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Local Operators and Measures
for Heterogeneous Face Recognition
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Abstract This chapter provides a summary of local operators recently proposed for
heterogeneous face recognition. It also analyzes performance of each individual
operator and demonstrates performance of composite operators. Basic local oper-
ators include local binary patterns (LBP), generalized local binary patterns
(GLBPs), Weber local descriptors (WLDs), Gabor filters, and histograms of ori-
ented gradients (HOGs). They are directly applied to normalized face images. The
composite operators include Gabor filters followed by LBP, Gabor filters followed
by WLD, Gabor filters followed by GLBP, Gabor filters followed by LBP, GLBP
and WLD, Gabor ordinal measures (GOM), and composite multi-lobe descriptors
(CMLD). When applying a composite operator to face images, images are first
normalized and processed with a bank of Gabor filters and then local operators or
combinations of local operators are applied to the outputs of Gabor filters. After a
face image is encoded using the local operators, the outputs of local operators are
converted to a histogram representation and then concatenated, resulting in a very
long feature vector. No effective dimensionality reduction method or feature
selection method has been found to reduce the size of the feature vector. Each
component in the feature vector appears to contribute a small amount of informa-
tion needed to generate a high fidelity matching score. A matching score is gen-
erated by means of Kullback-Leibler distance between two feature vectors. The
cross-matching performance of heterogeneous face images is demonstrated on two
datasets composed of active infrared and visible light face images. Both short and
long standoff distances are considered.
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5.1 Introduction

Face recognition has been an active area of research over the past few decades.
Many major advancements have been reported in the literature. New applications
have triggered new challenges, and new challenges have called for new research
solutions. Surveillance at night or in harsh environments is one of the most recent
applications of face recognition. Latest advancements in manufacturing of small and
cheap imaging devices sensitive in active infrared range (near-and short-infrared)
[21, 23] and the ability of these cameras to see through fog, rain, at night and
operate at long ranges provided researchers with new type of imagery and posed
new research problems [5–8, 10, 13, 28, 39, 40, 45]. As observed, active-IR energy
is less affected by scattering and absorption by smoke or dust than visible light.
Also, unlike visible spectrum imaging, active-IR imaging can be used to extract not
only exterior but also useful subcutaneous anatomical information. This results in a
very different appearance of face images in active-IR range compared to face
images in visible spectrum. Acknowledging these differences, many related ques-
tions can be posed. What type of information should be extracted from active-IR
images to successfully solve the problem of face recognition? How to match a face
image in visible range to a face image in active-IR range? The latter falls in the
scope of heterogeneous face recognition. Developing local operators for hetero-
geneous face recognition is the focus of this chapter. We will first provide a short
overview of two general existing approaches to solve the problem of face recog-
nition and later narrow it down to an overview of local operator-based approaches
recently proposed and used in the field.

The literature identified two general categories of approaches to address the
problem of face recognition: the holistic approach (also known as subspace anal-
ysis) and the local feature approach. The former represents the global photometric
information of a human face using subspace projections. Examples include prin-
cipal component analysis (PCA), independent component analysis (ICA), linear
discriminant analysis (LDA), canonical correlation analysis (CCA), multilinear
subspace learning (MSL), and their derivatives. Sirovich and Kirby [44] showed
that PCA could be applied to a collection of face images to form a set of basis
features which are known as eigenfaces. Later, Turk and Pentland [47, 48]
expanded these results and presented the method of eigenfaces as well as a system
for automated face recognition using eigenfaces. They showed a way of calculating
the eigenvectors of a covariance matrix in a way that made it possible for computers
at that time to perform eigen decomposition on a large number of face images.
Jutten and Herault [27] introduced the general framework for ICA and then Comon
[16] refined it. ICA can be seen as a generalization of PCA, in which ICA generates
a set of basis vectors that possess maximal statistical independence, while PCA uses
eigenvectors to determine basis vectors that capture maximal image variance.
Motivated by the fact that much of the important information may be contained in
the high-order relationship rather than that of the second-order, Bartlett at el. [3, 4]
applied ICA to the problem of face recognition.
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Fisher was the first to introduce the idea of LDA [20]. LDA determines a set of
optimal discriminant basis vectors so that the ratio of the inter- and intra-class
scatter matrices is maximized. It is primarily used to reduce the number of features
to a more manageable number before classification. Each of the new dimensions is
a linear combination of pixel values, which form a template. CCA was first
introduced by Hotelling [25]. Given two random vectors X ¼ ðX1; . . .;XnÞ and
Y ¼ ðY1; . . .; YmÞ, and assuming a correlation among the variables, CCA finds the
linear combinations of Xi and Yj that result in the maximum correlation with each
other. Melzera et al. [37] applied CCA to face recognition and proposed appearance
models based on kernel canonical correlation analysis.

