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Artificial Neural Network Modelling:
An Introduction

Subana Shanmuganathan

Abstract While scientists from different disciplines, such as neuroscience, medi-
cine and high performance computing, eagerly attempt to understand how the
human brain functioning happens, Knowledge Engineers in computing have been
successful in making use of the brain models thus far discovered to introduce
heuristics into computational algorithmic modelling. Gaining further understanding
on human brain/nerve cell anatomy, structure, and how the human brain functions,
is described to be significant especially, to devise treatments for presently described
as incurable brain and nervous system related diseases, such as Alzheimer’s and
epilepsy. Despite some major breakthroughs seen over the last few decades neu-
roanatomists and neurobiologists of the medical world are yet to understand how
we humans think, learn and remember, and how our cognition and behaviour are
linked. In this context, the chapter outlines the most recent human brain research
initiatives following which early Artificial Neural Network (ANN) architectures,
components, related terms and hybrids are elaborated.

1 Introduction

Neuroanatomists and Neurobiologists of the medical world are yet to discover the
exact structure and the real processing that takes place in human nerve cells and to
biologically model the human brain. This is despite the breakthroughs made by
research ever since the human beings themselves began wondering how their own
thinking ability happens. More recently, there has been some major initiatives with
unprecedented funding, that emphasise the drive, to accelerate research into
unlocking the mysteries of human brain’s unique functioning. One among such big
funding projects is the Human Brain Project (HBP) initiated in 2013. The HBP is a
European Commission Future and Emerging Technologies Flagship that aims to
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understand what makes the brain unique, the basic mechanisms behind cognition
and behaviour, how to objectively diagnose brain diseases, and to build new
technologies inspired by how the brain computes. There are 13 subprojects
(SPs) within this ten-year one-billion pound HBP programme. The scientists
involved in the HBP accept that the current computer technology is insufficient to
simulate complex brain functioning. However, they are hopeful of having suffi-
ciently powerful supercomputers to begin the first draft simulation of the human
brain within a decade. It is surprising that despite the remarkable and ground
breaking innovations achieved in computing leading to transformations never seen
in human development, even the modern day’s most powerful computers still
struggle to do things that humans find instinctive. “Even very young babies can
recognise their mothers but programming a computer to recognise a particular
person is possible but very hard.” [1]. Hence, SP9 scientists of HBP are working on
developing “neuromorphic computers-machines” that can learn in a similar manner
to how the brain functions. The other major impediment in this regard is the
humongous amount of data that will be produced, which is anticipated to require
massive amount of computing memory. Currently, HBP scientists of The
SpiNNaker project at the University of Manchester are building a model, which will
mimic 1 % of brain function. Unlocking brain functioning secrets in this manner is
anticipated to yield major benefits in information technology as well. The advent of
neuromorphic computers and knowledge could lead to the production of computer
chips with specialised cognitive skills that truly mimic those of the human brain,
such as the ability to analyse crowds, or decision-making on large and complex
datasets. These digital brains should also allow researchers to compare healthy and
diseased brains within computer models [2].

Meanwhile, across the Atlantic, the unveiling of Brain Research Through
Advancing Innovative Neurotechnologies—or BRAIN in the USA by President
Obama took place in 2013 [3]. This was announced to keep up with the brain
research initiated in Europe. The BRAIN project was said to begin in 2014 and be
carried out by both public and private-sector scientists to map the human brain. The
President announced an initial $100 m investment to shed light on how the brain
works and to provide insight into diseases such as Alzheimer’s, Parkinson’s, epi-
lepsy and many more. At the White House inauguration, President Obama said:
“There is this enormous mystery waiting to be unlocked, and the BRAIN initiative
will change that by giving scientists the tools they need to get a dynamic picture of
the brain in action and to better understand how we think and learn and remember.
And that knowledge will be transformative.” In addition, the US President as well
pointed out a lack of research in this regard, “As humans we can identify galaxies
light years away, we can study particles smaller than the atom, but we still haven’t
unlocked the mystery of the 3 lb of matter that sits between our ears,” [3].

With that introduction to contemporary research initiatives to unlock unique
human brain functioning, Sect. 2 looks at the early brain models in knowledge
engineering following which initial ANN models and their architectures are elab-
orated. In the final section some modern day ANN hybrids are outlined.
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2 Early Brain Models in Knowledge Engineering

Using the Brain models developed based on our understanding thus far made on
human like thinking, researchers in “Knowledge Engineering” continue to intro-
duce functional models simulating the heuristic ability that is still considered as a
unique characteristics of human intelligence. “We [Knowledge Engineers] are
surprisingly flexible in processing information in the real world…” [4]. As reiter-
ated by HRP as well as the US brain research initiatives of this decade, the dis-
covery of actual processing in the human brain (consisting of 1011 neurons,
participating in perhaps 1015 interconnections over transmission paths) seems to be
very unlikely to be made in the near future. Nevertheless, the functional models of
the knowledge engineers and combinations of these models have been put into
successful use in knowledge representation and processing, and are known as
Artificial Intelligence (AI) in computing. In the last few decades, there has been
considerable research carried out with an appreciable amount of success in using
knowledge-based systems for solving problems those needed heuristics.

Brain functions are mainly processed in the form of algorithms suggested John
Holland (1975) [5], who was the first to compare the heuristic methods for problem
solving with nature’s evolution process using genetic approaches and genetic
algorithms. Genetic algorithms solve complex combinational and organizational
problems with many variants i.e., genes, chromosomes, population, mutation. In
[6], it is explained that the brain is capable of acquiring information-processing
algorithms automatically. This kind of elucidation not only forms a basis for
understanding the growth of the brain and the factors needed for mental growth, but
also enables us to develop novel information processing methods. Expert systems
are an instance of rule-based expressions of knowledge, represented in the condi-
tional mathematical form of “if and then” causal relationships.

In the last few decades, the performance of conventional computing has been
growing spectacularly [1]. The reasons for this have been; the falling cost of large
data storage devices, the increasing ease of collecting data over networks, the
development of robust and efficient machine learning algorithms to process this
data along with the falling cost of computational power. They have indeed enabled
the use of computationally intensive methods for data analysis [7]. The field of
“data mining” also called as “knowledge discovery” is one among them that has
already produced practical applications in many areas. i.e., analysing medical
outcomes, predicting customer purchase behaviour, predicting the personal interests
of Web users, optimising manufacturing process, predicting trends in stock markets,
financial analysis and sales in real estate investment appraisal of land properties,
most of them using past observational data.

“Traditionally, human experts have derived their knowledge that is described as
explicit from their own personal observations and experience. With advancing
computer technology, automated knowledge discovery has become an important AI
research topic, as well as practical business application in an increasing number of
organisations…” [8]. Knowledge discovery has been identified as a method of
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learning the implicit knowledge that is defined as previously unknown, non-trivial
knowledge hidden in the past data or observations.

Above all, our expectations from computers have been growing. “In 40 years’
time people will be used to using conscious computers and you wouldn’t buy a
computer unless it was conscious….” [9] as envisioned by Aleksander in 1999.

3 Artificial Neural Networks and Their Components

An Artificial Neural Network (ANN) in simple terms is a biologically inspired
computational model, which consists of processing elements (called neurons), and
connections between them with coefficients (weights) bound to the connections.
These connections constitute the neuronal structure and attached to this structure are
training and recall algorithms. Neural networks are called the connectionist models
because of the connections found between the neurons [10].

Deboeck and Kohonen [11] described Neural networks (NNs) as a collection of
mathematical techniques that can be used for signal processing, forecasting and
clustering and termed it as non-linear, multi-layered, parallel regression techniques.
It is further stated that neural network modelling is like fitting a line, plane or hyper
plane through a set of data points. A line, plane or hyper plane can be fitted through
any data set to define the relationships that may exist between (what the user
chooses to be) the inputs and the outputs; or it can be fitted for identifying a
representation of the data on a smaller scale.

The first definition describes the ANN from its similarities to the human brain
like functioning (Fig. 1) and the latter (Kohonen) in an application perspective.

It is truly accepted inclusive of recent brain research initiatives that the human
brain is much more complicated as many of its cognitive functions are still
unknown. However, the following are the main characteristics considered and
described as common functions in real and artificial networks:

Fig. 1 Biological neuron
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1. Learning and adaptation
2. Generalisation
3. Massive parallelism
4. Robustness
5. Associative storage of information
6. Spatiotemporal information processing.

Intrigued by the potentials of the ANNs, professionals from almost all fields are
finding methods by way of creating new models using all possible combinations of
symbolic and sub-symbolic paradigms, many of them with Fuzzy techniques to suit
a variety of applications within their own disciplines.

McCulloch and Pitts were the first to introduce a mathematical model of a
neuron in 1943. They continued their work [12] and explored network paradigms
for pattern recognition despite rotation angle, translation, and scale factor related
issues. Most of their work involved simple neuron model and these network sys-
tems were generally referred to as perceptrons.

The perceptron model of McCulloch and Pitts [12] created using Pitts and
McCulloch [13] neuron is presented in Fig. 2. The Σ unit multiplies each input x by
a weight w, and sums the weighted inputs. If this sum is greater than a predefined
threshold, the output is one, otherwise zero. In general, they consist of a single
layer. In 1958, using this neuron model of Pitts and McCulloch [13], Rosenblatt
made a network with the aim of modelling the visual perception phenomena. In the
1960s, these perceptrons created a great interest and in 1962, Rosenblatt proved a
theorem about perceptron learning. He showed that a perceptron could learn any-
thing that it could represent. Consequently Widrow [14, 15], Widrow and Angell
[16], and Widrow and Hoff [17] demonstrated convincing models. The whole world
was exploring the potential of these perceptrons. But eventually as these single
layer systems found to fail at certain simple learning tasks, researchers lost interest
in ANNs. Consequently, Minsky [18] proved that single layer perceptrons had
severe restrictions on their ability to represent and learn [18]. He further doubted a
learning algorithm could be found for multi-layer neural networks. This caused
almost an eclipse to ANN research and in turn made the researchers to develop
symbolic AI methods and systems i.e., Expert Systems.

Later, from 1977 onwards, new connectionist models were introduced. Such as
associative memories [19, 20], multi-layer perceptron (MLP) and back propagation
learning algorithm [21, 22]; adaptive resonance theory (ART) [23, 24],

Fig. 2 Perceptron neuron of Pitts and McCulloch [12]
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self-organising networks [25] and more. These new connectionist models drew the
interest of many more researchers into sub-symbolic systems and as a result many
more networks have been designed and used since then: i.e., Bi-directional asso-
ciative memory introduced by [26], radial basis function by [27], probabilistic
RAM neural networks of [28, 29], fuzzy neurons and fuzzy networks presented by
[30, 31], oscillatory neurons and oscillatory neural networks [32–34] and many
more. Based on these different neuron and network models enormous applications
have been developed and successfully used in invariably all disciplines.

ANNs are increasingly being used across a variety of application areas where
imprecise data or complex attribute relationships exist that are difficult to quantify
using traditional analytical methods [10]. Research elaborated in the following
chapters of this book show the more recent trends in ANN applications and the
success achieved in using them.

The following are the parameters that describe a neuron based on Fig. 3.

1 Input connections (inputs): x1, x2, …, xn. There are weights bound to the input
connections: w1, w2, …, wn. One input to the neuron, called the bias has a
constant value of 1 and is usually represented as a separate input, let’s refer to as
x0, but for simplicity it is treated here just as an input, clamped to a constant
value.

2 Input functions f: Calculates the aggregated net input signal to the neuron
u = f (x, w),
where x and w are the input and weight vectors correspondingly;
f is usually the summation function; u = Σi = 1, nxi.wi

3 An activation (signal) function s calculates the activation level of the neuron

a ¼ s uð Þ:
4 An output function calculates the output signal value emitted through the output

(the axon) of the neuron; o = g(a); the output signal is usually assumed to be
equal to the activation level of the neuron, that is, o = a.

Fig. 3 A model of an artificial neuron
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Artificial neural networks are usually defined by the following four parameters:

1 Type of neuron (or nodes as the neural network resembles a graph) i.e.,
Perceptron Pitts and McCulloch [13], Fuzzy neuron Yamakawa [30]

2 Connectionist architecture: The organisation of the connections between the
neurons is described as the architecture. The connections between the neurons
define the topology of the ANN. i.e., fully connected, partially connected
(Fig. 4).
Connectionist architecture can also be distinguished depending on the number
of input and output neurons and the layers of neurons used

(a) Autoassociative: Input neurons are the output neurons i.e., Hopfield network
(b) Heteroassociative: There are separate input neurons and output neurons i.e.,

Multi-layer perceptron (MLP), Kohonen network.
Furthermore, depending on the connections back from the output to the input
neurons, two different kinds of architectures are determined:

(a) Feedforward architecture: There are no connections back from the output
neurons to the input neurons. The network does not remember of its previous
output values and the activation states of its neurons.

(b) Feedback architecture: There are connections back from the output neurons
to the input neurons and as such the network holds in memory of its previous
states and the next state depends on current input signals and the previous
states of the network. i.e., Hopfield network.

3 Learning algorithm: is the algorithm, which trains the networks. Lots of research
have been carried out in trying various phenomena and it gives the researchers
an enormous amount of flexibility and opportunity for innovation and discussing
the whole set of Learning algorithms is far beyond the scope of this chapter.

Fig. 4 A simple neural network with four input nodes (with an input vector 1, 0, 1, 0), two
intermediate, and one output node. The connection weights are shown, presumably as a result of
training

Artificial Neural Network Modelling: An Introduction 7



Nevertheless, the learning algorithms so far used are currently classified into
three groups.

(a) Supervised learning: The training examples consist of input vectors x and the
desired output vectors y and training is performed until the neural network
“learns” to associate each input vector x to its corresponding output vector y
(approximate a function y = f(x)). It encodes the example in its internal
structure.

(b) Unsupervised learning: Only input vectors x are supplied and the neural
network learns some internal feature of the whole set of all the input vectors
presented to it. Contemporary unsupervised algorithms are further divided
into two (i) noncompetitive and (ii) competitive.

(c) Reinforcement learning: Also referred to as reward penalty learning. The
input vector is presented and the neural network is allowed to calculate the
corresponding output and if it is good then the existing connection weights
are increased (rewarded), otherwise the connection weights involved are
decreased (punished).

4 Recall algorithm: By which learned knowledge is extracted from the network.

The following are the contemporary applications of ANN in general:

1 Function approximation, when a set of data is presented.
2 Pattern association.
3 Data clustering, categorisation, and conceptualisation.
4 Learning statistical parameters.
5 Accumulating knowledge through training.
6 “Extracting” knowledge through analysis of the connection weights.
7 Inserting knowledge in a neural network structure for the purpose of approxi-

mate reasoning.

The problem solving process using the neural networks actually consists of two
major phases and they are:

(i) Training phase: During this phase the network is trained with training exam-
ples and the rules are inserted in its structure.

(ii) Recall phase: When new data is fed to the trained network the recall algorithm
is used to calculate the results.

The problem solving process is described as mapping of problem domain,
problem knowledge and solution space into the network’s input state space,
synaptic weights space and the output space respectively. Based on recent studies
construction of a neural network could be broken into the following steps [10]:

(1) Problem identification: What is the generic problem and what kind of
knowledge is available?

(2) Choosing an appropriate neural network model for solving the problem.
(3) Preparing data for training the network, which process may include statistical

analysis, discretisation, and normalisation.
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(4) Training a network, if data for training is available. This step may include
creating a learning environment in which neural networks are “pupils”.

(5) Testing the generalisation ability of the trained neural network and validating
the results.

In recent years, neural networks have been considered to be universal function
approximators. They are model free estimators [35]. Without knowing the type of
the function, it is possible to approximate the function. However, the difficult part of
it is, how to choose the best neural network architecture. i.e., to choose the neural
network with the smallest approximation error. In order to understand further, one
should look into the structure of the networks that have evolved over the years and
the ones that are currently in use (Fig. 5).

The perceptron network proposed by Rosenblatt [36], one of the first network
models, made using the neuron model of McCulloch and Pitts [13], was used to
model the visual perception phenomena. The neurons used in the perceptron have a
simple summation input function and a hard-limited threshold activation function or
linear threshold activation function. The input values are in general real numbers
and the outputs are binary. The connection structure of this perceptron is feed
forward and three-layered. The first layer is a buffer, in which the sensory data is
stored. The second layer is called the ‘feature layer’ and the elements of the first
layer are either fully or partially connected to the second layer. The neurons from
the second layer are fully connected to neurons in the output layer, which are also
referred to as the “perceptron layer”. The weights between the buffer and the feature
layer are generally fixed and due to this reason, perceptrons are sometimes called as
“single layer” networks.

A perceptron learns only when it misclassifies an input vector from the training
example. i.e., if the desired output is 1 and the value produced by the network is 0,
then the weights of this output neuron is increased and vice versa.

Widrow and Hoff [37] proposed another formula for calculating the output error
during training: Errj = yj − Σwijxi. This learning rule was used in a neural machine
called ADALINE (adaptive linear neuron).

Fig. 5 A simple two-input,
one output perceptron and a
bias
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The recall procedure of the perceptron simply calculates the outputs for a given
input vector using the standard summation thresholding formula and can be defined
as:

Uj ¼
X

Xi:wij
� �

for i ¼ 1; 2; . . .; nð Þfor j ¼ 1; 2; . . .;mð Þ

where
Uj is the net input signal to each output neuron j
X0 = 0 is the bias,
X = input feature vector
This perceptron can only solve problems that are linearly separable, hence could

be used only to solve such examples. Still it is used due to its simplicity in structure,
architecture and unconditional convergence when linearly separable classes are
considered.

In order to overcome the linear separability limitations of the perceptrons,
Multi-layer Perceptrons (MLPs) were introduced. A MLP consists of an input layer,
at least one intermediate layer or “hidden layer” and one output layer. The indi-
vidual neurons of layers are either fully or partially connected to the neurons of the
next layers depending on the type and architecture of the network.

The MLPs were actually put into use only after the development of learning
algorithms for multi-layer networks. i.e., back propagation algorithm [21, 22]. The
neurons in the MLP have continuous valued inputs and outputs, summation input
function and non-linear activation function. A MLP with one hidden layer can
approximate any continuous function to any desired accuracy, subject to a sufficient
number of hidden nodes. Finding the optimal number of hidden nodes for different
kinds of problems has been tried out by research work and the following are
considered to be the latest techniques in finding the optimal number of hidden
nodes.

1 Growing neural networks: Training starts with the small number of hidden
nodes and depending on the error calculated the number of the hidden nodes
might increase during the training procedure.

2 The weak connections and the neurons connected by weak connections are
removed from the network during the training procedure. After removing the
redundant connections and nodes the whole network is trained and the
remaining connections take the functions of the pruned ones. Pruning may be
implemented through learning-with-forgetting methods.

Growing and pruning could be applied to input neurons hence, the whole net-
work could be made dynamic according to the information held in the network or to
be more precise according to the requirement of the nodes needed to hold the
information in the data set.

Ever since the introduction of MLPs, research with diversified approaches has
been conducted to find out the best network architecture, the network paradigm
with the smallest approximation error for different kind of problems. Such research
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conducted by different interested groups and teams has proved that certain classes
of network paradigms be best used to solve particular set of problems. One such
approach is the use of Self-Organizing Maps for “data mining” purposes in
“knowledge discovery”.

4 Knowledge Extraction from ANNs

In the past decade, another important AI topic has emerged in the form of
knowledge extraction using trained neural networks. Knowledge processing is
performed in a “black box” approach with the trained neural network models. Some
of ANN’s black box related issues are discussed in Chap. “Order in the Black Box:
Consistency and Robustness of Hidden Neuron Activation of Feed Forward Neural
Networks and its Use in Efficient Optimization of Network Structure”. Meanwhile,
the following approaches are currently used in order to extract or interpret the
symbolic knowledge encoded in the structure of trained network models [8]:

(a) Decompositional: Each neuron is examined and the knowledge extracted at
this level is then combined to form the knowledge base of the entire network.

(b) Pedagogical: Only the network input/output behaviour is observed, viewed as
a learning task, in which the target concept is the function, computed by the
network.

Today artificial neural networks have been recognized in the commercial sphere
too as a powerful solution for building models of systems or subjects you are
interested in, just with the data you have without knowing what’s happening
internally. This is not possible with the conventional computing and currently there
are plenty of areas where ANN applications are commercially available i.e.,
Classification, Business, Engineering, Security, Medicine, Science, Modelling,
Forecasting and Novelty detection to name a few.

AI not only tends to replace the human brain in some representational form, it
also provides the ability to overcome the limitations faced in conventional (se-
quential) computing and in [10] Kasabov (1995) classifies the main paradigms
adapted to achieve AI as the following:

1 Symbolic—Based on the theory of physical symbolic systems proposed by
Newel and Simon [38] symbolic AI is further classified into two and they are:

(i) A set of elements (or symbols) which can be used to construct more
complicated elements or structures and

(ii) A set of processes and rules which, when applied to symbols and struc-
tures, produce new structures.
Symbolic AI systems in the recent past have been associated with two
issues, namely, representation and processing (reasoning). The currently
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developed symbolic systems or models solve AI problems without fol-
lowing the way, how humans think, but produce similar results. They have
been very effective in solving problems that can be represented exactly and
precisely and have been successfully applied in natural language process-
ing, expert systems, machine learning, and modelling cognitive processes.
At the same time, symbolic AI systems have very limited power in han-
dling inexact, uncertain, corrupted, imprecise or ambiguous information
(Fig. 6).

2 Subsymbolic—Based on Neurocomputing explained by Smolenski [39]
Subsymbolic, intelligent behaviour is performed at a subsymbolic level, which
is higher than the neuronal level in the brain but different from the symbolic
paradigms. Knowledge processing is carried out by changing states of networks
constructed of small elements called neurons that are similar to the biological
neurons. A neuron or a collection of neurons could be used to represent a micro
feature of a concept or an object. It has been shown that it is possible to design
an intelligent system that achieves the proper global behaviour even though all
the components of the system are simple and operate on purely local informa-
tion. ANNs, also referred to as connectionist models, are made possible by
subsymbolic paradigms and have produced good results especially, in the last
two decades. ANN applications i.e., pattern recognition, image and speech
processing, have produced significant progress.

Increasingly, Fuzzy systems are used to handle inexact data and knowledge in
expert systems. Fuzzy systems are actually rule-based expert systems based on
fuzzy rules and fuzzy inference. They are powerful in using inexact, subjective,
ambiguous, data and vague knowledge elements. Many automatic systems (i.e.,
automatic washing machines, automatic camera focusing, control of transmission
are a few among the many applications) are currently in the market. Fuzzy systems
can represent symbolic knowledge and also use numerical representation similar to
the subsymbolic systems.

Fig. 6 Usability of different
methods for knowledge
engineering and problem
solving depending on the
availability of data and
expertise on a problem based
on [10] p. 67
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Symbolic and subsymbolic models could interact in the following ways in
knowledge processing:

1 Developed and used separately and alternatively.
2 Hybrid systems with both symbolic and subsymbolic systems.
3 Subsymbolic systems could be used to model pure symbolic systems.

With that introduction to ANN initiatives, architectures, their components and
hybrid systems, the remaining chapters of the book look at more recent ANN
applications in a range of problem domains and are presented under three cate-
gories, namely, (1) Networks, structure optimisation and robustness (2) Advances
in modelling biological and environmental systems, and (3) Advances in modelling
social and economic systems.
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Order in the Black Box: Consistency
and Robustness of Hidden Neuron
Activation of Feed Forward Neural
Networks and Its Use in Efficient
Optimization of Network Structure

Sandhya Samarasinghe

Abstract Neural networks are widely used for nonlinear pattern recognition and
regression. However, they are considered as black boxes due to lack of transparency
of internal workings and lack of direct relevance of its structure to the problem
being addressed making it difficult to gain insights. Furthermore, structure of a
neural network requires optimization which is still a challenge. Many existing
structure optimization approaches require either extensive multi-stage pruning or
setting subjective thresholds for pruning parameters. The knowledge of any internal
consistency in the behavior of neurons could help develop simpler, systematic and
more efficient approaches to optimise network structure. This chapter addresses in
detail the issue of internal consistency in relation to redundancy and robustness of
network structure of feed forward networks (3-layer) that are widely used for
nonlinear regression. It first investigates if there is a recognizable consistency in
neuron activation patterns under all conditions of network operation such as noise
and initial weights. If such consistency exists, it points to a recognizable optimum
network structure for given data. The results show that such pattern does exist and it
is most clearly evident not at the level of hidden neuron activation but hidden
neuron input to the output neuron (i.e., weighted hidden neuron activation). It is
shown that when a network has more than the optimum number of hidden neurons,
the redundant neurons form clearly distinguishable correlated patterns of their
weighted outputs. This correlation structure is exploited to extract the required
number of neurons using correlation distance based self organising maps that are
clustered using Ward clustering that optimally cluster correlated weighted hidden
neuron activity patterns without any user defined criteria or thresholds, thus auto-
matically optimizing network structure in one step. The number of Ward clusters on
the SOM is the required optimum number of neurons. The SOM/Ward based
optimum network is compared with that obtained using two documented pruning
methods: optimal brain damage and variance nullity measure to show the efficacy of
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the correlation approach in providing equivalent results. Also, the robustness of the
network with optimum structure is tested against perturbation of weights and
confidence intervals for weights are illustrated. Finally, the approach is tested on
two practical problems involving a breast cancer diagnostic system and river flow
forecasting.

Keywords Feed-forward neural networks � Structure optimization � Correlated
neuron activity � Self organizing maps � Ward clustering

1 Introduction

Feed forward neural networks are the most powerful and most popular neural
network for nonlinear regression [1]. A neural network with enough parameters can
approximate any nonlinear function to any degree of accuracy due to the collective
operation of flexible nonlinear transfer functions in the network. However, neural
networks are still treated as black boxes due to lack of transparency in the internal
operation of networks. Since a neural network typically is a highly nonlinear
function consisting of a number of elementary functions, it is difficult to summarize
the relationship between the dependent and independent variables in a way similar
to, for instance, statistical regression where the relationships are expressed in a
simple and meaningful way that builds confidence in the model. In these statistical
models, coefficients or model parameters can be tested for significance and indicate
directly the strength of relationships in the phenomena being modeled. Although
neural networks are used extensively and they can provide very accurate predic-
tions, without internal transparency, it is not easy to ensure that a network has
captured all the essential relationships in the data in the simplest possible structure
in classification or function approximation. Therefore, it is vital for the advance-
ment of these networks that their internal structure is studied systematically and
thoroughly. Furthermore, the validity and accuracy of phenomena they represent
need thorough assessment. Additionally, any consistency in the activation of neu-
rons can reveal possibilities for efficient optimization of the structure of neural
networks.

2 Objectives

The goal of this Chapter is to address in detail the issue of internal consistency in
relation to robustness of network structure of feed forward (multiplayer perceptron)
networks. Specifically, it has the following objectives:
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• To investigate if there is a recognizable pattern of activation of neurons that
reveals the required complexity and is invariable under all conditions of network
operation such as noise and initial weights.

• To investigate the possibility of efficient optimization of structure (i.e., by
pruning) based on internal consistency of neuron activations in comparison to
existing structure optimization methods, such as, optimal brain damage and
variance nullity measure.

• Apply the above structure optimization approach to multi-dimensional data and
practical real-life problems to test its efficacy.

• To test the robustness of a network with the optimum structure against pertur-
bation of weights and develop confidence intervals for weights.

3 Background

Feed forward networks have been applied extensively in many fields. However, little
effort has gone into systematic investigation of parameters or weights of neural
networks and their inter-relationships. Much effort has been expended on resolving
bias variance dilemma (under- or over- fitting) [2] and pruning networks [1, 3–9]. In
these approaches, the objective is to obtain the optimum or best possible model that
provides the greatest accuracy based on either the magnitude of weights or sensitivity.

A network that under-fits, lacks nonlinear processing power and can be easily
corrected by adding more hidden neurons. Over-fitting is more complex and occurs
when the network has too much flexibility. Two popular methods for resolving
over-fitting are early stopping (or stopped search) and regularization (or weight
decay) [10]. In early stopping, a network with larger than optimum structure is
trained and excessive growth of its weights is prevented by stopping training early
at the point where the mean square error on an independent test set reaches a
minimum. Regularization is a method proposed to keep the weights from getting
large by minimizing the sum of square weights in the error criterion along with the
sum of square error. Pruning methods such as optimal brain damage [5–7] and
variance nullity measure [8] make use of this knowledge to remove less important
weights. However, they do not reveal if there is a pattern to the formation of
weights in networks in general and if they are internally consistent, unique, and
robust.

Aires et al. [11–13] in addressing the complexity of internal structure of net-
works have shown that de-correlated inputs (and outputs) result in networks that are
smaller in size and simpler to optimize. This was confirmed by Warner and Prasad
[14]. In addressing uncertainty of network output, Rivals and Personnaz [15]
constructed confidence intervals for neural networks based on least squares esti-
mation. However, these studies do not address the relationships of weights within a
network due to sub-optimum network complexity and uncertainty of response of
the simplest structure.
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Teoh et al. [16] proposes singular value decomposition (SVD) of hidden neuron
activation to determine correlated neuron activations in order to optimize network
structure. It is a step toward meaningful investigation into hidden neuron activation
space; however, as authors point out, the method requires heuristic judgment in
determining the optimum number of neurons. Furthermore, our research, as will be
presented in this chapter, revealed that the most meaningful patterns are found not
in the hidden neuron activation space but in the weighted hidden neuron activation
feeding the output neuron. Xian et al. [17] used an approach based on the
knowledge of the shape of the target function to optimize network structure, which
is only possible for 2- or 3-dimensional data as target function shape cannot be
ascertained easily for high-dimensional data. Genetic and evolutionary algorithms
[18, 19] have also been used for identifying network structure, but they typically
involve time consuming search in large areas in the weight space and rely on
minimum insight from the operation of a network compared to other approaches to
network structure optimisation.

In this Chapter, a systematic and rigorous investigation of the internal structure
and weight formation of feed forward networks is conducted in detail to find out if
there is a coherent pattern to weights formation that reveals the optimum structure
of a network that can be easily extracted based on such knowledge. We also greatly
expand our previous work presented in [20] for structure optimization.

4 Methodology

A one-dimensional nonlinear function shown in Fig. 1a (solid line) is selected for
simplicity of study and interpretation of the formation of weights in detail. This has
the form

t ¼ 0:3 Sin x If x\0
Sin x otherwise

�
ð1Þ

A total of 45 observations were extracted from this function depicted by the solid
line in Fig. 1 and these were modified further by adding a random noise generated
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Fig. 1 Data and the model: a Target data generator and noisy data (random sample 1) generated
from it and b network with redundant neurons [1]
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from a Gaussian distribution with 0 mean and standard deviation of 0.25 as depicted
by dots in Fig. 1. It is worth noting that the size of the extracted data set was
purposely kept relatively small with a reasonably large amount of noise to
approximate a real situation and to test the robustness of networks rigorously. Also,
the fact that the target data generator is known helps assess how the network
approaches the data generator through the cloud of rather noisy data.

This data pattern requires 2 neurons to model the regions of inflection. A larger
network of 4 hidden neurons, as shown in Fig. 1b is, therefore, used for the purpose
of investigation. In this network, the hidden neuron activation functions are logistic,
output neuron is linear, the bias and input-hidden layer neuron weights are depicted
by a0j and aij, respectively, and hidden-output weights and the corresponding bias
are denoted by bj and b0, respectively. The network is extensively studied in the
following sections for patterns of hidden neuron activation as well as robustness of
activation patterns and its potential for structure optimization.

5 Consistency of Network Weights

5.1 Consistency with Respect to Initial Weights

It is desirable that there is just one minimal and consistent set of weights that
produces the global minimum error on the error surface and that the network
reaches that global optimum regardless of the initial conditions. The data set was
randomly divided into 3 sets: training, test and validation, each consisting of 15
observations. The network was trained with the training set based on
Levenberg-Marquardt method [1] on Neural Networks for Mathematica [21] and
test set was used to prevent over-fitting based on early stopping.
(Levenberg-Marquardt is a second order error minimization method that uses the
gradient as well as the curvature of the error surface in weight adaptation).

Since the network has excessive weights, it is expected that it will experience
over-fitting unless training is stopped early. The performance of the optimum
network (validation root mean square error RMSE = 0.318) obtained from early
stopping is shown in Fig. 2a (solid line) along with the target pattern (dashed line)
and training data. It shows that the network generalizes well. The performance of
the over-fitted network that underwent complete training until the training error
reached a minimum is illustrated in Fig. 2b. Here, the network fits noise as well due
to too much flexibility resulting in over-fitting caused by large magnitude weights.
The network has 13 weights and their updates during the first 10 epochs are shown
in Fig. 2c. Over-fitting sets in at epoch 2. Two weights that increase drastically are
two hidden-output weights.
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The experiment was repeated twice more with two different random weight
initializations. The optimum networks for these two cases produced similar outputs
to that shown in Fig. 2a with validation RMSE of 0.364 and 0.299, respectively.
However, the first case produced over-fitting with complete training similar to the
first weight initialization but the other did not although there were excessive
weights. A closer inspection of the evolution of weights for the latter
non-overfitting case revealed that 4 of the 13 weights in fact grew to large values
after reaching the optimum similar to that shown in Fig. 2c. However, these appear
to have pushed the network to operate in the saturated region of the activation
functions thereby not affecting the network performance.

Are the optimum weights in these three cases similar? Figure 3a shows the 8
input-hidden neuron weights (a01, a11, a02, a12, a03, a13, and a04, a14) denoted by 1,
2, 3, 4, 5, 6, 7 and 8, respectively, for the three weight initializations and Fig. 3b
shows the 5 hidden-output weights (b0, b1, b2, b3, b4) denoted by 1, 2, 3, 4 and 5,
respectively. These show that the values for an individual weight as well as the
overall pattern across all the weights for the three weight initializations are gen-
erally dissimilar. In Fig. 3, the network that did not over-fit was for initialization 3.
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Fig. 2 Network performance: a Optimum network performance (solid line) plotted with the target
data generator (dashed line) and training data, b over-fitted network performance and c Evolution
of weights during training [1]
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5.2 Consistency of Weights with Respect to Random
Sampling

A good model must be robust against chance variations in representative samples
extracted from the same population. The effect of random sampling on weight
structure was tested by training the same network as in Fig. 1b along with the very
first set of random initial weights (Init-1 in the previous section) on two more
random data sets extracted from the original target function in Fig. 1a. These new
datasets are labeled random samples 2 and 3 and the original sample used in the
previous section is labeled random sample 1. The optimum network output for
sample 2 was similar to that for sample 1 shown in Fig. 2a and had a validation
RMSE of 0.270 and produced over-fitting with complete training. Results for
sample 3 were interesting in that there was no over-fitting at all with complete
training and the weight evolution for this case revealed that weight remained
constant after reaching the optimum. The validation RMSE for this case was 0.32.
This is natural control of over-fitting by the data and as Siestma and Dow [22] also
illustrated, training with properly distributed noise can improve generalization
ability of networks.

In order to find out if there is a pattern to the final structure of optimum weights,
these are plotted (along with those for the very initial random sample 1 used in the
previous section) for comparison in Fig. 4a, b. Here, the weights for random sample
3 stand out in Fig. 4b. Comparison of Figs. 3 and 4 indicate that there is no con-
sistency in the network at this level. However, both non-over-fitted networks- one in
Fig. 4b (sample 3) and the other in Fig. 3b (Init-3)-have similar hidden-output weight
patterns.
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6 Consistency of Hidden Neuron Activation

Since the weights in Figs. 3 and 4 do not provide any clues as to the existence of an
internally consistent pattern, we next explore hidden neuron activation. Activation
yj for each neuron j is a nonlinear transformation of the weighted sum of inputs:

yj ¼ f ða0j þ a1jxÞ ¼ 1
1þ e�ða0j þ a1jxÞ ð2Þ

The hidden neuron activations for the previous three cases of weight initial-
ization are shown in Fig. 5 as a function of the input x. The Figure reveals an
interesting effect. Although actual weights are not identical for the three cases,
hidden neuron activations follow some identifiable patterns. For example, the first
two cases that produced over-fitting, have a similar pattern of hidden neuron
activation whereas the third case that did not produce over-fitting has a unique
pattern with only partial similarity to the previous two cases [1].

In the first two cases of weight initialization, early stopping was required to
prevent over-fitting. For these, all four activation functions are strongly active in the
range of inputs, as indicated by their slopes at the boundary point where the
activation y is equal to 0.5, and an external measure is required to suppress their
activity. In the third case with no over-fitting however, two of the neurons (solid
lines) have low activity and these do not contribute greatly to the output.

Careful observation of Fig. 5 reveals that in the first two cases, there appear to be
two sets of neurons each consisting of two neurons of similar activity that could
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intuitively be interpreted as evidence for redundancy. However, in the third case
where there was no over-fitting, there still seem to be two sets of neurons with
similar activation but the situation is not so clear. For the case of random sampling,
hidden neuron activation patterns for the two networks created from random
samples 2 and 3 are shown in Fig. 6. (The patterns for random sample 1 are shown
in Fig. 5a).

