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Abstract An approach proposed in this paper allows to select neuro-fuzzy clas-
sifiers taking into account new interpretability criteria. Those criteria are focused
not only on complexity of the system, but also on semantics of the rules. The
approach uses capabilities of new hybrid population algorithm which is a combi-
nation of the genetic algorithm and the imperialist competitive algorithm. This
combination allows to select not only the parameters of the neuro-fuzzy system, but
also the structure of it. In simulations typical issues of classification were used.
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1 Introduction

The process of creation of methods for nonlinear classification is focused mostly on
reaching high accuracy. The other important goal is focused on achieve a good
clarity and interpretability of classification rules, which allows to better understand
considered problem. These both aims are contradictory, so the balance between
accuracy and interpretability of classifier is often investigated in the literature (see
e.g. [6, 7, 8, 18]).

Nonlinear classification can be based on many types of approaches. Among
them, for example, a neuro-fuzzy systems (see e.g. [13, 17]) can be found. In these
systems the knowledge in the form of if . . .then. . . rules is gathered. These rules
contain linguistic variables and variables corresponding to fuzzy sets and their
parameters. Methods created to increasing interpretability of neuro-fuzzy system
rules take an important place in the literature. The interpretability arises not only
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from complexity of the system, but also from semantics of the rules (see e.g. [2, 7,
19]). In this research area it is worth to list methods focused on: (a) Definition and
implementation of new criteria of interpretability of fuzzy rules (see e.g. [1, 7]).
(b) Appropriate aggregation of these criteria (see e.g. [8, 18]) and using
multi-objective methods (see e.g. [1, 18]). (c) Use of population-based algorithms
to obtain interpretable systems (see e.g. [12]) etc.

In this paper we propose a new approach which allows to select fuzzy classifiers
taking into account different interpretability criteria (including, among others,
semantics). This approach is based on hybrid population-based algorithm, which is
a fusion between genetic algorithm (see e.g. [17]) and imperialist competitive
algorithm (ICA) (see e.g. [3]). The genetic part of the algorithm allows for auto-
matic selection of the structure of neuro-fuzzy system, use of the imperialist
algorithm allows to simultaneously select the parameters of these structures.
Algorithm ICA was chosen as a part of the proposed hybrid method because: (a) it
was created taking inspiration from social evolution, (b) it is a multi-population
algorithm and it provides migration and competition of sub-populations in order to
improve obtained solutions, (c) it is distinguished by two interesting operators:
assimilation and revolution. It is worth to mention that the system presented in our
previous paper [14] was used for classification process. Our approach is addition-
ally focused on trade-off between accuracy and interpretability of the system and
allows to present accuracy-interpretability dependences using estimated Pareto front
(see e.g. [17]).

This paper is organized as follows: in Sect. 2 a description of proposed system
and its tuning process for nonlinear classification is presented. In Sect. 3 a inter-
pretability criteria to increase interpretability for neuro-fuzzy systems are shown.
The results of simulations are presented in Sect. 4, finally the conclusions are
described in Sect. 5.

2 Description of Neuro-Fuzzy System for Classification
and Algorithm for Its Tuning

2.1 Description of the System

We consider multi-input, multi-output neuro-fuzzy system mapping X ! Y, where
X � Rn and Y � Rm. The flexible fuzzy rule base consists of a collection of
N fuzzy if-then rules in the form:

Rk :
IF �x1 is Ak

1

� �
wA
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n
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���
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where n is a number of inputs, m is a number of outputs, �x ¼ �x1; . . .;�xn½ � 2 X, y ¼
y1; . . .; ym½ � 2 Y;Ak

1; . . .;A
k
n are fuzzy sets characterized by membership functions

lAk
i
xið Þ; i ¼ 1; . . .; n; k ¼ 1; . . .;N;Bk

1; . . .;B
k
m are fuzzy sets characterized by mem-

bership functions lBk
j
yj
� �

; j ¼ 1; . . .;m; k ¼ 1; . . .;N;wA
k;i 2 0; 1½ �; i ¼ 1; . . .; n;

k ¼ 1; . . .;N, are weights of antecedents,wB
j;k 2 0; 1½ �; k ¼ 1; . . .;N; j ¼ 1; . . .;m, are

weights of consequences, wrule
k 2 0; 1½ �; k ¼ 1; . . .;N, are weights of rules. The flex-

ibility of rule base results from usingweights of the antecedences and consequences of
the rules. Using of weights need a proper defined aggregation function, which defi-
nition can be found in our previous work (see [5]). In logical approach output signal
�yj; j ¼ 1; . . .;m; of the neuro-fuzzy system can be described by the formula:

