
Sparse Online Self-Organizing Maps
for Large Relational Data

Madalina Olteanu and Nathalie Villa-Vialaneix

Abstract During the last decades, self-organizing maps were proven to be useful
tools for exploring data. While the original algorithm was designed for numerical
vectors, the data became more and more complex, being frequently too rich to be
described by a fixed set of numerical attributes. Several extensions of the original
SOM were proposed in the literature for handling kernel or dissimilarity data. Most
of them use the entire kernel/dissimilarity matrix, which requires at least quadratic
complexity and becomes rapidly unfeasible for 100 000 inputs, for instance. In the
present manuscript, we propose a sparse version of the online relational SOM, which
sequentially increases the composition of the prototypes.

Keywords Relational data · Online relational SOM · Sparse approximations

1 Introduction

The self-organizing map (SOM) algorithm, [1], was proven, over the years, to be a
powerful and convenient tool for clustering and visualizing data. While the original
algorithm was designed for numerical vectors, the available data in the applications
became more and more complex, being frequently too rich to be described by a
fixed set of numerical attributes only. This is the case, for example, when data are
described by relations between objects (individuals involved in a social network) or
by measures of ressemblance/dissemblance (professional trajectories).

M. Olteanu (B)
SAMM - Université Paris 1 Panthéon-Sorbonne, 90, Rue de Tolbiac, 75013 Paris, France
e-mail: madalina.olteanu@univ-paris1.fr

N. Villa-Vialaneix (B)
INRA, UR 0875 MIAT, BP 52627, 31326 Castanet Tolosan, France
e-mail: nathalie.villa@toulouse.inra.fr

© Springer International Publishing Switzerland 2016
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning
Vector Quantization, Advances in Intelligent Systems and Computing 428,
DOI 10.1007/978-3-319-28518-4_6

73

74 M. Olteanu and N. Villa-Vialaneix

During the past twenty years, the SOM algorithm was extended for handling rela-
tional data, either described by kernels (see [2] for the online version and [3] for the
batch version), or by dissimilarities (see [4] for the online version and [5] for the batch
version). All these extensions are based on the same underlying principle: the dis-
similarity or the kernel implicitly define an Euclidean (or pseudo-Euclidean) space in
which the prototypes can be expressed as convex combinations of the embedded input
data. However, when the goal is to explore large data sets, the relational approaches
may become rapidly unfeasible. Indeed, complex relational data often have a large
dimensionality. Moreover, kernel and relational SOM rely on the knowledge of the
dissimilarity matrix for the entire data set, which generates at least quadratic com-
plexity for the algorithms. As stressed in [5], algorithms will be slow for data sets
with 10,000 observations and impossible to run on a normal computer for 100,000
input data. In addition to the complexity issue, expressing prototypes as convex
combinations of the entire data set has a second drawback, as emphasized in [6]: the
interpretability of the prototypes and of the model is lost.

In order to tackle these two issues, several approaches were introduced for rela-
tional data, all of them seeking for a sparse representation of the prototypes and a
linear (in the number of observations) computational cost. [7] use the natural spar-
sity of the prototypes in batch relational k-means in order to reduce the complexity.
The natural sparsity is enhanced by selecting the K (K fixed) closest inputs to each
prototype. In [5], the complexity is reduced using iterative “patch clustering”. First,
the data are split into P patches of size nP (P fixed). A prototype-based clustering
algorithm in batch version (neural gas or SOM) is then run on a patch Pt and the
resulting prototypes, whichmay be viewed as compressed representations of the data
already seen, are added as new data points to the next patch, Pt+1. Moreover, the
full vector of coefficients is replaced by the K closest input data (K fixed). With this
method, linear time and constant space representation are obtained. Another tech-
nique consists in using the Nyström approximation [8] for the dissimilarity matrix.
This technique also leads to a linear computational cost in the number of input data,
but is strongly dependent on the intrinsic dimensionality of the given dissimilarity
matrix, which has to be of low rank and entirely known in advance. All these cited
approaches are batch algorithms.

