
Chapter 7
Understanding Thermal Face Detection:
Challenges and Evaluation

Janhavi Agrawal, Aishwarya Pant, Tejas I. Dhamecha, Richa Singh
and Mayank Vatsa

Abstract In thermal face detection, researchers have generally assumed manual
face detection or have designed algorithms that focus on indoor environment.
However, facial properties are dependent on body temperature, surrounding envi-
ronment, and any accessories or occlusion present on the face. For instance, the
presence of scarfs, glasses, or any disguise accessories will alter the emitted heat
pattern, thereby making it challenging to detect the face in thermal images.
Similarly, daytime outdoor image acquisition has certain effects on the heat pattern
compared to nighttime (or indoor controlled) image acquisition settings that affect
automatic face detection performance. In this research, we provide a thorough
understanding of challenges in thermal face detection along with an experimental
evaluation of traditional approaches. Further, we adapt the AdaBoost face detector
to yield improved performance on face detection in thermal images in both indoor
and outdoor environments. We also propose a region of interest selection approach
designed specifically for aiding occluded/disguised thermal face detection.
Experiments are performed on the Notre Dame thermal face database as well as the
IIITD databases that include variations such as disguise, age, and environmental
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(day/night) factors. The results suggest that while thermal face detection in
semi-controlled environments is relatively easy, occlusion and disguise are chal-
lenges that require further attention.

7.1 Introduction

Decades of research in face recognition has seen several research directions, mostly
in the visible spectrum and many high-performing algorithms have been developed
for this purpose. To instigate further research, several research programs such as
Janus1 have been initiated where the goal is to take face recognition to the next
significant level. It is also well understood that in order to have a large-scale appli-
cation, the technology has to encompass face recognition both in and beyond visible
spectrums, i.e., developing capabilities to recognize face images/videos in visible,
near infrared, and thermal spectrums. Compared to the visible spectrum, research in
face recognition beyond visible spectrum is relatively less explored and has primarily
focused on near infrared and thermal imagery [2, 3, 5, 6, 15, 19]. As shown in
Fig. 7.1, face images in these three spectrums provide non-overlapping information
and can be individually or in-combination used for identity management.

For recognizing face images captured in thermal images (spectrum range of 8–
12 μm), the first step is the face detection followed by feature extraction and
matching against gallery image(s). Similar to visible spectrum, thermal face
detection can be modeled as a two-class problem (face and non-face). Trujillo et al.
[25] proposed a thresholding-based approach for detecting faces in thermal images.
Since the goal is to recognize expressions, face detection accuracy is not reported in
that study. Selinger and Socolinsky [21] and Socolinsky and Selinger [23] applied
boosted class-cover catch digraph (CCCD) [24] for face detection. They [23]
observed that thermal face recognition performance degrades in outdoor environ-
ments. Since the overall goal was to identify the subject, the results of the inter-
mediate face detection stage were not reported. In [23], the authors focused on face
recognition and the results of detection were not reported. However, it is possible
that in thermal spectrum the outdoor setting affects the detection stage too, par-
ticularly in thermal spectrum. Martinez et al. [18] utilized GentelBoost along with
Haar-like features [26] and, the results showcase that, to an extent, boosting with
Haar-like features can be utilized for face detection. However, evaluation in chal-
lenging environments remains an open research problem. Wang et al. [28] observed
that Haar-like features with AdaBoost can be useful for detecting eyes, even in the
presence of glasses. Zhang et al. [29] proposed a modified boosting approach in
which visible images could also be utilized along with the images of other spectrum

1http://www.iarpa.gov/index.php/research-programs/janus.
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to train the cascade model. Table 7.1 briefly summarizes these algorithms on face
detection in thermal images.

For designing an efficient face recognition algorithm, it is important that the face
detection is accurate. It has been observed that imprecise eye localization and
therefore imprecise face localization degrades the performance of the overall
thermal face recognition pipeline [6]. Since the majority of researchers have used
manually detected face images in the recognition pipeline, thermal face detection
has not been well explored in the literature. Moreover, in order to learn an efficient
face detector it is imperative to have access to a large amount of face and non-face
images. The samples obtained in diverse conditions, such as indoor and outdoor

VIS Thermal VIS NIR

Fig. 7.1 Sample face images captured in visible, thermal, and near-infrared (NIR) spectrum. NIR
image has been taken from CASIA NIR-VIS 2.0 face database [14]

