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Abstract This paper presents an approach to analysis of crisp and fuzzy infor-
mation systems. It is based on comparison of elements of the universe to prototypes
of condition and decision classes instead of using binary crisp indiscernibility or
fuzzy similarity relations. We introduce several notions, such as dominating lin-
guistic values, linguistic labels, characteristic elements, which lead to a new defi-
nition of fuzzy rough approximations. The presented method gives the same results
as the original rough set theory of Pawlak, in the special case of crisp information
systems. Furthermore, fuzzy information systems can be analyzed more efficiently
than in the standard fuzzy rough set approach. Moreover, interpretation of results is
quite natural and intuitive. Analysis of information systems will be illustrated with
an extended example.
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1 Introduction

Fuzzy set theory, founded by Zadeh [1], is one of the most popular approaches used
for modeling the human reasoning process. The characteristic feature and ability of
a human operator to utilize vague and linguistic terms rather than numbers can be
expressed with the help of fuzzy sets defined on a respective domain of interest.

Another way of dealing with uncertainty and imperfect knowledge was proposed
by Pawlak [2] in the framework of the rough set theory. The crucial point of that
approach consists of comparing elements of a universe of discourse (or rows of a
decision table) by an indiscernibility relation with respect to selected condition and
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decision attributes. The consistency and redundancy of a given information system
can then be evaluated by checking the dependencies between the obtained families
of indiscernibility classes.

Since both theories consider distinct properties of the human reasoning process,
an idea of combing them together into one approach seems to be quite obvious. The
most important definition of fuzzy rough set was proposed by Dubois and Prade [3].
This concept was widely studied and developed by many authors, e.g. [4–7], [8].

In the present paper, we propose a modification of the basic assumptions and
definitions of the fuzzy rough set model. The modified approach is in accordance
with the original rough set theory of Pawlak, when the special case of crisp
information system is considered. The crucial point of our proposal consists in
changing the method of determination of fuzzy similarity classes. In the standard
fuzzy rough set model, a binary fuzzy similarity relation is used for comparing all
elements of the universe to each other. In our method, the fuzzy similarity, for all
elements of the universe, is determined with respect to fuzzy prototypes (ideal
elements), which can be seen as labels of linguistic values of particular condition
and decision attributes. Furthermore, a new definition of fuzzy rough approximation
is given.

Before we present the details of our approach, we need to recall basic notions
and definitions of the crisp and fuzzy rough set theories.

2 Preliminaries

Although, both crisp and fuzzy information systems are taken into account in this
paper, we only recall our definition of a fuzzy information system [4]: a crisp
information system constitutes a special case.

Definition 1 A fuzzy information system ISF is the 4-tuple S ¼ hU;Q;V; f i, where
U is a nonempty set, called the universe,
Q is a finite set of fuzzy attributes,
V is a set of fuzzy (linguistic) values of attributes, V ¼ S

q2Q Vq,
Vq is the set of linguistic values of an attribute q 2 Q,

f is an information function, f : U � V ! ½0; 1�,
f ðx;VÞ 2 ½0; 1� for every V 2 V and every x 2 U:

In practical applications, information systems are conveniently expressed in the
form of a decision table, with the set of attributes Q composed of two disjoint sets:
condition attributes C and decision attributes D. A column of the decision table
contains values of a single condition or decision attribute for all elements of the
universe U. Every row of the decision table contains a description (values of all
attributes) of a single element of the universe U, which corresponds to a decision.

In the case of a fuzzy information system, we define linguistic values for all
condition and decision attributes [9]. Let us assume a finite universe U with
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N elements: U ¼ fx1; x2; . . .; xNg. An element x of the universe U will be described
with fuzzy attributes, which consists of a subset of n condition attributes
C ¼ fc1; c2; . . .; cng, and a subset of m decision attributes D ¼ fd1; d2; . . .; dmg.
Next, we assign to every fuzzy attribute a set of linguistic values:
Ci ¼ fCi1;Ci2; . . .;Cinig, which is a family of linguistic values of the condition
attribute ci, and a set Dj ¼ fDj1;Dj2; . . .;Djmjg, which is a family of linguistic
values of the decision attribute dj, where ni and mj are the numbers of the linguistic
values of the i-th condition and the j-th decision attribute, respectively,
i ¼ 1; 2; . . .; n, and j ¼ 1; 2; . . .;m.

