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Abstract An approach proposed in this paper uses a new hybrid population-based
algorithm. This algorithm is a fusion between genetic algorithm and firework
algorithm. Proposed approach aims on solving complex optimization problems in
which not only structure parameters of the solution have to be selected, but also the
mentioned structure. Proposed approach is based on multiple linear correction terms
PID connected using proposed dynamic structure. In simulations a problem of
selecting structure and its parameters for automatic control was used. For system
evaluation a weighted multi-objective fitness function was used, which can consider
elements connected to the simulation problems taken into consideration, such as:
RMSE error, oscillations of the controller output signal, controller complexity and
overshoot of the control signal.

Keywords Hybrid population-based algorithm � Selecting structure � Controller

1 Introduction

Population-based algorithms belong to heuristic algorithms and they are used
mostly for solving optimization problems. They are different than traditional opti-
mization methods because: (a) they do not process parameters of the problem, but
encoded version of these parameters, (b) they search problem parameters not on the
basis of one solution but they use a population of solutions, (c) they use objective
function directly, not its derivatives, (d) they use probabilistic, not deterministic
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selection of rules. Due to that they have an advantage in comparison with other kind
of approaches such as analytical methods, randomization methods, etc. (see e.g.
[4, 10]).

Among population-based algorithms a different approaches can be found (see
Fig. 1): inspired by nature, inspired by ecology (e.g. Biogeography-Based
Optimization, see [11]) or based on social evolution (e.g. Imperialist Competitive
Algorithm, see [1]) etc. It is worth to mention that all population-based algorithms
benefit from the evolutionary principle of survival of individuals (solutions of
problem specially encoded by parameters) and use mechanisms of exploration and
exploitation (defined by specified algorithm) of search space to improve fitness of
individuals. The aim of population-based algorithms is to minimize or maximize
values of fitness function adopted to the considered problem. Algorithms stop
working when a stop condition is achieved (e.g. when value of fitness function
reaches assumed value).

Most of the presented in the literature population-based algorithms cannot be
used directly to solve a group of complex optimization problems (which are
important from a practical point of view). Those problems concern to find both the
structure and the structure parameters of solution (which is needed e.g. in neural
networks, fuzzy systems, biometric systems and controllers—considered in this
paper) [3, 7, 14]. Majority of population-based algorithms are focused on searching
parameters of structures defined by user. For more elastic solutions (considering
searching both the structure and the structure parameters) hybrid population-based
algorithms can be used. In this type of algorithms the structure of the problem can
be encoded for example in binary parameters and these parameters can be tuned
using genetic algorithm operators. The parameters of the structure can be tuned
using any population-based algorithm designed for optimization. The development
of hybrid algorithm requires a proper synchronization of its algorithms, components
and a proper balance between exploration and exploitation of searching space
ensured.

In this paper a new hybrid population-based algorithm is presented. It is based
on fusion between firework algorithm (see e.g. [13]) and genetic algorithm (see e.g.
[2]). This algorithm was tested on selection of the structure and the structure
parameters for controller based on linear correction terms (a controller with an
object are a control system). In the literature many approaches for automatization of
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this process can be found (see e.g. [5]). However, they are based mostly on
selecting parameters of controllers with structures experimentally specified by
experts. Thus, new and original element of the paper is (a) the proposed hybrid
algorithm and (b) a way of its use for the automatic selection of the structure and
parameters of the controller in automatic control system.

This paper is organized into four sections. Section 2 presents a description of
problem of selecting the structure and structure parameters of controllers. In Sect. 3
a proposed hybrid population-based algorithm is presented. In Sect. 4 simulation
results are drawn. Conclusions are presented in Sect. 5.

2 Description of Problem of Selecting the Structure
and Structure Parameters of Controllers

In this paper a problem of selecting the structure and structure parameters based on
linear correction terms is considered. Linear correction terms correspond to the
needs of most automation systems (see e.g. [8]) and they are the most frequently
used in practice (see e.g. [9]). Controllers which base on linear correction terms can
consist of many Control Blocks (CB) (Fig. 2a). Each of CB can consist of cor-
rection terms such as: proportional (P), differential (I) and derivative (D). Moreover,
each correction term consist of real number parameter: for P it is a reinforcement
parameter Kp, for I it is a time constant Ti, for D it is a time constant Td. An
adequate cooperation of CB (including proper structure of the controller) should be
ensured to achieve a proper quality of control.