The second category of approaches use local operators instead and have
advantages such as more robustness to illumination and occlusion, less strictly
controlled conditions, and involvement of very small training sets. Examples of
operators used in this category include Gabor filters, local binary patterns (LBPs),
histogram of oriented gradients (HOGs), Weber local descriptor (WLD), and their
generalizations and variants. Gabor filter is known to be a robust directional filter
used for edge detection [36]. It has been found that simple cells in the visual cortex
of mammalian brains can be modeled by Gabor functions [18, 34]. A set of Gabor
filters parameterized by different frequencies and orientations are shown to perform
well as an image feature extraction tool. Therefore, it has been widely used in image
processing and pattern analysis applications [19, 26, 31, 33]. LBP is a particular
case of the texture spectrum model proposed by Wang et al. [50]. It was first
introduced by Ojala and Pietikinen [41, 42] for texture classification and found to
be a powerful tool. LBP was thereafter applied to face recognition as well as object
detection [1, 24]. Due to its discriminative power and computational simplicity as
well as robustness to monotonic changes of image intensity caused by illumination
variations, LBP has been expanded into several variant forms (see, e.g., [53, 54]).
HOG analysis was introduced by Dalal et al. [17] and was initially used for the
purpose of object detection. This operator is similar to other operators such as edge
orientation histograms and scale-invariant feature transform, but differs in that it is
computed on a dense grid of uniformly spaced cells and uses overlapping local
contrast normalization for improved accuracy. Chen et al. [12] introduced the WLD
operator inspired by Weber’s law—an important psychological law quantifying the
perception of change in a given stimulus [43].

Most of described methods have been developed for intra-spectral matching, to
be more specific to match visible light images. Some operators were tuned to work
with heterogeneous face images. For example, Chen et al. [14] conducted a face
recognition study in thermal IR and visible spectral bands using PCA and Faceit
G5. They showed that the performance of PCA in visible spectral band is higher
compared to the performance of PCA in thermal IR spectral band and that these
data fused at the matching score level resulted in a performance similar to the
performance of the algorithm in visible band. Li et al. [32] proposed a method to
compare face images within the NIR spectral band under different illumination
scenarios. Their face matcher involved an LBP operator to achieve illumination
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invariance and was applied to near-infrared (NIR) images acquired at a short dis-
tance. In their recent works, Akhloufi and Bendada [2] experimented with images
from database including visible, shortwave infrared (SWIR), mid-wave infrared
(MWIR), and thermal infrared images. They adopted a classic local ternary pattern
(LTP) and a new local adaptive ternary pattern (LATP) operator for feature
extraction. The work of Klare and Jain [29] employed a method based on LBP and
HOG operators, followed by a random sampling LDA algorithm to reduce the
dimensionality of feature vectors. This encoding strategy is applied to NIR and
color images for cross-spectral matching. The results are shown to outperform
Cognitec’s FaceVACS [15].

This chapter focuses on a discussion of local operators (algorithms from the
second category) for heterogeneous face recognition. The methodology for feature
extraction and heterogeneous matching adopted in this chapter does not require
training data, which justifies its importance in practice. Once local operators are
developed, they can be applied to any heterogeneous data (we particularly focus on
matching visible images to active-IR images) and do not require any estimation or
learning of parameters or retraining of the overall face recognition system.

We present and compare several feature extraction approaches applied to
heterogeneous face images. Face images (in visible spectrum and active IR) may be
first processed with a bank of Gabor filters parameterized by orientation and scale
parameters followed by an application of a bank of local operators. The operators
encode both the magnitude and phase of Gabor filtered (or non-filtered) face
images. The application of an operator to a single image results in multiple mag-
nitude and phase outputs. The outputs are mapped into a histogram representation,
which constitutes a long feature vector. Feature vectors are cross-matched by
applying a symmetric Kullback-Leibler distance. The combination of Gabor filters
and local operators offers an advantage of both the selective nature of Gabor filters
and the robustness of these operators.

In addition to known local operators such as LBP, generalized LBP (GLBP),
WLD, HOG, and ordinal measures [11], we also present a recently developed
operator named composite multi-lobe descriptor (CMLD) [9]. Inspired by the design
of ordinal measures, this new operator combines Gabor filters, LBP, GLBP, and
WLD and modifies them into multi-lobe functions with smoothed neighborhoods.

Performance of Gabor filters, LBP, GLBP, WLD, and HOG used both individu-
ally and in combinations and performance of CMLD are demonstrated on both the
Pre-TINDERS and TINDERS datasets [51]. These datasets contain color face ima-
ges, NIR and SWIR face images acquired at a distance of 1.5, 50, and 106 meters.

5.2 Heterogeneous Face Recognition

A typical system for heterogeneous face recognition can be described by three
connected modules: a preprocessing module, a feature extraction module, and a
matching module (see the block diagram in Fig. 5.1). In this work, the preprocessing
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module implements an alignment, cropping and normalization of heterogeneous face
images. The feature extraction module performs filtering, applies local operators,
and maps the outputs of local operators into a histogram representation. The
matching module applies a symmetric Kullback-Leibler distance to histogram rep-
resentations of heterogeneous face images to generate a matching score. A functional
description of each of the three modules is provided in the following subsections.

5.2.1 Preprocessing: Alignment, Cropping,
and Normalization

In this work, the preprocessing module implements image alignment, cropping, and
normalization. For alignment, positions of the eyes are used to transform the face to
a canonical representation. Geometric transformations such as rotation, scaling, and
translation are applied to each face image with the objective to project eyes to fixed
positions. Figure 5.2 a, b, d illustrates the processing steps. In our work, the anchor

Fig. 5.1 A block diagram of a typical face recognition system

(a) (b) (c)

(d) (e)

Fig. 5.2 Preprocessing of the face: a original color image, b aligned and cropped color face,
c grayscale conversion of (b), d aligned and cropped SWIR face, and e log transformation of (d)

5 Local Operators and Measures for Heterogeneous Face Recognition 95



points—the fixed positions of the eyes—are manually selected. However, this
process can be automated by means of a Haar-based detector trained on hetero-
geneous face images [49], as an example.

