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Abstract Existing systems that allow Users to plan the route, usually do not
support the multiple criteria during the search process. In the sense of the
multi-criteria optimization, such a situation involves the search for the
Pareto-optimal solutions, but the present services use a weighted sum of the sup-
ported criteria. For solving Multiobjective Shortest Path problem we incorporate
genetic algorithms with modified genetic operators, what allows the reduction of the
search space. In this paper we compare genetic diversity in the algorithms which
incorporate our method. Conducted research shown that proposed modifications
allowed to obtain better diversity without either changing parameters or apply some
rules to the algorithm.
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1 Introduction

However the single objective shortest path (SOSP) problem can be solved in almost
constant time with a reasonable operational memory allocation [1], while consid-
ering multiobjective case of finding paths between two nodes in graphs, there exists
no solution with a comparable abilities. One of the most popular applications of such
algorithms are the online services that allow users to plan an itinerary of the trips.
Such a services usually take into account more than one criterion that can be
associated with each segment of the road network. L.e., one can decide to choose
either the shortest route or the route with the smallest travel time. In some cases all
of the criteria considered by a service are combined into their weighed sum, to
present the path which fits the preferences of its typical users. The situation, where
weights of the road network segments associated with some number of criteria are
substituted with a single value is actually a single objective optimization.
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In the Multiobjective Shortest Path (MOSP) problem, the solution consist of all
paths which are not dominated by any other paths. Such a set of paths is called a
Pareto set. This means that there is no path outside a Pareto set that is better than
any path in this set with respect to all of the criteria. In the multiobjective case, the
set of Pareto paths can be presented to the user, who can choose one of the paths
arbitrarily.

Algorithms for solving the MOSP problem are usually the extensions of the
single objective algorithms. One of the most popular deterministic algorithms for
this scenario is Shortcuts-Arcs (SHARC) algorithm [2] which reduces the search
space to find a solution in an acceptable time.

Excepting the deterministic algorithms, there exist many heuristic algorithms
that can be successfully applied to the problem of multiobjective optimization.
There exist methods based on the tabu-search, simulated annealing and the genetic
algorithms. In our work, we focus on the last group of mentioned algorithms. Due
to the size of the search space in the MOSP problem, the genetic algorithms tends to
stuck in the local minima. Such a phenomenon is called a premature convergence. It
usually occurs when one or more individuals with a good values of the fitness
function are frequently chosen for the crossover operation. In some number of
epochs they can dominate the population what’s consequence is an insufficient
exploration of the search space. However there exist some methods that address the
mitigation of the influence of premature convergence, it is still a problem to
maintain it effectively.

In this work, we examined the phenotypic and genotypic diversity of the pop-
ulation which can be directly applied to different genetic algorithms. During the
tests we included our modifications of the genetic operators, which allow to reduce
the size of the search space in the MOSP problem.

2 Related Work

The phenomenon of the premature convergence was described shortly after the
introduction of genetic algorithm paradigm. The idea of promoting the solutions
with the best values of the objective function causes the problem when some
individuals dominate the population. In the following section we describe possible
ways of its mitigation. Then we discuss the application of the genetic algorithms to
the problem of multiobjective shortest path, with focus on our former improvement
associated with the reduction of the search space.
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2.1 Methods of Preventing the Premature Convergence

Present methods of preventing the premature convergence can be related to [3-5]:

e crossover and mutation operator,
selection operator,
model of the population.

Regarding the crossover operator, there were attempts to preserve some patterns
encoded in the individuals. Many of these operators were firstly applied for the
Traveling Salesman Problem, but can be utilized for other combinatorial problems
like MOSP. Maximum Preservative Operator [6] excluded the possibility of
crossover that breaks the common sequence in the mated chromosomes. Greedy
Crossover [7] applied some conditions that disallowed the operation in case of
getting offspring worse than the ancestors.

