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Preface

This book contains the refereed contributions presented at the 11th Workshop on
Self-Organizing Maps (WSOM 2016) held at Rice University, Houston, Texas
(USA) during January 6–8, 2016. It brings together more than 90 researchers and
practitioners from 15 countries in the field of self-organizing systems for data
analysis, with a particular emphasis on self-organizing maps (SOMs) and learning
vector quantization (LVQ). The book highlights key advances in these and closely
related fields. WSOM 2016 is the 11th in a series of biennial international con-
ferences started with WSOM’97 in Helsinki.
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Steering and Executive Committees for guidance and advice. We greatly appreciate
the time, thoughtfulness, and participation of the WSOM 2016 plenary speakers:
Prof. Marrie Cottrell (Université Paris 1 Panthéon-Sorbonne, France), Prof. Pablo
Estévez (University of Chile and Millennium Institute of Astrophysics, Chile), and
Prof. Risto Miikkulainen (University of Texas at Austin, USA). We would like to
express our appreciation for all the hard and timely work performed by the Program
Committee and additional reviewers. Above all, we would like to thank all of the
authors whose contributions made this book a reality.

Special thanks to the local organizers (P. Huitron, Y. Adler, J. Taylor, and
J. Vera-Garza, Rice University; J. Climer, Air Force Institute of Technology) for
their participation. Their untiring work and attention to all details of WSOM 2016
has been invaluable. Last but not least, we gratefully acknowledge the Department
of Statistics, Rice University, The School of Engineering, Rice University, and the
Department of Electrical and Computer Engineering, Air Force Institute of
Technology, for their support.

Houston, TX Erzsébet Merényi
January 2016 Michael J. Mendenhall

Patrick O’Driscoll
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Part I
Self-Organizing Map Learning,

Visualization, and Quality Assessment



Theoretical and Applied Aspects
of the Self-Organizing Maps

Marie Cottrell, Madalina Olteanu, Fabrice Rossi
and Nathalie Villa-Vialaneix

Abstract The Self-Organizing Map (SOM) is widely used, easy to implement, has
nice properties for datamining byproviding both clustering andvisual representation.
It acts as an extension of the k-means algorithm that preserves as much as possible
the topological structure of the data. However, since its conception, the mathematical
study of the SOM remains difficult and has be done only in very special cases. In
WSOM 2005, Jean-Claude Fort presented the state of the art, the main remaining
difficulties and the mathematical tools that can be used to obtain theoretical results
on the SOMoutcomes. These tools are mainlyMarkov chains, the theory of Ordinary
Differential Equations, the theory of stability, etc. This article presents theoretical
advances made since then. In addition, it reviews some of the many SOM algorithm
variants which were defined to overcome the theoretical difficulties and/or adapt the
algorithm to the processing of complex data such as time series, missing values in
the data, nominal data, textual data, etc.

Keywords SOM · Batch SOM · Relational SOM · Stability of SOM
1 Brief History of the SOM

Since its introduction by T. Kohonen in his seminal 1982 articles ([33, 34]), the
self-organizing map (SOM) algorithm has encountered a very large success. This
is due to its very simple definition, to the easiness of its practical development, to

M. Cottrell (B) · M. Olteanu · F. Rossi
SAMM - Université Paris 1 Panthéon-Sorbonne, 90, rue de Tolbiac,
75013 Paris, France
e-mail: marie.cottrell@univ-paris1.fr
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INRA, UR 0875 MIAT, BP 52627, 31326 Castanet Tolosan, France
e-mail: nathalie.villa@toulouse.inra.fr

© Springer International Publishing Switzerland 2016
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning
Vector Quantization, Advances in Intelligent Systems and Computing 428,
DOI 10.1007/978-3-319-28518-4_1
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its clustering properties as well as its visualization ability. SOM appears to be a
generalization of basic clustering algorithms and at the same time, provides nice
visualization of multidimensional data.

The basic version of SOM is an on-line stochastic process which has been inspired
by neuro-biological learning paradigms. Such paradigms had previously been used
to model some sensory or cognitive processes where the learning is directed by the
experience and the external inputs without supervision. For example, [49] illustrate
the somatosensorymapping property of SOM.However, quickly in the eighties, SOM
was not restricted to neuro-biology modeling and has been used in a huge number
of applications (see e.g. [31, 46] for surveys), in very diverse fields as economy,
sociology, text mining, process monitoring, etc.

Since then, several extensions of the algorithms have been proposed. For instance,
for users who are not familiar with stochastic processes or for industrial applications,
the variability of the equilibrium state was seen as a drawback because the learnt
map is not always the same from one run to another. To address this issue, T. Koho-
nen introduces the batch SOM, ([37, 39]) which is deterministic and thus leads to
reproducible results (for a given initialization). Also, the initial SOM (on-line or
batch versions) was designed for real-valued multidimensional data, and it has been
necessary to adapt its definition in order to deal with complex non vectorial data such
as categorical data, abstract data, documents, similarity or dissimilarity indexes, as
introduced in [30, 32, 35]. One can find in [36, 37, 40–42] extensive lists of refer-
ences related to SOM. At this moment more than 10 000 papers have been published
on SOM or using SOM.

In this paper,we review a large selection of the numerous variants of the SOM.One
of themain focus of this survey is the question of convergence of the SOMalgorithms,
viewed as stochastic processes. This departs significantly from the classical learning
theory setting. In this setting, exemplified by the pioneering results of [48], one
generally assumes given an optimization problem whose solution is interesting: for
instance, an optimal solution of the quantization problem associated to the k-means
quality criterion.Theoptimizationproblem is studiedwith twopoints of view: the true
problem which involves a mathematical expectation with respect to the (unknown)
data distribution and its empirical counterpart where the expectation is approximated
by an average on a finite sample. Then the question of convergence (or consistency)
is whether the solution obtained on the finite sample converges to the true solution
that would be obtained by solving the true problem.

We focus on a quite different problem. A specific stochastic algorithm such as
the SOM one defines a series of intermediate configurations (or solutions). Does
the series converge to something interesting? More precisely, as the algorithm maps
the inputs (the data) to an output (the prototypes and their array), one can take this
output as the result of the learning process and may ask the following questions,
among others:

• How to be sure that the learning is over?
• Do the prototypes extract a pertinent information from the data set?
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• Are the results stables?
• Are the prototypes well organized?

In fact, many of these questions are without a complete answer, but in the fol-
lowing, we review parts of the questions for which theoretical results are known and
summarize the main remaining difficulties. Section2 is devoted to the definition of
SOM for numerical data and to the presentation of the general methods used for
studying the algorithm. Some theoretical results are described in the next sections:
Sect. 3 explains the one dimensional case while in Sect. 4, the results available for the
multi-dimensional case are presented. The batch SOM is studied in Sect. 5. In Sect. 6,
we present the variants proposed by Heskes to get an energy function associated to
the algorithm. Section7 is dedicated to non numerical data. Finally, in Sect. 8, we
focus on the use of the stochasticity of SOM to improve the interpretation of the
maps. The article ends with a very short and provisional conclusion.

2 SOM for Numerical Data

Originally, (in [33, 34]), the SOM algorithm was defined for vector numerical data
which belong to a subset X of an Euclidean space (typically R

p). Many results in
this paper additionnaly require that the subset is bounded and convex. There are two
different settings from the theoretical point of view:

• continuous setting: the input spaceX can be modeled by a probability distribution
defined by a density function f ;

• discrete setting: the data space X comprises N data points x1, . . . , xN in R
p (In

this paper, by discrete setting, we mean a finite subset of the input space).

The theoretical properties are not exactly the same in both cases, so we shall later
have to separate these two settings.

2.1 Classical On-line SOM, Continuous or Discrete Setting

In this section, let us consider that X ⊂ R
p (continuous or discrete setting).

First we specify a regular lattice of K units (generally in a one- or two-dimensional
array). Then on the set K = {1, . . . , K }, a neighborhood structure is induced by a
neighborhood function h defined on K × K. This function can be time dependent
and, in this case, it will be denoted by h(t). Usually, h is symmetrical and depends
only on the distance between units k and l on the lattice (denoted by dist(k, l) in the
following)). It is common to set hkk = 1 and to have kkl decrease with increasing
distance between k and l. A very common choice is the step function, with value 1
if the distance between k and l is less than a specific radius (this radius can decrease
with time), and 0 otherwise. Another very classical choice is
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hkl(t) = exp

(
−dist2(k, l)

2σ2(t)

)
,

where σ2(t) can decrease over time to reduce the intensity and the scope of the
neighborhood relations.

A prototype mk ∈ R
p is attached to each unit k of the lattice. Prototypes are also

called models, weight vectors, code-vectors, codebook vectors, centroids, etc. The
goal of the SOMalgorithm is to update these prototypes according to the presentation
of the inputs in such a way that they represent the input space as accurately as
possible (in a quantization point of view) while preserving the topology of the data
by matching the regular lattice with the data structure. For each prototype mk , the set
of inputs closer to mk than to any other one defines a cluster (also called a Voronoï
cell) in the input space, denoted by Ck , and the neighborhood structure on the lattice
induces a neighborhood structure on the clusters. In other words, after running the
SOM process, close inputs should belong to the same cluster (as in any clustering
algorithm) or to neighbor clusters.

From any initial values of the prototypes, (m1(0), . . . , mK (0)), the SOM algo-
rithm iterates the following steps:

1. At time t , if m(t) = (m1(t), . . . , mK (t)) denotes the current state of the proto-
types, a data point x is drawn according to the density f inX (continuous setting)
or at random in the finite set X (discrete setting).

2. Then ct (x) ∈ {1, . . . , K } is determined as the index of the best matching unit,
that is

ct (x) = arg min
k∈{1,...,K } ‖x − mk(t)‖2, (1)

3. Finally, all prototypes are updated via

mk(t + 1) = mk(t) + ε(t)hkct (x)(t)(x − mk(t)), (2)

where ε(t) is a learning rate (positive, less than 1, constant or decreasing).

Although this algorithm is very easy to define and to use, its main theoretical prop-
erties remainwithout complete proofs.Only somepartial results are available, despite
a large amount of works and empirical evidences. More precisely, (mk(t))k=1,...,K

are K stochastic processes in R
p and when the number t of iterations of the algo-

rithm grows, mk(t) could have different behaviors: oscillation, explosion to infinity,
convergence in distribution to an equilibrium process, convergence in distribution or
almost sure to a finite set of points in Rp, etc.

This is the type of convergence that we will discuss in the sequel. In particular,
the following questions will be addressed:

• Is the algorithm convergent in distribution or almost surely, when t tends to +∞?
• What happens when ε is constant? when it decreases?
• If a limit state exists, is it stable?
• How to characterize the organization?
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One can find in [9, 21] a summary of the main rigorous results with most references
as well as the open problems without solutions until now.

2.2 Mathematical Tools Related to the Convergence
of Stochastic Processes

The main methods that have been used to analyze the SOM convergence are sum-
marized below.

• The Markov Chain theory for constant learning rate and neighboring function,
which is useful to study the convergence and the limit states. If the algorithm
converges in distribution, this limit distribution has to be an invariant measure for
the Markov Chain. If it is possible to prove some strong organization, it has to be
associated to an absorbing class;

• The Ordinary Differential Equation method (ODE), which is a classical method
to study the stochastic processes.

If we write down the Eq. (2) for each k ∈ K in a vector form, we get

m(t + 1) = m(t) − ε(t)Φ(x, m(t)), (3)

where Φ is a stochastic term. To study the behavior of such stochastic processes,
it is often useful to study the solutions of the associated deterministic ordinary
differential equation that describes the mean behavior of the process. This ODE is

dm

dt
= −φ(m), (4)

where φ(m) is the expectation of Φ(., m) with respect to the probability distri-
bution of the inputs x (continuous setting) or the arithmeticmean (discrete setting).

Here the kth—component of φ is

φk(m) =
K∑

j=1

hk j

∫
C j

(x − mk) f (x)dx, (5)

for the continuous setting or

φk(m) = 1

N

K∑
j=1

hk j

∑
xi ∈C j

(xi − mk), (6)
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that can be also written

φk(m) = 1

N

N∑
i=1

hkc(xi )(xi − mk), (7)

for the discrete setting.

The possible limit states of the stochastic process in Eq. (2) would have to be
solutions of the equation

φ(m) = 0.

Then if the zeros of this function were the minima of a function (most often called
energy function), it would be useful to apply the gradient descent methods.

• The Robbins-Monro algorithm theory which is used when the learning rate
decreases under conditions

∑
t

ε(t) = +∞ and
∑

t

ε(t)2 < +∞. (8)

Unfortunately some remarks explain why the original SOM algorithm is difficult
to study. Firstly, for dimension p > 1, a problem arises: it is not possible to define any
absorbing class which could be an organized state. Secondly, although the process
m(t) can be written down as a classical stochastic process of Eq. (3), one knows since
the papers [15, 16], that it does not correspond to an energy function, that is it is not a
gradient descent algorithm in the continuous setting. Finally, it must be emphasized
that no demonstration takes into account the variation of the neighborhood function.
All the existing results are valid for a fixed size and intensity of the function h.

3 The One-Dimensional Case

A very particular setting is the one-dimensional case: the inputs belong to R and the
lattice is a one-dimensional array (a string). Even though this case is of a poor prac-
tical utility, it is interesting because the theoretical analysis can be fully conducted.

3.1 The Simplest One-Dimensional Case

The simplest case was fully studied in the article [7]. The inputs are supposed to be
uniformly distributed in [0, 1], the lattice is a one-dimensional array {1, 2, . . . , K },
the learning rate ε is a constant smaller than 1

2 , the neighborhood function is a constant
step function hkl = 0 if |k − l| > 1 and 1 otherwise. In that case the process m(t) is a
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j − 1

1

0

j j + 1 j − 1 j j + 1 j − 1 j j + 1 j − 1 j j + 1

Fig. 1 Four examples of triplets of prototypes (m j−1, m j , m j+1). For each j , j − 1 and j + 1 are
its neighbors. The y-axis coordinates are the values of the prototypes that take values in [0, 1]. The
first two triplets on the left are badly ordered. In the case under study, SOM will order them with
a strictly positive probability. The last two triplets (on the right) are well ordered and SOM will
never disorder them

homogeneous Markov Chain with continuous state space. The organization we look
for is simply the ordering (ascending or descending) and so is easy to characterize.
Let us describe the main steps of the proof.

1. There exists a decreasing functional: the number of badly ordered triplets (Fig. 1).
But this is not sufficient to prove the convergence, it has to be strictly decreasing
with a strictly positive probability.

2. The set of ordered dispositions is an absorbing class, composed of two classes
which do not communicate: the increasing sequences class and the decreasing
sequences class.

3. One shows that ordering (topology preservation in this special case) takes place
after a finite time with a probability which is greater than a positive bound, and
that the hitting time of the absorbing class is almost surely finite.

4. Then one shows that the Markov Chain has the Doeblin property: there exists an
integer T , and a constant c > 0, such that, given that the process starts from any
ordered state, and for all set E in [0, 1]n , with positive measure, the probability
to enter in E with less than T steps is greater than c vol(E).

5. This implies that the chain converges in distribution to a monotonous stationary
distribution which depends on ε (which is a constant in that part).

6. If ε(t) tends towards 0 and satisfies the Robbins-Monro conditions (8), once the
state is ordered, the Markov Chain almost surely converges towards a constant
(monotonous) solution of an explicit linear system.

So in this very simple case, we could prove the convergence to a unique ordered
solution such that

m1(+∞) < m2(+∞) < · · · < mK (+∞),

or
m1(+∞) > m2(+∞) > · · · > mK (+∞).
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A

B

C

Fig. 2 This figure represents 2-dimensional prototypes (x and y-axes are not shown but are the
standard horizontal and vertical axes) which are linked as their corresponding unit on the SOM
grid. At this step of the algorithm, the x- and y- coordinates of the prototypes are well ordered. But
contrarily to the one-dimensional case, this disposition can be disordered awith positive probability;
in an 8-neighbors case, A is C’s neighbor, but B is not a neighbor of C. If C is repeatedly the best
matching unit, B is never updated, while A becomes closer and closer to C. Finally, the y coordinate
of A becomes smaller than that of B and the disposition is disordered

Unfortunately, it is not possible to find absorbing classes when the dimension
is larger than 1. For example, in dimension 2, with 8 neighbors, if the x- and y-
coordinates are ordered, it is possible (with positive probability) to disorder the
prototypes as illustrated in Fig. 2.

3.2 What We Know About the General
One-Dimensional Case

We summarize in this section the essential results that apply to the general one
dimension case (with constant neighborhood function and in the continuous setting).
References and precise statements can be found in [9, 21]. Compared to the previous
section, hypothesis on the data distribution and/or the neighborhood function are
relaxed.

• The process m(t) is almost surely convergent to a unique stable equilibrium point
in a very general case: ε(t) is supposed to satisfy the conditions (8), there are
hypotheses on the density f and on the neighborhood function h. Even though
these hypotheses are not very restrictive, some important distributions, such as the
χ2 or the power distribution, do not fulfill them.

• For a constant ε, the ordering time is almost surely finite (and has a finite expo-
nential moment).

• With the same hypotheses as before to ensure the existence and uniqueness of a
stable equilibrium x∗, from any ordered state, for each constant ε, there exists an
invariant probability measure πε. When ε tends to 0, this measure concentrates on
the Dirac measure on x∗.
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• With the same hypotheses as before to ensure the existence and uniqueness of
a stable equilibrium x∗, from any ordered state, the algorithm converges to this
equilibrium provided that ε(t) satisfies the conditions (8).

As the hypotheses are sufficiently general to be satisfied inmost cases, one can say
that the one-dimensional case ismore or less well-known. However nothing is proved
neither about the choice of a decreasing function for ε(t) to ensure simultaneously
ordering and convergence, nor for the case of decreasing neighborhood function.

4 Multidimensional Case

When the data are p-dimensional, one has to distinguish two cases, the continuous
setting and the discrete one.

4.1 Continuous Setting

In the p-dimensional case, we have only partial results proved by Sadeghi in ([52]).
In this paper, the neighborhood function is supposed to have a finite range, the
learning rate ε is a constant, the probability density function is positive on an interval
(this excludes the discrete case). Then the algorithm weakly converges to a unique
probability distribution which depends on ε.

Nothing is known about the possible topology preservation properties of this
stationary distribution. This is a consequence of the difficulty of defining an absorb-
ing organized state in a multi-dimensional setting. For example, two results of
Flanagan and Fort-Pagès illustrate the complexity of the problem. These two appar-
ently contradictory results hold. For p = 2, let us consider the set F++ of simulta-
neously ordered coordinates (respectively x and y coordinates). We then have:

• for a constant ε and very general hypotheses on the density f , the hitting time of
F++ is finite with a positive probability ([17]),

• but in the 8-neighbor setting, the exit time is also finite with positive probability
([22]).

4.2 Discrete Setting

In this setting, the stochastic process m(t) of Eqs. (2) and (4) derives from a potential
function, which means that it is a gradient descent process associated to the energy.
When the neighborhood function does not depend on time, [50] have proven that the
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stochastic process m(t) of Eqs. (2) and (3) derives from a potential, that is it can be
written

mk(t + 1) = mk(t) + ε(t)hkc(x)(t)(x − mk(t)),

= mk(t) − ε(t)Φk(x, m(t)),

= mk(t) − ε(t)
∂

∂mk
E(x, m(t)),

where E(x, m) is a sample function of E(m) with

E(m) = 1

2N

K∑
k=1

K∑
j=1

hk j

∑
xi ∈C j

‖mk − xi‖2, (9)

or in a shorter expression

E(m) = 1

2N

N∑
i=1

K∑
k=1

hkc(xi )‖mk − xi‖2. (10)

In other words the stochastic process m(t) is a stochastic gradient descent process
associated to function E(m). Three interesting remarks can be made:

1. The energy function is a generalization of the distortion function (or intra classes
variance function) associated to the Simple Competitive Learning process (SCL,
also knownas theVectorQuantizationProcess/Algorithm),which is the stochastic
version of the deterministic Forgy algorithm. The SCL process is nothing else
than the SOM process where the neighborhood function is degenerated, i.e. when
hkl = 1 only for k = l and hkl = 0 elsewhere. In that case, E reduces to

E(m) = 1

2N

N∑
i=1

‖mc(xi ) − xi‖2.

For that reason, E is called extended intra-classes variance.
2. The above result does not ensure the convergence of the process: in fact the

gradient of the energy function is not continuous and the general hypotheses
used to prove the convergence of the stochastic gradient descent processes are
not valid. This comes from the fact that there are discontinuities when crossing
the boundaries of the clusters associated to the prototypes, because the neighbors
involved in the computation change from a side to another. However this energy
gives an interesting insight on the process behavior.

3. In the 0-neighbor setting, the Vector Quantization algorithm converges, since
there is no problem with the neighbors and the gradient is continuous. However
there are a lot of localminima and the algorithm converges to one of theseminima.



Theoretical and Applied Aspects of the Self-Organizing Maps 13

5 Deterministic Batch SOM

As the possible limit states of the stochastic process (2) would have to be solutions
of the ODE equation

φ(m) = 0,

it is natural to search how to directly get these solutions. The definition of the batch
SOM algorithm can be found in [37, 39].

From Eq. (5), in the continuous setting, the equilibrium m∗ must satisfy

∀k ∈ K,

K∑
j=1

hk j

∫
C j

(x − m∗
k) f (x)dx .

Hence, for the continuous setting, the solution complies with

m∗
k =

∑K
j=1 hk j

∫
C j

x f (x)dx∑K
j=1 hk j

∫
C j

f (x)dx
.

In the discrete setting, the analogous is

m∗
k =

∑K
j=1 hk j

∑
xi ∈C j

xi∑K
j=1 hk j |C j |

=
∑N

i=1 hkc(xi )xi∑N
i=1 hkc(xi )

Thus, the limit prototypes m∗
k have to be the weighted means of all the inputs

which belong to the cluster Ck or to its neighboring clusters. The weights are given
by the neighborhood function h.

Using this remark, it is possible to derive the definition of the batch algorithm.

mk(t + 1) =
∑K

j=1 hk j (t)
∫

C j (mk (t))
x f (x)dx∑K

j=1 hk j (t)
∫

C j (mk (t))
f (x)dx

. (11)

for the continuous setting, and

mk(t + 1) =
∑N

i=1 hkct (xi )(t)xi∑N
i=1 hkct (xi )(t)

(12)

for the discrete case.
This algorithm is deterministic, and one of its advantages is that the limit states of

the prototypes depend only on the initial choices. When the neighborhood is reduced
to the unit itself, this batch algorithm for the SOM is nothing else than the classical
Forgy algorithm ([18]) for clustering. Its theoretical basis is solid and a study of the
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Table 1 Comparison summary

On-line stochastic Batch deterministic

No neighbor VQ, SCL, k-means Forgy, moving centers

With neighbors SOM Batch SOM

convergence can be found in [5]. One can prove ([19, 20]) that it is exactly a quasi-
Newtonian algorithm associated to the extended distortion (energy) E (see Eq. (10)),
when the probability to observe a x in the sample which is exactly positioned on the
median hyperplanes (e.g. the boundaries of Ck) is equal to zero. This assumption
is always true in the continuous setting but it is not relevant in the discrete setting
since there is no guarantee that data points never belong to the boundaries which
vary along the iterations.

The batch SOM algorithm is the extension of the Forgy algorithm with the intro-
duction of the neighborhood between clusters, in the same way as the on-line SOM
algorithm is for the Vector Quantization algorithm. It is not exactly a gradient descent
algorithm, but it converges to a minimum of the energy E . Obviously there are many
local minima. In conclusion, the relations between these clustering algorithms are
summarized in Table1.

6 Other Algorithms Related to SOM

As explained before, the on-line SOM is not a gradient algorithm in the continuous
setting ([15, 16]). In the discrete setting, there exists an energy function, which is an
extended intra-classes variance as in Eq. (10), but this function is not continuously
differentiable. To overcome these problems, [27] proposes to slightly modify the on-
line version of the SOM algorithm so it can be seen as a stochastic gradient descent
on the same energy function. To do so, he introduces a new hard assignment of the
winning unit and a soft version of this assignment.

6.1 Hard Assignment in the Heskes’s Rule

In order to obtain an energy function for the on-line SOM algorithm, [27] modifies
the rule for computing the best matching unit (BMU). In his setting, Eq. (1) becomes

ct (x) = arg min
k∈{1,...,K }

K∑
j=1

hk j (t)‖x − mk(t)‖2 (13)
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Table 2 Smoothness of the energy function

Discrete setting Continuous setting

Kohonen rule for computing BMU Energy: discontinuous (but
finite on V )

Energy: continuous

Gradient: discontinuous
(infinite on V )

Gradient: discontinuous

Heskes rule for computing BMU Energy: continuous Energy: continuous

Gradient: discontinuous
(finite on V )

Gradient: continuous

The energy function considered here is

E(m) = 1

2

K∑
j=1

K∑
k=1

hk j (t)
∫

x∈C j (m)

‖x − mk(t)‖2 f (x)dx, (14)

where C j (m) is the cluster (Voronoï cell) associated to the j-th prototype. The regu-
larity properties of the energy function and of its gradient are summarized in Table2,
as discussed in [27].

6.2 Soft Topographic Mapping (STM)

The original SOM algorithm is based on a hard winner assignment. Generalizations
based on soft assignments were derived in [24, 27]. First, let us remark that the
energy function in the discrete case can also be written as

E(m, c) = 1

2

K∑
k=1

N∑
i=1

cik

K∑
j=1

hk j (t)‖m j (t) − xi‖2

where cik is equal to 1 if xi belongs to cluster k and zero otherwise. This crisp
assignment may be smoothed by considering cik ≥ 0 such that

∑K
k=1 cik = 1. The

soft assignments may be viewed as the probabilities of input xi to belong to class k.
Since the optimization of the energy function with gradient descent-like algo-

rithms would get stuck into local minima, the problem is transformed into a deter-
ministic annealing scheme. The energy function is smoothed by adding an entropy
term and transforming it into a “free energy” cost function, parameterized by a para-
meter β:

F(m, c,β) = E(m, c) − 1

β
S(c),

where S(c) is the entropy term associated to the full energy. For low values of β, only
one global minimum remains and may be easily determined by gradient descent or



16 M. Cottrell et al.

EM schemes. For β → +∞, the free energy has exactly the same expression as the
original energy function.

When using deterministic annealing, one begins by computing theminimumof the
free energy at low values of β and then attempts to compute the minimum for higher
values of β (β may be chosen to grow exponentially), until the global minimum of
the free energy for β → +∞ is equal to the global minimum of the original energy
function.

For a fixed value of β, the minimization of the free energy leads to iterating over
two steps given by Eqs. (15) and (16), in batch version, and very similar to the original
SOM (the neighborhood function h is not varied during the optimization process):

P(xi ∈ Ck) = exp(−βeik)∑K
j=1 exp(−βei j )

, (15)

where eik = 1
2

∑K
j=1 h jk(t)‖xi − m j (t)‖2 and

mk(t) =
∑N

i=1 xi
∑K

j=1 h jk(t)P(xi ∈ C j )∑N
i=1

∑K
j=1 h jk(t)P(xi ∈ C j )

(16)

The updated prototypes are written as weighted averages over the data vectors.
For β → +∞, the classical batch SOM is retrieved.

6.3 Probabilistic Views on the SOM

Several attempts have been made in order to recast the SOM algorithm (and its
variants) into a probabilistic framework, namely the general idea of mixture models
(see e.g. [45]). The central idea of those approaches is to constrain a mixture of
Gaussian distributions in a way that mimic the SOM grid. Due to the heuristic nature
of the SOM, the resultingmodels depart quite significantly from the SOM algorithms
and/or from standard mixture models. We describe below three important variants.
Other variants are listed in e.g. [53].

6.3.1 SOM and Regularized EM

One of the first attempts in this direction can be found in [28]. Based on his work on
energy functions for the SOM, Heskes shows in this paper that the batch SOM can
be seen as a form of regularized Expectation Maximization (EM) algorithm.1

1EM is the standard algorithm for mixture models.
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As mentioned above, the starting point of this analysis consists in introduc-
ing an isotropic Gaussian mixture with K components. The multivariate Gaussian
distributions share a single precision parameter β, with the covariance matrix 1

β
I,

and are centered on the prototypes.
However, up to some constant terms, the opposite of the log likelihood of such a

mixture corresponds to the k-means quantization error. And therefore, maximizing
the likelihood does not provide any topology preservation. Thus Heskes introduces a
regularization term which penalizes prototypes that do not respect the prior structure
(the term does not depend directly on the data points), see [28] for details. Then
Heskes shows that applying the EM principle to the obtained regularized (log) like-
lihood leads to an algorithm that resembles the batch SOM one.

This interpretation has very interesting consequences, explored in the paper. It is
easy for instance to leverage the probabilistic framework to handle missing values
in a principled (non heuristic) way. It is also easy to use other mixtures e.g. for non
numerical data (such as count data). However, the regularization itself is rather ad hoc
(it cannot be easily interpreted as a prior distribution on the parameters, for instance).
In addition, the final algorithm is significantly different from the batch SOM. Indeed,
as in the case of the STM, crisp assignments are replaced by probabilistic ones (the
crispness of the assignments is controlled by the precision parameter β). In addition,
as in STM, the neighborhood function is fixed (as it is the core of the regularization
term). To our knowledge, the practical consequences of those differences have not
been studied in detail on real world data. While one can argue that β can be increased
progressively and at the same time, one canmodify the neighborhood function during
the EM algorithm, this might also have consequences that remain untested.

6.3.2 SOM and Variational EM

Another take at this probabilistic interpretation canbe found in [53].As in [28] thefirst
step consists in assuming a standard mixture model (e.g. a K components Gaussian
isotropic mixture for multivariate data). Then the paper leverages the variational
principle (see e.g. [29]).

In summary, the variational principle is based on introducing an arbitrary distrib-
ution q on the latent (hidden) variables Z of the problem under study. In a standard
mixture model, the hidden variables are the assignment ones, which map each data
point to a component of the mixture (a cluster in the standard clustering language).
One can show that the integrated log likelihood of amixturemodel withΘ as parame-
ters, log p(X |Θ), is equal to the sum of three components: the complete likelihood
(knowing both the data points X and the hidden variables Z ) integrated over the hid-
den variables with respect to q, Eq log p(X, Z |Θ), the entropy of q, H(q), and the
Kullback-Leibler divergence, K L(q|p(Z |X,Θ)), between q and the posterior dis-
tribution of the hidden variables knowing the data points p(Z |X,Θ). This equality
allows one to derive the EM algorithm when the posterior distribution of the hidden
variables knowing the data points can be calculated exactly. The variational approach
consists in replacing this distribution by a simpler one when it cannot be calculated.
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In standard mixture models (such as the multivariate Gaussian mixture), the vari-
ational approach is not useful as the posterior distribution of the hidden variables can
be calculated. However [53] propose nevertheless to use the variational approach as
a way to enforce regularity in the mixture model. Rather than allowing p(Z |X,Θ)

to take an arbitrary form, they constrain it to a subset of probability distributions
on the hidden variables that fulfill topological constraint corresponding to the prior
structure of the SOM. See [53] for details.

This solution shares most of the advantages of the older proposal in [28], with
the added value of being based on a more general principle that can be applied to
any mixture model (in practice, [28] makes sense only for the exponential family).
In addition, [53] study the effects of shrinking the neighborhood function during
training and conclude that it improves the quality of the solutions. Notice that, in
[53], the shared precision of the Gaussian distributions (β) is not a meta-parameter
as in [28] but a regular parameter that is learned from the data.

6.3.3 The Generative Topographic Mapping

The Generative Topographic Mapping (GTM, [2]) is frequently presented as a prob-
abilistic version of the SOM. It is rather a mixture model inspired by the SOM rather
than an adaptation. Indeed the aim of the GTM designers was not to recover a learn-
ing algorithm close to a SOM variant, but rather to introduce a mixture model that
enforce topology preservation.

The GTM is based on uniform prior distribution on a fixed grid which is mapped
via an explicit smooth nonlinearmapping to the data space (with some added isotropic
Gaussian noise). It can be seen as a constrainedGaussianmixture, butwith yet another
point of view compared to [28, 53]. In [28], the constraint is enforced by a regulariza-
tion term on the data space distribution while in [53] the constraint is induced at the
latent variable level (via approximating p(Z |X,Θ) by a smooth distribution). In the
GTM the constraint is induced on the data space distribution because it is computed
via a smooth mapping. In other words, the centers of the Gaussian distributions are
not freely chosen but rather obtained by mapping a fixed grid to the data space via
the nonlinear mapping.

The nonlinear mapping is in principle arbitrary and can therefore implement
various type of regularity (i.e. topology constraints). The use of Gaussian kernels
lead to constraints that are quite similar to the SOM constraints. Notice that those
Gaussian kernels are not to be confusedwith the isotropicGaussian distributions used
in the data space (the same confusion could arise in [53] where Gaussian kernels can
be used to specify the constraints on p(Z |X,Θ)).

Once the model has been specify (by choosing the nonlinear mapping), its para-
meters are estimated via an EM algorithm. The obtained algorithm is quite different
from the SOM (see [28] for details), at least in its natural formulation. However the
detailed analysis contained in [28] shows that the GTM can be reformulated in a
way that is close to the batch SOM with probabilistic assignments (as in e.g. the
STM). Once again, however, this is not exactly the same algorithm. In practice, the
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results on real world data can be quite different. Also, as all the probabilistic variants
discussed in this section, the GTM benefits from the probabilistic setting that enables
principled missing data analysis as well as easy extensions to the exponential family
of distributions in order to deal with non numerical data.

7 Non Numerical Data

When the data are not numerical, the SOM algorithm has to be adapted. See for
example [11, 30, 32, 35, 38, 40–43], where some of these adaptations are presented.
Here we deal with categorical data collected in surveys and with abstract data which
are known only by a dissimilarity matrix or a kernel matrix.

7.1 Contingency Table or Complete Disjunctive Table

Surveys collect answers of the surveyed individuals who have to choose an answer
to several questions among a finite set of possible answers. The data can consist in

• a simple contingency table, where there are only two questions, and where the
entries are the numbers of individuals who choose a given pair of categories,

• a Burt table, that is a full contingency table between all the pairs of categories of
all the questions,

• a complete disjunctive table that contains the answers of all the individuals, coded
in 0/1 against dummy variables which represent all the categories of all the ques-
tions.

In all these settings, the data consist in a positive integer-valued matrix, which can
be seen as a large “contingency table”. In classical data analysis, one uses Multiple
Correspondence Analysis (MCA) that are designed to deal with these tables. MCA is
nothing else than two simultaneous weighted Principal Component Analysis (PCA)
of the table and of its transposed, using the χ2 distance instead of the Euclidean
distance. To use a SOM algorithm with such tables, it is therefore sufficient to apply
a transformation to the data, in order to take into account the χ2 distance and the
weighting, in the sameway that it is defined to useMultipleCorrespondenceAnalysis.
After transforming the data, two coupled SOM using the rows and the columns of
the transformed table can thus be trained. In the final map, related categories belong
to the same cluster or to neighboring clusters. The reader interested by a detailed
explanation of the algorithm can refer to [3]. More details and real-world examples
can also be found in [8, 10]. Notice that the transformed tables are numerical data
tables, and so there is no particular theoretical results to comment on. All the results
that we presented for numerical data still hold.
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7.2 Dissimilarity Data

In some cases, complex data such as graphs (social networks) or sequences (DNA
sequences) are described through relational measures of resemblance or dissem-
blance, such as kernels or dissimilarity matrices. For these general situations, several
extensions of the original algorithm, both in on-line and batch versions, were pro-
posed during the last two decades. A detailed review of these algorithms is available
in [51].

More precisely, these extensions consider the case where the data are valued in an
arbitrary spaceX , which is not necessarily Euclidean. The observations are described
either by a pairwise dissimilarity D = (δ(xi , x j ))i, j=1,...,N , or by a kernel matrix
K = (K (xi , x j ))i, j=1,...,N .2 The kernel matrix K naturally induces an Euclidean dis-
tance matrix, but the dissimilarity matrix D may not necessarily be transformed into
a kernel matrix.

The first class of algorithms designed for handling relational data is based on the
median principle (median SOM): prototypes are forced to be equal to an observation,
or to a fixed number of observations. Hence, optimal prototypes are computed by
searching through (xi )i=1,...,N , instead ofX , as in [13, 14, 32, 43]. The original steps
of the algorithm are thus transformed in a discrete optimization scheme, which is
performed in batch mode:

1. Equation (1) is replaced by the affectation of all data to their best matching units:
c(xi ) = arg mink=1,...,K δ(xi , mk(t));

2. Equation (2) is replaced by the update of all prototypes within the dataset
(xi )i=1,...,N : mk(t) = argminxi : i=1,...,N

∑N
j=1 hc(x j )k(t)δ(xi , x j ).

Since the algorithm explores a finite set when updating the prototypes, it is neces-
sarily convergent to a local minimum of the energy function. However, this class of
algorithms exhibits strong limitations, mainly due to the restriction of the prototypes
to the dataset, in particular, a large computational cost (despite efficient implemen-
tations such as in [6]) and no interpolation effect which yields to a deterioration of
the quality of the map organization.

The second class of algorithms, kernel SOM and relational/dissimilarity SOM,
rely on expressing prototypes as convex combinations of the input data. Although
these convex combinations do not usually have sense in X (consider, for instance,
that input data are various texts), a convenient embedding in an Euclidean or a
pseudo-Euclidean space gives a sound theoretical framework and gives sense to
linear combinations of inputs.

For kernel SOM, it is enough to use the kernel trick as given by [1]which prove that
there exists a Hilbert spaceH, also called feature space, and a mapping ψ : X → H,

2A kernel is a particular case of symmetric similarity such that K is a symmetric matrix, semi-
definite positive with K (xi , xi ) = 0 and satisfies the following positive constraint

∀ M > 0, ∀ (xi )i=1,...,M ∈ X , ∀ (αi )i=1,...,M ,
∑
i, j

αi α j K (xi , x j ) ≥ 0.
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called feature map, such that K (x, x ′) = 〈ψ(x),ψ(x ′)〉H. In the case where data are
described by a symmetric dissimilarity measure, they may be embedded in a pseudo-
Euclidean space ψ : x ∈ X → ψ(x) = (ψ+(x),ψ−(x)) ∈ E , as suggested in [23].
E may be written as the direct decomposition of two Euclidean spaces, E+ and E−,
with a non-degenerate and indefinite inner product defined as

〈ψ(x),ψ(y)〉E = 〈ψ+(x),ψ+(u)〉E+ − 〈ψ−(x),ψ−(u)〉E−

The distance naturally induced by the pseudo-Euclidean inner product is not neces-
sarily positive.

For both kernel and relational/dissimilarity SOM, the input data are embedded in
H or E and prototypes are expressed as convex combinations of the images of the
data by the feature maps. For example, in the kernel case,

mk(t) =
N∑

i=1

γt
kiψ(xi ) , with γt

ki ≥ 0 and
∑

i

γt
ki = 1.

The above writing of the prototypes allows the computation of the distance from an
input xi to a prototype mk(t) in terms of the coefficients γt

ki and the
kernel/dissimilarity matrix only. For kernel SOM, one has

‖ψ(xi ) − mk(t)‖2 = (
γt

k

)T
Kγt

k − 2Kiγ
t
k + Ki i ,

whereKi is the i th rowofK and
(
γt

k

)T = (
γt

k,1, . . . , γ
t
k,N

)
. For relational/dissimilarity

SOM, one obtains a similar expression

‖ψ(xi ) − mk(t)‖2 = Diγ
t
k − 1

2

(
γt

k

)T
Dγt

k .

The first step of the algorithm, finding the best matching unit of an observation, as
introduced in Eq. (1), can thus be directly generalized to kernels and dissimilarities,
both for on-line and batch settings.

In the batch framework, the updates of the prototypes are identical to the original
algorithm (see Eq. (12)), by simply noting that only the coefficients of the xi ’s (or of
their images by the feature maps) are updated:

mk(t + 1) =
N∑

i=1

hkct (xi )(t)∑N
j=1 hkct (x j )(t)

ψ(xi ) ⇔ γt+1
ki = hkct (xi )(t)∑N

j=1 hkct (x j )(t)
(17)

This step is the same, both for batch kernel SOM, [54], and for batch relational
SOM, [26].

In the on-line framework, updating the prototypes is similar to the original algo-
rithm, as in Eq. (2). Here also, the update rule concerns the coefficients γt

ki only, and
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the linear combination of them remains convex:

γt+1
k = γt

k + ε(t)hkct (xi )(t)
(
1i − γt

k

)
, (18)

where xi is the current observation and 1i is a vector in R
N , with a single non-null

coefficient, equal to 1, on the i-th position. As previously, this step is identical for
on-line kernel SOM, [44], and for on-line relational SOM, [47].

In the case where the dissimilarity is the squared distance induced by the kernel,
kernel SOM and relational SOM are strictly equivalent. Moreover, in this case, they
are also fully equivalent to the original SOM algorithm for numerical data in the
feature (implicit) Euclidean space induced by the dissimilarity or the kernel, as
long as the prototypes are initialized in the convex hull of the input data. The latter
assertion induces that the theoretical limitations of the original algorithm also exist
for the general kernel/relational versions. Furthermore, these may worsen for the
relational version since the non-positivity of the dissimilaritymeasure adds numerical
instability when using a gradient-descent like scheme for updating the prototypes.

The third class of algorithms uses the soft topographic maps setting introduced in
Sect. 6.2. Indeed, in the algorithmdescribed inEqs. (15) and (16), the soft assignments
depend on the distances between input data and prototypes only, while prototypes
update consists in making an update if the coefficients of the input data. Using a
mean-field approach and similarly to the previous framework for kernel and dissimi-
larity/relational SOM, [24] obtain the extensions of soft topographic mapping (STM)
algorithm for kernels and dissimilarities. The updates for the prototype coefficients
are then expressed as

γki (t + 1) =
∑K

j=1 h jk(t)P(xi ∈ A j )∑N
l=1

∑K
j=1 h jk(t)P(xl ∈ A j )

, (19)

where mk(t) = ∑N
i=1 γt

kiψ(xi ) and ψ is the feature map.

8 Stochasticity of the Kohonen Maps for the On-line
Algorithm

Starting from a given initialization and a given size of the map, different runs of the
on-line stochastic SOM algorithm provide different resulting maps. On the contrary,
the batch version of the algorithm is a deterministic algorithm with always provides
the same results for a given initialization. For this reason, the batch SOM algorithm is
often preferred over the stochastic one because its results are reproducible. However,
this hides the fact that all the pairs of observations which are associated in a given
cluster do not have the same significance. More precisely, interpreting a SOM result,
we can use the fact that close input data belong to close clusters, i.e. their best
matching units are identical or adjacent. But if two given observations are classified
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in the same or in neighboring units of the map, then they may not be close in the
input space. This drawback comes from the fact that there is not perfect matching
between a multidimensional space and a one- or two-dimensional map.

More precisely, given a pair of observations (data), {xi , x j }, three cases can be
distinguished, depending on the way their respective mapping on the map can be
described:

• significant association: the pair is classified in the same cluster or in neighboring
clusters because xi and x j are close in the input space. The observations are said
to attract each other;

• significant non-association: the pair is never classified in neighboring clusters and
xi and x j are remote in the input space. The observations are said to repulse each
other;

• fickle pair: the pair is sometimes classified in the same cluster or in neighboring
clusters but xi and x j are not close in the input space: their proximity on the map
is due to randomness.

The stochasticity of the on-line SOM results can be used to precisely qualify every
pairs of observations by performing several runs of the algorithm. The question is
addressed in a bootstrap framework in [12] and used for text mining applications in
[3, 4]. The idea is simple: since the on-line SOM algorithm is stochastic, its repetitive
use may allow to identify the pairs of data in each case.

More precisely, if L is the number of different and independent runs of the on-line
SOM algorithm and if Yi, j denotes the number of times xi and x j are neighbors on
the resulting map in the L runs, a stability index can be defined: for the pair (xi , x j ),
this index is equal to:

Mi, j = Yi, j

L
.

Using an approximation of the binomial distribution that would hold if the data were
neighbors by chance in a pure random way, and a test level of 5%, for a K -units
map, the following quantities are introduced

A = 9

K
and B = 1.96

√
9

K L
(1 − 9

K
). (20)

These values give the following decision rule to qualify every pair {xi , x j }:
• if Mi, j > A + B, the association between the two observations is significantly
frequent;

• if A − B ≤ Mi, j ≤ A + B, the association between the two observations is due
to randomness. {xi , x j } is called a fickle pair;

• if Mi, j < A − B, the non-association between the two observations is signifi-
cantly frequent.

In [12], the method is used in order to qualify the stability and the reliability of
the global Kohonen map, while both other papers ([3, 4]) study the fickle data pairs
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for themselves. In these last works, the authors also introduce the notion of fickle
word which is defined as an observation which belongs to a huge number of fickle
pairs by choosing a threshold.

These fickle pairs and fickle words can be useful in various way: first, fickle pairs
can be used to obtain more robust maps, by distinguishing stable neighboring and
non neighboring pairs from fickle pairs. Also, once identified, fickle words can be
removed from further studies and representations: for instance, Factorial Analysis
visualization is improved. In a text mining setting, [4] have shown that a graph of
co-occurrences between words can be simplified by removing fickle words and [3]
have used the fickle words for interpretation: they have shown that the fickle words
form a lexicon shared between the studied texts.

9 Conclusion

We have reviewed some of the variants of the SOM, for numerical and non numerical
data, in their stochastic (on-line) and batch versions. Even if a lot of theoretical
properties are not rigorously proven, the SOM algorithms are very useful tools for
data analysis in different contexts. Since the Heskes’s variants of SOM have a more
solid theoretical background, SOM can appear as an easy-to-develop approximation
of these well-founded algorithms. This remark should ease the concern that one
might have about it.

On a practical point of view, SOM is used as a statistical tool which has to be com-
bined with other techniques, for the purpose of visualization, of vector quantization
acceleration, graph construction, etc. Moreover, in a big data context, SOM-derived
algorithms seem to have a great future ahead since the computational complexity of
SOM is low (proportional to the number of data). In addition, it is always possible
to train the model with a sample randomly extracted from the database and then
to continue the training in order to adapt the prototypes and the map to the whole
database. As most of the stochastic algorithm, SOM is particularly well suited for
stream data (see [25] which proposed a “patch SOM” to handle this kind of data).
Finally, it would also be interesting to have a look at the robust associations revealed
by SOM, to improve the representation and the interpretation of too verbose and
complex information.
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Aggregating Self-Organizing Maps
with Topology Preservation

Jérôme Mariette and Nathalie Villa-Vialaneix

Abstract In the online version of Self-Organizing Maps, the results obtained from
different instances of the algorithm can be rather different. In this paper, we explore
a novel approach which aggregates several results of the SOM algorithm to increase
their quality and reduce the variability of the results. This approachuses the variability
of the algorithm that is due to different initialization states. We use simulations to
show that our result is efficient to improve the performance of a single SOMalgorithm
and to decrease the variability of the final solution.Comparisonwith existingmethods
for bagging SOMs also show competitive results.

Keywords Self-Organizing Maps · Aggregation · Topology preservation

1 Introduction

Self-Organizing Maps (SOM), [1] have been shown to be powerful methods for
analyzing high dimensional and complex data (see, for instance, [2] for applications
of the method to many different areas). However, the method suffers from its lack of
good convergence properties. In its original version, the theoretical convergence of
the algorithm has only be proved in very limited cases [3] and even in the modified
version in which the training of the SOM is expressed as an energy minimization
problem [4], different runs of the algorithm give different results, that can be very
dependent on the initialization. This problem is even more critical when the data set
to be analyzed is complex or high dimensional.

This paper addresses the issue of aggregating several results of theSOMalgorithm,
all obtained on the samedata set. Several attempts to combine SOMswhile preserving
their topological properties have been proposed in the literature [5–9]. In this paper,
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we present a novelmethod to combine several SOMswhile preserving their topology.
The proposed method combines several ideas taken from the different methods and
allows to explore initialization states. It is both simple and efficient. We present a full
comparison of the different options to aggregate the results of different SOMs and
discuss themost relevant choices. Finally, we show that our approach is a competitive
alternative to the existing methods on real data applications.

The remainder of the paper is organized as follows: in Sect. 2, an overview of
aggregation methods for SOMs is presented. In Sect. 3, the proposed method is
described. Finally, Sect. 4 presents experimental results and comparisons.

2 An Overview of Aggregation Methods for SOMs

Suppose that B results of the SOM algorithm are given for the items (xi )i=1,...,n ,
(Mb)b=1,...,B . Each of these results, Mb is well defined by its set of prototypes
(pb

u)u=1,...,U and comes with an associated clustering function φb : x ∈ R
d →

argminu=1,...,U ‖x − pb
u‖2. For the b-th SOM, the clusters will be denoted by

(Cb
u )u=1,...,U , where Cb

u = {
xi : φb(xi ) = u

}
. The purpose is to build a fused or

a merged map,M∗, with prototypes (p∗
u)u=1,...,U and a clustering function φ∗ which

improves and summarizes the B maps into a unique consensual map. Note that all
SOMs have been trained from the same data (xi )i=1,...,n or from a subset (e.g., a
bootstrap sample) of this data set. They can also have been trained from different
descriptors of the observations (e.g., from different sets of variables observed on the
same items): in this case, the fusedmap thus corresponds to amap integrating the dif-
ferent descriptors. However, for the sake of simplicity, wewill restrict our description
and simulation to the first case (same observations, or eventually, bootstrap samples
from the same observations and same descriptors).

As already explained in [5] in the context of a one-dimensional grid, there is no
ground truth for cluster labelling in the unsupervised framework. A first strategy to
overcome this issue is to perform a re-labelling of the clusters based on the clustering
only: [6] merge together the clusters of different maps with a majority vote scheme.
A “fused” prototype is defined as the centroid of the grouped cluster prototypes over
b = 1, . . . , B and a topology is deduced posterior to the definition of the clusters.
Another approach that uses the different maps in an indirect way is described in
[10]: in this paper, we proposed to use a subset of (xi )i , using the most representative
observations of the set of B maps, to train a final SOM from a simpler and more
robust data set. This method is well suited to handle very large data sets. However,
both approaches do not necessary produce a map with a topology similar to the B
merged SOMs and make use of only a small part of the information provided by the
B learned SOMs.

Several attempts to explicitly take advantage of the prior (common) structure of
the maps have been proposed in the literature. A first method consists in constraining
the B SOMs to be as similar as possible by a common initialization. This initialization
can be derived, for instance, from a PCA of (xi )i . Then, the different maps are fused
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by averaging the prototypes of the clusters situated at the same position the B SOMs
[7] or by using a majority vote scheme to classify the observations [5]. Alternatively,
[5, 8] also propose to make the B SOMs similar by initializing the b-th SOM with
the final prototypes of the previous one. Baruque and Corchado [8] improves this
approach by weighting the averaging of the prototypes by a cluster quality index.
Similarly, [11] uses a similar strategy to handle streaming or large data sets, splitting
the data into several patches that are sequentially processed by a different SOM
algorithm initialized with the result of the previous one. However, these methods
do not allow to explore the possibilities of different initializations, which can be an
issue in SOM. Moreover, a sequential initialization of the B SOMs prevents from
training them in parallel, which can be an important issue if B is large: using a large
B is advised for stabilizing the result of the algorithm.

Another approach to preserve the topology property of the map is to align the
different maps on one of them, which serves as a reference for the topology: in [12],
the map is chosen arbitrarily, and the other maps are fused sequentially to this first
one, averaging the prototypes (pb

u)u of the current map to the closest prototypes of
the current fused map (p∗

u)u . To leverage the problem of the choice of the map that is
used to align the other maps, [9] proposes to choose a reference map that is the best
one according to a given clustering quality criterion. However, this method makes
the result strongly dependent on the choice of the first map because only its topology
is used, whereas the topologies of the next maps are not utilized as such.

3 Description of the Optimal Transformation Method

It is well known that the quality of the SOM strongly depends on its initialization.
Given different maps obtained from different (random) initializations, we propose
to find the “best” transformation that can be used to obtain two comparable results
between two distinct maps. The optimal one-to-one transformation between proto-
types in generalmight be difficult to define sowe restrict ourselves to transformations
that strictly preserve the topology of the map, i.e. the set of linear isometric trans-
formations (rotation and/or symmetry). To do so, only square maps with m rows and
columns are considered (i.e., using the notations introduced in the previous section,
U = m2): in these maps, the clusters are supposed to be positioned on a 2D grid at
coordinates {(k1, k2)}k1, k2=1,...,m .

Then,T denotes the set of all transformations, T : R2 → R
2, that let themapglob-

ally invariant: more precisely, T is composed of the set of rotations {rθ }θ∈{0,π/2,π,3π/2}
and of the transformations {rθ ◦ s}θ , with s the symmetry with respect to the axis
passing by the points

(
m+1
2 , 0

)
and

(
m+1
2 , m

)
. For a given map M with prototypes

(pu)u and a given T ∈ T , the transformed map T (M) is the map in which the unit u,
with coordinates (ku

1 , ku
2 ) inN

2, has a prototype denoted by pT
u which is the prototype

pu′ of the original map, u′ being the unit located at T −1(ku
1 , ku

2 ).
When comparing two maps, the mean of the squared distances (in R

d ) between
the prototypes of the two maps that are located at the same position is calculated.
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For two maps M and M′, with respective prototypes (pu)u and (p′
u)u , we define

a distance between two maps as the distance between their respective prototypes
positionned at the same coordinates:

D
(M,M′) = 1

m2

m2∑
u=1

‖pu − p′
u‖2. (1)

The best transformation between the current fused map and the next map to be fused
is chosen according to this distance. The two maps are then fused using the optimal
transformation before they are merged, as described in Algorithm1. The optimal

Algorithm 1 Optimal transformation
Initialization M∗,1 ← M1

for b : 2 → B do
Optimal transformation

T ∗
b := arg min

T ∈T D
(
M∗,b−1, T (Mb)

)

Fusion between M∗,b−1 and T ∗
b (Mb). Provides: M∗,b

end for
Return M∗ := M∗,B

transformation is found by computing the distance between the maps to be fused,
T ∗

b (Mb), and a referencemap,which can be thefirst of the list,M1, for instance.1 The
fusion between the map is performed as suggested in [7] by averaging the prototypes
located at the same position:

∀ u = 1, . . . , m2, p∗
u := 1

B

B∑
b=1

pb,T
u . (2)

In the method described in the previous section, all maps are fused in an arbitrary
order. However, as pointed out in [9], the maps may have very different qualities and
may also be very different: merging a very peculiar map with a poor quality might
lead to deterioration of the results instead of improving them. In this section, two
strategies are presented to leverage this problem.

The first one uses a measure of quality of the maps and first rank the maps from
the one with the best quality to the one with the worse quality: M(1), …, M(B).
Standard quality measures for SOM can be used to perform this ranking [13]: (i) the
quantization error (QE),

∑m2

u=1

∑
i : xi ∈C∗

u
‖xi − p∗

u‖2, which is a clustering quality
measure, disregarding the map topology; (ii) the topographic error (TE) which is the

1The current fused map, M∗,b−1 has also been used as a reference map, with no difference in the
final result. UsingM1 is thus a better strategy, because optimal transformation can be computed in
parallel.
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simplest of the topographic preservation measure: it counts the ratio of second best
matching units that are in the direct neighborhood on the map of the best matching
units for every (xi )i . However, for small maps and relatively simple problems, this
measure has a small variability and can lead to many equally ranked maps.

Therefore, another approach is introduced to make a trade-off, while ranking the
maps, between clustering and topographic qualities: the average rank of the maps is
computed as:

rb = rb
quanti + rb

topo

2
(3)

where rb
quanti is the rank of the map Mb according to its quantization error (the best

map is ranked first) and similarly for rb
topo with the topographic error and the maps

were finally ranked by increasing order of (rb)b.
Taking advantage of this ordering of the maps, the previous method can be mod-

ified using two different strategies:

1. the similarity strategy: following an idea similar to [9], the maps are merged by
similarity: the merging process is initialized with the best map: M∗,1 ← M(1).
Then, this map is merged only with the maps that resemble this reference map. To
do so, a simple ascending hierarchical clustering is performed between the maps
(T ∗

b (Mb))b=1,...,B , with (T ∗
b )b obtained by comparison with the reference map

M1. This clustering is based on the distance introduced in (1) and the hierarchical
tree is cut using themethod described in [14]. Finally, themaps in the same cluster
as M(1) are fused to M∗,1;

2. the ordering strategy: an alternative approach is performed sequentially by merg-
ing the maps by increasing rank M(1), M(2), …The merging process is stopped
at M(B ′) with B ′ ≤ B (and usually B ′ < B) when the quality of the fused map
M∗,B ′

would not increase anymore by merging it with M(B ′+1) (actually, two
strategies are investigated: stopping when the quality measure is not increasing
or stopping when the quality measure has not increased for the last 5%B fused
maps).

4 Simulations

Methodology. In all the simulations, B = 100maps are generated using the standard
SOM. The optimal B has not been investigated in this paper and the number of
fused maps was simply taken large enough so that the fusion makes sense. All
maps were built with approximately m = √ n

10 units and 5 × n iterations of the
stochastic algorithm and equipped with a Gaussian neighborhood controlled with
the Euclidean distance between units on the grid. The size of the neighborhood was
progressively decreased during the training. All simulations have been performed
using the R package SOMbrero.2 The 100 maps are then fused using one of the

2http://cran.r-project.org/web/packages/sombrero, version 1.0.

http://cran.r-project.org/web/packages/sombrero
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strategies described below and the performance of the different methods are finally
assessed using various quality criteria for the resulting maps M∗: (i) two criteria
already mentioned in Sect. 3 that are standard to measure the quality of the SOM:
(i) QE and TE; (ii) a criterion which uses the ground truth, when available (i.e.,
an a priori group for the observations), the normalized mutual information (NMI)
[15] between the unit of the map and the a priori group. This criterion quantifies the
resemblance between the a priori group and the clustering provided by the SOM (it
is comprised between 0 and 1, a value of 1 indicating a perfect matching between the
two classifications). Note that this criterion must be interpreted with care because if
the a priori groups are split between several units of themap, each of these units being
composed of one group only (which is expected for SOM results), the criterion can
be lower than when the groups are split between less units which are all composed
of several groups (which would be a less expected result). Thus, this criterion has to
be interpreted only together with the QE and the TE values.

The performance of the method is also assessed in term of stability. It is
expected that several runs of one aggregating method give similar (thus stable)
results. This stability is estimated in terms of: (i) the distance between two final
maps obtained from two different runs of the same method. If M∗ and M̃∗
are two maps, the quantity D(M∗, T ∗(M̃∗)), where D is defined as in (1) and
T ∗ := argminT ∈T D(M∗, T (M̃∗)), is computed. This gives an estimation of the
dissemblance between two maps from the prototype (hence the topological) per-
spective. If calculated over 250 different final maps, this quantity helps to quantify
the stability of the final prototypes provided by a given aggregation method; (ii) the
NMI between the final classes of two final maps obtained from two different runs of
the same method. This gives an estimation of the dissemblance from the clustering
perspective for a given aggregation method.

250 fusions for each method are performed using the methodology described
above. This permits to compute average quality as stability criteria as well as to have
an overview of the distribution of these criteria when the method is repeated.

Compared methods. The comparisons performed in this section aim at com-
paring our approach to existing ones (which are described in Sect. 2) as well as to
investigate several options of the method (as discussed in Sect. 3).

First, our method, which merges several maps obtained from several initialization
states, is compared to the standard bagging approach, in which several maps are
trained from bootstrap samples from the similar initialization states. More precisely,
bootstrap strategies are:

• the method denoted by B-Rand, which uses a common random initialization to
learn B = 100 maps from 100 bootstrap samples coming from the original data
set. Then, the prototypes that are positioned at the same coordinates, are averaged
to obtain the final map M∗ (as suggested in [7]);

• the method denoted by B-PCA, which uses a common PCA initialization to learn
B = 100 maps from 100 bootstrap samples coming from the original data set (as
suggested by [5]). The PCA initialization consists of initializing the prototypes by
regularly positioning them along the coordinates of the projection of the data set
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on the first two axis of the PCA. Then, the prototypes that are positioned at the
same coordinates, are averaged to obtain the final map M∗;

• themethoddenoted byB-Seq, which uses a sequential initialization of the B = 100
maps: the first map is initialized randomly and trained with a bootstrap sample
and the b-th map is initialized with the final prototypes of the (b − 1)-th map and
trained with another bootstrap sample. Finally, the final map M∗, is obtained by
averaging the prototypes of the B = 100 maps, that are positioned at the same
coordinates, as suggested in [8].

These strategies are compared with our method and its bootstrap version, respec-
tively denoted by RoSyF (for “Rotation and Symmetry Fusion”) and B-RoSyF.
RoSyF learns B = 100 maps, each from a different random initial state and using
thewhole data set (xi )i=1,...,n andB-RoSyF learns B = 100maps from 100 bootstrap
samples coming from the original data set.

Finally, we also compare RoSyF with the approach consisting in selecting only
one map from the B maps, the map supposed to be the best for instance. More
precisely, using the B = 100 maps generated during the training of the RoSyF
method, we selected one of the B = 100 maps (i) randomly (this method is denoted
by Best-R), (ii) with the smallest QE (this method is denoted by Best-QE or (iii)
with the smallest TE (this method is denoted by Best-TE).

Datasets and results. This section compares the results obtained on two datasets
coming from the UCI Machine Learning Repository3 as available in the R package
mlbench.4 More precisely, the data “Glass” (n = 214, d = 10 and 7 a priori groups)
[16] and the data “Vowel” (n = 990, d = 10 and 11 a priori groups) [17] are
used. The SOM parameters are set to m = 5 and 1 000 iterations for “Glass” and
m = 10 with 5 000 iterations for “Vowel”. The different strategies, and especially
the relevance of using different initial states instead of different bootstrap samples
with the same initialization, is evaluated. The results are provided in Table1.

First, note that for almost all quality criteria and datasets, RoSyF obtain better
results than the methods based on different bootstrap samples (all differences are sig-
nificant according toWilcoxon test, risk 5%). B-RoSyF slightly deteriorates RoSyF
performances. Cottrell et al. [18, 19] reported that the SOMalgorithm is highly insen-
sitive to initialization if run on the same data set as compared to what is obtained if
bootstrap samples are used. However, it seems that the quality of the aggregated map
is much better when different initial states are used on the same data set rather than
different bootstrap samples with a common initial state, whatever this initial state is.
Second, the TE obtained by RoSyF is always the lowest, just after the one obtained
by Best-TE (which always selects the map with the lowest TE) but with a better QE
and a better NMI. Again, all these differences are significant according to Wilcoxon
tests (risk: 5%). On a clustering quality point of view, RoSyF is the method that
obtains the second lowest quantization error, just after Best-QE which is designed
to select the map with the lowest QE. Also, from a classification point of view, its
performance is also very good: in average, RoSyF ranks first for the NMI criterion.

3http://archive.ics.uci.edu/ml.
4http://cran.r-project.org/web/packages/mlbench.

http://archive.ics.uci.edu/ml
http://cran.r-project.org/web/packages/mlbench
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Table 1 Methodperformance comparison (mean and standard deviation of different quality criteria;
QE has been multiplied by 100)

B-Rand B-PCA B-Seq B-RoSyF RoSyF Best-R Best-QE Best-TE

“Glass”

mean QE 855.10 855.93 854.97 609.84 597.81 595.09 560.69 593.68

sd QE 10.30 9.43 9.24 23.10 9.82 15.52 5.45 13.96

mean TE(%) 11.95 12.42 11.77 0.01 0.01 0.10 0.04 0.00

sd TE(%) 6.09 6.53 6.45 0.04 0.07 0.24 0.17 0.00

mean NMI(%) 15.80 15.77 16.00 18.92 17.86 15.64 16.37 15.87

sd NMI(%) 3.38 3.15 3.30 2.09 1.38 2.20 2.03 2.21

“Vowel”

mean QE 847.57 847.73 847.91 550.78 545.88 547.44 531.30 548.23

sd QE 11.82 10.88 11.63 5.18 1.01 7.10 2.39 6.72

mean TE(%) 5.89 6.06 5.80 0.07 0.07 0.19 0.20 0.00

sd TE(%) 3.62 3.46 3.37 0.10 0.08 0.14 0.14 0.00

mean NMI(%) 7.11 6.76 7.03 9.47 9.57 9.64 9.53 9.53

sd NMI(%) 1.44 1.37 1.49 0.12 0.11 0.66 0.54 0.72

Also note that all quality criteria have a low variability: the standard deviations is
almost always the lowest: RoSyF is the method which has the best coefficient of
variation (mean divided by the standard deviation) for all quality criteria.

Table2 (and Fig. 1 for the dataset “Vowel”) provides a comparison of the stability
criteria. For this data set, RoSyF has the best stability, either in term of prototype
stability (even though B-PCA and B-Seq also have a good prototype stability) and
even more in term of class stability. These differences are significant according to
Wilcoxon tests (risk: 5%). The results indicate that the method is indeed appropriate
to improve the quality of the final map but also that it is very stable and gives very
similar results if used several times, with different initializations of the prototypes
and different training of the merged maps.

The relevance of stopping themerging process before all themaps have been fused
has also been evaluated.5 This comparison shows that there is only a small benefit in
stopping the merging process before all maps have been used: most strategies lead
to an highly deteriorated TE. Only stopping the training process when TE increases
(TE-Inc) or based on the similarity strategy described in Sect. 3 are valid approaches
in terms of quality criteria. However, a stability analysis shows that all these strategies
strongly deteriorate the stability of the final map: merging all maps is the approach
that provides the best stability, either in term of prototype comparison than in term of
class comparison, except forTE-Incwhich provides a slightly more stable clustering

5For the sake of paper length, detailed results are not reported but only described.
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Table 2 Method stability comparison (mean and standard deviation of different stability criteria;
D has been multiplied by 10 000)

B-Rand B-PCA B-Seq B-RoSyF RoSyF Best-R Best-QE Best-TE

“Glass”

mean D 70.85 67.22 67.06 149.65 67.07 2047.14 1302.27 1581.49

sd D 38.62 32.32 31.24 335.14 310.74 1557.08 1170.39 1186.28

mean NMI(%) 64.77 65.60 65.88 83.54 87.47 49.15 54.41 49.86

sd NMI(%) 6.37 6.32 6.23 5.83 5.11 10.81 9.57 10.26

“Vowel”

mean D 59.89 61.33 59.21 15.30 11.07 681.87 535.32 716.81

sd D 31.19 33.33 31.42 5.77 3.87 275.23 185.06 343.41

mean NMI(%) 57.32 56.83 57.70 90.83 92.39 72.53 74.94 72.11

sd NMI(%) 5.32 5.21 5.20 1.59 1.33 3.29 2.66 3.37

Fig. 1 Normalized mutual information (NMI) between pairs of clusterings obtained from the 250
final maps generated by the different approaches

but very different prototypes. All these strategies use only few maps (less than 10
maps in average), except again TE-Inc which uses 89.4 maps in average for the
“Glass” dataset and is thus very close to the maximum number of available maps
(100). Actually, additional simulations (not shown for the sake of paper length)
merging more than 100 maps proved that the stability increases with the number
of fused maps (up to a certain number which was for our dataset between 500 to
1000 maps). A trade-off has thus to be found between computational time required
to generate a large number of maps and stability of the results. This question is still
under study.



36 J. Mariette and N. Villa-Vialaneix

5 Conclusion

Although most work on SOM ensembles are based on bootstrapping techniques, this
paper presents an approach allowing to explore different initial states for the map.
Themethod improves the stability of the fusedmap, both in term of prototypes and in
terms of clustering. We are currently investigating how to choose an optimal number
B of maps to fuse as well as weighting schemes based on various quality criteria:
this approach is already promising to improve the results, especially the stability of
the final map.
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Abstract Classical clustering algorithms as well as intrinsic evaluation criteria
impose predefined structures onto a data set. If the structures do not fit the data,
the clustering will fail and the evaluation criteria will lead to erroneous conclusions.
Recently, the abstract U-matrix has been defined for emergent self-organizing maps
(ESOM). In this work the abstract forms of the P- and the U* are defined in anal-
ogy to the P- and the U*-matrix on ESOM. The abstract U*-matrix can be used for
AU*-clustering of data by taking account of density and distance structures. ForAU*-
clustering the structures seen on the ESOM serve as a supervising quality measure.
In this way it can be determined whether an AU*-clustering represents important
structures inherent to the high dimensional data. Importantly, AU*-clustering does
not impose a geometric cluster shape, whichmay not fit the underlying data structure,
onto the data set. The approach is demonstrated on benchmark data as well as real
world data from spatial science.
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1 Introduction

It is known that classical clustering algorithms can frequently fail to produce a cor-
rect clustering even on data with a clearly defined cluster structure and for which
the correct number of clusters is provided as input. This can be demonstrated, for
example, on the “Lsun” data set (Fig. 1) from the Fundamental Clustering Problems
Suite (FCPS) published as benchmark problems for clustering algorithms [1].

Lsun consists of three clearly separated sets of points on an x-y plane in the form
of two elongated rectangular sets forming the letter L and a circular shaped set of
points forming the “sun” (Fig. 1, left panel). Popular clustering algorithms such as k-
means, Ward, complete- and average linkage all fail to cluster this data set correctly.
Figure1 shows the result of a k-means respectively Ward clustering with the correct
number of clusters (i.e. 3) as input (Fig. 1, middle and right panels). The reason for
this not uncommon phenomenon of incorrect clustering is that these algorithms imply
a geometrical model for the cluster structure. That is, k-means clustering produces a
spherical cluster shape, while Ward hierarchical clustering produces a hyperelliptic
shape. If this implicit assumption on cluster shape does not fit the underlying data
structure, the clustering will fail.

Emergent self-organizing feature maps (ESOM) [2] using the U-matrix [3] repre-
sent a topology-preserving mapping of high-dimensional data points xiεRD onto a
two-dimensional grid of neurons. In a 3D-display of the U-matrix (e.g. see Fig. 2 in
[4]), valleys, ridges and basins indicate a distance-based cluster structure in the data
set. Figure2 (left panel) shows the U-matrix for the Lsun data. The P-matrix on the
ESOMenables the visualization of density structures within the data. Bothmeasures,
i.e. densities and distances, are combined in the U*-matrix [3] (Figs. 2 and 3). In this
way it is possible to discover cluster structures in a data set that are both density-
and distance-based. However, ESOM is simply a method to project data from the
D-dimensional data space into the plane or the three dimensional landscapes of the

Fig. 1 Lsun data set and some clustering examples
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Fig. 2 U- and P-matrix of the Lsun data set

Fig. 3 U*-matrix and “Political Map” for Lsun

U-, P- and U*matrix (ESOMmatrices). If cluster structures are revealed through the
ESOMmatrices, a clustering algorithm is required that can reproduce the structures.

The recently introduced “Abstract U-matrix” (AU-matrix) [5] formally explains
the structures seen in the U-matrix. In this work, the abstract P (AP-matrix) and
abstract U* (AU*-matrix) are defined. Classical clustering algorithms can be used on
the AU*-matrix. The validity of this type of clustering can be assessed by comparing
results with the structures seen on ESOM matrices in the form of “Political Maps”.
The approach is demonstrated on the Lsun data set and on a real-world data set from
spatial science research.

2 Methods

The ESOM displays the U-matrix on top of an SOM on the output grid arranged in r
rows and c columns using a large (r∗c > 4000) number of neurons. Large U-heights
in the U-matrix indicate a wide gap in the data space whereas low U-heights indicate
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that the points are close to one another. In a 3D display of the U-matrix, valleys,
ridges and basins indicate distance-based cluster structures in the data. The P-matrix
[3] displays the point density p(x) = |{data points xi | d(xi , x) <= r}| estimated
as the number of data points in a sphere of radius r around x at each grid point on the
ESOM’s output grid. The U*-matrix combines distance structures (U-matrix) and
density structures (P-matrix) into a single matrix (U*-matrix) [3].

The combination can be formalized as pointwise matrix multiplication: U ∗ =
U ∗F(P), where F(P) is amatrix of factors f (p) that are determined through a linear
function f on the densities p = p(x) of the P-matrix. The function f is calculated
such that f (p) = 1 if the density p is equal to themedian and f (p) = 0 if p is equal to
the 95-percentile (p95) of the densities in the P-matrix. For p(x) > p95 : f (p) = 0,
which indicates that x is well within a cluster and results in zero heights in the U*
matrix. The P-matrix allows the identification of density-based clusters in data sets.
The U*-matrix shows a consistent picture of density and distance structures in the
data.

