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Abstract Diffusion magnetic resonance imaging (dMRI) has been used to nonin-
vasively reconstruct fiber tracts. Fiber orientation (FO) estimation is a crucial step
in the reconstruction, especially in the case of crossing fibers. In FO estimation, it
is important to incorporate spatial coherence of FOs to reduce the effect of noise. In
this work, we propose a method of FO estimation using neighborhood information.
The diffusion signal is modeled by a fixed tensor basis. The spatial coherence is
enforced in weighted `1-norm regularization terms, which contain the interaction
of directional information between neighbor voxels. Data fidelity is ensured by the
agreement between raw and reconstructed diffusion signals. The resulting objective
function is solved using a block coordinate descent algorithm. Experiments were
performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo
brain dMRI data for qualitative and quantitative evaluation. The results demonstrate
that the proposed method improves the quality of FO estimation.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) has been used to noninvasively
reconstruct fiber tracts by imaging the anisotropy of water diffusion in tissue [11].
A major topic in dMRI is the estimation of fiber orientations (FOs) , especially
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in situations where fibers cross. For example, constrained spherical deconvolu-
tion [17], q-ball reconstruction [6], multi-tensor models [3, 10, 20], and spherical
ridgelet models [13] have been proposed to estimate crossing FOs.

Successful resolution of crossing FOs may require a large number of diffusion
gradient directions, which takes a long acquisition time and limits the use in
clinical practice [4]. To reduce the required number of gradient directions, with
the assumption that the number of FOs in a voxel is small, methods have been
proposed to model the diffusion signals using a basis and solve the FO estimation
with sparsity regularization [5, 10, 12, 13, 15, 20]. For example, the basis can be
diffusion tensors [5, 10, 15, 20], spherical ridgelets [13], or spherical polar Fourier
basis [12].

Besides sparsity assumption, it is also important to consider spatial coherence of
FOs to reduce the effect of noise and improve FO estimation. For example, in [2]
the diffusion weighted images (DWIs) are smoothed before FO estimation whereas
in [16] smoothing of FOs is performed after FO estimation. Several works have
placed spatial regularization of tensors on the multi-tensor model to estimate FOs,
but the sparsity assumption was not used [7, 14]. There are also methods that have
combined spatial continuity with sparsity and seek to simultaneously estimate and
smooth FOs. In [13], the TV-norm of DWIs is incorporated in the objective function
for FO estimation. In [15] and [20], spatial consistency of FOs is enforced by adding
the smoothness of the mixture fraction of each basis tensor as regularization terms
in the FO estimation. However, in [15] and [20], the FO coherence is ensured in
a relatively indirect way in the sense that directional information in FOs is not
explicitly modeled in the objective functions. FO estimation incorporating both
sparsity and spatial coherence is still an open problem.

In this work, we propose a method of FO estimation using both sparsity
assumption and neighborhood information. The diffusion signal is modeled by
a fixed tensor basis. In contrast to previous works, we directly incorporate the
directional information in the neighborhood into the objective function to encode
spatial coherence. Spatial coherence and sparsity are enforced in weighted `1-
norm regularization terms, which contain the interaction of directional information
between neighbor voxels. Data fidelity is ensured by the agreement between raw
and reconstructed diffusion weighted signals. The resulting objective function is
solved using a block coordinate descent algorithm. Experiments were performed on
a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data
for evaluation.
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2 Methods

2.1 Background: Multi-Tensor Model with a Fixed Tensor
Basis

As discussed in [8], the diffusion weighted signal at each voxel can be modeled
using a unified framework,

S.q/ D S0

Z

M
f .x/R.q; x/dx; (1)

where M is a smooth manifold, x is a point on M, S.q/ is the diffusion weighted
signal with the diffusion gradient q, S0 is the signal without diffusion weighting,
R.q; x/ is a kernel function, and f .x/ is a probability density function. As in [10]
and [20], we use a fixed tensor basis to represent diffusion signals, which has the
advantage of explicit relationship between the basis and FOs. In this work, the basis
comprises N D 289 prolate tensors Di whose primary eigenvectors (PEVs) vi are
approximately evenly oriented over the sphere. Each Di represents an FO given by
its PEV vi. The eigenvalues (�1 � �2 � �3 > 0) determine the shape of the basis
tensor, and they are determined by examining the diffusion tensors of a noncrossing
fiber tract [10].

