
A Scalable Flexible SOM NoC-Based
Hardware Architecture

Mehdi Abadi, Slavisa Jovanovic, Khaled Ben Khalifa, Serge Weber
and Mohamed Hédi Bedoui

Abstract In this paper, a parallel hardware implementation of a self-organizing
map (SOM) is presented. Practical scalability and flexibility are the main architec-
ture features which are obtained by using a Network-on-chip (NoC) approach for
communication between neurons. The presented hardware architecture allows on-
line learning and can be easily adapted for a large variety of applications without a
considerable design effort. A hardware 5 × 5 SOMwas validated through the FPGA
implementation and its performances at a working frequency of 200MHz for a 32-
element input vector reach 724 MCUPS in the learning and 1168 MCPS in the recall
phase.

1 Introduction

Since their introduction, Self-Organizing Maps (SOMs) have been largely used in
many applications [1]. A SOM is an unsupervised learning neural network which
is mainly used to reduce and classify high-dimensional input data sets to ease their
interpretation and processing. A SOM can be implemented either in software (SW),
hardware (HW) or mixed hardware-software platforms (HW/SW). Even though the
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software solutions provide more flexibility, the hardware implementations exploit
inherent parallelism of SOM networks and may be preferred to the software ones
especially in real-time applications characterized with tight temporal constraints.

The hardware SOM implementations are typically application specific. Each
application has its own specificities needing different SOM parameters: input layer
size, number of neurons in the output layer, timing constrains, memory requirements,
etc. Inmost of cases, the adaptationof a hardwareSOMarchitecture for another appli-
cation is time consuming and needs considerable design efforts. Another important
issuewhichmake difficult the reuse of an existing hardware SOM implementation are
the communication links between neurons. Generally, these communication links are
established at the point-to-point basis and are hard wired and if we want to add some
additional neurons (and thus new connections to them) we have to completely mod-
ify the way neurones are connected. To have a scalable and application-independent
hardware SOM implementation, it is necessary to add more flexibility to the existing
HW design approaches. A way of doing this is to completely decouple computation
from communication. In this paper, we propose a Network-on-a-chip (NoC) based
solution, where a NoC is used for communication purposes between neurons.

This paper is organized as follows: Sect. 2 presents the state of the art in the
domain of hardware SOM implementations. Section3 presents the proposed method
and describes the modifications that should be made to an existing hardware SOM
implementation tomake it scalable. Section4 presents some obtained results whereas
some conclusions and perspectives are drawn in Sect. 5.

2 Related Work

The first reported SOM implementations were in software using processor-based
architectures [2]. The performances of initial single-core microprocessor architec-
tures have been recently boosted by the increasing parallelism of many-cores multi-
processor chips (MPSoC), but are still suffering from sequential processing and high
power consumption with respect to the application-specific solutions. However, the
SOM software implementations are flexible and easy to implement and are usually
used beforehand a hardware implementation especially in the design exploration
phase to give rapidly insights about the HW design choices to take. However, for
hard real-time embedded applications, hardware solutions based on the use of Field
Programmable Gate Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs) may be preferred.

The FPGA solutions are a good trade-off between cost, design effort, perfor-
mances and reduced time-to-market. However, the FPGAs can only be used to
implement digital counterparts of SOMs, no analog design is supported. If the high
performances, low power consumption or low area occupancy are targeted, an ASIC
is preferable to an FPGA implementation. There are some ASIC implementations
of SOMs that we found in literature [3–5]. An ASIC implementation gives the best
performances but is costly, demands high design efforts and has little or no flexibility.
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In a hardware design, each choice has a cost and must be carefully considered.
The floating point operators are resources greedy and are often avoided in hardware
implementations, unless there are no solutions to obtain needed precision.Besides the
arithmetic precision, in HW SOM implementations the choice of norm for distance
calculation can influence the overall complexity of the hardware. Therefore, we
found some architectures using Manhattan or Euclidean distance [6–8]. The first
one is preferred to the latter due to the lower computation requirements and thus
lower power consumption. Some studies showed that for high-dimensional vectors
the effect of choosing the L1 operator is negligible on the SOM performances [9].

Another important choice to take in HW SOM implementations is the type of
neighbourhood function (NF) to use, whose function determines which neurons’
coefficients in the vicinity of the winning one should be updated. In the original SOM
algorithm, a Gaussian neighborhood function is used, but its hardware implemen-
tation demands complex arithmetic operations and is usually realized as an analog
integrated circuit [4]. It is often approximated with other functions such as: rectangu-
lar, triangular, shift-register based [5, 7]. The shift-register solution of the NF greatly
simplifies its implementation by replacing the resources consuming multipliers with
simple shift registers and is widely used in digital SOM implementations [6–8, 10].