The abstract U-matrix (AU-matrix) is a three-dimensional structure with the
Voronoi cells of the best-matching units (BMUs) of the data as floor and the data
distances corresponding to adjacent Voronoi cells as walls [5]. The AU-matrix can
be calculated as the product of the adjacency matrix Del of the Delaunay graph of the
best-matching units (BMU) with the matrix of distances D between the data points,
i.e. AU = Del ∗ D. In analogy to the P-matrix, the abstract P-matrix is defined as
follows: Let Del(i, j) be an edge in Del. This implies that the Voronoi cells of data
points xi and x j are adjacent. The point (midpoint) mi, j = mean(xi , x j ) is the point
in data space corresponding to AU (i, j). The abstract P-matrix (AP-matrix) contains
the densities of all these midpoints: AP(i, j) = p(mi, j). The Abstract U*matrix
(AU*-matrix) is calculated in the same way as the U*-matrix (see above). It defines
a distance between the data points that takes into account (i) the topology preserving
projection of the SOM, (ii) the U-matrix structure and (iii) the density structure of the
data. The “PoliticalMap” of an ESOM is a coloring of theVoronoi cells of the BMUs,
with different colors for each cluster. Figure3 (right panel) shows a Political Map for
a Ward clustering of the AU*-matrix. A correct clustering using the AU* distances
(AU*-clustering) coincides with the structures seen on the ESOM-matrices. Thus,
AU*-clustering is a clustering of the data whose results can be visually inspected
and supervised using the ESOM-matrices and, in particular, using “Political Maps”.
This concurs with the structures seen in the other ESOM matrices and enables the
validation or invalidation of the data clustering.

3 Relationship to Other Approaches

The Abstract U-matrix (AU-matrix), as well as the extensions presented here (AP-
matrix, AU*-matrix), are concepts which help to understand what an empirical
U-Matrix, respectively P-Matrix and U*-Matrix, shows which is constructed by the
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learning algorithm of an SOMon a data set. The concepts presented here are designed
for emergent SOMs (ESOM). These have the property of using SOM which have
a very large number of neurons, even substantially more neurons than data points.
From our perspective, the number of neurons can be thought of as the pixel resolution
of a digital photo camera: the more pixels (neurons) the better the image resolution,
i.e. the representation of high dimensional data space. It is clear that time and costs
for data processing increase with the number of neurons. However, two factors serve
to reduce this burden: improved learning algorithms for the SOMs and Moore’s law,
which famously states that computing power doubles every two years.

A different approach to Kohonen maps is the so-called k-means-SOM, which
uses only few units to represent (clusters of) data. For example, Cottrell and de Bodt
use 4 × 4 units to represent the 150 data points in the Iris data set [6]. In contrast
to these approaches, ESOMs represent more of the high dimensional space in their
neurons than just the BMUs of the data points. BMUs on ESOM only have more
than one data point as attractors if they are practically identical in data space. The
connectivity matrix CONN [7–9] assumes non-zero density of data points within the
attractor field, i.e. the number of data points projected onto one BMU. The number of
data points in these Voronoi cells represents a frequency count. However, this is not
a valid density measure, since the volumes of the Voronoi cells of different BMUs
may be quite different.

A single wall of AU matrix represents the true distance information between two
points in data space. A valid density information at the midpoints between BMU
and second BMU (notation taken from [7–9]) is calculated for the AP-matrix, since
the same volumes, i.e. spheres of a predefined radius, are used. The AU*-matrix
therefore represents the true distance information between two points weighted by
the true density at the midpoint. The representation is such that high densities shorten
the distance and low densities stretch this distance. Using transitive closure for these
weighted distances allows classical clustering algorithms (AU*-clustering) to actu-
ally perform distance- and density-based clustering, taking into account the complex
topology of partially entwined clusters within the data.

As thewalls of theAU*-matrix are “paper-thin” there is hardly anyway to actually
display the AU*-matrix directly. However, an empirical given U*-matrix can and
should be adjusted, scaled and normalized to fit best the properties of the AU*-
matrix. Such a normalized U*-matrix can then be understood as a visualization of
the abstract AU*-matrix.

4 AU*-clustering of the Benchmark Data Set

Atopviewof theU-matrix using a geographical analogy for color-coding of distances
separates the two classes visually as a ridge between valleys (Fig. 2 left panel). This
allows the identification of the number of clusters. The P-matrix (Fig. 2 right panel)
shows particularly low data densities at those neurons where high values in the
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U-matrix are observed. This confirms that the parameter for the density calculation,
i.e. the radius of the Parzen window (sphere), is correctly chosen. Furthermore, it
shows that the density in the red class (sun) is considerably lower than in the two
L-classes in Lsun.

The U*-matrix shown in the left panel of Fig. 3 displays enhanced ridges between
the prospective clusters and indicates the cluster centers. The results of the AU*-
clustering usingWard clustering on the AU*-matrix are shown as the “PoliticalMap”
in Fig. 3. Clustering accuracy using AU*-clustering of the Lsun data was 100% as
compared with the true classification shown in Fig. 1 (left panel).

5 AU*-clustering Applied to FCPS Data Sets

AU*-clustering (AU*C) is the application of a classical clustering algorithm using
the AU* distances taken from the Abstract AU*-matrix. Here AU*C-clustering was
applied to the data sets in the Fundamental Clustering Problems Suite (FCPS) [10].
FCP was accessed on September 15th, 2015, and downloaded from http://www.uni-
marburg.de/fb12/datenbionik/downloads/FCPS.

FCPS offers a variety of clustering problems that any algorithm should be able to
handle when facing real world data [10], and thus serves as an elementary benchmark
for clustering algorithms. FCPS consists of data sets with known a priori classifica-
tions that are to be reproduced by the algorithm. All data sets are intentionally cre-
ated to be simple, enabling visualization in two or three dimensions. Each data set
represents a certain problem that is solved by known clustering algorithms with vary-
ing degrees of success. This is done in order to reveal the benefits and shortcomings
of the algorithms in question. Standard clustering methods, e.g. single-linkage, ward
und k-means, are not able to solve the FCPS problems satisfactorily [10].

Here the accuracy of data clustering, i.e. agreement of U*C on FCPS with the a
priori classification, was as follows:

Data Set Accuracy (%)
Atom 100.00
Chainlink 100.00
EngyTime 95.00
Hepta 100.00
Lsun 100.00
Target 100.00
Tetra 99.00
TwoDiamonds 100.00
WingNut 100.00
GolfBall 100.00

http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS
http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS
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6 AU*-clustering Applied to Spatial Science Data

The AU*-clustering was applied to a data set describing the dynamics of land
consumption in all of Germany’s municipalities (n = 11, 441; data valid as of
31.12.2010). The data set captures changes in land consumption in the years 2000
to 2010. Land consumption dynamics (LCD) are described along four dimensions:
changes in land usage, changes in population density, changes in trade tax revenues
and changes in municipal populations. The rededication of open space into settle-
ment and transportation areas has long been the subject of debate. In many related
works, clustering has been employed as a popular method intended to answer spe-
cific research questions such as: “How many forms of land consumption exist in
Germany?” Most recent approaches have used a Ward or k-means clustering [11,
12]. However, many of these approaches have not validated the clustering. As men-
tioned above, k-means andWard clustering algorithms are limited to finding clusters
of specific shape, e.g. spherical or ellipsoid respectively for a predefined number of
clusters.

The LCD data was ESOM projected onto a grid of 50 × 160 = 8000 neurons.
Figure4 shows the U*-matrix of this projection. An AU*-clustering of the data
resulted in eight different clusters. Figure5 shows the political map of this cluster-
ing. A comparison with the U* Matrix of the same data set shows excellent coin-
cidence of the observed structures. The ESOM matrices in Figs. 4 and 5 are toroid,
i.e. the borders top-bottom and left-right connect to one another [3]. The identified
clusters could be related to previously unknown structures of spatial effects in land
consumption in German municipalities. For example, one of the clusters indicates
that an increase in trade tax per inhabitant was unexpectedly associated with a loss
in open spaces and also in population. This points to possible problems in munici-
pal development. Another cluster could be characterized as comprising communities

U-Map

20 40 60 80 100 120 140 160

5

10

15

20

25

30

35

40

45

50

Fig. 4 U*-matrix of the LCD-data set
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Fig. 5 Political Map of an AU*-clustering of the LCD data set

undergoing the highest change in land consumption within one decade. This could be
observed particularly in periurban rural areas. Such results help in the development
and optimization of planning programs for sustainable land development. Moreover,
the results can be used to help establish a monitoring framework and as the basis for
support systems for spatial decision-making. Thus, AU*-clustering offers a deeper
multidimensional description of the characteristics of municipal land consumption
for cooperating spatial experts.

7 Discussion

Clustering algorithms belong to the class of unsupervised algorithms in Machine
Learning. As no desired or “correct” results are available, the results of the algo-
rithm cannot be directly evaluated with respect to their correctness, i.e. no extrinsic
evaluation is readily possible. Intrinsic evaluation measures for clustering methods
try to capture numeric features of distances with respect to the assumed clusters.
They rely on the assignment of low values to the distances within a cluster and of
large values to the distances between clusters. However, these measures also implic-
itly define the geometrical structure of an optimal cluster. For example, the popular
silhouette coefficient [13] compares the average distance to elements within the same
cluster with the average distance to elements in other clusters. This defines the sphere
as the optimal cluster shape. As a consequence, silhouette coefficients do not favor
the best cluster structure but rather the cluster structure found by a k-means clus-
tering. Therefore, intrinsic evaluation measures do not allow for the conclusion that
some clustering algorithms are better than others as they rely on the existence of the
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structure imposed by either algorithm. If the data set in fact contains a differing
structure, they will neither provide the correct clustering nor allow the quality of
the results to be determined. The Ward and k-means results for the Lsun data set
demonstrate this effect (Fig. 1).

ESOM are based on the topology-preserving projection of the data onto the output
plane by the underlying SOM. The structures seen on the ESOM matrices therefore
allow visual (in-)validation of the cluster structures in the data. Such structures may
be defined by distances (U-matrix), densities (P-matrix) or a combination of both
(U*-matrix). The abstract form of these three matrices can be used to understand the
perceived structures. In this paper, it is proposed that they may be used for clustering
(AU*-clustering). The result of a clustering using the AU*-matrix can be compared
to the structures seen in the U*-matrix using “Political Maps”. This means that if the
clustering reproduces the observed structures, it correctly represents (topologically)
the structural features of a data set. The algorithm does not impose a model of cluster
structure onto the data set. In the data on land consumption dynamics, the AU*-
clustering approach produced a map showing eight different types of dynamics. It
could be validated with regard to the ESOM matrices constructed for this data set.
The resulting clusters were meaningful for the experts in spatial development and
planning.

8 Conclusions

Clustering belongs to unsupervised machine learning algorithms for which no “cor-
rect” results exist a priori. Classical clustering algorithms and intrinsic evaluation
measures of cluster quality impose a predefined structure onto a data set, which can
lead to mis-clustering if the imposed structures do not fit the data. By contrast, the
here presented professionally constructed ESOM represents a topologically correct
projection of the data. The U-Matrix allows visual inspection of distance structures
while the P-matrix enables assessment of density structures in the data, and the U*-
matrix combines both. In this work the abstract form of these matrices was used for
data clustering (AU*-clustering) where the structures seen in the ESOM matrices
proofed as a valid quality measure. It can therefore be concluded that this clustering
represents important structures in the data without requiring an implicit predefinition
of cluster shape or number.
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SOM Quality Measures: An Efficient
Statistical Approach

Lutz Hamel

Abstract We are interested in practical tools for the quantitative evaluation of self-
organizing maps (SOMs). Recently it has been argued that any quality measure for
SOMs needs to evaluate the embedding or coverage of amap aswell as its topological
quality. Over the yearsmany different qualitymeasures for self-organizingmaps have
been proposed. However, many of these only measure one aspect of a SOM or are
computationally very expensive or both. Here we present a novel, computationally
efficient statistical approach to the evaluation of SOMs. Our approach measures both
the embedding and the topological quality of a SOM.

1 Introduction

We are interested in practical tools for the quantitative evaluation of trained self-
organizing maps (SOM) [10]. Here we present an efficient statistical approach to
the evaluation of SOM quality. A nice overview of common SOM quality measures
appears in [14]. The measures described there report on either the quality of map
embedding in the data input space, sometimes called coverage (e.g. quantization error
[10]) or on the topological quality of the map (e.g. topographic error [9]). Another
measure not mentioned in the above overview is the neighborhood preservation [3]
which similarly to the topographic error strictly measures the topological quality of
a map.

More recently it has been argued that any SOM quality measure needs to report
on both the embedding of the map in the input data space as well as the topological
quality of a map [2]. To this we would like to add that any practical SOM quality
measure also has to be computationally efficient. Most quality measures fail these
requirements: they either only measure one aspect of a SOM or they are computa-
tionally very expensive or both. Here we propose a statistical approach that measures

L. Hamel (B)
Department of Computer Science and Statistics, University of Rhode
Island, RI 02881 Kingston, USA
e-mail: hamel@cs.uri.edu; lutz.hamel@gmail.com

© Springer International Publishing Switzerland 2016
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning
Vector Quantization, Advances in Intelligent Systems and Computing 428,
DOI 10.1007/978-3-319-28518-4_4

49



50 L. Hamel

both the embedding and the topological quality of a map and is computationally effi-
cient even for large training data sets and/or maps. Our proposed measure computes
the quality of a SOM as a pair of numbers: (1) the embedding accuracy, (2) the
estimated topographic accuracy. The embedding accuracy is a quality measure we
first explored in [6] as a convergence criterion and we reexamine it here in this new
context. The estimated topographic accuracy is a novel statistical approach to the
topological quality of a map. Besides developing our statistical approach here we
also provide a preliminary validation.

The remainder of this paper is structured as follows. Section2 examines our notion
of embedding summarizing major results. We develop the estimated topographic
accuracy in Sect. 3. Our implementation is briefly discussed in Sect. 4. We provide
the results of our preliminary validation in Sect. 5. Section6 provides conclusions
and points to further work.

2 Map Embedding Accuracy

Yin and Allinson have shown that under some mild assumptions the neurons of a
large enough self-organizing map will converge on the probability distribution of the
training data given infinite time [19]. This is the motivation for our map embedding
accuracy:

A SOM is completely embedded if its neurons appear to be drawn from the same distribution
as the training instances.

This was the basic insight of our original SOM convergence criterion [6]. Here we
briefly summarize and adjust our terminology with respect to embedding.

Our view of embedding naturally leads to a two-sample test [12]. Here we view
the training data as one sample from some probability space X having the probability
density function p(x) and we treat the neurons of the SOM as another sample. We
then test to see whether or not the two samples appear to be drawn from the same
probability space. If we operate under the simplifying assumption that each of the
d features of the input space X ⊂ R

d are normally distributed and independent of
each other, we can test each of the features separately. This assumption leads to a fast
algorithm for identifying SOM embedding: We define a feature as embedded if the
variance and the mean of that feature appear to be drawn from the same distribution
for both the training data and the neurons. If all the features are embedded then we
say that the map is completely embedded.

The following is the formula for the (1 − α) ∗ 100% confidence interval for the
ratio of the variances from two random samples [12],

s21
s22

· 1

f α
2 ,n1−1,n2−1

<
σ 2
1

σ 2
2

<
s21
s22

· f α
2 ,n1−1,n2−1, (1)
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where s21 and s22 are the values of the variance from two random samples of sizes
n1 and n2 respectively, and where f α

2 ,n1−1,n2−1 is an F distribution with n1 − 1 and
n2 − 1 degrees of freedom. To test for SOM embedding, we let s21 be the variance
of a feature in the training data and we let s22 be the variance of that feature in the
neurons of the map. Furthermore, n1 is the number of training samples and n2 is the
number of neurons in the SOM. The variance of a particular feature of both training
data and neurons appears to be drawn from the same probability space if 1 lies in
the confidence interval denoted by Eq. (1): the ratio of the underlying variance as
modeled by input space and the neuron space, respectively, is approximately equal
to one, σ 2

1 /σ 2
2 ≈ 1, up to the confidence interval.

In the case where x̄1 and x̄2 are the values of the means from two random samples
of size n1 and n2, and the variances of these samples are σ 2

1 and σ 2
2 respectively, the

following formula provides (1 − α) ∗ 100% confidence interval for the difference
between the means [12],

μ1 − μ2 > (x̄1 − x̄2) − z α
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·
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+ σ 2

2

n2
, (2)

μ1 − μ2 < (x̄1 − x̄2) + z α
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·
√

σ 2
1

n1
+ σ 2

2

n2
. (3)

The mean of a particular feature for both training data and neurons appears to be
drawn from the same probability space if 0 lies in the confidence interval denoted by
Eqs. (2) and (3). Here z α

2
is the appropriate z score for the chosen confidence interval.

We say that a feature is embedded if the above criteria for both the mean and
variance of that feature are fulfilled.We can now define themap embedding accuracy
for d features,

ea = 1

d

d∑
i=1

ρi , (4)

where

ρi =
{
1 if feature i is embedded,

0 otherwise.

The map embedding accuracy is the fraction of the number of features which are
actually embedded (i.e. those features whose mean and variance were adequately
modeled by the neurons in the SOM). With a map embedding accuracy of 1 a map is
fully embedded. In order to enhance themap embedding accuracy in our implementa-
tion [7],wemultiply each embedding termρi by the significance of the corresponding
feature i which is a Bayesian estimate of that feature’s relative importance [5].

The computational complexity of our map embedding accuracy is,

O((n + m) × d) (5)
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with n the number of training examples, m the number of neurons, and d the number
of features. For most cases we have that d � n and d � m, therefore we can say our
algorithm is quasi-linear in the sum of the number of training examples and number
of neurons. This means that computing the map embedding accuracy is efficient for
most cases.

In essence our map embedding accuracy measures the same thing as the quanti-
zation error: the effective representation of the training data by the neurons of a map.
There is one big difference; our map embedding accuracy indicates when a map is
completely embedded, that is, it indicates when statistically there is no difference
between the population of training points and the population of neurons. No such
criterion exists for the quantization error. The ramification is that the map embedding
accuracy can be used as a measure across different sized maps where the quantiza-
tion error cannot [14]. A more in-depth statistical analysis of our map embedding
accuracy can be found in [13].

3 Estimated Topographic Accuracy

Many different approaches to measuring the topological quality of a map exist, e.g.
[11, 18]. But perhaps the simplest measure of the topological quality of a map is the
topographic error [9] defined as:

te = 1

n

n∑
i=1

err(xi ) (6)

with

err(xi ) =
{
1 if bmu(xi ) and 2bmu(xi ) are not neighbors,

0 otherwise.

for training data {x1, . . . , xn} where bmu(xi ) and 2bmu(xi ) are the best matching
unit and the second-best matching unit for training vector xi on themap, respectively.
We define the topographic accuracy of a map as,

ta = 1 − te. (7)

Computing the topographic accuracy can be very expensive, especially for large
training data sets and/or maps. If we let n be the size of the training data, m the
number of neurons of the map, and d the number of features of the training data,
then the complexity of computing the topographic accuracy is,

O(n × m × d). (8)
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One way to ameliorate the situation is to sample the training data and use this sample
S to estimate the topographic accuracy. If we let s be the size of the sample then the
estimated topographic accuracy is,

ta′ = 1 − 1

s

s∑
i=1

err(xi ) (9)

with xi ∈ S and complexity O(s × m × d). As we will see later in the paper we can
get accurate values for ta′ with very small samples. Therefore we can assume s � m.
Also, in most cases we have d � m. Therefore, the complexity of ta′ becomes quasi-
linear in the number of neurons of the map which again represents a very efficient
algorithm to compute the estimated topographic accuracy.

In addition to computing the value for the estimated topographic accuracy we
use the bootstrap [4] to compute values for an appropriate confidence interval in
order to give us further insight into the estimated topographic accuracy in relation
to the actual value for the topographic accuracy whose value should fall within the
bootstrapped confidence interval.

It is easy to see from (9) that for topological faithful maps the estimated topo-
graphic accuracy should be close to 1. We then say that the map is fully organized.

4 Implementation

We maintain an R package called popsom [7] in the CRAN repository [15]. The
functionality discussed in this paper has been implemented in that package and is
available as of package version 3.0.1 Here is a sample session using our package:

1: > library(popsom)

2: > data(iris)

3: > df <- subset(iris,select=-Species)

4: > labels <- subset(iris,select=Species)

5: > m <- map.build(df, labels, xdim=15, ydim=10, train=1000)

6: > q <- map.quality(m)

7: > cat(sprintf("embedding: %3.2f\n",q$embedding))

8: embedding: 0.81

9: > acc <- q$accuracy$acc

10: > lo <- q$accuracy$lo

11: > hi <- q$accuracy$hi

12: > cat(sprintf("accuracy: %3.2f (%3.2f-%3.2f)\n",acc,lo,hi))

13: accuracy: 0.94 (0.86-1.00)

14: >

1The 3.0 version should be available on CRAN by August 2015.
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The first four lines deal with loading the package and the data and then preparing the
data for building maps. On the fifth line we build a map with dimensions 15 × 10
using 1000 training iterations.On line sixwe compute themap quality. This computes
a value with multiple components which we print out separately on the following
lines. The embedding accuracy is 0.81 and the estimated topographic accuracy is 0.94.
The bootstrapped 95% confidence interval for the estimated topographic accuracy
is 0.86–1.00. One way to interpret this interval is that there is a 95% probability
that the topographic accuracy computed on the whole training data lies within the
interval 0.86–1.00.

5 Preliminary Validation

For our preliminary validation we use the same experiments as in [14]; namely we
use the Iris data set [1] (4 independent variables, 150 instances, 3 classes) and the
Epil data set [16] (8 independent variables, 236 instances, 2 classes). We build SOMs
with the following sizes for the Iris data set:

• small Iris map: 5 × 3 (15 nodes)
• medium Iris map: 11 × 6 (66 nodes)
• large Iris map: 23 × 11 (253 nodes)

and SOMs of the following sizes for the Epil dataset:

• small Epil map: 5 × 4 (20 nodes)
• medium Epil map: 10 × 8 (80 nodes)
• large Epil map: 22 × 15 (330 nodes)

Map quality does depend largely on two factors: the map size and the number of
training iterations applied to a map. Therefore, the big difference between our study
and the original study is that we not only track map sizes but also the number of
training iterations applied to each map. This allows us to observe the respective
quality measures with regards to map sizes and training iterations. Table1 shows our
results for the Iris data set. Here we have the following abbreviations:

• iter: training iterations
• qerr: the quantization error defined as

qerr = 1

n

n∑
i=1

||bmu(xi ) − xi ||2, (10)

where ||bmu(xi ) − xi || represents the Euclidean distance between point xi and
its best matching unit bmu(xi ) on the map

• ea: embedding accuracy as defined by (4)
• ta: topographic accuracy as defined by (7)
• ta′: estimated topographic accuracy as defined by (9)
• (lo-hi): bootstrap estimate of the 95% confidence interval of ta′
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Table 1 Results for the Iris data set

iter qerr ea ta ta′ (lo-hi)

*** 5 × 3 ***

1 43.95 0.81 0.69 0.74 (0.64–0.86)

10 16.10 0.13 0.83 0.82 (0.70–0.92)

100 5.14 0.68 0.91 0.92 (0.84–0.98)

1000 3.29 1.00 0.95 0.94 (0.88–1.00)

10000 3.36 1.00 1.00 1.00 (1.00–1.00)

*** 11 × 6 ***

1 28.36 0.96 0.09 0.06 (0.00–0.14)

10 20.01 0.28 0.47 0.44 (0.28–0.58)

100 4.10 0.00 0.95 0.88 (0.82–0.96)

1000 1.27 0.96 0.99 1.00 (1.00–1.00)

10000 1.24 1.00 0.99 1.00 (1.00–1.00)

*** 23 × 11 ***

1 36.67 0.81 0.00 0.00 (0.00–0.00)

10 18.12 0.81 0.17 0.14 (0.06–0.22)

100 3.29 0.00 0.82 0.76 (0.64–0.88)

1000 0.59 0.81 0.98 1.00 (1.00–1.00)

10000 0.46 1.00 1.00 1.00 (1.00–1.00)

We can observe that the quantization error decreases for the most part for all map
sizes as the number of training iterations applied to the maps increases. One of the
big issues with the quantization error as a quality measure is to determine when it
is sufficiently small for the map to be considered to be a good map. That is, with
the quantization error there is no indication when a map is completely embedded.
Reducing the quantization error to zero is usually not the solution as then the map
will likely overfit the data as is usual with statistical models whose training error was
reduced to zero. Notice that the quantization error is non-zero for fully embedded
and fully organized maps.

Both the embedding accuracy (ea) and topographic accuracy (ta) increasewith the
number of training iterations applied to a map until both reach 1 indicating that the
map is fully embedded and completely organized, respectively. There is phenomenon
where the random initialization of an untrained map can look like a fully embedded
map except that it is completely unorganized according to the topographic accuracy.

We can observe that the estimated topographic accuracy (ta′) is a good estimate
for the topographic accuracy (ta) as it usually falls within a couple of 1/100’s of the
actual value.

Finally, the topographic accuracy value ta falls within the bootstrap estimate of
the 95% interval except for the cases where the map is completely unorganized or
the map is fully organized. In these boundary cases the 95% confidence interval
does not fully predict the value of ta. In all the computations we use a sample size
of 50 to both compute the value of ta’ and to compute the bootstrap estimate of the
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Table 2 Results for the Epil data set

iter qerr ea ta ta′ (lo-hi)

*** 5 × 4 ***

1 21.06 0.91 0.37 0.34 (0.24–0.48)

10 12.08 0.30 0.54 0.50 (0.36–0.66)

100 5.50 0.23 0.92 0.90 (0.82–0.98)

1000 2.53 0.98 1.00 1.00 (1.00–1.00)

10000 2.01 0.91 1.00 1.00 (1.00–1.00)

100000 2.17 0.91 1.00 1.00 (1.00–1.00)

*** 10 × 8 ***

1 20.67 0.00 0.23 0.10 (0.02–0.18)

10 18.49 0.00 0.06 0.04 (0.00–0.10)

100 4.27 0.30 0.90 0.88 (0.78–0.96)

1000 1.02 0.91 0.98 1.00 (1.00–1.00)

10000 0.82 0.91 0.98 0.98 (0.92–1.00)

100000 0.93 0.91 0.97 0.98 (0.94–1.00)

*** 22 × 15 ***

1 17.76 0.00 0.00 0.00 (0.00–0.00)

10 16.99 0.30 0.06 0.02 (0.00–0.06)

100 8.52 0.30 0.62 0.62 (0.48–0.74)

1000 0.45 0.53 0.93 0.98 (0.94–1.00)

10000 0.27 0.68 1.00 1.00 (1.00–1.00)

100000 0.33 0.99 0.98 1.00 (1.00–1.00)

confidence interval. We take a look at the effects of the sample size on the value of
ta′ and the bootstrap estimate in the next section.

Table2 shows the results of our experiments for the Epil data set. We can make
observations very similar to the observations we made on the Iris data set: The
quantization error decreases with training, both ea and ta increase with training until
they both reach 1, ta′ is a fairly accurate estimate of ta, and the bootstrap estimate
of the range of the actual value ta is correct except for the boundary cases. However,
the Epil data set seems to be inherently more complex than the Iris data set because
even with 100,000 iterations the embedding accuracy never quite reaches 1 even for
the small map.

It is interesting to see that in most cases the topographic accuracy converges on
1 much faster than the embedding accuracy, that is, in those cases ta indicates that a
map is fully organized without being fully embedded. Also, as we observed earlier,
an untrained map can appear to be fully embedded without being fully organized.
Therefore, bothqualitymeasures are necessary to fully evaluate thegoodness of amap
and of coursewe prefermapswhere both indices are close to 1. In our implementation
we could have created some sort of linear combination of both indices in order to
come up with a single quality index. However, we prefer the additional information
separate embedding and topographic accuracies purvey.
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Table 3 Effects of the sample size on the estimated topographic accuracy

k ta ta′ (lo-hi)

*** Iris ***

15 0.95 1.00 (1.00–1.00)

50 0.95 0.96 (0.90–1.00)

100 0.95 0.94 (0.89–0.98)

150 0.95 0.95 (0.91–0.98)

*** Epil ***

25 0.97 1.00 (1.00–1.00)

100 0.97 0.96 (0.92–0.99)

200 0.97 0.97 (0.94–0.99)

236 0.97 0.97 (0.94–0.99)

5.1 Sample Size and Estimated Topographic Accuracy

In order to see the effect the sample size has on the estimated topographic accuracy
and the corresponding bootstrap estimate of the confidence interval we trained the
respective medium sized maps for both the Iris and the Epil data set using 1000 itera-
tions. We then computed the topographic accuracy ta (7), the estimated topographic
accuracy ta′ (9), and the bootstrap estimate of the 95% confidence interval using
sample sizes k that roughly corresponded to 10, 30, 60, and 100% of the training
data. Table3 shows the results. What is surprising that even with very small samples
we obtain accurate estimates of the topographic accuracy. On the other hand, the
bootstrap estimate of the confidence interval improves with larger sample sizes.

With a sample size that corresponds to 100% of the data the interpretation of
the confidence interval slightly shifts. Here we see that the precise value of the
topographic accuracy and in turn the value of the topographic error is data depend.
The confidence interval at 100% of the training data tells us that if we were to select
another set of data points from the same distribution as the training data in order to
compute the topographic accuracy we would expect a value within the given interval.

6 Conclusions and Further Work

We are interested in practical tools for the quantitative evaluation of self-organizing
maps.Herewepresented a novel statistical approach to the evaluation of SOMswhich
directly measures the embedding accuracy or coverage of a map and its topographic
accuracy. Both quality indices can be computed in quasi-linear time for most cases
making them computationally very efficient. We have provided an implementation
of our quality measure in form of an R package.
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Our preliminary validation seems to show that in essence our embedding accuracy
measures the same thing as the quantization error: the effective representation of the
training data by the neurons of a map. However, the embedding accuracy has the
advantage that it indicates when a map is fully embedded, i.e., statistically there will
be no improvement to the map with further training. Our preliminary validation also
seems to show that our estimated topographic accuracy is very accurate with respect
to the topographic accuracy computed on the whole training data set evenwhen using
very small samples.

In terms of a more rigorous validation we would like to test our quality measures
against standard test suites such as FCPS [17] and on large real-world data sets.
Finally, in order to dispense with our normality and independence assumptions of our
data we consider switching to a multi-variate, non-parametric Kolmogorov-Smirnov
goodness of fit test [8]. Experiments with the univariate Kolmogorov-Smirnov test
seem promising.

Acknowledgments The author would like to thank Gavino Puggioni for suggesting the non-
parametric goodness of fit tests.
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SOM Training Optimization Using Triangle
Inequality

Denny, William Gozali and Ruli Manurung

Abstract Triangle inequality optimization is one of several strategies on the k-
means algorithm that can reduce the search space in finding the nearest prototype
vector. This optimization can also be applied towards Self-OrganizingMaps training,
particularly during finding the best matching unit in the batch training approach. This
paper investigates various implementations of this optimization and measures the
efficiency gained on various datasets, dimensions, maps, cluster size and density. Our
experiments on synthetic and real life datasets show that the number of comparisons
can be reduced to 24%and the running time can also reduced to between 63 and 87%.

Keywords Self-Organizing Map · Optimization · Implementation · Triangle
inequality

1 Introduction

Clustering is an exploratory data analysis technique that aims to discover the under-
lying structures in data. A cluster is a set of similar observations of entities, but
these observations are dissimilar to observations of entities in other clusters. Self-
Organizing Maps (SOM) are suitable for such exploratory data analysis as SOMs
perform vector quantization, projection of high dimensional data to low dimensional
maps, and provide various visualizations.

This paper aims to optimize SOM training. This optimization is useful when
training large maps, especially training an Emergent SOM with at least a few thou-
sands nodes, typically above 4000 nodes [9]. One strategy to make the algorithm run
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faster is to reduce the search space in finding the Best Matching Unit (BMU). In the
unoptimized version, or exhaustive full search (EFS), finding the BMU for a data
vector is done by iterating through all possible prototype vectors, which takesO (k).
One approach to reduce the search space is by using efficient data structures that
support nearest neighbor queries, such as the kd-tree. However, the performance for
kd-tree nearest neighbor searching is exponential in the dimensionality of the data.

One interesting method to reduce the BMU search space is presented in [2],
which exploits the property of distance metrics that satisfy the triangle inequality.
The approach was implemented for the k-means algorithm, and was shown to be
efficient even when the dimensionality of the data is high. The result produced using
this optimization is exactly the same as when using EFS, meaning no approximation
occurs.

As k-means and SOM have similarities in finding the BMU, we are interested in
investigating the efficiency of triangle inequality optimization when used for SOM.
This paper investigates various implementation strategies for triangle inequality opti-
mization on SOM training algorithms in Java.

The next section discusses SOM training and its optimization. Section3 discusses
various implementations of triangle inequality optimizations on SOM training.
Section4 then evaluates the proposed optimizations using synthetic and real life
datasets. Sections5 and 6 present and discuss the results. Conclusions and future
works are provided in Sect. 7.

2 SOM Training and Optimizations

There are two approaches to training a SOM: sequential training and batch train-
ing [4]. In the sequential training algorithm, the map is trained iteratively by taking
training data vectors one by one from a training data vector sequence, finding the
BMU for the selected training data vector on the map, and updating the BMU and
its neighbours closer toward the data vector. This process of finding the BMU and
updating the prototype vectors is repeated until a predefined number of training iter-
ations or epochs is completed. The proposed optimization is not suitable for this
approach as the prototype vectors change after finding one BMU.

Unlike the sequential training algorithm, in the batch training algorithm the whole
dataset, instead of a single data vector, is presented to the map before updating the
values of the prototype vectors. In the batch training algorithm, the values of new
prototype vectors m j (t + 1) are weighted averages of the training data vectors xi ,
where the weight is the neighbourhood kernel value hbi , j centred on the BMU bi [4].
The proposed optimization is suitable for this approach, since the prototype vectors
are updated at once.

Finding the BMU in the batch training algorithm can be performed in parallel as
the prototype vectors of the mapM are updated after finding BMUs of all data vec-
tors. Therefore, it can utilize a multi-processor environment to speed up the training
process. Parallelizing SOM training can be performed by partitioning the dataset or
partitioning the map [7, 8].
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To reduce the search complexity of Kohonen’s SOM, Koikkalainen and Oja [5]
proposed a tree-structured topological feature map (TSTFM) that reduces the com-
putational complexity to find BMU from O (|M|) to O (log |M|). This efficiency
is achieved by restructuring the prototype vectors into pyramid-structured prototype
vectors where each node has 2 × 2 subnodes. With pyramidal structure, TSTFM is
not flexible in terms of the ratio of each side length. Cheung and Constantinides [1]
compared various fast nearest neighbour search algorithms for SOM and VQ. Their
experiments were performed on a small map size (100 prototype vectors) using a
non-parallel execution environment. They argued that triangle inequality was not
considered because the cost of preprocessing outweighed the gain in search. This is
true when the triangle inequality is applied on the sequential training algorithm, but
not for the batch training algorithm as discussed in this paper. Laha et al. [6] also
proposed optimization in BMU searching by exploiting topological order property.
To handle map folding, they use EFS when folding is detected. Furthermore, they
also use another SOMas the second layer to partition the prototype vectors of the first
layer SOM. Therefore, the results of this optimization is an approximation, which
may lead to inferior results compared to an EFS.

3 SOM Training Algorithm with Triangle
Inequality Optimization

Using Lemma 1, the search space when finding the BMU for a data vector xi can
be reduced. This is done by picking any prototype vector m, and checking another
prototype vector starting from the closest one to m. When a prototype vector ml

is encountered, where d (m,ml) ≥ 2 · d (xi ,m), then no further BMU searching is
necessary for xi . The rest of the prototype vectors cannot be the BMU for xi , as
their distance to xi cannot be smaller than d (xi ,m). Figure1 shows the graphical
representation in two dimensional space.

Lemma 1 Given three vectors, a, b, and c, if d (b, c) ≥ 2 · d (a,b), then d (a, c) ≥
d (a,b).

The next problem is choosing the ideal prototype vector m which minimizes the
search space. Intuitively, smaller 2 · d (xi ,m) leads to a smaller number of prototype
vectors to be checked. The BMU for xi in the previous epoch (pB MU (i)) is a
suitable candidate for m.

Fig. 1 Prototype vector mi
where i = {4, 5, 6} cannot be
BMU for xi , as
d (m,mi ) ≥ 2 · d (xi ,m).
Thus, these prototype vectors
can be ignored in finding
BMU
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Based on this main idea, we derived three variants of triangle inequality optimiza-
tion: static (STI), dynamic (DTI), and lazy (LTI). The first two are already presented
in [2], and the third one is our proposed variant. We also propose a memory opti-
mization for the static variant.

3.1 Static Triangle Inequality (STI)

This is a straightforward implementation from themain idea. At the start of an epoch,
a list of prototype vectors ordered by distance to a certain prototype vector is needed.
This will be used for iterating the prototype vector in radial fashion, starting from
the closest one to the centroid of the hyper-sphere. Let C (i, j) be the index of the
j th closest prototype vector from mi . This list can be built by computing all pair
distances between prototype vectors, and sort it using an efficient sortingmethod such
as Quicksort. It takes an overall O (

k2 log k
)
for computing every possible C (i, j).

To find the BMU for data vector xi , the candidates are the prototype vectors
inside hyper-spherewith centroid pB MU (i)with radius 2 · d

(
xi ,mpB MU (i)

)
. Using

C (pB MU (i), j), iterate the prototype vector starting from j = 1, until a prototype
vector outside the hyper-sphere is encountered, as shown inAlgorithm 1. This variant
can be implementedwithin amultithreading environmentwithout problem, as finding
the BMU for any xi and x j is mutually independent.

Algorithm 1 Finding BMU for xi , using STI approach.
1: function findBMU(i)
2: cur B MU ← pB MU (i)
3: centroid ← pB MU (i)
4: j ← 1

5: while ( j ≤ k − 1) ∧
(

d
(
mC(centroid, j),mcentroid

)
< 2 · d (xi ,mcentroid )

)
do

6: if d
(
xi ,mC(centroid, j)

)
< d (xi ,mcur B MU ) then

7: cur B MU ← C (centroid, j)
8: j ← j + 1
9: return cur B MU

While finding the BMU, the value of any prototype vector must not change.
Otherwise, C (i, j) has to be recomputed again. This is the reason why triangle
inequality optimization applies only for batch training in SOM.

This variant can be optimized for lessmemory usage, fromO (
k2

)
intoO (N + k).

Our proposed approach is computing C (i, j) on the fly. First, group all data vectors
according to its pB MU using bucket sort. The result is buckets Bi , which is a list of
data vector indexes j , where pB MU ( j) = i .

Bi :=
{

j
∣∣∣ x j ∈ D ∧ pB MU ( j) = i

}
,
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Fig. 2 While looking for the
BMU, m2 is found closer to
xi . Changing the
hyper-sphere’s centroid from
m (left) to m2 (right) shrinks
the radius

Storing all Bi takes O (N + k) space. Subsequently, process all data vectors in B1

to find its BMU. To do this, C (1, j) for all j is required. However, C (i, j) where
i �= 1 is not needed. Therefore we can just compute C (1, j) and it takesO (k) space.
After finding BMUs for all data vectors in B1, then repeat for B2, B3, and so on. The
overall memory complexity needed is O (N + k). While using buckets reduces the
memory required, the time complexity remains the same.

3.2 Dynamic Triangle Inequality (DTI)

While looking for the BMU, the prototype vector closer to xi may be encountered.
If the hyper-sphere’s centroid is changed into this prototype vector, the radius for the
hyper-sphere can be shrunk as illustrated in Fig. 2. A smaller radius means a smaller
search space. Algorithm 2 shows the implementation for this approach. Similar with
the STI, DTI can also be implemented for a multithreading environment.

While the hyper-sphere’s radius become smaller, some of the prototype vectors
may be checked twice. For example, m1 in Fig. 2 is checked twice when the centroid
ism andm2. Furthermore, several prototype vectors that were not inside the previous
hyper-sphere may be inside the smaller hyper-sphere, as shown by m5 in Fig. 2.

Algorithm 2 Finding BMU for xi , using DTI approach.
1: function findBMU(i)
2: cur B MU ← pB MU (i)
3: centroid ← pB MU (i)
4: j ← 1

5: while ( j ≤ k − 1) ∧
(

d
(
mC(centroid, j),mcentroid

)
< 2 · d (xi ,mcentroid )

)
do

6: if d
(
xi ,mC(centroid, j)

)
< d (xi ,mcur B MU ) then

7: cur B MU ← C (centroid, j)
8: centroid ← C (centroid, j)
9: j ← 1
10: else
11: j ← j + 1
12: return cur B MU
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3.3 Lazy Triangle Inequality (LTI)

For aprototypevectormi , sometimes the informationneeded is onlyC (i, 1),C (i, 2),
C (i, 3), . . . ,C (i, p), where p < k − 1. Moreover, when convergence is almost
reached, p can be much smaller than k − 1. This property motivates another pro-
posed variant utilizing a partial sort, as only some of the closest prototype vectors to
mi are needed.

The suitable partial sort algorithm is Heap Sort. At the beginning of an epoch,
initialize k heapdata structuresH1,H2,H3, . . . ,Hk . These heaps store pairedvalues,
a distance and index, with smaller distances on top:

Hi :=
{(

d
(
mi ,m j

)
, j

)∣∣∣1 ≤ j ≤ k, j �= i
}

For the BMU searching phase, the value of C (i, j) is computed on demand.
If a value of C (i, j) is required and it has not been computed, then find its value
from Hi by popping it. If the c entries for all C (i, j) is required, then building all
required C (i, j) takes amortizedO (c log k), rather than fixedO (

k2 log k
)
as shown

in previous variants. Notice that this variant only modifies how C (i, j) is computed.
In this research, LTI adapts the DTI for BMU searching, where the hyper-sphere’s
radius shrinks over time.

4 Dataset and Evaluation Metrics

Our experiments involve 25 synthetic datasets and a real life dataset. The synthetic
datasets are generated using Mersenne Twister pseudorandom number generator,
with normal distribution. These datasets can be divided into four groups according
to their evaluation metrics:

various These approaches are evaluated using synthetic datasets with various
dimensions (2 or 3), cluster size (uniform or various), and cluster density (uni-
form or various). Therefore, there are eight datasets generated in this group. For
all datasets, N = 100,000.

dim To test the performance in highdimension, datasetswith the samecharacteristics
but varying in dimension are generated. There are 16 datasets with dimension
2, 3, . . . 9, and 10, 20, . . . , 80 dimension with N = 100,000.

huge To test the performance in a huge dataset, a dataset with N = 1,000,000 and
dim = 25 is generated.

real To test the performance in a real life dataset, a dataset from a telecommunication
company with N = 130,589 and dim = 6 is used. This dataset describes wireless
data usage from a population in a month.
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Each dataset is normalized using range normalization and tested using EFS and all
three variants of triangle inequality optimization. The map size k used for various
and huge are 8 × 6, 16 × 12, and 32 × 24. The dim and real are tested using map
with size 32 × 24. Rough training were used for each test, with linear initialization
and 20 epoch. Experiments were performed in a quad core machine, CPU speed
2.5 GHz, and 4 GB memory.

5 Experimental Result

To ensure the correctness of the implementation of these optimizations, the map
produced by EFS and optimized search were compared. Given the same initial map,
training dataset, and training parameters, the batch training will produce the same
map.

The overall result is positive, as there is improvement in training time and signif-
icant reduction in the number of comparisons. As the number of comparisons from
the LTI is the same as for the DTI, these numbers are not shown.

Test Group various. Experiments on all datasets in this group show similar results.
Figure3 shows the averaged result from all datasets in this group. The number of
comparisons between data vector and prototype vector is reduced further when grid
size is increased. By using triangle inequality optimization, the number of compar-
isons can be reduced down to 15% of the EFS. However, the DTI is not significantly
different to the STI.

The result for training time is similar, as reducing the number of comparisons
will reduce execution time. However, LTI takes much longer training time. This
could be caused by the locking mechanism in multithreading environment. Further
experiments using single thread implementation shows that LTI is also not signifi-
cantly better than the other methods. By profiling the execution of the STI and DTI
approaches, it is showed that the precomputation phase that calculate and sort the
pairwise distance does not take significant time. For k = 32 × 24 and N = 100,000,
the precomputation contributes 10.3% in the BMU searching phase. However, LTI
could be useful when k is close to N . As k gets larger, the precomputation phase
takes more time.
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Fig. 4 The percentage of comparison on test groupdim compared to EFS. Both approaches achieve
the same level of efficiency
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Fig. 6 Averaged number of comparisons (left) and training time (right) on test group real

Test Group dim. Figure4 shows that the triangle inequality optimization saves a lot
of comparison. As the dimension gets larger, the efficiency decreases and is finally
stable around 80%.

Test Group huge. Figure5 indicates that the result is similarwith test groupvarious.
In comparison, the savings is up to 53%, while training time saved reaches 12%.
This result is not as good as test group various, which is to be expected as the
dataset’s dimensionality is much higher (25 vs. 2 or 3).

Test Group real. As shown in Fig. 6, the optimization also works well on a real-life
dataset. Compared to the EFS, comparison needed is much smaller and training was
25% faster.



SOM Training Optimization Using Triangle Inequality 69

6 Analysis and Discussion

From each test group, there is no significant difference between the STI and DTI
variants. While the DTI variant keeps shrinking the hyper-sphere, prototype vectors
that re-enter it does not make this variant much more efficient.

The efficiency of triangle inequality optimization fell for higher dimensions, and
finally stagnates. This phenomenon can be explained by observing the nature of
distance functions which satisfy the triangle inequality. Let D be a set of vectors
with dim dimensions, uniformly distributed. Let p be one of the vectors in D, r a
randomvector inD, and pd f (x) the probability density function so that d (p, r) = x .
For higher dimensions, pd f (x) will be concentrated in a single value as shown in
Fig. 7.

With triangle inequality optimization, prototype vector r is omitted in finding
BMU if d (p, r) ≥ 2 · d (p,q), where q is a data vector. This implies that the number
of prototype vectors omitted is proportional to the probability that a random vector
r satisfies d (p, r) ≥ 2 · d (p,q). This probability is equal to:

Pomit =
∫ ∞

2·d(p,q)
pd f (x) dx

This probability can be viewed as the filled area under the curve, starting from
2 · d (p,q) towards infinity as shown in Fig. 7. As the dimensionality gets higher,
the area gets smaller. This is the reason why the efficiency of triangle inequality
optimization fell as the dimension gets higher. While theoretically this optimization
will not be significantly efficient when dim is very large, empirical results show that
it still saves about 75% comparison when dim = 80.

Another interesting fact is that the number of comparisons per epoch strictly
reduces. Figure8 shows the average comparison percentage per epoch, compared
with EFS. This could be an indicator when convergence has been reached, especially
when the number of comparisons does not change significantly.

Heskes [3] proposed an energy function for SOM by redefining the method to
choose the BMU. In Heskes SOM, the BMU is chosen by finding the minimum of
the average distance between data vector xi to prototype vector m j and also to its
neighbours according to the neighbourhood function, as:

Fig. 7 Shaded region shows Pomit . The region gets smaller when the dimensionality of the data is
higher (low dimension on the left and high dimension on the right)
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Fig. 8 The percentage of
comparison per epoch for
test group various
compared to EFS. Both
approaches achieve the same
level of efficiency
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B MU (xi ,M) = arg min
1≤ j ≤ |M|

{|M|∑
k

hk, j (t) · d(xi ,mk(t))
}
,

where hk, j (t) is the neighbourhood function between map units k and j , and t is
the epoch. Triangle inequality optimization might not be suitable for Heskes winner
determination as the distance is calculated to several prototype vectors.

7 Conclusions and Future Works

Based on our experiments in implementing triangle inequality optimization, time
reduction is quite significant on high dimensional datasets even for various cluster
sizes and densities. The reduction is more significant for larger maps.

This optimization can be implemented using both static and dynamic approaches.
The reduction between these approaches are not significantly different. We have
extended the dynamic approach using lazy triangle inequality. However, this imple-
mentation is not faster.

Since triangle inequality optimization has not been implemented in many open
source SOM implementations, this optimization can be applied in these implemen-
tations. Implementation using vantage point tree and other metric trees as data struc-
tures to speed up BMU searching can be investigated.
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Sparse Online Self-Organizing Maps
for Large Relational Data

Madalina Olteanu and Nathalie Villa-Vialaneix

Abstract During the last decades, self-organizing maps were proven to be useful
tools for exploring data. While the original algorithm was designed for numerical
vectors, the data became more and more complex, being frequently too rich to be
described by a fixed set of numerical attributes. Several extensions of the original
SOM were proposed in the literature for handling kernel or dissimilarity data. Most
of them use the entire kernel/dissimilarity matrix, which requires at least quadratic
complexity and becomes rapidly unfeasible for 100 000 inputs, for instance. In the
present manuscript, we propose a sparse version of the online relational SOM, which
sequentially increases the composition of the prototypes.

Keywords Relational data · Online relational SOM · Sparse approximations

1 Introduction

The self-organizing map (SOM) algorithm, [1], was proven, over the years, to be a
powerful and convenient tool for clustering and visualizing data. While the original
algorithm was designed for numerical vectors, the available data in the applications
became more and more complex, being frequently too rich to be described by a
fixed set of numerical attributes only. This is the case, for example, when data are
described by relations between objects (individuals involved in a social network) or
by measures of ressemblance/dissemblance (professional trajectories).

M. Olteanu (B)
SAMM - Université Paris 1 Panthéon-Sorbonne, 90, Rue de Tolbiac, 75013 Paris, France
e-mail: madalina.olteanu@univ-paris1.fr

N. Villa-Vialaneix (B)
INRA, UR 0875 MIAT, BP 52627, 31326 Castanet Tolosan, France
e-mail: nathalie.villa@toulouse.inra.fr

© Springer International Publishing Switzerland 2016
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning
Vector Quantization, Advances in Intelligent Systems and Computing 428,
DOI 10.1007/978-3-319-28518-4_6

73



74 M. Olteanu and N. Villa-Vialaneix

During the past twenty years, the SOM algorithm was extended for handling rela-
tional data, either described by kernels (see [2] for the online version and [3] for the
batch version), or by dissimilarities (see [4] for the online version and [5] for the batch
version). All these extensions are based on the same underlying principle: the dis-
similarity or the kernel implicitly define an Euclidean (or pseudo-Euclidean) space in
which the prototypes can be expressed as convex combinations of the embedded input
data. However, when the goal is to explore large data sets, the relational approaches
may become rapidly unfeasible. Indeed, complex relational data often have a large
dimensionality. Moreover, kernel and relational SOM rely on the knowledge of the
dissimilarity matrix for the entire data set, which generates at least quadratic com-
plexity for the algorithms. As stressed in [5], algorithms will be slow for data sets
with 10,000 observations and impossible to run on a normal computer for 100,000
input data. In addition to the complexity issue, expressing prototypes as convex
combinations of the entire data set has a second drawback, as emphasized in [6]: the
interpretability of the prototypes and of the model is lost.

In order to tackle these two issues, several approaches were introduced for rela-
tional data, all of them seeking for a sparse representation of the prototypes and a
linear (in the number of observations) computational cost. [7] use the natural spar-
sity of the prototypes in batch relational k-means in order to reduce the complexity.
The natural sparsity is enhanced by selecting the K (K fixed) closest inputs to each
prototype. In [5], the complexity is reduced using iterative “patch clustering”. First,
the data are split into P patches of size nP (P fixed). A prototype-based clustering
algorithm in batch version (neural gas or SOM) is then run on a patch Pt and the
resulting prototypes, whichmay be viewed as compressed representations of the data
already seen, are added as new data points to the next patch, Pt+1. Moreover, the
full vector of coefficients is replaced by the K closest input data (K fixed). With this
method, linear time and constant space representation are obtained. Another tech-
nique consists in using the Nyström approximation [8] for the dissimilarity matrix.
This technique also leads to a linear computational cost in the number of input data,
but is strongly dependent on the intrinsic dimensionality of the given dissimilarity
matrix, which has to be of low rank and entirely known in advance. All these cited
approaches are batch algorithms.

In the online framework, [9] propose a bagging approach for kernel SOM. Data
is split into B subsamples of size nB (B fixed), the online kernel SOM is trained on
each subsample and, after training, themost representative K observations are chosen
for each prototype (K fixed). Eventually, a final map is trained on the resulting most
representative observations. The algorithm has the advantage of being parallelizable,
although it does not consider all the advantages of an online implementation.

In the present paper, we propose a sparse version of the online relational SOM
algorithm, which takes further advantage of the online setting. Instead of expressing
prototypes as convex combinations of the entire data set from the beginning, the size
and the composition of the prototypes are sequentially increased with each new input
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fed to the algorithm. When the size of the prototypes becomes too large, prototypes
are made sparse by deleting all the insignificant coefficients. Different approaches
for selecting the most interesting observations are reported in [6]. In this manuscript,
we use a slightly different technique, by interpreting the coefficients as a probability
distribution and by selecting the most probable observation: a global probability
mass ν is fixed and the largest coefficients summing to ν are kept. In this way, more
flexibility is allowed to the prototypes which are no longer represented by a fixed
number K of observations, but by the necessary number of observations allowing an
“almost complete” knowledge of the composition of the prototypes (if ν is chosen
close to 1).

The rest of the paper is organized as follows: Sect. 2 recalls the online relational
SOM, while Sect. 3 introduces the sparse version of the online relational SOM. The
equivalent algorithm for kernels is briefly described in Sect. 4, while Sect. 5 contains
some examples on real data-sets.

2 Online Relational SOM

In this section we shall briefly recall the principles of the online relational SOM
(RSOM) algorithm, as introduced in [4]. Throughout the rest of the paper, let
us suppose that the input data, x1, . . . , xN , belong to some arbitrary space G and
can be described through a dissimilarity measure δ, such that δi j = δ

(
xi , x j

)
. The

dissimilarity measure is supposed to verify some basic assumptions: symmetry(
δi j = δ j i

)
and non-negativity

(
δi j ≥ 0

)
, for all i, j = 1, . . . , N , and also δi i = 0,

for all i = 1, . . . , N .
The online RSOM algorithm aims at mapping the input data onto a low dimen-

sional grid (usually a two-dimensional rectangle), composed of U units, each of
them described by a prototype pu , u = 1, . . . , U . The units are linked together by
a neighborhood relationship H , expressed as a function of the distance between the
units on the grid, d

(
u, u′). The distance on the grid, d, may be chosen, for example,

as the length of the shortest path between the units. The U prototypes are initialized
either as random convex combinations of the input data or randomly among the input
data.

The extension of the original SOM algorithm is based on two key ideas:

• First, prototypes are written as (symbolic) convex combinations of the input data,
pu = ∑N

i=1 βu,i xi , with βu,i ≥ 0 and
∑N

i=1 βu,i = 1, for all u = 1, . . . , U . This
definition is justified by the fact that, when a dissimilarity is given, it can be
viewed as the dot product of the images by a mapping function φ into a pseudo-
Euclidean space [10]: the prototypes are thus truly the convex combinations of
(φ(xi ))i in this space (see [4, 5] for further explanations).

• Second, the distance between an input data xi and a prototype pu can be written
only in terms of the dissimilarity matrix of the input data and the coefficients βu,i

as follows:
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‖xi − pu‖2 = �iβ
T
u − 1

2
βu�βT

u , (1)

where � = (
δi j

)
i, j=1,...,N , �i represents the i-th row of the matrix � and βu =(

βu,1, . . . , βu,N
)
is the vector of coefficients for the prototype pu .

Expressing the prototypes as convex combinations of the input data and computing
the distances between observations and prototypes as in Eq. (1) consists, in fact, in
a generalization of the original SOM algorithm. Indeed, one can easily see that the
two are equivalent if the dissimilarity δ is the squared Euclidean distance and if the
prototypes of the original SOM are initialized within the convex hull of the input
data.

This general framework allowing an elegant writing of the algorithm for complex
data described by dissimilarities was introduced initially for the online version of
kernel SOM(KSOM) in [2].Afterwards, extensions and rediscoverieswere described
for batch relational SOM in [5], batch kernel SOM in [3] and online relational SOM
in [4]. A detailed and complete comparison of these methods and their equivalences
may be found in [11].

The distance computation in Eq. (1) may be theoretically justified in the very
general setting of dissimilarities by extending the Hilbert embedding for kernels to
a pseudo-Euclidean embedding, as shown, for example, in [5].

The online relational SOM algorithm is summarized in Algorithm 1. The neigh-
borhood function H is supposed to verify the following assumptions: H : R → R,
H(0) = 1 and limx→+∞ H(x) = 0. In the setting of Algorithm 1, H t decreases
piecewise linearly, while μ(t) vanishes at the rate 1

t .

Algorithm 1 Online relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , N , initialize β0
u,i such that β0

u,i ≥ 0 and
∑N

i β0
u,i = 1.

2: for t = 1, . . . , T do
3: Randomly choose an input xi
4: Assignment step: find the unit of the closest prototype

f t (xi ) ← arg min
u=1,...,U

[
�i

(
β t−1

u

)T − 1

2
β t−1

u �(β t−1
u )T

]

5: Representation step: ∀ u = 1, . . . , U ,

β t
u ← β t−1

u + μ(t)Ht (d( f t (xi ), u))
(

1i − β t−1
u

)

where 1i is a vector with a single non null coefficient at the i th position, equal to one.
6: end for
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3 Sparse Online Relational SOM

Similarly to relational SOM, prototypes are written as convex combinations of the
observations, but, in this case, they are restricted to the input data already fed to
the algorithm and, more particularly, to the most significant of them. In order to
guarantee the sparsity of the writing as well as similar properties with the original
online relational SOM algorithm, several issues have to be verified.

1. Prototypes have to be initialized at random among the input data. Hence, the
observations have to be randomly presented to the algorithm. The first U obser-
vations will be then used as initial values for the U prototypes.

2. The dissimilarity between a new input data and a prototype, written as a con-
vex combination of the most significant past observations, has to be computed.
This can be achieved using the following formula ‖xk − pu‖2 = ∑

j∈I (t) βu, j

δ
(
xk, x j

) − 1
2

∑
i∈I (t)

∑
j∈I (t) βu,iβu, jδ

(
xi , x j

)
, where pu = ∑

j∈I (t) βu, j x j and
I (t) contains the indices of the most significant inputs already fed to the algo-
rithm before xk is chosen.

3. Prototypes are sparse combinations of the input data. Hence, prototypes are peri-
odically updated and the most coefficients only are selected. The updates may be
performed throughout the iteration using either a deterministic design (the num-
ber of updates is fixed and updates are uniformly distributed during the learning
of the map), or a random design (the updates are distributed according to some
geometric distribution. The parameter of the geometric distribution may depend
on the total number of iterations and on the size of the neighborhood). Sparsity
could be achieved by selecting the first Q most important coefficients, where Q
is a fixed integer. However, in order to allow for more flexibility in the expres-
sion and interpretability of the prototypes, the most significant coefficients are
selected according to their value, by fixing a threshold: let 0 < ν ≤ 1 be the
selected threshold (if ν = 1, the algorithm is no longer sparse, but the original
one).

For u = 1, . . . , U , the coefficients are ordered in descending order for each pro-
totype βu,(1), . . . , βu,(�I (t)), where βu,(1) = maxi∈I (t) βu,i and βu,(�I (t)) = mini∈I (t)

βu,i . Consider Nu such that Nu = argminn=1,...,�I (t)
{∑n

i=1 βu,(i) ≥ ν
}
. The most

significant coefficients are updated as follows

βu,(i) =

⎧⎪⎨
⎪⎩

βu,(i)∑Nu
j=1 βu,( j)

, if(i) ≤ Nu

0 , if (i) > Nu

The sparse online relational SOM algorithm is summarized in Algorithm 2.
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Algorithm 2 Sparse online RSOM

1: For all u = 1, . . . , U , initialize p0u among the first U input data: β0
u = 1U

u , where 1U
u is a vector

of length U with a single non-null coefficient on the u-th position, equal to 1. Initialize I (0) =
{1, . . . , U }.

2: for t = 1, . . . , T do
3: Randomly choose an input xk , k ∈ {1, . . . , N }.
4: Assignment step: find the unit of the closest prototype

f t (xk) ← arg min
u=1,...,U

⎡
⎣ ∑

j∈I (t−1)

β t−1
u, j δ

(
xk , x j

) − 1

2
β t−1

u �I (t−1)

(
β t−1

u

)T

⎤
⎦ ,

where �I (t−1) = (
δ
(
xi , x j

))
i, j∈I (t−1).

5: Representation step: ∀ u = 1, . . . , U
6: if k ∈ I (t − 1), then
7: β t

u ← β t−1
u + μ(t)Ht (d( f t (xk), u))

(
1k − β t−1

u

)
8: I (t) = I (t − 1)
9: else if k /∈ I (t − 1), then
10: β t

u ← [
1 − μ(t)Ht (d( f t (xk), u))

] (
β t−1

u , 0
) + μ(t)Ht (d( f t (xk), u))(0, . . . , 0︸ ︷︷ ︸

�I (t−1)

, 1)

11: I (t) = I (t − 1) ∪ {k}.
12: end if
13: Sparse representation:
14: if t is an update instant (deterministic or random design) then
15: Sparsely update the prototypes: ∀ u = 1, . . . , U ,

β t
u,(1) ≥ . . . ≥ β t

u,�I (t) ,

Nt,u = arg min
n=1,...,�I (t)

{
n∑

i=1

β t
u,(i) ≥ ν

}

β t
u,(i) =

⎧⎪⎪⎨
⎪⎪⎩

β t
u,(i)∑Nt,u

j=1 β t
u,( j)

, if (i) ≤ Nt,u

0 , if (i) > Nt,u

16: end if
17: end for

4 The Kernel Version

In some cases, data may be described by a kernel, K , instead of a dissimilar-
ity. We shall recall that a kernel is a symmetric similarity such that K(xi , xi ) = 0
and which satisfies the following positive constraint: ∀M > 0, ∀ (xi )i=1,...,M ∈
G, ∀ (αi )i=1,...,M ∈ R,

∑M
i, j=1 αiα j K

(
xi , x j

) ≥ 0. According to [12], there exists
a Hilbert space H, also called feature space, as well as a feature map ψ : G → H,
such that K(x, x ′) = 〈ψ(x), ψ(x ′)〉H. Similarly to the dissimilarity case, the proto-
types are defined as convex combinations of (the images byψ of) (xi )i . The distance
between an input data xk and some prototype pu is then computed as the squared



Sparse Online Self-Organizing Maps for Large Relational Data 79

distance induced by the kernel ‖xk − pu‖2 = K(xk, xk) − 2
∑

i∈I (t) βu,i K(xk, xi ) +∑
i, j∈I (t) βu,iβu, j K

(
xi , x j

)
. The sparse online relational SOM can thus be immedi-

ately adapted for kernels. Algorithm 2 has to be modified only in the assignment step
which becomes

1: Assignment step: find the unit of the closest prototype

f t (xk) ← arg min
u=1,...,U

⎡
⎣β t−1

u KI (t−1)

(
β t−1

u

)T − 2
∑

j∈I (t−1)

β t−1
u, j K

(
xk , x j

)⎤⎦ ,

where KI (t−1) = (
K
(
xi , x j

))
i, j∈I (t−1).

5 Examples

The sparse version introduced in the present manuscript was compared to the online
relational SOM on two real data sets. For the sparse version, several values were
considered for the threshold ν. The sparse updates were performed either in a uni-
form deterministic design (fixed number of updates), or at random, according to a
geometric distribution. The performances of the sparse RSOM and the online RSOM
were then compared in terms of average computational time (in seconds), quantiza-
tion and topographic errors and sparsity (number of non-zero coefficients). Scripts
were all implemented under the free statistical software environement R.

Astraptes fulgerator. The first data set was introduced in [13]. In contains informa-
tion on 465 Amazonian butterflies, each of them described by a sample of their DNA.
Each input data is a DNA sequence of length 350. The Kimura distance for genetical
sequences, as introduced in [14], was computed and the resulting distance matrix
was used as input for relational and sparse relational SOM. For both algorithms, 100
different initializations with 2 500 iterations each were performed on a square grid
of size 5 × 5. The results are summarized in Tables1 and 2 for the deterministic and
random designs respectively.

Professional trajectories. The second example comes from [15]. It contains infor-
mation about 2 000 people having graduated high-school in 1998 and monitored
during 94 months afterwards. For each individual, a categorical sequence of length
94, giving his monthly professional status is available. In all, there are nine possible
situations, from permanent contracts to unemployment. The dissimilarity used for
these data is the optimal matching (OM) distance, as introduced in [16]. Here, 100
different initializations with 10 000 iterations each were performed on a square grid
of size 10 × 10. The sparse version was compared to the standard online relational
SOM (itself run from 100 different initializations and 10 000 iterations). The results
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Table 1 Average results for Astraptes fulgerator (100 random initializations)

nb. updates ν Comp. time (s) Quantization err. Topographic err. nb. coefs

50 0.80 2.04 0.00087 0.0339 5.87

50 0.85 2.13 0.00076 0.0157 7.65

50 0.90 2.37 0.00067 0.0077 12.07

50 0.95 2.91 0.00064 0.0067 23.45

50 0.99 4.14 0.00067 0.0055 46.80

25 0.80 2.76 0.00067 0.0167 12.58

25 0.85 3.48 0.00065 0.0139 17.13

25 0.90 3.17 0.00065 0.0128 22.99

25 0.95 3.61 0.00064 0.0107 34.99

25 0.99 4.69 0.00070 0.0041 53.75

10 0.80 7.04 0.00066 0.0079 40.09

10 0.85 6.96 0.00065 0.0087 43.08

10 0.90 7.55 0.00067 0.0075 47.93

10 0.95 7.87 0.00065 0.0055 57.55

10 0.99 8.52 0.00068 0.0054 68.15

Online RSOM 12.18 0.00067 0.0051

The first column contains the number of updates (deterministic design). The third column is the
computational time (provided in seconds). The last column is the average number of non zero
coefficients in the prototypes. The bolded values correspond to the results at least as good as the
online RSOM

Table 2 Average results for Astraptes fulgerator (100 random initializations, updates were made
with a random design)

nb. updates ν Comp. time (s) Quantization err. Topographic err. nb. coefs

50 0.80 1.92 0.00093 0.0353 5.44

50 0.85 2.09 0.00078 0.0176 7.35

50 0.90 2.37 0.00069 0.0145 11.02

50 0.95 2.92 0.00067 0.0102 21.75

50 0.99 4.02 0.00068 0.0068 45.51

25 0.80 2.50 0.00067 0.0210 9.92

25 0.85 2.88 0.00066 0.0114 14.09

25 0.90 2.94 0.00066 0.0107 20.41

25 0.95 3.56 0.00064 0.0057 29.63

25 0.99 4.66 0.00066 0.0053 51.93

10 0.80 4.23 0.00062 0.0132 22.48

10 0.85 4.69 0.00065 0.0072 28.41

10 0.90 5.18 0.00065 0.0098 33.97

10 0.95 5.14 0.00065 0.0051 43.34

10 0.99 6.30 0.00067 0.0033 59.95

Online RSOM 12.18 0.00067 0.0051
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Table 3 Average results for “professional trajectories” (100 random initializations, updates were
made with a deterministic design)

nb. updates ν Comp. time (s) Quantization err. Topographic err. nb.
coefs

100 0.80 111 29.5 0.384 1.4

100 0.85 130 27.8 0.348 1.8

100 0.90 147 25.5 0.277 2.9

100 0.95 215 21.8 0.112 11.3

100 0.99 480 20.5 0.084 40.4

50 0.80 157 25.6 0.247 2.6

50 0.85 174 23.8 0.177 4.4

50 0.90 223 22.1 0.109 9.8

50 0.95 307 21.0 0.086 23.3

50 0.99 672 20.5 0.080 52.9

25 0.80 247 22.6 0.124 7.3

25 0.85 278 21.6 0.102 12.2

25 0.90 339 21.0 0.089 20.1

25 0.95 470 20.5 0.090 34.0

25 0.99 800 20.6 0.078 60.9

Online RSOM 9126 20.7 0.075

Simulations were all performed on a server with OS Debian 8 Jessie, 8 processors AMD Opteron
8384 with 4 cores each and 256 Go RAM

for the deterministic design are summarized in Table3 (due to the lack of space, we
do not report here the results with a random design, which are quite similar).

It is interesting to note that the sparsity has a strong influence on the computa-
tional time: increasing the number of updates tends to decrease the computational
time since the prototypes are regularly cleared from unnecessary coefficients. The
computational time compared to the standard version is at least 10 times smaller in
the sparse version for this large dataset. On the contrary, the performances, measured
in terms of quantization and topographic errors, can be affected by a too large sparsity
but the best ones remain close to those of the standard version.

6 Conclusion and Future Work

A sparse version of the online relational SOM algorithm was proposed, by sequen-
tially increasing the composition of the prototypes and sparsely updating them. The
algorithm was compared with the online ROM on two real data sets and the sparse
version appeared to achieve very similar performances as compared to the original
algorithm, while improving computational time and prototype representation.
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A Neural Gas Based Approximate Spectral
Clustering Ensemble

Yaser Moazzen and Kadim Taşdemir

Abstract The neural gas has been successfully used for prototype based clustering
approaches. Its topology based quantization effectively aids in approximate spectral
clustering (ASC) to define distinct similarity criteria which are optimally selected
for the relevant application. To utilize the advantages of ASC by harnessing those
criteria derived from different information types, we propose a neural gas based
approximate spectral clustering ensemble (NGASCE). The NGASCE obtains a joint
decision for accurate partitioning, by a 2-step ensemble approach derived from 1-
step graph-based models. We show the outperformance of NGASCE on five datasets
from UCI Machine Learning Repository.

1 Neural Gas Based Approximate Spectral Clustering

Spectral clustering, a graph-based approach depending on eigendecomposition of
pairwise similarities of data points, has an ability to extract clusters of different
characteristics without a parametric model [1–3]. However, it has high computa-
tional complexity (due to required eigendecomposition) and hence it is infeasible for
large datasets. To overcome this challenge, approximate spectral clustering (ASC)
approaches apply spectral clustering to data prototypes obtained by sampling or
quantization [4–8]. Among them, neural gas [9] based ASC is shown more power-
ful than other sampling or quantization methods [7, 10]. In addition, ASC enables
new similarity definitions which integrate different information types (such as dis-
tance, density, topology), producing an effective exploitation of available informa-
tion for extraction of precise cluster structure [8]. On the one hand this results in
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diverse partitionings obtained by different information types tailored to the applica-
tion requirements. On the other hand, it necessitates selection of the optimal simi-
larity criterion, which is often hard to determine for real world applications (due to
lack of class labels). A solution to overcome this necessity can be the use of cluster
ensembles.

Cluster ensembles merge diverse partitionings obtained by different input or fea-
ture sets, distinct methods or the same method with several parameter settings, using
various approaches such as majority voting, evidence accumulation, hyper graph
operations, meta-clustering, or mixture models [11–14]. They eliminate the need to
determine the optimal set, method or parameter values in addition to (usually) achiev-
ing a more accurate partitioning than those partitionings obtained by single methods
individually. An approximate spectral clustering ensemble based on majority voting
and meta clustering algorithm is proposed for segmentation of SAR images [15],
using Nystrom approximation [4] and the traditional distance based Gaussian kernel
similarity with different kernel parameter values to achieve diverse segmentation
results.

In this paper, we propose a neural gas based approximate spectral clustering
ensemble (NGASCE) which combines the advantages of approximate spectral clus-
tering with different similarity criteria followed by an ensemble to exploit distinct
information types to achieve an aggregated consensus decision for accurate parti-
tioning. First, we obtain data prototypes by neural gas quantization which is shown
outperforming over sampling approaches for ASC [7, 8]. Second, we produce ASC
partitionings by the recent similarity definitions proposed in [8]. Third, we propose
a 2-step ensemble approach based on 1-step graph-based models [11]. We then show
the performance of NGASCE on five datasets from UCI Machine Learning Reposi-
tory. The paper is outlined as follows: Sect. 2 briefly explains ASC, Sect. 3 describes
the proposed NGASCE, Sect. 4 provides accuracy assessment and Sect. 5 concludes
the paper.

