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Abstract Classical clustering algorithms as well as intrinsic evaluation criteria
impose predefined structures onto a data set. If the structures do not fit the data,
the clustering will fail and the evaluation criteria will lead to erroneous conclusions.
Recently, the abstract U-matrix has been defined for emergent self-organizing maps
(ESOM). In this work the abstract forms of the P- and the U* are defined in anal-
ogy to the P- and the U*-matrix on ESOM. The abstract U*-matrix can be used for
AU*-clustering of data by taking account of density and distance structures. ForAU*-
clustering the structures seen on the ESOM serve as a supervising quality measure.
In this way it can be determined whether an AU*-clustering represents important
structures inherent to the high dimensional data. Importantly, AU*-clustering does
not impose a geometric cluster shape, whichmay not fit the underlying data structure,
onto the data set. The approach is demonstrated on benchmark data as well as real
world data from spatial science.
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1 Introduction

It is known that classical clustering algorithms can frequently fail to produce a cor-
rect clustering even on data with a clearly defined cluster structure and for which
the correct number of clusters is provided as input. This can be demonstrated, for
example, on the “Lsun” data set (Fig. 1) from the Fundamental Clustering Problems
Suite (FCPS) published as benchmark problems for clustering algorithms [1].

Lsun consists of three clearly separated sets of points on an x-y plane in the form
of two elongated rectangular sets forming the letter L and a circular shaped set of
points forming the “sun” (Fig. 1, left panel). Popular clustering algorithms such as k-
means, Ward, complete- and average linkage all fail to cluster this data set correctly.
Figure1 shows the result of a k-means respectively Ward clustering with the correct
number of clusters (i.e. 3) as input (Fig. 1, middle and right panels). The reason for
this not uncommon phenomenon of incorrect clustering is that these algorithms imply
a geometrical model for the cluster structure. That is, k-means clustering produces a
spherical cluster shape, while Ward hierarchical clustering produces a hyperelliptic
shape. If this implicit assumption on cluster shape does not fit the underlying data
structure, the clustering will fail.

Emergent self-organizing feature maps (ESOM) [2] using the U-matrix [3] repre-
sent a topology-preserving mapping of high-dimensional data points xiεRD onto a
two-dimensional grid of neurons. In a 3D-display of the U-matrix (e.g. see Fig. 2 in
[4]), valleys, ridges and basins indicate a distance-based cluster structure in the data
set. Figure2 (left panel) shows the U-matrix for the Lsun data. The P-matrix on the
ESOMenables the visualization of density structures within the data. Bothmeasures,
i.e. densities and distances, are combined in the U*-matrix [3] (Figs. 2 and 3). In this
way it is possible to discover cluster structures in a data set that are both density-
and distance-based. However, ESOM is simply a method to project data from the
D-dimensional data space into the plane or the three dimensional landscapes of the

Fig. 1 Lsun data set and some clustering examples
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Fig. 2 U- and P-matrix of the Lsun data set

Fig. 3 U*-matrix and “Political Map” for Lsun

U-, P- and U*matrix (ESOMmatrices). If cluster structures are revealed through the
ESOMmatrices, a clustering algorithm is required that can reproduce the structures.

The recently introduced “Abstract U-matrix” (AU-matrix) [5] formally explains
the structures seen in the U-matrix. In this work, the abstract P (AP-matrix) and
abstract U* (AU*-matrix) are defined. Classical clustering algorithms can be used on
the AU*-matrix. The validity of this type of clustering can be assessed by comparing
results with the structures seen on ESOM matrices in the form of “Political Maps”.
The approach is demonstrated on the Lsun data set and on a real-world data set from
spatial science research.

2 Methods

The ESOM displays the U-matrix on top of an SOM on the output grid arranged in r
rows and c columns using a large (r∗c > 4000) number of neurons. Large U-heights
in the U-matrix indicate a wide gap in the data space whereas low U-heights indicate
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that the points are close to one another. In a 3D display of the U-matrix, valleys,
ridges and basins indicate distance-based cluster structures in the data. The P-matrix
[3] displays the point density p(x) = |{data points xi | d(xi , x) <= r}| estimated
as the number of data points in a sphere of radius r around x at each grid point on the
ESOM’s output grid. The U*-matrix combines distance structures (U-matrix) and
density structures (P-matrix) into a single matrix (U*-matrix) [3].