Table 7.1 Summary of related research for face detection in thermal images

Authors Objective and technique Dataset (#Images/#Subjects)

Trujillo et al.
[25]

Face detection: thresholding. Facial regions:
Harris detector with k-means clustering

IRIS dataset in OCTBVS
[12] (4228/30)

Selinger and
Socolinsky
[21]

Face detection: boosted CCCD classifier
[24]. Eye detection: Haar-like features with
AdaBoost

Private (3732/207)

Socolinsky
and Selinger
[23]

Face detection: boosted CCCD classifier
[24]. Eye detection: co-registration with the
visible images

Private indoor-outdoor
(3080/385)

Martinez
et al. [18]

Face detection: patch intensities. Eye, nostril
and mouth detection: Haar features with
GentleBoost and self-similarity descriptor

Private (78/22)

Wang et al.
[28]

Eye localization: Haar-like features with
AdaBoost for 15 subregions around eyes and
majority voting of results of multiple
classifiers

NVIE [27] and Equinox
dataset

Zhang et al.
[29]

Face detection: R-TrBoost to train using
visible and other spectrum images together

Private (7000 visible, 1400
spectrum 1, and 705
spectrum 2)

Bourlai and
Jafri [1]

Blob analysis-based skin detection, template
matching, and integral projection-based eye
detection

West Virginia University
visible-thermal database
(2250/50)
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environments, with session variations are necessary to learn a generalizable
detector. In our opinion, thermal face detection and recognition research is impaired
by the non-availability of a challenging database that includes face and non-face
images captured in both indoor and outdoor environments with time lapse varia-
tions. Moreover, there exists a very limited literature focusing on detection of
occluded thermal faces. Therefore, it is important that the challenge of face
detection is addressed to achieve a fully automated and efficient thermal face
recognition system. In view of existing limitations, this chapter attempts to bridge
the gap in the following ways:

• A database, namely IIITD thermal face database, is prepared that consists of 614
face images pertaining to 65 subjects and 150 non-face images. Face images are
captured in two sessions separated by two years time frame. Non-face images
are captured in both indoor and outdoor settings. A small set, IIITD-People in
Sun and Evening (IIITD-PSE), consisting 22 subjects is also prepared to study
the variations due to outdoor day light (sun) and nighttime environments. The
database and the ground truth annotations of face regions will be made publicly
available for researchers to undertake research on thermal face detection via
https://research.iiitd.edu.in/groups/iab/.

• Baseline experiments pertaining to face localization are performed on the IIITD
thermal face, IIITD-PSE, and Notre Dame (ND) thermal face [6] databases with
Haar- and LBP-cascaded AdaBoost to analyze the challenges associated with
face detection in thermal images. Challenging scenarios such as cross-sensor
thermal face detection and the effects of outdoor conditions (i.e., day or night)
are also examined. A baseline evaluation of detecting faces under occlusion
(using disguise accessories) is also performed on the IIITD In and Beyond
Visible Spectrum Disguise (I2BVSD) face database [8, 9]. A skin
detection-based region of interest (ROI) selection is proposed, to improve the
face detection performance. We also propose a novel face detection evaluation
measure to evaluate the performance of face detection algorithms.

7.2 IIITD Thermal Face Database

As shown in Table 7.1, there are multiple thermal face databases available.
However, all of them captured face data with the objective of face recognition in
controlled environments and may not be suitable for understanding the state of the
art of face detection algorithms in the thermal spectrum. Further, existing face
detection algorithms have been optimized for the visible spectrum, and since both
visible and thermal spectra have different characteristics, such optimized pre-trained
models may not yield the best results. Therefore, we have collected the IIITD
thermal face database with a focus on capturing the variations that may affect the
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appearance of facial regions in a thermal image, for instance, time lapse and
environment. The IIITD database consists of 614 thermal face images pertaining to
65 individuals and 150 non-face images. All the images are captured using a
thermal camera having micro-bolometer sensor operating in 8-14 μm spectrum
range, also known as long-wave infrared spectrum. Face images are near frontal
with neutral expressions and are captured in two sessions:

• Session I is captured in October/November 2011 and it consists of 82 images
pertaining to 41 subjects.

• Session II is captured in January 2014 and it consists of 532 images from 65
subjects. There are 41 overlapping subjects in both the sessions.

