Goal-Driven Inference for Web
Knowledge Based System

Roman Siminski and Agnieszka Nowak-Brzezinska

Abstract Traditional knowledge based systems were developed as the desktop
applications. Meanwhile, web applications have grown rapidly and have had sig-
nificant impact on the application of such systems. In the presented work, we
introduce the modified goal-driven inference algorithm which allow us to divide
some parts of them into the client and server layers of the web application.
Proposed approach assumes that the rule knowledge base is decomposed into the
decision oriented group of rules. We argue that the knowledge base in the form of
such rules group contains enough information, which allows to divide inference
into the client and server side, ensuring the convenience and the effectiveness.

Keywords Knowledge base - Goal-driven inference - Decision oriented partitions

1 Introduction

The migration of information systems from the classic desktop software to the web
application can be observed as a permanent trend. This trend also applies to the
knowledge based systems. The “webalisation” of information systems causes many
practical and implementation problems and challenges, but we can also identify in
this field a number of interesting research problems. In this paper we present a
modified goal-driven inference algorithm for web knowledge based systems.

A goal-driven algorithm is a one of the two popular strategies of inference in the
knowledge based systems it started from a goal and ended with a fact that leads to
the goal. Since it is easy to implement, a goal-driven inference is a key to building
many practically used domain expert systems. In the modern web applications
goal-driven inference could be divided between the client and server part of the web

R. Siminski (P<) - A. Nowak-Brzezifiska
Institute of Computer Science, University of Silesia, Sosnowiec, Poland
e-mail: roman.siminski@us.edu.pl

A. Nowak-Brzezinska
e-mail: agnieszka.nowak @us.edu.pl

© Springer International Publishing Switzerland 2016 99
Z. Wilimowska et al. (eds.), Information Systems Architecture and Technology: Proceedings of 36th

International Conference on Information Systems Architecture and Technology — ISAT 2015 — Part 1V,

Advances in Intelligent Systems and Computing 432, DOI 10.1007/978-3-319-28567-2_9

100 R. Siminski and A. Nowak-Brzezinska

application. In contrast to that, the data-driven inference can be implemented
entirely on the server side, without any conversation with user, only obtaining
starting facts is required.

In the presented work we introduce the modified goal-driven inference algo-
rithm, which allow us to divide some parts of them into the two layers of the web
application. Proposed approach assumes that the rule knowledge base is decom-
posed into the decision oriented group of rules. We argue that the knowledge base
in the form of such rules group contains enough information which allows to divide
inference into the client and server side, ensuring the convenience and the
effectiveness.

The first part of the work briefly presents a problem description and related
work. The following part of the work describes the rules partitioning approach, then
the utilization of this approach in optimization of inference algorithm is described
and the modified version of algorithm is presented. Next, a simple case study is
presented and the preliminary evaluation of modified algorithm concludes the
presented work.

2 Problem Description and Related Works

A goal-driven inference always has a single goal or goals list to confirmation, this
approach starts with the desired rule’s conclusion matching to the current goal and
works backward to find supporting facts [1]. If this rule requires additional infor-
mation before it can succeed, the inference can execute additional rules, recursively
if necessary. An inference engine will search the rules until it finds one which has a
conclusion that matches a desired goal. If all conditions in the rule’s premise are
facts, the current goal is confirmed. If some of the rule’s premise conditions are not
known to be a fact, this conditions are added to the list of goals as new goals,
pushing the other goals down in the list. At any time the algorithm only works on
the one top goal [2]. If no rule is available to confirm whether the condition is a fact,
the algorithm asks the environment about the truth of the considered condition. The
environment may vary depending on the system application. Typically the user is
the source of fact, but in the context of embedded systems, facts can be provided by
the technical equipment [3].

The disadvantages of goal-driven inference follow from the inefficiency of
searching in the large knowledge bases with rules that are not organized in any kind
of structure and from the fact that recursive algorithms are difficult to follow [1, 2].
In large rule bases recursive calls are very often misguided, but they take time and
consume memory resources. When we consider inference process distributed over
the multilayer web application, missed recursive calls and large search space
become a significant problem. When we consider classical inference algorithm, all
above described operations are realized within the single function/class/module,
implemented in the particular programming language. In the context of web-based
implementation, specified operations have to be implemented in different way.

Goal-Driven Inference for Web Knowledge Based System 101

Traditional rule based systems were developed as the desktop applications and a
number of development tools are available for developing traditional systems.
Meanwhile, web applications have grown rapidly and have had significant impact on
the application of traditional expert system. Several tools and languages are available
for developing web-based expert systems—these tools use traditional expert system
techniques and offer in addition the capacity for Web-based development [4, 5].