In stage of building a decision table with fuzzy attributes, we need to determine
the membership degrees for all elements x 2 U, in all linguistic values of the
condition attributes ci and the decision attributes dj, respectively, where
i ¼ 1; 2; . . .; n, and j ¼ 1; 2; . . .;m. This is done by fuzzification of the original
values of particular attributes in their domains of interest. The obtained membership
degrees for a single attribute and an element x 2 U, can be expressed as a (fuzzy)
value, which is a fuzzy set on the discrete domain of all linguistic values of that
attribute [9].

The fuzzy value CiðxÞ for any x 2 U, and the condition attribute ci, is a fuzzy set
on the domain of the linguistic values of the attribute ci

CiðxÞ ¼ flCi1
ðxÞ=Ci1; lCi2

ðxÞ=Ci2; . . .; lCini
ðxÞ=Cinig: ð1Þ

The fuzzy value DjðxÞ for any x 2 U, and the decision attribute dj, is a fuzzy set
on the domain of the linguistic values of the attribute dj

DjðxÞ ¼ flDj1
ðxÞ=Dj1; lDj2

ðxÞ=Dj2; . . .; lDjmj
ðxÞ=Djmjg: ð2Þ

For crisp condition and decision attributes, the sets (1) and (2) have only one
single element with a membership degree equal to 1. For fuzzy attributes, several
elements of the sets (1) and (2) can have a non-zero membership degree denoted
with by a value in the interval [0, 1]. As we see, for crisp attributes, the cardinality
of the sets (1) and (2) is always equal to 1. In order to be in accordance with this
property, we should assume that for any x 2 U, the fuzzy cardinality (power) for all
linguistic values CiðxÞ and DjðxÞði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ satisfies the
requirements

powerðCiðxÞÞ ¼
Xni
k¼1

lCik
ðxÞ ¼ 1; powerðDjðxÞÞ ¼

Xmj

k¼1

lDjk
ðxÞ ¼ 1: ð3Þ

The notion of fuzzy rough set was proposed by Dubois and Prade [3] and
generalized by Radzikowska and Kerre [5]. For a given fuzzy set A and a fuzzy
partition U ¼ fF1;F2; . . .;Fng on the universe U, the membership functions of the
lower and upper approximations of A by Φ are defined as follows
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lU�ðAÞ
ðFiÞ ¼ inf

x2U
IðlFi

ðxÞ; lAðxÞÞ; ð4Þ

l�UðAÞðFiÞ ¼ sup
x2U

TðlFi
ðxÞ; lAðxÞÞ; ð5Þ

where T and I denote a T-norm operator and an implicator, respectively,
ði ¼ 1; 2; . . .; nÞ. The pair of sets ðUA; �UAÞ is called a fuzzy rough set.

Since we analyze a fuzzy information system, we use a fuzzy partition UC,
which is generated with respect to condition attributes C, and a fuzzy partition UD,
determined by taking into account decision attributes D, respectively. In order to
investigate the properties of the information system, the partition UC will be taken
for approximation of fuzzy similarity classes from the partition UD. The standard
way of generating fuzzy similarity classes is based on comparing elements of the
universe U. To this end, one can apply a symmetric binary T-transitive fuzzy
similarity relation [10], which is expressed by means of the distance between the
compared elements. If we want to compare any two elements x and y of the universe
U with respect to the condition attributes ci, i ¼ 1; 2; . . .; n, then the similarity
between x and y can be expressed using a T-similarity relation [7] based on the
Łukasiewicz T-norm

