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Abstract This chapter explores what we know about the structure and function of
neurons, including the identity and location of adult neural stem cells, the prolif-
eration and specification of neural progenitors, and their suspected involvement in
cancer. We begin with a brief review of conventional accounts of neurogenesis and
progress toward current issues in the field. Finally, we discuss the potential influ-
ence of cancer on the formation and innervation of new neural networks, and the
effects of this on metastatic tumour progression. The process of neurogenesis was
traditionally believed to occur exclusively during embryonic stages, but recent
evidence strongly suggests that neurogenesis occurs in discrete regions of the adult
mammalian central nervous system (CNS), and that this process may be upregu-
lated in the presence of cancer. A complex network of biochemical pathways and
signalling molecules influence metastatic tumour growth. The dysregulation of
these signalling pathways by cancer drives tumour growth and leads to significant
symptoms, including pain. Tumour cells secrete growth factors, cytokines, and
chemokines and are reported to stimulate adjacent nociceptors. Progressive tumour
growth is accompanied by escalating pain behaviours in murine models of
cancer-induced bone pain. Neurotrophic factors play an important role in the
functionality of nociceptive afferents, and represent a probable link between
metastatic tumour growth and pain.
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Abbreviations

CNS Central nervous system
BrdU Bromodeoxyuridine
IHC Immunohistochemistry
VEGF Vascular endothelial growth factor
NGF Nerve growth factor
BDNF Brain-derived neurotrophic factor
NT Neurotrophin
NTR Neurotrophin receptor
CIBP Cancer-induced bone pain
NSAIDs Nonsteroidal anti-inflammatory drugs
CGRP Calcitonin gene-related peptide
NMDA N-methyl-D-aspartate
AFT-3 Activating transcription factor-3

Introduction

While our understanding of neurogenesis has increased dramatically within the past
decade, the field remains relatively elusive, and we are far from a comprehensive
understanding. Even more mysterious is the role of neurogenesis in cancer. This is
an exciting time to be involved in the field of neurogenesis, as imaging techniques
are creating platforms to investigate novel ideas. This chapter will explore what we
know about the structure and function of neurons, including the identity and location
of adult neural stem cells, the proliferation and specification of neural progenitors,
and their suspected involvement in cancer. We begin with a brief review of con-
ventional accounts of neurogenesis and progress toward current issues in the field.
Finally, we discuss the potential influence of cancer on the formation and innervation
of new neural networks, and the effects of this on metastatic tumour progression.

The Birth of Neurogenesis

Santiago Ramon y Cajal is widely recognized as the father of neuroscience.
Traditionally, neurons were believed to be generated exclusively during the prenatal
phase of development [79]. “No new neurons after birth” became the central dogma
in neuroscience for nearly a century [36]. In the late 1950s, however, a new tech-
nique was developed to label dividing cells with [H3]-thymidine, which incorporates
into DNA during the replicative S-phase of the cell cycle and can be detected with
autoradiography [95]. In 1961, the generation of new neurons was first reported
using this technique on three-day-old mouse brains. Shortly after, Altman and col-
leagues published a series of reports demonstrating [H3]-thymidine evidence for new
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neurons in the adult rat brain, particularly in the dentate gyrus of the hippocampus
[4], neocortex [3], and olfactory bulb [2]. At the time, these studies were seen to lack
functional relevance and were not given much attention. In the late 1970s, the issue
of adult neurogenesis was revisited when it was demonstrated that newborn neurons
in the hippocampus survive for a long period of time [49], receive synaptic inputs
[48], and project their axons to target areas [96]. Meanwhile, a series of studies that
focused on adult neurogenesis in songbirds provided evidence for functional roles of
post-natal neurogenesis in seasonal song learning [72].

Neurogenesis is now a widely studied phenomenon and has known applications
that extend beyond simple embryonic proliferation. Research suggests that it is
functionally implicated in manymental and physiological illnesses, including cancer.

