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Abstract Although there exist several measures for intuitionistic fuzzy sets (IFSs),
many unreasonable cases made by the such measures can be observed in literature.
The main aim of this paper is to present a new reliable measure of amount of
knowledge for IFSs. First we define a new knowledge measure for IFSs and prove
some properties of the proposed measure. We present a new entropy measure for
IFSs as a dual measure to the proposed knowledge measure. Then we use some
examples to illustrate that the proposed measures, though simple in concept and
calculus, outperform the existing measures. Finally, we use the proposed knowl-
edge measure for IFSs to deal with the data classification problem.
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1 Introduction

As a generalization of fuzzy set, intuitionistic fuzzy set (IFS) was introduced by
Atanassov [1] to deal with uncertainty of imperfect information. Since the IFS rep-
resents information by both membership and non-membership degrees and hesitancy
degree being a lack of information, it is found to be more powerful to deal with
vagueness and uncertainty than the fuzzy set (FS).Manymeasures [2, 4–6, 10, 13–15,
17, 23] have been proposed by scholars to evaluate IFSs. Basically, it is desired that
the measure made on IFSs should be able to evaluate degrees of fuzziness and intu-
itionism from the imperfect information. Among the most interesting measures in
IFSs theory, knowledge measure is an essential tool for evaluating amount of
knowledge from information contained in IFSs. Based on knowledge measure of
IFSs, the entropy measure and similarity measure between IFSs can be constructed.
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The entropy mentioned first in 1965 by Zadeh [26], described the fuzziness of a
FS. In order to measure the degree of fuzziness of FSs, De Luca and Termini [7]
introduced a non-probabilistic entropy, that was also called a measure of a quantity
of information. Kaufmann [11] proposed a method for measuring the fuzziness
degree of a fuzzy set by a metric distance between its membership function and
membership function of its nearest crisp set. Yager [24] suggested the entropy
measure expressed by the distance between a fuzzy set and its complement. In
1996, Bustince and Burillo [3] firstly introduced a notion that entropy on IFSs can
be used to evaluate intuitionism of an IFS. Szmidt and Kacprzyk [18] reformulated
De Luca and Termini’s axioms and proposed an entropy measure for IFSs, based on
geometric interpretation as a ratio of the distance from the IFS to the nearer crisp set
and the distance to the another (farer) one. Hung and Yang [9] gave their axiomatic
definitions of entropy of IFSs by using the concept of probability. Vlachos and
Sergiadis [21] pointed out that entropy as a measure of fuzziness can measure both
fuzziness and intuitionism for IFSs. On the other hand, Szmidt at el. [19] empha-
sized that the entropy alone may be not a satisfactory dual measure of knowledge
useful from the viewpoint of decision making and introduced a new measure of
knowledge for IFSs, which involves both entropy and hesitation margin. Dengfeng
and Chuntian [8] gave the axiomatic definition of similarity measures between IFSs
and proposed similarity measures based on high and low membership functions. Ye
[25] proposed cosine and weighted cosine similarity measures for IFSs and applied
to a small medical diagnosis problem. However, Li et al. [12] pointed out that there
always are counterintuitive examples in pattern recognition among these existing
similarity measure. Many unreasonable results of other measures for IFSs are also
revealed in [19, 25]. The main reason of unreasonable cases of the existing entropy
measures and similarity measures is that there is no reliable measurement of amount
of knowledge carried by IFSs, which can be used for measuring and comparing
them. In this paper, we present a new knowledge measure for IFSs that provides
reliable results. The performance evaluation of the proposed measure is twofold:
assessing how much the measure is reasonable, and indicating the accuracy of the
measure in comparison with others.