Sciðx; yÞ ¼ 1� max
k¼1;ni

lCik
ðxÞ � lCik

ðyÞ�� ��: ð6Þ

For determining the similarity SCðx; yÞ, with respect to all condition attributes C,
we aggregate the results obtained for particular attributes ci, i ¼ 1; 2; . . .; n. This can
be done by using the T-norm operator min as follows

SCðx; yÞ ¼ min
i¼1;n

Sciðx; yÞ ¼ min
i¼1;n

ð1� max
k¼1;ni

lCik
ðxÞ � lCik

ðyÞ�� ��Þ: ð7Þ

We determine in the same manner the similarity SDðx; yÞ for any two elements
x and y of the universe U with respect to all decisions attributes dj, j ¼ 1; 2; . . .;m.

We obtain two symmetric similarity matrices as the result of calculating the
similarity for all pairs of elements of the universe U.

In the special case of a crisp information system, the similarity relations SCðx; yÞ
and SDðx; yÞ assume the form of crisp binary indiscernibility (equivalence) relations
RC and RD, obtained by taking into account the condition attributes C and the
decision attributes D, respectively. This way, we get two crisp partitions of the
universe U as families of disjoint indiscernibility classes. In consequence, the fuzzy
rough approximations (4) and (5) become equivalent to the lower approximation
RðAÞ and the upper approximation �RðAÞ of a crisp set A, by an indiscernibility
relation R, which were defined [1] as follows
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RðAÞ ¼ fx 2 U: ½x�R�Ag; ð8Þ
�RðAÞ ¼ fx 2 U: ½x�R\A 6¼ ;g; ð9Þ

where ½x�R denotes an indiscernibility class that contains the element x 2 U.

3 Similarity Classes Based on Linguistic Values
of Attributes

The starting point of our approach is a different way of determination of fuzzy
similarity classes. In contrast to the standard method recalled in previous section,
we want to construct the similarity classes with respect to linguistic values of
particular condition and decision attributes. This can be motivated by the fact that a
human operator (expert) does not necessary compare every observed object (ele-
ment) of a universe to each other. He or she performs rather a comparison of a new
element to a limited group of selected prototypes. It seems quite natural to assume
that those prototypes correspond to combinations of linguistic values of condition
and decision attributes. Moreover, such prototypes can be ideals and may only exist
in the mind of the human operator.

Now, we introduce all notions and definitions needed in the formal description
of our approach. Basing on the definition of a fuzzy information system (Definition
1) given in previous section, we define a notion of dominating linguistic values.

Definition 2 For a given fuzzy information system ISF, the set of dominating
linguistic values of any element x 2 U and any fuzzy attribute q 2 Q is a subset
bVqðxÞ�Vq of the linguistic values of the attribute q, expressed as

bVqðxÞ ¼ fV 2 Vq: f ðx;VÞ� 0:5g: ð10Þ
The above definition is written in a general form. In the following, we denote by

bCiðxÞ the set of dominating linguistic values of x 2 U for a fuzzy condition attribute

ci 2 C, and by bDjðxÞ the set of dominating linguistic values of x 2 U for a fuzzy
decision attribute dj 2 D, respectively, where i ¼ 1; 2; . . .; n, and j ¼ 1; 2; . . .;m.

Let us take a closer look at the properties of sets of dominating linguistic values.
We impose the requirements (3) on the linguistic values of every attribute. Hence,
we find one or, in a rare case, two dominating linguistic values (when
f ðx;VÞ ¼ 0:5). Moreover, in a crisp information system only one dominating value
is possible.