Neurons

A neuron is an electrically excitable cell that uses chemical signals to transmit
information between the brain and body. A typical neuron is composed of a soma
(cell body), dendrites, and an axon (Fig. 3.1). Dendrites are thin, branched

Fig. 3.1 A typical neuron
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structures that extend from the cell body and cumulatively form the dendritic tree.
Axons also extend from the cell body, but unlike dendrites, each soma gives rise to
only a single axon. Axons leave the soma at a swelling called the axon hillock and
may be extremely long, extending up to one metre in humans. Electrical signals are
transmitted from the cell body, down the axon, to the dendrites of adjacent neurons
through a process called saltatory conduction. A layer of electrically insulating
material called myelin surrounds axons, creating a myelin sheath that propagates
the nerve impulse while preventing the loss of electrical current [103]. At the
synapse, the small gap between neurons, signals are transmitted from the axon of
one neuron to the dendrites of surrounding neurons via excitatory and inhibitory
messengers, called neurotransmitters. Neurons do not undergo cell division, but
arise from progenitor cells, or stem cells.

Neurogenesis

Neurogenesis is the process of generating functionally integrated neurons from
progenitor cells. Traditionally, this process was believed to occur exclusively
during embryonic stages [79], but recent evidence strongly suggests that neuro-
genesis occurs in discrete regions of the adult mammalian central nervous system
(CNS), including two brain regions called the subventricular zone of the lateral
ventricle and the subgranular zone of the dentate gyrus in the hippocampus [36, 50,
58]. Beyond these two structures, neurogenesis has appeared to be nonexistent in
healthy individuals. However, following trauma and pathological stimulation,
non-neurogenic regions in the adult brain appear to support neurogenesis. In an
effort to study this phenomenon in adults, neural stem cells were first isolated from
the adult CNS of rodents [80] and later from humans [54].

Bromodeoxyuridine (BrdU), a synthetic thymidine analogue and S-phase marker
of the cell cycle [34], is detectable by immunohistochemistry (IHC) and can be used
for phenotypic analysis and stereological quantification, making IHC the most
commonly used technique in the field. Adult neurogenesis has been observed with
BrdU incorporation in mammals and human samples [29]. Evidence from com-
bined retroviral-based lineage tracing [76, 84] and electrophysiological studies [12,
20, 101] suggest that newborn neurons in the adult mammalian CNS are func-
tionally and synaptically integrated.

Like angiogenesis, neurogenesis involves the development of intricately bran-
ched networks that are regulated by guidance factors and cytokines, including
semaphorins and their receptors [111], vascular endothelial growth factor (VEGF),
which supports neuronal survival [56], plexins [111], and neuropilins [27], which
are involved in tumour vascularization. Multiple clinical observations suggest that
angiogenesis and angiogenic factors promote neurogenesis. Seizure- and cerebral
ischemia-induced brain injury stimulate both angiogenesis and neurogenesis
[37, 74]. Notably, neurogenesis is observed in both human patients and animal
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models of neurodegenerative diseases including Huntington’s, Alzheimer’s, and
Parkinson’s [35, 47, 104].

Adult neural stem cells are unspecified precursor cells with the ability to pro-
liferate and make new neurons, astrocytes, and oligodendrocytes. Bone marrow-
derived CD34+ progenitor cells offer promise for the treatment of various diseases
through the repair of damaged tissues. Stem cells differentiate into endothelium,
hematopoietic cells, and as reported by some, into neurons, fibroblasts, and muscle
[32]. CD34+ and CD133+ differentiate into endothelial cells and thereby participate
in neurovascularization, the healing of injured tissues, and promotion of tumour
growth and inflammation [7, 21, 40]. In animal models, CD34+ stem cells have
been shown to indirectly promote neurogenesis through angiogenesis following
stroke, possibly due to a reduction in the G1 phase of the cell cycle [99].

Neurotrophins

Neurotrophins are proteins that regulate neuronal survival, axonal proliferation,
synaptic plasticity, and neurotransmission [64, 106]. They are a superfamily of
polypeptide growth factors including nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), and neurotrophins (NTs) 3–6 [16, 25]. They influence
cellular function by activating their respective tyrosine kinase receptors TrkA,
TrkB, TrkC, and the common neurotrophin receptor (NTR) p75 [23, 98]. Along
with their receptors, neurotrophins are key to the survival, development, and
function of the vertebrate nervous system [11, 14, 57], and are also present in
non-neuronal tissues [92].

Although classically known for their effects on neurons, neurotrophins have
been found to be multifunctional and to affect non-neuronal cells as well.
Neurotrophins function to stimulate proliferation and differentiation in various cell
types, have been implicated in the pain response, and have receptors that are highly
expressed in the central and peripheral nervous systems. Although originally
thought to function during the developmental stage only, it is now known that their
functionality extends to mature stages of life.