In the online framework, [9] propose a bagging approach for kernel SOM. Data
is split into B subsamples of size nB (B fixed), the online kernel SOM is trained on
each subsample and, after training, themost representative K observations are chosen
for each prototype (K fixed). Eventually, a final map is trained on the resulting most
representative observations. The algorithm has the advantage of being parallelizable,
although it does not consider all the advantages of an online implementation.

In the present paper, we propose a sparse version of the online relational SOM
algorithm, which takes further advantage of the online setting. Instead of expressing
prototypes as convex combinations of the entire data set from the beginning, the size
and the composition of the prototypes are sequentially increased with each new input

Sparse Online Self-Organizing Maps for Large Relational Data 75

fed to the algorithm. When the size of the prototypes becomes too large, prototypes
are made sparse by deleting all the insignificant coefficients. Different approaches
for selecting the most interesting observations are reported in [6]. In this manuscript,
we use a slightly different technique, by interpreting the coefficients as a probability
distribution and by selecting the most probable observation: a global probability
mass ν is fixed and the largest coefficients summing to ν are kept. In this way, more
flexibility is allowed to the prototypes which are no longer represented by a fixed
number K of observations, but by the necessary number of observations allowing an
“almost complete” knowledge of the composition of the prototypes (if ν is chosen
close to 1).

The rest of the paper is organized as follows: Sect. 2 recalls the online relational
SOM, while Sect. 3 introduces the sparse version of the online relational SOM. The
equivalent algorithm for kernels is briefly described in Sect. 4, while Sect. 5 contains
some examples on real data-sets.

2 Online Relational SOM

In this section we shall briefly recall the principles of the online relational SOM
(RSOM) algorithm, as introduced in [4]. Throughout the rest of the paper, let
us suppose that the input data, x1, . . . , xN , belong to some arbitrary space G and
can be described through a dissimilarity measure δ, such that δi j = δ

(
xi , x j

)
. The

dissimilarity measure is supposed to verify some basic assumptions: symmetry(
δi j = δ j i

)
and non-negativity

(
δi j ≥ 0

)
, for all i, j = 1, . . . , N , and also δi i = 0,

for all i = 1, . . . , N .
The online RSOM algorithm aims at mapping the input data onto a low dimen-

sional grid (usually a two-dimensional rectangle), composed of U units, each of
them described by a prototype pu , u = 1, . . . , U . The units are linked together by
a neighborhood relationship H , expressed as a function of the distance between the
units on the grid, d

(
u, u′). The distance on the grid, d, may be chosen, for example,

as the length of the shortest path between the units. The U prototypes are initialized
either as random convex combinations of the input data or randomly among the input
data.

The extension of the original SOM algorithm is based on two key ideas:

• First, prototypes are written as (symbolic) convex combinations of the input data,
pu = ∑N

i=1 βu,i xi , with βu,i ≥ 0 and
∑N

i=1 βu,i = 1, for all u = 1, . . . , U . This
definition is justified by the fact that, when a dissimilarity is given, it can be
viewed as the dot product of the images by a mapping function φ into a pseudo-
Euclidean space [10]: the prototypes are thus truly the convex combinations of
(φ(xi))i in this space (see [4, 5] for further explanations).

• Second, the distance between an input data xi and a prototype pu can be written
only in terms of the dissimilarity matrix of the input data and the coefficients βu,i

as follows:

76 M. Olteanu and N. Villa-Vialaneix

‖xi − pu‖2 = �iβ
T
u − 1

2
βu�βT

u , (1)

where � = (
δi j

)
i, j=1,...,N , �i represents the i-th row of the matrix � and βu =

(
βu,1, . . . , βu,N

)
is the vector of coefficients for the prototype pu .

Expressing the prototypes as convex combinations of the input data and computing
the distances between observations and prototypes as in Eq. (1) consists, in fact, in
a generalization of the original SOM algorithm. Indeed, one can easily see that the
two are equivalent if the dissimilarity δ is the squared Euclidean distance and if the
prototypes of the original SOM are initialized within the convex hull of the input
data.

This general framework allowing an elegant writing of the algorithm for complex
data described by dissimilarities was introduced initially for the online version of
kernel SOM(KSOM) in [2].Afterwards, extensions and rediscoverieswere described
for batch relational SOM in [5], batch kernel SOM in [3] and online relational SOM
in [4]. A detailed and complete comparison of these methods and their equivalences
may be found in [11].

