Advances in Intelligent Systems and Computing 428

Erzsébet Merényi

Michael J. Mendenhall
Patrick O'Driscoll Editors

Advances in
Self-Organizing
. Maps and
Learning Vector
Quantization

Proceedings of the 11th International
Workshop WSOM 2016, Houston,
Texas, USA, January 6-8, 2016

@ Springer

Advances in Intelligent Systems and Computing

Volume 428

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk @ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil @isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani @essex.ac.uk

Laszlo T. Kéczy, Széchenyi Istvan University, Gy6r, Hungary
e-mail: koczy @sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik @utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin @hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang @mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Erzsébet Merényi - Michael J. Mendenhall
Patrick O’Driscoll
Editors

Advances in Self-Organizing
Maps and Learning Vector
Quantization

Proceedings of the 11th International
Workshop WSOM 2016, Houston,
Texas, USA, January 6—8, 2016

@ Springer

Editors

Erzsébet Merényi Patrick O’Driscoll
Department of Statistics Applied Physics
Rice University Rice University
Houston, TX Houston, TX
USA USA

Michael J. Mendenhall

Department of Electrical and Computer
Engineering

Air Force Institute of Technology

Wright-Patterson AFB, OH

USA

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing

ISBN 978-3-319-28517-7 ISBN 978-3-319-28518-4 (eBook)

DOI 10.1007/978-3-319-28518-4
Library of Congress Control Number: 2015959923

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This book contains the refereed contributions presented at the 11th Workshop on
Self-Organizing Maps (WSOM 2016) held at Rice University, Houston, Texas
(USA) during January 6-8, 2016. It brings together more than 90 researchers and
practitioners from 15 countries in the field of self-organizing systems for data
analysis, with a particular emphasis on self-organizing maps (SOMs) and learning
vector quantization (LVQ). The book highlights key advances in these and closely
related fields. WSOM 2016 is the 11th in a series of biennial international con-
ferences started with WSOM’97 in Helsinki.

We would like to extend our thanks and gratitude to Prof. Teuvo Kohonen for
serving as Honorary Chair of WSOM 2016. We are indebted to the WSOM
Steering and Executive Committees for guidance and advice. We greatly appreciate
the time, thoughtfulness, and participation of the WSOM 2016 plenary speakers:
Prof. Marrie Cottrell (Université Paris 1 Panthéon-Sorbonne, France), Prof. Pablo
Estévez (University of Chile and Millennium Institute of Astrophysics, Chile), and
Prof. Risto Miikkulainen (University of Texas at Austin, USA). We would like to
express our appreciation for all the hard and timely work performed by the Program
Committee and additional reviewers. Above all, we would like to thank all of the
authors whose contributions made this book a reality.

Special thanks to the local organizers (P. Huitron, Y. Adler, J. Taylor, and
J. Vera-Garza, Rice University; J. Climer, Air Force Institute of Technology) for
their participation. Their untiring work and attention to all details of WSOM 2016
has been invaluable. Last but not least, we gratefully acknowledge the Department
of Statistics, Rice University, The School of Engineering, Rice University, and the
Department of Electrical and Computer Engineering, Air Force Institute of
Technology, for their support.

Houston, TX Erzsébet Merényi
January 2016 Michael J. Mendenhall
Patrick O’Driscoll

Contents

Part I Self-Organizing Map Learning, Visualization, and Quality
Assessment

Theoretical and Applied Aspects of the Self-Organizing Maps 3
Marie Cottrell, Madalina Olteanu, Fabrice Rossi
and Nathalie Villa-Vialaneix

Aggregating Self-Organizing Maps with Topology Preservation 27
Jérome Mariette and Nathalie Villa-Vialaneix

ESOM Visualizations for Quality Assessment in Clustering 39
Alfred Ultsch, Martin Behnisch and Jorn Lotsch

SOM Quality Measures: An Efficient Statistical Approach 49
Lutz Hamel

SOM Training Optimization Using Triangle Inequality 61

Denny, William Gozali and Ruli Manurung
Sparse Online Self-Organizing Maps for Large Relational Data 73
Madalina Olteanu and Nathalie Villa-Vialaneix
Part I Clustering and Time Series Analysis with Self-Organizing
Maps and Neural Gas

A Neural Gas Based Approximate Spectral Clustering Ensemble 85
Yaser Moazzen and Kadim Tasdemir

Reliable Clustering Quality Estimation from Low to High
Dimensional Data 95
Jean-Charles Lamirel

Segment Growing Neural Gas for Nonlinear Time Series Analysis 107
Jorge R. Vergara, Pablo A. Estévez and Alvaro Serrano

vii

http://dx.doi.org/10.1007/978-3-319-28518-4_1
http://dx.doi.org/10.1007/978-3-319-28518-4_2
http://dx.doi.org/10.1007/978-3-319-28518-4_3
http://dx.doi.org/10.1007/978-3-319-28518-4_4
http://dx.doi.org/10.1007/978-3-319-28518-4_5
http://dx.doi.org/10.1007/978-3-319-28518-4_6
http://dx.doi.org/10.1007/978-3-319-28518-4_7
http://dx.doi.org/10.1007/978-3-319-28518-4_8
http://dx.doi.org/10.1007/978-3-319-28518-4_8
http://dx.doi.org/10.1007/978-3-319-28518-4_9

viii Contents

Modeling Diversity in Ensembles for Time-Series Prediction
Based on Self-Organizing Maps 119
Rigoberto Fonseca-Delgado and Pilar Gomez-Gil

Part III Applications in Control, Planning, and Dimensionality
Reduction, and Hardware for Self-Organizing Maps

Modular Self-Organizing Control for Linear
and Nonlinear Systems 0., 131
Paulo Henrique Muniz Ferreira and Aluizio Fausto Ribeiro Araujo

On Self-Organizing Map and Rapidly-Exploring Random Graph

in Multi-Goal Planning 143
Jan Faigl

Dimensionality Reduction Hybridizations with Multi-dimensional

Scaling 155
Oliver Kramer

A Scalable Flexible SOM NoC-Based Hardware Architecture 165

Mehdi Abadi, Slavisa Jovanovic, Khaled Ben Khalifa, Serge Weber
and Mohamed Hédi Bedoui

Local Models for Learning Inverse Kinematics of Redundant Robots:
A Performance Comparison 177
Humberto I. Fontinele, Davyd B. Melo and Guilherme A. Barreto

Part IV Self-Organizing Maps in Neuroscience and Medical
Applications

Using SOMs to Gain Insight into Human Language Processing. 191
Risto Miikkulainen

Prototype-Based Spatio-Temporal Probabilistic Modelling

offMRIData 193
Nahed Alowadi, Yuan Shen and Peter Tino
LVQ and SVM Classification of FDG-PET Brain Data. 205

Deborah Mudali, Michael Biehl, Klaus L. Leenders
and Jos B. T. M. Roerdink

Mutual Connectivity Analysis (MCA) for Nonlinear Functional

Connectivity Network Recovery in the Human Brain

Using Convergent Cross-Mapping and Non-metric Clustering 217
Axel Wismiiller, Anas Z. Abidin, Adora M. DSouza

and Mahesh B. Nagarajan

http://dx.doi.org/10.1007/978-3-319-28518-4_10
http://dx.doi.org/10.1007/978-3-319-28518-4_10
http://dx.doi.org/10.1007/978-3-319-28518-4_11
http://dx.doi.org/10.1007/978-3-319-28518-4_11
http://dx.doi.org/10.1007/978-3-319-28518-4_12
http://dx.doi.org/10.1007/978-3-319-28518-4_12
http://dx.doi.org/10.1007/978-3-319-28518-4_13
http://dx.doi.org/10.1007/978-3-319-28518-4_13
http://dx.doi.org/10.1007/978-3-319-28518-4_14
http://dx.doi.org/10.1007/978-3-319-28518-4_15
http://dx.doi.org/10.1007/978-3-319-28518-4_15
http://dx.doi.org/10.1007/978-3-319-28518-4_16
http://dx.doi.org/10.1007/978-3-319-28518-4_17
http://dx.doi.org/10.1007/978-3-319-28518-4_17
http://dx.doi.org/10.1007/978-3-319-28518-4_18
http://dx.doi.org/10.1007/978-3-319-28518-4_19
http://dx.doi.org/10.1007/978-3-319-28518-4_19
http://dx.doi.org/10.1007/978-3-319-28518-4_19

Contents ix

SOM and LVQ Classification of Endovascular Surgeons
Using Motion-Based Metrics 227
Benjamin D. Kramer, Dylan P. Losey and Marcia K. O’Malley

Visualization and Practical Use of Clinical Survey Medical

Examination Results, ... 239
Masaaki Ohkita, Heizo Tokutaka, Nobuhiko Kasezawa

and Eikou Gonda

The Effect of SOM Size and Similarity Measure on Identification

of Functional and Anatomical Regions in fMRI Data 251
Patrick O’Driscoll, Erzsébet Merényi, Christof Karmonik

and Robert Grossman

Part V Learning Vector Quantization Theories
and Applications I

Big Data Era Challenges and Opportunities in Astronomy—How
SOM/LVQ and Related Learning Methods Can Contribute? 267
Pablo A. Estévez

Self-Adjusting Reject Options in Prototype Based Classification 269
T. Villmann, M. Kaden, A. Bohnsack, J.-M. Villmann, T. Drogies,
S. Saralajew and B. Hammer

Optimization of Statistical Evaluation Measures for Classification

by Median Learning Vector Quantization 281
D. Nebel and T. Villmann
Complex Variants of GLVQ Based on Wirtinger’s Calculus 293

Matthias Gay, Marika Kaden, Michael Biehl, Alexander Lampe
and Thomas Villmann

A Study on GMLVQ Convex and Non-convex Regularization. 305
David Nova and Pablo A. Estévez

Part VI Learning Vector Quantization Theories
and Applications II

Functional Representation of Prototypes in LVQ and Relevance
Learning. e 317
Friedrich Melchert, Udo Seiffert and Michael Biehl

Prototype-Based Classification for Image Analysis and Its Application
to Crop Disease Diagnosis 329
Ernest Mwebaze and Michael Biehl

Low-Rank Kernel Space Representations in Prototype Learning. 341
Kerstin Bunte, Marika Kaden and Frank-Michael Schleif

http://dx.doi.org/10.1007/978-3-319-28518-4_20
http://dx.doi.org/10.1007/978-3-319-28518-4_20
http://dx.doi.org/10.1007/978-3-319-28518-4_21
http://dx.doi.org/10.1007/978-3-319-28518-4_21
http://dx.doi.org/10.1007/978-3-319-28518-4_22
http://dx.doi.org/10.1007/978-3-319-28518-4_22
http://dx.doi.org/10.1007/978-3-319-28518-4_23
http://dx.doi.org/10.1007/978-3-319-28518-4_23
http://dx.doi.org/10.1007/978-3-319-28518-4_24
http://dx.doi.org/10.1007/978-3-319-28518-4_25
http://dx.doi.org/10.1007/978-3-319-28518-4_25
http://dx.doi.org/10.1007/978-3-319-28518-4_26
http://dx.doi.org/10.1007/978-3-319-28518-4_27
http://dx.doi.org/10.1007/978-3-319-28518-4_28
http://dx.doi.org/10.1007/978-3-319-28518-4_28
http://dx.doi.org/10.1007/978-3-319-28518-4_29
http://dx.doi.org/10.1007/978-3-319-28518-4_29
http://dx.doi.org/10.1007/978-3-319-28518-4_30

X Contents

Dynamic Prototype Addition in Generalized Learning Vector
Quantization 355
Jonathon Climer and Michael J. Mendenhall

Author Index e 369

http://dx.doi.org/10.1007/978-3-319-28518-4_31
http://dx.doi.org/10.1007/978-3-319-28518-4_31

Organization

WSOM 2016 was held during January 6-8, 2016 at Rice University, Houston,
Texas. The conference was organized by faculty, staff, and students in the
Department of Statistics, Rice University, Houston, Texas and in the Department of
Electrical and Computer Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio.

Executive Committee

Honorary Chair:
Teuvo Kohonen, Academy of Finland, Finland

General Chair:
Erzsébet Merényi, Rice University, Houston, Texas (United States)

Publication Co-Chair:
Michael J. Mendenhall, Air Force Institute of Technology, Wright-Patterson AFB,
Ohio (United States)

Local Chair:
Patrick O’Driscoll, Rice University, Houston, Texas (United States)

Steering Committee

Teuvo Kohonen, Academy of Finland, Finland

Marie Cottrell, Université Paris 1, Panthedn-Sorbonne, France
Pablo Estévez, University of Chile, Chile

Timo Honkela, Aalto University, Finland

Thomas Martinetz, University of Liibeck, Germany

xi

Xii Organization

Michel Verleysen, Université¢ Catholique de Louvain, Belgium
Thomas Villmann, University of Applied Sciences Mittweida, Germany

Program Committee

Guilherme Barreto
Michael Biehl
Yoonsuck Choe
Marie Cottrell
Pablo Estévez

Jan Faigl

Barbara Hammer
Marika Kaden
Markus Koskela
John Lee

Paulo Lisboa
Thomas Martinetz
Risto Miikkulainen
Erkki Oja
Madalina Oltenau
Jaakko Peltonen
Gilbert Peterson
Andreas Rauber
Helge Ritter
Fabrice Rossi
Frank-Michael Schleif
Udo Seiffert
Sambu Seo
Kadim Tagdemir
Peter Tino

Alfred Ultsch
Marc van Hulle
Michel Verleysen
Nathalie Villa-Vialaneix
Thomas Villmann
Axel Wismiiller
Hujun Yin

Organization

Additional Reviewers

Anas Abidin

Ajalmar Régo Da Rocha
Adora D’Souza

Jens Hocke

Amir Madany

José Everardo B. Maia
Luis Gustavo Mota Souza
Amouri Holanda Souza Jr.

Sponsoring Institutions

e Brown School of Engineering
Rice University, Houston, Texas (United States)
e Department of Statistics
Rice University, Houston, Texas (United States)
e Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Ohio (United States)
e Human Signatures Branch
711 Human Performance Wing
Wright-Patterson AFB, Ohio (United States)

Xiii

Part 1
Self-Organizing Map Learning,
Visualization, and Quality Assessment

Theoretical and Applied Aspects
of the Self-Organizing Maps

Marie Cottrell, Madalina Olteanu, Fabrice Rossi
and Nathalie Villa-Vialaneix

Abstract The Self-Organizing Map (SOM) is widely used, easy to implement, has
nice properties for data mining by providing both clustering and visual representation.
It acts as an extension of the k-means algorithm that preserves as much as possible
the topological structure of the data. However, since its conception, the mathematical
study of the SOM remains difficult and has be done only in very special cases. In
WSOM 2005, Jean-Claude Fort presented the state of the art, the main remaining
difficulties and the mathematical tools that can be used to obtain theoretical results
on the SOM outcomes. These tools are mainly Markov chains, the theory of Ordinary
Differential Equations, the theory of stability, etc. This article presents theoretical
advances made since then. In addition, it reviews some of the many SOM algorithm
variants which were defined to overcome the theoretical difficulties and/or adapt the
algorithm to the processing of complex data such as time series, missing values in
the data, nominal data, textual data, etc.

Keywords SOM - Batch SOM - Relational SOM - Stability of SOM

1 Brief History of the SOM

Since its introduction by T. Kohonen in his seminal 1982 articles ([33, 34]), the
self-organizing map (SOM) algorithm has encountered a very large success. This
is due to its very simple definition, to the easiness of its practical development, to

M. Cottrell (<) - M. Olteanu - F. Rossi

SAMM - Université Paris 1 Panthéon-Sorbonne, 90, rue de Tolbiac,
75013 Paris, France

e-mail: marie.cottrell @univ-paris1.fr

M. Olteanu
e-mail: madalina.olteanu @univ-paris1.fr

F. Rossi
e-mail: fabrice.rossi@univ-paris1.fr

N. Villa-Vialaneix ()
INRA, UR 0875 MIAT, BP 52627, 31326 Castanet Tolosan, France
e-mail: nathalie.villa@toulouse.inra.fr

© Springer International Publishing Switzerland 2016 3
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_1

4 M. Cottrell et al.

its clustering properties as well as its visualization ability. SOM appears to be a
generalization of basic clustering algorithms and at the same time, provides nice
visualization of multidimensional data.

The basic version of SOM is an on-line stochastic process which has been inspired
by neuro-biological learning paradigms. Such paradigms had previously been used
to model some sensory or cognitive processes where the learning is directed by the
experience and the external inputs without supervision. For example, [49] illustrate
the somatosensory mapping property of SOM. However, quickly in the eighties, SOM
was not restricted to neuro-biology modeling and has been used in a huge number
of applications (see e.g. [31, 46] for surveys), in very diverse fields as economy,
sociology, text mining, process monitoring, etc.

Since then, several extensions of the algorithms have been proposed. For instance,
for users who are not familiar with stochastic processes or for industrial applications,
the variability of the equilibrium state was seen as a drawback because the learnt
map is not always the same from one run to another. To address this issue, T. Koho-
nen introduces the batch SOM, ([37, 39]) which is deterministic and thus leads to
reproducible results (for a given initialization). Also, the initial SOM (on-line or
batch versions) was designed for real-valued multidimensional data, and it has been
necessary to adapt its definition in order to deal with complex non vectorial data such
as categorical data, abstract data, documents, similarity or dissimilarity indexes, as
introduced in [30, 32, 35]. One can find in [36, 37, 40-42] extensive lists of refer-
ences related to SOM. At this moment more than 10 000 papers have been published
on SOM or using SOM.

In this paper, we review a large selection of the numerous variants of the SOM. One
of the main focus of this survey is the question of convergence of the SOM algorithms,
viewed as stochastic processes. This departs significantly from the classical learning
theory setting. In this setting, exemplified by the pioneering results of [48], one
generally assumes given an optimization problem whose solution is interesting: for
instance, an optimal solution of the quantization problem associated to the k-means
quality criterion. The optimization problem is studied with two points of view: the true
problem which involves a mathematical expectation with respect to the (unknown)
data distribution and its empirical counterpart where the expectation is approximated
by an average on a finite sample. Then the question of convergence (or consistency)
is whether the solution obtained on the finite sample converges to the true solution
that would be obtained by solving the true problem.

We focus on a quite different problem. A specific stochastic algorithm such as
the SOM one defines a series of intermediate configurations (or solutions). Does
the series converge to something interesting? More precisely, as the algorithm maps
the inputs (the data) to an output (the prototypes and their array), one can take this
output as the result of the learning process and may ask the following questions,
among others:

e How to be sure that the learning is over?
e Do the prototypes extract a pertinent information from the data set?

Theoretical and Applied Aspects of the Self-Organizing Maps 5

e Are the results stables?
e Are the prototypes well organized?

In fact, many of these questions are without a complete answer, but in the fol-
lowing, we review parts of the questions for which theoretical results are known and
summarize the main remaining difficulties. Section 2 is devoted to the definition of
SOM for numerical data and to the presentation of the general methods used for
studying the algorithm. Some theoretical results are described in the next sections:
Sect. 3 explains the one dimensional case while in Sect. 4, the results available for the
multi-dimensional case are presented. The batch SOM is studied in Sect. 5. In Sect. 6,
we present the variants proposed by Heskes to get an energy function associated to
the algorithm. Section7 is dedicated to non numerical data. Finally, in Sect.8, we
focus on the use of the stochasticity of SOM to improve the interpretation of the
maps. The article ends with a very short and provisional conclusion.

2 SOM for Numerical Data

Originally, (in [33, 34]), the SOM algorithm was defined for vector numerical data
which belong to a subset X of an Euclidean space (typically R”). Many results in
this paper additionnaly require that the subset is bounded and convex. There are two
different settings from the theoretical point of view:

e continuous setting: the input space X’ can be modeled by a probability distribution
defined by a density function f;

e discrete setting: the data space X comprises N data points xy, ..., xy in R? (In
this paper, by discrete setting, we mean a finite subset of the input space).

The theoretical properties are not exactly the same in both cases, so we shall later
have to separate these two settings.

2.1 Classical On-line SOM, Continuous or Discrete Setting

In this section, let us consider that X C R? (continuous or discrete setting).

First we specify aregular lattice of K units (generally in a one- or two-dimensional
array). Then on the set I = {1, ..., K}, a neighborhood structure is induced by a
neighborhood function 4 defined on K x K. This function can be time dependent
and, in this case, it will be denoted by A (¢). Usually, & is symmetrical and depends
only on the distance between units k£ and / on the lattice (denoted by dist(k, /) in the
following)). It is common to set Ay, = 1 and to have ki, decrease with increasing
distance between k and /. A very common choice is the step function, with value 1
if the distance between k and [is less than a specific radius (this radius can decrease
with time), and O otherwise. Another very classical choice is

6 M. Cottrell et al.

i 2
hu(6) = exp (_%) ,
where o%(¢) can decrease over time to reduce the intensity and the scope of the
neighborhood relations.

A prototype my € R is attached to each unit k of the lattice. Prototypes are also
called models, weight vectors, code-vectors, codebook vectors, centroids, etc. The
goal of the SOM algorithm is to update these prototypes according to the presentation
of the inputs in such a way that they represent the input space as accurately as
possible (in a quantization point of view) while preserving the topology of the data
by matching the regular lattice with the data structure. For each prototype my, the set
of inputs closer to my than to any other one defines a cluster (also called a Voronoi1
cell) in the input space, denoted by Cy, and the neighborhood structure on the lattice
induces a neighborhood structure on the clusters. In other words, after running the
SOM process, close inputs should belong to the same cluster (as in any clustering
algorithm) or to neighbor clusters.

From any initial values of the prototypes, (m(0), ..., mg(0)), the SOM algo-
rithm iterates the following steps:

1. Attime ¢, if m(¢) = (m(t), ..., mg(¢)) denotes the current state of the proto-
types, a data point x is drawn according to the density f in X (continuous setting)
or at random in the finite set X (discrete setting).

2. Then ¢’ (x) € {1, ..., K} is determined as the index of the best matching unit,
that is ,

‘ .
¢'(x) = arg_min_|lx =m0, (M

.....

3. Finally, all prototypes are updated via

mp(t + 1) = mp(t) + €(®) hger 0y (1) (x — myi (1)),)

where €(¢) is a learning rate (positive, less than 1, constant or decreasing).

Although this algorithm is very easy to define and to use, its main theoretical prop-
erties remain without complete proofs. Only some partial results are available, despite
a large amount of works and empirical evidences. More precisely, (my(t))k=1....x
are K stochastic processes in R” and when the number ¢ of iterations of the algo-
rithm grows, my (¢) could have different behaviors: oscillation, explosion to infinity,
convergence in distribution to an equilibrium process, convergence in distribution or
almost sure to a finite set of points in R?, etc.

This is the type of convergence that we will discuss in the sequel. In particular,
the following questions will be addressed:

e Is the algorithm convergent in distribution or almost surely, when ¢ tends to +00?
e What happens when € is constant? when it decreases?

o If a limit state exists, is it stable?

e How to characterize the organization?

Theoretical and Applied Aspects of the Self-Organizing Maps 7

One can find in [9, 21] a summary of the main rigorous results with most references
as well as the open problems without solutions until now.

2.2 Mathematical Tools Related to the Convergence
of Stochastic Processes

The main methods that have been used to analyze the SOM convergence are sum-
marized below.

e The Markov Chain theory for constant learning rate and neighboring function,
which is useful to study the convergence and the limit states. If the algorithm
converges in distribution, this limit distribution has to be an invariant measure for
the Markov Chain. If it is possible to prove some strong organization, it has to be
associated to an absorbing class;

e The Ordinary Differential Equation method (ODE), which is a classical method
to study the stochastic processes.

If we write down the Eq. (2) for each k € K in a vector form, we get
m(t +1) =m(t) — ()P (x, m(1)), 3)

where @ is a stochastic term. To study the behavior of such stochastic processes,
it is often useful to study the solutions of the associated deterministic ordinary
differential equation that describes the mean behavior of the process. This ODE is

dm

o —¢(m), “4)

where ¢(m) is the expectation of @ (., m) with respect to the probability distri-
bution of the inputs x (continuous setting) or the arithmetic mean (discrete setting).

Here the kth—component of ¢ is
K
oum) = 3y [= mo fd,)
j=1 Ci
for the continuous setting or

1 K
elm) = = > hig > (ki — i), ©6)
j=1

X,EC/‘

8 M. Cottrell et al.

that can be also written
|
Dem) = = > e (i = ma), (7)
i=1

for the discrete setting.

The possible limit states of the stochastic process in Eq.(2) would have to be
solutions of the equation

b(m) = 0.

Then if the zeros of this function were the minima of a function (most often called
energy function), it would be useful to apply the gradient descent methods.

e The Robbins-Monro algorithm theory which is used when the learning rate
decreases under conditions

D e(t) =400 and D e(t)? < +oo. (8)

t

Unfortunately some remarks explain why the original SOM algorithm is difficult
to study. Firstly, for dimension p > 1, a problem arises: it is not possible to define any
absorbing class which could be an organized state. Secondly, although the process
m(t) can be written down as a classical stochastic process of Eq. (3), one knows since
the papers [15, 16], that it does not correspond to an energy function, that is itis nota
gradient descent algorithm in the continuous setting. Finally, it must be emphasized
that no demonstration takes into account the variation of the neighborhood function.
All the existing results are valid for a fixed size and intensity of the function /.

3 The One-Dimensional Case

A very particular setting is the one-dimensional case: the inputs belong to R and the
lattice is a one-dimensional array (a string). Even though this case is of a poor prac-
tical utility, it is interesting because the theoretical analysis can be fully conducted.

3.1 The Simplest One-Dimensional Case

The simplest case was fully studied in the article [7]. The inputs are supposed to be
uniformly distributed in [0, 1], the lattice is a one-dimensional array {1, 2, ..., K},
the learning rate € is a constant smaller than %, the neighborhood function is a constant
step function hy; = 0if |k — I| > 1 and 1 otherwise. In that case the process m(¢) is a

Theoretical and Applied Aspects of the Self-Organizing Maps 9

| | | | | | |
j—1 7 j+1 5-1 J Jj+1 5—-1 7 J+1 j—-1 J Jj+1

Fig. 1 Four examples of triplets of prototypes (m;_1,m;, mjy1). Foreach j, j — 1 and j + 1 are
its neighbors. The y-axis coordinates are the values of the prototypes that take values in [0, 1]. The
first two triplets on the left are badly ordered. In the case under study, SOM will order them with
a strictly positive probability. The last two triplets (on the right) are well ordered and SOM will
never disorder them

homogeneous Markov Chain with continuous state space. The organization we look
for is simply the ordering (ascending or descending) and so is easy to characterize.
Let us describe the main steps of the proof.

1. There exists a decreasing functional: the number of badly ordered triplets (Fig. 1).
But this is not sufficient to prove the convergence, it has to be strictly decreasing
with a strictly positive probability.

2. The set of ordered dispositions is an absorbing class, composed of two classes
which do not communicate: the increasing sequences class and the decreasing
sequences class.

3. One shows that ordering (topology preservation in this special case) takes place
after a finite time with a probability which is greater than a positive bound, and
that the hitting time of the absorbing class is almost surely finite.

4. Then one shows that the Markov Chain has the Doeblin property: there exists an
integer T, and a constant ¢ > 0, such that, given that the process starts from any
ordered state, and for all set E in [0, 1]", with positive measure, the probability
to enter in E with less than T steps is greater than ¢ vol(E).

5. This implies that the chain converges in distribution to a monotonous stationary
distribution which depends on e (which is a constant in that part).

6. If €(¢) tends towards 0 and satisfies the Robbins-Monro conditions (8), once the
state is ordered, the Markov Chain almost surely converges towards a constant
(monotonous) solution of an explicit linear system.

So in this very simple case, we could prove the convergence to a unique ordered
solution such that

m(+00) < my(+00) < --- < mg(+00),

or
mq(+00) > my(+00) > -+ > mg (+00).

10 M. Cottrell et al.

Fig. 2 This figure represents 2-dimensional prototypes (x and y-axes are not shown but are the
standard horizontal and vertical axes) which are linked as their corresponding unit on the SOM
grid. At this step of the algorithm, the x- and y- coordinates of the prototypes are well ordered. But
contrarily to the one-dimensional case, this disposition can be disordered a with positive probability;
in an 8-neighbors case, A is C’s neighbor, but B is not a neighbor of C. If C is repeatedly the best
matching unit, B is never updated, while A becomes closer and closer to C. Finally, the y coordinate
of A becomes smaller than that of B and the disposition is disordered

Unfortunately, it is not possible to find absorbing classes when the dimension
is larger than 1. For example, in dimension 2, with 8 neighbors, if the x- and y-
coordinates are ordered, it is possible (with positive probability) to disorder the
prototypes as illustrated in Fig. 2.

3.2 What We Know About the General
One-Dimensional Case

We summarize in this section the essential results that apply to the general one
dimension case (with constant neighborhood function and in the continuous setting).
References and precise statements can be found in [9, 21]. Compared to the previous
section, hypothesis on the data distribution and/or the neighborhood function are
relaxed.

e The process m(t) is almost surely convergent to a unique stable equilibrium point
in a very general case: €(¢) is supposed to satisfy the conditions (8), there are
hypotheses on the density f and on the neighborhood function %. Even though
these hypotheses are not very restrictive, some important distributions, such as the
x> or the power distribution, do not fulfill them.

e For a constant ¢, the ordering time is almost surely finite (and has a finite expo-
nential moment).

e With the same hypotheses as before to ensure the existence and uniqueness of a
stable equilibrium x*, from any ordered state, for each constant ¢, there exists an
invariant probability measure €. When e tends to O, this measure concentrates on
the Dirac measure on x*.

Theoretical and Applied Aspects of the Self-Organizing Maps 11

e With the same hypotheses as before to ensure the existence and uniqueness of
a stable equilibrium x*, from any ordered state, the algorithm converges to this
equilibrium provided that e(¢) satisfies the conditions (8).

As the hypotheses are sufficiently general to be satisfied in most cases, one can say
that the one-dimensional case is more or less well-known. However nothing is proved
neither about the choice of a decreasing function for e(¢) to ensure simultaneously
ordering and convergence, nor for the case of decreasing neighborhood function.

4 Multidimensional Case

When the data are p-dimensional, one has to distinguish two cases, the continuous
setting and the discrete one.

4.1 Continuous Setting

In the p-dimensional case, we have only partial results proved by Sadeghi in ([52]).
In this paper, the neighborhood function is supposed to have a finite range, the
learning rate € is a constant, the probability density function is positive on an interval
(this excludes the discrete case). Then the algorithm weakly converges to a unique
probability distribution which depends on .

Nothing is known about the possible topology preservation properties of this
stationary distribution. This is a consequence of the difficulty of defining an absorb-
ing organized state in a multi-dimensional setting. For example, two results of
Flanagan and Fort-Pages illustrate the complexity of the problem. These two appar-
ently contradictory results hold. For p = 2, let us consider the set F** of simulta-
neously ordered coordinates (respectively x and y coordinates). We then have:

e for a constant € and very general hypotheses on the density f, the hitting time of
FTT is finite with a positive probability ([17]),
e but in the 8-neighbor setting, the exit time is also finite with positive probability

([22)).

4.2 Discrete Setting

In this setting, the stochastic process m (¢) of Egs. (2) and (4) derives from a potential
function, which means that it is a gradient descent process associated to the energy.
When the neighborhood function does not depend on time, [50] have proven that the

12 M. Cottrell et al.

stochastic process m(t) of Egs.(2) and (3) derives from a potential, that is it can be
written

mi(t + 1) = mp(t) + €@hpec) (1) (x — my (1)),
= mk(t) - E(t)(pk(x, m(t)),

0
= my(t) — e(t)a—mkE(x, m(1)),

where E (x, m) is a sample function of E(m) with

K K
E(m) = %ZZ/@M > lme = xill, ©)

k=1 j=1 xeC,

or in a shorter expression

N K
1
E(m) = 2 > > el = xill*. (10)

i=1 k=1

In other words the stochastic process m (¢) is a stochastic gradient descent process
associated to function E(m). Three interesting remarks can be made:

1. The energy function is a generalization of the distortion function (or intra classes
variance function) associated to the Simple Competitive Learning process (SCL,
also known as the Vector Quantization Process/Algorithm), which is the stochastic
version of the deterministic Forgy algorithm. The SCL process is nothing else
than the SOM process where the neighborhood function is degenerated, i.e. when
hiy; = 1 only for k = [and hy; = 0 elsewhere. In that case, E reduces to

N
1
E(m) = 52 > Ime) = xil%.
i=1

For that reason, E is called extended intra-classes variance.

2. The above result does not ensure the convergence of the process: in fact the
gradient of the energy function is not continuous and the general hypotheses
used to prove the convergence of the stochastic gradient descent processes are
not valid. This comes from the fact that there are discontinuities when crossing
the boundaries of the clusters associated to the prototypes, because the neighbors
involved in the computation change from a side to another. However this energy
gives an interesting insight on the process behavior.

3. In the O-neighbor setting, the Vector Quantization algorithm converges, since
there is no problem with the neighbors and the gradient is continuous. However
there are a lot of local minima and the algorithm converges to one of these minima.

Theoretical and Applied Aspects of the Self-Organizing Maps 13

5 Deterministic Batch SOM

As the possible limit states of the stochastic process (2) would have to be solutions
of the ODE equation
¢(m) =0,

it is natural to search how to directly get these solutions. The definition of the batch

SOM algorithm can be found in [37, 39].
From Eq. (5), in the continuous setting, the equilibrium m* must satisfy

K
Vk € K, th,/ (x —m?) f(x)dx.
=t 7

Hence, for the continuous setting, the solution complies with

zf:l hij Je, xf (x)dx
S b Jo, fdx

*_
m, =

In the discrete setting, the analogous is

K

2ot g Zx,.ec, Yi SN Bk Xi
X =N

21 hij|Cjl 2 it ke

*
m; =

Thus, the limit prototypes m; have to be the weighted means of all the inputs
which belong to the cluster Cy or to its neighboring clusters. The weights are given
by the neighborhood function /.

Using this remark, it is possible to derive the definition of the batch algorithm.

S [, 5 (dx

m(t+1) = —¢ . (11)
Zj=1 hkj ® fC_;(mk(m fx)dx
for the continuous setting, and
N
1 hker o) (D) x;
mi(t + 1) = —Z’? ket (X (12)
2 it hker (o (D)

for the discrete case.

This algorithm is deterministic, and one of its advantages is that the limit states of
the prototypes depend only on the initial choices. When the neighborhood is reduced
to the unit itself, this batch algorithm for the SOM is nothing else than the classical
Forgy algorithm ([18]) for clustering. Its theoretical basis is solid and a study of the

14 M. Cottrell et al.

Table 1 Comparison summary

On-line stochastic Batch deterministic
No neighbor VQ, SCL, k-means Forgy, moving centers
With neighbors SOM Batch SOM

convergence can be found in [5]. One can prove ([19, 20]) that it is exactly a quasi-
Newtonian algorithm associated to the extended distortion (energy) E (see Eq. (10)),
when the probability to observe a x in the sample which is exactly positioned on the
median hyperplanes (e.g. the boundaries of Cy) is equal to zero. This assumption
is always true in the continuous setting but it is not relevant in the discrete setting
since there is no guarantee that data points never belong to the boundaries which
vary along the iterations.

The batch SOM algorithm is the extension of the Forgy algorithm with the intro-
duction of the neighborhood between clusters, in the same way as the on-line SOM
algorithm is for the Vector Quantization algorithm. It is not exactly a gradient descent
algorithm, but it converges to a minimum of the energy E. Obviously there are many
local minima. In conclusion, the relations between these clustering algorithms are
summarized in Table 1.

6 Other Algorithms Related to SOM

As explained before, the on-line SOM is not a gradient algorithm in the continuous
setting ([15, 16]). In the discrete setting, there exists an energy function, which is an
extended intra-classes variance as in Eq.(10), but this function is not continuously
differentiable. To overcome these problems, [27] proposes to slightly modify the on-
line version of the SOM algorithm so it can be seen as a stochastic gradient descent
on the same energy function. To do so, he introduces a new hard assignment of the
winning unit and a soft version of this assignment.

6.1 Hard Assignment in the Heskes’s Rule

In order to obtain an energy function for the on-line SOM algorithm, [27] modifies
the rule for computing the best matching unit (BMU). In his setting, Eq. (1) becomes

.....

j=1

K
— i 2
') =arg,_min > hy0)llx = mi (o) (13)

Theoretical and Applied Aspects of the Self-Organizing Maps 15

Table 2 Smoothness of the energy function

Discrete setting Continuous setting
Kohonen rule for computing BMU | Energy: discontinuous (but | Energy: continuous
finite on V)
Gradient: discontinuous Gradient: discontinuous
(infinite on V)
Heskes rule for computing BMU | Energy: continuous Energy: continuous
Gradient: discontinuous Gradient: continuous

(finite on V)

The energy function considered here is

K K
E(m) = ZZ K (1) llx = mi(@)])* f (x)dx, (14)
j=1 k=1

xeCj(m)

NI'—‘

where C;(m) is the cluster (Voronof cell) associated to the j-th prototype. The regu-
larity properties of the energy function and of its gradient are summarized in Table 2,
as discussed in [27].

6.2 Soft Topographic Mapping (STM)

The original SOM algorithm is based on a hard winner assignment. Generalizations
based on soft assignments were derived in [24, 27]. First, let us remark that the
energy function in the discrete case can also be written as

E(m,c) = Zchkth,mnm (t) — x|?

k 1 i=1

where c;; is equal to 1 if x; belongs to cluster £ and zero otherwise. This crisp
assignment may be smoothed by considering ¢;; > 0 such that Z,le cix = 1. The
soft assignments may be viewed as the probabilities of input x; to belong to class k.

Since the optimization of the energy function with gradient descent-like algo-
rithms would get stuck into local minima, the problem is transformed into a deter-
ministic annealing scheme. The energy function is smoothed by adding an entropy
term and transforming it into a “free energy” cost function, parameterized by a para-
meter [3:

F(@m,c,(8) = E(m,c) — %S(c),

where S(c) is the entropy term associated to the full energy. For low values of 3, only
one global minimum remains and may be easily determined by gradient descent or

16 M. Cottrell et al.

EM schemes. For 3 — +00, the free energy has exactly the same expression as the
original energy function.

When using deterministic annealing, one begins by computing the minimum of the
free energy at low values of (and then attempts to compute the minimum for higher
values of 3 (8 may be chosen to grow exponentially), until the global minimum of
the free energy for 5 — o0 is equal to the global minimum of the original energy
function.

For a fixed value of 3, the minimization of the free energy leads to iterating over
two steps given by Egs. (15) and (16), in batch version, and very similar to the original
SOM (the neighborhood function # is not varied during the optimization process):

exp(—Qeix)
P e C) = ————, 15)
‘ > exp(—feij)
where e;, = 1 Zle () |lx; —m;(t)]|* and
my(t) = Zizi Zle PP € C)) (16)

S S i P(x; € C))

The updated prototypes are written as weighted averages over the data vectors.
For § — +00, the classical batch SOM is retrieved.

6.3 Probabilistic Views on the SOM

Several attempts have been made in order to recast the SOM algorithm (and its
variants) into a probabilistic framework, namely the general idea of mixture models
(see e.g. [45]). The central idea of those approaches is to constrain a mixture of
Gaussian distributions in a way that mimic the SOM grid. Due to the heuristic nature
of the SOM, the resulting models depart quite significantly from the SOM algorithms
and/or from standard mixture models. We describe below three important variants.
Other variants are listed in e.g. [53].

6.3.1 SOM and Regularized EM

One of the first attempts in this direction can be found in [28]. Based on his work on
energy functions for the SOM, Heskes shows in this paper that the batch SOM can
be seen as a form of regularized Expectation Maximization (EM) algorithm. '

'EM is the standard algorithm for mixture models.

Theoretical and Applied Aspects of the Self-Organizing Maps 17

As mentioned above, the starting point of this analysis consists in introduc-
ing an isotropic Gaussian mixture with K components. The multivariate Gaussian
distributions share a single precision parameter (3, with the covariance matrix %31,
and are centered on the prototypes.

However, up to some constant terms, the opposite of the log likelihood of such a
mixture corresponds to the k-means quantization error. And therefore, maximizing
the likelihood does not provide any topology preservation. Thus Heskes introduces a
regularization term which penalizes prototypes that do not respect the prior structure
(the term does not depend directly on the data points), see [28] for details. Then
Heskes shows that applying the EM principle to the obtained regularized (log) like-
lihood leads to an algorithm that resembles the batch SOM one.

