is of 7–16 %; 40 % of subjects 
have a family history, as an autosomal dominant trait. It is a chronic condition 
that may last into late life; the recurrence is high, despite appropriate treatments, 
with a higher risk of substance abuse disorder, increased risk of motor vehicle 
accidents, and chronic insomnia [ 40 ]. 

 The endogenous circadian temperature length (τ) has been found to be longer 
in young adults with SDWPD than in good sleepers (>25 min). An abnormally 
long τ would generate a strong and continual tendency to delay the circadian sys-
tem as well as the sleep-wake cycle and may account for the high relapse rate 
following treatment for this condition [ 43 ]. Moreover, suppression of MLT to 
light exposure in SDWPD is reported to be greater in adolescents than in controls, 
which suggests that hypersensitivity to evening light may be a precipitating or 
maintaining factor for the phase delay [ 44 ]. Another study demonstrated sleep 
deprivation and reduced sleep time in this disorder, thus suggesting such individu-
als have a scarce ability to compensate for lost sleep [ 45 ]. A recent paper con-
fi rmed that the timing of sleep in adolescents with SDWPD is delayed when 
compared with normal controls, though no group differences in sleep parameters 
emerged once sleep was initiated [ 46 ]. Recordings of sleep logs and actigraphy 
show sleep onset delayed until 1:00–6:00 am (may be earlier depending on age 
and developmental status), and wake time occurs in the late morning or afternoon. 
Unlike chronic insomnia disorder, sleep initiation and maintenance are improved 
when the patient is allowed to sleep on the preferred schedule; inadequate sleep 
hygiene and insuffi cient sleep syndrome must also be considered as differential 
diagnosis [ 40 ].  
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    Advanced Sleep-Wake Phase Disorder 

 ASWPD has been reported in children with neurodevelopmental disorders, while in 
normal subjects, the typical onset is in elderly, with a prevalence of 1 %. Familial 
cases may be characterized by an earlier onset [ 40 ]. In particular, studies on children 
with autism spectrum disorders and Smith-Magenis syndrome have displayed 
marked alterations in MLT secretion profi les, which may become manifest as a 
phase advance characterized by very early morning waking. In some cases children 
develop this disorder because they are encouraged to wake up earlier than they wish 
to as a result of parental attention or by the opportunity they are offered to watch 
television or use other media upon waking [ 40 ]. Genetic analyses reveal a missense 
mutation in a casein kinase (CK1ε) binding region of a Period gene (hPer2). 
Recordings of sleep logs and actigraphy demonstrate an advance (typically ≥2 h) in 
the timing of circadian rhythms [ 40 ]. Poor sleep hygiene practices, particularly eve-
ning napping, and irregularity of the sleep-wake schedule, “free-running” (non- 
entrained) circadian rhythm, major depressive disorder that is a common cause of 
early awakening, must be considered as differential diagnosis [ 40 ].  

    Non-24-h Sleep-Wake Rhythm Disorder (N24SWD) and Irregular 
Sleep- Wake Rhythm Disorder (ISWRD) 

 N24SWD is extremely rare in normally developing or sighted children, but has been 
reported in children with intellectual disabilities and blindness. In congenitally 
blind children, onset can occur at birth or during infancy. Children with optic nerve 
hypoplasia due to a variety of causes, especially in children with a hypoplastic cor-
pus callosum and comorbid severe intellectual and visual impairments, display 
N24SWD features. It has also been described in Rett syndrome and autism spec-
trum disorders. The underlying mechanism is postulated to be lack of entrainment 
to the 24-h day, with a failure to perceive and/or attend to social/environmental 
zeitgebers. Normal-sighted children or adolescents with N24SWD are likely to have 
psychiatric disorders that predispose them to social interaction avoidance. Children 
with chronic neurological conditions, such as blindness or neurodevelopmental dis-
abilities, may have a more intractable pattern than children with more self-limited 
conditions [ 40 ]. Caregivers sometimes report that a child with ISWRD sleeps too 
much, too little, or at inappropriate times. The lack of prolonged consolidated sleep 
periods and the random distribution of sleep periods, with a marked day-to-day and 
week-to-week variability, are distinctive features that have a signifi cant impact on 
caregivers. As occurs in N24SWD, children with developmental disorders, such as 
autism and Asperger syndrome, have an increased risk of ISWRD. Both non-24-h 
sleep-wake rhythm disorder and ISWRD are also common in children with 
Angelman syndrome or with Williams syndrome. In this regard, marked alterations 
in MLT secretion profi les due to polymorphisms in melatonin enzyme synthesis or 
variants in genes coding for melatonin receptors have been described in children 
and adults with autism spectrum disorders as well as in children with Smith-Magenis 
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syndrome. Other postulated mechanisms include clock gene polymorphisms and 
decreased levels of entrainment by social/environmental zeitgebers. Traumatic 
brain injury and chronic fatigue syndrome may be other predisposing factors for 
both disorders. Brain tumor survivors, especially those in whom the hypothalamic- 
pituitary axis has been disrupted, may have an increased prevalence of circadian 
rhythm disorders, including ISWRD. The prevalence of ISWRD increases with 
advancing age, but it is likely that the age-related increase in neurodegenerative 
disorders, rather than aging per se, is responsible for this increase [ 40 ]. Recording 
of sleep log and actigraphy over prolonged periods (ideally ≥14 day in blind indi-
viduals) demonstrate the lack of a stable relationship between the timing of sleep 
and the 24-h day, in subjects with N24SWD. When sleep schedules follow the 
endogenous propensity, sleep onset and wake times are delayed each day. Sleep log 
and actigraphy reveal an irregular sleep-wake pattern, which is defi ned as having 
multiple sleep bouts (typically 2–4 h) during a 24-h period; the pattern may vary 
from day to day, among individuals with ISWRD.   

    Insuffi cient Sleep Syndrome 

 An inadequate amount of sleep time should always be taken into account when 
making a diagnosis of circadian sleep disorders, and the normative data for sleep 
duration should be borne in mind before diagnosing a DSWPD in all patients except 
long sleepers. Sleep duration recommendations were recently published by the 
National Sleep Foundation of the United States of America [ 47 ]. Chronic sleep loss 
is a characteristic of modern society, with large numbers of people stating that they 
are chronically sleeping signifi cantly less, which in turn induces or exacerbates a 
sleep phase delay [ 48 ]. 

 Insuffi cient sleep syndrome may be more frequent in adolescence, when the need 
to sleep is greater, but social pressure and a tendency to delay sleep often lead to 
chronic restricted sleep. The evening preference chronotype predisposes to insuffi -
cient sleep. It should be differentiated from delayed sleep phase disorder (in some 
complex cases in which there is an overlap by measuring circadian biological mark-
ers), from the effects of recreational drug use and from school avoidance behavior. 
Increased predisposition to substance abuse and accidents in teens may be consequent 
to insuffi cient sleep. Excessive diurnal somnolence or daytime lapses into sleep, or 
behavioral abnormalities attributable to sleepiness in prepubertal children, are com-
mon complaints. Sleep time, as established by history, sleep logs, or actigraphy, is 
usually shorter than that expected for age, though it tends to be markedly extended on 
weekend nights. In this disorder, the reduction in sleep duration is  present most days 
for at least 3 months, and sleep paralysis and hypnagogic hallucinations may occur. 
Secondary symptoms such as irritability, concentration and attention defi cits, reduced 
vigilance, distractibility, reduced motivation, anergia, dysphoria, fatigue, restlessness, 
uncoordination, malaise, and depression may, by becoming the patient’s main focus, 
obscure the primary cause of the diffi culties. The correct diagnosis of insuffi cient 
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sleep syndrome may be particularly challenging in subjects who have a physiological 
need for unusually large amounts of sleep. Sleepiness and the other complaints can be 
successfully addressed in such patients by increasing total sleep time, whereas they 
cannot be in subjects with DSWPD [ 40 ].   

    Treatment of Circadian Rhythm Sleep-Wake Disorders 
(See Table  12.1 ) 

    The timing of treatment is crucial because unless therapy is started at the appropri-
ate circadian time, the patients are likely to get worse. Morning exposure to light 
will facilitate entrainment in humans who have an intrinsic period that exceeds 24 h, 
whereas evening light exposure will entrain individuals with an intrinsic period that 
is shorter than 24 h [ 19 ]. The treatment options in clinical practice for circadian 
rhythm sleep disorders comprise bright light treatment and exogenous MLT admin-
istration. Although chronotherapy has been used, the data available documenting its 
effi cacy are still insuffi cient [ 49 ]. Chronotherapy, which has proved to some extent 
successful in DSWPD, consists in delaying the sleep period by 2–3 h every day until 
the preferred target sleep time is achieved [ 40 ]. In order to administer the treatment 
correctly, it is essential to identify the circadian phase, i.e., the nadir of the core 

    Table 12.1    Recommendations for prescribing melatonin in children with circadian sleep disorder 
of sleep-onset insomnia   

 Time of administration 
in children 

 If used as chronobiotic, administer 2–3 h before dim light melatonin 
onset or administer melatonin 3–4 h before actual sleep-onset time 

 Dosage  Start with a low dose of 0.2–0.5-mg fast-release melatonin; increase 
by 0.2–0.5 mg every week until effect appears; if there is no response 
after 1 week, increase dose by 1 mg every week until effect appears. 
When 1 mg is effective: try lower dose; if there are sleep maintenance 
problems, start after melatonin treatment; melatonin dose is probably 
too high 
 Maximum dose: <40 Kg, 3 mg; >40 Kg, 5 mg 

 Treatment duration  It should be no less than 1 month. It can be withdrawn just before 
puberty or shortly after puberty. Stop melatonin treatment once a year 
for 1 week (preferably in summer) after a normal sleep cycle has been 
established 

 When melatonin 
treatment is no longer 
effective: 

 Check timing of administration. In some cases dose reduction is 
warranted instead of dose escalation, because loss of effi cacy of 
melatonin treatment is most likely caused by slow melatonin 
metabolism. Metabolism slower, oral contraceptives, cimetidine, 
fl uvoxamine; metabolism faster, carbamazepine, esomeprazole, 
omeprazole 
 Reconsider diagnosis: look for neuropsychiatric comorbidity. For very 
severe delayed sleep-wake rhythm, consider chronotherapy 

  Reproduced from Bruni et al. [ 51 ], with permission of Elsevier  
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body temperature rhythm or the endogenous MLT rhythm. The core body tempera-
ture usually peaks in the late afternoon or evening and reaches its lowest point, i.e., 
nadir, in the early morning, with sleep normally ending approximately 2 h following 
the nadir. MLT secretion increases soon after the onset of darkness, peaks in the 
middle of the night, and gradually falls during the second half of the night [ 49 ]. The 
protocol followed to estimate the nadir of the core body temperature requires that 
the patient be placed in a semirecumbent position in a laboratory environment for a 
number of consecutive hours (often 26), with a light intensity of less than 50 lx; the 
patient receives a 100-kcal meal every hour [ 49 ]. The DLMO measurement is based 
on several samples of MLT (normally with a 30- or 60-min interval) of saliva, urine, 
or plasma. The level of illumination currently recommended for sampling is 10 lx 
[ 50 ]. While the samples are being collected, subjects should avoid drinks with arti-
fi cial colorants, alcohol, or caffeine as well as teeth-brushing, lipstick/lip gloss, 
chewing gum, lemons, and bananas, as well as avoid eating, drinking, or using 
tobacco for 30 min prior to sampling [ 46 ]. In cases in which the sleep phase disorder 
is severely delayed or advanced, saliva should, if possible, be collected at later or 
earlier times or hourly for 24 h [ 51 ]. A simple way to assess the nadir is to instruct 
the patient to sleep until he/she wakes up spontaneously (i.e., without an alarm 
clock) – it is reasonable to assume that the nadir will be approximately 2 h before 
the subject awakens. The body temperature nadir usually coincides with the moment 
in which the greatest diffi culty in staying awake is encountered, which is worth 
bearing in mind when the nadir in jet lag disorder and night workers needs to be 
calculated. Short wavelengths (blue light) have a stronger MLT-suppressing effect 
and a stronger phase-shifting effect on the human circadian rhythm. Light exposure 
before the nadir of the core body temperature rhythm causes a phase delay, whereas 
light administered after the nadir causes a phase advance. Bright light is typically 
administered by portable units yielding about 10,000 lx, with an exposure time of 
approximately 30–45 min per day being required to advance sleep, and units yield-
ing about 4000 lx for 2 h being required to delay sleep. The patient is instructed to 
keep his gaze directed at the light source, but not continuously. Whenever outdoor 
light of a suffi cient intensity is available, it is preferable to be outdoors than sit in 
front of a light box [ 49 ]. Some rare cases of mania as a side effect of phototherapy 
have been reported [ 52 ]. Compliance may be increased in some patients by using a 
light visor. Blue light-blocking glasses may be useful in adolescents as a counter-
measure for alerting effects induced by light exposure through light-emitting diode 
screens [ 53 ], while a prototype light mask using narrow-band “green” light to 
deliver light through closed eyelids suppresses MLT by 40 % through the closed 
eyelid without disrupting sleep [ 54 ]. In ASWPD, the subject should be exposed to 
bright light as close to bedtime as possible. The effects of bright light may not be as 
clear in ASWPD as in DSWPD because exposure to light in the former occurs many 
hours before the nadir, and waking up the patients in the middle of the night (i.e., 
just before the nadir) is normally not considered acceptable. In sighted individuals 
with a free-running disorder, exposure to bright light may be tried before adminis-
tration of MLT, when the rhythm is in phase with the environment [ 49 ]. 
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 Exogenously administered MLT has phase-shifting properties, with the effect 
following a phase response curve (PRC) that is about 12 h out of phase with the 
PRC of light. MLT administered in the afternoon or early evening will phase 
advance the circadian rhythm, whereas when it is administered in the morning, it 
will phase delay the circadian rhythm, with maximal phase shifts occurring when 
melatonin is scheduled around dusk or dawn. The doses used in most studies range 
from 0.5 to 5 mg, though it is not clear whether the effects of MLT are dose-related 
[ 49 ]. The recommendations of a European consensus conference held in Rome in 
2014 that was aimed at assessing the current role of melatonin in childhood sleep 
disturbances were recently published [ 51 ] (see Table  12.1 , modifi ed version of these 
recommendations). MLT displays its maximum phase-advancing effect 3–5 h 
before the DLMO, whereas when it is administered 2–3 h after the DLMO, it may 
have either no effect or a reversal effect in DSWPD [ 51 ]. There is no evidence that 
slow-release MLT is preferable to the fast-acting MLT [ 51 ]. Possible side effects 
include increased blood pressure, headache, dizziness, nausea, and drowsiness [ 55 ]. 
Bright light has been recommended as the fi rst treatment approach to SDWPD; if 
the response is not satisfactory, MLT is added, usually 12 h before exposure to light 
[ 49 ]. MLT is administered 12 h after the last awakening in blind patients with free- 
running disorders. In conclusion, the most important practical points to bear in mind 
when treating CRSWDs are do not start bright light treatment for SDWPD in the 
early morning but wait until the patient wakes up spontaneously (without an alarm 
clock); bright light is subsequently administered 1 h earlier every day until entrain-
ment. Appropriate timing of melatonin administration is approximately 12 h after 
bright light treatment [ 49 ].  

    Subjects with Neurodevelopmental Disorders Have Increased 
Risk of CRSWDs 

    Autism Spectrum Disorders (ASD) 

 Sleep problems are particularly common in children with ASD, with prevalence 
rates ranging from 50 to 80 % compared with 9–50 % in age-matched, normally 
developing children. Such problems tend to increase with age, rather than disap-
pear [ 56 ,  57 ]. The most common sleep problem reported by caregivers is insom-
nia, whose pathogenesis is multifactorial and includes disruption of circadian 
rhythms and MLT dysregulation. It has recently been hypothesized that the 
increased use of media combined with the bright screen of the media devices may 
contribute to the alterations in MLT secretion in ASD [ 58 ]. An overresponse to 
sensory input at bedtime associated with increased precognitive arousal has been 
observed in such children [ 59 ]. Furthermore, the relationship between sleep prob-
lems and ASD is complex because circadian abnormalities and epilepsy are both 
strong, bidirectional contributors [ 60 ,  61 ]. The multifactorial factor that is 
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implicated in ASD may explain the marked night-to-night variability of the sleep-
wake cycle and the fragmented irregular sleep-wake patterns, including the incon-
sistent sleep onset and rise time, free-running sleep-wake rhythm, sleep onset 
delay, and early morning awakening [ 62 ,  63 ]. Signifi cantly lower levels of noctur-
nal and daytime blood melatonin levels, as well as lower levels of its primary 
metabolite 6-sulfoxymelatonin, have been observed in many individuals with 
ASD when compared with normally developing controls [ 64 ,  65 ]. A disruption of 
the serotonin pathway, associated with high whole-blood serotonin levels and 
reduced plasma MLT, was also reported in one study on 278 ASD subjects [ 61 ]. 
Most of the studies that have investigated MLT- related genes in ASD focused on 
the ASMT gene, with reports indicating that a decreased expression of the ASMT 
transcript is correlated with decreased MLT blood levels in ASD patients and their 
relatives [ 65 ]. The few studies that analyzed genome-wide gene expression found 
15 circadian rhythm regulatory or responsive genes that are differentially 
expressed in the most severe ASD subgroup though not in the mild or savant sub-
groups, thereby pointing to a link between circadian rhythm dysregulation and the 
severity of language impairment. In particular, the presence of the gene encoding 
AANAT was reported to be signifi cantly reduced [ 66 ,  67 ]. Many polymorphisms 
within the CYP1A2 gene that alter MLT degradation and are predictive of slow 
metabolizing alleles have been implicated in the pathogenesis of ASD and sleep 
problems, accompanied by a loss of effi cacy of MLT supplementation after 1 or 
2 months [ 68 ]. It has been hypothesized that normal nocturnal blood values of 
MLT in some children with ASD may be caused by a combination of lower MLT 
production levels and the slow metabolic activity of CZP1A2 [ 68 ]. CRSWDs in 
children with ASD have been investigated above all by means of sleep question-
naires and actigraphic recordings (usually associated with sleep logs), while the 
detection of plasma, urine, or salivary MLT secretions continues to be used as a 
diagnostic tool for research purposes [ 56 ]. Basic principles of sleep hygiene, 
including the selection of an appropriate bedtime and establishment of a positive 
bedtime routine aimed at reducing emotional and/or behavioral stimulation at 
night and thus at minimizing television viewing and playing computer or video 
games, may represent an important means of improving sleep [ 58 ]. A parent 
group program of intervention may help to manage insomnia in ASD [ 69 ]. 
Supplemental MLT in ASD may go beyond the treatment of a defi ciency state 
alone; for example, melatonin, which acts as a hypnotic when used independently 
of a defi ciency state (in ASD children with normal endogenous MLT levels), also 
has antianxiolytic effects that may mitigate hyperarousal-related insomnia [ 68 ]. 
Moreover, some trials and meta-analysis studies in which MLT has been used to 
treat ASD highlighted the effi cacy of MLT in this disorder (with varying dosages 
of up to 6 mg administered under both immediate- and controlled-release condi-
tions, 5–6 h before the desired bedtime) [ 70 ,  71 ]. In one randomized placebo-
controlled study, controlled-release melatonin treatment combined with behavioral 
interventions in 134 children with autism and long-lasting sleep problems proved 
to be highly effective [ 72 ].  
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    Neurodevelopmental Disabilities (NDD) 

 The most common sleep disturbances in NDD are delayed sleep onset, frequent 
awakenings during sleep, lasting minutes or hours, and early morning awakenings. 
Day-night reversals, advanced sleep onset, and free-running sleep-wake rhythm dis-
orders are much less common. Since individuals affected by NDD cannot sleep when 
sleep is desired, needed, or expected, most of the sleep disturbances belong to the 
diagnostic category of CRSWDs [ 73 ]. CRSWDs in children with NDD tend to be 
misunderstood and underdiagnosed. Light/darkness infl uences brain functions, 
including cognition, via pathways other than the monosynaptic retinal- hypothalamic 
tracts [ 74 ]. The prevalence of CRSWDs is increasing among normally developing 
and healthy children owing to a combination of lifestyle changes and increased expo-
sure to light. This change also applies to children with NDD, 70 % of whom are 
affected by CRSWDs, especially those with moderate-severe NDD, i.e., with bilat-
eral and extensive brain lesions. Persistent early morning awakenings are common in 
children with NDD and fulfi ll the criteria of CRSWDs because such children are 
unable to sleep when sleep is desired, needed, or expected. Delayed sleep-onset dis-
orders in children with severe NDD are associated with a marked variability in the 
timing of sleep onset and frequency of a delay, with the total sleep time per 24 h not 
being age appropriate, but frequently reduced [ 75 ]. A good response to melatonin 
administered at bedtime has been reported in such cases [ 76 ]. It is important to bear 
in mind that restless legs syndrome, with or without periodic limb movement, may 
also cause delayed sleep onset. The prevalence of this syndrome is likely to be under-
estimated because of the diffi culties encountered in diagnosing it in children with 
NDD [ 73 ]. Free-running sleep-wake rhythms with no other sleep disturbances are 
generally observed in neurologically healthy children who have total ocular blind-
ness, though this condition is rare because total ocular visual loss is now uncommon 
as a result of improved ophthalmological care. By contrast, children with loss of 
visual acuity due to occipital lobe visual impairment do not exhibit free- running 
sleep-wake disturbances because the monosynaptic retinal-hypothalamic pathways 
to the SCN remain intact. Since children with NDD have altered cortical connectiv-
ity, they may not be able to properly perceive the environmental cues required to 
develop the sleep-wake rhythm, which results in inadequate thalamic signals to the 
hypothalamus and, ultimately, in CRSWDs [ 73 ]. A recent EEG study on children 
with extensive brain damage and profound developmental disabilities showed that up 
to 100 % of them had persistent, severely impaired sleep-wake patterns, though very 
few had ocular lesions, thus demonstrating that the cerebral structures play a major 
role in sleep-wake regulation [ 77 ]. Cerebral palsy (CP) is defi ned as a group of non-
progressive disorders of movement and posture resulting in activity limitations that 
occur in the developing fetal or infant brain and affect 1.5–2.5 children per 1000 live 
births. About 20–50 % of children with CP have a cortical visual impairment, result-
ing in a free-running circadian rhythm [ 78 ]. Smith- Magenis syndrome (SMS) is a 
rare multisystemic disorder that occurs in 1:25,000 births. It is caused by a mutation 
or small deletion in a transcriptional regulator gene of the mammalian circadian 
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clock, i.e., RAI1 (retinoic acid induced) on chromosome 17p11.258, and is charac-
terized by intellectual disability of varying degrees, short stature, a deep hoarse 
voice, obesity, scoliosis, distinctive facies (deep, close- set eyes, midfacial hypopla-
sia, and broad, square-shaped face), and peripheral neuropathy [ 79 ]. Maladaptive 
and disruptive behavior is typical of this syndrome and is associated with 24-h sleep 
disorder. Actigraphic data have revealed a total sleep time that is 1 or 2 h shorter than 
that in normal healthy controls and fragmented sleep starting from as early as 
6 months and persisting throughout school age [ 80 ]. Many studies have found that an 
alteration in the circadian clock gene action results in inverted endogenous melatonin 
secretion, which thus peaks during daytime, in the vast majority of children with 
SMS [ 81 ]. Oral acebutolol administered alone in the early morning and combined 
with MLT in the evening has been used in an attempt to improve the sleep-wake 
rhythm in patients with SMS [ 82 ]. Angelman syndrome (AS) is a neurodevelopmen-
tal disorder that is characterized by mental retardation, seizures, gait ataxia, speech 
impairment, epilepsy, craniofacial abnormalities, and easily provoked laughter and is 
due to abnormalities in chromosome 15q11–q13. The prevalence of sleep problems 
associated with this syndrome is usually very high, with up to 90 % subjects being 
affected [ 83 ]. Sleep problems mainly consist of diffi culties in falling asleep and mul-
tiple awakenings. A lower level of MLT and a high prevalence of CRSWDs (irregu-
lar, free-running, and sleep phase delayed disorders) have been reported in AS, 
though open-label and placebo- controlled trials have shown that treatment with MLT 
supplementation yields a good response [ 84 – 86 ]. A possible explanation for this 
positive response is the lack of ubiquitin protein ligase E3A gene expression on the 
maternal chromosome 15q11–q13, which is reported in AS and is known to be impli-
cated in the control and development of circadian rhythm [ 87 ]. This hypothesis is 
supported by another study in which a patient with Rett syndrome, an abnormality 
that affects the ubiquitin protein ligase E3A gene, N24SWD, markedly improved 
following MLT oral supplementation [ 88 ]. 

 Although genetic and/or epigenetic abnormalities in sleep-wake circadian regu-
lation may predispose children with NDD to CRSWDs, poor sleep hygiene, nega-
tive associations, and the lack of restrictions all contribute to the maintenance of 
sleep problems. The active collaboration of caregivers is essential to be able to 
adopt behavioral treatment strategies, such as creating a dark, quiet, non-stimulating 
environment and reducing the number of stimuli (such as electronic devices) [ 71 ]. 
A recent large clinical trial confi rmed the effi cacy of MLT as a means of treating 
sleep problems in children with NDDs, using doses ranging from 0.5 to 12 mg, 
which were found to reduce sleep latency and increase total sleep time [ 89 ].  

    Attention-Defi cit Hyperactivity Disorders (ADHD) 

 About 25–50 % of children and adolescents with attention-defi cit hyperactivity dis-
order (ADHD) experience sleep problems, with objective data based on actigraphic 
recordings demonstrating an increase in sleep-onset latency associated with a 
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decreased amount of time spent asleep in such subjects [ 90 ]. According to the data in 
the literature, fi ve sleep phenotypes may be identifi ed in ADHD: a sleep phenotype 
characterized mainly by a hypoarousal state, resembling narcolepsy, which may be 
considered a “primary” form of ADHD; a second phenotype associated with a 
delayed sleep-onset latency and a higher risk of bipolar disorder; a third phenotype 
associated with sleep disordered breathing; a fourth phenotype related to restless legs 
syndrome and/or periodic limb movements, which may further extend the delays in 
the sleep phase disorder; and, lastly, a fi fth phenotype related to epilepsy/or EEG 
interictal discharges [ 90 ]. We will discuss the second phenotype here. Sleep-onset 
delayed insomnia is the most common sleep disorder in children with ADHD. The 
onset of sleep delayed phase disorders may occur at as early as 3 years of age, with 
an accumulation of sleep deprivation over time. Children in this subgroup have a 
delayed DLMO associated with a signifi cant delay in sleep latency when compared 
with ADHD children without insomnia [ 91 ]. Preliminary evidence from severe mood 
dysregulation-related disorders indicates that morning light therapy has a positive 
effect on depressive symptoms, circadian rhythms, inattention, and irritability [ 92 ]. 
It has been suggested that the core endophenotypic characteristic of pediatric bipolar 
sleep is a phase delayed circadian sleep-wake cycle rather than a reduced need for 
sleep per se (see below) [ 93 ]. Many studies have demonstrated the effi cacy and safety 
of MLT in the treatment of insomnia in children with ADHD, with doses ranging 
between 3 and 6 mg [ 94 ]. MLT may, if required, be combined with light therapy, 
particularly in children that are at risk of developing bipolar disorder as the use of 
stimulants remains controversial in such subjects [ 90 ]. Stimulant medication does 
not appear to affect the core symptoms related to a lower vigilance state in children 
with sleep delayed insomnia. Furthermore, the use of stimulant medications may 
exacerbate insomnia in children with ADHD, thereby affecting circadian motor 
activity levels, as has been demonstrated by actigraphic analyses [ 95 ]. The authors of 
this review believe that the administration of long- acting medications may increase 
the risk of developing or worsening sleep-onset insomnia in children with ADHD 
[ 95 ]. A large placebo-controlled trial on ADHD studied the effects of 4-week MLT 
therapy on the sleep-onset latency and circadian phase, as assessed by means of the 
DLMO [ 96 ]. The results of that trial did not detect any improvement in ADHD 
symptoms or cognition at the end of the 4 weeks [ 96 ]. A follow-up study revealed 
that improvements in behavior and mood after long-term treatment (2–3 years) only 
occurred in those children still using melatonin, while discontinuation of MLT 
resulted in a relapse of sleep-onset insomnia [ 97 ]. In one study on adult ADHD 
patients [ 98 ], treatment with early morning bright light therapy improved ADHD 
symptoms after 3 weeks, with the positive effects appearing to occur more rapidly 
than following administration of MLT. Interestingly, the effects of both sensorimotor 
rhythm (SMR) and slow cortical potential (SCP) neurofeedback treatment of ADHD 
symptoms last longer than those induced by medication, possibly because they act by 
increasing sleep spindle density and normalizing sleep-onset insomnia, thereby 
resulting in vigilance stabilization. Although neurofeedback does not target the cir-
cadian phase delay directly, this effect is mediated by subcortical and cortical circuits 
that regulate sleep spindle production and sleep onset [ 99 ].  
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    Mood Disorders 

 In view of the signifi cant changes in sleep and circadian rhythms that occur dur-
ing a person’s lifespan, age may contribute to the heterogeneity in sleep-wake 
profi les linked to mood disorders. The severity of depressive symptoms is 
expected to be associated with a more pronounced phase delay during youth and 
later diagnosis of bipolar disorder, while a reduced sleep duration and consolida-
tion and disorganization of circadian rhythms is expected in older age [ 100 ]. 
Indeed, it has been suggested that the restoration of normal circadian rhythms 
contributes to the remission of depression and prevention of relapses in young 
people with depressive symptoms. Actigraphic monitoring has been used to show 
that poor sleep is a hallmark of major depression during a stable depressive phase 
among young people (13–35 years old) [ 101 ]. A reduced need for sleep, together 
with elation, grandiosity, and racing thoughts, distinguishes mania and bipolar 
disorder from attention-defi cit hyperactivity and other childhood psychiatric dis-
orders. Children with manic bipolar I disorder typically experience a decreased 
need for sleep resembling that of adults, whereas many children who are bipolar, 
who exhibit part-day manic episodes (pediatric bipolar type IIA and type IIB), or 
who have chronic mixed conditions (pediatric bipolar type IIIA) do not [ 93 ]. 
Children with bipolar type IIA exhibit prominent diurnal cycles on most days 
(pediatric bipolar type IIA): initial morning depression and subsequent (typically 
late afternoon and/or evening) mania. They display disturbed sleep patterns, 
characterized by an evening acceleration and a signifi cant delay in sleep onset, 
which may, or may not, be accompanied by a decreased need for sleep and dif-
fi culty in awakening for school; moreover, a decreased need for sleep has been 
observed in subjects with manic cycles lasting days (pediatric bipolar type I) or 
chronic mania [ 93 ]. It has been suggested that the main bipolar sleep defect is a 
heritable phase delay in the sleep-wake cycle resulting from mutations in SCN 
circadian clock genes, which interact with, but are independent of, evening or 
ongoing manic psychomotor accelerations [ 93 ]. Several clock genes, such as 
CRY1 and NPAS2, have been associated with affective disorders, with CLOCK 
and VIP being specifi cally linked to the mania-hypomania phenotype [ 102 ]. This 
hypothesis predicts (i) that most bipolar children and adolescents, whose after-
noon and/or evening manic acceleration typically terminates overnight, with 
ultradian cycling (pediatric bipolar types IIA and IIB), will display delayed sleep 
onset but a low prevalence of decreased need for sleep; (ii) that the intrinsic 
sleep-onset phase delay, when coupled with bedtime and early morning manic 
psychomotor acceleration (hedonic or dysphoric), reduces the need for sleep; 
and (iii) that the reduced need for sleep is greatest among individuals whose 
manic cycles last longer than 1 day (pediatric bipolar type I) or among those with 
chronic mania (pediatric bipolar type IIIA). An increase in tobacco use was 
recently found among depressed young people with a delayed sleep phase and 

S. Miano



273

short sleep duration [ 103 ]. To sum up, sleep-onset phase delays and delayed 
sleep phase syndromes that occur during euthymic or depressed states may be 
trait markers of bipolar spectrum illness [ 93 ].   

    Case Reports 

    Case Report 1: SDWPD 

 A female adolescent aged 17.5 years came to the sleep disorder outpatient service 
of the Neurocenter of Italian Switzerland because she had been suffering from 
sleep-onset diffi culties since she was 3 years old. Her bedtime had become increas-
ingly delayed in the last 3 years (sleep time: from 01.30 am to 7 am), and she com-
plained of excessive daytime sleepiness, requiring a 3-h nap, and of school 
diffi culties. She also reported fear and strong nausea at bedtime and usually fell 
asleep at around 5 am. At weekends she tended to sleep for more than 12 h. She 
suffered from lypothymic attacks and dizziness during daytime, which made her 
feel more irritable. DSWPD was confi rmed by means of the MLT salivary test 
(DLMO after 00.30 am) and actigraphic recording (see Fig.  12.1 ). She was placed 
on therapy with long-acting MLT 2 mg at 8 pm, which led to the complete disap-
pearance of the anxiety, lipothymic attacks, and dizziness; restored healthy sleep, 
from 9:30 pm to 9 am; and eliminated the diurnal hypersomnolence or napping. She 
now feels happy.

       Case Report 2: Sleep-Onset Insomnia (First Suspected 
Diagnosis of SDWPD) 

 A male 14-year-old adolescent came to the sleep disorder outpatient service of the 
Neurocenter of Italian Switzerland because he had been suffering from sleep-onset 
diffi culties for many years. His sleep problems had got worse in the last months 
after he had started therapy with long-acting methylphenidate following a diagnosis 
of ADHD, learning disabilities, anxiety disorder, and suspected mood disorders 
(pediatric bipolar disorders type IIA). His anxiety increased in the afternoon and 
evening after the onset of treatment. He reported that his bedtime was 10.00 pm. 
Sleep onset occurred 30 min later, though sometimes even after midnight, and he 
woke up at 7.00 am. He said he had diffi culties in waking up in the morning. He had 
a history of motor tics, tonsillitis, and respiratory allergy, as well as familiarity for 
somnambulism and ADHD. A video-polysomnographic recoding revealed a very 
mild mixed-sleep apnea disorder, some periodic leg movements during sleep, and 
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increased sleep latency. A 1-week actigraphic recording demonstrated a tendency to 
fall asleep late (around 23:00 pm, with a mean sleep latency of one and a half 
hours), with no sleep fragmentations or diurnal nap (see Fig.  12.2 ). Blood examina-
tions revealed a ferritin level of 54 mcgr/l. He was placed on therapy with long- 
acting MLT at 19.30, 2 mg, for 3 months, though with no benefi t. The fi nal diagnosis 
was sleep-onset insomnia with anxiety disorder exacerbated by stimulant therapy, 
which was subsequently replaced by a more appropriate therapy containing a mood 
stabilizer.

12:00 18:00 00:00 06:00 12:00

  Fig. 12.1    Actigraphic recording of case report 2 (weekend fourth and fi fth days)       
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        Conclusions 

 CRSWDs are an unrecognized cause of sleep loss in children that tend to persist 
over time unless adequately treated, particularly in view of ongoing changes in life-
style and an increase in exposure to artifi cial light. The adverse effects of chronic 
sleep disorders on brain development in children often escape detection, with long- 
lasting sleep loss during critical developmental periods proving particularly harmful 
because it deprives young children of the environmental exposure required for 
healthy cognitive and motor development and consequently prevents them from 
achieving their full developmental potential. Persistent sleep diffi culties may be 
associated with a number of health, economic, and emotional diffi culties and raise 
the risk of suicide in sleep-deprived teenagers. Moreover, CRSWDs might contrib-
ute to the increased prevalence of cancer and cardiac and metabolic diseases that 
have been observed in recent times [ 2 ].     

