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Preface

Within the last two decades, we have noticed improvement in the performance of
face recognition (FR) systems in controlled conditions, characterized by suitable
lighting and favorable acquisition distances. However, over the years, the tech-
nology has steadily progressed to tackling increasingly more realistic conditions
rather than adequately handling only well-controlled imagery. Most related research
emphasizes the maintenance of high recognition performance, while coping with
increased levels of image variability. Among the most insidious problems of
visible-spectrum-based face recognition algorithms are (a) the variation in level and
nature of illumination, (b) the fact that as the level of illumination decreases, the
signal-to-noise ratio rises quickly, and thus, automatic processing and recognition
become very difficult, and (c) dealing with degraded face images acquired at
operational conditions, including nighttime and long stand-off distances.

In order to address these issues, recent research has moved into the use of
infrared (IR) imagery, namely intensified near infrared (NIR), shortwave IR
(SWIR), middle wave IR (MWIR), and long wave IR (LWIR). Hence, in recent
years, we see an increase of face recognition applications, especially those related to
security and identity verification in the digital world, where different spectral bands
are used. Certain FR applications are focused on same-spectral band face matching
(i.e., matching either visible against visible, or IR against IR face images), while
other applications are focused on cross-spectral band face (i.e., matching IR face
images against their visible counterparts). In fact, what we notice, especially over
the last decade, is a significant progress in the area of face recognition across the
imaging spectrum, owing to advances in imaging sensors and optics, and the fact
that the cost of IR cameras has dropped considerably. For example, the cost of some
good quality IR imaging sensors is now comparable to high-end, digital, single-lens
reflex (DSLR) cameras (visible band). In addition, we see significant advances in
computer vision techniques used for the preprocessing of multi-band face (plus
ocular and/or iris) images, including techniques related to the modeling and analysis
of such images. Therefore, the problem of designing and developing reliable face
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recognition systems across the imaging spectrum continues to offer a great chal-
lenge to computer vision and pattern recognition researchers.

There are two primary motivations that this book was based upon. The first
motivation is the need for the development of efficient multispectral FR or
FR-related algorithms and systems that can be reliably used in operational envi-
ronments. The second motivation is the recent increased interest in research on face
recognition-related technologies and the recent advances in computer vision, pat-
tern recognition, and automated analysis, when using images of different biometric
modalities, including face, periocular, and iris, from various parts of the imaging
spectrum. The aforementioned motivations were identified when designing the
original book structure and, as a result, helped in finding extraordinary researchers
in the greater field of face recognition that could contribute with their book chapters.

The book is intended for biometrics researchers, including practitioners and
students who either work or plan to become familiar with understanding and pro-
cessing single-spectral, multispectral, or hyperspectral face images—when captured
under controlled or uncontrolled environments, using a variety of imaging sensors,
ranging from the state-of-the-art visible and infrared imaging sensors, to the usage
of RGB-D and mobile phone image sensors.

The book provides various references for image processing, computer vision,
biometrics, and security-focused researchers. The material provides information on
current technology including discussion on research areas related to the spectral
imaging of human skin, data collection activities, processing and analysis of
multispectral and hyperspectral face and iris images, processing of mug shots from
ID documents, mobile- and 3D-based face recognition, spoofing attacks, image
alterations, score normalization techniques, and multispectral ocular biometrics.

More specifically, the book consists of 15 chapters, covering the aforementioned
material, and discusses different components that can affect operational face
recognition systems. Each chapter focuses on a specific topic, discussing back-
ground information, offering a literature review, presenting methodological
approaches, experiments, and results, and, finally, concluding by pointing out
challenges and future directions.

Chapter 1 provides an introduction to the interaction of energy in the electro-
magnetic spectrum with human tissue and other materials, the fundamentals of
sensors and data collection, common analysis techniques, and the interpretation of
results for decision making. The basic information provided in this chapter can be
utilized for a wide range of applications where spectral imaging may be adopted,
including face recognition.

Chapters 2 and 3 cover topics related to data collection of multispectral and
hyperspectral face images. Chapter 2 details “best practice” collection methodolo-
gies developed to compile large-scale datasets of both visible and SWIR face ima-
ges. All aspects of data collection are provided, from IRB preparation through data
post-processing, along with instrumentation layouts for indoor and outdoor live
capture setups. Details of past collections performed at West Virginia University to
compile multispectral biometric datasets, such as age, gender, and ethnicity of the
subject populations, are included. Insight is also given on the impact of collection
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parameters on the general quality of images collected, as well as on how these
parameters impact design decisions at the level of algorithmic development.

Chapter 3 discusses that spectral imaging offers a means to overcome several
major challenges specific to current FR systems. The authors review four publically
available hyperspectral face databases (CMU, PolyU-HSFD, IRIS-M, and Stanford)
toward providing information on the key points of each of the considered databases.
In addition, a new hyperspectral face database is introduced (IRIS-HFD-2014) that
can serve as a benchmark for statistically evaluating the performance of current and
future hyperspectral FR algorithms.

Chapters 4–7 cover topics related to challenging face-based identification
technologies when processing visible and different infrared face images. Chapter 4
discusses two thermal-to-visible FR algorithms, as well as the preprocessing and
feature extraction techniques used to correlate the signatures in the feature sub-
space. The chapter presents recognition results on an extensive multimodal face
dataset containing facial imagery acquired under different experimental conditions.
Furthermore, it discusses key findings and implications for MWIR-to-visible and
LWIR-to-visible FR. Finally, it presents a novel imaging technique for acquiring an
unprecedented level of facial detail in thermal images, polarimetric LWIR, along
with a framework for performing cross-spectral face recognition.

Chapter 6 introduces a methodology to explore the sensitivities of a facial
recognition imaging system to blur, noise, and turbulence effects. Using a
government-owned and an open-source facial recognition algorithm, system per-
formance is evaluated under different optical blurs, sensor noises, and turbulence
conditions. The ramifications of these results on the design of long-range facial
recognition systems are also discussed.

Chapter 7 provides a thorough understanding of challenges in thermal face
detection, along with an experimental evaluation of traditional approaches. Further,
the authors adapt the AdaBoost face detector to yield improved performance on
face detection in thermal images in both indoor and outdoor environments. They
also propose a region of interest selection approach, designed specifically for aiding
occluded or disguised thermal face detection. The results suggest that while thermal
face detection in semi-controlled environments is relatively easy, occlusion and
disguise are challenges that require further attention.

Chapter 8 provides an overview of spoofing attacks and spoofing countermea-
sures for FR systems, with a focus on visual spectrum systems in 2D and 3D, as
well as near-infrared (NIR) and multispectral systems. The authors cover the
existing types of spoofing attacks and report on their success to bypass several
state-of-the-art FR systems. Experimental results show that spoofing attacks present
a significant security risk for FR systems in any part of the spectrum. The risk is
partially reduced when using multispectral systems. Finally, the authors provide a
systematic overview of the existing anti-spoofing techniques, with an analysis
of their advantages and limitations and prospective for future work.

Preface vii

http://dx.doi.org/10.1007/978-3-319-28501-6_3
http://dx.doi.org/10.1007/978-3-319-28501-6_4
http://dx.doi.org/10.1007/978-3-319-28501-6_7
http://dx.doi.org/10.1007/978-3-319-28501-6_4
http://dx.doi.org/10.1007/978-3-319-28501-6_6
http://dx.doi.org/10.1007/978-3-319-28501-6_7
http://dx.doi.org/10.1007/978-3-319-28501-6_8


Chapter 9 discuss that when face images are captured under desirable conditions,
some intentional or unintentional face image alterations can significantly affect the
recognition performance. In particular, in scenarios where the user template is
created from printed photographs rather than from images acquired live during
enrollment (e.g., identity documents), digital image alterations can severely affect
the recognition results. In this chapter, the authors analyze both the effects of such
alterations on face recognition algorithms and the human capabilities to deal with
altered images.

Chapter 10 starts by discussing the factors impacting the quality of degraded
face photographs from ID documents. These include mainly hairstyle, pose and
expression variations, and lamination and security watermarks. Then, the authors
focus on investigating a set of methodological approaches in order to be able to
overcome most of the aforementioned limitations and achieve a high identification
rate. They incorporate a combination of preprocessing and heterogeneous face
matching techniques, where comparisons are made between the original (degraded)
photograph, the restored photograph, and the high-quality photograph (mug shots).
The proposed restoration approaches discussed in this chapter can be directly
applied to operational scenarios that include border-crossing stations and various
transit centers.

Chapter 11 deals with FR in mobile and other challenging environments, where
both still images and video sequences are examined. The authors provide an
experimental study of one commercial off-the-shelf and four recent open-source FR
algorithms. Experiments are performed on several freely available challenging still
image and video face databases, including one mobile database, always following
the evaluation protocols that are attached to the databases. The authors supply an
easily extensible open-source toolbox to rerun all the experiments, which includes
the modeling techniques, the evaluation protocols, and the metrics used in the
experiments, and provide a detailed description on how to regenerate the results.

Chapter 12 discusses existing RGB-D face recognition algorithms and presents a
state-of-the-art algorithm based on extracting discriminatory features using entropy
and saliency from RGB-D images. The authors also present an overview of
available RGB-D face datasets along with the experimental results and analysis to
understand the various facets of RGB-D face recognition.

Chapter 13 highlights both the advantages and disadvantages of 2D- and
3D-based face recognition algorithms. It also explores the advantages of blending
2D and 3D databased techniques, also proposing a novel approach for a fast and
robust matching. Several experimental results, obtained from publicly available
datasets, currently at the state of the art, demonstrate the effectiveness of the pro-
posed approach.

Chapter 14 first introduces the reader to the concept of score normalization.
Then, it discusses why methods of normalizing matching scores are an effective and
efficient way of exploiting score distributions and when such methods are expected
to work. The first section highlights the importance of normalizing matching scores
and offers intuitive examples to demonstrate how variations between different
biometric samples, modality components, and subjects degrade recognition
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performance. It also answers the question of why score normalization effectively
utilizes score distributions. The next three sections offer a review of score nor-
malization methods developed to address each type of variation. The chapter
concludes with a discussion of why such methods have not gained popularity in the
research community and answers the question of when and how one should use
score normalization.

Chapter 15 discusses the use of multispectral imaging to perform bimodal ocular
recognition, where the eye region of the face is used for recognizing individuals. In
particular, it explores the possibility of utilizing the patterns evident in the sclera,
along with the iris, in order to improve the robustness of iris recognition systems.
The work discusses the assembly of a multispectral eye image collection to study
the impact of intra-class variation on sclera recognition performance. Then, the
authors discuss the design and development of an automatic sclera, iris, and pupil
segmentation algorithm, before, finally, they demonstrate the improvement of iris
recognition performance by fusing the iris and scleral patterns in non-frontal images
of the eye.
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Chapter 1
An Overview of Spectral Imaging
of Human Skin Toward Face Recognition

David W. Allen

Abstract Spectral imaging is a form of remote sensing that provides a means of
collecting information from surroundings without physical contact. Differences in
spectral reflectance over the electromagnetic spectrum allow for the detection,
classification, or quantification of objects in a scene. The development of this field
has largely benefited from Earth observing airborne and spaceborne programs.
Information gained from spectral imaging has been recognized as making key
contributions from the regional to the global scale. The burgeoning market of
compact hyperspectral sensors has opened new opportunities, at smaller spatial
scales, in a large number of applications such as medical, environmental, security,
and industrial processes. The market is expected to continue to evolve and result in
advancements in sensor size, performance, and cost. In order to employ spectral
imaging for a specific task, it is critical to have a fundamental understanding of the
phenomenology of the subject of interest, the imaging sensor, image processing,
and interpretation of the results. Spectral imaging of human tissue has the strong
foundation of a well-known combination of components, e.g., hemoglobin, mela-
nin, and water that make skin distinct from most backgrounds. These components
are heterogeneously distributed and vary across the skin of individuals and between
individuals. The spatial component of spectral imaging provides a basis for making
spectral distinctions of these differences. This chapter provides an introduction to
the interaction of energy in the electromagnetic spectrum with human tissue and
other materials, the fundamentals of sensors and data collection, common analysis
techniques, and the interpretation of results for decision making. The basic infor-
mation provided in this chapter can be utilized for a wide range of applications
where spectral imaging may be adopted including face recognition.

D.W. Allen (&)
National Institute of Standards and Technology, Gaithersburg, MD 20899-8442, USA
e-mail: dwallen@nist.gov

© Springer International Publishing Switzerland (outside the USA) 2016
T. Bourlai (ed.), Face Recognition Across the Imaging Spectrum,
DOI 10.1007/978-3-319-28501-6_1
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1.1 Introduction

Spectral imaging has greatly advanced our ability to detect and identify objects on
the ground from remote sensing platforms. The spectral information provided can
be significantly greater than what the human visual system is capable of observing.
The potential for spectral imaging to enhance facial recognition may manifest itself
in a variety of ways that are complementary to the methods that have been used
with standard color or monochrome cameras. For example, spectral imaging can be
used to reliably detect human skin and segment the face from the background
environment for further processing. It can be used to enhance spatial heterogeneities
that are not clearly visible, such as patterns of vascularity unique to each individual.
The spectral signature of an individual’s face may also provide an additional
spectral vector to be used in conjunction with the spatial vectors (including texture
and topology) to improve recognition accuracy.

Remote sensing of the Earth has been performed by spectral imaging satellites
orbiting the Earth for over 40 years [1]. Spectral imaging has provided a synoptic
view of the Earth, allowing for the assessment of land-based vegetation, exposed
soils and minerals, the oceans, and human activity. Over the decades, spectral
imaging technology incorporated into sensors has advanced significantly and
continues to provide vital information needed to understand the Earth’s land, ocean,
and atmospheric processes. In more recent years, the same principles used in the
design of the spectral imagers and the processing of the imagery have migrated to
compact and portable sensors that are allowing the potential of spectral imaging to
be explored in a wide range of applications. Examples include medical imaging,
forensics, agriculture, manufacturing, and defense. Much of the work has focused
on exploring the potential of spectral imaging as a first step toward full integration
into routine operations.

Automated facial recognition is considered a significant aid in the efforts to
utilize technology to improve security [2]. Facial recognition software that uses
two-dimensional (2D) images has advanced significantly. Researchers in the NIST
Information Technology Laboratory (ITL) have developed standardized test
methods that allow for the assessment of facial recognition algorithm performance
[3, 4]. These methods provide a reliable way to evaluate the accuracy of different
facial recognition algorithms against known data sets of images (one to many). The
evaluations have primarily focused on posed images such as mugshots, visas,
passport photographs, and drivers’ licenses. The accuracy of the algorithms has
increased as much as 30 % in recent years [4]. Unposed images such as those from
webcams or live action shots are a significantly greater challenge using the same
metrics.

While facial recognition technology has matured to be used as a reliable and
routinely applied tool, there is much room for improvement. Some factors that are
reducing performance are sensitivity to variable illumination geometries, changes in
facial expression, and nighttime surveillance. Spectral imaging is one of several
modalities (e.g., 3D imaging) that may enhance the performance of facial
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recognition systems. Spectral imaging can provide additional information both
within the visible spectrum and outside of the visible spectrum, including the
ultraviolet and infrared. This chapter is intended to introduce the topic of spectral
imaging. It also provides background information relevant to facial recognition that
will aid in providing context to the subject.

A significant aid to developing the potential application of spectral imaging for
use in facial recognition is the establishment of spectral image databases of faces.
While the collection of facial images using spectral imaging is relatively straight-
forward, the best way to exploit this additional source of information is not.
Spectral signature and image databases provide a means to evaluate new algorithms
that include the spectral dimension. Several spectral face databases have been
established [5–8]. These are reviewed in detail in the “Multispectral/Hyperspectral
Face Databases” chapter of this book [9]. A caveat to the use of spectrally based
facial databases is the nonstandardized methods used in the data collection. The
performance specifications of the spectral imager used along with the methods
employed in the collection may vary significantly from one to another. Many of
these details are included in [9].

There is a relative paucity of studies that have explored the potential of spectral
imaging as applied to face recognition. The studies that have been conducted
provide significant insight into the phenomenology. Pan et al. [10] demonstrated a
possible improvement in accuracy over conventional (non-spectral) methods. The
spectral information is thought to provide an invariant signature that is not subject
to facial expression or variations over weeks in time between measurements. What
portion of the spectrum, or which bands in particular, is a subject of investigation.
Di [11] found selecting optimized bands, as opposed to using the entire broad
spectrum provided by a hyperspectral imager, yielded better results. Uzair [12]
questions the ability to rely on the spectral signature of skin alone as a reliable
biometric. In merging the spatial and spectral information for maximum benefit,
there is a need to develop algorithms that use and combine the information. The
spectral–spatial analysis of hyperspectral imagery is relatively new. One recent
example of a spectral–spatial analysis for face recognition is provided by Uzair
[13]. This study tested a spectral–spatial algorithm on several spectral databases and
compared it to conventional face recognition methods. The results indicate there is a
potential to significantly improve the current state of the art by including the
spectral dimension in the analysis.

Imaging in regions of the spectrum outside the range of human vision has also
yielded benefits that may enhance or even supplant imagers that operate in the
visible spectral region. Rosario [14] conducted a field experiment using longwave
infrared (LWIR) hyperspectral imaging (HSI). The work suggests the ability to
reliably detect faces in an open environment at significant distances. Other studies
have investigated the use of the midwave infrared (MWIR) and the LWIR
for face recognition [15–18]. These spectral ranges were found to be not only
capable of providing accurate face recognition but also improved performance.
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One explanation is the avoidance of the apparent variability imposed by shade and
shadow more common to the visible spectral range. They also provide the
advantage of nighttime surveillance.

1.2 Fundamentals of Spectral Imaging

Spectral imaging is a generic term that refers to the use of imaging devices that
collect light over several well-defined spectral bands—many of which are beyond
the range of human vision. Terms that are synonymous or more specific include
imaging spectroscopy, chemical imaging, multispectral imaging (MSI), and HSI.
This chapter uses the term spectral imaging to include both multispectral and HSI.
Multispectral imaging is generally considered acquisition of tens of spectral bands,
whereas HSI is the acquisition of hundreds of narrow, contiguous spectral bands.
Spectral imaging depends on light that is reflected off an object over some distance.
It should be noted that light is a term that is commonly used for electromagnetic
energy, though technically it is defined to mean the visible portion of the spectrum
(having wavelengths ranging from 380–780 nm) [19]. Here, the term light is used in
the general sense to also include regions outside of the visible spectral region. When
light from a source, whether it be the Sun or a lamp, is incident on a surface, it can be
transmitted, absorbed, reflected, or scattered (Fig. 1.1). Additionally, all materials
above absolute zero emit energy at wavelengths proportional to the temperature.

These interactions are wavelength dependent and indicative of the optical
properties of a given material. The collective series of reflectance values plotted
versus wavelengths is called a spectrum. A spectrum specific to one substance is
referred to as a spectral signature. Spectral signatures are analogous to fingerprints
when depended upon for being uniquely attributed to a substance.

The reflected light observed by an imager is the net quantity that is accepted by
the aperture of the imager over some finite geometry. The reflected light from the

Fig. 1.1 A diagram of the
interaction of light with
matter
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surface can be distributed over a range of angles from rough or scattering surfaces
and is referred to as diffuse reflectance, or it can be reflected in parallel rays from a
polished surface such as a mirror at an equal but opposite angle from the incident
source, referred to as specular reflectance. The quantification of this distribution is
referred to as a bidirectional reflectance distribution function (BRDF) [20]. Most
real-world materials, such as human skin, have a combination of these properties
and are in between these two extremes [21]. While polarization of reflected light is
an important property, it is typically treated as a second-order effect and is an
advanced topic in spectral imaging.

An important property of light is the energy of the photon. The energy of a
photon is inversely proportional to wavelength. The relationship between the
energy, E, and the wavelength, λ, is

E ¼ hc
k

E energy,
h Planck’s constant,
c speed of light, and
λ wavelength.

The range of wavelengths of light is described as the electromagnetic spectrum.
The wavelength of light is inversely proportional to the frequency and is described
in Fig. 1.2.

For convenience, the electromagnetic spectrum is divided up into regions that
relate to specific applications based on the phenomenology. Most all of spectral
imaging occur from the UV (>250 nm) to the LWIR (<14 µm). Common length units
used to denote thewavelength over this region are the nanometer (nm) andmicrometer
(µm). The distinction is sometimes made between the reflective region and the
emissive region, where the reflective region depends on the Sun as the source and the
emissive region self-emits electromagnetic energy as a radiator. While there is some
overlap between these regions, the crossover is located at approximately 4
µm. Although spectral imaging methods can make use of both the reflective and
emissive spectral regions, this chapter will focus on the reflective spectral region.
However, many of the principles described in this chapter are applicable to the entire
region (Fig. 1.3).

Fig. 1.2 The electromagnetic spectrum over a broad range (Source NASA)
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1.3 Spectral Imaging Sensors

Spectral imagers provide two spatial dimensions and one spectral dimension
forming the basis for what is referred to as a data cube. There is a range of possible
instruments designed to collect data cubes, many of which share design elements
used in remote sensing from airborne and spaceborne platforms. Those systems
commonly use either a point-scanning (also referred to as whisk broom) or a
line-scanning (push broom) design. A whisk broom collects spectra at a single
spatial element which is translated across the x dimension (also known as
cross-track), while the sensor is moving in the forward, y direction (along-track
direction). A push broom sensor collects spectra across the entire x dimension
simultaneously as the sensor moves forward in the y dimension (Fig. 1.4). Spectral
imagers typically utilize a prism or grating to disperse the light into separate
spectral bands. In general, both of these designs require some movement of either
the sensor or the object being imaged to acquire the second spatial dimension.

In the full image approach, i.e., wavelength scan in Fig. 1.5, both spatial
dimensions are collected simultaneously. Each full image is collected as a function
of wavelengths. The distinct difference with this third method eliminates the
requirement of motion by the sensor relative to the object. A system of this nature is
often referred to as a staring system, which may be based on a liquid crystal tunable
filter (LCTF), acousto-optical tunable filter (AOTF), or Fourier transform imaging
spectrometers (which utilize interference of light waves), as examples.

All of these systems collect the data as a function of time. If the time to acquire
the images is longer than the object being observed is stationary, spatial and spectral
registration issues may lead to significant artifacts. While not as common, a system
that collects the full data cube simultaneously can provide a significant advantage.
In this approach, all of the spectral and spatial information is collected at a single

Fig. 1.3 An illustration of the
spectral peak and distribution
for common sources of optical
energy, the Sun, a candle, and
the Earth (Source NASA)
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point in time. These systems are referred to as snapshot hyperspectral imagers. This
is a very desirable trait when considering actual use in environments where the
scene is dynamic; e.g., human activity. Hagen et al. [23] have provided a review of
this technology.

In general, the scanning imaging spectrometers, designed for forward motion as
provided by an aircraft, provide high spectral and spatial quality but require special
considerations when used in a stationary setting. Staring and snapshot imaging
spectrometers provide the advantage of use from a stationary platform, however in

Fig. 1.4 This diagram shows a generic layout for a line-scanning (push broom) spectral imager [22].
It provides one commonmethod of collecting spectral data cubes. All spectral imagers require the use
of some methods of separating the light into individual spectral bands in a manner that the spectral
reflectance can be registered for each spatial pixel in a scene. (Reprinted with permission of MIT
Lincoln Laboratory, Lexington, Massachusetts)

Fig. 1.5 This diagram represents a data cube and the processes associated with the three
fundamental data collection methods [23]. They include point scanning, line scanning, and
wavelength scanning. In contrast, a snapshot spectral imager provides a full data cube in one
instant in time. (Reprinted with permission of SPIE, Bellingham, Washington)
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some cases at a cost in terms of spectral and spatial resolution and performance. As
the designs continue to evolve, it is anticipated that new systems will provide both
convenience and performance that is well within the needs of the end user.

The data cube is the output product of the spectral imager, while the spectrum is the
fundamental datum. The data cube is composed of several to many images of two
spatial dimensions (x and y), each at discrete wavelengths. Each pixel can be repre-
sented as a spectrum (or vector) indicative of the reflectance as a function of wave-
length. Figure 1.6 shows a subset of a data cube from a face over the 400–850 nm
spectral range. The blue represents low reflectance and red high reflectance, as a
qualitativemeasure. The spectral plot on the right shows amean spectrum (100 by 100
pixels) from the region represented by the box.

The basic specifications of spectral imaging beyond the data cube collection
include the spectral range, spectral resolution, spatial resolution, radiometric resolu-
tion, and temporal resolution. The spectral range is one of the key parameters that is
directly tied to the phenomenology of interest. The appropriate spectral range must be
provided at a sufficient signal-to-noise ratio (with respect to the illumination source) to
adequately cover the spectral distribution of interest. The key limiting factor is the type
of detector used. The electromagnetic spectrum is often divided into regions relative to
the broad spectral response of a given detector class for convenience. In general, the
ultraviolet is defined as UV (250–400 nm), visible–near-infrared as VNIR
(400–1100 nm), shortwave infrared as SWIR (1000–2500 nm), midwave Infrared as
MWIR (3–5 µm) and longwave infrared as LWIR (7–14 µm). It is important to note
that these definitions are not standardized and may vary between communities. It is
always a best practice to explicitly state the wavelength when describing an imaging
system in order to avoid ambiguity and misunderstanding.

The thermal infrared (TIR) may be any region where photons emitted by
materials can be observed. This is a very broad range, however, most commonly it
relates to wavelengths that are greater than 1 µm. At normal Earth surface

Fig. 1.6 An example of a spectral data cube subset as a region of interest from a larger data cube
of a face. The face of the data cube represents the two spatial dimensions (x- and y-axes), while the
sides represent the spectral reflectance (z-axis)
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temperatures, the wavelength ranges measured are in the MWIR and the LWIR.
The specific wavelength selected for the TIR is based on Wien’s approximation
λmax = b/T, where λmax is the nominal peak wavelength emitted for a given tem-
perature, b is the proportionality constant b ≈ 2900 μm K, and T is the temperature
in Kelvin [24]. As an example, if the apparent temperature of the surface of the Sun
is nominally 5269 K, the peak wavelength would be 550 nm. This is where human
vision has its peak sensitivity in the visible portion of the electromagnetic spectrum.
In another example, the temperature of the human skin is in the range of 300 K and
the peak emitted wavelength is about 10 µm. The trend is therefore the higher the
temperature the shorter the peak observable wavelength.

The spectral resolution is the separation of light into distinct wavelengths which
provides the ability to distinguish spectral features of a substance. The spectral
resolution is limited by the spectral bandwidth (SBW) which is defined as the width
of a spectral band at half the maximum peak. This is referred to as full width half
maximum (FWHM). In some cases, this value may vary over the operating range of a
spectral imager. Broader spectral bands may provide a greater signal; however, the
SBWmust be small enough to resolve the spectral features of interest. A common and
sufficiently narrow spectral bandwidth for many applications is on the order of 3 nm.

The spatial resolution, the area represented by each pixel in the image, depends
on the size of the pixels in the focal plane array in combination with the power of
the optics. To some extent, this parameter can be modified by exchanging lenses on
the imager. A greater number of pixels over a given area of the target of interest will
also provide greater detail of the spectral variability over an area. The cost of higher
spatial resolution may be a reduced signal, resulting in longer integration times.
There is also a trade-off with respect to the spatial resolution and the field of view,
where higher magnification may be gained at the cost of a limited field of view.
Spatial resolution from roughly sub-millimeter to centimeter (over 1–100 m) may
be available depending on the optics.

Radiometric resolution pertains to the number of grayscale values, as a result of an
analog-to-digital conversion of the signal, for each pixel for each wavelength. The
greater the radiometric resolution, the larger the number of levels that can be provided
to represent the scale from dark to light. Ideally, a system can provide values over a
wide enough dynamic range to collect all of the dark and light features without
saturation. Spectral and spatial resolution typically are factors that require more
attention than the radiometric resolution. Radiometric resolution, also referred to as bit
depth, may range from 8 to 16, where an 8-bit system would provide 256 grayscale
values and a 16-bit system would provide 65,536 grayscale values, as examples.

Temporal resolution is the length in time required to collect a full data cube of
interest. This is dependent not only on the design of the system but also the overall
setup since the time to acquire each image depends on sufficient illumination. If the
temporal resolution is insufficient, the subject in the scene may be distorted spatially
and spectrally. The frame rate is limited by the integration time of the imager. In the
full frame collection scenario, 30 frames per second system would acquire 30 spectral
frames per second. If the system had the capacity to collect over 120 spectral bands, it
would require 4 s to collect one data cube, for instance. A snapshot spectral imager, by
definition, would collect the entire data cube at each integration time.
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1.4 Optical Properties of Human Skin

The spectral reflectance of the surface of human skin provides a wealth of infor-
mation. Fully understanding the interaction of light and tissue is a challenge due to
the heterogeneous structure of the various components that interact with light. The
reflected light from skin varies significantly as a function of wavelength. Observed
spectral reflectance is the result of a combination of absorption and scattering from
the surface and within the tissue [25]. The variation over the spectral range is due to
several dominant absorbers referred to as chromophores. The UV (250–400 nm) is
primarily due to proteins and amino acids and the visible to NIR (400–1100 nm)
is dominated by blood and melanin. Absorption at wavelengths longer than 900 nm
is primarily due to water (Fig. 1.7).

Features over the surface of skin can vary significantly at spatial scales ranging
from sub-millimeters to centimeters. Some of these features are due to variations in
blood vesicles, distribution of melanin pigmentation, acne, wrinkles, and, erythema
due to Sun exposure. Features including blood vessel patterns and pigmentation
variation may be present over an extended portion of an individual’s lifetime, while
other prominent features such as acne, blushing, and sweating can be transient.
Environmental factors of significance include cold, heat, or sunlight leading to
pallor or erythema.

The spectral reflectance of human skin over the visible to NIR is distinct from
most common materials found in the background environment. In comparison with
vegetation, soils, fabrics, paper, plastics, and building materials, there is a signifi-
cant degree of separability [26]. This is especially true when the spectral sampling
interval is sufficient to resolve the most prominent features skin presents.

The spectral reflectance properties of human skin can vary significantly, both of
an individual and between individuals. Obvious visual observations of skin dif-
ferences may be attributed to melanin, vascularity, and surface texture. The degree
of variability has been a subject of research by Cooksey et al. [27]. In that work, a

Fig. 1.7 The plot shows the dominant chromophores in skin (normalized absorbance) along with
an example of a skin reflectance spectrum (normalized reflectance) (Credit C. Cooksey)
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measurement protocol was used to measure the inside of the forearm using an 8°
directional hemispherical reflectance accessory used on a commonly available
spectrophotometer. The intent of the experimental design was to collect skin
reflectance spectra of a number of volunteers in a well-controlled environment
using reference standards directly traceable to the national scale of reflectance. As a
result, the variability attributed to measurement uncertainty is minimized and the
resulting variability observed can be attributed to biological variability. That study
indicated that the variability between subjects is much greater than the variability
between measurements of the same subject. It also indicated the absorption bands
attributed to hemoglobin in the visible spectral region are significantly muted, if not
masked, for darker skin tones related to melanin content. In the shortwave infrared,
there is a marked consistency between subjects in relation to the water absorption
bands. This is likely due to the relatively constant proportion of water in tissue
(Fig. 1.8).

Knowing the variability of skin reflectance across the population is an important
factor in selecting a spectral imaging system and predicting the operational range.
Although Cooksey et. al. have provided a sample of the population, the variability
of the overall population is still not well established. This is especially true outside
of the visible portion of the electromagnetic spectrum. Spectral regions from the
UV and the NIR to the LWIR have not been studied in enough detail to represent
the human population’s variability. In some cases, the representation of the optical
properties in the literature varies by orders of magnitude [28]. The source of this
variability has not been explained. It is possible that the differences are due to
differences in measurement instruments, measurement methods, or measurement
error. Overall, this leaves significant room to expand the state of knowledge of light
tissue interactions.

Fig. 1.8 This plot shows the range of spectral skin reflectance over the 250–2500 nm spectral
range. The dashed line represents the mean, the shaded area is the variability over one standard
deviation, and the solid lines are the minimum and maximum spectra [27]
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Optical medical imaging is an emerging field that utilizes spectral imaging as a
key modality for observing human tissue. The key chromophore in tissue that
provides significant promise in optical medical imaging is the absorption charac-
teristic of blood. More specifically, hemoglobin, the oxygen carrier in blood, has
distinct spectral features; oxy- and deoxy-hemoglobin provide distinct changes over
the VNIR spectral region that can be used to estimate the concentration of each in
the tissue [29]. The oxygenation level in tissue is a key indicator of many diseases.
Cancer, as an example, may be associated with angiogenesis and increased meta-
bolism resulting in changes in localized oxygenation [25]. The healing of wounds,
including injuries, burns, and infections, is highly correlated with how well the
tissue is supplied with oxygenated blood. Wounds with poor perfusion of oxy-
genated blood will become ischemic and may progress to necrosis. Surgical prac-
tices may also benefit from spectral imaging in procedures where the blood supply
needs to be clamped during a procedure to limit excessive bleeding. Spectral
imaging may play a key role in the future by providing a quantitative map of the
oxygenation status of tissue to aid the clinician in making decisions related to
intervention and treatment [30].

An example is provided of a porcine ischemic skin flap model. This example
shows a wound, over a 5 cm by 15 cm area of the back. The restricted blood flow
led to reduced oxygenation toward the center of the skin flap. The images shown
are from a hyperspectral data cube collected on the 3rd day of monitoring. A color
composite (Fig. 1.9a) is based on three spectral bands to approximate red, green,
and blue. The false color composite (Fig. 1.9b) is the result of mapping the data
cube to the signature of “healthy” oxygenated tissue. This provided a relative scale
from blue (low) to red (high) relative oxygenation based on the reflectance

Fig. 1.9 a The image on the left is a color composite from a hyperspectral data cube of a porcine
ischemic skin flap model. b The image on the right is a relative oxygen saturation map extracted
from the hyperspectral data cube [30]
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signature [30]. This application of spectral imaging can provide in-depth insight
into the phenomenology that is of interest to developing spectrally based face
recognition methodology.

1.5 Data Collection and Analysis

Currently, there is no standard algorithm or method used to extract information for
facial recognition from the spectrally based imagery. The spectral information may
be used to aid face recognition by narrowing the number of potential matches to
those with similar spectral matches, by enhancing feature otherwise not visible, or
by subsetting the face in preprocessing in order to remove the background
(as illustrated in Fig. 1.10). This section describes the basic tools that are used
routinely in spectral imaging across different disciplines and including facial
recognition. Most HSI is performed as a research activity and as such is performed
under prescribed and controlled conditions. Some of these conditions include the
source of illumination, the angle between the illumination sources, the subject, and
the spectral imager. Additionally, a white reference plaque with a known spectral
reflectance in the scene is placed where the subject is expected to be positioned.
With the white reference plaque in place, a reference data cube is collected. This
provides the intensity and uniformity of the source. The collection of a dark data
cube is also collected with the light blocked from entering the imager. The data
cube files are often stored and processed separately in consideration of the fact that
the file size is considerably larger than conventional images. In this case, there is an
image for each wavelength resulting in possible 100s of images composed in one
data cube. The data cube is typically preprocessed and then analyzed to exploit the
desired content. It is worth mentioning this is a significantly different approach than
a fully integrated operational system that would collect, analyze, and provide
information in near real time. This level of operation can be achieved once the
phenomenology is well established.

The preprocessing of the image requires the conversion of the raw data cube to
reflectance. It is possible to utilize the spectral information from raw data cubes
(relative signals). This level of information may be used to exploit the content in a
given data set but will be of limited use if the data in the data cube are intended to
be used as a source of comparison to other data sets collected under different
conditions or to match the content to a database. The conversion to reflectance is
achieved by taking a ratio of the data cube of the subject to the data cube of the
white reference Eq. (1). The white reference also regarded as a calibration plaque is
often composed of sintered polytetrafluoroethylene (PTFE). The dark data cube is
subtracted from both. This ratio is then multiplied by the known reflectance values
of the white reference plaque. Ideally, the white reference plaque values are
traceable to a national metrology institute such as NIST [31]. This helps ensure
repeatable results.
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R kð Þ ¼ S kð Þ � Sd kð Þ
Ss kð Þ � Sd kð Þ � Rs kð Þ; ð1Þ

where S is the data cube of the subject, Ss is the data cube of the standard, Sd is the
dark signal, and Rs is spectral reflectance factor of the known reflectance standard.

It should be noted that the practice of using a calibration plaque is routine in
research. This is practical in a controlled environment where the setup can be
staged. In real-world operations, it may be challenging to position a calibration
plaque at or near the same position as the person of interest. Beisley [32] developed
and demonstrated a method that can eliminate the use of a calibration plaque. In that
study, the illumination source was modeled in order to predict the expected skin
signature. The results indicate that with a sufficient knowledge of the source illu-
mination, the detection performance can remain high.

Once the data cube is converted to reflectance, its contents can be exploited. The
subject of hyperspectral data exploitation is expansive. While there are routine tools
that will be mentioned here, there is also a large body of knowledge that has
resulted from decades of remote sensing research ranging from environmental to
defense applications [33].

In comparing spectra, it is convenient to consider the set of reflectance values for
each wavelength as a dimension in n-dimensional space. As an example, a
reflectance spectrum composed of 100 discrete spectral bands would be considered
as 100 dimensions, thus requiring multivariate analysis methods. The spectrum of
all of the wavelengths can then be considered a vector in n-dimensional space. The
most fundamental processing method is one that allows the matching of one
spectrum to all of the spectra in the scene. A common method for measuring the
distance between two vectors is the spectral angle mapper (SAM), Eq. (2) [34].

hi ¼ cos�1 STr Si
Srk k Sik k

� �
ð2Þ

Sr is the known reference spectrum of target of interest and Si is each of the
unknown spectra at each pixel location. The difference between the spectra, θi, is
reported in radians. The spectrum with the smallest resulting angle is considered to
be the closest match to the mean spectrum and is selected as the representative of
the mean. This simple algorithm considers a spectrum of interest, either selected
from the scene or from a database, as a vector. The spectrum of interest is then
matched to all of the spectra in the data cube. The output is an angular distance
value in radians that indicates how close a match the spectrum of interest is to all of
the unknown spectra in the scene. A close match results in a value close to zero,
while a poor match results in a value closer to one. In addition to its simplicity, it
also has the desirable characteristic of being insensitive to levels of reflectance (i.e.,
light and dark). As an angular metric, it is an indicator of differences in spectral
shape and not amplitude.
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As an example, a grayscale image plane at 650 nm from a hyperspectral data
cube of a face is shown in Fig. 1.10. A spectrum from the cheek (refer to Fig. 1.4) is
used to develop a classification map of the scene. This example may serve as a
preprocessing step in order to remove the background from the scene. All of the
pixels in the data cube were evaluated against the reference spectrum to match
values between 0 and 0.25 rad. Those matching pixels were then used to subtract
the background and allow only the pixels that matched the skin reflectance spec-
trum to be displayed. Note the delineation between skin and non-skin on a pixel by
pixel basis is not exact. Two factors that play a role are mixed pixels (skin and hair
within the size of one pixel) and shadows where the signal is dominated by noise.

A significantly more effective method for detecting spectral similarity is the
Mahalanobis distance (MD), Eq. (3). The MD uses the covariance matrix to take
into account the variance in the distribution of the data cube. This is an important
consideration since real-world reflectance spectra are represented by probability
distributions as opposed to an exact deterministic values as discussed in the skin
reflectance variability section. The MD Δ is calculated by using

D2 ¼ s� lð ÞTC�1ðs� lÞ; ð3Þ

where s is the reflectance spectrum of interest considered as a vector, µ is the mean
vector of the data set, and Γ is the covariance matrix. This metric can be extended to
be used as a target detector if a ratio is taken so that the MD of the unknown
spectrum is divided by the MD of the background. This ratio is referred to as a
matched filter and can be used to estimate the probability of detection and proba-
bility of a false alarm [35].

Another commonly used analysis tool for spectral imaging is principal com-
ponent analysis (PCA) [36]. This too is useful in reducing the spectral dimen-
sionality. With hyperspectral data, many of the closely spaced spectral bands are
highly correlated and do not provide any additional information. This statistical
method transforms a data set of possibly correlated variables into a set of linearly
uncorrelated variables, or principal components, such that the first component has
the largest possible variance and each succeeding (orthogonal) component has less

Fig. 1.10 The image on the left shows the 650-nm spectral image plane. The center image shows
the pixels that matched the reference spectrum. The image on the right shows only the grayscale
image pixels from the pixels classified as skin. Note the clothing, hair, and background are now
removed (displayed as gray) leaving mostly pixels that match skin
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variance than the previous. Typical hyperspectral data cubes can be reduced from
100 spectral bands to less than ten with the first several being the most significant.
In practice, PCA can be used on the full data cube to separate different materials
from the background (i.e., human skin from the background) or on a local scale by
extracting a region of interest from the data cube (i.e., mapping the veins on the
face) and then processing using the PCA transform. At this more restricted spatial
scale, additional features may be observed that would otherwise be obscured by the
dominating background. For example, features on a face such as blemishes, scars,
and blood vessels may become visible with sufficient spatial resolution when the
region is restricted to a region such as the cheek.

Statistical analysis methods, including the ones mentioned above, are available
as software packages, both commercially and free, intended to be used in exploiting
spectral imaging data. These tools can make it relatively easy to explore and display
large data cubes using a variety of different analysis techniques.

1.6 Future Directions

The most compelling use of HSI is in research and exploration of new applications.
Once the application is well known, a down selection to a select set of bands can be
utilized for routine use with a multispectral imager. Cost of spectral imaging sys-
tems currently prohibits widespread use compared to conventional color imaging.
There is currently an active area of research in developing the next generation of
spectral imagers. The next-generation spectral imagers include a move toward
user-friendly snapshot designs that include video-rate data cube collection
capabilities.

Spectral analysis methods are intended for use in matching spectra for detection
and classification. Most all of the spectral imaging methods are based on the sole
use of the spectral content and disregard the spatial information. This approach is
regarded as non-literal interpretation. New spectral–spatial analysis algorithms are
beginning to be explored and implemented with anticipation of greater accuracy in
hyperspectral classification. Facial recognition to date has been heavily dependent
on spatial features alone. The addition of spectral information to spatial facial
features is anticipated to aid in accuracy when combined with currently used
strategies. Additionally, there are some opportunities to further exploit the spectral
characteristics of skin based on the oxygenation of the blood in the observed tissue.
Those methods are sufficiently served by the use of several carefully chosen spectral
bands. Most work is assuming a static subject but there is significant variability as a
function of time, heartbeat, respiration, stress, and activity level. This information
may aid in not only facial recognition but also assessment of health status, i.e., live,
dead, or impaired health [37]. It is likely that as knowledge of the phenomenology
of spectral imaging of humans develops along with the next generation of spectral
sensors, real-time monitoring of several factors may be possible, in addition to
enhanced identification methods.

16 D.W. Allen



1.7 Discussion and Conclusion

This chapter covered the subject of spectral imaging with the intent on facilitating
the use of spectral imaging in support of advancing current facial recognition
methods. It provides researchers who are not familiar with spectral imaging with an
overview of what is involved with the practice. It is not intended to be a com-
prehensive tutorial on the subject. For a more in-depth introduction, it is suggested
the reader refers to the following references [22, 38]. It is also suggested that when
considering a spectral imaging system on the market, one consider a demonstration
for the particular application of interest. The nature of spectral imaging makes it
useful for a wide range of applications. However, a spectral imaging system that is
well suited for one application may not work equally well for another.

Spectral imaging of human skin is of particular interest since the spectral features
are relatively unique and provide a rich source of information. The spectral dis-
tinctions between individuals and within the same individual provide a basis for
feature extraction over what spatial information alone can provide. Many of the
spectral features are not visible to the human eye even within the visible spectral
region. Spectral regions outside of the visible region, namely infrared, may provide
additional information and operational advantages.

The state of spectral imaging technology will likely continue to advance as a
result of new sensor designs, collection, and processing methods, and a better
understanding of the phenomenology of interest. Overall, spectral imaging provides
a valuable tool in understanding of spectrally based facial features in addition to
providing a potential path to enhanced practices.
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Chapter 2
Collection of Multispectral Biometric
Data for Cross-spectral Identification
Applications

J.M. Dawson, S.C. Leffel, C. Whitelam and T. Bourlai

Abstract The ultimate goal of cross-spectral biometric recognition applications
involves matching probe images, captured in one spectral band, against a gallery of
images captured in a different band or multiple bands (neither of which is the same
band in which the probe images were captured). Both the probe and the gallery
images may have been captured in either controlled or uncontrolled environments,
i.e., with varying standoff distances, lighting conditions, poses. Development of
effective cross-spectral matching algorithms involves, first, the process of collecting
a cohort of research sample data under controlled conditions with fixed or varying
parameters such as pose, lighting, obstructions, and illumination wavelengths. This
chapter details “best practice” collection methodologies developed to compile
large-scale datasets of both visible and SWIR face images, as well as gait images
and videos. All aspects of data collection, from IRB preparation, through data
post-processing, are provided, along with instrumentation layouts for indoor and
outdoor live capture setups. Specifications of video and still-imaging cameras used
in collections are listed. Controlled collection of 5-pose, ANSI/NIST mugshot
images is described, along with multiple SWIR data collections performed both
indoors (under controlled illumination) and outdoors. Details of past collections
performed at West Virginia University (WVU) to compile multispectral biometric
datasets, such as age, gender, and ethnicity of the subject populations, are included.
Insight is given on the impact of collection parameters on the general quality of
images collected, as well as on how these parameters impact design decisions at the
algorithm level. Finally, where applicable, a brief description of how these data-
bases have been used in multispectral biometrics research is included.
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2.1 Multispectral Face Imagery—Background

One of the key aspects to facial recognition (FR) technology is the proper devel-
opment of algorithms, which are able to successfully and consistently identify
subjects. Many challenges exist within this realm, ranging from image quality to
subject pose angle. These challenges are impacted by not just the camera system,
but also by the scenario in which the data are collected. These scenarios impact the
strategy of the algorithms that need to be designed, to mitigate the scenario-specific
challenges. For example, in defense or law enforcement surveillance applications, it
is often necessary to covertly (but non-intrusively) or opportunistically collect facial
biometric data. This data, in turn, must be used to match subjects against a gallery
or watch list to identify an unaware or uncooperative subject. This operational
scenario poses a set of challenges to FR systems in that a myriad of non-idealities
must then be considered to achieve high-confidence match scores. Some of these
challenges, as also discussed above, are face acquisition at variable or long dis-
tances, facial occlusions, poor lighting, and otherwise obscured faces.

Currently, the majority of facial recognition systems employ the use of visible
images captured under controlled conditions as probes to match against galleries of
visible data. This poses several challenges which, due to the physical limitations of
the visible spectrum, in nighttime or non-uniform lighting scenarios, yield poorer
quality images. Further work is required to successfully incorporate FR in chal-
lenging environments.

To overcome the issues associated with poor lighting, researchers have explored
other, non-visible wavelengths as a means of capturing face images. In particular,
the infrared (IR) spectrum has been investigated as a means of possibly extending
the facial recognition technology. The IR spectrum can be divided into two primary
divisions: thermal and reflective. The lower reflective bands resolve images with
well-resolved facial features, closely resembling those captured at visible wave-
lengths. The lower bands can further be divided into NIR (near infrared) (750–
1100 nm) and SWIR (short-wave infrared) (900–1900 nm) [1–3]. These bands have
a particular advantage over traditional visible imaging as they do not suffer from
illumination-based color shifting. Algorithms have trouble distinguishing the dif-
ference between an object change and the illumination of the object changing [4].

On the opposite end of the infrared spectrum exists what is referred to as thermal
infrared. These bands are commonly classified as MWIR (mid-wave infrared) (3–
5 µm) and LWIR (long-wave infrared) (7–14 µm) [5–7]. Research in the LWIR bands
has incorporated polarimetric thermal imaging as ameans of enhancing cross-spectral
face recognition; this notably improved face detection performance by combining
polarimetric and traditional thermal facial features [8]. Extended polarimetric thermal
imaging research also allows for the geometric and textural facial detail recognition
[9]. Progress has also been made with the employment of partial least-square-based
face recognition andmore specifically thermal to visible facematching [10].While the
resolved images do not yield the same level of detail, the associated wavelengths are
able to show recognizable facial details. The advantage to this side of the spectrum is
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that it does not require an illumination source, as the detection is that of the emitted
radiation from the subject rather than the reflected light.

When approaching the issue of matching visible galleries to infrared probe
images, the shorter wavelengths promote a more natural transition from the visible
gallery. Both the visible band and the shorter IR wavelengths have their advantages
when applied to facial recognition, and thus, different applications have been
developed. For instance, in 2009, a research group from the West Virginia High
Technology Consortium Foundation (WVHTCF) developed an active-SWIR sys-
tem, dubbed TINDERS, for detecting facial features at distances up to 400 m [11].
The group also demonstrated the ability to actively track human subjects at dis-
tances up to 3 km. Working on a part of the TINDERS face dataset, the authors in
[1] worked on developing a heterogeneous FR matcher and demonstrated its
capability and limitations at short as well as at long ranges. In 2010, the WVHTCF
group was able to improve the TINDERS system to yield clearer, sharper images
[12]. Since SWIR was chosen, an active illumination source was required. An
advantage of that source is that it is considered eye safe for wavelengths greater
than 1400 nm [11]. The SWIR spectrum also has the added benefit of being able to
produce clear images in adverse weather conditions, such as heavy rain [13].

Different research groups have developed algorithmic approaches that allow
matching of face images irrespective of their spectral view [1, 3]. The suggested
approaches seem to preserve the facial structures and, thus, lending toward suc-
cessful cross-spectral matches [3]. Similar approaches also lend promise toward the
ultraviolet band [14], as well as the MWIR and LWIR bands making face detection,
eye detection, and face recognition possible across the majority of the IR spectrum
[6]. Lower IR (NIR) wavelengths can be eye safe and their biometric systems are
mostly used in law enforcement applications [15]. However, NIR-based detectors
suffer from issues of being detectable by silicon-based image sensors or in some
case even the human eye [13].

As previouslymentioned, the face images (probes) used in cross-spectral matching
scenarios must be comparable to visible gallery photographs in some manner. This
requires the development and implementation of cross-spectral face-matching algo-
rithms. Allowing for accurate recognition and identification matching of non-visible
probe images to visible galleries aides image matching from an ideal image (such as a
photograph ID) to security footage, as recorded by an infrared camera in variable
environmental conditions. In particular, SWIR has the added advantage of being able
to operate in low-light scenarios, such as twilight or low illumination [11]. When
natural or existing illumination is not sufficient, truly non-visible illumination sources
are able to covertly illuminate a darkened area. SWIR band illumination can also be
disguised from being detected by only illuminating selected wavelengths, e.g.,
1550 nm, whichwill otherwise appear dark even in other SWIRwavelengths [5]. This
capability enhances the covert nature of facial recognition in dark environments
(where visible-based FR becomes very challenging) and has been shown to resolve
better matching scores than visible data [16].

The SWIR spectrum also extends the viability of non-visible facial recognition by
its wide applicability to both urban and rural environments. Urban environmental
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obstacles such as reflective and tinted glass become transparent [17]. Additionally,
common urban particulates, such as pollution and smog, are eliminated when oper-
ating in the SWIR band [17]. In rural settings, particulates such as dust, fog, and haze
can be removed from SWIR images [18]. This lends SWIR tactical imagers to be
highly desirable for operating in extraordinarily obstructed visible environments. As
discussed, the NIR band can also be used in tactical imagery systems with success
[17, 19], the disadvantage being easy detection of active NIR illumination sources.

Other Challenges in the SWIR Band
Though the non-visible SWIR band has many advantages, there are many issues
that negatively impact facial recognition. A notable issue is that, above 1450 nm,
the moisture found in skin begins to absorb the infrared wavelengths. This causes
the skin to appear black or dark [17]. In darkened settings, the issue becomes further
complicated when eye-safe illumination is necessary. As mentioned above, eye-safe
illumination is above 1400 nm; the resulting images, however, will result in
darkened skin on subjects [11]. This poses a challenge to many facial recognition
algorithms currently in place, commercial or in-house (academic). Similarly,
membrane tissues, such as the eye, become darker as the wavelength increases, and
thus, the efficiency of automated eye-detection methods can be negatively affected.
This issue is driven by the fact that the pupil becomes obscured in these wave-
lengths. Certain oils produced by the skin reflect infrared light as well. This causes
saturation effects in images with high-intensity sources, such as infrared-emitting
lamps (e.g., tungsten bulbs) and direct sunlight. Many of these effects can, however,
be mitigated through hardware filtering to specific SWIR bands.

Contributions
The advantages of multispectral imagery outweigh the current associated issues
found therein. Through its involvement with the NSF-funded Center for
Identification Technology Research (CITeR), a cooperative agreement as lead
academic partner of the FBI CJIS Division Biometric Center of Excellence, and
funding from other federal agencies, West Virginia University, has conducted
numerous data collection projects to build repositories of multimodal biometric data
that can be used to mitigate different challenges identified within the field of human
identification. To overcome these issues, particularly those associated with
infrared-focused or cross-spectral-based face imaging, several of these data col-
lection activities have included wavelength-specific SWIR face image capture
(highlighting specific bands across the SWIR spectrum) and the generation of
multi-wavelength SWIR face image datasets. Together, with a database of visible
face images (a visible gallery), algorithmic development tends toward cross-spectral
face-matching systems. Table 2.1 presents a selection of available infrared data-
bases featuring human subjects. The use of such datasets allows for the develop-
ment of better and more universally viable face-matching algorithms.

This chapter will outline the methods and procedures used to collect and build
the aforementioned WVU SWIR databases, as well as provide a summary of
cross-spectral matching results for the respective datasets. Lastly, if a SWIR imager
lacks the optical system needed to capture high-resolution face images at a distance,
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gait information may be used to perform identification. Thus, gait-based recognition
will also be discussed as a means to supplement face image data acquired at long
distances (i.e., more than 50 m).

2.2 Institutional Review Board (IRB) Preparation

Projects that involve human research, including biometric data collection, require
an approved Institutional Review Board (IRB) protocol. An institutional review
board is a committee of individuals that reviews project details relating to human
subjects research to ensure that investigators comply with all federal, state, and
institutional requirements and policies relating to the appropriate protections for

Table 2.1 Databases containing infrared images of human features

Authors Spectral band Application Environment
conditions

Pan et al. [27] Infrared in range
700–1000 nm

Hyperspectral face recognition using
liquid crystal tunable filter (LCTF)
wheel

Outdoor

Multispectral
Imagery Lab
(WVU) [1, 5, 6, 15,
28–30]

Infrared in range
900–1550 nm as
well as Thermal IR

Multispectral eye and pupil detection,
multispectral face recognition, and
cross-spectral face-matching
algorithms

Indoors and
outdoors

Kang et al. [31] Illumination source
of 940 nm
wavelength

Face recognition using principal
component analysis (PCA) and linear
discriminant analysis (LDA)

Indoor

Ngo et al. [32] Infrared in range
from 450 to
1550 nm

Multispectral iris acquisition system Indoor

Steiner et al. [33] Infrared in range
from 900 to
1700 nm

Multispectral face verification using
spectral signatures

Indoor

Pavlidis et al. [34] Infrared in range
from 1400 to
2400 nm

Automatic detection based on a fusion
scheme

Indoor

Jacquez et al. [35] Infrared in range
from 700 to
2600 nm

Spectral reflectance from human skin Indoor

Bertozzi et al. [36] Infrared in range
from 900 to
1700 nm

Pedestrian detection Outdoor

Lemoff et al. [37] Infrared in range
from 900 to
1700 nm

Face matching using fusion scheme Indoor/outdoor

Qianting et al. [38] Infrared in range
from 1000 to
1700 nm

Image mosaicing using global
thresholding

Indoor
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human subjects. These protections include adequate provisions for minimizing
subjects risk, documentation of subjects’ consent forms, and, finally, protection of
subjects’ privacy and maintaining data confidentiality. For the research efforts
described in this chapter, the IRB of the WVU Office of Research Integrity and
Compliance provided reviews of all aspects of the data collection protocol,
including participant recruitment, collection activities, remuneration, and biometric
data privacy and storage. For the WVU IRB, the following two requirements are
central to IRB approval:

1. Training of personnel: Any person affiliated with WVU (faculty, student, or
staff) that is involved in the data collection or data processing is required to take
a series of online courses to educate them on the ethics associated with human
research related to social and behavioral studies (which WVU biometric col-
lections fall under). At WVU, these courses are currently offered by the
Collaborative Institutional Training Initiative at the University of Miami (ci-
tiprogram.org). There are online tests associated with these courses that train
personnel in proper human subject research ethics. All collection staff members
must pass these tests in order for the proposed IRB protocol to be approved.

2. Protocol Statement Description: This form is submitted electronically to the
WVU Institutional Review Board (IRB) by the Principal Investigator. The
Protocol Statement form contains information about:

• Research teams: Principal Investigator, affiliated and non-affiliated team
members, primary study contact, etc.

• Funding sources.
• Research studies and activities location.
• Exemption determination.
• Design of the research, including the category of research, procedures,

subjects, sample size, potential risks and discomforts, potential benefits,
confidentiality, subjects’ costs, payments to subjects, etc.

• Consent procedures, which involves a Consent and Information form. This
document informs the subject (research study participant) about the project
and confirms the voluntarily participation of the subject in the project.

• Advertisements—any email text, newspaper ads, or flyers used to recruit
participants must be included along with the data collection protocol.

If a prototype device is not used, or if biological samples are not collected,
biometric collection projects may be eligible for Expedited Review (ER). Within
the expedited review process, the protocol may be reviewed by an individual,
member of the IRB panel and that is not involved in full-board meetings. Please
note that this process may vary from institution to institution. The ER process
may allow the protocol to be approved within a period of one or two weeks
rather than one month or more. After the submission of the IRB protocol to the
appropriate office, an IRB panel reviews the submitted documents. One of the
potential outcomes of the assessment is the request for further revisions, and/or
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the recommendation for the personnel to complete the appropriate course on
human subject research (in case they did not). Next, required revisions are
applied to the Protocol Statement form. Then, the form is resubmitted to the
Office of Research Integrity and Compliance. Finally, the office approves the
submitted IRB protocol under the conditions that human subject research is
appropriate and conforms to federal regulations.

During the period for which the project is active, it is necessary that the project is
annually reviewed, and thus, a Continuing Protocol Review (CR) needs to be
completed. For a CR, statistical information pertaining to the study is gathered,
including the number, gender, and race of the subjects enrolled in the study; the
number of subjects from the special categories such as pregnant women and chil-
dren, adverse events, number of subjects removed from the project, and grievances
or complaints received about the study. All changes to the project, including added
or removed researchers, new locations, new procedures or changes in procedures,
new forms of advertisement, must be documented and submitted to the Office of
Research Integrity and Compliance using as an amendment to the latest IRB pro-
tocol approved.

2.3 Standard Visible Mugshot Capture

In order to generate a baseline dataset of good-quality face images, a live
subject-capture setup was used. It involves the necessary hardware (cameras, lenses,
etc.) as well as a data collection protocol to be followed that uses the hardware
under a specific scenario. In this work, the hardware typically employed for
high-resolution ground truth capture of visible face images was a conventional
DSLR camera, such as a Canon 5D Mark II or equivalent, with a telephoto zoom
lens (such as a Canon EF 800 mm f/5.6L IS USM). This camera was used to
capture 5 different poses: −90°, −45°, 0°, 45°, and 90°. A schematic view of the
indoor photograph collection is shown in Fig. 2.1.

Three-point lighting is used to meet the standards outlined in ANSI/NIST–ITL
1-2007 Best Practice Recommendation for the Capture of Mugshots [20]. The
lighting is comprised of one 250-W fixture and dual 500-W fixtures. The posi-
tioning of these light sources, with respect to the participant, is slightly asymmetric.
There is also sufficient distance between the backdrop (neutral gray) and the par-
ticipant in order to avoid background shadows. In addition, plastic diffusers in front
of the reflector-mounted light bulbs are utilized to avoid “hot spots” that may
appear on face images. The following camera settings typically result in the best
focal depth and image quality under the 3-point tungsten lighting, i.e., (i) White
Balance: Tungsten, (ii) ISO: 1000, (iii) F/2.6: 1/10, and (iv) exposure set to 1/60.
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2.4 SWIR Face Data Collection Activities

SWIR face data collection activities were undertaken to create a challenging dataset
comprised of obstructed views of participants’ faces under varying lighting con-
ditions. Obstruction in this case consisted of various types of tinted glass and
sunglasses. In order to assess the extent to which these materials or conditions
affected the capture, characterization of the semi-transparent materials was first
conducted in order to down-sample the number of materials used in data collection
efforts, as well as establish a collection scheme for an indoor data collection (Phase
I). An outdoor collection was then performed (Phase II) in order to establish more
effective recognition algorithms under uncontrolled lighting conditions. The Phase
I and Phase II SWIR face image capture activities were performed at a standoff
distance of two (2) meters.

West Virginia University (WVU) partnered with the WVHTCF to extend the
original SWIR face image collection by performing a long-distance, nighttime
SWIR face image collection. By utilizing a specialized SWIR hardware setup,
designed for day- or nighttime face image acquisition at long standoff distances, the

Fig. 2.1 Photograph station
layout
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partnership resulted in an original face dataset that includes face images of 104
subjects captured at different standoff distances ranging from 100 to 350 m at night.
At each distance, the following data were captured: neutral expression of participant
looking directly at camera, participant rotating 360°, and neutral expression looking
directly at camera through tinted glass. The following sections of this chapter will
describe the SWIR data collections performed at WVU. First, characterization of
tinted materials at different temperatures will be presented to illustrate the spectral
transmission as a function of temperature. Next, indoor and outdoor data collection
of face images will be discussed, highlighting the challenges of collecting SWIR
face images through tinted materials in varying lighting conditions and standoff
distances. Finally, a discussion of gait recognition based on SWIR video is pro-
vided as a complimentary means of recognition if facial features cannot be resolved
in long-distance imagery.

2.4.1 Tinted Material Characterization

Prior to the initiation of cross-spectral face matching using images captured under
challenging conditions (i.e., at night and/or through tinted materials), two studies
were performed to understand how environmental factors, such as temperature and
lighting, may impact the ability to see through tinted materials. The first study was
aimed at understanding how changes in temperature may alter the spectral trans-
mission properties of different materials. The second study explored how tint
type/level coupled with internal and external lighting conditions affected the ability
to image faces through glass. The material samples used in this study represent
common architectural and automotive tinted glass with tint embedded in the
material (all provided by Pittsburgh Plate Glass (PPG); Two (2) architectural
samples include mirror coating), clear plate glass covered with tinted plastic film
(Johnson Window Film), and various types of plastic lenses in eyewear (i.e.,
sunglasses) from several manufacturers. A detailed discussion of the results from
this study is published in [21]. In summary, temperature change does not have a
significant impact on the ability to see through tinted materials. Instead, different
interior and exterior lighting conditions have the largest impact on the ability to
acquire images though tinted materials. Contrast quality measures were applied to
sample images taken under varying lighting conditions through materials of varying
tint levels in order to rank materials according to transparency and image quality
[21]. The tint transparency ranking was used to down-select the number of glass
materials that were used in data collection efforts described in this chapter. Three
samples were chosen representing low, medium, and dark tint.
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2.4.2 SWIR Face Image Collections

Data collections were performed to provide operationally relevant data samples
with which to develop eye and face detection techniques as well as SWIR face
recognition algorithms that perform well under challenging conditions. Initial
studies were performed on a dataset that was collected indoors under controlled
lighting conditions (Phase I), with glass and sunglass types and lighting levels
determined during the glass characterization experiments. After the completion of
the Phase I data collection, a second collection (Phase II) was performed outdoors
under varying daytime and nighttime lighting conditions to test the performance of
and optimize recognition tools. This section summarizes the collection protocols
and results of these two data collection efforts, with a brief description of other
SWIR datasets that were developed in partnership with the WVHTCF.

2.4.2.1 Phase I—Indoor Collection Under Controlled
Lighting Conditions

An InGaAs-based Goodrich SU640HSX-1.7RT SWIR camera was used for image
acquisition based on previous work in this area [22, 23]. The solid-state InGaAs
imaging array possesses high sensitivity in the 900–1700 nm spectrum and is
capable of capturing images at 640 × 512 pixel resolution. The photograph booth
and lighting setup shown in Fig. 2.2 was utilized to independently control interior
and exterior light levels. The booth was designed with a removable front panel to
which tinted materials with varying transparency would be affixed. The details of
these materials are included in [21]. Due to interfering/obstructing reflections on the
glass seen during initial testing using high exterior light levels at a short imaging

Fig. 2.2 Indoor data collection setup and lighting arrangement
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distance (2 m), the camera setup was slightly angled (*12°) to reduce the impact of
reflections on images captured under these lighting conditions. In addition, a neutral
gray background was placed in the reflection path to provide a constant back-
ground, further reducing the impact of image reflection.

An image collection protocol was designed to capture images for different
materials under variable lighting conditions at wavelengths ranging from 1150 to
1550 nm. The wavelength filters were assembled in a wheel, which spun five
(5) times in the process of collecting. Thus, we manage to acquire five (5) images
per filter per participant.

Facial images were collected under the following scenarios, with all illuminance
(lux) measurements taken at the interior booth seating location:

(A) External lighting eliminated, the only illumination source is the interior
lighting at full intensity

(B) External lighting eliminated, the only illumination source is the interior
lighting dimmed to *60 lux

(C) External 3-point lighting only (*2 m distance; providing *350 lux to booth
interior), interior lighting eliminated

(D) Single external exterior light source only (*4 m distance, providing *5 lux
to booth interior)

(E) 1550 nm wavelength fiber couple laser operating at 500 mW; diffused to
provide uniform face illumination (only applicable for 1550 nm SWIR filter)

Booth Panel ON:

1. Clear w/0 % Film Tint Glass Panel

(A) Full interior (*2600 lux), 0 lux exterior
(B) Minimum interior (*60 lux), 0 lux exterior
(C) 0 lux interior, 3-point exterior (*350 lux)
(D) Single external source (*5 lux)
(E) 500 mW 1550 nm active illumination

2. Clear w/85 % Film Tint Glass Panel

(A) Full interior (*2600 lux), 0 lux exterior
(B) Minimum interior (*60 lux), 0 lux exterior
(C) 0 lux interior, 3-point exterior (*350 lux)
(D) Single external source (*5 lux)
(E) 500 mW 1550 nm active illumination

3. Solarcool (2) Graylite Glass Panel

(A) Full interior (*2600 lux), 0 lux exterior
(B) Minimum interior (*60 lux), 0 lux exterior
(C) 0 lux interior, 3-point exterior (*350 lux)
(D) Single external source (*5 lux)
(E) 500 mW 1550 nm active illumination
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Booth Panel OFF:

4. Ground Truth (No Glass Panel)

(A) Full interior (*2600 lux), 0 lux exterior
(B) 0 lux interior, 3-Point exterior (*350 lux)

5. Oakley Flak Jacket Sunglasses

(A) 0 lux interior, 3-point exterior (*350 lux)
(B) Single external source (*5 lux)
(C) 500 mW 1550 nm active illumination

6. Oakley Straight Jacket Sunglasses

(A) 0 lux interior, 3-point exterior (*350 lux)
(B) Single external source (*5 lux)
(C) 500 mW 1550 nm active illumination

7. RB3449 59 Sunglasses

(A) 0 lux interior, 3-point exterior (*350 lux)
(B) Single external source (*5 lux)
(C) 500 mW 1550 nm active illumination

8. RB3025 58 Sunglasses

(A) 0 lux interior, 3-point exterior (*350 lux)
(B) Single external source (*5 lux)
(C) 500 mW 1550 nm active illumination

Visible images were acquired for each case using a standard Canon DSLR
camera (5D Mark II with kit lens). A custom software SWIR camera interface was
created for the purpose of simplifying the data collection process of SWIR and
visible photographs when various materials and lighting conditions were used. The
complexity of constant adjustments of the Goodrich SWIR and Canon cameras (as
well as other equipment/devices) necessitated the development of an easy-to-use
interface for collection personnel. This allowed for a quicker collection process and
had the added benefit of limiting errors and/or poor data capture.

Sample images for ground truth, tinted glass, and sunglasses are included in
Tables 2.2, 2.3, and 2.4, along with optimal OPR and ENH values (user-defined

Table 2.2 Sample ground truth images from Phase I data collection

Visible
SWIR (OPR 5, ENH OFF)

1150 1250 1350 1450 1150
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SWIR camera settings) for each condition (lighting and filter wavelength).
Table 2.2 shows sample ground truth images collected in visible and 1150-1550
SWIR bands. These images were used to establish a base comparison of ideal (i.e.,
constant illumination, no facial obstruction) verses operational data (i.e., through
tinted glass and with sunglasses, both with varying lighting conditions).

For the SWIR images, a notable darkening of the skin can be seen in wave-
lengths longer than 1350 nm. Also, the entire eye (sclera and pupil) becomes black,
posing challenges to eye-finding algorithms. Table 2.3 provides sample images
collected with the 85 % tint glass panel in place under varying lighting conditions.
These images show how high levels of external lighting combined with low levels
of internal lighting can lead to reflections that obscure facial features in SWIR
imagery. Table 2.4 provides sample images of an individual-wearing Oakley Flak
Jacket sunglass under varying lighting conditions. The SWIR imager allows the
periocular region to be seen clearly, but the effects of blackening of the eye still

Table 2.3 Sample tinted glass images from Phase I data collection

Variable Lightning – Clear glass with 85% Tint

Full Internal, No 
External 

Minimal 
Interior, No 

Exterior

No Internal, Full 
External 

Single-Source 
External 

Active 
Illumination

Visible

OPR 6 8 7 9 9
ENH OFF OFF ON ON OFF
1150 nm

1250 nm

1350 nm

1450 nm

1550 nm
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remain. It should be noted that none of the glasses chosen for this study possessed
polarizing lenses. Polarization coatings can greatly reduce or even eliminate the
ability to see through the tinted glass or polymer used to make sunglass lenses. This
effect can be seen in both natural lighting and active illuminators, and is highly
dependent on the polarization state of the light emitted by the source.

The OPR (Operational Setting) value listed in these tables is an integer value
corresponding to settings associated with the camera hardware; specifically, a
combination of optimally associated digital camera gain and integration time set-
tings. While sensor gain and integration time of this particular camera can be altered
individually, the camera manufacturer did not guarantee optimal imaging

Table 2.4 Sample sunglasses images from Phase I data collection

Variable Lightning – Oakley Flak Jacket
No Internal, Full 

External
Single-Source External Active Illumination

Visible

OPR 6 9 7
ENH OFF OFF OFF
1150 nm

1250 nm

1350 nm

1450 nm

1550 nm
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conditions at settings other than those associated with a fixed OPR value. The
camera used in this collection has OPR values ranging from 0 to 11. The ENH
(Enhancement) is a Boolean value and reflects image enhancement performed by
the camera. The ENH setting (“OFF” or “ON”) optimizes the 16-bit image to
dynamically scale the image intensity. This allows oversaturated images or
excessively dark images to appear more balanced, effectively normalizing pixel
intensities within the image.

A total of 138 participants provided data between September 26, 2011, and
December 4, 2011.

Figure 2.3 provides a breakdown of participant demographics by age, ethnicity,
and gender, aswell as a cumulativemeasurement of participation as a function of time.

Figure 2.3a indicates an average of *14 participants per week throughout the
10-week collection period, with highest participation during the week of 10/31. The
week of 11/21 lacks participation due to West Virginia University being on
Thanksgiving Break during that time. Figure 2.3b indicates that the majority of
participants (67 %) were between 20 and 29 years of age, followed by 18–19, and
30–39 of age ranges. This is primarily due to student and staff participation in the
data collection, conducted on the WVU campus. Only 6 % of participants were 50
or older. Figure 2.3c indicates that approximately half of the participants were
Caucasian, followed by Asian Indian (18 %) and Asian (17 %) ethnicities. This
demographic distribution is consistent with the student/staff population of WVU.
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Fig. 2.3 Participant demographics for Phase I study
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Figure 2.3d indicates that there was consistently higher male participation than
female for all identified ethnic groups.

2.4.2.2 Phase II—Outdoor Collection Under Uncontrolled Lighting
Conditions

Facial images were collected under the following scenarios, with all lux measure-
ments taken at the interior booth seating location:

(A) External lighting was the ambient available light during collection, the only
controlled illumination source is the interior lighting at full intensity

(B) Ambient external light sources, the only controlled illumination source is the
interior lighting dimmed to *60 lux

(C) External ambient light only, all controlled light sources eliminated
(D) External ambient lighting, utilization of a 500 mW 1550 nm active illumi-

nation diffused laser light source was the only controlled light source.

Glass Panels:

1. Clear w/0 % Film Tint Glass Panel

(A) Full interior (*2600 lux), natural exterior
(B) Minimum interior (*60 lux), natural exterior
(C) 0 lux interior, natural exterior
(D) Natural exterior and 500 mW 1550 nm active illumination

2. Solarcool (2) Graylite Glass Panel

(A) Full interior (*2600 lux), natural exterior
(B) Minimum interior (*60 lux), natural exterior
(C) 0 lux interior, natural exterior
(D) Natural exterior and 500 mW 1550 nm active illumination

Sunglasses:

3. Ground Truth (No Sunglasses/Glass Panel)

(A) Full interior (*2600 lux), natural exterior
(B) 0 lux interior, natural exterior
(C) Natural exterior and 500 mW 1550 nm active illumination

4. RB3025 58 Sunglasses

(A) Full interior (*2600 lux), natural exterior
(B) 0 lux interior

(i) Natural exterior only
(ii) Natural exterior and 500 mW 1550 nm active illumination

An image of the outdoor data collection setup is shown in Fig. 2.4.
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Sunglass images were taken outside of the booth with the participant facing
toward and away from the sun to determine the effects of spurious reflections on
eye-finding. A polarization filter was used in all cases (both sunglasses and glass
panels) to reduce these reflections, but they were not completely eliminated. The
collection location was varied and recorded from day to day (shade, full sun, etc.) to
provide a variety of lighting conditions. Collections performed during the day with
overcast sky or at night did not include “sunglasses toward sun,” and added the
active-SWIR illuminator to the “sunglasses away from sun” scenario. Table 2.5

Interior Lighting

Photo Booth

Cameras, SWIR 
Illuminator, & Filters

Fig. 2.4 Outdoor data collection setup

Table 2.5 Sample daytime images for Phase II data collection

Ray Ban Sunglasses Tinted Glass Panel On Tinted Glass Panel Off
Participant facing 

sun
Participant facing 
sway From Sun

Interior booth 
lights On

Interior booth 
lights Off

Interior booth 
lights On

Interior booth 
lights Off

1150nm

1350nm

1550nm

SWIR 
Illuminator
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shows sample images of data at different wavelengths using the three (3) band-pass
filters.

Table 2.6 provides sample images indicating the imaging differences for dif-
fering sky/lighting conditions. This table is not meant to include examples of all
scenarios considered, but serves to provide a qualitative indication of how
uncontrolled conditions introduce a high degree of variability in image quality.

A total of 200 participants provided data between July 9, 2012, and September
14, 2012, with participation split evenly between day and night collection times
(100 participants each).

Figure 2.5 provides a breakdown of participant demographics by age, ethnicity,
and gender, as well as cumulative measured of participation as a function of time.

Figure 2.5a indicates an average of 19 participants per week throughout the
10-week collection period, with peak participation between July 23rd andAugust 3rd.
Low participation rates during the periods from 7/9 through 7/13 and 8/6 through 8/17
were due to closure of the university for anational holiday and the beginning of the fall
semester respectively. Figure 2.5b indicates the majority of participants (52 %) were
between 20 and 29 years of age, followed by 30–39, and 50–59 age ranges. This is
primarily due to student and staff participation in the data collection, conducted on the
WVU campus. Minor age ranges were 18–19 (1 %) and 70–79 (2 %). Figure 2.5c
indicates that slightly more than half of the participants were Caucasian, followed by
African American (13 %), then Middle Eastern and Asian Indian (10 % each) eth-
nicities. This demographic distribution is consistent with the student/staff population
of WVU. Figure 2.5d indicates Caucasian and Hispanic gender participation was
nearly equal, while Middle Eastern, Asian, and African males participated more than
females. The contrary is true for African Americans.