2 Basic Concept of Intuitionistic Fuzzy Sets

For any elements of the universe of discourse X, an intuitionistic fuzzy set A is
described by:

A ¼ x; lAðxÞ; mAðxÞð Þjx 2 Xf g; ð1Þ

where lAðxÞ denotes a degree of membership and mAðxÞ denotes a degree of
non-membership of x to A, lA : X ! ½0; 1� and mA : X ! ½0; 1� such that
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0� lA xð Þþ mA xð Þ� 1; 8x 2 X. To measure hesitancy of membership of an ele-
ment to an IFS, Atanassov introduced a third function given by:

pA xð Þ ¼ 1� lA xð Þ � mA xð Þ; ð2Þ

which is called the intuitionistic fuzzy index or the hesitation margin. It is obvious,
that 0� pA xð Þ� 1; 8x 2 X. If pA xð Þ ¼ 0; 8x 2 X, then lA xð Þþ mA xð Þ ¼ 1 and the
IFS A is reduced to an ordinary fuzzy set. The concept of a complement of an
IFS A, denoted by Ac is defined as [1]:

Ac ¼ x; mAðxÞ; lAðxÞð Þjx 2 Xf g: ð3Þ

Many measures for IFSs, such as well-known measures given by De Luca and
Termini [7], Szmidt and Kacprzyk [18], Wang [22] and Zhang [27] have been
presented. But in their works, Szmidt and Kacprzyk [19] have found some prob-
lems with the existing distance measures, entropy measures and similarity mea-
sures. To deal with these situations, in [20] Szmidt and Kacprzyk proposed a
measure of amount of knowledge for IFSs, considering both entropy measure and
hesitation margin as follows:

K xð Þ ¼ 1� 0:5ðE xð Þþ p xð ÞÞ: ð4Þ

However, this measure also gives unreasonable results because evaluates equally
amounts of knowledge for two different IFSs. For example, in the case of two
singleton IFSs A ¼ x; 0:5; 0:5h i and B ¼ x; 0; 0:5h i, from Eq. (4) we get K Að Þ ¼
0:5 and K Bð Þ ¼ 0:5. It can well be argued, that amount of knowledge for A ¼
x; 0:5; 0:5h i should be bigger than for B ¼ x; 0; 0:5h i from the viewpoint of deci-
sion making. To overcome this drawback we propose a new measure of amount of
knowledge carried by IFSs.

3 A New Proposed Measure of Knowledge
for the Intuitionistic Fuzzy Sets

The knowledge measure of an FS evaluates a distance to the most fuzzy set, i.e. the
set with membership and non-membership grades equal to 0.5. Motivated by this
idea, we define a new measure of amount of knowledge for IFSs as follows:

Definition 1 Let A be an IFS in the finite universe of discourse X ¼ x1; x2; . . .; xnf g.
The new knowledge measure of A is defined as a normalized Euclidean distance
from A to the most fuzzy intuitionistic set, i.e. F ¼ x; 0; 0h i and expressed as:

KF Að Þ ¼ 1

n
ffiffiffi
2

p
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þ � 0ð Þ2 þ mA xið Þ � 0ð Þ2 þ pA xið Þ � 1ð Þ2

q
: ð5Þ
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Hence, the proposed knowledge measure evaluates quantity of information of an
IFS A as its normalized Euclidean distance from the reference level 0 of infor-
mation. For example, knowledge measure is equal to 1 for the crisp sets ðlA xið Þ ¼
1 or mA xið Þ ¼ 1Þ and 0 for the most intuitionistic fuzzy set F ¼ x; 0; 0h i:

Entropy measure for IFSs, as a dual measure of the amount of knowledge is
defined as:

EF Að Þ ¼ 1� KF Að Þ: ð6Þ

Theorem 1 Let A be an IFS in X ¼ x1; x2; . . .; xnf g. The proposed knowledge
measure KF of A is a metric and satisfies the following axiomatic properties.