We want to find dominating combinations of linguistic values of any x 2 U, with
respect to a subset of attributes. Therefore, we introduce the notion of linguistic
label.
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Definition 3 The set of linguistic labels EPðxÞ of any element x 2 U for a subset of
fuzzy attributes P�Q is the cartesian product of the sets of dominating linguistic

values bVp, for p 2 P

E
P xð Þ ¼

Y
p2P

bVp xð Þ ð11Þ

We will denote by E
CðxÞ the set of linguistic labels of x 2 U with respect to the

condition attributes C, and by E
DðxÞ the set of linguistic labels of x 2 U with

respect to the decision attributes D.
Since, in most of the cases (always for a crisp information system), we have only

one dominating linguistic value for every attribute p 2 P, we only get one element
in the cartesian product EPðxÞ.

Observe that several elements of the universe U can have the same linguistic
labels. When we skip the argument x, a linguistic label EP 2 E

P can be used to
denote a class of elements of the universe U which are similar with respect to a
linguistic label EP. Those elements of the universe U will be called the charac-
teristic elements representing of a linguistic label EP 2 E

P.

Definition 4 The set of characteristic elements XEP representing a linguistic label
EP 2 E

P, for a subset of fuzzy attributes P�Q, is a set of those elements x 2 U
which possess the linguistic label EP 2 E

P

XEP ¼ fx 2 U : EP 2 E
PðxÞg: ð12Þ

We can also interpret a decision table using the notions introduced in the
framework of the crisp and fuzzy flow graph approach [9, 11, 12]. In such a case, a
linguistic label EP 2 E

P denotes a unique path in the flow graph. The characteristic
elements XEP of a linguistic label EP 2 E

P is a set of those elements x 2 U which
flow (mainly) through the same path of the flow graph.

A single linguistic label EP 2 E
P is an ordered tuple of dominating linguistic

values for all attributes p 2 P: EP ¼ ðbV1; bV2; . . .; bV Pj jÞ, where Pj j denotes the car-
dinality of the set P. The resulting membership degree of an element x 2 U in the
linguistic label EP 2 E

P can be determined by

lEPðxÞ ¼ minðlbV1
xð Þ; lbV2

xð Þ; . . .; lbV Pj j
xð ÞÞ ð13Þ

We should note that a higher membership degree in the linguistic label EP can be
obtained for its characteristic elements only.

Definition 5 For a finite universe U with N elements, the fuzzy similarity class of
the elements of the universe U to the linguistic label EP is a fuzzy set denoted by ~EP

and defined as follows
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~EP ¼ flEPðx1Þ=x1; lEPðx2Þ=x2; . . .; lEPðxNÞ=xNg: ð14Þ
Definition 6 The set XA of characteristic elements of a fuzzy set A is defined as

XA ¼ fx 2 U: lAðxÞ� 0:5g: ð15Þ
Now, we are ready to define the lower and upper approximations of a fuzzy set A.

Definition 7 The lower approximation E
PðAÞ of a fuzzy set A by the set of lin-

guistic labels EP, with respect to a subset of fuzzy attributes P�Q, is expressed as

E
PðAÞ ¼

[
EP2EP

~EP: XEP�XA ð16Þ

Definition 8 The upper approximation E
PðAÞ of a fuzzy set A by the set of

linguistic labels EP, with respect to a subset of fuzzy attributes P�Q, is expressed as

E
PðAÞ ¼

[
EP2EP

~EP : XEP\XA 6¼ ; ð17Þ

It can be proved that the approximations (16) and (17) are equivalent to the crisp
approximations (8) and (9), in the special case of a crisp information system.

In order to evaluate the consistency of a fuzzy information system IFS, we
require an adequate form of a widely used measure of approximation quality.

Definition 9 The approximation quality of the fuzzy similarity classes ~ED which
are determined with respect to the decision attributes D, by the fuzzy similarity
classes ~EC obtained with respect to the condition attributes C, is defined as

cC E
D

� � ¼ power PosC E
D

� �� �
card U

ð18Þ

PosCðEDÞ ¼
[

ED2ED

E
Cð~EDÞ ð19Þ

In the next section, we illustrate all presented notions by a computational
example.