All presented HW architectures have a two-level structure: a massively parallel
distance processing elements (PEs) layer usually connected with hard links to a
global circuit used for winner neuron search and weight update operations. This type
of connection may be advantageous in small SOM networks but in large ones, the
increasing linking complexity considerably limits their clock frequency and thus the
overall performances usually expressed in MCUPS/MCPS (million of connections
and updates per second respectively). Manalakos et al. proposed in [10] a parallel
HW SOM systolic architecture design in which an input vector traverses all neurons
in a pipelined manner, forming that way shorter links and thus a faster HW.

The lack of flexibility of hardware SOMs, which is mainly due to the point-to-
point communication between neurons and especially in large SOM networks, can
be overcome with the use of a Network-on-chip (NoC). NoCs are presented as an
alternative to traditional shared bus allowing the connection of several PEs on a single
chip [11, 12]. They enjoy an explicit parallelism, high bandwidth and a high degree
of modularity, which makes them very suitable for distributed architectures such as
SOM networks.

3 Proposed Architecture

3.1 Self-Organizing Map (SOM)

The architecture of a SOM can be described with a two-dimensional distribution
of L × K neurons. Each neuron has a weight vector −→m of dimension D, which is
continuously compared to the input vector

−→
X :
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−→
X = {ξ1, ξ2, . . . , ξD} ε�D (1)

Each neuron calculates the distance between its weights −→m l,k (0 ≤ l ≤ L − 1,0 ≤
k ≤ K − 1) and the input vector

−→
X . In general, the calculated distance is the Euclid-

ean distance:

∥
∥
∥
−→
X − −→m l,k

∥
∥
∥ =

√

(ξ1 − μl,k1)2 + (ξ2 − μl,k2)2 + · · · + (ξD − μl,kD)2 (2)

Therefore, the winner neuron, which has the vector −→m c closest to the input vector−→
X , is identified.

c = argmin
l,k

∥
∥
∥
−→
X − −→m l,k

∥
∥
∥ (3)

During the learning phase, the winner’s weights and the weights of the neurons in
its vicinity are updated as described by the following equation:

−→m l,k(t + 1) = −→m l,k(t) + hc,l,k(t)
[−→

X (t) − −→m l,k(t)
]

(4)

where hc,l,k(t) is the neighborhood function defined as follows:

hc,l,k(t) = α(t) × exp(−
∥
∥−→r c − −→r l,k

∥
∥

2σ 2(t)
) (5)

With α(t) learning rate; σ(t) Neighbourhood rate; −→r c position of the winning neu-
ron; −→r l,k position of the neuron with index (l, k).

3.2 Network on Chip (NoC)

The structure of a 2D mesh NoC is shown in Fig. 1a. The packets are transported
from a source to a target through a network of routers and interconnection channels
(Link). The network is composed of processing elements (PEs) and routers. Each
router is associated to a PE via a network interface whose primary function is to
pack (before sending) and unpack (after receiving) data exchanged between PEs.
Figure1d illustrates the structure of packets circulating in the network using the
wormhole switching technique. Each packet is composed of flits: header (opening
the communication and “showing” the route to other flits), body (containing the
data) and tail flit(closing the communication). The router (see Fig. 1b) is composed
of a crossbar which establishes multiple links between inputs and outputs of the
router according to the predefined routing algorithm and scheduling policy. The
crossbar and the arbitration of packets in the router are handled with a Control
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Fig. 1 a Structure of a 2DmeshNoC.bNoC router architecture. cAlternate bit protocol.dMessage
structure

Logic Block (CLB). Each router has input and/or output buffers, whose role is to
temporarily accept flits before their transmission to either the local PE or to one of
the neighboring routers. Figure1b shows the interconnection signals of an isolated
router. The connections between neighboring routers and the local PE are carried out
with six signals (3 for each transmission and reception): a bidirectional data bus, a
transfer request signal and an acknowledgment signal denoted with the infixes _d_,
_req_ and _ack_ respectively. Message exchange between a router and its neighbors
follows the alternate bit protocol illustrated in Fig. 1c. Sending a flit through a port
x_d_y (x ∈ {W, S, E, N }, y ∈ {in, out}) is accompanied with the request signal on
the same port x_req_y. Upon the reception of the acknowledge signal on the same
port x_ack_y, the sending of the next flit can be proceeded. A change in a control
signal (_req_ and _ack_ signals) is indicated by inverting its preceding value. If
the request signal has the same binary level as the acknowledge signal or vice versa,
the sending or receiving of a flit is successful and the router can proceed to the next
one. Otherwise, it is blocked. It should be noted that the sending or receiving of a
flit consumes 2 clock cycles.
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(a)(b)

