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Abstract Genetic algorithms are widely recognized as efficient tool for solution of
complex and non-linear optimization problem of optimal reactive power dispatch
and voltage control in power systems. The paper is addressed to the consideration
of influence of different methods for generating initial population for genetic
algorithm performance. Genetic algorithm operates on individuals representing
some solutions. Randomly generated initial population evolve during the evolu-
tionary process with use of some operations into the final population including
probably the best task solution. The way of creating initial population decides on
covering initial solution space. Hence, it may affect genetic algorithm performance.
There exist variety of methods to generate members of initial population covering
solution space. The paper presents an evaluation of pseudo-random numbers,
gaussian and some space point process based algorithms to produce initial popu-
lation in terms of the convergence speed and quality of the obtained optimization
results.

Keywords Optimal reactive power dispatch � Genetic algorithm � Initial
population � Random numbers

1 Introduction

The main objectives of reactive power (VAR) optimization are to improve node
voltage profile and minimize active power losses under certain power system
operating conditions. To achieve these goals power system operators perform
control actions by adjusting generator voltages, on-load transformer tap changers
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(OLTC) and VAR generation/absorption by VAR sources located in power network
(capacitor/reactor banks, static VAR sources etc.). It results in need for applying
tools supporting operator decisions in real-time environments with continuously
fluctuating and uncertain operation conditions.

VAR optimization is a complex non-linear and combinatorial optimization
problem involving objective functions with multiple local extreme points and many
non-linear constraints with not only continuous but also discrete decision variables.
Originally, methods employing non-linear programming gradient based methods
have been employed to solve this problem. However, these methods can stuck in
local minima and have very limited capability of handling mixed discrete-continuous
decision variables. Currently, the growing interest of artificial intelligence based
optimization method has been observed. Genetic algorithms (GAs) and their vari-
ations (evolutionary programming, differential evolutions etc.) have been recognized
as efficient tools for finding optima of objective functions.

Early attempts on using GAs to solve VAR optimization use modifications of
simple binary GA which rely on problem decomposition and application of spe-
cialized genetic operators can be found [1]. To improve optimization results and
efficiency GA are combined with other optimization methods such as interior point
[2–4] and simulated annealing [5]. In [6] differential evolution method is recog-
nized as fast and efficient tool for VAR dispatch. Real-coded GA exploiting special
self-adaptive crossover and polynomial mutation scheme superior to evolutionary
programming based optimization is given in [7]. Application of real coded GA for
multi-objective optimization using Pareto-optimal set concept is reported in [8].

GA suffer from time consuming calculations and it will limit their applications in
real-time operation. To improve numerical efficiency new evolution or hybrid
schemes are developed. Theoretically, the convergence of the GA is independent of
the initial points. Usually, for practical problems solution space is usually huge and
algorithm can converge very slow to the solution. Some studies have revealed that
the way the initial population is generated may influence the algorithm speed and
quality of results [9, 10].

The problem of generating initial population for VAR optimization in power
system has not been yet studied in details. Traditionally, initial population is created
with use of the point pseudo-random generators available in programming envi-
ronment. In this work other generation method of individuals, especially low dis-
crepancy and gaussian are considered from viewpoint of result quality and
convergence speed.

The paper is organized as follows. First, formulation of o VAR dispatching
optimization problem is presented. Next, applied GA strategy is described in
details. Numerical results of VAR dispatch optimization task concerning different
ways on creating of initial population are shown. Some concluding remarks are
presented at the end of this paper.

186 R. Łukomski



2 Formulation of VAR Dispatching Optimization Problem

The objective of VAR dispatching optimization is to minimize active power losses
as a difference between generating and load power:

minf x; uð Þ ¼ DP ¼
X
k2Ig

PG;k �
X
l2IL

PL;l; ð1Þ

where:
x vector of dependent variables,
u vector of decision variables,
ΔP active power system losses,
PG,k active power generating at node k,
PL,l active power load at node l,
Ig, IL set of generating and load bus respectively.