The aligned face images are further cropped to an area of size 120� 112 (see
Fig. 5.2b, d). After being cropped, images undergo an intensity normalization.
Color images are converted to grayscale images using a simple linear combination
of the original R, G, and B channels (see Fig. 5.2c). Active-IR images—SWIR and
NIR images—are preprocessed using a simple nonlinear transformation given by
logð1þXÞ; where X is the input image, as shown in Fig. 5.2e. The log transfor-
mation redistributes the original darker pixels over a much broader range and
compresses the range of the original brighter pixels. The transformed image is
brighter and has a better contrast than the original image, while the gray variation
(trend) of the pixels is still preserved since the transformation is monotonic.

5.2.2 Feature Extraction

Feature extraction (implemented by the second module in the block diagram) is
intended to extract an informative representation of heterogeneous face images with
the objective of successful heterogeneous face recognition. In this chapter, we focus
only on local operators. Below, we provide a brief mathematical description of
Gabor filters, LBP, generalized LBP, WLD, HOG, as well as some variants or
improvements such as Gabor ordinal measures (GOM) and composite multi-lobe
descriptor (CMLD). We move the description of the ultimate feature vector to
Sect. 5.2.3.

5.2.2.1 Gabor Filter

As recently demonstrated by Nicolo et al. [39, 40] and Chai et al. [11], a two-step
encoding of face images, where encoding with local operators is preceded by Gabor
filtering, leads to considerably improved recognition rates. Therefore, many com-
binations of operators analyzed in this chapter involve filtering with a bank of
Gabor filters as a first step. The filter bank includes 2 different scales and 8 ori-
entations resulting in a total of 16 filter responses. The mathematical description of
the filter is given as follows:

Gðz; h; sÞ ¼ k Kðh; sÞk
r2 exp

k Kðh; sÞk2kzk2
2r2

" #
eiKðh;sÞz � e�

r2
2

h i
; ð5:1Þ

whereKðh; sÞ is the wave vector and r2 is the variance of the Gaussian kernel. The
magnitude and phase of the wave vector determine the scale and orientation of the
oscillatory term and z ¼ ðx; yÞ. The wave vector can be expressed as follows:
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Kðh; sÞ ¼ Kse
i/h ; ð5:2Þ

where Ks is known as a scale parameter and /h is an orientation parameter. The
adopted parameters for the complex vector in the experiments of this chapter are set

to Ks ¼ p=2ð Þs=2 with s 2 N and /h ¼ hp=8 with h ¼ 1; 2; . . .; 8: The Gaussian
kernel has the standard deviation r ¼ p:

A normalized and preprocessed face image IðzÞ is convolved with a Gabor filter
Gðz; h; sÞ at orientation /h and scale Ks resulting in the filtered image Yðz; h; sÞ ¼
IðzÞ � Gðz; h; sÞ; where � stands for convolution.

5.2.2.2 Weber Local Descriptor

WLD consists of two joint parts: a differential excitation operator and a gradient
orientation descriptor. In this chapter, we adopt only the differential excitation
operator to encode the magnitude filter response, resulting in a robust representation
of face images.

The differences between the neighboring pixels of a central pixel are calculated
and normalized by the pixel value itself. The summation of these normalized dif-
ferences is further normalized by a monotonic function such as a tangent function.
Finally, quantization is performed to output the WLD value.

The mathematical definition of WLD used in this chapter is given as follows:

WLDl;r;NðxÞ ¼ Ql tan�1
XN
i¼1

xi � x
x

� �" #( )
; ð5:3Þ

where xi are the neighbors of x at radius r and N is the total number of neighbors
(see Fig. 5.3). Ql is a uniform quantizer with l quantization levels.

Fig. 5.3 Illustration of the neigboring pixels (N = 12) of a central pixel at different radii: the left
corresponds r = 1; the right r = 2
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5.2.2.3 Local Binary Pattern

An uniform LBP operator is described as follows:

LBPUr;NðxÞ ¼ U
XN
i¼1

Ifxi � xg2i
( )

; ð5:4Þ

where xi are the neighbors of the pixel x at radius r and N is the total number of
neighbors. U is the uniform pattern mapping and I �ð Þ is the unit step function:

IðxÞ ¼ 1; x[ 0
0; x� 0

�
ð5:5Þ

Note that within this book chapter, we use only uniform sequences. A binary
pattern is uniform, if it contains at most two bit-wise transitions from 0 to 1 or from
1 to 0, when the bit sequence is recorded circularly. For example, the sequence
011111111000 is a 12-bit uniform pattern, while the sequence 010001011111 is not
uniform. The uniform mapping UðdÞ is defined as follows:

UðdÞ ¼ d; if dB is uniform
M; otherwise

�
ð5:6Þ

where dB is the binary form of a number d and M is the total number of uniform
patterns formed using N bits. We work with N ¼ 12-bit sequences, which results in
M ¼ 134 uniform patterns.