(c)

Fig. 2 aArchitectures of the SOM-NoC’s PE, b VEP and c LWS circuit

3.3 SOM-NoC

The PEs of a L × K NoC were adapted for SOM computation. The architecture of
a SOM-NoC’s PE is presented in Fig. 2a. It consists of 3 circuits: a Vector Element
Processing (VEP) whose role is to calculate the distance and to update the weights of
the corresponding neuron during the adaptation phase (see Fig. 2b); a Local Winner
Search (LWS) circuit presented in Fig. 2c which carries out the comparison of the
local distance and the received neighbor’s distances; an Update Signal Generator
(USG) is the circuit preparing update signals during the adaptation phase; and a Net-
work Interface (NI) ensuring the sending to and receiving of data from neighboring
PEs (neurons). Each PE has an identity (its address in the network) which determines
the instructions its NI needs to execute during the winner search operation. The top
left and the bottom right PEs have some additional functions: they initiate the winner
search operation and winner id diffusion respectively.

Each PE behaves as a neuron: in the competition phase, it calculates the Euclidean
distance between the input vector and its weights and send it through the NI to the
nearest neighbors. The distance is propagated through the network in a systolic
manner as presented in Fig. 3. Each computed distance crosses two neighboring
routers before arriving at the PE’s node. Upon reception of the neighboring PEs’
distances, each PE compares them (with the LWS circuit) to the local one to locally
determine the identity of the winner neuron. The NI is in charge to send the locally
determined minimum distance and the corresponding neuron’s id to the neighboring
PEs. At the bottom right PE node of the network, the identity of the wining neuron is



A Scalable Flexible SOM NoC-Based Hardware Architecture 171

x
s

y

x

s
y

(a)(c)

(b)

Fig. 3 Systolic architecture of SOM

known (see Fig. 3a). This identity is then broadcast to all nodes of the network while
the winner neuron, as well as its neighbors, start the update of their weights. In this
HW architecture, the used neighborhood function is a simple shift function carried
out with a barrel shifter.

The execution time of the learning operation Ti is calculated using the competition
and adaptation times Tc and Ta respectively:

Ti = Tc + Ta (6)

The distance calculation is carried out simultaneously in all PEs. Then, the propa-
gation and comparison at the PE’s level are also conducted in parallel as presented
in Fig. 3c. From Fig. 3, it can be seen that the time needed to send (or propagate) a
calculated distance from one PE to its neighbor PE is equal to the time to cross 2
routers in the network (2 hops). Therefore, the time needed for the competition phase
is given by the expression:

Tc = Tcd + {(Tp + Tcmp)× (Nstg − 1)} (7)

where Tcd , Tp, Tcmp and Nstg are distance calculation, propagation and comparison
time and the level number respectively.

The calculation of the Euclidean distance between the input and the weight vector
is done sequentially element-by-element using the VEP shown in Fig. 2a. Each ele-
mentary operation is performed in a single clock cycle. The intermediary results are
stored in the accumulator, while the final results of the adaptation phase are stored in
the local memory for further reuse. As it is presented in Fig. 4, each element of the
input vector is processed in a single clock cycle and the final distance is ready after
an additional clock cycle. The distance calculation time is given by:
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Fig. 4 Timings representing distance calculation (left) and update of weights (right)

Tcd = (N + 1)× TC L K (8)

where N is the input vector size and TC L K is the clock period.
The propagation time of a flit between two PEs in the presented NoC without

collision (2 flits demanding the same output channel) is calculated by:

Tp = Tpk + {Tr×N r} + Td pk (9)

where Tpk, Tdpk are packing and unpacking time, Tr is the router latency and Nr is
the number of routers to the final destination.

The adaptation phase involves two steps. Broadcasting of the identity of thewinner
neuron is ensured by neurons located at the end of each row of the network. The
necessary broadcasting time is determined by the equation:

Tbc = (Tpk + Td pk + 1)× (K + L − 2)+ 4Tr (10)

Once the identity of thewinner neuron is available, theUSG circuit takes into account
its position and generates the update signals. If a PE is concerned with the update
signals, its VEP circuit starts the update phase in Tupd = N · TC L K clock cycles.
Figure4 presents the timings of the update phase. The update of a weight vector
element takes one clock cycle.

4 Results and Discussion

A 5 × 5 SOM-NoC using 32-element input vectors was used for performance evalu-
ation. The parameters of the implemented architecture are presented in Table1. The
circuit was synthesized on a Xilinx Virtex-6 FPGA board. The obtained maximum
working frequency is 200 MHz.

