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Preface

These proceedings of the 2015 MICCAI Workshop “Computational Diffusion
MRI” offer a snapshot of the current state of the art on a broad range of topics
within the highly active and growing field of diffusion MRI. The topics vary from
fundamental theoretical work on mathematical modeling to the development and
evaluation of robust algorithms, new computational methods applied to diffusion
magnetic resonance imaging data, and applications in neuroscientific studies and
clinical practice. Over the last decade interest in diffusion MRI has exploded.
The technique provides unique insights into the microstructure of living tissue and
enables in vivo connectivity mapping of the brain. Computational techniques are key
to the continued success and development of diffusion MRI and to its widespread
transfer into clinical practice. New processing methods are essential for addressing
issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction,
modeling and model fitting, image processing, fiber tracking, connectivity mapping,
visualization, group studies, and inference. This volume, which includes both
careful mathematical derivations and a wealth of rich, full-color visualizations
and biologically or clinically relevant results, offers a valuable starting point for
anyone interested in learning about computational diffusion MRI and mathematical
methods for mapping brain connectivity, as well as new perspectives and insights
on current research challenges for those currently working in the field. It will be
of interest to researchers and practitioners in the fields of computer science, MR
physics, and applied mathematics.

Eindhoven, The Netherlands Andrea Fuster
London, United Kingdom Aurobrata Ghosh
London, United Kingdom Enrico Kaden
Boston, MA, USA Yogesh Rathi
Freiburg, Germany Marco Reisert
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Part I
Orals



An Efficient Finite Element Solution
of the Generalised Bloch-Torrey Equation
for Arbitrary Domains

Leandro Beltrachini, Zeike A. Taylor, and Alejandro F. Frangi

Abstract Nuclear magnetic resonance (NMR) is an invaluable tool for investigat-
ing porous media. Its use allows to study pore size distributions, fiber tortuosity,
and permeability as a function of the relaxation time, diffusivity, and flow. This
information was shown to be important in many applications, such as medical
diagnosis and materials science. A complete NMR analysis involves the solution
of the Bloch-Torrey (BT) equation. However, solving this equation analytically
becomes intractable for all but the simplest geometries.

We present an efficient numerical framework for solving the generalised BT
equation. This method allows to obtain computational simulations of the NMR
experiment in arbitrarily complex domains. In addition to the standard BT equation,
the generalised BT formulation takes into account the flow and relaxation terms,
allowing a better representation of the phenomena under scope. This framework
is flexible enough to deal parametrically with any order of convergence in the
spatial domain. Moreover, we developed a second-order implicit scheme for the
temporal discretisation with similar computational demands as the existing explicit
methods. This represents a huge step forward for obtaining reliable results with few
iterations. Comparisons with analytical solutions and real data show the flexibility
and accuracy of the proposed method.

1 Introduction

Nuclear magnetic resonance (NMR) is a powerful and non-invasive technique that
allows to study the translational motion of molecules in solution, either by diffusion
or fluid flow, by using magnetic field gradient methods. The study of this motion
reflects properties of the media and its surrounding environment, making NMR an
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extremely valuable methodology for probing the complex microstructure of natural
and artificial materials [1]. A complete analysis of this phenomena involves the
solution of the generalised Bloch-Torrey (BT) equation [2]. This equation describes
the evolution of the transverse magnetisation due to diffusion and flow in the
media, spin-spin relaxation, and the gradient field encoding scheme. The problem
of solving this equation in arbitrary domains is of primary interest when relating
variations in the acquired signals to the underlying structures.

There has been many attempts to solve the BT equation, which can be grouped
into analytical and numerical approaches. The first group comprises solutions
given by mathematical formulae relating the output signal with parameters of
interest. These solutions are obtained by proper manipulation of the mathematical
expressions describing the physical phenomena. Then, different forms of the
solution can be found depending on the mathematical framework used and the
approximations made [1, 3, 4]. These solutions have been shown to be very
important to study the physical basis of experimental results (e.g. [3]), as well
as to perform other mathematical analysis due to their parametric nature [1].
However, since the difficulty of such manipulation increases with the complexity
of the domain, there exist solutions only for simple geometries, as multi-layered
slabs (1D), cylinders (2D), and spheres (3D). This limits the application of these
solutions to arbitrary domains, restricting their usefulness to idealised models. These
disadvantages are addressed by numerical methods. This group is composed by the
entire family of approximations of the true signals obtained by the application of
a numerical algorithm. Such algorithms have the advantage of being unrestricted
to simple geometries. However, they have many disadvantages when compared
to the analytical solutions, such as their non-parametric nature and the intrinsic
approximations and errors associated with them. Although the latter can be reduced
in principle, it comes at the expense of computational effort, which can be
prohibitive.

There exist many numerical methods that have been used to solve the BT
equation explicitly, albeit none of them considers the flow term. This comprises
solutions obtained by the finite difference method [5], the finite volume method [6],
and the finite element (FE) method [7]. The latter is generally preferred owing
to its flexibility for spatially discretising the domain. However, many proposed
solutions based on the FE method rely on strong assumptions (e.g. narrow pulse
limit approximation) that limit their general applicability. Recently, a flexible FE
formulation of the standard BT equation (i.e. without flow and transverse relaxation
terms) has been proposed [8]. There, the authors present a FE approach using
first-order basis functions in space and an explicit second-order approximation in
time, which does not make such constraining approximations. To the best of our
knowledge, this latter paper by Nguyen et al. [8] is the first to do so.

In this paper, we present a numerical FE framework for the solution of the
generalised BT equation. We extend the formulation given in [8] by considering the
flow and relaxation terms, allowing a better representation of the phenomena under
scope. We derive closed-form formulas for all the matrices involved in the numerical
algorithm, which are specially useful to speed-up the computations. Finally, we
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present a second order implicit method for the temporal discretisation. Unlike
explicit schemes, implicit methods are unconditionally stable no matter the time-
step selected [9]. This is crucial for achieving reliable solutions with a minimum
number of iterations. We introduce an implicit scheme to solve the BT equation
with similar computational load as the explicit method used in [8], which makes it
highly competitive in the field.

Notation: In the following, we denote vectors with boldface lower case letters
and matrices with boldface capital letters. We use vec.�/ to refer to the operator
that, given a matrix, returns a vector with the matrix elements stacked columnwise,
taking the columns in order from first to last. We express the Kronecker matrix
product by ˝, and the nth Kronecker product of A with itself by A̋ n. Finally, we
denote the n � n identity matrix as In, and the m � n matrix full of ones as 1m;n.

2 Methods

2.1 Differential Formulation

Let˝ be the domain under analysis, which can be split into L subdomains, such that
˝ D SL

lD1 ˝l. Also, let � e
l be the external boundary of ˝l, and �ln the boundary

between ˝l and ˝n. Then, under generally valid assumptions (such as considering
normal or Fickian diffusion, intermediate layers infinitely thin, incompressible flow,
and absence of susceptibility effects and hardware imperfections; see [2, 4] for a
detailed discussion), the evolution of the complex transverse magnetisation ml.r; t/
in the rotating frame is described by [2, 10]

@ml.r; t/
@t

D r � �Dl.r/rml.r; t/
� � i�B.r; t/ml.r; t/ � 1

Tl
ml.r; t/

� v.r; t/ � rml.r; t/ .r 2 ˝l/;

(1)

subject to the boundary conditions (BCs)

Dl.r/rml.r; t/ � nl.r/ D �ln
�
mn.r; t/ � ml.r; t/

�
.r 2 �ln; 8n/; (2a)

Dl.r/rml.r; t/ � nl.r/ D ��e
l ml.r; t/ .r 2 � e

l /; (2b)

and the initial condition (IC)

ml.r; 0/ D �l.r/; .r 2 ˝l/; (3)

where t 2 Œ0;TE� with TE echo time, � is the gyromagnetic ratio of protons
(2:675 � 108 rad T�1 s�1 for 1H), Dl.r/ is the diffusion (rank-2) tensor, Tl is the
spin-spin relaxation time, v.r; t/ is the velocity field of the spins due to flow of
the medium, nl.r/ is the unitary outward pointing normal to ˝l, �ln (�e

l ) is the
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permeability constant in �ln (� e
l ), and B.r; t/ is the effective magnetic field. In the

following analysis we considered Tl constant in each subdomain ˝l and the same
permeability in both directions of the same membrane, i.e. �ln D �nl.

Equation (1) states that the transverse magnetisation evolves due to diffusion
(first term), encoded through the applied magnetic field (second term), bulk relax-
ation (third term), and flow (last term). The BC (2a) accounts for the creation of the
diffusive flux by the drop in magnetisation between layers. Noting that �ln D �nl,
it is easily seen that it also accounts for the conservation of the magnetisation
flux between adjacent layers. The flux conservation at the external boundary is
considered by Eq. (2b). Finally, Eq. (3) represents the solution of (1) for the initial
state (t D 0 s).

Once the complex magnetisation is computed, the output signal is given by

S D
Z

˝

m.r;TE/ Q�.r/dr; (4)

where Q�.r/ is some pick-up function of the measuring coil or antenna [1].

2.2 Variational Formulation and Spatial Discretisation

The transverse magnetisation is obtained by solving (1)–(3). This problem requires
a solution twice differentiable, thus restricting the solutions space. To relax this
condition, a solution in the weighted residual sense is obtained [11]. This solution
satisfies

@

@t

Z

˝l

v.r/ml.r; t/dr D
Z

˝l

v.r/r � �D.r/rml.r; t/
�
dr � 1

Tl

Z

˝l

v.r/ml.r; t/dr

� i�
Z

˝l

v.r/ml.r; t/B.r; t/dr �
Z

˝l

v.r/v.r; t/ � rml.r; t/dr;

(5)

valid for r 2 ˝l (l D 1; : : : ;L), and for all functions v.r/ in a proper functional
space. The Hilbert-Sovolev space H1.˝l/ of square-integrable functions with
square-integrable derivatives [11] is generally chosen. After using the divergence
theorem in the diffusion term and the BCs, we get

@

@t

Z

˝l

v.r/ml.r;t/dr D �
Z

˝l

rv.r/ � �Dl.r/rml.r; t/
�
dr � 1

Tl

Z

˝l

v.r/ml.r; t/dr

� i�
Z

˝l

v.r/ml.r; t/B.r; t/dr �
Z

˝l

v.r/v.r; t/ � rml.r; t/dr (6)

� �e
l

Z

� e
l

v.r/ml.r; t/dr C
X

n

�ln

Z

�ln

v.r/
�
mn.r; t/ � ml.r; t/

�
dr;
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also known as the variational formulation [11]. The solution under scope needs to
be only one-time differentiable.

In order to obtain a discretisation of (6), it is necessary to find a solution
belonging to Vh, a finite-dimensional subspace of H1.˝l/. Let

˚
' l
1.r/; : : : ; '

l
N.r/

�

be a basis of Vh such that for all g.t/ 2 Vh, g.t/ D PN
iD1 ' l

i.r/�i.t/, with �i.t/ 2 C.
Then, the approximation of the transverse magnetisation m�

l .r; t/ 2 Vh satisfying (6)
is defined as

m�
l .r; t/ D

NX

iD1
' l

i.r/�
l
i.t/: (7)

In the case of choosing the test functions as the basis functions, i.e. v.r/ D ' l
j.r/

(j D 1; : : : ;N), it is possible to obtain (after some algebra)

Ml
@�l

@t
D �

�

Sl C iQl.t/C 1

Tl
Ml C Jl.t/C Fl

�

�l �
X

n

Hln�n; (8)

where

fMlgij , Mij D
Z

˝l

' l
i.r/'

l
j.r/dr; (9a)

fSlgij , Sij D
Z

˝l

r' l
j.r/

TDl.r/r' l
i.r/dr; (9b)

fQl.t/gij , Qij.t/ D �

Z

˝l

' l
i.r/'

l
j.r/B.r; t/dr; (9c)

fJl.t/gij , Jij.t/ D
Z

˝l

' l
j.r/ v.r; t/ � r' l

i.r/dr; (9d)

fFlgij , Fij D �e
l

Z

� e
l

' l
j.r/'

l
i.r/dr; (9e)

fHlngij , Hij D �ln

Z

�ln

' l
j.r/

�
' l

i.r/� 'n
i .r/

�
dr: (9f)

Therefore, the problem turned out to find �.TE/ satisfying (8), for which (9)
needs to be solved.
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2.3 Formulation of Element Matrices for Polynomial Basis
Functions

To proceed with the spatial discretisation, the volume and area coordinate systems
were used. Basically, they are coordinate systems in which the location of a point
of an element (triangle or tetrahedron) is specified as the center of mass. These
coordinate systems allow to compute analytically (9) considering polynomial basis
functions over a tetrahedral discretisation of the domain. We refer to [11] for further
details related to them.

It is now possible to obtain numerical representations of (9a)–(9f) using the
volume and area coordinate systems. To this end, linear basis functions were consid-
ered, achieving first order FE formulation. Since these basis functions are defined for
each tetrahedron (or triangle), expressions of (9a)–(9f) valid for each element were
derived, usually called elemental matrices, and denoted by the sub/superscript ‘e’.
The final matrices were then obtained by assembling the elemental matrices [11].

Once the basis functions are chosen, the computation of Me is straightforward.
To discretise (9b), it is useful to note that the gradient of any function f .r/ can be
expressed in the volumetric coordinate system as rf .r/ D 1

6V �r� f .�/, where �

is the volume coordinates vector, and � is a 3 � 4 constant matrix defined by the
nodes of the corresponding tetrahedron [11]. Then, the elementary stiffness matrix
is found to be

Se D 1

6Ve

Z

!n

r�'.�/
T�TD� r�'.�/d!n; (10)

where r�'.�/ D �r�'1.�/; : : : ;r�'N.�/
�
. If the diffusion tensor is assumed

constant within the element, it is possible to extract it (as well as �) outside
the integral. This allows to separate the elementary matrix as the product of a
coefficient (i.e. constant) matrix and a parametric matrix dependent on the diffusion
tensor elements. To this end, the vec.�/ operator is utilised. Employing the identity
vec .ABC/ D �

CT ˝ A
�

vec.B/ [12] on (10) leads to

vec .Se/ D 1

6Ve
S

T
	
�˝2


T
vec.D/; (11)

where

S D
Z

!n

�r�'.�/
�˝2

d!n; (12)

is a constant matrix once the basis functions are selected. In the particular case of
choosing first order basis functions, r�'.�/ D I4, resulting in S D I16=6.

To obtain the representation of Qe.t/, it is first needed to select the spatial
profile of the magnetic field B.r; t/. For simplicity, we considered the linear
gradient field, in which case B.r; t/ D g.t/ � r, with g.t/ being the effective
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applied gradient field, which can vary over time. Examples of linear gradients are
the single- and double-pulse gradient spin-echo sequences (sPGSE and dPGSE,
respectively) [3, 4]. In this case, after some algebraic manipulations, we obtained

Qe
ij.t/ D g.t/ �

	
Q.1/

ij ;Q
.2/
ij ;Q

.3/
ij



, where g.t/ D �

gx.t/; gy.t/; gz.t/
�T

. In matrix

notation, Qe.t/ D gx.t/Q.1/
e C gy.t/Q.2/

e C gz.t/Q.3/
e ; where Q.k/

e (k D 1; 2; 3) are
matrices defined by

h
vec

	
Q.1/

e



; vec

	
Q.2/

e



; vec

	
Q.3/

e


iT D 6�Ve
�
��T

��1
�

�
6VeQlin � a vec .Me/T

�
;

(13)

where Qlin D R
!n

�
	
'.�/T


˝2
d!n; and '.�/ D �

'1.�/; : : : ; 'N.�/
�T

.

Computing (9d) requires adopting a model for the velocity field. Assuming
v.r; t/ D v.r/h.t/, it is found

Je D h.t/
Z

!

r'.r/Tv.r/'.r/Td!; (14)

which can be further simplified in the particular case of considering constant
velocity in each element.

The computation of Fe
l was straightforward when using the area coordinate

system. Finally, to compute (9f), a discontinuous FE approach was considered.
Under this method, the solution is allowed to be discontinuous at the compartment
interfaces but not inside each region [8]. The discretisation was then obtained
by doubling the nodes at the interfaces, each of them belonging to each region.
Corresponding triangles share the basis functions (but not the nodes), hence He was
easily found integrating, as done for Fe

l .

2.4 Temporal Discretisation

Once the spatial discretisation is obtained, Eq. (8) needs to be solved for all˝l (l D
1; : : : ;L). For simplicity, the L systems of differential equations are merged into a
single one. The global matrices involved in (8) are then defined as the assemble of
the corresponding matrices in any region. Then, Eq. (8) could be expressed as

M
@�.t/

@t
D ��� .t/C iQ.t/

�
�.t/; (15)

where � is the real part of the right term of the assemble, comprising the
matrices S, M, J, F, and H, and the lack of subindex refers to the global matrix.
Most of the matrices were block diagonal, as seen from their definitions in (9). This
was extremely useful when computing inverse matrices efficiently.
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Next, we present an approach to obtain �.TE/ from (15), highlighting its pros and
cons. Once �.TE/ is obtained, the corresponding signal is found through (4) and (7),
i.e.

S D
Z

˝

Q�.r/m.r;TE/dr

�
X

e

�Z

!e

Q�.r/'e.r/dr
�T

�e.TE/ D
X

e

yT
e �e.TE/ D yT�.TE/;

(16)

where ye D R
!e

Q�.r/'e.r/dr.
As in [8], the solution vector in (15) is split into its real and imaginary parts,

resulting in the following the coupled system of equations

(
M @�R.t/

@t D �� .t/�R.t/C Q.t/�I.t/
M @�I.t/

@t D �� .t/�I.t/ � Q.t/�R.t/
; (17)

where �.t/ D �R.t/Ci�I.t/. To solve this system, the implicit trapezoidal method [9]
was chosen. This is a second-order scheme characterised for being the only A-
stable multistep method. Since this is an implicit method, it will generally demand
a larger computational cost. However, in the sequel, we show that this problem can
be solved. Under this scheme, Eq. (17) takes the form

8
<

:

�nC1
R D �n

R C 	t
2

	
� Q� nC1�nC1

R C QQnC1�nC1
I � Q� n�n

R C QQn�n
I




�nC1
I D �n

I C 	t
2

	
� Q� nC1�nC1

I � QQnC1�nC1
R � Q� n�n

I � QQn�n
R


 ; (18)

where 	t is the time-step length and the tilde indicates premultiplication of the
corresponding matrix by M�1. Some tedious manipulations yield

(
�nC1

R D �
IN C h2R2n

��1 	
h .Ln C RnPn/�n

I C �
Pn � h2R2n

�
�n

R




�nC1
I D �hRn�nC1

R � hLn�n
R C Pn�n

I

; (19)

where h D 	t=2, Ln D .M C h� nC1/�1 Qn, Rn D .M C h� nC1/�1 QnC1, and
Pn D .M C h� nC1/�1 .M � h� n/. From (19), two inverse matrices need to be
computed, instead of one as required by any other explicit method. However, since
the absolute values of the eigenvalues of h2R2n are less than unity, it is possible to
write [12]

�
IN C h2R2n

��1 D
1X

kD0
.�1/k .hRn/

2k � IN � .hRn/
2 C .hRn/

4 ; (20)

which reduces the needed inversion to one.
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The proposed numerical scheme presents some advantages when compared to the
Runge-Kutta-Chebyshev algorithm [8]. First, the selected method is A-stable, and
therefore stable irrespectively of the selected temporal discretisation step. Second, it
only needs one matrix inversion, which in case of considering constant flow, it only
needs to be computed once.

3 Numerical Results

In this section we present two examples in which the capabilities of the numerical
method were tested. The first was intended to show how the developed method
performed in situations where the analytical solution was available [4], whereas
the second presented a real application based on experimental data [3].

3.1 Example 1: Bi-Layered Sphere

We simulated a sPGSE sequence (ı D 	 D 10ms) in a bi-layered spherical domain
with radii r1;2 D Œ2:5; 5� 
m, isotropic diffusivities D1;2 D Œ2; 2� � 10�9 m2/s,
innermost (outermost) permeability �12 D 10�5 (�e

2 D 10�9), and bulk relaxivities
T1;2 D Œ0:1; 0:1� s. This situation represents a typical scenario when analysing
biological samples, as cells or axons [4].

To account for the errors, we computed the relative error, defined as

Error D max
g

� kSa.g/� Sn.g/k
kSa.g/k

�

; (21)

where Sa and Sn are the analytical and numerical solutions, respectively, and jgj 2
Œ0; 1�T/m. In Fig. 1a we show the relative error for different model discretisations
(obtained using the ISO2Mesh 2013 toolbox [13]) as a function of the mesh size.
We considered the second order temporal scheme with 100 time steps. It is seen that
the numerical approach gives accurate results even using a coarse discretisation.

One of the main advantages of the presented framework is the possibility to use
coarser temporal discretisations without turning the scheme unstable. To illustrate
this, we considered a spatial discretisation consisting in 11,464 elements (2198
nodes) and solved the aforementioned problem for varying time-steps. The purpose
of this experiment was to test the convergence rate of the developed second order
algorithm, and compare it with a similarly obtained first order implicit scheme. The
small number of nodes allowed us to use the graphical processing unit (GPU) to
speed-up the simulations. Although general-purpose GPUs’ memory is limited to
1–2 Gb, the acceleration they provide turns them into a preferable device where to
perform demanding computational simulations.
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Fig. 1 Performance of the
finite element approximation
for the bi-layered spherical
domain. (a) Relative error as
a function of the average
element side length. The
non-linearity appreciated in
the curve is due to the
automatic generation of
tetrahedral meshes using
ISO2Mesh [13]. (b) Relative
error as a function of the
number of time-steps. Results
are shown for both first and
second order implicit
schemes. The difference in
the convergence rate is clearly
exposed

In Fig. 1b we show the relative error as a function of the temporal discretisation
for both backward Euler (first order) and trapezoidal (second order) implicit
schemes. The advantages of the implicit nature of both algorithms is clearly
appreciated, as well as the advantage of the second order method over the backward
Euler approach.

3.2 Example 2: Cylinder with dPGSE Sequence

To show the versatility of the numerical framework, we simulated the first exper-
iment reported in [3]. It consists in the application of a dPGSE sequence (ı1 D
ı2 D 2ms, 	1 D 	2 D 150ms, tm D 6 and 30ms, both gradients applied in
the x direction) perpendicular to impermeable cylindrical microcapillaries of inner
diameter 29 ˙ 1
m, oriented in the z direction, and centred in the origin. This
experiment was carried out to study the echo attenuation for different mixing times
as a function of the q value, defined as q D .2�/�1�ıg. We refer to [3] for more
details.
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Fig. 2 Signal intensity as a function of the q value. Different curves correspond to different mixing
times. The experimental data points (extracted from [3]) are shown with symbols, whereas the
curves obtained by numerical simulations are shown with lines. Positive values are depicted with
continuous lines and empty markers, and negative values are shown with dotted lines and filled
markers

We considered the first order FEM with 1050 nodes. We refined the temporal
discretisation until no more improvement was obtained, resulting in 10,000 time-
steps for this particular problem. In Fig. 2 we show both experimental (markers) and
numerical (lines) results. There we plotted the acquired signal as a function of the q
value for both mixing times. It can be seen that the signal can take negative values,
in accordance with previous findings [3]. There is a very close agreement between
the experimental results and the numerical simulations, even using a coarse mesh,
confirming their validity for real-scenario experiments.

4 Discussion and Conclusions

We presented a FE formulation for solving the generalised BT equation in general
domains. This method allows to simulate MR signals in realistic scenarios, including
arbitrary geometries, physical properties of the material (diffusivities, permeabili-
ties, relaxivities, and flow), and MR settings (sequences, field, and voxel volume).
We obtained expressions for second order discretisations in the temporal domain.
These expressions were flexible enough to work with arbitrary discretisations, not
being restricted to symmetric meshes nor to specific step lengths to guarantee
numerical stability. We showed its feasibility and flexibility to solve real problems
achieving small relative errors even using coarse discretisations.

Unlike existing approaches, we obtained ad hoc formulae for computing the
matrices involved in the numerical algorithm. This was shown to be helpful for
avoiding errors due to numerical integration, as well as to increase the speed-up.
As in [4] (and differently from [8]) we considered mixed BCs imposed on the
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boundaries of the simulated structures. Whether these conditions are more suitable
than the periodic BCs considered in [8] needs to be further explored.

One of the major results was a second order implicit numerical algorithm for
solving the temporal discretisation of the BT equation. Implicit methods have
the advantage (over explicit methods) of presenting stability properties that allow
to choose coarser discretisations without compromising the validity of the result.
However, implicit methods are generally discarded for solving large problems due
to their computational load. In this paper, we adapted an implicit method for solving
the temporal discretisation with similar requirements than explicit methods, hence
drastically reducing the simulation time. This was highly efficient when compared to
explicit methods, which require really small step-sizes to achieve stable results [8].

Acknowledgements The work has been supported by the European Commission FP7 project
VPH-DARE@IT (FP7-ICT-2011-9-601055) and the project OCEAN (EP/M006328/1) funded by
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Super-Resolution Reconstruction
of Diffusion-Weighted Images Using 4D
Low-Rank and Total Variation

Feng Shi, Jian Cheng, Li Wang, Pew-Thian Yap, and Dinggang Shen

Abstract Diffusion-weighted imaging (DWI) provides invaluable information in
white matter microstructure and is widely applied in neurological applications.
However, DWI is largely limited by its relatively low spatial resolution. In this
paper, we propose an image post-processing method, referred to as super-resolution
reconstruction, to estimate a high spatial resolution DWI from the input low-
resolution DWI, e.g., at a factor of 2. Instead of requiring specially designed DWI
acquisition of multiple shifted or orthogonal scans, our method needs only a single
DWI scan. To do that, we propose to model both the blurring and downsampling
effects in the image degradation process where the low-resolution image is observed
from the latent high-resolution image, and recover the latent high-resolution image
with the help of two regularizations. The first regularization is four-dimensional
(4D) low-rank, proposed to gather self-similarity information from both the spatial
domain and the diffusion domain of 4D DWI. The second regularization is total
variation, proposed to depress noise and preserve local structures such as edges in
the image recovery process. Extensive experiments were performed on 20 subjects,
and results show that the proposed method is able to recover the fine details of white
matter structures, and outperform other approaches such as interpolation methods,
non-local means based upsampling, and total variation based upsampling.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a key imaging modality
for non-invasive and in vivo characterization of brain white matter microstructure.
DWI has been used in early detection of stroke and characterization of neurological
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disorders, such as multiple sclerosis and epilepsy, where abnormal diffusion changes
on specific white matter regions could be useful clues for disease diagnosis
[1–5]. However, DWI is largely limited by its relatively low spatial resolution.
For example, the resolution of current typical DWI data is 2 � 2 � 2 mm3, which
means its voxel is eight times larger than that in the standard T1-weighted structural
data (1 �1 �1 mm3). It has been reported that the scan needs to be repeated 64
times for averaging in order to increase the DWI resolution from 2 � 2 � 2 mm3 to
1 � 1 � 1 mm3 while keeping the similar signal-to-noise ratio [6].

Besides improving MRI scanner hardware to higher magnetic fields or using
stronger gradients, image post-processing methods are considered as a promising
alternative for resolution enhancement. Interpolation methods (e.g., with nearest
neighbor or spline) are widely used to increase the resolution, but their results
often show blurry edges and blocking artifacts. Recently, super-resolution recon-
struction (SRR) methods attract increasing research attention, aiming to estimate
a high-resolution image from one or more low-resolution inputs [7]. The term
super-resolution refers to the consideration of image degradation process where
the underlying high-resolution image is translated, blurred, and downsampled to
be observed as the low-resolution image. For example, Yuan et al. [8] proposed to
minimize total variation (TV) to regularize the recovery of natural images. Manjón
et al. [9] used non-local means (NLM) to recover the high-frequency information in
SRR of structural MR images on a patch-by-patch basis. Basically, NLM recovers a
voxel using a weighted mean of all other similar voxels, with the weights calculated
according to the similarity of patches around voxels.

There are only a handful of studies on SRR methods for DWI. In these methods,
multiple shifted or orthogonal DWI scans were acquired and then fused into a
high-resolution output [10, 11]. However, their methods are hampered for general
applications due to two reasons. First, a specially designed image acquisition
scheme is needed in these methods to acquire multiple image scans, with longer
scanning time. Second, subject motion and eddy current effects in different scans
could largely affect the final result. Some other methods attempted to learn the
mapping from low resolution to high resolution through training sets using random
forests [12] or sparse representation [13]. Here, we focus on the SRR problem
for single input image with no training sets. Currently, existing single image SRR
methods are generally proposed for 3D structural MR images, while not developed
and evaluated in DWI [8, 9, 14, 15]. Note that diffusion-weighted images are in
four-dimensional (4D) space, and more sensitive to noise, especially for the images
with large diffusion factor b-value. Directly applying them to DWI may fail or
compromise the performance.

In this paper, we proposed a novel SRR algorithm for DWI from single scan.
We aim to increase the resolution of input low-resolution DWI to a high-resolution
DWI, e.g., at the factor of 2. Our contributions are threefold: (1) we model both
the blurring and downsampling effects in the image degradation process to recover
the latent high-resolution image; (2) we propose a novel 4D low-rank regularization
to gather self-similarity information from both the spatial domain and the diffusion
domain of 4D DWI; (3) we employ total variation to further preserve local structures
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such as edges from noise. Extensive experiments were performed on 20 real
subjects, by comparing the proposed method with the interpolation methods, NLM-
based up-sampling, and also TV-based up-sampling method.

2 Method

We introduce below the proposed method for super-resolution reconstruction of
diffusion-weighted images. First, an observation model is provided to formulate
the reconstruction as a minimization problem for the input low-resolution image
and to-be-recovered high-resolution image. Second, we propose a novel low-rank
approximation in 4D space on DWI, for helping retrieve the remote self-similarity
information. Third, total variation is adopted to further preserve local structures.
Finally, we summarize the total cost function and also provide an efficient optimiza-
tion scheme.

2.1 Observation Model

DWI requires the acquisition of a number of diffusion-sensitized images to probe
the diffusion of water molecules in various directions and scales. Denote the latent
4D high-resolution DWI as X, which is composed of N 3D diffusion volumesn
Xn

ˇ
ˇ
ˇn D 1; 2; : : :N

o
. Similarly, we denote the observed low-resolution 4D image

T containing 3D diffusion volumes fTng. Note that T is acquired from a single scan.
In image acquisition, a degradation process is involved in to obtain a degraded low-
resolution image from the latent high-resolution image:

Tn D DSXn C z (1)

where D is a 3D downsampling operator, S is a 3D blurring operator, and z represents
the observation noise. In the spirit of super-resolution reconstruction, we estimate
the latent high-resolution 4D image X by minimizing the following cost function:

min
X

XN

nD1kDSXn � Tnk2 C �<.X/ (2)

where the first term is a data fidelity term used for penalizing the difference between
the degraded high-resolution image X and the observed low-resolution image T.
The second term is a regularization term introducing prior information to help solve
the ill-posed problem. Weight � balances the contributions of the fidelity term and
regularization term. Next we introduce two regularization terms, 4D low-rank and
total variation, respectively.
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2.2 4D Low-Rank Regularization

Rank is a measure of matrix complexity, corresponding to the number of linearly
independent rows or columns of the matrix, or the number of nonzero singular
values [16]. In natural and medical images, self-similarity is widely observed, where
many rows or columns in the matrix could be linearly represented by other rows
or columns, showing redundant information. This gives us the idea that diffusion
weighted images could also be closely approximated by their low-rank components.

Here we use low rank as a regularization term to help retrieve useful information
from all image regions. To compute the rank for a 4D image X, we first unfold it
into a 2D matrix along each dimension [16]. Specifically, suppose the size of X is
V1�V2�V3�N, we unfold it into four 2D matrices

˚
X.i/; i D 1; 2; 3; 4

�
with size of

V1�.V2 � V3 � N/, V2�.V1 � V3 � N/, V3�.V1 � V2 � N/, and N�.V1 � V2 � V3/,
where X(i) means unfold X along dimension i. Then we compute the sum of the
singular values in each matrix for their trace norms kX(i)ktr . Finally, the rank of X is
approximated as the combination of trace norms of all unfolded matrices:

<rank.X/ D
X4

iD1˛i




X.i/






tr
(3)

where f˛ig are parameters satisfying ˛i � 0 and
X4

iD1˛i D 1. By minimizing this
term, we could obtain a low-rank approximation of X. Note that the low rank is
applied in 4D image, which means we could retrieve useful information for the
reconstruction task from both spatial domain and diffusion domain.

2.3 Total Variation Regularization

Total variation is defined as integrals of absolute gradient of the signal [14]. For a
4D diffusion-weighted image X:

<tv.X/ D
XN

nD1

Z

jrXnjdxdydz (4)

where the gradient operator is performed in 3D spatial space. Here we use TV in 3D
space instead of 4D space based on the notion that there is no explicit neighborhood
consistency across different diffusion volumes and thus TV in diffusion domain
may not be effective. In images, the latent signals without excessive and possibly
spurious details generally have low total variation. Accordingly, minimizing the
total variation of the signal could generate a close match to the original signal,
and removes unwanted noise whilst preserving important details such as edges. In
this work, minimizing total variation will reinforce local spatial consistency and
preserve edges in the recovered high-resolution image.
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2.4 Cost Function and Optimization

The proposed super-resolution reconstruction is thus formulated as below:

min
X

XN

nD1 kDSXn � Tnk
2

C �rank<rank.X/C �tv

XN

nD1<tv .Xk/ (5)

We employ the alternating direction method of multipliers (ADMM) algorithm
to minimize the cost function in Eq. (5). ADMM has been proven efficient for
solving optimization problems with multiple non-smooth terms [17]. Briefly, we
first introduce redundant variables fMig4iD1 with equality constraints X.i/ D Mi.i/,
and then use Lagrangian dual variables fUig4iD1 to integrate the equality constraints
into the cost function:

minX;fMig4iD1; fUig4iD1

XN

nD1kDSXn � Tnk2 C �rank

X4

iD1˛i




Mi.i/






tr

C
X4

iD1
�

2

	
kX � Mi C Uik2 � kUik2



C �tv

XN

nD1

Z

jrXnjdxdydz
(6)

We break the cost function into subproblems for X, M, and U, and iteratively
update them. The optimization scheme is summarized in Algorithm 1 as below:

Algorithm 1 Super-Resolution Reconstruction of Diffusion Weighted Images
Input: Low-resolution 4D diffusion-weighted image T;
Initialize the desired high-resolution image X(0) by upsampling T with nearest
neighbor interpolation. Set redundant variables M.0/

i D 0, U.0/
i D 0, i D 1; 2; 3,4;

For each iteration k,
Update Xk by using gradient descent:

arg min
X

XN

nD1





DSX.k�1/

n �Tn







2C
X4

iD1
�

2






X.k�1/ � M.k�1/

i C U.k�1/
i







2

C�tv

XN

nD1

Z ˇ
ˇ
ˇrX.k�1/

n

ˇ
ˇ
ˇdxdydz .7/

Update M(k)
i by using Singular Value Thresholding (SVT) [18]:

M.k/
i D foldi

h
SVT�rank˛i=�

	
X.k/.i/ C U.k�1/

i.i/


i
.8/

with foldi
�
Mi.i/

� D Mi

Update U.k/
i by W U.k/

i D U.k�1/
i C

	
X.k/ � M.k/

i



.9/

Until difference between iterations



Xk � Xk�1

 = kTk � ";

End
Output: Reconstructed high-resolution 4D diffusion-weighted image X.
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3 Experiments

3.1 Data

The resolution of routine DWI images is of 2–3 mm. The goal of experiments is
to evaluate the resolution enhancement performance of the proposed method on
this resolution level. To make the evaluation in a controlled manner, as a general
approach in super-resolution studies [2–4, 6], we simulate a group of data with such
resolution. In this way, the ground truth data could be used to compare with the
recovered results for quantitative performance evaluation.

We used a public dataset from WU-Minn Human Connectome Project (HCP)
consortium [19, 20], where high-resolution images were acquired by using novel
gradient hardware on a 3T Siemens Connectome scanner. We randomly selected
20 subjects (nine males and 11 females) with the age ranges from 22 to 30 years.
Diffusion-weighted image were obtained for 145 axial slices with resolution of
1.25 � 1.25 � 1.25 mm3. A total of 288 diffusion volumes were acquired, in which
18 without diffusion gradient (b D 0), 90 at b D 1000 s/mm2, 90 at b D 2000 s/mm2,
and 90 at b D 3000 s/mm2.

To evaluate the resolution recovery performance, we use HCP data to simulate a
group of routine-resolution DWI. To do that, we apply blurring and downsampling
operators to the original high-resolution images. Specifically, a Gaussian kernel
with standard deviation of one voxel was performed to simulate blurring effect.
Downsampling was carried out by averaging every eight voxels in an image to
reduce the resolution at a factor of 2. Finally, we obtain DWI with resolution
of 2.5 � 2.5 � 2.5 mm3, which is at the similar level with current typical DWI
resolution.

3.2 Experimental Setting

Parameters were defined experimentally. We set ˛1 D ˛2 D ˛3 D ˛4 D 1=4,
�rank D 0:01, �TV D 0:01. The program stopped when the difference in iterations
was less than " D 1e � 5.

To evaluate the image recovery performance, we employ two metrics to compare
the recovered high-resolution image to the original image, namely the peak signal-
to-noise ratio (PSNR) and the structural similarity (SSIM) [21]. PSNR is measured
in decibels (dB), and ranges from 0 to infinity. Higher PSNR generally means
better reconstruction performance. SSIM ranges from 0 to 1, and 1 means perfect
recovery.
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3.3 Results

Experiments were performed on all 20 HCP subjects. We quantitatively measured
the performance of the proposed method by comparing the reconstruction results
with the original high-resolution images. The performance was further compared
with other four methods, including nearest neighbor interpolation (NN), spline
interpolation (Spline), non-local means upsampling (NLM), and total variation
based upsampling (TV). Due to the availability of NLM implementation on 3D
images [9], we run it on each diffusion volume to form the 4D output. TV was
implemented through the proposed method by setting �rank D 0.

Figure 1 demonstrates representative reconstruction results of a subject, where
coronal views of DWI with different gradients are shown for b D 0, 1000, 2000, and
3000, respectively. It can be observed that the results of NN, Spline, and NLM
show severe blurring artifacts. TV shows deblurred results while the results of
the proposed method show best signal contrast and preserve most fine structural
details.

We then estimated diffusion parameters using diffusion tensor model from
the reconstructed multi-shell data (i.e., multiple b-values). Fractional anisotropy
(FA) maps are shown in the top row of Fig. 2. Close-up views of three selected
regions are also color-coded and presented for better visualization. As pointed by
yellow arrows, the top row shows bilateral cingulum appearing as the symmetric
red dots on the top of genu of the corpus callosum. The middle row shows

Fig. 1 Reconstructed DWI of a typical subject using five different methods. PSNR values were
provided, where higher PSNR indicating better reconstruction results
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Fig. 2 Illustration of FA maps of a typical subject, as well as close-up views of color-coded FA
maps in three brain regions. Red indicates high FA value, and blue indicates low FA value

the fine folding of hippocampus layers, and the bottom row shows small white
matter structures. The proposed method outperforms other comparison methods
with best reconstruction results in preserving both FA magnitude and white matter
shapes.

Quantitative results of DWI reconstructions and parameter maps on 20 HCP
subjects are shown in Fig. 3. Both PSNR and SSIM values are provided for
showing reconstruction performances on DWI with different gradients (left panel)
and diffusion measures (right panel) such as FA, mean diffusivity (MD), axial
diffusivity (AD) and radial diffusivity (RD). Similar to the observations from Figs. 1
and 2, the proposed method achieved significant higher PSNR than the comparison
methods in most of measures.

We further performed a streamline fiber tractography on the estimated diffusion
tensor parameters of these five reconstruction results using inhouse software, with
minimal seed-point FA of 0.3, minimal allowed FA of 0.25, maximal turning angle
of 45ı, minimal fiber length of 20 mm, and maximal fiber length of 300 mm. Here
one fiber orientation was estimated for each voxel. Genu and corticospinal tract
(CST) were used as regions of interest (ROIs), respectively. Results in Fig. 4 show
that the proposed method best preserves the fiber tracts that are the closest to those
from the original image. Less or excessive fiber tracts could be observed on results
from other methods.
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Fig. 3 Grouped boxplots of PSNR (top) and SSIM (bottom) results in recovering 20 HCP subjects
using five different methods. Asterisk indicates the proposed method significantly outperforms the
comparison methods (p< 0.01 in two-sample t-tests)

Fig. 4 Illustration of fiber tracking results from original image and five reconstruction methods.
Gene (left panel) and CST (right panel) were used as ROIs, shown as orange rectangles in the
results of original images. Only the fibers pass through ROIs are shown. Yellow arrows indicate the
fiber tracts best preserved by the proposed method

4 Conclusion

We have presented a novel SRR method for 4D DWI from single scan. We
sufficiently utilized the self-similarity of DWI in both spatial and diffusion domains,
in terms of 4D low-rank and total variation regularizations in the model based
resolution recovery. Comprehensive experiments were performed on 20 HCP
subjects. NN, Spline, and NLM show inferior performance, which may be because
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the image degradation is not explicitly modeled in these methods. The proposed
method has better performance in recovering both white mater properties and fiber
tracts than that of TV, which confirms the usefulness of the inclusion of 4D low-rank
in image reconstruction. In future work, we intend to acquire paired low- and high-
resolution images from same subjects to further evaluate the proposed method, and
further improve the performance by considering more factors such as the influence
of diffusion gradient orientations.

References

1. Sundgren, P., Dong, Q., Gomez-Hassan, D., Mukherji, S., Maly, P., Welsh, R.: Diffusion tensor
imaging of the brain: review of clinical applications. Neuroradiology 46, 339–350 (2004)

2. Chilla, G.S., Tan, C.H., Xu, C., Poh, C.L.: Diffusion weighted magnetic resonance imaging
and its recent trend—a survey. Quant. Imaging Med. Surg. 5, 407 (2015)

3. Wee, C.-Y., Yap, P.-T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A.,
Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of
MCI patients. Neuroimage 54, 1812–1822 (2011)

4. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer,
K.A., Wang, L., Shen, D.: Identification of MCI individuals using structural and functional
connectivity networks. Neuroimage 59, 2045–2056 (2012)

5. Shi, F., Yap, P.-T., Gao, W., Lin, W., Gilmore, J.H., Shen, D.: Altered structural connectivity
in neonates at genetic risk for schizophrenia: a combined study using morphological and white
matter networks. Neuroimage 62, 1622–1633 (2012)

6. Brown, R.W., Cheng, Y.-C.N., Haacke, E.M., Thompson, M.R., Venkatesan, R.: Magnetic
Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (2014)

7. Van Reeth, E., Tham, I.W., Tan, C.H., Poh, C.L.: Super-resolution in magnetic resonance
imaging: a review. Concepts Magn. Reson. Part A 40, 306–325 (2012)

8. Yuan, Q., Zhang, L., Shen, H.: Regional spatially adaptive total variation super-resolution with
spatial information filtering and clustering. IEEE Trans. Image Process. 22, 2327–2342 (2013)

9. Manjón, J.V., Coupé, P., Buades, A., Fonov, V., Louis Collins, D., Robles, M.: Non-local MRI
upsampling. Med. Image Anal. 14, 784–792 (2010)

10. Scherrer, B., Gholipour, A., Warfield, S.K.: Super-resolution reconstruction to increase the
spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med.
Image Anal. 16, 1465–1476 (2012)

11. Ning, L., Setsompop, K., Michailovich, O., Makris, N., Westin, C.-F., Rathi, Y.: A compressed-
sensing approach for super-resolution reconstruction of diffusion MRI. In: Information
Processing in Medical Imaging, pp. 57–68. Springer

12. Alexander, D.C., Zikic, D., Zhang, J., Zhang, H., Criminisi, A.: Image quality transfer via
random forest regression: applications in diffusion MRI. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2014, pp. 225–232. Springer (2014)

13. Tarquino, J., Rueda, A., Romero, E.: Shearlet-based sparse representation for super-resolution
in diffusion weighted imaging (DWI). In: 2014 IEEE International Conference on Image
Processing (ICIP), pp. 3897–3900. IEEE (2014)

14. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Physica D. Nonlinear Phenomena 60, 259–268 (1992)

15. Shi, F., Cheng, J., Wang, L., Yap, P.-T., Shen, D.: LRTV: MR image super-resolution with low-
rank and total variation regularizations. IEEE Trans. Med. Imaging 34(12), 2459–2466 (2015).
doi:10.1109/TMI.2015.2437894

http://dx.doi.org/10.1109/TMI.2015.2437894


Super-Resolution Reconstruction of Diffusion-Weighted Images Using 4D. . . 25

16. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in
visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013)

17. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations Trends Mach. Learn.
3, 1–122 (2011)

18. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix comple-
tion. SIAM J. Optim. 20, 1956–1982 (2010)

19. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Con-
sortium, W.-M.H.: The WU-Minn human connectome project: an overview. Neuroimage 80,
62–79 (2013)

20. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser,
M.F., Hernandez, M., Sapiro, G., Jenkinson, M.: Advances in diffusion MRI acquisition and
processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013)

21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)



Holistic Image Reconstruction
for Diffusion MRI
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Abstract Diffusion MRI provides unique information on the microarchitecture of
biological tissues. One of the major challenges is finding a balance between image
resolution, acquisition duration, noise level and image artifacts. Recent methods
tackle this challenge by performing super-resolution reconstruction in image space
or in diffusion space, regularization of the image data or of postprocessed data (such
as the orientation distribution function, ODF) along different dimensions, and/or
impose data-consistency in the original acquisition space. Each of these techniques
has its own advantages; however, it is rare that even a few of them are combined.
Here we present a holistic framework for diffusion MRI reconstruction that allows
combining the advantages of all these techniques in a single reconstruction step. In
proof-of-concept experiments, we demonstrate super-resolution on HARDI shells
and in image space, regularization of the ODF and of the images in spatial
and angular dimensions, and data consistency in the original acquisition space.
Reconstruction quality is superior to standard reconstruction, demonstrating the
feasibility of combining advanced techniques into one step.
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1 Introduction

Among the main problems in diffusion MRI are scan duration limits (thus a limited
amount of data), image resolution limits, noise, and image artifacts. In recent
years, a host of methods [1–9] have been developed to tackle these issues. These
methods use (simplified) assumptions about the data, such as specific types of
smoothness / transform-domain sparsity / low-rankedness, specific types of data
similarity between different coordinates in the 3-D space of diffusion directions
and weightings (q-space), accurate or simplified image acquisition models, in some
cases combined with a tailored acquisition strategy.