12:00 20:00 00:00 06:00 12:00

  Fig. 12.2    An example of 4 days of actigraphic recording of case report 2       
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    Chapter 13   
 Disorders Associated with Increased 
Sleepiness                     

     Soňa     Nevšímalová    

    Abstract     Sleepiness presents as increased likelihood of falling asleep during the day; 
however, in young children, behavioral problems such as irritability and impulsiveness 
can prevail. Consequence of excessive daytime sleepiness includes cognitive impair-
ment accompanied by inattentiveness, academic diffi culties, and mood changes. The 
most frequent causes of increased sleepiness are insuffi cient nocturnal sleep in obstruc-
tive sleep apnea, periodic leg movements, and restless legs syndrome (RLS). Alteration 
of circadian rhythms, predominantly sleep delay associated with chronic sleep loss, has 
a substantial role in increased daytime sleepiness in adolescence. The main topics of 
this chapter are disorders connected with central hypersomnolence. Narcolepsy type 1 
is characterized by excessive daytime sleepiness and signs of REM-sleep dissociation, 
the most specifi c of which is cataplexy. It is connected with hypocretin defi ciency in the 
cerebrospinal fl uid. Narcolepsy type 2 has no cataplexy, and hypocretin level is usually 
normal. Childhood narcolepsy, particularly in young children, has some specifi c fea-
tures. Sleep attacks may last several hours, and cataplexy may affect mainly muscles of 
the face. Idiopathic hypersomnia occurs rather rarely and starts usually in adolescence 
similarly to narcolepsy. Nocturnal sleep may be excessively long with diffi cult waking 
up and long- lasting daily naps. Multiple sleep latency test without sleep-onset REM 
periods (SOREMs) differentiates this disease from narcolepsy. Kleine-Levin syndrome 
is characterized by relapsing-remitting episodes of severe hypersomnolence, usually in 
association with cognitive, psychiatric, and behavioral disturbances. Secondary hyper-
somnolence includes cases due to medical disorders, such as brain injury, genetic dis-
orders, and brain tumors, or due to psychiatric disorder or medication and other 
substance abuses.  
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      Introduction 

 In young children, recognition of increased sleepiness can by complicated by the 
occurrence of daytime naps in normal children. However, these generally cease by 
the age of 3–4 years. In addition, in young children, sleepiness may take the form of 
an increased rather than decreased activity mistakenly diagnosed as features of 
attention-defi cit/hyperactivity disorder (ADHD) [ 1 – 3 ]. Excessive daytime sleepi-
ness (EDS) in preschool and school children is characterized by recurrent episodes 
of sleepiness or prolonged nighttime sleep that affects the child’s everyday life. 
However, in older children, EDS can be frequently misidentifi ed as laziness, inat-
tentiveness, boredom, and learning disability [ 1 ,  4 ]. 

 Clues helping to recognize childhood daytime sleepiness may be sleeping longer 
hours than expected for age, daytime naps longer than normal for age, being sleepy 
when other children of the same age are active and alert, and/or sleeping more than 
previously [ 5 ]. 

 The prevalence of daytime sleepiness increases with advancing age. In school 
children and adolescents, it is reported to be 17–47 % [ 6 ,  7 ] and in high school 
children even as much as 68 % [ 8 ]. The main causes of EDS are insuffi cient night-
time sleep, fragmented nighttime sleep, and increased need of sleep [ 9 ]. Sleep 
deprivation (reduced sleep quantity) is the most common cause of hypersomno-
lence at all ages followed by sleep fragmentation (reduced sleep quality). Disorders 
that increase sleep drive (hypersomnias of central origin) are relatively rare causes 
of EDS. 

 According to Hirshkowitz et al. [ 10 ], the length of nighttime sleep duration for 
preschool children (3–5 years) should be 10–14 h, for school children (6–13 years) 
9–11 h, and for teenagers (14–17 years) 8–10 h. However, in present days, most of 
the children, particularly from those of the school age, reduce this length due to dif-
ferent causes (including school duties, free time activities, games and communica-
tions on electronic media, etc.) and co-responsibility for behaviorally induced 
insuffi cient sleep syndrome accompanied by increased daytime sleepiness [ 11 ,  12 ]. 
In adolescence, delayed sleep-wake phase disorder also plays an important role in 
sleep restriction. 

 Similarly as insuffi cient sleep, also fragmented sleep may induce increased day-
time sleepiness, which is associated with problematic behavior, impaired learning, 
and/or negative mood [ 13 ,  14 ]. Sleep disorder breathing (SDB) carries the highest 
risk for daytime sleepiness followed by periodic leg movement disorder (PLMD) 
and restless legs syndrome (RLS). Children with SDB ranging from primary snor-
ing to obstructive sleep apnea (OSA) syndrome represent 10–25 % of children 
between 3 and 12 years. Increased daytime sleepiness can be one of the leading 
daytime symptoms. Perez-Chada et al. [ 15 ] found in SDB children that EDS, mea-
sured by Pediatric Daytime Sleepiness Scale (PDSS), was signifi cantly associated 
with academic failure. Sleep fragmentation with increased arousals leads during 
obstructive sleep apnea to more inattention in the daytime, while acute intermittent 
hypoxemia during these episodes leads to more memory defi cits. Beside executive 
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dysfunction, other affected domains are expressive language skills, visual percep-
tion, and working memory [ 9 ]. Increased daytime sleepiness may accompany fre-
quent periodic leg movements, and in some cases, RLS can be accompanied by 
EDS, too. 

 Chapter 5 is focused on sleep laboratory tests and includes the assessment of 
EDS in children; hence, this part is mentioned only marginally. Appropriate subjec-
tive screening tools include sleep logs and clinical sleeping scales: (1) Pediatric 
Daytime Sleepiness Scale (PDSS) for young children and (2) Epworth Sleepiness 
Scale (ESS) and Stanford Sleepiness Scale (SSS) for older ones. Sleep question-
naires can further help in identifying and quantifying the degree of sleepiness. 
Nocturnal polysomnography verifi es normal sleep and excludes EDS as a conse-
quence of sleep disorder with insuffi cient or fragmented sleep. An objective method 
for sleepiness degree estimation is multiple sleep latency test (MSLT); however, no 
standardization data are available for children younger than 6 years. Therefore, 
actigraphy and/or 24-h polygraphic monitoring can be a helpful method to detect 
EDS in younger children [ 16 ]. 

 The aim of this chapter is a survey of diseases characterized by central disorders 
of hypersomnolence. Most of these diseases start usually in adolescence and have a 
chronic course with a great impact on physical and mental health from childhood till 
adulthood. They cover four main clinical entities: (1) narcolepsy, (2) idiopathic 
hypersomnia, and (3) Kleine-Levin syndrome; (4) secondary cases of central disor-
ders of hypersomnolence include cases due to brain injury, suprasellar tumors, med-
ical disorders, medication, and/or addictive drug abuse.  

    Narcolepsy 

 Narcolepsy in children is a serious disorder marked by a chronic course and lifelong 
handicap in school performance, by free time activity limitation and by behavior 
and personality changes with a major infl uence on the quality of life. The total 
prevalence of narcolepsy ranges from 0.02 % to 0.18 % [ 17 ,  18 ]; data on the inci-
dence and prevalence of pediatric narcolepsy are not available. Both genders seem 
to be affected at equal rates. The disease may start at any age but most frequently 
during the adolescence [ 19 ]. A large prospective study identifi ed only 5 % of the 
cases as prepubertal [ 20 ]. 

 The symptoms in childhood narcolepsy can differ from those in adults and lead 
to misinterpretations and misdiagnosis. The diagnosis in adults is often delayed 
more than 10 years [ 21 ], and many patients remain undiagnosed. In children, the 
complaint is diagnosed earlier, mostly within 2 years of the disease onset [ 22 ]. A 
major increase in incidence of childhood narcolepsy after H1N1 vaccination with 
Pandemrix together with a widespread media campaign helped to bring increased 
awareness and the diagnosis closer to the disease onset [ 23 – 29 ]. 

 The occurrence of cataplexy in childhood narcolepsy varies between 60 and 
75 % [ 30 ,  31 ], and sleepiness alone can precede cataplexy for months up to years. 
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The best predictor of cataplexy developing later in life is hypocretin defi ciency [ 32 ]. 
Therefore, the International Classifi cation of Sleep Disorders – ICSD-3 [ 3 ] distin-
guishes between two basic forms of narcolepsy: narcolepsy type 1 (with hypocretin 
defi ciency and cataplexy) and narcolepsy type 2 (without hypocretin defi ciency and 
without cataplexy). 

     Narcolepsy Type 1 

 According to ICSD-3 [ 3 ], the following diagnostic criteria must be met:

    A.    The patient has daily periods of irrepressible need to sleep or daytime lapses 
into sleep occurring for at least 3 months.   

   B.    The presence of one or both of the following:

    1.    Cataplexy and a mean sleep latency of ≤8 min and two or more sleep-onset 
REM periods (SOREMPs) on an MSLT. A SOREMP (within 15 min of sleep 
onset) on the preceding nocturnal polysomnogram may replace one of the 
SOREMP on the MSLT.   

   2.    Cerebrospinal fl uid (CSF) hypocretin-1 (hcrt-1) concentration, measured by 
immunoreactivity, is either ≤110 pg/mL or <1/3 of mean values obtained in 
normal subjects with the same standardized assay.        

  In young children, narcolepsy may sometimes present as excessively long night 
sleep or as resumption of previously discontinued daytime napping [ 3 ]. In some 
cases, the diagnosis of narcolepsy type 1 can be diffi cult. Increased daytime sleepi-
ness may sometimes be the only clinical feature for years; the sleep episodes become 
increasingly long, lasting up to hours; confusional arousals with features of sleep 
drunkenness may be present. Cataplexy may develop with a delay. In addition, lum-
bar puncture necessary for hcrt-1 estimation is invasive procedure, and to obtain 
parent’s consent cannot be easy in some cases. 

    Clinical Features of Pediatric Cases 

•     Excessive daytime sleepiness 
  Excessive daytime sleepiness is usually the fi rst symptom of narcolepsy [ 33 ]. 

Sleep attacks in children are, as a rule, of longer duration than in adults. The 
children may be sleepy during lessons at school, upon return to home in the 
afternoon, and their naps may last up to 2–3 h without being restorative [ 19 , 
 34 ]. Sometimes, confusional arousals with features of sleep drunkenness 
may be present. Owing to inattentiveness due to persistent sleepiness, they 
can have school problems including poor educational progress and impaired 
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social  integration. In young children, restlessness and motor hyperactivity 
can sometimes overcome the drowsiness and give rise to behavioral problems 
[ 1 ,  35 ,  36 ].  

•   Cataplexy 
  Cataplexy is an attack of sudden muscle tone loss, evoked by emotion, most 

frequently by laughter (Fig.  13.1 ). The consciousness is always conserved, and 
loss of muscle tone affects both extremities symmetrically. However, cata-
plexy, particularly in young children, has some specifi c features, too. Serra 
et al. [ 21 ] observed in 33 % of their patients typical features of “cataplectic 
facies” with repetitive mouth opening, tongue protrusion, and drooping eyelids 
appearing close to disease onset. The muscle weakness, typical for cataplectic 
attack, arise in the facial region and then spreading to the trunk, arms, and 
lower limbs, and fi nally lead to falls. However, in some cases, the muscle 
weakness affects only a part of the body (head, shoulder, arms, knees); it does 
not lead to a cataplectic fall down but to what is called a partial attack. The 
duration of a single cataplectic episode can be only several seconds, be pro-
longed, or consist of multiple repetitive attacks lasting up to several minutes. 
Plazzi et al. [ 37 ] found that children with narcolepsy-cataplexy displayed a 

  Fig. 13.1    A cataplectic attack illustrated on video sequences of a 9-year-old boy with narcolepsy- 
cataplexy. Note a rostro-caudal progression of weakness beginning on the mimic muscles and neck 
and spreading on the further body parts       
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complex array of “negative” (hypotonia) and “active” phenomena (ranging 
from perioral movements to dyskinetic-dystonic movements or stereotypes) of 
motor disturbances. These complex movements may disappear later in the 
course of the disease [ 38 ]. These phenomena in narcoleptic children may result 
from a recent streptococcal infection [ 39 ,  40 ], similar to involuntary move-
ments evoked by streptococcal infection in children – Pediatric Autoimmune 
Neuropsychiatric Disorders (PANDAS).

•      Associated features 
  Hypnagogic hallucination during falling asleep and/or hypnopompic hallucina-

tion during awakening arise as dreamlike experience occurring at the wake-sleep 
transition. They can be visual, auditory, and/or tactile and appear in one third up 
to one half of narcoleptic cases [ 21 ,  33 ,  41 ]. Visual hallucinations are more fre-
quent and have in children usually only simple forms (colored circles, images of 
people or animals), rarely with an emotion content.    

 Sleep paralysis is an attack of temporary inability to move voluntary muscles. 
It is stressful, accompanied by heart rate and breathing irregularities. Sleep paral-
ysis occurs again at sleep-wake transition and can be accompanied by hypnago-
gic or hypnopompic hallucinations. The episode usually lasts seconds to minutes 
and end spontaneously. If affected child is touched, shaken, or spoken to by a 
parent, sleep paralysis can be interrupted [ 1 ]. The occurrence is a little less fre-
quent than hypnagogic/hypnopompic hallucinations [ 21 ,  33 ]. 

 Disrupted nocturnal sleep with frequent awakenings, vivid dreams, and 
frightening nightmare annoys a majority of children with narcolepsy [ 21 , 
 42 ]. In some cases, even REM behavior disorder can be one of the first 
symptoms of childhood narcolepsy [ 43 ]. However, some patients need lon-
ger sleep during the night [ 44 ], and their awakening is difficult with symp-
toms of sleep inertia (confusional arousal, sleep drunkenness). Similarly to 
morning sleep inertia, automatic behavior during the day affects up to one 
third of narcoleptic children. Being abnormally drowsy, they spent some 
time at an unpleasantly low level of alertness with movement or speech 
automatisms that can imitate states of cloaked consciousness, even partial 
epilepsy seizure [ 16 ]. 

 Obesity frequently coexists in childhood narcolepsy (sometimes accom-
panied by nocturnal eating disorder), and the tendency toward increased 
weight gain is manifested early in the onset of the disease and connected 
with the appearance of cataplexy [ 45 ,  46 ]. It occurs despite lower caloric 
intake and does not appear to be due to inactivity or to medication [ 47 ,  48 ]. 
Precocious puberty can arise in children with narcolepsy type 1 in close 
temporal association with obesity, reflecting a broadly based hypothalamic 
dysfunction [ 49 ,  50 ]. 

 Personality and behavior changes are often present in narcoleptic children and 
adolescents. They become more introverted and prone to feelings of inferiority, 
sorrowfulness, emotional lability, or sometimes irritability or even aggressive-
ness. Higher rates of behavioral problems, and particularly depression, take 
share in their decreased quality of life [ 51 ].  
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    Diagnostic Evaluation 

 According to ICSD-3 [ 3 ], the main diagnostic criteria are hcrt-1 estimation and 
nocturnal polysomnography (PSG) followed by MSLT test. 

 Undetectable hcrt-1 level in CSF and/or lower level than 110 pg/mL are the most 
valuable diagnostic markers. A declining level of CSF hcrt-1 is usually closely 
related to appearance of cataplexy [ 52 ,  53 ]. An undetectable hcrt-1 level can be also 
one of the factors predicting the later appearance of cataplexy [ 32 ], in those children 
diagnosed only with isolated excessive daytime sleepiness. Human leukocyte anti-
gen (HLA) typing can be a helpful method there. The presence of the DQB1*06:02 
haplotype may add to the diagnostic probability of narcolepsy type 1, though 
DQB1*06:02 negativity does not exclude it [ 54 ]. 

 The ICSD-3 [ 3 ] strongly recommended that the PSG and MSLT be preceded by 
at least 1 week of actigraphic recording with a sleep log. Particularly in children, 
actigraphy accompanied by sleep log are very useful methods illustrating the 
amount of daytime and nocturnal sleep (Fig.  13.2 ). Due to longer duration of sleep 
attacks in childhood narcolepsy, the examination can have a predictive value in the 
diagnosis. In younger children, sleep log should be completed by their parents. Both 
methods help to rule out sleep-wake cycle irregularity caused by poor sleep hygiene 
or sleep delay phase in older children [ 16 ].

   Nocturnal PSG preceding MSLT illustrates a suffi ciently long nighttime sleep 
and eliminates other causes of excessive daytime sleepiness such as sleep- disordered 
breathing and/or periodic limb movements. However, their presence does not rule 
out the presence of narcolepsy as they can coexist in a signifi cant minority of narco-
leptics [ 55 – 57 ]. PSG with extended EEG channels help exclude parasomnias as a 
cause of fragmented nocturnal sleep. In addition, SOREMP in nocturnal PSG 
increases signifi cantly a probability of narcolepsy. 

 The MSLT is used as a standard diagnostic method in children older than 
6 years, and two or more episodes of SOREMPs together with mean sleep latency 
≤8 min are pathological [ 3 ]. Most MSLT studies of narcoleptic children give 
countenance to these criteria showing mean sleep latency to be short, even shorter 
than in adults, and the highest amount of SOREMPs just at the onset of the dis-
ease [ 20 ,  58 ,  59 ]. Aran et al. [ 60 ] collected, however, a cohort of 51 children with 
the onset both before and after puberty and found a signifi cantly higher MSLT 
latency in prepubertal than in postpubertal pediatric patients. In rare cases, par-
ticularly in those with a later development of cataplexy, the MSLT criteria may 
not be met in the early clinical stage of the disease [ 52 ]. It can last months or 
even longer to develop a convincing presence of SOREMPs; MSLT then should 
be repeated. 

 In toddlers and young preschool children, continuous 24-h ambulatory PSG 
monitoring can serve as a practical diagnostic method. It can confirm daytime 
sleep- onset REM periods (SOREMPs) accompanied by sleep episodes as well 
as detect cataplexy [ 61 ]. It can also supply useful information in older 
children [ 62 ].  
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    Predisposing and Precipitating Factors 

 Narcolepsy type 1 is supposed to be an autoimmune disease [ 63 ]. Several studies have 
described seasonal patterns in the onset of narcolepsy, which may point to a specifi c 
environmental trigger leading to the degeneration and loss of cells producing hypocre-
tin. An increase in antibodies against beta-hemolytic streptococcus, which were stron-
gest around onset of narcolepsy and decreased with disease duration, suggest that 
streptococcal infections may constitute an environmental trigger in genetically 
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  Fig. 13.2    Actigraphic recording of a 17-year-old girl with narcolepsy-cataplexy. Arrowheads indi-
cate irregular daily naps lasting from 20 min up to more than 1 h       
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predisposed (HLA- DQB1*06:02 positive) subjects [ 39 ]. Similarly, Han et al. [ 24 ] 
showed a seasonal onset of narcolepsy with viral upper airway infection. A high 
increase in the occurrence of new cases of childhood narcolepsy type 1, occurring in a 
close connection with vaccination against H1N1 associated with infl uenza [ 23 – 29 ], 
support this hypothesis, too. Recently, a close connection between different comorbid 
immunopathological diseases and narcolepsy type 1 was described [ 64 ]. 

 Genetic factors take a role in the narcolepsy type 1 predisposition. The risk of 
narcolepsy type 1 in the fi rst-degree relatives of affected individuals is approxi-
mately 1–2 %. When compared to the population prevalence, this indicates a 10–40- 
fold increase in risk [ 3 ,  65 ]. So far, only a single case of narcolepsy type 1 has been 
described in association with a prehypocretin mutation [ 66 ].  

     Narcolepsy Type 2 

 According to ICSD-3 [ 3 ], the following diagnostic criteria must be met:

    A.    The patient has daily periods of irrepressible need to sleep or daytime lapses 
into sleep occurring for at least 3 months.   

   B.    A mean sleep latency of ≤8 min and two or more sleep-onset REM periods 
(SOREMPs) are found on an MSLT. A SOREMP (within 15 min of sleep onset) 
on the preceding nocturnal polysomnogram may replace one of the SOREMP 
on the MSLT.   

   C.    Cataplexy is absent.   
   D.    Either CSF hcrt-1 concentration has not been measured or CSF hcrt-1 concen-

tration measured by immunoreactivity is either >110 pg/mL or >1/3 of mean 
values obtained in normal subjects with the same standardized assay.   

   E.    The hypersomnolence and/or MSLT fi ndings are not better explained by other 
causes such as insuffi cient sleep, obstructive sleep apnea, delayed sleep phase 
disorder, or effect of medication or substances or their withdrawal.    

  If cataplexy develops later, or if CSF hcrt-1 concentration is below the recom-
mended level, then the disorder should be reclassifi ed as narcolepsy type 1. In all 
pediatric cases, the possibility of future development of cataplexy should be consid-
ered. In childhood, narcolepsy accompanied by cataplexy represents approximately 
two thirds of all cases of narcolepsy [ 16 ]; in adulthood this proportion increases up 
to 75–85 % of narcoleptic population [ 3 ]. 

 With the exception of cataplexy, all associated features such as hypnagogic/hyp-
nopompic hallucination and sleep paralysis can be present similarly as in narco-
lepsy type 1. These symptoms are very diffi cult to recognize in young patients. 
Frequent symptoms are sleep inertia during awakening; however, nocturnal sleep 
seems to be less impaired and fragmented. Body mass index (BMI) is lower than in 
narcolepsy type 1 [ 30 ]. In comparison with normal population, the frequency of 
HLA- DQB1*06:02 haplotype is increased; almost one half of narcolepsy type 2 
patients are HLA- DQB1*06:02 positive. 
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 The diagnosis of narcolepsy type 2 in childhood can be diffi cult. Normative data 
are not available for the MSLT in children younger than 6 years, and in peripubertal 
children and adolescents, the diagnosis is often challenging owing to physiologi-
cally increased need of sleep in this period. The most common causes of short sleep 
latencies, often with multiple SOREMPs on the MSLT, are chronic sleep depriva-
tion and delayed sleep phase syndrome. Behavioral problems may be associated 
with the onset of the disorder including inattentiveness, lack of energy, insuffi cient 
nocturnal sleep, bizarre hallucinations, or a combination thereof can lead to a psy-
chiatric misdiagnosis of schizophrenia or depression [ 3 ]. 

 The pathophysiology of narcolepsy type 2 is unknown; the disease is probably 
heterogeneous and need further investigation. 

    Treatment and Managements of Pediatric Cases of Narcolepsy 
Types 1 and 2 

 There is no specifi c treatment for narcolepsy in children as distinct from adults, 
non-pharmacological and pharmacological means are applied in both. Children and 
their parents should be informed about the lifelong nature of the disease and about 
the need for long-term treatment. It is important to start the treatment in school age 
children as early as possible to avoid problems of poor achievement. Stimulant and 
anticataplectic medication represent only one component of the therapeutic pro-
gram, and any drug therapy must take into account possible adverse effects. 

 The most effective non-pharmacological treatment for daytime sleepiness is reg-
ular sleep-wake schedules and planned naps. At least two planned daytime naps at 
lunchtime and during the afternoon (between four and fi ve) are recommended in 
prepubertal and pubertal children [ 67 ]. Children should be encouraged to partici-
pate in after-school and sports activities; similarly, a well-designed exercise pro-
gram can have a stimulating effect. Monitoring for emotional problems and 
particularly depression is also important. 

 Pharmacological treatment in children is not easy to manage. Almost all effective 
drugs used in adults, and having a positive effect on childhood symptoms, too [ 67 ], 
are off label according to the European Medicines Agency (EMA) and US Food and 
Drug Administration (FDA) rules. The only exceptions are methylphenidate and 
atomoxetine, used in pediatric conditions such as ADHD, and, therefore, some 
directions for dosage in children are available [ 68 ]. However, clinical experience 
suggests that modafi nil decreasing EDS symptoms is an effective and safe treatment 
for pediatric narcolepsy comparable to adult patients [ 69 ,  70 ]. Similarly, sodium 
oxybate used in childhood cases of narcolepsy with cataplexy is safe and well toler-
ated. Its effi cacy signifi cantly decreases a number of cataplectic attacks and their 
severity, decreases daytime sleepiness, and improves nocturnal sleep [ 71 ,  72 ]. 
Table  13.1  summarizes treatment experience with the choice of drugs and their dos-
age given to children with narcolepsy according to their age.
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        Idiopathic Hypersomnia 

 Idiopathic hypersomnia (IH) is a rare disorder (the exact prevalence is not known) 
characterized by chronic non-imperative sleepiness in association with long unrefresh-
ing daytime naps. Most of cases present diffi culties reaching full alertness after awak-
ening, even after napping with symptoms of sleep drunkenness (sleep inertia) [ 73 ]. 

 According to ICSD [ 3 ], four diagnostic criteria must be met:

    A.    The patient has daily periods of irrepressible need to sleep or daytime lapses 
into sleep occurring for at least 3 months.   

   B.    Cataplexy is absent.   
   C.    An MSLT performed according to standard techniques shows fewer than two 

sleep-onset REM periods.   
   D.    The presence of at least one of the following:

    1.    The MSLT shows a mean sleep latency of ≤8 min.   
   2.    A total 24-h sleep time is ≥660 min (typically 12–14 h) on 24-h polysomno-

graphic monitoring (performed after correction of chronic sleep deprivation) 
or by wrist actigraphy in association with a sleep log (average over at least 
7 days with unrestricted sleep).       

   E.    Insuffi cient sleep syndrome is ruled out.   
   F.    The hypersomnolence and/or MSLT fi ndings are not better explained by another 

sleep disorder, other medical or psychiatric disorders, or use of drugs or 
medications.    

  ICSD-2 [ 74 ] distinguished IH into two categories: IH with long sleep time (more 
than 10 h) and IH without long sleep time (less than 10 h). While IH with long sleep 

   Table 13.1    Treatment experience of drugs given to children to decrease sleepiness and cataplexy   

 Sleepiness  Cataplexy 

 Repeated naps during the day  Sodium oxybate (2–8 g) a  
   The whole age spectrum    The whole age spectrum 
 Modafi nil (100–400 mg) a   Venlafaxine (75–150 mg) a  
   School children and adolescents    School children and adolescents 
 Armodafi nil (50–400 mg) a   Fluoxetine (10–40 mg) a  
   School children and adolescents    School children and adolescents 
 Methylphenidate (10–30 mg)  Clomipramine (25–75) mg a  
   School children and adolescents    School children and adolescents 
 Atomoxetine (10–25 mg)  Imipramine (25–75 mg) a  
   School children and adolescents    School children and adolescents 
 Sodium oxybate (2–8 g) a  
   The whole age spectrum 

   a Off-label medication used in children according to EMA (European Medicines Agency) and FDA 
(US Food and Drug Administration) rules  
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time is a homogeneous clinical entity with a great deal of genetic predisposition, IH 
without long sleep time is much more heterogeneous [ 75 ]. A recent fi ndings using 
cluster analysis [ 76 ] shows that IH without long sleep time is close to narcolepsy 
type 2. 

 Nocturnal sleep demonstrates a high effi ciency, and sleep drunkenness is pres-
ent in one up to two thirds of IH cases. It is defi ned as prolonged diffi culty waking 
up with repeated returns to sleep, automatic behavior, and confusion lasting usu-
ally 15 up to 30 min, rarely more than 1 h. Affected subjects do not hear alarm 
clock, they must be very heavily and repeatedly awakened by their parents or bed 
partners, or they used some specifi c alarms mechanisms. Cerebellar symptoms and 
decreased tendon refl exes are found if patients are neurologically examined during 
this state [ 77 ]. 

 The disease develops usually during adolescence or young adulthood (the mean 
age of onset is between 16 and 21 years). CSF hcrt-1 level is normal, and no HLA 
predisposition has been found [ 3 ,  78 ,  79 ]. A dysfunction of the autonomic nervous 
system may be present as an associated symptom. It includes orthostatic distur-
bances (even faintness), headaches, temperature dysregulations, and peripheral vas-
cular complaints (including Raynaud syndrome). Nevsimalova et al. [ 80 ] described 
in IH patients prolonged melatonin secretion with delayed peaks of both circadian 
hormones – melatonin as well as cortisol. 

 The IH diagnosis can be facilitated by a specifi c PSG protocol recommended 
by Billiard [ 75 ,  81 ,  82 ]. The fi rst night of PSG examination is followed by a stan-
dard MSLT that continues with 24-h lasting PSG monitoring and freedom to sleep 
“ad libidum.” Figure  13.3  illustrates this protocol in a young woman with IH, 
whose younger brother, father, and cousin were affected according to medical his-
tory, too (Fig.  13.4 ). In spite of a strong genetic predisposition, found in the litera-
ture in many cases [ 83 ,  84 ], no convincing molecular genetic background has 
been found [ 85 ].

    Differential diagnosis is diffi cult, particularly in children and adolescents. A 
physiologically increased need of sleep should be adapted to the ICDD-3 [ 3 ] crite-
ria. Hypersomnolence due to delayed sleep phase disorder, obstructive sleep apnea, 
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  Fig. 13.3    A young 24-year-old woman suffering from idiopathic hypersomnia from childhood. 
Multiple sleep latency test (MSLT – not shown), registered after the fi rst night of polysomnogra-
phy (PSG), showed a shortened mean sleep latency of 5.2 min without sleep-onset REM periods 
(SOREMPs). PSG following the MSLT through the second day for 21 h demonstrated seven noc-
turnal cycles of NREM-REM sleep and one afternoon sleep cycle. The total sleep duration during 
the second day of PSG registration was 12 h and 12 min       
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insuffi cient sleep syndrome, and abuse of drugs should be excluded. The prolonged 
attacks of daytime sleepiness in children, frequently accompanied by sleep drunk-
enness, is sometimes diffi cult to differentiate from narcolepsy. Diffi culties in diag-
nosis can be, e.g., illustrated by an interesting patient of ours. A 10-year-old boy 
with increase daytime sleepiness was PSG examined, and his MSLT showed the 
borderline mean sleep latency without any SOREMPs. Two years later, typical cata-
plectic attacks appeared, the MSLT was repeated, mean sleep latency became 
shorter, and SOREMPs appeared. Therefore, the diagnosis was changed to narco-
lepsy type 1. We have to consider reclassifi cation of the diagnosis in all children and 
adolescent cases when clinical picture is changing. An interface with behavioral and 
mood disturbances, included in psychiatric disorders, should be taken in account in 
the differential diagnosis, too [ 4 ]. 

 IH management is more diffi cult than in narcolepsy; no data are available for 
children or adolescents. EMA withdrew the indication of modafi nil for the treat-
ment of IH in 2010 for insuffi cient data. However, Lavault et al. [ 86 ], as well as 
Mayer et al. [ 87 ] demonstrated in adult patients that modafi nil has an excellent 
benefi t/risk ratio in IH, similar to its effect on narcolepsy. The number of reported 
naps and duration of daytime sleepiness decreased signifi cantly. Total sleep time of 
nocturnal sleep was slightly reduced, and the sleep diaries showed increases in feel-
ing refreshed in the morning. Adverse events were mild to moderate. The two stud-
ies concluded that modafi nil is an effective and safe medication in the treatment of 
IH patients. The recommended dosage was similar to that of medication used in 
narcolepsy. As regards the children and adolescents, treatment with methylpheni-
date and atomoxetine (used in ADHD) may be prescribed; however, treatment with 
modafi nil is “off label,” similarly to narcolepsy.  

    Kleine-Levin Syndrome 

 Kleine-Levin syndrome (KLS), known also as recurrent hypersomnia or periodic 
hypersomnolence, is a rare sleep disorder with the prevalence 1–2 cases per million 
[ 3 ], more frequently found in the Jewish population. The main features are intermit-
tent periods of hypersomnolence accompanied by behavioral and cognitive 

  Fig. 13.4    A family tree of 
the 24-year-old woman 
with idiopathic 
hypersomnia. Arrowhead 
indicates our proband; her 
young brother, father, and 
cousin suffering from the 
same complaints, however, 
refused to be examined in 
our Sleep Lab       
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disturbances, hyperphagia and in some cases hypersexuality [ 88 ]. According to 
ICSD-3 [ 3 ], four diagnostic criteria must be met:

    A.    The patient experiences at least two recurrent episodes of excessive sleepiness 
and sleep duration, each persisting for 2 days to 5 weeks.   

   B.    Episodes recur usually more than once a year and at least once every 18 months.   
   C.    The patient must demonstrate at least one of the following during episodes:

    1.    Cognitive dysfunction   
   2.    Altered perception   
   3.    Eating disorder (hyperphagia or anorexia)   
   4.    Disinhibited behavior (such as hypersexuality)       

   D.    The hypersomnolence and related symptoms are not better explained by another 
sleep disorder; other medical, neurologic, or psychiatric disorders (especially 
bipolar disorder); or the use of drugs or medications.    

  The usual age at onset is adolescence with males predominating (sex ratio 2:1). 
The fi rst episode is often triggered by a fl u-like illness or an infection of the upper 
airway and reoccurs in 1 or several months. The more frequent episodes are usually 
marked by shorter duration. A typical episode lasts approximately 10 days, during 
which patients may sleep as long as 16–20 h per day, waking or getting up only to 
eat and void. They remain rousable but are irritable if prevent from sleeping. 
Cognitive changes including diffi culties speaking and reading, together with a spe-
cifi c feeling of derealization, and eating disturbance accompany almost all epi-
sodes. Overweight difference, caused by compulsive eating, can reach up to several 
kilograms. During the episode, about half of the patients experience depressed 
mood and hypersexuality [ 3 ,  89 ,  90 ]. The attacks cause school absenteeism; chil-
dren have usually anterograde amnesia on the state. The functioning between epi-
sodes is normal. 

 If disease starts during childhood and adolescence, it typically resolves after a 
median of 14 years; in adult onset cases, the course may be more prolonged. The 
cause of this mysterious disappearance is not known. The earliest age of onset 
according to ICSD-3 [ 3 ] can be illustrated by the case of a 4-year-old boy with KLS 
[ 91 ]. However, almost 30 years ago, we described [ 92 ] a very interesting girl with 
periodic hypersomnia started in the infant age. She was repeatedly hospitalized for 
loss of consciousness of unknown etiology in an acute pediatric unit. The episodes 
lasted several days. EEG examination during one of these episodes showed quite 
normal sleep phenomena. The girl was therefore referred to our department, where 
recurrent hypersomnia was diagnosed. A longitudinal follow-up showed decreasing 
frequency and severity of these attacks of hypersomnolence. During puberty, these 
usually accompanied only some fl u-like infection, and by 18 years of age, they com-
pletely disappeared. 

 EEG changes showing general deceleration of background activity and accom-
panied by paroxysmal high-voltage episodes of generalized and synchronous delta 
or theta waves were often described during the episodes. Sleep effi ciency is poor, 
and nonspecifi c changes in sleep cycles together with changes in proportion of 
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slow-wave and REM sleep were observed [ 93 ]. Figure  13.5  illustrates PSG moni-
toring of the second part of a KLS episode, when an 11-year-old girl was brought 
by parents to our department after more than 1 day lasting attack at home. Her fi rst 
episode was provoked by an infl ammation resembling encephalitis.

