Dynamic Prototype Addition in Generalized
Learning Vector Quantization

Jonathon Climer and Michael J. Mendenhall

Abstract Learning Vector Quantization (LVQ) is a powerful supervised learning
method for classification that uses a network of prototype vectors to form a deci-
sion surface. Generalization theory shows there is a non-trivial number of prototype
vectors that yield the best generalization. Although it is typical to assign the same
number of prototype vectors for each class, other LVQ methods add prototypes
dynamically (incrementally) during training. This work offers an extension to the
existing dynamic LVQs that minimizes the cost function of Generalized LVQ by
focusing on the set of misclassified samples. This cost minimization occurs between
the largest cost-contributing class and its nearest “confuser class”. A comparison is
made between other prototype insertion methods and compares their classification
performance, the number of prototype resources required to obtain that accuracy,
and the impact on the cost function.

Keywords Dynamic/incremental learning vector quantization + Large margin
classifier - Cost minimization

1 Introduction

The family of Learning Vector Quantization (LVQ) [1] methods are supervised learn-
ers for statistical pattern recognition. They belong to a class of simple competitive
learners and have gained popularity due to their efficiency, ease of implementa-
tion, and clear interpretability during training and classification. These algorithms
are capable of classifying very high dimensional data and are applied in a variety
of fields including machine vision [2, 3], analysis of medical imagery [4], and the
classification of hyperspectral data [5].
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LVQs use representative “prototype” or “code-book” vectors whose positions
in the data space are updated during rounds of “learning”. Multiple prototypes
per class are typically used in order to achieve accurate classifications. However,
Crammer et. al. [6] shows that the generalization error of LVQ-based classifiers (that
lead to a “winner-takes-all” classification) are a function of the number of prototype
vectors used. Since the goal of any classifier is to generalize the decision surface, it
follows that too many prototypes can lead to over-fitting and that there is a non-trivial
number of prototypes among the classes for a given problem.

Solutions that do not make a-priori assumptions on the prototype distribution
between classes add them dynamically or incrementally as part of the learning process
(hereinafter dynamic). This concept is supported by [2, 3, 7, 8], based on LVQ?2,
LVQ3, GRLVQ, and GLVQ respectively. This paper considers a prototype insertion
strategy to Generalized LVQ (GLVQ) that minimizes the cost function directly. Our
method, in some cases, shows faster convergence due to larger accuracy gains early
in the training process, and in some cases requires fewer prototype vectors than other
methods in the same class [2, 3, 7, 8].

2 Learning Vector Quantization (LVQ) Background

2.1 LVQ Taxonomy

The taxonomy of LVQ is represented as three phases: competition, winner selection,
and synaptic adaptation. Each LVQ defines the set of prototype vectors it allows
to compete, commonly selecting one or more from the set of “in-class” proto-
types (belonging to the same class as the input sample x), “out-of-class” prototypes
(belonging to any class other than that of the input sample x), or a “net” prototype
(chosen from all prototype vectors, regardless of class label). A winning prototype
is one that results in the minimum distortion between it and the current sample.
When using Euclidean distance as the distortion measure, the winner w; represents
the prototype from the set of competitors, closest to x. (Frequently in LVQ, a second
competition selects one more winning prototype, w;.) After winner selection, many
LVQs impose additional conditions in order to apply updates to the prototypes based
upon the influence of x, such as windowing functions [9]. Where the additional con-
ditions are satisfied, the authors in [10] show the synaptic adaptation rule for LVQ
algorithms can be generalized as:

N as
wi ewi—aw; Wj<—Wj—()l—, (1)

where « is the (potentially time varying) learn rate and S is the cost function. The
completion (or termination) of these three phases for a sample x constitutes one
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training step. This process is then repeated for all training samples {x;, x,, ..., xy}
to constitute one epoch (where N is the total number of training samples).