�yj ¼
PR

r¼1 �y
def
j;r � T�N

k¼1
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where �ydefj;r ; j ¼ 1; . . .;m; r ¼ 1; . . .;R, are discretization points, R is a number of
discretization points (points in Y, in which the fuzzy inference from the rule base
(1) is discretized, resulting from, among others, use of typical for neuro-fuzzy
systems defuzzification operations, which allow to determine the real value of the
system output signal), T� �f g and S� �f g are weighted triangular norms (see e.g.
[17]). In particular, t-norm with weights of arguments can be denoted as follows
(see e.g. [17]):

T� a1; a2;w1;w2f g ¼ T 1� w1 � 1� a1ð Þ; 1� w2 � 1� a2ð Þf g ¼e:g: 1� w1 � 1� a1ð Þð Þ
� 1� w2 � 1� a2ð Þð Þ;

ð3Þ

where t-norm T �f g is a generalization of the usual two-valued logical conjunction
(studied in classical logic), w1 and w2 2 0; 1½ � mean weights of importance of the
arguments a1; a2 2 0; 1½ �. T-conorm with weights of arguments can be denoted
analogously:

S� a1; a2;w1;w2f g ¼ S w1 � a1;w2 � a2f g ¼e:g: 1� 1� w1 � a1ð Þ � 1� w2 � a2ð Þ: ð4Þ

For more details see our previous papers, e.g. [17].

2.2 Description of the Tuning Algorithm

The purpose of the algorithm described in this section is an automatic selection of
the structure and parameters of the rules in form (1) (number of inputs,
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antecedences, consequences, rules) and system in form (2) (discretization points). In
this process interpretability criteria defined in Sect. 3 are used. Considered algo-
rithm is a fusion between genetic algorithm (which allows to select the structure of
the system) with imperialist competitive algorithm (which allows to select the
parameters of the system).

Encoding of parameters and structure. The parameters of system (2) are
encoded in the following individuals (Pittsburgh approach, in which a single
individual of the population encodes the entire neuro-fuzzy system):

Xpar
ch ¼

�xA1;1; r
A
1;1; . . .;�x

A
n;1; r

A
n;1; . . .�x
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A
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A
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B
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¼ Xpar
ch;1; . . .;X

par
ch;L

n o
;

ð5Þ

where L ¼ Nmax � 3 � nþ 3 � mþ 1ð ÞþRmax � m is the length of the parameters
Xpar

ch ; ch ¼ 1; . . .; l for the parent population or ch ¼ 1; . . .; k for the temporary

population, �xAi;k; r
A
i;k

n o
; i ¼ 1; . . .; n; k ¼ 1; . . .;N, are parameters of Gaussian

membership functions lAk
i
xið Þ of the input fuzzy sets Ak

1; . . .;A
k
n (were used in our

simulations), �yBj;k; r
B
j;k

n o
; k ¼ 1; . . .;N; j ¼ 1; . . .;m, are parameters of Gaussian

membership functions lBk
j
yj
� �

of the output fuzzy sets Bk
1; . . .;B

k
m;Nmax is the

maximum number of rules, Rmax is the maximum number of discretization points.
The process of selecting the structure of the system is done using additional
parameters Xstr

ch . Their genes take binary values and indicate which rules, ante-
cedents, consequents, inputs, and discretization points are selected. The parameters
Xstr

ch are given by:

Xstr
ch ¼ x1; . . .; xn;A1

1; . . .;A
1
n; . . .;A

Nmax
1 ; . . .;ANmax

n ;B1
1; . . .;B

1
m; . . .;B

Nmax
1 ; . . .;BNmax

m ;

rule1; . . .; ruleNmax;�ydef1;1 ; . . .;�y
def
1;Rmax; . . .;�y

def
m;1; . . .;�y

def
m;Rmax

( )

¼ Xstr
ch;1; . . .;X

str
ch;Lstr

n o
;

ð6Þ

where Lstr ¼ Nmax � ðnþmþ 1Þþ nþRmax � m is the length of the parameters Xstr
ch .