The combination can be formalized as pointwise matrix multiplication: U ∗ =
U ∗F(P), where F(P) is amatrix of factors f (p) that are determined through a linear
function f on the densities p = p(x) of the P-matrix. The function f is calculated
such that f (p) = 1 if the density p is equal to themedian and f (p) = 0 if p is equal to
the 95-percentile (p95) of the densities in the P-matrix. For p(x) > p95 : f (p) = 0,
which indicates that x is well within a cluster and results in zero heights in the U*
matrix. The P-matrix allows the identification of density-based clusters in data sets.
The U*-matrix shows a consistent picture of density and distance structures in the
data.

The abstract U-matrix (AU-matrix) is a three-dimensional structure with the
Voronoi cells of the best-matching units (BMUs) of the data as floor and the data
distances corresponding to adjacent Voronoi cells as walls [5]. The AU-matrix can
be calculated as the product of the adjacency matrix Del of the Delaunay graph of the
best-matching units (BMU) with the matrix of distances D between the data points,
i.e. AU = Del ∗ D. In analogy to the P-matrix, the abstract P-matrix is defined as
follows: Let Del(i, j) be an edge in Del. This implies that the Voronoi cells of data
points xi and x j are adjacent. The point (midpoint) mi, j = mean(xi , x j ) is the point
in data space corresponding to AU (i, j). The abstract P-matrix (AP-matrix) contains
the densities of all these midpoints: AP(i, j) = p(mi, j). The Abstract U*matrix
(AU*-matrix) is calculated in the same way as the U*-matrix (see above). It defines
a distance between the data points that takes into account (i) the topology preserving
projection of the SOM, (ii) the U-matrix structure and (iii) the density structure of the
data. The “PoliticalMap” of an ESOM is a coloring of theVoronoi cells of the BMUs,
with different colors for each cluster. Figure3 (right panel) shows a Political Map for
a Ward clustering of the AU*-matrix. A correct clustering using the AU* distances
(AU*-clustering) coincides with the structures seen on the ESOM-matrices. Thus,
AU*-clustering is a clustering of the data whose results can be visually inspected
and supervised using the ESOM-matrices and, in particular, using “Political Maps”.
This concurs with the structures seen in the other ESOM matrices and enables the
validation or invalidation of the data clustering.

3 Relationship to Other Approaches

The Abstract U-matrix (AU-matrix), as well as the extensions presented here (AP-
matrix, AU*-matrix), are concepts which help to understand what an empirical
U-Matrix, respectively P-Matrix and U*-Matrix, shows which is constructed by the
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learning algorithm of an SOMon a data set. The concepts presented here are designed
for emergent SOMs (ESOM). These have the property of using SOM which have
a very large number of neurons, even substantially more neurons than data points.
From our perspective, the number of neurons can be thought of as the pixel resolution
of a digital photo camera: the more pixels (neurons) the better the image resolution,
i.e. the representation of high dimensional data space. It is clear that time and costs
for data processing increase with the number of neurons. However, two factors serve
to reduce this burden: improved learning algorithms for the SOMs and Moore’s law,
which famously states that computing power doubles every two years.

A different approach to Kohonen maps is the so-called k-means-SOM, which
uses only few units to represent (clusters of) data. For example, Cottrell and de Bodt
use 4 × 4 units to represent the 150 data points in the Iris data set [6]. In contrast
to these approaches, ESOMs represent more of the high dimensional space in their
neurons than just the BMUs of the data points. BMUs on ESOM only have more
than one data point as attractors if they are practically identical in data space. The
connectivity matrix CONN [7–9] assumes non-zero density of data points within the
attractor field, i.e. the number of data points projected onto one BMU. The number of
data points in these Voronoi cells represents a frequency count. However, this is not
a valid density measure, since the volumes of the Voronoi cells of different BMUs
may be quite different.