5.2.2.4 Generalized Local Binary Pattern

A uniform GLBP operator is a generalization of the encoding method proposed in
[22] by introducing a varying threshold t rather than a fixed one. Based on our
empirical analysis, the combination of LBP applied to the magnitude response of a
Gabor filter and GLBP applied to the phase response of the same Gabor filter boosts
the cross-matching performance [39]. The uniform generalized binary operator is
defined as follows:

GLBPUr;N;tðxÞ ¼ U
XN
i¼1

Ttfxi � xg2i
( )

; ð5:7Þ

where xi is the ith neighbor of x at radius r (we set r ¼ 1; 2 in our experiments) and
N is the total number of neighbors. Uð�Þ is the uniform pattern mapping described
in the previous subsection (see Sect. 5.2.2.3).Ttð�Þ is a thresholding operator based
on threshold t. It is defined as follows:

98 Z. Cao et al.



TtðxÞ ¼ 1; xj j � t
0; xj j[ t

�
ð5:8Þ

The values for the thresholds in this chapter were evaluated experimentally and
set to t ¼ p=2.

5.2.2.5 Histogram of Oriented Gradients

Dalal and Triggs [17] were the first to introduce HOG in their work. The essential
thought behind the HOG operator is that local object appearance and shape within an
image can be described by the distribution of intensity gradients or edge directions.

An input image is computed using Gaussian smoothing followed by a derivative
mask such as the very simple 1D mask ½�1; 0; 1�. The directional derivatives can be
expressed as follows:

Gxðx; yÞ ¼ Iðxþ 1; yÞ � Iðx� 1; yÞ
Gyðx; yÞ ¼ Iðx; yþ 1Þ � Iðx; y� 1Þ; ð5:9Þ

where Iðx; yÞ is the input image. Gxðx; yÞ andGyðx; yÞ denote the derivatives along
x and y directions, respectively. Then, the magnitude and phase components of the
gradient can be calculated as follows:

Mðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxðx; yÞ2 þGyðx; yÞ2

q
aðx; yÞ ¼ tan�1 Gxðx; yÞ

Gyðx; yÞ ;
ð5:10Þ

where Mðx; yÞ and aðx; yÞ are the magnitude and phase, respectively.
The next step is spatial and orientation binning. A weighted vote is calculated at

each pixel for an edge orientation histogram channel based on the orientation of the
gradient at that pixel, and the votes are accumulated into orientation bins over local
small regions called cells (cells can be either rectangular or circular). The orien-
tation bins are evenly spaced over 0� � 180� (“unsigned” gradient) or 0� � 360�

(“signed” gradient). The vote is a function of the gradient magnitude at the pixel,
very often the magnitude itself. The descriptor vector is thereafter normalized over
non-overlapping blocks using the L1 or L2 norms, or their variants. An example of
using L2 normalization is given as follows:

v� ¼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvk22 þ e2

q
; ð5:11Þ

where v is the non-normalized descriptor vector and ε is a small constant.
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5.2.2.6 Combination of Operators

A fusion of extracted features often leads to improved recognition performance. As
shown in [38, 40], LBP and WLD applied to the magnitude of Gabor filtered
images combined with GLBP applied to the phase of Gabor filtered images yielded
a significant performance boost. Details of this fusion scheme can be found in [38,
40]. A block diagram of the fusion approach is displayed in Fig. 5.4.

5.2.2.7 Gabor Ordinal Measures

GOM is a recently developed local operator [11]. This operator combines Gabor
filters (see Sect. 5.2.2.1) with ordinal measures, a measurement level which records
the information about ordering of multiple quantities [46]. Following GOM, Chai
et al. extracted a histogram representation and applied a dimensionality reduction
by means of LDA to filtered and encoded face data.

The ordinal measure in [11] is modified using a smoothed neighborhood
described by a Gaussian smoothing function. Therefore, the ordinal measure filter
fomðzÞ can be expressed as follows:

fomðzÞ ¼ Cp

XNp

i¼1

1ffiffiffiffiffiffi
2p

p
rp;i

exp
�ðz� lp;iÞTðz� lp;iÞ

2r2
p;i

" #

� Cn

XNn

i¼1

1ffiffiffiffiffiffi
2p

p
rn;i

exp
�ðz� ln;iÞTðz� ln;iÞ

2r2
n;i

" # ð5:12Þ

where z ¼ ðx; yÞ is the location of a pixel. lp;i and rp;i denote the central position
and the scale of the ith positive lobe of a 2D Gaussian function, while ln;i and rn;i

denote that of the ith negative lobe of the same Gaussian function. Np and Nn are the
numbers of positive and negative lobes, respectively, while constant coefficients Cp

and Cn keep the balance between positive and negative lobes, i.e., CpNp ¼ CnNn:

MAGNITUDE LOCAL 
HISTOGRAM

LOCAL 
HISTOGRAM

LOCAL 
HISTOGRAM

LBP

SWLD

GLBPPHASE

BANK OF
GABOR
FILTERS    

INPUT 
IMAGE

ALIGNMENT
CROPPING

ENHANCEMENT

MATCH 
SCORE

MATCHING

Fig. 5.4 A block diagram of the fusion scheme in [38]
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5.2.2.8 Composite Multi-lobe Descriptor

In [9], a new operator named CMLD was proposed. CMLD combines Gabor filter,
WLD, LBP, and GLBP and modifies them into multi-lobe functions with smoothed
neighborhoods. The new operator encodes both magnitude and phase responses of
Gabor filters. The combining of LBP and WLD utilizes both the orientation and
intensity information of edges. The introduction of multi-lobe functions with
smoothed neighborhoods further makes the proposed operator robust against noise
and poor image quality. A block diagram of CMLD is provided in Fig. 5.5.