System Acquire [6], which allows the development of web-based user interfaces,
is supported through a client—server development kit that supports Java and
ActiveX controls, unfortunately, detailed information is enigmatic. System ExSys
[7] provides the Corvid Servlet Runtime implements the Exsys Corvid Inference
Engine as a Java Servlet. In this mode, the user interface is defined by HTML
templates. Corvid systems can be also integrated with Adobe Flash. The Exsys
Corvid Servlet Runtime uses Java Servlet technology, allowing the proven Corvid
Inference Engine to be run on a server with only HTML pages sent to the client
machine running the system.

The JESS is a rule engine and scripting language [8], which provides console for
programming and enables basic input and output, it cannot be used directly in the
web-based application but it is possible to use JESS within the JSP platform [9, 10].
The XpertRule KBS interfaces over the Web with a thin client using Microsoft’s
Active Server Page technology. Web Deployment Engine is a JavaScript rules
runtime engine which runs within a browser [11]. Applications developed using the
Knowledge Builder Rules Authoring Studio can be generated as Java Script/HTML
files for deployment as Web applications. The JavaScript engine runs the rules,
calculations and the JS/HTML user interface. The eXpertise2Go’s Rule-Based
Expert System provides free expert system building and delivering tools that
implement expert systems as Java applets, Java applications and Android apps [12].

The goal-driven inference is available in Prolog, some of implementations allow
to run interpreter within the web application. The SWI-Prolog [13] interpreter can
be run in script mode, the script runs the SWI-Prolog interpreter with suppressed
interactive output and the script file will produce a result of the query only. It is
possible to run inference by CGI program on the server which builds the appro-
priate Prolog query and execute interpreter. This approach works on the server side
and is not tailored to the specific of web application. It requires the usage of
relevant program which builds a Prolog query, and executes the Prolog script and
generates HTML [5].

Existing tools described above allow us to develop web-based expert systems,
but these tools use traditional expert system techniques and offer in addition the
capacity for Web-based development. Inference techniques are usually server ori-
ented, front-end layer are used typically for visualization and simple interaction
with user. It is hard to find new, modern approaches to web-based expert systems
and new implementation of inference algorithms. We argue that in the modern web
applications goal-driven inference must be divided between the client and server
part of the web application, the data-driven inference can be implemented entirely
on the server side. In the literature we can find some attempts to build web-based
domain expert systems, e.g. [14, 15]. In general, our proposal is similar, but we are

102 R. Siminski and A. Nowak-Brzezinska

focused on the implementation of a domain independent system. We propose the
following architecture of the knowledge based system:

e Server side—management of rule base, which is decomposed and stored in the
relational data base. All selections of applicable rule or rules are performed by
the server-side services available via specialized APIL. The resulting information
is transferred into the client side in the form of JSON objects. Server side is
passive and is focused on rule-oriented services for inference.

e Client side—initialize inference when the goal is known, realizes the main event
loop, including:

— confirmation of the rule’s condition against a dynamically created fact set,
— acquisition of the fact from application environment (usually from the user),
— initialization of recursive inference calls for sub-goals.

Client side utilizes JavaScript functions embedded in the HTML document,
generated by the proper server side scripts from the application layer. The
JavaScript functions use rules obtained from the server services via asynchronous
AJAX requests. This distributed environment was used in the system described in
the [16, 17].

3 Methods

Modified goal-driven inference algorithm is based on the proposed method of rule
knowledge base partitioning, which allow us to obtain modular knowledge base.
A significant part of this work contains a detailed description of proposed approach.
introduced approach differs from other methods of the modularization. The pre-
sented solution is an extension of the research presented in [18, 19].

3.1 Knowledge Base and Rules Partition

The knowledge base is a pair KB = (RS, FS) where RS is a non-empty finite set of
rules and F'S is a finite set of facts. RS = {ry, ..., ry}, each rule r € RS will have a
form of Horn’s clause: 7: p; Apa A --- A p,, — ¢, where m—the number of literals
in the conditional part of rule r, and m = 0, p—i-th literal in the conditional part of
rule r, i = 1...m, c—literal of the decisional part of rule r. For each rule r € RS we
define following functions: concl(r)—the value of this function is the conclusive
literal of rule r; cond(r)—the value of this function is a set of conditional literals of
rule ». We will also consider the facts as clauses without any conditional literals.
The set of all such clauses f will be called set of facts and will be denoted by FS:
FS = {f: Vieps cond(f) = {} A f= concl(f)}.