Proposed method is based on the idea of using general structure of controller
which can be modified during training process (it can be reduced or revived). The
process of modification of the structure aims to obtain the most simple structure
(thanks to properly defined fitness function considering, among others, complexity
of the solution), which possibly best suits the control criteria. The main (general)
structure of controller of MISO type (multiple input, single output) is presented in
Fig. 3. It consists of a subset of selected CB blocks presented in Fig. 2a. The control
signal from the block CB may be described as follows:
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uCB tð Þ ¼ Pstr � Kp � e tð Þþ Istr � 1
Ti

�
Z t

0

e tð ÞdtþDstr � Td � de tð Þ
dt

; ð1Þ

where e(t) stands for input signal attached to CB block, uCB(t) stands for CB block
output signal. Each correction term in (1) is marked symbolically by key
Pstr 2 0; 1f g, Istr 2 0; 1f g or Dstr 2 0; 1f g. The status of the keys corresponds to the
occurrence of a merger or a break in the circuit (see Fig. 3). In the proposed method
the key values are selected evolutionarily. Moreover, structure of the controller also
contains Node Blocks (NB) (Fig. 2b) described as follows:

uNB tð Þ ¼ �1ð Þhcbstr � xCB tð Þþ �1ð Þhfbstr � xfb tð Þ; ð2Þ

where is a type of feedback of signal connected to the output of the corresponding
block CB (if then it is a positive feedback, if then it is a negative feedback) and a
type of feedback of signal connected to the corresponding input of controller
structure.

The aim of the proposed method is to select structure and parameters related to
the structure. Selection of the structure is based on modification (reduction/addition)
of correction terms and selection of feedbacks occurring in the controller. The
selection process promotes these solutions, in which the number of attached keys is
as small as possible.
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3 Hybrid Genetic-Firework Population-Based Algorithm

Proposed hybrid genetic-firework population-based algorithm is a fusion between
genetic algorithm and firework algorithm. The aim of genetic algorithm part is to
select the structure of the controller, the aim of firework algorithm is to select the
parameters of the controller. Both algorithms work simultaneously. The
well-known idea of genetic algorithm is based on evolution of species (see e.g. [2]),
the idea of firework algorithm is based on the behaviour of fireworks and their
sparks (see e.g. [13]). In the firework algorithm each firework and spark are indi-
viduals representing single solutions for considered problem. Exploding of firework
generates specified number of sparks around it and covers considered search space.
After creation of sparks, all individuals are evaluated and best solutions are selected
for next step of the algorithm (these solutions became new fireworks). Repeating
such actions a certain number of times (resulting from the assumed number of steps
of the algorithm) gives a real chance to get close to the optimal solution for the
considered problem.

The next part of this section describes: (a) encoding method for fireworks and
sparks (Sect. 3.1), (b) evaluation method for fireworks and sparks (Sect. 3.2) and
(c) evolution of the fireworks and sparks (Sect. 3.3).

3.1 Encoding of the Structure and Parameters

The solutions encoded in population are marked as Xj, j = 1, …, N, where N stands
for the number of individuals in population (each individual represent single con-
troller). Each individual consists of two parts of parameters: Xstr

j and Xpar
j

Xj ¼ Xstr
j ;Xpar

j

n o� �
. The part Xstr

j is used to encode structure of the controller, and

it is expressed as follows::

Xstr
j ¼

CBstr
j;1;1;P

str
j;1;1; I

str
j;1;1;D

str
j;1;1; hcb

str
j;1;1; hfb
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j;1;I ;P

str
j;1;I ; I

str
j;1;I ;D

str
j;1;I ; hcb

str
j;1;I ; . . .;
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str
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str
j;I!;1; hcb

str
j;I!;1; hfb

str
j;I!;1; . . .;

CBstr
j;I!;I ;P

str
j;I!;I ; I

str
j;I!;I ;D

str
j;I!;I ; hcb

str
j;I!;I

2
666664

3
777775
¼ Xstr

j;1 ; . . .;X
str
j;Lstr

h i
; ð3Þ

where each parameter Xstr
j;g, g ¼ 1; . . .; Lstr, encodes information about corre-

sponding key (CBstr, Pstr, Istr, Dstr, hcbstr or hfbstr) of controller structure, Lstr ¼
6 � I! � I � I! stands for the number of parameters of the individual Xstr

j (in the
practice controllers use small amount of inputs which translate into processable
Lstr). The part Xpar

j encodes parameters of controller, and it is defined as follows:
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Xpar
j ¼

Ppar
j;1;1; I

par
j;1;1;D

par
j;1;1; . . .;

Ppar
j;1;I ; I

par
j;1;I ;D

par
j;1;I ; . . .