4 Example

Let us consider a decision table (Table 1) with three fuzzy condition attributes c1,
c2, c3, and one fuzzy decision attribute d1. The condition attributes have two or
three linguistic values: C11, C12, C21, C22, C31, C32, C33, respectively. The decision
attribute d can possess two linguistic values D11 and D12. The membership func-
tions of all linguistic values have triangular or trapezoidal shapes and they satisfy
the requirement (3) of summing up to 1 for every element of the universe.
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First, we want to determine the similarity between all elements of the universe
for the condition attributes C, using the standard fuzzy similarity relation (6). We
get a symmetric fuzzy similarity matrix given in Table 2.

In the same way, the similarity between all elements of the universe with respect
to the decision attribute d is determined (Table 3).

We should notice that the rows of the obtained similarity matrices are unique. In
consequence, we get six similarity classes generated with respect to the decision
attribute that will be approximated by six similarity classes determined for the
condition attributes (36 approximations).

Next, we perform the analysis the considered decision table basing on our
approach presented in previous section. Table 4 contains the linguistic labels
determined with respect to all condition attributes.

We obtain the fuzzy similarity classes to the linguistic labels for the condition
attributes C:

~EC
1 ¼ 0:80=x1; 0:10=x2; 0:70=x3; 0:00=x4; 0:10=x5; 0:15=x6f g;

~EC
2 ¼ 0:00=x1; 0:85=x2; 0:00=x3; 0:00=x4; 0:25=x5; 0:80=x6f g;

~EC
3 ¼ 0:20=x1; 0:00=x2; 0:00=x3; 0:65=x4; 0:00=x5; 0:00=x6f g;

~EC
4 ¼ 0:00=x1; 0:10=x2; 0:00=x3; 0:00=x4; 0:75=x5; 0:15=x6f g;

the fuzzy similarity classes to the linguistic labels for the decision attribute d:

~ED
1 ¼ 1:00=x1; 0:10=x2; 0:90=x3; 0:00=x4; 0:70=x5; 0:20=x6f g;

~ED
2 ¼ 0:00=x1; 0:90=x2; 0:10=x3; 1:00=x4; 0:30=x5; 0:80=x6f g:

Table 1 Decision table with
fuzzy attributes

c1 c2 c3 d1
C11 C12 C21 C22 C31 C32 C33 D11 D12

x1 0.80 0.20 0.90 0.10 0.20 0.80 0.00 1.00 0.00

x2 0.10 0.90 0.15 0.85 0.00 0.10 0.90 0.10 0.90

x3 0.70 0.30 0.80 0.20 0.00 1.00 0.00 0.90 0.10

x4 0.00 1.00 0.70 0.30 0.65 0.35 0.00 0.00 1.00

x5 0.75 0.25 0.10 0.90 0.00 0.20 0.80 0.70 0.30

x6 0.15 0.85 0.20 0.80 0.00 0.15 0.85 0.20 0.80

Table 2 Fuzzy similarity
matrix with respect to
condition attributes

x1 x2 x3 x4 x5 x6
x1 1.00 0.10 0.80 0.20 0.20 0.15

x2 0.10 1.00 0.10 0.10 0.35 0.95

x3 0.80 0.10 1.00 0.30 0.20 0.15

x4 0.20 0.10 0.30 1.00 0.20 0.15

x5 0.20 0.35 0.20 0.20 1.00 0.40

x6 0.15 0.95 0.15 0.15 0.40 1.00
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Now, we approximate the fuzzy similarity classes ~ED
1 , and ~ED

2 , by the fuzzy
similarity classes ~EC

1 ;
~EC
2 ;

~EC
3 , and ~EC

4 . Observe that we need to calculate at most 8
approximations. According to formulae (17) and (18), we get the lower
approximations

E
Cð~ED

1 Þ ¼ ~EC
1 [~EC

4 ; E
Cð~ED

2 Þ ¼ ~EC
2 [~EC

3 ;

and the upper approximations

E
Cð~ED

1 Þ ¼ ~EC
1 [~EC

4 ; E
Cð~ED

2 Þ ¼ ~EC
2 [~EC

3 :