In case of mutation, Kureichick et al. [7] proposed Social Disaster Technique.
When the algorithm suspect that the premature convergence may occur, a catas-
trophic operator is applied to get the genetic diversity back. The variants of this
operator are:

e Packing—while more than one individual have the same value of the fitness
function, only one remains unchanged and all the others are fully randomized.
e Judgment day—only the individual with the best value of objective function
remains unchanged and all the others are substituted by random chromosomes.

The idea of changing the selection operator depends on the observations of the
Pareto front in the current iteration. The most popular algorithms in this category
are Nondominated Sorting Genetic Algorithm II (NSGA-II) [8] and Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [9]. In the first algorithm, the individuals are
sorted with respect to the dominance relation. Then, sorting with respect to
crowding distance is applied. This modifications promotes crossover that can pre-
serve the genetic diversity. What is more, Nicoara [5] proposed dynamic mutation
and crossover operators for NSGA-II to improve the performance of the algorithm.
In the SPEA?2 algorithm, the individuals are ranked with respect to the domination
relation. Proposed ranking is treated as an objective function during a selection for
CrOSSOver.

The second method of preserving the genetic diversity is to impose some
restrictions on the individuals that can be mated with a certain individual without
interposing the selection operator. Zhong [10] combined the paradigm of
multi-agent systems and genetic algorithms. The individuals lived in a lattice and
can interact only with their neighbors (Fig. 1). Furthermore author proposed unique
operators like self-learning to improve the performance of the algorithm.

This influenced the possibility of obtaining the premature convergence, as very
good individuals could not dominate the population in a small number of iterations.
Another interesting algorithm is Hierarchical Fair Competition described in [11],
where the population is divided into groups named islands. In each island live
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individuals with a similar value of the objective function. This causes that elitist
individuals does not compete with the worst and as a result population can evolve in
different directions. After a certain number of iterations, a migration between
islands is performed in order to preserve the genetic diversity on each island.

Fig. 1 Population in
multi-agent genetic algorithm |
[10]
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2.2 Genetic Algorithms for Solving MOSP

Let G = (V, E) be a graph, where V and E represent its nodes and edges, respec-

tively. Let ¢ = ¢y, ¢2, . . ., ¢, be a cost associated with the edge e € E. Moreover we
denote a path between nodes s and ¢ as p(s,t) = (s,vi,va,...,Vn, 1), where
Vi, V2, ..., v, € V denote nodes. In the path, all the neighbouring nodes are con-

nected by the edge. In our experiments we consider a cost C of a path as a sum of
cost of all edges that belong to the path:

~—

C:ZC(Vi7Vi+1) (1
i=1

We say that path p; dominates path p,, when Ci(p;) < C;(p,) and the inequality
occurs for at least one element C; of the cost vector associated with the path. If
considered path is not dominated by any other path, we call it Pareto-optimal. The
task of MOSP is to find the set of Pareto-optimal paths.

One of the first works on the solution of the shortest path problem with use of
genetic algorithms was [12]. Authors proposed use of a simple genetic algorithm
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Fig. 2 Schema of the simple genetic algorithm

(SGA) to SSSP problem. A general scheme of simple genetic algorithm is given on
the Fig. 2.

At the beginning of the algorithm, the population was initialized with a random
set of paths. The crossover operator was a single point, and could be applied only if
paths had a common vertex. The mutation operator substituted a fragment of
selected path by a random one.

Kanoh [13] proposed a method specific for road networks which taken into
account factors associated to traffic lights, road category and direction changes.
Other authors utilized the conception of viruses [14] to inject the predefined seg-
ments into the optimized paths. Application of SPEA-II into the MOSP problem
appeared in [15]. Chakraborty [16] proposed a method similar to VEGA [17],
where population was divided into subpopulations and each of subpopulations was
optimized with respect to single criterion.

The biggest disadvantage of mentioned algorithms was a small adjustment to the
problem of path optimization. None of the known methods of the search space
reduction, which are widely used in the deterministic methods, was applied into
genetic algorithms. This can be treated as a possibility of the occurrence of pre-
mature convergence, because the algorithm may easier stuck in the larger search
space with numerous local optima. Moreover, any of the algorithms used a
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weighted sum method which actually is a kind of a single objective optimization
and does not allow to find the Pareto set.