Ppar
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j;I!;I ; I

par
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j;I!;I

2
666664

3
777775
¼ Xpar

j;1 ; . . .;X
par
j;Lpar

h i
; ð4Þ

where each parameter Xpar
j;g , g ¼ 1; . . .; Lpar, encodes information about real number

parameter Kp, Ti or Td of a CB block of the controller, Lpar ¼ 3 � I! � I stands for the
number of parameters of individual Xpar

j .

3.2 Individuals Evaluation

The way of defining fitness function in most of the control systems does not depend
on algorithm but on considered problem. In case of selecting structure and
parameters of controller, fitness function can consist the following elements: RMSE
error, oscillations of the controller output signal, controller complexity and over-
shoot of the control signal. This is a very important issue, because e.g. (a) High
number of the controller output signal oscillations tends to induce an excessive use
of mechanical control parts and may cause often big changes of the controller
output signal value. (b) The overshoot of the control signal is not acceptable in
many industrial applications. The individual evaluation function (maximization
problem) is described as follows:

ff Xj
� � ¼ RMSEj þ cj � wc þ osj � wos þ ovj � wov

� ��1 ð5Þ

where wc ∊ [0, 1] denotes a weight factor for the complexity of the controller
structure, cj > 0 denotes the complexity of the controller structure described by the
formula:

cj ¼
XLstr
g¼1

Xstr
j;g ; ð6Þ

wov ∊ [0, 1] denotes a weight for the overshoot factor, ovj ≥ 0 denotes value of
the greatest overshoot of the controlled s1 signal, wos ∊ [0, 1] denotes a weight for
the oscillations factor and finally osj ≥ 0 denotes oscillation count of controller
output signal calculated as follows:

osj ¼
XO�1

o¼1

ro � roþ 1j j; ð7Þ
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where ro are (sorted by time value) minima and maxima of the signal u according to
Fig. 4. It is worth noting that the function of the form (7) should also count the
oscillations with minimum amplitude as an undesirable phenomenon in control
systems.

3.3 Evolution Process

The hybrid genetic-firework algorithm proposed in this paper works according to
the following steps:

Step 1. Initialization of fireworks Xj, j = 1, …, N. Individuals in this algorithm
are called fireworks and sparks. Each parameter of firework Xstr

j (Sect. 3.1) is
chosen randomly from the set {0, 1}, each parameter Xpar

j (coding parameters of
controllers) is generated randomly from ranges related to the considered problem.

Step 2. Evaluation of the initialized population. Each firework is evaluated by
the fitness function defined in Sect. 3.2.

Step 3. Exploding of the fireworks. Each firework explodes and generates
specified number of sparks. This number is calculated for each individual on the
basis of fitness function value of fireworks (thanks to that more fittest fireworks get
more sparks and vice versa):

ŝj ¼ m � ymax � ff Xj
� �þ �nPn

k¼1 ymax � ff Xkð Þð Þþ �n
; ð8Þ

where m is a parameter controlling total number of sparks, ymax is a best value of
fitness function of fireworks, �n is a smallest constant in the computer (which pre-
vents division by zero). This number (̂sj) is then reduced (projected) to the range
b � m; a � m½ �, where parameters of the algorithm a and b should satisfy the condition
a < b < 1. Limiting the number of sparks is performed in order to: (a) prevent the
domination of the entire population by fireworks outstanding good value of the
evaluation function, (b) allocate sparks even to the fireworks which in the current
step have a bad value of evaluation function. The locations of sparks are obtained

u

t [s]

Fig. 4 Minima and maxima
of the output signal u

On the Application of a Hybrid Genetic-Firework Algorithm … 117



by mimicking the firework explosion process. Each spark is a clone of firework (it
gets the same parameters and the same structure as firework) with specified number
of parameters modified randomly in a calculated range (range stands ‘amplitude of
explosion’ and it is calculated individually for each firework). The value of
amplitude of explosion for individual Xj depends on the fitness function value:

Aj ¼ Â � ff Xj
� �� ymin þ �nPn

k¼1 ff Xkð Þ � yminð Þþ �n
; ð9Þ

where Â is a parameter controlling maximum range of sparks, ymin is the worst
value of fitness function of fireworks. Thanks to that, fittest fireworks generate
sparks close to them (exploitation) and vice versa (exploration). In this step addi-
tional number of sparks is generated on the basis of randomly chosen fireworks
with modification of specified number of parameters using Gaussian explosion (to
maintain diversity of population).