A set of 150 non-face images is collected out of which equal number of images
are captured indoor and outdoor. Since a face can appear very different during day
and night in a thermal image, we collected a separate dataset named IIITD-People
in Sun and Evening (IIITD-PSE) database to capture these variations. It consists of
120 images pertaining to 22 subjects acquired in outdoor settings during both day
(around 2 p.m. and *36 °C temperature) and night (around 10 p.m. and *22 °C
temperature). Both subsets, the IIITD-PSE-Day and IIITD-PSE-Night, contain 60
images pertaining to 15 subjects, with an overlap of 8 subjects.

All the images are of size 720 × 576 pixels. The details of both IIITD and
IIITD-PSE datasets are summarized in Table 7.2. Figure 7.2 illustrates the variety of
images contained in the IIITD and IIITD-PSE databases. For evaluating the per-
formance of face detection algorithms, the ground truth has been manually anno-
tated in terms of two eyes, nose, and mouth coordinates. To encourage the research
on the problem of thermal face detection, the database and annotated ground truth
will be made publicly available to researchers.

Table 7.2 Dataset details pertaining to sessions, subjects, and classes

Name Class Number of subjects and images

IIITD Thermal Face Session I: 41, 82

Session II: 65 (41 + 24), 532

Non-face 75 indoor and 75 outdoor

Total = 65 subjects, 764 images

IIITD-PSE Face (outdoor) Day: 15, 60

Night: 15 (8 + 7), 60

Total = 22 subjects, 120 face images

ND Face Train: 159, 159

Test: 82, 2292

Total = 241 subjects, 2451 images

I2BVSD Face Minor: 75, 307

Major: 75, 231

Total = 75 subjects, 538 images
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7.3 Databases, Algorithms, and Evaluation Measures

For understanding the performance of thermal face detection, Collection XI of the
University of Notre Dame (ND) face dataset [6] and I2BVSD database [8, 9] are
used along with the IIITD and IIITD-PSE databases. The ND face database consists
of 2292 infrared frontal face images of size 312 × 239 from 82 subjects. It also
contains a separate training set of 159 face images. Figure 7.3 shows sample images
of subjects from the ND database.

For studying the effect of occlusion using disguise accessories, we utilize the
I2BVSD face dataset [8, 9] which is the only publicly available dataset containing
images with occlusion. The dataset consists of 681 face images pertaining to 75

Indoor

Day NightSession IISession I

Outdoor

Fig. 7.2 Images illustrating the variations captured in the IIITD and IIITD-PSE thermal face
database. Each row contains images of one subject under different environments

Fig. 7.3 Sample images from the ND thermal face database [6]
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subjects in both visible and thermal spectra. The utilization of disguise accessories
results in varying amount of face occlusion. Depending on the facial regions which
are occluded, the dataset is divided into two parts, major disguises (231 images) and
minor disguises (307 images). Sample images contained in the dataset are shown in
Fig. 7.4. For this research, we utilize only the thermal spectrum images having
disguise variations (538 images, 75 subjects).

Fig. 7.4 Sample images from the I2BVSD thermal face database [8, 9]. Face images from subsets
pertaining to face occlusion due to a minor and b major usage of disguise accessories. While
I2BVSD database has images in both visible and thermal spectrum, we have used only thermal
images in the experiments
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7.3.1 Algorithms

The baseline performance has been established for two face detection algorithms:

1. Haar-like features [17, 26] with cascaded AdaBoost classifier: Haar-like fea-
tures are computed from rectangular regions of the image. Every rectangle is
divided into multiple non-overlapping sub-rectangles. Pixel intensities of each
sub-rectangle are added and the differences of summed intensities of
sub-rectangles are used as features. Sub-rectangles are created such that these
differences provide coarse information about horizontal, vertical, and diagonal
gradients.

2. Local binary patterns (LBP) features [16] with cascaded AdaBoost classifier:
In LBP, the difference between every pixel and its neighbors is computed. The
sign of differences is represented using a binary bit. The string of these binary
bits for every pixel is converted to decimal. An LBP-coded image representation
is obtained by replacing every pixel with its corresponding decimal values. The
final feature is represented in terms of histograms obtained from local regions of
the LBP-coded image representation.

Algorithm 1 briefly summarizes the cascade boosting face detection approach
utilizing Haar/LBP.