The distance computation in Eq. (1) may be theoretically justified in the very
general setting of dissimilarities by extending the Hilbert embedding for kernels to
a pseudo-Euclidean embedding, as shown, for example, in [5].

The online relational SOM algorithm is summarized in Algorithm 1. The neigh-
borhood function H is supposed to verify the following assumptions: H : R → R,
H(0) = 1 and limx→+∞ H(x) = 0. In the setting of Algorithm 1, H t decreases
piecewise linearly, while μ(t) vanishes at the rate 1

t .

Algorithm 1 Online relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , N , initialize β0
u,i such that β0

u,i ≥ 0 and
∑N

i β0
u,i = 1.

2: for t = 1, . . . , T do
3: Randomly choose an input xi
4: Assignment step: find the unit of the closest prototype

f t (xi) ← arg min
u=1,...,U

[
�i

(
β t−1

u

)T − 1

2
β t−1

u �(β t−1
u)T

]

5: Representation step: ∀ u = 1, . . . , U ,

β t
u ← β t−1

u + μ(t)Ht (d(f t (xi), u))
(

1i − β t−1
u

)

where 1i is a vector with a single non null coefficient at the i th position, equal to one.
6: end for

Sparse Online Self-Organizing Maps for Large Relational Data 77

3 Sparse Online Relational SOM

Similarly to relational SOM, prototypes are written as convex combinations of the
observations, but, in this case, they are restricted to the input data already fed to
the algorithm and, more particularly, to the most significant of them. In order to
guarantee the sparsity of the writing as well as similar properties with the original
online relational SOM algorithm, several issues have to be verified.

1. Prototypes have to be initialized at random among the input data. Hence, the
observations have to be randomly presented to the algorithm. The first U obser-
vations will be then used as initial values for the U prototypes.

2. The dissimilarity between a new input data and a prototype, written as a con-
vex combination of the most significant past observations, has to be computed.
This can be achieved using the following formula ‖xk − pu‖2 = ∑

j∈I (t) βu, j

δ
(
xk, x j

) − 1
2

∑
i∈I (t)

∑
j∈I (t) βu,iβu, jδ

(
xi , x j

)
, where pu = ∑

j∈I (t) βu, j x j and
I (t) contains the indices of the most significant inputs already fed to the algo-
rithm before xk is chosen.

3. Prototypes are sparse combinations of the input data. Hence, prototypes are peri-
odically updated and the most coefficients only are selected. The updates may be
performed throughout the iteration using either a deterministic design (the num-
ber of updates is fixed and updates are uniformly distributed during the learning
of the map), or a random design (the updates are distributed according to some
geometric distribution. The parameter of the geometric distribution may depend
on the total number of iterations and on the size of the neighborhood). Sparsity
could be achieved by selecting the first Q most important coefficients, where Q
is a fixed integer. However, in order to allow for more flexibility in the expres-
sion and interpretability of the prototypes, the most significant coefficients are
selected according to their value, by fixing a threshold: let 0 < ν ≤ 1 be the
selected threshold (if ν = 1, the algorithm is no longer sparse, but the original
one).

For u = 1, . . . , U , the coefficients are ordered in descending order for each pro-
totype βu,(1), . . . , βu,(�I (t)), where βu,(1) = maxi∈I (t) βu,i and βu,(�I (t)) = mini∈I (t)

βu,i . Consider Nu such that Nu = argminn=1,...,�I (t)
{∑n

i=1 βu,(i) ≥ ν
}
. The most

significant coefficients are updated as follows

βu,(i) =

⎧
⎪⎨

⎪⎩

βu,(i)∑Nu
j=1 βu,(j)

, if(i) ≤ Nu

0 , if (i) > Nu

The sparse online relational SOM algorithm is summarized in Algorithm 2.

78 M. Olteanu and N. Villa-Vialaneix

Algorithm 2 Sparse online RSOM

1: For all u = 1, . . . , U , initialize p0u among the first U input data: β0
u = 1U

u , where 1U
u is a vector

of length U with a single non-null coefficient on the u-th position, equal to 1. Initialize I (0) =
{1, . . . , U }.