2 Approximate Spectral Clustering

Approximate spectral clustering (ASC) applies spectral clustering on a reduced set of
data representatives (prototypes) selected by sampling or quantization [4–8].Namely,
ASC has two steps: (i) selection of prototypes, (ii) their spectral clustering. For the
first step, neural gas, a topology-based quantization, is shown powerful to achieve
high accuracies with ASC [7, 8], because it enables manifold based similarity defi-
nitions (such as data topology and local density).

We now briefly explain the spectral clustering of the neural gas prototypes with
different similarity criteria. Spectral clustering methods are associated with relaxed
optimization of graph-cut problems based on a graph Laplacian matrix, L , with
respect to an optimization criterion [1–3]. We employ the spectral method in [2]
in our ensemble. We first obtain a weighted undirected graph G = (V, S) where V
represents the elements (prototypes) to be clustered and the edges S are their pairwise
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similarities to be determined with respect to some user-defined criterion. Ng et al.
[2] defines the normalized Laplacian matrix, Lnorm , as

Lnorm = D−1/2SD−1/2, (1)

based on S and its diagonal degreematrix D with di = ∑
j s(i, j). The k eigenvectors

{e1, e2, . . . , ek} of Lnorm , associated with the k highest eigenvalues are found. Then,
the n × k matrix E = [e1e2 . . . ek] is constructed and n × k matrix U is obtained by
normalizing the rows of E to have norm 1, i.e. ui j = ei j√∑

k e2ik
. Finally, the n rows of

U are clustered with the k-means algorithm into k clusters.

2.1 Similarity Measures

The criterion for the similarity matrix S plays a significant role to achieve an accurate
cluster extraction. The pairwise similarities, s(i, j)s, are traditionally calculated by
a Gaussian kernel based on the (Euclidean) distances, dEuc(pi , p j ):

sEuc(i, j) = exp
{−dEuc(xi , x j )/(2σiσ j )

}
(2)

where σi is a decaying parameter (to be optimally found through experiments [2] or
to bet set locally as the distance to the kth nearest neighbor of pi [16]). For ASC,
new information types such as topology, density can be embedded into S to define
pairwise similarities of prototypesmore effectively [7, 10, 17]. A recent approach [7]
uses a similarity measure (CONN) [18], a weighted version of the induced Delaunay
triangulation in [9], which exploits local density together with data topology on
the prototype level. C O N N (i, j) shows the number of data points for which the
prototypes pi and p j are the pair of the best-matching and the second-best-matching
units. In other words, C O N N (i, j) represents the local density distribution inside
the subregions Vi j ∪ Vji of the Voronoi polygons Vi and Vj , (Vi is the set of data
points v for which wi is the closest prototype and Vi j is its subregion where wi is the
next closest prototype):

C O N N (i, j) = |Vi j ∪ Vji | (3)

The distance is integrated with CONN to produce a hybrid criterion Shyb [17]

shyb(i, j) = sEuc(i, j) × exp

{
C O N N (i, j)/max

i, j
C O N N (i, j)

}
(4)

The hybrid Shyb scales the distance based similaritywith respect toCONN, producing
a greater similarity upto a scale of e for the maximum C O N N (i, j).

Geodesic similarities are also proposed for ASC [8] based on various neighbor-
hood graphs. A traditional way for this graph is the (mutual) (k − nn) graph: if pi and
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p j are among their k closest neighbors, they are neighbors. Their geodesic distance
is the sum of the Euclidean distances (dEuc) at their shortest path:

dgeoknn(pi , p j ) =
∑

lm∈S Pknn(pi ,p j )

dEuc(l, m) (5)

where S Pknn(pi , p j ) is the set of edges in the shortest path between pi and p j

calculated with dEuc and k − nn graph. A data topology based alternative to reflect
specific number of neighbors for each prototype is the CONN [8]. The geodesic
distance dgeoad j based on CONN and the Euclidean distances dEuc is

dgeoad j (pi , p j ) =
∑

lm∈S Pad j (pi ,p j )

dEuc(l, m) (6)

where S Pad j (pi , p j ) is the set of edges in the shortest path between pi and p j based
on dEuc and CONN. Alternatively, local density distribution is used for geodesic
distance calculation. Namely, using density based distance

dC O N N (pi , p j ) = e− C O N N (i, j)
maxy,z C O N N (y,z) i f C O N N (i, j) > 0 (7)

a geodesic distance using data topology and the data distribution is defined [10]:

dgeoconn(pi , p j ) =
∑

lm∈S Pconn(pi ,p j )

dC O N N (l, m) (8)

with S Pconn(pi , p j ) is the set of edges in the shortest path between pi and p j with
respect to dC O N N distance and CONN. A hybrid approach dgeohyb(pi , p j ) exploits
all available information for ASC on the prototype level:

dgeohyb(pi , p j ) =
∑

lm∈S Phyb(pi ,p j )

dEuc(l, m)dC O N N (l, m) (9)

Taşdemir et al. [8] analyses these similarity criteria for ASC of large datasets and
shows improvement with geodesic approaches [10]. However, any single criterion
may not be the optimal solution for each dataset. Therefore, instead of finding a best
criterion for various applications, their ensemble will utilize advantages of different
criterion to reach a consensus in clustering.

3 Neural Gas Based Clustering Ensemble (NGASCE)

Our neural gas based approximate spectral clustering ensemble (NGASCE) is based
on a graph-based ensemble [11]. In NGASCE, we have diverse results with respect
to various similarity criteria and k-means in the ASC algorithm. Alternative to the
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traditional approach of ensembling all results into one, we use a two-step ensemble
process: we first ensemble different partitionings obtained by k-means runs for each
similarity criterion; then, we ensemble the fused partitions of each similarity into
final labels. Our two-step approach first addresses the randomness in k-means and
then exploits distinct results obtained by different information types. Note that we
ensemble the clustering labels at the prototype level and then determine the labels of
the data points based on the ensembled labels of their prototypes. We can summarize
NGASCE using ns similarity criteria and nkm k-means runs as follows:

1. Obtain Np neural gas prototypes and their nsnkm partitionings by ASC.
2. Obtain a similarity matrix SC E1 based on the number of identically labelled pro-

totypes among nkm different partitionings of each similarity criterion: SC E1 =∑nkm
k=1 Sns ,k where Sns ,k(pi , p j ) = 1 if pi and p j are in the same cluster, else

Sns ,k(pi , p j ) = 0.
3. Apply spectral clustering using these SC E1 to obtain ns first step ensemble parti-

tionings for each similarity criterion
4. Obtain a similarity matrix SC E2 (similar to SC E1) based on the resulting ns ensem-

ble partitionings
5. Apply spectral clustering using SC E2 to obtain the ensemble of prototypes.

4 Accuracy Assessment of NGASCE

We evaluate the proposed NGASCE with the datasets from UCI Machine Learning
Repository, which have different characteristics and features. The Iris dataset has
150 samples with 4 features grouped into 3 classes. The Breast Cancer Wisconsin
(BCWS) dataset has 9D 699 samples in two classes (benign or malignant). The Yeast
dataset has 1484 sampleswith 8D features and 10 classes. The Statlog data is a remote
sensing dataset with 4D features and has 6 classes. The Pen Digits dataset has 10992
samples and describe 10 digits with 16D features.

We first obtain neural gas prototypes using SOMtoolbox with default parameters.
The number of prototypes is one tenth of the number of data points. Then these
prototypes are clustered by spectral clustering using the similarity criteria described
above and 20 different k-means step, resulting in 20 partitionings for each criterion.
Table1 shows the accuracies averaged over 20 runs obtained for each criterion, where
accuracy is the percentage of correctly clustered data samples. For NGASCE, we
obtain the first step ensemble by merging all k-means results to have a consensus
at each criterion, and then we ensemble the merged labels of each criterion. The
NGASCE accuracies are shown at Table1.

It is important to note that to achieve the best single accuracy with the ensemble
approach is already a success since this removes the necessity to select the best
similarity criterion (which is often not possible due to unavailability of the class
labels in real world problems). For all five datasets, the proposed NGASCE improves
the clustering accuracy over the best accuracies obtained by individual methods
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Table 1 Mean accuracies of neural gas based approximate spectral clustering ensemble (NGASCE)

Iris BCWS Yeast Statlog Pen Digits

Similarity 150; 4D 699; 9D 1484; 8D 6435; 4D 10992; 16D

Criterion 3 classes 2 classes 10 classes 6 classes 10 classes

sEuc 63.24 (7.1) 95.84 (0.6) 43.04 (1.9) 60.90 (3.3) 46.17 (14.9)

sC O N N 57.45 (9.3) 96.51 (0.8) 42.31 (4.4) 57.84 (14.9) 63.29 (10.6)

shyb 54.67 (2.3) 96.62 (0.6) 40.22 (3.6) 49.31 (10.6) 51.07 (12.9)

sgeoknn 89.47 (2.6) 93.87 (1.2) 34.36 (4.3) 65.77 (5.0) 68.47 (4.8)

sgeoad j 84.47 (9.6) 94.98 (0.5) 43.68 (3.2) 63.40 (5.8) 66.86 (5.4)

sgeoconn 86.76 (10.5) 95.04 (0.6) 43.54 (2.9) 54.61 (4.8) 53.00 (6.3)

sgeohyb 86.69 (10.5) 94.94 (0.4) 43.67 (2.9) 63.71 (6.2) 67.69 (5.5)

NGASCE1 85.60 96.25 50.13 71.55 81.05

NGASCE 96.67 96.85 48.85 73.54 83.90

The numbers of data points, features, and classes are provided for each dataset. NGASCE1 is the
1-step ensemble of all partitionings

Table 2 Adjusted Rand index (ARI) values of neural gas based approximate spectral clustering
ensemble (NGASCE)

Iris BCWS Yeast Statlog Pen Digits

Similarity 150; 4D 699; 9D 1484; 8D 6435; 4D 10992; 16D

Criterion 3 classes 2 classes 10 classes 6 classes 10 classes

sEuc 0.492 (0.020) 0.793 (0.006) 0.154 (0.003) 0.521 (0.016) 0.299 (0.014)

sC O N N 0.465 (0.020) 0.868 (0.02) 0.132 (0.001) 0.388 (0.003) 0.474 (0.010)

shyb 0.502 (0.012) 0.869 (0.001) 0.123 (0.001) 0.288 (0.003) 0.366 (0.019)

sgeoknn 0.453 (0.005) 0.689 (0.048) 0.110 (0.005) 0.518 (0.011) 0.575 (0.004)

sgeoad j 0.694 (0.018) 0.807 (0.018) 0.156 (0.003) 0.342 (0.020) 0.419 (0.005)

sgeoconn 0.699 (0.017) 0.790 (0.003) 0.157 (0.002) 0.439 (0.004) 0.566 (0.009)

sgeohyb 0.747 (0.008) 0.788 (0.004) 0.158 (0.002) 0.447 (0.005) 0.575 (0.011)

NGASCE1 0.687 0.829 0.173 0.521 0.694

NGASCE 0.765 0.881 0.152 0.558 0.710

The numbers of data points, features, and classes are provided for each dataset. NGASCE1 is the
1-step ensemble of all partitionings

using different similarity criteria. In addition, this improvement is significant for
four datasets: Iris (from 89.5%—with sgeoknn—to 96.7%), Yeast (from 43.7%—
with sgeoad j—to 48.9%), Statlog (from 65.8%—with sgeoknn—to 73.5%) and Pen
Digits (from 67.7%—with sgeohyb—to 83.9%). Moreover, the proposed two-step
NGASCEhas also significantly higher accuracies than the traditional 1-step ensemble
approach for four of the five datasets. A similarly high performance is also obtained
by adjusted Rand index [19] which is an evaluation measure considering the class
sizes based on labeled samples (Table2). Moreover, we evaluate the results using the
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Table 3 Cluster validity index (CVI) values of neural gas based approximate spectral clustering
ensemble (NGASCE)
Dataset CVI sEuc sCONN shyb sgeoknn sgeoad j sgeoconn sgeohyb NGASCE1 NGASCE

Iris SWC 0.06 0.09 0.09 0.25 0.28 0.27 0.28 0.24 0.31

DBI 0.79 4.11 4.37 0.61 0.58 0.59 0.58 0.59 0.54

GDI 1.28 0.39 0.17 2.61 2.48 2.48 2.48 2.49 2.69

ConnI 0.47 0.14 0.11 0.68 0.72 0.76 0.76 0.77 0.83

BCWS SWC 0.21 0.21 0.21 −0.01 0.21 0.21 0.21 0.21 0.22

DBI 0.73 0.71 0.73 0.80 0.75 0.75 0.75 0.72 0.70

GDI 2.02 1.92 1.94 1.71 2.04 2.03 2.04 2.05 2.11

ConnI 0.92 0.97 0.95 0.88 0.94 0.94 0.94 0.95 0.97

Yeast SWC −0.20 −0.21 −0.22 −0.36 −0.25 −0.25 −0.24 0.12 0.01

DBI 0.90 1.48 1.46 1.93 1.13 1.13 1.12 0.85 1.01

GDI 0.04 0.11 0.11 0.32 0.45 0.46 0.46 0.65 0.47

ConnI 0.30 0.15 0.11 0.24 0.33 0.33 0.33 0.35 0.33

Statlog SWC −0.27 −0.18 −0.17 −0.27 −0.30 −0.26 −0.31 0.00 0.00

DBI 0.90 1.09 0.95 0.92 0.90 0.83 0.91 0.83 0.77

GDI 1.30 0.41 0.49 1.27 0.97 0.99 0.97 1.32 1.35

ConnI 0.46 0.41 0.78 0.46 0.47 0.47 0.48 0.78 0.79

Pen
Digits

SWC −0.57 −0.19 −0.31 −0.19 −0.26 −0.38 −0.25 0.00 0.09

DBI 2.97 1.70 1.67 1.74 1.66 1.59 1.64 1.55 1.32

GDI 0.52 0.46 0.48 0.63 0.72 0.60 0.73 0.77 0.91

ConnI 0.60 0.35 0.53 0.46 0.48 0.46 0.48 0.68 0.72

intrinsic data characteristics calculated by various cluster validity indices (silhoutte
width criterion-SWC, Davies-Bouldin index-DBI, generalized Dunn index-GDI and
CONN index-ConnI) for the resulting partitionings and their ensembles. Leaving the
detailed discussions on these validity indices to [20], we note that SWC, GDI and
ConnI favors the clustering with the maximum value whereas DBI favors the one
with the minimum value. The cluster validity indices provided at Table3 often favor
the proposed ensemble as well. The outperformance of the NGASCE with respect
to these different evaluation criteria is promising for clustering of large datasets.

5 Conclusion

Neural gas based approximate spectral clustering is powerful for partitioning of large
datasets, when a similarity criterion appropriate for the data characteristics has been
selected [10]. However, it has been a long standing challenge to select the optimum
criterion for a dataset. Ensemble methods can be of great help to merge distinct clus-
tering decisions without the need of finding the optimum one. In this respect, we pro-
posed a two-step prototype-level ensemble method for neural gas based approximate
spectral clustering (NGASCE). Its success on the selected well-known datasets in
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this study indicate its potential to achieve high clustering accuracies. It is also shown
successful for remote sensing image analysis [21]. Our future work is to reduce the
computational complexity of the graph-based ensemble approach to make it feasible
for ensemble at the data level.
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18. Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of self-
organizing maps. IEEE Trans. Neural Netw. 20(4), 549–562 (2009)

19. Santos, J., Embrechts, M.: On the use of the adjusted rand index as a metric for evaluating
supervised classification. In: International Conference on Artificial Neural Networks-ICANN
(2009), Limassol, Cyprus, pp. 175–184, 14–17 Sept 2009
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Reliable Clustering Quality Estimation
from Low to High Dimensional Data

Jean-Charles Lamirel

Abstract This paper presents new cluster quality indexes which can be efficiently
applied for a low-to-high dimensional range of data and which are tolerant to noise.
These indexes relies on feature maximization, which is an alternative measure to
usual distributional measures relying on entropy or on Chi-square metric or vector-
based measures such as Euclidean distance or correlation distance. Experiments
compare the behavior of these new indexes with usual cluster quality indexes based
on Euclidean distance on different kinds of test datasets for which ground truth is
available. This comparison clearly highlights the superior accuracy and stability of
the new method.

1 Introduction

Unsupervised classification or clustering is a data analysis techniquewhich is increas-
ingly widely-used in different areas of application. If the datasets to be analyzed have
growing size, it is clearly unfeasible to get ground truth that permits to work on them
in a supervised fashion. The main problem which then arises in clustering is to qual-
ify the obtained results in terms of quality. A quality index is a criterion which makes
it possible to decide which clustering method to use, to fix an optimal number of
clusters and also to evaluate or develop a new method. Many approaches have been
developed for that purpose as has been pointed out in [1, 20, 21, 24]. However, even
if recent alternative approaches do exist [3, 10, 11], the usual quality indexes are
mostly based on the concepts of dispersion of a cluster and dissimilarity between
clusters. Computation of the latter criteria themselves relies on Euclidean distance.
Most popular such indexes are the Dunn index [7], the Davis-Bouldin index [5], the
Silhouette index [22], the Calinski-Harabasz index [4] and the Xie-Beni index [25].
They implement the afore mentioned concepts in slightly different ways.
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The Dunn index (DU) identifies clusters which are well separated and compact.
It combines dissimilarity between clusters and their diameters to estimate the most
reliable number of clusters. The Davies-Bouldin index (DB) is similar to the Dunn
index and identifies clusters which are far from each other and compact. The Sil-
houette index (SI) computes a width depending on its membership in any cluster.
A negative silhouette value for a given point means that the point is most suited to
belong to a different cluster from the one it is allocated. The Calinski-Harabasz index
(CH) computes a weighted ratio between the within-group scatter and the between
group scatter. Well separated and compact clusters should maximize this ratio. The
Xie-Beni index (XI) is a compromise between the approaches provided by the Dunn
index and by the Calinski-Harabasz index.

As stated in [9, 14, 24] most of the presented indexes have the imensional space
as well as they are unable to detect degenerated clusdefect to be sensitive to the
noisy data and outliers. In [17], Lamirel et al. also observed that the proposed
indexes are not suitable to analyze clustering results in high-dtering results. Also
these indexes are not independent of the clustering method with which they are
used. As an example, a clustering method which tends to optimize WGSS, like
k-means [19], will also tend to naturally produce low value for that criteria which
optimizes indexes output, but does not necessarily guarantee coherent results, as
it was also demonstrated in [17]. Last but not least, as Hamerly et al. pointed out
in [12], the experiments on these indexes in the literature are often performed on
unrealistic test corpora made up of low dimensional data with a small number of
“well-shaped” embedded virtual clusters. As an example, in their reference paper,
Milligan and Cooper [20] compared 30 different methods for estimating the number
of clusters. They classified CH and DB in the top 10, with CH the best but their
experiments only used simulated data described in a low dimensional Euclidean
space. The same remark can be made about the comparison performed in [24] or
in [6]. However, Kassab et al. [13] used the Reuters test collection to shown that
the aforementioned indexes are often unable to identify an optimal clustering model
whenever the dataset is constituted by complex data which need to be represented
in both high-dimensional and sparse description space, obviously with embedded
non-Gaussian clusters, as is often the case with textual data. The silhouette index is
considered one of themore reliable indexes among thosementioned above especially
in the case of multidimensional data, mainly because it is not a diameter-based index
optimized for Gaussian context. However, like the Dunn and Xie-Beni indexes, its
main defect is that it is computationally expensive, which could represent a major
drawback for use with large datasets of high-dimensional data.

There are also other altenatives to the usual indexes. For example, in 2009
Lago-Fernãndez et al. [15] proposed a method using negentropy which evalu-
ates the gap between the cluster entropy and entropy of the normal distribution
with the same covariance matrix, but again their experiments were only conducted
on two-dimensional data. Also other recent indexes attempts were limited by the
researchers’choice of complex parameters [24].

Our aim was to get rid of the method-index dependency problem and the issue of
sensitivity to noise while also avoiding computation complexity, parameter settings
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and dealing with a high-dimensional context. To achieve goals, we exploited features
of the data points attached to clusters instead of information carried by cluster cen-
troids and replaced Euclidean distance with a more reliable quality estimator based
on the feature maximization measure. This measure has been already successfully
used by Lamirel et al. to solve complex high-dimensional classification problems
with highly imbalanced and noisy data gathered in similar classes thanks to its very
efficient feature selection and data resampling capabilities [18]. As a complement
to this information, we shall show in the upcoming experimental section that cluster
quality indexes relying on this measure do not possess any of the defects of usual
approaches including computational complexity.

Section 2 presents a featuremaximizationmeasure and our proposed new indexes.
Section 3 presents our experimental context. Section 4 our results before Sect. 5 draws
our conclusion and ideas for future work.

2 Feature Maximization for Feature Selection

Feature maximization is an unbiased measure which can be used to estimate the
quality of a classification whether it be supervised or unsupervised. In unsupervised
classification (i.e. clustering), this measure exploits the properties (i.e. the features)
of data points that can be attached to their nearest cluster after analysis without prior
examination of the generated cluster profiles, like centroids. Its principal advantage
is thus to be totally independent of the clustering method and of its operating mode.

Consider a partition C which results from a clustering method applied to a dataset
D represented by a group of features F. The feature maximization measure favours
clusterswith amaximal feature F-measure. The feature F-measureFFc(f ) of a feature
f associated with a cluster c is defined as the harmonic mean of the feature recall
FRc(f ) and of the feature predominance FPc(f ), which are themselves defined as
follows:

FRc(f ) = Σd∈cW f
d

Σc′∈CΣd∈c′ W f
d

FPc(f ) = Σd∈cW f
d

Σf ′∈Fc,d∈cW f ′
d

(1)

with

FFc(f ) = 2

(
FRc(f ) × FPc(f )

FRc(f ) + FPc(f )

)
(2)

where W f
d represents the weight of the feature f for the data d and Fc represents all

the features present in the dataset associated with the cluster c.
There is some important similarities between Recall and Predominance used in

the proposed approach and Recall and Precision used in information retrieval. We
have already exploited this analogy more thoroughly in some of our former works,
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like in [16], but the measures proposed here must be considered as generalizations of
such information retrieval measures which are no more based on agreement but on
influence of a feature materialized by a weight. Weight represents the importance of
a feature for a data and furthermore for a cluster. The choice of the weighting scheme
is not really constrained by the approach instead of producing positive values. Such
scheme is supposed to figure out the significance (i.e. semantic and importance) of
the feature for the data.

Feature recall is a scale independent measure but feature predominance is not.
We have however shown experimentally in [18] that the F-measure which is a com-
bination of these two measures is only weakly influenced by feature scaling. Never-
theless, to guaranty full scale independent behavior for this measure, data must be
standardized.

Feature maximization measure can be exploited to generate a powerfull feature
selection process [18]. In the clustering context, this kind of selection process can be
defined as non-parametrized process based on clusters content in which a cluster fea-
ture is characterized using both its capacity to discriminate between clusters (FPc(f )
index) and its ability to faithfully represent the cluster data (FRc(f ) index). The set
Scof features that are characteristic of a given cluster c belonging to a partition C is
translated by:

Sc = {
f ∈ Fc | FFc(f ) > FF(f ) and FFc(f ) > FFD

}
where (3)

FF(f ) = Σc′∈C
FFc′(f )

|C/f | and FFD = Σf ∈F
FF(f )

|F| (4)

where C/f represents the subset of C in which the feature f occurs.
Finally, the set of all selected features SC is the subset of F defined by:

SC = ∪c∈CSc. (5)

In other words, the features judged relevant for a given cluster are those whose
representations are better than average in this cluster, and better than the average
representation of all the features in the partition, in terms of feature F-measure.
Features which never respect the second condition in any cluster were discarded.

A specific concept of contrastGc(f ) can be defined to calculate the performance of
a retained feature f for a given cluster c. It is an indicator value which is proportional
to the ratio between the F-measure FFc(f ) of a feature in the cluster c and the average
F-measure FF of this feature for the whole partition.1 It can be expressed as:

Gc(f ) = FFc(f )/FF(f ) (6)

1Using p-value highlighting the significance of a feature for a cluster by comparing its contrast
to unity contrast would be a potential alternative to the proposed approach. However, this method
would introduce unexpected Gaussian smoothing in the process.
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The active features of a cluster are those for which the contrast is greater than 1.
Moreover, the higher the contrast of a feature for one cluster, the better its performance
in describing the cluster content.

As already mentioned before, the active features in a cluster are selected features
for which the contrast is greater than 1 in that cluster. Conversely, the passive features
in a cluster are selected features present in the cluster’s data for which contrast is less
than unity.2 A simple way to exploit the features obtained is to use active selected
features and their associated contrast for cluster labelling as we proposed in [18]. A
more sophisticated method (as we shall propose hereafter) is to exploit information
related to the activity and passivity of selected features in clusters to define clustering
quality indexes identifying an optimal partition. This kind of partition is expected to
maximize the contrast described by Eq. 6. This approach leads to the definition of
two different indexes:

The PC index, whose principle corresponds by analogy to that of intra-cluster
inertia in the usual models, is a macro-measure based on the maximization of the
average weighted contrast of active features for optimal partition. For a partition
comprising k clusters, it can be expressed as:

PCk = 1

k

k∑
i=1

1

ni

∑
f ∈Si

Gi(f ) (7)

The EC index, whose principle corresponds by analogy to that of the combination
between intra-cluster inertia and inter-cluster inertia in the usual models, is based
on the maximization of the average weighted compromise between the contrast of
active features and the inverted contrast of passive features for optimal partition:

ECk = 1

k

k∑
i=1

( |si|
ni

∑
f ∈Si

Gi(f ) + |si|
ni

∑
h∈Si

1
Gi(h)

|si| + |si|

)
(8)

where ni is the number of data associated with the cluster i, |si| represents the number
of active features in i, and |si|, the number of passive features in the same cluster.

3 Experimental Data and Process

To objectively calculate the accuracy of our new indexes, we used several different
datasets of varying dimensionality and size for which the optimal number of clusters
(i.e. ground truth) is known in advance.

A part of the datasets came from the UCI machine learning repository [2] and is
more usually exploited for classification tasks. The 4 selected UCI datasets represent

2As regards the principle of the method, this type of selected features inevitably have a contrast
greater than 1 in some other cluster(s) (see Eq. 3 for details).
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Table 1 Datasets overall characteristics (Binarization of IRIS dataset results in 12 binary features
out of 4 real-valued features)

IRIS IRIS-b WINE PEN ZOO VRBF R8 R52

Nbr. class 3 3 3 10 7 12–16 8 52

Nbr data 150 150 178 10992 101 2183 7674 9100

Nbr feat. 4 12 13 16 114 231 3497 7369

mostly low tomiddle dimensional datasets and small datasets (except for PENdataset
which is large). The ZOO dataset which includes variables with modalities was
transformed into a binary file. IRIS is exploited both in standard and in binarized
version to obtain clearer insight into the behavior of quality index on binary data.

The VERBF dataset is a dataset of French verbs which are described both by
semantic features and by subcategorization frames. The ground truth of this dataset
has been established both by linguists who studied different clustering results and by
a gold standard based on the VerbNet classification, as in [23]. This binary dataset
contains verbs described in a space of 231 Boolean features. It can be considered a
typical middle size and middle dimensional dataset.

The R8 and R52 corpora were obtained by Cardoso Cachopo3 from the R10
and R90 datasets, which are derived from the Reuters 21578 collection.3 The aim
of these adjustments was to only retain data with a single label. R8 only considers
monothematic documents and classes with at least one example of training and one
of testing and is a reduction of the R10 corpus (the 10 most frequent classes) to 8
classes while R52 is a reduction of the R90 corpus (90 classes) to 52 classes. R8
and R52 are large and multidimensional datasets with respective sizes of 7674 and
9100 data and an associated bag of word description spaces of 1187 and 2618 words.
These datasets can be considered large and high dimensional.

The R8 and R52 corpora were obtained by Cardoso Cachopo from the R10 and
R90 datasets, which are derived from the Reuters 21578 collection.4 The aim of
these adjustments was to only retain data that had a single label. Considering only
monothematic documents and classes that still had at least one example of training
and one of test, R8 is a reduction of the R10 corpus (the 10 most frequent classes) to
8 classes and R52 is a reduction of the R90 corpus (90 classes) to 52 classes. The R8
and R52 are large and multidimensional datasets with respective size of 7674 and
9100 and associated bag of words description spaces of 1187 and 2618 words. This
datasets can be considered as large and high dimensional datasets.

The summary of datasets overall characteristics is provided in Table 1.
We exploited 2 different usual clusteringmethods, namely k-means [19], awinner-

take-all method, and GNG [8], a winner-take-most method with Hebbian learning.
For text and/or binary datasets we also used the IGNGFneural clusteringmethod [17]
which has already been proven to outperform other clus-tering methods, including

3http://web.ist.utl.pt/~acardoso/datasets/.
4http://www.research.att.com/lewis/reuters21578.html.

http://web.ist.utl.pt/~{}acardoso/datasets/
http://www.research.att.com/lewis/reuters21578.html
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spectral methods [23], on this kind of data. We have reported on the method that
produced the best results in the following experiments.

As class labels were provided in all datasets and considering that the clustering
method could only produce approximate results as compared to reference categoriza-
tion, we also used purity measures to estimate the quality of the partition generated
by the method as regards to category ground truth. Following [23], we use modi-
fied purity (mPUR) to evaluate the clusterings produced and this was computed as
follows:

mPUR = |P|
|D| (9)

where P = {d ∈ D | prec(c(d)) = g(d) ∧ |c(d)| > 1} with D being the set of ex-
ploited data points, c(d) a function that provides the cluster associated to data d and
g(d) a function that provides the gold class associated to data d. Clusters for which
the prevalent class has only one element are considered as marginal and are thus
ignored.

For the same reason, we also varied the number of clusters in a range up to 3
times that determined by the ground truth. An index which gave no indication of
optimum in the expected range was considered to be out-of-range or diverging index
(-out-). We finally obtained a process which consists of generating disturbance in
the clustering results by randomly exchanging data between clusters to different
fixed extents (10, 20, 30%) whilst maintaining the original size of the clusters. This
process simulated increasingly noisy clustering results and the aims was to estimate
the robustness of the proposed estimators.

4 Results

The results are presented in Tables 2 and 3. Some complementary information is
required regarding the validation process. In the tables, MaxP represents the number
of clusters of the partition with highest mPur value (Eq. 9), or in some cases, the
interval of partition sizes with highest stable mPur value. When a quality index
identified an optimal model with MaxP clusters and MaxP differed from the number
of categories established by ground truth, its estimation was still considered valid.
This approach took into account the fact that clustering would quite systematically
produce sub-optimal results as compared to ground truth. The partitions with the
highest purity values were thus studied to deal with this kind of situation. For similar
reason, all estimations in the interval range between the optimal k (ground truth)
andMaxP values were also considered valid. When indexes were still increasing and
decreasing (depending on whether they were maximizers or minimizers) when the
number of clusters was more than 3 times the number of expected classes, there were
considered out-of-range (-out- symbol in Tables 2 and 3).
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Table 2 Overview of the indexes estimation results (Bold numbers represent valid estimations)

IRIS IRIS-b WINE PEN ZOO VRBF R8 R52 Number
of
correct
matches

DB 2 5 5 7 8 -out- 5 58 2/8

CH 2 3 6 8 4 7 6 -out- 2/8

DU 1 1 8 17 8 2 -out- -out- 1/8

SI 4 2 7 14 4 -out- -out- 54 2/8

XB 2 7 -out- 19 -out- 23 -out- -out- 0/8

EC 3 3 4 9 7 18 -out- -out- 3/8

PC 3 2 4 9 7 15 6 52 6/8

MaxP 3 3 5 11 10 12–16 6 50–55

Method K-means K-means GNG GNG IGNGF IGNGF IGNGF IGNGF

Table 3 Indexes estimation results in the presence of noise (UCI ZOO dataset)

ZOO ZOO Noise
10%

ZOO 20% ZOO Noise
30%

Number of
correct matches

DB 8 4 3 3 1/4

CH 4 5 3 3 0/4

DU 8 2 2 2 1/4

SI 14 -out- -out- -out- 0/4

XB -out- -out- -out- -out- 0/4

PC 6 4 11 9 1/4

EC 7 5 6 9 2/4

MaxP 10 7 10 10

Method IGNGF IGNGF IGNGF IGNGF

When considering the results presented in Table 2, it should first be noted that one
of our tested indexes, the Xie-Beni (XB) index never provides any correct answers.
These were either out of range (i.e. diverging) or answers (i.e. minimum value when
this index was a minimizer) in the range of the variation of k, but too far from
ground truth or even too far from optimal purity among the set of generated clustering
models. Some indexes were in the lowmid-range of correctness and provide unstable
answers. This was the cases with the Davis-Bouldin (DB), Calinski-Harabasz (CH),
Dunn (DU) and Silhouette (SI) indexes. When there was dimension growth, these
indexes were found to become generally unable to provide any correct estimation.
This phenomenon has already been observed in previous experiments with Davis-
Bouldin (DB) and Calinski-Harabasz (CH) indexes [13]. Our PC index was found to
perform slightly better than average but obviously remains a better low dimensional
problem estimator than a high dimensional one. Help from passive features somehow
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seems mandatory to estimate an optimal model in the case of high dimensional
problems. Hence, the EC index which exploited both active and passive features was
found to have from far the best performance, whatever it faced with low or high
dimensional estimation problem. Additionally, both the EC and PC indexes, were
both found to be capable of dealingwith binarized data in a transparentmanner which
is not the case of some of the usal indexes namely the Xie-Beni (XI) index, and to a
lesser extend, Calinski-Harabasz (CH) and Silhouette (SI) indexes.

Interestingly, on the UCI ZOO dataset, the results of noise sensitivity analysis
presented in Table 3 underline the fact that noise has a relatively limited effect on
the operation of PC and EC indexes. The EC index was again found to have the most
stable behavior in that context. As for the Silhouette index, this firstly delivered the
wrong optimal k values on this dataset before getting out of range when the noise
reached 20% on clustering results. The Davis-Bouldin (DB) and Dunn indexes (DU)
were found to shift from a correct to a wrong estimation as soon as noise began to
appear.

In all our experiments, we observed that the quality estimation depends little on the
clusteringmethod.Morever, we noted that the computation time of the index was one
of the lowest among the indexes studied. As an example, for the R52 dataset, the EC
index computation time was 125s as compared to 43,000s for the Silhouette index
using a standard laptop with 2.2 GHz quadricore processor and 8 GB of memory.

5 Conclusion

We have proposed a new set of indexes for clustering quality evaluation relying on
feature maximization measurement. This method exploits the information derived
from features which could be associated to clusters bymeans of their associated data.
Our experiments showed that most of the usual quality estimators do not produce
satisfactory results in a realistic data context and that they are additionally sensitive
to noise and perform poorly with high dimensional data. Unlike the usual quality
estimators, one of the main advantages of our proposed indexes is that they produce
stable results in cases ranging from a low dimensional to high dimensional context
and also require low computation time while easily dealing with binarized data.
Their stable operating mode with clus-tering methods which could produce both
different and imperfect results also constitutes an essential advantage. However,
further experiments are required using both an extended set of clustering methods
and a larger panel of high dimensional datasets to confirm this promising behavior.

Additionally, we plan to test the ability of our indexes to discriminate between
correct and degenerated clustering results in the context of large and heterogeneous
datasets.
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Segment Growing Neural Gas
for Nonlinear Time Series Analysis

Jorge R. Vergara, Pablo A. Estévez and Álvaro Serrano

Abstract In this work we propose an extension to Growing Neural Gas (GNG) for
dealing with the spatiotemporal quantization of time series. The two main changes
to the original GNG algorithm are the following. First, the basic unit of the GNG
network is changed from a node to a linear segment joining two nodes. Secondly,
temporal connections between neighboring units in time are added. The proposed
algorithm called Segment GNG (SGNG) is compared with the original GNG and
Merge GNG algorithms using three benchmark time series: Rössler, Mackey-Glass
and NH3 Laser. The algorithms are applied to the quantization of trajectories in
the state space representation of these time series. The results show that the SGNG
outperforms both GNG and Merge GNG in terms of quantization error and temporal
quantization error.

1 Introduction

Time series analysis has two main goals: (i) identify the dynamics of the data gen-
erating process, and (ii) predict future values based on the signal previous behavior
[1]. Vector quantization is a tool that allows extracting prototypes, e.g. centroids of
receptive fields. The Self-Organizing Map (SOM) [11] performs vector quantiza-
tion through unsupervised learning and adds an output grid to achieve a topological
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ordered mapping, which allows us visualizing the topological relationships among
prototypes. A variant is the Neural Gas (NG) algorithm [15], which gets rid of the
output grid in order to achieve a good quantization for any kind of topology. In
both SOM and NG, the number of prototypes is a user defined parameter. Growing
NG (GNG) [8] and Growing SOM (GSOM) [2] start with two prototypes and grow
adaptively during iterations.

The aforementioned algorithmswere designed to represent the data spatial distrib-
ution but not the data temporal relationships. As a consequence the direct application
of SOM and NG to time series is rather limited. Several works have been developed
to include the temporal data relationships using feedback connections such as recur-
sive SOM [21] and recurrence SOM [12]. Another family of models add compact
temporal contexts such Merge SOM [19], Merge NG [18], Merge GNG [1], γ -SOM
[5], γ -NG [4], and γ -GNG [6].

State et. al [17] and Coleca et. al [3] introduced an extension of the SOM for
performing 3D hand and full body skeleton tracking. In this method the hand and
body are represented by line and plane segments between nodes, that are adjusted
adaptively.We found the concept of segments very useful for time series analysis, and
herein we propose an extension to GNG where segments are the basic units instead
of nodes. To obtain a spatiotemporal data representation we also introduce temporal
connections between units. In addition our analysis is based on the spatiotemporal
quantization of the state-space representation of time series, instead of quantizing
the signal directly.

The remainder of this work is divided into 5 sections. Section 2 introduces the
fundamental concepts used in our model. Section 3 presents the proposed extension
to theGNGmodel. Section 4 shows the simulation results obtainedwith 3 benchmark
time series. In Sect. 5 the conclusions are drawn.

2 Background

2.1 Delay Coordinate Embedding

The state space is the set of all states of a deterministic dynamical system. According
to Takens’ embedding theorem [20], it is possible to reproduce entirely the properties
of such a system (topology and temporal structure) starting from one-dimensional
time series. The time series correspond to a sequence of scalar measurements of the
state space or a single state variable, xt . To embed a time series, a delay coordinate
vector is constructed as follows: φn = [xn, x(n−ζ ), x(n−2ζ ), · · · , x(n−(m−1)ζ )], where
the delay ζ and dimensionm are the embedding parameters. Although the embedding
theorems do not provide a way to estimate these parameters, there are some heuristic
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methods to do so. The parameter ζ is usually estimated by seeking for the delay
that provides the first minimum of the average mutual information [7], while the
dimension m is estimated by the false nearest neighbor algorithm [10].

2.2 Segments as Basic Units for the Self-Organizing Map

State et. al [17] and Coleca et. al [3], in their work on hand and full body skeleton
tracking extended SOM by considering line and plane segments as basic units. A
segment is the line joining two nodes wi and w j defined as Wi j = wi w j . The
distance between a sample point yn and the segment Wi j is obtained by projecting
yn over segment Wi j and then calculating the distance between yn and its projection
p. Defining Δw j i = w j −wi , then p can be expressed as p = wi +η j i Δw j i , 0 ≤
η j i ≤ 1, with η j i + ηi j = 1. Given the unit vector ̂Δw j i , the coefficient η j i is
computed as:

η j i = ( yn − wi )∥∥Δwi j
∥∥ · ̂Δw j i . (1)

The square euclidean distance of yn to the segment Wi j is:

∥∥d
(

yn, Wi j
)∥∥2 = ∥∥ yn − wi

∥∥2 − ∥∥η j i Δw j i
∥∥2

. (2)

3 Spatiotemporal Extension of Growing Neural Gas

3.1 Proposed Method

Herein we propose an extension to the GNG algorithm for the spatiotemporal quan-
tization of time series. The main changes to the original GNG algorithm are the
following: (i) the basic unit is changed from a node (neuron) to a segment (con-
nection between two nodes), and (ii) a register for keeping temporal connections is
introduced. In what follows the details of the proposed algorithm are explained. The
new algorithm is called Segment Growing Neural Gas (SGNG).

The SGNG algorithm seeks to approximate trajectories in the state space repre-
sentation by linear segments. A segment Si is defined as the line joining two nodes
si

O , si
F ∈ R

m where si
O and si

F correspond to the initial and final points of segment
Si respectively. Segment Si is used to identify and quantize portions of trajectories
in the state space that could be locally approximated by a linear segment. A tra-
jectory portion {φ}n−τ

n is associated to sample φ at time n and its τ past samples
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Fig. 1 a Area enclosed (AE) between a trajectory portion in the state space representation {φ}n−τ
n

and the line φn−τ φn . b AE estimation through the sum of distances (ei , i = 0, 1, . . . , τ ) between
each sample from the trajectory portion {φ}n−τ

n and the line φn−τ φn

{φ}n−τ
n = {φn−τ ,φn−τ+1, · · · ,φn}. The size of a portion of trajectory that will be

quantized by Si is determined by the linearity of this portion. The linearity of a
portion of a trajectory is evaluated as follows. The parameter τ starts with the value
1. Later on, this delay is increased iteratively until the area enclosed (AE) between
the current trajectory portion {φ}n−τ

n and the line joining the extreme points of this
trajectory portion φn−τ φn reaches a certain threshold Emax (See Fig. 1a).

To avoid the cost of computing the AE accurately, we approximate it through
the sum of distances between each sample in the trajectory portion {φ}n−τ

n and its
projection onto the line φn−τ φn . Figure1b) illustrates the above mentioned distances,
eτ , · · · , e0.

DISTANCE MEASURE. To obtain the Best Matching Linear Segment (BMLS)
for each trajectory portion {φ}n−τ

n , a distance measure that evaluates two features
of each linear segment Si is used: (i) the closeness between Si and the trajectory
portion {φ}n−τ

n is measured through the spatial distance and (ii) the degree of paral-
lelism between Si and the line φn−τ φn is measured through the cosine similarity. To
measure the spatial distance, first the midpoint (ρn) of the trajectory portion {φ}n−τ

n
is estimated. Secondly, the distance between this midpoint and the linear segment Si

is computed by using Eq. (2). The cosine similarity between Si and the line φn−τ φn

is computed as:

sim(Si, φn−τ φn) = Δsi · Δφ∥∥Δsi
∥∥ ‖Δφ‖ , (3)

where Δsi = si
F − si

O and Δφ = φn − φn−τ .
The combined distance measure used by SGNG is the following:

D
(
θ, {φ}n−τ

n , Si
) = (

θ
(
1 − sim(Si , φn−τ φn)

) + 1
)

d
(
ρn, Si

)
, (4)

where θ is a parameter that controls the trade-off between the cosine value (paral-
lelism) and the spatial distance (closeness). Once selected the BMLS at iteration n, a
temporal link is created between this unit and the BMLS selected at iteration n − 1.
The step by step SGNG algorithm is described in Algorithm 1.
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Algorithm 1 Pseudo-code algorithm SGNG.

1: Create randomly two linear segments Si = {
si

O , si
F

}
, i = 1, 2. Connect them spatially with a

zero age edge. Set to zero their respective errors, error i .
2: Creatematrix of temporal connections for segments of the network. If there are already segments

temporally connected, disconnect them.
3: Present sample φn to the network.
4: Find the maximum delay τ such that the AE of the sequence {φ}n−τ

n does not exceed a Emax .

5: Find the best matching linear segment (BMLS), In , and the second closest segment, Jn , using
Eq. 4.

6: Update the BMLS’s error: error In = error In + D
(
θ, {φ}n−τ

n , SIn
)
, where D

(
θ, {φ}n−τ

n , SIn
)

is the distance obtained from Eq. 4.
7: Update BMLS’s position using the following rule:

sIn
O = εw

(
φn−τ − sIn

O

)
and sIn

F = εw

(
φn − sIn

F

)
(5)

and update the position of its neighboring segments (i.e. all segments connected to the BMLS
by an edge of topological connection) changing step-size εw to εn in Eq.5.

8: Increment the age of all edges connecting the BMLS and its topological neighbors, a j = a j +1.
9: If the BMLS and the second closest segment are connected by a topological edge, then set the

age of that edge to zero. Otherwise create a topological edge between them.
10: If there are topological edges with an age larger than amax then remove them. If after this

operation, there are segments without topological edges remove them.
11: Create a temporal connection between the current BMLS (In) and theBMLSof the past iteration

(In−1).
12: If the current iteration n is an integer multiple of λ, and the maximum number of segments

not been reached, then insert a new segment. The parameter λ controls the number of iterations
required before inserting a new segment. Insertion of a new segment, r , is done as follows:

(a) Find segment u with the largest error.
(b) Among the neighbors of u, find the segment v with the largest error.
(c) Insert the new segment r between u and v as follows:

sr
O = 0.5

(
su

O + sv
O

)
and sr

F = 0.5
(
su

F + sv
F

)
(6)

(d) Create topological edges between u and r , and v and r , and then remove the topological
edge between u and v.

(e) Create a temporal connection between segments u and r .
(f) Decrease the error of u and v as erroru = (1 − α) erroru and errorv = (1 − α) errorv .

Set the error of node r as errorr = erroru .

13: Decrease error for all segments j by a factor (1 − β), error j = (1 − β) error j . Typically,
α = 0.5 and β = 0.0005.

14: Set n → n + 1.
15: If n < L go back to step 3. L is the cardinality of the time series in the state space.
16: If there are segments without temporal connections, remove them.
17: If the stopping criterion is not met, go back to step 2.
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Fig. 2 Plots of one-dimensional time series (first row) and their respective 2D state space repre-
sentation (second row): Rössler a–b, Mackey-Glass c–d, and Laser e–f

4 Simulation Results

4.1 Description of Datasets

Three datasets were used to evaluate the performance of the proposed algorithm. The
first dataset is the Rössler system, which is a well-known example of a strange attrac-
tor [13]. It is defined by a system of 3 ordinary differential equations with nonlinear
components [16]. A total of 1968 samples were drawn from the Rössler system. The
delay embedding parameter was estimated as ζ = 33 by mutual information. The
Rössler’s time series and its attractor are shown in Fig. 2a, b, respectively. The second
dataset corresponds to the Mackey-Glass time series, which is defined by a differ-
ential equation but depending on the parameters chosen a wide variety of different
behaviors are obtained, including chaotic solutions [14]. A total of 484 samples were
drawn from this dataset. The delay embedding parameter was estimated as ζ = 18
by mutual information. The Mackey-Glass time series and its attractor are shown in
Fig. 2c, d, respectively. The laser time series corresponds to data set A1 in the Santa
Fe time series competition. This is a univariate time series, containing 1000 mea-
surements from a FIR-Laser in a chaotic state. The delay embedding parameter was
estimated as ζ = 3 by mutual information. The Laser time series and its attractor are
shown in Fig. 2e, f, respectively.Without losing generality in this work we usem = 2
as the dimension of the delay coordinate embedding vector i.e., the trajectories are
in a two-dimensional space.

1Available at http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html.

http://www-psych.stanford.edu/{~}andreas/Time-Series/SantaFe.html
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4.2 Parameter Setting and Performance Measurements

TheproposedSGNGalgorithm is comparedwith theGNGandMergeGNG(MGNG)
algorithms on the three datasets described in the previous section. The common
parameters for SGNG, GNG andMerge GNGwere set using recommended values in
the literature [6, 8, 19, 21]. These parameters are: amax = 60, α = 0.5, β = 0.0005,
λ = 100, and epoch = 1000. Other parameters were varied using a grid with
all possible combinations of the following values: ew = {0.5; 0.05; 0.005}, en =
{0.005; 0.0005; 0.0001}, maximal number of nodes or segments as a percentage of
the length of the time series max N = {5; 7; 11; 15, 20%}. Each combination was
repeated 5 times, and the combination having the best resultswas chosen for each time
series. For the SGNG algorithm, the value θ = 5 was used. The parameter Emax with
the following values Emax = {0.1; 0.01; 0.001} was included in the search grid. The
performance measurements used are the quantization error (QE) and the temporal
quantization error (TQE) [9, 21]. QE measures the average distance (mean error) of
each sample of time series to its nearest quantization unit. In the case of GNG and
Merge GNG their units are the neurons (nodes), while the unit of SGNG is a segment.
TQEmeasures average dispersion of samples delayed ξ time steps associated to each
quantization unit. TQE is formally defined as [9]:

T QE(ξ) = 1

N

N∑
i=1

√√√√ ∑
j :I ( j)=i

∥∥x j−ξ − ai
ξ

∥∥2

wini
, (7)

where N is the number of units of quantification, wini is the number of samples
associated with the receptive field of the i-th unit, I ( j) = i is the index of the j-th
sample belonging to the i-th unit ( j = 1, 2, · · · , wini ; i = 1, 2, · · · , N ), ai

ξ it
is the average of the samples belonging to the i-th unit. To compute the TQE for
the SGNG algorithm, we must notice that the receptive field of a linear segment
is not spherical. Therefore to compute the dispersion of samples in the receptive
field of a linear segment, each sample is associated with its nearest node (the initial
or final point). Then the TQE is computed using Eq. (7). Delays up to 50 samples
(ξ = 0, 1, · · · , 50) are used to compute TQE.

4.3 Rössler

Figure 3a shows a quantization of the Rössler attractor performed by GNG. It can
be observed that GNG does not represent well the vertical trajectories. In addition
at the center of the attractor, there are spurious connections between nodes belong-
ing to different trajectories. Figure 3b shows a quantization of the Rössler attractor
performed by Merge GNG. It can be observed that the vertical trajectories are now
better represented compared to those of GNG. The center of the attractor is cleaner
too with less spurious connections between nodes belonging to different trajectories.
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Fig. 3 Each column represents the results for a different dataset: Rössler, Mackey-Glass and Laser
respectively. Rows 1-2-3 show the quantization results obtained by GNG, MGNG and SGNG
respectively. The fourth row show the temporal quantization errors obtained for each dataset: d
Rössler, h Mackey-Glass and l Laser
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Figure 3c shows a quantization of the Rössler attractor performed by SGNG. It can
be observed that the vertical trajectories are correctly quantized and it is even pos-
sible to distinguish different vertical trajectories. The quantization errors (QEs) for
GNG, MGNG and SGNG are 0.0103, 0.0120 and 0.0015, respectively. For MGNG
the largest contribution to QE comes from the intersections between vertical and hor-
izontal trajectories. Figure 3d illustrates the TQEs for the three algorithms. GNG has
a large TQE because it cannot distinguish samples with similar amplitudes belonging
to different trajectories. Both MGNG and SGNG presents similar TQE values until
10 delays, but for larger number of delays, SGNG clearly outperforms MGNG.

4.4 Mackey-Glass

Figure 3e shows a quantization of the Mackey-Glass attractor performed by GNG.
As GNG performs only a spatial quantization, it can be observed that there are many
spurious connections between nodes belonging to different trajectories. As a con-
sequence it is not possible to distinguish between the two main modes of behavior
of the attractor. Figure 3f shows a quantization of the Mackey-Glass attractor per-
formed by MGNG. It can be observed that the two modes of the attractor are clearly
distinguished. But the resolution obtained is rather low, with several close trajec-
tories represented as a single one. Figure 3g shows a quantization of the Mackey-
Glass attractor performed by SGNG. It shows a better resolution than the other two
algorithms, allowing us to distinguish between close trajectories. This can be clearly
observed at the intersection of approximately perpendicular trajectories. The QEs for
GNG, MGNG and SGNG are 0.0255, 0.0306 and 0.0101, respectively. The MGNG
presents the highest QE among the 3 algorithms because its quantization has low
resolution. In contrast, SGNG can differentiate between close trajectories. Figure 3h
illustrates the TQEs for the three algorithms. SGNG obtains the best performance
for most number of delays.

4.5 Laser

Figure 3i shows a quantization of the Laser attractor performed by GNG. It can
be observed that there are many spurious connections between nodes belonging to
different trajectories, so that they cannot be distinguished at all. Figure 3j shows a
quantization of the Laser attractor performed by MGNG. The quantization in Fig. 3j
possesses the same deficiencies as those in Fig. 3i. Figure 3k shows a quantization of
the Laser attractor performed by SGNG. The proposed algorithm is the only one that
captures well the dynamics of the laser attractor. The quantization errors (QEs) for
GNG,MGNG and SGNG are 0.020, 0.0235, and 0.0116, respectively. AgainMGNG
presents the highest QE among the 3 algorithms, and SGNG the lowest one. Figure 3l
illustrates the TQEs for the three algorithms. SGNG obtains the best performance
for all number of delays.
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5 Conclusions

We have proposed an extension to GNG that allows performing a spatiotemporal
quantization of time series. A key element in our proposal is changing the basic
unit from a node to a linear segment. The algorithm is able to identify the direction
of trajectories in the space state, and capture the dynamics of the time series, e.g.
an attractor. Segments are useful for the spatiotemporal quantization of time series
because they can be easily adapted to rapid changes in trajectories and even resolu-
tion. A second important element is the inclusion of temporal connections between
neighbors in time. This allows a higher accuracy in adjusting segments to trajectories
and smoother transitions between quantization levels. The results obtained show that
the proposed SGNG algorithm outperforms GNG and MGNG in terms of QE and
TQE in the three time series studied. As future work we plan to expand the algorithm
for its use with higher dimensional state space representations than 2D.
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Modeling Diversity in Ensembles
for Time-Series Prediction Based
on Self-Organizing Maps

Rigoberto Fonseca-Delgado and Pilar Gómez-Gil

Abstract A Self Organizing Map (SOM) projects high-dimensional feature vectors
onto a low-dimensional space. If an appropriate feature vector is chosen, this ability
may be used for measuring and adjusting different levels of diversity in the selection
ofmodels for building ensembles. In this paper, we present the results of using a SOM
for selecting suitable models in ensembles used for long-term time series prediction.
The temporal behavior of the predictors is represented by feature vectors built with
a sequence of the errors achieved in each prediction step. Each neuron in the map
represents a cluster of models with similar accuracy; the adjustment of diversity
between models is achieved by measuring the distance between neurons on the map.
Our experiments showed that this strategy generated ensembles with an appropriate
level of diversity among their components, obtaining a better performance than just
using a unique model.

1 Introduction

In the last years, it has been found that selecting and combining an appropriate set of
models for univariate time series forecasting achieve better results than using only
one model [1, 8]. However, to find the right model set to combine is not a trivial
task [16]. In the ensemble research area exists a consensus about the strategy for the
selection of models to combine: diversity and accuracy of the involved models are
the main factors to consider [1, 15].

SOM neural network [13], following simple rules of competition and cooperation
[12], has been used for building ensembles for time series forecasting. For example,
Ni et al. developed SOMAR [19] which is a method that modifies SOM training to
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adjust auto-regressive models instead of neuron prototypes. A SOMAR extension,
called NGMAR [21], uses a SOM variant for adjusting the weights of an ensemble of
auto-regressive models. Koskela et al. proposed a recurrent SOM [14] and Chappell
and Taylor a temporal Kohonen Map [6] which consider for training not to only the
current input pattern, but also to the exponentially weighted past pattern.Merge SOM
(MSOM), proposed byStrickert andHammer [23], refers to a fusion of two properties
characterizing the previous winner: the weight and the context of the last winner
neuron are merged by a weighted linear combination [24]. Other method idealized
as an probabilistic alternative toSOMis theGenerativeTopographicMapping (GTM)
[4]; the GTMTrough Time is one extension to GTM that performs simultaneous time
series clustering and visualization [20].

We also have been working on using SOM as a guide for building ensembles for
long-term forecasting of non-linear time series. In a previous work [11], we analyzed
the impact of performing a model selection by the use of a SOM to find the maxi-
mum diversity among models. Using feature vectors built with errors generated in
each prediction steps and meta-learning, we found that SOM was able to represent
the individual accuracy and diversity among predictors. In [11] maximum diversity
among models was represented by selecting models located in the farthest neuron
from the best model. However, our results showed that, selecting models with max-
imum diversity was related with a poor and in some cases with the worst expected
global accuracy [11].

Based on our past findings, this paper considers different levels of diversity among
models using the neuron distances in themap. The experiments reported here showed
that this strategy produced ensembles that achieved better results than selectingmod-
els based only on the expected accuracy. As in [11], a SOM divides the models into
groups, using meta-features obtained from each involved model; each group corre-
sponds with a neuron in amap of two dimensions. Let’s call “A” the group containing
the model with maximum expected accuracy. In [11], the farthest group of A, which
represent the maximum diversity, was selected to build the ensemble. Here, we select
neighboring neurons to A, and the level of diversity is adjustedmanaging the distance
with respect to A. The k-best models to be combined are chosen from this neuron
set. Once models are selected, their outputs are averaged to calculate the output of
the prediction system.

For the experiments reported here, two basemodelswhere selected: (a)Non-linear
Autoregressive with eXogenous inputs (NARX) model [17], implemented as NARX
neural network [3] and (b) Autoregressive Integrated Moving Average (ARIMA)
[5]. Several models were built changing the main parameters of base models. Four
types of time series were used: a subset of the time series of the NN5 competition, an
integration of theMackeyGlass equation [18], a time series generatedwithARMA(2,
1) [5] and an integration of a sine function. These datawas chosen in order to represent
a variety of non-linear systems.

The paper is organized as follows: Sect. 2 describes the meta features used and
the proposed method. Section3 shows the experiments. Finally, Sect. 4 exposes the
conclusions and future directions for this research.
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2 Method Description

A time series Y is a sequence of observations yt measured in constant time intervals.
Multi-step ahead forecasting may be described as an estimation of a sequence of
h future values based on current and past observations of Y , where the prediction
horizonh is an integer greater thanone.Thepresent study follows the iterated strategy,
which consists of estimating one value each time, using the previous predicted value
for calculating the next prediction [8].

As we stated before, our goal is to analyze the effect of selecting and combining
predictionmodelswith different levels of diversity,where a greater diversity is related
with a greater link distance in the neighborhood definition of a map representing
such models. “Link distance” refers to the minimum number of steps separating one
neuron from another. Diversity has been recognized as a very important characteristic
in combination ofmodels [9, 15], but an extremediversity can be associatedwith poor
results [11]. Therefore, a method able of adjusting the level of diversity is required.
This research uses a SOM with one output layer organized in a two-dimensional
array, following a hexagonal pattern, (Fig. 1). A neighborhood around a selected
neuron is defined by a particular link distance among neurons; a neighborhood with
a bigger link distance contains the neighborhoods with smaller link distances. For
example, neighborhood with a link distance of 2 contains to a neighborhood with
link distance 1; both are contained in the neighborhood with link distance of 3.

SOM is trained using as feature vector the concept of representative error re,
introduced in [11]; it is a vector of size h, where h corresponds to a prediction
horizon and each position is related with the error achieved in each forecasting step.
In order to calculate re, the training time series of size n is split in two sets: training
set (Y ′) which contains the first n − h values and expected set (E), which contains
the rest of h values. A model is generated using Y ′, which estimates the next h values
in Ŷ , then vector re is defined as:

re = E − Ŷ (1)

Fig. 1 Neighborhoods with different number of links from a selected neuron in a Self-Organizing
Map (SOM) based on [3, 11]
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Commonly, the training of neural networks starts with random weights. this implies
that a network trained twice with the same Y ′ may achieve a different set of final
weights, thus the trained model can have a different behavior each training. To avoid
such instability, when the base model is a neural network, re is computed k itera-
tions and the returned re is the average of these iterations. Metric Symmetric Mean
Absolute Percentage Error (SMAPE) [2, 7] is used for evaluating the accuracy of
the forecasting. It is defined as:

SMAPE
(
Y, Ŷ

)
=

∑h
t=1

|yt−ŷt |
1
2 (|yt |+|ŷt |)
h

· 100 (2)

SMAPE = 0 means that the obtained prediction matches exactly with the expected
output; the worst possible prediction implies a value of 200. SMAPE was chosen
because it allows comparing different models with different time series regardless of
their magnitudes.

Following is a toy example of the use of SOM for clustering representative errors.
Suppose a time series whose next 4 expected values are Y = {1, 1, 1, 1} that is,
h = 4. Assuming that the only possible values for this time series are 0 or 1, there
are 16 possible estimations. We can also assume that there are 16 prediction models,
each one producing one of these estimations Ŷi , i = {1, 2, . . . , 16}. For example the
prediction of a particular model A is ŶA = {1, 1, 1, 1} having the best possible accu-
racy SMAPE = 0 with a representative error vector re

(
ŶA

)
= {0, 0, 0, 0}. A SOM

with 4 rows and 4 columns was trained 1000 epochs with all possible representative
errors, resulting that each representative error in the training set was clustered in a
different neuron. Figure 2 shows the trained map of this example; each neuron is
tagged with an identification number and a representative error written in brackets.
Neuron color corresponds to a SMAPE related with the representative error in the
neuron. The neuron tagged with letter A has the best SMAPE and the neuron with
letter W has the worst SMAPE of all predictions. The one-link neighborhood of the

Fig. 2 Example of a SOM
organizing pre-defined
representative errors. Each
neuron has an identification
number and a representative
error in brackets
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neuron with letter A is enclosed by a bold line. This example makes clear that models
with similar SMAPE are neighbors and the models with the extreme SMAPE values
0 and 200 are distant on the map.

2.1 Proposed Method

The proposed method is an extension of [11], which contains two parts: extraction
of meta-features and selection of models. Two types of meta-features are computed:
performance estimation and representative error. The performance of each model is
estimated using a Monte Carlo Cross-Validation (MCCV) [22] and the training time
series. MCCV evaluates the samemodel training it with different sequences obtained
from the same training time series; this process iterates k times. The estimation
returned by MCCV is the average of these k iterations; for the experiments reported
here, k = 10 [10, 11].

During the selection process, the representative errors of all models train a self-
organizing map (SOM). The models are clustered into different groups, one group
by neuron. This is done by assigning each model to the neuron with the minimum
Euclidean distance between its weights and the representative error of such model.
As it was showed by example in Fig. 2, models with similar representative errors
are assigned to neighbor neurons and models with different representative errors are
assigned to neurons far away each other.

Next step is to select the neuron that contains the model with the best expected
accuracy, this neuron is tagged A. This assures that the ensemble contains the model
with the best expected SMAPE. It is well known that the similarity between neurons
in a trained SOM depends of the distance of the neurons on the map; this advantage
is used for controlling the level of diversity among selected models. The distance of
neurons ismeasuredwith a distance of l links,where l is theminimumnumber of steps
required to travel from neuron A to neuron B. The neurons in the neighborhood of
l links are the model source for selecting the k-best models to be combined. During
the prediction process, the selected models are trained with the complete training
sequence and their predictions are combined by average to obtain the final forecast.

With respect to the computational complexity of the proposedmethod, we noticed
that the computational complexity for selecting models is much less than the com-
plexity of obtaining meta-features. Indeed, the computational complexity of the cal-
culation of meta-features is mainly dominated by the number of iterations k in the
MCCV and computing of representative error. Currently, we are working with a for-
mal estimation of this complexity, finding so far that a rough approximation of this
value could be O (T kr), where T represents the total number of models involved
in the selection, and r represents the operations required for training and using the
involved prediction models.
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3 Experimental Analysis

In this section, we present the results of analyzing different levels of diversity during
the selection process; the number of links l varied from 1 to 5 and the number of
selected models k varied from 1 to 25. Results are analyzed using the average of all
SMAPE’s achieved with the time series described next.

3.1 Time Series Set

This method was evaluated using four types of time series as in [11]. The first subset
of time series was the reduced set provided by the NN5 prediction competition [7],
which consisted of 11 time series, with 735 observations for training and 56 values
for testing.

The second time series was an integration of the Mackey-Glass differential equa-
tion [18]:

dx(t)/dt = ax (t − τ ) /
(
1 + x (t − τ )10

) − bx(t) (3)

This function has a chaotic behavior when a = 0.2, b = 0.1, τ = 17, x0 = 1.2; the
time step for integration was set to 0.1. The first 750 samples were used for training
the model and the last 250 for testing. The third time series was generated using an
ARMA(2, 1) model defined as:

yt = 0.5yt−1 − 0.3yt−2 + εt + 0.2εt−1 (4)

where εt follows a Gaussian distribution with mean 0 and variance 0.1. The first 500
values formed the training set and the last 50 the test set. A fourth serieswas generated
using a sine function with a time step size of 2π/64; the first 750 observations were
used for training and the next 250 values for testing.

3.2 Building the Prediction Models

Models to be selected for building the ensemble are generated by using different
parameters in base models. In this work, two different base models were used: an
Autoregressive Integrated Moving Average (ARIMA) [5], and a Non-linear Autore-
gressive with eXogenous inputs (NARX) [17]. Even though ARIMA models are
lineal models, they are highly used as traditional forecasting methods and most of
prediction works use ARIMA as a base case for ensembles [1].We decided to include
ARIMA because we consider that the ensemble should have the option of consid-
ering linear approximations. On the other hand, NARX was selected as base model
because it is a non-linear model, which have proven to generate good approximations
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Table 1 Parameters and settings for generating 81 different models

NARX as base model ARIMA as base model

Parameter Settings Parameter Settings

Delay neurons {3, 10, 25} Auto-regressive terms p {0, 1, 2}
Neurons in hidden layer {10, 20, 30} Non-seasonal difference d {1, 2}
Training algorithm with
matlab default values

trainbr, traincgf, trainlm Lagged forecast errors q {0, 1, 2}

Seasonality {0, 7, 12}
Here “trainbr” refers to Bayesian regulation back propagation (BP), “traincgf” refers to Conjugate
gradient BP with Fletcher-Reeves updates, and “trainlm” refers to Leveberg-Marquardt BP

[8, 12]. Table1 shows the parameters and settings used for generating 81 different
models: 27 with NARX base and 54 with ARIMA base. The training was done using
the Matlab Neural network toolbox with its default values [3].

3.3 Results

Next we present the prediction performances obtained by ensembles built usingmaps
of different sizes {5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9, 10 × 10} and choosing some
levels of diversities l ∈ {1, 2, . . . , 5}. The initial neighborhood size was 3, and the
training epochs were 12500. The forecast values of selected models were combined
by average.

As an example, Fig. 3 presents two maps generated using the time series No. 3 of
the NN5 reduced set. Figure3a shows the map built with a SOM with 5 rows and 5
columns, while Fig. 3b shows a map of dimensions 7 × 7. The group tagged with a

Fig. 3 a SOM (5 rows, 5 columns), b SOM (7 rows, 7 columns), both with the time series No. 3
of the NN5 reduced set. The color represents the average SMAPE of the models in each neuron
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Fig. 4 Performance of selecting models with different number of links in the definition of A
neighborhood and a different number of rows and columns in the SOM

letter “A” contains the model with the best expected SMAPE. The farthest group to
A is referenced as neuron B and the neuron with a letter “W” contains the model
with the worst expected SMAPE. Notice that when the size of SOM increases, the
number of models in each group tends to decrease. It is also noticed that for the
bigger SOM, models are distributed in groups far away from node A.

Figure 4 shows the average SMAPE obtained by the proposed method with two
SOMs of sizes {5 × 5, 10 × 10} and of links l ∈ {1, 2, . . . , 5}. The results plotted are
the average SMAPEs obtained using all the time series. This results are compared
with the results of selecting and combining the k-best models based only on their
expected accuracy without any clustering process. The number of k models to select
for combining varied from 1 to 25, being k = 10 the case that obtained the best
performance.

Table 2 summarizes the best results obtained by each SOM, ordered from best
average SMAPE to the worst; Additionally, the last row shows the result of the
baseline that is to use themodelwith the best expected accuracy after aMCCV.Notice
that for all SOM sizes there is an improvement in the performance compared to using
k-best models (k = 1, 2, . . . , 25). Even though this improvement is small (1.17 for
the best case), this valuemay be significant in several problems of forecasting. Notice
in Fig. 4 that the average SMAPE was better with few models and an appropriate
number of links. This is because the number of links influence the diversity among
selected models. Selecting more than ten models degenerated in poor results, this is
because the selection based on a SOM reduced the available models based on their
diversity, then with a bigger k, the proposed method tends to select models with a
poor expected SMAPE. The results suggest a relation between the size of the SOM
and the number of links in the definition of A neighborhood required to achieve the
best accuracy.
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Table 2 Summary of the best results obtained by each SOM, ordered from best average SMAPE
to the worst

SOM Links Number
of models

Average of SMAPE Improvement compared to
k-best models

7×7 3 6 29.24 1.171

8×8 3 9 29.35 1.061

5×5 4 9 29.52 0.891

9×9 1 4 29.56 0.851

10×10 1 4 29.75 0.661

6×6 1 9 29.84 0.571

Benchmark

k-best – k = 10 30.411

Baseline

Best model – 1 31.632

4 Conclusions

One key component on ensemble building is the diversity of involved models but
an extreme diversity is related with poor results for the long-term prediction of time
series [11]. This work presented a method for selecting models based on a self-
organizing map, with the faculty of adjusting the level of diversity, which is related
with the distance between neurons on the map. The proposed method was evaluated
with different levels of diversity and compared with selecting models considering
only the expected accuracy. In general, the proposed method achieved better results
using the appropriate number of links for adjusting the diversity than selectingmodels
considering only the expected accuracy. The results also suggest a relation between
the size of the SOM an the number of links required to obtain the best results. When
the size of the SOM increases the models tends to be more distributed in the trained
map, however groups with similar average SMAPE tend to be neighbors. Currently,
we are working with a formal definition of the computational complexity of the
proposed algorithm. As future work, we will analyze how to define an appropriate
SOM size and the correct number of links.
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Modular Self-Organizing Control
for Linear and Nonlinear Systems

Paulo Henrique Muniz Ferreira and Aluízio Fausto Ribeiro Araújo

Abstract Nowadays, a good control systemmustmeet some complex requirements.
Two important ones are: quick and accurate responses to sudden changes in systems.
This paper presents a control strategy for Self-Organizing Maps (SOM) that can do
so. The proposed SOM-based control has a multiple-module architecture and learns
from feedback on errors which enables it to generate appropriate controllers. Simu-
lations of the mass-spring-damper system and the inverted pendulum validated the
model. In the experiments, the systems had time-varying parameters. The results
from the method proposed were compared with conventional methods and previous
self-organizing control and suggest that the proposed control is suitable for control-
ling linear and nonlinear systems which undergo sudden changes.

Keywords Self-organization · Adaptive control · Nonlinear time-varying system

1 Introduction

The current trend in control systems is characterized by an increase in complex
requirements. For example, there may be a need to deal with an unknown nonlinear
system with multiple-input and multiple-output (MIMO), and a time-varying envi-
ronment, process, or plant. Very often, classical controllers are not able to meet such
complex requirements. The capacity to learn and adapt themselves to new situations
are typical properties of intelligent controllers, which are suitable alternatives that
can deal with nonlinearity, unknown plants, and parameter variation. Moreover, a
learning controller could learn from a reduced set of training patterns. Considering
this context, we propose a simple SOM-based multiple-model scheme to control.
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In such a context, control systemparameters and architecture can change smoothly
considering SOM topology preservingmapping. A self-organizing control can effec-
tively handle a significant volume of data and redundant information, both of which
are common in control systems. Furthermore, it can learn on-line when it allows
a SOM-based controller to add new knowledge when necessary. Finally, a SOM-
based controller might generalize from a limited and manageable number of patterns
necessary to learn.

Using a single controller may not be an efficient strategy for controlling nonlinear
and time varying systems [1]. Making use of multiple model controllers is a viable
approach in these cases [1] because each model can respond easily and precisely for
a region of the control space.

In this work, we used Self-Organizing Maps to divide the control system space
into subspaces in which each region has a particular controller. Additionally, SOM
can identify a current operational subspace and, thus, can determine a suitable con-
troller. Furthermore, multiple-model SOM-based controllers can generalize some
local controllers. In this way, this intelligent control system can present low sensitiv-
ity to variations in system parameters and it can respond appropriately to parameters
not considered during the training phase. This paper also presents a comparative
study of the proposed model with other controls in two experiments (Sect. 4).