2.2 Dynamic LVQ Ancestry

After the introduction of LVQ in [1], several variants have arisen to better estimate
the decision surface and overcome divergence and long-term stability challenges [9].
Poirier [7] introduced a new method based on Kohonen’s LVQ2 to dynamically
add prototype vectors as needed to better represent the class distributions and form
better decision surfaces. Later works built dynamic LVQ (DLVQ) methods based on
LVQ2.1 [11], LVQ3 [8, 12], GLVQ [2], and Relevance GLVQ (GRLVQ) [13]. Of
these, the GLVQ variants appear to offer the strongest performance due to their use
of a cost function that guides synaptic adaptation. Consequently, GLVQ forms the
basis of the methods described in this paper. Following the taxonomy in Sect.2.1,
the competition and winner selection phase of GLVQ uses both the nearest in-class
and nearest out-of-class prototypes (w; and w; respectively). Instead of explicitly
restricting winner selection by a window about the midpoint between w; and w;,
GLVQ implicitly does this [5, 10] by employing the cost [10]:
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where N is the number of training samples and d; and d; are squared Euclidean
distances between the input sample x,, and the prototype vectors w; and w, respec-
tively. Consistent with [10], f (u) is is the sigmoid function 1/ (1 + e’“). When
0S/0w; and 9S5/dw; are substituted into Eq. (1), the resulting synaptic adaptation
equations minimize the cost function via gradient descent [10]:

0 d; il d;
w; <—w,-—a—f—Jz[x—wi]; w; <—wj+a—f—2[x—wj].

O (d; + dy) O (d; + dy) )

2.3 LVQ Taxonomy Addition: Network Structure
Modification

In order to characterize the addition and/or deletion of prototype vectors in DLVQs,
anew element is incorporated into the standard LVQ taxonomy. Network structure
modification (NSM) captures the second dynamic and adaptive component that
distinguishes DLVQs from its ancestors. This part of the taxonomy is responsible
for identifying which class receives the new prototype and its initial location in the
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data space. While this paper does not exhaustively explore all DLVQ NSM methods
in the literature, several are used in our comparative analysis.

Mean: In Zell et al. [14], new prototypes are initialized as the mean of the mis-
classified samples and is done so across all classes. Although [14] adds, a prototype
to each class, we insert a single prototype in the class with the largest classification
error.

Closest: Kirsten et al. [3] insert new prototypes into classes where the classification
rate exceeds a threshold. This enables the addition of several prototypes at once. New
prototypes are placed near class boundaries by initializing them at the same position
as the misclassified sample closest to an out-of-class prototype vector. In our use
of this method, we insert a single prototype in order to normalize the comparison
between insertion methods.

Sampling Cost: Losing et al. [2] represents the latest in DLVQs and has the same
overarching goal described in this paper. That is, they desire to minimize the cost
function directly in order to maximize the classification accuracy. Conceptually,
this is achieved by selecting a random subset of the training samples (e.g., a fixed
percentage) as candidate positions for the insertion of a new prototype. One-by-one,
candidate positions are tested by calculating the total cost among the subset after the
candidate has been added. The position (and class label) of the candidate resulting
in the lowest total cost is chosen as the initialization of the new prototype.

Principal Components (PC): Stefano et al. [8] tracks the number of times in-
class and out-of-class prototypes are referenced in order to calculate a split metric
for each prototype. Prototypes with split metrics exceeding a threshold are split by
replacing the current prototype with two new prototypes placed equidistant from the
original along the principal component (eigenvector) direction of the target class’s
misclassified samples. The distance along the principal component axis is a function
of the associated variance (eigenvalue for the corresponding eigenvector).

2.4 Two Proposed NSM Methods

Our Near-Mean method is similar to the Mean method in [14], but restricts the new
prototype to the misclassified sample with the smallest Euclidean Distance to the
mean of the misclassified samples. By assuming a ‘“known valid” position closest
to the average, we reduce the potential of poorly interpolating the initialization of
the new prototype in a sparse area that may represent irregularities in the class
distribution, or even represent another class.