Decision variable vector is constructed as follows:

u ¼ ½VG tp Qsh �T ; ð2Þ

where:
VG = [Vi], i 2 Ig row vector of voltages at generation buses and slack bus,
tp = [tj], j 2 IOLTC row vector of discrete tap values of on-load tap changer

transformers,
Qsh = [Qsh, k], k 2 Ish row vector of values of shunt VAR,
IOLTC set of branches with OLTC,
Ish set of buses with adjustable reactive power shunts.

Depended variables values are obtained from power flow calculations and they
are used for evaluation of solution feasibility i.e. preserving operational constraints:

x ¼ ½VL QG SBr �T ; ð3Þ

where:
VG = [Vi], i 2 IL row vector of voltages at load buses,
QG = [QG, j], j 2 Ig, row vector of reactive power at generation buses,
SBr = [SBr, k], k 2 IBr row vector of apparent power branch flows,
IBr set of power system branches.
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The equality constraints stem from power flow equations:

PG;i � PL;i � fPi x; uð Þ ¼ 0 ð4Þ

QG;i � QL;i � fQi x; uð Þ ¼ 0 ð5Þ

where:
fPi(x, u), fQi(x, u) non-linear functions describing active and reactive powers at

node i respectively,
PGi, QGi active and reactive power generations at node i respectively,
PLi, QLi active and reactive power loads at node i respectively.

Note that the GA is applied, the coded decision variables are self-constrained
and their values are always in respective bounds.

Inequality constraints represent required power system operating constraints:

• generation VAR constraints:

Qmin
G;i �QG;i �Qmax

G;i ; i 2 IG; ð6Þ

• load bus voltage constraints:

Vmin
i �Vi �Vmax

i ; i 2 IL; ð7Þ

• branch flows constraints:

Sm � Smax
m ; m 2 IBr; ð8Þ

Note that the GA is applied, the coded decision variables are self-constrained
and their values are always in respective bounds.

To handle the constraints (6)–(8) in fitness function ff calculated for evaluation of
individuals belonging to the GA population, the penalty quadratic terms corre-
sponding to these inequalities are added:

ff ¼ DPþ
X
i2IL

kV Vi � Vl
i

� �2 þ X
i2IG

kQg Qgi � Ql
gi

� �2
þ

X
i;j
i 6¼j

kS Sij � Slij
� �2

ð9Þ

where: λV, λQg, λS—penalty weighting coefficients and function in penalty terms are
as follows:

Xl ¼
X; Xmin �X �Xmax

Xmin; Xmin [X
Xmax; Xmax\X

X 2 Vi;Qgi
� �

; Slij ¼
Sij; Sij � Smax

ij
Smax
ij ; Sij [ Smax

ij

�8<
:

ð10Þ
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Fitness function value grows rapidly if some constrains are violated. In such way
“bad” individuals can be marked and eliminated from population.

3 GA Based VAR Optimization Algorithm

The performance GA applied to VAR optimization problem is based on the
crossover, mutation and selection. Some individuals belonging to the population are
selected with use of assumed selection strategy, to form a set of parents. Parenting
individuals are crossbred in pairs and offspring individuals are created. In addition,
randomly selected individuals can be modified according to mutation schema. The
best individuals form new population (elitism) and genetic operations are repeated
in next iteration of GA called generation. The processing is continued until maximal
number of generation is reached or solution cannot be further improved.

The applied GA use real-coding of decision variables instead of binary since it
has been proven their better accuracy and speed in many optimization problem [11].
Instead of proportional selection very fast pairwise (binary) tournament selection
here is employed. Many crossover and mutation operators for real-coded GA have
been proposed. Here Single Binary Crossover (SBX) and polynomial mutation
schemes described originally in [12] are applied.

The used GA requires setting some parameters: population size, tournament size,
crossover and mutation probabilities, maximal number of generations, tolerance
level within objective function value is not improved in last generations. These
parameters were set by trial and error scheme with multiple running of algorithm to
find the best choice.