The images collected in both the indoor and the outdoor data collection efforts
have been used to develop cross-spectral facial identification algorithms with
automated face and eye detection and photometric normalization. A total 1020 face

Table 2.6 Variations in image quality with variable sky conditions (taken at 1550 nm)

Glass On, 
Interior Lights 

Off, SWIR 
Illuminator On

Glass On, 
Interior Lights 
Off, No SWIR 

Illuminator

Ray Ban 
Sunglasses, 

Facing Away 
From Sun

Ray Ban 
Sunglasses, 

Facing Toward 
Sun

Ray Ban 
Sunglasses,  No 

SWIR 
Illuminator

Ray Ban 
Sunglasses, 

SWIR 
Illuminator

Day

Overcast

Night (street 
lamp 

illumination)
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images, including 980 SWIR face images (140 subjects × 7 scenarios) and 140
visible (ground truth) face images, were evaluated. Results indicate an
eye-detection rate of greater than 96 % in the majority of the scenarios and a rank-1
identification rate of 94.26 %when using the ground truth data acquired in this
collection [17].

2.4.3 Long-Range Face Image Collections

Our group collaborated with the WVHTCF to obtain long-range SWIR data col-
lected both indoors and outdoors using the TINDERS camera system. An indoor
collection was performed by WVHTCF personnel in their high-bay area, with
images collected under active illumination at 50 and 106 m. A second, outdoor
collection was performed with the assistance of WVU staff. This data collection
took place at night on the WVU Evansdale campus, with images captured at 100,
200, and 350 m. Faces were unobscured/obscured by glass at each distance. Sample
images for each of these datasets are shown in Figs. 2.6 and 2.7.
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While not apparent in the indoor data, atmospheric effects, primarily thermal
distortion caused by the warm asphalt surface, can be observed in the data captured
at 350 m. It should also be noted that reflections from the illuminator are not an
issue when imaging through tinted glass due to the separation distance between the
imager and the participant.

Please note that the WVHTCF group has performed matching analysis of the
long-range outdoor SWIR face data collected with their imager [12]. For the data
collected indoors, custom academic algorithms [24, 25] were used to achieve
matching results as high as 90 % rank 1 for 50 subjects’ images captured at 50 m
and 80 % for the 106 m distance. Matching experiments were performed on a subset
of 42 images captured outdoors at night at 100 m (no glass obstruction), with 63 %
matched to the correct gallery image at rank-1 and 90 % of the correct gallery image
within rank-7 using a commercial (provided by MorphoTrust) face matcher plugin
developed specifically for the TINDERS imager. It should also be noted that the
average inter-pupillary distance for all long-distance images is approximately 60–
70 pixels wide. This is a result of the zoom capabilities of the long-range SWIR
camera used in this collection, which was designed to maintain inter-pupillary
distance at all zoom levels.

Fig. 2.6 Indoor TINDERS data collected at 50 m (left) and 100 m (right)

Outdoor: 100m           100m glass 200m 200m glass 350m 350m glass

Fig. 2.7 Outdoor TINDERS data collected from 100 to 350 m with and without glass
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2.5 SWIR Gait Collection

Although there are limitations associated with capturing faces at a distance, addi-
tional modalities may be available in long-distance SWIR imagery that could be
exploited for identification purposes. One such modality is gait. To supplement
SWIR face image collection, WVU performed an additional data collection focused
on implementation of SWIR and depth-mapping camera technologies for the
acquisition of video from walking individuals to determine the efficacy of soft
biometric (body measurement) and gait-based recognition.

Two commercial cameras were used in this study: the Sensors Unlimited
Goodrich SU640KTSX-1.7RT High Sensitivity InGaAs SWIR Camera (640 × 512
pixels) with a 50 mm f/1.4 SWIR lens used in face image collection and a Microsoft
Kinect depth camera. The Goodrich camera was used to capture gait video at
distances ranging from 20–50 m, and the Kinect camera was used to collect video
from 1.5 to 4 m. Gait collection with the Goodrich camera was performed outside
during daylight hours (natural sunlight illumination), with videos filtered at
1550 nm. Operational settings such as integration time were adjusted to achieve the
best image quality based on daily environmental conditions (cloudy, sunny, etc.).
The Kinect videos were captured inside under fluorescent illumination. The walking
paths used to capture the indoor and outdoor gait cycles are illustrated in Figs. 2.8
and 2.9.

The trapezoidal path for the Kinect camera is required due to its limited field of
view at short distances. A calibration pose is performed at an intermediate “center”
distance (position “1”). The distances and walking paths chosen for the SWIR
collection allowed six or more paces of walking to be collected in a variety of
directions with respect to the camera field of view. Example images captured from
the indoor and outdoor scenarios are shown in Fig. 2.10.

4m1.5m0m 3m

Kinect

1

2

3

4

5

3.5m

2m

Fig. 2.8 Indoor Kinect
collection layout. Walking
paths: location 1 calibration
pose, perimeter traversal
beginning and ending at
location 2, location 2–4 and
back, location 3–5 and back
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Data collection was completed on December 4, 2011, with gait and soft bio-
metric data obtained from 157 individuals.

Figure 2.11 provides a breakdown of the participant demographics.
Figure 2.11a indicates an average of *14 participants per week throughout the

11-week collection period, with peak participation between October 24th and
October 30th. Thanksgiving break and the corresponding university closure is
responsible for the null participation during 11/21 through 11/27. Figure 2.11b
indicates the majority of participants (71 %) were between 20 and 29 years of age,
followed by 18–19 (12 %) which is consistent with student and faculty populations.
Figure 2.11c indicates that approximately half (46 %) of participants were
Caucasian, followed by Asian Indian (23 %). This demographic distribution is
consistent with the student/staff population of WVU. Figure 2.11d shows a con-
sistent male participation rate over female for all ethnicities with the exclusion of
unknown/non-identified ethnicities (in which case was equal participation).

Fig. 2.10 Kinect sample image (left) and SWIR sample image (right)

20m30m40m50m 0m

1

2 3

4 5

6

35m

78

Camera

Fig. 2.9 Outdoor SWIR collection layout. Walking paths: location 1–2 and back, location 3–4
and back, location 5–6 and back, location 7–8 and back
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This dataset was used to developed gait-based approaches to human identifi-
cation. The results presented in [26] indicate 15–20 % rank 1 identification accuracy
and 35–45 % rank 10 identification accuracy for algorithms based on gait energy
image (GEI), gait curves, and Frieze pattern matching. Although the performance
numbers of all three algorithms are significantly less than the numbers published for
existing CASIA gait datasets, these results were obtained from gait data collected in
an unconstrained outdoor environment (silhouette quality of WVU is ≈39 % and
≈64 % of the values for the CASIA B and C datasets), and should be viewed as
foundational work in the area of SWIR gait recognition under uncontrolled
conditions.

2.6 Summary and Conclusions

Face image capture in low-lighting conditions is made possible through
SWIR-imaging hardware and novel cross-spectral face recognition algorithms. The
development and refinement of cross-spectral face recognition systems is enabled
by the collection of both visible and SWIR face images in controlled and opera-
tional or difficult conditions. This chapter has provided several examples of data
collection efforts for multispectral SWIR face and gait capture, both indoors and
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Fig. 2.11 Participant demographics for SWIR gait collection
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outdoors and at varying standoff distances (2–350 m), along with initial results of
matching experiments performed using the collected data.

Introducing non-idealities (e.g.: very low light levels, tinted materials, and long
distances) into the data collection process supplements facial imagery data collected
under ideal conditions, and allows for a larger range of operational scenarios to be
considered in matching experiments. Gait recognition in the SWIR may also be used
in cases where face image quality is not sufficient for confident identification.

While that datasets discussed in this chapter have been used in various academic
publications to answer different research questions, there are still challenges that
need to be mitigated, especially when related to image restoration efforts and
cross-spectral face- and gait-matching activities. These challenges can be overcome
through continued use of the existing datasets, supplemented by data acquired in
additional collection activities that introduce non-ideal environmental factors.
Continued collection of non-ideal face images, leveraged by advances in SWIR
sensor technologies (e.g., GA1280JSX High Resolution High Sensitivity
InGaAs SWIR Camera by Sensors Unlimited (Goodrich) [18]), is necessary to
further mature this emerging area of biometrics research.
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Chapter 3
Hyperspectral Face Databases for Facial
Recognition Research

Woon Cho, Andreas Koschan and Mongi A. Abidi

Abstract Spectral imaging (SI) enables us to collect various spectral information at
specific wavelengths by dividing the spectrum into multiple bands. As such, SI
offers a means to overcome several major challenges specific to current face
recognition systems. However, the practical usage of hyperspectral face recognition
(HFR) has, to date, been limited due to database restrictions in the public domain
for comparatively evaluating HFR. In this chapter, we review four publically
available hyperspectral face databases (HFDs): CMU, PolyU-HSFD, IRIS-M, and
Stanford databases toward providing information on the key points of each of the
considered databases. In addition, a new large HFD, called IRIS-HFD-2014, is
introduced. IRIS-HFD-2014 can serve as a benchmark for statistically evaluating
the performance of current and future HFR algorithms and will be made publicly
available.

3.1 Introduction

To construct robust techniques for face recognition, numerous approaches to deal
with the challenging factors specific to appearance variations have been proposed.
However, there still exist serious challenges in uncontrolled conditions; e.g.,
unrestrained lighting, range of facial expressions, pose variations, and accessories.
These challenges have motivated face recognition research, but as of yet, research
has to reach a mature stage of contending with challenges that occur specific to the
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aforementioned highly unpredictable and uncertain circumstances [1]. Several of
the major challenges specific to current face recognition systems result from vari-
ations in illumination condition [2–12]. Since the radiance utilized by face recog-
nition system is proportional to the product of surface albedo and incident
illumination, it is heavily dependent on illumination conditions. However, illumi-
nation conditions are not static, and as such, illumination variations are frequently
occurring. Such illumination variations continually change the appearance of facial
images and, accordingly, challenge the performance abilities of existing face
recognition systems to produce accurate results. One viable way to address this
complexity of face recognition is to incorporate spectral information gained from SI
modalities [2–9, 11–13].

SI enables us to collect a rich variety of spectral information at specific wave-
lengths by dividing the spectrum into multiple bands. The composite images
acquired in different sub-bands for each spatial location of interest carry spectral
reflectance information that is of particular relevance to illumination invariants [9,
14]. SI techniques incorporate conventional imaging and spectroscopic techniques
in order to attain both spatial and spectral information at the same time [14].
Compared with traditional broadband images captured by trichromatic (RGB) color
or monochromatic (grayscale) cameras, SI can be comprised of a large number of
wavelength-indexed channels or bands [9] as illustrated in Fig. 3.1. Each spectral
image is referred to as two-dimensional intensity data obtained over each of the
different spectral bands. Hence, if all the spectral images are stacked directionally
vertical or horizontal, spectral images model a three dimensional cube: two spatial
dimensions corresponding to the coordinates of pixel on the image lattice and one
spectral dimension corresponding to the wavelength [9].

The terms “multispectral” and “hyperspectral” imaging can be distinguished by
the number of spectral bands and how narrow/wide the bands are [14].

Fig. 3.1 Comparison between a traditional broadband facial image captured by a RGB color
camera and hyperspectral face images (HFIs) covering the visible spectral range from 420 to
700 nm
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Multispectral sensors typically provide a few wide bands such as three channels
(red, green, and blue) and infrared bands, while hyperspectral sensors measure
energy in narrower and more numerous bands than multispectral sensors.
Hyperspectral images can contain as many as 200 (or more) contiguous spectral
bands. We refer the interested reader to [15–17] for more detail on multispectral
face databases.

When SI is applied to face recognition systems, we believe that SI can reveal
distinct patterns contained in human faces where such discriminative patterns
cannot be captured by trichromatic or monochromatic cameras. Thus, by employing
SI, the objects can be identified by the spectral properties of facial tissues measured
over the visible spectrum and beyond [9, 12].

The development of HFDs has, to date, received minimal attention due to (1) the
high cost of hyperspectral sensors compared to a trichromatic or monochromatic
camera and (2) the considerable time and effort required for building HFD. Based
on the foregoing reasons, there are few publicly available HFDs that comparatively
evaluate face recognition algorithms. In Table 3.1, we list the acronyms used in this
chapter, and Table 3.2 shows an overview of HFDs considered in this chapter.

Table 3.1 Summary of acronyms used in this chapter

Acronyms Definitions

AOTF Acousto-optic tunable filter

ETF Electronically tunable filter

HFD Hyperspectral face database

HFI Hyperspectral face image

HFR Hyperspectral face recognition

LCTF Liquid crystal tunable filter

NIR Near-infrared

SI Spectral imaging

SNR Signal-to-noise ratio

SPD Spectral power distribution

Table 3.2 Overview of hyperspectral face databases in this chapter

Database # of
Subjects

Conditions Spectral range
(nm)

Link

CMU 54 Illumination direction and time
delay

450–1100 [29]

IRIS-M 82 Illumination conditions and time
delay

480–720 [21]

PolyU-HSFD 25 Pose and time delay 400–720 [22]

Stanford 45 Viewing distance 415–950 [30]

IRIS-HFD-2014 130 Accessory, pose, and time delay 420–700 [21]
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We individually analyze four publically available HFDs: the CMU, IRIS-M,
PolyU-HSFD, and the Stanford database toward providing reviews in subsequent
sections. In Sect. 3.6, we introduce IRIS-HFD-2014, a new hyperspectral face
database recently developed by the IRIS Laboratory at the University of Tennessee,
which incorporates adjusted exposure time at each wavelength. Without adjusting
appropriate exposure time at each wavelength, spectral information of SI systems
cannot always be sufficiently captured due to lower transmittances of the SI sensors
and lower intensities of synthetic and natural lights at specific wavelengths as
mentioned in [12]. In Sect. 3.7, we guide the direction of future research involving
the overview of the studied databases and draw conclusions.

3.2 CMU Database

The CMU database [13], collected at the Carnegie Mellon University, is comprised
of hyperspectral images of 54 diverse faces covering the visible and near-infrared
(NIR) ranges from 450 to 1100 nm in 10 nm steps (65 spectral bands). The
hyperspectral imaging system is configured as shown in Fig. 3.2. Three light
sources are placed at −45° (Fig. 3.2b), 0° (Fig. 3.2c), and +45° (Fig. 3.2d)
according to the target (Fig. 3.2a). Each light source, individually and in tandem,
can be configured to on/off status. The light status determines the illumination
direction and, accordingly, results in differences specific to facial appearance. The
hyperspectral face database (640 × 480 pixels) in frontal view was captured by
acousto-optic tunable filters (AOTFs) under 600 W halogen lamps in a studio.

Fig. 3.2 Hyperspectral
imaging system of the CMU
database [13]: a target, b–
d light sources placed at −45°,
0°, and +45° according (a),
and e hyperspectral imaging
sensor
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AOTFs are electro-optical devices that include an optically transparent crystal
bonded to a transducer that generates a high-frequency acoustic wave propagating
the crystal. As the incoming light reaches the crystal, concurrently a
radio-frequency acoustic wave propagates the crystal. During this process, the
acoustic wave affects a variation in the refractive index, consequently performing as
transmission diffraction. The selection of the specific wavelength can be controlled
by adjusting the frequency of the acoustic wave [9]. The CMU database, utilizing a
hyperspectral sensor, considered the effects of varying illumination directions on
facial appearance. In addition, the facial data in the CMU database were taken
during multiple sessions over a period of several weeks (approximately two
months). As shown in Fig. 3.3, this database provides four different hyperspectral
face datasets per each data subject; datasets were gained under varying illumination
directions. Each of the hyperspectral face images can be aligned by using a 2D
similarity transform (rotation, translation, and scale) [18] based on the eye coor-
dinates distributed with the CMU database.

3.3 IRIS-M Database

Chang [3] created the IRIS-M database at the University of Tennessee which
consists of 82 data subjects reflecting different ethnicities, ages, facial hair char-
acteristics, and genders; hyperspectral facial data were gathered over 10 sessions.
The IRIS-M database was developed in two different environments (see Fig. 3.4):

600 nm 700 nm 800 nm 900 nm 1000 nm
(a)

(b)

(c)

(d)

Fig. 3.3 CMU database: example of four different datasets gathered under four different
illumination directions. The images taken from [29] are sampled in the range of 600–1000 nm in
100-nm intervals. a All light sources are turned on. b The left light source is turned on. c The
center light source is turned on. d The right light source is turned on
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(1) indoor environment under either two halogen or two fluorescent lamps and
(2) outdoor environment under daylight. The spectral power distributions (SPDs) of
four different illuminants utilized in the IRIS-M database are shown in Fig. 3.5. The
IRIS-M database (640 × 480 pixels) in frontal view was collected by a
VariSpec VIS liquid crystal tunable filter (LCTF) in the visible spectral range from
480 to 720 nm in steps of 10 nm (25 bands) and by a Raytheon Palm-IR Pro
camera1 for thermal infrared images.

As one of the electronically tunable filters (ETFs), LCTF is comprised of a set of
liquid crystal wave plates to tune a specific wavelength. LCTF offers a linear optical
path by polarizing a stack of wave plates and provides the ability to select any
wavelength in visible range or NIR range. Whereas LCTF is sensitive to polarization
and has intrinsic limitations specific to relaxation time of polarizing a stack of wave
plates for tuning a wavelength about 5–50 ms, LCTF is one of the most commonly
used ETFs for three main reasons [9]: (1) Light transmission is rapidly and readily
handled by electrical applications with a universal serial bus (USB) interface; (2) no
vibration occurs as adjusting a specific wavelength; and (3) LCTF supports a large
aperture and high image quality resulting from low spectral distortions. The RGB
images (2272 × 1704 pixels) in the IRIS-M database were captured by a Sony XC-75
camera.2 In the development of the IRIS-M database, the effects of variations in
illuminant and time delay on the facial skin from hyperspectral and thermal imaging
were studied. Examples are shown in Fig. 3.6.

Fig. 3.4 Hyperspectral imaging system used to obtain the IRIS-M database. The left figure shows
a target, b and c light sources, and d hyperspectral imaging sensor. The right figure shows a target,
b natural illuminant (sun), and c hyperspectral imaging sensor

1http://www.palmir250.com/ir250pro.htm.
2http://www.subtechnique.com/sony/PDFs/xc-7573e.pdf.
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Fig. 3.5 The normalized SPDs in terms of four different light sources utilized in the IRIS-M
database. The figures are taken from [9]. a Halogen. b Fluorescent 1. c Fluorescent 2. d Daylight

Fig. 3.6 HFIs in the IRIS-M database taken from [9]: a and b outdoor HFIs at 640 and 720 nm
under daylight; c and d indoor HFIs at 640 and 720 nm under halogen lights; e–h gray images
under daylight, halogen, fluorescent 1, and fluorescent 2, respectively, with regard to four different
light sources employed in the IRIS-M database
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3.4 PolyU-HSFD Database

The Hong Kong Polytechnic University Hyperspectral Face Database (PolyU-
HSFD) [8] consists of 25 data subjects of Asian descent, ranging in age of years
(21–38) and multiple genders (8 females and 17 males). It primarily considers the
effects of varying poses on the facial appearance: frontal, right, and left view of a
subject as illustrated in Fig. 3.7. The angles of right and left views are approxi-
mately ±45° with respect to the frontal subject, respectively. Sample sequences of
the indoor PolyU-HSFD in three different poses are shown in Figs. 3.8, 3.9,
and 3.10.

Each facial set (300 hyperspectral image cubes, 180 × 220 × 33 voxels) obtained
by a CRI’s VariSpec LCTF under a halogen light contains a 33-channel hyper-
spectral image in 10 nm steps from 400 to 720 nm. According to the data collection
dates, the PolyU-HSFD provides four different sets obtained at roughly one month
intervals. Note that the first six bands (400–450 nm) and the last three bands (690–
720 nm) in this database are rejected due to very low signal-to-noise ratios
(SNR < 6 db) as mentioned in [8, 11, 12].

Fig. 3.7 Hyperspectral imaging system employed to obtain the PolyU-HSFD database [8]:
(a) target in three different poses, (b) light source, and (c) hyperspectral imaging sensor
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3.5 Stanford Database

The indoor Stanford database consists of 45 data subjects. It was established by
Skauli and Farrell [19] and was acquired by a HySpex line-scan imaging spec-
trometers3 under studio tungsten light. The HySpex camera is a pushbroom sensor
developed at NEO. The primary advantage of the pushbroom sensor [14] is that it is
able to collect all of the spectra relevant to each individual line, employing a
line-by-line imaging collection approach. Nevertheless, the push broom sensor
suffers from spectral distortion and is also heavily sensitive to a subject’s move-
ment, as shown in Fig. 3.11, as one line of the scene of interest is scanned at a time.

Fig. 3.8 HFI sequences of PolyU-HSFD frontal views where HFIs are sampled for every 50 nm
step in the range from 500 to 650 nm. These sample images are taken from [22]

Fig. 3.9 HFI sequences of PolyU-HSFD right views where HFIs are sampled for every 50 nm
step in the range from 500 to 650 nm. These sample images are taken from [22]

Fig. 3.10 HFI sequences of PolyU-HSFD left views where HFIs are sampled for every 50 nm step
in the range from 500 to 650 nm. These sample images are taken from [22]

3http://www.neo.no/hyspex/.
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The Stanford database in frontal view contains 148 bands spanning the visible
and NIR range from 415 to 950 nm in steps of 4 nm. The Stanford database
considered the effects of the variations in scale based on the viewing distance from
a face to a detector (1–3 m) specific to hyperspectral face images. In Fig. 3.12, the
samples of Stanford database in different viewing conditions are shown where they
are displayed using sRGB values rendered under the CIE illuminant D65 [20]. The
hyperspectral face data are denoted in an n × m × w matrix: n corresponds to the
number of rows in an image, m corresponds to the number of columns in an image,
and w corresponds to the number of spectral bands (about 148 bands). Varying the
number of rows and columns of an image for each subject is dependent on the
scanning time. Moreover, the Stanford database provides software4 to load and
analyze hyperspectral face data in MATLAB.

Fig. 3.11 Example of an artifact in Stanford database resulting from eye blinking during data
acquisition. This sample image is taken from [30]

Fig. 3.12 Sample sRGB images in the Stanford database taken from [30]. a 1 m viewing distance.
b 3 m viewing distance

4http://scien.stanford.edu/index.php/s_scenefrommultispectral-m/.
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3.6 IRIS-HFD-2014

A new large HFD, IRIS-HFD-2014, was recently developed over multiple sessions
in the IRIS Laboratory at the University of Tennessee. Similar to the PolyU-HSFD
and the IRIS-M databases, an LCTF was employed to acquire the HFIs covering the
visible spectral range from 420 to 700 nm in 10-nm intervals (29 narrow-bands). As
shown in Fig. 3.13a, b, the IRIS-M database [21] and the PolyU-HSFD [22], both
acquired with constant exposure time over the visible spectral range, introduce
challenges to extract spectral properties from facial tissue used for facial discrim-
ination at specific bands due to lower intensities and lower SNRs. Compared to the
IRIS-M and the PolyU-HSFD, IRIS-HFD-2014 provides more spectral information
captured by adjusting exposure time at each wavelength as shown in Fig. 3.13c.
IRIS-HFD-2014 is designed to address several challenging problems in face
recognition research, including, but not limited to, variations in time, pose (both
frontal and profile views), and structural features (e.g., glasses). In addition, the
database contains RGB color images of 116 data subjects. These images were
captured by a traditional color camera with uncontrolled settings under varying
illumination conditions; the resulting images were unfocused. IRIS-HFD-2014
consists of a total of 14,832 facial images of 130 data subjects; data subjects include
86 males and 44 females of several ethnic background and appearance. In short,
IRIS-HFD-2014 includes (1) hyperspectral images of 130 individuals in three
different neutral poses without glasses (frontal view, 45° left profile, and 45° right
profile); (2) hyperspectral images of 51 individuals wearing glasses; and (3) RGB
color images corresponding to the scenarios mentioned in (1) and (2).

Fig. 3.13 Comparison of three HFDs using LCTFs: (a) the IRIS-M database [21], (b) the
PolyU-HSFD [22], and (c) the IRIS-HFD-2014. The HFIs are covered by a range of 480–690 nm
in 30-nm intervals. While (a) and (b) were acquired with constant exposure time over the visible
spectral range, (c) was acquired with adjusted exposure times
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3.6.1 Data Acquisition and Calibration

The practical usage of HFR has, to date, been limited due to the limited number of
publically available databases for comparatively evaluating HFR algorithms. Thus,
the purpose of the new database presented in this chapter is to meet the demands for
a HFD that can serve as a benchmark for comprehensively and statistically eval-
uating the performance of current and future algorithms for HFR. From December
2013 to February 2014, IRIS-HFD-2014 was collected from 86 males (66 %) and
44 females (34 %), a total of 130 data subject participants representing several
ethnic groups: 70 Caucasians (C), 40 Asians (A), 6 of African descent (AD), 6 of
Middle Eastern descent (ME), 5 Asian Indians (AI), 2 Hispanics (H), and 1 Native
American (NA). Figure 3.14 shows the summary of gender and ethnic diversities in
IRIS-HFD-2014.

The configuration of the hyperspectral imaging systems is established, as shown
in Fig. 3.15, where each of the hyperspectral imaging modules is displayed in
Fig. 3.16. The HFD was acquired using an X-rite ColorChecker Classic5 placed to
the side of the individuals (Fig. 3.15) to allow the calibration and analysis of facial
color. The VariSpec VIS LCTF6 in Fig. 3.16a was mounted in front of a detector.
Between the LCTF and the detector, a 25-mm fixed focal length lens was equipped,
supporting a wide aperture of f/0.95. For the detector, a 1.3 megapixel monochrome
12 bit XIMEA xiQ usb3.0 camera7 supporting a resolution of 1280 × 1024 pixels
was employed. As a light source (Fig. 3.16b), a Lumia 5.1 Reef version8 was used
with 5 channel LEDs: (1) neutral white, (2) royal blue, (3) hyper violet, (4) deep red
and turquoise, and (5) true violet and cool blue. Figure 3.17 shows the SPD of the
light source for each channel where each channel can manually be controlled to
on/off state as shown in Fig. 3.16c; the SPD of the light source was measured with
an Ocean Optics Model USB2000 spectrometer9 shown in Fig. 3.16d.

As the spectral transmittance of the LCTF decreases from long-to-short wave-
lengths, it is beneficial to properly adjust the camera exposure time according to the
spectral transmittances at each wavelength. For example, at the shorter wave-
lengths, a longer exposure time is set in order to accumulate more radiant energy in
the detector. Furthermore, to gain more radiant power in the short wavelength
regions, the 4th channel of the light source is disabled (see Fig. 3.17).

5http://xritephoto.com/ph_product_overview.aspx?id=1192.
6http://www.spectralcameras.com/varispec.
7http://www.ximea.com/en/usb3-vision-camera/xiq.
8http://www.ledgroupbuy.com/lumia-5-1-100w-full-spectrum-5-channel-led/.
9http://oceanoptics.com/product/usb2000-custom/.
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To determine a proper exposure time for each wavelength, the ColorChecker
card was first replaced with an X-Rite ColorChecker Grayscale card10 located to the
right side, respectively, of the detector. Next, the brightest region was selected as a
region of interest (ROI) within the white target of the Grayscale card where the size
of the ROI was set to 100 × 100 pixels throughout the experiments. Then, the
exposure time was increased until the average of the intensity values within the ROI
reached about 86 % of the camera saturation value [23]. Figure 3.18a shows the
SPD of the Lumia 5.1 Reef when the 4th channel was turned off. Figure 3.18b
elucidates the adjusted exposure times at each wavelength during data acquisition.
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Fig. 3.14 Summary of gender and ethnic diversities in IRIS-HFD-2014

Fig. 3.15 (a) Lateral and (b) rear view of the data acquisition system when the light source is
turned off; (c) lateral and (d) rear view when the light source is turned on

10http://xritephoto.com/ph_product_overview.aspx?ID=1234.
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After proper exposure times were determined for each wavelength, dark current
images were acquired using the same exposure time corresponding to the wave-
lengths by placing a cap on the front of the LCTF. To remove constant noises
exhibited by CCD imagers depending on exposure duration, dark current images
were subtracted from the radiance images. Then, the maximum intensity values of
the radiance images were computed at each wavelength within the ROI located at
the same position. The reflectance images were recovered by dividing the radiance
images by the estimated maximum values at each wavelength [10]. Sample HFIs
with the ColorChecker, after the process of recovering the reflectance images from
the radiance images in each pose, are shown in Fig. 3.19. The images in the profile
views were collected by asking the subjects to rotate their head ranging from −45°

to +45°. Figure 3.20 shows sample color images corresponding to different poses in
the database.

In cases where HFIs are acquired with constant short exposure time, there is less
concern about the inter-band misalignments as a subject’s movement [11] is
insignificant with shorter data acquisition time. Nevertheless, without properly

Fig. 3.16 The hyperspectral imaging modules. (a) VariSpec VIS mounted in front of XIMEA xiQ
USB3.0 camera, (b) Lumia 5.1 Reef, (c) a controller for the light source, and (d) EasyView30 light
meter and Ocean Optics USB2000
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adjusting the camera exposure time at each wavelength, the spectral information of
SI systems suffers from two main limitations: (1) lower transmittances of the LCTF
at the bands in the lower end of the visible spectral range as shown in Fig. 3.21 and
(2) lower intensities of natural and synthetic lights at specific wavelengths. For
example, as shown in Fig. 3.18a, the light source inherently has low intensities at
660–700 nm.

Toward addressing inter-band misalignments, a conventional approach based on
eye coordinates [8, 11, 13] was used. The eye coordinate-based alignment approach
is typically retained to align HFIs. For aligning HFIs, the canonical frame is set to

Fig. 3.17 The SPD of each channel of Lumia 5.1 Reef as increasing the current (mA) from 50 to
700 mA (best viewed in color)
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be 140 × 160 pixels. The eye coordinates are manually selected to the middle of the
eyes in each sub-band of IRIS-HFD-2014. The distance between the selected eye
points is normalized to 80 pixels. Samples of aligned HFIs in three different poses
are shown in Figs. 3.22, 3.23, and 3.24. Compared to the frontal view in Fig. 3.22,

Fig. 3.18 (a) SPD of Lumia 5.1 Reef when the 4th channel is turned off and (b) adjusted exposure
time during data acquisition. The SPD of the light source was measured with an Ocean Optics
USB2000 spectrometer

450 nm

550 nm

650 nm

700 nm

(a) (b) (c)

Fig. 3.19 Sample sequences for each pose in the database, after data calibration
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Fig. 3.20 Sample color images representing three poses in the database. a Frontal view. b Left
profile. c Right profile

Fig. 3.22 Examples of the frontal aligned HFIs sampled in the range of 440–700 nm in 10-nm
intervals on IRIS-HFD-2014

Fig. 3.21 Narrowband transmittances of a VariSpec VIS LCTF from 400 to 720 nm in 10-nm
intervals
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Fig. 3.23 Examples of the aligned HFIs in the 45° left profile sampled in the range of 440–
700 nm in 10-nm intervals on IRIS-HFD-2014

Fig. 3.24 Examples of the aligned HFIs in the 45 degree right profile sampled in the range of
440 nm to 700 nm in 10-nm intervals on IRIS-HFD-2014

Fig. 3.25 Entire aligned datasets of IRIS-HFD-2014 in the frontal view where full sub-bands
(420–700 nm in 10 nm steps) are displayed using the sRGB values rendered under a CIE
illuminant D65 [10]

64 W. Cho et al.



HFIs in both profile views shown in Figs. 3.23 and 3.24 cover a set of pose
variations ranging from approximately −45° to +45° where pose variations intro-
duce partial or entire occlusion of facial components including mouth, nose, or
eyes. The aligned HFI pairs can be used for various evaluations of current or future
face recognition algorithms to address several challenging problems in face
recognition research including variations in pose (both frontal and profile views).
Figure 3.25 shows all the aligned datasets in the frontal view of IRIS-HFD-2014
including several ethnic backgrounds and diverse physical appearance where full
sub-bands are mapped to the sRGB values with respect to the CIE 1931 2° standard
observer and the CIE illuminant D65 [20].

3.7 Discussion and Conclusion

Whereas SI does address substantial challenges of face recognition systems,
especially those caused by changes in lighting [2–7, 9, 10], broadly, three chal-
lenges specific to SI remain: (1) high dimensionality of spectral data; (2) inter-band
misalignments when SI is applied to non-rigid objects; and (3) database restrictions
in the public domain for comparatively evaluating HFR.

First, the high dimensionality of the spectral data causes limitations on physical
experiments and detailed numerical analysis since spectral data include multiple
sub-bands captured at each wavelength [24]. For this reason, there is a need for
robust data compression techniques, specifically post-processing techniques, by
means of extracting relevant basis functions from large quantities of high-
dimensional spectral data. These techniques are crucial to analyze and represent a
large set of spectral data and, finally, to model the processes.

Second, inter-band misalignments must be preferentially resolved to aid the
subsequent processes, e.g., band selection, band fusion, and extraction of spectral
features for face recognition within the compute vision community. To address
inter-band misalignments in SI, conventional alignment approaches based on eye
coordinates have typically been employed. However, it is difficult to consistently
select the eye coordinates at the same positions by hand over a large hyperspectral
face image set such as IRIS-HFD-2014. In the particular cases for the different
profiles and structural feature (e.g., glasses), the conventional alignment approach
should be limited due to the partial occlusion of one eye in the profile views and the
problem of reflection on the glasses. Accordingly, it is necessary to develop
automatic alignment approaches to deal with inter-band misalignments in HFIs.

Third, the development of HFDs has, to date, received less attention due to
(1) the high cost of hyperspectral sensors compared to a trichromatic or
monochromatic camera and (2) the considerable time and effort required for
building HFDs. Therefore, there are few publicly available HFDs that can be used
to comparatively evaluate face recognition algorithms. In this chapter, we provided
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a review in terms of five publicly available HFDs: CMU, IRIS-M, PolyU-HSFD,
Stanford, and IRIS-HFD-2014. We note that there is one more publically available
HFD, called UWA-HSFD, in preparation for being released into the public domain.
UWA-HSFD consisting of 79 data subjects in the frontal view taken over 4 sessions
[11, 12] was developed by the University of Western Australia.11 Each hyper-
spectral image was captured by the VariSpec LCTF integrated with a photon focus
camera. Each dataset of HFIs contains 33 bands covering the visible spectral range
from 400 to 720 nm with 10 nm steps. As we adjusted the camera exposure time in
during data acquisition, UWA-HSFD also considered the adaptation of the camera
exposure time according to lower transmittances of the filter and lower illumination
intensities in each band.

The robustness of the developed algorithms for HFR based on the studied
databases can be verified through variations of a large number of factors: (1) face
pose (PolyU-HSFD and IRIS-HFD-2014); (2) time delay (CMU, IRIS-M,
PolyU-HSFD, and IRIS-HFD-2014); (3) illumination direction (CMU); (4) illumi-
nation condition (IRIS-M); (5) viewing distance (Stanford); and (6) accessory
(IRIS-M and IRIS-HFD-2014). For the extraction of spectral properties of facial
tissue in both the visible and the NIR ranges, CMU and Stanford databases can be
used. In the case constrained to the visible range, spectral measurements of facial
tissue can be achieved on IRIS-M, PolyU-HSFD, and IRIS-HFD-2014. We note
that the IRIS-M database also contains 4228 pairs of visible and thermal IR face
images of 30 subjects.

Although we mainly presented a study of publically available databases covering
the visible and NIR spectrum in this chapter, there are three datasets in the visible
and infrared spectrum particularly to evaluate cross-spectral face recognition per-
formance (i.e., infrared-visible face recognition) [25–28]: (1) The UND Collection
X1 developed by the University of Notre Dame (82 subjects in visible and LWIR
imagery); (2) WSRI developed by the Wright State University (119 subjects in
visible and MWIR imagery); and (3) NVESD developed by US Army Night Vision
and Electronic Sensors Directorate (50 subjects in visible, MWIR, and LWIR
imagery). We refer the interested reader to the paper [25] for more details.
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Chapter 4
MWIR-to-Visible and LWIR-to-Visible
Face Recognition Using Partial Least
Squares and Dictionary Learning

Shuowen Hu, Nathaniel J. Short, Prudhvi K. Gurram,
Kristan P. Gurton and Christopher Reale

Abstract Cross-spectral face recognition, which seeks to match a face image
acquired in one spectral band (e.g., infrared) to that of a face acquired in another
band (e.g., visible), is a relatively new area of research in the biometrics commu-
nity. Thermal-to-visible face recognition has been receiving increasing attention,
due to its promising potential for low-light or nighttime surveillance and intelli-
gence gathering applications. However, matching a thermal probe image to a visible
face database is highly challenging. Thermal imaging is emission dominated,
acquiring thermal radiation naturally emitted by facial tissue, while visible imaging
is reflection dominated, acquiring light reflected from the surface of the face. The
resulting difference between the thermal face signature and the visible face signa-
ture renders conventional algorithms designed for within-spectral matching (e.g.,
visible-to-visible) unsuitable for thermal-to-visible face recognition. In this chapter,
two thermal-to-visible face recognition approaches are discussed: (1) a partial least
squares (PLS)-based approach and (2) a dictionary learning SVM approach.
Preprocessing and feature extraction techniques used to correlate the signatures in
the feature subspace are also discussed. We present recognition results on an
extensive multimodal face dataset containing facial imagery acquired under dif-
ferent experimental conditions. Furthermore, we discuss key findings and impli-
cations for MWIR-to-visible and LWIR-to-visible face recognition. Finally, a novel
imaging technique for acquiring an unprecedented level of facial detail in thermal
images, polarimetric LWIR, is presented along with a framework for performing
cross-spectral face recognition.
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4.1 Introduction

Face recognition research has predominantly focused on the visible spectrum for
within-spectral face recognition (i.e., matching faces acquired in the same spectral
band), addressing challenges such as variations in illumination, pose, appearance,
and resolution. Recently, there has been increasing interest in cross-spectral (also
referred to as heterogeneous) face recognition, with the objective of matching a
probe image acquired in one spectrum (e.g., infrared) to a gallery of face images
acquired in another spectrum (e.g., visible). In this chapter, we focus on the
emission-dominated thermal infrared bands, describing techniques to match thermal
probe images to visible gallery datasets, and presenting performance evaluation
results.

The thermal spectrum is dominated by emitted radiation and consists of two
infrared sub-bands: mid-wave infrared (MWIR; 3–5 μm wavelength), and
long-wave infrared (LWIR; 8–14 μm wavelength). In contrast, the visible spectrum
consists of light with wavelength from 0.4 to 0.7 μm and is dominated by reflected
radiation. Note that the near-infrared band (NIR; 0.74–1 μm wavelength) and
short-wave infrared band (SWIR; 0.74–1 μm wavelength) are also reflection
dominated. Figure 4.1 shows the visible, SWIR, MWIR, and LWIR face signatures
of a subject. As can be observed, the emission-dominated MWIR and LWIR face
signatures are similar to each other, but differ substantially from the
reflection-dominated visible and SWIR face signatures. The fundamental difference
in phenomenology leads to a highly challenging problem for thermal-to-visible face
recognition. Successfully addressing this challenge will significantly improve

Fig. 4.1 Face signatures of a
subject simultaneously
acquired in the visible, SWIR,
MWIR, and LWIR spectra.
The spectral responses of the
sensors are 0.9–1.7 μm for
SWIR, 3–5 μm for MWIR,
and 8–12 μm for LWIR
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low-light or nighttime surveillance and intelligence gathering operations, when
acquiring visible images is unfeasible. Developing this technology will ultimately
provide the capability to surreptitiously acquire nighttime face imagery of a distant
subject for identification with visible face images contained in government data-
bases and watch lists.

In this chapter, we describe two different approaches developed to address
thermal-to-visible face recognition. Both techniques involve preprocessing, fol-
lowed by feature extraction, and then classification/recognition. The first approach
consists of difference of Gaussian (DoG) preprocessing, histogram of oriented
gradient (HOG) feature extraction, and PLS regression-based recognition. The
second approach incorporates dictionary learning to learn and perform the mapping
between thermal and visible feature spaces, prior to support vector machine (SVM)-
based recognition. While the first approach seeks to implicitly learn the relationship
between thermal and visible face signatures through PLS, the second approach
explicitly maps the thermal features to the corresponding visible representation
prior to recognition. We evaluate the performance of these techniques on a mul-
tispectral face database collected by US Army CERDEC-NVESD and US Army
Research Laboratory. Finally, we introduce a novel face recognition technique
based on polarimetric LWIR imaging, exploiting the polarization-state information
of thermal radiation to acquire detailed facial features unavailable in conventional
thermal imagery.

4.2 Background and Related Work

The first cross-spectral face recognition techniques focused on the reflection-
dominated infrared band, specifically NIR-to-visible [1–3] and SWIR-to-visible
[4–7]. Face recognition techniques in the emission-dominated thermal infrared
spectrum preceded these studies, but initially focused on within-spectral (i.e.,
thermal-to-thermal) face recognition. Socolinsky and Selinger [8] compared the
within-spectral performance of several face recognition algorithms in the visible
spectrum and the LWIR band, finding that performance using LWIR face imagery
was generally better than that using visible face imagery. However, the dataset
employed in the study was collected under more challenging conditions for the
visible spectrum than for the LWIR band [8]. Chen et al. [9], using principal
component analysis (PCA) based face recognition, found that performance in the
visible spectrum surpassed the performance in the thermal spectrum, especially
when there was substantial time lapse between the acquisition of the gallery and
probe images. When using both visible and LWIR imagery with fusion at the
decision level, Chen et al. [9] demonstrated that the resulting face recognition
performance was higher than achievable in either spectrum individually. For an
extensive review of face recognition work in both the visible and infrared spectra,
Kong et al. [10] provides a thorough examination of studies conducted prior to
2005. A physiology-based technique for within-spectral thermal face recognition
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was introduced by Buddharaju et al. [11], relying on more innate characteristics
under the skin, which are expected to be less variable with respect to factors such as
time lapse. Buddharaju et al. [11] used image morphology to localize the superficial
blood vessel network and then extracted branching points, referred to as thermal
minutiae, which are employed as features for a point-pattern-based face recognition
approach. Though this method is effective for within-spectral matching, it cannot be
readily applied to cross-spectral thermal-to-visible face recognition, due to the
inability to image these blood vessels in the visible spectrum. More recently, Osia
and Bourlai [12] proposed a physiological and geometric-based approach for
within-spectral matching in the visible spectrum as well as the thermal (MWIR and
LWIR) bands. Specifically, score-level fusion of a global matcher and a local
matcher was proposed, both of which utilized extracted facial features such as
veins, edges, wrinkles, and face perimeter outlines for within-spectral face
recognition.

It is not until recently that cross-spectral thermal-to-visible face recognition has
emerged as an area of interest in the face recognition community. Thermal-to-
visible face recognition occupies a niche research area, with potential application
for discreet surveillance and intelligence gathering operations in low-light or
nighttime scenarios. In such scenarios, acquiring a visible face image is not feasible
due to the lack of natural illumination and the need to avoid actively illuminating
the scene. Therefore, acquiring the naturally emitted thermal radiation from human
skin is ideal. The resulting thermal facial signature must then be matched to existing
government databases and watch lists, which almost exclusively contain visible
face images of individuals of interest. This necessitates the development of tech-
niques capable of recognizing a thermal probe face image from a gallery containing
only visible face images. Only a few recent studies have proposed algorithms to
address this challenge.

Klare and Jain [13] proposed a nonlinear kernel prototype representation for
features extracted from face images acquired in different spectra, followed by linear
discriminant analysis (LDA) to enhance the discriminative capabilities of the pro-
totype representation. They use the term heterogeneous to describe cross-spectral
face recognition. Their heterogeneous face recognition framework was tested on
sketch-to-photo, NIR-to-visible, and thermal-to-visible scenarios. For thermal-to-
visible face recognition, Klare and Jain [13] trained on thermal–visible image pairs
from 667 subjects and tested on 333 subjects, using a face database from the
Pinellas County Sheriff’s Office (PCSO). Furthermore, their gallery of 333 visible
images from the test subjects was augmented with visible images from an additional
10,000 subjects, thus increasing the number of classes and creating a more chal-
lenging recognition problem. Klare and Jain [13] achieved a Rank-1 identification
rate of 0.492 for face identification performance. For face authentication perfor-
mance, their technique achieved a verification rate of 0.727 at a false alarm rate
(FAR) of 0.001, and a verification rate 0.782 at FAR=0.01.

The study by Bourlai et al. [14] conducted a detailed assessment of different
techniques for MWIR-to-visible face recognition, specifically evaluating the DoG
and self-quotient image (SQI) preprocessing methods and six different feature
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descriptors. Choi et al. [15] proposed a PLS regression-based matching framework
for LWIR-to-visible face recognition, finding that DoG preprocessing and HOG
feature extraction facilitated this cross-spectral matching. The extension of this
PLS-based framework [16] is discussed in detail in Sects. 4.4 and 4.5 of this
chapter. The list of thermal-to-visible face recognition studies reported in literature
as well as the databases used for these studies are given in Table 4.1. The next
section will describe these databases in more detail.

4.3 Multimodal Face Databases

Several multispectral databases containing both thermal and visible face images
have been used in the previously described work to develop thermal-to-visible face
recognition techniques and assess algorithm performance. The first extensive LWIR
and visible face database was collected during 2002–2004 by the University of
Notre Dame [9, 17], referred to as Collection X1. This database is publicly available
and can be requested. It contains imagery of 82 subjects acquired under different
lighting and facial expression conditions, with multiple images per subject acquired
over time. However, the imager used at the time was a Merlin uncooled LWIR
camera, which only has a resolution of 312 × 239 pixels. In contrast, the newer
databases are acquired with higher-resolution thermal cameras. The dataset from the
PCSO used by Klare and Jain [13] was acquired with a 640 × 480 pixel resolution
FLIR Recon III ObserveIR camera. Bourlai et al. [14] used the FLIR
SC8000 MWIR camera, which has a resolution of 1024 × 1024 pixels. Two
multispectral face databases were used by Hu et al. [16]: a database from the Wright
State Research Institute collected using a 640 × 512 pixel resolution FLIR
SC6700 MWIR camera with a pixel pitch of 15 μm, and a database acquired by US
Army CERDEC-NVESD. The work presented in the rest of this chapter primarily
uses the NVESD database. The NVESD database was collected in 2012, containing
simultaneously acquired face imagery in the visible, SWIR, MWIR, and LWIR

Table 4.1 List of studies in literatures on thermal-to-visible cross-spectral face recognition

Authors Method Database(s) used

Bourlai
et al.

• DoG and SQI preprocessing
• LBP, LTP, PHOG, SIFT, TPLBP, and
FPLBP descriptors

50-subject WVU (MWIR)

Klare and
Jain

Kernel prototype representation 1000-subject PCSO (MWIR)

Choi et al. Partial least squares 82-Subject UND X1 (LWIR)

Hu et al. Partial least squares + thermal
cross-examples

• 82-subject UND X1 (LWIR)
• 50-subject NVESD (MWIR
and LWIR)
• 200-subject WSRI (MWIR)

4 MWIR-to-Visible and LWIR-to-Visible Face Recognition … 73



bands from a set of 50 subjects. The resolution for both the MWIR and LWIR
sensors was 640 × 480 pixels. The MWIR sensor had a pixel pitch of 12 μm, while
the LWIR sensor had a pixel pitch of 15 μm. All 50 subjects were imaged at three
different ranges: 1, 2, and 4 m. A subset of 25 subjects participated in the exercise
condition (fast walk) and were imaged at the three ranges before and after exercise.
For each acquisition, a video sequence of 15 s was collected at 30 frames per
second by all the imagers. To form the gallery set and probe set, a frame was
extracted at 1 s and another at 14 s from each acquisition.

4.4 Methodology

The thermal-to-visible face recognition algorithms discussed in this section are
composed of three distinct stages: (1) preprocessing, (2) feature extraction, and
(3) classification/matching. Preprocessing and feature extraction are addressed in
Sect. 4.1. Two different matching approaches are discussed in Sects. 4.2 and 4.3: a
PLS-based approach and a “dictionary learning + SVM”-based approach. Theory
and processing concepts for a novel face recognition imaging modality is presented
in Sect. 4.3.

4.4.1 Preprocessing and Feature Extraction

Prior to recognition, a face image must first be preprocessed, which consists of
several key steps: aligning the face to a set of canonical coordinates, cropping the
facial area, and filtering. Aligning the face to canonical coordinates is important so
that all face images are transformed to a common coordinate system. Typically,
several fiducial points (e.g., center of eyes, tip of nose, and center of mouth) are
marked in a raw face image. An affine transformation is computed and applied to
the raw face image so that these fiducial points are located at a common set of
spatial coordinates across all face images (irrespective of subject). This procedure
inherently normalizes all face images to a fixed resolution where the eye-to-eye
distance measured in pixels is the same. Following alignment, the facial region is
cropped to remove the background. The amount of cropping is subjective, but
generally varies from a loose crop (contains hair and outline of face) to a tight crop
only containing core facial region consisting of eyes, nose, and mouth [18]. The
aligned and cropped face images are typically then filtered to remove noise as well
as to reduce local variations that are detrimental to face recognition. In the visible
spectrum, illumination variations due to the position of natural or artificial lighting
sources represent a significant confound for accurate face recognition. Filtering
techniques such as SQI and DoG have been used to effectively reduce illumination
variations in visible face imagery. Since thermal imaging is emission dominated, it
is relatively unaffected by illumination conditions. However, due to face tissue
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physiology, local variations in the form of heat patterns are present in the thermal
face signature, resulting in a mottled facial appearance as can be observed in
Fig. 4.1. For cross-spectral thermal-to-visible face recognition, the chosen filtering
technique must be able to reduce illumination variations in the visible face image
and heat pattern variations in the thermal spectrum. Choi et al. [15] compared SQI
and DoG filtering for thermal-to-visible face recognition, finding that DoG filtering
resulted in a substantially higher cross-spectral face identification rate. After fil-
tering, an optional last step is to perform contrast enhancement/normalization to
emphasize edges. Many contrast enhancement techniques have been developed
over the years—histogram equalization-based methods such as CLAHE [19] can be
used to enhance face images effectively. Note that contrast enhancement is typically
not needed if the feature extraction technique (e.g., HOG) used in the next stage
contains inherent normalization. Figure 4.2 shows the preprocessed face images,
after alignment, tight cropping, DoG filtering, and contrast enhancement, corre-
sponding to the respective raw intensity images shown previously in Fig. 4.1. DoG
filtering reduces local illumination variations in the visible spectrum and heat
pattern variations in the thermal spectrum.

The next stage after preprocessing is feature extraction, which seeks to extract
relevant information that improves the discriminative capabilities of the subsequent
classification/recognition stage. Choosing appropriate features is therefore critical for
accurate and robust face recognition. Many different feature transforms have been
developed for face recognition—local binary patterns (LBP), HOG, and Gabor fea-
tures are three of the most well-known techniques. However, not all these features are
suitable for cross-spectral thermal-to-visible face recognition. The LBP operator
extracts texture-based facial details, which is substantially different between the
thermal face signature and the visible face signature. The HOG features are edge
orientation histograms formed using dense overlapping blocks [20], encoding key
edge information. As can be observed in Fig. 4.2, key edges around the eyes, nose, and
mouth are correlated between the thermal and visible face signatures—HOG features

Fig. 4.2 Simultaneously acquired face images from the NVESD dataset in the visible, MWIR,
and LWIR spectra after preprocessing
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are therefore conceptually suitable for thermal-to-visible face recognition. As
demonstrated quantitatively in the study of Choi et al. [15], HOG features do in fact
outperform LBP and Gabor features for this cross-spectral scenario. Therefore, HOG
features extracted from DOG filtered face images are used for the two classification
approaches (PLS, dictionary learning SVM) described in Sects. 4.4.2 and 4.4.3.

4.4.2 Partial Least Squares-Based Approach

The features extracted from the preprocessed face images are used in the classifi-
cation stage to recognize a thermal probe image from a gallery of visible subject
images. In this section, a PLS regression method is discussed [15, 16, 21]. The PLS
algorithm originated in the field of economics and was developed by Wold [22].
The PLS-based regression has been shown to be robust to multicollinearity [23],
which frequently arises with high-dimensional features that are inherently corre-
lated. Furthermore, PLS regression is also robust to sample imbalance [24], where
the number of positive samples and the number of negative samples used to train a
classifier are very different. Conceptually, PLS regression is highly suitable for face
recognition, where the feature vectors are typically high-dimensional and the
number of images per subject is substantially less than the number of subjects in the
gallery.

The PLS regression algorithm seeks to find latent vectors ti and ui with maximal
covariance by calculating a weight vector wi according to Eq. 4.1.

max cov ti; uið Þ2 ¼ max
wij j¼1

cov Xwi; yð Þ2 i ¼ 1; . . .; p ð4:1Þ

X is the matrix of descriptor variables, which in this work is a matrix whose rows
are feature vectors of visible face images in the gallery. The vector y is the uni-
variate response variable, a vector of class labels in this work (+1 for a positive
sample, and −1 for a negative sample). A “one-vs-rest” approach is used here,
generating a PLS model for each individual in the visible gallery. When building a
PLS model for an individual in the gallery in the “one-vs-rest” framework, the
visible images of that particular individual serve as positive samples and the visible
images of the rest of the individuals in the gallery serve as negative samples. We
also introduce thermal face images from a set of training subjects not in the gallery
as negative samples, referred to as thermal cross-examples [16]. These thermal
cross-examples enable the model building procedure to implicitly incorporate
thermal information and improve the discriminative capabilities of the PLS
classifiers.

After the PLS model building process is complete, face recognition is performed
by measuring the response of the feature vector f extracted from a thermal probe
face image to a given PLS model according to Eq. 4.2.

76 S. Hu et al.



yf ¼ �yþ ½WðPTWÞ�1TTy�f ð4:2Þ

In Eq. 4.2, W is the matrix of weight vectors, T is the matrix of latent vectors,
and P is the matrix of loadings computed using T and the residual of X [16]. The
scalar value yf can be considered a similarity score (i.e., match score) between the
thermal probe image and a subject in the gallery represented by a PLS model. For
each gallery subject, or PLS model, a similarity score is obtained. For face iden-
tification, the person in the thermal probe image is recognized as the individual in
the visible face gallery with the highest PLS similarly score.

4.4.3 Dictionary Learning + SVM-Based Approach

A dictionary learning-based approach using support vector classification is pre-
sented to explicitly learn the mapping between thermal and visible face signatures,
whereas the PLS technique of Sect. 4.5 attempted to implicitly learn the relationship
between visible and thermal face signatures for classification. The dictionary
learning approach uses corresponding visible and thermal image training pairs to
learn mappings for projecting samples into a common space prior to
classification. In this section, we describe two variants of the dictionary learning
approach: a K-SVD based coupled dictionary technique and a bi-level coupled
dictionary technique.

Since the visible and thermal face images are quite different, HOG features that
are extracted from visible images do not correspond well to the HOG features
extracted from the thermal images. Hence, the test distribution is different compared
to the training distributions used to learn the subsequent classifiers. To solve this
issue, an explicit patch-by-patch mapping that transforms data samples from the
thermal HOG feature space to the visible HOG feature space is built.

An algorithm based on paired dictionary learning is used to develop this map-
ping. Let xv 2 Rd be the HOG feature vector from a patch of a visible face image
and xt 2 Rd be the HOG feature vector from the corresponding patch of the cor-
responding thermal face image. Then, two bases Dv 2 Rd�K and Dt 2 Rd�K are
built to represent visible feature space and thermal feature space, respectively, such
that same coefficients a 2 Rk are obtained, when xv and xt are projected on to the
bases Dv and Dt. Such bases are obtained by solving the following paired dictionary
learning problem with sparse reconstruction coefficients, similar to [25],

min
Dv;Dt ;a

X
i

xvi � Dvai
�� ��2

2 þ xti � Dtai
�� ��2

2

� �
such that aik k1 � �8i; Dv :; kð Þk k2 � 1; Dt :; kð Þk k2 � 18k:

ð4:3Þ

After certain manipulations, this problem can be simplified into a standard
dictionary learning and sparse coding problem and can be solved using K-SVD
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algorithm and orthogonal matching pursuit (OMP) algorithm [26]. One should note
that even though thermal face imagery is used in learning the mapping from thermal
HOG domain to visible HOG domain, the classification step does not use any
thermal imagery in the training phase. Given a thermal probe image, HOG features
are extracted from it patch-by-patch. Each of these HOG vectors is projected on to
Dt to obtain the sparse projection coefficients a, which in turn can be used on bases
Dv to obtain the corresponding HOG feature vector for that patch in the visible
domain.

While the K-SVD-based algorithm captures some of the relationship between the
imaging modalities, an alternative dictionary learning algorithm with bi-level
constraints provides even better results. As in [27], we use the following dictionary
learning formulation,

min
Dv;Dt ;av;at

X
i

xvi � Dva
v
i

�� ��2
2 þ xti � Dta

t
i

�� ��2
2 þ c avi � ati

�� ��2
2

� �
such that Dv :; kð Þk k2 � 1; Dt :; kð Þk k2 � 18k:

avi ¼ argmin
z

xvi � Dvz
�� ��2

2 þ k zk k18i;

ati ¼ argmin
z

xti � Dtz
�� ��2

2 þ k zk k18i:
ð4:4Þ

In this formulation, the sparse codes are explicitly tied to the solutions of the
optimization problems that will be used to compute them in practice. This allows
for a tighter coupling that can encode more common information captured by the
thermal and visible imagers. The learned dictionaries are called bi-level coupled
dictionaries (BCD) due to the optimization problem (sparse code calculation) as a
constraint to another optimization problem (dictionary learning).

Following dictionary learning, which maps the thermal HOG features into the
corresponding visible HOG representation, the well-known SVM is used for clas-
sification. SVMs are binary classifiers, which discriminate between two classes by
building a hyperplane that maximizes the margin between the two classes [28–30].
Suppose that the samples in a two-class dataset can be represented as fxi; yig where
xi 2 Rd d-dimensional feature vector (concatenated HOG feature vector of each
face image) of each data sample i and yi 2 fþ 1;�1g represents the class to which
the data sample belongs to. SVM tries to find an optimum separating hyperplane
such that the separation/margin between the two classes is maximal. This can be
expressed as a l2 regularized constrained optimization problem shown in Eq. 4.5.

min
w;b

L wð Þ ¼ 1
2

wk k2 þC
X
i

ni

subject to yi w; xih iþ bð Þ� 1; 8i ¼ 1; 2; . . .;N;

ni � 0; 8i ¼ 1; 2; . . .;N;

ð4:5Þ
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where N is the total number of training data samples, w is the normal vector of the
separating hyperplane, b is the bias of the separating hyperplane from the origin, ni
are the slack variables introduced into the problem to allow for noisy samples or
outliers during the training stage, and C is a hyperparameter that determines the
trade-off between minimizing the training error and maximizing the margin [30]. The
margin between the two classes is 2= wk k, and minimizing the l2 norm of the normal
vector of the separating hyperplane maximizes the margin between the two classes.

Naturally occurring data distributions are typically highly nonlinear and multi-
modal, and cannot be separated using a hyperplane in the input space. To handle
such distributions, the data are first transformed from the input space to a
higher-dimensional (possibly infinite) feature space called the reproducing kernel
Hilbert space (RKHS) using a nonlinear mapping Φ [31]. A linear separating
hyperplane is built in this higher-dimensional RKHS, which in turn translates to a
nonlinear separating hypersurface in the input space. Such a hypersurface theo-
retically provides better classification between the two classes in the input space.
Consequently, the optimization problem can be expressed as

min
w;b

L wð Þ ¼ 1
2

w2
�� ��þC

X
i

ni

subject to yi w;U xið Þh iþ bð Þ� 1; 8i ¼ 1; 2; . . .;N;

ni � 0; 8i ¼ 1; 2; . . .;N;

ð4:6Þ

where the separating hyperplane w is built in the RKHS. However, the nonlinear
mapping function U xð Þ is not known explicitly [31]. A kernel trick is used to
transform the data from the input space to the RKHS. According to this trick, the
dot product of two points in the RKHS is known in the form of kernel function
k xi; xj
� � ¼ U xið Þ;U xj

� �� �� �
. In this work, a Gaussian radial basis function

(RBF) kernel, with k xi; xj
� � ¼ exp � xi � xj

�� ��2=2r2� �
, r being the bandwidth

parameter, is used. A convex quadratic problem in its primal form can be con-
structed from Eq. 4.6 by applying Lagrange multipliers ai; i ¼ 1; 2; . . .;N. This
problem can be solved either in its original primal form or dual form by applying
the Karush–Kuhn–Tucker (KKT) conditions [31]. After obtaining the optimal
Lagrange multipliers a�i , the decision on a test sample xT is made by evaluating the
following expression.

f xTð Þ ¼ sgn
X
i

yia
�
i k xi; xTð Þþ b

 !
ð4:7Þ

Since the face recognition problem is a multiclass problem, we use “one-vs-rest”
strategy [31], where the samples belonging to a single subject form one class and
the samples belonging to the rest of the subjects are considered to be the second
class. Therefore, for M subjects, we train M “one-vs-rest” SVM classifiers. The
scores are compared, and the gallery subject corresponding to the classifier
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returning the maximum score is identified as the top match. This procedure is the
same as for the PLS technique of Sect. 4.5.

4.4.4 Polarimetric Thermal Imaging for Face Recognition

In this section, a novel imaging modality for face recognition is presented that
acquires the polarization-state information of radiation in the thermal spectrum.
Similar to conventional thermal imaging, polarimetric thermal imaging in the
MWIR or LWIR bands can be employed in low-light and nighttime scenarios to
acquire thermal radiation naturally emitted by facial skin tissue. A significant
advantage of polarimetric thermal imaging is that the data also contains
polarization-state information of the radiation, which provides geometric and tex-
tural facial details that are not available in conventional thermal face imagery
[32, 33].

First, we present the phenomenology and theory of polarimetric thermal imag-
ing. In order to measure the polarization state of light that is either reflected or
emitted from an object, one typically employs a Stokes method in which a series of
simple optical measurements are conducted using linear and circular polarizers [34].
This method provides a measurement of the four Stokes parameters that completely
define the polarization state of a photon. The four Stokes parameters, S0, S1, S2, and
S3, are defined by,

S0 ¼ I 0
	� �þ I 90

	� � ð4:8Þ

S1 ¼ I 0
	� �� I 90

	� � ð4:9Þ

S2 ¼ I þ 45
	� �þ I �45

	� � ð4:10Þ

S3 ¼ I Rð Þþ I Lð Þ; ð4:11Þ

where I(0°), I(90°), I(+45°), and I(−45°) represent the intensity of the incident light
after passing through a linear polarizer that is orientated at 0, 90, +45, and −45°,
respectively. 0° is defined to be aligned along the horizontal, and I(R) and I(L)
represent the intensity of the light after passing through a right- or left-hand side
polarization filter. These four Stokes parameters are extended to imaging
methodologies by simply displaying each individual pixel value in a 2-D array as
any one of the four Stokes parameters. It should be noted that the Stokes image S0
represents the conventional, intensity-only, thermal image and does not possess any
polarization information.

In addition to the four standard Stokes images S0, S1, S2, and S3, it is often useful to
consider various linear combinations of Stokes images: degree-of-polarization (DoP),
degree-of-linear-polarization (DoLP), and the degree-of-circular-polarization
(DoCP) images. These product images are defined in Eqs. 4.12–4.14. Since they
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are all normalized with respect to the total intensity image, S0, they represent the
fraction of the light that possesses a particular polarization state, either total polar-
ization (DoP), linearly polarized (DoLP), or circularly polarized (DoCP).

DoP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23
� �q

=S0 ð4:12Þ

DoLP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22
� �q

=S0 ð4:13Þ

DoCP ¼ S3=S0 ð4:14Þ

It should be noted that for passive imaging in which there is no artificial illu-
mination, there is little or no circularly polarized radiance in either the MWIR or
LWIR regions; therefore, S3 is taken to be zero for most applications.

In order to optimize polarimetric response for passive MWIR or LWIR imaging,
it is important to understand the effects of ambient radiance in either band on the
overall degree of polarization. Figure 4.3 shows the various sources of polarized
radiance for a given scene in a typical passive imaging scenario. For polarimetric
imaging in the thermal IR, there are two mechanisms for generating polarized
radiance. The first, and most well understood, involves the generation of polarized
light (usually linearly) that takes place when reflected from a surface of an object
(i.e., Fresnel refection). In Fig. 4.3, ambient radiance is reflected from the surface of
the thermal object that is being imaged by a polarimetric camera. This ambient
radiance (light) can be either polarized or unpolarized; however, upon reflection,
there is an induced preferential linear polarization state generated due to Fresnel

ambient (optical) background 
 unpolarized or partially polarized  

thermal object 

ambient reflections are predominantly polarized 
perpendicular to the observation plane  

thermal emissions are predominantly polarized 
parallel to the observation plane  

the two recombine to  
reduce the net polarization 

n 

Fig. 4.3 Schematic of the both reflection- and emission-induced polarization states for a typical
passive imaging scenario. The two types of polarization (due to reflected and emitted radiation) are
orthogonal and serve to produce a net reduction in the overall DoLP that is observed by the sensor.
Therefore, it is advantageous to conduct thermal polarimetric imaging in environments in which
the ambient radiance, within a given spectral response of the sensor, is minimized
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reflection. This preferential linear polarization is aligned perpendicular to the
observation plane, defined by the surface normal and the camera system’s line of
sight (LOS).

In addition to polarized radiance due to reflection, there is a component of
polarized radiance that occurs when pure thermal emission (i.e., Plank radiation)
generated by all nonzero temperature surfaces are observed at angles other than the
surface normal [35]. To understand this phenomenon, it is important to recognize
that the emissivity is not only a function of temperature and wavelength, ε(T, λ) (ε
compares an object’s radiant energy at a given temperature, T, to an idealized
blackbody at the same temperature), but is also a directional quantity, i.e., ε(T, λ, θ,
φ), where θ is the angle between the surface normal, n, and the camera’s LOS, and
φ is the azimuth angle taken about the normal. It is customary to deconstruct
directional quantities and express them in terms of orthogonal components that are
perpendicular and parallel to a given emission plane [36]. By doing so, the direc-
tional emissivity ε(T, λ, θ, φ) is represented in terms of two orthogonal components
shown in Eq. 4.15.

e T ; k; h;uð Þ ! e T ; k; hð Þ ¼ e hð Þparallel þ e hð Þperpendicular
� �

=2 ð4:15Þ

By substituting Eqs. 4.8–4.10 into Eq. 4.13 and recognizing that the radiant
intensity can be expressed in terms of the emissivity and the Plank function B(T, λ),
i.e., I(T, λ, θ) = ε(T, λ, θ) * B(T, λ), the DoLP shown in Eq. 4.13 can now be
expressed solely in terms of the orthogonal component that comprise the directional
emissivity that are defined in Eq. 4.16,

DoLP ¼ e hð Þparallel�e hð Þperpendicular
e hð Þparallel þ e hð Þperpendicular

: ð4:16Þ

Only when the sensor’s LOS is aligned along the surface normal does
ε(θ)parallel = ε(θ)perpendicular. For all other observation angles,
ε(θ)parallel ≠ ε(θ)perpendicular, and there is an observed preferential linear polarization
state. In general, as the angle between the LOS the surface normal increases, the
observed DoLP also increases.

This polarized emittance is shown in Fig. 4.3 as the ray propagating from the
body of the cylinder and is by nature polarized parallel to the observation plane.
Since the polarized radiation due to reflection and emission are orthogonal, they
combine at the sensor to produce a net reduction in the overall measured polar-
ization. This is a key factor that must be taken into account if effective passive
polarimetric imaging is to occur. An excellent review of all of these aspects can be
found in [37].

In [38], we proposed an approach to polarimetric-based face recognition that
exhibited significant improvements over conventional thermal imaging for
cross-spectral face recognition. The polarimetric-based face recognition technique
consisted of three stages: preprocessing, feature extraction, and recognition/
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classification. To test the cross-spectral recognition algorithm, simultaneous visible
spectrum and polarimetric thermal imagery was acquired. Polarimetric LWIR face
imagery was collected by a division-of-time spinning achromatic retarder
(SAR) system from Polaris Sensor Technologies [32]. The system consisted of a
Stirling-cooled mercury cadmium telluride FPA, with pixel array dimensions of
640 × 480, and a spectral response range of 7.5–11.1 µm. A sequence of 32-bit
images was recorded at 60-Hz frame rate, and a Fourier modulation method was
applied to compute the Stokes images. In this section, we present an overview of the
polarimetric-based face recognition framework used to perform cross-spectral face
recognition and report results on a dataset of 40 subjects.

Figure 4.4 shows faces acquired with visible imaging, conventional thermal
imaging, and polarimetric thermal imaging. From a visual observation, the
polarimetric face images shown in Fig. 4.7c, d more closely resemble the visible
face image than the conventional thermal face image. However, as results will
show, the polarization information actually complements the conventional thermal
information [38].

The recognition framework follows a similar methodology as discussed in
previous sections for cross-spectral face recognition. For preprocessing, the DoG
filter is applied on the visible gallery images as well as the Stokes images S1 and S2.
HOG features are then extracted from each of the DoG filtered images. As seen in
Fig. 4.6, the S0 image provides highly correlated details around the ocular region
(eyes and eyebrows) between the thermal and visible faces. In contrast, the S1 and
S2 components provide a higher degree of correlation to the visible face signature
around the nose and mouth regions. Since the Stokes images contain comple-
mentary details about the geometry and texture of the face, a feature-level fusion is
performed to combine the HOG features from each Stokes image into a composite
feature set [38].

Fig. 4.4 Images of single subject as seen in a visible and b conventional thermal as represented by
S0. c S1, d S2 and e DoLP images illustrate the added information available using polarimetric
imaging for face recognition
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4.5 Results

4.5.1 Partial Least Squares Results

To evaluate the performance of the PLS-based thermal-to-visible face recognition
algorithm, the NVESD database was used. The NVESD database contains both
MWIR and LWIR face images, enabling an assessment of MWIR-to-visible and
LWIR-to-visible recognition performance. Of the 50 total subjects in the database,
48 subjects are used for performance evaluation—the remaining two subjects are
used to provide thermal cross-examples. For PLS model building, a single visible
image from each of the 48 subjects along with thermal cross-examples extracted
from the remaining two subjects is used. This procedure is the same as in [16].
However, instead of the loose cropping style used in that study, a tight cropping
style is used here, focusing on the core facial region consisting of the eyes, nose,
and mouth as shown in Fig. 4.2. This tight cropping is more robust to small changes
in face pose, which would have a large impact on the facial outline. Hair style,
which may change from day to day, is also not present after tight cropping and
therefore does not impact the recognition process. In addition, the impact of face
resolution on recognition performance is examined here by using synthetic
low-resolution imagery, generated by first convolving the high-resolution image
with a Gaussian filter of bandwidth d/4 and then downsampling by the factor
d. Figure 4.5 shows an example of an original thermal probe image at 174 × 174
pixels, as well as the synthetically generated counterparts through downsampling.

Face identification results are presented in Fig. 4.6, which shows the Rank-1
identification rate for MWIR-to-visible and LWIR-to-visible face. At the full image
resolution of 174 × 174 pixels, the Rank-1 identification rate is 0.824 and 0.704, for
MWIR-to-visible and LWIR-to-visible face recognition, respectively. These tight
cropping results are lower when compared to the Rank-1 identification rates of

Fig. 4.5 Downsampled thermal imagery as a percentage of original image size of 174 × 174
pixels
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0.927 (MWIR-to-visible) and 0.813 (LWIR-to-visible) reported in [16], which used
the loose cropping style. Face identification performance is consistent for resolu-
tions ranging from 174 × 174 pixels down to 52 × 52 pixels (30 % of original image
size), but drops sharply for lower resolution. This is expected as facial details are
preserved down to 50 % (87 × 87 pixel resolution) of the original image size. For
the downsampled images at 20 % and especially at 10 % in Fig. 4.4, significant
facial details have been lost (based on a qualitative visual assessment), leading to a
substantial reduction in thermal-to-visible face recognition performance. Note also
that the MWIR-to-visible performance is consistently higher than LWIR-to-visible
performance until the point where resolution decreases past 20 % of the original
image size. The higher performance in the MWIR band can be expected, due to the
higher spatial resolution of the shorter wavelength MWIR radiation.

4.5.2 Dictionary Learning + SVM Results

The thermal-to-visible face recognition performance of the dictionary learning
SVM approach is shown in Fig. 4.7, plotting the Rank-1 identification rate as a
function of the image resolution. As in Sect. 4.5, the original high-resolution image
size is 174 × 174 pixels. The curves indicate that down to 40 % of the original
image size, performance of both MWIR-to-visible and LWIR-to-visible face
recognition remains similar using the dictionary learning SVM approach. As the
image size decreases past 40 % of the original image size, performance slowly
deteriorates for both thermal bands. This trend continues until the images are 20 %
of the original size, after which it sharply declines. Furthermore, the results
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Fig. 4.6 Rank-1 identification rate versus resolution for PLS-based MWIR-to-visible and
LWIR-to-visible face recognition
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show that the bi-level coupled dictionaries (BCD in Fig. 4.7) outperform the
K-SVD-based coupled dictionaries (CD in Fig. 4.7) at all image sizes.

4.5.3 Polarimetric Thermal-Based Face Recognition Results

A dataset of 40 subjects was collected for experimentation, representing an
extension of the 20-subject study by Short et al. [38]. Each subject was asked to
remain still for eight seconds while visible and polarimetric thermal imagery was
acquired at a distance of 2.5 m. Since the conventional LWIR radiometric data are
represented by S0, baseline comparisons were conducted with respect to S0. Four
samples of each subject were extracted from the visible and polarimetric LWIR
video sequences using the same procedure as [38]. Figure 4.8 presents both face
verification and face identification performance results when using S0, S1, S2,
DoLP, or the composite representation as the probe for cross-spectral face recog-
nition. Figure 4.8a shows the ROC curves, which is a common indicator of per-
formance in authentication scenarios. Figure 4.8b shows the CMC curves, which
characterizes the face identification performance of the cross-spectral system. The
composite feature representation, which is derived from a combination of the
Stokes images, yields the highest performance in terms of the lowest FNMR at the
examined FMR in Fig. 4.8a, compared to conventional thermal (S0) or any indi-
vidual Stokes components. Furthermore, the CMC curve shows that the composite
feature representation yields the highest Rank-1 identification rate of 93.75 %,
compared to conventional thermal, which has a Rank-1 identification rate of 75 %.

Fig. 4.7 Rank-1 identification as a function of image size (after downsampling) for cross-spectral
face recognition using MWIR and LWIR probe images against visible gallery images using
dictionary learning approach
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Table 4.2 lists values for several common face recognition performance metrics,
taken from the ROC and CMC curves. The FMR100 is the FNMR where the FMR
is fixed at 1 % and is a common measure for verification systems, as this scenario
typically operates in a state where denying access to a genuine user is more
acceptable than allowing access to a nongenuine user. Compared to the prior
20-subject study [38], the 40-subject results here also demonstrate that the per-
formance using the composite features is higher than the performance using features
only from the conventional (S0) or only from the polarization-state images (S1, S2,
DoLP) individually. However, the face identification rate and the face verification
rate are slightly lower than in [38] as expected, due to the larger gallery size used
here.