Their genes indicate which rules ðrulek; k ¼ 1; . . .;NmaxÞ, antecedents
ðAk

i ; i ¼ 1; . . .; n; k ¼ 1; . . .;NmaxÞ, consequents ðBk
j ; j ¼ 1; . . .;m; k ¼ 1; . . .;

NmaxÞ, inputs ð�xi; i ¼ 1; . . .; nÞ, and discretization points ð�yr; r ¼ 1; . . .;RmaxÞ are
taken to the system. We can easily notice that the number of inputs used in the
system and encoded in the individual ch can be determined as follows:
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nch ¼
Xn
i¼1

Xstr
ch xif g; ð7Þ

where Xstr
ch xif g means parameters of the individual Xstr

ch associated with the input xi
(as previously mentioned, if the value of the gene is 1, the associated input is taken
into account during work of the system). The number of rules ðNchÞ used in the
system and encoded in the individual ch may be determined analogously.

Evolution of the parameters and structure. The idea of the proposed algo-
rithm is shown in Fig. 1. In Step 1 of the algorithm, an initial population (in a size
of Npop) is created and evaluated (each individual is called colony). It is worth to
mention that for each colony both the real value parameters Xpar

ch and the structure
parameters Xstr

ch are initialized. From initial population N best colonies are chosen,
and on the basis of each of them empires (subpopulations) are created. Best colony
in every empire is called imperialist. The remain Npop � N colonies are spread in a
specified way among the empires. In Step 2 of algorithm a assimilation and rev-
olution process [which is responsible to tune real parameters of the system (2)] are
made. These processes purpose is to move colonies toward imperialist in their
empires. Extension of this step relies on using mutation operator from genetic
algorithm, which is used to modify the structure of the system (2). The mutation
operator has been designed to be proportional to the value of the evaluation
function of the colonies (best colony have 0 % chances to be modified, worst colony
have 100 % chances to be modified). In Step 3 an evaluation of the modified
colonies is made. If a colony gets a better value than imperialist of its empire then
the imperialist is replaced by this colony. It is worth to mention that the fitness
function defined in our paper promotes these colonies which are characterized,
among others, by the simplest structures. In Step 4 of the algorithm, an empire
competition (based on the power of empires) takes place. The empire which win
competition (empire selected using roulette wheel method basing on probability
calculated by using power of empires) gets the weakest colony of the weakest
empire. If empire lost all colonies, it is removed from the algorithm. In the Step 5 a

Tuning of the colonies (assimilation, revolution and mutation)

Evaluation of the colonies

Competition of the empires

Initialization of the colonies and empires creation

StopStart

stopping criterion

yesno
Presentation of best solution

Fig. 1 The basic idea of
proposed hybrid algorithm
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stop condition is checked (e.g. if number of iterations reaches maximum value). If
stop condition is met, algorithm ends (and best colony of best empire is presented),
otherwise algorithm goes back to step 2. More details about algorithms used in
proposed hybrid genetic-imperialist algorithm can be found e.g. in [3, 17].

Chromosome population evaluation. Each individual Xch of the parental and
temporary populations is represented by a sequence of parameters Xpar

ch ;X
str
ch

	 

,

given by formulas (5) and (6). First parameters take real values, whereas the second
ones take integer values from the set 0; 1f g. The system aims to minimize value of
the following fitness function:

ff Xchð Þ ¼ T� ffaccuracy Xchð Þ; ffinterpretability Xchð Þ;wffaccuracy;wffinterpretability
	 


;