This interpretation has very interesting consequences, explored in the paper. It is
easy for instance to leverage the probabilistic framework to handle missing values
in a principled (non heuristic) way. It is also easy to use other mixtures e.g. for non
numerical data (such as count data). However, the regularization itself is rather ad hoc
(it cannot be easily interpreted as a prior distribution on the parameters, for instance).
In addition, the final algorithm is significantly different from the batch SOM. Indeed,
as in the case of the STM, crisp assignments are replaced by probabilistic ones (the
crispness of the assignments is controlled by the precision parameter). In addition,
as in STM, the neighborhood function is fixed (as it is the core of the regularization
term). To our knowledge, the practical consequences of those differences have not
been studied in detail on real world data. While one can argue that 3 can be increased
progressively and at the same time, one can modify the neighborhood function during
the EM algorithm, this might also have consequences that remain untested.

6.3.2 SOM and Variational EM

Another take at this probabilistic interpretation can be found in [53]. Asin [28] the first
step consists in assuming a standard mixture model (e.g. a K components Gaussian
isotropic mixture for multivariate data). Then the paper leverages the variational
principle (see e.g. [29]).

In summary, the variational principle is based on introducing an arbitrary distrib-
ution g on the latent (hidden) variables Z of the problem under study. In a standard
mixture model, the hidden variables are the assignment ones, which map each data
point to a component of the mixture (a cluster in the standard clustering language).
One can show that the integrated log likelihood of a mixture model with ® as parame-
ters, log p(X|®), is equal to the sum of three components: the complete likelihood
(knowing both the data points X and the hidden variables Z) integrated over the hid-
den variables with respect to ¢, £, log p(X, Z|®), the entropy of g, H(g), and the
Kullback-Leibler divergence, K L(g|p(Z|X, ®)), between ¢ and the posterior dis-
tribution of the hidden variables knowing the data points p(Z|X,). This equality
allows one to derive the EM algorithm when the posterior distribution of the hidden
variables knowing the data points can be calculated exactly. The variational approach
consists in replacing this distribution by a simpler one when it cannot be calculated.

18 M. Cottrell et al.

In standard mixture models (such as the multivariate Gaussian mixture), the vari-
ational approach is not useful as the posterior distribution of the hidden variables can
be calculated. However [53] propose nevertheless to use the variational approach as
a way to enforce regularity in the mixture model. Rather than allowing p(Z|X, ®)
to take an arbitrary form, they constrain it to a subset of probability distributions
on the hidden variables that fulfill topological constraint corresponding to the prior
structure of the SOM. See [53] for details.

This solution shares most of the advantages of the older proposal in [28], with
the added value of being based on a more general principle that can be applied to
any mixture model (in practice, [28] makes sense only for the exponential family).
In addition, [53] study the effects of shrinking the neighborhood function during
training and conclude that it improves the quality of the solutions. Notice that, in
[53], the shared precision of the Gaussian distributions ((3) is not a meta-parameter
as in [28] but a regular parameter that is learned from the data.

6.3.3 The Generative Topographic Mapping

The Generative Topographic Mapping (GTM, [2]) is frequently presented as a prob-
abilistic version of the SOM. It is rather a mixture model inspired by the SOM rather
than an adaptation. Indeed the aim of the GTM designers was not to recover a learn-
ing algorithm close to a SOM variant, but rather to introduce a mixture model that
enforce topology preservation.

The GTM is based on uniform prior distribution on a fixed grid which is mapped
via an explicit smooth nonlinear mapping to the data space (with some added isotropic
Gaussian noise). It can be seen as a constrained Gaussian mixture, but with yet another
point of view compared to [28, 53]. In [28], the constraint is enforced by a regulariza-
tion term on the data space distribution while in [53] the constraint is induced at the
latent variable level (via approximating p(Z|X, @) by a smooth distribution). In the
GTM the constraint is induced on the data space distribution because it is computed
via a smooth mapping. In other words, the centers of the Gaussian distributions are
not freely chosen but rather obtained by mapping a fixed grid to the data space via
the nonlinear mapping.

The nonlinear mapping is in principle arbitrary and can therefore implement
various type of regularity (i.e. topology constraints). The use of Gaussian kernels
lead to constraints that are quite similar to the SOM constraints. Notice that those
Gaussian kernels are not to be confused with the isotropic Gaussian distributions used
in the data space (the same confusion could arise in [53] where Gaussian kernels can
be used to specify the constraints on p(Z|X, @)).

Once the model has been specify (by choosing the nonlinear mapping), its para-
meters are estimated via an EM algorithm. The obtained algorithm is quite different
from the SOM (see [28] for details), at least in its natural formulation. However the
detailed analysis contained in [28] shows that the GTM can be reformulated in a
way that is close to the batch SOM with probabilistic assignments (as in e.g. the
STM). Once again, however, this is not exactly the same algorithm. In practice, the

Theoretical and Applied Aspects of the Self-Organizing Maps 19

results on real world data can be quite different. Also, as all the probabilistic variants
discussed in this section, the GTM benefits from the probabilistic setting that enables
principled missing data analysis as well as easy extensions to the exponential family
of distributions in order to deal with non numerical data.

7 Non Numerical Data

When the data are not numerical, the SOM algorithm has to be adapted. See for
example [11, 30, 32, 35, 38, 40—43], where some of these adaptations are presented.
Here we deal with categorical data collected in surveys and with abstract data which
are known only by a dissimilarity matrix or a kernel matrix.

7.1 Contingency Table or Complete Disjunctive Table

Surveys collect answers of the surveyed individuals who have to choose an answer
to several questions among a finite set of possible answers. The data can consist in

e a simple contingency table, where there are only two questions, and where the
entries are the numbers of individuals who choose a given pair of categories,

e a Burt table, that is a full contingency table between all the pairs of categories of
all the questions,

e acomplete disjunctive table that contains the answers of all the individuals, coded
in 0/1 against dummy variables which represent all the categories of all the ques-
tions.

In all these settings, the data consist in a positive integer-valued matrix, which can
be seen as a large “contingency table”. In classical data analysis, one uses Multiple
Correspondence Analysis (MCA) that are designed to deal with these tables. MCA is
nothing else than two simultaneous weighted Principal Component Analysis (PCA)
of the table and of its transposed, using the x? distance instead of the Euclidean
distance. To use a SOM algorithm with such tables, it is therefore sufficient to apply
a transformation to the data, in order to take into account the X2 distance and the
weighting, in the same way that it is defined to use Multiple Correspondence Analysis.
After transforming the data, two coupled SOM using the rows and the columns of
the transformed table can thus be trained. In the final map, related categories belong
to the same cluster or to neighboring clusters. The reader interested by a detailed
explanation of the algorithm can refer to [3]. More details and real-world examples
can also be found in [8, 10]. Notice that the transformed tables are numerical data
tables, and so there is no particular theoretical results to comment on. All the results
that we presented for numerical data still hold.

20 M. Cottrell et al.

7.2 Dissimilarity Data

In some cases, complex data such as graphs (social networks) or sequences (DNA
sequences) are described through relational measures of resemblance or dissem-
blance, such as kernels or dissimilarity matrices. For these general situations, several
extensions of the original algorithm, both in on-line and batch versions, were pro-
posed during the last two decades. A detailed review of these algorithms is available
in [51].

More precisely, these extensions consider the case where the data are valued in an
arbitrary space X', which is not necessarily Euclidean. The observations are described
either by a pairwise dissimilarity D = (6(x;, x;)); j=1,..,n, Or by a kernel matrix
K = (K(x;,)cj-)),-,jzl,___,;\;.2 The kernel matrix K naturally induces an Euclidean dis-
tance matrix, but the dissimilarity matrix D may not necessarily be transformed into
a kernel matrix.

The first class of algorithms designed for handling relational data is based on the
median principle (median SOM): prototypes are forced to be equal to an observation,
or to a fixed number of observations. Hence, optimal prototypes are computed by
searching through (x;);=;, n,instead of X, asin[13, 14, 32, 43]. The original steps
of the algorithm are thus transformed in a discrete optimization scheme, which is
performed in batch mode:

1. Equation (1) is replaced by the affectation of all data to their best matching units:
c(x;) = arg ming=, ..k 6(x;, mk(1));
2. Equation(2) is replaced by the update of all prototypes within the dataset

Since the algorithm explores a finite set when updating the prototypes, it is neces-
sarily convergent to a local minimum of the energy function. However, this class of
algorithms exhibits strong limitations, mainly due to the restriction of the prototypes
to the dataset, in particular, a large computational cost (despite efficient implemen-
tations such as in [6]) and no interpolation effect which yields to a deterioration of
the quality of the map organization.

The second class of algorithms, kernel SOM and relational/dissimilarity SOM,
rely on expressing prototypes as convex combinations of the input data. Although
these convex combinations do not usually have sense in X (consider, for instance,
that input data are various texts), a convenient embedding in an Euclidean or a
pseudo-Euclidean space gives a sound theoretical framework and gives sense to
linear combinations of inputs.

For kernel SOM, itis enough to use the kernel trick as given by [1] which prove that
there exists a Hilbert space H, also called feature space, and a mapping ¢ : X — H,

2A kernel is a particular case of symmetric similarity such that K is a symmetric matrix, semi-
definite positive with K (x;, x;) = 0 and satisfies the following positive constraint

YM >0, V(x)i=1,..m € X, Y()i=1,..M> ZaiajK(xivxj) > 0.

ij

Theoretical and Applied Aspects of the Self-Organizing Maps 21

called feature map, such that K (x, x") = (4(x), ¥(x"))7. In the case where data are
described by a symmetric dissimilarity measure, they may be embedded in a pseudo-
Euclidean space 9 : x € X — (x) = (¥ (x), 9~ (x)) € £, as suggested in [23].
£ may be written as the direct decomposition of two Euclidean spaces, £; and &_,
with a non-degenerate and indefinite inner product defined as

(W), P)e = W), P W)er — (7 (1), ¥~ W))e-

The distance naturally induced by the pseudo-Euclidean inner product is not neces-
sarily positive.

For both kernel and relational/dissimilarity SOM, the input data are embedded in
‘H or £ and prototypes are expressed as convex combinations of the images of the
data by the feature maps. For example, in the kernel case,

N
mi(t) = D Ah(xi) , with ;> Oand D yf = 1.

i=1 i

The above writing of the prototypes allows the computation of the distance from an
input x; to a prototype my(¢) in terms of the coefficients ;. and the
kernel/dissimilarity matrix only. For kernel SOM, one has

T
lpGa) —mi@N* = (%) Kyg — 2Kt + Kii

where K is the ithrow of K and () T = (V.1» - - -+ 7k)- Forrelational/dissimilarity

SOM, one obtains a similar expression

1
(i) — ()2 = Dyg — = ()" DA

2
The first step of the algorithm, finding the best matching unit of an observation, as
introduced in Eq. (1), can thus be directly generalized to kernels and dissimilarities,
both for on-line and batch settings.

In the batch framework, the updates of the prototypes are identical to the original
algorithm (see Eq. (12)), by simply noting that only the coefficients of the x;’s (or of
their images by the feature maps) are updated:

Rier () (1)

T E— (17)
Z;V:l Rger (xj) ()

N
Pket () () 41
mt+1) =D ———p(x) & =
i—1 zj\/:l hkc’(xj-)(t)

This step is the same, both for batch kernel SOM, [54], and for batch relational
SOM, [26].

In the on-line framework, updating the prototypes is similar to the original algo-
rithm, as in Eq. (2). Here also, the update rule concerns the coefficients ’y,’d only, and

22 M. Cottrell et al.
the linear combination of them remains convex:

W =+ e@hier) @) (L =) » (18)

where x; is the current observation and 1; is a vector in RY, with a single non-null
coefficient, equal to 1, on the i-th position. As previously, this step is identical for
on-line kernel SOM, [44], and for on-line relational SOM, [47].

In the case where the dissimilarity is the squared distance induced by the kernel,
kernel SOM and relational SOM are strictly equivalent. Moreover, in this case, they
are also fully equivalent to the original SOM algorithm for numerical data in the
feature (implicit) Euclidean space induced by the dissimilarity or the kernel, as
long as the prototypes are initialized in the convex hull of the input data. The latter
assertion induces that the theoretical limitations of the original algorithm also exist
for the general kernel/relational versions. Furthermore, these may worsen for the
relational version since the non-positivity of the dissimilarity measure adds numerical
instability when using a gradient-descent like scheme for updating the prototypes.

The third class of algorithms uses the soft topographic maps setting introduced in
Sect. 6.2. Indeed, in the algorithm described in Egs. (15) and (16), the soft assignments
depend on the distances between input data and prototypes only, while prototypes
update consists in making an update if the coefficients of the input data. Using a
mean-field approach and similarly to the previous framework for kernel and dissimi-
larity/relational SOM, [24] obtain the extensions of soft topographic mapping (STM)
algorithm for kernels and dissimilarities. The updates for the prototype coefficients
are then expressed as

S h (PG € Aj)

, (19)
YL S (P € A))

it +1) =

where m; (1) = ZlN: | Y4 (x;) and ¢ is the feature map.

8 Stochasticity of the Kohonen Maps for the On-line
Algorithm

Starting from a given initialization and a given size of the map, different runs of the
on-line stochastic SOM algorithm provide different resulting maps. On the contrary,
the batch version of the algorithm is a deterministic algorithm with always provides
the same results for a given initialization. For this reason, the batch SOM algorithm is
often preferred over the stochastic one because its results are reproducible. However,
this hides the fact that all the pairs of observations which are associated in a given
cluster do not have the same significance. More precisely, interpreting a SOM result,
we can use the fact that close input data belong to close clusters, i.e. their best
matching units are identical or adjacent. But if two given observations are classified

Theoretical and Applied Aspects of the Self-Organizing Maps 23

in the same or in neighboring units of the map, then they may not be close in the
input space. This drawback comes from the fact that there is not perfect matching
between a multidimensional space and a one- or two-dimensional map.

More precisely, given a pair of observations (data), {x;, x;}, three cases can be
distinguished, depending on the way their respective mapping on the map can be
described:

e significant association: the pair is classified in the same cluster or in neighboring
clusters because x; and x; are close in the input space. The observations are said
to attract each other;

e significant non-association: the pair is never classified in neighboring clusters and
x; and x; are remote in the input space. The observations are said to repulse each
other;

e fickle pair: the pair is sometimes classified in the same cluster or in neighboring
clusters but x; and x; are not close in the input space: their proximity on the map
is due to randomness.

The stochasticity of the on-line SOM results can be used to precisely qualify every
pairs of observations by performing several runs of the algorithm. The question is
addressed in a bootstrap framework in [12] and used for text mining applications in
[3, 4]. The idea is simple: since the on-line SOM algorithm is stochastic, its repetitive
use may allow to identify the pairs of data in each case.

More precisely, if L is the number of different and independent runs of the on-line
SOM algorithm and if ¥; ; denotes the number of times x; and x; are neighbors on
the resulting map in the L runs, a stability index can be defined: for the pair (x;, x;),

this index is equal to:
Y

M, =S
7.1 L
Using an approximation of the binomial distribution that would hold if the data were
neighbors by chance in a pure random way, and a test level of 5%, for a K -units
map, the following quantities are introduced

A= 2andB=1.96,/i(1—2). (20)
K KL K

These values give the following decision rule to qualify every pair {x;, x;}:

e if M, ; > A+ B, the association between the two observations is significantly
frequent;

o if A— B < M, ; < A+ B, the association between the two observations is due
to randomness. {x;, x;} is called a fickle pair;

e if M;; < A — B, the non-association between the two observations is signifi-
cantly frequent.

In [12], the method is used in order to qualify the stability and the reliability of
the global Kohonen map, while both other papers ([3, 4]) study the fickle data pairs

24 M. Cottrell et al.

for themselves. In these last works, the authors also introduce the notion of fickle
word which is defined as an observation which belongs to a huge number of fickle
pairs by choosing a threshold.

These fickle pairs and fickle words can be useful in various way: first, fickle pairs
can be used to obtain more robust maps, by distinguishing stable neighboring and
non neighboring pairs from fickle pairs. Also, once identified, fickle words can be
removed from further studies and representations: for instance, Factorial Analysis
visualization is improved. In a text mining setting, [4] have shown that a graph of
co-occurrences between words can be simplified by removing fickle words and [3]
have used the fickle words for interpretation: they have shown that the fickle words
form a lexicon shared between the studied texts.

9 Conclusion

We have reviewed some of the variants of the SOM, for numerical and non numerical
data, in their stochastic (on-line) and batch versions. Even if a lot of theoretical
properties are not rigorously proven, the SOM algorithms are very useful tools for
data analysis in different contexts. Since the Heskes’s variants of SOM have a more
solid theoretical background, SOM can appear as an easy-to-develop approximation
of these well-founded algorithms. This remark should ease the concern that one
might have about it.

On a practical point of view, SOM is used as a statistical tool which has to be com-
bined with other techniques, for the purpose of visualization, of vector quantization
acceleration, graph construction, etc. Moreover, in a big data context, SOM-derived
algorithms seem to have a great future ahead since the computational complexity of
SOM is low (proportional to the number of data). In addition, it is always possible
to train the model with a sample randomly extracted from the database and then
to continue the training in order to adapt the prototypes and the map to the whole
database. As most of the stochastic algorithm, SOM is particularly well suited for
stream data (see [25] which proposed a “patch SOM” to handle this kind of data).
Finally, it would also be interesting to have a look at the robust associations revealed
by SOM, to improve the representation and the interpretation of too verbose and
complex information.

References

1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337-404 (1950)

2. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: the generative topographic mapping.
Neural Comput. 10(1), 215-234 (1998)

3. Bourgeois, N., Cottrell, M., Deruelle, B., Lamassé, S., Letrémy, P.: How to improve robustness
in kohonen maps and display additional information in factorial analysis: application to text
minin. Neurocomputing 147, 120-135 (2015a)

Theoretical and Applied Aspects of the Self-Organizing Maps 25

4.

10.

11.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.

24.

25.

26.

Bourgeois, N., Cottrell, M., Lamassé, S., Olteanu, M.: Search for meaning through the study
of co-occurrences in texts. In: Rojas, 1., Joya, G., Catala, A. (eds.) Advances in Computational
Intelligence, Proceedings of IWANN 2015, Part II. LNCS, vol. 9095, pp. 578-591. Springer,
Switzerland (2015b)

Cheng, Y.: Convergence and ordering of Kohonen’s batch map. Neural Comput. 9, 1667-1676
(1997)

Conan-Guez, B., Rossi, F., El Golli, A.: Fast algorithm and implementation of dissimilarity
self-organizing maps. Neural Netw. 19(6-7), 855-863 (2006)

Cottrell, M., Fort, J.C.: Etude d’un processus d’auto-organisation. Annales de I'IHP, section B
23(1), 1-20 (1987)

Cottrell, M., Letrémy, P.: How to use the Kohonen algorithm to simultaneously analyse indi-
viduals in a survey. Neurocomputing 63, 193-207 (2005)

Cottrell, M., Fort, J.C., Pages, G.: Theoretical aspects of the SOM algorithm. Neurocomputing
21, 119-138 (1998)

Cottrell, M., Ibbou, S., Letrémy, P.: Som-based algorithms for qualitative variables. Neural
Netw. 17, 1149-1167 (2004)

Cottrell, M., Olteanu, M., Rossi, F., Rynkiewicz, J., Villa-Vialaneix, N.: Neural networks for
complex data. Kiinstliche Intelligenz 26(2), 1-8 (2012). doi:10.1007/s13218-012-0207-2

de Bodt, E., Cottrell, M., Verleisen, M.: Statistical tools to assess the reliability of
self-organizing maps. Neural Netw. 15(8-9), 967-978 (2002). doi:10.1016/S0893-
6080(02)00071-0

El Golli, A., Conan-Guez, B., Rossi, F.: Self organizing map and symbolic data. J. Symb. Data
Anal. 2(1), 11 (2004a)

El Golli, A., Conan-Guez, B., Rossi, F.: A self organizing map for dissimilarity data. In
Banks, D., House, L., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering,
and Data Mining Applications (Proceedings of IFCS 2004), pp. 61-68. IFCS, Chicago, Illinois
(USA), Springer, 7 (2004b)

Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: ordering, convergence proper-
ties and energy functions. Biol. Cybern. 67(1), 47-55 (1992a)

Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: stationnary states, metastability
and convergence rate. Biol. Cybern. 67(1), 3545 (1992b)

Flanagan, J.A.: Self-organisation in Kohonen’s som. Neural Netw. 6(7), 1185-1197 (1996)
Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifi-
cations. Biometrics 21, 768-769 (1965)

Fort, J.-C., Cottrell, M., Letrémy, P.: Stochastic on-line algorithm versus batch algorithm for
quantization and self organizing maps. In: Neural Networks for Signal Processing XI, 2001,
Proceedings of the 2001 IEEE Signal Processing Sociéty Workshop, pp. 43-52. IEEE, North
Falmouth, MA, USA (2001)

Fort, J.-C., Letrémy, P., Cottrell, M.: Advantages and drawbacks of the batch Kohonen algo-
rithm. In Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning (ESANN 2002), pp. 223-230. d-side publications,
Bruges, Belgium (2002)

Fort, J.C.: SOM’s mathematics. Neural Netw. 19(6-7), 812-816 (2006)

Fort, J.C., Pages, G.: About the kohonen algorithm: strong or weak self-organisation. Neural
Netw. 9(5), 773-785 (1995)

Goldfarb, L.: A unified approach to pattern recognition. Pattern Recognit. 17(5), 575-582
(1984). doi:10.1016/0031-3203(84)90056-6

Graepel, T., Burger, M., Obermayer, K.: Self-organizing maps: generalizations and new opti-
mization techniques. Neurocomputing 21, 173—-190 (1998)

Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural
Comput. 22(9), 2229-2284 (2010)

Hammer, B., Hasenfuss, A., Rossi, F., Strickert, M.: Topographic processing of relational data.
In: Group, Bielefeld University Neuroinformatics (ed.) Proceedings of the 6th Workshop on
Self-Organizing Maps (WSOM 07). Bielefeld, Germany, September 2007

http://dx.doi.org/10.1007/s13218-012-0207-2
http://dx.doi.org/10.1016/S0893-6080(02)00071-0
http://dx.doi.org/10.1016/S0893-6080(02)00071-0
http://dx.doi.org/10.1016/0031-3203(84)90056-6

26

217.

28.
29.
30.
31.

32.

40.
. Kohonen, T.: Essentials of self-organizing map. Neural Netw. 37, 52-65 (2013)
42.
43.
44,
45.
46.
47.

48.
49.

50.

51.

52.
53.

54.

M. Cottrell et al.

Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen

Maps, pp. 303-315. Elsevier, Amsterdam (1999). http://www.snn.ru.nl/reports/Heskes.wsom.
S.gz

IIZIeEsj’kes, Tom: Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans.

Neural Netw. 12(6), 1299-1305 (2001)

Jordan, M 1., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods

for graphical models. Mach. Learn. 37(2), 183-233 (1999)

Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: Websom—self-organizing maps of document

collections. Neurocomputing 21(1), 101-117 (1998a)

Kaski, S., Jari, K., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1981—

1997. Neural Comput. Surv. 1(3&4), 1-176 (1998b)

Kohohen, T., Somervuo, P.J.: Self-organizing maps of symbol strings. Neurocomputing 21,

19-30 (1998)

. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43,

59-69 (1982a)

. Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44, 135-140 (1982b)
. Kohonen, T.: Median strings. Pattern Recognit. Lett. 3, 309-313 (1985)

. Kohonen, T.: Self-organization and Associative Memory. Springer, Berlin (1989)

. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Science, vol. 30. Springer,

Berlin (1995)

. Kohonen, T.: Self-organizing maps of symbol strings, Technical Report a42, Laboratory of

computer and information science, Helsinki University of technoligy, Finland (1996)

. Kohonen, T.: Comparison of som point densities based on different criteria. Neural Comput.

11, 2081-2095 (1999)
Kohonen, T.: Self-Organizing Maps, vol. 30, 3rd edn. Springer, Berlin (2001)

Kohonen, T.: MATLAB Implementations and Applications of the Self-Organizing Map.
Unigrafia Oy, Helsinki (2014)

Kohonen, T., Somervuo, P.J.: How to make large self-organizing maps for nonvectorial data.
Neural Netw. 15(8), 945-952 (2002)

Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International
Conference on knowledge-based Intelligence Engineering Systems and Applied Technologies,
pp. 317-320 (2000)

McLachlan, G., Peel. D.: Finite mixture models. Wiley (2004)

Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998—
2001 addendum. Neural Comput. Surv. 3, 1-156 (2003)

Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational SOM. Neurocom-
puting 147, 15-30 (2015). doi:10.1016/j.neucom.2013.11.047

Pollard, D., et al.: Strong consistency of k-means clustering. Ann. Stat. 9(1), 135-140 (1981)
Ritter, H., Schulten, K.: On the stationary state of Kohonen’s self-organizing sensory mapping.
Biol. Cybern. 54, 99-106 (1986)

Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps, an
Introduction. Addison-Wesley (1992)

Rossi, F.: How many dissimilarity/kernel self organizing map variants do we need? In
Villmann, T., Schleif, EM., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps
and Learning Vector Quantization (Proceedings of WSOM 2014), Advances in Intelligent Sys-
tems and Computing, vol. 295, pages 3-23. Mittweida, Germany, Springer, Berlin (2014).
doi:10.1007/978-3-319-07695-9_1

Sadeghi, A.: Convergence in distribution of the multi-dimensional Kohonen algorithm. J. of
Appl. Probab. 38(1), 136-151 (2001)

Verbeek, J.J., Vlassi, N., Krose, B.J.A.: Self-organizing mixture models. Neurocomputing 63,
99-123 (2005)

Villa, N., Rossi, F.: A comparison between dissimilarity SOM and kernel SOM for clustering
the vertices of a graph. In: 6th International Workshop on Self-Organizing Maps (WSOM:
2007) Bielefield, Germany, 2007. Bielefield University, Neuroinformatics Group (2007). ISBN
978-3-00-022473-7. doi:10.2390/biecoll-wsom2007-139

http://www.snn.ru.nl/reports/Heskes.wsom.ps.gz
http://www.snn.ru.nl/reports/Heskes.wsom.ps.gz
http://dx.doi.org/10.1016/j.neucom.2013.11.047
http://dx.doi.org/10.1007/978-3-319-07695-9_1
http://dx.doi.org/10.2390/biecoll-wsom2007-139

Aggregating Self-Organizing Maps
with Topology Preservation

Jérome Mariette and Nathalie Villa-Vialaneix

Abstract In the online version of Self-Organizing Maps, the results obtained from
different instances of the algorithm can be rather different. In this paper, we explore
a novel approach which aggregates several results of the SOM algorithm to increase
their quality and reduce the variability of the results. This approach uses the variability
of the algorithm that is due to different initialization states. We use simulations to
show that our result is efficient to improve the performance of a single SOM algorithm
and to decrease the variability of the final solution. Comparison with existing methods
for bagging SOMs also show competitive results.

Keywords Self-Organizing Maps - Aggregation + Topology preservation

1 Introduction

Self-Organizing Maps (SOM), [1] have been shown to be powerful methods for
analyzing high dimensional and complex data (see, for instance, [2] for applications
of the method to many different areas). However, the method suffers from its lack of
good convergence properties. In its original version, the theoretical convergence of
the algorithm has only be proved in very limited cases [3] and even in the modified
version in which the training of the SOM is expressed as an energy minimization
problem [4], different runs of the algorithm give different results, that can be very
dependent on the initialization. This problem is even more critical when the data set
to be analyzed is complex or high dimensional.

This paper addresses the issue of aggregating several results of the SOM algorithm,
all obtained on the same data set. Several attempts to combine SOMs while preserving
their topological properties have been proposed in the literature [5-9]. In this paper,

J. Mariette () - N. Villa-Vialaneix
INRA, UR 0875 MIA-T, BP 52627 , 31326 Castanet Tolosan Cedex, France
e-mail: jerome.mariette @toulouse.inra.fr

N. Villa-Vialaneix
e-mail: nathalie.villa@toulouse.inra.fr

© Springer International Publishing Switzerland 2016 27
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_2

28 J. Mariette and N. Villa-Vialaneix

we present a novel method to combine several SOMs while preserving their topology.
The proposed method combines several ideas taken from the different methods and
allows to explore initialization states. It is both simple and efficient. We present a full
comparison of the different options to aggregate the results of different SOMs and
discuss the most relevant choices. Finally, we show that our approach is a competitive
alternative to the existing methods on real data applications.

The remainder of the paper is organized as follows: in Sect.2, an overview of
aggregation methods for SOMs is presented. In Sect.3, the proposed method is
described. Finally, Sect. 4 presents experimental results and comparisons.

2 An Overview of Aggregation Methods for SOMs

Suppose that B results of the SOM algorithm are given for the items (x;)i=1._n,
(MP®),_i.... . Bach of these results, M” is well defined by its set of prototypes
(pl’j)uzl ,,,,, v and comes with an associated clustering function ¢’ x e R —
(C:)uzlwy, where ij = {xi D oP(x) = u} The purpose is to build a fused or
a merged map, M*, with prototypes (p;;),=1,..v and a clustering function ¢* which
improves and summarizes the B maps into a unique consensual map. Note that all
SOMs have been trained from the same data (x;);—;.. , or from a subset (e.g., a
bootstrap sample) of this data set. They can also have been trained from different
descriptors of the observations (e.g., from different sets of variables observed on the
same items): in this case, the fused map thus corresponds to a map integrating the dif-
ferent descriptors. However, for the sake of simplicity, we will restrict our description
and simulation to the first case (same observations, or eventually, bootstrap samples
from the same observations and same descriptors).

As already explained in [5] in the context of a one-dimensional grid, there is no
ground truth for cluster labelling in the unsupervised framework. A first strategy to
overcome this issue is to perform a re-labelling of the clusters based on the clustering
only: [6] merge together the clusters of different maps with a majority vote scheme.
A “fused” prototype is defined as the centroid of the grouped cluster prototypes over
b =1,..., B and a topology is deduced posterior to the definition of the clusters.
Another approach that uses the different maps in an indirect way is described in
[10]: in this paper, we proposed to use a subset of (x;);, using the most representative
observations of the set of B maps, to train a final SOM from a simpler and more
robust data set. This method is well suited to handle very large data sets. However,
both approaches do not necessary produce a map with a topology similar to the B
merged SOMs and make use of only a small part of the information provided by the
B learned SOMs.

Several attempts to explicitly take advantage of the prior (common) structure of
the maps have been proposed in the literature. A first method consists in constraining
the B SOMs to be as similar as possible by a common initialization. This initialization
can be derived, for instance, from a PCA of (x;);. Then, the different maps are fused

Aggregating Self-Organizing Maps with Topology Preservation 29

by averaging the prototypes of the clusters situated at the same position the B SOMs
[7] or by using a majority vote scheme to classify the observations [5]. Alternatively,
[5, 8] also propose to make the B SOMs similar by initializing the b-th SOM with
the final prototypes of the previous one. Baruque and Corchado [8] improves this
approach by weighting the averaging of the prototypes by a cluster quality index.
Similarly, [11] uses a similar strategy to handle streaming or large data sets, splitting
the data into several patches that are sequentially processed by a different SOM
algorithm initialized with the result of the previous one. However, these methods
do not allow to explore the possibilities of different initializations, which can be an
issue in SOM. Moreover, a sequential initialization of the B SOMs prevents from
training them in parallel, which can be an important issue if B is large: using a large
B is advised for stabilizing the result of the algorithm.

Another approach to preserve the topology property of the map is to align the
different maps on one of them, which serves as a reference for the topology: in [12],
the map is chosen arbitrarily, and the other maps are fused sequentially to this first
one, averaging the prototypes (p%), of the current map to the closest prototypes of
the current fused map (p}}),,. To leverage the problem of the choice of the map that is
used to align the other maps, [9] proposes to choose a reference map that is the best
one according to a given clustering quality criterion. However, this method makes
the result strongly dependent on the choice of the first map because only its topology
is used, whereas the topologies of the next maps are not utilized as such.

3 Description of the Optimal Transformation Method

It is well known that the quality of the SOM strongly depends on its initialization.
Given different maps obtained from different (random) initializations, we propose
to find the “best” transformation that can be used to obtain two comparable results
between two distinct maps. The optimal one-to-one transformation between proto-
types in general might be difficult to define so we restrict ourselves to transformations
that strictly preserve the topology of the map, i.e. the set of linear isometric trans-
formations (rotation and/or symmetry). To do so, only square maps with m rows and
columns are considered (i.e., using the notations introduced in the previous section,
U = m?): in these maps, the clusters are supposed to be positioned on a 2D grid at
coordinates {(kq, k2)}k|,k2=1 _____ me

Then, 7 denotes the set of all transformations, 7 : R?2 — R2, that let the map glob-
ally invariant: more precisely, 7 is composed of the set of rotations {rg }oe(0,x/2,7,37/2}
and of the transformations {ry o s}y, with s the symmetry with respect to the axis
passing by the points (”’TH, 0) and (’”;’l , m) For a given map M with prototypes
(pu)u andagiven T € 7, the transformed map T (M) is the map in which the unit u,
with coordinates (k¥ , k%) in N?, has a prototype denoted by pI which is the prototype
pu of the original map, u’ being the unit located at 7! (k¥, k4).

When comparing two maps, the mean of the squared distances (in R?) between
the prototypes of the two maps that are located at the same position is calculated.

30 J. Mariette and N. Villa-Vialaneix

For two maps M and M’, with respective prototypes (p,), and (p,),, we define
a distance between two maps as the distance between their respective prototypes
positionned at the same coordinates:

|
DM M) =—3> lipu— I)
u=1

The best transformation between the current fused map and the next map to be fused
is chosen according to this distance. The two maps are then fused using the optimal
transformation before they are merged, as described in Algorithm 1. The optimal

Algorithm 1 Optimal transformation

Initialization M*! < M!
forb:2 — Bdo
Optimal transformation

T; := arg min D (M*’b_l, T(Mb))
TeT

Fusion between M*?~1 and T (MP?). Provides: M*P
end for
Return M* := M*B

transformation is found by computing the distance between the maps to be fused,
T (MP?), and areference map, which can be the first of the list, MU forinstance.! The
fusion between the map is performed as suggested in [7] by averaging the prototypes
located at the same position:

B
N 1
Yu=1,...,m% 2 ::EZpS'T. 2)
b=1

In the method described in the previous section, all maps are fused in an arbitrary
order. However, as pointed out in [9], the maps may have very different qualities and
may also be very different: merging a very peculiar map with a poor quality might
lead to deterioration of the results instead of improving them. In this section, two
strategies are presented to leverage this problem.

The first one uses a measure of quality of the maps and first rank the maps from
the one with the best quality to the one with the worse quality: M1, ..., M®),
Standard quality measures for SOM can be used to perform this ranking [13]: (i) the
quantization error (QE), ZZ’; Dk, ecx Ixi — pi||?, which is a clustering quality
measure, disregarding the map topology; (ii) the topographic error (TE) which is the

I'The current fused map, M*?~! has also been used as a reference map, with no difference in the
final result. Using M is thus a better strategy, because optimal transformation can be computed in
parallel.

Aggregating Self-Organizing Maps with Topology Preservation 31

simplest of the topographic preservation measure: it counts the ratio of second best
matching units that are in the direct neighborhood on the map of the best matching
units for every (x;);. However, for small maps and relatively simple problems, this
measure has a small variability and can lead to many equally ranked maps.

Therefore, another approach is introduced to make a trade-off, while ranking the
maps, between clustering and topographic qualities: the average rank of the maps is
computed as:

P guanii T Tiopo

b quanti
= 3
" 2)

where r2 . is the rank of the map M? according to its quantization error (the best

quanti
map is ranked first) and similarly for rf(’,po with the topographic error and the maps
were finally ranked by increasing order of (r?),.

Taking advantage of this ordering of the maps, the previous method can be mod-
ified using two different strategies:

1. the similarity strategy: following an idea similar to [9], the maps are merged by
similarity: the merging process is initialized with the best map: M*! « M®,
Then, this map is merged only with the maps that resemble this reference map. To
do so, a simple ascending hierarchical clustering is performed between the maps
(T (M®))p—1....p, with (T)"), obtained by comparison with the reference map
M. This clustering is based on the distance introduced in (1) and the hierarchical
tree is cut using the method described in [14]. Finally, the maps in the same cluster
as MW are fused to M*1;

2. the ordering strategy: an alternative approach is performed sequentially by merg-
ing the maps by increasing rank M, M® . The merging process is stopped
at M) with B’ < B (and usually B’ < B) when the quality of the fused map
M*B" would not increase anymore by merging it with MZ'*D (actually, two
strategies are investigated: stopping when the quality measure is not increasing
or stopping when the quality measure has not increased for the last 5 % B fused
maps).

4 Simulations

Methodology. In all the simulations, B = 100 maps are generated using the standard
SOM. The optimal B has not been investigated in this paper and the number of
fused maps was simply taken large enough so that the fusion makes sense. All
maps were built with approximately m = \/% units and 5 x n iterations of the
stochastic algorithm and equipped with a Gaussian neighborhood controlled with
the Euclidean distance between units on the grid. The size of the neighborhood was
progressively decreased during the training. All simulations have been performed
using the R package SOMbrero.> The 100 maps are then fused using one of the

Zhttp://cran.r-project.org/web/packages/sombrero, version 1.0.

http://cran.r-project.org/web/packages/sombrero

32 J. Mariette and N. Villa-Vialaneix

strategies described below and the performance of the different methods are finally
assessed using various quality criteria for the resulting maps M*: (i) two criteria
already mentioned in Sect.3 that are standard to measure the quality of the SOM:
(1) QE and TE; (ii) a criterion which uses the ground truth, when available (i.e.,
an a priori group for the observations), the normalized mutual information (NMI)
[15] between the unit of the map and the a priori group. This criterion quantifies the
resemblance between the a priori group and the clustering provided by the SOM (it
is comprised between 0 and 1, a value of 1 indicating a perfect matching between the
two classifications). Note that this criterion must be interpreted with care because if
the a priori groups are split between several units of the map, each of these units being
composed of one group only (which is expected for SOM results), the criterion can
be lower than when the groups are split between less units which are all composed
of several groups (which would be a less expected result). Thus, this criterion has to
be interpreted only together with the QE and the TE values.

The performance of the method is also assessed in term of stability. It is
expected that several runs of one aggregating method give similar (thus stable)
results. This stability is estimated in terms of: (i) the distance between two final
maps obtained from two different runs of the same method. If M* and M*
are two maps, the quantity D(M*, T*(M*)), where D is defined as in (1) and
T* := argmingegr D(M*, T (M™)), is computed. This gives an estimation of the
dissemblance between two maps from the prototype (hence the topological) per-
spective. If calculated over 250 different final maps, this quantity helps to quantify
the stability of the final prototypes provided by a given aggregation method; (ii) the
NMI between the final classes of two final maps obtained from two different runs of
the same method. This gives an estimation of the dissemblance from the clustering
perspective for a given aggregation method.

250 fusions for each method are performed using the methodology described
above. This permits to compute average quality as stability criteria as well as to have
an overview of the distribution of these criteria when the method is repeated.

Compared methods. The comparisons performed in this section aim at com-
paring our approach to existing ones (which are described in Sect.2) as well as to
investigate several options of the method (as discussed in Sect. 3).

First, our method, which merges several maps obtained from several initialization
states, is compared to the standard bagging approach, in which several maps are
trained from bootstrap samples from the similar initialization states. More precisely,
bootstrap strategies are:

e the method denoted by B-Rand, which uses a common random initialization to
learn B = 100 maps from 100 bootstrap samples coming from the original data
set. Then, the prototypes that are positioned at the same coordinates, are averaged
to obtain the final map M* (as suggested in [7]);

e the method denoted by B-PCA, which uses a common PCA initialization to learn
B = 100 maps from 100 bootstrap samples coming from the original data set (as
suggested by [5]). The PCA initialization consists of initializing the prototypes by
regularly positioning them along the coordinates of the projection of the data set

Aggregating Self-Organizing Maps with Topology Preservation 33

on the first two axis of the PCA. Then, the prototypes that are positioned at the
same coordinates, are averaged to obtain the final map M*;

e the method denoted by B-Seq, which uses a sequential initialization of the B = 100
maps: the first map is initialized randomly and trained with a bootstrap sample
and the b-th map is initialized with the final prototypes of the (b — 1)-th map and
trained with another bootstrap sample. Finally, the final map M*, is obtained by
averaging the prototypes of the B = 100 maps, that are positioned at the same
coordinates, as suggested in [8].