Step 4. Structure modification. In this step a structure of sparks generated in
Step 3 is modified by mutation operator (known from genetic algorithm). For each
spark a number from unit interval is generated randomly. If this number is smaller
than mutation probability pm ∊ (0, 1), spark structure will be modified as follows:
for each structure parameter a number from unit interval is generated randomly, if
this number is smaller than mutation probability, value of the structure parameter is
changed to the opposite value (from 0 to 1 and vice versa).

Step 5. Evaluation of sparks. In this step each spark generated in Step 3 and
modified in Step 4 is evaluated by fitness function defined in Sect. 3.2.

Step 6. Selection of new population. New population obtains one of the actually
best firework and N − 1 sparks chosen from sparks generated in Step 3 and
modified in Step 4. In the original version of the algorithm process of selecting
individuals takes into account only their diversity: which gives more chances to
choose (by the method of roulette wheel) for those individuals with greater distance
from the others. It promotes a fuller exploration of search space, however, can lead
to degeneration of the population. For this reason, the proposed approach also takes
into account the value of fitness function. Thus, the probability of selecting an
individual Xj is defined as follows:

p Xj
� � ¼

PK
k¼1 Xj � Xk

�� ��
ff Xj
� � : ð10Þ

Step 7. Replacement of the old population by population generated in the pre-
vious step. All individuals from new population are treated as fireworks. In this step
a stop condition is checked. This condition affects the number of iterations of the
algorithm. If this condition is not met, then algorithm goes back to Step 3.

Detailed information on the used algorithms can be found e.g. in [2, 13].
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4 Simulations Results

In our simulations a problem of designing controller structure and tuning param-
eters for double spring-mass-damp object was considered (see Fig. 5). The purpose
of the controller was the generation of such a control signal (acting on masses and),
to adjust in the best way a position of the mass to the reference position. The motion
equations for the mass m1 (for position s1, velocity v1 and acceleration a1) are
described as follows:

s1n ¼ s1n�1 þ v1n�1 � T þ a1n�1 � T2
� � � 0:5; ð11Þ

v1n ¼ v1n�1 þ a1n�1 � T ; ð12Þ

a1n ¼ s2n � s1n
� � � k � v1n � l
� � � m�1

1 ; ð13Þ

where n and n − 1 denotes current and previous simulation step respectively, k is
spring constant. Analogically, for mass m2, the motion equations (for position s2,
velocity v2 and acceleration a2) have the following form:

s2n ¼ s2n�1 þ v2n�1 � T þ a2n�1 � T2� � � 0:5; ð14Þ

v2n ¼ v2n�1 þ a2n�1 � T ; ð15Þ

a2n ¼ u� s2n
� � � k � v2n � l
� � � m�1

1 ; ð16Þ

where u is controller output signal and μ is coefficient of kinetic friction. Remarks
about considered model can be summarized as follows: (a) Object parameters
values were set as follows: spring constant k was set to 10 N/m, coefficient of
friction μ = 0.5, masses m1 = m2 = 0.2 kg. Initial values of: s1, v1, s2 and v2 were set
to zero (which means that the masses were in the rest state at their initial positions).
(b) Signals fbi used in structure were set to: s1, s2, s* – s1 respectively.
(c) Simulation length was set to 10 s, a shape of the reference signal s* (trapezoid)
is presented in Fig. 6, a shape of test signal s* (sinuous) is also presented in Fig. 6.
(d) Search range for genes encoding controller parameters were set as follows:
P = [0, 20], I = [0, 50], D = [0, 5]. (e) Output signal of the controller was limited to
the range u ∊ (−2, +2). (f) Quantization resolution for the output signal u of the
controller as well as for the position sensor for s1 and s2 was set to 10 bit. (g) Time

Fig. 5 Simulated
spring-mass-damp object
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step in the simulation was equal to T = 0.1 ms, while interval between subsequent
controller activations were set to twenty simulation steps.