7.3.2 Evaluation Measures

In the existing literature, performance and effectiveness of face detection algorithms
is measured using metrics such as mean square error (MSE). However, these
statistics only present the difference between the ground truth and automatically
segmented landmark points. In our understanding, MSE is a more useful metric for
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landmark detection and it is not very informative if one wants to compare the
regions of interest and analyze falsely detected and falsely rejected regions. The
objective of a face detection algorithm is to be able to detect the complete region of
interest so that it has maximum intersection with the ground truth. To evaluate the
performance with respect to this intersection criterion, we propose the following
two measures:

• Ratio with ground truth (RG): RG presents the ratio of intersection of the
predicted region and ground truth with the area of ground truth segmentation.

RG ¼ AreaD\G
AreaG

ð7:1Þ

• Ratio with detection (RD): RD presents the ratio of intersection of the predicted
region and ground truth with the area of detected region.

RD ¼ AreaD\G
AreaD

ð7:2Þ

Here, D and G represent the detected and ground truth face regions (rectangles),
respectively. The visual interpretation of RG and RD together is shown in Fig. 7.5.
High RD along with low RG indicates that while there is a good overlap between

Low RG, Low RD High RG, Low RD

Low RG, High RD High RG, High RD

Ground truth

Detected

Fig. 7.5 RG and RD measures. High values of RG and RD together ensure a good face detection
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the two, a smaller face rectangle is detected compared to the ground truth.
Similarly, high RG along with low RD indicates that automatic face detection
algorithm has detected a larger face rectangle compared to the ground truth. Their
values lie in the range of [0, 1] and for ideal face detection, both should be very
close to one. RG and RD can be more effectively used together to analyze the
results. In this research, we observe that a threshold of 0.7 for both RG and RD can
be used to consider successful face detection.

7.4 Results and Analysis

The performance of the algorithms has been evaluated in four different scenarios:

• Testing with visible cascade: The publicly available visible spectrum face
detector model is utilized to detect faces in thermal spectrum images. This
experiment establishes the baseline for performance evaluation.

• Learning a model for thermal images: We learn detectors using thermal face and
non-face images. The images are preprocessed using histogram equalization
followed by feature extraction using LBP or Haar.

• Effect of environment and sensor: The effect of environmental factors such as
indoor/outdoor setting and day/nighttime is studied using the IIITD-PSE dataset.
We evaluate the effect of sensor interoperability on face detection. This set of
experiments is aimed to study the generalizability of face detection models.

• Effect of occlusion: In this set of experiments, we study the effectiveness of the
learned thermal face detector on occluded faces. Along with LBP and Haar
features, a skin detection-based ROI selection approach is also presented.

7.4.1 Testing with Cascade Trained on Visible Images

The first experiment is performed to evaluate the performance of pre-trained Haar
cascades (available with OpenCV [4]) on thermal spectrum images. Since Haar
cascade is originally trained for visible spectrum, this experiment also provides an
understanding about face detection performance with cross-spectral training. For
this experiment, the IIITD database (614 images) and the test partition of the ND
dataset (2292 images) are utilized as test sets. In all the experiments, when multiple
face rectangles are detected in an image, the largest one is considered as the
detected rectangle. The graphs of normalized image count verses their RG and RD
are shown in Fig. 7.6. The horizontal axis represents RG (or RD), whereas the
vertical axis represents the ratio of the number of images having specific RG (or
RD) to the total number of images. As it can be seen, very small proportion of face
images resulted in high RG or RD values. This shows that pre-trained visible image
cascade is not appropriate for face detection in thermal images. No face rectangle is
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detected in 15.9 % images of the IIITD dataset and 31.5 % images of the ND
dataset. As shown in Table 7.3, for both IIITD and ND datasets, many images have
low RG and RD, which further show poor face detection results.

7.4.2 Learning a Cascade Model for Thermal Faces

Since pre-trained cascade model does not exhibit effective performance, it is
important to train the face detection model using thermal data. We utilize face and
non-face images captured in thermal spectrum for this task. From the IIITD dataset,
307 randomly selected face images and all the 150 non-face images are used as the
training set and testing is performed on the remaining (unseen) 307 images. For ND
dataset, training is performed with a predefined set of 159 train images and testing
with 2292 images. The LBP cascade model is trained and the results on the testing

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio

N
or

m
al

iz
ed

 Im
ag

e 
C

ou
nt

Training Set: Visible, Testing Set: IIITD

Area of intersection/Area of ground truth
Area of intersection/Area of detected face

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio

N
or

m
al

iz
ed

 Im
ag

e 
C

ou
nt

Training Set: Visible, Testing Set: ND

Area of intersection/Area of ground truth
Area of intersection/Area of detected face

