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    Chapter 12   
 The Deleterious Duo of Neurodegeneration: 
Lysosomes and Mitochondria                     

       Matthew     Nguyen     ,     Ellen     Sidransky      , and     Wendy     Westbroek    

    Abstract     Many studies have demonstrated that the accumulation of aggregate- 
prone proteins due to defects in cellular quality control systems contributes to the 
development of neurodegenerative diseases. One form of quality control within 
neurons is autophagy, an intracellular pathway involved in the breakdown of cyto-
solic constituents. Lysosomes mediate autophagy, and their dysfunction may con-
tribute to perturbations in cellular homeostasis and affect other organelles such as 
mitochondria. Mitochondrial malfunction may then further perpetuate lysosomal 
damage and initiate infl ammatory responses. Therefore, lysosomes and mitochon-
dria share a reciprocal relationship where dysfunction in one often affects the func-
tion of the other. These consequences of lysosome and mitochondrial impairment 
complete a deleterious feedback loop that concludes not only in neurodegeneration 
but also neuroinfl ammation. Herein, we discuss the primary types of autophagy and 
their underlying mechanisms, the regulation of lysosomal biogenesis and function, 
and the link between lysosomal and mitochondrial dysfunction. We conclude this 
chapter by assessing the role of lysosomal dysfunction in neurodegenerative 
diseases.  
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12.1       Autophagy 

 In 1963, Christian de Duve fi rst described autophagy: a quality control system 
involved in the degradation of unnecessary or nonfunctional cellular components 
[ 1 ]. Lysosomes, with their acidic pH and lytic hydrolases, mediate autophagy in 
response to perturbations in cellular homeostasis that may occur as a result of organ-
elle dysfunction, genetic mutations, or nutrient deprivation. Autophagy is particu-
larly important in the context of neurodegeneration, as it has been shown that in the 
absence of any disease-associated gene products, the loss of autophagy alone is 
suffi cient to cause neural dysfunction and eventually neuronal cell death [ 2 ,  3 ]. 
Depending on the mechanism by which cellular cargo is transported to the lyso-
some, autophagy can be classifi ed into three types: microautophagy, macroautoph-
agy, and chaperone-mediated autophagy. 

12.1.1     Microautophagy 

 Little is currently known about microautophagy, especially within mammalian cells; 
as a result, the majority of our knowledge regarding this autophagic process stems 
from studies in a few species of yeast:  Saccharomyces cerevisiae ,  Pichia pastoris , 
and  Hansenula polymorpha  [ 4 – 8 ]. In mammalian microautophagy, the lysosomal 
membrane directly invaginates and sequesters cytoplasmic constituents into vesicles 
intended for degradation [ 9 – 11 ]. This invagination may occur through either a con-
cave retreat of the lysosomal membrane or the lysosomal wrapping mechanism 
(LWM) [ 12 ]. During the LWM, the lysosome elongates from a spherical to tubular 
shape and extends an arm-like protrusion that envelops soluble cytoplasmic compo-
nents. The tip of this extension then meets and fuses with the lysosomal membrane, 
sealing these cellular constituents within a vesicle for breakdown inside the lyso-
some [ 13 ,  14 ]. Microautophagy, as a form of quality of control, has been implicated 
in the basal turnover of cellular components, but recent literature suggests that this 
autophagic process may possess additional functions. Microautophagy could be 
associated with balancing the infl ux of membrane components introduced by macro-
autophagy and may be related to multivesicular body formation as a lysosomal 
microautophagy-like mechanism involved in selectively delivering cytosolic proteins 
to late endosomes during biogenesis [ 11 ,  15 – 17 ]. As highlighted in a review article 
by Mijalica et al. microautophagy is a fi eld in need of further investigation [ 10 ].  

12.1.2     Macroautophagy 

 In contrast to microautophagy, macroautophagy is better understood and is described 
in detail in Chap.   11    . In macroautophagy, cytoplasmic cargo is sequestered within 
double-membrane vesicles called autophagosomes for transportation to the lyso-
some (Fig.  12.1c ) [ 18 ,  19 ]. Initiation of autophagy starts with the formation of a 
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double-membrane structure exclusive to macroautophagy termed the phagophore 
[ 20 – 24 ]. Phagophore assembly is suspected to occur de novo, and within mamma-
lian systems, this process may take place at multiple locations in the cytoplasm 
[ 25 – 29 ]. The growth of the phagophore is an area of intense debate, as the source of 
the membrane components used in expansion is currently unknown. Multiple stud-
ies have suggested that these building blocks arise from pre-existing membrane 
compartments, such as those of the mitochondria, endoplasmic reticulum (ER), 
Golgi apparatus, and plasma membrane. Others speculate that the membrane may 
originate from a phosphatidylinositol-3-phosphate-enriched portion of the ER 
named the omegasome [ 30 – 36 ]. Phagophore elongation and expansion involves 
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  Fig. 12.1    ( a ) TFEB is regulated at both transcriptional and posttranscriptional levels. During 
nutrient-rich conditions, mTORC1 phosphorylates TFEB, preventing its translocation into the 
nucleus and sequestering the transcription factor in the cytosol and lysosomal membrane. Under 
stressful conditions, mTORC1 dissociates from the lysosomal membrane without phosphorylating 
TFEB, allowing for its translocation to the nucleus. Within the nucleus, TFEB regulates its own 
transcription as well as genes involved in lipid metabolism and the CLEAR network. ( b ) TFEB 
contributes to lipid metabolism by activating transcription of PPARα and PGC-1α. These two 
proteins initiate pathways involved in the degradation of lipids for energy production. ( c ) TFEB 
activates CLEAR network genes involved in biogenesis of lysosomes and regulation of autophagy, 
which are both required for proper cellular quality control. ( d ) Defects in the lysosome-autophagy 
pathway promote accumulation of aggregate-prone proteins such as α-synuclein, huntingtin, and 
Tau leading to neurodegeneration       