With this tensor basis, we have M D S2 (a unit sphere), x D v (a unit vector),
f .v/ D fiı.vI vi/, and R.q; vi/ D e�qT Diq [8]. If we normalize the diffusion gradient
as Qq D q=jqj, then Qq is associated with a constant b determined by the imaging
sequence. Then, taking noise n.q/ into account, (1) becomes [10]

S.q/ D S0

NX
iD1

fie
�bQqT DiQq C n.q/; (2)

where fi (
P

i fi D 1) is the unknown nonnegative mixture fraction (MF) for Di.
By defining y.q/ D S.q/=S0 and �.q/ D n.q/=S0, (2) can be written as

y D Gf C �; (3)

where y D .y.q1/; y.q2/; : : : ; y.qK//T (K is the number of DWIs), G is a K � N
matrix comprising the attenuation terms Gki D e�bk QqT

k DiQqk , f D .f1; f2; : : : ; fN/T , and
� D .�.q1/; �.q2/; : : : ; �.qK//T . Because the number of FOs in each voxel is small,
it makes sense to estimate the MFs using sparse reconstruction:

Of D arg min
f�0;jjf jj1D1

jjGf � yjj22 C ˇjjf jj0: (4)
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By relaxing the constraint of
PN

iD1 fi D 1 and replacing the `0-norm with the `1-
norm [10, 20], we have

Of D arg min
f�0

jjGf � yjj22 C ˇjjf jj1; (5)

Then, the estimated f is projected onto the unit sphere jjf jj1 D 1 by normaliza-
tion [10]. Basis directions with nonzero MFs are interpreted as estimated FOs. Thus,
we will use FO estimation and MF estimation interchangeably.

2.2 FO Estimation Using Neighborhood Information

Because of image noise, it is important to incorporate spatial coherence of FOs
to improve FO estimation [13]. An intuitive way of incorporating neighborhood
information can be based on the smoothness of MFs [15, 20]. But establishing
smooth MFs does not mean that the FO angles are smooth. For example, let
f a D .1; 0; : : : ; 0/T , f b D .0; 1; 0; : : : ; 0/T , and f c D .0; 0; 1; 0; : : : ; 0/T . The
difference between f a and f b (jjf a � f bjj) is the same as that between f a and f c

(jjf a � f cjj), while the desired difference is clearly related to the basis directions
represented by the nonzero entries in the MFs. In this work, we seek to explicitly
incorporate the directional information from neighbor voxels into FO estimation.

FO Estimation with Known Neighborhood Information First we consider a sim-
plified case of estimating FOs in a single voxel with known neighbor information.
Let the MFs at voxel m be f m. A voxel n is in the neighborhood Nm of m and has
FOs fvn;jgVn

jD1, where Vn is the number of FOs at n. Suppose fvn;jgVn
jD1 were known,

and we want to estimate f m given the neighbor FOs.
We assume that a majority of neighbor voxels n 2 Nm have similar FO patterns

as the desired one at m. Then, a set of likely FO fum;pgUm
pD1 for m can be obtained

from the neighbor voxels (details will be introduced later), where Um is the number
of likely FOs at m. Motivated by Ye et al. [18], where fixed pre-determined prior
directions at each voxel are encoded in the sparse reconstruction of FOs from dMRI,
a weighted `1-norm regularized least squares problem derived from a Bayesian
perspective can be solved to encode the information of likely FOs:

Of m D arg min
f m�0

jjGfm � ymjj22 C ˇjjCmf mjj1: (6)

Here, Cm is a diagonal weighting matrix encoding likely FOs. The basis directions
closer to likely FOs are weighted less in the weighted `1-norm, and thus they are
less penalized in the objective function. We set the diagonal entries as

CmWii D
�

1 � ˛ max
p

jvi � um;pj
� .

min
q

�
1 � ˛ max

p
jvq � um;pj

�
; (7)
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where ˛ 2 Œ0; 1/ is a constant. Since vi and um;p are unit vectors, 0 � jvi � um;pj � 1

and CmWii is positive. In this way, the penalty for basis directions that are closest to
likely FOs is the same as that when no information on likely FOs is used.