   The KLS etiology is unknown; however, viral and autoimmune causative fac-
tors were suggested, promoted by often reported fl u-like symptoms at the onset, 
as the most frequent precipitating factors. A rare KLS case preceded by enceph-
alitis was reported [ 94 ]. In another case [ 95 ], even association with streptococ-
cal infection (PANDAS) and KLS was described as pointing to an autoimmune 
etiology of both diseases. Huang et al. [ 96 ] found that an immunoresponsive 
HLA-DQB1, DQB1*0602 was detected in signifi cantly higher quantities in 
patients with KLS than in controls. Dauvilliers et al. [ 97 ] presented an interest-
ing role of hypothalamic dysfunction in the etiology of the attacks. The authors 
described the mean CSF hcrt-1 level in KLS during the asymptomatic periods as 
normal. However, in one patient, CSF samples were available during both symp-
tomatic and asymptomatic periods. The results showed a twofold decrease in 
hcrt-1 level during one of the hypersomnia episodes when compared with the 
asymptomatic period. 

 Differences between attacks and asymptomatic periods have been docu-
mented also with several neuroimaging methods. Single-photon emission com-

  Fig. 13.5    An 11-year-old girl with Kleine-Levin syndrome. Polysomnography (PSG) illustrates 
the second part of her attack of sleepiness. The girl was brought to our sleep lab by her parents 
from home (almost 400 km away) for being sleepy for more than 1 day. The fi rst monitored day 
sleep cycles include mostly interrupted superfi cial NREM sleep with an increased amount of REM 
sleep (nine irregular cycles), the second day illustrates six irregular cycles with increased percent-
age of REM sleep and blowing sleepiness away       
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puted tomography (SPECT) showed that depersonalization and derealization 
during symptomatic periods strongly correlated with the hypoperfusion of the 
right and left parietotemporal junctions and that defects in the dorsomedial pre-
frontal cortex may cause apathy. Persistent hypoperfusion in the diencephalic 
and the associative cortical area during asymptomatic periods is a marker of the 
disease, suggestive of an effort to compensate these defi cient circuitries [ 98 ]. 
Similarly, functional brain imaging studies during episodes are frequently 
abnormal, showing hypometabolism in the thalamus, hypothalamus, mesial 
temporal lobe, and frontal lobe. Some of these abnormalities persist during 
asymptomatic periods in half of the patients. Hypoperfusion of both thalami is 
a consistent fi nding during the symptomatic period. It almost completely disap-
pears during the asymptomatic period in most of the cases [ 99 ]. The longer the 
duration of this syndrome, the more extended the hypoperfusion regions during 
the asymptomatic period. 

 Menstrual-related KLS, a rare form of KLS, is also known as menstrual-related 
hypersomnia. Billiard et al. [ 100 ] collected in their meta-analytic review 339 cases 
of recurrent hypersomnia; 239 were cases of typical KLS, 54 cases of KLS without 
compulsive eating, 27 cases were recurrent hypersomnia with a different comorbid-
ity, and 18 cases with menstrual-related hypersomnia were rated as a variant of 
recurrent hypersomnia. 

 Management of KLS is diffi cult. There is no conclusive treatment during the 
episode as well as during interepisodic period. Only lithium had a higher reported 
response rate (in 41 %) for stopping relapses when compared to medical abstention. 
Further medication such as carbamazepin, gabapentin, and other antiepileptics had 
a worse effect [ 90 ,  101 – 103 ]. Exceptionally, even sodium oxybate can be offered as 
an alternative option for KLS treatment [ 104 ].  

    Secondary Increased Sleepiness of Central Origin 

 Secondary central hypersomnolence occurs in children most frequently as a cause 
of medical disorder like (1) brain injury (posttraumatic etiology), in (2) association 
with different genetic disorders, and (3) secondary to brain tumors – most frequently 
in the suprasellar region. (4) Cases of some other etiologies such as medication, 
substance abuse, and of psychiatric origin should be considered in the differential 
diagnosis, too. 

 According to ICSD-3 [ 3 ], the following criteria must be met:

    (A)    The patient has daily periods of irrepressible need to sleep or daytime lapses 
into sleep occurring for at least 3 months.   

   (B)    The daytime sleepiness occurs as a consequence of a signifi cant underlying 
medical or neurological condition.   

   (C)    If an MSLT is performed, the mean sleep latency is ≤8 min, and fewer than two 
SOREMPs are observed.    
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     Posttraumatic Hypersomnia 

 Increased sleepiness appears to be common after traumatic brain injury (TBI). 
According to ICSD-3 [ 3 ], up to 28 % of all patients have EDS as a consequence 
of sever traumatic brain lesion. Osorio et al. [ 105 ] evaluated a multicentric 
study in the first 6 months after TBI in adolescent. They found that 51 % of 
adolescents with moderate to severe TBI showed significant daytime somno-
lence. Their daytime sleepiness correlated with TBI severity and predicted 
executive functioning difficulties in everyday circumstances. Greater sleep dis-
turbance was described even after a mild TBI in younger school children [ 106 ]. 
Stores and Stores [ 107 ] suggest that TBI followed by sleep disorders in chil-
dren is seriously neglected. Children with more frequent injuries had signifi-
cantly more sleep problems in general, particularly sleep-related anxiety [ 108 ]. 
Besides daytime sleepiness, also shortened nocturnal sleep was reported [ 109 ]. 
On the other hand, it is a well-known fact that daytime sleepiness and short 
night sleep duration are two major reasons in children for further accidental 
injury [ 110 ].  

    Genetic Disorders Associated with Primary Central Nervous 
System (CNS) Somnolence 

 Genetic disorders associated with primary CNS somnolence were described in the 
Chapter 16, focused on “sleep in neurological and neurodevelopmental diseases.” 
Daytime sleepiness may be a symptom of different chromosomal abnormalities and 
microdeletion syndromes like Smith-Magenis, Prader-Willi, fragile X, or Moebius 
syndrome. EDS and predominantly cataplexy can be a symptom of neurometabolic 
disorders such as Niemann-Pick type C disease [ 111 ]. Myotonic dystrophy as an 
example of neuromuscular diseases with triplete genetic component and increased 
daytime sleepiness was included in the chapter, too.  

    Secondary Hypersomnia due to Brain Tumors 

 Several studies showed that children treated for CNS tumors have increased somno-
lence, signifi cantly increased fatigue and worsening daily functioning. The sleep 
symptoms did not appear to be directly related to the specifi c therapy the child 
received, nor to the presence of residual tumor. The primary determinant of the 
sleep symptoms lies rather in the area of the damaged brain. Particularly an affec-
tion of the hypothalamic/pituitary region will develop EDS regardless of whether 
the damage resulted from a tumor surgery, hydrocephalus, or radiation aimed at the 
whole brain or was localized in the suprasellar area [ 4 ,  11 – 114 ]. Craniopharyngiomas 
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are the best studied tumor in childhood. Although it is histologically a benign tumor 
arising from remnants of Rathke’s pouch in the hypothalamic-pituitary region, the 
prognosis is not good. The two common treatment approaches include primary total 
resection or limited resection followed by radiotherapy. However, severe late treat-
ment complications decrease the quality of life for many long-time survivors. The 
most frequent complaints are endocrine defi ciency including obesity and visual 
complications followed by neurological complications and signifi cant school prob-
lems [ 115 ]. Increased daytime sleepiness is referred in approximately 30 % of cra-
niopharyngioma patients [ 115 ,  116 ], sometimes with the conventional PSG criteria 
for secondary narcolepsy [ 117 ,  118 ]. Melatonin substitution is recommended on 
daytime sleepiness in childhood craniopharyngioma patients [ 118 ,  119 ].   

    Other Causes of Secondary CNS Hypersomnolence 

 Central hypersomnolence can be a consequence of any endocrine disorder – e.g., 
hypothyroidism. Every sleepy child needs to have screening for thyroid function to 
rule out subclinical hypothyroidism, especially in obese children with sleep- 
disordered breathing [ 120 ]. Also metabolic encephalopathy (of, e.g., hepatic ori-
gin), chronic renal, adrenal, or pancreatic insuffi ciency, can cause increased 
sleepiness [ 3 ]. A high dosage of anticonvulsants in epileptic children and/or antihis-
tamines in children with allergy is the most frequent cause of hypersomnia due to 
sedating medication [ 120 ,  121 ]. Daytime sleepiness can occur in adolescents par-
ticularly with abuse of alcohol, marijuana, and other addictive substances. 
Hypersomnia associated with psychiatric conditions includes mainly mood disor-
ders. Hypersomnolence occurs in 10–20 % of children with major depression, 
sometimes in combination with insomnia. Children and adolescents with depression 
generally manifest more pronounced symptoms, such as anhedonia and weight loss. 
Less frequently increased sleepiness can be associated with conversion or undif-
ferentiated somatoform disorder, accidentally with other mental disorders such as 
schizoaffective disorder, adjustment disorder, or personality disorders [ 3 ].  

    Conclusion 

 Increased sleepiness in children and adolescents is a common feature. In toddlers and 
preschool children, it can be masked by irritability, inattentiveness, emotional labil-
ity, and hyperactive behavior. One of the most frequent causes of EDS is poor sleep 
hygiene with chronic sleep deprivation. However, other sleep disorders with inter-
rupted nocturnal sleep such as sleep apnea syndrome and periodic leg movements 
should be ruled out. Therefore, nocturnal PSG followed by MSLT is a gold standard 
examination for increased sleepiness in children over 6 years. A course of actigraphic 
monitoring is a useful screening method excluding poor hygiene and sleep delayed 
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phase, particularly in adolescents. Central disorders of hypersomnolence like narco-
lepsy are serious and long-lasting diseases that markedly infl uence quality of life. 
The management is diffi cult; almost all effective treatment is for children “off label.” 
Therefore, controlled multicentric clinical trials are needed to verify effective treat-
ment. Another important relation is a close connection between sleepiness and mood 
which is bidirectional. Sleepiness and fatigue can be a symptom of depression, while 
on the contrary, sleepiness frequently leads to changes of mood and behavior. A close 
cooperation between child neurologist, psychiatrist, and psychologist is needed, 
accompanied by understanding from teachers and special educationalists. Daytime 
sleepiness is an important symptom of impaired health during childhood and adoles-
cence; hence, a comprehensive management is desirable.     
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    Chapter 14   
 Parasomnias in Children                     

     Paola     Proserpio       and     Lino     Nobili     

    Abstract     Parasomnias are undesirable physical events or experiences that occur 
during sleep. They are classifi ed on the basis of the sleep stage during which each of 
the parasomnias tends to occur: NREM-related parasomnias also defi ned as disor-
ders of arousal (confusional arousals, sleepwalking, sleep terrors, and sleep- related 
eating disorder), REM-related parasomnias (REM sleep behavior disorder, recurrent 
isolated sleep paralysis, and nightmare disorder), and other parasomnias (exploding 
head syndrome, sleep-related hallucinations, and sleep enuresis). Parasomnias 
include several clinical features, with different complexity of behaviors, usually 
associated with autonomic nervous system changes and skeletal muscle activity. 

 The current pathophysiological theories consider parasomnias as state dissocia-
tion, characterized by the coexistence of wake- and sleeplike activity within cortical 
and subcortical areas of the brain. Although parasomnias are not usually associated 
with a primary complaint of insomnia or excessive sleepiness, they are considered 
clinical disorders because of possible resulting injuries, adverse health, and psycho-
social effects. 

 Most of the parasomnias can be diagnosed based on history alone. Only the REM 
sleep behavior disorder requires video-polysomnographic documentation as one of 
the essential diagnostic criteria. However, polysomnographic recordings can be use-
ful also in other parasomnias especially when the differential diagnosis is diffi cult 
or in the case of suspected comorbidities with other sleep disorders. Patient educa-
tion and behavioral management represent the main treatment approaches to the 
patient with parasomnias. A pharmacological treatment may be useful when epi-
sodes are frequent and persist despite resolution of possible inducing factors, are 
associated with a high risk of injury, or cause secondary consequences.  

  Keywords     Confusional arousals   •   Sleepwalking   •   Sleep terrors   •   REM-related 
parasomnias   •   Sleep enuresis   •   State dissociation   •   Nocturnal frontal lobe epilepsy  
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      Introduction 

 The term “parasomnia” derives from the Greek “para” meaning “around” and the 
Latin “somnus” meaning “sleep” and was coined in 1932 by the French researcher 
Henri Roger who gave a scrupulous descriptions of sleep terror and somnambulistic 
episodes in his monograph entitled “Les Troubles du Sommeil-Hypersomnies, 
Insomnies, and Parasomnies.” 

 In accordance with the third edition of International Classifi cation of Sleep 
Disorder (ICSD3) [ 1 ], parasomnias are defi ned as “undesirable physical events or 
experiences that occur during entry into sleep, within sleep, or during arousal from 
sleep.” There are several possible ways to classify the parasomnias. The most widely 
accepted classifi cation is that suggested by the American Academy of Sleep 
Medicine [ 1 ], which is based on the sleep stage during which each of the parasom-
nias tends to occur (Table  14.1 ).

   The current pathophysiological theories consider parasomnias as state dissocia-
tion, characterized by the coexistence of wake- and sleeplike activity within cortical 
and subcortical areas of the brain. The normally distinct three essential states of 
human consciousness – wake, NREM sleep, and REM sleep – are modulated by a 
complex neural system, with functionally distinct but integrated components, that 
allows an unambiguous separation between these states. However, recent studies 
showed that brain-sleep state may be spatially nonuniform and sleep and wakeful-
ness may not be temporally distinct behavioral states but rather part of a continuum 
resulting from the complex interaction between diffuse neuromodulatory systems 
and intrinsic properties of the different thalamocortical modules [ 2 ]. This interac-
tion may account for the occurrence of dissociated activity across different brain 
structures characterizing both physiological and pathological conditions [ 3 ]. 

 Although these disorders occur predominantly or exclusively during sleep, they 
are not usually associated with a primary complaint of insomnia or excessive 
 sleepiness. However, they are considered clinical disorders because of possible 
resulting injuries, adverse health, and psychosocial effects. The clinical conse-
quences of the parasomnias can affect the patient, the bed partner, or both. 

 Parasomnias include several clinical features, with different complexities of 
behaviors, usually associated with autonomic nervous system changes and skeletal 

   Table 14.1    Classifi cation of parasomnias   

 NREM-related parasomnias 
(disorders of arousal)  REM-related parasomnias  Other parasomnias 

 Confusional arousals  REM sleep behavior 
disorder 

 Exploding head syndrome 

 Sleepwalking  Recurrent isolated sleep 
paralysis 

 Sleep-related hallucinations 

 Sleep terrors  Nightmare disorder  Sleep enuresis 
 Sleep-related eating disorder 

  Reproduced with permission from ICSD3  
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muscle activity. For this reason they are considered a different entity from the 
“sleep-related movement disorders” that include a wide range of predominantly 
simple motoric activities (myoclonic, repetitive, rocking, rhythmic, grinding, 
cramping, fragmentary, dystonic, or dyskinetic movements or tremors) which are 
not usually associated with dream mentation or experiential concomitants. 

 Most of the parasomnias can be diagnosed based on history alone. Considering 
the ten core categories of parasomnias listed in the ICSD3, only the REM sleep 
behavior disorder requires video-polysomnographic documentation as one of the 
essential diagnostic criteria. However, polysomnographic recordings can be useful 
also in other parasomnias especially when the differential diagnosis is diffi cult or in 
the case of suspected comorbidities with other sleep disorders.  

    NREM-Related Parasomnia 

 NREM-related parasomnia or “disorders of arousal” (DoA) are the subgroup of 
parasomnias arising from NREM sleep. Diagnostic criteria from the ICSD3 are 
shown in Table  14.2 . This group is composed of confusional arousals, sleep terrors, 
sleepwalking, and sleep-related eating disorder (SRED). More than one type may 
coexist within the same patient. These parasomnias occur primarily in childhood 
and normally cease by adolescence, but the onset or persistence during adulthood is 
well recognized. Especially in children, they are considered benign phenomena. 
However sometimes DoA can be characterized by complex behavior with poten-
tially violent or injurious features or can result in the complaint of excessive day-
time sleepiness. Evaluation and treatment are therefore recommended for patients 
whose activities are potentially violent or are very disturbing to other family mem-
bers. Finally, because other parasomnias, particularly the REM sleep behavior dis-
order and nocturnal seizures, can perfectly mimic disorders of arousal, extensive 

   Table 14.2    NREM-related parasomnias and diagnostic criteria   

 Criteria A–E must be met 
   A. Recurrent episodes of incomplete awakening from sleep 
   B. Inappropriate or absent responsiveness to efforts of others to intervene or redirect the 

person during the episode 
   C. Limited (e.g., a single visual scene) or no associated cognition or dream imagery 
   D. Partial or complete amnesia for the episode 
   E. The disturbance is not better explained by another sleep disorder, mental disorder, medical 

condition, medication, or substance use 
  Notes  
   1. The events usually occur during the fi rst third of the major sleep episode 
   2. The individual may continue to appear confused and disoriented for several minutes or 

longer following the episode 

  Reproduced with permission from ICSD3  
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video-polysomnographic recordings can provide corroborative documentation in 
support of the clinical diagnosis.

   Considering that SRED occurs almost exclusively during adulthood, this subtype 
of NREM parasomnia will be briefl y described separately at the end of this chapter. 

    Epidemiology 

 NREM parasomnias are generally considered a common pediatric sleep disorder 
that tends to decrease with development. Same individual may experience more 
than one type of arousal parasomnias. However, epidemiological fi gures for these 
co-occurrences are yet to be determined. 

 Almost all children have confusional arousals on occasion; in particular, during 
the preschool age, they frequently experience minor episodes of partial awakening 
from sleep, which might not even come to parental attention. For this reason, epide-
miological studies on confusional arousal are scanty. In children, Laberge et al. [ 4 ] 
found that about 17 % of children between 3 and 13 years are experiencing occa-
sional or frequent episodes of confusional arousals. In another study, Ohayon et al. 
observed that confusional arousal affected 4.2 % of the general population, decreas-
ing from 6.1 % in the 15–24 age group to 3.3 % in the 25–34 and stabilizing around 
2 % after 35 years old [ 5 ]. 

 The prevalence of sleepwalking in children ranges from 3 to 14.5 % [ 6 ,  7 ]; most 
episodes usually resolve after the age of 10 years. A strong familial occurrence has 
often been reported although the genetical basis of this phenomenon has yet to be 
clarifi ed. Recently the fi rst genetic locus for sleepwalking at chromosome 20q12- 
q13.12 has been described [ 8 ]. 

 Sleep terrors have the greatest incidence in preschool children. Laberge et al. [ 4 ] 
reported an overall prevalence of sleep terrors of 17.3 % in children between 3 and 
13 years. In another longitudinal study, the frequency of this sleep disorder was 
39.8 % in age group 2.5–6 years, with a peak at ages 2.5, 3.5, and 4 years [ 7 ]. 

 The prevalence of NREM parasomnias in adults is unknown, but mostly repre-
sents a continuation of episodes after adolescence, sometimes after having been 
symptom-free for several years. A recent population-based cross-sectional study in 
1,000 randomly selected young adults (18 years and older) showed a lifetime preva-
lence of confusional arousals of 18.5 % and actual prevalence (in the previous 
3 months) of 6.9 %. For sleepwalking these prevalences were 22.4 % and 1.7 %, and 
for sleep terrors they were 10.4 % and 2.7 %, respectively [ 9 ].  

    Pathophysiology 

 It is generally considered that disorders of arousal derive from a breakdown of 
boundaries between wakefulness and sleep regulatory systems. Apart from the phe-
nomenon of state dissociation, other mechanisms seem to contribute to the 
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appearance of these sleep disorders, such as activation of innate behaviors and loco-
motor centers, arousal instability, internal and external triggering mechanisms, and 
genetic and psychopathological infl uences. Finally, due to the frequent association 
with perinatal risk factors and developmental comorbidities, a disorder of sleep 
maturation has been also hypothesized [ 10 ]. 

    The Phenomenon of State Dissociation in Arousal Parasomnias 

 Intracerebral stereo-EEG (S-EEG) investigations conducted in epileptic patients 
during the presurgical evaluation have shown that physiological NREM sleep can 
be characterized by the coexistence of wake-like and sleeplike EEG patterns in dif-
ferent cortical areas [ 11 ]. These local cortical activations (lasting on average 5–10 s) 
can occur in the absence of any behavioral manifestation. 

 In 2009, Terzaghi et al. described an episode of a confusional arousal captured 
during a S-EEG exploration. During the event, local fast wake-like EEG activations 
in the motor and cingulated cortices contrasted with the persistence or increase of 
sleeplike delta activities in the frontal and parietal associative cortices [ 12 ]. In a 
more recent study [ 13 ], S-EEG recording during a confusional arousal showed the 
occurrence of a local activation in the motor, cingulate, insular, temporo-polar, and 
amygdalar cortices, while a simultaneous persistence of slow waves was observed 
in the frontal and parietal dorsolateral cortices as well as sleep spindles in the hip-
pocampal cortex. Finally, a third episode of confusional arousal was recently 
recorded in another drug-resistant epileptic patient during a right temporo–parietal–
occipital S-EEG exploration [ 14 ]. Interestingly, the nucleus ventralis intermedius 
(VIM) of the thalamus had also been sampled by one distal electrode contact. 
During the episode, the activity recorded from the VIM showed a slight decrease in 
delta power and a clear-cut emergence of beta activity, which normally character-
izes wake thalamic EEG. 

 Interestingly, the electrophysiological patterns observed in these three cases are 
in accordance with data previously obtained with ictal SPECT in sleepwalking 
which showed decreased regional cerebral blood fl ow in the frontoparietal cortices 
associated with the activation of the cingulate cortex and the absence of a deactiva-
tion of the thalamus during sleepwalking [ 15 ]. 

 From a speculative perspective, typical features of arousal parasomnias could be 
explained by the coexistence of an activation of the amygdalo–temporo–insular 
areas disengaged from the prefrontal control cortex (emotional activation, such as 
fear), with the persistence of the deactivation of the hippocampal and frontal asso-
ciative cortices (amnesia for the event). Interestingly, functional studies have shown 
that sleep deprivation, a condition that can facilitate the occurrence and increase the 
complexity of somnambulistic events recorded during recovery sleep, can induce an 
activation of the amygdala, signifi cantly strengthening its connectivity with auto-
nomic activating centers of the brainstem and reducing the connectivity with the 
prefrontal cortex [ 6 ]. The fundamental cause of “pathological” state dissociation is 
still unknown, but probably infl uenced by genetic and maturational factors. 
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The presence of local dissociated states during physiological sleep could suggest a 
possible adaptive role of this phenomenon. Indeed, a lower arousal threshold during 
NREM sleep in humans may have been selected, because it increases the probability 
of survival, facilitating motor behaviors in the case of sudden awakenings. We could 
hypothesize that subjects with NREM parasomnias could show a pathological 
increased arousability of some local neuronal networks (such as motor and limbic 
cortex), in contrast with an increased sleep pressure in other cortical areas. 
Accordingly, a transcranial magnetic stimulation study found an increased excitabil-
ity of the human motor cortex during wakefulness in a group of sleepwalkers [ 16 ]. 

 There are no defi nitive data about the involvement of specifi c neurotransmitters 
in the pathophysiology of arousal disorders. Sleepwalking may be associated with 
abnormalities in the metabolism of serotonin considering its frequent association 
with migraine and Tourette syndrome and the observation that several factors, 
known to induce the occurrence of sleepwalking, such as fever, lithium, and antide-
pressants, activate the serotoninergic system. Based on the results of a transcranial 
magnetic stimulation study in sleepwalkers, an involvement of cholinergic and 
GABA pathways has been supposed [ 16 ]. Finally, a possible role of the hypocretin 
hypothalamic system, known to play a major role in vigilance state stabilization, 
cannot be excluded.  

    Neurophysiologic Features and Alteration of Sleep Continuity 
in NREM Parasomnias 

 A peculiar feature of subjects who experience NREM parasomnia is the presence of 
increased arousals and cyclic alternating pattern (CAP) rate during slow-wave sleep, 
even on nights without episodes (for detail see “diagnosis” section). The increased 
number of awakenings determines a chronic condition of intra-night slow-wave 
activity (SWA) deprivation that is refl ected in an alteration of NREM sleep continu-
ity and in a different dynamics of SWA throughout the night. Indeed, during the fi rst 
sleep cycles, patients with NREM parasomnia show a decrease of SWA values with 
respect to control subjects and a lack of the typical exponential decaying trend of 
SWA during the consecutive sleep cycles. Moreover, it has been shown that a SWA 
rebound and a normalization of the SWA profi le in sleepwalkers are not obtained 
even after sleep deprivation. Contrarily, sleep deprivation results in more awaken-
ings and an increased frequency of clinical manifestations during recovery sleep 
[ 6 ]. These data suggest that abnormal arousal reactions persist in sleepwalkers even 
after sleep deprivation.  

    Activations of Innate Behaviors and Locomotor Centers 

 Animal and human data seem to suggest that part of the “emotional” and motor 
clinical features of parasomnias could result from a release of inhibition of “central 
pattern generators” (CPGs) [ 17 ]. CPGs are “functional neural organizations” which 
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regulate innate behavioral automatisms and survival behaviors and located in the 
spinal cord, mesencephalon, pons, and bulb. The cortex itself can also operate as a 
CPG, and this could explain the occurrence of previously learned behaviors during 
arousal parasomnias.  

    Genetic Infl uences 

 Genetic factors have long been suggested to be involved in the occurrence of arousal 
parasomnias, although the pattern of inheritance of NREM parasomnias is still 
unknown. About 80 % of sleepwalkers have at least one family member affected by 
this parasomnia, and the prevalence of somnambulism is higher in children of par-
ents with a history of sleepwalking [ 18 ]. A twin study found a concordance rate of 
sleepwalking 1.6 times greater in monozygotic vs. dizygotic twins for childhood 
sleepwalking and approximately 5.3 times greater for adult sleepwalking [ 19 ]. 
A small series indicates that somnambulism may be associated with excessive trans-
mission of the HLA-DQB1∗05 and ∗04 alleles [ 20 ]. Bisulli et al. found a high fre-
quency of arousal disorders in patients with nocturnal frontal lobe epilepsy (NFLE), 
suggesting that both disorders can show an abnormal (possibly cholinergic) arousal 
system as a common pathophysiologic mechanism [ 21 ].  

    Precipitating Infl uences 

 There are different conditions that may induce the occurrence of a dysfunction of the 
limit between sleep and wakefulness, thus triggering the occurrence of arousal para-
somnias. Different studies showed that arousal disorders are more likely to occur in 
genetically predisposed individuals in the presence of an increased pressure for slow-
wave sleep and factors favoring arousals or fragmenting sleep [ 22 ]. Frequently these 
two main triggering factors, sleep fragmentation and sleep deprivation, work together 
in a vicious circle. In particular, factors that deepen sleep encompass different condi-
tions, such as sleep deprivation, fever, and sedative and psychotropic medications 
(non-benzodiazepine hypnotics, antidepressants, neuroleptics, and sodium oxybate). 
On the other hand, sleep fragmentation can be caused by sleep disorder (sleep apnea, 
periodic leg movements), fever, stress, and external stimuli such as noise or touch. 
Finally, an increased incidence of NREM parasomnia in patients with either noctur-
nal or diurnal epilepsy has been reported; the increase of arousal instability induced 
by epileptic discharges may favor the occurrence of NREM parasomnias.  

    NREM Parasomnias and Psychopathology 

 Not all studies agree on the extent that psychological factors may contribute to 
arousal parasomnias. Some studies suggest that NREM parasomnias in childhood 
are mainly related to developmental and genetic predisposing factors, while their 
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persistence or onset in adulthood can be triggered by psychological factors [ 23 ]. An 
epidemiological study demonstrated a high percentage of subjects with concurrent 
diagnoses of parasomnia and mood or anxiety disorders [ 24 ]. On the other hand, the 
observation that a successful treatment of a comorbid depressive disorder in adult 
patients with night terrors and sleepwalking had no effects on the course of para-
somnias seems to suggest that the concurrent psychopathology does not play an 
essential role. Overall current data suggest a lack of a defi nitive association between 
a history of major psychological trauma, severe psychopathology, and sleepwalk-
ing/night terrors.   

    Clinical Features 

 Although representing distinct disorders, some researchers consider NREM para-
somnias as a single continuum, ranging from confusional arousals with low motor 
and autonomic activation, on the one hand, to sleepwalking characterized by intense 
motor activity and mild autonomic activation, on the other hand. According to this 
theory, night terrors fall between these two, with intense autonomic discharge and 
mild motor activation [ 25 ]. Patients who experience one of these three phenomena 
are prone to demonstrate the others as well. In particular, episodes sometimes com-
bine elements of all three, and a child might display a sequence of confusional 
arousals in early childhood and sleepwalking later, followed by sleep terrors in late 
childhood and adolescence. Alternatively, features of all three forms can occur at 
any one stage of development. 

 There are common features to these disorders (Tables  14.3  and  14.4 ). Although 
they may occur during any NREM sleep stage, these events generally occur out of 
deep NREM sleep (N3) and, thus, most often take place in the fi rst third of the night 
when these sleep stages are most represented. Any factor that deepens sleep (sleep 
deprivation, stress, febrile illness, medications, alcohol) or is associated with arous-
als (external or internal stimuli, like the presence of sleep-disordered breathing, 

  Table 14.3    Clinical features 
of NREM parasomnia  

 General clinical features 

 Common in childhood 
 Decrease with increasing age 
 Episodes in the fi rst third of the night 
 A state between sleep and waking during the event, 
disorientation, and confusion 
 Presence of triggering factors 
 Long episode duration (minutes) 
 Minimal recall of the event 
 Strong familial pattern 
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natural termination of a sleep cycle, mental activity, or others) may increase the 
occurrence of NREM parasomnias. During the episode, patients are usually unre-
sponsive to the environment, and they are typically completely or partially amnestic 
after the event, with little or no recall either immediately afterward or the next 
morning. Finally, the presence of a positive family history is another aspect helpful 
to identify NREM parasomnia.

       Confusional Arousal 

 Confusional arousals are defi ned as episodes characterized by mental confusion or 
confused behavior that occurs while the patient is in bed, in the absence of terror or 
ambulation outside of the bed [ 1 ]. 

 They occur mainly in infants and toddlers (probably most of whom have such 
episodes to some extent, at least in mild form) and almost invariably before the 
age of 5. 

 An episode may begin with mumbling, moaning, or whimpering, gradually 
increasing movements which then progress to agitated and confused behavior with 
marked perspiration, crying (perhaps intense, but not screaming), calling out, or 
thrashing about. Sometimes this causes the child to fall out of bed, although injuries 
are less likely than in the other arousal disorders. The child’s eyes may be open or 
closed. Talking may also occur. The child may be partially aware of the environment 
and thus may be confused and combine reality with imagination, e.g., the child may 
sit up in the bed and put a toy in his mouth thinking that it is a dummy/pacifi er. 
Typically, although appearing to be awake, the child does not respond when spoken 
to and may seem to “stare right through” his parents. Any forceful attempts to inter-
vene may meet with severe resistance and even aggression. 

 Each episode usually lasts 5–15 min (sometimes much longer) before the child 
calms down spontaneously and returns to restful sleep. Enuresis may occur during 
or after an episode.  

   Table 14.4    A comparison of different clinical features of NREM parasomnia   

 Confusional arousal  Sleepwalking  Sleep terror 

 Age of onset  2–10 years  4–12 years  18 months–10 years 
 Peak time of 
occurrence 

 First third of night  First third of night  First third of night 

 Ictal behavior  Whimpering, some 
articulation, sitting up 
in bed, inconsolable 

 Screaming, 
agitation, fl ushed 
face, sweating, 
inconsolable 

 Walking about the room or 
house, may be quiet or 
agitated, unresponsive to 
verbal commands 

 Motor activity  Low  Complex  Rarely complex 
 Autonomic activity  Low  Mild  Intense 
 Complications  Rare (aggressions)  Possible (violence)  Occasional (escape) 
 Typical duration  <1 min  1–20 min  5–20 min 

14 Parasomnias in Children



314

    Sleepwalking 

 Sleepwalking is a series of complex behaviors that are usually initiated during 
arousals from slow-wave sleep and culminate in leaving the bed in an altered state 
of consciousness. 

 Actually, sleepwalking, also known as somnambulism, can consist of very complex 
motor activity, of which walking is just one element. Indeed, the symptoms and mani-
festations that characterize sleepwalking can show great variations both within and 
across predisposed patients. Movements can be repetitive and purposeless (e.g., sitting 
up in bed, pointing at a wall, fi ngering bedsheets) but also complex and meaningful 
(e.g., rearranging furniture, cooking or eating, getting dressed, etc.). Eyes are usually 
open and the sleepwalker’s emotional expression can range from calm to extremely 
agitated. Given the heterogeneous nature of sleepwalking episodes, their duration can 
vary from a few seconds to dozens of minutes. Associated mental activity often includes 
misperception and relative unresponsiveness to external stimuli, confusion, perceived 
threat, and variable retrograde amnesia [ 6 ]. In a signifi cant proportion of patients, short, 
unpleasant dreamlike mentations may occur during sleepwalking episodes [ 26 ]. 

 Episodes of sleepwalking in children are rarely violent and their movements are 
often slow. If restrained, the child may attempt to avoid the other person but does not 
put up aggressive resistance. On the other hand, the most serious complication of 
sleepwalking in adulthood is represented by injuries and violent behavior; the num-
ber of legal cases of sleep-related violence involving sleepwalking is on the rise [ 22 ].  

    Sleep Terrors 

 Sleep terrors are characterized by episode of extreme fear or terror and agitation with 
prominent motor activities that arise abruptly from sleep. The episode begins sud-
denly with vocalization, which can be screaming or crying, sometimes associated 
with sitting up in bed, thrashing, agitation, confusion, a facial expression of fear, and 
sympathetic activation (tachycardia, fl ushing, mydriasis, and sweating). Patients are 
only partially responsive to the environment during episodes, and there is little or no 
recall of the event the morning after the event. Cases reported with violent behaviors 
appear related more to involuntary contact or provocation by another person, particu-
larly if attempts are made to block or restrain the individual [ 27 ]. 

 Sleep terrors usually last a few minutes but can range anywhere from 30 s to 
30 min. They can occur more than once a night and up to several times per week.   

    Diagnosis 

 As in other sleep disorders, the fi rst step in a clinical encounter with a patient with 
abnormal behaviors when asleep is taking a good history. An adequate general and 
hypnic anamnesis with the patient and bed partner is paramount, taken directly or 
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aided by a questionnaire. There are no available standardized sleep questionnaires 
for parasomnias; however, other associated symptoms can be assessed by this 
modality. Sleep questionnaires can be helpful to the physician to collect more 
quickly extensive information regarding sleep–wake habits. For examples of screen-
ing questionnaires for pediatric sleep, see Owens et al. and Archbold et al. [ 28 ,  29 ]. 
Sleep diaries can highlight irregularities of sleep/wake schedules and help deter-
mine whether episodes are triggered by sleep deprivation. Finally, a videotape of a 
typical episode recorded by parents at home may be very helpful to the clinician. 

 A clear clinical history can be suffi cient to diagnose the presence of NREM 
parasomnia in the majority of cases, but in others only video-polysomnographic 
(vPSG) recording can clarify the nature of the disorder. Indeed, although accord-
ingly with the ICSD3, vPSG is not necessary for the diagnosis of arousal disor-
ders, this diagnostic technique is recommended: (1) in cases in which the clinical 
history is not completely suggestive of NREM parasomnia; (2) in the presence of 
injurious or extremely disruptive behaviors; (3) when there may be associated 
sleep disorder (sleep apnea, periodic limb movement, etc.); or (4) when the para-
somnia is associated with medical, psychiatric, or neurological symptoms or 
fi ndings [ 30 ,  31 ]. 