2 Problem Formulation

Let there be an equation defining a dynamic system [2].

y(t + 1) = f (w(t), x(t), u(t)) (1)

where y(t) is the output, x(t) is the state and u(t) is the input of a given system,
and w(t) is the parameter of function f at time t . f can be a system that is SISO or
MIMO, linear or nonlinear, and it can have time-varying parameters.

Nonlinear time-varying systems can be handled using a two-phase control process
[2]: (i) a phase for identifying the dynamics of the system and (ii) a control phase in
which an appropriate control action is generated to achieve given goals.

In order to design a controller for this problem, the function f and its parameters
w(t), which are normally unknown, can be approximated by neural network algo-
rithms from system input and output data. Hence, both f and w(t) remain unknown
and an approximation function f̃ is constructed to design the controller. We can enu-
merate two alternatives to do so. The first option entails a single nonlinear model f̃
to approximate f , which is commonly called a global model. The second approach
divides the space into local regions, each of which locally modeling the function f .
Mathematically, f is redefined as a series of functions f̃r where r = 1, . . . , N . The
complete model consists of the union of all functions f̃r [3].
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f̃ (x(t), u(t)) =
⋃

r=1,...,N

f̃r (x(t), u(t)) (2)

Potentially, local controllers can be simpler than a single overall controller. For
example, linear controllers can be used locally.

SOM can be used to divide the system behavior’s space into regions, to identify
them, and to parametrize the local controllers. Hence, self-organizing controllers
may present a loss of accuracy due to a discretization of their parameter space. Such
an inaccuracy can be overcome by increasing the number of training samples or
considering a larger number of prototypes. Moreover, one can design the controller
from a variant of SOM which has an interpolation capacity [4].

In this article,we compare our proposalwith another self-organizing control called
Self-Organizing Adaptive Controller (SOAC) [5]. Both algorithms share two impor-
tant features: rapid response to sudden changes in the controlled system and learning
general behavior from a small set of training patterns. In an introductory paper [5],
SOACpresented promising results for the same problem. SOAC is amultiple-module
control using a variant of the SOM structure (modular network SOM) in which each
module consists of a predictor/controller pair. The performance of the SOAC was
better than that of multiple paired forward-inverse models (MPFIM), a well-known
multiple-pair control strategy [6]. The main limitations of SOAC are its fixed topo-
logical structure and that the behavior and influence of some equations in the learning
predictor procedure are not easy to understand.

3 SOM-Based Control

Our proposed solution can be seen as a feedback error learning approach to generate
controllers, similar to what SOAC does. In spite of there being features in common
with SOAC, our approach has a different procedure for identifying the dynamics and
determining what the most suitable control action is. The control system is designed
to meet two important requirements for a system in time-varying environments:
(1) A rapid response to unexpected changes in the controlled system and (2) the
capacity to establish general behavior learned from a small set of training patterns.
The first requirement can be met by modeling the multiple local models and the
second requirement by the capacity of the SOM to generalize.

For our proposed control, each weight vectorwww is divided into two parts win and
wout . Thewin is a vector with a number of previous control inputs and state sequence
estimations, and it is used to identify the current system configuration while wout

represents an estimate of the system parameters. Such an approach is based on the
Vector-Quantized Temporal Associative Memory (VQTAM) [7].

To identify the plant, SOMhas to learn different behaviors of the system expressed
by state and command control time sequences. In the SOM-based control, identifying
the system considers the viewpoint of local models in which the input space is
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(a)

(b)

Fig. 1 SOM modified for the control problem with feedback error learning. a Concatenated input
patterns. b SOM node modified

partitioned into smaller operating regions. That is, for a particular plant configuration
learned by the SOM-based control, the weight vectors encode parameters of different
operating regions. This can result in local control models being simpler than a single
control model for a plant configuration. In SOAC, each module has a unique function
to model the behavior of the dynamics of the system for a given configuration.

The concatenation of the input vectors, in accordance with their temporal order,
forms the actual input of the network (Fig. 1a). Such a concatenation of the input pat-
terns considers a time window containing a pattern sequence. In the control problem,
the time window is defined as follows:

x−
in(t) = [x(t), u(t), x(t − 1), u(t − 1), . . . , x(t − p + 1), u(t − p + 1)] (3)

where the pair of vectors [x(t), u(t)] represents the system state and the system
control input at time t within a predefined window size p.

In the training phase, each x−
in(t) has a complementary associated vector xout (t).

This vector xout (t) encodes to the system parameters p crucial to establishes its
behavior x−

in(t). The training pattern x−
in(t) is used to adjust win and xout (t) is used

to adapt wout . The winner node, k∗, can be determined using x−
in (Eq. 4) or xout

(Eq. 5). In the execution phase, the competition uses x−
in because, very often, there is

no information available about the configuration of the system.

k∗(t) = arg min
k

∥∥x−
in(t) − win

k (t)
∥∥ (4)

k∗(t) = arg min
k

∥∥xout (t) − wout
k (t)

∥∥ (5)
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Thus, the weight vector updating of node k follows the equations:

win
k (t + 1) = win

k (t) + α(t)hk∗,k(t)
[
xin(t) − win

k (t)
]

(6)

wout
k (t + 1) = wout

k (t) + α(t)hk∗,k(t)
[
xout (t) − wout

k (t)
]

(7)

where the neighborhood is hbmm,k(t) = exp(−
∥∥∥εk (t)−εk∗

(t)
∥∥∥2

2σ2(t) ), for which εk and εk∗

are the coordinates of the module k and of the winner in the map and σ(t) = σ∞ +
(σ0 − σ∞)exp(− t

τσ
). α(t) = α∞ + (α0 − α∞)exp(− t

τα
). In the execution phase,

the SOM-based control uses feedback error learning to generate the controllers. The
learning of SOM-based control occurs online, i.e., for each node k, there is a weight
vector cwk , which defines a function c f k :

uk(t) = c f k(cwk, x̂(t)) (8)

where x̂(t) is the desired system state.
The final control command is calculated by adding the conventional feedback

control output (cfc) and the SOM-based control signal generated by the winner
node:

u(t) = uk∗
(t) + uc f c(t) (9)

The adjustments for each cwk are determined byEq.10. If the controllers are designed
by an analytical procedure, it uses an estimate of the system parameters wout in
module k.

Δcwk = η · φk ∂ c f k

∂ cwk
· c f cu(t) (10)

where φk is the responsibility signal (Eq. 11).

φk =
exp[−

∥∥∥εk−εk∗ ∥∥∥2

2σ2∞
]

∑
k ′ exp[−‖εk′−εk∗‖2

2σ2∞
]

(11)

where εk and εk∗
are the coordinates of the module k and of the winner in the map.

σ∞ is the final radius value of the neighborhood function.
A SOM network node is present in Fig. 1b. In the experiments below, the chosen

time window size is p = 2.
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4 Simulations

We validated the proposed control system for two different problems: the mass-
spring-damper (MSD) system and the inverted pendulum. For the MSD case, we
evaluated and analyzed the trained control modules ruling upon a linear time-varying
system [8]. On the other hand, the inverted pendulum is evaluated and analyzed as
a nonlinear and time-varying problem [9]. Both experiments assess the capacity of
the models to generalize.

4.1 Spring-Mass-Damper System

The MSD is described by a second order linear differential equation:

mẍ(t) + bi ẋ(t) + ki x(t) = F(t) (12)

where m, bi and ki are the mass [kg], the damping coefficient [ kg
s ], and the spring

constant [ kg
s2 ]. The subscript i is the label for each particular system configuration i .

We used nine alternatives for training and six others for testing. A single configura-
tion was used for both training and testing. The mass is constant (m = 1 kg) in all
experiments while parameters bi and ki may be 2, 6, or 10, thereby determining the
training system configurations ( pi , (i = 1, 2, . . . , 9)). The testing values for bi and
ki are pA = [6, 6], pB = [6.1, 6.8], pC = [4.3, 6.5], pD = [5, 4], pE = [8.7, 4] and
pF = [8.8, 9].

The sampling rate of the training test is constant 2001 pairs of system states and
control commands, after, we apply each pair in each training system configuration.
Hence, tuples {current state, control command, next state, the training system con-
figuration} form the training set. The total of tuples is 9 × 2001 = 18009. For our
experiments, the sampling interval of each variable is −0.6 ≤ x (position) ≤ 0.6,
−4 ≤ y (velocity) ≤ 4 and −2000 ≤ u (control) ≤ 2000. These intervals were cho-
sen after observing the behavior of these variables when the system was controlled
by a PID controller. To train SOM, all variables were normalized between 0 and 1,
however this was not the case for SOAC as in [5].

For the system test, we used a randomly chosen 30-s state sequence in which
the system configuration changes every 5 s. The test configuration order was always
[ pA, pB, pC , pD, pE , pF ]. The stochastic Ornstein-Uhlenbeck process generated
reference for the state trajectory. This process is suitable for evaluating the speed and
accuracy of the response. An exact solution for this process is:

St+i = Si e
−λδ + μ(1 − e−λδ) + σ

√
1 − e−2λδ

2λ
N0,1 (13)
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(a) (b)

(c)

Fig. 2 Best result for MSD system. a PDA (RMSE = 0.14569). b SOAC (RMSE = 0.021073).
c SOM (RMSE = 0.018233)

where λ = 3 is the mean reversion rate, μ = 0 is the average value, σ = 0.5 is
the volatility, δ = 0.001 is the time step, and N0,1 is a random value from a normal
distributionwithμN = 0 andσN = 1.All simulationswere conducted using a fourth-
order Runge-Kutta method with a step size h = 0.001, as in [5]. Finally, the control
accuracy was evaluated by the Root Mean Square Error (RMSE) between the system
output and the desired trajectory.

PDA details: TheProportionalDerivativeAccelerative (PDA)was chosen as the clas-
sical feedback control. The choseparameterswere c f cW = [kx , kẋ , kẍ ] = [5, 10, 0.5]
as in [5]. The result of the PDA control is shown in Fig. 2a.

SOAC details: For SOAC, the predictor inputs are position x , velocity v and control
command u. The predictor output is an acceleration estimate. The controller inputs
are the desired position xd , the desired velocity vd and the desired acceleration ad .
Both the predictor and the controller consist of a linear network [5]. The SOAC
configuration with the best results was 49 (7× 7) modules [5]. The randomly chosen
parameters were (N (stop criterion) = 20, ε = 0.1, σ0 = 10, σinf = 1, τ = 80, η
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(predictor) = 0.0002, and η (controller) = 0.000001). The best result for SOAC is
presented in Fig. 2b.

SOM-based details: The window size considered was p = 2. x−
in consists of

[x(t), u(t), x(t − 1), u(t − 1)], where x(t) is the vector with position x(t), velocity
v(t) and acceleration a(t), and control command u(t). cwk are weight-vectors of a
linear network, similar to that of SOAC. The map size is 9× 9. The competition of
the training phase used Eq.4. All other parameters were chosen empirically (N (stop-
ping criterion) = 50, σ0 = 70, σinf = 1, τσ = 5, α0 = 0.9, α∞ = 0.0001, τα = 30
and η (controller) = 0.000001). The best SOM result is presented in Fig. 2c.

Comparing the methods: The SOAC and the SOM-based results are compared.
The PDA result is deterministic and poorer than SOAC and SOM-based algorithms.
For SOM-based model and SOAC, 10 trials of learning were performed. The RMSE
for each controller is: PDA = 0, 14569, SOAC = 0, 021801 ± 6, 4058 · 10−4 and
SOM-based = 0, 018322 ± 4, 8662 · 10−5.

In this experiment, the two neural control methods were able to respond ade-
quately after changing system parameters. Both controlled the plant for parameters
not presented during the training phase. SOM-based method did better as shown by
the RMSE average and variance. We argue that the SOM-based control can iden-
tify behavior more accurately and it can adjust the PDA control command more
effectively.

4.2 Inverted Pendulum

The second experiment aims to control a pendulum fixed on a motorized cart that can
move on a rail (Fig. 3). The control objective is to keep the pendulum in the inverted
state and the cart has to reach a pre-determined position.

The inverted pendulum system is described as:

(M + m)ẍ + ml θ̈cos(θ) − ml θ̇2sen(θ) + f ẋ = a ∗ u (14)

mlẍcos(θ) + (I + ml2)θ̈ − mglsen(θ) + C θ̇ = 0 (15)

Fig. 3 The inverted pendulum system
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where x is the position of the cart [m], θ is the angle of the pendulum [rad], M = 5, 0
is the mass of the cart [kg], m is the mass of the pendulum [kg], l is the length of the
center of mass on the pendulum [m], f = 10, 0 and C = 0,0004 is the co-efficient of
viscous friction of the cart [kg/s] and of the pendulum [kgm2/s], respectively, g = 9.8
is the gravitational acceleration [m/s2], a = 25 is a gain [N/V ], and I is the moment
of inertia I = ml2/3 [kgm2]. A state variable is represented as x = [x, θ, ẋ, θ̇]T and
the control variable as u. The simulations were performed using the fourth-order
Runge-Kutta method with a step size h = 0.01 [s].

Nine system configurations were used for training and another nine, for testing.
The training system configurations are [mi , li ] = [0.2, 1.0, 1.8] × [0.6, 1.2, 1.8].
The testing values are: pA = [1, 1.2], pB = [0.9, 1.245], pC = [0.8, 1.134],
pD = [0.92, 0.915], pE = [1.82, 0.915], pF = [1.48, 1.257], pG = [1.244, 1.71],
pH = [0.648, 1.749], and pI = [0.2, 1.2].

The desired position of the cart changed every 10s during the tests. The possible
desired values are [1,−1, 0]. The initial state is x0 = [0, 0, 0, 0]T and the first desired
value is x = 1. The configuration of the testing system also changes every 10s. The
order of the test configurations is [ pA, pB, pC , pD, pE , pF , pG, pH , pI ].

For the training set,weuniformly sampled2001 systemstate and control command
pairs, and then, we applied them in each training configuration so as to generate the
next state. Hence, the training set comprises tuples {current state, control command,
next state, the training system configuration}. The total of tuples is 9 × 2001 =
18009. The sampling range of each variable is: −0.6 ≤ x ≤ 0.6, −0.6 ≤ θ ≤ 0.6,
−4 ≤ ẋ ≤ 4, −4 ≤ θ̇ ≤ 4 and −2000 ≤ u ≤ 2000. These ranges were chosen from
observations of the behavior of these variables when a Linear-Quadratic Regulator
(LQR) controlled the system. For SOM-based training, all variables were normalized
between 0 and 1.

SOAC details: The predictors consist of a linear network with current state x(t)
and control command u(t) as inputs and next state estimation x(t + Δt) as output
where Δt = 0, 01. In this experiment, SOAC was designed using analytical local
controllers, which are optimal strategies previously calculated. An LQR is generated
for each module from the estimate of system parameters p̃k. In the execution phase,
only the control command generated by thewinnermodulewas applied in the system.
The SOAC was configured with a two-dimensional map of 81 (9× 9) modules.

SOAC experiments were performed 15 times. SOAC presented a typical unstable
behavior for all trials. The typical dynamics is shown in Fig. 4. Additional exper-
iments suggest that the instability is caused by the failure to identify the current
behavior of the system.

SOM-based details: The window size was p = 2. x−
in consists of [x(t), u(t),

x(t − 1), u(t − 1)]T , where x(t) is the system state vector and u(t), the control
command. After the learning phase, wout is used to generate the LQR control for
each SOM node. The map size was 10× 10. The competition during the training
phase used wout (Eq. 5). A simulation result of this control is shown in Fig. 5. This
experiment was performed 15 times. Three simulations had results similar to those
shown in Fig. 5. In all other simulations, the system presented unstable states.
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5 Conclusion

The main idea introduced in this paper is to place a SOM in a multiple model
control scheme. Multiple controllers are more likely to respond more appropri-
ately than a single controller for time-varying systems [5]. A SOM-based control
can autonomously set up the control modules while considering only a small sam-
ple set of training patterns. The SOM-based control strategy was used for linear
and nonlinear plants: the mass-spring-damper (MSD) and the inverted pendulum.
The MSD system is linear, second order and stable in an open loop configuration.
The inverted pendulum system is nonlinear. In both problems, the parameters of the
plant are time varying. The results compared the SOM-based control with the SOAC
method. SOM-based control did better in both experiments in terms of accuracy and
stability.

We suggest investigating improvements for SOM-based controls that can be
applied to tracking target references in the inverted pendulum system. A study of
the SOAC and SOM-based control to control other plants may also be interesting.
For instance, these control strategies applied in a real-time complex system such as
a robotic system.
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On Self-Organizing Map and
Rapidly-Exploring Random Graph
in Multi-Goal Planning

Jan Faigl

Abstract This paper reports on ongoing work towards an extension of the self-
organizing maps for the traveling salesman problem to more challenging problems
of multi-goal trajectory planning for complex robots with a high-dimensional config-
uration space. Themain challenge of this problem is that the distance function needed
to find a sequence of the visits to the goals is not known a priori and it is not easy to
compute. To address this challenge, we propose to utilize the unsupervised learning
in a trade-off between the exploration of the distance function and exploitation of its
current model. The proposed approach is based on steering the sampling process in
a randomized sampling-based motion planning technique to create a suitable motion
planning roadmap, which represents the required distance function. The presented
results shows the proposed approach quickly provides an admissible solution, which
may be further improved by additional samples of the configuration space.

1 Introduction

Self-OrganizingMap (SOM) is a type of neural network that can provide a non-linear
mapping of a high dimensional input space into a lower dimensional output space. In
addition to data processing, visualization, and classification, it has also been success-
fully applied in optimization routing problems, in particular, the Traveling Salesman
Problem (TSP). The TSP is a well-defined optimization problem arising from many
practical scenarios and several SOM-based approaches have been proposed, e.g.,
see [2, 14]. In our case, the TSP is a problem formulation for robotic tasks like
inspection, surveillance, and data collection where a mobile robot is requested to
visit a set of locations, e.g., to perform an operation or take a sensor measurement
[3, 4, 8, 11].
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Themost straightforward application of SOM to the TSP is in Euclidean instances,
where the problem stands to find a closed shortest tour connecting a given set of goal
locations (cities). In robotics, the problem is to find a shortest path connecting the
locations such that the path is collision free. This make an application of SOM to
the TSP a bit more challenging because a pure Euclidean distance cannot be simply
used in the computation of distances between neuron weights and the presented goal
location (signal) to the network; otherwise a poor solution would be found [5]. The
distance corresponds to the length of the shortest path between two locations, which
can be PSPACE-hard in 3D environment. Hence, the problem is called the Multi-
Goal Motion Planning (MGMP) problem rather than the TSP to emphasize difficulty
of distance queries.

Randomized sampling-based approaches aremotion planning techniques for plan-
ning in high-dimensional configuration space C that provide the so-called motion
planning roadmap, which is a graph representing collision free configurations in
C [9]. A combination of the roadmap with SOM for a graph input [13] has been pro-
posed in [6] to solve the MGMP by SOM. In this decoupled approach, the roadmap
(graph) is constructed independently on the planning problem, and therefore, a com-
plete graph is unnecessarily dense.

In this paper, we report our recent results on application of SOM in the roadmap
generation and solution of the MGMP problem. The main idea of the proposed
approach is based on combining principles of the optimal motion planning algo-
rithm called Rapidly-exploring Random Graph (RRG) [7] with the SOM adaptation
principles to simultaneously determine the sequence of the goal visits together with
trajectories connecting the goals in the tour. The core of the proposed approach is a
utilization of the SOM adaptation to steer a randomized sampling of C to increase
the number of samples in the most promising areas to quickly find a solution and
eventually improve quality of the final trajectory.

A feasibility of this idea has been reported in [12], where it has been employed
in finding multi-goal trajectories for a hexapod walking robot. The proposed SOM-
based algorithm needs a lower number of the roadmap expansions to find a first
feasible solution of the MGMP problem in comparison to a straightforward MGMP
solver based on a given sequence of visits to the goal locations.

Here, we focus on two main aspects of the proposed approach: (1) a detailed
evaluation of the idea of SOM-based expansion of the roadmap to find an initial
solution of the MGMP; and (2) improving the quality of the final solution with
increasing number of the roadmap expansions. Based on the evaluation, we propose
a hybrid approach that consists of the initial construction of the roadmap by SOM
to find the first feasible solution followed by a consecutive roadmap improvement to
find a shorter trajectory.

The paper is organized in the following way. The problem statement, notion of
the configuration space C, and related background is presented in the next section.
The key idea of the SOM-based steering of the roadmap expansions using the RRG
is briefly described in Sect. 3. Considered MGMP solvers are presented in Sect. 4
and results of their evaluation are in Sect. 5. Concluding remarks and future work
are summarized in Sect. 6.
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2 Problem Statement

The problem addressed by the proposed approach is motivated by autonomous data
collection with a hexapod walking robot operating in a rough environment to collect
samples, e.g., images, of the requested areas of interest, see Fig. 1. The robot has six
legs, each with three joints that gives 18 control degrees of freedom, which together
with the robot position and orientation in the 3D environment gives 24 dimensional
vector fully describing the position of the robot body in the environment. Therefore,
it is controlled by designed gait patterns and a set of motion primitives to simplify the
motion control and planning [12]. In addition andwithout loss of generality, the robot
pose (x, y, θ) is considered as the robot position on a surface x, y with orientation θ .

The working environment W ⊂ R
3 is represented as a set of obstacles O ⊂ W .

The configuration space C describes all possible configurations of the robot in W
and can be defined as follows. Let the robot body at q beA(q), then the configuration
q is a collision free if A(q) ∩ O = ∅. All configurations for which the robot is in
a collision with the obstacles O are denoted as Cobst , Cobst ⊆ C. The point of our
interest to find a solution of the MGMP is a collision free part of C, which can be
denoted as Cfree = cl(C \ Cobst), where cl(.) is the set closure.

A collision free path from some starting configuration qstart to a goal configuration
qgoal is a continuous curve κ in Cfree, such that κ : [0, 1] → Cfree with κ(0) = qstart

and d(κ(1), qend) < ε. The end point κ(1) of the path found by a motion planner
will unlikely be exactly the requested goal location, and therefore, we rather admit
an admissible distance ε of the path to the requested goal [7], e.g., 5 cm. Then, such
a collision free path is called an admissible path.

Similarly to a simple trajectory, a multi-goal trajectory visiting a set of n goal
locations G = (g1, . . . , gn) can be defined as follows. Let the sequence of the visits
to the locations be (v1, v2, . . . , vn) for which vi ∈ G and

⋃
1<i≤n vi = G. Then, an

admissible multi-goal trajectory is a closed trajectory τ : [0, 1] → Cfree such that
τ(0) = τ(1) = qstart and for which there exists n points on τ such that 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn and d(τ (ti), vi) < ε.

Having the aforementioned preliminaries, the MGMP problem can be formu-
lated as follows: For the given goal locations G, configuration space C, an
admissible distance ε, and a monotonic, bounded, and strictly positive cost

Fig. 1 Robot, its geometrical model, and visualized 3D environment
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function c: find an admissible (according to ε ) trajectory τ ∗ such that c(τ ∗) =
min{c(τ ) | τ is admissible multi-goal trajectory}.

2.1 Randomized Sampling-Based Motion Planners

Sampling based motion planning techniques have been proposed to address diffi-
culty of explicit representation of Cfree for a complex shape of the robot body and
its high-dimensional C [9]. These techniques sample Cfree into a finite number of
configurations that are connected into a graph, where an edge represents a collision
free trajectory between two configurations. Hence, Cfree is represented by a graph
and the key problem is how to efficiently create the graph (roadmap) in which the
requested trajectory can be found, e.g., by a graph search technique.

In this work, we consider RRG [7] to create a graphGRRG = (VRRG, ERRG), which
represents the motion planning roadmap. The set of vertices VRRG are particular con-
figurations of the robot q ∈ Cfree and an edge e ∈ ERRG describes a feasible collision
free motion between two configurations vi, vj ∈ VRRG, i 
= j. The graph is incremen-
tally constructed by the RRG algorithm as a result of the graph expansion from the
nearest vertex of the graph towards a random sample by applying a particular control
command. Themain steps of the RRG expansion are depicted in Fig. 2, further details
can be found in [7].

2.2 Basic Background of Self-Organizing Map for the TSP

The proposed MGMP solvers are based on SOM for the TSP, in particular, a variant
for a graph input [13]. The neural network is structured in two layers. The first layer
servers for presenting goal locations to be visited and towards which the network is
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Fig. 2 An expansion of the RRG roadmap (from left to right): First, a random (collision free)
configuration qrand is sampled and the nearest vertex qnearest ∈ VRRG is determined; Then, the most
suited control command is applied to expand the roadmap towards qrand by a collision free trajectory
and a new configuration qnew is added to the roadmap; To further improve the roadmap, all vertices
within a ball with a particular radius r (see [7]) centered on qnew are connected with qnew by a
collision free trajectory
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adapted using the self-organizing principles. The output layer consists of m units,
N = {ν1, . . . , νm}, which represent neurons weights, where m is set according to
the number of goal locations n, e.g., m = 2.5n. The units are organized into one-
dimensional array that represents a sequence of configurations in Cfree. The learning
procedure can be summarized as follows:

1. Initialization—Create a ring of connected neurons N = {ν1, . . . , νm}.
2. Randomization—Create a random permutation of goals Π(G) ← permute(G).
3. Winner selection—Select the best matching neuron ν∗ to the currently presented

goal g ∈ Π(G); ν∗ ← argminν∈N d(ν, g).
4. Adaptation—Adapt the winner ν∗ and its neighbouring nodes νj within the dis-

tance k (in the number of nodes) using the neighbouring function f (σ, k) =
μe(−k2/σ 2) for k < 0.2m and f (σ, 0) = 0 otherwise. Remove g from the permuta-
tion, Π(G) ← Π(G) \ {g}, and If |Π(G)| > 0 go to Step 3.

5. Update the number of the learning epochs and neighbouring function variance.
6. Termination condition—If termination condition is met, stop the adaptation.

Otherwise go to Step 2.
7. Final tour construction:—Traverse the output layer and use the associated goals

to the last winners to construct the final goal tour.

The adaptation of neurons can be imagined as a movement of the neurons towards
the presented goal location. For a graph input, the neurons weights are restricted to
be at the graph edges or vertices and the adaptation can be imagined as neurons
movements along the graph edges [13]. Thus, for an adaptation in the roadmap GRRG

with spatially close vertices (such that provided by the RRG), we can consider the
neuron weights as a particular configuration represented by the closest vertex from
VRRG.

Notice, even though we can use SOM to find a solution of the MGMP on GRRG

like in [6]; here, we are rather interested in employing the adaptation procedure to
grow and improve the roadmap GRRG by the RRG expansions.

3 SOM-based Steering of Randomized Sampling in RRG

The fundamental issue of applying SOM to the given problem is that the selection of
the winner node to a presented location g is based on computing a distance d(ν, g)

between nodes ν ∈ N and g. Such a distance corresponds to the length of the tra-
jectory from ν to g, which is obviously not known due to a sparse coverage of C
by GRRG, especially at the beginning of the learning. In [12], we propose to address
this issue by the approximation that combines Euclidean distance and the current
knowledge about Cfree stored in the incrementally built GRRG.

Regarding a collision free and feasible trajectory inW , the current roadmap GRRG

provides a much more realistic estimation of the expected distance d(ν, g) than a
pure Euclidean distance. Therefore, a part of d(ν, g) is based on a trajectory in GRRG

from ν towards the vertex wν,g that is found as
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Fig. 3 SOM adaptation with GRRG expansions, from left to right: First, vertex wν,g is found in
RRRG using (1) for the current winner ν (green disc); The expected position ν′ of the neuron after
the adaptation is determined; which is then utilized together with g in the RRG expansion of GRRG;
Finally, new wν,g is found and ν is updated to the nearest vertex to the expected position of ν

wν,g = argminv∈VRRG
(c(κν,v) + |(v, g)|2), (1)

where c(κν,v) is the trajectory cost from the intermediate vertex w determined in
GRRG and |(v, g)| is the Euclidean distance from v to g. Thus, the path from ν to g
consists of the trajectory κν,wν,g in GRRG and a straight line segment from wν,g to g.
Notice, the cost found in the roadmap should be preferred and the influence of the
Euclidean distance should be suppressed, that is why it is in power of two in (1). The
found path is utilized in adaptation of neurons to g.

However, the path over the vertex wν,g cannot be directly used for a new position
of the adapted neuron because the expected position of the neuron may be out of the
current roadmap GRRG. Therefore, the expected position of the neuron after the adap-
tation is determined and the roadmap is expanded towards it and the location g using
the RRG expansion accompanied by the goal bias and goal zooming techniques [10]
(in which a random sample is substituted by the given location and sampled around
the location, respectively). Then, the vertex wν,g is determined again in the updated
roadmap and a new expected position of the neuron being adapted is restricted to
the nearest vertex of GRRG. Hence, the approximation together with the proposed
adaptation of neurons turns out to a steering strategy to randomized sampling in the
RRG. The process is schematically visualized in Fig. 3.

4 Solvers for the Multi-Goal Motion Planning Problem

The proposed approach to solve the MGMP problem consists of two steps. First, a
roadmap GRRG is created. An admissible solution of the MGMP problem is found
if all locations g ∈ G have its corresponding (nearest) configuration vg ∈ GRRG in
less than ε distance from the particular g and there exists a trajectory in GRRG that
connects all the locations G. The final shortest multi-goal trajectory is found in GRRG

as a solution of the TSP using Chained Lin-Kernighan heuristic [1].
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An admissible trajectory can be found in GRRG if all vertices representing the goal
locations are connected. The quality of the final trajectory depends on the roadmap
and basically a denser roadmap may provide shorter trajectories at the cost of more
demanding computations. The key to efficiently find a good trajectory is in the
construction of the roadmap. Various methods how to steer the expansion of GRRG

can be proposed. The SOM-based steering of the RRG has been firstly introduced
in [12]. The idea has been further investigated and the improved method is presented
here. Moreover, we considered the proposed idea utilized in SOM steering also in
a direct construction of the roadmap to verify the added value of the unsupervised
learning. The proposed roadmap construction methods are briefly summarized in the
following paragraphs.

Naive construction of the roadmap is based on iterative roadmap expansions
towards the locations G that are alternating in a sequence found as a solution of the
Euclidean TSP. Each location is iteratively used in the goal zooming technique for 5
expansions and the process is repeated until the maximum number of expansions M
is not reached. The ball expansions of the RRG are activated after 100 alternations of
the whole sequence, to reduce the computational burden and improve convergence
of the roadmap to an admissible solution.

SOM expansion is based on the steering strategy described in Sect. 3 that is
accompanied by additional expansions towards the presented location g ∈ G to the
network, which support a fast convergence of the roadmap to G. If g is not yet
connected with the roadmap, 20 expansions towards g are performed using g in goal
zooming prior adaptation of the winner neuron towards g. After that, the proposed
SOM steering is employed. Similarly to Naive method, the ball expansions of the
RRG are suppressed for the first 10 learning epochs.

Rand variant of the roadmap construction is based on additional expansions to
G used in the SOM method. It is similar to the Naive method, but the sequence of
locations G is a random permutation as in SOM. Each location g ∈ G is used in goal
zooming for 20 expansions. Then, the algorithm continues with the next location in
the sequence. Once all locations are used, a new permutation of G is created and the
process is repeated up to M roadmap expansions are performed.

MST method represents an existing approach for the MGMP [11] based on an
iterative determination of the Minimum Spanning Tree (MST) as approximation of
the TSP. TheMST is initially determined using Euclidean distances that is iteratively
refined using an “optimal” motion planner to find corresponding trajectories for all
MST edges until all the edges represent admissible trajectories. An optimal motion
planning is too computationaly demanding for the hexapod robot, and therefore, the
MST is used to steer roadmap expansion. For eachMSTedgewithout a corresponding
trajectory in the roadmap, 20 expansions towards the edge’s endpoints are performed
for every iteration of the MST refinement. This is repeated until an admissible multi-
goal trajectory is found.

Because the SOM method provides a first admissible solution very quickly, two
hybrid approaches are proposed: Naive-SOM and Rand-SOM. The SOM method
is utilized to find the first admissible solution. Then, the Naive and Rand approaches
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are used up to M expansions of the roadmap, respectively. In a similar way, the
MST is utilized in the Rand-MST to further improve initial solution provided by
the MST-based method.

5 Evaluation Results

The roadmap expansion strategies have been evaluated for a hexapod walking robot
and several scenarios of the MGMP problem in the environment called potholes,
see Fig. 1. A particular difficulty of the problem depends on spatial distribution of
the goal locations in the environment. Therefore, 20 random problem instances are
created in the given environment. Each instance is solved 20 times by each particular
algorithm because all algorithms are stochastic, and the results are presented as
average values accompanied by standard deviations.We considered problemswith 10
goal locations (n = 10) as sufficient to demonstrate difficulty of constructing roadmap
for the multi-goal trajectory planning. Particular algorithms have been evaluated
for different parameters; however, only selected results are presented because of
the space limit. The total number of the evaluated scenarios was more than twenty
thousands. Examples of constructed roadmaps, the first admissible solution found
by SOM, and the final found solution found by the Rand variant are shown in Fig. 4.

The most time consuming step in the solution of the MGMP problem is a sin-
gle roadmap expansion, which, in the case of the RRG, is a more computationally
demanding with increasing number of roadmap vertices. Moreover, it is even more
demanding in the improving phase, where expansions are performed for vertices
in the ball around the last added vertex to the roadmap. Therefore, the number of
performed roadmap expansions is the main performance indicator.

The first evaluation is focused on the performance of the roadmap expansion
strategies in finding the first admissible solution with the maximal number of expan-
sions restricted to 100000. The results for 400 trials on 20 problems solved by each
approach are depicted in Table1 (values are computed from admissible solutions).

(a) (b) (c) (d)

Fig. 4 Build roadmaps by Naive and SOM-based approaches after performing M expansions. A
path found by the Rand approach after 204 357 expansions. Obstacles are in brown, goals are
represented as green discs, roadmap edges are purple segments, and a multi-goal trajectory is in
black. a Naive, M = 10000. b Naive, M = 20000. c SOM, M = 597. d Rand, M = 204357
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Table 1 Roadmap construction for determining a first admissible solution

Method Naive SOM Rand MST

Success rate 54% 93 % 61% 45%

Average number of the RRG expansions 85 468 14 258 66 375 70 241

Average number of the roadmap vertices 24 698 5 662 25 781 37 815

Average number of the roadmap edges 142 472 16 218 109 096 84 372

Average required CPU time [s]* 39 13 56 209
*Indicative values because several machines of different configurations have been used

Here, we can observe that the same randomized schema utilized in SOM and Rand
strategies provide different performance. Moreover, the MST-based approach pro-
posed in [11] does not provide significant advantage over Rand and its more demand-
ing because of determination of the MST. The results support the evidence that the
proposed SOM-based steering significantly improves the performance in finding the
first admissible solution. The main results is that SOM provides fastest admissible
solutions with a high success rate.

Notice, the number of the roadmap vertices is always lower than the number of
expansions. A higher number of vertices indicates a successful expansion of the
roadmap and similarly a higher number of edges indicates a denser roadmap as a
result of the improving step of the RRG.

The next evaluation has been focused on the quality improvement of the found
multi-goal trajectory according to increasingmaximal number of the performedRRG
expansions. We found out that the proposed SOM improves solutions only slowly
withmore expansions, and therefore,we consider it only infinding thefirst admissible
solution in the hybrid approaches Naive-SOM and Rand-SOM. The quality of the
trajectory is considered as a ratio of the trajectory length to the best found solution
for the particular problem determined from all the performed trials. This allows
to aggregate results for various problem instances, for which trajectories may be
significantly different. Thus, values of the ratio close to 1 indicate the particular
approach provides relatively high quality solutions among the evaluated algorithms.
The results for increasing number of roadmap expansions are depicted in Fig. 5.

Discussion—Based on the performed evaluation of the steering strategies of the
randomized sampling in the RRG, the results support that the proposed SOM-based
strategy provides the first admissible solution with a significantly less number of
expansions than other strategies. However, the solution quality does not improve
with more expansions and thus the current form of the strategy is suitable only for
finding an admissible solution. On the other hand, the proposed combination of the
SOM and randomized expansions in the hybrid solvers provide benefits of the both
approaches and it seems to be a suitable technique to provide the first solution quickly
and further quality improvements.

An important lesson learned from the presented evaluation is that the way how
the roadmap is initially created significantly affects the ability to find an admissible
solution quickly. Here, the SOM adaptation provides an efficient trade-off between
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Fig. 5 Success rate and quality of the found trajectories

exploration of C and exploitation of the currentGRRG towards connecting the required
goal locations. However, once the locations are connected in the roadmap, the adap-
tation process only moves neurons along the roadmap and does not explore possible
shortcuts to improve the solution.

6 Conclusion

An evaluation of four multi-goal trajectory planners is presented in this paper. The
results indicate the proposed SOM-based roadmap expansion improves finding the
first admissible solution. However, a planner solely based on the SOM strategy does
not improve the found solution, but the solution can be improved by additional
expansions of the roadmap. Although the current achieved results does not meet the
expectation of a motion planner solely based on SOM, it support feasibility of the
SOM-based simultaneous building of the distance function approximation together
with its utilization in the multi-goal trajectory planning.

Regarding the applied SOM based principles, the whole graph GRRG can be con-
sidered as a growing neural network, where the adaptation rules can be used to
remove not promising configurations and thus reduce the number of vertices of the
graph. Besides, they can also be utilized to further exploration of the configuration
space to improve quality of the found solution. Consideration of these extensions is
a subject of our further work.
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Dimensionality Reduction Hybridizations
with Multi-dimensional Scaling

Oliver Kramer

Abstract Dimensionality reduction is the task of mapping high-dimensional
patterns to low-dimensional spaces while maintaining important information. In this
paper, we introduce a hybrid dimensionality reduction method that is based on the
weighted average of the normalized distance matrices of two or more embeddings.
Multi-dimensional scaling embeds the weighted average distance matrix in a low-
dimensional space. The approach allows the hybridization of arbitrary point-wise
embeddings. Instances of the hybrid algorithm template use principal component
analysis, multi-dimensional scaling, and locally linear embedding. The variants are
experimentally compared using three dimensionality reduction measures, i.e., the
Shepard-Kruskal scaling, a co-ranking matrix measure, and the nearest neighbor
regression error in presence of label information. The results show that the hybrid
approaches outperform their native pendants in the majority of the experiments.

1 Introduction

Dimensionality reduction (DR) has an important part to play in many machine learn-
ing applications. It finds applications in preprocessing for machine learning tech-
niques that perform best in low-dimensional data spaces and for visualization of
high-dimensional data. Objective of most DR algorithms is to reduce the dimension-
alities of patterns while maintaining distance information. In this paper, we employ
the normalized pattern distance matrix oriented to Shepard-Kruskal scaling for the
algorithmicmethod and the evaluation of theDR result.We propose an algorithm that
allows the hybridization of various DR results based on weighted distances matri-
ces and multi-dimensional scaling (MDS) [6]. The weighted hybridization offers the
freedom to take advantage of the capabilities of the native methods. We compare the
new approach to the native approaches w.r.t. the measures Shepard-Kruskal scaling,
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the co-ranking matrix measure, and the nearest neighbor regression error for labeled
benchmark data.

This paper is structured as follows. In Sect. 2, we give a short introduction to DR
with an emphasis onMDS.Section3 presents threeDRqualitymeasures, in particular
the distance-based DRmeasure, which is similar to the Shepard-Kruskal scaling [2].
The normalized distance matrix is basis of the hybrid approach introduced in Sect. 4.
An experimental analysis is presented in Sect. 5. Conclusions are drawn in Sect. 6.

2 Methodological Basis

2.1 DR Reduction

In DR, the task is to embed high-dimensional patterns X = {x1, . . . , xN } with xi ∈
R

d into low-dimensional spaces by learning an explicit mapping F : Rd → R
q , by

finding low-dimensional counterparts X̂ = {x̂1, . . . , x̂N } with x̂i ∈ R
q with q < d

that conserve useful information of their high-dimensional pendant, or by finding
a set of codebook vectors (usually fewer than N ) that represent the data like in
self-organizing maps (SOMs), e.g., see [12]. The DR problem has intensively been
studied in the past, see [2, 7], but is still a promising research area due to the growing
importance of high-dimensional data.

2.2 MDS

Principal component analysis (PCA) [3, 4], locally linear embedding (LLE) [13], and
isometric mapping (ISOMAP) [15] are famous methods for the point-wise embed-
ding of patterns. ISOMAP and LLE are based on MDS, which estimates the coor-
dinates of a set of points while only the distances are known. Let DX = (di j ) be
the distance matrix of the set of patterns with di j being the distance between two
patterns xi and x j . Given all pairwise distances di j with i, j = 1, . . . , N and i �= j ,
MDS computes the corresponding low-dimensional representations. For this sake, a
matrix B = (bi j ) is computed with

bi j = −1

2
[d2

i j − 1

N

N∑
k=1

d2
k j − 1

N

N∑
k=1

d2
ik + 1

N 2

N∑
k=1

N∑
l=1

d2
kl]. (1)

The points are computed via an eigendecomposition of B with Cholesky or singular
value decomposition resulting in eigenvalues λi and corresponding eigenvectors
γi = (γi j ). It holds

∑N
j=1 γ2

i j = λi . The embeddings in a q-dimensional space are
the eigenvectors of the q-largest eigenvalues x̂i = γi

√
λi .
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2.3 LLE

For non-linear manifolds, LLE by Roweis and Saul [13] is a powerful DR approach.
LLE assumes the local linearity of manifolds and is appropriate for the hybridization
as it computes point-wise embeddings. First, LLE computes weights that allow a
linear reconstruction of point xi from its k-nearest neighbors minimizing the cost
function

E(w) =
N∑

i=1

‖xi −
k∑

j=1

wi j x j‖2 (2)

with weights wi j ∈ R.

3 Dimensionality Reduction Measures

In the experimental part, we will analyze the introduced hybrid methods w.r.t. three
DR quality measures that are introduced in the following.

3.1 Shepard-Kruskal Scaling

A reasonable DR quality measure that reflects the objective to maintain distances is
the Shepard-Kruskal scaling [2]. We formulate a normalized variant of the Shepard-
Kruskal scaling in the following. Let DX be the distance matrix in data space and DX̂
be the distance matrix in the low-dimensional space. Both are normalized, i.e., each
component is divided by themaximal component of the wholematrix. The Frobenius
norm of the differences of the normalized distance matrixes

Eks = ‖DX − DX̂‖2F (3)

is the Shepard-Kruskal measure variant we employ. If the deviation of normalized
pattern-wise distances is zero, the high-dimensional distances are optimally main-
tained in the low-dimensions space. Normalization is required because the absolute
pattern coordinates computed by different methods may vary significantly.

3.2 Co-ranking Matrix

A traditional DR quality measure we will use for comparison in the experimental
section is the co-ranking matrix [8, 9] concentrating on measuring the maintenance
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of neighborhoods. The co-ranking matrix is based on the comparison of ranks w.r.t.
distance-based sorting of patterns in data space and in the low-dimensional space.
The co-ranking matrix is employed to define a measure Enx ∈ [0, 1] corresponding
to the ratio of neighbors of patterns occurring in a k-neighborhood in data space
and in the low-dimensional space. High values for Enx show that the neighborhood
relations are preserved.

3.3 Nearest Neighbor Error

As our last measure, we compare the embeddings w.r.t. a measure that is based on the
k-nearest neighbor (kNN) regression error, which can only be computed for labeled
data. If (x1, y1), . . . , (xN , yN ) are pattern-label pairs with yi ∈ R, we can define the
kNN regression error as mean squared error

Ex = 1

N

N∑
i=1

( f (xi ) − yi )
2 (4)

with kNN model f . Based on the computed embeddings, the q-dimensional pattern-
label pairs (x̂1, y1), . . . , (x̂N , yN ) can be used to evaluate an equivalent kNN error
Ex̂. The ratio

Ek N N = Ex̂/Ex (5)

of both errors is an indicator how well the DR methods perform as preprocessing
method for regression tasks. It is smaller than 1.0, if the kNN error Ex̂ from the
low-dimensional space is lower than the original kNN error Ex from data space.

4 Hybrid Embedding

4.1 Approach

In this section, we introduce an approach that hybridizes embeddings of two (and
potentially more) DR methods. The concept is based on three main steps: 1. The
computation of two embeddings X̂1 and X̂2, 2. The computation of a weighted sum
of the low-dimensional distance matrices of Step 1, and last, 3. TheMDS embedding
using the novel distance matrix. Figure1 shows the pseudo-code of this approach.

LetD1
X̂
be the normalized distancematrix of the embedding of the firstDRmethod,

and D2
X̂
the corresponding normalized distance matrix of the second method. The
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Algorithm 1: Hybrid MDS Embedding
Require: data set X
1: embed X with DR method 1 → X̂1

2: embed X with DR method 2 → X̂2

3: compute normalized distance matrices D1
X̂ and D2

X̂
4: hybrid distance matrix D′

X̂ = α · D1
X̂ + (1 − α) · D2

X̂

5: X̂ → MDS embedding with D′
X̂

6: return X̂

Fig. 1 Pseudo-code of hybrid MDS embedding approach

idea of the hybridization approach is to compute a weighted average distance matrix
and employ this for embedding with MDS. The new distance matrix is

D′
X̂

= α · D1
X̂

+ (1 − α) · D2
X̂

(6)

with weight α ∈ [0, 1]. The novel weighted distance matrix D′
X̂
is the input to MDS

resulting in a novel embedding X̂′. The optimal weight α can be found with grid
search or optimization methods like evolutionary algorithms subject to the objective
to minimize measure Eks introduced in Eq.3.

4.2 Related Work

Ensembles, i.e., the combination ofmore than one technique, are a common approach
in machine learning. Interestingly, not many ensemble approaches have been intro-
duced for DR problems. One of the few examples has been introduced by Moon and
Qi [10],who present a hybrid of support vectormachines and independent component
analysis. Submanifold approaches exist that concentrate on the independent embed-
ding of clusters, e.g., the hybrid manifold clustering approach by Kramer [5]. To the
best of our knowledge, there are no methods that concentrate on the hybridization of
multiple DR results based on MDS.

5 Experimental Evaluation

In this section, we experimentally analyze the hybrid embedding approach. For
this sake, we concentrate on a deeper analysis on three benchmark problems, see
Appendix A w.r.t. the three measures Eks , Enx , and Ek N N . We compare MDS, PCA,
LLE, and the three hybrids MDS-PCA, MDS-LLE, and LLE-PCA. We employ the
data set size N = 500, which we assume to be a sufficient size for a conceptual
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Table 1 Comparison of native (MDS, PCA, LLE) and hybrid approaches (MDS-PCA, MDS-LLE,
and LLE-PCA) w.r.t. measures Eks , Enx , and Ek N N

Problem Measure MDS PCA LLE MDS-PCA MDS-LLE LLE-PCA

Swiss Roll Eks 51.259 56.120 201.689 50.959 51.256 56.120

Enx 0.590 0.596 0.259 0.598 0.657 0.658
Ek N N 24.566 65.493 127.192 14.906 24.569 37.089

Housing Eks 1.328 0.015 118.298 1.414 2.184 1.703

Enx 0.871 0.989 0.655 0.900 0.859 0.889

Ek N N 1.067 1.024 1.032 1.036 1.011 1.011

Friedman Eks 228.0221 309.802 366.304 228.039 227.308 299.872

Enx 0.120 0.129 0.117 0.130 0.125 0.131
Ek N N 1.087 1.039 1.093 1.0243 1.075 1.008

evaluation of the introduced concepts. For LLE, Enx , and Ek N N we use the same
neighborhood size k = 10.

5.1 Quantitative Analysis

Table1 shows a comparison between the native methods and the optimal values
achievedby the three hybrids. The experiments reveal that the hybridmethods achieve
better results than the native ones in the majority of the experimental settings. On
the Swiss Roll, the MDS-PCA achieves the lowest distance matrix value Eks and the
lowest kNN error Ek N N , while theMDS-LLE variant achieves the highest co-ranking
matrix value Enx . On the Housing data set, linear conditions let the PCA achieve the
best Eks and a nearly optimal co-ranking matrix value of 0.989, but MDS-LLE and
LLE-PCA achieve a lower nearest neighbor error. Among the hybrid variants, MDS-
PCA achieves the lowest Eks and the highest co-ranking matrix measure. MDS-LLE
achieves the best distancematrixmeasure onFriedman,while LLE-PCAoutperforms
the other methods considering Enx and Ek N N . The results show that the employed
measures are consistent to each other, i.e., optimal values w.r.t. one measure are often
optimal w.r.t. another measure.

Figure2 compares the DR quality measures Eks , Enx , and the kNN error Ek N N

on the data sets Swiss Roll, Housing, and Friedman w.r.t. various settings for α,
i.e., α = 0.0, 0.05, . . . , 1.0. The results show that better settings for α other than 0
or 1 (i.e., the pure methods) do not exist in every case. But the MDS-PCA variant
achieves local optima on the Swiss Roll for Ek N N and for Enx and Ek N N on Housing
and Friedman. The MDS-LLE hybrid is mostly increasing Eks for increasing α with
few local optimal values. For Ek N N on Housing and Enx on all problems, there are
optimal values achieved by the hybrids. The LLE-PCA hybrids outperform the pure
methods w.r.t. Eks on Friedman and w.r.t. Enx and Ek N N on all three problems. The
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Fig. 2 Analysis of hybrid algorithm w.r.t. parameter α on Swiss Roll, Housing, and Friedman.
Lower values are better for Eks and Ek N N , higher values are better for Enx . a Swiss Roll, Eks .
b Swiss Roll, Enx . c Swiss Roll, Ek N N . d Housing, Eks . e Housing, Enx . f Housing, Ek N N .
g Friedman, Eks . h Friedman, Enx . i Friedman, Ek N N

main observation is that often the pure DR methods are outperformed by the hybrid
variants, albeit in some cases the original methods perform best.

5.2 Visualization of Swiss Roll Embedding

In the following, we visualize the result of the new hybrid approach on the Swiss
Roll. Figure3a shows the Swiss Roll data, while Fig. 3b, c compare the Swiss
Roll MDS embedding to an embedding generated with a MDS-PCA hybrid. The
MDS-PCA embedding shares similarities with the native MDS embedding, but the
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(a) (b) (c)

Fig. 3 Swiss Roll, its MDS embedding, and an MDS-PCA embedding. a Original data. b MDS.
c MDS-PCA

neighborhoods are preserved even more accurately—in particular, the manifold
becomes narrower. The linear characteristics of the PCA embedding influence the
result of the hybrid MDS-PCA embedding.

6 Conclusions

We introduced a hybrid method that allows merging the DR outputs of multiple
methods. The hybridization is based on the employment of a hybrid normalized
Kruskal-Shephard scaling matrix that is embedded into the target space with MDS.
An experimental comparison on a small problem benchmark set reveals that in many
cases the hybrids outperform their native pendants. The Kruskal-Shephard scaling
is also used as measure and turns out to be consistent with the co-ranking matrix
measure and the nearest neighbor error when mapping from the low-dimensional
space, if label information is available.

A prospective research direction is the extension of the experimental analysis to
further hybrid variants, e.g., based on ISOMAP, random projection [1], and further
benchmark problems. Further, it will be interesting to put a focus on the analysis of
hybrids that take into account the results ofmore than two embeddings. The approach
can be applied to SOMs, if the secondmethod (which might also be a SOM) employs
the same number of codebook vectors.

Appendix A: Benchmark Problems

The experiments in this paper are based on the following data sets:

• The Swiss Roll is a simple artificial data set with d = 3 that allows a visualization
of neighborhoods with colored patterns and label information based on pattern
colors from scikit-learn [11].
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• The Housing data set, also known as California Housing from the StatLib repos-
itory [14] comprises 20,640 8-dimensional patterns and one label.

• Friedman is the high-dimensional regression problem Friedman #1 generated with
scikit-learn [11] with d = 500.
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A Scalable Flexible SOM NoC-Based
Hardware Architecture

Mehdi Abadi, Slavisa Jovanovic, Khaled Ben Khalifa, Serge Weber
and Mohamed Hédi Bedoui

Abstract In this paper, a parallel hardware implementation of a self-organizing
map (SOM) is presented. Practical scalability and flexibility are the main architec-
ture features which are obtained by using a Network-on-chip (NoC) approach for
communication between neurons. The presented hardware architecture allows on-
line learning and can be easily adapted for a large variety of applications without a
considerable design effort. A hardware 5 × 5 SOMwas validated through the FPGA
implementation and its performances at a working frequency of 200MHz for a 32-
element input vector reach 724 MCUPS in the learning and 1168 MCPS in the recall
phase.

1 Introduction

Since their introduction, Self-Organizing Maps (SOMs) have been largely used in
many applications [1]. A SOM is an unsupervised learning neural network which
is mainly used to reduce and classify high-dimensional input data sets to ease their
interpretation and processing. A SOM can be implemented either in software (SW),
hardware (HW) or mixed hardware-software platforms (HW/SW). Even though the
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software solutions provide more flexibility, the hardware implementations exploit
inherent parallelism of SOM networks and may be preferred to the software ones
especially in real-time applications characterized with tight temporal constraints.

The hardware SOM implementations are typically application specific. Each
application has its own specificities needing different SOM parameters: input layer
size, number of neurons in the output layer, timing constrains, memory requirements,
etc. Inmost of cases, the adaptationof a hardwareSOMarchitecture for another appli-
cation is time consuming and needs considerable design efforts. Another important
issuewhichmake difficult the reuse of an existing hardware SOM implementation are
the communication links between neurons. Generally, these communication links are
established at the point-to-point basis and are hard wired and if we want to add some
additional neurons (and thus new connections to them) we have to completely mod-
ify the way neurones are connected. To have a scalable and application-independent
hardware SOM implementation, it is necessary to add more flexibility to the existing
HW design approaches. A way of doing this is to completely decouple computation
from communication. In this paper, we propose a Network-on-a-chip (NoC) based
solution, where a NoC is used for communication purposes between neurons.

This paper is organized as follows: Sect. 2 presents the state of the art in the
domain of hardware SOM implementations. Section3 presents the proposed method
and describes the modifications that should be made to an existing hardware SOM
implementation tomake it scalable. Section4 presents some obtained results whereas
some conclusions and perspectives are drawn in Sect. 5.

2 Related Work

The first reported SOM implementations were in software using processor-based
architectures [2]. The performances of initial single-core microprocessor architec-
tures have been recently boosted by the increasing parallelism of many-cores multi-
processor chips (MPSoC), but are still suffering from sequential processing and high
power consumption with respect to the application-specific solutions. However, the
SOM software implementations are flexible and easy to implement and are usually
used beforehand a hardware implementation especially in the design exploration
phase to give rapidly insights about the HW design choices to take. However, for
hard real-time embedded applications, hardware solutions based on the use of Field
Programmable Gate Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs) may be preferred.

The FPGA solutions are a good trade-off between cost, design effort, perfor-
mances and reduced time-to-market. However, the FPGAs can only be used to
implement digital counterparts of SOMs, no analog design is supported. If the high
performances, low power consumption or low area occupancy are targeted, an ASIC
is preferable to an FPGA implementation. There are some ASIC implementations
of SOMs that we found in literature [3–5]. An ASIC implementation gives the best
performances but is costly, demands high design efforts and has little or no flexibility.
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In a hardware design, each choice has a cost and must be carefully considered.
The floating point operators are resources greedy and are often avoided in hardware
implementations, unless there are no solutions to obtain needed precision.Besides the
arithmetic precision, in HW SOM implementations the choice of norm for distance
calculation can influence the overall complexity of the hardware. Therefore, we
found some architectures using Manhattan or Euclidean distance [6–8]. The first
one is preferred to the latter due to the lower computation requirements and thus
lower power consumption. Some studies showed that for high-dimensional vectors
the effect of choosing the L1 operator is negligible on the SOM performances [9].

Another important choice to take in HW SOM implementations is the type of
neighbourhood function (NF) to use, whose function determines which neurons’
coefficients in the vicinity of the winning one should be updated. In the original SOM
algorithm, a Gaussian neighborhood function is used, but its hardware implemen-
tation demands complex arithmetic operations and is usually realized as an analog
integrated circuit [4]. It is often approximated with other functions such as: rectangu-
lar, triangular, shift-register based [5, 7]. The shift-register solution of the NF greatly
simplifies its implementation by replacing the resources consuming multipliers with
simple shift registers and is widely used in digital SOM implementations [6–8, 10].

All presented HW architectures have a two-level structure: a massively parallel
distance processing elements (PEs) layer usually connected with hard links to a
global circuit used for winner neuron search and weight update operations. This type
of connection may be advantageous in small SOM networks but in large ones, the
increasing linking complexity considerably limits their clock frequency and thus the
overall performances usually expressed in MCUPS/MCPS (million of connections
and updates per second respectively). Manalakos et al. proposed in [10] a parallel
HW SOM systolic architecture design in which an input vector traverses all neurons
in a pipelined manner, forming that way shorter links and thus a faster HW.

The lack of flexibility of hardware SOMs, which is mainly due to the point-to-
point communication between neurons and especially in large SOM networks, can
be overcome with the use of a Network-on-chip (NoC). NoCs are presented as an
alternative to traditional shared bus allowing the connection of several PEs on a single
chip [11, 12]. They enjoy an explicit parallelism, high bandwidth and a high degree
of modularity, which makes them very suitable for distributed architectures such as
SOM networks.

3 Proposed Architecture

3.1 Self-Organizing Map (SOM)

The architecture of a SOM can be described with a two-dimensional distribution
of L × K neurons. Each neuron has a weight vector −→m of dimension D, which is
continuously compared to the input vector

−→
X :
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−→
X = {ξ1, ξ2, . . . , ξD} ε�D (1)

Each neuron calculates the distance between its weights −→m l,k (0 ≤ l ≤ L − 1,0 ≤
k ≤ K − 1) and the input vector

−→
X . In general, the calculated distance is the Euclid-

ean distance:

∥∥∥−→
X − −→m l,k

∥∥∥ =
√

(ξ1 − μl,k1)2 + (ξ2 − μl,k2)2 + · · · + (ξD − μl,kD)2 (2)

Therefore, the winner neuron, which has the vector −→m c closest to the input vector−→
X , is identified.

c = argmin
l,k

∥∥∥−→
X − −→m l,k

∥∥∥ (3)

During the learning phase, the winner’s weights and the weights of the neurons in
its vicinity are updated as described by the following equation:

−→m l,k(t + 1) = −→m l,k(t) + hc,l,k(t)
[−→

X (t) − −→m l,k(t)
]

(4)

where hc,l,k(t) is the neighborhood function defined as follows:

hc,l,k(t) = α(t) × exp(−
∥∥−→r c − −→r l,k

∥∥
2σ 2(t)

) (5)

With α(t) learning rate; σ(t) Neighbourhood rate; −→r c position of the winning neu-
ron; −→r l,k position of the neuron with index (l, k).

3.2 Network on Chip (NoC)

The structure of a 2D mesh NoC is shown in Fig. 1a. The packets are transported
from a source to a target through a network of routers and interconnection channels
(Link). The network is composed of processing elements (PEs) and routers. Each
router is associated to a PE via a network interface whose primary function is to
pack (before sending) and unpack (after receiving) data exchanged between PEs.
Figure1d illustrates the structure of packets circulating in the network using the
wormhole switching technique. Each packet is composed of flits: header (opening
the communication and “showing” the route to other flits), body (containing the
data) and tail flit(closing the communication). The router (see Fig. 1b) is composed
of a crossbar which establishes multiple links between inputs and outputs of the
router according to the predefined routing algorithm and scheduling policy. The
crossbar and the arbitration of packets in the router are handled with a Control
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Fig. 1 a Structure of a 2DmeshNoC.bNoC router architecture. cAlternate bit protocol.dMessage
structure

Logic Block (CLB). Each router has input and/or output buffers, whose role is to
temporarily accept flits before their transmission to either the local PE or to one of
the neighboring routers. Figure1b shows the interconnection signals of an isolated
router. The connections between neighboring routers and the local PE are carried out
with six signals (3 for each transmission and reception): a bidirectional data bus, a
transfer request signal and an acknowledgment signal denoted with the infixes _d_,
_req_ and _ack_ respectively. Message exchange between a router and its neighbors
follows the alternate bit protocol illustrated in Fig. 1c. Sending a flit through a port
x_d_y (x ∈ {W, S, E, N }, y ∈ {in, out}) is accompanied with the request signal on
the same port x_req_y. Upon the reception of the acknowledge signal on the same
port x_ack_y, the sending of the next flit can be proceeded. A change in a control
signal (_req_ and _ack_ signals) is indicated by inverting its preceding value. If
the request signal has the same binary level as the acknowledge signal or vice versa,
the sending or receiving of a flit is successful and the router can proceed to the next
one. Otherwise, it is blocked. It should be noted that the sending or receiving of a
flit consumes 2 clock cycles.
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(a)(b)

(c)

Fig. 2 aArchitectures of the SOM-NoC’s PE, b VEP and c LWS circuit

3.3 SOM-NoC

The PEs of a L × K NoC were adapted for SOM computation. The architecture of
a SOM-NoC’s PE is presented in Fig. 2a. It consists of 3 circuits: a Vector Element
Processing (VEP) whose role is to calculate the distance and to update the weights of
the corresponding neuron during the adaptation phase (see Fig. 2b); a Local Winner
Search (LWS) circuit presented in Fig. 2c which carries out the comparison of the
local distance and the received neighbor’s distances; an Update Signal Generator
(USG) is the circuit preparing update signals during the adaptation phase; and a Net-
work Interface (NI) ensuring the sending to and receiving of data from neighboring
PEs (neurons). Each PE has an identity (its address in the network) which determines
the instructions its NI needs to execute during the winner search operation. The top
left and the bottom right PEs have some additional functions: they initiate the winner
search operation and winner id diffusion respectively.

Each PE behaves as a neuron: in the competition phase, it calculates the Euclidean
distance between the input vector and its weights and send it through the NI to the
nearest neighbors. The distance is propagated through the network in a systolic
manner as presented in Fig. 3. Each computed distance crosses two neighboring
routers before arriving at the PE’s node. Upon reception of the neighboring PEs’
distances, each PE compares them (with the LWS circuit) to the local one to locally
determine the identity of the winner neuron. The NI is in charge to send the locally
determined minimum distance and the corresponding neuron’s id to the neighboring
PEs. At the bottom right PE node of the network, the identity of the wining neuron is
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Fig. 3 Systolic architecture of SOM

known (see Fig. 3a). This identity is then broadcast to all nodes of the network while
the winner neuron, as well as its neighbors, start the update of their weights. In this
HW architecture, the used neighborhood function is a simple shift function carried
out with a barrel shifter.

The execution time of the learning operation Ti is calculated using the competition
and adaptation times Tc and Ta respectively:

Ti = Tc + Ta (6)

The distance calculation is carried out simultaneously in all PEs. Then, the propa-
gation and comparison at the PE’s level are also conducted in parallel as presented
in Fig. 3c. From Fig. 3, it can be seen that the time needed to send (or propagate) a
calculated distance from one PE to its neighbor PE is equal to the time to cross 2
routers in the network (2 hops). Therefore, the time needed for the competition phase
is given by the expression:

Tc = Tcd + {(Tp + Tcmp)× (Nstg − 1)} (7)

where Tcd , Tp, Tcmp and Nstg are distance calculation, propagation and comparison
time and the level number respectively.

The calculation of the Euclidean distance between the input and the weight vector
is done sequentially element-by-element using the VEP shown in Fig. 2a. Each ele-
mentary operation is performed in a single clock cycle. The intermediary results are
stored in the accumulator, while the final results of the adaptation phase are stored in
the local memory for further reuse. As it is presented in Fig. 4, each element of the
input vector is processed in a single clock cycle and the final distance is ready after
an additional clock cycle. The distance calculation time is given by:
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Fig. 4 Timings representing distance calculation (left) and update of weights (right)

Tcd = (N + 1)× TC L K (8)

where N is the input vector size and TC L K is the clock period.
The propagation time of a flit between two PEs in the presented NoC without

collision (2 flits demanding the same output channel) is calculated by:

Tp = Tpk + {Tr×N r} + Td pk (9)

where Tpk, Tdpk are packing and unpacking time, Tr is the router latency and Nr is
the number of routers to the final destination.

The adaptation phase involves two steps. Broadcasting of the identity of thewinner
neuron is ensured by neurons located at the end of each row of the network. The
necessary broadcasting time is determined by the equation:

Tbc = (Tpk + Td pk + 1)× (K + L − 2)+ 4Tr (10)

Once the identity of thewinner neuron is available, theUSG circuit takes into account
its position and generates the update signals. If a PE is concerned with the update
signals, its VEP circuit starts the update phase in Tupd = N · TC L K clock cycles.
Figure4 presents the timings of the update phase. The update of a weight vector
element takes one clock cycle.

4 Results and Discussion

A 5 × 5 SOM-NoC using 32-element input vectors was used for performance evalu-
ation. The parameters of the implemented architecture are presented in Table1. The
circuit was synthesized on a Xilinx Virtex-6 FPGA board. The obtained maximum
working frequency is 200 MHz.

The performances of each step as well as the overall performances of the archi-
tecture are shown in Table1.
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Table 1 Parameters and performances of the proposed SOM-NoC architecture

Parameter Value Description

L × K 5× 5 SOM size

N 32 Vector size

Nstg 9 Level number

p 12 Data size

q 34 Flit size

R 5 Neighbour radius

Tr 3 Router latency

Tpk 2 Packing latency

Tdpk 2 Unpacking latency

Description Step equation (clock cycles) Time (ns)

1 Distance calculation Tcd = N + 1 165

2 Global winner search Tsw = Tp × (Nstg − 1) =
13 × (Nstg − 1)

520

3 Broadcasting of winner’s id Tbc = (Tdpk + Tpk + 1) ×
(L + K − 2) + 4Tr

260

4 Update weight Tupd = N 160

5 Recall Tc = Tcd + Tsw 685

6 Adaptation Ta = Tbc + Tupd 420

7 Learning Ti = Tc + Ta 1105

MCPS L×K×N
T c × 10−6 1168

MCUPS L×K×N
T i × 10−6 724

The distance calculation (step 1) time depends on the input vector dimension.
For a 32-element input vector, it takes 33 clock cycles, which is equivalent to 165
ns for a 200MHz working frequency. Similarly, in the weight update phase (step 4)
all PEs operate in parallel, that means the number of clock cycles needed for this
phase is proportional to the input vector dimension (32). On the other hand, we note
that the winner neuron search (step 2) is the most time consuming step (almost 50%
of the overall learning time). This search is done sequentially in a systolic manner
as explained in Sect. 3.3 and greatly depends on the network size (L × K ) and thus
on the number of levels of propagation which is equal to L + K − 1. Moreover, the
winner id broadcasting phase (step 3) depends on the number of lines of the network.

The performance of the presented architecture depends on the network size and
the input vector dimension. Figure5a shows the estimated performances in terms of
MCPS and MCUPS as a function of the network size for a 32-element input vector.
It can be seen that the performances increase non-linearly with the network size.
As the network size increases and accordingly the number of available neurons, the
communication time becomes preponderant to the computation one thus limiting the
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Fig. 5 a Performances of a SOM-NoC as a function of the network size (left) and b of a 5 × 5
SOM-NoC as a function of the input vector dimension (right)

increase in performanceswith regard to the number of neurons. On the other hand, for
the same network size while increasing the input vector dimension, the computation
becomes dominant over the communication and a rapid growth of performances
as presented in Fig. 5b can be observed. Moreover, we also note that for the input
vector dimension above 400 elements, the performances have a much slower rate
of growth which can be explained with a very time consuming distance calculation
and weight update phases which are both done sequentially on the input vector. If
the calculating distance and update time exceed the time needed for the competition
and broadcasting steps, there is no significant performance gain with the input vector
dimension increase. Table2 shows the comparison of the proposed HW architecture
with the results reported in [7, 8, 10]. In order to make these results comparable, we
presented the estimated performances (based on data fromTable1) of our architecture
for a 16× 16 SOM using 2048-element input vectors.

Table 2 Performance comparison

Work Size Input
vector

Communication Architecture Frequency MCUPS Scalability

Lachmair
et al. [8]

6050 194 Bus Software
core i7

NA 1628 Yes

Lachmair
et al. [8]

6050 194 Bus SIMD gNBXe
processor

NA 20604 No

Hikawa and
Maeda [7]

16× 16 3 P to P Parallel FPGA 33MHz 25344 No

Manolakos
andLogaras
[10]

100 2048 P to P Systolic array
FPGA

148MHz 3467 No

This work 16× 16 2048 NoC Sequential
systolic FPGA

200MHz 22555 Yes
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5 Conclusion and Perspectives

We presented in this paper an FPGA implementation of a Network-on-Chip-based
hardwareSelf-OrganizingMap.Eachneuron is associated to oneNoCrouter allowing
it to exchange data with other neurons of the network during both the learning and
recall phases. The presented architecture is highly scalable and flexible and can
be easily adapted to a large variety of applications demanding different working
parameters. The implemented neurons support different input vector dimensions.
The most time consuming phase is the winner search phase which is also done
sequentially. The proposed architecture (SOM and NoC) is described in VHDL and
its performances are evaluated for different network and input vector sizes. It has
been showed that the presented architecture in its current state is most suitable for
large input vector dimensions where communication time is neglected with regard
to the computation one. The performance improvement of an order of magnitude in
the recall phase can easily be obtained by exploring the architecture pipelining or by
using faster NoC routers.
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Local Models for Learning Inverse
Kinematics of Redundant Robots:
A Performance Comparison

Humberto I. Fontinele, Davyd B. Melo and Guilherme A. Barreto

Abstract In this paper we report the results of a comprehensive comparative analy-
sis of the performances of six local models applied to the task of learning the inverse
kinematics of a redundant robotic arm (Motoman HP6). The evaluated algorithm are
the following ones: SOM-based Local Linear Mapping (LLM), Radial Basis Func-
tions Network (RBFN), Local Model Network (LMN), Local Weighted Regression
(LWR), Takagi-Sugeno-Kang Fuzzy Model (TSK) and Local Linear Mapping over
K-winners (KSOM). Each algorithm is evaluated with respect to its accuracy in
estimating the joint angles given the Cartesian coordinates along end-effector tra-
jectories within the robot workspace. Also, a careful evaluation of the performances
of the aforementioned algorithms is carried out based on correlation analysis of the
residuals of the best model.

Keywords Local linear models · Inverse kinematics · Self-organizing maps ·
Locally weighted regression · Local model networks · Redundant Robots

1 Introduction

In Robotics, the forward kinematics function is a continuousmapping f : C ⊆ Θn →
W ⊆ Xm , which maps a set of n joint parameters from the configuration space, C,
to the m- dimensional task space,W . If m < n, the robot has redundant degrees-of-
freedom (dof’s), i.e. it can achievemore postures than the strictly necessary to solve a
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given task. In general, control objectives such as the positioning and orienting of the
end-effector are specified with respect to task space coordinates. However, a robot
manipulator is typically controlled only in the configuration space (i.e. joint angles
are sent to the robot controllers). Therefore, it is important to be able to find some
θ ∈ C such that f(θ) is a particular target value x∈W . This is the inverse kinematics
(IK) problem.

The IK of redundant robots is an ill-posed problem because there will be multiple
configurations which result in the same task space location. Thus, computation of
a direct inverse is problematic due to the many-to–one nature (and therefore non-
invertibility) of the map f . The IK problem can be solved in closed form only for
certain manipulators, such as the Puma 560 and Motoman HP6 (see [2]). Solutions
obtained bynumericalmethods can be an alternative to a closed form solution, usually
either using the inverse of the Jacobianmatrix of f , or by using gradient-descent based
methods. However, since these methods are iterative and require costly Jacobian
or gradient computation at each step, they have limited use in real-time control
scenarios.

Another alternative relies onmachine learning algorithms, such as artificial neural
networks (ANNs),which can be used to find an inversemapping f−1 by implementing
either direct inverse modeling (estimating f−1 explicitly) or differential kinematics
methods. The main rationale behind the use of ANNs in robotics comes from the
fact that such learning models can naturally deal with the non-linearity of the solu-
tion set. The multiplicity of solutions in inverse kinematics is usually dealt with by
restriction to a single solution a priori. ANN models applied to IK learning have
been mostly based on supervised learning architectures, specially the multilayer per-
ceptron (MLP) network [5], but a great number of works has been based on the
self-organizing map (SOM) [4] and extensions (see [1] and references therein).