The activation pattern for sample 3 in Fig. 6b did not produce over-fitting;
however, interestingly, this pattern is similar to that for sample 1 which resulted in
over-fitting (Fig. 5a, b). Furthermore, now there is a totally new activation pattern
for random sample 2 (Fig. 6a) with activation of 3 neurons having a positive slope
and one having a negative slope.

Thus, for the six trials (3 weight initializations and 3 random samples), there are
3 distinct activation patterns. In two trial cases, networks did not over-fit but their
activation patterns are dissimilar. As for the search for internally consistent weights
or activations, there is still ambiguity.

7 Consistency of Activation of Persistent Neurons

It is known that the target data generator used in this study (Fig. 1) requires 2
hidden neurons. The experiment so far indicates that in some cases, there is a
persistent 2-neuron structure, such as that in Figs. 5a, b and 6b. In order to confirm
if the ones that are persistent point to the optimum, a network with two hidden
neurons was tested on the random data sample 1 and with 3 random weight ini-
tializations. None of the networks over-fitted even after full training, as expected,
since this is the optimum number of neurons. The network produces a closer
agreement with the target function and data, similar to that shown in Fig. 2a.
However, the hidden neuron functions for the 3 trials produced 3 quite different
patterns as shown in Fig. 7.

Figure 7 displays the main features of all previous networks, e.g., activation
functions can be all positive, all negative or a combination of positive and negative
slopes- and still produce the optimum final output. The figure shows that the
optimum network does not have a unique pattern of activation of neurons and still
produces the correct output. In order to test the optimality of the two-neuron
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network, another neuron was added and the network trained. This case resulted in a
mild form of over-fitting and required early stopping to stop training at the optimum
weights. Hidden neuron activation patterns were generally similar to Fig. 5a, b (i.e.,
2 functions had negative slope and one had positive slope).

Since the results so far has not yet pointed to a structure that is internally
consistent and robust, we next explore hidden neuron contribution to output
generation.

8 Internal Consistency of Hidden Neuron Contribution
to Output

Contribution of each neuron j to output generation is its weighted activation:

yweightedj ¼ yjbj ð3Þ

where yj is output of hidden neuron j and bj is the corresponding weight linking
neuron j with the output. Returning to our original 4-neuron network, these
weighted activation patterns for the first three random weight initializations are
presented in Fig. 8.

The plots in Fig. 8 reveal a pattern that is consistent. In each plot, there is one
dominant weighted activation pattern with a negative slope. In Fig. 8b, c, the other
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three patterns are almost parallel to each other. The patterns that are parallel indicate
redundancy. In Fig. 8a also, this pattern is obvious but to a lesser extent. These
observations for the weighted hidden neuron activation are quite convincing and
persistent compared to those observed for the hidden neuron activation in Figs. 5, 6
and 7.

The activation patterns that are parallel can be identified by their strong corre-
lation. This way, it should be possible to eliminate redundant neurons. The cor-
relation matrix for the 3 sets of weighted hidden neuron activation plots are
presented below each figure in Fig. 8. The correlation matrices for Fig. 8a, c clearly
indicate that neurons 1, 2 and 4 are very highly correlated and all these are inversely
correlated with neuron 3 activity. In matrix for Fig. 8b, neurons 1, 2, and 3 are
highly correlated and they are inversely correlated with neuron 4 activity. The fact
that the correlation coefficients are strong indicate consistency and resilience of the
activation patterns. Highly correlated patterns can be replaced by a single repre-
sentative, leaving two neurons for the optimum network as required. Furthermore,
correlation confirms that the optimum network has one neuron with positive
weighted activation and another with negative activation for all 3 weight
initializations.

The weighted activation patterns and correlations for the network trained with
different random samples (samples 2 and 3) are shown in Fig. 9. Results for sample
1 is in Fig. 8a.

Analogous to Fig. 8, highly correlated structure of weighted hidden neuron
activation patterns for random samples 2 and 3 is evidenced in Fig. 9 where the left
image indicates that neurons 1 and 3 as well as neurons 2 and 4 are highly cor-
related in an opposite sense. The right image indicates that neurons 1, 2, and 4 are
highly correlated with each other and inversely correlated with neuron 3. By
replacing the correlated neurons with a representative, an optimum 2-neuron
structure is obtained for both these cases.

The above experiment was conducted for 5- and 3-neuron networks with early
stopping and results are presented in Fig. 10.
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Figure 10 illustrate convincingly that the redundant neurons can be identified by
their high correlation. By removing redundant neurons, both networks are left with
2 (optimum number) of neurons.

In summary, the network attains a consistent pattern of weighted hidden neuron
activation for this data regardless of the number of hidden neurons, initial weights
and random data samples. By replacing highly correlated neurons with similar sign
(+ or −) with a single representative, the optimum structure for this example can be
obtained with certainty. In what follows, the robustness of weights and hidden
neuron activation patterns is further investigated by examining the results obtained
from regularization.

9 Internal Structure of Weights Obtained
from Regularization

Regularization is another method used to reduce the complexity of a network
directly by penalizing excessive weight growth [10]. The amount of regularization
is controlled by the parameter δ shown in Eq. 4 where MSE is the mean square error
and wj is a weight in the total set of m weights in the network. In regularization, W
is minimized during training.

W ¼ MSEþ d
Xm

j¼1

w2
j ð4Þ

The user must find the optimum regularization parameter through trial and error.
Too large a parameter exerts too much control on weight growth and too small a
value allows too much growth. In this investigation, the original four-neuron
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network in Fig. 1b with the first set of random initial weights used earlier (Init-1 in
Fig. 3) was trained on random sample 1 shown in Fig. 1a. Three regularization
parameters, 0.0001, 0.001 and 0.02, were tested. For the first two values, weights
initially grew and then dropped to optimum values and from then on they remained
constant. For these, the network followed the target pattern closely but the smallest
regularization parameter of 0.0001 resulted in the smallest validation MSE of 0.276
which is smaller than that obtained from early stopping (MSE = 0.318). With the
parameter value of 0.001, MSE is similar to that obtained from early stopping. For
the largest chosen parameter of 0.02, however, weights are controlled too much and
therefore, they are not allowed to reach optimum values. In this case, the network
performance was very poor.

The experiment was continued further and Fig. 11 shows RMSE for various
values of regularization parameter. The horizontal line indicates the RMSE obtained
from early stopping. The figure indicates that for this example, regularization can
produce networks with greater accuracy than early stopping. However, considering
the trial and error nature of regularization, early stopping is efficient. Furthermore,
Fig. 11 highlights the sensitivity of RMSE to regularization parameter beyond a
certain value.

9.1 Consistency of Weighted Hidden Neuron Activation
of Networks Obtained from Regularization

The hidden neuron activations for the two regularization parameters (0.0001 and
0.001) that produced smaller than or similar validation MSE to early stopping are
plotted in Fig. 12. They illustrate again that the correlation structure as well as the
2-neuron optimum structure identified in the previous investigations remain
persistent.
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10 Identification of Correlated Weighted Hidden Neuron
Activations Using Self Organizing Maps

Previous sections demonstrated that the redundant neurons can be identified by the
correlation of their weighted neuron activations. It is useful, if these can be iden-
tified automatically. In this section, SOM is used to efficiently cluster similar
activation patterns. Such approach would be especially useful for larger networks.
An input vector to SOM contains weighted hidden neuron activation (bjyj) for each
neuron over the input data. Input vectors were normalized to 0 mean and unit
standard deviation and the correlation distance was used as the distance measure
[1]. The normalized activation patterns for each network presented so far were
mapped to a 2-dimensional SOM [23] (4 neuron map) and the most efficient
number of clusters was determined by the Ward clustering [24] of SOM neurons.
Ward is an efficient statistical clustering method suitable and effective for relatively
small datasets. Figure 13 presents the results for only two networks, one with 4
neurons that was depicted as random weight initialization 2 in Fig. 8b and the other
with 5 neurons presented in Fig. 10b. Maps were trained very quickly with default
parameter settings of the program [21] indicating the efficiency of clustering highly
correlated patterns.

The top two images in Fig. 13 are graphs of Ward likelihood index (vertical axis)
against likely number of clusters. The higher the index, more likely that the corre-
sponding number of clusters is the optimum. These images reveal that undoubtedly
there are two clusters of activation patterns. The index for other possible cluster sizes
is almost zero, which increases the confidence in the two-cluster structure. The
bottom images of Fig. 13 show these two clusters on the corresponding SOMs. Here,
the two clusters are depicted by brown and black colors, respectively. For example,
in the bottom left image, one clusters has 3 correlated patterns distributed in two
neurons and the other cluster has one pattern, whereas, in the bottom right image,
depicting a 5 neuron network, 2 patterns are grouped into the cluster depicted by the
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top left neuron and the other three patterns are spread among the bottom two neurons
that form the second cluster. The optimum network structure is obtained by selecting
one representative from each cluster and then retraining the network. Similar
two-cluster neuron maps were found for all the networks presented previously
revealing that, for this example, networks maintain consistent patterns in their
internal structure at the level of weighted hidden neuron activation feeding the
output neuron. Importantly, the network structure is optimized in one iteration of
clustering correlated hidden neuron activation patterns.

11 Ability of the Network to Capture Intrinsic
Characteristics of the Data Generating Process

A good model not only should follow the target data but also must capture the
underlying characteristics of the data generating process. These can be represented
by first and higher order derivative of the generating process. When a network
model converges towards the target function, all the derivatives of the network must
also converge towards the derivatives of the underlying target function [25, 26].
A new network with two hidden neurons (7 weights in total) was trained and its
weighted hidden neuron activation patterns are shown in Fig. 14a that highlights the
features already described. The network model is given in Eq. 5 and its first and
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second derivatives are superimposed on those of the target function in Fig. 14b, c.
They show that, notwithstanding the small sample size and large noise, both
derivatives follow the corresponding trends in the target function reasonably well
indicating that the trained network is a true representation of the data generating
process and can be used for gaining further insight into the process such as sen-
sitivities and errors as well as for further ascertaining the robustness of the weights.

z ¼ 0:91þ 4:34
1þ 1:25e�1:27x �

9:23
1þ 2:65e�0:37x ð5Þ

12 Comparison of Correlation Approach with Other
Network Pruning Methods

Since it is clear in all the previous experiments that redundant neurons in too
flexible networks form highly correlated weighted hidden neuron activation pat-
terns, it is interesting to find out if other pruning methods identify the neurons with
the most consistent patterns and prune the redundant ones. A notable feature of the
commonly used pruning methods is that they optimize the structure iteratively and
require a certain amount of heuristic judgment. In what follows, two pruning
methods, Optimal Brain Damage (OBD) [5–7] and Variance Nullity measure
(VN) [8] are implemented and compared with the proposed correlation method.

12.1 Network Pruning with Optimum Brain Damage (OBD)

In OBD [5–7], weights that are not important for input-output mapping are found and
removed. This is based on a saliency measure of a weight, as given in Eq. 6, that is an
indication of the cost of setting it to zero. The larger the si, the greater the influence of
wi on error. It is computed from the Hessian (H) which is the matrix containing the
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second derivative of error with respect to a pair of weights in the network. This matrix
is used in error minimization and weight update by the Levenberg Marquardt method
[1]. Since Hessian is nonlocal and computationally intensive, an approximation is
used by utilizing only the diagonal entries (Hii) of the Hessian matrix.

si ¼ Hii w
2
i =2 ð6Þ

The original 4 neuron network (Fig. 1b) with the first set of initial weights
(Init-1) that was trained using a regularization parameter of 0.0001 on the random
sample 1 (Fig. 1a) was pruned using saliency measure of the weights. The network
was pruned in stages. In the first stage, 5 (or 40 %) of the 13 weights were pruned
and the reduced network that retained neurons 2, 3, and 4 was re-trained. The
network was further subjected to pruning in the next stage and 2 more weights were
removed resulting in a total removal of 7 or (54 %) of the weights from the original
network. What remained were neurons 2 and 3 with bias on neuron 2 eliminated
leaving 6 weights in the optimum network. The 2 weighted hidden neuron acti-
vations for the retrained network are plotted in Fig. 15 by a solid line and a dashed
line. (The other set will be discussed shortly). These resemble those of neuron 2 and
3 of the full network in Fig. 8a indicating that the OBD has identified and removed
the redundant neurons.

The network performs similarly to that shown in Fig. 2a. Any further pruning
resulted in severe loss of accuracy and therefore, the above network was the
optimum network obtained from OBD. The output z of the pruned network is [1]

z ¼ �5:36þ 2:63
1þ e�1:84 x þ

5:86
1þ 0:345 e0:399 x

ð7Þ

Equations 5 and 7 are not identical as the network obtained from the proposed
correlation method has all 7 weights associated with the hidden and output neurons
whereas the one from OBD has only 6 weights. This also reveals that the network
can still have redundant bias weights. If a set of weights that are invariant is desired,
these redundant weights can be pruned with potentially one extra weight pruning
step applied to the trained network with the optimum number of neurons.
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12.2 Network Pruning Based on Variance of Network
Sensitivity

In this section, the same original network used in the previous section is pruned
using a very different method- variance analysis of the sensitivity of the output of
the network to perturbation of weights- as proposed by Engelbrecht [8]. Variance
nullity (VN) measure tests whether the variance of the sensitivity of network output
over all input-output patterns is significantly different from zero. It is based on a
hypothesis test using χ2 (chi square) distribution to test statistically if the parameter
should be pruned. If the sensitivity with respect to a parameter is denoted by Sθ,
then the variance of the sensitivity for N patterns can be expressed as

r2Sh ¼
PN

i¼1
ðShi � lShÞ2

N
ð8Þ

where μSθ is the mean sensitivity. This is used to obtain an expression for a variance
nullity measure csh, that indicates the relevance of a parameter as

csh ¼
ðN � 1Þr2 sh

r20
ð9Þ

where r20 is a value close to zero. The hypothesis that the variance is close to zero is
tested for each parameter θ with the null and alternative hypotheses of

H0 : r
2
sh ¼ r20

H1 : r
2
sh\r20

ð10Þ

Under the null hypothesis, csh follows a χ2 (N-1) where N-1 is the degree of
freedom. A parameter is removed if the alternative hypothesis is accepted with the
condition csh � cc where cc is a critical χ2 value obtained from cc ¼ v2N�1;ð1�a=2Þ.
The α is the level of significance which specifies the acceptable level of incorrectly
rejecting null hypothesis. Smaller values result in a stricter pruning algorithm.

The success of the algorithm depends on the value chosen for r20. If it is too
small, no parameter is pruned. If too large, even relevant parameters will be pruned.
Thus, some trial and error is necessary. The method was applied to the original
4-neuron network described in this chapter with an initial value of 0.01 for r20 at
0.05 significance level. Only one weight was targeted for pruning. When it was
increased to 0.1, all six weights associated with neurons 1 and 4 became targets for
pruning leaving those for neurons 2 and 3, that are the required neurons, with all 7
corresponding weights. This outcome, in terms of exactly which neurons remain, is
similar to that obtained from OBD in the previous section and in both these cases,
variance nullity and OBD, considerable subjective judgment is required in setting
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up the parameters. The weighted hidden neuron activations for the retrained net-
work obtained from variance nullity method are plotted in Fig. 15b indicating that
the two methods produce almost identical activation patterns. The corresponding
plot for the network obtained from the correlation method was shown in Fig. 14a.
Here the shape of the patterns are the same as those for VN and OBD based
networks; however, since the initial weights are different in this case, one activation
pattern has shifted vertically but this effect is offset by the larger bias weight (0.91
in Eq. 5) on the output neuron when the final output is produced. The important
point is that the slopes and trends of the patterns are identical for the 3 methods.

The final network output from variance nullity based weight pruning is

z ¼ �5:09þ 2:48
1þ 1:57e�1:99 x þ

5:38
1þ 0:235 e0:465 x

ð11Þ

which is very similar to that obtained from OBD (Eq. 7). Reason why Eqs. 7 and 11
are similar is that both of them were retrained with the same set of original initial
weights that remained on the network after pruning. In the network obtained from
the correlation method, new initial weights were used as only one representative
from each cluster was used. The three network outputs are superimposed on the
target function in Fig. 16.

Figure 16 reveals that the performance of the two full networks with 7 weights
obtained from the proposed method and variance nullity method is closer to the
target function than that with 6 weights obtained from OBD. The validation RMSE
from the proposed correlation method, variance nullity and OBD were, 0.272, 0.272
and 0.285, respectively. However, the proposed method is more efficient and does
not require heuristic judgment as in OBD and Variance Nullity. This point applies
to other past approaches for structure optimization, such as singular value
decomposition as well. The validation RMSE for the correlation based network
(0.272) is slightly smaller than that for the best full networks obtained from reg-
ularization (0.276) and early stopping (0.318).
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13 Robustness and Uncertainty of Networks

13.1 Robustness

The fact that the optimum networks do not match the target pattern perfectly is due
to the large noise deliberately added to the data generated from the true function.
The noise allows a number of possible outputs that follow the target function
closely. Smaller the noise, the tighter the band around the target function within
which output of various optimum networks can lie. In order to test this interval,
optimum weights were perturbed by randomly adding noise from a Gaussian dis-
tribution with 0 mean and standard deviations of 0.01, 0.05, 0.1, to 0.2. Thus there
were 4 sets of weights. The network output for these 4 sets of weights showed that
the weights are robust against variations up to 0.1 standard deviation which is
equivalent to ±30 % random perturbation of the weights. The 0.2 standard deviation
representing ±60 % random perturbations was detrimental to the network perfor-
mance (see p. 238 of [1]).

13.2 Confidence Interval for Weights

Since the weights are robust against perturbation of at least up to ±30 %, confidence
intervals for weights were developed for a noise level of ±15 % (noise standard
deviation of 0.05). Ten sets of weights, each representing a network, were drawn by
superimposing noise on the optimum weights of the network obtained from the
proposed approach based on correlation of weighted hidden neuron activation.
Confidence intervals were constructed using methods of statistical inference based
on sampling distribution as:

ð1� aÞCI ¼ w �ta;n�1
swffiffiffi
n

p ð12Þ

where w is the mean value of a weight, sw is the standard deviation of that weight,
and n is the sample size. In this case, we have 10 observations. The ta;n�1 is the
t-value from the t-distribution for (1-α) confidence level and degree of freedom (dof)
of n-1. The 95 %confidence intervals were constructed for each of the 7 weights and
the resulting 95 % Confidence Intervals (CIs) for the network performance are
plotted in Fig. 17a with the two solid lines depicting upper and lower limits. In this
figure, the smaller dashed line represents the mean and larger dashed line is the
target function.

In order to assess all the models developed so far, network outputs from 4
random weight initializations using the proposed method involving correlation of
weighted hidden neuron activations were superimposed along with outputs from
OBD and variance nullity (6 curves altogether) on the above confidence interval
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plots containing the original data. The results are shown in Fig. 17b that illustrates
that that all models are within the confidence limits for the entire range of the data
and covers most of the target function (larger dashed line). The target function is the
combination of two functions (Eq. 1 and also see Fig. 14b) and all networks
experience difficulty in the region near the axes origin where the two functions
merge.

13.3 2-D Function Approximation

In this section, the correlation of weighted hidden neuron activation is tested on a
two-dimensional problem. The function from which 120 data vectors were gener-
ated is shown in Fig. 18a. The network was trained with 15 hidden neurons with
sigmoid functions and linear output function. Training was done with Levenberg
Marquardt method with early stopping to optimise the network. The optimum
network output is shown in Fig. 18b. After training, weighted hidden neuron
activations were analysed and the correlation matrix is given in Fig. 18c.

The weighted hidden neuron activations were projected onto a 16-neuron SOM
and trained SOM weights were clustered with Ward clustering. Figure 19a shows
the Ward index plot which clearly indicates 7 clusters as the optimum. The SOM
clustered into 7 groups are shown in Fig. 19b.

A new network was trained with 7 hidden neurons and results identical to
Fig. 18b was found confirming that the optimum number of hidden neurons is 7. In
order to test further, individual networks were trained with hidden neuron numbers
increasing from 1 to 10 with a number of weight initializations. Root Mean Square
Error (RMSE) plot for these cases are shown in Fig. 20 which clearly indicates that
the 7 neurons do provide the minimum error.
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Fig. 17 Confidence Interval (CI) bands and comparison of optimum networks: a Mean and 95 %
confidence interval limits for the correlation based network and b optimum network performance
from the 3 methods superimposed on the CIs
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14 Optimising a Network for Practical Real-Life Problems

14.1 Breast Cancer Classification

Correlation of weighted hidden neuron networks were also tested on a real world
problem of breast cancer classification. In this study, a total of 99: 46 malignant and
53 benign, samples obtained from The Digital Database for Breast Ultrasound
Image (DDBUI) was used to develop a feed forward network for breast cancer
classification. Using a preprocessing and feature selection approach, 6 features were
selected with the ability to discriminate between cancer and healthy cases. These
were: depth-width ratio of the dense mass and its shape and margin, blood flow, age
and a newly identified effective feature called central regularity degree (CRD) that
explicitly incorporates irregularity of the mass that has been known to be indicative
of malignancy [27].

Networks were developed with sigmoid hidden and output neurons on 70 % and
30 % training and testing data, respectively, and trained with Levenberg Marquardt
method and early stopping. First a network with a large number of hidden neurons
was developed and then the number of neurons were decreased gradually, every
time comparing results with previous results. It turned out that 15 hidden neurons
provide optimum results: Training (100 % Sensitivity, Specificity and Accuracy)
and Testing (100, 90.9, 95.4 %, respectively, for the above measure). Then we
tested the clustering of weighted hidden neuron activation approach on the best
network using SOM topology with 20 neurons. The trained SOM results are shown
in Fig. 21 where several individual SOM neurons represent a number hidden
neurons as indicated by Fig. 21a—hidden neuron groups (4, 7, 10), (6, 12) and
(14, 15) each share an SOM neuron. Other neurons are each represented by an
individual SOM neuron. The U-matrix in Fig. 21b shows further similarity among
the nodes. For example, neurons (8, 1, 9) were found close to each other (blue
colour on the top right corner of the map) and were considered as one cluster by
Ward clustering that divided the SOM into 9 clusters suggesting that 9 neurons
should adequately model the data.

Fig. 20 RMSE for increasing number of hidden neurons trained for a number of random weight
initialisations
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To test this finding, a 9 neuron network was trained and tested on the same data
sets as before and the network accuracy (95.4 %), sensitivity (100 %) and speci-
ficity (90.9 %) were found to be the same as those for the 15 neuron network. Thus
the SOM/Ward reduced the number of neurons without any comprise on the net-
work performance confirming that the redundant weighted hidden neuron activa-
tions do form correlated clusters and the number of these clusters indicate the
required number of neurons.

14.2 River Flow Forecasting

The efficacy of the correlation method was tested in another complex real world
problem of river flow forecasting for a multi-basin river system in New Zealand and
the detail results were presented in [28]. Forecasting river flows are very compli-
cated due to the effect of daily, monthly, seasonal and yearly variability of the
contributing factors of rainfall and temperature etc. The inputs, selected from an
extensive feature selection process, were: previous month’s flow, current temper-
ature and a river basin geometric factor and the output was current month’s flow.
The data were divided into training (70 %) and calibration (30 %) with 1079 and
269 data points, respectively, and validation set with 63 data points. In the original
study, it was found that 70 hidden neurons (logistic activation) and one linear
output neuron provided the optimum results.

Fig. 21 Twenty neuron SOM representing hidden neuron activation patterns. a Distribution of
15 neurons over the map; b U-matrix for the 15 hidden neurons (blue colour indicates
similarity/closeness)
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To test this result, a network with 100 hidden neurons with logistic function was
trained and the weighted hidden activations of 100 neurons were projected onto a
100 neuron square SOM. Results showed that the 100 patterns were projected onto
59 SOM neurons and the Ward method further clustered these neurons indicating
that 2 and 3 neurons provided the highest Ward Likelihood Index, which is much
smaller than the original optimum of 70 neurons found by trial and error.
A 2-neuron network was trained and the results (training R2 = 0.88; Validation
R2 = 0.71) were similar to original results [28]. Results for 59 and 70 neurons were
similar.

15 Summary and Conclusions

This chapter presented the results from a systematic investigation of the internal
consistency and robustness of feed forward (multi-layer perception) networks. It
demonstrated that weighted hidden neuron activations feeding the output neuron
display meaningful and consistent patterns that are highly correlated for redundant
neurons. By representing each correlated group with one neuron, the optimum
structure of the network is obtained. Furthermore, the chapter illustrated that the
correlated activation patterns can be mapped on to a self organizing map
(SOM) where Ward clustering convincingly revealed the required number of
clusters. The chapter also compared the proposed method with two pruning
approaches from literature: Optimal Brian Damage (OBD) and Variance Nullity
(VN) and demonstrated the efficacy of the proposed correlation based method.
A clear advantage of the correlation method is that it does not require heuristic
judgment in selecting parameters for optimizing the network as in other methods.
Another advantage is that network is optimized in one step of clustering correlated
weighted hidden neuron activation patterns thus minimizing the time and effort
spent on structure optimization. Yet another advantage is that as the redundant
neurons are highly correlated, they cluster easily on the SOM with default network
learning parameters and Ward clustering automatically produces the required
optimum number of neurons. This chapter used a one-dimensional problem to allow
the presentation of a thorough assessment of various modeling issues deemed
important and demonstrated that the insights gained are relevant to larger problems
as well by successfully applying the concept to multi-dimensional and complex real
world problems. These demonstrated that the approach is robust to initial weights,
random samplings and for networks with logistic activation function and either
linear or logistic output neuron activation function. In future, it will be useful to test
the validity of the method for other activation functions and networks.
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Appendix: Algorithm for Optimising Hidden Layer of MLP
Based on SOM/Ward Clustering of Correlated Weighted
Hidden Neuron Outputs

I. Train an MLP with a relatively larger number of hidden neurons

1. For input vector X, the weighted input uj and output yj of hidden neuron j are:

uj ¼ a0 j þ
Xn

i¼1

aijxi

yj ¼ f uj
� �

where aoj is bias weight and aij are input-hidden neuron weights. f is transfer
function.

2. The net input vk and output zk of output neuron k are:

vk ¼ b0k þ
Xm

j¼1

bjkyj

zk ¼ f vkð Þ

where bok is bias weight and bjk are hidden-output weights.
3. Mean Square error (MSE) for the whole data set is:

MSE ¼ 1
2N

XN

i¼1

ti � zið Þ2
" #

where t is target and N is the sample size.
4. Weights are updated using a chosen method of least square error minimisation,

such as Levenberg Marquardt method:

wm ¼ wm�1 � eRdm

where dm is sum of error gradient of weight w for epoch m, R is inverse of
curvature, and ε is learning rate.

5. Repeat the process 1 to 4 until minimum MSE is reached using training,
calibration (testing) and validation data sets.

II. SOM clustering of weighted hidden neuron outputs

Inputs to SOM
An input vector Xj into SOM is:

Xj ¼ yjbj;
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where yj is output of hidden neuron j and bj is its weight to output neuron in
MLP. Length n of the vector Xj is equal to the number of samples in the original
dataset.

Normalise Xj to unit length
SOM training

1. Projecting weighted output of hidden neurons onto a Self Organising Map:

uj ¼
Xn

i¼1

wijxi

where uj is output of SOM neuron j and wij is its weight with input component xi
2. Winner selection: Select winner neuron based on the minimum correlation

distance between an input vector and SOM neuron weight vectors (same as
Euclidean distance for normalised input vectors)

d j ¼ x� w jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i

xi � wij
� �2

s

3. Update of weights of winner and neighbours at iteration t:
Select neighbourhood function NS(d, t) (such as Gaussian) and learning rate
function β(t) (such as exponential or linear) where d is distance from winner to a
neighbour neuron and t is iteration.

wj tð Þ ¼ wj t � 1ð Þþ b tð ÞNS d; tð Þ x tð Þ � wj t � 1ð Þ� �

4. Repeat the process until mean distance D between weights Wi and inputs xn is
minimum.

D ¼
Xk

i¼1

X

n2ci
xn � wið Þ2

where k is number of SOM neurons and ci is the cluster of inputs represented by
neuron i

III. Clustering of SOM neurons

Ward method minimizes the within group sum of squares distance as a result of
joining two possible (hypothetical) clusters. The within group sum of squares is the
sum of square distance between all objects in the cluster and its centroid. Two
clusters that produce the least sum of square distance are merged in each step of
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clustering. This distance measure is called the Ward distance (dward) and is
expressed as:

dwand ¼
n�r ns
� �

nr þ nsð Þ xr � xsk k2

where xr and xs are the centre of gravity of two clusters. nr and ns are the number of
data points in the two clusters.

The centre of gravity of the two merged clusters xr(new) is calculated as:

xr newð Þ ¼ 1
nr þ ns

n�rxr þ n�sxs
� �

The likelihood of various numbers of clusters is determined by WardIndex as:

WardIndex ¼ 1
NC

dt � dt�1

dt�1 � dt�2

� 	
¼ 1

NC
Ddt
Ddt�1

� 	

where dt is the distance between centres of two clusters to be merged at current step
and dt-1 and dt-2 are such distances in the previous two steps. NC is the number of
clusters left.

The numbers of clusters with the highest WardIndex is selected as the optimum.

IV. Optimum number of hidden neurons in MLP

The optimum number of hidden neurons in the original MLP is equal to this
optimum number of clusters on the SOM.

Train an MLP with the above selected optimum number of hidden neurons.
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Artificial Neural Networks as Models
of Robustness in Development
and Regeneration: Stability of Memory
During Morphological Remodeling

Jennifer Hammelman, Daniel Lobo and Michael Levin

Abstract Artificial neural networks are both a well-established tool in machine
learning and a mathematical model of distributed information processing.
Developmental and regenerative biology is in desperate need of conceptual models
to explain how some species retain memories despite drastic reorganization,
remodeling, or regeneration of the brain. Here, we formalize a method of artificial
neural network perturbation and quantitatively analyze memory persistence during
different types of topology change. We introduce this system as a computational
model of the complex information processing mechanisms that allow memories to
persist during significant cellular and morphological turnover in the brain. We
found that perturbations in artificial neural networks have a general negative effect
on the preservation of memory, but that the removal of neurons with different firing
patterns can effectively minimize this memory loss. The training algorithms
employed and the difficulty of the pattern recognition problem tested are key factors
determining the impact of perturbations. The results show that certain perturbations,
such as neuron splitting and scaling, can achieve memory persistence by functional
recovery of lost patterning information. The study of models integrating both
growth and reduction, combined with distributed information processing is an
essential first step for a computational theory of pattern formation, plasticity, and
robustness.
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1 Introduction

The animal brain is widely considered to be the material substrate of memory. It
may thus be expected that maintenance of complex memories requires stability of
brain structure. Remarkably, several studies in a number of animal species revealed
that this is not the case [1]. Planarian flatworms are able to recall learned infor-
mation after their entire brain has been amputated and regenerated (suggesting an
imprinting process by the somatic tissues onto the newly developing brain) [2].
Insects that metamorphose into butterflies or beetles still remember information
learned as larvae, despite the fact that this process involves an almost complete
rewiring of their brain [3]. Mammals are not exempt from this, as illustrated by
ground squirrels that retain memories after winter hibernation has drastically pruned
and rebuilt large regions of the brain [4]. How can memories persist in the face of
reorganization of the recording medium? Specifically, it is unknown how bio-
electric networks (whether neural or non-neural) can stably store information
despite cellular turnover and changes of connectivity required for regenerative
repair and remodeling. The answer to this question would have huge implications
not only for regenerative neuromedicine (e.g., cognitive consequences of stem cell
implants into the adult brain), but also for the fundamental understanding of how
propositional content is encoded in properties of living tissues. Despite the
importance of this question, and on-going research into the molecular mechanisms
of cellular turnover in the brain, no conceptual models have been developed to
probe the robustness of information in remodeling cell networks.

Artificial neural networks are well-established quantitative models of cognition
that show promise to study the patterning capabilities of a dynamic system that is
robust to components that move, proliferate, and die. While the learning perfor-
mance properties of ANNs have been widely studied [5, 6], much less attention has
been paid to the consequences of topology change that would mimic cellular
turnover in vivo. Thus, a quantitative study is needed for the understanding of
memory properties of neural networks under dynamic rearrangements of topology.
We sought to develop a proof-of-concept for analysis of models that subsume both,
structural change (remodeling) and functional (cognitive) performance. Here, we
introduce perturbation methods that mimic aspects of the dynamic cellular regen-
eration observed in vivo. Using feed-forward single hidden layer networks trained
with different backpropagation methods on pattern-recognition learning tasks, we
assayed performance (memory persistence) after node removal, addition, and
connection-blocking perturbations. These data demonstrate how artificial neural
networks can be used as models for cognitive robustness and plasticity in devel-
opmental and regenerative biology.
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2 Development, Regeneration, and Artificial Neural
Networks

2.1 Biological Relevance: Memory Is Retained During
Remodeling

It was once a long-standing central dogma of neurobiology that the central nervous
system was incapable of accommodating neuron growth and death. This theory has
since been overturned [7–9], which opens up a new field of study to understand
how individual neurons and their environment contribute to the overall plasticity
and growth of the brain [10, 11]. Much evidence now suggests that biological
neural networks in many organisms, including mammals, have the capability of
pruning, growing, and altering connectivity [12, 13]. Some species of insects
undergo significant remodeling of the central nervous system and brain during
metamorphosis from the larval to adult form, yet have been shown to maintain
stored memories. Drosophila and manduca larvae have an ability to remember
aversive associative learning tasks pairing electric shock with odor into adulthood
[3, 14]. Weevils and wasps demonstrate a preference for the odors of their larval
environments, supporting a long-standing hypothesis in entomology known as the
Hopkins ‘host-selection principle’ that beetles and other insects favor their larval
environment in selection of their adult homes [15, 16]. Planarian flatworms are
another animal that demonstrate persistent memory after undergoing extensive
remodeling. These flatworms have an incredible regeneration capacity in that they
can regrow a fully functioning central nervous system and brain after head
amputation [17]. In studies of memory persistence after head regeneration, it was
discovered that flatworms trained on learning tasks before amputation require
significantly less trials to re-learn the same task (the “savings” paradigm) than
amputated but previously untrained animals [2, 18].

While amphibians, zebrafish, and planaria are capable of complete central ner-
vous system regeneration, it appears that most mammals and birds are more limited
in neurogenesis to specific regions of the brain [12]. Human neuronal progenitors
have already proven to be a promising candidate as a treatment of traumatic injury,
shown to successfully integrate and aid functional recovery in mice [19, 20].
Conversely, elevated neurogenesis in the dentate gyrus region of the hippocampus
is a cause of forgetfulness in adulthood and infancy [21]. Neuronal death is also
implicated as a primary cause of neurodegenerative diseases, especially diseases
like amyotrophic lateral sclerosis, where motor neurons weaken and die slowly over
time, and in traumatic brain injury, where delayed neuron death occurs in selective
cell regions [22]. Yet cells also die during initial neurogenesis in the development
of the nervous system as a pruning mechanism for neurons that are poorly wired or
functionally redundant [23]. Understanding and leveraging the neural plasticity of
animals capable of full brain repair is the first step for finding a treatment of
traumatic brain injury: replacing or inducing formation of lost neurons and allowing
the network to dictate their differentiation and functional response, which will
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contribute to innovative solutions for treatment of traumatic brain injury and neu-
rological disorders [24].

Despite the rapid move toward stem cell therapy for degenerative disease and
brain damage, it is still completely unknown what the cognitive consequences will
be for an adult patient with decades of memories when the brain is engrafted with
descendants of naïve stem cells. The studies of morphogenetic remodeling mech-
anisms and of memory and behavioral performance have not been integrated.
Indeed, there are no established platforms for computational modeling of behavior
during brain remodeling. It is thus imperative to begin to formalize the under-
standing of what happens to memories and behavioral programs when cells are
added (proliferation), removed (apoptosis/necrosis), relocated (migration), and
re-wired (synaptic plasticity).

2.2 Traditional and Adaptive Artificial Neural Network
Models

Artificial neural networks (ANN) are a computational model of the neuronal con-
nectivity in the brain. The feed-forward network is one of the most common neural
network architectures in which connections between neurons are directed and going
only in a global forward direction, avoiding the formation of feed-back loops. The
output of a neuron can be calculated as a dot product of the input vector, x, and
connection weight vector, w, plus some bias value, b, which acts as the neurons’
firing threshold [25]. The output of the neuron is generally modulated by some
activation function that is nonlinear, usually a sigmoid, such that the neural network
is able to learn patterns that are not linearly separable [26, 27].

While most of the work to-date has focused on ANNs with constant (fixed)
topologies, a few studies have exampled dynamical changes to ANN structure.
Artificial neural network growth and pruning techniques have been primarily
addressed as a part of training to avoid over-fitting (network is too large) or
under-fitting (network is too small) [28]. The majority of techniques developed are
meant as a pre-training network optimization or an intermediate step in training the
network and therefore the immediate effects of perturbation on memory persistence
after all training has been completed have not been studied [29–31]. While some
studies of artificial neural network architecture have attempted to draw connections
between such computational methods and their biological implications [28, 31],
none have formally attempted to test perturbation methods prior to re-training the
network.