Fig. 4.8 a Receiver operating characteristic curve measuring face verification performance, and
b cumulative match characteristics curves measuring face identification performance for
cross-spectral matching of traditional LWIR (S0), individual Stokes images (S1 and S2), DoLP,
and proposed composite to a visible spectrum gallery/database

Table 4.2 List of key ROC and CMC data points from testing on the 40-subject dataset

Probe EER (%) FMR100 (%) Rank-1 ID (%) Rank-5 ID (%)

S0 8.1 28.3 75.00 92.50

S1 7.0 29.8 68.13 95.63

S2 10.2 42.1 60.62 90.00

DoLP 7.8 33.7 68.75 93.75

Composite 3.8 7.2 93.75 97.50
Equal error rate (EER) represents the rate at which the false-positive and false-negative rates are
equal
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4.6 Discussion

Two different classification/matching techniques were presented, both using the
HOG features extracted from the DoG filtered images as input for cross-spectral
face recognition. The PLS-based technique implicitly incorporates thermal infor-
mation into the model building process using thermal cross-examples, while the
dictionary learning SVM approach attempts to explicitly find the mapping between
the thermal and visible domains in the feature subspace before SVM classification.
The K-SVD based coupled dictionary SVM technique resulted in similar perfor-
mance as PLS at higher resolutions, but has lower performance than PLS at image
sizes <50 % of original resolution. The face identification performance of the
bi-level coupled dictionary SVM technique surpasses both that of the K-SVD based
coupled dictionary SVM technique as well as the PLS technique, achieving >90 %
Rank-1 identification rate at resolutions down to 52 × 52 pixels for both
MWIR-to-visible and LWIR-to-visible face recognition. This demonstrates that the
explicit use of thermal information is more beneficial than implicitly incorporating
the thermal information during PLS model building.

Comparing the MWIR and LWIR bands for cross-spectral face recognition, PLS
results show that MWIR-to-visible consistently outperforms LWIR-to-visible face
recognition across a range of simulated thermal probe image resolutions. This is
expected, as the shorter wavelength in the MWIR band has inherently higher spatial
resolution than the LWIR band. Interestingly, for the dictionary learning SVM
techniques, MWIR-to-visible and LWIR-to-visible face recognition performance
were very similar. This may indicate that dictionary learning learns the
MWIR-to-visible mapping and the LWIR-to-visible mapping equally well, even the
LWIR face imagery is inherently smoother to some extent. Although the PLS and
dictionary learning SVM approaches achieved robust performance across the higher
and intermediate resolutions, once the face resolution of the downsampled thermal
probe imagery decreased past 52 × 52 pixels, performance for both
MWIR-to-visible and LWIR-to-visible face recognition deteriorated sharply.

A novel face recognition imaging modality, polarimetric thermal imaging, is also
presented in this chapter. Polarimetric thermal imaging preserves the key benefit of
conventional thermal imaging, illumination invariance, while providing additional
geometric and textural facial details not available in conventional thermal face
imagery. Therefore, as expected, complementing thermal facial features with
polarimetric facial features resulted in a significant improvement in cross-spectral
face recognition performance compared to conventional LWIR-to-visible face
recognition.
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4.7 Summary

In this chapter, cross-spectral thermal-to-visible face recognition was discussed,
with results presented on the NVESD multimodal face database containing thermal
imagery acquired in both the MWIR and LWIR bands. Performance of a PLS
regression approach and a dictionary learning SVM approach were presented.
A novel imaging modality for face recognition, polarimetric LWIR, was also pre-
sented in this chapter, showing that polarimetric information can provide comple-
mentary geometric and textural information to the conventional thermal face
signature. The feature sets exploiting polarization-state information were shown to
facilitate cross-spectral matching. Further advancements leading to operational use
of thermal-to-visible face recognition are expected to enhance intelligence gathering
and surveillance missions, especially during nighttime and low-light scenarios.
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Chapter 5
Local Operators and Measures
for Heterogeneous Face Recognition

Zhicheng Cao, Natalia A. Schmid and Thirimachos Bourlai

Abstract This chapter provides a summary of local operators recently proposed for
heterogeneous face recognition. It also analyzes performance of each individual
operator and demonstrates performance of composite operators. Basic local oper-
ators include local binary patterns (LBP), generalized local binary patterns
(GLBPs), Weber local descriptors (WLDs), Gabor filters, and histograms of ori-
ented gradients (HOGs). They are directly applied to normalized face images. The
composite operators include Gabor filters followed by LBP, Gabor filters followed
by WLD, Gabor filters followed by GLBP, Gabor filters followed by LBP, GLBP
and WLD, Gabor ordinal measures (GOM), and composite multi-lobe descriptors
(CMLD). When applying a composite operator to face images, images are first
normalized and processed with a bank of Gabor filters and then local operators or
combinations of local operators are applied to the outputs of Gabor filters. After a
face image is encoded using the local operators, the outputs of local operators are
converted to a histogram representation and then concatenated, resulting in a very
long feature vector. No effective dimensionality reduction method or feature
selection method has been found to reduce the size of the feature vector. Each
component in the feature vector appears to contribute a small amount of informa-
tion needed to generate a high fidelity matching score. A matching score is gen-
erated by means of Kullback-Leibler distance between two feature vectors. The
cross-matching performance of heterogeneous face images is demonstrated on two
datasets composed of active infrared and visible light face images. Both short and
long standoff distances are considered.
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5.1 Introduction

Face recognition has been an active area of research over the past few decades.
Many major advancements have been reported in the literature. New applications
have triggered new challenges, and new challenges have called for new research
solutions. Surveillance at night or in harsh environments is one of the most recent
applications of face recognition. Latest advancements in manufacturing of small and
cheap imaging devices sensitive in active infrared range (near-and short-infrared)
[21, 23] and the ability of these cameras to see through fog, rain, at night and
operate at long ranges provided researchers with new type of imagery and posed
new research problems [5–8, 10, 13, 28, 39, 40, 45]. As observed, active-IR energy
is less affected by scattering and absorption by smoke or dust than visible light.
Also, unlike visible spectrum imaging, active-IR imaging can be used to extract not
only exterior but also useful subcutaneous anatomical information. This results in a
very different appearance of face images in active-IR range compared to face
images in visible spectrum. Acknowledging these differences, many related ques-
tions can be posed. What type of information should be extracted from active-IR
images to successfully solve the problem of face recognition? How to match a face
image in visible range to a face image in active-IR range? The latter falls in the
scope of heterogeneous face recognition. Developing local operators for hetero-
geneous face recognition is the focus of this chapter. We will first provide a short
overview of two general existing approaches to solve the problem of face recog-
nition and later narrow it down to an overview of local operator-based approaches
recently proposed and used in the field.

The literature identified two general categories of approaches to address the
problem of face recognition: the holistic approach (also known as subspace anal-
ysis) and the local feature approach. The former represents the global photometric
information of a human face using subspace projections. Examples include prin-
cipal component analysis (PCA), independent component analysis (ICA), linear
discriminant analysis (LDA), canonical correlation analysis (CCA), multilinear
subspace learning (MSL), and their derivatives. Sirovich and Kirby [44] showed
that PCA could be applied to a collection of face images to form a set of basis
features which are known as eigenfaces. Later, Turk and Pentland [47, 48]
expanded these results and presented the method of eigenfaces as well as a system
for automated face recognition using eigenfaces. They showed a way of calculating
the eigenvectors of a covariance matrix in a way that made it possible for computers
at that time to perform eigen decomposition on a large number of face images.
Jutten and Herault [27] introduced the general framework for ICA and then Comon
[16] refined it. ICA can be seen as a generalization of PCA, in which ICA generates
a set of basis vectors that possess maximal statistical independence, while PCA uses
eigenvectors to determine basis vectors that capture maximal image variance.
Motivated by the fact that much of the important information may be contained in
the high-order relationship rather than that of the second-order, Bartlett at el. [3, 4]
applied ICA to the problem of face recognition.
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Fisher was the first to introduce the idea of LDA [20]. LDA determines a set of
optimal discriminant basis vectors so that the ratio of the inter- and intra-class
scatter matrices is maximized. It is primarily used to reduce the number of features
to a more manageable number before classification. Each of the new dimensions is
a linear combination of pixel values, which form a template. CCA was first
introduced by Hotelling [25]. Given two random vectors X ¼ ðX1; . . .;XnÞ and
Y ¼ ðY1; . . .; YmÞ, and assuming a correlation among the variables, CCA finds the
linear combinations of Xi and Yj that result in the maximum correlation with each
other. Melzera et al. [37] applied CCA to face recognition and proposed appearance
models based on kernel canonical correlation analysis.

The second category of approaches use local operators instead and have
advantages such as more robustness to illumination and occlusion, less strictly
controlled conditions, and involvement of very small training sets. Examples of
operators used in this category include Gabor filters, local binary patterns (LBPs),
histogram of oriented gradients (HOGs), Weber local descriptor (WLD), and their
generalizations and variants. Gabor filter is known to be a robust directional filter
used for edge detection [36]. It has been found that simple cells in the visual cortex
of mammalian brains can be modeled by Gabor functions [18, 34]. A set of Gabor
filters parameterized by different frequencies and orientations are shown to perform
well as an image feature extraction tool. Therefore, it has been widely used in image
processing and pattern analysis applications [19, 26, 31, 33]. LBP is a particular
case of the texture spectrum model proposed by Wang et al. [50]. It was first
introduced by Ojala and Pietikinen [41, 42] for texture classification and found to
be a powerful tool. LBP was thereafter applied to face recognition as well as object
detection [1, 24]. Due to its discriminative power and computational simplicity as
well as robustness to monotonic changes of image intensity caused by illumination
variations, LBP has been expanded into several variant forms (see, e.g., [53, 54]).
HOG analysis was introduced by Dalal et al. [17] and was initially used for the
purpose of object detection. This operator is similar to other operators such as edge
orientation histograms and scale-invariant feature transform, but differs in that it is
computed on a dense grid of uniformly spaced cells and uses overlapping local
contrast normalization for improved accuracy. Chen et al. [12] introduced the WLD
operator inspired by Weber’s law—an important psychological law quantifying the
perception of change in a given stimulus [43].

Most of described methods have been developed for intra-spectral matching, to
be more specific to match visible light images. Some operators were tuned to work
with heterogeneous face images. For example, Chen et al. [14] conducted a face
recognition study in thermal IR and visible spectral bands using PCA and Faceit
G5. They showed that the performance of PCA in visible spectral band is higher
compared to the performance of PCA in thermal IR spectral band and that these
data fused at the matching score level resulted in a performance similar to the
performance of the algorithm in visible band. Li et al. [32] proposed a method to
compare face images within the NIR spectral band under different illumination
scenarios. Their face matcher involved an LBP operator to achieve illumination
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invariance and was applied to near-infrared (NIR) images acquired at a short dis-
tance. In their recent works, Akhloufi and Bendada [2] experimented with images
from database including visible, shortwave infrared (SWIR), mid-wave infrared
(MWIR), and thermal infrared images. They adopted a classic local ternary pattern
(LTP) and a new local adaptive ternary pattern (LATP) operator for feature
extraction. The work of Klare and Jain [29] employed a method based on LBP and
HOG operators, followed by a random sampling LDA algorithm to reduce the
dimensionality of feature vectors. This encoding strategy is applied to NIR and
color images for cross-spectral matching. The results are shown to outperform
Cognitec’s FaceVACS [15].

This chapter focuses on a discussion of local operators (algorithms from the
second category) for heterogeneous face recognition. The methodology for feature
extraction and heterogeneous matching adopted in this chapter does not require
training data, which justifies its importance in practice. Once local operators are
developed, they can be applied to any heterogeneous data (we particularly focus on
matching visible images to active-IR images) and do not require any estimation or
learning of parameters or retraining of the overall face recognition system.

We present and compare several feature extraction approaches applied to
heterogeneous face images. Face images (in visible spectrum and active IR) may be
first processed with a bank of Gabor filters parameterized by orientation and scale
parameters followed by an application of a bank of local operators. The operators
encode both the magnitude and phase of Gabor filtered (or non-filtered) face
images. The application of an operator to a single image results in multiple mag-
nitude and phase outputs. The outputs are mapped into a histogram representation,
which constitutes a long feature vector. Feature vectors are cross-matched by
applying a symmetric Kullback-Leibler distance. The combination of Gabor filters
and local operators offers an advantage of both the selective nature of Gabor filters
and the robustness of these operators.

In addition to known local operators such as LBP, generalized LBP (GLBP),
WLD, HOG, and ordinal measures [11], we also present a recently developed
operator named composite multi-lobe descriptor (CMLD) [9]. Inspired by the design
of ordinal measures, this new operator combines Gabor filters, LBP, GLBP, and
WLD and modifies them into multi-lobe functions with smoothed neighborhoods.

Performance of Gabor filters, LBP, GLBP, WLD, and HOG used both individu-
ally and in combinations and performance of CMLD are demonstrated on both the
Pre-TINDERS and TINDERS datasets [51]. These datasets contain color face ima-
ges, NIR and SWIR face images acquired at a distance of 1.5, 50, and 106 meters.

5.2 Heterogeneous Face Recognition

A typical system for heterogeneous face recognition can be described by three
connected modules: a preprocessing module, a feature extraction module, and a
matching module (see the block diagram in Fig. 5.1). In this work, the preprocessing
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module implements an alignment, cropping and normalization of heterogeneous face
images. The feature extraction module performs filtering, applies local operators,
and maps the outputs of local operators into a histogram representation. The
matching module applies a symmetric Kullback-Leibler distance to histogram rep-
resentations of heterogeneous face images to generate a matching score. A functional
description of each of the three modules is provided in the following subsections.

5.2.1 Preprocessing: Alignment, Cropping,
and Normalization

In this work, the preprocessing module implements image alignment, cropping, and
normalization. For alignment, positions of the eyes are used to transform the face to
a canonical representation. Geometric transformations such as rotation, scaling, and
translation are applied to each face image with the objective to project eyes to fixed
positions. Figure 5.2 a, b, d illustrates the processing steps. In our work, the anchor

Fig. 5.1 A block diagram of a typical face recognition system

(a) (b) (c)

(d) (e)

Fig. 5.2 Preprocessing of the face: a original color image, b aligned and cropped color face,
c grayscale conversion of (b), d aligned and cropped SWIR face, and e log transformation of (d)
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points—the fixed positions of the eyes—are manually selected. However, this
process can be automated by means of a Haar-based detector trained on hetero-
geneous face images [49], as an example.

The aligned face images are further cropped to an area of size 120� 112 (see
Fig. 5.2b, d). After being cropped, images undergo an intensity normalization.
Color images are converted to grayscale images using a simple linear combination
of the original R, G, and B channels (see Fig. 5.2c). Active-IR images—SWIR and
NIR images—are preprocessed using a simple nonlinear transformation given by
logð1þXÞ; where X is the input image, as shown in Fig. 5.2e. The log transfor-
mation redistributes the original darker pixels over a much broader range and
compresses the range of the original brighter pixels. The transformed image is
brighter and has a better contrast than the original image, while the gray variation
(trend) of the pixels is still preserved since the transformation is monotonic.

5.2.2 Feature Extraction

Feature extraction (implemented by the second module in the block diagram) is
intended to extract an informative representation of heterogeneous face images with
the objective of successful heterogeneous face recognition. In this chapter, we focus
only on local operators. Below, we provide a brief mathematical description of
Gabor filters, LBP, generalized LBP, WLD, HOG, as well as some variants or
improvements such as Gabor ordinal measures (GOM) and composite multi-lobe
descriptor (CMLD). We move the description of the ultimate feature vector to
Sect. 5.2.3.

5.2.2.1 Gabor Filter

As recently demonstrated by Nicolo et al. [39, 40] and Chai et al. [11], a two-step
encoding of face images, where encoding with local operators is preceded by Gabor
filtering, leads to considerably improved recognition rates. Therefore, many com-
binations of operators analyzed in this chapter involve filtering with a bank of
Gabor filters as a first step. The filter bank includes 2 different scales and 8 ori-
entations resulting in a total of 16 filter responses. The mathematical description of
the filter is given as follows:

Gðz; h; sÞ ¼ k Kðh; sÞk
r2 exp

k Kðh; sÞk2kzk2
2r2

" #
eiKðh;sÞz � e�

r2
2

h i
; ð5:1Þ

whereKðh; sÞ is the wave vector and r2 is the variance of the Gaussian kernel. The
magnitude and phase of the wave vector determine the scale and orientation of the
oscillatory term and z ¼ ðx; yÞ. The wave vector can be expressed as follows:
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Kðh; sÞ ¼ Kse
i/h ; ð5:2Þ

where Ks is known as a scale parameter and /h is an orientation parameter. The
adopted parameters for the complex vector in the experiments of this chapter are set

to Ks ¼ p=2ð Þs=2 with s 2 N and /h ¼ hp=8 with h ¼ 1; 2; . . .; 8: The Gaussian
kernel has the standard deviation r ¼ p:

A normalized and preprocessed face image IðzÞ is convolved with a Gabor filter
Gðz; h; sÞ at orientation /h and scale Ks resulting in the filtered image Yðz; h; sÞ ¼
IðzÞ � Gðz; h; sÞ; where � stands for convolution.

5.2.2.2 Weber Local Descriptor

WLD consists of two joint parts: a differential excitation operator and a gradient
orientation descriptor. In this chapter, we adopt only the differential excitation
operator to encode the magnitude filter response, resulting in a robust representation
of face images.

The differences between the neighboring pixels of a central pixel are calculated
and normalized by the pixel value itself. The summation of these normalized dif-
ferences is further normalized by a monotonic function such as a tangent function.
Finally, quantization is performed to output the WLD value.

The mathematical definition of WLD used in this chapter is given as follows:

WLDl;r;NðxÞ ¼ Ql tan�1
XN
i¼1

xi � x
x

� �" #( )
; ð5:3Þ

where xi are the neighbors of x at radius r and N is the total number of neighbors
(see Fig. 5.3). Ql is a uniform quantizer with l quantization levels.

Fig. 5.3 Illustration of the neigboring pixels (N = 12) of a central pixel at different radii: the left
corresponds r = 1; the right r = 2
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5.2.2.3 Local Binary Pattern

An uniform LBP operator is described as follows:

LBPUr;NðxÞ ¼ U
XN
i¼1

Ifxi � xg2i
( )

; ð5:4Þ

where xi are the neighbors of the pixel x at radius r and N is the total number of
neighbors. U is the uniform pattern mapping and I �ð Þ is the unit step function:

IðxÞ ¼ 1; x[ 0
0; x� 0

�
ð5:5Þ

Note that within this book chapter, we use only uniform sequences. A binary
pattern is uniform, if it contains at most two bit-wise transitions from 0 to 1 or from
1 to 0, when the bit sequence is recorded circularly. For example, the sequence
011111111000 is a 12-bit uniform pattern, while the sequence 010001011111 is not
uniform. The uniform mapping UðdÞ is defined as follows:

UðdÞ ¼ d; if dB is uniform
M; otherwise

�
ð5:6Þ

where dB is the binary form of a number d and M is the total number of uniform
patterns formed using N bits. We work with N ¼ 12-bit sequences, which results in
M ¼ 134 uniform patterns.

5.2.2.4 Generalized Local Binary Pattern

A uniform GLBP operator is a generalization of the encoding method proposed in
[22] by introducing a varying threshold t rather than a fixed one. Based on our
empirical analysis, the combination of LBP applied to the magnitude response of a
Gabor filter and GLBP applied to the phase response of the same Gabor filter boosts
the cross-matching performance [39]. The uniform generalized binary operator is
defined as follows:

GLBPUr;N;tðxÞ ¼ U
XN
i¼1

Ttfxi � xg2i
( )

; ð5:7Þ

where xi is the ith neighbor of x at radius r (we set r ¼ 1; 2 in our experiments) and
N is the total number of neighbors. Uð�Þ is the uniform pattern mapping described
in the previous subsection (see Sect. 5.2.2.3).Ttð�Þ is a thresholding operator based
on threshold t. It is defined as follows:
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TtðxÞ ¼ 1; xj j � t
0; xj j[ t

�
ð5:8Þ

The values for the thresholds in this chapter were evaluated experimentally and
set to t ¼ p=2.

5.2.2.5 Histogram of Oriented Gradients

Dalal and Triggs [17] were the first to introduce HOG in their work. The essential
thought behind the HOG operator is that local object appearance and shape within an
image can be described by the distribution of intensity gradients or edge directions.

An input image is computed using Gaussian smoothing followed by a derivative
mask such as the very simple 1D mask ½�1; 0; 1�. The directional derivatives can be
expressed as follows:

Gxðx; yÞ ¼ Iðxþ 1; yÞ � Iðx� 1; yÞ
Gyðx; yÞ ¼ Iðx; yþ 1Þ � Iðx; y� 1Þ; ð5:9Þ

where Iðx; yÞ is the input image. Gxðx; yÞ andGyðx; yÞ denote the derivatives along
x and y directions, respectively. Then, the magnitude and phase components of the
gradient can be calculated as follows:

Mðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxðx; yÞ2 þGyðx; yÞ2

q

aðx; yÞ ¼ tan�1 Gxðx; yÞ
Gyðx; yÞ ;

ð5:10Þ

where Mðx; yÞ and aðx; yÞ are the magnitude and phase, respectively.
The next step is spatial and orientation binning. A weighted vote is calculated at

each pixel for an edge orientation histogram channel based on the orientation of the
gradient at that pixel, and the votes are accumulated into orientation bins over local
small regions called cells (cells can be either rectangular or circular). The orien-
tation bins are evenly spaced over 0� � 180� (“unsigned” gradient) or 0� � 360�

(“signed” gradient). The vote is a function of the gradient magnitude at the pixel,
very often the magnitude itself. The descriptor vector is thereafter normalized over
non-overlapping blocks using the L1 or L2 norms, or their variants. An example of
using L2 normalization is given as follows:

v� ¼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvk22 þ e2

q
; ð5:11Þ

where v is the non-normalized descriptor vector and ε is a small constant.
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5.2.2.6 Combination of Operators

A fusion of extracted features often leads to improved recognition performance. As
shown in [38, 40], LBP and WLD applied to the magnitude of Gabor filtered
images combined with GLBP applied to the phase of Gabor filtered images yielded
a significant performance boost. Details of this fusion scheme can be found in [38,
40]. A block diagram of the fusion approach is displayed in Fig. 5.4.

5.2.2.7 Gabor Ordinal Measures

GOM is a recently developed local operator [11]. This operator combines Gabor
filters (see Sect. 5.2.2.1) with ordinal measures, a measurement level which records
the information about ordering of multiple quantities [46]. Following GOM, Chai
et al. extracted a histogram representation and applied a dimensionality reduction
by means of LDA to filtered and encoded face data.

The ordinal measure in [11] is modified using a smoothed neighborhood
described by a Gaussian smoothing function. Therefore, the ordinal measure filter
fomðzÞ can be expressed as follows:

fomðzÞ ¼ Cp

XNp

i¼1

1ffiffiffiffiffiffi
2p

p
rp;i

exp
�ðz� lp;iÞTðz� lp;iÞ

2r2
p;i

" #

� Cn

XNn

i¼1

1ffiffiffiffiffiffi
2p

p
rn;i

exp
�ðz� ln;iÞTðz� ln;iÞ

2r2
n;i

" # ð5:12Þ

where z ¼ ðx; yÞ is the location of a pixel. lp;i and rp;i denote the central position
and the scale of the ith positive lobe of a 2D Gaussian function, while ln;i and rn;i

denote that of the ith negative lobe of the same Gaussian function. Np and Nn are the
numbers of positive and negative lobes, respectively, while constant coefficients Cp

and Cn keep the balance between positive and negative lobes, i.e., CpNp ¼ CnNn:

MAGNITUDE LOCAL 
HISTOGRAM

LOCAL 
HISTOGRAM

LOCAL 
HISTOGRAM

LBP

SWLD

GLBPPHASE

BANK OF
GABOR
FILTERS    

INPUT 
IMAGE

ALIGNMENT
CROPPING

ENHANCEMENT

MATCH 
SCORE

MATCHING

Fig. 5.4 A block diagram of the fusion scheme in [38]
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5.2.2.8 Composite Multi-lobe Descriptor

In [9], a new operator named CMLD was proposed. CMLD combines Gabor filter,
WLD, LBP, and GLBP and modifies them into multi-lobe functions with smoothed
neighborhoods. The new operator encodes both magnitude and phase responses of
Gabor filters. The combining of LBP and WLD utilizes both the orientation and
intensity information of edges. The introduction of multi-lobe functions with
smoothed neighborhoods further makes the proposed operator robust against noise
and poor image quality. A block diagram of CMLD is provided in Fig. 5.5.

The multi-lobe version of LBP (referred to as MLLBP) is the same as the ordinal
measure described in (5.12) (see Sec. 5.2.2.7). An illustration of such a MLLBP
operator is provided in Fig. 5.6. The multi-lobe version of GLBP called MLGLBP
is constructed in a similar way as MLLBP except for that the unit step functionIð�Þ
in (5.5) is replaced by the thresholding function Ttð�Þ in (5.8). The multi-lobe
version of WLD (MLWLD) is a modification of the original WLD operator (see
Sec. 2.2.2 for details) and is given by:

MLWLDNðzÞ ¼ Ql tan�1
XN
i¼1

IðzÞ � f̂ ðiÞMLWLDðzÞ
IðzÞ

" #( )
; ð5:13Þ

Fig. 5.5 A block diagram of composite multi-lobe descriptor

Fig. 5.6 Examples of kernels at different orientations used in multi-lobe operators: a a di-lobe
function, b a trilobe function
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where IðzÞ is an input and z ¼ ðx; yÞ is the location of a pixel. f̂ ðiÞMLWLDðzÞ is the ith
element of the set of H�M kernel functions ffMLWLDðz; h; LÞ : h ¼ 1; 2; . . .;H;
L ¼ 2; 3; . . .;Mg, where H is the total number of orientations and M is the maxi-
mum value of total lobe number. fMLWLDðz; h; LÞ is given by

fMLWLDðz; h; LÞ ¼
XL
l¼1

Clffiffiffiffiffiffi
2p

p
rl;h;L

exp �ðz� ll;h;LÞTðz� ll;h;LÞ
2r2

l;h;L

" #
; ð5:14Þ

where ll;h;L and rl;h;L are the center and the scale of the kernel function at orien-
tation θ, and L is the total number of lobes. fClg are the coefficients to keep a
balance between the positive and negative lobes. A detailed description of MLLBP,
MLGLBP, and MLWLD can be found in [9].

5.2.3 Histogram (Feature Vector) and Matching Metric

Each encoded response (the output of each local operator) is divided into 210
non-overlapping square blocks of size 8� 8. Blocks are displayed in the form of
histograms, and the number of bins is set to be equal to the level of the encoders
mentioned in the previous section (e.g., 135 in our experiments). Then, a 135-bin
histogram of each block is formed, and histograms of the blocks are concatenated
and normalized to be treated as a probability mass function, resulting in a vector of
length 135� 210 ¼ 28;350 for each encoded response. The length of the feature
vector was selected empirically to maximize the cross-matching performance.
Vectors of all encoded responses are further concatenated, and thus, the total size of
a feature vector corresponding to an input face image is 28;350� P; where P is the
number of encoded responses. In this book chapter, P ¼ 96 for the case of Gabor
filters followed by LBP, GLBP, and WLD as well as for the case of CMLD (see
Sects. 5.2.2.6 and 5.2.2.8).

When the distance between two feature vectors (histograms in our case) is
evaluated, it is expressed as a sum of distances between all feature vector pairs.
A sum of two Kullback-Leibler distances [30] is used as a distance metric to
compare the feature vectors of heterogeneous images. For two images A and B with
the feature vectors HA and HB; respectively, the symmetric Kullback-Leibler dis-
tance is defined as follows:

DKLðA;BÞ ¼
XK
k¼1

HAðkÞ � HBðkÞð Þ logHAðkÞ
HBðkÞ ; ð5:15Þ

where K is the length of the feature vectors HA or HB.
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5.3 Datasets

In our experiments, we use two datasets Pre-TINDERS (Tactical Imager for
Night/Day Extended-Range Surveillance) and TINDERS collected by the
Advanced Technologies Group, West Virginia High Tech Consortium (WVHTC)
Foundation [35]. A summary of the datasets can be found in Table 5.1.

Pre-TINDERS is composed of 48 frontal face classes of total 576 images, at
three wavelengths—visible, 980 nm NIR, and 1550 nm SWIR. Images are acquired
at a short standoff distance of 1.5 m in a single session. Four images per class are
available in each spectral band. A 980-nm light source is used to illuminate the face
in the NIR spectral band, while a 1550-nm light source is used in the SWIR spectral
band. The original resolutions of the acquired images (see Fig. 5.7) are 640� 512

Table 5.1 Summary of the datasets

Dataset Class Total #
images

Spectrum Distance Original resolution

Pre-TINDERS 48 576 Visible
NIR
SWIR

1.5 m Visible:
1600� 1200
NIR: 640� 512
SWIR: 640� 512

TINDERS 48 1255 Visible
NIR
SWIR

50 m
106 m

Visible: 640� 480
NIR: 640� 512
SWIR: 640� 512

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5.7 Sample images: a visible, b SWIR at 1.5 m, c SWIR at 50 m, d SWIR at 106 m, e NIR at
1.5 m, f NIR at 50 m, and g NIR at 106 m
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(png format) for both NIR and SWIR images and 1600� 1200 (jpg format) for
color images.

TINDERS is composed of 48 frontal face classes each represented by visible,
NIR (980 nm) at two standoff distances (50 and 106 m), and SWIR at two standoff
distances (50 and 106 m) images. At each distance and spectrum, four or five
images per class are available. A total of 478 images with the resolution 640� 512
(png format) are available in SWIR band. A total of 489 images with the resolution
640� 512 (png format) are available in the NIR band. The visible (color) images
with the resolution 480� 640 (jpg format) are collected at a short distance and in
two sessions (3 images per session), and all of them have neutral expression,
resulting in a total of 288 images. Sample images from the Pre-TINDERS and
TINDERS datasets are shown in Fig. 5.7.

It is important to note that although the original resolution of images in
Pre-TINDERS and TINDERS is varying, we crop and normalize them to be the
same size for each experiment described below. This is done to ensure a fair
comparison.

5.4 Experiments and Results

In this section, we analyze the performance of various local operators used for
encoding heterogeneous face images. In our experiments, galleries are composed of
visible light face images, while NIR and SWIR face images are presented as probes.
We match NIR and SWIR face images collected at 1.5, 50, and 106 m to visible
light face images acquired at a distance 1.5 m.

For both SWIR and NIR spectra (at both short and long standoff distances), a
total of 11 operators (including individual operators and their combinations) are
implemented. We order and number them as follows: (1) LBP, (2) WLD, (3) GLBP,
(4) HOG, (5) Gabor filter, (6) Gabor filter followed by LBP applied to the mag-
nitude image (Gabor + LBP), (7) Gabor filter followed by WLD applied to the
magnitude image (Gabor + WLD), (8) Gabor filter followed by GLBP applied to
the phase image (Gabor + GLBP), (9) Gabor filter followed by LBP, GLBP, and
WLD (Gabor + LBP + GLBP + WLD), (10) GOM, and (11) CMLD. The
parameters in the experiments are chosen as follows. The number of orientations
and radii for Gabor filters are set to 8 and 2, respectively. The number of radii for
LBP, GLBP, and WLD is chosen as 2, and the number of neighbors around the
central pixel is set to 12. The same parameters are used in operators to encode short-
and long-range images.

The results of matching are displayed in the form of receiver operating char-
acteristic (ROC) curves. We plot genuine accept rate (GAR) versus false accept rate
(FAR). Summaries of equal error rates (EERs), d-prime values, and GARs at the
FAR set to 0.1 and 0.001 are provided in tables.
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5.4.1 Matching SWIR Probes Against Visible Gallery

Our first experiment involves matching SWIR face images to visible face images.
The heterogeneous images are encoded using the eleven individual or composite
operators as described earlier in this section. The performance of the individual
encoders can be treated as benchmarks. The results of matching parameterized by
different standoff distances are shown in Figs. 5.8, 5.9, and 5.10. In these experi-
ments, visible light images form the gallery set. All SWIR images are used as
probes.
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Fig. 5.8 ROC curves: matching SWIR probes at 1.5 m to visible gallery
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Fig. 5.9 ROC curves: matching SWIR probes at 50 m to visible gallery
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5.4.1.1 Short Standoff Distance

For the case of the short standoff distance (pre-TINDERS dataset), the performance
of single operators such as HOG, LBP, WLD, GLBP, and Gabor filters is inferior to
the performance of the composite operators where Gabor filters are followed by
LBP, WLD, and GLBP. It is also inferior to the performance of each CMLD and
GOM, the composite multi-lobe operators. Within the group of single operators,
HOG outperforms the other four operators closely followed by LBP and then Gabor
filters. WLD appears to be less suitable for encoding heterogeneous face images in
the framework of the cross-spectral matching.

Within the group of composite operators, the top five, following closely toge-
ther, are CMLD, Gabor + LBP + GLBP + WLD, GOM, Gabor + LBP, and
Gabor + WLD. Gabor + GLBP performs slightly inferior to the top three. Table 5.2
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Fig. 5.10 ROC curves: matching SWIR probes at 106 m to visible gallery

Table 5.2 EERs and GAR values: matching SWIR probes at 1.5 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 15.89 0.39 41.40 0.40

LBP 70.70 29.56 20.61 1.66

GLBP 39.71 2.60 33.46 0.98

Gabor 54.04 14.71 27.35 1.24

HOG 80.47 32.55 15.36 1.86

Gabor + WLD 94.14 71.88 7.68 2.74

Gabor + LBP 97.27 75 4.82 3.09

Gabor + GLBP 89.19 53.39 10.68 2.35

Gabor + WLD + LBP + GLBP 99.09 83.59 3.13 3.24

GOM 98.18 78.78 3.64 3.18

CMLD 99.09 83.72 3.12 3.29
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presents a summary of EERs, d-prime values, and GAR values at FAR set to 0.1
and 0.001 values.

5.4.1.2 Long Standoff Distance

SWIR images at longer standoff distances (50 and 106 m in the case of TINDERS
dataset) experience some loss of quality due to air turbulence, insufficient illumi-
nation, and optical effects during data acquisition. This immediately reflects on the
values of matching scores. Figures 5.9 and 5.10 display the results of cross-spectral
comparison parameterized by 50 and 106 m standoff distances, respectively.
Gallery images are retained from the previous session. Note that in both figures,
Gabor + LBP, Gabor + WLD, CMLD, and GOM display a very similar perfor-
mance. They are closely followed by Gabor + GLBP. The top performance in both
cases is demonstrated by Gabor + LBP + GLBP + WLD. Once again, composite
operators outperform single operators, which was anticipated. However, at longer
standoff distances, matching performance of all the operators and their combina-
tions but Gabor + LBP + GLBP + WLD drops nearly two times for the case of 50 m
and 2.5 times for the case of 106 m. EERs, d-prime values, and GARs at FAR set to
0.1 and 0.001 are summarized in Tables 5.3 and 5.4.

5.4.2 Matching NIR Probes Against Visible Gallery

In the second experiment, NIR face images (probes) are matched to short-range
visible face images (gallery). The results of matching parameterized by the standoff
distances of 1.5, 50, and 106 m are shown in Figs. 5.11, 5.12, and 5.13,
respectively.

Table 5.3 EERs and GAR values: matching SWIR probes at 50 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 11.55 0.21 49.59 0.045

LBP 57.29 13.45 25.28 1.24

GLBP 31.86 3.71 37.07 0.65

Gabor 43.35 8.33 34.97 0.82

HOG 57.42 7.56 25.42 1.25

Gabor + WLD 85.57 40.90 12.74 2.19

Gabor + LBP 85.01 46.15 12.89 2.25

Gabor + GLBP 70.10 30.18 20.51 1.56

Gabor + WLD + LBP + GLBP 91.88 62.11 8.90 2.57
GOM 86.41 39.98 11.97 2.27

CMLD 86.76 45.73 12.03 2.31
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5.4.2.1 Short Standoff Distance

Among the group of single operators, LBP and HOG outperform the other oper-
ators, followed by GLBP and Gabor. Similar to the case of SWIR probe images,
WLD operator performs poorly. All composite operators demonstrate a relatively
high performance with ROC curves closely following one another. CMLD appears
to outperform the other four composite operators. It is closely followed by GOM
and then by Gabor + LBP + GLBP + WLD. Table 5.5 summarizes the values of
EERs, d-primes, and GARs at FAR equal to 0.1 and 0.001.

Table 5.4 EERs and GAR values: matching SWIR probes at 106 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 11.39 0.10 48.69 0.0038

LBP 49.79 13.19 31.11 0.94

GLBP 29.31 0.49 36.49 0.57

Gabor 52.57 4.31 28.67 1.09

HOG 41.04 4.44 33.68 0.78

Gabor + WLD 77.57 29.31 16.96 1.83

Gabor + LBP 80.00 31.81 15.83 1.99

Gabor + GLBP 53.06 18.19 32.65 0.88

Gabor + WLD + LBP + GLBP 82.50 44.79 14.17 2.00
GOM 80.07 32.78 14.78 2.02

CMLD 80.28 35.97 15.76 2.04
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Fig. 5.11 The results of cross-matching short-range (1.5 m) NIR probes and visible gallery
images
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5.4.2.2 Long Standoff Distance

Long-range NIR probes display a cardinally different performance. As can be seen
from Fig. 5.7, NIR images at 106 m have much lower contrast and overall quality
compared to NIR images at 50 m. This difference in image quality immediately
reflects on the matching performance of the two sets of probes (50 m probes and
106 m probes). This also reflects on the interplay among the 11 operators.
Figures 5.12 and 5.13 display the cross-matching results for the two standoff dis-
tances (50 m and 106 m, respectively). Comparing the composite operators in terms
of their performance, NIR at 50 m shows that Gabor + LBP + GLBP +WLD, CMLD,
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Fig. 5.12 The results of cross-matching long-range (50 m) NIR probes and visible gallery images
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Fig. 5.13 The results of cross-matching short-range (106 m) NIR probes and visible gallery
images
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and GOM perform equally well. Their performance is very close to the performance
they demonstrate at 1.5 m. Note it is only slightly degraded. These three ROCs are
closely followed by the ROCs of Gabor + GLBP and Gabor + WLD. At 106 m, NIR
probes do not perform as well. In fact, the performance of NIR images encoded with
composite operators drops at least three times compared to the performance of the
same operators applied to NIR at 50 m. Figure 5.13 indicates that GOM followed by
CMLD, Gabor + LBP + GLBP +WLD, and Gabor + GLBP, where GLBP is applied
to phase images, seems to be more robust to degraded image quality in NIR spectrum
compared to other composite operators. Among single operators, Gabor and HOG
still outperform other single operators for both standoff distances. Tables 5.6 and 5.7
present a summary of EERs, d-primes, and GARs at FAR set to 0.1 and 0.001 for the
case of 50 m and 106 m standoff distances, respectively.

Table 5.5 EERs and GAR values: matching NIR probes at 1.5 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 29.82 2.47 44.27 0.44

LBP 82.03 32.81 14.36 2.12

GLBP 66.54 6.38 20.57 1.467

Gabor 61.46 21.09 23.57 1.43

HOG 65.23 23.96 22.03 1.68

Gabor + WLD 89.19 71.098 10.54 2.38

Gabor + LBP 86.98 56.77 11.82 2.29

Gabor + GLBP 86.20 61.595 12.23 2.29

Gabor + WLD + LBP + GLBP 91.93 68.88 8.73 2.48

GOM 90.89 73.31 9.27 2.59

CMLD 92.71 77.21 7.68 2.72

Table 5.6 EERs and GAR values: matching NIR probes at 50 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 5.39 0.1 48.12 0.072

LBP 34.17 7.70 31.74 0.99

GLBP 11.06 0.1 49.01 0.12

Gabor 68.98 17.23 19.98 1.66

HOG 44.68 7.35 29.98 1.16

Gabor + WLD 89.85 53.011 10.07 2.40

Gabor + LBP 86.13 56.79 12.54 2.33

Gabor + GLBP 92.02 69.89 8.66 2.73

Gabor + WLD + LBP + GLBP 92.23 68.21 8.71 2.66
GOM 90.06 64.29 10.00 2.65

CMLD 90.76 67.51 9.52 2.65
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5.5 Brief Analysis

1. Combining Gabor filter bank with other local operators results in considerably
improved performance compared to the performance of individual local oper-
ators. This holds both for short and long standoff distances and for the both
types of cross-spectral matching performed in this chapter.

2. As anticipated, quality of active IR probes affects matching performance. In this
chapter, quality of probes is a function of a standoff distance. We use an
adaptive sharpness measure [51] to calculate the image quality of the probes in
both SWIR and NIR spectra at all the standoff distances (see Table 5.8 for the
values). From the results, the matching performance of SWIR data degrades
with standoff distance faster than the matching performance of NIR images.
However, the overall sharpness measure values (and thus the matching per-
formance) of SWIR images is higher compared to the sharpness measure values
(and the matching performance) of NIR images.

3. Among the five individual operators, HOG outperforms other operators followed
by LBP and Gabor for the case of 1.5-m standoff distance and SWIR probes. For
the case of 50-m standoff distance and SWIR probes, LBP and HOG perform
nearly equally well followed by Gabor. For the case of 106 m and SWIR probes,
LBP, and Gabor, each outperforms HOG. This leads to a conclusion that LBP
and Gabor are more robust to data acquisition noise compared to HOG.

Table 5.7 EERs and GAR values: matching NIR probes at 106 m to visible gallery

Method GAR (%) at
FAR = 10�1

GAR (%) at
FAR = 10�3

EER
(%)

d-prime

WLD 7.91 0.1 49.40 0.067

LBP 16.95 3.18 43.30 0.45

GLBP 10.52 0.1 50.21 0.038

Gabor 29.66 2.61 36.87 0.72

HOG 21.12 0.64 42.87 0.52

Gabor + WLD 45.97 5.23 30.48 1.05

Gabor + LBP 49.72 7.84 28.43 1.10

Gabor + GLBP 60.88 13.14 23.16 1.44

Gabor + WLD + LBP + GLBP 64.48 13.28 23.24 1.49

GOM 67.30 15.53 21.65 1.58
CMLD 64.12 14.62 22.55 1.51

Table 5.8 Sharpness measure of the probes in SWIR and NIR at different standoff distances

Statistics of
sharpness measure

SWIR at
1.5 m

SWIR at
50 m

SWIR at
106 m

NIR at
1.5 m

NIR at
50 m

NIR at
106 m

Mean 0.5835 0.5112 0.4391 0.4390 0.3910 0.3741

Standard deviation 0.0707 0.0732 0.0730 0.0595 0.0461 0.0642
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4. For the case of NIR probes and 1.5-m standoff distance, LBP and HOG perform
equally well. Their ROC curves very closely following one another. For the case
of NIR probes and both 50 m and 106 m standoff distances, Gabor filters
substantially outperform HOG and LBP, which continue to show very similar
performance. Thus, poor quality NIR images should be encoded with Gabor
filters for robust cross-matching performance.

5. All composite operators, where Gabor filters are followed by the application of
other local operators, perform equally well in nearly all cases of standoff dis-
tances and the two types of active-IR probes. Performance of the combination of
Gabor + GLBP is slightly inferior to the other combinations in every case
besides the case of NIR probes and 106-m standoff distance. This is the case
where Gabor + GLBP applied to the phase of face images demonstrated superior
performance compared to other operators. Thus, Gabor + GLBP appear to be
very robust to severe image degradation for the case of NIR probes.

6. Multi-lobe operators, CMLD and GOM, and the composite operator
Gabor + LBP + GLBP + WLD display the top performance in all three cases of
standoff distance for both types of cross-spectral matching.

7. The improved performance of the composite operators comes at a cost of
increased complexity. For a single operator, the feature vector (histogram) is
formed from 2 outputs of the operator. For a composite operator, the feature
vector is 16 times longer due to 16 outputs of Gabor filters each encoded with a
local operator. The involvement of each additional local operator (applied to
outputs of Gabor filters) doubles the length of the feature vector. Although the
complexity of the feature vector grows, most of the operations can be imple-
mented in parallel, which allows involvement of devices for parallel computing.

5.6 Summary

This chapter presented a short overview of recent advances in the field of hetero-
geneous face recognition, emphasizing the topic of local operators developed for
matching active-IR face probes to a gallery composed of high-quality visible face
images. A brief description of each individual and composite operator (11 in total)
was provided. The list of individual operators included LBP, GLBP, WLD, HOG,
and Gabor filters. Composite operators included Gabor + LBP, Gabor + GLBP,
Gabor + WLD, Gabor + LBP + GLBP + WLD, GOM, and CMLD. We considered
a very specific framework for cross-matching heterogeneous face images, assuming
that each image is aligned, cropped, and enhanced at first. It was then filtered and
encoded using local operators. The outputs of local operators were converted into a
histogram representation and compared against histogram representations of images
in the gallery by means of a symmetric Kullback-Leibler distance. This
cross-matching approach does not require any training or learning, and it is shown
to be robust when applied to a variety of heterogeneous datasets.
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We presented the results of matching SWIR and NIR facial images to visible
facial images. Both short (1.5 m) and long (50 and 106 m) standoff distances were
considered. The results were documented in figures and tables. We presented ROC
curves as well as GARs at two specific levels of FAR, EERs, and d-prime values.
The combination of Gabor filters followed by other local operators substantially
outperformed the original LBP and the other individual operators. As the standoff
distance increased, the matching performance of all the operators dropped. This
drop was attributed to a relatively low quality of imagery at long standoff distances
(SWIR vs. visible and NIR vs. visible).
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Chapter 6
Assessment of Facial Recognition System
Performance in Realistic Operating
Environments

Kevin R. Leonard

Abstract An end-to-end facial recognition system performance depends on a variety
of factors. The optical system, environment, illumination, target, and recognition
algorithm can all affect its accuracy. Typically, only the facial recognition algorithm
has been consideredwhen evaluating performance. The remaining environmental and
system components have not been considered in the design of facial recognition
imaging systems. However, in scenarios relevant to the military and homeland
security, the effects of weather and range can severely degrade performance and it is
necessary to understand the conditions where this happens. This work introduces a
methodology to explore the sensitivities of a facial recognition imaging system to blur,
noise, and turbulence effects. Using a government-owned and an open source facial
recognition algorithm, system performance is evaluated under different optical blurs,
sensor noises, and turbulence conditions. The ramifications of these results on the
design of long-range facial recognition systems are also discussed.

6.1 Introduction

The current and future operating environments that the US Army faces are char-
acterized by uncertainty and surprise [1]. Threats are coming from increasingly
non-traditional sources and tactically relevant biometrics need to be applied at
longer rages, at night, and in degraded environments. Most current commercial
biometric systems are being designed for controlled situations and relatively short
ranges. For many applications (e.g., access control, fixed entry points), these sys-
tems perform extremely well. However, military and homeland security applica-
tions put tougher demands on biometric systems. They need to be able to operate at
longer ranges and perform well under degraded imaging conditions. Also, because
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of the importance of these missions, it is critical to understand how sensitive an
acquisition system performance is to various imaging conditions.

In this work, we will focus on exploring the effects of imaging system degra-
dations on facial recognition performance. Facial recognition algorithm perfor-
mance has increased dramatically over the last couple of decades as both industry
and academia have invested heavily in this area. There are a variety of different
types of facial recognition algorithms, including PCA-based eigenfaces [2, 3],
LDA-based [4, 5], and Elastic Bunch Graphing [6] methods. A detailed survey of
facial recognition techniques is outside of the scope of this work, but the reader is
referred to Refs. [7–9] for a more detailed review of facial recognition algorithms.

One reason that facial recognition algorithm performance has increased so
dramatically over the last decade is the increasing availability of diverse facial
databases and rigorous systematic testing. Some of the most widely used facial
databases are the Facial Recognition Technology (FERET) [10–12], Carnegie
Melon University Pose Illumination and Expression (CMU PIE) and Multi-PIE [13,
14], Labelled Faces in the Wild (LFW) [15], AR Face [16], and Surveillance
Cameras (SC) Face [17] databases. The FERET database was one of the first
publically available databases and was originally used extensively by the National
Institute for Standards and Technology (NIST) to perform independent assessments
of facial recognition performance. The CMU PIE database includes images of
subjects under different illuminations and expressions, whereas the Multi-PIE
database extends the number of subjects and includes images for 15 viewpoints and
19 illumination conditions. LFW contains more than 13,000 faces collected from
the Web to help researchers explore recognition of unconstrained facial imagery.
The SC Face database is a set of still images taken from SC of varying image
quality. Finally, the AR Face database contains color images from subjects and also
includes facial occlusions such as sunglasses and scarves.

In addition to the growing number of available databases to test algorithms
against, a lot of work has also been conducted on the systematic, independent
evaluation of facial recognition algorithm performance [10–12, 18–23]. Most of the
previous evaluations of facial recognition performance have focused on exploring
the effects of pose [20], illumination [21], and age [24]. Phillips et al. have also
looked at the effects of image compression [22]. These studies have done an
excellent job in measuring and comparing current biometric algorithm performance
on large datasets. These datasets were collected to try and capture different effects
seen in traditional biometric applications such as uncontrolled illumination and
subject pose. These tests have been designed to push the performance of algorithms
and to show developers and researchers the areas needed for improvement. From
the Facial Recognition Vendor Test in 2002 (FRVT2002) [19], it was pointed out
that work was still needed in the recognition of faces in outdoor lighting conditions
and under non-frontal poses. In the Multi-Biometric Evaluation Tests in 2010 [20],
improvement on non-frontal poses was seen, and certain vendor algorithms per-
formed extremely well at pose angles up to 20°.

This prior work has shown that the systematic testing of algorithms is critical to
understanding how facial recognition algorithms will perform under different
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conditions. In [25], Phillips et al. point out that it is important to consider the
conditions under which a biometric system will be utilized when evaluating
potential candidate solutions. Therefore, a large factor for predicting biometric
performance is understanding how it will be used and under what conditions it will
be effective. To complement these prior studies, this work aims to extend how we
evaluate algorithm performance to include optical system design considerations for
more tactically relevant environments. Operational environments are different from
traditional biometric application areas such as access control and fixed entry points.
In surveillance applications, it is important to be able to use facial recognition
algorithms at longer ranges and in non-ideal conditions. Under these circumstances,
image blurring (due to defocus and/or motion), noise (in low-light conditions), and
atmospheric turbulence effects can be common.

Much of the previous work in the facial recognition literature has been focused
on overcoming the effects of pose and illumination on recognition performance.
Overcoming the effects of blur, noise and turbulence have been less studied. Two
methods for trying to overcome the effects of blur and sampling are image
super-resolution [26–29] and deconvolution [30–32]. Wheeler et al. [27] show how
an active appearance model (AAM) can be used to register faces for the purpose of
increasing image resolution through a super-resolution technique. They demon-
strate how the facial image resolution increases and leads to better facial recognition
performance. Baker and Kanade [26] also demonstrate how super-resolution can be
used to improve facial images that have been degraded due to downsampling.
Alternatively, researchers have also explored deconvolution techniques for over-
coming the effects of blur. In these methods, they attempt to determine the level and
type of blur before applying a filter to the degraded image to improve its resolution
before matching. Heflin et al. [30] estimate blur parameters to aid their deblurring
algorithm and show improved recognition results for subsets of both the FERET
and LFW databases. Each of these works points out that image blur degrades facial
recognition performance and explores algorithmic means to overcome blur.

In low-light scenarios, noise can also cause significant degradations in image
quality. Some work has previously been performed to explore how facial recog-
nition algorithms can overcome the effects of different types of noise, such as
Gaussian, Poisson, and salt-and-pepper noise. Both neural networks [33, 34] and
support vector machines (SVMs) [35, 36] have been shown to improve facial
recognition on noisy imagery. It is interesting to note that recent work in deep
learning [37–39] has also shown that modern neural networks have the ability to
perform comparably to humans in facial recognition tasks.

Finally, optical turbulence is known to affect imaging system performance under
a variety of scenarios [40–42]. Its effects are most damaging in ground-to-ground,
horizontal imaging conditions. Not much work has been done in this area to
determine its effects on facial recognition performance. Hefflin et al. [30] discuss
how their deblurring methodology could overcome some effects of turbulence, but
they only address low turbulence conditions where space-varying distortions and
blur caused by the atmosphere do not significantly affect image quality. Espinola
et al. [42] have shown how turbulence can affect imaging system performance in
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operationally relevant scenarios. Leonard et al. [43] have also taken a preliminary
look at how turbulence mitigation algorithms have the potential to improve facial
recognition performance under turbulent conditions.

While prior work has explored algorithmic methods to overcome blur and noise
degradations, they have not focused on how optical design and the environment can
also affect the end-to-end facial recognition system performance. The rest of this
work will outline a methodology to answer these types of questions. For example,
“How do sensor noise and blur affect performance?” or “How tolerant are facial
recognition algorithms to image degradations caused by atmospheric turbulence?”
One approach to answering these types of questions is to try and determine the
minimum image quality needed for facial recognition performance. Previous work
has been performed to try and correlate image quality metrics (IQMs) to recognition
performance [44–48]. In Abaza et al. [47], the authors explore a variety of IQMs
and their sensitivity to changes in quality to propose their face quality index
(FQI) as a benchmark for measuring facial image quality. Other quality benchmarks
exist, including Hsu et al. [45], who developed a method to compare image quality
against the ISO/IEC 19794-5 standards. These quality measures are often used to
determine whether an image has the appropriate quality to be matched with the
facial recognition algorithm. However, as Beveridge et al. point out in [49], two
high-quality images may not always match, so while understanding image quality is
important, it is not the only factor in a facial recognition system’s performance.

The approach that we choose to use in this work is to simulate the optical
imaging system degradations (e.g., blur, noise, and turbulence) on standard datasets
to explore algorithm performance under different operationally relevant conditions.
This allows one to conduct trade studies on optical system design, conduct sensi-
tivity analyses, and explore how these trades would affect recognition performance.

6.2 Methodology

It is often very expensive and difficult to conduct extensive field trials to test
biometric system performance. For this reason, many researchers use existing
datasets to test their algorithms. However, these datasets are usually collected using
a small set of controlled cameras, or in the case of datasets like Labelled Faces in
the Wild [15], with a large variety of uncontrolled cameras. This makes it very
difficult to use these datasets to explore how a system design, or adverse imaging
conditions, could affect a recognition algorithm’s performance.

In this work, we use a database of pristine facial images and simulate image
degradations to measure system performance under different conditions. This
enables us to take an existing dataset and generate imagery that would be repre-
sentative of a tactical facial recognition imaging system. From this imagery, we can
explore the effects of different system trades on a biometric system’s overall per-
formance by generating the imagery for the various conditions.
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In the rest of this work, we show how this can be done for three different trade
studies: blur, noise, and atmospheric turbulence. The facial images used in this
study were taken from the publicly available FERET database [10–12]. The FERET
database was sponsored by the DoD Counterdrug Development Program Office to
support government-monitored testing and evaluation of facial recognition algo-
rithms using standardized tests and procedures. The database consists of eight-bit
grayscale images of human heads from 1196 subjects. The imagery has views
ranging from frontal to left and right profiles and is freely available for researchers.
In this work, unless otherwise noted, we will use the pristine “FA” frontal subset of
the FERET data as the gallery (or target) images and the “FB” frontal subset as the
probe set. The “FA” and “FB” images were captured during the same session, and
the subjects were asked to change their facial expressions between images. In this
study, the “FB” probe set will also be “degraded” by the different conditions
described below before matching against the unmodified gallery set.

Two different facial recognition algorithms will be used to evaluate facial
recognition performance for the various conditions. The first algorithm is govern-
ment off-the-shelf (GOTS) facial recognition software. The GOTS algorithm is
considered a black box system and it is unknown exactly how the internal matching
is performed. However, if images meet a minimum image quality standard (e.g., a
face and facial features can be detected), they can be enrolled by the GOTS
algorithm for matching against a gallery.

The second algorithm used is a publicly available algorithm from the Colorado
State University [50, 51] that uses principal component analysis (PCA) to match
faces. Given a facial image and known eye coordinates, the CSU algorithm crops
the face and performs histogram normalization on the input grayscale image. The
PCA-based algorithm in this work was trained on the standard FERET training set.
Once trained, image templates can be formed for both the probe and gallery sets.
These templates represent where the images reside in the PCA-based space. The
similarity of two images can then be calculated using standard distance measures. In
this study, we calculate distances using the Mahalanobis cosine distance:

DMahCosine u; vð Þ ¼ � cos hmnð Þ ¼ � m � n
mj j nj j ð6:1Þ

In order to assess facial recognition algorithm performance, we will be evalu-
ating an access control verification scenario. In this scenario, subjects present their
credentials to the system, and if the match score of the facial recognition software
exceeds a certain threshold, they are granted access. Two types of results will be
reported for the different imaging conditions, receiver operator characteristic
(ROC) curves, and cumulative match characteristic (CMC) curves.

The ROC curve plots the genuine acceptance rate (GAR) for different false
match rates (FMRs). The GAR is the rate at which genuine comparisons produce a
similarity score above a certain decision threshold. For an access control scenario,
users present their biometric credentials to the system and a similarity score is
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determined against their gallery entry. If the similarity score is above the decision
threshold, then they are correctly granted access.

GAR thresholdð Þ ¼ #of genuine comparisons with score above threshold
Total # of genuine comparisons

ð6:2Þ

The FMR is the rate at which imposter comparisons produce a similarity score
above a certain decision threshold. For the access control scenario mentioned
above, this means that a subject would be incorrectly granted access to the system.

FMR thresholdð Þ ¼ # of imposter comparisons above threshold
Total # of imposter comparisons

ð6:3Þ

The CMC curves describe how well the facial recognition system does of
including the genuine subject in the top number of matches. For instance, Rank 1
would report the percentage of matches where the genuine was the top match, while
Rank 20 would report the percentage of genuine subjects correctly within the top 20
ranked matches. This allows one to consider the effectiveness of the facial recog-
nition system in a scenario where an analyst is making a final determination and it is
desirable to reduce the cognitive strain imposed upon them.

One final metric will be included in this work for the GOTS algorithm only. As
mentioned above, the GOTS algorithm has an enrollment process for the probe
images. During this enrollment step, the proprietary algorithm ensures that each
probe image meets certain image quality standards (e.g., that there is a face in the
image and its internal features can be detected) before matching it against the
gallery database. Therefore, we report the GOTS algorithm enrollment rates as the
percentage of probe images that pass the initial image quality assessment and thus
can be matched against the gallery images. The CSU algorithm only needs to know
the eye locations of the face within the image in order to conduct its matching.
Since we are using the FERET database, we have this ground truth for all of the
images, regardless of how degraded they become.

6.3 Effects of Image Blurring

The first condition that will be explored is the effect of image blurring on facial
recognition performance. In general, image blurring can greatly affect a system
performance for both human operators and automatic algorithms. Blur can be
introduced into the optical system through a variety of factors. Defocus and
camera/subject motions are two primary contributors to blur in real-life scenarios.
First, we will use a simple additional Gaussian optics blur as an example of how
such a resolution reduction could impact facial recognition performance. Figure 6.1
shows a series of facial images where the defocus-like blur was gradually increased.
It can be seen that the sharp edges and features start to blend together and it gets
harder to confidently recognize the face. The degradation in these images was
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simulated with a zero-mean Gaussian blur kernel. Increasing degrees of blur were
simulated by changing the standard deviation of the kernel from the no blur con-
dition, to a maximum standard deviation of 7 pixels. This is an important trade
study because the quality of the imaging system’s optics becomes more important
as the camera-to-subject distance increases.

Figures 6.2, 6.3, 6.4, and 6.5 show the facial recognition results when run
against the FERET “FB” probe set with the standard ferret gallery set, “FA.”
Figure 6.2a shows the ROC curve for the GOTS algorithm for the different cases. It
can be seen that the system can handle some blurring and still get reliable results for
the tested dataset. However, it can also be seen that performance begins to degrade
significantly for a given FMR as the blur increases. For the 7-pixel blur, the GAR is
only 77 % for a FMR of 0.1 %. The CSU PCA algorithm (Fig. 6.2b) shows similar
performance degradation as blur increases, even though it shows overall worse
performance. This is to be expected, as the GOTS algorithm is a much more
sophisticated facial recognition algorithm than the standard PCA algorithm. In this
case, we expected the two algorithms to perform significantly different, but the
process demonstrates how this methodology could be used to compare different
algorithms against the same degraded imaging conditions.

Fig. 6.1 Example of the effects of increasing Gaussian blur on facial images. The leftmost image
is the pristine input image, followed by increasing blur kernel standard deviations (4 pixels, 5
pixels, 6 pixels, and 7 pixels)

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.2 Receiver operator curves for varying Gaussian blur levels. Left GOTS algorithm; Right
CSU algorithm
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As described above, it is important to note that for these tests, the GOTS
algorithm requires a minimum image quality to actually enroll and match a probe
face against the gallery, whereas the CSU algorithm does not because we have the
ground truth of the FERET database eye locations. Therefore, it is critical that we
also evaluate the GOTS algorithm enrollment performance as the blur level
increases. Figure 6.3 shows how the probe set’s enrollment rate drops significantly
as the blur level increases. This means that at the peak blur level in this study,
roughly 40 % of the subjects failed the minimum image quality tests internal to the
GOTS algorithm and were unable to be matched against the gallery. Thus, these
“un-enrolled” cases are not captured in the results.

Figure 6.4a, b, respectively, shows the GOTS and CSU algorithms’ CMC
curves. When a human is in the loop, it is sometimes more important to see how

Fig. 6.3 Enrollment rate of the GOTS algorithm for increasing Gaussian blur levels. As the blur
increases, a larger percentage of images do not pass the minimum quality needed for the GOTS
algorithm to locate the faces for matching

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.4 CMC curve for the increasing defocus-like Gaussian blur cases. Left GOTS algorithm;
Right CSU PCA algorithm
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well the algorithms do in identifying the correct subject within the top number of
matches. It can be seen from Fig. 6.4a, b that the algorithms reach a different peak
cumulative match performance as the blur increases. Given a particular operational
scenario, these graphs could help determine an acceptable level of image blur in
order for the correct subject to be found within the top specified number of matches.

Finally, Fig. 6.5 shows a comparison of the algorithms for a fixed FMR. From
this graph, it can be seen that the PCA algorithm has a faster drop-off in perfor-
mance for the 4-, 5-, and 6-pixel Gaussian blur levels.

In addition to defocus-like blur, we can also simulate blur caused by camera or
subject motion. Imaging systems have different integration times, and if a subject is
moving while the imager is taking its picture, motion blur could degrade the quality
of the imagery. Purely horizontal motion blur was added to the pristine imagery
through a linear averaging filter:

f i; j½ � ¼
Xn

k¼1

h k½ �g i; j� k½ � ð6:4Þ

where i and j are the vertical and horizontal pixel locations, respectively, f is the
output image, g is the pristine input image, and h is a one-dimensional averaging
filter with length n. For example, if you wanted to simulate a horizontal blur length
of 5 pixels, h = [0.2, 0.2, 0.2, 0.2, 0.2]. This could easily be expanded to simulate
motion blur of arbitrary angles by transforming h to a two-dimensional filter.

Figure 6.6 demonstrates the effects of varying levels of horizontal motion blur on
an example facial image. It can be seen from these images, compared to Fig. 6.1,
that the horizontal motion blur manifests itself differently and that some sharper
features are retained compared to the Gaussian blur above. Given a notional 100-m
long-range facial recognition system with a 1 m focal length, 8.5 μm pixel pitch,
and 10 ms integration time, Table 6.1 lists example velocities for the different
motion blur levels in Fig. 6.1. Note that the typical human walking speed is
approximately 1.3 m/s.

Fig. 6.5 Comparison of
algorithm performance under
increasing Gaussian blur for a
fixed false match rate of 0.1 %
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Figure 6.7a, b, respectively, shows the ROC curves for the GOTS and CSU
algorithms for the cases of increasing horizontal motion blur. Again, these results
can be used to determine the sufficient operating envelope for these algorithms
under these types of conditions. The GOTS algorithm had a GAR of 82 % at a FMR
of 0.1 % for the 28-pixel horizontal blur case, while the CSU PCA algorithm had a
GAR of 59 % (at a FMR of 0.1 %).

Figure 6.9 shows the enrollment rates for the GOTS algorithm for the linear
motion blur cases, and Fig. 6.8 compares the performance of the two algorithms at a

Fig. 6.6 Example of the effects of increasing horizontal motion blur on facial images. The
leftmost image is the “pristine” input image, followed by increasing horizontal motion blurs (7
pixels, 14 pixels, 21 pixels, and 28 pixels)

Table 6.1 Corresponding
target velocities for motion
blur examples using a
nominal 100-m long-range
facial recognition system with
1 m focal length, 8.5 μm pixel
pitch, and 10 ms integration
time

Motion blur (pixels) 7 14 21 28

Target velocity (m/s) 0.60 1.19 1.78 2.38

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.7 Receiver operator curves for varying horizontal motion blur levels. Left GOTS algorithm;
Right CSU algorithm
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fixed FMR of 0.1 %. As with the defocus-like blur, the GOTS algorithm outper-
forms the CSU PCA algorithm for all the cases. However, unlike the Gaussian blur
cases, the horizontal motion has a much smaller effect on enrollment rates.

Finally, Fig. 6.10a shows how the GOTS algorithm had a near-perfect CMR at
Rank 20 for all but the worst blur case. The CSU algorithm also reached its
maximum CMR for almost all the blur cases at Rank 20 as well (see Fig. 6.10b).
These results suggest that, in general, facial recognition algorithms could be less
susceptible to horizontal motion blur than Gaussian blur.

6.3.1 Effects of Noise

In addition to blur, noise can also significantly affect system performance. This is
especially true when trying to operate in low-light conditions where systems are

Fig. 6.8 Comparison of
algorithm performance under
increasing motion blur for a
fixed false match rate of 0.1 %

Fig. 6.9 Enrollment rate of
the GOTS algorithm for
increasing motion blur levels

6 Assessment of Facial Recognition System Performance … 127



light-starved. Noise can be a significant factor in both visible and infrared imagers.
In visible imagery, it is most often seen when trying to operate at high frame rates
and/or low-light conditions. For thermal imagery, uncooled systems can suffer from
higher amounts of noise than cooled systems. Uncooled thermal imagers have size,
weight, and power advantages over cooled systems, so it is important to understand
how their performance is affected by system degradations. This work focuses on
facial recognition performance on visible imagery, but it is important to note that
the same methodology could be applied to imagery from any waveband. In the
future, it will be important to be able to understand how these various degradations
could affect facial recognition performance across the electromagnetic spectrum.

To explore how noise might affect facial recognition performance, different
levels of Poisson noise were applied to the original FERET images. We adopted the
method from Ref. [52] to simulate increased image noise for different levels of
illuminance. Figure 6.11 shows example facial imagery for increasing amounts of
noise (decreasing illuminance). From this imagery, it can be seen that the facial
features remain sharp as noise increases, but it becomes increasingly difficult to

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.10 CMC curve for increasing motion blur. Left GOTS algorithm; Right CSU PCA
algorithm

Fig. 6.11 Example of the effects of increasing Poisson noise (decreasing illuminance) on facial
images. The upper leftmost image is the pristine input image followed by decreasing illuminance
(0.09, 0.06, and 0.04 foot-candles, respectively; note: full moon is approx. 0.02 foot-candles).
Images have been contrast-stretched to highlight the effects of the noise
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separate the actual signal from the noise. The simulated illuminances were 0.09,
0.06, and 0.04 foot-candles, respectively. For reference, peak full moon illuminance
is approximately 0.02 foot-candles [53].

Figure 6.12a, b shows the ROC curves for the GOTS and CSU algorithms,
respectively. As in the other cases, the GOTS algorithm performs better for the
baseline and low degradation cases. However, it can be seen that both algorithms
degrade at approximately the same rate (Fig. 6.13). The same trends can be seen in
Fig. 6.14a, b that show the CMR versus rank results. Finally, Fig. 6.15 presents the
enrollment results for the GOTS algorithm. From these results, it can be seen that
the noise does not prevent the GOTS algorithm from detecting the faces and rec-
ognizing the needed facial features, but it does introduce uncertainty into the
matching results.

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.12 Receiver operator curves for varying levels of Poisson noise (illuminance). Left GOTS
algorithm; Right CSU algorithm

Fig. 6.13 Comparison of algorithm performance under increasing noise (decreasing illuminance)
for a fixed false match rate of 0.1 %
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6.3.2 Effects of Atmospheric Turbulence

Atmospheric turbulence effects are the final type of image degradation that we will
explore in this work. Atmospheric turbulence can significantly degrade optical
imagery in operational environments. Turbulent eddies in the optical path arise
from the mixing of air at different temperatures due to solar loading on the ground.
These eddies cause random fluctuations of the index of refraction of light. This
condition can cause severe blurring and image distortion, or dancing, for
ground-to-ground surveillance tasks and, as mentioned above, has not been
extensively studied with regard to its effects on facial recognition performance.
Figure 6.16 shows example degradations on resolution target imagery under
increasing turbulence levels. It is important to note that the atmospheric structure
constant, Cn

2, is a measure often used to characterize turbulence strength. Roughly, a
Cn
2 value of 1 × 10−14 m−2/3 is considered low turbulence, 5 × 10−14 m−2/3 is

considered medium turbulence, and values greater than 1 × 10−13 m−2/3 are con-
sidered high turbulence.

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.14 CMC curve for increasing noise (decreasing illuminance). Left GOTS algorithm; Right
CSU PCA algorithm

Fig. 6.15 Enrollment rate of
the GOTS algorithm for
increasing levels of Poisson
noise (decreasing
illuminance)
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Like the analysis conducted for the blurred and noisy imagery above, the tur-
bulence degradations need to be simulated on the FERET database imagery. In
order to simulate realistic turbulence degradations on facial imagery, we use a
turbulence simulation algorithm outlined in Ref. [43]. This turbulence simulator is
based on an algorithm from the Fraunhofer Research Institute for Optronics and
Pattern Recognition (FGAN-FOM) [54]. It is an empirical model based on the
analysis of imaging distortions in real image sequences recorded under different
atmospheric conditions. The FGAN-FOM simulator was chosen for this work due
to its processing speed and ability to recreate realistic image degradations. It has
been shown in previous work that the image degradations created by the simulator
correlate well with field data [54, 55]. Other methods to simulate turbulence exist,
but are often more computationally expensive.

The simulator treats the space-varying image distortions and blurring caused by
turbulence separately. Figure 6.17 pictorially describes how the distortions and
blurs are generated and combined. For each image, a matrix of random numbers is
generated with a given mean and variance that relate to the statistics of the tur-
bulence condition being simulated for both the blur and distortion cases.
A prescribed power spectral density is then applied spatially to ensure that the blur
and distortion coefficients have the correct spatial correlations. After the coefficients

Fig. 6.16 Example of image degradation due to increasing levels of atmospheric turbulence.
Resolution target was 1 km from the sensor; the target was 1.5 m high. Focal length of the optics
was 800 mm, with most of the data taken at F/16. Pixel pitch of the sensor was 7.4 µm, and the
average shutter speed was 0.5 ms [57]
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are determined, the simulator first applies the blur for every pixel and then distorts
the pixels accordingly.

Figure 6.18 demonstrates the effects of increasing turbulence applied to facial
imagery. These images were simulated to represent a F/16 camera with a 1.9 m
focal length at a range of 300 m. The pixel pitch of the camera was assumed to be
5.6 µm. Both the space-varying blur and distortion effects can be seen in these
images. In the most severe cases, Cn

2 values of 2.5 × 10−13 m−2/3 and
5.0 × 10−13 m−2/3, the features within the face are significantly blurred out.

Fig. 6.17 Pictorial representation of the simulation method. The leftmost sketch shows a 3 × 3
pixel subimage where the pixel positions are marked by black crosses. The black circles represent
the blur diameter (the standard deviation of the Gaussian), and the arrows represent pixel
displacement. In a realistic simulation scenario, the blur and displacements can be larger than a
single pixel [43]

Fig. 6.18 Example of the effects of increasing atmospheric turbulence on facial images. The upper
leftmost image is the “pristine” input image followed by increasing turbulence strength
(Cn

2 = 2.5 × 10−14 m−2/3, 5.0 × 10−14 m−2/3, 7.5 × 10−14 m−2/3, 1.0 × 10−13 m−2/3,
2.5 × 10−13 m−2/3, 5.0 × 10−13 m−2/3, respectively)
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Because of the processing time needed to generate the turbulence-degraded
imagery, a 360 subject subset of the probe images was selected to match against the
full 1196 subject gallery used above. Figure 6.19a, b shows the ROC curves for
each of the algorithms as before, while Fig. 6.20 shows a comparison between the
two algorithms for a fixed FMR of 0.1 %. As before, the GOTS algorithm out-
performs the COTS algorithm for all of the cases. It can be seen that even though
there are distortions in the images, the degradation is mainly caused by blurring that
is most similar to the Gaussian blur explored earlier. Figure 6.21 shows the
enrollment rates for the different turbulence cases. For the two highest turbulence
cases, none of the probe images pass the minimum image quality for the GOTS
algorithm. For the Cn

2 = 1 × 10−13 case, only approximately 45 % of the subjects are
able to be enrolled for matching. This is the reason why the two highest turbulence
cases do not appear on the GOTS algorithm results. In contrast, since the CSU
algorithm uses the FERET eye locations as ground truth, it is able to generate
results, despite their poor quality, for all the cases.

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.19 Receiver operator curves for varying levels of atmospheric turbulence. Left GOTS
algorithm; Right CSU algorithm

Fig. 6.20 Comparison of
algorithm performance under
increasing turbulence for a
fixed false match rate of 0.1 %
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Finally, Fig. 6.22a, b shows the CMC results for both algorithms, respectively.
For the moderate turbulence cases (Cn

2 * 10−14), the GOTS algorithm has a
cumulative match rate of greater than 90 % at Rank 20. This is for a smaller dataset,
but shows that the algorithm can perform under degraded conditions and provide
value in a surveillance application with a human in the loop.

6.4 Summary

In this work, a methodology has been introduced to help system designers consider
the deleterious effects of different types of image degradations on facial recognition
performance. This becomes important for many military and homeland security
environments where operating conditions cannot be controlled. The methodology

Fig. 6.21 Enrollment rate of the GOTS algorithm for increasing levels of turbulence

GOTS Algorithm CSU Algorithm(a) (b)

Fig. 6.22 CMC curve for increasing noise. Left GOTS algorithm; Right CSU PCA algorithm

134 K.R. Leonard



also allows system designers to explore the sensitivity of their designs to these types
of degradations.

Specifically, the effects of blur, noise, and atmospheric turbulence were
explored. Each of these degradations caused different effects on the algorithms used
in this study, and each algorithm had a different tolerance to the severity of the
degradations. It was seen that motion blur is handled more easily by the algorithms
than an overall Gaussian blur. The choice of the facial recognition algorithms used
in this work was chosen solely on availability. The main focus was to demonstrate
how accurate, controlled simulation could be combined with results from algorithm
performance to serve as a guide for system design and analysis of sensitivity to
environmental conditions. This methodology could be used to evaluate any facial
recognition imaging system to understand under what conditions the system will
provide adequate performance. The blur, noise, and turbulence simulations pre-
sented are also just examples and could be easily tailored to specific situations of
interest. Finally, the presented technique is not limited to face acquisition and could
be used by other biometric modalities and image-based acquisition systems in
general.

The presented methodology allows users to answer complicated questions, such
as “How tolerant is the facial recognition system (both camera design and algo-
rithm) to image degradations caused by atmospheric turbulence?” Furthermore,
work is being done at the US Army’s RDECOM CERDEC Night Vision Electronic
Sensors Directorate (NVESD) to automate this methodology using the Night Vision
Imaging Performance Model (NV-IPM) and its image generation tool [56]. The
image generation tool will allow users to conduct trade studies over dozens of
system design parameters and obtain direct feedback regarding algorithm perfor-
mance. Evaluating recognition algorithm performance against accurately simulated
imagery provides a cost-effective approach to system design and specification.

Finally, while the results presented in this work focused on visible imagery, the
process and tools presented could be used on imagery from any waveband.
Furthermore, they are algorithm agnostic and provide a means to compare and
contrast algorithms under different conditions. As we move into utilizing biometric
recognition algorithms across the electromagnetic spectrum, this will become very
important because the different systems will have different types of advantages and
disadvantages in a tactically relevant environment.