Despite the existence of a number of successful applications of SOM-based tech-
niques for robot modeling and control, a comprehensive performance comparison
among them in learning the inverse kinematics of redundant robots is still missing. In
order to fill this gap, in this paper we evaluate the performances of six local models on
that complex robotic task, namely, the Local Linear Mapping (LLM) [11], the Local
Linear Mapping over K -winners (KSOM) [9], the radial basis function network
(RBFN) [7], the local model network (LMN) [6], the Takagi-Sugeno-Kang (TSK)
fuzzy inference system [10] and the locally weighted regression (LWR) method [8].
Each local modeling algorithm will be evaluated with respect to its accuracy in
estimating the joint angles given the Cartesian coordinates along end-effector tra-
jectories within the robot workspace. A careful evaluation of the performances of
the aforementioned algorithms is carried out based on correlation analysis of the
residuals.

The remainder of the paper is organized as follows. The evaluated local models
are described in Sect. 2. Then, the results of the computer experiments are presented
and discussed in Sect. 3. Section4 concludes the paper.
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2 The Evaluated Models

In this sectionwe briefly describe the sixmodels to be evaluated in the task of learning
the IK of a redundant robot.

2.1 The Local Linear Mapping (LLM)

The basic idea of the LLM [11] is to associate each neuron in the SOM with a linear
mapping trainedwith a variant of the LMS rule. The SOMnetwork is used to quantize
the input space using a reduced number of prototype vectors, while the linear model
associated with the winning neuron provides a local estimate of the output of the
mapping being approximated.

For the IK learning task, vector quantization (VQ) of the input space is performed
by the LLM model using training input samples {xk}N

k=1 as in the usual SOM algo-
rithm, with each neuron i owning a prototype vector wi . In addition, associated to
each weight vector wi , there is a parameter matrix Mi used to generate the local
estimate of the robot’s joint angles as θ̂i = Mi xk .

The adjustable parameters of the LLM model are the set of prototype vectors
wi and the corresponding parameter matrices Mi , i = 1, . . . , Q. For them, we need
two learning rules. The rule for updating the prototype vectors wi is exactly the one
in the usual SOM network. The learning rule for the matrix Mi is a variant of the
normalized LMS rule, that also takes into account the influence of the neighborhood
function h(i∗, i; t):

Mi (k + 1) = Mi (k) + α′(k)h(i∗, i; k)ΔMi (k), (1)

where 0 < α′(k) < 1 is the learning rate, and ΔMi (k) = [θk − Mi (k)xk]xT
k /‖xk‖2,

where θk is the target output vector of the IK mapping being approximated. Training
can demand cycling over the input-output data pairs for several epochs until conver-
gence is observed. Once training is finished, the weight vectors wi and the associated
parameter matrices Mi , i = 1, 2, . . . , Q, remain unchanged for new input vectors.

2.2 Local Linear Mapping Over K-Prototypes (KSOM)

The KSOM [9] is a kind of lazy learning algorithm, whose main idea involves train-
ing firstly the SOM with a few prototypes (usually less than 100 units) in order to
have a compact representation of the input-output mapping encoded in the weight
vectors and build a local model only when required (i.e. whenever an input vector
is presented). For that purpose, the weight vector of the i-th unit in the SOM has an
increased dimension, i.e.wi = [win

i wout
i ]T ∈ R

m+n , wherewin
i ∈ R

m is responsible
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for the vector quantization of the input samples xk , while wout
i ∈ R

n does the same
for the output samples θk .

Once the SOM is trained, for each training input sample xk we need to find the
indices of the K first winning neurons, denoted by {i∗

1 , i∗
2 , . . . , i∗

K }:

i∗
1 (k) = argmin∀i

{‖xk − wi (k)‖} (2)

i∗
2 (k) = arg min

∀i 	=i∗
1

{‖xk − wi (k)‖}
...

...
...

i∗
K (k) = arg min

∀i 	={i∗
1 ,...,i

∗
K−1}

{‖xk − wi (k)‖}

and use their weight vectors to build a local model for the current input. For this
purpose, let the set of K winning weight vectors at iteration k to be denoted by
{wi∗

1
(k), wi∗

2
(k), . . . , wi∗

K
(k)}.

Thus, we expect that the compact representation of the target input-output map-
ping θk = f−1(xk) to be approximated locally over the K winning neurons by the
following linear map: θ̂k = M(k)xk , where M(k) is a matrix computed at iteration
k. The idea behind the KSOM is that the matrix M(k) be constructed by means of
the prototype vectors of the K winning neurons as

M(k) = Wout (k)WT
in(k)

(
Win(k)WT

in(k)
)−1

, (3)

where the matrices Win(k) ∈ R
3 × R

K and Wout (k) ∈ R
m × R

K are defined as

Win(k) = [win
i∗
1
(k) win

i∗
2
(k) · · · win

i∗
K
(k)], (4)

Wout (k) = [wout
i∗
1

(k) wout
i∗
2

(k) · · · wout
i∗

K
(k)]. (5)

An important difference between LLM and KSOM is that while the LLM model
has to store Q local matrices Mi , i = 1, . . . , Q in memory, for posterior use, the
KSOM, in its turn, builds a single local matrix M(k) every time an input vector is
presented, without the need to store it in memory.

2.3 Radial Basis Functions Network (RBFN) and Local
Model Network (LMN)

The RBFN is a classical feedforward one-hidden-layered neural network architec-
ture, widely used for classification and regression [7]. In RBFNs, an Euclidean dis-
tance metric, di (xk) = ‖xk − ci‖, and a Gaussian basis function, zi = exp{−d2

i (x)/

2γ2}, are common choices. The parameter γ > 0 is the radius or width of the basis
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function and is assumed to be equal for all hidden units. In order to normalize the
outputs of the basis functions to sum up to 1, we define

zi (k) = ϕ(di (xk))∑Q
l=1 ϕ(dl(xk))

= exp{−d2
i (xk)}∑Q

l=1 exp{−d2
l (xk)}

(6)

Training of RBFNs usually requires 3 steps. The first step involves the positioning
of the centers ci in the input space, that can be done by a vector quantization algorithm,
such as the SOM. In this case, we just set ci = wi , for i = 1, 2, . . . , Q. The second
step corresponds to the specification of the widths of the basis functions. In this
paper, we use γ = dmax (ci , cl)/

√
2Q, ∀i 	= l, where dmax (ci , cl) = max∀i 	=l{‖ci −

cl‖}. The third step requires the computation of the weight matrix M that connects
the hidden units to the output neurons. For this purpose, we build the matrices Z and
Θ , such that

Z = [z1 | z2 | · · · | zN ](Q+1)×N , where zk = [1 z1(k) z2(k) · · · zQ(k)]T , (7)

Θ = [θ1 | θ2 | · · · | θN ]n×N , (8)

which are used to compute the output weight matrix as M = ΘZT
(
ZZT

)−1
. The

output of the RBFN for the input vector xk is then generated by a linear combination
of Q nonlinear basis functions, i.e. θ̂k = ∑Q

i=1 M(:, i)zi (k) = Mzk , where M(:, i)
is the i-th column of matrix M and zi (k) is computed as in Eq. (6).

The standard RBFN can be generalized to use not just a global weight matrix
M operating at the current vector of outputs of the hidden neurons zk , but also a
set of Q local matrices Mi , i = 1, . . . , Q, which operate on the current input vec-
tor xk . In this case, the response of the network should be rewritten in the form:
θ̂k = ∑Q

i=1 [Mi xk] zi (k) = ∑Q
i=1 θ̂i (k)zi (k), where θ̂i (k) is the estimate of the out-

put vector by the local model associated with the i-th basis function.
This generalization of the RBF network is referred to as the LocalModel Network

(LMN) approach [6]. This approach can be viewed as implementing a decomposition
of the complex, nonlinear system into a set of locally accurate submodels which are
then smoothly integrated by associated basis functions. This means that a smaller
number of local models can cover larger ares of the input space, when compared
with the plain RBF network.

Estimation of the local matrices is carried out as Mi = Θ i XT
i

(
Xi XT

i

)−1
, where

Xi = [x(i)
1 | x(i)

2 | · · · | x(i)
ni

] andΘ i = [θ(i)
1 | θ(i)

2 | · · · |θ(i)
ni

]. Inwords, thematrixXi ∈
R

m × R
ni stores in its columns the ni input vectors that are relevant for the i-th

basis function, while the matrix Θ i ∈ R
n × R

ni in its turn stores the corresponding
ni target vectors. Note that N = ∑Q

i=1 ni . The training input-output pair (xk,θk),
k = 1, . . . , N , is relevant to the i-th basis function if zi (k) > z j (k), ∀ j 	= i .
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2.4 Takagi-Sugeno-Kang (TSK) Model

The TSK fuzzy model is an important approach for local modeling of dynamical sys-
tems [10]. Thus, we consider a fuzzy model consisting of Q rules Ri , i = 1, . . . , Q,
that are of the following format:

Ri : If (x(k) is Ai
x ) and (y(k) is Ai

y) and (z(k) is Ai
z),Then θ̂i (k) = Mi xk, (9)

characterized by “and” logical connectives operating on the premises of the antece-
dent of the rule and a local linear map in the consequent. The input variables
(x(k), y(k), z(k)) comprise the current vector xk ofCartesian coordinates of the robot
end-effector,while A(i)

x , A(i)
y and A(i)

z linguistic representations (e.g. small, large, etc.)
of the fuzzy membership sets on the universe of discourse of x , y and z, respectively.
Theoutput of theTSKmodel is determinedby adefuzzificationprocess, implemented
by means of the center-of-gravity formulation: θ̂k = ∑Q

i=1 μi θ̂i (k)/
∑Q

i=1 μi , where
μi is the certainty of the premise of the i-th rule (e.g., the minimum of the certain-
ties of each of the premise terms). Note that, regardless of inputs, we assume that∑Q

i=1 μi 	= 0.
Fuzzy membership functions for all variables are assumed to be Gaussian func-

tions:

μr (x) = exp

{
− (x − cx,r )

2

2γ2
x

}
, r = 1, . . . , R, (10)

where cx,r (γx ) is the center (spread) of the fuzzy membership functions of the input
variable x . Similar equations are used for the other two input variables (y and z).
The centers of the membership functions of all variables can be estimated from data
by applying a VQ algorithm, such as the K -means algorithm with R prototypes,
over the training data. The components of the weight vector wr , r = 1, . . . , R, being
defined as wr = [cx,r cy,r cz,r ]T .

A common value of the spread is shared by all the R membership functions of
a given input variable, being computed as γx = 2λ(xmax − xmin)/(R − 1), where
xmax and xmin are, respectively the maximum and minimum values over all the data
for input variable x . The parameter λ is inserted as a degree of freedom to vary
the spacing of the membership functions. Similar equations are used for the other
two input variables (y and z). Finally, we can estimate the local parameter matrices
Mi , i = 1, . . . , Q, one for each rule, using a procedure similar to that one used for
LMN models. The training input-output pair (xk,θk), k = 1, . . . , N , is relevant to
the fuzzy Rule i if μi (k) > μ j (k), ∀ j 	= i .

After experimentation with the validation data, we finally set the number of fuzzy
sets for each variable as R = 7. Since we have m = 3 input variables, we end up
with a total of Rm = 73 = 343 rules. We also set λ = 1.
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2.5 Local Weighted Regression (LWR)

For building the LWR model [8], let us consider that the set of N training samples
{xk,θk}N

k=1 ∈ R
m × R

n is already stored in memory. Then, for every new Cartesian
coordinate vector (a.k.a. query point in this context) xq , we need first to compute the
N × N diagonal matrix W = [wkk], where

wkk = exp

{
−1

2
(xk − xq)

T D(xk − xq)

}
, (11)

where the matrix D is usually assumed to be a global diagonal matrix D =
diag(1/σ2

1, 1/σ
2
2, . . . , 1/σ

2
m), with σ2

i denoting the variance of the i-th input vari-
able. The next step requires building the matrices X̃ and Θ as

X̃ = [̃x1 | x̃2 | · · · | x̃N ](m+1)×N , where x̃k = [1 (xk − xq)
T ]T , (12)

Θ = [θ1 | θ2 | · · · | θN ]n×N , (13)

which are used to compute the n × (m + 1) matrix of parameters M for the local
linearmodel asM = ΘX̃T (X̃X̃T )−1. Finally, the predicted joint angles for the current
query point xq is given by θ̂q = M(:, 1), where M(:, 1) denotes the first column of
the parameter matrix M.

It is worth mentioning that the LWR is a type of lazy learning model just like
the KSOM. In this regard, local model is built using the stored data only when a
new input vector is available. However, the LWR stores all N training samples in
memory, while the KSOM stores only the set of Q prototype vectors.

3 Experimental Results and Discussion

We report a number of experiments comparing the performances of the local models
previously described in the task of IK learning for redundant robotic arms. Exper-
iments were carried out for two robots, the PUMA560 and the Motoman HP6, but
only the results for the latter one is reported. Firstly, we report the performances of
all the models in terms of the mean squared error (MSE) for the joint angles over the
testing set: Eθ = 1

NT

∑NT
k=1 e2θ(k) = 1

NT

∑NT
k=1 ‖θk − θ̂k‖2, where NT is the number

of testing samples. Secondly, an evaluation of the performances of the evaluated
algorithms based on correlation analysis of the residuals is also carried out.

Dataset generation: For generating the input-output pairs {(xk,θk)}N
k=1 for

learning the Motoman HP6 robot , we used the Robotics Toolbox for Matlab [2].
Initially, we loaded the robot model (mdl_MotomanHP6) and generated a num-
ber of points (x, y, z) in Cartesian space inside a parallelepiped (with rectangu-
lar faces) defined within the robot’s workspace. Then, for each coordinate vector
xk = (x(k), y(k), z(k)), we used the IK command function ikine6s to get the
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Table 1 Performances of the
evaluated models in terms of
MSE values

Model Mean MSE Standard dev. Minimum MSE

LLM 2.2965e-04 2.9751e-05 1.8570e-04

KSOM 2.7024e-04 3.7857e-05 2.1869e-04

RBFN 1.4724e-07 3.5469e-08 8.3337e-08

LMN 2.6949e-07 4.8677e-08 1.6837e-07

LWR 5.4919e-05 4.0379e-06 4.7437e-05

TSK 6.3000e-03 8.3961e-04 4.9000e-03

ELM 3.2265e-07 9.4905e-08 5.5536e-08

corresponding values of the six joint angles θk = [θ1(k) θ2(k) · · · θ6(k)]T . If NaN
(not-a-number) symbol was returned, then that Cartesian positioning was considered
unreachable. At the end, we generated a total of N = 1018 input-output pairs. Two
Cartesian trajectories, of circular and sinusoidal shapes, were generated inside the
parallelepiped with the goal of evaluating the trained models in their capacity of esti-
mating the joint angles for unseen Cartesian points. This set was further divided into
training (60%), validation (20%) and testing (60%) subsets. A total of 50 indepen-
dent runs were executed. For each run the training/validation/testing samples were
randomly selected.

Approximation Accuracy—For this experiment, the following specification for
the best hyperparameters were selected for the evaluated models after extensive
experimentationwith the training/validation data sets. (i)LLM—TheSOMis trained
using thesom_make function of the SOMtoolbox1 using Q = 49 neurons in a sheet-
like 7 × 7 array, with hexagonal neighborhood topology, 100 initial training epochs
and 1500 additional epochs for fine tuning. All other parameters of the som_make
function use default values. (i i) KSOM—Same specification of the LLM model,
but with Q = 1024 neurons in a sheet-like 32 × 32 array. (i i i) RBFN—Q = 97
hiddenGaussian basis functions,whose centers are found via the K -means algorithm.
Single Gaussian width parameter for all basis functions computed as in Sect. 2.3. (iv)
LMN—Same specification of the RBFNmodel with Q = 91 hidden basis functions.
(v) LWR - No parameter tuning is required. (vi) TSK—Number of membership
functions Q = 17 and 5 membership functions per input variable. The algorithm
K -means is used to find the centers of the Gaussian membership functions. The
width parameters of all membership functions are set to 9.

The MSE results are shown in Table1, where its is reported the MSE values
averaged over 50 runs for each evaluated model, together with the standard deviation
and the minimum values of the MSE. For the sake of completeness, we report also
the performance of a feedforward global neural network model, the extreme learning

1Available for download from www.cis.hut.fi/somtoolbox/.

www.cis.hut.fi/somtoolbox/
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(a) (b)

Fig. 1 Trajectories recovered by a the RBFN model and b the LLM model. Solid line Target
trajectory. Open circles estimated points

machine (ELM) [3], on the same task. This networkwas trainedwith Q = 110 hidden
neurons, all of them using the hyperbolic tangent activation function. In this table,
the best performances are highlighted in boldface. Thus, one can easily note that
the RBFN and the LMN models performed much better than the other local models,
with performances equivalent to that of the ELM network.

A qualitative way of evaluating the accuracy of the models involves the control
of the position of the robot’s end-effector along a predefined trajectory. This task
is implemented in the present context as follows. A certain number of Cartesian
coordinates along a specific trajectory are defined in robot’s workspace. Then, the
corresponding joint angles (postures) are estimated by a given local/global model
and used as inputs to the known forward kinematics of the Motoman HP6 robot.2

By doing this, we assume that the control system is working perfectly. The results
for the RBFN model (best local model, as inferred from Table1) is shown in Fig. 1a.
For the sake of comparison, we also show in Fig. 1b the resulting trajectory for the
LLMmodel, where a common problem of this model (i.e. abrupt transitions between
local models) is easily visualized. This problem does not occur with the other local
models.

Residual Analysis—A common strategy to validate a regression model is via
residual analysis. The rationale for this kind of analysis is that, for a well fitted
model, the approximation errors should resemble white noise. The histograms of the
residual errors produced by the RBFN model for the three first joint variables of the
Motoman HP6 robot and the corresponding autocorrelation functions (ACFs) are
shown in Fig. 2. As can be seen, the sequence of residuals for all three joint angles
satisfy the whiteness test, i.e., they are all uncorrelated and follow approximately
a bell-shaped distribution, confirming the goodness-of-fit of the RBFN model. A
similar behavior was also observed for the sequence of residuals produced by the
LMN model (second best one).

2Available in the Robotics Toolbox for Matlab [2].
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Fig. 2 Residual analysis of the RBFN model for the first three joints. a, c, e: Histograms of the
residuals. b, d, f : Autocorrelation functions of the residuals

4 Conclusion

In this paper, a comprehensive performance evaluation of six localmodelingmethods
applied to the inverse kinematics learning problem of redundant robots. All the mod-
els were evaluated with respect to the accuracy in estimating the joint angles given
the Cartesian coordinates along end-effector trajectories within the robot workspace.
The RBFN model achieved the best performance in this task, followed closely by
the LMN model. Their performances were equivalent to that of the ELM network
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(a global model). Finally, an analysis of the residuals produced by the RBFN model
is presented and discussed, confirming the quality of the fitted model.

Acknowledgments Authors thank CNPq (grant 309841/2012-7) and NUTEC for their financial
support.
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Using SOMs to Gain Insight into Human
Language Processing

Risto Miikkulainen

Abstract While SOMs are commonly used as a tool for data visualization and data
analysis, they can also serve as a model for cognitive functions in humans. Such
functions include semantic and episodic memory, vision, and language. In this talk I
will review how elements of sentence meaning can be laid out on a map, resulting in
human-like graded semantic understanding instead of a single parse tree. I will also
describe a model of the lexicon that can be fit to the individual patient with aphasia,
and used to predict optical rehabilitation treatments.
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Prototype-Based Spatio-Temporal
Probabilistic Modelling of fMRI Data

Nahed Alowadi, Yuan Shen and Peter Tiňo

Abstract Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to
study human brain activity in a non-invasive manner. It aims to detect brain ac-
tivation areas in response to specific stimuli. A variety of spatio-temporal fMRI
models have been developed to detect the link between cognitive tasks and haemo-
dynamic responses. In conjunction with a parametric approach to HRF modeling,
a prototype-based spatio-temporal fMRI model has been developed by (Shen et al.
[1]) so as to significantly reduce model complexity, while sufficiently representing
dominant spatio-temporal features of fMRI data. However, such a model poses a
challenging non-linear parameter estimation task. We propose a modification of the
parametric HRF model used in [1] so as to de-couple the HRF’s response magnitude
parameter from its shape parameters. This is justified through both algorithmical
and conceptual arguments. We show in extensive numerical experiments that, com-
pared with the original model, the model based on normalized HRF has much more
favorable parameter estimation properties, although a careful data driven initializa-
tion can improve parameter estimation, especially in the original model employing
un-normalized HRF.
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1 Introduction

With the growing interests in studying the working of the brain, several techniques
have been developed to enable researchers to study brain activities, for example
Positron Emission Tomography (PET), Electro Encephalo Graphy (EEG), or Func-
tional Magnetic Resonance Imaging (fMRI). Each of these techniques has its own
importance and application area. Due to its high spatial resolution, fMRI is particu-
larly popular.

Various statistical methods have been suggested for analyzing fMRI data. In a
broad sense, they can be categorized as model-driven (e.g. GLM) or data-driven
(e.g. ICA) methods. Earlier approaches adopted a mass-univariate approach to fMRI
data analysis and thus ignored the spatio-temporal nature of the brain activations.
Over the past decade, a spatial-temporal approach to fMRI data analysis has been
widely adopted by introducing spatial regularization into the existingmass-univariate
approaches [2–4]. In [1] we proposed a prototype based model, SMM-HPM, con-
structed based on prototypical Hidden Process Models (HPM) [5]. In [5], a HPM is
assigned to each of individual voxels in a region of interest (ROI). In [1], however,
a small number of distinct HPMs (spatially organized temporal prototypes) are used
to model fMRI time series across all voxels through a mixture of these HPM. The
inter-voxel variability is accounted for by the voxel-varying mixture weights. For
each HPM, the spatial distribution of its weight is modelled by a parametric function
formulated as a mixture of multivariate Gaussians [1]. Such formulations are com-
monly referred to as a Spatial Mixture Model (SMM). Importantly, the number of
model parameters in SMM-HPM does not grow with the number of voxels.

The aim of this work is to improve the learning of SMM-HPM and to pave the way
for an extension to group SMM-HPM. In [1], Gamma function is adopted to model
the shape of a Haemodynamic Response Function (HRF). However, variation of the
two-dimensional parameter vector of Gamma function not only leads to the variation
of its shape (i.e. both time-to-peak and peak width) but also causes the variation of
peak height. This fact implies that the neural response level (NRL) in [1] depends on
both the magnitude and shape parameters. On the other hand, HRF shape is subject
dependent and task independent, while the opposite is true for NRL. Therefore, it
conceptually makes sense to de-couple NRL from the shape parameter. In addition,
such a de-coupling can improve SMM-HPM’s parameter identifiability and thus
make the learning of SMM-HPM more robust.

2 The Model

In this section, we first briefly review the SMM-HPM model [1] and then propose
its modification based on normalized HRF.
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2.1 SMM-HPM Overview

Let matrix Y ∈ RV ×T denote the fMRI data of V voxels and T volumes and vector
y(v) ∈ RT is fMRI time series of T volume at voxel v, and scalar y(v, t) a fMRI
measurement at voxel v at volume t . The SMM-HPM model is a mixture of K
spatio-temporal prototypes (indexed by k = 1, 2, . . . , K ) that account for K distinct
neural activation patterns in an ROI. The model also contains a “null prototype” that
accounts for the residuals in fMRI data (k = 0). Further, conditional on the model,
fMRI measurements at different voxels and volumes are independent of each other.
Thus, the key ingredient of SMM-HRF model is the likelihood of y(v, t) written as

p
(
y(v, t);Θ

) =
K∑

k=0

p(k|v;ΘS) · p
(
y(v, t)|k;ΘT

k

)
(1)

where p(k|v;ΘS) denotes the prior probability for the k-th prototype generating
fMRI time series at voxel v and p

(
y(v, t)|k;ΘT

k

)
the likelihood probability for

y(v, t) being generated by the k-th prototype. These probabilities are parameterized
by spatial parameter ΘS and the k-th HPM’s temporal parameter ΘT

k , respectively.
Moreover,Θ denotes the set of all model parameters including spatial parameterΘS

and temporal parameter ΘT = {ΘT
0 , . . . , ΘT

K }.
In the following we define K HPMs. Note that a HPM is independent of vox-

els. Also, all HPMs share a common model structure and differ only in their model
parameters. Thus, to ease the presentation, the prototype index k is dropped in this
paragraph. To start with, we first assume fMRI time series y(t) to be a linear super-
position of a signal component x(t) and a noise component ε(t), i.e.

y(t) = x(t) + ε(t). (2)

The noise is further assumed to be i.i.d. white Gaussian, i.e. ε(t) ∼ N (0,σ2). The
key point of modelling x(t) is that for each stimulus, its haemodynamic response is
broken down to distinct constituents, which are the cognitive processes that evoked
by that stimulus. Accordingly, x(t) is given by:

x(t) =
S∑

s=1

P∑
p=1

h p,s(t), (3)

where S is the number of stimuli, P is the number of cognitive processes and h p,s(t)
is the haemodynamic response from the p-th cognitive process corresponding to the
s-th stimulus:

h p,s(t) = ap,s · δ(t − (tp,s + τp,s))
⊗

gp,s(t), (4)
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where ap,s is the response magnitude, tp,s is the stimulus onset time, τp,s is the delay,
and gp,s(t) is the shape function - in our case, gamma function

gp,s(t) = g(t |κp,s, θp,s) =
tκp,s−1 exp(− t

θp,s
)

(θp,s)
κp,s �(κp,s)

, (5)

where κ is the shape parameter and θ is the scale parameter.
The prior probability p(k|v) varies within the ROI, but it is known that the haemo-

dynamic response in the neighboring voxels is convergent. Thus, smoothness con-
straints are imposed to the spatial prior and so the prior probability is defined as:

p(k|v;ΘS) = p(v|k;ΘS
k )∑K

k=0 p(v|k;ΘS
k )

, (6)

where p(v|k;ΘS
k ) is the likelihood of the prototype k having voxel v in its region of

influence. This likelihood is modelled by Gaussian distribution:

p(v|k) = N (rv|μk,Σk), (7)

where r is the location of the voxel v. The spatial parameterΘS
k = {μk,Σk} includes

the mean vector and the covariance matrix of the k-th Gaussian distribution, respec-
tively. Ellipsoidal shape of the neighbourhood of the k-th prototype is characterized
by the eigenvectors and eigenvalues of Σk .

2.2 HRF with Normalized Shape Function

Recall that the shape function of the p-th process evoked by stimulus s, i.e., gp,s(t)
in Eq.4 is a Gamma function. The peak of this shape function is located at tmax =
(κp,s − 1) · θp,s . The height of this peak is given by gp,s(tmax ) which is not equal
to 1. Thus, the neural response level (NRL) of the corresponding HRF is equal to
ap,s · gp,s(tmax ). This gives rise to the dependence of NRL on HRF shape which
could be a subject-specific HR property. On the other hand, NRL would vary across
stimuli and is not related to any subject-specific HR property. Although this problem
can be addressed e.g. by adopting a canonical HRF or by constraining HRFs, we
propose a more direct and natural solution by employing a normalized HRF model
with gp,s(tmax ) = 1.

The normalized HRF is thus obtained as g̃p,s(t) = gp,s (t)
gp,s (tmax )

, which leads to

g̃p,s(t) =
(

t

tmax

)κp,s−1

exp

(
− t − tmax

θp,s

)
, where tmax = (κp,s − 1)θp,s (8)
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3 Learning Model Parameters

As in the original SMM-HPM (with unnormalized HRF), we learn the model para-
meters in Bayesian manner (MAP estimation) by maximizing the posterior

p(ΘS ,ΘT |Y) = p(Y|ΘS ,ΘT ) · p(ΘS ,ΘT ).

Part of the cost function tominimize is formed by the negative logmodel likelihood L

L =
V∑

v=1

T∑
t=1

− log

(
p

(
y(t, v)|ΘT ,ΘS) )

. (9)

For a particular subject and a particular ROI, it is reasonable to assume that
the HRF shape is time constant across independent runs across a scan session or
subsequent sessions across fMRI experiment [6]. When assuming that the shape
and delay parameters are constant across all stimuli, there are two subsets of the
parameters, temporal parameters

ΘT = {
ak

p,s, θ
k
p,κ

k
p, τ

k
p : p = 1, . . . , P, and s = 1, . . . , S

}K

k=1

and spatial parameters ΘS = {μk,Σk}K
k=1. These two subsets are optimized allit-

eratively using scaled conjugate-gradient optimization algorithms. As only HRF is
modified in the newmodel, the gradients for optimizing the spatial parameters remain
unchanged. For the HRF parameters, however, new formulae for the corresponding
gradients need to be derived. Derivative of L , with respect to the temporal parameter
ΘT

k = {κk,p, θk,pτk,p}P
p=1 of the k-th prototype is given by

∇ΘT
k

L =
V∑

v=1

T∑
t=1

(−) · p
(
k|v; yvt

) ·
( yvt − xk(t;ΘT

k )

σ2

)
·
(
∇ΘT

k
xk(t;�T

k )
)

(10)

where ∇{κk,p,θk,pτk,p}xk(t;�T
k ) is equal to

S∑
s=1

hk
p,s ·

{
t

θk,p
− κk,p + 1,

t

(κk,p − 1)θk,p
,

1

θk,p
− κk,p − 1

t − τk,p

}
(11)

4 Controlled Experiments

To examine the accuracy of parameters estimation when inferring the two spatio-
temporal fMRI models (with un-Normalized and normalized HRF shape function)
from fMRI data, a numerical experiment using synthetic data has been designed. The



198 N. Alowadi et al.

estimated model parameters will be compared to the ground truth as the estimation
task is made progressively difficult by increasing the deviation (up to 30%) of the
initial parameter setting from the ground truth.

Synthetic fMRI data have been generated for the purposes of controlled experi-
ments. The size of these data are 1000 voxels organized on a 3-D lattice (i.e. 10×10×
10). Such voxel set size is comparable with the size of a large ROIs.1 We assume that
there are two sources of neural activation in the above voxel space. This means that
there are two prototypes with distinct HPMs. The spatial prior of these two proto-
types are computed using Eqs. 6 and 7 while {μk}2k=1 and {Σk}2k=1. are predetermined
as μ1 = (3, 5, 5)ᵀ, μ2 = (7, 5, 5)ᵀ, and Σ1 = Σ2 = I3×3 (identity matrix). The
data was generated by a sequence of 50 stimuli with their Inter-Stimulus Interval
(ISI) equal to 3.0 time units and regularly measured at a frequency of two volumes
per time unit. This yields 300 fMRI volumes. Each stimulus evokes two artificial
cognitive processes that are separated in time by 1.5 time units. The haemodynamic
response of process p evoked by stimulus s is modeled as the product of the shape
function gp and the response magnitude ap,s .

We assume that the shape function is time constant. Thus, its shape and delay
parameters are the same for all stimuli. The variations in the haemodynamic response
across prototypes, processes and stimuli come from the variations in the response
magnitude. The response magnitude a as function of stimulus index s for process p
in prototype k is modeled as a sine function

ak
p,s = sin

(
2π

8
· s · ISI + δk,p

)
,

where s = 0, 1, . . . , 49, δ1,1 = 0 , δ1,2 = π
2 , δ2,1 = 3π

4 , and δ2,2 = 5π
4 .

All model parameters are initialized by assigning each parameter θ ∈ {ΘS ,ΘT }
a value θini t that deviates from the corresponding ground truth θtr by a fixed relative
difference η, that is, θini t = θtr · (1 + ε · η), with ε ∈ {−1, 1}.

where ε takes its value (i.e. +1 or −1) with equal probability. Note that as the
number of model parameter (ΘS , ΘT ) is very large, the above initialization method
does yield a large pool of possible initializations for a given η. We experimented
with various values of η, but in this study report results for η = 30%.

4.1 Performance Measures

In order tomeasure the accuracy of parameter estimation, different summary statistics
are used for each type of the model parameters. In the controlled experiments, the
known ground truth values of the parameters were used as a reference for quantifying
the estimation accuracy.

1 Themethodology developed here focuses onROI-based analysis, rather thanwhole-brain analysis.
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Spatial Prior: For prototype k, we denote its ground-truth spatial prior byN k
g (μk

g,

Σk
g ) and the estimated one by N k

e (μk
e,Σ

k
e ). The accuracy of (μk

e ,Σ
k
e ), denoted

by AΘS
k
, is quantified by the symmetrized Kullback–Leibler divergence between

these two multivariate Gaussian distributions:

ASk = D(N k
g || N k

e ) + D(N k
e || N k

g )

2

= Tr
((

Σk
g

)−1
Σk

e + (
Σk

e

)−1
Σk

g

2

)

+ (μk
e − μk

g)
ᵀ
(
Σk

g

)−1 + (
Σk

g

)−1

2
(μk

e − μk
g) − 3 (12)

The overall accuracy of the spatial prior estimation is then AS = 1
K

∑
k ASk .

HRF Shape Function: To measure the accuracy of the haemodynamic response
shape parameters κk

p and θk
p for prototype k and process p, the difference between

the ground truth HRF and the estimated HRF has been computed as their L1

distance: Ag̃k,p = 1
n

∑n
i=1

∣∣∣g̃g
k,p(iΔt) − g̃e

k,p(iΔt)
∣∣∣,, where n is the number of

sample points (n = 2000) andΔt = 0.01. The overall accuracy of shape function
estimation is given by Ag̃ = 1

P·K
∑

k

∑
p Ag̃k,p .

HRF Response Magnitudes: The accuracy of the haemodynamic response mag-
nitude (ak

p,s) estimation was measured by two summary statistics:
(i) integral L1 difference between the ground truth and the estimated response
magnitudes as follows

Aak,p = 1

S

S∑
s=1

∣∣∣ag
k,p,s − ae

k,p,s

∣∣∣,

where n is the number of stimuli. The overall accuracy of response magnitude
estimation is given by Aa = 1

P·K
∑

k

∑
p Aak,p ;

(ii) zero-lag cross correlation between the ground truth and the estimated time
series of HRF response magnitudes, denoted by C2

0 . Note that due to the way the
synthetic data is generated, the ground truth value of C2

0 is −1.

4.2 Results

The performance of parameter estimation for the model with the normalized HRF is
reported in Table1. It shows that the results remain stable with initialisation using
varying degree of deviation from the ground truth (up to 40%).

Results of the experiments reporting the accuracy in recovering the parameters
are shown in Table2 for models involving both the un-normalized and normalized
HRF when the initialisation based on 30% deviation from the groud truth is used.



200 N. Alowadi et al.

Table 1 Parameter estimation results from experiments with initialization using different degree
of deviation from the ground truth: Spatial prior estimation accuracy AS , HRF shape function
estimation accuracy Ag , HRF magnitude estimation accuracy Aa and Zero-lag cross-correlation
coefficient C2

0

Degree of
deviation (%)

Statistics AS Ag Aa C2
0

15 Mean 1.97E-4 0.012 0.041 −0.998

StDev 0 0.003 0.007 0.003

20 Mean 2.04E-4 0.014 0.064 −0.981

StDev 0 0.006 0.006 0.044

25 Mean 1.97E-4 0.011 0.049 −0.997

StDev 0 0.003 0.003 0.001

30 Mean 1.98E-4 0.011 0.050 −0.996

StDev 0 0.002 0.015 0.003

40 Mean 1.98E-4 0.015 0.079 −0.998

StDev 0 0.006 0.021 0.003

Table 2 Parameter estimation results from experiments with initialization using 30% deviation
from the ground truth: Spatial prior estimation accuracy AS , HRF shape function estimation accu-
racy Ag , HRF magnitude estimation accuracy Aa and Zero-lag cross-correlation coefficient C2

0

HRF setting Statistics AS Ag Aa C2
0

Un-norm HRF Worst 28.06 0.042 2.566 −0.831

Best 2E-4 0.004 0.435 −0.998

Mean 5.02 0.017 1.226 −0.935

StDev 8.82 0.014 0.792 0.058

Norm HRF Worst 2E-4 0.016 0.083 −0.991

Best 2E-4 0.008 0.023 −0.999

Mean 2E-4 0.011 0.050 −0.996

StDev 0 0.002 0.015 0.003

Compared to the un-normalized HRF shape function (u-HRF), the learning of SMM-
HPM with the normalized one (n-HRF) is clearly much more robust. Both the bias
and variance of the n-HRF based estimation are lower. Detailed analysis of the results
(not reported in detail due to lack of space) revealed that in the case of u-HRF based
model, 5 out of 10 random initializations lead to poor parameter estimates (Group1).
Interestingly enough, the remaining 5 random initializations lead to comparable
resultswith n-HRF (Group2). Particularly, the estimated spatial priors of n-HRFwere
all very close to the ground truth whereas those of u-HRF in Group 1 significantly
deviate from the ground truth. The same was observed for HRF-related estimates
in Group 1. For Group 2, although the error in HRF magnitude estimates of u-HRF
are still considerably large (when compared to those of n-HRF), the corresponding
zero-lag cross-correlation estimates are very close to the ground truth. This indicates
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that the estimates of HRF response magnitudes are nearly a rescaling of the ground
truth. This is a result of interaction between HRF shape and magnitude parameters.
The effect is further amplified by the mis-matching between model and data when
the data generated by the model with the normalised HRF were fitted to the model
with the unnormalised HRF.

While this analysis revealed estimation stability of the two approaches around
the ground truth parameter values, In practice, the ground truth model parameters
are unknown. In particular, even a good guess of HRF response parameters is not
available. Instead, an appropriate data-driven parameter initialization based on the
observed fMRI signal is used for a full-blown model learning as described in Sect. 3.
Details of such a parameter initialization will be presented in the next section.

5 Data-Driven Parameter Initialization

In the proposed data-driven parameter initialization, we initialize each prototype
individually. First, the spatial prior of a prototype (i.e. its μ and Σ) are initialized by
(functional) clustering fMRI time series [7] (Step 1). Then, this Gaussian distribution
is used to select a subset of voxels that most represent that prototype (Step 2).
Following this, fMRI data on these voxels are used to initialize the corresponding
HPM model. In theory, we could estimate HRF shape parameter and magnitude
parameter iteratively by minimizing L in the same way as for the full model. An
initialization of HRF shape parameter is still needed and thus we randomly sample
this parameter vector from its permissible range (Step 3a). Given this setting of
HRF shape parameter, HRF magnitude parameter can be initialized by applying the
conventional GLM method (Step 3b). Note that at Step 3, the model we fit to the
data is not a mixture model but a HPM. It makes the initializing and learning much
simpler (when compared to the full model), which in turn allows us to use a large
number of random initialization for HRF shape parameter and find the best solution
by choosing the one with the least L . Below we summarize technical details of each
initialization step.

Step 1: To cluster fMRI time series, we employ the functional K means method.
The functional (signal based) clustering distance D between voxel v1 and v2 is
defined as

D(v1, v2) = d(v1, v2) − λ · C2
0

(
y(v1), y(v2)

)

where d(·, ·) denotes the Euclidean distance in the voxel space, C2
0 (·, ·) denotes

zero-lag cross-correlation, and λ is a tuning parameter. After performing the clus-
tering, for each cluster, we fit a three-dimensional Gaussian distribution to the
location of all voxels in this cluster and use its μ and Σ to initialize the spatial
prior of the corresponding prototype;
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Step 2: To determine the “most representative voxels for prototype k”, we rank
all voxels by p(v|k) (see Eq.7) and take the first n voxels in the rank with∑n

i=1 p(vi |k) = 20%;
Step 3a: A HRF shape parameter (θ,κ) is permissible if the corresponding time-

to-peak T p and peak width W are both within their permissible ranges. Note that
T p is the mode of a Gamma function (i.e. T p = (κ − 1)θ) and W is the square
root of its variance (i.e. W = √

2 ln 2 · √κθ). Their permissible ranges are given
by [Wmin = 3s, Wmax = 6s] and [T p

min = 3s, T p
max = 7s], respectively;

Step 3b: To perform a GLM based analysis, we define a regressor in the design
matrix X for each pair of stimulus and process. Thus, the resulting X is a matrix
of size T × P · S. Each column of X corresponds to a regressor and the one
corresponding to stimulus s and process p is given by h p,s( j · TR) (see Eq.4).
The regression coefficient vector β contains all HRF magnitude parameters. A
(least-squares) estimate of β is given by β̂ = (X T X)−1X T Y where Y denotes the
fMRI data.

Results of the experiments involving data-driven parameter initialization (on the
same set of synthetic fMRI data used in Sect. 4.2) are shown in Table3. The data-
driven initialization indeed massively improves u-HRF based estimation of spatial
priors of the HPM prototypes. The corresponding estimation of the response ampli-
tudes is also improved. Data-driven initialization with the normalized HRF yields
a smooth time course of response magnitudes deviating from the ground truth to a
larger degree than in the deviation based initialization. In contrast, response ampli-
tude time courses obtained by the data-driven initialization with the unnormalised
HRF are typically much less “smooth”. However, subsequent full-blown learning
typically smooths the response amplitude estimates. Interestingly, the estimation er-
ror Aa mainly arises from a phase shift between the estimated and ground truth time
courses (preserving the main shape of the response amplitude time course).

Table 3 Parameter estimation results for experiments with data-driven parameter initialization:
Spatial prior estimation accuracy AS , HRF shape function estimation accuracy Ag , HRFmagnitude
estimation accuracy Aa and Zero-lag cross-correlation coefficient C2

0

HRF setting Statistics AS Ag Aa C2
0

Un-norm HRF Mean 1.3E-4 0.016 0.583 −0.998

StDev 0 0.011 0.001 0.000

Norm HRF Mean 2.0E-4 0.009 0.757 −0.999

StDev 0 0.002 0.020 0.002
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6 Conclusion

We have empirically investigated the bias and variance of parameter estimation of a
probabilistic prototype based model of fMRI data [1]. In particular, we suggested a
modification of the original model with a normalized HRF. Such a modification not
only constitutes a more natural model formulation, but also stabilizes the parameter
estimation (when compared with the original un-normalized HRF case). Moreover,
normalized HRF formulation is a necessary ingredient for building population based
models. Investigation of possibilities for building such group-level SMM-HPMmod-
els is a matter for future research.
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LVQ and SVM Classification of FDG-PET
Brain Data
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Abstract We apply Generalized Matrix Learning Vector Quantization (GMLVQ)
and Support VectorMachine (SVM) classifiers to fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) brain data in the hope to achieve better classification
accuracies for parkinsonian syndromes as compared to the decision tree method
which was used in previous studies. The classifiers are validated using the leave-
one-out method. The obtained results show that GMLVQ performs better than the
previously studied decision tree (DT) method in the binary classification of group
comparisons. Additionally, GMLVQ achieves a superior performance over the DT
method regardingmulti-class classification. The performance of the considered SVM
classifier is comparable with that of GMLVQ. However, in the binary classifica-
tion, GMLVQ performs better in the separation of Parkinson’s disease subjects from
healthy controls. On the other hand, SVMachieves higher accuracy than theGMLVQ
method in the binary classification of the other parkinsonian syndromes.
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1 Introduction

Diagnosis of neurodegenerative diseases (NDs), especially at an early stage, is very
important to affect proper treatment [1], but it is still a challenge [19]. Nevertheless,
some studies report considerable success in differentiating between some of these
diseases [23]. In fact, promising classification performances were obtained for the
multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) groups
versus the healthy control group in the study [16] where the decision tree (DT)
methodwas used. The same study showed that discriminating the Parkinson’s disease
(PD) group from healthy controls (HC) on the basis of PET brain scan imaging data
remains a challenge. Therefore, in this paper other classification methods are applied
in the hope to improve classification of parkinsonian syndromes, in particular PD,
MSA, and PSP. The classification methods used in this study are Generalized Matrix
Learning Vector Quantization (GMLVQ) and Support Vector Machine (SVM).

LVQ is a method which uses prototypes assigned to each class. A new case is
classified as belonging to the class of the closest prototype [12]. In the training
phase, a set of appropriately chosen prototypes is computed from a given set of
labeled example data. This training process can be based on a suitable cost function,
as for instance in the so-called Generalized LVQ (GLVQ) introduced in [17]. The
conceptional extension to matrix-based relevance learning was introduced in [18];
simpler feature weighting schemes had been considered earlier in [10]. Relevance
learning provides insight into the data in terms of weighting features and combina-
tions of features in the adaptive distance measure. Moreover, GMLVQ allows for the
implementation of multi-class classification in a straightforward way.

The Support Vector Machine is a supervised learning method for classifying data
by maximizing the margin between the defined classes, see for instance [4, 7]. The
aim of SVM training is to minimize the classification error while maximizing the
gap or margin between the classes by computing an optimally separating hyperplane.
The training data points that lie closest to the hyperplane define the so-called support
vectors [6, 25]. This method was originally designed for binary classification but
has been extended to multi-class classification, see for instance [11] and references
therein. Moreover, several studies including [9, 13] have used SVM to classify neu-
rodegenerative diseases with high accuracy. Other examples of SVM applications
like biological data mining are described in [7].

2 Method

The data used in this study is described in [22]. The brain data were obtained from
18 healthy controls (HC), 20 Parkinson’s Disease (PD), 17 progressive supranuclear
palsy (PSP) and 21multi system atrophy (MSA) cases.We apply the scaled subprofile
model with principal component analysis (SSM/PCA), based on the methods by
Spetsieris et al. [21], to the datasets to extract features. Themethod was implemented
in Matlab R2014a. The SSM/PCA method [14, 15, 20] starts by double centering
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the data matrix and then extracts metabolic brain patterns in the form of principal
component images, also known as group invariant subprofiles. The original images
are projected onto the extracted patterns to determine their weights, which are called
subject scores. The subject scores then form the features that are input to the classifiers
to classify the subject brain images. Because of the application of the PCA method,
the computed subject scores are dependent on the whole input dataset, an unusual
circumstance in the standard situation. This makes the number of features extracted
equal to the number of samples in the dataset.

A leave-one-out cross validation (LOOCV) of the classifiers is performed to pre-
dict their performance on new subject cases. For each run, a subject (test sample) is
left out, then the SSM/PCA process is performed on the rest of the subjects (train-
ing set) to obtain their scores on the principal components. These subject scores are
then used to train the GMLVQ and the SVM classifiers. The test subject is projected
onto the invariant profiles to obtain its scores on the extracted profiles. Then the test
subject scores are used to evaluate the trained classifier. The sensitivity (true positive
rate), specificity (true negative rate) and classifier accuracy are determined. Note that
the test subject is removed before the SSM/PCA process in order to deal with depen-
dencies of the extracted features on both the training and test sets. In addition, the test
set receiver operating characteristic (ROC) curve and Nearest Prototype Classifier
(NPC) confusion matrix are computed for all the left-out subjects. The area under
curve (AUC) of the ROC curve is a measure of the ability of the features (i.e., subject
scores on the principal components) to separate the groups.

For both the SVM and GMLVQ classifiers, we do binary and multi-class clas-
sification. The binary classification involves comparing the distinct disease groups
(PD, PSP, and MSA) with the healthy control group. The multi-class classification
concerns the comparison of all the groups, i.e., HC versus PD versus PSP versus
MSA (a total of 76 subjects), as well as only the disease groups, i.e., PD versus PSP
versus MSA (a total of 58 subjects). The goal is to determine the class membership
(healthy or diseased) of a new subject of unknown diagnosis and also determine the
type of parkinsonian syndrome.

For SVM training and testing, we use the Matlab R2014a functions “fitcsvm”
and “predict”, respectively, with default parameters and a linear kernel, representing
a large margin linear separation in the original feature space. Also, all features are
centered at their mean in the dataset and scaled to have unit standard deviation. The
“fitcsvm” returns an SVM classifier which can be used for classification of new data
samples. It also provides class likelihoods which can be thresholded for an ROC
analysis. For the SVM multi-class classification we use the LIBSVM library [5]
with the one-against-one method, since the previously mentioned Matlab functions
support only binary classification. The one-against-one method has a shorter training
time than the one-against-all, as reported in [11].

As for GMLVQ, we employ it in its simplest setting with one prototype wk

per class. A global quadratic distance measure of the form d(wk, x) = (x − wk)
T

Λ(x − wk) is used to quantify the dissimilarity of an input vector x and the proto-
types. The measure is parameterized in terms of the positive semi-definite relevance
matrix Λ [18]. Both, prototypes and relevance matrix are optimized in the training
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process which is guided by a suitable cost function [18]. We employed the gmlvq-
toolbox [2], which performs a batch gradient descent minimization with automated
step size control, see [2] for details. All the results presented herewere obtained using
the default parameter settings of [2]. After 100 gradient steps, the training errors and
cost function appeared to have converged in all considered classification problems.

3 Results

3.1 Generalized Matrix Relevance LVQ (GMLVQ)

Asmentioned earlier, in order to validate the classifiers the trainingprocess is repeated
with one test subject removed from the training set before applying the SSM/PCA
process. This section presents the LOOCV results for the distinct disease groups
versus the healthy control group in the binary andmulti-class classification. Important
to note is that all the features (100%) as extracted from the brain image data using the
SSM/PCA method are provided to the GMLVQ classifier. In the tables, sensitivity
(%) is the percentage of correctly classified patients, specificity (%) the percentage
of correctly classified healthy controls, and AUC is the area under the ROC curve.
In addition, the corresponding results are visualized in terms of projections on the
leading two eigenvectors of the relevance matrix. This exploits the fact that GMLVQ
displays a tendency to yield low-rank matrices which correspond to an intrinsically
low-dimensional representation of the feature space [3, 18]. Additionally, we include
the corresponding plots showing diagonal and off-diagonal matrix elements for one
LOOCV iteration as an example illustration.

3.1.1 Binary Classification

The objective here is to separate the individual disease groups from the healthy
control group. The GMLVQ results are shown in Table1.

The results in Table1 are much better than those of the decision tree as reported
in [16]. In fact a tremendous improvement can be seen in the PD vs HC group,
whose LOOCV performance has increased from 63.2% (decision trees) to 81.6%

Table 1 GMLVQ Classifier performance in LOOCV for the different data sets (patients versuss
healthy controls, number of cases in brackets)

Feature set (size) Perf. (%) Sensitivity (%) Specificity (%) AUC

PD-HC (38) 81.6 75 88.9 0.84

MSA-HC (39) 92.3 90.5 94.4 0.99

PSP-HC (35) 88.6 82.4 94.4 0.97

The column Perf.(%) indicates the percentage of subject cases correctly classified per group. Perf.
as well as Sensitivity and Specificity correspond to the Nearest Prototype Classifier (NPC)
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Fig. 1 Illustrations of the results of a single GMLVQ training process in the LOOCV of the PD
vs HC two class-problem, 1 = HC, 2 = disease group. Graphs show diagonal relevances (upper
left), and off-diagonal relevance matrix elements (lower left). The visualization of the training data
in terms of their projection on the two leading eigenvectors of the relevance matrix is displayed on
the right

(GMLVQ). The use of the relevance matrix to weight features according to their
relevance appears to boost performance. An illustration is shown in Fig. 1 where the
training data points are displayed in a feature space of the two leading eigenvectors
of the relevance matrix. Observe that the subject scores do not overlap after the
GMLVQ classifier training phase, which corresponds to error-free classification of
the training set. Further, the resulting AUC measures (for the different groups) are
relatively high. This means that the GMLVQ weighted features are very suitable for
separating the groups.

As observed in Fig. 1, the PD vs HC comparison shows a clear separation between
the PD group and the healthy group. Apart from a few outliers, most of the data
points cluster around the specific prototypes, i.e., the two bigger circles that each
represent a class. Further, the relevance matrix histogram shows the features and
their diagonal weights as used in the classification process. For example, in the PD
vs HC group feature 1 was weighted the highest, implying that feature 1 carries
relevant information required to separate the two groups. As a matter of fact, the
highly weighted feature should be given more attention, i.e., critically analyze the
principal component image corresponding to this feature to gain insights from the
clinical perspective.

3.1.2 Multi-class Classification

Here we show the results for the LOOCV of the GMLVQ classifier on the multi-
class datasets, i.e., the classification of all the four classes, and the three disease
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Table 2 Four-class problem

GMLVQ classification HC PD PSP MSA

HC (18) 14 3 1 0

PD (20) 5 13 1 1

PSP (17) 2 2 11 2

MSA (21) 0 1 4 16

Class accuracy (%) 77.8 65 64.7 76.2

Overall performance (%) 71.1

The table shows the number of subject images correctly classified for each class in bold and the
overall performance in percentage as obtained in the LOOCV

Table 3 Three-class problem

GMLVQ classification PD PSP MSA

PD (20)) 19 0 1

PSP (17) 2 12 3

MSA (21) 2 3 16

Class accuracy (%) 95 70.6 76.2

Overall performance (%) 81.03

The table shows the number of subject images correctly classified for each class in bold with the
overall LOOCV performance in percentage

classes, respectively. The latter is considered separately, because the main task in
clinical practice is to distinguish the three parkinsonian syndromes. Additionally,
for the four-class comparison, we include the HC group because we want to build a
classifier which can also distinguish a healthy subject from the parkinsonian groups.
The results are shown in Tables2 and 3 for four-class comparison and three disease
groups, respectively. Also included are the scatter plots showing the distribution of
training data points in the two-dimensional projection of the feature space in a single
run of the training process.

Four-Class Comparison

From the results in Table2, we notice that most of the misclassified HC subjects are
classified as PD and vice versa. As already observed in [16], the PD and HC subjects
have a closely related metabolic pattern. Likewise, the PSP andMSA groups display
a similarity, in view of the fact that four (majority of the misclassification) MSA
subjects are misclassified as PSP.

Three-Class Comparison

The classifier results show that the PD group is clearly separable from the other two
disease groups. On the other hand, the PSP and MSA groups seem to overlap more
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Fig. 2 The visualization of the training data with respect to their projections on the two leading
eigenvectors of the relevance matrix as observed in a single run of GMLVQ training. a Four class
problem; 1-HC, 2-PD, 3-PSP, 4-MSA. b Three class problem; 1-PD, 2-PSP, 3-MSA, 4-MSA

strongly. We observe that the majority of the misclassification for both the PSP and
MSA belong to either classes, which shows that these two groups are quite similar.
In fact, it is known that PSP and MSA are hard to distinguish because the patients
with either disorders show similar reduction in striatal and brain stem volumes [8].

Visualization of the Data Points

The scatter plots show the training data points with respect to their projections on
the two leading eigenvectors of the relevance matrix. It can be observed in Fig. 2a
that the PSP and healthy groups are clearly separable from the rest of the groups.
But a small overlap exists between the PD and MSA groups even in the training set.
Meanwhile, the three-class comparison in Fig. 2b shows a clear separation among the
disease groups.This is encouraging sinceweare generally interested indistinguishing
between the parkinsonian syndromes.

3.2 Support Vector Machine (SVM)

Next we show the results of the leave-one-out cross validation of the SVM classifier
for the different groups, both in a binary and multi-class comparison. Note that, as
before, a subject is left out before the SSM/PCA process.

3.2.1 Binary Classification

Here, the classifier was used to separate each disease group from the healthy control
group to determine its classification performance. As seen in Table4, apart from the
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Table 4 SVM classifier LOOCV performance for the different data sets (patients versus healthy
controls, number of cases in brackets)

Feature set(size) Perf. (%) Sensitivity (%) Specificity (%) AUC

PD-HC (38) 76.3 75 77.8 0.84

MSA-HC (39) 94.9 90.5 100 0.97

PSP-HC (35) 91.4 88.2 94.4 0.92

The column Perf. (%) indicates the percentage of subject cases correctly classified per group,
Sensitivity (%) the percentage of correctly classified patients, and Specificity (%) the percentage of
correctly classified healthy controls

Table 5 Four-class problem

SVM classification HC PD PSP MSA

HC (18) 12 3 2 0

PD (20) 4 12 1 3

PSP (17) 1 2 9 5

MSA (21) 0 2 2 17

Class accuracy (%) 66.7 60 52.9 81.0

Overall performance (%) 65.8

The confusion matrix and the overall performance of the SVM in the LOOCV scheme

PD vs HC comparison, the other groups’ performances improve in comparison to
GMLVQ (cf. Table1). However, the AUC measures for MSA and PSP are lower
than those of GMLVQ, indicating that it outperforms the SVM when choosing an
appropriate class bias to modify the nearest prototype classification. In comparison
to the linear SVM in [16], the results differ because different features have been used.
Furthermore, here the LOOCV is done correctly by removing the test subject from the
training set before applying the SSM/PCA method, whereas in [16] the SSM/PCA
method was applied to all subjects to obtain the scores before the LOOCV was
performed.

3.2.2 Multi-class Classification

We also applied SVM to the multi-class datasets to determine its performance on
larger datasets.

Four-Class Comparison

This involved the comparison of all the four groups, i.e., HC, PD, PSP, and MSA. In
Table5, the SVM four-group classification accuracy is slightly above chance level
and lower than that of GMLVQ (see Table2). But the classifier can separate theMSA
group from the rest of the groups with an accuracy of 81%.
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Table 6 Three-class problem

SVM classification PD PSP MSA

PD (20)) 17 1 2

PSP (17) 2 10 5

MSA (21) 3 2 16

Class accuracy (%) 85 58.8 76.2

Overall performance (%) 74.1

The table shows the confusion matrix with the number of subject images correctly classified by the
SVM for each class in bold and the overall LOOCV performance in percentage

Three Disease Groups

This involved the comparison of only the disease groups, i.e., PD, PSP and MSA
without the healthy group. The separation of the disease groups using SVM yields
a better performance accuracy than the separation of the four groups (including the
healthy group). Also, as in the GMLVQ classification, the PD group appears to be
well separated from PSP and MSA (Table6).

4 Discussion and Conclusion

Both GMLVQ and SVM were studied and tested for the binary and multi-class
problems. In the binary classification, GMLVQ performs better than SVM in the PD
vs HC comparison (performance of 81.6%), but both achieve the same sensitivity of
75%.However, SVMperforms better in theMSAvsHCandPSPvsHCcomparisons.
For the two-class problems we also considered the Area under Curve (AUC) of the
ROC, as it does not depend on the choice of a particular working point (threshold,
class bias) in the classifier. In terms of the AUC, GMLVQ was seen to outperform
or equal the performance of the SVM classifier. Additionally, in the multi-class
problems, GMLVQ achieves a better accuracy than SVM.

The GMLVQ relevance matrix, which makes use of an adaptive weighting of
features according to their discriminative power, displayed overall superior classi-
fication performance. In particular, for the PD vs HC comparison which has been
challenging to discriminate using decision trees, GMLVQ was able to separate PD
fromHCwith an accuracy of 81.6%, better than SVMby amargin of 5.3%.Although
SVM classification performance for the MSA vs HC and PSP vs HC comparisons is
better than GMLVQ, the AUCmeasures show that GMLVQ achieves superior binary
classification of the distinct groups. Overall, GMLVQ also achieves a better accuracy
for the multi-class classification. In addition, when it comes to explaining the results
to the physicians, GMLVQ is more intuitive than SVM. The analysis of the resulting
relevance matrix allows for the identification of particularly relevant features and
combinations of features. These results should trigger further investigations from
the clinical perspective.
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Clearly, the number of cases in the available data set is fairly small and our findings
could be partly skewed by the small sample size. For instance, leave-one-out vali-
dation schemes are known to frequently yield unreliable estimates of performance.
It is also possible that the performance of decision trees in [16], which was found
inferior to GMLVQ and SVM, might improve significantly for larger data sets (see
comparable work in [24]). We intend to extend our work in this direction as more
data become available in the future. Moreover, variants of the considered classifiers
could be considered, e.g., SVM with more powerful kernels or LVQ systems with
several prototypes per class or local distance matrices [18].
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Mutual Connectivity Analysis (MCA)
for Nonlinear Functional Connectivity
Network Recovery in the Human Brain
Using Convergent Cross-Mapping
and Non-metric Clustering
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Abstract We explore a computational framework for functional connectivity analy-
sis in resting-state functional MRI (fMRI) data acquired from the human brain for
recovering the underlying network structure and understanding causality between
network components. Termed mutual connectivity analysis (MCA), this framework
involves two steps, the first of which is to evaluate the pair-wise cross-prediction
performance between fMRI pixel time series within the brain. Here, we use a Gen-
eralized Radial Basis Functions (GRBF) neural network as a nonlinear time series
predictor. In a second step, the underlying network structure is subsequently recov-
ered from the affinity matrix using non-metric network clustering approaches, such
as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM)
to study causality between different network components. We demonstrate ourMCA
framework in the problem of recovering the motor cortex network associated with
hand movement from resting state fMRI data. Results are compared with a ground
truth of active motor cortex regions as identified by a task-based fMRI sequence
involving a finger-tapping stimulation experiment. Our results on whole-slice fMRI
analysis demonstrate that MCA-based model-free recovery of regions associated
with the primary motor cortex and supplementary motor area are in close agreement
with localization of similar regions achieved with a task-based fMRI acquisition.
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1 Introduction

There has been significant growth in research aimed at exploring structural and func-
tional connectivity in the humanbrain [1].Of particular interest is the analysis of func-
tional connectivity at fine-grained spatial and temporal resolution scales, based on
the acquisition capabilities provided by advanced in vivo neuro-imaging techniques,
such as state-of-the-art fMRI. Here, several contemporary analytic techniques such
as seed-based functional connectivity analysis [2], independent component analy-
sis [3], Granger causality [4], etc., imply inherent simplifications, such as assuming
linearity or implicit time series separability, which can obscure the characteristics
of the complex system being investigated. Another drawback of such approaches
is that they transform the original high-dimensional imaging data into simpler low-
dimensional representations, which discards valuable information and thus limits the
interpretability of brain connectivity analysis.

Our primary goal with this contribution is to introduce a computational frame-
work for analyzing functional network connectivity between pixel time series in the
human brain, while simultaneously avoiding some of the information loss induced
by the previously mentioned techniques. To this end, we present a mutual connec-
tivity analysis (MCA) approach for non-linear functional connectivity analysis in
large time series ensembles obtained from resting state fMRI data. Our approach
involves connectivity characterization through large scale non-linear mutual time
series cross-prediction [5] followed by functional network identification by parti-
tioning the resulting affinity (or dissimilarity matrix) through non-metric clustering
approaches, such as the Louvain method [6]. Subsequently, causality analysis (which
is used to study directional influence between time series) is performed using a con-
vergent cross-mapping (CCM) framework [7] on identified network components.

We demonstrate the applicability of our MCA framework to identifying and visu-
alizing the motor cortex through analysis of resting-state fMRI data. It has been
previously shown that frequency fluctuations (<0.1Hz) from regions of the motor
cortex associated with handmovement are strongly correlated both within and across
hemispheres [2]. We explore non-linear connectivity and causality between time
series ensembles from different regions of the motor cortex associated with hand
movement, as discussed in the following sections.

2 Data

Functional MRI images were acquired from a healthy male volunteer (age 25 years)
with a 1.5T GE SIGNATM whole-body MRI scanner (GE, Milwaukee, WI, USA).
Two image sequenceswere acquired; the firstwas under resting state conditionswhile
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Fig. 1 Flow chart of the analysis steps followed in this study. Causality analysis is an extension to
these steps

the second one involved a finger-tapping task stimulus to localize the leftmotor cortex
(LMC), right motor cortex (RMC), and supplementary motor area (SMA) regions for
establishing ground truth (example shown in Fig. 1). During the resting-state scan, the
subject was instructed to stay still and keep eyes closed. The fMRI sequences were
performed with the following parameters—echo time (TE)—40ms, echo-repetition
time (TR)—500ms, and flip angle (FA)—90◦. 512 fMRI scans were acquired from
two slice locations that corresponded to the motor cortex; each image had a slice
thickness of 10mm and an in-plane pixel resolution of 3.75×3.75mm. The first 24
time points of fMRI data were discarded to avoid any impact on the data analysis by
initial saturation effects.

3 Methods

3.1 Pre-processing

Motion artifacts were compensated by automatic image alignment and signal drifts
were corrected with linear de-trending. In addition, resting state fMRI time series
were subject to low pass filtering with a cut-off frequency of 0.08Hz for minimizing
the influence of respiratory and cardio-vascular oscillations while preserving the
frequency spectrum pertaining to functional connectivity [2].

Finally, the time series were further normalized to zero mean and unit standard
deviation to focus on signal dynamics rather than amplitude [9]. Data from the two
slices (∼600 pixels and 488 time points each) were analyzed independently.

3.2 MCA—Pair-Wise Affinity Evaluation

Our first step is to build an affinity/similarity matrix A, for all time series of brain
pixels on a single fMRI slice, populated based on cross-prediction performance of
each pair of time series. Given two pixel time seriesX andY, (whereX, Y ∈ T={T f ,
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f =1, . . . , n} and where T represents the set of all n pixel fMRI time series under
consideration), we aim to describe the degree of their dynamic coupling as a measure
of their cross-prediction performance, which is stored as matrix element (A)X,Y. This
is accomplished in the following way:We break down time series X of length l into a
set of vectors xt , t ∈ {1, 2, . . . , l − d + 1} of dimension d, which can be interpreted
as a sliding window of length d moving along X. The corresponding prediction
target vectors for xt are vectors yt of dimension eextracted from Y. In this study,
the parameters d and e were chosen d =10 and e =1. Here, xt is mapped to the
corresponding future yt , e.g. the vector xt that comprises of the first 10 time points
of X is mapped to yt , which corresponds to the 11th time point of Y.

Generalized Radial Basis Function (GRBF) Network: Here, the set of xt and their
corresponding yt are randomly split into a training (Tr) (70% of available xt vectors)
and test (Te) set. The training set is then used to create a non-linear mapping f , i.e.,
yTr

t = f (xTr
t ). Once defined, this mapping is subsequently used to compute target

vector estimates ŷTe
t for xTe

t , i.e.,

ŷTe
t = f (xTe

t ), (1)

from which ŷ can be constructed.
For defining the approximating function f , we use a GRBF neural network with

three layers, i.e. the input, hidden and output layers. The activation pattern of the
input layer with d neurons is represented by d-dimensional vector xt . In the training
phase, this activity (xTr

t ) is propagated to m neurons of the hidden layer through
directed connections with prototypical weight vectors w j ∈ R

d, j = 1, 2, . . . , m.
These weight vectors are representations of the training set xTr

t and are computed
using an unsupervised clustering approach; fuzzy C-means is used in this study [8],
although a Self-Organizing Map (SOM) might be used as well. Given previous work
on the comparison of choosing different clustering methods for the performance of
GRBF networks, e.g. [22], we would not expect significantly different results when
using SOMs in this step. The activity aj of neurons in the hidden layer is defined as

a j (xTr
t ) = e−(xTr

t −w j )
2/2ρ2

∑m
i=1 e−(xTr

t −wi )2/2ρ2
, (2)

i.e., generalized (given the normalization in the denominator of Eq. (2)) radial basis
functions [15, 21], where the ρ parameter controls the width of the radial basis
function kernel and defines the neighborhood of vectors that contributes to the com-
putation of f [10]. In the final step of the training phase, the activity of the output
layer ŷTr

t is computed as a weighted sum of the hidden layer activations a j , i.e.,

ŷTr
t =

∑m

j=1
aj(xTr

t · s j ), (3)

where sj are the output weights obtained through minimization of the cost function
E = ‖ŷTr

t − yTr
t ‖2. After the training phase is completed, f is subsequently used
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to process the test set ŷ and is constructed from target vector estimates ŷTe
t . Further

details concerning our GRBF neural network approach can be found in [15]. We
haven chosen the value of ρ as 0.5 (which is not updated further during the training
phase) and used 20 hidden layer neurons based on initial experiments.

Once ŷ is constructed using the approach described above, its similarity to y is
measured using cross correlation. In this manner, the pair-wise affinity/similarity
matrix A is computed for all the time series under investigation.

3.3 MCA—Non-metric Clustering

From the affinity matrix A, we use the Louvain method [6] to recover the underlying
network structure through non-metric clustering. In network science such a matrix
is referred to as a network graph, with the rows and columns representing different
nodes (various pixels in this case) and the entries representing edges/links or degree
of coupling (non-linear predictability in our study). The Louvain method aims to
find high modularity clusters in such network graphs, where modularity is defined
as the ratio of the density of intra-community node linkage to the density of inter-
community node linkage [11]. Modularity Q is mathematically represented as

Q = 1

2m

∑
i, j

[
Ai j − ki k j

2m

]
δ(Ci , C j ) (4)

where Ai j represents the affinity between nodes i and j , ki = ∑
j Ai j is the sum of

affinities of nodes attached to i , Ci is the community to which node i is assigned,
δ(u, v) = 1 if u = v, and 0 otherwise, and

m = 1

2

∑
i j

Ai j . (5)

Thus, a complex network is decomposed into clusters with strong intra-community
links and weak inter-community links. The algorithm involves an iterative process
during which different nodes of the network are merged into larger communities, if
the modularity is improved as a consequence. The process is discontinued when no
further improvement in modularity can be achieved. Further details pertaining to this
clustering approach can be found in [6].

In order to avoid the creation of large super-communities that encompass smaller
and more interesting clusters, we also pursue an approach frequently applied in
spectral clustering to make the affinity matrix sparser [12]. Specifically, we only
consider the k most similar nodes for any given node i . Additionally, only mutual
k most-similar nodes are considered, i.e., bi-directional links in the k most-similar
nodes. In this study, k =100 is chosen empirically from preliminary analyses; this
corresponds to approximately 20% of the nodes in the network. Similarity between
clustering results and the ground truth was evaluated using the Dice coefficient [13].
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3.4 MCA—Causality Analysis

We further extend MCA to include convergent cross-mapping (CCM) [7] for inves-
tigating causality between different regions of the primary motor cortex network.
CCM explores the phenomenon of causation (cause-effect relationship of two time
series) in non-linear systems, where the ability of time series X to better predict (or
“cross-map”) Y with increasing time series length L is investigated. The length L
can be modified by using various percentages of the time series as training set with a
GRBF neural network. Thus, according to [7], observing the degree to which X and
Y are cross-mapped over increasing L enables one to establish grounds for causation.

In this study, we restrict the examination of causation to specific regions of the
motor cortex, as identified using the ground truth. Thus, MCA is used to build a
smaller affinity matrix involving pixels time series only from the LMC, RMC and
SMA. From the collection of vectors xi from time seriesX, a randomly chosen subset
(of 10–80%) can have different variations. So we compute an affinity matrix for 20
different variations of subsets of xi , and use their average for CCM analysis.

For interpretation of results achieved with CCM causality analysis, we present a
pair-wise regional visualization of presumed causal influences between the LMC,
RMC and SMA. Thus, when comparing any two regions in the motor cortex net-
work, each pixel of a specific region is assigned an influence score based on its
cross-prediction from MCA with respect to all pixels in the other region under con-
sideration.

All procedures were implemented using MATLAB 8.1 (MathWorks Inc., Natick,
MA, 2013). The Louvain method implementation was taken from [14].

4 Results

4.1 Network Recovery

Figure3 shows the results of recovering communities associated with the motor
cortex from a single resting state fMRI slice through non-metric clustering of the
MCA affinity matrix using the Louvain method [6]. As seen here, MCA with non-
metric clustering is able to recover the community structure of bilateral primarymotor
cortices and the supplementary motor areas. The overlap between the recovered
regions of the primary motor cortex and ground truth, measured using the Dice
coefficient, was 0.51, indicating a fair, but not perfect agreement between the two.
Network recovery usingMCA can be seen to slightly over-estimate the regions of the
motor cortex. Here, it should be noted that the physiological processes pertaining to
the resting state may be different from the brain activity related to a targeted finger-
tapping motor task. Therefore, the task-related activation pattern in Fig. 2 may serve
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Fig. 2 Ground truth example for the subject. The identified primary motor cortex (left and right
motor cortex) and pixels corresponding to the supplementary motor area (shown in red) are super-
imposed on the original slice

Fig. 3 (Left) Ground truth for primary motor cortex regions (LMC, RMC and SMA). (Right)
Motor cortex regions recovered from our MCA framework. Note the similarity of the identified
brain networks revealing bilateral primary motor cortices and supplementary motor areas. Dice
coefficient between the ground truth and our MCA network analysis results is 0.51

as a ‘localization aid’ for the motor cortex rather than the ‘ground truth’ for its exact
delineation. However, in the absence of any better reference criterion for defining
the motor cortex, the above result can serve as an indicator for the usability of our
method.
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Fig. 4 Pair-wise regional causality analysis performed on a pixel-wise basis. From left to right,
the figures show interactions between pairs of regions i.e. RMC and SMA, LMC and SMA, and
the LMC and RMC respectively. The influence score of each pixel, as described in Sect. 3.4 is
color-coded; red pixels are “influencers” while blue pixels are “influencees”. We see here that the
SMA is generally influenced by the RMC and LMC. Whereas between the LMC and RMC there
isn’t a directional interaction seen (all pixels are ‘influencees’)

4.2 Causality Analysis

Figure4 shows a visualization of the results of pair-wise causality analysis between
the LMC, RMC and SMA for the same image slice. A specific direction of causation
is noted between the different regions, i.e., both LMC and RMC appear to influence
the SMA, though further experiments are needed to validate these findings more
extensively.