Super-resolution in diffusion MRI allows increasing the resolution beyond
the hardware limits. In the original super-resolution techniques for diffusion
MRI [10, 11], there is no coupling of different q-space coordinates, i.e. each q-space
coordinate is treated independently without taking advantage of common structure.
It is performed from image space to image space, independently of the image
reconstruction step. Recent methods [12–14] couple q-space coordinates and use
the original data-acquisition space but regularize only in the reconstruction space—
not in additional spaces.

The proposed method allows leveraging complementary information by coupling
in q-space, while imposing data consistency in the original space and balancing
regularization in several arbitrary representations simultaneously.

The rest of the paper is organized as follows. In Sect. 2.1, we describe the
data formation model. In Sect. 2.2, we introduce holistic reconstruction (raw data
consistency, several regularization spaces, super-resolution reconstruction in image
and diffusion space) and give details on sampling in acquisition and reconstruction
spaces, the regularizers, the optimization procedure and its implementation. We
show results of holistic super-resolution reconstruction after artificial subsampling
of Human Connectome Project data in Sect. 3 and conclude with a discussion in
Sect. 4.

2 Methods

2.1 Image Acquisition Model

The image is modeled on a domain ˝ � R3, where ˝ � R3 represents the domain
in image space, and dimensions four to six of˝ �R3 represent the space consisting
of three-dimensional diffusion directions and diffusion weightings (q-space) for
which discrete samples are acquired. A complex-valued diffusion MRI image � is a
mapping

� W ˝ � R
3 ! C given by (1)

.y; q/ 7! �.y; q/ D r.y; q/ exp.i'.r; q//; (2)
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where r is the image magnitude and ' is the image phase at spatial coordinate y 2 ˝
and q-space coordinate q 2 R3. Magnitude r and phase ' are mappings

r W ˝ � R
3 ! R; (3)

' W ˝ � R
3 ! S1: (4)

These images are not acquired directly. Acquisition is performed in k-space (more
precisely: in the joint six-dimensional .k; q/-space), after Fourier transform F1;2
along the spatial dimensions 1 and 2 of ˝ . When sampled at N data points, the
resulting data d 2 CN forms from r and ' according to

d D T.r; '/C "; (5)

where " is complex-valued i.i.d. Gaussian noise (thermal noise) and T is the
encoding operator. The operator T composes r and ' pointwise into a complex-
valued image via C.r; '/ D r ˇ exp.i'/ where “ˇ” is the pointwise product,
followed by a Fourier transform into .k; q/-space and discrete sampling S:

T.r; '/ D SF1;2C.r; '/; with (6)

S W R3 � R
3 ! C

N given by (7)

.S O�/n D
Z

Œ�0:5;0:5�3
O�.kn C v; qn/ dv; (8)

where the ..kn; qn//n2f1;:::;Ng are the sampling points in .k; q/-space. Details can be
found in [15, 16].

2.2 Holistic Reconstruction

Our goal is to reconstruct the image magnitude r and phase ' from the acquired
data d. In order to improve image quality, such a reconstruction should include
state-of-the-art image processing methods, such as denoising, super-resolution
reconstruction and orientation distribution function1 (ODF) enhancement. Rather
than performing this in a classical manner, where each step is performed separately,
we couple all transformations and regularizers into a single optimization problem.
This allows performing the entire reconstruction in a single step, while having
full control over the balance between all regularizers simultaneously. Furthermore,
this avoids data-consistency formulations in intermediate spaces, where the noise

1The ODF is a formalism that characterizes the strength of diffusion in different directions. It is
defined formally below in Eq. (10).
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distribution is difficult to model correctly (e.g. Rician signal distribution and other
cases)—our least squares data term penalizes deviation from k-space measurements,
where noise is Gaussian, while still reconstructing and regularizing in arbitrary
spaces. Finally, a holistic formulation allows regularizing in additional spaces other
than the acquisition and the reconstruction space. This allows for example using
information from the ODF (otherwise calculated independently at a later step) to
inform the super-resolution reconstruction in image space.

In our proof-of-concept holistic reconstruction experiments, we treat the entire
six-dimensional data jointly (rather than treating each q-space coordinate inde-
pendently during image space reconstruction, followed by treating each image
coordinate y independently during q-space-based processing) and combine the
following concepts into a single optimization problem:

– Data consistency in the original .k; q/-space,
– Reconstruction into .y; q/-space with super-resolution in both the spatial and

diffusional dimensions,
– Spatial regularization of .y; q/-space data,
– Angular regularization of .y; q/-space data by treating each q-space shell inde-

pendently as functions on the (uncoupled) space R3 � S2 of positions and
orientations,

– Spatial and angular regularization of the ODFs which implicitly correspond to the
reconstructed .y; q/-space data by treating them as functions on the (uncoupled)
space R3 � S2 of positions and orientations.

The general form of holistic reconstruction into .y; q/-space is

arg min
r;'

1

2
kT.r; '/ � dk2 C R.r/; (9)

where R.r/ is a sum of regularization terms which may or may not transform the
image magnitude r into another space, such as ODFs, prior to penalizing non-
regularity.2

The “codomain” of our pipeline, i.e. the reconstruction space, can be extended
into diffusion models, as in [17, 18]. These model-based methods can be comple-
mented by our regularizers in additional spaces to yield a holistic framework.

Sampling Scheme in .k; q/-Space In order to verify the super-resolution recon-
struction capability of our holistic reconstruction, we use data of uniquely high
resolution from the Human Connectome Project [19–26], assuming it to be the
ground truth underlying image data, and simulate a low-resolution k-space sampling
of these ground truth images. In order to leverage complementarity of data in
q-space, we employ a low-resolution .k; q/-space sampling scheme [13] in which
high resolution components are left out alternatingly in vertical or horizontal

2The precise formula that we use for R.r/ will follow later in Eq. (12).
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Fig. 1 Sampling scheme in q-space during acquisition (left) and reconstruction (right). The
acquired data have alternating artificial subsampling in vertical/horizontal high frequencies in
k-space. All high frequencies for all images are reconstructed. Colors encode the b-value: B D
f0; 1000; 2000; 3000g s=mm2

image directions for different q-space coordinates. The q-space coordinates and the
respective alternating vertical/horizontal k-space subsampling are shown in Fig. 1,
left. Both acquisition and reconstruction (see next paragraph) use the set of b-values
B D f0; 1000; 2000; 3000g s=mm2.

Super-Resolution Sampling Scheme in Reconstruction Space While data are
artificially subsampled in k-space for the experiments, the reconstruction space is
discretized such that the original high image resolution is reconstructed. While 270
q-space coordinates are sampled (Fig. 1, left), 486 are reconstructed (Fig. 1, right).
This scheme achieves a super-resolution reconstruction in image and diffusion
space.

Regularization We will regularize several images of the type U 2 H
2.R3 � S2/,

namely the ODF and the spherical shells in q-space (whereHk denotes the respective
Sobolev space).

The ODF [27] for image r at image location y 2 ˝ and direction n 2 S2 can be
calculated as

ODF.r/.y; n/ D 1

Z�

Z 1

0

.F4;5;6r/.y; pn/p� dp (10)

with the usual choice � D 2, where Z� is a normalization constant and F4;5;6 is
the Fourier transform along the diffusion dimensions four to six that calculates the
diffusion propagator from q-space data in an idealized setting [28].
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Let Gb be the linear operator that extracts a spherical q-space shell at a given
b-value (diffusion weighting) from r:

.Gb.r// .y; n/ D r.y;
p

bn/: (11)

In a proof-of-concept holistic reconstruction, the shells and the ODFs are
regularized in the uncoupled space R3 � S2 of positions and orientations as follows:

R.r/ D
X

b2B

Z

R3�S2
˛1kryGb.r/.y; n/k2

� ˛2
˝
Gb.r/.y; n/;ΔS2Gb.r/.y; n/

˛ C ˛3jΔS2Gb.r/.y; n/j2 dy d
.n/

C
Z

R3�S2
˛4kryODF.r/.y; n/k2

� ˛5
˝
ODF.r/.y; n/;ΔS2ODF.r/.y; n/

˛ C ˛6jΔS2ODF.r/.y; n/j2 dy d
.n/;

(12)

where B is the set of reconstructed b-values, the ˛i are regularization parameters,

 is the usual surface measure on S2, ΔS2 is the Laplace–Beltrami operator on
the sphere and the negative inner products correspond to first-order regularization
according to

R �hU;ΔUi D R krUk2 (i.e. Green’s identity with vanishing
boundary conditions as we assume our functions U to vanish at the boundary).

Defining appropriate inner products on the space H2.R3 � S2/ 3 U;V and on
H1.R3 � S2;R3/ 3 ryU;ryV as

˝
U;V

˛ D
Z

R3�S2
U.y; n/V.y; n/ dy d
.n/; (13)

˝ryU;ryV
˛ D

X

i2f1;2;3g

Z

R3�S2

�ryU.y; n/
�

i

�ryV.y; n/
�

i
dy d
.n/; (14)

and using the induced norms, we can rewrite the problem (9,12) as follows:

min
r;'

1

2
kT.r; '/ � dk2

C
X

b2B
˛1kryGb.r/k2 � ˛2

˝
Gb.r/;ΔS2Gb.r/

˛C ˛3kΔS2Gb.r/k2

C˛4kryODF.r/k2 � ˛5
˝
ODF.r/;ΔS2ODF.r/

˛C ˛6kΔS2ODF.r/k2:

(15)

Reformulations To obtain a convenient min-max form with simpler expressions
within the norms, we shall use the identity:

kOxk2 D sup
Oy

˝Ox; Oy˛ � 1

4
kOyk2; (16)

obtained by taking the convex biconjugate and completing the square. This refor-
mulation introduces dual variables Oy.
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Optimization Procedure Our optimization problem (15) can be rewritten as a min-
max problem of the form

min
x

max
y

G.x/C ˝
K.x/; y

˛� F�.y/ (17)

with convex G, F� and a nonlinear K, which can be solved with the modified primal-
dual hybrid gradient method for nonlinear K [15, 29, 30]:

xiC1 WD .I C �@G/�1.xi � �ŒrK.xi/��yi/; (18a)

xiC1
! WD xiC1 C !.xiC1 � xi/; (18b)

yiC1 WD .I C 
@F�/�1.yi C 
K.xiC1
! //; (18c)

where @f represents the subdifferential of a function f , defined as

@f .x0/ D ˚
v j f .x/ � f .x0/ � ˝

v; x � x0
˛ 8x 2 domf

�
; (19)

and .IC�@f /�1 is the resolvent of the subdifferential, corresponding to the proximal
operator [31]:

.I C �@f /�1x D prox�f .x/ D arg min
z

f .z/C 1

2�
kx � zk2: (20)

The algorithm (18) has been applied [15] with the operator T.r; '/ to non-
diffusion MRI, and with another operator to diffusion MRI. The author announces
combining T.r; '/with direct reconstruction of the diffusion tensor in a future study,
while we present an application of T.r; '/ to reconstruction in image � diffusion
space.

By rewriting all five norms in our problem (15) using the identity (16), we obtain
the min-max form

min
r;'

max
�;.�b/b2B;.�b/b2B;�;�

˝
T.r; '/; �

˛ � ˝
d; �

˛ � 1

2
k�k2

C
X

b2B
˛1

�
˝ryGb.r/; �b

˛ � 1

4
k�bk2

�

� ˛2
˝
Gb.r/;ΔS2Gb.r/

˛C ˛3

�
˝
ΔS2Gb.r/; �b

˛ � 1

4
k�bk2

�

C ˛4

�
˝ryODF.r/; �

˛ � 1

4
k�k2

�

� ˛5
˝
ODF.r/;ΔS2ODF.r/

˛C ˛6

�
˝
ΔS2ODF.r/; �

˛� 1

4
k�k2

�

:

(21)
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The primal variables are x D .r; '/ and the dual ones are y D .�; .�b/b2B; .�b/b2B;
�; �/, where for example �b denotes the dual variable associated to kΔS2Gb.r/k2.
This can be regrouped into the standard form (17) as follows:

G.x/ D
X

b2B
�˛2

˝
Gb.r/;ΔS2Gb.r/

˛ � ˛5
˝
ODF.r/;ΔS2ODF.r/

˛
;

˝
K.x/; y

˛ D ˝
T.r; '/; �

˛C
X

b2B
˛1
˝ryGb.r/; �b

˛C ˛3
˝
ΔS2Gb.r/; �b

˛

C ˛4
˝ryODF.r/; �

˛ C ˛6
˝
ΔS2ODF.r/; �

˛
;

˙F�.y/ D ˙ ˝
d; �

˛˙ 1

2
k�k2

˙ 1

4

 
X

b2B
˛1k�bk2 C ˛3k�bk2 C ˛4k�k2 C ˛6k�k2

!

:

(22)

For the implementation of algorithm (18), we calculate the proximal operators [31]:

.I C �@G/�1x D .I C �.Q C Q�//�1x; (23)

Q D
X

b2B
G�

bΔS2Gb C ODF�ΔS2ODF; (24)

.I C 
@F�/�1y D

0

B
B
B
B
B
@

.� � 
d/=.
 C 1/

.�b=.1C ˛1
=2//b2B

.�b=.1C ˛3
=2//b2B
�=.1C ˛4
=2/

�=.1C ˛6
=2/

1

C
C
C
C
C
A

: (25)

Calculating ŒrK.xi/�� (18) for the nonlinear part T.r; '/ (22) yields

ŒrT.r; '/�� D .SF1;2ŒrC.r; '/�/� D ŒrC.r; '/��F�
1;2S

�; (26)

ŒrC.r; '/�� O� D
 

<. O�/ cos.'/C =. O�/ sin.'/
r.=. O�/ cos.'/ � <. O�/ sin.'//

!

: (27)

Unbounded ODF Operator When writing out the Fourier transform F4;5;6 over
Q 2 R3, the ODF (10) contains the diverging term exp.�ihpn;Qi/p2. Thus, the
ODF operator is unbounded. Since an adjoint is required for the algorithm (18),
the operator can be made bounded in the infinite-dimensional setting by including
a Gaussian damping factor exp.�p2=&2/ as a mollifier. The operator bound of the
discrete operator depends on the discretization, and in our discretization scheme no
mollifier was needed in practice.
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Implementation Details The operators F1;2, S (6), ODF (10), Gb (11), ry and ΔS2

are linear. In the implementation, the spaces in which acquisition, regularization
and reconstruction take place are discretized and thus the operators can be written
as matrices. We obtain these matrices explicitly. Where not evident, an operator
matrix is computed by applying the operator to all standard basis vectors of the
discretized space, yielding the columns of the matrix. For pointwise operators, we
compute and store repeating coefficients only once. When computing ŒrK.�/�� and
K.�/ in the algorithm (18), having the operator matrices explicitly has the advantages
of rapid computation by matrix multiplication and easy computation of the adjoint
operators. Besides, in the discretized setting, the ODF operator is not unbounded
anymore and thus has an adjoint, as required by the algorithm. The norm kŒrK.�/��k
of the operator ŒrK.�/�� explodes as the discretization becomes finer, but in our
discretization settings there was no need to include a Gaussian mollifier in (10). The
practical implementation of the ODF operator is given by generalized q-sampling
imaging [32].

3 Results

Figure 2 shows the high-resolution “ground truth” image data from the Human
Connectome Project (Fig. 2, left) alongside the results of two reconstruction meth-
ods applied to the same data that has been artificially subsampled according to
the sampling scheme in .k; q/-space described in section “Sampling Scheme in
.k; q/-Space” and illustrated in Fig. 1, left. This artificial subsampling procedure
emulates a clinical setting where resolution is considerably lower than in the
Human Connectome Project, and enables a comparison to this exceptionally high-
resolution ground truth data. The two compared reconstruction methods are standard
reconstruction (F1;2-transformed subsampled data; Fig. 2, middle) and holistic

Fig. 2 High-resolution ground truth (left), standard reconstruction (middle), holistic super-
resolution reconstruction (right)
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image reconstruction (as described above, with super-resolution sampling as in
Fig. 1, right; results in Fig. 2, right).

The employed parameters were ˛1 D 0:3; ˛2 D 0:1; ˛3 D 0:1; ˛4 D 0:01; ˛5 D
0:3; ˛6 D 0:01.

Holistic image reconstruction demonstrates considerably more detail than stan-
dard reconstruction. While standard reconstruction results have a visibly lower
resolution, holistic reconstruction retrieves details that are present in the ground
truth data due to its super-resolution scheme and regularization in image and
diffusion space.

4 Discussion

The results of holistic reconstruction demonstrate considerably more detail than the
standard reconstruction.

Among the numerous advanced diffusion MRI reconstruction methods exist-
ing in literature, many methods perform denoising, missing data reconstruction
(q-space compressed sensing), enhancement, etc. as an intermediate post-processing
step after image-space reconstruction. However, standard-reconstructed images can
contain artifacts, intensity bias (e.g. Rician or more complicated), and irretrievably
discard some parts of information present in the raw k-space data. Imposing data
consistency in reconstructed image space can lead to these errors being propagated
on into subsequent data processing steps, and/or introduce less tractable bias-
correction terms. There is strong evidence that one-step pipelines are better than
multi-step pipelines due to information loss in intermediate steps [33]. Particularly,
imposing data consistency on the original raw data in k-space yields improved
results compared to multi-step processing [13]. The holistic reconstruction frame-
work presented herein allows imposing data consistency in the original data
acquisition space, while also including regularization in several spaces (such as
.y; q/-space and “(y,ODF)-space”), and reconstructing into an arbitrary space,
including super-resolution reconstruction sampling.

Super-resolution methods are beneficial for diffusion MRI due to their capability
to exceed hardware limitations on resolution. In the presented holistic reconstruction
framework, super-resolution is performed in image space and diffusion space
simultaneously, cf. Fig. 1. At the same time, data consistency in the original
space and regularizations in additional spaces are incorporated in a straightforward
manner.

Many competing regularizers in different spaces exist in recent literature. Each
of them incorporates certain assumptions and improves data quality at certain
intermediate regularization strengths. Regularizations in different spaces can be
combined into one procedure (including true data consistency and super-resolution)
using holistic image reconstruction.

Reconstruction can be performed jointly with motion and distortion correc-
tion [5] in the future.
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Finally, our choice of priors in (15) was based on isotropic Laplacians over the
spatial and angular part, and as such defined on R3 � S2. Including anisotropies and
alignment modeling in a crossing-preserving way via the coupled space R3 Ì S2 D
SE.3/=.f0 � SO.2/g/, see [1] Theorem 2, and [34], is expected to give better results
in future work.
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Alzheimer’s Disease Classification with Novel
Microstructural Metrics
from Diffusion-Weighted MRI
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Abstract Alzheimer’s disease (AD) deficits may be due in part to declining
white matter (WM) integrity and disrupted connectivity. Numerous diffusion-
weighted MRI (dMRI) studies of AD report WM deficits based on tensor model
metrics. New microstructural measures derived from additional dMRI models may
carry different information about WM microstructure including the geometry of
diffusion anisotropy, diffusivity, complexity, estimated number of distinguishable
fiber compartments, number of crossing fibers and neurite dispersion. Here we
aimed to find the most helpful dMRI metrics and brain regions from a set of 17
dMRI-derived feature maps, to predict diagnostic group (AD or healthy control).
The best metrics for classification were non-tensor metrics in the hippocampus and
temporal lobes, areas consistently implicated in AD.

1 Introduction

On average, the world population is steadily aging, and, as a result, so is the
incidence and prevalence of Alzheimer’s disease (AD). Alzheimer’s is the most
common type of dementia, affecting one in eight (13 %) people age 65 and older
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in the U.S. alone [1]. AD is a neurodegenerative disease characterized by memory
loss in its early stages, followed by a progressive decline in other behavioral and
cognitive functions. Decline into AD is preceded by an intermediate stage called
mild cognitive impairment (MCI). People with MCI convert to AD at a rate of about
10–15 % per year [2, 3]. Identifying biomarkers in these patients that might predict
brain tissue loss is vital for drug trial enrichment, and to help identify those most
likely to decline. Image-based predictors of decline may also offer new leads for
understanding how AD develops.

AD is characterized by cortical and hippocampal neuronal loss and widespread
gray matter atrophy driven by cortical plaque and tangle deposits, and vascular
changes. However, there is also a progressive disconnection of cortical and sub-
cortical regions due to white matter (WM) injury [4]. That is why, in addition to
the more widely used anatomical MRI, FDG- and amyloid-PET, and CSF based
measures of pathology, the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
has included diffusion weighted MRI (dMRI) in its second phase neuroimaging
battery [5].

dMRI is a variant of MRI that measures the diffusion of water molecules in brain
tissue. Due to the myelination of WM, water diffusion in the brain is hindered by
hydrophobic myelin sheaths, promoting highly anisotropic water diffusion along
axons. By characterizing the diffusion process at the voxel level, it is possible to
make tentative inferences about the underlying WM microstructure [6].

Since the development of dMRI, along with improvements in acquisition pro-
tocols to increase angular, spatial, and spectral resolution, multiple mathematical
models have been developed to describe the diffusion process. One of the first—
and still most popular—methods developed to summarize diffusion properties in
a specific voxel is the diffusion tensor model (DTI). This model is highly limited
as it can only model a single fiber population at every voxel. It cannot resolve
complex WM architecture, such as dispersing, crossing or kissing fibers. At the
current resolution of dMRI, around two-thirds of WM voxels contain multiple fiber
crossings [7, 8]. That said, the tensor-derived fractional anisotropy (FA) metric is
still the scalar measure most widely used to characterize WM micro-architecture in
disease [9, 10]. Furthermore, although FA is sensitive, it is somewhat non-specific as
it depends on fiber diameter, packing density, membrane permeability, myelination,
and intra-voxel orientation coherence [8].

In recent years a surge of new models have been proposed to overcome some
of the tensor model limitations, including multi-tensor models, such as the tensor
distribution function (TDF) [11], q-ball imaging and the orientation distribution
function (ODF) [12], constrained spherical deconvolution [13], the “ball and stick”
model [7], diffusion spectrum MRI (DSI) [14], and neurite orientation dispersion
and density imaging (NODDI) [15], among many others. Not only do these models
allow for the reconstruction of multiple underlying fibers, but they may give a richer
understanding of the underlying structure than FA does, by providing information
on diffusivity, complexity, estimated numbers of fiber compartments, number of
crossing fibers and neurite dispersion.
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Many studies describe WM microstructural differences between healthy aging
controls (NC) and AD [9, 16–20], and some exploit WM metrics for classification
[21–23]. But most use only basic tensor model metrics such as FA. Here we
aimed to find the most helpful dMRI metrics to classify ADNI participants into
diagnostic groups (AD or CN), from a set of 17 dMRI-derived feature maps, derived
(DTI, CSA-ODF, TDF, and NODDI). We used a hierarchical logistic regression for
classification, to determine the joint utility of the novel metrics.

2 Methods

2.1 Subject Information and Image Acquisition

Baseline MRI, DWI, and clinical data were downloaded from the ADNI database
(www.loni.usc.edu/ADNI). Here we performed an initial analysis of 101 partic-
ipants: 53 healthy controls (CN; mean age: 72.4 ˙ 6.0 years; 24 M/29 F), and
48 AD patients (mean age: 74.9 ˙ 8.7 years; 29 M/19 F). Detailed inclusion and
exclusion criteria are found in the ADNI2 protocol (http://adni-info.org/Scientists/
Pdfs/ADNI2_Protocol_FINAL_20100917.pdf).

All subjects underwent whole-brain MRI scanning on 3T GE Medical
Systems scanners at 14 acquisition sites across North America. Anatomical T1-
weighted SPGR (spoiled gradient echo) sequences (128 � 128 matrix; voxel
size D 1.2 � 1.0 � 1.0 mm3; TI D 400 ms; TR D 6.98 ms; TE D 2.85 ms; flip
angle D 11ı), and dMRI (256 � 256 matrix; voxel size: 2.7 � 2.7 � 2.7 mm3;
TR D 9000 ms; scan time D 9 min; more imaging details can be found at http://adni.
loni.ucla.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf) were
collected. Forty-six separate images were acquired for each dMRI scan: five
T2-weighted images with no diffusion sensitization (b0 images) and 41 diffusion-
weighted images (DWI; b D 1000 s/mm2).

2.2 Image Preprocessing

Images were preprocessed as in [24]. To summarize, raw DWI images were
corrected for motion and eddy current distortions, while T1-weighted images
underwent inhomogeneity normalization. Extra-cerebral tissue was removed from
both scan types. Each T1-weighted anatomical image was linearly aligned to a
standard brain template (the down-sampled Colin27 [25]: 110 � 110 � 110, with
2 mm isotropic voxels). The diffusion images were linearly and then elastically
registered [26] to their respective T1-weighted structural scans to correct for echo-
planar imaging (EPI) induced susceptibility artifacts. To account for the linear
registration of the DWI images to the structural T1-weighted scan, a corrected
gradient table was calculated.

www.loni.usc.edu/ADNI
http://adni-info.org/Scientists/Pdfs/ADNI2_Protocol_FINAL_20100917.pdf
http://adni-info.org/Scientists/Pdfs/ADNI2_Protocol_FINAL_20100917.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf
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2.3 DWI Reconstruction Models and Scalar Maps

Seventeen DWI microstructural measures (Table 1) were computed per subject from
four different reconstruction models: diffusion tensor (DTI), constant solid angle
orientation distribution function (CSA-ODF), tensor distribution function (TDF),
and neurite orientation dispersion and density imaging (NODDI).

The Single Tensor Model First, a single diffusion tensor [27], or ellipsoid, was
modeled at each voxel in the brain from the corrected DWI scans using FSL (http://
fsl.fmrib.ox.ac.uk/fsl/fsl4.0/fdt/fdt_dtifit.html), and scalar anisotropy and diffusivity
maps were obtained from the resulting diffusion tensor eigenvalues (œ1, œ2, œ3).
Fractional anisotropy (FA), a measure of the degree of diffusion anisotropy, is a
normalized mean of the eigenvalues:

FA D
r
3

2

q

.�1� < � >/2 C .�2� < � >/2 C .�3� < � >/2

q
�21 C �22 C �23

2 Œ0; 1� (1)

where <�> is the mean diffusivity (MD), or average rate of diffusivity in all
directions.

Table 1 Summary of 17 DWI measures derived from different reconstruction models: diffusion
tensor (DTI), constant solid angle ODF (CSA-ODF), tensor distribution function (TDF), and
neurite orientation dispersion and density imaging (NODDI)

Color key corresponds to Fig. 2

http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/fdt/fdt_dtifit.html
http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/fdt/fdt_dtifit.html
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Axial diffusivity is defined as the primary (largest) eigenvalue (AxD D�1), and
is stipulated to capture the diffusivity parallel to the majority of axonal fibers. It
has been associated with axonal injury, whereas radial diffusivity (RD) captures the
average diffusivity perpendicular to AxD (the average of �2 and �3), and is believed
to be associated with demyelination [28, 29].

A “geodesic” anisotropy (GA) map was also calculated for each participant. GA
measures the geodesic distance between the tensor and the nearest isotropic tensor,
computed intrinsically on the Lie group of symmetric positive-definite diffusion
tensors, normalized by applying the hyperbolic tangent transform [30].

In addition to degree of anisotropy, the shape of the tensor ellipsoid may help
to infer the underlying neurite organization. Linearity (LIN), planarity (PLA), and
sphericity (SPH) capture the geometry of the tensor ellipsoid [31]. High FA may
reflect increases in any of these three metrics. LIN assesses the uniformity of the
diffusion direction along the main fiber direction (largest eigenvalue), while SPH
is designed to measure a less uniform isotropic diffusion process, which implies
more isotropic diffusion; PLA diffusion is restricted to a geometric plane spanned
by the two largest eigenvalues, reflecting the existence of dispersed fibers along
just two dimensions. Finally the diffusion tensor mode (MOD) helps to differentiate
between these three types of anisotropy, approaching �1 if diffusion is occurring
along a geometric plane, and C1 if diffusion is occurring along a single direction,
with values approaching 0 indicating ortho- or iso-tropic diffusion.

LIN D �1 � �2
�1 C �2 C �3

; PLA D 2 .�2 � �3/

�1 C �2 C �3
; SPH D 3�3

�1 C �2 C �3
;

MOD D �1�2�3
�q

.�1 � 
/2 C .�2 � 
/2 C .�3 � 
/2
�3

(2)

The Tensor Distribution Function In contrast to the single tensor model, the
tensor distribution function (TDF) represents the diffusion profile as a probabilistic
mixture of tensors [32, 33] allowing for the reconstruction of multiple underlying
fibers per voxel, together with a distribution of weights. We applied the framework
proposed in [11] to the angular diffusion signal to compute the voxel-wise TDF-P
that describes the observed signal. TDF-P is the probability distribution function
defined on all feasible 3D Gaussian diffusion processes (in tensor space D) at each
voxel. From the TDF at each voxel, the number of detected peaks was estimated by
examining the local maxima of the tensor orientation distribution

TOD .�/ D
Z

�

P.D .�; �//d� (3)

The TDF-averaged eigenvalues of each fiber were calculated by computing the
expected values along the principal direction of the fiber. From these eigenvalues,
scalar TDF anisotropy and diffusivity measures (i.e. TDF-FA, TDF-MD, TDF-RD,
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TDF-AxD) were calculated as below.
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Q-Ball Imaging Orientation Distribution Function Q-ball imaging (QBI) was
one of the first high angular resolution diffusion imaging (HARDI) techniques
that allowed for the reconstruction of multiple fiber orientations in a given voxel
[12]. QBI measures the diffusion function directly, and estimates a model-free
diffusion orientation distribution (ODF) by estimating the radial integral of the
diffusion propagator by applying the Funk-Radon transform (and does not require
any assumptions on the diffusion process such as Gaussianity). Here, the ODFs were
defined using a constant solid angle (CSA) factor, an improvement on the standard
ODF computation, which results in less distorted, normalized, and sharper ODFs
[34].

Scalar measures can be calculated from the ODF, such as the generalized FA
(GFA)—analogous to the DTI FA metric which is defined by the standard deviation
of each lambda over its root mean square of std(œ)/rms(œ). We define the GFA as:

GFA D std.§/

rms.§/
D

v
u
u
u
t

n
Xn

iD1.§ .ui/� h§i/2

.n � 1/
Xn

iD1§.ui/
2

(5)

where,‰(u) is the ODF, i is each diffusion direction and<‰>D .1=n/
Xn

iD1‰ .ui/

is the mean of the ODF. We further calculated the number of dominant diffusion
directions or distinguishable peaks of the ODF after normalizing the ODF (sub-
tracting the baseline and rescaling) for which we selected two rescaling thresholds
(relative peaks threshold D 0.4 and 0.5).

Neurite Orientation Dispersion and Density Imaging (NODDI) The NODDI
model of tissue aims to differentiate between three microstructural environments
that each uniquely affect water diffusion and in turn the MR signal: intra- and
extra-cellular, and cerebrospinal fluid. The intra-neurite compartment is modeled
as an orientation-dispersed distribution of cylinders or sticks, as myelin is known
to restrict water diffusion [35]. The extra-neurite compartment is assumed to be
Gaussian, because the diffusion is unrestricted [15]. NODDI allows for estimates
of neurite density and orientation dispersion in dMRI data acquired with multiple
shells (i.e., multiple b-values or gradient strengths). Due to the constraints of ADNI
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data acquisition we could only reliably calculate the orientation dispersion index
(ODI) and not the volume of the intra and extra-neurite fractions. NODDI can be
more informative than DTI derived measures in areas with less organized patterns of
axonal bundles. This opens a window to study diffusion properties towards the edges
of the white matter and the cortex—as well as in subcortical gray matter structures.

2.4 Template Creation and Spatial Normalization

Both FA and T1-weighted study-specific minimal deformation templates (MDT)
were created from 29 cognitively healthy elderly control spatially aligned maps
as in [24, 36]. Each subject’s FA map was then elastically registered [26] to the
FA-MDT. To ensure white matter alignment across subjects, registered FA maps
were thresholded at FA> 0.2 and elastically registered to the thresholded FA-MDT
(FA> 0.2). The resulting deformation fields from both elastic registrations were
applied to all 17 DWI maps to align them to the same coordinate space for analysis.

2.5 Atlas ROI Segmentation

We parcellated the T1-MDT and FA-MDT into several regions of interest (ROI) by
using various software packages for different anatomical structures (Fig. 1).

Cortical Gray Matter Segmentation Using FreeSurfer [37], 34 cortical labels
were automatically extracted per hemisphere from the T1-MDT. Regions were
grouped into six lobes (Fig. 2a): frontal, parietal, temporal, occipital, insular, and
cingulate cortex.

Fig. 1 Automatically segmented regions of interest (ROIs). (a) Thirty-four cortical regions were
parcellated in each hemisphere from the T1-MDT using FreeSurfer and grouped into six bilateral
cortical lobes. (b) Seven bilateral subcortical structures were segmented from the T1-MDT with
FSL FIRST. (c) Twenty-one major white matter tracts from the JHU atlas were elastically
registered to the FA-MDT. (d) Blue region shows the external white matter or corona radiata
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Fig. 2 To avoid presenting ten maps from each fold, the classification process was additionally run
on the entire data set for figures only. (a) ‘Best feature map’, where the dMRI measure with lowest
classification MSE and p> 0.05 was selected in each voxel. (b) Smoothing neighborhood search
at a depth of three voxels, constrained by ROI boundaries, where the best measure for each voxel
is changed to the measure most frequently found in the voxel’s neighborhood. Refer to Table 1 for
corresponding metric color key

Subcortical Gray Matter Structures Subcortical regions were defined by seg-
menting the T1-MDT using the freely-available and automated FSL FIRST segmen-
tation algorithm (Fig. 2b) [38]. These included the nucleus accumbens, amygdala,
caudate, hippocampus, pallidum, putamen, and thalamus.

Core White Matter Tract Atlas We registered [26] the FA image from the JHU
DTI atlas [39] to our FA-MDT to which all maps were spatially normalized. We then
applied that deformation to the stereotaxic JHU “Eve” atlas WM labels (Fig. 2c).
This atlas contains core WM structures representing large fiber bundles that traverse
the brain.

External White Matter/Corona Radiata This region was generated by taking the
full white matter parcellation computed with FreeSurfer (see above) and subtracting
it from the core white matter tract atlas.
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2.6 Hierarchical Logistic Regression Classification

Test Each Measure on Each Voxel Independently For each of the 193,586 voxels
within the MDT mask, 17 separate logistic regression classifiers were run for each
DWI measure to predict disease status (AD or CN). In each fold of a ten by
ten-fold cross-validation, the DWI measure with the lowest mean squared error
(MSE) and p> 0.05 in each voxel was selected, resulting in ten ‘best feature maps’
(Fig. 2a).

Neighborhood Search to Smooth Best Feature Map Individual voxels are noisy
and not statistically independent. Neighboring anatomy, and therefore voxels, tend
to have similar properties, yielding spatially correlated signals. As such, for each
voxel a neighborhood search was performed, constraining the search to specific
ROIs, (depth D 3 voxels for clusters of 14 � 14 � 14 mm), and the best measure
for each voxel was then changed to the measure most frequently found in the given
neighborhood (Fig. 2b).

Hierarchical Classification on Best Feature Maps A second logistic regression
classifier was run on the best feature map. However, as there were 	200,000 vox-
els/features per subject and only 101 subjects (p>>n), a regularized version of logis-
tic regression was run using the glmnet package available on CRAN (http://cran.r-
project.org/web/packages/glmnet/index.html).The most well-known penalty, the L1
or LASSO penalty, encourages sparsity by setting most small coefficients to zero.
This penalty function still suffers from some limitations when there is a large num-
ber of parameters p to fit, and few observations n, as LASSO selects at most n vari-
ables before it saturates. Also if there is a group of highly correlated variables, then
the LASSO tends to select one variable from a group and ignore the others. Another
common alternative is the L2 or ridge penalty, which shrinks the coefficient esti-
mates towards zero. However, this method never zeroes out any coefficients, leaving
p coefficients. To overcome the limitations of both of these methods, the elastic net
was introduced, to use both L1 and L2 tuned by a mixing parameter, 0 �˛� 1 [40].

1 � ˛
2kˇk22

C ˛kˇk1 (6)

When ˛ D 1, this is simply a LASSO and when ˛ D 0, it is the ridge penalty. On
each of the ten ‘best feature maps’ from the ten-fold, a ten-fold cross validation was
run to determine the best ˛ and tuning parameter œ to control the relative impact of
the penalty on the coefficient estimates. Using accuracy, sensitivity, and specificity,
we tested the relative utility of each map of features for distinguishing diagnostic
groups.

http://cran.r-project.org/web/packages/glmnet/index.html
http://cran.r-project.org/web/packages/glmnet/index.html
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Fig. 3 To avoid presenting ten maps from each fold, the classification process was additionally
run on the entire data set for figures only. (a) Voxels not zeroed out by the elastic net regularizer
that contributed to classification. The voxels were largely found in the hippocampus and temporal
lobe. (b) Most voxel clusters were NODDI, followed by GFA, TDF-FA, and TDF-AxD

3 Results

The mean MSE across all voxels from the ten ‘best feature maps’ was 0.263 ˙ 0.005
(mean accuracy: 	74 %). The final hierarchical logistic regression classification
resulted in a mean accuracy of 85 % (mean sensitivity D 81 %, specificity D 89 %).

Voxels that were not zeroed out by the elastic net regularizer and that contributed
to this classification were largely found in the hippocampus and temporal lobes
(Fig. 3a), which makes sense, given the preferential involvement of these regions in
AD. Most voxel clusters were NODDI, followed by GFA, TDF-FA, and TDF-AxD
(Fig. 3b).

4 Discussion

In this article, we evaluated the utility of novel dMRI approaches for studying white
matter (WM) microstructure in AD compared to healthy controls, by computing 17
dMRI metrics for each participant, and assessing which measures contribute most
to disease classification.

There is a great deal of evidence that AD pathology includes disturbances
in the brain’s WM pathways, perhaps secondary to cortical neuronal loss. WM
neuropathology in AD includes partial loss of axons, myelin sheaths, and oligo-
dendroglial cells [41, 42]. The growing imaging literature reports significant
macrostructural WM atrophy [43, 44] as well as altered WM microstructure, as
defined by dMRI metrics, with an emphasis on medial temporal lobe structures.
Most of these findings, however, are derived from tensor-based metrics such as FA
and MD [9, 16–20]. Fewer studies report disease-related changes in AxD and RD
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tensor metrics, and almost none include dMRI measures derived from non-tensor
models.

The scope of machine learning and classification dMRI findings is similarly
limited. Volumetric measures, including hippocampal volume, gray matter volume
from voxel-based morphometry, and cortical thickness [45–48], have effectively
classified AD patients, but few studies have used dMRI derived biomarkers for
classification purposes. The few that do, exclusively use the DTI model: several
have used voxel-wise features derived from full DTI maps, using methods such as
Pearson correlation and ReliefF for feature reduction [21–23], yielding accuracies
of more than 90 %. In [49] tractography-based connectivity metrics based on fiber
count, FA, and diffusivity were used for SVM classification, reporting an accuracy
of 88 %, although clearly these accuracies depend on the problem and dataset used,
and are not directly comparable with each other.

DTI metrics are sensitive enough to classify AD and identify related deficits,
but the tensor model is limited as it only models a single fiber population per
voxel, omitting information on complex WM architecture. While DTI metrics may
sufficiently characterize the highly coherent fiber bundles at the core of the brain
(Fig. 1c), they overlook information in the increasingly more complex peripheral
structure, such as the crossing fibers of the corona radiata, and neurite dispersion
near the cortex and gray matter. DTI metrics are non-specific as they are affected
by fiber diameter, packing density, membrane permeability, myelination, and intra-
voxel orientation coherence. It is therefore important to assess whether the wave of
new models introduced in recent years offer any advantages or new information not
previously captured on AD related microstructural changes.

Here we evaluated 101 subjects and were able to reach relatively high accuracy
despite the heterogeneity of our multi-site sample. Although using novel metrics did
not necessarily beat prior classification results, the goal was to compare the relative
utility of metrics for classification, which leads to some insight on how the disease
may affect different fiber properties. Moreover, it was important to see if these met-
rics might surpass tensor metrics in particular regions outside of the core, cohesive
WM, and thus contribute extra information. Qualitatively, this seems to be the case
in the best feature maps (Fig. 2b), as metrics such as NODDI (mustard), a measure
of neurite dispersion, for example, was more prevalent as the “top metric” around the
external cortical areas of the brain where fibers are more dispersed/diverted. TDF-
AxD (grey) was more prevalent as the “top metric” toward the internal bundled
structures. Even though all of the dMRI measures described are correlated with
each other, each captures the microstructure in a slightly different way. Furthermore,
clusters of surviving voxels from the hierarchical regularized logistic model were all
non-tensor metric clusters largely in the temporal lobes and hippocampus (Fig. 3).
While these regions are often implicated in AD pathology, the hippocampus is not
a coherent WM structure, thus requiring a non-tensor model to pick up differences.

In conclusion, different reconstruction models and their respective scalar descrip-
tors provide distinctive micro-anatomical features, which also differ in classification
value by brain region. Future work should compare other classification methods
(e.g., non-parametric SVM), and test if dMRI metrics can contribute to leading
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classification approaches based on biomarkers such as hippocampal volume, amy-
loid deposition and tensor-based morphometry.
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Brain Tissue Micro-Structure Imaging
from Diffusion MRI Using Least Squares
Variable Separation

Hamza Farooq, Junqian Xu, Essa Yacoub, Tryphon Georgiou, and Christophe
Lenglet

Abstract We introduce a novel data fitting procedure of multi compartment models
of the brain white matter for diffusion MRI (dMRI) data. These biophysical
models aim to characterize important micro-structure quantities like axonal radius,
density and orientations. In order to describe the underlying tissue properties, a
variety of models for intra-/extra-axonal diffusion signals have been proposed.
Combinations of these analytic models are used to predict the diffusion MRI signal
in multi-compartment settings. However, parameter estimation from these multi-
compartment models is an ill-posed problem. Consequently, many existing fitting
algorithms either rely on an initial grid search to find a good start point, or have
strong assumptions like single fiber orientation to estimate some of these parameters
from simpler models like the diffusion tensor (DT). In both cases, there is a trade-
off between computational complexity and accuracy of the estimated parameters.
Here, we describe a novel algorithm based on the separation of the Nonlinear Least
Squares (NLLS) fitting problem, via Variable Projection Method, to search for non-
linearly and linearly entering parameters independently. We use stochastic global
search algorithms to find a global minimum, while estimating non-linearly entering
parameters. The approach is independent of any starting point, and does not rely
on estimates from simpler models. We show that the suggested algorithm is faster
than algorithms involving grid search, and its greater accuracy and robustness are
demonstrated on synthetic as well as ex-/in-vivo data.
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1 Introduction

Diffusion MRI quantifies the anisotropic displacement of water molecules during
a certain time interval within a structure. This can be used to reveal tissue micro-
structure information via biophysical models. The simplest of these models is the
Diffusion Tensor[3], from which quantities like the Mean Diffusivity (MD) and
Fractional Anisotropy (FA) can be computed. However, more specific markers
like axon radius, density and volume fractions of different compartments can
be estimated from more advanced multi-compartment models, as suggested for
example in [12] and [2].

The problem of fitting diffusion MRI data to these biophysical models is not well
posed in general because of the type of functions or models employed to describe
diffusion in a certain geometry. These functions depend non-linearly on variables to
be estimated, leading to a non-convex optimization problem and thus having many
local optima. Any optimization algorithm using gradient based methods will largely
depend upon a good starting point to reach a global optimum.

Initial grid search over a range of physically possible parameters can be
performed, as done for example in NODDI[12] and ActiveAx[2] model fitting.
This provides a starting point to subsequently solve a Gauss-Newton (GN) non-
linear optimization problem and estimate parameters of interest. CAMINO[4] uses
estimates from simpler models to find a starting point before solving a generic three-
compartment model via the Levenberg Marquardt (LM) method. CAMINO needs
to solve several simpler models to obtain an initial guess. Grid search and estimates
from simpler models increase the possibility of reaching global optimum but add to
the computational complexity and estimation time. Alternatively, AMICO[5] casts
the multi-compartment models (as suggested in [12] and [2]) parameter estimation
into a convex problem. For example, in case of ActiveAx, the problem is viewed as
convex by estimating fiber orientation from the DT model and then searching for
linearly entering parameters only, over a grid or dictionary of remaining two non-
linearly entering parameters. The approach converges more quickly but still needs
to be adapted in the presence of three or more non-linearly entering parameters.