 There are no consistently robust features in terms of overall sleep architecture 
and normal cycling among sleep stages that can result highly suggestive of patients 
with NREM parasomnia. However, some unusual sleep-related features have been 
described as characterizing the sleep of patients suffering from arousal disorders. 
These include hypersynchronous delta waves, irregular buildup of slow-wave activ-
ity, and NREM sleep instability. 

 The hypersynchronous delta (HSD) activity is defi ned as continuous high- 
voltage (>150 microV) delta waves occurring during slow-wave sleep (Fig.  14.1 ) or 
immediately prior to an episode [ 32 ] and has been investigated for a long time as a 
possible diagnostic sign of a NREM parasomnia. However, careful studies analyz-
ing HSD prior to arousal disorder episodes have yielded mixed to poor results [ 32 , 
 33 ]. Indeed, an increased number of HSD have been reported, but HSD was absent 
in many sleepwalkers before episodes of complex behaviors [ 34 ]. Additionally, 
HSD is also present in patients without history of sleepwalking but with sleep apnea 
or periodic leg movements [ 33 – 35 ]. In summary, data indicate that this electroen-
cephalographic pattern does not appear to be a sensitive or specifi c diagnostic sign 
for a NREM parasomnia in adults and even less in children [ 27 ].

   The sleep of patients with arousal disorders is characterized by an inability to 
maintain consolidated periods of slow-wave sleep probably due to an abnormality 
in the neural mechanisms responsible for the regulation of this sleep stage [ 36 ]. The 
increased frequency of somnambulic episodes during post-deprivation recovery 
sleep confi rms the view that sleepwalkers suffer from a dysfunction of the mecha-
nisms responsible for sustaining stable slow-wave sleep [ 37 ]. 

 The cyclic alternating pattern (CAP) is a phenomenon of changing patterns in 
sleep that often cycle and alternate every 20–30 s and expresses the organized com-
plexity of arousal-related phasic events in NREM sleep, thus representing a mea-
sure of NREM instability [ 38 ,  39 ]. Recently this pattern has been studied in patients 

14 Parasomnias in Children



316

with NREM parasomnia. The important fi nding was a higher CAP rate in patients 
with sleepwalking/sleep terrors in comparison with controls; the instability of 
NREM sleep in these patients was present also during non-sleepwalking nights [ 37 , 
 40 ,  41 ]. Similarly, polysomnographic recordings have shown that, compared with 
controls, sleepwalkers experience a higher number of microarousals and arousals 
during slow-wave sleep [ 42 ]. 

 In summary, these data indicate that NREM parasomnias are characterized by an 
increase in NREM sleep instability and arousal oscillations together with an inabil-
ity to maintain stable and consolidated slow-wave sleep (for more details see 
Pathophysiology section).  

    Differential Diagnosis 

 NREM parasomnia needs to be distinguished from other parasomnias (in particu-
lar RBD and nightmare disorder), nocturnal panic attacks, and sleep-related 
seizures. 

  Fig. 14.1    Sleep EEG recording of an episode of confusional arousal in an 8-year-old child, occur-
ring in N3 sleep stage. Notice the presence of a burst of delta waves immediately preceding the 
onset of the episode (corresponding to the increase of muscle tone) and the persistence of a hyper-
synchronous delta activity mainly expressed over the frontal regions.  EOG  electrooculogram, 
 MILO  chin,  ECG  electrocardiogram,  DELT SX  left deltoid muscle,  DELT DX  right deltoid muscle, 
 TIB SX  left anterior tibial muscle,  TIB DX  right anterior tibial muscle       
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    REM Behavior Disorder (RBD) 

 There is often considerable overlap of features between the disorders of arousal 
(in particular sleepwalking) and the RBD. However, this overlap can be 
observed much more frequently in adults than in children, where RBD is very 
rare. In general, the main features that allow distinguishing RBD from 
an arousal disorder are the dream enactment behavior, the usual occurrence 
during the second half of the night, and the absence of mental confusion upon 
awakening. Some patients may meet the diagnostic criteria for both NREM and 
REM parasomnias; these patients are diagnosed with “parasomnia overlap 
disorder.”  

    Nightmares 

 Nightmares can sometimes resemble sleep terrors (for differential diagnostic fea-
tures, see Table  14.5 ). Nightmares occur within REM sleep and are therefore more 
prominent in the second half of the night; children arousing from a nightmare usu-
ally become fully alert quickly, respond positively to comforting, and may offer a 
detailed description of dream content after awakening the following morning. 
Compared to sleep terrors, nightmares are characterized by lower levels of auto-
nomic activation (e.g., palpitations or dyspnea), vocalization, and mobility, but are 
often associated with much more anxiety and subsequently diffi culty returning to 
sleep [ 43 ,  44 ].

   Table 14.5    Differential diagnosis between sleep terror and nightmares   

 Sleep terror  Nightmares 

 Peak time of 
occurrence 

 First third of the night (from SWS)  Last third of the night (from 
REM sleep) 

 Sex  Males > females  In children males = females 
 Age  4–12 (peak at 5–7)  Any age (frequent at age 3–6) 
 Prevalence  3–4 % in children  10–20 % in children 
 Ictal behavior  Heartbreaking cry, screams  Scary awakening 
 Consciousness  Disoriented, confused  Fully alert after awakening 
 Vocalization  Common  Rare 
 Autonomic activity  Intense  Low/mild 
 Amnesia  Frequent  Absent 
 Dream recall  Absent  Present (scary vivid dream) 
 Familial history  Present  Absent 
 Complications  Potentially injurious and violent  Rarely injurious or violent 
 Predisposing factors  Sleep deprivation, febrile illness  Stress, traumatic events, 

personality disorders 
 Treatment  Safety, avoid predisposing factors, 

benzodiazepines 
 None, psycho-/behavioral 
therapy 
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       Nocturnal Panic Attacks 

 Nocturnal panic attacks consist in waking from sleep in a state of panic, with intense 
fear or discomfort. They are frequent in patients with panic disorder, with 44–71 % 
reporting at least one such attack, and sometimes they can be hardly distinguishable 
from sleep terrors [ 45 ]. As sleep terrors, they can more frequently occur in the fi rst 
third of the night, during late stage 2 or early stage 3 sleep. However, sleep panic 
attacks can be distinguished from arousal disorders because patients do not become 
physically agitated or aggressive during the attack; moreover, immediately after the 
episodes, they appear oriented, can vividly recall their attack, and usually have dif-
fi culty returning to sleep [ 45 ].  

    Nocturnal Frontal Lobe Epilepsy 

 Nocturnal frontal lobe epilepsy (NFLE) is a syndrome of heterogeneous etiology, 
encompassing genetic, lesional, and cryptogenetic forms [ 46 – 48 ]. NFLE is usually 
considered a benign clinical epileptic syndrome because seizures occur almost 
exclusively during sleep, and in the majority of patients, the pharmacological treat-
ment is effective; however, severe and drug-resistant forms, occasionally associated 
with mental retardation, have been described [ 49 ]. 

 During 1990s, the defi nition of autosomal dominant nocturnal frontal lobe epi-
lepsy (ADNFLE) was introduced for the fi rst time because of the observation of 
the occurrence of sleep-related motor seizures in different individuals of the same 
family [ 50 ]. 

 The fi rst genetic studies in ADNFLE families identifi ed different mutations in 
the gene coding for neuronal nicotinic acetylcholine receptors (nAChRs). In the fol-
lowing years, ADNFLE was quickly recognized as a genetically heterogeneous dis-
order as most of the described families show mutations in different genes, not 
involved in the cholinergic system (for a review see Nobili et al. [ 48 ]). 

 The fi ndings of a genetic alteration of the cholinergic system may give some 
insights into understanding the pathogenesis of this disorder. Indeed, the nAChR is 
known to exert a modulating effect in the regulation of NREM and REM stability 
and of arousal oscillations. On the other hand, a mutation of the nicotinic receptors 
has shown to facilitate the occurrence of an unbalanced excitation/inhibition cir-
cuitry within the GABAergic reticular thalamic neurons, thus generating seizures 
through the synchronizing effect of spontaneous oscillations in thalamocortical con-
nections [ 51 ]. Thus, it seems that a genetic alteration observed in NFLE might facil-
itate both the epileptogenesis and the occurrence of arousal instability [ 52 ]. With 
these assumptions, the high prevalence of parasomnias in the personal and family 
history of individuals with NFLE [ 21 ] might rely on a common alteration of the 
arousal regulating system. 

 Considering the clinical aspects, in NFLE patients seizures usually begin before 
the age of 20 years, with a peak during childhood, although onset during adulthood 
has been also reported; seizure frequency is usually high. A distinctive characteristic 
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of NFLE, common to the sporadic and the familial form, is that, in the space of a 
single night, NFLE patients may show a large number of different sleep-related 
motor attacks of increasing complexity and duration. These include:

    1.    Short-lasting (2–4 s) stereotyped movements involving the limbs, the axial mus-
culature, and/or the head [ 53 ].   

   2.    Paroxysmal arousals (PAs), characterized by abrupt episodes of arousals (5–10 s 
in duration) sometimes accompanied by stereotyped movements, vocalization, 
frightened expression, and fear [ 54 ].   

   3.    Major attacks, lasting 20–30 s, characterized by asymmetric tonic or dystonic 
posturing or complex movements such as pelvic thrusting, pedaling, choreoath-
etoid, and ballistic movements of the limbs [ 47 ].   

   4.    Epileptic nocturnal wandering, consisting of ictal deambulatory behaviors often 
associated with frightened expression and fear [ 55 ].     

 In recent years it has been shown that sleep-related complex motor attacks may 
also originate from the temporal lobe [ 56 ,  57 ], the insular–opercular region [ 58 ], 
and the posterior cerebral regions [ 59 ]. 

 Considering the electrophysiological features, interictal and ictal scalp EEG 
abnormalities in NFLE patients are often scanty or absent, probably due to the inac-
cessibility of much of the frontal lobes to surface electrodes and to the presence of 
movement artifacts related to seizures [ 47 ,  49 ]. 

 Taking into account the similarities and the possible coexistence of parasomnias 
in people with NFLE, the differential diagnosis between these disorders appears 
sometimes complicated, especially if it is only based on anamnestic investigations. 
A reliable semeiological description of motor events occurring during the night is 
often diffi cult to collect from a witness or sleep partner because observers may be 
lacking or, if present, not fully reliable or awake when attacks occur. 

 Main anamnestic differences between NFLE and NREM parasomnias are sum-
marized in Table  14.6 .

   Different questionnaires and scales have been reported in the literature to help 
differentiate these disorders on the basis of clinical features. Indeed, in 2006 Derry 
et al. [ 60 ] developed the frontal lobe epilepsy and parasomnia (FLEP) scale in order 
to establish how reliably features from the history might distinguish NFLE from 
parasomnias. Although initially reported to have a sensitivity of 1 and specifi city of 
0.9, Manni et al. [ 61 ] challenged the usefulness of the scale after studying a tertiary 
sleep center population. They found that the FLEP scale risked misdiagnosing some 
patients, especially NFLE subjects presenting episodes of nocturnal wandering. 
More recently, Bisulli et al. [ 62 ] identifi ed two major anamnestic patterns (i.e., dys-
tonic posturing or hyperkinetic behavior) for NFLE diagnosis with a high specifi c-
ity and unsatisfactory sensitivity. In addition, they found four minor features that 
may increase the specifi city of these clinical items when associated with one of the 
two major patterns: unstructured vocalization, experience of an aura preceding the 
motor attack, duration less than 2 min, and a history of tonic–clonic seizures during 
sleep. This study confi rms the weakness of the clinical history alone in differentiat-
ing NFLE from parasomnias and underlines the need of future efforts to develop a 
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reliable algorithm to aid physicians in the diagnostic process of paroxysmal motor 
sleep disorders. 

 Many experts consider vPSG the “gold-standard” test for diagnosing paroxysmal 
sleep-related events, but it is expensive, with a limited availability, and does not 
always capture the event in a single-night recording. Moreover, interictal EEG fail 
to disclose epileptiform abnormalities in a substantial percentage of NFLE patients 
[ 49 ]. Conversely, interictal epileptiform abnormalities may occur in some parasom-
nias. Finally, even when the nocturnal episode has been recorded, the diagnosis can 
remain doubtful because ictal scalp EEG often fails to disclose epileptiform abnor-
malities or because the episode captured is a minor motor event for which the diag-
nosis is not reliable, even among experts. 

 To make video analysis of nocturnal paroxysmal events more reliable, a diag-
nostic algorithm focusing on the semeiological features of the arousal parasom-
nias and NFLE has recently been proposed [ 63 ]. In their work, Derry et al. 
noticed that the discrepancy between historical account and recorded events was 
more evident in NREM parasomnias than in NFLE. Moreover, the clinical fea-
tures of the initial arousal behaviors (abrupt or slow movements) were indistin-
guishable between the two conditions, thus confi rming that epileptic minor 
events and paroxysmal arousals cannot be easily differentiable from non-epilep-
tic events on the basis of video- EEG analysis. In contrast, the clinical features of 
the evolution and the offset of the events could better differentiate NFLE from 
parasomnias. Finally, the presence of a coherent speech and a verbal interaction 
with the neighboring individuals during the episode, the possibility to modify the 
event by the actions of individuals present, and the absence of a clear and distinct 
offset of the attack seemed to be highly indicative of a NREM parasomnia. 

   Table 14.6    Differential diagnosis between NREM parasomnia and nocturnal frontal lobe epilepsy   

 NREM parasomnia  NFLE 

 Age at onset  3–8 years  Any age (peak in childhood) 
 Familial history  Frequently present  Possible 
 Peak time of occurrence  Usually during the fi rst third  Any time 
 Sleep-stage onset of 
episodes 

 NREM sleep (usually N3)  NREM sleep (usually N2) 

 Frequency during one 
night 

 Usually one episode/night  Several episodes/night 

 Frequency  Sporadic  Almost every night 
 Duration  1–10 min  Seconds to 3 min 
 Evolution  Tend to disappear  Stable, increased frequency, rare 

remission 
 Predisposing factors  Frequent (sleep deprivation, 

febrile illness) 
 Rare 

 Stereotypic motor pattern  No  Yes 
 Consciousness  Usually impaired  Usually preserved 
 Amnesia  Frequent  Unconstant 
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Despite the limits of vPSG, the possibility of analyzing the video of the nocturnal 
attack remains an important diagnostic tool, making home video recording a use-
ful adjunct [ 64 ].   

    Treatment 

 To date, no properly powered randomized controlled trials assessing medical and 
psychological treatment effi cacy have been conducted in patients with NREM para-
somnia. Indeed, current treatment recommendations are based only on small clini-
cal trials as well as clinical and anecdotal evidence [ 65 – 67 ]. Patients should 
therefore be advised that prescribed drugs are considered “off-label.” 

 Parasomnic attacks in healthy children and adolescents are often benign and nor-
mally require no treatment. Reassuring the patient and signifi cant others about the 
generally benign nature of the episodes is sometimes suffi cient. Especially in the 
case of sleepwalking, environmental safety issues should be discussed with the par-
ents and represent a fi rst-line approach. Physicians should always evaluate the pos-
sible presence of favoring and precipitating factors, including inadequate lifestyle, 
coexisting sleep disorders, and drugs. Pharmacotherapy should be considered only 
when the episodes are frequent or dangerous to the patient or others or when they 
cause undesirable secondary consequences, such as excessive daytime sleepiness, 
or cause distress to the patient or family. 

    Reassurance and Environmental Safety 

 In the majority of NREM parasomnic episodes during childhood, the most disturb-
ing characteristics may sometimes be limited to what is experienced by an observ-
ing parent. In these cases, reassurance on the typically benign nature of episodes is 
often enough. Relatives should be also aware that most affected children outgrow 
the condition by late adolescence or sooner. 

 Moreover, parents should avoid any attempt at interrupting the episode because 
this practice may increase confusion and precipitate a dramatic or even violent 
 reaction. Indeed, efforts to shorten parasomnic events may lead to aggressive behav-
iors because of the physical proximity and provocation [ 27 ,  68 ]. It is preferable to 
wait until the episode is over and then guide the child quietly back to bed [ 67 ]. 

 Modifi cations of the environment may be necessary depending on the characteris-
tics of the episodes to minimize the risk of injury. Safety recommendations should be 
addressed and tailored to each individual. Preventive measures can include locating 
the patient’s bedroom on the ground fl oor, blocking access to stairs and kitchen, cov-
ering windows with heavy curtains, placing mattresses on the fl oor, using sleeping 
bags to reduce wandering, and eliminating any potentially dangerous objects [ 43 ,  67 ]. 

 Bedroom door alarms may be used to signal the occurrence of a wandering epi-
sode; however it has been shown that a loud stimulus can worsen the behavior of the 
sleepwalker [ 69 ].  
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    Predisposing and Triggering Factors 

 As mentioned above, all the conditions increasing the amount of slow-wave sleep 
increase the likelihood of occurrence a parasomnic episode [ 70 ]. Indeed, a careful 
history about sleep patterns and duration should be collected, including evaluation 
of the night-to-night stability of sleep achieved, periods of relative sleep depriva-
tion, occurrence of recuperative sleep, and nap history [ 43 ]. Sleep hygiene should 
be recommended, including advising routine naps for children <4 years of age to 
ensure adequate sleep. 

 Moreover, considering that arousal induced by whatever external or internal 
stimuli (noise, light, pain, nocturia) could precipitate an episode, specifi c measures 
to identify and remove these triggers will lessen the arousals and consequently help 
in resolution of the parasomnias [ 67 ,  71 ]. In particular, when parasomnic episodes 
become frequent and intractable or are associated with daytime mood or behavioral 
disturbance, the possibility of comorbid sleep disordered, especially sleep apnea, 
but also periodic limb movements and gastroesophageal refl ux, must be recognized 
and treated [ 67 ,  71 ].  

    Non-pharmacological Treatment: Psychological Interventions 
and Anticipatory Awakenings 

 A variety of non-pharmacological treatments has been recommended for long-term 
management of NREM parasomnias, including hypnosis, autogenic training, 
relaxation therapy, psychotherapy, and cognitive behavioral therapy. However, the 
evidence for these methods is based mainly on anecdotal data and case reports 
[ 67 ]. Hypnosis (including self-hypnosis) has been found to be effective in both 
children and adults presenting with chronic sleepwalking and sleep terrors [ 72 , 
 73 ]. However, hypnosis in children can be often diffi cult, and individuals show 
varying degrees of susceptibility for this therapeutic approach. 

 Anticipatory awakening or scheduled awakening is another behavioral tech-
nique that can be recommended as an effective therapy when the episodes 
occur nightly and consistently at or about the same time each night. Since 
arousal parasomnia tends to be clustered into the first third of night sleep, in 
particular during slow-wave sleep, momentary awakening of the child by the 
parents, 15–20 min prior to the usual time of occurrence, may shift the child 
into a lighter state of sleep, thereby aborting the event. During the scheduled 
awakening, the parent should comfort the child. Anticipatory awakening seems 
to be effective in about 60 % of cases [ 66 ]. This technique can represent 
an important therapeutic option, particularly if the family is reluctant to admin-
ister a drug to the child and inclined toward non- pharmacologic management. 
The disadvantages are that it requires nightly vigil and intervention by the 
parents; also, sometimes the interruption itself may provoke a frank parasom-
nia [ 66 ].  
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    Pharmacological Treatment 

 Clinicians should consider therapy only if the episodes cause undesirable secondary 
consequences, such as excessive daytime sleepiness, or cause distress to the patient 
or family. Pharmacologic interventions include benzodiazepines such as diazepam 
5–10 mg or clonazepam 0.5–2 mg [ 74 ] and tricyclics such as imipramine or clomip-
ramine [ 67 ]. The effectiveness of benzodiazepines may relate to sedative effects or 
to decreases in slow-wave sleep. 

 Other serotoninergic antidepressants, in particular paroxetine, have been 
reported to be particularly effective in the treatment of sleep terrors. On the other 
hand, paroxetine has been shown to favor episodes of sleepwalking thus suggesting 
possible distinct pathophysiological mechanisms between sleep terrors and sleep-
walking [ 74 ]. 

 An open pharmacological trial of  L -5-hydroxytryptophan (2 mg/kg at bedtime) 
suggests its effi cacy in the treatment of sleep terrors.  L -5-Hydroxytryptophan is a 
precursor of serotonin that may modify central serotoninergic system dysfunction 
or enhance production of sleep-promoting factors [ 75 ]. Finally, some case studies 
have suggested that melatonin therapy, at 5 mg, half an hour before bedtime, may be 
helpful for patients with sleepwalking and sleep terrors [ 76 ].    

    Sleep-Related Eating Disorder (SRED) 

 SRED consists of “recurrent episodes of involuntary eating and drinking during 
arousals from sleep, associated with diminished levels of consciousness and subse-
quent recall, with problematic consequences” [ 1 ]. Episodes typically occur during 
partial arousals from sleep during the fi rst third of the night, with impaired subse-
quent recall [ 77 ]. This disorder is potentially harmful; problematic features of the 
recurrent sleep-related eating include the following: consumption of abnormal com-
binations of food or toxic substances, sleep-related injurious behaviors performed 
while in pursuit of food [ 78 ,  79 ], adverse health consequences (weight gain, various 
metabolic problems), and daytime sleepiness. 

 The prevalence of SRED in the general population is unknown. Winkelman et al. 
reported that 16.7 % of individuals who were part of an inpatient eating disorder 
program, 8.7 % of those in an outpatient eating disorder program, 4.6 % of college 
students, 1.0 % of obese individuals in a weight loss program, and 3.4 % of those in 
an outpatient depression clinic reported behavior consistent with SRED [ 80 ]. SRED 
is found predominantly in women, and the average age of onset is approximately 
22–27 years, with a mean of approximately 12–16 years before clinical presentation 
[ 80 ,  81 ]. 

 A history of other parasomnias, especially sleepwalking, is frequently reported. 
Patients with SRED share several clinical commonalities with sleepwalkers plus 
previous or current eating behavior problems. It suggests that they have specialized 
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a former sleepwalking behavior toward sleep-related eating because they are more 
vulnerable to eating behavior problems during the daytime [ 82 ]. 

 Other sleep disorders can be associated with SRED, in particular restless legs 
syndrome (RLS), periodic limb movement of sleep (PLMS), and sleep apnea [ 80 , 
 81 ]. Most of these sleep disorders can increase arousals during sleep and precipitate 
NREM parasomnia episodes in predisposed individuals. Several psychiatric condi-
tions have been associated with SRED, including depression, bipolar disorder, anxi-
ety, posttraumatic stress disorder, and history of repeated abuse. Finally, many drugs 
have been implicated in the initiation of SRED, including zolpidem, triazolam, ami-
triptyline, olanzapine, and risperidone [ 83 ]. 

 Considering the management of SRED, a treatment of possibly associated sleep 
disorders is essential. Some drugs have been reported to be effective for the treat-
ment of SRED such as topiramate and dopaminergic agents alone or in combination 
with benzodiazepines (mainly clonazepam) or opiates [ 83 ,  84 ].  

    REM-Related Parasomnia 

    REM Sleep Behavior Disorder (RBD) 

 Physiologic REM sleep is characterized by an activated brain state in combination 
with skeletal muscle paralysis. In RBD, normal atonia is lost, and patients present 
recurrent episodes of dream-enacted behaviors that can vary from small hand move-
ments to violent activities, such as punching, kicking, or leaping out of bed. RBD is 
also associated with electromyography (EMG) abnormalities during REM sleep, 
including an excess of muscle tone and/or an excess of phasic EMG twitch activity 
during this sleep stage. A change in the pattern and frequency of dream recall is 
frequently described, and dreams can often have a negative emotional content. 
Accordingly with ICSD3, RBD requires polysomnography for making a diagnosis 
[ 1 ]. The key features of RBD on polysomnography are preserved chin electromyo-
graphic tone, or “REM sleep without atonia” (RSWA), and video evidence of motor 
dream enactment in the form of increased physical activity, including aggressive or 
violent behaviors. 

 RBD has been considered for a long time a parasomnia that occurs almost exclu-
sively in elderly men. However, it is now recognized as a disorder of all ages and 
both sexes. In adults, there is clear association of RBD with synucleinopathic 
degenerative disorders such as Parkinson disease, dementia with Lewy bodies, and 
multiple system atrophy. In a minority of cases, RBD represents a side effect of 
treatment with drugs such as antidepressants (tricyclics, selective serotonin reuptake 
inhibitors (SSRIs), and selective noradrenaline reuptake inhibitors) and lipophilic 
beta-blockers. Different animal and human studies have suggested that lesions or 
dysfunction in REM sleep and motor control circuitry in the pontomedullary struc-
tures cause RBD phenomenology, and degeneration of these structures might 
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explain the presence of RBD years or decades before the onset of parkinsonism or 
dementia in people who develop neurodegenerative disorders [ 85 ]. 

 Cases of RBD in childhood and adolescence are very infrequent, and the litera-
ture is composed only of single case reports or small case series [ 86 – 88 ]. Because 
of the rarity of these forms and the lack of long-term follow-up data, little is known 
about the natural history of early-onset RBD. RBD in children is virtually never 
idiopathic and is usually associated with narcolepsy or idiopathic hypersomnia, 
neurodevelopmental–neurodegenerative disorders, or structural brainstem 
 abnormalities or represents a side effect of pharmacological agents, such as SSRI 
agents (Table  14.7 ).

   RBD can occur in both children and adults with narcolepsy [ 89 ]. The prevalence 
of this parasomnia in narcolepsy, especially when associated with cataplexy, seems 
to be high, ranging from 36 to 60 % [ 90 ,  91 ]. RBD usually develops after hypersom-
nia and cataplexy onset; however, in a very few patients, especially during child-
hood, RBD can represent the fi rst manifestation of the disease [ 92 ]. RBD in 
narcoleptic patients shows some distinct phenotypic features with respect to other 
RBD patients [ 90 ]. In particular, clinical severity is usually less aggressive and vio-
lent with a predominance of elementary jerks rather than complex behaviors and 
vocalizations; moreover there is no male predominance and an earlier onset. It has 
been hypothesized that hypocretin/dopaminergic system defi ciency may lead to 
motor dyscontrol during REM sleep in narcolepsy, as hypocretin/dopaminergic 
neurons have wide projections to different nuclei that regulate REM sleep atonia 
(e.g., subcoeruleus nucleus) and the emotional content of dreams (e.g., central 
nucleus of the amygdala) [ 88 ]. 

  Table 14.7    Etiology of rapid 
eye movement sleep behavior 
disorder in childhood  

 Hypersomnias of central origin 
   Narcolepsy type 1 
   Narcolepsy type 2 
   Idiopathic hypersomnia 
 Neurodevelopmental–neurodegenerative disorders 
   Autism 
   Attention defi cit disorder 
   Smith–Magenis syndrome 
   Moebius syndrome, juvenile 
   Parkinson disease 
   Tourette syndrome 
   Neurofi bromatosis type 1 
 Structural brainstem abnormalities 
   Pontine glioma 
   Chiari malformation type 1 
 Drugs 
   Selective serotonin reuptake inhibitors 
   Tricyclic antidepressants 
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 In another group of patients, childhood RBD is associated with neurodevelop-
mental disabilities, such as autism. In autistic children, a decrease activation of 
GABA transmission has been described. GABA represents the main neurotransmit-
ter of the ventral gigantocellular nucleus, and its decrease might predispose to a loss 
of the inhibition of spinal motor neurons during REM sleep [ 88 ]. 

 Finally, RBD can be induced by specifi c drugs, such as selective serotonin reup-
take inhibitors. During physiologic REM sleep, the serotoninergic neurons descend-
ing to motor neurons cease fi ring, leading to hypotonia. In this perspective, drugs 
that stimulate the serotonin system can induce RBD, possibly because they prevent 
normal sleep-related hypotonia [ 85 ]. 

 RBD treatment is basically symptomatic. The main indications for RBD man-
agement encompass the preventive measures, a reevaluation of drugs that can pre-
cipitate or worsen RBD, and the use of drugs aimed at blunting the motor-behavior 
manifestations. Although no randomized double-blind trials exist, two agents have 
been shown to be benefi cial: clonazepam (0.5–2 mg at bedtime) and melatonin 
(3–12 mg at bedtime). Clonazepam seems to have a suppressing effect on phasic 
locomotor activity and a positive infl uence on mental dream activity. The mecha-
nism by which melatonin can restore the REM-related muscle atonia remains sub-
stantially unknown. 

 Considering childhood RBD, treatment is either not mentioned in some reports 
or given at unspecifi ed dosages; however, in the short term, it seems to be modestly 
responsive to benzodiazepines or melatonin [ 88 ].  

    Recurrent Isolated Sleep Paralysis 

 Recurrent isolated sleep paralysis (RISP) is defi ned as “an inability to perform vol-
untary movements at sleep onset (hypnagogic or predormital form) or on waking 
from sleep (hypnopompic or postdormital form) in the absence of a diagnosis of 
narcolepsy” [ 1 ]. During the episodes consciousness is preserved and full recall is 
present. Hallucinations such as a feeling of the presence of others nearby, pressure 
on the chest, or hearing footsteps are common. A single episode usually lasts sec-
onds to minutes and spontaneously resolves or can be halted by external auditory or 
tactile stimulation from a bed partner. The sensation of being paralyzed can cause 
intense anxiety. Although diaphragmatic function is not affected, diffi culties in 
breathing may be reported. 

 RISP is considered to represent a condition of state dissociation, with a persis-
tence of REM sleep into wakefulness. 

 Due to the differences in the defi nition used and in sampling methods, esti-
mates of the prevalence vary widely, between 6 and 40 %. The lifetime preva-
lence of sleep paralysis, based on a large systematic review, is estimated to be 
7.6 % of the general population, 28.3 % of students, and 31.9 % of psychiatric 
patients [ 93 ]. No consistent sex differences have emerged and the mean age of 
onset is 14–17 years. 
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 Main predisposing factors for RISP are sleep deprivation and irregular sleep–
wake schedules. The episodes seem to occur most frequently in the supine position. 
An association with anxiety/psychiatric disturbances has been described. 

 The management of RISP consists in reassurance about the benign nature of the 
episodes and in the avoidance of sleep deprivation and other triggering factors. 
Recurrent episodes may be treated with REM-suppressing agents such as low doses 
of tricyclic agents, clonidine, or clonazepam.  

    Nightmare Disorder 

 Nightmare disorder is characterized by “recurrent, highly dysphoric dreams, which 
are disturbing mental experiences that generally occur during REM sleep and that 
often result in awakening” [ 1 ]. Full alertness upon arousal and intact recall of the 
frightening dream are generally characteristic of the episodes. As REM sleep is more 
represented in the second half of the night, episodes tend to occur more frequently in 
the early hours of the morning. Nightmare content consists often in dream sequences 
that seem vivid and real. Emotions are characteristically negative and most frequently 
involve anxiety and fear but also anger, rage, embarrassment, and disgust. Monsters 
or other fantastical imageries often characterize the dreams of young children, 
whereas adolescent and adults may experience more realistic images derived from 
daytime stressors or traumatic events. Dream descriptions in preschool age children 
are usually short and simple, while older children may elaborate the dream content 
by adding fantastic features. There is rarely any physical movement during dreams 
because of the REM-induced atonia; somatic manifestations of anxiety such as 
tachycardia, sweating, and tachypnea may occur. The episodes are generally brief 
but there may be post-awakening anxiety and diffi culty returning to sleep. 

 Occasional nightmares are very common in children, ranging from 60 to 75 % 
[ 94 ]. However, occasional nightmares do not constitute a nightmare disorder. In 
preadolescent children the prevalence of nightmare disorder was estimated to be 
1.8–6 % [ 95 ]. Nightmare onset typically occurs between ages 3 and 6. The preva-
lence of nightmares decreases as children aged, although they are still common 
among adults. Close to a third of adults with recurrent nightmares have onset of the 
symptom during childhood. Nightmares are commonly seen in those who have been 
physically or sexually abused and in those suffering from posttraumatic stress dis-
order. A strong association with anxiety disorders has been also described. 

 Therapy with beta-blockers and dopaminergic agonists and withdrawal from 
REM-suppressing medications, such as selective serotonin reuptake inhibitors, tri-
cyclic antidepressants, hypnotics, and alcohol, may precipitate or increase the 
severity of nightmares. 

 The diagnosis of nightmares is relatively simple, although it is important to 
ascertain with detail the main features of the event to rule out other sleep disorders, 
particularly sleep terrors (for details see the Differential Diagnosis section in NREM 
Parasomnia chapter). 
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 Occasional nightmares do not require specifi c treatments but only behavioral 
suggestions such as reassurance of children about the unreal nature of dreams and 
avoidance of television viewing within 2–3 h of bedtime. Recurrent nightmares may 
benefi t from psychological, pharmacological, or combined treatments, although 
studies in this fi eld are scanty. 

 Rescripting techniques, in which parents/therapist and children discuss the 
dream and invent less frightening ending, can be helpful. Similarly, desensitization 
toward dream content can help the child to feel more in control of the nightmares, 
which may also serve to reduce anxiety. Encouraging children to write about or 
draw their dreams may also yield positive results. 

 Prazosin, risperidone, and trazodone are the most widely used drugs in treating 
nightmares.   

    Other Parasomnias 

    Exploding Head Syndrome (EHS) 

 Exploding head syndrome is characterized by a “sudden, loud imagined noise or 
sense of a violent explosion in the head occurring as the patient is falling asleep or 
waking during the night” [ 1 ,  96 ]. The abnormal sensation usually lasts a few sec-
onds and is usually accompanied by a sense of fright. There have been reports of 
associated perceptions of a fl ash of light, a myoclonic jerk, or a brief stab of head 
pain. Patients range from having one episode in a lifetime to recurrent episodes per 
night. In this last case, an insomnia complaint may develop as a result of the recur-
ring arousals. 

 In the majority of patients, predisposing factors are not recognized; however, 
some subjects report increased numbers of attacks when under personal stress or 
overtired. EHS can precede other neurological conditions, such as migraine attacks 
or sleep paralysis. 

 There are little systematic epidemiological data on this sleep disorder. It has been 
hypothesized to have a typical age of onset of over 50 years and to be more common 
in women and in those suffering from ISP. However, a recent study conducted in 
211 undergraduate students using semi-structured diagnostic interviews assessing 
for both EHS and ISP showed that 18 % of the sample experienced lifetime explod-
ing head syndrome and 16.6 % presented recurrent episodes without a female preva-
lence. An association with ISP was found in 36.89 % of subjects [ 97 ]. 

 The neurophysiologic mechanisms underlying EHS are unknown. An asynchro-
nous switch-off of different cortical regions (visual, acoustic, motor), leading to a 
prominent burst of neuronal activity, is the most popular pathogenetic hypothesis. 

 The cornerstone of management in EHS is reassurance and education, as this is 
a benign condition that remits over time in most patients. Some case reports describe 
the effi cacy of tricyclic antidepressants (clomipramine) and calcium channel block-
ers (fl unarizine) in patients with recurrent EHS.  