For the purpose of this paper we focused on the three algorithms: Simple Genetic
Algorithm, Strength Pareto Evolutionary Algorithm and Multi-agent Genetic
Algorithm. The first algorithm is often told to ‘get stuck’ in the local optimum. It
has no operators to mitigate the premature convergence.

Schema of the Strength Pareto Evolutionary Algorithm [9] is similar as in SGA
presented in Fig. 2. The main difference is the selection operator, which takes into
account the number of individuals dominated by the current solution. What is more,
the algorithm incorporates the concept of archive. Nondominated individuals from
each iteration can be held in a separated set. To enter the archive, new individual
cannot be dominated by any individual that is already placed there. After insertion
of new solution to the archive, one have to remove from it all of the dominated
solutions. Archived solutions allow to better control the results of the algorithm,
because they will not be destroyed during the iterations.

Multi-agent Genetic Algorithm [10] differs significantly from the formerly
described algorithms. In this algorithm individuals are organized in a grid presented
on Fig. 1. Lines connect the solutions that can interact with one another. During
each iteration authors propose four operations:

e competition in neighborhood—if the value fitness function of the current indi-
vidual is worse than the fitness of the best individual in its neighborhood, genes
of current individual are substituted by genes of the best individual

e orthogonal crossover—where each gene can be chosen from the first or the
second parent

e mutation—performed as in the other algorithms

e learning—gathering good schemes from the individuals in the neighborhood.

As the algorithm presented in [10] was designed for the optimization of multi-
dimensional functions, operators were adapted to the problem of MOSP. At first,
we have to change the competition operator in the manner that the best individual in
the neighborhood substitutes the current individual with some high probability. The
crossover operator was changed to one known from the work [12], because
orthogonal crossover cannot be easily adapted to the paths. Furthermore, the
learning operator tries to substitute some part of the paths, if current individual has
common nodes with the individuals in its neighborhood. As range of the genetic
operators is limited in MAGA, it can be treated as a method of preserving the
genetic diversity of the population.

2.3 Former Research on the Genetic Diversity Measures

Significant influence of the premature convergence induced researches to elaborate
diversity measures for the population. First works regarding this problem appeared
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in the end of the twentieth century [18, 19]. Overview of the general methods of
measuring the population diversity can be found in [20, 21].

Genotypic Diversity Measures The main difference between optimization of
paths in graphs represented by a sequence of vertices with respect to
multi-dimensional functions is that in the first case the length of the chromosome
varies depending on number of vertices in examined paths. As a result, the geno-
typic diversity cannot be calculated as easy as calculating the distance between
points representing the solution. In the case of paths, we can use Jaccard’s index
defined for sets and Jaro’s distance defined for strings. During the literature review,
one did not find any measures designed for paths.

EplﬂEpz
Epl UEp2

2)

Mjaccard =

Jaccard’s index (Eq. 2) examines number of common edges in two paths with
respect to the total number of edges in these paths. E, denotes a set of edges that
belong to the path $p$. However it does not take into account the order of the
edges, it can give a general indication, whether paths differ or not.

On the other hand, Jaro’s [22] distance shown in Eq. 3 defines the terms of
matching and substitution which can be used to examine actual sequences.
Furthermore it can be computed faster than a Levenshtein distance [22].

0 form =0
mjarOZ{%(lﬂ+|ﬂ+m_—t) form > 0 (3)
S1 S m
where:
|p| the number of edges in path p,
m number of matching elements,
t  half of a number of substitutions.

In Jaro’s distance, elements are called matching if they are in the same order in
both sequences, and a difference in their position from a start of a sequence is
smaller than a half of the length of shorter sequence. Substitution is an operation
which occurs on the elements that are equal but not placed in the correct order.

Low values of measures (Eqgs. 2 and 3) reveal that the paths represented by
individuals differ significantly. If the phenotypic diversity is small, the values of
mentioned measures should be larger.