5 Discussion

We present a computational framework for analysis of non-linear functional con-
nectivity in the brain from resting state fMRI data for purposes of recovering the
underlying network structure and establishing connectivity. While other methodolo-
gies for assessing functional connectivity through fMRI exist, such as seed-based
approaches [2], ICA [3] and others, our framework avoids certain shortcomings,
such as assumptions of linearity, time series separability, etc. We instead propose to
use non-linear mutual connectivity analysis (MCA) to evaluate the pair-wise cross-
prediction quality between resting state fMRI time series acquired from the human
brain. Our results, as seen in Figs. 3 and 4, suggest that such pair-wise affinity matri-
ces can reveal valuable information concerning the underlying network structure
between functionally connected brain regions. The agreement of our results based
on resting state time series with the motor task sequence highlights the usability of
our approach. Over estimation of the motor cortex as seen, could be attributed to
the fact that we only recover regions responsible for hand movements in the finger
tapping sequence whereas MCAmay be able to provide a better representation. This
will be explored in further studies with analysis of the recovery of other function-

http://dx.doi.org/10.1007/978-3-319-28518-4_3


Mutual Connectivity Analysis (MCA) for Nonlinear Functional Connectivity … 225

ally connected regions as reported in fMRI literature [3]. Although some directional
connections are seen in Fig. 4, further analysis is required to establish and confirm
causal interactions within the motor cortex. For future outlook, one may also use
other methods of non-metric clustering, such as agglomerative clustering [16], pair-
wise clustering through deterministic annealing [17], SOM-related techniques, such
as topographic mapping of proximity data (TMP) [18], spectral clustering [19] and
non-distance based CONNvis [20] in place of the Louvain method.

6 Conclusion

We present a mutual connectivity analysis (MCA) framework for analysis of func-
tional connectivity and causality in the brain from resting state fMRI data, which
combines local non-linear time series prediction, such as by using a GRBF neural
network, with non-metric clustering, such as the Louvain method, for recovering
the underlying functional brain network structure. By successfully recovering the
network structure of the motor cortex, the results observed in our study demonstrate
the applicability of our method to exploring connectivity in the human brain.
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SOM and LVQ Classification
of Endovascular Surgeons Using
Motion-Based Metrics

Benjamin D. Kramer, Dylan P. Losey and Marcia K. O’Malley

Abstract An increase in the prevalence of endovascular surgery requires a growing
number of proficient surgeons. Current endovascular surgeon evaluation techniques
are subjective and time-consuming; as a result, there is a demand for an objective
and automated evaluation procedure. Leveraging reliable movement metrics and
tool-tip data acquisition, we here use neural network techniques such as LVQs and
SOMs to identify the mapping between surgeons’ motion data and imposed rating
scales. Using LVQs, only 50% testing accuracy was achieved. SOM visualization of
this inadequate generalization, however, highlights limitations of the present rating
scale and sheds light upon the differences between traditional skill groupings and
neural network clusters. In particular, our SOMclustering both exhibits more truthful
segmentation and demonstrates which metrics are most indicative of surgeon ability,
providing an outline for more rigorous evaluation strategies.

Keywords SOM · LVQ · Skill assessment · Surgical training

1 Introduction

Medical advancements in recent years have increased the popularity of endovascular
surgery as an alternative to more traditional surgical methods [1]. In the most basic
sense, endovascular surgery is a form of minimally invasive surgery (MIS) which
allows access to various parts of the body through blood vessels and the endovascular
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system. The surgeon introduces a catheter into the vasculature of the patient, typically
via the femoral artery, and from there navigates the catheter to the desired location
so as to perform some type of procedure. During these procedures, surgeons must
rely on fluoroscopy and other forms of medical imaging in order to determine tool
position. This imaging is often limited, and complications may go unnoticed until
they become too serious; therefore, it is imperative that surgeons be proficient at
endovascular techniques. Aside from the risk of possible complications, surgeon
skill level significantly affects clinical outcomes after successful surgeries [2].

1.1 Previous Work

As a result, there is medical interest in understanding an effectivemeans to determine
a surgeon’s skill [3]. There are presently two preeminent methods for assessing a
surgeon.Themost common involves an expert observing task completion by a novice,
which is entirely subjective and vulnerable to significant amounts of variability [4].
The second method is simply a measurement of the number of cases performed by
the surgeon; although it stands to reason that an individual with more practice will
likely be better, it is also likely that individual surgeons will improve at different
rates. Either method is insufficient, and therefore a primary goal of the endovascular
community is the development of an objective assessment technique [5, 6].

In an effort to more objectively study surgeons, sensors have been used to record
the tool tip trajectory [7]. The results are then processed to calculate a variety of
motion-based metrics; the most indicative of these metrics are correlated to user
smoothness, such as minimum jerk [8] and spectral arc length [9]. An alternative,
yet similarly-minded, method is the extraction of submovement number and dura-
tion from a larger task [10]. To date, researchers have attempted to show that there
exist correlations between these movement metrics and the standard methods of skill
evaluation. Surgeon force and motion signatures have been leveraged to objectively
assess performance; hidden Markov models were then used to learn the nonlinear
mapping between performance data and skill [11]. Lin et al. demonstrated the ability
to decompose a surgical procedure into a series of sub-tasks by parsing raw motion
data in order to provide on-line training feedback [12]. Estrada et al. specifically
quantified the correlation between various metrics and the standard methods of sur-
geon evaluation on both manual and robotic platforms [13].

1.2 Motivation/Objective

Successfully mapping metrics to skill may improve training procedures, reduce the
amount of oversight required, and ultimately automate this task. While the statisti-
cally significant correlation between various objective metrics and current subjective
assessments is an important initial finding, it fails to provide a holistic approach to
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skill classification. Hence, the motivation for our work is to understand the mapping
between movement metrics and surgeon proficiency, which we will reveal through
neural networks. We will first train an LVQ to classify surgeons using standard-
ized novice, intermediate, or expert labels, and then study the LVQ’s accuracy using
testing data. Next we will utilize SOMs to examine the underlying clusters; by com-
paring these SOM clusters with pre-labeled classes, we can evaluate the veracity
of the medically imposed class labels. We hypothesize that the traditional “novice,
intermediate, and expert” labeling—while commonly assumed to be correct—does
not actually reflect the motion data, and, as such, more sophisticated classification is
recommended. Our secondary goal is to identify which motion patterns contribute
most to the surgeon’s classification; this knowledgemay improve the feedbackwhich
can be provided during and after the surgeon’s training.

2 Methods

2.1 Input Data and Class Labels

The data used in this paper was collected during a previous study [13]. Actual and vir-
tual tool-tip trajectories were recorded for fifteen surgeons over three sessions while
completing four separate tasks. Five of the subjects (i.e., surgeons) were deemed
“novices,” six were labeled “intermediates,” and the remaining four were regarded
as “experts.” The two platforms used during experimentation can be seen in Fig. 1,
alongwith sample input vectors. For the purposes of our research,we did not differen-
tiate between the platforms, sessions, or tasks, yielding a total of 120 separate trials.
The motion metrics associated with each trial—described in more detail below—
were then utilized as a unique input vector; hence, our results were obtained using
120 input vectors.

The input vectors for our LVQ and SOM neural networks were constructed from
previously calculated motion metrics. These metrics were all computed from the
three-dimensional catheter position data, which was collected at 30Hz frequency.
Based upon the findings of Estrada et al. [13], we selectedmotionmetrics whichwere
shown to individually correlate with traditional skill labels. Eleven metrics (listed
below) were chosen, and each comprised an element of the eleven-dimensional input
vectors. Although the units for the various metrics are not detailed here, it should be
noted that they were kept consistent throughout our work. We found that our best
results occurred with the inclusion of (1) Spectral Arc Length, (2, 3) Average Sub-
movement Duration (LGNB andMinJerk Profiles), (4, 5) Number of Submovements
(LGNBandMinJerk Profiles), (6)NormalizedVelocity, (7)MeanArrest PeriodRatio
(10% was used for this study), (8) Completion Time, (9, 10) Submovement Overlap
(LGNB and MinJerk Profiles), and (11) Average Frequency. Example input vectors
can be seen in Fig. 1. Note that these values are all well defined over a continuous
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(a) (b)

(c)

Fig. 1 A comparison of the manual and virtual simulators which were navigated during the various
tasks. In both platforms the surgeon is operating a catheter—in (a) the tip position is tracked using a
magnet at the tool-tip, while (b) offers a platform leveraging teleoperation. In (c) each of the plotted
points corresponds to oneof the elevenmotionmetrics derived from the surgeon’s trajectory.Average
input vectors associated with a novice, intermediate, and expert surgeon are shown (standard error
bars included). a. Manual Simulator [13] b. Virtual simulator [13] c. Example Input Vector

range, and that the chosen metrics mitigated statistical outliers which may skew
results of our input-space neural networks.

Each of these 120 input vectors was associated with a class label corresponding
to the surgeon’s proficiency; the three classes consisted of either “novice,” “interme-
diate,” or “expert.” Forty input vectors were labeled novice, forty-eight input vectors
were denoted intermediate, and thirty-two input vectors were termed expert. When
performing supervised learning, stratified four-fold cross-validation was leveraged
to select exclusive sets of ninety input vectors for training and thirty input vectors
for testing.

2.2 Classification with LVQs

In order to determine the mapping from input data to desired classification, we used
an LVQ with supervised learning [14]. More specifically, we used an LVQ2 with
stratified four-fold cross-validation; the LVQ was initialized with 120 prototypes,
as this was found to provide the best classification accuracy, where forty prototypes
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were allocated to novices, forty-eightwere allocated to intermediates, and the remain-
ing thirty-two were allocated for experts. Thus, this prototype allocation was done
in proportion to class size. LVQ neurons were randomly initialized and scaled to
the range of the input data. Ideally, the trained LVQ would adapt to the externally
imposed classification structure, and, as such, would serve as an autonomous means
towards identifying the class of the surgeon’s skill—novice, intermediate, or expert—
based solely on motion metrics. On the other hand, the reliability of the traditionally
imposed class labels may be questionable [15]. These labels are based on the number
of cases performed; however, it is conceivable that a surgeon could perform a large
number of cases with improper technique, and therefore be labeled an “expert” by
this traditional evaluation while actually maintaining a “novice” level of ability. In
order to examine the performance of our classification with LVQs, we will show
confusion matrix data and statistics across all four folds, as well as a visualization
of our best results.

2.3 Clustering with SOMs

As we will demonstrate, the best classification accuracies obtained with LVQs were
unsatisfactory, suggesting that more analysis into the label veracity is needed for
effective machine learning. Further analysis of the input data—and, in particular,
clusters present in the input data—was performed and visualized through the use of
SOMs [16]. We leveraged forty-nine prototypes for the SOM, which were arranged
into a seven-by-seven rectangular grid in the lattice space. A Gaussian neighborhood
function was used while updating the prototypes, and mU-matrix visualization was
employed to visualize clusters. Our rationale for using an SOM was to capitalize
upon the strengths of unsupervised learning; we sought to obtain an objective view
of the data structure without needing potentially erroneous labels. Therefore, we
had two primary goals behind this SOM application. First, we wanted to validate or
disprove the classification labels (novice, intermediate, and expert) previously used
for our LVQ training. By superimposing these labels over the SOM lattice while
visualizing SOM clusters, we could test label veracity and hopefully understand
why the LVQ machine learning underperformed. Second, we wanted to identify
clusters within the data in order to determine the relative importance of surgeon
attributes and motion methods when distinguishing between skilled and unskilled
surgeons. By comparing the input vectors associated with different clusters, we can
better understand which motion metrics were consistent and which varied amongst
clusters. These insights may enable more efficient evaluation of surgeons and more
directed training strategies. SOM clustering will be revealed through plots of the
lattice space.
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3 Results and Discussion

3.1 LVQ Classification Results

The results obtained by implementing an LVQ were reasonable, but did not provide
sufficiently accurate classification for the purposes of automated evaluation. Our
best results were obtained with an LVQ2 using a learning rate of 0.001 and 10,000
on-line learning steps, although other learning rates and learning step counts were
tested. Both the training and testing accuracy were plotted as a function of learning
steps to ensure that overtraining did not occur. To summarize, we consistently found
that we were able to differentiate the skill groups and correctly classify surgeons
within the novice, intermediate, and expert labels 80% of the time for training data
and 50% of the time for testing data. In particular, the LVQ struggled to distinguish
“intermediate” from “expert” surgeons, logically suggesting a larger skill gap from
novice to intermediate than from intermediate to expert. This disparity is depicted in
Fig. 2. We also note that, while LVQ1, LVQ2, and LVQ3 were tested, there was not
significant variation among the performance of these algorithms.

By inspecting the confusion matrices, summarized in Fig. 3, we can further ver-
ify that novices were reasonably distinguished from intermediates and experts, but
intermediates and experts were largely lumped together. We hypothesize that this
stems from at least partially inaccurate training labels; the imposed classifications
may not truly identify the skill level of each surgeon, since intermediate surgeons,
despite having performed fewer cases than experts, may be more proficient than their
caseload suggests. Moreover, the use of only three classes is likely insufficient to
accurately capture the gradient in surgeon skill, and perhaps more nuanced labels
would better reflect our motion data. The overall statistics show that the LVQ pro-
cedure netted consistent and accurate training classification, but the testing accuracy
and hencemachine learningwas unacceptable.We conclude that the LVQwas unable
to generalize for the given data, and suggest that this inability stems from the lack

Fig. 2 Sample LVQ results. These plots are from one fold of the four-fold stratified cross-validation
procedure: training classification top; testing classification bottom.The blackpixels represent novice
surgeons, the grey pixels represent intermediate surgeons, and the white pixels represent expert
surgeons
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Fig. 3 Average confusion matrix over the four folds. Data is given in the form % of hits (number
of hits). Diagonal elements represent correctly classified data, while off-diagonal elements show
incorrect classifications. The mean and standard deviation for training and testing accuracy are also
shown. Poor results likely stem from incorrect class labels, particularly between intermediates and
experts

of labeling precision and correctness for intermediate and expert surgeons. To verify
this claim, we will subsequently explore SOM clusters in the data space.

3.2 SOM Clustering Results

Following the failure of LVQs to successfully identify this mapping, SOMs were
applied to both test our concerns with the imposed classification labels and help us
further explore nuances within the data. The best results presented in this paper were
obtained using a seven-by-seven rectangular SOM grid in lattice space, where the
forty-nine prototypes were initialized randomly over the input space. The learning
rate α started at 0.005 and reached 0.001 following a linear decrease across 100,000
learning steps; similarly, the Gaussian neighborhood width σ started at 4 and linearly
decreased to 2 over the same number of learning steps. We experimentally observed
the SOM training to converge after around 80,000 to 90,000 on-line learning steps,
at which point no changes occurred in the mapping. The results shown below were
found to be repeatable and superior to those identified using different parameters,
which gives us confidence in the subsequent conclusions.

Selecting the learning parameters as described above while observing the system
visualizations depicted in Fig. 4, we repeatedly converged to a similar, if not the same,
solution each timewe trained the SOM. Instances in whichwe did not converge to the
results outlined in Fig. 4 involved some type of rotation of the lattice—however, this
did not alter the SOM clustering. Using U-Matrix techniques, we readily discerned
some distinct clusters which were identified by the SOM; we then checked these
locations with superimposed novice, intermediate, and expert labels in the lattice
space, and determined whether there existed agreement between medically defined
clusters and clusters identified by the SOM.

From themodified U-Matrix density map and the projection of classifications into
lattice space, we can deduce (a) that there exist some SOM clusters which roughly
correspond with traditional groups, but (b) other SOM clusters disagree with the
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Fig. 4 SOMfinal results. The left visualization is amodifiedU-Matrix [17]; red-scale represents the
number of mappings (i.e., relative density), while the gray-scale bars signify the distance between
prototypes in the data space. The redder the neuron, the more input vectors are contained within
its Voronoi cell; likewise, the darker the bar separating neurons, the greater the difference between
their weight vectors. The right visualization shows the known surgeon classifications projected onto
the SOM lattice—here red signifies novice, green represents intermediate, and blue indicates expert
surgeons, with color intensity representing the number of mappings (more intensity again means
increased density). Black neurons indicate that no input vectors are mapped to a particular node.
The clusters found in the mU-matrix are identified using white lines in the right visualization. We
can quickly observe that while novices (red) are primarily separated, clustering in the upper and
lower left, intermediates (green) and experts (blue) are largely intermingled, clustering along the
right side, a result which supports our LVQ findings

medical consensus. We have marked these SOM identified clusters in Fig. 5. For
instance, the bottom left section of the SOM lattice clearly clusters several surgeons
who performed poorly, and are correctly labeled as novices. Likewise, the top left
SOM cluster corresponds to another group of novice surgeons, which again matches
the medical labeling. Moving to the right side of the SOM lattice, however, we
can see two regions: in the upper right, there exists a mixed cluster—some experts,
intermediates, and novices are included here, suggesting labeling inaccuracy. Finally,
in the bottom right of the SOM lattice we find a cluster of increasing ability, with
intermediates and experts grouped together; perhaps these surgeons are closer in
ability than their classification would suggest. By applying SOMs to the input space
of motion metrics, we were therefore able to demonstrate that a surgeon’s experience
is not sufficient when attempting to classify that surgeon’s skill. Although there are
some similarities between themedical labels andSOMclusters, there is also sufficient
disparity to suggest that perhaps more precise skill assessment is required. These
findings also explain the inability of our LVQs to distinguish “intermediate” and
“expert” surgeons, as SOM clusters revealed overlaps between these classifications.

In order to further investigate clustering and the distinctions between various
groups, it was instructive to look at the weight vector within these individual clus-
ters, as illustrated in Fig. 5. There are a few hypotheses which can be formed from
visualizing these prototypes and clusters. First, completion time is not necessarily an
accurate measure of skill. In fact, completion time appears to be somewhat counter-
intuitive; experts often take longer than less successful intermediates and novices,
perhaps because they are utilizing slower and more deliberate movements. A quick
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Fig. 5 SOM weight vector plotted in the grid cells. This figure shows both the final results of our
SOM grid with the known classifications projected onto the lattice, as well as the weight vector of
each PE with respect to the average weight vector across all nodes. The weight vector of a given PE
is shown in black, while the average weight vector across all nodes is plotted in a dotted magenta
line. The color coding of the prototypes is the same as before, with a slight fading of the colors
in order to better visualize the weight vectors. Black boxes were used to mark the SOM cluster
boundaries identified in Fig. 4. By comparing the differences in weight vectors between members
of different clusters, we can visualize which metrics most impact distinctions in surgeon skill. With
respect to the average weight vector, novices appear to complete the task in less time but require
an increased number of motions; on the other hand, proficient surgeons move slowly but smoothly,
reducing submovement duration and number. The combination of SOM clustering and neuron
weight vectors reveals errors within traditional labeling and provides insight into important motion
attributes. The existing labeling of novice, intermediate, and expert does not agree with knowledge
gained through motion metrics (as shown by differences in clustering), and the contribution of
various metrics can be analyzed to yield better categorization (as shown by comparing weight
vectors)

procedure is ideal, but not if it comes at the cost of deliberate, precise movements.
Second, some metrics may provide redundant differentiation, therefore requiring
the use of fewer metrics—and other metrics may be entirely irrelevant for classi-
fication purposes. Finally, the number of submovements appears to be particularly
useful when distinguishing surgeons; we observed that the most proficient cluster
employed substantially smoother motions than did novice or mixed clusters.

With these ideas in mind, we can describe the five classes of surgeons from
SOM clustering (Fig. 5). Class one (lower left) will perform the task slowly and with
very little smoothness; likely true beginners. Class two (upper left) will perform the
surgery quickly with little smoothness; likely novice surgeons. Class three (upper
right) will perform the surgery quickly at the expense of some smoothness metrics;
likely competent surgeons primarily concerned with completion time. Class four
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(middle right) will perform the surgery above average in terms of time and smooth-
ness; likely experienced surgeons. Class five (lower right) will perform the surgery
at an average pace with exceptional dexterity; likely skilled, precise surgeons.

4 Conclusions and Future Work

Based on the results of our LVQ and SOM, there does appear to be some consis-
tent mapping between motion metrics and desired classification; using the LVQ we
achieved around 50% testing accuracy.We hypothesized that this poor LVQmachine
learning, particularly when discerning between intermediate and expert surgeons,
stemmed from inaccurate class labeling. Using the SOM approach, we were able
to identify some clusters which roughly corresponded to the known classification
groups; however, we also discovered that several clusters disagreed with the given
labels. Indeed, from Fig. 4 we were able to conclude that the traditional labeling
based on surgeon experience disagreed with SOM clustering in the motion metrics.
We were further able to suggest which metrics may best be able to indicate ability, as
can be seen in Fig. 5. By replacing the subjective medical grouping with the actual
measured features, we may be able to improve on skill assessment for endovascular
surgeons. Similar to the work by Cotin et al. [5], we suggest that it may be better
to first identify statistics which are significant to expert clusters, and then create a
scoring system which classifies users based on their accordance with those statistics.
Summarily, SOM clustering, as seen in Fig. 5, helps accomplish our goals of both
disproving classical labels and suggesting improved alternatives.
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Visualization and Practical Use of Clinical
Survey Medical Examination Results

Masaaki Ohkita, Heizo Tokutaka, Nobuhiko Kasezawa
and Eikou Gonda

Abstract At present, the Metabolic Syndrome (MS) is judged by checking whether
a number of reference values are exceeded. It is regarded as non-metabolic if those
values are not exceeded. Using our previously established non-ill area for these val-
ues, we evaluate their applicability inmedical practice.We start with a clinical survey
ofmedical checkup data and apply ourmethodology to six items of the checkup sheet:
glucose metabolism, liver, diabetes, kidney, blood-general and inflamed-immunity.
We outline our methodology, called Dr. Ningendock, and evaluate it on the results
of the liver function.

Keywords Clinical survey medical examination ·Metabolic syndrome judgment ·
Self-Organizing Map (SOM) · Dr. Ningendock
1 Introduction

An evaluationmethod for theMetabolic Syndrome (MS)was developed that is part of
the early lifestyle-related disease prevention program [1] in our country. The diagnos-
tic criteria of MS were recommended by the Japanese Society of Internal Medicine
and related societies and are now widely enforced in Japan. At present, according to
its diagnostic criteria, the “extraordinary” condition refers to only the case of slightly
exceeded reference values for each fat, the blood pressure, and blood sugar. Whether
a condition is considered “abnormal” depends on the number of exceeded reference
values. However, when observing medical checkup data in practice, as a time series
at the individual level, there are many cases for which the values sometimes come
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close to the border of the reference values so that it is difficult to judge a condition as
extraordinary. Therefore, the MS judgment should be carefully monitored for slight
deviations. In order to address this issue, we introduced the concept of “non-ill area”
[2], defined as a gray zone between the upper limit of the normal values and the high
abnormal ones (i.e., the critical region). The distribution of each MS item recorded
in the general medical checkup was observed and categorized into three conditions:
“normal”, “the non-ill area” and “the critical region”. Then, the checkup data cate-
gorized in this way (i.e., according to our method) was applied to a Self- Organizing
Map (SOM) [3–6] for calculating the MS score and for observing trends in the MS
condition of the examinee.

In our previous paper, we proposed the MS judging tool for check-up data as
described above [4]. In the present paper, the MS judging tool is applied to medical
examination data for the following 6 lifestyle related functions: sugar metabolism,
liver function, renal function, blood (blood-general), and inflammation-immunity.
The results are then displayed into a hexagonal coordinate system. Among others, an
indication for the upcoming year can be given by using our slider-based functionality.
Therefore, we are able to focus on an item that displays a potential problem, and then
proceed to a detailed judgment.

2 Visualization of Medical Examination Results
with Self-Organizing Maps

2.1 Clinical Survey of Medical Examination

Upon receipt of the complete clinical survey (Ningen dock in Japanese), a table of
the physical examinationmedical checkup can be compiled for each patient as shown
in Fig. 1.

This table is only one example as its format differs between medical facilities.
The table includes measurements of height, weight, BP, BMI, results of blood tests,
abdominal ultrasonography such as liver, pancreas, gallbladder, kidney, and so on.
Their reference values also included. Mostly they are computer-generated numerical
tables. Then, the outcome for each item is judged by the degree by which it differs
from the reference value:

A non-abnormal, when inside the reference value
B slightly abnormal, but there is no problem for everyday life
C follow-up
D treatment or detailed re-examination is required

Here, we propose the following method which attempts to more legibly re-organize
and utilize the data. Firstly, in the table of Fig. 1, the data enclosed in the green frame
is extracted and compared with the officially approved (conventional) diagnostic
criteria. Related data (blood general, liver function, renal function, inflammation-
immunity) are shown in the red frames, two of which are shown in Fig. 1 (there are
4 of them in total, [1–4]).
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Fig. 1 Table with a patient’s medical checkup data. After consultation, it is mailed after about one
month

2.2 Visualization of Score (points) Map
and Components Map

The degree of MS was evaluated using the previously developed Dr. Metabo tool
(metabolic syndrome (MS) judgment tool [3], See 2.4 Calculation of MS(score) in
[3]).

The Metabo tool describes 4 regions in the MS score map that are marked by
4 different gray scales: Region I: Non MS region (0 < score < 20) labeled “DM-
Normal”, Region II: MS boundary (20 <= score < 40) labeled “DM boundary”,
Region III: MS corresponding (40 <= score < 60) labeled “DM-abnormal, and
Region IV: MS critical(60 <= score <= 100) labeled “DM-critical”.

According to theMS evaluation method of the Japanese Society of Internal Medi-
cine, a 0–19 score is in the normal region, and a score above 20 is marked as MS.
In our tool, we consider two additional regions II and III as “non-ill” ones. These
additional regions, between non-MS and MS critical, provide a way to monitor the
deterioration of the patient’s condition, thus, as a follow up on the conventional MS
judgment method. Indeed, with the proposed method, the data of the examinee are
judged step by step in relation to the non-ill region.With the conventional method, as
soon as the examinee’s value exceeds even once a reference value, he/she is immedi-
ately judged as MS. The result of the proposed method is displayed in the following
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Fig. 2 The conventional method divides the map into metabolic (1) and non-metabolic (0). How-
ever, with the proposed method, it is clear that the examinee’s condition gradually moves in the
direction of the black region (metabolic syndrome (MS))

map (Fig. 2) obtained by mapping the above four regions. Also, the relation between
the components that make up the map of Fig. 2 is clarified in Fig. 3.

For the visualisation, we considered a torus type of SOM [7] because of its
improved learning accuracy and clustering. We trained the SOM with the tool
described in [3] considering the following parameters: For the SOMwe take a square
map sized 30 by 20 (i.e, the number of columns and row). We start from randomized
initial weights and further take a Gaussian neighborhood function with initial radius
of 30, an initial learning rate of 0.1, and 100,000 learning steps

(iterations).

2.3 Construction of a Visualization Judgment Tool
of Clinical Survey Data

In the present paper, digital data, except for the images, but including the part in the
green and red frames in Fig. 1, were collected in the following 6 fields and already
analyzed using the metabolic analysis method described in [1–3]: 1. metabolic judg-
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Fig. 3 ComponentmapofFig. 2. The examinee’s condition graduallymoves into the obese direction
towards early lipid abnormality. In the red colored rectangular boxes, for L:H of High Blood
Pressure , L shows the low score in the left side and H the high score in the right side of the High
Blood Pressure zone. Similarly for the other items

ment (described above), 2. glucose metabolism, 3. liver function, 4. renal (kidney)
function, 5. Blood general, and 6. Immunology and inflammation. The input data
format for the analysis is shown in Fig. 4.

The SOM-based analytical method previously used for metabolic analysis was
then applied to the analysis of the upper 6 fields. The result of the analysis can
be displayed visually and organ-specific anomalies and anomalies in each function
systematically grasped. In addition, these six areas are almost always part of the
normal medical checkup except for the image data. Hence, when storing individual
test data on a portable computer, a face-to-face health support can be provided to
the patient during the checkup at the health center. Continuous and detailed health
evaluation of medical examination data can be established. All this enhances the
patient’s motivation to change his/her lifestyle and increases the individual’s health
instruction effect even more. Figure 4 shows the input data used for the diagnosis
of metabolic health in columns F to Q. For the R to AK columns, the test values
of each item of liver function, kidney function, blood general, and inflammation &
immunity are listed per check-up day.

In “Doctor metabolic syndrome tool”, the MS degree was evaluated by the score.
The same ideawas also applied to judgment of these six areas. The results of the score
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Fig. 4 Input data format example for 6 field decision tool analyzing lifestyle-related diseases

are summarized in the hexagonal coordinate system of Fig. 5. The center of gravity
is also displayed. The center of gravity is intended to monitor the evolution of the 6
fields as a change in the annual 6 field medical checkup results is otherwise difficult

Fig. 5 Lifestyle-disease related items are judged by the location of the score in a hexagonal coor-
dinate system. The average score of all six fields is shown in the lower left corner in the figure. The
red filled circle shows the center of gravity
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to detect. For a long-term clinical survey spanning 10 to 20 years, it is considered
useful to accurately grasp the trend. The traditional medical examination system does
not consider such a long time span.

In Fig. 5, output levels are plotted on the hexagonal axes. The unhealthy marks
(scores) are shown at the end of each axis and correspond to 100 points. The center
is at 0 point (where all data are in the normal range). The result for year 2006 of a
given examinee is shown in Fig. 5. Clockwise the shown scores are 19, 0, 4, 0, 55,
and 9 points. The center of gravity of these six points is shown by the red filled circle.
The location of the center of gravity can be verified in the enlarged view.

The 6 fields of the medical examination for a given year can be easily understood
when plotted in a hexagonal coordinate system. However, it is difficult to display
subsequent changes in position especially when they are close to one another. The
temporal change of each position along its hexagonal coordinate was also displayed
on a vertical axis. This is shown in Fig. 6. In this way, the chronological order of each
field can be judged. In the example shown in Fig. 6, abnormal values are assigned

Fig. 6 Graph of the general evolution of the itemized score over five years of a subject. Items of
which all data is in the normal range are not displayed in the graph. A * or ** mark is attached
when the score of an item surpasses 20 score points. Also, when clicking the open circle within the
red circle, the liver function data of 2008 appears, 0315. The shown menu for a detailed analysis
appears when clicking the Dr. Liver function icon in the red circle. In addition, in this figure, the
region of more than 20 points above the borderline was colored thinly pink. Abbreviations: MS =
Metabolic syndrome, Lf = liver function, BG = blood (general), Ii = inflammation-immunity. Note
that GM = glucose metabolism, and Rf =renal function (Kidney) are not shown here



246 M. Ohkita et al.

Fig. 7 The subject’s data of 15 March 2008 (20080315) appears in the large red frame. After
clicking the right upper small red frame of the figure, the result score and component maps will
appear (not shown due to space limitations)

to Ii, MS, Lf, and BG by the abbreviation. In case of an unhealthy score, the mark
(*) appears in the range of 20–60, and the caution mark (**) appears in the range
of more than 60. So, when one wishes to focus on an individual abnormality, for
example, if you want to examine the contents of the liver function, then the examiner
can click on the black dot in the red circle. Then, the Dr liver function window pops
up. When subsequently the “liver function” button in the red frame is pushed, then
the Dr. Liver function screen will appear (Fig. 7), for example, for the data of year
2008. With this screen (Fig. 7), the year and temporal variation can be analyzed from
the score- and component maps of the patient’s liver function. Thus, after entering
the screen of Fig. 6, the examiner can immediately assess the corresponding data in
detail.

The score- and component maps of 15 March 2008 (20080315) are displayed by
pushing the small red frame in Fig. 7. Also, the score- and component maps for Liver
function from years 2005 to 2010 can be called (Fig. 8) by pushing the small blue
frame in Fig. 7.
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Fig. 8 The temporal variation of a the score map and b the component map from 2005 till 2010
corresponding to Fig. 6

3 Entering Comments into the Component Map

The judgments can be inserted as comment lines at particular positions of the com-
ponent map. Examples are shown in Fig. 9.

Fig. 9 When clicking “the comment” in the upper section (blue frame), a comment equivalent to
input data and judgment data of the yellow frame on the map appears in the rectangular comment
box on the top
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4 Summary

It has been verified that our MS decision tool can avoid the “over-estimation”
and “overlooking” of a patient’s MS condition the currently used recommendation
method is prone to. Building on this advantage, the non-ill level outside the reference
range was defined. A method for evaluating the degree of abnormality was devised
in terms of the extent to which the data exceeds the upper normal limit. The tool
has been expanded to include items of six areas of health screening and medical
examination in general. The result of the six fields can be judged when displayed
on a regular hexagonal coordinate system. In this way, the result can be grasped. In
addition, the temporal change in the center of gravity of the six fields’ scores can
be visualized. Also, a comprehensive view on the patient’s health condition can be
displayed by a bar graph which also shows the temporal evolution of the general
medical examination result. As a result, the examiner no longer needs to solely rely
on clinical survey- and medical examination results expressed as lists of numerical
values, but instead can use a visualized and personalized health display. This display
in turn can serve as an incentive for the patient to change his/her lifestyle and thus act
as a health promotion tool. The temporal evolution of the center of gravity generates
a comprehensive and long-term estimate of one’s health dynamics. It could also be
useful in non-ill prevention. Finally, it is believed that the display and evaluation
of medical examination data over a long time span is an effective way of utilizing
medical examination data not seen in conventional medical examination tools.

Finally, with the proposed tool, the search for trends in medical examination data
and general judgment can run on a personal computer. Furthermore, it is possible
to check abnormality by switching to the corresponding screen. Thus, in this way, a
continuous and detailed health evaluation of medical examination data is supported.
In addition, since in a face-to-face consultation the computer displays of our tool
can be shared with the patient, it can be expected that those displays will support the
health advice given to the patient.
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The Effect of SOM Size and Similarity
Measure on Identification of Functional
and Anatomical Regions in fMRI Data

Patrick O’Driscoll, Erzsébet Merényi, Christof Karmonik
and Robert Grossman

Abstract We demonstrate the advantage of larger SOMs than those typically used
in the literature for clustering functional magnetic resonance images (fMRI).We also
show the advantage of a connectivity similarity measure over distance measures for
cluster discovery and extraction. We illustrate these points through maps generated
from a multiple-subject investigation of the genesis of willed movement, where
clusters of the fMRI time-courses signify functional (or anatomical) regions, and
where accurate delineation of many clusters is critical for tracking the relationships
of neural activities across space and time. While we do not provide an automated
optimization of the SOM size it is clear that for this study increasing it up to 40 ×
40 facilitates clearer discovery of more relevant clusters than from a 10 × 10 SOM
(a size frequently used in the literature), and further increase has no benefits in our
case despite using large data sets (all data from whole-brain scans). We offer insight
through data characteristics and some objective justification.
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Keywords Conscience self-organizing map · CONNvis · Cluster extraction ·
Functional magnetic resonance imaging · Willed movement · Data-driven model

1 Background and Motivation

In this paper we aim to demonstrate that SOM size significantly influences cluster
identification.We also aim to demonstrate the benefits of a connectivity based (rather
than distance based) measure for cluster extraction from a converged SOM. To do
this we analyze full brain functional magnetic resonance imaging (fMRI) data of
humans generating willed movement initiated from a visual stimulus. fMRI is an
accepted method to non-invasively infer real-time neural activity from a hemody-
namic response known as the blood oxygen level dependence (BOLD) signal. fMRI
data comprises time-courses, or time-series, of the BOLD signal at each voxel in a
regular three-dimensional grid over a brain volume. Traditionally, a map reflecting
neural activity level is constructed by computing the statistical likelihood of each
voxel’s fit to a given model of the BOLD signal. Activity maps, however, only pro-
vide a comparison of the activation strengths of various regions, but do not reveal
the functional relationships of the activation patterns (time-courses).

Voxels clustered based on the similarity of their time-courses can be used to iden-
tify functional regions of the brain, in a model-free (data-driven) approach. Various
techniques including graph based, statistical, and artificial neural network methods
have been applied for this purpose. Kohonen SOMs [1] in particular, have been suc-
cessful in either outperforming other methods or providing deeper insights (e.g.,
[2–6]). While it is widely known that too small SOMs can be suboptimal for clus-
ter extraction, fMRI studies tend to use small SOMs ranging from 3 × 3 to 12 ×
12 neurons, often trained only on selected subsets of the available data. Such small
SOMs can work for specific goals as in the examples we review below. We will
argue, however, that larger SOMs could allow more detailed discoveries or more
comprehensive analyses of the whole brain.

Authors of [2–4] use the whole brain (or substantial portion) but constrain their
focus to relatively few functional regions. The interest in [2] is to capture 4–5 func-
tional regions from each of the resting and a goal directed state. After experimenting
with SOM sizes ranging from 4 × 4 to 12 × 12 neurons the authors conclude that a
10 × 10 SOM suffices for finding the targeted functional regions. A 10 × 10 SOM
is used by [3] to examine the effects of age on autism, by capturing 16 clusters that
represent a handful of expected active areas of the rest state and the default mode
network (DMN). Similarly, 10–20 clusters are extracted from a 11 × 11 SOM in
[4], delineating expected regions mainly in the motor cortex. Other studies limit the
amount (and complexity) of the data by processing only selected parts. Both [5, 6]
take the widely used approach of excluding voxels that fall below some activation
level. [5] uses unsupervised SOM, [6] uses supervised SOMs to obtain a small num-
ber of clusters/classes (3–8) of very small numbers of voxels (few hundred to a few
thousands), and evaluate clustering quality or classification accuracy as a function
of the number of voxels processed. The SOMs are small (6 × 4 in [5], undeclared
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size in [6] but look no larger than ∼10 × 10.) [5] concludes that keeping only active
voxels with increasing ROI specificity (smaller and smaller sets of voxels) improves
results. [6] shows that increasing the ratio of active voxels to inactive ones improves
classification, albeit the accuracies are rather low (� 0.5 for real data). However,
neither paper investigates how a larger SOMwould facilitate better results by coping
with more voxels or providing more resolution for cluster separation. For clustering
the SOM, typically �2-distance based measures are applied although some works
use more sophisticated clustering methods than others. Visualization, where used, is
most often the plotting of prototype vectors into their SOM grid locations.

In this work we show the benefits of using larger SOMs than those typically found
in fMRI literature, and we also show the advantage of using a non-distance-based
metric to extract clusters from converged SOMs. We demonstrate these points on
whole brain fMRI data.

2 Data Collection, Acquisition, and Pre-processing

Here we describe the experiment performed for our data collection, the acquisition
parameters and resulting dataset, and the pre-processing of that data.

Experiment A series of ten human faces (five pleasant and five unpleasant) are
presented to subjects in a random order, generally with a 50s rest period. Each face
is shown for 10s, and judged by the subject to be pleasant or unpleasant. The subject
is instructed to squeeze a ball placed in his/her right hand if the face is judged to
be unpleasant, until the face goes away. If the subject finds the face pleasant, he/she
does nothing. Figure 1 shows part of the experiment with expected BOLD signals,
generated in the left motor cortex, as a result of the subject’s reaction to unpleasant
faces. When the subject sees an unpleasant face, he/she makes a willed movement,
thereby generating a series of neural activities that travel through both time and space
in the brain. The activity originates in the visual cortex upon perceiving the face, then
travels to other parts of the brain, and finally reaches the left sensory-motor cortex
when the subject squeezes the ball. We are investigating the spatial and temporal
relationships between the areas of the brain that participate in this process. In this
paper we concentrate on describing the methods used to extract this information by
clustering.

Data Acquisition and Pre-processing The data of six subjects from a larger study
under an IRB approved protocol are analyzed. The fMRI data is collected using a
Siemens Vario 3 Tesla scanner. Each subject sees each face for 10s. The duration of
the rest period is generally 50s, long enough to allow the expected BOLD signal to
completely subside before the next face presentation. The voxel size ranges between
2.750 × 2.750 × 5.000 mm3 and 3.594 × 3.594 × 5.000 mm3, the temporal reso-
lution varies from 1.0 to 1.5s per brain scan across subjects, yielding data cubes of
∼64 × 64 × 24 × 460 (i.e., approx. 100k time-courses each with approx. 460 sam-
ples). Pre-processing follows that in [7], which performed well in our experiments:
motion correction, high- and low-pass filtering (which removes signal outside the
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Fig. 1 Sample experiment consisting of showing three faces (one pleasant, and two unpleasant).
Time windows A to B, C to D, and E to F are rest periods, B to C is a pleasant face presentation,
and D to E and F to G are unpleasant face presentations. The expected BOLD signal (in the left
motor cortex) is shown for the two unpleasant face presentations, our windows of interest

0.008–100.0 Hz frequency range), and each time-course is scaled by its �2-norm.
Areas outside the brain are masked (excluded) from processing. All these steps are
carried out using AFNI [8], an open source data visualization and processing soft-
ware. To concentrate on relevant information in the time-courses, the windows of
interests—such as thewindows of face showing—may be extracted and concatenated
to form the input vectors for clustering. We follow another approach using a single
window. Since data from the first unpleasant face presentation is most likely to be
free of irrecoverable artifacts in all subjects we use an interval of 36 points (40–50s)
encompassing the entire ramp up and down of the BOLD signal generated by this
event.

3 Analysis Methods

We use a SOMwith conscience learning, or Conscience SOM (CSOM) [9], for max-
imum entropy (equiprobabilistic) mapping, thus potentially more faithful matching
of the pdf of the data by the SOM prototypes. Compared to the Kohonen SOM algo-
rithm, this is achieved by the use of a bias at winner selection, thereby discouraging
frequently winning nodes from winning and encouraging infrequent winners to win
more:

c(x) = argmini (||x − wi || − biasi ), i = 1, ..., N (1)

Here N is the number of SOM prototypes wi ∈ Rn , x is a point in the data manifold
M ⊂ Rn , and c indexes the winning prototype wc. The bias for prototype wi is
computed as in Eq. (2) where γ is a user-controlled parameter, and Fi is the winning
frequency of wi , updated after each learning step. The weight update rule remains
the same as for the KSOM (Eq.3).

biasi = γ (1/N − Fi ) (2)

wi (t + 1) = wi (t) + α(t)hc,i (t)(x − wi (t)) (3)



The Effect of SOM Size and Similarity Measure … 255

The CSOM neighborhood function hc,i can have a constant small radius r (of 1 or 2)
throughout the learning process because the “conscience” ensures the propagation
of collaboration among prototypes. We use r = 1 or r = √

2, (updating the 4 or 8
immediate neighbors in diamond-shaped or square neighborhoods, respectively), in
a rectangular lattice. This significantly reduces computational cost. The equiprob-
abilistic mapping property of the CSOM was shown in [9] for 1-dimensional data,
and demonstrated for higher-dimensional data in [10, 11].

Cluster Extraction For capturing clusters of fMRI time-courses from converged
SOMs we compare the relative merits of two frequently used inexpensive visualiza-
tions, mU-matrix [10] and the plot of prototype vectors at their SOM grid locations,
with CONNvis [12] (Fig. 2). We note that visualizations such as U, P, AU*, AP,
matrices [13] (and references therein) – while attractive and effective when used for
an emergent SOM – are not applicable in our case. They require the number of pro-
totypes to be close to the number of data points, which is not practical for our large
data size. Just as importantly, large number of prototypes does not help clustering of
our fMRI data, as we will see.

The mU-matrix [10] is a refinement of the classic U-matrix [14]. It represents the
Euclidean distance of a prototype to each of its eight lattice neighbors. The distances
are visualized as thin gray-scale “fences” between adjacent SOMgrid cells (instead of
shading each grid cell to the average value of the distances). Dark fence means small
distance, bright fence means strong separation and therefore may indicate cluster
boundary. The mU-matrix also encodes the mapping density by the brightness of
a monochrome cell color (red in Fig. 2a) which is proportional to the number of
data points mapped to the cell. An example can be seen in Fig. 2a. We also plot the
prototypes at their lattice locations as it is a customary way to show the learned SOM
in fMRI studies, and it provides a direct visual assessment of the pattern differences
(Fig. 2c).

TheCONNvis is a visualization of theCONNsimilaritymeasure, which expresses
connectivity rather than distances. The connectivity, CONN(i,j), of two prototypes
wi , w j , is the number of times wi and w j are selected as a pair of best matching
unit (BMU) and second BMU for any data point. CONN(i,j) > 0 means that wi , w j

are Voronoi neighbors in M . The visualization shows the connectivity for every pair
of prototypes (black points in Fig. 2b) by a connecting line where the line width is
proportional to the (normalized) CONN value. For visualization purposes the line
widths are also binned to help the human eye. The binning, described in detail in
[12], is non-linear and governed by the data statistics. Discontinuities or weakly con-
nected regions of the manifold emerge where no or very thin connections are drawn.
The connections of a prototype to its Voronoi neighbors are ranked by their relative
strengths and the ranking is indicated by colors: red line connects to the most impor-
tant Voronoi neighbor, followed by blue, green, yellow, and gray shades. The ranking
expresses local manifold relations and provides finer details for the identification of
cluster boundaries. As an additional benefit CONNvis shows topology violations:
prototypes connected with line segments longer that one lattice unit violate topology
preservation. The line width indicates the severity of the violation. A procedure for



256 P. O’Driscoll et al.

Fig. 2 Example of extracting two clusters belonging to the visual cortex from three different
visualizations of a 10 x 10 CSOM. These two clusters are indicated by the light green and dark green
outlines, highlights and lines. a mU-matrix, b CONNvis, c prototypes plotted at their SOM grid
cells, and d top: average time-courses of the two green clusters vertically exaggerated and overlain
for comparison, with standard deviations (vertical bars), and ranges shown; bottom: the same two
average time-courses shown separately. Other clusters found in the boxed SOM area (some also
related to the visual cortex) are outlined in orange. The mU-matrix representation, which expresses
clusters well for many other types of data, seems insensitive to the small differences in prototype
distances that appear to characterize fMRI data. Owing to the connectivity measure, the CONNvis
shows clearer clusters despite their high degree of similarity. The shapes of the prototypes are
consistent with the extracted clusters

cluster extraction based on CONNvis is also outlined in [12]. Figure 2 shows an
example of extracting two clusters, indicated in green boxes, from a 10× 10 CSOM.
In Fig. 2b these are defined by groups of prototypes with strong connections to each
other (thick red lines) while each group’s connection to another group of prototypes
is less strong (blue lines). The two clusters highlighted in green primarily make up
the visual cortex. Their close relationship is expressed by the strong ranking (blue) of
their interconnections in the CONNvis representation. Figure 2c provides evidence
for this grouping. Other clusters in this inset are indicated in orange boxes but not
discussed here.

Data Post-Processing For the purpose of tracking the generation of the willedmove-
ment, we filter the extracted SOMclusters for displays of brainmaps showing associ-
ations with the visual stimulus and the clenching of the right fist. The filtered clusters
are those whose average time-courses correlate relatively strongly with the mean of
the cluster identified as the visual cortex. Other clusters are assumed to represent
the rest state or other involvement. The correlation threshold, in this case 0.5, is
empirically determined and can vary for different data and tasks. Our discussion of
the clustering quality as a function of SOM size, however, includes all clusters we
delineate, not only the filtered ones.
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4 Effects and Evaluation of SOM Size

All clusters extracted from the 10 × 10 SOM in Fig. 2, and from a 40 × 40 SOM
(18 and 29, respectively) can be seen in Fig. 3. Filtered clusters mapped back to two
selected brain slices are shown in Fig. 4. The quality of the extracted clusters can
greatly differ depending on the SOM size. By allocating more prototypes to high-
density areas, the 40 × 40 SOM facilitates separation of groups of similar fMRI
time-courses with small but consistent differences. This translates to finer spatial
resolution and delineation of more, functionally distinct, areas in the brain than from
the 10 × 10 SOM. An example can be seen by the comparisons made in Fig. 4.
While clusters belonging to the superior frontal and medial frontal gyri (the magenta
clusters) are detected from both the 10 × 10 and 40 × 40 SOMs, the 40 × 40 SOM
also allows to fully resolve the sensory-motor area (dark red cluster), and the detection
of the cerebellum (dark blue cluster). These regions cannot be mapped from the 10
× 10 SOM without including large swaths of other brain areas. The visual cortex is

Fig. 3 CONNvis of a 10 × 10 and b 40 × 40 CSOM, overlain with extracted clusters (colored
groups of prototypes). The color coding of clusters belonging to the same functional regions in the
brain is as similar as possible in the two SOMs, but cannot be made identical due to more resolved
clusters in the 40 × 40 SOM. Unclustered areas of the 40 × 40 SOM contain prototype groups that
map to spatially incoherent sets of voxels or unimportant features in the brain (such as spinal fluid).
Data: Subject 2
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Fig. 4 Comparison of clusters extracted from the 10 × 10 and 40 × 40 CSOMs in Fig. 3, filtered
and mapped to the brain. The two selected axial slices display clusters associated with the visual,
motor, and cognitive functions. a, b: Clusters identified from the SOM in Fig. 3a. c, d: Clusters
identified from the SOM in Fig. 3b

resolved in both SOMs (Figs. 4a and d). Both these clusterings as well as one from
a 20 × 20 SOM were validated and compared by neuroscientist experts, judging the
40 × 40 clustering as significantly better than the others.

The advantage of the larger SOM size can also be measured objectively using
cluster validity indices. There exist many indices, and some are better suited for
high-dimensional data with complex cluster structure than others. We give here mea-
surements by four indices, listed in columns 3–6 of Table 1. Two of them, the classic
Davies-Bouldin Index (DBI, [15]), and the newer Pakhira-Bandyopadhyay-Maulik-
index (PBM) favors spherical clusters when �2 distances are used. PBM strongly
favors a small number of clusters (penalizes the number of clusters quadratically).
Composed density between and within clusters (CDbw) rewards clusters with homo-
geneous density. CONNindex [16] is a recent one developed to address difficulties
caused by irregular clusters and complicated cluster structure. We sketch the essence
of DBI and CONNindex below. Due to space constraints please see formulae and
references for PBM and CDbw in [16].

DBI is defined as the average, over all clusters, of the maximum ratio of the aver-
age intra-cluster scatter (standard deviation in this case) to the inter-cluster separa-
tion. The inter-cluster separation is the distance between cluster centers. CONNindex
relies on the CONN connectivity measure [12]. As defined in [16], CONNindex =
Intra_Conn×(1−Inter_Conn) where Intra_Conn is the average intra-cluster con-
nectivity, and Inter_Conn is the average of the maximum inter-cluster connectivities
where averaging is over all clusters Ck . The intra-cluster connectivity of a cluster
Ck is the proportion of connections between prototypes that reside inside Ck , to all
connections that the prototypes of Ck have to any other prototypes. The inter-cluster
connectivity of two clusters Ck, Cl is the proportion of connections between proto-
types of Ck and Cl (in either direction), to all connections (to any cluster) of those
prototypes in Ck which have at least one connection to Cl . Both I ntra_Conn and
1 − I nter_Conn are 1 when all clusters are completely separated. The value ranges
of these measures are shown in Table 1, along with arrows pointing from worst to
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Table 1 Quality measures (explained in the text) for clusterings of the same (Subject 2) fMRI data
from three different SOMs, with best in bold face and worst in italics

SOM size Nr
clusters

DBI
0 ← ∞

PBM
0 → ∞

CDbw
0 → ∞

CONNind
0 → 1

Intra_Conn
0 → 1

Sep_Conn
0 → 1

10 × 10 18 2.854 0.0008 0.023 0.364 0.535 0.681

20 × 20 25 2.934 0.0007 0.027 0.408 0.550 0.741

40 × 40 29 2.761 0.0006 0.025 0.572 0.716 0.799

60 × 60 — — — — — — —

Value ranges and arrows pointing from worst to best are under the respective measures

best value. Sep_Conn stands for 1−Inter_Conn. While it is hard to compare open-
ended indexes, it is helpful to know that DBI values tend to be below 10, and DBI> 1
indicates overlaps but DBI< 1 does not necessarily mean separated clusters. CDbw
values can be much larger. PBM is scaled by 1

K 2 where K is the number of clusters,
which can make its values magnitudes smaller compared to DBI.

Quality measures for clusterings of the same fMRI data from SOMs of three
different sizes are summarized in Table 1. Both DBI and CDbw assign very similar
scores to all SOMs although the 40 × 40 SOM is slightly better by the DBI and the
20× 20 SOM by the CDbw. However, given the typical value ranges of these indices
all scores are poor, and the differences are negligible. A reasonable explanation is the
model-dependence of these indices. DBI misjudges clusterings with non-spherical
and unevenly sized clusters.CDbw is likely failing because of possibly heterogeneous
densities. If we ignored the quadratic penalty byPBM (scaled it back by K 2, i.e., 324,
625, and 841, respectively) it would indicate substantial differences, progressively
to the advantage of the larger SOM.While the 40 × 40 SOM is confirmed by experts
as the best, the DBI, CDbw, and PBM have difficulty correctly judging the highly
irregular fMRI clusters.CONNindex, in contrast, handles irregular clusters and shows
significant increase, given its range, in quality from 10 × 10 to 40 × 40 SOM size.
Examining the components of CONNindex, the 40 × 40 SOM preforms significantly
better in both metrics. It is noteworthy though that the larger increase is in the intra-
cluster connectivity term, indicating more self-contained clusters. This is due to
a sufficient number of prototypes for accurate mapping of the manifold structure,
increasing the proportion of connections inside clusters regardless of their shapes.
The connectivity measure senses this improvement correctly. No sensible cluster
extraction could be done from a 60× 60 SOM,whichwe attribute to the highlymixed
an noisy signals (discussed below) in fMRI voxels. The 60 × 60 SOM has enough
prototypes to begin to model the structure of the noise rather than the characteristics
of the functional regions we aim to capture.

fMRI data is highly complex, partly because the voxels are large compared to
the spatial extent of distinct neuronal signals and the variations of tissue types. This
results in heavily mixed signals (time-courses) of tissue types and functional regions
within a voxel. Exacerbating this mixing is the nature of the BOLD signal, which is
not always constant within the same functional region. It reflects overlapping spatial
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and temporal influences, potentially from many voxels depending on the functional
region, subject and other factors. The result is a large degree of overall mixing that
dilutes the discriminating characteristics of distinct functional regions. Figure 2d is
an illustration of the level of similarity.

While formal optimization of SOM size is beyond the scope of this paper, we
can also draw approximate justification for the 40 × 40 SOM from a Growing SOM
(GSOM, [17]), which returns a 7 × 6 × 4 × 4 × 3 × 2 × 2 SOM. With the last
two dimensions close to vanishing the rest of this SOM comprises 2016 neurons, a
number close to the 1600 neurons in the 40 × 40 SOMwe use, and much larger than
the number of neurons in a 10 × 10 or 20 × 20 SOM.

5 Results from Multiple Subjects

Figure 5 shows the localization of filtered clusters extracted from 40 × 40 SOMs and
mapped back to the three-dimensional brains for each of the six subjects. The pre-
sented clusters belong to brain regions involved in the visual processing and motor
response, and show commonality of the activated areas across subjects. Representa-
tive slices are chosen to exhibit the visual, motor, and supplementary motor cortex.
Not all extracted clusters can be displayed in each of the three slices. For example in
subject 2 the activation in the visual cortex is shown in the coronal slice, but not in the
more laterally located sagittal slice. The visual cortex and cuneus (the group of green
clusters in the coronal slices, and at the bottom of the sagittal slices) are activated by
the visual stimulus. The left motor cortex and sensory cortex (red clusters at right in
the axial, and at top in the sagittal slices) are active, consistent with squeezing the
ball with right hand. Subjects 1, 2, and 6 exhibit some bi-lateral activity of the motor
areas, with the larger response in the left brain (corresponding to the movement in
the right hand). The supplementary motor area, also used in the generation of move-
ment, is activated in each subject (red clusters at the center of the axial slices) with
subjects 1 and 3 generating the largest and most coherent response areas. A number
of clusters also appear, consistently across subjects, in other functional regions such
as the superior and medial frontal gyri (magenta colors). While those, and several
more that map to other brain slices (e.g., cerebellum, thalamus, cyngulate gyrus, pre-
cuneus, and caudate nucleus, not shown here) may correlate with the visual cortex
to lesser extent, their common activation in all (or most) subjects calls attention to
relationships worth investigating, and may hold keys to new discoveries of neuronal
processes.

We note that, since clusters reflect similarity of time-courses, the same cluster
may occur in multiple areas. For example, in the axial slice of subject 4, the green
clusters cover parts of the sensory cortex (adjacent to the red motor cortex cluster at
center right) and a section of the precuneus (the green cluster at the bottom of the
slice). This means in subject 4 these areas are highly correlated, likely a result of
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Fig. 5 Filtered clusters shown for all six subjects, in selected axial, coronal, and sagittal slices on
the anatomical substrate. Here we only show clusters which occur in all subjects in the motor cortex,
supplementary motor area and visual cortex (where activation is expected during our experiment),
and in the cuneus, superior frontal gyrus, and medial frontal gyrus. The color wedge codes clusters
which are present in these slices. Cluster colors are grouped into three hues that signify closely
related functional/anatomical regions. The slices shown are selected to display the same functional
regions in each subject. (Geometric co-registration remains a follow-up task at this time.)

a slightly different neural pathway that subject 4 uses to complete the task. Slight
deviations of the pathways are expected in each subject. Thus, the same level of
correlation between the same regions is not common in all subjects.
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6 Conclusions

Our objective is to call attention to the untapped potentials of larger SOMs than those
(∼10 × 10) typically employed in fMRI analyses; to CSOM; and to connectivity
(non-distance-based)measures, for better SOMmanifold learning and cluster extrac-
tion. To that end we demonstrate, through real, full-brain fMRI data that increasing
the SOM size up to a point (40 × 40 lattice in our case) facilitates cleaner cap-
ture of more relevant clusters than small SOMs. Importantly, further increase of
the SOM size is detrimental to the clustering. We provide justification that this is
due to the highly mixed and noisy time-course signals in fMRI data. Clusters in
functional regions relevant to the generation of willed movement (the goal-oriented
task we analyze), as well as others, are consistently identified from 40 × 40 SOMs
across six subjects. This in turn supports more detailed elucidation of the functional
relationships of brain regions and potentially allows discoveries of more nuanced
neuronal activities related to the goal-oriented task. Follow-up work will strive for
more comprehensive computational experiments and more formal investigation of
the dependence of SOM sizes on the data characteristics.
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12. Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of Self-
Organizing Maps. IEEE Trans. Neural Netw. 20(4), 549–562 (2009)

13. Lötsch, J.,Ultsch,A.:Exploiting the structures of theU-matrix. In:Advances inSelf-Organizing
Maps and Learning Vector Quantization, pp. 249–257. Springer (2014)



The Effect of SOM Size and Similarity Measure … 263

14. Ultsch, A., Siemon, H.P.: Kohonen’s self organizing feature maps for exploratory data analysis.
vol. 1, pp. 305–308 (1990)

15. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell. 2, 224–227 (1979)
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Abstract Astronomy is facing a paradigm shift caused by the exponential growth
of the sample size, data complexity and data generation rates of new sky surveys.
For example, the Large Synoptic Survey Telescope (LSST), which will begin opera-
tions in northern Chile in 2022, will generate a nearly 150 Petabyte imaging dataset.
The LSST is expected not only to improve our understanding of time varying astro-
physical objects, but also to reveal a plethora of yet unknown faint and fast-varying
phenomena. In this talk I will present big data era challenges and opportunities in
astronomy from the point of view of computational intelligence, machine learning
and statistics. In particular, I will address the question of how SOM/LVQ and related
learning methods can contribute to cope with these challenges and opportunities.
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Abstract Reject options in classification play a major role whenever the costs of
a misclassification are higher than the costs to postpone the decision, prime exam-
ples being safety critical systems, medical diagnosis, or models which rely on user
interaction and user acceptance. While optimum reject options can be computed
analytically in case of a probabilistic generative classification model, it is not clear
how to optimally integrate reject strategies into efficient deterministic counterparts,
such as popular learning vector quantization (LVQ). Recently, first techniques pro-
pose promising a posteriori strategies for an efficient reject in such cases (Fischer
et al. Neurocomputing, 2015 [7]). In this contribution, we take a different point of
view and formalize optimum reject via an integrated cost function. We show that an
efficient approximation of these costs together with a geometric reject rule leads to
an extension of LVQ which not only aligns the classification model along the reject
costs but also self-adjusts an optimum reject threshold while training.
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1 Introduction

Machine learning and automated classification constitute integral parts of techni-
cal systems in a variety of application domains such as deep learning for image
classification, prototype based models for robust online learning in vision systems,
or ensemble classifiers for biomedical data analysis, to name just a few examples [3,
4, 14]. While machine learning models often reach a high accuracy close to 100%,
there exist cases where errors are unavoidable. One prominent setting is that the
observed data incorporate uncertainty such as randomness in the underlying process
(aleatoric uncertainty) or incomplete knowledge e.g. due to limited sensorial equip-
ment (epistemic uncertainty) [24]. Another setting where errors arise is given in
online learning in changing environments, where concepts are subject to drift as
compared to the learned model [18]. In such cases, classification errors necessarily
occur, and the question can be raised whether classification of all data is appro-
priate, or whether it is better to reject the classification of data where the output
is subject to a high degree of uncertainty. In particular in safety critical domains,
medical diagnosis, or interactive models which rely on a high degree of user
acceptance, it might be better to postpone a decision rather than to provide an output
with a high degree of uncertainty.

The notion of a reject option refers to the possibility of a classifier to output the
symbol reject rather than a specific class in case of a high degree of uncertainty. A
correspondingmathematical treatment relies on the assumption thatmisclassification
costs are higher than postponing the classification, such that it might be favorable not
to classify than to make an error. In the pioneering work [5], an optimum reject rule
has been derived in case of known Bayesian risk. This treatment can be extended to
plug-in rules where the Bayesian risk is only approximated provided certain regu-
larity assumptions apply [11]. This theoretical framework offers a direct interface to
integrate rejects into classification models which estimate the classification proba-
bility, such as Gaussian processes, Bayes classifiers, or graphical models. It can also
be combined with classifiers which are a-posteriori extended towards a probabilistic
output [6, 17].

One alternative to a probabilistic treatment is offered by a combination of classi-
fiers with a deterministic reject optionwhich is based on geometrical rules such as the
distance to the decision boundary. Quite a number of approaches extend popular clas-
sification schemes in this way, mostly relying on heuristic grounds [7, 19]. Interest-
ingly, deterministic reject rules can surpass the accuracy of probabilistic counterparts
if the latter do not optimally approximate the underlying generative characteristic [7].
Further, local reject rules can greatly enhance the quality of a global reject strategy
[8, 16]. These approaches rely on posterior reject strategies based on the given classi-
fication prescription and they do not optimise the decision boundary itself according
to the reject costs while training.

Classification with a reject option which optimises the full system according to
the underlying loss function has been investigated extensively in the case of support
vector machines [2, 10, 26]. Here the standard two class classifier is equipped with
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a third option, a reject in case the distance to the decision boundary falls into a
specified interval. The loss function is approximated by a convex surrogate, for
which consistency can be proved under certain conditions.

In this article, we address prototype-based classification schemes, which have
become increasingly popular in recent years in the context of interpretable models
e.g. in the biomedical application domain as well as life-long learning with adaptive
model complexity due to their intuitive and sparse representation of the model in
terms of representative prototypes [1, 4, 9, 14, 22, 25, 27]. We will focus on modern
variants which adjust prototypes in a discriminative way based on a suitable cost
function, and which can be accompanied by strong learning theoretical guarantees
[23]. Recently, first reject options which enrich these methods with posterior reject
strategies based on geometrical principles have been proposed [7, 8]. Since the tech-
niques rely on a trained model, they do not optimally adjust the prototype positions
itself according to the rejection costs, nor do they provide an optimum threshold pro-
vided known rejection costs. In this contribution, we will propose a novel strategy
which derives prototype-bases training models from an optimization of the classifi-
cation costs including a reject option. The resulting algorithm not only adjusts the
prototype positions accordingly, but it also provides an optimum reject threshold for
the given scenario. This technology will be demonstrated in a number of benchmark
examples.

2 LVQ as Approximation of the 0-1-loss

Learning vector quantization (LVQ) as introduced by Kohonen constitutes one of
the most popular approaches to adjust a prototype-based model in a discriminative
way [15]. Here we introduce a cost function based variant as approximation of the
standard 0-1-loss [23]. We assume training data have the form v ∈ V ⊆ R

n with
known class labels c (v) ∈ C = {1, . . . , K }. An LVQ model is characterised by a
fixed number of M prototypes w j ∈ W ⊂ R

n, j = 1, . . . , M with labels y j ∈ C.
These prototypes define a classification based on a winner-takes-all rule, mapping a
vector v ∈ R

n via

v �→ ys(v) where s(v) = argmink=1...M d (v, wk) (1)

where the index s(v) is the index of the best matching prototype with respect to a
fixed distance measure d (v, w), usually the squared Euclidean distance or a more
general quadratic form. The 0-1-loss on these data equals

E =
∑
v∈V

l(ys(v), c(v)) where l(ys(v), c(v)) =
{

Ce if ys(v) �= c(v)

0 otherwise
(2)



272 T. Villmann et al.

with error costs Ce > 0 (e.g. Ce = 1) which can be rephrased using the equality

l(ys(v), c(v)) = Ce · H(μ(v)) where μ (v) = d+ (v) − d− (v)

d+ (v) + d− (v)
(3)

with theHeaviside function H ; d+ (v) = d
(
v, w+)

denotes the dissimilarity between
v and the closest prototype w+ with the same class label y+ = c (v), and d− (v) =
d

(
v, w−)

denotes the dissimilarity value for the best matching prototype w− with
a class label y− different from c (v). Instead of the real-valued classifier function
μ(v), every function which is positive iff d+ (v) > d− (v) could be used; μ(v) has
the advantage that its values are scaled to the interval (−1, 1). Note that we can
analogously define a classifier function for data v without known label: in that case
we set w+ and w−, respectively, as the two closest prototypes which have a different
class label, i.e. w+ determines the output of the classification.

Since H is not differentiable, Sato&Yamada introduced a smoothed variant

ELVQ (W ) =
∑
v∈V

Ce · fθ (μ(v)) with sigmoidal fθ (t) = (1 + exp(−t/θ))−1 (4)

which approximates the 0-1-loss for θ → 0 [21]. Note that this variant can easily
be extended to incorporate non-equal misclassification costs by a suitable weighting
scheme [12]. Update rules can be derived thereof by a stochastic gradient technique,
the resulting learning scheme is the generalized LVQ (GLVQ).

3 Distance Based Reject Options in LVQ

Chow investigated how to optimally extend a classifier to incorporate a reject option
[5]. We assume rejection costs 0 < Cr < Ce provided the classifier rejects a classi-
fication. Cr is used if the output is chosen as s(v) = reject.

Provided the class conditional probabilities p (v|k) and priors πk for a class k ∈ C
are known, according to the Bayes criterion, a data point has to be rejected if

max
k

πk · p (v|k) < (1 − τ)

K∑
j=1

π j · p (v| j) (5)

with the optimal reject threshold τ = Cr/Ce as shown in [5]. The evaluation of
this reject rule (5), however, requires a good estimation of the class conditional
probabilities p (v|k) which is difficult, in particular in high-dimensional spaces;
hence this confines the practicability of Chow’s approach.

We rely on learning vector quantisation and distance based reject options as an
alternative, whereby the reject threshold and prototype locations are derived from an
approximation of the empirical loss function as a surrogate for the expected loss. As
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proposed in [7], we extend the classification rule to a reject based on the classifier
function μ(v) as

v �→
{
reject if |μ(v)| ≤ ε

ys(v) otherwise
(6)

where ε constitutes the rejection threshold or reject margin. Hence the 0-1-costs are
extended towards a third case:

l(ys(v), c(v)) =
⎧⎨
⎩

Ce if ys(v) �= c(v)

Cr if ys(v) = reject
0 otherwise

(7)

This gives rise to the expected loss E(l(ys(v), c(v)) = ∫
l(ys(v), c(v))p(v)dv with its

empirical counterpart

E (W, ε) =
∑
v∈V

l(ys(v), c(v)) = Cr ·
∑
v∈V

H(μ(v) + ε) + (Ce − Cr ) ·
∑
v∈V

H(μ(v) − ε) (8)

As usual in machine learning, we optimize this empirical counterpart, whereby gen-
eral learning theoretical guarantees guarantee the validity of this approach. Since
these extended costs are not differentiable, we take the sigmoid softening function
fθ and obtain a smooth approximation which serves as cost function for GLVQ with
reject option (GLVQ-r)

EGLVQ−r (W, ε) = Cr ·
∑
v∈V

fθ (μ(v) + ε) + (Ce − Cr ) ·
∑
v∈V

fθ (μ(v) − ε) (9)

Parameter updates can easily be derived thereof by means of a stochastic gradient
descent, relying on the derivatives

∂CGLVQ-r

∂w+ = 2 · d−
(
d+ + d−)2

[
Cr · f

′
θ (μ (v) + ε)) + (Ce − Cr ) · f

′
θ (μ (v) − ε))

]
· ∂d+

∂w+ (10)

and

∂CGLVQ-r

∂w− = −2 · d+
(
d+ + d−)2

[
Cr · f

′
θ (μ (v) + ε)) + (Ce − Cr ) · f

′
θ (μ (v) − ε))

]
· ∂d−

∂w− (11)

An adjustment of the threshold (margin) ε takes place based on the derivative

∂CGLVQ-r

∂ε
=

[
Cr · f

′
θ (μ (v) + ε)) − (Ce − Cr ) · f

′
θ (μ (v) − ε))

]
(12)

These rules apply for a reject strategy with one global threshold. Local margins
could be derived similarly from corresponding costs. So far, GLVQ is used with the
standard Euclidean distance. Generalizations to metric adaptation or more general
forms as summarized in [13] are immediate.
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4 Simulations

We tested the approach for different datasets. The first one is an artificial one-
dimensional data set of overlapping Gaussians (G1). The other two data sets are
real world data. The medical data set (MD) is about prediction of myocardial infarct
based on blood properties. The real world technical data (TD) set deals with the
detection of headlight calibration situations. For all application we scaled the cost
such that Ce = 1 and the rejection costs Cr are scaled accordingly.

4.1 Artificial Datasets

The first artificial dataset consists of two overlapping one-dimensional Gaussians
with centersμ1 = −0.75 andμ2 = 0.75 and variances σ1 = σ2 = 0.3. The rejection
costs for GLVQ-r was set to Cr = 0.2. For this setting, the theoretical threshold
εT = 0.277 is calculated according to [5, formula (26)]. In our simulation, each
Gaussian was sampled by 5000 data points and we used one prototype per class.
GLVQ-r achieves (one prototype per Gaussian) a value ε = 0.28, which is a good
verification of the theoretical results.

The second artificial dataset is the ‘Moon’ dataset, which is a composition of
two non-linear and overlapping subsets, see Fig. 1. We applied GLVQ-r with 5 and
2 prototypes per class. Depending on the increasing relative rejection costs Cr we
observe a decreasing rejection rate and an increasing classification error rate, see
Fig. 2. Thus, lower rejection costs yield better accuracy values as expected.

Fig. 1 Visualization of the ‘Moon’ data. The prototypes for the classes are ‘◦’ and ‘�’. We observe
a clear difference for the prototype distribution in dependence on the reject costs. For higher reject
cost the prototypesmove to the class borders in critical regions. left relative rejection costsCr = 0.1
with 66 rejected data (red ×) and two misclassified data (black ×). right relative rejection costs
Cr = 0.45 with 3 rejected data (red ×) and 21 misclassified data (black ×)
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Fig. 2 Logarithmic
classification error and reject
rate in dependence on the
relative rejection costs Cr for
the ‘Moon dataset’

4.2 Medical Dataset

This dataset is a subset from the Leipzig LIFE Heart Study and contains the data
of 1126 male patients suffering from a from coronary artery disease with a stenotic
lumen reduction of at least 50%with (460) andwithout (666) amyocardial infarction.
For these patients several blood parameters among others were measured: CRP (C
reactive protein), WBC (white blood cells), PLT (thrombocytes), Hkt (hematocrit),
MPV (mean platelet volume), FIB C (fibrinogen, based on the Clauss method),
vWF (von-Willebrand-factor ristocetin cofactor activity), vWF:RCo (ristocetinvon
co-factor activity of the vWF) and sGPVI (soluble glycoprotein VI).