The employed optimization algorithm contains the following steps:

1. Setting GA parameters.
2. Generating of initial population.
3. Calculation of fitness by (6) for each individual in current population.
4. Tournament selection for parenting individuals: random selection of two indi-

viduals and choosing the best one
5. Applying of parent individuals and applying of SBX. First, for the random

number α the parameter is calculated as follows:

b ¼ 2að Þ1=ðgþ 1Þ; a 2 ½0; 0; 5�
2 1� að Þð Þ�1=ðgþ 1Þ; a 2 ð0; 5; 1�

(
; ð11Þ

where: η—crossover parameter (real positive number).
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The offspring individuals are calculated by formula:

x tþ 1ð Þ
i ¼ 1

2
1þ bð ÞxðtÞi þ 1� bð ÞyðtÞi

� �
; y tþ 1ð Þ

i ¼ 1
2

1� bð ÞxðtÞi þ 1þ bð ÞyðtÞi
� �

;

ð12Þ

6. Applying polynomial mutation with as:

yðtþ 1Þ
i ¼ xðtþ 1Þ

i þ xmax
i � xmin

i

� �
di; ð13Þ

where:

di ¼ 2rið Þ1=ðg0�1Þ�1; ri\0; 5
1� ½2 1� rið Þ�1=ðg0 þ 1Þ; ri � 0; 5

(
, ri—uniform random number, η′—

mutation parameter (real positive number).
7. Checking stopping criteria. If the maximum generation number is reached or

improving the solution cannot be obtained, stop the algorithm; otherwise go to
step 3.

4 Generating Initial Population for GA

4.1 Coding of Decision Variables

As an initial population NI individuals are created. In real-coded GAs, individuals
are represented as ND-dimensional real number vectors, where ND is the dimension
of the search space. For continuous decision variables the initial population is
formed with use of the lower and upper bounds of decision variables as follows:

yij ¼ ymin
j þ ymax

j � ymin
j

� �
xij; ð14Þ

where:
yij value at jth position of ith individual,
yj
min, yj

max lower and upper bonds for jth decision variable
respectively,

i = 1, 2, … NI, j = 1, 2, …
ND, NI

population size,

ND number of continuous decision variables,
xij random number generated from the range [0, 1].
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Similarly, the discrete decision variables as transformer taps, are rounded-off to
the nearest integer number:

yij ¼ ymax
j þ NS

j

� ��1
ymax
j � ymin

j

� �
NS
j xij

h i
ð15Þ

where:
[x] rounding-off to the nearest integer of x,
Nj
s integer number of regulation steps of jth discrete decision variable.

Note that decision variables are self-constrained and their values are always in
respective bounds. Hence initial population is generated by randomly distributed
points in N-dimensional unity hyper-cube IN belonging to RN space.

4.2 Initial Population Generating Methods

A variety of methods do generate random sampling points have been proposed.
Here, only four methods for initial population generation are evaluated:

• sampling based on subtract with borrow (SWB) pseudo-random uniform gen-
erator described in [13],

• Niderreiter quasi-random sampling (NQR) is dedicated to obtains numbers with
maximal uniformity (low discrepancy) [14],

• non-aligned systematic (NAS) sampling use the transformation of initial
pseudo-random number set to uniform distribution of sample points over
decision variable hyper-space [9]. The unit hyper-cube formed this hyper-space
by is divided into bN elementary sub-cubes with one sample-point located in
each sub-cube. For two dimensional space case the sample points representing
the individuals are obtained by:

x ¼ ½ j� 1ð Þþ ri;1
� �

D; i� 1ð Þþ rj;2
� �

D�; ð16Þ

where:
i, j = 1, 2, …, b, D = 1/b, b number of intervals,
ri,1, rj,2 elements of b × 2 matrix r containing

pseudo-random numbers.

An algorithm on generating points for n-dimensional hyper-space is given in [9].
Usually the number of sampling point considerably exceeds the number of required
points, so in the next step they are selected randomly to match to required number,

• Gaussian sampling (GS) initializes population by samples from gaussian dis-
tribution with o mean μ(0) and positive definite covariance matrix Σ(0), so that
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each individual in the initial population is X(0) * N(μ(0), Σ(0)). Normally dis-
tributed random variables are assumed to be independent. It results in diagonal
covariance matrix (non-diagonal elements are near zero). “Dispersion” of the
sampling points depends on the value of variance. Note, that Gaussian sampling
with large variance might be a quite good uniform sampling approximation.