Since, the lower approximations are equal to the upper approximations, we
obtain the following certain decision rules:

C11C21C32 ! D11; C11C22C33 ! D11;

C12C22C33 ! D12 C12C21C31 ! D12:

Finally, we calculate the approximation quality cC E
D

� �
of the fuzzy similarity

classes ~ED by the fuzzy similarity classes ~EC. The operator max was applied for
determination of the sum of fuzzy sets. We get cC E

D
� � ¼ 4:55=6 ¼ 0:76.

Table 3 Fuzzy similarity matrix with respect to decision attribute

x1 x2 x3 x4 x5 x6
x1 1.00 0.10 0.90 0.00 0.70 0.20

x2 0.10 1.00 0.20 0.90 0.40 0.90

x3 0.90 0.20 1.00 0.10 0.80 0.30

x4 0.00 0.90 0.10 1.00 0.30 0.80

x5 0.70 0.40 0.80 0.30 1.00 0.50

x6 0.20 0.90 0.30 0.80 0.50 1.00

Table 4 Linguistic labels with respect to condition attributes

EC
1 EC

2 EC
3 EC

4

(C11, C21, C32) (C12, C22, C33) (C12, C21, C31) (C11, C22, C33)

x1 0.80 0.00 0.20 0.00

x2 0.10 0.85 0.00 0.10

x3 0.70 0.00 0.00 0.00

x4 0.00 0.00 0.65 0.00

x5 0.10 0.25 0.00 0.75
x6 0.15 0.80 0.00 0.15
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Let us now omit the fuzzy condition attribute c1. We repeat the above steps for a
reduced information system with the set of condition attributes denoted by C0

(Table 5).
We obtain the lower approximations

E
C0 ð~ED

1 Þ ¼ ~EC0
1 ; E

C0 ð~ED
2 Þ ¼ ~EC0

3 ;

and the upper approximations

E
C0 ð~ED

1 Þ ¼ ~EC0
1 [~EC0

2 ; E
C0 ð~ED

2 Þ ¼ ~EC0
2 [~EC0

3 :

Because the lower approximations are not equal to the upper approximations, the
reduced information system is not consistent. We have now two certain decision
rules

C21C32 ! D11; C21C31 ! D12;

and two uncertain decision rules

C22C33 ! D11; C22C33 ! D12:

The approximation quality cC0 E
D

� � ¼ 2:60=6 ¼ 0:43. Since the quality of
approximation has significantly decreased, the attribute c1 cannot be removed from
the information system. After analyzing the influence of every fuzzy condition
attribute, we find that the attributes c2, c3 could be removed from the fuzzy
information system.

Summarizing, the proposed method is suitable for investigating the properties of
fuzzy information systems. We are able to determine the dependencies between
groups of attributes, evaluate the approximation quality, find which attributes can
be removed, and finally, obtain a set of decision rules. The presented method
requires less computation, in comparison to methods which base on a fuzzy sim-
ilarity relation.

Table 5 Linguistic labels
with respect to condition
attributes (omitted attribute
c1)

EC0
1 EC0

2 EC0
3

(C21, C32) (C22, C33) (C21, C31)

x1 0.80 0.00 0.00

x2 0.10 0.85 0.00

x3 0.80 0.00 0.00

x4 0.35 0.00 0.65
x5 0.10 0.80 0.00

x6 0.15 0.80 0.00
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5 Conclusions

We propose a new way of determination of fuzzy similarity classes with respect to
linguistic values of particular condition and decision attributes. This is a simpler
and more effective method than the standard approach, in which a fuzzy similarity
needs to be computed. The introduced notions can be further developed and applied
in various fuzzy rough sets models. Especially, an extension of the variable pre-
cision fuzzy rough set model is possible. Furthermore, the mathematical properties
of the modified fuzzy rough approximations should be investigated in future
research.
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