For each rule set RS with n rules, there is a finite power set 2% with cardinality
2". Any arbitrarily created subset of rules R € 2*5 will be called a group of rules. In

Goal-Driven Inference for Web Knowledge Based System 103

this work we will discuss specific subset PR C 2% called partition of rules. Any
partition PR is created by partitioning strategy denoted by PS, which defines
specific content of groups of rules R € 255, creating a specific partition of rules PR.
We may consider many partitioning strategies for a single rule base, but in this
work we will only present a few selected strategies. Each partitioning strategy PS
for rules set RS generates the partition of rules PR C 2RS. pR = {Ri, Ry, ..., R},
where: k—the number of groups of rules creating the partition PR, R—i-th group of
rules, R € S andi=1,..., k

Rules partitions terminologically correspond to the mathematical definition of
the partition as a division of a given set into the non-overlapping and non-empty
subset. The groups of rules which create partition are pairwise disjoint and utilize
all rules from RS. The partition strategies for rule based knowledge bases are
divided into two categories: simple and complex strategies. For simple strategies,
the membership criterion decides about the membership of rule r in a particular
group R C PR according to the membership function mc, time complexity not
higher than O(n - k), where n = |RS| and k = |PR|. For complex strategies, the
particular algorithm decides about the membership of the rule r in some group
R C PR, with time complexity typically higher than any simple partition strategy.
An example of a complex strategy is described in the [20].

3.2 Simple Partitioning Strategy

Creation of simple partition for rules set requires the definition of the membership
criteria which assigns particular rule » € R to the given group of rules R C PR.
Proposed approach assumes that the membership criteria will be defined by the mc
function, which is defined individually for every simple partition strategy. The
function: RS X PR — [0...1] has the value 1 if the rule » € RS with no doubt
belongs to the group R C PR, 0 in the opposite case. The value of the function from
the range 0 < mc < 1 means the partial membership of the rule r to the group R. Let
us assume that threshold value 0 < T < 1 exists. The value of the mc (r, R) function
can be higher, higher or equal, equal, less, less or equal to the T value. Generally we
can define simple partition of rule based knowledge base PR as follows: PR =
{R: R € 285 AVreR me(r,R) > T}. Special case of the simple strategies is the
strategy called selection. The selection divides the set of rules RS into the two
subsets R and RS—R. Thus we achieve the partition PR = {R, RS—R}. In practical
sense, selection is the operation with linear time complexity O(n) where n denotes
the number of all rules in the knowledge base.

The algorithm of creating the partition which bases on simple strategy is pre-
sented in the pseudo-code below. The input parameters are: knowledge base RS, the
function mc that defines the membership criteria and the value of the threshold
T. Output data is the partition PR. Time complexity of such algorithm is O(n - k),
where n = |R|, k = |PR|. For each rule » € RS we have to check whether the goal

104 R. Siminski and A. Nowak-Brzezinska

partition PR contains the group R with rule r (the value of the mc function has to be
at least T: mc(r, R) 2 T). If such a rule doesn’t exist the given rule » becomes the
seed of a new group which is added to the created partition PR. The simple
partitioning and selection algorithm are simple, were described in [20], and for this
reason will be omitted.

3.3 Decision Oriented Partitioning Strategies

Let us consider the following partitioning strategy PS;, which creates groups of the
rules from R by grouping rules with the same attribute in conclusions. The mem-
bership criteria for rule » and group R is given by the function mc defined as
follows: mc(r, R) = 1 if Vr; € R concl(r;) = concl(r), 0 otherwise. When we use the
simple partition algorithm (Alg01:createPartitions) with the mc function defined in
this way, we obtain decision oriented partitions. Each group of the rules generated
by this algorithm will have the following form: R = {r € R: Vr; € R concl(r;) = concl
(r)}. The number of groups in the partition k: 1 < k < n depends on the number of
different decisions included in conclusions of such rules. When we distinguish
different decision, by the different conclusions appearing in the rules—we get one
group for each conclusion. In every group we have rules with the same conclusion:
a fixed (a, v) pair. Such partition PR; will be called basic decision based partition.
Basic decision partition contains the set of rules, each rule in the every set contains
the same attribute-value pair in the conclusion. All rules grouped within a rule set
take part in an inference process confirming the goal described by the particular
attribute-value—for each R € PR, the conclusion set |Concl(R)| = 1. If we consider
the specified (a, v) pair, we think about particular kind of concept or about par-
ticular property state. From pragmatic point of view we can say that for each group
R of basic decision based partition, single pair (a, v) € Concl(R) represent concrete.
Basic decision partition represent the basic relations occurring in rule base—we can
say that this partition defines the scope of the knowledge about concrete from
real-word concepts within particular rule base.