P. Proserpio and L. Nobili



329

    Sleep-Related Hallucinations 

 Sleep-related hallucinations are “hallucinatory experiences that occur at sleep onset 
(hypnagogic) or on awakening from sleep (hypnopompic)” [ 1 ]. They are predomi-
nantly visual but may include auditory, tactile, or kinetic phenomena. Complex noc-
turnal visual hallucinations may represent a distinct form of sleep-related 
hallucinations. They typically occur following a sudden awakening, without recall 
of a preceding dream. They usually take the form of complex, vivid, relatively 
immobile images of people or animals, sometimes distorted in shape or size. These 
hallucinations may remain present for many minutes but usually disappear if ambi-
ent illumination is increased. 

 Hypnagogic and hypnopompic hallucinations can be associated with narco-
lepsy, but a high prevalence in the normal population is also described. Studies 
reported a prevalence of 25–37 % for hypnagogic hallucinations and of 7–13 % for 
hypnopompic hallucinations. Both hypnagogic and hypnopompic hallucinations 
are more common in younger persons and occur slightly more frequently in women 
than in men. 

 On the contrary, complex nocturnal visual hallucinations are often associated 
with a variety of underlying disorders typical of the elderly, such as visual loss 
(Charles Bonnet syndrome), Lewy body disorders, and pathology of the mesen-
cephalon and diencephalon (peduncular hallucinosis). 

 Little objective information is available regarding the management of sleep- 
related hallucinations. Most often reassurance is suffi cient. Tricyclic antidepres-
sants have been suggested for hypnagogic and hypnopompic hallucinations.  

    Sleep Enuresis 

 Sleep enuresis (SE) is characterized by “recurrent involuntary voiding that occurs 
during sleep. In primary SE, recurrent involuntary voiding occurs at least twice a 
week during sleep after 5 years of age in a patient who has never been consistently 
dry during sleep for six consecutive months. SE is considered secondary in a child 
or adult who had previously been dry for six consecutive months and then began 
wetting at least twice a week. Both primary and secondary enuresis must be present 
for a period of at least three months” [ 1 ]. Primary and secondary SE is considered 
distinct phenomena with different etiologies and courses. SE is defi ned as  mono-
symptomatic  when the subject has no associated daytime symptoms of bladder dys-
function (such as wetting, increased voiding frequency, urgency, jiggling, squatting, 
and holding maneuvers). But, usually, when a meticulous history is obtained, the 
majority of children have at least some light daytime void symptoms, and their SE 
is classifi able as  non - monosymptomatic  [ 98 ]. 

 SE is not specifi c to one stage of sleep and can occur during either NREM or 
REM sleep. Most enuretic episodes happen during the fi rst half of the night. 
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 From a developmental point of view, complete control of the bladder at night is 
usually achieved by the age of 5 years; thus bed-wetting in toddlers is physiologic. 

 The prevalence of NE is between 6 and 10 % at age 7, decreasing to 2 % at 
15 years and 0.5–2 % in adults. Approximately 75−90 % of patients with SE have a 
primary form, while 10–25 % have secondary NE. SE is more frequent in boys than 
in girls under 11 years of age. After 11 years there is no difference between sexes. 
This sex-related difference can be due to a different time of sex-related brain or 
bladder development. The spontaneous annual remission during childhood is about 
15 %, and this natural history should be kept in mind when counseling parents about 
the prognosis of the disorder. 

 There seems to be a strong genetic predisposition for primary SE. The reported 
prevalence is 77 % when both parents were enuretic as children and 44 % when one 
parent has a history of enuresis. 

 Sleep disorders that fragment sleep such as sleep apnea and periodic leg move-
ments are frequently associated with SE, and treatment of these disorders may cure 
or reduce their incidence. 

 While primary SE is a typical childhood disorder, secondary SE can occur at any age. 
 Indeed, secondary SE is more commonly associated with organic factors such as 

the following: urinary tract infections, malformations of the genitourinary tract, 
extrinsic pressure on the bladder (such as chronic constipation or encopresis), medi-
cal conditions that result in an inability to concentrate urine (diabetes mellitus or 
insipidus, sickle cell disease), increased urine production secondary to excessive 
evening fl uid intake (caffeine ingestion, diuretics, or other agents), neurologic dis-
eases (spinal cord abnormalities with neurogenic bladder or seizures), and psycho-
social stressors (parental divorce, neglect, physical or sexual abuse, and 
institutionalization). 

 Current pathophysiological model hypothesizes that SE results from three inter-
related factors: nocturnal polyuria, decreased nocturnal bladder storage ability, and 
poor arousal to the stimulus of a full bladder. In particular, different studies hypoth-
esized that children with primary SE should show a delay in achieving the normal 
increase in vasopressin release during sleep, thus developing nocturnal polyuria that 
exceeds the bladder capacity. If these children do not arouse to the sensation of a full 
bladder, primary SE can occur. In particular, children with enuresis are often 
described as “deep sleepers”, and their arousal threshold seems to be more elevated 
in all sleep stages with respect to controls [ 98 ]. 

 The management of NE starts from some simple strategies, such as lifting or 
wakening, rewarding dry nights, bladder training (including retention control train-
ing), and fl uid restriction. 

 Alarm systems that alert and awaken the child if any moisture is detected are 
considered a fi rst-line treatment, and its effect seems to be more gradual but sus-
tained with respect to drugs [ 99 ]. 

 The established drug therapy of polyuric bed-wetting is desmopressin, a syn-
thetic analog of the antidiuretic hormone arginine (vasopressin) that decreases noc-
turnal urine production and increases urinary osmolality. Desmopressin is 
particularly helpful for short-term use, when a rapid response is needed and seems 
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to have some positive effects in about 70 % of treated children [ 99 ]. Finally imipra-
mine and oxybutynin may control enuresis by decreasing the parasympathetic tone 
of the bladder detrusor muscle.      
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    Chapter 15   
 Sleep and Epilepsy                     

     Sejal     V.     Jain       and     Sanjeev     V.     Kothare     

    Abstract     Sleep and epilepsy are common bedfellows. Sleep infl uences seizures 
and epilepsy in terms of frequency and occurrence of interictal spikes and occur-
rence, timing, and threshold of seizure. On the other hand, epilepsy can worsen 
sleep architecture and severity of sleep disorders. Thus a vicious cycle is set. 
Additionally, antiepileptic drugs also infl uence sleep. So sleep complaints/disorder 
also should be considered when selecting appropriate antiepileptic drugs. Moreover, 
sudden unexpected death in epilepsy (SUDEP) occurs in sleep and is most likely 
associated with cardiorespiratory changes in sleep, occurring ictally or postictally. 
Furthermore, poor sleep is associated with worsened quality of life, neurocognitive 
and behavioral functioning, and memory defi cits on top of preexisting worsening 
due to epilepsy itself. Improving sleep and treatment of sleep disorders improve 
seizure frequency and overall well-being in patients with epilepsy. Hence, sleep 
evaluation and management are important in patient with epilepsy. In this chapter, 
we have discussed these interactions.  

  Keywords     Sleep architecture   •   Obstructive sleep apnea   •   SUDEP   •   BECTS   •   Sleep 
disorders   •   ESES   •   NFLE   •   JME   •   Serotonin   •   Cyclic alternating pattern  

   Epilepsy affects 1 % of the population in the USA and causes signifi cant impact on 
society [ 1 ]. In layman’s terms, recurrent unprovoked seizures defi ne epilepsy. A few 
years ago, the International League Against Epilepsy (ILAE) redefi ned epilepsy to 
be more inclusive and to advocate early treatment. Based on the new defi nition, (1) 
two or more unprovoked seizures, occurring more than 24 h apart, or (2) a single 
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unprovoked seizure (refl ex seizure) with at least 60 % chances of recurrence or (3) 
diagnosis of an epileptic syndrome is diagnosed as epilepsy [ 2 ]. The diagnosis is 
based on clinical history and specifi c diagnostic tests that identify patterns for sei-
zure occurrence. One such testing modality is electroencephalogram (EEG), which 
as the name suggests measures the electrical potentials of the pyramidal neurons. 
The abnormal activity which is linked to epilepsy is spike-wave discharges or inter-
ictal epileptiform discharges (IEDs), the presence of which may be helpful in diag-
nosing an event as a seizure. Based on the cerebral location, frequency of occurrence, 
morphology, and amplitude of abnormalities on EEG, certain epilepsy syndromes 
are identifi ed. One example is benign epilepsy with centrotemporal spikes [BECTS 
or benign Rolandic epilepsy (BRE)], which is discussed later in the chapter. 
Additionally, rhythmic, evolving EEG patterns that disrupt the normal electrical 
background activity constitute most seizures electrographically. In the last two 
decades, there has been signifi cant advancement in treatment of epilepsy as several 
new drugs and a few new devices have become available. Despite these, epilepsy 
largely remains incurable and in about a third of the patients, uncontrollable. 
Moreover, signifi cant comorbidities have also been reported, one of which is coex-
isting sleep disorders and sleep problems. 

 Sleep and epilepsy are interrelated. This is well known since the ancient times. 
Aristotle wrote that sleep is similar to epilepsy and in the same way that sleep is to 
epilepsy. In 1885, Gower described that 21 % of children had nocturnal seizures. He 
also reported that nocturnal seizures occurred at specifi c times in sleep. Ferre 
described that seizures affected sleep [ 3 – 5 ]. The effects of sleep and epileptiform 
discharges were fi rst described by Gibbs and Gibbs in 1947 [ 3 – 5 ]. In this chapter, 
we discuss these interactions. 

    Effect of Sleep on EEG, Seizures, and Epilepsy 

 Sleep activates interictal epileptiform discharges (IEDs). Studies in adults with 
focal epilepsy show that the spike frequency increases with increasing depth of 
NREM sleep besides the fi eld of discharge, which also increases [ 6 ,  7 ]. On the other 
end, spike frequency and the fi eld are reduced in REM sleep [ 8 ]. Due to both of 
these phenomena, REM-related IEDs can help to identify the seizure focus [ 9 ,  10 ]. 
Studies in children have shown that some children may have spikes only during 
sleep [ 11 ]. In children, the IEDs in focal epilepsies are more common during N1 
and N2 stages of sleep [ 12 ]. 

 Seizures are also known to occur during specifi c sleep stages. It is well docu-
mented that seizures are rare in REM sleep. A recent study reevaluated and con-
fi rmed that REM sleep was protective for seizure occurrence by reviewing 42 
studies. The study showed that seizures in N1, N2, and N3 were 87, 68, and 51 
times more common than in REM sleep, respectively. Even compared to wakeful-
ness, both generalized and focal seizures were less common in REM sleep. 
Moreover, EEG of certain epilepsy syndromes such as BECTS and electrical status 
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epilepticus during sleep (ESES) had marked improvement in REM sleep [ 13 ]. 
Additionally, sleep also infl uences epilepsy based on the location of seizure origin. 
In a study, 78 % of frontal lobe seizures were sleep related, while only 20 % of tem-
poral lobe seizures were sleep related [ 14 ]. The temporal lobe seizures were more 
likely to generalize in sleep [ 15 ]. Furthermore, sleep can provide a differential diag-
nosis for psychogenic non-epileptic seizures (PNES) from epileptic seizures as 
PNES do not occur in sleep, so occurrence of events during sleep helps to diagnose 
seizures [ 16 ]. 

 Just like sleep and other bodily functions, seizures also follow circadian rhythms. 
Studies show that tonic and tonic-clonic seizures occurred more frequently in sleep, 
while clonic, absence, atonic seizures and myoclonic seizures occurred in wakeful-
ness. Epileptic spasms had two peaks at 6–9 am and 3–6 pm in wakefulness [ 17 ]. 
Seizures of temporal lobe origin occurred mainly between 1100 and 1700, while 
frontal seizures were seen mostly between 2300 and 0500 [ 18 ]. In another study, 
occipital seizures peaked at 1600–1900, parietal and frontal peaked at 0400–0700, 
and temporal seizures peaked bimodally at 0700 and 1600–1900 [ 19 ]. The proof 
that this is not just time based but actually based on circadian rhythm was provided 
by a study correlating dim light melatonin onset (DLMO) with seizure occurrence. 
In the study, temporal seizures occurred most frequently during the times 6 h before 
DLMO and frontal seizures mainly in 6–12 h after the DLMO [ 20 ]. Since these 
studies were performed in a hospital epilepsy monitoring unit setting, which may 
not represent a true sleep-wake cycle for subjects, a study evaluated circadian pat-
tern of seizure occurrence on ambulatory EEG where patients are in the home envi-
ronment. In this cohort, frontal lobe seizures occurred more frequently between 12 
am and 12 pm, and temporal lobe seizures occurred more frequently between 12 pm 
and 12 am. Moreover, frontal lobe seizures clustered between 5:15 and 7:30 am, 
while temporal lobe seizures clustered between 6:45 and 11:56 pm [ 21 ]. Furthermore, 
sunlight may also affect seizure occurrence as complex partial seizures were less 
likely to occur on bright sunny days, than dull days in a study [ 22 ]. 

 This information on circadian pattern of seizure occurrence is very helpful for 
treatment strategies. There is possibility of light therapy and changing the circadian 
pattern for treatment of epilepsy. Additionally, a study suggested that differential 
dosing with two-third dose in the evening for predominantly nocturnal seizures led 
to seizure freedom in 64.7 % of patients, while 88.2 % experienced more than 50 % 
reductions in seizures [ 23 ]. There was mild increase in nocturnal peak levels as 
compared to daytime levels with the differential dosing. This approach may also be 
helpful in reducing side effects of antiepileptic drugs (AEDs). 

 Sleep deprivation is one of the most commonly reported seizure precipitating 
factors in children with intractable epilepsy [ 24 ]. Additionally, patients with JME 
are very sensitive to seizure occurrence due to sleep deprivation. However, there is 
still some controversy whether sleep deprivation increases IEDs. In general, activa-
tion is seen even if no sleep is recorded on the EEG, and hence, most EEG labora-
tories have established protocols for sleep-deprived EEGs. Sleep deprivation is also 
known to induce seizures in certain epilepsies and in patients with no history of 
seizures [ 12 ,  25 ,  26 ]. 
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 There are several mechanisms hypothesized to explain the activated IEDs and 
seizures in sleep. During NREM sleep neuronal networks are hypersynchronized. 
This helps to propagate the IEDs which are also believed to be generated by the 
same thalamocortical circuit similar to the sleep-specifi c architecture such as spin-
dle and slow waves. During REM sleep, this synchronization is absent which 
reduces the spread of IEDs. 

 The second theory relates to a cyclic alternating pattern (CAP), described in 
sleep EEG which is a marker of unstable sleep. This pattern is present in NREM 
sleep and at the transition from NREM to REM sleep. The pattern is defi ned by two 
phases, fi rst is phase A, of transient events, and second is phase B, the background 
rhythm in between. Additionally, CAP phase A is further divided into (1) phase of 
synchrony (A1 subtype), which comprises of delta bursts, K-complex sequences, 
vertex sharp transients, and polyphasic bursts with <20 % of EEG desynchrony; (2) 
phase of a mixture of slow and fast rhythms (A2 subtype), which includes polypha-
sic bursts with 20–50 % of EEG desynchrony; and (3) phase of rapid low-voltage 
rhythms (A3 subtype), which includes K-alpha, EEG arousals, and polyphasic 
bursts with >50 % of EEG desynchrony. Each CAP cycle begins with phase A and 
ends with phase B and lasts 2–60 s in duration. At least two such cycles form CAP 
sequence. CAP sequences are intermixed with non-CAP, which is the absence of 
CAP for more than 60 s, and represent stable sleep. CAP sequences, particularly, 
phases A2 and A3, have 87 % of the arousals seen in NREM sleep. CAP rate is cal-
culated as the percentage ratio of total CAP time to non-REM sleep time, which is 
a measure of arousal instability and has been used as a measure for restorative sleep 
in sleep disorders [ 27 ]. 

 CAP cycles have also been evaluated in patients with epilepsy. In genetic 
generalized epilepsy, higher CAP rate is reported along with spikes occurring 
during phase A1. In lesional temporal lobe epilepsy, higher IEDs are seen during 
CAP cycle, specifi cally, during phase A1 as compared to non-CAP. Ninety-one 
percent of secondarily generalized focal lesional bursts are identifi ed in CAP, 
while 96 % of all the generalized IEDs are found in CAP phase A [ 28 ]. 
Additionally, seizures also occurred during CAP cycle and in phase A than in 
phase B [ 29 ]. Moreover, in children with BECTS, CAP analysis showed reduced 
instability due to the presence of spikes which replaced the phase A1 and sug-
gested that the centrotemporal spikes may disrupt the physiological synchroniza-
tion mechanism [ 30 ]. In children with drug-resistant epilepsy, an increase of 
CAP rate in N2 was noted as compared to children with BECTS. Additionally, 
an increase in A1 index in N1 and N2 and signifi cant reduction of A3 index in 
N1 were noted [ 31 ]. 

 Based on these data, it is hypothesized that both CAP and IEDs are derived from 
similar if not the same anatomical pathways (thalamocortical). It is believed that 
CAP sequence triggers paroxysmal bursts like IEDs and IEDs promote the genera-
tion of phase A and, hence, increase instability. On the other hand, non-CAP part of 
sleep is unfavorable to IED generation due to reduced arousals [ 28 ]. 

 Adenosine is also implicated in the complex relationships of sleep and epilepsy. 
Extracellular adenosine is antiepileptic, exerting its effects through pre- and 
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postsynaptic adenosine receptors. The adenosine level depends upon the adenosine 
kinase (ADK) activity. Increased activity of ADK reduces adenosine and increases 
neuronal excitability. This endogenous adenosine mechanism is disrupted in chronic 
epilepsy. In studies, ADK activity was found to be overexpressed in mesial temporal 
sclerosis and temporal lobe epilepsy. Additionally, there was decreased expression 
of level of A 1  receptors [ 32 ]. Moreover, adenosine is essential in regulation of sleep 
homeostasis. In the event of disrupted system, poor sleep is noted [ 33 ]. So dysregu-
lated adenosine system may also be a factor causing poor sleep in patients with 
chronic epilepsy.  

    Sleep-Related Epilepsy Syndromes 

 Certain epilepsy syndromes are related to sleep-wake cycle or occur depending on 
sleep state or arousal from sleep. These are termed sleep-related epilepsies and 
include the following. 

    West Syndrome [ 34 ] 

 It is characterized by epileptic spasm, hypsarrhythmia, and developmental delay. 
The onset occurs at 3–12 months of age. The spasms are fl exor or extensor move-
ments of the head, trunk, and limbs, which are brief and typically occur in clusters. 
The classic EEG pattern of hypsarrhythmia is characterized by very high amplitude 
multifocal spikes occurring over a chaotic background. This pattern is often seen in 
NREM sleep at the onset of the disorder and sometimes exclusively. Additionally, 
the associated epileptic spasms occur in clusters soon after awakening, which is 
pseudo-normalization of the EEG during that time. Treatment is recommended as 
early as possible after the diagnosis. Adrenocorticotrophic hormone and vigabatrin 
are approved treatment options.  

    Panayiotopoulos Syndrome [ 34 ] 

 It is an age-related benign focal epilepsy syndrome with usual onset between 3 and 
6 years of age. Seizures are characterized by nausea, visual changes, and prominent 
autonomic symptoms with preserved consciousness. Majority of seizures occur in 
sleep (70 %) or up on awakening (13 %). These seizures can last from 30 min to 
several hours (autonomic status). EEG most commonly shows occipital discharges; 
however, temporal and parietal discharges are also seen. The ictal EEG shows theta 
waves intermixed with spikes or fast activity in anterior or posterior head region. 
The prognosis is good with resolution within 1–2 years of onset.  
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    Benign Epilepsy with Centrotemporal Spikes (BECTS) [ 34 ] 

 BECTS or benign Rolandic epilepsy is the most common epilepsy in childhood. 
The onset occurs between 3 and 13 years of age and remission occurs by 16 years 
of age. The typical seizures are hemifacial sensory or motor and associated with 
speech slurring and drooling. Consciousness is typically preserved. They may 
progress to unilateral arm and leg and occasionally to generalization. About 70 % 
of seizures occur in sleep. EEG shows characteristic spikes and wave discharges 
in fronto-central and temporal head region occurring independently or synchro-
nously with a horizontal dipole. The IEDs are amplifi ed in NREM sleep. The 
seizure frequency and severity is disproportionate to the amount of IEDs. 
Cognitive behavioral and sleep problems have been associated with the syn-
drome. Treatment with focal antiepileptic drugs is effective and long-term prog-
nosis is good.  

    Electrical Status Epilepticus During Sleep (ESES) and Related 
Disorders [ 34 ] 

 ESES is characterized by spike and wave discharges occurring almost continuously 
during slow-wave sleep. This pattern is associated with seizures and cognitive dys-
function. The term continuous spike-wave discharges during sleep (CSWS) was 
coined to dissociate clinical connotation from “status epileptics” in the ESES termi-
nology. These terms are used interchangeable in literature many times. The syn-
dromes are age-dependent epileptic encephalopathies with peak onset at 2–4 years 
of age. The seizure onset is prior to typical EEG pattern. Generalized tonic-clonic 
seizures as well as daytime atypical absences are seen. Tonic seizures are not seen. 
Cognitive defi cits and behavioral problems are associated with the syndrome and 
may occur as an acute regression or insidious development after months of seizure 
onset. Daytime EEG may show focal or generalized spikes and sleep EEG shows 
spike-wave index of 85–100 % during NREM sleep. Additionally, recognition of 
normal sleep architecture is diffi cult. Treatment of spikes may improve cognitive 
function and should be started immediately and aggressively after the diagnosis. 
Treatment options are high-dose benzodiazepines, steroids, valproic acid, leveti-
racetam, immunoglobulins, etc. The prognosis is dependent upon etiology, dura-
tion, and treatment response. 

  Landau-Kleffner Syndrome     It is a disorder characterized by acquired receptive 
aphasia due to auditory agnosia and epilepsy. The EEG shows almost continuous 
spike and wave discharges in unilateral or bilateral temporal region during NREM 
sleep. In addition to language, cognitive and behavioral problems can also be asso-
ciated. Onset is between 2 and 8 years with regression. Treatment of EEG spikes 
improves language function. Treatments are similar to ESES treatments.  
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  Atypical Benign Partial Epilepsy/Pseudo-Lennox Syndrome     The syndrome is 
characterized by similar presentation as benign focal epilepsies but associated 
ESES EEG pattern and mental defi cits. The prognosis and treatments are similar 
to ESES.  

 The presence of GRIN2A mutations in ESES, Landau-Kleffner syndrome, and 
BECTS suggests that these syndromes possibly occur as a continuum.  

    Juvenile Myoclonic Epilepsy [ 34 ] 

 JME affects 1–2 % of general population worldwide. It is closely linked to sleep as 
most seizures occur upon awakening and sleep deprivation is a strong trigger for 
seizure occurrence. The age of onset is from 12 to 18 in 79 % of patients. The char-
acteristic seizures are myoclonic jerks that occur upon or soon after awakenings and 
may progress to generalized tonic-clonic seizures. The myoclonic seizures may be 
missed at the onset as they are thought to be clumsiness (dropping things) or tics/
twitches. The diagnosis is typically made after a generalized tonic-clonic seizure 
(GTC), and upon obtaining further history, the myoclonic seizures become evident. 
About 20 % of patients have absence seizure which may suggest a poor prognosis 
for seizure freedom if these occur at the onset of the epilepsy. The characteristic 
EEG pattern is polyspikes and waves and/or spike and wave discharges occurring at 
2.5–3.5 Hz. Treatment with valproic acid and other broad-spectrum AEDs is recom-
mended. Prognosis for seizure control on AEDs is good, with majority of the 
patients requiring lifelong treatment.  

    Nocturnal Frontal Lobe Epilepsy [ 34 ] 

 Nocturnal frontal lobe epilepsy represents an epilepsy syndrome which is misdiag-
nosed as parasomnia often. The onset is in adolescence or young adulthood. Three 
clinical seizure patterns were described which are (1) paroxysmal arousals, (2) 
nocturnal paroxysmal dystonia, and (3) episodic nocturnal wandering. The autoso-
mal dominant type, called as autosomal dominant nocturnal frontal lobe epilepsy 
(ADNFLE), is associated with mutations in nicotinic acetylcholine receptor 
(CHRNA4) and in other genes (KCNT1 and DEPDC5). The clinical manifesta-
tions can vary between individuals in the family, but for the same individual, the 
seizures are stereotypic. Complex behaviors and sleep-related violent behaviors 
may also be present in addition to above-described pattern. The corresponding 
EEG fi ndings include ictal epileptiform abnormalities predominantly over frontal 
areas in 31.6 % of patients or rhythmic ictal slow-wave activity over larger anterior 
cortical areas in another 47.4 %. A third of patients also have associated non-REM 
parasomnias [ 35 ].   
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    Effect of Seizures and Epilepsy on Sleep 

 A seizure occurring in sleep causes signifi cant reduction of REM sleep and sleep 
effi ciency and increases N1. If the seizure occurs before the fi rst REM cycle, the 
REM sleep and sleep effi ciency are further reduced. Decrease in total sleep time due 
to reduced REM sleep and increased wake times have also been reported [ 36 ]. 

 Epilepsy also affects sleep. In adults with epilepsy, increased N1 and decreased 
N3 and REM were seen [ 37 ]. Additionally, increase in sleep instability in terms of 
stage shifts and sleep fragmentation caused by increased arousals and wake times 
was seen [ 36 ]. Fragmented sleep was more common in temporal lobe epilepsy as 
compared to frontal lobe or generalized epilepsy [ 36 ,  38 ]. In children with refrac-
tory focal epilepsy, decreased time in bed, total sleep time, and increased N3 were 
seen [ 39 ]. In children with generalized epilepsy, increased N1% and REM sleep 
latency were seen [ 40 ]. In children with epileptic encephalopathies, fragmented 
sleep, increased REM latency, and reduced total sleep times were seen [ 41 ]. In chil-
dren with refractory epilepsy with a brain lesion, reduction in total sleep time and 
sleep latency and an increase in REM latency and wake times have been described 
[ 31 ]. In children with tuberous sclerosis, increased arousals, wake time, increased 
N1, and reduced REM sleep were seen [ 42 ]. As discussed above, poor quality of 
sleep essentially creates a sleep-deprived state which then can precipitate seizures. 
Additionally, reduction in REM sleep and increased N1 sleep also perpetuates sei-
zures, which further reduces REM sleep.  

    Effect of Antiepileptic Drugs (AEDs) on Sleep 

 Various studies in healthy adults and patients with epilepsy show that AEDs also 
affect sleep architecture. In healthy adults, clobazam reduced sleep latency. 
Clobazam also reduced arousals and wake time, similar to levetiracetam, phenobar-
bital, tiagabine, and pregabalin. Carbamazepine reduced sleep latency, arousal, and 
wake times. Gabapentin increased REM sleep, while carbamazepine, levetiracetam, 
and phenobarbital reduced it. Levetiracetam, carbamazepine, tiagabine, and prega-
balin enhanced slow-wave sleep. Lacosamide did not affect sleep architecture in 
healthy adults [ 43 ]. The effects of antiepileptic drugs in patients with epilepsy are 
shown in Table  15.1 . Even though there are reports of AEDs increasing sleepiness, 
in objective studies this was not identifi ed for zonisamide, lamotrigine, topiramate, 
and vigabatrin. Valproic acid, phenobarbital, and high-dose levetiracetam objec-
tively caused sleepiness in studies [ 44 ].

   Non-medication treatments of epilepsy have also been shown to infl uence sleep. 
VNS improved daytime sleepiness and slow-wave sleep. Epilepsy surgery improved 
total sleep time (TST) and reduced arousals if the seizure frequency was also 
improved. Ketogenic diet also improved nocturnal sleep. As discussed above, 
improved seizure frequency may affect the sleep architecture by itself. Hence, when 
evaluating effects of AEDs on sleep architecture, it is important to note that many of 
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these studies did not analyze effects on sleep independent of improved seizure fre-
quency [ 44 ]. 

 Several AEDs have been implicated in either precipitating or worsening of sleep 
disorders. Vagus nerve stimulator use has been associated with sleep-related breath-
ing disorders such as obstructive sleep apnea and central apneic patterns [ 45 ,  46 ]. 
AEDs such as benzodiazepine and phenobarbital have been suggested to worsen 
obstructive sleep apnea [ 47 ]. Depakote is also suggested to worsen OSA; however, 
this was not found in a study [ 48 ]. Felbamate and lamotrigine have been thought to 
worsen insomnia [ 47 ]. A recent study suggested that zonisamide by affecting car-
bonic anhydrase activity and causing weight loss may improve obstructive sleep 
apnea in obese adults with epilepsy [ 49 ]. 

 Antiepileptic drugs signifi cantly affect sleep architecture; hence the selection of 
AED for an individual patient should be customized, i.e., in a patient with insomnia, 
gabapentin may be useful. In a patient with higher risk of sleep apnea, proper sleep 
evaluation and treatment should be undertaken and continued before VNS is 
implanted and stimulation is increased to rapid cycling. Felbamate and possibly 
lamotrigine should be avoided or administered early in the evening in patients with 
insomnia. Valproic acid and phenobarbital should be avoided in children with exces-
sive sleepiness in addition to sleep evaluation.  

    Sleep Disorders in Epilepsy and Impact of Treatment 
of Sleep Disorders on Epilepsy 

 Sleep disorders are common in epilepsy and many of the disorders have a higher 
prevalence than the general population. 

   Table 15.1    Effect of antiepileptic drugs on sleep architecture   

 TST  N1  N2  N3  REM  SL  WASO  Arousals  Sleepiness 

 Carbamazepine  –  –  –  ↑  –  –  –  –  NA 
 ETH  –  ↑  –  ↓  ↑  –  –  –  NA 
 Gabapentin  –  ↓  –  ↑  ↑  –  –  ↓  NA 
 Lamotrigine  –  –  ↑/–  ↓/–  ↑/–  –  –  –  – 
 Levetiracetam  –  –  ↑  ↓  –  –  –  –  ↑ 
 Phenobarbital  –  –  ↑  –  ↓  ↓  –  ↓  ↓ 
 Phenytoin  –  ↑  ↓  ↓/↑  ↓  ↓  –  –  NA 
 Pregabalin  –  ↓  –  ↑  –  –  –  –  NA 
 Topiramate  –  –  –  –  –  –  –  –  – 
 Valproic acid  ↑  ↑  –  –  ↑  ↓  ↓  ↓  ↑ 
 Vigabatrin  –  –  –  –  –  –  –  –  – 
 Zonisamide  –  –  –  –  –  –  –  –  – 

   TST  total sleep time (also included is sleep effi ciency in this column),  SL  sleep latency,  WASO  
wakefulness after sleep onset; sleepiness was measured by mostly multiple sleep latency test 
(MSLT), but also maintenance of wakefulness test (MWT)  
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    Questionnaire-Based Studies for Sleep Problems 

 Studies using questionnaires have shown that children with epilepsy have higher 
sleep problems than siblings or healthy controls. Diffi culty initiating and maintain-
ing sleep and co-sleeping were more common in children with epilepsy as com-
pared to siblings [ 50 – 54 ]. Even in children with new onset seizures, sleep problems 
were present in 45 % and were associated with worse neuropsychological function-
ing [ 51 ]. Among epilepsy-related factors, nocturnal seizures and seizure frequency 
contributed toward higher sleep problems [ 50 ]. In younger children, sleep-related 
anxieties were more common, while in older children, poor sleep was associated 
with poor daytime behavior [ 55 ]. Additionally in a study, higher sleep problems 
were associated with worse quality of life [ 53 ].  

    Sleep Apnea 

 In adults with refractory epilepsy, obstructive sleep apnea was noted in a third of the 
patients [ 56 ]. Several other studies have suggested higher prevalence of OSA in epi-
lepsy as compared to general population [ 22 ,  48 ]. In children with epilepsy, screened 
with clinical history and questionnaires for OSA, 80 % had obstructive apnea [ 57 ]. In 
retrospective studies in patients referred to sleep lab, sleep-disordered breathing is 
reported in 40 % of children [ 58 ]. In another study, uncontrolled epilepsy was a risk 
factor for obstructive sleep apnea as compared with primary snoring [ 48 ]. Obstructive 
index increased with increasing number of antiepileptic drugs [ 48 ]. Additionally, 
children with epilepsy had higher number of arousals, prolonged sleep latency, and 
higher O 2  desaturations as compared to controls with higher severity of OSA [ 58 ].  

    Central Sleep Apnea (CSA) 

 A retrospective study suggested that children with abnormal MRI of the brain are at 
higher risk of central sleep apnea [ 59 ]. No other data exist in children. In adults with 
epilepsy, OSA and mixed apnea were more prevalent than CSA. CSA was more common 
in males and in focal epilepsy [ 60 ]. Central apneas are also associated with seizures [ 31 ].  

    Restless Leg Syndrome (RLS)/Periodic Limb Movement 
Disorder (PLMD) 

 In retrospective studies in cohort of children referred to sleep lab, PLMs/PLMD was 
found in 5–10 % [ 58 ,  61 ]. In studies in adults with epilepsy, 15 % had PLMD and 17 % 
had PLMs in sleep [ 62 ,  63 ]. In adult patients with epilepsy, RLS was identifi ed in 
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18–35 % [ 62 ,  64 ]. No data exist on RLS in children with epilepsy. This may be due to 
diffi culties in diagnosing children with RLS due to diffi culty obtaining history from 
younger children, confusing the diagnosis with growing pains and studies focusing on 
referrals to sleep lab. As RLS and PLMD coexist in children, it is possible that some 
of the studies may have included the children with combination of the disorders.  

    Insomnia 

 Insomnia is under-recognized in children with epilepsy. In a study, 82 % of surveyed 
providers used melatonin or a hypnotic for sleep problems, prior to referral to a sleep 
specialist [ 61 ]. In children with epilepsy referred for sleep evaluation, insomnia was 
identifi ed in 11 % [ 61 ]. In adult with epilepsy, 40–55 % subjects had insomnia [ 51 , 
 65 ]. Sleep maintenance insomnia is more common (52 %) than sleep onset insomnia 
(34 %) [ 64 ]. Insomnia correlates with number of AEDs and higher scores on depres-
sion scales. Insomnia and poor sleep quality predict poorer quality of life [ 66 ].  

    Parasomnia 

 Parasomnias are common in children, especially in younger children. Hence, just by 
mere association, these are common in children with epilepsy also. This presents 
challenges for diagnosis in nocturnal epilepsy. Additionally, in patients with noctur-
nal frontal lobe epilepsy (NFLE), 30 % also have arousal parasomnia [ 67 ]. Hence, 
evaluation with careful history and video EEG monitoring may be needed for accu-
rate diagnosis in these children. Some of the differentiating features include onset 
parasomnia seen in children younger than 10 years of age, whereas seizures of 
NFLE start at a later age, and parasomnia events are longer, have different behavior 
patterns, and occur during earlier part of the night, out of N3. On the other end, 
NFLE seizures are brief and highly stereotypic, may occur multiple times in the 
night, and are usually out of N1/N2 [ 68 ].  

    Sleepiness 

 Sleepiness is very common in children with epilepsy, present in 28–48 % of patients. 
However, referrals for sleep evaluations are limited for this complaint. The reason 
may be that most neurologists attribute sleepiness to antiepileptic drugs [ 61 ]. 
However, prospective studies in adults with epilepsy suggest that sleepiness is cor-
related with sleep apnea and RLS symptoms, habitual snoring, observed apneas, 
recurrence of seizures, neck circumference, and anxiety also [ 62 ,  69 ,  70 ]. Similarly, 
in children with epilepsy, 46.2 % of children with epilepsy had sleepiness which 
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was associated with sleep disorders and not with the epilepsy syndrome, AEDs, and 
the presence or absence of seizure freedom [ 71 ].  