The combination of genetic algorithms and artificial neural networks has given
rise to a series of studies related to evolving adaptive and developmental neural
networks [32–36]. These and other works studying neural-like cellular models of
development [37, 38] suggest that artificial evolution has the capacity to produce
robust information processing systems. Compositional pattern producing networks
(CPPNs) are an example of a developmental artificial neural network model
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evolved by genetic algorithms [33, 35], and incorporate protein diffusion along with
excitatory proteins into an artificial tissue model. This model was later extended
with the neuroevolution of augmented topologies algorithm, NEAT, [39] which
provides a method for augmenting artificial neural network topologies to become
incrementally complex throughout genetic algorithm evolution [32]. Most recently,
the CPPN-NEAT method was used to evolve 3-dimensional structures, a promising
avenue for the study of morphogenesis [36].

Significant questions remain open with respect to the degree of robustness of
memory after ANN structure change. Moreover, it is not known what value
assignment policies for new cells (and the neighbors of dying cells) in a network
optimally preserve function during topological change. Here, we approach these
questions with a novel quantitative analysis of the behavioral performance of an
ANN model subjected to cellular removal and proliferation.

3 Formalizing Artificial Neural Network Cellular
Perturbation

3.1 Experimental Methods

We utilized a simple ANN topology for our primary experiment: a feed-forward
single hidden layer neural network (Fig. 1a). A tangent sigmoid transfer function
was used as activation function for all neurons. All networks had 2 input neurons
and a hidden layer of a size of either 10 neurons or 20 neurons. We chose not to
optimize the hidden layer size in order to compare the perturbations across the two
training algorithms (likely with different optimal network sizes). The MATLAB
Neural Network Toolbox [40] provided the implementations for the artificial neural
networks and related functions for training and testing them.

We performed the training of the networks with two different backpropagation
training algorithms: Levenberg-Marquardt and resilient back propagation. Both
algorithms use the output error of the training network to adjust the internal
weights, starting from the neurons in the output layer and propagating backwards
through the rest of the network [41]. The Levenberg-Marquardt training algorithm
is an optimization of the traditional backpropagation algorithm that approximates
the computation of the Hessian matrix using a Jacobian matrix [42]. The resilient
backpropagation algorithm is a modified backpropagation algorithm that was
designed to combat the minimization of extreme changes due to taking the
derivative of the tangent sigmoid transfer function [43].

We evaluated the networks using three benchmark data sets of varying com-
plexity (two spirals and half-kernel). The input was defined as the x and y coor-
dinates for a data point, and the output as a value (color classification) for the point
(Fig. 1).
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Fig. 1 Basic model structure and qualitative methods for studying artificial neural networks.
a Pattern recognition goals for network to discriminate between two spirals; area of uncertainty can
be seen from output on entire input space. b Feedforward single hidden layer neural network with
5 hidden neurons. c The artificial neural network output can be visualized over the training data set
(spiral x, y points) or mapped over the entire input space to show a global categorization. d The
output of each hidden neuron can be visualized to determine when individual neurons are firing
(purple) and not-firing (blue). Visualizing the output of the network shows how its memory is
stored
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The quantitative error of the network was computed using the mean squared
error function, which is commonly used to quantitatively test errors in artificial
neural networks as well as other machine learning algorithms. Given n inputs for
the actual outputs x and expected outputs r, the equation calculates the mean
difference between the expected and actual outputs over the input set (1).

1
n

Xn

t¼1

ðrt � xtÞ2 ð1Þ

3.2 Perturbation Methods

We implemented and tested seven perturbation methods on artificial neural net-
works, falling under the categories of neuron removal, addition, and connection
blocking. The merging and splitting techniques, used to implement cell prolifera-
tion and programmed cell death (apoptosis) were adapted from a neuron pruning
and growing method in an iterative training algorithm [30]. The seven perturbation
methods implemented are the following:

• Remove—set the input and output weights and the bias of a specific neuron to 0
(Fig. 2a).

• Merge—merge two neurons, a and b, into neuron c by combining the weights of
the input layer and output layer (2a, 2b). Adapted from a pruning method for
artificial neural network size optimization [30]

Input layer w*c ¼ w*a þw*b

2
ð2aÞ

Output layer w*c ¼ w*a þw*b ð2bÞ

• Merge insignificant with correlated neuron—select the least significant neuron,
where significance is computed as the standard deviation of the hidden neurons’
output over the training set (3), and select the neuron that is most correlated to as
the neuron that has the smallest mean squared error to the insignificant neuron
and merge as in 2.

Significance sa ¼ r o w*a

� �� �
ð3Þ

• Add randomly—add a neuron with random weights (Fig. 2b).
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• Split—splitting a neuron involves modifying the weights of the original neuron
a and new neuron b so that the two new neurons contain the same number of
connections as the parent neuron, wa (4a, 4b). The parameter α represents a
random “mutation” value that for the scope of this study was a normally dis-
tributed random number [30].

Old neuron w*
0

a ¼ ð1þ aÞw*a ð4aÞ

New neuron w*b ¼ �aw*a ð4bÞ

• Split insignificant—select the least significant hidden neuron (3) and split it
(4a, 4b).

• Block connections—set the connection between neuron a and neuron b to be 0
(5), this can be done between both the input to hidden layer connections and the
hidden layer to output connections (Fig. 2c).

wab ¼ 0 ð5Þ

4 Results

4.1 Robustness of Feedforward Single Hidden Layer
Artificial Neural Networks

We assayed the performance of two different artificial neural networks, one trained
with resilient backpropagation and one with Levenberg-Marquardt training algo-
rithm, on two different pattern recognition problems and seven types of perturbation
to determine how topological changes impacted neural network memory. The
results show how the memory effects of even slight changes to network topology by
perturbing only 3 connections could be quite severe for any of the perturbations:
neuron removal, addition, or connection blocking (Fig. 2).

b Fig. 2 Effects of modification of topology by three connections. a Trained artificial neural
network before any perturbation has learned the two-spiral pattern with some area of uncertainty
where it cannot discriminate between the two spirals. b Removing hidden neuron five from the
artificial neural network by blocking its two input and one output connections causes perturbation
of the network output, and loss of memory of the learned pattern. c Addition of hidden neuron six
to the artificial neural network post-training by addition of two input and one output connections
causes perturbation of the network output, and an alteration of the learned pattern. In comparison
to the original network (a), the addition of the neuron has improved performance. The neuron
addition post-training is not universally beneficial, sometimes causing loss of learned patterning
information. d Connection blocking between input neurons and hidden neurons (X to 3 and Y to 5)
and hidden neurons and output neuron (3 to output) causes loss of memory of correct patterning
information
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Neuron removal or blocking of 3 network connections caused almost a complete
pattern degradation (Fig. 2a, c) while the effect of neuron addition was less severe
(Fig. 2b). In order to determine how network performance degrades with increasing
perturbation of cells, we trained a network and then progressively removed indi-
vidual nodes at random, while testing its performance (Fig. 3). Patterning memory
in the feedforward artificial neural networks was overall quickly affected by all
seven perturbation methods, with removal and connection blocking being more
traumatic to memory than neuron addition, but all having severe memory degra-
dation at 50 % perturbation (Fig. 3e). Most perturbations reach above the threshold
for network error at 20 % perturbation and certainly by 50 % perturbation except for
neuron splitting, which was nonlinear in that further cellular perturbation did not
always lead to a greater network error.

4.2 Differential Robustness of Training Algorithms

It was discovered that the resilient backpropagation algorithm overall was more
robust to all types of perturbation than the Levenberg-Marquardt training algorithm
(Fig. 3). This was particularly noticeable for removal and merging methods; the
perturbation of resilient backpropagation networks had a slower effect on the net-
work error, whereas the Levenberg-Marquardt networks lost almost all patterning
capability after the removal of just one neuron (Fig. 3). One component that
appeared to contribute to this robustness was the training of the bias values of the

b Fig. 3 Testing resilience as a function of percent perturbation for different training algorithms.
a Network trained with resilient backpropagation loses little patterning information when neurons
are removed using the simple remove neuron perturbation method. The network ends with <0.3
mean-squared error (MSE) since b the output neuron, due to the intermediate bias value
characteristic of the Resilient Backpropagation training method, is always firing with an
intermediate value for all inputs of the binary spiral classifications after all hidden neurons are
removed. c Levenberg-Marquardt trained network reaches 0.3 mean squared error before 10 %
perturbation and quickly approaches the average error of a random artificial neural network, since
d the output neuron is constantly firing with a high value and hence classifying every point into
one of the spirals because of the extreme bias values characteristic of the Levenberg-Marquardt
training method. For both a and c, random network error was calculated by randomly assigning
weights to neurons that were within the range (min and max with standard deviation) of a trained
network and computed the error for the training problem. The networks are single hidden layer
network (10 neurons in the hidden layer such that 10 % removal is equivalent to the removal of
just one neuron). Performance was measured by the mean squared error (MSE). e Networks trained
with the Levenberg-Marquardt algorithm (yellow 20 % manipulation; red 50 % manipulation) lose
patterning information more quickly than those trained with resilient backpropagation (green 20 %
manipulation; blue 50 % manipulation) for all seven perturbation methods. Starting error for the
network is in white. One network trained with each algorithm was used, with each perturbation
(i.e. remove 20 %) performed randomly 250 times. Performance was measured by the mean
squared error w/standard deviation. Overall, while networks trained by either training algorithm
are negatively affected by perturbation, the networks trained with resilient backpropagation have
greater memory persistence that those trained with the Levenberg-Marquardt training algorithm
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output neurons. This was then confirmed by training 100 networks using the two
different training algorithms on the two spiral problem and for each network
recording the value for its output bias neuron (Fig. 4). Using a two-tailed t-test with
unequal variance, resilient backpropagation was found to have significantly lower
bias values for its output neurons than Levenberg-Marquardt for output neurons
(p < 0.05e-04).

Seemingly, the more extreme bias values of the output neurons from
Levenberg-Marquardt training appeared to cause the network to quickly lose
functionality, reaching the average error of a random artificial neural network. In
contrast, artificial neural networks trained with resilient backpropagation never
reached the error level of a random network, even after perturbing all hidden and
input neurons, because of the output neuron biases. It is biologically plausible that
bioelectrical networks with extreme differences in membrane potential would be
less robust, as the loss of one neuron would significantly impact the response of its
neighbors. This idea was further reinforced by the impact showed by random values
of a mutation (scaling) parameter in the splitting perturbation methods. In future
work, this mutation parameter will be tested to determine an optimal mutation value
(or pattern) for splitting neurons in the network.

Fig. 4 Comparing absolute bias values of output neurons between training algorithms. The output
bias values were compared for the resilient backpropagation and Levenberg-Marquardt training
algorithms on 10 hidden neuron feed-forward artificial neural networks learning the two-spiral
problem. We sampled the output values of 100 networks for each training algorithm, and took the
mean and standard deviation of the bias value of their output neurons. Resilient backpropagation
output neurons on average have a significantly lower absolute value (less extreme firing) than the
output neurons of Levenberg-Marquardt trained networks. Using a two sample t-test with unequal
variance we confirmed that the two training algorithms had significantly different bias values for
their output neurons (p < 0.05e-4)
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4.3 Resilience to Cell Death Depends on the Difficulty
of the Problem

In order to determine if networks trained with easier or harder patterning problems
were more robust to perturbation, we ran an experiment that determined which
20 % of the neurons in an artificial neural network gave the best memory persis-
tence (least mean squared error) over the output, and then compared that value to
the average performance of all of the possible combinations of 20 % neurons
removal. The results showed that the two-spiral problem, a notoriously difficult
machine-learning problem, trained with resilient backpropagation had the least
difference in performance between removal of the best 20 % and the average 20 %
(Fig. 5). In contrast, the half-kernel problem with the resilient backpropagation

Fig. 5 Comparing average to optimal memory performance of 20 % neuron removal for different
training problems and algorithms. Best performance compared to average performance for removal
of 20 % of neurons for single hidden layer (20 neurons—remove 4 neurons) artificial neural
networks trained on different data sets (two-spiral and half-kernel) and with different training
algorithms: resilient backpropagation (RP); Levenberg-Marquardt (LM). Performance was
measured as the mean squared error. Network trained with the half-kernel data set using resilient
backpropagation had a low error for the best performance, indicating a high memory persistence
with optimal neuron removal. Overall, the training algorithm had an impact on average resilience
and the patterning problem had an impact on optimal resilience
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training algorithm had the greatest difference between the best performance with
20 % neuron removal and average removal (Fig. 5). As the two-spiral problem has a
higher degree of nonlinearity in its patterning, intuitively our results confirm that
most if not all of the networks’ hidden neurons are essential to the ability to learn
the problem. The same is not true for the half-kernel pattern recognition problem
because it is more linear and thus requires less neurons (in fact may contain
redundant neurons) that can be pruned without compromising memory. In fact, it is
likely that these excess nodes in the network learning the half-kernel problem were
overgeneralizing, a common concern in ANN optimization literature [25].

4.4 Balancing Node Removal May Increase Memory
Persistence

Using the same network trained using resilient backpropagation on the half-kernel
problem with the optimal 20 % neuron removal, we looked at the firing output for
each hidden neuron in the network to determine if there was a pattern of what neurons
were found to be best to remove. By viewing the firing patterns of the hidden layer
neurons, we were able to understand the network architecture and how the firing
pattern plays a role in memory persistence. Interestingly, this network trained with
resilient backpropagation for half-kernel was the only network tested in this study that
contained neurons that fired weakly (neuron three and five; Fig. 6), and only one of
the two weakly firing neurons was removed in the 20 % best performance case. The
other weakly firing neuron (neuron five) was not part of the 20 % removed.

Overall, there was no immediate pattern in the types of neurons that were best to
be removed from the artificial neural networks: we found that it was not best to
always remove neurons that had consistent behavior (always firing or always not
firing) but rather it seemed best to remove a balance of firing and non-firing neu-
rons. This suggests that static neurons are in fact necessary for overall patterning
recognition capability. The removal of neurons to “balance” the network may be
comparable to the allometric scaling of the planarian flatworm, in which the pro-
portions of the worm are perfectly preserved [44].

4.5 Functional Recovery of Lost Patterning Information

There were a few occurrences of a striking functional recovery of seemingly lost
patterning information that was seen when using the splitting neuron and
the splitting insignificant neuron perturbation methods (Fig. 7). In the splitting
insignificant method, the neurons chose to split were the same, but the mutation
parameter (4) varied, which, for extreme mutation parameters, may have caused the
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extreme imbalance showed by the network (loss of all functional information). If
this was followed by a more reasonable mutation parameter, this could cause a
scaling of the network (changing the firing rates of all added neurons from extreme
values to more balanced ones) that appeared to recover the patterning information.
While the original intent was to study the impact of neuron splitting, these results
suggest that neuron scaling may be very important to the recovery of lost patterning
information. This may have implications for cancer and neurological diseases,
where perhaps the bioelectrical properties of newly introduced cells can be adjusted
to cause a certain alteration in the overall bioelectrical network and produce a
functional recovery of the correct pattern.

Fig. 6 Identifying patterns of best neurons to remove from network with memory persistence to
20 % removal. Individual neuron output for each of the 20 hidden neurons in a single layer
feedforward artificial neural network trained using resilient backpropagation on the half-kernel
data set showing optimal 20 % neuron removal. Grayscale neurons (neurons numbered 1–4) are
removed. For colored neurons, purple indicates where the neuron fires over the input space and
blue indicates where it is not firing. For grayscale (dead) neurons, white to black indicated firing
level, with white being firing and black being not firing. There is not one consistent type of neuron
that is removed, but rather four neurons that fire at different places in the input space. This implies
that balancing neuron removal may be a method for maintaining memory persistence
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5 Discussion

We analyzed a computational model of memory in a neural network subject to
morphological plasticity. We found that:

• Morphological perturbations to artificial neural networks corrupt learned pat-
terns with a majority being outside of acceptable network error at 20 % per-
turbation, excluding neuron splitting as it remains in the acceptable error range
after both 20 and 50 % perturbation.

• Resilient backpropagation-trained networks are more robust than the
Levenberg-Marquardt trained networks to morphological change.

• Networks learning harder patterning problems are less capable of robustness
after cell death.

Fig. 7 Evidence of functional recovery of lost patterning information while splitting of
insignificant neurons. Output over the entire input space (top) and training data coordinates
(bottom) for each of 10 sequential perturbations in a single hidden-layer feed-forward artificial
neural network. The network was initially trained with Levenberg-Marqardt training algorithm on
the two-spiral dataset. After training, neurons were sequentially added using the splitting
insignificant method. Functional information was lost after the addition of three neurons, but
recovered after the addition of six neurons and nine neurons. This implies that addition of neurons
using information from old neurons in the network may be a means of resilience towards
topological perturbations
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• Selective cell death of neurons that balance firing patterns may increase memory
persistence.

• Re-scaling of sequentially split neurons can facilitate recovery of lost patterning
information in the network.

Our data represent a proof-of-principle of using computational models to
understand the stability of memory in nervous systems undergoing significant
remodeling. The findings also have implications for understanding the robustness of
artificial cognitive devices that will increasingly be called upon to function despite
damage or reconfiguration (e.g., in space exploration). Two major lines of inquiry
represent the most important next steps. First is the modification of our paradigm to
match specific instances of biological neural remodeling. We chose the training
paradigm (e.g., backpropagation) to maximize tractability and connection with the
existing body of work in the field of ANNs. Future work must extend this analysis
to networks with greater biological realism and training mechanisms that are
plausibly operational in real biological brains [45].

A second major area for investigation, on-going in our lab, is the extension of
models used in computational neuroscience to understand goal-directed activity of
non-neural tissues. The ability of some organisms to regenerate complex body
organs [46] and adjust their structure toward the correct anatomy despite unpre-
dictable perturbations [47, 48] reveals the existence of robust
information-processing algorithms executed by somatic tissues that must make
decisions guiding their growth and form toward adaptive outcomes. The body has
an incredible capacity to learn and remember its structure—a capacity that is cur-
rently an untapped resource in biomedicine due to our limited understanding of the
mechanisms of control of this complex system. Extensive data now demonstrate
that all cells, not just neurons, communicate via electrical signals and neurotrans-
mitters in making decisions that control morphogenesis [49–52]. Thus, we have
conjectured that the ability to restore a target shape after injury or deformation may
represent a kind of memory, and could be tractably modeled by techniques cur-
rently used to understand memory in the nervous system [52–55]. Mathematical
models of such learning and memory, and particularly those inspired by cognitive
science, may hold the key to understanding the storage and access of somatic cell
memory. This is a top-down, information-centered approach which complements
the current paradigm’s near-exclusive focus on bottom-up models of molecular
interaction pathways.

Simply the ability to manipulate somatic memory would hold great potential for
biomedicine in treatment of traumatic injuries and birth defects, because it may help
avoid the complexity explosion that hampers efforts to control complex shapes by
tweaking specific molecular activities. It is possible that the mechanisms implicated
in the massively distributed computing mechanisms of the brain are also present in
the body, especially given that somatic cells contain the same signaling components
that are essential for neuronal information processing and that neuronal commu-
nication likely evolved from more primitive somatic signaling [56–59]. If so, the
mathematical formalizations employed in cognitive science may serve to further our
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understanding of cellular coordination towards complex pattern formation in
development and regeneration. In particular, artificial neural networks and
self-organizing maps are known for creating attractor states from which stable
patterns may arise [60, 61]. Basins of attraction are gaining popularity in devel-
opmental biology to explain the course of gene expression via gene regulatory
networks [62–64], but can also explain the collective phenomena of stable mor-
phologies [54].

The planarian flatworm is an ideal model system for investigating such work due
to its highly regenerative nature and demonstrated morphological plasticity [65–
68]. Planarian flatworms have the capability of extending their genetically encoded
morphologies to a number of additional stable states, including double and
quadruple head morphologies [69]. The question that remains is how and why such
stable states exist and if it is a property unique to regenerative organisms or if it is
innate to all stem cell populations. In future work, we hope to expand our proposed
method for artificial neural network perturbation to more complex network types
such as deep multilayer perceptrons and recurrent neural networks which are known
to have a more complex “memory” [28] as well as unsupervised networks (not
trained with output criteria) such as the self-organizing map which are known to
mimic the organization of like cells into clusters that share recognition properties,
much like biological neural networks [70]. Additionally, future experiments will
employ data that is related to biological shape to draw further connections between
pattern recognition and target morphology. The work presented in this paper is the
first to attempt to formalize perturbation methods for artificial neural networks in
order to determine their use as a biological model. Evidence of functional recovery
and sensitivity to the method of perturbation implies that artificial neural networks
are capable of memory persistence and can serve as a model of a dynamic infor-
mation processing system.

For biologists, important advances in neuroscience and the manipulation of
somatic target morphology for regenerative medicine await a better understanding
of memory robustness in dynamic cellular networks [54]. For computer scientists,
understanding the mechanism of cell memory is an interesting question as well as a
practical one: such a system could be the first step toward designing self-building
and regenerative machinery. It is a question that has to be answered with care, as the
balance between robustness and adaptability is a long-standing challenge in biology
and computer science. As a mature model of cognitive information processing,
artificial neural networks may be able to help solve the great mystery of how the
body remembers and inform our understanding of development and regeneration in
the process.
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A Structure Optimization Algorithm
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from Educational Data
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Abstract Digital technology integration is recognized as an important component
in education reformation. Learning patterns of educators’ and students’ perceptions
of, beliefs about and experiences in using digital technologies through self-reported
questionnaire data is straightforward but difficult, due to the huge-volume, diver-
sified and uncertain data. This chapter demonstrates the use of fuzzy concept
representation and neural network to identify unique patterns via questionnaire
questions. Fuzzy concept representation is used to quantify survey response and
reform response using linguistic expression; while neural network is trained to learn
the complex pattern among questionnaire data. Furthermore, to improve the
learning performance of the neural network, a novel structure optimization algo-
rithm based on sparse representation is introduced. The proposed algorithm mini-
mizes the residual output error by selecting important neuron connection (weights)
from the original structure. The efficiency of the proposed work is evaluated using a
state-level student survey. Experimental results show that the proposed algorithm
performs favorably compared to traditional approaches.
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1 Introduction

Digital technology integration in schools has, as yet, resulted in relatively limited
teacher and student engagement with new and sophisticated ways of learning
supported through information and communication technologies (ICTs). One pos-
sible reason is that educational research as a field has struggled to grasp the
complexity or dynamic nature of technology adoption and integration in the
classroom. A large amount of student and teacher self-reported questionnaire
therefore has been designed for modeling purpose. Relevant data has been collected
and studied on perceptions of, beliefs about and experiences using digital tech-
nologies in learning and teaching.

However, there are still some issues remain in terms of understanding and
predicting students’ learning performance as a result of technology integration in
the classroom using survey data. The reasons are summarized as follows: firstly, the
survey or self-reported questionnaire data is heterogeneous, as it is often in cate-
gorical form or expressed in free text. Missing data is also very common due to
reporters’ unwillingness and incautious. Secondly, much of this data is subject to
participant bias and self-selection. Therefore, survey data is always skewed and
imbalanced. In addition, due to the difference in perceptions of a survey topic from
survey designers and responders, collected data is full of inconsistent expressions
and varied semantics. Last, with the exponential accumulation of survey data, the
challenges associated with data volume (numbers of years, students, teachers, even
parents) and veracity (language uncertainty) continue to multiply. This leads to a
complex data mining processing, which is difficult to address using traditional
linear analysis methods.

Neural networks (NNs) have increasingly found their wide applications in many
fields. Given training samples, NNs are used to establish the potential model
between the observed input and output samples. Because of their capability of
learning complex models from data, NNs have been applied to statistical modeling
and decision-making in many areas [1, 2]. Inspired by existing work, we consider
utilizing NNs for modeling educational questionnaire data. The performance of the
NNs modeling, however, depends on the network structure, which must be built
ahead by fixing the number of hidden neurons and layers. Given the same network
training algorithm for the same questionnaire dataset, different network structures
commonly lead to varied performance. A larger structure, for example, may con-
verge quickly to a local optimum but exhibit poor generalization capability due to
over-fitting; on the other hand, a smaller structure may require more time to
approach the proper fit so that it becomes ineffective in real questionnaire data
application. Hence, designing advanced algorithms to optimize network structures
is critical for learning complex patterns from educational questionnaire data.

There is not a theoretical formula giving clear insight for how to choose the
optimal network structure. The structure is typically decided by trial-and-error
experiments or cross validation, but this process is computationally demanding.
In this chapter, we propose a structure optimization algorithm, termed sparse weight
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optimization (SWO), by selecting important weights from the initial network. The
proposed algorithm benefits from the model of sparse signal representation by
considering the structure of a neural network as a sparse signal, and then the structure
optimization is cast as finding the sparse representation for the network structure.
More precisely, the proposed algorithm adopts an initialization-then-selection pro-
cedure. In the initialization step, an overlarge network is initialized. In the selection
step, the proposed algorithm iteratively selects weights that minimize the residual
error. The selection step is repeated until the termination condition is met. To this
end, the proposed algorithm is able to adjust the network structure while training the
neural network.

The remainder of the chapter is organized as follows. Section 2 presents the
problem with modeling the self-reported questionnaire data. Section 3 present a
brief review of existing structure optimization algorithms for NNs and the model of
sparse representation, respectively. Section 4 details the proposed algorithm, by
analyzing the relationship between structure optimization and sparse representation.
Section 5 introduces how to process education data using the fuzzy concept rep-
resentation. The implementation and experimental results are discussed in Sect. 6,
followed by concluding remarks in Sect. 7.

2 Background

In recent decades, young people are believed to be more confident using technology
than older generations in education. The belief that young people can easily adopt
digital technologies has influenced how the public and educational systems think
about technology integration and learning. To better support young people, schools
need to fundamentally change and become more technology-driven, collaborative
and student-centered. Research now has started to unpack how students use tech-
nology in schools and what this means for teaching and learning [3, 4].

Data mining technique, as an advanced tool, is therefore applied in educational
domain [5, 6]. The educational data mining approach has mainly focused on higher
education using data from learning management systems and intelligent tutoring
systems. The benefit is that validation of models is simple and researchers can
easily build on special knowledge.

Nevertheless, less work has been conducted at the secondary school level, where
there is also a large number of publicly available datasets (e.g. national surveys of
teacher satisfaction and work, Organization for Economic Co-operation and
Development (OECD) adult skills and student assessment, etc.). Meanwhile, most
of these datasets are self-reported attitudinal data, such as teacher experience and
students perceptions, which presents a number of challenges in educational data
mining. For instance, schools are by nature heterogeneous populations. To com-
pound this, one of the most common issues is missing data, what it means and how
this should be addressed. Furthermore, much of this data is subject to participant
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bias and self-selection. These traits of the data increase heterogeneity in the sample
and complicate data mining analysis. In the following section, we introduce the
neural networks technology to identify the complex pattern from the educational
survey data.

3 Related Work

Neural networks have been inspired by biological observations of the human brain
function [7]. Over the past several decades, neural networks have evolved into
powerful computation systems, which are able to learn complex nonlinear
input-output relationship from data. There are two general types of network
topology: feedback or recurrent neural networks and feed-forward networks. In
recurrent networks, the connections between neurons can form directed cycles.
Feed-forward neural networks, on the other hand, process the information only in
the forward direction, from the input layer to the output layer. In this chapter, we
focus on feed-forward networks. A multilayer perceptron (MLP) or multilayer
feed-forward neural network consists of a set of input neurons, one or more hidden
layers of perceptrons, and an output layer of linear or sigmoid type neurons. Each
neuron is connected to all neurons in the succeeding layer, while signals only
propagate through the network in the feed-forward direction.

3.1 Structure Optimization Algorithms for NNs

Structure optimization is critical for improving the generality of feed-forward net-
works, which aims to balance the trade-off between the computational complexity
and the generalization ability of a neural network. The trial-and-error or cross
validation methods are used to search for the optimal structure in the past, which is
computational costly. To automatically optimize the network structure, more sys-
tematic methods are developed, which can be broadly categorized as follows:

• Network pruning algorithm, which is based on the saliency analysis on each
network element (such as weights) in a multiple-iteration procedure. At each
iteration, the significant weights which minimize the training error are main-
tained; while those with the least contribution are removed. Some typical
weight-based pruning algorithms include optimal brain surgeon (OBS) [8] and
optimal brain damage (OBD) [9];

• Network construction algorithm, which begins with a small network and
incrementally adds hidden neurons during the training process. The incremental
step is repeated until a stopping criterion is met. Some construction methods are
proposed in [10–12];
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• Hybrid construction-pruning algorithm, which combines the pruning and the
constructive strategies. Generally speaking, the hybrid construction-pruning
algorithm starts with a small structure and dynamically adding a hidden node
(neuron) if its significance is larger than a certain threshold or deleting a node on
the contrary during the training process. Some typical work can be found in
[13, 14].

Overall, the traditional structure optimization methods are characterized by
different advantages: the pruning-based algorithms can converge quickly from the
initial larger network; the construction algorithms are less sensitive to the initial
settings; and the hybrid algorithms combines the merits of both.

3.2 Sparse Representation

Sparse representation arises from single processing. It is based on the assumption
that a synthetic signal can be decomposed into a linear combination of a few
elementary signals. By sparse representation, the majority information conveyed by
the target signal can be represented by only a few non-zero elements. The model of
the sparse representation has attracted a great amount of research effort, resulting in
many exciting applications [15, 16].

The single measurement vector (SMV) model is one particular type of sparse
representation, which is to recover a one-dimensional signal x 2 R

N from few linear
measurements y 2 R

M [17, 18]. The mathematical model can then be expressed as

min SðxÞ subject to y ¼ Dx; ð1Þ

where S xð Þ denotes a sparsity measure, and D 2 R
M�N is known as the dictionary.

A dictionary atom is one column vector from the dictionary. The SMV model is
also illustrated in Fig. 1 [19].

Fig. 1 The SMV model aims to minimize a vector’s sparsity. In the sparse signal x 2 RN , only K
entries are non-zero. Thus, the signal is K-sparse. The rectangular areas from the dictionary D are
associated with non-zero coefficients from x
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One simple strategy for solving Eq. (1) is to minimize the l0-norm of x, i.e.,
S xð Þ ¼ xk k0. The l0-norm is the cardinality or number of non-zero elements in x.
Thus Eq. (1) can be also rewritten as

min xk k0 subject to y ¼ Dx: ð2Þ

Various algorithms have been developed for finding the sparse solution of the
SMV model, including: non-convex local optimization algorithms and greedy
algorithms. Non-convex local optimization algorithms solve the SMV model using
self-weighted minimum norm, in which the Lagrange multiplier method is
employed. Greedy algorithms, on the other hand, measure the similarity between
the residual error and the dictionary atoms, and then select the atom that minimizes
the residual error at each iteration. Typical greedy algorithms include matching
pursuit (MP) [17], and orthogonal matching pursuit (OMP) algorithm [18].

4 Sparse Weight Optimization Algorithm

In this section, the sparse representation-based algorithm is proposed for optimizing
a network structure, in which the structure optimization is formulated as an SMV
model. We first introduce the definition of sparse rank which will be used later to
measure the complexity or sparsity of the network structure.

Definition 1 Given a matrix X, its sparse I rank R1ðXÞ is the largest number of
non-zero elements in any column of X.

Next, let us consider a three-layer fully-connected network with one hidden
layer, an input layer and an output layer. Figure 2 shows the general structure of this
fully connected network. On the left hand side, the input layer receives signals from
the external environment. In the middle is the hidden layer, which receives signals
from the input layer and sends its output signals to the output layer. The output
layer processes the signals received from the hidden layer and produces the network
response.

Suppose the initial network structure consists of Q inputs, N hidden neurons and
M outputs. Let P ¼ p1; p2; . . .; pL½ � be a matrix containing L training samples and
Y ¼ y1; y2; . . .; yL½ � be the desired output matrix. Each raw of P or Y represents one
input or output sample; each pair of pi; yið Þ forms an input-output observation.

Moreover, let X 2 R
L�N denote the output matrix of the hidden layer, in which

the i-th column represents the output from the i-th hidden neuron, i 2 1; . . .; Nf g,
and Z 2 R

L�M denote neural network output matrix corresponding to the input
matrix P. The output of the hidden layer can be expressed as

X ¼ f PV þB1ð Þ; ð3Þ
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where f �ð Þ is the activation function, V 2 R
Q�N is the weight matrix between the

input and hidden layers, and B1 is the bias matrix having the bias vector as its
columns. The final output of the network is given by

Z ¼ g XW þB2ð Þ; ð4Þ

where g �ð Þ is the activation function, W 2 R
N�M comprises the weight vectors

between the hidden and output layers, and B2 is the bias matrix of the output layer
with columns containing the bias vector.

Without loss of generality, we further assume that f �ð Þ and g �ð Þ are linear acti-
vation functions. Note that if f �ð Þ and g �ð Þ are invertible, we can transform the
output neurons to linear units by applying the inverse function f�1 �ð Þ or g�1 �ð Þ. In
this case, the actual outputs of the hidden layer and of the final network can
simplified as:

X ¼ PV þB1; Z ¼ XW þB2: ð5Þ

The desired output matrix Y can then be rewritten as:

Y ¼ ZþE ¼ XW þB2 þE; ð6Þ

where E ¼ e1; e2; . . .; eL½ � is the network error matrix; ei is the error between the
actual output zi and the desired output yi.

Fig. 2 An initial NN structure
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To optimize the structure of the NN, we need to remove some links between the
input and hidden layers and between the hidden and output layers. Note that
removing those links is equivalent to setting the weights of those links to zero.
Hence, only non-zero weights will be kept in the network. Comparing the
expressions of X; Z; Y in Eqs. (5) and (6), we can see that if we consider the weight
matrices V or W as target signals, then finding an optimized structure is cast as
finding the sparse representation of it.

Note that each single element in the matrix V (Eq. 3) is associated with one
weight in-between the input and hidden neuron. For instance, the element vi;j from
V in the i-th row and the j-th column represents the weight connecting the i-th input
neuron and the j-th hidden neuron. Therefore, removing this weight connection is
equivalent to setting vi;j to the zero value; on the other hand, those selected weights
are given non-zero values. Similarly, to select the weight from the i-th hidden
neuron to the j-th output neuron, we need to set the element wi;j in the matrix W as
non-zero.

To this end, to optimize the structure of a NN, i.e., to select important weights
while reducing the total number of weights in the original network is equivalent to
minimizing the number of non-zero elements in V or W , or the minimization of
R1ðVÞ and R1ðWÞ: That is, given a trained network, the model of weight selection
can be cast as follows:

minR1 Vð Þ subject to X � B1 ¼ PV :

minR1 Wð Þ subject to Y � B2 ¼ XW :

(
ð7Þ

The optimization to Eq. (7) can be calculated using the sparse representations for
the Multiple-SMVs model simultaneously. We then propose a sparse algorithm,
termed SMVSI, to solve theR1 �ð Þminimization, which is summarized inAlgorithm1.

input : The signal matrix Y ∈ L×M , the dictionary D, and the maximal iteration T .
output: A sparse matrix X .

for i ← 1 toM do
execute traditional SMV algorithm using (yi,D) with T iterations and obtain xi;
Replace the i-th column of X using xi;

end

Algorithm 1: The SMVSI algorithm for the R1 (*) minimization.

Remark 1 A variety of algorithms can be applied to SMVSI, such as greedy
algorithms or non-convex local optimization algorithms. Herein, we apply greedy
algorithms algorithm (such as MP or OMP) to solve the SMV model. The reason is
that we are able to control the number of non-zero elements. Greedy algorithms
start from an empty set and add one new atom iteratively. If the algorithm halts at
the T-th iteration, there will be T non-zero element in the sparse solution.
Therefore, when the greedy algorithm is applied in SMVSI, each column of V or W
will have exactly T non-zero elements at the T-th iteration.
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Overall, the sparse weight optimization (SWO) algorithm is proposed by an
initialization-then-selection procedure. In the initialization step, an overlarge net-
work is initialized. Then for the selection step, significant weights are selected to
minimize the residual error. The SWO algorithm is summarized in Algorithm 2.

input : The trained network and the dimension of the input Q.
output: A pruned network.

ComputeX0 = PV +B1;
for i ← 1 to Q do

Vi ← SMVSI( (Xi−1 − B1), P , i);
Re-calculateXi = PVi +B1;
for j ← 1 to N do

Wi ← SMVSI((Y − B2), Xi, j);
Evaluate the updated network using validation data set;
if the predefined termination condition is met then

break;
end

end
end
Take the network with the lowest error on the validation set as the final network;

Algorithm 2: The proposed SWO algorithm for network structure optimization.

Remark 2 The termination criterion used in [13] is employed to halt the pruning
process when the validation error keeps increasing for T successive times, where T
is a parameter specified by the user. Apparently, the decision is made based on the
assumption that such an increase error from the validation set indicates the
beginning of the overfitting.

Remark 3 The computational complexity of weight-based SWO algorithm is
analyzed hereafter. Note that the performance of conventional methods depends on
the size of the original network as well as the remaining weights. For instance,
traditional pruning methods including OBD and OBS remove weights iteratively,
which lead to costly computation particularly for a large structure. On the other
hand, the SWO algorithm focuses on the remaining weights rather than the elim-
inated ones, which speeds up the pruning process. Let L;N, N�

w, and Nw denote the
number of training samples, initial hidden neurons, initial weights, and remaining
weights, respectively. Table 1 summaries the computational complexity of the
proposed algorithm with existing methods in terms of the number of floating
operations (flops).