ð8Þ

where T� �f g is the algebraic weighted t-norm (see e.g. [17]), wffaccuracy 2 0; 1ð � is a
weight of the component ffaccuracy Xchð Þ and wffinterpretability is a weight of the
component ffinterpretability Xchð Þ. The component ffaccuracy Xchð Þ determines the
accuracy of the system (2) (in a form of classification error). The component
ffinterpretability Xchð Þ determines complexity-based (component ffintA Xchð Þ) and
semantic-based (components ffintB Xchð Þ � ffintE Xchð Þ) interpretability of the sys-
tem (2) encoded in the tested individual:

ffinterpretability Xchð Þ ¼

T� ffintA Xchð Þ; ffintB Xchð Þ; ffintC Xchð Þ; ffintD Xchð Þ; ffintE Xchð Þ
ffintE Xchð Þ; ffintF Xchð Þ; ffintG Xchð Þ;wffintA;wffintB;wffintC;wffintD;wffintE

� �
;

ð9Þ

where wffintA 2 0; 1ð � denotes weight of the component ffintA Xchð Þ, etc. The indi-
vidual components of the formula (9) are defined in the next section.

3 An Interpretability Criteria for Neuro-Fuzzy System
for Nonlinear Classification

In this section a new interpretability criteria for neuro-fuzzy system for nonlinear
classification are described. Each criterion is a component of fitness function
responsible for interpretability (9) of the system. The criteria are defined as follows:

(a) The component ffintA Xchð Þ determines complexity of the system (2) i.e. a
number of reduced elements of the system (rules, input fuzzy sets, output
fuzzy sets, inputs, and discretization points) in relation to length of the
parameters Xstr

ch (it allows to increase complexity-based interpretability):
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ffintA Xchð Þ ¼

Xn

i¼1
Xstr

ch xif g �
XNmax

k¼1
Xstr

ch rulekf g � Xstr
ch Ak

i

	 

þ
Xm

j¼1

XNmax

k¼1
Xstr

ch rulekf g � Xstr
ch Bk

j

n o
þ
Xm

j¼1

XRmax

r¼1
Xstr

ch �ydefm;r

n o
0
@

1
A

Nch � nch þmð Þþm � Rmax ;

ð10Þ
where Xstr

ch xif g means a parameter of Xstr
ch associated with the input xi, etc.

(b) The component ffintB Xchð Þ reduces overlapping of input and output fuzzy sets
of the system (2) encoded in the tested individual. This criterion aims to the
situation where crossover point between two nearest fuzzy sets have l xð Þ
value at cffint (set to 0.5) and it prevents from situations where nearest fuzzy
sets overlaps each other:

ffintB Xchð Þ ¼
Pnch

i¼1

Pnoifs ið Þ�1
k¼1 2 cffintc � ŷ1i;k

��� ���þ ŷ2i;k
� �

þ Pmch
j¼1

Pnoofs jð Þ�1
k¼1 2 cffintc � ŷ1j;k

��� ���þ ŷ2j;k
� �

2
Pnch

i¼1ðnoifs ið Þ � 1Þþ Pmch
j¼1 noofs jð Þ � 1ð Þ

� � ;

ð11Þ
where noifs ið Þ stands for number of active fuzzy sets of i input, noofs jð Þ stands
for number of active fuzzy sets of j output, ŷ1i;k; ŷ

2
i;k are lAk

i
xð Þ value of

crossover points between two input fuzzy sets and ŷ1j;k; ŷ
2
j;k are lBk

j
xð Þ value of

crossover points between two output fuzzy sets. Those values can be
calculated for inputs (and analogically for outputs) as:

ŷi;k ¼ exp �0:5 xsuppch �xAi;k
n o

þ xsuppch �xAi;kþ 1

n o� �
= xsuppch rAi;k

n o
� xsuppch rAi;kþ 1

n o� �2� �
;

ð12Þ
where Xsupp

ch stands for additional set of system parameters [which is build
temporary on a base of Xch from Eq. (11)] with sorted (by position of their
centres) list of non-reduced fuzzy sets (for details see [5]).