Neurotrophins are constitutively expressed at low levels in adult tissues and are
upregulated in inflammatory pain states. The p75 NTR binds all the members of the
neurotrophin family with low affinity, while NGF, BDNF and NT-4/5, and NT-3
bind preferentially to TrkA, TrkB, and TrkC, respectively (Fig. 3.2). Under normal
physiological conditions, neurotrophins regulate the differentiation, growth, and
survival of neurons.

The Trk receptors are tyrosine kinase receptors. Activation by their ligands leads
to dimerization of the receptor and phosphorylation of residues that promote the
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activation of the Ras-Raf-MAPK, PI3 K-Akt-GSKIII, PLCγ-DAG- PKC, and S6
kinase signalling pathways (Fig. 3.3). The p75 receptor increases the rate of binding
of NGF to TrkA, thereby increasing the number of high affinity binding sites [10].

During early development, activation of these pathways blocks apoptosis,
thereby promoting cell survival and differentiation. Activation of these pathways in
adult neurons regulates neural responsiveness and synaptic function and has
important consequences for pain signalling systems.

Regulation of Neurotrophins by System xC�

The system xC� antiporter exchanges intracellular glutamate for extracellular cys-
teine at a 1:1 ratio in an effort to protect against oxidative stress. Considerable
evidence suggests that glutamate released from system xC� is involved in multiple
physiological and pathological processes, which may alter neuronal plasticity and
can cause cellular toxicity. Glutamate released from activated astrocytes and
microglia are capable of killing cortical neurons [30] and granule cells [75],
respectively. System xC�-mediated cystine uptake plays an important role in the
regulation of cellular glutathione levels, as glutathione synthesis in the brain is
rate-limited by the uptake of cystine [83]. In astrocytes, overexpression of xCT, the
functional subunit of system xC�, enhances glutathione release and protects

Fig. 3.2 Major neurotrophin–receptor interactions. Proneurotrophins bind p75NTR, but not the
Trk receptors. Mature neurotrophins bind and activate p75NTR, and specifically interact with the
three Trk receptors. NGF activates TrkA; BDNF and NT4 activate TrkB; NT3 activates TrkC.
Ligand-binding specificity is affected by the presence of p75NTR
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neurons from oxidative stress [93]. By overexpressing glutamate, system xC� has
the potential to cause excitotoxicity.

Cancer cell lines release excess glutamate via system xC� [86, 90, 100], and
there is considerable evidence for bidirectional signalling between glutamate and
neurotrophins. That is, glutamate upregulates neurotrophin expression, while the
neurotrophins then upregulate the expression of the system xC� transporter [61].
Neurotrophins have many functions within the CNS, including mediating excito-
toxicity, oxidative stress, and cellular glutathione levels. Given the high level of
overlap between system xC� and growth factors, it is perhaps not surprising
that some neurotrophic effects may be mediated by the functional regulation of
system xC�.

Fig. 3.3 Major intracellular signalling pathways and the interactions of neurotrophins with Trk
and p75NTRs. The p75NTR regulates three signalling pathways. NF-kB activation results in
transcription of multiple genes that promote neuronal survival. Activation of the Jun kinase
pathway regulates activation of several genes, some of which promote neuronal apoptosis. Ligand
engagement of p75NTR controls the activity of Rho, which controls growth cone motility. Each
Trk receptor controls three major signalling pathways. Activation of Ras activates the MAP kinase
signalling cascade, which promotes neuronal differentiation and neurite outgrowth. Activation of
PI3 kinase through Ras or Gab1 promotes survival and growth of neurons and other cells.
Activation of PLC-g1 results in activation of Ca2C- and PKC-regulated pathways that promote
synaptic plasticity. Each of these signalling pathways also regulates gene transcription
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Cancer-Induced Bone Pain

Cancer has the propensity to metastasize to the bone microenvironment, causing
severe cancer-induced bone pain (CIBP) in patients [69], which is characterized as
ongoing or breakthrough pain. Ongoing pain is characteristically dull, persistent,
increasing in intensity over time, and is often pharmacologically managed with the
use of nonsteroidal anti-inflammatory drugs (NSAIDs). Breakthrough pain is fur-
ther characterized as “spontaneous pain,” without an apparent trigger, or
“movement-evoked pain,” brought on by movement of the tumour-bearing bone.
Exogenous glutamate sensitizes adjacent nociceptors and initiates a pain response in
peripheral tissues [18, 19].