Our Misclassified Cost method seeks to minimize the cost function directly by
focusing on misclassified samples. Conceptually, our method accumulates the cost
contribution from each misclassified sample according to Eq. 2 in a confusion matrix
according to “true class” and “nearest class”. The two classes whose interaction
results in the highest total cost define the pool of candidate locations for the new
prototype: specifically, their misclassified samples. Each of the candidate solutions
are tested and the one with the lowest cost per Eq. 2 is chosen.
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2.5 Qualitative Comparison of NSM Methods

The presented NSM methods vary in how they try to improve the configuration of
the LVQ network in hopes of improving classification accuracy and generalization.
The Misclassified Cost, Mean, Near-Mean, and Closest methods utilize the set of
misclassified training samples to select a recipient class for a new prototype, restrict-
ing prototype placement to the class with largest classification error. The Sampling
Cost and PC methods select a candidate location globally (across all samples) where
Sampling Cost selects from a random subset of the training data. PC relies upon
misclassified data from each training sample to compute its split metric and assess
prototype utilization.

The methods also vary in candidate locations for the new prototype and the
resource burden associated with it. Sampling Cost and Misclassified Cost both per-
form direct minimization of the cost function. Sampling Cost compares placement at
N potential locations calculating the cost over all N training samples (in our imple-
mentation, N = N /10). Misclassified Cost calculates the cost over all misclassified
samples and once the two classes from the most expensive two-class boundary are
identified, candidate locations are evaluated only over the misclassified samples for
those two classes. Misclassified Cost down selects candidate positions in a way that
offers a reduction in total operations. As classification accuracy improves, NSM
using the misclassified samples as the candidate locations will reduce in compu-
tational complexity as the pool (typically) reduces over continued training. This is
in contrast to Sampling Cost where the number of samples evaluated as candidate
locations remains fixed.

In both cost motivated methods, as well as Closest and Near-Mean, new prototypes
are initialized in positions of known training samples. However, Mean and PC allow
the initialized position to be anywhere. This less restrictive initialization may be
beneficial, however, it may also lead to formation of prototypes in sparse (or poorly
defined) regions of the pdf. Additionally, the necessary computations can be complex.
In the case of Mean, it is simply the average location of the misclassified samples
within the class. PC however, requires the additional computation of the covariance
matrix and its eigenvectors and eigenvalues.

3 Experimental Process and Results

The NSM methods are compared within the framework of a dynamic GLVQ over
three data sets: the Mice Protein Expression data set [15], the USPS Handwritten
image data set [16], and the Lunar Crater Volcanic Field hyperspectral dataset[17]. In
order to promote a fair comparison of NSM methods and allow networks to converge,
we restrict the potential for NSM to occur after a fixed number of epochs, allowing
at most one new prototype per fixed interval. Consequently, the Closest and Mean
methods add a prototype (when appropriate) to the class with the largest classification
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error. Training and testing partitions for each data set are preserved between NSM
methods, and prototypes in each are initialized to the same values. Additionally, the
number of samples used in Sampling Cost is restricted to 10 % of the training set,
selected randomly.

3.1 Data Sets and Experiment Setup

The Mice Protein Expression data set [15] reports protein expression levels in the
brains of eight classes of mice with varying biology and treatments. While the report
sought to identify individual proteins linked to learning and Down Syndrome [18], it
presents an interesting classification problem. Due to empty fields in the data, 71 of
77 features are selected for 1047 samples. K -Fold cross-validation with K = 5 [19]
is used to train and validate classification performance. For consistency in training,
the protein expression features are linearly scaled on [0, 1]. A learn rate of « = 0.005
is used and prototype insertion occurs after 100 epochs.

The USPS Handwritten data set [16] has 9,298 samples where each sample is
a 16 x 16 pixel scan of a handwritten digit {0, 1,...,9}. Each 16 x 16 scan is
“linearized” creating a vector with 256 features and each feature is linearly scaled on
[0, 1]. K-fold cross-validation is used with K = 5 to train and validate performance.
An o = 0.1 is used and prototype insertion occurs after 150 epochs.