These strategies are compared with our method and its bootstrap version, respec-
tively denoted by RoSyF (for “Rotation and Symmetry Fusion”) and B-RoSyF.
RoSyF learns B = 100 maps, each from a different random initial state and using
the whole data set (x;);=1,.., and B-RoSyF learns B = 100 maps from 100 bootstrap
samples coming from the original data set.

Finally, we also compare RoSyF with the approach consisting in selecting only
one map from the B maps, the map supposed to be the best for instance. More
precisely, using the B = 100 maps generated during the training of the RoSyF
method, we selected one of the B = 100 maps (i) randomly (this method is denoted
by Best-R), (ii) with the smallest QE (this method is denoted by Best-QE or (iii)
with the smallest TE (this method is denoted by Best-TE).

Datasets and results. This section compares the results obtained on two datasets
coming from the UCI Machine Learning Repository® as available in the R package
mlbench.* More precisely, the data “Glass” (n = 214, d = 10 and 7 a priori groups)
[16] and the data “Vowel” (n = 990, d = 10 and 11 a priori groups) [17] are
used. The SOM parameters are set to m = 5 and 1 000 iterations for “Glass” and
m = 10 with 5 000 iterations for “Vowel”. The different strategies, and especially
the relevance of using different initial states instead of different bootstrap samples
with the same initialization, is evaluated. The results are provided in Table 1.

First, note that for almost all quality criteria and datasets, RoSyF obtain better
results than the methods based on different bootstrap samples (all differences are sig-
nificant according to Wilcoxon test, risk 5 %). B-RoSyF slightly deteriorates RoSyF
performances. Cottrell etal. [18, 19] reported that the SOM algorithm is highly insen-
sitive to initialization if run on the same data set as compared to what is obtained if
bootstrap samples are used. However, it seems that the quality of the aggregated map
is much better when different initial states are used on the same data set rather than
different bootstrap samples with a common initial state, whatever this initial state is.
Second, the TE obtained by RoSyF is always the lowest, just after the one obtained
by Best-TE (which always selects the map with the lowest TE) but with a better QE
and a better NMI. Again, all these differences are significant according to Wilcoxon
tests (risk: 5%). On a clustering quality point of view, RoSyF is the method that
obtains the second lowest quantization error, just after Best-QE which is designed
to select the map with the lowest QE. Also, from a classification point of view, its
performance is also very good: in average, RoSyF ranks first for the NMI criterion.

3http://archive.ics.uci.edu/ml.
“http://cran.r-project.org/web/packages/mlbench.

http://archive.ics.uci.edu/ml
http://cran.r-project.org/web/packages/mlbench

34 J. Mariette and N. Villa-Vialaneix

Table1 Method performance comparison (mean and standard deviation of different quality criteria;
QE has been multiplied by 100)

|B-Rand| B-PCA | B-Seq | B-RoSyF |RoSyF |Best-R | Best-QE | Best-TE

“Glass”
mean QE 855.10 | 855.93 |854.97 | 609.84 597.81 [595.09 | 560.69 | 593.68
sd QE 10.30 |9.43 9.24 23.10 9.82 1552 | 545 13.96
mean TE(%) |11.95 |1242 |11.77 | 0.01 0.01 0.10 0.04 0.00
sd TE (%) 6.09 6.53 6.45 0.04 0.07 0.24 0.17 0.00
mean NMI (%) | 15.80 |15.77 |16.00 | 18.92 17.86 | 15.64 16.37 15.87
sd NMI (%) 3.38 3.15 3.30 2.09 1.38 2.20 2.03 2.21

“Vowel”
mean QE 847.57 | 847.73 | 84791 | 550.78 545.88 |547.44 | 531.30 | 548.23
sd QE 11.82 |10.88 |11.63 5.18 1.01 7.10 2.39 6.72
mean TE (%) |5.89 6.06 5.80 0.07 0.07 0.19 0.20 0.00
sd TE (%) 3.62 3.46 3.37 0.10 0.08 0.14 0.14 0.00
mean NMI (%) | 7.11 6.76 7.03 9.47 9.57 9.64 9.53 9.53
sd NMI (%) 1.44 1.37 1.49 0.12 0.11 0.66 0.54 0.72

Also note that all quality criteria have a low variability: the standard deviations is
almost always the lowest: RoSyF is the method which has the best coefficient of
variation (mean divided by the standard deviation) for all quality criteria.

Table 2 (and Fig. 1 for the dataset “Vowel”) provides a comparison of the stability
criteria. For this data set, RoSyF has the best stability, either in term of prototype
stability (even though B-PCA and B-Seq also have a good prototype stability) and
even more in term of class stability. These differences are significant according to
Wilcoxon tests (risk: 5 %). The results indicate that the method is indeed appropriate
to improve the quality of the final map but also that it is very stable and gives very
similar results if used several times, with different initializations of the prototypes
and different training of the merged maps.

The relevance of stopping the merging process before all the maps have been fused
has also been evaluated.’ This comparison shows that there is only a small benefit in
stopping the merging process before all maps have been used: most strategies lead
to an highly deteriorated TE. Only stopping the training process when TE increases
(TE-Inc) or based on the similarity strategy described in Sect. 3 are valid approaches
in terms of quality criteria. However, a stability analysis shows that all these strategies
strongly deteriorate the stability of the final map: merging all maps is the approach
that provides the best stability, either in term of prototype comparison than in term of
class comparison, except for TE-Inc which provides a slightly more stable clustering

SFor the sake of paper length, detailed results are not reported but only described.

Aggregating Self-Organizing Maps with Topology Preservation 35

Table 2 Method stability comparison (mean and standard deviation of different stability criteria;
D has been multiplied by 10 000)

| B-Rand | B-PCA | B-Seq | B-RoSyF | RoSyF| Best-R | Best-QE | Best-TE

“Glass”

mean D 70.85 67.22 | 67.06 | 149.65 67.07 | 2047.14 | 1302.27 | 1581.49
sd D 38.62 32.32 | 31.24 | 335.14 310.74| 1557.08 | 1170.39 | 1186.28
mean NMI (%) | 64.77 65.60 | 65.88 | 83.54 87.47 | 49.15 54.41 49.86
sd NMI (%) 6.37 6.32 6.23 5.83 5.11 10.81 9.57 10.26
“Vowel”

mean D 59.89 61.33 | 59.21 | 15.30 11.07 | 681.87 | 535.32 | 716.81
sd D 31.19 33.33 | 31.42 | 5.77 3.87 27523 | 185.06 | 343.41
mean NMI (%) | 57.32 56.83 | 57.70 | 90.83 92.39 | 72.53 74.94 72.11
sd NMI (%) 5.32 5.21 5.20 1.59 1.33 3.29 2.66 3.37

10000

g % %

£ 8000 - * T |—T—| T

‘; l‘_l

£

E

6000 1

i 1

LD

0

=

Z 4000 -

T L T L) L) T T T
B-Rand B-PCA B-Seq B-RoSyF RoSyF Best-R Best-QE Best-TE

Fig. 1 Normalized mutual information (NMI) between pairs of clusterings obtained from the 250
final maps generated by the different approaches

but very different prototypes. All these strategies use only few maps (less than 10
maps in average), except again TE-Inc which uses 89.4 maps in average for the
“Glass” dataset and is thus very close to the maximum number of available maps
(100). Actually, additional simulations (not shown for the sake of paper length)
merging more than 100 maps proved that the stability increases with the number
of fused maps (up to a certain number which was for our dataset between 500 to
1000 maps). A trade-off has thus to be found between computational time required
to generate a large number of maps and stability of the results. This question is still
under study.

36 J. Mariette and N. Villa-Vialaneix

5 Conclusion

Although most work on SOM ensembles are based on bootstrapping techniques, this
paper presents an approach allowing to explore different initial states for the map.
The method improves the stability of the fused map, both in term of prototypes and in
terms of clustering. We are currently investigating how to choose an optimal number
B of maps to fuse as well as weighting schemes based on various quality criteria:
this approach is already promising to improve the results, especially the stability of
the final map.

References

1. Kohonen, T.: Self-Organizing Maps, vol. 30, 3rd edn. Springer, Berlin (2001)

2. Kohonen, T.: MATLAB Implementations and Applications of the Self-Organizing Map. Uni-
grafia Oy, Helsinki (2014)

3. Cottrell, M., Fort, J., Pages, G.: Theoretical aspects of the SOM algorithm. Neurocomputing
21, 119-138 (1998)

4. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen
Maps, pp. 303-315. Elsevier, Amsterdam (1999)

5. Petrakieva, L., Fyfe, C.: Bagging and bumping self organising maps. Comput. Inf. Syst. J. 9,
69-77 (2003)

6. Saavedra,C.,Salas,R.,Moreno, S., Allende, H.: Fusion of self organizing maps. In: Proceedings
of the 9th International Work-Conference on Artificial Neural Networks (IWANN 2007) (2007)

7. Vrusias, B., Vomvoridis, L., Gillam, L.: Distributing SOM ensemble training using grid mid-
dleware. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN
2007), pp. 2712-2717 (2007)

8. Baruque, B., Corchado, E.: Fusion Methods for Unsupervised Learning Ensembles. Studies in
Computational Intelligence, vol. 322. Springer, Berlin (2011)

9. Pasa, L., Costa, J.: Guerra de Medeiros, M.: Fusion of Kohonen maps ranked by cluster validity
indexes. In: Polycarpou, M., de Carvalho, A., Pan, J., WozZniak, M., Quintian, H., Corchado, E.
(eds.) Proceedings of the 9th International Conference on Hybrid Artificial Intelligence Systems
(HAIS 2014), vol. 8480, pp. 654—665. Salamanca, Spain, Springer International Publishing
Switzerland (2014)

10. Mariette, J., Olteanu, M., Boelaert, J., Villa-Vialaneix, N.: Bagged kernel som. In: Proceedings
of WSOM, Mittweida, Germany (2014) Forthcoming

11. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural
Comput. 22(9), 2229-2284 (2010)

12. Georgakis, A., Li, H., Gordan, M.: An ensemble of som networks for document organization
and retrieval akrr (2005). In: Proceedings of International Conference on Adaptive Knowledge
Representation and Reasoning (AKRR 2005) (2005)

13. Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Par-
alic, J., Polzlbauer, G., Rauber, A. (eds.) Proceedings of the Fifth Workshop on Data Analysis
(WDA’04), pp. 67-82. Vysoke Tatry, Slovakia, Elfa Academic Press, Sliezsky dom (2004)

14. Langfelder, P, Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the
dynamic tree cut package for R. Bioinformatics 24(5), 719-720 (2008)

15. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identifi-
cation. J. Stat. Mech. P09008 (2005)

Aggregating Self-Organizing Maps with Topology Preservation 37

16. Towell, G., Shavlik, J.: Interpretation of artificial neural networks: mapping knowledge-based
neural networks into rules. Proceedings of Advances in Neural Information Processing Systems
4(1992)

17. Niranjan, M., Fallside, F.: Neural networks and radial basis functions in classifying static speech
patterns. Comput. Speech Lang. 4(3), 275-289 (1990)

18. Cottrell, M., de Bodt, E., Verleisen, M.: A statistical tool to assess the reliability of self-
organizing maps. In: Allinson, N., Yin, H., Allinson, J., Slack, J. (eds.) Advances in Self-
Organizing Maps (Proceedings of WSOM 2001), pp. 7-14. Lincoln, UK, Springer (2001)

19. de Bodt, E., Cottrell, M., Verleisen, M.: Statistical tools to assess the reliability of self-
organizing maps. Neural Netw. 15(8-9), 967-978 (2002)

ESOM Visualizations for Quality Assessment
in Clustering

Alfred Ultsch, Martin Behnisch and Jorn Lotsch

Abstract Classical clustering algorithms as well as intrinsic evaluation criteria
impose predefined structures onto a data set. If the structures do not fit the data,
the clustering will fail and the evaluation criteria will lead to erroneous conclusions.
Recently, the abstract U-matrix has been defined for emergent self-organizing maps
(ESOM). In this work the abstract forms of the P- and the U* are defined in anal-
ogy to the P- and the U*-matrix on ESOM. The abstract U*-matrix can be used for
AU*-clustering of data by taking account of density and distance structures. For AU*-
clustering the structures seen on the ESOM serve as a supervising quality measure.
In this way it can be determined whether an AU*-clustering represents important
structures inherent to the high dimensional data. Importantly, AU*-clustering does
not impose a geometric cluster shape, which may not fit the underlying data structure,
onto the data set. The approach is demonstrated on benchmark data as well as real
world data from spatial science.

Keywords Self-organizing maps + U-matrix

A. Ultsch (X)

DataBionics Research Group, University of Marburg, Hans-Meerwein-Stral3e,
35032 Marburg, Germany

e-mail: ultsch@Mathematik.Uni-Marburg.de

M. Behnisch
Leibniz Institute of Ecological Urban and Regional Development (IOER),
Weberplatz 1, 01217 Dresden, Germany

J. Lotsch
Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7,
60590 Frankfurt Am Main, Germany

J. Lotsch

Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group
Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7,
60590 Frankfurt Am Main, Germany

© Springer International Publishing Switzerland 2016 39
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_3

40 A. Ultsch et al.

1 Introduction

It is known that classical clustering algorithms can frequently fail to produce a cor-
rect clustering even on data with a clearly defined cluster structure and for which
the correct number of clusters is provided as input. This can be demonstrated, for
example, on the “Lsun” data set (Fig. 1) from the Fundamental Clustering Problems
Suite (FCPS) published as benchmark problems for clustering algorithms [1].

Lsun consists of three clearly separated sets of points on an x-y plane in the form
of two elongated rectangular sets forming the letter L and a circular shaped set of
points forming the “sun” (Fig. 1, left panel). Popular clustering algorithms such as k-
means, Ward, complete- and average linkage all fail to cluster this data set correctly.
Figure 1 shows the result of a k-means respectively Ward clustering with the correct
number of clusters (i.e. 3) as input (Fig. 1, middle and right panels). The reason for
this not uncommon phenomenon of incorrect clustering is that these algorithms imply
a geometrical model for the cluster structure. That is, k-means clustering produces a
spherical cluster shape, while Ward hierarchical clustering produces a hyperelliptic
shape. If this implicit assumption on cluster shape does not fit the underlying data
structure, the clustering will fail.

Emergent self-organizing feature maps (ESOM) [2] using the U-matrix [3] repre-
sent a topology-preserving mapping of high-dimensional data points x;e R” onto a
two-dimensional grid of neurons. In a 3D-display of the U-matrix (e.g. see Fig.2 in
[4]), valleys, ridges and basins indicate a distance-based cluster structure in the data
set. Figure 2 (left panel) shows the U-matrix for the Lsun data. The P-matrix on the
ESOM enables the visualization of density structures within the data. Both measures,
i.e. densities and distances, are combined in the U*-matrix [3] (Figs.2 and 3). In this
way it is possible to discover cluster structures in a data set that are both density-
and distance-based. However, ESOM is simply a method to project data from the
D-dimensional data space into the plane or the three dimensional landscapes of the

k-means Clustering, k=3 Ward Clustering, k=3
T T T

1|

Zara ‘u\v" a2 =
.

‘
u- T 11
’&&- i, ", ;\"..i."’
u, ‘.0.._; B emfia gt
o 2 3 4

X

Fig. 1 Lsun data set and some clustering examples

ESOM Visualizations for Quality Assessment in Clustering 41

U-matrix 50x82 neurons, scale: distances in data space

Fig. 2 U- and P-matrix of the Lsun data set

Ur-matrix, scale: distance and density in data space

Fig. 3 U*-matrix and “Political Map” for Lsun

U-, P- and U*matrix (ESOM matrices). If cluster structures are revealed through the
ESOM matrices, a clustering algorithm is required that can reproduce the structures.

The recently introduced “Abstract U-matrix” (AU-matrix) [5] formally explains
the structures seen in the U-matrix. In this work, the abstract P (AP-matrix) and
abstract U* (AU*-matrix) are defined. Classical clustering algorithms can be used on
the AU*-matrix. The validity of this type of clustering can be assessed by comparing
results with the structures seen on ESOM matrices in the form of “Political Maps”.
The approach is demonstrated on the Lsun data set and on a real-world data set from
spatial science research.

2 Methods

The ESOM displays the U-matrix on top of an SOM on the output grid arranged in r
rows and ¢ columns using a large (r*c > 4000) number of neurons. Large U-heights
in the U-matrix indicate a wide gap in the data space whereas low U-heights indicate

42 A. Ultsch et al.

that the points are close to one another. In a 3D display of the U-matrix, valleys,
ridges and basins indicate distance-based cluster structures in the data. The P-matrix
[3] displays the point density p(x) = |{data points x;| d(x;, x) <= r}| estimated
as the number of data points in a sphere of radius r around x at each grid point on the
ESOM’s output grid. The U*-matrix combines distance structures (U-matrix) and
density structures (P-matrix) into a single matrix (U*-matrix) [3].

The combination can be formalized as pointwise matrix multiplication: U* =
U*F (P),where F(P) isamatrix of factors f(p) that are determined through a linear
function f on the densities p = p(x) of the P-matrix. The function f is calculated
suchthat f(p) = 1ifthedensity p isequal tothe medianand f(p) = Oif pisequal to
the 95-percentile (p95) of the densities in the P-matrix. For p(x) > p95: f(p) =0,
which indicates that x is well within a cluster and results in zero heights in the U*
matrix. The P-matrix allows the identification of density-based clusters in data sets.
The U*-matrix shows a consistent picture of density and distance structures in the
data.

The abstract U-matrix (AU-matrix) is a three-dimensional structure with the
Voronoi cells of the best-matching units (BMUs) of the data as floor and the data
distances corresponding to adjacent Voronoi cells as walls [5]. The AU-matrix can
be calculated as the product of the adjacency matrix Del of the Delaunay graph of the
best-matching units (BMU) with the matrix of distances D between the data points,
i.e. AU = Del* D. In analogy to the P-matrix, the abstract P-matrix is defined as
follows: Let Del(i, j) be an edge in Del. This implies that the Voronoi cells of data
points x; and x; are adjacent. The point (midpoint) m; ; = mean(x;, x;) is the point
in data space corresponding to AU (i, j). The abstract P-matrix (AP-matrix) contains
the densities of all these midpoints: AP (i, j) = p(mi, j). The Abstract U*matrix
(AU*-matrix) is calculated in the same way as the U*-matrix (see above). It defines
a distance between the data points that takes into account (i) the topology preserving
projection of the SOM, (ii) the U-matrix structure and (iii) the density structure of the
data. The “Political Map” of an ESOM is a coloring of the Voronoi cells of the BMUs,
with different colors for each cluster. Figure 3 (right panel) shows a Political Map for
a Ward clustering of the AU*-matrix. A correct clustering using the AU* distances
(AU*-clustering) coincides with the structures seen on the ESOM-matrices. Thus,
AU*-clustering is a clustering of the data whose results can be visually inspected
and supervised using the ESOM-matrices and, in particular, using “Political Maps”.
This concurs with the structures seen in the other ESOM matrices and enables the
validation or invalidation of the data clustering.

3 Relationship to Other Approaches

The Abstract U-matrix (AU-matrix), as well as the extensions presented here (AP-
matrix, AU*-matrix), are concepts which help to understand what an empirical
U-Matrix, respectively P-Matrix and U*-Matrix, shows which is constructed by the

ESOM Visualizations for Quality Assessment in Clustering 43

learning algorithm of an SOM on a data set. The concepts presented here are designed
for emergent SOMs (ESOM). These have the property of using SOM which have
a very large number of neurons, even substantially more neurons than data points.
From our perspective, the number of neurons can be thought of as the pixel resolution
of a digital photo camera: the more pixels (neurons) the better the image resolution,
i.e. the representation of high dimensional data space. It is clear that time and costs
for data processing increase with the number of neurons. However, two factors serve
to reduce this burden: improved learning algorithms for the SOMs and Moore’s law,
which famously states that computing power doubles every two years.

A different approach to Kohonen maps is the so-called k-means-SOM, which
uses only few units to represent (clusters of) data. For example, Cottrell and de Bodt
use 4 x 4 units to represent the 150 data points in the Iris data set [6]. In contrast
to these approaches, ESOMs represent more of the high dimensional space in their
neurons than just the BMUs of the data points. BMUs on ESOM only have more
than one data point as attractors if they are practically identical in data space. The
connectivity matrix CONN [7-9] assumes non-zero density of data points within the
attractor field, i.e. the number of data points projected onto one BMU. The number of
data points in these Voronoi cells represents a frequency count. However, this is not
a valid density measure, since the volumes of the Voronoi cells of different BMUs
may be quite different.

A single wall of AU matrix represents the true distance information between two
points in data space. A valid density information at the midpoints between BMU
and second BMU (notation taken from [7-9]) is calculated for the AP-matrix, since
the same volumes, i.e. spheres of a predefined radius, are used. The AU*-matrix
therefore represents the true distance information between two points weighted by
the true density at the midpoint. The representation is such that high densities shorten
the distance and low densities stretch this distance. Using transitive closure for these
weighted distances allows classical clustering algorithms (AU*-clustering) to actu-
ally perform distance- and density-based clustering, taking into account the complex
topology of partially entwined clusters within the data.

As the walls of the AU*-matrix are “paper-thin” there is hardly any way to actually
display the AU*-matrix directly. However, an empirical given U*-matrix can and
should be adjusted, scaled and normalized to fit best the properties of the AU*-
matrix. Such a normalized U*-matrix can then be understood as a visualization of
the abstract AU*-matrix.

4 AU*-clustering of the Benchmark Data Set

A top view of the U-matrix using a geographical analogy for color-coding of distances
separates the two classes visually as a ridge between valleys (Fig. 2 left panel). This
allows the identification of the number of clusters. The P-matrix (Fig. 2 right panel)
shows particularly low data densities at those neurons where high values in the

44 A. Ultsch et al.

U-matrix are observed. This confirms that the parameter for the density calculation,
i.e. the radius of the Parzen window (sphere), is correctly chosen. Furthermore, it
shows that the density in the red class (sun) is considerably lower than in the two
L-classes in Lsun.

The U*-matrix shown in the left panel of Fig. 3 displays enhanced ridges between
the prospective clusters and indicates the cluster centers. The results of the AU*-
clustering using Ward clustering on the AU*-matrix are shown as the “Political Map”
in Fig. 3. Clustering accuracy using AU*-clustering of the Lsun data was 100 % as
compared with the true classification shown in Fig. 1 (left panel).

5 AU#*-clustering Applied to FCPS Data Sets

AU*-clustering (AU*C) is the application of a classical clustering algorithm using
the AU* distances taken from the Abstract AU*-matrix. Here AU*C-clustering was
applied to the data sets in the Fundamental Clustering Problems Suite (FCPS) [10].
FCP was accessed on September 15th, 2015, and downloaded from http://www.uni-
marburg.de/fb12/datenbionik/downloads/FCPS.

FCPS offers a variety of clustering problems that any algorithm should be able to
handle when facing real world data [10], and thus serves as an elementary benchmark
for clustering algorithms. FCPS consists of data sets with known a priori classifica-
tions that are to be reproduced by the algorithm. All data sets are intentionally cre-
ated to be simple, enabling visualization in two or three dimensions. Each data set
represents a certain problem that is solved by known clustering algorithms with vary-
ing degrees of success. This is done in order to reveal the benefits and shortcomings
of the algorithms in question. Standard clustering methods, e.g. single-linkage, ward
und k-means, are not able to solve the FCPS problems satisfactorily [10].

Here the accuracy of data clustering, i.e. agreement of U*C on FCPS with the a
priori classification, was as follows:

Data Set Accuracy (%)
Atom 100.00
Chainlink 100.00
EngyTime 95.00

Hepta 100.00
Lsun 100.00
Target 100.00
Tetra 99.00

TwoDiamonds|100.00
WingNut 100.00
GolfBall 100.00

http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS
http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS

ESOM Visualizations for Quality Assessment in Clustering 45

6 AU*-clustering Applied to Spatial Science Data

The AU*-clustering was applied to a data set describing the dynamics of land
consumption in all of Germany’s municipalities (n = 11, 441; data valid as of
31.12.2010). The data set captures changes in land consumption in the years 2000
to 2010. Land consumption dynamics (LCD) are described along four dimensions:
changes in land usage, changes in population density, changes in trade tax revenues
and changes in municipal populations. The rededication of open space into settle-
ment and transportation areas has long been the subject of debate. In many related
works, clustering has been employed as a popular method intended to answer spe-
cific research questions such as: “How many forms of land consumption exist in
Germany?” Most recent approaches have used a Ward or k-means clustering [11,
12]. However, many of these approaches have not validated the clustering. As men-
tioned above, k-means and Ward clustering algorithms are limited to finding clusters
of specific shape, e.g. spherical or ellipsoid respectively for a predefined number of
clusters.

The LCD data was ESOM projected onto a grid of 50 x 160 = 8000 neurons.
Figure4 shows the U*-matrix of this projection. An AU*-clustering of the data
resulted in eight different clusters. Figure 5 shows the political map of this cluster-
ing. A comparison with the U* Matrix of the same data set shows excellent coin-
cidence of the observed structures. The ESOM matrices in Figs.4 and 5 are toroid,
i.e. the borders top-bottom and left-right connect to one another [3]. The identified
clusters could be related to previously unknown structures of spatial effects in land
consumption in German municipalities. For example, one of the clusters indicates
that an increase in trade tax per inhabitant was unexpectedly associated with a loss
in open spaces and also in population. This points to possible problems in munici-
pal development. Another cluster could be characterized as comprising communities

U-Map

»
«
==
=

Y

A

SZ 0\ X
> 4]

<G
(T =

Fig. 4 U*-matrix of the LCD-data set

A. Ultsch et al.

voronoi(X,Y)

undergoing the highest change in land consumption within one decade. This could be
observed particularly in periurban rural areas. Such results help in the development

Fig. 5 Political Map of an AU*-clustering of the LCD data set

46

and optimization of planning programs for sustainable land development. Moreover,
the results can be used to help establish a monitoring framework and as the basis for

support systems for spatial decision-making. Thus, AU*-clustering offers a deeper
multidimensional description of the characteristics of municipal land consumption

for cooperating spatial experts.

1SCuss1on

7 D

i.e. no extrinsic
the popular

evaluation is readily possible. Intrinsic evaluation measures for clustering methods
try to capture numeric features of distances with respect to the assumed clusters.

i

Learning. As no desired or “correct” results are available, the results of the algo-
large values to the distances between clusters. However, these measures also implic-

They rely on the assignment of low values to the distances within a cluster and of
itly define the geometrical structure of an optimal cluster. For example,

Clustering algorithms belong to the class of unsupervised algorithms in Machine

rithm cannot be directly evaluated with respect to their correctness

silhouette coefficient [13] compares the average distance to elements within the same

cluster with the average distance to elements in other clusters.

This defines the sphere

as the optimal cluster shape. As a consequence, silhouette coefficients do not favor

the best cluster structure but rather the cluster

means clus-

structure found by a k

tering. Therefore, intrinsic evaluation measures do not allow for the conclusion that

some clustering algorithms are better than others as they rely on the existence of the

ESOM Visualizations for Quality Assessment in Clustering 47

structure imposed by either algorithm. If the data set in fact contains a differing
structure, they will neither provide the correct clustering nor allow the quality of
the results to be determined. The Ward and k-means results for the Lsun data set
demonstrate this effect (Fig. 1).

ESOM are based on the topology-preserving projection of the data onto the output
plane by the underlying SOM. The structures seen on the ESOM matrices therefore
allow visual (in-)validation of the cluster structures in the data. Such structures may
be defined by distances (U-matrix), densities (P-matrix) or a combination of both
(U*-matrix). The abstract form of these three matrices can be used to understand the
perceived structures. In this paper, it is proposed that they may be used for clustering
(AU*-clustering). The result of a clustering using the AU*-matrix can be compared
to the structures seen in the U*-matrix using “Political Maps”. This means that if the
clustering reproduces the observed structures, it correctly represents (topologically)
the structural features of a data set. The algorithm does not impose a model of cluster
structure onto the data set. In the data on land consumption dynamics, the AU*-
clustering approach produced a map showing eight different types of dynamics. It
could be validated with regard to the ESOM matrices constructed for this data set.
The resulting clusters were meaningful for the experts in spatial development and
planning.

8 Conclusions

Clustering belongs to unsupervised machine learning algorithms for which no “cor-
rect” results exist a priori. Classical clustering algorithms and intrinsic evaluation
measures of cluster quality impose a predefined structure onto a data set, which can
lead to mis-clustering if the imposed structures do not fit the data. By contrast, the
here presented professionally constructed ESOM represents a topologically correct
projection of the data. The U-Matrix allows visual inspection of distance structures
while the P-matrix enables assessment of density structures in the data, and the U*-
matrix combines both. In this work the abstract form of these matrices was used for
data clustering (AU*-clustering) where the structures seen in the ESOM matrices
proofed as a valid quality measure. It can therefore be concluded that this clustering
represents important structures in the data without requiring an implicit predefinition
of cluster shape or number.

References

1. Ultsch, A.: Clustering with SOM: U*C. Workshop on Self-Organizing Maps, pp. 75-82. Paris
(2005)

2. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43,
59-69 (1982)

48

10.

11.

12.

13.

A. Ultsch et al.

. Ultsch, A.: Maps for Visualization of High-Dimensional Data Spaces. WSOM, pp. 225-230,

Kyushu, Japan (2003)

. Lotsch, J., Ultsch, A.: A machine-learned knowledge discovery method for associating complex

phenotypes with complex genotypes. application to pain. J. Biomed. Inf. 46, 921-928 (2013)

. Lotsch, J., Ultsch, A.: Exploiting the structures of the U-matrix. In: Villmann, T., Schleif, F.-

M., Kaden, M., Lange, M. (eds.) Adv. Intell. Syst. Comput., vol. 295, pp. 248-257. Springer,
Heidelberg (2014)

. Cottrell, M, de Bodt, E.: A Kohonen Map Representation to Avoid Misleading Interpretations,

ESANN’96, pp. 103-110. DeFacto, Bruges, Belgium (1996)

. Tademir, K., Mernyi, E.: Exploiting data topology in visualization and clustering of self-

organizing Maps. IEEE Trans. Neural Netw. 20(4), 549-562 (2009)

. Merényi, E., Tasdemir, K., Zhang, L.: Learning highly structured manifolds: harnessing the

power of SOMs. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity Based
Clustering. Lecture Notes in Computer Science, LNAI 5400, pp. 138-168. Springer, Berlin
(2009)

Tasdemir, K., Merényi, E.: A validity index for prototype based clustering of data sets with
complex structures. IEEE Trans. Syst. Man Cybern. Part B. 02/2011 41(4), 1039-1053 (2011)
Ultsch, A.: Clustering with SOM: U*C. In: Proceedings Workshop on Self-Organizing Maps
WSOM, pp. 75-82. Paris, France (2005)

Kroll, F., Haase, D.A.: Does demographic change affect land use patterns? a case study from
Germany. Land Use Policy 27, 726-737 (2010)

Hietel, E., Waldhardt, R., Otte, A.: Analysing land-cover changes in relation to environmental
variables in Hesse Germany. Landsc. Ecol. 19(5), 473—489 (2004). Springer, New York
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Comput. Appl. Math. 20, 53-65 (1987)

SOM Quality Measures: An Efficient
Statistical Approach

Lutz Hamel

Abstract We are interested in practical tools for the quantitative evaluation of self-
organizing maps (SOMs). Recently it has been argued that any quality measure for
SOMs needs to evaluate the embedding or coverage of a map as well as its topological
quality. Over the years many different quality measures for self-organizing maps have
been proposed. However, many of these only measure one aspect of a SOM or are
computationally very expensive or both. Here we present a novel, computationally
efficient statistical approach to the evaluation of SOMs. Our approach measures both
the embedding and the topological quality of a SOM.

1 Introduction

We are interested in practical tools for the quantitative evaluation of trained self-
organizing maps (SOM) [10]. Here we present an efficient statistical approach to
the evaluation of SOM quality. A nice overview of common SOM quality measures
appears in [14]. The measures described there report on either the quality of map
embedding in the data input space, sometimes called coverage (e.g. quantization error
[10]) or on the topological quality of the map (e.g. topographic error [9]). Another
measure not mentioned in the above overview is the neighborhood preservation [3]
which similarly to the topographic error strictly measures the topological quality of
a map.

More recently it has been argued that any SOM quality measure needs to report
on both the embedding of the map in the input data space as well as the topological
quality of a map [2]. To this we would like to add that any practical SOM quality
measure also has to be computationally efficient. Most quality measures fail these
requirements: they either only measure one aspect of a SOM or they are computa-
tionally very expensive or both. Here we propose a statistical approach that measures

L. Hamel (<)

Department of Computer Science and Statistics, University of Rhode
Island, RI 02881 Kingston, USA

e-mail: hamel @cs.uri.edu; lutz.hamel @ gmail.com

© Springer International Publishing Switzerland 2016 49
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_4

50 L. Hamel

both the embedding and the topological quality of a map and is computationally effi-
cient even for large training data sets and/or maps. Our proposed measure computes
the quality of a SOM as a pair of numbers: (1) the embedding accuracy, (2) the
estimated topographic accuracy. The embedding accuracy is a quality measure we
first explored in [6] as a convergence criterion and we reexamine it here in this new
context. The estimated topographic accuracy is a novel statistical approach to the
topological quality of a map. Besides developing our statistical approach here we
also provide a preliminary validation.

The remainder of this paper is structured as follows. Section 2 examines our notion
of embedding summarizing major results. We develop the estimated topographic
accuracy in Sect. 3. Our implementation is briefly discussed in Sect.4. We provide
the results of our preliminary validation in Sect.5. Section6 provides conclusions
and points to further work.

2 Map Embedding Accuracy

Yin and Allinson have shown that under some mild assumptions the neurons of a
large enough self-organizing map will converge on the probability distribution of the
training data given infinite time [19]. This is the motivation for our map embedding
accuracy:

A SOM is completely embedded if its neurons appear to be drawn from the same distribution
as the training instances.

This was the basic insight of our original SOM convergence criterion [6]. Here we
briefly summarize and adjust our terminology with respect to embedding.

Our view of embedding naturally leads to a two-sample test [12]. Here we view
the training data as one sample from some probability space X having the probability
density function p(x) and we treat the neurons of the SOM as another sample. We
then test to see whether or not the two samples appear to be drawn from the same
probability space. If we operate under the simplifying assumption that each of the
d features of the input space X C R? are normally distributed and independent of
each other, we can test each of the features separately. This assumption leads to a fast
algorithm for identifying SOM embedding: We define a feature as embedded if the
variance and the mean of that feature appear to be drawn from the same distribution
for both the training data and the neurons. If all the features are embedded then we
say that the map is completely embedded.

The following is the formula for the (1 — o) * 100 % confidence interval for the
ratio of the variances from two random samples [12],

2 2 2
S 1 o s
1 1 1
< 2 < 2 : f%,nlfl,nzflv (1)

85 Sfem-tm-1 0;)

SOM Quality Measures: An Efficient Statistical Approach 51

where s? and s3 are the values of the variance from two random samples of sizes
ny and n, respectively, and where f%,nl_1,,12_] is an F distribution with n; — 1 and
ny — 1 degrees of freedom. To test for SOM embedding, we let 512 be the variance
of a feature in the training data and we let s% be the variance of that feature in the
neurons of the map. Furthermore, 7| is the number of training samples and n, is the
number of neurons in the SOM. The variance of a particular feature of both training
data and neurons appears to be drawn from the same probability space if 1 lies in
the confidence interval denoted by Eq. (1): the ratio of the underlying variance as
modeled by input space and the neuron space, respectively, is approximately equal
to one, 012 /oy ~ 1, up to the confidence interval.

In the case where X and X, are the values of the means from two random samples
of size n; and n,, and the variances of these samples are o and o5 respectively, the
following formula provides (1 — o) * 100 % confidence interval for the difference
between the means [12],

2 2

o ol o

i — H2 > (X1 —X2) —zg -y [— + —=, (2)
ni np
o o o2

1 — p2 < (X1 —X2) +ze - — + —. 3)
ni ny

The mean of a particular feature for both training data and neurons appears to be
drawn from the same probability space if O lies in the confidence interval denoted by
Egs. (2) and (3). Here z ¢ is the appropriate z score for the chosen confidence interval.

We say that a feature is embedded if the above criteria for both the mean and
variance of that feature are fulfilled. We can now define the map embedding accuracy

for d features,
1
= i 4
ea=- ;:1 P 4)

where
[1 if featurei is embedded,
Pi =

0 otherwise.

The map embedding accuracy is the fraction of the number of features which are
actually embedded (i.e. those features whose mean and variance were adequately
modeled by the neurons in the SOM). With a map embedding accuracy of 1 a map is
fully embedded. In order to enhance the map embedding accuracy in our implementa-
tion [7], we multiply each embedding term p; by the significance of the corresponding
feature i which is a Bayesian estimate of that feature’s relative importance [5].

The computational complexity of our map embedding accuracy is,

O((n+m) x d))

52 L. Hamel

with n the number of training examples, m the number of neurons, and d the number
of features. For most cases we have that d <« n and d < m, therefore we can say our
algorithm is quasi-linear in the sum of the number of training examples and number
of neurons. This means that computing the map embedding accuracy is efficient for
most cases.

In essence our map embedding accuracy measures the same thing as the quanti-
zation error: the effective representation of the training data by the neurons of a map.
There is one big difference; our map embedding accuracy indicates when a map is
completely embedded, that is, it indicates when statistically there is no difference
between the population of training points and the population of neurons. No such
criterion exists for the quantization error. The ramification is that the map embedding
accuracy can be used as a measure across different sized maps where the quantiza-
tion error cannot [14]. A more in-depth statistical analysis of our map embedding
accuracy can be found in [13].

3 Estimated Topographic Accuracy

Many different approaches to measuring the topological quality of a map exist, e.g.
[11, 18]. But perhaps the simplest measure of the topological quality of a map is the
topographic error [9] defined as:

te = % Eerr(xi) (6)

with
1 ifbmu(x;) and 2bmu (x;) are not neighbors,
0 otherwise.

err(x;) = {
for training data {x1, ..., x,,} where bmu(x;) and 2bmu(x;) are the best matching
unit and the second-best matching unit for training vector x; on the map, respectively.
We define the topographic accuracy of a map as,

ta=1—te. 7

Computing the topographic accuracy can be very expensive, especially for large
training data sets and/or maps. If we let n be the size of the training data, m the
number of neurons of the map, and d the number of features of the training data,
then the complexity of computing the topographic accuracy is,

O(nxmxd). (3

SOM Quality Measures: An Efficient Statistical Approach 53

One way to ameliorate the situation is to sample the training data and use this sample
S to estimate the topographic accuracy. If we let s be the size of the sample then the
estimated topographic accuracy is,

/o 1 : X
tad =1-— < Zerr(x,) 9

i=1

with x; € S and complexity O(s x m x d). As we will see later in the paper we can
get accurate values for ta’ with very small samples. Therefore we can assume s < m.
Also, in most cases we have d < m. Therefore, the complexity of ta’ becomes quasi-
linear in the number of neurons of the map which again represents a very efficient
algorithm to compute the estimated topographic accuracy.

In addition to computing the value for the estimated topographic accuracy we
use the bootstrap [4] to compute values for an appropriate confidence interval in
order to give us further insight into the estimated topographic accuracy in relation
to the actual value for the topographic accuracy whose value should fall within the
bootstrapped confidence interval.

It is easy to see from (9) that for topological faithful maps the estimated topo-
graphic accuracy should be close to 1. We then say that the map is fully organized.