Table 1 Comparison of
computational complexity of
different pruning algorithms

Algorithm Computation cost Flops

OBD OðLNÞ OðN�
w � NwÞ

OBS OðLN2Þ OðN�
w � NwÞ

SWO OðlogðLÞNÞ OðNwÞ
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5 Educational Dataset and Preprocessing

The dataset used in this study is taken from a state-level student and teacher survey
as part of the federal Digital Education Revolution (DER) initiative in Australia.
Data were collected by the Department of Education and Communities of New
South Wales (NSW DEC), Australia. The DER was a federally funded program,
which aimed to provide all secondary (year 9–12) students and teachers with
information and communication technologies (ICTs) in various programs.
The NSW government chose a one-to-one laptop program and provided laptops to
all secondary teachers and year 9 students between 2009 and 2013. The NSW DEC
collected the data over 4 years (2010–2013) through online questionnaires and
school cases studies among all public secondary schools across the state. The
student questionnaires covered five main subscales: school engagement,
computer/laptop usage in and out school, learning experiences and beliefs, beliefs
about the importance of ICTs in school subjects, and intentions after high school.

This study uses data from the 2012 year 9 student questionnaire. Of the
approximately 80,000 year 9 students in NSW secondary schools, 27.2 % (21,800)
students completed a two-part questionnaire. In the collected data, 12,978 students
completed Part A and 8,817 students completed Part B. This work is based on
Part B, i.e. the 8,817 student questionnaires.

The student questionnaire Part B contains 31 questions with a total of 147 items
covering the five subscales. For example, the subscale “students’ computer/laptop
usage in and out school” includes items on frequency of use, confidence using, and
computer/laptop related tasks and activities. Each question item contains a few
options or a self-statement. Students either chose an option or answer using their
language or leave it blank. Considering the categorical attributes, missing data and
free expression as well as imbalanced features of the data, we adopt the fuzzy
concept representation in data preprocessing step.

Fuzzy set was presented 50 years ago as a tool to express concepts without clear
boundary such as “young age” and “high income” [20–22]. In collected educational
data, many attributes can be summarized or aggregated using fuzzy concept to
make the semantic of those data is much clear and understandable [23]. For
example, a question in a state-level survey is about the ICT usage frequency of
students. Provided response options include such as “once a week”, “2-3 times a
month”, “once a month”, “once a term”, and “1-3 times a year”. Obviously, these
options are not easy to understand and compare; however, our experience and
knowledge tell us that the options “once a week” and “2-3 times a month” have the
similar meanings and so as to options “once a term” and “1-3 times a year”.
Therefore, it is possible to use fuzzy concept representation to summaries and
aggregate information in the collected data for better analysis.

Generally, a fuzzy concept can be expressed by a fuzzy set F which is defined on
a domain of discourse X and assigns a value from the real interval [0, 1] to each
element of X as its membership degree with respect to the fuzzy set. As an example,
we can define the fuzzy concept “frequent user” of ICT technology in teaching as:
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let X be the possible hours a user using a kind of ICT technology, say 0–6 h; then
for each value between 0 and 10, we can assign a membership degree following
below formula:

l xð Þ ¼
x
3 ; x� 3
1:0; 3� x� 6:

�
ð8Þ

We can draw the fuzzy set in Fig. 3 and claim that a user who spends 1 h daily
on using ICT technology will be treated as “a frequent user with membership
degree 0.33”. The more time a user spends on ICT usage, the higher membership
degree of being a “frequent user”.

Note that the definition of a fuzzy concept is closely related to the context of
discussion, hence the definition of the same fuzzy concept may vary in different
situation. For instance, “frequent user” of ICT usage could be defined on a daily
usage basis and can also be defined on a weekly, even monthly, usage basis. In this
study, we define fuzzy concepts on top of a range of scores subjected to the
question and the response options provided. Following the example of “frequent
user” of ICT use, we firstly assign a score to each option, then collect all these
scores as the domain X, and finally define fuzzy concepts such as “frequent user”,
“infrequent user” and “occasion user” on those scores. By using this method, we
can easily summarize and aggregate information from the raw data.

6 Results and Analysis

In this section, we employ the DER dataset to investigate the efficiency of the
proposed SWO algorithm for modelling purpose. The evaluation criterion is pre-
sented in the Sect. 6.1. The aims of our experiments are as follows:

• To understand the impact of initial network conditions on the SWO
performance.

• To compare the proposed algorithm with conventional work for data modelling.

0 1 2 3 4 5 6

1 frequenty user

0.33

0.84

m
em

be
rs

hi
p 

de
gr

ee

hours daily usage

Fig. 3 Definition of fuzzy concept “frequent user” example
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6.1 Experimental Setup

This experiment selects eight questions from the total 31 questions in the DER
survey data, which include computer-efficacy, ICT engagement, learning prefer-
ences, learning beliefs, ICT and learning performance, school engagement, teacher
directed ICT use frequency, and ICT importance in subject areas. Fourteen factors
are further extracted from selected questions based on the main topics of their items
(shown in Table 2), and the fuzzy representation is then applied to quantify these
factors.

From the viewpoint of classification, the ICT engagement is regarded as the
output while other 13 factors are cast as input attributes. For simplification, in this
chapter we consider two typical modes, i.e. “positive” or “negative”, for ICT
engagement classification.

The DER dataset is further partitioned into three subsets: a training set, a vali-
dation set, and a test set. The training set is used to train and optimize the network

Table 2 Factors and their descriptions from the DER dataset

No Factor Description

1 Computer-efficacy
(productivity)

Covers 6 productive tasks/activities; each task has
3 meaningful responses

2 Computer-efficacy
(processing)

Covers 2 processing tasks/activities; each task has
3 meaningful responses

3 Computer-efficacy (creating) Covers 2 creative tasks/activities; each task has
3 meaningful responses

4 ICT engagement Covers 4 general engagement items; each item has
4 meaningful responses

5 Learning preferences (direct
learning)

Covers 1 preferred item with 4 meaningful responses

6 Learning preferences
(self-paced learning)

Covers 1 preferred item with 4 meaningful responses

7 Learning preferences
(collaborative learning)

Covers 1 preferred item with 4 meaningful responses

8 Learning beliefs
(self-learning)

Covers 1 preferred item with 4 meaningful responses

9 Learning beliefs
(collaborative learning)

Covers 1 preferred item with 4 meaningful responses

10 Learning beliefs (instructed
learning)

Covers 1 preferred item with 4 meaningful responses

11 ICT and learning
performance

Covers 5 performance descriptions; each description
has 4 meaningful responses

12 School engagement Covers 5 questions items; each item has 4 responses

13 Teacher directed ICT use
frequency

10 scales of frequency

14 ICT importance in subject
areas

Covers 7 school subjects; each subject has
3 meaningful responses
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architecture. The validation set is used for the stopping criterion and the test set is
used for evaluation of the generalization ability of the pruned network. The size of
the training, validation and test sets in all cases is 50, 25, and 25 %, respectively.

At the same time, a fully-connected feed-forward network is employed with an
input layer, one hidden layer, and an output layer. The activation function of the
hidden layer is set to tangent sigmoid function. The output neuron uses the linear
function as activation function. The bias vector is implemented as an incoming
connection from the particular bias node with the input value of 1. The network is
initialized with random weights in the range [−0.1, 0.1], and it is trained with the
resilient back-propagation algorithm (RPROP) [24]. The training parameters are set
as follows:

• the maximum number of training iterations is 500;
• the minimum performance gradient is 10−6; and
• the learning rate is 0.01.

The network training terminates when either the maximum number of iterations is
reached or the performance gradient falls below 10−6. Furthermore, the general-
ization performance is evaluated using the classification accuracy for the classifi-
cation problem.

6.2 Performance Analysis

In this section, we investigate the effect of the initial network size on the perfor-
mance of the SWO algorithm. A large network is more prone to converging to a
local minimum than a smaller network. However, the over-sized structure will lead
to the overfitting to the training samples and greatly affect the performance of the
subsequent optimization. The purpose is then to find out the robustness of the
proposed algorithm to various network sizes. To do that, initial networks with
different numbers of hidden neurons are considered, i.e., N is set to 32 and 128,
respectively. The initial networks are then trained by the RPROP method with
training parameters as presented in Sect. 6.1.

Table 3 presents the average results for SWO over 30 independent runs. As
observed, the performance across different initial network sizes is comparable; that
is, the SWO algorithm yields similar generalization performance regardless of
initial network sizes. The difference of average classification rate over all data sets
between N ¼ 32 and N ¼ 128 is less than 1.03 %.

Table 3 Comparison with
different sizes of the initial
networks using the SWO
algorithm

Data set Classification
accuracy (%)

Remaining weights

N = 32 N = 128 N = 32 N = 128

DER 94.50 95.53 42.33 51.07

The performance is evaluated using the classification accuracy on
the test set
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In terms of the final network structure, different initial structure lead to similar
number of remaining weights. For instance, the SWO algorithm selects 42.33
weights when N ¼ 32 compared to that of 51.07 from N ¼ 128. This is because the
SWO algorithm selects network weights instead of eliminating the redundant
weights. As a result, the proposed algorithm achieves the similar number of weights
for the remaining structure. This proves the robustness of the proposed SWO
method to the initial network size. Based on the results presented in Table 3, we can
conclude that the proposed SWO algorithm is less sensitive to changes in the
original network size, which leads to similar generalization performance.

6.3 Comparison with Existing Works

In this section, the proposed SWO algorithm is compared with conventional
structure optimization algorithms, such as OBS [8], OBD [9], and SBELM [25]
algorithms. All the networks are initialized with 128 hidden nodes and the RPROP
algorithm is used to train the initial network for OBS and OBD, while the random
initialization approach is applied to SBELM. Meanwhile, the comparison between
the proposed algorithm with others, such as standard constructive (SCA) and hybrid
constructive-prune (AMGA) [12] algorithms are also implemented. In SCA and
AMGA, a new hidden neuron will be added into the network if and only if the
training error does not reduce after 20 epochs. These new neurons are randomly
connected to the existing network. Table 4 reports the average classification error
for various algorithms over 30 independent runs. For remaining structures, the
results are for residual numbers of hidden neurons, while the numbers inside the
bracket represent the number of remaining weights.

As seen from the above simulations, we find that the SWO algorithm outperforms
the OBS and OBD methods by not only resulting in smaller size of the network
structures, but also achieves a much better generalization ability. Compared to SCA
and AMGA, although the SWO method performs worse by remaining bigger net-
work structure, the proposed approach achieves better classification accuracy.
Furthermore, the proposed approach is found competitive with the SBELM. In terms
of the network size, SWO requires extra more 0.5 hidden neurons, while the average
classification accuracy is slightly worse than AMGA (0.14 %).

Table 4 Summary of the
performance of structure
optimization methods using
DER data

Algorithm Classification accuracy
(%)

Remaining
structures

OBS 89.68 126 (1236.0)

OBD 85.68 126 (1245.0)

SBELM 95.67 5.8 (80.66)

SCA 91.44 3.5 (49.0)

AMGA 94.6 5.9 (77.31)

SWO 95.53 6.3 (61.07)
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7 Conclusion and Future Work

Digital technology integration is one of main focuses in education reformation. Due
to complexity of education system and practice, analyzing and understanding the
perceptions and beliefs of technology integration becomes an important research
area. Although huge amount of educational data is available, effectively analyzing
those data is still a big challenge to researchers due to the heterogeneous features
and the large amount of data. In this study, the fuzzy representation and neural
network algorithm are employed to investigate potential patterns in educational
data.

The fuzzy concept representation is applied for the data preprocessing to extract
meaningful information from raw samples. We also presented a novel structure
optimization algorithm for training neural networks, termed SWO, which is char-
acterized by the model of sparse representation. The proposed algorithm is able to
optimize the network structure while reducing the training error simultaneously.

The proposed work was evaluated on the DER dataset for classification purpose.
We first consider the impact of initial network on the SWO performance.
Experimental results show the robustness of the proposed method to the initial
network; that is, the initial network size has limited effect on the performance of the
proposed algorithm. Furthermore, a variety of optimization algorithms, such as
pruning, constructive, and hybrid methods, have been introduced to compare with
the proposed algorithm. A detailed investigation of the results has shown that the
proposed algorithm performs reasonably well by eliminating average 95.31 % of
the original networks structure, which also leads to a good generalization
performance.
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Stochastic Neural Networks for Modelling
Random Processes from Observed Data

Hong Ling, Sandhya Samarasinghe and Don Kulasiri

Abstract Most Artificial Neural Networks that are widely used today focus on
approximating deterministic input-output mapping of nonlinear phenomena, and
therefore, they can be well trained to represent the average behaviour of a nonlinear
system. However, most natural phenomena are not only nonlinear but also highly
variable. Deterministic neural networks do not adequately represent the variability
observed in the natural settings of a system and therefore cannot capture the complexity
of the whole system behaviour that is characterised by noise. This chapter implements a
class of neural networks named Stochastic Neural Networks (SNNs) to simulate
internal stochastic properties of natural and biological systems. Developing a suitable
mathematical model for SNNs is based on the canonical representation of stochastic
processes by means of Karhunen-Loève Theorem. In the implementation of this
mathematical formulation for modelling nonlinear random processes from observed
data, SNN is represented as a network of embedded deterministic neural networks, each
representing a significant eigenfunction characterised by data, juxtaposed with random
noise represented by White noise characterised by the corresponding eigenvalues. Two
successful examples, including one from biology, are presented in the chapter to
confirm the validity of the proposed SNN. Furthermore, analysis of internal working of
SNNs provides an in-depth view of how SNNs work giving meaningful insights.

Keywords Stochastic neural networks � Random processes � Karhunen-Loève
Theorem � White noise � Biological and environmental systems

1 Introduction

Most environmental and biological phenomena, such as cell signalling pathways,
gene regulatory networks, underground water flow and pollution, blood flow
through capillaries and properties of wood, exhibit variability which is not amenable
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to be simulated realistically using deterministic approaches including deterministic
Artificial Neural Networks (ANNs). The reason is that these ANNs do not ade-
quately represent the variability which is observed in a systems’ natural settings as
well as do not capture the complexity of the whole system behaviour. These systems
need to be considered as a class of stochastic processes with arbitrarily inherent
nature for modeling the spatial and temporal behavior of the system. In the past,
some mathematical models based on stochastic calculus along with stochastic dif-
ferential equations have been established to simulate these particular cases of
environmental, biological and natural systems. Some stochastic mathematical
developments have been demonstrated earlier in the works of Bear [2] and Wiest
et al. [18]. They focus on characterizing the flow within porous media for under-
ground water flow such as a model for contamination flow in soil or underground
aquifers. Furthermore, Kulasiri and Verwoerd [8] developed a stochastic mathe-
matical model for the spatial and temporal solution of contaminant transport flow in
a porous medium. However, a serious problem with these models is the difficulty in
solving them analytically or numerically.

ANNs are another approach used to model some natural and biological systems
on the basis of mimicking the information processing methods in the human brain.
ANNs have a high capability in approximating input-output mappings that are
complex and nonlinear to arbitrary degree of precision [14]. The incremental
learning approaches used in ANNs make it possible for them to approximate all
internal parameters iteratively. These capabilities of neural networks make them
suitable to address some of the problems related to stochastic models and develop
neural networks that approximate random processes. However, most widely used
ANNs only focus on approximating deterministic input-output mappings although
they generally operate in a stochastic environment where all signals could be
inherently stochastic. Thus, there is a need to develop neural networks with the
ability to learn stochastic processes or represent stochastic systems. There are some
successful examples that demonstrate that SNNs can model natural, industrial and
biological systems. For instance, a stochastic neural network has been created for
modelling transportation systems in Italy [13], for fast identification of spatiotem-
poral sequences [1] and for generating multiple spectrum compatible accelerograms
[9]. However, the development of these SNNs is not based on the theory of
stochastic process. Truchetti [3, 17] proposed a new class of SNNs as a universal
approximator of stochastic process. He [17] presented theoretical developments and
a brief demonstration on the development of SNNs for a limited number of cases
involving random functions. However, they have not used SNNs to model natural,
biological and environmental systems for which the underlying random function
must be extracted from observed data.

As presented by Truchetti [3, 17], there are two different approaches to incor-
porate stochastic properties into a network: Brownian motion and White noise,
which are two fundamental stochastic processes represented by zero-mean Gaussian
distributions. Furthermore, Brownian motion is used to simulate continuous
stochastic processes whereas White noise is used to simulate discrete stochastic
processes. Turchetti [3, 17] treats in detail the development of SNNs to simulate
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stochastic processes characterized by known random functions by means of
Brownian motion. However, White noise is more appropriate for simulating
real-world stochastic processes for the reason that for most real stochastic processes
only some finite number of realizations (data) can be collected from the system as
the governing stochastic functions are unknown. These collected realizations only
record values at discrete times or locations of stochastic processes.

The goals of the research described in this chapter are to explore a method for
developing SNNs to approximate real natural and biological stochastic processes
based on White noise, implement SNNs for representing such natural stochastic
systems, and provide an in-depth view of the network outcomes and internal
workings of the networks in order to gain insights into networks and the processes
they characterise. The chapter is organized as follows: Sect. 2 gives a brief review
of related mathematical background in order to explore a suitable mathematical
model for SNNs. Section 3 discusses how to develop SNNs based on a set of
realizations of a stochastic process. Section 4 focuses on the implementation of the
proposed neural networks and analysis of internal workings of SNNs. In Sect. 5, a
discussion on some possible further work for improving the capability of the
proposed stochastic neural network is presented.

2 A Brief Review of Related Mathematical Background

2.1 Stochastic Processes

In physical terms, a stochastic process may be regarded as a set of values obtained
from a single experiment to observe the temporal evolutions of a stochastic variable
which does not have a unique value for a corresponding time. This means that a
different set of observations can be obtained when repeating the same experiment.
Mathematically, a stochastic process is a collection of random variables over the
time parameter t ðt 2 TÞ. These random variables can be considered as a function
which maps a probability space ðX; S;PÞ to real numbers, where X means a sample
space, which is a collection of all possible values of the experiment, and we use x
to label each possible value of the experiment; S is a σ-algebra1of sets which is a
nonempty collection of subsets of a sample space X [8, 12, 17] and each element of
the σ-algebra S is regarded as an event; the sample space X and the σ-algebra
S consisting of a measure space X; Sð Þ and P, a probability measure, is a function
which represents a probability of mapping each event from S to real numbers. Now
let us consider a stochastic process nðtÞ ¼ nðt;xÞ or nðtÞ; t 2 Tf g as random

1A family S of subsets of X is a σ-algebra if:

1. the space of elementary events X is in S;
2. if a subset E of X is in S then so is the complement Ec of E;
3. if a countable number of subsets of X is in S then so is their union [8, 12, 17].
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variables nðxÞ which is defined on a fixed probability space X; S;Pð Þ for each time
t (t 2 T). If x 2 X is kept constant, it can be shown as a function of time parameter
t such as nð�;xÞ ¼ nðt;xÞ; t 2 Tf g and this function is called a realisation or
trajectory of the stochastic process.

2.2 Canonical Representation of Stochastic Processes

Use of mathematical models for the representation of stochastic processes is a focus
in the theory of stochastic processes. Canonical representation of stochastic pro-
cesses has played an important role in simulating stochastic processes by means of
mathematical models. The aim of canonical representation is to display a complex
stochastic process using the sum of elementary stochastic functions, such as
Brownian motion and White noise [3, 17]. A more general definition of canonical
representation of a stochastic process is a linear combination of non-random
functions and zero-mean random variables. Furthermore, canonical representation
of the covariance function of stochastic processes is a key part in defining and
developing stochastic neural networks.

Generally, an elementary stochastic function can be defined as

nðtÞ ¼ f uðtÞ; ð1Þ

where nðtÞ is a stochastic process, f is an ordinary zero-mean random variable and
uðtÞ is non-random function. As a consequence, the random property of the process
depends on the random coefficient f while the evolution of the process is associated
with the function uðtÞ. Thus, a stochastic process can be regarded as the sum of
elementary stochastic functions generally shown for M elementary functions as

nðtÞ ¼
XM

i¼1

fi uiðtÞ ð2Þ

In representing a stochastic process in a mathematical model, the main focus is
to define the canonical representation of the covariance function of the stochastic
process. Based on (2), canonical representation of the covariance function of the
stochastic process is

Bðt; sÞ ¼ EfnðtÞ nðsÞg ¼
XM

i¼1

uiðtÞ uiðsÞ Eff2i g þ
X

i6¼j

uiðtÞ ujðsÞ Effi fjg ð3Þ

where Bft; sg is the covariance function of the stochastic process; Ef�g represents
the expectation of a random variable f; the bar denotes the conjugate complex
quantity.
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If random variables fi and fj are chosen as orthogonal random variables, they
satisfy the following condition:

Effi fjg ¼ 0; for i 6¼ j ð4Þ

Therefore, canonical representation of the covariance function of stochastic
processes (3) can display the process as a linear combination of orthogonal random
variables as

Bðt; sÞ ¼ EfnðtÞ nðsÞg ¼
XM

i¼1

uiðtÞ uiðsÞ Eff2i g : ð5Þ

In summary, a complex stochastic process can be regarded as the summation of
the product of deterministic functions and orthogonal random variables where the
latter satisfy the condition in (4). Furthermore, properties of Brownian motion and
White noise completely satisfy the definition of orthogonal random variables, and
furthermore, they can be easily simulated in mathematical software. Therefore, we
can use these two processes to represent properties of the orthogonal random
variables. However, only a finite number of realisations can be collected from a real
stochastic process without the knowledge of the governing stochastic function.
Therefore, the development of a stochastic process based on these limited realistic
data is a focus of this chapter. In order to achieve this objective, it is necessary to
understand canonical representation of stochastic processes by means of
Karhunen-Loève (KL) theorem that allows decomposition of the covariance matrix
obtained from data.

2.3 Canonical Representation of Stochastic Processes
by Means of Karhunen-Loève Theorem

This section provides fundamental developments on the canonical representation of
stochastic processes by means of the Karhunen-Loève (KL) theorem. The KL
theorem is given a central role in exploring a suitable mathematical model for SNNs
[17]. The KL expansion is a representation of a stochastic process as a finite linear
combination of orthogonal functions determined by the covariance function of the
data collected from the random processes [6]. By definition, a stochastic process
can be expanded as the following function (6) and the covariance function (7):

nðtÞ ¼
X

k2K
fðkÞ u ðt; kÞ ; ð6Þ

Bðt; sÞ ¼
X

k2K
k u ðt; kÞ u ðs; kÞ ; ð7Þ
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where fðkÞ is an orthogonal sequence of random variables and the variance of fðkÞ
is equal to the eigenvalues (k) of the covariance function of the stochastic process
(Ef fðkÞj j2g ¼ k). uðt; kÞ are the eigenfunctions of the covariance function.

If the set k; k 2 K � R could be decomposed into some discrete values kk in the
real axis and the number of kk depends on the number of eigenvalues of the
covariance of a stochastic process, (6) and (7) can be rewritten as,

nðtÞ ¼
Xn

k¼1

fðkkÞ u ðt; kkÞ; ð8Þ

Bðt; sÞ ¼
Xn

k¼1

kkuðt; kkÞuðs; kkÞ; ð9Þ

where the variance of fðkkÞ is equal to the eigenvalues (kk) of the covariance matrix
of the stochastic process Ef fðkkÞj j2g ¼ kk. Consequently, a stochastic process can
be viewed as the summation of the product of eigenfunctions (deterministic or
nonrandom) and their corresponding orthogonal random variables (random noise).

Based on the canonical representation of stochastic processes by means of the
KL expansion in (8) and (9), it is possible to create a feasible method to develop a
stochastic neural network for simulating a real stochastic process. According to the
KL theorem (9), the covariance of the measured realisations can be decomposed
into eigenvalues and corresponding eigenvectors using singular value decomposi-
tion method or Principal Component Analysis (PCA) using statistical or mathe-
matical software. Applying these eigenvectors to original data, a set of discrete
values of the corresponding eigenfunction are obtained. Since eigenfunction
uðt; kkÞ are deterministic functions, they can be modeled by deterministic neural
networks. These networks can be linearly combined with noise fðkkÞ as in (8) to
develop stochastic neural networks. The process of development of SNNs based on
a set of collected data (realisations) is described in Sect. 3.

3 Methods

Modeling stochastic processes using SNNs involves the following:

1. Find a Canonical representation of the stochastic process by means of Brownian
or White noise;

2. Create deterministic input-output mappings from stochastic process based on
KL expansion and develop deterministic neural networks;

3. Develop SNNs by adding White noise into each of the developed deterministic
neural networks and assembling them.

The most important step in developing SNNs is exploring deterministic input-
output mappings from a stochastic process. The purpose of this step is to develop
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deterministic neural networks for defining values of weights and parameters of
SNNs. The following section discusses each step in the development of SNNs.

3.1 Creating Input-Output Mappings

A stochastic process can also be viewed as a set or a bundle of realizations in finite
domain. Furthermore, only finite number of realizations can be collected from a real
stochastic process. For example, Fig. 1 contains six realizations from the Sine
function with random noise, which is used to illustrate model development.

In Fig. 1, all realizations represent the behavior of the same Sine function but
they also represent random fluctuations. It is easy to see that the randomness
becomes an inherent characteristic of this stochastic process. Following is a dis-
cussion on how to create deterministic input-output mappings using the KL theorem
for the purpose of generating data for developing deterministic neural networks for
representing eigenfunctions.

Suppose that Fig. 1 contains a bundle of realizations collected at discrete times
of a stochastic process nðtÞ and that nkðtÞ denotes the kth realization. For each
realization, there are n different discrete values corresponding to each discrete time
t and the value of n depends on the time interval Dt as well as the total time T for the
whole realization (n ¼ T

Dt). First task in the process is to establish the covariance
matrix of this stochastic process. If we define that nðtÞ at each discrete time t is
viewed as an input variable for the covariance matrix, the values of each realization
nkðtÞ at time t will be viewed as an element of this input variable. So we create
n input variables on the dataset by vector nðtÞ ¼ nðt1Þ; nðt2Þ; . . .nðtnÞf g where nðtiÞ
contains all values of realizations at ith discrete time i.e., nðtiÞ ¼
fn1ðtiÞ; n2ðtiÞ; . . .nkðtiÞg: In this vector representation, the mean and variance of all
realizations at a particular discrete time ti and the covariance of all realizations
between any two different discrete times ti and tj can be efficiently calculated by
using the following equations [14]:

0 20 40 60 80 100
t

-1

-0.5

0.5

1

Sin t

Fig. 1 A set of realizations from the Sine function with noise
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E½nðtÞ� ¼ 1
K

XK

k¼1

nkðtÞ; ð10Þ

COV ¼ 1
K � 1

XK

k¼1

ðnkðtÞ � E½nðtÞ�ÞðnkðtÞ � E½nðtÞ�ÞT : ð11Þ

In (10), E½nðtÞ� ¼ E½nðt1Þ�;E½nðt2Þ�;E½nðt3Þ�; . . .E½nðtnÞ�f g is a vector which
contains all mean or expected values of realizations at each discrete time ti and K is
the number of realizations in the dataset. In (11), COV is the covariance matrix
which contains all variances and covariances. COV is a symmetric matrix of size
n� n where n is the number of time intervals over the whole time domain. The
diagonal of COV represent variances and off-diagonals represent covariance
between any two different discrete times.

According to the KL theorem, the COV matrix can be decomposed into a new
matrix with new scaled variables based on the eigenvalue decomposition method.
In this new matrix, all variables are independent of each other and all variables have
their own variance. Therefore, the covariance between any two new variables is
equal to zero. The COV matrix can be represented by using the KL theorem as

COV ¼
Xn

j¼1

kjujðtÞujðtÞ; ð12Þ

where n represents the total number of variables in the new matrix; kj represents the
variance of the jth rescaled variable and the collection of kj values are the eigen-
values of the COV matrix; and ujðtÞ are eigenvectors of the COV matrix. The
number of eigenvectors depends on the number of discrete time intervals. It is easy
to obtain eigenvalues and eigenvectors of the COV matrix using mathematical or
statistical software.

Based on the KL theorem, a stochastic process can be represented by the
function

nðtÞ ¼
Xn

j¼1

ujðtÞ fðkjÞ; ð13Þ

where the set of ujðtÞ are the eigenfunctions of the COV matrix; fðkjÞ is a stochastic
measure defined on a second order random field [6]. The property of this stochastic
measure fðkjÞ depends on its mean and variance. It is not possible to simulate this
stochastic measure because of its randomness. Therefore, a number of deterministic
neural networks is first developed to simulate eigenfunctions of the COV matrix
from the rescaled data generated by projecting the original data onto the eigen-
vectors. These data represent eigenfunction values at discrete time points.
A separate neural network is developed to simulate each eigenfunction based on the
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data for time (input) and eigenfunction value (output). The number of deterministic
neural networks is decided by the number of eigenvalues which play a significant
role according to the KL representation of these real realisations. Next, the
stochastic measure is represented by White noise and is embedded into each of the
neural networks that are then assembled into a SNN. White noise fðkjÞ is an
element of a Gaussian distribution with zero mean and variance r2 which in this
case is equal to the eigenvalue kj. In summary, the input and output mappings of
deterministic neural networks for data collected from a real stochastic environment
involve discrete times and corresponding eigenfunction values determined from the
decomposition of the COV matrix.

3.2 Modelling Deterministic Neural Networks

After defining the input-output mapping of deterministic neural networks, the next
step is to develop and model a suitable neural network to represent or mimic the
patterns in each eigenfunction. Some of the main deterministic neural networks for
function approximation include: Multilayer Perceptron Networks [4, 5, 7, 14],
Radial Basis Function Neural Networks [11] and Approximate Identity Neural
Networks [3]. All of them have powerful capability in approximating arbitrary
deterministic input-output mapping. In this chapter, a series of Approximate
Identity Neural Networks (AINNs) are used to learn these significant eigenfunctions
whose values at discrete time points are obtained from the KL expansion of the
COV matrix. Turchetti [3, 17] highlighted the efficacy of these networks.

In modelling with AINNs, three factors require attention: the number of neurons
needed, the structure of networks and the learning algorithm.

3.2.1 Number of Neurons Required

The number of neurons in a deterministic neural networks is case-dependent.
Generally, the number of neurons is adjusted during training until the network
output converges on the actual output based on a least square error minimization
approach. A neural network with an optimum number of neurons will reach the
desired minimum error level more quickly than other networks with more complex
structure. A trial and error process was used here for this purpose which worked out
well.

3.2.2 The Structure of Networks

The proposed deterministic neural network is an AINN. The approximate function
in neurons is the AI function given by
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xðxÞ ¼ tanh
v ðx� #Þþ r

2

� �
� tanh

v ðx� #Þ � r
2

� �
; ð14Þ

where v defines the sharpness of the function, # defines the centre of symmetry and
the value of r defines the position of the maximum of the function.

In order to approximate each significant eigenfunction based on AI function
(14), it is necessary to develop one-dimensional AINNs. Now let us assume the
input vector set x ¼ ½t� and let the following function define the AINN for eigen-
function unðtÞ:

unðtÞ ¼
Xj

i¼1

ai xiðtÞ

¼
Xj

i¼1

aiðtanh ðviðt � #iÞþ ri
2

Þ � tanh ðviðt � #iÞ � ri
2

ÞÞ
ð15Þ

where ai displays weights of the ith neuron; j represents the total number of neurons
in this AINN and xðt; riÞ are AI functions. Figure 2 displays the architecture of a
deterministic neural network with one-dimensional input case. unðtÞ is the output of
the deterministic neural network given in (15). There are as many networks as there
are significant eigenfunctions.

3.2.3 The Learning Algorithm

The gradient descent algorithm in batch mode was used as the learning algorithm in
this case to update weights and other parameters of networks. These are ai, vi #i and
ri. It minimizes the network’s global error between the actual network outputs and

Fig. 2 Architecture of
one-dimensional AINN given
by [14]
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their corresponding desired outputs based on gradient descent error minimisation.
The network’s global error between the network output and actual output is

E ¼ 1
2N

XN

i

Ti � Zið Þ2 ð16Þ

where Ti and Zi are the actual output and the network output, respectively, for the
ith training pattern, and N is the total number of training patterns.

The method of modifying a weight or a parameter is the same for all weights and
parameters. The change to a single weight of a connection between neuron j and
neuron i in the AINN based on batch learning can be defined as

Dwji ¼ g
Xk

p¼1

dE
dwji

� �

p

ð17Þ

where g is the learning rate with a constant value. It controls the step size and the
speed of weight adjustments. k is the total number of epochs (batches) and p is
batch counter. Within brackets in Eq. 17 is the gradient of error with respect to the
parameter to be adjusted for epoch p. The process of training is repeated until the
weights and the parameters of the network converge on acceptably optimal values.

3.3 Modelling Stochastic Neural Networks

After the training of deterministic neural networks is completed, the adjustment of
weights of the stochastic neural network has been completed. Next step is to obtain
stochastic properties of the network by adding White noise processes into deter-
ministic neural networks as shown in Fig. 3. From the KL expansion of the
covariance matrix (13) for a stochastic process, it can be seen that the whole
stochastic process can be regarded as a linear combination of the product of these
independent eigenfunctions (uðtÞ) and their corresponding stochastic measure fðkÞ
defined on the second order field. For these stochastic measures, the mean is equal
to zero and variances are equal to the corresponding eigenvalues. Therefore, White

)(tξ

)(1 tϕ

∑
∑)(2 tϕ

)(tnϕ

t
)( 1λζ

)( 2λζ

)( nλζ

)]([ tE ξ

Fig. 3 The structure of stochastic neural network given in Eq. 18 [10]

Stochastic Neural Networks for Modelling Random Processes … 93



noise process can be used to achieve the stochastic behaviour of the corresponding
networks because White noise processes have the same attributes of these stochastic
measures [3, 8, 17]. As a result, the function of this type of neural networks can be
written as

nðtÞ ¼ E½nðtÞ� þ
X

i

uiðtÞfðkiÞ ¼ E½nðtÞ� þ
X

i

X

j

aijxijðtÞfðkiÞ ð18Þ

where E½nðtÞ� is the expected value of the stochastic process at each discrete time t;
uiðtÞ is the output of the ith AINN; fðkjÞ is a White noise process; xijð�Þ is AI
functions; aij is the weight of the jth neuron of the ith AINN; i is the number of
eigenfunctions from KL expansion of the covariance matrix (i is also the number of
neurons in the SNN (i.e., the number of AINNs)) and j is the number of neurons in
each AINN. Figure 3 shows the structure of SNNs based on eigenfunctions and
their corresponding White noise.

This stochastic neural network based on White noise was successfully applied to
model two stochastic processes, a detail treatment of which is given in the next
section.

4 Results and Discussion

Based on the mathematical developments of the stochastic neural network, some
realistic examples are used to explain in detail steps of development of deterministic
neural networks as well as stochastic neural networks.

4.1 Sine Function with Random Noise

The first example involves using a stochastic neural network to simulate the
stochastic Sine Function model. For this purpose, the six realisations extracted over
100 time steps from the stochastic Sine Function model shown in Fig. 1 was used as
the data set. The first step in developing a stochastic neural network is to calculate
the covariance matrix for these six realisations in order to create input-output
mappings for the networks using the KL theorem. We used Eq. 11 to approximate
the covariance matrix and the behaviour of the covariance matrix for the six real-
isations is shown in Fig. 4.

According to the KL theorem, the covariance matrix can be decomposed into a
series of eigenvalues and the corresponding eigenfunctions. Figure 5 shows only
the first few eigenvalues in the KL representation of the covariance matrix as the
others are zero. The figure shows that only four eigenvalues are significant and
together they capture the total variance in the original data. Therefore, only four
significant eigenvalues as well as their corresponding eigenfunctions are relevant to
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network development. The relative amount of variance in the data captured by each
significant eigenvalue from KL expansion is 79.9, 12.1, 4.1 and 2.7 %.

The number of AINNs depends on the number of these significant eigenvalues.
As a result, four individual AINNs are used to simulate the four eigenfunctions
represented by the four eigenvectors. Figure 6 shows the values of the four
eigenfunctions as well as their corresponding AINN approximations. In the figure,
the red points represent eigenfunction values at discrete time points determined
from the KL expansion while the black lines represent the approximated outputs
from the networks. Each AINN has a high accuracy of learning their input-output
mappings (the range of R2 is between 0.96–0.97).

The next step is to incorporate stochastic measures into the neural network.
These stochastic measures are representations of white noise with zero mean and
variance equal to eigenvalues corresponding to the eigenfunctions, As a result, the
proposed stochastic neural network can be considered as a linear combination of the
product of eigenfunctions and their corresponding White noise. The stochastic
neural network was assembled as in Eq. 18 and Fig. 3, and some realisations
obtained from the developed stochastic neural network are shown in Fig. 7. They
are remarkably similar to the realisations obtained from the original function shown
in Fig. 1. In order to confirm the validity of the proposed stochastic neural network,
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Fig. 4 The covariance matrix of six realisations extracted from the stochastic Sine Function model
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Fig. 5 The significant eigenvalues in the KL representation of the covariance matrix
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the covariance function of the developed stochastic neural network can be com-
pared with that obtained from realistic realisations. Figure 8 displays the predicted
covariance function for 200 realisations extracted from the developed network and
it is very similar to the actual covariance matrix in Fig. 4.