(P1) KF Að Þ ¼ 1 iff A is a crisp set
(P2) KF Að Þ ¼ 0 iff pA xið Þ ¼ 1
(P3) 0�KF Að Þ� 1
(P4) KF Að Þ ¼ KF Acð Þ

Proof

(P1) Having in mind lA xið Þþ mA xið Þþ pA xið Þ ¼ 1 we have:

KF Að Þ ¼ 1 ,
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ 1� pA xið Þð Þ2

q

¼ n
ffiffiffi
2

p
,

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ lA xið Þþ mA xið Þð Þ2

q

¼ n
ffiffiffi
2

p
,

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þþ mA xið Þð Þ2�lA xið ÞmA xið Þ

q
¼ n:

As 0� lA xið Þþ mA xið Þ� 1 and 0� lA xið ÞmA xið Þ� 1 imply inequality

0� lA xið Þþ mA xið Þð Þ2�lA xið ÞmA xið Þ� 1 ,
0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þþ mA xið Þð Þ2�lA xið ÞmA xið Þ

q
� 1;

then
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ lA xið ÞmA xið Þ

q
¼ n ,

lA xið Þ ¼ 1 and mA xið Þ ¼ 0ð Þ or lA xið Þ ¼ 0 and mA xið Þ ¼ 1ð Þ holds that A is a
crisp set.

(P2) From Eq. (5) we have

KF Að Þ ¼ 0 ,
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ 1� pA xið Þð Þ2

q

¼ 0 , pA xið Þ ¼ 1; lA xið Þ ¼ 0; mA xið Þ ¼ 0 , pA xið Þ ¼ 1:

220 H. Nguyen



(P3) From (P1) we have

0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þþ mA xið Þð Þ2�lA xið ÞmA xið Þ

q
� 1

, 0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ lA xið ÞmA xið Þ

q
� 1

, 0� 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lA xið Þð Þ2 þ 2 mA xið Þð Þ2 þ 2lA xið ÞmA xið Þ

q
� 1

, 0� 1

n
ffiffiffi
2

p
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ lA xið Þþ mA xið Þð Þ2

q
� 1:

Having in mind 1� pA xið Þ ¼ lA xið Þþ mA xið Þ, then 0�KF Að Þ� 1 that
implies (P3).

(P4) Combining Eqs. (5) and (3) we have

KF Að Þ ¼ 1

n
ffiffiffi
2

p
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2 þ mA xið Þð Þ2 þ 1� pA xið Þð Þ2

q
¼ KF Acð Þ:

This completes the proof.

A geometrical interpretation of proposed knowledge measure KF for IFSs is
shown in Fig. 1. The IFS A is mapped into the triangle MNF, where each element x of
A corresponds a point of triangle MNF with coordinates lAðxÞ; mAðxÞ; pAðxÞð Þ ful-
filling Eq. (2). Point M(1,0,0) represents elements fully belonging to A ðlA xð Þ ¼ 1Þ.
Point N(0,1,0) represents elements fully not belonging to A ðmA xð Þ ¼ 1Þ. Point F
(0,0,1) represents elements fully being hesitation, i.e. we are not able to say whether

µA 

x

X A

A 

A 

M(1,0,0)

N(0,1,0)

F(0,0,1)

O(0,0,0)

G(0.5,0.5,0)

c

Fig. 1 Geometrical
representation of an IFS and
its distance to the most IFS
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they belong or not belong to A. In such a way the whole information about IFS A can
be described by location of corresponding point lAðxÞ; mAðxÞ; pAðxÞð Þ inside the
triangle MNF or rather by its distance to the point F(0,0,1) (distance c in Fig. 1).
Clearly that the closer distance c, the smaller knowledge measure (the higher degree
of fuzziness). When distance c = 0, point F represents elements with zero information
level ðKF ¼ 0Þ, i.e. the highest degree of fuzziness.

4 Comparative Examples

In order to testify the validity and capability of the new entropy, some comparative
examples are presented in this section.