 

12 The Deleterious Duo of Neurodegeneration: Lysosomes and Mitochondria



282

sequential recruitment of several molecular complexes and subsequent delivery of 
membrane components to the growing phagophore (discussed in detail in Chap.   11    ) 
[ 37 – 42 ]. Apposition and sealing of the ends of the expanding phagophore mem-
brane concludes autophagosome formation [ 39 ].

   Once formed, these double-membrane vesicles may fuse with either endosomes 
or lysosomes resulting in the formation of chimeric organelles called amphisomes 
and autolysosomes, respectively [ 43 ,  44 ]. Amphisomes are intermediate structures 
that link the autophagic and endosomal pathways and are capable of further fusion 
with lysosomes to also produce autolysosomes [ 45 ]. Autophagosomes are dependent 
on microtubules for transport to both endosomes and lysosomes where their merging 
is facilitated by a variety of proteins including both endosomal sort complex required 
for transport (ESCRT) and soluble NSF attachment protein receptor (SNARE) pro-
teins as well as Rab7 [ 46 – 48 ]. Of peculiar interest, proper lysosomal function and 
acidifi cation were found to be important for autophagosome-lysosome and endo-
some-lysosome fusion as well [ 49 ]. Upon fusion of the autophagosome or amphi-
some with the lysosome, the inner membrane of the autolysosome is quickly 
degraded. The outer membrane of the autophagosome or amphisome is lost as it 
fuses with that of the lysosome, and cellular cargo is expelled into the acidic environ-
ment of the lysosomal lumen where it is broken down by lytic hydrolases. Lysosomal 
membrane permeases then release these degradation products back into the cytosol 
for further use in energy production or biosynthetic pathways [ 19 ,  24 ,  50 ].  

12.1.3     Chaperone-Mediated Autophagy 

 Not all forms of autophagy require the formation of vesicles for transporting cargo to 
the lysosomal lumen. In chaperone-mediated autophagy (CMA), cellular cargo is indi-
vidually targeted and directly transported across the lysosomal membrane into the 
lumen for degradation. This catabolic process, currently only described in mammals, 
was the fi rst subtype of autophagy for which selectivity was demonstrated. Selectivity 
occurs through multiple steps [ 51 – 53 ]. The fi rst is the recognition of substrate proteins 
containing a specifi c KFERQ pentapeptide motif by heat-shock cognate protein of 
70 kDa (hsc70). All known CMA substrate proteins possess this pentapeptide motif, 
and several studies have demonstrated that it is both necessary and suffi cient for lyso-
somal targeting [ 51 ,  54 – 57 ]. Recognition of protein substrates by hsc70 is regulated by 
the accessibility of the pentapeptide motif, as this structure may be concealed by protein 
folding, protein-protein interactions, and binding to subcellular membranes. Several 
studies have also demonstrated that posttranslational modifi cations of KFERQ-like 
motifs, which are peptide motifs that contain four out of the fi ve required amino acid 
residues typically found in a KFERQ motif, regulate substrate binding as well. Since 
the KFERQ motif depends on its charge for proper interaction with hsc70, phosphory-
lation or acetylation of KFERQ-like motifs may compensate for changes in charge 
caused by the absence of one of the required amino acid residues typically included in 
a KFERQ motif. In this manner, a CMA- targeting motif may be formed upon modifi ca-
tion of the KFERQ-like motif, allowing for association with hsc70 [ 52 ,  56 ,  58 ,  59 ]. 
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 Once protein substrates are bound to hsc70, this substrate/chaperone complex is 
delivered to the lysosomal membrane where it interacts with the cytosolic tail of 
lysosome-associated membrane protein type 2A (LAMP-2A), a single-span mem-
brane protein [ 60 ]. LAMP-2A exists as a monomer at the lysosomal membrane, but, 
upon binding of its protein substrate, forms a multiprotein complex composed of 
free LAMP-2A monomers and other proteins [ 61 ]. Protein substrates may bind the 
monomeric form of LAMP-2A in their folded conformations; however, in order to 
be translocated into the lysosomal lumen, these proteins must fi rst be unfolded. This 
unfolding process occurs before the assembly of the multiprotein translocation com-
plex and may be mediated by hsc70 and its associated co-chaperones [ 53 ,  62 ,  63 ]. 
While numerous factors, such as the protein density and fl uidity of the lysosomal 
membrane, infl uence assembly of the multiprotein complex, very few proteins have 
been identifi ed as regulators of this molecular machinery [ 64 ]. Recently, work by 
Bandyopadhyay and colleagues have demonstrated that both GFAP and EF1α mod-
ulate the assembly and disassembly of this translocation complex in a GTP-
dependent manner [ 65 ]. Furthermore, two chaperones, hsc70 and heat-shock protein 
90 (hsp90), have also been implicated in this process. These chaperones function not 
only in the assembly and disassembly of the translocation complex but also contrib-
ute to the stabilization of LAMP-2A during multimerization [ 51 ,  61 ,  66 ]. 