We propose a novel algorithm for estimating any multi-compartment model
parameters without requiring a grid or using simpler models for initial estimation.
As further described in the following section, we focus on the Zeppelin-Cylinder-
Dot model, identified as one of the best three-compartment white matter micro-
structure models [7]. The problem is approached by separating linearly and non-
linearly entering parameters. By exploiting variable separation and stochastic global
search algorithms, we demonstrate that our method not only converges twice as fast
as CAMINO, but also finds global minima for the non-linear parameters of interest
more reliably, contrary to other existing methods. We present experiments both
on synthetic and brain datasets, which illustrate the performance of the proposed
method. Our improved fitting technique consistently leads to more robust and
accurate estimates of axonal radius, density and fiber orientation.
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2 Problem Formulation

A typical estimation problem for multi-compartment model parameters from diffu-
sion MRI data in the presence of Rician noise [1] is of the following form:

min
x; f

NX

kD1

�2 .y.k/ �

nX

iD1

q
fieAi.x/ C 
2/2 (1)

where y represents normalized MRI measurements and N is the total number
of measurements available. f D Œ f1 f2 : : : fn�0 is the vector containing volume
fractions of n compartments. x D Œx1 x2 : : : xm�

0 is the vector containing m
parameters on which functions describing the dMRI signal, in n compartments,
depend. A1;A2 : : :An characterize the selected models for intra-axonal, extra-axonal,
cerebrospinal fluid (CSF) and glial cells compartments etc. [7, 10]. 
 is the standard
deviation of noise, which is estimated from b0 measurements of MRI. 
 adds a
constant bias to the objective functions, which can easily be taken care of. By
dropping 
 , we can rewrite the objective function in Eq. (1) including constraints
as follows:

min
x; f

k y � . f1e
�A1.x1;:::;xm1/ C f2e

�A2.xm1C1;:::;xm2/ C : : :C fne�An.xm2C1;:::;xm// k22 (2)

such that
nX

iD1
fi D 1; fi � 0 i D 1; 2 : : : n

xmin
j � xj � xmax

j j D 1; 2 : : :m

where xmin
j and xmax

j represent lower bound and upper bound for unknown determin-
istic variables x respectively. Unknown parameters in x will vary with each choice
of multi-compartment model.

3 Optimization via NLLS Variable Projection and Genetic
Algorithm (GA)

We describe the four main steps of the proposed algorithm to solve Eq. (2).

– Step 1. Variable projection for separating non-linearly entering parameters.
We can exploit the separable structure of the problem described in Eq. (1) by
variable separation method as suggested in [8]. We can re-write our objective
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function in the following form:

min
x;f

k y �˚.x/f k22
where ˚.x/ D Œe�A1.x1;:::;xm1/ e�A2.xm1C1;:::;xm2/ : : : e�A3.xm2C1;:::;xm/� (3)

f D ˚�.x/y (4)

where ˚�.x/ is Moore-Penrose inverse of ˚.x/

i:e:; ˚�.x/ D .˚.x/T˚.x//�1˚.x/T (5)

By substituting Eq. (4) in Eq. (3), our objective function takes the following form:

min
x

k y � ˚.x/.˚.x/T˚.x//�1˚.x/Ty k22 (6)

min
x

k .I � ˚.x/.˚.x/T˚.x//�1˚.x/T/y k22 (7)

Eq. (7) is called the variable projection functional. Assuming that ˚.x/ has a
locally constant rank, it has been proven in [8] that the global minimum of
Eq. (7) remains the same as the global minimum of Eq. (3). The matrix ˚.x/ has
number of measurements (rows) much larger than the number of compartments
(columns). Further, the measurements are noisy. Thus, generically it will always
have full column rank.

– Step 2. Non-linear parameters estimation by GA. It has been shown in [9]
that GA can be used efficiently for NLLS estimation of x, while solving for a
sum of exponentials models in time series. We extend the approach for solving
Eq. (7) and employ elitism based method with population size of 24–40. Stopping
criteria of 70–100 generations was found sufficient for convergence in this
problem setting. Implementation was done by using the toolbox developed at
the University of Sheffield.1

– Step 3. Constrained linear parameters estimation. Once non-linear parameters
x are known, estimation of linear parameters is a linear least squares estimation
problem as shown in (4).

– Step 4. NLLS estimation using gradient based methods. Estimates after step 3
are further refined by using gradient based methods (for example MATLAB’s
‘lsqcurvefit’) by constrained NLLS estimation. In practice this allows the
reduction of the number of generations used in the GA (step 2).

1http://codem.group.shef.ac.uk/index.php/ga-toolbox.

http://codem.group.shef.ac.uk/index.php/ga-toolbox
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4 Results

4.1 Experiment Using Synthetic Data

First the proposed algorithm was tested with synthetic data generated by the open
source software CAMINO [4] using ‘datasynth’. For the purpose of this comparison,
we used the Zepplin-Cylinder-Dot model [7, 10] with Rician noise at different
SNRs. Data was generated using 4 b-values each with 119 directions and 18
additional b0 volumes. Detail is given in Sect. 4.2 below.

Example Problem : dMRI Data Fitting to ‘Zepplin-Cylinder-Dot’ Model

min
R;�;�;d

?
;f

k y � . f1e
�Acylinder.R;�;�/ C f2e

�AZeppelin.�;�;d?
/ C f3e

�ADot/ k22 (8)

such that
3X

iD1
fi D 1; fi � 0 i D 1; 2; 3:

0 � R � 20; 0 � � � 2�; 0 � � � �

d? D dk.1 � . f1=. f1 C f2///

Fibre direction vector n D �
cos� sin � sin � sin � cos�

�
(9)

For simplicity, only unknown parameters have been shown in Eq. (8) and
described as follows: f1,f2 and f3 are intra-axonal, extra-axonal and CSF com-
partments volume fractions. dk (diffusion coefficient parallel to fiber orientation,
fixed for in-vivo data to 1:7eC3 (s/
m2/) , d? (s/
m2/ is the diffusion coefficient
perpendicular to fiber orientation. The constraint given in Eq. (8) on d?, is from a
simple tortuosity model given in [11]. R (
m) denotes the average axonal radius,
while � (rad) and � (rad) give the fiber orientation as in Eq. (9). Details about the
functions describing e�Acylinder ; e�AZeppelin and e�ADot can be found in [10].

Objective Function Analysis Using the generated synthetic data, objective func-
tion given in Eq. (8) can be visualized by some of the plots as shown in Fig. 1. It can
be seen in Fig. 1a, c that if � is constrained as in Eq. (8), there can be two distinct
solutions for n (180ı apart). Figure 1c shows that if a gradient based method is
used, any initial value of R greater than a certain point (approximately 10
m in this
example), will never lead to a global minimum. Small axonal radii can therefore
be over-estimated, should this type of situation arise. Figure 2 shows the effect of
Rician noise on the objective function. Although the overall shape of the objective
function remains approximately the same, extrema are elevated and exhibit less
contrast, thereby possibly rendering the optimization procedure more complicated.

Comparison of Results with CAMINO For all parameter estimates (R; fi; � and
�) and all SNR levels, the proposed method consistently yields greater accuracy
and robustness than CAMINO on synthetic data. Figures 3, 4, 5, and 6 show the
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Fig. 1 Objective function plots when, (a) � and �, (b) R and �, (c) R and � are varying only

Fig. 2 Objective function plots at (a) SNR D 200, (b) SNR D 12 for � and � as only variables

estimated parameters histograms for 100 runs at SNR D 25. Model fitting was
done in CAMINO using the ‘modelfit’ function with 100 runs of the Levenberg-
Marquardt algorithm. Particularly, R and orientation (�; �) estimates are very robust
to noise using the proposed method. We find that R is slightly underestimated by
only about 0:05 
m at all SNR levels.

Time Complexity The estimation time depends upon the number of measure-
ments. For CAMINO, it also increases with noise level. For this example, fitting
time (per voxel) for CAMINO varied from 10 to 13 s while the proposed method
took 4.8 s at the most. Time was calculated without any parallel processing on the
same machine (Core i7 with 12 GB RAM).

4.2 Experiments Using Real MRI Data

Results Using Ex-Vivo Monkey Brain Data A fixed monkey brain data set2

[6], was used to compare results with CAMINO and AMICO. In CAMINO data
fitting was performed using the ‘mmwmdfixed’ model, as detailed on the CAMINO

2http://dig.drcmr.dk/activeax-dataset/.

http://dig.drcmr.dk/activeax-dataset/
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Fig. 3 Histogram of axon radius estimates using synthetic data SNR D 25 with true value of
R D 10
m. (a) CAMINO (8–12
m). (b) Proposed algorithm (9.66–9.67
m). (c) Histograms
superimposed

Fig. 4 Histogram of v D f1=. f1 C f2/ estimates using synthetic data SNR D 25 with true value
of v D 0:7. (a) CAMINO (0.3–0.8). (b) Proposed algorithm (0.633–0.634). (c) Histograms
superimposed

Fig. 5 Histogram of � estimates using synthetic data SNR D 25 with true value of � D
1:54 rad. (a) CAMINO (1.5–1.7 rad). (b) Proposed algorithm (1.5524–1.5525 rad). (c) Histograms
superimposed

website.3 AMICO results were generated as shown in [5]. Using proposed method, a
four compartment model (‘Zepplelin-Cylinder-Ball-Dot’), as suggested in [12], was
used to estimate parameters. Figure 6 shows radius estimates, while Fig. 7 shows
density index .�0/ D f1=. f1 C f2/�R2 estimates comparison. Figures 6 and 7 show
a mid-sagittal slice of the corpus callosum.

3http://cmic.cs.ucl.ac.uk/camino/index.php?n=Tutorials.ActiveAx.

http://cmic.cs.ucl.ac.uk/camino/index.php?n=Tutorials.ActiveAx
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Fig. 6 Radius estimates for ex-vivo monkey brain data. (A) CAMINO. (B) Proposed method.
(C) AMICO (all units in 
m)

Fig. 7 Density index �0 estimates ex-vivo monkey brain data. (A) CAMINO. (B) Proposed
method. (C) AMICO (no unit)

Results exhibit similar pattern throughout the corpus callosum i.e., densely
packed small axon in genu and splenium, with larger axon and lower density in
the mid-body. However, in comparison to the proposed method, CAMINO appears
to over-estimate axon radii in both the genu and splenium (by about 3
m) and
under-estimates radii in the mid-body (by about 2
m). AMICO almost uniformly
over-estimates radii throughout corpus callosum by about 2–3
m as compared to
both CAMINO and proposed method. The density index is over-estimated in the
mid-body and under-estimated in the genu and splenium by CAMINO as compared
to our proposed method. We hypothesize that such over-estimation for the radius
may be related to the optimization issue illustrated in Fig. 1c. This result is also
consistent with our analysis on synthetic data. AMICO as compared to CAMINO
and proposed method, under-estimates density index by approximately 0.02 in mid-
body, and 0.03 in genu and splenium.
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Fig. 8 Radius estimates for in-vivo human brain data. (a) CAMINO. (b) Proposed algorithm.
(c) Difference (all units in 
m)

Fig. 9 Density index �0 estimates for in-vivo human brain data. (a) CAMINO. (b) Proposed
algorithm. (c) Difference (no unit)

Results Using In-Vivo Human Brain Data Diffusion MRI data was acquired on
a healthy volunteer using a Siemens 3T Skyra system with voxel size 2 mm3, and
four b-values, each with 119 directions and 18 additional b0 volumes. b-Values and
corresponding parameters were chosen as follows:

b1 D 820 s mm2 .	=ı=jGjmax D 17:6ms=9 ms=98:5 mT m�1/;
b2 D 980 s mm2 .	=ı=jGjmax D 55:5ms=5:2 ms=97:1 mT m�1/;
b3 D 3010 s mm2 .	=ı=jGjmax D 38:5ms=22:2 ms=52:4 mT m�1/;
b4 D 7600 s mm2 .	=ı=jGjmax D 37:8ms=29:3 ms=66:6 mT m�1/.

Only CAMINO has been used to compare results as AMICO does not imple-
ment ‘mmwmdinvivo’ model. A three-compartment model (Zeppelin-Cylinder-
Ball, neglecting stationary compartment as suggested in [12]) was used to estimate
parameters with our proposed method. Figure 8 shows radius estimates, while Fig. 9
shows �0 estimates comparison in the corpus callosum.

Results are generally in close agreement for both methods. However, a few
important differences can be identified. First, the proposed method is more robust
to noise and partial volume effects, with less outlier values within (Fig. 9) and
around (Fig. 8) the corpus callosum. Second, the proposed method is able to estimate
smaller axonal radii and slightly higher density in the splenium area.

5 Conclusion

We have introduced a novel data fitting procedure for all multi-compartment models
discussed in [10] using dMRI data. We have shown that the method is more reliable
than other methods involving grid search and Markov Chain Monte Carlo (MCMC).
It does not rely on any assumption such as single fiber orientation (for initial-
ization), and directly estimates multi-compartment parameters from dMRI data.
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Therefore, it can readily be applied to models with more than one fiber orientation
and more than four compartments. We believe that there is a great potential for
improved efficiency due to simple implementation in MATLAB (without requiring
SPAMS and CAMINO). However, the strength of current implementation is not
primarily the reduction in estimation time but the flexibility to handle more realistic
models.

Acknowledgements Work partly supported by NIH grants P41 EB015894, P30 NS076408, R01
EB008432, Human Connectome Project (U54 MH091657) and Fulbright Program.
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Multi-Tensor MAPMRI: How to Estimate
Microstructural Information from Crossing
Fibers

Mauro Zucchelli, Lorenza Brusini, C. Andrés Méndez, and Gloria Menegaz

Abstract Diffusion Magnetic Resonance Imaging (dMRI) is able to detect the
properties of tissue microstructure underneath the voxel through the imaging of
water molecules diffusion. Many reconstruction methods have been proposed to
calculate the Orientation Distribution Function (ODF) from the diffusion signal
in order to distinguish between coherent fiber bundles and crossing fibers. The
diffusion signal was also used to infer other microstructural information such as
the axon diameter, but most often in areas with coherent fiber direction such as
the corpus callosum. In this work, we developed a reconstruction model called
Multi-Tensor MAPMRI (MT-MAPMRI) that is an extension of the MAPMRI model
which improves the performance of MAPMRI for crossing fibers. In particular,
it provides (a) enhanced signal fitting; (b) improved ODFs; (c) a more accurate
diameter estimation. The model was tested and validated on both simulated and
in-vivo data.

1 Introduction

Diffusion MRI is able to extract information on the cerebral tissue in vivo. From
the diffusion weighted (DW) signal, it is possible to calculate the ensemble average
propagator (EAP) under the long diffusion time assumption. The diffusion signal
E.q/ depends on the pulse width ı, the pulse separation time 	 and the gradient
strength G. Since the number of points that is possible to acquire with diffusion
MRI in practice is limited, analytical reconstruction models represent a mean
of extrapolating missing data in a controlled way. These are thus fitted to the
signal enabling the estimation of the tissue physical properties based on analytical
expressions. One of the first reconstruction models was the Diffusion tensor (DTI)
[4] in which the signal was modeled as a single multivariate Gaussian function
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(diffusion tensor). This model has been proved suitable for describing diffusion in
unconstrained conditions and in the case of single fiber bundles. Many attempts
have been made to expand the single tensor to a double or multi-tensor [13]
estimation in order to characterize more complex fiber topologies, like crossings,
which normally occur in the majority of the white matter [8]. Other reconstruction
techniques try to fit more complex basis functions to the signal in order to be
able to naturally fit crossing fibers. The 3D Simple Harmonic Oscillator Based
Reconstruction and Estimation (SHORE) introduced in [10] fits the diffusion signal
as a series of Hermite polynomials and spherical harmonics, leading to good results
in the calculation of the Orientation Distribution Function (ODF). The model further
evolved in the Mean Apparent Propagator (MAP) MRI [12] in which the spherical
harmonics were replaced by a set of orthogonal 1D-SHORE functions. In addition
to the ODF, other micro-structural descriptors were introduced, including the Return
To the Axis Probability (RTAP), an index characterizing the pore mean cross
sectional area, under certain conditions. Previously this feature was only calculated
in single fibers voxels using compartmental models such as the one proposed in
[3, 15] or using 3D-SHORE and MAPMRI as in [5, 6].

In this paper, we propose an improvement of MAPMRI based on a multi-tensor
fitting which is able to improve signal fitting and the calculation of EAP features
like the ODF and the RTAP for voxel containing multiple crossings fibers.

2 Materials and Methods

2.1 MAPMRI

The SHORE basis was originally defined in [10] and expresses the 1D diffusion
signal as

˚n.u; q/ D i�n

p
2nnŠ

e�2�2u2q2Hn.2�uq/ (1)

where u is a scale factor and H is the Hermite polynomial of order n. MAPMRI is a
3D SHORE basis where signal reconstruction is performed in two steps: in the first,
a Gaussian function (tensor) is fitted to the signal and the tensor eigenvectors are
used to rotate the reference frame in order to have the axis aligned with principal
diffusion directions. The eigenvalues are then used to calculate the scale parameters
of the three SHORE bases ux, uy and uz.

Since the basis is separable in the new reference frame, MAPMRI basis can be
expressed as a 3D basis

˚n1;n2;n3 .u;q/ D ˚n1 .ux; qx/˚n2 .uy; qy/˚n3 .uz; qz/ (2)
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with independent radial orders n1; n2; n3. The diffusion signal E.q/ can then be
modeled as

E.q/ D
NmaxX

ND0

X

n1;n2;n3

cn1;n2;n3˚n1;n2;n3 .q/ (3)

where cn1;n2;n3 are the basis coefficients. The coefficients vector c can be obtained
using the standard least-squares fit or, alternatively, using quadratic programming in
order to add positivity constraints in the EAP space as in [12].

MAPMRI provides very accurate signal fitting in the case of voxels containing
bundles of fibers aligned in a single direction [5]. RTAP is calculated as the integral
of the signal in the plane orthogonal to the main axes of the pore [12]. There is an
intrinsic problem in identifying the principal direction of a fiber crossing. MAPMRI
identifies it as the main axis of the tensor that is usually placed between the axes of
the fibers. Selecting only the principal axis of one of each fiber would not solve the
problem because the signal originating in the second fiber would anyway contribute
to the integral. The only way to calculate this index accurately for crossing fibers is
to split the signal contributions of each fiber, as is explained below.

2.2 Multi-Tensor MAPMRI

In order to overcome the limitations of MAPMRI the initial tensor fitting is replaced
with the fitting of m axially symmetric tensor Di. With this model the diffusion
signal can be expressed as

E.q/ D
mX

iD1
fi exp.�4�2�qT Diq/ (4)

Finding the volume fraction coefficients, fi, along with the tensor parameters is a
nonlinear optimization problem that can not be solved by ordinary least squares.
In order to find the coefficients, we implemented a Monte Carlo Markov Chain
optimization algorithm maximizing the Rician log-likelihood of the fitting [9]. From
the diffusion tensors, it is possible to derive multiple MAPMRI bases ˚ i, using
the respective eigenvalues and the eigenvector of Di. MT-MAPMRI basis signal
reconstruction can then be calculated as

E.q/ D
mX

iD1

NmaxX

ND0

X

n1;n2;n3

ci
n1;n2;n3˚

i
n1;n2;n3 .q/ (5)
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The coefficients set ci can be fitted at the same time using ordinary least squares or
quadratic programming. It is then possible to calculate the EAP and its features, like
the ODF and the RTAP, as the sum of the contributions of each component.

For example, in the case of RTAP, it is possible to calculate each RTAPi using the
set of coefficients ci for all the m components. The final RTAP for MT-MAPMRI
will be equal to

Pm
iD1 RTAPi. This is a sum, and not a weighted average because

the relative volume fraction of each component is already embedded in the basis
coefficients.

Therefore, fitting the multi-tensor correctly is absolutely crucial, since a poor
fit will lead to an even worse fitting of the SHORE basis. In order to ensure the
robustness of the approach we try to fit at the same time: one isotropic tensor,
one axially-symmetric tensor, two axially-symmetric tensors and three axially-
symmetric tensors meanwhile selecting the best model using Akaike information
criterion [2]. In addition, if the tensor fraction fi is less than 0:15 the relative tensor
is not used for the SHORE fitting. In the case of voxels containing single bundles of
fibers the MT-MAPMRI basis is equivalent to the classical MAPMRI basis using a
single axially-symmetric tensor.

2.3 Simulated Data

RTAP allows inferring the underlying pore cross-sectional area accurately only
under three conditions: (a) the compartment is homogeneous (e.g. the pore is
composed only of cylinders with the same radius and orientation), (b) the pulse
separation time 	 is much larger than the pulse width ı, and (c), there are enough
points in the q-space to provide a good fitting of the bases. We will refer to these
conditions as ideal conditions for what concerns this work.

In order to have homogeneous compartments with known ground truth we
calculate the diffusion signal inside the cylindrical pore of given radius r0 as
described in [11] as Ecyl.q?; r0/ D .J1.2�r0q?/=.�r0q?//2 where q? is the plane
perpendicular to the main cylinder axis and J1 is the Bessel function of the first kind.

The axis diffusivity E.qk/ is simulated as a 1D Gaussian function. The total 3D
diffusivity can be calculated as Ecyl.q; r0/ D E.q?; r0/E.qk/. This equation holds
true only if 	 
 ı which is the necessary condition for testing MAPMRI and
MT-MAPMRI RTAP. In these conditions, the RTAP represents the inverse of the
cross sectional area of the pore, and the cylinder diameter can thus be estimated as
2
p
1=.RTAP � �/.
We simulated three different sets of cylinders with radii of 4, 6 and 8�m, and

with crossing angles of 0 (coherent fibers), 45ı, 60ı and 90ı. For each of the crossing
angles, we changed the orientation of the crossing fibers in 11 different directions.
Rician noise was then added to the voxels at a signal to noise ratio (SNR) equal to
20, with ten different instances per voxel. The final dataset was composed of 1320
voxels.
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2.4 In Vivo Data

The Human Connectome Project (HCP) [14] data results from a three-shell diffusion
weighted acquisition with 1.25 mm isotropic voxels in a 145� 174� 145 matrix. A
total of 288 DW measurements were acquired in each voxel with 90 gradients per
shell, respectively, with b-values 1000, 2000 and 3000 s=mm2 and 18 b0 images.
Echo time and repetition time were respectively 78 ms, and 2.6 s, with pulse width
ı D 10:6ms, and pulse separation	 D 43:1ms.

3 Results

Cylindrical signal was simulated as is explained in Sect. 2.3, using the HCP gradient
table. MAPMRI and MT-MAPMRI were fitted on the signal, the maximal radial
order Nmax was set to 6 for MAPMRI (50 coefficients) and to 4 for MT-MAPMRI
(22 coefficients times the number of tensors), respectively. From the signal fitting,
it was possible to calculate the ODF, the RTAP and the normalized mean square
error (NMSE). The latter was calculated by reconstructing the cylinders signal on a
10-shell ground truth, with bmax D 10;000, in order to benchmark the interpolation
performance of the basis in points different from the one used for the fitting. The
RTAP was then used to estimate the cylinders diameter while from the ODF it was
possible to extract the principal directions that were used for calculating the angular
error (AE) with respect to the ground truth directions.

An example of ODF for a simulated voxel featuring a crossing of 60ı is presented
in Fig. 1. As can be seen MAPMRI ODF tends to underestimate the crossing angle,
which is actually 8ı below the ground truth value [6]. On the contrary MT-MAPMRI
recovers the crossing angle correctly. Figure 2, top row, shows the ability of the
two bases to estimate the cylinder diameter under the ideal conditions. Since the
single tensor can not adapt to the topology of the fibers configuration, MAPMRI
introduces an error in the estimation of the RTAP, leading to an overestimation of the

Fig. 1 Ground truth ODF, MAPMRI ODF and MT-ODF for a simulated two tensors crossing
of 60ı
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Fig. 2 Estimated diameter (top row), angular error (middle row) and NMSE (bottom row) on
pure cylinder voxels for MAPMRI (left) and MT-MAPMRI (right), grouped by the ground truth
diameter

cylinders diameter. Instead, the multi-tensor of the MT-MAPMRI is able to detect
the main diffusion directions and model the signal accordingly. In consequence,
the diameter estimation is more accurate, outperforming MAPMRI. As stated in
Sect. 2.1, MAPMRI tends to underestimate the crossing angles (Fig. 2, second row),
while MT-MAPMRI is able to retrieve the orientation directions in a reliable way
even for the majority of the 45ı crossings. For the same reason the reconstruction
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NMSE is lower for MT-MAPMRI than for MAPMRI. Although MT-MAPMRI is
generally more robust than standard MAPMRI, with a narrower interquartile range,
some outliers are still presents. These points represent voxels for which the initial
multi-tensor fails to retrieve the correct fibers configuration, leading to a wrong MT-
MAPMRI fitting.

Although it was possible to estimate the diameter under ideal conditions in these
simulated voxels, a validation on in-vivo data is required. The real signal is the
average of the signal contributions of all the water molecules trapped in the different
compartments present in the voxel. Also, when we moving from the ideal condition
	 
 ı to a more realistic 	 ' ı it is possible to observe an underestimation of
the cylinder radius. The complete characterization of this behavior is beyond the
scope of this paper. Figure 3 shows the values of the estimated mean diameter in
a central coronal slice of HCP data for both MAPMRI and MT-MAPMRI. There
are some little differences between the two techniques which are most probably
due to the fact that in MT-MAPMRI the additional constraint of axially symmetric
tensors is imposed for single fiber voxels, while MAPMRI uses classical DTI tensor.
The corpus callosum (CC) presents an average apparent mean diameter of 9:0 �m
with both techniques (Fig. 4). The mean values in each section are higher than those
reported in [1]. However, they are inline with those presented in [3]. This is due
to different factors limiting the accuracy of the measure including partial volume
effects. Fick et al. [5] were able to obtain a more accurate axon diameter estimation
in CC but using a bmax D 10;000 four shells acquisition, with 552 gradients.

In the areas of crossings like the corona radiata (CR) MAPMRI diameter values
(14:0 �m on average) are higher than the one obtained in the CC, in agreement with
the results of the simulations showing that MAPMRI is prone to apparent mean
diameter overestimation in case of crossing fibers. MT-MAPRMI values, on the
contrary, are lower (10:4 �m) and closer to those obtained in CC. The histogram of

Fig. 3 Estimated diameter in one coronal slice of HCP in vivo data. As it is possible to observe
MAPMRI (left) apparent mean diameter is higher in regions with crossing fibers, while MT-
MAPMRI (right) estimated diameter appears steadier across the white matter
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Fig. 4 Estimated diameter in a corpus callosum ROI of HCP data

Fig. 5 Profile of the histogram for the diameter estimation in white matter voxels for MAPMRI
(blue) and MT-MAPMRI (green) for a slice of HCP brain

the white matter apparent mean diameter (Fig. 5) of MT-MAPMRI shows that there
is a higher number of voxels with low diameter with respect to the same histogram
for MAPMRI. This is due to the large amount of crossings present in brain white
matter compared to pure single fiber voxels [8], highlighting the potential of MT-
MAPMRI in detecting white matter structural features in the presence of complex
fiber topologies.
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4 Conclusions

The apparent mean diameter for in vivo data is an index that is limited by three
factors: (a) the compartments inside the voxel are not homogeneous, (b) the long
diffusion time hypothesis is not verified, (c) the gradient strength used for in vivo
studies is not high enough for characterizing small compartments [7]. Despite these
limitations this index holds the potential to describe anomalies and peculiarities of
the different brain tissues in vivo, in both pathological and healthy subjects. MT-
MAPMRI expands the MAPMRI reconstruction technique adding the possibility
to align the basis on multiple tensors if the voxel presents a high likelihood to
contain more than one fiber bundles. This led to a better estimation of ODF and
apparent mean diameter for such voxels, in both simulations and in-vivo data. The
principal drawback of the technique is the fact that the fitting of multiple tensors is
a non-linear problem with no easy solution. It can give unstable results (especially
in the presence of noise) and that requires a longer computation time with respect to
the single tensor (three seconds per voxel on an Intel Core I7-3610QM, 2.3 GHz).
Future work will include the research of an improved and faster multi-tensor imple-
mentation, besides the complete characterization of MT-MAPMRI performance on
an extended set of data and with respect to other state-of-the-art methods such as
constrained spherical deconvolution and 3D-SHORE.
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On the Use of Antipodal Optimal Dimensionality
Sampling Scheme on the Sphere for Recovering
Intra-Voxel Fibre Structure in Diffusion MRI

Alice P. Bates, Zubair Khalid, and Rodney A. Kennedy

Abstract In diffusion magnetic resonance imaging (dMRI), the diffusion signal
can be reconstructed from measurements collected on single or multiple spheres in
q-space using a spherical harmonic expansion. The number of measurements that
can be acquired is severely limited and should be as small as possible. Previous
sampling schemes have focused on using antipodal symmetry to reduce the number
of samples and uniform sampling to achieve rotationally invariant reconstruction
accuracy, but do not allow for an accurate or computationally efficient spherical
harmonic transform (SHT). The recently proposed antipodal optimal dimensionality
sampling scheme on the sphere requires the minimum number of samples, equal
to the number of degrees of freedom for the representation of the antipodal
symmetric band-limited diffusion signal in the spherical harmonic domain. In
addition, it allows for the accurate and efficient computation of the SHT. In this
work, we evaluate the use of this recently proposed scheme for the reconstruction
of the diffusion signal and subsequent intra-voxel fibre structure estimation in
dMRI. We show, through numerical experiments, that the use of this sampling
scheme allows accurate and computationally efficient reconstruction of the diffusion
signal, and improved estimation of intra-voxel fibre structure, in comparison to
the antipodal electrostatic repulsion and spherical code sampling schemes with the
same number of samples. We also demonstrate that it achieves rotationally invariant
reconstruction accuracy to the same extent as the other two sampling schemes.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) uses the intra-voxel diffusion char-
acteristics of water molecules to determine the structure and connectivity of white
matter in the brain. Diffusion signal measurements are collected on a single sphere
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or multiple spheres in q-space (known as q-shells) [8, 9]. The reconstruction of the
diffusion signal on a sphere from these measurements is carried out by expanding
the signal in terms of spherical harmonics [12, 14]. By choosing a sufficiently
large band-limit in the spherical harmonic degree, L, the diffusion signal can be
represented in terms of a finite number of coefficients in the spectral domain,
enabled by spherical harmonic transform (SHT) [16]. Various techniques proposed
in the literature for estimating the intra-voxel fibre structure in dMRI use the
diffusion signal spherical harmonic coefficients, such as Q-ball imaging in constant
solid angle (QBICSA) [1, 11].

In order to facilitate accurate and fast estimation of fibre structure, a sampling
scheme must support accurate and efficient computation of the SHT. It is also
important that the scheme require as few measurements as possible in order to
reduce scan times [2, 19]. Furthermore as fibre populations may assume any
orientation within a voxel, the accuracy of the reconstruction of the diffusion signal
should not change significantly if the diffusion signal (or sampling scheme) is
rotated [7, 8]. As dMRI is an inherently noisy imaging technique, reconstruction
should also be robust to noise [10].

Novel Sampling Scheme Many sampling schemes used in dMRI focus on uniform
sampling on the sphere to achieve rotationally invariant reconstruction accuracy
and antipodally symmetric sampling grids to reduce the number of samples, but
do not consider accurate and efficient computation of the SHT [7, 8, 15]. Recently,
the antipodal optimal dimensionality sampling scheme on the sphere [3] has been
proposed for the reconstruction of antipodal symmetric signals. This scheme enables
a SHT which is more computationally efficient than the other sampling schemes
that use the least squares (LS) method of SHT computation, as we show later in
the paper. It also requires the minimum number of samples, given by the degrees of
freedom required to represent the antipodal symmetric signal in the spectral domain,
for accurate computation of SHT of the signal.

The widely used antipodal electrostatic repulsion sampling scheme (ESR) [15]
can be used with the minimum number of samples, however it does not allow
accurate reconstruction of the diffusion signal with this number of points, as we
later demonstrate in the paper. The sampling scheme [7] generalises the ESR scheme
to multiple q-shells and reduces to the ESR scheme for a single q-shell. The ESR
scheme is also extended to 3D q-space sampling in [17] and a generalised metric
is defined. For single-shell q-space sampling, the energy measure used in ESR is
suitable [17]. The scheme [8] is another scheme with a uniformly and antipodally
symmetric distributing of samples on the sphere, it generalises the spherical code
(SC) formulation (minimum angular distance between samples) to multiple shells
and can be formed for any number of samples.

We note that the sampling scheme [6] uses spherical design to enable the accurate
computation of the SHT, and has a uniform and antipodally symmetric arrangement
of samples, however it requires more than the minimum number of samples. The
equiangular sampling scheme proposed in [9] has an accurate and efficient SHT but
requires approximately four times the minimum number of samples.
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Contributions In this work, we evaluate the antipodal optimal dimensionality
sampling scheme for estimating the intra-voxel fibre structure in dMRI. We
address whether the sampling scheme: (a) enables the accurate reconstruction of
the diffusion signal on the sphere and consequently improves estimation of fibre
structure within each voxel, (b) has a reconstruction accuracy that does not vary
significantly with rotation and (c) is computationally efficient.

In order to answer these questions, we evaluate the antipodal optimal dimension-
ality sampling scheme against other single q-shell sampling schemes that can be
used with the minimum number of samples; we analyse the reconstruction of the
diffusion signal and the intra-voxel fibre structure estimation using QBICSA from
measurements of the diffusion signal taken over the antipodal optimal dimen-
sionality, ESR and SC sampling schemes. We demonstrate that the acquisition of
measurements over the antipodal optimal dimensionality sampling scheme allows
accurate and computationally efficient reconstruction of the diffusion signal, and
better estimation of intra-voxel structure in dMRI.

2 Materials and Methods

2.1 Diffusion Signal on Sphere

Let the diffusion weighted signal at a fixed q-space radius (or fixed diffusion weight-
ing, b) be denoted by S.�; �I b/, where the angles co-latitude � 2 Œ0; �� and longi-
tude � 2 Œ0; 2�/ parameterise a point u.�; �/ D .sin � cos�; sin � sin �; cos �/0 on
the sphere S2.

The spherical harmonic functions (or spherical harmonics for short), denoted by
Ym
` .�; �/ and defined for integer degree ` � 0 and integer order jmj � `, form

a complete basis for the space of signals defined on the sphere. Since S.�; �I b/
is antipodal symmetric, with S.�; �I b/ D S.� � �; � C �I b/ and Ym

` .�; �/ D
Ym
` .� � �; � C �/ for even ` and Ym

` .�; �/ D �Ym
` .� � �; � C �/ for odd `, the

expansion of S.�; �I b/ in the spherical harmonic basis only includes even degree
spherical harmonics, that is,

S.�; �I b/ D
L�1X

`D0
` even

X̀

mD�`
.S/m` .b/Y

m
` .�; �/; L odd; (1)

where L represents the band-limit that depends on the b-value [9, 19], and .S/m` .b/
denotes the spherical harmonic coefficient of degree ` and order m, which is
calculated using the SHT, given by

.S/m` .b/ ,
Z

S2

S.�; �I b/Ym
` .�; �/ sin � d� d�: (2)
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The spherical harmonic coefficients .S/m` .b/ form the spectral domain representation
of S.�; �I b/. In practise, (2) has to be calculated numerically; there exist sampling
schemes, such as [3], that enable algorithms for accurately calculating the SHT (see
[18] for a comprehensive review). For other schemes, such as [8] and [15], .S/m` .b/
can also be calculated using LS where (1) is written as a system of linear equations.

The reconstruction of the signal S.�; �I b/ from its spherical harmonic coeffi-
cients, as given in (1), is referred to as the inverse SHT. The diffusion signal is
assumed to be band-limited at degree L such that .S/m` .b/ D 0 for ` � L; if this
assumption does not hold, there is a truncation error.

Diffusion-Weighted Data Synthesis We use the commonly used Gaussian mixture
model [2, 10] to obtain a diffusion weighted dataset. The diffusion weighted signal
model for a voxel is given by

S.�; �I b/ D S0

MX

kD1
fke�bu.�;�/T Dku.�;�/; (3)

where S0 is the baseline image at b D 0, M is the number of fibres, the volume
fractions fk of each fibre population are normalized to ensure that

PM
kD1 fk D 1

and Dk is the diffusion tensor for the kth fibre in the voxel. Each fibre’s tensor is
computed from a rotated version of a tensor, D D diag.�1; �2; �3/, with Dk D
RT

k DRk, where �1 is the diffusivity along the main axis of a fibre while �2 and �3
are the diffusivities in the plane perpendicular to it, and Rk is the rotation matrix that
rotates the kth fibre to the direction of the kth fibre population.

In the numerical experiments where the effect of noise is considered, we add
Rician noise to the diffusion weighted signal as [13]

S.�; �I b/n D
q
.S.�; �I b/C �1/2 C �22; (4)

with �1; �2 	 N.0; 
2/ and 
 D S0=SNR. The signal-to-noise ratio (SNR) controls
the level of noise on the baseline image, assumed to be S0 D 1 [10].

2.2 Antipodal Optimal Dimensionality Sampling Scheme

The antipodal optimal dimensionality sampling scheme [3], which we denote
by SO.NO/ where NO D L.L C 1/=2, has an iso-latitude sampling grid with
L iso-latitude rings placed in antipodal pairs at Œ0; : : : ; � � �L�3; �L�3; � �
�L�1; �L�1�; L odd and equiangular sampling along longitude with the points placed
so that the samples in ring �n are antipodal to those in ring �n�1 (Fig. 1 shows
SO.28/ which has L D 7 rings). The antipodal nature of SO.NO/ means that
measurements only need to be taken over the rings �n for n D 0; 2; : : : ; L � 1;
the value of the diffusion signal over the remaining points can be determined using
the antipodal symmetry of the diffusion signal.
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Fig. 1 The antipodal optimal dimensionality sampling scheme for L D 7, SO.28/. (a) North and
(b) south pole view. Points where measurements are taken are shown in blue and points where
antipodal symmetry is used to evaluate S.�; �I b/ are shown in red

The number of measurements required by this scheme is NO, which is the
minimum number of samples attainable by any sampling scheme as there are NO

degrees of freedom required to represent the antipodal band-limited signal in the
spectral domain [as can be seen from Eq. (1)]. More details of SO.NO/, including
the precise location of samples, can be found in [3]. The design of SO.NO/ enables
a SHT (described in [3]) which is accurate and efficient, unlike other schemes that
focus on uniform sampling of the sphere which use LS.

3 Diffusion Signal Reconstruction

In this section, we analyse the reconstruction of the diffusion signal from its samples
taken over SO.NO/. We obtain a diffusion weighted dataset using the diffusion
signal model (3), with �1 D 1:7 � 10�3 mm2=s and �2 D �3 D 0:3 � 10�3 mm2=s
which are values typically observed in the human brain [5].

3.1 Evaluation of Band-Limit of Diffusion Signal

It has been demonstrated that SO.NO/ allows accurate computation of the SHT
of any band-limited antipodal symmetric signal on the sphere in [3]; we therefore
evaluate whether the assumption that the diffusion signal is band-limited holds. In
order to study the band-limit of the diffusion signal, we define the per-degree energy
spectrum P.b; `/ of the diffusion signal (3) as

P.b; `/ ,
X̀

mD�`
j.S/m` .b/j2; (5)
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Fig. 2 (a) Per-degree energy spectrum P.b; `/ (5), is plotted as log10 P.b; `/ for 0 � ` < 45; `

odd and 1000 � b � 8000 s=mm2. Black and grey lines indicate where P.b; `/ drops below
10�15 and 10�6 respectively, and dashed lines show linear relationship between b and L. (b) Mean
reconstruction error Emean for 5 � L � 21 for SO.NO/, SE.NO/ and SS.NO/

which is plotted for 1000 � b � 8000 s=mm2 and 0 � ` � 45 in Fig. 2a, where
it can be observed that the energy spectrum P.b; `/ decreases gradually with the
increase in spherical harmonic degree `.

The threshold lines on the surface plot in Fig. 2a for which P.b; `/ drops below
10�15 (black) and 10�6 (grey) can guide us in choosing the band-limit of the
diffusion signal. For example, L D 21 and L D 11 for b D 3000 s=mm2 as
indicated by black and grey line, respectively. For L D 21, we require NO D 231

samples, which may be too large as it is common for around 60 samples to be
taken at b D 3000 s=mm2 [10]. For L D 11, we need NO D 66 samples. Using
a smaller L (larger threshold) means less samples are required but will result in a
larger truncation error, as we demonstrate in the next section.

The approximately linear relationship between b and L is indicated by dashed
lines in Fig. 2a. Figure 2a shows P.b; `/ for a synthetic diffusion signal obtained
from (3) with M D 2 fibres and a crossing angle of 25ı, however we observed
insignificant variation in P.b; `/ for different M and fibre orientations.

3.2 Reconstruction Accuracy

In order to evaluate whether SO.NO/ allows for the accurate reconstruction of
S.�; �I b/, we compare it with the ESR scheme [15] composed of NO samples,
denoted by SE.NO/ and the SC scheme [8] composed of NO samples, denoted
by SS.NO/.1 In order to compute the SHT of a signal from its samples taken

1The best known solutions of the SC problem [8] are available at http://neilsloane.com/grass/dim3/
for up to 100 antipodal pairs, hence we are only able to show results obtained using SC for L < 15
(NO D 91) in this paper.

http://neilsloane.com/grass/dim3/


On the Use of Antipodal Optimal Dimensionality Sampling Scheme on the. . . 81

over SE.NO/ and SS.NO/, regularised LS is used with regularisation parameter
� D 0:006 (used in [11, 20]) to improve the condition number of the matrix involved
the computation of the SHT. Due to space constraints, here and in the rest of the
paper we only show results for b D 3000 s=mm2, which is commonly used to obtain
S.�; �/measurements [10].

We conduct the following experiment to determine the reconstruction accuracy.
For a given b-value, synthetic measurements of the diffusion signal, using (3), are
first obtained over the sampling grid SO.NO/ or SE.NO/ or SS.NO/. The spherical
harmonic coefficients .S/m` .b/ are then calculated using the SHT proposed in [3]
or the regularised LS method [11]. Finally, the spherical harmonic coefficients
.S/m` .b/ are used to reconstruct the diffusion signal over a high resolution uniform
grid (consisting of 2562 points which are the vertices of a fourth-order icosahedron).
We analyse the mean reconstruction error, Emean , mean

�jSA.�; �I b/�Sr.�; �I b/j�,
between the reconstructed and analytical value of the diffusion signal calculated
over the 2562 points.

The mean reconstruction error Emean for band-limits 5 � L � 21 is shown in
Fig. 2b, where it is evident that taking measurements over SO.NO/, in comparison
to SE.NO/ and SS.NO/, enables significantly more accurate reconstruction of the
diffusion signal. For example at L D 21 (NO D 231), the mean error Emean is on
the order of 10�9 and 10�4 for SO.NO and SE.NO/ respectively, while at L D
11 (NO D 66), it is on the order of 10�4 for SO.NO/, and 10�2 for SE.NO/ and
SS.NO/. Figure 2b shows Emean for a synthetic diffusion signal obtained from (3)
with M D 2 fibres and a crossing angle of 25ı as in Sect. 3.1, however we again
observed insignificant variation in Emean for different M and fibre orientations. In
summary, the use of the sampling scheme SO.NO/ greatly reduces the diffusion
signal reconstruction error compared with SE.NO/ and SS.NO/.

Rotational Invariance SE.NO/ and SS.NO/ focus on uniform sampling of the
sphere to ensure rotationally invariant reconstruction accuracy [8, 15], that is the
accuracy of reconstruction does not significantly vary if the diffusion signal (or
sampling scheme is rotated) [7]. SO.NO/ is not uniform by design, however, it
does not have dense sampling on any region of the sphere. For all three sampling
schemes SO.NO/, SE.NO/ and SS.NO/, we analyse the rotational invariance of
the reconstruction accuracy; we change the orientation of a fibre centered at z-
axis by rotating the fibre by ˇ 2 Œ0; �� around y-axis and then by ˛ 2 Œ0; 2��

around x-axis, and compute the mean reconstruction error Emean for different
orientations/rotations. In Fig. 3a–c it can be observed that the mean error Emean does
not change significantly for any of the schemes (the reconstruction error remains on
the order if 10�4 for SO.NO/, and on the order of 10�2 for SE.NO/ and SS.NO/ for
all rotations), showing that all schemes enable rotationally invariant reconstruction
accuracy to the same extent.
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Fig. 3 Mean reconstruction error Emean varies insignificantly for different fibre orientations, given
by ˛ 2 Œ0; �� and ˇ 2 .0; 2��, for (a) SO.66/, (b) SE.66/ and (c) SS.66/
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Fig. 4 The computation time � in seconds for the SHT in [3] and for LS to compute the spherical
harmonic coefficients of the diffusion signal for 5 � L � 21

3.3 Computation Time

We investigate the computational complexity of the SHT of SO.NO/ [3] compared
to the LS method of SHT computation employed by SE.NO/ and SS.NO/ by
measuring the time it takes for both methods to calculate the spherical harmonic
coefficients of the diffusion signal for band-limits 5 � L � 21. It can be seen
in Fig. 4 that for L > 7, [3] allows for faster computation of the SHT and that
the time taken by the LS method increases much faster with L; this is due to the
computational complexity of the LS being O.L6/ while the SHT proposed in [3]
has asymptotic complexity O.L4/ [3]. Hence, SO.NO/ allows for a SHT which is
significantly more efficient compared with the LS method of SHT used by SE.NO/

and SS.NO/.
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4 Application: Intra-Voxel Fibre Structure Estimation Using
QBICSA

In this section, we show that the acquisition of diffusion signal measurements over
SO.NO/ allows accurate estimation of the intra-voxel structure in dMRI. In our
analysis, we use QBICSA [1],2 one of the intra-voxel structure estimation techniques
that uses the spherical harmonic coefficients of the diffusion signal, that has been
compared in the 2012 High Angular Resolution Diffusion (HARDI) Reconstruction
Challenge [11]. We use the structured field testing data set,3 that consists of 1280
voxels, where each voxel is constructed using the diffusion signal model given
in (3) (see [10] for the values of parameters). To compare the performance of
SO.NO/ with SE.NO/ and SS.NO/ we use the following two metrics: success
rate (SR) defined as the percentage of voxels in which the correct number of fibre
populations are detected and mean average angular error per voxel, denoted by
mean( N�), defined as the average error between the estimated fibre directions and
the true ones in each voxel, averaged over all voxels.