In order to compare the actual and predicted covariance matrices, error distri-
bution (difference between the predicted values and actual values in the COV
matrix) as well as R2 were assessed as shown in Fig. 9. Figure 9a shows that error
ranges from −0.002 to 0.006 indicating that the approximated covariance matrix
closely follows the actual covariance matrix. According to Fig. 9b, there is a strong
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Fig. 6 The four
approximated eigenfunctions
from the AINN (black line)
superimposed on
eigenfunction values from the
KL expansion (red dots)
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Fig. 8 Covariance matrix of the approximated Sine Function obtained from 200 realisations of the
stochastic neural network
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Fig. 7 Ten realisations obtained from the stochastic neural network
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linear relationship between the predicted and the actual covariance matrices
(R2 = 0.993).

4.2 Displacement Fields of Wood in Compression

The previous example revealed that the proposed stochastic neural network has
high accuracy in simulating the Sine function with noise. Here, this idea is applied
to a much more complex realistic problem involving simulation of localised dis-
placement fields of wood in compression. For comprehensive details, refer to [10].

Wood like most biological and cellular materials has a very complicated internal
structure that leads to variability in properties. In a recent study, image processing
methods have been used to obtain displacements at a large number of points (i.e.,
displacement fields) in a small area on the surface of a loaded wood specimen in
compression parallel-to-grain [15, 16]. These provided a limited number of reali-
sations of displacement and it is anticipated that stochastic memory of a stochastic
neural network can help recall more realisations of the behaviour of this wood
specimen based on the existing data and help understand subtle structural influence
on mechanical behaviour of wood. The wood specimens were of the dimensions
41� 44� 136mm where the latter is the height which is parallel to the wood grain,
and they were cut from kiln-dried structural grade New Zealand radiate pine (Pinus
radiata) boards [15, 16]. These were tested on a computer controlled material
testing facility that measured the applied load while a camera took images of the
specimen at various load levels. By comparing the displaced images to the initial
undisplaced images for an area around 20� 20mm on one surface of the specimen
using a Digital Image Correlation (DIC) method, displacements of a large number
of points were determined. Although, the overall area analysed is small, it is
believed that this area contains all the microstructural effects that can be found
elsewhere in the same specimen and in this particular wood. The data determined
this way contains two different displacements for each point: vertical and horizontal
displacements. The proposed stochastic neural network is applied here to analyse
the structural influence on localised displacements of wood.

When a 20 kN (kilo Newtons) compression load is applied parallel-to-grain on a
specimen, vertical displacement (u) measures the amount of contraction in the same
direction of loading while horizontal displacement (v) measures the amount of
expansion in the perpendicular direction to loading. Figure 10 shows both vertical
and horizontal displacement realisations obtained from images as discussed before.
Here, one vertical displacement (u) realisation corresponds to one column of 30
points in the image and one horizontal displacement (v) realisation to one row of 30
points in the image. There are 21 such realisations in each case. In Fig. 10, it can be
seen that the influence of structure in loading parallel-to-grain on horizontal dis-
placement (Fig. 10b) is more complex and fluctuating than on vertical displace-
ment (Fig. 10a).
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Figure 11 displays the covariance matrix of vertical displacement (Fig. 11a) as
well as horizontal displacement (Fig. 11b) and reveals that the covariance matrix for
horizontal displacement is much more complex.

Based on KL expansion, the covariance matrices of both vertical and horizontal
displacements were decomposed in order to create deterministic input-output
mappings. For the vertical displacement, there were only three significant eigen-
values from the distribution of all eigenvalues. However, eight significant eigen
values were needed to capture the variance in the original data for the horizontal
displacements. The higher number of significant eigenvalues for horizontal dis-
placements also indicates that there is a lot more noise or complexity in this
direction as also supported by Figs. 10b and 11b. Thus, three AINNs were needed
for the vertical displacement and eight AINNs for the horizontal displacement to
approximate their corresponding eigenfunctions. All these neural networks were
developed and when the learning step is completed, most components of the pro-
posed stochastic neural network have already been determined. The next step is to
add the relevant White noise into their corresponding AINNs in order to achieve
stochastic properties of the network as depicted in Fig. 3.

Figure 12a, b display some realisations obtained from the developed stochastic
neural networks for the vertical displacement and the horizontal displacement,
respectively. They are remarkably similar to the actual realisations shown in
Fig. 10. Figure 13 shows the approximated covariance matrices from the stochastic
neural networks. They closely resemble the respective actual covariance matrices
depicted in Fig. 11 (R2 values 0.971 and 0.969, respectively).
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4.3 Analysing Internal Workings of SNNs

After confirming the validity of the proposed stochastic neural network, more
attention can be paid to analysing internal workings of the network. The purpose of
this is to completely understand why and how White noise can help a stochastic
neural network achieve its stochastic properties for simulating a stochastic process
or a stochastic system. In this section, the focus is on the following aspects: analyse
how all neurons produce the outcomes of the network in a particular realization and
compare any two different realisations obtained from the stochastic neural network.
The process of development of SNN in the examples presented in the previous
section is the same but different networks have different number of neurons as well
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as different characters of White noise. The number of neurons in each stochastic
neural network depends on the number of significant eigenfunctions indicated by
the KL expansion of the covariance matrix. The characters of each White noise
component depend on their corresponding eigenvalues. Therefore, one network is
illustrated here as an example to analyse internal workings of a stochastic neural
network. The SNN for simulating stochastic Sine Function was selected for this
purpose (See Fig. 1).

In terms of this stochastic neural network, there are four significant eigenfunc-
tions and therefore, four neurons in the stochastic neural network. The formulation
involved in calculating the output of this stochastic neural network is shown in
Eq. 18 and the structure of this stochastic neural network is displayed in Fig. 3.
Figure 3 shows that the output of SNNs is a linear combination of the expected
value at the each discrete position and the summation of the product of each
eigenfunction and their corresponding White noise at the same discrete position.
The expected value E½nðtÞ� as well as eigenfunctions uiðtÞ are fixed by the data and
the deterministic network. The reason is that the expected value E½nðtÞ� depends on
the input space defined by the data collected from the real stochastic system and the
eigenfunctions uiðtÞ depend on the approximated AINN that have been already
trained prior to developing the stochastic neural network. The distribution of the
mean value E½nðtÞ� is shown in Fig. 14 while the distribution of each eigenfunction
has been shown in Fig. 6. Therefore, the product of each eigenfunction and their
corresponding White noise mainly contributes to the difference between any two
realisations obtained from SNNs. This means that the stochastic properties of SNNs
arise from the summation of the product of each eigenfunction and their corre-
sponding White noise.
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Let’s look at a particular realisation from the stochastic neural network. Here, the
four corresponding White noise components are constant for a particular realisation.
According to Eq. 18, the output function of the network, which is shown in Fig. 15a
(red line), can be written as SinðtÞ ¼ E½SinðtÞ� þ ð0:24u1ðtÞþ 0:68u2ðtÞ�
0:29u3ðtÞ � 0:25u4ðtÞÞ, where constants are from White noise processes. In
Fig. 15a, the black line is the expected value E½SinðtÞ�. Furthermore, the distance
between the mean value and the output of the network is the summation of the
product of each eigenfunction and its corresponding White noise process. This
summation plays an important role in achieving stochastic properties of the net-
work. Figure 15b shows the distribution of this product across the time domain and
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it indicates that this product also represents random fluctuations. Consequently, the
difference in value between two discrete points mainly depends on the corre-
sponding expected value and the summation of the product of each eigenfunction
and its corresponding White noise.

However, the output of the stochastic neural network changes when another
realisation is generated (see Fig. 16a). The reason for the difference is that the value
for each White noise component changes when a new realisation is generated using

0 20 40 60 80 100
t

-1

-0.5

0.5

1

Expected value of Sin(t)
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Fig. 15 a A realisation extracted from the stochastic neural network for simulating Sine function
superimposed on expected values for discrete time points; b the distribution of the summation of
the product of each eigenfunction and its corresponding White noise process
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the stochastic neural network. For example, the output function of the network in
this case is SinðtÞ ¼ E½SinðtÞ� þ ð�0:86u1ðtÞþ 0:9u2ðtÞþ 0:65u3ðtÞ � 0:16u4ðtÞÞ.
The distribution of the summation of the product of each eigenfunction and their
corresponding White noise for this case is displayed in Fig. 16b. Comparing
Figs. 15 and 16, it is easy to see a significant difference between the output of the
stochastic neural network as well as the summation of the product of eigenfunctions
and White noise.

In the analysis of internal behaviour of the networks, another focus is how all
neurons affect the final outcomes of the network. In this case, there are four
stochastic neurons in this stochastic neural network. According to the previous
discussion, these four stochastic neurons together make a contribution to produce
the distance between the expected value and the final output of SNNs. In order to
assess this, 50 realisations were generated and contribution of each neuron to the
desired output was evaluated. Figure 17 shows how each individual stochastic
neuron contributes to the distance in four selected realisations. In Fig. 17, the black
line displays the distance between the expected values and the final output for each
realisation and the colour lines display the contribution of each individual stochastic
neuron of the network to this value. It was found that different realisations are
dominated by different neurons. Furthermore, in a single realisation, individual
neurons make varied contributions to the final output. However, after analysing 50
realisations, it was revealed that the proportion of each stochastic neuron’s con-
tribution to the final output is quite similar to the ratio of the corresponding
eigenvalue to the sum of all eigenvalues (i.e., proportion of total variance captured
by each eigenvalue). This means that in generating a large number of realisations,
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Fig. 17 Activation of the four stochastic neurons superimposed on the network output for four
selected realisations
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the contribution each stochastic neuron makes is equal to the portion of the total
variance in data captured by it.

A similar analysis was made on the realisations obtained from the two SNNs
developed for modelling wood displacements. The SNN representing the vertical
displacement (u) had 3 neurons and that for horizontal displacement (v) had 8
neurons. Observations from both of these in terms of individual neuron contribu-
tions were conceptually similar to those from the SNN for Sine function with noise.
For example, when 50 extracted realisations were analysed, neuron 1 became
prominent 93.2 % of the time, neuron 2—1.47 % of the time, and neuron 3—
1.18 % of the time. These correspond to the contribution of the corresponding
eigenvalues to the sum of eigenvalues (i.e, total variance in the data). Three selected
examples for vertical displacement are shown in Fig. 18.

In summary, although the mean value and each eigenfunction do not change in
different realisations, the changes of White noise components make the summation
of the product of each eigenfunction and their corresponding White noise vary in
these realisations. Furthermore, it is not possible to predict the exact realisation
generated from the stochastic neural network due to the randomness of White noise
processes. Thus SNN has stochastic properties and it can be used to recall more
novel realisations that are characteristic of the system and are within the range of
the statistical properties of the collected realisations.
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on the network output for modelling vertical displacements in wood
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5 Conclusions

A major contribution of this chapter is the development of SNNs from the obser-
vations of stochastic processes. Two examples (stochastic Sine function and noisy
wood displacements) provided evidence to confirm the validity of the theoretical
results as well as give more confidence in developing a neural network to simulate
real stochastic systems and stochastic processes. Taking the whole process of
developing a stochastic neural network into account, the most important aspect is
creating a possible and feasible mathematical model for neural networks to achieve
stochastic properties by using a series of mathematical transformations. As a
deterministic neural network can only approximate non-random mappings, creating
a deterministic input-output mapping from stochastic processes or stochastic sys-
tems was a major part of the work. This is because the weights and other parameters
are defined through learning of these deterministic input-output mappings. These
then are used in conjunction with White noise to develop a suitable stochastic
neural network for simulating stochastic processes. Furthermore, this chapter also
provided an analytical view of the network outcomes and internal workings of the
network. This information helps understand how a stochastic neural network sim-
ulates real stochastic processes and stochastic systems.

This kind of neural network is suitable to operate in a non-deterministic envi-
ronment. The most significant advantage of developing SNNs is to successfully
model an existing dataset and retrieve more information out of the collected dataset.
After completing the training, a stochastic neural network can act as a stochastic
process itself. This means that the stochastic neural network can generate more
realisations of a stochastic process above and beyond the collected realisations.
These realisations can be viewed as representing the behaviour of the stochastic
process and they can help understand in-depth the properties of stochastic
processes.

The proposed stochastic neural network however has some limitations. When a
neural network is developed to learn a deterministic input-output mapping, it is very
difficult to guess the initial values of weights, other parameters of the networks and
the number of neurons in the networks. However, these factors can directly affect
whether a suitable neural network is found or not. A precise standard to confirm
whether the proposed neural network is the most optimum with the highest possible
accuracy is currently lacking. Furthermore, neuron activation functions (AINNS)
that are simpler to be modelled by the learning algorithm were used. Although this
is good for the examples presented here, more powerful activation functions have
the potential to perform more complex mapping suited to more complex stochastic
processes in biological or environmental systems. Therefore, there is much scope
for improving and optimizing the developed stochastic neural networks in future.
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Curvelet Interaction with Artificial Neural
Networks

Bharat Bhosale

Abstract Modeling helps simulate the behavior of a system for a variety of initial
conditions, excitations and systems configurations, and that the quality and the
degree of the approximation of the models are determined and validated against
experimental measurements. Neural networks are very sophisticated techniques
capable of modeling extremely complex systems employed in statistics, cognitive
psychology and artificial intelligence. In particular, neural networks that emulate the
central nervous system form an important part of theoretical and computational
neuroscience. Further, since graphs are the abstract representation of the neural
networks; graph analysis has been widely used in the study of neural networks. This
approach has given rise to a new representation of neural networks, called Graph
neural networks. In signal processing, wherein improving the quality of noisy signals
and enhancing the performance of the captured signals are the main concerns, graph
neural networks have been used quite effectively. Until recently, wavelet transform
techniques had been used in signal processing problems. However, due to their
limitations of orientation selectivity, wavelets fail to represent changing geometric
features of the signal along edges effectively. A newly devised curvelet transform, on
the contrary, exhibits good reconstruction of the edge data; it can be robustly used in
signal processing involving higher dimensional signals. In this chapter, a generalized
signal denoising technique is devised employing graph neural networks in combi-
nation with curvelet transform. The experimental results show that the proposed
model produces better results adjudged in terms of performance indicators.

1 Introduction

The paradigm, methods and results of the ongoing research in Artificial Neural
Networks (ANN) are quite fascinating. First inspired by the human brain and its
natural structure, ANN combined with other Artificial Intelligence (AI) technologies
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may in return help create 1 day an artificial or hybrid life-form. With the multitude of
commercial applications and research advancing on many fronts, ANN is attracting a
lot of attention [1]. The recent advancement in the theory of neural networks has
inspired new applications in the field of neuroscience such as study of models of
neural networks, anatomical, and functional connectivity based upon functional
magnetic resonance imaging, electroencephalography and magnetoencephalography
[2]. Of late, wavelet based multi-resolution techniques have been widely used in
image/signal processing, biological and computer vision, scientific computing,
optical data analysis. For example, applications of wavelet transform have been
explored in analyzing solitons [3], bio-informatics [4], neural networks [5] and many
more. SinceOlshausen and Field’swork inNature [6], researchers in biological vision
have discussed the similarity between vision and multi-scale image processing.
However, wavelets do not provide good direction selectivity, which is also an
important response property of simple cells and neurons at stages of the visual
pathway. To overcome this limitation, through several attempts, significant progress
in the development of directional wavelets has been made in recent years. The
complex wavelet transform was devised to improve directional selectivity to some
extent; however, owing to the difficulties in its design with reconstruction properties
and filter characteristics, it has not been widely used. In 1999, an anisotropic geo-
metric wavelet transform, named ridgelet transform, was proposed by Candes and
Donoho but it has also limited applicability to objects with global straight-line sin-
gularities. Although the ridgelet transform optimally represents straight-line singu-
larities, the global straight-line singularities are rarely observed in real applications
and hence limited its scope. To analyze local line or curve singularities, the obvious
way is to consider partition of the signal/image, and then to apply the ridgelet trans-
form to the resulting blocks/sub-images. This block ridgelet-based transform, named
curvelet transform, was first proposed by Candès and Donoho [7]. Later, a consid-
erably simpler second-generation curvelet transform based on a frequency partition
technique was proposed by the same authors. This second-generation curvelet
transform has been proved a versatile and efficient tool for wide range of applications
from diverse fields such as signal/image processing, seismic data exploration, fluid
mechanics, and solving partial differential equations encountered in non-linear
physical phenomena. This newly devised curvelet transform is a special multi-scale
pyramidwithmany directions and positions at each decomposition scale and therefore
more suitable than all other multi-scale transforms used in signal and image pro-
cessing applications including, filtering, enhancement, compression, de-noising, and
watermarking. Hence, recently, image denoising using curvelet transform has been
potentially used inmany fields for its ability to obtain high quality images [8]. Asmost
of the natural signals are assumed to have additive random noise, which is modeled as
Gaussians, removing additive Gaussian noise by nonlinear methods such as curvelet
denoising has better results than classical approaches [9]. As an example, from the
analysis of CT scan images, denoising by curvelet transform recovers the original
image from the noisy one using lesser coefficients than denoising using the wavelet
transform [10]. Further, the curvelets resemble local plane waves; curvelet induced
sparse representation of the local seismic events can be effectively used for preserving
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wave fronts in seismic processing [11]. Another study presented an integrated clas-
sification machine (ICM), which is a hierarchy of artificial neural network, trained to
classify the seismic waveforms [12]. A velocity model inversion approach using
artificial neural networks for the study of aftershocks from the 2000 Tottori, Japan,
earthquake located around station SMNH01was proposed by Moya and Irikura [13].

Various techniques are reportedly used in signal extraction and related appli-
cations. Prominent amongst them are: one, separating noisy mixed signals using
fast Independent Component Analysis (ICA) algorithm and then applying curvelet
thresholding and the other one, using neural network thresholding to denoise the
mixed signals. The present work elucidates a systematic transition from classical
wavelets to curvelets; and proposes a model that unifies both these approaches.

2 Classical Wavelets

Wavelets are the mathematical functions which analyze data according to the scale
or resolution. Wavelets help in studying a signal in different windows or in different
resolutions. Practically wavelet transform is a convolution of the signal with a
family of functions obtained from a basic wavelet by shifts and dilations. In precise
terms and notations, the classical wavelet transform, also called Continuous
Wavelet transform (CWT), is a decomposition of a function, f ðxÞ, with respect to a
basic wavelet, wðxÞ, given by the convolution of a function with a scaled and
translated version of wðxÞ

Ww a; bð Þ f½ � ¼ aj j�1=2
Z

f ðxÞw� x� b
a

� �
dx ¼ f ;

1ffiffiffiffiffiffijajp w
x� b
a

� �* +
ð1Þ

The functions, f and w are square integrable functions and w satisfies the

admissibility condition, Cw ¼ R ŵðxÞj j2
xj j dx\1, where Cw is the admissibility

constant.
With the substitution for f ðxÞ as the inverse Fourier transform,
f xð Þ ¼ 1

2p

R1
�1 exp ixxð Þf̂ xð Þdx, wavelet transform (1) takes the form

Ww f xð Þ½ � a; bð Þ ¼ 1
2p

aj j1=2
Z 1

�1
exp ixbð ÞŵðaxÞf̂ xð Þdx ð2Þ

In discrete form, the wavelet transform (1) becomes,

Ww m; nð Þ½f � ¼ 1p
am0

Z 1

�1
f ðxÞw x� nb0am0

am0

� �
dx ¼ 1p

am0

Z 1

�1
f ðxÞw a�m

0 x� nb0
� �

dx

ð3Þ
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with the scale and translation parameters as a ¼ am0 and b ¼ n b0am0 , where a0 and
b0 are the discrete scale and translation step sizes, respectively.

The signal f 2 L2ðRÞ can be uniquely represented in wavelet expansion,
f ¼Pj;k cj;kðf Þwj;k, where cj;k fð Þ ¼ f ;wj;k

� �
are the wavelet coefficients and wj;k is

a family of dilated and translated functions wj;k ¼ 2j=2w 2 j;�kð Þ : j; k 2 Z
	 


,
generated by the mother wavelet w 2 L2ðRÞ.

For a good frequency localization of the wavelet basis, the basic idea is to
construct a wavelet basis that provides a partition of the frequency axis into (almost)
disjoint frequency bands (or octaves). Such a partition can be ensured if the Fourier
transform of the dyadic wavelet ŵ, ŵj;k nð Þ ¼ 2�j=2e�i2�jnkŵ 2�jnð Þ, has a localized
or even compact support and satisfies the admissibility condition,P

j ŵ 2�jnð Þ
��� ���2 ¼ 1; n 2 R. This admissibility condition also ensures the typical

wavelet property, ŵ 0ð Þ ¼ R1�1 w xð Þdx ¼ 0, which in turn ensures that the family of
function wj;k : j; k 2 Z

	 

forms a tight frame of L2ðRÞ.

The same construction principle can be transferred to the 2D case for
signal/image analysis by incorporating certain rotation invariance in proposed
curvelet systems.

3 Classical Wavelets to Curvelets

The wavelet transform, especially, the discrete wavelet transform (DWT) has been
an impressive tool for mathematical analysis and signal processing, but it suffers
from the disadvantage of poor directionality, which has undermined its usage in
many applications. To overcome this limitation, through several attempts, signifi-
cant progress in the development of directional wavelets has been made in recent
years. The modifications went through several versions: the complex wavelet
transform to ridgelet transform, and then to block ridgelet-based transform, named
curvelet transform, proposed by Candès and Donoho in 2000.

Curvelet transform is a new extension of wavelet transform which aims to deal
with interesting phenomena occurring along curved edges in 2D images. In the 2D
case, the curvelet transform allows optimal sparse representation of objects with
singularities along smooth curves. Moreover, the curvelet methods preserve the
edges and the structures better than wavelet transform. Owing to such advantages
over the traditional multi-scale techniques, recently, the curvelets have been applied
to study the non-local geometry of eddy structures and the extraction of the
coherent vortex field in turbulent flows. In fluid mechanics, turbulence analysis- an
efficient compression of a fluid flow with minimum loss of the geometric flow
structures- is a crucial problem in the simulation of turbulence. Yet another novel
application of the curvelet transform to the compressed sensing or compressive
sampling (CS) is an inverse problem with highly incomplete measurements, which
carries imaging and compression simultaneously. The CS based data acquisition
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depends on its sparsity rather than its bandwidth and it has an important impact for
designing of measurement devices in various engineering fields such as medical
magnetic resonance (MRI) imaging and remote sensing, especially for cases
involving incomplete and inaccurate measurements limited by physical constraints,
or very expensive data acquisition. In sum, curvelets outperform the wavelets in
many ways.

4 Curvelet Transform

This formulation is due to Candes and Donoho [7], which involves two main
components: one, considering polar coordinates in frequency domain and two,
constructing curvelet elements being locally supported near wedges.

The Continuous Curvelet Transform (CCT), f ! Cf ða; b; hÞ, of functions
f ðx1; x2Þ on R2, into a transform domain with continuous scale a > 0, location
b 2 R2, and orientation h 2 ½0; 2pÞ is formulated as follows:

Consider the polar coordinates in frequency domain, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

q
, x ¼

arctan n1
n2
corresponding to x ¼ ðx1; x2ÞT , the spatial variable, and n ¼ n1; n2ð ÞT , the

variable in frequency domain. Also consider the pair of windows W(r) and V (t),
called radial window and angular window respectively

V tð Þ ¼
1; tj j � 1=3

cos p=2m 3 tj j � 1ð Þ½ �; 1=3� tj j � 2=3
0; else

8<
:

W rð Þ ¼
cos p=2m 5� 6rð Þ½ �; 2=3� r� 5=6

1; 5=6� r� 4=3
cos p=2m 3r � 4ð Þ½ �; 4=3� r� 5=3; 0; else

8<
: ð4Þ

where m is a smooth function satisfying

m xð Þ ¼ 0; x� 0
1; x� 1

�
; m xð Þþ m 1� xð Þ ¼ 1; x 2 R

The windows (4) should satisfy the admissibility conditions (5)

Z 1

0
WðarÞ2 da

a
¼ 1; 8r[ 0;

Z 1

�1
VðtÞ2dt ¼ 1 ð5Þ

The window functions are used to construct a family of complex-valued
waveforms, called curvelets, with three parameters, the scale a 2 ð0; 1�, the location
b 2 R2, and the orientation h 2 ½0; 2pÞ. Using polar coordinates ðr; xÞ in frequency
domain, a-scaled window, called polar wedge, is given as
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Ua ¼ a3=4W arð ÞV xffiffi
a

p

 �

, for some a with 0\a� 1, where the support of Ua

depends on the supports of windows W and V.
Let the basic element ca;0;0 2 L2ðR2Þ be given by its Fourier transform as

ĉa;0;0 ¼ UaðnÞ.
By translation and rotation of basic element ca;0;0, the family of analyzing ele-

ments, called curvelets, is generated as

cabhðxÞ ¼ ca00ðRh x� bð ÞÞ ð6Þ

where Rh is the 2� 2 rotation matrix effecting planar rotation by θ radians

Rh ¼ cos h � sin h
sin h cos h

� �
ð7Þ

Applying this family of high frequency elements, ca;b;h : 0; 1ð �;	
b 2 R2; h 2 ½0; 2pg, the CCT, Cf of f 2 L2 R2ð Þ, is given by

Cf a; b; hð Þ ¼ ca;b;h; f
� � ¼ Z

R2
ca;b;h xð Þf ðxÞdx ð8Þ

The corresponding inversion/reproducible formula is

f xð Þ ¼
Z

Cf a; b; hð Þcabh xð Þlðda db dhÞ ð9Þ

fk k2L2¼
Z

Cf a; b; hð Þ�� ��2lðda db dhÞ
where, l denotes the reference measure, dl ¼ da

a3 db dh
This formula is valid for f 2 L2 that has a Fourier transform vanishing for

jnj \ 2=a0.
A discrete version of the continuous curvelet transform, called Discrete curvelet

transform, is derived by a suitable sampling at the range of scales, orientations and
locations [8].

Choosing the scales aj ¼ 2�j; j� 0; the equidistant sequence of rotation angles

hj;l; hj;l ¼ pl2� j=2½ �
2 ; l ¼ 0; 1; . . .; 4:2 j=2½ � � 1; and the positions

bj;lk ¼ bj;lk1;k2 ¼ R�1
hj;l

k1
2 j ;

k2
2j=2


 �
; k1; k2 2 Z.

This leads to a discrete curvelet system that forms a tight frame.
In this system, function, f 2 L2 R2ð Þ; will be representable by a curvelet series,

f ¼Pj;k;l cj;k;l fð Þcj;k;l ¼
P

j;k;l f ; cj;k;l
� �

cj;k;l, for which the Parseval identity,P
j;k;l f ; cj;k;l

� ��� ��2 ¼ f 2L2ðR2Þ; 8f 2 L2ðR2Þ holds.
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The terms in the above series, cj;k;l fð Þ ¼ f ; cj;k;l
� �

; are the curvelet coefficients.
The curvelet coefficients, cj;k;l; are obtained by Plancherel’s theorem for j� 0 as

cj;k;l fð Þ ¼
Z
R2
f xð Þcj;k;l xð Þdx ¼

Z
R2
f̂ nð Þĉj;k;l nð Þdn ¼

Z
R2
f̂ nð ÞUj Rhj;ln

� �
ei bj;lk ;nh idn

ð10Þ

where f̂ nð Þ ¼ 1
2p

R
R2 f xð Þe�i x;nh idx.

The family of curvelet functions cj;k;l xð Þ, is generated from the basic curvelet,

ĉj;0;0 nð Þ ¼ UjðnÞ as cj;k;l xð Þ ¼ cj;0;0 Rhj;l x� bj;lk

 �
 �

, where the scaled windows

take the form

Uj r;xð Þ ¼ 2�3j=4W 2�jr
� �

V
2j=2x
2p

� �
¼ 2�3j=4W 2�jr

� �
V

x
hj;l

� �
ð11Þ

It is seen that the curvelet functions, cj;k;l xð Þ; in frequency domain are obtained
as the inverse Fourier transform of a suitable product of the windows W and V:

ĉj;k;l nð Þ ¼ e�i bj;lk ;nh iUj Rhj;l ; n
� � ¼ e�i bj;lk ;nh i2�3j=4W 2�jr

� �
V

xþ hj;l
hj;l

� �
ð12Þ

In practical implementations, Cartesian arrays instead of the polar tiling of the
frequency plane are convenient to use. The Cartesian counterpart of curvelet-like
functions is given by

cj;k;l xð Þ ¼ cj;0;0 Shj;l x� bj;lk

 �
 �

, generated from the basic curvlets,

ĉj;0;0 xð Þ ¼ UjðnÞ, with shear matrix Sh ¼ 1 0
� tan h 1

� �
.

The curvelet coefficient in Cartesian arrays will be therefore obtained by

cj;k;l fð Þ ¼
Z
R2
f̂ nð ÞUj S�1

hj;l
n


 �
ei bj;lk ;nh idn ¼

Z
R2
f̂ Shj;ln
� �

Uj nð Þei kj;nh idn; ð13Þ

where kj ¼ k12�j; k22� �j=2½ �� �
; k1; k2ð ÞT2 Z

2

Yet another version of curvelet transform, called Fast Digital Curvelet
Transform (FDCT), is based on wrapping of Fourier samples. This takes 2D
signal/image as an input in the form of a Cartesian array, f ½m; n�, where
0 � m \M; 0 � n\N where M and N are the dimensions of the array; and the
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output will be a collection of curvelet coefficients, cDðj; l; k1k2Þ, indexed by a scale
j, an orientation l and spatial location parameters k1 and k2, given as

cD j; l; k1k2ð Þ ¼
X0�m�M

0� n�N
f m; n½ �cDj;k;k1k2 m; n½ �; ð14Þ

for any bi-variate function, f 2 L2ðR2Þ, associated with signal vector.
Here, each cDj;k;k1k2 is a digital curvelet waveform, where superscript D stands for

“digital”.
The wrapping based curvelet transform, FDCT, is a multi-scale pyramid which

consists of several sub-bands at different scales consisting of different orientations
and positions in the frequency domain. At a high frequency level, curvelets are so
fine and looks like a needle shaped element whereas they are non-directional coarse
elements at low frequency level.

Figure 1 demonstrates the image represented in spectral domain in the form of
rectangular frequency tiling by combining all frequency responses of curvelets at
different scales and orientations. Shaded region represents a typical wedge. It can be
seen that curvelets are needle like elements at higher scale. Moreover, the curvelet
becomes finer and smaller in the spatial domain and shows more sensitivity to
curved edges as the resolution level is increased, thus allowing to effectively
capturing the curves in an image, and curved singularities can be well-approximated
with fewer coefficients as compared to any other multi-scale techniques [14].

Fig. 1 The pseudopolar tiling of the frequency domain
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The curvelet transform is usually implemented in the frequency domain to
achieve a higher level of efficiency. First a 2D FFT is applied to the image and for
each scale and orientation, a product of Ul

j “wedge” is obtained; the result is then
wrapped around the origin. Finally, 2D IFFT is applied resulting in discrete curvelet
coefficients. That is,

Curvelet transform ¼ IFFT FFTðCurveletÞ � FFT Imageð Þ½ �

5 Neural Network Models

The simplest definition of a neural network, generally referred to as an ‘artificial’
neural network (ANN), due to the inventor of first neuro-computers, Dr. Robert
Hecht-Nielsen, is, …a computing system made up of a number of simple, highly
interconnected processing elements, which process information by their dynamic
state response to external inputs.

ANNs are processing devices (algorithms or actual hardware) that are loosely
modeled after the neuronal structure of the mammalian cerebral cortex. Neural
networks are typically organized in layers made up of a number of interconnected
‘nodes’ which contain an ‘activation function’. It is a system composed of several
artificial neurons and weighted links binding them. Every neuron in its layer,
receives some type of stimuli as input, processes it and sends through its related
links an output to neighboring neurons [1]. In machine learning and cognitive
science, a class of artificial neural networks is a family of statistical learning
algorithms inspired by biological neural networks (the central nervous systems of
animals, in particular, the brain) and they are used to estimate or approximate
functions that depend on a large number of unknown inputs.

A typical neural network is an adaptive system made up of four main
components:

• A node as a unit that activates upon receiving incoming signals (inputs);
• Interconnections between nodes;
• An activation function (rule) which transforms inside a node, input into output;
• An optional learning function for managing weights of input-output pairs.

Most ANNs contain some form of ‘learning rule’ which modifies the weights of
the connections according to the input patterns that it is presented with. Figure 2
illustrates the architecture of the basic ANN. This class of ANN is called feed-
forward networks [15].

Figure 3 depicts the Feed-forward networks characterized by the layout and
behaviour of their inner nodes is.

Essentially, ANNs are simple mathematical models defining a function f : X ! Y
or a distribution over X or both X and Y . Mathematically, a neuron’s network
function f ðxÞ is defined as a composition of other functions giðxÞ. A widely used type
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of composition is the nonlinear weighted sum, f xð Þ ¼ K
P

i wigiðxÞ
� �

, where K(-
commonly referred to as the activation function) is some predefined function, such as
the hyperbolic tangent.

5.1 Applications of Artificial Neural Network

Nowadays, ANN structures have extended their domain of applicability from nat-
ural biological model to a model that relies more on statistical inference techniques
and signal processing. This has led ANN to many applications in diverse fields such
as medical sciences (cancer diagnosis, cardio-vascular system modeling), business
(sales forecasting, customer research, target marketing, counterfeit prevention) and
manufacturing (resource allocation and scheduling). Advances in speech

Fig. 2 Basic structure of an artificial neural network (ANN)

Fig. 3 Internal structure of a
node with its inputs (xi),
weighted inputs (xwi) and
sigmoid function

118 B. Bhosale



recognition, pattern recognition and image analysis through the implementation of
ANN techniques, have led to the significant advancement in the emerging areas like
robotics and intelligent software. Moreover, by integrating self-learning neural
network concepts into flight control software, recently NASA has launched the
Intelligent Flight Control System (IFCS) research with the goal to develop adaptive
and fault-tolerant flight control systems to improve aircraft performance in critical
conditions [1].

Another useful ANN representation is a Gaussian network model (GNM) that
depicts a biological macromolecule as an elastic mass-and-spring network to study,
understand, and characterize mechanical aspects of its long-scale dynamics. GNM
has also a wide range of applications from small proteins such as enzymes com-
posed of a single domain, to large macromolecular assemblies such as a ribosome
or a viral capsid. In the model, proteins are represented by nodes corresponding to
alpha carbons of the amino acid residues. Similarly, DNA and RNA structures are
represented with one to three nodes for each nucleotide.

5.2 Neural Network Models in Signal Processing

A pulse, or a signal or an image can be represented by a neural network. As
discussed, neural networks are models which are structurally very simple because
they consist of very simple building blocks, neurons that are organized into layers.
A neuron is a basic element of a network that is mathematically presented as a point
in space toward which signals are transmitted from surrounding neurons or inputs.
Recently various approaches have been unified in neural network models under
graph neural networks (GNN) which is used for processing the data represented in
graph domains. Graph theoretic approach can be thus invoked to abstract repre-
sentation of neural networks wherein the computational elements, neurons of the
network, can be shown as nodes. GNN implements a function sðG; nÞ 2 Rm that
maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. The
GNNs have been proved to be a sort of universal approximator for functions on
graphs and have been applied to several problems, including spam detection, object
localization in images, molecule classification [16].

The GNN is a larger class of neural networks which includes both Biological
neural networks (BNN) and Artificial neural networks (ANN) [17]. BNNs are of
objective existence, in which the neurons are linked as a network in a certain order,
e.g. human neural network, whereas ANNs are aimed at modeling the organization
principles of central neural system, with the hope that the biologically inspired
computing capabilities of ANNs will allow the cognitive and sensory tasks to be
performed more easily and satisfactorily [18]. ANNs are also finding of increasing
use in noise reduction problems. The main design goal of these neural networks is
to obtain a good approximation for some input output mapping [19].
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6 Curvelet Interaction with Neural Networks

Curvelets in combination with neural networks have been successfully used in
seismic data processing. Seismic data records the amplitudes of transient/reflecting
waves during receiving time. The main problem in seismic data processing is to
preserve the smoothness along the wave fronts when one aims to remove noise. As
the curvelets resemble local plane waves, sparse representation of the local seismic
events can be effectively used for preserving wave fronts in seismic processing. The
study exploring the capability of the multilayer perceptron neural network to
classify seismic signals recorded by the local seismic network of Agadir (Morocco)
demonstrated that the classification results on a data set of 343 seismic signals have
more than 94 % accuracy [11].

6.1 Signal/Image Denoising

Digital signals are invariably contaminated by noise. Noise is undesired information
that degrades the signal/image. Noise arises due to imperfect instruments used in
signal processing, problems with the data acquisition process, and interference
which can degrade the data of interest.

In the signal/image de-noising process, information of the type of noise present
in the original image plays a significant role. Images can be mostly corrupted with
noise modeled with either a uniform, Gaussian, or salt and pepper distribution.
Another type of noise is a speckle noise which is multiplicative in nature. Thus, the
noise is present in image either in an additive or multiplicative form.