 Translocation of the unfolded protein into the lysosomal lumen occurs one by 
one through the LAMP-2A multiprotein complex and is dependent on the presence 
of an intralysosomal isoform of hsc70 (lys-hsc70) [ 63 ,  67 ]. This isoform of hsc70 is 
located in the lysosomal lumen and may enter the lysosome via fusion with hsc70- 
containing late endosomes [ 53 ,  66 ]. To date, the exact mechanism by which lys- 
hsc70 contributes to substrate translocation is unknown; however,  it has been 
proposed that this protein may “pull” the substrate through the LAMP-2A translo-
cation complex or passively “hold” the substrate, preventing its release back into the 
cytosol [ 53 ]. Depending on cellular conditions and cell type, the population of lyso-
somes containing lys-hsc70 fl uctuates between 20 % and 80 %, and therefore, not all 
lysosomes are capable of CMA [ 68 ]. Upon entry of the protein substrate into the 
lysosomal lumen, substrate degradation occurs by resident hydrolases, and this pro-
cess is accompanied by the dissociation of the LAMP-2A translocation complex. 
These resulting monomers of LAMP-2A are then free to further bind substrates and 
initiate new cycles of CMA [ 61 ].   

12.2     Transcription Factor EB (TFEB) 

12.2.1     The Lysosome 

 While investigating the mechanism of action of insulin within liver cells, Christian 
de Duve serendipitously stumbled upon a nonspecifi c acid phosphatase that pos-
sessed a phantasmic enzymatic activity. Tantalized by the “vanishing acts” that this 
acid phosphatase performed, de Duve abandoned his work on insulin and pursued 
this accidental fi nding instead. In 1955, after years of investigating this unexpected 
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observation, de Duve described the lysosome. Roughly 20 years later, he was 
awarded the Nobel Prize in Physiology and Medicine for this discovery [ 69 ,  70 ]. 
Traditionally, lysosomes, Greek for “digestive body” and formed from the combina-
tion of the words  lysis and soma , have been considered static cellular organelles that 
are not infl uenced by environmental cues. They are primarily implicated in the 
catabolism of macromolecules obtained from multiple cellular processes such as 
endocytosis, autophagy, and phagocytosis [ 10 ,  52 ,  71 – 74 ]. However, the new con-
cept of lysosomal adaptation has subsequently broadened our perspective from 
merely its static role in cellular clearance [ 75 ]. Recent studies by Ballabio and col-
leagues have demonstrated that a majority of the 96 lysosomal genes involved in 
lysosomal biogenesis and function coordinately express and are infl uenced by envi-
ronmental factors, both extracellular and intracellular, through a basic helix-loop- 
helix transcription factor known as transcription factor EB (TFEB), the master 
regulator of the coordinate lysosomal expression and regulation (CLEAR), which 
encompasses these lysosomal genes [ 76 ,  77 ]. Lysosomes have now emerged as a 
critical player involved in nutrient sensing, signaling, and metabolism, in addition 
to their established duty in cellular macromolecule degradation. At the heart of this 
adaptive and dynamic lysosome model is the activity of TFEB, the master regulator 
of lysosomal biogenesis and function that modulates the interplay between 
lysosome- mediated cellular processes and environmental infl uences.  