Noise Free We have plotted the performance metrics, SR and mean( N�), Fig. 5a,
b for noise free measurements obtained using SO.NO/, SE.NO/ and SS.NO/. It
is evident that the higher diffusion signal reconstruction accuracy of SO.NO/,
compared with SE.NO/ and SS.NO/, results in a higher SR and lower mean( N�).
In the absence of noise, SO.NO/ therefore enables more accurate intra-voxel fibre
structure estimation compared with SE.NO/ and SS.NO/.

With Noise We use 2012 HARDI Challenge Data with SNR D 10, 20 and 30 (4)
to evaluate the intra-voxel fibre structure estimation performance of SO.NO/ used
with QBICSA in the presence of noise. The regularisation parameter in LS used for
SE.NO/ and SS.NO/ filters the noise [11]. For SO.NO/, we use a Gaussian kernel
given by e�`.`C1/t [4], with parameter t D 0:032 (empirically chosen to maximise
SR), to low pass filter the noisy signal. More sophisticated filtering techniques that
take into account the noise statistics is future work.

Figure 5c, d show the SR and mean( N�) respectively for different SNR averaged
over 10 realisations of the noise for SO.NO/, SE.NO/ and SS.NO/ for L D 9; 11; 13

(NO D 45; 66; 91), which are typical numbers for single-shell sampling). SO.NO/

has a higher SR and lower mean( N�) than SE.NO/ and SS.NO/ for all SNR,
demonstrating that the estimation of fibre structure from noisy measurements taken
over SO.NO/ is more accurate.

2The orientation distribution function (ODF) peaks are extracted using finite differences over a 724
point grid mesh as in [11].
3Available at http://hardi.epfl.ch/static/events/2012_ISBI/.

http://hardi.epfl.ch/static/events/2012_ISBI/
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Fig. 5 Fibre reconstruction metrics, (a) SR and (b) mean( N� ), obtained by sampling over SO.NO/,
SE.NO/ and SS.NO/ for 5 � L � 21 in the absence of noise. (c) SR and (d) mean( N� ) for L D 9,
11 and 13, and SNR D 10, 20 and 30, and sampling schemes SO.NO/, SE.NO/ and SS.NO/

5 Conclusions

In this work, we have evaluated the antipodal optimal dimensionality sampling
scheme on the sphere for the reconstruction of the diffusion signal and subsequent
intra-voxel structure estimation in dMRI. Unlike other schemes in the literature,
this scheme allows for the accurate and efficient computation of the SHT with the
minimum number of measurements. The antipodal optimal dimensionality scheme
achieved a greater diffusion signal reconstruction and intra-voxel fibre structure
estimation accuracy in the absence and presence of noise, in comparison to the
antipodal electrostatic repulsion and spherical code sampling schemes when the
minimum number of samples were used. It has also been shown that all three
schemes give rotationally invariant reconstruction accuracy to the same extent.
Extension of the work to multiple q-shell sampling and the analysis of the scheme
with real data is being carried out.
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Estimation of Fiber Orientations Using
Neighborhood Information

Chuyang Ye, Jiachen Zhuo, Rao P. Gullapalli, and Jerry L. Prince

Abstract Diffusion magnetic resonance imaging (dMRI) has been used to nonin-
vasively reconstruct fiber tracts. Fiber orientation (FO) estimation is a crucial step
in the reconstruction, especially in the case of crossing fibers. In FO estimation, it
is important to incorporate spatial coherence of FOs to reduce the effect of noise. In
this work, we propose a method of FO estimation using neighborhood information.
The diffusion signal is modeled by a fixed tensor basis. The spatial coherence is
enforced in weighted `1-norm regularization terms, which contain the interaction
of directional information between neighbor voxels. Data fidelity is ensured by the
agreement between raw and reconstructed diffusion signals. The resulting objective
function is solved using a block coordinate descent algorithm. Experiments were
performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo
brain dMRI data for qualitative and quantitative evaluation. The results demonstrate
that the proposed method improves the quality of FO estimation.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) has been used to noninvasively
reconstruct fiber tracts by imaging the anisotropy of water diffusion in tissue [11].
A major topic in dMRI is the estimation of fiber orientations (FOs) , especially
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in situations where fibers cross. For example, constrained spherical deconvolu-
tion [17], q-ball reconstruction [6], multi-tensor models [3, 10, 20], and spherical
ridgelet models [13] have been proposed to estimate crossing FOs.

Successful resolution of crossing FOs may require a large number of diffusion
gradient directions, which takes a long acquisition time and limits the use in
clinical practice [4]. To reduce the required number of gradient directions, with
the assumption that the number of FOs in a voxel is small, methods have been
proposed to model the diffusion signals using a basis and solve the FO estimation
with sparsity regularization [5, 10, 12, 13, 15, 20]. For example, the basis can be
diffusion tensors [5, 10, 15, 20], spherical ridgelets [13], or spherical polar Fourier
basis [12].

Besides sparsity assumption, it is also important to consider spatial coherence of
FOs to reduce the effect of noise and improve FO estimation. For example, in [2]
the diffusion weighted images (DWIs) are smoothed before FO estimation whereas
in [16] smoothing of FOs is performed after FO estimation. Several works have
placed spatial regularization of tensors on the multi-tensor model to estimate FOs,
but the sparsity assumption was not used [7, 14]. There are also methods that have
combined spatial continuity with sparsity and seek to simultaneously estimate and
smooth FOs. In [13], the TV-norm of DWIs is incorporated in the objective function
for FO estimation. In [15] and [20], spatial consistency of FOs is enforced by adding
the smoothness of the mixture fraction of each basis tensor as regularization terms
in the FO estimation. However, in [15] and [20], the FO coherence is ensured in
a relatively indirect way in the sense that directional information in FOs is not
explicitly modeled in the objective functions. FO estimation incorporating both
sparsity and spatial coherence is still an open problem.

In this work, we propose a method of FO estimation using both sparsity
assumption and neighborhood information. The diffusion signal is modeled by
a fixed tensor basis. In contrast to previous works, we directly incorporate the
directional information in the neighborhood into the objective function to encode
spatial coherence. Spatial coherence and sparsity are enforced in weighted `1-
norm regularization terms, which contain the interaction of directional information
between neighbor voxels. Data fidelity is ensured by the agreement between raw
and reconstructed diffusion weighted signals. The resulting objective function is
solved using a block coordinate descent algorithm. Experiments were performed on
a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data
for evaluation.
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2 Methods

2.1 Background: Multi-Tensor Model with a Fixed Tensor
Basis

As discussed in [8], the diffusion weighted signal at each voxel can be modeled
using a unified framework,

S.q/ D S0

Z

M
f .x/R.q; x/dx; (1)

where M is a smooth manifold, x is a point on M, S.q/ is the diffusion weighted
signal with the diffusion gradient q, S0 is the signal without diffusion weighting,
R.q; x/ is a kernel function, and f .x/ is a probability density function. As in [10]
and [20], we use a fixed tensor basis to represent diffusion signals, which has the
advantage of explicit relationship between the basis and FOs. In this work, the basis
comprises N D 289 prolate tensors Di whose primary eigenvectors (PEVs) vi are
approximately evenly oriented over the sphere. Each Di represents an FO given by
its PEV vi. The eigenvalues (�1 � �2 � �3 > 0) determine the shape of the basis
tensor, and they are determined by examining the diffusion tensors of a noncrossing
fiber tract [10].

With this tensor basis, we have M D S2 (a unit sphere), x D v (a unit vector),
f .v/ D fiı.vI vi/, and R.q; vi/ D e�qT Diq [8]. If we normalize the diffusion gradient
as Qq D q=jqj, then Qq is associated with a constant b determined by the imaging
sequence. Then, taking noise n.q/ into account, (1) becomes [10]

S.q/ D S0

NX

iD1
fie

�bQqT DiQq C n.q/; (2)

where fi (
P

i fi D 1) is the unknown nonnegative mixture fraction (MF) for Di.
By defining y.q/ D S.q/=S0 and �.q/ D n.q/=S0, (2) can be written as

y D Gf C �; (3)

where y D .y.q1/; y.q2/; : : : ; y.qK//
T (K is the number of DWIs), G is a K � N

matrix comprising the attenuation terms Gki D e�bk QqT
k DiQqk , f D .f1; f2; : : : ; fN/T , and

� D .�.q1/; �.q2/; : : : ; �.qK//
T . Because the number of FOs in each voxel is small,

it makes sense to estimate the MFs using sparse reconstruction:

Of D arg min
f�0;jjf jj1D1

jjGf � yjj22 C ˇjjf jj0: (4)
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By relaxing the constraint of
PN

iD1 fi D 1 and replacing the `0-norm with the `1-
norm [10, 20], we have

Of D arg min
f�0

jjGf � yjj22 C ˇjjf jj1; (5)

Then, the estimated f is projected onto the unit sphere jjf jj1 D 1 by normaliza-
tion [10]. Basis directions with nonzero MFs are interpreted as estimated FOs. Thus,
we will use FO estimation and MF estimation interchangeably.

2.2 FO Estimation Using Neighborhood Information

Because of image noise, it is important to incorporate spatial coherence of FOs
to improve FO estimation [13]. An intuitive way of incorporating neighborhood
information can be based on the smoothness of MFs [15, 20]. But establishing
smooth MFs does not mean that the FO angles are smooth. For example, let
f a D .1; 0; : : : ; 0/T , f b D .0; 1; 0; : : : ; 0/T , and f c D .0; 0; 1; 0; : : : ; 0/T . The
difference between f a and f b (jjf a � f bjj) is the same as that between f a and f c

(jjf a � f cjj), while the desired difference is clearly related to the basis directions
represented by the nonzero entries in the MFs. In this work, we seek to explicitly
incorporate the directional information from neighbor voxels into FO estimation.

FO Estimation with Known Neighborhood Information First we consider a sim-
plified case of estimating FOs in a single voxel with known neighbor information.
Let the MFs at voxel m be f m. A voxel n is in the neighborhood Nm of m and has
FOs fvn;jgVn

jD1, where Vn is the number of FOs at n. Suppose fvn;jgVn
jD1 were known,

and we want to estimate f m given the neighbor FOs.
We assume that a majority of neighbor voxels n 2 Nm have similar FO patterns

as the desired one at m. Then, a set of likely FO fum;pgUm
pD1 for m can be obtained

from the neighbor voxels (details will be introduced later), where Um is the number
of likely FOs at m. Motivated by Ye et al. [18], where fixed pre-determined prior
directions at each voxel are encoded in the sparse reconstruction of FOs from dMRI,
a weighted `1-norm regularized least squares problem derived from a Bayesian
perspective can be solved to encode the information of likely FOs:

Of m D arg min
f m�0

jjGfm � ymjj22 C ˇjjCmf mjj1: (6)

Here, Cm is a diagonal weighting matrix encoding likely FOs. The basis directions
closer to likely FOs are weighted less in the weighted `1-norm, and thus they are
less penalized in the objective function. We set the diagonal entries as

CmWii D
�

1 � ˛max
p

jvi � um;pj
�.

min
q

�

1 � ˛max
p

jvq � um;pj
�

; (7)
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where ˛ 2 Œ0; 1/ is a constant. Since vi and um;p are unit vectors, 0 � jvi � um;pj � 1

and CmWii is positive. In this way, the penalty for basis directions that are closest to
likely FOs is the same as that when no information on likely FOs is used.

Note that our application of FO estimation with spatial coherence is fundamen-
tally different than [18] in two aspects: (1) likely FOs are computed based on
neighbor FOs while in [18] an anatomical atlas is needed to provide prior directions
specified at each voxel; (2) since the FOs in the neighbors are also to be estimated,
voxelwise FO estimation in (6) is inappropriate. The proposed approach to likely
FO computation and FO estimation is introduced below.

Likely FO Computation At voxel m we first consider one neighbor voxel n.
Between each basis direction vi and the neighbor n, we define a basis-neighbor
similarity rm.i; n/ D wm;n maxj jvi �vn;jj. Here, wm;n is a weighting coefficient, which
represents the similarity between m and n. It is defined as wm;n D e�
d2.Dm;Dn/

(
 is a constant). Dm and Dn are the diffusion tensors fitted from DWIs at m
and n, respectively, and d.Dm;Dn/ is a distance metric for tensors Dm and Dn:
d.Dm;Dn/ D p

Trace.flog.Dm/ � log.Dn/g2/ [1]. For each vi, the max function in
rm.i; n/measures the similarity between vi and its closest FO in n, and this similarity
is further weighted by the voxel similarity wm;n. In this way, given one neighbor n,
we can measure how similar vi is to the FOs at n.

To consider all neighbor voxels, an aggregate basis-neighbor similarity for vi at
voxel m is defined as Rm.i/ D P

n2Nm
rm.i; n/. We can extract likely FOs for m by

finding the basis directions with local maximal Rm values:

fum;pgUm
pD1 D fvijRm.i/ � Rm.j/;8 j ¤ i W arccos.jvi � vjj/ � ��

180ı g: (8)

Here, � is a threshold and we empirically choose � D 20ı.

FO Estimation for All Voxels With the likely FOs, the weighting matrix can then
be obtained. Note that we have assumed known neighbor information to obtain (6).
However, the FOs in the neighbors are also to be estimated. Thus the FOs in all
the voxels should be estimated simultaneously. For a total number of M voxels of
interest, where the MFs f D .f T

1 ; f
T
2 ; : : : ; f

T
M/

T (and thus the FOs) are unknown, the
FO estimation can be achieved as

Of D arg min
f�0

E.f/ D arg min
f1; f2;:::; f M�0

MX

mD1
jjGfm � ymjj22 C ˇjjCmf mjj1: (9)

Note that Cm contains the interaction between neighbors and it is also dependent on
˛. Greater ˛ leads to more influence from neighbors. ˇ controls the sparsity. In this
work, ˛ and ˇ were chosen empirically.
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2.3 Minimization of the Objective Function

Because each voxel m is coupled with its neighbors in Cm in (9), we use a block
coordinate descent (BCD) optimization strategy. At iteration k C 1,

Of kC1
m D arg min

f m�0

E.Of kC1
1 ; : : : ; Of kC1

m�1; f m; Of k
mC1; : : : ; Of

k
M/

D arg min
f m�0

jjGfm � ymjj22 C ˇjjCkC1
m f mjj1: (10)

Using (8), the likely FOs ukC1
m;p are obtained by finding the local maxima from

RkC1
m .i/ D P

n2Nm
wm;n maxj jvi � v

kC1n<m
n;j j, where 1 is an indicator function. Then,

CkC1
m can be determined with ukC1

m;p using (7).

To solve (10), we define gkC1
m D CkC1

m f m. Since CkC1
m is diagonal and CkC1

mWii > 0,
CkC1

m is invertible and f m D .CkC1
m /�1gkC1

m . By defining QGkC1
m D G.CkC1

m /�1,

OgkC1
m D arg min

gkC1
m �0

jj QGkC1
m gkC1

m � ymjj22 C ˇjjgkC1
m jj1: (11)

We find OgkC1
m using the method in [9] and the MFs are estimated as

Of kC1
m D .CkC1

m /�1 OgkC1
m : (12)

Then, we project Of kC1
m back onto the unit sphere by normalization: Qf kC1

m;i D
Of kC1
m;i =

P
j
Of kC1
m;j , and the FOs at m at iteration k C 1 are the basis directions with

Qf kC1
m;i > t (t D 0:1 in this work), because FOs with small MFs are interpreted as

components of isotropic diffusion [10, 18].
The FOs are initialized by Landman et al. [10]. Iterative update is terminated if

the FO difference between successive iterations is small or the maximum iteration
is reached.

3 Experiments

3.1 3D Digital Crossing Phantom

A 3D digital crossing phantom was generated to simulate two tracts crossing at 90ı,
where one b0 image and 30 gradient directions (b D 700 s=mm2) were used. Rician
noise (
=S0=0.05) was added to the DWIs.

The proposed method with .˛; ˇ; 
/ D .0:4; 0:5; 1:0/ was compared with
BEDPOSTX [3] and CFARI [10], which are commonly used with around 30
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Fig. 1 FO estimation overlaid on the FA map of the 3D crossing phantom

Table 1 The mean errors of FO estimation (with standard deviations in parentheses)

Noncrossing region Crossing region

e1 e2 e1 e2
BEDPOSTX 3.26ı (3.58ı) 2.80ı (1.89ı) 12.12ı (8.92ı) 13.72ı (11.66ı)

CFARI 3.41ı (1.73ı) 0.79ı (1.88ı) 12.23ı (7.79ı) 12.21ı (11.52ı)

Proposed 3.08ı (1.63ı) 0.58ı (1.64ı) 5.57ı (2.24ı) 3.89ı (2.65ı)

gradient directions. The results are overlaid on the fractional anisotropy (FA)
map in Fig. 1. Compared with BEDPOSTX and CFARI, the proposed method
produces smoother FOs and better identifies crossing FOs. We then compared the
results quantitatively by using the two error measures proposed in [18], where the
first measure (e1) represents how close each estimated FO is to its ground truth
FO, and the second one (e2) measures how accurately each ground truth FO is
represented. The results are listed in Table 1. The proposed method estimates FOs
more accurately in both noncrossing and crossing regions.

3.2 Real Data

Ex Vivo Tongue dMRI Nine b0 images and 64 gradient directions (b D
2000 s=mm2) were acquired on a 3T MRI scanner (Magnetom Trio, Siemens,
Erlangen, Germany). The resolution is 2 mm isotropic.

The proposed method with .˛; ˇ; 
/ D .0:4; 0:5; 3:0/ was compared with q-ball
imaging (QBI) using spherical harmonics based transformation [6] and CFARI [10].
The eigenvalues of the basis tensors are �1 D 7:0 � 10�4 mm2=s and �2 D �3 D
3:0 � 10�4 mm2=s. We focus on the crossing region of the genioglossus (GG) and
transverse (T) muscle in Fig. 2, where the proposed method better estimates the
crossing FOs and produces smoother FOs than QBI and CFARI.

In Vivo Brain dMRI Two b-values (b D 1000 s=mm2 and 2000 s=mm2) were
used in the acquisition. Each b-value is associated with 30 gradient directions and
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Fig. 2 FO estimation on the ex vivo tongue in the coronal view, which is focused on the crossing of
the GG and T muscle (the tongue area is indicated by the white mask). A high resolution structural
image (left) is shown for location reference

Fig. 3 FO estimation on brain dMRI (overlaid on the FA map), which is focused on the crossing
of (a) CC and CST (coronal view) and (b) CC and SLF (axial view)

each DWI has two repeated scans. Twelve b0 images were also acquired. The
images were acquired on a 3T MRI scanner (Magnetom Trio, Siemens, Erlangen,
Germany). The resolution is 2.7 mm isotropic.

The proposed method with .˛; ˇ; 
/ D .0:4; 0:5; 1:0/ was compared with
CFARI [10] and generalized q-sampling imaging (GQI) [19]. GQI is a general-
ization of QBI [6] and can reconstruct FOs from multi-shell (multiple b-values)
dMRI. The eigenvalues of the basis tensors are �1 D 2:0 � 10�3 mm2=s and
�2 D �3 D 5:0 � 10�4 mm2=s. We highlight two regions for evaluation: the
crossing region of the corpus callosum (CC) and the corticospinal tract (CST) and
the crossing region of CC and the superior longitudinal fasciculus (SLF), which are
shown in Fig. 3. It can be seen that the proposed method is able to better reconstruct
the crossing FOs and has smoother results than CFARI and GQI.

4 Conclusion

We have proposed an FO estimation algorithm using neighborhood information. The
diffusion signal is modeled by a tensor basis. Directional information in neighbors
is modeled in weighted `1-norm regularization terms to ensure spatial coherence.
FO estimation is achieved using a BCD strategy. The proposed method was applied
to simulated and real dMRI data. The results indicate that the proposed method
improves FO estimation by using neighborhood information.
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A Framework for Creating Population Specific
Multimodal Brain Atlas Using Clinical T1
and Diffusion Tensor Images

Vikash Gupta, Grégoire Malandain, Nicholas Ayache, and Xavier Pennec

Abstract Spatial normalization is one of the most important steps in population
based statistical analysis of brain images. This involves normalizing all the brain
images to a pre-defined template or a population specific template. With multiple
emerging imaging modalities, it is quintessential to develop a method for building
a joint template that is a statistical representation of the given population across
different modalities. It is possible to create different population specific templates
in different modalities using existing methods. However, they do not give an
opportunity for voxelwise comparison of different modalities. A multimodal brain
template with probabilistic region of interest (ROI) definitions will give opportunity
for multivariate statistical frameworks for better understanding of brain diseases.
In this paper, we propose a methodology for developing such a multimodal brain
atlas using the anatomical T1 images and the diffusion tensor images (DTI), along
with an automated workflow to probabilistically define the different white matter
regions on the population specific multimodal template. The method will be useful
to carry out ROI based statistics across different modalities even in the absence of
expert segmentation. We show the effectiveness of such a template using voxelwise
multivariate statistical analysis on population based group studies on HIV/AIDS
patients.
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1 The Need for a Probabilistic Multimodal Atlas

The growth in brain imaging data across different modalities gives an opportunity
to understand the disease progression and make correlations across them. Statistical
analysis across different modalities and across population require spatial normal-
ization. All the brain images are often normalized to a pre-defined template, for
example the ICBM-152 or MNI template. However in [1, 2], the authors have
shown that choosing a generic template biases the statistical results. For example,
if one intends to do statistical analysis on a population of children, choosing an
MNI template will involve an unintended scaling of all the brain images in the
population adding a bias to the results. Moreover the generic MNI-T1 template is not
a statistical representation of the population under consideration. The importance of
multimodal brain atlases is discussed in detail in [3]. We support the need of such
a multimodal template by comparing two groups of population. One of the groups
comprises 18 healthy controls without any episodes of neurological disorder and
another group of 30 patients with HIV associated neurocognitive disorder.

Some of the most common atlases being used today for spatial normalization
are the ICBM (International Consortium of Brain Mapping), the MNI (Montreal
Neuroimaging Institute) atlas and the FMRIB58_FA atlases. The ICBM initiative
has provided the neuroimaging community with a number of brain atlases. The
three atlases which we will like to discuss here are the nonlinear version of ICBM
T1 atlas, ICBM DTI-81 atlas and the white matter parcellation map (WMPM) [4].
It should be noted that though the atlases are in the MNI coordinate space, they
are not necessarily built with the same population. Thus, the DTI atlas and the
T1 atlas do not represent the variability across different modalities in the same
population and so are not suited for a multimodal statistical analysis. There are
two different versions of the ICBM T1 template. The first one was built in 2001
using an affine registration which was followed by another one built in 2009 using
affine and nonlinear image registration. The 2009 version presents a more detailed
outline of different brain structures as compared to its previous version.1 Some of
the drawbacks of the present ICBM atlases are as follows,

1. The DTI atlas was affinely aligned with the 2001 affine version of ICBM T1
template.

2. For creating the DTI atlas, scalar averaging of tensor elements was performed.
3. The DTI-81 data is normalized using an affine registration which increases the

chances of misalignment of different brain structures.
4. The ICBM DTI-81 and ICBM 152 nonlinear atlases are independent atlases in

their own right. However, the atlases cannot be used for a multimodal study
because they are not aligned in the same geometrical space.

1The ICBM family of templates are available for download at http://www.loni.usc.edu/atlases/
Atlas_Detail.php?atlas_id=5.

http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=5
http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=5
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In the following sections, we present an automated workflow to build a multimodal
brain atlas using DTI and T1 images. Unlike the ICBM atlases, this atlas is in
the same coordinate space which allows voxelwise comparison across the two
modalities. In addition to the multimodal template we also present a method to
probabilistically transfer the white matter labels in our template space. This opens
further room for ROI based statistics on white matter region. Out of many possible
applications to the presented atlas, we illustrate the applicability and relevance of
the method by building a multimodal template to compare groups of HIV/AIDS
patients with controls.

2 Atlas Construction

2.1 Joint T1 and DTI Template

An unbiased T1 atlas is constructed using the methodology outlined in [5, 6]. In
principle, a similar method can be used to make a DTI template from a given
population. However, in such a case the DTI template and the T1 template will
be in different spaces and a comparative study across different modalities cannot be
performed. For constructing a joint T1 and DTI template, we propose a workflow
that takes into account physically plausible transformations that exists in the image
space and across modalities. The workflow is shown in Fig. 1. The dicom images
were extracted using the MRIcron software into a nifti image format. The diffusion
weighted images (DWIs) are corrected for eddy currents distortions and head motion
using the FSL toolbox. N4ITK bias correction tool [7] was used for intensity bias
correction in the T1 images. The undiffused .B0/ images and the T1 images are
rigidly registered using FSL’s flirt tool using seven degrees of freedom and mutual
information cost function to take into account the multimodality of the images.
Seven degrees of freedom for the registration takes into account the rigid motion
of the head (rotation and translation) along with the scaling of the voxels that is
present due to differences in the field of view of the B0 and the T1 images during
image acquisition. The T1 images were first aligned to the T1 template using an
affine followed by a nonlinear registration using LCC-demons algorithm [8]. The
rigid transform between the subject’s B0 and T1 images, the affine and nonlinear
deformation field are composed in order to produce the net deformation field. The
diffusion images are then resampled into the T1 template image space using the
composed deformation field. The combined deformation field can be expressed
using a displacement field (u). The local linear transformation an be described as

T D I C du

dx
;

where I is the identity matrix and du
dx Jacobian of the deformation field at the point

x. The Jacobian matrix can be decomposed into a rotation component R and a
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Fig. 1 Workflow for generating joint T1 and DTI brain atlas. Registrations and the corresponding
transforms are color matched

deformation component P using the polar decomposition theorem. Using singular
value decomposition (SVD), the rotation matrix R ca be computed as

R D UVT ;

where F D UWVT is the singular value decomposition of the matrix F. The
diffusion gradient directions are then transformed to the new space using the
rotational component of the transformation for each voxel as

gv D RgT ;

where g is the diffusion gradient direction and gv is the transformed gradient
direction. The diffusion tensors are then estimated in the tensors are then estimated
in the template space using the algorithm presented in [9]. Once the diffusion
tensors are estimated, they are averaged using the Log-Euclidean framework [10]
to compute the DTI template. This workflow produces a combined T1 and DTI
template in a common geometrical space.
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2.2 Probabilistic White Matter

For computing ROI based statistical analysis, it is important to have an accurate
segmentation of the white matter regions. However, an accurate segmentation is a
difficult problem because of the partial volume effects in the images which makes
the segmentation task particularly difficult. In such a scenario it is desirable to have
an automated probabilistic segmentation of the ROIs. A probabilistic segmentation
allows us to attach an additional level of accuracy depending on how conservative
one is in choosing the ROIs, thus mitigating the problems due to misregistration
to certain extent. For generating a probabilistic parcellation of the white matter,
we used the celebrated ICBM-WMPM as a prior. The WMPM is defined in the
ICBM-DWI template space. The ICBM-DTI and the ICBM-152 affine template are
aligned and share the same geometric space. Thus a registration using the ICBM-152
template will approximate a registration between the ICBM-DWI and the ICBM-
152 nonlinear template. The workflow for transferring the labels is shown in Fig. 2.
The different steps involved in the transferring the labels is enumerated as,

1. The ICBM-152 affine template is affinely aligned with the 2009 ICBM-152
nonlinear template.

2. The ICBM-152 nonlinear template (moving image) is registered with the T1
image (fixed image) of each of the subject using an affine and nonlinear
registration. The target image for the registration is the T1 image.

Fig. 2 Workflow for transferring white matter labels in ICBM-WMPM to a population specific
multimodal atlas. The ICBM DTI-81 and the ICBM 152-affine atlas are defined in the same
geometry. The ICBM-152 affine template is affinely registered with the ICBM-152 nonlinear
template. The ICBM nonlinear template is then registered with each of the subject’s T1 image
which is again registered with the population specific T1 templated The arrows show the
registration paths and the corresponding registration methods are shown above the arrows
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3. Similarly, the subject T1 image (moving image) is registered with the population-
specific template (fixed image) created before.

4. All the transformations are composed in the same order for each subject.
5. The respective transformations for each subject are applied to the ICBM-WMPM

for transferring the labels.
6. All the transferred labels are averaged to produce the probabilistic parcellation

map.

All the anatomical T1 registrations are carried out using LCC-demons algorithm in
both the workflows.

3 Results

A total of 18 controls and 30 patients with HIV associated neurocognitive dis-
order (HAND) were chosen for the study. The images were acquired using
a 1.5 T MRI scanner (GE Signa HDxt®). T1-weighted images were acquired
using a magnetization prepared 3D Spoiled Gradient Recalled (SPGR) sequence
(TR D 12.4 ms, TE D 5.2 ms, TI D 300 ms, flip angle D 18°, FOV D 240 mm). The
T1 images have 256�256�248 voxels, with an isotropic voxel size of 0.6 mm. The
DTI data was acquired with 23 encoding gradient direction and one undiffused
B0 image. The diffusion weighted images has 256�256�26 voxels with sizes
0:9375�0:9375�5:5mm3. The b-value for the acquisition was 700 s=mm2.

3.1 Multimodal Template and Probabilistic ROIs

Figure 3 shows the multimodal template. The different structures across the two
modalities T1 and DTI are in good agreement as shown in the figure. The top row
shows the FA template (in red-yellow) overlayed on the anatomical T1 image. In
the bottom row we show good agreement between the DTI and T1 templates. A
close-up shows the diffusion tensors in genu and splenium of the corpus callosum
in detail. In order to facilitate ROI based statistics, all the 52 white matter labels
defined in ICBM-WMPM are transferred to this population specific template.
In Fig. 4 probabilistic ROIs for external and internal capsule, middle cerebellar
peduncle (MCP) and corpus callosum is shown. It also shows a probabilistic iso-
surface rendition of the MCP and corpus callosum. The probability of a voxel
being classified in a certain ROI is highest in the center and decreases outwards
as expected from blue to red. Such renditions can be used for shape analysis of
individual white matter structures.
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Fig. 3 The multimodal brain template. Top row: FA template overlayed on the T1 template.
Bottom row: DTI template is overlayed on top of T1 template. The zoomed section shows good
alignment of diffusion tensors along the corpus callosum above and below the ventricles

3.2 Statistical Analyses on HIV Patients

A multimodal population specific brain atlas can be used for multivariate statistical
analysis. As opposed to the univariate analysis, in this case it is possible to combine
information from different modalities which increases the statistical power of the
test. In univariate analysis like tract based spatial statistics (TBSS) or voxel based
morphometry, the focus of study is to find changes in a single tissue type. In order
to illustrate one possible application of such a multimodal template, we use the
FA images from the DTIs and log-Jacobian from the T1 registration. FA images
contain information about the white matter integrity, where as the logarithm of
the Jacobian determinant of the deformation field gives information about local
volume shrinkage or expansion. For conducting the statistical test, first a multimodal
template is created as mentioned above. All DTIs and T1 images are registered to
the common template space. FA maps are computed from the registered DTIs and
the log-Jacobian maps are computed from the deformation field resulting from T1
image registration. Thus, we have a voxelwise multi-channel information. A non-
parametric distribution free permutation test is used for comparing the control group
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Fig. 4 Probabilistic ROIs for some of the representative white matter structures are shown
overlayed on the T1 image for anatomical reference. Bottom-right image shows 3D probabilistic
iso-surfaces for corpus callosum and middle cerebral peduncle

against the patients. The test-statistic as suggested in [11] is used for the permutation
test.

Tn1;n2 D n1n2
n1 C n2

�
1

n1n2

n1X

iD1

n2X

jD1
jjV1;i � V2;jjj � 1

2n21

n1X

iD1

n1X

jD1
jjV1;i � V1;jjj

� 1

2n22

n2X

iD1

n2X

jD1
jjV2;i � V2;jjj

�

;

where jj:jj is the Euclidean distance, n1 and n2 are the sizes of control and HAND
patients respectively. V and is the vector of two elements as described above. We
used 1000 random permutations to generate the distribution. Figure 5 compares
the result of univariate analysis against the multivariate analysis. In the top row
red-yellow and blue-lightblue shows the statistically significant regions at 5%
significance level for FA and log-Jacobian respectively. The bottom row shows the
significantly different regions for multivariate tests. It should be noted that with the
multivariate tests, we are able to detect more regions of differences between the
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Fig. 5 Statistically significant regions of difference. Top row: Univariate results on FA (red-
yellow) and log-Jacobian (blue-lightblue) of the deformation field from T1 registration. Bottom
row: Multivariate (red-yellow) statistical test. The images show the test-statistic values between
0.95 and 1 corresponding to 5% significance level

controls and HAND patients and thus attributing a higher detection power to such
multivariate treatment of images.

4 Conclusion

In this paper we have presented a novel workflow for creating a multimodal T1
and DTI template which can be used for population based statistical studies. In our
knowledge, there have been very few attempts in the past to perform group study
by fusing multiple modalities and making a true multimodal brain atlas. The main
idea of the paper is to combine the well accepted existing tools in order to make
a workflow and suggest methods for multimodal statistical analysis. We created
a probabilistic atlas of white matter regions using the ROI definitions from the
WMPM labels. The multimodal atlas will have a wide variety of applications in
the future. For example, one can use the probabilistic ROI definition as a prior
for manual segmentation. It will be possible to correlate measures across different
modalities giving us a better understanding of neuro-pathologies and possibly seek
for biomarkers. We already showed an illustration of the possible applications in
the case of HAND patients. The multivariate framework seems to have a higher
detection power. However, the clinical relevance of these findings remain to be
seen. The methods presented in this paper can easily be adopted to create any
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other population specific multimodal templates. However, we are intending to make
this atlas public for research purposes. In the future, it will interesting to look into
building a spatio-temporal population specific brain atlases. Such an atlas will give
deep insights into disease progression in case of progressive neuro-degenerative
diseases like AIDS, Alzheimer’s disease and ALS. One of the major contributions of
this work is that with the presented method, it is possible to combine well accepted
pre-existing tools for creating a population specific multimodal brain atlas and use
the same for multimodal statistical analysis.
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Alignment of Tractograms as Linear Assignment
Problem

Nusrat Sharmin, Emanuele Olivetti, and Paolo Avesani

Abstract Diffusion magnetic resonance imaging (dMRI) offers a unique approach
to study the structural connectivity of the brain. DMRI allows to reconstruct the 3D
pathways of axons within the white matter as a set of polylines (streamlines), called
the tractogram. Tractograms of different brains need to be aligned in a common rep-
resentation space for various purposes, such as group-analysis, segmentation or atlas
construction. Typically, such alignment is obtained with affine registration, through
which tractograms are globally transformed, with the limit of not reconciling local
differences. In this paper, we propose to improve registration-based alignment by
what we call mapping. The goal of mapping is to find the correspondence between
streamlines across brains, i.e. to find the map of which streamline in one tractogram
correspond to which streamline in the other tractogram. We frame the mapping
problem as a rectangular linear assignment problem (RLAP), a cornerstone of
combinatorial optimization. We adopt a variant of the famous Hungarian method to
get the optimal solution of the RLAP. We validate the proposed method with a tract
alignment application, where we register two tractograms and, given one anatomical
tract, we segment the corresponding one in the other tractogram. On dMRI data from
the Human Connectome Project, we provide experimental evidence that mapping,
implemented as a RLAP, can vastly improve both the true positive rate and false
discovery rate of registration-based alignment, establishing a strong argument in
favor of what we propose. We conclude by discussing the limitations of the current
approach, which gives perspective for future work.
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) [1] provides information about
the local orientation of white matter axons in each voxel of a brain image.
Reconstruction and tracking algorithms aim at connecting voxels, based on the
orientation within each voxel, in order to reconstruct the approximate trajectories of
fibers as 3D polylines, called streamlines. A streamline, is a vectorial representation
of thousands of neuronal axons following the same pathway. The whole set of
streamlines is called tractogram and it represents the anatomical connectivity of
the brain.

Tracts are sets of streamlines with specific neuroanatomical meaning. A manual
procedure of virtual dissection allows the segmentation of streamlines for a given
tract of interest. For example, shape and size of a tract can be helpful for a
neurologist to assess the progress of a neurodegenerative disease [5]. Such analysis
compares the tract from a tractogram of a patient to that healthy subjects, or
atlas [13]. The common practice is based on the quantifying the number of voxels
shared by the two tracts [7], which requires that the two tracts are first aligned in a
common representation space.

The alignment of two tractograms is still an open problem. The best practice is
based on the affine registration of the corresponding structural images, such as T1
or FA (Fractional Anisotropy) [1], and by applying the estimated transformation to
the coordinates of streamlines. Improvements of these methods have been proposed
by using more informative volumetric images, such as the orientation distribution
functions (ODFs) [14]. More recently, a new approach has been investigated by
computing the affine transformation directly in the space of the streamlines [6]. The
intuitive idea is to find the affine transformation that minimizes a loss function based
on the distance between streamlines. Computational issues prevent the use a whole
tractogram, i.e. the registration is usually based on a small subset of the streamlines.

We claim that the alignment of tractograms based on registration methods has
two main limitations. The first is concerned with the affine transformation, which is
a global one. Local anatomical differences between two subjects/tractograms cannot
be reconciled by a global linear transformation. Non-linear/elastic registration
methods may overcome this limitation, but it is not straightforward how to preserve
the orientation information of dMRI images after the distortion of the volumetric
space. Evidence of this problem is the absence of literature on this topic. The
second limitation is related to the use of transformations for alignment, that indeed
reduces the differences between tractograms, but it is still not able to provide the
correspondence between anatomical structures at the local level. We claim that
alignment can provide more useful information when enriched with correspondence
of streamlines across tractograms.

In this work we propose to overcome these limitations by introducing the notion
of mapping. We claim that, when the ultimate goal is alignment and comparison
of tracts across subjects, the registration in a common space is not enough and the
additional step of finding which streamline in a tractogram correspond to which
streamline in another tractogram should be computed.
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In principle, the correspondence between streamlines across tractograms can be
one-to-one, one-to-many or many-to-many. Here we restrict to the one-to-one case,
and defer the other more general cases to future work. Under this assumption,
the problem of finding corresponding streamlines can be cast as an assignment
problem [4]. The assignment problem is a fundamental combinatorial optimization
problem. Given two sets of objects, A and B, and a cost function to assign one
element of A to one of B, the goal is to find the injective assignments of each element
of A, to one of B, such that the total cost of the assignments is minimized. If the
numbers of items are equal and the total cost is given by the sum of each assignment
cost, the problem is called linear assignment problem (LAP). When jAj ¤ jBj, the
problem is called rectangular LAP (RLAP) [2], which is a generalization of the LAP.

Efficient and well known algorithms for solving the LAP are the Hungarian
method [11] and Jonker-Volgenant algorithm (LAPJV) [9], both giving the optimal
solution with complexity O.n3/, n D jAj. For the rectangular case, where m D
jBj > n, efficient variants of the previous algorithms are available in the literature,
such as [3] which has complexity O.n2m/ and provide the optimal solution. In this
work we adopt that algorithm.

We designed an experiment about segmenting a desired tract in a tractogram.
On dMRI data from the Human Connectome Project [15], we show experimental
evidence that mapping through the RLAP greatly improves the quality of segmenta-
tion, both in terms of true positive rate (TPR) and false discovery rate (FDR), with
respect to that of affine registration. This result confirms that the concept of mapping
should be considered as a new useful tool in the context of alignment of tractograms
and that its implementation as an assignment problem is effective, despite some
limitations.

The paper is structured as follows. In Sect. 2 we define the notation and formally
introduce mapping and the RLAP, together with the algorithm adopted here. In
Sect. 3 we describe the details of the experiment and its results. A brief discussion
about the merits a limitations is reported in Sect. 4.

2 Methods

In this section we briefly introduce the notation, the concept of mapping and the
formal description of the linear assignment problem (LAP), with details of its
rectangular (RLAP) version and references to efficient solutions.

2.1 Notation and Streamline Distance

Let the polyline s D fx1; x2; : : :g, where xi 2 R3, be a streamline, reconstructed
from dMRI data through reconstruction and tractography algorithms. Let the
tractogram, T D fs1; s2; : : : ; sMg be defined as a set of M streamlines, where
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M � 105. Let t D fs1; s2; : : : ; skg � T, be a subset of the tractogram, called tract,
usually with a specific anatomical meaning, e.g. the cortico-spinal tract (CST).

Multiple distance functions between streamlines have been proposed in the
literature [18]. Here we adopt the most common one, i.e. the symmetric minimum
average distance (MAM). Given two streamlines, sa and sb:

dMAM.sa; sb/ D 1

2
.D.sa; sb/C D.sb; sa// (1)

where

D.sa; sb/ D 1

jsaj
jsajX

iD1
d.xa

i ; sb/ (2)

and

d.x; sb/ D min
jD1;:::;jsbj

jjx � x0
jjj2 (3)

2.2 Mapping

The alignment of two tractograms, TA and TB, is usually implemented through
registration algorithms, that transform the coordinates of the streamlines into a
common space. Here we propose a different way of aligning tractograms, based on
finding corresponding streamlines across two tractograms, without operating any
transformation. The problem of finding which streamline sB

j 2 TB correspond to a
given streamline sA

i 2 TA is a combinatorial one and its solution is a correspondence
map between the two sets. For this reason, we call this kind of alignment as
mapping. We denote the map as a binary matrix P D Œ pij�ij 2 f0; 1gjTAj�jTB j, that
we call mapping matrix, such that pij is 1 when streamline sA

i 2 TA corresponds to
streamline sB

j 2 TB, and 0 otherwise.
In practical cases, it is common to observe that different tractograms have

different number of streamlines, i.e. jTAj ¤ jTBj. Moreover, corresponding tracts
across different subjects may have different size, meaning that different streamlines
of one tractogram may correspond to the same streamline in the other one. For these
reasons, in general, the correspondence between streamlines cannot be a bijective
or an injective map but a many-to-one or many-to-many map. A very simple many-
to-one greedy solution to the mapping problem is assigning the nearest streamline
of the second tractogram to each streamline of the first tractogram, after affine
registration in a common space. We refer to this baseline solution as registration C
nearest neighbor (NN). The main limitation of this solution is that it strongly rely on
the assumption that the affine registration reconciles most of the differences between
the two tractograms, which is generally not true.
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In order to propose an improvement over NN, in this work, we add the restrictive
assumption that different streamlines in TA correspond to different streamlines in
TB, i.e. we assume the mapping to be injective.1 In Sects. 3 and 4 we show that this
restriction does not prevent the proposed approach to reach major improvements
over NN. Under the assumption just mentioned, and in order to find the desired
mapping between two tractograms, we cast the mapping problem into a well known
optimization problem, called assignment problem [4]. In the following we formally
introduce the linear assignment problem along with its rectangular version.

2.3 The Linear Assignment Problem

Given two sets of objects of the same size, TA D fsA
1 ; : : : ; s

A
n g and TB D fsB

1 ; : : : ; s
B
n g,

the problem of finding the optimal bijective assignment of each sA
i to one element

in TB, given the cost matrix C D Œcij�ij 2 R
n�n, where cij is the cost of assigning

sA
i to sB

j , is called linear assignment problem (LAP). In our case, the cost is the
distance between streamlines. The bijective assignment between the streamlines of
two tractograms can be represented by permutation matrix P D Œ pij�ij 2 f0; 1gn�n,
where pij D 1 if sA

i is assigned to sB
j , and 0 otherwise. Notice that, since P represents

a bijective correspondence, then 8i 2 f1; : : : ; ng,
P

j pij D 1 and 8j 2 f1; : : : ; ng,P
i pij D 1. The formal definition of the LAP is then:

P� D argmin
P2P

nX

i;jD1
cijpij (4)

where P is the set of all possible n � n permutation matrices and P� is the optimal
assignment with lowest overall cost.

Among the most efficient algorithm in the literature to find P�, the Hungarian
method is the most famous one. Its first formulation [10] had time complexityO.n4/,
which was later improved to O.n3/ by Munkres [11]. Another prominent algorithm
in this group is LAPJV [9] which has the same complexity, O.n3/.