The performances of each step as well as the overall performances of the archi-
tecture are shown in Table1.
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Table 1 Parameters and performances of the proposed SOM-NoC architecture

Parameter Value Description

L × K 5× 5 SOM size

N 32 Vector size

Nstg 9 Level number

p 12 Data size

q 34 Flit size

R 5 Neighbour radius

Tr 3 Router latency

Tpk 2 Packing latency

Tdpk 2 Unpacking latency

Description Step equation (clock cycles) Time (ns)

1 Distance calculation Tcd = N + 1 165

2 Global winner search Tsw = Tp × (Nstg − 1) =
13 × (Nstg − 1)

520

3 Broadcasting of winner’s id Tbc = (Tdpk + Tpk + 1) ×
(L + K − 2) + 4Tr

260

4 Update weight Tupd = N 160

5 Recall Tc = Tcd + Tsw 685

6 Adaptation Ta = Tbc + Tupd 420

7 Learning Ti = Tc + Ta 1105

MCPS L×K×N
T c × 10−6 1168

MCUPS L×K×N
T i × 10−6 724

The distance calculation (step 1) time depends on the input vector dimension.
For a 32-element input vector, it takes 33 clock cycles, which is equivalent to 165
ns for a 200MHz working frequency. Similarly, in the weight update phase (step 4)
all PEs operate in parallel, that means the number of clock cycles needed for this
phase is proportional to the input vector dimension (32). On the other hand, we note
that the winner neuron search (step 2) is the most time consuming step (almost 50%
of the overall learning time). This search is done sequentially in a systolic manner
as explained in Sect. 3.3 and greatly depends on the network size (L × K ) and thus
on the number of levels of propagation which is equal to L + K − 1. Moreover, the
winner id broadcasting phase (step 3) depends on the number of lines of the network.

The performance of the presented architecture depends on the network size and
the input vector dimension. Figure5a shows the estimated performances in terms of
MCPS and MCUPS as a function of the network size for a 32-element input vector.
It can be seen that the performances increase non-linearly with the network size.
As the network size increases and accordingly the number of available neurons, the
communication time becomes preponderant to the computation one thus limiting the
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Fig. 5 a Performances of a SOM-NoC as a function of the network size (left) and b of a 5 × 5
SOM-NoC as a function of the input vector dimension (right)

increase in performanceswith regard to the number of neurons. On the other hand, for
the same network size while increasing the input vector dimension, the computation
becomes dominant over the communication and a rapid growth of performances
as presented in Fig. 5b can be observed. Moreover, we also note that for the input
vector dimension above 400 elements, the performances have a much slower rate
of growth which can be explained with a very time consuming distance calculation
and weight update phases which are both done sequentially on the input vector. If
the calculating distance and update time exceed the time needed for the competition
and broadcasting steps, there is no significant performance gain with the input vector
dimension increase. Table2 shows the comparison of the proposed HW architecture
with the results reported in [7, 8, 10]. In order to make these results comparable, we
presented the estimated performances (based on data fromTable1) of our architecture
for a 16× 16 SOM using 2048-element input vectors.

Table 2 Performance comparison

Work Size Input
vector

Communication Architecture Frequency MCUPS Scalability

Lachmair
et al. [8]

6050 194 Bus Software
core i7

NA 1628 Yes

Lachmair
et al. [8]

6050 194 Bus SIMD gNBXe
processor

NA 20604 No

Hikawa and
Maeda [7]

16× 16 3 P to P Parallel FPGA 33MHz 25344 No

Manolakos
andLogaras
[10]

100 2048 P to P Systolic array
FPGA

148MHz 3467 No

This work 16× 16 2048 NoC Sequential
systolic FPGA

200MHz 22555 Yes



A Scalable Flexible SOM NoC-Based Hardware Architecture 175

5 Conclusion and Perspectives

We presented in this paper an FPGA implementation of a Network-on-Chip-based
hardwareSelf-OrganizingMap.Eachneuron is associated to oneNoCrouter allowing
it to exchange data with other neurons of the network during both the learning and
recall phases. The presented architecture is highly scalable and flexible and can
be easily adapted to a large variety of applications demanding different working
parameters. The implemented neurons support different input vector dimensions.
The most time consuming phase is the winner search phase which is also done
sequentially. The proposed architecture (SOM and NoC) is described in VHDL and
its performances are evaluated for different network and input vector sizes. It has
been showed that the presented architecture in its current state is most suitable for
large input vector dimensions where communication time is neglected with regard
to the computation one. The performance improvement of an order of magnitude in
the recall phase can easily be obtained by exploring the architecture pipelining or by
using faster NoC routers.
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