References

1. U.S. Army Training and Doctrine Command: The U.S. Army Operating Concept: Win in a
Complex World. (TRADOC Pamphlet 525-3-1), http://www.tradoc.army.mil/tpubs/pams/
TP525-3-1.pdf. Last accessed 31 Mar 2015

2. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

3. Turk, M., Pentland, A.P.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

6 Assessment of Facial Recognition System Performance … 135

http://www.tradoc.army.mil/tpubs/pams/TP525-3-1.pdf
http://www.tradoc.army.mil/tpubs/pams/TP525-3-1.pdf


4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition
using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720
(1996)

5. Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images.
J. Opt. Soc. Am. A 14, 1724–1733 (1997)

6. Wiskott, L., Fellous, J.-M., Krüger, N., Malsburg, C.V.D.: Face recognition by elastic bunch
graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19, 775–779 (1997)

7. Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial
expressions: a survey. Pattern Recogn. 25(1), 65–77 (1992)

8. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey.
ACM Comput. Surv. 35(4), 399–458 (2003)

9. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey.
Proc. IEEE 83(5), 705–741 (1995)

10. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation
procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

11. Phillips, P.J., Rauss, P.J., Der, S.Z.: FERET (facial recognition technology) recognition
algorithm development and test results. ARL Technical Report 995 (1996)

12. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for
face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104
(2000)

13. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In:
Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture
Recognition, pp. 46–51 (2002)

14. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28
(5), 807–813 (2010)

15. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database
for studying face recognition in unconstrained environments. Univ. Mass. Technical Report
07-49 (2007)

16. The AR Face Database: Ohio State Univ., http://www2.ece.ohiostate.edu/*aleix/ARdatabase.
html. Last accessed 26 May 2015

17. Grgic, M., Delac, K., Grgic, S.: SCface—surveillance cameras face database. Multimedia
Tools Appl. 51(3), 863–879 (2009)

18. Phillips, P.J., Grother, P., Micheals, R., Blackburn, D.M., Tabassi, E., Bone, M.: Face
recognition vendor test 2002. In: IEEE International Workshop on Analysis and Modeling of
Faces and Gestures, p. 44 (2003)

19. Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe,
M.: FRVT 2006 and ICE 2006 large-scale results. NIST Interagency Report 7408 (2007)

20. Grother, P.J., Quinn, G.W., Phillips, P.J.: Report on the evaluation of 2D still-image face
recognition algorithms. NIST Interagency Report 7709 (2011)

21. Phillips, P.J., et al.: An introduction to the good, the bad, & the ugly face recognition challenge
problem. NIST Interagency Report 7758 (2011)

22. Quinn, G.W., Grother, P.J.: Performance of face recognition algorithms on compressed
images. NIST Interagency Report 7830 (2011)

23. Matas, J., Hamouz, M., Jonsson, K., Kittler, J., Li, Y., Kotropoulos, C., Tefas, A., Pitas, I.,
Tan, T., Yan, H., Smeraldi, E., Bigun, J., Capdevielle, N., Gerstner, W., Ben-yacoub, S.,
Abdeljaoued, Y., Mayoraz, E.: Comparison of face verification results on the XM2VTS
database. In: Proceedings of the 15th ICPR, pp. 858–863 (2000)

24. Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 32(5), 947–954 (2010)

25. Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M.: An introduction to evaluating biometric
systems. Computer 33(2), 56–63 (2000)

26. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern
Anal. Mach. Intell. 24(9), 1167–1183 (2002)

136 K.R. Leonard

http://www2.ece.ohiostate.edu/%7ealeix/ARdatabase.html
http://www2.ece.ohiostate.edu/%7ealeix/ARdatabase.html


27. Wheeler, F.W., Liu, X., Tu, P.H.: Multi-frame super-resolution for face recognition. In:
First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–
6 (2007)

28. Huang, H., He, H., Fan, X., Zhang, J.: Super-resolution of human face image using canonical
correlation analysis. Pattern Recogn. 43(7), 2532–2543 (2010)

29. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.:
Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Process. 12(5),
597–606 (2003)

30. Heflin, B., Parks, B., Scheirer, W., Boult, T.: Single image deblurring for a real-time face
recognition system. In: 36th Annual Conference on IEEE Industrial Electronics Society,
pp. 1185–1192 (2010)

31. Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur
inference to improve recognition of blurred faces. Computer Vision and Pattern Recognition,
pp. 1115–1122 (2009)

32. Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial
deblur inference using subspace analysis for recognition of blurred faces. IEEE Trans. Pattern
Anal. Mach. Intell. 33(4), 838–845 (2011)

33. Reda, A., Aoued, B.: Artificial neural network-based face recognition. In: First International
Symposium on Control, Communications and Signal Processing, pp. 439–442 (2004)

34. Uglov, J., Schetinin, V., Maple, C.: Comparing robustness of pairwise and multiclass
neural-network systems for face recognition. arXiv:0704.3515 (2007)

35. Oravec, M., Lehocki, F., Mazanec, J., Pavlovicova, J., Eiben, P.: Face Recognition in Ideal
and Noisy Conditions Using Support Vector Machines, PCA and LDA. INTECH Open
Access Publisher, Rijeka (2010)

36. Bharadwaj, S., Bhatt, H., Vatsa, M., Singh, R., Noore, A.: Quality assessment based denoising
to improve face recognition performance. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 140–145 (2011)

37. Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural
networks,” arXiv:1502.00873 (2015)

38. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level
performance in face verification. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1701–1708 (2014)

39. Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: touching the limit of lfw benchmark
or not?. arXiv:1501.04690 (2015)

40. Fried, D.L.: Optical resolution through a randomly inhomogeneous medium for very long and
very short exposures. J. Opt. Soc. Am. 56(10), 1372–1379 (1966)

41. Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media. SPIE Press,
Bellingham (2005)

42. Espinola, R.L., Cha, J., Leonard, K.: Novel methodologies for the measurement of
atmospheric turbulence effects. In: Proceeding of SPIE, 7662 (2010)

43. Leonard, K.R., Howe, J., Oxford, D.E.: Simulation of atmospheric turbulence effects and
mitigation algorithms on stand-off automatic facial recognition. In: Proceedings SPIE, 8546
(2012)

44. Subasic, M., Loncaric, S., Petkovic, T., Bogunovic, H., Krivec, V.: Face image validation
system. In: Proceedings of the 4th International Symposium on Image and Signal Processing
and Analysis, pp. 30–33 (2005)

45. Hsu, R.-L.V., Shah, J., Martin, B.: Quality assessment of facial images. In: Biometric
Consortium Conference, 2006 Biometrics Symposium, pp. 1–6 (2006)

46. Grother, P., Tabassi, E.: Performance of biometric quality measures. IEEE Trans. Pattern Anal.
Mach. Intell. 29(4), 531–543 (2007)

47. Abaza, A., Harrison, M.A., Bourlai, T.: Quality metrics for practical face recognition. In: 21st
International Conference on Pattern Recognition, pp. 3103–3107 (2012)

48. Abaza, A., Harrison, M.A., Bourlai, T., Ross, A.: Design and evaluation of photometric image
quality measures for effective face recognition. IET Biometrics 3(4), 314–324 (2014)

6 Assessment of Facial Recognition System Performance … 137

http://arxiv.org/abs/0704.3515
http://arxiv.org/abs/1502.00873
http://arxiv.org/abs/1501.04690


49. Beveridge, J.R., Phillips, P.J., Givens, G.H., Draper, B.A., Teli, M.N., Bolme, D.S.: When
high-quality face images match poorly. In: IEEE International Conference on Automatic Face
Gesture Recognition and Workshops, pp. 572–578 (2011)

50. Bolme, D., Beveridge, R., Teixeira, M., Draper, B.: The CSU face identification evaluation
system: its purpose, features and structure. In: International Conference on Vision Systems
(2003)

51. Colorado State University: http://www.cs.colostate.edu/evalfacerec/index10.php, Last acces-
sed 31 Mar 2015

52. Howell, C., Choi, H.-S., Reynolds, J.P.: Face acquisition camera design using the NV-IPM
image generation tool. In: Proceedings of SPIE 9452 (2015)

53. Leibowitz, H.W., Ambient illuminance during twilight and from the moon. In: Proceedings on
Night Vision Current Research and Future Directions, pp. 20–21 (1987)

54. Repasi, E., Weiss, R.: Computer simulation of image degradations by atmospheric turbulence
for horizontal views. Proc. SPIE p. 8014 (2011)

55. Leoanrd, K.R., Espinola, R.L.: Validation of atmospheric turbulence simulations of extended
scenes. In: Proc. SPIE 9071 (2014)

56. Teaney, B., Reynolds, J.: Next generation imager performance model. In: Proc. SPIE 7662
(2010)

57. Repasi, E.: Image catalogue of video sequences recorded by FGAN-FOM during the NATO
RTG40 field trial, distributed to group members in Spring (2006)

138 K.R. Leonard

http://www.cs.colostate.edu/evalfacerec/index10.php


Chapter 7
Understanding Thermal Face Detection:
Challenges and Evaluation

Janhavi Agrawal, Aishwarya Pant, Tejas I. Dhamecha, Richa Singh
and Mayank Vatsa

Abstract In thermal face detection, researchers have generally assumed manual
face detection or have designed algorithms that focus on indoor environment.
However, facial properties are dependent on body temperature, surrounding envi-
ronment, and any accessories or occlusion present on the face. For instance, the
presence of scarfs, glasses, or any disguise accessories will alter the emitted heat
pattern, thereby making it challenging to detect the face in thermal images.
Similarly, daytime outdoor image acquisition has certain effects on the heat pattern
compared to nighttime (or indoor controlled) image acquisition settings that affect
automatic face detection performance. In this research, we provide a thorough
understanding of challenges in thermal face detection along with an experimental
evaluation of traditional approaches. Further, we adapt the AdaBoost face detector
to yield improved performance on face detection in thermal images in both indoor
and outdoor environments. We also propose a region of interest selection approach
designed specifically for aiding occluded/disguised thermal face detection.
Experiments are performed on the Notre Dame thermal face database as well as the
IIITD databases that include variations such as disguise, age, and environmental
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(day/night) factors. The results suggest that while thermal face detection in
semi-controlled environments is relatively easy, occlusion and disguise are chal-
lenges that require further attention.

7.1 Introduction

Decades of research in face recognition has seen several research directions, mostly
in the visible spectrum and many high-performing algorithms have been developed
for this purpose. To instigate further research, several research programs such as
Janus1 have been initiated where the goal is to take face recognition to the next
significant level. It is also well understood that in order to have a large-scale appli-
cation, the technology has to encompass face recognition both in and beyond visible
spectrums, i.e., developing capabilities to recognize face images/videos in visible,
near infrared, and thermal spectrums. Compared to the visible spectrum, research in
face recognition beyond visible spectrum is relatively less explored and has primarily
focused on near infrared and thermal imagery [2, 3, 5, 6, 15, 19]. As shown in
Fig. 7.1, face images in these three spectrums provide non-overlapping information
and can be individually or in-combination used for identity management.

For recognizing face images captured in thermal images (spectrum range of 8–
12 μm), the first step is the face detection followed by feature extraction and
matching against gallery image(s). Similar to visible spectrum, thermal face
detection can be modeled as a two-class problem (face and non-face). Trujillo et al.
[25] proposed a thresholding-based approach for detecting faces in thermal images.
Since the goal is to recognize expressions, face detection accuracy is not reported in
that study. Selinger and Socolinsky [21] and Socolinsky and Selinger [23] applied
boosted class-cover catch digraph (CCCD) [24] for face detection. They [23]
observed that thermal face recognition performance degrades in outdoor environ-
ments. Since the overall goal was to identify the subject, the results of the inter-
mediate face detection stage were not reported. In [23], the authors focused on face
recognition and the results of detection were not reported. However, it is possible
that in thermal spectrum the outdoor setting affects the detection stage too, par-
ticularly in thermal spectrum. Martinez et al. [18] utilized GentelBoost along with
Haar-like features [26] and, the results showcase that, to an extent, boosting with
Haar-like features can be utilized for face detection. However, evaluation in chal-
lenging environments remains an open research problem. Wang et al. [28] observed
that Haar-like features with AdaBoost can be useful for detecting eyes, even in the
presence of glasses. Zhang et al. [29] proposed a modified boosting approach in
which visible images could also be utilized along with the images of other spectrum

1http://www.iarpa.gov/index.php/research-programs/janus.
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to train the cascade model. Table 7.1 briefly summarizes these algorithms on face
detection in thermal images.

For designing an efficient face recognition algorithm, it is important that the face
detection is accurate. It has been observed that imprecise eye localization and
therefore imprecise face localization degrades the performance of the overall
thermal face recognition pipeline [6]. Since the majority of researchers have used
manually detected face images in the recognition pipeline, thermal face detection
has not been well explored in the literature. Moreover, in order to learn an efficient
face detector it is imperative to have access to a large amount of face and non-face
images. The samples obtained in diverse conditions, such as indoor and outdoor

VIS Thermal VIS NIR

Fig. 7.1 Sample face images captured in visible, thermal, and near-infrared (NIR) spectrum. NIR
image has been taken from CASIA NIR-VIS 2.0 face database [14]

Table 7.1 Summary of related research for face detection in thermal images

Authors Objective and technique Dataset (#Images/#Subjects)

Trujillo et al.
[25]

Face detection: thresholding. Facial regions:
Harris detector with k-means clustering

IRIS dataset in OCTBVS
[12] (4228/30)

Selinger and
Socolinsky
[21]

Face detection: boosted CCCD classifier
[24]. Eye detection: Haar-like features with
AdaBoost

Private (3732/207)

Socolinsky
and Selinger
[23]

Face detection: boosted CCCD classifier
[24]. Eye detection: co-registration with the
visible images

Private indoor-outdoor
(3080/385)

Martinez
et al. [18]

Face detection: patch intensities. Eye, nostril
and mouth detection: Haar features with
GentleBoost and self-similarity descriptor

Private (78/22)

Wang et al.
[28]

Eye localization: Haar-like features with
AdaBoost for 15 subregions around eyes and
majority voting of results of multiple
classifiers

NVIE [27] and Equinox
dataset

Zhang et al.
[29]

Face detection: R-TrBoost to train using
visible and other spectrum images together

Private (7000 visible, 1400
spectrum 1, and 705
spectrum 2)

Bourlai and
Jafri [1]

Blob analysis-based skin detection, template
matching, and integral projection-based eye
detection

West Virginia University
visible-thermal database
(2250/50)
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environments, with session variations are necessary to learn a generalizable
detector. In our opinion, thermal face detection and recognition research is impaired
by the non-availability of a challenging database that includes face and non-face
images captured in both indoor and outdoor environments with time lapse varia-
tions. Moreover, there exists a very limited literature focusing on detection of
occluded thermal faces. Therefore, it is important that the challenge of face
detection is addressed to achieve a fully automated and efficient thermal face
recognition system. In view of existing limitations, this chapter attempts to bridge
the gap in the following ways:

• A database, namely IIITD thermal face database, is prepared that consists of 614
face images pertaining to 65 subjects and 150 non-face images. Face images are
captured in two sessions separated by two years time frame. Non-face images
are captured in both indoor and outdoor settings. A small set, IIITD-People in
Sun and Evening (IIITD-PSE), consisting 22 subjects is also prepared to study
the variations due to outdoor day light (sun) and nighttime environments. The
database and the ground truth annotations of face regions will be made publicly
available for researchers to undertake research on thermal face detection via
https://research.iiitd.edu.in/groups/iab/.

• Baseline experiments pertaining to face localization are performed on the IIITD
thermal face, IIITD-PSE, and Notre Dame (ND) thermal face [6] databases with
Haar- and LBP-cascaded AdaBoost to analyze the challenges associated with
face detection in thermal images. Challenging scenarios such as cross-sensor
thermal face detection and the effects of outdoor conditions (i.e., day or night)
are also examined. A baseline evaluation of detecting faces under occlusion
(using disguise accessories) is also performed on the IIITD In and Beyond
Visible Spectrum Disguise (I2BVSD) face database [8, 9]. A skin
detection-based region of interest (ROI) selection is proposed, to improve the
face detection performance. We also propose a novel face detection evaluation
measure to evaluate the performance of face detection algorithms.

7.2 IIITD Thermal Face Database

As shown in Table 7.1, there are multiple thermal face databases available.
However, all of them captured face data with the objective of face recognition in
controlled environments and may not be suitable for understanding the state of the
art of face detection algorithms in the thermal spectrum. Further, existing face
detection algorithms have been optimized for the visible spectrum, and since both
visible and thermal spectra have different characteristics, such optimized pre-trained
models may not yield the best results. Therefore, we have collected the IIITD
thermal face database with a focus on capturing the variations that may affect the
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appearance of facial regions in a thermal image, for instance, time lapse and
environment. The IIITD database consists of 614 thermal face images pertaining to
65 individuals and 150 non-face images. All the images are captured using a
thermal camera having micro-bolometer sensor operating in 8-14 μm spectrum
range, also known as long-wave infrared spectrum. Face images are near frontal
with neutral expressions and are captured in two sessions:

• Session I is captured in October/November 2011 and it consists of 82 images
pertaining to 41 subjects.

• Session II is captured in January 2014 and it consists of 532 images from 65
subjects. There are 41 overlapping subjects in both the sessions.

A set of 150 non-face images is collected out of which equal number of images
are captured indoor and outdoor. Since a face can appear very different during day
and night in a thermal image, we collected a separate dataset named IIITD-People
in Sun and Evening (IIITD-PSE) database to capture these variations. It consists of
120 images pertaining to 22 subjects acquired in outdoor settings during both day
(around 2 p.m. and *36 °C temperature) and night (around 10 p.m. and *22 °C
temperature). Both subsets, the IIITD-PSE-Day and IIITD-PSE-Night, contain 60
images pertaining to 15 subjects, with an overlap of 8 subjects.

All the images are of size 720 × 576 pixels. The details of both IIITD and
IIITD-PSE datasets are summarized in Table 7.2. Figure 7.2 illustrates the variety of
images contained in the IIITD and IIITD-PSE databases. For evaluating the per-
formance of face detection algorithms, the ground truth has been manually anno-
tated in terms of two eyes, nose, and mouth coordinates. To encourage the research
on the problem of thermal face detection, the database and annotated ground truth
will be made publicly available to researchers.

Table 7.2 Dataset details pertaining to sessions, subjects, and classes

Name Class Number of subjects and images

IIITD Thermal Face Session I: 41, 82

Session II: 65 (41 + 24), 532

Non-face 75 indoor and 75 outdoor

Total = 65 subjects, 764 images

IIITD-PSE Face (outdoor) Day: 15, 60

Night: 15 (8 + 7), 60

Total = 22 subjects, 120 face images

ND Face Train: 159, 159

Test: 82, 2292

Total = 241 subjects, 2451 images

I2BVSD Face Minor: 75, 307

Major: 75, 231

Total = 75 subjects, 538 images
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7.3 Databases, Algorithms, and Evaluation Measures

For understanding the performance of thermal face detection, Collection XI of the
University of Notre Dame (ND) face dataset [6] and I2BVSD database [8, 9] are
used along with the IIITD and IIITD-PSE databases. The ND face database consists
of 2292 infrared frontal face images of size 312 × 239 from 82 subjects. It also
contains a separate training set of 159 face images. Figure 7.3 shows sample images
of subjects from the ND database.

For studying the effect of occlusion using disguise accessories, we utilize the
I2BVSD face dataset [8, 9] which is the only publicly available dataset containing
images with occlusion. The dataset consists of 681 face images pertaining to 75

Indoor

Day NightSession IISession I

Outdoor

Fig. 7.2 Images illustrating the variations captured in the IIITD and IIITD-PSE thermal face
database. Each row contains images of one subject under different environments

Fig. 7.3 Sample images from the ND thermal face database [6]
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subjects in both visible and thermal spectra. The utilization of disguise accessories
results in varying amount of face occlusion. Depending on the facial regions which
are occluded, the dataset is divided into two parts, major disguises (231 images) and
minor disguises (307 images). Sample images contained in the dataset are shown in
Fig. 7.4. For this research, we utilize only the thermal spectrum images having
disguise variations (538 images, 75 subjects).

Fig. 7.4 Sample images from the I2BVSD thermal face database [8, 9]. Face images from subsets
pertaining to face occlusion due to a minor and b major usage of disguise accessories. While
I2BVSD database has images in both visible and thermal spectrum, we have used only thermal
images in the experiments
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7.3.1 Algorithms

The baseline performance has been established for two face detection algorithms:

1. Haar-like features [17, 26] with cascaded AdaBoost classifier: Haar-like fea-
tures are computed from rectangular regions of the image. Every rectangle is
divided into multiple non-overlapping sub-rectangles. Pixel intensities of each
sub-rectangle are added and the differences of summed intensities of
sub-rectangles are used as features. Sub-rectangles are created such that these
differences provide coarse information about horizontal, vertical, and diagonal
gradients.

2. Local binary patterns (LBP) features [16] with cascaded AdaBoost classifier:
In LBP, the difference between every pixel and its neighbors is computed. The
sign of differences is represented using a binary bit. The string of these binary
bits for every pixel is converted to decimal. An LBP-coded image representation
is obtained by replacing every pixel with its corresponding decimal values. The
final feature is represented in terms of histograms obtained from local regions of
the LBP-coded image representation.

Algorithm 1 briefly summarizes the cascade boosting face detection approach
utilizing Haar/LBP.

7.3.2 Evaluation Measures

In the existing literature, performance and effectiveness of face detection algorithms
is measured using metrics such as mean square error (MSE). However, these
statistics only present the difference between the ground truth and automatically
segmented landmark points. In our understanding, MSE is a more useful metric for
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landmark detection and it is not very informative if one wants to compare the
regions of interest and analyze falsely detected and falsely rejected regions. The
objective of a face detection algorithm is to be able to detect the complete region of
interest so that it has maximum intersection with the ground truth. To evaluate the
performance with respect to this intersection criterion, we propose the following
two measures:

• Ratio with ground truth (RG): RG presents the ratio of intersection of the
predicted region and ground truth with the area of ground truth segmentation.

RG ¼ AreaD\G
AreaG

ð7:1Þ

• Ratio with detection (RD): RD presents the ratio of intersection of the predicted
region and ground truth with the area of detected region.

RD ¼ AreaD\G
AreaD

ð7:2Þ

Here, D and G represent the detected and ground truth face regions (rectangles),
respectively. The visual interpretation of RG and RD together is shown in Fig. 7.5.
High RD along with low RG indicates that while there is a good overlap between

Low RG, Low RD High RG, Low RD

Low RG, High RD High RG, High RD

Ground truth

Detected

Fig. 7.5 RG and RD measures. High values of RG and RD together ensure a good face detection
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the two, a smaller face rectangle is detected compared to the ground truth.
Similarly, high RG along with low RD indicates that automatic face detection
algorithm has detected a larger face rectangle compared to the ground truth. Their
values lie in the range of [0, 1] and for ideal face detection, both should be very
close to one. RG and RD can be more effectively used together to analyze the
results. In this research, we observe that a threshold of 0.7 for both RG and RD can
be used to consider successful face detection.

7.4 Results and Analysis

The performance of the algorithms has been evaluated in four different scenarios:

• Testing with visible cascade: The publicly available visible spectrum face
detector model is utilized to detect faces in thermal spectrum images. This
experiment establishes the baseline for performance evaluation.

• Learning a model for thermal images: We learn detectors using thermal face and
non-face images. The images are preprocessed using histogram equalization
followed by feature extraction using LBP or Haar.

• Effect of environment and sensor: The effect of environmental factors such as
indoor/outdoor setting and day/nighttime is studied using the IIITD-PSE dataset.
We evaluate the effect of sensor interoperability on face detection. This set of
experiments is aimed to study the generalizability of face detection models.

• Effect of occlusion: In this set of experiments, we study the effectiveness of the
learned thermal face detector on occluded faces. Along with LBP and Haar
features, a skin detection-based ROI selection approach is also presented.

7.4.1 Testing with Cascade Trained on Visible Images

The first experiment is performed to evaluate the performance of pre-trained Haar
cascades (available with OpenCV [4]) on thermal spectrum images. Since Haar
cascade is originally trained for visible spectrum, this experiment also provides an
understanding about face detection performance with cross-spectral training. For
this experiment, the IIITD database (614 images) and the test partition of the ND
dataset (2292 images) are utilized as test sets. In all the experiments, when multiple
face rectangles are detected in an image, the largest one is considered as the
detected rectangle. The graphs of normalized image count verses their RG and RD
are shown in Fig. 7.6. The horizontal axis represents RG (or RD), whereas the
vertical axis represents the ratio of the number of images having specific RG (or
RD) to the total number of images. As it can be seen, very small proportion of face
images resulted in high RG or RD values. This shows that pre-trained visible image
cascade is not appropriate for face detection in thermal images. No face rectangle is
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detected in 15.9 % images of the IIITD dataset and 31.5 % images of the ND
dataset. As shown in Table 7.3, for both IIITD and ND datasets, many images have
low RG and RD, which further show poor face detection results.

7.4.2 Learning a Cascade Model for Thermal Faces

Since pre-trained cascade model does not exhibit effective performance, it is
important to train the face detection model using thermal data. We utilize face and
non-face images captured in thermal spectrum for this task. From the IIITD dataset,
307 randomly selected face images and all the 150 non-face images are used as the
training set and testing is performed on the remaining (unseen) 307 images. For ND
dataset, training is performed with a predefined set of 159 train images and testing
with 2292 images. The LBP cascade model is trained and the results on the testing
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Fig. 7.6 Pre-trained Haar with face detection on the a IIITD dataset and b ND dataset. Horizontal
axis represents the value of RG and RD. Vertical axis represents the normalized image
count with corresponding RG and RD. Normalized image count is computed as
# images with corresponding RG or RD

# total images

Table 7.3 Summary of face detection results with pre-trained cascade and the cascade trained
with thermal images on the IIITD and ND thermal face databases

Experiment Training
set

Test
set

Normalized image
count

Detection accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Visible’s
Cascade
(Haar)

Pre-trained
(OpenCV)

IIITD 0.60 0.12 0.05 98/614

ND 0.40 0.07 0.01 723/2292

Thermal’s
Cascade
(LBP)

IIITD IIITD 0.84 0.70 0.62 0/307

ND ND 0.78 0.71 0.60 147/2292
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database are shown in Fig. 7.7. It can be observed that compared with pre-trained
cascade, there is a substantial increase in the number of images with higher RG and
RD when cascades trained on thermal images are used. At least one face rectangle is
detected in each image of the IIITD dataset, whereas in 6.41 % images of the ND
dataset no face rectangle is detected. Further, Table 7.3 also shows that training on
thermal images helps in improving face detection results. However, there is a
further scope of improvement, as faces are detected reasonably well in only about
60 % images.

7.4.2.1 Learning a Cascade Model from Combined Dataset

One possible way to further improve the face detection performance is to learn the
model using data containing large variations. In order to achieve this, we train a
model using both the datasets: 307 and 159 images from the IIITD and ND datasets,
respectively, comprise the face samples of the training set for this experiment. The
cascaded AdaBoost model is trained using LBP features. The results pertaining to
this experiment are shown in Table 7.4 and Fig. 7.8a, b. Moreover, Table 7.4 shows
that there is a significant improvement in the correct detections (RG > 0.7 and
RD > 0.7 together), with 2 and 3 % improvement for IIITD and ND datasets,
respectively. Also the number of undetected faces reduces significantly.

To further reduce the difference between images from the two databases, image
histogram equalization is applied. It is our assertion that histogram equalization can
help reduce the effect of the sensor- and/or environment-specific variations.
Therefore, LBP features are obtained after preprocessing the images using his-
togram equalization. As shown in Table 7.4 and Fig. 7.8c, d, there is a slight
improvement in performance when images are preprocessed using histogram
equalization. The detection rate of 0.65 is obtained on both the sets.

On this combined training set, the effectiveness of Haar cascade is also evaluated
with histogram equalization preprocessing. For this experiment, the cascaded
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Fig. 7.7 Face detection using LBP cascade learned on the a IIITD dataset and b ND dataset
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Table 7.4 Results of face detection when the model is trained with combined IIITD + ND
databases and tested on IIITD and ND thermal face databases

Experiment Test
set

Normalized image
count

Detection
accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

No preprocessing
and LBP features

IIITD 0.89 0.66 0.64 0/307

ND 0.75 0.76 0.63 15/2292

Histogram
equalization with
LBP features

IIITD 0.88 0.70 0.65 0/307

ND 0.77 0.79 0.65 14/2292

Histogram
equalization with
Haar-like features

IIITD 0.84 0.78 0.70 2/307
ND 0.83 0.88 0.77 18/2292
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Fig. 7.8 Face detection using LBP cascade with training on combined ND and IIITD dataset and
testing on the a IIITD dataset and b ND dataset. Corresponding result on c IIITD dataset and d ND
dataset when the images are preprocessed using histogram equalization is obtained
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AdaBoost model is learned on the Haar features obtained from histogram-equalized
images. The results are shown in Fig. 7.9 and Table 7.4. The results show that Haar
cascade with histogram equalization preprocessing performs considerably better in
the given scenario by further improving the detection rate to 0.70 and 0.77 on the
IIITD and ND datasets, respectively. However, there is a trade-off in terms of
training time and accuracy, with Haar cascade requiring more training time and
exhibiting better results than that of LBP cascade. Note that there is still scope for
improvement as the detection accuracy rate is in the range of 0.70–0.80. Figure 7.10
shows sample detection results of the Haar feature-based cascade learned using
combined training set on the IIITD and ND datasets, which yields about 65 %
images with successful face detection.

7.4.2.2 Decision Fusion of Haar and LBP Cascades

Since Haar and LBP do not encode the same information, one may expect that both
of them should find their applicability in encoding different kinds of variations.
Therefore, it is possible that the set of images for which each of the techniques
works the best may not be completely overlapping. This is a plausible condition for
fusing two techniques and can potentially help further improve the overall accuracy.
In order to combine, we follow a simple approach: If face is detected by only one of
the techniques, the detected region is taken as the final decision. However, if a face
is detected by both the techniques, the following two decision fusion approaches
can be applied.

• Fusion Approach 1: Out of the two candidate rectangles, select the smaller one.
This approach assumes that the detection techniques are prone to overestimating
the face rectangle size, thus selecting the smaller candidate rectangle should
result in better detection.
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Fig. 7.9 Face detection using Haar cascade with training using histogram equalization
preprocessed ND and IIITD dataset and testing on a IIITD dataset and b ND dataset
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• Fusion Approach 2: Out of the two candidate rectangles, select the larger one.
The second approach assumes that the detection techniques are prone to
underestimating the size of face rectangle.

Both sets of experiments are performed along with histogram equalization and
the results are shown in Table 7.5 and Fig. 7.11. As shown in Table 7.5, in both the

(a)

(b)

Fig. 7.10 Examples of a good (RG[ 0:7 and RD[ 0:7) and b poor detection results on the
IIITD (top row) and ND (bottom row) datasets. Green (solid lines) and red (dashed lines)
rectangles represent the ground truth and detected face region (using Haar feature-based cascade
learned on combined training set), respectively
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fusion approaches, at least one face rectangle is detected in all but three images. The
results show that the first fusion approach exhibits better results for the IIITD
dataset, and fusion has little effect on the ND dataset.

Table 7.5 Summary of face detection results with the proposed fusion approaches on the IIITD
and ND thermal face databases

Algorithm Test
set

Normalized image
count

Detection
accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Fusion approach 1
(LBP + Haar)

IIITD 0.84 0.85 0.74 0/317
ND 0.75 0.93 0.73 3/2292

Fusion approach 2
(LBP + Haar)

IIITD 0.88 0.63 0.61 0/317

ND 0.85 0.75 0.70 3/2292

The training set is created by combining the training sets of both IIITD and ND datasets
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Fig. 7.11 Face detection using fusion approach 1 on the a IIITD and b ND datasets; and using
fusion approach 2 on the c IIITD and d ND datasets
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7.4.3 Effect of Sensor and Environment

Since thermal images are dependent on the heat emissivity of the object or surface,
they may be affected by environmental aspects such as ambient temperature. These
images are also dependent on the type of sensor used, and therefore, the interop-
erability of sensors can also affect the accuracy of the models learned from one
camera. This section studies these two aspects of thermal face detection.

Effect of Day and Night Outdoor Environments We utilize the IIITD-PSE
dataset to understand the challenges of thermal face detection in outdoor settings
along with the effect of capture during day and night. Figure 7.2 shows sample
images of the same person captured in day and night environments. Since fusion
approaches yield better results on the IIITD and ND databases, this experiment is
also performed with the fusion approaches only. The results of this experiment are
reported in Fig. 7.12. It can be observed that the model learned from images captured
in indoor settings (IIITD + ND) is not effective on images captured outdoors during
daytime (IIITD-PSE-Day). However, as shown in Table 7.6, the results are relatively
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Fig. 7.12 Detection results on IIITD-PSE dataset. Face localization results on IIITD-PSE-Day set
using a fusion approach-1 and b fusion approach-2. Similarly, results on IIITD-PSE-Night set
using c fusion approach-1 and d fusion approach-2
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better for outdoor nighttime images (IIITD-PSE-Night). During daytime, the tem-
perature difference between the skin and the environment is smaller compared to
nighttime, which might be affecting the overall contrast of the image. Therefore,
daytime outdoor face detection in thermal spectrum needs further research.

Effect of Cross-sensor Training Previous experiments show that if the cascade is
trained using the images from same database, it provides good results. However, it
is important to have a model which can be utilized across multiple datasets captured
using different thermal imaging sensors. As shown in Figs. 7.2 and 7.3, images
captured using two different sensors might look quite different. Therefore, a logical
step is to examine the challenges due to cross-sensor data (i.e., problem of sensor
interoperability).

The cascades trained on individual datasets during the previous experiments are
used for detecting faces pertaining to the other dataset. For example, the cascade
trained using the ND database is used for detecting faces from the IIITD database
and vice versa. The results in Fig. 7.13 show that the model learned from one
dataset does not cross-validate well when tested on the other dataset. This may be
due to the fact that different datasets include different properties such as capturing
environment, set of subjects, imaging resolution, and sensor characteristics.

7.4.4 Effect of Occlusion

In order to study the effect of occlusion, we have performed experiments on the
I2BVSD face disguise dataset (thermal spectrum images only). The dataset is
divided into two parts, (i) minor disguise and (ii) major disguise. The minor dis-
guise subset consists of images of subjects wearing headgears, hair, and beard
extensions which do not cover any of the vital features such as eyes, nose, and
mouth. The major disguise subset consists of images of subjects wearing shades,

Table 7.6 Summarizing the results of face detection with proposed fusion approaches on thermal
images acquired in daytime and nighttime

Experiment Training set Test set Normalized image
count

Detection
accuracy
(RG and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Fusion
approach 1
(LBP + Haar)

IIITD + ND IIITD-PSE-Day 0.38 0.61 0.31 0/60

IIITD-PSE-Night 0.75 0.85 0.70 0/60

Fusion
approach 2
(LBP + Haar)

IIITD + ND IIITD-PSE-Day 0.58 0.41 0.38 0/60

IIITD-PSE-Night 0.85 0.65 0.65 0/60

Cross-sensor
(LBP)

IIITD ND 0.51 0.65 0.42 211/2292

ND IIITD 0.87 0.53 0.47 0/614

The results of cross-sensor face detection experiments are also reported
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mouth pieces, heavy beards, and/or any accessory which covers one of the vital
features. The baseline evaluation is performed with cascaded AdaBoost models
learned using combined training set (IIITD + ND). As shown in Table 7.7, detection
accuracy for minor disguise subset is about 25 % for LBP and Haar-based cascaded
AdaBoost detector. For major disguise subset, the LBP and Haar-based detectors
yield 10 and 15 % detection accuracy, respectively. This shows that the cascaded
AdaBoost-based approach is not very effective in the presence of occlusions. The
corresponding results in terms of RG and RD are reported in Fig. 7.14. If we pose a
constrained problem of face localization, i.e., given that there is a face image, locate
it, we can utilize a skin detection-based approach for approximating facial regions
with occlusion variations. Skin color-based region detection has been studied
extensively in visible spectrum [11, 13, 20, 22]. However, to the best of our
knowledge, skin color detection in thermal spectrum is still unexplored. Skin
detection is comparatively easier in thermal spectrum because the heat patterns
generated due to body temperature are typically distinct compared to background.
Therefore, we present a skin detection-based ROI selection approach.

7.4.4.1 Skin Detection-Based ROI Selection

In order to reduce the number of falsely detected faces, we propose a skin
detection-based ROI selection approach as a preprocessing stage to cascaded
AdaBoost face detection. The steps involved in the proposed skin detection
approach are shown in Fig. 7.15. Further details of skin detection are as follows:

• Features: For every pixel, a square neighborhood of k � k is chosen as the
representation. Thus, for every pixel a k2 dimensional feature vector is obtained;
and an image of size m� n is represented using mn� k2 feature set. In this
work, neighborhood of k = 3 is chosen. This feature representation helps encode
every skin pixel with respect to its neighborhood.
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Fig. 7.13 Face detection using LBP cascade with a training on ND and testing on IIITD set and
b training on IIITD and testing on ND dataset
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• Skin and Non-skin Modeling: Using the ground truth face and non-face
regions, corresponding skin and non-skin pixels are obtained. These distribu-
tions of skin and non-skin features are learned from the training data. The
distributions essentially capture how the heat patterns of skin and non-skin
pixels appear in the local neighborhood. Skin and non-skin distributions are
modeled as:

fsðxÞ ¼ Nðx; ls;RsÞ;
fnsðxÞ ¼ Nðx; lns;RnsÞ

where, fs and fns denote the probability of x belonging to skin and non-skin
regions, respectively. Nð�; l;RÞ denotes a normal distribution with mean l and
variance R. The training phase includes learning the mean and variance of skin
and non-skin distributions.

• Pixel classification: A pixel with feature representation x is classified as skin, if

log fsðxÞ
fnsðxÞþ e

� �
[ e where e is a very small positive real number.

Table 7.7 Summarizing the results of face detection on the faces occluded using disguised
accessories

Experiment Test set Normalized image
count

Detection accuracy
(RG > 0.7 and
RD > 0.7)

Undetected
Total

RG > 0.7 RD > 0.7

Without skin detection

LBP Disguise minor 0.81 0.33 0.27 0/307

Disguise major 0.57 0.25 0.10 1/231

Haar Disguise minor 0.43 0.51 0.26 12/307

Disguise major 0.31 0.57 0.15 7/231

Only skin detection

Skin model Disguise minor 1 0.00 0.00 n/a

Disguise major 0.99 0.00 0.00 n/a

With skin detection

LBP Disguise minor 0.68 0.53 0.42 1/307

Disguise major 0.20 0.47 0.10 5/231

Haar Disguise minor 0.39 0.58 0.29 12/307

Disguise major 0.21 0.65 0.13 0/231

Fusion
approach 1
(LBP + Haar)

Disguise minor 0.41 0.64 0.33 0/307

Disguise major 0.11 0.62 0.08 0/231

Fusion
approach 2
(LBP + Haar)

Disguise minor 0.69 0.48 0.38 1/307

Disguise major 0.31 0.52 0.16 0/231
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• ROI Selection: At the end of the pixel classification stage, a binary mask is
obtained for every image. Although almost all the facial regions are often
obtained as skin regions, there may be some holes and/or there may be multiple
connected components (due to occlusion). We propose to utilize the largest

Fig. 7.15 The face detection pipeline with skin detection-based ROI selection. The blue, red, and
green rectangles represent the selected ROI, detected face region, and ground truth face region,
respectively
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Fig. 7.14 Face detection using LBP cascade on a minor and b major disguise subsets, and using
Haar cascade on c minor and d major disguise subsets. The results obtained using skin
detection-based ROI selection are also reported
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connected component of the binary mask, and the corresponding bounding box
is utilized as the region of interest. Once the ROI is selected, a cascade classifier
is utilized for finding the face location/bounding box.

7.4.4.2 Effectiveness of ROI Selection

Figures 7.16 and 7.17 show some examples of ROI selections and the effectiveness
of the ROI selection approach, respectively. It can be observed that the proposed
approach effectively rejects non-face regions of the image. As shown in Table 7.7
and Fig. 7.17, the skin modeling-based ROI selection alone, without any further
face detector, yields RG of around 100 %. This shows that the ROI is almost always
covering the face region. We further applied the AdaBoost cascade, learned in
earlier experiments, on the ROI obtained using skin detection. As shown in
Table 7.7, Fig. 7.14, and Fig. 7.18 ROI selection helps in improving detection
accuracy, especially in case of minor disguise.

Fig. 7.16 Samples of skin detection-based ROI selection approach. The red rectangle represents
the ROIs obtained
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Fig. 7.17 Effectiveness of skin detection-based ROI selection is shown for a minor and b major
disguise subsets. On both the sets, the RG values are comparatively very high for large number of
images, suggesting that very little ground truth facial region is discarded in ROI selection
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7.5 Conclusion and Future Research Directions

Thermal face detection has been a relatively unexplored area of research and there
are multiple covariates that affect the performance of face detection algorithms. This
chapter presents a study to understand the effect of thermal imagining-specific
covariates on the performance of face detection in thermal images. There are three
contributions of this chapter:

1. We prepared two thermal face databases, namely the IIITD thermal face data-
base that contains 614 face images of 64 subjects and 150 non-face images, and
IIITD-PSE database comprising 120 images captured during daytime and
nighttime to study the effect of ambient temperature on thermal face detection.

2. We analyzed the performance of three algorithms: AdaBoost-based face detector
with LBP features, AdaBoost face detector with Haar-like features, and fusion
of the LBP and Haar-like features. The performance is analyzed not only on the
IIITD thermal and PSE databases, but also on the Notre Dame and I2BVSD face
databases. The use of these two existing databases helps us to understand the
impact of interoperability and occlusion on thermal face detection.

3. We propose two new metrics of face localization, RG and RD, which in com-
bination provide the true performance of face detection.
The results show that decision level fusion of Haar-like and LBP features is
promising and preprocessing using histogram equalization also helps in
improving the detection accuracy. This may point out that preprocessing is one
of the key components in addressing environmental covariates in thermal face
detection. Further, the results on cross-dataset experiments, indoor–outdoor and
day–night variations, and occlusions using facial accessories reveal challenging
nature of the problem.
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Fig. 7.18 Results of the proposed fusion approaches on a minor and b major disguise subsets
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Chapter 8
Face Recognition Systems Under Spoofing
Attacks

Ivana Chingovska, Nesli Erdogmus, André Anjos
and Sébastien Marcel

Abstract In this chapter, we give an overview of spoofing attacks and spoofing
countermeasures for face recognition systems, with a focus on visual spectrum
systems (VIS) in 2D and 3D, as well as near-infrared (NIR) and multispectral
systems. We cover the existing types of spoofing attacks and report on their success
to bypass several state-of-the-art face recognition systems. The results on two
different face spoofing databases in VIS and one newly developed face spoofing
database in NIR show that spoofing attacks present a significant security risk for
face recognition systems in any part of the spectrum. The risk is partially reduced
when using multispectral systems. We also give a systematic overview of the
existing anti-spoofing techniques, with an analysis of their advantages and limita-
tions and prospective for future work.

8.1 Introduction

Thanks to the growing availability of inexpensive cameras, as well as the unob-
trusiveness of capturing procedures, face has a guaranteed position as one of the
most exploitable biometric modes. Its wide deployment is further reinforced by the
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rapid advancement of face recognition systems, which nowadays provide reliable
recognition even under challenging conditions. Historically, 2D face recognition in
the visual spectrum (VIS) has got the most attention and has reached a stage where
it provides a secure, robust, and trustworthy biometric authentication at different
security checkpoints: ID control systems, protected Web services, and even mobile
devices. On the other hand, face recognition in 3D, near-infrared (NIR), and
thermal spectrum shows an increased popularity in the recent years [1, 2].

Unfortunately, face recognition systems can be an attractive target for spoofing
attacks: attempts to illegally access the system by providing a copy of a legal user’s
face. Information globalization acts in favor of such system misuse: users’ personal
data, including face images and videos, are nowadays widely available and can be
easily downloaded from the Internet. Printed photographs of a user face, digital
photographs displayed on a device, video replays, and 3D masks have already
proven to be a serious threat for face recognition systems in VIS. Spoofing attacks
for NIR face recognition systems have not received as much attention, but recent
spoofing attempts indicate on their vulnerability too [3]. Considering that the
driving force of attackers is not how hard systems are to spoof, but how valuable are
the resources they guard, it is not pessimistic to expect more and more sophisticated
spoofing attacks in near future.

In this chapter, we will cover research attempts in spoofing and anti-spoofing for
the face mode from two perspectives. Firstly, we will investigate to what extent the
state-of-the-art face recognition systems are vulnerable to spoofing attacks. This is a
vital step toward verifying the threat and justifying the need of anti-spoofing
methods. In addition, this step may reveal whether a spoofing attack database is
relevant to be used to develop and evaluate anti-spoofing methods. We perform this
analysis on four state-of-the-art face recognition systems working in VIS and NIR.
In VIS, we exploit two different publicly available face spoofing databases, one
with 2D attacks, and one with 3D mask attacks. To perform the analysis in NIR, we
develop and present the first publicly available face spoofing database containing
VIS and NIR spoofing attacks. By fusing the scores of the systems working in VIS
and NIR, we extend the analysis to multispectral systems as well.

Secondly, we give an overview of the recent advancements in countermeasures
to spoofing attacks for face recognition systems. This includes systematic catego-
rization of the anti-spoofing methods and investigation on the attacks they are
effective against. While there is a plethora of anti-spoofing methods for VIS face
recognition systems, the amount of methods for NIR and multispectral systems is
significantly smaller.

Unfortunately, it is extremely difficult to comparatively evaluate the performance
of the existing anti-spoofing methods, mainly due to two factors. Firstly, very few
of the research papers release the source code and the exact parameters to reproduce
the presented results. Secondly, many of them are evaluated on private databases or
are targeting just one type of spoofing attacks. Therefore, while we most often omit
performance numbers, we distinguish methods whose results are fully reproducible
on publicly available databases.
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This chapter is organized as follows. We cover 2D face recognition systems in
VIS and NIR under 2D spoofing attacks in Sects. 8.2.1 and 8.2.2, respectively. In
Sect. 3, we cover face recognition systems in VIS under 3D spoofing attacks.
Conclusions and discussion follow in Sect. 4.

8.2 Face Recognition Systems Under 2D Spoofing Attacks

8.2.1 Visual Spectrum (VIS) Face Recognition Systems

Numerous spoofing attack trials to test the robustness of commercial devices [4, 5],
as well as several face spoofing databases have proved that face recognition systems
in VIS can be spoofed with many different types of attacks. The attacks differ by
their complexity, their cost and the amount of effort and skills required for pro-
ducing them. The effectiveness of the attacks is closely related with these
properties.

The spoofing countermeasures developed to protect 2D face recognition systems
in VIS are by now developed to a very good extent, for example, the 2nd com-
petition of countermeasures to 2D face spoofing attacks [6], where two of the
submitted algorithms achieved perfect spoofing detection rate. The objective of this
section is to summarize the research efforts in this direction, in terms of available
spoofing attack types and databases, as well as existing solutions. We focus on face
verification systems, where the spoofing attacks make most sense.

8.2.1.1 Types of Attacks and Databases

Probably, the simplest type of face spoofing attack is the print attack, which consists
of printing a photograph of a valid user’s face on paper. A more sophisticated type
of attack involves presenting a digital photograph on the screen of a mobile device.
These two types of attacks retain the face appearance, but present only a static face
shows no signs of vitality. More sophisticated versions of the printed attacks
simulate vitality by perforating the eye region or moving, rotating, and warping the
printed paper [7–9]. In addition, there are video replay spoofing attacks, where a
face video of a valid user is presented on the screen of a mobile device. Examples of
spoofing attacks based on drawing of a user’s face or using makeup to masquerade
as a valid user have been registered at the ICB 2013 spoofing challenge.1 Attacks
with 3D masks will be covered in Sect. 3.

Besides the way of reproducing the spoofed face, the spoofing attacks can differ
in a number of other criteria. For example, they can be recorded in controlled or
uncontrolled environments. Furthermore, a fixed or a hand support can be used for

1http://www.biometrics-center.ch/testing/ tabula-rasa-spoofing-challenge-2013.
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holding the spoof medium [10, 11] defines the term scenic 2D spoofing attack
referring to attacks where the background content of the presented spoofing attack
image is visible alongside the spoofed face. Finally, for some attacks, the border of
the spoofing medium may be fully visible. The available face spoofing databases
cover different subsets of these types of attacks. Different types of spoofing attacks
pose a different level of difficulty to detect and are usually addressed with different
types of countermeasures.

The number of face spoofing databases which are publicly available is limited.
Up to the present moment, the established countermeasures to 2D face spoofing
attacks have been evaluated either on private databases, or on three publicly
available face spoofing databases: NUAA Photograph Imposter Database [8],
CASIA Face Anti-spoofing Database (CASIA-FASD) [9] and the Replay-Attack
family of databases [10]. NUAA database consists of attacks with printed pho-
tographs. It contains still images of real accesses and attacks to 15 identities and is
recorded in three sessions under three different illumination conditions. When
capturing the attacks, the photographs of the users are translated, rotated or warped.

CASIA-FASD provides videos of real accesses and three types of attacks to 50
identities. The first type is performed with printed photographs warped in front of
the camera. The second type is printed photographs with perforated eye regions, so
that a person can blink behind the photograph. The third type is a video playback of
the user. When recording the database, three imaging qualities are considered: low,
normal, and high.

The Replay-Attack family of databases consists of Print-Attack [12] containing
printed photographs, Photo-Attack [13] containing printed and digital photographs,
and Replay-Attack [10], as a superset of the previous two databases to which video
attacks have been added. There is a total of 50 identities, recorded in both controlled
and uncontrolled conditions, with diverse acquisition equipment.

Not all of the spoofing databases have equally wide applicability for evaluating
anti-spoofing systems. For example, a database which offers still images, like
NUAA, cannot be used for evaluation of countermeasures which require video
inputs, like the motion-based algorithm described in Sect. 2.1.3. In addition, some
databases are lacking a protocol to precisely define training, development, and test
set. Finally, as described in Sect. 2.1.2, spoofing databases should provide enroll-
ment samples which can be used to train and evaluate a baseline face verification
system [14]. Both NUAA and CASIA-FASD suffer from this last drawback, and
hence, their effectiveness in bypassing face verification systems cannot be properly
evaluated. This disadvantage is overcome by the databases of the Replay-Attack
family.

8.2.1.2 Assessing the Vulnerability

When evaluating a face verification system, it is a common practice to report False
Acceptance Rate (FAR) (or False Match Rate (FMR)) and False Rejection Rate
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(FRR) (or False Non-Match Rate (FNMR)).2 The error rate at the point where these
two values are equal is called Equal Error Rate (EER), while their average is called
Half Total Error Rate (HTER). If the systems are exposed to spoofing attacks, their
vulnerability is usually measured using Spoof False Acceptance Rate (SFAR) [14].
If the face verification system is tuned to work at particular operating point (de-
cision threshold), SFAR gives the ratio of spoofing attacks whose score is higher
than that point and are thus accepted by the system.

In order to be used for evaluation of verification systems, spoofing attack
databases need to have properties that allow for their training [14]. In particular,
they need to contain enrollment samples used to enroll clients in the verification
systems. Out of the publicly available 2D face spoofing databases, only the
Replay-Attack family satisfies this property. Using Replay-Attack database, we
trained face verification system based on Gaussian mixture model (GMM), which
extracts discrete cosine transform (DCT) features from the input images [17].
Figure 8.1 shows the distribution of the scores for the real accesses, zero-effort
impostors and spoofing attacks from Replay-Attack for this system. The green line
depicts the point which is chosen as a decision threshold based on EER criteria
depending on FAR and FRR. The system shows a remarkable separability between
the score distributions of the real accesses and zero-effort impostors, resulting in an
almost perfect verification results (HTER = 0.14 %). However, the distributions of
the scores of the real accesses and spoofing attacks overlap by a large extent. As a
result, the system accepts 91.5 % of the spoofing attacks, which proves its high
vulnerability to spoofing.

We performed similar analysis for three additional state-of-the-art face verifi-
cation systems, each of which is based on different features and modeling paradigm.
The first one uses local Gabor binary pattern histogram sequences (LGBPHS) [18],
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2In their formal definition, FAR and FMR and FRR and FNRM are not synonymous [15].
However, they can be treated as such is some special cases, and we will do so, following the
practice adopted in [16].
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the second one is based on Gabor jets comparison (GJet) [19], while the third one
uses inter-session variability modeling (ISV) [20]. The results are shown in
Table 8.1. All of the examined systems perform very well in the verification task.
However, with SFAR of 90 %, each one of them exhibits a high vulnerability to
spoofing, demonstrating the need for development of suitable countermeasures.

8.2.1.3 Spoofing CounterMeasures

The anti-spoofing methods for the face mode can be primarily categorized based on
the type of data that is used to detect the spoofing attacks. In this respect, they can
fall into two categories: hardware-based and software-based [21]. The
hardware-based solutions use additional hardware to detect the spoofing attacks,
which may be a thermal or near-infrared camera, 3D sensor, etc. The
software-based ones utilize solely the information which is captured by the camera
of the recognition system and try to directly exploit the characteristic of the input
images.

Some of the software-based methods require, either implicitly or explicitly, that
the user answers to some kind of interactive challenge. Yet, most of these methods
take the decision in a non-intrusive manner, without any requirement for an explicit
input from the user. They use different types of cues that may indicate the presence
of a live subject in front of the system: liveness, motion, visual appearance, con-
textual information, and 3D reconstruction information. Usually, the features
extracted for these purposes are handcrafted based on prior knowledge about the
task; however, there are algorithms which extract relevant features in a completely
data-driven fashion.

In the remainder of this section, we are going to cover the most prominent
representatives of face anti-spoofing methods and make a comparative analysis of
their performance and limitations. We will put an additional note to those which
depend on interaction with the user.

Before proceeding, it is important to notice that several researchers have made
attempts to increase the robustness of biometric recognition systems to spoofing
attacks by using multiple biometric modes [22]. The intuition behind these solu-
tions is that an attacker may need more effort to spoof the system, because she
needs to spoof more modes. Within such multimodal framework, face has been
combined with fingerprint and iris [23–26], or with voice [27]. [23–26] have pro-
ven, however, that poorly designed combination rules for multimodal systems may

Table 8.1 Verification error
rates and spoofing
vulnerability of baseline face
verification systems (in %)

System FAR FRR SFAR

GMM 0.05 0.24 91.5

LGBPHS 1.47 2.13 88.5

GJet 0.28 0.24 95.0

ISV 0.00 0.17 92.6
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not be helpful. Combination rules designed specifically for the purpose of increased
robustness have been designed in [25, 26].

Liveness Detection

The liveness detection anti-spoofing methods base their decision on the evidence of
liveness present on the scene. Usually, eye-blinking, mouth movements, and
in-voluntary subtle head movements are considered as evidence of liveness. One of
the first attempts to employ eye-blinking for anti-spoofing is performed by [28],
which uses conditional random fields (CRF) to model the state of the eye as open or
closed and the correlation between its state and the observation. With a similar
purpose, [29] uses active shape models to detect the eye contours and difference of
images to detect the blinking activity. In [30], eye-blinking detection is combined
with the analysis of the 3D properties of the subject.

A key, but limiting assumption of the liveness detection methods, is that the
subject will experience the actions that suggest liveness within a given short time
frame. For example, [28] assumes that eye blinks happen every 2–4 s, which may
not be true always and for all the subjects. To be fully successful, these methods
depend on user input like deliberate eyeblinks, which may give them a level of
intrusiveness.

An attempt to overcome this limitation is done by methods which rely on more
subtle changes in the face region, including color changes due to blood flow. To be
able to detect these changes, [31] performs Eulerian motion magnification [32] as a
preprocessing before applying a technique for analyzing the texture or the motion
patterns.

Another drawback of the liveness methods is that, although they may be suc-
cessful in the case of print and attacks (even when they are warped or rotated [28]),
they may be easily deceived by spoofing attacks where liveness evidence is present,
like video playback or 3D masks.

Motion Analysis

The motion-based methods try to find properties of the motion patterns of a person
in front of the system, in order to distinguish them from motion patterns in the
presence of a spoofing attack. A few of these methods base their approach on the
assumption that a person’s head, being a 3D object, moves differently than a 2D
spoofing attack displayed on a planar media. For example, [33] uses optical flow
method to track movements on different face parts. The authors assume that, in
contrast to a face displayed on a 2D surface, a 3D face will generate higher amount
of motion in central face parts closer to the camera (like the nose) then in the face
parts which are further away from the camera (like the ears). Furthermore, a 3D face
exhibits motion flows which are in opposite directions for central and peripheral
face parts. On the other hand, [34] derives a heuristics for the optical flow field for
four basic 2D surface motion types: translation, in-plane rotation, panning, and
swing. On the contrary, a 3D face and facial expressions generate irregular optical
flow field.
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Another set of motion-based methods assumes a high correlation between the
movements in the face region and the background in the case of a spoofing attack.
Such a correlation is unlikely in the case of a real access. [12] bases the compu-
tation of the correlation on 10 quantities extracted from the face region and the
background. For the same purpose, [13] relies on quantization of optical flow
motion vectors, while [35] performs foreground–background consistency analysis.

Similarly to the liveness detection methods, the motion analysis approaches
depend on the subtle involuntary movements of the user. In addition, sometimes
they capture the motion introduced by an attacker who holds the attack media with
his hands. If the presumed motion patterns are absent during the short acquisition
process (e.g., a very still person who does not blink), the methods may fail. These
methods are mostly targeting photograph spoofing attacks and will most likely fail
in case of spoofing attacks by video playbacks or 3D masks. Furthermore, the
methods based on motion correlation are particularly directed for scenic 2D
spoofing attack, where the background of the spoofed image is visible.

Visual Appearance

The anti-spoofing methods analyzing the visual appearance stand behind a strong
argumentation about the differences in the visual properties of real accesses and
spoofing attacks, explained in a number of publications. Firstly, a real face and the
human skin have their own optical qualities (absorption, reflection, scattering,
refraction), which other materials that can be used as spoofing media (paper,
photographic paper, or electronic display) do not possess [36]. Similar differences
can appear as a result of the diffuse reflection due to a non-natural shape of the
spoofing attacks [37]. Limited resolution of the device used for spoofing or the
involuntary shaking of the spoofing media may cause a blurring in the case of
spoofing attacks [37–39]. Artifacts appearing in the spoofing production process,
like jitter and banding in the case of print attacks [35, 39] or flickering and Moire´
effect in the case of video attacks [40] are yet another sources of differences
between the real accesses and spoofing attacks. Many of these visual properties are
indistinguishable for the human eye, but often can be easily extracted using dif-
ferent image processing and computer vision algorithms.

The first approach leveraging on the argument that spoofing attacks are usually
of lower resolution and thus contain less high-frequency components is proposed in
[38]. The proposed feature vector is based on analysis of the 2D Fourier spectrum
of the input image and its energy change over time. Instead of comparing the
high-frequency content of the input, [8] and [9] base their discrimination on the
high-middle band of the Fourier spectrum, which is extracted using difference of
Gaussians (DoG) method.

Some publications assume that the differences between real accesses and attacks
are most prominent within the reflectance component of the input image and esti-
mate it in different ways: [8] uses the Lambertian reflectance model [41] and
Variational retinex-based method, while [42] uses dichromatic reflection model.
Then, [8] classifies the obtained features using sparse low rank bilinear discrimi-
native model, while [42] compares the gradient histograms of the reflectance images.
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A feature set inspired by a physics-based model for recaptured images, which
reveals differences in the background contextual information, reflection, surface
gradient, color, contrast, chromaticity, and blurriness, is created by [43]. Different
sets of visual features related to texture, color, edges, and/or gradient are used by
[44, 45]. [46] generalizes the appearance differences into quality differences and
uses a feature vector composed of 25 different image quality measures.

Several publications make use of specific computer vision descriptors for texture
analysis. Local binary pattern (LBP) [47] appears to be the most significantly
exploited for the purpose of anti-spoofing, both in its single resolution [10] and
multiresolution [37, 39, 48] variants. Histogram of oriented gradients (HOG) [37,
39, 44], gray-level co-occurrence matrix (GLCM) [44], Haar wavelets [35], and
Gabor wavelets [39] are some of the other alternatives.

More recently, the analysis of the visual appearance has been enhanced into a
temporal domain. In [40], the authors firstly extract the noise from each video frame
and then summarize the relevant components of its 2D Fourier analysis into the
so-called visual rhythm image. The properties of this image are then captured using
GLCM. The method proposed in [49] utilizes LBP-TOP [50], where instead of LBP
analysis on a single frame, dynamical LBP analysis on a frame and its neighboring
frames is performed.

The methods described before present different rates of success, which cannot be
easily compared because they are obtained on different types of attacks and usually
on databases which are not released publicly. An interesting property of the
majority of the visual appearance methods is that they can work even if only a
single image is available at input. They are usually applied either on the face
bounding box, face parts, or on the full input image. As one of their advantages,
they are very user-friendly and non-intrusive and do not depend on the behavior of
the user (unlike the liveness detection and motion analysis methods). Furthermore,
an attack which can deceive them a priori has not been presented up to this moment.
For example, they can be expected to successfully detect print, photograph, video,
or even 3D mask attacks. Yet, their success may be put into question if the spoofing
attacks are printed or displayed on high-resolution media, thus lacking some of the
artifacts that these methods rely on. Their generalization properties when applied to
different acquisition conditions or new types of attacks are also uncertain, since the
visual appearance of the input images often depends on the light condition,
acquisition devices, or display media.

Contextual Information

The context of the scene present as a background information in front of the
recognition system is used as a cue to detect spoofing attacks. In [7], the authors
notice that in the case of a spoofing attack, there will be a change in the contextual
information of the background when the face appears. To detect such changes, the
authors compare the regions around reference fiducial key points in the region
around the face.

The approach presented in [51] is targeting attacks where the contextual infor-
mation consists of the border of the spoofing medium. Hence, a prerequisite is that
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the spoofing medium is fully visible to the system. The method relies on HOG [52]
to detect upper body and spoofing medium borders.

3D Information

The 3D property of a human face is a cue that unambiguously distinguishes real
accesses from 2D spoofing attacks. This is used by several publications, which try
to reconstruct or estimate the 3D information from the user’s face. For example,
[53] recovers and classifies the 3D structure of the face based on two or more
images taken from different viewing angles. For similar purposes, [54] uses 3D
projective invariants of a moving head. The disadvantage of these approaches is
their intrusiveness: The user needs to be collaborative and moves his head to a
different angle in the first case, or performs certain movements at random intervals
in the second case. Avoiding such a constraint, [55] estimates the focus variabilities
between two images taken consecutively and focused on different parts of the face.
In the case of a 2D spoofing attacks, it is expected that focus variabilities will be
absent.

It is important to note that the success of this set of methods is usually limited to
2D spoofing attacks and is likely to fail 3D mask attacks.

Challenge–Response Unlike the majority of motion analysis of liveness detection
methods which rely on the involuntary movements of the user, challenge–response
anti-spoofing methods explicitly ask the user to perform certain action to verify his
liveness. Representatives of this type have been already mentioned [53, 54]. There
are various types of challenges that a user can perform: taking a particular head
pose [56] or following a moving point with a gaze [57] are some of them. Finding
the static and dynamic relationship between face and voice information from a
speaking face or modeling a speaker in 3D shape is an option for anti-spoofing in a
multimodal audio-visual system [58]. It is important to note that the last approach
can successfully detect not only visual, but even audio-visual spoofing attacks, such
as video playbacks with recorded utterance or 3D synthetic talking heads.

The challenge–response methods are considered to be intrusive, non-friendly,
and uncomfortable from the aspect of a user experience. In addition, they usually
require that the authentication is performed during a prolonged time span. Finally,
they are not transparent for the user. In this way, it is possible for a malicious user to
guess the liveness cue and try to bypass it.

Feature Learning

Following a recent trend, the anti-spoofing community started experimenting with
approaches where the anti-spoofing features are automatically learned directly from
the data. This is in contrast to the previously discussed approaches, where the
features are inspired by some particular characteristics that can be observed as
common either for real accesses or for some types of spoofing attacks. It is argued,
however, that the features engineered in this way are not suitable for different kinds
of spoofing attacks [59, 60]. Both [60] and [59] are training a convolutional neural
network (CNN) for the purpose. In [60], experiments with face images in 5 different
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resolutions are given, while in [59], the authors use an optimization procedure to
select the best CNN to learn the features, out of a family of CNNs with different
hyper-parameters.

Hardware-Based Methods

The hardware-based methods employ an additional piece of hardware along the
camera used by the recognition system. These methods detect spoofing attacks
using the cues captured by the additional hardware. For example, very often, these
methods exploit the properties of the human body in different regions of the
electromagnetic spectrum. In such a case, the additional hardware may refer to the
sensor used to capture data at a particular wavelength, a light filter which is applied
to the camera, or illuminator emitting light at a particular wavelength. Most often,
the infrared (IR) region of the electromagnetic spectrum is used, from long
wavelength (thermal IR) to NIR.

The idea originates from informal experiments presented in [61]. The paper
presents examples of face images of individuals, taken in the long-wavelength
infrared region of the spectrum (8−15 µm), also known as thermal infrared region.
The images represent the thermal emissions naturally coming from the human body.
Depending on the spoofing attack material, these thermal emissions can be sig-
nificantly reduced if an individual holds the spoofing attack in front of the face.

Operating in the NIR spectrum [62] suggests that there is an apparent difference
between the reflectance property of the human skin and other materials. [63] ana-
lyzes the reflectance properties of skin and artificial materials at two wavelengths:
one in NIR and one in visual spectrum. The two obtained measurements form a
feature vector for a multispectral-based spoofing detection. Trying to overcome the
requirement for a particular distance from the sensor in [63, 64] finds the most
suitable wavelengths and trains the system with data taken at multiple distances. In
[65], the authors use multispectral filters to obtain an image which presents the
different radiometric response of different parts of the face under a full-spectrum
active light. The distinction between real accesses and spoofing attacks is made by
analyzing the gradient of the image.

Going back to the visual spectrum, [66] measures the reflectance of the skin
using a high-resolution, high-accuracy spectrograph. Using 8 different wavelengths
in the visual spectrum, [67] creates a feature vector based on the RGB values of the
obtained images.

It is important to notice that in the scenarios referred to in this section, the
hardware-based methods using IR sensors are used to protect face recognition
system in the visual spectrum. However, these methods are even more suitable to
operate alongside face recognition systems in the IR spectrum. IR and multispectral
face recognition systems will be covered in Sect. 2.2.

Another example of a hardware-based method is the recent approach [68] which
uses, the newly developed light-field camera that records the direction and intensity
of each light ray. This camera renders multiple focus images in a single shot. Using
this technology, it is possible to distinguish between the multiple focus levels to
distinguish between 2D spoofing attacks and real faces.
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The need of an additional hardware renders the hardware-based method more
expensive and less convenient from deployment perspective. This requirement
implies that some of them cannot be used in certain applications, for example,
mobile systems.

Fusion

The main motivation behind approaches proposing fusion of anti-spoofing methods
is the fact that different types of spoofing attacks have different properties and it is
difficult to address all of them only with a single feature type or method. In addition,
[69] has made a proof of concept that the anti-spoofing systems are unable to
generalize well on unseen spoofing attacks. The discussion in the previous sections,
where we state which spoofing attacks are most likely to be detected by the various
categories of methods, is an argument toward this direction. Hence, there is an
emergence of a trend of fusing several different anti-spoofing methods to obtain a
more general countermeasure effective against a multitude of attack types.

The first attempts of fusing have been performed by [45], where the authors
develop a fusion scheme at a frame and video level and apply it to a set of visual
appearance cues, and [44], where the fusion of visual appearance cues is done at
feature level. The authors in [35] for the first time bring the intuition that the fusion
can have a bigger impact if done with complementary countermeasures, i.e., those
that address different types of cues at the spoofing attacks. In the particular case,
although subject to some prerequisites of the videos, motion analysis method is
fused with a visual appearance method.

To measure the level of independence of two anti-spoofing systems, and thus to
get a measurement of the effectiveness of their fusion, [69] proposes employing a
statistical analysis based on [70]. For the same purpose, [11] proposes to count the
common error rates [11] further shows that fusing several simple anti-spoofing
methods which do not involve complex inefficient classifiers may be favorable with
respect to a single one which is memory and time requiring.

The trend of fusing multiple complementary anti-spoofing methods continued
with [6]. While fusion at score level is the most dominant approach, future efforts
should analyze what is the most effective fusion strategy, both in terms of error
rates, and flexibility of incorporating a newly developed countermeasure into the
fused system.

8.2.1.4 Discussion

2D spoofing attacks in VIS have attracted a lot of interest among researchers in the
past years. This resulted in a large set of countermeasures belonging to different
categories, with different efficiency and targeting different types of attacks. Besides
this, the countermeasures differ in other important properties, such as their intru-
siveness and the type of input they require. We believe that summarizing the
available methods based on their properties is much more important than comparing
their performance, because each one is tested and works on different conditions. For
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this purpose, we systematized them in Table 8.4, grouping them by category and
listing their main properties. In this way, a user can decide which method to use
based on the expected spoofing attacks, types of input the system provides, as well
as ease of implementation and convenience of use.

From the results published in the literature so far, we can deduce two main
conclusions which may serve to direct future research.

1. Many publications have already achieved close to zero or zero error rates in
spoofing detection for the three main publicly available face spoofing databases.
The community has recognized the limitations of the currently existing data-
bases, ranging from small number of identities, to small set of spoofing attack
types, to various types of biases. More challenging databases need to be created
in future. Considering different materials to produce the spoofing attacks, using
better quality equipment, creating more diverse illumination conditions and
recording more clients are some of the ways to add to the adversity of the
spoofing databases.

2. Several publications have shown that the proposed anti-spoofing methods do not
generalize well on new spoofing attacks not seen during training time [60, 69].
However, good generalization capabilities should be a key feature for the
anti-spoofing methods, as new types of spoofing attacks can never be antici-
pated. Therefore, future research effort should put an emphasis on methods
which generalize well over multitude of different types of spoofing attacks.

8.2.2 NIR and Multispectral Face Recognition Systems

The face recognition systems which work in the infrared part of the spectrum have
one major advantage over their counterparts in the visible spectrum: They are usually
invariant to illumination changes in the environment. The thermal imaging face
recognition systems capture the thermal emissions naturally coming from the human
body [2] and use their pattern to recognize individuals. They are naturally resistant to
any kind of 2D spoofing attacks, as the thermal signatures of 2 individuals are
different [61]. Even more, such systems are resistant to surgically performed face
alterations, because tissue redistribution, addition of artificial materials, and alter-
ation of blood vessel flows that may happen during a surgery have a big impact on
the thermal signature of a person [62]. Therefore, spoofing attacks for thermal
imaging face recognition systems are out of the scope of this chapter.

On the other hand, the NIR face recognition systems need an active NIR light to
illuminate the subject and capture the reflection of the face under that light.
Examples of the robustness of these systems have been demonstrated in [71, 72].
Multispectral systems are created by fusing face recognition systems which work in
different part of the spectrum, such as NIR and thermal, or NIR and VIS [2].
However, the robustness to spoofing attacks of these systems has been addressed
very sparsely.
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The objective of this section is to study several examples of face recognition
systems working in NIR and to evaluate their vulnerability to a basic type of
spoofing attacks. We present a new publicly available multispectral face spoofing
database, containing face images in NIR and VIS spectrum. The systems are
evaluated when working in VIS and NIR spectrum, as well as in multispectral
scenario, by fusing the scores of the VIS and NIR systems.

8.2.2.1 Types of Attacks and Databases

The attempts to spoof face recognition system in NIR spectrum are by far less
numerous than similar attempts in visual spectrum. The work in [62] presents a way
to use NIR technology to detect spoofing attacks for visual spectrum face recog-
nition systems. Some of them even present an empirical study on the success in
detecting spoofing attacks. However, none of these studies creates and evaluates
spoofing attacks designated to NIR and/or multispectral face recognition systems.
That is, in fact, a basic preliminary step before developing a countermeasure.

To the best of our knowledge, only [3] has studied the effect of spoofing attacks
on NIR and multispectral face recognition system. The authors develop a database
with 100 clients, taking simultaneously visual spectrum and NIR images at each
shot. Then, spoofing attacks are created from part of the recorded images in the two
spectra, by printing them on a coarse paper. In this way, both visual and NIR
spoofing attacks are created. A disadvantage of the study on [3] is that the database
is not publicly available.

To alleviate this issue, we created a new publicly available database, called
Multispectral-Spoof.3 The total number of clients in the database is 21. The data-
base is recorded using a uEye camera with CMOS monochrome sensor and a
resolution of 1280 × 1024. The images in NIR were recorded using a NIR illu-
minator and a NIR cut filter of 800 nm attached to the camera. The images were
taken in 7 different conditions: one in an uncontrolled hallway environment and 6 in
office environment with natural light, ambient light, no light, illuminator spotlight
from the left and from the right, and 2 illuminator spotlights. 5 images in visual
spectra and 5 images in NIR were taken under each of these conditions.

Bearing in mind that the attacker may have an access to the best-quality real
access samples of the clients, we selected the 3 best images from the visual and NIR
samples of each client and printed them in black and white on a normal A4 paper,
using a printer with 600 dpi. Then, using the same settings as before, we recorded
the printed spoofing attacks in both visual and NIR spectrum in 3 different lighting
conditions in an office environment: natural light, ambient light, and 2 illuminator
spotlights. For an unbiased evaluation, the clients in the database are divided into 3
non-overlapping sets for training (9 clients), development (6 clients), and testing

3The link to download the database, together with manual face annotations, will be available as
soon as this book chapter is accepted for publication.
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(6 clients) purposes. Figs. 8.2 and 8.3 illustrate examples of real access and attack
samples taken in VIS and NIR, respectively.

8.2.2.2 Assessing the Vulnerability

In this section, we study the effectiveness of VIS and NIR spoofing attacks in
defeating VIS and NIR recognition systems. We would like to inspect whether it is
possible to spoof VIS systems using NIR attacks and vice versa. First insight into
this problem has been reported by [3]. The studied face recognition system [71] is
based on Gabor wavelets. The authors conclude that while VIS system is vulnerable
to VIS attacks and NIR system is vulnerable to NIR attacks, there are little chances
that VIS attacks can bypass a NIR system and vice versa.

We perform similar analysis using the publicly available Multispectral-Spoof
database. We analyze the same recognition systems described in Sect. 2.1.2: GMM,
LGBPHS, GJet, and ISV, this time operating in two domains: VIS and NIR.4

The Multispectral-Spoof database contains a total of 1680 real access images
(840 in VIS and 840 in NIR), as well as 3024 spoofing attack images (756 VIS and
756 NIR attacks for each of the two systems). To allow for training and evaluation

Fig. 8.2 Real and spoofing attack samples from the database recorded in VIS. a Real access.
b VIS attack. c NIR-attack

Fig. 8.3 Real and spoofing attack samples from the database recorded in NIR. a Real access.
b VIS attack. c NIR-attack

4The link to fully reproduce the results obtained here will be available as soon as this book chapter
is accepted for publication.
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of face recognition systems and following the example of Replay-Attack, 10 of the
images of each client are reserved for enrollment purposes. During the evaluation,
the vulnerability of each of the systems (VIS and NIR) when exposed to the two
types of attacks (VIS and NIR) was assessed.

Independent VIS and NIR Systems

We firstly analyze the verification performance and the vulnerabilities of
GMM-based system working in VIS mode. The score distributions for this system
are given in Fig. 8.4, and the good separation between the distribution of the real
accesses and spoofing attacks indicates that the system behaves relatively well in
verification. However, Fig. 8.4a shows that the system is highly vulnerable to
spoofing attacks recorded in VIS. More surprisingly, Fig. 8.4b shows that the
system can be spoofed even with spoofing attacks taken in NIR spectrum, with
probability of 30.56 %.

Figure 8.5 demonstrates similar analysis when the GMM-based system works in
NIR mode. Again, the system shows relatively good verification performance. In
this case, the system shows low vulnerability to VIS attacks, amounting to 13.96 %.
The vulnerability to NIR attacks, however, goes as high as 71.8 %.