CIBP elicits neurochemical changes unique from inflammatory or neuropathic
pain states. Bone is innervated with Aβ, Aδ, and C fibres [65]. The acidic tumour
environment, along with the secretion of growth factors, cytokines, and chemokines
from the tumour cells, are reported to stimulate adjacent nociceptors and evoke
pain [71].

Studies have shown that progressive tumour growth is accompanied by pain
behaviours in rats [38] and mice [100]. Metastatic tumour growth is influenced by a
complex network of biochemical pathways and signalling molecules. The dys-
regualtion of these signalling pathways by cancer drives tumour growth and leads to
significant symptoms, including pain. Neurotrophic factors play an important role
in the functionality of nociceptive afferents, and represent a probable link between
metastatic tumour growth and pain.

Animal sarcoma models mimic the relative resistance to opioid therapy seen in
humans with bone cancer pain, such that 10-fold higher doses of morphine are
required to control bone cancer pain as compared to chronic inflammatory pain
[63]. Neuropathic pain is also resistant to standard opioid analgesic therapy [108].
Taken together, this information suggests that a potential neuropathic component
may be involved in driving bone cancer pain.

Neurotrophins as a Mechanism for Cancer-Induced Bone
Pain

Progenitor cells function to repair injured tissues by facilitating new muscle, nerve,
and blood vessel formation. Paradoxically, the same progenitors may contribute to
tumour growth by promoting angiogenesis and tumour invasiveness.

A tumour is far from an isolated structure within its host organism; it interacts
with its environment directly via cell-to-cell contacts. Like native cells, tumours
require nutrients and oxygen, as well as a method of excretion for metabolic wastes
and carbon dioxide. As an angiogenic response to cancer cells, existing blood
vessels are recruited for the host vascular network and new blood vessels form.
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It has been hypothesized that neurogenesis significantly contributes to cancer
pathology, and that cancer-induced tumours initiate their own innervation by the
release of neurotrophic factors in a fashion similar to angiogenesis [28]. That is,
tumour cells release neurotrophins, which stimulate adjacent neurons to develop
axons that innervate the tumour. These axons then release neurotransmitters, which
initiate migratory activity of tumour cells and ultimately foster metastases devel-
opment [41]. Neural innervation promotes tumour spread along axons, and a major
consequence of this innervation is cancer pain.

Neurogenesis clearly has a regulatory mechanism in cancer progression. Notably,
neurotrophic activity does not necessarily constitute a sign of malignancy. That is,
positive immunostaining for activated neurotrophin receptors in tumour biopsies
does not prove that neurotrophins cause metastatic tumours. However, functional
experiments provide compelling causative evidence for the involvement of neu-
rotrophins in certain metastatic tumours. Functionally significant neural proliferation
has been implicated in neuroblastoma, prostate cancer [8], colorectal cancer [1],
esophageal and cardiac carcinoma [62], tumours of the urinary bladder [88], and
choroidal melanoma [89]. Together, these studies suggest that the neuroendocrine
system plays a major role in metastatic development and cancer progression.

NGF

NGF is important in the modulation of inflammatory [13, 43, 55, 109] and neu-
ropathic [78, 81] pain states, and is expressed by several tumour, inflammatory, and
immune cells [26, 102]. Once bound to TrkA, it modulates the expression of the
neurotransmitters substance P and calcitonin gene-related peptide (CGRP), recep-
tors, channels, and structural molecules implicated in nociception [39]. It supports
nociception through the mechanistic augmentation of afferent neurotransmitter
production [5], stimulation of sympathetic fibre ingrowth into dorsal root ganglia
[24, 77], and activation of signalling pathways including MAPK [44, 73].

NGF is involved in tumour progression via the generation of a positive
microenvironment for cancer cell survival and proliferation [53, 66, 70], and acts as
a mediator and modulator of pain in a variety of pain states, including metastatic
tumour-induced pain [6, 52, 94]. Humans also report pain at the site of injection
after acute administration of NGF [68, 97].

In several malignancies, including breast, prostate, and pancreatic cancers, NGF
is implicated in perineural invasion, a process in which cancer cells invade the
surrounding nerves [51, 112]. Accordingly, as a potential therapy for cancer pain,
researchers have suggested the pharmacological inhibition of NGF and its cognate
receptor, TrkA [9].