4 Implementation

We maintain an R package called popsom [7] in the CRAN repository [15]. The
functionality discussed in this paper has been implemented in that package and is
available as of package version 3.0.! Here is a sample session using our package:

library (popsom)

data(iris)

df <- subset(iris,select=-Species)

labels <- subset(iris,select=Species)

m <- map.build(df, labels, xdim=15, ydim=10, train=1000)
g <- map.quality(m)

cat (sprintf ("embedding: %3.2f\n",gSembedding))
embedding: 0.81

0 o U W N
vV V.V VvV V V V

9: > acc <- gSaccuracySacc
10: > lo <- gSaccuracy$lo
11: > hi <- gSaccuracys$hi
12: > cat(sprintf ("accuracy: %3.2f (%3.2f-%3.2f)\n",acc,lo,hi))
13: accuracy: 0.94 (0.86-1.00)
14: >

I'The 3.0 version should be available on CRAN by August 2015.

54 L. Hamel

The first four lines deal with loading the package and the data and then preparing the
data for building maps. On the fifth line we build a map with dimensions 15 x 10
using 1000 training iterations. On line six we compute the map quality. This computes
a value with multiple components which we print out separately on the following
lines. The embedding accuracy is 0.81 and the estimated topographic accuracy is 0.94.
The bootstrapped 95 % confidence interval for the estimated topographic accuracy
is 0.86-1.00. One way to interpret this interval is that there is a 95 % probability
that the topographic accuracy computed on the whole training data lies within the
interval 0.86—1.00.

5 Preliminary Validation

For our preliminary validation we use the same experiments as in [14]; namely we
use the Iris data set [1] (4 independent variables, 150 instances, 3 classes) and the
Epil data set [16] (8 independent variables, 236 instances, 2 classes). We build SOMs
with the following sizes for the Iris data set:

e small Iris map: 5 x 3 (15 nodes)
e medium Iris map: 11 x 6 (66 nodes)
e large Iris map: 23 x 11 (253 nodes)

and SOMs of the following sizes for the Epil dataset:

e small Epil map: 5 x 4 (20 nodes)
e medium Epil map: 10 x 8 (80 nodes)
e large Epil map: 22 x 15 (330 nodes)

Map quality does depend largely on two factors: the map size and the number of
training iterations applied to a map. Therefore, the big difference between our study
and the original study is that we not only track map sizes but also the number of
training iterations applied to each map. This allows us to observe the respective
quality measures with regards to map sizes and training iterations. Table 1 shows our
results for the Iris data set. Here we have the following abbreviations:

e ifer: training iterations
e gerr: the quantization error defined as

l n
== b i) — x|l 10
qerr = E l1bmu(x;) — x;l| (10)

i=l1

where ||bmu(x;) — x;|| represents the Euclidean distance between point x; and
its best matching unit bmu(x;) on the map

ea: embedding accuracy as defined by (4)

ta: topographic accuracy as defined by (7)

ta’: estimated topographic accuracy as defined by (9)

(lo-hi): bootstrap estimate of the 95 % confidence interval of ra’

SOM Quality Measures: An Efficient Statistical Approach 55
Table 1 Results for the Iris data set
iter ‘ qerr ea ta ta' ‘ (lo-hi)
skoksk 5 X 3 skoksk
1 43.95 0.81 0.69 0.74 (0.64-0.86)
10 16.10 0.13 0.83 0.82 (0.70-0.92)
100 5.14 0.68 0.91 0.92 (0.84-0.98)
1000 3.29 1.00 0.95 0.94 (0.88-1.00)
10000 3.36 1.00 1.00 1.00 (1.00-1.00)
1 28.36 0.96 0.09 0.06 (0.00-0.14)
10 20.01 0.28 0.47 0.44 (0.28-0.58)
100 4.10 0.00 0.95 0.88 (0.82-0.96)
1000 1.27 0.96 0.99 1.00 (1.00-1.00)
10000 1.24 1.00 0.99 1.00 (1.00-1.00)
1 36.67 0.81 0.00 0.00 (0.00-0.00)
10 18.12 0.81 0.17 0.14 (0.06-0.22)
100 3.29 0.00 0.82 0.76 (0.64-0.88)
1000 0.59 0.81 0.98 1.00 (1.00-1.00)
10000 0.46 1.00 1.00 1.00 (1.00-1.00)

We can observe that the quantization error decreases for the most part for all map
sizes as the number of training iterations applied to the maps increases. One of the
big issues with the quantization error as a quality measure is to determine when it
is sufficiently small for the map to be considered to be a good map. That is, with
the quantization error there is no indication when a map is completely embedded.
Reducing the quantization error to zero is usually not the solution as then the map
will likely overfit the data as is usual with statistical models whose training error was
reduced to zero. Notice that the quantization error is non-zero for fully embedded
and fully organized maps.

Both the embedding accuracy (ea) and topographic accuracy (fa) increase with the
number of training iterations applied to a map until both reach 1 indicating that the
map is fully embedded and completely organized, respectively. There is phenomenon
where the random initialization of an untrained map can look like a fully embedded
map except that it is completely unorganized according to the topographic accuracy.

We can observe that the estimated topographic accuracy (ta’) is a good estimate
for the topographic accuracy (fa) as it usually falls within a couple of 1/100’s of the
actual value.

Finally, the topographic accuracy value ta falls within the bootstrap estimate of
the 95 % interval except for the cases where the map is completely unorganized or
the map is fully organized. In these boundary cases the 95 % confidence interval
does not fully predict the value of ta. In all the computations we use a sample size
of 50 to both compute the value of ta’ and to compute the bootstrap estimate of the

56 L. Hamel

Table 2 Results for the Epil data set

iter qerr ea ta ta' ‘ (lo-hi)

HHE G 5 [ek

1 21.06 0.91 0.37 0.34 (0.24-0.48)
10 12.08 0.30 0.54 0.50 (0.36-0.66)
100 5.50 0.23 0.92 0.90 (0.82-0.98)
1000 2.53 0.98 1.00 1.00 (1.00-1.00)
10000 2.01 0.91 1.00 1.00 (1.00-1.00)
100000 2.17 0.91 1.00 1.00 (1.00-1.00)
sk]0 X 8 sk
1 20.67 0.00 0.23 0.10 (0.02-0.18)
10 18.49 0.00 0.06 0.04 (0.00-0.10)
100 4.27 0.30 0.90 0.88 (0.78-0.96)
1000 1.02 0.91 0.98 1.00 (1.00-1.00)
10000 0.82 0.91 0.98 0.98 (0.92-1.00)
100000 0.93 0.91 0.97 0.98 (0.94-1.00)
1 17.76 0.00 0.00 0.00 (0.00-0.00)
10 16.99 0.30 0.06 0.02 (0.00-0.06)
100 8.52 0.30 0.62 0.62 (0.48-0.74)
1000 0.45 0.53 0.93 0.98 (0.94-1.00)
10000 0.27 0.68 1.00 1.00 (1.00-1.00)
100000 0.33 0.99 0.98 1.00 (1.00-1.00)

confidence interval. We take a look at the effects of the sample size on the value of
ta’ and the bootstrap estimate in the next section.

Table 2 shows the results of our experiments for the Epil data set. We can make
observations very similar to the observations we made on the Iris data set: The
quantization error decreases with training, both ea and ta increase with training until
they both reach 1, ta’ is a fairly accurate estimate of ta, and the bootstrap estimate
of the range of the actual value ta is correct except for the boundary cases. However,
the Epil data set seems to be inherently more complex than the Iris data set because
even with 100,000 iterations the embedding accuracy never quite reaches 1 even for
the small map.

It is interesting to see that in most cases the topographic accuracy converges on
1 much faster than the embedding accuracy, that is, in those cases fa indicates that a
map is fully organized without being fully embedded. Also, as we observed earlier,
an untrained map can appear to be fully embedded without being fully organized.
Therefore, both quality measures are necessary to fully evaluate the goodness of a map
and of course we prefer maps where both indices are close to 1. In our implementation
we could have created some sort of linear combination of both indices in order to
come up with a single quality index. However, we prefer the additional information
separate embedding and topographic accuracies purvey.

SOM Quality Measures: An Efficient Statistical Approach 57

Table 3 Effects of the sample size on the estimated topographic accuracy

k ta ta’ ‘ (lo-hi)

15 0.95 1.00 (1.00-1.00)
50 0.95 0.96 (0.90-1.00)
100 0.95 0.94 (0.89-0.98)
150 0.95 0.95 (0.91-0.98)

stk Bpil 4%

25 0.97 1.00 (1.00-1.00)
100 0.97 0.96 (0.92-0.99)
200 0.97 0.97 (0.94-0.99)
236 0.97 0.97 (0.94-0.99)

5.1 Sample Size and Estimated Topographic Accuracy

In order to see the effect the sample size has on the estimated topographic accuracy
and the corresponding bootstrap estimate of the confidence interval we trained the
respective medium sized maps for both the Iris and the Epil data set using 1000 itera-
tions. We then computed the topographic accuracy ta (7), the estimated topographic
accuracy ta’ (9), and the bootstrap estimate of the 95 % confidence interval using
sample sizes k that roughly corresponded to 10, 30, 60, and 100 % of the training
data. Table 3 shows the results. What is surprising that even with very small samples
we obtain accurate estimates of the topographic accuracy. On the other hand, the
bootstrap estimate of the confidence interval improves with larger sample sizes.
With a sample size that corresponds to 100 % of the data the interpretation of
the confidence interval slightly shifts. Here we see that the precise value of the
topographic accuracy and in turn the value of the topographic error is data depend.
The confidence interval at 100 % of the training data tells us that if we were to select
another set of data points from the same distribution as the training data in order to
compute the topographic accuracy we would expect a value within the given interval.

6 Conclusions and Further Work

We are interested in practical tools for the quantitative evaluation of self-organizing
maps. Here we presented a novel statistical approach to the evaluation of SOMs which
directly measures the embedding accuracy or coverage of a map and its topographic
accuracy. Both quality indices can be computed in quasi-linear time for most cases
making them computationally very efficient. We have provided an implementation
of our quality measure in form of an R package.

58 L. Hamel

Our preliminary validation seems to show that in essence our embedding accuracy
measures the same thing as the quantization error: the effective representation of the
training data by the neurons of a map. However, the embedding accuracy has the
advantage that it indicates when a map is fully embedded, i.e., statistically there will
be no improvement to the map with further training. Our preliminary validation also
seems to show that our estimated topographic accuracy is very accurate with respect
to the topographic accuracy computed on the whole training data set even when using
very small samples.

In terms of a more rigorous validation we would like to test our quality measures
against standard test suites such as FCPS [17] and on large real-world data sets.
Finally, in order to dispense with our normality and independence assumptions of our
data we consider switching to a multi-variate, non-parametric Kolmogorov-Smirnov
goodness of fit test [8]. Experiments with the univariate Kolmogorov-Smirnov test
seem promising.

Acknowledgments The author would like to thank Gavino Puggioni for suggesting the non-
parametric goodness of fit tests.

References

1. UCI machine learning repository: Iris data set. http://archive.ics.uci.edu/ml/datasets/Iris, (Feb
2012)

2. Beaton, D., Valova, I., MacLean, D.: Cqoco: a measure for comparative quality of coverage
and organization for self-organizing maps. Neurocomputing 73(10), 2147-2159 (2010)

3. De Bodt, E., Cottrell, M., Verleysen, M.: Statistical tools to assess the reliability of self-
organizing maps. Neural Netw. 15(8-9), 967978 (2002)

4. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press (1994)

5. Hamel, L., Brown, C.W.: Bayesian probability approach to feature significance for infrared
spectra of bacteria. Appl. Spectrosc. 66(1), 48-59 (2012)

6. Hamel, L., Ott, B.: A population based convergence criterion for self-organizing maps. In:
Proceedings of the 2012 International Conference on Data Mining, Las Vegas, Nevada (July
2012)

7. Hamel, L., Ott, B., Breard, G.: popsom: Self-Organizing Maps With Population Based Con-
vergence Criterion. http://CRAN.R-project.org/package=popsom (2015), r package version
3.0

8. Justel, A., Pefia, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of goodness of fit.
Stat. Probab. Lett 35(3), 251-259 (1997)

9. Kiviluoto, K.: Topology preservation in self-organizing maps. In: IEEE International Confer-
ence on Neural Networks, pp. 294-299. IEEE (1996)

10. Kohonen, T.: Self-organizing maps. Springer series in information sciences. Springer, Berlin
(2001)

11. Merényi, E., Tasdemir, K., Zhang, L.: Learning highly structured manifolds: harnessing the
power of SOMs. In: Similarity-based clustering, pp. 138—168. Springer (2009)

12. Miller, L., Miller, M.: John E. Freund’s Mathematical Statistics with Applications, 7th Edn.
Prentice Hall (2003)

13. Ott, B.H.: A convergence criterion for self-organizing maps. Master’s thesis, University of
Rhode Island (2012)

http://archive.ics.uci.edu/ml/datasets/Iris
http://CRAN.R-project.org/package=popsom

SOM Quality Measures: An Efficient Statistical Approach 59

14. Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Pro-

15.

16.

17.

18.

19.

ceedings of the Fifth Workshop on Data Analysis (WDA-04), pp. 67-82. Elfa Academic Press
(2004)

Team, R.C.: R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/. ISBN:3-900051-
07-0

Thall, PF,, Vail, S.C.: Some covariance models for longitudinal count data with overdispersion.
Biometrics 657-671 (1990)

Ultsch, A.: Clustering with SOM: U* C. In: Proceedings of Workshop on Self-Organizing
Maps, pp. 75-82. Paris, France (2005)

Villmann, T., Der, R., Herrmann, M., Martinetz, T.M.: Topology preservation in self-organizing
feature maps: exact definition and measurement. IEEE Trans. Neural Netw. 8(2), 256-266
(1997)

Yin, H., Allinson, N.M.: On the distribution and convergence of feature space in self-organizing
maps. Neural Comput. 7(6), 1178-1187 (1995)

http://www.R-project.org/

SOM Training Optimization Using Triangle
Inequality

Denny, William Gozali and Ruli Manurung

Abstract Triangle inequality optimization is one of several strategies on the k-
means algorithm that can reduce the search space in finding the nearest prototype
vector. This optimization can also be applied towards Self-Organizing Maps training,
particularly during finding the best matching unit in the batch training approach. This
paper investigates various implementations of this optimization and measures the
efficiency gained on various datasets, dimensions, maps, cluster size and density. Our
experiments on synthetic and real life datasets show that the number of comparisons
can be reduced to 24 % and the running time can also reduced to between 63 and 87 %.

Keywords Self-Organizing Map - Optimization - Implementation - Triangle
inequality

1 Introduction

Clustering is an exploratory data analysis technique that aims to discover the under-
lying structures in data. A cluster is a set of similar observations of entities, but
these observations are dissimilar to observations of entities in other clusters. Self-
Organizing Maps (SOM) are suitable for such exploratory data analysis as SOMs
perform vector quantization, projection of high dimensional data to low dimensional
maps, and provide various visualizations.

This paper aims to optimize SOM training. This optimization is useful when
training large maps, especially training an Emergent SOM with at least a few thou-
sands nodes, typically above 4000 nodes [9]. One strategy to make the algorithm run

Denny (B<) - W. Gozali - R. Manurung
Faculty of Computer Science, University of Indonesia, Depok, Indonesia
e-mail: denny @cs.ui.ac.id

W. Gozali
e-mail: willam.gozali@ui.ac.id

R. Manurung
e-mail: maruli@cs.ui.ac.id

© Springer International Publishing Switzerland 2016 61
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_5

62 Denny et al.

faster is to reduce the search space in finding the Best Matching Unit (BMU). In the
unoptimized version, or exhaustive full search (EFS), finding the BMU for a data
vector is done by iterating through all possible prototype vectors, which takes O (k).
One approach to reduce the search space is by using efficient data structures that
support nearest neighbor queries, such as the kd-tree. However, the performance for
kd-tree nearest neighbor searching is exponential in the dimensionality of the data.

One interesting method to reduce the BMU search space is presented in [2],
which exploits the property of distance metrics that satisfy the triangle inequality.
The approach was implemented for the k-means algorithm, and was shown to be
efficient even when the dimensionality of the data is high. The result produced using
this optimization is exactly the same as when using EFS, meaning no approximation
occurs.

As k-means and SOM have similarities in finding the BMU, we are interested in
investigating the efficiency of triangle inequality optimization when used for SOM.
This paper investigates various implementation strategies for triangle inequality opti-
mization on SOM training algorithms in Java.

The next section discusses SOM training and its optimization. Section 3 discusses
various implementations of triangle inequality optimizations on SOM training.
Section4 then evaluates the proposed optimizations using synthetic and real life
datasets. Sections5 and 6 present and discuss the results. Conclusions and future
works are provided in Sect.7.

2 SOM Training and Optimizations

There are two approaches to training a SOM: sequential training and batch train-
ing [4]. In the sequential training algorithm, the map is trained iteratively by taking
training data vectors one by one from a training data vector sequence, finding the
BMU for the selected training data vector on the map, and updating the BMU and
its neighbours closer toward the data vector. This process of finding the BMU and
updating the prototype vectors is repeated until a predefined number of training iter-
ations or epochs is completed. The proposed optimization is not suitable for this
approach as the prototype vectors change after finding one BMU.

Unlike the sequential training algorithm, in the batch training algorithm the whole
dataset, instead of a single data vector, is presented to the map before updating the
values of the prototype vectors. In the batch training algorithm, the values of new
prototype vectors m; (¢ + 1) are weighted averages of the training data vectors x;,
where the weight is the neighbourhood kernel value /4, ; centred on the BMU b; [4].
The proposed optimization is suitable for this approach, since the prototype vectors
are updated at once.

Finding the BMU in the batch training algorithm can be performed in parallel as
the prototype vectors of the map M are updated after finding BMUs of all data vec-
tors. Therefore, it can utilize a multi-processor environment to speed up the training
process. Parallelizing SOM training can be performed by partitioning the dataset or
partitioning the map [7, §].

SOM Training Optimization Using Triangle Inequality 63

To reduce the search complexity of Kohonen’s SOM, Koikkalainen and Oja [5]
proposed a tree-structured topological feature map (TSTFM) that reduces the com-
putational complexity to find BMU from O (|]M|) to O (log | M|). This efficiency
is achieved by restructuring the prototype vectors into pyramid-structured prototype
vectors where each node has 2 x 2 subnodes. With pyramidal structure, TSTFM is
not flexible in terms of the ratio of each side length. Cheung and Constantinides [1]
compared various fast nearest neighbour search algorithms for SOM and VQ. Their
experiments were performed on a small map size (100 prototype vectors) using a
non-parallel execution environment. They argued that triangle inequality was not
considered because the cost of preprocessing outweighed the gain in search. This is
true when the triangle inequality is applied on the sequential training algorithm, but
not for the batch training algorithm as discussed in this paper. Laha et al. [6] also
proposed optimization in BMU searching by exploiting topological order property.
To handle map folding, they use EFS when folding is detected. Furthermore, they
also use another SOM as the second layer to partition the prototype vectors of the first
layer SOM. Therefore, the results of this optimization is an approximation, which
may lead to inferior results compared to an EFS.

3 SOM Training Algorithm with Triangle
Inequality Optimization

Using Lemma 1, the search space when finding the BMU for a data vector x; can
be reduced. This is done by picking any prototype vector m, and checking another
prototype vector starting from the closest one to m. When a prototype vector my
is encountered, where d (m, m;) > 2 - d (x;, m), then no further BMU searching is
necessary for x;. The rest of the prototype vectors cannot be the BMU for x;, as
their distance to x; cannot be smaller than d (x;, m). Figure 1 shows the graphical
representation in two dimensional space.

Lemma 1 Given three vectors, a, b, and ¢, ifd (b,¢) > 2 -d (a,b), thend (a, c) >
d (a,b).

The next problem is choosing the ideal prototype vector m which minimizes the
search space. Intuitively, smaller 2 - d (x;, m) leads to a smaller number of prototype
vectors to be checked. The BMU for x; in the previous epoch (pBMU (i)) is a
suitable candidate for m.

Fig. 1 Prototype vector m; T
where i = {4, 5, 6} cannot be //2,1;(,(“ o \
BMU for x;, as / é’
d(m,m;) >2-d(x;, m). lo me ny,
Thus, these prototype vectors m3 |
can be ignored in finding °
BMU o« M

64 Denny et al.

Based on this main idea, we derived three variants of triangle inequality optimiza-
tion: static (STI), dynamic (DTI), and lazy (LTT). The first two are already presented
in [2], and the third one is our proposed variant. We also propose a memory opti-
mization for the static variant.

3.1 Static Triangle Inequality (STI)

This is a straightforward implementation from the main idea. At the start of an epoch,
a list of prototype vectors ordered by distance to a certain prototype vector is needed.
This will be used for iterating the prototype vector in radial fashion, starting from
the closest one to the centroid of the hyper-sphere. Let C (i, j) be the index of the
Jjth closest prototype vector from m;. This list can be built by computing all pair
distances between prototype vectors, and sort it using an efficient sorting method such
as Quicksort. It takes an overall O (k2 log k) for computing every possible C (i, j).

To find the BMU for data vector x;, the candidates are the prototype vectors
inside hyper-sphere with centroid pBM U (i) withradius 2 - d (xi, m,p MU(i)). Using
C (pBMU (i), j), iterate the prototype vector starting from j = 1, until a prototype
vector outside the hyper-sphere is encountered, as shown in Algorithm 1. This variant
can be implemented within a multithreading environment without problem, as finding
the BMU for any x; and x; is mutually independent.

Algorithm 1 Finding BMU for x;, using STI approach.

1: function FINDBMU(i)

2: curBMU <« pBMU (i)

centroid <— pBMU (i)

Jj<«1

while U= k—1)A (d (mC(centroid,j)v mcentroid) <2-d(x;, mcentroid)) do

if d (Xi, mc(centroid,j)) < d (Xi, Meyrpyy) then
curBMU < C (centroid, j)

J<j+1
return cur BMU

R e A U

While finding the BMU, the value of any prototype vector must not change.
Otherwise, C (i, j) has to be recomputed again. This is the reason why triangle
inequality optimization applies only for batch training in SOM.

This variant can be optimized for less memory usage, from O (kz) intoO (N + k).
Our proposed approach is computing C (i, j) on the fly. First, group all data vectors
according to its p BM U using bucket sort. The result is buckets 3;, which is a list of
data vector indexes j, where pBMU (j) = i.

B = {j‘xjeD/\pBMU(j)zi},

SOM Training Optimization Using Triangle Inequality 65

Fig. 2 While looking for the T —

BMU, m; is found closer to /d(x‘ m) \ 2-d(x; m,) \

x;. Changing the / X\ o B o)

hyper-sphere’s centroid from [m e s m/ =
. . | o [J 2| ° L} 2 |

m (left) to my (right) shrinks m; m® m; nt

the radius \ 1/ v

T, t,

Storing all B; takes O (N + k) space. Subsequently, process all data vectors in 3
to find its BMU. To do this, C (1, j) for all j is required. However, C (i, j) where
i # 1isnotneeded. Therefore we can just compute C (1, j) and it takes O (k) space.
After finding BMUs for all data vectors in By, then repeat for 3,, B3, and so on. The
overall memory complexity needed is O (N + k). While using buckets reduces the
memory required, the time complexity remains the same.

3.2 Dynamic Triangle Inequality (DTI)

While looking for the BMU, the prototype vector closer to x; may be encountered.
If the hyper-sphere’s centroid is changed into this prototype vector, the radius for the
hyper-sphere can be shrunk as illustrated in Fig.2. A smaller radius means a smaller
search space. Algorithm 2 shows the implementation for this approach. Similar with
the STI, DTI can also be implemented for a multithreading environment.

While the hyper-sphere’s radius become smaller, some of the prototype vectors
may be checked twice. For example, m, in Fig. 2 is checked twice when the centroid
is m and my,. Furthermore, several prototype vectors that were not inside the previous
hyper-sphere may be inside the smaller hyper-sphere, as shown by ms in Fig. 2.

Algorithm 2 Finding BMU for x;, using DTI approach.

1: function FINDBMU(i)
2: curBMU < pBMU (i)

3: centroid < pBMU (i)

4: j <1

5: while (j <k — 1) A (d (MC(entroia. s Meentroia) < 2+ d (i, Weensroia)) do
6: if d (Xi, Mccentroid, j)) < d (Xi, Meyrgyy) then

7: curBMU < C (centroid, j)

8: centroid < C (centroid, j)

9: j <1

10: else

11: e+l

12: return cur BMU

66 Denny et al.

3.3 Lazy Triangle Inequality (LTI)

For a prototype vector m;, sometimes the information needed is only C (i, 1), C (i, 2),
C(@3),...,C(, p), where p <k — 1. Moreover, when convergence is almost
reached, p can be much smaller than k£ — 1. This property motivates another pro-
posed variant utilizing a partial sort, as only some of the closest prototype vectors to
m; are needed.

The suitable partial sort algorithm is Heap Sort. At the beginning of an epoch,
initialize k heap data structures H;, Ho, Has, . .., Hi. These heaps store paired values,
a distance and index, with smaller distances on top:

o () N =241

For the BMU searching phase, the value of C (i, j) is computed on demand.
If a value of C (i, j) is required and it has not been computed, then find its value
from H; by popping it. If the ¢ entries for all C (i, j) is required, then building all
required C (i, j) takes amortized O (c log k), rather than fixed O (k2 log k) as shown
in previous variants. Notice that this variant only modifies how C (i, j) is computed.
In this research, LTI adapts the DTI for BMU searching, where the hyper-sphere’s
radius shrinks over time.

4 Dataset and Evaluation Metrics

Our experiments involve 25 synthetic datasets and a real life dataset. The synthetic
datasets are generated using Mersenne Twister pseudorandom number generator,
with normal distribution. These datasets can be divided into four groups according
to their evaluation metrics:

various These approaches are evaluated using synthetic datasets with various
dimensions (2 or 3), cluster size (uniform or various), and cluster density (uni-
form or various). Therefore, there are eight datasets generated in this group. For
all datasets, N = 100,000.

dim To test the performance in high dimension, datasets with the same characteristics
but varying in dimension are generated. There are 16 datasets with dimension
2,3,...9,and 10, 20, ..., 80 dimension with N = 100,000.

huge To test the performance in a huge dataset, a dataset with N = 1,000,000 and
dim = 25 is generated.

real To test the performance in areal life dataset, a dataset from a telecommunication
company with N = 130,589 and dim = 6is used. This dataset describes wireless
data usage from a population in a month.

SOM Training Optimization Using Triangle Inequality 67

Each dataset is normalized using range normalization and tested using EFS and all
three variants of triangle inequality optimization. The map size k used for various
and huge are 8 x 6, 16 x 12, and 32 x 24. The dim and real are tested using map
with size 32 x 24. Rough training were used for each test, with linear initialization
and 20 epoch. Experiments were performed in a quad core machine, CPU speed
2.5 GHz, and 4 GB memory.

5 Experimental Result

To ensure the correctness of the implementation of these optimizations, the map
produced by EFS and optimized search were compared. Given the same initial map,
training dataset, and training parameters, the batch training will produce the same
map.

The overall result is positive, as there is improvement in training time and signif-
icant reduction in the number of comparisons. As the number of comparisons from
the LTI is the same as for the DTI, these numbers are not shown.

Test Group various. Experiments on all datasets in this group show similar results.
Figure 3 shows the averaged result from all datasets in this group. The number of
comparisons between data vector and prototype vector is reduced further when grid
size is increased. By using triangle inequality optimization, the number of compar-
isons can be reduced down to 15 % of the EFS. However, the DTI is not significantly
different to the STIL.

The result for training time is similar, as reducing the number of comparisons
will reduce execution time. However, LTI takes much longer training time. This
could be caused by the locking mechanism in multithreading environment. Further
experiments using single thread implementation shows that LTT is also not signifi-
cantly better than the other methods. By profiling the execution of the STI and DTI
approaches, it is showed that the precomputation phase that calculate and sort the
pairwise distance does not take significant time. For k =32 x 24 and N = 100,000,
the precomputation contributes 10.3 % in the BMU searching phase. However, LTI
could be useful when k is close to N. As k gets larger, the precomputation phase
takes more time.

1.800.000.000 90
1.600.000.000 80
1.400.000.000
1.200.000.000
1.000.000.000
m No Optimization
= Static

® Dynamic

® Lazy

® No Optimization
Static
600.000.000 u Dynamic

400.000.000

800.000.000

Comparison

200.000.000

o Mz |
8x6 16x12 32x24

16x12 32x24
Grid Size Grid Size

Fig. 3 Averaged number of comparisons (left) and training time (right) for each dataset on test
group various

68 Denny et al.
— 100 _. 100
3 80 3 B0 st
& 60 & 60
5]
2 40 2 40 Static
© ©
& 2 & 20 1N Dynamic
o Q
° o © o0

2 3 456 7 8 910 10 20 30 40 50 60 70 80

Dimension Dimension

Fig.4 The percentage of comparison on test group dim compared to EFS. Both approaches achieve
the same level of efficiency

18.000.000.000 3.000

16.000.000.000

2.500
14.000.000.000
12.000.000.000 2.000
10.000.000.000
1.500
8.000.000.000 P
6.000.000.000 £ 1.000
4.000.000.000
500
2.000.000.000
o MEzamm 0

8x6 16x12 32x24

No Optimization
= Static

® Dynamic
ulazy

Comparison
Training Time (seconds)

16x12 32x24
Grid Size Grid Size

Fig. 5 Average number of comparisons (left) and training time (right) on test group huge

2.500.000.000 160
140
2.000.000.000
120
g
£ 100
< 1.500.000.000 g
8)
2 80
H g
£
§ 1:000.000.000 > 60
£
s
g 40
500.000.000 =
- - “
0 0
No Optimization ~ Static Dynamic No Optimization Static Dynamic Lazy

Fig. 6 Averaged number of comparisons (left) and training time (right) on test group real

Test Group dim. Figure 4 shows that the triangle inequality optimization saves a lot
of comparison. As the dimension gets larger, the efficiency decreases and is finally
stable around 80 %.

Test Group huge. Figure 5 indicates that the result is similar with test group various.
In comparison, the savings is up to 53 %, while training time saved reaches 12 %.
This result is not as good as test group various, which is to be expected as the
dataset’s dimensionality is much higher (25 vs. 2 or 3).

Test Group real. As shown in Fig. 6, the optimization also works well on a real-life

dataset. Compared to the EFS, comparison needed is much smaller and training was
25 % faster.

SOM Training Optimization Using Triangle Inequality 69

6 Analysis and Discussion

From each test group, there is no significant difference between the STI and DTI
variants. While the DTI variant keeps shrinking the hyper-sphere, prototype vectors
that re-enter it does not make this variant much more efficient.

The efficiency of triangle inequality optimization fell for higher dimensions, and
finally stagnates. This phenomenon can be explained by observing the nature of
distance functions which satisfy the triangle inequality. Let D be a set of vectors
with dim dimensions, uniformly distributed. Let p be one of the vectors in D, r a
random vectorin D, and pd f (x) the probability density function so thatd (p, r) = x.
For higher dimensions, pdf (x) will be concentrated in a single value as shown in
Fig.7.

With triangle inequality optimization, prototype vector r is omitted in finding
BMUifd (p,r) > 2 -d (p, q), where q is a data vector. This implies that the number
of prototype vectors omitted is proportional to the probability that a random vector
r satisfies d (p, r) > 2 - d (p, q). This probability is equal to:

Popir = / pdf (x)dx
2

-d(p.q)

This probability can be viewed as the filled area under the curve, starting from
2 -d (p, q) towards infinity as shown in Fig.7. As the dimensionality gets higher,
the area gets smaller. This is the reason why the efficiency of triangle inequality
optimization fell as the dimension gets higher. While theoretically this optimization
will not be significantly efficient when dim is very large, empirical results show that
it still saves about 75 % comparison when dim = 80.

Another interesting fact is that the number of comparisons per epoch strictly
reduces. Figure 8 shows the average comparison percentage per epoch, compared
with EFS. This could be an indicator when convergence has been reached, especially
when the number of comparisons does not change significantly.

Heskes [3] proposed an energy function for SOM by redefining the method to
choose the BMU. In Heskes SOM, the BMU is chosen by finding the minimum of
the average distance between data vector x; to prototype vector m; and also to its
neighbours according to the neighbourhood function, as:

pdfix) pdfix)

dp 2dp x T ipe 2dp@ X

Fig. 7 Shaded region shows P,,,;;. The region gets smaller when the dimensionality of the data is
higher (low dimension on the left and high dimension on the right)

70 Denny et al.

Fig. 8 The percentage of 100
comparison per epoch for
test group various
compared to EFS. Both
approaches achieve the same
level of efficiency

Static
30 i Dynamic

Comparison Percentage (%)

2 4 6 8 10 12 14 16 18 20
Epoch

|M|

BMU (5, M) = arg | min {S" hy (1) - d s mi(0) .
T k

where hy ;(¢) is the neighbourhood function between map units k and j, and ¢ is
the epoch. Triangle inequality optimization might not be suitable for Heskes winner
determination as the distance is calculated to several prototype vectors.

7 Conclusions and Future Works

Based on our experiments in implementing triangle inequality optimization, time
reduction is quite significant on high dimensional datasets even for various cluster
sizes and densities. The reduction is more significant for larger maps.

This optimization can be implemented using both static and dynamic approaches.
The reduction between these approaches are not significantly different. We have
extended the dynamic approach using lazy triangle inequality. However, this imple-
mentation is not faster.

Since triangle inequality optimization has not been implemented in many open
source SOM implementations, this optimization can be applied in these implemen-
tations. Implementation using vantage point tree and other metric trees as data struc-
tures to speed up BMU searching can be investigated.

References

1. Cheung, E., Constantinides, A.: Fast nearest neighbour search algorithms for self-organising
map and vector quantisation. In: Conference Record of the Asilomar Conference on Signals,
Systems and Computers, vol. 2, pp. 946-950 (1993)

2. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Twentieth International Con-
ference on Machine Learning (2003)

3. Heskes, T.: Energy functions for Self-Organizing Maps. In: Oja, E., Kaski, S. (eds.) Kohonen
Maps, pp. 303-315. Elsevier, Amsterdam, The Netherlands (1999)

4. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30, 3rd edn.
Springer, Berlin, Heidelberg (2001)

SOM Training Optimization Using Triangle Inequality 71

5. Koikkalainen, P., Oja, E.: Self-organizing hierarchical feature maps. In: Proceedings IICNN-90,
vol. 2, pp. 279-285. IEEE Service Center (1990)

6. Laha, A., Chanda, B., Pal, N.: Fast codebook searching in a SOM-based vector quantizer for
image compression. Signal Image Video Process. 2(1), 39-49 (2008)

7. Ozdzynski, P, Lin, A., Liljeholm, M., Beatty, J.: A parallel general implementation of
Kohonen’s Self-Organizing Map algorithm: performance and scalability. Neurocomputing
44-46, 567-571 (2002)

8. Strupl, D., Neruda, R.: Parallelizing self-organizing maps. In: SOFSEM’97: Theory and Practice
of Informatics, LNCS, vol. 1338, pp. 563—-570. Springer (1997)

9. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of the 5th Workshop on Self-Organizing
Maps (WSOM’05), pp. 75-82 (2005)

Sparse Online Self-Organizing Maps
for Large Relational Data

Madalina Olteanu and Nathalie Villa-Vialaneix

Abstract During the last decades, self-organizing maps were proven to be useful
tools for exploring data. While the original algorithm was designed for numerical
vectors, the data became more and more complex, being frequently too rich to be
described by a fixed set of numerical attributes. Several extensions of the original
SOM were proposed in the literature for handling kernel or dissimilarity data. Most
of them use the entire kernel/dissimilarity matrix, which requires at least quadratic
complexity and becomes rapidly unfeasible for 100 000 inputs, for instance. In the
present manuscript, we propose a sparse version of the online relational SOM, which
sequentially increases the composition of the prototypes.

Keywords Relational data - Online relational SOM - Sparse approximations

1 Introduction

The self-organizing map (SOM) algorithm, [1], was proven, over the years, to be a
powerful and convenient tool for clustering and visualizing data. While the original
algorithm was designed for numerical vectors, the available data in the applications
became more and more complex, being frequently too rich to be described by a
fixed set of numerical attributes only. This is the case, for example, when data are
described by relations between objects (individuals involved in a social network) or
by measures of ressemblance/dissemblance (professional trajectories).

M. Olteanu (<)
SAMM - Université Paris 1 Panthéon-Sorbonne, 90, Rue de Tolbiac, 75013 Paris, France
e-mail: madalina.olteanu@univ-paris1.fr

N. Villa-Vialaneix (<)
INRA, UR 0875 MIAT, BP 52627, 31326 Castanet Tolosan, France
e-mail: nathalie.villa@toulouse.inra.fr

© Springer International Publishing Switzerland 2016 73
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_6

74 M. Olteanu and N. Villa-Vialaneix

During the past twenty years, the SOM algorithm was extended for handling rela-
tional data, either described by kernels (see [2] for the online version and [3] for the
batch version), or by dissimilarities (see [4] for the online version and [5] for the batch
version). All these extensions are based on the same underlying principle: the dis-
similarity or the kernel implicitly define an Euclidean (or pseudo-Euclidean) space in
which the prototypes can be expressed as convex combinations of the embedded input
data. However, when the goal is to explore large data sets, the relational approaches
may become rapidly unfeasible. Indeed, complex relational data often have a large
dimensionality. Moreover, kernel and relational SOM rely on the knowledge of the
dissimilarity matrix for the entire data set, which generates at least quadratic com-
plexity for the algorithms. As stressed in [5], algorithms will be slow for data sets
with 10,000 observations and impossible to run on a normal computer for 100,000
input data. In addition to the complexity issue, expressing prototypes as convex
combinations of the entire data set has a second drawback, as emphasized in [6]: the
interpretability of the prototypes and of the model is lost.

In order to tackle these two issues, several approaches were introduced for rela-
tional data, all of them seeking for a sparse representation of the prototypes and a
linear (in the number of observations) computational cost. [7] use the natural spar-
sity of the prototypes in batch relational k-means in order to reduce the complexity.
The natural sparsity is enhanced by selecting the K (K fixed) closest inputs to each
prototype. In [5], the complexity is reduced using iterative “patch clustering”. First,
the data are split into P patches of size np (P fixed). A prototype-based clustering
algorithm in batch version (neural gas or SOM) is then run on a patch P, and the
resulting prototypes, which may be viewed as compressed representations of the data
already seen, are added as new data points to the next patch, P, . Moreover, the
full vector of coefficients is replaced by the K closest input data (K fixed). With this
method, linear time and constant space representation are obtained. Another tech-
nique consists in using the Nystrom approximation [8] for the dissimilarity matrix.
This technique also leads to a linear computational cost in the number of input data,
but is strongly dependent on the intrinsic dimensionality of the given dissimilarity
matrix, which has to be of low rank and entirely known in advance. All these cited
approaches are batch algorithms.

In the online framework, [9] propose a bagging approach for kernel SOM. Data
is split into B subsamples of size np (B fixed), the online kernel SOM is trained on
each subsample and, after training, the most representative K observations are chosen
for each prototype (K fixed). Eventually, a final map is trained on the resulting most
representative observations. The algorithm has the advantage of being parallelizable,
although it does not consider all the advantages of an online implementation.

In the present paper, we propose a sparse version of the online relational SOM
algorithm, which takes further advantage of the online setting. Instead of expressing
prototypes as convex combinations of the entire data set from the beginning, the size
and the composition of the prototypes are sequentially increased with each new input

Sparse Online Self-Organizing Maps for Large Relational Data 75

fed to the algorithm. When the size of the prototypes becomes too large, prototypes
are made sparse by deleting all the insignificant coefficients. Different approaches
for selecting the most interesting observations are reported in [6]. In this manuscript,
we use a slightly different technique, by interpreting the coefficients as a probability
distribution and by selecting the most probable observation: a global probability
mass v is fixed and the largest coefficients summing to v are kept. In this way, more
flexibility is allowed to the prototypes which are no longer represented by a fixed
number K of observations, but by the necessary number of observations allowing an
“almost complete” knowledge of the composition of the prototypes (if v is chosen
close to 1).

The rest of the paper is organized as follows: Sect. 2 recalls the online relational
SOM, while Sect. 3 introduces the sparse version of the online relational SOM. The
equivalent algorithm for kernels is briefly described in Sect. 4, while Sect. 5 contains
some examples on real data-sets.