The multi-lobe version of LBP (referred to as MLLBP) is the same as the ordinal
measure described in (5.12) (see Sec. 5.2.2.7). An illustration of such a MLLBP
operator is provided in Fig. 5.6. The multi-lobe version of GLBP called MLGLBP
is constructed in a similar way as MLLBP except for that the unit step functionIð�Þ
in (5.5) is replaced by the thresholding function Ttð�Þ in (5.8). The multi-lobe
version of WLD (MLWLD) is a modification of the original WLD operator (see
Sec. 2.2.2 for details) and is given by:

MLWLDNðzÞ ¼ Ql tan�1
XN
i¼1

IðzÞ � f̂ ðiÞMLWLDðzÞ
IðzÞ

" #( )
; ð5:13Þ

Fig. 5.5 A block diagram of composite multi-lobe descriptor

Fig. 5.6 Examples of kernels at different orientations used in multi-lobe operators: a a di-lobe
function, b a trilobe function
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where IðzÞ is an input and z ¼ ðx; yÞ is the location of a pixel. f̂ ðiÞMLWLDðzÞ is the ith
element of the set of H�M kernel functions ffMLWLDðz; h; LÞ : h ¼ 1; 2; . . .;H;
L ¼ 2; 3; . . .;Mg, where H is the total number of orientations and M is the maxi-
mum value of total lobe number. fMLWLDðz; h; LÞ is given by

fMLWLDðz; h; LÞ ¼
XL
l¼1

Clffiffiffiffiffiffi
2p

p
rl;h;L

exp �ðz� ll;h;LÞTðz� ll;h;LÞ
2r2

l;h;L

" #
; ð5:14Þ

where ll;h;L and rl;h;L are the center and the scale of the kernel function at orien-
tation θ, and L is the total number of lobes. fClg are the coefficients to keep a
balance between the positive and negative lobes. A detailed description of MLLBP,
MLGLBP, and MLWLD can be found in [9].

5.2.3 Histogram (Feature Vector) and Matching Metric

Each encoded response (the output of each local operator) is divided into 210
non-overlapping square blocks of size 8� 8. Blocks are displayed in the form of
histograms, and the number of bins is set to be equal to the level of the encoders
mentioned in the previous section (e.g., 135 in our experiments). Then, a 135-bin
histogram of each block is formed, and histograms of the blocks are concatenated
and normalized to be treated as a probability mass function, resulting in a vector of
length 135� 210 ¼ 28;350 for each encoded response. The length of the feature
vector was selected empirically to maximize the cross-matching performance.
Vectors of all encoded responses are further concatenated, and thus, the total size of
a feature vector corresponding to an input face image is 28;350� P; where P is the
number of encoded responses. In this book chapter, P ¼ 96 for the case of Gabor
filters followed by LBP, GLBP, and WLD as well as for the case of CMLD (see
Sects. 5.2.2.6 and 5.2.2.8).

When the distance between two feature vectors (histograms in our case) is
evaluated, it is expressed as a sum of distances between all feature vector pairs.
A sum of two Kullback-Leibler distances [30] is used as a distance metric to
compare the feature vectors of heterogeneous images. For two images A and B with
the feature vectors HA and HB; respectively, the symmetric Kullback-Leibler dis-
tance is defined as follows:

DKLðA;BÞ ¼
XK
k¼1

HAðkÞ � HBðkÞð Þ logHAðkÞ
HBðkÞ ; ð5:15Þ

where K is the length of the feature vectors HA or HB.
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5.3 Datasets

In our experiments, we use two datasets Pre-TINDERS (Tactical Imager for
Night/Day Extended-Range Surveillance) and TINDERS collected by the
Advanced Technologies Group, West Virginia High Tech Consortium (WVHTC)
Foundation [35]. A summary of the datasets can be found in Table 5.1.

Pre-TINDERS is composed of 48 frontal face classes of total 576 images, at
three wavelengths—visible, 980 nm NIR, and 1550 nm SWIR. Images are acquired
at a short standoff distance of 1.5 m in a single session. Four images per class are
available in each spectral band. A 980-nm light source is used to illuminate the face
in the NIR spectral band, while a 1550-nm light source is used in the SWIR spectral
band. The original resolutions of the acquired images (see Fig. 5.7) are 640� 512

Table 5.1 Summary of the datasets

Dataset Class Total #
images

Spectrum Distance Original resolution

Pre-TINDERS 48 576 Visible
NIR
SWIR

1.5 m Visible:
1600� 1200
NIR: 640� 512
SWIR: 640� 512

TINDERS 48 1255 Visible
NIR
SWIR

50 m
106 m

Visible: 640� 480
NIR: 640� 512
SWIR: 640� 512

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5.7 Sample images: a visible, b SWIR at 1.5 m, c SWIR at 50 m, d SWIR at 106 m, e NIR at
1.5 m, f NIR at 50 m, and g NIR at 106 m
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(png format) for both NIR and SWIR images and 1600� 1200 (jpg format) for
color images.

TINDERS is composed of 48 frontal face classes each represented by visible,
NIR (980 nm) at two standoff distances (50 and 106 m), and SWIR at two standoff
distances (50 and 106 m) images. At each distance and spectrum, four or five
images per class are available. A total of 478 images with the resolution 640� 512
(png format) are available in SWIR band. A total of 489 images with the resolution
640� 512 (png format) are available in the NIR band. The visible (color) images
with the resolution 480� 640 (jpg format) are collected at a short distance and in
two sessions (3 images per session), and all of them have neutral expression,
resulting in a total of 288 images. Sample images from the Pre-TINDERS and
TINDERS datasets are shown in Fig. 5.7.