2.4 Rectangular Assignment Problem

When jAj ¤ jBj, LAP is called rectangular assignment problem [2] (RLAP). In
that case, let n D jAj and m D jBj and n � m, the problem consists in finding the

1Additionally we introduce the technical assumption that jTAj � jTBj.
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injective assignment of all sA
i 2 A within B. Formally:

P� D argmin
P2P

nX

iD1

mX

jD1
cijpij (5)

where Œ pij�ij D P 2 P is a partial permutation matrix2 and C D Œcij�ij is the cost
matrix.

The literature about algorithms to find the optimal solution to the RLAP is much
smaller than then one on the LAP. See [2] for a brief review, with adaptations of the
most effective LAP algorithms to the RLAP case.

A common solution for the RLAP is adding m � n dummy entries, so that the
RLAP becomes a LAP with .m � n/Š optimal solutions. The time complexity of this
solution is then O.m3/. In this paper we adopt a more efficient algorithm [3], which
is a rectangular extension of the Munkres algorithm. Its time complexity is O.n2m/,
which is convenient in the setting of our experiments where m o n (see Sect. 3).

3 Experiments

Experiments were performed on 10 randomly selected subjects from the Human
Connectome Project (HCP) [15, 16] dMRI datasets. We preprocessed the data with
single shell (b D 1000) and isometric up-scaling (2 mm). The tractography was
reconstructed using a diffusion tensor model (DTI) and the tracking was computed
with the Euler Delta Crossing (EuDX) algorithm, using the DiPy toolbox.3 We
used the white matter query language (WMQL)[17], a parcellation-based method,
to virtually dissect several types of neuroanatomical tracts: arcuate fasciculus (AF),
corticospinal tract (CST), cingulum (CG), uncinate fasciculus (UF) optical radiation
(OR), medial longitudinal fasciculus (MDLF), inferior longitudinal fasciculus
(ILF), inferior occipitofrontal fasciculus (IFOF). Considering both left and right
hemispheres, we obtained 16 different tracts for all the 10 subjects. A summary
of the information after the virtual dissection are reported in Table 1, specifically
the average and standard deviation of the number of streamlines and the number of
voxels of all tracts.

The purpose of the experiment was to collect empirical evidence that exploiting
the correspondence of streamlines across tractograms improves the alignment of
tracts with respect to what affine registration can do. The experiment was conceived
in the following way: after alignment, given a tract, its corresponding voxels
were extracted, as well as those of the same tract in the second tractogram. The

2A partial permutation matrix is a rectangular version of the permutation matrix, i.e. P D Œpij�ij 2
f0; 1gn�m and

Pn
jD1 pij D 1 but

Pm
iD1 pij � 1.

3http://dipy.org.

http://dipy.org
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Table 1 Data description.
For each tract, the table
reports the average and
standard deviation of the
number of streamlines and of
voxels over ten subjects

Tract name # Streamline # Voxels

CST_LEFT 50˙ 41 1478˙ 725

CST_RIGHT 23˙ 17 1075˙ 478

CG_LEFT 947˙ 135 12075˙ 1602

CG_RIGHT 833˙ 100 10920˙ 1507

AF_LEFT 290˙ 107 5437˙ 1617

AF_RIGHT 186˙ 144 4046˙ 1916

UF_LEFT 189˙ 71 2913˙ 932

UF_RIGHT 171˙ 87 2583˙ 1117

OR_LEFT 78˙ 68 1547˙ 2171

OR_RIGHT 83˙ 22 2246˙ 418

MDLF_LEFT 195˙ 116 4152˙ 2022

MDLF_RIGHT 180˙ 119 3339˙ 1482

ILF_LEFT 199˙ 82 2568˙ 1923

ILF_RIGHT 133˙ 115 2475˙ 1283

IFOF_LEFT 175˙ 58 4794˙ 1068

IFOF_RIGHT 145˙ 88 4681˙ 1636

overlap over the two sets of voxels [7], in terms of true positive rate (TPR)
and false discovery rate (FDR), was computed. We considered three scenarios:
(1) registration-only alignment, without additional mapping of streamlines; (2)
registration and mapping as nearest-neighbor (NN); (3) registration and mapping
as optimal solution of the RLAP.

In each scenario, the first step was the projection of the two tractograms in a
common space. The registration was performed with respect to the standard MNI
space using FSL FLIRT, that implements a voxel-based affine registration [8].

For scenarios (2) and (3), the second step was concerned with the computation of
the correspondence among streamlines, from a source tract tA to a target tractogram
TB. We call the true target tract, as obtained through WMQL segmentation, as tB and
its approximation, through mapping or registration, as OtB. For each tract in Table 1,
we computed TPR and FDR for all possible pairs over the 10 subjects, i.e. 45 pairs.
We excluded those pairs where the difference in the number of streamlines was
�60%. We may reasonably assume that such extreme differences in the number of
streamlines for the same tract were related to limitations in the virtual dissection
with the WMQL.
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Table 2 Average, over
multiple pairs of subjects, of
true positive rate (TPR,
higher is better) and false
discovery rate (FDR, lower is
better) for three methods:
Registration,
RegistrationCNN (nearest
neighbor),
RegistrationCRLAP. Each
row corresponds to a different
anatomical tract

Registration Registration

Registration CNN CAssignment
Tract name TPR FDR TPR FDR TPR FDR

CST_LEFT 0.10 0.63 0.24 0.64 0.38 0.11
CST_RIGHT 0.06 0.76 0.21 0.70 0.32 0.32
CG_LEFT 0.24 0.38 0.33 0.62 0.67 0.20
CG_RIGHT 0.25 0.37 0.36 0.56 0.69 0.14
AF_LEFT 0.15 0.55 0.27 0.69 0.69 0.18
AF_RIGHT 0.11 0.57 0.31 0.67 0.67 0.15
UF_LEFT 0.24 0.45 0.37 0.57 0.71 0.21
UF_RIGHT 0.32 0.31 0.39 0.56 0.80 0.18
OR_LEFT 0.06 0.75 0.14 0.75 0.23 0.26
OR_RIGHT 0.07 0.64 0.13 0.77 0.27 0.30
MDLF_LEFT 0.13 0.68 0.24 0.66 0.53 0.18
MDLF_RIGHT 0.15 0.48 0.24 0.70 0.57 0.16
ILF_LEFT 0.18 0.61 0.29 0.64 0.67 0.26
ILF_RIGHT 0.07 0.66 0.18 0.75 0.39 0.13
IFOF_LEFT 0.16 0.59 0.29 0.65 0.66 0.17
IFOF_RIGHT 0.16 0.31 0.60 0.64 0.56 0.28

Denoted as v.t/ the set of voxels corresponding to a tract t, the quantification of
the overlap between OtB and tB was the following:

TPR D jv.OtB/\ v.tB/j
jv.tB/j (6)

FDR D jv.OtB/ n v.tB/j
jv.OtB/j (7)

In Table 2 are reported the results, in term of TPR and FDR for the three methods.
We highlight in bold face the best results, i.e. highest TPR and lowest FDR for
each row. The results clearly show that the computation of the correspondence of
streamlines between tracts is beneficial for alignment. Even the simplest implemen-
tation of mapping, i.e. the NN heuristic explained in Sect. 2, introduces a consistent
improvement over affine registration. Such improvement is much greater when
adopting the optimal solution of the RLAP. The results of RLAP are consistently
better for all tracts, except for the TPR of IFOF RIGHT. However, for IFOF RIGHT,
the TPR of RLAP is similar to that of NN and the TDR is much lower. We noticed
that the NN mapping, which computes a many-to-one correspondence, tends to
underestimate the number of streamlines, i.e usually jOtBj < jtBj. For this reason
and for the strong assumption that the affine registration is able to reduce the local
and global differences, the alignment based on NN achieves lower values of TPR
with respect to the RLAP.
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Fig. 1 Time, in seconds, required to solve the RLAP with the rectangular version of the Munkres
algorithm [3], for tracts with various sizes (n). The quadratic dependence of the time complexity
term is shown in green. Notice that m � 105

While RLAP looks effective for tract alignment, the same solution is not viable
for full tractograms alignment, because of the computational cost. In Fig. 1 it
is reported the time required by the rectangular Munkres algorithm of [3], as
implemented in Scikit-Learn,4 to compute the optimal solution for the tracts for
same of the cases in our experiments. For low values of n (<50/, the computation
required less than a minute, while for large values of n (>600) it required several
hours.

In Fig. 2 we report a visual snapshot of the alignment of the arcuate fasciculus
(AF) between two subjects. The picture5 shows the voxels correctly mapped both by
NN and RLAP (blue), those correctly mapped by only the RLAP (red), and the ones
missed by both (green). In this example, no correct voxel was found by NN and not
by RLAP. The benefit of RLAP with respect to NN is illustrated as a meaningful
increment of the number of voxels correctly aligned (red).

4http://scikit-learn.org.
5For simplicity we limit the view to one slice only.

http://scikit-learn.org
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Fig. 2 Mapping of Arcuate Fasciculus (AF). The pictures (left: whole brain; right: zoomed detail)
report one slice (x D 61; y D 53; z D 37) of the projection of the AF tract from a source subject
(IDD124422) to a target subject (IDD239944) of the Human Connectome Project dataset. Voxels
in blue are the ones correctly detected by NN and RLAP, in red by only RLAP and in green the
missed ones. No correct voxel was found by NN and not by RLAP

4 Conclusion and Future Work

In the present work we addressed the task of aligning sets of streamlines. We
introduced the notion of correspondence between streamlines, that we call mapping,
as additional step to improve the registration of tractograms based on affine
transformation. We proposed to recast the problem of computing the correspondence
as a rectangular linear assignment problem (RLAP). We performed an experimental
assessment on real data from the Human Connectome Project dataset and, in Sect. 3,
we provided strong empirical evidence of the improvement for tract alignment.

Despite the very positive results presented in Sect. 3, many questions require
further investigation. First of all, the RLAP approach presented here is based
on the assumptions that the mapping is injective and that the distance function
between streamlines across different tractograms is meaningful. The first assump-
tion, even though quite restrictive in principle (see Sect. 2.2), provides clearly
better results than the nearest neighbor (NN) solution, which is a many-to-one
mapping. Nevertheless, investigating more refined many-to-one and many-to-many
solutions seems be more anatomically meaningful. The second assumption requires
that the affine registration is sufficient to make the streamline distance function
meaningful across tractograms. Given that without initial registration such distance
may be non-informative, this step requires further understanding on when and how
registration becomes crucial. This issue provides motivation for completely avoiding
the computation of streamline distances across tractograms, a direction that we
recently proposed using a graph matching approach [12].

In the short term, the solution presented in this work can be improved on at least
two levels: reducing the computational time and investigating the effect of different
streamlines distance functions. We plan to investigate sub-optimal solutions to the
RLAP, in order to reduce the computational complexity so to address the problem
of mapping whole tractograms.
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Accelerating Global Tractography Using
Parallel Markov Chain Monte Carlo
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Abstract Global tractography estimates brain connectivity by determining the
optimal configuration of signal-generating fiber segments that best describes the
measured diffusion-weighted data, promising better stability than local greedy
methods with respect to imaging noise. However, global tractography is compu-
tationally very demanding and requires computation times that are often prohibitive
for clinical applications. We present here a reformulation of the global tractography
algorithm for fast parallel implementation amendable to acceleration using multi-
core CPUs and general-purpose GPUs. Our method is motivated by the key
observation that each fiber segment is affected by a limited spatial neighborhood.
That is, a fiber segment is influenced only by the fiber segments that are (or can
potentially be) connected to its both ends and also by the diffusion-weighted signal
in its proximity. This observation makes it possible to parallelize the Markov chain
Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that
updating of independent fiber segments can be done concurrently. The experiments
show that the proposed algorithm can significantly speed up global tractography,
while at the same time maintain or improve tractography performance.
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1 Introduction

Diffusion magnetic resonance imaging (DMRI) is a key imaging technique for in
vivo investigation of white matter pathways in the brain. It probes water diffusion in
various directions and at various diffusion scales to characterize micro-structural
compartments that are much smaller than the voxel size and presents unique
opportunities for non-invasive investigation of white matter connectivity [1–8]. To
trace white matter brain connections, local [9–12] or global [13, 14] tractography
algorithms can be utilized.

In local algorithms [9, 10], fibers are initiated from a random or predetermined
region and are then traced point-by-point using a greedy approach via small
successive steps by following local voxel-wise distributions of axonal directions.
These algorithms are hence susceptible to error accumulation, which might cause
the reconstructed trajectories to deviate from the true trajectories [15]. On the other
hand, global tractography (GT) approaches try to reconstruct all fiber trajectories
simultaneously by considering their agreement with the underlying diffusion data
[13, 14]. They are more resilient to error accumulation and are more robust to
imaging noise and artifacts. While effective, the reconstruction of white matter
trajectories for the whole brain via GT approaches usually requires much longer
time than the local approaches. It was reported in [16, 17] that the computation
can take up to one day on a standard PC. This high computational cost reduces the
applicability of GT approaches in clinical settings.

Several algorithms were applied to accelerate local deterministic and proba-
bilistic tractography methods via parallelization [18, 19]. They typically spawn an
independent thread for each seed voxel so that the tracing of different fiber tracts
can be performed in parallel. To the best of our knowledge, there is no existing
discussion in the literature about the parallelization of the GT algorithm. In this
paper, our goal is to leverage recent advancements in parallel big-data MCMC
techniques [20] to improve the speed of the original GT algorithm proposed by
Reisert and his colleagues [14], which at its core uses a popular MCMC technique
called the Metropolis-Hastings algorithm. As the number of posterior samples
grows, MCMC techniques guarantee asymptotically exact recovery of the posterior
distribution. However, MCMC methods can be prohibitively slow, since for N data
points, most methods must performO.N/ operations to draw a sample. Furthermore,
MCMC methods might require a large number of “burn-in” steps before producing
representative samples.

Recently, an embarrassingly parallel approach was proposed in [20] to paral-
lelize burn-in and sampling in MCMC. The key idea is to apply any MCMC method
independently to subsets of data without requiring much communication between
them. First, the data are partitioned in multiple subsets. Then an MCMC method
is used to draw samples from the posterior distribution associated with each data
subset. Finally, the samples resulting from all subsets are combined to form samples
from the full posterior. This method is termed embarrassingly parallel because the
processing of each subset is performed independently without communication with
other subsets until the final combination stage.
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Building on this concept, we provide a proof of concept in this work that the GT
algorithm can be improved significantly in terms of speed by MCMC parallelization.
The key observation is that the spatial extent of the influence of each fiber segment
is limited. In other words, each fiber segment depends only on the fiber segments
that are connected (or can potentially be connected) to its both ends and also on
the diffusion-weighted signal that is in its proximity. That is, despite the fact we
are trying to decrease the total fitting energy in a global sense, the influence of
each fiber segment on the variation of the energy is in fact local. Based on this
observation, significant parallelism can be harnessed for improving the speed of
the GT algorithm. The data can be partitioned into statistically independent subsets
similar to [20] and processed separately before combining the results to form
samples for the original problem. Experimental results confirm the effectiveness
of the proposed method and demonstrate that similar tractography performance can
be achieved in a significantly reduced amount of time.

2 Method

2.1 Background

The goal of GT [14] is to determine the optimal configuration M of a set of signal-
generating fiber segments given the measured diffusion-weighted signals D. That
is, one is interested in determining the M that maximizes the posterior probability
P.MjD/ defined as

P.MjD/ D 1

Z
exp.�Eint.M/� Eext.M;D//; (1)

where Eint.M/ and Eext.M;D/ are the internal energy and the external energy,
respectively, Z is the partition function. The internal energy characterizes the
smoothness of the fibers and is defined as the sum of all the interaction potentials
between two connected segments:

Eint.M/ D �int

X

.e
˛i!j
i ;e

˛j!i
j /

1

l2
.jje˛i!j

i � Nxijjj2 C jje˛j!i

j � Nxijjj2/ � L; (2)

where ˛ 2 fC;�g indicates the positive or negative endpoint of a segment, e
˛i!j

i
is the location of the endpoint of the ith segment that is connected to the jth
fiber segment, and Nxij represents the midpoint of the line that connects these two
segments. Parameter l is the half length of a fiber segment and the bias L affects
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the probability of connections between segments. The external energy measures
the difference between the observed data D and the predicted signal given by the
configuration M:

Eext.M;D/ D �extjjFM � Djj D �ext

Z

<3�S2
jFM.x;n/� D.x;n/j2d3xd2n (3)

where �ext is a weighting for the external energy. Let xi and ni be respectively the
position and the orientation of ith fiber segment, the signal predicted by the fiber
segments at location x and orientation n is defined as

FM.x;n/ D w
NX

iD1
exp.�c.nTni/

2/ exp

��jx � xij2

2

�

: (4)

The constant w controls the amount of signal contribution from each fiber segment.
Parameter 
 > 0 controls the spatial extent of the influence of each fiber segment.
Parameter c > 0 controls the shape of the signal profile generated by each fiber
segment [14]. The goal of GT is to determine a configurationM that maximizes the
posterior distribution

P.MjD/ / P.DjM/P.M/ D exp

��E.M;D/
T

�

; (5)

where E.M;D/ D Eint.M/ C Eext.M;D/ is the total energy and T is the
temperature associated with simulated annealing [21].

2.2 Parallel Global Tractography (PGT)

To maximize the posterior probability, an MCMC method called the Metropolis-
Hastings (MH) algorithm [22] is employed in [14]. The MH algorithm draws
samples from the posterior distribution defined in Eq. (5). However, MCMC meth-
ods usually take a long time to draw a sample, proportional to the number of data
points [20]. In view of this, we randomly partition the image data into K regions that
are mutually non-influential and statistically independent. Then the MH algorithm
is applied in parallel by proposing changes to the fiber segments in these regions
based on the corresponding transition probabilities. The proposals in these regions
are accepted/rejected based on their individual acceptance ratios. The independence
condition ensures that the proposals for each of the K regions can be accepted and
rejected separately but in parallel. The details are described next.
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We first partition the posterior density into subposterior densities [20] based on
K randomly determined and statistically independent subregions:

P.MjD/ D P.M0jD/
KY

kD1
P.MkjD;M0/; (6)

where M0 denotes configuration of the fiber segmentations in the region that
separates the K regions to ensure their independence, and Mk denotes the config-
uration of the fiber segments in the k-th region, including their existence, spatial
positions, orientations, and connections at both ends to other fiber segments.
Proposals for modification of configuration are made for the fiber segments in each
region according to its subposterior density by randomly selecting at each time a
fiber segment, perturbing it using a creation/deletion and shifting mechanism, and
examining if the regional energy can be decreased. In this process,M0 remains fixed
and fMkg are updated. After fMkg are sufficiently updated, they are combined to
form M. The random partitioning of the image space into subregions is performed
iteratively so that each time the fiber configurations of a different set of K random
subregions can be updated.

The decision of whether to accept a proposal is based on the individual Green’s
ratio of the k-th region

Rk D P.M0

kjD;M0/Q.MkjM0

k/

P.MkjD;M0/Q.M0

kjMk/
; (7)

where Q.M0

kjMk/ is the transition probability associated with the MH algorithm.
The internal energy contributed by the fiber segments in the k-th region alone is

Eint.Mk/ D �int

X

.e
˛i!j
i ;e

˛j!i
j /;i;j2Nk

1

l2
.jje˛i!j

i � Nxijjj2 C jje˛j!i

j � Nxijjj2/ � L (8)

and the external energy is

Eext.Mk;D/ D �ext

Z

Nk�S2
jFM.x;n/� D.x;n/j2dx3dn2: (9)

where Nk is the index set containing the indices of all fiber segments in the k-th
region. The subposterior distribution is

P.MkjD;M0/ / P.Mk;M0/P.DjMk;M0/: (10)

Note that some proposals are parallelizable and some are not. For each fiber seg-
ment, the change in internal energy associated with the creation/deletion and shifting
proposals is affected only by the fiber segments it is (or will be) connected to.
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The change in external energy involves only the diffusion signals in a localized
neighborhood surrounding the fiber segment. Hence, the creation/deletion and
shifting proposals can be performed independently and simultaneously in different
subregions. However, the connection/disconnection proposals, which attempt to
determine new fibers with lower energy, involve a larger spatial extent and are
hence more difficult to parallelize. To overcome this problem, we alternate between
parallel proposals (i.e., creation/deletion and shifting) and serial proposals (i.e.,
connection/disconnection) according to MH transition probabilities assigned to
them. In summary, the PGT algorithm involves repeating the following steps until
convergence.

1. Data Partitioning: Randomly partitioning the image space into K subregions,
between which the configurations of the fiber segments are not dependent.

2. Parallel Proposals: Make creation/deletion and shifting proposals in parallel for
the fiber segments in these regions according to the corresponding transition
probabilities and accept/reject the proposals based on their acceptance ratios.
Repeat this step for a sufficient number of times.

3. Serial Proposals: Make connection/disconnection proposals and determine fiber
tracts that better explain the data.

3 Evaluation

We report here preliminary results from our evaluation of the PGT algorithm using
synthetic and in vivo data. The synthetic data consist of a set of 60 � 60 diffusion-
weighted images, simulating fiber bundles crossing at 90ı. The signal at each voxel
was generated using a tensor model or its mixture with principal diffusivities [23]
�1 D 1:5�10�3 mm2=s, �2 D �3 D 1:0�10�3 mm2=s and diffusion weighting b D
2000 s=mm2. The in vivo dataset for an adult subject was acquired with .2mm/3

resolution using a Siemens 3T TIM Trio MR scanner. Diffusion gradients were
applied in 120 non-collinear directions with diffusion weighting b D 2000 s=mm2.

First, we compared the convergence of GT (PGT with one thread) and PGT
(eight threads). The parameters used for GT and PGT were set as suggested in [14].
Figure 1 shows the plots of the total energy against the number of proposals for the
synthetic and in vivo data. The total energy decreases rapidly at the beginning when
less proposals have been made and when the configuration of the fiber segments
is more arbitrary. The decrease slows down and flattens when the configuration
becomes stable. It can also be observed that PGT is slightly advantageous over GT in
its ability to yield lower total energy. This can be attributed to the fact that multiple
adjustments of fiber segments are done concurrently, making it easier and faster to
reach a configuration with lower energy.
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Fig. 1 Normalized total energy plotted against the number of proposals (in logarithmic scale)
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Fig. 3 Tractography results on synthetic data using (a) GT and (b) PGT

Next, we evaluated the speed improvement given by PGT over GT. The evalu-
ation was performed using an iMac with Intel 4-Core i7 CPU (3.4 GHz each) and
8 GB of DDR3 RAM. Figure 2 shows that, on both synthetic and in vivo data, PGT
always consumes less than approximately 1=3 the time required by GT. Note that it
is not possible to achieve the ideal 8� speed increase because the GT algorithm is
only partially parallelized, as discussed in Sect. 2.2. Part of the time also goes to the
computational overhead involved in the parallelized implementation.

Figure 3 shows the tractography results of GT and PGT on the synthetic data
after 2 � 108 proposals. Both GT and PGT create reasonable fiber tracts that are
in agreement with the data. The normalized total energy values for GT and PGT
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Fig. 4 Fiber bundles given by GT (left) and PGT (right)

are 0.56 and 0.45, respectively. For the in vivo data, fiber bundles extracted with
multiple ROIs [24] are shown in Fig. 4. These fiber bundles are similar to those in
[14]: the part of the callosal fibers coming from the left motor cortex (CCtoM1),
corticospinal tracts to the left motor cortex (CST), and the cingulum (CG). These
are shown from top to bottom in the figure. PGT results in fiber bundles that are
similar to GT, but in a fraction of time.

4 Discussion and Future Work

The proposed algorithm helps to reduce the time cost associated with the global
optimization process required in global tractography. We run in parallel multiple
independent chains of MCMC on a number of dynamically determined subregions,
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resulting in faster convergence and producing results that are comparable to
the non-parallelized version. Future implementation based on GPUs will further
improve the speed of global tractography and hence its feasibility in large-scale
studies.
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Adaptive Enhancement in Diffusion MRI
Through Propagator Sharpening

Tom Dela Haije, Neda Sepasian, Andrea Fuster, and Luc Florack

Abstract In this short note we consider a method of enhancing diffusion MRI
data based on analytically deblurring the ensemble average propagator. Because
of the Fourier relationship between the normalized signal and the propagator, this
technique can be applied in a straightforward manner to a large class of models. In
the case of diffusion tensor imaging, a commonly used ‘ad hoc’ min-normalization
sharpening method is shown to be closely related to this deblurring approach.
The main goal of this manuscript is to give a formal description of the method
for (generalized) diffusion tensor imaging and higher order apparent diffusion
coefficient-based models. We also show how the method can be made adaptive to
the data, and present the effect of our proposed enhancement on scalar maps and
tractography output.

1 Introduction

Many advanced tractography techniques allow tracts to deviate from the principal
direction of diffusion. This can be advantageous in terms of robustness to noise,
but if the diffusion profile is not sufficiently sharp the tracts can still deviate
significantly from the main diffusion direction. This is just one example of issues
that inspired various preprocessing techniques that have been proposed, such as
the log-Euclidean framework to handle noisy data [1], spherical deconvolution of
the diffusion tensor to enhance the anisotropy [10], and sharpening by raising the
diffusion tensors to a certain power [19].

The purpose of this manuscript is the introduction of a simple enhancement
method based on deblurring the ensemble average propagator. The theoretical basis
of the method is described in Sect. 2, and explicit expressions for specific models
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are presented in Sect. 2.2. We perform some basic experiments on diffusion tensor
imaging to illustrate the potential of the method (Sect. 3) of which the results are
presented in Sect. 4.

2 Theory

2.1 The Enhanced Diffusion Signal

The ensemble average propagator P	.r/ represents the likelihood of a displacement
r occurring in a voxel within diffusion time 	, which is assumed to satisfy
P	.�r/ D P	.r/. Under the narrow-pulse approximation, i.e., when the duration ı
of the applied1 diffusion encoding gradients g is much smaller than	, P	 is related
to the normalized signal S	.q/ through a Fourier transform [4]:

S	.q/ D F�1 fP	g .q/ WD
Z

R3

ei 2� q�rP	.r/ dr: (1)

Here q WD .2�/�1�ıg is the wave vector encoding information regarding the
applied gradients, with � the gyromagnetic ratio. In the typical situation where
ı � 	, a relation analogous to Eq. (1) holds [22, 24]. One generally acquires a
number of samples of S	 for various q in each voxel, though we will not state this
voxel dependence explicitly until Sect. 4.

Interesting features of the propagator, like differences between angular diffusivi-
ties, can be difficult to detect. This difficulty is aggravated by e.g. sparse sampling of
the Fourier space, which has a blurring effect. To this end we consider what happens

when the propagator P	 is blurred with a Gaussian G
 .r/ WD 1

.
p
2�
/

3 e� krk
2

2
2 ,


 � 0, and define Q	 as the deconvolution of P	, i.e., such that P	 D G
 � Q	.
Consequently,

S	 D F�1 fG
 � Q	g D F�1 fG
gF�1 fQ	g : (2)

Using F�1 fG
g .q/ D e�2�2
2kqk2 we obtain

�
 .S	/ .q/ WD F�1 fQ	g .q/ D e2�
2
2kqk2S	.q/; (3)

where �
 is the effective deblurring operator acting on the signal.
We note that 
 is constrained by the fact that the signal S	, and thus also the

sharpened signal �
 .S	/ .q/, is required to be strictly less than 1 everywhere except

1We assume a standard pulsed gradient spin echo sequence.
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in the origin.2 This means that 
 should be chosen such that

8q¤0 e2�
2
2kqk2S	.q/ < 1: (4)

Equation (3) can be used to process raw diffusion MRI data, but this should be
avoided due to ill-posedness. Note for example that for large values of kqk, the
presence of noise means Eq. (4) will impose 
2 D 0. In fact, it is desirable to
apply the sharpening after S	 is expressed in terms of a specific model, the specific
structure of which can be exploited to simplify Eq. (3). In the following section we
present details for three commonly used models.

2.2 Simplified Deconvolution for Specific Models

Diffusion Tensor Imaging

In Diffusion Tensor Imaging (DTI) [3], the ensemble average propagator is assumed
to be a multivariate normal distribution. The signal model is of the form

S	.q/ D e�� qT D q; (5)

with a constant � WD 4�2
�
	 � ı

3

�
and with D the positive-definite second order

diffusion tensor. It follows that the signal corresponding to the sharpened propagator
is given by

�
 .S	/ .q/ D e�� qT D qC2�2
2 qT I q D e�� qT
	

D� 2�2
2

� I



q (6)

with I the 3�3 identity matrix. In this case the sharpening consists therefore simply
of subtracting a constant value (depending on the chosen 
) from the diagonal
elements of the diffusion tensor D.

Note that the diffusion tensor is required to be positive-definite, which imposes a
cap on the allowed values for 
 :

2�2
2

�
< �min: (7)

Here �min is the smallest eigenvalue. This constraint corresponds exactly to Eq. (4).

2This follows from Eq. (1) under some regularity conditions.
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Apparent Diffusion Coefficient Models

For higher order models based on the apparent diffusion coefficient, the signal is
described by [11, 25]

S	.q/ D e�� ADC.q/; (8)

in which the apparent diffusion coefficient ADC.q/ is assumed to satisfy

ADC.� q/ D �2ADC.q/ (9)

for � 2 R. Applying Eq. (3) to this model gives

�
 .S	/ .q/ D e�� ADC.q/C2�2
2kqk2 ; (10)

a common ‘ad-hoc’ enhancement principle already adopted in practice [26]. The
ADC is typically expressed in terms of a fully symmetric higher order (Cartesian)
tensor or in terms of real-valued spherical harmonic functions, both of which
transform in a straightforward manner under the proposed enhancement.

In the case of a tensor expansion the ADC is parameterized by symmetric
coefficients Ti1:::i2L . L is called the order of the expansion. By defining Oq WD q=kqk 2
S2 as the direction of the wave vector, we can write the tensor expansion of the
ADC as

ADC.q/ D kqk2
3X

i1;:::;i2LD1
Ti1:::i2L Oqi1 : : : Oqi2L ; (11)

where Oqi denotes the ith component of Oq in Cartesian coordinates. Plugging Eq. (11)
into Eq. (9) gives

�
 .S	/ .q/ D e�� kqk2
hP3

i1:::i2LD1

	
Ti1:::i2L � 2�2
2

� Ii1:::i2L



Oqi1 :::Oqi2L

i

; (12)

in which the tensor with components Ii1:::i2L has the property that it produces one
when contracted with any unit vector Oq, viz.

Ii1:::i2L D ı.i1i2 : : : ıi2L�1i2L/: (13)

Here ıij is 1 for i D j and 0 otherwise, and parentheses denote index symmetriza-
tion [21, p. 126]. For L D 2 for example, the only non-zero components (excluding
symmetries) are given by Özarslan et al. [27]

I1111 D I2222 D I3333 D 3I1122 D 3I1133 D 3I2233 D 1: (14)
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The real-valued and symmetrical spherical harmonics are defined [8] for l D
0; 2; : : : and �l � m � l as

QYm
l . Oq/ WD

8
<

:

p
2Re

�
Ym

l . Oq/
�

m < 0

Y0l . Oq/ m D 0p
2 Im

�
Ym

l . Oq/
�

m > 0

; (15)

in which Re and Im extract the real and imaginary parts of the spherical harmonics
basis function Ym

l (seismological convention) respectively. The ADC is then param-
eterized by the spherical harmonics coefficients cm

l giving

ADC.q/ D kqk2
LX

lD0

2lX

mD�2l

cm
2l

QYm
2l. Oq/; (16)

with 2L again the maximum order of the expansion. Since QY00 . Oq/ D .2
p
�/�1 is

the only constant basis function, sharpening in the spherical harmonics basis has the
simple form

�
 .S	/ .q/ D e�� kqk2
h	

c00� 4�5=2
2

�


QY00 .Oq/C
PL

lD1

P2l
mD�2l cm

2l
QYm
2l.Oq/

i

; (17)

and so sharpening boils down to subtracting the constant 4�
5=2
2

�
from the coefficient

c00.
There are no known conditions on the coefficients (independent of the chosen

basis) that impose the constraint in Eq. (4) exactly, so one would have to solve
Eq. (4) numerically when explicit constraints are needed. The constraint does
simplify significantly though:


2 < min
fq j kqkD1g

h �

2�2
ADC.q/

i
: (18)

Alternatively one could check if the coefficients satisfy a sufficient (but not
necessary) condition for positive-definiteness [14].

Generalized Diffusion Tensor Imaging

The last model we consider is another generalization of DTI proposed by Liu
et al. [20]. In this case the signal is modeled as

S	.q/ D e�PL
iD2 �i

P3
j1;:::;jiD1 Dj1:::ji qj1 :::qji ; (19)

with �i WD .2�/i
�
	 � i�1

iC1 ı
�

and Dj1:::ji the components of the generalized diffusion
tensor, and now L the maximum order considered (in this case not forced to be
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even). In this case the analogy with DTI is immediately apparent, and we observe
that the sharpening is achieved by subtracting the value 2�2
2

�
from the coefficients

D11, D22, and D33. The same holds for more specific models of this general form,
like diffusional kurtosis imaging [18].

Again there are no known conditions on the coefficients Dj1:::ji that enforce Eq. (4)
generally, and unlike in the previous section Eq. (4) does not simplify. There do exist
similar sufficient conditions that can be useful in this context [7, 15].

2.3 Adaptive Enhancement

To apply enhancement the user would have to select a reasonable value for 
 . We
know from Eq. (4) that if we allow the sharpening parameter 
 to surpass the given
limit, then the sharpening will produce incorrect results. A single globally optimal
value for 
 will thus, provided it exists, be based on a fraction of the globally
smallest eigenvalue. Let us define the theoretical bound on 
 as

� WD min
x2˝ max


2R
˚


ˇ
ˇ 8q¤0 �
.S	/.x;q/ < 1

�
; (20)

where x 2 ˝ � R3 specifies a voxel in the region˝ , which will typically comprise
all voxels in the brain, and where we include the x-dependence of the signal S	. The
enhancement operator is then defined as

�
global
f .S	/.x;q/ WD �f ��.S	/.x;q/; (21)

where f 2 Œ0; 1� is a user-selected fraction of � that determines the sharpening
strength. The effect of sharpening for a number of DTI tensors is shown in Fig. 1.

Though a single parameter value for an entire data set makes sense from a
theoretical perspective, in practice it can be rather limiting. Therefore we propose to

(a) (b) (c)

Fig. 1 Illustration of adaptive enhancement for DTI in the cortex (Human Connectome Project
data set, see Sect. 3). (a) T1 weighted data with the red box indicating the investigated region.
(b) The tensors in the region indicated in (a). (c) The enhanced tensors of (b) after applying Eq. (22)
with f D 0:5
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select a global fraction f of the local bound �.x/. This locally adaptive enhancement
can be defined as

�local
f .S	/.x;q/ WD �f ��.x/.S	/.x;q/: (22)

In this case f is still a global parameter, but the bound � is now a function of position:

�.x/ WD max

2R

˚


ˇ
ˇ 8q¤0 �
.S	/.x;q/ < 1

�
: (23)

The effect this operator has depends on the type of diffusion in a voxel, and we can
make the following observations, see also Fig. 1.

1. Voxels with large and relatively isotropic diffusion (e.g. in the ventricles) are
affected the strongest; the amount of diffusion is decreased while the anisotropy
is increased slightly.

2. In areas where the diffusion is anisotropic (white matter), the amount of diffusion
decreases a little bit, while anisotropy increases far more significantly.

3. With small isotropic diffusion, both the (absolute) amount of diffusion and the
anisotropy remain relatively untouched.

2.4 Relation to Other Sharpening Methods

The sharpening method discussed here is similar to, but distinctly different from
techniques like spherical deconvolution [9, 10]. A precise description of their
relation is subject of future work. The method also has obvious ties to the work
of Canales-Rodríguez et al. [5], who looked at deconvolving a fully reconstructed
propagator (based on diffusion spectrum imaging) with a sinc function.

3 Methods

The first experiment we present in the next section illustrates the effect of the
method on scalar maps, where it provides a simple means to improve contrast. As
a preliminary investigation into its use as a pre-processing step for further analysis,
we additionally present results on DTI tractography. For this second experiment we
select two deterministic tractography algorithms; a streamline method that traces
the vector field defined by the main eigenvector of the diffusion tensor, and a multi-
valued geodesic tractography method.

Since the enhancement presented here does not change the main directions of
diffusivity, its use in streamline tractography is limited to a modification of the
boundary conditions (like the stopping criterion). In geodesic tractography fibers
are reconstructed as minimum length paths, i.e., the geodesics in a given metric
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space, where the main assumption is that the fibers tend to follow the path of the
most efficient diffusion propagation [16]. Specifically, we use a recently introduced
geodesic tractography technique that obtains these pathways as solutions of Euler-
Lagrange equations in Riemannian or Finslerian manifolds [29]. This approach
can capture (multivalued) geodesics connecting two given points or regions by
considering the geodesics as functions of position and orientation. Since in this
case tractography relies on the entire diffusion profile instead of just the main
directions of diffusion, enhancement has a more pronounced effect. Though there
are alternatives [12, 13, 17, 28], we use the inverse of the diffusion tensor as the
metric as it is the most well-known definition.

Apart from the proposed enhancement we use a simple power transform as an
alternative diffusion tensor imaging pre-processing step for a comparison [19, 30].
The power sharpening depends on the parameter s, and is given by the matrix power
of the diffusion tensor:

.D; s/ 7! Ds: (24)

We use two data sets to perform the experiments. The first data set (referred to as
the Siemens data set) was acquired with a 3T Siemens scanner at a resolution of 1�
1�1mm3 and a b-value of 1000 s/mm2 (66 gradient directions). The second data set
is provided by the Human Connectome Project (subject ID 100307, preprocessed,
weighted linear least squares DTI reconstruction based on the b D 1000 s/mm2

shell), WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil
Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support
the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University [32].

The regions of interest are selected within the corpus callosum and derived
from the expert-annotated Mori tract atlas [23]. Experiments were performed
with in-house software and with the vIST/e software framework.3 With geodesic
tractography two seed points are placed in each voxel, and we assign four random
orientations to each seed point from an elliptic cone around the main eigenvec-
tor [29]. In all tracking experiments the algorithms terminate once the fractional
anisotropy gets below 0:1.

Since there is no ground truth available to quantify the tractography, we look at
the true positive percentile defined as the percentage of fibers which connect a seed
region with given regions of interest selected using available white matter bundle
atlases [6, 23].

3http://bmia.bmt.tue.nl/software/viste/.

http://bmia.bmt.tue.nl/software/viste/
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4 Results

4.1 Adaptive Sharpening of Scalar Maps

One interesting and illustrative application of enhancement pertains to scalar maps.
We look at the effect of enhancement on the Fractional Anisotropy (FA) and Mean
Diffusivity (MD) indices for diffusion tensor imaging [2]. The results are shown in
Fig. 2, and showcase the effects listed at the end of Sect. 2.3. In both cases contrast
improves markedly, but concomitant changes such as a strong decrease in MD
for areas of large and isotropic diffusivity may, depending on the application, be
undesirable.

4.2 The Effect of Adaptive Sharpening on DTI Tractography

In Fig. 3 the seed region is placed in the postcentral gyri areas of the corpus
callosum, Siemens data set (Sect. 3), and tractography is done using streamlining.
The resulting tracts are known to correspond fairly well to the anatomy, even in the
case of DTI tractography. As such we would like the enhancement not to change the
tracts too much, which we indeed see in the top row. Note also that the tracts are
recovered consistently while varying f . Additionally we find that tracts continue
a little bit farther into the gray matter compared to the original data due to the

Fig. 2 DTI-based FA and MD scalar maps of the Human Connectome Project data after adaptive
enhancement, for increasing values of f (Eq. (22))



140 T. Dela Haije et al.

Fig. 3 The results of streamline tractography seeded from the postcentral gyri areas of the corpus
callosum (Siemens data), using no additional preprocessing (left), the presented deconvolution
enhancement with f D 0:25; 0:50; 0:75 [top row, Eq. (22)], and sharpened diffusion tensors with
powers 2, 3, and 4 [bottom row, Eq. (24)]

Fig. 4 The results of geodesic tractography seeded from the postcentral gyri areas of the corpus
callosum (Siemens data), using no additional preprocessing (left), the presented deconvolution
enhancement with f D 0:25; 0:50; 0:75 [top row, Eq. (22)], and sharpened diffusion tensors with
powers 2, 3, and 4 [bottom row, Eq. (24)]. The orange arrows point to regions where symmetry
of the tracts, lacking in the original and the power sharpened data, is partly recovered after
enhancement

increased anisotropy. The second row shows that sharpening with a power transform
produces a number of incoherent tracts even for low powers.

More interesting are the results of geodesic tractography, seen in Fig. 4, for the
same data set and seed region. In this case we see that after enhancement, we
obtain much denser, more coherent, and generally more cogent tracts. The number
of spurious fibers increases as expected with increasing f , with the best results
apparently attained with f � 0:25. Of particular interest are the areas indicated with
the orange arrows, where we recover tracts that are missing in the tractography based
on the original data. These fibers are expected to be present from known anatomy
and from symmetry arguments. For reference we include the results obtained when
applying a power transform to the tensors, Eq. (24), which introduces far more
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Fig. 5 The true positive percentile of fibers connecting the given regions in the postcentral gyri
part of the corpus callosum in the Siemens data. The horizontal solid black lines indicate the true
positive percentiles obtained when using the original data

spurious fibers and does not recover any tracts in the indicated region. As a very
simple quantification we show the true positive percentiles in Fig. 5, as explained in
Sect. 3.

5 Discussion

Regarding the method, we have presented in Sect. 2.2 simple expressions that
follow when modeling the diffusion weighted signal in a particular way. For many
models not considered here the resulting expressions will be equally uninvolved,
e.g. multi-compartment models in which the compartments are modeled by tensors.
In other models (e.g. fiber orientation distribution models [31]) application of the
enhancement might range from difficult to extraneous.

The experiments presented here illustrate that the method has some positive
effects on tractography in the simple DTI case. Though the presented experiments
are quite straightforward, combined with the fact that the method is fairly easy even
for more advanced models they demonstrate potential. Generally speaking though,
the method remains to be validated for each model in which it is to be applied,
including DTI. In addition to this there are still model-dependent open questions,
like the proper range of f , that would have to be considered.

One final point we have not discussed in depth concerns the computation of �.x/,
Eq. (23). In the experiments presented here simple analytical formulae provided an
unambiguous choice for this value, but for some other models this value may have
to be approximated numerically. This will complicate the implementation, and in
some cases may even be a limiting factor. We plan to address this issue in future
work.
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6 Conclusion

In this work we propose a new method to enhance diffusion MRI data by decon-
volving the central quantity in diffusion MRI, the ensemble average propagator.
The method is shown to produce very simple algorithms for a number of models,
namely apparent diffusion coefficient based models and (generalized) diffusion
tensor imaging, and a preliminary valuation is done by investigating its effect on
scalar maps and on tractography. Improvement is shown in preliminary tractography
experiments, both quantitative by tallying the number of true positive connections
found, and qualitative by the recovery of a reasonable fiber tract not obtained using
the original data.
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first authors.