2 Online Relational SOM

In this section we shall briefly recall the principles of the online relational SOM
(RSOM) algorithm, as introduced in [4]. Throughout the rest of the paper, let
us suppose that the input data, xp, ..., xy, belong to some arbitrary space G and
can be described through a dissimilarity measure 8, such that §;; = § (x;, x;). The
dissimilarity measure is supposed to verify some basic assumptions: symmetry
(5ij = 8ji) and non-negativity (81'/' > O), foralli,j=1,..., N, and also §;; = 0,
foralli=1,..., N.

The online RSOM algorithm aims at mapping the input data onto a low dimen-
sional grid (usually a two-dimensional rectangle), composed of U units, each of
them described by a prototype p,, u = 1, ..., U. The units are linked together by
a neighborhood relationship H, expressed as a function of the distance between the
units on the grid, d (u u/). The distance on the grid, d, may be chosen, for example,
as the length of the shortest path between the units. The U prototypes are initialized
either as random convex combinations of the input data or randomly among the input
data.

The extension of the original SOM algorithm is based on two key ideas:

e First, prototypes are written as (symbolic) convex combinations of the input data,
pu=N Buixi, with B,; = 0and SN B, =1,forallu=1,...,U. This
definition is justified by the fact that, when a dissimilarity is given, it can be
viewed as the dot product of the images by a mapping function ¢ into a pseudo-
Euclidean space [10]: the prototypes are thus truly the convex combinations of
(¢ (x;)); in this space (see [4, 5] for further explanations).

e Second, the distance between an input data x; and a prototype p, can be written
only in terms of the dissimilarity matrix of the input data and the coefficients B, ;
as follows:

76 M. Olteanu and N. Villa-Vialaneix

1
i = pull® = AiBy = BB (1)
where A = (8,-1-)[il N A; represents the i-th row of the matrix A and g, =
(,Bu, Ir s Bu, N) is the vector of coefficients for the prototype p,.

Expressing the prototypes as convex combinations of the input data and computing
the distances between observations and prototypes as in Eq. (1) consists, in fact, in
a generalization of the original SOM algorithm. Indeed, one can easily see that the
two are equivalent if the dissimilarity § is the squared Euclidean distance and if the
prototypes of the original SOM are initialized within the convex hull of the input
data.

This general framework allowing an elegant writing of the algorithm for complex
data described by dissimilarities was introduced initially for the online version of
kernel SOM (KSOM) in [2]. Afterwards, extensions and rediscoveries were described
for batch relational SOM in [5], batch kernel SOM in [3] and online relational SOM
in [4]. A detailed and complete comparison of these methods and their equivalences
may be found in [11].

The distance computation in Eq. (1) may be theoretically justified in the very
general setting of dissimilarities by extending the Hilbert embedding for kernels to
a pseudo-Euclidean embedding, as shown, for example, in [5].

The online relational SOM algorithm is summarized in Algorithm 1. The neigh-
borhood function H is supposed to verify the following assumptions: H : R — R,
H(0) =1 and lim,_, ;o H(x) = 0. In the setting of Algorithm 1, H’ decreases
piecewise linearly, while w(¢) vanishes at the rate %

Algorithm 1 Online relational SOM

1: Foralu =1,...,Uandi = 1,..., N, initialize ,83,[such thatﬂgqi > 0 and ZIN ;‘32‘[=1.
2:fort=1,...,T do

3: Randomly choose an input x;

4: Assignment step: find the unit of the closest prototype

. NT 1 ~
e g, in, [0 (7)" = 300 207 |
5: Representation step:Yu =1,..., U,
By < By 4w H (d(f (xi), u)) (1,« — ﬂltt—l)

where 1; is a vector with a single non null coefficient at the ith position, equal to one.
6: end for

Sparse Online Self-Organizing Maps for Large Relational Data 77

3 Sparse Online Relational SOM

Similarly to relational SOM, prototypes are written as convex combinations of the
observations, but, in this case, they are restricted to the input data already fed to
the algorithm and, more particularly, to the most significant of them. In order to
guarantee the sparsity of the writing as well as similar properties with the original
online relational SOM algorithm, several issues have to be verified.

1. Prototypes have to be initialized at random among the input data. Hence, the
observations have to be randomly presented to the algorithm. The first U obser-
vations will be then used as initial values for the U prototypes.

2. The dissimilarity between a new input data and a prototype, written as a con-
vex combination of the most significant past observations, has to be computed.
This can be achieved using the following formula ||x; — p,|*> = > el Bu.j
8(xis %)) = 5 Xicray Xjern Puibuid (i, x;), where py =3 ;) Bujx; and
I () contains the indices of the most significant inputs already fed to the algo-
rithm before x; is chosen.

3. Prototypes are sparse combinations of the input data. Hence, prototypes are peri-
odically updated and the most coefficients only are selected. The updates may be
performed throughout the iteration using either a deterministic design (the num-
ber of updates is fixed and updates are uniformly distributed during the learning
of the map), or a random design (the updates are distributed according to some
geometric distribution. The parameter of the geometric distribution may depend
on the total number of iterations and on the size of the neighborhood). Sparsity
could be achieved by selecting the first O most important coefficients, where Q
is a fixed integer. However, in order to allow for more flexibility in the expres-
sion and interpretability of the prototypes, the most significant coefficients are
selected according to their value, by fixing a threshold: let 0 < v < 1 be the
selected threshold (if v = 1, the algorithm is no longer sparse, but the original
one).

Foru =1, ..., U, the coefficients are ordered in descending order for each pro-
totype Bu,1y» - - - » Bu,z1ty)» Where B, (1) = maX;er() Bu,i and By, zr(ry) = Minjeq ()
Bu.i. Consider N, such that N, = argmin,—y_.._z1¢) {2/ Bu.i) = v} The most
significant coefficients are updated as follows

Bu.iy el
—0_ if(i) < N,
>0 Buii) (@) = N
Bu,iy =

0, if (i) > N,

The sparse online relational SOM algorithm is summarized in Algorithm 2.

78 M. Olteanu and N. Villa-Vialaneix

Algorithm 2 Sparse online RSOM

1: Forallu = 1,..., U, initialize p? among the first U input data: 80 = 1Y, where 1Y is a vector
of length U with a single non-null coefficient on the u-th position, equal to 1. Initialize 7 (0) =
{1,...,U}.

2: fort=1,...,T do

3: Randomly choose an input x¢, k € {1, ..., N}.

4: Assignment step: find the unit of the closest prototype

1 T
2 B8 luox)) = 2B Aoy (ﬂi_l) ;

jel(t—1)

where A](,,l) = (8 (x,-, xj))i‘jel(t—l)'

5: Representation step:Yu =1,...,U

6. ifkel(t—1),then

7: Bl < B+ nH @ (f (xi), w) (L — B')

8: IH)y=I¢—-1

9: elseif k ¢ I(t — 1), then

10: Bl < [1 = wOH @(f (), w)] (B, 0) + w()H (d(f7 (x), w)(O, ..., 0, 1)
——
gI(—1)

11: I1(t) =1 —1)U{k}.

12: endif

13: Sparse representation:
14: if ¢ is an update instant (deterministic or random design) then
15: Sparsely update the prototypes: Vu =1, ..., U,

t t
Buy Z -+ Z By -

n
— 3 t
Niu = argn:II,I}{II}I(f) [Zﬂu,(,') > v]

i=1
t
By

o > () = Ny
=i P

t —
u, (i) —
0,if (i) > Neu

16: end if
17: end for

4 The Kernel Version

In some cases, data may be described by a kernel, K, instead of a dissimilar-
ity. We shall recall that a kernel is a symmetric similarity such that K(x;, x;) =0

.....

a Hilbert space H, also called feature space, as well as a feature map v : G — H,
such that K(x, x") = (¥ (x), ¥ (x"))#. Similarly to the dissimilarity case, the proto-
types are defined as convex combinations of (the images by ¥ of) (x;);. The distance
between an input data x; and some prototype p, is then computed as the squared

Sparse Online Self-Organizing Maps for Large Relational Data 79

distance induced by the kernel ||x; — p, 1> = K(xg, x¢) — 2 Zie](z) Bu.i K(xg, x;) +
> i BuiBujK(xi, x;). The sparse online relational SOM can thus be immedi-
ately adapted for kernels. Algorithm 2 has to be modified only in the assignment step
which becomes

1: Assignment step: find the unit of the closest prototype

T
fHxp) < argu I?inU |:ﬂ;lK1(t1> (Ltfl) -2 Z ﬂ’i’le(Xk’x'i)i| s

- jel(—1)

where K; ;1) = (K(xiy xj))i,je](tfl)'

5 Examples

The sparse version introduced in the present manuscript was compared to the online
relational SOM on two real data sets. For the sparse version, several values were
considered for the threshold v. The sparse updates were performed either in a uni-
form deterministic design (fixed number of updates), or at random, according to a
geometric distribution. The performances of the sparse RSOM and the online RSOM
were then compared in terms of average computational time (in seconds), quantiza-
tion and topographic errors and sparsity (number of non-zero coefficients). Scripts
were all implemented under the free statistical software environement R.

Astraptes fulgerator. The first data set was introduced in [13]. In contains informa-
tion on 465 Amazonian butterflies, each of them described by a sample of their DNA.
Each input data is a DNA sequence of length 350. The Kimura distance for genetical
sequences, as introduced in [14], was computed and the resulting distance matrix
was used as input for relational and sparse relational SOM. For both algorithms, 100
different initializations with 2 500 iterations each were performed on a square grid
of size 5 x 5. The results are summarized in Tables 1 and 2 for the deterministic and
random designs respectively.

Professional trajectories. The second example comes from [15]. It contains infor-
mation about 2 000 people having graduated high-school in 1998 and monitored
during 94 months afterwards. For each individual, a categorical sequence of length
94, giving his monthly professional status is available. In all, there are nine possible
situations, from permanent contracts to unemployment. The dissimilarity used for
these data is the optimal matching (OM) distance, as introduced in [16]. Here, 100
different initializations with 10 000 iterations each were performed on a square grid
of size 10 x 10. The sparse version was compared to the standard online relational
SOM (itself run from 100 different initializations and 10 000 iterations). The results

80

M. Olteanu and N. Villa-Vialaneix

Table 1 Average results for Astraptes fulgerator (100 random initializations)

nb. updates v Comp. time (s) Quantization err. | Topographic err. | nb. coefs
50 0.80 2.04 0.00087 0.0339 5.87
50 0.85 2.13 0.00076 0.0157 7.65
50 0.90 2.37 0.00067 0.0077 12.07
50 0.95 291 0.00064 0.0067 23.45
50 0.99 4.14 0.00067 0.0055 46.80
25 0.80 2.76 0.00067 0.0167 12.58
25 0.85 3.48 0.00065 0.0139 17.13
25 0.90 3.17 0.00065 0.0128 22.99
25 0.95 3.61 0.00064 0.0107 34.99
25 0.99 4.69 0.00070 0.0041 53.75
10 0.80 7.04 0.00066 0.0079 40.09
10 0.85 6.96 0.00065 0.0087 43.08
10 0.90 7.55 0.00067 0.0075 47.93
10 0.95 7.87 0.00065 0.0055 57.55
10 0.99 8.52 0.00068 0.0054 68.15
Online RSOM 12.18 0.00067 0.0051

The first column contains the number of updates (deterministic design). The third column is the
computational time (provided in seconds). The last column is the average number of non zero
coefficients in the prototypes. The bolded values correspond to the results at least as good as the

online RSOM

Table 2 Average results for Astraptes fulgerator (100 random initializations, updates were made
with a random design)

nb. updates v Comp. time (s) Quantization err. | Topographic err. | nb. coefs
50 0.80 1.92 0.00093 0.0353 5.44
50 0.85 2.09 0.00078 0.0176 7.35
50 0.90 2.37 0.00069 0.0145 11.02
50 0.95 2.92 0.00067 0.0102 21.75
50 0.99 4.02 0.00068 0.0068 4551
25 0.80 2.50 0.00067 0.0210 9.92
25 0.85 2.88 0.00066 0.0114 14.09
25 0.90 2.94 0.00066 0.0107 20.41
25 0.95 3.56 0.00064 0.0057 29.63
25 0.99 4.66 0.00066 0.0053 51.93
10 0.80 423 0.00062 0.0132 22.48
10 0.85 4.69 0.00065 0.0072 28.41
10 0.90 5.18 0.00065 0.0098 33.97
10 0.95 5.14 0.00065 0.0051 43.34
10 0.99 6.30 0.00067 0.0033 59.95
Online RSOM 12.18 0.00067 0.0051

Sparse Online Self-Organizing Maps for Large Relational Data 81

Table 3 Average results for “professional trajectories” (100 random initializations, updates were
made with a deterministic design)

nb. updates v Comp. time (s) | Quantization err. | Topographic err. | nb.

coefs
100 0.80 111 29.5 0.384 1.4
100 0.85 130 27.8 0.348 1.8
100 0.90 147 25.5 0.277 29
100 0.95 215 21.8 0.112 11.3
100 0.99 480 20.5 0.084 40.4
50 0.80 157 25.6 0.247 2.6
50 0.85 174 23.8 0.177 44
50 0.90 223 22.1 0.109 9.8
50 0.95 307 21.0 0.086 23.3
50 0.99 672 20.5 0.080 529
25 0.80 247 22.6 0.124 7.3
25 0.85 278 21.6 0.102 12.2
25 0.90 339 21.0 0.089 20.1
25 0.95 470 20.5 0.090 34.0
25 0.99 800 20.6 0.078 60.9
Online RSOM 9126 20.7 0.075

Simulations were all performed on a server with OS Debian 8 Jessie, 8 processors AMD Opteron
8384 with 4 cores each and 256 Go RAM

for the deterministic design are summarized in Table 3 (due to the lack of space, we
do not report here the results with a random design, which are quite similar).

It is interesting to note that the sparsity has a strong influence on the computa-
tional time: increasing the number of updates tends to decrease the computational
time since the prototypes are regularly cleared from unnecessary coefficients. The
computational time compared to the standard version is at least 10 times smaller in
the sparse version for this large dataset. On the contrary, the performances, measured
in terms of quantization and topographic errors, can be affected by a too large sparsity
but the best ones remain close to those of the standard version.

6 Conclusion and Future Work

A sparse version of the online relational SOM algorithm was proposed, by sequen-
tially increasing the composition of the prototypes and sparsely updating them. The
algorithm was compared with the online ROM on two real data sets and the sparse
version appeared to achieve very similar performances as compared to the original
algorithm, while improving computational time and prototype representation.

82

M. Olteanu and N. Villa-Vialaneix

References

10.
11.

12.

13.

14.

15.

16.

. Kohonen, T.: Self-Organizing Maps, 3rd edn, vol. 30. Springer, Berlin, Heidelberg, New York

(2001)

. Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International

Conference on knowledge-based Intelligence Engineering Systems and Applied Technologies,
pp. 317-320 (2000)

. Boulet, R., Jouve, B., Rossi, F.,, Villa, N.: Batch kernel SOM and related Laplacian methods

for social network analysis. Neurocomputing 71(7-9), 1257-1273 (2008)

. Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational SOM. Neurocom-

puting 147, 15-30 (2015)

. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural

Comput. 22(9), 2229-2284 (2010)

. Hofmann, D., Schleif, F., Paa3en, B., Hammer, B.: Learning interpretable kernelized prototype-

based models. Neurocomputing 141, 84-96 (2014)

. Rossi, F., Hasenfuss, A., Hammer, B.: Accelerating relational clustering algorithms with

sparse prototype representation. In: Proceedings of the 6th Workshop on Self-Organizing Maps
(WSOM 07), Bielefield, Germany, Neuroinformatics Group, Bielefield University (2007)

. Gisbrecht, A., Mokbel, B., Hammer, B.: The nystrom approximation for relational generative

topographic mappings. NIPS Workshop on Challenges of Data Visualization (2010)

. Mariette, J., Olteanu, M., Boelaert, J., Villa-Vialaneix, N.: Bagged kernel SOM. In: Villmann,

T., Schleif, F.,, Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning
Vector Quantization (Proceedings of WSOM 2014). Volume 295 of Advances in Intelligent
Systems and Computing, Mittweida, Germany. Springer, Berlin, Heidelberg, pp. 45-54 (2014)
Goldfarb, L.: A unified approach to pattern recognition. Pattern Recogn. 17(5), 575-582 (1984)
Rossi, F.: How many dissimilarity/kernel self organizing map variants do we need? In: Vill-
mann, T., Schleif, F., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and
Learning Vector Quantization (Proceedings of WSOM 2014). Volume 295 of Advances in
Intelligent Systems and Computing, Mittweida, Germany. Springer, Berlin, Heidelberg, pp.
3-23 (2014)

Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337-404 (1950)
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W.: Ten species in one:
DNA barcoding reveals cryptic species in the neotropical skipper butterfly astraptes fulgerator.
Genetic Analysis (2004)

Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. J. Mol. Evol. 16(2), 111-120 (1980)

Rousset, P., Giret, J.F.: Classifying qualitative time series with SOM: the typology of career
paths in France. In: Sandoval, F., Prieto, A., Cabestany, J., Grafia, M. (eds.) Computational and
Ambient Intelligence. Lecture Notes in Computer Science, vol. 4507, pp. 757-764. Springer,
Berlin, Heidelberg (2007)

Abbott, A., Forest, J.: Optimal matching methods for historical sequences. J. Interdisc. Hist.
16(3), 471-494 (1986)

Part 11

Clustering and Time Series Analysis
with Self-Organizing Maps

and Neural Gas

A Neural Gas Based Approximate Spectral
Clustering Ensemble

Yaser Moazzen and Kadim Tasdemir

Abstract The neural gas has been successfully used for prototype based clustering
approaches. Its topology based quantization effectively aids in approximate spectral
clustering (ASC) to define distinct similarity criteria which are optimally selected
for the relevant application. To utilize the advantages of ASC by harnessing those
criteria derived from different information types, we propose a neural gas based
approximate spectral clustering ensemble (NGASCE). The NGASCE obtains a joint
decision for accurate partitioning, by a 2-step ensemble approach derived from 1-
step graph-based models. We show the outperformance of NGASCE on five datasets
from UCI Machine Learning Repository.

1 Neural Gas Based Approximate Spectral Clustering

Spectral clustering, a graph-based approach depending on eigendecomposition of
pairwise similarities of data points, has an ability to extract clusters of different
characteristics without a parametric model [1-3]. However, it has high computa-
tional complexity (due to required eigendecomposition) and hence it is infeasible for
large datasets. To overcome this challenge, approximate spectral clustering (ASC)
approaches apply spectral clustering to data prototypes obtained by sampling or
quantization [4-8]. Among them, neural gas [9] based ASC is shown more power-
ful than other sampling or quantization methods [7, 10]. In addition, ASC enables
new similarity definitions which integrate different information types (such as dis-
tance, density, topology), producing an effective exploitation of available informa-
tion for extraction of precise cluster structure [8]. On the one hand this results in

Y. Moazzen ()

Department of Electronics and Communication Engineering,

Istanbul Technical University, ITU Ayazaga Kampusu, Ayazaga, Istanbul, Turkey
e-mail: yaser.mg2000@ gmail.com

K. Tagdemir (B<1)

Department of Computer Engineering, Antalya International University,
Universite Cd. 2, 07190 Dosemealti, Antalya, Turkey

e-mail: kadim.tasdemir @antalya.edu.tr

© Springer International Publishing Switzerland 2016 85
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_7

86 Y. Moazzen and K. Tagdemir

diverse partitionings obtained by different information types tailored to the applica-
tion requirements. On the other hand, it necessitates selection of the optimal simi-
larity criterion, which is often hard to determine for real world applications (due to
lack of class labels). A solution to overcome this necessity can be the use of cluster
ensembles.

Cluster ensembles merge diverse partitionings obtained by different input or fea-
ture sets, distinct methods or the same method with several parameter settings, using
various approaches such as majority voting, evidence accumulation, hyper graph
operations, meta-clustering, or mixture models [11-14]. They eliminate the need to
determine the optimal set, method or parameter values in addition to (usually) achiev-
ing a more accurate partitioning than those partitionings obtained by single methods
individually. An approximate spectral clustering ensemble based on majority voting
and meta clustering algorithm is proposed for segmentation of SAR images [15],
using Nystrom approximation [4] and the traditional distance based Gaussian kernel
similarity with different kernel parameter values to achieve diverse segmentation
results.

In this paper, we propose a neural gas based approximate spectral clustering
ensemble (NGASCE) which combines the advantages of approximate spectral clus-
tering with different similarity criteria followed by an ensemble to exploit distinct
information types to achieve an aggregated consensus decision for accurate parti-
tioning. First, we obtain data prototypes by neural gas quantization which is shown
outperforming over sampling approaches for ASC [7, 8]. Second, we produce ASC
partitionings by the recent similarity definitions proposed in [8]. Third, we propose
a 2-step ensemble approach based on 1-step graph-based models [11]. We then show
the performance of NGASCE on five datasets from UCI Machine Learning Reposi-
tory. The paper is outlined as follows: Sect. 2 briefly explains ASC, Sect. 3 describes
the proposed NGASCE, Sect. 4 provides accuracy assessment and Sect. 5 concludes
the paper.

2 Approximate Spectral Clustering

Approximate spectral clustering (ASC) applies spectral clustering on a reduced set of
data representatives (prototypes) selected by sampling or quantization [4—8]. Namely,
ASC has two steps: (i) selection of prototypes, (ii) their spectral clustering. For the
first step, neural gas, a topology-based quantization, is shown powerful to achieve
high accuracies with ASC [7, 8], because it enables manifold based similarity defi-
nitions (such as data topology and local density).

We now briefly explain the spectral clustering of the neural gas prototypes with
different similarity criteria. Spectral clustering methods are associated with relaxed
optimization of graph-cut problems based on a graph Laplacian matrix, L, with
respect to an optimization criterion [1-3]. We employ the spectral method in [2]
in our ensemble. We first obtain a weighted undirected graph G = (V, S) where V
represents the elements (prototypes) to be clustered and the edges S are their pairwise

A Neural Gas Based Approximate Spectral Clustering Ensemble 87

similarities to be determined with respect to some user-defined criterion. Ng et al.
[2] defines the normalized Laplacian matriX, Ly, as

Lyorm = D_l/2SD_1/27 (D

based on S and its diagonal degree matrix D withd; = > ; 8@, j). The k eigenvectors
{e1,en, ..., e} of L,,m,associated with the k highest eigenvalues are found. Then,
the n X k matrix E = [eje; ... e;] is constructed and n x k matrix U is obtained by
normalizing the rows of E to have norm 1, i.e. u;; = Gij =. Finally, the n rows of

NI

U are clustered with the k-means algorithm into k clusters.

2.1 Similarity Measures

The criterion for the similarity matrix S plays a significant role to achieve an accurate
cluster extraction. The pairwise similarities, s (i, j)s, are traditionally calculated by
a Gaussian kernel based on the (Euclidean) distances, dg,.(pi, p;):

Sguc(i, J) = exp {~dpuc(xi, x;)/20;0))} @)

where o; is a decaying parameter (to be optimally found through experiments [2] or
to bet set locally as the distance to the kth nearest neighbor of p; [16]). For ASC,
new information types such as topology, density can be embedded into S to define
pairwise similarities of prototypes more effectively [7, 10, 17]. A recent approach [7]
uses a similarity measure (CONN) [18], a weighted version of the induced Delaunay
triangulation in [9], which exploits local density together with data topology on
the prototype level. CON N (i, j) shows the number of data points for which the
prototypes p; and p; are the pair of the best-matching and the second-best-matching
units. In other words, CON N (i, j) represents the local density distribution inside
the subregions V;; U V;; of the Voronoi polygons V; and V;, (V; is the set of data
points v for which w; is the closest prototype and V;; is its subregion where w; is the
next closest prototype):

CONN(. j) = |Vi; U Vji] (3)

The distance is integrated with CONN to produce a hybrid criterion Sy, [17]

Shyb(is J) = Sguc (i, J) X exp HCONN(:‘, J)/max CONN(, j)] “4)
LJ

The hybrid Sy, scales the distance based similarity with respect to CONN, producing
a greater similarity upto a scale of e for the maximum CONN (i, j).

Geodesic similarities are also proposed for ASC [8] based on various neighbor-
hood graphs. A traditional way for this graph is the (mutual) (k — nn) graph: if p; and

88 Y. Moazzen and K. Tagdemir

pj are among their k closest neighbors, they are neighbors. Their geodesic distance
is the sum of the Euclidean distances (dg,.) at their shortest path:

dgeoknn (pi, Pj) = Z dEuc(l» m) (5)

Im€S Prun (pi,pj)

where S Py, (pi, pj) is the set of edges in the shortest path between p; and p;
calculated with dg,. and kK — nn graph. A data topology based alternative to reflect
specific number of neighbors for each prototype is the CONN [8]. The geodesic
distance dgeoaqj based on CONN and the Euclidean distances dg . is

dgeoadj (i P) = D druc(l,m) 6)

ImeS Paaj(pi,p;)

where S P,4;(pi, p;) is the set of edges in the shortest path between p; and p; based
on dg,. and CONN. Alternatively, local density distribution is used for geodesic
distance calculation. Namely, using density based distance

CONNG,j)

dconn(pi, pj) = e ™00 i f CONN(, j) > 0 @)

a geodesic distance using data topology and the data distribution is defined [10]:

dgeownn (pi’ P]) = Z dconn(, m))

Im€S Peonn (i, pj)

with S P, (pi, p;j) is the set of edges in the shortest path between p; and p; with
respect to dconn distance and CONN. A hybrid approach dgeonys (pi, pj) exploits
all available information for ASC on the prototype level:

dgeonyv(Pis Pj) = Z deuc(l,m)dconn (I, m))

ImeS Pyyp(pi,pj)

Tagdemir et al. [8] analyses these similarity criteria for ASC of large datasets and
shows improvement with geodesic approaches [10]. However, any single criterion
may not be the optimal solution for each dataset. Therefore, instead of finding a best
criterion for various applications, their ensemble will utilize advantages of different
criterion to reach a consensus in clustering.

3 Neural Gas Based Clustering Ensemble (NGASCE)

Our neural gas based approximate spectral clustering ensemble (NGASCE) is based
on a graph-based ensemble [11]. In NGASCE, we have diverse results with respect
to various similarity criteria and k-means in the ASC algorithm. Alternative to the

A Neural Gas Based Approximate Spectral Clustering Ensemble 89

traditional approach of ensembling all results into one, we use a two-step ensemble
process: we first ensemble different partitionings obtained by k-means runs for each
similarity criterion; then, we ensemble the fused partitions of each similarity into
final labels. Our two-step approach first addresses the randomness in k-means and
then exploits distinct results obtained by different information types. Note that we
ensemble the clustering labels at the prototype level and then determine the labels of
the data points based on the ensembled labels of their prototypes. We can summarize
NGASCE using n, similarity criteria and ny,, k-means runs as follows:

1. Obtain N, neural gas prototypes and their n,ny,, partitionings by ASC.

2. Obtain a similarity matrix Sc g based on the number of identically labelled pro-
totypes among ny,, different partitionings of each similarity criterion: Scg; =
ZZ’;’I Su, .k Where S, 1 (p;i, pj) =1 if p; and p; are in the same cluster, else
Sn, k(pi> pj) = 0.

3. Apply spectral clustering using these Scg to obtain n; first step ensemble parti-
tionings for each similarity criterion

4. Obtain a similarity matrix Scg; (similar to Sc 1) based on the resulting n; ensem-
ble partitionings

5. Apply spectral clustering using Scg» to obtain the ensemble of prototypes.

4 Accuracy Assessment of NGASCE

We evaluate the proposed NGASCE with the datasets from UCI Machine Learning
Repository, which have different characteristics and features. The Iris dataset has
150 samples with 4 features grouped into 3 classes. The Breast Cancer Wisconsin
(BCWS) dataset has 9D 699 samples in two classes (benign or malignant). The Yeast
dataset has 1484 samples with 8D features and 10 classes. The Statlog data is aremote
sensing dataset with 4D features and has 6 classes. The Pen Digits dataset has 10992
samples and describe 10 digits with 16D features.

We first obtain neural gas prototypes using SOMtoolbox with default parameters.
The number of prototypes is one tenth of the number of data points. Then these
prototypes are clustered by spectral clustering using the similarity criteria described
above and 20 different k-means step, resulting in 20 partitionings for each criterion.
Table 1 shows the accuracies averaged over 20 runs obtained for each criterion, where
accuracy is the percentage of correctly clustered data samples. For NGASCE, we
obtain the first step ensemble by merging all k-means results to have a consensus
at each criterion, and then we ensemble the merged labels of each criterion. The
NGASCE accuracies are shown at Table 1.

It is important to note that to achieve the best single accuracy with the ensemble
approach is already a success since this removes the necessity to select the best
similarity criterion (which is often not possible due to unavailability of the class
labels in real world problems). For all five datasets, the proposed NGASCE improves
the clustering accuracy over the best accuracies obtained by individual methods

90

Y. Moazzen and K. Tagdemir

Table1 Mean accuracies of neural gas based approximate spectral clustering ensemble (NGASCE)

Iris BCWS Yeast Statlog Pen Digits
Similarity 150; 4D 699; 9D 1484; 8D 6435; 4D 10992; 16D
Criterion 3 classes 2 classes 10 classes 6 classes 10 classes
SEuc 63.24 (7.1) 95.84 (0.6) 43.04 (1.9) 60.90 (3.3) 46.17 (14.9)
SCONN 57.45(9.3) 96.51 (0.8) 42.31 (4.4) 57.84 (14.9) |63.29 (10.6)
Shyb 54.67 (2.3) 96.62 (0.6) 40.22 (3.6) 49.31 (10.6) |51.07 (12.9)
Sgeoknn 89.47 (2.6) 93.87 (1.2) 34.36 (4.3) 65.77 (5.0) 68.47 (4.8)
Sgeoad; 84.47 (9.6) 94.98 (0.5) 43.68 (3.2) 63.40 (5.8) 66.86 (5.4)
Sgeoconn 86.76 (10.5) |95.04 (0.6) 43.54 (2.9) 54.61 (4.8) 53.00 (6.3)
Sgeohyb 86.69 (10.5) |94.94 (0.4) 43.67 (2.9) 63.71 (6.2) 67.69 (5.5)
NGASCEI1 85.60 96.25 50.13 71.55 81.05
NGASCE 96.67 96.85 48.85 73.54 83.90

The numbers of data points, features, and classes are provided for each dataset. NGASCEI] is the
1-step ensemble of all partitionings

Table 2 Adjusted Rand index (ARI) values of neural gas based approximate spectral clustering

ensemble (NGASCE)

Iris BCWS Yeast Statlog Pen Digits
Similarity 150; 4D 699; 9D 1484; 8D 6435; 4D 10992; 16D
Criterion 3 classes 2 classes 10 classes 6 classes 10 classes
SEuc 0.492 (0.020) |0.793 (0.006) |0.154 (0.003) |0.521 (0.016) |0.299 (0.014)
SCONN 0.465 (0.020) |0.868 (0.02) |0.132(0.001) |0.388 (0.003) |0.474 (0.010)
Shyb 0.502 (0.012) |0.869 (0.001) |0.123 (0.001) |0.288 (0.003) |0.366 (0.019)
Sgeoknn 0.453 (0.005) |0.689 (0.048) |0.110 (0.005) |0.518 (0.011) |0.575 (0.004)
Sgeoadj 0.694 (0.018) |0.807 (0.018) |0.156 (0.003) |0.342 (0.020) |0.419 (0.005)
Sgeoconn 0.699 (0.017) |0.790 (0.003) |0.157 (0.002) |0.439 (0.004) | 0.566 (0.009)
Sgeohyb 0.747 (0.008) |0.788 (0.004) |0.158 (0.002) |0.447 (0.005) |0.575 (0.011)
NGASCELl 0.687 0.829 0.173 0.521 0.694
NGASCE 0.765 0.881 0.152 0.558 0.710

The numbers of data points, features, and classes are provided for each dataset. NGASCEI] is the
1-step ensemble of all partitionings

using different similarity criteria. In addition, this improvement is significant for
four datasets: Iris (from 89.5 %—with s,.oxn—t0 96.7 %), Yeast (from 43.7 %o—
With Sgepaaj—10 48.9 %), Statlog (from 65.8 %o—with Sgeoxnn—1t0 73.5 %) and Pen
Digits (from 67.7 %—with Sgeonyp—to 83.9 %). Moreover, the proposed two-step
NGASCE has also significantly higher accuracies than the traditional 1-step ensemble
approach for four of the five datasets. A similarly high performance is also obtained
by adjusted Rand index [19] which is an evaluation measure considering the class
sizes based on labeled samples (Table 2). Moreover, we evaluate the results using the

A Neural Gas Based Approximate Spectral Clustering Ensemble 91

Table 3 Cluster validity index (CVI) values of neural gas based approximate spectral clustering
ensemble (NGASCE)

Dataset | CVI SEuc | SCONN | Shyb Sgeoknn | Sgeoadj | Sgeoconn | Sgeohyp | NGASCEl | NGASCE
Iris SwWC 0.06 0.09 0.09 0.25 0.28 0.27 0.28 | 0.24 0.31
DBI 0.79 4.11 4.37 0.61 0.58 0.59 0.58 | 0.59 0.54
GDI 1.28 0.39 0.17 2.61 2.48 2.48 248 | 249 2.69
Connl 0.47 0.14 0.11 0.68 0.72 0.76 0.76 | 0.77 0.83
BCWS | SWC 0.21 0.21 0.21 | —0.01 0.21 0.21 0.21 | 0.21 0.22
DBI 0.73 0.71 0.73 0.80 0.75 0.75 0.75 | 0.72 0.70
GDI 2.02 1.92 1.94 1.71 2.04 2.03 2.04 | 2.05 2.11
Connl 0.92 0.97 0.95 0.88 0.94 0.94 0.94 | 0.95 0.97
Yeast |SWC |—-0.20 | —0.21 | —-0.22 | —0.36 | —0.25 | —0.25 —0.24 | 0.12 0.01
DBI 0.90 1.48 1.46 1.93 1.13 1.13 1.12 | 0.85 1.01
GDI 0.04 0.11 0.11 0.32 0.45 0.46 0.46 | 0.65 0.47
Connl 0.30 0.15 0.11 0.24 0.33 0.33 0.33 | 0.35 0.33
Statlog | SWC | —-0.27 | —-0.18 | -0.17 | —-0.27 | =030 | —0.26 | —0.31 | 0.00 0.00
DBI 0.90 1.09 0.95 0.92 0.90 0.83 091 | 0.83 0.77
GDI 1.30 0.41 0.49 1.27 0.97 0.99 097 | 1.32 1.35
Connl 0.46 0.41 0.78 0.46 0.47 0.47 0.48 | 0.78 0.79
Pen sSwcC | -0.57 | -0.19 | -0.31 | —0.19 | —-0.26 | —0.38 | —0.25 | 0.00 0.09
Digits
DBI 2.97 1.70 1.67 1.74 1.66 1.59 1.64 | 1.55 1.32
GDI 0.52 0.46 0.48 0.63 0.72 0.60 0.73 | 0.77 0.91
Connl 0.60 0.35 0.53 0.46 0.48 0.46 0.48 | 0.68 0.72

intrinsic data characteristics calculated by various cluster validity indices (silhoutte
width criterion-SWC, Davies-Bouldin index-DBI, generalized Dunn index-GDI and
CONN index-Connl) for the resulting partitionings and their ensembles. Leaving the
detailed discussions on these validity indices to [20], we note that SWC, GDI and
Connl favors the clustering with the maximum value whereas DBI favors the one
with the minimum value. The cluster validity indices provided at Table 3 often favor
the proposed ensemble as well. The outperformance of the NGASCE with respect
to these different evaluation criteria is promising for clustering of large datasets.

5 Conclusion

Neural gas based approximate spectral clustering is powerful for partitioning of large
datasets, when a similarity criterion appropriate for the data characteristics has been
selected [10]. However, it has been a long standing challenge to select the optimum
criterion for a dataset. Ensemble methods can be of great help to merge distinct clus-
tering decisions without the need of finding the optimum one. In this respect, we pro-
posed a two-step prototype-level ensemble method for neural gas based approximate
spectral clustering (NGASCE). Its success on the selected well-known datasets in

92

Y. Moazzen and K. Tagdemir

this study indicate its potential to achieve high clustering accuracies. It is also shown
successful for remote sensing image analysis [21]. Our future work is to reduce the
computational complexity of the graph-based ensemble approach to make it feasible
for ensemble at the data level.

Acknowledgments This work is funded by TUBITAK Career Integration Grant 112E195. Tagdemir
is also funded by FP7 Marie Curie Career Integration Grant IAM4MARS.

References

10.

11.

. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 22(8), 888-905 (2000)

. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In:

Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing
Systems 14. MIT Press (2002)

. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: 8th International Work-

shop on Artificial Intelligence and Statistics (AISTATS) (2001)

. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method.

IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214-225 (2004)

. Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.C.: Approximate spectral clustering.

In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B. (eds.) PAKDD, Volume 5476 of
Lecture Notes in Computer Science, pp. 134—146. Springer (2009)

. Wang, L., Leckie, C., Kotagiri, R., Bezdek, J.: Approximate pairwise clustering for large data

sets via sampling plus extension. Pattern Recogn. 44(2), 222-235 (2011)

. Tasdemir, K.: Vector quantization based approximate spectral clustering of large datasets.

Pattern Recogn. 45(8), 3034-3044 (2012)

. Tagdemir, K., Yalcin, B., Yildirim, I.: Approximate spectral clustering with utilized similar-

ity information using geodesic based hybrid distance measures. Pattern Recogn. Under revi-
sion(0):0 (2014)

. Martinetz, T., Schulten, K.: Topology representing networks. Neural Netw. 7(3), 507-522

(1994)

Tagdemir, K., Moazzen, Y., Yildirim, I. Geodesic based similarities for approximate spectral
clustering. In: 22nd International Conference on Pattern Recognition, Stockholm, Sweden,
24-28 Aug 2014

Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple
partitions. J. Mach. Learn. Res. 3(3), 583-617 (2002)

. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinfor-

matics 19(9), 10901099 (2003)

. Topchy, A., Jain, A.K., Punch, W.: A mixture model for clustering ensembles. In: Proceedings

of SIAM International Conference Data Mining, pp. 379-390 (2004)

. Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE

Trans. Pattern Anal. Mach. Intell. (PAMI) 27(6), 835-850 (2005)

. Zhang, X., Jiao, L., Liu, F,, Bo, L., Gong, M.: Spectral clustering ensemble applied to SAR

image segmentation. IEEE Trans. Geosci. Remote Sens. 46(7), 2126-2136 (2008)

. Zelnik-Manor, L., Perona, L.: Self-tuning spectral clustering. In: Advances in Neural Informa-

tion Processing Systems (2004)

. Tagdemir, K.: A hybrid similarity measure for approximate spectral clustering of remote sensing

images. In: 2013 IEEE International Conference on Geoscience and Remote Sensing Sympo-
sium (IGARSS), pp. 3136-3139, July 2013

A Neural Gas Based Approximate Spectral Clustering Ensemble 93

18. Tagdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of self-
organizing maps. IEEE Trans. Neural Netw. 20(4), 549-562 (2009)

19. Santos, J., Embrechts, M.: On the use of the adjusted rand index as a metric for evaluating
supervised classification. In: International Conference on Artificial Neural Networks-ICANN
(2009), Limassol, Cyprus, pp. 175184, 14—17 Sept 2009

20. Tagdemir, K., Merényi, E.: A validity index for prototype-based clustering of data sets with
complex cluster structures. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(4), 1039-1053
(2011)

21. Tasdemir, K., Moazzen, Y., Yildirim, I.: An approximate spectral clustering ensemble for high
spatial resolution remote-sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
8(5), 1996-2004 (2015)

Reliable Clustering Quality Estimation
from Low to High Dimensional Data

Jean-Charles Lamirel

Abstract This paper presents new cluster quality indexes which can be efficiently
applied for a low-to-high dimensional range of data and which are tolerant to noise.
These indexes relies on feature maximization, which is an alternative measure to
usual distributional measures relying on entropy or on Chi-square metric or vector-
based measures such as Euclidean distance or correlation distance. Experiments
compare the behavior of these new indexes with usual cluster quality indexes based
on Euclidean distance on different kinds of test datasets for which ground truth is
available. This comparison clearly highlights the superior accuracy and stability of
the new method.