Let us consider the second partitioning strategy PS,, the membership criterion
for rule and group R is given by the function mc defined as follows: mc(r, R) = 1 if
Vr; € R attrib(concl(r;)) = attrib(concl(r)), 0 otherwise. When we utilize the simple
partition algorithm with the mc function defined in such way, we obtain different
ordinal decision oriented partitions. Each group of the rules generated by this
algorithm may have the following form: R = {r € R: Vr; € R attrib(concl(r;)) = at-
trib (concl(r))}. The number of groups in the partition k: 1 < k < n depends again on
the number of different decisions included in conclusions of these rules. Currently
we distinguish decisions by the different attribute appearing in the conclusion part
of the rules—we obtain one group for each decision attribute. This kind of parti-
tioning strategy is called ordinal decision partitioning strategy. Partitions produced
by the ordinal decision partition can be constructed as the composition of the basic
decision partitions. Ordinal decision partition represents the relations occurring in a

Goal-Driven Inference for Web Knowledge Based System 105

rule base—we can say that this partitioning strategy can be considered as a model of
decision about concepts from real-word.

3.4 Modified Goal-Driven Inference

Modification of the classical goal-driven inference algorithm is based on extracting
information of internal rules dependencies. This information allows to perform only
promising recursive calls of backward inference algorithm, optimization relies on
reducing the number of rules searched for each run of inference and reducing the
number of unnecessary recursive calls.

Modified algorithm as input data takes PR—the decision partition, F.S—the set
of facts and g—the goal of the inference. As the output data it takes F'S—the set of
facts, including possible new facts obtained through inference, the function’s result
as boolean value, true if the goal g is in the set of facts: g € FS, false otherwise.

function goalDrivenInference(PR, g, var FS) : boolean
begin

if geFS or —geFS then return geF

else

truePremise <« false;
select RePR where geConcl (R)
while —truePremise A R#(do
select re{R} according to the selection strategy
forall w € cond(r) do
truePremise ¢« (weFS)
if —truePremise A welIn_C(R) then
truePremise < goalDrivenInference (PR, w, FS)
elseif —truePremise then
truePremise <« environmentConfirmsFact (w)
elseif !truePremise then
break
endif
endfor
if —truePremise then
R = R-{r}
endif
endwhile
endif
if truePremise then FS = FU{g}
return truePremise
end function

106 R. Siminski and A. Nowak-Brzezinska

Only promising groups of rules are selected for further processing (select R € PR
where g € Concl(R)), where Concl(R) is the set of conclusions for the group of rule
R, containing literals appearing in the conclusion parts of the rules r from R. Only
the selected subset of the not activated rules of R is processed in each iteration.
Finally, only the promising recursive calls are made (w € Inc(R)). Inc(R) denotes
connected inputs of the rules group, defined in the following way: Inc(R) = {(a,
v) € Cond(R): 3,cf (a, v) = concl(r)}, where Cond(R) is the set of conditions for the
group of rule R, containing literals appearing in the conditional parts of the rules
r from R. In each iteration the set R contains only proper rules matching to the
currently considered goal. It completely eliminates the necessity of searching for
rules with conclusion matching to the inference goal, it is not necessary to search
within the whole set of rules R—this information is simply stored in the
decision-partitions and does not have to be generated.

4 A Simple Case Study and Discussion

To illustrate the conception of inference modification, we consider an example rule
base:

ri:(a,) A (b, 1) — (c, 1) ry: (b,3)AN(d,3) — (e, 1) r:(d, 4) — (f, 1)
ra:(a, 1) A (b, 2) = (¢, 2) rsi (b, 3) A(d, 2) — (e, 1) rgs (d, A D — (D
r3: (a, 1) A (b, 3) — (¢, 1) re: (b, 3) — (e, 2) ro: (¢, 1) > (d, 4)

The different variants of the partitions could be build and stored by the server
side services after any knowledge base modification or could be created in the
inference initialization phase. In the Table 1 we present two decision oriented
partitions. In Case II the asterisk ‘*’ means any attribute value, only attributes are
considered. We use basic decision partition for small or “flat” rules bases (without
sub-goals). The ordinal decision partitions are useful when we consider large set
with a high probability of occurrence of the sub-goals confirmation.