Phenotypic Diversity Measure An example of the phenotypic diversity measure
is proposed by Morrison [20] and given by Eq. 4. Its value is actually an overall
distance from the centroid of values of the fitness function.
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Mporrison = Z Z (Cij - ki)z (4)
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where:

¢;j ith cost component of the jth chromosome,
P number of chromosomes in the population,
N length of the cost vector.

However values of phenotypic diversity measures calculated for non-injective
functions can be distorted, due to the fact that different paths can have the same
cost, such measures are accepted in the literature.

Low values of the Morrison’s distance mean that the solutions are gathered
nearby the certain point in the search space. As genetic algorithm is supposed to
converge, the values of this measure should not increase during the iterations.
Higher values mean that some solutions are placed far away from the best solutions.

Solutions found by the genetic algorithm can also be compared to the actual
solutions obtained by the deterministic exact method by use of the recall:

|Pe0P|
1P|

recall =

(6)

where:
P, set of nondominated paths found by genetic algorithm
P set of the Pareto-optimal paths.

3 Improvement of the Genetic Algorithm

In our former research [23, 24] we proposed a method to involve the reduction of
the search space in genetic algorithms solving MOSP problem. The main idea is to
preprocess the input graph by calculating the hierarchical division of its edges with
the Highway Hierarchies [25] algorithm. This algorithm is based on the observa-
tions of drivers’ behavior. While having long distance travel, they only decide to
drive through minor roads when they are not far away from the start point and when
they are close to their destination. Authors of [25] proposed a method that allows
artificial assignment of the hierarchy level for all edges in the graph. In this division
the most important edges are placed in the top hierarchy level. Such a division
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performed independently for each objective allows us to mitigate many graph edges
from the search process, what affects the speed of genetic algorithm’s convergence.

What is more, we decided to take into account the hierarchy levels associated
with each edge while evaluating the fitness function. Let / be a number of edges that
belong to path p. For each edge €”,i € 1,.. ., we can denote the vector of hierarchy
levels as h(é!). Let h,,,, be the highest possible hierarchy level in the hierarchical
division for the input graph. In the Eq. 7 we define the vector H(p) as a sum of
differences between maximum hierarchy level and calculated hierarchy levels for all
edges and all criteria.

1 n

Hp) =" = 1u(€]) )

J=1 =1

This allows us to define the fitness function as a product of H(p) and C(p):
Culp) = [[Hi(p)Cilp) (8)
i=1

where #n is the number of criteria.

While constructing the initial paths, we use a bidirectional search as in the
Highway Hierarchies algorithm. After visiting a node, we write the information
about the hierarchy levels of the incoming edge. Then, we do not allow to add any
dominated edges to the priority queue. All possible edges are added to the priority
queue with a random priority (instead of cost of traveling from the source node to
the visited node). This ensures that the path will be found and it is not violate the
rules of the hierarchical search.

The use of the hierarchical division while generating the initial paths enforces to
handle its rules during the whole run of the algorithm. The crossover operator can
only be applied for two individuals when there exist at least one common node on
the paths it represents. Moreover, we check before substitution of the path frag-
ments if the next edge after a crossing point is not dominated by the preceding edge
[24].

The mutation operator works as follows: we randomly choose two nodes on the
mutated path and generate new random path between them, considering only edges
that are not dominated by these preceding the nodes selected for mutation. Adapted
crossover and mutation operators allowed us to take into account the search space
reduction in the remaining parts of the genetic algorithm.
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4 Experimental Results and Discussion

In this section we present the results of our research regarding the population
diversity in genetic algorithm applied for solving the MOSP problem. We per-
formed the research on the map of the city of Lodz, Poland, which contains about
7000 nodes and 17,000 edges.

We have chosen two nodes on the map which represented the starting and the
finishing point on the route that was supposed to be found. The first node was
located in the suburbs and the second one was placed in the opposite side of the
city. We used Matsim as a simulation environment integrated with our algorithms.
The data was prepared using OpenStreetMap (spatial information) and the PostGIS
plug-in (spatial functions to extract values for the different criteria).