The Lunar Crater Volcanic Field (LCVF) hyperspectral data set [ 17] contains 1464
samples drawn from 35 classes, each with 194 spectral dimensions. As recommended
in [20], each feature vector is normalized with its £;-norm to compensate for the effect
of shadowing due to sensor geometry. Due to the sparsity of several classes, K -fold
cross-validation is used with K = 3. The learn rate is « = 0.00001 and prototype
insertion occurs after 100 epochs.

3.2 Results and Discussion

This section introduces the graphs and tables used to draw specific discussion on
each data set in Sects. 3.3, 3.4, and 3.5 for the Mice, USPS, and LCVF data sets
respectively. The classification and cost-minimization performance on the three data
sets previously described is shown in Figs.1 and 2. They show the performance
of PC, Sampling Cost, Misclassified Cost, Mean, and Closest. In order to improve
readability of the figures, Near-Mean is omitted. For a baseline, GLVQ as described
in [10] is used and is initialized with the maximum number of prototypes listed on the
plots. Table 1 shows the training and number of prototypes required to exceed baseline
GLVQ accuracy. Locations with a ‘-’ identify NSM methods that did not meet the
baseline performance. The strongest overall performers with the peak classification
accuracy of each NSM method is listed in Table 2. These numbers are reported along
with the total cost and required number of prototypes for the reported configurations.
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3.3 Mice Protein Expression Results

As shown in Fig. 1 (left, top), all NSM methods surpass the classification accuracy of
the baseline GLVQ and do so with fewer prototypes. Table 1 shows that the Misclas-
sified Cost and Near-Mean are the first to reach this benchmark, utilizing the fewest
prototypes (31 for each method). Misclassified Cost appears to dominate classifica-
tion accuracy until approximately epoch 1200 and the insertion of the 36th prototype.
From Fig. 1 (left, top) and seen in Table 2, beyond 1200 epochs PC offers the highest
accuracy of 89.11 % with Misclassified Cost and Near-Mean finishing at 88.06 %.
Table 2 further shows that PC achieves the highest cost, matching that of the baseline
GLVQ.

The cost performance of the NSM methods is closely related to classification
accuracy as is shown in Fig. 1 (left, bottom). This result is anticipated due to the
formulation of GLVQ as a gradient descent algorithm. While all of the NSM methods
show decreasing cost, PC shows the largest reduction followed by Sampling Cost. It
is interesting to note that Misclassified Cost achieves higher classification accuracy
even though several other NSM methods have lower cost curves. This difference
is likely due to the fact that Misclassified Cost targets cost reduction by evaluating
only misclassified samples for the placement of new prototypes. Addressing those
misclassifications early on has the potential to strongly shape classification accuracy.
Table 2 further shows that each method requires nearly the same number of prototype
vectors to achieve their top accuracy, and that no clear trend exists between peak
accuracy and associated cost.

3.4 USPS Handwritten Results and Discussion

Figure 1 (right, top) shows that Misclassified Cost has superior classification perfor-
mance for the first 1500 epochs. Beyond 1500 epochs, the classification accuracy
achieved by PC surpasses the other NSM method. In comparing the two direct cost
minimization methods, the classification accuracy of Sampling Cost surpasses that
of Misclassified Cost between 1500 and 7500 epoch. After 7500 epochs, the accu-
racy of Misclassified Cost is slightly better. Unlike the Mice Protein Expression data
set, the baseline GLVQ performs on par or better than many of the NSM methods
evaluated. This is further supported in Table 1 where we see that PC and Misclassi-
fied Cost are the only NSM methods that meet or exceed GLVQ for the USPS data
set. The baseline GLVQ’s strong performance might be attributed to the training time
it enjoys with the full number of prototypes and that the number of prototypes used
adequately represents the classification complexity of the data set. It is also possible
that a non-dynamic GLVQ method is appropriate for relatively simple and “well
balanced” classes (each class with approximately the same number of samples).
The two NSM methods that directly minimize cost offer some of the best classifi-
cation performance. It interesting that PC’s focus on the principal variance direction
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of the misclassified samples has the effect of indirectly minimizing the cost func-
tion yet leads to the lowest overall cost curve and highest classification accuracy as
seen in Fig. 1 (right, bottom) and Table 2 respectively. The contextual information
from clustering the misclassified samples with PC coupled with the “split metric”
seems to provide superior initial prototype placement. Table 2 again shows that peak
classification accuracy is achieved with approximately the same number of proto-
types (Sampling Cost doing slightly better), and that the costs associated with those
accuracies shows no clear trend.