12.2.2     Regulation of TFEB 

 TFEB is located within the cytoplasm and on the surface of the cholesterol sparse 
lysosomal membrane, where it is regulated through an “inside-out” signaling model 
initiated by the level of accumulated amino acids in the acidic lumen of the lyso-
some (see Fig.  12.1a ). These amino acid levels are sensed by the lysosome nutrient 
signaling (LYNUS) machinery, which propagates a signal through a protein com-
plex known as Ragulator to RAG GTPases that subsequently recruit mTORC1 to 
the lysosomal surface [ 78 – 85 ]. The subcellular localization of TFEB depends 
largely on the mTORC1-mediated phosphorylation of TFEB at two crucial serine 
residues: Ser142 and Ser211 [ 77 ,  84 ,  86 ,  87 ]. Under favorable conditions, mTORC1 
phosphorylates TFEB, sequestering the transcription factor in the cytoplasm and 
lysosomal surface. However, during adverse cellular circumstances—starvation, 
stress, and lysosome dysfunction or inhibition—mTORC1 dissociates from the 
LYNUS complex without phosphorylating TFEB, allowing for TFEB nuclear trans-
location [ 76 ,  77 ,  81 ,  84 ,  86 ,  87 ]. Within the nucleus, TFEB activates transcription of 
the CLEAR network genes pertinent in the lysosomal-autophagy pathway, as well 
as those involved in lipid metabolism such as peroxisome proliferator-activated 
receptor α (PPARα), peroxisome proliferator-activated receptor-gamma 
coactivator-1α (PGC-1α), and their respective target genes. Furthermore, once 
inside the nucleus TFEB also positively regulates its own function by binding to the 
CLEAR motif within the promotor region of its associated gene, thus initiating its 
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own transcription. Therefore, the activity of TFEB is regulated both at the transcrip-
tional and posttranscriptional levels (see Fig.  12.1a ), and presents a mechanism for 
which environmental infl uences, both extracellular and intracellular, can be trans-
mitted from lysosome to nucleus [ 75 – 77 ].  

12.2.3     Lipid Catabolism 

 TFEB is also implicated in lipid catabolism due to the intertwined features of 
autophagy and lipid metabolism. Through an autophagic process known as macro-
lipophagy, lipid droplets are transported to lysosomes via autophagosomes, where 
they are degraded into free fatty acids and glycerol [ 88 ,  89 ]. Mouse liver cells over-
expressing TFEB exhibited upregulation of genes implicated in lipid catabolic pro-
cesses, such as lipophagy and fatty acid oxidation, as well as downregulation of 
those involved in lipid biogenesis [ 75 ]. TFEB exerts its transcriptional control of 
lipid metabolism by inducing two key modulators of energy metabolism: PPARα 
and PGC-1α (see Fig.  12.1b ) [ 75 – 90 ]. Cells stressed by starvation undergo TFEB- 
activated transcription of both PPARα and PGC-1α, which subsequently initiates a 
metabolic response where energy is produced through the breakdown of lipid 
reserves [ 75 ]. Furthermore, studies performed on  Atg7  knockout mice, whose 
autophagic pathways are suppressed, demonstrate that TFEB mediates lipid metab-
olism through an autophagy-dependent manner [ 75 ]. Therefore, TFEB weaves 
together the lysosomal-autophagic pathway with lipid metabolism. It is becoming 
increasingly clear that the lysosome is not only a cellular garbage disposal, but it 
also serves as an intricate player involved in nutrient sensing, signaling, and 
metabolism.  

12.2.4     TFEB, Autophagy, and Neurodegeneration 

 In many neurodegenerative proteopathies, the lysosomal-autophagy pathway is dis-
rupted and the pathogenic formation of misfolded protein aggregates occurs (see 
Fig.  12.1c ) [ 91 – 93 ]. Therefore, as the master regulator of the lysosomal-autophagy 
pathway, the role of TFEB in neurodegeneration is an area of intensive investiga-
tion. Studies utilizing a rat model of Parkinson’s disease generated by overexpress-
ing human alpha-synuclein (α-syn) in the midbrain demonstrated that elevated 
α-syn levels induced TFEB retention in the cytoplasm, leading to lysosomal dys-
function, α-syn accumulation in autophagosomes, and a progressive increase in 
α-syn oligomers [ 94 ]. Since α-syn is structurally and functionally similar to 14-3-3 
proteins, a group of proteins known to interact with and trap phosphorylated TFEB 
within the cytoplasm, a possible pathogenic mechanism, has been postulated where 
aggregates of α-syn bind to phosphorylated TFEB, preventing its nuclear transloca-
tion and eventually leading to impairment of autophagic processes [ 86 ,  87 ,  94 – 96 ]. 
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Overexpression of TFEB, whether by genetic or pharmacological means, has been 
shown to mediate the clearance of α-syn and halt the progression of Parkinsonian 
neurodegeneration in both rat nigral dopaminergic neurons and human neuroglioma 
cells through an autophagy-dependent pathway [ 94 ,  97 ]. Recent research has also 
demonstrated that overexpression of TFEB is neuroprotective in both Huntington’s 
and Alzheimer’s diseases as well. In a Huntington’s disease mouse model, TFEB- 
mediated induction of PGC-1α was shown to rescue neurotoxicity via cellular clear-
ance of huntingtin protein aggregation and reduction of oxidative stress [ 98 ]. 
Furthermore, TFEB overexpression in a mouse model of Alzheimer’s disease 
showed that TFEB is capable of allaying phosphorylated Tau and neurofi brillary 
tangle-associated neuropathology by enhancing the clearance of both hyperphos-
phorylated and misfolded Tau proteins [ 99 ].  