2: for t = 1, . . . , T do
3: Randomly choose an input xk , k ∈ {1, . . . , N }.
4: Assignment step: find the unit of the closest prototype

f t (xk) ← arg min
u=1,...,U

⎡

⎣
∑

j∈I (t−1)

β t−1
u, j δ

(
xk , x j

) − 1

2
β t−1

u �I (t−1)

(
β t−1

u

)T

⎤

⎦ ,

where �I (t−1) = (
δ
(
xi , x j

))
i, j∈I (t−1).

5: Representation step: ∀ u = 1, . . . , U
6: if k ∈ I (t − 1), then
7: β t

u ← β t−1
u + μ(t)Ht (d(f t (xk), u))

(
1k − β t−1

u

)

8: I (t) = I (t − 1)
9: else if k /∈ I (t − 1), then
10: β t

u ← [
1 − μ(t)Ht (d(f t (xk), u))

] (
β t−1

u , 0
) + μ(t)Ht (d(f t (xk), u))(0, . . . , 0︸ ︷︷ ︸

�I (t−1)

, 1)

11: I (t) = I (t − 1) ∪ {k}.
12: end if
13: Sparse representation:
14: if t is an update instant (deterministic or random design) then
15: Sparsely update the prototypes: ∀ u = 1, . . . , U ,

β t
u,(1) ≥ . . . ≥ β t

u,�I (t) ,

Nt,u = arg min
n=1,...,�I (t)

{
n∑

i=1

β t
u,(i) ≥ ν

}

β t
u,(i) =

⎧
⎪⎪⎨

⎪⎪⎩

β t
u,(i)

∑Nt,u
j=1 β t

u,(j)

, if (i) ≤ Nt,u

0 , if (i) > Nt,u

16: end if
17: end for

4 The Kernel Version

In some cases, data may be described by a kernel, K , instead of a dissimilar-
ity. We shall recall that a kernel is a symmetric similarity such that K(xi , xi) = 0
and which satisfies the following positive constraint: ∀M > 0, ∀ (xi)i=1,...,M ∈
G, ∀ (αi)i=1,...,M ∈ R,

∑M
i, j=1 αiα j K

(
xi , x j

) ≥ 0. According to [12], there exists
a Hilbert space H, also called feature space, as well as a feature map ψ : G → H,
such that K(x, x ′) = 〈ψ(x), ψ(x ′)〉H. Similarly to the dissimilarity case, the proto-
types are defined as convex combinations of (the images byψ of) (xi)i . The distance
between an input data xk and some prototype pu is then computed as the squared

Sparse Online Self-Organizing Maps for Large Relational Data 79

distance induced by the kernel ‖xk − pu‖2 = K(xk, xk) − 2
∑

i∈I (t) βu,i K(xk, xi) +
∑

i, j∈I (t) βu,iβu, j K
(
xi , x j

)
. The sparse online relational SOM can thus be immedi-

ately adapted for kernels. Algorithm 2 has to be modified only in the assignment step
which becomes

1: Assignment step: find the unit of the closest prototype

f t (xk) ← arg min
u=1,...,U

⎡

⎣β t−1
u KI (t−1)

(
β t−1

u

)T − 2
∑

j∈I (t−1)

β t−1
u, j K

(
xk , x j

)
⎤

⎦ ,

where KI (t−1) = (
K
(
xi , x j

))
i, j∈I (t−1).

5 Examples

The sparse version introduced in the present manuscript was compared to the online
relational SOM on two real data sets. For the sparse version, several values were
considered for the threshold ν. The sparse updates were performed either in a uni-
form deterministic design (fixed number of updates), or at random, according to a
geometric distribution. The performances of the sparse RSOM and the online RSOM
were then compared in terms of average computational time (in seconds), quantiza-
tion and topographic errors and sparsity (number of non-zero coefficients). Scripts
were all implemented under the free statistical software environement R.

Astraptes fulgerator. The first data set was introduced in [13]. In contains informa-
tion on 465 Amazonian butterflies, each of them described by a sample of their DNA.
Each input data is a DNA sequence of length 350. The Kimura distance for genetical
sequences, as introduced in [14], was computed and the resulting distance matrix
was used as input for relational and sparse relational SOM. For both algorithms, 100
different initializations with 2 500 iterations each were performed on a square grid
of size 5 × 5. The results are summarized in Tables1 and 2 for the deterministic and
random designs respectively.