Mathematically, the image with additive noise is expressed as
wðx; yÞ ¼ sðx; yÞþ nðx; yÞ, whereas the image with multiplicative noise is expressed
as wðx; yÞ ¼ sðx; yÞ � nðx; yÞ, where ðx; yÞ is original signal, nðx; yÞ is the noise
introduced into the signal to produce a noisy image wðx; yÞ, and ðx; yÞ is the pixel
location. The above image algebra is done at pixel level. Image addition also has
applications in image morphing. Image multiplication means the brightness of the
image is varied.

7 Linear Gaussian Factor Analysis

The digital image acquisition process transforms an optical image into a continuous
electrical signal that can be sampled. In every step of the process there are fluc-
tuations caused by natural phenomena, adding random value to the exact brightness
value for a given pixel. Independent component analysis (ICA) is widely used in
statistical signal processing, medical image processing, and telecommunication
applications [20]. The method of blind source separation (BSS) is also applied for
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extracting underlying source signals from a set of observed signal mixtures with
little or no information of the nature of these source signals [21]. ICA is used for
finding factors or components from multivariate statistical data and is one of the
many solutions to the BSS problem [22].

The basic ICA model is expressed as,

x tð Þ ¼ As tð Þþ gðtÞ ð15Þ

where xðtÞ is an N dimensional vector of the observed signals at the discrete time
instant t, A is an unknown mixing matrix, sðtÞ is original source signal of M �
NðM�NÞ and gðtÞ is the observed noise vector and M is number of sources.

Signal can be represented by GNN. A linear Gaussian factor analysis
(GFA) model that represents the signal by GNN [23] can be formulated as,

xi tð Þ ¼
X

j
Aijsj tð Þþ ai þ giðtÞ ð16Þ

where i indexes different components of the observation vector xi, representing
weighted sums of underlying latent variables, j indexes different factors and Aij are
the weights of the factors s, also known as factor loadings. The factors s and noise g
are assumed to have zero mean. The bias in x is assumed to be caused by a. The
effect of the inaccuracies and other causes is summarized by Gaussian noise g.

If the variances of the Gaussian noise terms, gðtÞ, are denoted by r2i , the
probability which the model gives for the observation xiðtÞ can be written as

PðxiðtÞjs tð Þ;A; ai; r2i Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pr2i

p exp �
xi tð Þ �

P
j Aijsj tð Þ � ai

h i2
2r2i

0
B@

1
CA ð17Þ

In vector form, the GFA can be expressed as

xðtÞ ¼ AsðtÞþ aþ gðtÞ ð18Þ

where x; s; a and g are vectors and A is a matrix.
Equivalently, xðtÞ�NðAsþ a; r2Þ.
The purpose of the component analysis is to estimate original signal,sðtÞ, from

the mixed signal, xðtÞ. That is equivalent to estimating the matrix A. Assuming that
there is a matrixW , which is the de-mixing matrix or separation inverse matrix of A,
then the original source signal is obtained by

s tð Þ ¼ WxðtÞ ð19Þ

The ICA algorithm assumes that the mixing matrix A must be of full column
rank and all the independent components sðtÞ, with the possible exception of one
component, must be non-Gaussian [10].
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8 Curvelet Induced Signal Denoising Model

In physical systems, transmitted signals are usually distributed partially, or some-
times almost completely, by an additive noise from the transmitter, channel, and
receiver. Noise arises due to imperfect instruments used in signal processing,
problems with the data acquisition process, and interference which can degrade the
data of interest. Also, noise can be introduced due to compression and transmission
errors [24]. Denoising or the noise reduction is an essentially required process to
enhance the estimation process of signal/image reconstruction of the captured
signal. It is considered as a continuous mapping process of the noisy input data to a
noise free output data. Improving quality of noisy signals has been an active area of
research for many years.

Several signal denoising techniques are proposed in reported literature. Among
them, curvelet thresholding technique has been prominently used in signal pro-
cessing. Curvelet thresholding is a simple operation, which aims at reducing noise
in a noisy signal. It is performed by selecting the FDCT coefficients below a certain
threshold and setting them to zero

yk ¼ yk; ykj j � tk
0; ykj j\tk

�
ð20Þ

where tk is the threshold and λ is the index.
The threshold used in this technique is tk ¼ krkr, for some scale k, where σ is an

estimation of the standard deviation of the noise estimated from the finest scale
coefficients.

Another approach adopted recently in signal denoising problems is thresholding
neural network (TNN), wherein thresholding function is used instead of activation
functions in feed forward neural networks and threshold value is adjusted using [9],

tkþ 1 ¼ tk þDtk; whereDtk ¼ � / @MSE
@t

����
t¼tk

; / is learning rate; ð21Þ

tk is a threshold, tk ¼ r
ffiffiffiffiffiffiffiffiffiffi
2 log

p
L, σ is a noise variance and L ¼ N2 is size of the

signal.
Now, recalling the signal representation (16) and applying FDCT (14) to xiðtÞ, to

decompose the signal into a sequence of curvelet coefficients,

xD j; l; k1k2ð Þ ¼
X0�m�M

0� n�N
xi½m; n�cDj;k;k1k2 m; n½ � ð22Þ
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The curvelet coefficients of noisy signal so obtained are used as the input to the
threshold function,

f ðx; tkÞ ¼ x� x

exp x=tkð Þ2�1
h i þ 1=8x

exp x=0:71tkð Þ2 ð23Þ

where x depicts the curvelet coefficients obtained from noisy signal xiðtÞ.
Observe that the thresholding function f ðx; tkÞ ! 0 in ½�tk; tk� and f ðx; tkÞ ¼ x

outside the threshold interval. That is, it converges to curvelet coefficients them-
selves. Thus, the noisy coefficients in the threshold interval ½�tk; tk� are shrieked.
For chosen learning rate and convergence value, the universal threshold value (21)
is obtained during learning process. In test phase, computed threshold value in
learning phase is used by the thresholding function (23) to demise curvelet coef-
ficients of test signals.

Finally, inverse curvelet transform (9) is applied to get the denoised signal x̂i.
The proposed curvelet induced GFA signal denoising model can be put to

performance factor analysis. Among the various performance factors, the peak
signal to noise ratio (PSNR) and root mean square error (RMSE) are the most
commonly used measures of quality of reconstruction in signal denoising. Higher
the value of PSNR with minimum value of RMSE, better the performance of the
denoising model.

The PSNR and RMSE are calculated using the expressions

PSNR ¼ 10 log10

PN
i¼1 x

2ðiÞPN
i¼1 x ið Þ � x̂ðiÞ½ �2

 !
; RMSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
x ið Þ � x̂ðiÞ½ �2

r
ð24Þ

where xðiÞ is the original source signal, x̂ðiÞ is the separated signal, i is the sample
index and N is the number of samples of the signal.

The PSNR and the other statistical measures such as mean and standard deviation
of the PSNR for different signal sub-bands/samples can be compared to determine
the performance of the signal denoising model. Simulations can be performed on
these noisy mixed signalson any Matlab® R 7.9 on a core i7 2.2 GHz PC.

To illustrate the performance of the proposed GFA model, simulations are
performed on noisy mixed 256 × 256 ‘Leena’ image and sample CT image on Mat
lab® R 7.9 on a core i7 2.2 GHz PC, and curvelet transform via USFFT software
package.

The denoising results (PSNR in dB) in both the experiments are presented in
Table 1.

From the experimental results, it is seen that the curvelet induced GFA gives
increased PNSR with minimum RMSE for the used images. Similar simulations can
be performed for satellite images, seismic data, medical images etc.
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9 Conclusions

The present topic integrates the Independent component analysis, graph neural
networks and curvelet thresholding adopted in signal denoising processes so as to
harvest the advantages and to overcome the inherent limitations of each of them.
Denoising using the curvelet transform recovers the original signal from the noisy
one using lesser coefficients than the wavelet transform. Moreover, curvelet
transform provides high PSNR- the most commonly used measure of quality of
reconstructed signal- and removes the Random as well as Gaussian white noises.
Further, the wrapping based Curvelet transform is conceptually simpler, faster and
invertible with rapid inversion algorithm of the same complexity than the existing
techniques. Thus curvelet outperforms the wavelet transform in several ways.

The proposed curvelet induced Gaussian factor analysis model in Graph neural
network settings unifies earlier denoising models, consequently enhancing the
performance in terms of the recovery and quality of the extracted signals of higher
dimensions that arise in wide range of applications including medical image pro-
cessing, seismic exploration, fluid mechanics, solutions of partial different equa-
tions, and compressed sensing.
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Hybrid Wavelet Neural Network
Approach

Muhammad Shoaib, Asaad Y. Shamseldin, Bruce W. Melville
and Mudasser Muneer Khan

Abstract Application of Wavelet transformation (WT) has been found effective in
dealing with the issue of non-stationary data. WT is a mathematical tool that
improves the performance of Artificial Neural Network (ANN) models by simul-
taneously considering both the spectral and the temporal information contained in
the input data. WT decomposes the main time series data into its sub-components.
ANN models developed using input data processed by the WT instead of using data
in its raw form are known as hybrid wavelet models. The hybrid wavelet data
driven models, using multi-scale input data, results in improved performance by
capturing useful information concealed in the main time series data in its raw form.
This chapter will cover theoretical as well as practical applications of hybrid
wavelet neural network models in hydrology.

1 Introduction

Reliable simulation of runoff generated from a watershed in response to a rainfall
event is an important area of research in hydrology and water resource engineering. It
plays an important role in planning, design and sustainable management of water
resources projects such as flood forecasting, urban sewer design, drainage system
design and watershed management. The rainfall-runoff process is a complex
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non-linear outcome of numerous hydrological factors. These include precipitation
intensity, evaporation, watershed geomorphology, infiltration rate of soil as well as
interactions between groundwater and surface water flows, all of which cannot be
modelled by simple linear models. Since the establishment of rational method in
1850 [1] for calculation of peak discharge, numerous hydrological models have been
developed. Approaches used for simulating the rainfall-runoff transformation process
include two main categories: physically-based and data driven approaches. Each
approach has associated pros and cons. The physically based models include, for
example, systeme hydrologique Européen with sediment and solute transport model
(SHETRAN) [2] and Gridded Surface Subsurface Hydrologic Analysis model
(GSSHA) [3]. These models usually involve the solution of a system of partial
differential equations to model various components of hydrological cycle in the
catchment. However, although, these physically-based models are helpful in
understanding the underlying physics of hydrological processes, their practical
application is limited because of the requirements of large input data and computa-
tional time. The black-box data-driven models, on the other hand, are based primarily
on the measured data and map the input-output relationship without giving consid-
eration to the complex nature of the underlying process. Among data-driven models,
ANNs have appeared as powerful black-box models and received great attention
during the last two decades. The ANN approach has been successfully applied for
different modelling problems in various branches of science and engineering. In the
field of hydrology, French et al. [4] were the first to use ANN for forecasting rainfall.
Shamseldin [5] pioneered the use of ANN in modelling rainfall-runoff relationships.
The ANN has been successfully applied in many hydrological studies (e.g., [6–14]).
The merits and shortcomings of using ANNs in hydrology are discussed in
Govindaraju [15], Govindaraju [16] and Abrahart et al. [17].

Despite the good performance of data driven models in simulating non-linear
hydrological relationships, these models may not be able to cope with non-stationary
data if pre-processing of input and/or output data is not performed [18]. Application
of WT has been found to be effective in dealing with non-stationary data [19]. WT is
a mathematical tool which simultaneously considers both the spectral and the
temporal information contained in the data. Generally, WT can be carried out in a
continuous (Continuous Wavelet Transformation (CWT)) form as well as in a dis-
crete (Discrete Wavelet Transformation (DWT)) form. WT decomposes the main
time series data into its sub-components and these sub-constituents are used as
external inputs to the data driven models. The resulting model is known as the hybrid
wavelet model. These hybrid wavelet data driven models, using multi scale-input
data, result in improved performance by capturing useful information concealed in
the main time series data in its raw form. Different studies used WT in order to
increase accuracy of data driven hydrological models. A comprehensive review of
applications of WT in hydrology can be found in Nourani et al. [20].

The performance of hybrid wavelet data driven models is very much dependent
on the selection of numerous factors. These factors include the selection of WT type
(continuous or discrete). Likewise, WT requires a mother wavelet function to
perform transformation. The performance of hybrid models is also extremely
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sensitive to the selection of appropriate wavelet function from a number of available
wavelet functions. The performing efficiency of hybrid wavelet models further
relies heavily on the selection of suitable decomposition level. Furthermore, choice
of data driven model is another vital factor as there are different types of data driven
models available, including the Multilayer Perceptron Neural Network (MLPNN),
the Generalized Feed Forward Neural Network (GFNN), Radial Basis Function
Neural Network (RBFNN), the Modular Neural Network (MNN), Neuro-Fuzzy
Neural Network (NFNN), the Time Delay Neural Network (TDLNN) and the Gene
Expression Programming (GEP) model based on theory of evolution. The present
chapter will therefore focus on the review of hybrid wavelet models developed and
applied in hydrology in order to formulate general guidelines for the successful
implementation of hybrid wavelet models.

2 Wavelet Transformation

Mathematical transformations are applied to time series data in order to retrieve
additional information from the data that is not readily accessible in its raw form
expressed in time domain. In most cases, vital information is obscure in the fre-
quency domain of the time series data. Mathematical transformations are aimed to
extract frequency information from the time series data.

There are a number of transformations available and probably the Fourier
transformation (FT) was the first mathematical technique used for mining the fre-
quency information contained in time series data/signal. FT transforms the signal
from time domain to frequency domain. Mathematically, FT of a continuous
function f(t) is represented by the following equation;

F xð Þ ¼
Z þ1

�1
f tð Þe�jxtdt ð1Þ

which is an integral of the function f(t) over time multiplied by a complex expo-
nential. The FT maps a function of single variable, time t, into another function of a
single variable, frequency ω. The FT uses a mathematical tool called inner product
for measurement of similarity between the function f(t) and an analysing function.
Conceptually, multiplying each value of f(t) by a complex exponential (sinusoid) of
frequency ω gives the constituent sinusoidal components of the original signal.
Graphically, it can be represented as shown in Fig. 1.

The FT converts the signal from the time domain to the frequency domain with
the loss of time information. The FT provides the information of frequency in the
signal without giving any information about time. This works well for stationary
signals where all of the frequencies are present at all time but the FT does not suits
non-stationary signals where different frequencies may be present at different times.
In order to overcome this difficulty, Gabor [21] introduced a windowing technique
called Short Term Fourier Transform (STFT) to analyse only a small section of the
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signal where it is considered as stationary. Mathematically, it can be represented by
the following equation;

F x; sð Þ ¼
Z

f tð Þx t� sð Þe�jxtdt ð2Þ

where f(t) is the signal itself and ω(t − τ) is the window function. As can be seen
from Eq. (2), an STFT maps a function of one variable ‘t’ into a function of two
variables ‘ω’ and ‘τ’. The STFT attempts to provide information on both time and
frequency in contrast with the FT which only provides information about the fre-
quency. Graphically, STFT of a signal can be represented as shown in Fig. 2.
However, information on time and frequency can be provided by this method with
limited precision depending on the size of the window selected. The major disad-
vantage associated with the STFT is that once a particular window size is selected it
cannot be changed.

Grossmann and Morlet [22] presented wavelet transformation (WT) which is
capable of providing time and frequency information simultaneously, hence giving
time-frequency representation of the temporal data. The wavelet in WT refers to the
window function that is of finite length (the sinusoids used in the FT are of
unlimited duration) and is also oscillatory in nature. The width of the wavelet
function varies as the transform is computed for every single spectral component
and hence making WT suitable for analysis of the non-stationary data. The variable
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size of window in WT makes it possible to have more precise information of time
and frequency information of a signal as shown in the Fig. 3.

In WT, wavelet function is used to decompose the time series data in different
components at different resolution levels. Wavelet function ψ(t) called the mother
wavelet has finite energy and is mathematically defined as:

Z 1

�1
wðtÞdt ¼ 0 ð3Þ

where ψ a,b(t) is the wavelet function and can be obtained by the following equation
as:

wa;b tð Þ ¼ aj j�1
2w

t� b
a

� �
ð4Þ

where a and b are real numbers; a is the scale or frequency parameter; b is the
translation parameter. Thus, the WT is a function of two parameters a and b. The
parameter a is interpreted as dilation (a > 1) or contraction (a < 1) factor of the
wavelet function ψ(t) corresponding to different scales. The parameter b can be
interpreted as a temporal translation or shift of the function ψ(t). The temporal data
can be analysed either by translation (moving the wavelet at different locations
along the time axis of the data) or by squeezing or stretching of the wavelet
(referred as scale or dilation) for transformation of the data under consideration.

Wavelet transformation is believed to be capable of revealing aspects of the
original time series data such as trends, breakdown points, and discontinuities that
other signal analysis techniques might miss [23, 24].

2.1 Types of Wavelet Transformation

There are two types of wavelet transformations, namely, CWT and DWT.
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2.1.1 Continuous Wavelet Transformation

The Continuous Wavelet Transform (CWT) is a modified form of STFT and it is
introduced to address the issue of fixed window size in the STFT. Mathematically, it
can be represented by the following equation:

CWTa;bðtÞ ¼
Z þ1

�1
f ðtÞ 1ffiffiffi

a
p w� t� b

a

� �
dt ð5Þ

where CWTa,b is the wavelet coefficient, * refers to the complex conjugate of the
function while ψ(t) is called the wavelet function or the mother wavelet. The entire
range of the signal is analysed by the wavelet function by using two parameters,
namely, a and b. The parameters a and b are known as the dilation (scale) parameter
and translation (position) parameter, respectively, while f(t) is the original temporal
data required to be transformed. The product of wavelet Ψ(t) and the function f(t) in
Eq. (5) are integrated over the entire range of the temporal data and mathematically,
it is called convolution. In CWT, the analysing wavelet function Ψ(t) compares the
temporal data to be transformed at different scales and locations. The scale
parameter a is associated with the frequency of the signal in CWT and it varies as
a / 1

x. This means that low scale corresponds to compress wavelet and it capture
rapidly changing details of the signal (High frequency) while high scale corre-
sponds to stretched wavelet and capture slowly changing features of the signal (low
frequency). The CWT algorithm consists of selecting a particular type of mother
wavelet or simply wavelet and then comparing it to the section of original signal at
the start. The CWT coefficients ‘CWTa,b(t)’ are calculated using Eq. (5) for par-
ticular values of scale ‘a’ and the translation ‘b’. The value of ‘CWTa,b(t)’ varies
between 0 (no similarity) and 1 (complete similarity). Different values of ‘CWTa,
b(t)’ are calculated by varying ‘a’ and ‘b’ in CWT using Eq. (5) and are plotted
graphically as a contour map known as scalogram.

2.1.2 Discrete Wavelet Transformation

The calculation of CWT coefficients at each scale a and translation b results in a
large amount of data. However, if the scale and translation are chosen on powers of
two (dyadic scales and translation), then the amount of data can be reduced con-
siderably resulting in more efficient data analysis. This transformation is called the
discrete wavelet transformation (DWT) and can be defined as Mallat [25]:

wm;n
t� b
a

� �
¼ a

�m
2

o
t� nboamo

amo

� �
ð6Þ

where m and n are integers that govern the wavelet scale/dilation and translation,
respectively; ao is a specified fine scale step greater than 1; and bo is the location
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parameter and must be greater than zero. The most common and simplest choice for
parameters ao and bo are 2 and 1, respectively. This power of two logarithmic
scaling of the dilations and translations is known as dyadic grid arrangement and is
the simplest and most efficient case for practical purposes [25]. For a discrete time
series f(t), the DWT becomes:

DWT m; nð Þ ¼ 2�
m
2

XN�1

t�0
w�ð2�mt� nÞf tð Þ ð7Þ

where DWT(m, n) is the wavelet coefficient for the discrete wavelet of scale a = 2m

and location b = 2m n. f(t) is a finite time series (t = 0, 1, 2,…, N − 1), and N is an
integer power of 2 (N = 2M); this yields the ranges of m and n as, respectively,
0 < n < 2M−m− −1 and 1 < m < M. At the largest wavelet scale (i.e., 2m where
m = M) only one wavelet is required to cover the time interval, and only one
coefficient is produced. At the next scale (2m−1), two wavelets cover the time
interval, hence two coefficients are produced, and so on, down to m = 1. At m = 1,
the a scale is 21, i.e., 2M−1 or N/2 coefficients are required to describe time series
data at this scale. The total number of wavelet coefficients for a discrete time series
of length N = 2M is then 1 + 2 + 4 + 8+ ··· + 2M−1 = N − 1.

In addition to this, a signal smoothed component, �T , is left, which is the
signal/time series data mean. Thus, a time series of length N is broken into
N components, i.e. with zero redundancy. The inverse discrete transformation is
given by:

f tð Þ ¼ Tþ
XM

m�1

X2M�m�1

n¼0
DWTm;n2�

m
2w� 2�mt� nð Þ ð8Þ

Or in a simple format as:

f tð Þ ¼ T tð Þþ
XM

m¼1
WmðtÞ ð9Þ

where �T (t) is called approximation sub-signal at level M and Wm (t) are detail
sub-signals at levels m = 1, 2, …, M.

DWT operates on two sets of functions called scaling function (low pass filter)
and the wavelet function (high pass filter). In DWT, the signal/original time series
data is passed through the low-pass and high-pass filters and subsequently
decomposes the signal into approximation (as) and detail (ds) components respec-
tively. This decomposition process is then iterated with successive approximations
being decomposed in turn, so that the signal is broken down into many lower
resolution components as shown in Fig. 4. At each decomposition level, the low
pass and high pass filters produce signals spanning only half the frequency band.
This makes the frequency resolution double as uncertainty in frequency is reduced
by half. The high pass filters are used to analyse the high frequencies while the low
pass filters, on the other hand, are used to analyse the low frequency content of the
signal.
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The approximations are the high scale, the low frequency components of the
signal while detail represents the low scale, high frequency components. The low
frequency content of the signal is the most significant part providing the signal its
identity while on the other hand, the high frequency content imparts flavour or
nuance. The detail signals can catch trivial attributes of interpretational value in data
while the approximation shows the background information of data [11, 26].

2.2 Wavelet Families

There are different wavelet families available and each family comprises of different
wavelet functions. These wavelet functions are characterized by their distinctive
features including their region of support and the corresponding number of van-
ishing moments. The wavelet support region is associated with the span length of
the given wavelet function which affects its feature localization abilities. However,
the vanishing moment limits the wavelet’s ability to represent the polynomial
behaviour or information of the data. For example, the db1, coif1, sym1 wavelet
functions, with one moment, encrypts one coefficient polynomials, or constant
signal components. The db2, coif2, sym2 functions encrypts two-coefficient poly-
nomials, i.e., a process having one constant and one linear signal component.
Likewise, the db3, coif3, sym3 functions represents three-coefficient polynomials
which encode a process having constant, linear and quadratic signal components.

S = Original signal/time series data

ai  = Approximation-low frequency content

di = Detail-high frequency content

Level-1 decomposition 

S = a1 + d1 

Level-2 decomposition

S = a2 + d2 + d1

Level-3 decomposition

Low Pass 
Filter

High Pass Filter

a1

S

d1

a2 d2

Fig. 4 n-level wavelet decomposition tree
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3 Critical Issues for the Hybrid Wavelet Models

3.1 Selection of Wavelet Transformation Type

As stated earlier, there are two types of wavelet transformations, namely, the CWT
and the DWT. Different studies have used both. Nakken [27] used the CWT with
the Morlet wavelet function to identify the temporal variability of rainfall-runoff
data. Labat et al. [28, 29] applied the CWT with the Morlet wavelet and the DWT
with the Haar wavelet to explain the non-stationarity of karstic watershed data.
Wang and Ding [30] used the DWT with a trous algorithm for making predictions
in hydrology. One day ahead stream flow forecasting models was developed using
CWT by Anctil and Tape [31]. The CWT was used by Mwale and Gan [32] to
identify homogenous zones of rainfall variability and predictability in East Africa.
Likewise, Mwale et al. [33] applied CWT to analyse the nonstationary spatial,
temporal and frequency regimes of regional variability in southern African summer.
Adamowski [34, 35] developed wavelet coupled models using CWT for forecasting
daily stream flows. Kuo et al. [36, 37] employed CWT for estimating seasonal
streamflow and variability, tele-connectivity and predictability of the seasonal
rainfall in Taiwan, respectively. Moreover, CWT was applied to develop a model
for forecasting wave height by the Özger [38].

However, application of CWT is associated with inherit demerit of generation of
large amount of data because of calculation of CWT coefficients at each scale and
translation. Furthermore, it was also argued in favour of DWT that hydrologist does
not have at his or her disposal a continuous-time signal process, but rather a
discrete- time signal. Therefore most of the wavelet coupled models are limited to
the use of DWT. Partal and Kişi [39], Partal and Cigizoglu [40], Nourani et al. [11],
Kisi and Shiri [41], Ramana et al. [42] applied DWT for precipitation forecasting.
Wang et al. [43] and Zhou et al. [44] applied DWT for discharge prediction. Kişi
[45], Kişi [46], Partal [47], Adamowski [48], Pramanik et al. [49], Tiwari and
Chatterjee [26], Shiri and Kisi [50], Wang et al. [51], Maheswaran and Khosa [52]
applied DWT for stream flow forecasting. Cannas et al. [18] developed hybrid
wavelet-ANN models using both CWT and DWT with the db4 wavelet function.
Shoaib et al. [53] compared the performance of CWT and DWT for wavelet cou-
pled rainfall-runoff models. The study advocated the use of DWT over CWT
because of its superior performance.

3.2 Selection of Wavelet Function

The performance of hybrid wavelet models is also dependant on the selection of
particular type of mother wavelet functions. As stated earlier, there are different
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wavelet families available and each containing a number of mother wavelet func-
tions. In general, a limited number of studies evaluated the effects of the wavelet
function types on the performance of the ANN models. Nourani et al. [11] found
that the db4 and the Meyer wavelets provide performance superior to that of the
Haar wavelet when developing a Wavelet-ANN model for prediction of monthly
precipitation. Similarly, Nourani et al. [54] developed multivariate ANN-wavelet
rainfall-runoff models and tested the performance of seven wavelet functions,
namely Haar, db2, db3, db4, Sym2, Sym3 and Coif1 functions. The results show
that the Haar and the db2 mother wavelet functions provide better results than the
other five wavelet functions. In the context of Wavelet-ANN flood forecasting
models, Singh [24] found the db2 wavelet function yields better performance than
the db1 function. In a similar vein, Maheswaran and Khosa [55] noted that the db2
function has better performance than five wavelet functions, namely db1, db3, db4,
Sym4 and B-spline functions when developing a Wavelet-Volterra hydrologic
forecasting models. The performance of 23 mother wavelet functions were tested in
a study conducted by. Shoaib et al. [53]. The db8 wavelet function of Daubechies
wavelet family was found to outperform the other wavelet functions tested in the
study.

3.3 Selection of Decomposition Level

The choice of suitable decomposition level in the development of wavelet coupled
data driven models is very vital as it relates to the seasonal and periodic features
embedded in the hydrological data. The maximum number of decomposition level
depends on the length of data available. A DWT decomposition consists of Log2N
levels/stages at most. Aussem [56, 11] and Nourani et al. [57] used the following
formula given in Eq. (10) to calculate the suitable decomposition level.

L ¼ int log Nð Þ½ � ð10Þ

where L is the level and N is the total data points in data. This equation was derived
for fully autoregressive data by only considering the length of data without giving
attention to the seasonal signature of the hydrologic process [54]. Likewise, some
other previous hydrological studies used different decomposition levels without
giving any logical reasoning. Adamowski and Sun [23] used a level eight
decomposition for developing wavelet coupled neural network models, Partal and
Kişi [39] employed decomposition at level ten for developing wavelet coupled
neuro-fuzzy model. However, Kisi and Shiri [41] used three level decomposition
for developing wavelet based genetic programming and neuro-fuzzy models.
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Shoaib et al. [53, 58, 59] suggested the use of level nine decomposition of data
for the development of hybrid wavelet data driven models. Decomposition at level
nine contains one large scale (lower frequency) sub-signal approximation (a9) and
nine small scale (higher frequency) sub-signals details (d1, d2, d3, d4, d5, d6, d7, d8
and d9). The detail sub-series d4 corresponds to time series 16-day mode, d5 to
32-day mode (about monthly mode), d6 to 64-day mode, d7 to 128-day mode (about
four months), d8 to 256-day mode (about eight and half months) and d9 to 512-day
mode (about seventeen months). Furthermore, decomposition at level nine contains
d8 and d9 sub-series which are responsible for detecting seasonal variations in the
input rainfall data on almost annual basis. This annual periodicity is considered the
extremely significant and leading seasonal cycle in the hydrological time series
data.

3.4 Selection of Data Driven Model

There are various types of data driven models available and selection of a suitable
type is one of the most important and difficult tasks in the development of hybrid
wavelet models. The MLPNN, GFFNN, RBFNN, MNN, ANFIS and GEP models
are the most commonly used data driven models in hydrology. Different studies
employed different types of neural networks in order to map non-linear hydrological
processes. The MLPNN type has been used in many rainfall-runoff studies (e.g., [7,
53, 60–67, 68]). Likewise, Waszczyszyn [69], Motter and Principe [70], Van
Iddekinge and Ployhart [71], Anthony and Bartlett [72], Kişi [46] and Dibike et al.
[61] employed RBFNN type for modelling rainfall-runoff process. Integration of
neural network with fuzzy-rule based systems has introduced a new model type
known as the adaptive neuro fuzzy inference system (ANFIS). The potential of
ANIFS has been explored in many previous hydrological studies (e.g., [58, 73–81]).
The modular neural network is another type of neural network which has been
successfully used for rainfall-runoff modelling in some of previous studies including
Zhang [82] and Rajurkar et al. [83]. In recent years, the data driven approach known
as the genetic programming (GP) [84] based on evolutionary computing emerged as
a powerful modelling tool for solving hydrological and water resource problems
(e.g., [85–91]). Gene Expression Programming (GEP) is a variant of GP and has
been found to show better performance than other data driven approaches such as the
artificial neural network (ANN) and the adaptive neuro-fuzzy inference system
(ANFIS) (e.g., [85, 92–96]). During the last decade, various studies successfully
applied WT in order to increase forecasting efficiency of neural network models.
However, the MLPNN type is found to be the most widely used neural network type
for the purpose of developing wavelet coupled neural network models (e.g., [11, 18,
23, 24, 26, 30, 53, 57, 97]).
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3.5 Identification of Dominant Wavelet Sub-series

A major shortcoming associated with the wavelet coupled model is the use of large
numbers of inputs as WT decomposes the input data into several sub-data series.
The use of large numbers of inputs results not only in increasing the simulation
time, but also increasing the computational complexity and makes the network
calibration more difficult. Furthermore, some of the data series obtained by the WT
contains more information regarding hydrological signature of the catchment while
others may be simply noisy or contain no/less significant information. Identification
of wavelet sub-series of data containing significant information regarding the sys-
tem is also another important issue in the successful implementation of wavelet
coupled hydrological models.

Analysis of linear correlation coefficient between input sub-series/predictor and
output has been widely used for determination of important wavelet sub-series to be
used as input for the development of wavelet coupled ANN models. Additionally,
there are two different approaches found in literature which employ linear corre-
lation coefficients for this purpose. In the first approach, a correlation analysis is
performed between each decomposed sub-series and the observed output. The
wavelet sub-series having strong correlation with the observed output are only
considered as the input for the wavelet coupled ANN models, while the ones having
weak correlation are simply ignored. This approach has been successfully used in
some of the hydrological studies. (e.g., [98, 91]). Likewise, another approach
regarding selection of dominant wavelet sub-series based on the cross correlation
analysis has also been employed in developing ANN and neuro-fuzzy hydrological
models (e.g., [39, 41, 50, 58, 97]). In this approach, a correlation analysis is
performed between each decomposed sub- series and the observed output. The
wavelet sub-series having very weak correlation are ignored and the new input data
series is obtained by adding the wavelet sub-series having good correlation with the
observed output. This new data series is subsequently used as input for the
development of wavelet coupled ANN models. Nevertheless, Nourani et al. [99,
100] criticize the selection of dominant wavelet sub-series on the basis of linear
correlation, since a strong non-linear relationship may exist between input and
target output despite the presence of weak linear correlation. Likewise, some other
studies tested different mathematical methods to select dominant wavelet sub-series
in the development of wavelet coupled models in hydrology. Vahid et al. [101]
advocated the use of self-organizing feature maps (SOP) and entropy based
approaches to select the dominant wavelet sub-series for developing a wavelet
coupled rainfall-runoff model. It is, therefore, obvious from the above literature
cited that some of the previous hydrological studies used all wavelet sub-series as
input, while some others identified dominant wavelet sub-series using different
methods and subsequently used them as input in the development of wavelet
coupled models. It is therefore vital to compare these different strategies for the
development of wavelet based models, so that an optimal strategy can be identified.
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4 Conclusion

An extensive review of hybrid wavelet hydrological modes is carried out in this
chapter in order to formulate general guidelines for successful implementation of
hybrid wavelet models. The following conclusions are hereby be drawn.

• DWT should be employed compared to CWT because of its superior
performance.

• The performance of the hybrid wavelet models is sensitive to the selection of the
wavelet function. It is found that the db8 wavelet function is better in perfor-
mance compared with other wavelet functions. This may be due to good
time-frequency localization property of the db8 wavelet function in addition to
its property of having reasonable support width.

• The level nine decomposition should be adopted as it contains most important
annual and seasonal variations in it.

• The use of MLPNN type of neural network is advocated because of its better
results.

• Further studies should be conducted in order to find the best technique for
identification of dominant wavelet sub-series. This will not only reduce com-
putational burden of the neural network but it will also decrease the computation
time.
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Quantification of Prediction Uncertainty
in Artificial Neural Network Models

K.S. Kasiviswanathan, K.P. Sudheer and Jianxun He

Abstract The research towards improving the prediction and forecasting of arti-
ficial neural network (ANN) based models has gained significant interest while
solving various engineering problems. Consequently, different approaches for the
development of ANN models have been proposed. However, the point estimation
of ANN forecasts seldom explains the actual mechanism that brings the relationship
among modeled variables. This raises the question on the model output while
making decisions due to the inherent variability or uncertainty associated. The
standard procedure though available for the quantification of uncertainty, their
applications in ANN model are still limited. In this chapter, commonly employed
uncertainty methods such as bootstrap and Bayesian are applied in ANN and
demonstrated through a case example of flood forecasting models. It also discusses
the merits and limitations of bootstrap ANN (BTANN) and Bayesian ANN
(BANN) models in terms of convergence of parameter and quality of prediction
interval evaluated using uncertainty indices.

Keywords Bayesian � Bootstrap � Point estimation � Uncertainty

1 Introduction

The applications of ANN model have been well acknowledged over the last two
decades in water resources and environmental related studies. It is found that most
of ANN applications mainly fall in the category of prediction, in which finding an
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unknown relationship exists between a set of input factors and an output is of
primary interest [1, 2]. The training process of ANN model leads to discover the
underline relationship between the variables with available time series data. The
major limitation is the ANN models do not explain any internal physical mecha-
nism that controls the processes. However, the use of ANN model has been still
encouraged in most of the occasions due to the accurate prediction or forecast
compared to physics and conceptual models [2].

Despite the large number of applications, ANNs still remain something of a
numerical enigma. Apart from the major criticism that ANNs lack transparency,
many researchers mention that ANN development is stochastic in nature, and no
identical results can be reproduced on different occasions unless carefully devised
[3, 4]. This is a significant weakness, and it is hard to trust the reliability of
networks while addressing real-world problems without the ability to produce
comprehensible decisions. Therefore, a significant research effort is needed to
address this deficiency of ANNs [2]. In fact, there is a belief that ANN point
predictions are of limited value where there is uncertainty in the data or variability
in the underlying system. These uncertainties mainly arise from input, parameter
and model structure. The input (measured/forecasted precipitation in case of
hydrologic models) uncertainty is mainly due to measurement and sampling error.
The parameter uncertainty lies in inability to identify unique set of best parameters
of the model. The simplification, inadequacy and ambiguity in description of real
world process through mathematical equation leads a model structure uncertainty.

Statistically, the ANN output approximates the average of the underlying target
conditioned on the neural network model input vector [5]. However, ANN pre-
dictions convey no information about the sampling errors and the prediction
accuracy. The limited acceptance of the ANN model applications can be plausibly
attributed to the difficulty observed in assigning confidence interval (or prediction
interval) to the output [6], which might improve the reliability and credibility of the
predictions. Therefore an investigation into quantifying the uncertainty associated
with the ANN model predictions is essentially required.

Several uncertainty analysis techniques are available in literature, which quan-
tifies the prediction uncertainty of hydrologic models with respect to its parameter,
input and structure; however, each of these methods differs in their principle,
assumption, level of complexity and computational requirement. In addition, there
is no clear evidence that one method outperforms another in terms of accuracy in
estimated prediction interval of model output [7]. It is to be also noted that
application of standard procedures to carry out uncertainty analysis in theory driven
models cannot be applied directly to ANN models due to their complex parallel
computing architecture. The difficulty in performing an uncertainty analysis of
ANN outputs lies in the fact that the ANNs have large degrees of freedom in their
development.