We tested our approach for three different criteria: the length of the road,
inverted maximum speed limit and the distance to the buildings. We decided to
minimize all of the criteria, so the optimal path will be a short drive through the
highly urbanized area but with the highest possible speed limits.

In our experiments we gathered results for three genetic algorithms: Simple
Genetic Algorithm, Strength Pareto Evolutionary Algorithm and Multi-agent
Genetic Algorithm. All the algorithms was run for 200 iterations. Other parameters
were as follows:

e SGA—I100 individuals, mutation rate: 10 %, crossover probability: 90 %,
tournament selection with 2 competitors and 1 winner

e MAGA—Iattice size: 10 x 10, mutation probability: 5 %
SPEA—100 individuals, mutation rate: 5 %, tournament selection with 2
competitors and 1 winner.

For all algorithms we tested its four variants:

SR—classical version of the algorithm with no search space reduction
CR—search space reduction included in the fitness function only

SH—search space reduction included during the random population generation
CH—search space reduction included in both fitness function and initialization.

As the fitness function in the SR and CR algorithm is a plain cost of the path, and
in the SH and CH it is given by Eq. 8, values of the measures can be compared
pairwise. In all simulations we calculated values of Morrison’s measure, recall and
Jaccard’s index after every iteration.

4.1 Phenotypic Concentration

At first we decided to examine the concentration of individuals after 200 iterations
of all algorithms. To do this we compared the average values of the Morrison’s
distance for all algorithms during all iterations. The results for Simple Genetic
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Algorithm are presented on Fig. 3. Presented data show the difference between the
algorithm with modified operators and its classic version. It turned out, that values
of the Morrison’s distance are lower for the modified algorithms with the search
space reduction applied in the genetic operators, which means that the individuals
are gathered closer to each other. For other algorithms, we obtained similar results.

Values of the recall (Eq. 6) measure shown on Fig. 4. We observed that the
variants of the modifications including the search space reduction in the operators
(CH, SH) performs better than the base version (SR) and the algorithm with
modified fitness function (CR). This corresponds with the values of the Morrison’s
distance.
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Fig. 5 Jaccard index for Strength Pareto Evolutionary Algorithm

4.2  Jaccard’s Index

Conducted research shown that for examined algorithms the values of the Jaccard’s
Index are similar for all the versions of the algorithm. We observe that at the
beginning of the optimization process the genotypic diversity is very high due to the
low values of the Jaccard’s Index. During the iterations, one can see that the
Jaccard’s Index has higher values for the variants of the algorithms with the search
space reduction included in the genetic operators (CH and CR). However for the
individuals in this versions the genotypic diversity is lower, these values does not
mean that the algorithm stuck in the local optimum. It is caused by the better
exploration of the part of the search space which is placed near the Pareto front
(Fig. 5).

4.3 Values of Measures for Selected Algorithms

Conducted research shown that for SGA the modifications which include the search
space reduction do not help significantly to preserve the genetic diversity of the
population. Values of Morrison’s measure do not vary very much during the iter-
ations, which is not a desirable effect, because it means that the search space is not
properly explored. On the other hand, SGA is often told to converge very fast to
suboptimal solution due to its simplicity and it is very hard to adapt any schema to
improve its performance.

The Multi-agent Genetic Algorithm is known from its good abilities in pre-
serving the genetic diversity. During the experiments we noticed the fastest con-
vergence of the SH and CH variants. It was confirmed by high values of the recall
measure. The genotypic diversity was preserved for all of the variants.

The last algorithm we examined was SPEA. Overall values of the recall were
greater than in MAGA and SGA algorithms for the same size of the population.
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5 Conclusion

Conducted research shown that proposed modifications of the fitness function and
the genetic operators affects significantly the convergence of the examined genetic
algorithms. The modified genetic operators allow to obtain the faster convergence
and the better exploration of the Pareto front with respect to the base version of the
genetic algorithm.

What is more, proposed modifications can be applied to all genetic algorithms
with no modifications because they only change the fitness function and the method
of performing the crossover and mutation.
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