1 Introduction

Unsupervised classification or clustering is a data analysis technique which is increas-
ingly widely-used in different areas of application. If the datasets to be analyzed have
growing size, it is clearly unfeasible to get ground truth that permits to work on them
in a supervised fashion. The main problem which then arises in clustering is to qual-
ify the obtained results in terms of quality. A quality index is a criterion which makes
it possible to decide which clustering method to use, to fix an optimal number of
clusters and also to evaluate or develop a new method. Many approaches have been
developed for that purpose as has been pointed outin [1, 20, 21, 24]. However, even
if recent alternative approaches do exist [3, 10, 11], the usual quality indexes are
mostly based on the concepts of dispersion of a cluster and dissimilarity between
clusters. Computation of the latter criteria themselves relies on Euclidean distance.
Most popular such indexes are the Dunn index [7], the Davis-Bouldin index [5], the
Silhouette index [22], the Calinski-Harabasz index [4] and the Xie-Beni index [25].
They implement the afore mentioned concepts in slightly different ways.

J.-C. Lamirel (<)
SYNALP Team, LORIA, Batiment B, 54506 Vandoeuvre Cedex, France
e-mail: lamirel @loria.fr

© Springer International Publishing Switzerland 2016 95
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_8

96 J.-C. Lamirel

The Dunn index (DU) identifies clusters which are well separated and compact.
It combines dissimilarity between clusters and their diameters to estimate the most
reliable number of clusters. The Davies-Bouldin index (DB) is similar to the Dunn
index and identifies clusters which are far from each other and compact. The Sil-
houette index (SI) computes a width depending on its membership in any cluster.
A negative silhouette value for a given point means that the point is most suited to
belong to a different cluster from the one it is allocated. The Calinski-Harabasz index
(CH) computes a weighted ratio between the within-group scatter and the between
group scatter. Well separated and compact clusters should maximize this ratio. The
Xie-Beni index (XI) is a compromise between the approaches provided by the Dunn
index and by the Calinski-Harabasz index.

As stated in [9, 14, 24] most of the presented indexes have the imensional space
as well as they are unable to detect degenerated clusdefect to be sensitive to the
noisy data and outliers. In [17], Lamirel et al. also observed that the proposed
indexes are not suitable to analyze clustering results in high-dtering results. Also
these indexes are not independent of the clustering method with which they are
used. As an example, a clustering method which tends to optimize WGSS, like
k-means [19], will also tend to naturally produce low value for that criteria which
optimizes indexes output, but does not necessarily guarantee coherent results, as
it was also demonstrated in [17]. Last but not least, as Hamerly et al. pointed out
in [12], the experiments on these indexes in the literature are often performed on
unrealistic test corpora made up of low dimensional data with a small number of
“well-shaped” embedded virtual clusters. As an example, in their reference paper,
Milligan and Cooper [20] compared 30 different methods for estimating the number
of clusters. They classified CH and DB in the top 10, with CH the best but their
experiments only used simulated data described in a low dimensional Euclidean
space. The same remark can be made about the comparison performed in [24] or
in [6]. However, Kassab et al. [13] used the Reuters test collection to shown that
the aforementioned indexes are often unable to identify an optimal clustering model
whenever the dataset is constituted by complex data which need to be represented
in both high-dimensional and sparse description space, obviously with embedded
non-Gaussian clusters, as is often the case with textual data. The silhouette index is
considered one of the more reliable indexes among those mentioned above especially
in the case of multidimensional data, mainly because it is not a diameter-based index
optimized for Gaussian context. However, like the Dunn and Xie-Beni indexes, its
main defect is that it is computationally expensive, which could represent a major
drawback for use with large datasets of high-dimensional data.

There are also other altenatives to the usual indexes. For example, in 2009
Lago-Fernandez et al. [15] proposed a method using negentropy which evalu-
ates the gap between the cluster entropy and entropy of the normal distribution
with the same covariance matrix, but again their experiments were only conducted
on two-dimensional data. Also other recent indexes attempts were limited by the
researchers’choice of complex parameters [24].

Our aim was to get rid of the method-index dependency problem and the issue of
sensitivity to noise while also avoiding computation complexity, parameter settings

Reliable Clustering Quality Estimation ... 97

and dealing with a high-dimensional context. To achieve goals, we exploited features
of the data points attached to clusters instead of information carried by cluster cen-
troids and replaced Euclidean distance with a more reliable quality estimator based
on the feature maximization measure. This measure has been already successfully
used by Lamirel et al. to solve complex high-dimensional classification problems
with highly imbalanced and noisy data gathered in similar classes thanks to its very
efficient feature selection and data resampling capabilities [18]. As a complement
to this information, we shall show in the upcoming experimental section that cluster
quality indexes relying on this measure do not possess any of the defects of usual
approaches including computational complexity.

Section 2 presents a feature maximization measure and our proposed new indexes.
Section 3 presents our experimental context. Section 4 our results before Sect. 5 draws
our conclusion and ideas for future work.

2 Feature Maximization for Feature Selection

Feature maximization is an unbiased measure which can be used to estimate the
quality of a classification whether it be supervised or unsupervised. In unsupervised
classification (i.e. clustering), this measure exploits the properties (i.e. the features)
of data points that can be attached to their nearest cluster after analysis without prior
examination of the generated cluster profiles, like centroids. Its principal advantage
is thus to be totally independent of the clustering method and of its operating mode.

Consider a partition C which results from a clustering method applied to a dataset
D represented by a group of features F'. The feature maximization measure favours
clusters with a maximal feature F-measure. The feature F-measure FF . (f) of a feature
f associated with a cluster c is defined as the harmonic mean of the feature recall
FR.(f) and of the feature predominance FP.(f), which are themselves defined as
follows:

f f
ZicW TicW
FR.(f) = ——4<2d_ pp () = 4 d (M)
EC’ECEdEC’W'd Ef’eF‘,,decW'd
with

FR, FP,

FE.(f) =2 (M))
FR:(f) + FP.(f)

where W‘; represents the weight of the feature f for the data d and F, represents all
the features present in the dataset associated with the cluster c.

There is some important similarities between Recall and Predominance used in
the proposed approach and Recall and Precision used in information retrieval. We
have already exploited this analogy more thoroughly in some of our former works,

98 J.-C. Lamirel

like in [16], but the measures proposed here must be considered as generalizations of
such information retrieval measures which are no more based on agreement but on
influence of a feature materialized by a weight. Weight represents the importance of
a feature for a data and furthermore for a cluster. The choice of the weighting scheme
is not really constrained by the approach instead of producing positive values. Such
scheme is supposed to figure out the significance (i.e. semantic and importance) of
the feature for the data.

Feature recall is a scale independent measure but feature predominance is not.
We have however shown experimentally in [18] that the F-measure which is a com-
bination of these two measures is only weakly influenced by feature scaling. Never-
theless, to guaranty full scale independent behavior for this measure, data must be
standardized.

Feature maximization measure can be exploited to generate a powerfull feature
selection process [18]. In the clustering context, this kind of selection process can be
defined as non-parametrized process based on clusters content in which a cluster fea-
ture is characterized using both its capacity to discriminate between clusters (FP.(f)
index) and its ability to faithfully represent the cluster data (FR.(f) index). The set
S.of features that are characteristic of a given cluster ¢ belonging to a partition C is
translated by:

S.={f € F. | FF.(f) > FF(f) and FF.(f) > FFp} where 3)
_ FF. _ FF
FE() = Seec 0 and FFp = Syep V) o)
1Crl F

where C/r represents the subset of C in which the feature f occurs.
Finally, the set of all selected features Sc is the subset of F' defined by:

Sc = UcecSe. (5

In other words, the features judged relevant for a given cluster are those whose
representations are better than average in this cluster, and better than the average
representation of all the features in the partition, in terms of feature F-measure.
Features which never respect the second condition in any cluster were discarded.

A specific concept of contrast G, (f) can be defined to calculate the performance of
aretained feature f for a given cluster c. It is an indicator value which is proportional
to the ratio between the F-measure FF,.(f) of a feature in the cluster c and the average
F-measure FF of this feature for the whole partition.! It can be expressed as:

G.(f) = FF.(f)/FF(f) (6)

!Using p-value highlighting the significance of a feature for a cluster by comparing its contrast
to unity contrast would be a potential alternative to the proposed approach. However, this method
would introduce unexpected Gaussian smoothing in the process.

Reliable Clustering Quality Estimation ... 99

The active features of a cluster are those for which the contrast is greater than 1.
Moreover, the higher the contrast of a feature for one cluster, the better its performance
in describing the cluster content.

As already mentioned before, the active features in a cluster are selected features
for which the contrast is greater than 1 in that cluster. Conversely, the passive features
in a cluster are selected features present in the cluster’s data for which contrast is less
than unity.> A simple way to exploit the features obtained is to use active selected
features and their associated contrast for cluster labelling as we proposed in [18]. A
more sophisticated method (as we shall propose hereafter) is to exploit information
related to the activity and passivity of selected features in clusters to define clustering
quality indexes identifying an optimal partition. This kind of partition is expected to
maximize the contrast described by Eq. 6. This approach leads to the definition of
two different indexes:

The PC index, whose principle corresponds by analogy to that of intra-cluster
inertia in the usual models, is a macro-measure based on the maximization of the
average weighted contrast of active features for optimal partition. For a partition
comprising k clusters, it can be expressed as:

k
PC, = % > nl > Gi(f) (7)

i=1 """ fes;

The EC index, whose principle corresponds by analogy to that of the combination
between intra-cluster inertia and inter-cluster inertia in the usual models, is based
on the maximization of the average weighted compromise between the contrast of
active features and the inverted contrast of passive features for optimal partition:

EC. = li % 2 s GilH) + % 2 hes, #(h) ®)
Tk jsil + 5]

where 7; is the number of data associated with the cluster i, |s;| represents the number
of active features in 7, and |5;|, the number of passive features in the same cluster.

3 Experimental Data and Process

To objectively calculate the accuracy of our new indexes, we used several different
datasets of varying dimensionality and size for which the optimal number of clusters
(i.e. ground truth) is known in advance.

A part of the datasets came from the UCI machine learning repository [2] and is
more usually exploited for classification tasks. The 4 selected UCI datasets represent

2 As regards the principle of the method, this type of selected features inevitably have a contrast
greater than 1 in some other cluster(s) (see Eq. 3 for details).

100 J.-C. Lamirel

Table 1 Datasets overall characteristics (Binarization of IRIS dataset results in 12 binary features
out of 4 real-valued features)

IRIS IRIS-b | WINE |PEN 700 VRBF |R8 R52
Nbr. class 3 3 3 10 7 12-16 8 52
Nbr data 150 150 178 10992 | 101 2183 7674 9100
Nbr feat. 4 12 13 16 |114 231 3497 7369

mostly low to middle dimensional datasets and small datasets (except for PEN dataset
which is large). The ZOO dataset which includes variables with modalities was
transformed into a binary file. IRIS is exploited both in standard and in binarized
version to obtain clearer insight into the behavior of quality index on binary data.

The VERBF dataset is a dataset of French verbs which are described both by
semantic features and by subcategorization frames. The ground truth of this dataset
has been established both by linguists who studied different clustering results and by
a gold standard based on the VerbNet classification, as in [23]. This binary dataset
contains verbs described in a space of 231 Boolean features. It can be considered a
typical middle size and middle dimensional dataset.

The R8 and R52 corpora were obtained by Cardoso Cachopo3 from the R10
and R90 datasets, which are derived from the Reuters 21578 collection.’ The aim
of these adjustments was to only retain data with a single label. R8 only considers
monothematic documents and classes with at least one example of training and one
of testing and is a reduction of the R10 corpus (the 10 most frequent classes) to 8
classes while R52 is a reduction of the R90 corpus (90 classes) to 52 classes. RS
and R52 are large and multidimensional datasets with respective sizes of 7674 and
9100 data and an associated bag of word description spaces of 1187 and 2618 words.
These datasets can be considered large and high dimensional.

The R8 and R52 corpora were obtained by Cardoso Cachopo from the R10 and
R90 datasets, which are derived from the Reuters 21578 collection.* The aim of
these adjustments was to only retain data that had a single label. Considering only
monothematic documents and classes that still had at least one example of training
and one of test, R8 is a reduction of the R10 corpus (the 10 most frequent classes) to
8 classes and R52 is a reduction of the R90 corpus (90 classes) to 52 classes. The R8
and R52 are large and multidimensional datasets with respective size of 7674 and
9100 and associated bag of words description spaces of 1187 and 2618 words. This
datasets can be considered as large and high dimensional datasets.

The summary of datasets overall characteristics is provided in Table 1.

We exploited 2 different usual clustering methods, namely k-means [19], a winner-
take-all method, and GNG [8], a winner-take-most method with Hebbian learning.
For text and/or binary datasets we also used the IGNGF neural clustering method [17]
which has already been proven to outperform other clus-tering methods, including

3http://web.ist.utl.pt/~acardoso/datasets/.
“http://www.research.att.com/lewis/reuters2 1578 html.

http://web.ist.utl.pt/~{}acardoso/datasets/
http://www.research.att.com/lewis/reuters21578.html

Reliable Clustering Quality Estimation ... 101

spectral methods [23], on this kind of data. We have reported on the method that
produced the best results in the following experiments.

As class labels were provided in all datasets and considering that the clustering
method could only produce approximate results as compared to reference categoriza-
tion, we also used purity measures to estimate the quality of the partition generated
by the method as regards to category ground truth. Following [23], we use modi-
fied purity (mPUR) to evaluate the clusterings produced and this was computed as
follows:

1P|

mPUR = — 9
|D|

where P = {d € D | prec(c(d)) = g(d) A |c(d)| > 1} with D being the set of ex-
ploited data points, c(d) a function that provides the cluster associated to data d and
g(d) a function that provides the gold class associated to data d. Clusters for which
the prevalent class has only one element are considered as marginal and are thus
ignored.

For the same reason, we also varied the number of clusters in a range up to 3
times that determined by the ground truth. An index which gave no indication of
optimum in the expected range was considered to be out-of-range or diverging index
(-out-). We finally obtained a process which consists of generating disturbance in
the clustering results by randomly exchanging data between clusters to different
fixed extents (10, 20, 30 %) whilst maintaining the original size of the clusters. This
process simulated increasingly noisy clustering results and the aims was to estimate
the robustness of the proposed estimators.

4 Results

The results are presented in Tables 2 and 3. Some complementary information is
required regarding the validation process. In the tables, MaxP represents the number
of clusters of the partition with highest mPur value (Eq. 9), or in some cases, the
interval of partition sizes with highest stable mPur value. When a quality index
identified an optimal model with MaxP clusters and MaxP differed from the number
of categories established by ground truth, its estimation was still considered valid.
This approach took into account the fact that clustering would quite systematically
produce sub-optimal results as compared to ground truth. The partitions with the
highest purity values were thus studied to deal with this kind of situation. For similar
reason, all estimations in the interval range between the optimal k (ground truth)
and MaxP values were also considered valid. When indexes were still increasing and
decreasing (depending on whether they were maximizers or minimizers) when the
number of clusters was more than 3 times the number of expected classes, there were
considered out-of-range (-out- symbol in Tables 2 and 3).

102

J.-C. Lamirel

Table 2 Overview of the indexes estimation results (Bold numbers represent valid estimations)

IRIS IRIS-b WINE | PEN 700 VRBF |R8 R52 Number
of
correct
matches

DB 2 5 5 7 8 -out- 5 58 2/8
CH 2 3 6 8 4 7 6 -out- 2/8
DU 1 1 8 17 8 2 -out- -out- 1/8
SI 4 2 7 14 4 -out- -out- 54 2/8
XB 2 7 -out- 19 -out- 23 -out- -out- 0/8
EC 3 3 4 9 7 18 -out- -out- 3/8
PC 3 2 4 9 7 15 6 52 6/8
MaxP | 3 3 5 11 10 12-16 |6 50-55
Method | K-means | K-means | GNG GNG IGNGF | IGNGF | IGNGF | IGNGF
Table 3 Indexes estimation results in the presence of noise (UCI ZOO dataset)
700 Z0O0 Noise 700 20 % Z0O0 Noise Number of
10% 30% correct matches

DB 8 4 3 3 1/4
CH 4 5 3 3 0/4
DU 8 2 2 2 1/4
ST 14 -out- -out- -out- 0/4
XB -out- -out- -out- -out- 0/4
PC 6 4 11 9 1/4
EC 7 5 6 9 2/4
MaxP 10 7 10 10
Method | IGNGF IGNGF IGNGF IGNGF

When considering the results presented in Table 2, it should first be noted that one
of our tested indexes, the Xie-Beni (XB) index never provides any correct answers.
These were either out of range (i.e. diverging) or answers (i.e. minimum value when
this index was a minimizer) in the range of the variation of k, but too far from
ground truth or even too far from optimal purity among the set of generated clustering
models. Some indexes were in the low mid-range of correctness and provide unstable
answers. This was the cases with the Davis-Bouldin (DB), Calinski-Harabasz (CH),
Dunn (DU) and Silhouette (SI) indexes. When there was dimension growth, these
indexes were found to become generally unable to provide any correct estimation.
This phenomenon has already been observed in previous experiments with Davis-
Bouldin (DB) and Calinski-Harabasz (CH) indexes [13]. Our PC index was found to
perform slightly better than average but obviously remains a better low dimensional
problem estimator than a high dimensional one. Help from passive features somehow

Reliable Clustering Quality Estimation ... 103

seems mandatory to estimate an optimal model in the case of high dimensional
problems. Hence, the EC index which exploited both active and passive features was
found to have from far the best performance, whatever it faced with low or high
dimensional estimation problem. Additionally, both the EC and PC indexes, were
both found to be capable of dealing with binarized data in a transparent manner which
is not the case of some of the usal indexes namely the Xie-Beni (XI) index, and to a
lesser extend, Calinski-Harabasz (CH) and Silhouette (SI) indexes.

Interestingly, on the UCI ZOO dataset, the results of noise sensitivity analysis
presented in Table 3 underline the fact that noise has a relatively limited effect on
the operation of PC and EC indexes. The EC index was again found to have the most
stable behavior in that context. As for the Silhouette index, this firstly delivered the
wrong optimal k values on this dataset before getting out of range when the noise
reached 20 % on clustering results. The Davis-Bouldin (DB) and Dunn indexes (DU)
were found to shift from a correct to a wrong estimation as soon as noise began to
appear.

In all our experiments, we observed that the quality estimation depends little on the
clustering method. Morever, we noted that the computation time of the index was one
of the lowest among the indexes studied. As an example, for the R52 dataset, the EC
index computation time was 125s as compared to 43,0005 for the Silhouette index
using a standard laptop with 2.2 GHz quadricore processor and 8 GB of memory.

5 Conclusion

We have proposed a new set of indexes for clustering quality evaluation relying on
feature maximization measurement. This method exploits the information derived
from features which could be associated to clusters by means of their associated data.
Our experiments showed that most of the usual quality estimators do not produce
satisfactory results in a realistic data context and that they are additionally sensitive
to noise and perform poorly with high dimensional data. Unlike the usual quality
estimators, one of the main advantages of our proposed indexes is that they produce
stable results in cases ranging from a low dimensional to high dimensional context
and also require low computation time while easily dealing with binarized data.
Their stable operating mode with clus-tering methods which could produce both
different and imperfect results also constitutes an essential advantage. However,
further experiments are required using both an extended set of clustering methods
and a larger panel of high dimensional datasets to confirm this promising behavior.

Additionally, we plan to test the ability of our indexes to discriminate between
correct and degenerated clustering results in the context of large and heterogeneous
datasets.

104 J.-C. Lamirel

References

1. Angel Latha Mary, S., Sivagami, A.N., Usha Rani, M.: Cluster validity measures dynamic
clustering algorithms. ARPN J. Eng. Appl. Sci. 10(9) (2015)

2. Bache, K., Lichman, M.: UCI Machine Learning Repository (http://archive.ics.uci.edu/ml).
University of California, School of Information and Computer Science, Irvine (2013)

3. Bock, H.-H.: Probability model and hypothese testing in partitionning cluster analysis. In:
Arabie, P., Hubert, L.J., De Soete, G. (eds.) Clustering and Classification, pp. 377-453. World
Scientific, Singapore (1996)

4. Calinsky, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1-27
(1974)

5. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell., PAMI-1, 2:224-227 (1979)

6. Dimitriadou, E., Dolnicar, S., Weingessel, A.: An examination of indexes for determining the
number of clusters in binary data sets. Psychometrika 67(1), 137-159 (2002)

7. Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95-104 (1974)

8. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S.,
Leen, T.K. (ed.) Advances in Neural Information Processing Systems 7, pp. 625-632 (1995)

9. Guerra, L., Robles, V., Bielza, C., Larrafiaga, P.: A comparison of clustering quality indices
using outliers and noise. Intell. Data Anal. 16, 703-715 (2012)

10. Gordon, A.D.: External validation in cluster analysis. Bull. Int. Stat. Inst. 51(2), 353-356
(1997); Response to comments. Bull. Int. Stat. Inst. 51(3), 414-415 (1998)

11. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Int. Inf.
Syst. 17(2/3), 147-155 (2001)

12. Hamerly, G., Elkan, C.: Learning the K in K-means. In: Neural Information Processing Systems
(2003)

13. Kassab, R., Lamirel, J.-C.: Feature based cluster validation for high dimensional data. In:
IASTED International Conference on Artificial Intelligence and Applications (AIA), pp. 97—
103. Innsbruck, Austria (2008)

14. Kolesnikov, A., Trichina, E., Kauranne, T.: Estimating the number of clusters in a numerical
data set via quantization error modeling. Pattern Recogn. 48(3), 941-952 (2015)

15. Lago-Fernandez, L.F., Corbacho, F.: Using the negentropy increment to determine the number
of clusters. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M., et al. (eds.) Bio-Inspired
Systems: Computational and Ambient Intelligence, pp. 448-455. Springer, Berlin (2009)

16. Lamirel, J.-C., Francois, C., Al Shehabi, S., Hoffmann, M.: New classification quality estima-
tors for analysis of documentary information: application to patent analysis and web mapping.
Scientometrics 60(3), 445-462 (2004)

17. Lamirel, J.-C., Mall, R., Cuxac, P., Safi, G.: Variations to incremental growing neural gas
algorithm based on label maximization. In: Proceedings of IJCNN 2011, pp. 956-965, San
Jose (2011)

18. Lamirel, J.-C., Cuxac, P., Chivukula, A.S., Hajlaoui, K.: Optimizing text classification through
efficient feature selection based on quality metric. J. Intell. Inf. Syst., Spec. Issue PAKDD-
QIMIE 2013, 1-18 (2014)

19. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.
In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (1),
pp. 281-297. University of California Press (1967)

20. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of
clusters in a dataset. Psychometrika 50(2), 159—-179 (1985)

21. Rendoén, E., Abundez, 1., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster valida-
tion indexes. Int. J. Comput. Commun. 5(1), 27-34 (2011)

http://archive.ics.uci.edu/ml

Reliable Clustering Quality Estimation ... 105

22. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math. 20, 53-65 (1987)

23. Sun, L., Korhonen, A., Poibeau, T., Messiant, C.: Investigating the cross-linguistic potential of
VerbNet-style classification Proceedings of ACL, pp. 1056—-1064. Beijing (2010)

24. Yanchi, L., Zhongmou, L., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering val-
idation measures. In: Proceedings of the 2010 IEEE International Conference on Data Mining,
ICDM ’10, pp. 911-916

25. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach.
Intell. 13(8), 841-847 (1991)

Segment Growing Neural Gas
for Nonlinear Time Series Analysis

Jorge R. Vergara, Pablo A. Estévez and Alvaro Serrano

Abstract In this work we propose an extension to Growing Neural Gas (GNG) for
dealing with the spatiotemporal quantization of time series. The two main changes
to the original GNG algorithm are the following. First, the basic unit of the GNG
network is changed from a node to a linear segment joining two nodes. Secondly,
temporal connections between neighboring units in time are added. The proposed
algorithm called Segment GNG (SGNG) is compared with the original GNG and
Merge GNG algorithms using three benchmark time series: Rossler, Mackey-Glass
and NHj Laser. The algorithms are applied to the quantization of trajectories in
the state space representation of these time series. The results show that the SGNG
outperforms both GNG and Merge GNG in terms of quantization error and temporal
quantization error.

1 Introduction

Time series analysis has two main goals: (i) identify the dynamics of the data gen-
erating process, and (ii) predict future values based on the signal previous behavior
[1]. Vector quantization is a tool that allows extracting prototypes, e.g. centroids of
receptive fields. The Self-Organizing Map (SOM) [11] performs vector quantiza-
tion through unsupervised learning and adds an output grid to achieve a topological

J.R. Vergara - PA. Estévez (<) - A. Serrano
Department of Electrical Engineering, University of Chile, Santiago, Chile
e-mail: pestevez@ing.uchile.cl

J.R. Vergara
e-mail: jorgever @ing.uchile.cl

J.R. Vergara - PA. Estévez
Millennium Institute of Astrophysics, Santiago, Chile

P.A. Estévez
Advanced Mining Technology Center, Santiago, Chile

© Springer International Publishing Switzerland 2016 107
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_9

108 J.R. Vergara et al.

ordered mapping, which allows us visualizing the topological relationships among
prototypes. A variant is the Neural Gas (NG) algorithm [15], which gets rid of the
output grid in order to achieve a good quantization for any kind of topology. In
both SOM and NG, the number of prototypes is a user defined parameter. Growing
NG (GNG) [8] and Growing SOM (GSOM) [2] start with two prototypes and grow
adaptively during iterations.

The aforementioned algorithms were designed to represent the data spatial distrib-
ution but not the data temporal relationships. As a consequence the direct application
of SOM and NG to time series is rather limited. Several works have been developed
to include the temporal data relationships using feedback connections such as recur-
sive SOM [21] and recurrence SOM [12]. Another family of models add compact
temporal contexts such Merge SOM [19], Merge NG [18], Merge GNG [1], y-SOM
[5], ¥-NG [4], and y-GNG [6].

State et. al [17] and Coleca et. al [3] introduced an extension of the SOM for
performing 3D hand and full body skeleton tracking. In this method the hand and
body are represented by line and plane segments between nodes, that are adjusted
adaptively. We found the concept of segments very useful for time series analysis, and
herein we propose an extension to GNG where segments are the basic units instead
of nodes. To obtain a spatiotemporal data representation we also introduce temporal
connections between units. In addition our analysis is based on the spatiotemporal
quantization of the state-space representation of time series, instead of quantizing
the signal directly.

The remainder of this work is divided into 5 sections. Section 2 introduces the
fundamental concepts used in our model. Section 3 presents the proposed extension
to the GNG model. Section 4 shows the simulation results obtained with 3 benchmark
time series. In Sect. 5 the conclusions are drawn.

2 Background

2.1 Delay Coordinate Embedding

The state space is the set of all states of a deterministic dynamical system. According
to Takens’ embedding theorem [20], it is possible to reproduce entirely the properties
of such a system (topology and temporal structure) starting from one-dimensional
time series. The time series correspond to a sequence of scalar measurements of the
state space or a single state variable, x;. To embed a time series, a delay coordinate
vector is constructed as follows: @, = [X,, X(n—¢)s X(n—2¢)s = ** » X—(m—1)¢)], Where
the delay ¢ and dimension m are the embedding parameters. Although the embedding
theorems do not provide a way to estimate these parameters, there are some heuristic

Segment Growing Neural Gas for Nonlinear ... 109

methods to do so. The parameter ¢ is usually estimated by seeking for the delay
that provides the first minimum of the average mutual information [7], while the
dimension m is estimated by the false nearest neighbor algorithm [10].

2.2 Segments as Basic Units for the Self-Organizing Map

State et. al [17] and Coleca et. al [3], in their work on hand and full body skeleton
tracking extended SOM by considering line and plane segments as basic units. A
segment is the line joining two nodes w' and w/ defined as Wi/ = wiw/. The
distance between a sample point y, and the segment W¥ is obtained by projecting
y,, over segment W% and then calculating the distance between Y and its prOJectlon
p. Defining Aw/! = w/ —w, then p can be expressed as s p = wi+n; Aw/l, 0 <

nji < 1, with n;; + n;; = 1. Given the unit vector AWJ’ the coefficient n;; is
computed as: .
(yn - wl) - =

nji = W Awll, (D

The square euclidean distance of y, to the segment W is:

[(30 WP = yw = " = [y aw” | @

3 Spatiotemporal Extension of Growing Neural Gas

3.1 Proposed Method

Herein we propose an extension to the GNG algorithm for the spatiotemporal quan-
tization of time series. The main changes to the original GNG algorithm are the
following: (i) the basic unit is changed from a node (neuron) to a segment (con-
nection between two nodes), and (ii) a register for keeping temporal connections is
introduced. In what follows the details of the proposed algorithm are explained. The
new algorithm is called Segment Growing Neural Gas (SGNG).

The SGNG algorithm seeks to approximate trajectories in the state space repre-
sentation by linear segments. A segment S’ is defined as the line joining two nodes
s 0" st € R™ where s, and s' "= correspond to the initial and final points of segment
S’ respectively. Segment S' is used to identify and quantize portions of trajectories
in the state space that could be locally approximated by a linear segment. A tra-
jectory portion {@}~7 is associated to sample ¢ at time n and its 7 past samples

110 J.R. Vergara et al.

(a)
(.‘6” T

(bn—l'?—]']

Fig. 1 a Area enclosed (AE) between a trajectory portion in the state space representation {¢};~*
and the line ¢, ¢,,. b AE estimation through the sum of distances (¢;, i =0, 1, ..., 7) between
each sample from the trajectory portion {¢};;~* and the line ¢, ¢,

(¢} " =1{d,_r. P11, -, P,}. The size of a portion of trajectory that will be
quantized by S is determined by the linearity of this portion. The linearity of a
portion of a trajectory is evaluated as follows. The parameter 7 starts with the value
1. Later on, this delay is increased iteratively until the area enclosed (AE) between
the current trajectory portion {¢}, " and the line joining the extreme points of this
trajectory portion ¢,_, ¢, reaches a certain threshold E,,,, (See Fig. 1a).

To avoid the cost of computing the AE accurately, we approximate it through
the sum of distances between each sample in the trajectory portion {¢}; " and its
projection onto the line ¢, . ¢,,. Figure1b) illustrates the above mentioned distances,
e, ,ep.

DISTANCE MEASURE. To obtain the Best Matching Linear Segment (BMLYS)
for each trajectory portion {¢};~7, a distance measure that evaluates two features
of each linear segment S is used: (i) the closeness between S’ and the trajectory
portion {¢},~* is measured through the spatial distance and (ii) the degree of paral-
lelism between S' and the line ¢, _, ¢, is measured through the cosine similarity. To
measure the spatial distance, first the midpoint (p,,) of the trajectory portion {¢}:~*
is estimated. Secondly, the distance between this midpoint and the linear segment S
is computed by using Eq. (2). The cosine similarity between S’ and the line ¢,,_. ¢,
is computed as:

i ——— AsT A
Slm(S ’¢n—r¢n) - ||AS’H ||A¢||’ (3)

where As’ = sh, — s, and Ap = ¢, — ¢_;.
The combined distance measure used by SGNG is the following:

D 0.4}y 8) = (0 (1= simS . fuc) +1)d (p,.). @

where 6 is a parameter that controls the trade-off between the cosine value (paral-
lelism) and the spatial distance (closeness). Once selected the BMLS at iteration n, a
temporal link is created between this unit and the BMLS selected at iteration n — 1.
The step by step SGNG algorithm is described in Algorithm 1.

Segment Growing Neural Gas for Nonlinear ... 111

Algorithm 1 Pseudo-code algorithm SGNG.

1: Create randomly two linear segments §' = {siO, s}}, i, = 1, 2. Connect them spatially with a

zero age edge. Set to zero their respective errors, error'.

2: Create matrix of temporal connections for segments of the network. If there are already segments
temporally connected, disconnect them.

3: Present sample ¢, to the network.

4: Find the maximum delay t such that the AE of the sequence {¢};~7 does not exceed a E,.

5: Find the best matching linear segment (BMLS), I,,, and the second closest segment, J,, using
Eq. 4.

6: Update the BMLS’s error: error’™ = error’ + D (9, (o} 7, SI"), where D (6, {o}n ", SI")
is the distance obtained from Eq. 4.

7: Update BMLS’s position using the following rule:

S'O” =€y (dm-r - sg) and S'F” =€y (¢n - S'p) ©)

and update the position of its neighboring segments (i.e. all segments connected to the BMLS
by an edge of topological connection) changing step-size €,, to €, in Eq.5.

8: Increment the age of all edges connecting the BMLS and its topological neighbors, a; = a; +1.

9: If the BMLS and the second closest segment are connected by a topological edge, then set the
age of that edge to zero. Otherwise create a topological edge between them.

10: If there are topological edges with an age larger than g, then remove them. If after this
operation, there are segments without topological edges remove them.

11: Create a temporal connection between the current BMLS (7,,) and the BMLS of the past iteration
(In—1).

12: If the current iteration n is an integer multiple of A, and the maximum number of segments
not been reached, then insert a new segment. The parameter A controls the number of iterations
required before inserting a new segment. Insertion of a new segment, r, is done as follows:

(a) Find segment u with the largest error.
(b) Among the neighbors of u, find the segment v with the largest error.
(c) Insert the new segment r between u and v as follows:

sp =05 (s +sy) and sp =05 (sh +s}) (6)

(d) Create topological edges between u and r, and v and r, and then remove the topological
edge between u and v.

(e) Create a temporal connection between segments « and r.

(f) Decrease the error of # and v as error = (1 — «) error” and error’ = (1 —) error®.
Set the error of node r as error” = error®.

13: Decrease error for all segments j by a factor (1 — B), error! = (1 —) error’. Typically,
o =0.5and g = 0.0005.

14: Setn - n+ 1.

15: If n < L go back to step 3. L is the cardinality of the time series in the state space.

16: If there are segments without temporal connections, remove them.

17: If the stopping criterion is not met, go back to step 2.

112 J.R. Vergara et al.

Fig. 2 Plots of one-dimensional time series (first row) and their respective 2D state space repre-
sentation (second row): Rossler a—b, Mackey-Glass ¢—d, and Laser e—f

4 Simulation Results

4.1 Description of Datasets

Three datasets were used to evaluate the performance of the proposed algorithm. The
first dataset is the Rossler system, which is a well-known example of a strange attrac-
tor [13]. It is defined by a system of 3 ordinary differential equations with nonlinear
components [16]. A total of 1968 samples were drawn from the Rossler system. The
delay embedding parameter was estimated as { = 33 by mutual information. The
Rossler’s time series and its attractor are shown in Fig. 2a, b, respectively. The second
dataset corresponds to the Mackey-Glass time series, which is defined by a differ-
ential equation but depending on the parameters chosen a wide variety of different
behaviors are obtained, including chaotic solutions [14]. A total of 484 samples were
drawn from this dataset. The delay embedding parameter was estimated as { = 18
by mutual information. The Mackey-Glass time series and its attractor are shown in
Fig. 2c, d, respectively. The laser time series corresponds to data set A! in the Santa
Fe time series competition. This is a univariate time series, containing 1000 mea-
surements from a FIR-Laser in a chaotic state. The delay embedding parameter was
estimated as ¢ = 3 by mutual information. The Laser time series and its attractor are
shown in Fig. 2e, f, respectively. Without losing generality in this work we use m = 2
as the dimension of the delay coordinate embedding vector i.e., the trajectories are
in a two-dimensional space.

! Available at http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html.

http://www-psych.stanford.edu/{~}andreas/Time-Series/SantaFe.html

Segment Growing Neural Gas for Nonlinear ... 113

4.2 Parameter Setting and Performance Measurements

The proposed SGNG algorithm is compared with the GNG and Merge GNG (MGNG)
algorithms on the three datasets described in the previous section. The common
parameters for SGNG, GNG and Merge GNG were set using recommended values in
the literature [6, 8, 19, 21]. These parameters are: a,,,,, = 60, @ = 0.5, § = 0.0005,
A = 100, and epoch = 1000. Other parameters were varied using a grid with
all possible combinations of the following values: e,, = {0.5; 0.05; 0.005}, e, =
{0.005; 0.0005; 0.0001}, maximal number of nodes or segments as a percentage of
the length of the time series maxN = {5;7; 11; 15, 20 %}. Each combination was
repeated 5 times, and the combination having the bestresults was chosen for each time
series. For the SGNG algorithm, the value 8 = 5 was used. The parameter E,,,, with
the following values E,,,, = {0.1; 0.01; 0.001} was included in the search grid. The
performance measurements used are the quantization error (QE) and the temporal
quantization error (TQE) [9, 21]. QE measures the average distance (mean error) of
each sample of time series to its nearest quantization unit. In the case of GNG and
Merge GNG their units are the neurons (nodes), while the unit of SGNG is a segment.
TQE measures average dispersion of samples delayed & time steps associated to each
quantization unit. TQE is formally defined as [9]:

N

1 \\xj—s—aé\’z
TQE®) =52, | 2 B (7

i=1 J()=i

where N is the number of units of quantification, win; is the number of samples
associated with the receptive field of the i-th unit, /(j) = i is the index of the j-th
sample belonging to the i-th unit (j = 1,2,--- ,win;; i = 1,2,---, N), aé it
is the average of the samples belonging to the i-th unit. To compute the TQE for
the SGNG algorithm, we must notice that the receptive field of a linear segment
is not spherical. Therefore to compute the dispersion of samples in the receptive
field of a linear segment, each sample is associated with its nearest node (the initial
or final point). Then the TQE is computed using Eq. (7). Delays up to 50 samples
(¢=0,1,---,50) are used to compute TQE.

4.3 Rossler

Figure 3a shows a quantization of the Rossler attractor performed by GNG. It can
be observed that GNG does not represent well the vertical trajectories. In addition
at the center of the attractor, there are spurious connections between nodes belong-
ing to different trajectories. Figure 3b shows a quantization of the Rdossler attractor
performed by Merge GNG. It can be observed that the vertical trajectories are now
better represented compared to those of GNG. The center of the attractor is cleaner
too with less spurious connections between nodes belonging to different trajectories.

114 J.R. Vergara et al.

(a)
~--Connection
* Neuron
c
>
—Connection .
= ---Connection
* Neuron
X
n-L
-
£ L] :
i ~--Connection
| 3 + Neuron
‘\
R
=
>

- Connection

* MNeuron
* Neuron

Connection
—Segment

==Connection -~ Connection

——Segment —Segment
X X X
n-_ n-g n-G

5 5 01 %GNG 20 B g5 ONG Sac®
& & ©MGNG ¢ 5 93 eMene %E‘,W"
s S 0.08 7 SGNG { S 025 ¥ SGNG
§ 3 8 oz
z £ 006 =
3 3 So01s ,
g S 004 = Vovg" e
B B 2 o1
=] = o
2 2 g0z 2 v
£ £ E o005
= & &

T W 20 30 40 50 10 20 a0 40 50 10 20 30 40 50

Index of past inputs (index 0: present) Index of past inputs (index (: present) Index of past inpuls (index 0: present)

Fig. 3 Each column represents the results for a different dataset: Rossler, Mackey-Glass and Laser
respectively. Rows 1-2-3 show the quantization results obtained by GNG, MGNG and SGNG
respectively. The fourth row show the temporal quantization errors obtained for each dataset: d
Rossler, h Mackey-Glass and 1 Laser

Segment Growing Neural Gas for Nonlinear ... 115

Figure 3c shows a quantization of the Rossler attractor performed by SGNG. It can
be observed that the vertical trajectories are correctly quantized and it is even pos-
sible to distinguish different vertical trajectories. The quantization errors (QEs) for
GNG, MGNG and SGNG are 0.0103, 0.0120 and 0.0015, respectively. For MGNG
the largest contribution to QE comes from the intersections between vertical and hor-
izontal trajectories. Figure 3d illustrates the TQEs for the three algorithms. GNG has
alarge TQE because it cannot distinguish samples with similar amplitudes belonging
to different trajectories. Both MGNG and SGNG presents similar TQE values until
10 delays, but for larger number of delays, SGNG clearly outperforms MGNG.