Table 8.2 presents the verification results and the vulnerabilities for the rest of
the studied face recognition systems. All of them are moderately to highly vul-
nerable to spoofing attacks recorded in the spectrum that they operate in. For
example, SFAR for VIS systems to VIS attacks ranges from 59.26 to 74.07 %. In
NIR mode, the systems are even more vulnerable to NIR attacks: SFAR ranges
from 71.76 to 88.89 %. As can be expected, the vulnerability to attacks recorded in
the other spectrum than the one the systems work in is much lower. However, it still
amounts to a considerable SFAR, especially in the case of VIS system: the SFAR
for NIR attacks is between 27.78 to 38.89 %. Among the studied systems, GJet
appears to be the most vulnerable, while ISV shows the greatest robustness to
spoofing attacks, both in VIS and NIR mode.
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Fig. 8.4 Score distribution of GMM-based face recognition system for the samples in
Multispectral-Spoof: VIS mode. Real accesses: ; zero-effort impostors: ; and spoofing
attacks: . a VIS attack. b NIR-attack

180 I. Chingovska et al.



Multispectral System
The analysis presented in [3] is extended to a multispectral system by fusing the
scores of the attacks on the two systems. If simple SUM rule is used for the score
fusion, the multispectral system appears to be vulnerable to any of the two types of
spoofing attacks.

In our case, we investigate three different strategies to fuse the scores of VIS and
NIR systems: SUM of scores, linear logistic regression (LLR), and polynomial
logistic regression (PLR). The vulnerabilities of the GMM-based system working in
multispectral mode are given in Table 8.3.

The results show that the vulnerability of the multispectral system is highly
reduced, especially to VIS spoofing attacks. The vulnerability to NIR spoofing
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Fig. 8.5 Score distribution of GMM-based face recognition system for the samples in
Multispectral-Spoof: NIR mode. Real accesses: ; zero-effort impostors: ; and spoofing
attacks: . a VIS attack. b NIR-attack

Table 8.2 Verification error rates and spoofing vulnerability of baseline face verification systems
(in %)

VIS system NIR system

System FAR FRR SFAR FAR FRR SFAR

VIS attack NIR attack VIS attack NIR attack

GMM 0.78 15 62.04 30.56 0 13.96 13.89 71.76

LGBPHS 13.11 3.33 69.44 54.17 4.13 11.17 25.93 74.07

GJet 9.89 6.11 74.07 38.89 3.35 6.15 27.78 88.89

ISV 1.44 16.67 59.26 27.78 0 12.29 14.81 72.22

Table 8.3 Verification error
rates and spoofing
vulnerability of multispectral
GMM-based system (in %)

Fusion method FAR FRR SFAR

VIS attack NIR attack

SUM 0 11.17 11.11 33.02

LLR 0 14.53 9.26 25.12

PLR 0 10.06 9.72 53.95
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attacks is reduced to a lesser extent. However, the obtained SFAR has moderately
high level and suggests that VIS and NIR spoofing attacks present a considerable
security threat even for multispectral systems. The results for the other face
recognition systems (LGBPHS, GJet and ISV) bring to similar conclusions.

8.2.2.3 Discussion

Research on spoofing and anti-spoofing for NIR and multispectral face recognition
system is still in its infancy. We contribute to the attempts to spoof such systems by
creating a publicly available VIS and NIR face spoofing database that can be used
in a multispectral setting as well. From our initial experiments, we see that it is
possible to spoof VIS and NIR systems with both VIS and NIR spoofing attacks.
We envision three main directions for future research.

1. Multispectral-Spoof database offers just the most basic spoofing attacks with
printed photographs. More challenging spoofing attacks need to be created and
evaluated, like 3D attacks, or image-level fusion of VIS and NIR images.

2. Multispectral systems appear to be more robust, but still not highly secure under
NIR spoofing attacks. Examining different fusion strategies at different levels,
fine-tuning the training of the systems, fine-tuning the operating frequencies of
the NIR and VIS systems, and including spoofing attacks to train the fusion
systems are some of the possible ways to improve the multispectral systems.

3. The set of spoofing countermeasures for these systems is very sparse. Several of
the hardware-based anti-spoofing methods described in Sect. 2.1.3 could be
readily employed for detecting spoofing attacks in NIR spectrum as well. Yet,
they may still be classified as requiring additional hardware, because they
operate at different wavelengths then the wavelengths used by
Multispectral-Spoof database. In practice, only [3] has developed a fully
software-based countermeasures for printed attacks to NIR and multispectral
systems, but its efficiency to other databases and more challenging spoofing
attacks is still to be tested.

8.3 Face Recognition Systems Under 3D Spoofing Attacks

It is repeatedly stated in the previous sections that an attacker can attempt to gain
access through a 2D face recognition system (visual, near-infrared, or multispectral)
simply by using printed photographs or recorded videos of valid users. It is also
reported that most of these attack types devised until today can be successfully
averted by using various anti-spoofing methods.

A substantial part of the work on spoofing detection capabilities for face is based
on the flatness of the surface in front of the sensor during an attack. For instance, the
motion analysis techniques detailed in Sect. 2.1.3 rely on the assumption of shape
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difference between an actual face and a spoofing attack instrument such as a paper or
a tablet computer in order to distinguish motion patterns of a real person from an
attacker. In a similar fashion, 3D shape information either extracted from
multiple-view images or acquired using a 3D sensor (Sect. 2.1.3) can be exploited to
positively detect 2D attacks. For instance, in [73], 3D data captured with a low-cost
sensor is utilized to locate the face in an image as well as to test its authenticity.

These types of methods that rely on the assumption of a planar surface that
displays a face image in front of the sensor are ineffective in case of 3D facial mask
attacks [74]. Although the advancements in 3D acquisition and manufacturing
technologies make this kind of attacks as untroublesome as their 2D counterparts,
there have not been many studies published addressing this issue. In this section, an
overview of the existing work is presented for several kinds of 3D attacks, face
recognition systems, and spoofing countermeasures.

8.3.1 Types of Attacks and Databases

The earliest research works that target 3D attacks only aim to distinguish between
facial skin and mask materials without analyzing the spoofing performances of the
masks because they approach this problem as in an evasion or disguise scenario [61,
62]. The masks utilized for the experiments are not necessarily replicas of valid
users.

Claiming that fake, by its definition, is indistinguishable for human eyes and
visual spectrum cannot be sufficient to detect the attacks, a small group of studies
follow the footsteps of early pioneers and propose multispectral analyses [63, 75]
for mask and real face classification. The experiments in [63] are done on directly
mask materials. In [75], some face-like masks are produced, but they do not mimic
any real person. Unfortunately, no public database has been made available for
further investigation.

Recently, another line of research in 3D spoofing has emerged for which the
attacks are realized with 3D printed masks of valid users. Firstly, Kose et al.
published a series of studies [76–79] on 3D mask attacks for which a non-public
database of 16 users is utilized. In order to construct this database that is called
Morpho database, a 3D face model of each client is captured by a 3D laser scanner.
It consists of 207 real access and 199 mask attack samples as both 2D images and
3D scans (Fig. 8.6a).

Morpho database did certainly bring on a significant breakthrough and
momentum in 3D spoofing attack research. Still, it was lacking a very crucial
characteristic that is publicness. Taking this shortcoming into account, Erdogmus
et al. collected the first public spoofing database with facial masks, called 3D Mask
Attack Database (3DMAD) [80] and published a couple of spoofing and counter-
measure analyses on several face recognition systems [80, 81]. The database
contains 76500 real access and mask attack frames of 17 users, recorded using
Microsoft Kinect.

8 Face Recognition Systems Under Spoofing Attacks 183



The masks used for Morpho database were printed using 3D laser scans of valid
users. The acquisition process with such scanners requires cooperation since it is
very sensitive movement and has range limitations. This makes the attack scenario
less realistic. On the other hand, the masks for 3DMAD are manufactured using
only 2D images of users via a private company which is specialized in facial
reconstruction and in transforming 2D portraiture into 3D sculptures. Using this
service, it is possible to construct a 3D face model from frontal and profile images
of a person which can be easily obtained from a distance or found on the Internet.
Once the 3D models are constructed, they can be turned into masks of various sizes
and materials.

For 3DMAD, a life-size wearable mask and a papercraft mask are manufactured
for each user (Fig. 8.6b, c). Papercraft masks can be just printed out and hand-
crafted, so they are not recorded but made available within the database for the use
of the biometrics community. Using Microsoft Kinect for Xbox 360, videos are
recorded for real accesses and attacks with wearable hard resin masks. Since Kinect
can capture both color and depth data, the database enables researchers to analyze
the vulnerability of 3D face recognition systems to mask attacks and to devise
countermeasures in 3D.

The two above-mentioned databases constitute the backbone of research on 3D
spoofing attacks that investigate the ability of masks to spoof face recognition
systems and the possible anti-spoofing techniques which will be detailed in the
following subsections.

8.3.2 System Vulnerabilities

With both Morpho database and 3DMAD, vulnerabilities against spoofing with 3D
masks have been analyzed extensively for 2D, 2.5D, and 3D face recognition
systems.

In [79], a 2D system based on LBP and a 3D system based on thin plate spline
(TPS) warping are analyzed for their robustness against mask attacks using the

Fig. 8.6 a Example shots from Morpho: The top row shows a real access from a user in grayscale
texture (2D), depth map (2.5D), and 3D model format, while an attacker wearing the same users
mask is displayed in the bottom. b Example papercraft mask from 3DMAD. c 17 Wearable resin
masks from 3DMAD [81]
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Morpho database. While both system performances decline remarkably as the
attacks are introduced, 3D face recognition system which is completely based on
3D facial shape analysis is found to be affected more (EER increases from 1.8 to
25.1 %) than the 2D system (EER increases from 4.7 to 9.3 %). This is an expected
outcome since the masks in Morpho database are highly precise in shape but have
only grayscale texture. These findings are revised and extended in [77] with the
addition of an LBP-based 2.5D face recognition system for which the EER increase
from 7.27 % in normal mode to 14.26 % under spoofing attacks.

Similarly, 3DMAD is also assessed with regard to its spoofing ability on various
face recognition systems. Firstly in [80], an inter-session variability (ISV)-based 2D
face recognition algorithm is tried and 65.7 % of the mask attacks are found to be
successful at EER threshold calculated on the development set of the database.
The FAR at the same threshold would increase from 1.06 to 13.99 % if mask
attacks are included in the probe partition together with the zero-effort impostors.
The score distribution of the real access, zero-effort ,and mask attack impostors are
given in Fig. 8.7a. The authors extend their study in [81] to include an ISV-based
2.5D and an Iterative Closest Point (ICP)-based 3D face recognition systems as well
as all three baseline systems in [77]. Furthermore, spoofing performances are
measured and reported separately for each mask. The experimental results reveal
that the spoofing performances differ greatly not only between masks but also
between modes and algorithms. Additionally, it is observed that the vulnerability to
mask attacks is greater for more successful face verification algorithms that can
generalize well to variations in facial appearance.

In a more recent work [82], 3DMAD masks are tested against another 2D face
recognition algorithm which is based on the sparse representation classifier
(SRC) and 84.12 % of the masks are found to be able to access the system at EER
threshold (Fig. 8.7b).

All these findings expose that 3D mask attacks can be a real threat to all types of
face recognition systems in 2D, 2.5D, or 3D and serious measures should be taken
in order to detect and prevent them.

Fig. 8.7 Score distributions of genuine and impostor scores on the development set and mask
attack scores on the test set of 3DMAD using a ISV [80]. b SRC [40], for 2D face verification
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8.3.3 Spoofing CounterMeasures

Several methods have been proposed to detect 3D mask attacks in both 2D and
2.5D, mainly focusing on differences between micro-texture properties of mask
materials and facial skin.

In [76], Kose et al. report 88.1 and 86.0 % accuracies on Morpho database with
texture images (2D) and depth maps (2.5D), respectively, by concatenating his-
tograms of different types of LBP and classifying them with an SVM classifier. Later
in [79], they also try to fuse the two modes (image and depth map) at both feature
and score level and reach 93.5 % accuracy. Other than micro-texture analysis via
LBP, they also experiment with reflectance analysis to detect 3D mask attacks in
[78] and report 94.47 % classification success. Finally, by fusing micro-texture and
reflectance analyses in both 2D and 2.5D, an accuracy of 98.99 % is reached [83].

Spoofing countermeasure studies with 3DMAD also mainly revolves around
LBP-based classification algorithms. In [80], the effectiveness of LBP-based fea-
tures extracted from color and depth images to detect the mask attacks is analyzed.
The results suggest that LBP features extracted from overlapping blocks give better
results which achieve HTER of 0.95 and 1.27 % with images and depth maps
separately. This study is elaborated further in [81] with best performance obtained
by regular block-based LBP and a linear discriminant analysis (LDA) classifier at
0.12 ∓ 0.47 % and 3.91 ∓ 6.04 % HTER for 2D and 2.5D.

In addition to LBP, Raghavendra et al. propose to utilize binarized statistical
image features (BSIF) to capture prominent micro-texture features [82] in 2D
images both for the whole face (global) and the periocular (local) region. The LBP
and BSIF features for each region are classified and the final scores are fused by
weighted voting which results in an HTER of 4.78 %. Later in [84], the same
protocol is also applied for 2.5D and the findings are incorporated via weighted
score fusion. This addition is reported to push the HTER down to 0.03 %.

8.3.4 Discussion

Utilization of 3D masks for face spoofing has certainly become easier and cheaper.
Many recent studies mentioned above have revealed the vulnerability of 2D, 2.5D,
and 3D face recognition systems to such attacks. Additionally, many counter-
measures have been proposed. However, as shown in [81], even though they are
manufactured in similar ways, masks can behave very differently in various set-
tings, making it very difficult to find one single solution that works for all.

Furthermore, in each of currently existing work, mask attack samples are utilized
for training the anti-spoofing systems. This is not a realistic assumption for a
biometric system since it cannot employ a different anti-spoofing module for each
different mask. Worse still, it is always possible to encounter new and unseen types
of masks.
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The anti-spoofing methods targeting 3D masks have been added to Table 8.4,
together with the anti-spoofing methods for 2D attacks described in Sect. 8.2.1.3.
Table 8.4 thus represents a comprehensive summarization of all the efforts in face
spoofing detection in the visual spectrum that have been published so far.

8.4 Conclusions

Spoofing attacks are one of the most important reasons why face recognition may
have a limited application in conditions where supervision is not possible. Face
spoofing attacks have been proved to be effective for face recognition systems in
visual spectrum in many occasions, including several face spoofing databases. So
far, many countermeasures have been developed, and each of them tackles the
problem from a different perspective. As a result, most of these countermeasures are
effective just for a subset of the spoofing attack types. Having in mind the limitation
of the currently available databases, as well as the possibility of new spoofing
attacks appearing in future, more research efforts are needed to enhance the gen-
eralization capabilities of the countermeasures.

The work in spoofing face recognition systems in NIR is not as extensive.
However, the newly developed Multispectral-Spoof database, which includes VIS
and NIR attacks, demonstrates the vulnerability of both VIS and NIR systems to
such attacks. Employing these systems in multispectral scenario significantly
reduces the risks. Yet, development of suitable countermeasures is needed to
provide acceptable security levels for multispectral face recognition systems.

The published research in anti-spoofing for face recognition rarely comes with
data or source code that can be reproduced. This poses difficulties when comparing
the performance of countermeasures. We would like emphasize the importance of
publishing fully reproducible spoofing databases and countermeasures, as this will
be of great benefit for building upon existing solutions and development to
encourage the practice of new ones. In this chapter, we explicitly pointed out to
solutions which are fully reproducible and we would like to encourage this practice
for the future work.
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Chapter 9
On the Effects of Image Alterations
on Face Recognition Accuracy

Matteo Ferrara, Annalisa Franco and Davide Maltoni

Abstract Face recognition in controlled environments is nowadays considered
rather reliable, and if face is acquired in proper conditions, a good accuracy level
can be achieved by state-of-the-art systems. However, we show that, even under
these desirable conditions, some intentional or unintentional face image alterations
can significantly affect the recognition performance. In particular, in scenarios
where the user template is created from printed photographs rather than from
images acquired live during enrollment (e.g., identity documents), digital image
alterations can severely affect the recognition results. In this chapter, we analyze
both the effects of such alterations on face recognition algorithms and the human
capabilities to deal with altered images.

9.1 Introduction

Face recognition is made very complex by the inherent variability characterizing
face images, particularly in uncontrolled scenarios. However, also in controlled
environments, some face recognition applications can be subject to pitfalls [1–3]. In
particular, in scenarios where the user template is created from printed photographs
rather than from images acquired live during enrollment (e.g., identity documents),
particular care should be taken to avoid both unintentional and intentional image
alteration. Some alterations are very likely to occur; for instance, geometric dis-
tortions could be produced by acquisition or printing devices, and even when not
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clearly visible, they can significantly alter the face geometry [2]. In some cases, the
persons themselves could modify photographs to make them look more attractive;
the availability of a large number of free online tools [4] makes this operation very
easy. Besides these harmless intentions, some criminal intents could lead a subject
to modify his image for example to avoid identity recognition or to assume
someone else’s identity [3]. Well-executed digital image alterations are difficult to
detect by human experts and, as shown in the following, can easily fool automatic
recognition systems. This makes the problem of face image alterations very difficult
to deal with and requires the design of ad hoc solutions for alteration detection.

This chapter addresses this problem by presenting and discussing the effects of
different kinds of alterations. In particular, the following possible causes of alter-
ations are studied:

• Geometric distortion simulating the typical distortion produced by acquisition
devices or image stretching that could result from an inaccurate acquisition/
printing process;

• Digital beautification at different degrees, performed by free Web tools;
• Image morphing obtained by digitally mixing face images of two subjects.

Extensive experiments are carried out, also exploiting well-known commercial
face recognition software, to evaluate to what extent the above-described alterations
can compromise the recognition accuracy. Performance indicators such as equal
error rate (EER) and DET curve are considered to better highlight the quantitative
impact of image alterations.

Moreover, the study is enriched with experimentations aimed at evaluating the
human capabilities [5] to detect the described image alterations. In particular, a set of
volunteers has been enrolled and a statistical analysis of the human capability to
detect image alterations is presented. The outcomes of both automatic recognition
and human face recognition provide an overall insight on the feasibility of this threat.

The chapter is organized as follows: In Sect. 9.3, the alterations related to
geometric distortions and digital beautification are reviewed and discussed; the
effects of image morphing are proposed in Sect. 9.4, and finally, in Sect. 9.5, we
draw some conclusions.

9.2 State of the Art

The problem of face image alteration and its impact on the accuracy of face
recognition have been addressed by some works in the literature.

In the context of identity documents, some studies [6–8] deal with the problem
of face recognition from degraded photographs (e.g., security-watermarked images)
and propose ad hoc solutions to eliminate the noise present in these images in order
to improve the image quality. The alterations addressed in these works characterize
the printed photographs where a watermark is typically overlaid to the image for
security reasons. In electronic identity documents, this problem is mitigated by the
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presence of the face image stored in the chip, but also in this case, the recognition
accuracy may be affected by several factors.

Plastic surgery can significantly modify the face appearance with a relevant
impact on the recognition accuracy. The problem is well discussed in [9] where an
extensive experimentation is carried out to analyze the limitations of existing face
recognition algorithms with respect to plastic surgery. Many works have been
proposed to design face recognition techniques robust against this specific issue, and
most of them highlight the importance of a local feature analysis which allows these
algorithms to better deal with the typical variations introduced by plastic surgery. In
[10], the combination of shape and local binary texture features has been proposed.
In [11], the authors introduce a multimodal biometric approach based on principal
component analysis and local binary pattern combined with periocular features. The
authors of [12] adopt part-wise facial characterization, combined with a sparse
representation approach. The proposed approach relies on training images from
sequestered non-gallery subjects to fulfill the multiple image requirement of the
sparse recognition method. In [13] and [14], the use of non-disjoint face granules at
multiple levels of granularity is proposed. The feature extraction and selection
process are carried out by a multi-objective genetic algorithm. A patch-based
approach is also reported in [15] where the authors propose a new face recognition
method based on the idea of dividing the face into patches, designing one com-
ponent classifier for each patch, and finally fusing the rank-order list of each
component classifier. Observing that the facial texture is significantly affected by
plastic surgery, the authors of [16] adopt an edge-based Gabor feature representa-
tion, based on the hypothesis that the shape of prominent facial components remains
unchanged after plastic surgery. Finally, in [1], the structural similarity (SSIM),
providing a spatially varying quality map of the two images being compared, is used
both to evaluate the location and degree of variations introduced by plastic surgery
and to calculate a similarity score between two images.

Focusing on digital image alterations, which is the main topic of this chapter, as
of today, very few solutions have been proposed in the literature. An interesting
contribution is provided in [17] where a general approach designed to detect
changes in a signal is proposed. The method is based on the observation that images
from digital cameras contain traces of resampling as a result of using a color filter
array with demosaicing algorithms. Demosaicing produces periodic correlations in
the image signal which are affected by digital image alterations such as image
morphing. Another technique for image distortion analysis is proposed in [18]
where different features are combined and exploited for spoof detection.

Moreover, several works in the literature consider face morphing to design
effective and robust face recognition algorithms. Approaches described in [19–21]
adopt 2D or 3D face morphing to generate a frontal pose that can then be compared
to the gallery images for identification. Another interesting approach is proposed in
[22] where the authors suggest to use face morphing to artificially generate training
images which are very close to the decision boundaries in the face space. In
particular, to improve the recognition accuracy, for each subject in the gallery, two
large sets of borderline images, projecting just inside and outside the decision
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boundaries, are generated, and a dedicated classifier is trained to discriminate them.
One of the few works explicitly addressing face recognition in the presence of
digitally altered images is [23] where a SIFT-based approach is presented to deal
with image distortions.

The scarcity of literature related to this issue confirms that the problem is still
open and worth of attention from the research community.

9.3 Geometric Distortions and Digital Beautification

This section describes some digital image alterations that could be unintentionally
introduced due to the acquisition or printing devices (geometric distortions) or
intentionally produced by the users with the innocent intent of looking more
attractive (digital beautification).

9.3.1 Geometric Distortions

Image acquisition devices typically introduce the so-called barrel distortion (see
Fig. 9.1a), while a careless printing process could produce image stretching, named

Fig. 9.1 Examples of geometric alteration: original image (a), altered images with barrel distortion
(b), vertical contraction (c), and altered image with vertical extension (d). In all the images, a
squared grid is superimposed on the image to better highlight the effects of geometric alterations
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here “vertical contraction” and “vertical extension” that could affect the recognition
performance.

For each kind of alteration, a set of distorted images was generated by applying
the related transform at different levels of strength p (a large value of p denotes a
more significant alteration).

9.3.1.1 Barrel Distortion

Barrel distortion [24] is one of the most common types of lens distortions and
represents the typical defect that could be introduced by a low-quality acquisition
device. In this transformation, a barrel distortion with a strength p is applied to the
original image while preserving the image size. The approach described in [25] has
been adopted to implement this transformation. The value of p is increased from 10
to 20 % with a step of 2 %, i.e., p 2 0:10; 0:12; 0:14; 0:16; 0:18; 0:20f g. An altered
image obtained applying the barrel distortion with p ¼ 0:20 is shown in Fig. 9.1b.

9.3.1.2 Vertical Contraction

In this alteration, we vertically compress the image while keeping the width fixed.
In particular, we reduce the original height by a multiplying factor of (1� p). The
values of p are the same as those used to generate the barrel distortion. Figure 9.1c
shows an altered image after vertical contraction with p ¼ 0:20.

9.3.1.3 Vertical Extension

In vertical extension, the height is increased by a multiplying factor of (1þ p) while
keeping the width invariable. Here too, we increase the strength of extension from
10 to 20 % in a step of 2 %. An altered image after vertical extension with p ¼ 0:20
is shown in Fig. 9.1d. This alteration (and the previous one), which is essentially a
modification of the face aspect ratio, could be unintentionally introduced when
processing the image with a photo-editor tool or could be the result of a bad
printing.

9.3.2 Digital Beautification

To obtain this alteration, we use LiftMagic [4] an instant cosmetic surgery and
anti-aging makeover tool that produces realistic image beautification. The tool pre-
sents a very simpleWeb interface that allows the user to load an image and to simulate
different plastic surgery treatments at different levels. It makes available 17 treat-
ments: 16 local treatments (e.g., injectable for forehead, eyelid fold enhancement, and
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lip augmentation) and one treatment integrating all the local ones. For each treatment,
a specific selection bar allows the user to personalize the strength of the modification.

In this alteration, we consider only the integrated treatment and three different
strengths obtained by positioning the selection bar at three equidistant positions.
The three levels are referred to as ‘low,’ ‘medium,’ and ‘high’
(p 2 low, medium, highf g). Figure 9.2 presents the altered image after this alter-
ation with p ¼ high.

9.3.3 Experimental Results

The effects of the above-described alterations on face recognition accuracy have
been evaluated with a set of experiments conducted with three different
state-of-the-art face recognition approaches: two commercial software
[Neurotechnology VeriLook SDK 2.1 [26] (VL) and Luxand Face SDK 4.0 [27]
(LU)] and a SIFT-based matching algorithm [28, 29] (SI). The performance mea-
sured for the three systems on the unaltered database described below is good (see
Fig. 9.3), so they constitute a good test bed to evaluate the effects of alterations: In
particular, the measured EER is 0.003 % (VL), 1.693 % (LU), and 2.217 % (SI).

9.3.3.1 Database

The choice of a proper face database is here an important issue. In fact, particularly
in the context of electronic documents, face images are expected to be high quality;
hence, variations caused by illumination, expressions, poses, etc., should be kept
out. The selected database is AR face database [30]; this database consists of 4000
frontal images taken under different conditions in two sessions, separated by two
weeks. The images relevant to our study are well controlled and high-quality
images (with neutral expressions and good illumination), so the poses 1 and 14 are

Fig. 9.2 An example of digital beautification. Original image (a), digitally beautified image (b),
pixel-by-pixel difference between original and digitally beautified image (c), and a zoom on the
main face regions affected by the beautification process (d)
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selected for the tests. We denote them as No. 1 and No. 14, respectively (see
Fig. 9.4 for an example).

In our test, we assume that the images No. 14 are used during enrollment (i.e.,
are stored in the e-documents), while the images No. 1 are used as probe (i.e., at the
point of verification). The alterations are thus applied to images No. 14 to simulate
the inclusion in the document of an altered image.

9.3.3.2 Face Recognition Results

To evaluate the effects of the various alterations on face recognition accuracy, a
systematic experimentation has been carried out. Starting from the original

Fig. 9.4 Two unaltered images of the same subject in the AR database (pose 1 on the left, pose 14
on the right)

Fig. 9.3 DET curves of the
three reference systems on the
unaltered database
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database, for each alteration, face images with different alteration strengths have
been generated by modifying the original images with different transformations
described in the previous section.

The performance evaluation of face recognition algorithms is based on a set of
genuine and impostor recognition attempts. In a genuine recognition attempt, two
face images of the same individual are compared, while in an impostor attempt, two
images from different persons are compared. The following performance indicators
are used: False Non-Match Rate (FNMR) at a False Match Rate (FMR) of 1 %
(FMR100) and 1 ‰ (FMR1000) [31].

In the following definitions, each database DB consists of two sets of face
images: DBe (acquired during enrollment) and DBv (acquired during verification).

The original database (without alterations) is denoted as DBO ¼ DBO
e ;DB

O
v

� �
.

DBO
e is made of all the original No. 14s of 120 subjects, while DBO

v is composed of
all the original No. 1s (of 134 subjects). For genuine attempts, each No. 14 is
compared against the No. 1 of the same subject; since only 118 subjects have both
poses 1 and 14, the number of genuine attempts is 118. For impostor attempts, the
No. 14 of one subject and all the No. 1 of the other subjects are compared. Hence,
the total number of impostor attempts is 15,962.

As to the altered databases, for a given alteration a, let DBp
a ¼ DBeð Þpa ;DBO

v

� �
be a database that simulates enrollment face images reporting alteration a with a
strength of p. For genuine attempts, the original No. 1 and the altered No. 14 from
the same subject are compared. Impostor attempts are the same as in the original
database DBO.

The results of the barrel distortion are reported in Fig. 9.5. It can be observed that
both FMR100 and FMR1000 change slightly and irregularly as the degree of barrel
distortion increases for LU and SI, while there is no significant performance change
for VL. Overall, this alteration has no noticeable effects on the recognition
accuracy.

Fig. 9.5 Performance comparison before and after barrel distortion: FMR100 (left) and FMR1000
(right)
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Figures 9.6 and 9.7 illustrate the results of the vertical contraction and extension,
respectively. For both FMR100 and FMR1000, as the strength of the alterations
increases, the accuracy of LU significantly decreases. SI shows a less noticeable
performance drop than LU, while there is no significant performance change for
VL.

The results of the digital beautification are reported in Fig. 9.8. For both
FMR100 and FMR1000, this alteration produces a performance drop for all the
three system (even if LU shows a less noticeable reduction of the recognition
accuracy).

Overall, the experimental results show that the barrel alteration does not sig-
nificantly affect the recognition accuracy. This is probably due to the fact that in the
central part of the image containing the face, the barrel distortion produces simply a
sort of scaling effect, which is well handled by the algorithms tested.

Aspect ratio alteration is critical for some approaches (for instance, the vertical
contraction at the maximum strength causes a performance drop of FMR1000 of

Fig. 9.6 Performance comparison before and after vertical contraction: FMR100 (left) and
FMR1000 (right)

Fig. 9.7 Performance comparison before and after vertical extension: FMR100 (left) and
FMR1000 (right)
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about 11 times for LU), while it is just slightly disturbing other systems. In par-
ticular, we believe that face recognition based only on local features is quite
insensitive to global geometric changes.

Finally, alterations such as digital beautification, when applied with high
strength, produce marked performance drop to all the systems tested, as clearly
visible in Fig. 9.8: The FMR becomes significantly higher than the original value
when a strong alteration is applied.

9.4 Morphing

This section is aimed at analyzing the effects of image morphing on face recog-
nition accuracy. The results in the previous section show that state-of-the-art face
recognition algorithms are able to overcome limited alterations but are sensitive to
more drastic modifications. In particular, some geometric alterations and digital
beautification can cause an increment of the false rejection rate: In an automatic
verification scenario (e.g., in an airport using an Automated Border Control (ABC)
system [32]), the system is not able to recognize the owner of an eMRTD, thus
requiring the intervention of a human operator; in a watch-list scenario, where a list
of subjects wanted by the police has to be checked in order to block the suspects, an
intentional alteration could allow the suspect to bypass the control. With the
widespread adoption of ABC systems [33], the risk of criminal attempts to bypass
controls should be mitigated with appropriate countermeasures. On the one side, the
passport issuing procedure should be improved to reduce the risk of enrolling a
morphed face image, and on the other hand, the new generation of face recognition
algorithms embedded in ABC should be capable of dealing with morphed face
images (i.e., avoid that a morphed face image can be successfully matched against
two persons).

Fig. 9.8 Performance comparison before and after digital beautification: FMR100 (left) and
FMR1000 (right)
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In this section, the robustness of automated face recognition system against
morphing alterations has been evaluated. This operation could be for instance at the
basis of a criminal attack to an ABC system. In this scenario, at the time of
verification at an ABC, a face image (acquired live) of the person presenting the
travel document is matched against the face image stored in the eMRTD. If a
morphed image included in an eMRTD can be successfully matched with the face
of two or more subjects, then different persons can share the same document. In an
ABC system scenario, this would allow a criminal to exploit the passport of an
accomplice with no criminal records to overcome the security controls. In more
details, the subject with no criminal records could apply for an eMRTD by pre-
senting the morphed face photograph; if the image is not noticeably different from
the applicant face, the police officer could accept the photograph and release the
document (see Fig. 9.9). It is worth noting that in this case the document is perfectly
regular; the attack does not consist of altering the document content but in
deceiving the officer at the moment of document issuing. The document released
will thus pass all the integrity checks (optical and electronic) performed at the gates.

Accomplice Criminal

Accomplice

Morphed 
image

DOCUMENT ISSUANCE

ABC system

Regular
passport with 
morphed face 

image

IDENTITY VERIFICATION AT ABC

Fig. 9.9 A possible attack realized by means of a morphed photograph. The image is visually very
similar to the applicant, but contains facial features of a different subject
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In this section, we evaluate: (i) the feasibility of creating deceiving morphed face
images, (ii) the ability of humans to detect morphed images, and (iii) the robustness
of commercial recognition systems in the presence of morphing.

The attack was designed as follows:

1. Two images of different subjects have been selected: We chose two persons with
some physical similarity but whose face images did not falsely match using the
suggested threshold (for both SDKs); non-matching images were used because
in case of matching, no morphing operations are required.

2. The two images were morphed into a new image as described in the following
section.

The morphed image was used (i) to evaluate the ability of humans to detect
morphing alterations and (ii) to estimate the accuracy of automatic face recognition
in the presence of morphing.

9.4.1 The Image Morphing Process

In motion pictures and animations, morphing is a special effect that changes one
image into another through a seamless transition [34]. Often, morphing is used to
depict one person turning into another.

To morph two face images, the free GNU Image Manipulation Program v2.8
(GIMP) [35] and the GIMP Animation Package v2.6 (GAP) [36] have been used in
this work. The aim of morphing is, in this case, to produce a face image which is
very similar to one of the two subjects (the applicant of the document) but that also
includes facial features of the second subject. Of course, this objective is easier to
realize whether the two subjects have similar faces, but the results will show that
this condition is not strictly necessary.

Given two high-quality face images (fulfilling all the requirements provided in
the ISO/IEC 19794-5 standard [37]), the following steps are carried out to produce
morphing:

1. The two faces are input as separate layers in the same image and are manually
aligned by superimposing the eyes (see Fig. 9.10).

2. A set of important facial points (e.g., eye corners, eyebrows, nose tip, chin, and
forehead) are manually marked on the two faces using the GAP morph tool (see
Fig. 9.11).

3. A sequence of frames showing the transition from one face to the other is
automatically generated using the GAP morph function (see Fig. 9.12).

4. The selection of the final frame is done by scanning the frames (starting from the
applicant photograph) and continuing until the current frame gets a matching
score with the criminal subject greater than or equal to the matching thresholds.
For frame selection, the similarity with the applicant of the document was
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Fig. 9.11 The facial points labeled for the two images before morphing; such points will allow to
obtain a better alignment between the two faces and a smoother morphing

Fig. 9.10 The first step for morphing—aligning the two images according to the eyes position

Fig. 9.12 Frames obtained by the morphing procedure, gradually shading from subject 1
(applicant) to subject 2 (criminal)
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privileged to maximize the probability of acceptance in the enrollment stage,
under the hypothesis of face verification at unattended gates. Of course, it is
possible to use an intermediate morphed image for other scenarios such as
attended gates.

5. Finally, the frame selected is manually retouched to make it more acceptable as
a genuine ICAO photograph (see Fig. 9.13). To this purpose, ghost shadows and
other small defects must be manually removed and finally a sharpening filter is
applied to remove the slight blurring introduced during the morphing operation.

9.4.2 Experimental Results

Several experiments have been carried out to evaluate the possibility of success of a
morphing attack. In particular, in order to succeed, two conditions should be ver-
ified: (i) the morphed image should fool a human expert (e.g., the police officer
issuing a passport) and (ii) the morphed image should be successfully matched with
two different subjects using an automatic face recognition software. In this section,
we describe the experiments carried out in relation to these two aspects. We first
evaluate the ability of humans to detect morphed images, and then, we estimate the
accuracy of automatic face recognition in the presence of morphing.

9.4.2.1 Morphing Database

The experiments have been carried out on the AR face database [30], chosen
because it contains several images compliant to the quality standards in use for
eMRTD. The database consists of 4000 frontal images taken under different con-
ditions in two sessions separated by two weeks. In particular, poses 1 and 14 are
selected for the morphing experiments since they present neutral expression and
good illumination.

Fig. 9.13 The frame selected
for matching before and after
manual photograph retouch
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The morphing database has been assembled by mixing the images of two sub-
jects, as described in the previous section. Overall, the database contains 10 pairs of
male subjects (see Figs. 9.14 and 9.15) and 9 pairs of female subjects (see Figs. 9.16
and 9.17). Moreover, two extra experiments have been conducted mixing i) one
man and one woman (see Fig. 9.18) and (ii) three men (see Fig. 9.19).

A visual inspection of the morphing results clearly shows that in most cases, the
image alteration produced by morphing is difficult to detect and that it is possible
and relatively easy to obtain a morphed image very similar to one of the two
subjects involved.

ID1 ID2MORPH TEST1 TEST2

M1

M2

M3

M4

Fig. 9.14 Morphed images: the results obtained with six male couples. Two images used for
morphing (columns ID1 and ID2), the resulting morphed face image (column MORPH), and the
two images used for the matching test (columns TEST1 and TEST2) are reported for each row
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ID1 ID2MORPH TEST1 TEST2

M7

M8

M9

M10

M6

M5

Fig. 9.15 Morphed images: the results obtained with four male couples. Two images used for
morphing (columns ID1 and ID2), the resulting morphed face image (column MORPH), and the
two images used for the matching test (columns TEST1 and TEST2) are reported for each row
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ID1 ID2MORPH TEST1 TEST2

F1

F2

F3

F4

F5

F6

F7

Fig. 9.16 Morphed images: the results obtained with seven female couples. Two images used for
morphing (columns ID1 and ID2), the resulting morphed face image (column MORPH), and the
two images used for the matching test (columns TEST1 and TEST2) are reported for each row
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ID1 ID2MORPH TEST1 TEST2

F8

F9

Fig. 9.17 Morphed images: the results obtained with two female couples. Two images used for
morphing (columns ID1 and ID2), the resulting morphed face image (column MORPH), and the
two images used for the matching test (columns TEST1 and TEST2) are reported for each row

ID1 ID2MORPH TEST1 TEST2

MF

Fig. 9.18 Morphed images: the results obtained mixing one man and one woman

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9.19 Morphed image generated using three men photographs: the three images used for
morphing (a, b, and c), the resulting morphed face image (d), and the three images used for the
matching test (e, f, and g). In this example, the subject in (c, g) is the applicant. The matching
scores between test images (e, f, g) and the morphed one (d) are 51, 72, and 565 using
VeriLook SDK and 0.99965, 0.99904, and 1.00000 using Luxand SDK
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9.4.2.2 Human Detection Capability

In order to evaluate the human capabilities to detect altered face images, two
experiments were carried out by submitting a questionnaire to two groups of vol-
unteers. The former group consisted of experts working in the field (44 border
guards), and the latter covered a wider audience (543 persons, among which about
104 students and professors of the University of Bologna and about 439 researchers
working in the field of biometric systems). The questionnaire includes a set of
image pairs; some pairs represent the same subject in two different acquisitions, and
others contain an image of a subject and a morphed image (from the morphing
database) obtained by mixing the same subject with a different person. For each
pair, the volunteers have to decide whether the two images belong to the same
subject or to different (but very similar) subjects.

The results of the questionnaire for the border guard group and the non-expert
subject group are reported in Figs. 9.20 and 9.21, respectively. The percentage
values in the graph have been calculated considering that some subjects provided
partial answers: In particular, 40 out of 44 border guards and 405 out of 543
non-experts filled the entire questionnaire. The percentage is thus calculated for
each question on the basis of the number of answers received.

Fig. 9.20 Results obtained in the test with the human experts. The double black line represents the
boundary between the pairs containing morphed images (left) and the pairs with original images
(right)
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The results obtained show that in most cases, the morphed images are not
detected (i.e., more than half of the subjects considered the two images as belonging
to the same person), even if overall the percentage of persons voting for “same
subject” is lower than that observed for pairs representing the same subject.
However, if we exclude some isolated cases where the morphing effect is quite
evident (i.e., M1, F5, F9, and MF), most of the morphed images have been accepted
as genuine by a human expert.

It is also rather surprising to see that, as already stated in [5], the results obtained
by the experts are not better than those obtained by a general audience, not
specifically working in this area and not trained to face verification.

9.4.2.3 Experiments with Automatic Face Recognition Systems

The experiments have been conducted using two commercial face recognition
software tools: Neurotechnology VeriLook SDK 5.5 [26] and Luxand Face SDK
4.0 [27]. In order to simulate a realistic attack to an ABC system, the operational
thresholds of the face recognition software have been fixed according to the
guidelines [32] provided by FRONTEX (the European Agency for the Management
of Operational Cooperation at the External Borders of the Member States of the
European Union) [38]. In particular, for ABC systems operating in verification
mode, the face verification algorithm has to ensure a False Acceptance Rate (FAR)

Fig. 9.21 Results obtained in the test with non-expert subjects. The double black line represents
the boundary between the pairs containing morphed images (left) and the pairs with original
images (right)
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equal to 0.1 % and a False Rejection Rate (FRR) lower than 5 %. In the experi-
ments, two different thresholds have been used for each SDK:

• ThrP: score threshold value provided by the SDK to obtain a given level of
FAR.

• ThrC: score threshold computed internally on the basis of about 20,000 impostor
comparisons, with the aim of achieving a prefixed FAR.

Table 9.1 reports provided and computed thresholds for both SDKs and different
values of FAR.

The verification results obtained by the two SDKs for the different morphed
images using both thresholds are summarized in Table 9.2. Most of the attacks were
successful since for both SDKs, the matching score between the morphed face
image and each of the test images (see Table 9.2) is higher than the thresholds.
Moreover, the results obtained in the test with human experts confirm that the attack
is perfectly feasible since the morphed image is very similar to one of the two
subjects (ID1) and also human experts issuing the passport are easily fooled.

9.4.3 FMC Benchmark Area on FVC-onGoing

The results obtained with commercial software in the presence of image morphing
clearly highlight that this topic is very challenging and that even top performing
algorithms are unable to effectively deal with it. To foster the research on this issue
and independently assess the robustness of face recognition algorithms against
morphing alteration, a new benchmark area called Face Morphing
Challenge (FMC) has been recently added to the FVC-onGoing framework.

FVC-onGoing [39, 40] is a Web-based automated evaluation system for bio-
metric recognition algorithms. Tests are carried out on a set of sequestered datasets,
and results are reported online by using well-known performance indicators and
metrics. The aim is to track the advances in automatic recognition technologies,
through continuously updated independent testing and reporting of performances on
given benchmarks. FVC-onGoing benchmarks are grouped into benchmark areas
according to the (sub)problem addressed and the evaluation protocol adopted.

Table 9.1 Provided and computed thresholds to achieve different values of FAR for both SDKs

FAR

SDK 1 % 0.1 % 0.01 % 0 %

ThrP ThrC ThrP ThrC ThrP ThrC ThrP ThrC
VeriLook 24 28 36 39 48 49 100 57

Luxand 0.9900 0.8515 0.9990 0.9658 0.9999 0.9937 1.0000 0.9940
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For more details on the new FMC benchmark area, please refer to the
FVC-onGoing Web site [40]. Only the main information about the benchmark and a
set of preliminary results obtained are reported in the following subsections.

9.4.3.1 Face Database

A new ad hoc dataset containing high-resolution face images with neutral
expressions and good illumination has been created using public databases. It
contains 731 images of 280 subjects, gathered from different sources:

• 236 images of 118 subjects from the AR database [30];
• 415 images of 162 subjects from the Color FERET database [41, 42];
• 80 morphed face images artificially generated.

Table 9.2 Verification results of the test and morphed images reported in Figs. 9.14, 9.15, 9.16,
9.17, and 9.18 obtained by the two SDKs using both thresholds

VeriLook SDK 5.5 Luxand SDK 4.0

T1 - M T2 - M T1 - M T2 - M T1 - M T2 – M T1 - M T2 – M
M1
M2
M3
M4
M5
M6
M7
M8
M9

M10
F1
F2
F3
F4
F5
F6
F7
F8
F9
MF
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9.4.3.2 Testing Protocol

To compute performance indicators, the following comparisons are performed:

• 526 Genuine attempts—face images of the same subject are compared to
compute the FRR.

• 19944 Impostor attempts—face images of different subjects are compared to
compute the FAR.

• 160 Morph attempts—morphed face images are compared against face images
of the subjects used for morphing to compute the Morph Acceptance
Rate (MAR) as the ratio of the number of morphed images erroneously accepted
by the system divided by the total number of morph attempts.

Starting from genuine, impostor, and morph scores, the following performance
indicators have been computed:

• EER—equal error rate [31]
• FAR100—the lowest FRR for FAR ≤ 1 % [31]
• FAR1000—the lowest FRR for FAR ≤ 0.1 % [31]
• FAR10000—the lowest FRR for FAR ≤ 0.01 % [31]
• ZeroFAR—the lowest FRR for FAR = 0 % [31]
• DET curve [31]
• MAR@FAR100—the lowest MAR for FAR ≤ 1 %
• MAR@FAR1000—the lowest MAR for FAR ≤ 0.1 %
• MAR@FAR10000—the lowest MAR for FAR ≤ 0.01 %
• MAR@ZeroFAR—the lowest MAR for FAR = 0 %
• Graph of the trade-off between MAR and FAR.

9.4.3.3 Experiments

Three commercial SDKs (Neurotechnology VeriLook SDK 5.5 [26], Luxand
Face SDK 4.0 [27], and EyeFace SDK 3.11.0 [43]) have been evaluated on the new
benchmark.

Figure 9.22 reports the DET graph on the FMC benchmark. The graph shows
that among the three SDKs, VeriLook is the only one that fulfills the operative
requirements suggested for ABC systems since at a FAR of 0.1 % (10−3 in the x-
axis of the graph) the FRR is below 5 %; for the other two SDKs, the FRR
measured is significantly higher (see also Figs. 9.23, 9.24, and 9.25). This behavior
will have positive effects on the ability of the SDK to detect morphed images (as
detailed in the following graphs), but in practice, it would create serious problems
in terms of efficiency of the verification process since it would make necessary
human intervention in a large number of cases, thus mitigating the advantages
provided by ABC systems.
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Figures 9.23 and 9.24 show FRR andMAR values computed for ThrC and ThrP at
different levels of FAR (see Table 9.1) for Luxand and VeriLook SDKs, respectively.
As to EyeFace, no suggested thresholds are provided with the SDK, so the graph has
only been reported for ThrC in Fig. 9.25. As expected, the graphs confirm that
VeriLook presents the highest values of MAR. The other two SDKs present a lower
MAR but at the cost of a higher FRR; in particular, EyeFace where at FAR1000,

Fig. 9.23 FRR and MAR values computed for ThrC and ThrP at different levels of FAR for
Luxand SDK

Fig. 9.22 DET graph of the
three SDKs on the FMC
benchmark
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Fig. 9.24 FRR and MAR values computed for ThrC and ThrP at different levels of FAR for
VeriLook SDK

Fig. 9.25 FRR and MAR values computed for ThrC at different levels of FAR for EyeFace SDK.
The computed thresholds are 0.3544, 04836, 0.6282, and 0.6472 for FAR100, FAR1000, FAR10000,

and ZeroFAR, respectively
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the percentage of genuine images rejected is more than 75 %. For Luxand and
VeriLook, the MAR at FAR1000 is very high confirming that the software analyzed is
not able to successfully distinguish morphed images from genuine ones.

9.5 Conclusions

This work analyzed the possible effects of digital image alterations on face
recognition accuracy. The experiments carried out clearly suggest that existing
algorithms are able to deal with such alterations only to a limited extent. In par-
ticular, the outcomes of our tests are very relevant in the scope of identity docu-
ments issuing where accepting printed photographs brought by citizens pose serious
concerns in terms of security. The alterations shown in this work suggest that even a
human expert can be easily fooled and in our opinion, the best workaround solution
is to directly acquire the face photograph at a controlled enrollment station using a
high-quality camera and following the recommendations listed in [37] (Informative
Annex C.2). On the scientific side, this work points out some important research
directions for researchers developing face recognition algorithms. We also believe
that making available (through FVC-onGoing) to the community, a common
benchmark to evaluate the robustness of face recognition algorithms to image
morphing alteration will contribute to identify effective solutions to deal with this
threat.
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Chapter 10
Document to Live Facial Identification

A.D. Clark, C. Whitelam and T. Bourlai

Abstract The National Institute for Standards and Technology (NIST) highlights
that facial recognition (FR) has improved significantly for ideal cases such, where
face photographs are full frontal, of good quality, and pose and illumination vari-
ations are not significant. However, there are automated face recognition scenarios
that involve comparing degraded facial photographs of subjects against their
high-resolution counterparts. Such non-ideal scenarios can be encountered in situ-
ations where the need is to be able to identify legacy face photographs acquired by a
government agency, including examples such as matching of scanned, but degra-
ded, face images present in drivers licenses, refugee documents, and visas against
their live photographs for the purpose of establishing or verifying a subject’s
identity. The factors impacting the quality of such degraded face photographs
include hairstyle, pose and expression variations, lamination and security water-
marks, and other artifacts such as camera motion, camera resolution, and com-
pression. In this work, we focus on investigating a set of methodological
approaches in order to be able to overcome most of the aforementioned limitations
and achieve high identification rate. Thus, we incorporate a combination of pre-
processing and heterogeneous face-matching techniques, where comparisons are
made between the original (degraded) photograph, the restored photograph, and the
high-quality photograph (the mug shot of the live subject). For the purpose of this
study, we, first, introduce the restorative building blocks that include threshold-
based (TB) denoising, total variational (TV) wavelet inpainting, and exemplar-
based inpainting. Next, we empirically assess improvement in image quality, when
the aforementioned inpainting methods are applied separately and independently,
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coupled with TB denoising. Finally, we compare the face-matching performance
achieved when using the original degraded, restored, and live photographs and a set
of academic and commercial face matchers, including the local binary patterns
(LBP) and local ternary patterns (LTP) texture-based operators, combined with
different distance metric techniques, as well as a state-of-the-art commercial face
matcher. Our results show that the combination of TB denoising, coupled with
either of the two inpainting methods selected for the purpose of this study, illus-
trates significant improvement in rank-1 identification accuracy. It is expected that
the proposed restoration approaches discussed in this work can be directly applied
to operational scenarios that include border-crossing stations and various transit
centers.

10.1 Introduction

Facial recognition (FR) has a variety of uses in commercial and government
applications that include searching for potential terrorists and criminals, performing
security measures for automated teller machines (ATMs), and preventing people
from obtaining false identification. According to a recent report from the National
Institute of Standards and Technology (NIST), FR has improved significantly for
ideal cases such as visa and mug shot photographs [1]. However, much remains to
be explored for non-ideal conditions [2]. Research has shown that the process of
matching degraded facial photographs of a subjects ID documents against their
high-resolution counterparts (live subjects), also known as document to live facial
identification, also fits into this category. The challenges associated with document
to live facial identification can be grouped into the following three major categories
[3, 4]:

1. Person-related factors—Factors that are based on the variation of the individ-
ual’s facial appearance. Examples in this category include variations in pose,
expression, and hairstyle. Aging also fits into this category because there is also
a time lapse (that is often significant, i.e., up to a few years) between the
comparison of the documented facial image and its higher resolution counterpart
[5, 6].

2. Document-related factors—Factors that are based on the variation of the type of
document. Examples in this category include security watermarks embedded in
facial images, variations in image quality and tonality across the face, and color
cast of the photographs.

3. Device-related factors—Factors that are due to various limitations of the device.
Examples in this category include limited device resolution, artifacts due to
lighting, the type of image file format or compression used, and operator
variability.
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Document to live facial identification poses a practical problem for security
officers, because the person’s identity document information can be potentially
tampered, modified or stolen, and even duplicated into another document that can
be used for illegal or unauthorized purposes. Therefore, even if a state-of-the-
art-automated FR system is used, such a challenging scenario as document to live
face matching may not allow for the identification system to achieve the same level
of performance that can be achieved in ideal conditions. As a result, the officer may
decide to no longer rely on the FR system and try to manually match the query face
image against a set of face images in a database (e.g., watch-list) by making visual
comparisons. Such a process is probe to errors but more importantly probe to
significant delays. Hence, work is needed to design and develop a preprocessing
methodology that is capable of restoring the degraded photographs from identity
documents prior to comparing them against live (gallery) face images. In this
regard, we first investigate several image restoration schemes in combination with
academic and commercial face matchers. Then, through an empirical evaluation
study, we determine the conditions that result in the highest identification rates. For
the purpose of this study, we are using the West Virginia University
(WVU) Identity Document Database, which is composed of 130 subjects coming
from various countries.

In this section, we first provide a brief introduction on passport standardization.
Next, related work in this area is highlighted, where previous restoration strategies
are introduced. Finally, our motivations and contributions for the work presented in
this chapter are also introduced.

10.1.1 Passport Standardization

Passport standardization was developed in 1980 under the guidance of the
International Civil Aviation Organization (ICAO), to provide universal travel
guidelines. This was because in the late twentieth century, when photography
became widespread, it became popular to attach photographs to identity documents.
However, disparities were made, as each country attempted to develop its own
standard [7]. Recent ICAO standards include those for machine-readable docu-
ments, where some of the information, written in strings of alphanumeric charac-
ters, is printed in a manner suitable for optical character recognition [8, 9]. This
allows security officers, such as border control and other law enforcement agents,
the ability to process these passports efficiently, mitigating the need for manual data
entries.

Figure 10.1 demonstrates that identification documents have changed dramati-
cally over the years. It is also important to acknowledge that recent developments
have been made to meet society’s contemporary needs. A set of recent ICAO
standards has been incorporated for biometric passports or e-passports. For these
e-passports, critical information pertaining to the traveler is printed on the data page
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of the passport as well as stored in a radio-frequency identification (RFID) chip [7].
Additionally, face, fingerprint, and/or iris templates of the legitimate owner are
embedded as an additional layer of protection. However, not all passports are bio-
metric friendly and there is a possibility that the information stored in the RFID chip
could be compromised [3]. For these instances, FR technology can be used as an
alternative approach in order to confirm the traveler’s identity. The limitations of FR,
in this context, are primarily due to document- and device-related factors1—par-
ticularly in the case of recent documents. In recent identification (ID) documents,
security watermarks are observed across the face. Also, in some cases, a strong
magenta cast can be observed on the photograph of the ID document. In both
paradigms, the image quality can be severely impacted and the facial tonality can be
diminished. Therefore, care must be taken to overcome these limitations of degraded
photographs to improve image quality before face matchers are applied.

10.1.2 Related Work

Document facial identification was first explored by Starovoitov et al. [10, 11] who
presented an automated system for matching face images, present in documents,
against camera images. In that study, the authors constrained their work to the
earlier versions of passports (circa 1990) that were issued from a single country.
The facial images used were reasonably clear and not “contaminated” by any
security markings. Hence, the system’s ability to automatically identify the face
photograph was not severely compromised. Later, Ramanathan and Chellappa [12]
focused their attention in this area by addressing the issue of age disparity prior to
identification. Hence, they introduced a Bayesian classifier that approximates age

Fig. 10.1 A collection of passports ranging from 1884 to 2009. All are real passports and are
available in the public domain [7]

1Person-related factors are affected here due to the time lapse between the document and ideal
images used in comparison.
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estimation by estimating the differences between pairs of facial images. Next,
Bourlai et al. [3] addressed the problem of facial matching over a variety of
international passports. In their work, the authors introduced the following process:

1. Face Detection—Used to localize the spatial content of the face and determine
its boundary. To accomplish this step, the algorithm proposed by Viola and
Jones [13] was employed.

2. Channel Selection—Used to perform the appropriate color space normalization.
Typically, document images are color images composed of the red, green, blue
(RGB) channels and color space normalization is applied to prepare for further
processing.

3. Normalization—Photometric and geometric normalization schemes, respec-
tively, are needed, first, to compensate for illumination variation and next, for
slight perturbations in the frontal pose. Geometric normalization is composed of
two major steps: eye detection and affine transformation, where the eye detec-
tion is needed to create a global perspective in reference to all faces of the
subjects within the database at hand. Photometric normalization is performed by
employing histogram equalization and contrast adjustment. Histogram equal-
ization is a nonlinear image enhancement method that transforms image
brightness, which can (under certain conditions) improve verification perfor-
mance [14].

4. Wavelet Denoising—Wavelet-based image denoising is needed to remove the
additive noise present in documented facial images [15]. This supplemental
noise is caused by variations in security markings as well as paper defects. For
this step, the translation invariant wavelet transform (TI-WT) [16] was used to
average out the translation dependence of the wavelet basis functions.

5. Feature Extraction and Classification—In this step, the appropriate facial fea-
tures are extracted and, then, face matching is performed, i.e., matching of the
preprocessed document facial photographs against their live photograph
counterparts.

Empirical evaluations of the proposed method, shown in Fig. 10.2, confirmed
that document facial matching is a difficult problem due to challenges associated
with person, document, and device-related factors. Consequently, applying the
preprocessing methodology, described in Steps 1–4 above, improves overall
recognition performance. Bourlai et al. extended their original work discussed in [3]
by incorporating an image restoration methodology that improved the quality of
severely degraded facial images that are digitally acquired from printed or faxed
documents [4]. The acute degradation types considered were (a) fax image com-
pression,2 (b) fax compression, then print, and finally scan, and (c) fax

2In that work Fax image compression is defined as the process where data (e.g., face images on a
document) are transferred via a fax machine using the T.6 data compression, which is performed
by a fax software on a controlling computer.
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compression, then fax transmission, and finally scan. The authors’ approach
involved an iterative image restoration scheme to improve the textural content of
the face images while removing noisy artifacts. Their observational results deter-
mined that the proposed image restoration scheme improved image quality as well
as recognition performance. The works of [3, 4] also helped inspire investigations
in automated image quality measurements to meet the needs of ISO/ICAO stan-
dards, where an evaluation benchmark was introduced [17].

The work of [3, 4] also motivated the need to design and develop more
sophisticated approaches for facial image restoration. Such approaches are not only
limited to image denoising but where digital image inpainting can also be used as
an additional tool that better deals with local structures, such as watermarks. Digital
image inpainting was first introduced by Bertalmio et al. [18], where a nonlinear
third-order partial differential equation (PDE) was used to fill in the selected region
of interest (ROI). The results of this work spearheaded an interest in geometric
interpolation and inpainting problems that include variational PDE methods [19,
20], fluid dynamics inpainting [21], landmark-based inpainting [22], inpainting by
vector fields [23], and inpainting by corresponding maps [24]. Until now, inpainting
and interpolation were mainly focused in the pixel domain; however, it was the
work of Chan et al. [25], who extended this practice to the wavelet domain. With
this knowledge of wavelet interpolation, Bourlai et al. [26] extended the works of
[3, 4] to perform TV minimization in the wavelet domain and targeted wavelet
coefficients associated with various security markings. By coupling this mini-
mization with the general denoising algorithm [3, 4], the proposed restoration
scheme showed much promise in the improvement of overall image quality as well
as rank-1 identification accuracy.

10.1.3 Our Motivation and Contribution

Our motivation for this chapter comes from the works of [3, 4, 26] that there is a
need to develop a process that performs document to live facial matching, while

Fig. 10.2 Overview of the methodology used when passport mug shots are used to test the system
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also removing local structures, such as traces of various security watermarks, left
after generic image restoration methods are employed. Prior methodologies showed
either improvement in performance in terms of rank-1 identification accuracy or
visual and quantitative improvements in image quality, but not both in all images
used. In the works of [3] and [4], the technique of using TB denoising as a
preprocessing scheme, prior to performing facial matching, showed improvement in
performance. However, traces of the security watermark were still left on the image.
Conversely, the work of [26] demonstrated that the technique of applying a com-
bination of TV wavelet inpainting coupled with TB denoising showed improvement
in image quality while removing traces of diverse security markings. However,
improvements needed to be made in terms of increasing identification performance.

As a result, our contributions in this chapter include further investigation into the
effects of the following restoration strategies: (1) threshold-based (TB) denoising,
(2) TV wavelet inpainting, (3) exemplar-based (EB) inpainting, and (4) the com-
bination of either of the TV or EB inpainting methods, coupled with TB denoising.
Here, we investigate the effects of each restoration strategies by examining the
improvement in image quality when using the university image quality
(UIQ) metric [27]. Next, we explore the effects in identification accuracy when both
LBP and LTP texture-based operators, combined with different distant metric
techniques, as well as a state-of-the-art face matcher (G8) are used. For this part, we
look at the effects of both the preprocessing strategies and the manual mask
annotation of the ROI containing the security watermark. Because both TV wavelet
and EB inpainting methods depend heavily on mask annotation, there is also a need
to explore the impact of mask annotation on facial matching performance. Hence,
we are providing an additional layer of analysis to the previous works.

The outline of the proposed work begins with Sect. 10.2 describing the base
restorative building blocks of TB denoising, TV wavelet inpainting, and EB
inpainting. Next, Sect. 10.3 describes our experimental evaluations where we
investigate the improvement in image quality and identification performance. Here,
we also explore the impact of mask annotation to rank-1 identification rate. Finally,
Sect. 10.4 discusses our conclusions and presents avenues for further exploration.

10.2 Restorative Building Blocks

This section provides the theoretical framework of the fundamental restorative
building blocks used that include TB denoising, TV wavelet inpainting, and EB
inpainting. Understanding these key building blocks provides the reader an ana-
lytical foundation of each independent strategy. Additionally, this understanding
also helps compliment the experimental testing and observations of each of the key
building blocks and their combination described in the following section.

10 Document to Live Facial Identification 229



10.2.1 Threshold-Based (TB) Denoising

TB denoising is the first building block that was incorporated into the restoration
strategy to remove the noisy effects of various security markings. This generalized
approach is done by considering the following major steps [4, 26]:

1. Compute the Discrete Wavelet Transform—First, the discrete wavelet transform
(DWT) of the image is needed to convert the noisy image to the wavelet
domain.

2. Apply Thresholding Estimator—Next, the thresholding estimator is needed to
suppress the extraneous artifacts that correspond to the security watermark.

3. Compute the Inverse Discrete Wavelet Transform—Finally, the inverse discrete
wavelet transform (IDWT) is used to reconstruct the resulting thresholded image.

In order for Step 2 to be the most effective, the thresholding estimator and value
need to be selected in order to depict the overall denoising effectiveness. There are
different estimators based on the threshold value calibration methods such as hard,
soft, or semi-soft thresholding. These settings are chosen based on the level of
noisiness of the image where, for example, if an image is severely noisy then hard
thresholding is chosen. Conversely, for images that have medium or rare levels of
noisy behavior, semi-soft or soft thresholding levels are chosen, respectively. Each
estimator removes unnecessary coefficients via the following equation:

ĥ ¼
X

h;wmh ij j[T

h;wmh iwm ¼
X
m

Xq
T h;wmh ið Þwm; ð10:1Þ

where h is the noisy observation, ψm the mother wavelet function, m = (i, j)
represents the scaling and translation, respectively, of the wavelet basis function,
q the thresholding type, and T the threshold value. Given a chosen wavelet basis
function ψm, Eq. (10.1) filters out the coefficients beyond the set threshold value
T via the thresholding estimator Xq

T . In terms of the input parameter x, the
thresholding estimator Xq

T is defined as:

XH
T ðxÞ ¼

x; for xj j[ T
0; for xj j � T ;

�
ð10:2Þ

XS
T xð Þ ¼ sgnðxÞ � ð x� Tj jÞ; for xj j[ T

0; for xj j � T

�
ð10:3Þ

and

XSS
T ðxÞ ¼

0; for xj j � T
x; for xj j[ lT
sgnðxÞ � x�Tj j

l�1 ; otherwise;

8<
: ð10:4Þ
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where µ > 1 and the superscripts H, S, and SS denote hard, soft, and semi-soft
thresholding, respectively. The advantage of applying TB nonlinear denoising is
that it is independent regardless of the type and condition of the acquired document.

It is important to note that image denoising using traditional (or decimated)
orthogonal wavelets may exhibit visual artifacts due to the lack of translation
invariance of the wavelet basis. Additionally, artifacts due to Gibbs phenomenon
may occur in the neighborhood of discontinuities. To suppress such artifacts, we
“average out” the translation dependence through “cycle spinning” defined by the
following equation [16]:

HTIðhÞ ¼ 1
Uj j �

X
s2U

H(hs)�s; ð10:5Þ

where for 8τ 2 Φ, ΘTI(h) = ΘTI(hτ)−τ. Here, Φ is a lattice of ℝ2 for a
two-dimensional image. This is called cycle spinning denoising. Equation (10.5)
says that if there exists N-sample data, then pixel precision translation invariance is
achieved by having N wavelet translation transforms (vectors) or |Φ| = N. This
results in O(N2) operations. Therefore, similar to cycle spinning denoising,
thresholding-based translation invariant denoising can be defined as:

HTIðhÞ ¼ 1
Uj j �

X
m;s2U

Xq
T h; wmð Þs
� �� �ðwmÞs ð10:6Þ

The advantage of employing translational invariant wavelets is that using them
improves the signal-to-noise ratio (SNR). Additionally, incorporating the averaging
process, defined by Eq. (10.5), significantly reduces the oscillating artifacts [4].
Furthermore, we note that additional SNR improvement can be achieved by
properly selecting the threshold estimator T.

10.2.2 Total Variation Wavelet Inpainting

Although TB denoising provides an approach that is both autonomous and adjus-
table, a key limitation is that traces of the security markings are still left in the
image. To overcome these drawbacks, TV wavelet inpainting in conjunction with
TB denoising was introduced [26]. The theoretical premise of TV wavelet
inpainting is to first consider the following standard image model within the image
domain Ω

vðxÞ ¼ uðxÞþ nðxÞ; ð10:7Þ

where u(x) represents the image not containing the watermark, n(x) represents the
watermark itself, and v(x) represents the passport image. Next, let v(α, x) and u(β, x)
be the wavelet transforms given by
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vða; xÞ ¼
X
j;k

aj;k wj;kðxÞ; j 2 Z; k 2 Z
2 ð10:8Þ

and

uðb; xÞ ¼
X
j;k

bj;k wj;kðxÞ; j 2 Z; k 2 Z
2 ð10:9Þ

where α = (αj,k) are the stored wavelet coefficients in the image v and β = (βj,k) are
the stored wavelet coefficients in the image u. Here, β are the desired coefficients
and α are the damaged coefficients where the goal was to recover as many desired
coefficients while repairing the damaged coefficients. Considering the fact that
additional noisy behavior can exist within the image, the following TV model is
proposed [25]:

min
bj;k

Fðu; vÞ ¼
Z
X

rxuðb; xÞj jdxþ
X
j;k

kj;k bj;k � aj;k
� �2 ð10:10Þ

subject to the constraint

bj;k ¼ aj;k; ðj; kÞ 2 I; ð10:11Þ

where I represents the ROI to be inpainted. Noting Eq. (10.10), the operator rx

represents the spatial gradient (x 2 ℝ2) and the parameter λj,k is a positive constant
such that λj,k = 0 in the inpainted region I; otherwise, it equals some positive
constant to be chosen (λ > 0). Minimizing Eq. (10.10) with respect to β = βj,k
achieves the following result

@F
@b

¼ �
Z
X

r � ru
ruj j

� �
wj;kdxþ 2kj;kðb� aj;kÞ; ð10:12Þ

where

r � ru
ruj j

� �
ð10:13Þ

represents the curvature formula for the level lines of u. Taking into account the
variational form, given by (10.12), TV wavelet inpainting provides a sophisticated
process that accounts for variegated security markings; however, residual noisy
effects are still eminent. Therefore, TB denoising is still considered to remove the
extraneous noise improving both image quality and recognition performance.
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10.2.3 Exemplar-Based Inpainting

We also investigated the effects of EB inpainting [28] as a potential preprocessing
scheme. The effectiveness of this method stems from the computation of patch
priorities within the watermarked region Ω of the image I in the pixel space. Given
a patch ψp centered at the point p 2 ∂Ω where ∂Ω represents the boundary of the
ROI, the patch priority P(p) is defined as the product between the confidence term
C(p) and the data term D(p) given by [28]

PðpÞ ¼ CðpÞDðpÞ ð10:14Þ

where C(p) and D(p) are given by

CðpÞ ¼
P

q2wp\ð1�XÞ CðqÞ
wp

		 		 and D(p) =
rI?p � np
			 			

a
� ð10:15Þ

It is important to note that at point p in Eq. (10.15) wp

		 		 is the area of the patch, α
is the normalization factor, rI?p is the isophote representing both the direction and
the intensity, and np is the normal vector to the boundary ∂Ω. By computing D(p),
the behavior of the isophotes within the targeted region I − Ω is considered. Also,
the measure of the reliable information surrounding the point p, defined by C(p), is
also estimated. From the patch priorities, texture and structure information is
propagated by first finding the patch with the highest priority. Next, the source
exemplar of the image is found by directly sampling the source region ψq, that is
most similar to the patch region wp̂, given by the following equation

wq̂ ¼ arg min
wq2ð1�XÞ

d wp̂;wq


 �
; ð10:16Þ

where d wp̂;wq


 �
is the distance measure between the two patches wp̂ and wq. After

computing the source exemplar, the value of each pixel to-be-filled is copied from
the corresponding position within the estimated source region wq̂.
Equations (10.14)–(10.16) pose an iterative process that interpolates the missing
information within the security watermarked region.

10.3 Experimental Evaluation

Next, we describe several evaluation procedures and methods to assess improve-
ment in both image quality and recognition performance. Our experimental eval-
uations were performed on the WVU Identity Document Database, which is
composed of 130 subjects, taken from various documents internationally. The types
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of documents composed in this dataset consist of passports, driving licenses, and
state identifications from within the USA as well as various international regions
such as the Middle East and European Union. In preparation for empirical testing,
we, first, manually annotate the ROI corresponding to the security watermark. Next,
we perform the preprocessing schemes where the baseline restorative building
blocks, described in Sect. 10.2, are applied. Furthermore, we apply advanced
preprocessing schemes, where the combinations of TB denoising are independently
coupled with TV wavelet inpainting and EB inpainting (Fig. 10.3).

Each baseline and advanced preprocessing scheme is tested in terms of (1) im-
provement in image quality and (2) improvement in recognition performance.
Understanding the improvement in image quality, via the universal image quality
(UIQ) metric [27], is important because we are able to evaluate and determine
which preprocessing schemes are most robust. Next, investigating the improvement
in recognition performance is needed to show which restoration method improves
identification accuracy. The usage of academic algorithms, such as LBP and LTP
texture-based approaches, is proven to be beneficial because we are able to show a
baseline performance, while a commercial (state-of-the-art) algorithm is also used
to show performance improvement or not when employing our different image
restorations approaches. Concurrently, we also explore the impact that mask
selection (in terms of pixel width) has on identification performance. This is due to
the fact that the aforementioned preprocessing schemes are heavily dependent on
the level of mask annotation.

Fig. 10.3 Sample images used from the WVU identity document database: a ground truth gallery
images, b original document images, c manually annotated passport masks in red, and d the
resulting masks marking the regions of interest (ROI)
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10.3.1 Evaluating Image Quality

Assessing improvement in image quality is performed using the UIQ metric, where
we compare the outputs of both restored image x and the ideal counterpart y gov-
erned by the following equation [27]:

UIQ ¼ rxy
rxry

� 2�x�y
�x2 þ�y2

� 2rxry
r2xr

2
y
; ð10:17Þ

where �x and r2x are the sample mean and variance of the restored image, �y and r2y of
the ideal counterpart, and σxy is the covariance between the two. Using the UIQ
metric, in this case, evaluates the improvement in restoration from three main
perspectives: loss of correlation, luminance distortion, and contrast distortion.
Considering these factors together, UIQ 2 [0, 1] such that as UIQ → 1 the restored
image reaches maximum improvement. Figure 10.4 shows this trend where, for all
130 subjects, we see the comparisons between the previously mentioned restoration
strategies. Overall, we see that using inpainting coupled with TB denoising shows a
consistent trend as far as improvement in image quality—regardless of the type of
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Fig. 10.4 An illustration of
the evaluation of the
improvement in image quality
where the UIQ metric is used
to evaluate the restoration
performance using a TV
wavelet and b EB inpainting
where each inpainting method
was also coupled with
threshold-based
(TB) denoising. Here, we
notice that in both cases, the
inpainting/denoising
combination is the most
effective regardless of the
inpainting method that was
employed
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inpainting method used. In other words, we observe that using TV wavelet
inpainting or EB inpainting in the inpainting/denoising combination shows almost
an identical trend in performance when evaluations are made on the entire dataset.
From this assessment, intuitively we should expect that when investigating rank-1
identification accuracy, there would be a similar trend in behavior.

10.3.2 Evaluating Texture-Based Approaches

To show how the applied restoration schemes fair in terms of improvements in
identification, we first used academic texture-based approaches to provide a base-
line performance. Here, we used LBP and LTP. The LBP image patterns are
computed by thresholding 3 × 3 neighborhoods based on the value of the center
pixel. Next, the resulting binary pattern is transformed to a decimal value where the
local neighborhood is defined as a set of sampling points evenly spaced in a circle.
The LBP operator used in our experiments is described as LBPu

2

P;R, where P refers to
the number of sampling points placed on a circle with radius R. The symbol u2

represents the uniform pattern, which accounts for the most frequently occurring
pattern. The binary pattern for pixels that lie in a circle fp, P = 0, 1,… P − 1 with the
center pixel fc, is computed as

fn ¼ 1; if fp � fc � 0
0; if fp � fc\0:

�
ð10:18Þ

From (10.18), a binomial weight of 2P is assigned to each sign S(fp − fc) to compute
the respective LBP code given by

LBPP;R ¼
XP�1

p¼0

S fp � fc
� �

2P: ð10:19Þ

The advantage of using LBP operators is that they are invariant to monotonic
gray level transformations; however, one disadvantage is due to the noise sensitivity
because thresholding is done by considering the center of the pixel region. Hence,
LTP are introduced where the quantization is performed as follows:

f ðnÞ ¼
1; if fp � fc � t
0; if fp � fc

		 		� t
�1; if fp � fc � � t:

8<
: ð10:20Þ

The resulting output is a 3-valued pattern, as opposed to a binary pattern.
Furthermore, the threshold t can be adjusted to produce different patterns. The
user-specific threshold also makes the LTP code more resistant to noise.
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10.3.2.1 Distance Metrics

After the texture-based feature patterns are computed, two different distance metrics
are used to obtain the final match score, namely the distance transform (DT) and the
chi-squared (χ2). The DT (defined as the distance or similarity metric from image
X to image Y) is given by

DTðX; YÞ ¼
X
Yði;jÞ

w d
KYði;jÞ
x ði; jÞ


 �
; ð10:21Þ

where KY(i,j) is the code value of pixel (i, j) of image Y and w is a user controlled
penalty function. Additionally, the chi-squared distance is given by

v2ðn;mÞ ¼ 1
2

Xl

i

hnðkÞ � hmðkÞ
hnðkÞþ hmðkÞ ð10:22Þ

where hn and hm are the two histogram feature vectors, l is the length of the feature
vector and n and m are two sample vectors extracted from an image of the gallery
and probe sets, respectively.