Example distribution of sampling points generated by different methods for
two-dimension space is shown in Fig. 1. Note that methods NQR and NAS give
better space coverage than the remained ones.

5 Numerical Tests

5.1 General Assumptions

In order to investigate the influence of selected initial population generation
methods on GA performance standard IEEE-30 bus system model has been used.
Description of the system with detailed parameters can be found in [15].
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Fig. 1 Example multi-dimensional point sets mapped into 2D, obtained from various random
generators: a SWB, b NQR, c NAS, d GS
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Optimization problem was limited to 12 decision variables: 6 continuous gen-
erator voltages, 2 continues shunt values and 4 discrete tap changers with 20
regulation steps. Fitness function values were calculated with results obtained from
accompanying fast electric network power flow program. All the numerical pro-
cedures and calculation steps were implemented in Mathworks Matlab
environment.

5.2 GA Parameter Adjustment

GA parameters were determined by several trials with different parameter sets.
Selected values for further investigations are shown in Table 1. Although maximal
number of generation is set to 300, GA run can also be stopped before reaching max
generation number, i.e. further best fitness function value cannot be improved. The
tolerance level for best fitness is assumed to 10−5 (in last 10 generations).
Parameters η and η′ are both set to 20 accordingly to hints in [12].

The experiments were carried out as follows. For each initial population gen-
eration method 100 random sets with 600 (12 × 50) numbers were created. In order
to handle the effect of the probabilistic nature of GA on results the algorithms are
executed 30 times. Results comprising minimal and mean fitness function value,
standard deviation, mean generation number until convergence condition is reached
are shown in Table 2.

The mean of objective function is smallest for NAS sampling. However, the
means of best objectives for different initial sampling strategies were compared with
standard analysis of variance and there were no statistically significant differences
detected. Overall improvement by reduction of the objective, i.e. active power
losses with GA optimization by approximately is 4.00–4.65 %.

Similarly, the mean values (rounded to integer) of generation numbers NG the
convergence is obtained for different sampling methods are also comparable.

Table 1 Assumed GA parameter values

Parameter Population
size

Tournament
size

Crossover
rate

Mutation
rate

Mutation
size

Max
generations

Value 50 2 0.8 0.8 0.1 300

Table 2 Summary of the
obtained results

Parameter Sampling method

SWB NQR NAS GS

min ΔP 16.530 16.592 16.536 16.572

DP, MW 16.715 16.738 16.682 16.694

σΔP, MW 0.124 0.134 0.091 0.155

NG 150 129 157 151
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However, NQR gives good solutions within less computation time. Example
characteristics of convergence for different sampling methods are shown in Fig. 2.

Despite some differences, the results show that the random number generation
strategies which are taken into consideration perform rather well if they are used in
initial populations of genetic algorithms.

An important issue not discussed here is the size of the optimization problem.
The more decision variables the more “sparse” is initial population, since the dis-
tance between adjacent points in initial population space increases even if good
coverage is reached. It is expected that future research will better explain this
problem.

6 Conclusions

In the paper different methods of generating initial population for GA applied to the
practical optimization problem of voltage and VAR dispatch in example power
system. This problem is recognized as complex optimization task with non-linear
objective function and constraints and mixed nature of decision variables. Up to
date works on creation of GA initial population topic suggest better performance of
the GAs with population generated with low discrepancy random number
sequences. However, they concentrate on testing with use of some theoretical
benchmark functions. This attempt concentrate on selected practical optimization
problem.

The obtained results reveal that the standard way to generate initial population
with SWB pseudo-random generator with uniform sampling is comparable to the
others low-discrepancy and gaussian sampling methods. Convergence speed and
mean objective functions values are comparable in statistical sense. It should be
pointed out that using NQR, NAS sampling usually results in a little faster con-
vergence in first generations of GA run.

Future works will concentrate on testing of other methods for generating GA
initial population, especially methods forming clusters resulting from prior knowl-
edge on solution space. Different genetic algorithm parameters like population size
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Fig. 2 Example GA
convergence for SWB (dotted
line) and NAS (smooth line)
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and maximum number of generations will also be considered. Experience with VAR
dispatch optimization will also be applied to optimize VAR dispatching in actual
size power systems with size of several hundred buses.
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