4.4 Mackey-Glass

Figure 3e shows a quantization of the Mackey-Glass attractor performed by GNG.
As GNG performs only a spatial quantization, it can be observed that there are many
spurious connections between nodes belonging to different trajectories. As a con-
sequence it is not possible to distinguish between the two main modes of behavior
of the attractor. Figure 3f shows a quantization of the Mackey-Glass attractor per-
formed by MGNG. It can be observed that the two modes of the attractor are clearly
distinguished. But the resolution obtained is rather low, with several close trajec-
tories represented as a single one. Figure 3g shows a quantization of the Mackey-
Glass attractor performed by SGNG. It shows a better resolution than the other two
algorithms, allowing us to distinguish between close trajectories. This can be clearly
observed at the intersection of approximately perpendicular trajectories. The QEs for
GNG, MGNG and SGNG are 0.0255, 0.0306 and 0.0101, respectively. The MGNG
presents the highest QE among the 3 algorithms because its quantization has low
resolution. In contrast, SGNG can differentiate between close trajectories. Figure 3h
illustrates the TQEs for the three algorithms. SGNG obtains the best performance
for most number of delays.

4.5 Laser

Figure 3i shows a quantization of the Laser attractor performed by GNG. It can
be observed that there are many spurious connections between nodes belonging to
different trajectories, so that they cannot be distinguished at all. Figure 3j shows a
quantization of the Laser attractor performed by MGNG. The quantization in Fig. 3j
possesses the same deficiencies as those in Fig. 3i. Figure 3k shows a quantization of
the Laser attractor performed by SGNG. The proposed algorithm is the only one that
captures well the dynamics of the laser attractor. The quantization errors (QEs) for
GNG, MGNG and SGNG are 0.020, 0.0235, and 0.0116, respectively. Again MGNG
presents the highest QE among the 3 algorithms, and SGNG the lowest one. Figure 31
illustrates the TQEs for the three algorithms. SGNG obtains the best performance
for all number of delays.

116 J.R. Vergara et al.

5 Conclusions

We have proposed an extension to GNG that allows performing a spatiotemporal
quantization of time series. A key element in our proposal is changing the basic
unit from a node to a linear segment. The algorithm is able to identify the direction
of trajectories in the space state, and capture the dynamics of the time series, e.g.
an attractor. Segments are useful for the spatiotemporal quantization of time series
because they can be easily adapted to rapid changes in trajectories and even resolu-
tion. A second important element is the inclusion of temporal connections between
neighbors in time. This allows a higher accuracy in adjusting segments to trajectories
and smoother transitions between quantization levels. The results obtained show that
the proposed SGNG algorithm outperforms GNG and MGNG in terms of QE and
TQE in the three time series studied. As future work we plan to expand the algorithm
for its use with higher dimensional state space representations than 2D.

Acknowledgments This research was supported by Conicyt-Chile under grants Fondecyt 1140816,
Conicyt DPI20140090 and by the Ministry of Economy Development and Tourism of Chile under
grant IC12089 awarded to the Millennium Institute of Astrophysics.

References

1. Andreakis, A., Hoyningen-Huene, N., Beetz, M.: Incremental unsupervised time series analysis
using merge growing neural gas. In: Advances in Self-Organizing Maps. Lecture Notes in
Computer Science, vol. 5629, pp. 10-18. Springer, Berlin (2009)

2. Bauer, H.U., Villmann, T.: Growing a hypercubical output space in a self-organizing feature
map. IEEE Trans. Neural Netw. 8(2), 218-226 (1997)

3. Coleca, F, State, A., Klement, S., Barth, E., Martinetz, T.: Self-organizing maps for hand and
full body tracking. Neurocomputing 147, 174—184 (2015)

4. Estévez, P., Hernandez, R., Pérez, C., Held, C.: Gamma-filter self-organising neural networks
for unsupervised sequence processing. Electron. Lett. 47(8), 494-496 (2011)

5. Estévez, P.A., Herndndez, R.: Gamma som for temporal sequence processing. In: Advances in
SOM’s, pp. 63-71. Springer (2009)

6. Estévez, P, Vergara, J.: Nonlinear time series analysis by using gamma growing neural gas. In:
Estévez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps, Advances
in Intelligent Systems and Computing, vol. 198, pp. 205-214. Springer, Berlin (2013)

7. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual infor-
mation. Phys. Rev. A 33(2), 1134 (1986)

8. Fritzke, B.: A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 7,
625-632 (1995)

9. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network mod-
els. Neural Netw. 17(8-9), 1061-1085 (2004)

10. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space
reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403 (1992)

11. Kohonen, T.: Self-organizing Maps. Springer, Heidelberg (1995)

12. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Temporal sequence processing using recurrent
som. In: Proceedings KES *98. 1998 Second International Conference on, vol. 1, pp. 290-297
(1998)

13. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130-141 (1963)

Segment Growing Neural Gas for Nonlinear ... 117

14. Mackey, M.C., Glass, L., et al.: Oscillation and chaos in physiological control systems. Science

15.

16.

17.

18.

19.
20.

21.

197(4300), 287-289 (1977)

Martinetz, T., Berkovich, S., Schulten, K.: ‘Neural-gas’ network for vector quantization and
its application to time-series prediction. IEEE Trans. Neural Netw. 4(4), 558-569 (1993)
Rossler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397-398 (1976)

State, A., Coleca, F., Barth, E., Martinetz, T.: Hand tracking with an extended self-organizing
map. In: Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing,
vol. 198, pp. 115-124. Springer, Berlin (2013)

Strickert, M., Hammer, B.: Neural gas for sequences. In: Proceedings of the Workshop on
Self-Organizing Maps (WSOMO3), pp. 53-57 (2003)

Strickert, M., Hammer, B.: Merge som for temporal data. Neurocomputing 64, 39-71 (2005)
Takens, F.: Detecting strange attractors in turbulence. In: Lecture Notes in Math, vol. 898.
Springer, New York (1981)

Voegtlin, T.: Recursive self-organizing maps. Neural Netw. 15(8), 979-991 (2002)

Modeling Diversity in Ensembles
for Time-Series Prediction Based
on Self-Organizing Maps

Rigoberto Fonseca-Delgado and Pilar Gémez-Gil

Abstract A Self Organizing Map (SOM) projects high-dimensional feature vectors
onto a low-dimensional space. If an appropriate feature vector is chosen, this ability
may be used for measuring and adjusting different levels of diversity in the selection
of models for building ensembles. In this paper, we present the results of using a SOM
for selecting suitable models in ensembles used for long-term time series prediction.
The temporal behavior of the predictors is represented by feature vectors built with
a sequence of the errors achieved in each prediction step. Each neuron in the map
represents a cluster of models with similar accuracy; the adjustment of diversity
between models is achieved by measuring the distance between neurons on the map.
Our experiments showed that this strategy generated ensembles with an appropriate
level of diversity among their components, obtaining a better performance than just
using a unique model.

1 Introduction

In the last years, it has been found that selecting and combining an appropriate set of
models for univariate time series forecasting achieve better results than using only
one model [1, 8]. However, to find the right model set to combine is not a trivial
task [16]. In the ensemble research area exists a consensus about the strategy for the
selection of models to combine: diversity and accuracy of the involved models are
the main factors to consider [1, 15].

SOM neural network [13], following simple rules of competition and cooperation
[12], has been used for building ensembles for time series forecasting. For example,
Ni et al. developed SOMAR [19] which is a method that modifies SOM training to

R. Fonseca-Delgado (X)) - P. Gémez-Gil (<)

Department of Computer Science, National Institute of Astrophisics,
Optics and Electronics, Tonantzintla Puebla, Mexico

e-mail: rfonseca@inaoep.mx

P. Gémez-Gil
e-mail: pgomez @acm.org

© Springer International Publishing Switzerland 2016 119
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_10

120 R. Fonseca-Delgado and P. Gémez-Gil

adjust auto-regressive models instead of neuron prototypes. A SOMAR extension,
called NGMAR [21], uses a SOM variant for adjusting the weights of an ensemble of
auto-regressive models. Koskela et al. proposed a recurrent SOM [14] and Chappell
and Taylor a temporal Kohonen Map [6] which consider for training not to only the
current input pattern, but also to the exponentially weighted past pattern. Merge SOM
(MSOM), proposed by Strickert and Hammer [23], refers to a fusion of two properties
characterizing the previous winner: the weight and the context of the last winner
neuron are merged by a weighted linear combination [24]. Other method idealized
as an probabilistic alternative to SOM is the Generative Topographic Mapping (GTM)
[4]; the GTM Trough Time is one extension to GTM that performs simultaneous time
series clustering and visualization [20].

We also have been working on using SOM as a guide for building ensembles for
long-term forecasting of non-linear time series. In a previous work [11], we analyzed
the impact of performing a model selection by the use of a SOM to find the maxi-
mum diversity among models. Using feature vectors built with errors generated in
each prediction steps and meta-learning, we found that SOM was able to represent
the individual accuracy and diversity among predictors. In [11] maximum diversity
among models was represented by selecting models located in the farthest neuron
from the best model. However, our results showed that, selecting models with max-
imum diversity was related with a poor and in some cases with the worst expected
global accuracy [11].

Based on our past findings, this paper considers different levels of diversity among
models using the neuron distances in the map. The experiments reported here showed
that this strategy produced ensembles that achieved better results than selecting mod-
els based only on the expected accuracy. As in [11], a SOM divides the models into
groups, using meta-features obtained from each involved model; each group corre-
sponds with a neuron in a map of two dimensions. Let’s call “A” the group containing
the model with maximum expected accuracy. In [11], the farthest group of A, which
represent the maximum diversity, was selected to build the ensemble. Here, we select
neighboring neurons to A, and the level of diversity is adjusted managing the distance
with respect to A. The k-best models to be combined are chosen from this neuron
set. Once models are selected, their outputs are averaged to calculate the output of
the prediction system.

For the experiments reported here, two base models where selected: (a) Non-linear
Autoregressive with eXogenous inputs (NARX) model [17], implemented as NARX
neural network [3] and (b) Autoregressive Integrated Moving Average (ARIMA)
[5]. Several models were built changing the main parameters of base models. Four
types of time series were used: a subset of the time series of the NN5 competition, an
integration of the Mackey Glass equation [18], a time series generated with ARMA(2,
1) [5] and an integration of a sine function. These data was chosen in order to represent
a variety of non-linear systems.

The paper is organized as follows: Sect.2 describes the meta features used and
the proposed method. Section 3 shows the experiments. Finally, Sect. 4 exposes the
conclusions and future directions for this research.

Modeling Diversity in Ensembles for Time-Series Prediction ... 121

2 Method Description

A time series Y is a sequence of observations y, measured in constant time intervals.
Multi-step ahead forecasting may be described as an estimation of a sequence of
h future values based on current and past observations of Y, where the prediction
horizon £ is an integer greater than one. The present study follows the iterated strategy,
which consists of estimating one value each time, using the previous predicted value
for calculating the next prediction [8].

As we stated before, our goal is to analyze the effect of selecting and combining
prediction models with different levels of diversity, where a greater diversity is related
with a greater link distance in the neighborhood definition of a map representing
such models. “Link distance” refers to the minimum number of steps separating one
neuron from another. Diversity has been recognized as a very important characteristic
in combination of models [9, 15], but an extreme diversity can be associated with poor
results [11]. Therefore, a method able of adjusting the level of diversity is required.
This research uses a SOM with one output layer organized in a two-dimensional
array, following a hexagonal pattern, (Fig. 1). A neighborhood around a selected
neuron is defined by a particular link distance among neurons; a neighborhood with
a bigger link distance contains the neighborhoods with smaller link distances. For
example, neighborhood with a link distance of 2 contains to a neighborhood with
link distance 1; both are contained in the neighborhood with link distance of 3.

SOM s trained using as feature vector the concept of representative error r,,
introduced in [11]; it is a vector of size h, where h corresponds to a prediction
horizon and each position is related with the error achieved in each forecasting step.
In order to calculate r,, the training time series of size n is split in two sets: training
set (Y’) which contains the first n — h values and expected set (E), which contains
the rest of & values. A model is generated using Y’, which estimates the next & values
iny , then vector r, is defined as:

re=E—Y (1)

Selected
neuron

Neighborhood s

Distance of 1-link Two-dimensional

array of neurons
Distance of 2-links

Distance of 3-links

Fig. 1 Neighborhoods with different number of links from a selected neuron in a Self-Organizing
Map (SOM) based on [3, 11]

122 R. Fonseca-Delgado and P. Gémez-Gil

Commonly, the training of neural networks starts with random weights. this implies
that a network trained twice with the same Y’ may achieve a different set of final
weights, thus the trained model can have a different behavior each training. To avoid
such instability, when the base model is a neural network, r, is computed k itera-
tions and the returned r, is the average of these iterations. Metric Symmetric Mean
Absolute Percentage Error (SMAPE) [2, 7] is used for evaluating the accuracy of
the forecasting. It is defined as:

DY iz
SMAPE (Y, Y) — 100)
SMAPE = 0 means that the obtained prediction matches exactly with the expected
output; the worst possible prediction implies a value of 200. SMAPE was chosen
because it allows comparing different models with different time series regardless of
their magnitudes.

Following is a toy example of the use of SOM for clustering representative errors.
Suppose a time series whose next 4 expected values are ¥ = {1, 1, 1, 1} that is,
h = 4. Assuming that the only possible values for this time series are 0 or 1, there
are 16 possible estimations. We can also assume that there are 16 prediction models,
each one producing one of these estimations IA/i, i ={1,2,...,16}. For example the
prediction of a particular model A is)A’A = {1, 1, 1, 1} having the best possible accu-

racy SMAPE = 0 with a representative error vector 7, ()A’A) =1{0,0,0,0}. ASOM

with 4 rows and 4 columns was trained 1000 epochs with all possible representative
errors, resulting that each representative error in the training set was clustered in a
different neuron. Figure 2 shows the trained map of this example; each neuron is
tagged with an identification number and a representative error written in brackets.
Neuron color corresponds to a SMAPE related with the representative error in the
neuron. The neuron tagged with letter A has the best SMAPE and the neuron with
letter W has the worst SMAPE of all predictions. The one-link neighborhood of the

Fig. 2 Example of a SOM e
organizing pre-defined
representative errors. Each
neuron has an identification
number and a representative
error in brackets

Modeling Diversity in Ensembles for Time-Series Prediction ... 123

neuron with letter A is enclosed by a bold line. This example makes clear that models
with similar SMAPE are neighbors and the models with the extreme SMAPE values
0 and 200 are distant on the map.

2.1 Proposed Method

The proposed method is an extension of [11], which contains two parts: extraction
of meta-features and selection of models. Two types of meta-features are computed:
performance estimation and representative error. The performance of each model is
estimated using a Monte Carlo Cross-Validation (MCCYV) [22] and the training time
series. MCCV evaluates the same model training it with different sequences obtained
from the same training time series; this process iterates k times. The estimation
returned by MCCYV is the average of these k iterations; for the experiments reported
here, k = 10 [10, 11].

During the selection process, the representative errors of all models train a self-
organizing map (SOM). The models are clustered into different groups, one group
by neuron. This is done by assigning each model to the neuron with the minimum
Euclidean distance between its weights and the representative error of such model.
As it was showed by example in Fig.2, models with similar representative errors
are assigned to neighbor neurons and models with different representative errors are
assigned to neurons far away each other.

Next step is to select the neuron that contains the model with the best expected
accuracy, this neuron is tagged A. This assures that the ensemble contains the model
with the best expected SMAPE. It is well known that the similarity between neurons
in a trained SOM depends of the distance of the neurons on the map; this advantage
is used for controlling the level of diversity among selected models. The distance of
neurons is measured with a distance of links, where / is the minimum number of steps
required to travel from neuron A to neuron B. The neurons in the neighborhood of
[links are the model source for selecting the k-best models to be combined. During
the prediction process, the selected models are trained with the complete training
sequence and their predictions are combined by average to obtain the final forecast.

With respect to the computational complexity of the proposed method, we noticed
that the computational complexity for selecting models is much less than the com-
plexity of obtaining meta-features. Indeed, the computational complexity of the cal-
culation of meta-features is mainly dominated by the number of iterations k in the
MCCYV and computing of representative error. Currently, we are working with a for-
mal estimation of this complexity, finding so far that a rough approximation of this
value could be O (Tkr), where T represents the total number of models involved
in the selection, and r represents the operations required for training and using the
involved prediction models.

124 R. Fonseca-Delgado and P. Gémez-Gil

3 Experimental Analysis

In this section, we present the results of analyzing different levels of diversity during
the selection process; the number of links / varied from 1 to 5 and the number of
selected models k varied from 1 to 25. Results are analyzed using the average of all
SMAPE’s achieved with the time series described next.

3.1 Time Series Set

This method was evaluated using four types of time series as in [11]. The first subset
of time series was the reduced set provided by the NN5 prediction competition [7],
which consisted of 11 time series, with 735 observations for training and 56 values
for testing.
The second time series was an integration of the Mackey-Glass differential equa-
tion [18]:
dx(®)/dt =ax (t —7)/ (1 +x (t —7)'°) — bx () (3)

This function has a chaotic behavior whena = 0.2, b = 0.1, 7 = 17, xy = 1.2; the
time step for integration was set to 0.1. The first 750 samples were used for training
the model and the last 250 for testing. The third time series was generated using an
ARMA (2, 1) model defined as:

e =0.5y,-1 —03y—2 +¢& + 0.2 “)

where ¢, follows a Gaussian distribution with mean 0 and variance 0.1. The first 500
values formed the training set and the last 50 the test set. A fourth series was generated
using a sine function with a time step size of 27/64; the first 750 observations were
used for training and the next 250 values for testing.

3.2 Building the Prediction Models

Models to be selected for building the ensemble are generated by using different
parameters in base models. In this work, two different base models were used: an
Autoregressive Integrated Moving Average (ARIMA) [5], and a Non-linear Autore-
gressive with eXogenous inputs (NARX) [17]. Even though ARIMA models are
lineal models, they are highly used as traditional forecasting methods and most of
prediction works use ARIMA as a base case for ensembles [1]. We decided to include
ARIMA because we consider that the ensemble should have the option of consid-
ering linear approximations. On the other hand, NARX was selected as base model
because it is a non-linear model, which have proven to generate good approximations

Modeling Diversity in Ensembles for Time-Series Prediction ... 125

Table 1 Parameters and settings for generating 81 different models

NARX as base model ARIMA as base model
Parameter Settings Parameter Settings
Delay neurons {3, 10, 25} Auto-regressive terms p {0, 1,2}
Neurons in hidden layer {10, 20, 30} Non-seasonal difference d | {1, 2}
Training algorithm with trainbr, traincgf, trainlm Lagged forecast errors g {0, 1,2}
matlab default values

Seasonality {0,7, 12}

Here “trainbr” refers to Bayesian regulation back propagation (BP), “traincgf” refers to Conjugate
gradient BP with Fletcher-Reeves updates, and “trainlm” refers to Leveberg-Marquardt BP

[8, 12]. Table 1 shows the parameters and settings used for generating 81 different

models: 27 with NARX base and 54 with ARIMA base. The training was done using
the Matlab Neural network toolbox with its default values [3].

3.3 Results

Next we present the prediction performances obtained by ensembles built using maps
of different sizes {S x 5,6 x6,7 x7,8 x 8,9 x 9,10 x 10} and choosing some

levels of diversities [€ {1, 2, ..., 5}. The initial neighborhood size was 3, and the
training epochs were 12500. The forecast values of selected models were combined
by average.

As an example, Fig. 3 presents two maps generated using the time series No. 3 of
the NNS5 reduced set. Figure 3a shows the map built with a SOM with 5 rows and 5
columns, while Fig.3b shows a map of dimensions 7 x 7. The group tagged with a

Fig. 3 a SOM (5 rows, 5 columns), b SOM (7 rows, 7 columns), both with the time series No. 3
of the NN5 reduced set. The color represents the average SMAPE of the models in each neuron

126 R. Fonseca-Delgado and P. Gémez-Gil

Selecting using a SOM 5 x 5 Selecting using a SOM 10 x 10
34 34
Mm
o
<t
= 32 32
)
(&)
)
=
5}
Z 30 30
0 10 20 0 10 20
Number of models to combine Number of models to combine

—eo—[=1 l=2-—--1=3 l=4—=w—-1=5 k-best

Fig. 4 Performance of selecting models with different number of links in the definition of A
neighborhood and a different number of rows and columns in the SOM

letter “A” contains the model with the best expected SMAPE. The farthest group to
A is referenced as neuron B and the neuron with a letter “W” contains the model
with the worst expected SMAPE. Notice that when the size of SOM increases, the
number of models in each group tends to decrease. It is also noticed that for the
bigger SOM, models are distributed in groups far away from node A.

Figure 4 shows the average SMAPE obtained by the proposed method with two
SOMs of sizes {5 x 5, 10 x 10} and of links/ € {1, 2, ..., 5}. The results plotted are
the average SMAPEs obtained using all the time series. This results are compared
with the results of selecting and combining the k-best models based only on their
expected accuracy without any clustering process. The number of k£ models to select
for combining varied from 1 to 25, being k = 10 the case that obtained the best
performance.

Table 2 summarizes the best results obtained by each SOM, ordered from best
average SMAPE to the worst; Additionally, the last row shows the result of the
baseline that is to use the model with the best expected accuracy after a MCCV. Notice
that for all SOM sizes there is an improvement in the performance compared to using
k-best models (k = 1,2, ..., 25). Even though this improvement is small (1.17 for
the best case), this value may be significant in several problems of forecasting. Notice
in Fig.4 that the average SMAPE was better with few models and an appropriate
number of links. This is because the number of links influence the diversity among
selected models. Selecting more than ten models degenerated in poor results, this is
because the selection based on a SOM reduced the available models based on their
diversity, then with a bigger k, the proposed method tends to select models with a
poor expected SMAPE. The results suggest a relation between the size of the SOM
and the number of links in the definition of A neighborhood required to achieve the
best accuracy.

Modeling Diversity in Ensembles for Time-Series Prediction ... 127

Table 2 Summary of the best results obtained by each SOM, ordered from best average SMAPE
to the worst

SOM Links Number Average of SMAPE | Improvement compared to
of models k-best models

7x7 3 6 29.24 1.171

8x8 3 9 29.35 1.061

5x5 4 9 29.52 0.891

9%9 1 4 29.56 0.851

10x 10 1 4 29.75 0.661

6x6 1 9 29.84 0.571

Benchmark

k-best - k=10 30.411

Baseline

Best model - 1 31.632

4 Conclusions

One key component on ensemble building is the diversity of involved models but
an extreme diversity is related with poor results for the long-term prediction of time
series [11]. This work presented a method for selecting models based on a self-
organizing map, with the faculty of adjusting the level of diversity, which is related
with the distance between neurons on the map. The proposed method was evaluated
with different levels of diversity and compared with selecting models considering
only the expected accuracy. In general, the proposed method achieved better results
using the appropriate number of links for adjusting the diversity than selecting models
considering only the expected accuracy. The results also suggest a relation between
the size of the SOM an the number of links required to obtain the best results. When
the size of the SOM increases the models tends to be more distributed in the trained
map, however groups with similar average SMAPE tend to be neighbors. Currently,
we are working with a formal definition of the computational complexity of the
proposed algorithm. As future work, we will analyze how to define an appropriate
SOM size and the correct number of links.

Acknowledgments R. Fonseca thanks the National Council of Science and Technology (CONA-
CYT), México, for the scholarship granted to him, No. 234540. This research has been partially
supported by CONACYT, project grant No. CB-2010-155250.

128 R. Fonseca-Delgado and P. Gémez-Gil

References

1. Andrawis, R.R., Atiya, A.F., El-Shishiny, H.: Forecast combinations of computational intelli-
gence and linear models for the nnS time series forecasting competition. Int. J. Forecast. 27(3),
672-688 (2011)

2. Armstrong, J.S.: Long-range Forecasting from Crystall Ball to Computer, 2nd edn. Wiley
(1985)

3. Beale, M.H., Hagan, M.T., Demuth, Howard, B.: Neural Network Toolbox User’s Guide
R2012b. MathWorks (2012)

4. Bishop, C.M., Svensen, M., Williams, C.K.I.: GTM: the generative topographic mapping.
Neural Comput. 10(1), 215-234 (1998)

5. Box, G.E.P, Jenkins, G.M., Reinsel, G.C.: Time Series Analysis Forecasting and Control, 3rd
edn. Prentice-Hall International (1994)

6. Chappell, G.J., Taylor, J.G.: The temporal kohonen map. Neural Netw. 6(3), 441-445 (1993)

7. Crone, S.F.: Competition instructions. Web (2010). http://www.neural-forecasting-
competition.com/instructions.htm

8. Crone, S.F, Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural networks?
Empirical evidence from the NN3 competition on time series prediction. Int. J. Forecast. 27(3),
635-660 (2011)

9. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles based on feature
selection. In: Lopez de Mantaras, R., Plaza, E. (eds.) Machine Learning: ECML 2000, Lecture
Notes in Computer Science, vol. 1810, pp. 109-116. Springer, Berlin Heidelberg (2000)

10. Fonseca-Delgado, R., Gémez-Gil, P.: An assessment of ten-fold and monte carlo cross vali-
dations for time series forecasting. In: 2013 10th International Conference on Electrical Engi-
neering, Computing Science and Automatic Control (CCE), pp. 215-220 (2013)

11. Fonseca-Delgado, R., Gomez-Gil, P.: Selecting and combining models with self-organizing
maps for long-term forecasting of chaotic time series. In: 2014 International Joint Conference
on Neural Networks (IICNN), pp. 2616-2623 (2014)

12. Haykin, S.: Neural Networks A Comprehensive Foundation, 2 edn. Pearson Prentice Hall
(1999)

13. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464—-1480 (1990)

14. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Temporal sequence processing using recurrent
som. In: 1998 Second International Conference on Knowledge-Based Intelligent Electronic
Systems, 1998. Proceedings KES *98, Apr, vol. 1, pp. 290-297 (1998)

15. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles and their relationship
with the ensemble accuracy. Mach. Learn. 51(2), 181-207 (2003)

16. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast combination.
Neurocomputing 73(10-12), 2006-2016 (2010)

17. Leontaritis, IJ., Billings, S.A.: Input-output parametric models for non-linear systems part ii:
stochastic non-linear systems. Int. J. Control 41(2), 329-344 (1985)

18. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science
197(4300), 287-289 (1977)

19. Ni, H., Yin, H.: A self-organising mixture autoregressive network for fx time series mod-
elling and prediction. Neurocomputing 72(16-18), 3529-3537 (2009), financial Engineering
Computational and Ambient Intelligence IWANN 2007)

20. Olier, ., Vellido, A.: Advances in clustering and visualization of time series using gtm through
time. Neural Netw. 21(7), 904-913 (2008)

21. Ouyang,Y., Yin, H.: A neural gas mixture autoregressive network for modelling and forecasting
fx time series. Neurocomputing 135, 171-179 (2014)

22. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387),
575-583 (1984)

23. Strickert, M., Hammer, B.: Neural gas for sequences. In: Proceedings of the Workshop on
Self-Organizing Maps (WSOMO3), pp. 53-57 (2003)

24. Strickert, M., Hammer, B.: Merge som for temporal data. Neurocomputing 64, 39-71 (2005),
trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004

http://www.neural-forecasting-competition.com/instructions.htm
http://www.neural-forecasting-competition.com/instructions.htm

Part 111

Applications in Control, Planning, and
Dimensionality Reduction, and Hardware
for Self-Organizing Maps

Modular Self-Organizing Control
for Linear and Nonlinear Systems

Paulo Henrique Muniz Ferreira and Aluizio Fausto Ribeiro Araiijo

Abstract Nowadays, a good control system must meet some complex requirements.
Two important ones are: quick and accurate responses to sudden changes in systems.
This paper presents a control strategy for Self-Organizing Maps (SOM) that can do
so. The proposed SOM-based control has a multiple-module architecture and learns
from feedback on errors which enables it to generate appropriate controllers. Simu-
lations of the mass-spring-damper system and the inverted pendulum validated the
model. In the experiments, the systems had time-varying parameters. The results
from the method proposed were compared with conventional methods and previous
self-organizing control and suggest that the proposed control is suitable for control-
ling linear and nonlinear systems which undergo sudden changes.

Keywords Self-organization + Adaptive control - Nonlinear time-varying system

1 Introduction

The current trend in control systems is characterized by an increase in complex
requirements. For example, there may be a need to deal with an unknown nonlinear
system with multiple-input and multiple-output (MIMO), and a time-varying envi-
ronment, process, or plant. Very often, classical controllers are not able to meet such
complex requirements. The capacity to learn and adapt themselves to new situations
are typical properties of intelligent controllers, which are suitable alternatives that
can deal with nonlinearity, unknown plants, and parameter variation. Moreover, a
learning controller could learn from a reduced set of training patterns. Considering
this context, we propose a simple SOM-based multiple-model scheme to control.

PH.M. Ferreira - A.F.R. Aratjo ()

Center of Informatics, Federal University of Pernambuco (UFPE), Av. Jornalista Anibal
Fernandes, Recife CEP 50740-560, Brazil

e-mail: aluizioa@cin.ufpe.br

PH.M. Ferreira
e-mail: phmf@cin.ufpe.br

© Springer International Publishing Switzerland 2016 131
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_11

132 PH.M Ferreira and A.F.R. Aratjo

In such a context, control system parameters and architecture can change smoothly
considering SOM topology preserving mapping. A self-organizing control can effec-
tively handle a significant volume of data and redundant information, both of which
are common in control systems. Furthermore, it can learn on-line when it allows
a SOM-based controller to add new knowledge when necessary. Finally, a SOM-
based controller might generalize from a limited and manageable number of patterns
necessary to learn.

Using a single controller may not be an efficient strategy for controlling nonlinear
and time varying systems [1]. Making use of multiple model controllers is a viable
approach in these cases [1] because each model can respond easily and precisely for
a region of the control space.

In this work, we used Self-Organizing Maps to divide the control system space
into subspaces in which each region has a particular controller. Additionally, SOM
can identify a current operational subspace and, thus, can determine a suitable con-
troller. Furthermore, multiple-model SOM-based controllers can generalize some
local controllers. In this way, this intelligent control system can present low sensitiv-
ity to variations in system parameters and it can respond appropriately to parameters
not considered during the training phase. This paper also presents a comparative
study of the proposed model with other controls in two experiments (Sect.4).

2 Problem Formulation

Let there be an equation defining a dynamic system [2].

Y+ 1) = f(w@),x@), u)) (D

where y(¢) is the output, x(¢) is the state and u(7) is the input of a given system,
and w(t) is the parameter of function f at time ¢. f can be a system that is SISO or
MIMO, linear or nonlinear, and it can have time-varying parameters.

Nonlinear time-varying systems can be handled using a two-phase control process
[2]: (i) a phase for identifying the dynamics of the system and (ii) a control phase in
which an appropriate control action is generated to achieve given goals.

In order to design a controller for this problem, the function f and its parameters
w(t), which are normally unknown, can be approximated by neural network algo-
rithms from system input and output data. Hence, both f and w () remain unknown
and an approximation function f'is constructed to design the controller. We can enu-
merate two alternatives to do so. The first option entails a single nonlinear model f
to approximate f, which is commonly called a global model. The second approach
divides the space into local regions, each of which locally modeling the function f.
Mathematically, f is redefined as a series of functions fr wherer = 1,..., N. The
complete model consists of the union of all functions f, [3].

Modular Self-Organizing Control for Linear and Nonlinear Systems 133

r=1

fx@,u@) = Fr(x(0), u()) 2)
N

,,,,

Potentially, local controllers can be simpler than a single overall controller. For
example, linear controllers can be used locally.

SOM can be used to divide the system behavior’s space into regions, to identify
them, and to parametrize the local controllers. Hence, self-organizing controllers
may present a loss of accuracy due to a discretization of their parameter space. Such
an inaccuracy can be overcome by increasing the number of training samples or
considering a larger number of prototypes. Moreover, one can design the controller
from a variant of SOM which has an interpolation capacity [4].

In this article, we compare our proposal with another self-organizing control called
Self-Organizing Adaptive Controller (SOAC) [5]. Both algorithms share two impor-
tant features: rapid response to sudden changes in the controlled system and learning
general behavior from a small set of training patterns. In an introductory paper [5],
SOAC presented promising results for the same problem. SOAC is a multiple-module
control using a variant of the SOM structure (modular network SOM) in which each
module consists of a predictor/controller pair. The performance of the SOAC was
better than that of multiple paired forward-inverse models (MPFIM), a well-known
multiple-pair control strategy [6]. The main limitations of SOAC are its fixed topo-
logical structure and that the behavior and influence of some equations in the learning
predictor procedure are not easy to understand.

3 SOM-Based Control

Our proposed solution can be seen as a feedback error learning approach to generate
controllers, similar to what SOAC does. In spite of there being features in common
with SOAC, our approach has a different procedure for identifying the dynamics and
determining what the most suitable control action is. The control system is designed
to meet two important requirements for a system in time-varying environments:
(1) A rapid response to unexpected changes in the controlled system and (2) the
capacity to establish general behavior learned from a small set of training patterns.
The first requirement can be met by modeling the multiple local models and the
second requirement by the capacity of the SOM to generalize.

For our proposed control, each weight vector w is divided into two parts w'" and
w° . The w'” is a vector with a number of previous control inputs and state sequence
estimations, and it is used to identify the current system configuration while w?*
represents an estimate of the system parameters. Such an approach is based on the
Vector-Quantized Temporal Associative Memory (VQTAM) [7].

To identify the plant, SOM has to learn different behaviors of the system expressed
by state and command control time sequences. In the SOM-based control, identifying
the system considers the viewpoint of local models in which the input space is

134 P.H.M Ferreira and A.F.R. Aratjo

2(0) o Controller Block
Desired
State
+ S—
Conventional
__:6} Feedback s uk (0)
s Control (CFC) + Control
(@ Command
«© e o
Current
State
yg\ x(t —1)
u(t) in | out
Command
y;\ u(t —1)
=]

Fig. 1 SOM modified for the control problem with feedback error learning. a Concatenated input
patterns. b SOM node modified

partitioned into smaller operating regions. That is, for a particular plant configuration
learned by the SOM-based control, the weight vectors encode parameters of different
operating regions. This can result in local control models being simpler than a single
control model for a plant configuration. In SOAC, each module has a unique function
to model the behavior of the dynamics of the system for a given configuration.

The concatenation of the input vectors, in accordance with their temporal order,
forms the actual input of the network (Fig. 1a). Such a concatenation of the input pat-
terns considers a time window containing a pattern sequence. In the control problem,
the time window is defined as follows:

x,O)=[x@),u@),xt—1,ut—-1),....,x¢—p+1D,u(t—p+1D] Q)

where the pair of vectors [x(¢), u(¢)] represents the system state and the system
control input at time ¢ within a predefined window size p.

In the training phase, each x/, () has a complementary associated vector X, (¢).
This vector x,,(#) encodes to the system parameters p crucial to establishes its
behavior x;, (¢). The training pattern x;, () is used to adjust w’™ and X, (¢) is used
to adapt w”"’. The winner node, k*, can be determined using x;, (Eq.4) or X,
(Eq.5). In the execution phase, the competition uses x;, because, very often, there is
no information available about the configuration of the system.

k(1) = argkmin ;) — wi" @) “4)

k(1) = argkmin [0 (1) — w () 6)

Modular Self-Organizing Control for Linear and Nonlinear Systems 135

Thus, the weight vector updating of node k follows the equations:

w (1t + 1) = w)' (@) + aOhpe 1 (@) [xi2 (1) — " (1)] (6)
w (t+ 1) = w (1) + a@hpe 1 (1) [Xou (1) — w (1)] (7)

2
. . - 1) . .
where the neighborhood is /1« (t) = exp(—%), for which &* and &*

are the coordinates of the module k and of the winner in the map and o (t) = 000 +
(o¢ — Joo)exp(—f). a(t) = as + (g — aoo)exp(—f). In the execution phase,
the SOM-based control uses feedback error learning to g"enerate the controllers. The
learning of SOM-based control occurs online, i.e., for each node k, there is a weight
vector “w*, which defines a function °f*:

u (1) = “fH(wk, £(1)) (8)

where x (¢) is the desired system state.

The final control command is calculated by adding the conventional feedback
control output (cfc) and the SOM-based control signal generated by the winner
node:

u(t) = u* (t) + u’c @) 9)

The adjustments for each “w* are determined by Eq. 10. If the controllers are designed
by an analytical procedure, it uses an estimate of the system parameters w’* in
module k.

o¢ fk

Fogt u®) (10)

Acwk =7 (bk
where ¢* is the responsibility signal (Eq. 11).

oo
expl— 5]

¥ -

2 expl 202,

¢ = (11)

where X and X" are the coordinates of the module k and of the winner in the map.
0 18 the final radius value of the neighborhood function.

A SOM network node is present in Fig. 1b. In the experiments below, the chosen
time window size is p = 2.

136 PH.M Ferreira and A.F.R. Aratjo

4 Simulations

We validated the proposed control system for two different problems: the mass-
spring-damper (MSD) system and the inverted pendulum. For the MSD case, we
evaluated and analyzed the trained control modules ruling upon a linear time-varying
system [8]. On the other hand, the inverted pendulum is evaluated and analyzed as
a nonlinear and time-varying problem [9]. Both experiments assess the capacity of
the models to generalize.

4.1 Spring-Mass-Damper System

The MSD is described by a second order linear differential equation:
mi(t) + bix(t) + kix(t) = F(t) (12)

where m, b; and k; are the mass [kg], the damping coefficient [i—,g], and the spring

constant [];—‘5]. The subscript i is the label for each particular system configuration i.
We used nine alternatives for training and six others for testing. A single configura-
tion was used for both training and testing. The mass is constant (m = 1 kg) in all
experiments while parameters b; and k; may be 2, 6, or 10, thereby determining the
training system configurations (p;, (i = 1, 2,...,9)). The testing values for b; and
k; are po = [6, 6], pp = [6.1,6.8], pc =[4.3,6.5], pp = [5,4], pr = [8.7,4] and
pr =1[8.8,9].

The sampling rate of the training test is constant 2001 pairs of system states and
control commands, after, we apply each pair in each training system configuration.
Hence, tuples {current state, control command, next state, the training system con-
figuration} form the training set. The total of tuples is 9 x 2001 = 18009. For our
experiments, the sampling interval of each variable is —0.6 < x (position) < 0.6,
—4 <y (velocity) < 4 and —2000 < u (control) < 2000. These intervals were cho-
sen after observing the behavior of these variables when the system was controlled
by a PID controller. To train SOM, all variables were normalized between 0 and 1,
however this was not the case for SOAC as in [5].

For the system test, we used a randomly chosen 30-s state sequence in which
the system configuration changes every 5s. The test configuration order was always
[Pa, PBs Pcs Pp, PE, Prl. The stochastic Ornstein-Uhlenbeck process generated
reference for the state trajectory. This process is suitable for evaluating the speed and
accuracy of the response. An exact solution for this process is:

S . =GN Y 1 —e™2¥
t+i = Di€ +,U/(l e)+0 _2/\ NO,I (13)

Modular Self-Organizing Control for Linear and Nonlinear Systems 137

(3)1 Result PDA (b) Result SOAC

""" Desired trajectory
—— System output using SOAC

1
"""" Desired trajetory ‘

—— System output using PDA

0.5

-0.5 F

0 5 10 15 20 25 30 0 5 10 15 20 25 30
t (seg) t(seg)

(c)1 Result SOM

""" Desired trajetory
——System output using SOM

10 15 20 25 30
t (seg)

Fig. 2 Best result for MSD system. a PDA (RMSE = 0.14569). b SOAC (RMSE = 0.021073).
¢ SOM (RMSE = 0.018233)

where A\ = 3 is the mean reversion rate, ;1 = 0 is the average value, 0 = 0.5 is
the volatility, § = 0.001 is the time step, and Ny ; is a random value from a normal
distribution with uy = Oand oy = 1. All simulations were conducted using a fourth-
order Runge-Kutta method with a step size 4 = 0.001, as in [5]. Finally, the control
accuracy was evaluated by the Root Mean Square Error (RMSE) between the system
output and the desired trajectory.

PDA details: The Proportional Derivative Accelerative (PDA) was chosen as the clas-
sical feedback control. The chose parameters were /W = [k,, k;, ky] = [5, 10, 0.5]
as in [5]. The result of the PDA control is shown in Fig. 2a.

SOAC details: For SOAC, the predictor inputs are position x, velocity v and control
command u. The predictor output is an acceleration estimate. The controller inputs
are the desired position x4, the desired velocity v, and the desired acceleration a .
Both the predictor and the controller consist of a linear network [5]. The SOAC
configuration with the best results was 49 (7 x 7) modules [5]. The randomly chosen
parameters were (N (stop criterion) = 20, € = 0.1, g9 = 10, oiyr = 1, 7 =80,

138 PH.M Ferreira and A.F.R. Aratjo

(predictor) = 0.0002, and 7 (controller) = 0.000001). The best result for SOAC is
presented in Fig.2b.