10.3.3 Assessing the Effects of Mask Dilation

The observations of the previous works [26] show that the preprocessing
methodology depends heavily on mask annotation. Therefore, there is a need to
explore and evaluate the impact of the mask generation in the context of FR. For
this aspect, the masks for each subject are demarcated to 1 pixel width and dilated
to create different mask widths of 2, 4, 6, 8, and 10 pixel widths, respectively. Next,
the image is interpolated using different preprocessing schemes. First, we focus on
exploring the effects of TV wavelet inpainting and EB inpainting. Texture-based
approaches are applied to show recognition performance because it is observed that
the ideal mask width may be distinctive for each documented image. For this part,
we compare the recognition performance considering original and best images.
Here, the original image is the raw passport image and the best image represents the
restored image that corresponds to the optimum local mask dilation that is deter-
mined from the maximum UIQ metric. It is important to note that the mask dilation
that produces the best image is not universal. For example, a best image could
correspond to a mask dilation of 2 pixels and another could correspond to a mask
dilation of 6 pixels. Applying these methods of comparison helps us to observe the
correlations between the improvement in image quality, optimum mask dilation,
and recognition performance.
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Comparing Figs. 10.5 and 10.6, we observe that applying TV wavelet inpainting
shows more sensitivity in terms of mask generation than EB inpainting in terms of
improvement in rank-1 accuracy. This is regardless of the texture-based approach
that was applied. For example, observing Fig. 10.5a, we see a deviation of
approximately 15 % in terms of rank-1 performance when LBP with the χ2 distance
metric is used. However, from Fig. 10.6a, we see a much closer deviation in
performance regardless of mask dilation when the same texture-based academic
scheme is used for images that were preprocessed via EB inpainting. Although
applying the DT metric showed an improvement in rank-1 performance of
approximately 20 % when compared to the χ2 metric, we still see similarity in
behavior in terms of the impact that mask width has on identification performance.
Furthermore, we note that the recognition rates that correspond to the best images
are near the highest in terms of identification accuracy.
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Fig. 10.5 Identification results that solely use TV wavelet inpainting as the preprocessing scheme
while comparing various mask widths (in pixels) to the original and best images. Here, academic
texture-based approaches (LBP, LTP) are used with different distance metrics of χ2 (a, c) and DT
(b, d). In both cases, we notice the sensitivity in this method when different mask dilations are
chosen
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10.3.4 Assessing the Effects of Threshold-Based Nonlinear
Denoising

It has been previously noted that for documented facial images, there exist addi-
tional artifacts that affect the noisy behavior of the image, which can result from
either document- or device-related factors [3, 4]. Furthermore, applying TB
denoising has shown to minimize this additional noisy behavior [26]. Therefore,
care must be made to investigate the effects of coupling TB denoising with either
inpainting method, while considering the effects of mask dilation mentioned in the
previous section. We do this by first constructing two different types of training
sets, where each set is denoised incrementally, varying the denoising level within
the range of σ 2 [2, 30]. Next, at each increment, the LTP-DT score is computed
between the inpainted/denoised image and the ideal image and stored. It is
important to note that, for each training set, the mean denoising level r associated
with the minimum LTP-DT score is also considered. This sample mean is used to
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Fig. 10.6 Identification results that solely use EB inpainting as the preprocessing scheme while
comparing various mask widths (in pixels) to the original and best images. Here, academic
texture-based approaches (LBP, LTP) are used with different distance metrics of χ2 (a, c) and DT
(b, d). Here, we notice a much closer deviation in performance regardless of the mask dilation
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denoise all of the respective documented facial images associated with the partic-
ular mask width.

Examining Figs. 10.7 and 10.8, we see that TB denoising showed dramatic
improvement in rank-1 accuracy. This result was expected due to previous obser-
vations, i.e., when TV wavelet inpainting was applied [26]. However, closer
inspection into the results shows the trade-offs between using TV wavelet
inpainting, EB inpainting, and mask dilation. Examining Fig. 10.7, we note that the
coupling of TV wavelet inpainting with TB denoising showed less sensitivity in
terms of mask annotation. In other words, we observe that improvement in per-
formance is independent of mask annotation when TV wavelet inpainting is used.
However, from Fig. 10.8, we note that there is more sensitivity in terms of mask
selection when EB denoising is applied. Interestingly, we note that this variability is
dependent on the distance metric applied. For example, comparing Fig. 10.8a, b, we
observe that when changing in the distance metric from χ2 to DT, there is less
sensitivity in terms of mask annotation.
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Fig. 10.7 Identification results for document images that used TV wavelet inpainting coupled
with TB denoising while comparing various mask dilations where LBP (a, b) and LTP (c, d) are
used while considering χ2 and DT distance metrics. These comparisons were made while also
considering original and best images
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10.3.5 Performance Assessment Using a Commercial
Matcher

We conduct our investigations on the effects of either inpainting method from the
perspective of a commercial matcher where our evaluation studies are conducted
using G8.3 The purpose here is to determine whether TV wavelet inpainting or EB
inpainting provides better preprocessing for improved recognition performance.
Applying these techniques solely (i.e., without coupling TB denoising) provides a
baseline understanding from a commercial point of view. From Fig. 10.9, we note
the similarity in performance when either approach is applied. This is further shown
in Table 10.1 where we see a slight improvement in the performance of approxi-
mately 5 % between the two methods. Furthermore, we note that this deviation
becomes minimum as the rank order increases. These observations show that solely
using either inpainting method is sufficient for improved performance.
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Fig. 10.8 Identification results for document images that used EB inpainting coupled with TB
denoising while considering various mask dilations where LBP (a, b) and LTP (c, d) are used
while considering χ2 and DT distance metrics. These comparisons were made while also
considering original and best images

3This algorithm was provided by L1 www.l1id.com.
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10.4 Conclusions and Future Work

In this chapter, we investigated the concept of document to live facial identification,
where different restoration strategies were applied to improve both image quality
and identification performance. From an image quality standpoint, we observed that
the coupling effects of TB denoising with either inpainting method (i.e., TV wavelet
inpainting or EB inpainting) showed similar improvements in image quality
according to the UIQ metric. From a FR standpoint, we noticed several sensitivities
and trade-offs that are dependent on the preprocessing method, mask dilation, and
the texture-based method used. Depending on the combination of the texture-based
method (LBP or LTP) with the distance metric (χ2 or DT), we note that there are
various sensitivities in terms of mask dilation when either TV wavelet inpainting or
EB inpainting is used. However, these sensitivities are neutralized when coupled
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Fig. 10.9 CMC curves illustrating commercial performance comparisons between TV wavelet
and EB restoration strategies. G8. a G8 with TV inpainting, b G8 with EB inpainting

Table 10.1 Top five ranks and which width mask generated the scores for both inpainting
algorithms

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Mask width

TV inpainting

Original 0.274 0.328 0.366 0.382 0.405 –

Inpainted 0.492 0.592 0.638 0.661 0.680 10

Inpainted/denoised 0.592 0.631 0.685 0.731 0.746 6

G8 inpainted 0.832 0.862 0.886 0.916 0.916 6

EB inpainting

Original 0.274 0.328 0.366 0.382 0.405 –

Inpainted 0.308 0.346 0.400 0.407 0.416 6

Inpainted/denoised 0.585 0.638 0.685 0.746 0.770 Best

G8 inpainted 0.779 0.863 0.885 0.901 0.901 1

Results are generated from the LTP-DTS texture-based approach as well as the commercial
algorithm
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with TB denoising. We speculate that this reduction in sensitivities is due to the
cycle spinning behavior when TB denoising is applied. As a result, we conclude
that the inpainting–denoising combination is a prudent strategy because inpainting
mitigates the traces of various security watermarks, while TB denoising mitigates
extraneous noisy artifacts. Furthermore, in terms of commercial performance, we
noticed that solely relying on TV wavelet or EB inpainting is effective in achieving
overall improvement in identification performance. Here, we hypothesize that
because commercial algorithms, such as G8, already have a proprietary prepro-
cessing scheme, incorporating either TV wavelet or EB inpainting methods are
sufficient in improving rank-1 identification.

It is noted that applying TB denoising potentially discards important textural
information from the facial image [4]. Therefore, a future direction in this area
includes investigating the use of super-resolution algorithms that learn a priori the
spatial distribution of the image gradient for frontal images of faces [29].
Additionally, we note that the current approach is also heavily dependent on manual
mask annotation. This is limiting because, as Fig. 10.5 suggests, mask annotation
produces additional sensitivities in terms of facial identification, where we might
not completely obtain the most optimum performance. Therefore, another area of
exploration would be to improve the mask selection, either automatically or
semi-automatically, that optimizes both facial image quality and identification.
Another area of exploration would be further investigation into the effects of pre-
processing schemes from the standpoint of commercial algorithms. Doing so
affords us the opportunity to better understand commercial preprocessing and
matching capabilities. Finally, an area that merits further investigation is to extend
these capabilities to improve image quality and face matching using very
low-quality images, where examples include images in closed-circuit televisions
(CCTVs) and surveillance videos.
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Chapter 11
Face Recognition in Challenging
Environments: An Experimental
and Reproducible Research Survey

Manuel Günther, Laurent El Shafey and Sébastien Marcel

Abstract One important type of biometric authentication is face recognition, a
research area of high popularity with a wide spectrum of approaches that have been
proposed in the last few decades. The majority of existing approaches are conceived
for or evaluated on constrained still images. However, more recently research
interests have shifted toward unconstrained “in-the-wild” still images and videos.
To some extent, current state-of-the-art systems are able to cope with variability due
to pose, illumination, expression, and size, which represent the challenges in
unconstrained face recognition. To date, only few attempts have addressed the
problem of face recognition in mobile environment, where high degradation is
present during both data acquisition and transmission. This book chapter deals with
face recognition in mobile and other challenging environments, where both still
images and video sequences are examined. We provide an experimental study of
one commercial off-the-shelf (COTS) and four recent open-source face recognition
algorithms, including color-based linear discriminant analysis (LDA), local Gabor
binary pattern histogram sequences (LGBPHSs), Gabor grid graphs, and interses-
sion variability (ISV) modeling. Experiments are performed on several freely
available challenging still image and video face databases, including one mobile
database, always following the evaluation protocols that are attached to the data-
bases. Finally, we supply an easily extensible open-source toolbox to rerun all the
experiments, which includes the modeling techniques, the evaluation protocols, and
the metrics used in the experiments and provides a detailed description on how to
regenerate the results.
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11.1 Introduction

After the first automatic face recognition algorithms [1, 2] appeared more than three
decades ago, this area has attracted many researchers and there has been a huge
progress in this field. One of the reasons of its popularity is the broad field of
applications of (automatic) face recognition. Due to the availability of mobile
camera sensors included into devices such as digital cameras, mobile phones, or
laptops, new applications of face recognition appeared recently. One such appli-
cation is the automatic unlocking of the mobile device, when the user is present in
front of the camera or screen. Other applications include the recognition of faces in
images in order to aid the user categorizing or memorizing people. The particularity
of these applications is that imaging conditions are usually uncontrolled and people
in the images or videos have different facial expressions and face poses and are
possibly partially occluded. In this book chapter, we investigate several face
recognition algorithms regarding their capability to deal with these kinds of
conditions.

Commonly, the face recognition task is composed of several stages. The first
stage is face detection, in which location and scale of the face(s) in the image are
estimated [3, 4] and the image is geometrically regularized to a fixed image reso-
lution. The regularized face images are then subjected to a photometric enhance-
ment step, which mainly reduces the effects of illumination conditions [5, 6]. Then,
image features that contain the relevant information needed for face recognition are
extracted [7–9]. Features of some of the images are used to enroll a person-specific
template, while the features of the remaining images are used for probing. Based on
these extracted features, different face recognition algorithms have been developed
during the last decades. They can be classified into two major categories: In the
discriminative approach, to which most algorithms belong [8, 10–12], it is classified
whether template and probe belong to the same identity or not. The generative
approach [13, 14] computes the probability that a given person could have pro-
duced the probe sample.

To evaluate face recognition algorithms, several publicly accessible databases of
facial images and videos exist. One important mobile database is MOBIO [15],
which contains voice, image, and video recordings from mobile phones and laptops.
Other unconstrained state-of-the-art face databases are the Labeled Faces in the
Wild (LFW) database [16] and the YouTube Faces database [17]. The impact of
specific facial appearances such as facial expression, face pose, and partial occlu-
sion is investigated based on the Multi-PIE [18] and the small AR face [19]
databases. To ensure a fair comparison of face recognition algorithms, image
databases are accompanied with evaluation protocols, in which all of our experi-
ments follow strictly.

Along with this book chapter, we provide the source code1 not only for the
algorithms, but also for the complete experiments from the raw images or videos to

1http://pypi.python.org/pypi/xfacereclib.book.FRaES2016.
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the final evaluation, including the figures and tables that can be found in this
chapter. Most of the algorithms use Bob [20], a free signal processing and machine
learning toolbox for researchers.2 Some algorithms are taken from the CSU Face
Recognition Resources,3 which provide the baseline algorithms for the Good, the
Bad & the Ugly (GBU) face recognition challenge [21, 22]. Finally, all experiments
are executed using the FaceRecLib [23],4 which offers an easy interface to run face
recognition experiments either using already implemented face recognition algo-
rithms, or rapidly prototyping novel ideas.

The remaining of this chapter is structured as follows: In Sect. 11.2, we give an
overview of related work on face recognition in challenging environments, and a
brief survey of reproducible research in biometrics. Section 11.3 describes the
databases, the methodology, and the results of our face recognition experiments.
Finally, Sects. 11.4 and 11.5 close the paper with a detailed discussion of the tested
face recognition algorithms and a conclusion.

11.2 Related Work

11.2.1 Reproducible Research in Biometrics

Biometrics research is an interdisciplinary field that combines expertise from sev-
eral research areas. Examples of these scattered disciplines are as follows: image
preprocessing and feature extraction that are from the field of signal and image
processing; machine learning, which is required for subspace projections or data
modeling; or pattern recognition and distance computations as part of the infor-
mation theory. Additionally, to make results comparable, a proper implementation
of the required evaluation protocols of biometric databases needs to be provided.
This makes biometrics research a particularly difficult case, especially when com-
parable results should be provided. Hence, often biometric algorithms are tested
only on a few of the available databases. Also, the results of other researchers
cannot be reproduced since they do not publish all of the meta-parameters of their
algorithms. Therefore, survey papers like [24–28] can only report the results of
other researchers, so “it is really difficult to declare a winner algorithm” [24] since
“different papers may use different parts of the database for their experiments” [28].

One way of providing comparable results is to apply the concept of reproducible
research.5 A reproducible research paper is comprised of several aspects [29],
which makes it possible and easy to exactly reproduce experiments:

2http://www.idiap.ch/software/bob.
3http://www.cs.colostate.edu/facerec/algorithms/baselines2011.php.
4http://pypi.python.org/pypi/facereclib.
5http://www.reproducibleresearch.net.
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• a research publication that describes the work in all relevant details,
• the source code to reproduce all results,
• the data required to reproduce the results, and
• instructions how to apply the code on the data to replicate the results on the

paper.

One reason for providing reproducible research, besides making the lives of
other researchers easier, is the visibility of the resulting scientific publications. As
[30] showed, the average number of citations for papers that provide source code in
the transactions on image processing (TIP) is seven times higher than of papers that
do not.

There have been attempts to foment reproducibility of research results in the
biometric community with the release of public software [20, 23, 31, 32] and
datasets [15, 16, 33, 34]. Various biometric communities organize open challenges
[35, 36], for which Web-based solutions for data access and result posting are
particularly attractive [37]. Some dataset providers also publish an aggregation of
the results of different algorithms on their Web pages.6 However, cases where those
components are used in a concerted effort to produce a reproducible publication
remain rare.

Particularly, two groups of researchers currently try to push forward the repro-
ducibility of biometric recognition experiments. On one hand, OpenBR [32] is an
open-source C++ library of algorithms to perform biometric recognition experi-
ments. Unfortunately, this library only has a limited set of algorithms and biometric
databases, which it can evaluate. On the other hand, the FaceRecLib [23] is an
easy-to-use and easy-to-extend Python library that can be used to run complete face
recognition experiments on various face image and video databases. Several
reproducible research papers based on the FaceRecLib have already been pub-
lished,7 using the Python Package Index (PyPI) as a source code distribution portal.
All results of the experiments that are reported in this book chapter rely on the
FaceRecLib.

Further research on solutions for achieving, distributing, and comparing results
of biometric experiments in the reproducible research framework is carried out.
Currently being under development, the Biometrics Evaluation And Testing
(BEAT) platform8 introduces a biometry agnostic system for programming algo-
rithms, workflows, running complete evaluations, and comparing to other
researcher’s results only using a Web browser.

6For example, the results on LFW [16] are published under: http://vis-www.cs.umass.edu/lfw/
results.html.
7One example for reproducible research based on the FaceRecLib can be found under: http://pypi.
python.org/pypi/xfacereclib.paper.BeFIT2012.
8http://www.beat-eu.org/platform.
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11.2.2 Face Recognition in Challenging Environments

For several decades, research on face recognition in controlled environments has
been fostered due to its high impact on practical applications such as automatic
access or border control, where subjects cooperate with the system. In a study in
2007, it has been shown that automatic face recognition systems in controlled
environments can surpass human performance [38], when identities in the images
are not previously known to the participants [39].

After having satisfactorily solved face recognition in controlled environments,
research interests shifted toward unconstrained environments, where subjects do not
cooperate with the face recognition system. Three main directions of applications
have arisen as follows: identifying persons in uncontrolled high-quality images to
tag private photographs with identities using application such as Picasa or iPhoto;
identifying suspects in low-resolution surveillance camera videos; and verifying
owners of mobile devices or cars to avoid thefts. Due to the availability of several
image and video databases [16, 17] for the first application, research was lead
toward this direction. On the other hand, only few databases with surveillance
camera [40] or mobile [15, 41] data are available, so this area of face recognition
research is still underdeveloped.

The latest trend for face recognition in uncontrolled environments is the usage of
deep convolutional neural networks [42, 43]. Those networks are usually propri-
etary software and require a huge amount of training data, which is not publicly
available, and thus, the reproducibility level of these publications is 0 according to
[29]. In [44], Bayesian face recognition [45] is revisited and extended to work with
mixtures of Gaussians for both the intrapersonal and the extra-personal class, using
LBP histogram sequences as features. However, they learned their method using
training data (PubFig) that overlaps with their test images (LFW), making their
experimental results strongly biased. So far, none of these methods is included in
our evaluation, though their future integration into the experimental setup is
foreseen.

The Point-and-Shoot Face Recognition Challenge (PaSC) [46] investigated five
different algorithms on the PaSC dataset [41], which contains unconstrained images
and videos of indoor and outdoor scenes. The authors of the best performing system
[47] claim that their Eigen-PEP approach is naturally robust to pose variations. It
would be nice to be able to include their system into our study, but to date we were
not able to re-implement their algorithm.

In a study, [48] performed a large-scale feature selection to perform uncon-
strained face recognition. They modeled the low-level feature extraction of the
human brain and achieved good results on image pairs with similar pose. However,
they found that image pairs with different identities in comparable face pose most
often are more similar than images with the same identity but different poses.
Hence, those features work well in constrained face recognition, but not well with
unconstrained face image data.
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Previous studies [49] have found that Gabor jet and LBP-based algorithms are
well suited for face recognition in unconstrained environments. Also, color infor-
mation [22] have shown to contain data useful for face recognition. Furthermore,
advanced modeling techniques [50] showed good verification performance on
uncontrolled mobile data. Finally, the fusion [51] of several different approaches for
unconstrained face recognition was able to outperform single systems.

However, so far no reproducible study has been performed that analyzes face
recognition algorithms according to their behavior in the presence of (uncontrolled)
illumination, facial expression, face pose, and partial occlusions. The repro-
ducibility of the present study is guaranteed due to the availability of the data and
the algorithms, as well as the evaluation protocols and methods. Furthermore, a
properly documented script that shows how to regenerate all results is provided.

11.3 Experiments

This section provides an overview of our experimental evaluation. The employed
algorithms are explained, and the evaluated databases are presented, including a
brief description of the databases and evaluation metrics. After optimizing the
configurations of the algorithms, the performance of the algorithms under three
different sets of experiments is evaluated. First, the dependence on the single
variations facial expression, face pose, and partial occlusions is investigated.
Second, the performance in an uncontrolled image database is evaluated, and the
extensibility to video face recognition is tested. Finally, the results of the algorithms
on a mobile image and video database are reported.

11.3.1 Face Recognition Techniques

The face recognition algorithms that we test in our evaluation are recent
open-source approaches to still image face recognition. All algorithms are adapted
to process several images for template enrollment and for probing. Additionally,
several image preprocessing techniques are evaluated.

The implementation of the preprocessing techniques and three of the face
recognition algorithms relies on the open-source toolbox Bob [20], which provides
functionality in a research-friendly Python environment and implements identified
bottlenecks in C++. One algorithm is taken from the CSU Face Recognition
Resources [22], which is completely implemented in Python. To test the advantage
of commercial systems over the open-source approaches, additionally one com-
mercial off-the-shelf (COTS) algorithm is investigated. In our experiments, the
evaluation of video data is performed by subsampling the frames of the videos and
providing the algorithms with several images per video.
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Though we run several of face recognition algorithms, there is a common exe-
cution order to perform a face recognition experiment. Given a raw image or video
from a certain database, the first stage is to detect the face, remove the background
information, and geometrically normalize the face. Throughout our experiments, for
image databases, we use the hand-labeled annotations provided by the databases to
geometrically normalize the face, while for video databases we detect the faces [52]
and eye locations [53] in each used frame. The aligned face image is further
processed using some preprocessing technique, usually to attenuate the effects of
illumination.

In the next step, features are extracted from the preprocessed images. Features
from one or more images of one identity are used to enroll a template of the person,
and several of those templates are used as a gallery. These templates are compared
with probe features of other images or videos, and a similarity score is computed for
each template/probe pair. Since face recognition algorithms are usually bound to a
specific type of features, we present both the feature extraction and the modeling
and comparison techniques together as combined algorithms.

Finally, the scores are evaluated to compute the final performance measure,
using one of the evaluation metrics defined in Sect. 11.3.2.1.

11.3.1.1 Image Preprocessing

Before a preprocessing technique is applied, the image is converted to gray scale
and aligned. This implies that the image is geometrically normalized such that the
left and right eyes are located at specific locations in the aligned image, e.g.,
al = (48, 16)┬ and ar = (15, 16)┬, and the image is cut to a resolution of, e.g.,
64 × 80 pixels. Figure 11.1b shows the result of the alignment of the image shown
in Fig. 11.1a.

To reduce the impact of illumination, we test four different preprocessing
techniques, which are always executed on the aligned image. The first algorithm is
histogram equalization (HEQ) [54]. Second, we investigate the self-quotient image
(SQI) algorithm [55]. Third, we examine the multistage preprocessing technique
(T&T) as presented by Tan and Triggs [6]. Finally, we examine a preprocessing

Fig. 11.1 Image preprocessing techniques. This figure shows the effect of different image
preprocessing techniques on the a original image: b no preprocessing, c histogram equalization,
d self-quotient image, e Tan & Triggs algorithm and f LBP feature extraction
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technique [5] based on local binary patterns (LBPs). Examples of preprocessed
images can be found in Fig. 11.1.

11.3.1.2 Linear Discriminant Analysis on Color Channels

An extension of linear discriminant analysis (LDA) to the two color channels
I-chrominance and the red channel (LDA-IR) has been proposed in [22]. After
a geometric normalization of the face, the raw pixels are concatenated to form
a one-dimensional feature vector. A PCA + LDA transformation matrix, which is a
combination of the principal component analysis (PCA) and LDA projection, is
computed independently for both color channels. Each channel is projected into its
corresponding subspace, and both projected vectors are concatenated to form the
final feature vector.

In the template enrollment step, all enrollment features are simply stored. Since
none of the other algorithms are allowed to use cohort data for score normalization,
we decided to disable9 the cohort normalization usually applied in [22]. This
transforms the distance function between a template and a probe feature into a
simple Euclidean distance. The final score is empirically found to be the minimum
distance value.

LDA-IR is the only examined algorithm that incorporates color information into
the face recognition process. Therefore, it cannot be combined with the prepro-
cessing techniques defined in Sect. 11.3.1.1. Hence, image alignment and feature
extraction rely on the original implementation of the LDA-IR algorithm.

11.3.1.3 Gabor Grid Graphs

The idea of the Graphs algorithm relies on a Gabor wavelet transform [56, 57]. The
preprocessed image is transformed using a family of j = 1,…, 40 complex-valued
Gabor wavelets, which is divided into the common set of 8 orientations and 5 scales
[56]. The result of the Gabor transform are 40 complex-valued image planes in the
resolution of the preprocessed image. Commonly, each complex-valued plane is
represented by absolute values and phases. The transform process for a single
Gabor wavelet is visualized in Fig. 11.2.

From these complex planes, grid graphs of Gabor jets are extracted. A Gabor jet
is a local texture feature, which is generated by concatenating the responses of all
Gabor wavelets at a certain offset-position in the image. As shown by [58], it is
beneficial to normalize the absolute values in a Gabor jet to unit Euclidean length.

In our implementation, the bunch graph [56] concept is used for template
enrollment. For each node position, the Gabor jets from all enrollment graphs are

9To avoid misunderstandings, we do not use the name CohortLDA as in [22], but we stick to the
old name of the algorithm (LDA-IR).
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stored. For the comparison of template and probe, we investigate several local and
global scoring strategies. Each strategy relies on a comparison of Gabor jets, which
employs one of several Gabor jet similarity function [8, 56, 58]. In the optimal
strategy (see Sect. 11.3.3), an average of the local maximum of similarities is
computed, using a similarity function partially based on Gabor phases [8].

11.3.1.4 Local Gabor Binary Pattern Histogram Sequences

In the local Gabor binary pattern histogram sequences (LGBPHSs) [59], three
different approaches of face recognition are combined. First, the preprocessed image
is Gabor wavelet transformed [56], which leads to 40 complex-valued representa-
tions of the images. Then, LBPs [60] are extracted from the absolute and the phase
part [59]. An LBP is generated by comparing the gray value of a pixel with the gray
values of its neighbors, resulting in a binary representation with discrete values
between 0 and 255. The extraction process of LBPs from Gabor wavelet responses
is illustrated in Fig. 11.3. Different LBP variants such as circular or uniform pat-
terns [61] are evaluated.

Fig. 11.2 Gabor wavelet transform. This figure displays the b real part, c absolute values, and
d Gabor phases of the convolution of the image from Fig. 11.1b with the a Gabor wavelet

1 2 3

8 X 4

7 6 5

X

(a)

LBP Codes Circular LBP
LBP on absolute 
values

LBP on phases

(b)
(c) (d)

Fig. 11.3 Local Gabor binary patterns. This figure displays the generation process of a LBP codes
and b the circular LBPu2

8;2 operator. Additionally, the results of the LBPu2
8;2 operator on c the

absolute Gabor wavelet responses and d the Gabor phases (as given in Fig. 11.2c, d) are shown
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In order to obtain local features, these image planes are split into possibly
overlapping image blocks [62]. As each bit of the LBP code is similarly important,
these codes cannot be compared with a simple distance function. Instead, LBP
codes are collected in histograms, one for each block and each Gabor wavelet.
Concatenating all these histograms into one histogram sequence ends up in a huge
feature vector, which is called the extended local Gabor binary pattern histogram
sequence (ELGBPHS) [59].

To enroll a template from several images, we decided to compute the average
over histogram sequences (which result in non-integral numbers in the histograms).
Finally, template and probe features can be compared using dedicated histogram
similarity measures such as histogram intersection, the χ2 distance, or the
Kullback-Leibler divergence.

11.3.1.5 Intersession Variability Modeling

An alternative to previously detailed discriminative approaches to automatic face
recognition is to describe the face of a person by a generative model. The idea is to
extract local features from the image of a subject’s face before modeling the dis-
tribution of these features with a Gaussian mixture model (GMM) [7, 63], instead of
concatenating them as usually done in discriminative approaches.

Parts-based features [7] are extracted by decomposing preprocessed images into
overlapping blocks. A 2D discrete cosine transform (DCT) is applied to each block
before extracting the lowest frequency DCT coefficients. These coefficients are used
to build the descriptor of a given block, after applying proper pre- and
post-processing of each block [13]. This feature extraction process is detailed in
Fig. 11.4.

The distribution of the features for a given identity are modeled by a GMM with
several multivariate Gaussian components [64]. To overcome the issue of limited
enrollment data, first a universal background model (UBM) is estimated as a prior
[64], which is later adapted to the enrollment samples of a person using a maximum a

Fig. 11.4 Dct feature extraction. This figure shows the computation of parts-based features by
decomposing an image into a set of blocks and extracting DCT features from each block

256 M. Günther et al.



posteriori (MAP) estimation [65]. It has been shown that such an approach offers
descent performance with a reasonable complexity [66].

In the context of a GMM-based system, intersession variability (ISV) modeling
[67] is a technique that has been successfully employed for face recognition [50,
68]. In ISV, it is assumed that within-person variation is contained in a linear
subspace and by adding a corresponding offset to the GMM means describing each
sample. A template is enrolled by suppressing those session-dependent components
from the feature vectors and yielding the true session-independent person-specific
template GMM.

To compare the template GMM with probe features, a twofold similarity mea-
sure is applied. First, the session-dependent offset is estimated for the probe sample.
Since the session offset is estimated at both enrollment and probing time, it sig-
nificantly reduces the impact of within-person variation. Second, the log-likelihood
ratio score is computed by comparing the probe features both to the template GMM
as well as to the UBM. A more detailed description of this algorithm can be found
in [67, 50].

11.3.1.6 Commercial Off-the-Shelf Algorithm

We obtained a commercial off-the-shelf (COTS) face recognition system10 with a
C++ interface for algorithms used in several steps in the face recognition tool chain.
Obviously, no detailed information of the employed algorithms is known. We wrote
a Python interface for a small subset of this functionality that allowed us to run the
COTS algorithms in the FaceRecLib. Particularly, we implemented bindings for
functions to extract features, to enroll a template from several features, and to
compute scores given one template and one probe feature.

Although the C++ interface of COTS provides functionality for face and eye
landmark detection, we rely on the same data as in the other experiments as detailed
below. Particularly, we use hand-labeled eye locations in the image experiments,
and our face detection and landmark localization algorithm in the video experi-
ments. The first reason is that we want to assure that all algorithms see exactly the
same data, and secondly, some of the faces in the MOBIO database are not found
correctly by the COTS face detection algorithm.

11.3.2 Databases and Evaluation Protocols

To guarantee a fair comparison of algorithms, it is required that all algorithms are
provided with the same image data for training and enrollment, and the same pairs
of template and probe data are evaluated. This is achieved by defining evaluation

10The COTS vendor requested to stay anonymous.
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protocols, which might either be biased, i.e., (partially) having the data of the same
identities in the training and the test set, or unbiased by splitting the identities
between the sets. For all databases used in this book chapter, we provide an
implementation of the protocols, and a more complete list of implemented database
interfaces is given on the Bob Web page.11

11.3.2.1 Evaluation Metrics

The evaluation protocols of all databases used in our evaluation define a verification
scenario. Several evaluation measures exist, which are all built on top of the false
acceptance rate (FAR) and the false rejection rate (FRR). To compute these rates,
the scores are split into genuine scores sgen, which result from comparing template
and probe from the same person, and impostor scores simp, where template and
probe of different identities are compared [69]. FAR and FRR are defined over a
certain threshold θ:

FAR hð Þ ¼ simp
��simp � h

� ��� ��
simp

� ��� �� FRR hð Þ ¼ sgen
��sgen\h

� ��� ��
sgen

� ��� �� ð11:1Þ

In most of the evaluated protocols, the data are split into three sets: a training set,
a development set, and an evaluation set. Scores and FAR/FRR are computed for
both the development and the evaluation set independently. Then, a threshold θ∗ is
obtained based on the intersection point of FAR and FRR curves of the develop-
ment set. This threshold is used to compute the equal error rate (EER) on the
development set and the half total error rate (HTER) on the evaluation set:

EER ¼ FARdev h�ð Þþ FRRdev h�ð Þ
2

HTER =
FAReval h

�ð Þþ FRReval h
�ð Þ

2
ð11:2Þ

There are two databases, for which a different evaluation protocol is provided,
i.e., LFW and YouTube (see Sect. 11.3.2.2). In the protocol, pairs of images or
videos are specified, for which a score should be computed. In our case, we always
choose the first image or video of the pair for template enrollment and the second as
probe. In both databases, the subjects are split into 10 different subsets, so-called
folds. In each fold, 300 (LFW) or 250 (YouTube) genuine pairs and the same
amount of impostor pairs exist. For each fold, the classification success (CS) is
computed:

CS ¼ sgen
��sgen � h�

� ��� ��þ simp

��simp\h�
� ��� ��

sgen
� ��� ��þ simp

� ��� �� ð11:3Þ

11http://github.com/idiap/bob/wiki/Packages.
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We use our own implementation this 10fold protocol, which provides an addi-
tional development set, from which the threshold θ* in Eq. (11.3) is estimated. For
each of the 10 experiments, 7 folds are used for training, the development set is
built from 2 folds, and the last fold is employed to compute the CS. Finally, as
required by [16], the mean and the standard deviation of the CSs over all 10
experiments are reported. For the LFW database, we chose the unrestricted con-
figuration [16] since the identity information is required by some algorithms, which
is forbidden to be used in the image-restricted training set. However, none of our
algorithms is provided with additional external training data.

11.3.2.2 Databases

This section specifies the image and video databases including their evaluation
protocols, which are used in our experiments. An overview of the databases and
protocols is given in Table 11.1.

The CMU Multi-PIE database [18] consists of 755,370 images shot in 4 different
sessions from 337 subjects. We generated and published several unbiased face
verification protocols, all of which are split up into a training, a development, and
an evaluation set. The training set is composed of 208 individuals, while the size of
development set (64 identities) and evaluation set (65 identities) is almost equal. In
each protocol, a single image per person with neutral facial expression, neutral
illumination, and frontal pose are selected for template enrollment. The probe sets
contain images with either non-frontal illumination (protocol U), facial expressions
(protocol E), or face poses (protocol P).

XM2VTS [33] is a comparably small database of 295 subjects. We use only the
darkened protocol in our image preprocessing experiments, which includes
non-frontally illuminated images. The particularity of the darkened protocol is
that the training and development set consists of well-illuminated images, while the
evaluation set consists of non-frontally illuminated ones. The enrollment of a
template is performed with 3 images per person, whereas 4 probe files per identity
are used to compute the scores. The training set consists of exactly the same images
as used for template enrollment [33], making the protocol biased.

The AR face database [19] contains 3312 images12 from 76 male and 60 female
identities taken in two sessions. Facial images in this database include three vari-
ations: facial expressions, strong controlled illumination, and occlusions with
sunglasses and scarfs. We have created and published several unbiased verification
protocols for this database, splitting up the identities into 50 training subjects (28
men and 22 women) and each 43 persons (24 male and 19 female) in the devel-
opment and evaluation set. For template enrollment, we use those two images per
identity that have neutral illumination, neutral expression, and no occlusion.

12The website http://www2.ece.ohio-state.edu/˜aleix/ARdatabase.html re-ports more than 4000
images, but we could not reach the controller of the database to clarify the difference.
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The protocols such as occlusion, illumination, and both test the
specific image variations that are defined in the database, i.e., probe images have
either partially occluded faces, non-frontal illumination, or both occlusion and
illumination. The training set for the illumination protocol is comprised of
images with illumination variations only, whereas in the training sets for oc-
clusion and both, occluded faces, are additionally included.

Originally, in BANCA [70], video and audio recordings of 52 persons were
captured for each 4 different languages, where the participants were asked to utter
prompted sequences. Recordings were taken in 12 different sessions. In each ses-
sion, every subject generated two videos, one true genuine access, and one
informed impostor access. From each of these videos, 5 images and one audio
signal were extracted. However, only the English language was made available
[70], together with several unbiased open set verification protocols. We here take
only the most challenging protocol P, in which templates are enrolled from 5
controlled images, while the system is probed with controlled, degraded, and
adverse images. Two particularities of this database are that it is small, e.g., the
training set consists of only 300 images, and that the number of 2340 genuine and
3120 impostor scores is balanced.

One of the most popular image databases is the LFW database [16]. It contains
13,233 face images from 5749 celebrities, which were downloaded from the
Internet and labeled with the name of the celebrity. In most images, faces in
close-to-frontal poses with good illumination are shown, and some examples are
given in Fig. 11.8a. In fact, there is an ongoing discussion if the LFW dataset is
fully representative for unconstrained face recognition [48]. In this work, we use the
images aligned by the funneling algorithm [71]. The database owners do not pro-
vide the eye locations for the images, but we rely on publicly available13 auto-
matically extracted annotations [72].

The MOBIO database [15] consists of video data of 150 people taken with
mobile devices such as mobile phones or laptops, and we here use only the mobile
phone data. For each person, 12 sessions were recorded. The faces visible in these
recordings differ in facial expression, pose, illumination conditions, and sometimes
parts of the face are not captured by the device. Along with the MOBIO database,
two gender-specific unbiased evaluation protocols female and male are pro-
vided, where exclusively female or male images are compared. In these protocols, 5
recordings per identity are used to enroll a template, and all probe files are tested
against all templates of the same gender. The training set consists of 9600
recordings from 13 females and 37 males. In our experiments, we solely perform
gender-independent training. The development set contains 18 female and 24 male
identities, which are probed with 1890 or 2520 recordings, respectively. The
evaluation set embraces 20 female and 38 male identities, using 2100 or 3990 probe
files, respectively. For the MOBIO image database, one image was extracted from

13http://lear.inrialpes.fr/people/guillaumin/data.php.
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each video recording by choosing a single frame after approximately one second of
video run time, and the eye centers were labeled by hand.

The YouTube Faces database [17] contains a collection of 3425 videos of 1595
celebrities collected from the YouTube video portal, showing faces in several poses
and with good illumination. The length of a video sequence varies between around
50–6000 frames. Although the YouTube database is accompanied by bounding
boxes that were detected for each frame in each of the videos, and by pre-cropped
frames that were aligned with the help of detected facial landmarks [17], we rely on
our own face detector and landmark localization algorithm to align faces in all
(used) frames.

11.3.3 Configuration Optimization

Any face recognition algorithm has several intrinsic meta-parameters, which we
refer to as the algorithm configuration. Examples of such parameters are the
number, resolution, and overlap of blocks in the LGBPHS and the ISV algorithms,
or the Gabor jet similarity metric used in the Graphs algorithm. To be as fair as
possible, we optimize the configurations of all of the algorithms taken from Bob
[20] independently. We do not optimize the configuration of LDA-IR since the
configuration has been optimized already—though to another database—and
defining new color transformations is out of the scope of this work.

We chose the BANCA database with protocol P to perform the optimization
experiments since the database is small, but still quite challenging and focused on
semi-frontal facial images as they occur in unconstrained or mobile databases.
According to the designated use of the evaluation protocol, we optimize the
algorithm configurations using the development set of BANCA. It should be noted
that the goal of this study is to provide a replicable evaluation of a range of
state-of-the-art face recognition algorithms for research to build upon. It is not the
goal of this study to demonstrate the superiority of a single best face recognition
algorithm.

One important aspect of face recognition is the resolution of the facial image and
its content. Interestingly, there are only few publications, e.g., [9, 49, 58] that pay
attention to this aspect, but rather every researcher uses his or her own image
resolution. Hence, the first set of experiments that we conduct is to find out, which
image resolution is best suited for face recognition. We execute all algorithms with
configurations that we have set according to the literature. We selected several
different image resolutions, ranging from height 20–200 pixels, always keeping an
aspect ratio of 4:5 and the eye locations at the same relative coordinates. Also,
configuration parameters that are sensitive to the image resolution are adapted
accordingly. Note that we do not include LDA-IR in the image resolution evalu-
ation since changing the parametrization of this algorithm in its original imple-
mentation is highly complex.
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The resulting EER on protocol P of the BANCA development set is given in
Fig. 11.5a. Interestingly, the results of most of the algorithms are very stable for any
image resolution that is at least 32 × 40 pixels, which corresponds to an inter-eye
distance of 16 pixels. Only for resolutions smaller than that, results degrade. ISV and
Graphs require resolutions that are a bit higher, but also these algorithms settle around
100 pixels image height. Since there is not much difference between the resolutions
greater than 32 × 40 pixels, we choose to stick at the resolution 64 × 80 as used in
many of our previous publications [14, 23, 68, 73] for the rest of our experiments.

One severe issue in automatic face recognition is uncontrolled or strong illu-
mination. Several image preprocessing techniques that should reduce the impact of
illumination in face recognition have been proposed (see Sect. 11.3.1.1).
Unfortunately, in the literature, there is no comprehensive analysis of image pre-
processing techniques for face recognition, but each researcher uses a single pre-
ferred technique, if any.

To evaluate the preprocessing techniques, we execute them on three databases
with challenging controlled illumination conditions: the XM2VTS database (pro-
tocol darkened), the Multi-PIE database (protocol U), and the AR face database
(protocol illumination). Finally, we test the techniques on a database with
uncontrolled illumination, for which we again select BANCA (protocol P).

(a) (b)

(c) (d)

Fig. 11.5 Configuration optimization. This figure displays the results of image resolution and the
preprocessing tests of the configuration optimization steps for the algorithms. a Resolution, b
Preprocessing: Graphs, c Preprocessing: LGBPHS, d Preprocessing: ISV
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The results of the preprocessing test can be observed in Fig. 11.5b–d. Apparently,
the preferred preprocessing technique differs between face recognition algorithms.
However, there is an overall trend for the LBP-based and the Tan & Triggs pre-
processing techniques, while HEQ and SQI do not perform as well and, obviously,
neither executing no preprocessing technique at all.

For each of the algorithms, we chose the best performing preprocessing tech-
nique for our following experiments, which is Tan & Triggs for LGBPHS and ISV,
and the LBP-based preprocessing for Graphs.

After finding a suitable image resolution and the optimal image preprocessing
technique for each algorithm, we optimize their configurations independently. Due
to the partially large number of configuration parameters to be optimized, we
performed optimization in several steps. Each step groups together configuration
parameters that might influence each other. Due to a limited space in this book
chapter, the detailed description of each of the steps can be found only in the source
code package, including a detailed description of the configuration parameters. In
the subsequent experiments, we run all algorithms with the configurations opti-
mized to the BANCA database.

11.3.4 Face Variations

In this section, we test the optimized face recognition algorithms against several
variations that influence recognition. We now also integrate the LDA-IR and the
COTS algorithms into our experiments.

One aspect of automatic face recognition in mobile environments is the partial
occlusion of faces. Two prominent occlusions are scarfs covering the lower part of
faces in winter and sunglasses as they are worn during summer. Example images of
these occlusions can be found in Fig. 11.6a. One database that provides images with
exactly these two types of occlusions is the AR face database, i.e., in the protocols
occlusion and both. Figure 11.6b contains the results of the occlusion
experiments. As a baseline for this database, we selected the protocol illumi-
nation,14 on which all algorithms perform nicely. We only observed slight
problems of LDAIR, either with strong illumination or with occluded faces in the
training set. When occlusions come into play, the Gabor wavelet-based algorithms
and the COTS suffer a severe drop in performance, while ISV results remain stable
and LDA-IR results seem to be less affected by occlusion than by illumination.
Having a closer look by separating between the two occlusion types (cf. Fig. 11.6c),
scarfs and sunglasses seem to have different impacts. While people wearing a scarf
that covers approximately half of the face can still reasonably well be recognized,
sunglasses completely break down the Graphs and LGBPHS systems. Interestingly,

14To be comparable to the occlusion and both protocols, the same training set, i.e., including
occluded faces, was also used in the illumination protocol.
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the COTS results show exactly the opposite behavior, whereas ISV and LDA-IR
can handle both types of occlusions similarly well. In [74], it was found that the eye
region contains most discriminative information. Our results approve these findings
for some face recognition algorithms, but we clearly show that they cannot be
generalized to all of them.

Another aspect that an automatic face recognition system must deal with is facial
expression. To test the algorithms against various facial expressions, we selected
the protocol E of the Multi-PIE database, which includes images with strongly
pronounced expressions (see Fig. 11.7a). The results of the experiments are shown
in Fig. 11.7c. Interestingly, it can be observed that facial expressions are not
handled satisfactorily by most algorithms. While neutral faces are recognized quite
well by all algorithms, other expressions influence most of the algorithms severely.
One exception is ISV, which seems to be stable against mild facial expressions and
is still very good in the presence of extreme expressions such as surprise and
disgust. Facial expressions are also handled well by LDA-IR, and it is able to
outperform ISV on screaming faces. Again, variations in the mouth region (as in the
scream expression) perturb COTS more than variations in the eyes region.

Note that these two aspects of face recognition were tested in [75], where it was
shown that faces with facial expressions or occlusions (in the accessories
protocol of [75]) were more difficult to identify by all the algorithms they tested.
However, we are not aware of any scientific publication, where a detailed analysis
of types of facial expressions or occlusions was performed.

(a)

(b) (c)

Fig. 11.6 Partial occlusions. This figure shows examples of illumination and occlusion, and the
effect of partial occlusions of the face on the different face recognition algorithms. a Examples
images of AR face: template, illumination, occlusion, both, b effect of illumination and occlusion,
c effect of different occlusion types
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To test how the algorithms perform on non-frontal images, we execute them on
protocol P of the Multi-PIE database. Similar to all other protocols, we evaluate in
this paper, the template enrollment is done using frontal images, while now probe
images are taken from left profile to right profile in steps of 15° (e.g., see
Fig. 11.7b). The hand-labeled eye positions are used for the image alignment step,
as long as both eyes are visible in the image, i.e., for images with a rotation less or
equal to ±45°. In the profile and near-profile cases, images are aligned according to
the eye and mouth positions. In Fig. 11.7d, verification performance is plotted for
each of the tested poses independently, though the algorithms are trained using
images from all poses together. It can be observed that close-to-frontal poses up to
±15° can be handled by most algorithms, and the performance order of the algo-
rithms is similar to what we obtained before. For rotations greater than ±45°, the
verification performance of the algorithms that do not make use of the training data,
i.e., LGBPHS and Graphs, is around chance level. The algorithms that can handle
rotations between ±30° and ±60° better are ISV, LDA-IR, and COTS. Anyways,
none of the tested algorithms can be used to identify profile faces, i.e., with rota-
tions larger than ±60°. Unfortunately, we could run LDA-IR and COTS experi-
ments only on near-frontal faces since we could not provide the eye and mouth
positions, which are required for profile image alignment, to the LDA-IR or COTS
algorithms. For the same reason, the results of LDA-IR in Fig. 11.7d are advan-
tageously biased because the training set does not contain any profile images, i.e.,
with a rotation greater than ±45°.

(a)

(b)

(c) (d)

Fig. 11.7 Facial expressions and poses. This figure shows the examples and the effect of facial
expressions and face poses on the different face recognition algorithms. a Examples of facial
expressions: neutral, smile, surprise, squint, disgust, scream, b examples of face poses from left to
right profile, c facial expressions, d face poses
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11.3.5 Unconstrained Image and Video Databases

Now, we evaluate the face recognition algorithms on more challenging uncon-
strained facial image and video database, i.e., LFW and YouTube, using the 10fold
evaluation protocols proposed by both databases. Each fold is evaluated separately,
which includes a separate training for ISV and LDA-IR for each fold, and a separate
decision threshold (cf. Sect. 11.3.2.1) which is computed for the development set
that we have defined for each fold.

Figure 11.8b displays the average classification rates as well as the standard
deviations over the 10 different folds of the LFW protocol [16]. Of the tested
algorithms, the commercial COTS system was able to outperform all open-source
algorithms by a relatively high margin. With 74.7 % classification success, ISV is
the best performing open-source algorithm on this database, followed by LDA-IR.
Also, Graphs and LGBPHS perform almost as well, though they do not make use of
the training data. However, none of the algorithms is able to reach the best per-
formance [76] reported on the LFW Web site, which is given in the last column of
Fig. 11.8b. Reasons are that our algorithms are not adapted to LFW, no external
training data is used, no algorithm fusion is applied, we use a tight crop of the face
(cf. [77]), and finally our decision threshold is computed on an independent
development set for each fold, which makes our results completely unbiased, but
which is not enforced by the LFW protocol.

One way to improve face recognition algorithms is to exploit video information
as soon as it is available. To see whether selecting more frames improves verifi-
cation, we choose 1, 3, 10, and 20 frames from the videos of the YouTube faces
database and feed them to our face recognition systems, which are tuned to work
with several images for template enrollment and for probing. These frames are

(a)

(b) (c)

Fig. 11.8 LFW And Youtube. This figure shows the average classification success and the
standard deviation over the 10 folds for the experiments on the LFW and YouTube databases. a
Examples of LFW, b LFW, c YouTube
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taken such that they are distributed equally over the whole video sequence, and no
further frame selection strategy is applied. Since there are no hand-labeled eye
annotations available, we perform a face detection based on boosted LBP features
[52] and a landmark localization algorithm [53] to detect the eye landmarks
automatically.

Figure 11.8c shows the results of the experiments for the five evaluated algo-
rithms. Apparently, increasing the number of frames also increases the recognition
accuracy, though results settle after approximately 10 frames per video. Since the
YouTube database contains several non-frontal face video recordings, and COTS
has shown to be quite stable against those variations, it comes with no surprise that
COTS performed best in our experiments. Of the tested open-source systems, once
more ISV is able to outperform the other three, but only slightly. Particularly,
LDA-IR is able to compete. The most drastic improvement was gained by Graphs
(+8.3 %), where a strategy to incorporate several frames based on a local maximum
is used, ISV (+9 %), where the probability of the joint distributions of features from
several frames are modeled, and COTS (+8.7 %), which seems to provide a proper
enrollment strategy. With the simple averaging strategy of LGBPHS (+4.8 %), we
are not able to exploit many frames that well, and the maximum score strategy of
LDA-IR (+7.6 %) lies in-between.

For the YouTube database, we also provide the best performing systems from
[17] and [47], both of which exploit all frames of all videos. The first is taken using
the matched background similarity (MBGS), where samples from a cohort set are
exploited and the computation of a discriminative classifier is required for each
template and for each probe video. The second reported algorithm uses the prob-
abilistic elastic part (PEP) algorithm, which is claimed to be robust against pose by
modeling a GMM on SIFT features, reducing the dimensionality of the features
using PCA and using a Bayesian classifier [78] for scoring. Though none of our
algorithms can reach these baselines, we need to point out that: First, we do not
include any cohort information into the classification process. Second, we exploit
only up to 20 frames, not the whole video. Third, the image cropping used in the
recognition experiments in [17] included more information (such as hair, head-
dresses, or clothes), which has been shown to be able to help recognizing people
[79], whereas our face cropping solely focuses on the inner facial area. Fourth, the
Eigen-PEP algorithm is directly developed to solve video-to-video face recognition,
whereas our algorithms were mainly developed for still image comparison. Finally,
the configuration parameters for MBGS and Eigen-PEP were optimized for the
YouTube database, while our algorithms were used with a configuration that was
not adapted to YouTube.

11.3.6 Mobile Image and Video Database

The mobile database that we use in our experiments is the MOBIO database [15].
Though MOBIO was taken with handheld mobile devices, the faces are usually in
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high resolution, mostly in a close-to-frontal pose, and degradation caused by motion
blur is limited. However, illumination conditions in the videos are very diverse, and
due to the fact that identities were talking during the recordings, a variety of facial
expressions is embedded in the frames. For the readers to get a picture of the
variability of the MOBIO database, some of the images of one identity are shown in
Fig. 11.9a.

As before, we choose 1, 3, 10, and 20 frames from the video sequences to see the
impact on the face recognition algorithms. For each frame, the face is detected and
the eye positions are localized automatically. Figure 11.9 shows the HTER com-
puted on the evaluation set of the MOBIO database for both protocols female and
male. As before, the COTS results outperform all other algorithms on both pro-
tocols, followed by ISV, Graphs, and LGBPHS. The LDA-IR results on female
are the worst, while for male LDA-IR ranges third. Apparently, incorporating the
information from several frames improves the recognition accuracy, drastically for
Graphs, LGBPHS, and LDA-IR, and moderately for ISV and COTS. Keeping in
mind that each template is enrolled from 5 recordings, ISV and COTS already
perform well using a single frame per video, while the other three algorithms gain
more by exploiting several frames. All in all, when using 20 frames per video, in
total features from 100 frames are incorporated in one enrolled template.

From Fig. 11.9, it can be observed that females are more difficult to verify than
males, particularly for ISV and LDA-IR. This finding complies with other face
verification experiments performed on this database [13, 35]. This might be due to
the fact that the MOBIO training set (as well as the development and evaluation sets)
has a bias toward males. While for Graphs, which does not depend on the training
set, similar results for both males and females are generated, both ISV and LDA-IR
follow the bias of the database and perform better on males than on females.

(a)

(b) (c)

Fig. 11.9 MOBIO. This figure displays examples of images in the MOBIO database and the
results of the experiments for the two protocols female and male, with varying numbers of
frames of the videos, and using the hand-labeled images. a Examples of MOBIO images, b
female, c male
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As the MOBIO database also provides images with hand-labeled eye coordi-
nates, we can directly compare the impact of properly located eye positions against
an off-the-shelf face detector [52] and landmark localization algorithm [53]. The
results of the hand-labeled images from the MOBIO database are given in the last
columns of each plot in Fig. 11.9. Apparently, using hand-labeled eye positions
rather than automatically detected faces works best for all algorithms. Even when
exploiting 20 frames of a video, the results cannot reach the verification accuracy of
a single hand-labeled image per video, except for Graphs, LGBPHS, and COTS on
the female protocol. There are several possible reasons for this. First, some faces
in the MOBIO database are not completely contained in the image, and thus, the
face detector usually returns a bounding box that is smaller than the actual face.
Sometimes, due to strong illumination conditions, no face is found at all, and the
extracted region contains image background. Second, the landmark localization
might not be perfect, which is known to drop recognition accuracy [80]. And third,
the hand-labeled images were selected such that the faces are mostly frontal with a
neutral expression, while no such selection is done in the video frames.

11.4 Discussion

11.4.1 Algorithm Complexity

After executing all these experiments and showing the verification performances of
the algorithms under several conditions and for various image and video databases,
we want to discuss other properties of the algorithms.

11.4.1.1 Algorithm Execution Time

To be usable in real-world applications, the algorithms should be able to run in a
reasonable amount of time. The execution times of all tested algorithms were
measured in a test run on the protocol P of the BANCA database. Particularly, the
training for the feature extraction, the computation of the projection matrix and the
training of the enrollment are executed using 300 training files, while feature
extraction and projection are performed on 6020 images. During enrollment, 52
templates are generated, each using the features of 5 images. Finally, 5460 scores
are computed in the scoring step. In any case, we do not take into account the time
for accessing the data on hard disk, but we only measure the real execution time of
the algorithms. Hence, the actual processing time might increase due to hard disk or
network latencies.

In Table 11.2a, it can be observed that the execution time of the algorithms
differs substantially. For the simple color-based algorithm LDA-IR, which is based
on a pure Python implementation, the training of the projection matrix finished after
a couple of seconds, while the feature projection takes most of the time, here around
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4 min. Enrollment is almost instantaneous since it just needs to store all features,
and the scoring is also very fast. The extraction of Gabor graphs takes a little bit
more time, while the enrollment of the templates is, again, instantaneous. The
scoring is longer since computing the similarity measure requires a higher com-
putational effort. The LGBPHS feature extraction needs a huge amount of time as
the features themselves are huge, and hence, we chose a compressed format to store
the histograms. This decreases the size of the LGBPHS feature vector (though
Table 11.2b shows that LGBPHS features still are longest), but complicates the
feature extraction and the template enrollment, and also the scoring time is affected.
The longest training and projection time are needed by ISV. During training, the
distribution of the mixture of Gaussians and the linear subspace of the ISV algo-
rithm are estimated—both procedures rely on computationally intensive iterative
processes. Furthermore, the long projection time can be explained by its com-
plexity, where sufficient statistics of the samples given the GMM are first com-
puted, before being used to estimate session offsets. Finally, the scoring time is
comparably short since most of the time-consuming estimations are cached in the
projection and enrollment steps.

11.4.1.2 Memory Requirements

Table 11.2b displays the memory requirements of the objects produced during the
execution of the algorithms. Except for LDA-IR and COTS, all elements are stored
in double precision, i.e., with 8 bytes for each number. Depending on the com-
plexity of the algorithms, the size of the features and templates differ slightly. In any

Table 11.2 Time and memory properties

Algorithm Graphs LGBPHS ISV LDA-IR COTS

(a) Execution time

Training – – 1.8 h 6.8 s –

Extraction 2.0 m 4.1 h 4.6 m – 23.5 m

Projection – – 3.5 h 4.3 m –

Enrollment 4.5 s 1.8 m 38.6 s 0.9 s 1.4 s

Scoring 39.4 s 25.5 s 7.5 s 6.1 s 11.5 s

Total 2.7 m 4.2 h 5.5 h 4.6 m 23.7 m

(b) Memory requirements

Model – – 29 MB 6.6 MB –

Feature 160 kB ≈3 MB 1.4 MB 3.9 kB 4.5 kB

Projected – – 800 kB – –

Template 800 kB ≈9 MB 300 kB 12 kB 22.5 kB

This table gives an overview of the execution time that specific parts of the algorithms need and
the size of the produced elements on hard disk. The times are measured on a 3.4 GHz Intel i7
processor with 16 GB of RAM, executing experiments on both development and evaluation set of
the BANCA database
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case, the trained model needs to be stored to be able to use these technologies in a
real-word application, which might be problematic, e.g., on mobile devices with
limited memory.

The lowest memory consumption is achieved by the LDA-IR algorithm, except
that it needs to load the trained model once. Please note that these values are
estimates since the format, which is stored, is unknown.15 The size of the features
and templates of COTS is clearly optimized, and a binary format is used to store
them. However, there is no detailed information about the trained model of COTS.
The size of the Gabor graphs is also relatively small, though the enrolled templates
enlarges since all 5 feature vectors are stored. For LGBPHS, the feature and tem-
plate sizes are much higher. Please note that the sizes of the LGBPHS feature
vectors and enrolled templates differ slightly because we use a compressed format
to store the histograms. Still, feature vectors and templates of this size make it
difficult to use this algorithm in a real-world application, at least with the config-
uration that we optimized in Sect. 11.3.3. Finally, the size of the ISV projection
matrix and the projected features are comparably high, while the enrolled template
is relatively small. This is an advantage over having large templates since in a face
recognition application, usually many templates are stored, but only few probe
images need to be processed at a time.

11.4.2 About This Evaluation

Of course, an evaluative survey of face recognition algorithms as we provide in this
book chapter cannot cover the full range of all recently developed face recognition
algorithms including all their variations, and we might have omitted some aspects
of face recognition. We know that this book chapter does not answer the question:
What is the best face recognition algorithm? Nonetheless, we hope to provide some
insights about advantages and drawbacks of the algorithms that we tested and also
some hints, which algorithms are well suited under different circumstances.

11.4.2.1 What We Missed

Though we could not test all the state-of-the-art face recognition algorithms, we
tried to find a good compromise, which algorithms to test and which to leave out,
and we are sorry if we do not evaluate the algorithm of your choice. Also, we
executed algorithms only like they are reported in the literature. Theoretically, we
could have tried ISV modeling of Gabor jets, LGBPHS features on color image,
etc., and the range of possible tests is unlimited.

15We just use the pickle module of Python to store the LDA-IR data. Table 11.2(b) shows the
resulting file size on disk.
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One aspect of biometric recognition is score normalization using an image
cohort. For example, ZT-norm [81] has been shown lately [13] to be very effective
and able to improve face verification drastically. Also, the fusion of several algo-
rithms [51] outperforms single algorithms. In this work, we do not perform any
score normalization, and no fusion system is studied.

For the image databases, we used hand-labeled eye locations to align the faces,
particularly during the evaluation of different face variations in Sect. 11.3.4. From
the results of the experiments on the MOBIO database, we assume that fully
automatic face recognition algorithms produce different results, especially as faces
might not be detected correctly in the presence of expressions, occlusions, or
non-frontal pose.

For video face recognition, we used a simple approach to select the frames. We
did not apply any quality measure of the images, e.g., assessing motion blur, focus,
or other quality degradations of videos that present challenges in mobile video face
recognition. Also, no sequence-based approaches [82] were tested, which exploit
different kinds of information from video sequences than simple frames.

We tried to make the comparison of the face recognition systems as fair as
possible. We optimized the configurations of most algorithms to a certain image
database.

Only LDA-IR was optimized to another database [22], and we did not touch
these configurations in our experiments. This biases the algorithms toward different
image variations, but still we think we could show the trends of the algorithms.
Also, the optimization was done in several steps using discrete sets of configuration
parameters. A joint optimization strategy with continuous parameters could have
resulted in a slightly better performance on BANCA.

We intentionally optimized the configurations on one database and kept them
stable during all subsequent tests. Therefore, the results on the other databases are
not optimal. Certainly, the optimization of the configuration parameters to the each
evaluated database would have improved the performance, though it is not clear
how high the gain would have been.

11.4.2.2 What We Achieved

Nevertheless, the contribution of this book chapter is—to our best knowledge—
unique. We perform the first reproducible and extensible evaluative survey of face
recognition algorithms that is completely based on open-source software, freely
available tools and packages, and no additional commercial software needs to be
bought to run the experiments. All experiments can be rerun, and all results (in-
cluding the figures and tables from this book chapter) can be regenerated by other
researchers, simply by invoking a short sequence of commands, which are docu-
mented in the software package.

Utilizing these commands ourselves, we executed several recent open-source
face recognition algorithms, optimized their configurations and tested them on
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various image and video databases. Additionally, we included one commercial
off-the-shelf face recognition algorithm into our investigations. To be able to
reproduce the figures from this paper, we provide the score files obtained with this
algorithm for download.16 Our experiments showed the impact of different image
variations such as illumination, expression, pose, and occlusion on those algo-
rithms, and we reported the performance on the LFW and YouTube databases.
Finally, we showed that running video face recognition in mobile devices need to
be improved by using face detectors and facial feature localizers specialized for
mobile environments.

Since the implementation of the evaluation protocols is time-consuming and
error prone, many researchers rely on results generated on small image databases
using their own protocols, which makes their results incomparable to the results of
other researchers [24, 28]. In the source code that we provide [20, 23], evaluation
protocols for several publicly available image and video databases are already
implemented, and changing the database or the protocol is as easy as changing one
command line parameter. Additionally, the same software package also allows to
prototype new ideas, test combinations of these ideas with existing code, run face
recognition experiments, and evaluate the results of these experiments. Since the
evaluation is always executed identically, results are directly comparable,
throughout.

With this software package, we want to encourage researchers to run face
recognition experiments in a comparable way. Using Python and the PyPI, it is
easily possible for researchers to provide their source code for interested people to
regenerate their results. A nice side effect of publishing source code together with
scientific paper lies in the fact [30] that papers with source code are cited on average
7 times more than papers without. The software package that we distribute with this
book chapter is one example of how to provide source code and reproducible
experiments to other researchers.

11.4.2.3 What We Found

We have tested four recent open-source and one commercial face recognition
algorithms on several image databases and with different image variations. In most
of the tests, we have found that:

1. ISV, the generative approach that models a face as the distribution of facial
features, outperforms the other algorithms, sometimes by far. Unfortunately,
quite a long time for the (offline) training and template enrollment, and also for
the (online) feature extraction is needed by this algorithm.

2. Color information, as used by LDA-IR, can be very helpful, especially when the
texture itself is degraded due to low resolution, difficult facial expressions,

16http://www.idiap.ch/resource/biometric.
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occlusions, or poses. However, uncontrolled or strong illumination seems to
have a strong effect on this algorithm.

3. Image preprocessing plays an important role, and the preferred preprocessing
technique differs for each face recognition algorithm. Sometimes, the best
preprocessing technique even changes from database to database. Interestingly,
algorithms work with many image resolutions—as far as it exceeds a lower limit
of approximately 16 pixels inter-eye distance.

4. Images with strong or uncontrolled illumination conditions are handled better by
algorithms using Gabor wavelets. Furthermore, a proper use of Gabor phases
improves the performance of these algorithms. In this study, we used two
methods that do not include any training. We assume that these methods can be
improved by incorporating knowledge from the training set using machine
learning techniques.

5. None of the algorithms is able to handle non-frontal pose, even if all poses have
been available during training. The direct comparison of features from different
poses seems not to be possible with the discriminative algorithms, and similar
problems have been observed even in the generative approach. Hence, we
believe that the different kinds of methods need to be invented, e.g., [44, 83]
showed promising approaches to the pose problem.

6. When multiple frames are available for template enrollment or probing, the ISV
algorithm, which directly incorporates multiple images, and the Graphs algo-
rithm, which used a local scoring strategy, are able to exploit these data better
than the other algorithms that use only simple scoring strategies such as com-
puting the average histogram or maximum similarity. However, the extension of
image-based face recognition algorithms toward videos is inferior to algorithms
particularly designed for video-to-video face recognition [47].

7. Face detection and facial landmark localization in video sequences play
important roles in video face recognition. Particularly for mobile devices, face
detectors need to be able to stably detect faces that are only partially visible in
the frames.

8. Besides few exceptions, the best results are obtained by the COTS algorithm.
Apparently, the gap between academic research and commercial application of
face recognition algorithms still exists.

11.5 Conclusion

In this book chapter, we presented the first evaluative, reproducible, and extensible
study of four recent open-source and one COTS face recognition algorithms. We
briefly described the employed face recognition algorithms including several image
preprocessing techniques. The implementations for most of the algorithms were
taken from the open-source software library Bob [20], while one algorithm stems
from the Colorado State University toolkit [22].
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The first evaluation that we performed assessed, which image resolution is
required for the different algorithms to run properly. After selecting a proper image
resolution, we evaluated the performance of the algorithms under several different
image preprocessing technique on some image databases with difficult illumination
and selected the most appropriate preprocessing for each face recognition algo-
rithm. Subsequently, we optimized the configurations of most algorithms to the
BANCA database, leaving the already optimized configuration of the CSU algo-
rithm untouched. We tested the algorithm performance with regard to different
image variations such as facial expressions, partial occlusions, and non-frontal
poses. Then, we selected a challenging image and a challenging video database and
ran the algorithms on them. Afterward, we examined the performance of the
algorithms in the MOBIO database, using both the images with hand-labeled eye
positions and the video sequences. Finally, we discussed a number of attributes of
the algorithms that might limit their usability in mobile applications.

A short summary of the evaluation could be that there is not a single algorithm
that works best in all cases and for all applications. Nevertheless, there are some
favorites. Gabor wavelet-based algorithms are well suited in difficult illumination
conditions and were average in the other tests we performed. Still there is room for
improvement of these algorithms since the ones we have tested in this work do not
make use of the training set. The only algorithm in our test that used color infor-
mation, i.e., LDA-IR works very well under several circumstances, especially when
the image conditions are rather poor and algorithms cannot rely on facial features
any more. The generative algorithm ISV performed best in most of the tests, but has
the drawback of a very long execution time and high memory usage and cannot be
used, e.g., in mobile devices with limited capacities and real-time demands. Finally,
the commercial algorithm worked best in most of our evaluations, particularly when
face poses are non-frontal.

One important aspect of this evaluation is that we provide the source code for
each of the experiments, including all image and video database interfaces, all
pre-processing techniques, all feature extractors, all recognition algorithms, and all
evaluation scripts. Therefore, all experiments can be rerun, and all figures can be
recreated by anybody that has access to the raw image data. Additionally, we want
to motivate other researchers to use our source code to run their own face recog-
nition experiments since the software is designed to be easy to handle and easy to
extend and to produce comparable results. We furthermore want to encourage
researchers to publish the source code of their algorithms in order to build a strong
community that can finally answer research questions that are still unsolved.
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Chapter 12
Face Recognition with RGB-D Images
Using Kinect

Gaurav Goswami, Mayank Vatsa and Richa Singh

Abstract Face Recognition is one of the most extensively researched problems in
biometrics, and many techniques have been proposed in the literature. While the
performance of automated algorithms is close to perfect in constrained environ-
ments with controlled illumination, pose, and expression variations, recognition in
unconstrained environments is still difficult. To mitigate the effect of some of these
challenges, researchers have proposed to utilize 3D images which can encode much
more information about the face than 2D images. However, due to sensor cost, 3D
face images are expensive to capture. On the other hand, RGB-D images obtained
using consumer-level devices such as the Kinect, which provide pseudo-depth data
in addition to a visible spectrum color image, have a trade-off between quality and
cost. In this chapter, we discuss existing RGB-D face recognition algorithms and
present a state-of-the-art algorithm based on extracting discriminatory features
using entropy and saliency from RGB-D images. We also present an overview of
available RGB-D face datasets along with experimental results and analysis to
understand the various facets of RGB-D face recognition.

12.1 Introduction

Face recognition with 2D images is a highly challenging problem especially in the
presence of covariates such as pose, illumination, and expression [30]. These
covariates can adversely influence the characteristics of a face image and reduce the
accuracy of recognition algorithms. Research in face recognition has focused on
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developing novel methodologies to overcome these challenges individually or in
combination. A fundamental problem with utilizing 2D color images for face
recognition is that each captured image can only capture limited information about
a face. In contrast, 3D images, captured using a 3D sensor, can capture more
information about a face and preserve higher degree of facial information in
unconstrained conditions compared to a 2D image. Although various 3D face
recognition algorithms have been developed, the high cost of specialized 3D sen-
sors has inhibited en masse deployment of such technologies in practical
applications.

With the recent advancements in sensor technology, low-cost consumer-level
RGB-D sensors have been developed that provide pseudo-3D information.
A typical RGB-D image consists of a 2D color image (RGB) along with a depth
map (D). The RGB image provides texture and appearance of a face, whereas the
depth map provides the distance of each pixel from the sensor. In this manner, the
depth map encodes the geometry of the face with point distances captured in the
form of grayscale values. As illustrated in Fig. 12.1, an RGB-D image captured
using low-cost devices such as the Kinect1 is fundamentally different from a 3D
image captured using range sensors. Kinect is developed by Microsoft for use with
video games as a motion and audio capture device. Its primary purpose is to enable
the users of the device to substitute traditional control mechanisms with gesture and
voice-based controls. However, a Kinect device is also capable of capturing
infrared, depth, video, and audio data. It captures an RGB-D image by means of an
infrared laser projector which is combined with a monochrome CMOS sensor. 3D
sensors, on the other hand, utilize specialized high-quality sensors to obtain
accurate range and texture images. Traditional 3D face recognition approaches
utilize techniques such as principal component analysis (PCA) [47] and linear
discriminant analysis (LDA) [51] to characterize a 3D face model [1]. Some
approaches also utilize facial landmarks identified in a 3D face model to extract
local features [1]. However, 3D face recognition algorithms generally rely on
accurate 3D data points. Since the depth map provided by RGB-D Kinect sensor is

Fig. 12.1 From left to right: traditional 2D color image, depth map captured using Kinect, and
traditional 3D image. Images taken from [5, 17]

1In this chapter, we refer to the Microsoft Kinect sensor as Kinect.
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not as precise as a 3D sensor and contains noise in the form of holes and spikes,
existing 3D face recognition approaches may not be directly applicable to RGB-D
images. While RGB-D images have been used for several computer vision tasks
such as object tracking, face detection, gender recognition, and robot vision, their
use for face recognition is quite limited. In this chapter, we discuss the challenges
and advantages of RGB-D face recognition using Kinect. We also present a
state-of-the-art algorithm for RGB-D face recognition and discuss its methodology
and experimental results on multiple RGB-D databases.

12.2 Literature Review

With the availability of low-cost RGB-D sensors, several research directions,
including object recognition and tracking, have been explored [14, 20, 21, 23, 26,
41]. However, in the face recognition literature, very few algorithms using RGB-D
have been proposed. In this section, we present an overview of some of the existing
algorithms for face recognition using RGB-D images obtained with Kinect.

12.2.1 Discriminant Color Space Transform and Sparse
Coding-Based RGB-D Face Recognition [36]

Li et al. [36] have proposed an RGB-D-based face algorithm, and the steps involved
in their approach are as follows:

Preprocessing: The nose tip location is a landmark which can be reliably detected
from the depth map since its distance to the sensor is the least among all the points
on the face. The rough location of the nose tip is utilized as a reference point, and a
sphere of 8 cm radius is utilized to crop the face in 3D space. In order to obtain a
pose-normalized face model, each face is aligned to a frontal pose by utilizing a
128 × 128 pixel reference face model. This face model is defined by using images
from the publicly available FRGC [40] and UWA [39] datasets. Face images in all
the training and query images are aligned to this reference face model by using six
iterations of the iterative closest point (ICP) algorithm [7]. Depth data is prone to
noise in the form of missing values (holes) and false value fluctuations (spikes). The
symmetry of the human face is exploited in dealing with such values. The pose is
corrected using alignment to the reference face model, and a mirror point cloud is
created. A mirror point is rejected if it is close (below a threshold distance) to a
point in the original point cloud; otherwise, it is merged with the original data. This
step is performed in order to avoid replacing the original data with existing
neighbors by a mirror point. After this symmetric filling, smooth resampling is
performed by fitting a smooth surface to the point cloud. Resampling serves three
purposes: noise removal, filling any remaining holes, and reducing face
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misalignment. As a final preprocessing step, the RGB and depth matrices are
down-sampled from 128 × 128 pixels to 32 × 32 pixels.
DCS Transform: In order to improve the separability of face images, the dis-
criminant color space (DCS) transform is applied on the RGB image [50]. The DCS
transform is similar to LDA, which tries to maximize the intra-class separability by
utilizing linear combinations of the original R, G, and B components and reducing
the inter-component correlation. The obtained DCS texture image has three chan-
nels which are stacked together into an augmented vector in order to convert it to a
feature vector which can be utilized for classification.
Sparse Coding: The sparse representation classier (SRC) is a robust classifier
which has performed well in face recognition [49]. It is also able to handle missing
or error-prone data. It is used to correct the small errors introduced during the
preprocessing steps involved in the algorithm. These errors arise due to the fact that
the human face is not perfectly symmetric and even one half of the face might not
be properly visible in a profile view image. SRC is applied on the preprocessed
depth map and the DCS color texture separately to obtain two similarity scores. The
scores are normalized using the z-score normalization technique [29] and then
combined using sum rule. A recognition decision is made for probe images
depending on the combined similarity score.

12.2.2 Continuous 3D Face Authentication Using RGB-D
Cameras [43]

Using the Kinect sensor, Segundo et al. [43] have proposed a continuous 3D face
authentication system based on histogram of oriented gradient (HOG) [12] features.
The two major steps involved in the algorithm are as follows:

Face Detection and Alignment: Depth map is used to compute a 2D projection of
the face which is able to provide the real face size. The Viola-Jones face detection
algorithm is then applied for face detection in the color image by only considering a
search window size obtained using the projection so that false alarms can be
reduced. Each face image is then aligned using the ICP algorithm to an average face
image obtained using 943 images from the FRGC dataset [40]. Three regions of
interest (ROIs) are extracted from the face image: one centered on the nose region
and the two halves of the face. Based on the pose of each RGB-D image, one of
these three ROIs is selected for feature extraction.
Feature Extraction and Matching: ROI extracted from the face image is resized
to 64 × 64, and HOG features are extracted. L1 norm of the probe and gallery image
feature vectors is used as the distance measure. If the gallery of a subject contains
multiple images, then the median distance is used. This match score is utilized to
perform recognition, and the probe is assigned the label of the subject with the best
match score.
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12.2.3 RGB-D Face Recognition Robust to Head Pose
Changes [10]

Ciaccio et al. [10] have proposed a method which utilizes a single gallery RGB-D
image of a subject to render new face images at different pose angles for pose
invariant recognition. The steps involved in their approach are briefly summarized
below:

Face Detection: The algorithm utilizes both color image and depth map for face
detection, normalization, and cropping. The face itself is detected in the color
domain by using the approach proposed by Zhu and Ramanan [53] based on
tree-structured part models. Noise removal and smoothing of the depth map are
performed by filtering with a median filter followed by a Gaussian filter. The
authors note that while the same approach can also be applied to perform fiducial
point detection to detect nose tip, eye corners, and mouth corners, nose tip location
obtained using the depth map is more accurate. Finally, background subtraction is
performed on the RGB image by identifying background pixels with the help of the
depth map, and precise face coordinates are detected.
Face Rotation: Each RGB-D gallery face image is used to generate a set of faces
with different pose angles. The center of each head is estimated using the nose tip
with an offset of δ = 50 mm. Each head is rotated around the y-axis using a
transformation (Eq. 12.1):
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Here, (x, y, z) denotes a 3D point on the original face surface which is mapped to
the surface of the rotated head at its new location x0; y0; z0ð Þ with yaw angle θ, and
the center of the head is denoted by x0; y0; z0ð Þ. Using a single frontal face image, a
set of faces with rotation angle varying from 0° to 90° in steps of 5° is obtained.
Face Alignment: All the faces are aligned such that the vertical distance between
the eyes and the mouth is constant. Each face is cropped and resized to 60 × 60 for
matching.
Face Representation: A patch size of 10 × 10 is used, and the patches are sampled
with a step size of 5 pixels. The number of patches selected from each query image
depends on the pose of the image. While more patches are selected from a frontal
view face image, fewer patches are selected from profile view faces. The extracted
features are normalized using the number of selected patches in order to account for
this variance. A combination of two different descriptors, LBP [2] and covariance
descriptor [44], is utilized to obtain the face representation. Instead of concatenating
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the two feature vectors, a probabilistic integration provides the final match score
according to Eq. 12.2:

P d1; d2ð Þ ¼ A � exp �d1
k1

� �
� exp �d2

k2

� �
ð12:2Þ

Here, d1 and d2 denote the distances between a query and gallery face based on the
covariance descriptor and the LBP descriptor, respectively. λ1 and λ2 are the
weights for individual distance scores, and A is the normalization constant.