Example 1 Let us calculate knowledge measure KF for two singleton IFSs
A ¼ x; 0:5; 0:5 and B ¼ x; 0; 0:5. Adopting the proposed knowledge measure KF

from Eq. (5) we derive KF Að Þ ¼ 0:866 and KF Bð Þ ¼ 0:5. Thus, KF Að Þ[KF Bð Þ
indicates that amount of knowledge of A is bigger than of B while the Szmidt and
Kacprzyk’s measure gave K Að Þ ¼ K Bð Þ ¼ 0:5 in [20]. The result is consistent with
our intuition because A and B have the same non-membership degrees, but A has
additional information about membership degree. Therefore amount of knowledge
of A should be bigger than of B.

Example 2 In this example we compare our knowledge-based entropy measure
with some existing entropy measures. We first recall some widely used entropy
measures for IFSs as follows.

(a) Bustine and Burillo [3]:

Ebb Að Þ ¼
Xn
i¼1

pA xið Þ; ð7Þ

(b) Hung and Yang [9]:

Ea
hc Að Þ ¼

1
a�1 1� laA þ maA þ paA

� �� �
a 6¼ 1; a[ 0

� lA ln lA þ mA ln mA þ pA ln pAð Þ; a ¼ 1

�
; ð8Þ

Eb
r Að Þ ¼ 1

1� b
ln lbA þ mbA þ pbA

� 	
; 0\b\1; ð9Þ

(c) Szmidt and Kacprzyk [18]:

Esk Að Þ ¼ 1
n

Xn
i¼1

min lA xið Þ; mA xið Þð Þþ pA xið Þ
max lA xið Þ; mA xið Þð Þþ pA xið Þ ; ð10Þ
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(d) Vlachos and Sergiadis [21]:

Evs1 Að Þ ¼ � 1
nln2

Xn
i¼1

lA xið Þ ln lA xið Þþ mA xið Þ ln mA xið Þ�
1� pA xið Þ ln 1� pA xið Þð Þð Þ � pA xið Þ ln 2


 �
; ð11Þ

Evs2 Að Þ ¼ 1
n

Xn
i¼1

2lA xið ÞmA xið Þþ p2A xið Þ
l2A xið Þþ m2A xið Þþ p2A xið Þ : ð12Þ

Let us consider seven single-element IFSs given by A1 ¼ x; 0:7; 0:2h i,
A2 ¼ x; 0:5; 0:3h i, A3 ¼ x; 0:5; 0h i, A4 ¼ x; 0:5; 0:5h i, A5 ¼ x; 0:5; 0:4h i, A6 ¼
x; 0:6; 0:2h i and A7 ¼ x; 0:4; 0:4h i. These IFSs are used for comparing calculations
of the recalled entropy measures with our new measure EF from formula (6). The
calculated results of specific measures are summarized in columns of Table 1.

It can be seen that the recalled measures give some unreasonable cases (in bold
type). For instance, the measures Ea

hc and Eb
r ða ¼ 1=2; 1; 2 and 3; b ¼ 1=3

and 1=2Þ from Hung and Yang [9] cannot distinguish two different IFSs A3 ¼
x; 0:5; 0h i and A4 ¼ x; 0:5; 0:5h i. The measures Esk from [18] and Evs1 and Evs2 from
[21] give the same entropy measures for two different IFSs A4 ¼ x; 0:5; 0:5h i and
A7 ¼ x; 0:4; 0:4h i. In turn, Ebb evaluates entropy by only the hesitation margin,
omitting fuzziness involved relation between membership/non-membership degrees
in cases A1 ¼ x; 0:7; 0:2h i and A5 ¼ x; 0:5; 0:4h i or A2 ¼ x; 0:5; 0:3h i, A6 ¼
x; 0:6; 0:2h i and A7 ¼ x; 0:4; 0:4h i. Based on results of the new entropy measure EF

(last column), we can rank the IFSs in accordance with the increasing related entropy
measures as follows: A4 � A1 � A5 � A6 � A2 � A7 � A3. Thus, from the tested
sets, the most fuzzy set is A3 and the sharpest set is A4. This order is met only by

Burillo and Bustine’s measure [3] known as Ebb Að Þ ¼ Pn
i¼1

pAðxiÞ, which is a func-

tion only of the hesitation margin pA. Therefore, Ebb is not able to point out the
influence of relationship between lA and mA on degree of fuzziness. Nevertheless it
indicates the overwhelming importance of the hesitation margin in evaluating degree
of fuzziness for IFSs.