The datawere trainedwith bothGLVQandGLVQ-r to predict amyocardial infarct
by three-fold cross validation. All reported results are obtained for the test data. The
rejection costs for GLVQ-r varied according to Cr = 0.275 . . . 0.475, see Fig. 3.
GLVQ corresponds to Cr = 0.475, because here the reject rate was zero yielding
an accuracy of 82.8%. Otherwise, rejection costs of Cr = 0.3 yield an accuracy of
93.1%, which underlines the strong overlap of the classes.

4.3 Technical Dataset

Trends in automobile-headlights show an increasing interest in intelligent lighting-
systems. The high-performance LED-headlamps and the growing number of
information, delivered by the specific sensors of the car, establish the base of these
lighting-systems. For example, the matrix-beam-system, which realizes a glare-free
high-beam, is one of the first intelligent lighting-systems, which are available in
current cars [20]. The performance of those systems depends particularly on the
interaction between the headlamp and the driver-assistance-camera. A correctly
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Fig. 3 Logarithmic
classification error and reject
rate in dependence on the
relative rejection costs Cr for
the medical dataset

adjusted headlamp is as important as the calibration of the used camera. An online
calibration system like the Porsche Automatic Headlamp Setting (PAHS) can pro-
vide both demands. The PAHS system combines a movement of the headlamp’s
light-distribution with a detection of the headlamp’s cut-off-line (COL), see Fig. 4,
by the driver-assistance-camera.

As a result of this calibration the horizontal and the vertical mis-aiming of the
headlamp can be calculated, which finally allows a continuous control of the head-
lamp. Hence, correct classification of the COL crucially influences precision of the
whole system.

For the detection of the upper COL (uCOL) and lower COL (lCOL) 6 parameters
were provided by the PAHS to the classifier system, which are easy to measure
and to calculate including contrast values for COLs, canny-edge descriptors and
characteristic angles [20]. In our example, the resulting Porsche data comprises
27% uCOL- and 60% lCOL-samples.

Application of GLVQ as classifier yields a test accuracy of 91% using 1 prototype
per class (three-fold cross validation). The relative rejection costs for GLVQ-r are
chosen as Cr = 0.0 . . . 0.5. The results are depicted in Fig. 5.

Fig. 4 Logarithmic gray-scaled luminance-measurement of a headlamp and detectable cut-off-lines
in PAHS
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Fig. 5 Logarithmic
classification error and reject
rate in dependence on the
relative rejection costs Cr for
the Porsche dataset obtained
from three-fold
cross-validation

Fig. 6 Comparison of
classification errors and
reject rates in dependence of
the reject margin ε for
GLVQ-r and GLVQ applied
to the Porsche dataset. For
GLVQ, we used the
a-posteriori variant proposed
in [7, 8] to generate the
curves

We obtain an approximately constant accuracy for a broad range of rejection costs
Cr although the corresponding reject rate is slightly decreasing. Further, comparing
GLVQ-r with standard GLVQ and a-posteriori determination of reject and error rates
in dependence on the reject margin ε according to [7, 8], we observe that GLVQ-
r leads to both lower reject rates and lower error rates, see Fig. 6. Thus we can
conclude that the prototypes are better adapted to the reject regime for GLVQ-r than
the prototypes of standard GLVQ.

5 Conclusions

We have introduced reject options for LVQ schemes which rely on efficient geomet-
rical reject rules, and which optimize the prototype positions and reject threshold
according to the chosen objective. The latter constitutes a direct approximation of
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the 0-1-loss function with reject. We have demonstrated the superior behavior of this
approach in a couple of benchmarks.

So far, the algorithmic development and experiments have been restricted to the
most simple GLVQ version. There exist powerful alternative schemes such as metric
learning for LVQ, functional approaches, kernel schemes, and variants for relational
data, to name just a few. The proposed framework can directly be transferred to these
settings. This will be the subject of future research.
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Optimization of Statistical Evaluation
Measures for Classification by Median
Learning Vector Quantization

D. Nebel and T. Villmann

Abstract Prototype-based classification is mainly influenced by the family of
learning vector quantizers (LVQ) as introduced by Kohonen. The main goal is
to optimize the classification accuracy while the prototypes explore the class distri-
bution in the data space. Recent variants can deal also with dissimilarity data, i.e.
only the dissimilarities between the data objects are given. Otherwise, classifica-
tion accuracy may be not appropriate to judge the classification performance, for
example for imbalanced data or in medical applications, where frequently sensitivity
and specificity are favored. In this paper we develop a median LVQ-variant opti-
mizing those statistical classification evaluation measures, if only dissimilarity data
are available. Thus, the presented approach is the discrete counterpart of a recently
proposed LVQ-approach for optimization of statistical measures in case of vectorial
data. For this purpose, we make use of a probabilistic description of the classification
decision proposed in Robust Soft LVQ.

1 Introduction and Motivation

Learning vector quantization (LVQ) as introduced by Teuvo Kohonen is a popular
approach for classification of vector data [13, 14]. The basic idea of this approach
is to represent the data classes by prototype vectors and optimize their positions to
optimize the classification accuracy. Many variants of the basic Hebbian learning
scheme were developed since the initial work by Kohonen. Gradient based variants
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as well as probabilistic approaches were developed [23, 24]. An actual overview can
be found in [12, 19]. Yet, themain learning task, the optimization of the classification
accuracy, as well as the requirement of a differentiable dissimilarity measure in data
space for comparison of prototypes and data were kept most the time.

During the last years the focus was shifted to more advanced classification goals
like optimization of sensitivity, specificity or the Fβ-measure developed by van Rijs-
bergen [21],which are based on the evaluation of the confusionmatrix for binary clas-
sifications. These statistical qualitymeasures aremore adequate for class-imbalanced
training data [11].

Recently, the topic of LVQ-extensions for classification of dissimilarity or rela-
tional data came into the research focus of classification learning, as such variants
are already known for unsupervised vector quantization [2, 5, 7, 8]. For relational
approaches the prototypes are assumed as linear combination of the data. For general
dissimilarity data prototypes are restricted to be data samples. The latter strategy is
known as median-learning. First attempts for relational and median LVQ-variants
optimizing the classification accuracy were provided in [6, 17, 18]. In the present
publication, we extend these ideas to the previously mentioned statistical measures
derived from the confusion matrix. For this purpose, we make use of a probabilistic
variant of LVQ, which we combine with a technique called generalized Expectation-
Maximization-scheme (gEM) recently developed for Median-GLVQ [18].

The remainder of the paper is as follows: First we introduce useful notations
and give a brief overview about the general gEM-scheme. Thereafter we consider
the classifier function of the Robust Soft LVQ (RSLVQ, [24]) in the light of the
entries of the confusion matrix. From these considerations we derive mathemati-
cal expressions, which can be plugged into the gEM-scheme for optimization of
basic statistical classification evaluation measures, i.e. sensitivity, specificity, etc.
Equipped with this knowledge we are able to built up gEM-models for optimizing
more sophisticated evaluationmeasures like the previouslymentioned Fβ-measure or
Matthews correlation coefficient. Exemplary simulation accompany the theoretical
explanations.

2 Basic Notations and the Generalized Expectation
Maximization Approach

2.1 Notations and Abbreviations

In the following we clarify notation and abbreviations. We suppose data objects
X = {xi }i=1,...,N and M prototypes θk ∈ Θ , i.e. the cardinality ofΘ is M . We assume
a binary classification problem with the classes C = {⊕,�}. Let c(·) be the formal
class label function, which assigns to each data object the class label yi = c (xi ).
Analogously, c j = c

(
θ j

)
returns the predefined class label of the prototype. Further,

M+ denotes the number of prototypes assigned to the class⊕.We introduce prototype
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dependent Kronecker-symbol abbreviations like

δ+
k =

{
1 if ck = ⊕
0 if ck = � and δ−

k =
{
1 if ck = �
0 if ck = ⊕

as short-hand notations. Analogously, we define

δ+ (xi ) =
{
1 if yi = ⊕
0 if yi = � and δ− (xi ) =

{
1 if yi = �
0 if yi = ⊕

as data dependent Kronecker-symbols.

2.2 The Mathematical Theory of the Generalized
Expectation Maximization Approach

In [16], the general mathematical theory for maximization of a cost function K (X)

in the form

K (X) =
∑

i

g(xi ,Θ) (1)

with positive, bounded real functions g(xi ,Θ) was proposed. In particular, it was
shown that the logarithmic cost function (LCF) C(X) = ln

(∑
i g(xi ,Θ)

)
is decom-

posible into

C(X) = L(γ,Θ) + K(γ||p) (2)

with the loss term

L(γ,Θ) =
∑

i

γi ln

(
g(xi ,Θ)

γi

)
(3)

and the a formal Kullback-Leibler-divergence (KLD)

K(γ||p) =
∑

i

γi ln

(
γi

p(xi )

)
(4)

where

p(xi ) = g(xi ,Θ)∑
i g(xi ,Θ)
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is the formal probability for a data object xi . The values γi ≥ 0 fulfill the restriction∑N
i=1 γi = 1 and, hence, can also be interpreted as formal probability values. Thus

L(γ,Θ) is a lower bound for the LCF C(X) due to the non-negativeness of the KLD
K(γ||p). Using this property we obtain the following maximizing strategy for the
LCF C(X):

1. Expectation-step (E-step): set

γi := p (xi ) =⇒ K (γ||p) = 0

=⇒ C(X) = L (γ,Θ)

2. generalized Maximization-step (gM-step): take the parameters γi as fixed and
find new prototypes Θnew, such that:

L(γ,Θnew) ≥ L(γ,Θold)

3. Convergence criterion: if Θnew = Θold stop. Else goto 1.

Note that the cost function valueC(X) does not change in the E-step, becauseC(X) is
independent from the parameters γi . Further, the new prototypes Θnew maybe found
by an arbitrary search procedure, which allows the avoidance of calculation of a
derivative as it is demanded for a stochastic gradient descent learning. Thus, applying
a sophisticated discrete search procedure, with new prototypes Θnew restricted to be
data objects, a median-like optimization scheme is obtained. Otherwise, because the
new prototypes are not required to maximize the function L in the second step of the
algorithm, it is not a precisemaximization and therefore, we denote it as a generalized
M-step (gM-step) and the overall procedure a generalized EM-optimization (gEM).

3 The RSLVQ-Classifier Decision Function
and the Confusion Matrix Entries

Robust Soft LVQ (RSLVQ) is a probabilistic variant of LVQ [24], which keeps
the idea of prototype based model form LVQ but relaxes the restriction of crisp
classification. The RSLVQ-classifier is based on a likelihood ratio cost function
realizing a soft-count ofmisclassification based on amixturemodel, where themodel
parameters Θ = {θ1, . . . , θM} play the role of the prototypes. In particular, the cost
function is given as

CRSLV Q =
∑

i

ln
(
μRSLV Q(yi |xi )

)
(5)
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Table 1 Confusion matrix True

Predicted ⊕ �
⊕ TP FP Ñ+
� FN TN Ñ−

N+ N− N

with the RSLVQ-classifier function

μRSLV Q(κ|xi ) = p(κ|xi ,Θ) (6)

describing the probability that a data object xi is assigned to class κ ∈ C .
In the following we will consider binary classification tasks such that the con-

fusion matrix entries as depicted in Table1 is relevant to judge the classification
performance.

We will relate these entries to the RSLVQ-classifier function, such we obtain
convenient estimates in terms of μRSLV Q(κ|xi ).

For the binary decision problem the conditional mixture models in (6) become

p(⊕|xi ,Θ) =
∑

j δ+
j p(xi |θ j )∑

k p(xi |θk)
and p(�|xi ,Θ) =

∑
j δ−

j p(xi |θ j )∑
k p(xi |θk)

(7)

where the conditional probabilities

p(xi |θ j ) = exp

(
−

(
d(xi , θ j )

σ j

)2
)

(8)

are usually taken as Gaussians with width’s σ j > 0. Here, d(xi , θ j ) is an arbitrary
dissimilarity measure1 between data objects and prototypes.

Remark 1 We make the observation that if the prototypes are restricted to be data
objects, i.e. Θ ⊆ X, only the dissimilarities between the data objects are required
to calculate both probabilities p(⊕|xi ,Θ) and p(�|xi ,Θ). Thus the idea of median
learning is realized.

Tokeep themodel simple in the following,we assumeσ = σ j for all prototypes θ j ,
j = 1 . . . M in (8). Then the conditional probabilities p(κ|xi ,Θ) from (7) become
crisp in the limit σ ↘ 0. Particularly we obtain

p(⊕|xi ,Θ) −→
σ→0

{
1 if yi = ⊕
0 else

and p(�|xi ,Θ) −→
σ→0

{
1 if yi = �
0 else

1For a mathematical definition of a dissimilarity measure we refer to [20].
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and, therefore, the conditional probabilities p(κ|xi ,Θ) play the role of an indicator
function for their classes in this limit. In consequence, both quantities μRSLV Q(⊕|xi )

and μRSLV Q(�|xi ) can be used to count approximately the correctly classified data
objects xi , which is essential for determination of the confusion matrix. In particular,
we have

T P =
∑

i

δ+ (xi ) · μRSLV Q(⊕|xi ) and F P =
∑

i

δ− (xi ) · μRSLV Q(⊕|xi ) (9)

F N =
∑

i

δ+ (xi ) · μRSLV Q(�|xi ) and T N =
∑

i

δ− (xi ) · μRSLV Q(�|xi ) (10)

as RSLVQ-based estimates for these quantities. They are identical in the structure
compared to the GLVQ-counterparts for statistical classification evaluationmeasures
as presented for vector data and prototypes in [11].

4 Specification of g (xi,Θ) for gEM-Optimization
of Statistical Classification Evaluation Measures
based on the Confusion Matrix

In this chapter we will describe several statistical quality measures for classification
in the form of (1), which allows to apply the gEM-optimization scheme provided
in Sect. 2.2. In particular, we will determine suitable functions g (xi ,Θ) for several
statistical classification evaluationmeasure. For this purpose, wewill use the descrip-
tions (9) and (10) of the entries of the confusion matrix introduced in the previous
section by means of the RSLVQ-classifier function μRSLV Q(κ|xi ) from (6). Accord-
ing to this strategy, the optimization of the respective cost function (1) by gEM is,
in fact, an optimization of the prototypes Θ = {θ1, . . . , θM} appearing as parame-
ters in this model. Thus, we always preserve the idea of prototype based learning.
Otherwise, the median learning methodology is also kept according to the Remark1.

4.1 Simple Classification Quality Measures

We start considering simple quality measure, which are directly derived from the
confusion matrix. We will write them in the form of (1) and specify the respective
choice of g (xi ,Θ).

The numerical stable variants (last column in Table2) can immediately plugged
into the gEM-algorithm for optimization of the respective measure, which then is
simply of the form (1).
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Table 2 Specification of g (xi ,Θ) for basic classification quality measures based on the confusion
matrix

Statistical measure Definition g (xi ,Θ) in C(X) Stability

Recall/Sensitivity ρ ρ = T P
N+

δ+(xi )·μ(⊕|xi )
N+ g(xi ,Θ) + 1

Specificity ς ς = T N
N−

δ−(xi )·μ(�|xi )
N− g(xi ,Θ) + 1

Precision π π = T P
T P+F P

δ+(xi )·μ(⊕|xi )∑
j δ+(x j )·μ(⊕|x j )+∑

j δ−(x j )·μ(⊕|x j )
g(xi ,Θ) + 1

Neg. prediction value ν ν = T N
T N+F N

δ−(xi )·μ(�|xi )∑
j δ−(x j )·μ(�|x j )+∑

i δ+(x j )·μ(�|x j )
g(xi ,Θ) + 1

Fall-out ϕ = 1 − μ δ−(xi )·μ(⊕|xi )
N− 2 − g(xi ,Θ)

False discovery rate F DR = F P
F P+T P

δ−(xi )·μ(⊕|xi )∑
j δ−(x j )·μ(⊕|x j )+∑

j δ+(x j )·μ(⊕|x j )
2 − g(xi ,Θ)

False negative rate F N R = F N
N+

δ+(xi )·μ(�|xi )
N+ 2 − g(xi ,Θ)

The last column gives the numerically stable variant to be used in gEM

4.2 Complex Measures

Now we consider more complex statistical measures frequently applied in classifi-
cation evaluation.

The Fβ-measure developed by C.J. van Rijsbergen combines precision π and
recall ρ (sensitivity) into a single quantity

Fβ = (1 + β2)πρ

β2π + ρ
(11)

depending on the balancing parameter β and Fβ ∈ [0, 1] [21]. Frequently, this bal-
ancing parameter is chosen as β = 1 yielding the measure to be the ratio of the
arithmetic and the geometric mean between both quantities precision and recall.
Using the quantities from the confusion matrix, we can rewrite (11) as

Fβ = (1 + β2)T P(
1 + β2

)
T P + β2F N + F P

such that we have Fβ = ∑
i g(xi ,Θ) with positive functions

g(xi ,Θ) = δ+ (xi ) · (1 + β2)μ(⊕|xi )∑
j

((
1 + β2

)
δ+ (

x j
) · μ(⊕|x j ) + β2δ+ (

x j
) · μ(�|x j ) + δ− (

x j
) · μ(⊕|x j )

)

to be maximized. The functions g(xi ,Θ) have to be substituted by g(xi ,Θ) + 1 to
avoid numerical instabilities.

The Jaccard Index

J = T P

F P + T P + F N
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with range 0 ≤ J ≤ 1 is explained in [4, 10]. It can be expressed as J = ∑
i g(xi ,Θ)

using the positive functions

g(xi ,Θ) = δ+ (xi ) · μ(⊕|xi )∑
j

(
δ− (

x j
) · μ(⊕|x j ) + δ+ (

x j
) · μ(⊕|x j ) + δ+ (

x j
) · μ(�|x j )

)

and has to be maximized. Interestingly, J is closely related to the Tanimoto distances
[22]. Again, the numerically stable behavior of gEM the choice g(xi ,Θ) + 1 is
recommended.

Matthews correlation coefficient

MCC = T P · T N − F P · F N√
(T P + F P)(T P + F N )(T N + F P)(T N + F N )

(12)

is another popular classification quality measure, which is equivalent to the χ2-
statistics for a 2 × 2 contingency table [15]. It can be rewritten in the form MCC =∑

i, j g(xi , x j ,Θ) with

g(xi , x j , Θ) = δ+ (xi ) · δ− (
x j

) · μ(⊕|xi )μ(�|x j ) − δ− (xi ) · δ+ (
x j

) · μ(⊕|xi )μ(�|x j )√
(T P + F P)(T P + F N )(T N + F P)(T N + F N )

and g(xi x j ,Θ) ∈ [−1, 1]. To ensure positivity and numerical stability of gEM the
substitution ḡ(xi , x j ,Θ) = g(xi , x j ,Θ) + 2 is demanded.

Other statistical evaluation measures as well as a median variant based on GLVQ
are presented in [18].

5 Exemplary Numerical Simulations

We conducted several experiments to validate the approach. However, we restricted
ourselves to the Fβ-measure, because it is a complex one comprising also simple
measures from Table2. We denote this median LVQ-scheme as Median-Fβ-LVQ.
For each experiment we used only one prototype per class.

The reported results were obtained by the twenty repetitions of following 5-fold
modified cross validation procedure. For each fold the data are split into five parts.
Three parts are taken as training data, one part are the test data to select the bestmodel.
The last part remains as validation part. Only the validation results are presented,
because these are the results with the lowest model bias. We denote this procedure
as unbiased cross validation (five-UCV).

Weconsidered three data sets. Twoof themare from theUCI-Repository [1]. These
are thePima Indians Diabetes database (PIMA) consisting of non-diabetic (500) and
diabetic (268) samples and the Haberman’s Survival dataset (HS) containing long-
and short-time breast cancer survivor samples after surgery. The third data set is from
Wilson’s disease (WD) already used in [11]. This dataset is a vectorial set comprising
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Table 3 Results of RSLVQ and Fβ-Median-LVQ for the WD-dataset after five-UCV

RSLVQ Fβ-Median-LVQ β2

Mean Std Mean Std

Fβ

0,762 0,12 0,77 0,13 0.5

0,783 0,116 0,782 0,118 1.0

0,826 0,12 0,8434 0,098 2.0

Accuracy

0,774 0,11 0,774 0,115 0.5

0,774 0,11 0,772 0,121 1.0

0,774 0,11 0,752 0,11 2.0

AUROC

0,886 0,093 0,866 0,105 0.5

0,886 0,093 0,875 0,11 1.0

0,886 0,093 0,87 0,102 2.0

The Fβ-Median-LVQ was trained with the β-values depicted in the last column. The performances
of the algorithms are compared with respect to the Fβ-measure (first block), the accuracy (second
block) and the area under the ROC-curve (AUROC, [3])

the glucose consumption profiles according to selected brain regions for volunteers
and patients. In [11] this dataset was considered for the vectorial GLVQ-variant
optimizing statistical measures. Thus we can compare our results obtained for the
present median variant. For a detailed data description we refer to [9, 11].

Starting with the WD-data we obtain the classification results for RSLVQ and
Median-Fβ-LVQ after five-UCV as depicted in Table3. As we can see, the Fβ-
Median-LVQ outperforms RSLVQ when optimizing the Fβ-value. Looking at the
other evaluation criteria, Fβ-Median-LVQ is at least comparable. Further, if we com-
pare the Fβ-Median-LVQ results with those obtained by the vectorial counterpart
(which are 0.907, 0.910 and 0.926 for β = 0.5/1.0/2.0, respectively—see [11]) we
detect only a small deterioration. This can be dedicated to the restricted prototype
variability in case of median learning.

For the PIMA and the HB we achieve similar performance results as for the WD
data, see Table4. Thus we can conclude that the Fβ-Median-LVQ performs well for
dissimilarity data.

6 Conclusions

In this paper we presented an approach for prototype based classification learning of
dissimilarity data to optimize statistical classification evaluation measure based on
the confusion matrix. The method adopts ideas from a probabilistic variant of LVQ
and combines them with the generalized EM technique. The resulting algorithm can
be seen as the median counterpart to the already proposed vectorial variant of LVQ
optimizing those statistical measures.



290 D. Nebel and T. Villmann

Table 4 Performance results fo the PIMA (top) and HD (bottom) obtained by RSLVQ and Fβ-
Median-LVQ applying UFC

RSLVQ Fβ-Median-LVQ β2

Mean Std Mean Std

Fβ

0,774 0,026 0,789 0,029 0.5

0,793 0,032 0,818 0,021 1.0

0,815 0,046 0,898 0,01 2.0

Accuracy

0,719 0,035 0,709 0,039 0.5

0,719 0,035 0,733 0,031 1.0

0,719 0,035 0,6673 0,026 2.0

AUROC

0,757 0,048 0,778 0,042 0.5

0,757 0,048 0,7734 0,05 1.0

0,757 0,048 0,6352 0,12 2.0

Fβ

0,774 0,026 0,789 0,029 0.5

0,793 0,032 0,818 0,021 1.0

0,815 0,046 0,898 0,01 2.0

Accuracy

0,719 0,035 0,709 0,039 0.5

0,719 0,035 0,733 0,031 1.0

0,719 0,035 0,6673 0,026 2.0

AUROC

0,757 0,048 0,778 0,042 0.5

0,757 0,048 0,7734 0,05 1.0

0,757 0,048 0,6352 0,12 2.0

For detailed explanation of the table structure, see Table3
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Complex Variants of GLVQ Based
on Wirtinger’s Calculus

Matthias Gay, Marika Kaden, Michael Biehl,
Alexander Lampe and Thomas Villmann

Abstract This paper addresses the application of gradient descent based machine
learning methods to complex-valued data. In particular, the focus is on classifica-
tion using Learning Vector Quantization and extensions thereof. In order to apply
gradient-based methods to complex-valued data we use the mathematical formal-
ism of Wirtinger’s calculus to describe the derivatives of the involved dissimilarity
measures, which are functions of complex-valued variables. We present a number
of examples for those dissimilarity measures, including several complex-valued
kernels, together with the derivatives required for the learning procedure. The result-
ing algorithms are tested on a data set for image recognition using Zernike moments
as complex-valued shape descriptors.

1 Introduction

Complex-valued data (cv-data) are available in a variety of classification problems.
Applications can be found in the fields of signal processing, telecommunications or
image processing, where complex signal transformations like the Fourier transform
are used. Moreover, many methods of machine learning can be extended to cv-data.
Examples are neural networks with complex-valued weights and thresholds [1], the
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Support Vector Machine (SVM) with complex-valued kernels [2], or the complex
independent component analysis [3].

The Generalized Learning Vector Quantization (GLVQ) and its matrix versions
(GMLVQ) are established prototype-based classification methods [4]. The proto-
types are adapted in a learning process and, together with a suitable measure of
dissimilarity or distance, parametrize the classification scheme. The training process
is guided by the minimization of a cost function which, for instance, approximates
the classification error [5, 6]. This optimization is frequently done by stochastic
gradient descent or related schemes. To this end, the cost function and the distance
measure have to be differentiable with respect to the prototypes and, potentially, with
respect to further adaptive parameters. For the application to cv-data, a distance mea-
sure with appropriate complex derivatives is required. In [7] the problem of cv-data
has already been addressed in the context of GLVQ. There, the derivatives of the
real-valued costs were chosen intuitively by treating the real and imaginary parts of
all adaptive parameters independently. In this paper, we will provide a more solid
mathematical foundation based on Wirtinger’s calculus [8].

For real-valued data, kernel methods like the SVM or the Kernelized GLVQ [9]
are very popular and were successfully employed in many practical applications.
Complex-valued kernels also exist, but are not very widespread in machine learning.
In this contribution, we integrate complex-valued kernels into the GLVQ formalism
and compute the derivatives for some examples.We apply the cv-GLVQwith kernels
on a real world data set, where the features correspond to complex-valued shape
descriptors.

2 Fundamentals

2.1 Generalized Learning Vector Quantization and Variants

We consider a classification problemwith training data samples v ∈ V ⊂ R
D and the

corresponding class labels c(v) ∈ C.Additionally, an initial prototype setW = {wk ∈
R

D, k = 1, . . . , |W |} is given, together with the class assignments y(wk) ∈ C and at
least one prototype per class. The prototypes are learned during the training phase of
GLVQ. After the training, a new data point v is assigned to the class y(ws(v)) of the
winner prototype. This prototype is determined by the winner-takes-all rule (WTA)

s(v) = argmin
k=1,...,|W |

d (v,wk) , (1)

where d (v,w) is the same dissimilarity measure that was used during the training
procedure.
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For the training in GLVQ, a classifier function

μW (v) = d
(
v,w+) − d

(
v,w−)

d (v,w+) + d (v,w−)
= d+(v) − d−(v)

d+(v) + d−(v)
(2)

is defined for a training data point v. Here, d+(v) = d
(
v,w+)

is the minimal
distance of v to the prototype w+ belonging to the same class as v. Likewise,
d−(v) = d

(
v,w−)

is the distance to the closest prototype w− with a different class
label, i.e. y(w−) �= c(v). Thus, a data point is correctly classified if μW (v) is nega-
tive, i.e. d−(v)> d+(v).

With this, the cost function

EGLVQ(V, W ) = 1

|V |
∑
v∈V

f (μW (v)) (3)

has to be minimized. A popular choice for the monotonously increasing transfer
function f is the sigmoid function fθ (x) = (1 + exp(−θx))−1, θ > 0, which allows
(3) to be interpreted as a smooth approximation of the classification error [6].

A common optimization strategy for general, non-convex and non-linear cost
functions is stochastic gradient descent [10]. If the data points are real-valued, the
prototypes are updated via

w± ← w± − αΔw± (4)

with Δw± = ∂ f (μW (v))

∂μW (v)
· ∂μW (v)

∂d±(v)
· ∂d±(v)

∂w± (5)

with the learning rate 0 < α � 1 and the derivative of the classifier function

∂μW (v)

∂d±(v)
= ±d∓(v)

(d+(v) − d−(v))2
. (6)

Obviously, the dissimilaritymeasure d±(v) in (5) has to be differentiablewith respect
to the prototypes. Yet, this is the only restriction on d; symmetry or other metric
properties are not required, see [11] for an example.

If the squared Euclidean distance d2
E(v,w) = ‖v − w‖22 is chosen, the respective

derivative in (5) yields a scaled vector shift

∂d2
E(v)

∂w
= −2(v − w). (7)

A more general choice is the quadratic form

d2
�(v,w) = (v − w)T� (v − w) = ‖�(v − w)‖2 (8)
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with

∂d2
�(v)

∂w± = −2�T�(v − w±) (9)

and
∂d2

�(v)

∂�
= �(v − w)(v − w)T (10)

where � ∈ R
m×D with m ≤ D is a linear mapping matrix. In Generalized Matrix

Relevance Learning (GMLVQ) [12, 13], this mapping matrix is also adapted and the
resulting matrix � = �T� is termed the relevance matrix of the classifier. Further-
more, if m � D the scheme provides a discriminative low-dimensional representa-
tion of the considered data set [14].

Beside modifications of the Euclidean distance, other more unconventional dis-
similarities have attracted attention, recently. Depending on the characteristics of the
data, �p-norms, divergences or kernel distances can be chosen for d(v,w). In [9]
specific differential kernel distances were applied in the GLVQ formalism, including
the radial basis function (RBF) or exponential kernel. The authors showed that the
topological richness of GLVQ with kernels is equivalent to the SVM applying the
same kernel. Thus, the differential kernel GLVQ (DK-GLVQ) is a powerful tool for
solving non-linear classification problems.

2.2 A Brief Review of Wirtinger’s Calculus

When having gradient-based learning for cv-data in mind, one first has to agree on
a proper definition of the involved derivatives. Classical complex analysis imposes
strong conditions on a function to be called differentiable. In particular it has to
satisfy the Cauchy-Riemann differential equations [15]. Unfortunately, almost no
function in engineering or optimization is differentiable in that sense—especially
none with a real-valued co-domain, such as cost functions or distance measures.
However, one can circumvent this issue by relaxing the definition of differentiability
in a reasonable way. This can be accomplished by using Wirtinger’s calculus, as it
is done extensively in engineering.

Wewant tomotivate the idea ofWirtinger’s calculus, also known asC-R-calculus,
by considering a real-valued cost function

f : C → R with z = x + i y �→ f (z) = u(x, y)

with x, y, u ∈ R, as a function of two real-valued arguments. When we consider the
minimization of f in this sense, we require

∂u(x, y)

∂x
= 0 and

∂u(x, y)

∂y
= 0 . (11)
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These necessary conditions can be written very compactly as

a · ∂ f

∂x
+ i b · ∂ f

∂y
= 0

for any nonzero a, b ∈ R. A smart choice of a and b yields a consistent calculus and
a powerful tool for complex-valued optimization.

Definition 1 The Wirtinger differential operators for a function of z = x + i y are
defined as

∂

∂z
:= 1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z∗ := 1

2

(
∂

∂x
+ i

∂

∂y

)
,

where
∂

∂z∗ is the conjugate differential operator with respect to the complex conju-

gate z∗ of the variable z.

Although introduced for real-valued functions above, it is important to note that
these operators can also be applied to f : C → C with z = x + i y �→ f (z) =
u(x, y) + i v(x, y) . The function f is required to be only real differentiable. More-
over, most rules from real-valued calculus apply directly to this calculus, e.g. the
sum, product and quotient rule. However, there are differences that one has to take
care of:

(I) The chain rule is different for the general case. It reads

∂h(g(z))

∂z
= ∂h

∂g
· ∂g

∂z
+ ∂h

∂g∗ · ∂g∗

∂z
(12)

and likewise with z∗ for the conjugate derivative. However, in the practically relevant
special case where g : C → R and h maps real numbers to real numbers, the term

∂h

∂ Im(g)
vanishes in both

∂h

∂g
and

∂h

∂g∗ , reducing the chain rule to the one known

from real calculus.

(II) In
∂ f

∂z
, the term z∗ is treated as a constant and vice versa. For instance,

consider f (z) = |z|2 = z·z∗. Then
∂ f

∂z
= z∗ and

∂ f

∂z∗ = z.

(III) The above example shows an interesting difference between the square and
the absolute square: analogous to the real-valued square, ∂

∂z z2 = 2z stays valid,
whereas above we have ∂

∂z∗ |z|2 = z. However, in gradient-based learning, the con-
stant factor of 2 is of minor concern.

The actual power of Wirtinger’s calculus arises in the multi-dimensional case,
where a 2-dimensional interpretation of each entry in terms of (11) becomes
extremely difficult. Using Wirtinger gradients circumvents this problem in an ele-
gant way.
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Definition 2 For f : CN → C or R, the Wirtinger gradients are

∂ f

∂ z
:=

[
∂ f
∂z1

, . . . ,
∂ f
∂zN

]T
and

∂ f

∂ z∗ :=
[

∂ f
∂z1∗ , . . . ,

∂ f
∂zN

∗

]T
.

There are two important examples that will be of interest later on. First, consider
the squared Euclidean norm ‖z‖22 = zHz, where (·)H denotes the complex conjugate
transpose. Its gradients read

∂

∂ z
‖z‖22 = z∗ and

∂

∂ z∗ ‖z‖22 = z . (13)

Secondly, for the quadratic form ‖z‖2A = zHAz, we have

∂

∂ z
‖z‖2A = AT z∗ and

∂

∂ z∗ ‖z‖2A = Az . (14)

Observe that using the conjugate Wirtinger operator often yields simpler, more read-
able expressions.

3 Complex-Valued Data and Gradient-Based Learning

In the following we want to specify a few basic distance measures for complex-
valued data and their derivatives, especially as generalizations of their real-valued
counterparts. We focus on the squared distances, for which the derivatives are easier
to write down. For the non-squared distances one simply has to add the factor 1

2
√

d
according to the chain rule.

Since even for v ∈C
D, d±(v) still remains real-valued (and so does f ◦μW ◦d), we

can apply the conventional chain rule for calculating ∂d±(v)

∂w± and any outer derivative,
as reasoned in point (I) in Sect. 2.2. This yields the same update rule as in (5),
where in the case of cv-data, the innermost derivative ∂d±

∂w± is to be understood as
a (preferably conjugate) Wirtinger derivative. If the distance measure depends on
additional parameters that have to be adapted as well, the same arguments regarding
the chain rule apply and the derivatives of d with respect to those parameters can be
written down accordingly.

For the squared Euclidean distance for cv-data

d2
E(v,w) = ‖v − w‖22 = (v − w)H(v − w), (15)

we obtain
∂d2

E

∂w∗ = −(v − w) (16)
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directly from (13). In analogy to (8), the matrix Euclidean distance reads

d2
�(v,w) = ‖�(v − w)‖22 = (v − w)H�H�(v − w) (17)

and measures the squared Euclidean norm of the projected vector difference. From
(14) we get

∂d2
�

∂w∗ = −�H�(v − w) (18)

and
∂d2

�

∂�∗ = �(v − w)(v − w)H, (19)

which look very similar to the real-valued versions in (9) and (10).

4 Kernels for Complex-Valued Data

Kernel methods [2] are powerful tools whenever the data are not linearly separable
in the original data space. Although the kernel methods are formulated in general
Hilbert spaces, the use of complex-valued kernels is not very widespread in machine
learning.

When imposing a kernel function κ(v,w), which corresponds to an inner product
〈φ(v), φ(w)〉 in some functional Hilbert space to which the feature map φ maps our
data, we have to be aware that κ itself can be complex-valued. Hence, we want to
bring the most important properties of a complex-valued kernel function to attention:

1. Conjugate symmetry: κ(v,w) = κ(w, v)∗
2. Positiveness: κ(v, v) ≥ 0 especially implies κ(v, v) ∈ R

The squared kernel distance measure then reads

d2
κ (v,w) = κ(v, v) − κ(v,w) − κ(w, v) + κ(w,w), (20)

which remains real-valued since the conjugate symmetry implies κ(v,w) + κ(w, v)

= 2 Re(κ(v,w)). Themodifications include real-valued kernels as a special case. For
gradient-based learning we use the derivatives of (20) with respect to the parameter
of interest.

To give some examples, we now specify a number of kernels for cv-data as a
generalization of real-valued ones. The formulas for the kernels and the derivatives
of the corresponding distance measures are summarized in Table1.

• Gaussian radial basis function (RBF) kernel: The definition and the derivatives
of the widely used Gaussian kernel are very similar to its real-valued analogue.
The derivative is obtained by plugging in (15) and (16) via chain rule.
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Table 1 Kernels for complex-valued data

Gaussian RBF κ(v,w) = exp
(

− 1
σ 2 ‖v − w‖22

)

∂d2
κ (v,w)

∂w∗ = − 2

σ 2 κ(v,w) · (v − w)

RBF with metric
adaptation

κ(v,w) = exp
( − (v − w)H�H�(v − w)

)

∂d2
κ (v,w)

∂w∗ = −2 κ(v,w) · �H�(v − w)

∂d2(v,w)

∂�∗ = 2 κ(v,w) · �(v − w)(v − w)H

Complex Gaussian κ(v,w) = exp
( − 1

2σ 2 (v − w∗)T(v − w∗)
)

∂d2
κ (v,w)

∂w∗ = 1

σ 2

(
κ(w,w) · (w − w∗) − κ(v,w) · (v − w∗)

)

Complex Gaussian
with metric adapta-
tion

κ(v,w) = exp
(
−(v − w∗)T�H�(v − w∗)

)

∂d2
κ (v,w)

∂w∗ = 2 Re
(
�H�

) (
κ(w,w)(w − w∗) − κ(v,w)(v − w∗)

)

∂d2
κ (v,w)

∂�∗ =
−�

(
κ(v, v)(v − v∗)(v − v∗)T + κ(w,w)(w − w∗)(w − w∗)T

− 2Re
(
κ(v,w)(v − w∗)(v − w∗)T

))

Exponential κ(v,w) = exp
(
wHv

)
∂d2

κ (v,w)

∂w∗ = κ(w,w) · w − κ(v,w) · v

Exponential with
metric adaptation

κ(v,w) = exp
(
wH�H�v

)

∂d2
κ (v,w)

∂w∗ = �H�
(
κ(w,w) · w − κ(v,w) · v

)

∂d2
κ (v,w)

∂�∗ = �
(
κ(v, v)vvH + κ(w,w)wwH − 2Re

(
κ(v,w)vwH

))

• Gaussian RBF kernel with metric adaptation: The introduction of a projection
matrix to the RBF kernel is obtained by plugging in (17). The chain rule, and (18)
and (19) yield the equations in Table1. Note that this kernel function still remains
real-valued for complex data.

• Complex Gaussian kernel: As an actually complex-valued generalization of
the Gaussian RBF kernel, the complex Gaussian kernel was introduced in [16],
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togetherwith an explicit description of the feature space. It does use phase informa-
tion, but it is even less interpretable than the RBF kernel. Note that the equivalence
w − w∗ = 2 i Im(w) holds and can be applied to the formula in the table.

• Complex Gaussian kernel with metric adaptation: As with the RBF kernel, we
can introduce a projection matrix � in the exponent. Note that we have to choose
�H in favor of �T to maintain the conjugate symmetry of the kernel. However,
it turns out that � can be chosen to be real-valued anyway, since its update will
always be real-valued and its imaginary part does not affect the kernel value.
The derivatives for the prototype update and for the matrix update can be found
in Table1. Note again that, e. g. for v, (v − v∗)(v − v∗)T= −4 Im(v) Im(v)T and
analogously in the exponent of κ(v, v) itself, yielding a completely real-valued
expression in the parentheses of the matrix update equation.

• Exponential kernel: The trivial kernel is the inner product itself, as long as the
data lives in a Hilbert space. For any given kernel, its exponential is a kernel as well
[17], hence another basic example is the exponential kernel, as stated in Table1.
However, in its basic version, this kernel is very sensitive to scaling of the data in
terms of numerical stability.

• Exponential kernel with metric adaptation: In the exponential kernel we can
introduce a projection matrix � as well. With a suitable initialization and scaling
of � the stability problem of the plain exponential kernel can be handled.

There is a variety of real-valued kernels that can be extended for complex data
as well. Often this can be done by simply replacing the scalar products involved
using the conjugate transpose. The derivatives can then be found by straightforward
application of Wirtinger’s calculus.

5 Experiments

Image classification is a major application in machine learning. The images are often
given in a high resolution and direct usage is computationally too expensive. Many
feature extraction schemes have been developed to pre-process high-dimensional
data. Some of these methods yield complex-valued features. One example are the
Zernike-Moments [18], which can be used to describe the shape of an object.

The Flavia-Dataset [19] is a set of images of 32 different leaves. It consists of
1907 images with a resolution of 800 × 600 pixels. In [7], the Zernike-Moments
from the green-channel of the images are generated up to order 20 resulting in 121
complex-valued features per sample. In addition, the data set is z-score normalized.
We concentrate on the same experimental set-up as in [7], performing 10-fold cross-
validation for LVQ systems with 1 prototype per class. Further, the kernel parameter
σ for the single kernels inGLVQ is chosen by systematic search. The values areσ = 5
for the RBF kernel and σ = 0.01 for the complex Gaussian kernel. The advantage
of GMLVQ is the indirect automatic determination of σ by the matrix �. Therefore,
no additional normalization of � is required.
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Table 2 Mean test error in % for the leaf data set with complex-valued features

Algorithm Euclid RBF Complex Gaussian Exponential

GLVQ 13.1 (±0.5) 12.2 (±2.1) 14.2 (±3.5) 21.5 (±2.1)

GMLVQ 21.3 (±1.7) 13.6 (±4.4) 22.5 (±3.6) 16.0 (±5.7)

The standard deviation is given in parentheses

The performances (test errors) of the cv-G(M)LVQ with different dissimilarity
measures are given in Table2. The cv-GMLVQ using theWirtinger calculus to derive
the update formulas gives similar accuracy as the heuristic approach in [7]. Interest-
ingly, the GLVQwithout relevance learning achieves a better mean test accuracy than
the GMLVQ, while the latter yields better training accuracies. Thus, the learning of
the mapping matrix does not seem beneficial in this case. Applying a cv-kernel, only
the RBF kernel results in a slightly better accuracy. The complex Gaussian as well
as the Exponential kernel do not seem suitable for this particular data set.

Note that, here, our aim is to demonstrate the applicability of the framework.
Achieving superior performance with more suitable kernel functions should be pos-
sible, but is beyond the scope of this contribution.

6 Conclusion and Remarks

In this contributionwe extended thematrix and kernel versions of GLVQ to complex-
valued data. To achieve this in a unified framework, we utilized the theory of
Wirtinger’s calculus to derive and express the gradients in an elegant way. Bringing
this theory to attention was one of the main objectives of this paper, and we suc-
cessfully applied it to a number of kernels to exemplify the principles. Although the
methods could not develop their full potential on the chosen data set, we are confident
that they can improve performance more significantly in a variety of practical appli-
cations that involve complex-valued data. Current and future work involves the test
of the algorithms on different data sets, as well as the derivation and generalization
of further kernels for complex-valued data.

Acknowledgments M.B. thanks the Aspen Center for Physics and the NSF Grant No. PHYS-
1066293 for hospitality while the writing of this paper was finalized.
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A Study on GMLVQ Convex and Non-convex
Regularization

David Nova and Pablo A. Estévez

Abstract In this work we investigate the effect of convex and non-convex
regularization on the Generalized Matrix Learning Vector Quantization (GMLVQ)
classifier, in order to obtain sparse models that guarantee a better generalization abil-
ity. Three experiments are used for evaluating six different sparse models in terms of
classification accuracy and qualitative sparseness. The results show that non-convex
models outperform traditional convex sparse models and non-regularized GMLVQ.

Keywords Learning vector quantization · Sparse models · Regularization ·
Generalization ability

1 Introduction

Learning Vector Quantization (LVQ) is a well-known classifier that represents class
regions by using prototypes [9]. In [16] a generalization scheme called Generalized
LearningVectorQuantization (GLVQ)was proposed.GLVQ introduces a continuous
and differentiable cost function that aims at margin maximization. An extension is
the Generalized Relevance Learning Vector Quantization (GRLVQ) [7] which intro-
duces weighted factors over the original features with the aim of extracting relevance
and increasing class separability. Furthermore, theGeneralizedMatrix LearningVec-
tor Quantization (GMLVQ) [17] is a generalization of the relevance learning which
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uses a full matrix to project linearly the original data space into a subspace. This
aims at enhancing the separability of the class regions and increasing the general-
ization ability of the classifier. The reader can find recent reviews of LVQ classifiers
in [8, 14].

In high-dimensional data applications sparsity of the relevancematrix may help to
achieve a better generalization ability. With this aim, penalty or regularization terms
have been added to the GMVLQ cost function [17]. In our contribution, we compare
six different sparse penalty functions on GMLVQ using three benchmark datasets.
The research question is how to choose an appropriate sparse penalty function and
what is the difference between convex and non-convex regularization.

The remainder of this paper is organized as follows: In Sect. 2, a background on
GMLVQ and sparse models is presented. In Sect. 3, six sparse penalty functions are
introduced and added to the GMLVQ cost function. In Sect. 4, the results using three
datasets are presented. Finally, in Sect. 5 the conclusions are drawn.

2 Background

2.1 Generalized Matrix Learning Vector Quantization

TheGLVQcost function aiming at achieving amarginmaximization prototype-based
classifier was introduced in [16]. GLVQ defines the following receptive field for the
i-th prototype:

Ri = {x ∈ X |∀w j ( j �= i) ← d(wi, x) < d(wj, x)}, (1)

where d(·) is the square Euclidean distance, wi is the i-th vector prototype and x is
a vector sample from data set X ∈ R

d×n .
GMLVQ is a variant of GLVQ which introduces the following cost function:

E =
∑

k

f (μ(xk, W,�)) , (2)

where W = {w1, w2, . . . , wn} is a set of prototypes, � ∈ R
d×d is the relevance

matrix, f (μ) = 1
1+e−μ is a sigmoid function, and μ(x) = d+−d−

d++d− is the relative dis-
tance difference with d+ as the minimum distance to the right class prototype, and
d− as the minimum distance to the wrong class prototype. The distance is rewritten
as:

dΛ(x, w) = (x − w)T Λ(x − w), (3)

where Λ must be positive semi-definite. By substituting

� = ΩT Ω, (4)
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the following result holds uT Λu = uT ΩT Ωu = (
ΩT u

)2 ≥ 0 for all u. As a conse-
quence the receptive field of the i-th prototype is redefined as:

Ri
Λ = {x ∈ X |∀w j ( j �= i) ← dΛ(wi, x) ≤ dΛ(wj, x)}. (5)

2.2 Sparse Models

Sparse models aim at constraining the cost function by adding a penalty function
in order to guarantee sparse solutions. There is a trade-off between model accuracy
and sparsity but in classifiers a sparse solution usually gives a better generalization
ability [6]. A typical sparse model assumes the following cost function:

F∗ = arg min
x

E(x) + λ
∑

n

φ(x(n)), (6)

where E(x) is the cost function associated with the model (Eq. (2) in our case), φ(·)
is a sparsity function (e.g. �1 or �0 norm) and λ is a constant which controls the
trade-off between sparsity and reconstruction error.

A popular penalty function is the �0 norm. However, since this penalty function is
discrete and non-convex, the problem becomes NP-hard and hardly tractable when
the dimensionality of the data is large. Several works have tried to deal with this issue
[4, 15, 18, 19]. In [18] the Least Absolute Shrinkage and Selection Operator (Lasso)
or �1 penalty was introduced and its use has had an increasing popularity. Compared
to the �2-norm, the �1-norm produces sparser models and it performs feature selec-
tion within the learning algorithm. This allows reducing the model complexity, but
since the �1-norm is not differentiable it requires changes to gradient based learning
algorithms or using a mathematical approximation. Moreover, �1 does not guarantee
uniqueness of the solution as �2-norm does. Some authors provide arguments against
the Lasso and they advocate that penalty functions should be singular at the origin for
achieving sparsity by using a non-smooth, and non-convex penalty function instead
of the �1 regularization [1, 5, 13].

Convex functions are attractive because they are more reliably minimized than
non-convex functions. However, non-convex penalty functions can lead to enhanced
sparsity of solutions [11, 12]. Smoothly Clipped Absolute Deviation (SCAD) [5] is
a non-convex penalty function that overcomes the drawbacks of the �1-norm at the
cost of introducing a new parameter. Furthermore, Zhang’s penalty function [21] is
a linear approximation of the SCAD penalty function that can be interpreted as a
two-stage reweighted �1 penalized optimization problem. This approximation solves
the Lasso problem but large parameters are not penalized anymore leading to an
unbiased model. The Bridge penalty function [10], also called �q pseudo-norm when
0 < q < 1 provides a quasi-smooth approximation of the �0 sparsity measure as q
tends towards to zero, and it yields sparser solutions than Lasso. Depending on the q
value the �q pseudo-norm can change from a convex to a non-convex function as is
illustrated in Fig. 1c. Another popular non-convex penalty function is the logarithmic
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penalty [20]which canbe interpreted as an approximationof the �0-norm.Thepenalty
functionmust be singular at the origin to produce sparse solutions, it must be bounded
by a constant to produce nearly unbiased estimates for large coefficients, and their
derivatives should vanish for large values [5]. Furthermore, a sparse penalty function
should be chosen so as to promote the sparsity of x in Eq. (6).

Figure 1 shows the six penalty functions that are used in this contribution. The
first row shows a convex and two pseudo-norm penalty functions, and the second
row shows three non-convex penalty functions.

In Table 1 a summary of the convex and non-convex penalty functions and their
respective derivatives are shown. The first column contains the name of the penalty
functions, the second column shows the mathematical expression of the penalty
functions, and the third column shows the derivatives of the penalty functions.

3 Sparsity on GMLVQ

In this sectionwe obtain update rules for GMLVQequippedwith six different penalty
functions. The aim is to obtain a sparse matrix �, which is reflected in the main
diagonal having a low number of non-zero values. Additionally the eigenvalues of
the relevancematrix� are smaller. Let us add to Eq. (2) a penalty function as follows:

E =
∑

k

f (μ(xk, W,�)) + λ
∑
lm

φ(Ωlm), (7)

where φ (·) is any of the functions in Table 1, and Ω ∈ R
d×k is defined as in Eq. (4).

By using gradient descent the following GMLVQ update rules are obtained for
the prototypes:

w+ = w+ + 2β f ′μ+Λ(x − w+), (8)

w− = w− − 2β f ′μ−Λ(x − w−), (9)

where f ′ is the derivative of the sigmoid function f (x) = 1
1+e−x , μ+ = ∂μ

∂w+ is the
derivative of the relative distance difference with respect to the right class prototype
w+, μ− = ∂μ

∂w− is the derivative of the relative distance difference with respect to
the wrong class prototype w− , and β is the learning rate. Besides, the Ω matrix is
adapted in order to enhance the relevance of the original data dimensions. The update
rule for the (l, m)th element of the Ω matrix is the following:

ΔΩlm = −β · 2 · f ′(μ(x))

·(μ+(x)((xm − wJ,m)[Ω(x − wJ )]l)

−μ−(x) · ((xm − wK ,m)[Ω(x − wK )]l))

−∇φλ(Ωlm). (10)
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Plots of six sparse penalty functions used with the GMLVQ cost function: �1-norm
a, epsilon-�1 pseudo-norm b, �q pseudo-norm c, SCAD d, Zhang’s e, and log f

Table 1 Penalty functions

Name Formula Derivative

�1 − norm φλ(x) = λ|x| ∂φλ(x)
∂x = λ sgn(x)

Epsilon-�1 pseudo-norm φλ(x) = λ
(
x2 + ε

) 1
2 ∂φλ(x)

∂x = λx√
x2+ε

�q pseudo-norm φλ(x) = λ|x|q with 0 < q < 1 ∂φλ(x)
∂x = qx|x|q−2

SCAD φλ(x) =

⎧⎪⎪⎨
⎪⎪⎩

λ|x| |x| ≤ λ
−|x|2+2aλ|x|−λ2

2(a−1) λ < |x| ≤ aλ
(a+1)λ2

2 |x| > aλ

∂φλ(x)
∂x =

⎧⎪⎨
⎪⎩

λ sgn(x) if |x| ≤ λ
x−2aλx

2|x|−2a|x| λ < |x| ≤ aλ

0 |x| > aλ

Zhang’s φλ(x) =
{

λ|x| |x| < η

λη otherwise
∂φλ(x)

∂x =
{

λ sgn(x) |x| < η

0 otherwise

Log φλ(x) = λ log (|x| + ε) − λ log (ε) ∂φλ(x)
∂x = λ sgn(x)

x sgn(x)+ε

In what follows we use the following notation for the six different GMLVQ sparse
models: �1-norm, epsilon-�1 pseudo-norm, �q pseudo-norm, SCAD, Zhang’s and log
penalty functions.

The sub-gradient approach is used [2, 3] in order to solve the problem of an
undefined derivative at x = 0 for the functions shown in Table 1. A function φλ(x)

is called subdifferentiable at x if there exists at least one subgradient at x . The set of
subgradients of φλ(x) at the point x is called the subdifferential of φλ(x) at x , and is
denoted ∂φλ(x). A function φλ(x) is called subdifferentiable if it is subdifferentiable
for all x in the domain of φλ(x). For example, consider φλ(x) = |x |; for x �= 0 the
subgradient is unique: ∂φlambda(x) = sgn(x). At x = 0 the subdifferential is defined
by the inequality |z| ≥ gz ∀z, which is satisfied if and only if g ∈ [−1, 1]. Therefore
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the subgradient is equal to ∂φλ(x) ∈ [−1, 1]. In our contribution a gradient descent
update approach was used.

4 Simulation Results

In this section three experiments are performed. In all experiments, several values
for each parameter are tried in order to tune the different models. The trade-off
parameter λ of the penalty function in Eq. (7) was set as λ = {0.01, 0.05, 0.1, 0.5,
1, 3, 5, 10}, the number of prototypes was chosen as a percentage size of the
dataset Np = {1, 5, 10, 15, 20%}. In the case of Epsilon-�1 penalty function the
parameter ε was varied in the set ε = {0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10}, for the �q

pseudo-norm penalty function q = {0.01, 0.05, 0.1, 0.5, 0.8}, for SCAD penalty
function α = {0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10}, for Zhang’s penalty function η =
{0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10}, and for the log penalty function ε = {0.01, 0.05,
0.1, 0.5, 1, 3, 5, 10}. Besides, in every case a 10-fold cross validation, and a one-way
analysis of variance (ANOVA) with Bonferroni correction was performed using a
significant level of 0.05. The following notation is used to express the results: the
mean plus/minus the standard deviation of the mean.

The Pipeline dataset consists of 1000 samples with 3 classes and 12 features. In
this dataset the best result is obtained by the log penalty function with 9.9010e-4 ±
0.0031 (see Table 2 first row). However, this result is not statistically different from
the other two non-convex penalty functions. All non-convex functions outperform
the �1-norm and the difference is statistically significant. Figure 2a shows the effect
of the trade-off parameter λ for the SCAD non-convex penalty function. Each curve
corresponds to a different value of α. In Fig. 2 it can be observed that in general
the higher the λ value the higher the classification error which is an expression of
the trade off between accuracy and sparsity representation of the Ω matrix. Notice
that for α = 0.01 the best regularization effect is obtained since for a wide range of
λ values the classification error is kept constant. Figure 2b shows the classification
error as a function of λ for the logarithmic penalty function for different ε values.
Contrary to SCAD, the logarithmic penalty function does not keep the accuracy
constant for different values of λ for any value of ε. Also, in this dataset all non-
convex penalty functions outperform the original GMLVQ algorithm (0.0060 ±
0.0085) and GMVLQ with �1 regularization (0.0030 ± 0.0048) and the differences
are statistically significant.

Figures 3a, c illustrate a visualization of the matrix Λ for GMLVQ when using
the original GMLVQ algorithm and the logarithmic penalty function with λ = 0.01,
respectively. For didactic purposes, the bar graph illustrates the values of the matrix
by using the mode of the 10 fold cross-validation. There is a significant difference
between Fig.3a, c due to the sparsity of the solution obtained with the log penalty
function. Non-diagonal elements with values different from zero indicate interac-
tions between features for the matrix transformation. The main diagonals are shown
in Figs. 3b, d where a high value represents a high relevance for the classification.
The boxplots show that for the original GMLVQ there are more non-zero values in
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(a) (b)

Fig. 2 Plots of the results for different regularization methods over GMLVQ for the Pipeline
dataset. SCAD penalty function regularization by using 5% of number of prototypes a, and loga-
rithmic penalty function regularization with Np = 5% of the size of the dataset as the number of
prototypes b

the main diagonal compared to the result obtained by using regularization with the
logarithmic penalty function. Also, the boxplot indicates the dispersion for 10-runs
of the Λ matrix. In the case of the GMLVQ there are many non-zero elements and
the distribution shows some outliers marked with red plus sign. However for regu-
larization with the logarithmic penalty function there are fewer non-zero elements
and a more compact distribution per feature is obtained.

The Image Segmentation dataset consists of 19 features (where 3 have been elim-
inated for being constant), 2100 samples and 7 classes. A summary of the results
is shown in Table 2, second row. In this dataset all non-convex penalty functions
yield similar performances. But they outperform GMLVQ (0.0405 ± 0.0125) and
GMLVQ with �1 regularization (0.0358 ± 0.0099). The logarithmic function obtain
a minimum classification error of 0.0305 ± 0.0144 using 5% of the number of pro-
totypes and λ = 0.01. However, the difference is not statistically significant from
those obtained with other non-convex regularization methods. In this case the loga-
rithmic function shows a compact distribution for the 10-runs of the cross validation.
An interpretation is that the model is not over-fitting the training data. Figures 4a, b

Table 2 Summary of classification errors for the three datasets by using the originalGMLVQmodel
and adding different penalty functions, mean (standard deviation) for 10-fold cross validation

GMLVQ �1 Epsilon − �1 �q SCAD Zhang log

D1 0.0060 0.0030 0.0010 0.0020 0.0020 0.0020 9.9010e-4
(0.0085) (0.0048) (0.0032) (0.0042) (0.0133) (0.0134) (0.0031)

D2 0.0405 0.0358 0.0314 0.0348 0.0310 0.0338 0.0305
(0.0125) (0.0099) (0.0154) (0.0108) (0.0139) (0.0102) (0.0144)

D3 0.2537 0.2290 0.2187 0.2214 0.2147 0.2175 0.2252

(0.0574) (0.0387) (0.0387) (0.0260) (0.0539) (0.0332) (0.0424)

Pipeline (D1), image segmentation (D2) and pima (D3) datasets
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(a) (b)

(c) (d)

Fig. 3 Visualization of the results for the Pipeline dataset. The left column shows the mode of the
matrix relevance Λ for classification error using 10-fold cross-validation with the original GMLVQ
a and using regularization with the log penalty function with λ = 0.01 c. The right column shows
the boxplot of the main diagonal for GMLVQ b and for the log penalty function with λ = 0.01 c,
both for 10 runs

show the eigenvalues when using a low λ = 0.01 and a high λ = 10, respectively.
These figures show that the higher the sparsity the lower the number of eigenvalues
obtained. Figures 4c, d show the main diagonal for relevance matrix Λ by using
the original GMLVQ and regularization with a logarithmic penalty function, respec-
tively. It can be observed that there is a significant difference between the number
of non-zero values and the distribution of those elements. In the case of logarithmic
penalty function there exists a compact distribution of the non-zero elements for 10
runs. Notice that the non-diagonal elements of the relevance matrix Λ add informa-
tion for improving the classification. A significant non-zero value in a non-diagonal
element indicates interactions between features.

The Pima dataset consists of 8 features, 768 samples and 2 classes. A summary
of results for this dataset is shown in Table 2, third row. The regularization with
the SCAD penalty function obtains the minimum classification error with 0.2147 ±
0.0539 but it is not statistically significant from the errors obtained by the epsilon-�1
(0.2187 ± 0.0387), and Zhang’s (0.2175 ± 0.0332) penalty functions. It is worth to
notice that all non-convex functions outperform the �1 regularization sparse model
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(a) (b)

(c) (d)

Fig. 4 Plots of the results for different regularization methods using the Image segmen-
tation dataset. Eigenvalues of the relevance matrix Λ for different values of λ: λ = 0.01
a, and λ = 10 b. Boxplots of main diagonal of the relevance matrix for 10-fold cross-
validation by using Np = 5% of the size of the dataset for SCAD c, and logarithmic
d penalty functions

and the differences are statistically significant. Although, we should take into account
that the �1 norm does not have an extra parameter in contrast to all other methods.
Naturally, as in the previous experiments, when increasing the number of prototypes
per class a lower classification error is obtained but after 5% the best performance
reaches a saturation level. In all cases small values of the λ parameter allow a better
generalization ability without losing accuracy and reaching a sparse representation
of the Ω matrix.

5 Conclusions

There is a trade-off between accuracy and sparsity of a solution. However, to a certain
point a sparse solution helps to improve the accuracy of the GMLVQ model. Fur-
thermore, when a sparse solution is obtained there are less relevant components of
the relevance matrix which improves its interpretability and the regularization adds
robustness to the solution. In this contribution we have showed that the non-convex
penalty functions outperform the original GMLVQ model and the �1 regularization
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in all cases in terms of classification accuracy and sparseness. But the non-convex
functions have an extra parameter in order to facilitate the tuning of each penalty func-
tion. Sparse models using non-convex functions could be extended to local matrix
relevance in the near future.
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Functional Representation of Prototypes
in LVQ and Relevance Learning

Friedrich Melchert, Udo Seiffert and Michael Biehl

Abstract We present a framework for distance-based classification of functional
data. We consider the analysis of labeled spectral data by means of Generalized
Matrix Relevance Learning Vector Quantization (GMLVQ) as an example. Feature
vectors and prototypes are represented as functional expansions in order to take
advantage of the functional nature of the data. Specifically, we employ truncated
Chebyshev series in the context of several spectral datasets available in the public
domain. GMLVQ is applied in the space of expansion coefficients and its performance
is compared with the standard approach in original feature space, which ignores the
functional nature of the data. Data smoothing by polynomial expansion alone is also
considered for comparison. Computer experiments show that, beyond the reduction
of dimensionality and computational effort, the method offers the potential to improve
classification performance significantly.

Keywords Classification · Supervised learning · Functional data · Learning vector
quantization · Relevance learning · Dimensionality reduction

1 Introduction

A large number of unsupervised and supervised machine learning techniques are
based on the use of distances or dissimilarity measures [4, 5]. Such measures can
be employed for pairwise comparison of feature vectors, as for instance in the

F. Melchert (B) · M. Biehl (B)
University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science, P.O. Box 407, 9700 Groningen, AK, The Netherlands
e-mail: Friedrich.Melchert@gmail.com

M. Biehl
e-mail: m.biehl@rug.nl

F. Melchert · U. Seiffert (B)
Fraunhofer Institute for Factory Operation and Automation IFF,
Sandtorstrasse 22, 39106 Magdeburg, Germany
e-mail: Udo.Seiffert@iff.fraunhofer.de

© Springer International Publishing Switzerland 2016
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning
Vector Quantization, Advances in Intelligent Systems and Computing 428,
DOI 10.1007/978-3-319-28518-4_28

317



318 F. Melchert et al.

well-known K -Nearest-Neighbor (KNN) classifier [5, 8, 10]. Prototype-based meth-
ods replace the reference data by a number of typical representatives. In unsupervised
Vector Quantization (VQ), for instance, they might represent clusters or other struc-
tures in the data. In the popular Learning Vector Quantization (LVQ) [12], prototypes
serve as characteristic exemplars of the classes and, together with a distance measure,
parameterize the classification scheme.

Prototype- and distance-based systems are generally intuitive and straightforward
to implement. The selection of appropriate distance measures is a key issue in the
design of VQ or LVQ schemes [5]. Frequently, simple Euclidean or other Minkowski
measures are employed without taking into account prior knowledge of the problem.
Obviously, available insight into the nature of the data should be taken advantage
of. So-called relevance learning schemes offer greater flexibility and are particularly
suitable for supervised learning due to the use of adaptive distance measures, see [20,
25] for examples in the context of KNN- and LVQ classifiers and [5] for a recent
review. In relevance learning, only the basic form of the distance measure is specified
in advance. Its parameters are determined in a data-driven training process, which is
frequently guided by a suitable cost function, e.g. [18, 20, 25].

Here, we examine the use of prototype-based systems for functional data [17],
where feature vectors do not simply comprise a set of more or less independent
quantities, but represent a functional relation. This is the case, for instance, in the
presence of temporal or other dependencies, which impose a natural ordering of the
features. Functional data is found in a large variety of practical application areas
[17]. Perhaps, time series and sequences come to mind first in the context of, e.g.,
bioinformatics, meteorology or economy. Similarly, densities or histograms can be
used to represent statistical properties of observations. Another important example
is that of spectral data, for instance optical or mass spectra obtained in various fields
ranging from remote sensing to chemistry and bioinformatics.

Formally, discretized functional data can be treated by standard prototype-based
methods, including relevance learning. However, this naive approach ignores the
specific properties of the data, which may result in suboptimal performance due
to several problems: Obviously, disregarding the order and intrinsic correlation of
neighbored features in functional data can lead to nominally very high-dimensional
systems and inappropriately large numbers of adaptive parameters. Thus, the learn-
ing problem is rendered unnecessarily complex and may suffer from convergence
problems and overfitting effects. In addition, standard measures such as Euclidean
metrics are often insensitive to the reordering of features, yielding misleading results
when functions are compared [14, 24].

An appropriate functional representation of relevances was proposed and ana-
lyzed in [11]. However, there, data samples and prototypes are still considered in the
original feature space. Here, we follow a complementary approach and investigate
the functional representation of adaptive prototypes and all sample data in terms of
appropriate basis functions. We include the implementation of relevance learning in
the corresponding space of coefficients, illustrate the method in terms of benchmark
datasets and compare with the standard approaches in original feature space.



Functional Representation of Prototypes in LVQ and Relevance Learning 319

One previously studied example of this basic idea was considered in [19], where
highly specific wavelet representations were employed in the analysis of sharply
peaked mass spectra. Here, we discuss the use of supervised LVQ and relevance
learning for relatively smooth functional data and restrict the discussion to polyno-
mial expansions. We would like to point out, however, that the framework is quite
versatile and can be readily extended to other types of data and basis functions.

In the following section we summarize the mathematical framework and provide
details of the classifiers and training prescriptions. In Sect. 3 we introduce benchmark
datasets and present the results of computer experiments. We discuss our findings in
Sect. 4 before we conclude with a brief Summary and Outlook.

2 The Mathematical Framework

We first review the generic form of the considered supervised learning problem,
before detailing the specific approaches for functional data.

2.1 Generalized Matrix Relevance LVQ for Classification

We consider a standard supervised scenario, where d-dimensional feature vectors

ξμ ∈ R
d and labels Sμ = S(ξμ) ∈ {1, 2, . . . , C} for μ = 1, 2 . . . P, (1)

serve as examples for the target classification. For simplicity we restrict the following
to binary classification schemes with C = 2. The extension to multi-class LVQ is
conceptually and technically straightforward.

An LVQ system parameterizes the classifier by means of a set of prototypes

{
w

j
ξ ∈ R

d
}M

j=1
with labels σ j = σ(w

j
ξ ) ∈ {1, 2}, (2)

equipped with an appropriate distance measure d(wξ , ξ). A simple Nearest Prototype
Classifier (NPC) assigns a vector ξ to the class of the closest prototype, i.e. the w

j
ξ

with d(w
j
ξ , ξ) = minm{d(wm

ξ , ξ)}M
m=1.

Note that the prototypes are defined in the same space as the considered feature
vectors, as indicated by the subscript ξ , here. This fact often facilitates intuitive
interpretation of the classifier. Prototypes are usually determined in heuristic iterative
procedures like the popular LVQ1 algorithm [12] or by means of cost function based
optimization, e.g. [18, 21].

We employ general quadratic distance measures of the form

d(wξ , ξ) = (
wξ − ξ

)�
Λξ

(
wξ − ξ

) = [
Ωξ

(
wξ − ξ

)]2
. (3)
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The parameterization Λξ = Ω�
ξ Ωξ ensures that the measure is positive semi-definite

[20]. We additionally impose the normalization Tr(Λξ ) = ∑
i, j [Ωξ ]2

i j = 1 in order
to avoid numerical problems.

For the sake of clarity, we restrict the formalism to one global distance given by a
single square matrix Ωξ ∈ R

d×d . Extensions of this basic framework in terms of local
or rectangular matrices are technically straightforward, see [7]. Note that the general
form, Eq. (3), reduces to standard (squared) Euclidean distance for Λξ = I/d with
the d-dim. identity I .

Generalized Matrix Relevance LVQ (GMLVQ) [20] optimizes the prototype posi-
tions and the distance measure, i.e. the matrix Ωξ , in one and the same data driven
training process. It is guided by a cost function of the form

E = ∑P
μ=1 Φ

(
d(w J

ξ ,ξμ)−d(wK
ξ ,ξμ)

d(w J
ξ ,ξμ)+d(wK

ξ ,ξμ)

)
, (4)

which was introduced in [18]. Given a particular feature vector ξμ, w J
ξ denotes the

correct winner, i.e. the closest prototype representing the class Sμ = S(ξμ), while wK
ξ

denotes the closest of all prototypes with a class label different from Sμ. Frequently,
the function Φ(. . .) in Eq. (4) is taken to be a sigmoidal [18]. Here, for simplicity
and in order to avoid the introduction of additional hyper-parameters we resort to the
simplest setting with Φ(x) = x .

Training can be done in terms of stochastic gradient descent as in [20] or by
means of other methods of non-linear optimization; several implemented variants
are available online at [6]. Results presented here were obtained by means of a batch
gradient descent optimization of E , cf. Eq. (4), equipped with a conceptually simple
scheme for automated step size control along the lines of [16].

2.2 Polynomial Expansion of Functional Data

The main idea of this paper is to exploit the characteristics of functional data in
terms of representing feature vectors ξ ∈ R

d in a parameterized functional form.
Such representation can be achieved by expanding the data in terms of suitable
basis functions. Interpreting the original features as discretized observations of an
underlying continuous function f (x), i.e. ξ j = f (x j ) for j = 1, . . . , d, we consider
expansions of the basic form

fc(x) = ∑n
i=0 ci gi (x). (5)

For a given set of basis functions {gi }n
i=0, each ξ in original d-dim. feature space can be

represented by an (n + 1)-dim. vector of coefficients denoted as c = (c0, c1, . . . cn)
�

in the following. In practice, c is determined according to a suitable approximation
criterion. A popular choice would be the minimization of the quadratic deviation∑d

j=1

(
fc(x j ) − ξ j

)2
.
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In order to illustrate the basic approach, we consider Chebyshev polynomials of
the first kind as a particular functional basis. Hence, the functional representation (5)
of the data is given by truncated Chebyshev series, which provide an efficient way
to represent smooth non-periodic functions [9]. Specifically, we employed the open
source Matlab™ library chebfun [22], which includes a variety of mathematical
tools in this context. Here, we make use only of its efficient implementation of
Chebyshev approximation of discrete functional data.

2.3 Comparison of Workflows

In Sect. 3 we present results for the application of GMLVQ to a number of bench-
mark problems. In each of these, d-dimensional spectra—denoted by vectors ξ—are
assigned to one of two possible classes. We explicitly study and compare the follow-
ing alternative scenarios:

(A) Training in original feature space
As an obvious baseline, we consider the conventional interpretation of the com-
ponents of ξ as d individual features, disregarding their functional nature. Hence,
the spectra are taken to directly define the feature vectors ξ in Eqs. (1–4) without
further processing.

(B) Polynomial representation of data and prototypes
For a given degree n of the approximative expansion (5), each data point ξμ in
the dataset can be represented by the vector of coefficients cμ ∈ R

(n+1). Cor-
respondingly, prototypes wk

c ∈ R
(n+1) and matrices Λc,Ωc ∈ R

(n+1)×(n+1) can
be introduced. The GMLVQ formalism outlined above is readily applied in
complete formal analogy to Eqs. (1–4). However, data and prototypes are now
represented in (n + 1)-dim. coefficient space. Moreover, the distance measure
d(wc, c) = (wc − c)�Λc (wc − c) cannot be interpreted as a simple generalized
Euclidean distance in original feature space anymore.