Note that our application of FO estimation with spatial coherence is fundamen-
tally different than [18] in two aspects: (1) likely FOs are computed based on
neighbor FOs while in [18] an anatomical atlas is needed to provide prior directions
specified at each voxel; (2) since the FOs in the neighbors are also to be estimated,
voxelwise FO estimation in (6) is inappropriate. The proposed approach to likely
FO computation and FO estimation is introduced below.

Likely FO Computation At voxel m we first consider one neighbor voxel n.
Between each basis direction vi and the neighbor n, we define a basis-neighbor
similarity rm.i; n/ D wm;n maxj jvi �vn;jj. Here, wm;n is a weighting coefficient, which
represents the similarity between m and n. It is defined as wm;n D e��d2.Dm;Dn/

(� is a constant). Dm and Dn are the diffusion tensors fitted from DWIs at m
and n, respectively, and d.Dm; Dn/ is a distance metric for tensors Dm and Dn:
d.Dm; Dn/ D p

Trace.flog.Dm/ � log.Dn/g2/ [1]. For each vi, the max function in
rm.i; n/ measures the similarity between vi and its closest FO in n, and this similarity
is further weighted by the voxel similarity wm;n. In this way, given one neighbor n,
we can measure how similar vi is to the FOs at n.

To consider all neighbor voxels, an aggregate basis-neighbor similarity for vi at
voxel m is defined as Rm.i/ D P

n2Nm
rm.i; n/. We can extract likely FOs for m by

finding the basis directions with local maximal Rm values:

fum;pgUm
pD1 D fvijRm.i/ � Rm.j/; 8 j ¤ i W arccos.jvi � vjj/ � ��

180ı g: (8)

Here, � is a threshold and we empirically choose � D 20ı.

FO Estimation for All Voxels With the likely FOs, the weighting matrix can then
be obtained. Note that we have assumed known neighbor information to obtain (6).
However, the FOs in the neighbors are also to be estimated. Thus the FOs in all
the voxels should be estimated simultaneously. For a total number of M voxels of
interest, where the MFs f D .f T

1 ; f T
2 ; : : : ; f T

M/T (and thus the FOs) are unknown, the
FO estimation can be achieved as

Of D arg min
f�0

E.f/ D arg min
f1; f2;:::; f M�0

MX
mD1

jjGfm � ymjj22 C ˇjjCmf mjj1: (9)

Note that Cm contains the interaction between neighbors and it is also dependent on
˛. Greater ˛ leads to more influence from neighbors. ˇ controls the sparsity. In this
work, ˛ and ˇ were chosen empirically.
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2.3 Minimization of the Objective Function

Because each voxel m is coupled with its neighbors in Cm in (9), we use a block
coordinate descent (BCD) optimization strategy. At iteration k C 1,

Of kC1

m D arg min
f m�0

E.Of kC1

1 ; : : : ; Of kC1

m�1; f m; Of k
mC1; : : : ; Of k

M/

D arg min
f m�0

jjGfm � ymjj22 C ˇjjCkC1
m f mjj1: (10)

Using (8), the likely FOs ukC1
m;p are obtained by finding the local maxima from

RkC1
m .i/ D P

n2Nm
wm;n maxj jvi � v

kC1n<m
n;j j, where 1 is an indicator function. Then,

CkC1
m can be determined with ukC1

m;p using (7).

To solve (10), we define gkC1
m D CkC1

m f m. Since CkC1
m is diagonal and CkC1

mWii > 0,
CkC1

m is invertible and f m D .CkC1
m /�1gkC1

m . By defining QGkC1
m D G.CkC1

m /�1,

OgkC1
m D arg min

gkC1
m �0

jj QGkC1
m gkC1

m � ymjj22 C ˇjjgkC1
m jj1: (11)

We find OgkC1
m using the method in [9] and the MFs are estimated as

Of kC1

m D .CkC1
m /�1 OgkC1

m : (12)

Then, we project Of kC1

m back onto the unit sphere by normalization: Qf kC1
m;i D

Of kC1
m;i =

P
j
Of kC1
m;j , and the FOs at m at iteration k C 1 are the basis directions with

Qf kC1
m;i > t (t D 0:1 in this work), because FOs with small MFs are interpreted as

components of isotropic diffusion [10, 18].
The FOs are initialized by Landman et al. [10]. Iterative update is terminated if

the FO difference between successive iterations is small or the maximum iteration
is reached.