Table 1 Comparison of the entropy measures

IFSs Ebb E1=2
hc

E1
hc E2

hc E3
hc E1=3

r E1=2
r

Esk Evs1 Evs2 EF

A1 0.10 1.20 0.80 0.46 0.32 0.99 0.94 0.38 0.79 0.54 0.18

A2 0.20 1.40 1.03 0.62 0.42 1.08 1.06 0.71 0.96 0.89 0.30

A3 0.50 0.83 0.69 0.50 0.38 0.69 0.69 0.50 0.50 0.50 0.50

A4 0.00 0.83 0.69 0.50 0.38 0.69 0.69 1.00 1.00 1.00 0.13

A5 0.10 1.31 0.94 0.58 0.41 1.04 1.01 0.83 0.99 0.98 0.22

A6 0.20 1.34 0.95 0.56 0.38 1.05 1.02 0.50 0.85 0.64 0.28

A7 0.20 1.42 1.05 0.64 0.43 1.08 1.08 1.00 1.00 1.00 0.31
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Example 3 We consider the problem of data classification so-called “Saturday
mornings”, introduced by Quinlan [16] and solved by using decision trees and
selecting the minimal possible tree. The presented example is quite small, but it is a
challenge to many classification and machine learning methods. The objects of
classification were attributes describing the weather on Saturday mornings, and each
attribute was assigned by a set of linguistic disjoint values as follows [16]:
Outlook = {sunny, overcast, rain}, Temperature = {cold, mild, hot},
Humidity = {high, normal} and Windy = {true, false}. Each object belongs to one of
two classes of C = {P, N}, where P denotes positive and N—negative. Quinlan
pointed out the best ranking of the attributes in context of amount of knowledge as:
Outlook Humidity Windy Temperature.

The representation of the “Saturday Mornings” data in terms of the IFSs is shown
in Table 2. The results of evaluating amount of knowledge of “Saturday Morning”
data for particular attributes are KF Outlookð Þ ¼ 0:51, KF Temperatureð Þ ¼ 0:25,
KF Humidityð Þ ¼ 0:498 and KF Windyð Þ ¼ 0:49. From the viewpoint of decision
making, the best attribute is the most informative one, i.e. with the highest amount of
knowledge KF. Therefore, the order of ranking of the attributes indicated by KF is
following: Outlook Humidity Windy Temperature, which is exactly the same in
comparison with the results presented by Quinlan [16] and Szmidt et al. [20].

5 Conclusion

We have discussed on some features of the measures for IFSs existing in literature
and proposed a new knowledge measure for IFSs. The new proposed measures
have been verified by comparison with the existing measures in the illustrative
examples. From the obtain results we can see that the proposed measure overcomes
the drawbacks of the existing measures. The new measure points out the rela-
tionship between positive and negative information and strong influence of a lack of
information on amount of knowledge. Finally, the proposed measure gives rea-
sonable results in comparison with other measures, for dealing with the data
classification problem.

Table 2 The representation of “Saturday Mornings” data in terms of IFSs

Outlook Temperature Humidity Windy

Sunny Overcast Rain Hot Mild Cold High Normal True False

µ 0.67 0 0.69 0.67 1 0.49 0.67 0.4 0.67 0.8

ν 0 1 0.2 0 0 0.4 0 0.6 0 0.2

π 0.33 0 0.11 0.33 0 0.11 0.33 0 0.33 0
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