A single wall of AU matrix represents the true distance information between two
points in data space. A valid density information at the midpoints between BMU
and second BMU (notation taken from [7–9]) is calculated for the AP-matrix, since
the same volumes, i.e. spheres of a predefined radius, are used. The AU*-matrix
therefore represents the true distance information between two points weighted by
the true density at the midpoint. The representation is such that high densities shorten
the distance and low densities stretch this distance. Using transitive closure for these
weighted distances allows classical clustering algorithms (AU*-clustering) to actu-
ally perform distance- and density-based clustering, taking into account the complex
topology of partially entwined clusters within the data.

As thewalls of theAU*-matrix are “paper-thin” there is hardly anyway to actually
display the AU*-matrix directly. However, an empirical given U*-matrix can and
should be adjusted, scaled and normalized to fit best the properties of the AU*-
matrix. Such a normalized U*-matrix can then be understood as a visualization of
the abstract AU*-matrix.

4 AU*-clustering of the Benchmark Data Set

Atopviewof theU-matrix using a geographical analogy for color-coding of distances
separates the two classes visually as a ridge between valleys (Fig. 2 left panel). This
allows the identification of the number of clusters. The P-matrix (Fig. 2 right panel)
shows particularly low data densities at those neurons where high values in the
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U-matrix are observed. This confirms that the parameter for the density calculation,
i.e. the radius of the Parzen window (sphere), is correctly chosen. Furthermore, it
shows that the density in the red class (sun) is considerably lower than in the two
L-classes in Lsun.

The U*-matrix shown in the left panel of Fig. 3 displays enhanced ridges between
the prospective clusters and indicates the cluster centers. The results of the AU*-
clustering usingWard clustering on the AU*-matrix are shown as the “PoliticalMap”
in Fig. 3. Clustering accuracy using AU*-clustering of the Lsun data was 100% as
compared with the true classification shown in Fig. 1 (left panel).

5 AU*-clustering Applied to FCPS Data Sets

AU*-clustering (AU*C) is the application of a classical clustering algorithm using
the AU* distances taken from the Abstract AU*-matrix. Here AU*C-clustering was
applied to the data sets in the Fundamental Clustering Problems Suite (FCPS) [10].
FCP was accessed on September 15th, 2015, and downloaded from http://www.uni-
marburg.de/fb12/datenbionik/downloads/FCPS.

FCPS offers a variety of clustering problems that any algorithm should be able to
handle when facing real world data [10], and thus serves as an elementary benchmark
for clustering algorithms. FCPS consists of data sets with known a priori classifica-
tions that are to be reproduced by the algorithm. All data sets are intentionally cre-
ated to be simple, enabling visualization in two or three dimensions. Each data set
represents a certain problem that is solved by known clustering algorithms with vary-
ing degrees of success. This is done in order to reveal the benefits and shortcomings
of the algorithms in question. Standard clustering methods, e.g. single-linkage, ward
und k-means, are not able to solve the FCPS problems satisfactorily [10].

Here the accuracy of data clustering, i.e. agreement of U*C on FCPS with the a
priori classification, was as follows:

Data Set Accuracy (%)
Atom 100.00
Chainlink 100.00
EngyTime 95.00
Hepta 100.00
Lsun 100.00
Target 100.00
Tetra 99.00
TwoDiamonds 100.00
WingNut 100.00
GolfBall 100.00

http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS
http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS
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6 AU*-clustering Applied to Spatial Science Data

The AU*-clustering was applied to a data set describing the dynamics of land
consumption in all of Germany’s municipalities (n = 11, 441; data valid as of
31.12.2010). The data set captures changes in land consumption in the years 2000
to 2010. Land consumption dynamics (LCD) are described along four dimensions:
changes in land usage, changes in population density, changes in trade tax revenues
and changes in municipal populations. The rededication of open space into settle-
ment and transportation areas has long been the subject of debate. In many related
works, clustering has been employed as a popular method intended to answer spe-
cific research questions such as: “How many forms of land consumption exist in
Germany?” Most recent approaches have used a Ward or k-means clustering [11,
12]. However, many of these approaches have not validated the clustering. As men-
tioned above, k-means andWard clustering algorithms are limited to finding clusters
of specific shape, e.g. spherical or ellipsoid respectively for a predefined number of
clusters.