SOM-based details: The window size considered was p = 2. x;, consists of
[x(t), u(t), x(t — 1), u(r — 1)], where x(¢) is the vector with position x (), velocity
v(t) and acceleration a (), and control command u(¢). ‘w* are weight-vectors of a
linear network, similar to that of SOAC. The map size is 9 x 9. The competition of
the training phase used Eq. 4. All other parameters were chosen empirically (N (stop-
ping criterion) = 50, o9 = 70, o = 1, 7, =5, a9 = 0.9, a, = 0.0001, 7, = 30
and 7 (controller) = 0.000001). The best SOM result is presented in Fig. 2c.

Comparing the methods: The SOAC and the SOM-based results are compared.
The PDA result is deterministic and poorer than SOAC and SOM-based algorithms.
For SOM-based model and SOAC, 10 trials of learning were performed. The RMSE
for each controller is: PDA = 0, 14569, SOAC = 0, 021801 + 6, 4058 - 10~* and
SOM-based = 0, 018322 + 4, 8662 - 1077,

In this experiment, the two neural control methods were able to respond ade-
quately after changing system parameters. Both controlled the plant for parameters
not presented during the training phase. SOM-based method did better as shown by
the RMSE average and variance. We argue that the SOM-based control can iden-
tify behavior more accurately and it can adjust the PDA control command more
effectively.

4.2 Inverted Pendulum

The second experiment aims to control a pendulum fixed on a motorized cart that can
move on a rail (Fig. 3). The control objective is to keep the pendulum in the inverted
state and the cart has to reach a pre-determined position.

The inverted pendulum system is described as:

(M + m)i + mllcos () — mlézsen(Q) + fX=ax*u (14)

mlicos(0) + (I + mi*)d — mglsen(d) + CH =0 (15)

Fig. 3 The inverted pendulum system

Modular Self-Organizing Control for Linear and Nonlinear Systems 139

where x is the position of the cart [m], 6 is the angle of the pendulum [rad], M = 5,0
is the mass of the cart [kg], m is the mass of the pendulum [kg], / is the length of the
center of mass on the pendulum [m], f = 10, 0 and C = 0,0004 is the co-efficient of
viscous friction of the cart [kg/s] and of the pendulum [kgm?/s], respectively, g = 9.8
is the gravitational acceleration [m/s?],a =25isa gain [N/ V], and [is the moment
of inertia I = mi?/3 [kgm?]. A state variable is represented as x = [x, 6, %, 8]7 and
the control variable as u. The simulations were performed using the fourth-order
Runge-Kutta method with a step size 4 = 0.01 [s].

Nine system configurations were used for training and another nine, for testing.
The training system configurations are [m;, /;] = [0.2, 1.0, 1.8] x [0.6, 1.2, 1.8].
The testing values are: ps =[1,1.2], pp =1[0.9,1.245], pc =1[0.8, 1.134],
pp =[0.92,0915], pr =[1.82,0.915], pr = [1.48, 1.257], pg = [1.244, 1.71],
pu = [0.648,1.749], and p; = [0.2, 1.2].

The desired position of the cart changed every 10s during the tests. The possible
desired values are [1, —1, 0]. The initial state is xo = [0, 0, 0, 0]” and the first desired
value is x = 1. The configuration of the testing system also changes every 10s. The
order of the test configurations is [pa, ps, Pc, Pp, PE, PF, PG> Pt P1l-

For the training set, we uniformly sampled 2001 system state and control command
pairs, and then, we applied them in each training configuration so as to generate the
next state. Hence, the training set comprises tuples {current state, control command,
next state, the training system configuration}. The total of tuples is 9 x 2001 =
18009. The sampling range of each variable is: —0.6 < x < 0.6, —0.6 < 6 < 0.6,
—4<x<4 -4< 0 <4 and —2000 < u < 2000. These ranges were chosen from
observations of the behavior of these variables when a Linear-Quadratic Regulator
(LQR) controlled the system. For SOM-based training, all variables were normalized
between 0 and 1.

SOAC details: The predictors consist of a linear network with current state x (¢)
and control command u(¢) as inputs and next state estimation x (¢ + At) as output
where At = 0, 01. In this experiment, SOAC was designed using analytical local
controllers, which are optimal strategies previously calculated. An LQR is generated
for each module from the estimate of system parameters p*. In the execution phase,
only the control command generated by the winner module was applied in the system.
The SOAC was configured with a two-dimensional map of 81 (9 x 9) modules.

SOAC experiments were performed 15 times. SOAC presented a typical unstable
behavior for all trials. The typical dynamics is shown in Fig.4. Additional exper-
iments suggest that the instability is caused by the failure to identify the current
behavior of the system.

SOM-based details: The window size was p = 2. x;, consists of [x(t), u(t),
x(t — 1), u(t — 1)]7, where x(¢) is the system state vector and u(t), the control
command. After the learning phase, w®"’ is used to generate the LQR control for
each SOM node. The map size was 10 x 10. The competition during the training
phase used w?* (Eq.5). A simulation result of this control is shown in Fig. 5. This
experiment was performed 15 times. Three simulations had results similar to those
shown in Fig.5. In all other simulations, the system presented unstable states.

140 PH.M Ferreira and A.F.R. Aratjo

10 Pendulum angle Cart position [—system output using SOAC
— Pendulum angle 2 - Desired trajetory

5
g = i
£ 0
£ E, \
@ . x

5

-1
10
0 20 40 60 80 90 0 20 40 60 80 90
t(seg) t(seg)

Fig.4 SOAC result for inverted pendulum system. From the configuration Pp onwards, the system
became unstable and this influenced the control of the following test configurations

01 Pendulum angle [penquium angle Cartposition [—system outuput using SOM|
o ‘ 2 i - Desired trajetory
0.05 Loy N
e 1 W
T ol s Al MM I £ \ \ il
i, A U ui vw I n‘v £y ' \
-0.05 | y . U‘l * | / \\
-0'1'0 20 40 60 80 90 0 20 40 60 80 90
t (seg) t(seg)

Fig. 5 SOM result for inverted pendulum system

5 Conclusion

The main idea introduced in this paper is to place a SOM in a multiple model
control scheme. Multiple controllers are more likely to respond more appropri-
ately than a single controller for time-varying systems [5]. A SOM-based control
can autonomously set up the control modules while considering only a small sam-
ple set of training patterns. The SOM-based control strategy was used for linear
and nonlinear plants: the mass-spring-damper (MSD) and the inverted pendulum.
The MSD system is linear, second order and stable in an open loop configuration.
The inverted pendulum system is nonlinear. In both problems, the parameters of the
plant are time varying. The results compared the SOM-based control with the SOAC
method. SOM-based control did better in both experiments in terms of accuracy and
stability.

We suggest investigating improvements for SOM-based controls that can be
applied to tracking target references in the inverted pendulum system. A study of
the SOAC and SOM-based control to control other plants may also be interesting.
For instance, these control strategies applied in a real-time complex system such as
a robotic system.

Acknowledgments The authors would like to thank CNPq for supporting this research.

Modular Self-Organizing Control for Linear and Nonlinear Systems 141
References

1. Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom.
Control 42, 171-187 (1997)

2. Thampi, G., Principe, J.C., Cho, J., Motter, M.: Adaptive inverse control using som based
multiple models. In: Proceedings of the Portuguese Conference on Automatic Control, pp. 278—
282 (2002)

3. Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and
applications to nonlinear system identification and control. Proc. IEEE 86, 2240-2258 (1998)

4. Goppert, J., Rosentiel, W.: The continuous interpolating self-organizing map. Neural Process.
Lett. 5, 185-192 (1997)

5. Minatohara, T., Furukawa, T.: The self-organizing adaptive controller. Int. J. Innovative Comput.
Inf. Control 7, 19331947 (2011)

6. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control.
Neural Netw. 11(7), 1317-1329 (1998)

7. Barreto, G., Aratjo, A.F.R.: Identification and control of dynamical systems using the self-
organizing map. IEEE Trans. Neural Netw. 15, 1244-1259 (2004)

8. Gu, D.W,, Petkov, P.H., Konstantinov, M.M.: Robust control of a mass-damper-spring system.
In: Robust Control Design with MATLAB, pp. 101-162. Springer (2005)

9. Boubaker, O.: The inverted pendulum benchmark in nonlinear control theory: a survey. Int. J.
Adv. Robotic Syst. 10(233) (2013)

On Self-Organizing Map and
Rapidly-Exploring Random Graph
in Multi-Goal Planning

Jan Faigl

Abstract This paper reports on ongoing work towards an extension of the self-
organizing maps for the traveling salesman problem to more challenging problems
of multi-goal trajectory planning for complex robots with a high-dimensional config-
uration space. The main challenge of this problem is that the distance function needed
to find a sequence of the visits to the goals is not known a priori and it is not easy to
compute. To address this challenge, we propose to utilize the unsupervised learning
in a trade-off between the exploration of the distance function and exploitation of its
current model. The proposed approach is based on steering the sampling process in
arandomized sampling-based motion planning technique to create a suitable motion
planning roadmap, which represents the required distance function. The presented
results shows the proposed approach quickly provides an admissible solution, which
may be further improved by additional samples of the configuration space.

1 Introduction

Self-Organizing Map (SOM) is a type of neural network that can provide a non-linear
mapping of a high dimensional input space into a lower dimensional output space. In
addition to data processing, visualization, and classification, it has also been success-
fully applied in optimization routing problems, in particular, the Traveling Salesman
Problem (TSP). The TSP is a well-defined optimization problem arising from many
practical scenarios and several SOM-based approaches have been proposed, e.g.,
see [2, 14]. In our case, the TSP is a problem formulation for robotic tasks like
inspection, surveillance, and data collection where a mobile robot is requested to
visit a set of locations, e.g., to perform an operation or take a sensor measurement
(3, 4, 8, 11].

J. Faigl ()

Czech Technical University in Prague, Department of Computer Science,
Technicka 2, 166 27 Prague, Czech Republic

e-mail: faiglj@fel.cvut.cz

© Springer International Publishing Switzerland 2016 143
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_12

144 J. Faigl

The most straightforward application of SOM to the TSP is in Euclidean instances,
where the problem stands to find a closed shortest tour connecting a given set of goal
locations (cities). In robotics, the problem is to find a shortest path connecting the
locations such that the path is collision free. This make an application of SOM to
the TSP a bit more challenging because a pure Euclidean distance cannot be simply
used in the computation of distances between neuron weights and the presented goal
location (signal) to the network; otherwise a poor solution would be found [5]. The
distance corresponds to the length of the shortest path between two locations, which
can be PSPACE-hard in 3D environment. Hence, the problem is called the Multi-
Goal Motion Planning (MGMP) problem rather than the TSP to emphasize difficulty
of distance queries.

Randomized sampling-based approaches are motion planning techniques for plan-
ning in high-dimensional configuration space C that provide the so-called motion
planning roadmap, which is a graph representing collision free configurations in
C [9]. A combination of the roadmap with SOM for a graph input [13] has been pro-
posed in [6] to solve the MGMP by SOM. In this decoupled approach, the roadmap
(graph) is constructed independently on the planning problem, and therefore, a com-
plete graph is unnecessarily dense.

In this paper, we report our recent results on application of SOM in the roadmap
generation and solution of the MGMP problem. The main idea of the proposed
approach is based on combining principles of the optimal motion planning algo-
rithm called Rapidly-exploring Random Graph (RRG) [7] with the SOM adaptation
principles to simultaneously determine the sequence of the goal visits together with
trajectories connecting the goals in the tour. The core of the proposed approach is a
utilization of the SOM adaptation to steer a randomized sampling of C to increase
the number of samples in the most promising areas to quickly find a solution and
eventually improve quality of the final trajectory.

A feasibility of this idea has been reported in [12], where it has been employed
in finding multi-goal trajectories for a hexapod walking robot. The proposed SOM-
based algorithm needs a lower number of the roadmap expansions to find a first
feasible solution of the MGMP problem in comparison to a straightforward MGMP
solver based on a given sequence of visits to the goal locations.

Here, we focus on two main aspects of the proposed approach: (1) a detailed
evaluation of the idea of SOM-based expansion of the roadmap to find an initial
solution of the MGMP; and (2) improving the quality of the final solution with
increasing number of the roadmap expansions. Based on the evaluation, we propose
a hybrid approach that consists of the initial construction of the roadmap by SOM
to find the first feasible solution followed by a consecutive roadmap improvement to
find a shorter trajectory.

The paper is organized in the following way. The problem statement, notion of
the configuration space C, and related background is presented in the next section.
The key idea of the SOM-based steering of the roadmap expansions using the RRG
is briefly described in Sect.3. Considered MGMP solvers are presented in Sect.4
and results of their evaluation are in Sect.5. Concluding remarks and future work
are summarized in Sect. 6.

On Self-Organizing Map and Rapidly-Exploring ... 145

2 Problem Statement

The problem addressed by the proposed approach is motivated by autonomous data
collection with a hexapod walking robot operating in a rough environment to collect
samples, e.g., images, of the requested areas of interest, see Fig. 1. The robot has six
legs, each with three joints that gives 18 control degrees of freedom, which together
with the robot position and orientation in the 3D environment gives 24 dimensional
vector fully describing the position of the robot body in the environment. Therefore,
itis controlled by designed gait patterns and a set of motion primitives to simplify the
motion control and planning [12]. In addition and without loss of generality, the robot
pose (x, y,) is considered as the robot position on a surface x, y with orientation 6.

The working environment YW C R? is represented as a set of obstacles O C W.
The configuration space C describes all possible configurations of the robot in W
and can be defined as follows. Let the robot body at ¢ be A(g), then the configuration
q is a collision free if A(g) N O = @. All configurations for which the robot is in
a collision with the obstacles O are denoted as C,py, Copsr S C. The point of our
interest to find a solution of the MGMP is a collision free part of C, which can be
denoted as Cpe, = cl(C \ Copsr), Where cl(.) is the set closure.

A collision free path from some starting configuration gy, to a goal configuration
Ggoal 18 @ continuous curve « in Cpe,, such that « : [0, 1] — Cpe. With k(0) = Gyran
and d(k (1), gena) < €. The end point x (1) of the path found by a motion planner
will unlikely be exactly the requested goal location, and therefore, we rather admit
an admissible distance € of the path to the requested goal [7], e.g., 5 cm. Then, such
a collision free path is called an admissible path.

Similarly to a simple trajectory, a multi-goal trajectory visiting a set of n goal
locations G = (g1, . . ., g») can be defined as follows. Let the sequence of the visits
to the locations be (vi, v2, ..., v,) for which v; € G and {J,_;,, vi = G. Then, an
admissible multi-goal trajectory is a closed trajectory 7 : [0, 1] — Cfree such that
7(0) = 7(1) = gy and for which there exists n points on 7 such that 0 < ¢ <1, <

- <t,and d(t(t;), v;) < €.

Having the aforementioned preliminaries, the MGMP problem can be formu-
lated as follows: For the given goal locations G, configuration space C, an
admissible distance €, and a monotonic, bounded, and strictly positive cost

Fig. 1 Robot, its geometrical model, and visualized 3D environment

146 J. Faigl

function c: find an admissible (according to €) trajectory t* such that c(t*) =
min{c(t) | T is admissible multi-goal trajectory}.

2.1 Randomized Sampling-Based Motion Planners

Sampling based motion planning techniques have been proposed to address diffi-
culty of explicit representation of Cp.. for a complex shape of the robot body and
its high-dimensional C [9]. These techniques sample Cy., into a finite number of
configurations that are connected into a graph, where an edge represents a collision
free trajectory between two configurations. Hence, Cg.. is represented by a graph
and the key problem is how to efficiently create the graph (roadmap) in which the
requested trajectory can be found, e.g., by a graph search technique.

In this work, we consider RRG [7] to create a graph Grrg = (Vgrs, Errg), which
represents the motion planning roadmap. The set of vertices Vggg are particular con-
figurations of the robot ¢ € Cg,. and an edge e € Egg describes a feasible collision
free motion between two configurations v;, v; € Vggg, I # j. The graph is incremen-
tally constructed by the RRG algorithm as a result of the graph expansion from the
nearest vertex of the graph towards a random sample by applying a particular control
command. The main steps of the RRG expansion are depicted in Fig. 2, further details
can be found in [7].

2.2 Basic Background of Self-Organizing Map for the TSP

The proposed MGMP solvers are based on SOM for the TSP, in particular, a variant
for a graph input [13]. The neural network is structured in two layers. The first layer
servers for presenting goal locations to be visited and towards which the network is

obstacle Dind obstacle Do obstacle
/ / 24,0,
% /\%mw / /‘q/,mw
/ GRRG / GRRG

Fig. 2 An expansion of the RRG roadmap (from left to right): First, a random (collision free)
configuration ¢4 is sampled and the nearest vertexX gneqrest € VRrG i determined; Then, the most
suited control command is applied to expand the roadmap towards g,,,4 by a collision free trajectory
and a new configuration gy, is added to the roadmap; To further improve the roadmap, all vertices
within a ball with a particular radius r (see [7]) centered on g, are connected with g, by a
collision free trajectory

On Self-Organizing Map and Rapidly-Exploring ... 147

adapted using the self-organizing principles. The output layer consists of m units,
N = {vi, ..., vy}, which represent neurons weights, where m is set according to
the number of goal locations n, e.g., m = 2.5n. The units are organized into one-
dimensional array that represents a sequence of configurations in Cy.. The learning
procedure can be summarized as follows:

1. Initialization—Create a ring of connected neurons N = {vy, ..., v,,}.

2. Randomization—Create a random permutation of goals I7(G) < permute(G).

3. Winner selection—Select the best matching neuron v* to the currently presented
goal g € IT(G); v* « argmin, 5 d(v, g).

4. Adaptation—Adapt the winner v* and its neighbouring nodes v; within the dis-
tance k (in the number of nodes) using the neighbouring function f (o, k) =
ue(’kz/ ") for k < 0.2m and f (o, 0) = 0 otherwise. Remove g from the permuta-
tion, I1(G) < I1(G) \ {g},and I£f |I1(G)| > 0 go to Step 3.

5. Update the number of the learning epochs and neighbouring function variance.

6. Termination condition—If termination condition is met, stop the adaptation.
Otherwise go to Step 2.

7. Final tour construction:—Traverse the output layer and use the associated goals
to the last winners to construct the final goal tour.

The adaptation of neurons can be imagined as a movement of the neurons towards
the presented goal location. For a graph input, the neurons weights are restricted to
be at the graph edges or vertices and the adaptation can be imagined as neurons
movements along the graph edges [13]. Thus, for an adaptation in the roadmap Ggrg
with spatially close vertices (such that provided by the RRG), we can consider the
neuron weights as a particular configuration represented by the closest vertex from
VRrG-

Notice, even though we can use SOM to find a solution of the MGMP on Gggg
like in [6]; here, we are rather interested in employing the adaptation procedure to
grow and improve the roadmap Gggg by the RRG expansions.

3 SOM-based Steering of Randomized Sampling in RRG

The fundamental issue of applying SOM to the given problem is that the selection of
the winner node to a presented location g is based on computing a distance d(v, g)
between nodes v € A and g. Such a distance corresponds to the length of the tra-
jectory from v to g, which is obviously not known due to a sparse coverage of C
by Gggrg, especially at the beginning of the learning. In [12], we propose to address
this issue by the approximation that combines Euclidean distance and the current
knowledge about Cy,, stored in the incrementally built Gggg.

Regarding a collision free and feasible trajectory in W, the current roadmap Gggg
provides a much more realistic estimation of the expected distance d(v, g) than a
pure Euclidean distance. Therefore, a part of d(v, g) is based on a trajectory in Gggg
from v towards the vertex w, , that is found as

148 J. Faigl

goal 08 B 8 § new expected
: : position of winner
expected v’ expanded roadmap in the expanded roadmap
iti ; towards the ected . .
po.vm{)n of H (,)‘M ar Al .e cxpecte restricted positi
the winner : winner location N
| | / of the winner
roadmap vertex () ; \
on the path from Wyv.e8) ¢
the winner to g / \ / / \ /
) Wi q
\winner newron /§>WW‘, winner neuron /§>Wv,x // \ // \
T~ o .
\ / RRG V. \ / GRRG E \ / RRG \ / 'RRG

Fig. 3 SOM adaptation with Grrg expansions, from left to right: First, vertex w, , is found in
Rgre using (1) for the current winner v (green disc); The expected position v’ of the neuron after
the adaptation is determined; which is then utilized together with g in the RRG expansion of Ggrgg;
Finally, new w, ¢ is found and v is updated to the nearest vertex to the expected position of v

wy,g = argmin, .y, (c(ky.0) + (v,), (1)

where c(k,,) is the trajectory cost from the intermediate vertex w determined in
Ggre and |(v, g)| is the Euclidean distance from v to g. Thus, the path from v to g
consists of the trajectory k4, , in Grrg and a straight line segment from w, ¢ to g.
Notice, the cost found in the roadmap should be preferred and the influence of the
Euclidean distance should be suppressed, that is why it is in power of two in (1). The
found path is utilized in adaptation of neurons to g.

However, the path over the vertex w, , cannot be directly used for a new position
of the adapted neuron because the expected position of the neuron may be out of the
current roadmap Gggg. Therefore, the expected position of the neuron after the adap-
tation is determined and the roadmap is expanded towards it and the location g using
the RRG expansion accompanied by the goal bias and goal zooming techniques [10]
(in which a random sample is substituted by the given location and sampled around
the location, respectively). Then, the vertex w, , is determined again in the updated
roadmap and a new expected position of the neuron being adapted is restricted to
the nearest vertex of Ggrg. Hence, the approximation together with the proposed
adaptation of neurons turns out to a steering strategy to randomized sampling in the
RRG. The process is schematically visualized in Fig. 3.

4 Solvers for the Multi-Goal Motion Planning Problem

The proposed approach to solve the MGMP problem consists of two steps. First, a
roadmap Gggg is created. An admissible solution of the MGMP problem is found
if all locations g € G have its corresponding (nearest) configuration v, € Ggrgg in
less than € distance from the particular g and there exists a trajectory in Gggg that
connects all the locations G. The final shortest multi-goal trajectory is found in Gggg
as a solution of the TSP using Chained Lin-Kernighan heuristic [1].

On Self-Organizing Map and Rapidly-Exploring ... 149

An admissible trajectory can be found in Gggg if all vertices representing the goal
locations are connected. The quality of the final trajectory depends on the roadmap
and basically a denser roadmap may provide shorter trajectories at the cost of more
demanding computations. The key to efficiently find a good trajectory is in the
construction of the roadmap. Various methods how to steer the expansion of Gggg
can be proposed. The SOM-based steering of the RRG has been firstly introduced
in [12]. The idea has been further investigated and the improved method is presented
here. Moreover, we considered the proposed idea utilized in SOM steering also in
a direct construction of the roadmap to verify the added value of the unsupervised
learning. The proposed roadmap construction methods are briefly summarized in the
following paragraphs.

Naive construction of the roadmap is based on iterative roadmap expansions
towards the locations G that are alternating in a sequence found as a solution of the
Euclidean TSP. Each location is iteratively used in the goal zooming technique for 5
expansions and the process is repeated until the maximum number of expansions M
is not reached. The ball expansions of the RRG are activated after 100 alternations of
the whole sequence, to reduce the computational burden and improve convergence
of the roadmap to an admissible solution.

SOM expansion is based on the steering strategy described in Sect.3 that is
accompanied by additional expansions towards the presented location g € G to the
network, which support a fast convergence of the roadmap to G. If g is not yet
connected with the roadmap, 20 expansions towards g are performed using g in goal
zooming prior adaptation of the winner neuron towards g. After that, the proposed
SOM steering is employed. Similarly to Naive method, the ball expansions of the
RRG are suppressed for the first 10 learning epochs.

Rand variant of the roadmap construction is based on additional expansions to
G used in the SOM method. It is similar to the Naive method, but the sequence of
locations G is a random permutation as in SOM. Each location g € G is used in goal
zooming for 20 expansions. Then, the algorithm continues with the next location in
the sequence. Once all locations are used, a new permutation of G is created and the
process is repeated up to M roadmap expansions are performed.

MST method represents an existing approach for the MGMP [11] based on an
iterative determination of the Minimum Spanning Tree (MST) as approximation of
the TSP. The MST is initially determined using Euclidean distances that is iteratively
refined using an “optimal” motion planner to find corresponding trajectories for all
MST edges until all the edges represent admissible trajectories. An optimal motion
planning is too computationaly demanding for the hexapod robot, and therefore, the
MST is used to steer roadmap expansion. For each MST edge without a corresponding
trajectory in the roadmap, 20 expansions towards the edge’s endpoints are performed
for every iteration of the MST refinement. This is repeated until an admissible multi-
goal trajectory is found.

Because the SOM method provides a first admissible solution very quickly, two
hybrid approaches are proposed: Naive-SOM and Rand-SOM. The SOM method
is utilized to find the first admissible solution. Then, the Naive and Rand approaches

150 J. Faigl

are used up to M expansions of the roadmap, respectively. In a similar way, the
MST is utilized in the Rand-MST to further improve initial solution provided by
the MST-based method.

5 Evaluation Results

The roadmap expansion strategies have been evaluated for a hexapod walking robot
and several scenarios of the MGMP problem in the environment called potholes,
see Fig. 1. A particular difficulty of the problem depends on spatial distribution of
the goal locations in the environment. Therefore, 20 random problem instances are
created in the given environment. Each instance is solved 20 times by each particular
algorithm because all algorithms are stochastic, and the results are presented as
average values accompanied by standard deviations. We considered problems with 10
goal locations (n = 10) as sufficient to demonstrate difficulty of constructing roadmap
for the multi-goal trajectory planning. Particular algorithms have been evaluated
for different parameters; however, only selected results are presented because of
the space limit. The total number of the evaluated scenarios was more than twenty
thousands. Examples of constructed roadmaps, the first admissible solution found
by SOM, and the final found solution found by the Rand variant are shown in Fig. 4.

The most time consuming step in the solution of the MGMP problem is a sin-
gle roadmap expansion, which, in the case of the RRG, is a more computationally
demanding with increasing number of roadmap vertices. Moreover, it is even more
demanding in the improving phase, where expansions are performed for vertices
in the ball around the last added vertex to the roadmap. Therefore, the number of
performed roadmap expansions is the main performance indicator.

The first evaluation is focused on the performance of the roadmap expansion
strategies in finding the first admissible solution with the maximal number of expan-
sions restricted to 100000. The results for 400 trials on 20 problems solved by each
approach are depicted in Table 1 (values are computed from admissible solutions).

(a) (d)

Fig. 4 Build roadmaps by Naive and SOM-based approaches after performing M expansions. A
path found by the Rand approach after 204 357 expansions. Obstacles are in brown, goals are
represented as green discs, roadmap edges are purple segments, and a multi-goal trajectory is in
black. a Naive, M = 10000. b Naive, M = 20000. ¢ SOM, M = 597. d Rand, M = 204357

On Self-Organizing Map and Rapidly-Exploring ... 151

Table 1 Roadmap construction for determining a first admissible solution

Method Naive SOM Rand MST
Success rate 54 % 93 % 61% 45 %
Average number of the RRG expansions 85 468 14 258 66 375 70 241
Average number of the roadmap vertices 24 698 5662 25781 37 815
Average number of the roadmap edges 142 472 16 218 109 096 84372
Average required CPU time [s]" 39 13 56 209

“Indicative values because several machines of different configurations have been used

Here, we can observe that the same randomized schema utilized in SOM and Rand
strategies provide different performance. Moreover, the MST-based approach pro-
posed in [11] does not provide significant advantage over Rand and its more demand-
ing because of determination of the MST. The results support the evidence that the
proposed SOM-based steering significantly improves the performance in finding the
first admissible solution. The main results is that SOM provides fastest admissible
solutions with a high success rate.

Notice, the number of the roadmap vertices is always lower than the number of
expansions. A higher number of vertices indicates a successful expansion of the
roadmap and similarly a higher number of edges indicates a denser roadmap as a
result of the improving step of the RRG.

The next evaluation has been focused on the quality improvement of the found
multi-goal trajectory according to increasing maximal number of the performed RRG
expansions. We found out that the proposed SOM improves solutions only slowly
with more expansions, and therefore, we consider it only in finding the first admissible
solution in the hybrid approaches Naive-SOM and Rand-SOM. The quality of the
trajectory is considered as a ratio of the trajectory length to the best found solution
for the particular problem determined from all the performed trials. This allows
to aggregate results for various problem instances, for which trajectories may be
significantly different. Thus, values of the ratio close to 1 indicate the particular
approach provides relatively high quality solutions among the evaluated algorithms.
The results for increasing number of roadmap expansions are depicted in Fig. 5.

Discussion—Based on the performed evaluation of the steering strategies of the
randomized sampling in the RRG, the results support that the proposed SOM-based
strategy provides the first admissible solution with a significantly less number of
expansions than other strategies. However, the solution quality does not improve
with more expansions and thus the current form of the strategy is suitable only for
finding an admissible solution. On the other hand, the proposed combination of the
SOM and randomized expansions in the hybrid solvers provide benefits of the both
approaches and it seems to be a suitable technique to provide the first solution quickly
and further quality improvements.

An important lesson learned from the presented evaluation is that the way how
the roadmap is initially created significantly affects the ability to find an admissible
solution quickly. Here, the SOM adaptation provides an efficient trade-off between

152 J. Faigl

2.0

=3
g . gt £
- b3
P)
Sk . RN =
° o” _J; T - I %
£gd oo fog—— \I; S Sy e M
8- 5 2 i I ﬁ I’ 22
2 2
(o= .
o F ©- Naive “5 -©- Naive
2 Rand S Rand
L2 Naive-SOM =° Naive-SOM
Rand-SOM g Rand-SOM
o —%— Rand-MST (oo —%— Rand-MST
U T T T T T T 1 < r T T T T T T 1
100k 120k 140k 160k 180k 200k 250k 300k 100k 120k 140k 160k 180k 200k 250k 300k
No. of Roadmap Expansions No. of Roadmap Expansions

Fig. 5 Success rate and quality of the found trajectories

exploration of C and exploitation of the current Ggg towards connecting the required
goal locations. However, once the locations are connected in the roadmap, the adap-
tation process only moves neurons along the roadmap and does not explore possible
shortcuts to improve the solution.

6 Conclusion

An evaluation of four multi-goal trajectory planners is presented in this paper. The
results indicate the proposed SOM-based roadmap expansion improves finding the
first admissible solution. However, a planner solely based on the SOM strategy does
not improve the found solution, but the solution can be improved by additional
expansions of the roadmap. Although the current achieved results does not meet the
expectation of a motion planner solely based on SOM, it support feasibility of the
SOM-based simultaneous building of the distance function approximation together
with its utilization in the multi-goal trajectory planning.

Regarding the applied SOM based principles, the whole graph Gggg can be con-
sidered as a growing neural network, where the adaptation rules can be used to
remove not promising configurations and thus reduce the number of vertices of the
graph. Besides, they can also be utilized to further exploration of the configuration
space to improve quality of the found solution. Consideration of these extensions is
a subject of our further work.

Acknowledgments The presented work is supported by the Czech Science Foundation (GACR)
under research project No. 13-18316P. Computational resources were provided by the MetaCentrum
under the program LM2010005 and the CERIT-SC under the program Centre CERIT Scientific
Cloud, part of the Operational Program Research and Development for Innovations, Reg. No.
CZ.1.05/3.2.00/08.0144.

On Self-Organizing Map and Rapidly-Exploring ... 153

References

11.

12.

13.

14.

. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman prob-

lems. Informs J. Comput 15(1), 82-92 (2003)

Créput, J.C., Koukam, A.: A memetic neural network for the Euclidean traveling salesman
problem. Neurocomputing 72(4-6), 1250-1264 (2009)

Elinas, P.: Multi-goal planning for an autonomous blasthole drill. In: Gerevini, A., Howe, A.E.,
Cesta, A., Refanidis, I. (eds.) ICAPS. AAAI (2009)

Faigl, J., Hollinger, G.: Unifying multi-goal path planning for autonomous data collection. In:
IROS, pp. 2937-2942 (2014)

. Faigl, J., Kulich, M., Vonasek, V., Pfeucil, L.: An application of self-organizing map in the

non-euclidean traveling salesman problem. Neurocomputing 74(5), 671-679 (2011)
Janousek, P, Faigl, J.: Speeding up coverage queries in 3d multi-goal path planning. In: ICRA,
pp- 5067-5072 (2013)

Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Rob.
Res. 30(7), 846-894 (2011)

Lattanzi, L., Cristalli, C.: An efficient motion planning algorithm for robot multi-goal tasks.
In: ISIE, pp. 1-6. IEEE (2013)

Lavalle, S.M.: Planning Algorithms. Cambridge University Press (2006)

Lavalle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. Algo-
rithmic and Computational Robotics: New Directions, pp. 293-308 (2001)

Saha, M., Roughgarden, T., Latombe, J.C., Sanchez-Ante, G.: Planning tours of robotic arms
among partitioned goals. Int. J. Rob. Res. 25(3), 207-223 (2006)

Vanek, P., Faigl, J., Masri, D.: Multi-goal trajectory planning with motion primitives for hexapod
walking robot. In: ICINCO, pp. 599-604 (2014)

Yamakawa, T., Horio, K., Hoshino, M.: Self-organizing map with input data represented as
graph. In: Neural Information Processing, pp. 907-914 (2006)

Zhang, J., Feng, X., Zhou, B., Ren, D.: An overall-regional competitive self-organizing map
neural network for the euclidean traveling salesman problem. Neurocomputing 89, 1-11 (2012)

Dimensionality Reduction Hybridizations
with Multi-dimensional Scaling

Oliver Kramer

Abstract Dimensionality reduction is the task of mapping high-dimensional
patterns to low-dimensional spaces while maintaining important information. In this
paper, we introduce a hybrid dimensionality reduction method that is based on the
weighted average of the normalized distance matrices of two or more embeddings.
Multi-dimensional scaling embeds the weighted average distance matrix in a low-
dimensional space. The approach allows the hybridization of arbitrary point-wise
embeddings. Instances of the hybrid algorithm template use principal component
analysis, multi-dimensional scaling, and locally linear embedding. The variants are
experimentally compared using three dimensionality reduction measures, i.e., the
Shepard-Kruskal scaling, a co-ranking matrix measure, and the nearest neighbor
regression error in presence of label information. The results show that the hybrid
approaches outperform their native pendants in the majority of the experiments.

1 Introduction

Dimensionality reduction (DR) has an important part to play in many machine learn-
ing applications. It finds applications in preprocessing for machine learning tech-
niques that perform best in low-dimensional data spaces and for visualization of
high-dimensional data. Objective of most DR algorithms is to reduce the dimension-
alities of patterns while maintaining distance information. In this paper, we employ
the normalized pattern distance matrix oriented to Shepard-Kruskal scaling for the
algorithmic method and the evaluation of the DR result. We propose an algorithm that
allows the hybridization of various DR results based on weighted distances matri-
ces and multi-dimensional scaling (MDS) [6]. The weighted hybridization offers the
freedom to take advantage of the capabilities of the native methods. We compare the
new approach to the native approaches w.r.t. the measures Shepard-Kruskal scaling,

O. Kramer ()

Computational Intelligence Group Department of Computing Science,
University of Oldenburg, Oldenburg, Germany

e-mail: oliver.kramer@uni-oldenburg.de

© Springer International Publishing Switzerland 2016 155
E. Merényi et al. (eds.), Advances in Self-Organizing Maps and Learning

Vector Quantization, Advances in Intelligent Systems and Computing 428,

DOI 10.1007/978-3-319-28518-4_13

156 O. Kramer

the co-ranking matrix measure, and the nearest neighbor regression error for labeled
benchmark data.

This paper is structured as follows. In Sect. 2, we give a short introduction to DR
with an emphasis on MDS. Section 3 presents three DR quality measures, in particular
the distance-based DR measure, which is similar to the Shepard-Kruskal scaling [2].
The normalized distance matrix is basis of the hybrid approach introduced in Sect. 4.
An experimental analysis is presented in Sect. 5. Conclusions are drawn in Sect. 6.

2 Methodological Basis

2.1 DR Reduction

In DR, the task is to embed high-dimensional patterns X = {x;, ..., Xy} with x; €
R¢ into low-dimensional spaces by learning an explicit mapping F : RY — R?, by
finding low-dimensional counterparts X = {X1,...,Xy} with X; € R? with g < d
that conserve useful information of their high-dimensional pendant, or by finding
a set of codebook vectors (usually fewer than N) that represent the data like in
self-organizing maps (SOMs), e.g., see [12]. The DR problem has intensively been
studied in the past, see [2, 7], but is still a promising research area due to the growing
importance of high-dimensional data.

2.2 MDS

Principal component analysis (PCA) [3, 4], locally linear embedding (LLE) [13], and
isometric mapping (ISOMAP) [15] are famous methods for the point-wise embed-
ding of patterns. ISOMAP and LLE are based on MDS, which estimates the coor-
dinates of a set of points while only the distances are known. Let Dx = (d;;) be
the distance matrix of the set of patterns with d;; being the distance between two
patterns x; and x;. Given all pairwise distances d;; withi, j =1,..., N andi # j,
MDS computes the corresponding low-dimensional representations. For this sake, a
matrix B = (b;;) is computed with

: | N | N 1 N N
2 2‘ 2 o 2 2, E E 2
bij - _E[dij B N dkj N dik N2 dkl]‘ M
k=1 k=1

k=1 I=1

The points are computed via an eigendecomposition of B with Cholesky or singular
value decomposition resulting in eigenvalues \; and corresponding eigenvectors
i = (7ij). It holds 27:1 q/l.z]. =);. The embeddings in a g-dimensional space are
the eigenvectors of the g-largest eigenvalues X; = 7iv/\;.

Dimensionality Reduction Hybridizations with Multi-dimensional Scaling 157

23 LLE

For non-linear manifolds, LLE by Roweis and Saul [13] is a powerful DR approach.
LLE assumes the local linearity of manifolds and is appropriate for the hybridization
as it computes point-wise embeddings. First, LLE computes weights that allow a
linear reconstruction of point x; from its k-nearest neighbors minimizing the cost
function

N k
Ew) =D lIxi — > wix; | (©)
i=1 j=1

with weights w;; € R.

3 Dimensionality Reduction Measures

In the experimental part, we will analyze the introduced hybrid methods w.r.t. three
DR quality measures that are introduced in the following.

3.1 Shepard-Kruskal Scaling

A reasonable DR quality measure that reflects the objective to maintain distances is
the Shepard-Kruskal scaling [2]. We formulate a normalized variant of the Shepard-
Kruskal scaling in the following. Let Dx be the distance matrix in data space and Dg
be the distance matrix in the low-dimensional space. Both are normalized, i.e., each
component is divided by the maximal component of the whole matrix. The Frobenius
norm of the differences of the normalized distance matrixes

2

Eys = |Dx — Dgll% 3
is the Shepard-Kruskal measure variant we employ. If the deviation of normalized
pattern-wise distances is zero, the high-dimensional distances are optimally main-

tained in the low-dimensions space. Normalization is required because the absolute
pattern coordinates computed by different methods may vary significantly.

3.2 Co-ranking Matrix

A traditional DR quality measure we will use for comparison in the experimental
section is the co-ranking matrix [8, 9] concentrating on measuring the maintenance

158 O. Kramer

of neighborhoods. The co-ranking matrix is based on the comparison of ranks w.r.t.
distance-based sorting of patterns in data space and in the low-dimensional space.
The co-ranking matrix is employed to define a measure E,, € [0, 1] corresponding
to the ratio of neighbors of patterns occurring in a k-neighborhood in data space
and in the low-dimensional space. High values for E,, show that the neighborhood
relations are preserved.

3.3 Nearest Neighbor Error

As our last measure, we compare the embeddings w.r.t. a measure that is based on the
k-nearest neighbor (kNN) regression error, which can only be computed for labeled
data. If (x1, y1), ..., (Xy, yn) are pattern-label pairs with y; € R, we can define the
kNN regression error as mean squared error

1 N
Ex= ;(f(xi) —yi)? (4)

with kNN model f. Based on the comput