(b)

Fig. 7.6 Pre-trained Haar with face detection on the a IIITD dataset and b ND dataset. Horizontal
axis represents the value of RG and RD. Vertical axis represents the normalized image
count with corresponding RG and RD. Normalized image count is computed as
# images with corresponding RG or RD

# total images

Table 7.3 Summary of face detection results with pre-trained cascade and the cascade trained
with thermal images on the IIITD and ND thermal face databases

Experiment Training
set

Test
set

Normalized image
count

Detection accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Visible’s
Cascade
(Haar)

Pre-trained
(OpenCV)

IIITD 0.60 0.12 0.05 98/614

ND 0.40 0.07 0.01 723/2292

Thermal’s
Cascade
(LBP)

IIITD IIITD 0.84 0.70 0.62 0/307

ND ND 0.78 0.71 0.60 147/2292
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database are shown in Fig. 7.7. It can be observed that compared with pre-trained
cascade, there is a substantial increase in the number of images with higher RG and
RD when cascades trained on thermal images are used. At least one face rectangle is
detected in each image of the IIITD dataset, whereas in 6.41 % images of the ND
dataset no face rectangle is detected. Further, Table 7.3 also shows that training on
thermal images helps in improving face detection results. However, there is a
further scope of improvement, as faces are detected reasonably well in only about
60 % images.

7.4.2.1 Learning a Cascade Model from Combined Dataset

One possible way to further improve the face detection performance is to learn the
model using data containing large variations. In order to achieve this, we train a
model using both the datasets: 307 and 159 images from the IIITD and ND datasets,
respectively, comprise the face samples of the training set for this experiment. The
cascaded AdaBoost model is trained using LBP features. The results pertaining to
this experiment are shown in Table 7.4 and Fig. 7.8a, b. Moreover, Table 7.4 shows
that there is a significant improvement in the correct detections (RG > 0.7 and
RD > 0.7 together), with 2 and 3 % improvement for IIITD and ND datasets,
respectively. Also the number of undetected faces reduces significantly.

To further reduce the difference between images from the two databases, image
histogram equalization is applied. It is our assertion that histogram equalization can
help reduce the effect of the sensor- and/or environment-specific variations.
Therefore, LBP features are obtained after preprocessing the images using his-
togram equalization. As shown in Table 7.4 and Fig. 7.8c, d, there is a slight
improvement in performance when images are preprocessed using histogram
equalization. The detection rate of 0.65 is obtained on both the sets.

On this combined training set, the effectiveness of Haar cascade is also evaluated
with histogram equalization preprocessing. For this experiment, the cascaded
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Fig. 7.7 Face detection using LBP cascade learned on the a IIITD dataset and b ND dataset
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Table 7.4 Results of face detection when the model is trained with combined IIITD + ND
databases and tested on IIITD and ND thermal face databases

Experiment Test
set

Normalized image
count

Detection
accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

No preprocessing
and LBP features

IIITD 0.89 0.66 0.64 0/307

ND 0.75 0.76 0.63 15/2292

Histogram
equalization with
LBP features

IIITD 0.88 0.70 0.65 0/307

ND 0.77 0.79 0.65 14/2292

Histogram
equalization with
Haar-like features

IIITD 0.84 0.78 0.70 2/307
ND 0.83 0.88 0.77 18/2292
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Fig. 7.8 Face detection using LBP cascade with training on combined ND and IIITD dataset and
testing on the a IIITD dataset and b ND dataset. Corresponding result on c IIITD dataset and d ND
dataset when the images are preprocessed using histogram equalization is obtained
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AdaBoost model is learned on the Haar features obtained from histogram-equalized
images. The results are shown in Fig. 7.9 and Table 7.4. The results show that Haar
cascade with histogram equalization preprocessing performs considerably better in
the given scenario by further improving the detection rate to 0.70 and 0.77 on the
IIITD and ND datasets, respectively. However, there is a trade-off in terms of
training time and accuracy, with Haar cascade requiring more training time and
exhibiting better results than that of LBP cascade. Note that there is still scope for
improvement as the detection accuracy rate is in the range of 0.70–0.80. Figure 7.10
shows sample detection results of the Haar feature-based cascade learned using
combined training set on the IIITD and ND datasets, which yields about 65 %
images with successful face detection.