Early and sustained administration of anti-NGF has been shown to suppress
tumour-induced pain and nerve sprouting within tumour-bearing bones [17, 39, 45].
Mouse models of CIBP reveal that nociceptive fibres that innervate bone express
TrkA receptors, and treatment with anti-NGF, a selective antagonist, attenuates
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behavioural signs of CIBP [17, 39, 45, 46, 67]. Tumour angiogenesis and growth
are facilitated by NGF-induced neuronal system development [82]. NGF is a
pro-angiogenic factor in breast cancer [82], and neutralization of NGF partially
reverses cancer-induced angiogenesis. Together, NGF and its cognate receptor are
considered to be major mediator of chronic pain [107].

BDNF

While NGF seemingly has the most prominent influence on CIBP, BDNF also
plays a role in tumour pain, although its precise role has not yet been fully eluci-
dated. BDNF is expressed by nociceptors and is upregulated in inflammatory
conditions. Increased levels of BDNF are observed in several tumours, including
orthotopic hepatocellular carcinoma, multiple myeloma, and neuroblastoma [110].
BDNF released within the spinal cord induces phosphorylation of
N-methyl-D-aspartate (NMDA) receptors on adjacent spinal cord neurons, leading
to the induction and maintenance of behavioural hypersensitivity following nerve
injury [105]. Rats in CIBP groups show microglia and astrocyte activation and
upregulation of pro-inflammatory factors, including BDNF, and mechanical allo-
dynia. These phenomena are reversed upon inhibition of the p39 MAPK signalling
pathway [60].

Cancer-Induced Neurochemical and Cellular
Reorganization

Sarcomas have been shown to induce peripheral changes, including upregulation of
activating transcription factor-3 (ATF-3), a marker for injured neurons, and mac-
rophage infiltration of dorsal root ganglion in tumour-bearing femurs [85, 87]. Both
mouse and human neoplasms contain few nerve fibres [85, 91], but human studies
have revealed abnormal remodelling of adjacent sensory nerve fibres and associated
pain in response to tumour growth [15, 22, 59]. Mouse studies show increased
periosteal expression of CGRP and substance P, neuropeptides expressed by a
subgroup of small neurons that respond to noxious and thermal stimuli.

Spinal cord reorganization is also observed in a fashion similar to central sen-
sitization seen in other pain states, including the upregulation of dynorphin and
astrocyte hypertrophy [42, 85, 91]. Interestingly, spinal cord injury patients rarely
develop prostate cancer, confirming the significance of nerves in disease progres-
sion [31].

NGF stimulates the pathological reorganization of adjacent TrkA sensory nerve
fibres. Attempts to systematically prevent the reorganization of sensory nerve fibres
reveal the potential mechanisms driving cancer pain [45, 67]. In a mouse model of
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prostate CIBP, both preventative and late administration of anti-NGF therapy
reduced nociceptive behaviours, sensory and sympathetic nerve sprouting, and
neuroma formation [46]. Another study showed that early and sustained inhibition
of TrkA markedly attenuated bone cancer pain and significantly blocked the ectopic
sprouting of sensory nerve fibres and the formation of neuroma-like structures in
the tumour-bearing bone in mice. Late and acute administration of the TrkA
inhibitor, however, did not significantly reduce pain or nerve sprouting [33].

Conclusion

Considerable evidence suggests that neurotrophins contribute to tumour growth and
cancer pain. NGF acts as a peripheral mediator of pain and is upregulated in
inflammatory states. High affinity TrkA receptors are expressed by nociceptors, and
NGF sensitizes peripheral nociceptive terminals. Inhibition of this neurotrophin
abolishes symptoms characteristic of pain. BDNF is also expressed by nociceptors
and is upregulated in inflammatory states. Neutralization of this neurotrophin
partially eradicates pain sensitization.

We are in the early stages of understanding the mechanisms that drive metastatic
tumour growth, cancer pain, and cancer in general. Neurogenesis appears to con-
tribute to disease progression in a bold way, but more research is needed to elu-
cidate the mechanisms driving sarcomas and to explore treatment options. The use
of pharmacological agents to systematically inhibit neurotrophins and their cognate
receptors is providing the platform to further investigate promising therapies for
controlling tumour proliferation.
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