The modified algorithm proposed in this work extracts information of internal
rules dependencies from partitioned knowledge base. Important role in the modi-
fication plays the information obtained from the set of conclusions for the group of

Table 1 Decision oriented partitions

Case I: basic decision partitions Case II: ordinal decision partitions

R1 = {rl, 13} Concl(R1) = {(c, 1)} R1 = {rl, 12, r3} Concl(R1) = {(c, *)}
R2 = {12} Concl(R2) = {(c, 2)} R2 = {12, 14, 16} Concl(R2) = {(e, *)}
R3 = {r4, 15} Concl(R3) = {(e, 1)} R3 = {17, 18} Concl(R3) = {(f, *)}
R4 = {r6} Concl(R4) = {(e, 2)} R4 = {19} Concl(R4) = {(d, *)}
RS = {17, 18} Concl(R5) = {(f, 1)}

R6 = {9} Concl(R6) = {(d, 4)}

Goal-Driven Inference for Web Knowledge Based System 107

rule: Concl(R). It is possible to determine the rules set matching to the given fact
only by searching within conclusions sets. When we consider the goal (f, 1), we can
determine matching rules set RS (Case I) or R3 (Case II) through the single search
within the conclusions sets. This searching operation can be done by the server
service—resulting rules set can be transferred into the client side as the XML or
JSON data for further processing. Typically the matching group of rules has a
significantly lower cardinality than the entire set of rules.

The main inference loop could be done be the JavaScript code in the client-side.
Client-side code selects the rule from the rules set transferred from the server
service, confirms condition from selected rule’s premise, manages the dynamically
gathered facts. When the algorithm have to confirm sub-goal, it can determine the
usefulness of each recursive call by examining whether the sub-goal is in the set
Inc(R). When we again consider the goal (f, 1), we have to analyze rules r; and rg.
The literal (d, 4) becomes a new sub-goal and recursive call is necessary. This call
is promising, because there is another decision partition Rq (Case I) and R, (Case II)
supporting sub-goal (d, 4). When we consider sub-goal (g, 1), it is possible to
immediately reject potential recursive call—there are no connected rules subset
supporting sub-goal (g, 1). This can be done through a single asynchronous call of
proper server service via AJAX. The classic version of the algorithm does not
known whether the call is promising.

5 The Preliminary Experimental Results

The complexity of decision partition is O(n - k), where n = |RS|, k = |PR|, where the
number of groups in the partition k: 1 < k < n typically is significantly smaller than
the number of rules n. We have to store additional information for created rules
partitions, however additional memory or disk space occupation for data structures
seems acceptable. For n rules and k rules group we need approximately
is - n + ps - m bytes of additional memory for data structures (is—size of integer, ps
—size of a pointer or reference).

Therefore, for n = 1000 rules, k = 100 rules group we need approximately
2.5 KB (precise amount of memory or disk space depends on used programming
language, the conception of organization the data structures and designated system
platform).

The proposed algorithm has been tested on artificial knowledge bases prepared
for tests and on all real-word knowledge bases available for authors. We present
only summary of the results for real-word bases—optimistic and pessimistic results
with relation to the results of classic goal-driven algorithm (100 %). A limited scope
of this work does not allow us to present a detailed information about test
methodology and results of tests for recursive calls (Table 2).

The specific internal structure of knowledge bases, goals specification, and facts
set configurations causes the significant differences between the optimistic and
pessimistic case. Experiments for the artificial rules bases randomly generated also

108 R. Siminski and A. Nowak-Brzezinska

Table 2 The results of the experiments

invest.kb media. | credit.kb finanalysis.kb
kb

The number of 34 12 46 43
attributes
The number of rules | 66 135 171 800
The number of 10 (7,5, 13, |2 (21, |8(6,4,3, [24(4,10,91,7,11,3,4,2,8,5,
groups (number of 9,6,4, 11, 114) 4,109, 30, 72,8, 4, 3,4, 126, 6, 6, 3, 47,
rules per group) 7,3, 1) 12, 3) 303, 5, 65, 3)
The number of 31 % 16 % 2 % 4 %
searched rules,
optimistic case
The number of 89 % 85 % |74 % 82 %
searched rules,
pessimistic case

confirm that when the number of groups increase, the number of searched rules
decreases. The optimistic case let to reduce the number of searched rules to the 2 %
(in pessimistic case we still reduce the number of rules with relation to the classical
algorithm). We understand that we need more experiments on the real knowledge
bases, presented results are preliminary. The implementation works are still in
progress [16, 17], but the next stage of research will focus on the experiments on
two real bases counting over 1200 and 4000 rules.