According to Shrestha and Solomatine [6], the uncertainty methods have been
classified into four different approaches such as (a) probabilistic based method
(b) analyzing the statistical properties of the errors of the model in reproducing
historically observed data (c) resampling techniques, generally known as ensemble
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methods, or the Monte Carlo method and (d) fuzzy based method. In probabilistic
based method, the model variables associated with uncertainty (i.e. parameter or
input) is defined as a probability distribution functions (PDFs). The number of
random samples depending on the size of the problem is drawn from the distri-
bution, so as to obtain the predictive distribution of model output [8, 9]. The
Bayesian approach falls in this category and some of the studies reported the use of
Bayesian approach in quantifying the uncertainty of neural network models
[10, 11]. The second approach estimates the uncertainty of model output through
statistical properties of the error while reproducing the observed data [6]. Numerous
studies reported the third approach while estimating the uncertainty of ANN models
[12, 13]. The major reason could be attributed to the meaningful estimation of
uncertainty with limited assumptions. The bootstrapped is a sampling based
approach which fall into the third category. The major assumptions of bootstrap
method are: (a) the bootstrapped samples follow the statistical characteristics of
population data and (b) the resamples mimic the random component of the process
to be modeled. In the fuzzy method, the uncertainty of ANN model can be analyzed
for the model parameters such as weights and biases or the model inputs. In such
approach, the model inputs [14] and/or parameters [15] are represented as fuzzy
number for defining the variability and to quantify the prediction uncertainty.

Different methods though available for quantifying the uncertainty, their com-
prehensive evaluation is limited. Hence, still there is a scope to compare various
methods for evaluating uncertainty of ANN, so as to improve the confidence of
model prediction. Hence, the objective of this Chapter is to illustrate the potential of
different methods for the meaningful quantification of uncertainty. Since the
Bayesian and bootstrap method has been reported to be a promising approach, it has
been selected for the demonstration. The hourly rainfall and runoff data collected
from Kolar river basin, India is used for developing the ANN based flood fore-
casting model.

2 Study Area and Data Description

In order to demonstrate the proposed method of uncertainty analysis of ANN
models, a case study on an Indian River basin is presented herein. For the study,
hourly data of rainfall and runoff from Kolar basin (Fig. 1) in India is used.

The Kolar River is a tributary of the river Narmada that drains an area about
1350 km2 before its confluence with Narmada near Neelkant. In the present study
the catchment area up to the Satrana gauging site is considered, which constitutes
an area of 903.87 km2. The 75.3 km long river course lies between latitude 21o

09’ N to 23o 17’ N and longitude 77o 01’ E to 77o 29’ E. An ANN model for
forecasting the river flow has been developed in this study and analyzed for
uncertainty. Hourly rainfall and runoff data is collected during monsoon season
(July, August, and September) for three years (1987–1989). Note that areal average
values of rainfall data for three rain gauge stations have been used in the study.
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3 Methodology

The flowchart (Fig. 2) illustrates the overall methodology which includes the
standard methods used for ANN model training (i.e. input selection, data division
for calibration and validation, identification of model architecture, besides the
description of bootstrap and Bayesian methods. The subsequent section describes
each component with clear illustration.

3.1 Input Selection

The determination of significant input variable is the most important steps in dis-
covering the functional form of any data driven models [16, 17]. The model pre-
diction majorly depends on correlation between available input and output variables,
model complexity, and the learning difficulty of trained ANN.Generally some degree
of a priori knowledge is used to specify the initial set of candidate inputs [18, 19].
However, the relationship between the variables may not be clearly known a priori,
and hence often an analytical technique, such as cross-correlation, is employed

Fig. 1 Map of the study area
(Kolar Basin)
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[20, 21]. The major disadvantage associated with using cross-correlation is that it is
only able to detect linear dependence between two variables, while the modeled
relationship may be highly nonlinear. Nonetheless, the cross-correlation methods
represent the most popular analytical techniques for selecting appropriate inputs [16,
17]. The current study employed a statistical approach suggested by Sudheer et al.
[21] to identify the appropriate input vector. The method is based on the heuristic that
the potential influencing variables corresponding to different time lags can be
identified through statistical analysis of the data series that uses cross-, auto-, and
partial auto correlations between the variables in question.

3.2 Data Division

Before proceeding with data division, the data should be normalized. This is mainly
for the ANN activation function that is generally bounded and sensitive to prede-
fined ranges. The linear transformation is often reported while normalizing the data
[21]. Hence, the actual dataset is changed into a normalized domain in order to
contain the values within the interval [0, 1], or [−1, 1].

Fig. 2 Flow chart describing the proposed methodology
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While developing an ANN model, generally the total available examples are
divided into training and validation sets (split sample validation) prior to the model
building, and in some cases a cross validation set is also used. The majority of ANN
applications in hydrology, the data are divided on an arbitrary basis into the
required subsets to develop ANN models. However, many studies have shown that
the way the data are divided can have a significant impact on the results obtained
[22]. It has been suggested that the statistical properties (e.g. mean, standard
deviation) of the various data subsets need to be considered to ensure that each
subset represents the same population [2].

3.3 Bootstrap Method

It has been emphasized that bootstrap is a simple method to quantify the parameter
and prediction uncertainty of neural network [12]. The quantification of uncertainty
using bootstrap method is carried out by sampling of input-output patterns with
replacement [23]. Out of total available dataset, ‘b’ such random samples are
bootstrapped each time to train neural network for different realization of parameter
sets combinations. The simple arithmetic average of predictions would be consid-
ered as true regression of model.

Q̂i ¼ 1
B

XB
b¼1

f ðxi; pbÞ ð1Þ

where Q̂i represents the average forecast corresponding to the ith input data point,
xi; B denotes the total number of ensemble of ANN models; and pb and f denotes
the parameter and functional form of a ANN model.

It is to be noted that variability in predictions exists mainly due to the random
sampling of input-output patterns. The network parameter is optimized by
Levenberg-Marquardt algorithm [24].

3.4 Bayesian Method

The traditional learning of network uses error minimization function which attempts
to find a set of deterministically optimized weights. In contrast, the Bayesian
learning involves in training the neural network for the posterior probability dis-
tribution of weights from assumed prior probability distribution using Bayes’s
theorem. The posterior probability distribution is then used to evaluate the pre-
dictive probability distribution of network outputs.

According to Bayes’ rule, the posterior probability distribution of parameters of
ANN model ‘M’ given the input-output pattern (X, Y) is,

150 K.S. Kasiviswanathan et al.



pðhjX; Y ;MÞ ¼ pðX; Y jh;MÞ pðhj;MÞ
pðX; Y jMÞ ð2Þ

where, pðDjMÞ is a normalization factor which ensures the total probability is one.
M denotes the model with specified connection weights for selected network
architecture; pðX; Y jh;MÞ is the likelihood of the parameter θ. It is assumed that the
model residuals follow Gaussian distribution and which can be written as,

pðX; Y jh;MÞ1 exp � bjY � f ðX; hÞj2
2

 !
ð3Þ

pðhj;MÞ is the prior probability distribution of parameter θ is assumed to follow
Gaussian distribution and it is written as,

PðwÞ1 exp � ajwj2
2

 !
ð4Þ

where, α, β are called hyper parameters of distribution which follows
Inverse-gamma distribution. These values are updated using Bayes’s theorem given
the input-output patterns. The model prediction is integration of posterior distri-
bution of weight vectors given the data and is represented as

E½Ynþ 1� ¼
Z

f ðXnþ 1; hÞ pðhjðX; YÞÞdh ð5Þ

Solving Eq. 5 analytically is computationally a non-trivial task. Therefore, it
requires suitable sampling technique to numerically solve. This study used Marcov
Chain Monte Carlo (MCMC) algorithm to sample the parameters with initial and
actual sampling phases [9]. During initial sampling phase, only the parameters of
ANN are updated, however the hyper parameters are fixed at certain values. This
prevents taking biased values of hyper parameter before ANN parameter reaches
reasonable values. Once these starting values are fixed, actual sampling phase is
used to determine the values of hyper parameters. This progressively changes the
shape of distribution for the effective sampling of ANN parameters. In such way,
many combinations of finally converged parameters from posterior distribution are
stored and that are used to predict the variable of interest for given input.

3.5 ANN Model Architecture

The selection of suitable ANN model architecture solely depends on the complexity
of the problem. The model architecture is in general defined by the number of hidden
layer and the number of hidden neurons that each layer contains. Despite, more
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number of hidden layer offer more flexibility, it might introduce the over training of
network and thus result in poor generalization. It is reported that a single hidden
layer is sufficient for the majority of ANN applications in water resources [25]. The
number of hidden neurons is fixed by trial and error approach, although sophisticated
optimization procedure available. The reason is that the trial and error method is
simple to apply and has less computational burden [26, 27]. In such procedure, one
starts with simplest model structure, and each time the model is calibrated by adding
one more hidden neuron at a time. This process is repeated until there is no further
significant improvement in the model performance in the model calibration.

3.6 Indices Used for Evaluating Model Performance
and Prediction Uncertainty

The model performance is evaluated using the selected four statistical indices: the
correlation coefficient (CC), Nash-Sutcliff efficiency (NSE) [28], root mean square
error (RMSE), and mean biased error (MBE). These indices are calculated based on
the observations and the final model outputs using the following equations.

CC ¼
Pn
i¼1

Qi � �Qð Þ � Q̂i � �̂Q
� �h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Qi � �Qð Þ2�Pn
i¼1

Q̂i � �̂Q
� �2s ð6Þ

NSE ¼ 1�
Pn
i¼1

Qi � Q̂i
� �2

Pn
i¼1

Qi � �Qð Þ2

8>><
>>:

9>>=
>>;�100 ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Qi � Q̂i
� �2s

ð8Þ

MBE ¼ 1
n

Xn
i¼1

Qi � Q̂i
� � ð9Þ

where, Qi and Q̂i are the observed and forecasted value respectively; �Q and �̂Q are
the mean of the observed and forecasted values, respectively; and n is the total
number of data points.

The prediction ranges from theminimum to themaximummodelled values from all
models. The uncertainty is assessed using two indices, the percentage of coverage
(POC) also known as coverage probability and the average width (AW). These two
indices have been often used for evaluating the prediction uncertainty [11, 29].
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The POC indicates the number of observations falling within the prediction interval;
while the AW measures the average of the interval width, which is the difference
between the upper and lower bounds of the prediction interval. The POC and the AW
are calculated by

POC ¼ 1
n

Xn
i¼1

ci

 !
� 100 ð10Þ

AW ¼ 1
n

Xn
i¼1

Q̂U
i � Q̂L

i

� � ð11Þ

where, Q̂U
i and Q̂L

i are the upper and lower bounds of the prediction interval
corresponding to the ith input data point; ci = 1 if the observation falls within the
prediction band Q̂U

i ; Q̂
L
i

� �
, otherwise ci = 0.

4 Results and Discussion

4.1 Model Development

Based on the methodology suggested by Sudheer et al. (2002), the following inputs
were identified for the ANN model: [R(t-9), R(t-8), R(t-7), Q(t-2), Q(t-1)], where R
(t) represents the rainfall, Q(t) represents the runoff at time period ‘t’. The output of
the network was considered as Q(t).

The data was normalized between the range of zero and one. From the total
available data for three years 6525 patterns (input-output pairs) were identified for
the study, which was split into training (5500 sets) and validation (1025 sets) data
sets. A single hidden layer is considered in the study based on various research
studies conducted on this basin [26, 30]. The optimal number of hidden neurons
was found to be 3 after trial and error. The ANN model structure used in this study
is shown in Fig. 3. Hence the model structure is assumed to be fixed, and only the
parameter uncertainty is quantified.

4.2 Evaluation of Model Performance

In BTANN, out of 5500 pattern, 4500 patterns were sampled each time for
developing a single ANN model. In BANN, the complete set (5500 pattern) of
calibration data was used, however the parameters were sampled from respective
PDFs. The number of ensemble is fixed as 100 in both model presented in this
chapter, which has been normally adopted in the previous studies [27, 31].

The ANN model performance obtained through selected approaches is presented
in Table 1, in terms of various statistical measures of performance. The indices such
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as Correlation Coefficient (CC), Nash Sutcliffe efficiency (NSE), Root mean square
error (RMSE) and Mean biased error (MBE) are considered for performance
evaluation of the developed model. It may be noted that listed performance indices
values are estimated for the ensemble mean generated from 100 simulations of
respective methods.

It is observed from Table 1 that the BTANN model produces high amount of
RMSE and MBE when compared BANN, which indicates an inferior performance
of the methods. The reason for such poor performance may be attributed to random
sampling of input-output patterns for training without considering the preservation
of statistical characteristics across bootstrapped samples. The BANN model showed
a slight improved performance during both calibration (results are not presented
here) and validation (Table 1). The values of CC and NSE do not show any
significant change across the methods during calibration as well as validation. The
Bayesian method has an NSE of 98.27 % in calibration and 97.04 % in validation.
The major reason for superior performance of BANN model lies in reaching
appropriate range of model parameters by keeping the same input data, whereas the
BTANN searches the parameter based on the bootstrapped input samples during
model training. The positive values of MBE of BTANN and BANN shows con-
sistent underestimation of model during validation (Table 1). Overall, the ensemble
mean obtained through BANN model closely matches the observed values with
comparably better performance than BTANN.

Fig. 3 The final ANN
architecture identified for
Kolar Basin

Table 1 Model performance
by BTANN and BANN

Model performance index BTANN BANN

Correlation coefficient 0.96 0.99

Nash-Sutcliff efficiency (%) 92.62 97.04

Root mean square error (m3/s) 50.64 32.02

Mean biased error (m3/s) 5.77 0.98
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4.3 Parameter Uncertainty

The parameter uncertainty produced by BTANN and BANN is compared. Figure 4
illustrates the mean and minimum to maximum range of finally optimized param-
eters obtained from 100 number of ensemble of simulation.

In both methods, the mean value of most of the connection weight approaches
zero. This is plausibly due to averaging the ensemble of parameters that has can-
celed the positive and negative values. Hence the comparison is mainly based on
min-max range of respective methods. It is observed that the parameter variability
of Bootstrap method is considerably higher than Bayesian method. In which the
higher variability is found at the biases which connect hidden nodes and all other
connection has almost equal variability around the mean value. This could be
ascribed as the model bias towards the selection of patterns for training. In BANN,
the weights connecting antecedent flow information has high parameter variability
due to high autocorrelation to the output variable. However, the Bayesian approach
produced consistent model parameters with narrow interval. The reason could be
attributed to convergence of sampling algorithm towards appropriate range of
parameter space in the form of PDF’s [10]. This in turn resulted in the better
predictive capability of Bayesian method with less parameter uncertainty.

Fig. 4 Parameter uncertainty of BTANN and BANN (The black dot point and red line represent
the mean and ranges of finally calibrated parameters) [The following nomenclature is used to
represent the links: for the connection between input nodes and hidden nodes (WIH), weights
connecting hidden nodes to the output node are designated as WHO and the bias connection to
hidden and output nodes are represented as BH and BO respectively]
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4.4 Prediction Uncertainty

The quality of prediction interval produced by BTANN and BANN is evaluated
using uncertainty indices POC and AW (Table 2).

It may be noted that the presented results correspond to validation data only. In
order to assess the uncertainty on different magnitude of flow, the flow values are
statistically categorized as low, medium and high [26]. Out of 1025 patterns in
validation, low flow values contain 843 patterns and 167, 15 patterns fall in
medium, high flow respectively. In theory, a better model will have less AW with
more number of observed values falls over the prediction band (i.e. maximum
POC). In other words, quantitatively an ideal prediction band has POC of 100 %
with AW approaches to lower values. The prediction interval obtained through
different method has varying magnitude of uncertainty in terms of POC and AW
estimate (Fig. 5). In general, the BTANN model has higher AW width values across
different flow domains as illustrated in Fig. 5, which indicates larger biases in
model performance across the pattern which is selected for model training.
Consequently it leads higher variability from the mean prediction and higher values
of POC. It is obvious that the higher the value of POC is a result of increased width.
On the other hand, BANN model produces consistently less AW value across

Table 2 Comparison of
predictive uncertainty by
different method

Method BTANN BANN

Flow series AW
(m3/s)

POC
(%)

AW
(m3/s)

POC
(%)

Complete
flow Series

75.95 98.14 3.42 46.58

Low flow
(x < μ)

38.06 99.88 0.44 49.46

Medium flow
(μ ≤ x ≤ + 2σ)

198.63 95.81 6.78 33.53

High flow
(x > μ + 2σ)

839.56 20 133.49 26.67

Fig. 5 Prediction interval obtained through different methods (The dotted point represents the
measured streamflow value)
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complete, low and medium flow series with 3.42, 0.44 and 6.78 m3/s respectively.
The forgoing discussion clearly indicates that the BANN model is good in terms of
lesser AW and bootstrap method is good with better estimate of maximum POC.
The choice of particular model is based on the application in which the model is
going to be employed. However, it should be noted that any misleading information
between these two conflict indices will lead to a biased model selection (Fig. 5).
Overall, the BANN model produces ensemble of simulation which are very close to
observed values though the POC is less.

5 Conclusion

In this chapter, the Bayesian and bootstrap based uncertainty evaluation method is
applied in ANN models. The presented approach is demonstrated through case
study of flood forecasting models for the Kolar basin, India. In both methods, the
model structure is assumed to be deterministic and only a parameter uncertainty is
evaluated. It is found that the BTANN and BANN model produce satisfactory
results, while considering the ensemble mean. The comparison between these
models suggests that the bootstrap method is simple and easy to apply than
Bayesian method since it involves rigorous sampling of parameters through Monte
Carlo simulation. However, the uncertainty produced by BANN model is better
than BTANN in terms of narrow prediction interval and also with less variance in
parameter convergence. The major reason for such reduction in parameter uncer-
tainty of BANN model might be due to the potential of MCMC while converging
towards optimal parameter space. It is clear from the illustrated example that
meaningful quantification of uncertainty in ANN model would improve the relia-
bility while making decisions. This suggests the choice of model should not only be
based on the model performance, however with appropriate analysis of uncertainty.
It should also be noted that each method differs by its own complexity, principle
and computational efficiency.
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Abstract Calpain inhibitors are possible therapeutic agents in the treatment of
cataracts. These covalent inhibitors contain an electrophilic anchor (“warhead”), an
aldehyde that reacts with the active site cysteine. Whilst high throughput docking of
such ligands into high resolution protein structures (e.g. calpain) is a standard
computational approach in drug discovery, there is no docking program that con-
sistently achieves low rates of both false positives (FPs) and negatives (FNs) for
ligands that react covalently (via irreversible interactions) with the target protein.
Schroedinger’s GLIDE score, widely used to screen ligand libraries, is known to
give high false classification, however a two-level Self Organizing Map
(SOM) artificial neural network (ANN) algorithm, with KM clustering proved that
the addition of two structural components of the calpain molecule, number
hydrogen bonds and warhead distance, combined with GLIDE score (or its partial
energy subcomponents) provide a superior predictor set for classification of true
molecular binding strength (IC50). SOM ANN/KM significantly reduced the
number of FNs by 64 % and FPs by 26 %, compared to the glide score alone. FPs
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1 Introduction and Overview

Artificial neural networks (ANNs) have a proven ability to model complex rela-
tionships between pharmaceutically appropriate properties and chemical structures
of compounds, specifically for the analysis and modelling of nonlinear relationships
between molecular structures and pharmacological activity [1–4]. ANN applica-
tions in drug discovery include the prediction of biological activity, selection of
screening candidates (cherry picking), and the extraction of representative subsets
from large compound collections such as combinatorial libraries [5]. ANNs as such
have proven potential to improve diversity and the quality of virtual screening. Our
focus in this study is the Self Organising Map (SOM) [6] which is a nonlinear
multidimensional mapping tool. The SOM represents competitive learning based
clustering of artificial neural networks. The SOM is either an unsupervised or
supervised data method [7, 8] that can visualise high-dimensional data sets in lower
(typically 2) dimensional representations. Many practical applications of the SOM
exist in compound classification, drug design, and chemical similarity searching [9,
10].

In this chapter we develop clustering and visualisation tools to verify a predicted
protein-ligand binding mode when structural information of protein-ligand com-
plexes is not available, and to identify indicators for the prediction of binding
affinity in order to distinguish between high affinity binders and essential
non-binders. Protein–ligand binding is central to both biological function and
pharmaceutical activity. It is known that some ligands inhibit protein function,
while others induce protein conformational variations, thus modulating key
cell-signaling pathways. Whichever scenario pertains, achieving a desired thera-
peutic effect is dependent upon the magnitude of the binding affinity of ligand to the
target receptor. Designing tight-binding ligands while conserving the other ligand
properties crucial to safety and biological efficacy is a major objective of
small-molecule drug discovery. As such a primary goal of computational chemistry
and computer aided drug design is the accurate prediction of protein–ligand free
energies of binding (i.e., the binding affinities).

Specifically in this chapter we investigate the SOM as a mathematical and
computational tool for the evaluation of docking experiments of calpain ligands
(small drug molecules), where calpain is the large protein to which the inhibitor
(drug) binds. Calpain inhibitors are possible therapeutic agents in the treatment of
cataracts caused by the over-activation of calpain. Discovery of new calpain inhi-
bitors could clearly benefit cataract treatment [11] and this would have significant
impact in drug discovery and treatment [11–20].

The aims of this study are to verify the predicted binding mode of the calpain
ligands, identify structural and docking parameters for improved prediction of
binding affinity, and to distinguish between high affinity binders and essential
non-binders of calpain. The methodology is validated for a set of “literature and in
house” potential binders to the protease calpain, for which modeling and analytical
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data is available. These covalent inhibitors contain an electrophilic anchor (“war-
head”), an aldehyde that reacts with the active site cysteine. Many therapeutics
based on protease inhibitors are currently in late clinical trials, or are already
available as drugs. However, inhibitors of the cysteine protease family are to date
much under-represented, primarily because of flaws in their design: existing inhi-
bitors are conformationally flexible and biologically unstable structures with a
‘reactive warhead’ that makes them un-drug like [21]. Covalent linkage formation
as such is a very important mechanism for many covalent drugs to work. However,
to date, partly due to the limitations of computational tools for covalent docking,
covalent drugs have not been discovered systematically through structure based
virtual screening (SBVS) techniques. Figure 7 gives a schematic of SBVS in drug
discovery (http://www.click2drug.org/).

Whilst high throughput docking of such small molecules (ligands) into high
resolution protein structures (e.g. calpain) is a standard computational approach in
drug discovery [22], there is no docking program proved as yet to achieve low rates
of both false positives and false negatives [23–27]. This is true particularly for
ligands that react covalently with the target protein [28, 29]. For example it is
known that Schroedinger’s GLIDE score [30], widely used to screen libraries of
ligands (of millions of compounds) for prediction of molecular binding affinities
(http://www.schrodinger.com), can give a high false positive classification [31–37].
It has been suggested that GLIDE prediction does not correlate well with the true
binding affinity especially for covalent binders (see the review by Mah et al. [38]).
Generally in docking experiments binding of the ligand dock is assessed by the
single score (e.g., GLIDE, such a score is an approximate predicted binding
measure), with experimentally derived IC50 (gold standard for effective binding
affinity and a value often reported in the chemistry and cheminformatics literature)
—IC50 only being determined for those compounds that are synthesised.

Testing covalent binders requires a structured feature extraction system that
allows for a meaningful analysis and for some pattern recognition if possible. In this
spirit our study aims to highlight the need to improve on predictor sets beyond
GLIDE, for example, by adding structural information to the exercise—specifically
information on the number of hydrogen bonds and warhead distance. We propose
the identification of molecules with an appropriate warhead group (e.g. the alde-
hyde functional group) as a possible pre-test or filter for further drug development.
This has the potential to help reduce the cost and time required for the discovery of
a potent drug which may be a false positive (or false negative). Advantages to
rational drug design of structure-based and ligand-based drug design (SBVS)
suggest the value of their complementary use, in addition to integrating them with
experimental routines (see the review by Macalino et al. [39]). In our study each
ligand’s gold standard measure of activity, the half maximal inhibitory concen-
tration, IC50, has been experimentally derived, adding strength to our classification
problem.
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2 The Self Organising Map—Clustering
and Chemical Space

The Self Organising Map (SOM) is one of the best known artificial neural network
(ANN) algorithms. Self Organising Maps also known as the Kohonen feature map,
were introduced by Teuvo Kohonen in 1982 [40]. SOMs create an imagined
geography in which data is presented, and are a useful tool to visualise
high-dimensional data. SOM converts complex, nonlinear statistical relationships
between high-dimensional data into simple geometric relationships on a
low-dimensional display. The SOM, basically a vector quantization method, is a
type of topological map, which organises itself based on the input patterns that it is
trained with [41]. The output and data structure can be varied dynamically based on
the data given, rather than statically defining the input structure. The map is thus
self-organising in that when the contents change, its form also changes [42]. In the
context of classification and data analysis, the SOM technique highlights the
neighbourhood structure between clusters. The correspondence between this clus-
tering and the input proximity is called the topology preservation. As such the SOM
represents competitive learning based clustering of neural networks. In this study
calpain inhibitors (ligands) were clustered into so-called classes of identifiable
‘good’ versus ‘poor’ binders.

SOMs are one of two common visualisation methods used to represent chemical
space [43–45]. The other is principal component analysis (PCA) [46, 47]. Practical
applications of the SOM involve compound classification, drug design, and
chemical similarity searching. There is growing consensus that analysis of
macromolecular (target) features should parallel feature extraction from sets of
known ligands to obtain desired novel designs. The applicability of the SOM for
mapping elements of protein structure-like secondary structure elements or surface
pockets has also been demonstrated.

In drug discovery a common theme is molecular feature extraction which
involves the transformation of raw data to a new co-ordinate system, where the axes
of the new space represent “factors” or “latent variables”—features that might help
to explain the shape of the original distribution. A popular statistical feature
extraction method in drug design which belongs to the class of factorial methods
is principal component analysis (PCA). PCA performs a linear projection of data
points from the high-dimensional space to a low-dimensional space. In contrast to
PCA, self-organising maps (SOMs) are non-linear projection methods, as are
Sammon mapping and encoder networks, all of which can be employed in drug
design. Since knowledge of target values (e.g., inhibition constants, properties) or
class membership (e.g., active/inactive assignments) are not required by both PCA
or SOM, they are characterised as “unsupervised”. Unsupervised procedures are
generally used to perform a first data analytic steps, complemented later by
supervised methods [7, 8] through the adaptive molecular design process.
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The relative distance between compounds in the PCA derived chemical space
becomes a measure of their similarity with respect to the particular molecular
representation used. In contrast to PCA, in SOMs, a set of objects is typically
mapped into a rectangular array of nodes. Similar objects are mapped into the same
or proximal nodes. In contrast, dissimilar objects map into distant nodes. Each
neuron is assigned a number of weights that correspond to the number of input
variables (i.e., descriptors). In the learning stage of a Kohonen network, the values
of the weights in the nodes are first assigned as random numbers. Then, a molecule
of the data set is projected into the neuron that has the closest weight values to the
input variables of the molecule. Such a neuron is named the winning neuron. In the
iterative steps the weight of the winning neuron and neighbouring neurons are
updated. After the adjustments of weights, a second molecule from the data is taken
and a single neuron is selected as a winner, the weights then adjusted and the
process is repeated until all molecules have been assigned to a specific neuron.
Feature analysis can be then performed by comparing adjacent neurons (Fig. 1).

Figure 2 shows the stages of SOM adaptation. Here a planar (10 × 10) SOM was
trained to map a two-dimensional data distribution (small black spots). The
receptive fields of the final map are indicated by Voronoi tessellation in the lower
left projection. A and B denote two “empty” neurons, i.e., there are no data points
captured by these neurons [43]. One limitation of the original SOM algorithm is
that the dimension of the output space and the number of neurons must be pre-
defined a priori to SOM training. It has been noted that self-organising networks
with adapting network size and dimension can provide more advanced and at times
more adequate solutions to data mining and feature extraction [41, 43].

Fig. 1 Stages of SOM adaptation (reproduced from [43])
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2.1 The SOM Algorithm

Kohonen’s algorithm represents an efficient mapping of similar patterns, given as
vectors close to each other in input space, onto contiguous locations in the output
space. Each map node has a specific position (an x, y coordinate in the lattice) and
contains a vector of weights that has the same dimension as the input vectors. As
shown in Fig. 2 there are no lateral connections between nodes within the lattice.
Instead of specifying a target output, SOM determines whether the node weights
match the input vector. When the node weights and the input vector matches, that
area of the lattice is selectively optimised to more closely resemble the data. The
algorithm requires many iterations in order for SOM to determine a map of stable
zones, which acts as a feature classifier. The unseen input vectors will simulate
nodes in the zone which have similar weight vectors [48].

The SOM algorithm includes an iterative training procedure, where an elastic net
that folds onto the ‘data cloud’ is formed [41]. This is achieved by mapping data
points that are close together (in the Euclidean sense) onto adjacent map units. After
an input vector is selected, SOM examines all the remaining nodes in the lattice to
identify the Best Matching Unit (BMU) (Fig. 3), which is the node corresponding to
the weight vector that is nearest to the input vector. The closeness or nearness is
quantified using Euclidean distance. As such SOM is a topology-preserving map,
given that the map preserves the neighbourhood relations [40].

Once the neighbourhood radius is idenstified, it is relatively simple to determine
the nodes that lie within the BMU’s neighbourhood. One only needs to iterate
through the nodes and compare the neighbourhood radius and the distance between
the node and the BMU. By repeating the process with a different random input
vector for each iteration, a topology-ordered map will be produced. The black mesh

Fig. 2 SOM Lattice (http://www.generation5.org/content/2004/aiSomPic.asp and http://www.
nnwj.de/kohonen-feature-map.html accessed October, 2008)
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shown in Fig. 4 is the initial lattice. The BMUs are indicated by the grey dots. The
grey lattice is the final trained map. The initial (black) lattice is altered after the
SOM process to produce a trained (grey) map.

2.2 Visualisation of the SOM

Due to the characteristics of SOM, its visualisation can be used to inspect corre-
lations even if they are in different parts of the data space. Several different methods
of visualisation have been developed, these include 2D and 3D projection and
colour coding methods [49]. In this chapter we apply one method of visualisation,
namely Sammon Mapping [50], which is based on reference vectors. Each com-
ponent of a node is represented by a plane using a colour representation, and partial
correlations may be found within these planes. SOM attempts to seek an optimum
non-linear projection for high-dimensional data, such that the resultant vectors can
be represented in a 2D map, but which still retain their relative mutual Euclidean
distances. The U-Matrix (see Fig. 5) is a popular method for displaying SOMs, as it
gives an overall view of the shape of the map. Each element in the matrix represents

Fig. 3 BMU Neighborhood
Radius

Fig. 4 SOM process
(reproduced from [41])
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a neuron. The colours indicate the relative distance between neurons. Figure 5 is a
U-Matrix with a hexagonal topology. The colour scale at the right-hand side shows,
for example, blue colours to represent a smaller relative mutual Euclidean distance,
while a red colour represents a larger relative distance. This colour coding may be
used to link different types of visualisation, and colours can be assigned according
to the cluster structure of the map.

2.3 SOM in MATLAB

Matlab: 2015 [51] is a widely used programming environment for technical com-
puting by MathWorks, Inc. Matlab and is available for Windows and various Unix
platforms [50, 52]. Specifically, the SOM Toolbox is applied in this chapter for
analyses using the Matlab: 2015 computing environment. Other packages that can
be used are the SOM_PAK, which is a program package implementing the SOM
algorithm in C-code. The SOM Toolbox contains functions for using SOM_PAK
programs from Matlab, and has functions for reading and writing data files in
SOM_PAK format. Another package that can be used in relation to SOM is what is
known as the LVQ_PAK for the learning vector quantisation (LVQ) algorithm. The
SOM_PAK and the LVQ_PAK are two public-domain software packages down-
loadable from Helsinki University of Technology‘s Computer and Information
Science website: http://www.cis.hut.fi/research/som_lvq_pak.shtml [40].
A graphical user interface (GUI) from the SOM Toolbox was used via command
line versions of the functions. Note that SOMs can also be performed in the R
statistical platform using Kohonen [53]. We refer the reader to the recent paper on
self organisation and missing values in SOM by Vatanen et al. [54].

Fig. 5 Example of the
Unified Distance Matrix
(U-Matrix)
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2.4 Two-Level Clustering Approach

A two-level clustering approach is adopted in this chapter. This approach involves
SOM followed by K-means clustering (KM) [55] according to the development of
Vessanto and Alhoniemi [41]. In this SOM/KM hybrid cluster analysis method of
relevant inputs (e.g. BMUs) are used to discover structures in data. Recent appli-
cations by Hudson of SOM/KM involve a study of sleep and work scheduling of
railway drivers [56], and earlier of railway crossing accidents [57]. Visually the
SOM/KM involves, as shown in Fig. 6, a large set of M prototypes formed by the
SOM, which can then be interpreted as “proto-clusters”. Each data belongs to its
nearest prototype. In this case, the input data is “proto-clustered” into BMUs by
SOM. Then K-means clustering is performed on SOM, i.e. the BMUs are clustered
by K-means, to form.C clusters. The main benefit of using this two-level clustering
approach is that it reduces the computational cost, by the use of “proto-clusters, and
an additional benefit is noise reduction, in that the prototypes are less sensitive to
random variations than are the input data, since they are local averages of the raw
data. The impact of outliers on the vector quantization result is also limited.

3 Docking and Virtual High-Throughput Screening

Molecular docking [59, 60] remains a significant and useful tool for identifying
potential ligands for binding to a particular enzyme or receptor in so-called
molecular libraries of compounds. In particular, it allows the prediction of likely
modes of binding (docking) and the estimation of relative free binding energies of
the resulting protein-ligand complexes (scoring/ranking). Accurately predicting
relative binding affinities and biological potencies for ligands that interact with
proteins however remains a significant challenge for computational chemists.
Although docking tools are generally reliable in predicting the binding mode, a
detailed analysis of the protein-ligand component structure under test is not always
possible. Hence, a computer based method (or model) to verify the binding assay

Fig. 6 Two-level Clustering Approach (reproduced from [41])
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data of the compound and binding models is required. Most evaluations of both
docking and scoring algorithms have focused on enhancing ligand affinity for a
protein by optimising docking poses and using enrichment factors during virtual
screening. But to date there is still relatively limited information on the accuracy of
commercially available docking and scoring software programs [24, 29, 59–62] for
correctly predicting binding affinities and biological activities of structurally related
inhibitors of different enzyme classes [27, 63].

3.1 Scoring and Comparison of Docking Programs

Drug discovery utilises chemical biology and computational drug design for the
effective identification and optimisation of lead compounds. Chemical biology is
primarily involved in the interpretation of the biological function of a target and the
mechanism of action of a so-called chemical modulator. Computer-aided drug
design (CADD) [58] also makes use of the structural knowledge of either the target
(structure-based) or known ligands with assumed bioactivity (ligand-based) to
enable determination of promising candidate drugs. Indeed knowledge of the 3D
structure of a target protein is a major source of information for computer-aided
drug design. Of particular interest are the size and form of the active site, and the
distribution of functional groups and lipophilic areas. The number of solved X-ray
structures of proteins is rapidly increasing, as is the volume of information available
to address questions about conserved patterns of functional groups, or common
ligand binding motifs or coverage of the protein structure universe. Automatic
procedures are clearly needed for analysis, prediction, and comparison of macro-
molecular structures, in particular potential binding sites in proteins, as visual
inspection of structural models is inadequate. Virtual screening techniques thus aim
to reduce the cost and time for the discovery of a potent drug.

Studies have suggested the complementary use of structure-based (SB) and
ligand-based virtual screening (VS) drug design in integrated rational drug devel-
opment (see the review by Macalino et al. [39] and by Kawatkar et al. [29]). The
major steps of structure-based virtual screening (SBVS) are docking and scoring.
Figure 7 gives a schematic of SBVS in drug discovery [64]. The processes involve
input from databases of ligands, 3D structures or molecule fragments into VHTS,
which may be either ligand based (pharmacophore) or structure based (docking).
These steps then result in lead optimization and in databases to develop scoring
functions or to develop ADME(T) or toxicity estimates; where in the latter case the
primary measure of effectiveness is the ligand’s binding activity (or affinity) with a
protein, influencing a metabolic function, is the ligand’s ADME(T) (absorption,
distribution, metabolism, excretion, toxicity) properties.

Since Kuntz et al. [65] published the first docking algorithm DOCK in 1982,
numerous docking programs have been developed during the past two decades [30,
66–75]. Several comprehensive reviews of the advances of docking algorithms and
applications have been published [29, 59–62, 76, 77]. Scoring (ranking) the
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compounds retrieved from a database is performed simultaneously with the docking
simulation. Molecular docking is a typical optimisation problem, for it is difficult to
obtain the global optimum solution. The optimised process scoring function should be
fast and accurate enough, allowing simultaneous ranking of the retrieved 3D structural
poses in the optimisation process. Based on this idea, several scoring functions have
been developed [24, 29, 33, 59–61, 78, 79].Unfortunately, there is no scoring function
developed so far that can reliably and consistently predict a ligand-protein binding
mode and binding affinity at the same time [24, 29, 33, 59–62, 79]. Indeed the
development of a fast and accurate scoring function in virtual screening remains an
unresolved issue in current computer-aided drug research. Different scoring functions
focus on diverse aspects of ligand binding, and no single scoring can satisfy the
peculiarities of each target system [80]. Therefore, heuristic docking and consensus
score strategies are often used in virtual screening [61, 81, 82].