References

1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple
calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

2. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by
quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111(3), 209–219 (1996)

3. Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from
the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994)

4. Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press,
Oxford (1991)

5. Canales-Rodríguez, E.J., Iturria-Medina, Y., Alemán-Gómez, Y., Melie-García, L.: Deconvo-
lution in diffusion spectrum imaging. NeuroImage 50(1), 136–149 (2010)

6. Catani, M., Thiebautdeschotten, M.: A diffusion tensor imaging tractography atlas for virtual
in vivo dissections. Cortex 44(8), 1105–1132 (2008)

7. Dela Haije, T.C.J., Fuster, A., Florack, L.M.J.: Reconstruction of convex polynomial diffusion
MRI models using semi-definite programming. In: Proceedings of the 23rd Annual Meeting of
the ISMRM, Toronto, p. 2821 (2015)

8. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients
from high angular resolution diffusion imaging: estimation and applications. Magn. Reson.
Med. 56(2), 395–410 (2006)

9. Descoteaux, M., Lenglet, C., Deriche, R.: Diffusion tensor sharpening improves white matter
tractography. Proc. SPIE (Med. Imaging 2007: Image Process.) 6512, 65121J (2007)

10. Florack, L., Astola, L.: A multi-resolution framework for diffusion tensor images. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008.
CVPRW’08, pp. 1–7 (2008)

11. Florack, L.M.J., Fuster, A.: Riemann-Finsler geometry for diffusion weighted magnetic
resonance imaging. In: Westin, C.F., Vilanova, A., Burgeth, B. (eds.) Visualization and
Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pp. 189–208.
Mathematics and Visualization, vol. XV. Springer, Berlin (2014)

12. Fuster, A., Tristán-Vega, A., Dela Haije, T., Westin, C.-F., Florack, L.: A novel Riemannian
metric for geodesic tractography in DTI. In: Computational Diffusion MRI and Brain
Connectivity, pp. 97–104. Springer, Berlin (2014)



Adaptive Enhancement in Diffusion MRI Through Propagator Sharpening 143

13. Fuster, A., Dela Haije, T., Tristán-Vega, A., Plantinga, B., Westin, C.-F., Florack, L.: Adjugate
diffusion tensors for geodesic tractography in white matter. J. Math. Imaging Vision 54(1),
1–14 (2016). doi:10.1007/s10851-015-0586-8

14. Ghosh, A., Deriche, R., Moakher, M.: Ternary quartic approach for positive 4th order diffusion
tensors revisited. In: IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, 2009. ISBI’09, pp. 618–621 (2009)

15. Ghosh, A., Milne, T., Deriche, R.: Constrained diffusion kurtosis imaging using ternary
quartics & MLE. Magn. Reson. Med. 71(4), 1581–1591 (2014)

16. Hao, X., Whitaker, R., Fletcher, P.: Adaptive Riemannian metrics for improved geodesic
tracking of white matter. In: Information Processing in Medical Imaging, pp. 13–24 (2011)

17. Hao, X., Zygmunt, K., Whitaker, R.T., Fletcher, P.T.: Improved segmentation of white matter
tracts with adaptive Riemannian metrics. Med. Image Anal. 18(1), 161–175 (2014)

18. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging:
the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging.
Magn. Reson. Med. 53(6), 1432–1440 (2005)

19. Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie,
B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L.: White matter tractography using
diffusion tensor deflection. Hum. Brain Mapp. 18(4), 306–321 (2003)

20. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-Gaussian diffusion by using
generalized diffusion tensors. Magn. Reson. Med. 51(5), 924–937 (2004)

21. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco, CA
(1973)

22. Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsed-field-gradient
diffusion measurements. J. Magn. Reson. Ser. A 113(1), 94–101 (1995)

23. Mori, S., Crain, B.J.: MRI Atlas of Human White Matter. Elsevier, Amsterdam, Boston (2005)
24. Novikov, D.S., Kiselev, V.G.: Effective medium theory of a diffusion-weighted signal. NMR

Biomed. 23(7), 682–697 (2010)
25. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships

between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson.
Med. 50(5), 955–965 (2003)

26. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Fiber orientation mapping using generalized
diffusion tensor imaging. In: IEEE International Symposium on Biomedical Imaging: Nano
to Macro, 2004, pp. 1036–1039 (2004)

27. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using
trace, variance, and entropy. Magn. Reson. Med. 53(4), 866–876 (2005)

28. Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path
tractography in DTI using Gaussian process ODE solvers. In: Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2014, Nagoya (2014)

29. Sepasian, N., ten Thije Boonkkamp, J.H.M., Ter Haar Romeny, B.M., Vilanova, A.: Multi-
valued geodesic ray-tracing for computing brain connections using diffusion tensor imaging.
SIAM J. Imag. Sci. 5(2), 483–504 (2012)

30. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Diffusion-weighted magnetic
resonance imaging fibre tracking using a front evolution algorithm. NeuroImage 20(1), 276–
288 (2003)

31. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber
orientation density function from diffusion-weighted MRI data using spherical deconvolution.
NeuroImage 23(3), 1176–1185 (2004)

32. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-
Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

10.1007/s10851-015-0586-8


Angular Resolution Enhancement of Diffusion
MRI Data Using Inter-Subject Information
Transfer

Geng Chen, Pei Zhang, Ke Li, Chong-Yaw Wee, Yafeng Wu, Dinggang Shen,
and Pew-Thian Yap

Abstract Diffusion magnetic resonance imaging is widely used to investigate dif-
fusion patterns of water molecules in the human brain. It provides information that is
useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal
tracing, namely tractography, relies on local directional information provided by
the orientation distribution functions (ODFs) estimated at each voxel. To accurately
estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples
are desired, but unfortunately, are not always practically available. In this paper, we
propose to improve ODF estimation by using inter-subject correlation. Specifically,
diffusion-weighted images acquired from different subjects, when transformed to
the space of a target subject, can not only provide signal denoising with additional
information, but also drastically increase the number of angular samples for better
ODF estimation. This is largely because of the incoherence of the angular samples
generated when the diffusion signals are reoriented and warped to the target space.
Experiments on both synthetic data and real data show that our method can reduce
noise-induced artifacts, such as spurious ODF peaks, and yield more coherent
orientations.
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1 Introduction

Diffusion magnetic resonance imaging (MRI) provides information on brain cir-
cuitry by observing the diffusion patterns of water molecules in the human brain. To
trace the brain connections, diffusion tractography algorithms rely on information
provided by local fiber orientations, which are often represented by a quantity called
the orientation distribution function (ODF). Accurate ODF estimation is key to
successful tractography. Precise tractography can be used to study the integrity and
changes of white matter tracts in relation to development and disorders [1–8]. Two
major factors affect the estimation of ODFs: (1) The number of diffusion-sensitizing
gradient directions used to acquire the diffusion data, and (2) The signal-to-noise
ratio (SNR) of the data. Figure 1 shows that ODF estimation improves when a
sufficient number of gradient directions are used (top row), and gets worse with
heavy noise (bottom row).

Varentsova et al. [9] introduced a post-processing approach to increase the
number of gradient directions for improving ODF estimation in an atlas. The
key idea is to make use of the orientation incoherence of the diffusion signals
when they are reoriented and warped to a common space. This incoherence is a
direct result of the variation of brain shape and the position of the head when
scanned. A major drawback of this approach is that only rotation is considered when
reorienting the diffusion signals. We show that this deteriorates ODF estimation
when transformations such as shearing are involved. This approach is also limited
due to its implicit assumption that the images are perfectly aligned after spatial
registration. This assumption almost never holds in the real-world scenario and will
cause blurring of structures that are misaligned.

Fig. 1 Influence of the number of gradient directions and noise on ODF estimation. (a) Ground
truth. (b)–(e) ODFs estimated using 6, 21, 81, and 321 gradient directions with 9 % noise. (f)–(i)
ODFs estimated using 21 diffusion directions with 3 %, 5 %, 7 %, and 9 % noise. Gaussian noise
(i.e. N.0; v.p=100//) is added in the complex domain of the signal, determined by the percentage
p, where v is the maximum signal value (150 in our case)
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A number of methods for denoising the diffusion MRI data have been proposed
[10, 11]. These methods are effective for enhancing the signal SNR, but to
improve the ODF estimation, removing noise is not sufficient—another important
aspect is to enhance angular resolution. In this paper we seek to better estimate
ODFs by concurrent edge-preserving signal denoising and angular resolution
enhancement. Inspired by our previous work in MRI denoising [12], we extend
the non-local means (NLM) algorithm [13] to leverage both self and inter-subject
similarity. The underlying assumption is that the possibility of finding repeating
structures from a collection of scans of different individuals is higher than a
single scan from the same individual. In transferring information from images
of multiple individuals to the space of the target individual for denoising, we
make available signals from incoherent gradient directions for improving ODF
estimation. This is illustrated in Fig. 2, where we show that the effective number
of gradient directions can be significantly increased by inter-subject information
transfer. For this purpose, we propose a signal reorientation method that uti-
lizes the full affine transform estimated locally from a non-linear deformation
field. This differs from [9], which uses only the rotation component of the
affine transform. Finally, we integrate both block-matching based denoising and
angular resolution enhancement into a unified framework to improve ODF estima-
tion.

Fig. 2 Angular resolution
enhancement using
inter-subject information
transfer. The green points on
the sphere indicate the
original gradient directions.
Transferring incoherent
samples from ten other
images increases the effective
number of gradient directions,
as indicated by the red points
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2 Method

2.1 Overview

Suppose we have a group of reference images acquired from different individuals
(possibly also including the target individual), the goal is to improve ODF estima-
tion for the target image with the help of the reference images. This is achieved in
three steps: (1) block matching, (2) reorientation, and (3) ODF estimation. Each step
is detailed below. See Fig. 3 for an overview.

2.2 Block Matching

We first warp all the reference images to the target space. For each voxel in the
target image, we then determine the matching voxels in the reference images via
robust block matching, similar to that used in NLM [13]. A similarity weight is
determined for each matching voxel and will be used for ODF estimation. NLM
relies on repeating structures in an image. However, this might be challenging due
to the complex anatomy of the human brain and fine unique structures might not
find matching candidates. To address this issue, we extend NLM by performing
block matching across images, significantly increasing the chance of finding similar

Block Matching

Target Image

Reference Image 1

Reference Image k

N (xi)

N (xj)xj

xi

Vk(xi)

V1(xi)

Reorientation
dummydummdummdumm

Target Space

ODF Estimation

Weighted

Reference

Diffusion Signals

Reoriented

Weighted

Reference

Diffusion SignalsTarget Diffusion Signals

Fig. 3 Overview. Three components of our method: (1) block matching for identifying corre-
sponding voxels from the reference images, (2) reorientation of the reference diffusion signals,
and (3) ODF estimation
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structures. Gross misalignment between images is first dealt with using non-linear
registration and residual misalignment is then overcome using block matching.

Let N.xi/ be a 3D block neighbourhood centered at xi 2 R3. The size of N.xi/

is .2d C 1/3, where d is the neighborhood radius. Let Vk.xi/ be the search volume
centered at xi in reference image k. The size of Vk.xi/ is .2M C 1/3, where M is
the search radius. Let u.xi/ be the intensity value at xi, then u.N.xi// is a vector
that represents the intensity values of all voxels within N.xi/. The unnormalized
weight, indicating similarity between the neighborhoods of a voxel, xi, in the
target image, and a voxel, xj 2 Vk.xi/, in the reference image is computed as

wNLM.xi; xj/ D exp
n
� ku.N.xi//�u.N.xj//k22

h2i

o
, where hi controls the attenuation of the

exponential function. Coupé et al. [14] suggested to set hi D
q
2ˇ O
2i jN.xi/j, where

jN.xi/j is the cardinality of N.xi/, ˇ is a constant that is set to 1, O
i is an estimate
of the standard deviation of the noise at xi, which is spatial-adaptively estimated
following the method described in [15].

For each voxel in the target image, block matching leads to a set of corresponding
voxels and associated similarity weights in the reference images. Specifically,
given xi in the target, we have ˝.xi/ D S

kf.S.q; xjI k/; wNLM.xi; xjI k//gxj2Vk [
f.S.q; xiI 0/; 1/g, where S.q; xjI k/, k > 0 is the diffusion-attenuated signal collected
at xj with wavevector q in the kth reference dataset, and S.q; xiI 0/ is the signal
measured in the target dataset.

2.3 Reorientation

The diffusion signal S.q; xj/ in ˝.xi/ has to be reoriented before it can be used for
ODF estimation. We note that the MR signal attenuation E.q; xj/ D S.q; xj/=S0.xj/,
where S0.xj/ is the base signal without diffusion-sensitizing gradient. Then, the
ODF  . Ou; xj; q0/, contributed by the sampling shell with radius q0 in q-space can
be computed as [16]

 . Ou; xj; q
0/ �

Z

E.q; xj/ı. OqT Ou/ı.kqk � q0/ dq; (1)

where Oq D q=kqk, Ou is a unit vector that represents a spatial direction, and ı.�/ is the
Dirac delta function. Given a local affine matrix A.xj/ computed at xj, the integral
of the ODF must be maintained after transformation

Z

 
� Ou; xj; q

0� d Ou D
Z

jA�1.xj/jjJA�1.xj/Ouj 
�

A�1.xj/ Ou
jjA�1.xj/ Oujj ; q

0
�

d Ou; (2)
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where JA�1.xj/Ou is a transformation associated with Ou ! Ou
kA�1.xj/Ouk . After applying

A�1.xj/ to Ou on both sides of (1) and simplifying, we have

jA�1.xj/jjJA�1.xj/Ouj 
�

A�1.xj/ Ou
jjA�1.xj/ Oujj ; q

0
�

�
Z

E

�
AT.xj/ Oq

jjAT.xj/ Oqjj jjqjj; xj

�

„ ƒ‚ …
Reoriented Signal Profile

ı
� OqT Ou� ı.jjqjj � q0/ dq; (3)

where j � j denotes the determinant and k � k is the `2 norm. If we let

OE.q; xj/ D E

�
AT.xj/ Oq

jjAT.xj/ Oqjj jjqjj; xj

�

! OE
�

A�T.xj/ Oq
jjA�T.xj/ Oqjj jjqjj; xj

�

D E.q; xj/; (4)

we can see that the reorientation involves transforming the signal measured at q, i.e.,

E.q; xj/, to A�T.xj/Oq
jjA�T.xj/Oqjj jjqjj. The reoriented signal is hence OS.q; xj/ D OE.q; xj/S0.xj/.

We denote the reoriented version of ˝.xi/ as Ő .xi/.

2.4 ODF Estimation

To estimate the ODF at xi, Ő .xi/ is decomposed into a linear combination of diffu-
sion basis functions (DBFs). By dropping off xi for simplicity, the decomposition is
given by

S.q/ D
NX

jD0
˛jfj.qj�1; �2; �3/; (5)

where ˛j is the volume fraction associated with the jth tensor DBF fj.�/ and
f�1; �2; �3g are the three eigenvalues of the tensor. The DBF is defined as
fj.qj�1; �2; �3/ D exp.�tqTDjq/ D exp.�b OqTDj Oq/; where Dj is a tensor defined
by f�1; �2; �3g and principal diffusion direction �j, t is the diffusion time, and b is
the diffusion weighting. For 1 6 j 6 N, the tensors are anisotropic with principal
diffusion directions distributed uniformly on a unit sphere. For j D 0, the tensor is
isotropic to model free water diffusion. By representing each element of set Ő .xi/

as .sn;wn/ and each DBF as a column of matrix Fn, we can solve for the volume
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fraction vector ˛ D Œ˛0; : : : ; ˛N �
T using `1-penalized weighted least-squares [17]:

arg min
˛

(
X

n

wn k.sn � Fn˛/k22 C � k˛k1
)

s:t: ˛ > 0; (6)

where k � k1 is the `1-norm and � � 0 is a tuning parameter. Fn is the DBF matrix
corresponding to sn, computed based on its reoriented gradient directions. If no
reorientation is applied, Fn is identical for all n. The ODF can then be computed as

 . Ou/ D 1

S0

NX

jD0
˛j�. Ou;Dj/: (7)

When �. Ou;Dj/ D 1
4�Z

ˇ
ˇDj

ˇ
ˇ� 1

2 . OuTD�1
j Ou/� 1

2 , with Z being the normalization con-
stant, we have the diffusion ODF proposed by Tuch [16]. When �. Ou;Dj/ D
1
4�

ˇ
ˇDj

ˇ
ˇ� 1

2 . OuTD�1
j Ou/� 3

2 , we have the constant-solid-angle diffusion ODF [18].
Finally, when �. Ou;Dj/ D ı.j OuT Ovjj � 1/, with Ovi being the eigenvector of Dj

corresponding to the largest eigenvalue, we have the fiber ODF [19, 20].

3 Experiments

3.1 Data

Synthetic Dataset

A set of single pixel images were generated to evaluate the performance of our
method in reconstructing ODFs from low angular resolution noisy data. Both
single-direction and two-direction cases were considered. For the latter, the angular
separation between two directions was set to 45ı and 90ı. Six ground truth
images for these two cases were generated using 6 and 21 gradient directions. Ten
reoriented images were generated for each ground truth image by applying affine
transformations to the principal directions of the tensors. The affine transformations
include random rotation (Œ�90ı; 90ı�) around the axis perpendicular to the image
plane and shearing (Œ�0:5; 0:5�) within the image plane. Four levels of Rician noise
(3 %, 5 %, 7 % and 9 %) were added to the ground truth image and the reoriented
images. The noise-perturbed ground truth image was used as the target image and
the noisy reoriented images were the reference images.
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Real Dataset

The real dataset consists of diffusion-weighted (DW) images from 11 subjects.
One subject was used as the target and the whole subjects as references. All
images were acquired using a Siemens 3T TRIO MR scanner following a standard
imaging protocol: 30 diffusion directions isotropically distributed on a hemisphere,
b D 1000 s=mm2, one image with no diffusion weighting, 128�128 imaging matrix,
voxel size of 2 � 2 � 2mm3, TED 81ms, TRD 7618ms, 1 average.

3.2 Results

In all experiments, we set block radius d D 1 and search radius M D 2 for
block matching and tuning parameter � D 0:01 for sparse estimation. The number
of reference images was 11, including the target image. The diffusivities of the
anisotropic tensors �1, �2, �3 were estimated from the corpus callosum. Those of
the isotropic tensor were estimated from the ventricles. A total of 321 orientations,
generated by subdividing the faces of an icosahedron three times and discarding
antipodal symmetric directions, were used as the principal diffusion directions of
the DBFs.

For the synthetic dataset, we utilized our reorientation algorithm described in
Sect. 2.3, we applied the affine transformation to the tensors in the reference images.
For the real dataset, the reference DW images were registered to the target space by
diffeomorphic demons [21] using the reference and target fractional anisotropy (FA)
images, though other non-rigid registration algorithms [22] may be used. Based on
the estimated deformation field, the reference DW images were warped to the target
space using a DW spatial warping method [17]. The warped reference DW images
were then used for multi-channel block matching with respect to the target DW
images.

For quantitative evaluation, Orientational Discrepancy (OD) measure [23] was
used. OD is a measure of the angular difference between two sets of directions.
After calculating the ODFs for the diffusion MRI data, the ODF peaks were detected
following the method described in [17] and then the resulting peaks were compared
with the ground truth using OD as the metric. We repeatedly generated the synthetic
data and ran the experiment 900 times. The mean and standard deviation of OD
values were reported.

Figure 4 shows that our method significantly reduces the mean OD on the two-
direction crossing synthetic data. The small mean OD indicates that the estimated
peaks are close to the ground truth. Compared with the results given by using the
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Fig. 4 Average OD comparison using two-direction synthetic data. Three cases were compared:
(1) using only the target image; (2) using the proposed method; and (3) using the proposed method
but only rotation was used for reorientation. Four noise levels and two sets of gradient directions
were involved. The error bars indicate the standard deviations. For the proposed method, ten
reference images were used

target image only, the maximum improvement is 26:81ı when the noise level is
9%. This is for the case of 6 gradient directions, where each pair of directions are
separated by an angle of 90ı.

The ODF glyphs are shown for visual inspection in Fig. 5. The estimated ODF
glyphs look very similar to the ground truth. We ran the same experiment by
performing only rotation for reorientation, as done in [9]. The results, shown in
Fig. 5, indicate that this will cause spurious peaks that are not observed in the ground
truth. The superiority of our method over the rotation-only approach is confirmed in
Fig. 4.
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Fig. 5 Comparison of ODFs. (a) and (e) Ground truth ODFs. (b) and (f) ODFs estimated using
only the target, which was generated using 5% noise and six gradient directions; (c) and (g) ODFs
estimated using the proposed method with five reference images. (d) and (h) ODFs estimated using
the proposed method with ten reference images. (i) and (j) Results when only rotation was used
for reorientation

For the real data, the ODFs are shown in Fig. 6. We can observe that the ODFs
estimated using the target alone and with the reference images but without block
matching exhibit spurious peaks. The ODFs are also not as coherent as those
estimated using the proposed method.

Tractography results, shown in Fig. 7, indicate that the proposed method gives
cleaner and richer fiber tracts compared with the other two methods. When block
matching is not used, a significant amount of fiber tracts are missing. The proposed
method gives fuller and smoother fiber tracts.
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Fig. 6 ODF results for the real data. (Far left) Reference FA image. ODFs estimated using (left)
the target dataset only, (middle) 11 reference images but without block matching, and (right) the
proposed method with 11 reference images

4 Conclusion

We have proposed a method for improving ODF estimation by using correlated
information between subjects. Information from multiple reference datasets is used
to simultaneously remove noise and to enhance angular resolution. Extensive exper-
iments on both synthetic and real data show improved ODF estimation, despite using
noisy data with insufficient angular sampling. Further validation on tractography
performance demonstrates the efficacy of our approach in reconstructing clean and
rich fiber tracts.
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Fig. 7 Tractography. Three representative sets of tractography results using (Left) the target
dataset only, (Middle) the proposed method without block matching, and (Right) the proposed
method. The fiber bundles are extracted using different ROIs, including CCtoM1: precentral gyrus
and corpus callosum, CST: precentral gyru and posterior limb of the internal capsule, FMAJOR:
occipital cortex and corpus callosum
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Crossing Versus Fanning: Model Comparison
Using HCP Data

Aurobrata Ghosh, Daniel Alexander, and Hui Zhang

Abstract This paper assesses the importance of modelling fiber dispersion in brain
regions with complex fiber configurations using a model comparison approach. It is
well known that DTI, although popular, is insufficient for describing complex fiber
configurations that exist in the brain—such as crossings, bendings and fannings.
“Higher order” models have been proposed to overcome this limitation by modelling
crossings with greater accuracy and recent works have reported that up to 90 % of
white matter voxels contain crossings. However, since these models do not account
for bending and fanning, i.e. dispersion, it is unknown if some fiber configurations
are better explained by dispersion or by crossing (or by both). To address this
problem, we take a model comparison approach on the publicly available state-
of-the-art HCP dataset. We consider compartment based single fiber, crossing fiber
and dispersion models, which are fitted to the data and ranked using several model
selection and validation metrics, such as AIC, BIC and k-fold cross-validation. We
generate maps of the brain based on these rankings which quantify the voxels where
a single fiber or crossing or dispersion is the preferred model. The results show that
45–50 % of the brain’s parenchyma, including the white matter, are better explained
by dispersion models, indicating the importance of modelling dispersion in addition
to crossings.

1 Introduction

Diffusion MRI (dMRI) is unique in its ability to measure the Brownian motion
of water molecules within the geometry of biological tissue, allowing us to gain
insights into the microstructure of the brain in vivo and non-invasively. Diffusion
Tensor Imaging (DTI) [2] is today the de facto dMRI reconstruction technique.
However, it is well known that DTI, based on a Gaussian diffusion assumption, has
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limitations in describing complex fiber configurations in the brain such as crossings,
bendings or fannings. Thus numerous “higher order” models have been proposed to
improve the ability to resolve crossing configurations with greater accuracy [1, 4, 7].
Using these models, studies have reported that up to 	90% [7] of white matter
voxels contain crossing configurations in the brain.

However, in general, most higher order models do not explicitly attempt to model
bending and fanning structures, i.e. dispersion, which may lead to an overestimation
of the percentage of crossing voxels. Only recently a new group of compartment
based parametric models have proposed to model dispersion explicitly [8, 11, 13].
Studies based on these models indicate the relevance of modelling dispersion when
interpreting the dMRI signal. Surprisingly, even the signal from regions widely
considered to contain only parallel fibers or a single coherent fiber bundle, such
as the corpus callosum (CC), is modelled favourably by dispersion [6]. Thus it is
important to gauge the pertinence of the dispersion model in the brain.

To address this problem, in this paper, we attempt to answer the question—
whether some complex fiber configurations (or the dMRI signals in the voxels)
are better explained by dispersion than crossing—from a data driven perspective.
Similar studies have been conducted before [6, 9], but in [9], the authors used
ex-vivo data from rat brains and in [6], the authors used specially acquired data
and conducted their experiments only in a targetted region of the brain—the corpus
callosum. We revisit the model comparison problem on the publicly available
state-of-the-art HCP dataset [12] in regions known to be rich in complex fiber
configurations. Thus, the added values of this study is twofold—one, it is conducted
on a widely available, high resolution and high quality dataset, and two, we compare
the models in various regions of the brain that contain a variety of simple to complex
fiber configurations.

In this study, we consider compartment based models that can be classified as
single or crossing or dispersed fiber models and compare them using various well
known model selection and validation metrics, such as Akaike information criterion
(AIC), Bayesian information criterion (BIC) and cross validation (CV) [6, 10]. We
fit the models on a subset of the rich HCP acquisition protocol and repeat the
experiments for different subsets numerous times and generate average ranking
results in the form of brain maps. These maps quantify the regions of the brain
where the single fiber or crossing or dispersion is the preferred model for explaining
the dMRI signal. The results indicate the importance of modelling both dispersion
and crossing and where each is relevant.

2 Materials and Methods

This section presents the procedural details of this study. We begin by describing
the models and their constituent compartments, then we describe the experimental
setup and finally provide the criteria for ranking the models.
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In compartment based modelling the diffusion signal is assumed to be a sum
of signals from various tissue compartments, often classified as intracellular,
extracellular and free diffusion (to model the cerebrospinal fluid, CSF): E D
�isoEiso C .1 � �iso/ .�icEic C .1 � �ic/Eec/. E, Eiso, Eic and Eec are the normalised
measured, CSF, intracellular and extracellular compartment signals respectively,
while �iso and �ic are the normalized volume fractions of the CSF and intracellular
compartments.

A detailed taxonomy of signal models for various tissue compartments is
described in [9]. Borrowing from this taxonomy we list out the signal models used
in this study. The most flexible is the DTI model: E D exp.�bgTDg/, parametrized
by the symmetric 2nd order tensor D with eigenvalues �1 � �2 � �3 � 0. The
“Tensor” model is often used to model the extracellular tissue compartment. The
constraint �2 D �3 gives rise to the more constrained “Zeppelin” model, which is
also often used to model extracellular tissue compartment. The “Ball” or isotropic
model arises with the double constraints �1 D �2 D �3 and, depending on its
diffusivity, can model either the CSF or the extracellular compartment. Finally, the
“Stick”, �2 D �3 D 0, is used to model the intracellular tissue compartment. Two or
more Sticks can be used to model crossing fibers. The Tensor and Zeppelin models
can also model CSF or intracellular compartments.

From these compartments, we construct a set of 11 representative models: 2
dispersion, 4 crossing and 5 single fibers models.

Dispersion Models To model dispersed fibers, we picked two well established
dispersion models from the literature—NODDI-Watson [13] and NODDI-Bingham
[11]. Both the models contain three compartments—a Ball for CSF, a tortuosity
constrained Zeppelin (extracellular) and a Stick (intracellular). In NODDI-Watson,
the Zeppelin and Stick compartments are orentationally dispersed following a
Watson distribution (instead of a discrete sum for crossings), while in NODDI-
Bingham they follow a Bingham distribution.

Crossing Models To model crossing fibers, we picked the well known Stick-Stick-
Ball model [4] as a starting point and explored alternative models that can account
for CSF, including Stick-Stick-CSF, a highly flexible Zeppelin-Zeppelin-CSF and a
triple crossing configuration with Stick-Stick-Stick-CSF.

Single Fiber Models To model single fibers, we selected four two-compartment
models with increasing complexity—Stick-Ball [3], Stick-CSF, Stick-Zeppelin and
Tensor-CSF and a three-compartment model—Stick-Tensor-CSF.

Model Fitting The model parameters were estimated from the signal using the
same detailed procedure described in [13], which was shown to be robust. The
scheme consisted of a non-linear optimization using a maximum likelihood esti-
mation (MLE) for a Rice distributed noise model, where the noise variance 
2 was
estimated from the b0 images. Some of the diffusivities were fixed to likely in vivo
values: dk D 1:7 � 10�3 mm2/s for the Stick and diso D 3 � 10�3 mm2/s for the
CSF-Ball [13].
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2.1 Data and Experimental Design

The HCP dataset has 288 acquisitions with 18 b0 images and 270 diffusion
weighted images (DWIs) distributed evenly over 3 b-shells—with 90 DWIs in each
shell. The shells have b-values of 1000, 2000 and 3000 s/mm2. The 90 diffusion
gradient directions differ for each shell to provide a maximum isotropic sampling
of directions on the sphere both intra-shells and inter-shells [12].

To evaluate the models from a data driven perspective, we conducted bootstrap-
ping experiments with multiple trials. To setup the experiments we divided each of
the 90 gradient directions for the three shells into six subsets of 15 isotropically dis-
tributed directions. These subsets were computed using the subsetpoints algorithm
from the Camino toolbox [5], which uses simulated annealing to compute subset
directions that are distributed as isotropically as possible. This resulted in a total
of 18 subsets, six per shell, each containing 15 gradient directions. From these we
created new protocols with 225 gradient directions by removing one subset of 15
gradients from each shell (a total of 45 isotropic gradient directions were removed).
By choosing different subsets (of the six) in each shell, we created 216 possible
k-fold cross-validation protocols, each containing 225 gradients and missing 45.
From these 216 protocols we randomly selected 50 for our experiments.

For each of these 50 trials we computed various model selection and validation
metrics (described below) for all the above models. Then we computed the average
for each metric over all the trials to rank the models. Finally, we selected the model
with the highest average score for each metric in each voxel as the best model.
Thus, we created maps (for each metric), which quantitatively identify the most
likely model that best explains the diffusion signal in a voxel.

We stress here the computationally demanding requirements of this experimental
design. We considered 11 non-linear models (that use Rician ML estimation),
with fifty cross-validation experiments each, where each trial had 243 DWIs (225
gradient directions and 18 b0 images). We found that a single slice (axial or coronal),
from a HCP dataset, required, on an average, up to 2 days of computation time
on a shared high performance computing cluster with 42 parallel processing units
running our MATLAB code. An additional 2 days were required to set up each
dataset for the experiments. Hence, we only computed the rankings on individual
slices of the brain. Nonetheless, to produce robust estimates, we conducted the
experiments on two slices (one axial and one coronal) on two separate HCP subjects
(a total of four slices from two subjects). The slices were chosen from the coloured
FA maps to contain a rich variety of complex fiber configurations.

Model Selection Metrics We computed several model selection metrics so as not
to rely on any single ranking criterion. The models were compared in each voxel
by three metrics—AIC, BIC and CV—or prediction error on the unseen part of
the protocol (the 45 gradient directions left out in each protocol). AIC and BIC
are widely used as model selection metrics that guard against data overfitting by
penalising model complexity, with BIC penalising more than AIC. Cross-validation
is a model validation metric that helps assess how a model’s performance will
generalise to unseen data.
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Finally, to compute the predicted error for CV, we computed a (negative) Rice
log-likelihood value of the predicted signal given the measured signal along the
unseen 45 gradient directions. We justify this choice over a mean squared error
since the signal is assumed to be corrupted by Rician noise.

3 Results

This section presents the final rankings from the three metrics: AIC, BIC and
CV after bootstrapping. The results are organised into two parts: (I) where we
consider all models of the previous section and (II) where we exclude the Zep-
pelinZeppelinCSF crossing model. This is motivated by the fact that the Zeppelin
compartment, due to its number of free parameters, can model any tissue—
CSF, extracellular or intracellular. Hence, although we consider the ZeppelinZep-
pelinCSF as a crossing model it can very well adapt to fit the signal in a way where
one Zeppelin models the extracellular signal while the second Zeppelin models the
intracellular signal—effectively becoming a single fiber or dispersion model. This
effect can be seen in the results presented in Figs. 2 and 3.

Figure 1 presents two slices as colour-FA maps that were chosen in subject
1 (axial) and subject 2 (coronal). Although, we present only two slices here, we
worked on a total of four slices with an axial and a coronal slice in each of the
two subjects. In the following, we only present representative results from the slices
shown in Fig. 1. The outcome of the other two slices are similar and are not shown.
These slices contain regions rich in complex fiber configurations. In particular,
these slices contain the corpus callosum (CC), the corticospinal tract (CST) and
the superior longitudinal fasciculus (SLF). The cingulum bundle is also visible. The
slices also contain the complex crossing configurations between the CC, CST and

Fig. 1 Colour-FA maps of example slices. (a) Subject-1 axial slice, (b) Subject-2 coronal slice.
These are example slices—we worked on two slices for each subject: one axial and one coronal.
These slices contain typical fiber bundles such as the corpus callosum (CC), corticospinal tract
(CST), the superior longitudinal fasciculus (SLF) and their crossing regions
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Fig. 2 Subject-1 (axial slice), see Table 1. Final rankings presented as a colour coded brain map.
A large portion of the white matter is better explained by dispersion models based on all three
metrics of AIC, BIC and CV. Known regions of crossings between the CST and CC are better
modelled by crossing models. Greater details are visible in Cols-3,4 without ZepZepCSF than in
Cols-1,2 which includes ZepZepCSF. Columns-1,3: rankings aggregated into classes of dispersion,
crossing and single fiber models. Columns-2,4: rankings of individual models. Columns-1,2:
rankings considering all 11 models. Columns-3,4: rankings of ten models without ZepZepCSF.
Row-1: AIC. Row-2: BIC. Row-3: CV

SLF. Hence, these mid-brain slices are commonly chosen to identify complex fiber
configurations.

Figure 2 presents the ranking results of the 11 models as colour coded maps of
the axial slice of subject 1. The maps from the three metrics AIC, BIC and CV are
each presented in a separate row. Columns 1 and 2 present the results from (I)—all
the models, and columns 3 and 4 present the results from (II)—the set of models not
containing ZeppelinZeppelinCSF. Columns 1 and 3 present the rankings aggregated
into classes of dispersion, crossing and single fiber models, while columns 2 and
4 present the rankings of the individual models per voxel. It is clear that a large
portion of the white matter is modelled better by dispersion models, including in
the CC, which is in agreement with [6]. Furthermore, known regions with crossings
between major fiber bundles (e.g. CST and CC), which can be located in Fig. 1,
are found to favour crossing fiber models. Finally, from column 2, we see that the
ZeppelinZeppelinCSF model can fit any kind of tissue (CSF, grey matter and white
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Fig. 3 Subject-2 (coronal slice), see Table 2. Final rankings presented as a colour coded brain
map. Again a large portion of the white matter is better explained by dispersion models based
on all three metrics of AIC, BIC and CV. Known regions of crossings between the CST, CC
and SLF are better modelled by crossing models. Greater details are visible in Cols-3,4 without
ZepZepCSF than in Cols-1,2 which includes ZepZepCSF. Columns-1,3: rankings aggregated
into classes of dispersion, crossing and single fiber models. Columns-2,4: rankings of individual
models. Columns-1,2: rankings considering all 11 models. Columns-3,4: rankings of ten models
without ZepZepCSF. Row-1: AIC. Row-2: BIC. Row-3: CV

matter), making it difficult to discern the underlying tissue type. In contrast, greater
tissue details become visible in column 4 by excluding the ZeppelinZeppelinCSF
model. This effect is less pronounced in the BIC metric, which penalises model
complexity more than AIC, but nonetheless it is still present.

Corresponding results from the coronal slice of subject 2 are presented in
Fig. 3. The layout of Fig. 3 is similar to the layout of Fig. 2. Again, it is clear
that large portions of the white matter are better explained by dispersion models
rather than crossing fiber or even single fiber models. Also regions, such as the
centrum semiovale, where the CC, the CST and the SLF are known to cross, are
clearly better explained by crossing fiber models. Finally, as seen in Fig. 2, the
ZeppelinZeppelinCSF model seems to fit all tissue types, making it hard to discern
them in column 2. Excluding the model reveals greater tissue details as seen in
column 4.

In both Figs. 2 and 3, the ventricles are better explained by single fiber models.
Although this may seem surprising, as seen from the colour maps containing the
rankings of the individual models (columns 2,4), the ventricles are best explained
by single fiber models that contain a CSF or a Ball compartment.

Tables 1 and 2 present the quantitative results from the experiments and show
the statistics that accompany Figs. 2 and 3. Table 1 shows the results of the axial
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slice of subject 1, where 10,618 voxels were processed and Table 2 shows the
results of the coronal slice of subject 2, where 7356 voxels were processed. Both
the results for (I)—all the models, and (II)—the set of models not containing
ZeppelinZeppelinCSF are presented. The tables contain the final rankings of the
models as a percentage value of the total number of voxels, where the final rankings
are the average over 50 trials.

From these statistics, it is evident that up to 40–45 % of the brain’s parenchyma
is better described by dispersion models. Hence, it is important to model dispersion
in the brain—even in the white matter. The remaining voxels are shared between
crossing fiber models and single fiber (or CSF) models. The ZeppelinZeppelinCSF
model represents a large percentage of all crossing fiber voxels. However, as seen
in Figs. 2 and 3, the spatial distribution of the ZepplinZeppelinCSF model suggests
that it is a confounding model that can describe all tissue types, including CSF, white
matter and grey matter. Hence, it is not a good representative model for a particular
tissue type and cannot be used to discern only crossing fibers. We note, that although
we did not include the simpler ZeppelinCSF as a single fiber model, we did test the
TensorCSF, which is almost the same. The results indicate that the TensorCSF, when
favourable, fits best grey matter areas with partial voluming effects. Excluding the
ZeppelinZeppelinCSF model results in an increase of up to 50 % dispersion voxels
and a larger percentage of single fiber (or CSF) voxels. More importantly, other
crossing fiber models also become more evident. The corresponding colour maps
(Figs. 2 and 3, columns 3 and 4) are also more coherent and show greater tissue
details.

4 Discussion and Conclusion

In this study, we attempted to address the question of whether complex fiber
configurations in the brain are better described by dispersion or crossing, from a
data driven perspective. We conducted 50 k-fold cross-validation trials and used
three metrics, namely AIC, BIC and CV, to compare and rank 11 compartment
based models of dispersion, crossing and single fibers on two subjects of the rich
HCP dataset. The results indicate that it is important to consider dispersion models
since they are ranked favourably in a large portion of the brain’s parenchyma (up
to 45–50 %), which also includes the CC and other regions of the white matter
with complex fiber configurations. The results also showed that compartment based
crossing fiber models were better at describing the data from voxels known to
contain major fiber bundle crossings such as between the CC, CST and SLF. This is
in agreement with the known literature on fiber crossings in dMRI.

This preliminary study has some limitations. Due to long computation times, we
were constrained to consider only two slices of the brain and only two subjects in
the HCP dataset. Furthermore, we did not include model-free approaches [1, 7] to
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detect crossings. We plan to overcome these limitations in the future. Nevertheless,
we generated quantitative maps of the brain for each metric, which indicate the
importance of modelling dispersion in addition to crossings and where each model
is relevant.
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White Matter Fiber Set Simplification
by Redundancy Reduction with Minimum
Anatomical Information Loss

Gali Zimmerman Moreno, Guy Alexandroni, and Hayit Greenspan

Abstract Advanced Diffusion Weighted Imaging (DWI) techniques and leading
tractography algorithms produce dense fiber sets of hundreds of thousands of fibers,
or more. In order to make fiber based analysis more practical, the fiber set needs to
be preprocessed to eliminate redundancies and to keep only essential representative
fibers. In this paper we evaluate seven commonly used distance metrics for fiber
clustering and present a novel approach for comparing the metrics as well as
estimating the anatomical information loss as a function of the reduction rate.
The framework includes pre-clustering into sub-groups using K-means, followed
by further decomposition using Hierarchical Clustering, each time with a different
distance metric. Finally, volume histograms comparison is used to compare the
reduction quality with the different metrics. The proposed comparison was applied
to a dataset containing tractographies of four healthy individuals. Each set contains
around 600k fibers.

1 Introduction

Diffusion Weighted Imaging (DWI) characterizes the diffusion of water in the
tissues and is sensitive to the microstructural density, spacing, and orientational
organization of tissue membranes, including myelin [1]. Fiber tracking or tractog-
raphy exploits the measured orientation distribution of water diffusion to follow
specific white matter pathways from voxel to voxel through the brain [2]. This
information is useful when studying the organization of white matter in the
brain as well as the microstructural changes that occur with neuropathology and
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Fig. 1 A set of almost identical fibers which is typical in dense datasets

treatment. Advanced acquisition techniques, such as High Angular Resolution
Imaging (HARDI) in conjunction with appropriate tractography algorithms (here
q-ball tractography with residual bootstrap [2]) produce highly dense fiber datasets,
which can hold millions of fibers. Working with such huge datasets can be quite
challenging, especially for algorithms that are supposed to perform highly complex
operations on the data. Hence, one can ease the analysis of brain fibers by exploiting
the redundancies of the sets, namely the presence of almost identical fibers.
This is achieved by compressing the overall fiber set and keeping only unique
representatives. Smart reduction should lead to minimum anatomical information
loss. Figure 1 shows a set of almost identical fibers which is typical in dense datasets.

The reduced fiber set can be utilized for various purposes:

– It can be used as a pre-processing stage for sophisticated algorithms that cannot
deal with huge number of fibers, for example in atlas construction.

– The reduced set may be sufficient for detection of various diseases and thus can
ease the computational burden, as long as the reduction is performed efficiently.

– Since there are many DTI datasets of low resolution taken over the years, if one
wants to compare new, high resolution acquisitions with an old one, using this
tool as a pre-processing may result in better comparison (for example, when an
intra-subject follow-up is needed).

– The reduced set should be sufficient to construct a connectivity map between
distinct brain regions and thus may serve connectome studies or help determine
structural integrity of distinct white matter pathways.

The notion of simplifying the dataset has been around in recent years and
different frameworks have been suggested in order to address this issue. These
frameworks are usually based on combination of clustering technique and a distance
metric. For example, Guevara et al. [5] presented a preprocessing step to be used
before further analysis of huge fiber datasets, in which hierarchical decomposition
is applied on the fiber set. At first, the set is split according to location and fiber
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length, the voxels are clustered into parcels using Kmeans and a parcel connectivity
matrix is computed according to the number of tracts passing through each pair
of parcels. The parcels are clustered using Hierarchical Clustering (HC) and fiber
bundles are inferred. Those bundles are further split, centroids are computed and
merged using HC and Hausdorff (HD) distance. Siless et al. [10] performed a
comparison of metrics and algorithms for fiber clustering. They used Kmeans and
QuickBundle [4] along with several distance metrics: Point Density Model (PDM),
Undirected Euclidean (EUC) and HD. Dodero et al. [3] presented a novel clustering
approach based on the Dominant Sets framework, in which the white matter fibers
are segmented into bundles in order to untangle the complex skein of fibers. This
framework is robust to noise and to outliers and the number of clusters it produces
is driven by the underlying natural similarity of the data. DTI fiber clustering is
also common in fibers segmentation frameworks. In this case it is usually highly
desired that the resulting clusters represent anatomical bundles. For example, Ros
et al. [8] offered a novel atlas guided clustering framework for exploratory data
analysis of large tractography datasets. The framework uses a hierarchical cluster
analysis approach that exploits the inherent redundancy in large datasets to time-
efficiently group fiber tracts. White matter atlas is incorporated into the clustering
to achieve an anatomically correct grouping of fiber tracts. In another paper [7], the
shared nearest neighbor clustering algorithm has been applied on DTI fibers along
with an evaluation framework based on the manual classification of the fibers into a
number of anatomical structures. The authors identify HC as the preferred clustering
algorithm for this framework.

To our knowledge, in most frameworks no more than a couple of distance metrics
are evaluated. In this work we utilize and compare between various state-of-the-art
distance metrics that have been used with WM fibers [3–5, 8, 10]. We suggest a novel
approach for comparing the metrics and estimating the anatomical information loss
as a function of reduction rate. We do not strive to classify the fibers into tracts,
but rather reduce the number of fibers while preserving as much of the fiber set
characteristics as possible.

2 Methods

The metrics we are evaluating [3–5, 8, 10] are defined in Table 1 along with their
main characteristics. Each metric computes a distance between two fibers denoted
by p and q. A fiber, p, is represented as a sequence of k points in a 3-dimensional
space, sampled equidistantly: p D f p1; p2; : : : ; pkg where pi 2 <3 and k D 20 for
all fibers. The choice of k is motivated by previous research [11] which has shown
this to be a good compromise between the dimensionality and fidelity to the original
representation.

We use the Complete Linkage Hierarchical Clustering (HC) [6] in order to
compare the different distance metrics in conjunction with several reduction rates.
This method allows examining multiple reduction rates simultaneously. The input to
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Table 1 Metrics under evaluation and their characteristics (taken from works [3–5, 8, 10])

Metric Characteristics

Undirected Euclidean (EUC)
deuc. p; q/ D min.ddirect. p; q/; dflipped. p; q//

where: ddirect. p; q/ D d. p; q/ D kp � qk2
dflipped. p; q/ D d. p; qF/ D d. pF ; q/

– Fast to compute O.k/
– Assumes both fibers have k points
– Hence, two similar and close fibers, where

one is shorter (i.e due to faulty
tractography), will automatically be far
from each other

Minimum average Direct-Flip (MDF)
dMDF. p; q/ D minddirect.. p; q/; dflipped. p; q//

where:
ddirect. p; q/ D d. p; q/ D 1

k

Pk
iD1 kpi � qik2

dflipped. p; q/ D d. p; qF/ D d. pF ; q/

– Fast to compute O.k/
– Assumes both fibers have k points
– Penalizes distance between curves of

different lengths (corresponding points
may not be close to each other)

Hausdorff
dHD. p; q/ D maxfsuppi2pinfqi2qkpi � qik2,
supqi2qinfpi2pkpi � qik2g

– Slow computing time O.k2/
– Commonly used for measuring similarity

between two curves
– Takes into account only one pair of points

and neglects all other points along the
curves

– Hence, penalizes distances between curves
of different lengths

Cosine
dcosine. p; q/ D 1� pqTp

. ppT /.qqT /

– Fast to compute O.k/
– Reflects orientation and not magnitude

Shorter mean of Closest distances (DSC)
dsc. p; q/ D min.dm. p; q/; dm.q; p//

where: dm. p; q/ D meanpi2pminqi2qkpi � qik2

– Slow computing time O.k2/
– Doesn’t penalize distance between curves

of different lengths. Hence good for cases
in which one of the fibers is broken

Longer mean of Closest distances (DLC)
dlc. p; q/ D max.dm. p; q/; dm.q; p//

where: dm. p; q/ D meanpi2pminqi2qkpi � qik2

– Slow computing time O.k2/
– Penalizes distance between curves of

different lengths

Point Density Model (PDM)
Let K
 be a Gaussian kernel with scale
parameter 
 Let define the scalar product
between 2 fibers:

< p; q >D 1
k2
Pk

iD1

Pk
jD1 K
 . pi; qj/

hence
d2PDM
 . p; q/ D kpk2 C kqk2� < p; q >

– Slow computing time O.k2/
– Sensitive to the fibers form and position

and quite robust to missing fiber
segments

– Captures misalignment and shape
dissimilarities at the resolution 


HC is a dissimilarities matrix between all sample couples. The output is a clustering
tree (dendrogram) that may be “sliced” at different levels and thus create different
numbers of clusters. The first step in the hierarchical clustering process is to look
for the pair of samples that are the most similar, having the lowest dissimilarity
value, let’s say d. These two samples are then joined at a level of d in the first
step of the dendrogram. This step is repeated iteratively until all the samples are
joined into a single cluster. The only open issue is how to calculate the dissimilarity
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between merged samples and the other samples. This decision determines what
type of hierarchical clustering we intend to perform. In this paper we used one
of the most common choices, called the maximum, or complete linkage, method:
the dissimilarity between two sample groups is the maximum dissimilarity that
exists between a pair of samples—one from each group. The number of steps
in this clustering technique is one less than the number of samples. Using the
maximum method, all samples clustered below a particular level of dissimilarity
would have inter-sample dissimilarities less than that level. The use of dissimilarity
matrix as the input to HC limits the maximum size of fiber sets it can handle,
due to performance issues. Therefore, in order to process substantial amount of
fibers, a preliminary clustering stage was needed. For this purpose an efficient
version of Kmeans was used (vlkmeans, implemented by VLfeat1). Approximated
nearest neighbours (ANN) algorithm was used to accelerate the sample-to-center
comparison. The full brain fiber set was thus divided into 100 sub-groups of fibers,
each containing around 6000 fibers. Then, only the groups with a center of mass
that is located inside a predefined bounding box, were chosen. This way the dataset
was reduced to fiber groups inside a quarter of the brain. This was done to reduce
run time on one hand, but also to conserve the full density of a fiber set, on the
other hand. An example of such a quarter-brain set is presented in Fig. 2, where
each Kmeans cluster has a different color.