3 Experiments

3.1 3D Digital Crossing Phantom

A 3D digital crossing phantom was generated to simulate two tracts crossing at 90ı,
where one b0 image and 30 gradient directions (b D 700 s=mm2) were used. Rician
noise (�=S0=0.05) was added to the DWIs.

The proposed method with .˛; ˇ; �/ D .0:4; 0:5; 1:0/ was compared with
BEDPOSTX [3] and CFARI [10], which are commonly used with around 30
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Fig. 1 FO estimation overlaid on the FA map of the 3D crossing phantom

Table 1 The mean errors of FO estimation (with standard deviations in parentheses)

Noncrossing region Crossing region

e1 e2 e1 e2

BEDPOSTX 3.26ı (3.58ı) 2.80ı (1.89ı) 12.12ı (8.92ı) 13.72ı (11.66ı)

CFARI 3.41ı (1.73ı) 0.79ı (1.88ı) 12.23ı (7.79ı) 12.21ı (11.52ı)

Proposed 3.08ı (1.63ı) 0.58ı (1.64ı) 5.57ı (2.24ı) 3.89ı (2.65ı)

gradient directions. The results are overlaid on the fractional anisotropy (FA)
map in Fig. 1. Compared with BEDPOSTX and CFARI, the proposed method
produces smoother FOs and better identifies crossing FOs. We then compared the
results quantitatively by using the two error measures proposed in [18], where the
first measure (e1) represents how close each estimated FO is to its ground truth
FO, and the second one (e2) measures how accurately each ground truth FO is
represented. The results are listed in Table 1. The proposed method estimates FOs
more accurately in both noncrossing and crossing regions.

3.2 Real Data

Ex Vivo Tongue dMRI Nine b0 images and 64 gradient directions (b D
2000 s=mm2) were acquired on a 3T MRI scanner (Magnetom Trio, Siemens,
Erlangen, Germany). The resolution is 2 mm isotropic.

The proposed method with .˛; ˇ; �/ D .0:4; 0:5; 3:0/ was compared with q-ball
imaging (QBI) using spherical harmonics based transformation [6] and CFARI [10].
The eigenvalues of the basis tensors are �1 D 7:0 � 10�4 mm2=s and �2 D �3 D
3:0 � 10�4 mm2=s. We focus on the crossing region of the genioglossus (GG) and
transverse (T) muscle in Fig. 2, where the proposed method better estimates the
crossing FOs and produces smoother FOs than QBI and CFARI.

In Vivo Brain dMRI Two b-values (b D 1000 s=mm2 and 2000 s=mm2) were
used in the acquisition. Each b-value is associated with 30 gradient directions and
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Fig. 2 FO estimation on the ex vivo tongue in the coronal view, which is focused on the crossing of
the GG and T muscle (the tongue area is indicated by the white mask). A high resolution structural
image (left) is shown for location reference

Fig. 3 FO estimation on brain dMRI (overlaid on the FA map), which is focused on the crossing
of (a) CC and CST (coronal view) and (b) CC and SLF (axial view)

each DWI has two repeated scans. Twelve b0 images were also acquired. The
images were acquired on a 3T MRI scanner (Magnetom Trio, Siemens, Erlangen,
Germany). The resolution is 2.7 mm isotropic.

The proposed method with .˛; ˇ; �/ D .0:4; 0:5; 1:0/ was compared with
CFARI [10] and generalized q-sampling imaging (GQI) [19]. GQI is a general-
ization of QBI [6] and can reconstruct FOs from multi-shell (multiple b-values)
dMRI. The eigenvalues of the basis tensors are �1 D 2:0 � 10�3 mm2=s and
�2 D �3 D 5:0 � 10�4 mm2=s. We highlight two regions for evaluation: the
crossing region of the corpus callosum (CC) and the corticospinal tract (CST) and
the crossing region of CC and the superior longitudinal fasciculus (SLF), which are
shown in Fig. 3. It can be seen that the proposed method is able to better reconstruct
the crossing FOs and has smoother results than CFARI and GQI.

4 Conclusion

We have proposed an FO estimation algorithm using neighborhood information. The
diffusion signal is modeled by a tensor basis. Directional information in neighbors
is modeled in weighted `1-norm regularization terms to ensure spatial coherence.
FO estimation is achieved using a BCD strategy. The proposed method was applied
to simulated and real dMRI data. The results indicate that the proposed method
improves FO estimation by using neighborhood information.
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