It is important to note that although the original resolution of images in
Pre-TINDERS and TINDERS is varying, we crop and normalize them to be the
same size for each experiment described below. This is done to ensure a fair
comparison.

5.4 Experiments and Results

In this section, we analyze the performance of various local operators used for
encoding heterogeneous face images. In our experiments, galleries are composed of
visible light face images, while NIR and SWIR face images are presented as probes.
We match NIR and SWIR face images collected at 1.5, 50, and 106 m to visible
light face images acquired at a distance 1.5 m.

For both SWIR and NIR spectra (at both short and long standoff distances), a
total of 11 operators (including individual operators and their combinations) are
implemented. We order and number them as follows: (1) LBP, (2) WLD, (3) GLBP,
(4) HOG, (5) Gabor filter, (6) Gabor filter followed by LBP applied to the mag-
nitude image (Gabor + LBP), (7) Gabor filter followed by WLD applied to the
magnitude image (Gabor + WLD), (8) Gabor filter followed by GLBP applied to
the phase image (Gabor + GLBP), (9) Gabor filter followed by LBP, GLBP, and
WLD (Gabor + LBP + GLBP + WLD), (10) GOM, and (11) CMLD. The
parameters in the experiments are chosen as follows. The number of orientations
and radii for Gabor filters are set to 8 and 2, respectively. The number of radii for
LBP, GLBP, and WLD is chosen as 2, and the number of neighbors around the
central pixel is set to 12. The same parameters are used in operators to encode short-
and long-range images.

The results of matching are displayed in the form of receiver operating char-
acteristic (ROC) curves. We plot genuine accept rate (GAR) versus false accept rate
(FAR). Summaries of equal error rates (EERs), d-prime values, and GARs at the
FAR set to 0.1 and 0.001 are provided in tables.
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5.4.1 Matching SWIR Probes Against Visible Gallery

Our first experiment involves matching SWIR face images to visible face images.
The heterogeneous images are encoded using the eleven individual or composite
operators as described earlier in this section. The performance of the individual
encoders can be treated as benchmarks. The results of matching parameterized by
different standoff distances are shown in Figs. 5.8, 5.9, and 5.10. In these experi-
ments, visible light images form the gallery set. All SWIR images are used as
probes.
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Fig. 5.8 ROC curves: matching SWIR probes at 1.5 m to visible gallery
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Fig. 5.9 ROC curves: matching SWIR probes at 50 m to visible gallery
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5.4.1.1 Short Standoff Distance

For the case of the short standoff distance (pre-TINDERS dataset), the performance
of single operators such as HOG, LBP, WLD, GLBP, and Gabor filters is inferior to
the performance of the composite operators where Gabor filters are followed by
LBP, WLD, and GLBP. It is also inferior to the performance of each CMLD and
GOM, the composite multi-lobe operators. Within the group of single operators,
HOG outperforms the other four operators closely followed by LBP and then Gabor
filters. WLD appears to be less suitable for encoding heterogeneous face images in
the framework of the cross-spectral matching.

Within the group of composite operators, the top five, following closely toge-
ther, are CMLD, Gabor + LBP + GLBP + WLD, GOM, Gabor + LBP, and
Gabor + WLD. Gabor + GLBP performs slightly inferior to the top three. Table 5.2
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Fig. 5.10 ROC curves: matching SWIR probes at 106 m to visible gallery

Table 5.2 EERs and GAR values: matching SWIR probes at 1.5 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 15.89 0.39 41.40 0.40

LBP 70.70 29.56 20.61 1.66

GLBP 39.71 2.60 33.46 0.98

Gabor 54.04 14.71 27.35 1.24

HOG 80.47 32.55 15.36 1.86

Gabor + WLD 94.14 71.88 7.68 2.74

Gabor + LBP 97.27 75 4.82 3.09

Gabor + GLBP 89.19 53.39 10.68 2.35

Gabor + WLD + LBP + GLBP 99.09 83.59 3.13 3.24

GOM 98.18 78.78 3.64 3.18

CMLD 99.09 83.72 3.12 3.29
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presents a summary of EERs, d-prime values, and GAR values at FAR set to 0.1
and 0.001 values.

5.4.1.2 Long Standoff Distance

SWIR images at longer standoff distances (50 and 106 m in the case of TINDERS
dataset) experience some loss of quality due to air turbulence, insufficient illumi-
nation, and optical effects during data acquisition. This immediately reflects on the
values of matching scores. Figures 5.9 and 5.10 display the results of cross-spectral
comparison parameterized by 50 and 106 m standoff distances, respectively.
Gallery images are retained from the previous session. Note that in both figures,
Gabor + LBP, Gabor + WLD, CMLD, and GOM display a very similar perfor-
mance. They are closely followed by Gabor + GLBP. The top performance in both
cases is demonstrated by Gabor + LBP + GLBP + WLD. Once again, composite
operators outperform single operators, which was anticipated. However, at longer
standoff distances, matching performance of all the operators and their combina-
tions but Gabor + LBP + GLBP + WLD drops nearly two times for the case of 50 m
and 2.5 times for the case of 106 m. EERs, d-prime values, and GARs at FAR set to
0.1 and 0.001 are summarized in Tables 5.3 and 5.4.