The HC was conducted on each sub-group in the bounding box, using seven
distance metrics. Overall, ten reduced sets were inferred, each representing a
different reduction rate. The reduced set is made of the centroids of all clusters

Fig. 2 An example of one quarter of a brain that was used in this work. Each color represents
different sub-group of fibers that was clustered using Kmeans

1shttp://www.vlfeat.org/.

shttp://www.vlfeat.org/
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Fig. 3 The proposed framework

inherent from the HC at a given level. The reduced set size varied between 10 % and
100 % of the original set size. Overall, we achieved a reduction rate between 1 and
10 (number of fibers at original set divided by the number of fibers at the reduced
set). A block diagram of the proposed framework is shown in Fig. 3.

3 Evaluation of Reduced Datasets

We wish to compare between the original, full set of fibers, and the different sets
produced by the fibers reduction framework depicted in Fig. 3 (hereafter termed
reduced sets). Each set is produced using a combination of different distance metric
and reduction rate. A novel approach is proposed for comparing the metrics and
estimating the loss of anatomical information as a function of the reduction rate:
The volume containing the brain is divided into 2 � 2 � 2mm3 cells. Next, for each
reduced set and the original set of fibers, two histograms are computed:

– Binary volume histogram, in which cells receive the value 1 if any fiber passes
through them, 0 otherwise. The concept is illustrated in Figs. 4 and 5. The
first exemplifies several axial slices with fibers passing through them while the
second shows a representative slice of the binary histogram with several different
reduction rates.



White Matter Fiber Set Simplification 177

Fig. 4 Illustration of the construction of a binary histogram. White cell—zero, blue cell—one

Fig. 5 Representative slice of the binary histogram with different reduction rates. White cell—
zero, blue cell—one
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– Full volume histogram, in which each cell value is determined according to the
number of fibers that pass through the cell. The fibers in a reduced set are in
fact the centroids of the clusters achieved by HC. When assessing the number
of fibers passing through a given cell each fiber (centroid) is weighted according
to the number of fibers in the cluster it was inferred from. For example, if one
centroid originating from four fibers, passes through a given cell, the cell value
is 4.

Comparison between the histograms of full and reduced sets:

(a) Using the Binary Volume Histograms, the Hamming distance was calculated
between the original set and the reduced sets histograms. Hamming distance
between two binary vectors of equal length is the number of positions in which
the corresponding symbols are different. In this paper the result is presented as
percentage of total number of voxels.

(b) Using the Full Volume Histogram, histogram intersection measure was calcu-
lated between the original set and the reduced sets histograms:

dhistogram intersection D
P

i min.ai;bi/

min.
P

i ai;
P

i bi/
, where a and b are the two histograms

and i is the index of histogram bin.

4 Experiments and Results

4.1 Data

The data used here belongs to four healthy individuals. The scans were acquired
at the Memory and Aging Center (MAC) at the University of California San
Francisco (UCSF). Subjects were scanned on a Siemens TrioTim syngo 3 T MR
scanner equipped with an eight-channel head coil. A high angular resolution
diffusion-weighted imaging (HARDI) dataset was acquired using a single-shot spin-
echo echo-planar imaging (SE-EPI) sequence including 55 contiguous axial slices
acquired in an interleaved order with in-plane resolution of 2.2 mm2, slice thickness
of 2.2 mm, TR=TE D 8000=109ms, flip angle D 90ı, matrixD 100 � 100, 64
noncollinear diffusion sensitization directions at b D 2000 s/mm2, 1 at b D 0,
and an integrated parallel acquisition technique acceleration factor of 2. Initial
image preprocessing was performed using the FMRIB Software Library (FSL2).
This included scull stripping and eddy currents and motion distortions correction.
WM fibers in an entire brain were reconstructed with a probabilistic streamline
tractography algorithm in combination with a residual bootstrap Q-ball imaging

2http://www.fmrib.ox.ac.uk/fsl/.

http://www.fmrib.ox.ac.uk/fsl/
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method [2] developed in Dipy.3 Streamline propagation continued until reaching
a voxel with FA < 0:15 or a turning angle> 60ı. The resulting sets contains around
600,000 fibers each.

4.2 Experiments

The fibers of the four brains were clustered using the scheme described in Sect. 2.
Each set was reduced by reduction factors in the range 1–10 using different metrics
(Table 1). As a sanity check, the results of different metrics were compared to a
simple down-sampled set. For example, at reduction rate 4, every fourth fiber was
sampled from the original set. The PDM distance has a parameter that needs to be
configured—the sigma factor of the Gaussian kernel. We have tested on the first
brain three possible values: 0.5, 2 and 5. The best result was for the 0.5 value; this
is the value we used for the rest of the brains.

4.3 Results

Figure 6 shows the metrics and reduction rate evaluation on the above dataset.
Tables 2 and 3 present the Histogram Intersection and the Hamming metrics for
reduction rate D 9. This rate exhibits the largest deviation between the metrics.
It is clear that by applying clustering, the reduced set remains much more similar
to the original set than what we would get by performing a simple down-sampling
operation. When comparing the binary histograms (Table 2) the smallest differences
are achieved once for EUC, once for HD and in two cases for cosine distance.
The fact that HD is the most computationally intensive metric between the three
makes cosine the leading choice for a clustering metric. Another interesting insight
is that the distance metrics start to behave differently around reduction rate 8 and
up. Therefore if there is no need for reduction rate greater than 8, any of the tested
metrics may be used (with the exception of down-sampling).

When comparing the full histograms (Table 3), the smallest distance is received
for different metric in each case. In this type of comparison all of the distances
are much smaller, which is to be expected since the weighting of the fibers in the
reduced set makes the full histogram of this set very similar to the full histogram of
the original set. For this reason Table 3 does not provide clear indication of the best
metric.

3http://nipy.sourceforge.net/dipy/.

http://nipy.sourceforge.net/dipy/
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Fig. 6 (a) Binary volume histograms comparison between seven different distance metrics and
down-sampling, at ten reduction rates. (b) Full volume histograms comparison between seven
different distance metrics and down-sampling, at ten reduction rates. (c)–(e) Hamming distance
comparison for the remaining three brains, at reduction rates 8–10, (f)–(h) Intersection distance
comparison for the remaining three brains, at reduction rates 8–10
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Table 2 Hamming distance values at reduction rate 9 for all metrics and brains, the smallest
distance for each brain is in bold

PDM EUC MDF DSC DLC HD Cosine d.sampl.

Brain1 13:4 4:7 5.1 6:2 5:6 6:5 4.8 8

Brain2 12:1 5:9 6 8:5 6:1 3:3 6 12.1

Brain3 11:1 4:3 4.3 4:5 4:5 4:2 4 7

Brain4 13:3 3:7 3.8 5:3 3:9 3:8 3.5 8

Table 3 Histogram Intersection distance values at reduction rate 9 for all metrics and brains, the
smallest distance for each brain is in bold

PDM EUC MDF DSC DLC HD Cosine d.sampl.

Brain1 0:769 0:142 0:17 0:277 0:203 0:271 0:177 0:953

Brain2 0:785 0:304 0:312 0:537 0:309 0:123 0:312 0:758

Brain3 0:609 0:13 0:126 0:122 0:126 0:136 0:156 0:273

Brain4 0:699 0:102 0:099 0:222 0:101 0:117 0:123 0:339

5 Discussion and Future Work

In this paper we evaluated a variety of state-of-the-art distance metrics for fiber
clustering and presented a novel approach for comparing the metrics and estimating
the anatomical information loss as a function of the reduction rate. For both
comparison methods the worst performance was received when using simple
downsampling or the PDM metric. In addition, in all cases the differences in
performance of the various metrics become more significant at higher reduction
rates (8 and up). The results of comparison by Hamming distance lean in favour
of cosine distance as a leading metric for fibers set reduction by clustering. This is
based on the relatively low Hamming distances and the low computational cost.

There are several open issues that should be covered in future work: From the
histograms comparison plots it seems that when the reduction rate is higher than
10, the clustering techniques performance converges to what one can get by down-
sampling. Additional testing may be conducted with higher reduction rates in order
to define the range in which clustering is preferable to simple down-sampling.
Quantifying the success of fiber reduction is highly dependent on the purpose of
the reduction. Additional comparison methods may be useful; for example we can
use network measures of brain connectivity in order to quantify the effect of fiber
reduction on brain connectivity networks [9]. Another quantification method would
be to use labeled sets of fibers in order to check if all of the anatomical tracts are
adequately represented following the reduction. Finally in this study we used the HC
clustering method. Alternative clustering methods can be examined and compared
per given task.
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A Temperature Phantom to Probe the Ensemble
Average Propagator Asymmetry: An In-Silico
Study

Marco Pizzolato, Demian Wassermann, Tanguy Duval,
Jennifer S.W. Campbell, Timothé Boutelier, Julien Cohen-Adad,
and Rachid Deriche

Abstract The detection and quantification of asymmetry in the Ensemble Average
Propagator (EAP) obtained from the Diffusion-Weighted (DW) signal has been
shown only for theoretical models. EAP asymmetry appears for instance when
diffusion occurs within fibers with particular geometries. However the quantification
of EAP asymmetry corresponding to such geometries in controlled experimental
conditions is limited by the difficulty of designing fiber geometries on a micrometer
scale. To overcome this limitation we propose to adopt an alternative paradigm to
induce asymmetry in the EAP. We apply a temperature gradient to a spinal cord tract
to induce a corresponding diffusivity profile that alters locally the diffusion process
to be asymmetric. We simulate the EAP and the corresponding complex DW signal
in such a scenario. We quantify EAP asymmetry and investigate its relationship
with the applied experimental conditions and with the acquisition parameters of a
Pulsed Gradient Spin-Echo sequence. Results show that EAP asymmetry is sensible
to the applied temperature-induced diffusivity gradient and that its quantification is
influenced by the selected acquisition parameters.
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1 Introduction

The Ensemble Average Propagator (EAP) obtained from the Diffusion-Weighted
(DW) signal in Magnetic Resonance Imaging (MRI) expresses the displacement
probability of spin-bearing particles [2]. Although the displacement probability is
commonly considered axially symmetric along a diffusion direction, this is gener-
ally not the case in tissue. The displacement probability, hence the EAP, may show
asymmetry due to the characteristics of tissue geometry, as recently reported [7, 8].
For instance, a relationship between EAP asymmetry and axonal tortuosity variation
rates—corresponding to different levels of axonal compression—is described in [8].
However the task of measuring asymmetry on real data is non-trivial, therefore
here we present an in-silico study to assess the feasibility of a physical phantom
to measure EAP asymmetry via DW-MRI, highlighting the relationship between
the controllable experimental parameters and said asymmetry.

Technical difficulties in building a physical phantom for DW-MRI mainly consist
on designing axonal geometries at micrometer scale with controllable properties and
tissue-like diffusion characteristics. For instance, at the present moment building a
phantom resembling compressed axons with different degrees of compression is
very challenging. An alternative solution to induce diffusion asymmetry needs to be
found. Other difficulties are related to the measurement of the asymmetry with the
DW signal. Particularly, EAP asymmetry may only be retrieved from the complex
DW signal thus implying that a problem of observability of the phenomenon also
arises, specially with reference to the high sensibility of the signal’s phase to
noise and bulk movement. In this work, however, we mainly discuss the physical
principles underlying the proposed phantom and investigate the relationships with
the controllable parameters of a Pulsed Gradient Spin Echo (PGSE) sequence.

In the study we predict the DW signal acquired in a possible real experimental
setup designed with the precise scope of inducing diffusion asymmetry in the
sampled tissue. The adopted strategy consists in applying a temperature gradient
in a spinal cord tract, along the direction of the fibers, to obtain a spatially localized
diffusion coefficient. We refer to this as a temperature-induced diffusivity gradient.
The diffusion coefficient will be forced to vary monotonically with the position
coordinate, i.e., it will increase as the spatial location gets closer to the highest
temperature position. In this way, at each point along the fiber, a water particle
moving towards the highest temperature position will experience higher diffusivity
values than a particle moving in the opposite direction, thus leading to asymmetry
in the EAP.

This work investigates the relationship between the temperature-induced diffu-
sivity gradient and EAP asymmetry in order to assess the feasibility in principle
of a real DW signal acquisition with a PGSE sequence. To do so we first describe
the proposed phantom and the related assumptions. Then we consider an applied
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temperature gradient and derive the corresponding spatial diffusivity profile induced
in the phantom. With this setup we simulate a PGSE acquisition of the phantom with
voxels located along its longitudinal direction, that is the direction aligned with the
fibers. For each voxel we recover the complex DW signal and then compute the EAP
from this to quantify the asymmetry. We then present results as the experimental
conditions and acquisition parameters variate, highlighting the dependency of EAP
asymmetry on the temperature-induced diffusivity gradient. Finally we discuss the
feasibility of the proposed technique and its inherent limitations.

2 Phantom Design and Experimental Setup

The simulation considers a temperature gradient applied to a longitudinal spinal
cord tract of length l, where the longitudinal direction corresponds to that parallel to
the fibers. The temperature gradient is generated in the spinal cord by heating up the
two extremities at two different temperatures maintained constant during time: one
extremity at low temperature TL and the other at high temperature TH . The schematic
representation of the experimental setup is illustrated in Fig. 1. The corresponding
temperature profile along the spinal cord tract is consequently obtained, as discussed
in Sect. 3.

The temperature difference between the extremities produces a profile T.z/
of varying temperature along the longitudinal direction z. The spatially-localized
temperature T.z/ in the spinal cord tract is used to obtain the corresponding
diffusivity value D.T/. The diffusivity values are computed along the spinal cord
in order to obtain a diffusivity profile. Furthermore, values are conveniently scaled
to simulate Cerebrospinal Fluid (Dcsf .T/), Grey Matter (Dgm.T/) and White Matter
(Dwm.T/) diffusivities.

Fig. 1 Schematic representation of the proposed experimental setup. A spinal cord tract of length
l lies between two gears maintained at two different constant temperatures, TL and TH , the fibers
composing the spinal cord tract being aligned along the direction connecting said gears namely the
longitudinal direction. Acquisition voxels with side dvox are located along the longitudinal direction
so that to collect signal from tissue at different mean temperatures
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The DW-MRI acquisition is simulated bi-dimensionally, similarly to [8]. The
spinal cord tract is discretized in adjacent spatial units corresponding to voxels
distributed along the longitudinal direction (Fig. 1). The tissue underlying each
voxel is considered as being composed of straight fibers with infinitesimal thickness.
Water particles diffusing within these fibers are subjected to the locally observed
temperature-induced diffusivity gradient. Therefore the simulated signal takes into
account the local values of the diffusion coefficient. Voxels size dvox .m/ and
PGSE parameters such as maximum diffusion gradient strength Gmax .T=m/, pulse
duration ı .s/ and separation between pulses 	.s/ are taken into account. Finally
EAP asymmetry is calculated for each voxel and studied as function of the applied
temperature gradient.

The following section provides details about the assumed temperature gradient
along the longitudinal direction of the spinal cord tract.

3 Applied Temperature Gradient

In this section we present the assumptions made for the temperature profile applied
along the spinal cord tract.

The spinal cord tract is considered as a homogeneous rod extending longitudi-
nally to the fibers’ direction. Due to the long time required for the MR acquisition,
stationary conditions are assumed. Therefore no transient dynamic is considered
for the calculation of the resulting temperature gradient which will then be constant.
Hence, the temperature gradient along the rod is obtained as the steady-state solution
of the heat equation when the two extremities are maintained at two different
constant temperatures, rendering a linear temperature profile

T.z/ D z � TH � TL

l
C TL (1)

where TL is the temperature in z D 0, TH is the temperature applied in z D l and l is
as usual the length of the spinal cord tract (Fig. 1). Temperature will be henceforth
expressed in Celsius degrees (ıC).

The following section reports how we calculate the diffusivity profile along the
spinal cord tract, for different tissue types, given the temperature profile (Fig. 2).
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Fig. 2 Temperature as function of the position as found from the steady-state solution of the heat
equation. Maximum distance l D 0:02m, TL D 25 ıC, TH D 85 ıC

4 Induced Diffusivity Profile

In this section we calculate the diffusivity profile for different tissues as resulting
from the application of a temperature gradient having the characteristics reported
in Sect. 3. The diffusivity profile along the longitudinal direction of the spinal cord
tract depends on the assumed temperature profile. However the diffusion coefficient
depends also on the characteristics of the liquid in which particles diffuse and on
the geometrical properties of the particles themselves. These dependencies are well
described by the Stokes-Einstein equation:

D.T/ D kB.T C 273:15/

6�r�
(2)

where kB is the Boltzmann constant, r the radius of the spherical particle and �
the dynamic viscosity. Assuming free diffusion of water particles, the radius can
be approximated by applying the inverse formula of Eq. (2) while knowing the
reference values at T D 25 ıC of dynamic viscosity �25fw (kg/ms) and diffusivity
D25

fw D 2:299 �10�9m2/s [4]. However, dynamic viscosity is function of temperature
and cannot simply be a constant. Therefore to calculate �25fw we employ the equation
describing the relationship between free water viscosity and temperature [1], which
is accurate to within 2:5% from 0 ıC to 370 ıC:

�fw.T/ D 2:414 � 10�5 � 10 247:8
TC273:15�140:0 : (3)

Using Eq. (3) the predicted free water viscosity at 25 ıC is �25fw D 0:891 �10�3 kg/ms,
then we approximate the radius inverting Eq. (2) obtaining r � 1:066�10 m.
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Water diffusivity in tissues is lower than that of free water for a same temperature.
Indeed dynamic viscosity increases in tissue accordingly to its microstructural
properties. Assuming a constant temperature of 37:9 ıC in the living brain tissue [5],
the dynamic viscosity in CSF (�37:9csf ), GM (�37:9gm ) and WM (�37:9wm ) can be calculated
from Eq. (2) knowing the corresponding diffusivity values, which can be found to
be [3] D37:9

csf D 2:9 �10�9 m2/s, D37:9
gm D 0:89 �10�9 m2/s and D37:9

wm D 0:73 �10�9 m2/s.
Having the viscosity values for the different tissues at 37:9 ıC, we calculate an

empirical scaling factor between free water viscosity as function of temperature
in Eq. (3), and tissue viscosity. Therefore viscosity values could be found as
corresponding to �csf � 1:09 � �fw, �gm � 3:54 � �fw and �wm � 4:32 � �fw.
We note that the scaling factor for gray matter is in agreement with the assumed
value in [6]. These factors are adopted to scale Eq. (3) to calculate the dynamic
viscosity at all the temperatures for the different tissue types. By substituting � in
Eq. (2) with the opportunely scaled version of Eq. (3), we compute the diffusivity
profiles along the spinal cord tract, as shown in Fig. 3. We point out that diffusion
coefficients used to obtain the scaling factors are the apparent diffusion coefficients
for the corresponding tissues. Particularly the apparent diffusion coefficient in a
tissue can be seen as the product � � D� where D� is the diffusion coefficient of
the media, which depends on temperature and viscosity, and � is the tortuosity
coefficient which solely depends on geometry. For instance in WM the tortuosity
changes with the considered diffusion direction, i.e. the diffusion coefficient along
the direction parallel to fibers is higher than D37:9

wm . However we use this value aware
that it renders a lower bound for the diffusivity profile along fibers. Moreover the
diffusivity profile of CSF and GM may only be considered within the fibers for the
sake of representing 1D diffusion in the corresponding tissues.

In the next section we calculate the Ensemble Average Propagator for adjacent
voxels located along the longitudinal direction of the spinal cord tract, and obtain
the corresponding complex DW signal. We then describe the quantification of the
asymmetry of the EAP obtained from the signal.

Fig. 3 Diffusion coefficient profile for different tissue types as function of the temperature (left)
and of the position in the spinal cord tract (right)
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5 EAP with Temperature-Induced Diffusivity Gradient

In this section we present the derivation of the Ensemble Average Propagator
(EAP) when a temperature-induced diffusivity gradient is applied to the spinal
cord tract. The obtained EAP is used to recover the complex DW signal via a
Fourier relationship [9]. From the complex signal the original EAP can be recovered
exploiting the inverse relationship and its asymmetry can be quantified as presented
below.

The EAP is obtained similarly to [8], by considering diffusion within straight
fibers with infinitesimal thickness. Fibers are considered to be aligned along the
longitudinal direction of the spinal cord tract. Assuming that particles diffuse freely
along the fiber, their displacement follows a normal distribution with variance
2D.T; �/td, where td is the diffusion time and D.T; �/ is the diffusion coefficient
as function of temperature and dynamic viscosity. Then, the probability of a particle
experiencing a net displacement along the z-axis	z can be approximated by

P.	z; td;T; �/ D 1
p
4�D.T; �/td

e� 	z2
4D.T;�/td (4)

which depends on the temperature and, consequently, on the location of the particle
within the spinal cord tract. We note that since both the temperature and the dynamic
viscosity are function of the particle location z, Eq. (4) can be rewritten as

P.	zjz; td/ D 1
p
4�D.z C	z/td

e� 	z2
4D.zC	z/td (5)

where we highlight the dependency of the diffusivity on the location. The fact that
the diffusion coefficient is not constant but varies monotonically with the location is
the cause of the asymmetry of Eq. (5), which will be reflected in the EAP.

The EAP that will be considered for calculating the signal is that accounting for
the ensemble of particles within the whole voxel. To do so we discretize the length
of the spinal cord tract l in locations zi each 1
m. At each location zi we evaluate
Eq. (5) over an observation frame large enough to observe the Gaussian decay, thus
obtaining a local propagator. Particularly the local propagator is calculated from
a maximum negative displacement �	zmax to a maximum positive displacement

	zmax with 	zmax D .6D37:9
fw td/

1
2 . The final EAP for each voxel is obtained

by numerical integration of the local propagators calculated for the locations zi

within the voxel’s limits, considering voxels of size dvox (D 1mm in the rest),
corresponding to the numerical implementation of

EAP.	zI td/ D
Z

z2voxel
�0P.	zjz; td/ dz (6)

where �0 is the constant initial density of particles.
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The resolution of the calculated EAP, i.e., the minimum observable displacement
r, is calculated from the maximum gradient strength as r D 1=Gmax. Sequence
parameters such as ı and 	 are chosen in agreement with plausible real values to
account for the chosen td. The voxel-averaged EAP is used to calculate the complex
signal via Fourier transform under narrow pulse approximation [8, 9].

The final goal is to quantify the asymmetry of the EAP calculated for each
voxel. To do this the EAP is re-computed from the complex signal and the EAP
asymmetry is then calculated as the Hellinger distance between each EAP and its
axially reflected version [8]

H2 D 1

2

Z 	p
EAP.rjtd/�

p
EAP.�rjtd/


2
dr (7)

where r D .0;	z/ and where 0 � H � 1, 0 corresponding to equality, i.e., perfect
symmetry, and 1 to maximum inequality, i.e., perfect asymmetry.

6 Results

Results show that the amount of EAP asymmetry increases as the tem-
perature gradient increases. Particularly, acquisitions with increasing TH

(e.g. 45; 55; 65; 75; 85 ıC) while keeping TL fixed (i.e. 25 ıC) will lead to an
increasing EAP asymmetry. This relation can be predicted with the developed
model such as in Fig. 6 left. In the following more detailed results and related
comments are provided.

EAP Changes Slowly Across Voxels Under a determined temperature gradient
it is hard to visually distinguish between the EAP for different voxels acquired
along the spinal cord tract. For instance, Fig. 4 shows the EAP for different
voxels at different locations. However values of the EAP change accordingly to
the underlying mean diffusivity rates which change based on the voxel location.
Indeed Fig. 5 left shows the norm of the differences between the EAP of each voxel

Fig. 4 EAPs for voxels at different location. As the voxel number increases the location is closer
to the hottest point (td D 90ms, Gmax D 500 mT/m). Results obtained for WM (25–45 ıC)
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Fig. 5 Left: norm of difference between the EAP of a voxel with respect to the EAP measured
for the voxel #0 corresponding to that showing the lowest temperature in the range 25–85 ıC.
Right: Hellinger distance for different voxels and temperature gradients. Results obtained for WM
(td D 90ms, Gmax D 1T/m)

with respect to that of the coldest voxel, as the location gets closer to the highest
temperature position z D l. A linear relationship can be found.

EAP Asymmetry for Different Voxels Remains Constant The plot in Fig. 5 right
shows the EAP asymmetry for voxels at locations closer and closer to the highest
temperature position z D l. Contrary to Fig. 5 left, here there are no differences
between voxels. Indeed the amount of EAP asymmetry, since the diffusivity profile
is quasi-linear, is constant. The only actual differences between voxels have to be
ascribed to the slight non-linearity of the temperature-induced diffusivity gradient
(Fig. 3).

EAP Asymmetry Increases with the Temperature-Induced Diffusivity
Gradient The most interesting result is that, despite EAP asymmetry across
voxels remains substantially constant, the amount of asymmetry increases with the
temperature gradient (for a given dynamic viscosity or tissue type). For instance
Fig. 5 right shows EAP asymmetries for different temperature gradients, 25–45,
25–65 and 25–85 ıC. The quasi-linear relationship between EAP asymmetry and
temperature gradient can be better appreciated in Fig. 6 left.

EAP Asymmetry Increases with the Diffusion Time When particles can diffuse
for a longer time they can probe a wider range of diffusivity values. Therefore
the differences between the EAP values calculated for positive and negative
displacements are greater. However the asymmetry dependency on the diffusion
time seems to follow a saturative profile (Fig. 6 right).

Maximum Gradient Strength Seems to Have Little Influence on EAP
Asymmetry As opposed to what stated in [8], when fibers are straight the
maximum gradient strength Gmax, i.e. the spatial resolution of the EAP, seems
not to influence the asymmetry. In this experiment it was found that increasing the
resolution simply leads to convergence of the asymmetry value.
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Fig. 6 EAP asymmetry averages (among the voxels) as function of: temperature gradient with
TL D 25 ıC and td D 90ms (left); diffusion time with 25–85 ıC (right). Results obtained for WM
(Gmax D 1T/m)

Fig. 7 EAP for straight fibers assuming diffusion as in Cerebrospinal Fluid, Grey Matter and
White Matter (td D 90ms, Gmax D 1T/m)

The Selected Dynamic Viscosity Influences the Results Depending on the
considered type of tissue (dynamic viscosity) the results can be more or less relevant.
Indeed for a given temperature gradient, considering the dynamic viscosity of free
water diffusion leads to a greater diffusivity gradient than that obtained considering
white matter tissue (Fig. 3 left). The considered tissue type affects the resulting EAP
as illustrated in Fig. 7.

7 Discussion

The objective of this work is to propose a method for quantifying the asymmetry
of the Ensemble Average Propagator with a real physical phantom, and assess its
feasibility. Designing a physical phantom for measuring asymmetry is important in
order to validate the use of EAP asymmetry as tissue biomarker as in the case of
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compressed axons [8]. However it imposes several challenges. Conceptual designs
accounting for specific fiber geometries inducing asymmetry face the limit of the
scale required to appreciate constrained diffusion. To overcome this practical issue
we propose to induce diffusion asymmetry in tissue by applying a temperature
gradient to, in this case, a spinal cord tract. The temperature gradient results in
a corresponding diffusivity profile which alters the local diffusion process to be
asymmetric since the displacement of particles diffusing towards locations with
higher diffusion coefficients is in principle greater than that towards locations with
lower diffusivity.

In this work we present the study of how experimental conditions and acquisition
parameters influence the generation and the quantification (via DW signal) of EAP
asymmetry respectively. A first consideration is that the proposed method shows
low sensitivity of EAP asymmetry to the diffusivity profile induced by the tested
temperature gradients. Indeed, as opposed to the results reported for asymmetry
induced by the fiber geometry in [8], here values of asymmetry are low. This might
lead to issues in detecting different levels of asymmetry in the physical phantom.
However results show that the amount of EAP asymmetry increases almost linearly
with the temperature gradient and that asymmetry can be better quantified with
a longer diffusion time td in the PGSE sequence. These observations suggest
that an experiment investigating the relationship between EAP asymmetry and
the temperature-induced diffusivity gradient is feasible. More precisely, a possible
experimental strategy is to perform acquisitions of the spinal cord tract at different
temperature-induced diffusivity gradients to replicate results such as those in Fig. 5
right and Fig. 6 left.

Further investigations and simulations are required. A next step is to release
the infinitesimal thickness assumption that constrains particle trajectories to lie on
a line. If particles were free to move along different directions their global dis-
placement would affect differently the EAP and its asymmetry. Moreover, additive
signal noise should be taken into account. Particular attention should be payed to the
choice of diffusion time td and maximum gradient strength Gmax. Indeed, since both
influence the effective signal to noise ratio (SNR) their values should be carefully
selected to obtain the best trade-off between observing asymmetry (increasing td)
and higher EAP resolution (increasing Gmax).

We have shown the theoretical EAP asymmetry sensitivity to a temperature-
induced diffusivity gradient. Although we encourage further investigations on the
subject, this work constitutes a fundamental step towards the design of a physical
phantom for EAP asymmetry quantification through the DW signal.
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Abstract With the development of ultra-fast magnetic resonance imaging
sequences, whole-body diffusion-weighted magnetic resonance imaging (WB-
DWI) becomes a popular diagnostic tool in patient cancer screening. Modality can
improve plenty of clinical investigations such as lymphoma, multiple melanoma
or metastatic bone cancer diagnosis. Because of vast body coverage and MR
scanner limitations, whole-body image is acquired in blocks, called stations.
Precise ‘stitching’ of whole-body stations is essential to ensure correct image
formation, yet there are not many commercially available registration algorithms.
We developed and investigated several registration methods based on apparent
diffusion coefficient (ADC) and diffusion-weighted images (DWI) to improve
station-to-station registration and WB-DWI image quality. This paper reports on
registration results of 52 whole-body DWI images and compares them with other
already existing methods. Proposed registration techniques based on ADC images
demonstrated superior performance over other registration methods.

J. Ceranka (�) • M. Polfliet • J. Vandemeulebroucke
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussels, Belgium

Department of Medical IT, iMinds, Gaston Crommenlaan 8 (Box 102), B-9050 Ghent, Belgium
e-mail: jceranka@etro.vub.ac.be

F. Lecouvet • N. Michoux
Department of Radiology, Cliniques Universitaires Saint-Luc, Hippocrate Avenue 10/2942,
Brussels, Belgium

J. de Mey
Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101,
B-1090 Brussels, Belgium

© Springer International Publishing Switzerland 2016
A. Fuster et al. (eds.), Computational Diffusion MRI, Mathematics
and Visualization, DOI 10.1007/978-3-319-28588-7_17

195

mailto:jceranka@etro.vub.ac.be


196 J. Ceranka et al.

1 Introduction

Due to the recent development of parallel imaging and ultra-fast MRI sequences (i.e.
echo-planar imaging), imaging of diffusion properties of tissues is no longer limited
to the brain. The whole-body diffusion-weighted imaging (WB-DWI) sequence
proposed by Takahara et al. [1] can cover the whole body in a scanning time of
about 30 min, making the use of whole-body diffusion measurements feasible in
clinical routine.

Diffusion-weighted imaging is an emerging technique in oncology, which has
showed great potential in tumour detection [2, 3], evaluation of lymph nodes [4]
or treatment response assessment in metastatic bone disease [5, 6]. The method
can be also used as a secondary validation tool in detection of bone metastases
for several imaging modalities such as positron emission tomography, computed
tomography or bone scintigraphy, demonstrating higher detection accuracy [7].
Other advantages include the absence of ionizing radiation, no required contrast
agents and comparatively short acquisition times, making WB-DWI a promising
imaging modality for the clinic [8].

WB-DWI is acquired in separate sections, called imaging stations, which are sub-
sequently combined into a whole-body image. However, inconsistencies between
imaging stations can occur due to image distortion, scale differences in segment
intensities and patient motion during acquisition. Each station is therefore acquired
with an overlap of predefined length with the neighbouring segment, allowing to
compensate for geometric misregistrations and intensity mismatches between the
stations. In particular, the accurate stitching of the image stations for the whole-
body image formation is crucial, as misalignment of image stations may lead to
artefacts in the whole-body image. Artefacts can hinder visual assessment, influence
the reproducibility of segmentation techniques and degrade the performance of
subsequent inter-station intensity calibration algorithms [9, 10], used to obtain an
uniform signal across the cranio-caudal direction and driven by the overlap between
neighbouring image stations.

Registration of the imaging station is a challenging task in case of WB-
DWI. Images have relatively low spatial resolution (e.g. 2:3 � 2:3 � 6mm3)
and signal-to-noise (SNR) ratio, and the overlapping boundary is often limited to
a few slices only (i.e. five slices in case of Philips DWIBS sequence [11]). In
addition, voxel intensities cannot be compared directly due to scale differences
occurring between the stations. In some cases, whole-body anatomical MRI may be
acquired during the same session, providing a high quality, distortion-free reference
onto which the diffusion segments can be mapped. In many cases however, the
corresponding anatomical images are lacking, and whole-body image formation
should be performed using DWI segments only.

Commercial workstations often allow for manual compensation of intensity mis-
matches between stations, neglecting spatial misalignment of diffusion-weighted
segments. In literature, few authors have described automated methods for WB-DWI
formation. Blackledge et al. [6] proposed a station-to-station registration algorithm
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based on high b-value DWI images. First, the algorithm compensates for inter-
station intensity mismatches in each segment by linearly scaling station intensities
such that the cumulative histograms of overlapping boundaries match. Next, phase-
encoding (anterior-posterior) shifts are corrected by optimizing the mean squared
differences (MSD) criterion of the overlapping region. However, the fact only uni-
dimensional translations are corrected, and intensity correction is performed prior
to image alignment is limiting the performance of the approach.

In this work, we studied different registration strategies for whole-body image
formation of DWI. Their performance was evaluated for consistency and smooth-
ness at the segment boundary and compared to the method proposed by Black-
ledge et al. [6].

2 Materials and Methods

2.1 Registration Approach

Image registration is typically defined as an optimization problem where the
objective is to find the spatial transformation T� that aligns a target image g to a
reference image f

O� D arg min
�

C
x2˝

	
f .x/; g

�
T�.x/

�

: (1)

In (1), x is the spatial coordinate taken from an overlapping image region˝ , T� is a
spatial transformation with parameters � over which the optimisation is performed
and f and g are the continuous intensity functions associated to the reference and
target image for which we assumed an interpolation scheme. C is the cost or metric
function associated with the registration problem and quantifies the quality of the
current solution.

The most straightforward metric comes down to computing the mean squared
differences (MSD) of the overlapping intensities,

DMSD. f ; g/ D
X

x2˝

�
f .x/� g

�
T� .x/

��2

N˝
; (2)

where N˝ is the total number of pixels in ˝ . As MSD assumes a one-to-one
correspondence between the intensities of the images under study, its use is limited
to a number of mono-modal problems.

The normalised cross-correlation (NCC), which assumes a linear relationship
between the intensity distributions, is typically used for images with the same
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modality but under different acquisition conditions,

DNCC D
X

x2˝

�
f .x/� f

� �
g
�
T� .x/

� � g
�


f
g
: (3)

Herein is f , respectively g, the mean intensity of the reference and target images and

f and 
g the variances thereof.

For multimodal registration problems, assuming a linear relationship is often too
strong a constraint, and a more general description is needed. Mutual information
(MI) assumes a statistical relationship between the intensity distributions of the two
images under study and tries to maximize their joint entropy. MI is described by

DMI.f ; g/ D �
X

a;b

pfg.a; b/
log pfg.a; b/

log pf .a/log pg.b/
; (4)

where pfg is the joint probability density function (PDF) of the reference and target
images and pf and pg the marginalised PDF’s for respectively the reference and
target image.

MSD can not be applied directly for registering DWI segments, due to the
intensity scale differences between stations. One should either correct for the
intensity mismatches in the segments, using the overlapping region given by the
acquisition geometry prior to registration [6], or employ a metric suitable for this
problem such as NCC or MI. Alternatively, when diffusion-weighted images with
at least two different b-values are available, one can compute a map of the apparent
diffusion coefficient (ADC) using

ADCxy D 1

.b1 � b0/
ln

S0
S1
: (5)

In this equation, S0 and S1 are the signal intensities obtained from diffusion-
sensitized T2 imaging with at least two values for the gradient factor b (s/mm2).
ADC maps are non-susceptible to intensity scale differences between stations and
their values are independent of DWI imaging sequence used. Therefore, ADC
images may be beneficial for the registration process as they allow assuming a
stronger relationship between the intensity distributions, e.g. through the use of the
MSD metric.

Several layers of image information (e.g. diffusion-weighted images and ADC
maps) can be taken into account simultaneously using a multi-channel registration
approach, which can be seen as the vector-wise extension of single-channel or scalar
registration.

The registration problem can be given by

O� D arg min
�

C
x2˝

	
f .x/; g

�
T�.x/

�

: (6)
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It is important to note that in (6), the intensity functions f and g have become vector-
valued and the cost function C should therefore handle vector-valued intensities. In
this work, such multi-channel metrics were expressed as a linear combination of
single-channel metrics between corresponding channels,

DMC.f ; g/ D
nX

iD1
wiDSC.fi; gi/ : (7)

Herein is DSC a single channel metric such as MSD or MI, fi and gi the ith channel
in the multi-channel image f and g, wi the weight associated to the ith channel and
n the total number of channels.

2.2 Experimental Design

We compared eight rigid registration algorithms with 6 degrees of freedom (a rigid
transformation with translations along three directions and rotations around the three
axes) and one algorithm with 1 degree of freedom (anterior-posterior translation).

The first group of registration approaches consists of single-channel (i.e. one
layer of image information) registration (SCR) methods based on diffusion-
weighted images. We applied SCR using the NCC and MI applied on the high
b-value image. The use of the high-value image was preferred over the low b-value
image, due to the better observed image quality. In addition, we also evaluated the
performance using MSD as a metric, after correcting for intensity mismatches using
the correction algorithm described in Sect. 2.3.

The second type of SCR is based on using the computed ADC images rather than
the acquired diffusion-weighted segments. As the ADC represents a quantitative
voxel measure (see Fig. 1), we used MSD to optimize the alignment in this case.

The last series of experiments is based on a multi-channel (i.e. two or more layers
of image information) registration (MCR) approach. The multi-channel technique
based either on two diffusion-weighted channels or three channels including the
ADC images. NCC or MI was used for channels of low and high b-value diffusion-
weighted images (MI or NCC metric), while MSD was used for the ADC channel.

An overview of the registration approaches studied in this work is given in
Table 1. All registrations were implemented in the elastix software package.

Fig. 1 WB ADC images composed of four imaging stations with five slices of boundary overlay
(marked red) for the same patient. (a) Legs image, (b) pelvis image, (c) torso image and (d) head
image. ADC is not susceptible to intensity mismatches between the stations
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2.3 Inter-Station Intensity Calibration

The algorithm used for correction of intensity mismatches between stations was
adapted from Nyúl et al. [12]. For each overlapping boundary region, the intensity
histogram is calculated. The intensity histogram of the target image is then adjusted
to match the intensity histogram of the reference station by optimizing an intensity
scaling factor using a criterion based on the least squares error evaluated at 13 points
evenly spread across the histogram.

2.4 Data Description

This study was based on retrospective materials, consisting of isotropic WB-
DWI images from whole-body MRI routine examinations performed in patients
with metastatic cancer in different stages. Images were acquired for evaluation of
response to various anti-cancer treatments. All images were anonymized before
archiving and post-processing. Fifty-two WB-DWI images were registered and
evaluated. Images were acquired using Philips Medical Systems 1.5 T and 3 T
MR imaging systems with diffusion-weighted whole-body imaging sequence with
background body signal suppression (DWIBS) [11] at the Cliniques Universitaires
Saint-Luc in Brussels, Belgium.

Whole-body DWI studies were achieved by sequential acquisition of four image
stations, roughly covering legs, pelvis, torso and head, respectively (Fig. 2). Each
station consisted of 44 or 50 slices with five overlapping slices. Axial free breathing
echo-planar diffusion-weighted sequence with b D 0 and b D 1000 s/mm2 were
applied. Diffusion images of three spatial directions (x, y, z) were measured.
Diffusion magnitude image, calculated from the three diffusion images, rendered
the image weighted in global diffusion (i.e. trace image, isotropic image). The
individual directional source images were not viewed separately, but combined into
a single final set for diagnosis. Images were acquired using following parameters
of DWIBS protocol: repetition time (TR) D 3079–6063ms, echo time (TE) D 65–
66 ms, slice thickness 4–6 mm, matrix size of 192 � 192–352 � 352, pixel spacing
1.59–2.29 mm, field of view (FOV) D 440 � 440–530� 530mm.

Fig. 2 WB-DWI composed of four imaging stations (b = 1000 s/mm2) with five slices of boundary
overlay (marked red) for the same patient. (a) Legs image, (b) pelvis image, (c) torso image and (d)
head image. All images are displayed with the same window and level settings, yet strong intensity
mismatches can be observed between stations (a) and (b)
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2.5 Validation

Two measures were derived to evaluate the whole-body images obtained using the
different registration approaches. The first consisted of computing the mean absolute
differences (MAD) of the overlapping voxels. The second measure was obtained by
calculating the partial derivative along the cranio-caudal direction of whole-body
image using a 3D Sobel kernel. The final measure was computed as the average of
the absolute intensities near the interface between two stations.

The measures were applied for both ADC and high b-value diffusion-weighted
images (b D 1000 s/mm2) and compared to the whole-body ADC and DWI images
created from non-registered image stations. Due to application of 6 degrees of
freedom, the overlay of the region changed between subjects and stations. For each
of the registrations, the actual overlap was therefore recomputed and the measures
were only evaluated in this region. As the measures are inherently normalized by
the number of voxels, changes in size of the overlap did not influence the result. In
case the registration strategy did not include intensity correction for the diffusion-
weighted images, this was performed prior to computing the measures.

3 Results and Discussion

All of the investigated methods had 6 degrees of freedom, except of the method
proposed by Blackledge et al. [6], which allows for translations only in phase-
encoding direction. Our implementation of latter method failed to register 18 out
of 52 whole-body DWI-MR images and results for the remaining whole-body
registrations were comparable with results of non-registered stations. The results for
this method were not included in the tables. We did include the results for a closely
related method, involving prior intensity correction, but employing a transformation
with 6 degrees of freedom. The results for eight different registration methods of the
whole-body DWI images are summarized in Tables 2 and 3.

Single-channel registration on DWI using MSD method, with prior intensity
correction performed, gave poor registration results. The alignment of the image
stations was also visually incorrect, with frequent gaps in slice-selection direction
between the stations. What is more, 7 out of 52 registrations had failed. Note
that failed registrations were not taken into account for calculation of means in
Tables 2 and 3. The poor registration performance of both methods based on DWI
images using the MSD metric may be caused by inaccurate inter-station intensity
calibration, as it is based on the overlapping region, prior to registration.