    Impact of Treatment of Sleep Disorders 

    OSA 

 There are several studies showing that treatment of OSA improves seizure fre-
quency. A retrospective review in adult patients with OSA and epilepsy, treated with 
CPAP at least for 6 months, showed decreased seizure frequency. More than half of 
the CPAP-compliant subjects became seizure-free. In the non-compliant group, no 
signifi cant differences were seen [ 72 ]. CPAP also improved IEDs in wakefulness 
and sleep except for REM sleep [ 73 ]. In a randomized study, 50 % responder rate 
was 28 % on CPAP as compared to 15 % of controls [ 74 ]. A recent study showed 
that the odds of more than 50 % reduction or seizure freedom in PAP-treated sub-
jects were 9.9 and 3.91 times compared to untreated OSA and no OSA, respectively. 
PAP-treated subjects had 32.3 times the odds of having 50 % or more seizure reduc-
tion compared with the untreated OSA and 6.13 times compared with no OSA [ 75 ]. 
Additionally, treatment of underlying OSA with adenotonsillectomy resulted in 
improvement in seizure frequency [ 76 ].  

    Melatonin 

 A few randomized studies evaluated the effect of treatment of insomnia with melato-
nin in epilepsy. In a study, signifi cant improvement was seen in sleep questionnaire 
total sleep score on melatonin [ 77 ]. In a study in children and young adults, no 
improvement was seen on actigraphy or sleep diary [ 78 ]. However, seizure frequency 
was signifi cantly reduced. In another study, sleep latency was reduced on melatonin 
on sleep logs [ 79 ]. In a class I study, sleep latency and WASO were improved signifi -
cantly. Additionally, there was some improvement in sleep effi ciency (3.8 %) on 
polysomnography, total sleep time on actigraphy, and sleep duration and later wake 
times based on sleep diary on melatonin. Moreover, N3% was increased on melato-
nin. There was a trend toward improvement in epileptiform discharges [ 80 ].    

    Sudden Unexpected Death in Epilepsy (SUDEP), Sleep, 
and Cardiorespiratory Abnormalities 

 SUDEP is defi ned as a “sudden, unexpected, witnessed or unwitnessed, non- 
traumatic and non-drowning death in patients with epilepsy with or without evi-
dence for a seizure and excluding documented status epilepticus in which 
postmortem examination does not reveal a toxicologic or anatomic cause for death” 
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[ 81 ]. The incidence depends on the age, the seizure frequency, and the type of epi-
lepsy and could be as high as 6.0–9.3 per 1000 patient-years among patients with 
refractory surgery evaluated for or treated with epilepsy surgery or vagus nerve 
stimulation for epilepsy [ 82 ]. The incidence in children is estimated to be 1–2/10,000 
patient-years, with a slight male preponderance [ 83 ]. Up to 70 % of these deaths 
occur in sleep, and hence, it is a concern for sleep providers as they may be evaluat-
ing patients at risk for it. A variety of risk factors and mechanisms have been sug-
gested and there is no one accepted theory for causation. In children, the risk factors 
are believed to be major neurological impairment, refractory seizures, and general-
ized tonic-clonic seizures. In a study, half of the children with SUDEP had symp-
tomatic epilepsy [ 83 ]. In children with epilepsy but without neurological handicap, 
risk of death was similar to general population [ 84 ]. Since most deaths occur after 
seizures, it is believed that it is related to events occurring during or after seizures. 
One of the mechanisms thought to be responsible for SUDEP is respiratory and 
cardiac changes during seizures. The respiratory abnormalities include central and 
obstructive apneas, hypoventilation, hypercapnia, and desaturation with acidosis, 
bradypnea, and tachypnea [ 85 ]. Respiratory abnormalities such as central apnea or 
hypopneas were noted in 53 % of the seizures, and oxygen desaturation below 90 % 
occurred in a third of the seizures. Additionally, there was substantial increase in 
CO 2  levels [ 86 ]. In studies in pediatric epilepsy, risk factors for ictal central apnea 
were younger age, temporal lobe seizures, left hemispheric seizures, symptomatic 
generalized seizures, longer seizures, desaturation, ictal bradycardia, and more anti-
epileptic drugs. Similarly, desaturation was more prevalent in longer-duration sei-
zures, ictal apnea, ictal bradycardia, and more AEDs [ 87 ]. The cardiac abnormalities 
include postictal changes in heart rate variability caused by sympathetic activation, 
ictal bradycardia, asystole, repolarization, anomalies (prolonged or shortened QTc 
interval), and atrial fi brillation [ 85 ]. In pediatric epilepsy, ictal bradycardia was 
more prevalent in male patients, longer-duration seizures, desaturation, and more 
AEDs [ 87 ]. Additionally, children with Dravet syndrome have also been shown to 
be at higher risk due to decrease in heart rate variability presumably caused by 
sodium channel mutations [ 88 ,  89 ]. Moreover, postictal EEG suppression may be 
another mechanism which is more common in adults [ 85 ,  90 ]. Dysfunction in the 
serotonin system has been linked to epilepsy. Additionally, respiratory changes such 
as apnea or hypoventilation are common with generalized seizures. Serotonergic 
system also plays an important role in breathing control. Additionally, in animal 
model of epilepsy, SSRIs have been shown to reduce post-seizure respiratory arrest 
[ 86 ]. Hence, SSRIs may have a role in SUDEP prevention.  

    Behavior, Quality of Life, and Memory, Sleep, and Epilepsy 

 Poor memory, behavior, and quality of life along with psychiatric problems are 
common in patients with epilepsy. Sleep problems can worsen these [ 25 ]. Even 
in children with new onset seizures, sleep disturbances are associated with higher 
behavioral problems as well as poorer neuropsychological function [ 51 ]. 
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Other studies have shown more behavioral problems and poorer psychological 
functioning in children with sleep problems than without sleep problems [ 25 , 
 55 ]. Additionally, psychiatric problems and depression are also associated with 
epilepsy. In a recent study, suicidal ideation was also linked to poor sleep quality 
in patients with epilepsy [ 91 ]. Moreover, patients with epilepsy and sleep prob-
lems have poorer quality of life as compared to patients without sleep problems 
[ 92 – 94 ]. These have been seen in the domains of physical cognitive and social 
function [ 53 ]. Furthermore, sleep enhances memory consolidation. Slow-wave 
sleep enhances declarative memories, while REM sleep improves procedural and 
emotional memory. Hence, poor sleep can affect memory in children with epi-
lepsy. In a recent study, children with idiopathic focal epilepsies had poorer 
sleep-related memory consolidation. This also correlated with IEDs in NREM 
sleep [ 95 ]. Hence, sleep problems worsen the other comorbidities of epilepsy, 
and adequate treatments should be performed for sleep problems and sleep 
disorders.  

    Conclusion 

 Sleep and epilepsy are interrelated and worsening of one worsens the other and sets 
up a vicious cycle. Epilepsy comorbidities of poor behavior, quality of life, and 
memory are further worsened by poor sleep. Moreover, sleep disorders are very 
common and treatment of them may improve seizure control. Hence, education on 
improving sleep quality and screening, evaluation, and treatment for sleep problems 
should be a part of routine care in patients with epilepsy.     
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    Chapter 16   
 Sleep in Neurological and Neurodevelopmental 
Disorders                     

     Soňa     Nevšímalová       and     Oliviero     Bruni     

    Abstract     Sleep problems are highly prevalent in children suffering from diverse 
neurological diseases. There is a close relationship between the degree of brain 
abnormality and impaired ability to generate physiological sleep-wake cycles and 
normal sleep architecture. This chapter summarizes clinical features and manage-
ment of sleep pathologies in different neurological diseases. Cerebral palsy and 
neurodevelopmental disorders such as mental retardation, motor coordination disor-
der, developmental dysphasia, and learning disabilities are reviewed, as well as 
attention defi cit/hyperactivity disorder and autism spectrum disorders. Attention is 
focused on sleep complaints in chromosomal abnormalities and various genetic pro-
gramming malformations of the nervous system. Sleep disturbances can be a lead-
ing symptom (increasing with the severity of the disease) in many neurometabolic 
and/or neurodegenerative diseases. Children suffering from neuromuscular diseases 
are at increased risk of sleep-related breathing disorders, and their management has 
a substantial role in the patients’ life longevity.  

  Keywords     Sleep disorders   •   Cerebral palsy   •   Neurodevelopmental disabilities   • 
  Mental retardation   •   Autistic spectrum disorders   •   Chromosomal abnormalities   • 
  Neurometabolic and neuromuscular diseases  

      Introduction 

 Sleep quality in children is extremely important for brain development and synaptic 
plasticity during further life. There is considerable evidence that different sleep 
stages have a role to play in learning and memory and in the development of 
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neuronal plasticity. However, the consequences of sleep disorders in structural and 
functional damaged brain structures are connected not only with intellectual capac-
ity, but they infl uence mood changes, such as irritability, aggression, and depres-
sion, leading frequently to hyperactivity and conduct problems. Relationships 
between sleep and these functions are closely interconnected (Fig.  16.1 ).

   Sleep disturbances in children with brain damage are highly prevalent and have 
different etiologies and medical, neurologic, and psychiatric comorbidities. 
Furthermore, unlike age-related sleep disturbances in typically developing children, 
sleep disorders in patients with neurodevelopmental disorders tend to be chronic, 
lasting into adolescence or adulthood. 

 The clinical picture of sleep disorders in these children could be directly linked 
to the brain damage, to a specifi c genetic syndrome, to hormonal and neurotransmit-
ter dysfunction, or to altered perception of the “zeitgebers” (light-dark cycle, dietary 
schedule, maternal inputs, etc.) [ 1 ]. Sleep problems have a major impact not only on 
the child, but they affect the whole family’s health and well-being.  

    Cerebral Palsy 

 Cerebral palsy (CP) affects approximately 1 in 500 live-born infants (more fre-
quently in the developing countries), and the main risk is prematurity. The condition 
is nonprogressive and arises most commonly as the result of perinatal asphyxia and 
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  Fig. 16.1    Sleep and its disorganization are connected with all intellectual functions including 
cognition, learning disabilities, language, and developmental dysphasia, with developmental coor-
dination disorder as well as behavior and mood changes       
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hypoxic-ischemic encephalopathy or intraventricular hemorrhage. The location of 
injury predicts the type of motor symptoms; the clinical picture is usually divided in 
four groups: diplegia, hemiplegia, quadriplegia, and dyskinesia [ 2 ,  3 ]. 

 Children with CP are at increased risk of sleep disturbances for their motor 
involvement, as well as for a high association with different comorbidities. Severe 
developmental delay and mental retardation accompany CP in 31 %, seizure in 
21 %, and blindness in 11 % patients [ 4 ]. Patients with more severe CP have a greater 
likelihood of sleep dysfunction. Spasticity, contractures, limitation of movement, 
and associated pain due to a high degree of functional motor impairment contribute 
to abnormal positioning during sleep. Severe CP can be associated with scoliosis 
and restricted lung volume and at risk for sleep-related hypoventilation. 
Abnormalities of the structure and tone of the upper airways may contribute to 
obstructive sleep apnea. The prevalence of sleep-disordered breathing is under- 
recognized and undertreated. Respiratory disorders, severe motor disability, sei-
zures, and intellectual status may be associated with unexpected death during sleep 
in affected children [ 5 ]. 

 Comorbid epilepsy strongly correlates with sleep disorders: nocturnal seizures 
disrupt sleep continuity, while certain antiepileptic drugs alter the sleep structure 
and, at the same time, infl uence daytime alertness. Blindness or severe visual 
impairment can affect the timing and maintenance of sleep through their effect on 
melatonin secretion and the lack of light perception. Intellectual disability and 
behavioral problems predispose to inconsistent bedtime routine and poor sleep 
hygiene [ 6 ,  7 ]. Romeo et al. [ 2 ] found in a detailed study of 165 children with CP 
that almost half of them (42 %) suffer at least from one sleep disorder. The most 
frequent complaints were sleep initiation and maintenance disorders (22 %), fol-
lowed by sleep-wake transition disorder such as hypnic jerks, rhythmic movement 
disorder, hyperkinesias and bruxism (15 %), sleep breathing disorders (14 %), disor-
ders of excessive somnolence 13 %, and disorders of arousal including sleepwalk-
ing, sleep terrors, and nightmares (10 %). There was no signifi cant difference in the 
questionnaire data (Sleep Disturbance Scale for Children, SDSC) among the four 
classical types of CP. However, a group of dyskinetic CP children that is connected 
with structural or functional lesion of basal ganglia presented a more signifi cant 
score for sleep-wake transition disorder (represented mainly by sleep-related move-
ment disorders) than other children with hemiplegia, quadriplegia, or diplegia. The 
authors found also a signifi cant correlation with sleep disorders and active epilepsy, 
mental retardation, and severity of motor CP involvement [ 2 ]. 

 Anatomical factors such as upper airway hypotonia, adenotonsillar hypertrophy, 
glossoptosis, and midface anatomy or mandibular alterations, together with abnor-
mal central control of respiration, can aggravate obstructive sleep disorder. Scoliosis 
and restricted lung volumes may increase the risk of sleep-related hypoventilation. 
A questionnaire-based survey of 233 children with CP found habitual snoring in 
63 % and sleep apnea in 19.7 % [ 8 ]. In another study Wiggs et al. [ 9 ] found that 
14.5 % of the 173 children with CP had a pathologic score for sleep-related breath-
ing disorders on the Sleep Disturbance Scale for Children. 

 A few studies on sleep organization in children with CP showed abnormal sleep 
EEG pattern, absence or alteration of phasic sleep EEG events, diffi cult differentiation 
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of stages NREM and REM, extremely low incidence of sleep spindles or presence 
of “extreme spindles,” or an abnormally high percentage of wake after sleep 
onset [ 10 ]. 

 No sleep interventions specifi cally designed to improve sleep of children with 
CP are reported in the literature, and only melatonin remains a commonly 
prescribed drug for disturbed sleep in children with CP. Treatment of OSA with 
adenotonsillectomy or CPAP may improve sleep and quality of life in children 
with CP [ 11 ]. 

 To sum up, sleep disorders are common in children with CP, and different fac-
tors, such as motor or cognitive impairment, behavioral problems, or epilepsy, are 
important risk factors for the development of sleep disorders. Parenting children 
with CP is associated with an increased risk of psychological stress developing in 
the primary caregivers, usually the mothers. Children’s sleep disturbances are, 
therefore, frequently connected with poor maternal sleep quality and depression 
[ 12 ]. The optimal management in children with CP is based not only on the deter-
mination and therapy of the physical features of the disease itself; the diagnosis and 
treatment of comorbid sleep disorders are very important too. A combination of 
pharmacological treatment (including melatonin), behavioral intervention, and 
respiratory support should be involved in the complex care.  

    Neurodevelopmental Disorders 

    Mental Retardation 

 Sleep problems are reported to occur in 13–86 % of individuals with intellectual 
disabilities depending on the study design, participant characteristics, and defi nition 
of sleep problems [ 14 ]. The most prevalent problems include setting diffi culties, 
long sleep latencies, night waking, and shortened sleep duration with early morning 
waking. There is a trend for sleep problems and daytime sleepiness to occur more 
frequently with more severe levels of mental retardation. Besides altered macro-
structure, changes were found also in the sleep microstructure, particularly in cyclic 
alternating pattern (CAP) [ 14 ]. 

 Recent studies on the relationship between CAP and cognitive and memory per-
formances support the idea that EEG slow components (A1) play a role in sleep- 
related cognitive processes and could obviously be altered in mental retardation 
[ 15 ]. In two groups of children with mental retardation, i.e., fragile X (fraX) and 
Down syndrome, CAP analysis showed a decrease of CAP rate in slow-wave sleep 
(SWS) and a decreased A1 index (EEG slow oscillations) and an increase of A2 and 
A3 percentages (i.e., arousals) in both groups, compared to normal controls. Similar 
results were found in children with autistic spectrum disorder and mental retarda-
tion. Therefore, it seems that the decrease in the CAP rate and in A1 mainly in SWS 
represents a sleep microstructural pattern typical of intellectual disability [ 16 ]. 
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 However, there is a controversy about whether sleep problems in mentally 
retarded children are related more to their general medical problems and brain 
lesions rather than to the mental retardation itself. Some recent studies [ 17 ] strongly 
support the hypothesis that general medical conditions are mainly coresponsible for 
the sleep patterns in mentally retarded children. 

 Mental retardation has a wide spectrum of clinical diagnoses. Tietze et al. [ 18 ] 
found, in a cohort of 214 children with severe mental retardation and sleep distur-
bances, that 25 % of them were children with cerebral palsy, 13 % with genetic 
syndromes, and 11 % with metabolic disorders. However, the diagnosis was either 
not established or was caused by a global developmental delay almost in one-third 
of the whole patients’ cohort. 

 The relationship between sleep and optimal cognitive and physical function is 
bidirectional. Sleep problems in developmentally disabled children are associated 
with a number of associated clinical outcomes: poor communication and academic 
skills, poor self-help skills, incontinence, daytime behavioral problems, and epi-
lepsy [ 3 ]. Blankenburg et al. [ 19 ] recommended a specifi c questionnaire (SNAKE) 
for the diagnosis of sleep disturbances in children with severe psychomotor impair-
ment. The questionnaire evaluates symptoms and consequences of sleep distur-
bances, as well as conditions that are known to have a direct or indirect impact on 
sleep in affected children. It takes into account the patient’s impaired or limited 
perception, intellectual ability, limited behavioral repertoire, motor impairment due 
to underlying disease, and the environmental impact of the disease that makes it less 
conducive to sleep (e.g., nursing care, artifi cial ventilation, etc.). The questionnaire 
is based on the ICSD-2 classifi cation for sleep problems, and it should be completed 
by parents or nursing personnel over a 4-week period of child’s sleep. 

 Sleep problems are often complex and usually diffi cult to treat in individuals 
with mental retardation. The management of sleep disorders in mentally retarded 
children should include an early intervention program [ 20 ] and a pharmaceutical 
approach with different drugs, with melatonin as the most widely used medicine. 
Melatonin is increasingly prescribed to many children with mental retardation using 
a wide range of doses and demonstrating effi cacy in improving sleep quality by 
reducing sleep-onset latency or by slightly increasing total sleep time. These effects 
appear to be stronger in children with visual impairment, mental retardation, atten-
tion defi cit, and autism [ 21 ]. 

 A meta-analysis of nine randomized and placebo-controlled trials including a 
total of 183 individuals with neurodevelopmental disorders showed that melatonin 
decreases sleep latency by a mean of 34 min, increases total sleep time by a mean 
of 50 min, and less signifi cantly decreases the number of awakenings per night [ 22 ]. 
A recent placebo-controlled study in 146 children (aged 3–15 years) with intellec-
tual disability showed similar results [ 23 ]. 

 In spite of the heterogeneity of the studies, regarding patient groups, melatonin 
preparations, dosage, and timing of administration, the results of different studies 
[ 13 ,  21 ] indicate that melatonin is effective and safe in the treatment of sleep prob-
lems in intellectually disabled individuals.  

16 Sleep in Neurological and Neurodevelopmental Disorders



362

    Developmental Coordination Disorder 

 Children with developmental coordination disorder experience signifi cant diffi culty 
in the performance of every body’s movement skills (particularly clumsiness) in the 
absence of obvious neurological, sensory, or intellectual impairment. The condition 
has a reported prevalence of at least 2 % in population studies [ 24 ]. The biological 
background is currently unknown; however, it is frequently found in children with a 
history of perinatal risk factors (e.g., low birth weight), and genetic factors probably 
play an important role, too. Affected children show more sleep disturbances than the 
healthy ones. Particular problems include bedtime resistance, parasomnias, and 
daytime sleepiness [ 25 ]. Scabar et al. [ 26 ] found in six out of eight children with 
severe type of this disorder rolandic spikes during sleep and propose a close link 
between developmental coordination disorder, so-called benign rolandic epilepsy, 
and specifi c language impairment.  

    Specifi c Language Impairment (Developmental Dysphasia) 

 Specifi c language impairment includes both developmental expressive and recep-
tive language disorder and affects 3–5 % children’s population. The resulting lan-
guage diffi culties interfere with social communication and with successful 
performance of daily activities including school results. Neurological fi ndings are 
usually normal; however, a mild hypotonia can be seen. The disorder is very fre-
quently associated with developmental coordination and learning disabilities; neu-
roimaging abnormalities and EEG changes have been observed, too [ 27 ]. 

 Dlouha and Nevsimalova [ 28 ] examined a group of 100 children with specifi c 
language impairment (69 boys, 31 girls, mean age 6.3 ± 1.2 years). Most of them 
had signs of mild coordination disorder, borderline or mild decrease intellectual 
capacity was found in nine children, and learning disabilities (dyslexia, dysgraphia) 
had developed in 21 out of 33 school children. Epileptic discharges were found in 
48 cases in waking EEG, and polysomnography verifi ed epileptiform discharges in 
20 out of 26 children (77 %) (Fig.  16.2 ). In one case, even continual spike-wave 
discharges during sleep (electrical status epilepticus during sleep, ESES) were 
found. Severe epileptiform discharges during sleep were seen as a neurophysiologi-
cal continuity leading to neurocognitive impairment and particularly language 
 disorder in a wide spectrum of diseases including benign rolandic epilepsy and 
Landau-Kleffner syndrome [ 29 ].

  Fig. 16.2    A 7-year-old girl with developmental dysphasia. ( a ) Generalized epileptic discharges 
during wakefulness before nocturnal polysomnographic recording starts. ( b ) Stage 1, NREM sleep 
with sharp wave discharges predominating above the left centro-temporo-parietal regions       
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       Learning Disabilities 

 Learning disabilities (dyslexia, dysgraphia, dysorthographia, dyscalculia) affect up 
to 5–7 % school children, and they are frequently associated with other develop-
mental disorders. The most frequent learning disability is developmental dyslexia. 
It is characterized by a diffi culty in accurate and/or fl uent world recognition and by 
poor spelling and decoding abilities. Although sleep plays a key role in the pro-
cesses of learning and memory, almost no studies are available on sleep in children 
with this disorder. Bruni et al. [ 30 ] found a clear increase in spindle activity and 
sigma power (11–15 Hz frequency) while examining nocturnal sleep in 19 children 
with developmental dyslexia. A relationship was found between increased sleep 
spindle activity and the severity of dyslectic impairment, supporting an important 
role of NREM sleep and spindles in sleep-related neurocognitive processing. 

 Furthermore, CAP analysis revealed an increase in total CAP rate and EEG slow 
oscillation (A1) index in stage N3. A correlation analysis between CAP parameters 
and cognitive-behavioral measures showed a signifi cant positive correlation between 
the A1 index in N3 with Verbal IQ, full-scale IQ, and Memory and Learning Transfer 
reading test, while CAP rate in N3 was positively correlated with verbal IQ [ 30 ]. In 
order to explain this fi nding, the authors hypothesize that to overcome reading dif-
fi culties, dyslexic subjects overactivate thalamocortical and hippocampal circuitry 
to transfer information between cortical posterior and anterior areas. The overacti-
vation of the ancillary frontal areas may account for the CAP rate modifi cations and 
mainly for the increase of CAP rate and the A1 index in N3 that seem to be corre-
lated with IQ and reading abilities [ 30 ].  

    Attention Defi cit/Hyperactivity Disorder (ADHD) 

 ADHD is a highly prevalent childhood-onset neuropsychiatric condition, with an 
estimated worldwide prevalence of approximately 5 % in school-age children. The 
syndrome is defi ned by a persistent and age-inappropriate pattern of inattention, 
hyperactivity-impulsivity, or both. ADHD is frequently comorbid with other neuro-
developmental disorders including coordination disorder, specifi c language impair-
ment, and learning diffi culties [ 31 ]. 

 As many as 70 % of children with ADHD have been reported having mild to 
severe sleep problems including sleep-onset insomnia (the most often reported 
problem), bedtime resistance, night awakenings, diffi culties in morning awaken-
ings, sleep disorder breathing, and daytime sleepiness [ 32 ]. Objective studies 
showed that children with ADHD had signifi cant differences vs. control children for 
sleep-onset latency, apnea-hypopnea index, sleep effi ciency, and higher levels of 
daytime sleepiness on the Multiple Sleep Latency Test (MSLT) supporting the 
hypothesis of disorders of vigilance in ADHD [ 33 ,  34 ]. Both subjective and objec-
tive sleep/alertness alteration presented in ADHD children [ 35 ,  36 ] are suggested to 
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be a result of changes in the micro- rather than macro-sleep architecture [ 33 ]. 
Generally speaking, the relationship between sleep disturbances and ADHD is very 
complicated [ 37 ]. Sleep disturbances may mimic ADHD, may be the consequence, 
or may contribute to ADHD – like phenotypes, as Fig.  16.3  illustrates. Several 
comorbid sleep disorders – particularly periodic limb movements (PLMs) and rest-
less leg syndrome (RLS) – take part in the clinical picture of ADHD.

   The next chapter (17) brings a more comprehensive view of sleep disorders in 
ADHD and its comorbidities.  

    Autistic Spectrum Disorders 

 Autistic spectrum disorders (ASD) are a set of neurodevelopmental disorders char-
acterized by varying degrees of impairment in communication skills, social interac-
tion, and restricted, repetitive, and stereotyped patterns of behavior. The prevalence 
varies between 0.2 and 0.7 % in the whole population [ 38 ,  39 ]. 

 Parental surveys show a 50–80 % prevalence of sleep problems in children with 
ASD mainly represented by insomnia [ 40 ]. Sleep disturbance in these children 
seems to be correlated with aggressive behavior, developmental regression, inter-
nalizing problems [ 41 ], and anxiety and sensory over-responsibility [ 42 ]. Sleep 
 disorders were reported either in ASD children with severe mental retardation or in 
high-functioning subjects [ 40 ]. 

 Children with a history of developmental regression have a more disturbed sleep 
pattern than children without regression [ 43 ] and demonstrate a higher degree of 
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  Fig. 16.3    A comprehensive view on a relationship between sleep disturbances and attention defi -
cit/hyperactivity disorder (ADHD) (Adapted from Owens et al. [ 37 ]). Sleep disturbances may imi-
tate ADHD, may be a component of ADHD, and/or may be a comorbidity of ADHD       
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sleep disruption either at a macrostructural or microstructural level [ 38 ,  44 ]. 
Circadian abnormalities in ASD children might be a result of genetic abnormalities 
related to melatonin synthesis and its role in modulating synaptic transmission. In 
ASD, there is an overall reduction in nocturnal melatonin secretion or a delay in its 
secretion at night. Low levels of melatonin and/or its urinary metabolic derivatives 
correlate with sleep problems and autistic behaviors [ 45 ]. This is probably the cause 
of the diffi culties in falling asleep and of the irregular sleep-wake rhythms [ 46 ]. 
Recently, a bifurcation of the sleep-wake cycle with increased sensitivity to external 
noise and short sleep duration causing irregular sleep-onset and wake-up times has 
been suggested [ 43 ]. 

 Several studies have demonstrated effectiveness of behavioral interventions for 
sleep-onset and maintenance problems [ 39 ]. C o nsistent sleeping environment and 
routine should be maintained to help the child relax down to sleep. The management 
of sleep disturbance in ASD children depends on the type of sleep disorder, but 
behavioral therapy associated to melatonin supplementation is the most used since 
ASD children have endogenous melatonin defi ciency [ 47 ]. 

 A more detailed description of sleep studies in ASD is described in the next 
chapter (17).   

    Chromosomal Abnormalities and Microdeletion Syndrome 

 Sleep problems are highly prevalent in children suffering from diverse genetic syn-
dromes featured by autosomal, gonosomal, and/or microdeletion changes. The main 
sleep characteristics involve nocturnal sleep complaints (mainly night awakenings 
and sleep apnea); however, also tiredness or even excessive daytime sleepiness has 
been reported [ 48 ]. 

    Down Syndrome 

 Down syndrome is one of the most common autosomal abnormalities occurring in 
0.9 per 1000 live births, its probability being directly proportional to increasing 
maternal age. Typically phenotypic features are accompanied by delayed psycho-
motor development with generalized hypotonia and impaired cognitive perfor-
mance. The most frequent cause rests in trisomy chromosome 21, translocation of 
the long arm of an extra chromosome 21 to chromosome 14 or 22, and/or mosaicism 
of trisomy 21. 

 The leading sleep complaints are sleep-related breathing disorder and insomnia. 
The prevalence of obstructive sleep apnea (OSA) is higher than 50 %, the obstruc-
tion being caused by an anatomically narrow upper airway due to midfacial and 
mandibular hypoplasia, relative macroglossia, glossoptosis, and frequent adenoton-
sillar hypertrophy. Other factors predisposing to OSA include obesity and 
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generalized hypotonia with upper airway muscle malfunction. However, changes 
were found also in the sleep architecture. The patients have a reduced quantity of 
REM sleep and decreased REM sleep density. Sleep fragmentation and arousals 
independent of respiratory events and PLMs and even RLS have also been reported. 
Daytime sleepiness is therefore a consequence of poor nocturnal sleep quality. From 
the therapeutic point of view, management of OSA as well as behavioral methods is 
usually recommended to decrease sleep problems [ 49 ,  50 ]. 

 Recently, the practice parameters from the American Academy of Pediatrics rec-
ommended to discuss with parents, at least once during the fi rst 6 months of life, 
symptoms of obstructive sleep apnea, uncommon sleep positions, frequent night 
awakening, daytime sleepiness, and behavior problems [ 51 ].  

    Fragile X Chromosome 

 Fragile X chromosome is the most common cause of sex chromosomal abnormali-
ties with a rate of occurrence 1:4000 live births in males. It is the most frequent 
cause of inherited mental retardation in boys due to X-linked trinucleotide repeat 
disorders (Xq27.3). The characteristic face features (elongated face, large ears, and 
protruding jaw) are accompanied by macroorchidism. Cognitive and language fea-
tures comprise a defi cit consistent with the level of mental retardation; behavioral 
changes include increased social avoidance, anxiety, and hyperactivity [ 52 ]. 

 Very few studies evaluated the presence of sleep disorders in patients with fragile 
X. Kronk et al. [ 53 ] reported a prevalence of 32–50 % of signifi cant sleep problems 
with the more frequent complaints represented by sleep-onset diffi culties and fre-
quent awakenings during the night. 

 Data obtained from the Fragile X Clinical and Research Consortium Database 
(FXCRC) showed that 27 % of parents reported sleep problems in affected children, 
and also OSA has been reported to be a frequent complaint [ 54 ]. A variable sleep dura-
tion and sleep fragmentation are sporadically observed [ 49 ]. Some sleep studies showed 
a correlation between REM sleep defi cit and the level of mental retardation [ 52 ]. 

 In an interesting study, Gould et al. [ 55 ] found increased levels of melatonin 
across the circadian cycle in young fragile X individuals, possibly explaining the 
diffi culties in maintaining consistent sleep and increased number of night wake epi-
sodes. Clonidine has been reported to have a benefi cial effect on hyperactivity and 
abnormal sleep patterns [ 56 ]; behavioral therapy was also used with a benefi t [ 57 ].  

    Prader-Willi Syndrome 

 Prader-Willi syndrome (PWS) is a genetic disorder affecting in 1:10,000–25,000 
live births. The genetic defect is linked to a deletion in the paternally inherited chro-
mosome 15q11–q13 in 70–75 % of individuals, to a maternal uniparental disomy in 
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20–25 % of cases, and to abnormal methylation of the imprinting center on chromo-
some 15 in 1–2 %. 

 PWS is characterized by obesity, small status, hyperphagia, hypogonadism, 
mental retardation, and behavioral disorder. The most frequent sleep complaints 
include breathing disorders, particularly OSA, and daytime sleepiness. The risk fac-
tors for OSA are obesity and mass loading of the chest wall, facial dysmorphism, 
and hypotonia. Abnormality of central respiratory control also predisposes to cen-
tral apneas. 

 OSA seems to be a feature that appears during development; in fact, infants with 
PWS, when compared with older children, were more likely to experience central 
sleep apnea than obstructive events [ 58 ]. With age obesity increasing and OSA 
emerging, a recent review analyzing 14 studies in children with PWS reported an 
OSA prevalence of 79.91 %: 53.07 % had mild, 22.35 % moderate, and 24.58 % 
severe OSA. Adenotonsillectomy was found to be effective in reducing OSA 
for some children, but residual OSA was present in the majority of cases after 
surgery [ 59 ]. 

 Although OSA may have a role in decreased vigilance during the day, excessive 
daytime sleepiness (EDS) is primary caused by hypothalamic dysfunction. 
Decreased level of hypocretin-1 in the cerebrospinal fl uid [ 60 ] can support a poten-
tial involvement of hypothalamic dysfunction. 

 Different polysomnographic studies have been carried out to evaluate sleep in 
PWS subjects showing a decrease of sleep and REM latency and the presence of 
sleep-onset REM periods (SOREMPs), corroborating the hypothesis of a primary 
disorder of vigilance [ 61 ]. 

 Reviewing the relevant literature, Camfferman et al. [ 62 ] found EDS in 74 out of 
110 cases and cataplexy-like symptoms in 13 out of 63 patients. However, no con-
vincing correlation was found between OSA severity and EDS. 

 Growth hormone (GH) therapy in children with PWS may determine hypertro-
phy of tonsils or adenoids, increase OSA, and may be responsible for sudden death 
in PWS subjects [ 63 ]. A recent paper, however, showed a decrease in the respiratory 
disturbance index and the central apnea index. The authors [ 63 ] concluded that 
long-term GH treatment in patients with PWS is generally safe and recommended 
annual polysomnography and adenotonsillar evaluation. 

 CPAP (or BiPAP) is commonly prescribed for sleep-disordered breathing, 
while most patients benefi t from modafi nil to counteract excessive daytime 
sleepiness [ 62 ].  

    Angelman Syndrome 

 Angelman syndrome (AS) is a neurodevelopmental genetic disorder caused by the 
absence or loss of function of the maternally inherited allele at the 15q11-q13 
domain; it occurs in 1:12,000–20,000 individuals and accounts for 6 % of all chil-
dren with severe cognitive disability and epilepsy [ 64 ]. AS is called “happy puppet 
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syndrome” because of the patients’ characteristic jerky movements, happy disposi-
tion, and frequent laughter. Microcephaly, severe mental retardation, and epileptic 
seizures accompany the clinical picture [ 65 ]. 

 A variety of sleep abnormalities are reported including prolonged sleep latency, 
frequent nocturnal awakenings, involuntary movements, bruxism, snoring, and a 
higher rate of parasomnias (enuresis, sleep terrors, sleepwalking) [ 66 ]. Nocturnal 
sleep time is reduced and some children have abnormal sleep-wake cycles with 
short periods of diurnal and nocturnal sleep [ 49 ]. 

 Polysomnographic studies showed a reduction in sleep effi ciency and in REM 
sleep, while the percentage of SWS was found to be signifi cantly higher, due to the 
presence of the 1–3 Hz bursts that represent the typical EEG pattern of the syn-
drome. No respiratory abnormalities were found; however, a tendency to an increase 
in the periodic limb movement index (PLMI) was observed [ 67 ]. 

 In children with AS, treatment with sleep hygiene, behavioral therapy, associated 
with melatonin was documented to be effective. Melatonin before bedtime pro-
motes less fragmented sleep and helps to regulate sleep-wake cycles [ 68 ]. A recent 
research in children with AS reported that the nighttime serum melatonin levels 
were signifi cantly low in AS patients and with delayed melatonin peak showing the 
delayed sleep phase syndrome (DSPS) [ 69 ].  