5.4.2 Matching NIR Probes Against Visible Gallery

In the second experiment, NIR face images (probes) are matched to short-range
visible face images (gallery). The results of matching parameterized by the standoff
distances of 1.5, 50, and 106 m are shown in Figs. 5.11, 5.12, and 5.13,
respectively.

Table 5.3 EERs and GAR values: matching SWIR probes at 50 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 11.55 0.21 49.59 0.045

LBP 57.29 13.45 25.28 1.24

GLBP 31.86 3.71 37.07 0.65

Gabor 43.35 8.33 34.97 0.82

HOG 57.42 7.56 25.42 1.25

Gabor + WLD 85.57 40.90 12.74 2.19

Gabor + LBP 85.01 46.15 12.89 2.25

Gabor + GLBP 70.10 30.18 20.51 1.56

Gabor + WLD + LBP + GLBP 91.88 62.11 8.90 2.57
GOM 86.41 39.98 11.97 2.27

CMLD 86.76 45.73 12.03 2.31
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5.4.2.1 Short Standoff Distance

Among the group of single operators, LBP and HOG outperform the other oper-
ators, followed by GLBP and Gabor. Similar to the case of SWIR probe images,
WLD operator performs poorly. All composite operators demonstrate a relatively
high performance with ROC curves closely following one another. CMLD appears
to outperform the other four composite operators. It is closely followed by GOM
and then by Gabor + LBP + GLBP + WLD. Table 5.5 summarizes the values of
EERs, d-primes, and GARs at FAR equal to 0.1 and 0.001.

Table 5.4 EERs and GAR values: matching SWIR probes at 106 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 11.39 0.10 48.69 0.0038

LBP 49.79 13.19 31.11 0.94

GLBP 29.31 0.49 36.49 0.57

Gabor 52.57 4.31 28.67 1.09

HOG 41.04 4.44 33.68 0.78

Gabor + WLD 77.57 29.31 16.96 1.83

Gabor + LBP 80.00 31.81 15.83 1.99

Gabor + GLBP 53.06 18.19 32.65 0.88

Gabor + WLD + LBP + GLBP 82.50 44.79 14.17 2.00
GOM 80.07 32.78 14.78 2.02

CMLD 80.28 35.97 15.76 2.04
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Fig. 5.11 The results of cross-matching short-range (1.5 m) NIR probes and visible gallery
images
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5.4.2.2 Long Standoff Distance

Long-range NIR probes display a cardinally different performance. As can be seen
from Fig. 5.7, NIR images at 106 m have much lower contrast and overall quality
compared to NIR images at 50 m. This difference in image quality immediately
reflects on the matching performance of the two sets of probes (50 m probes and
106 m probes). This also reflects on the interplay among the 11 operators.
Figures 5.12 and 5.13 display the cross-matching results for the two standoff dis-
tances (50 m and 106 m, respectively). Comparing the composite operators in terms
of their performance, NIR at 50 m shows that Gabor + LBP + GLBP +WLD, CMLD,
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Fig. 5.12 The results of cross-matching long-range (50 m) NIR probes and visible gallery images
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Fig. 5.13 The results of cross-matching short-range (106 m) NIR probes and visible gallery
images
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and GOM perform equally well. Their performance is very close to the performance
they demonstrate at 1.5 m. Note it is only slightly degraded. These three ROCs are
closely followed by the ROCs of Gabor + GLBP and Gabor + WLD. At 106 m, NIR
probes do not perform as well. In fact, the performance of NIR images encoded with
composite operators drops at least three times compared to the performance of the
same operators applied to NIR at 50 m. Figure 5.13 indicates that GOM followed by
CMLD, Gabor + LBP + GLBP +WLD, and Gabor + GLBP, where GLBP is applied
to phase images, seems to be more robust to degraded image quality in NIR spectrum
compared to other composite operators. Among single operators, Gabor and HOG
still outperform other single operators for both standoff distances. Tables 5.6 and 5.7
present a summary of EERs, d-primes, and GARs at FAR set to 0.1 and 0.001 for the
case of 50 m and 106 m standoff distances, respectively.

Table 5.5 EERs and GAR values: matching NIR probes at 1.5 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 29.82 2.47 44.27 0.44

LBP 82.03 32.81 14.36 2.12

GLBP 66.54 6.38 20.57 1.467

Gabor 61.46 21.09 23.57 1.43

HOG 65.23 23.96 22.03 1.68

Gabor + WLD 89.19 71.098 10.54 2.38

Gabor + LBP 86.98 56.77 11.82 2.29

Gabor + GLBP 86.20 61.595 12.23 2.29

Gabor + WLD + LBP + GLBP 91.93 68.88 8.73 2.48

GOM 90.89 73.31 9.27 2.59

CMLD 92.71 77.21 7.68 2.72

Table 5.6 EERs and GAR values: matching NIR probes at 50 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 5.39 0.1 48.12 0.072

LBP 34.17 7.70 31.74 0.99

GLBP 11.06 0.1 49.01 0.12

Gabor 68.98 17.23 19.98 1.66

HOG 44.68 7.35 29.98 1.16

Gabor + WLD 89.85 53.011 10.07 2.40

Gabor + LBP 86.13 56.79 12.54 2.33

Gabor + GLBP 92.02 69.89 8.66 2.73

Gabor + WLD + LBP + GLBP 92.23 68.21 8.71 2.66
GOM 90.06 64.29 10.00 2.65

CMLD 90.76 67.51 9.52 2.65
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5.5 Brief Analysis

1. Combining Gabor filter bank with other local operators results in considerably
improved performance compared to the performance of individual local oper-
ators. This holds both for short and long standoff distances and for the both
types of cross-spectral matching performed in this chapter.