12.2.5     Transcription Factor E3 

 Recently, a second member of the MiTF/TFE family was found to be a CLEAR 
network regulator. Like TFEB, translocation of transcription factor E3 (TFE3) from 
the cytosol to the nucleus is dependent upon interaction with Rag GTPases, 
mTORC1-dependent phosphorylation status, and nutrient availability [ 100 ]. Under 
conditions of starvation, TFE3 translocates from the cytosol to the nucleus where it 
binds to the CLEAR motif of promoters of genes belonging to the CLEAR network. 
Research indicates that TFE3-induced autophagy and lysosomal biogenesis are 
independent of TFEB. Relative protein abundance of both transcription factors, 
which has been shown to be different in various cell types, is speculated to be the 
decisive factor in taking on the role of master regulator. Just like TFEB, overexpres-
sion of TFE3 can promote lysosomal exocytosis and clearage of lysosomal sub-
strate storage in several lysosomal storage disorders [ 100 ]. Together, these results 
suggest that TFEB and TFE3, both master regulators of the lysosomal-autophagy 
pathway, may be promising therapeutic targets for the development of a broad- 
spectrum neuroprotective drug.   

12.3     Lysosomal and Mitochondrial Dysfunction: Are They 
Connected? 

 Mitochondria are eukaryotic organelles involved in a variety of cellular processes 
ranging from energy production to regulation of cellular calcium concentration and 
apoptosis. Mitochondria consist of a double-membrane structure that separates the 
inner-membrane space from the mitochondrial matrix [ 101 ]. Located in the inner 
mitochondrial membrane is the electron transport chain where oxidative phosphory-
lation occurs. This is also the primary site of both cellular energy and reactive oxy-
gen species (ROS) production [ 102 – 105 ] (see Chap.   1    ). Growing evidence 
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demonstrates that lysosomes and mitochondria share a mutual relationship, where 
dysfunction in one organelle often impairs the function of the other. Lysosomal 
damage not only directly disturbs the lysosomal-autophagy pathway but can also 
cause lysosomal membrane permeabilization (LMP) resulting in the release of lyso-
somal luminal contents into the cytosol [ 74 ,  106 – 108 ]. Whether by insuffi cient turn-
over of damaged mitochondria or via direct interaction with lysosomal cathepsins 
released as a result of LMP, the consequences of lysosomal dysfunction impair 
mitochondrial function and lead to the loss of mitochondrial membrane potential, 
increased ROS production, decreased generation of ATP, and eventually the dis-
charge of mitochondrial components into the cytosol via mitochondrial membrane 
permeabilization [ 109 – 112 ]. Mitochondrial dysfunction may also occur through 
mutations in gene-encoding proteins involved in mitochondrial quality control and 
homeostasis such as PTEN-induced putative kinase 1 ( PINK1 / PARK6 ), the E3 ubiq-
uitin ligase parkin ( PARK2 ), and DJ-1 ( PARK7 ). Mutations in these genes have been 
implicated in familial forms of Parkinson disease [ 101 ,  113 – 117 ] (see Chap.   11    ). 
While it is unclear whether lysosomal dysfunction precedes mitochondrial damage 
or vice versa, disruption of the intricate balance between the functions of these two 
organelles establishes a deleterious feedback loop [ 107 ]. A failure to degrade defec-
tive mitochondria by the lysosome results in the accumulation of dysfunctional 
mitochondria and the subsequent leakage of ROS. In turn, these oxidative species 
may perpetuate lysosome dysfunction and subsequently enhance mitochondrial 
stress culminating in infl ammation and cell death [ 107 ,  111 ,  114 ,  118 ]. Therefore, 
aberrant quality control of both lysosomes and mitochondria has profound conse-
quences on the pathogenesis of a multitude of diseases, especially for those distin-
guished by neurodegeneration [ 112 ,  119 – 121 ]. 