    Williams Syndrome 

 Williams syndrome (WS) is a disorder marked by an unusual elfi n-like facies, 
hyperacusis, infantile hypercalcemia, and signifi cant physical and mental retarda-
tion. The condition is caused by a heterozygous deletion in chromosome 7q11.23 
and its incidence is estimated at 1:10,000. 

 There are only few studies dealing with sleep problems in these patients. While 
in children the attention has been focused on night sleep complaints and predomi-
nantly on PLMs [ 70 ], Goldman et al. [ 71 ] used actigraphy to examine overnight 
sleep pattern in 23 adolescents and young adults and completed their sleep data with 
a structured questionnaire: although free to spend 9 h in bed, nearly all the subjects 
were tired and almost 80 % were sleepy during the day.  

    Smith-Magenis Syndrome 

 Smith-Magenis syndrome (SMS) is characterized by mental retardation with dis-
tinctive behavioral characteristics, dysmorphic features, and an abnormal circadian 
pattern of melatonin ascribed to an interstitial deletion of chromosome 17 (17p11.2). 
The prevalence is estimated at 1:25,000 live births [ 72 ]. 

 Sleep disturbances are seen in 65–100 % cases, and all affected children display 
a phase shift in their circadian rhythm of melatonin secretion. Prominent sleep 
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problems include early sleep onset, repeated and prolonged awakening during the 
night, and early sleep offset. Most patients exhibit morning tiredness, temper tan-
trums when tired, and naps during the day (Fig.  16.4 ).

   Actigraphic studies indicated a sleep disturbance that begins as early as 6 months 
of age, with fragmented sleep and reduced 24-h sleep compared with healthy con-
trol subjects [ 73 ]. This fi nding was corroborated by polysomnographic studies 
which revealed reduced sleep time in virtually all SMS patients [ 74 ]. 
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  Fig. 16.4    A 7-year-old boy with Smith-Magenis syndrome: the actigraphic recording shows early 
awakenings from nocturnal sleep (marked by  arrowheads ) and many excessive daytime sleep 
attacks (marked by  asterisks )       
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 The disorder of circadian rhythm in SMS is related to disturbed regulation of 
downstream circadian clock genes and explains sleep disturbance and abnormal day-
time behavior with hyperactivity. The mechanism of the quantitatively normal, but 
rhythmically abnormal, melatonin secretion is, as yet, unknown [ 75 ]. A series of stud-
ies have found that 96 % of SMS children had inverted endogenous melatonin secre-
tion, peaking in the day rather than at night [ 76 ,  77 ]. The best recommended treatment 
is a combination of evening melatonin administration and morning β1-adrenergic 
antagonist (acebutolol) to reduce the daytime production of this hormone [ 78 ].  

    Rett Syndrome 

 Rett syndrome (RS) is a severe neurological disorder with an incidence of 1:10,000 
girls. It is one of the most frequent causes of mental retardation in female patients. 
It is generally caused by mutation in the MECP2 (methyl-CpG binding protein 2) 
gene (Xq28). Almost 300 mutations have been recorded [ 79 ]. The disorder is char-
acterized by progressive intellectual and neurological impairments beginning after 
apparently normal psychomotor development. Early signs of RS typically manifest 
at the age of 6–18 months. Characteristic features comprise microcephaly, stereo-
typed hand movements (hand-wringing or washing), severely impaired language 
functioning, autistic behavior, regress of motor and intellectual functions, epilepsy, 
and attacks of breathing disturbance during wakefulness. 

 Several studies show that sleep patterns are changed from infancy. The affected 
girls sleep longer during the day and, on the other hand, wake and laugh in the 
middle of night. Their sleep onset is very irregular and total daytime sleep remains 
prolonged instead of showing the normal age-related physiological decline. The 
immature sleep pattern seems to be a consequence of arrested brain development. 
Frequent daily napping has been reported almost in 80 % of affected patients and 
found to increase with the age [ 80 ]. 

 Polysomnographic studies revealed lower sleep effi ciency, long sleep-onset 
latency, and short total sleep time, but also increased wakefulness after sleep onset 
(WASO), decreased REM sleep, fewer spindles, and K complexes similar to other 
forms of mental retardation [ 81 ,  82 ]. Alterations in sleep architecture including 
tonus changes in NREM as well as REM sleep were found [ 83 ,  84 ]. Patients with 
RS commonly show irregular breathing during wakefulness consisting of episodes 
of hyperventilation interspersed with breath-holding spells, sometimes associated 
with severe oxygen desaturation. 

 Respiratory disturbances during the night are very frequent [ 85 – 87 ]. Hagebeuk 
et al. [ 86 ] found in a group of 12 RS girls combined central and obstructive apneas 
in fi ve patients, in another three prevailed central apnea, and in further two obstruc-
tive one. Only two cases showed normal respiratory functions. 

 A recent study showed, in a sample of more than 300 cases followed over 12 years, 
that the prevalence of any sleep disturbance was very high (more than 80 %) and 
decreased with age (less common in individuals aged more than 18 years) [ 88 ]. 
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Night laughing represented the most frequent problem occurring in 60–88 % of 
younger girls followed by night screaming. 

 Behavioral insomnia and nighttime behaviors in RS are usually treated with a 
combination of behavioral treatments and oral melatonin (2.5–7.5 mg) that reduced 
mean sleep latency [ 89 ,  90 ]. 

 Management of breathing sleep disorder is necessary almost in all RS cases, 
sometimes including 1–2 h per day of continuous positive airway pressure (CPAP) 
while awake.  

    Coffi n-Lowry Syndrome 

 Coffi n-Lowry syndrome is a rare disorder characterized by moderate to severe men-
tal retardation, facial dysmorphism, tapering digits, and skeletal deformity. The 
gene is located on Xp22.2 [ 91 ]. The characteristic features are stimulus-induced 
drop episodes, accompanied by sudden loss of muscle tone, and induced by unex-
pected tactile or auditory stimuli. No epileptiform activity was proven in any 
reported case. Drop attacks are not induced by emotion (as in true cataplectic 
attacks), and recovery is immediate. The attacks last only a few seconds and always 
lead to fall. The pathophysiology of these cataplexy-like drop attacks remains 
unclear [ 92 ]. Sleepiness has not been described in any case. Treatment with conven-
tional antiepileptic medication proved ineffective. Sporadically clomipramine and/
or tiagabine – a potent GABA-uptake inhibitor – was used with a benefi t [ 92 ,  93 ].  

    Norrie Disease 

 Norrie disease is a rare X-linked microdeletion syndrome (Xp11.3–p11.4) charac-
terized by infantile blindness, pseudotumorous retinal dysgenesis, and ocular atro-
phy. It is associated commonly with mental retardation, sensorineural deafness, 
dysmorphic features, and occasionally with atonic seizures. Sleep studies are 
extremely rare. Vossler et al. [ 94 ] described three boys with this syndrome and 
found them to have cataplexy and abnormal REM sleep with no other signs of nar-
colepsy. The authors verifi ed the congenital absence of monoamine oxidase (MAO) 
in these patients and suppose its indirect responsibility for cataplexy and REM sleep 
disturbance. 

 Some other congenital syndromes such as  Möbius ,  Pierre - Robin ,  Treacher - 
 Collins ,  Goldenhar ,  and / or centrofacial dysgenesia  also belong to neuroembryo-
logical and/or genetic programming malformations of the nervous system. Their 
diffi culties are primarily connected with upper airway obstruction and subsequent 
sleep disorder breathing diffi culties. Noninvasive breathing support (BiPAP) fol-
lowed by individually chosen surgical treatment manages usually a necessary 
benefi t.   
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    Neurometabolic Diseases 

 Metabolic and/or degenerative diseases affecting the central nervous system usually 
result from a single mutant gene coding for an enzymatic protein mostly involved in 
the catabolic pathway. The defective gene in metabolic diseases is normally 
expressed in one or more organs (not necessarily in the nervous system), where 
chemical analyses of tissues often have a diagnostic value. Most of them belong to 
the group of lysosomal or so-called storage diseases [ 95 ]. 

 Storage lysosomal diseases are characterized by an accumulation of undergraded 
macromolecules within lysosomes. The most common representatives are the 
glycogen storage diseases – glycogenosis (Pompe disease), mucopolysaccharidosis 
and mucolipidosis, glycoproteinosis together with sphingolipidosis, and neuronal 
ceroid lipofuscinosis. Almost all are autosomal recessive inherited diseases; 
the combined prevalence of all lysosomal storage diseases is 1:6600–1:7700 live 
births [ 95 ]. 

    Pompe Disease 

 Pompe disease results from acid α-glucosidase defi ciency; its incidence is estimated 
at 1:40,000 individuals. The infantile form is usually fatal before the age of 2 years, 
and the juvenile form progresses more slowly, but all patients develop involvement 
of respiratory muscles – predominantly of the diaphragm. Enzyme replacement 
therapy is the only causal treatment improving signifi cantly the prognosis and 
diminishing breathing diffi culties. Obstructive sleep apnea and hypoventilation are 
common without causal treatment in both patients’ groups, and noninvasive ventila-
tion support is indicated [ 96 ,  97 ].  

    Mucopolysaccharidosis 

 Mucopolysaccharidoses are heterogeneous syndromes consisting of mental and 
physical retardation, typical facies features with the large head, multiple skeletal 
deformities, hepatosplenomegaly, and clouding of the cornea in Hunter and Hurler 
syndrome. The syndrome comprises seven major entities, which are distinguishable 
by their clinical picture, genetic transmission, enzyme defect, and urinary muco-
polysaccharide pattern. 

 OSA is the most common sleep disorder in all types. Upper airway obstruction 
has multiple causative factors, and progressive respiratory disease may severely 
affect morbidity and mortality [ 98 ]. Children are more severely affected than adult 
patients [ 99 ]. Retropalatal and retroglossal spaces were found to be signifi cantly 
smaller in children than in adults. Adenoid hypertrophy was found to have a signifi -
cant role to play in all examined children. 
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 The most frequent and probably specifi c sleep disturbances have been found in 
the commonest mucopolysaccharidosis, Sanfi lippo syndrome. These patients have 
extremely irregular sleep pattern, with several sleep episodes of variable duration 
and irregular round-the-clock distribution [ 100 ]. Guerrero et al. [ 101 ] examined 
urine melatonin excretion in 12 patients with Sanfi lippo syndrome and found a sig-
nifi cantly lower melatonin excretion at night and signifi cantly higher concentration 
in the morning with keeping a slightly higher level also during the day compared to 
the controls. Analysis of the circadian rhythm alteration may explain the cause of 
sleep disorders found in these patients, and melatonin can be recommended as a 
benefi t treatment.  

    Niemann-Pick Disease 

 Niemann-Pick disease is a heterogeneous syndrome comprising different forms 
(A–D). However, its type C (NP-C) with sphingomyelinase activity defi cit is one of 
the most frequent recessively inherited lysosomal storage sphingolipidoses. The 
prevalence is 1:150,000, and about 95 % of NP-C patients have mutation in NPC1 
gene (18q11). Three main clinical forms are distinguished: infantile with early onset 
and rapid progression, late infantile/juvenile with slower progression, and variant 
with a late onset. The most common late infantile/juvenile form is characterized by 
vertical supranuclear ophthalmoplegia, cerebellar ataxia, dystonia, dysarthria, dys-
phagia, and intellectual deterioration. Cataplexy is a frequent symptom, and spleen 
enlargement or hepatosplenomegalia is expressed in all patients. 

 Several sleep studies [ 102 – 105 ] were done in NPC1 patients. Night sleep is 
interrupted with frequent arousals, disorganized, shortened, and of low effi ciency. 
The MSLT shows shortened mean sleep latency (independent of the presence or 
absence of cataplexy). A decreased value of CSF hypocretin was found to be inde-
pendent of the presence of cataplexy. Vankova et al. [ 102 ] found in fi ve NP-C 
patients altered sleep patterns including sudden increase in muscle tone during 
delta sleep, electroencephalographic sigma activity connected with rapid eye 
movements and muscle atonia, presence of alpha-delta sleep, and atypical K com-
plexes as well as spindle activity. All patients exhibited fragmentary myoclonus 
(Fig.  16.5 ).

   According to Vanier [ 106 ] only about 10 % of NPC1 cases have clinically evi-
dent cataplectic attacks. However, cataplexy as a leading sleep disorder symptom 
was recently described by many authors [ 104 ,  107 ,  108 ]. Nevsimalova and Malinova 
[ 109 ] found cataplexy in four out of nine patients with late infantile and in one out 
of three patients with infantile NP-C form, while cataplexy was absent in juvenile 
or adult cases. Cataplectic attacks were found more frequently in children than in 
adults also by further authors [ 110 ]. Therefore, Challamel et al. [ 111 ] recommend 
to rule out NPC1 disease in all children with frequent cataplectic attacks. 

 Miglustat® represents a new possibility of NP-C treatment; its benefi t was 
exceptionally observed also on cataplectic attacks [ 112 ].  
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    Neuronal Ceroid Lipofuscinosis 

 Neuronal ceroid lipofuscinosis (NCL) is characterized by the accumulation of auto-
fl uorescent storage material within lysosomes, leading to neuronal death. The major 
clinical subtypes are infantile, late infantile, early juvenile, juvenile, and the adult 
forms, all transmitted in an autosomal recessive manner [ 95 ]. 

 Late infantile neuronal ceroid lipofuscinosis is one of the most common variants. 
It is caused by a genomic defect in chromosome 11p15.5, the Finish variant of late 
infantile NCL, which is also known as the early juvenile form of 13q22. Clinical 
features include progressive visual failure, intellectual deterioration, cerebellar 

  Fig. 16.5    A 14-year-old girl with Niemann-Pick disease type C. ( a ) REM sleep with rapid eye 
movements, muscle twitches, and sigma activity. ( b ) NREM sleep, stage 3 with diffuse penetration 
of alpha rhythm. ( c ) Alpha-delta sleep. ( d ) NREM sleep, stage 2 with fragmental myoclonus         
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symptoms with ataxia, epilepsy, and frequent myoclonic jerks. Clinical decline 
leads to coma vigile and premature death. Sleep studies [ 113 ] show in the initial 
phase an excess of night sleep and frequent daytime naps. Later on, the longest 
sleep period was frequently shifted into daytime hours. Fragmented diurnal rest 
activity patterns with no distinct rhythm are seen during disease progression. The 
internal circadian timing system may be damaged also due to visual deterioration. 

 Juvenile neuronal ceroid lipofuscinosis is mapped to chromosome 16p12.1. Its 
clinical features include progressive loss of vision, usually leading to blindness 
between 8 and 13 years of age, intellectual deterioration, extrapyramidal and cere-
bellar symptoms, and epilepsy. Common sleep disturbances are reported in more 
than half of the patients. The most typical are daytime sleepiness [ 114 ], settling 
problems, nocturnal awakenings, and nightmares. Polysomnography showed 
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Fig. 16.5 (continued)
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signifi cantly reduced total sleep time, sleep effi ciency, percentage of REM sleep, 
and NREM stage 2. Treatment with melatonin before bedtime may help to slightly 
improve the circadian rhythm [ 114 ].   

    Neuromuscular Diseases 

 Neuromuscular diseases include a wide spectrum of motor unit diseases starting 
with the affection of motor neuron in the brainstem and spinal cord and spinal mus-
cular atrophies (SMA), continuing through myasthenic syndromes, congenital 
myopathies, muscle dystrophies, and myotonic syndromes, and ending with 
Charcot-Marie-Tooth (CMT) disease, called also as hereditary motor and sensory 
polyneuropathy (HMSN). 

 Patients suffering from neuromuscular diseases are at an increased risk of sleep- 
disordered breathing (SDB) disorders such as OSA and hypoventilation, as well as 
central sleep apnea. SDB increases particularly due to diaphragmatic weakness and 
can precede abnormalities during wakefulness by months to years. Hypoventilation 
becomes more severe as the disease progresses, but SDB can be seen in some cases 
still in early stages of neuromuscular diseases (Fig.  16.6 ). Sleep-related hypoxemia 
is predominantly seen in REM sleep, because of the loss of accessory muscle con-
tribution to breathing in coping with diaphragmatic weakness. REM-related desatu-
rations are also frequently associated with recurring apnea and hypopnea. These 
apneas are most commonly central origin, but obstructive apnea can develop if 
upper airway muscle contraction is impaired [ 115 ]. Later on, SDB appears also dur-
ing NREM sleep. A decrease in blood oxygen saturation can reach a value between 
60 and 80 %, a quantity connected with compensatory increased breathing effort 
and nocturnal awakening reactions. Noninvasive nocturnal breathing support is the 
adequate treatment for SDB in all the types of neuromuscular diseases [ 116 ].

   Nocturnal sleep-related ventilatory alterations lead to sleep inertia in the morn-
ing with headaches, daytime somnolence, fatigue, and inappropriate napping. 
Children are also at higher risk for developing complications as pulmonary hyper-
tension, cor pulmonale, and neurocognitive dysfunction that impair their quality of 
life and may lead to signifi cant morbidity and increased mortality [ 115 ,  117 ]. 

    Spinal Muscular Atrophy (SMA) 

 Spinal muscular atrophy is transmitted by an autosomal recessive gene and mani-
fested by widespread muscular denervation and atrophy. The incidence is 1:10,000–
25,000. Three main clinical variants exist in children: infantile (SMA 1) with the 
most rapid course, intermediate (SMA 2) which makes approximately one-half of 
all cases, and juvenile (SMA 3) with much slower progression. All forms are caused 
by mutations in a survival motor neuron gene 1 (SMN1) located at chromosome 
5q11.2–q13.3 [ 118 ]. 
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 There are very few studies of sleep patterns in patients with SMA and especially 
in subjects with SMA1. In a polysomnographic study of 32 neuromuscular patients, 
four with a form of SMA, sleep architecture revealed an increase in stage 1 sleep 
coupled with a decrease or absence of REM sleep [ 119 ]. Another study on seven 
SMA children (six with SMA type 1.5–1.8, one with SMA type 2) showed impaired 
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  Fig. 16.6    Neuromuscular diseases followed-up in our Prague Sleep Center (Kemlink D. et al., 
unpublished data). ( a ) A survey of a cohort of 60 children, adolescents, and young adults with 
neuromuscular diseases:  DMD  Duchenne muscle dystrophy,  MD  myotonic dystrophy,  PPS  post-
poliomyelitic syndrome,  SMA  spinal muscular atrophy type 2 and 3. ( b ) An age-related polysom-
nographic (PSG) respiratory fi ndings in 34 patients from the abovementioned cohort.  RDI  
respiratory disturbance index,  ODI  oxygen desaturation index,  % below 90 %  the percentage of the 
total recorded time spent below 90 % of oxygen saturation level. The graph shows no age-related 
dependence on the severity of the patients’ respiratory parameters       
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sleep architecture, in whom nocturnal noninvasive ventilation (NIV) resulted in a 
signifi cant improvement of sleep architecture with higher sleep effi ciency, increased 
deep sleep, longer REM sleep, and signifi cantly fewer EEG arousals [ 120 ]. 

 A recent study on SMA1 patients indicates the presence of an abnormal sleep 
microstructure in SMA1 patients, characterized by a reduction of A2 and A3 CAP 
subtypes (corresponding to arousals). The authors hypothesize that SMA1 patients 
have reduced arousability during NREM sleep, which could be interpreted as addi-
tional evidence of central nervous system involvement in this disease and might 
represent an additional risk factor for the premature death of these patients, which 
is frequently attributed to the rapid progress of weakening of muscles and respira-
tory failure [ 121 ]. 

 SDB is a classical feature particularly in SMA 1 and 2. The intercostal muscles 
in these cases are more affected than the diaphragm, resulting in paradoxical 
 breathing (inspiratory efforts cause the rib cage to move inward as the abdomen 
moves outward). Thoracoabdominal asynchrony is present during the inspiratory 
and expiratory phases in both REM and NREM sleep [ 122 ]. 

 In the past 20 years, NIV has been used as a standard method for increasing the 
duration and quality of life of the affected children. Nocturnal sleep architecture is 
consolidated and daytime functioning improves. Both the growth and development 
of lung parenchyma are positively infl uenced, and chest wall deformity either slows 
down growing or starts reversing its progression [ 115 ,  123 ].  

    Congenital Myasthenic Syndromes 

 The congenital myasthenic syndromes represent a group of heterogeneous disorders 
that can be classifi ed into presynaptic, synaptic, or postsynaptic according to the site 
of the transmission defect. The manifestations can be severe from birth with weak 
cry, congenital hypotonia with generalized weakness, and feeble suck or can com-
bine in various degrees ptosis, ophthalmoparesis, easy fatigability, and proximal 
pattern of muscle weakness. 

 The presence of sleep hypoventilation syndrome has been reported [ 115 ], and 
therefore, polysomnographic evaluation and NIV positive pressure ventilation can 
be indicated.  

    Congenital Muscular Dystrophies 

 Congenital muscular dystrophies are genetically and clinically heterogeneous group 
of autosomal recessive disorders, presenting with muscle weakness and hypotonia 
at birth or within the fi rst few months of life. The diagnosis is possible at the molec-
ular level; the course of disease is usually slowly progressive. 

 Patients are at risk of SDB including central apneas/hypopneas, awakenings, as 
well as of poor quality of sleep and epileptic seizures. Pinard et al. [ 124 ] examined 
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sleep structure in a group of 20 children and adolescents and found frequent awak-
enings with decreased total sleep time and decreased REM duration in all the cases. 
Increased apnea-hypopnea index was noticed in 13 out of 20 children, and in a half 
of the patients (10 out of 20) nocturnal paroxysmal activity was found. Association 
of nocturnal paroxysmal activity with apnea-hypopnea syndrome was noticed in 
eight of these ten children. Systematic screening of SDB and sleep quality should 
be, though, a part of routine management.  

    Duchenne Muscular Dystrophy 

 Duchenne muscular dystrophy (DMD) is the most frequent progressive muscular dys-
trophy in childhood. It belongs to a group of dystrophinopathies, resulting from muta-
tion in the dystrophin gene, located on the short arm of the X chromosome (Xp21) 
and transmitted in a sex-linked recessive manner. The incidence of DMD of approxi-
mately 1:3000 up to 1:6000 male births [ 118 ] makes it the most widespread neuro-
muscular disease. The clinical picture includes classic myopathic features (diffi culty 
in climbing stairs, rising from the fl oor, progressive muscle wasting with increased 
lordosis, and diminished tendon refl exes). In contrast to general atrophy, there is strik-
ing pseudohypertrophy of the calves. At about the age of 10–12 years, the children 
start being wheelchair bound and developing cardiomyopathy. After the introduction 
of the palliative steroid therapy, the median age for the loss of ambulation has 
increased by approximately two years. However, the prognosis depends also on respi-
ratory care. Over the past 20 years, improvement in ventilatory support and multidis-
ciplinary care has improved the survival rate of DMD patients till their 30s [ 125 ]. 

 Signs of early respiratory insuffi ciency are usually fi rst detectable in sleep; 
hence, polysomnographic examination is indispensable there. Annual monitoring is 
recommended if vital capacity declines to <65 %; the patients should undergo twice 
yearly a visit to a pulmonary and cardiology pediatric specialists and somnologist 
after confi nement to a wheelchair, after their vital capacity falls below 80 % and/or 
after the age of 10 years [ 115 ]. Increased risk for SDB includes hypopnea, central 
and obstructive apnea, and hypoxemia. Suresh et al. [ 126 ] presume a bi-phase pre-
sentation SDB, with OSA found in the fi rst decade and hypoventilation more com-
monly seen at the beginning of the second decade. However, the patients’ sleep can 
also be infl uenced by medication and/or physical factors. Disorders of initiating and 
maintaining sleep were signifi cantly more frequent in children treated by steroids. 
The need to start a career where immobility forms to obstacle seems to be a major 
burden on the quality of sleep, and sleep disturbances are strongly associated with 
immobility [ 125 ]. Gradually increasing number of nocturnal awakenings leads to 
daytime sleepiness and morning headaches and can contribute to cognitive impair-
ment. Although SDB treatment with NIV support is very important, the treatment 
should take into account its complexity as the aim to improve quality of life and 
reduce the high morbidity and early mortality associated with DMD.  
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    Myotonic Dystrophy 

 Myotonic dystrophy, particularly type 1, is the most frequent adult-onset muscular 
dystrophy characterized, besides clear neurological symptoms, by fatigue and day-
time sleepiness [ 127 ]. The inheritance is autosomal dominant with amplifi cation of 
a trinucleotide repeat localized at the chromosome 19q13.2. The clinical severity 
depends on the number of repeats. The congenital form is usually related to a mater-
nal transmission and shows the greatest number of repeats. Facial diplegia and dys-
morphic craniomandibular structures aggravate respiratory diffi culty. Mixed central 
and obstructive apneas have been reported in children with congenital myotonic 
dystrophy [ 115 ]. 

 Besides the presence of frequent central apnea, not only in REM sleep but occur-
ring throughout all the sleep stages, and less frequent obstructive events [ 128 ], there 
is impairment of neural respiratory control indicated by abnormal response to 
hypoxia and hypercapnia, which is due to the CNS involvement. The excessive 
daytime sleepiness, often described in children with the initial stage of the myopa-
thy, is probably independent of the apnea-hypopnea index, oxygen desaturations, or 
sleep fragmentation, occurring because of the direct effect of CNS lesions as indi-
cated by the cognitive and neuropsychological defi cits [ 129 ].  

    Charcot-Marie-Tooth Disease (CMT) 

 CMT represents a widely heterogeneous group of diseases as regards the genetic 
background, mode of transmission, and clinical and neurophysiological manifesta-
tion. As the most common form, CMT1 is characterized by progressive peroneal 
muscular atrophy and transmitted as a rule by an autosomal dominant trait of inheri-
tance. Their prevalence is 3.8 per 10,000 in population, with most cases located at 
the chromosome 17p11.2 [ 95 ]. The clinical picture varies from very mild up to the 
quite severe wheelchair-bound handicapped phenotype. 

 Restrictive pulmonary impairment has been described in association with 
phrenic nerve dysfunction, diaphragm dysfunction, or thoracic cage abnormalities. 
Sleep disturbances may be associated with paresthesia, muscle cramps, or 
RLS. Fatigue, and reduced sleep quality, has been described in adult patients; the 
references about children are scarce. Sleep apnea was found to be common in CMT 
patients, and the apnea-hypopnea index correlated with disease severity. Since 
causative treatment for CMT is not available, sleep-related symptoms should be 
recognized and treated in order to improve quality of life [ 130 ]. Bi-level positive 
airway pressure (BiPAP) is more appreciate treatment than positive airway pres-
sure (CPAP). The prominence of peripheral neuropathy as a cause of the RLS in 
CMT may justify treatment with neuropathic medication (e.g., gabapentin) better 
than dopaminergic agents [ 131 ].   
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    Conclusions 

 Sleep disturbances in children with neurodevelopmental disabilities are highly prev-
alent and tend to be chronic. A specifi c sleep phenotype could be characteristic of a 
particular disorder and can represent a clinical clue for the diagnosis. 

 The clinical evaluation of children with neurodevelopmental disabilities should 
always comprise a detailed investigation of sleep problems, disturbances, and com-
plaints reported by parents. Also the contributing factors to sleep disorders should 
be analyzed (either psychiatric or medical) in order to choose the best treatment for 
sleep disorders that are often overlooked and considered as a minor issue in relation 
to the general condition of the child. A comprehensive awareness of sleep disorders 
in these patients becomes essential for the appropriate recognition and effective 
treatment.     
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    Chapter 17   
 Sleep in Children with Psychiatric 
and Behavioral Problems                     

     Rosalia     Silvestri      and     Irene     Aricò    

    Abstract     Sleep is commonly affected in psychiatric and behavioral pediatric dis-
orders, contributing to children’s disability and parental burden. Diffi culties initiat-
ing and maintaining sleep, often non-restorative in quality, frequent parasomnias, 
such as disorders of arousals, enuresis, and nightmares; sleep-related movement 
disorders such as bruxism, restless legs syndrome (RLS), and periodic limb move-
ment during sleep (PLMS); snoring; and sleep apnea may all interfere with sleep 
consolidation and daytime performance both at school and daycare. Alterations of 
slow- wave sleep (SWS), both in terms of macro- and microstructural aspects, are 
common to almost all disorders, whereas rapid eye movement (REM) sleep is more 
impacted by mood and autism spectrum disorders (ASDs), often correlating with 
relational and emotional profi les rather than with cognitive problems. In said disor-
ders, subjective complaints always override objective fi ndings from all-night acti-
graphic or polysomnographic (PSG) recordings. In particular, sleep latency (SL) 
and total sleep time (TST) are severely affected only in the acute manic and psy-
chotic phases and in early ASDs, whereas infranight awakenings and slow-wave 
sleep (SWS) fragmentation appear to be the hallmarks of these disorders, refl ecting 
an impaired maturational process affecting mostly the frontal lobes and their 
connectivity.  
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      Introduction 

 There appears to be a complex bidirectional relationship between psychiatric dis-
orders and sleep problems in children and adolescents. Numerous studies have 
been carried out addressing the infl uence of poor sleep on the development and 
burden of psychiatric morbidity. Both old [ 1 ] and more recent epidemiologic stud-
ies [ 2 ] indicate signifi cant nighttime problems such as bedtime resistance, fear of 
the dark, need for co-sleeping, restless sleep, snoring, and several parasomnias 
including nightmares and sleep terrors, enuresis, and excessive movements during 
sleep (see Table  17.1 ).

   Some complaints appear to be more common within specifi c psychiatric diagno-
sis, whereas others seem to be largely distributed across all psychiatric disorders. 
Often, the severity of sleep inadequacy carries a negative prognosis for the resolu-
tion of the psychiatric condition, heralding in most cases recurrent symptomatic 
episodes. 

 Objective evaluation of sleep via traditional or ambulatory PSG and/or acti-
graphic recordings has been limited to few cases [ 3 ]. 

 The same scarcity of sleep data can be observed in many studies considering 
specifi c therapeutic interventions addressing sleep, whether cognitively behavioral 
or pharmaceutical in nature. 

 Little is known about safety of hypnotics in the pediatric population; many com-
monly used drugs among adults may even exert paradoxical effects in children. 
Furthermore, psychotropic drugs addressing the primary psychiatric condition may 
negatively affect sleep continuity and be responsible for unpleasant oneiric poten-
tiation [ 4 ,  5 ] or induce comorbid sleep disorders such as RLS or periodic limb 

   Table 17.1    Sleep in children with psychiatric disorders   

 Disorders  Subjective children data  Objective data 

 Anxiety disorders  Parental reports of bedtime fears and rituals, 
need for co-sleeping and transitional objects. 
Nighttime waking, nightmares, DOA 

 Reduced SL and SWS 
 Increased WASO 
 Less consistently 
 Reduced REM-L and 
TST 

 Mood disorders 
   MDD  Insomnia, worries, hypersomnia  Increased SL and REM 

density, WASO 
 Reduced REM-L and 
SWS 

   Bipolar  Decreased need for sleep/hyperactivity (mania 
phase) 

 Increased N1 
 Reduced SWS 
 Longer TST and reduced 
SL between episodes 

 Schizophrenia  Insomnia, EDS  Decreased SE; TST and 
SWS, REM-L and REM 
density 
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movement disorder (PLMD). Indeed, the latter has been reportedly enhanced by 
most selective serotonin reuptake inhibitors (SSRIs) and dual serotonin and nor-
adrenalin reuptake inhibitors (SNRIs) [ 6 ].  

    Anxiety Disorders and Sleep 

 Up to 20 % of the pediatric population [ 7 ] suffers from a diagnosable anxiety disor-
ders according to the most recent DSM-5 classifi cation [ 8 ], not considering previ-
ously included diagnoses such as post-traumatic stress disorder (PTSD) and 
obsessive-compulsive disorders (OCDs). 

 The incidence of children encountering signifi cant stressful anxiety without oth-
erwise meeting conditions for being properly classifi ed among current diagnostic 
criteria for anxiety disorders is thought to be quite elevated. 

 A relatively recent report [ 9 ] estimates a prevalence of transient sleep problems 
in 85 % against 50 % of chronically impaired sleep, in children with anxiety 
disorders. 

 Typical habits of anxious children vary with age and cultural diversities, ranging 
from bedtime fears and rituals to requests for transitional objects, crying, and 
co-sleeping. 

 Nocturnal awakenings are the most consistent marker of all anxiety disorders [ 2 ]. 
 Family habits and parental confl icts or psychopathology signifi cantly interfere 

with anxiety symptoms, favoring the development of sleep disorders. In particular, 
lack of structure and inconsistent parenting styles may negatively infl uence the 
development of correct maturational skills such as self-soothing at bedtime, thus 
depriving the child of early opportunities to achieve this imperative ability [ 10 ]. 
Nighttime fears and recurrent nightmares may be emblematic of traumatic abusive 
experiences, albeit generally present in most anxiety disorders. 

 In addition, sleep-related symptoms in anxiety disorders vary across the life 
span, being expressed as bedtime fears and refusal in younger children or as disrup-
tive nightmares with prominent sleep fragmentation in adolescents [ 2 ]. 

 The severity of sleep problems correlates with functional impairment within 
anxiety disorders, with early sleep disruption holding a predictive negative value 
for the development of anxiety disorders but not for depression in later years [ 10 , 
 11 ]. Longitudinal community-based studies give rise to the concern that anxious 
children may often underreport their sleep problems in comparison to depressed 
kids [ 12 ], thus rendering parental reports and objective fi ndings crucial to diag-
nosis [ 13 ]. 

 Separation anxiety disorder (SAD) is by far the most common anxiety disorder 
in very young children, accounting for most of the referrals in the fi eld. Ninety- 
seven percent of these children experience sleep problems, most commonly initial 
insomnia and bed refusal without the presence of a signifi cant attachment fi gure. 
These children also experience more awakenings and frequent enuretic episodes 
besides typical disorders of arousal such as sleepwalking and night terrors [ 14 ]. 
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 Generalized anxiety disorder (GAD) is, instead, characterized by more generic 
worries about school and home in this age group, with a lifetime prevalence esti-
mated of approximately 5 % [ 8 ]. Sleep problems are overly common, being reported 
by 90 % of the pediatric population with GAD. To simplify, they could be summa-
rized as generating a “hyperarousal” state leading to diffi culties in both initiating 
and maintaining sleep, nightmares, as well as diffi culties waking up in the morning 
and daytime somnolence [ 9 ,  15 ]. A few objective studies offer confl icting results 
about sleep structure in anxiety disorders. Forbes et al. [ 13 ] found a prolonged SL, 
more awakenings, and reduced slow-wave sleep (SWS) when comparing healthy 
and depressed subjects. Alfano et al. [ 16 ] also indicated a reduced REM latency in 
the control group. In fact, a recent meta-analysis [ 17 ] reported very similar objective 
fi ndings in polygraphically recorded anxious and depressed children. 

 Children with PTSD have been exposed to and reexperience a traumatic event. 
They manifest increased stimuli reaction, avoidance of trauma-related stimuli, 
hyperarousal, and, sometimes, dissociative behavior. Approximately 14 % of chil-
dren exposed to traumatic events develop PTSD. Trauma may be related to physical 
or sexual abuse or to disastrous experiential events such as hurricanes, earthquakes, 
and terrorist attacks. All PTSD subjects are fi ve times more likely to show sleep 
disruption after 3 years from the event [ 18 ]. A few actigraphic studies confi rmed 
sleep fragmentation and poor quality sleep [ 19 ] and signifi cantly increased SL with 
enhanced nocturnal activity [ 20 ]. 