12.2.4 Face Recognition Using Super-Resolved
3D Models [5]

Berretti et al. [5] have recently proposed a super-resolution-based technique to
create a 3D face model using depth data obtained from low-cost Kinect sensor and
utilize this 3D model to perform face recognition. The steps involved in the
algorithm are as follows:

Face Acquisition and Alignment: RGB-D video data is captured from the Kinect
sensor, and the face tracking module of Kinect’s SDK is used to track and detect
faces in all the frames. The first frame of each sequence is used as the reference
frame, and faces from all other frames are registered to this reference frame using the
ICP algorithm. Video data is captured such that the distance between the subject’s
face and the sensor is fixed throughout the video sequence, and there are pose
variations between frames. These pose variations are essential for the algorithm so
that the cumulated data obtained by aligning these frames to the reference can
provide the required data points for the estimation of the super-resolution image.
Super-Resolution: The sequence of low-resolution frames obtained during the first
step is treated as a 3D point cloud. If these points are considered as lying on a
low-resolution grid of size N × N, a high-resolution depth map is considered as
lying on a grid of size M × M where M > N. The resolution gain achieved by the
super-resolution algorithm is M/N. The values of this high-resolution face surface
are obtained by the 2D box spline model [45].
Matching: In order to perform recognition using the super-resolved face models,
SIFT [38] descriptor is used to detect keypoints on the depth image. These key-
points are clustered using a hierarchical clustering method so that only the most
representative keypoint can be selected from each cluster of keypoints. After the
number of keypoints has been reduced using this method, facial curves are created
from the depth map. Each facial curve consists of the depth values along the
simplest path that connects two representative keypoints. Each image is represented
by these keypoints, SIFT descriptors for these keypoints, and a set of facial curves.
The similarity between two images is obtained by finding the pairs of corresponding
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keypoints and computing the distances between these keypoints using associated
facial curves and SIFT descriptors.

12.2.5 RGB-D-Based Face Reconstruction
and Recognition [24]

Hsu et al. [24] have proposed a 3D reconstruction and landmark based on RGB-D
face recognition algorithm which also utilizes SRC as the classifier. The two major
steps involved in their algorithm are as follows:

3D Reconstruction: The algorithm is based on reconstructing a 3D face image
from a single 2D image by utilizing a reference 3D scan of an unrelated face [31].
Such an algorithm utilizes the reference to obtain initial estimates of three
parameters required for 3D reconstruction, i.e., the surface normal for the face,
albedo, and depth. These estimates are improved by using an iterative procedure.
Since an RGB-D image already contains depth information, this reconstruction
approach is adapted to refine the noisy depth maps. By assuming that the face
surface is Lambertian, the projection of depth onto the image plane provides the 2D
image. The computation of this projection depends on the surface normal and
albedo which are iteratively optimized using a Lagrangian function. By minimizing
the difference between this projection and the actual 2D color image, the depth map
is refined.
Recognition: In order to perform alignment, the technique for landmark detection
and localization proposed by Zhu and Ramanan [53] is utilized. A total of 16
landmarks for nearly frontal poses and 12 landmarks for profile poses are used for
alignment. These landmarks consist of eye corners, eyebrow corners, nose and
nostrils, and mouth corners. The same algorithm is also used to estimate the pose of
the probe image. Based on the pose parameters estimated from the probe image, the
algorithm rotates each gallery image to match the pose and also transforms the
gallery image such that the distance between their facial landmarks is minimized.
LBP features are used along with the SRC classifier [49] for identification.

12.2.6 Other Applications of RGB-D Face Images

Apart from face recognition research, RGB-D face images have also been utilized
to solve other computer vision problems which rely on facial information. For
example, Huynh et al. [26] have devised an algorithm to utilize RGB-D face images
for gender recognition by encoding depth information using a weighted combina-
tion of LBP and Gradient-LBP (G-LBP). Existing 3DLBP [25] descriptor encodes
depth differences in addition to the texture information captured by traditional
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LBP. However, the authors mention that 3DLBP suffers from various shortcom-
ings: large feature length, highly sensitive encoding, and loss of sign information
associated with the depth values. They propose the Gradient-LBP descriptor to
address these limitations. The algorithm was tested on the EURECOM [26] and
Texas 3DFR [19] datasets achieving 99.36 % gender recognition accuracy.

Jasek et al. [21] have utilized RGB-D images obtained using Kinect to perform
face detection. Given an image where the face has to be detected, the algorithm first
utilizes the depth information to reduce the search space by selecting the region
closest to the sensor. A mean filter of size 13 × 13 is used to fill holes in the depth
map, and then, face candidate regions are selected based on curvature analysis and
HK classification [6]. These techniques are utilized to find nose and eye candidates
followed by triangulation to create a face triangle. Candidate face triangles are
pruned using basic facial geometry rules and then converted to a frontal pose.
A PCA-based method is then utilized to validate the face candidate based on a
threshold on the reconstruction error.

RGB-D images have also been extensively utilized in tracking head pose vari-
ations. Li et al. [37] have proposed an algorithm which utilizes ICP to perform face
tracking throughout a RGB-D video. For each video, it performs face and nose
detection in the first frame to obtain an initialization for the ICP algorithm which
can then provide an accurate tracking for the head. By performing face registration
with ICP, the head rotation parameter can be obtained which is utilized to estimate
the pose. The algorithm also utilizes predictors tuned on head pose data which can
predict the head pose for a frame based on data from the previous frames. By using
the predictor to provide an initialization for the ICP algorithm, the computational
complexity of the algorithm can be significantly reduced. The algorithm achieves
encouraging results on a test sequence of 717 frames.

Kim et al. [32] have presented a comparison of existing local subspace methods
in head pose estimation which use RGB-D sensors. By utilizing the RGB-D data of
frontal images during training, a 3D point cloud can be created. Synthetic training
data for different poses can be created using these point clouds by applying
appropriate transformation and projection operations. These images are then clus-
tered using K-means clustering, and a locally optimum subspace is created for each
cluster using PCA. During testing, the RGB-D image is assigned to a subspace
based on minimum reconstruction error. The pose label of the closest training image
in this subspace is assigned to the test image.

12.3 The RISE + ADM Algorithm

This section explains the proposed RISE + ADM algorithm. The RISE + ADM
algorithm [18] utilizes both the color and depth components of the RGB-D image to
extract discriminatory information. Traditionally, depth map information has been
used only for face detection and pose normalization. We present a different per-
spective; while the color image provides texture features, depth map can provide
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geometric features. The algorithm combines these features to improve the recog-
nition performance. The algorithm is comprised of four major steps: (a) prepro-
cessing, (b) computing discriminative features from both color image and depth
map using entropy, saliency, and HOG, (c) extracting additional features based on
face geometry from depth map, and (d) combining these features for recognition.
Each of these steps are explained below.

Preprocessing Viola-Jones face detection is used to detect faces from the RGB
images. Assuming that the depth map and RGB image are registered to each other,
i.e., both RGB and depth sensors are calibrated, and there is a one-to-one corre-
spondence in their pixel locations, the bounding box obtained from RGB image can
be used to extract the face from the depth map as well. Both of these regions are
resized to 100 × 100 and converted to grayscale before further processing. As
mentioned previously, the depth map obtained from a Kinect sensor contains holes
and spikes. To reduce the impact of holes and spikes from the depth map, it is
divided into patches of size 25 × 25 and the values detected as holes and spikes
(based on deviation from the mean value of the patch) are estimated using linear
interpolation.

RISE (RGB-D Image descriptor based on Saliency and Entropy) Algorithm It
is observed that RGB-D images produced by low-cost sensors such as the Kinect
have high inter-class similarity and are of low quality; therefore, traditional range
image-based recognition algorithms cannot be applied directly. However, these
depth maps can be utilized in landmark localization and also provide rough geo-
metric characteristics of the face. Utilizing these depth maps in combination with
the color image can provide discriminatory features and thereby improve the

HOG Feature Extraction

Concatenation of HO

RGB Color Image Depth Map

Visual Saliency Map (S1) Entropy Map (E1, E2) Depth Entropy Map (E3, E4) 

G 
Feature Histograms

Random Decision Forest

Fig. 12.2 An overview of the proposed RISE algorithm. The RGB color image provides texture
of the face image, and the depth map encodes the distance of each pixel on the face from the sensor
and therefore captures structural information about the face
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robustness and accuracy of face recognition. As shown in Fig. 12.2, the RISE
algorithm has three main steps:

(1) Extracting Entropy Map and Visual Saliency Map: With low-cost sensors, the
RGB values in the 2D color image and the depth values in the depth map are
of relatively low quality and prone to noise. With depth map, the raw values
are not useful for characterizing the face image and the RGB values of the
color image are highly sensitive to change in imaging conditions. Therefore,
the RISE algorithm uses entropy as a layer of abstraction in order to process
these values and obtain an intermediate representation before feature extrac-
tion is performed. Entropy can be defined as the measure of uncertainty in a
random variable [42]. Similarly, the local visual entropy of an image is a
measure of the variance in grayscale levels of pixels in a local neighborhood,
e.g., 5 × 5. Let the input RGB-D image be denoted as [Irgb(x, y), Id (x, y)],
where Irgb(x, y) is the RGB image and Id (x, y) is the depth map, both of size
M × N. Let both of these be defined over the same set of (x, y) points such that
x 2 [1, M] and y 2 [1, N]. Let H(Ij) denote the visual entropy map of image Ij.
Here, Ij can be the depth map or the RGB image or a small part of these
images. The entropy H of an image neighborhood x is given by Eq. 12.3,

H xð Þ ¼ �
Xn
i¼1

pðxiÞlog2p xið Þ ð12:3Þ

where p(xi) is the probability mass function for xi. For an image, p(xi) signifies
the probability that a pixel with value xi is contained in the neighborhood and
n denotes the total number of possible grayscale values, i.e., 255. If x is a
MH × NH neighborhood, then

pðxiÞ ¼ nxi
MH � NH

ð12:4Þ

Here, nxi denotes the number of pixels in the neighborhood with value xi, and
MH × NH is the total number of pixels in the neighborhood. The neighborhood
size for entropy map computation is empirically set to 5 × 5. The local visual
entropy map of an image can encode its texture and be used to extract
meaningful information from an image. Examples of entropy and depth
entropy maps are presented in Fig. 12.2. The depth entropy map does not vary
in value abruptly except in special regions such as near the eye sockets, nose
tip, mouth, and chin. Therefore, it can encode these geometric characteristics
of the face. The local entropy of an image neighborhood measures the amount
of randomness in texture, and therefore, it can be viewed as a texture feature
map that encodes the uniqueness of the face image locally and allows for
robust feature extraction.
Both Irgb and Id are divided into patches. Two patches, P1 of size M

2 � N
2

centered at M
2 � N

2

� �
and P2 of size 3M

4 � 3N
4 centered at M

2 � N
2

� �
, are extracted
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from Irgb. Similarly, two patches P3 and P4 are extracted from Id. For every
patch, an entropy map (E1 − E4) is computed for patches using Eq. 12.5:

Ei ¼ HðPiÞ; where i 2 1; 4½ � ð12:5Þ

E1 and E2 represent the entropy of the color image (Irgb), and E3 and E4

represent the depth entropy maps.
The RISE algorithm also extracts visual saliency map S1 of the color image
Irgb using Eq. 12.6. It measures the capability of local image regions to attract
the viewer’s visual attention [13]. A visual saliency map provides an estimate
of this capability as a numerical value for every pixel of an image. There are
several approaches to compute the visual saliency map. In this algorithm, we
utilize a relatively simple approach proposed by Itti et al. [28].

S1 x; yð Þ ¼ SðIrgb x; yð Þ8ðx 2 1;M½ �; y 2 1;N�½ ÞÞ ð12:6Þ

(2) Extracting Features Using HOG: The high dimensionality of each
entropy/saliency map is too high to be considered directly as input for a
classifier. Moreover, since the depth entropy map does not contain large local
variations, it is redundant to consider the value of each pixel.
A histogram-oriented approach such as HOG enables a powerful representa-
tion which preserves the discriminative power of each feature map while
simultaneously reducing feature size and facilitating robust matching. HOG
[12] is a well-known descriptor which has been successfully used as a feature
and texture descriptor in many computer vision applications related to object
detection and recognition [11, 16, 46]. HOG vector of an entropy map or
saliency map encodes the gradient direction and magnitude of the image
variances in a fixed length feature vector.
In the proposed RISE algorithm, HOG is applied on the entropy and saliency
maps. The entropy maps are extracted from patches Pi, which allows capturing
multiple granularities of the input image. Let D(·) denote the HOG histogram;
the algorithm computes HOG of entropy maps using the following equation:

Fi ¼ DðEiÞ; where i 2 1; 4½ � ð12:7Þ

Here, F1 denotes the HOG of entropy map E1 defined over patch P1, and F2

denotes the HOG vector of entropy map E2 defined over patch P2 of Irgb.
Similarly, F3 and F4 denote the HOG of entropy maps E3 and E4 defined over
patches P3 and P4 of Id, respectively. F1 and F2 encode traditional texture
information, and the entropy maps help the descriptor to address intra-class
variations. F3 and F4 encode additional depth information embedded in the
RGB-D image. Finally, the HOG descriptor of visual saliency map, S1, is
computed using Eq. 12.8, and the RISE descriptor F is created using an
ordered concatenation of these five HOG histograms as shown in Eq. 12.9.
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F5 ¼ DðS1ðIrgbÞÞ ð12:8Þ

F ¼ ½F1;F2;F3;F4;F5� ð12:9Þ

Since each HOG vector is small and the features are compatible with each
other, concatenation is used to facilitate classification by reducing five vectors
to a single feature vector. The resulting concatenated vector has a small size
which helps in reducing the computational requirement. This feature vector
F is provided as input to a multi-class classifier.

(3) Classification: Any multi-class classifier such as nearest neighbor (NN),
random decision forest (RDF) [22], and support vector machine (SVM) can be
used to perform recognition. The classifier should be robust for a large number
of classes, computationally inexpensive during probe identification, and
accurate. Classifiers such as SVM require a relatively large amount of training
data per class in order to develop accurate decision boundaries. A RDF is an
ensemble of classifiers (termed as a forest in the case of RDF) which can
produce nonlinear decision boundaries and handle multi-class classification
well. RDFs also tend to be robust toward outliers since every decision tree in
the forest is only trained with a small subset of data in terms of both features
and data points. Therefore, the probability of an entire collection of trees
making an incorrect decision due to a few outlier data points/features is very
low. Recent results also support that RDF performs better than NN in this
scenario [17]. Therefore, the proposed algorithm utilizes RDF classifier for
matching. RDF has three parameters: the number of trees in the forest, the
fraction of training samples that are used to train an individual tree, and the
number of features used to represent each data point during training. These
parameters control the performance of the forest and are optimized by using a
parameter sweep with the training data. The gallery images for each subject
are provided to the RDF for training. During testing, a probe feature vector is
provided as input to the trained RDF which computes a probabilistic match
score for each subject. The match score for each subject is compared, and the
probe image is identified as the subject with the highest match score.

ADM (Attributes based on Depth Map) Attribute-based methodologies have
been explored for problems such as image retrieval [33, 35] and face matching [34].
Attributes provide soft biometric information which may not be sufficient to per-
form recognition when considered in isolation; however, they provide additional
complementary information. Usually, research has focused on demographic attri-
butes such as age and gender or on appearance-based attributes such as complexion
and friendliness. The attributes based on depth map (ADM) algorithm instead focus
on geometric attributes extracted from the depth map. The distances between
various key facial features such as eyes, nose, and chin can be used as geometric
attributes. By exploiting the uniform nature of a human face, key facial landmarks
can be located and utilized to extract geometric attributes that can be used for face
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recognition in conjunction with the entropy and saliency features. The ADM
approach consists of the following steps.

Keypoint Labeling Key facial landmarks such as the nose tip, eye corners, and chin
are identified using a rule template and the depth map. In a nearly frontal depth
map, the nose tip is the closest point from the sensor, the two eyes are located above
the nose tip and are at a relatively higher distance compared to immediate sur-
rounding regions, and the chin is the closest point to the sensor which lies below the
nose tip. These keypoints can then be utilized to triangulate and determine the
approximate locations of other facial features such as nose bridge. These landmarks
are detected from each gallery and probe face image and used to compute the
geometric attributes.

Geometric Attribute Computation To obtain the geometric attributes, various dis-
tances between these landmark points are computed: inter-eye distance, eye to nose
bridge distance, nose bridge to nose tip distance, nose tip to chin distance, nose
bridge to chin distance, chin to eye distance, eyebrow length, nose tip distance to
both ends of both eyebrows, and overall length of the face. Since these distances
may vary across pose and expression, multiple gallery images are utilized to extract
these facial features. Attributes are first computed individually for every gallery
image, and the distances so obtained are averaged. In this manner, a consistent set
of attributes is computed for a subject. An attribute feature vector for the depth map
is created by using these distance values. These distances can also be estimated
from the depth map of a single frontal pose image, although that requires pose
estimation to be performed on the gallery images.

Attribute Match Score Computation The attributes for a probe are computed similar
to gallery images. Once the attributes are computed for a probe, the match score Φ
is computed for each subject in the gallery using Eq. 12.10.

U ¼
XN
i¼1

wi � Ai � aið Þ2 ð12:10Þ

Here, Ai and ai are the ith attributes of the probe image and the gallery image,
respectively. wi is the weight of the ith attribute, and N is the total number of
attributes. wi is used to assign weights to these different attributes depending upon
how reliably they can be computed. The match scores thus obtained can be utilized
for identification.

Combining RISE and ADM In the proposed algorithm, the ADM score is combined
with the match score obtained from RISE algorithm for making the final decision.
In order to combine RISE and ADM, fusion is performed at match score level with
a weighted sum approach or at rank level with weighted Borda count [30].
A comparison of existing algorithms with the RISE + ADM algorithm is presented
in Table 12.1.
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12.4 Existing RGB-D Face Datasets

There are a few existing RGB-D face databases in the literature. In contrast to other
existing 3D datasets which have data captured using high-quality sensors, these
datasets comprise of RGB-D images captured using the Kinect or other low-cost
depth sensors. Among the first ones, the EURECOM [26] database has 936 images
pertaining to 52 subjects and the images are captured in two sessions with variations
in pose, illumination, view, and occlusion. The VAP RGB-D [22] face database
contains 1581 images pertaining to 31 individuals. The dataset has 51 images for
each individual with variations in pose. The CurtinFaces [36] dataset contains over
5000 RGB-D images of 52 subjects. The image set for each subject contains a total
of 92 faces which cover different pose, illumination, expression, and disguise
conditions. The Biwi Kinect head pose dataset [15] contains over 15,000 images of
20 people with their pose annotations in the form of 3D locations of the head and its
rotation. The FaceWarehouse [9] database contains data pertaining to 150 indi-
viduals with age ranging in-between 7 and 80 years. For each of these subjects,
RGB-D data is available for a total of 20 expressions with variations in rotation as
well. The Florence Superface (UF-S) v2.0 dataset [5] contains high-resolution 3D
scans obtained using a 3dMD scanner and RGB-D Kinect video sequences per-
taining to 50 individuals. The IIIT-D RGB-D face database [18] contains RGB-D
images pertaining to 106 individuals captured in two sessions using Kinect sensor
and OpenNI SDK. The resolution of both color image and depth map is 640 × 480.
The number of images per individual is variable with a minimum of 11 images and
a maximum of 254 images. In this database, the images are captured in normal
illumination with variations in pose and expression (in some cases, there are
variations due to eyeglasses as well). Some sample images from the IIIT-D and
EURECOM databases are presented in Fig. 12.3.

Table 12.1 An overview of existing RGB-D recognition algorithms

Algorithm Features Classifier

Li et al. [37] DCS transform [50] SRC [49]

Segundo
et al. [43]

HOG [12] L1 norm

Ciaccio
et al. [10]

LBP [2] and covariance descriptor Probabilistic

Berretti
et al. [5]

SIFT [38] Sparse
matching [4]

Hsu et al. [24] LBP [2] SRC [49]

RISE + ADM HOG [12] of entropy [42] and saliency [27] maps combined with
geometric attributes extracted from depth map

RDF [22]
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12.5 Experimental Results

The performance of the proposed RISE + ADM algorithm is analyzed via two sets
of experiments. First, the experiments are conducted on the IIIT-D RGB-D dataset
to analyze the performance of the RISE + ADM algorithm with various combi-
nations of constituent components and their parameters. Thereafter, the perfor-
mance is compared with existing 2D and 3D approaches on an extended dataset
created using a combination of multiple existing datasets.

Two types of observations are presented in the following sections. The first set of
observations helps in assessing the performance improvement contributed by the
individual components of the RISE + ADM algorithm. This set of observations is
made on the IIIT-D RGB-D dataset. Thereafter, the IIIT-D RGB-D dataset is
merged with the EURECOM and VAP datasets to create an extended dataset of 189
individuals. A second set of observations is presented on the extended dataset
which provides a comparative study of RGB-D-based algorithm and traditional 2D

Fig. 12.3 Sample images of a subject from a IIIT-D Kinect RGB-D database [18] and
b EURECOM Kinect face database [26]
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algorithms which cannot make use of depth data. For both the experiments, the
performance of the RISE + ADM algorithm is compared with several existing
algorithms, namely four-patch local binary patterns (FPLBP) [48], pyramid his-
togram of oriented gradients (PHOG) [3], scale invariant feature transform (SIFT)
[38, 52], and sparse representation [49]. Besides these methods which utilize only
2D information, a comparison is also performed with 3D-PCA-based algorithm [8],
which computes a subspace based on depth and grayscale information.

12.5.1 Experiment 1

The database is divided into three parts: training, validation, and testing. 40 % of
the IIIT-D Kinect RGB-D database is used for training and validation. The training
dataset is utilized to compute the weights involved in ADM approach, parameters
of RDF, and weights for fusion. After training and parameter optimization, the
remaining 60 % dataset (unseen subjects) is used for testing. The results are
computed with five times random subsampling-based cross-validation. In each
iteration of the subsampling base, the subjects in the training/testing database as
well as the gallery images for each subject are randomly selected. Gallery size is
fixed at four images per subject.

To analyze the effect of different components involved in the proposed RISE
algorithm, six cases are analyzed. These case studies provide information about the
effect of each factor in the final identification performance, and they are described in
Table 12.2 along with their identification accuracies at rank-1 and rank-5. It also
helps in drawing inferences about how to make the best use of RGB-D data. For
example, if the descriptor performs poorly in case (b), it suggests that depth entropy
maps are indeed able to provide meaningful features when encoded using the HOG
descriptor. Similar inferences can potentially be drawn from the results of other five
cases. For example, case (c) demonstrates that the contribution of including visual

Table 12.2 Performance of the RISE algorithm with different combinations of the individual
components

Case Descriptor Identification Accuracy
(%)

Rank-1 Rank-5

Case (a) F = [F1, F2, F3, F4, F5] Fi = D(Pi) 40.0 61.9

Case (b) F = [F1, F2, F5] 37.5 57.6

Case (c) F = [F1, F2, F3, F4] 51.6 68.6

Case (d) F = [F1, F2, F5] Fi = D(Pi) 30.0 45.0

Case (e) F = [F1, F2, F3, F4] Fi = D(Pi) 35.4 50.2

Case (f) F = [F1, F2] 36.3 55.0

RISE F = [F1, F2, F3, F4, F5] 82.8 92.2

The condition Fi = D(Pi) signifies that the case does not utilize entropy maps and instead directly
encodes the RGB-D image using HOG descriptor

296 G. Goswami et al.



saliency map as an added feature is important. It is observed that saliency is relevant
toward stabilizing the feature descriptor and preserving intra-class similarities.
Further, in cases (d) and (e), it is observed that including depth without computing
entropy performs worse than not including depth information but using entropy
maps to characterize the RGB image. Intuitively, this indicates that directly using
depth map results in more performance loss than not using depth at all. This is
probably due to the fact that depth data from Kinect is noisy and increases the
intra-class variability in raw form. It is observed that all the factors together
improve the recognition performance. Overall, the algorithm yields 95 % rank-5
accuracy on the IIIT-D database. Further, Table 12.3 shows the comparison of the
proposed algorithm with existing algorithms. The results indicate that on the IIIT-D
database, the proposed algorithm is about 8 % better than the second best algorithm
(in this case, sparse representation [49]). Compared with 3D-PCA algorithm, the
proposed algorithm is able to yield about 12 % improvement.

Fusion of algorithms Experiments are performed with various combinations of the
proposed RISE and ADM approaches. At match score level, the weighted sum rule
is used, and at rank level, weighted Borda count is used. The proposed
RISE + ADM with weighted sum rule yields the best rank-5 identification accuracy
of 95.3 %. RISE + ADM approach using weighted Borda count also performs well
providing an accuracy of 79.7 %. This indicates that for RGB-D faces, match score
level fusion of RISE and ADM features performs better than rank-level fusion.
However, it is also notable that the difference in performance for almost all the
approaches reduces more at rank-5 compared to rank-1. Since weights are involved
in both weighted Borda count and weighted sum approaches, it is interesting to
observe how the performance of the proposed algorithm varies with the variation in
weights. Key observations are noted below:

• The best performance is achieved with RISE (0.7) + ADM (0.3) for both the
fusion algorithms. This indicates that texture features extracted by RISE are
more informative for identification and therefore must be assigned higher
weight. However, the geometric features from ADM also contribute toward the

Table 12.3 Identification
accuracy (%) on IIIT-D
RGB-D face database and
EURECOM database
individually. The mean
accuracy values are reported
along with standard deviation
across five cross-validation
trials

Modality Descriptor Rank-5 identification accuracy
(%)

IIIT-D
RGB-D

EURECOM

SIFT 50.1 ± 1.4 83.8 ± 2.1

HOG 75.1 ± 0.7 89.5 ± 0.8

2D PHOG 81.6 ± 1.4 90.5 ± 1.0

FPLBP 85.0 ± 0.7 94.3 ± 1.4

Sparse 87.2 ± 1.9 84.8 ± 1.7

3D 3D-PCA 83.4 ± 2.1 94.1 ± 2.7

RISE + ADM 95.3 ± 1.7 98.5 ± 1.6
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identification performance after fusion, thereby increasing the rank-5 accuracy
from 92.2 % (RISE only) to 95.3 % (RISE + ADM) when weighted sum rule is
utilized.

• The performance of weighted Borda count is lower than weighted sum possibly
because of the loss of information that occurs in using the ranked list for fusion
instead of the match scores.

• Experiments have been conducted to assess the performance with all other
combinations of weights as well, but none of these combinations perform better
than RISE (0.7) + ADM (0.3).

Analysis with gallery size All the experiments described above on the IIIT-D
RGB-D database are performed with a gallery size of four. To analyze the effect of
gallery size on the identification performance, additional experiments are performed
by varying the number of images in the gallery. The performance of RISE, ADM,
and RISE + ADM, and key observations are described below:

• The performance of RISE, ADM, and the proposed RISE + ADM approach
increases with increase in gallery size. However, the maximum increment is
observed from gallery size 1 to gallery size 2 in the ADM approach. A major
performance gain of 22.6 % is observed which can be credited to the possibility
that using a single gallery image yields approximate geometric attributes. With
more than one sample, the averaging process increases the reliability of the
geometric attributes, and hence, there is a significant increase in performance.

• Other than the exception discussed above, the performance of each approach
increases consistently but in small amounts with increase in gallery size.
Therefore, after a certain point, increasing the gallery size does not provide high
returns in terms of the performance. It is notable that even with single gallery
image, the proposed algorithm yields the rank-5 identification accuracy of 89 %
(Fig. 12.4).

Evaluating the accuracy of ADM keypoint labeling The performance of the
ADM approach is dependent on the accuracy of keypoint labeling. In order to
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Fig. 12.4 Analyzing the effect of gallery size on recognition performance
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determine the accuracy of this phase, manually marked keypoint labels are collected
via crowd-sourcing. Human volunteers are requested to label the keypoints (nose,
left eye, right eye, and chin) on 10 images from every subject. The average of
human-annotated keypoint coordinates is computed and compared with the auto-
matically obtained keypoints. An automatic keypoint is considered to be correct if it
lies within a small local neighborhood of the average human-annotated keypoint. It
is observed that the overall accuracy of automated keypoint labeling, using manual
annotations as ground truth, on the IIIT-D Kinect RGB-D database, is 90.1 % with
a 5 |×| 5 neighborhood and 93.6 % with a neighborhood size of 7 |×| 7. It is also
observed that the automatic keypoint labeling is most accurate on near-frontal and
semi-frontal faces.

Evaluating the proposed RISE + ADM algorithm on EURECOM database:
Performance of the proposed algorithm was also compared with existing algorithms
on the EURECOM dataset. In order to perform this recognition experiment, the
gallery sizes for the EURECOM dataset were fixed at two images per subject. The
results of this experiment are presented in Table 12.3. The analysis is similar to the
IIIT-D database, and the proposed algorithm yields 98.5 % rank-5 identification
accuracy which is around 4 % better than existing algorithms. Note that the
EURECOM database is relatively smaller than IIIT-D database, and therefore, near
perfect rank-5 identification accuracy is achieved.

12.5.2 Experiment 2

The extended database of 189 subjects is prepared by combining the IIIT-D [18],
EURECOM [26], and VAP [21] databases used for this experiment. Images per-
taining to 40 % individuals from the extended database are used for training, and
the remaining 60 % unseen subjects are used for testing. To create the complete
subject list for the extended dataset, the subjects are randomly subsampled within
the three datasets according to 40/60 partitioning and then merged together to form
one extended training/testing partition. Therefore, the extended training dataset has
proportionate (40 %) representation from each of the three datasets. The number of
images available per individual varies across the three datasets, and therefore, the
gallery size for the extended dataset experiment is fixed at two gallery images per
individual. The remaining images of the subjects are used as probes. The identi-
fication performance of these approaches is presented in Fig. 12.5 and summarized
in Table 12.4. The results indicate that the proposed RISE + ADM algorithm (both
weighted sum and weighted Borda count versions) outperforms the existing
approaches by a difference of about 8 % in terms of the rank-5 identification
performance. The proposed algorithm yields the best results at rank-1 with an
accuracy of 78.9 % which is at least 11.4 % better than the second best algorithm,
3D-PCA.
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12.6 Conclusion

In order to maintain robustness in unconstrained environments, face recognition
researchers have explored the use of 3D images instead of the traditional 2D face
images. However, due to the high cost of 3D sensors, it is difficult to deploy such
systems for large-scale applications. Therefore, RGB-D images obtained using
consumer-level sensors such as the Kinect have gained popularity. This chapter
presents a literature review of some of the existing contributions that utilize RGB-D
images for accurate face recognition in the presence of variations in pose, illumi-
nation, and expression. We also present the RISE + ADM algorithm that utilizes
depth, saliency, and entropy information for feature encoding and matching.
Comparative results were presented to understand the various dimensions of
RGB-D face recognition performance using the state-of-art algorithm. With
advancements in technology and availability of consumer-level sensors in the

Id
en

ti
fi

ca
ti

o
n

A
cc

u
ra

cy
(%

)

95

90

85

80

75

70

65

60

55
1 2 3 4 5

Rank

SIFT
HOG
PHOG
FPLBP
Sparse
3D−PCA
RISE + ADM (W.B.C.)
Proposed  RISE+ADM (W.S.)

Fig. 12.5 A comparison of the RISE + ADM algorithm with other existing 2D and 3D approaches
on the extended database. W.B.C. refers to rank-level fusion using weighted Borda count and W.S.
refers to match score level fusion using weighted sum rule

Table 12.4 Identification accuracy (%) for the extended experiments. The mean accuracy values
are reported along with standard deviation over five times random cross-validation

Modality Descriptor Rank-1 Rank-5

SIFT 55.3 ± 1.7 72.8 ± 2.1

HOG 58.8 ± 1.4 76.3 ± 1.8

2D PHOG 60.5 ± 1.6 78.1 ± 1.1

FPLBP 64.0 ± 1.1 80.7 ± 2.0

Sparse 65.8 ± 0.6 84.2 ± 0.8

3D-PCA 67.5 ± 1.2 82.5 ± 1.9

3D RISE + ADM (W.B.C.) 76.3 ± 1.0 90.3 ± 1.1

RISE + ADM (W.S.) 78.9 ± 1.7 92.9 ± 1.3
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market, future research in RGB-D face recognition can be directed toward sensor
interoperability, cross-sensor recognition, and related analysis in the case of RGB-D
sensors with varying specifications.
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Chapter 13
Blending 2D and 3D Face Recognition

M. Tistarelli, M. Cadoni, A. Lagorio and E. Grosso

Abstract Over the last decade, performance of face recognition algorithms sys-
tematically improved. This is particularly impressive when considering very large
or challenging datasets such as the FRGC v2 or Labelled Faces in the Wild. A better
analysis of the structure of the facial texture and shape is one of the main reasons of
improvement in recognition performance. Hybrid face recognition methods, com-
bining holistic and feature-based approaches, also allowed to increase efficiency
and robustness. Both photometric information and shape information allow to
extract facial features which can be exploited for recognition. However, both
sources, grey levels of image pixels and 3D data, are affected by several noise
sources which may impair the recognition performance. One of the main difficulties
in matching 3D faces is the detection and localization of distinctive and stable
points in 3D scans. Moreover, the large amount of data (tens of thousands of points)
to be processed make the direct one-to-one matching a very time-consuming pro-
cess. On the other hand, matching algorithms based on the analysis of 2D data alone
are very sensitive to variations in illumination, expression and pose. Algorithms,
based on the face shape information alone, are instead relatively insensitive to these
sources of noise. These mutually exclusive features of 2D- and 3D-based face
recognition algorithm call for a cooperative scheme which may take advantage of
the strengths of both, while coping for their weaknesses. We envisage many real
and practical applications where 2D data can be used to improve 3D matching and
vice versa. Towards this end, this chapter highlights both the advantages and dis-
advantages of 2D- and 3D-based face recognition algorithms. It also explores the
advantages of blending 2D- and 3D data-based techniques, also proposing a novel
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approach for a fast and robust matching. Several experimental results, obtained
from publicly available datasets, currently at the state of the art, demonstrate the
effectiveness of the proposed approach.

13.1 Introduction to Face Recognition

In today’s e-society, personal identification is fundamental to enable the fruition of
many services based on computing platforms. Every day pins, passwords, e-cards
or e-keys are used to gain virtual access to a large number of services or physical
access to restricted areas. However, e-keys and pin–password-based authentication
systems can be copied, given to others and stolen by thieves. Personal identification
is also a crucial issue in forensic applications, for example, to identify the perpe-
trator of a criminal offence from some latent information discovered on the crime
scene. In these and other applications, identification technologies based on the
analysis of biometric traits, such as iris, fingerprint, speech and face can be suc-
cessfully applied. Nevertheless, every biometric recognition technology offers both
advantages and disadvantages. For instance, iris recognition can be very effective,
but the data capture procedure can be considered, for some applications, very
intrusive, while the acquisition device can be very expensive. Fingerprint recog-
nition technologies are widely used, but they cannot be applied in covert or
surveillance scenarios. Speech recognition has a long-standing research record;
however, the relative sensitivity to ambient noise limits its applicability especially
when dealing with crowded environments.

Face recognition represents a good compromise between ease of use, social
acceptability and effectiveness. Face images are easy to capture both at close and at
far distance. Taking a face picture is seldom considered intrusive and does not
require an active cooperation of the subject. Face recognition algorithms can now
achieve very high accuracy at very low false rejection rates. Moreover, it can be
exploited both in covert and in overt scenarios.

Traditionally, face recognition operations can be categorized as follows:

• Face verification. 1:1 match. In this case, the subject claims an identity and the
acquired face is compared with a template. If the matching score is above a
given threshold, the claimed identity is verified.

• Face identification. 1:N match. In this case, the acquired face is compared with
all templates in the database. The identity of the probe corresponds to the subject
in the database providing the maximum matching score (or the minimum
distance).

• Watch list. 1:N match. In this case, the test subject may not be present in the set
of available subjects’ templates.

Despite the considerable research efforts devoted to face recognition and closely
related areas in computer vision, real-world applications are still challenging
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because of the large variability in the face appearance. Among the most critical
factors influencing face recognition performances are the following:

• Illumination. Due to the complex skin reflectance property, face images
acquired in uncontrolled environments may be photometrically very different.

• Pose. Pose changes induce perspective deformations and self-occlusions. In
many cases, the probe and gallery faces are captured with different poses.

• Facial expression. Faces are not rigid objects. Changes in facial expression may
significantly change the face appearance.

• Aging. The face shape and texture change over time, even within a single day.
Over a long period of time, the face appearance may change radically, in a
nonlinear way. In some applications, the probe face image may be captured a
long time (days, months or even years) after the face image in the gallery.

• Occlusion. Face regions may be occluded by eyeglasses, scarf, beard, cap or
other means.

• Make-up and cosmetic surgery. Make-up can radically change the face texture,
while cosmetic surgery can change both the shape and the texture of the face.

In some cases, images of different subjects may look more similar than images of
the same individual acquired under different conditions. For this reason, many
commercial face recognition systems take into account one or more of these factors.
In order to estimate the recognition performance in adverse conditions, several face
databases have been collected. An updated list of publicly available face databases
can be found here: http://www.face-rec.org/databases/. Some examples of images
captured under different conditions are shown in Fig. 13.1.

Fig. 13.1 Sample images from the Labelled Faces in the Wild database [29]. The same subject is
portrayed with different head pose, facial expression, illumination and make-up
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13.2 Face Recognition Techniques: 2D Versus 2D

Most face recognition algorithms are based on processing 2D images. The infor-
mation embedded in the pixels composing the face can be exploited in several
manners, obtaining different performances. Most of the time, new algorithms have
been developed to respond to novel challenges, requiring improved performances.
However, the recognition of human faces from 2D images is still an ill-posed
problem in the sense of Hadamard [26].1 In fact, the image capture itself induces the
loss of one dimension, making it difficult to unambiguously characterize a face as
unique. Therefore, only approximate solutions can be drafted which take advantage
of some constraints on the face structure or the acquisition scenario. This section
provides an overview of the 2D face recognition methods and analyses some of
their advantages and disadvantages. The goal is to better understand the strengths
and weaknesses of the available methods, to devise a new approach based on the
integration of 2D and 3D data.

13.2.1 State of the Art

Face recognition techniques can be divided into three main categories: intensity
image based, video based and technique based on other sensors, such as infrared or
thermal cameras.

Face recognition methods based on intensity image could be seen as very dif-
ficult pattern recognition problem. It is hard to solve because it is a nonlinear
problem in a high-dimensional space and the search is done among objects
belonging to the same class. An N × N image I could be linearized in a N2 vector, so
that I represents a point in a N2-dimensional space. However, comparing two
images in this high-dimensional space is hard and not effective. To avoid this, a
low-dimensional space is found by means of a dimensionality reduction technique.

The eigenfaces proposed by Kirby and Sirovich [33] can be considered as one of
the first approaches in this sense. They applied the PCA (principal component
analysis) method to find few eigenvectors, also referred to as eigenfaces, to rep-
resent a base in a low-dimensionality space. PCA has been intensively applied in
face recognition system [55, 56], and the method appears quite robust to lighting
variations, but its performance degrades with scale changes.

Many other linear projection methods have been studied too such as linear
discriminant analysis (LDA) [42, 44]. The main aim of the LDA consists in finding
a base of vectors providing the best discrimination among the classes, trying to
maximize the between-class differences and at the same time minimizing the

1Inverse problems most often do not fulfil Hadamard’s postulates of well-posedness: they may not
have a solution in the strict sense, and solutions may not be unique and/or may not depend
continuously on the data.
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within-class ones. The between- and within-class differences are represented by the
corresponding scatter matrices Sb and Sw, while the ratio detjSbj=detjSwj has to be
maximized. However, Martinez and Kak [44] have shown that LDA provides better
classification performances only when a wide training set is available.

Belhumeur et al. [8] proposed the Fisherface approach where the PCA is applied
as a preliminary step in order to reduce the dimensionality of the input space, and
then, the LDA is applied to the resulting space. Chen and Yu have been demon-
strated that, combining in this way PCA and LDA, both discriminant information
and redundant one are discarded. Thus, in some cases, the LDA is applied directly
on the input space.

One main drawback of the PCA and LDA methods is that these techniques fail if
the face images lie on a nonlinear submanifold in the image space. It has been
shown that face images possibly reside on a nonlinear submanifold [52], especially
if there is a variation in viewpoint, illumination or facial expression.

Some nonlinear techniques have consequently been proposed [27, 28, 61].
Marian et al. [6] have shown that first- and second-order statistics hold infor-

mation only about the amplitude spectrum of an image, discarding the phase
spectrum. Some experiments have demonstrated that the human capability of rec-
ognizing objects is phase spectrum driven. They introduce the ICA (independent
component analysis) as a more powerful classification approach for face recogni-
tion. One of the major advantages of ICA is that it captures discriminant features
not only exploiting the covariance matrix, but also considering the high-order
statistics.

Wright et al. [60] recently proposed a sparse representation-based classification
(SRC) for face recognition. The method is based on the idea of sparse represen-
tation computed by l1-minimization. They represent the test sample in an over-
complete dictionary whose base elements are the training samples themselves. This
approach needs a sufficient training samples from each class that allow to represent
the test samples as a linear combination of just those training samples from the
same class. This approach is robust to variations in facial expression and illumi-
nation as well as to occlusion and disguise.

A nonlinear approach to the face recognition problem is given by the neural
networks. They are widely applied in many pattern recognition problems, and they
are effectively adapted for face recognition problem. The main advantage of neural
classifiers is that they can reduce misclassifications among the neighborhood
classes. Generally, each image pixel is projected to a single network node (a
“neutron”). As such, the network size increases with the image size, making the
complexity of training intractable. Cottrell and Fleming [22] originally proposed a
dimensionality reduction technique to make the training manageable.

Other neural network typologies have been also applied to face recognition. For
example, the self-organizing map (SOM) is invariant to minor changes in the image
samples, while convolutional networks proved to be partially invariant to rotation,
translation and scaling. In general, different contexts require different network
architectures. In the following, some of the most influential works along this line of
research are reported.
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Lin et al. [37] proposed the so-called probabilistic decision-based neural net-
work. The plasticity of such networks is due to their hierarchical structure with
nonlinear basis functions and a competitive credit assignment scheme.

Meng et al. [24] introduced a hybrid approach, in which, through the PCA, the
most discriminating features are extracted and used as the input of a RBF neural
network.

Lawrence et al. [34] proposed a hybrid neural network solution which combines
local image sampling, a self-organizing map neural network and a convolutional
neural network.

Most of the described approaches start out with the basic assumption that all the
pixels in the image are equally important. Feature-based approaches are based on
the assumption that some pixel neigboorhoods in the face image are more dis-
criminative than others.

An example of feature-based approach is the Elastic Bunch Graph Matching
(EBGM) method proposed by Wiskott et al. [59]. To generate a graph, the steps
used are the follows: first of all, a set of fiducial points on the face are chosen. Each
fiducial point is a node of a full connected graph and is labelled with the Gabor filter
responses applied to a window around the fiducial point. Each arch is labelled with
the distance between the correspondent fiducial points. The comparison between
two faces is performed by comparing the corresponding graphs.

In order to reduce the sensitivity to change in illumination and facial expression,
Liu [39] investigated the use of Gabor features. In this approach, the face image is
convolved with a Gabor filter, tuned to five scales and eight orientations. The
resulting Gabor wavelet features are concatenated to obtain a feature vector.
Both PCA and the enhanced Fisher linear discriminant model (EFM) are then
applied to reduce the dimensionality of the resulting feature vector.

Ahonen et al. [2] proposed a facial image representation based on local binary
pattern (LBP) texture features. The LBP operator assigns a label to every pixel of an
image by thresholding the 3 × 3-neighborhood of each pixel with the centre pixel
value and considering the result as a binary number. Then, the histogram of the
labels can be used as a texture descriptor. LBP features proved to be highly dis-
criminative, invariant to monotonic grey-level changes and computationally effi-
cient. An interesting improvement of this technique is local derivative pattern
(LDP) proposed in [62].

Lowe proposed the scale invariant feature transform (SIFT) [41] which has been
successfully applied for keypoint localization and 2D face recognition [11]. They
are based on a scale-space representation obtained by successive smoothing of the
original image with Laplacian-of-Gaussian (LoG) kernels of different sizes. They
are invariant to scale and rotation transformations, but they are challenged by strong
illumination variations and face expressions. Moreover, a common drawback of the
DoG representation is that local maxima arise in the neighborhood of contours or
straight edge lines, where the signal changes along one direction. These points are
quite unstable because their localization is more sensitive to noise. Therefore,
additional processing steps are required to remove unreliable points.
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It is difficult to make a quantitative comparison of all proposed techniques
because most often different databases are used for different experiments. To
facilitate a qualitative comparison, Table 13.1 summarizes the reported perfor-
mances for each method and the dataset used for the experiments.

An exhaustive analysis of the state of the art in 2D face recognition is out of the
scope of this chapter. More detailed surveys on 2D face recognition techniques,
with an exhaustive performance analysis, can be found in [1, 31, 63].

13.2.2 Advantages and Disadvantages

Matching 2D face images requires to process a lower amount of data with respect to
3D representations. Moreover, easily obtained snapshots and mugshots can be used
as gallery or probes. On the other hand, unless an active illumination source is
employed, almost all face recognition algorithms based on matching 2D images are
sensitive to changes in illumination. Also, the head pose induces changes in the face
appearance, thus affecting the matching performances. All “holistic” methods, i.e.
using the iconic image matrix representation, such as PCA and LDA, require to
vectorize the N × M 2D image matrix into a N × M 1D vector. This requires a high
accuracy in the geometric alignment and normalization of the faces to be matched.
As the face representation is quite rigidly constrained by the image geometry, the
algorithms are quite sensitive to changes in head pose and rotation. Unless a proper
training is performed, including images of the same subjects showing different
facial expressions, these methods cannot efficiently handle variations in facial
expressions.

Table 13.1 Recognition performance of some of the reported algorithms

Authors Method Databases Identification rate (%)

Martinez and Kak [44] PCA Ar-Faces 70

Martinez and Kak [44] LDA Ar-Faces 88

Belhumeur et al. [8] Fisherface YALE 99.6

Lu et al. [42] DF-LDA ORL 96

Barlett et al. [6] ICA FERET 89

Lawrence et al. [34] Neural network ORL 96.2

Wright et al. [60] SRC Ar-Faces 94.7

Wright et al. [60] SRC YALE 98.1

Wiskott et al. [59] EBGM FERET 57–98

Liu [39] Gabor EFM FERET 99

Liu [39] Gabor EBGM ORL 100

Ahonen et al. [2] LBP FERET 93
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13.3 Face Recognition Techniques: 3D Versus 3D

As previously reported, variations in head pose and illumination are still among the
most difficult challenges in 2D face recognition, making it an ill-posed problem.
This limitation can be overcome by adding a dimension and processing 3D image
data, thus making the problem well-posed. The first 3D scanning technology dates
back to the 1960s. In the 1980s, the first face scanner was built by the Cyberware
Laboratory of Los Angeles, under the impulse of the animation industry. However,
it was not until the late 1990s that 3D scanners were capable of acquiring the
surface of objects, together with texture information, with an acceptable accuracy in
a reasonable time (few minutes). Nowadays, the most widely used 3D scanners are
the so-called active scanners (laser scanners and structured light scanners), where
the recovery of 3D information is simplified by projecting a structured light pattern
onto the object. A great effort has been devoted to develop algorithms to accurately
establish the depth of points in space and merge the views of displaced cameras to
get a virtual reconstruction of the object. Structured light scanners are now fast and
reasonably accurate and are capable of capturing a 3D face in 2 ms with an error of
about 0.1 mm. Laser scanners can be even more accurate (error equal to 0.05 mm)
at the expense of a greater acquisition time (2.5 s per face). Even a cooperative
subject may move during acquisition, producing a distorted 3D face scan [12]. For
this reason, fast structured light scanners are more reliable. Optical systems are
sensitive to highly reflective patches such as oily skin or face areas covered by
reflective make-up. Such reflective areas act as mirrors, either reflecting the radi-
ation away from the camera field or bouncing it elsewhere, causing artefacts.
Transparent areas, such as the cornea, cannot be sampled because most of the light
beam is absorbed by the transparent surface. To avoid specular reflections, some
scanners project several patterns from different angles. Projecting a light pattern and
capturing 2D images from different viewpoints are also helpful to obtain a uni-
formly sampled reconstruction of the face surface. In fact, as the curvature of the
face surface has large variations, it can be hardly sampled uniformly from a single
camera viewpoint.

The captured 3D face data points may differ in accuracy and density. According
to the device and its software, the data may be saved in different formats:

• a cloud of points, which is a set F ¼ ðxi; yi; ziÞ 2 R3ji ¼ 1; . . .;N
� �

of N 3D
points.

• a range image (also called 2.5 image), defined by a n × m matrix Fnm ¼ fij
� �

whose entry fij represents the three-dimensional point of coordinates (i, j, fij), so
it can be thought as an image where each pixel (i, j) in the XY plane stores the
depth value fij. It is also possible to consider a 2.5D image as a greyscale image,
where the intensity of the pixels is proportional to the distance of the point to the
camera. In this case, black pixels correspond to the background (point with
infinite distance to the camera), while the white pixels represent the points that
are nearest to the camera.
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• a polygonal mesh, which includes, besides the coordinates of the points (the
cloud of points, called vertices in this case), the edges and faces between the
vertices. The mesh can be represented in different ways: by an adjacency list or
as a triangle mesh for instance.

The face representation affects the complexity of the recognition algorithm: a
point cloud is generally the most difficult to process. For instance, given a point,
searching for its k-nearest neighbours or for the points within a set distance is a
time-consuming task. On the contrary, a range image or a mesh implicitly conveys
information about the point structure. Therefore, given a point, its neighbouring
points are readily available.

Capturing three-dimensional data from the face, to build a 3D face model, allows
to overcome the errors in 2D face matching due to changes in pose and illumination
(not considering specular reflections).

13.3.1 State of the Art

The earliest works in 3D face recognition were proposed over a decade ago [16,
35]. Due to the limits of acquisition technology, it has been difficult to collect
sufficient amounts of data for experimentation until the late 1990s. In fact, the
number of persons represented in experimental datasets did not reach 100 until
2003. There was therefore relatively little work in this area all through the 1990s,
while activity has steadily increased afterwards, with the collection of increasingly
larger datasets and the development of several techniques for face recognition. Two
comprehensive surveys on 3D face recognition methods are [1, 13]. The larger and
more challenging 3D database is currently the FRGC, which contains over 4000 3D
face scans acquired from 466 subjects. Within the FRGC, various standard proto-
cols were defined to test face recognition methods on its datasets, making them
easily comparable. The best performing methods tested on the FRGC dataset are
outlined below.

Ocegueda et al. [48] presented a random Markov field (MRF) model to analyse
the discriminative information of the vertices of lattices, in order to find the most
significant regions of the face to accomplish a specific task (face recognition, facial
expression recognition and ethnicity-based subject retrieval). The posterior mar-
ginal probabilities of the MRF are used to define compact signatures for each task.
The images and scans of all subjects are assumed to be registered to a common
coordinate system, which is accomplished using the annotated face model (AFM) in
[32].

Faltemier et al. [25] proposed a multi-instance enrolment representation to deal
with expression variations. The nose tip is detected using a consensus algorithm in
three steps: computation of the curvature and shape index, registration of the input
scan to a template and a refinement step. Subsequently, the area obtained by
intersecting a sphere centred on the nose tip is extracted from the probe and gallery
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face. A radius equal to 40 and 100 mm is employed for the probe and gallery face,
respectively. The ICP algorithm is applied to align the two areas, and the regis-
tration error is taken as matching score. Tests were run on the ND-2006, a superset
of the FRGC v2 dataset made of 13,450 3D scans.

Lin et al. [38] proposed to select ten rectangular areas from the range image to
compute invariant features. They match the single regions to the equivalent ones in
the gallery image and fuse the matching scores with a weighted sum rule optimized
via LDA. The method was tested on the FRGC v2, achieving a verification rate of
90 % at 0.001 FAR.

Al-Osaimi et al. [3] proposed a non-rigid approach for face recognition. First,
they perform registration of a neutral and a non-neutral scan and use PCA on the
shape residues to model the expression patterns of a face and then apply the model
to morph expressions from a probe face and use it for matching. The method was
tested on the FRGC v2 with the “first neutral” as gallery and all the rest as probe,
obtaining 96.52 % identification rate.

Berretti et al. [9] proposed to encode the geometrical information of the scan into
a compact representation in the form of a graph. The nodes of the graph represent
equal width isogeodesic facial stripes, and the arcs between nodes are labelled with
descriptors. Corresponding arcs of two different scans are compared to yield a
dissimilarity measure. The Mask III experiment performed on the set “first neutral”
as gallery and the rest as probes produced 94 % identification rate and 81 %
authentication rate at 0.001 FAR.

Queirolo et al. [51] proposed to segment the face from a range image to extract
six feature points: inner eye corners, nose tip, nose base and the nostrils. They use
the points to extract interest regions from the face, namely a circular area and an
elliptical one around the nose and the upper head (which spans from the nose base
upwards). These, together with the whole face, are individually registered to cor-
responding areas in another face. To register the areas, the authors use a two-step
simulated annealing (SA): for the first iterations, SA is guided by the M-estimator
sample consensus (MSAC), for the tuning, by the surface interpenetration measure
(SIM). Extensive tests have been conducted on the FRGCv2, both for verification
and recognition, achieving 96.5% accurate matching at 0.001 FAR, and 99.6%
accurate recognition (ROC III FRGC v2) respectively.

Spreeuwers [54] defined a face intrinsic coordinate system by finding the
symmetry plane of the face, the nose tip and angle to the nose bridge. The face is
then encoded as a range image, by projecting the point cloud onto the plane
perpendicular to the symmetry plane. A set of 30 overlapping regions is then
selected, face comparison is done by comparing each region with the corresponding
one by means of PCA-LDA-Likelihood ratio classifier, and the results are fused by
majority voting.

Li et al. [36] provided two principal curvature-based 3D keypoint detectors,
which identify complementary locations on a face scan. At each keypoint, a 3D
coordinate system is defined, allowing the extraction of pose-invariant features.
They define three keypoint descriptors and fuse them to describe the local shape of
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the keypoints. The matching is performed through a sparse representation-based
algorithm. This method was tested on the Bosphorus dataset, obtaining 96.56%
recognition rate on the whole database, and on the FRGC v2 dataset, obtaining
96.3% identification rate on the “first versus all” experiment.

13.3.2 Advantages and Disadvantages

Compared to the 2D-based matching algorithms, 3D-based approaches have
opposed advantages and disadvantages. While 3D-based face recognition methods
are relatively insensitive to changes in both illumination and head pose, they require
to process larger amounts of data. On the other hand, all distinguishing facial
features that are related to the facial texture, due to skin shape and tone variations,
are not available in the 3D representations. Moreover, to efficiently process 3D face
data, it is necessary to locate stable fiducial points on the face surface. This can be
sometimes quite difficult, especially in the presence of noise and artefacts due to the
acquisition device. For this reason, most of the time, an accurate preprocessing of
the 3D face data are required to reduce the amount of noise, especially to avoid
holes and abrupt changes in the surface normals.

13.4 Face Recognition Techniques: Blending 2D and 3D

As it emerges from Sects. 13.2 and 13.3, each of the 2D and 3D methods presents
strengths and weaknesses and the preference of one over the other must take
account of several factors that include technology availability, costs and fields of
application. Almost always, though, 3D acquisition systems acquire the texture of
the face together with the shape and the two can be combined to exploit their best
features. Merging the two modalities increases the information available which can
boost (in theory) face recognition performance. For instance, one of the hardest
steps 3D face recognition algorithms deal with is the search of a set of feature points
to be used for various purposes (segmentation, registration, etc.). This search is by
no means trivial and can be computationally demanding. Locating feature points in
2D is generally quicker, simply because the descriptors used to characterize the
points will have to deal with a two-dimensional object rather than a
three-dimensional one. On the other side, where 2D is deficient, for instance in case
of uneven illumination which varies from scan to scan, the shape of the face can
recover the information that is lost in the 2D case. Furthermore, when there is pose
variation between the scans, from a single 2D shot it is impossible to recover the
pose, so a 3D scan in this case is much more informative: even laser scanners that
rely on a unique camera to acquire the subject, though unable to uniformly scan the
surface of a face, can handle rotations up to about 15–20° away from the frontal
pose. Techniques that combine the 2D and 3D information of a face are multimodal.
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Fusion of the two modalities can be generally performed at the feature or score level
and in some cases even at the data level, once the two representations are geo-
metrically aligned and normalized. Several databases exist including both 3D data
and texture pixels. Most of the time, the photometric information is directly
attached to the 3D data points. FRGC v2 is currently the largest 3D face dataset,
and it contains 13,450 scans with texture. The Bosphorus dataset contains scans and
2D face images of 105 subjects, with controlled variations in the head pose, facial
expressions and occlusions.

13.4.1 State of the Art

The majority of proposed multimodal methods analyse the 2D and 3D channels
separately to perform fusion at score level. Chang et al. [17] use a PCA-based
approach tuned separately on the 2D and 3D images and then fuse the scores using
a confidence-weighted variation of the sum rule. They test their method on a subset
of the FRGC v2, whose gallery and probe consisted, respectively, of one scan of
each of the 275 subjects and 676 scans of the same subjects. Identification rates
reached 98.8 %.

Kakadiaris et al. [32] tackled the expression variation problem with the aid of an
AFM. The 3D facial data are registered to the face model in three algorithmic steps
which use, in order, spin images, the iterative closest point (ICP) and SA on
Z-buffers. The facial model is then deformed to fit the facial data and is subse-
quently mapped into a geometrical image onto a 2D regular grid. A normal map
image is derived from the geometrical image, and the two images are analysed
using the Haar and Pyramid transforms which yield two sets of coefficients. In the
matching phase, the coefficients are compared by means of two different metrics.
The method was tested on the FRGC v2 and on the UH, a dataset of 884 scans
acquired with a prototype acquisition system built at the University of Houston.
They achieve 97 % identification rates and verification rates of 97.3 % at 0.001
FAR on the FRGC v2.

Chang et al. [19] segmented the area around the nose to minimize variations due
to expressions. Three regions centred at the nose tip are selected: a circular area, a
rectangular area and an elliptical one. Each region is registered to the corresponding
one in the gallery face with ICP, and the registration errors are combined with the
product rule to give a measure of similarity. Tests are run on the FRGC, the
rank-one recognition rate for neutral scans is 96.1 %, while for non-neutral scans, it
drops to 79.2 %.

Husken et al. [30] applied a Hierarchical Graph Matching (HGM) by first
extracting facial landmarks which are subsequently used to perform a 3D adaptation
process on the captured 3D scan. Feature vectors are extracted and matched sep-
arately for the shape and texture channel and the score combined to yield the final
score. The only reported experiment is the FRGC v2 ROC III, for which the
verification rate achieved at 0.001 FAR is 96.8 %.
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Maurer et al. [45] adopted a commercial system to analyse the texture channel.
On the shape channel, they extract a mask from the range image, detect biometric
features and use them to initialize the ICP to align two images. Once the images are
registered, they compute a distance map between the two. Statistics associated with
the distance map are finally computed, and a threshold is fixed to establish the
matching error. The texture and shape channel are fused at score level with a
weighted sum rule. They report the results of the ROC III test of FRGC v2. The
verification rate at 0.001 FAR is 93.5 %.

Lu et al. [43] assumed to have several range images that can be merged to get a
complete 3D model of the face, which is used as a gallery template. They then
match the range images to the 3D model by selecting a set of feature points (inside
and outside eye corners and nose tip). The points are used to coarsely register the
range image to the 3D model and then refine it with the ICP. The point-to-plane
distance is used as a matching score between the two surfaces. The 3D model is also
used to synthesize a set of texture images which are matched to a test image by
means of LDA. The shape and texture matching scores are finally combined with
the weighted sum rule. Since there are no publicly available datasets that contain
multiview range images of each subject, the authors collected their own dataset,
which counts 598 scans with variation in pose and expressions (neutral and smiling)
from 100 subjects. To test the method, they add another 100 3D complete models
from the University of South Florida Database, so that their gallery is made of 200
3D models and the probe of 598 range images. Since the automatic feature point
locator is not robust enough in case of non-frontal scans, in the reported experiment
the points are located manually. The identification accuracy at rank one on the
whole probe is 90, 99 % for frontal neutral probes and 77 % for smiling probes.

Cook et al. [21] applied Gabor filters to the range and texture images of the face,
subsequently divide the images into 25 square regions and build subspaces of each
region using PCA. A novel measure based on the Mahalanobis cosine distance is
defined to match the regions, and linear support vector machines are used to
combine the scores. The authors report the FRGC v2 ROC III test: at 0.001 FAR,
the verification rate is 93.16 %.

Mian et al. [46] proposed a rejection classifier to speed up the recognition
process in identification scenarios. First, the pose of the 3D range image and the
corresponding 2D image are corrected. Then, the scale invariant feature transform
(SIFT) is applied on images, and a spherical face representation is applied on the
range images to select a subset of possible matching candidates. To compare the
candidates to the probe, the range images are segmented by automatically locating
the inflection points of the nose. Two regions are extracted: the eyes-forehead and
the nose areas. The two corresponding shapes on the candidate faces are matched
using a variant of the ICP algorithm. The weighted sum rule is applied to combine
the two matching scores. The authors performed several tests on the FRGC v2 (All
vs. All), producing a verification rate equal to 86.6 % at 0.001 FAR. The identi-
fication rate, computed on a gallery composed of 466 neutral scans (one per subject)
and the rest of the dataset as probe, is equal to 96.2 % at rank one.
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Wang et al. [58] proposed a method called collective shape difference classifier
(CSDC). The 3D scans are first aligned to a common coordinate system. A sign
difference shape map is obtained from the aligned scans and encoded by three
features: Haar, Gabor and LBP. The most discriminant features are used to build
three CSDCs which are fused to obtain a verification score, while for identification,
only the Haar feature-based CSDC is used. Experiment carried out on the FRGC v2
dataset shows that the method performs well both in identification and in authen-
tication scenarios, reaching scores of 98.39 and 98.61 %, respectively, on a gallery
made of the first neutral scan per each subject and the rest as probes.

13.4.2 Advantages and Disadvantages

There are several advantages in combining the 3D data with the corresponding 2D
texture. Stable fiducial points can be more easily detected by exploiting both the
shape and texture information. Moreover, the additional information allows to
perform score fusion, thus coping for errors and noise in both representations.
However, in order to exploit both 3D and 2D data, the two representations must be
geometrically aligned and scaled. This requires either to capture both information at
the same time, by means of a proper acquisition device, or to put in correspondence
the 3D points with 2D image pixels. The latter may become quite complex,
especially if the head pose in the 2D image is unknown.

13.5 Comparing 2D and 2D+3D Face Recognition

In order to establish if, how and when a 3D analysis improves a 2D one, we propose
two face identification methods. The first one implements SIFT (surface invariant
feature transform) [40] and SURF (speeded-up robust features) [7], which are
well-established image descriptors. The second method uses SIFT and SURF to
extract and match 2D feature points and subsequently analyses the located points in
3D, using 3D joint differential invariants to validate the 2D matches.

13.5.1 Matching 2D Face Images

In [15], the combination of SIFT and SURF to extract and match iconic points was
successful in boosting the performance of each descriptor. The SIFT algorithm is
based on a scale-space representation, obtained by filtering the image with LoG
kernels of different sizes. The SIFT points are the maxima and minima of the

318 M. Tistarelli et al.



scale-space-normalized LoG. SIFT points can be efficiently computed in real time
by approximating the scale-space-normalized LoG with a corresponding difference
of Gaussian (DoG) kernel.2 The SURF algorithm is based on a Hessian matrix
approximation, computed from the integral image. This approach drastically
reduces the computation times, also increasing the number of detected keypoints,
but with a poorer localization. The SURF descriptors are built on the distribution of
first-order Haar wavelet responses in the x and y directions rather than the gradient.
This approach is proved to be fast and also increases the robustness of the
descriptor. In particular, Bay and colleagues have shown that SURF descriptors
outperform SIFT in case of blur and scale changes. In [15], tests run on the FRGC
dataset showed that SIFT and SURF are complementary in the localization and
matching of points: only 30 % of the matched SIFT and SURF points are in
common, i.e. they are displaced by less than 4 pixels. SIFT and SURF have
therefore the potential of capturing more information than any of the two methods
alone. Before the extraction and matching of SIFT and SURF points, a simple
preprocessing of the images is required, particularly to segment the oval of the face.
Towards this end, the Viola–Jones algorithm [57] is applied to locate the ROI of the
face. From the ROI of the face, we extract the ellipse centred in the centre of the
ROI and with axes equal to the edges of the ROI. This approximates the face oval.
As SIFT and SURF are very sensitive to local changes in illumination, an histogram
equalization algorithm is also applied (Fig. 13.2).

Once images have been preprocessed, SIFT points are extracted using the
original algorithm implemented by Lowe [40]. For faces in the gallery database,

Fig. 13.2 Preprocessing
pipeline: the face shape is
extracted from the 3D scan
using the ROI computed on
the 2D image

2The difference of Gaussian is defined as the difference of two successive scale-space represen-
tations of the image, divided by the scale difference.
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this step can be performed off-line. Given for each gallery face FG a set of SIFT
points and their description vectors, if a probe face FP comes in, the SIFT points are
extracted and matched against all gallery faces.

SURF points are then extracted, using the OpenSurf code. Similarly to the SIFT
extraction, gallery faces can be processed off-line, obtaining a set of SURF points
and their descriptors for each FG. To compute the distance between the descriptor
vectors, we implemented the same technique used for SIFT with a threshold t = 0.6.
When a probe face FP comes in, its SURF points are extracted and matched against
all gallery faces. For a given probe face FP, following the SIFT and SURF matching
with all the (say N) gallery faces, we are left with N sets M1,…, MN of matching
points. The set with the highest cardinality, corresponding to the gallery face that
has the highest number of SIFT and SURF points that match with the probe face
ones, establishes the match. If there are more than one set with the same cardinality,
then the gallery face with the lowest value of the mean distances between the
descriptor vectors is taken as the matching gallery face (Fig. 13.3).

13.5.2 Blending 2D and 3D Data

From the cropped 2D face image, the face shape is extracted by projecting the
pixels of the face on the 3D scan. Outliers are removed by first computing the
average sampling density of the scan F, composed of n points, as dr Fð Þ ¼
1=n

Pn
j¼1 dr pj

� �
where dr pj

� � ¼ qjq 2 Ur pj
� �� ��� �� and Ur pj

� � ¼ q 2 Fjf
q� pj

�� ��\rg. All points pi 2 F such that dr pið Þ\dr Fð Þ=4 are removed. Noise due
to acquisition errors is attenuated by applying a mean filter along the z-coordinate
(Fig. 13.4).

The proposed iconic extractors and descriptors are based on local information
around a point, and an established correspondence is derived from the similarity of
the descriptor vectors. Neither the SIFT nor the SURF descriptors take into account
the relative position of the points. To take into account the available 3D informa-
tion, the same approach proposed in [15] is used to validate the iconic corre-
spondences by computing the 3D invariants on the corresponding points in the
scans. The invariants we use arise from the moving frame theory [50] and are based
on the relative position of the points and local shape information. The procedure
that leads to the generation of the invariants is discussed in full details in [14]. We
generate invariants that depend on three points at a time. The invariant a triplet of
points generates is a nine-dimensional vector whose first three entries are the
interpoint distances and the last six are functions of scalar and wedge products of
various vectors, as the formulae that follow explain.
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Let p1, p2, p3 2 F and νi be the normal vector at pi. The directional vector v of the
line between p1 and p2 and the normal vector νt to the plane through p1, p2, p3 are
defined as follows:

Fig. 13.3 Example of comparison process between 2D face images from the same subject (left)
and from different subjects (right). First row Extracted SIFT (red stars) and SURF (blue circles)
points. Second and third rows Pairing of corresponding points on the two images. Matched SIFT
points (second row) and SURF points (third row). Fourth row Remaining SIFT and SURF points
after iconic matching
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v ¼ p2 � p1
p2 � p1k k and vt ¼ ðp2 � p1Þ ^ ðp3 � p1Þ

ðp2 � p1Þ ^ ðp3 � p1Þk k :

The zero-order invariants are the 3 interpoint distances Ik (p1, p2, p3) for k = 1, 2, 3:

I1 ¼ p2 � p1k k; I2 ¼ p3 � p2k k and I3 ¼ p3 � p1k k

whereas the first-order invariants are

Jk p1; p2; p3ð Þ ¼ vt ^ vð Þ � vk
vt � vk for k ¼ 1; 2; 3

and

~Jk p1; p2; p3ð Þ ¼ v � vk
vt � vk for k ¼ 1; 2; 3:

Each triplet (p1, p2, p3) of points on the surface is now represented by a
nine-dimensional vector whose coordinates are given by I1; I2; I3; J1; J2; J3; ~J1;

�
~J2; ~J3Þ (Fig. 13.5).

Given a set of SIFT and SURF point features of a probe face FP, and one of a
gallery face FG, we first generate the 3D joint differential invariants for both faces.

If there are n matching points, there will be
n
3

� 	
invariant vectors. The invariant

vectors of corresponding triplets can be compared by computing the Euclidean
distance. The similarity measure between the probe face FP and the gallery face FG

is given by the number of invariant vectors of FP whose distance from the corre-
sponding invariant vector in FG is less than a fixed threshold σ, which can be
established statistically using a training dataset. The matching gallery face is chosen
to be the face with the greatest similarity measure.

Fig. 13.4 Block diagram of the proposed approach blending 2D and 3D data for face recognition
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13.6 Experimental Results

The 2D and the coupled 3D and 2D approaches have been tested on two of the most
widely used face databases, the FRGC v2 and the Bosphorus dataset. While FRGC
is currently the largest available 3D face dataset, Bosphorus includes a wide
variation in head pose and facial expressions, allowing to test the sensitivity of the
algorithms to these variations.

The FRGC dataset was collected at the University of Notre Dame in the 2002–
2003 and 2003–2004 academic years. The data collected in the 2002–2003 academic
year are used for training partitions and the others for validation partitions. The
validation set contains images from 466 subjects, and the number of acquisitions per
subject varies between 1 and 22, for a total of 4007 acquisitions. Each acquisition
consists of a scan and a registered image whose resolution is 640 × 480. Faces were
not captured always from the same distance, which results in different resolutions of
the images and different sampling densities of the scans. There is little variation in
the pose of the subjects, while variations of illumination and expressions are rele-
vant. Expressions are classified as “blank stare” (i.e. neutral), “happiness”, “sad-
ness”, “disgust”, “surprise” and “others”. The 3D images were acquired by a Minolta
Vivid 900/910 series sensor based on a structured light sensor that takes a 640 by
480 range sampling and a registered colour image (Fig. 13.6).

The Bosphorus database contains scans captured from 105 individuals, of which
61 males and 44 females. From the total male subjects, 31 males have a beard and
moustaches. For each subject, there are about 50 scans. Each scan presents either a
different facial expression (anger, happiness, disgust), corresponding to a “face
action unit”, or a head rotation along different axes.

Face data are acquired using a structured light 3D scanner. Acquisitions are
single view, and subjects were made to sit at a distance of about 1.5 m away from
the 3D digitizer. The sensor resolutions in x, y and z (depth) dimensions are 0.3, 0.3
and 0.4 mm, respectively, and colour texture images are with high resolution
(1600 × 1200 pixels).

For each pose, the data points are stored in a file containing the coordinates of
about 30,000 3D points, a colour 2D image of the face texture and a set of landmark
points. The landmarks were manually selected on the 2D images and mapped on the

Fig. 13.5 Four triangles
computed from five points on
the face surface. The shape
normal for each point is also
displayed in green colour
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corresponding 3D points. This database has been usually chosen because it contains
a large number of subjects and an excellent variety of poses and expressions. The
database was divided into a gallery set and a probe set. The gallery consists of one
neutral face scan for each individual. Figures 13.7, 13.8, 13.9 and 13.10 show some
sample 3D scans of the same subject from the Bosphorus database.

Fig. 13.6 Sample face data, both 2D images and 3D scans, from the FRGC database. The same
subject is shown with different facial expressions

Fig. 13.7 3D sample scans from the Bosphorus database. The same subject was captured while
acting different facial action units
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13.7 Discussion

The proposed methods were tested on both the FRGC v2 and the Bosphorus
datasets. Table 13.2 shows the identification results obtained from different probe
sets of the Bosphorus dataset, with varying facial expressions, head pose and
occlusions:

Fig. 13.8 3D sample scans from the Bosphorus database. The same subject was captured with
different head poses

Fig. 13.9 3D sample scans from the Bosphorus database. The same subject was captured while
showing six basic emotions: anger, disgust, fear, happiness, sadness and surprise

Fig. 13.10 3D sample scans from the Bosphorus database. The same subject’s face was captured
with different occlusions
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• Expressions. A subset consisting of 2797 3D scans. Some face scans are
labelled as facial expressions, such as neutral, anger, disgust, fear, happiness,
sadness and surprise. Other scans are labelled as different face action units, such
as “timid smile”.

• YR. A subset consisting of 735 3D scans with a rotation to the right of 10, 20
and 30° from the frontal pose and with a rotation to the left and to the right of 45
and 90°.

• Occlusions. A subset consisting of 381 3D scans with four different types of
occlusions.

As it can be noticed from Table 13.2, the proposed 2D SIFT+SURF and SIFT
+SURF+INV multimodal methods have a similar performance which is superior to
the state of the art. It is worth noting that the images of the Bosphorus dataset are of
good quality and are taken under controlled illumination, which simplifies the
location and matching of SIFT and SURF points. With the probe set YR, which
includes rotations, the proposed methods are not particularly effective. An obvious
explanation is that both SIFT and SURF cannot locate the same points on two scans
of the same subject under different pose. The multimodal method, however,
improves scores by 10 % with respect to the 2D method, so the 3D information is
useful in case of pose differences. With the occlusion probe set, the proposed
multimodal method matches the state of the art and outperforms the combined SIFT
and SURF matching algorithm.

Table 13.3 shows the identification results on the FRGC v2 dataset, with the
identification protocol first versus all, where the probe set (All) is the whole vali-
dation set, while the gallery set (first) consists of the first scan for each subject
labelled as neutral.

The processing time required by some 3D and 3D+2D methods is reported in
Table 13.4. The time required to perform a single comparison varies from one
algorithm to the other. Apart from the computational complexity of each algorithm,

Table 13.2 Comparison of rank-one identification rate (%) on different subsets of the Bosphorus
database

Approach Expressions YR Occlusions

Alyuz et al. [4] 3D – – 93.6

Alyuz et al. [5] 3D 98.2 – –

Colombo et al. [20] 3D – – 87.6

Ocegueda et al. [49] 3D 98.2 – –

Drira et al. [23] 3D – – 87.0

Smeets et al. [53] 3D 97.7 – –

Berretti et al. [10] 3D 95.7 81.6 93.2

Li et al. [36] 3D 98.8 84.1 99.2
SIFT+SURF 2D 99.7 35.8 97.6

SIFT+SURF+INV 2D+3D 99.6 47.5 99.2

Bold indicates the best performance obtained from the set of compared algorithms
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the main reason can be found in the number of data points to be processed and the
representation to be analysed. For example, the algorithm described in [48] is based
on the processing of lattice or mesh representations, where the relation between
neighbouring points is intrinsically embedded in the polygonal structure of the
representation. Other methods, such as processing point clouds, require to explicitly
process individual points to infer the position in 3D space of neighbouring points.