(c) The component ffintC Xchð Þ increases the integrity of the shape of the input and
output fuzzy sets associated with the inputs and outputs of the system (2)
encoded in the tested individual. This criterion aims to achieve fuzzy sets with
similar sizes under the same inputs and outputs:

ffintC Xchð Þ ¼ 1
nch þm

Xn

i¼1
Xstr

ch xif g �
XNmax

k1¼1
Xstr

ch rulek1f g � shxi;k1 Xch; i; k1ð Þ
þ
Xm

j¼1
�
XNmax

k1¼1
Xstr

ch rulek1f g � shy Xch; j; k1ð Þ

0
@

1
A;

ð13Þ
where shxi;k1 Xchð Þ (and analogically shyj;k1 Xchð Þ) is a function for calculating
proportion between fuzzy sets defined as follows:
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shx Xch; i; k1ð Þ ¼ 1�
min Xpar

ch rAi;k1

n o
; 1
Nch

PNmax
k2¼1 X

str
ch rulek2f gXpar

ch rAi;k2

n o� �
max Xpar

ch rAi;k1

n o
; 1
Nch

PNmax
k2¼1 X

str
ch rulek2f gXpar

ch rAi;k2

n o� � ;
ð14Þ

where Xpar
ch rAi;k

n o
stands for a gene of the individual Xpar

ch associated with the

parameter rAi;k (the width of the Gaussian function), Xpar
ch rBj;k

n o
means

parameter of the Xpar
ch associated with the parameter rBj;k.

(d) The component ffintD Xchð Þ increases complementarity (adjusting position of
the input fuzzy sets and data �xz;i) of system (2) encoded in the tested
individual:

ffintD Xchð Þ ¼ 1
Z � nch

XZ
z¼1

Xn
i¼1

Xstr
ch xif g �max 1; 1�

XNmax

k¼1

Xstr
ch rulekf g � lAk

i
�xz;i
� ������

�����
 ! !

:

ð15Þ
(e) The component ffintE Xchð Þ increases readability of the antecedents and

weights (it aims to reach specified values of weights—0, 0.5 and 1) of rules of
system (2) encoded in the tested individual:

ffintE Xchð Þ ¼ 1� 1
2Nch

1
nch

XNmax
k¼1

Xstr
ch rulekf g

Xn
i¼1

Xstr
ch xif g � lw wA

i;k

� � 

þ
XNmax
k¼1

Xstr
ch rulekf g � lw wrule

k

� �!
;

ð16Þ

where lw wA
i;k

� �
is a function defining congeries around values 0, 0.5 and 1 (in

simulations we assumed that a ¼ 0:25; b ¼ 0:50 and c ¼ 0:75). This function
is described as follows:

lw xð Þ ¼
a� xð Þa�1 for x� 0 and x	 a
x� að Þ b� að Þ�1 for x� a and x	 b
c� xð Þ c� bð Þ�1 for x� b and x	 c
x� cð Þ 1� cð Þ�1 for x� c and x	 1

8>><
>>: : ð17Þ

4 Simulation Results

In our simulations we considered five typical problems from the field of non-linear
classification [15]: (a) wine recognition problem, (b) glass identification problem,
(c) Pima Indians diabetes problem, (d) iris classification problem, (d) Wisconsin
breast cancer problem. For each problem a 10-fold cross validation was used, and
the process was repeated 10 times. Moreover, for each simulation problem a seven
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variants of learning were applied. Each variant had different set of weights of fitness
function (8)—see Table 1. Weights of remaining criteria were set as follows:
wffintA ¼ 0:50;wffintB ¼ 1:00;wffintC ¼ 1:00;wffintD ¼ 0:20;wffintE ¼ 0:50. The fol-
lowing parameters associated with ICA algorithm were set as follows: number of
colonies Npop ¼ 100, number of empires N = 10, number of iterations to 1000, the
revolution rate to 0.3. The mutation probability of genetic operator was set to 0.2.

The conclusions from simulations can be summarized as follows: (a) Using a low
value of the weights (such as 0.2) for components of the function (9) caused a
reduction in the readability of the relationship between the values of interpretability
criteria and the accuracy of the system (see Fig. 3-row 4). (b) Using extreme weight
cases (Case I and Case VII) often has no effect on improvement of the system (see
Table 2) and it can cause deterioration of the solutions (in comparison to other
cases). Solutions founded for these cases may appear under estimated Pareto front

Table 1 Values of the weights of the components ffaccuracy(Xch) and ffinterpretability(Xch) [see
formula (8)] for various variants considered in simulations: case I–case V