7.4.2.2 Decision Fusion of Haar and LBP Cascades

Since Haar and LBP do not encode the same information, one may expect that both
of them should find their applicability in encoding different kinds of variations.
Therefore, it is possible that the set of images for which each of the techniques
works the best may not be completely overlapping. This is a plausible condition for
fusing two techniques and can potentially help further improve the overall accuracy.
In order to combine, we follow a simple approach: If face is detected by only one of
the techniques, the detected region is taken as the final decision. However, if a face
is detected by both the techniques, the following two decision fusion approaches
can be applied.

• Fusion Approach 1: Out of the two candidate rectangles, select the smaller one.
This approach assumes that the detection techniques are prone to overestimating
the face rectangle size, thus selecting the smaller candidate rectangle should
result in better detection.
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Fig. 7.9 Face detection using Haar cascade with training using histogram equalization
preprocessed ND and IIITD dataset and testing on a IIITD dataset and b ND dataset
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• Fusion Approach 2: Out of the two candidate rectangles, select the larger one.
The second approach assumes that the detection techniques are prone to
underestimating the size of face rectangle.

Both sets of experiments are performed along with histogram equalization and
the results are shown in Table 7.5 and Fig. 7.11. As shown in Table 7.5, in both the

(a)

(b)

Fig. 7.10 Examples of a good (RG[ 0:7 and RD[ 0:7) and b poor detection results on the
IIITD (top row) and ND (bottom row) datasets. Green (solid lines) and red (dashed lines)
rectangles represent the ground truth and detected face region (using Haar feature-based cascade
learned on combined training set), respectively
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fusion approaches, at least one face rectangle is detected in all but three images. The
results show that the first fusion approach exhibits better results for the IIITD
dataset, and fusion has little effect on the ND dataset.

Table 7.5 Summary of face detection results with the proposed fusion approaches on the IIITD
and ND thermal face databases

Algorithm Test
set

Normalized image
count

Detection
accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Fusion approach 1
(LBP + Haar)

IIITD 0.84 0.85 0.74 0/317
ND 0.75 0.93 0.73 3/2292

Fusion approach 2
(LBP + Haar)

IIITD 0.88 0.63 0.61 0/317

ND 0.85 0.75 0.70 3/2292

The training set is created by combining the training sets of both IIITD and ND datasets
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Fig. 7.11 Face detection using fusion approach 1 on the a IIITD and b ND datasets; and using
fusion approach 2 on the c IIITD and d ND datasets
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7.4.3 Effect of Sensor and Environment

Since thermal images are dependent on the heat emissivity of the object or surface,
they may be affected by environmental aspects such as ambient temperature. These
images are also dependent on the type of sensor used, and therefore, the interop-
erability of sensors can also affect the accuracy of the models learned from one
camera. This section studies these two aspects of thermal face detection.

Effect of Day and Night Outdoor Environments We utilize the IIITD-PSE
dataset to understand the challenges of thermal face detection in outdoor settings
along with the effect of capture during day and night. Figure 7.2 shows sample
images of the same person captured in day and night environments. Since fusion
approaches yield better results on the IIITD and ND databases, this experiment is
also performed with the fusion approaches only. The results of this experiment are
reported in Fig. 7.12. It can be observed that the model learned from images captured
in indoor settings (IIITD + ND) is not effective on images captured outdoors during
daytime (IIITD-PSE-Day). However, as shown in Table 7.6, the results are relatively
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Fig. 7.12 Detection results on IIITD-PSE dataset. Face localization results on IIITD-PSE-Day set
using a fusion approach-1 and b fusion approach-2. Similarly, results on IIITD-PSE-Night set
using c fusion approach-1 and d fusion approach-2
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better for outdoor nighttime images (IIITD-PSE-Night). During daytime, the tem-
perature difference between the skin and the environment is smaller compared to
nighttime, which might be affecting the overall contrast of the image. Therefore,
daytime outdoor face detection in thermal spectrum needs further research.

Effect of Cross-sensor Training Previous experiments show that if the cascade is
trained using the images from same database, it provides good results. However, it
is important to have a model which can be utilized across multiple datasets captured
using different thermal imaging sensors. As shown in Figs. 7.2 and 7.3, images
captured using two different sensors might look quite different. Therefore, a logical
step is to examine the challenges due to cross-sensor data (i.e., problem of sensor
interoperability).