3.5 LCVF Results and Discussion

Misclassified Cost offers very strong classification (Fig.2 (top)) for the first half
of the results (until approx epoch 1400), which is consistent with the Mice and
USPS results. In Table 1, only PC achieves the baseline classification accuracy before
Misclassified Cost with any noticeable lead. Up to 1200 epochs, Misclassified Cost
also offers the strongest cost reduction as shown in Fig. 2 (bottom). After epoch 1400,
the NSM methods (with exception of PC and Boundary) seem to converge, resulting
in maximum classification accuracies in the range of 94.84-94.98 % (a difference
of 0.14 %), which is also seen in Table2. While the convergent result in the second
half of Fig.2 (top and bottom) may not be surprising due to the small sample size
and disparate number of elements per class in the LCVF data set, PC does seem
to offer marked performance gains, peaking at 95.57 % and resulting in the second
lowest total cost. We see that Sampling Cost obtains a slightly lower cost than PC.
Table?2 shows that widely varying numbers of prototypes are associated with the
peak accuracies achieved by different NSM methods, while again there is no clear
trend in resulting costs.

4 Summary

In this paper we promote the dynamic addition of prototype vectors to achieve supe-
rior performance and efficiency for GLVQ. We introduce the concept of network
structure modification (NSM) into the standard LVQ taxonomy to describe individ-
ual methods for dynamic addition/deletion of prototypes within the network. This
paper presents two new NSM methods, Misclassified Cost and Near-Mean, to achieve
improved classification accuracy. The former explicitly minimizes the cost function
by placing prototypes in way that minimizes the cost due to misclassified samples.
Near-Mean selects the misclassified sample nearest the mean of the misclassified
samples from the class with the largest classification error.

Several NSM methods are evaluated based on training time and prototypes
required to meet a baseline classification performance of GLVQ. We find over-
whelming evidence of improved classification accuracy with fewer prototype when
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considering a DGLVQ. We also find that over all three data sets, Misclassified Cost
is consistently one of the better performing methods based on classification accu-
racy at the earliest opportunity. This fast convergence with fewer prototypes is a
benefit in terms of overall performance and may support a reduced generalization
error [6]. Faster convergence coupled with Misclassified Cost’s diminishing compu-
tational complexity as training continues could be beneficial in real-time continuous
learning applications.

We examine the trends of NSM methods as prototype networks expand and reach
their peak performance configurations. Overall, we see strong classification accuracy
from methods that effectively control cost, with some of the best performance from
methods that minimize the cost directly. While Sampling Cost offers good classi-
fication and cost minimization performance by selecting candidate positions from
randomly selected samples, Misclassified Cost offers promise as an alternative, with
better classification accuracy shown for all data sets (including a full 2 % gain in the
Mice Protein Expression data).

While we anticipated a clear distinct advantage of direct cost minimization NSM
methods, PC indirectly minimizes cost and consistently results in the best accuracy
and cost performance. Our adaptation and implementation of the PC method to
dynamically add prototypes in GLVQ showed the best results across all data sets.
PC’s use of the misclassified sample variance allowed for a more informed prototype
placement. This suggests future work related to cluster metrics to aid prototype
placement is warranted. Using the same cluster metrics could improve prototype
initialization, to include the number per class and their specific locations, which may
result in improved accuracy and cost minimization performance, while reducing
training requirements.
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