Single-channel registration on DWI using MI and NCC also returned unstable
results, with 8 and 6 failures, respectively. This was most likely caused by the low
SNR in some images, in particular the images acquired on 1.5 T MR. In contrast,
single-channel registration on ADC using MSD showed stable registration results
with low MAD and gradient scores. SCR using the ADC was more stable and
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Table 2 Averaged results of the mean absolute differences (MAD) and gradient intensities (GI)
for all of the registered whole-body images for eight different methods and non-registered stations
validated on ADC images with number of failed registrations

Method MAD ˙ SD �10�4 GI ˙ SD �10�3 Failed

Non-registered 4.46 ˙ 0.61 9.60 ˙ 0.78 0

SCR on DWI using MSD 4.68 ˙ 0.99 8.49 ˙ 0.99 7

SCR on DWI using MI 4.33 ˙ 0.77 8.70 ˙ 1.32 8

SCR on DWI using NCC 4.04 ˙ 0.46 8.59 ˙ 1.17 6

SCR on ADC using MSD 3.68 ˙ 0.56 8.35 ˙ 0.89 0

MCR on DWI using MI 4.29 ˙ 0.75 8.96 ˙ 1.51 0

MCR on DWI using NCC 3.69 ˙ 0.36 8.15 ˙ 0.88 0

MCR on ADC using MSD with DWI using MI 3.68 ˙ 0.56 8.13 ˙ 0.90 0

MCR on ADC using MSD with DWI using NCC 3.65 ˙ 0.35 8.10 ˙ 1.00 0

Table 3 Averaged results of the mean absolute differences (MAD) and gradient intensities (GI)
for all of the registered whole-body images for eight different methods and non-registered stations
validated on DWI b D 1000 s/mm2 images after intensity correction with number of failed
registrations

Method MAD ˙ SD GI ˙ SD Failed

Non-registered 16.52 ˙ 4.58 358 ˙ 109 0

SCR on DWI using MSD 27.13 ˙ 13.5 396 ˙ 132 7

SCR on DWI using MI 15.22 ˙ 4.31 376 ˙ 151 8

SCR on DWI using NCC 14.99 ˙ 4.38 400 ˙ 163 6

SCR on ADC using MSD 14.84 ˙ 4.32 353 ˙ 113 0

MCR on DWI using MI 15.32 ˙ 4.31 421 ˙ 182 0

MCR on DWI using NCC 14.51 ˙ 4.10 341 ˙ 107 0

MCR on ADC using MSD with DWI using MI 14.65 ˙ 4.16 346 ˙ 100 0

MCR on ADC using MSD with DWI using NCC 14.55 ˙ 4.09 344 ˙ 106 0

outperformed SCR registration using DWI for all measures, and the difference was
significant (p < 0:04, two-tailed t-test) for all of the validation measures except for
DWI image MAD validation (p D 0:90, two-tailed t-test).

Multi-channel registration of ADC maps using MSD and DWI images using
NCC outperformed all of the other registration methods in mean absolute differ-
ences and gradient intensity metric based on ADC (see Fig. 3). However, multi-
channel registration on DWI using NCC scored the best in DWI image validation.
Multi-channel registration on ADC using MSD with DWI using NCC resulted in a
slight improvement of both MAD and GI in comparison with single-channel ADC
using MSD method, and the difference was significant (p < 0:002, two-tailed t-
test) for all of the validation measures except for ADC image gradient validation
(p D 0:15, two-tailed t-test).

An example of the obtained whole-body images using different registrations is
shown in Fig. 4.



204 J. Ceranka et al.

Fig. 3 The boxplot of compared mean absolute differences evaluated for the ADC image stations
for all registration algorithms. The ADC based registration techniques show the lowest MAD
values

Fig. 4 Results of different registration methods. ADC whole-body image of subject 10 ‘stitched’
from four image stations (the same slice). Red arrows indicate spine shift. (a) Non-registered
segments. (b) SCR on DWI using MI. (c) MCR on ADC using MSD with DWI using NCC.
(d) SCR on DWI using MSD. The image is unnaturally tilted to the front
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4 Discussion and Conclusion

In this work we investigated several strategies for whole-body DW-MRI image
stations registration. Eight different registration methods were compared and their
performance evaluated. Overall, single-channel strategy using the computed ADC
maps performed better and proved to be more stable than other single-channel
registration on DWI segments. Multi-channel registration on both ADC images and
DWI images using NCC metric showed marginally better consistency at the station
interface, but the improvement was negligible.
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Using Automatic HARDI Feature Selection,
Registration, and Atlas Building to Characterize
the Neuroanatomy of Aˇ Pathology

Evan Schwab, Michael A. Yassa, Michael Weiner, and René Vidal

Abstract The detection of white matter microstructural changes using diffusion
magnetic resonance imaging (dMRI) often involves extracting a small set of scalar
features, such as fractional anisotropy (FA) and mean diffusivity (MD) in diffusion
tensor imaging (DTI). With the advent of more advanced dMRI techniques, such as
high angular resolution diffusion imaging (HARDI), a number of mathematically
inspired new scalar features have been proposed. However, it is unclear how to
select the most biologically informative combinations of features for biomarker
discovery. This paper proposes an automatic HARDI feature selection algorithm
which is based on registering HARDI features to feature atlases for optimal clinical
usability in population studies. We apply our framework to the characterization of
beta-amyloid (Aˇ) pathology for the early detection of Alzheimer’s disease (AD) to
better understand the relationship between Aˇ pathology and degenerative changes
in neuroanatomy.

1 Introduction

Over five million Americans suffer from Alzheimer’s disease (AD) today. Since the
damage to the brain caused by AD is irreversible and the first symptoms appear
when the disease is already sufficiently advanced, it is very important to establish
indicators of AD (i.e., biomarkers) during the preclinical stage that allow for early
diagnosis and intervention. Beta-amyloid (Aˇ) pathology is thought to play an
important role in AD pathophysiology, but the relationship between Aˇ pathology
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and structural changes in brain connectivity during the preclinical stage is not well
understood. Currently, our understanding of changes in the white matter (WM) of
the brain that occur early in the course of the disease is largely based on studies that
use diffusion tensor imaging (DTI) to find changes in fractional anisotropy (FA) and
mean diffusivity (MD) [6, 19, 20]. A major concern for DTI is its inability to resolve
subvoxel crossing, bending, and twisting fibers due to limitations inherent in the
single-direction tensor model and these limitations are observed in the ambiguity of
FA and MD changes. This precludes accurate measurement of the complex subvoxel
anatomical fiber interactions, which is important to understanding WM pathology
implicated in AD.

High angular resolution diffusion imaging (HARDI) addresses the disadvantages
of DTI by allowing one to estimate a multi-modal orientation distribution function
from a large number of gradient directions. On the one hand, this permits defining
new features with the hope of better characterizing WM structures and WM
pathology. Indeed, in recent years there has been an influx of methods that
generate rotation invariant HARDI features [4, 11, 13–15, 18, 21]. On the other
hand, however, with so many different types of features to choose from, it is not
clear which ones are most representative of neuroanatomical microstructure and
most important for disease classification. Also, since many of these features are
derived based on their mathematical properties, it is unclear which features are
biologically relevant.

A common approach to feature selection is to use all features to train a classifier
and let the classifier weights decide which features are most discriminative. This
approach is appropriate for brain classification whenever the spatial location of
the brain features is inconsequential. In practice, however, disease is localized in
certain anatomical structures, such as the hippocampus for AD, and it is extremely
important that these features be registered to a common coordinate system, or
atlas, before the classifier is trained. However, the construction of the atlas and
the registration algorithm are also based on the same features, and selecting which
features are most relevant for registration is also an important problem. Indeed,
errors in registration could incorrectly map the features to the atlas and result in
incorrect classification.

Paper Contributions In this paper, rather than addressing the feature selection
problem only at the very end of the classification pipeline, we propose to auto-
matically select anatomically informative features while simultaneously registering
them and constructing a feature atlas for proper comparison of different populations.
Given a collection of HARDI features extracted from multiple brain images of
healthy individuals, we use them to build a HARDI atlas. This atlas is built by
alternating between registering all HARDI features to a current estimate of the
atlas, and recomputing the atlas by “averaging” the registered HARDI features.
This is done using a generalized multi-channel large deformation diffeomorphism
metric mapping (mcLDDMM) framework in which each HARDI feature is given a
different weight that depends on the variance of the feature. This weight, which
is estimated and updated as the atlas building algorithm proceeds, is used to
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automatically determine the importance of the feature for registration and atlas
building. In this way, our approach embeds feature selection within a HARDI
registration and atlas building framework so that the selected features, which may
be important for final analysis and classification, can be optimally transferred to
the atlas for training a classifier. We apply our joint feature selection, registration
and atlas building framework to identify neuroanatomical differences between
Aˇ positive .C/ and Aˇ negative .�/ pathologies to investigate the relationship
between Aˇ pathology and neuroanatomical degeneration in order to discover new
biomarkers for AD. Our results show that the features selected automatically by our
method often agree with the features that produce the most significant differences
between AˇC and Aˇ�.

Paper Outline The remainder of this paper is organized as follows: In Sect. 2 we
review the problem of HARDI registration based on rotation invariant features.
Then in Sect. 3 we present our joint feature selection, registration and atlas building
algorithm. Finally in Sect. 4 we show results of our framework on a population study
of AˇC and Aˇ� subjects to identify promising features for Aˇ classification.

2 Multi-Channel Registration Using HARDI Features

The proposed framework for feature selection is driven by registration, whose
goal is to align multiple datasets into a single coordinate system for proper
comparison. Current medical image registration algorithms work very well for
scalar-valued brain MRI volumes. However, for high-dimensional HARDI data,
alignment requires not only warping the 3D volume of the baseline (b0) MRI,
but also preserving the orientation of local diffusion information at each voxel to
remain consistent within the warped neuroanatomy. To tackle this, early methods
reorient the diffusion profiles after registration [1, 16]. However, this does not take
into account the effect of local reorientation on the global optimization. To handle
this, [7, 8, 10, 12, 24] incorporate diffusion information into the optimization. This
requires computing complicated gradients and reorienting diffusivity profiles at each
iteration, which can be time-consuming. Furthermore, different diffusivity profiles
like the orientation distribution function (ODF), fiber orientation distribution (FOD),
average ensemble propagator (EAP) or the raw signal each require a separate
registration algorithm with different schemes for reorientation.

In this paper, we adopt a HARDI registration framework based on rotation
invariant HARDI features. The proposed framework aligns diffusivity information
accurately without having to calculate gradients or needing to reorient the data.
Moreover, it can be applied to any diffusivity profile or combination thereof.
More specifically, we adopt the large deformation diffeomorphic metric mapping
(LDDMM) algorithm [2], which is a staple for the registration of scalar valued MRI
volumes. LDDMM seeks to find an optimal diffeomorphism between two images or
volumes. For registering sets of HARDI features, we use multi-channel LDDMM
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(mcLDDMM), which seeks to find an optimal diffeomorphism to align information
contained in multiple volumes simultaneously. In particular, suppose we have C
rotation invariant HARDI features for each voxel of our 3D brain volume. Let Ic

denote the volume of feature c D 1; : : : ;C. Then we can represent the collection
of C HARDI feature volumes by I D ŒI1; I2; � � � ; IC�. Now, given two collections
of feature volumes I0 D ŒI01; I02; : : : ; I0C� and I1 D ŒI11; I12; : : : ; I1C�, the goal of
mcLDDMM is to find a single optimal non-linear transformation that aligns all
C feature volumes jointly. That is, we wish to find a diffeomorphism ' such that
I1c � I0c ı '�1 for all c D 1; : : :C. Since the transformation ' is the same for all
c, our shorthand notation will be I1 � I0 ı '�1. The diffeomorphism is generated
by the flow of a family of smooth time-dependent vector fields vt 2 V, the space
of vector fields, for t 2 Œ0; 1�, defined by the ordinary differential equation d�vt

dt D
vt.�

v
t /, where �0 is the identity transformation and �v

�

1 D '� is a diffeomorphic
transformation defined as the solution to the following optimization problem:

'� D arg min
'

 Z 1

0

jjvt.'/jj2Vdt C
CX

cD1

1


2c
jjI0c ı '�1 � I1c jj2L2

!

: (1)

An optimal ' is found by gradient descent. Note that when C D 1, Eq. (1) reduces to
the traditional single-channel LDDMM. Here the 
2c are fixed weighting parameters
for each channel. In most formulations, 
2c is set to 1 for all c.

To illustrate the performance of mcLDDMM using various HARDI features, we
generated a ground truth (GT) deformation g (Fig. 1b) by aligning a real HARDI
volume A (Fig. 1a) to another real HARDI volume B (not shown) using traditional
single-channel LDDMM on the b0 volumes. We then applied g to A to obtain a new
transformed volume C D A ı g. We compared various mcLDDMM methods with
differing features to align A and C to measure which one was closest to the GT g. In
Fig. 1 we show the qualitative results comparing: (Fig. 1c) LDDMM-b0, the baseline
single-channel registration of b0 images, (Fig. 1d) mcLDDMM-GFA, the 2-channel

Fig. 1 Qualitative results for a semi-synthetic deformation experiment. We compare out-of-plane
deformations, where blue is deformation towards the viewer and red is away from the viewer.
(a) b0 MRI of the dataset. (b) Ground truth (GT) deformation. (c) Deformation obtained by single
channel LDDMM using b0. (d) Deformation obtained by DTI-like mcLDDMM using b0 and GFA.
(e) Deformation obtained by multi-channel LDDMM using spectral norms of spherical harmonic
coefficients (SHC). (f) Deformation obtained by multi-channel LDDMM using HARDI features
from [21]. Note that using the features in (f) provides an estimate that is closer to the ground truth
transformation
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registration using b0 and GFA, which is analogous to the method of [5] that uses b0
and FA for DTI, (Fig. 1e) mcLDDMM-SHC, the 5-channel registration using b0 and
three SHC norms [3], (Fig. 1f) mcLDDMM-Schwab, the multi-channel registration
using b0 and a set of rotation invariant features for HARDI developed in [21]. These
results demonstrate that by using the features proposed in [21] we can achieve a
more accurate registration than traditional LDDMM and LDDMM based on GFA
or SHC. But most importantly, we wish to understand which features out of the
many available in the literature are important for driving registration and which are
important for disease classification. Next we present our method for automatically
selecting features based on their anatomical information.

3 Automatic Feature Selection Using mcLDDMM

Now that we can register HARDI features using mcLDDMM, we wish to learn
which features capture the most information to drive registration and preserve the
neuroanatomy. Rather than fixing each 
c, we estimate the value of these parameters
as a way of measuring their informativeness for registration. To that end, we employ
an iterative algorithm that alternates between estimating the informativeness of
a feature given a HARDI template (i.e., estimate 
c) and estimating the HARDI
template given the informativeness of each feature.

Our method is derived from the Bayesian template estimation work of Ma et al.
[17], which estimates a 3D shape template for computational anatomy. The work of
Du et al. [9] uses the same algorithm for the single-channel HARDI registration
of ODFs to build a HARDI atlas. The framework was also extended to fuse
information from multiple atlases both for computational anatomy [22] and DTI
[23], but the value of 
c for each channel was kept constant. Our algorithm expands
upon these prior works by using mcLDDMM to build a HARDI feature atlas while
simultaneously learning the variance parameters 
c that weight each feature channel.

More specifically, let I D fI1; I2; : : : ; INg be a collection of HARDI volumes
corresponding to N normal subjects, each volume In having C feature channels,
i.e., In D ŒIn

1; In
2; : : : ; In

C�. Let J be a template consisting of C feature volumes
J D ŒJ1; J2; : : : ; JC� to be estimated from I. Let ‚ D f�1; �2; : : : ; �Ng be a
collection of transformations from subject In to J, such that In � J ı ��1

n . Let
J0 D ŒJ01 ; J

0
2 ; : : : ; J

0
C� be a set of feature volumes associated to a known HARDI

brain hypertemplate, and let 
 be a transformation between the estimated template
J and the hypertemplate, such that J D J0 ı 
�1. Under the model p.I;‚; 
I 
/ /
p.I j ‚; 
I 
/p.‚/p.
/, the goal of atlas building is reduced to estimating a
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transformation
 given the observations I and the hypertemplate J0 (assuming latent
variables ‚) by minimizing the negative log likelihood:

�log p.I;‚; 
I 
/ D
NX

nD1

CX

cD1

1

2
2c
jjJ0c ı 
�1 ı ��1

n � In
c jj22 C 1

2
SCN log 
2c

C 1

2
jjvt.
/jj2V� C

NX

nD1

1

2
jjvt.�n/jj2V � log.Z�/ � N log.Z/;

(2)

where vt.
/ D d
t
dt and vt.�n/ D d�n

dt , and Z� and Z are normalization constants.
In theory, we could estimate 
 and 
 using a generalized Expectation Maximiza-

tion (EM) that, at iteration k, minimizes the negative expected log likelihood:


2.kC1/
c D 1

SCN

NX

nD1
E
.k/

˚kJ0c ı 
.k/�1 ı ��1
n � In

ck22 j In
c

�
; (3)


.kC1/ D arg min



�

jjvt.
/jj2V� C
NX

nD1

CX

cD1

E
.k/
˚kJ0c ı 
�1 ı ��1

n � In
ck22 j In

c

�

2

2.kC1/
c

�

:

(4)

However, the expectation E
.k/
�jjJ0c ı 
�1 ı ��1

n � In
c jj22 j In

c

�
w.r.t. ‚ cannot be

computed analytically due to the nonlinear dependency of this quantity in �n. To
overcome this issue, the authors of [17] utilize the Mode Approximation Expecta-
tion Maximization (MAEM) algorithm, in which the conditional distribution of the
latent variables is replaced by a Dirac measure at its mode. This leads to the MAEM
Algorithm 1, where (3) and (4) are solved alternatively. To initialize MAEM, we
set J0 to be a randomly selected subject in I and set 
c D 1 for all c. Based on the
findings of Ma et al. [17], the choice of the hypertemplate does not greatly effect the
resulting template.

The MAEM algorithm results in estimated feature atlases J�
c and weights w�

c D
1=
2�c for each feature channel c. By analyzing the resulting channel weights for
each of our HARDI features, we are able to automatically select the most important
features that drive registration. In particular, channels with large variance 
2c will
receive a small weight wc in each successive iteration. Since wc D 1 is our
initialization, we may identify features with w�

c < 1 as less important for driving
registration since they have a larger error 
2c . As an extreme example, a feature
that contains large amounts of noise (SNR very small) will result in large 
2c and
therefore w�

c will be small. So, HARDI features with very low SNR will be weighted
lower since they do not carry consistent anatomical information. On the other hand,
features with w�

c � 1 are important for driving registration since they exhibit smaller

2c . However, features with extremely high weights may not be informative for
registration. As an extreme example, a feature which is constant for every voxel
in a brain volume, and therefore anatomically uninformative, will return a 
2c D 0
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Algorithm 1 (Feature Selection and Template Estimation)

Let J.k/c be the estimated template and 
2.k/c be the estimated variances for each channel c at iteration
k. For iteration .k C 1/,

1. Warp each subject In
c to J.k/c using mcLDDMM with parameters 
2.k/c to obtain In

c ı �.k/n with

Jacobian determinant jD�.k/n .y/j at each voxel y of the image volume.
2. Compute mean feature image

NI.kC1/

c .y/ D
PN

nD1 In
c ı �.k/n .y/jD�.k/n .y/j

PN
nD1 jD�.k/n .y/j : (5)

3. Update noise variance feature weights by


2.kC1/
c D 1

SCN

NX

nD1

jjIn
c ı �.k/n � J.k/c jj22; (6)

where S is the total number of voxels in each volume and C is the number of channels.
4. Given 
2.kC1/

c , update our template by finding the transformation that minimizes the distance

between NI.kC1/

c and J0c ,


.kC1/ D arg min



Z 1

0

jjvt.
/jj2Vdt C
CX

cD1

1



2.kC1/
c

jj.NI.kC1/

c ı 
�1 � J0c /
p

A.kC1/jj22; (7)

and write the updated template as J.kC1/
c D J0c ı 
.kC1/, where the weight image is given by

A.kC1/ D Œ˛.kC1/.y/� for ˛.kC1/.y/ WD PN
nD1 jD�.k/n .y/j.

5. We repeat until jj
2.kC1/
c � 


2.k/
c jj < � for some small � > 0 for all c.

and w�
c D 1. Thus, our template estimation algorithm can automatically select

important features that drive registration by automatically adjusting the weights.
These weights can be further tuned for classification by training a classifier for
a specific disease application. In Sect. 4 we analyze the relative feature weights
resulting from our algorithm with respect to Aˇ pathology status.

4 Automatic Feature Selection, Registration, and Atlas
Building Applied to Characterization of Aˇ Pathology

In this section we will apply our automatic registration driven feature selection
algorithm to characterize the WM neuroanatomy of Aˇ pathology. Our goal is to
identify features that are useful in the classification of Aˇ pathology in order to
assess novel biomarkers for the early detection of AD. To that end, we compare
anatomical features selected by our algorithm with disease-specific features that
present statistically significant differences in the presence of Aˇ pathology. Our
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automatic feature selection will provide us with a shortlist of anatomically infor-
mative features from which a subset could be chosen that may be important for
classifying Aˇ pathology.

4.1 Extraction of HARDI Features

In recent years there have been a number of innovative frameworks for extracting
new rotation invariant features from HARDI data. Here, we compare these features
to understand which ones have the potential to play important roles in biomarker
discovery of neurological diseases. We compare three different families of features
(from Schwab et al. [21], Ghosh et al. [14] and Gur et al. [15]) extracted from
three different diffusivity profiles: the raw HARDI signal, the ODF, and the FOD.
From [21] we extract 30 features from the 4th order SH coefficients: 25 eigenvalues,
and their variance, range, median, Frobenius-norm, and 2-norm. From [13, 14] we
extract 20 features from the 4th order tensor: 12 generalized invariants (G4), which
generate 4 basic (S4) and 4 principal (J4) invariants of homogenous polynomials.
From [15] we extract 32 features of the 4th order SH coefficients: 3 coefficients
contracted with coefficients (I), 11 coefficients contracted with tensors (J) and
18 tensors contracted with tensors (K). For each family of features and for each
spherical function, we add the baseline MRI b0 as the first channel and GFA as the
second channel for comparison.

4.2 Analysis of Selected HARDI Features Compared to Aˇ

Pathology Status

For this study we use 15 Aˇ� and 17 AˇC subjects, identified with florbetapir
(Amyvid) PET scans, from the Hippocampal Connectivity Project (HCP) at the
Center for Imaging of Neurodegenerative Diseases (CIND) at the University of
California San Francisco (UCSF). For each subject, 3 HARDI scans were acquired
on a Siemens 4T scanner (128 gradient directions, 3 b0 values, FOV: 192, number
of slices: 26, resolution: 1.5 mm isotropic, b-value: 1400 s/mm2, TR/TE: 3500/86,
3nex averaged to enhance SNR, total protocol time: 1.35 h).

For characterizing Aˇ pathology, we focus on features within the parahippocam-
pal WM, a region of interest (ROI) that has been shown to undergo fiber degradation
in aging and mild cognitive impairment [25, 26]. We first choose one subject at
random among the 15 healthy subjects to be our hypertemplate J0. We then build
feature atlases using each one of the features and HARDI functions described in
Sect. 4.1. The resulting weights of each feature channel for each experiment after
three iterations of Algorithm 1 are shown in red in Fig. 2. (Features whose weights
were extremely high (>20) were set to 0 in Fig. 2 only for visual comparison.)
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Fig. 2 Comparison of each family of features extracted from signal, ODF, and FOD after three
iterations of Algorithm 1. Red: weights wc for each feature channel c. Green: number of voxels
in ROI that are statistically different between AˇC and Aˇ�. Blue marker: features that have
statistically significant differences in means within the ROI between AˇC and Aˇ�. Notice that
many features with high wc (important for registration of WM) also contain statistically significant
differences between AˇC and Aˇ�

Fig. 3 Display of a subset of the feature maps obtained by each method (Schwab, Ghosh and Gur
in the left, central and right columns, resp.) for each function (signals, ODF and FOD in the top,
middle and bottom rows, resp.). The numbers next to each feature map correspond to the feature
channel c as ordered on the x-axes in Fig. 2

For each family, the first channel is b0 and the second channel is GFA. We also
investigate feature differences between AˇC and Aˇ� groups after registering
all subjects to the template. We ran a voxel-wise two sample paired t-test in the
parahippocampal WM ROI. The number of voxels with statistically significant
differences between groups is plotted in green for each feature. We also ran a two
sample paired t-test on the means of the voxel values in each ROI (left and right brain
separately) and plotted features which have statistically significant mean differences
as blue markers (see legend of Fig. 2).

In Fig. 3 we display a sample of feature maps for each family and function (same
3 � 3 grid as Fig. 2) to show the reader the types of feature maps associated to
high and low weights in Fig. 2. Notice that a number of the selected features from
Ghosh and Gur are not very informative, as they are either very sparse or close to a
constant mask. In addition, it so happens that the methods of Ghosh and Gur produce
duplicate features for different functions, as can be seen in the repeated peaks of
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Ghosh (channels 4 and 16 for Signal, ODF, and FOD) and Gur for ODF in Fig. 2.
By looking at the results, it is evident that there is a pattern between features with
weights greater than one and those with statistically significant ROI differences.
However, some of the homogeneous features from Gur and Ghosh can be identified
by having a peak of the number of statistically significant voxels and also have
statistically significant means over the entire ROI since there is little variability. In
particular, the plots of Schwab for ODF and FOD show interesting correlations and
variability.

In Fig. 4 we show a subset of these statistically significant features, where the
left column shows Aˇ� and the right one AˇC, compared along the sagittal
view of the ROI (long shaded region in black box). Common to each of these
features, we notice a decrease in the intensity of each feature crossing perpendicular
through the ROI. Unlike GFA, which is predominantly isotropic (blue) in the ROI,
revealing little diffusivity information, some of the other selected features are able
to reveal microstructural information directly crossing the parahippocampal ROI.
Admittedly, when we say that a certain HARDI feature has decreased in value
between AˇC and Aˇ�, physical interpretations are somewhat abstract (unlike for
the well defined GFA). This is definitely the case for many of the features from
Ghosh and Gur which are derived mathematically. For the features from Schwab
[21], it is proven that these features follow the physical distribution of the spherical
function they were extracted from. Therefore, one can characterize differences in
diffusivity information or physical shapes of the signal, ODF or FOD by analyzing
changes in the entire set of features together instead of individual features alone.

Fig. 4 Comparison of average features after registered to feature atlases. We show the sagittal
view of the parahippocampal WM ROI (elongated shaded area in black box). Red: High, Blue:
low. We notice a decrease in feature values crossing over ROI in Schwab, Ghosh and Gur. GFA
shows little diffusivity information in ROI
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The first row of Fig. 4 shows feature 13 of the FOD as a striking example of the
differences between Aˇ C =�. Additionally, features 10 through 27 (not shown)
vary slightly from one another and all include diverse information crossing along
our ROI for Aˇ C =�.

5 Conclusion

We have presented an algorithm for the joint selection, registration, and atlas
building of HARDI features applied to the analysis of Aˇ WM pathology. This
method provides an automatic way to select features that may be important for
disease classification based on an anatomical criteria of registration accuracy which
is not specific to a particular disease study. Then given the selected features,
researchers can identify a subset based on disease classifiers. We have shown
that many of the features important for registration may be useful for Aˇ C =�
classification by showing statistically significant differences within a known ROI.
We have found that the presence of Aˇ pathology (AˇC) may be associated with
feature decreases in the parahippocampal WM ROI, indicating levels of degradation
in comparison to a healthy average (Aˇ�). Our future efforts will be to incorporate
these significant features into a unified classification algorithm for Aˇ pathology to
identify potential biomarkers for the early detection of Alzheimer’s Disease.
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Reliability of Structural Connectivity Examined
with Four Different Diffusion Reconstruction
Methods at Two Different Spatial and Angular
Resolutions
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M.J. Wright, N. Jahanshad, and P.M. Thompson

Abstract Diffusion magnetic resonance imaging (dMRI) has had a great impact
on the study of the human brain connectome. Tractography methods allow for
the reconstruction of white matter fiber tracts and bundles across the brain,
by tracing the estimated direction of water diffusion across neighboring voxels.
The tracts can then be used in conjunction with cortical parcellations to create
structural connectivity matrices, to map the pattern and distribution of connec-
tions between cortical regions. However, the reliability of connectivity matrices
is unclear. Tractography results depend on image resolution, and some recon-
struction methods used to resolve the voxel-wise microstructure may be more
robust to changes in resolution than others, leading to more stable connectivity
estimates. We examined the reliability of structural connectivity matrices in 20
healthy young adults imaged with both high and low-resolution dMRI at two
time points. We found that the Constrained Spherical Deconvolution (CSD) model
produces the most reliable connections for both lower resolution and high resolution
scans.
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1 Introduction

The study of the human connectome continues to show great promise for identifying
cortical connections disrupted in disease. A common approach to study human
structural networks is to generate connectivity matrices via a multimodal approach,
namely segmenting cortical and subcortical regions of interest (ROI) on high-
resolution T1-weighted anatomical images and tracing the white matter (WM)
connections between these regions using diffusion magnetic resonance imaging
(dMRI) [1]. Anatomical connections are inferred by computing the intersection
between each pair of ROIs and the extracted streamlines, which connect them. In
this way, the existence of an anatomical connection between a pair of brain regions
can be established. This information is represented in a graphical matrix form, with
nodes representing each of the segmented ROIs and edges corresponding to the
weights of the WM connections.

A major criticism of dMRI and tractography methods is validation, as we do
not typically have an independent source of biological ground truth when scanning
the living human brain. Even more so, a myriad of acquisition protocols are used,
and numerous reconstruction methods have been proposed to model the anisotropic
diffusion of water at the voxel level. These models include parametric models
such as diffusion tensor imaging (DTI) [2] and mixture models [3] as well as
high angular resolution imaging (HARDI) [4] and diffusion spectrum imaging
(DSI) [5].

With the expansion of global multi-site neuroimaging initiatives such as
ENIGMA (enigma.ini.usc.edu) and CHARGE (chargeconsortium.com), as well
as data sharing initiatives such as ADNI (adni.loni.usc.edu), analyses are often run
on data from different sites as part of the same study. Results may be meta-analyzed
and data from different acquisition protocols may be pooled together and analyzed;
as such, it becomes increasingly necessary to standardize processing protocols
across sites to limit the effects of inter-site acquisition and processing differences.
With diffusion imaging in particular, acquisition parameters such as voxel size and
angular resolution can have a large impact on the results of a population study
[6]. Protocols often standardize tractography by requesting that a single method
be used, but it is just as important to find a reconstruction technique for dMRI
that remains stable across many different acquisition parameters when using a
particular tract-tracing algorithm. Due to the multimodal aspect of connectivity
matrices, sources of variance may come from many sources. The most reliable
estimates of connectivity matrices are essential for further comparison across
sites.

Here we aimed to determine the test-retest reliability of the full structural
connectomes of healthy adults, derived from four different diffusion reconstruction
methods and one deterministic tracking method. First, we focused on the commonly
employed diffusion tensor model (DTI) and other three reconstruction methods
optimized for single-shell HARDI-type acquisitions, i.e., Constrained Spherical
Deconvolution (CSD) [7], Constant Solid Angle q-Ball Imaging (CSA) [4], and

http://enigma.ini.usc.edu
http://chargeconsortium.com
http://adni.loni.usc.edu
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the “Ball and Stick” (B&S) model [8]. These four models are a good sample
of the most commonly used diffusion models for single-shell data, and belong
to the four main types of white matter microstructure reconstruction algorithms:
DTI is a parametric model that assumes one main fiber direction; the B&S
model is a mixture model of multiple fiber compartments with an isotropic
component for unrestricted water molecule movement; CSA is a non-parametric
q-ball reconstruction technique that represents the angular structure of the diffusion
propagator, and CSD uses the convolution theorem to model the fiber orientation
density.

The aim of this study is to make a general comparison of the structural networks
derived from different common models, not necessarily to directly compare the
reconstruction accuracy at the voxel level, for which simulation studies are better
suited [9]. We also do not test the accuracy of the resulting tractography as for that
case, a phantom or ex vivo data would be more suitable [10]. Instead, we aimed
to determine how the overall connectivity is affected by differences in angular and
spatial resolution. We aim to determine whether there is a particular reconstruction
algorithm that yields reliable connections for both high and low resolutions, or
whether one would be better suited for low resolution images and another for
high resolution scans. It is critical to know what protocols can be used, and which
connections are reliable, for consortium work where many potential protocols are
combined to estimate pooled statistical effects.

2 Methods

2.1 Scanning Protocols

We scanned 20 young healthy adults (mean age: 23.6 years, SD 1.47) on a Bruker
Medspec 4 Tesla MRI scanner at two time points three months apart using two
different dMRI acquisitions at each time point and a single T1-weighted acquisition.
The specifics of both acquisition protocols are presented in Table 1. We will refer
to the acquisition schemes as the lower angular and higher angular resolution
protocols, or dMRI-27 and dMRI-94, respectively. It is important to note here that
these protocols not only differ in terms of their angular resolution but also their
spatial resolution. Thus, we investigated the joint effect of the number of diffusion
gradient directions as well as the size of the voxel. T1-weighted images were also
acquired with a gradient-echo sequence (TI/TR/TE: 700/1500/3.35 ms; flip angle:
8ı; slice thickness: 0.9 mm; 256 � 256 acquisition matrix).
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Table 1 Shows the parameter differences between both diffusion MRI acquisition protocols

Parameters Low angular resolution High angular resolution

No. of slices 21 55
Slice gap 0.5 mm n/a
Orientation Transverse Transverse
FOV 230 mm 230 mm
Slice thickness 5 mm 2 mm
TR 290 ms 150 ms
TE 91.7 ms 92.3 ms
Base resolution 128 128
Multi-slice mode Single-shot Single-shot
Voxel size 1.8 � 1.8 � 5.0 1.8 � 1.8 � 2.0
B value max 1146 s/mm2 1159 s/mm2

Diffusion sensitized volumes 27 94
Number of B0 volumes 3 11

2.2 Image Preprocessing and Tractography

After removing extracerebral tissue from dMRI and T1 images, both were aligned
to a standard space (MNI-Colin27 brain) with a voxel matrix of 220 � 220 � 220
and voxel size of 1 � 1 � 1 mm3. The dMRI was denoised using non-local means
[11]. We automatically extracted a whole white matter mask from each subject’s
T1-weighted image, which was then warped to the non-diffusion sensitized image
of the dMRI (b0). We then fitted tensors within the boundaries of the mask for
each voxel, as well as orientation distribution functions (ODFs) from the CSA
model, fiber orientation distributions (FODs) from the CSD model, and peak
orientations from the B&S model. We computed the peaks from the CSA ODFs
and the CSD FODs. The principal eigenvectors from the tensors, as well as the
peak orientations from CSA, CSD and B&S reconstructions were fed into the
EuDX deterministic streamline tractography algorithm from the DIPY package
(nipy.org/dipy). For each subject, four sets of seeds were calculated, one for each
time point and scan resolution. Seeds were selected within the white matter mask
selecting them randomly with a spatial probability distribution proportional to the
fractional anisotropy derived from the diffusion tensor. We used the same step
size and angle threshold for all the tractrographies to ensure consistency for the
comparisons (angle threshold D 60ı, step size D 0.5 voxel)

http://nipy.org/dipy
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2.3 Connectivity Matrix Calculation

We segmented the cortex into 34 ROIs per hemisphere according to the Desikan-
Killiany atlas using FreeSurfer (freesurfer.net). The segmented ROIs were dilated
with a disk-type structuring element of size 1 voxel to ensure that the reconstructed
fiber tracts reached the cortical labels. The number of fiber tracts intersecting
each pair of regions was calculated and normalized with respect to the total fiber
count and the volume of the ROIs to create fiber-density weighted connectivity
matrices, also known as adjacency matrices. This process resulted in 16 connectivity
matrices per subject, four for each reconstruction method: two for the lower
resolution (dMRI-27) and two for the higher resolution (dMRI-94), one per time
point.

2.4 Matrix Reliability Analysis

To assess reliability between the two time points we used intra-class correlation
(ICC). We used the R package PSYCH (personality-project.org/r/html/ICC.html)
to calculate one-way measures of ICC. The correlation was computed across all
subjects, between the two time points and for each edge of the connectivity matrix.
We thresholded the resulting ICC coefficients at 0.5. Figure 1 shows the eight
matrices of ICC> 0.5, two per reconstruction model. We then masked the 16
connectivity matrices for each subject to only use connections that had an ICC value
greater than 0.5.

To obtain a probability map of the existing connections across the 20 subjects we
added the matrices from time point one of all the subjects for each reconstruction
model and for each acquisition protocol. We divided the resulting matrices by the
number of subjects. The resulting probability matrices can be seen in Fig. 2.

We subsequently ran a paired t-test to compare the matrices from each protocol
at a single time point. Finally, we corrected each p-map for multiple comparisons
by using the false discovery rate method (FDR) [9].

To examine test-retest variability introduced by the automatic cortical segmenta-
tion, we computed the Dice coefficient between time points one and two for all the
dilated cortical ROIs. Table 2 shows the mean and standard deviation across subjects
of the Dice coefficient for each ROI. The average Dice coefficient value was above
0.7 for all but one ROI—the right entorhinal cortex—which is a anatomical location
known to be prone to tissue induced inhomogeneities in gradient-echo T1-weighted
images.

http://freesurfer.net
http://personality-project.org/r/html/ICC.html
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Fig. 1 Reliable connections with ICC coefficient higher than 0.5. The left column shows the ICC
thresholded matrices for the lower resolution dMRI protocol and the right column shows the ones
for the higher resolution dMRI protocol. (a) Results for DTI, (b) CSA, (c) CSD and (d) B&S. The
number of connections that are reliable is lower for the lower resolution dMRI than for the higher
resolution
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Fig. 2 Probability matrices for each reconstruction method. The left column shows the probability
maps of the lower resolution dMRI and the right column for the higher resolution dMRI, based on
the following models: (a) DTI, (b) CSA, (c) CSD, and (d) B&S. The color bar represents the
probability of existence of the connection across subjects. More connections are constantly found
with the higher resolution imaging regardless of reconstruction model
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Table 2 This table shows the means and standard deviations of the Dice coefficients calculated
by comparing the cortical ROIs from time point one and two

Cortical region of interest Left hemisphere Right hemisphere

Mean
Standard
deviation Mean

Standard
deviation

Banks of the superior temporal sulcus 0.83 0.06 0.76 0.09
Caudal anterior cingulate 0.83 0.04 0.85 0.04
Caudal middle frontal 0.89 0.03 0.88 0.03
Cuneus 0.76 0.10 0.79 0.07
Entorhnial 0.74 0.07 0.68 0.09
Fusiform 0.80 0.04 0.79 0.05
Inferior parietal 0.90 0.04 0.91 0.03
Inferior temporal 0.84 0.05 0.84 0.04
Isthmus cingulate 0.84 0.07 0.84 0.04
Lateral occipital 0.91 0.03 0.91 0.03
Lateral orbitofrontal 0.84 0.03 0.82 0.04
Lingual 0.88 0.04 0.89 0.04
Medial orbitofrontal 0.75 0.08 0.78 0.08
Middle temporal 0.87 0.03 0.88 0.03
Parahippocampal 0.89 0.03 0.88 0.03
Paracentral 0.82 0.07 0.83 0.05
Pars opercularis 0.87 0.02 0.82 0.05
Pars orbitalis 0.87 0.03 0.87 0.04
Pars triangularis 0.91 0.02 0.91 0.02
Pericalcarine 0.85 0.08 0.87 0.05
Postcentral 0.86 0.06 0.83 0.07
Posterior cingulate 0.90 0.03 0.90 0.02
Precentral 0.93 0.02 0.93 0.03
Precuneus 0.91 0.04 0.91 0.03
Rostral anterior cingulate 0.86 0.03 0.82 0.04
Rostral middle frontal 0.93 0.01 0.92 0.02
Superior/frontal 0.94 0.01 0.94 0.01
Superior parietal 0.93 0.03 0.93 0.03
Superior temporal 0.89 0.03 0.87 0.03
Supramarginal 0.93 0.02 0.93 0.03
Frintal pole 0.79 0.07 0.80 0.08
Temporal pole 0.77 0.10 0.71 0.12
Transverse temporal 0.86 0.05 0.86 0.03
Insula 0.89 0.03 0.88 0.04
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3 Results

We calculated the total number of edges that had an ICC coefficient above 0.5.
Out of a total of 2312 connections the higher resolution DTI model had 22.8 %
(528) reliable connections, while CSA had 20.7 % (479), CSD had 23 % (534),
and BS had 19.2 % (444). For the lower resolution protocol, DTI had 13.1 % (304)
reliable connections, CSA had 13.5 % (313), CSD had 14.7 % (340) and BS had
13.7 % (318). For both scanning protocols CSD had the highest number of reliable
connections. As can be seen in Fig. 1, the thresholded ICC connectivity matrices
of the lower resolution protocol appear to be sparser than the higher resolution
ones. The mean percentage of reliable connections for the lower resolution protocol
across the four reconstruction methods is 13.7 % (637.5), whereas for the higher
resolution protocol it is 42.9 % (992.5). We also ran a two-sample t-test on the
subjects’ weighted thresholded matrices (time point one) to compare the lower and
higher scanning protocols. We did not find any statistical differences after multiple
comparisons correction between both scanning protocols and all reconstruction
methods. The probability matrices in Fig. 2 show that the most reliable connections
in our sample of subjects are largely within a hemisphere, and less between
hemispheres.

We also studied the overlap of reliable connections across resolutions and
across reconstruction models. The results can be seen in Table 3. The highest
overlap within a single reconstruction method and across resolutions was shown
for the CSD method, with 8.5 % overlap, followed by DTI with 8.1 % overlap.
Interestingly, the overlap between CSA and CSD was above 8 %, within the
same resolution and also between resolutions (lower vs. higher). A final test
looked for the reliable connections present in all the ICC thresholded matrices,
for all reconstruction methods and across resolutions. There were 14 reliable
connections out of 2312 (0.6 %) present in all the matrices. The connections that
were not present (i.e., empty edges) in all the matrices added up to 1156 of 2312
(50 %).

Most of the connections that were common to all matrices were those between
regions of the frontal cortex (lateral and medial orbitofrontal, pars opercularis
and pars orbitalis) and regions of the occipital (lingual, calcarine, lateral occipital
regions and cingulate) and temporal regions (temporal poles, superior temporal
gyrus and parahippocampal gyrus) (Table 4).
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Table 4 Each row shows a pair of cortical ROIs that are connected by streamlines. These
connections were reliable across diffusion reconstruction methods and acquisition resolutions

Left bank of superior temporal gyrus $ Right medial orbitofrontal

Right fusiform $ Right lateral occipital

Right isthmus cingulated $ Left pars opercularis

Right lateral orbitofrontal $ Right pars opercularis

Left middle temporal $ Left lingual

Right lingual $ Right isthmus cingulated

Left lingual $ Left lateral orbitofrontal

Right medial orbitofrontal $ Right supramarginal

Right parahippocampal $ Right inferior temporal

Right pars orbitails $ Left temporal pole

Right pars orbitails $ Right supramarginal

Left pericalcarine $ Right rostral anterior cingulate

Right posterior cingulated $ Left superior frontal

4 Discussion

In this study we evaluated the test-retest reliability of four different dMRI recon-
struction methods by tracing streamlines with one deterministic tractography
algorithm and a standard processing pipeline to generate whole brain cortical
connectivity matrices. We found that higher angular and spatial resolutions together
yield more reliable connections in structural connectivity matrices computed with
a deterministic streamline algorithm. Additionally, the CSD model yielded the
greatest number of reliable connections for both scanning protocols. This was
followed by the DTI model for the higher resolution and by the CSA model for
the lower resolution scans. The higher reliability seen in CSD derived matrices
may be related to the fact that previous publications have found more accurate
tractographies when they are based on sharper ODF glyphs [10]. When looking
for the most reliable connections across all matrices, we found a high overlap in
fronto-occipital and fronto-temporal connections, as well as connections between
ROIs of the frontal lobes.

Many studies have been published comparing reconstruction models for dMRI
[9]. Most are based on simulated data and focus on the accuracy of the reconstruc-
tion in terms of the number of the recovered fiber compartments and the angular
accuracy. Other studies focused on comparing fiber-tracking methods, testing the
algorithms on phantoms to determine the proportion of correct connections traced
[10]. In this study, we explored the problem from a different perspective, comparing
the resulting structural connectome across methods, with two different imaging
protocols in the same subjects. This study design can help reveal reliable and
replicable network components, for situations where data from various sites are
analyzed together to gain statistical power.
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Two similar studies analyzing human dMRI scans have been previously pub-
lished [13, 14]. Baumgartner et al. designed an optimization framework to estimate
parameters from any reconstruction model and perform tractography in a standard-
ized way. Within this framework, they compared seven models and reconstructed
two major fiber bundles in ten subjects. By using two measures, called traceability
and coverage they assessed the quality of the tractographies. The mixture models
with more than one tensor and free water components scored higher for both
measures, but DTI scored very high for traceability only. The authors did not extend
the analysis to the whole range of connections across the entire brain. Yo et al. com-
pared four different reconstruction models (DTI, CSD, B&S and Persistent Angular
Structure) on one subject and reconstructed connectivity matrices from whole
brain probabilistic and deterministic tractographies and 14 language-related cortical
regions. They found that the connectivity matrices were significantly correlated
across all four reconstruction methods and tracking algorithms. The deterministic
tractography yielded less sparse connectomes with stronger connections between
the regions of interest.

Even though the results from these previous studies differ, they are similar
to our findings here, in that relatively large cortical ROIs were used for the
comparisons. One general conclusion is that models that reconstruct multiple fibers,
such as multi-tensor models and CSD are better suited to trace reliable connections
between cortical regions. While DTI appears to be very reliable, as Baumgartner and
colleagues found, it is an optimal strategy to trace the connections between a pair
of regions but has less coverage. This means that the fiber bundles do not diverge to
reach neighboring regions; this can be problematic when reconstructing long-range
fibers. This may explain our results in Table 3, where only 7–13 % (lower—higher
resolution) of connections overlap between DTI and CSA/CSD, but slightly more
connections overlap between CSA and CSD (8 % for the lower resolution, 14 % for
the higher resolution).

Future work will focus on replicating these findings across more datasets for
test-retest reliability studies, and finding more refined ways to determine the brain
connections that prevail regardless of the acquisition parameters or the type of
reconstructions model used.
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