The cascades trained on individual datasets during the previous experiments are
used for detecting faces pertaining to the other dataset. For example, the cascade
trained using the ND database is used for detecting faces from the IIITD database
and vice versa. The results in Fig. 7.13 show that the model learned from one
dataset does not cross-validate well when tested on the other dataset. This may be
due to the fact that different datasets include different properties such as capturing
environment, set of subjects, imaging resolution, and sensor characteristics.

7.4.4 Effect of Occlusion

In order to study the effect of occlusion, we have performed experiments on the
I2BVSD face disguise dataset (thermal spectrum images only). The dataset is
divided into two parts, (i) minor disguise and (ii) major disguise. The minor dis-
guise subset consists of images of subjects wearing headgears, hair, and beard
extensions which do not cover any of the vital features such as eyes, nose, and
mouth. The major disguise subset consists of images of subjects wearing shades,

Table 7.6 Summarizing the results of face detection with proposed fusion approaches on thermal
images acquired in daytime and nighttime

Experiment Training set Test set Normalized image
count

Detection
accuracy
(RG and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Fusion
approach 1
(LBP + Haar)

IIITD + ND IIITD-PSE-Day 0.38 0.61 0.31 0/60

IIITD-PSE-Night 0.75 0.85 0.70 0/60

Fusion
approach 2
(LBP + Haar)

IIITD + ND IIITD-PSE-Day 0.58 0.41 0.38 0/60

IIITD-PSE-Night 0.85 0.65 0.65 0/60

Cross-sensor
(LBP)

IIITD ND 0.51 0.65 0.42 211/2292

ND IIITD 0.87 0.53 0.47 0/614

The results of cross-sensor face detection experiments are also reported
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mouth pieces, heavy beards, and/or any accessory which covers one of the vital
features. The baseline evaluation is performed with cascaded AdaBoost models
learned using combined training set (IIITD + ND). As shown in Table 7.7, detection
accuracy for minor disguise subset is about 25 % for LBP and Haar-based cascaded
AdaBoost detector. For major disguise subset, the LBP and Haar-based detectors
yield 10 and 15 % detection accuracy, respectively. This shows that the cascaded
AdaBoost-based approach is not very effective in the presence of occlusions. The
corresponding results in terms of RG and RD are reported in Fig. 7.14. If we pose a
constrained problem of face localization, i.e., given that there is a face image, locate
it, we can utilize a skin detection-based approach for approximating facial regions
with occlusion variations. Skin color-based region detection has been studied
extensively in visible spectrum [11, 13, 20, 22]. However, to the best of our
knowledge, skin color detection in thermal spectrum is still unexplored. Skin
detection is comparatively easier in thermal spectrum because the heat patterns
generated due to body temperature are typically distinct compared to background.
Therefore, we present a skin detection-based ROI selection approach.

7.4.4.1 Skin Detection-Based ROI Selection

In order to reduce the number of falsely detected faces, we propose a skin
detection-based ROI selection approach as a preprocessing stage to cascaded
AdaBoost face detection. The steps involved in the proposed skin detection
approach are shown in Fig. 7.15. Further details of skin detection are as follows:

• Features: For every pixel, a square neighborhood of k � k is chosen as the
representation. Thus, for every pixel a k2 dimensional feature vector is obtained;
and an image of size m� n is represented using mn� k2 feature set. In this
work, neighborhood of k = 3 is chosen. This feature representation helps encode
every skin pixel with respect to its neighborhood.
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Fig. 7.13 Face detection using LBP cascade with a training on ND and testing on IIITD set and
b training on IIITD and testing on ND dataset
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• Skin and Non-skin Modeling: Using the ground truth face and non-face
regions, corresponding skin and non-skin pixels are obtained. These distribu-
tions of skin and non-skin features are learned from the training data. The
distributions essentially capture how the heat patterns of skin and non-skin
pixels appear in the local neighborhood. Skin and non-skin distributions are
modeled as:

fsðxÞ ¼ Nðx; ls;RsÞ;
fnsðxÞ ¼ Nðx; lns;RnsÞ

where, fs and fns denote the probability of x belonging to skin and non-skin
regions, respectively. Nð�; l;RÞ denotes a normal distribution with mean l and
variance R. The training phase includes learning the mean and variance of skin
and non-skin distributions.

• Pixel classification: A pixel with feature representation x is classified as skin, if

log fsðxÞ
fnsðxÞþ e

� �
[ e where e is a very small positive real number.