(C) Polynomial smoothing of the data
In addition to the suggested functional representations (B), we consider the
smoothing of d-dim. spectra by applying a Chebyshev expansion with n < d
and transforming back to original feature space. After replacing original feature
vectors by the resulting smoothed versions ξ̃ , the standard GMLVQ approach
is applied. As a result we obtain a classifier which is parameterized in terms of
prototypes wk

ξ̃
∈ R

d and relevance matrix Λξ̃ = Ω�
ξ̃

Ωξ̃ ∈ R
d×d .

3 Application to Example Datasets

The proposed method is applied and tested in several spectral and, therefore, func-
tional datasets of different sizes and spectral bandwidths.
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The wine dataset, available from [15], contains 123 (one outlier removed) samples
of wine infrared absorption spectra with 256 values in the range between 4000 and
400 cm−1. The data should be classified according to two assigned alcohol levels
(low/high) as specified in [13].

The Tecator dataset comprises 215 reflectance spectra with 100 values each,
representing wavelengths from 850 to 1050 nm. The spectra were acquired from
meat probes and labeled according to fat content (low/high), see [23] for details.

The orange juice (OJ) dataset is a collection of 218 near infrared spectra with
700 values each. For each spectrum the level of saccharose contained in the orange
juice is given. In order to define a two class problem similar to the above mentioned
ones, the level is thresholded at its median in the set, defining two classes (low/high
saccharose content). The dataset is publicly available at [15].

The fourth example, the coffee dataset, was made available in the context of a
machine learning challenge by the Fraunhofer Institute for Factory Operation and
Automation, Magdeburg/Germany, in 2012 [1]. The full set contains 20000 short
wave infrared spectra of coffee beans with 256 values in the range of wavelengths
between 970 and 2500 nm. The classification task is to discriminate immature and
healthy coffee beans. Since the dataset is only used for further benchmark of the
presented approach it is reduced in size to keep computation time in easy to handle
ranges. For this reason 100 samples were selected randomly from each of the two
classes.

For each dataset three strategies were evaluated: First, a GMLVQ system is adapted
to the labeled set of original spectra, cf. scenario (A). A second set of experiments is
guided by (B) in the previous section: Spectra are approximated by polynomials of
a certain degree resulting in 5, 10, 15, . . . , 100 polynomial coefficients as described
above. Subsequently, a GMLVQ classifier is trained in terms of the resulting (n + 1)-
dim. coefficient vectors cμ. Scenario (C) is considered in order to clarify whether the
potential benefit of using a polynomial representation could be only an effect of the
smoothing achieved by the approximation. To this end, the system is trained on the
basis of smoothed versions of the spectra, obtained by equi-distant discretization of
the polynomial approximation.

All experiments were done using the same settings and parameters. GMLVQ
systems comprised only one prototype per class. A z-score transformation was per-
formed for each individual training process, achieving zero mean and unit variance
features in the actual training set. This transformation balances the varying order of
magnitudes observed in different feature dimensions and facilitates the interpreta-
tion of the emerging relevance matrices [20]. Relevance matrices were initialized as
proportional to the identity, prototypes were placed in the class-conditional means
in the training set, initially. A batch gradient descent optimization was performed,
employing an automated step size control, essentially along the lines of [16]. Mat-
lab™ demonstration code of the precise implementation used here is available from
[3], where a more detailed documentation and description of the modification of the
step size adaptation scheme is also provided. We used default values of all relevant
parameters specified in [3].
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(a) (b)

(c) (d)

Fig. 1 Comparison of the achieved validation performance, i.e. the area under ROC for different
datasets in dependence of the degree of the polynomial curve fitting. The solid line represents the
value for the classification using the original feature vectors (A). Filled circles represent results
achieved using polynomial curve fitting, open squares correspond to polynomial smoothing of the
input data only. All results are displayed as a function of the number of coefficients (n + 1) in the
polynomial expansion. a Wine dataset. b Tecator dataset. c OJ dataset. d Coffee dataset

A validation scheme was implemented, with each training set containing a ran-
dom selection of 90 % of the available data. Performance was evaluated in terms
of the Area under the ROC (AUROC) with respect to the validation set [10]. The
latter is obtained by varying a threshold when comparing the distances of a data
point from the prototypes, thus deviating from the NPC scheme. All results were
obtained as a threshold average over 10 random splits of the data. Figure 1 displays
the performance of systems with full polynomial representation (scenario B), with
polynomial smoothing of the data (C), and the baseline of GMLVQ in the original
space (scenario A), for comparison.

In order to further illustrate the method, we provide more details for the example
of the OJ dataset in Fig. 2. The upper panels display the d-dim. prototypes obtained
in scenarios (A) and (C). From the vectors w1,2

c ∈ R
(n+1) in scenario (B), we also

computed their corresponding functional form in original feature space. Diagonal ele-
ments of the relevance matrices Λξ,Λξ̃ ∈ Rd×d and Λc ∈ R

(n+1)×(n+1) are depicted
in the lower panels. We show results for the example case of 20 coefficients, which
yields typical performance, cf. Fig. 1a.

4 Discussion

Our results demonstrate that the proposed approach has potential to improve clas-
sification performance with functional data significantly, as verified by the Tecator
data (Fig. 1b) and the OJ dataset (Fig. 1c). In both cases, the prediction accuracy as



324 F. Melchert et al.

measured by the AUROC is significantly larger when applying GMLVQ in the poly-
nomial representation. For a wide range of degrees n, the AUROC robustly exceeds
that of systems trained from the raw datasets. This is not the case for training accord-
ing to scenario (C), which shows that the improvement in (B) cannot be explained
as an effect of the smoothing only.

In the other two datasets, cf. Fig. 1a, d, the accuracy of the system with polynomial
representation is comparable or nearly identical to that in original and smoothed
feature space. Also for these datasets, the performance is robust with respect to the
polynomial degree in a wide range of values n.

Clearly, the positive effect of the functional representation on the performance
will depend on the detailed properties of the data and the suitability of the basis
functions. However, even if accuracy does not increase, one advantage of the poly-
nomial representation remains: The dimensionality of the problem can be reduced
significantly in all considered cases without adverse effects on performance. For
approximations with, say, 20 polynomial coefficients, which performs well in all
datasets, the number of input dimensions is reduced by 80 % for Tecator, by ca. 92 %
for Wine and Coffee data and by 97 % for the OJ dataset. This leads to a drastically
reduced number of free parameters, which is quadratic in the number of feature
dimensions in GMLVQ, and results in a massive speed-up of the training process.
The gain clearly over-compensates the time needed for performing the polynomial
approximation, generically. The computational effort of the approximation was eval-
uated experimentally and appeared to increase linearly with the original dimension
d and the polynomial degree n. The observed absolute computation time was on the
order of a few seconds for the representation of 50000 feature vectors.

Another point that deserves attention is the question of interpretability of the pro-
totypes and relevances [2, 5]. One important advantage of LVQ and similar methods
is the intuitive interpretation of prototypes, since they are determined in original fea-
ture space. The proposed polynomial representation seems to void this advantage,
by considering data and prototypes in the less intuitive space of coefficients. Note,
however, that the transformation can be inverted after training, hence the prototypes
can be projected back to the original feature space. Figure 2 shows a comparison of
the prototypes achieved from original data, and those achieved in coefficient space,
mapped back to original feature space. Although the prototypes for the polynomially
approximated data are smoother, the comparison shows that they resemble each other
in all three scenarios.

While this provides further evidence for the usefulness of the suggested approach,
it is important to be aware of the significant differences in terms of the applied dis-
tance measure. Figure 2 (lower panels) displays the corresponding relevance pro-
files for the OJ dataset as an example. For original (A) and smoothed data (C),
the diagonal elements of Λξ and Λξ̃ can be directly interpreted heuristically as the
relevance of the corresponding components in feature space [5, 20]. The diagonal
elements of Λc, however, assign an accumulated weight [Λc]i i = ∑

j [Ωc]2
i j to each

dimension in coefficient space. In the example case of the OJ dataset, the first three
coefficients, corresponding to go(x) = 1, g1(x) = x, g2(x) = 2x2 − 1, are neglected
almost completely in the GMLVQ system. This reflects the fact that constant offset
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Prototypes (panels a, b, c) representing low and high saccharose content in the Orange
Juice dataset, and diagonal elements of the relevance matrices Λξ ,Λc and Λξ̃ (d, e, f), respectively.
Left panels (a, d) Results for using original features (scenario A). Center panels (b, e) Results for
polynomial representation (B) with 20 coefficients, prototypes are shown after back-transformation
to original feature space. Right panels (c, f): Scenario (C) with 20 coefficients as in (B). a OJ original.
b OJ polynomial fit. c OJ smoothened. d OJ original. e OJ polynomial fit. f OJ smoothened

as well as linear and quadratic trend are not discriminative in the sense of the clas-
sification task at hand. Note that relevance learning enables the system to disregard
these properties without further pre-processing of the data.

5 Summary and Outlook

We presented a framework for the efficient classification of functional data, based on
their appropriate representation in terms of basis functions. As a concrete example,
we considered polynomial approximations of smooth spectral data. The framework
was applied to and evaluated for four real world datasets. The results show, that for a
range of degrees n of polynomial approximations, a comparable or even significantly
better classification performance can be achieved. In these cases, the improvement
is not due to the smoothing effect of the representation only, but reflects the fact that
the suggested approach takes into account the functional nature of the data more
appropriately.

Besides its potential effect on the accuracy, the functional representation of the
data can lead to a massive reduction of the data dimension. Consequently, a much
smaller number of adaptive parameters is employed in the classifier, reducing the
risk of over-fitting, avoiding potential convergence problems, and resulting in less
computational effort.

Our initial study leaves several interesting questions open for further investigation.
In future projects we will study more systematically the properties of the distance
measure imposed by the polynomial representation. While our example results dis-
play great robustness with respect to n, more generally, the choice of a suitable
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degree for the polynomial approximation could play an important role in practice.
Validation schemes should be devised in order to identify optimal choices system-
atically according to the complementary criteria of best performance and minimal
dimensionality.

The considered polynomial approximation appears to be a suitable approach for
reasonably smooth spectral data. The degree to which the classification performance
can be improved in comparison with the standard approaches clearly depends on the
suitability of the functional basis for the particular dataset. The systematic investi-
gation of alternative representations in the context of other application domains will
be in the center of forthcoming studies.

Acknowledgments F. Melchert thanks for support through an Ubbo-Emmius Sandwich Scholar-
ship by the Faculty of Mathematics and Natural Sciences.
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Prototype-Based Classification for Image
Analysis and Its Application to Crop Disease
Diagnosis

Ernest Mwebaze and Michael Biehl

Abstract In this paper, we provide an application of Learning Vector Quantiza-
tion (LVQ)-based techniques for solving a real-world problem. We apply LVQ for
automated diagnosis of crop disease in cassava plants using features extracted from
images of plants’ leaves. The problem reduces to a five class problem in which we
attempt to distinguish between a leaf from a health plant and leaves representing
four different viral and bacterial diseases in cassava. We discuss the problem under
additional constraints that the solution must easily be deployable on a mobile device
with limited processing power. In this study we explore the right configuration of
type of algorithm and type of features extracted from the leaves that optimally solves
the problem. We apply different variations of LVQ and compare them with stan-
dard classification techniques (Naïve Bayes, SVM and KNN). Results point to a
preference of color feature representations and LVQ-based algorithms.

Keywords Prototype-based classification · LVQ · GLVQ · GMLVQ · DLVQ ·
Multi-class classification · Feature extraction · Image analysis

1 Introduction

Learning Vector Quantization (LVQ) and more general prototype-based classifiers
have been used successfully in many applications [1]. Their major attraction is the
intuitiveness with which the learned prototypes can be interpreted. A particularly
unique advantage of prototype-based methods is the narrow barrier in transitioning
the learned classifier to a production system.
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In this paper, we address a specific practical application; the discrimination of
four diseases in cassava plants by analysing images of their leaves. The overarching
goal is to be able to do automated diagnosis of the state of health of cassava plants
from photos taken using mobile phones.1 The general context of this problem is that
small holder farmers in Uganda and in Africa in general experience heavy yield loss
due to viral diseases in cassava. Cassava is a very important staple and cash crop in
Africa and has been tagged as one of the key food security crops.

Presently to diagnose disease in gardens, experts travel to the farmers fields and
visually inspect their crops. With our work, we can enable farmers in remote places
do diagnosis of their crops without need of an expert. This context further constrains
the scope of solutions we can deploy. We require a classification algorithm that can
be easily deployed on a mobile device which is not too expensive in execution.
Prototype-based algorithms are suited for this kind of problem because deployment
involves transferring the trained prototypes (which are vectors of numbers) to the
device. To classify a new image, features are extracted and the distance from the fea-
tures to the prototypes is calculated and the class of the closest prototype is assigned
as the diagnosis of the image. The simplicity in deployment and the efficiency in
running the algorithm make this family of methods very attractive for this kind of
problem.

In our previous work [2, 3] we highlighted the ease of implementing prototype-
based classification techniques on amobile phone for diagnosing disease from images
of crops taken with a camera. There, we mainly looked at a binary classification; try-
ing to distinguish the presence of disease from no disease. One caveat with this
particular problem was that it was uncertain whether the trained classifier was pre-
dicting presence of disease or it was predicting an anomaly from the health leaf
images.

In this work we move further and investigate a multiclass problem where we are
classifying between five classes representing healthy leaf images and four viral and
bacterial diseases in cassava plants: cassavamosaic disease (CMD), cassava bacterial
blight (CBB), cassava green mite (CGM) and cassava brown streak disease (CBSD).
We explore the right mix of type of algorithm, type of features extracted from leaf
images and type of disease being classified that can optimally solve this problem
under the constraints of easy of deployment and economy of processing power. In
the sections that follow, we reintroduce prototype-based classification in the context
of LVQ, we then explain how we do image processing on the leaf images and finally
how we use the data separately and combined in different prototype-based schemes
and with different algorithms.

1http://www.air.ug/mcrops/.

http://www.air.ug/mcrops/
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2 Prototype-Based Classification and LVQ

An LVQ system can generally be set up as follows. For a particular classification
task, we assume that a set of labelled example data is available:

{xμ, yμ}P
μ=1 ,

where the xμ ∈ IRN are feature vectors and the labels yμ ∈ {1, 2, . . . C} specify their
class membership.

The prototypes of the LVQ system are defined as a set of M prototype vectors
wj ∈ IRN which carry labels c(wj) ∈ {1, 2, . . . C} such thatW = {

(wj, c(wj)
}M

j=1. The
system can be set up with one or more prototype vectors per class. The prototype
vectors are identified in the feature space and serve as typical representatives of
their classes. Together with a given distance measure d(x, w), they parametrize the
classification scheme. To predict the class of a new data point x, the distance between
x and the prototypes of the system is calculated and x is assigned to the class c(wL)

of the closest prototype with d(x, wL) ≤ d(x, wj) for all j.
A variety of modifications to LVQ that have been suggested in the literature,

aiming at better convergence or favorable generalization behavior. Generalized LVQ
(GLVQ), Generalized Matrix LVQ (GMLVQ) and Divergence-based LVQ (DLVQ)
are examples of such extensions that provide better convergence and generalization.

2.1 Generalized LVQ

A key variant of LVQ, the Generalized LVQ (GLVQ) algorithm introduced by Sato
and Yamada [4] incorporates an objective (cost) function in the training of the LVQ
system. The advantage of an objective function based LVQ system is that one can
use gradient methods (online or batch) to optimize it. The GLVQ cost function can
be stated in the following form

E(W) =
P∑

μ=1

Φ

(
d(xμ, wJ) − d(xμ, wK)

d(xμ, wJ) + d(xμ, wK)

)
, (1)

wherewJ denotes the closest correct prototypewith c(wJ) = yμ andwK is the closest
incorrect prototype (c(wK) �= yμ). The function Φ generally determines the active
region of the algorithm and is restricted to the interval [−1,+1].

In principle, a variety of numerical optimization procedures are available for the
minimization of the cost function in Eq. (1) by means of gradient descent techniques.
In this work, we employed batch gradient descent.
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2.2 Generalized Matrix LVQ

In Generalized Matrix Learning Vector Quantization (GMLVQ) [5], a matrix Λ =
Ω�Ω that captures the interplay between different data dimensions in the distance
measure is added to the cost-function based GLVQ scheme. The distance measure
dΩ(x, w) is defined as

dΩ(x, w) = (x − w)� Λ(x − w). (2)

The cost function in Eq. (1) can be minimized with respect to the prototypes and
the matrix Ω for example by means of gradient based methods. The corresponding
derivatives yield batch updates of the form

wt+1 = wt − α
(w)
t

∂E/∂w
|∂E/∂w| , Ωt+1 = Ωt − α

(Ω)
t

∂E/∂Ω

|∂E/∂Ω| , (3)

where α(Ω) and α(w) are the step sizes controlling the training of Ω and w,
respectively.

2.3 Distance-Based LVQ Variants

GLVQ and GMLVQ form the basis of other improved LVQ algorithms. Many other
variants function as extensions of these two algorithms. In previous studies, we have
used unconventional dissimilarity measures.

A particular variant of interest is Divergence-based LVQ (DLVQ) which uses
divergences as a distance measure. In this work we carry out experiments with the
DLVQ algorithm using the Cauchy-Schwarz divergence as the distance measure. In
our previous work [3] we have found that the Cauchy-Schwarz is a particularly good
divergence distance measure because it is robust to numerical errors during training
(for example small values) and it can be used even in the case when the data is
non-normalized.

3 Image Processing of Leaves

3.1 Image Collection and Processing

To undertake this work, we collected a number of images of cassava plant leaves
manifesting the different diseases by shadowing experts from the Ugandan National
Crop Resources Research Institute (NaCRRI), the body in Uganda responsible for
cassavadisease research, during a country-wide annual survey. Images of 3264×2448



Prototype-Based Classification for Image Analysis … 333

(a) Healthy (b) CMD (c) CBB (d) CBSD (e) CGM

Fig. 1 Sample images associated with the five (5) classes of the classification problem

resolutionwere taken using amobile phonewith an 8MP camera. These imageswere
cropped down to an average size of 500× 500 pixels, and then annotated by experts
from NaCRRI, who assigned disease classes to the images together with a score of
severity. Figure 1 shows examples of cassava leaf images collected and used in this
study. For this work, we selected 150 healthy leaf images, 121 leaf images infested
with CMD, 98 leaf images infested with CBB, 111 images of crops infested with
CBSD and 91 images of crops infested with CGM.

3.2 Feature Processing and Extraction

Different crop diseases manifest differently on the leaves of a cassava plant. Some
deform the leaf and decolorize it, some put patches on the leaf, while others manifest
as small colored marks on the leaf. Images taken for this work were with noisy
backgrounds as depicted in Fig. 1. Three types of features were extracted from the
images representing color, shape and oriented gradient features.

In our previous work [2], we extracted color features as a normalized histogram of
hues of pixels for each leaf. Shape features were extracted using Speeded Up Robust
Features (SURF) and Scale Invariant Feature Transformation (SIFT) techniques that
obtain interest point descriptors from the images. We observed that color and shape
features were very informative of presence and absence of disease. In this work, we
used an opensource MatlabTM image feature extraction toolbox [6] that standard-
izes the process of feature extraction. It also provides a more consistent method of
obtaining a representative vector per image for a particular feature using a bag-of-
words approach.

Extracting Color Features: For each of the images we extract color names. Color
names [7, 8] are linguistic labels that humans assign to colors; they represent the
color an ordinary human being would assign to an image. These tend to provide
a more consistent representation of color than histograms of hue pixels and also
provide a more natural fit to the way expert diagnosis is done in the fields presently.

Using the toolbox, each image is described in the form of regions or patches
of multiple sizes. These are converted to color names and histograms are calcu-
lated from overlapping patches on the image. A bag-of-words plus spatial pyramid
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pipeline is then applied to obtain a vector of features representing each image. The
bag-of-words pipeline as described in the toolbox basically works as follows; using
a random sampling of the extracted features from various patches, learn a dictionary
using k-means, and apply locality-constrained linear coding (LLC) [9] to soft-encode
each patch to some dictionary entries. Then applymax poolingwith a spatial pyramid
[10] to obtain the final feature vector.

Extracting SIFT Features: We also extract SIFT features [11] to represent shape
information in the images. For each image a set of scale-invariant feature vectors
corresponding to a set grid of histograms around each key point location on the leaf
image are extracted. Different diseases transform the surface of the leaf differently
and these differences can be captured by SIFT features. In our previous work [2] we
have shown good performance with SIFT features for representing shape distortions
in leaf images. With this toolbox, SIFT descriptors are extracted from patches of
multiple sizes from each image converted to grayscale and a bag-of-words approach
as described for the color features is applied to obtain representative SIFT feature
vectors for each of the images.

Extracting HOG Features: HOG represents Histograms of Oriented Gradient fea-
tures. HOG features define edge and gradient based descriptors that have been shown
to be very successful for object recognition particularly human objects [12]. To obtain
HOG features, an image is decomposed into small squared cells and a normalized
histogram of oriented gradients is computed for each cell. For this case we extract
HOG descriptors on a grid of 2 × 2 cells and concatenate them to obtain a descriptor
for each grid location. As before, a bag-of-words plus spatial pyramid pipeline is
applied to obtain the final vector representation for each image.

We observe that extraction of SIFT and HOG features is expensive particularly
for usage with this specific application on a mobile device. However, we investigate
these features here in a bid to understand what levels of accuracy we can theoretically
get with these features and how that relates to more inexpensive features like color.

4 Experiments and Results

This section describes the various experiments we undertook applying the different
algorithms to the different data representations of the leaf images.

4.1 Experimental Set-Up

Three LVQ-based algorithms were considered: GLVQ, GMLVQ and DLVQ. In our
experiments, we average accuracy scores over 25 validation runs of the algorithms
with different initializations of the prototypes. In each run we use 10 % of the
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data for testing. GLVQ and GMLVQ were implemented using a publicly available
toolbox.2 The distancemeasure used for these algorithmswas Euclidean distance and
optimization of the algorithms was done using batch gradient descent with heuristic
step size adaptation following [13].

For DLVQ we employed stochastic gradient descent with a uniform learning rate
throughout the training as described in [3] in greater detail. We obtained the best
learning rate of 1e−7 through experimenting with different learning rates, and results
were averaged over 25 runs of the algorithm.

For completeness, we also applied standard algorithms: Naïve Bayes, Support
Vector Machine (SVM) with a Radial Basis Kernel and K-Nearest Neighbor (KNN)
with k = 15. For this we used the scikit-learn toolbox3 which has standard imple-
mentations of several machine learning algorithms. For other parameters, we used
the defaults from the toolbox.

4.2 Results

We applied these algorithms to the three feature representations of the dataset: color,
SIFT and HOG. As a further exploratory experiment we concatenated the three
datasets and applied the algorithms again to this concatenated dataset. The idea
here was to get some understanding of the effect of manipulating different feature
representations on the performance of the classifiers.

Table 1 shows results of our experiments. It shows percentage true positive rates of
the three LVQ-based classifiers and the other standard classifiers for the different fea-
ture representations and the concatenated feature set. For the LVQ-based classifiers,
the table indicates comparable performance amongst the three feature representa-
tions. Different feature representations seem to have a slight bias towards a particular
algorithm, for example color features offer best performance with GMLVQ and SIFT
features with GLVQ. Overall GMLVQ seems to give the best performance across the
different feature representations, albeit the difference in performance being slight.

When we consider the non LVQ-based algorithms, we observe comparable per-
formance overall when compared with the LVQ-based algorithms. For the color
features however, we observe a marked improvement in performance with the SVM
algorithm. From our exploratory experiments with the concatenated features set, we
observe significant improvement in performance for all algorithms.

To further investigate what configuration of feature representation, algorithm and
disease category works best for practical implementation, we analyzed the class-
wise performance of the different LVQ-algorithms. Table 2 shows detailed results
of the class-wise performance of the different algorithms. The numbers in the table
represent percentage true positive rates in classifying the different classes/diseases.
We observe again some reliance of the performance on the class and the type of

2http://www.cs.rug.nl/~biehl/gmlvq.html.
3http://scikit-learn.org/.

http://www.cs.rug.nl/~biehl/gmlvq.html
http://scikit-learn.org/
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Table 1 Overall true positive rates (%) for different algorithms applied to the different leaf image
representations

GLVQ GMLVQ DLVQ Naïve
Bayes

SVM k-NN

Color 80 82 80 85 91 80

HOG 82 85 79 82 83 76

SIFT 86 82 85 85 79 80

Combined
dataset

88 95 100 100 100 100

Standard deviation on GLVQ and GMLVQ are approx. 1%, for DLVQ, 4% and for Naïve Bayes,
SVM and KNN 1%

Table 2 Classification true positive rates (%) for the different feature representations categorized
by disease

Color SIFT HOG

GLVQ GMLVQ DLVQ GLVQ GMLVQ DLVQ GLVQ GMLVQ DLVQ

Healthy 100 98 100 100 99 100 93 100 90

CMD 86 91 83 83 80 77 73 88 71

CBB 29 68 61 79 72 79 82 74 78

CBSD 72 93 65 83 71 85 81 73 79

CGM 96 90 85 84 80 81 84 87 80

Highlighted numbers show which feature set gives the highest true positive rate for detection of a
particular disease. Scores generally have a rounded off standard deviation of 1%

feature representation of the data for example for CMD and CGM diseases, results
indicate greater performance with color feature representations for all algorithms
while for other diseases there is even a finer reliance on the type of feature and the
type of algorithm.

For practical implementation, the color feature representation still appears to be
the most appealing. For this particular problem of diagnosing diseases, we were
also interested in understanding what kind of misclassifications occur amongst the
diseases. For the color representation we further investigated the two LVQ-based
algorithms that were run under exactly the same configuration of parameters; GLVQ
and GMLVQ. Table 3 depicts corresponding confusion matrices obtained from our
experimentation.

From these two confusion matrices, we observe a pattern of miss-classification
between two sets of diseases: CMD and CBSD, and CBB and CGM. It appears
for these pairs of diseases, the algorithms are challenged in properly discriminating
them. Some implications of this are that prototypes of CMD and CBSD are closer to
each other compared to prototypes of CBB and CGMwhich also appear to be closer
to each other.
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Table 3 Confusion matrices showing class-wise performance results of applying GLVQ and
GMLVQ algorithms on the color feature representation dataset

Predictions

Healthy CMD CBB CBSD CGM

(a) GLVQ

Healthy 100 0 0 0 0

CMD 0 86.0 0 13.2 0

CBB 0.5 7.5 28.7 1.3 62.2

CBSD 1.1 26.9 0 71.54 0.46

CGM 0 0 4.2 0 95.8

(b) GMLVQ

Healthy 99.7 0.3 0 0 0

CMD 0 90.9 0 9.1 0

CBB 0.5 0 68.3 0 31.5

CBSD 0.3 6.6 0.5 92.6 0

CGM 0 0 10.2 0 89.5

5 Discussion

In this paper, we have presented a practical application of prototype based algorithms
based on LVQ to the problem of predicting the state of health of a cassava plant based
on images of the plant’s leaves. The goal was to explore different combinations of
types of algorithms, image feature representations and diseases and obtain an optimal
configuration for deployment of this solution to a mobile device. A sub-goal was also
to understandwhich features to extract from the leaf images that aremost informative
about the state of disease of the plant.

We investigated color, SIFT and HOG features and applied these to a bank of
LVQ-based and non LVQ-based algorithms. Overall, we observe from Table 1 that
non LVQ-based algorithms seem to provide comparable performance to LVQ-based
algorithms. Particularly we observe SVM offering the best performance for the color
feature representation of the images. We note however that from a practical point of
view, the advantages gained from applying LVQ-based algorithms may out weight
the difference in performance.

Considering the LVQ-based algorithms, Table 1 shows comparable performance
for the three feature representations for the three algorithms. We also observe supe-
rior performance of all algorithms for the concatenated feature set, however this is
highly infeasible given our deployment constraints. Of the other three feature rep-
resentations, technically it is less costly to extract color features which would make
this the choice for practical implementation. Table 2 offers some extra evidence to
support this analysis particularly for CMD and CGM diseases which observably, are
best classified with color feature representations for all three algorithms.
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An interesting result, evident in the confusion matrices in Table 3 is the corre-
lation in the misclassifications between specific pairs of diseases; CMD and CBSD
and between CBB and CGM. This is consistent even across different algorithms.
One plausible explanation for this result is that these pairs of diseases have similar
manifestations on the leaf. Another explanation which is informed from empirical
analysis is that in several plants infection can be from a combination of multiple
diseases. This is a possible future extension of this work; identifying co-infection in
plants.

The overall advantage of using LVQ based algorithms in the practical applica-
tion of classification techniques in low computational power equipment like mobile
phones is the simplicity of scaling the learned algorithm to a live system. This work
generates the necessary understanding of the plausible configurations of features,
algorithms and disease categories that can form an optimal solution for deployment.
A particular advantage with our analysis is that in areas where one disease is sus-
pected or has a high prevalence, we can bias the algorithm to favor certain feature
representations that are most accurate for that particular disease. The understanding
generated from this research makes this a plausible option for deployment.
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Low-Rank Kernel Space Representations
in Prototype Learning

Kerstin Bunte, Marika Kaden and Frank-Michael Schleif

Abstract In supervised learning feature vectors are often implicitly mapped to a
high-dimensional space using the kernel trick with quadratic costs for the learning
algorithm. The recently proposed random Fourier features provide an explicit map-
ping such that classical algorithms with often linear complexity can be applied. Yet,
the random Fourier feature approach remains widely complex techniques which are
difficult to interpret. UsingMatrix Relevance Learning the linear mapping of the data
for a better class separation can be learned by adapting a parametric Euclidean dis-
tance. Further, a low-rank representation of the input data can be obtained. We apply
this technique to random Fourier feature encoded data to obtain a discriminative
mapping of the kernel space. This explicit approach is compared with a differen-
tiable kernel vector quantizer on the same but implicit kernel representation. Using
multiple benchmark problems, we demonstrate that a parametric distance on a RBF
encoding yields to better classification results and permits access to interpretable
prediction models with visualization abilities.

1 Introduction

Given the increasing amount of large and high-dimensional data sets require a variety
of scientific disciplines or application domains and efficient methods for dimension
reduction. The feature selection play an essential role in modern data processing.

Besides unsupervised approaches using variants of Principal Component Analy-
sis [23], embedding techniques [17] or random projection strategies [21], supervised
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feature reduction approaches like Recursive Feature Elimination [34] where found
to be very efficient in preserving prediction accuracy while reducing the model com-
plexity. However, these approaches are widely black boxes, i. e. direct conclusions
to the original input data are limited. A very promising alternative is provided by
so called Relevance Learning approaches [6, 12]. These techniques identify the so
called relevant input features with respect to a constrained optimization problem,
like a supervised learning task. The idea is to adapt the weights of a parametric dis-
tance, like the weighted Euclidean distance, during learning such that e. g. the class
separation is maximized. In Matrix Relevance Learning (MRL, [27]) this concept
was extended to a parametric Euclidean distance, which additionally identify the
classification correlations between the features. Standard relevance learning is linear
because only the individual input features are weighted whereas for MRL also cor-
relations are considered, leading to quadratic complexity, but with very good results
in a variety of applications [2, 7, 19, 28, 30, 32].

Limited Rank Matrix Approximation (LiRaM) [8] is a random subspace projec-
tion technique where the data are mapped from a originally M dimensional space to
m dimensions, with m � M . LiRaM was formerly mainly considered for standard
Euclidean feature representations. In this paper we consider a representation of an
explicit kernel feature space, where the data are mapped into a high-dimensional fea-
ture space using random Fourier features (RFF). As usual the kernel mapping aims
at linear separability of the classes but also makes the approach difficult to interpret.
Using LiRaM with its parametric distance learning, we not only make this approach
more flexible but are able to obtain interpretable low-rank data representations. An
alternative to this explicit strategy is the use of prototype learning with differen-
tiable kernels, called Generalized Learning Vector Quantization with differentiable
Kernels (DK-GLVQ, [31]). In the experiments we will use an advanced DK-GLVQ
approach [31] where the parameters of the differentiable kernel are optimized during
learning as given in Sect. 1.4. This approach is denoted by DK-GMLVQ. The DK-
GLVQ can be considered as an implicit strategy where the kernel representation is
obtained by a differentiable kernel mapping, as detailed in the following. Combining
prototype based classifications with linear low-dimensional representations of the
distance parameters provides interpretable models especially for high-dimensional
data. For DK-GMLVQ the learned distance parametrization can be interpreted easily
with respect to the original input data. In this paper we analyze the classical Euclid-
ean LiRaM, LiRaM with RFF features and DK-GLVQ with a radial basis function
(RBF) kernel for low-rank distance matrices. The RBF kernel was chosen due to its
flexibility in modeling non-linear separable data. In this paper we show that LiRaM
can be effectively kernelized using the proposed approach and that DK-GMLVQ
and LiRaM with RFF features permit the low-dimensional inspection of a kernel-
ized data representation from different perspectives. This can be helpful to identify
outliers or to get a better understanding of misclassifications given the data can be
reasonable embedded into a low-dimensional space. We illustrate these approaches
for two benchmark data sets with a rather small number of dimensions and multiple
high-dimensional real life data sets taken from the life science domain.
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1.1 Limited Rank Matrix Relevance Learning

Dissimilarity based methods play a most important role in, both, unsupervised and
supervisedmachine learning analysis of complicated data sets, see [5] for an overview
and further references. In the context of classification problems, Learning Vector
Quantization (LVQ) [10, 15, 16, 25] constitutes a particularly intuitive and suc-
cessful family of algorithms. In LVQ, classes are represented by prototypes which
are determined from example data. The prototypes are defined in the original feature
space. Together with a suitable dissimilarity or distance measure the prototypes para-
metrize the classifier, frequently according to a Nearest Prototype scheme. Further
references also reflecting the impressive variety of application domains in which
LVQ has been employed successfully [13, 24].

A key issue in LVQ and other distance based techniques is the choice of an
appropriate distance measure. Pre-defined distance measures are, frequently, sensi-
tive to re-scaling of single features or more general linear transformations of the data.
Therefore, the Euclidean distance is not always the best choice.

An elegant framework has been developed which can circumvent this difficulty:
In so-called Relevance Learning schemes, only the functional form of the distance
is fixed, while a set of parameters is determined in the training process [6]. Similar
ideas have been formulated for other distance based classifiers, see e. g. [33] for an
example in the context of Nearest Neighbor classifiers [9].

A generalized quadratic distance is parametrized by a matrix in Matrix Relevance
Learning (GMLVQ, [27]) which is summarized in the following:

GMLVQ employs a distance measure given by the quadratic form

d(�y, �z) = (�y − �z)� Λ(�y − �z) for �y, �z ∈ R
M . (1)

It is required to fulfill the basic conditions d(�y, �y) = 0 and d(�y, �z) = d(�z, �y) > 0 for
all �y, �z with �y �= �z. These are conveniently satisfied by assuming the parametrization
Λ = ΩΩ�, i.e.

d(�y, �z) = (�y − �z)� ΩΩ� (�y − �z) = [
Ω� (�y − �z)]2 = dΩ(�y, �z) (2)

Hence, Ω ∈ R
M×m defines a linear mapping of data and prototypes to a space, in

which standard Euclidean distance is applied.
Note that for a meaningful classification and for the LVQ training it is sufficient

to assume that Λ is positive semi-definite; the transformation need not be invertible
and could even be represented by a rectangular matrix∈ R

M×m [8] withm < M . The
quadratic complexity of Relevance Matrix Learning is due to the squared number
of matrix parameters in Ω for m ≡ M which are adapted during learning. Here we
show how Λ can be approximated by restricting Ω to a rectangular matrix M × m
with m � M , which is basically the idea used in LiRaM [8].
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1.2 Limited Rank Matrix Approximation

For the first approach (LiRaM) Ω is defined as a rectangular M × m matrix, without
imposing any symmetry or other constraints on its structure. The elements of Ω can
be varied independently. For instance, the derivative of the distance measure with
respect to an arbitrary element of Ω is ∂d(�y,�z)

∂Ωkl
= 2(yk −zk)

[
Ω�(�y−�z)]l or in matrix

notation:
∂d(�y, �z)

∂Ω
= = 2 (�y − �z) (�y − �z)� Ω. (3)

Initially Ω can be chosen to be a random matrix with entries drawn from a normal
distribution.Wewill use random Fourier features to provide an implicit kernelization
of the LiRaM approach.

1.3 Random Fourier Features

Random Fourier features as introduced in [1], projects the data points onto a ran-
domly chosen line, and then pass the resulting scalar through a sinusoid. The random
lines are drawn from a distribution so as to guarantee that the inner product of two
transformed points approximates the desired shift-invariant kernel. The motivation
for this approach is given by Bochners theorem:

Theorem 1 A continuous kernel k(�x, �y) = k(�x − �y) onRd is positive definite if and
only if k(δ) is the Fourier transform of a non-negative measure.

If the kernel k(δ) is properly scaled, Bochners theorem guarantees that its Fourier
transform p(ω) is a proper probability distribution. The idea in [1] is to approximate
the kernel as

k(�x − �y) =
∫
Rd

p(ω)e jω�
(�x − �y)dω

with some extra normalizations and simplifications one can sample the features
for k using the mapping zω(�x) = [cos(�x) sin(�x)]�. In [1] a proof is given for
the uniform convergence of Fourier features to the kernel k(�x − �y). To gener-
ate the random Fourier features one eventually needs a kernel matrix k(�x, �y) =
k(�x − �y) and a random feature map z(�x) : Rd → R

2D s.t. z(�x)�z(�y) ≈ k(�x − �y).
One draws D i.i.d. samples {ω1 . . . , ωD} ∈ R

d from p(ω) and generates z(�x) =√
1/D[cos(ω�

1 �x) . . . cos(ω�
D �x) sin(ω�

1 �x) . . . sin(ω�
D �x)]�

This formulation leads to an explicit mapping of an input vector into a high-
dimensional features space of the RFF features. The obtained feature representation
canbe fed intoLiRaMleading to an implicit kernelization ofLiRaM.Accordingly, the
Ω matrix is defined on this rather high-dimensional feature mapping with M = D.
In the following we analyze the usage of this implicit kernelization of LiRaM with
an explicit one using differentiable kernels.
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1.4 Matrix Relevance Learning in Kernelized Vector
Quantization

A further idea to integrate the kernel concept into prototype learning is to use dif-
ferentiable kernels [31], referred to as DK-GLVQ. Thereby, the distance measure
d(�v, �w) in a prototype learner is replaced by the distance measure deduced from the
kernel κ(�v, �w);

dκ(�v, �w) =
√

κ(�v, �v) − 2 κ(�v, �w) + κ( �w, �w) (4)

For symmetric and positive semi-definite kernels κ , dκ is only a semi-metric, but if
the kernel is positive definite, dκ(�v, �w) becomes a metric and it yields:

dκ(�v, �w) = ||�(�v) − �( �w)||H . H indicating a functional Hilbert space (5)

Now, we further assume that the kernel κ(�v, �w) is differentiable with respect to the
prototype parameter �w. In this case one obtains:

∂d2
κ (�v, �w)

∂ �w = κ( �w, �w)

∂ �w − 2
κ(�v, �w)

∂ �w
which can immediately be plugged into gradient based prototype adaptation, replac-
ing any other metric. According to [31] the DK-GLVQ provide the same topological
richness like other kernelized classifiers like the SVM if the applied kernel is univer-
sal. One of the most famous and well-known examples of universal positive kernels
is the Gaussian kernel

Γκ(�v, �w) = exp

(
−

( �v − �w√
2σ

)2
)

(6)

with the width σ > 0. This kernel is differentiable and can be used in the former

context. The term
(

�v − �w√
2σ

)2
is a scaled quadratic Euclidean distance. It turns out that

the induced distance remains a metric if this term is replaced by any other quadratic
metric [20]. Hence one can combine the idea of matrix learning discussed in the
former section with differentiable kernels. In particular one can consider the kernel

Γκ(�v, �w,Ω) = exp (−dΩ(�v, �w)) (7)

with an arbitrary matrix Ω ∈ R
M×m , i.e. the data and the prototypes are mapped

into theRm and afterwards the quadratic Euclidean norm is calculated. The resulting
derivative for a prototype update is obtained as: ∂Γκ (�v, �w,Ω)

∂ �w = Γκ(�v, �w,Ω) · 2Ω(�v −
�w). Further the metric parameters can be updated by using the respective deriva-
tive: ∂Γκ (�v, �w,Ω)

∂Ω[i, j] = −2Γκ(�v, �w,Ω) · [Ω(�v − �w)]i [�v − �w] j . A more detailed deriva-
tion including an implementation within a prototype learning framework can be
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found in [14]. If the matrix Ω is rectangular with m < M inherent regularization
and discriminative visualization into a lower dimensional space comes possible sim-
ilar as with LiRaM. Further, the matrix Λ can be interpreted as a correlation matrix
determining the correlations between the data dimensions, which are useful for clas-
sification [27]. Even for M = m the algorithm shows inherent regularization because
the Ω-adjustments can be related to class dependent principal component analysis,
such that the learned matrices tend to be generated by the class eigenvectors [3, 4].

2 Experiments

In the experiments we analyze LiRaM with random Fourier features and the differ-
entiable kernelized (Generalized) Learning Vector Quantization (DK-GMLVQ). For
both approaches we use a RBF-kernel for the feature encoding.1 The prototype posi-
tions are updated using the cost function of LiRaM or DK-GMLVQ, respectively.We
expect that the RBF encoding improves the discrimination power of the underlying
classifier, hence LiRaM should lead to higher test accuracies by implicitly using the
RBF kernel instead of being restricted on a standard parametrized Euclidean dis-
tance. The prediction accuracy is expected to be similar to the one of DK-GMLVQ
on the same kernel mapping. The approaches differ in the way how feature vectors
can be inspected in the discriminative visualization and also in the computational
costs.

For LiRaM with random Fourier features the data points and prototypes are rep-
resented in a rather high-dimensional (e.g. 300 dimensional) feature space, spanned
by the random Fourier feature induced explicit RBF-kernel expansion. For the DK-
GMLVQ the data points and prototypes still live in the original feature space of
the input data and are implicitly mapped into the RBF-kernel space during learning
using the kernel trick for distances [29] as shown before. Using m < M we can
obtain discriminative visualizations for both approaches as shown in Fig. 1. If m is
larger than 2 a discriminative visualization can not directly be shown, but one can
use e.g. t-SNE [18] from the already reduced discriminative m dimensional space.

First, we consider a checkerboard of size 3 × 3 with consecutive labeling 0/1
(see Fig. 2). This data set is not linear separable. Using a classical Euclidean distance
measure in LiRaM and only one prototype per class the obtained classificationmodel
provides around 65% percent prediction accuracy. If we consider a projection of the
checkerboard data using the learned Ω matrix learned with LiRaM we see that the
classes are overlapping (see Fig. 3 left). However, by using a RFF feature encoding
the data become linear separable which can be shown in the respective projection
using the learned Ω matrix. As shown in Fig. 3 (right) LiRaM was capable to find a
discriminative two dimensional projection also in the rather high-dimensional RFF
feature space. For the RFF encoded checkerboard data the reconstructed RBF kernel

1The random Fourier features are generated such that the respective RBF kernel is approximated.
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Fig. 1 Two dimensional plot obtained by mapping the points of DS1 using the learnedΩ matrix of
DK-GMLVQwithRBFkernel (left) andLiRaMwith randomFourier features (right). If themapping
dimension m > 2 we additionally applied t-SNE. Varying (colors) shades indicate different classes.
Axes labeling is arbitrary due to the combination of the provided features
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Fig. 2 Left checkerboard data set with the two classes � and ◦; Right simulated data set (SIM)
with the two classes ◦ and � illustrating the flag of palau
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Fig. 3 Left checkerboard data mapped by the learning Ω matrix using Euclidean distance; Right
checkerboard data mapped by using a RFF feature encoding

has roughly an intrinsic dimensionality of 13 by analyzing the eigenvalue spectrum.
Moreover, the classification accuracy reaches almost 100% for this model. For the
DK-GMLVQ approach the accuracy is comparable using an implicit mapping in
the RBF space. The projection based on the DK-GMLVQ Ω matrix is however
not helpful because it can only provide a linear mapping from 2D to 2D, which is
often insufficient to get a linear separation.2 However for the classification model the

2Note that all vectors in DK-GMLVQ still live in the same D-dimensional space.
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implicit RBF space is available, such that the accuracy of DK-GMLVQ is as good
as the one of LiRaM with RFF encoding.

Nextwe considermultiple benchmark data sets as listed below.Due to the assump-
tion that the features are independent, all data sets have been normalized by z-score,
i. e. the data vectors are normalized to get zeromean value and a standard deviation of
one for each input dimension Experiments where done with a 5-fold cross validation
and parameters have been identified on an independent test set (first fold). We used
the same σ parameters of the RBF kernel for both approaches. For LiRaM with RFF
features we have chosen 300 features. We always used one prototype per class. The
following data sets has been considered (pts—number of data points, dim—number
of features, ncl—number of classes):

• (DS1) NGS metagenomics data sets (7905 pts, 136 dim, 21 ncl (slightly imbal-
anced)) [11]

• (DS2) Thyroid data set (2991 pts, 60 dim, 2 ncl) [22]
• (DS3) Bowel cancer mass spectra (95 pts, 1408 dim, 2 ncl) [26]
• (DS4) Breast cancer (263 pts, 9 dim, 2 ncl) [22]
• (DS5) Pima Indians diabetis (768 pts, 8 dim, 2 ncl) [22]
• (DS6) Heart disease (statlog) (270 pts, 13 dim, 2 ncl) [22]
• (DS7) Segmentation data set (2310 pts, 19 dim, 7 ncl) [22]
• SIM—a simulated data set, with points distributed in 2D along a ring enclosed by
a rectangle as shown in Fig. 2 (right)

The prediction results of the cross validation are reported in Table1. In our exper-
iments we found that LiRaM with random Fourier features could not be effectively
used with m = 2. This is directly caused by the RFF encoding, which indeed leads
to an intrinsically more high-dimensional data representation. In fact m had to be
chosen ≥5 to be competitive to the other methods on the training data. On the other
hand for DK-GMLVQ the parameterm could be chosen to bem = 2without having a
negative effect on the prediction accuracy. We found that a larger m for DK-GMLVQ
only improved the training accuracy but had in general no negative impact on the
test set. This can potentially be explained by remembering that the prototypes of

Table 1 Test set accuracy (% ± std) of the various data sets

LiRaM (euclidean) LiRaM (RFF) DK-GMLVQ (RBF)

DS1 98.4 ± 0.4 (10) 98.6 ± 0.5 (100) 89.2 ± 1.1 (2)

DS2 84.1 ± 0.7 (2) 84.2 ± 1.3 (100) 73.5 ± 4.0 (2)

DS3 90.5 ± 6.9 (10) 82.1 ± 6.0 (100) 97.7 ± 2.9 (2)

DS4 70.4 ± 2.2 (2) 74.5 ± 5.8 (5) 78.8 ± 3.1 (2)

DS5 76.6 ± 4.2 (2) 70.7 ± 2.3 (5) 78.9 ± 2.9 (2)

DS6 83.7 ± 3.6 (2) 85.2 ± 5.4 (100) 87.0 ± 7.1 (2)

DS7 88.6 ± 2.6 (5) 90.0 ± 3.5 (15) 88.3 ± 3.6 (2)

SIM 67.3 ± 2.4 (2) 100.0 ± 0.0 (2) 100.0 ± 0.0 (2)

Mapping dimension m in brackets
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DK-GMLVQ as well as the Ω matrix are still in the original, rather low-dimensional
data space.

From the experimental results shown in Table1 we see that the RBF kernel or RFF
encoding is not always helpful. For many data sets LiRaM (with Euclidean distance)
is already very effective. For the simulated data,which are not linear separable,we see
a clear effect. Accordingly the implicit kernelization of LiRaMcan be useful for some
data sets. Overall the RBF/RFF encoding does in general not reduce the prediction
accuracy (with the exception of DS3), but is often beneficial and as expected most
helpful if the data require a non-linear decision function.

Both approaches permit the inspection of a high-dimensional data space contain-
ing the data and the prototypes. For LiRaM-RFF the data space is the expanded RBF
kernel space whereas for DK-GMLVQ we still have the original data space but the
metric and prototype adaptationwas substantially influenced by the usedRBF kernel.
For DS1 and DS3 we show plots of the Λ matrix and the corresponding relevance
profile (main diagonal of the Λ matrix) in Figs. 4 and 5. For DS1 one can clearly
see the highlighting of individual features by large relevance values in Fig. 5 and
correlations to other features in Fig. 4 (left).

If one is interested in better understanding the RBF space one should therefore
focus on the (approximated) LiRaM visualizations. If the focus is more on under-
standing the original data the DK-GMLVQvisualization will be preferable. The RBF
encoding shouldmake the data linear separable in the high-dimensional feature space.
This is in fact often visible in the obtained low-dimensional plots (see Figs. 6 and 3).
For DK-GMLVQ the data still life in the original space and themappingΩ is adapted
to reflect this linear separation. For the simulation data in two dimensions the linear
mapping is obviously not able to separate the data, whereas for data with a higher
number of given input features it may still be possible to find a linear separation from
the mapping. On the other hand LiRaM-RFF works naturally in a high-dimensional
space and hence also for the intrinsically two dimensional simulation data set it can
provide a (new) two dimensional mapping separating the original data, by exploring
the RFF (RBF) feature space. It may however not always be possible to obtain a reli-
able low-dimensional embedding from LiRaM (RFF) due to the more complicated
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Fig. 4 Classification correlation Λ matrix of DK-GMLVQ with RBF kernel for DS1 and DS3.
For DS1, the features 87 and 114 seem to be important for class separation and they are also
(negative-) correlated to the other features (dark blue-negative correlated). For the DS3 no feature
is significantly highlighted in the matrix Λ



350 K. Bunte et al.

feature

0 20 40 60 80 100 120 140

di
ag

(Λ
)

0

0.05

0.1

0.15

Fig. 5 Relevance profile of DK-GMLVQ with RBF kernel for DS1. Like in Fig. 4, the features 87
and 114 are weighted high, which indicate a high relevance for class separation
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Fig. 6 Two dimensional plot obtained by mapping the points of DS3 using the learned Ω matrix
of DK-GMLVQ with RBF kernel (left) and LiRaM with random Fourier features (right). If the
mapping dimension m > 2 we additionally applied t-SNE. Axes labeling is arbitrary due to the
combination of the provided features

high-dimensional feature space, also complicating the matrix learning. In these cases
the mapping dimension m of the learned matrix has to be kept asm > 2 which makes
a direct inspection impossible. As a simple solution we decided to apply t-SNE as
a second embedding strategy, in later work it would be interesting to see if this can
be avoided by an improved regularization scheme within LiRaM. Within these con-
straints the visualizations of LiRaM (RFF) and DK-GMLVQ are helpful to identify
overlapping regions in the data space causing misclassifications of unsafe decisions.
Especially for classification problems with more than two classes the embeddings
help to identify the reasons for these misclassification in more detail than with e.g.
a fusion matrix only. Within an interactive framework (as part of future work) it
would be possible to analyze different visualizations of the kernelized encoding by
modifying the kernel parameter or the originally provided input features.3

3Often the RBF encoding is considered as a silver bullet, but if it fails a controlled inspection
framework can be very useful.
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3 Conclusions

We have shown a way to kernelize the Limited Rank Matrix Learning using RFF
features and compared it with DK-GMLVQ using a RBF kernel. We found that the
RFF encoding typically leads to a more complicated data representation such that
(very) low-dimensional representation with LiRaM is often not directly available.
The RFF encoding will often lead to an intrinsically higher dimensional data space
(beside the high-dimensional RFF feature space) such that direct low-dimensional
embeddings can lead to substantial performance degradation. However it is possible
to obtain a discriminative projection into a substantially lower dimensional space
e.g. with 5 dimensions which subsequently can be processed by classical embedding
techniques with good performance. Another possibility would be to calculate the full
RBF kernel (gram matrix) and map it to an Euclidean embedding, which however
would be much more costly then using LiRaM-RFF. For the simulated data set it was
shown that LiRaM has the potential to identify two or three dimensional embeddings
from the kernel space also in cases where DK-GMLVQ fails.

For some data sets the RFF or RBF encoding is beneficial in contrast to the
standard Euclidean distance, providing non-linear decision boundaries. We found
that DK-GMLVQ is less sensitive to the RBF encoding and still allows for m = 2
and low-dimensional visualizations with good quality given the input feature space
is sufficiently expressive.

For DK-GMLVQ the prototypes are still in the original (rather low-dimensional)
data space and one may consider this as a regularization, whereas for LiRaM-RFF
such a regularization is not available and the learning of the Ω matrix is more
complicated.

In conclusion: one may still prefer DK-GMLVQ as a prototype model to obtain
low-dimensional mappings of kernelized data representations as long as LiRaM can
not be sufficiently well regularized.
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Dynamic Prototype Addition in Generalized
Learning Vector Quantization

Jonathon Climer and Michael J. Mendenhall

Abstract Learning Vector Quantization (LVQ) is a powerful supervised learning
method for classification that uses a network of prototype vectors to form a deci-
sion surface. Generalization theory shows there is a non-trivial number of prototype
vectors that yield the best generalization. Although it is typical to assign the same
number of prototype vectors for each class, other LVQ methods add prototypes
dynamically (incrementally) during training. This work offers an extension to the
existing dynamic LVQs that minimizes the cost function of Generalized LVQ by
focusing on the set of misclassified samples. This cost minimization occurs between
the largest cost-contributing class and its nearest “confuser class”. A comparison is
made between other prototype insertion methods and compares their classification
performance, the number of prototype resources required to obtain that accuracy,
and the impact on the cost function.

Keywords Dynamic/incremental learning vector quantization · Large margin
classifier · Cost minimization

1 Introduction

The family of LearningVector Quantization (LVQ) [1]methods are supervised learn-
ers for statistical pattern recognition. They belong to a class of simple competitive
learners and have gained popularity due to their efficiency, ease of implementa-
tion, and clear interpretability during training and classification. These algorithms
are capable of classifying very high dimensional data and are applied in a variety
of fields including machine vision [2, 3], analysis of medical imagery [4], and the
classification of hyperspectral data [5].
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LVQs use representative “prototype” or “code-book” vectors whose positions
in the data space are updated during rounds of “learning”. Multiple prototypes
per class are typically used in order to achieve accurate classifications. However,
Crammer et. al. [6] shows that the generalization error of LVQ-based classifiers (that
lead to a “winner-takes-all” classification) are a function of the number of prototype
vectors used. Since the goal of any classifier is to generalize the decision surface, it
follows that toomany prototypes can lead to over-fitting and that there is a non-trivial
number of prototypes among the classes for a given problem.

Solutions that do not make a-priori assumptions on the prototype distribution
between classes add them dynamically or incrementally as part of the learning process
(hereinafter dynamic). This concept is supported by [2, 3, 7, 8], based on LVQ2,
LVQ3, GRLVQ, and GLVQ respectively. This paper considers a prototype insertion
strategy to Generalized LVQ (GLVQ) that minimizes the cost function directly. Our
method, in some cases, shows faster convergence due to larger accuracy gains early
in the training process, and in some cases requires fewer prototype vectors than other
methods in the same class [2, 3, 7, 8].

2 Learning Vector Quantization (LVQ) Background

2.1 LVQ Taxonomy

The taxonomy of LVQ is represented as three phases: competition, winner selection,
and synaptic adaptation. Each LVQ defines the set of prototype vectors it allows
to compete, commonly selecting one or more from the set of “in-class” proto-
types (belonging to the same class as the input sample x), “out-of-class” prototypes
(belonging to any class other than that of the input sample x), or a “net” prototype
(chosen from all prototype vectors, regardless of class label). A winning prototype
is one that results in the minimum distortion between it and the current sample.
When using Euclidean distance as the distortion measure, the winner wi represents
the prototype from the set of competitors, closest to x . (Frequently in LVQ, a second
competition selects one more winning prototype, w j .) After winner selection, many
LVQs impose additional conditions in order to apply updates to the prototypes based
upon the influence of x , such as windowing functions [9]. Where the additional con-
ditions are satisfied, the authors in [10] show the synaptic adaptation rule for LVQ
algorithms can be generalized as:

wi ← wi − α
∂S

∂wi
; w j ← w j − α

∂S

∂w j
, (1)

where α is the (potentially time varying) learn rate and S is the cost function. The
completion (or termination) of these three phases for a sample x constitutes one
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training step. This process is then repeated for all training samples {x1, x2, . . . , xN }
to constitute one epoch (where N is the total number of training samples).

2.2 Dynamic LVQ Ancestry

After the introduction of LVQ in [1], several variants have arisen to better estimate
the decision surface and overcome divergence and long-term stability challenges [9].
Poirier [7] introduced a new method based on Kohonen’s LVQ2 to dynamically
add prototype vectors as needed to better represent the class distributions and form
better decision surfaces. Later works built dynamic LVQ (DLVQ) methods based on
LVQ2.1 [11], LVQ3 [8, 12], GLVQ [2], and Relevance GLVQ (GRLVQ) [13]. Of
these, the GLVQ variants appear to offer the strongest performance due to their use
of a cost function that guides synaptic adaptation. Consequently, GLVQ forms the
basis of the methods described in this paper. Following the taxonomy in Sect. 2.1,
the competition and winner selection phase of GLVQ uses both the nearest in-class
and nearest out-of-class prototypes (wi and w j respectively). Instead of explicitly
restricting winner selection by a window about the midpoint between wi and w j ,
GLVQ implicitly does this [5, 10] by employing the cost [10]:

S =
N∑

n=1

f (μ (xn)) , μ (x) = d j − di

d j + di
, (2)

where N is the number of training samples and di and d j are squared Euclidean
distances between the input sample xn and the prototype vectors wi and w j , respec-
tively. Consistent with [10], f (μ) is is the sigmoid function 1/

(
1 + e−μ

)
. When

∂S/∂wi and ∂S/∂w j are substituted into Eq. (1), the resulting synaptic adaptation
equations minimize the cost function via gradient descent [10]:

wi ← wi − α
∂ f

∂μ

d j(
d j + di

)2 [x − wi ] ; w j ← w j + α
∂ f

∂μ

di(
d j + di

)2 [
x − w j

]
.

(3)

2.3 LVQ Taxonomy Addition: Network Structure
Modification

In order to characterize the addition and/or deletion of prototype vectors in DLVQs,
a new element is incorporated into the standard LVQ taxonomy. Network structure
modification (NSM) captures the second dynamic and adaptive component that
distinguishes DLVQs from its ancestors. This part of the taxonomy is responsible
for identifying which class receives the new prototype and its initial location in the
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data space. While this paper does not exhaustively explore all DLVQ NSMmethods
in the literature, several are used in our comparative analysis.

Mean: In Zell et al. [14], new prototypes are initialized as the mean of the mis-
classified samples and is done so across all classes. Although [14] adds, a prototype
to each class, we insert a single prototype in the class with the largest classification
error.

Closest:Kirsten et al. [3] insert newprototypes into classeswhere the classification
rate exceeds a threshold. This enables the addition of several prototypes at once. New
prototypes are placed near class boundaries by initializing them at the same position
as the misclassified sample closest to an out-of-class prototype vector. In our use
of this method, we insert a single prototype in order to normalize the comparison
between insertion methods.

Sampling Cost: Losing et al. [2] represents the latest in DLVQs and has the same
overarching goal described in this paper. That is, they desire to minimize the cost
function directly in order to maximize the classification accuracy. Conceptually,
this is achieved by selecting a random subset of the training samples (e.g., a fixed
percentage) as candidate positions for the insertion of a new prototype. One-by-one,
candidate positions are tested by calculating the total cost among the subset after the
candidate has been added. The position (and class label) of the candidate resulting
in the lowest total cost is chosen as the initialization of the new prototype.

Principal Components (PC): Stefano et al. [8] tracks the number of times in-
class and out-of-class prototypes are referenced in order to calculate a split metric
for each prototype. Prototypes with split metrics exceeding a threshold are split by
replacing the current prototype with two new prototypes placed equidistant from the
original along the principal component (eigenvector) direction of the target class’s
misclassified samples. The distance along the principal component axis is a function
of the associated variance (eigenvalue for the corresponding eigenvector).

2.4 Two Proposed NSM Methods

Our Near-Mean method is similar to the Mean method in [14], but restricts the new
prototype to the misclassified sample with the smallest Euclidean Distance to the
mean of the misclassified samples. By assuming a “known valid” position closest
to the average, we reduce the potential of poorly interpolating the initialization of
the new prototype in a sparse area that may represent irregularities in the class
distribution, or even represent another class.

Our Misclassified Cost method seeks to minimize the cost function directly by
focusing on misclassified samples. Conceptually, our method accumulates the cost
contribution from each misclassified sample according to Eq. 2 in a confusion matrix
according to “true class” and “nearest class”. The two classes whose interaction
results in the highest total cost define the pool of candidate locations for the new
prototype: specifically, their misclassified samples. Each of the candidate solutions
are tested and the one with the lowest cost per Eq. 2 is chosen.
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2.5 Qualitative Comparison of NSM Methods

The presented NSM methods vary in how they try to improve the configuration of
the LVQ network in hopes of improving classification accuracy and generalization.
The Misclassified Cost, Mean, Near-Mean, and Closest methods utilize the set of
misclassified training samples to select a recipient class for a new prototype, restrict-
ing prototype placement to the class with largest classification error. The Sampling
Cost and PC methods select a candidate location globally (across all samples) where
Sampling Cost selects from a random subset of the training data. PC relies upon
misclassified data from each training sample to compute its split metric and assess
prototype utilization.

The methods also vary in candidate locations for the new prototype and the
resource burden associated with it. Sampling Cost and Misclassified Cost both per-
form direct minimization of the cost function. Sampling Cost compares placement at
Ñ potential locations calculating the cost over all Ñ training samples (in our imple-
mentation, Ñ = N/10). Misclassified Cost calculates the cost over all misclassified
samples and once the two classes from the most expensive two-class boundary are
identified, candidate locations are evaluated only over the misclassified samples for
those two classes. Misclassified Cost down selects candidate positions in a way that
offers a reduction in total operations. As classification accuracy improves, NSM
using the misclassified samples as the candidate locations will reduce in compu-
tational complexity as the pool (typically) reduces over continued training. This is
in contrast to Sampling Cost where the number of samples evaluated as candidate
locations remains fixed.

In both costmotivatedmethods, aswell asClosest andNear-Mean, newprototypes
are initialized in positions of known training samples. However, Mean and PC allow
the initialized position to be anywhere. This less restrictive initialization may be
beneficial, however, it may also lead to formation of prototypes in sparse (or poorly
defined) regions of the pdf. Additionally, the necessary computations can be complex.
In the case of Mean, it is simply the average location of the misclassified samples
within the class. PC however, requires the additional computation of the covariance
matrix and its eigenvectors and eigenvalues.

3 Experimental Process and Results

The NSM methods are compared within the framework of a dynamic GLVQ over
three data sets: the Mice Protein Expression data set [15], the USPS Handwritten
image data set [16], and theLunarCraterVolcanic Field hyperspectral data set [17]. In
order to promote a fair comparison of NSMmethods and allow networks to converge,
we restrict the potential for NSM to occur after a fixed number of epochs, allowing
at most one new prototype per fixed interval. Consequently, the Closest and Mean
methods add a prototype (when appropriate) to the classwith the largest classification
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error. Training and testing partitions for each data set are preserved between NSM
methods, and prototypes in each are initialized to the same values. Additionally, the
number of samples used in Sampling Cost is restricted to 10% of the training set,
selected randomly.

3.1 Data Sets and Experiment Setup

The Mice Protein Expression data set [15] reports protein expression levels in the
brains of eight classes of mice with varying biology and treatments. While the report
sought to identify individual proteins linked to learning and Down Syndrome [18], it
presents an interesting classification problem. Due to empty fields in the data, 71 of
77 features are selected for 1047 samples. K -Fold cross-validation with K = 5 [19]
is used to train and validate classification performance. For consistency in training,
the protein expression features are linearly scaled on [0, 1]. A learn rate of α = 0.005
is used and prototype insertion occurs after 100 epochs.

The USPS Handwritten data set [16] has 9,298 samples where each sample is
a 16 × 16 pixel scan of a handwritten digit {0, 1, . . . , 9}. Each 16 × 16 scan is
“linearized” creating a vector with 256 features and each feature is linearly scaled on
[0, 1]. K -fold cross-validation is used with K = 5 to train and validate performance.
An α = 0.1 is used and prototype insertion occurs after 150 epochs.

TheLunarCraterVolcanic Field (LCVF) hyperspectral data set [17] contains 1464
samples drawn from35 classes, eachwith 194 spectral dimensions. As recommended
in [20], each feature vector is normalizedwith its �2-norm to compensate for the effect
of shadowing due to sensor geometry. Due to the sparsity of several classes, K -fold
cross-validation is used with K = 3. The learn rate is α = 0.00001 and prototype
insertion occurs after 100 epochs.

3.2 Results and Discussion

This section introduces the graphs and tables used to draw specific discussion on
each data set in Sects. 3.3, 3.4, and 3.5 for the Mice, USPS, and LCVF data sets
respectively. The classification and cost-minimization performance on the three data
sets previously described is shown in Figs. 1 and 2. They show the performance
of PC, Sampling Cost, Misclassified Cost, Mean, and Closest. In order to improve
readability of the figures, Near-Mean is omitted. For a baseline, GLVQ as described
in [10] is used and is initialized with themaximum number of prototypes listed on the
plots. Table1 shows the training andnumber of prototypes required to exceedbaseline
GLVQ accuracy. Locations with a ‘–’ identify NSM methods that did not meet the
baseline performance. The strongest overall performers with the peak classification
accuracy of each NSMmethod is listed in Table2. These numbers are reported along
with the total cost and required number of prototypes for the reported configurations.
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3.3 Mice Protein Expression Results

As shown in Fig. 1 (left, top), all NSMmethods surpass the classification accuracy of
the baseline GLVQ and do so with fewer prototypes. Table1 shows that the Misclas-
sified Cost and Near-Mean are the first to reach this benchmark, utilizing the fewest
prototypes (31 for each method). Misclassified Cost appears to dominate classifica-
tion accuracy until approximately epoch 1200 and the insertion of the 36th prototype.
From Fig. 1 (left, top) and seen in Table2, beyond 1200 epochs PC offers the highest
accuracy of 89.11% with Misclassified Cost and Near-Mean finishing at 88.06%.
Table2 further shows that PC achieves the highest cost, matching that of the baseline
GLVQ.

The cost performance of the NSM methods is closely related to classification
accuracy as is shown in Fig. 1 (left, bottom). This result is anticipated due to the
formulation of GLVQ as a gradient descent algorithm.While all of the NSMmethods
show decreasing cost, PC shows the largest reduction followed by Sampling Cost. It
is interesting to note that Misclassified Cost achieves higher classification accuracy
even though several other NSM methods have lower cost curves. This difference
is likely due to the fact that Misclassified Cost targets cost reduction by evaluating
only misclassified samples for the placement of new prototypes. Addressing those
misclassifications early on has the potential to strongly shape classification accuracy.
Table2 further shows that eachmethod requires nearly the same number of prototype
vectors to achieve their top accuracy, and that no clear trend exists between peak
accuracy and associated cost.

3.4 USPS Handwritten Results and Discussion

Figure1 (right, top) shows that Misclassified Cost has superior classification perfor-
mance for the first 1500 epochs. Beyond 1500 epochs, the classification accuracy
achieved by PC surpasses the other NSM method. In comparing the two direct cost
minimization methods, the classification accuracy of Sampling Cost surpasses that
of Misclassified Cost between 1500 and 7500 epoch. After 7500 epochs, the accu-
racy of Misclassified Cost is slightly better. Unlike the Mice Protein Expression data
set, the baseline GLVQ performs on par or better than many of the NSM methods
evaluated. This is further supported in Table1 where we see that PC and Misclassi-
fied Cost are the only NSM methods that meet or exceed GLVQ for the USPS data
set. The baseline GLVQ’s strong performance might be attributed to the training time
it enjoys with the full number of prototypes and that the number of prototypes used
adequately represents the classification complexity of the data set. It is also possible
that a non-dynamic GLVQ method is appropriate for relatively simple and “well
balanced” classes (each class with approximately the same number of samples).

The two NSMmethods that directly minimize cost offer some of the best classifi-
cation performance. It interesting that PC’s focus on the principal variance direction
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of the misclassified samples has the effect of indirectly minimizing the cost func-
tion yet leads to the lowest overall cost curve and highest classification accuracy as
seen in Fig. 1 (right, bottom) and Table2 respectively. The contextual information
from clustering the misclassified samples with PC coupled with the “split metric”
seems to provide superior initial prototype placement. Table2 again shows that peak
classification accuracy is achieved with approximately the same number of proto-
types (Sampling Cost doing slightly better), and that the costs associated with those
accuracies shows no clear trend.

3.5 LCVF Results and Discussion

Misclassified Cost offers very strong classification (Fig. 2 (top)) for the first half
of the results (until approx epoch 1400), which is consistent with the Mice and
USPS results. In Table1, onlyPC achieves the baseline classification accuracy before
Misclassified Cost with any noticeable lead. Up to 1200 epochs, Misclassified Cost
also offers the strongest cost reduction as shown in Fig. 2 (bottom). After epoch 1400,
the NSMmethods (with exception of PC and Boundary) seem to converge, resulting
in maximum classification accuracies in the range of 94.84–94.98% (a difference
of 0.14%), which is also seen in Table2. While the convergent result in the second
half of Fig. 2 (top and bottom) may not be surprising due to the small sample size
and disparate number of elements per class in the LCVF data set, PC does seem
to offer marked performance gains, peaking at 95.57% and resulting in the second
lowest total cost. We see that Sampling Cost obtains a slightly lower cost than PC.
Table2 shows that widely varying numbers of prototypes are associated with the
peak accuracies achieved by different NSM methods, while again there is no clear
trend in resulting costs.

4 Summary

In this paper we promote the dynamic addition of prototype vectors to achieve supe-
rior performance and efficiency for GLVQ. We introduce the concept of network
structure modification (NSM) into the standard LVQ taxonomy to describe individ-
ual methods for dynamic addition/deletion of prototypes within the network. This
paper presents two newNSMmethods,Misclassified Cost andNear-Mean, to achieve
improved classification accuracy. The former explicitly minimizes the cost function
by placing prototypes in way that minimizes the cost due to misclassified samples.
Near-Mean selects the misclassified sample nearest the mean of the misclassified
samples from the class with the largest classification error.

Several NSM methods are evaluated based on training time and prototypes
required to meet a baseline classification performance of GLVQ. We find over-
whelming evidence of improved classification accuracy with fewer prototype when
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considering a DGLVQ. We also find that over all three data sets, Misclassified Cost
is consistently one of the better performing methods based on classification accu-
racy at the earliest opportunity. This fast convergence with fewer prototypes is a
benefit in terms of overall performance and may support a reduced generalization
error [6]. Faster convergence coupled with Misclassified Cost’s diminishing compu-
tational complexity as training continues could be beneficial in real-time continuous
learning applications.

We examine the trends of NSMmethods as prototype networks expand and reach
their peak performance configurations. Overall, we see strong classification accuracy
from methods that effectively control cost, with some of the best performance from
methods that minimize the cost directly. While Sampling Cost offers good classi-
fication and cost minimization performance by selecting candidate positions from
randomly selected samples, Misclassified Cost offers promise as an alternative, with
better classification accuracy shown for all data sets (including a full 2% gain in the
Mice Protein Expression data).

While we anticipated a clear distinct advantage of direct cost minimization NSM
methods, PC indirectly minimizes cost and consistently results in the best accuracy
and cost performance. Our adaptation and implementation of the PC method to
dynamically add prototypes in GLVQ showed the best results across all data sets.
PC’s use of the misclassified sample variance allowed for a more informed prototype
placement. This suggests future work related to cluster metrics to aid prototype
placement is warranted. Using the same cluster metrics could improve prototype
initialization, to include the number per class and their specific locations, which may
result in improved accuracy and cost minimization performance, while reducing
training requirements.
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