The LCD data was ESOM projected onto a grid of 50 × 160 = 8000 neurons.
Figure4 shows the U*-matrix of this projection. An AU*-clustering of the data
resulted in eight different clusters. Figure5 shows the political map of this cluster-
ing. A comparison with the U* Matrix of the same data set shows excellent coin-
cidence of the observed structures. The ESOM matrices in Figs. 4 and 5 are toroid,
i.e. the borders top-bottom and left-right connect to one another [3]. The identified
clusters could be related to previously unknown structures of spatial effects in land
consumption in German municipalities. For example, one of the clusters indicates
that an increase in trade tax per inhabitant was unexpectedly associated with a loss
in open spaces and also in population. This points to possible problems in munici-
pal development. Another cluster could be characterized as comprising communities
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Fig. 4 U*-matrix of the LCD-data set
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Fig. 5 Political Map of an AU*-clustering of the LCD data set

undergoing the highest change in land consumption within one decade. This could be
observed particularly in periurban rural areas. Such results help in the development
and optimization of planning programs for sustainable land development. Moreover,
the results can be used to help establish a monitoring framework and as the basis for
support systems for spatial decision-making. Thus, AU*-clustering offers a deeper
multidimensional description of the characteristics of municipal land consumption
for cooperating spatial experts.

7 Discussion

Clustering algorithms belong to the class of unsupervised algorithms in Machine
Learning. As no desired or “correct” results are available, the results of the algo-
rithm cannot be directly evaluated with respect to their correctness, i.e. no extrinsic
evaluation is readily possible. Intrinsic evaluation measures for clustering methods
try to capture numeric features of distances with respect to the assumed clusters.
They rely on the assignment of low values to the distances within a cluster and of
large values to the distances between clusters. However, these measures also implic-
itly define the geometrical structure of an optimal cluster. For example, the popular
silhouette coefficient [13] compares the average distance to elements within the same
cluster with the average distance to elements in other clusters. This defines the sphere
as the optimal cluster shape. As a consequence, silhouette coefficients do not favor
the best cluster structure but rather the cluster structure found by a k-means clus-
tering. Therefore, intrinsic evaluation measures do not allow for the conclusion that
some clustering algorithms are better than others as they rely on the existence of the
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structure imposed by either algorithm. If the data set in fact contains a differing
structure, they will neither provide the correct clustering nor allow the quality of
the results to be determined. The Ward and k-means results for the Lsun data set
demonstrate this effect (Fig. 1).

ESOM are based on the topology-preserving projection of the data onto the output
plane by the underlying SOM. The structures seen on the ESOM matrices therefore
allow visual (in-)validation of the cluster structures in the data. Such structures may
be defined by distances (U-matrix), densities (P-matrix) or a combination of both
(U*-matrix). The abstract form of these three matrices can be used to understand the
perceived structures. In this paper, it is proposed that they may be used for clustering
(AU*-clustering). The result of a clustering using the AU*-matrix can be compared
to the structures seen in the U*-matrix using “Political Maps”. This means that if the
clustering reproduces the observed structures, it correctly represents (topologically)
the structural features of a data set. The algorithm does not impose a model of cluster
structure onto the data set. In the data on land consumption dynamics, the AU*-
clustering approach produced a map showing eight different types of dynamics. It
could be validated with regard to the ESOM matrices constructed for this data set.
The resulting clusters were meaningful for the experts in spatial development and
planning.

8 Conclusions

Clustering belongs to unsupervised machine learning algorithms for which no “cor-
rect” results exist a priori. Classical clustering algorithms and intrinsic evaluation
measures of cluster quality impose a predefined structure onto a data set, which can
lead to mis-clustering if the imposed structures do not fit the data. By contrast, the
here presented professionally constructed ESOM represents a topologically correct
projection of the data. The U-Matrix allows visual inspection of distance structures
while the P-matrix enables assessment of density structures in the data, and the U*-
matrix combines both. In this work the abstract form of these matrices was used for
data clustering (AU*-clustering) where the structures seen in the ESOM matrices
proofed as a valid quality measure. It can therefore be concluded that this clustering
represents important structures in the data without requiring an implicit predefinition
of cluster shape or number.
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