 OCD has a lifetime prevalence of 1–2 %, 0.8 % within the pediatric population 
[ 8 ]. Bedtime routines may be extenuatingly long and interfere with sleep onset 
especially, but also with sleep continuity by promoting a high rate of waking after 
sleep onset (WASO). Also TST is inversely related to the severity of compulsions 
[ 21 ]. The one and only, very dated, PSG study in OCD adolescents revealed 
decreased sleep effi ciency (SE) with increased SL [ 22 ]. The importance of a 
genetic component has been demonstrated by exposing high-risk (one parent with 
a diagnosis of social anxiety) versus normal-risk children to different emotional 
facial stimuli. Frontal, temporal, and limbic areas were selectively overactivated 
during exposure in high-risk versus typical-risk children. These are the same areas 
that are thought to be potentially responsible for nightmares and hyperarousal dur-
ing sleep [ 23 ].  

    Pediatric Depression and Sleep 

 Major depressive disorder (MDD) presents with pervasive sadness, loss of interest, 
and pleasure leading to signifi cant impairments in social and academic life [ 8 ]. 
Additional symptoms in children include irritability, behavioral dysregulation, and 
failure to gain weight. MDD prevalence increases with age from 1 % in early years 
up to 8 % in adolescence, often with a recurrent course [ 2 ]. Two-ninth of the descrip-
tive features of MDD in the DSM-5 are related to sleep alterations such as insomnia 
or, conversely, hypersomnia. The latter is rare in pediatric depression; however, 
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when co-occurring with insomnia, it carries a negative and dire prognosis [ 24 ]. 
Insomnia is usually associated with psychomotor agitation and restlessness, rumi-
nation, and worries, whereas hypersomnia correlates with psychomotor delay, 
hopelessness, and decreased vital energy. All of these symptoms strictly refl ect 
mood oscillations which are infl uenced in a bidirectional way. In fact, in a prospec-
tive cohort study run on a community-based sample, insomnia at baseline increased 
by two- to threefolds the risk for MDD; conversely, MDD increased the occurrence 
of subsequent insomnia by the same measure. Early persistent sleep problems hold 
a negative prognostic value, predicting the development of anxiety and mood disor-
ders later in adult life [ 25 ]. 

 In examining special subgroups with suicidal ideation, 87 % of the sample was 
reported to suffer from persistent sleep problems [ 26 ]. Dated objective PSG mea-
sures carried out in pediatric populations revealed reduced REM and increased SL, 
increased REM density, and reduced and fragmented SWS [ 27 ,  28 ]. A more recent 
meta-analysis, however, found a signifi cant difference of increased sleep latency in 
over 31 % of depressed children compared to normal controls. In addition, intra- and 
interhemispheric temporal coherence was decreased in the same percentage of 
patients [ 17 ]. Actigraphy, on the other hand, was only able to detect a blunted diur-
nal activity with delay of reaction phase in depressed children [ 29 ]. 

 Maturational and gender-related factors are also powerful modulators of sleep 
features. Females, in fact, do not differ from healthy controls, whereas males 
exhibit the shortest REM latencies, fewer SWS, and highest arousals and transi-
tional phases [ 30 ]. Greater REM density and longer SL were signifi cantly associ-
ated with hospitalization and suicidality [ 31 ]. Adolescent female patients show the 
most drastic PSG changes compared to males. Trazodone and fl uoxetine have both 
been employed for the treatment of adolescents with MDD, alone or in combina-
tion [ 32 ]. Hypnotic agents should be used judiciously and for short periods in this 
age group, so as to avoid excessive daytime sedation and worsening of comorbid 
disorders [ 33 ].  

    Sleep and Bipolar Disorders 

 Pediatric patients experience different bipolar symptoms from adults. Especially in 
prepubescent children, rapid or even continuous cycling is common with both manic 
and depressive overlapping. The hallmark of bipolar disorder is mania co-occurring 
with a decreased need for sleep along with other key symptoms including grandios-
ity, hypersexuality, and racing thoughts and ideas. Few studies report sleep features 
in early-onset bipolar disorder, and they all refl ect a core symptom: decreased need 
for sleep paralleling the most severe mood episodes [ 34 ]. 

 Only two studies collected PSG data. Rao et al. [ 35 ] found increased transitional 
phases and reduced SWS, but no signifi cant differences as far as REM sleep. On the 
other hand, another study that assessed children via the Child Behavior Checklist 
revealed increased WASO and lower REM sleep compared to the control group [ 36 ]. 
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Two actigraphic studies [ 37 ,  38 ] showed opposite results: decreased SE and dura-
tion with prolonged SL versus longer TST and less activity in between episodes 
coupled with a subjective report of unrefreshing fragmented sleep. Shorter SL and 
longer TST were also observed in unaffected children with a familial risk for bipolar 
disorders [ 38 ].  

    Pediatric Schizophrenia and Sleep 

 Fortunately, the incidence of early schizophrenia in children under the age of 15 is 
very low, being less than 1 in 10,000 children. The DSM-5 [ 8 ] does not include 
sleep disturbances among the diagnostic features. However, insomnia is the most 
common side effect in young schizophrenics. Co-occurrence of insomnia and exces-
sive daytime sleepiness (EDS) predicted psychotic episodes in adolescents and 
potential risk of psychosis based on specifi c structured rating instruments [ 39 ]. 
Sleep dysfunction in a subsequent study on “ultrahigh-risk” (UHR) adolescents was 
found to correlate more with negative rather than positive symptoms [ 40 ]. No PSG 
studies are available so far in children with schizophrenia. In adults, SWS reduction 
and disrupted architecture are thought to be trait markers of the disease, correlating 
with severity of psychotic symptoms and lasting over remission [ 41 ]. Reduced SE 
and TST along with increased SL and decreased REM density and latency comprise 
other important and confi rmed features [ 42 ]. 

 Several non-pharmacological approaches are available for the treatment of sleep 
problems in pediatric psychiatric disorders. They include cognitive behavioral ther-
apy (CBT) often combined with medications [ 43 ], sleep hygiene, and behavioral 
intervention to address maladaptive sleep habits. For very young children, correct 
seeking-and-reward consequence systems to promote adaptive behaviors work best 
[ 44 ]. Avoiding presleep frightening TV contents and creating self-soothing rituals 
may quell bedtime anxiety. Sleep consolidation, instead, is promoted by delaying 
bedtime, as suggested by bed restriction therapy (BRT), in order to favor sleep pres-
sure in keeping with the sleep homeostasis predicate [ 45 ,  46 ]. More specifi c tech-
niques may be employed to avoid negative presleep worries and rumination by 
planning a session of positive relaxing thoughts through imagery distraction [ 47 ].  

    Autism Spectrum Disorder and Sleep 

 Autism spectrum disorders (ASDs) refer to a gamut of developmental disorders 
impacting communication and social skills, characterized by the expression of 
restricted repetitive stereotyped behaviors. This category includes autistic and 
Asperger disorders in addition to pervasive developmental disorder (PDD) not oth-
erwise specifi ed. A substantial increment in ASD diagnosis has been observed over 
the last decades, with an estimated prevalence rate of almost 70/10,000, likely due 
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to increased awareness, genetic and environmental factors, and the extension of 
ASD diagnosis to less severe and uncommon forms of the disorder. Sleep problems 
are often experienced by ASD subjects (see Table  17.2 ). Children comprise up to 
80 % of the whole ASD population. ASD seems to represent an independent risk 
factor for the occurrence of sleep disorders, besides that conferred by intellectual 
defi cit alone [ 48 ]. Insomnia is the most common complaint from parents of ASD 
children. Initial as well as maintenance and early morning insomnia may coexist in 
varying associations. Mostly behavioral insomnia of childhood, either limit setting 
or sleep association type, seems to recur in these children where behavioral prob-
lems perpetuate innate neurobiological defi cits linked to serotonin and glutamate 
domains [ 33 ]. Circadian rhythmicity is also dysfunctional due to an abnormal mela-
tonin regulation, thus contributing to a delayed phase shift with melatonin rising in 
the morning rather than at nighttime. Several objective abnormalities have been 
detected in these children’s PSGs regarding microstructural aspects of both REM 
and NREM sleep [ 49 ]. They also exhibit reduced TST and REM latency, with a 
lower cyclic alternating pattern (CAP) rate in SWS due to selectively reduced per-
centage of A1 subtypes. This parallels what is seen in other mental retardation (MR) 
disorders where IQ and cognitive abilities negatively relate to the A1 percentage. A 
previous study from the same group [ 50 ] compared ASD sleep with that of normal 
children and children with MR and fragile X syndrome, showing reduced REM 
latency and increased transitional (ST1) phases in ASD compared to normal con-
trols, whereas sleep fi ndings almost overlapped with those observed in fragile X 
subjects. Interestingly, mental abilities correlated with tonic variables such as TST 
and WASO, whereas communicational skills and activity levels were signifi cantly 
related to REM variables. In other words, cognition separates from  verbal/

   Table 17.2    Sleep in children with ASDs and ADHD   

 Subjective complaints  Sleep structure  CAP 

 ASDs  Bedtime refusal and diffi culties setting 
limits, restlessness, labored breathing, 
nighttime waking 

 Decreased TST and 
SWS 
 Increased SL and 
REM-L 
 Increased PLMs index 
 REMWA 

 Decreased CAP 
rate in SWS 
 Decreased A1 
 Increased A2, A3 

 ADHD  Restlessness, insomnia, bed tantrums, 
sleepwalking and terrors, enuresis, 
bruxism 

 Normal or increased 
SWS 
 Increased WASO 
 Increased PLMs index 
with or without 
arousal 
 OSA 
 Decreased SL on 
MSLT 

 Decreased CAP 
rate in SWS 
 Decreased A1 
 Increased A2, A3 

   CAP  cyclic alternating pattern,  DOA  disorders of arousal,  EDS  excessive daytime sleepiness, 
 MSLT  multiple sleep latency test,  PLMs  periodic limb movements,  REM-L  REM latency,  REMWA  
REM without atonia,  SE  sleep effi ciency,  SL  sleep latency,  SWS  slow-wave sleep,  TST  total sleep 
time,  WASO  wake after sleep onset  
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communication skills, the former being mainly affected by alterations of SWS and 
the latter by REM sleep alteration. Within the ASD gamut, children with high- 
functioning Asperger disorder exhibit signifi cantly higher A1 subtype percentage, 
akin to normal controls, compared to autistic children [ 51 ], showing a positive cor-
relation of A1 percentage with verbal IQ and performance IQ as far as their duration 
is concerned. ASD does not seem to be an independent risk factor for obstructive 
sleep apnea (OSA), unless local risk factors such as adenotonsillar hypertrophy or 
craniofacial malformations are at stake. For this reason, PSG is warranted whenever 
an organic primary sleep disorder is suspected. This also includes the possible 
occurrence of PLMS, which several authors report as highly prevalent (nearly 50 %) 
in ASD children compared to controls. ASD children have been also reported to 
exhibit low serum ferritin levels [ 52 ] compared to normal subjects, and, as known, 
this is an independent risk factor for sleep-related movement disorders including 
PLMS and RLS.

   Gastrointestinal problems linked to a defi cient serotonin metabolism are highly 
prevalent in ASD [ 53 ] and may impact both sleep and iron absorption. ASD children 
also exhibit several parasomnias including arousal disorders, enuresis, and night-
mares. REM without atonia, akin to what is seen in older adults with REM behavior 
disorder (RBD), has been reported in a case series [ 54 ]. Bedtime clonazepam, as in 
typical RBD, improved both daytime and nighttime behavior in these children. 

 Treating insomnia in ASD children may be a challenge [ 55 ]. Complete versus 
gradual extinctions are the most used behavioral techniques. Behavioral interven-
tions such as chronotherapy [ 56 ], massage, and dental appliances [ 57 ] for the man-
agement of OSA often require additional pharmacotherapy. One to 3 mg of 
melatonin represents the safest and most effi cient treatment for the majority of 
ASD-related sleep problems. Extended release melatonin may be selectively indi-
cated for sleep maintenance insomnia [ 58 ].  

    Attention-Defi cit/Hyperactivity Disorder (ADHD) 

 ADHD has an increasing prevalence, recently estimated around 12 %, especially in 
the Western world. According to the DSM-5 [ 8 ], ADHD refers to an impairment in 
three major areas: attention, hyperactivity, and impulsivity. Three major clinical/
phenomenological subtypes are generally recognized: predominantly hyperactive- 
impulsive type (H), predominantly inattentive (I), and a combined type (C). Both 
gender and age play a major role in the phenotypic expression of this disorder, 
with an estimated 1:10 male prevalence, associated with more disruptive symp-
toms in this gender and a tendency to subside, but not completely disappear, by 
adult age. 

 Sleep disturbance is an important hallmark of ADHD with over 80 % of affected 
children reporting inadequate or altered sleep [ 59 ]. Most data deal with subjective 
children or parental reports and/or with actigraphic data, whereas only few data of 
PSG recordings are available. Several meta-analytic reviews [ 60 – 62 ] were pub-
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lished over the last decade, dealing with the many confounding factors affecting 
most of the relevant studies including gender, age, comorbid disorders, medication 
and diversity of methods, and data collection.  

    Subjective Reports 

 Subjective reports of sleep complaints in ADHD include initial insomnia with 
delayed sleep onset, which has been interpreted in some cases as delayed sleep 
phase. Endogen circadian alterations [ 63 ] along with forced ultradian cycling [ 64 ] 
have been quoted as possible responsible mechanisms. 

 More often, though, an increased sleep duration along with multiple nocturnal 
awakenings and parasomnias has been described [ 65 ]. In addition, increased EDS 
compared to normal controls has been reported [ 65 ,  66 ]. This might be related to 
sleep-disordered breathing (SDB) with snoring and mild apneas or to narcoleptic- 
like traits [ 67 ,  68 ]. Despite the fact that ADHD symptoms, in particular attention 
defi cits, are common in narcolepsy, no conclusive evidence has been reached of 
narcoleptic traits in ADHD children [ 69 ]. 

 Restlessness and increased number of movements during sleep in ADHD types 
H and C are almost unanimously reported [ 62 ,  70 – 72 ]. Multiple studies report an 
increased prevalence of PLMS in ADHD [ 67 ,  73 ]. RLS has instead been reported in 
up to 44 % of ADHD children [ 74 ] with a tendency to decrease with age. In fact, 
only a 20 % prevalence was reported in young adults [ 75 ]. Common underlying 
genetic and pathophysiological alterations in both ADHD and RLS may be related 
to iron defi ciency [ 76 ,  77 ] and dopaminergic transmission [ 78 ]. 

 Among sleep-related movement disorders (SRMDs), bruxism [ 71 ] and rhythmic 
movement disorders [ 79 ] also seem to occur with discrete frequency, the latter 
mostly in the inattentive (I) ADHD subgroup, with a tendency to persist beyond the 
usual age range in relation to its common occurrence [ 80 ]. 

 According to some authors [ 71 ,  81 ,  82 ], there is an increased prevalence of para-
somnias in ADHD children, whereas others report no differences in their prevalence 
compared to pediatric controls [ 70 ]. 

 One possible explanation of these confl icting results, especially in relation to dis-
orders of arousals (DOA), could be linked to the possible co-occurrence of SDB as a 
major precipitant of night terrors, sleepwalking, and confusional arousals. DOA 
have been reported in up to 50 % of an ADHD cohort via clinical interview [ 71 ] with 
confusional arousals being most common. According to both Gau et al. [ 81 ] and 
Silvestri et al. [ 71 ], cognitive defi cits rather than behavioral symptoms are more 
indicative of children with DOA as opposed to children with increased nocturnal 
hyperactivity. 

 An increased prevalence of sleep talking [ 70 ,  83 ] and enuresis [ 83 ,  84 ] has been 
described in earlier reports. As far as REM parasomnias are concerned, frequent 
nightmares [ 65 ,  83 ] and one case of dream enactment in the context of overlap para-
somnia disorder [ 71 ] were described. Parents of ADHD children often report snor-
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ing and apneas as occurring during the night [ 83 ,  85 ]. Respiratory events seem to be 
more common in Hispanic rather than Caucasian kids and appear to correlate with 
reported EDS and learning problems [ 86 ].  

    Objective Reports 

 Objective actigraphic studies [ 87 ,  88 ] and, even more so, video-PSG recordings in 
ADHD children are sparse compared to subjective reports, mainly due to the 
oppositional attitude of most of these subjects. Correspondence between subjec-
tive complaints and objective assessment is often inconsistent, especially when the 
latter is performed via actigraphic means. Video-PSG, instead, enables the record-
ing of behavioral events and the assessment of both macro- and microstructural 
aspects of sleep. Certain alterations in the sleep structure of ADHD subjects are 
agreed upon by most researchers, as highlighted by a critical review [ 89 ]. These 
include a decreased REM percentage with increased REM latency in the (I) sub-
group [ 71 ,  82 ]. Conversely, reduced REM latency was found by Cortese et al. [ 60 ] 
and by Kirov et al. [ 64 ,  90 ]. Age group and methodological issues, irrespective of 
whether or not an adaptation night was considered, differently affect TST. According 
to Sadeh et al. [ 62 ], TST is shorter with increased stage 1 in younger, severely 
affected children, especially in the H or C subgroups, in comparison to older 
(>9 years) subjects. 

 Microstructural aspects of sleep generally show an increase in sleep oscillations 
during the night, contributing to the formation of a “hypoarousal” phenotype linked 
to a decrease in SE [ 91 ]; however, while event-related arousals and phase shifts are 
common in H or C subgroups with OSA and PLMS [ 71 ,  83 ], an overall decrease of 
CAP rate in SWS with fewer A1 subtypes akin to the CAP features of narcolepsy is 
observed in ADHD children with normal apnea-hypopnea index (AHI) or PLMS 
index [ 82 ]. This represents a seminal observation for the possible interpretation of 
ADHD as a primary disorder of vigilance [ 92 ]. A recent study [ 93 ], however, did not 
confi rm an alteration of CAP rate and/or CAP phases and subtypes, calling attention 
to the extreme variability within phenotypic expression. 

 Video-PSG confi rms a generally higher AHI in ADHD versus normal children 
[ 60 ,  94 ]. However, severe OSA is rare in ADHD, whereas most authors agree on the 
association of only mild apneas to ADHD [ 69 ,  71 ,  95 ]. 

 Factors such as race and craniofacial predisposition may play a pivotal role in 
sleep disorders in ADHD subjects. It appears that mild forms of OSA may contrib-
ute only to mild ADHD mimics, whereas severe OSA would generate EDS more 
than hyperactivity symptoms, impulse control disorders, and emotional liability. 
Adenotonsillectomy (AT) as opposed to pharmacological treatment led to a favor-
able outcome in these children [ 69 ,  96 ]. 

 PLMS with an index >5 have been objectively recorded in up to 64 % of ADHD 
children [ 97 ] with positive probands holding a positive familial history for RLS. The 
latter’s reported prevalence ranges from 44 % [ 74 ] to none [ 98 ] and has been shown 
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to correlate with hyperactive and oppositional scores [ 71 ] and low ferritin. Iron 
supplementation [ 99 ], L-dopa [ 100 ], and, most recently, levetiracetam [ 101 ] have 
proved useful in the management of RLS symptoms in ADHD.  

    Therapeutic Management of Sleep Disorders in ADHD 

 Different clinical ADHD subtypes may benefi t from carefully addressed pharmaceu-
tical therapy. The hypoarousal/inattentive phenotype appears to mostly benefi t from 
stimulants, adrenergic alpha1 agonists, modafi nil, and bupropion, whereas SSRIs 
and venlafaxine may help comorbid depression. Atypical antipsychotic drugs such as 
risperidone [ 102 ] and atomoxetine, besides iron, vitamin D [ 103 ], and melatonin 
[ 104 ], have proven to be useful in severe cases of H or C ADHD subgroups with 
comorbid SRMDs. AT remains the treatment of choice for OSA in ADHD. Interestingly, 
most studies of stimulant therapeutic regimens report no effects on the magnitude of 
parental complaints [ 105 ], nor on objective sleep measures.  

    Conclusions 

 Most psychiatric and behavioral developmental disorders share a profound bidirec-
tional relation with sleep. The latter is often signifi cant, for it contributes strongly to 
patients’ and parental burden. Specifi c management of sleep disorders often 
improves both symptoms and prognosis in the affected children. Special attention 
should therefore be allotted to sleep-related complaints. Consultation with experts 
in sleep medicine and objective instrumental sleep evaluations should be promoted 
when encountering diffi cult refractory cases.     
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    Chapter 18   
 Childhood Sleep and Medical Disorders                     

     Teresa     Paiva     

    Abstract     Sleep is an important regulator of growth, metabolism, tissue repair, cell 
division, endocrine segregation, and immunologic functions. Therefore, many med-
ical disorders are affected by sleep dysfunctions and impact upon sleep quality. 

 During the fi rst two decades, sleep duration, sleep timing, and sleep characteris-
tics are of utmost importance to an adequate children development being crucial for 
physical, mental, emotional, and behavioral equilibrium. 

 A number of medical conditions may give rise to sleep disturbances: asthma and 
allergies, hematologic diseases, metabolic disorders and obesity, gastrointestinal 
disorders, including colic and gastroesophageal refl ux, chronic pain syndromes, 
cystic fi brosis, and other orphan genetic diseases.  
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•   Fibromyalgia   •   Chronic pain  
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    Asthma and Allergies 

 Allergic disorders affect children sleep. The causes of such impact vary: (1) the 
allergic symptoms awake the child inducing fragmented sleep or even insomnia, 
both in the child and the caregivers; (2) allergic disorders are associated with sleep 
disorders which disturb sleep; and (3) allergic disorders may be associated with 
behavioral changes which impact sleep due to poor sleep hygiene and decreased 
parental control. 

 The prevalence of asthma varies worldwide; in children it ranges from 3.5 % in 
China [ 1 ] to 8.3 % in the USA [ 2 ], while the prevalence of atopic eczema ranges 
from 7 % to 21 % in various countries [ 3 ]. 

 Both the subjective and objective quality of sleep, verifi ed by polysomnography, 
are decreased in nonobese asthmatic children without sleep apnea, mainly due to the 
reduction in slow-wave sleep [ 4 ]; furthermore, the sleep impact of asthma is 
increased whenever there is association with other sleep disorders, namely, sleep- 
disordered breathing (SDB) [ 1 ,  5 ,  6 ] and bruxism [ 7 ]. 

 The association between asthma and SDB was verifi ed in large epidemiologic 
studies and systematic reviews [ 1 ,  5 ]. SDB is among the factors associated with 
longer hospitalization in asthmatic children [ 8 ]; furthermore, SDB and sleep frag-
mentation may persist even in well-controlled children [ 9 ], while the poor control of 
asthma is associated with higher level of sleep problems [ 10 ]. 

 Adenotonsillar hypertrophy is among the predisposing factors of SDB in asth-
matic children [ 11 ], while persistent wheezing during daytime is a predictive factor 
of asthma in children with sleep disturbances [ 12 ]. 

 Pruritus induced by atopic dermatitis, especially in severe cases, induces itching. 
Scratching is not interrupted during sleep; it occurs by bouts mostly during NREM 
stages N1 and N2 and also during REM [ 13 ]; whenever scratching induces severe 
skin lesions, parents’ sleep may be severely affected due to the attempts to prevent 
skin damage in their children. Furthermore, sleep quality is severely impacted and 
severe cognitive defi cits do exist; these defi cits, mostly in verbal comprehension, 
perceptual reasoning, and working memory, are predicted by the eczema status [ 14 ]. 

 Mouth breathing, both during daytime and during sleep, is signifi cantly associ-
ated with atopic dermatitis in small children [ 15 ]; consequently in these cases, the 
presence of SDB must be properly evaluated. 

 Furthermore, allergic disorders may impact upon the children’s school environ-
ment: the presence of persistent or late-onset rashes is signifi cantly associated with 
being bullied, while the presence of persistent wheezing is associated with being 
“left out” [ 16 ].  

    Metabolic Disorders 

 Diabetes, hypothyroidism and other hormonal disorders, and obesity have clear-cut 
relationship with sleep. 
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 The increased risk of type II diabetes and insulin resistance in children associ-
ated with sleep curtailment has been demonstrated [ 17 ].  

    Congenital Hypothyroidism 

 Congenital hypothyroidism strongly affects sleep; in infants from 1.5 to 18 months 
of age, and mostly in girls, daytime polysomnography showed a high prevalence of 
both central sleep apnea (43 %) and hypopnea (83 %), which decreased with age; 
furthermore, light stages of sleep were predominant with reduction of slow-wave 
sleep and no major changes in REM sleep [ 18 ].  

    Growth Hormone Defi ciency 

 Growth hormone is mainly secreted during slow-wave sleep; therefore, children 
with chronic sleep reduction may have changes in the somatotropic system and the 
likelihood of low stature exists. In a study comparing polysomnography features of 
children with growth hormone defi ciency and normal children, the reduction of the 
total sleep time and sleep effi ciency, together with an increased rate of type A cyclic 
alternating pattern, was demonstrated [ 19 ].  

    Obesity 

 Obesity is becoming progressively more common among children and adolescent. 
 In obesity, the involvement of several complex metabolic and infl ammatory 

mechanisms increases orexinogenic behaviors and dysfunctional satiety, which, act-
ing as retroactive and maintaining feedback loops, induce dyslipidemia and insulin 
resistance which ultimately may lead to the metabolic syndrome [ 20 ]. 

 Sleep plays an important role in these obesogenic mechanisms due to the imbal-
ance between leptin, ghrelin, and orexin induced by sleep deprivation and via the 
erroneous dietary preferences in food and beverages, associated with reduced sleep 
duration [ 21 ] and late sleep timings [ 22 ]. Altogether these mechanisms increase the 
obesity risk [ 23 ]. 

 The triangle of sleep curtailment, increased screen time, and sedentary behaviors 
leading to unhealthy dietary choices and consequently increased BMI is nowadays 
proved in many studies. 

 In fact, in a multicentric and multinational study involving several continents and 
ethnicities, the risk factors associated with excessive weight and obesity in these age 
groups are nocturnal sleep duration, low physical activity, TV time, health disor-
ders, and unhealthy diet patterns [ 24 ]. 
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 The sleep characteristics associated with increased body mass index (BMI) and 
obesity are short sleep duration [ 25 – 34 ], sleep variability, and erroneous sleep tim-
ings [ 22 ,  35 ] (see Fig.  18.1 ).

   Furthermore, other sleep variables and sleep behaviors correlate with increased 
obesity risk. In preschoolers parental presence when falling asleep and short sleep 
duration are associated with increased BMI [ 36 ]; in schoolchildren shorter sleep 
duration, high-screen or TV viewing time, and low socioeconomic status were asso-
ciated with increased BMI [ 26 ]. 

 Cardiometabolic risk in adolescents has however gender differences, since the 
differences in cardiometabolic markers are statistically signifi cant for girls: 
increased cholesterol and high-density lipoprotein (HDL) occur predominantly in 
the subgroups who go to bed late and rose early and in those which are sleepy and 
tired at least once a week [ 37 ]. 

 The opposite pathway is also at stake: obesity is a risk factor for sleep disorders 
in children and adolescents, namely, for obstructive sleep apnea syndrome (OSAS). 
The relation with OSAS is bidirectional, since OSAS associated with short sleep 
duration is a risk factor for obesity [ 38 ].  
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  Fig. 18.1    Data from the Portuguese national survey – Health Behaviour in School-Aged Children 
(HBSC) [ 60 ], including 3476 students with a mean age of 14 years. The mean BMI is plotted 
against sleep duration in week days. Noticed the marked reduction in BMI for sleep durations 
equal or longer than 8 h       
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    Gastrointestinal Disorders 

 Gastroesophageal refl ux (GER) is the passive transfer of gastric contents into the 
esophagus due to transient or chronic relaxation of the lower esophageal sphincter 
[ 39 ]. It may be present since birth, occurring in 51 % of the infants, but it is prob-
lematic in 14 % of them [ 40 ]. 

 The recumbent sleep position increases the refl ux and sleep complaints are com-
mon, with the child crying when lying down or having frequent awakenings, espe-
cially after a meal; frequent vomiting, spitting, and regurgitation are usually alerting 
symptoms, together with wet burps and wet hiccups and inconsolable crying after 
eating. Suffocation is a rare but possible complication, and swallowing fi ts, during 
which the agitated child turns around in bed, sweating, spitting, with associated swal-
lowing movements, can justify the differential diagnosis with epileptiform seizures. 

 The association with OSAS is frequent; gastroesophageal refl ux disease (GERD) 
is among the comorbidities of OSAS occurring in 30 % of the cases [ 41 ]; it is a 
predictor of complications of adenotonsillectomy [ 42 ] and is usually associated 
with residual OSAS after an adequate treatment [ 43 ]. GERD may also be associated 
with asthma and with obesity in children.  

    Hematologic Disorders 

    Sickle Cell Anemia 

 Sickle cell disease (SCD) is an inherited blood disorder associated with hemoglobin 
S; the red cells have a characteristic donut shape (the drepanocytes) and lack plastic-
ity, and as a consequence they can block the blood vessels, provoking acute pain 
syndromes, bacterial infections, and tissue necrosis [ 44 ,  45 ]. 

 The impact upon sleep is serious, since several factors contribute to it, namely, 
the pain episodes, anemia, and sleep-disordered breathing. Children have signifi -
cantly higher rates of parent reported SDB and night wakings [ 46 ,  47 ], together with 
objective demonstration of polysomnographic features of OSAS [ 47 ]. 

 Elevated periodic limb movements of sleep (PLMS) are common in children 
with SCD and are associated with sleep disruption and symptoms of restless legs 
syndrome (RLS) [ 48 ].  

    Thalassemia 

 Thalassemia is an inherited, mostly autosomal recessive, blood disorder associated 
with abnormal formation of hemoglobin, which results in abnormal transportation 
of oxygen and destruction of red cells. It predominates in Mediterranean countries 
(European, West Asia, and North Africa), South Asian countries, and Maldives. 
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 Besides anemia it may be associated with other complications, namely, slower 
growth rates, bone deformities, and cardiovascular disorders. There are alpha, beta, 
delta, and combined variants of thalassemia. 

 Symptoms may develop with different severity levels, but they are present since 
early life. Children and adolescents with beta-thalassemia have increased number 
of arousals during sleep which is partially due to the presence of periodic limb 
movements of sleep; a similar picture occurs in sufferers from congenital 
dyserythropoietic anemia type 1 [ 49 ]. Furthermore, children with thalassemia 
have an estimated prevalence of OSAS of 8.3 %; sleep apnea occurs predomi-
nantly in children with high serum ferritin levels; furthermore, snoring and adeno-
tonsillar lymphoid hyperplasia should be considered as alert factors for the 
presence of OSAS [ 50 ].   

    Chronic Pain Syndromes 

 Chronic pain in children and adolescents may be a consequence of another disorder, 
as it is the case for juvenile idiopathic arthritis (JIA) and sickle cell disease (SCD) 
or the major symptom of a specifi c disorder [ 51 ], as it is the case in chronic idio-
pathic headaches or fi bromyalgia. 

 The relation between sleep and pain in pediatric populations has been described 
by Lewis and Dahl 1999 [ 52 ]; the relations are bidirectional: pain interrupts sleep, 
and the interrupted sleep induces a dysfunctional cascade affecting emotional, 
immunologic, anti-infl ammatory, and somatic balance, which by themselves 
increase pain. The model of Valrie et al. includes also disease stage, sex, race/eth-
nicity/culture, and socio-contextual factors [ 51 ]. 

 The prevalence of chronic pain in pediatric community populations is very high, 
varying between 25 and 40 % [ 53 ]. 

 Poor sleep is a common comorbidity; sleep can be affected by the presence of 
nocturnal pain, by the existence of other symptoms of the underlying disorder, by 
the required medication, or by the eventual hospitalizations; sleep disturbances can 
include bedtime resistance, increased awakenings, poor sleep hygiene, and the pres-
ence of SDB and/or parasomnias [ 51 ]. 

 The behavioral, emotional, and cognitive dysfunctions of poor sleep and the con-
sequences upon school achievement and family equilibrium are well known and 
tend to increase the severity of the chronic pain condition. 

 More detailed descriptions will be given for headaches, chronic muscle skeletal 
pain, and fi bromyalgia.  

    Headaches 

 In children and adults the relationships between headaches and sleep are mutual. 
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 The links, headache sleep links, are related to common neurophysiological, neu-
roanatomical, and genetic substrates [ 54 ]. 

 The prevalence of headache increases from childhood to adolescence; it is simi-
lar in both genders before puberty, but afterward it is higher in females. 

 During adolescence frequent and chronic headaches are a common issue, affect-
ing 22–32 % of the teens [ 55 – 59 ]. Sleep deprivation [ 60 ], sleep habits, and sleep 
disorders [ 61 – 64 ] are among the important comorbidities of chronic headaches. 

 Furthermore, headaches are commonly associated with children sleep disorders 
[ 54 ], namely, obstructive sleep apnea [ 65 ], parasomnias [ 54 ,  65 ], periodic limb 
movements, restless legs [ 64 ], bruxism [ 66 ], and narcolepsy and hypersomnia [ 64 ].  

    Chronic Muscle Skeletal Pain Complaints 

 The prevalence of neck and shoulder pain is higher in girls; the risk factors are family 
history, school furniture, long sitting time, extended computer use, insuffi cient rest 
time, short sleep duration, transportation type, schoolbag weight, and smoking [ 67 ]. 

 The prevalence of pain in the back, neck, and shoulders is high in adolescents 
and increases with sleep deprivation [ 60 ,  68 ,  69 ] and with irregular sleep schedules 
across weekdays and weekends [ 60 ]. 

 The relations between chronic pain and insomnia are mutual, with insomnia 
being a risk for pain chronicity, while pain, poor sleep hygiene, and higher depres-
sive symptoms are the main risks for insomnia persistence [ 70 ].  

    Fatigue and Fibromyalgia 

 Fatigue is rather frequent among children and adolescents [ 60 ] and occurs often 
associated with sleep disturbances [ 71 ,  72 ]. The risk factors for fatigue with poor 
clinical outcome are sleep problems, somatic complaints, blurred vision, pain in the 
arms or legs, back pain, constipation, and memory defi cits, while the indicators of a 
good outcome are male gender and a physically active lifestyle [ 73 ]. 

 The diagnosis of fi bromyalgia in young ages is currently diffi cult due to the 
unspecifi c or vague complaints, but the prevalence of juvenile fi bromyalgia syn-
drome (JFS) is relatively high, affecting 2–15 % of the children, being higher in girls 
and increasing after the puberty. 

 The symptoms include sleep diffi culties in initiating and maintaining sleep, non- 
restorative sleep, generalized musculoskeletal pain, and daytime fatigue [ 74 ]; fur-
thermore, there is a negative impact upon quality of life, increased rates of 
depression, and higher likelihood of missing school. Polysomnographic data of 
these patients demonstrates longer total sleep time, decreased slow-wave sleep, pro-
longed REM latency, and increased sleep fragmentation; actigraphy demonstrates a 
reduced activity during daytime [ 75 ]. 
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 The genetic components of fi bromyalgia are currently described [ 76 ]; this 
together with the increased risk due to stressful events during childhood explains its 
relevance in young ages.     
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