2. As anticipated, quality of active IR probes affects matching performance. In this
chapter, quality of probes is a function of a standoff distance. We use an
adaptive sharpness measure [51] to calculate the image quality of the probes in
both SWIR and NIR spectra at all the standoff distances (see Table 5.8 for the
values). From the results, the matching performance of SWIR data degrades
with standoff distance faster than the matching performance of NIR images.
However, the overall sharpness measure values (and thus the matching per-
formance) of SWIR images is higher compared to the sharpness measure values
(and the matching performance) of NIR images.

3. Among the five individual operators, HOG outperforms other operators followed
by LBP and Gabor for the case of 1.5-m standoff distance and SWIR probes. For
the case of 50-m standoff distance and SWIR probes, LBP and HOG perform
nearly equally well followed by Gabor. For the case of 106 m and SWIR probes,
LBP, and Gabor, each outperforms HOG. This leads to a conclusion that LBP
and Gabor are more robust to data acquisition noise compared to HOG.

Table 5.7 EERs and GAR values: matching NIR probes at 106 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 7.91 0.1 49.40 0.067

LBP 16.95 3.18 43.30 0.45

GLBP 10.52 0.1 50.21 0.038

Gabor 29.66 2.61 36.87 0.72

HOG 21.12 0.64 42.87 0.52

Gabor + WLD 45.97 5.23 30.48 1.05

Gabor + LBP 49.72 7.84 28.43 1.10

Gabor + GLBP 60.88 13.14 23.16 1.44

Gabor + WLD + LBP + GLBP 64.48 13.28 23.24 1.49

GOM 67.30 15.53 21.65 1.58
CMLD 64.12 14.62 22.55 1.51

Table 5.8 Sharpness measure of the probes in SWIR and NIR at different standoff distances

Statistics of
sharpness measure

SWIR at
1.5 m

SWIR at
50 m

SWIR at
106 m

NIR at
1.5 m

NIR at
50 m

NIR at
106 m

Mean 0.5835 0.5112 0.4391 0.4390 0.3910 0.3741

Standard deviation 0.0707 0.0732 0.0730 0.0595 0.0461 0.0642
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4. For the case of NIR probes and 1.5-m standoff distance, LBP and HOG perform
equally well. Their ROC curves very closely following one another. For the case
of NIR probes and both 50 m and 106 m standoff distances, Gabor filters
substantially outperform HOG and LBP, which continue to show very similar
performance. Thus, poor quality NIR images should be encoded with Gabor
filters for robust cross-matching performance.

5. All composite operators, where Gabor filters are followed by the application of
other local operators, perform equally well in nearly all cases of standoff dis-
tances and the two types of active-IR probes. Performance of the combination of
Gabor + GLBP is slightly inferior to the other combinations in every case
besides the case of NIR probes and 106-m standoff distance. This is the case
where Gabor + GLBP applied to the phase of face images demonstrated superior
performance compared to other operators. Thus, Gabor + GLBP appear to be
very robust to severe image degradation for the case of NIR probes.

6. Multi-lobe operators, CMLD and GOM, and the composite operator
Gabor + LBP + GLBP + WLD display the top performance in all three cases of
standoff distance for both types of cross-spectral matching.

7. The improved performance of the composite operators comes at a cost of
increased complexity. For a single operator, the feature vector (histogram) is
formed from 2 outputs of the operator. For a composite operator, the feature
vector is 16 times longer due to 16 outputs of Gabor filters each encoded with a
local operator. The involvement of each additional local operator (applied to
outputs of Gabor filters) doubles the length of the feature vector. Although the
complexity of the feature vector grows, most of the operations can be imple-
mented in parallel, which allows involvement of devices for parallel computing.

5.6 Summary

This chapter presented a short overview of recent advances in the field of hetero-
geneous face recognition, emphasizing the topic of local operators developed for
matching active-IR face probes to a gallery composed of high-quality visible face
images. A brief description of each individual and composite operator (11 in total)
was provided. The list of individual operators included LBP, GLBP, WLD, HOG,
and Gabor filters. Composite operators included Gabor + LBP, Gabor + GLBP,
Gabor + WLD, Gabor + LBP + GLBP + WLD, GOM, and CMLD. We considered
a very specific framework for cross-matching heterogeneous face images, assuming
that each image is aligned, cropped, and enhanced at first. It was then filtered and
encoded using local operators. The outputs of local operators were converted into a
histogram representation and compared against histogram representations of images
in the gallery by means of a symmetric Kullback-Leibler distance. This
cross-matching approach does not require any training or learning, and it is shown
to be robust when applied to a variety of heterogeneous datasets.
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We presented the results of matching SWIR and NIR facial images to visible
facial images. Both short (1.5 m) and long (50 and 106 m) standoff distances were
considered. The results were documented in figures and tables. We presented ROC
curves as well as GARs at two specific levels of FAR, EERs, and d-prime values.
The combination of Gabor filters followed by other local operators substantially
outperformed the original LBP and the other individual operators. As the standoff
distance increased, the matching performance of all the operators dropped. This
drop was attributed to a relatively low quality of imagery at long standoff distances
(SWIR vs. visible and NIR vs. visible).
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