Table 7.7 Summarizing the results of face detection on the faces occluded using disguised
accessories

Experiment Test set Normalized image
count

Detection accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Without skin detection

LBP Disguise minor 0.81 0.33 0.27 0/307

Disguise major 0.57 0.25 0.10 1/231

Haar Disguise minor 0.43 0.51 0.26 12/307

Disguise major 0.31 0.57 0.15 7/231

Only skin detection

Skin model Disguise minor 1 0.00 0.00 n/a

Disguise major 0.99 0.00 0.00 n/a

With skin detection

LBP Disguise minor 0.68 0.53 0.42 1/307

Disguise major 0.20 0.47 0.10 5/231

Haar Disguise minor 0.39 0.58 0.29 12/307

Disguise major 0.21 0.65 0.13 0/231

Fusion
approach 1
(LBP + Haar)

Disguise minor 0.41 0.64 0.33 0/307

Disguise major 0.11 0.62 0.08 0/231

Fusion
approach 2
(LBP + Haar)

Disguise minor 0.69 0.48 0.38 1/307

Disguise major 0.31 0.52 0.16 0/231
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• ROI Selection: At the end of the pixel classification stage, a binary mask is
obtained for every image. Although almost all the facial regions are often
obtained as skin regions, there may be some holes and/or there may be multiple
connected components (due to occlusion). We propose to utilize the largest

Fig. 7.15 The face detection pipeline with skin detection-based ROI selection. The blue, red, and
green rectangles represent the selected ROI, detected face region, and ground truth face region,
respectively
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Fig. 7.14 Face detection using LBP cascade on a minor and b major disguise subsets, and using
Haar cascade on c minor and d major disguise subsets. The results obtained using skin
detection-based ROI selection are also reported
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connected component of the binary mask, and the corresponding bounding box
is utilized as the region of interest. Once the ROI is selected, a cascade classifier
is utilized for finding the face location/bounding box.

7.4.4.2 Effectiveness of ROI Selection

Figures 7.16 and 7.17 show some examples of ROI selections and the effectiveness
of the ROI selection approach, respectively. It can be observed that the proposed
approach effectively rejects non-face regions of the image. As shown in Table 7.7
and Fig. 7.17, the skin modeling-based ROI selection alone, without any further
face detector, yields RG of around 100 %. This shows that the ROI is almost always
covering the face region. We further applied the AdaBoost cascade, learned in
earlier experiments, on the ROI obtained using skin detection. As shown in
Table 7.7, Fig. 7.14, and Fig. 7.18 ROI selection helps in improving detection
accuracy, especially in case of minor disguise.

Fig. 7.16 Samples of skin detection-based ROI selection approach. The red rectangle represents
the ROIs obtained
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Fig. 7.17 Effectiveness of skin detection-based ROI selection is shown for a minor and b major
disguise subsets. On both the sets, the RG values are comparatively very high for large number of
images, suggesting that very little ground truth facial region is discarded in ROI selection
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7.5 Conclusion and Future Research Directions

Thermal face detection has been a relatively unexplored area of research and there
are multiple covariates that affect the performance of face detection algorithms. This
chapter presents a study to understand the effect of thermal imagining-specific
covariates on the performance of face detection in thermal images. There are three
contributions of this chapter:

1. We prepared two thermal face databases, namely the IIITD thermal face data-
base that contains 614 face images of 64 subjects and 150 non-face images, and
IIITD-PSE database comprising 120 images captured during daytime and
nighttime to study the effect of ambient temperature on thermal face detection.

2. We analyzed the performance of three algorithms: AdaBoost-based face detector
with LBP features, AdaBoost face detector with Haar-like features, and fusion
of the LBP and Haar-like features. The performance is analyzed not only on the
IIITD thermal and PSE databases, but also on the Notre Dame and I2BVSD face
databases. The use of these two existing databases helps us to understand the
impact of interoperability and occlusion on thermal face detection.

3. We propose two new metrics of face localization, RG and RD, which in com-
bination provide the true performance of face detection.
The results show that decision level fusion of Haar-like and LBP features is
promising and preprocessing using histogram equalization also helps in
improving the detection accuracy. This may point out that preprocessing is one
of the key components in addressing environmental covariates in thermal face
detection. Further, the results on cross-dataset experiments, indoor–outdoor and
day–night variations, and occlusions using facial accessories reveal challenging
nature of the problem.
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Fig. 7.18 Results of the proposed fusion approaches on a minor and b major disguise subsets
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