Professional trajectories. The second example comes from [15]. It contains infor-
mation about 2 000 people having graduated high-school in 1998 and monitored
during 94 months afterwards. For each individual, a categorical sequence of length
94, giving his monthly professional status is available. In all, there are nine possible
situations, from permanent contracts to unemployment. The dissimilarity used for
these data is the optimal matching (OM) distance, as introduced in [16]. Here, 100
different initializations with 10 000 iterations each were performed on a square grid
of size 10 × 10. The sparse version was compared to the standard online relational
SOM (itself run from 100 different initializations and 10 000 iterations). The results

80 M. Olteanu and N. Villa-Vialaneix

Table 1 Average results for Astraptes fulgerator (100 random initializations)

nb. updates ν Comp. time (s) Quantization err. Topographic err. nb. coefs

50 0.80 2.04 0.00087 0.0339 5.87

50 0.85 2.13 0.00076 0.0157 7.65

50 0.90 2.37 0.00067 0.0077 12.07

50 0.95 2.91 0.00064 0.0067 23.45

50 0.99 4.14 0.00067 0.0055 46.80

25 0.80 2.76 0.00067 0.0167 12.58

25 0.85 3.48 0.00065 0.0139 17.13

25 0.90 3.17 0.00065 0.0128 22.99

25 0.95 3.61 0.00064 0.0107 34.99

25 0.99 4.69 0.00070 0.0041 53.75

10 0.80 7.04 0.00066 0.0079 40.09

10 0.85 6.96 0.00065 0.0087 43.08

10 0.90 7.55 0.00067 0.0075 47.93

10 0.95 7.87 0.00065 0.0055 57.55

10 0.99 8.52 0.00068 0.0054 68.15

Online RSOM 12.18 0.00067 0.0051

The first column contains the number of updates (deterministic design). The third column is the
computational time (provided in seconds). The last column is the average number of non zero
coefficients in the prototypes. The bolded values correspond to the results at least as good as the
online RSOM

Table 2 Average results for Astraptes fulgerator (100 random initializations, updates were made
with a random design)

nb. updates ν Comp. time (s) Quantization err. Topographic err. nb. coefs

50 0.80 1.92 0.00093 0.0353 5.44

50 0.85 2.09 0.00078 0.0176 7.35

50 0.90 2.37 0.00069 0.0145 11.02

50 0.95 2.92 0.00067 0.0102 21.75

50 0.99 4.02 0.00068 0.0068 45.51

25 0.80 2.50 0.00067 0.0210 9.92

25 0.85 2.88 0.00066 0.0114 14.09

25 0.90 2.94 0.00066 0.0107 20.41

25 0.95 3.56 0.00064 0.0057 29.63

25 0.99 4.66 0.00066 0.0053 51.93

10 0.80 4.23 0.00062 0.0132 22.48

10 0.85 4.69 0.00065 0.0072 28.41

10 0.90 5.18 0.00065 0.0098 33.97

10 0.95 5.14 0.00065 0.0051 43.34

10 0.99 6.30 0.00067 0.0033 59.95

Online RSOM 12.18 0.00067 0.0051

Sparse Online Self-Organizing Maps for Large Relational Data 81

Table 3 Average results for “professional trajectories” (100 random initializations, updates were
made with a deterministic design)

nb. updates ν Comp. time (s) Quantization err. Topographic err. nb.
coefs

100 0.80 111 29.5 0.384 1.4

100 0.85 130 27.8 0.348 1.8

100 0.90 147 25.5 0.277 2.9

100 0.95 215 21.8 0.112 11.3

100 0.99 480 20.5 0.084 40.4

50 0.80 157 25.6 0.247 2.6

50 0.85 174 23.8 0.177 4.4

50 0.90 223 22.1 0.109 9.8

50 0.95 307 21.0 0.086 23.3

50 0.99 672 20.5 0.080 52.9

25 0.80 247 22.6 0.124 7.3

25 0.85 278 21.6 0.102 12.2

25 0.90 339 21.0 0.089 20.1

25 0.95 470 20.5 0.090 34.0

25 0.99 800 20.6 0.078 60.9

Online RSOM 9126 20.7 0.075

Simulations were all performed on a server with OS Debian 8 Jessie, 8 processors AMD Opteron
8384 with 4 cores each and 256 Go RAM

for the deterministic design are summarized in Table3 (due to the lack of space, we
do not report here the results with a random design, which are quite similar).