13.8 Conclusions

The recognition of a subject’s identity from a single two-dimensional image is an
ill-posed problem. There are a large number of unknown variables which may radi-
cally change the face appearance and cannot be retrieved from the 2D image alone.
A solution can be achieved either imposing some constraints or increasing the
dimensionality of the available data to be able to cope for themissing dimensions. This
chapter addressed several issues related to the exploration of 3D data captured from a

Table 13.3 Comparison of rank-one identification rate (%) on the FRGC database

Approach First neutral versus all protocol

Berretti et al. [9] 3D 94

Mian et al. [47] 2D+3D 96.2

Al-Osaimi et al. [3] 3D 96.5

Chang et al. [18] 3D 91.9

Spreeuwers [54] 3D 99.0
Li et al. [36] 3D 96.3

SIFT+SURF 2D 88.2

SIFT+SURF+INV 2D+3D 93.2

Bold indicates the best performance obtained from the set of compared algorithms

Table 13.4 Comparison of processing time for some of the considered methods

Method Processor Preprocessing
(sec)

Comparison per
second

Queirolo et al. [51] P4 3.4 GHz – 0.25

Faltemier et al.
[25]

P4 2.4 GHz 7.5 0.45

Al-Osaimi et al. [3] Core 2 Quad 4 10

SIFT+SURF+INV Core i7 3.4 GHz 2.2 196

Wang et al. [58] P4 3.0 GHz 2.2 709

Spreeuwers [54] P4 2.8 GHz 2.5 11,150

Ocegueda et al.
[48]

AMD Opteron
2.1 GHz

15 1,800,000
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subject’s face to facilitate recognition. It has been shown how both 2D and 3D face
image data alone are not sufficient to uniquely and unambiguously determine a sub-
ject’s identity by simply matching probe and gallery images. This is because the 2D
and 3D images contain different information, captured from different properties of the
same face. The 3D data capture the shape of the subject’s face, while the 2D data
capture the photometric properties of the same surface. Therefore, by combining both
3D and 2D face image data, the recognition task can be considerably simplified and
performance improved. An algorithm for 2D facematching, based on the extraction of
SIFT and SURF features, is described. Also, an algorithm for 3D face matching based
on the computation of the surface joint differential invariants has been described. The
blending of both 2D and 3D information is obtained by using the 2D features to guide
the detection of stable surface points for the subsequent computation of the joint
invariants. The proposed algorithm has been tested on the FRGC v2 and Bosphorus
databases showing performances at the state of the art for both 3D and combined 2D
and 3D face recognition. From the analysis presented in this chapter, there are a
number of avenues still to be pursued, for example, to mitigate the effects of illumi-
nation changes and facial expressions in the extraction of stable feature points.

A common criticism to the development of face recognition systems based on
3D data is the cost and consequent rarity of applications allowing to capture 3D
data. However, with the increasing adoption of 3D capturing devices and the
availability of robust algorithms to infer 3D information from 2D face images,
blending 2D and 3D data will become a natural solution to many applications
requiring biometric recognition.
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Chapter 14
Exploiting Score Distributions
for Biometric Applications

Panagiotis Moutafis and Ioannis A. Kakadiaris

Abstract Biometric systems compare biometric samples to produce matching
scores. However, the corresponding distributions are often heterogeneous and as a
result it is hard to specify a threshold that works well in all cases. Score normal-
ization techniques exploit the score distributions to improve the recognition per-
formance. The goals of this chapter are to (i) introduce the reader to the concept of
score normalization and (ii) answer important questions such as why normalizing
matching scores is an effective and efficient way of exploiting score distributions,
and when such methods are expected to work. In particular, the first section
highlights the importance of normalizing matching scores; offers intuitive examples
to demonstrate how variations between different (i) biometric samples, (ii) modal-
ities, and (iii) subjects degrade recognition performance; and answers the question
of why score normalization effectively utilizes score distributions. The next three
sections offer a review of score normalization methods developed to address each
type of variation. The chapter concludes with a discussion of why such methods
have not gained popularity in the research community and answers the question of
when and how one should use score normalization.

14.1 Introduction

The goal of biometric systems is to determine whether or not (two or more) bio-
metric samples have been acquired from the same subject. This problem is usually
formulated as a verification or an open-set identification task. Regardless of the task
or biometric trait used, one matching score is obtained for each pairwise compar-
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ison of biometric samples. This number reflects how similar the matched samples
are. To reach a decision, the matching scores obtained are compared to a threshold.
Ideally, the matching score distributions of the match and nonmatch scores would
be separable. Hence, a single threshold would always yield a correct classification.
In real-life applications, though, these distributions overlap greatly. To address this
problem, many algorithms have been and continue to be developed with the goal of
yielding more robust feature sets with better discriminative properties. For example,
improved landmark detection and illumination normalization can significantly
improve face recognition performance. However, such algorithms cannot always
produce the desired results. Even worse, they cannot address inherent variations
that increase the overlap of the match and nonmatch score distributions. In this
section, we identify the sources of these variations and demonstrate how score
normalization methods can effectively and efficiently improve recognition perfor-
mance. The sources of variations reported in the literature can be grouped into three
categories, as follows:

1. Acquisition conditions: Variations during data acquisition include differences in
pose, illumination, and other conditions. For example, let us assume that we
have a gallery of biometric samples. Let us further assume that all images in the
gallery are frontal facial images captured under optimal illumination conditions.
If a probe that is captured under similar conditions is submitted to the matching
system, we can expect that the matching scores obtained will be high on
average, even if the subject depicted is not part of the gallery. On the other hand,
if another probe is captured under different conditions and then compared with
the gallery, we can expect that the matching scores obtained will be low on
average, even if the subject depicted is part of the gallery. In other words, the
matching score distributions obtained for the two probes are heterogeneous. In
this scenario, it would be difficult to correctly classify the two probes using the
same threshold.

2. Multimodal systems: Unimodal systems are usually vulnerable to spoofing
attacks [1] and prone to misclassifications for several reasons, such as lack of
uniqueness and noisy data [9]. Multimodal biometric systems utilize information
from multiple sources to address these challenges. Such sources may include
different biometric traits (e.g., face, iris, and fingerprint) or different pipelines
that utilize the same input data. However, fusing the information obtained from
different modalities is not easy. The reason is that the matching score distri-
butions produced by different modalities are heterogeneous, even if the gallery
and probe subjects are the same. This effect complicates the fusion process. To
provide visual evidence of this source of variation, we used pairwise matching
scores for the face and iris traits (i.e., 2 × 3,296,028 distances) obtained from the
CASIA-Iris-Distance database [37]. This dataset comprises 2,567 images
obtained from 142 subjects, most of whom are graduate students at CASIA. The
purpose of collecting these images was to promote research on long-range and
large-scale iris recognition. Specifically, the images were acquired using a
long-range multimodal biometric image acquisition and recognition system
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developed by the CASIA group. The same samples were used to extract features
for the face and iris traits, independently. The CASIA group provided us with
the corresponding distances and the formula score = max(distance) − distance
was used to convert them into scores. The corresponding boxplots are depicted
in Fig. 14.1. As illustrated, the corresponding distributions are heterogeneous. In
particular, the face matching scores have a higher median value than the iris
matching scores. To assess the discriminative properties of the two modalities,
we computed the corresponding receiver operating characteristic (ROC) curves.
The area under the curve (AUC) obtained for the face matching scores is
93.48 %, while the AUC obtained for the iris matching scores is 94.17 %. Even
though the two biometric traits yield comparable performance and the features
were extracted using the same images, fusing the corresponding information is
not straightforward.

3. Subject variability: It has been observed that, when assessing the performance of
biometric systems in large populations, some subjects are easier to recognize
than others. Similarly, some subjects can easily spoof the system. This phe-
nomenon was first reported in the literature by Doddington et al. [5]. In that
paper, the subjects were classified as sheep, goats, lambs, and wolves,
depending on the statistical properties of the matching scores obtained for
certain groups of subjects. This subject-specific variability of the matching
scores is known as biometric menagerie and hinders the selection of a threshold
that works well for all subjects.

Why do such methods work? As illustrated, biometric systems are vulnerable to
inherent variations that increase the overlap of the match and nonmatch score
distributions, thus degrading their recognition capability. Regardless of the source
of variation, the challenge that needs to be addressed is the same: the matching

Fig. 14.1 Boxplots of the match and nonmatch scores obtained using two different modalities.
The two boxplots on the left correspond to face matching scores, while the two boxplots on the
right correspond to iris matching scores
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score distributions are heterogeneous. Score normalization methods are techniques
that map the matching scores to a common domain where they are directly com-
parable. In other words, they transform heterogeneous distributions into homoge-
neous ones.

Usually, two or more sources of variations occur at the same time. For example,
a multimodal biometric system employed for large-scale open-set identification
would be subject to all three types of variations. In the subsequent sections, we
focus on one type of variation at a time. Specifically, we constrain our interest to the
task for which the effect of the source of variation is more pronounced and review
score normalization methods that address it more effectively.

14.2 Acquisition Conditions

The open-set identification task (also known as watch-list) consists of two steps:
(i) a probe is matched with the gallery samples, and (ii) a candidate list is returned
with the gallery samples that appear to be the most similar to it. This task can thus
be viewed as a hard verification problem (see Fortuna et al. [7] for a more detailed
discussion). Consequently, the recognition performance of such systems is signif-
icantly affected by variations in the acquisition conditions for both the gallery
samples and the probes. Specifically, each time a probe is compared with a given
gallery, the matching scores obtained follow a different distribution. Score nor-
malization techniques address this problem by transforming the corresponding
matching score distributions to homogeneous ones. Hence, a global threshold can
be determined that works well for all submitted probes. In the following, we review
some of the most popular methods tailored for this task.

Z-score: Due to its simplicity and good performance, this is one of the most
widely used and well-studied techniques. In particular, it is expected to perform
well when the location and scale parameters of the score distribution can be
approximated sufficiently by the mean and standard deviation estimates. When the
matching scores follow a Gaussian distribution, this approach can retain the shape
of the distribution. The most notable limitations of Z-score are as follows: (i) it
cannot guarantee a common numerical range for the normalized scores and (ii) it is
not robust because the mean and standard deviation estimates are sensitive to
outliers.

Median and median absolute deviation (MAD): This method replaces the mean
and standard deviation estimates in the Z-score formula with the median value and
the median absolute deviation, respectively. Therefore, it addresses the problem of
lack of robustness due to outliers. However, it is not optimal for scores that follow a
Gaussian distribution.

W-score [36]: Scheirer et al. proposed a score normalization technique that
models the tail of the nonmatch scores. The greatest advantage of this approach is
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that it does not make any assumptions concerning the score distribution. Also, it
appears to be robust and yields good performance. However, to employ W-score
the user must specify the number of scores to be selected for fitting. While in most
cases it is sufficient to select as few as five scores, selecting a small number of
scores may yield discretized normalized scores. Consequently, it is not possible to
assess the performance of the system in low false acceptance rates or false alarm
rates. On the other hand, selecting too many scores may violate the assumptions
required to invoke the extreme value theorem. Another limitation of W-score is that
it cannot be applied to multisample galleries unless an integration rule is first
employed. As a result, it is not possible to obtain normalized scores for each sample
independently. As it will be demonstrated, a recently proposed framework
addresses this problem and extends the use of W-score to multisample galleries.

Additional score normalization techniques (e.g., tanh-estimators and double
sigmoid function) are reviewed in [8]. Finally, some score normalization methods
have been proposed that incorporate quality measures [27, 28, 33]. However, they
are tailored to the verification task and have not been evaluated for open-set
identification. The aforementioned methods consider the matching scores obtained
for a single probe as a single set. This strategy does not fully utilize the available
information for galleries with multiple samples per subject. To address this prob-
lem, Moutafis and Kakadiaris [15, 16] introduced a framework that describes how
to employ existing score normalization methods (and those to be invented) more
effectively. First, we review the theory of stochastic dominance, which theoretically
supports their framework.

Definition The notation XJFSD Y denotes that X first-order stochastically domi-
nates Y, that is

PrfX[ zg� PrfY [ zg; 8z: ð14:1Þ

As implied by this definition, the corresponding distributions will be ordered.
This is highlighted by the following lemma (its proof may be found in [42]).

Lemma Let X and Y be any two random variables, then

XJFSDY ) E X½ � �E½Y �: ð14:2Þ

An illustrative example of first-order stochastic dominance is depicted in
Fig. 14.1 of Wolfstetter et al. [42] where �FðzÞJFSD �GðZÞ. Note that the first-order
stochastic dominance relationship implies all higher orders [6]. In addition, this
relation is known to be transitive as implicitly illustrated by Birnbaum et al. [4].
Finally, the first-order stochastic dominance may also be viewed as the stochastic
ordering of random variables.
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Algorithm 1 Rank-Based Score Normalization

Input: Sp =
⋃
i{Spi }, f

Step 1: Partition Sp into subsets
1: Cr = { /},∀r
2: for r = 1 : maxi{|Spi |} do
3: for all iεI do
4: Cr =Cr

⋃
Spi,r

5: end for
6: end for

Step 2: Normalize each subset Cr

7: Sp,N = { }
8: for r = 1 : maxi{|Spi |} do
9: Sp,N = Sp,N

⋃
f (Cr)

10: end for
Output: Sp,N

0

/0

Rank-Based Score Normalization (RBSN): For the case of systems with multi-
sample galleries, Moutafis and Kakadiaris [15, 16] proposed a RBSN algorithm that
partitions the matching scores into subsets and normalizes each subset indepen-
dently. An overview of the proposed RBSN framework is provided in Algorithm 1.
The notation used is the following:
Sp the set of matching scores obtained for a given probe p when compared with a

given gallery,
Spi the set of matching scores that correspond to the gallery subject with

identity = i, Spi �Sp,
Spi;r the ranked-r score of Spi ,
Sp,N the set of normalized scores for a given probe p,
Cr the rank-r subset, [rCr ¼ Sp,
|d| the cardinality of a set d,
I the set of unique gallery identities, and
f a given score normalization technique

An illustrative example of how to apply the proposed approach is provided in
Fig. 14.2. Let us assume that there are three subjects in the gallery, namely X, Y, and
Z. Let us further assume that three biometric samples are available for X (denoted
by X1, X2, and X3), two samples are available for Y (denoted by Y1 and Y2), and
three samples are available for Z (denoted by Z1, Z2, and Z3). Finally, let us assume
that a probe is submitted to the system (denoted by pi) and matched with all the
gallery samples. Existing approaches would consider the obtained matching scores
as a single set and normalize them in a single step. In contrast, the first step of the
RBSN framework is to rank the matching scores for each gallery subject inde-
pendently. For instance, if the matching scores obtained for X are S(X1, pi) = 0.7, S
(X2, pi) = 0.8, and S(X1, pi) = 0.6, the corresponding ranks are 2, 1, and 3,
respectively. If for subject Y we obtain S(Y1, pi) = 0.4, S(Y2, pi) = 0.3, then the ranks
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are 1 and 2, while if for subject Z we obtain S(Y1, pi) = 0.2, S(Y2, pi) = 0.1, S(Y1,
pi) = 0.7, then the corresponding ranks are 2, 3 and 1 respectively. The second step
of RBSN is to use the rank information to partition the matching scores into subsets.
Specifically, the matching scores that ranked first comprise the subset C1 = {0.8,
0.4, 0.7}, the ranked second scores comprise the subset C2 = {0.7, 0.3, 0.2}, and the
ranked third scores comprise the subset C3 = {0.6, 0.1}. By invoking the theory of
stochastic dominance, it is straightforward to demonstrate that the rank-based
partitioning imposes the subsets’ score distributions to be ordered (i.e., heteroge-
neous). To illustrate this point, each curve in Fig. 14.3 depicts the probability
density estimate that corresponds to such subsets obtained from a gallery with six
samples per subject. By normalizing the scores of each subset individually, the
corresponding distributions become homogeneous and the system’s performance
improves. Hence, going back to our example, the matching scores of each set C1,

Fig. 14.2 Overview of the rank-based score normalization algorithm. The notation S(X1; pi) is
used to denote the score obtained by comparing a probe pi to the biometric sample 1 of a gallery
subject labeled X

Fig. 14.3 Each curve depicts the probability density estimate corresponding to a Cr subset. Each
subset Cr was constructed by Step 1 of RBSN using the set Sp for a random probe p
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C2, and C3 are normalized independently. Finally, the user might choose to fuse the
normalized matching scores for each subject to consolidate the corresponding
information. The RBNS framework (i) can be used in conjunction with any score
normalization technique and any fusion rule, (ii) is amenable to parallel program-
ming, and (iii) is suitable for both verification and open-set identifications. Two of
the most important implications of this work are that (i) multiple samples per
subject are exploited more effectively compared to existing methods, which yields
improved recognition accuracy and (ii) improvements in terms of identification
performance on a per-probe basis are obtained. We highlight selected results from
[16] to illustrate these two points. First, the impact of the number of same-subject
samples on the recognition performance was assessed. To this end, the UHDB11
dataset [38] was used which was designed to offer a great variability of facial data in
terms of acquisition conditions. Specifically, 72 light/pose variations are available
for 23 subjects, resulting in 2,742,336 pairwise comparisons. Six samples per
subject were selected (one for each illumination condition) to form the gallery and
the rest samples were used as probes. The matching scores used were provided by
Toderici et al. [39]. Random subsets of one, three, and five samples per gallery
subject were selected and each time the ROC curve and the corresponding AUC
values were computed. This procedure was repeated 100 times using the unpro-
cessed, raw matching scores, Z-score normalized scores, and RBSN:Z-score nor-
malization scores. The obtained results are summarized in Fig. 14.4. As illustrated,
RBSN:Z-score utilizes more effectively multiple samples per subject compared to
Z-score. Second, the impact on the separation between the match and nonmatch
scores on a per-probe basis was assessed. To this end, the FRGC v2 dataset was
used that comprises 4,007 samples obtained from 466 subjects under different facial
expressions. The 3D face recognition method of Ocegueda et al. [19] was used to
extract the signatures and the Euclidean distance to compute the dissimilarity

Fig. 14.4 Depicted are the boxplots for: (1) raw scores; (2) Z-score; and (3) RBSN:Z-score, when
one, three, and five samples per gallery subject are randomly selected from UHDB11
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values. The gallery was formed by randomly selecting 1,893 samples from 350
subjects. The rest were used as probes, resulting in an open-set problem. The
Rank-1 errors for probes that belong to the gallery are as follows: (i) raw matching
scores 0.74 %, (ii) Z-score normalized scores 0.74 %, and (iii) RBSN:Z-score
normalized scores 0.66 %. Z-score and most existing approaches consist mostly of
linear transformations, and therefore, they do not alter the order of the matching
scores. Hence, the Rank-1 error for the raw matching scores and the normalized
ones is the same. The RBSN algorithm, however, addresses this problem and has
the potential to improve the accuracy of the rankings as illustrated.

To avoid confusion, we refer the readers to [15, 16] where they can find more
implementation details, insights, experimental results, along with two versions of
the RBSN algorithm that (i) fully utilizes the gallery versus gallery matching scores
matrix and (ii) dynamically augments the gallery in an online fashion.

14.3 Multimodal Systems

Information fusion in the context of biometrics is a very challenging problem.
Therefore, it has been receiving increasing attention over the past few years
(Fig. 14.5). The most common approaches employ feature-level or score-level
fusion. Methods in the first category (i) utilize the feature representation obtained
for each modality to learn a common representation or (ii) learn rules that directly
compare the multimodal representations to compute a matching score. Methods in
the second category compute one matching score per pairwise comparison for each
modality and then they either: (i) learn fusion rules that combine the information
into a single matching score, or (ii) transform the scores to a standard form (i.e.,
score normalization) and then apply fixed fusion rules. In this section, we limit our
scope to score-level fusion methods. The selected approaches were identified after
conducting a systematic search of the literature that covered the years 2011–2014.
To ensure that the latest papers have been included in our search, we focused on

Fig. 14.5 Depiction of the number of papers published during the years 2004–2014 that include
the words biometric and fusion in their title, according to the search engine Google Scholar
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selected conferences in the field of biometrics and computer vision. The venues and
keywords used are listed in Table 14.1. Papers that include at least one keyword in
their title were reviewed in more detail to determine their relevance and interest-
ingness. However, the number of papers selected was relatively small. To address
this problem, we expanded the breadth of our search to the citations of the selected
papers. We group the reviewed methods in three categories: (i) transforma-
tion-based, (ii) classification-based, and (iii) density-based. Methods in the first
category normalize the matching scores and then employ fixed rules to combine
them. Approaches in the second category usually treat the scores as features and
learn a classifier that determines how similar the compared samples are. Finally,
approaches in the third category estimate the probability density functions for each
class. Such methods can be grouped as generative or discriminative. Generative
methods focus explicitly on modeling the matching score distributions using
parametric or nonparametric models. Discriminative approaches, on the other hand,
focus explicitly on improving the recognition rate obtained by the fused scores. An
overview of the categorization of score-level fusion methods is presented in
Fig. 14.6, while an overview of the reviewed papers is offered in Table 14.2.

Transformation-based approaches normalize the matching score distributions of
each modality independently. Consequently, the corresponding distributions
become homogeneous and fixed fusion rules can be applied, which simplifies the
fusion process. Kittler et al. [10] have studied the statistical background of fixed
fusion rules. Two of the most popular ones are the sum and max operators. The
former is implemented by a simple addition under the assumption of equal priors.
Even though this rule makes restrictive assumptions, it appears to yield good
performance as demonstrated in the literature [8, 10]. The latter makes less
restrictive assumptions and it is also very simple to implement. Specifically, the
output of this rule is defined to be the maximum score obtained. Wild et al. [41]
employed a median filtering approach for score fusion to increase robustness to
outliers. Specifically, this method disregards matching scores for which the distance
from the median matching score exceeds a certain threshold. The authors employ

Table 14.1 Conferences
used for identifying fusion
methods. Papers that include
at least one of the keywords in
their title were considered in
our review

Conferences

Conference on Computer Vision and Pattern Recognition
(CVPR)

European Conference on Computer Vision (ECCV)

International Conference on Computer Vision (ICCV)

International Conference of the Biometrics Special Interest
Group (BIOSIG)

International Conference on Biometrics: Theory, Applications
and Systems (BTAS)

International Conference on Biometrics (ICB)

International Joint Conference on Biometrics (IJCB)

Keywords: Fusion, Information, Multimodal, Score
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the proposed method to fuse matching scores obtained from fingerprints with
liveliness values. These values denote the likelihood that the submitted sample is
genuine and does not belong to an attacker seeking to spoof the system. As a result,
this 1-median outlier detection approach alleviates negative effects to the recogni-
tion performance due to matching score anomalies, while it increases security.
Scheirer et al. [35] proposed a statistical meta-recognition approach that relies on
Weibull distribution. Specifically, the proposed approach models the tail of the

Fig. 14.6 Overview of the categorization of score-level fusion approaches

Table 14.2 Overview of score-level fusion papers. The column “Mapping” denotes whether the
operations performed are linear or non-linear, while the column “Learning” denotes whether or not
a method relies on offline training. The column “Model” denotes whether a method is
Transformation-based, Classification-based, or Density-based (i.e., parametric or non-parametric)

Name Year Mapping Learning Model

Wild et al. [41] 2013 Linear Adaptive Transformation

Scheirer et al. [35] 2011 Nonlinear Offline Transformation

Nguyen et al. [18] 2014 Linear Offline Transformation

Mezai et al. [14] 2011 Linear Offline Transformation

Scheirer et al. [34] 2012 Nonlinear Offline Transformation

Zuo et al. [44] 2012 Linear Adaptive Transformation

Poh et al. [31] 2012 Linear Offline Transformation

Makihara et al. [12] 2014 Nonlinear Offline Nonparametric

Makihara et al. [13] 2011 Linear Offline Parametric

Poh et al. [30] 2011 Linear Offline Nonparametric

Liu et al. [11] 2014 Linear Offline Classification

Poh et al. [26] 2012 Nonlinear Offline Classification

Tyagi et al. [40] 2011 Linear Offline Classification
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nonmatch scores obtained for a single probe and invokes the extreme value theorem
to estimate the probability that the top-K matching scores contain an outlier (i.e., a
match score). The decision-making process relies on the rejection rate of the null
hypothesis, which states that a match score is contained in the top-K scores.
Nguyen et al. [18] proposed a new approach based on the Dempster–Shafer theory.
The basic belief assignment (BBA) function is represented as the hypothesis that
the query and template belong (i) to the same class, (ii) to a different class, or
(iii) that the relationship of the two cannot be defined. This model can naturally
incorporate uncertainty measures into the model, which are related to the quality of
the data and other factors. Mezai et al. [14] also proposed a Dempster–Shafer based
algorithm. The fused scores are assigned into three categories: genuine, impostors,
and unclassified. The authors argue that this approach reduces the half total error
rate defined as the average of the false acceptance and false rejection rates.
However, it does not consider that these metrics are affected by the unclassified
data. Scheirer et al. [34] proposed a multiattribute calibration method for score
fusion. Specifically, their approach fits a Weibull distribution to the flipped negative
decision scores of an SVM classifier. Next, it normalizes the transformed scores
using the cumulative density function. The multiattribute fusion is performed using
the L1 norm. That is, for a given query, the target samples that maximize the L1
norm for each of the attributes are found. Unlike existing approaches that weigh all
attributes equally, the proposed method finds the target samples that are most
similar to most but not all the attributes. Zuo et al. [44] proposed a new approach
for matching short-wave infrared (SWIR) and visible data. The images are first
filtered and encoded using well-known filters. The encoded responses are then split
into multiple nonoverlapping blocks and bin histograms are generated. The authors
observed that the zero values obtained for SWIR and visible images are highly
correlated. Hence, they proposed a score normalization method that addresses this
problem. Specifically, the symmetric divergence between a visible template and a
SWIR template is first computed. Then, a normalization factor is defined as the
average difference of the computed divergence and the matching similarity scores
obtained for an SWIR probe template. Finally, the normalized scores are computed
as the divergence of a given visible image and a given SWIR template, minus the
normalization factor and the symmetric divergence computed in the previous two
steps. Poh et al. [31] proposed a client-specific score normalization approach.
Specifically, the authors proposed three discriminative strategies: (i) dF-norm,
(ii) dZ-norm, and (iii) dp-norm. These are defined as the probability of the subject
being a client given the corresponding class mean and variance for the client and
impostor. To address the problem of few client samples, the client-specific mean
score is computed as a weighted average of the client and the global client mean
scores. Moutafis and Kakadiaris [17] proposed a RBSN framework for multibio-
metric score fusion. Unlike existing approaches that normalize the matching scores
from each modality independently, the multi rank-based score normalization
(MRBSN) framework takes into consideration inherent correlations between the
data. The first step is to normalize the matching scores of each modality
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independently as usual. The second step, though, is to join the normalized scores to
form a single set. Finally, the joined set of scores is processed using RBSN. The
implementation is summarized in Algorithm 2. The additional notation is the
following:
SJ the set of matching scores obtained for a given probe using the modality

denoted by J,
SJ,N the set of normalized scores for a given probe,
S the set of joined normalized score sets, S ¼ [JSJ;N ,
SN2 the set of “twice” normalized scores, and
R a given fusion rule.

An illustrative example of how to apply MRBSN is provided in Fig. 14.7. Let us
assume that facial and iris data are available for three subjects, namely X, Y, and
Z. The superscript F denotes that the biometric sample at hand was derived from
face data, while the superscript I is used for the iris data. Let us further assume that
a probe comprising face pFi and iris pIi data is submitted to the system. The matching
score obtained for the face modality for subject X is denoted by SðXF ; pFi Þ, while the
matching score obtained for the iris modality is denoted by SðXI ; pIi Þ. After nor-
malizing the matching scores for the two modalities independently, we obtain the
normalized scores. The normalized scores for the face and iris modalities for subject
X are denoted by SNðXF ; pFi Þ and SNðXI ; pIi Þ, respectively. The normalized scores

Fig. 14.7 Overview of the rank-based score normalization algorithm. The notation S(X1; pi) is
used to denote the score obtained by comparing a probe pi to the biometric sample 1 of a gallery
subject labeled X
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for the two modalities are then joined to form a single set. Since the scores are no
longer distinguished based on the modality, the RBSN algorithm can be employed
to leverage the multiple scores per subject. Experimental results using the CASIA
dataset illustrate the benefits of this approach. Specifically, one sample from each
modality was used for 71 subjects to define the gallery. The rest were used as
probes. This process was repeated 50 times and the matching scores were nor-
malized using Z-score, W-score, MRBSN:Z-score, and MRBSN:W-score. The
mean values of the verification performance obtained at false acceptance rate equal
to 10−2 are 90.90, 91.08, 85.46, and 86.29 %, respectively. For a more detailed
analysis of the implementation and complete results, we refer the readers to [17].

Algorithm 2Multi-Rank-Based Score Normalization

Input: SJ, Z, R
Step 1: Normalize each SJ independently
for all J do
SJ,N = Z(SJ)

end for
Step 2: Join SJ,N

S=
⋃

J S
J,N

Step 3: Employ RBSN
SN2 = RBSN(S,Z)
Step 4: Fuse the “twice” normalized scores
SN2 = R(SN2)
Return SN2

Density-based methods estimate the parameters of the probability density
functions for each class by modeling a function of the likelihood ratio, or represent
the distributions using histogram bins. Methods in the former category yield better
results when the assumed model is correct. However, they fail when this
assumption does not hold. On the other hand, methods in the second category can
handle any type of distribution. Nevertheless, they do not scale well because the
fitting process is computationally expensive. Makihara et al. [12] proposed a
method that uses floating control points (FCP) for binary classification. A stratified
sampling is employed multiple times to initialize a k-means clustering algorithm.
Then, the generalized Delaunay triangulation is applied on the FCP (i.e., the cluster
means) and the posterior distribution (PD) for the FCP is estimated. The PD is
estimated by minimizing an energy function, which includes a smoothness con-
straint. Finally, the PD of the data is represented as an interpolation or extrapolation
of the FCP PD based on the triangulation mesh. Makihara et al. [13] proposed
another method that relies on the Bayes error gradient (BEG) distribution. The
energy function for BEG distributions relies on the data fitness of a multilinear
interpolation for each of the lattice-type control points. Furthermore, the authors
incorporate prior knowledge into the model by strengthening the smoothness
parameters and by adding monotonically increasing constraints upon the BEG
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distribution. The experimental results indicate that the BEG with prior information
is competitive with the sum-rule, even when the size of the client training samples
decreases. Poh et al. [30] proposed a heterogeneous information fusion approach for
biometric systems. Depending on the information sources used, the authors dis-
tinguish two cases: (i) independent and (ii) dependent score-level fusion. For the
first case, the authors proposed a homogeneous fusion scheme (i.e., Naive Bayes),
which is defined as the sum of the logit conditional probabilities of a genuine
matching score given the source information. For the second case, the authors used
the sum of the logit bind probabilities. The conducted experiments demonstrate that
greater performance gains are obtained for the heterogeneous case.

Classification-based approaches do not model the distribution of the matching
scores. Instead, they consider the matching scores as features and use them to train
classifiers that discriminate each class. As a result, they provide a trade-off between
accurate recognition and low time complexity. Liu et al. [11] demonstrated that the
variance reduction equal error rate (VR-EER) model proposed by Poh and Bengio
[22] is theoretically incomplete. To address this limitation, they proposed a new
theoretical approach for score-level fusion. In particular, they demonstrated that
under certain assumptions optimal fusion weights can be derived that maximize the
F-ratio. Hence, the proposed approach can always perform at least as well as the best
expert. Poh et al. [26] proposed a temporal fusion bimodal methodology for video
and audio fusion. The audio is processed using Gaussian mixture model with
maximum aposteriori adaptation (MAP-GMM). The video is processed in two ways.
First, features are extracted from each face and each frame using a discrete cosine
transform. Then, the MAP-GMM is applied to compute matching scores, which are
fused using the mean rule. Second, nonuniform local binary pattern features are
extracted followed by Fisher discriminant projection. The corresponding matching
scores obtained are fused using the max rule. The first approach yields multiple
scores, which are used to compute descriptive statistics. A logistic regression model
is then learned that uses these descriptive statistics in conjunction with the scores
obtained from the second approach. Finally, the sound and video modalities scores
are merged using Naive Bayes. This pipeline allows temporal fusion, improves
recognition performance, and increases robustness to spoof attacks. Tyagi et al. [40]
proposed a new method to estimate the Gaussian mixture models using the maxi-
mum accept and reject criteria. The motivation behind this decision is that, by using
the maximum accept and reject criteria instead of the likelihood, the optimization
process focuses more on the classification itself rather than the fitting of a density
model. As a result, increased recognition performance is achieved.

In summary, transformation-based methods are intuitive, simple, and efficient,
but they do not utilize training data. Density-based approaches can be optimal if the
assumptions made hold (i.e., parametric) or can fit the data relying on computa-
tionally expensive operations (i.e., nonparametric). Finally, classification-based
approaches provide a trade-off between accurate recognition and efficiency.
However, they require vast training data to ensure good generalization properties.
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14.4 Subject Variability

Even when the acquisition conditions are controlled, there are still variations in the
matching score distributions. Specifically, the matching scores obtained for dif-
ferent subjects exhibit different statistical properties. Several papers have studied
this phenomenon and different groupings of the subjects have been proposed. The
most popular are the Doddington’s Zoo [5] and Yager and Dunstone’s [43] clas-
sifications. There are different ways to classify subjects into different groups. For
instance, some methods rely on criteria such as the F-ratio, the Fisher ration, and the
d-prime metric [24], while other methods rely on the training matching scores
dataset to rank and order the subjects [24]. Finally, a biometric menagerie index has
been proposed by Poh and Kittler [25] to assess the severity of the biometric
menagerie.

Two of the most common ways to address the problem of subject variability are
(i) user-specific threshold and (ii) user-specific score normalization. In this section,
we review relevant score normalization approaches that work well in a variety of
datasets. Such methods can be grouped into two categories: (i) parametric and
(ii) learning-based.

14.4.1 Parametric-Based Normalization

Parametric approaches make assumptions concerning the matching score distribu-
tions of each subject (or groups of subjects). That is, they model the corresponding
distributions and then transform them into a standard form.

Z-norm: This method focuses on the nonmatch score distribution. Specifically, it
assumes that the corresponding matching scores follow a Gaussian distribution.
Hence, it estimates the corresponding mean and standard deviation values (e.g.,
using a training set) and uses them to standardize each score obtained for that
subject. The distribution of the normalized nonmatch scores has a mean value equal
to 0 and standard deviation equal to 1.

F-Norm: This approach extends the Z-norm method in the sense that it models
both the match and nonmatch score distributions. It relies on the assumption that the
corresponding distributions are Gaussian. Unlike Z-norm, though, it estimates the
mean values for the match and nonmatch scores, which are then used to normalize
the scores. However, the scarce availability of match scores can yield poor esti-
mates for the mean. To address this problem, the corresponding value is estimated
by interpolating the subject-specific match scores mean and the global match scores
mean. The distribution of the normalized nonmatch scores has a mean value equal
to 0, while the distribution of the normalized match scores has a mean value equal
to 1. A more in-depth analysis is offered by Poh and Bengio [21].
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The Test Normalization (T-Norm) [2] It is a variation of the Z-norm method.
However, it is implemented in an online fashion. That is, the nonmatch mean and
standard deviation estimates are computed at test time using an additional cohort of
impostor samples.

Group-Based Normalization: Unlike existing approaches that normalize the
matching scores on a per subject basis, Poh et al. [29] proposed a group-based
normalization scheme. In particular, they cluster the subjects into groups and use
the corresponding information to normalize the matching scores. As a result, the
paucity of match scores is addressed.

14.4.2 Learning-Based Normalization

Learning-based methods employ statistical models with the goal of decreasing the
overlap of the match and nonmatch score distributions.

Model-Specific Log Likelihood Ratio (MS-LLR): The proposed approach seeks a
transformation that optimizes a likelihood ratio test that relies on the match and
nonmatch score distributions [23]. The resulting score normalization method uti-
lizes both match and nonmatch scores. Under the assumption that the standard
deviation of the two populations is the same, the MS-LLR is equal to Z-norm,
shifted by a constant value that is computed on a per subject basis.

Logistic Regression: One way of normalizing scores is to employ logistic
regression. That is, a training set of match and nonmatch scores can be used to train
a logistic regression model such that the output approximates the posterior prob-
ability of an input being a match score. Another way to utilize the logistic
regression is to decompose the Z-norm or F-norm formulas to different terms. Then,
the regression model is employed to learn optimal weights [32] for each of the
terms.

14.5 Conclusion

Utilizing score distributions has the potential to significantly improve the recog-
nition performance. However, methods such as score normalization must be used
carefully and with discretion because inappropriate use may lead to severely
degraded recognition performance. To determine whether it is suitable to exploit
matching score distributions for a certain application, the first step should be to
investigate whether or not there are inherent variations as described in Sect. 14.1.
Depending on the results obtained from this analysis and the application at hand,
the most appropriate score normalization method should be selected. For example,
in the case of multimodal systems, score normalization methods tailored for fusion
should be used. Nevertheless, regardless of the method selected, the validity of the
corresponding assumptions should be checked. For example, before applying
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Z-score, the user should ensure that the matching scores are approximately
Gaussian distributed, and W-score is applicable only to single-sample galleries. To
illustrate the importance of checking the necessary assumptions, we used the Point
and Shoot Challenge (PaSC) dataset [3] and the face recognition system PittPatt
[20]. The PaSC dataset was designed to assess the performance of biometric sys-
tems when inexpensive camera technologies are used to capture images from
everyday life situations. Specifically, it includes 9,376 images from 293 subjects.
For our experiment, we used 659 samples obtained from 117 subjects as a gallery
and 2,739 samples from 122 subjects as probes. That is, images for five subjects are
not included in the gallery, resulting in an open-set problem. The scores were
normalized with W-score and RBSN:W-score using 30 scores to fit the tail of the
distribution. Since there are multiple samples per gallery, the extreme value theo-
rem requirements are violated for W-score but not for RBSN:W-score. The
obtained ROC curves are depicted in Fig. 14.8. As illustrated, W-score results in
degraded verification performance when compared with the verification perfor-
mance obtained using raw scores. The RBSN:W-score, on the other hand, yields
improvements.

As illustrated in this chapter, appropriate utilization of the matching score dis-
tributions can increase recognition performance of biometric systems in a reliable
manner at a relatively low computational cost.
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Chapter 15
Multispectral Ocular Biometrics

Simona G. Crihalmeanu and Arun A. Ross

Abstract This chapter discusses the use of multispectral imaging to perform
bimodal ocular recognition where the eye region of the face is used for recognizing
individuals. In particular, it explores the possibility of utilizing the patterns evident
in the sclera, along with the iris, in order to improve the robustness of iris recog-
nition systems. Commercial iris recognition systems typically capture frontal
images of the eye in the near-infrared spectrum. However, in non-frontal images of
the eye, iris recognition performance degrades considerably. As the eyeball deviates
away from the camera, the iris information in the image decreases, while the scleral
information increases. In this work, we demonstrate that by utilizing the texture of
the sclera along with the vascular patterns evident on it, the performance of an iris
recognition system can potentially be improved. The iris patterns are better
observed in near-infrared spectrum, while conjunctival vasculature patterns are
better discerned in the visible spectrum. Therefore, multispectral images of the eye
are used to capture the details of both the iris and the sclera. The contributions of
this paper include (a) the assembly of a multispectral eye image collection to study
the impact of intra-class variation on sclera recognition performance, (b) the design
and development of an automatic sclera, iris, and pupil segmentation algorithm, and
(c) the improvement of iris recognition performance by fusing the iris and scleral
patterns in non-frontal images of the eye.
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15.1 Introduction

Rooted in the Latin word oculus that means eye, the term ocular biometrics is used
to bring together all the biometric modalities associated with the eye and its sur-
rounding region. Among these modalities, the iris has been extensively studied in
the biometrics literature. Iris recognition involves the automatic comparison of two
iris images and the generation of a match score that indicates the similarity (or
dissimilarity) between the two images. When imaged in the near-infrared spectrum,
the multilayered iris reveals a rich texture that has been demonstrated to be sig-
nificantly different across individuals [1–4]. Being located behind the cornea and
the aqueous humor and in front of the lens, the iris is well protected yet visible from
the outside. However, the iris may be obstructed by eyelashes, and the external
illuminants can induce specular reflection on its surface since it is located behind a
curved, moist tissue. Further, the iris contracts and dilates to control the amount of
light that enters the eye, thus causing variable nonlinear deformations on its surface.
Despite these challenges, the matching accuracy of iris recognition systems has
been observed to be considerably high when dealing with frontal images of the eye
[5, 6].

A typical iris recognition system has three key modules: (1) The segmentation
module where the iris is localized and extracted from the surrounding structures;
(2) the encoding module where the segmented image is processed in order to extract
a feature set; and (3) a matching module where the feature sets of two irides are
compared. Most methods have been designed to process frontal iris images that are
obtained when the eye is directly gazing into the camera. Regardless of the algo-
rithm employed for segmentation, encoding, and matching, the performance of iris
recognition has been observed to be negatively influenced by factors such as
occlusions due to eyelids and eyelashes, unfavorable lighting conditions, and the
direction of the gaze of the eye with respect to the acquisition device [7]. The
performance of an iris recognition system can be improved by exploiting the
additional information contained in the scleral region in images acquired in non-
cooperative scenarios, with frontal or non-frontal gaze direction. Figure 15.1a
shows an ocular image and the structures that are evident in the sclera.

Fig. 15.1 Ocular image. a Visible spectrum image (RGB) showing the iris and the sclera, as well
as other structures in their vicinity. Blood vessels pertaining to the sclera region are better observed
in the visible spectrum. b NIR spectrum
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The sclera [8] is the outer layer tissue surrounding the eyeball, except in the
frontal portion of the eye where it is connected to the cornea through the sclero-
corneal junction and in the back of the eyeball where it merges into the dural sheath
of the optic nerve. Its primary role is to preserve the round shape of the eyeball
under the pressure of the internal liquids contained in the eye. The sclera is avas-
cular, except for its outer layer, the episclera that contains the blood vessels
nourishing the sclera. It is covered by the conjunctiva that protects the eye against
bacterial infections and lubricates the eye for eyelid closure. A close look at the
white of the eye reveals blood vessels pertaining to both layers: the episclera and
the conjunctiva. The blood vessels pertaining to the sclera region are easily dis-
cernible in the visible spectrum as depicted in Fig. 15.1.

The use of the scleral pattern as a biometric was first suggested in a patent
application submitted in 2005 by Derakshani and Ross and later extended by
Derakshani et al. [9]. Observations on the universality and permanence of scleral
patterns, along with a description of how various factors such as medical conditions
and aging influence the appearance of blood vessels on the sclera surface, are found
in [10]. Several researchers have further investigated this biometric modality.
Initially, comprehensive studies were conducted to demonstrate the potential of
scleral patterns as a stand-alone biometric cue [9–17]. The effort was directed
toward designing various preprocessing techniques to enhance the vasculature seen
on the white of the eye, feature extraction schemes, vascularity assessment tech-
niques [18], sclera image quality assessment methods [19], and multiview sclera
recognition algorithms [20, 21]. The study of conjunctival vasculature as a rela-
tively new biometric cue still requires solutions for issues such as changes in the
viewing angle with respect to the acquisition device; position of illumination with
regard to the eye that can result in strong specular reflections due to the curved
surface of the eyeball and the reflective property of the sclera; and the distance of
the camera to the eye. Ultimately, the focus of the research on sclera biometrics
shifted toward demonstrating the improved recognition performance when iris and
sclera patterns are combined together in a multimodal configuration [22–24]. As the
eyeball deviates away from the camera, the iris information is progressively
occluded, while the scleral information is progressively revealed. Depending on the
richness and the location of the conjunctival vasculature exposed through the sclera,
prominent veins may be visible even when the iris is occluded by eyelashes. As
research on this topic advances, a multimodal system that combines the scleral
patterns with off-axis iris patterns may provide better matching accuracy and
resistance to spoofing compared to a unimodal non-frontal iris recognition system.
Furthermore, when using high-resolution face images and periocular images, the
strengths of unimodal iris, sclera, and face biometrics may be gathered in a
high-accuracy recognition system. Examples of previous efforts in fusion of face
and iris patterns are found in [25–27]. Therefore, the addition of scleral patterns
singled out from face or periocular images may further benefit the recognition
process for improved accuracy and higher difficulty to forge biometric traits.

In this work, we demonstrate that the use of the sclera as a biometric, in a
multimodal configuration, is especially significant in the context of iris recognition,
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when changes in the gaze angle of the eye result in non-frontal iris images that
cannot be easily used for matching [28]. To facilitate this, multispectral images of
the ocular region are necessary since the iris is better discerned in the NIR spec-
trum, while the conjunctival vasculature pattern is better discerned in the visible
spectrum.

Multispectral imaging captures the image of an object at multiple spectral bands
often ranging from the visible spectrum to the infrared spectrum. The visible
spectrum band [29] is represented by three narrow sub-bands called the red, green,
and blue channels that range from 0.4 to 0.7 µm. The infrared spectrum is divided
into NIR (near-infrared), MIR (midwave infrared), FIR (far infrared), and thermal
bands, ranging from 0.7 µm to over 10 µm. As the technology becomes less
expensive, and multispectral imaging becomes more affordable, the use of multiple
spectra will provide more information that can be used efficiently for large-scale
recognition applications when dealing with millions of identities.

A proper segmentation of the iris and sclera region is essential since it influences
the matching performance. In the literature, different methods for non-frontal iris
segmentation that use the information either from near-infrared or from visible
spectra [30, 31] have been presented. We propose a novel automatic segmentation
process that exploits the information from both visible and near-infrared spectra, by
processing multispectral color-infrared (CIR) images of the ocular region.

Our study is the first work that explores combining iris and conjunctiva in a fully
automated manner using multispectral images of the eye. In the proposed approach,
the original image of the eye is first denoised and specular reflections are removed.
The regions of interest, viz. the sclera, the pupil, and the iris, are localized and
segmented from the overall image. Since the goal of the work is to fuse the
information provided by the iris and the sclera, an accurate labeling of pixels
pertaining to both regions is very important. In particular, an accurate detection of
the sclera–eyelid boundary will help extract the veins located on the edge of the
sclera region. Well-known generic segmentation methods, such as thresholding and
clustering, histogram-based segmentation, region growing, and active contours
cannot be trivially used on these images. Therefore, a novel multispectral seg-
mentation routine is described. After segmentation, a blood vessel enhancement
algorithm is applied to the sclera. Next, a keypoint detection technique is used to
localize interest points on the sclera region. The number of matching interest points
between the scleral regions of two eye images is used to generate a match score. At
the same time, the segmented iris is unwrapped and normalized into a rectangular
region. The textural details of the iris are converted into a binary IrisCode after
applying wavelet filters on the rectangular region and quantizing the phasor
response. The matching score between two irides is given by the normalized
Hamming distance between their respective IrisCodes. Finally, score-level fusion is
used to combine the scores from the scleral and iris regions and generate a single
score. The block diagram of the proposed approach is shown in Fig. 15.2.

The article is organized as follows: Sect. 15.2 describes multispectral data
acquisition; Sect. 15.3 presents specular reflection detection and removal; Sect. 15.4
discusses pupil, sclera, and iris segmentation; Sect. 15.5 describes iris feature
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extraction and matching; Sect. 15.6 presents sclera feature extraction and matching;
and Sect. 15.7 presents the experimental results demonstrating the benefits of
combining the two modalities.

15.2 Image Acquisition

In this work, multispectral imaging is employed to visualize and combine the iris
patterns that are better observed in the near-infrared (NIR) spectrum with the
conjunctival vasculature patterns that are better observed in the visible spectrum
(RGB). We initiate this research by applying constraints on illumination, distance to
the camera, position of the head, and gaze direction. The camera and the light are
positioned at approximately 12 inches from the subject’s eye; the head is always
straight, mostly never tilted; and the eyeball moves to the left or to the right, never
gazing up or down. As described in [10, 32], the interface used to collect images of
the eye is composed of a Redlake (DuncanTech) MS3100 multispectral camera, an
ophthalmologist’s slit-lamp mount, and a light source. The multispectral camera
generates images at a resolution of 1040 × 1392 × 3 pixels. The three components,

Fig. 15.2 The block diagram of the proposed method. Iris segmentation and sclera segmentation
were found to be the most critical, yet challenging, component of this work
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the near-infrared (NIR), the red (R), and the Bayer pattern, are stacked one on top of
each other to form the original color-infrared image (CIR). The first 17 columns in
every image had to be removed due to artifacts resulting in images of size
1035 × 1373 × 3. The green (G) and blue (B) components are obtained from the
Bayer pattern component through a demosaicing algorithm. The center wavelength
of each spectral band specified by the manufacturer is as follows: blue—460 nm,
green—540 nm, red—660 nm, and NIR—800 nm. The original color-infrared
image with the three components and the output of the demosaicing algorithm are
displayed in Fig. 15.3. Videos of each eye are captured with the participant gazing
to the right or to the left of the cameras’ optical axis as shown in Fig. 15.4.

• Collection 1. Videos of the right and left eye are captured from 103 subjects
(Table 15.1). While recording each video, the subject is either looking to the left
or to the right. Eight sequential images per eye per gaze direction that exhibit
proper illumination, less specular reflection, and focus are selected from the
video. The total number of images is 3266. For one subject, only data from the
right eye were collected due to medical issues. From 12 of the videos, we could
select only 6 or 7 images due to excessive lacrimation in the eye of the subjects.
Working with sequential images from the same video allows us to bypass the
challenge due to the viewing angle [12]. The process of frame selection ensures
that there is no remarkable change in pose. The camera is focused on the sclera
region. Similarly, the light is directed as much as possible toward the sclera
region with the specular reflection constrained, as much as possible, to the pupil.
As a result, some images exhibit uneven illumination, mostly left-eye-looking-
right (L_R) and right-eye-looking-left (R_L) images where the iris is poorly
illuminated.

• Collection 2. Videos of the right and left eye are captured from 31 subjects
(Table 15.1), with each eye gazing to the right or to the left of the cameras’

Fig. 15.3 a Color-infrared image (NIR-Red-BayerPattern). b NIR component. c Red component.
d Bayer pattern. e RGB image. f Green component. g Blue component. h Composite image
(NIR-Red-Green)
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optical axis. To increase the intra-class variation, the participant is asked to keep
the head still and alternate their gaze direction between looking at the ring of
lights (located to the left or right of the optical axis of the camera) and looking at
the camera (frontal gaze direction) as illustrated in Fig. 15.4. When gazing to the

Fig. 15.4 a Right-eye-looking-left (R_L). b Right-eye-looking-right (R_R). c Left-eye-looking-
left (L_L). d Left-eye-looking-right (L_R)

Table 15.1 High-resolution multispectral ocular database

Collection 1 Collection 2

1 video/left eye
1 video/right eye

1 video/left eye
1 video/right eye

Camera focused on the sclera Camera focused on the iris

8 images/eye/gaze 4 images/eye/gaze

Initial image size: 1040 × 1392 × 3
17 columns removed (artifacts)
Final image size: 1035 × 1373 × 3

Initial image size: 1040 × 1392 × 3
17 columns removed (artifacts)
Final image size: 1035 × 1373 × 3

103 subjects 31 subjects

Dark colored eyes: 37
Mixed colored eyes: 32
Light colored eyes: 34

Dark colored eyes: 11
Mixed colored eyes: 11
Light colored eyes: 9

Total of 3266 images Total of 496 images
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left or to the right, the subject is asked to look at a marker located on the ring of
lights. Four images per eye per gaze direction are selected from each video, after
changing the gaze direction from frontal to side. The total number of images is
496. The multispectral camera and the light are focused on the iris region. Due
to the movement of the eye and the selection process of the frames, the four
ocular images/eye/gaze exhibit variations in viewing angle. Since the light is
directed toward the iris and due to the curvature of the eyeball, in some images,
the sclera region is less illuminated in the corner of the eye opposite the lacrimal
caruncle.

As shown in Table 15.1, both the multispectral collections contain different
colored irides. Based on the Martin–Schultz scale,1 often used in physical
anthropology, we classify the images as light eyes (blue, green gray), mixed eyes
(blue, gray, or green with brown pigment, mainly around the pupil), and dark eyes
(brown, dark brown, almost black). The denoising algorithm employed for the red,
green, blue, and NIR components is the double-density complex discrete wavelet
transform (DDCDWT) presented in [33]. After denoising, all spectral components
(NIR, red, green, and blue) are geometrically resized by a factor of 1/3 resulting in a
final image size of 310 × 411 pixels.

15.3 Specular Reflection

Specular reflections on the sclera have to be detected and removed as they can
impact the segmentation process (described in Sect. 15.4). The light directed to the
eyeball generates specular reflection that has a ring-like shape caused by the shape
of the source of illumination and specular reflection due to the moisture of the eye
and the curved shape of the eyeball. Both are detected in a two-step algorithm that
builds the specular reflection mask and are removed by a fast inpainting procedure
(Fig. 15.5). In some images, the ring-like shape of the illuminant may appear to be
an incomplete circle, ellipse, or an arbitrary curved shape with a wide range of
intensity values. It may be located partially in the iris region, and so its precise
detection and removal are important especially since the iris texture has to be
preserved as much as possible. In the first step of the algorithm, a good detection of
the ring-like shape specular reflection is accomplished by converting the RGB
image into the L*a*b color space followed by range filtering where every pixel in
the image is replaced with the difference between the maximum and minimum
value in a 3 × 3 neighborhood around that pixel. In the second step, a thresholding
process, followed by morphological dilation, is used to detect specular highlights.
The specular reflection is removed by inpainting. The specular reflection mask,
henceforth referred as Specmask, is further used to remove the iris regions that
exhibit specularities in the iris recognition process.

1http://wapedia.mobi/en/Eye_color.
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15.4 Ocular Region Segmentation

The purpose of the work is to combine the information provided by the iris and the
sclera, and therefore, an accurate segmentation of both regions is very important. It
was observed that the different methods of illumination used for the two collections,
one with the light directed to the sclera region and the second one with the light
directed to the iris region as described in Sect. 15.2, drastically influence the seg-
mentation process, especially in images exhibiting low or unevenly illuminated
sclera and iris in the vicinity of the periocular skin. Exposed through the sclera
surface, the conjunctival vasculature appears as dark curved lines of different
thicknesses that intersect each other randomly. Segmenting the sclera is essential to
distinguish the vasculature from similar structures outside the sclera such as
wrinkles and crows feet on the skin, and eyelashes. It is also important to extract an
accurate sclera contour along the eyelids, since the blood vessels may be located on
the margins of the sclera. Regardless of the color of the iris, the algorithm to
segment the sclera, the iris and the pupil have four steps: (1) The sclera–eyelid
boundary detection; (2) pupil region segmentation; (3) iris region segmentation; and
(4) sclera region segmentation.

15.4.1 The Sclera–Eyelid Boundary Detection

It is possible to identify surfaces with different colors, structures, and textures by
analyzing their spectral reflectance patterns. Objects with high content in water are
characterized by high absorption at near-infrared wavelengths range. As explained
in [10], the skin has lesser water content than the sclera and, therefore, exhibits a
higher reflectance in NIR. This property can be captured using the normalized
sclera index which is defined as:

NSIðx; yÞ ¼ NIRðx; yÞ � Gðx; yÞ
NIRðx; yÞþGðx; yÞ ð15:1Þ

Fig. 15.5 Specular reflection. a Original RGB image. b Detected specular reflection. c Original
RGB image with specular reflection removed
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where NIR(x, y) and G(x, y) are the pixel intensities of the NIR and G components
at pixel location (x, y). The skin region appears lighter in the normalized sclera
index compared to the sclera region. Figure 15.6b displays the normalized sclera
index for all three categories of iris as specified by the Martin–Schultz scale: light
colored iris, dark colored iris, and mixed colored iris.

Our proposed method constructs a feature vector composed of the mean and the
standard deviation of every pixel in the normalized sclera index in a neighborhood
(Ri) of radii i 2 {0, 1, 3, 5, 7}. To speed up the process, the algorithm uses the
integral image of NSI (the sum of all the pixels within the rectangular region above
and to the left of pixel (x, y) 2 NSI) as explained in [34]. Further, the algorithm
clusters the pixels into three categories (the sclera, the iris, and the background)
using K-means algorithm, computes the mean value of intensities of each cluster,
and labels the largest connected region from the cluster with the lowest mean value
as the sclera. As shown in Fig. 15.6, for all three categories as specified by the
Martin–Schultz scale, the clustering induces a well-defined sclera–eyelid boundary
and it differs only with respect to the sclera–iris boundary. Algorithm 1 describes
the automatic detection of the sclera–eyelid boundary. The algorithm fails to
properly segment the sclera–eyelid boundary for images with strong uneven illu-
mination or with large areas of specular reflection on the skin surface. Such areas
may represent the largest connected region in Algorithm 1 and may be erroneously
labeled as the sclera (Fig. 15.7). In some images, low illumination and excessive

Fig. 15.6 Detecting the sclera–eyelid boundary. The first row displays the results for dark colored
iris, the second row displays the results for light colored iris, and the third row displays the results
for mixed colored iris: a Original composite image. b The normalized sclera index (NSI). c The
output of the K-means clustering algorithm. d Sclera–eyelid boundary imposed on original
composite image
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mascara resulted in the improper detection of sclera–eyelid contour since part of the
eyelashes were included in the sclera mask. For such images, the sclera–eyelid
boundary was segmented manually (a total of 233 from both collections). The
results for sclera–eyelid boundary segmentation are presented in Table 15.2. The
accuracy of the segmentation process was established based on the visual inspection
of all the images.

Fig. 15.7 Sclera–eyelid boundary errors. An image with strong uneven illumination. a Original
composite image. b Normalized sclera index. c The output of the k-means algorithm

Table 15.2 The accuracy of sclera region segmentation algorithm

Good sclera region L_L (%) L_R (%) R_L (%) R_R (%)

Collection 1 99.38 98.77 98.17 97.32

Collection 2 100 100 100 100

Good sclera–eyelid contour L_L (%) L_R (%) R_L (%) R_R (%)

Collection 1 93.47 97.17 92.57 97.56

Collection 2 96.78 96.78 91.13 96.78
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15.4.2 Pupil Region Segmentation

The algorithm implemented to segment the pupil region exploits two main char-
acteristics of the pupillary region, namely its elliptical shape and the low-intensity
pixel value. First, a set of thresholds are estimated based on the pixel intensities in
the NIR component. Through an iterative process, for each threshold, a set of
connected regions with low-intensity values are found in the image and considered
as possible candidates for the pupil (Fig. 15.8). Each region undergoes a hole filling
process as described in [35] in order to account for improper inpainting of specular
reflection along the iris-pupil boundary. Further, to isolate the pupil region from
eyelashes and other darker regions in the image, a metric M that describes the
roundness of the connected region is calculated. A value of 1 indicates a perfect
circle. In non-frontal iris images, the pupil region is approximated with an ellipse.
Since the pupil is not a very elongated ellipse, the metric M will have a value close
to 1. Algorithm 2 describes the pupil region segmentation. Since the value of the
metric M is based on the area and perimeter values of the connected region, the
algorithm fails to properly segment the pupil region if the inpainting process
drastically changes the elliptical contour of the pupil. It also failed in some images
that had low illumination and excessive mascara. For the images in which the
segmentation of the pupil region failed, constraints on pupil location are added to
the algorithm (after a visual inspection of the output) by searching for the pupil in
the ellipse mask fitted to the sclera region as described in [13]. The results for pupil
segmentation are presented in Table 15.3 and are based on the visual inspection of
images.

0.84 

0.23 

1.22 0.49 

(a) (b)

Fig. 15.8 Pupil region segmentation. a The metric M for the threshold 0.2. b The contour of the
thresholding result imposed on the composite image

Table 15.3 The accuracy of pupil segmentation algorithm

Good segmentation L_L (%) L_R (%) R_L (%) R_R (%)

Collection 1 100 98.89 97.44 97.69

Collection 2 100 100 98.39 100
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15.4.3 Iris Region Segmentation

The perceived shape of the iris is determined by the gaze direction, position of the
camera, and tilt of the head. In non-frontal images of the eye, the iris is no longer
circular, and its contours appear as rotated ellipses [36]. When a subject is asked to
gaze-to-the-right or gaze-to-the-left with respect to the camera, the ensuing change
in position of the head transforms the circular boundaries of the iris and pupil into
ellipses. Our proposed segmentation, Algorithm 3, finds pixels along the limbus
region for ellipse fitting. The method starts with the segmentation of the image of
the eye using the multiscale spectral image segmentation algorithm2 described in
[37]. The outcome, shown in Fig. 15.9b, consists of multiple labeled connected
regions. The iris mask, denoting the pixels corresponding to the iris, is the binary
image obtained as the union of all the connected regions surrounding the pupil, as
shown in Fig. 15.9c. The contour pixels are further processed to remove the eye-
brows, and the results are shown in Fig. 15.9d. To account for occlusion due to
eyelids, the iris mask is limited to the upper and lower limits of the portion of sclera
region in the vicinity of the iris as displayed in Fig. 15.9e. Further, the algorithm
computes the Euclidean distance from the center of the pupil to each remaining
pixel on the contour of the iris mask and determines the standard deviation of these
distances. Based on the standard deviation std of all these Euclidean distances and
40, 55, and 75 percentile values (selected by empirical observation) on all

2http://www.timotheecour.com/software/ncut_multiscale/ncut_multiscale.html.
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Euclidean distances, more or less contour pixels are to be removed. A large stan-
dard deviation suggests that pixels that are not on the limbus boundary are still
included in the iris contour. Therefore, pixels with large Euclidean distances are
removed from the mask. The algorithm fits an ellipse to the remaining pixels on the
contour of the iris and pixels within the ellipse are assigned to the iris mask. The
output of the iris segmentation process was visually inspected. In images with
improper illumination, the ellipse did not tightly fit the contour of the iris. In some
images, it also resulted in under-segmentation due to upper and lower horizontal
limits imposed by the sclera region. Table 15.4 presents the results of the seg-
mentation process. The accuracy of the segmentation was established based on the
visual inspection of all the images. The iris is segmented manually in those images
in which the algorithm failed.

Fig. 15.9 Iris segmentation: a Original image of the eye. b The output of the multiscale spectral
image segmentation, Ilabel. The contour of the pupil (red ellipse) and the dilated pupil (blue ellipse)
are overlapped. c Initial iris mask. d Example of ray starting from the center of the pupil (blue
square) to a pixel located on the contour of the iris mask (the three intersections denoted by green
squares). e The upper and lower limits imposed on the iris mask. f Reliable pixels obtained after
step 4. g Reliable pixels obtained after step 7 and used for ellipse fitting. h Contour of the iris
region

Table 15.4 The accuracy of iris segmentation algorithm

Good segmentation L_L (%) L_R (%) R_L (%) R_R (%)

Collection 1 91.51 89.41 86.73 90.02

Collection 2 83.07 87.91 95.17 93.55
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15.4.4 Sclera Region Segmentation

The segmentation of the iris region provides the sclera–iris boundary, i.e., the
limbus boundary. The segmentation of the sclera region is finalized through a
four-step Algorithm 4. Figure 15.10 presents examples of correct eye image
segmentation.

Fig. 15.10 Examples of correct eye image segmentation
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15.5 Iris Feature Extraction and Matching

The size of the segmented iris varies across images due to implicit morphology,
differences in pupil dilation, and distance from the camera. For comparison pur-
poses, the segmented irides must geometrically be transformed to the same size.
This process is referred to as iris normalization. From its oval shape, the iris is
elliptically unwrapped into a rectangular region with an angular resolution of 360
and radial resolution of 64. Elliptical unwrapping is done based on the algorithm in
[36]. The iris normalization process has to consider the degree of iris dilation or
constriction, and the different centers and orientations of the two ellipses defining
the iris and pupil boundaries Eiris(xi, yi, Mi, mi, θi) and Epupil (xp, yp, Mp, mp, θp),
where (xi, yi) is the center of the iris,Mi, mi, and θi are the major and minor axes and
the tilt of the ellipse fitted to the iris contour, (xp, yp) is the center of the pupil, and
Mp, mp, and θp are the major and minor axes and the tilt of the ellipse fitted to the
pupil contour. To accomplish this, through an iterative process, the double elliptical
unwrapping algorithm maps each pixel found on the pupil boundary to the iris
boundary, while the value of a variable ρ that measures the degree of iris dilation is
increased in each iteration until a stop criterion is reached. The final value of the
variable ρ is used to unwrap the iris region from the original Cartesian coordinates
(where the iris is elliptical/circular) to pseudo-polar coordinates (where the iris is
rectangular). The algorithm begins by initializing the values of ρ and the values of
the angular and radial resolutions. At the beginning of each iteration, the location (x,
y) of a pixel on an ellipse centered in the origin, with the tilt, and the major and
minor axes equal with those of the pupil, is mapped to new locations on ellipses that
use the tilt and the center of the ellipse defining the iris boundary. The values of
major and minor axes of the ellipse defining the iris boundary are increased
according to the value of ρ. The major and minor axes are normalized so that the
value of the radius from the center of the iris to the new pixel location (x, y) can be
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compared to 1. The more the radius approaches the value of 1, the more the pixel (x,
y) approaches the iris boundary. Normalization of the major and minor axes is
necessary to define the stop criteria while iterating. At the end of each iteration, the
value of ρ is increased and the mapping of the location (x, y) is repeated. The iris is
unwrapped using bilinear interpolation. The mapping of pixels from the pupil
boundary to the iris boundary is displayed in Fig. 15.11. The algorithm as presented
in [36] is described in Algorithm 5. An example of normalized iris output is
depicted in Fig. 15.12a. The normalized iris is next subjected to Gabor wavelets, as
described by Daugman [1]. Wavelets are mathematical functions that decompose
the input image into different frequencies at different scales, and therefore, the
image can be represented simultaneously in both the spatial and frequency domains.
Two-dimensional Gabor wavelets G(x, y) consist of sine/cosine oscillations S(x, y),

Fig. 15.11 Double elliptical unwrapping. The pixel from the pupillary boundary is mapped to the
limbus boundary (along the red arrow), while the value of parameter ρ is increased. The red
square is the center of the pupil. The blue square is the center of the iris. Yellow dots are (x,
y) locations of the pixels pertaining to the pupillary boundary for different values of ρ
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the carrier, modulated by a 2D Gaussian W (x, y), and the envelop [38]: G(x, y) = S
(x, y) × W (x, y). The mathematical expression for the carrier is
Sðx; yÞ ¼ ej 2pðu0xþ v0yð ÞþPÞ, where u0 and v0 are spatial frequencies and P is the
phase of the sinusoid. The mathematical expression for the envelop is

Wðx; yÞ ¼ Ke�pða2ðx�x0Þ2r þ b2ðy�y0Þ2r Þ, where (x, y) is location of the peak of the
function, K is the scale parameter for the amplitude, a and b are the scaling
parameters, and r represents the rotation operation [38]. The values of the various
parameters used in our work are a2 = 0.008, b2 = 0.004, u0 = 0, v0 = 0.07, P = 0,
K = 1, and (x0, y0) = (0, 0). The normalized image is convolved with the Gabor
wavelet defined above, and the ensuing complex phasor response is quantized into
two bits per pixel via a quantization process. The phase quantization is based on the
location of the phase vector in one of the four quadrants in a complex plane. The
values of the two bits are given by the sign of the real and imaginary part of the
quadrant where the phase resides. An example of iris template is shown in
Fig. 15.12c. In this work, the normalized Hamming distance is used for matching.
Given two iris templates T1 and T2, the normalized Hamming distance is defined as
the sum of all the disagreeing bits divided by N, where N is the number of bits
included in both masks. The bits from the non-iris artifacts represented in the iris
masks (mask1 and mask2) are excluded. The mathematical expression of the nor-
malized Hamming distance as a dissimilarity measure for iris templates is as
follows:

Fig. 15.12 Examples for iris normalization and iris template: a Normalized iris. b The mask for
occlusions. c Iris template
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HD ¼
PN

i¼1 T1i � T2i\mask1i\mask2ið Þ
N

ð15:2Þ
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15.6 Sclera Feature Extraction and Matching

An examination of the three components of the RGB image suggests that the green
component has the best contrast between the blood vessels and the background.
Therefore, the green component of the segmented sclera image is preprocessed
using a selective enhancement filter for lines as described in [39]. The method
requires the convolution of the image with multiple 2D Gaussian distributions with
standard deviation values chosen according to the maximum and minimum blood
vessel diameters. For each convolution, the eigenvalues corresponding to the
Hessian matrix are used to enhance the lines present in the image. The output is
displayed in Fig. 15.13. In [10], three feature extraction schemes are presented. The
best results were obtained when speeded up robust features (SURF) algorithm [40]
was used. SURF is a scale and rotation invariant detector and descriptor of point
correspondences between two images. These points called “interest points” are
prominent structures such as corners and T-junctions on the image. The algorithm
detects the interest points and then describes them using the neighboring pixels. In
our work, SURF is applied to the enhanced blood vessel images. The similarity
between two images is assessed using the Euclidean distance as a measure between
their respective corresponding interest points. Only Euclidean distances greater than
0.1 are considered, and the number of corresponding interest point pairs is counted.
Figure 15.14 displays the corresponding interest points between images of the same
eye and between images of two different eyes.

15.7 Score-Level Fusion of Iris and Scleral Patterns

The purpose of this work is to demonstrate that iris recognition performance in
non-frontal images of the eye may be improved by adding information pertaining to
the sclera region. The performance of the iris recognition and sclera recognition is

Fig. 15.13 Blood vessel enhancement on the segmented sclera region. a Green component of the
segmented sclera. b Result of the enhancement of blood vessels. c The complement image of the
enhanced blood vessels
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presented individually for both collections, followed by the fusion results. There are
different ways in which the matching scores of iris and scleral patterns can be fused.
In this work, three fusion methods are considered: simple sum rule, maximum rule,
and minimum rule. Sclera matching scores are normalized in the interval [0, 1]. Iris
matching scores are transformed from dissimilarity to similarity scores by sub-
tracting the score values from 1.

Figure 15.15a presents the results for iris recognition for collection 1 (103
subjects). The ROC curve shows an EER of 0.5 % for left-eye-looking-left (L_L),
3.7 % for left-eye-looking-right (L_R), 3.4 % for right-eye-looking-left (R_L), and
0.78 % for right-eye-looking-right (R_R). The distributions of scores for both eyes
and both gaze directions show some degree of overlap between the genuine and
impostor scores. The higher EER values for L_R and R_L are caused by the
anatomical structures of the face (mainly the nose) that obstructs the light directed
to the eye. Figure 15.15b presents the results for sclera recognition for collection 1
(103 subjects). The ROC curve shows an EER of 1.1 % for left-eye-looking-left
(L_L), 0.8 % for left-eye-looking-right (L_R), 1.15 % for right-eye-looking-left
(R_L), and 0.55 % for right-eye-looking-right (R_R).

Table 15.5 presents the results when fusing the scores for collection 1 (103
subjects). It can be observed that the EER is lowered to under 0.67 % for both eyes
and both gaze directions when the score are fused using the simple sum rule. For
L_L and R_R, the EER is improved by an order of magnitude or more. For L_R and
R_L, the EER is improved by a factor of 1.7 or more. This indicates that iris
recognition performance is improved when details pertaining to sclera texture are
also considered. When the maximum rule is used for fusion, iris recognition is
improved by a factor of 2 for L_L, 5.3 for L_R, 2.19 for R_L, and 2 for R_R. When

Fig. 15.14 The output of the SURF algorithm when applied to enhanced blood vessel images.
The complement of the enhanced blood vessel images and a subset of the first 10 pairs of
corresponding interest points are displayed for better visualization. a Same eye, the total number of
interest points: 112 and 108. b Different eyes, the total number of interest points: 112 and 64
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the minimum rule is used for fusion, iris recognition performance is improved for
L_R and R_L, but no significant improvement results are obtained for L_L and R_R.

Figure 15.16a presents the results for iris recognition for collection 2 (31 sub-
jects). The ROC curve shows an EER of 0.55 % for left-eye-looking-left (L_L),
3.3 % for left-eye-looking-right (L_R), 2.7 % for right-eye-looking-left (R_L), and
0 % for right-eye-looking-right (R_R). The distributions of scores for both eyes and
both gaze directions show some degree of overlap between the genuine and
impostor scores. Similar to the results for collection 1, the values of the EER for
L_R and R_L are higher compared with the values of EER for L_L and R_R.
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Fig. 15.15 Collection 1,
ROC curves for both eyes and
both gaze directions:
a Results for iris recognition.
b Results for sclera
recognition

Table 15.5 The EER (%) results of the fusion of iris patterns (Hamming distance) and scleral
patterns (SURF) for collection 1

Fusion rule L_L (%) L_R (%) R_L (%) R_R (%)

Simple sum rule 0.055 0.35 0.67 0.0025

Maximum rule 0.25 0.69 1.55 0.38

Minimum rule 1.1 0.85 1.1 0.55
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Figure 15.16b presents the results for sclera recognition for collection 2 (31 sub-
jects). The ROC curve shows an EER of 4.8 % for left-eye-looking-left (L_L),
3.5 % for left-eye-looking-right (L_R), 3.25 % for right-eye-looking-left (R_L), and
2.75 % for right-eye-looking-right (R_R). The higher values for EER compared
with the results for collection 1 (103 subjects) are due to the significant intra-class
variation induced by the participant’s change in gaze direction and the image
selection method described in Sect. 15.2.

Table 15.6 presents the iris and sclera matching scores of fusion results for
collection 2 (31 subjects). Similar to the results for collection 1, it can be observed
that the EER is especially lowered for both eyes and both gaze directions in the case
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Fig. 15.16 Collection 2,
ROC curves for both eyes and
both gaze directions:
a Results for iris recognition.
b Results for sclera
recognition

Table 15.6 The EER (%) results of the fusion of iris patterns (Hamming distance) and scleral
patterns (SURF) for collection 2

Fusion rule L_L (%) L_R (%) R_L (%) R_R (%)

Simple sum rule 0.05 0.9 0.5 0.04

Maximum rule 0.14 0.9 1.18 0.025

Minimum rule 2.52 4.9 2.3 2.25

15 Multispectral Ocular Biometrics 377



of simple sum rule and maximum rule. The performance is not improved when the
minimum rule is used for fusion.

The error rates of unimodal sclera can be observed to be lower for the first
collection (103 subjects) compared to the error rates of the second collection (31
subjects). This is explained by two factors: (1) different illumination methods—in
the first collection, the light is directed at the sclera region, and in the second
collection, the light is directed at the iris, with the sclera being less illuminated
(curved eyeball); (2) The intra-class variation, mainly the very small variations in
the viewing angle, is present in the second collection. The error rates of unimodal
iris for the second collection are slightly improved perhaps due to the better illu-
mination compared to the less illuminated iris in the first collection. Hence, in the
case of side gaze, small differences in the amount of light do not considerably
influence the error rates.

15.8 Summary

In this work, we demonstrate that the performance of iris recognition may be
improved in non-frontal images of the eye by using scleral texture in addition to the
iris pattern. Since iris details are better observed in near-infrared spectrum and the
blood vessels on the sclera are seen in visible spectrum, multispectral images of the
eye (visible and near-infrared spectrum) are used in this work. The sclera, the iris,
and the pupil are automatically segmented, and the sclera and iris features are
extracted and then matched. The matching accuracy of iris recognition and sclera
recognition is evaluated individually in non-frontal images of the eye. Then, a
score-level fusion scheme is used to combine the results of iris and sclera matching.
Two datasets of multispectral ocular images are used in this work. In both datasets,
the results show an improvement in matching accuracy when the simple sum rule
and maximum rule are used for fusion. The results suggest that further exploration
into ocular biometrics as an entity (combining scleral and iris patterns with peri-
ocular or face information [41]) may be of benefit for human recognition in
non-ideal, unconstrained environments. A limitation of this work is the use of
multispectral devices that can make the approach expensive. The technique has
been tuned for this specific database although it generalizes easily across eye colors,
and should be verified on images obtained using other types of multispectral
devices. Further investigation into the sclera biometric modality is required in order
to address issues related to less controlled image acquisition, occlusions, and larger
disparity in viewing angle between the images of the eye that are to be compared.
To obtain the database used in this work, please send an email to rossarun@cse.
msu.edu.
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