12.3.1     Mitophagy 

 Neurons are peculiarly susceptible to the subtle sequela of lysosomal and mitochon-
drial dysfunction due to their reduced capability for glycolysis and reliance on oxi-
dative phosphorylation for energy production [ 122 ,  123 ]. In order to maintain 
lysosomal and mitochondrial function and homeostasis, the cell employs special-
ized turnover pathways that target specifi c organelles (see also Chap.   11    ). Lysosomes 
mediate mitochondria-specifi c autophagy, often referred to as mitophagy, within 
cells, and this catabolic mechanism is regulated by two key proteins: PINK1 and 
parkin. In viable mitochondria, PINK1 is continually expressed and recruited to the 
outer mitochondrial membrane (OMM) where this serine/threonine kinase is 
imported into the mitochondrial matrix in a mitochondrial membrane potential- 
dependent manner. Once in the mitochondrial matrix, PINK1 is immediately 
degraded by proteases, thus regulating its expression [ 101 ,  114 ,  116 ]. However, 
upon the accumulation of aberrant proteins or the loss of mitochondrial membrane 
potential following mitochondrial insult, PINK1 regulation is impaired, allowing 
for accumulation of PINK1 on the OMM and its activation via autophosphorylation 
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[ 124 ,  125 ]. Activated PINK1 recruits parkin to the OMM and phosphorylates not 
only the ubiquitin-like domain of parkin but also ubiquitin itself. Phosphorylation of 
both protein species is required for full activation of the E3 ubiquitin ligase function 
of parkin [ 126 – 128 ]. Once relegated to the mitochondrial surface, parkin ubiquiti-
nates various OMM proteins involved in mitochondrial maintenance, and this poly-
ubiquitination labels the damaged mitochondria for turnover [ 129 – 131 ]. Cells with 
defective lysosomes, and therefore impaired mitophagy, are unable to effectively 
breakdown defective mitochondria resulting in their accumulation. These damaged 
mitochondria may leak reactive oxygen species (ROS), such as superoxide (O 2  − ) 
and hydrogen peroxide (H 2 O 2 ), from complex I and III of the respiratory chain. If 
left unchecked, these oxidative species may ultimately cause neuronal death by not 
only further perpetuating organelle damage but also by activating the NLRP3 
infl ammasome and therefore initiating infl ammatory responses [ 111 ,  112 ].  

12.3.2     Oxidative Stress 

 ROS are important mediators of the downstream consequences stemming from the 
combined effects of lysosomal and mitochondrial dysfunction. The mitochondrial 
respiratory chain is the principal producer of ROS, primarily in the forms of O 2  −  and 
H 2 O 2 , within the cell and during abnormal lysosomal and mitochondrial function, 
and contributes to the elevation of oxidative stress [ 112 ]. Lysosomes are particularly 
vulnerable to ROS-induced damage, as these oxidative species peroxidize lyso-
somal membrane lipids resulting in destabilization of the membrane and, poten-
tially, even LMP. Due to their ability to inherit cargo during fusion with 
autophagosomes, lysosomes may acquire large amounts of iron during the degrada-
tion of macromolecules. This accumulation of iron within lysosomes has been spec-
ulated to contribute to lysosomal susceptibility to oxidative damage [ 107 ,  132 ]. 
Simultaneously, elevated oxidative stress may damage mitochondria as well. 
Reactive oxygen species may peroxidize lipids in the mitochondrial membrane 
resulting in loss of membrane potential as well as fragmented mitochondrial mor-
phology [ 112 ,  116 ,  133 ]. Under high levels of oxidative stress, mitochondrial mem-
brane permeabilization may also occur and release cytochrome c into the cytosol, 
therefore activating apoptosis [ 134 ]. Mitochondrial DNA (mtDNA) neighbors the 
electron transport chain within the inner mitochondrial membrane and is prone to 
oxidation and release during mitochondrial damage. Once released into the cytosol, 
oxidized mtDNA and local ROS trigger assembly and activation of the NLRP3 
infl ammasome [ 111 ,  134 – 136 ]. Beyond these organelles, ROS may also regulate 
the activity of proteins through posttranslational modifi cation. One example is DJ-1, 
a neuroprotective protein encoded by  PARK7  that has been implicated in familial 
forms of Parkinson’s disease when mutated. DJ-1 is dependent on localization to the 
mitochondria for proper neuroprotective activity, and this translocation is redox 
regulated by oxidation of the Cys106 residue into cysteine sulfi nic acid by 
ROS. After translocation to the mitochondria, DJ-1 protects cells from oxidative 
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stress-induced death by modulating mitophagy and, together with other cellular 
processes, assumes a role in antioxidant response [ 137 ,  138 ].  