6 Summary

We introduced a modified goal-driven algorithm and the conception of distribution
of such algorithm over the web-based software architecture. Modification of the
classical inference algorithm is based on information extracted from the rules of
groups generated by the decision partition. The proposed modification consists of
the reduction of the search space by choosing only the rules from particular rule
group, according to a current structure of decision oriented rules partition and the
estimation of the usefulness for each recursive call for sub-goals. Therefore, only
promising recursive call of the classical backward algorithm will be made. Every
rule base already contains the information necessary to achieve modification steeps
mentioned above. We only have to discover and utilize these information. The
goal-driven inference proposed in this work is currently used in the two experi-
mental versions of web-based expert system described in [16, 17].

Acknowledgements This work is a part of the project “Exploration of rule knowledge bases”
founded by the Polish National Science Centre (NCN: 2011/03/D/ST6/03027).

Goal-Driven Inference for Web Knowledge Based System 109

References

1.

2.

[T N

O 00 3 AN

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

Grzymala-Busse, J.W.: Managing uncertainty in expert systems, vol. 143. Springer Science &
Business Media, Berlin (1991)

Walton, D.N.: Practical reasoning: goal-driven, knowledge-based, action-guiding
argumentation, vol. 2. Rowman & Littlefield, Lanham (1990)

. Smith, D.E.: Controlling Inference. Stanford University, Stanford (1985)
. Grove, R.: Internet-based expert systems. Expert systems 17.3 (2000)
. Dunstan, N.: Generating domain-specific web-based expert systems. Expert systems with

applications 35 (2008)

. Acquired Intelligence Home Page. http://aiinc.ca

. Exsys Home Page. http://www.exsys.com

. JESS Information. http://herzberg.ca.sandia.gov

. Canadas, J., Palma, J., Tanez, S.: A Tool for MDD of rule-based web applications based on

OWL and SWRL. Knowl Eng Softw Eng 1 (2010)

Ho, K.K.L., Lu, M.: Web-based expert system for class schedule planning using JESS. In:
Information Reuse and Integration, IRI-2005 IEEE International Conference (2005)
XpertRule Home Page. http://www.xpertrule.com

eXpertise2Go’s Rule-Based Expert System. http://expertise2go.com

The SWI-Prolog Home Page. http://www.swi-prolog.org

Li, D., Fu, Z., Duan, Y.: Fish-expert: a web-based expert system for fish disease diagnosis.
Expert Syst Appl 23(3) (2002)

Zetian, F., Feng, X., Yun, Z., XiaoShuan, Z.: Pig-vet: a web-based expert system for pig
disease diagnosis. Expert Syst Appl 29(1) (2005)

Siminski, R., Manaj, M.: Implementation of expert subsystem in the web application—
selected practical issues. Studia Informatica 36(1) (2015)

Nowak-Brzezinska, A.: KbExplorator a inne narzgdzia eksploracji regutowych baz wiedzy.
Studia Informatica 36(1) (2015)

Nowak-Brzezifiska, A., Siminski, R.: Knowledge mining approach for optimization of
inference processes in rule knowledge bases, LNCS 7567, pp. 534-537. Springer, Berlin
(2012)

Siminski, R.: Extraction of Rules Dependencies for Optimization of Backward Inference
Algorithm, Beyond Databases, Architectures, and Structures, Communications in Computer
and Information Science, Springer International Publishing, vol. 424, pp. 191-200. Springer,
Berlin (2014)

Nowak-Brzezinska, A., Siminski, R.: New inference algorithms based on rules partition. In:
CS&P 2014, Informatik-Berichte, vol. 245. Humboldt-University, Chemnitz, Germany (2014)

http://aiinc.ca
http://www.exsys.com
http://herzberg.ca.sandia.gov
http://www.xpertrule.com
http://expertise2go.com
http://www.swi-prolog.org

	9 Goal-Driven Inference for Web Knowledge Based System
	Abstract
	1 Introduction
	2 Problem Description and Related Works
	3 Methods
	3.1 Knowledge Base and Rules Partition
	3.2 Simple Partitioning Strategy
	3.3 Decision Oriented Partitioning Strategies
	3.4 Modified Goal-Driven Inference

	4 A Simple Case Study and Discussion
	5 The Preliminary Experimental Results
	6 Summary
	Acknowledgements
	References