It is interesting to note that the sparsity has a strong influence on the computa-
tional time: increasing the number of updates tends to decrease the computational
time since the prototypes are regularly cleared from unnecessary coefficients. The
computational time compared to the standard version is at least 10 times smaller in
the sparse version for this large dataset. On the contrary, the performances, measured
in terms of quantization and topographic errors, can be affected by a too large sparsity
but the best ones remain close to those of the standard version.

6 Conclusion and Future Work

A sparse version of the online relational SOM algorithm was proposed, by sequen-
tially increasing the composition of the prototypes and sparsely updating them. The
algorithm was compared with the online ROM on two real data sets and the sparse
version appeared to achieve very similar performances as compared to the original
algorithm, while improving computational time and prototype representation.

82 M. Olteanu and N. Villa-Vialaneix

References

1. Kohonen, T.: Self-Organizing Maps, 3rd edn, vol. 30. Springer, Berlin, Heidelberg, New York
(2001)

2. Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International
Conference on knowledge-based Intelligence Engineering Systems and Applied Technologies,
pp. 317–320 (2000)

3. Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related Laplacian methods
for social network analysis. Neurocomputing 71(7–9), 1257–1273 (2008)

4. Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational SOM. Neurocom-
puting 147, 15–30 (2015)

5. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural
Comput. 22(9), 2229–2284 (2010)

6. Hofmann, D., Schleif, F., Paaßen, B., Hammer, B.: Learning interpretable kernelized prototype-
based models. Neurocomputing 141, 84–96 (2014)

7. Rossi, F., Hasenfuss, A., Hammer, B.: Accelerating relational clustering algorithms with
sparse prototype representation. In: Proceedings of the 6thWorkshop on Self-OrganizingMaps
(WSOM 07), Bielefield, Germany, Neuroinformatics Group, Bielefield University (2007)

8. Gisbrecht, A., Mokbel, B., Hammer, B.: The nystrom approximation for relational generative
topographic mappings. NIPS Workshop on Challenges of Data Visualization (2010)

9. Mariette, J., Olteanu, M., Boelaert, J., Villa-Vialaneix, N.: Bagged kernel SOM. In: Villmann,
T., Schleif, F., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning
Vector Quantization (Proceedings of WSOM 2014). Volume 295 of Advances in Intelligent
Systems and Computing, Mittweida, Germany. Springer, Berlin, Heidelberg, pp. 45–54 (2014)

10. Goldfarb, L.: A unified approach to pattern recognition. Pattern Recogn. 17(5), 575–582 (1984)
11. Rossi, F.: How many dissimilarity/kernel self organizing map variants do we need? In: Vill-

mann, T., Schleif, F., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and
Learning Vector Quantization (Proceedings of WSOM 2014). Volume 295 of Advances in
Intelligent Systems and Computing, Mittweida, Germany. Springer, Berlin, Heidelberg, pp.
3–23 (2014)

12. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)
13. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W.: Ten species in one:

DNA barcoding reveals cryptic species in the neotropical skipper butterfly astraptes fulgerator.
Genetic Analysis (2004)

14. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. J. Mol. Evol. 16(2), 111–120 (1980)

15. Rousset, P., Giret, J.F.: Classifying qualitative time series with SOM: the typology of career
paths in France. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) Computational and
Ambient Intelligence. Lecture Notes in Computer Science, vol. 4507, pp. 757–764. Springer,
Berlin, Heidelberg (2007)

16. Abbott, A., Forest, J.: Optimal matching methods for historical sequences. J. Interdisc. Hist.
16(3), 471–494 (1986)

	Sparse Online Self-Organizing Maps for Large Relational Data
	1 Introduction
	2 Online Relational SOM
	3 Sparse Online Relational SOM
	4 The Kernel Version
	5 Examples
	6 Conclusion and Future Work
	References