12.3.3     Infl ammasome Activation 

 Infl ammasomes are intracellular multiprotein complexes that initiate an infl amma-
tory response in response to pathogens and intracellular insults. The nucleotide- 
binding oligomerization domain-like receptor family, pyrin domain containing 3 
(NLRP3) infl ammasome is the best characterized and is closely associated with 
lysosomal and mitochondrial dysfunction [ 139 ]. This protein complex is formed at 
the interface of the mitochondria and endoplasmic reticulum in an area known as 
the mitochondria-associated endoplasmic reticulum membrane. The NLRP3 infl am-
masome is chiefl y composed of three components: a NOD-like receptor (NLRP3), 
the adaptor protein ASC, and caspase-1. Once assembled and activated, the NLRP3 
infl ammasome cleaves proIL-1β and proIL-18 into their bioactive forms, where 
these proinfl ammatory messenger molecules may subsequently modulate immune 
and infl ammatory pathways [ 110 ,  111 ,  139 – 141 ]. Growing evidence identifi es both 
ROS and oxidized mtDNA as activators of the NLRP3 infl ammasome. Cells with 
impaired mitophagy, and consequently prolonged clearance of defective mitochon-
dria, may spontaneously secrete ROS and oxidized mtDNA into the cytosol, result-
ing in consistent activation of the NLRP3 infl ammasome [ 12 ,  36 ]. Recently, elegant 
work by Shi and colleagues has demonstrated that autophagy may function as a 
negative regulator of infl ammasome activation. Their data suggests that infl amma-
some activation concomitantly induces autophagosome formation by initiating 
nucleotide exchange on the G protein RalB. Infl ammasomes subsequently undergo 
ubiquitination and are transported by adaptor proteins p62 and LC3 to autophago-
somes for elimination. These results suggest that autophagy may modulate the 
intensity of infl ammation by directly degrading active infl ammasomes and therefore 
may result in uncontrolled infl ammation during lysosomal and mitochondrial dys-
function [ 142 ]. Taken together, the infl ammasome represents a link between lyso-
somal and mitochondrial dysfunction and infl ammation, which contributes to the 
pathogenesis of not only neurodegenerative but also autoinfl ammatory diseases 
[ 143 ,  144 ].   

12.4     Lysosomal Storage Disorders and Neurodegeneration 

 Lysosomal storage disorders (LSDs) are rare inborn metabolic diseases in which 
lysosomal function is severely compromised due to mutations in gene-encoding 
enzymes resident in lysosomes involved in the breakdown of specifi c substrates. 
The subsequent accumulation of substrate within lysosomes has a variety of conse-
quences such as lysosomal enlargement, altered lysosomal pH, and diminished 
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activity of lysosomal enzymes. Over 50 different LSDs have been described, and 
mutations in LSD-associated genes in patients, as well as carriers, have been linked 
to neurodegeneration, more particularly synucleinopathies [ 145 ]. Among LSD- 
associated genes, the molecular link between mutations in the glucocerebrosidase 
gene ( GBA1 ) and Parkinson’s disease (PD) is the most established [ 146 ]. 

12.4.1     GBA1 and Synucleinopathies 

 Pathological mutations in both alleles of the  GBA1  gene cause Gaucher disease (GD), 
the most common LSD. This disorder is characterized by lysosomal accumulation of 
the substrate glucosylceramide (GC), due to a defi ciency in the lysosome- resident 
glucocerebrosidase enzyme (GCase) [ 147 ]. The cells most affected in GD patients 
are macrophages, which are involved in breakdown of senescent cells with GC-rich 
membranes such as erythrocytes. “Gaucher cells,” which are the macrophages that 
have lysosomes engorged with substrate, can infi ltrate the spleen, liver, and bone 
marrow, resulting in infl ammation and organomegaly [ 148 ]. GD has been historically 
classifi ed into non-neuronopathic type 1, acute neuronopathic type 2, and chronic 
neuronopathic type 3. Today, clinicians acknowledge a broad range of clinical mani-
festations associated with GD and subsequently can have diffi culty classifying 
patients into specifi c GD subtypes [ 147 ]. Over the last 6 years, large cohort studies 
have established that the presence of mutations in the  GBA1  gene is a risk factor for 
the development of synucleinopathies including PD [ 146 ], dementia with Lewy bod-
ies (DLB) (Fig.  12.2 ) [ 149 ], and, most recently, multiple system atrophy (MSA) 
[ 150 ]. All three synucleinopathies are characterized by the presence of inclusions of 
aggregated α-syn, a 14 kDa protein that is speculated to be involved in the regulation 
of synaptic vesicle dynamics and neurotransmitter release [ 151 ,  152 ]. In PD and 
DLB, the α-syn-positive Lewy bodies and neurites are mainly located in neurons of 
the substantia nigra, cerebral cortex, and hippocampus, while in MSA, the α-syn 
inclusions are located in glial oligodendrocytes [ 146 ,  149 ,  150 ]. The molecular link 
between mutations in the  GBA1  gene and PD was established by molecular analyses 
of the  GBA1  gene on a large pan- ethnic cohort comprising 5,691 patients with PD 
and 4,898 controls. This study revealed a strong association between  GBA1  muta-
tions and the development of PD with an odds ratio of 5.43 and earlier onset of PD 
symptoms in patients with  GBA1  mutations [ 146 ]. These results have been replicated 
in multiple large cohorts with different ethnic backgrounds [ 114 ,  153 ,  154 ]. Today, 
 GBA1  mutations are widely considered the most common genetic risk factor for 
PD. However, it is important to keep in mind that most patients with GD and mutant 
 GBA1  carriers never develop synucleinopathies. These observations suggest that 
 GBA1  mutations and subsequent dysfunctional GCase enzyme are not a direct cause 
of synucleinopathy development; other cellular processes affecting organelle homeo-
stasis, such as ER-stress and lysosomal and mitochondrial function, might play a 
more central role in synucleinopathy pathogenesis. The presence of dysfunctional 
GCase could exacerbate organelle dysfunction and subsequent α-syn accumulation.
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12.4.2        GCase and α-syn Homeostasis 