Name of the
weight

Case
I

Case
II

Case
III

Case
IV

Case
V

Case
VI

Case
VII

wffaccuracy Xchð Þ 1.00 1.00 1.00 1.00 0.75 0.25 0.10

wffinterpretability Xchð Þ 0.10 0.25 0.75 1.00 1.00 1.00 1.00

Table 2 The accuracy (%) of the neuro-fuzzy classifier (2) for learning phase, testing phase and
average value of them both for simulation variants case I–case VII

Problem Sequence Case Other
authors
testing
results

I II III IV V VI VII

Wine
recognition
problem

Testing 86.00 84.12 86.24 83.29 82.06 77.65 78.63 85.00–
98.61
[10, 16]

Learning 93.22 94.21 93.95 93.61 93.00 91.70 92.39

Average 89.61 89.16 90.09 88.45 87.53 84.67 85.51

Glass
identification
problem

Testing 69.76 69.81 68.57 68.03 61.01 48.45 46.31 49.99–
74.00
[4, 10,
16]

Learning 73.13 72.96 72.29 71.07 68.33 63.94 62.46

Average 71.45 71.39 70.43 69.55 64.67 56.20 54.38

Pima Indians
diabetes
problem

Testing 75.39 72.32 75.26 74.52 66.28 65.37 65.42 45.90–
80.00
[4, 11]

Learning 78.46 78.39 78.02 76.37 70.50 66.60 67.51

Average 76.93 75.36 76.64 75.44 68.39 65.98 66.46

Iris
classification
problem

Testing 92.78 92.44 92.33 92.89 92.78 85.52 86.86 81.80–
97.84
[4, 9]

Learning 97.48 97.47 97.26 97.53 97.10 97.07 96.39

Average 95.13 94.96 94.80 95.21 94.94 91.30 91.62

Wisconsin
breast cancer
problem

Testing 96.49 96.47 96.42 96.12 95.97 95.37 95.37 90.00–
97.24
[9, 16]

Learning 97.57 97.67 97.57 97.56 97.34 96.97 96.96

Average 97.03 97.07 96.99 96.84 96.65 96.17 96.17
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(see Fig. 3). (c) Using proposed interpretability criteria allows to achieve semantic
clear rules of the system (2) (see Fig. 2). (d) Considering seven cases of weights
allowed to determine the estimated Pareto fronts, which make possible to select the
interpretability-accuracy trade-off (compromise) by the user (see Fig. 3). (e) Number
of reduced inputs and rules depends from the simulation problem (see Fig. 3-row 6
and 7). For example for classification problem (c) system can reduce up to 3 inputs
(see Fig. 2) without significantly lost in the accuracy of the system. (f) Achieved
results are comparable (in a field of accuracy) with results achieved by other authors
using different methods (see Table 2). It should be emphasized that the purpose of
the paper was not to achieve the best possible accuracy in comparison with the
accuracy obtained by other methods. The purpose of the paper was to increase the
legibility of knowledge represented in the form of fuzzy rules with acceptable
accuracy of the system. It seems that this objective has been achieved.
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Fig. 2 Example input and output fuzzy sets of the neuro-fuzzy system (2) for the Pima Indians
diabetes problem for three various settings of the function (8): a case II, b case IV, c case VI. The
position of the discretization points was marked as black circles, the weights of the fuzzy sets was
marked by rectangles. The degree of coverage of the rectangle translates to value of the weight
(fully covered rectangle stands for weight 1, and non-covered rectangle stands for weight 0)
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Fig. 3 Dependence between accuracy (%) of neuro-fuzzy classifier (2) (average for learning and
testing phase) and values of interpretability components ffintA Xchð Þ � ffintG Xchð Þ for considered
variants of the simulations case I–case VII for following simulation problems: a wine recognition
problem, b glass identification problem, c Pima Indians diabetes problem, d iris classification
problem, e Wisconsin breast cancer problem
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5 Conclusions

In this paper a new approach for non-linear classification was proposed. It is based
on possibilities of neuro-fuzzy system and new hybrid genetic-imperialist algo-
rithm. The purpose of this algorithm was to select both the structure and the
structure parameters of the estimated classifier with different interpretability criteria
taken into consideration. Those criteria are focused not only on the complexity of
the system, but also on semantic part of the system. Simulation results performed
for typical problems of classification confirmed the correctness of the proposed
approach.
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