The authorial environment (implemented in C++) was used for simulations.
Parameters of the algorithms for the simulations were determined as follows: the
number of individual (fireworks) N was set to 10, the number of sparks was set to
m = 100 [13], the number of additional sparks was set to 10, bounds parameters for
number of sparks: a = 0.04 and b = 0.80, maximum amplitude of explosion was set
to Â ¼ 0:5, the algorithm performs 1000 steps (generations), the mutation proba-
bility was set as pm = 0.3. In our simulations, RMSE error function of the individual
was described by the following formula:

RMSEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z

XZ
n¼1

e2j;n

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z

XZ
n¼1

s�j;n � s1j;n
� �2

vuut ; ð17Þ

where n = 1, …, Z, denotes sample index, Z denotes the number of samples, ɛj,n
denotes controller tracking error for the sample s�j;n denotes the value of the ref-
erence signal of the controlled value for the sample n, sj,n

1 denotes its current value
for the sample n. Moreover, the following weights of fitness function components
were used: wos = 0.0100 and wov = 0.0001. At the same time two cases associated
with different weight values wc were considered:

Case 1. This case (marked further as FAGA-1) aims to obtain high accuracy of
the control system: wc = 0.0010.

Case 2. This case (marked further as FAGA-2) aims to obtain low complexity of
the control system: wc = 0.0040.

The conclusions of the simulations can be summarized as follows:

– The controllers obtained for considered in simulations problem using hybrid
genetic-firework algorithms perform well (see Fig. 7): the level of oscillations
(in case FAGA-1 a best value for oscillations was achieved—see Table 2) and
overshooting is low, the accuracy of the system is more than satisfactory. This
applies to situations, where testing of the controller was made using signal s*
with trapezoidal shape (used in a training phase) and also when signal s* have
sinusoidal shape (used only in test phase).

(a)

(b)

Fig. 6 Signal values s1, s* and output signal u for case: a FAGA-1, b FAGA-2
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– The structure of controllers for both cases considered in simulations was chosen
according to assumptions. For case FAGA-1 the structure is more complex than
for case FAGA-2 (see Fig. 7), but it works more accurate (see Fig. 6a, b). It is
worth to mention that, in our previous work (see [12]) different methods for
automatic selection the structure and the structure parameters were used, how-
ever we did not achieved as simplest structure as in case FAGA-2 (see Table 1)
with comparable quality of control (see Table 2).

– In our previous works problem of selecting both the structure and the structure
parameters was considered (see [6, 12]). Those papers contains methods based
on simple algorithms (e.g. genetic algorithm, evolutionary strategy (μ, λ)) and on
standard population-based algorithms (e.g. gravitation algorithm, firefly algo-
rithm). Results obtained in this paper differ than results from other papers
(see Tables 1 and 2). Accuracy obtained for case FAGA-1 is close to the best
accuracy achieved in previous researches (see Table 2). At the same time, the
structure obtained in case FAGA-2 is the simplest (in comparison to other
results) and preforms appropriate well.

u+

-
+
+

s*
-

+ PI PID

PI
u

-

+ +
s*

-

+

PID

PD

fb s1=
1

2fb s= 2

fb s s3= -* 1

fb s1= 1 fb s2= 2

fb s s3= -* 1(a) (b)

Fig. 7 Structure of the controller obtained for case: a FAGA-1, b FAGA-2 (structures denoted by
dashed line were formed by reduction of the structure shown in Fig. 3)

Table 1 Number of
correction terms (nterms) for
best individuals of population

nterms FAGA-1 FAGA-2 Our previous results [12]

P 3 2 2–5

I 3 1 1–3

D 1 2 1–3

All 7 5 6–10

Table 2 Values of the fitness
function (5) for best
individuals of population

Name FAGA-1 FAGA-2 Our previous results
[12]

RMSE 0.0547 0.0623 0.0502–0.1790

cj · wc 0.0070 0.0200 0.0060–0.0100

osj · wos 0.0101 0.0113 0.0123–0.0350

ovj · wov 0.0004 0.0001 0.0001–0.0014

ff 13.8504 10.6723 4.9140–13.9082
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5 Conclusions

In this paper a new hybrid genetic-firework algorithm is proposed. This algorithm
can be used to solve complex optimization problems in which: both the structure
and the structure parameters of the controller have to be found and various criteria
for selection have to be taken in consideration (e.g. related to the complexity,
accuracy, etc.). The algorithm was used for automatic selection of the controller, but
can also be used e.g. for selection of structure and structure parameters of another
kind of computational intelligence algorithm (e.g. neural network, decision tree,
neuro-fuzzy systems, etc.). Results received in the simulations are positive and
obtained structures of the controller are simple.
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