 Initially, the mechanistic link between dysfunctional GCase enzyme and α-syn 
aggregation focused on gain-of-function or loss-of function hypotheses, where the 
former supports the direct involvement of dysfunctional GCase enzyme in the 
aggregation of α-syn, and the latter supports the role of lysosomal GC substrate 
accumulation in α-syn aggregation [ 155 ]. Currently, in vitro and in vivo research 
supports a reciprocal relationship between GCase and α-syn where downregulation 
of GCase protein expression or enzyme activity results in accumulation of α-syn. 
Increases in α-syn protein expression results in reduced GCase protein expression 
and enzyme activity (reviewed by [ 114 ,  156 ]). Furthermore, three independent stud-
ies support the observation of reduced GCase activity and protein expression in 
postmortem brains of sporadic PD and DLB patients without  GBA1  mutations, rein-
forcing the reciprocal relationship in relevant human samples [ 157 – 159 ]. The 
molecular mechanism of the reciprocal relationship is not fully understood although 
there is some evidence that an increase in α-syn protein levels inhibits ER-to-Golgi 
traffi cking of GCase, which subsequently results in downregulation of GCase trans-
location to lysosomes. Less GCase in lysosomes can lead to lysosomal GC substrate 
accumulation and subsequent lysosomal dysfunction, which in turn may stimulate 
accumulation and oligomerization of α-syn throughout the cell. Buildup of α-syn 
aggregates could, in turn, inhibit ER-to-Golgi traffi cking of GCase resulting in fur-
ther decrease of this enzyme within lysosomes [ 160 ]. This reciprocal positive feed-
back loop could eventually lead to neurodegeneration. Evidence for this hypothesis 
came from a neuronopathic GD type 2 mouse model lacking GCase. Here, autoph-
agy and proteosomal impairment lead to accumulation of fragmented mitochondria 
and α-syn in cultured neurons and astrocytes of the midbrain [ 161 ]. Although this 

a b

  Fig. 12.2    Histology of hippocampal Lewy bodies ( arrows ) from a patient with GD and DLB. ( a ) 
Hematoxylin-eosin stain and ( b ) anti-α-syn immunostaining of hippocampal tissue from the same 
individual       
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 gba  -/-  model is not refl ective of PD, it suggested that the lack of GCase expression 
promotes α-syn accumulation through impairment of cellular turnover pathways 
[ 101 ]. Novel insights into maintenance of α-syn homeostasis by manipulating 
GCase enzyme levels are promising for the development of new treatments for 
synucleinopathies. Although GCase enzyme replacement therapy does not improve 
PD symptoms, as the recombinant enzyme does not cross the blood-brain barrier 
[ 162 ], molecular inhibitors of glucosylceramide synthase for GC substrate reduc-
tion therapy and molecular chaperones for enhancing GCase translocation to the 
lysosomes can cross the blood-brain barrier and therefore show potential as thera-
peutics [ 163 – 166 ]. Recent research indicates associations similar to that found 
between mutations in  GBA1 , and the development of synucleinopathies can be 
expanded to other LSD-associated genes. Large molecular cohort studies suggest 
that mutations in the sphingomyelin phosphodiesterase (SMPD1) and α-N- 
acetylglucosaminidase (NAGLU) genes, which are associated with Niemann-Pick 
disease A and B and mucopolysaccharidosis type III B, respectively, may be impli-
cated in the development PD [ 167 ,  168 ]. These observations suggest that mutations 
in other lysosomal-resident enzymes might be classifi ed as risk factors for the 
development of synucleinopathies.   

12.5     Conclusion 

 When fi rst described by Christian de Duve, and for many years after, lysosomes 
were often considered static organelles primarily involved in the degradation of cel-
lular constituents. However, recent insights into lysosomal function and regulation 
have demonstrated otherwise. In fact, lysosomes are now considered dynamic 
organelles capable of not only cellular cleanup but also nutrient sensing and lipid 
catabolism. As mediators of autophagy, lysosomes also play an important role in the 
development of neurodegenerative diseases. Lysosomal dysfunction leads to not 
only the accumulation of aggregate-prone proteins but also impairs other organelles 
such as mitochondria. Together, dysfunction of this deleterious duo might drive a 
destructive feedback loop that culminates in the neuropathology often found in 
Parkinson’s, Alzheimer’s, and Huntington’s diseases. The association between 
LSDs and neurodegenerative diseases such as PD, LBD, and MSA further highlight 
the importance of proper lysosomal function in neuronal health. Further investiga-
tions exploring the relationship between lysosomal and mitochondrial dysfunction 
hold promise for the discovery of new potential drug targets.     
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