3.2 Filters and False Positives and Negatives

Virtual high-throughput screening (HTS) remains one of the most powerful
approaches available for identifying new lead compounds for the growing catalogue

Fig. 7 Schematic of structure based virtual screening (SBVS) in drug discovery, incorporating
Virtual high-throughput screening (VHTS) [26, 64]. (http://www.click2drug.org/ accessed August
30, 2015)
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of validated drug targets. The principle that molecular structure determines meta-
bolic and drug activity has meant that the preliminary High Throughput Screening
(HTS) of molecules in search for new drugs has traditionally focused on identifying
molecules with a similar structure to a known active molecule. High throughput
docking of small molecules (ligands) into high resolution protein structures is now
standard in computational approaches to drug discovery, where the receptor (pro-
tein) structure is kept fixed, while the optimal location and conformation of the
ligand is sought via sampling algorithms [36]. The cost of new drug discovery is
expensive, with many cases recorded where candidate molecules have progressed
through most of the development stages, to only fail in the final clinical trials
assessment [83].

However, just as virtual and experimental HTS have accelerated lead identifi-
cation of potential ligand candidates and changed drug discovery, they have also
introduced a large number of “peculiar” molecules. Some of these are of interest for
further optimisation, others are considered as dead ends after unsuccessful attempts
to optimise their activity. Such false positive hits are still one of the key problems in
the field of HTS and in the early stages of drug discovery in general. In the
lead-discovery environment false positives can result from multiple mechanisms,
including: nonspecific hydrophobic binding, poor solubility (protein or substrate
precipitation), the tendency of small molecules to form aggregates, reactive func-
tional groups, low purity, incorrect structural assignment or compound concentra-
tion, interference with the assay or its readout, and experimental errors. False
negatives can be the result of poor solubility, chemical instability, low purity, lower
than expected compound concentration, interference with the assay or its readout,
and experimental errors.

Compounds that do not adopt a sensible binding mode, and/or whose calculated
free binding energy is lower than an arbitrarily defined cut-off value, are often
excluded (filtered) by analysis and manipulation of the docking results. This sig-
nificantly reduces the number of possible compounds to be synthesised and assayed
for a drug discovery program, thus saving time and money. Many studies have been
devoted to understanding the origins of false-positives, and the findings have been
incorporated in filters and methods that can predict and eliminate problematic
molecules from further consideration [25]. However, active compounds that possess
a novel mode of binding, and/or an incorrectly calculated free binding energy, can
inadvertently be excluded during such a process. This then removes potentially
interesting candidates from the drug discovery process (false negatives).
Furthermore, libraries of compounds based on existing molecules may emphasize
molecules easy to synthesize rather than covering all active molecules [127].

3.3 Covalent Binding Modes

Docking is generally reliable at predicting non-covalent ligand binding modes,
when a good protein model is available. This however can be a problem for proteins
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with a highly flexible binding site leading to an induced fit. Furthermore, e.g. water
molecules participating in a trimolecular binding event have to be identified. By
contrast, scoring and ranking are rarely exact [24, 31, 84]. In particular, the use of
existing scoring functions results in inaccuracies which range from needing to
compare structurally different compounds and to score multiple poses of the same
ligand. Thus scoring functions are not always well suited to prioritising binding and
often fail to accurately predict the binding affinity of all ligands (i.e. strong and
weak binders). Strategies to overcome these deficiencies include the use of a
consensus scoring of several scoring functions [85, 86] and the use of generous
cut-off values so that many ligands and/or poses pass the scoring filter. However,
this can result in the generation of a large number of compounds for synthesis and
testing, many of which ultimately prove to be inactive (poor or non-binders),
so-called false positives. The number of these false positives can however be
reduced during the analysis, by tailoring the scoring/ranking process to the par-
ticular biological target under consideration. For example, a ‘post-docking filter’
can be used to exclude compounds that lack one or more of the identified key
interactions [87, 88]. As such a simple filter is able to better distinguish between
binders and non-binders of a particular target, thus significantly reducing the
number of false positives. If generally applied, this might lead to scoring functions
that compare the binding affinity of high affinity ligands without having to
parameterise the function for a correct evaluation of low-affinity binders.

In general, docking programs have been developed to specifically describe non-
covalent protein-ligand interactions, since these are associated with most of the
known enzyme-inhibitor and receptor targeting based therapeutics. However, there
are many covalent inhibitors that demand detailed molecular analysis if they are to
be further developed [89]. The scoring of these types of binders is complex, since
both the initial non-covalent complex and the bond forming process have to be
correctly modelled. There have been some covalent docking studies reported for
these purposes quite recently by Bianco et al. [90], by Kumalo et al. [91] and Mah
et al. [91] but their use is not routine or general (see also the older investigations by
Fradera [92] and by Katritch [89]). Indeed there is currently no available docking
program that has achieved low rates of false positives and of false negatives, par-
ticularly for ligands that react covalently with the target protein [23, 29, 34–37, 93].
The challenge remains to accurately predict binding affinities of drug candidates, by
accommodating protein flexibility, solvation and entropic effects [94]. Whether
machine-learning approaches, generalised/universal scoring functions or new
protein-specific/targeted scoring functions can achieve this is as yet unclear (see the
review by Yuriev and Ramstad [27] and also by Yuriev et al. [95]).
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4 Calpains and the Data Set

Calpain is a calcium activated cysteine protease with several known isoforms.
Calpains were chosen as the target protein for this study since their over activity is
crucial to medical conditions associated with cellular damage; including traumatic
brain injury, stroke and cataract [12, 15, 18–20, 96]. Given the enzyme is an
important modulator of these physiological and pathological conditions, specific
calpain inhibitors are attractive therapeutic agents. Whilst a good deal of X-ray
crystallographic and other data is available to aid in the design and synthesis of
such inhibitors, methods for their analysis by molecular docking techniques are still
lacking [12, 14, 15, 18, 20]. Whilst calpain inhibitors have demonstrated efficacy in
animal models of calpain related diseases, the progression of the inhibitors into
clinical trials has been fraught partly due to lack of calpain isoform selectivity and
the general reactivity of the inhibitors [96]. Exploration of compounds that bind to
allosteric sites of the enzyme may avoid these problems and afford new drug leads.
Advances made in enhancing the cellular uptake of peptide calpain inhibitors,
improving the pharmacokinetic properties of the inhibitors and site specific tar-
geting of calpain inhibitors are still needed [15, 16, 18–20].

4.1 The Mechanism of Binding

In our study of the calpain inhibitor ligands in binding it is the electrophilic anchor
(“warhead”), e.g. an aldehyde, that reacts with the active site cysteine, and a di- or
tripeptide backbone (see Fig. 8) that adopts a l2 strand geometry on binding, as is

Fig. 8 l2 strand geometry of
the backbone of calpain
inhibitors (smaller grey
molecule in the middle) when
binding to the protein with the
defining hydrogen bonds to
Gly271 and Gly208 (3
interactions shown)
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the case for almost all known binders to proteases. Figure 8 depicts binding of a
ligand to 3 binding sites of the protein.

We describe a paradigm by which to explain the mechanism of the
ligand-protein binding. A schematic for a ligand (inhibitor) binding to calpain
(protein) is shown in Fig. 9, with both non covalent (reversible) and covalent
(irreversible) interactions being important. Non covalent interactions are typified by
hydrogen bonds (as depicted by the dashed lines in Fig. 9) and hydrophobic/
hydrophobic and hydrophilic/hydrophilic binding. With these non covalent inter-
actions in place, the reactive warhead (typically an aldehyde functional group) of
the ligand is correctly positioned to covalently react with an active site cysteine of
the calpain (designated HS in Fig. 9). This results in long-lasting attachment of the
ligand to calpain and hence inhibition of its activity. Thus both hydrogen bonding
and warhead distance (separation of the warhead and cysteine) are critical param-
eters in defining the binding affinity. The non covalent interactions between the
ligand and calpain are depicted as P (1 to n) and P2 (1 to n) depending upon their
proximity to the warhead as depicted in Fig. 9. S1 and S2 in Fig. 9 are the binding
pockets of the enzyme that accommodate the P1 and P2 groups.

Proteases almost uniformly bind their substrates and inhibitors in a conformation
whereby the peptide (or a peptide-like) backbone of the inhibitor adopts a β-strand
geometry. This mode of binding is primarily dictated by the geometry of the active
site subsites that accommodate the amino acid side chains of the substrate or
inhibitor. An important approach to inhibitor design is to then introduce a carefully
designed conformational constraint into the structure to pre-organise its backbone
into a β-strand conformation, thereby reducing entropy loss associated with
ligand-receptor binding, while also enhancing biostability. This typically involves
chemically linking either the P1 and P3 or the P1′ and P3′ residues of a
peptidomimetic-based protease inhibitor.

Chua et al. [21] have recently progressed this area and have computationally
designed and prepared (using ring closing metathesis and click chemistry) potent
cyclic inhibitors of cysteine proteases that overcome the basic problems of flaws in
their design: existing inhibitors are conformationally flexible and biologically

Fig. 9 Mechanism of
ligand-protein binding
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unstable structures with a ‘reactive warhead’ that makes them un-drug like. The
constituent cycle constrains the inhibitor into a β-strand geometry that is known to
favour binding to the enzyme, resulting in improved biostability, an entropic
advantage to inhibitor binding, and increased potency without the need for a ‘re-
active warhead’. These authors have shown that such inhibitors stop the progression
of cataracts in lens culture and also in animal trials by inhibiting a cysteine protease
—the study is entering a commercial phase. The research in this chapter involves
the stereoselective synthesis of examples of these macrocyclic inhibitors and their
assay against a range of proteases (including the proteasome) and an investigation
into their potential to stop the growth of various cancer cell lines. Whilst a good
deal of X-ray crystallographic and other data is available to aid in the design and
synthesis of such inhibitors, it is known that methods for their analysis by molecular
docking techniques are somewhat still lacking [12–16, 18–20].

5 The Data Set

A dataset of 124 molecules (ligands), which are considered as possible calpain
inhibitors are analysed in this chapter. Whilst the binding affinity of a molecule
(ligand) to a protein (calpain) is generally used as a measure of binding activity as
discussed earlier, generally, however, strong binding affinity, alone, is not sufficient
a criterion for further development of a molecule as a potential drug. This is because
pharmacokinetics is also an important factor in ligand binding. Indeed, without
acceptable pharmacokinetics, the molecule may fail further testing in the drug
development process. Hence the three-dimensional structure of a molecule opti-
mally needs to be examined, so as to understand its activity and underlying phar-
macokinetics. Hence using the GLIDE computer program, the 124 molecules
(ligands) were docked into a computerised model of calpain and the structures of
each docked compound were analysed (see http://helixweb.nih.gov/schrodinger-
2013.3-docs/glide/glide_user_manual.pdf). The poses of each ligand were then
compared, and the pose with the lowest estimated free binding energy (i.e. glide
score) were advanced for further analysis of its binding mode (see Neffe and Abell
[11]). Most of the 124 ligands analysed had a highly congruent binding mode of up
to three hydrogen bonds (e.g. Gly208, Gly271, see Fig. 8 above) [11].

The GLIDE algorithm also provides, apart from the global GLIDE score [97],
the so-called Emodel score [97], where both the GLIDE and Emodel scores are
linear combinations of the seven partial energies, g.lipo, g.hbond, g.eburp, g.evdw,
g.ecoul, g.erotb, and g.esite, which are in the model notation [83, 98]. See Table 1
(shaded section) for definitions of these terms. The full set of seven partial energies
is also denoted by g7. The data set contains a number of descriptors for the 124
ligand complexes, including the GLIDE (g.score), Emodel (g.emodel), the ligand’s
true binding strength, and the partial energies from GLIDE, namely the subcom-
ponents that make up the one-off glide score (denoted by g.score in Table 1). The
number of hydrogen bonds of the molecule’s backbone in addition to the ligand’s
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warhead distance and warhead class (Table 3), and the molecule’s true binding
strength classification (IC50 and BS) are also part of the dataset.

The following relationships hold for the scores given in Table 1: (i) Free binding
energy = (energy of the protein-ligand complex)—(energy of the free protein)—
(energy of the free ligand) [68, 73]; (ii) The energy of the protein-ligand complex is
classically the sum of all interaction energies (e.g. Coulomb energy (Coul, elec-
trostatic interactions) + van der Waals energy (vdW, lipophilic interactions) + en-
ergy of hydrogen bonds etc.) + internal energies coming from non-ideal angles,
bond lengths etc.; and (iii) the emodel energy score is calculated from all the other
energies.

The prediction of binding strength is based on the gold standard of molecules
activity IC50 [83]. Molecules with high IC50 are poor binders, while molecules with
low IC50 are good binders. Table 2 shows the expert-driven classification of binding
strength (by organic chemists, Abell and Neffe) of ligands based on IC50. These

Table 1 List of molecular descriptors and GLIDE: definition of the partial energies and full scores

Full scores

GScore g.score Glide Score, used for comparing poses of different
ligands

Emodel g.emodel Combination of GScore, Coul, vdW, and Intern
used for selecting poses of a given ligand

Distance Warhead distance Distance

Hbonds Number of hydrogen bonds Hbonds

Partial scores

Lipo g.lipo Lipophilic contact term g7 g8

HBond g.hbond Hydrogen-bonding term

BuryP g.eburp Penalty for buried polar groups

vdW g.evdw Scaled van der Waals energy

Coul g.ecoul Scaled Coulomb energy

RotB g.erotb Penalty for freezing rotatable bonds

Site g.esite Polar interactions in the active site

Intern g.einternal Internal energy of the ligand, not included
in the calculation of the Glide Score

Table 2 Classification of true Binding Strength (BS) based on IC50

Binding Strength IC50 True BS category Totals

0. Super Binders <500 nM Good 20

1. Good Binders 500 nM–5 μM Good 23

2. Weak Binders 5–100 μM Poor 22

3. Non-binders >100 μM Poor 59

Total 124
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four categories of binding strength are dichotomised, so weak binders and
non-binders are considered as “poor binders” and good binders and super binders
are considered as “good binders”.

5.1 Warhead Classification and Binding Affinity

Typical calpain inhibitors have an electrophilic warhead, e.g. aldehyde, which
target the active site cysteine and a di- or tripeptide backbone conferring specificity.
Four classifications of warhead are used in this study. Each molecule belongs to one
of the four following warhead classification groupings: {Aldehydes and Ketones},
{Masked Aldehydes, Ketones, Michael Acceptors, Epoxides}, {Esters and
Amides}and {Alcohols and non-classical}. Table 3 shows a cross tabulation of this
4 level warhead classification versus true binding strength (dichotomised), where
the latter are the classification of true binding strength of ligands based on
cut-points or ranges for IC50 in Table 2. The associated chi-square statistic is 42.20
and the Likelihood Ratio (LR) statistic is 53.78 with corresponding P < 0.00001,
which indicates that there is a highly significant association between warhead
classification and true binding strength. It can be seen that warhead classification 1
(Aldehydes + Ketones) and 2 (Masked Aldehydes, Ketones, Michael Acceptors,
Epoxides) contain the majority of molecules with good binding strength; and
warhead classification 3 (Esters + Amides) contains molecules with poor binding
strength only.

In this study a major question is whether the false positive and false negatives
are highly correlated to the warhead classification of the ligand. The false negatives
(FNs) in this application are considered to be molecules (calpain-ligand) classified
as ‘poor binders’ despite having high binding strength (low IC50) and being
plausible to the ‘chemical eye’ (Fig. 10a). False positives (FPs) are compounds
classified as ‘good binders’, but which exhibit low binding strength (high IC50)
(Fig. 10b). Molecules that are found to be FNs or FPs may in fact need to be
retested and their true binding strength recalculated.

6 Results

The 16 candidate models obtained via SOM/KM are discussed in this section
Although it has been known that the GLIDE score [30] does not necessarily cor-
relate well with binding affinity, as assessed by IC50, it is still used in drug dis-
covery [32, 99]. In this chapter our so-called GLIDE only model is used as a
baseline to investigate a possible better suite of predictors of binding strength that
classify a higher number of true positives and true negatives. For each model,
classification tables, ROC analyses, sensitivity, specificity [100] and the results of a
Cochran-Mantel-Haenszel (CMH) test [101, 102] are given, in addition to a
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tabulation of the false positives and false negatives by warhead class and a plot of
the mean of the predictors in the model per (good and poor) cluster/grouping. The
results for the best model are discussed in detail, then, all models are compared on
summary descriptives, on ROC diagnostics and by an examination of molecular
warhead classification across the true (and predicted) good and poor binders.

6.1 Selection of the Best Predictor Sets (Models)

The best models are chosen based on ROC analyses [103, 104] which are based on
criteria such as sensitivity (r) and specificity (s) values and area under the curve
(AUC) indices [106], derived from pROC [107] and epi [112] in R. Table 4 gives
the sensitivity and specificity with corresponding 95 % confidence intervals, sorted
by decreasing r + s. The numbers of molecules as true and false positives/negatives
are also shown. Models with a high value of r + s exceeding 1.0 as the lowest
threshold [105, 108] are considered as optimal models, as are models with high
levels of AUC. From Table 4 the best candidate models as based on (r + s) are: the
g7 models (g7 + hbonds + distance, g7, g7 + hbonds), followed by the simple 2
parameter glide + distance model, then the g8 variant models (g8 + hbonds,
g8 + distance, and g8) and finally the (glide +hbonds) model. Table 5 provides a
summary of the 16 models (sorted by decreasing AUC) with model specific values
of the index of validity (Iv), r + s and AUC, along with corresponding 95 %
confidence intervals for the given AUC. The Z statistic (Zstat) and corresponding P
value relates to tests comparing the AUC of each model with respect to the AUC of
a given reference (ref) model. These reference models are the glide only model (P1)
and the optimal g7 + hbonds + distance model (P2) (Table 5). The top models based
on AUC are: g7 + hbonds + distance, g7 + distance, g7, g7 + hbonds, glide + dis-
tance, emodel + distance and the 3 parameter (glide +hbonds + distance) model.
The glide only model was ranked 9th and 13th of the 16 models when compared to
all models (Tables 4 and 5). Moreover, the glide + hbonds + distance,
emodel + distance and g7 + distance models are equivalent (based on AUC) to the
g7 + hbonds + distance model. These are also equivalent in terms of AUC to the g7,
g7 + hbonds, glide + distance, glide + hbonds + distance, emodel + distance and the
g7 + distance model. The top models will be further discussed in Sect. 6.1.1.

Fig. 10 Molecular structure of a false negative and b false positive
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The 6 most optimal SOM/KM models according to both the AUC and
(r + s) criteria, are: g7 + hbonds + distance, g7, g7 + hbonds, g7 + distance,
glide + distance, glide +hbonds + distance (Tables 4 and 5). These 6 models best
classify bindi strength of calpain, in that approximately 65 % of true “high binding
strength” ligand complexes are correctly classified as a “good-binder” [95 %
confidence interval (CI) (46–79 %)]; whilst 65 % of true “poor binder” ligand
complexes are correctly classified as “poor-binders” [95 % CI (45–76 %)]. When
using glide score alone, only a low 21 % of true “high binding strength” are
correctly classified as a “good-binder” [95 % CI (9 % –35 %)], in contrast to a high
83 % of true “poor binders” correctly classified as “poor-binders” [95 % CI (69–
92 %)]. The ROC curves in Fig. 11 allow us a visual comparison of the optimal
g7 + hbonds + distance model against the other eleven, g7 and g8 based, candidate
models (omitting the emodels). It is noteworthy that the g8 based models, con-
taining the additional g.einternal score, the internal energy of the ligand (not used in
the calculation of the glide score) are not in the top 6 models.

6.1.1 The Optimal g7 + distance + hbonds Model

This model contains the 7 partial energies from GLIDE, which include g.lipo,
ghbond, g.burp, g.evdw, g.ecoul, g.erotb, and g.esite (Table 1), along with the
number of hydrogen bonds of the molecule’s backbone and warhead distance. Its
corresponding SOM derived U-matrix in Fig. 12 contains all the components in this
model. It self-organised the input data based on the 9 predictor variables given in
the optimal g7 + hbonds + distance model. By observing the colours in the map, it
can be seen that the map can be roughly separated into two parts, with a red-area on
the bottom left corner and a blue-area in the rest of the map (Fig. 12). This means
that molecules with similar characteristics are grouped together. For instance,
molecules with ID, 7, 65, 67—in the top left corner of the map, are very different to
molecules 16, 19,124 which are in the bottom right corner.

From the separate components graphic in Fig. 13 it can be seen that molecules
with higher levels of g.lipo lie on the top of the map, while molecules with higher
levels of g.hbond lie on the top right corner, higher levels of g.eburp are associated
with a particular region of the U matrix, namely the top left corner. Higher levels of
g.evdw are located at the top right corner, and higher levels of g.ecoul with the right
side, higher levels of g.erotb with the top right corner (poor binders), higher levels
of g.esite with the top, higher number of hydrogen bonds of the molecule’s
backbone with the left side, and also lower levels of warhead distance positioned on
the left. Large warhead distance is associated with low numbers of hydrogen bonds
(bottom right hand corner, poor binders) and with low levels of g.eburp, g.esite, and
g.erotb.
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Fig. 11 ROC curves for the eleven g7, g8 and glide based models versus the optimal
g7 + hbonds + distance (g7.hb.dist) model. The vertical (y) axis is sensitivity and the horizontal
(x) axis is (1-specificity). ROC curves. The vertical (y) axis is sensitivity and the horizontal (x) axis
is (1-specificity)
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Fig. 11 (continued)
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Fig. 13 SOM separate components graph (k = 2) of the g7 + distance + hbonds model

Fig. 12 U-matrix (k = 2) of the g7 + distance + hbonds model (predictor set of 7 glide
subcomponents, number of hydrogen bonds and warhead distance), where k is the defined number
of clusters
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6.2 Summary of the 16 Candidate Models

To gain a more detailed view on the performance of the best model compared to the
remainingmodels, we perform the following suite of tests and descriptors. Themeans
of predictors by cluster membership are tabulated, the Cochran-Mantel-Haenszel
(CMH) test for the 16 models are performed to investigate whether binding status is
statistically significantly related to warhead class. A full list of false positives and
negatives for the best models are given and discussed in this section.

6.2.1 Typical Profile of Predicted Good and Poor Binders

Table 6 provides a comparison of the means of the individual predictors in the
model for cluster 1, which identifies molecules as “good binders” versus cluster 2,
which classifies molecules as “poor binders” for the best SOM/KM model,
g7 + distance +hbonds. Figure 14 is the corresponding barchart for the optimal
g7 + distance +hbonds model. It can be seen that molecules in cluster 1 (classified
as good binders) have lower mean values compared to cluster 2 on warhead dis-
tance, lower log IC50 and lower emodel score, also lower mean levels of g.lipo, g.
hbond, g.evdw, g.ecoul and g.erotb. Whilst cluster 1 molecules exhibit a higher

Table 6 Descriptor means of the SOM clusters for the g7 + distance + hbonds model (k = 2)

SOM predicted binding affinity
cluster/predictors

Cluster 1
(good)

Cluster 2
(poor)

P
value

Distance 5.35 6.12 <0.015

hbonds 2.48 1.60 <0.05

g.lipo −2.62 −2.42 <0.01

g.hbond −2.61 −2.32 <0.01

g.eburp 0.17 −0.62 <0.005

g.evdw −32.94 −30.16 <0.05

g.ecoul −10.75 −7.60 <0.01

g.erotb 0.60 0.80 <0.05

g.esite 0.18 0.15 NS

g.einternal 8.23 6.41 <0.01

Glide score −5.82 −6.23 <0.03

log IC50 −5.16 −4.19 <0.05

emodel score −57.23 −48.97 <0.005

# true positives 28 –

# false positives 28 –

# true negatives – 53

# false negatives – 15

Total no. molecules 56 68
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mean number of hydrogen bonds of the molecule’s backbone, and a higher mean
glide score (g.score), along with higher means of g.eburp, g. esite, and g.einternal
compared to cluster 2 (classified as poor binders).

6.2.2 False Positives and False Negatives of the SOM Models

The relationship between predicted binding affinity cluster and warhead class
(WH) (at 4 levels or 2 groupings) is investigated in this section for the k = 2 SOM
clusters. Predicted binding (good vs. poor) by WH class for the g7, g8 and glide
variant candidate models are shown in Table 7, where these 12 models are given in
decreasing order by (r + s). The percentage of predicted good binders for the 74
molecules with warhead classification 1 or 2 (aldehydes and ketones plus masked
aldehydes, ketones, Michael Acceptors, epoxides) are given in column 8, and the
percentage of predicted poor binders for the 50 molecules in warhead class 3 or 4
(mostly esters and amides plus alcohols and non-classical) are given in column 9 of
Table 7 for each model.

Predicted binding affinity cluster membership is statistically significantly related
to warhead class for all models, except 4 of the (predictor sets) models, according to
the likelihood ratio (LR) P-values < 0.05 in the last column of Table 7. The models
for which there is no statistically significant association between predicted binding
class and warhead classification are: the glide + hbonds and glide model, along with
the glide + hbonds + distance and the g7 model, where the latter 2 models, are
however significant at the 10 % level of significance. From Table 5 all the optimal
models with (r + s) > 1.0 and whose AUCs are equivalent to that of the best
g7 + hbonds + distance model, with AUC = 0.653 (95 %CI (0.564, 0.742)), exhibit
a statistically significant association between predicted binding status and warhead
class. Note that of the molecules in warhead class 1 or 2, the percentage of predicted
good binders is in the range 68–70 %; and in warhead class 3 or 4, the percentage of

Fig. 14 g7 + distance + hbonds model: Plot of the predictor means for the classified good and
poor binding clusters
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predicted poor binders is in the range 47–52 %. The less optimal models are those
for which there is a significant association between predicted binding status and
warhead class, but which have an (r +s) < 1.0 and whose AUC is not significantly
different to the AUC of the optimal g7 + hbonds + distance model (Table 5). For
these less optimal models we have a reduced rate of prediction, in that of the 74
molecules belonging to warhead class 1 or 2, the percentage of predicted good
binders is in the range 51–61 %, and for the 50 ligands in warhead class 3 or 4, the
percentage of predicted poor binders is lower, between 31 and 44 %. Note that even
for the 2 parameter glide + distance model, which is still considered a reliable
model, 70 % of the molecules in warhead class 1 or 2 are predicted as good binders
and the percentage of predicted poor binders from warhead class 3 or 4 is
acceptable at 52 %. In contrast for the non-optimal glide (only) model of the ligands

Table 7 Predicted binding class by warhead (WH) class for the g7, g8 and glide models (in
decreasing order of (r + s)

SOM/KM models Predicted
SOM
group
(k = 2)

Warhead (WH) class predicted
good in
WH (1,2)
(%)

predicted
poor in
WH (3,4)
(%)

P-value

1 2 3 4 Total

g7 + hbonds + distance Good 25 13 8 10 56 68 0.006

Poor 28 8 27 5 68 47

g7 Good 30 14 12 9 65 68 0.07
(10 %
sig)

Poor 23 7 23 6 59 49

g7 + hbonds Good 28 12 8 9 57 70 0.01

Poor 25 9 27 6 67 49

glide + distance Good 32 13 10 9 64 70 0.01

Poor 21 8 25 6 60 52

g8 + hbonds Good 27 12 10 11 60 65 0.02

Poor 26 9 25 4 64 45

g8 + distance good 24 11 10 12 57 61 0.007

Poor 29 10 25 3 67 42

glide + hbonds Good 25 11 15 10 61 59 0.46

Poor 28 10 20 5 63 40

g8 Good 28 14 13 12 67 63 0.02

Poor 25 7 22 3 57 44

glide Good 12
↓

5↓ 4 2 23 83 0.47

Poor 41 15 31 13 101 44

g8 + hbonds + distance Good 27 8 23 4 62 52 0.04

Poor 26 13 12↓ 11↓ 62 37

glide + hbonds + distance Good 27 10 27 8 72 51 0.051
(10 %
sig)

Poor 26 11 8↓ 7↓ 52 29

g7 + distance Good 29 7 27 6 69 52 0.005

Poor 24 14 8↓ 9↓ 55 31

Total 53 21 35 15 124 74 50
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in warhead class 1 or 2, a very high 83 % are predicted to be good binders and for
the molecules in warhead class 3 or 4, the percentage of predicted poor binders is as
expected a rather low, 44 %.

Table 8 displays a three-way cross tabulation of the SOM (k = 2) predicted
cluster (good vs. poor binder) by true binding strength (BS) by warhead class (1, 2)
versus (3, 4) for the best g7 + distance + hbonds model. There is a clear difference
in the relationship between predicted class and true binding affinity across warhead
class (1, 2) versus (3, 4). From Table 8 we note that for molecules in warhead class
1 or 2 (aldehydes and ketones plus masked aldehydes, ketones, Michael Acceptors,
epoxides);

• of the 38 predicted good binders, 74 % are true good binders, with 26 % being
true poor binders

• of the 36 predicted poor binders, 39 % are true good binders, with greater than
1.5 times more, 61 %, being true poor binders

• of the 42 true good binders, 67 % are classified as good binders, with 33 %
classified as poor binders

• of the 32 true poor binders, 31 % are classified as good binders, with more than
twice, 69 % classified as poor binders.

For molecules in warhead class 3 or 4 (mostly esters and amides plus alcohols
and non-classical);

• of the 18 predicted good binders, 0 % are true good binders, with all 100 %
being true poor binders

• of the 32 predicted poor binders, 3 % are true good binders, with 97 % true poor
binders

• the 1 true good binder is classified as a poor binder

Table 8 Cross tabulation of the SOM (k = 2) predicted clusters by true binding strength (BS) and
by warhead classes for the g7 + distance + hbonds model

Warhead class 1 or
2

True binding
strength

% per class of
true good (of
true poor, in
brackets)

% predicted classes
for true good and
for true poor (in
brackets)

SOM (k = 2) Cluster Good Poor

g7 + hb + distance
model

Good 28 10 74 % (26 %) 67 % (33 %)

Poor 14 22 39 % (61 %) 31 % (69 %)

Total 42 32

Warhead class 3 or
4

True Binding
Strength

% per class of
true good (of
true poor, in
brackets)

% predicted
classes for true good
and for true poor (in
brackets)

SOM (k = 2) Cluster Good Poor

g7 + hb + distance
model

Good 0 18 0 % (100 %) 0 % (100 %)

Poor 1 31 3 % (97 %) 37 % (63 %)

Total 1 49
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• of the 49 true poor binders ligand, 37 % are classified as good binders, with 1.7
times more, 63 %, being classified as poor binders.

For each model Table 9 gives the Cochran-Mantel-Haenszel (CMH) test statistics
[101, 102] with corresponding P-values and the odds ratio (OR) of a molecule being a
“good binder” for warhead classification 1 or 2, with corresponding 95 % confidence
intervals. The odds ratios for warhead classes 3 and 4 cannot be obtained since there
are no molecules with true good binding strength predicted as a good binder, thus the
OR is mathematically undefined for in this case. For the top g7 + hbonds + distance
model the odds ratio of “good binders” between each warhead class 1 and 2 is not
homogeneous (CMH= 6.96, P = 0.008). Note that the OR estimate for “good binders”
in warhead class 1 is 4.48 and the corresponding OR is 9.92 for molecules in warhead
class 2 (for the top g7 + hbonds + distance model). This indicates that there is a higher
likelihood, a doubling of odds, of being classified a “good binder” for molecules in
warhead class 2 compared to warhead class 1 (Table 9), but still a significantly high
odds > 1.0 for warhead class 1. Note that most true good binders (95 %) belonging to
warhead class 1 and 2, whereas of the true poor binders 61 % belong to warhead
classes 3 and 4 (Table 8). This agrees with the earlier observation that true binding
strength is significantly associated with warhead classification (χ2 = 42.20, LR
statistic = 53.78, P < 0.0001) (see Table 3).

The results can be further verified using Table 10 which displays the list of each
molecules’ catalogue ID for both the false positive and false negative ligands for the
g7 + hbonds + distance model. The FPs and FNs are also listed for three less
optimal (predictor sets) models involving g8 or glide as descriptors, but without

Table 9 Summary Table of the CMH and Odds Ratio (OR) for all 16 candidate models

Model CMH
Statistic

Common
Odds

95 % CI for
common odds

P-value Odds
ratio
(WH 1)

Odds
ratio
(WH 2)

g7 + hbonds + distance 6.9641 3.524 (1.388, 8.951) 0.008 4.476 9.918

g7 3.9087 2.745 (1.089, 6.922) 0.048 2.935 2.394

g7 + hbonds 2.3371 2.180 (0.906, 5.245) 0.126 2.270 4.521

Glide + distance 1.2702 1.874 (0.762, 4.608) 0.260 1.973 1.405

g8 + hbonds 1.6866 1.975 (0.804, 4.851) 0.194 2.008 1.934

g8 + distance 0.8967 1.673 (0.683, 4.102) 0.344 1.948 1.237

Glide + hbonds 1.3774 1.827 (0.749, 4.455) 0.241 1.580 2.661

g8 0.3544 1.410 (0.575, 3.458) 0.552 1.643 1.000

Glide 0.0185 0.972 (0.348, 2.716) 0.892 1.274 0.266

emodel + hbonds 1.9763 0.487 (0.199, 1.194) 0.160 0.664 0.109

emodel + hbonds + distance 2.3031 0.469 (0.189, 1.162) 0.129 0.459 0.184

Glide + hbonds + distance 0.0036 0.837 (0.353, 1.987) 0.952 1.061 0.376

g8 + hbonds + distance 1.9477 0.489 (0.198, 1.210) 0.163 0.404 0.712

emodel + distance 0.9189 0.593 (0.243, 1.447) 0.338 0.703 0.419

g7 + distance 5.3585 0.294 (0.112, 0.771) 0.021 0.364 0.138

emodel 0.8933 1.792 (0.686, 4.683) 0.345 1.722 3.502
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Table 10 Listing of FP and FN molecules: Catalogue ID with their corresponding warhead
classification (given in brackets) for a selection of 4 models

g7 + hb + dist g8 + dist g8 + dist + hb Glide + hb

FP
(WH)

FN
(WH)

FP
(WH)

FN
(WH)

FP
(WH)

FN
(WH)

FP
(WH)

FN
(WH)

Unique catalogue
ID

7 (1) 3 (1) 7 (1) 2 (1) 10 (1) 1 (1) 7 (1) 6 (1)

9 (1) 6 (1) 8 (1) 3 (1) 11 (1) 2 (1) 8 (1) 60 (1)

14 (1) 60 (1) 14 (1) 6 (1) 13 (1) 4 (1) 9 (1) 61 (2)

27 (3) 68 (1) 27 (3) 60 (1) 15 (3) 5 (1) 11 (1) 63 (2)

31 (3) 71 (1) 29 (3) 61 (2) 16 (3) 59 (1) 13 (1) 66 (1)

38 (3) 78 (1) 32 (4) 62 (2) 17 (2) 62 (2) 18 (2) 67 (1)

47 (3) 83 (1) 34 (3) 68 (1) 18 (2) 63 (2) 23 (3) 68 (1)

57 (2) 89 (1) 42 (3) 71 (1) 19 (3) 66 (1) 24 (3) 71 (1)

65 (2) 90 (1) 43 (3) 78 (1) 21 (3) 67 (1) 27 (3) 78 (1)

70 (2) 91 (1) 44 (3) 83 (1) 22 (3) 72 (1) 28 (1) 83 (1)

75 (4) 94 (4) 47 (3) 89 (1) 23 (3) 84 (1) 29 (3) 84 (1)

76 (4) 223 (1) 57 (2) 90 (1) 24 (3) 85 (1) 30 (3) 91 (1)

77 (4) 321 (2) 58 (2) 91 (1) 25 (3) 87 (1) 31 (3) 103 (1)

80 (3) 344 (1) 65 (2) 223 (1) 26 (3) 88 (1) 38 (3) 223 (1)

81 (1) 809 (1) 69 (2) 317 (2) 28 (1) 94 (4) 39 (3) 321 (2)

95 (3) 70 (2) 321 (2) 30 (3) 100 (1) 41 (3) 322 (1)

98 (3) 75 (4) 335 (1) 31 (3) 103 (1) 42 (3) 342 (1)

99 (4) 76 (4) 337 (1) 32 (4) 308 (2) 43 (3) 344 (1)

101 (4) 77 (4) 344 (1) 34 (3) 316 (2) 44 (3) 809 (1)

102 (4) 79 (4) 809 (1) 35 (3) 322 (1) 45 (3)

104 (4) 80 (3) 37 (3) 335 (1) 53 (1)

105 (3) 81 (1) 38 (3) 336 (1) 57 (2)

205 (4) 95 (3) 39 (3) 342 (1) 58 (2)

238 (2) 97 (1) 41 (3) 343 (1) 65 (2)

244 (2) 98 (3) 45 (3) 370 (2) 70 (2)

338 (1) 99 (4) 46 (3) 372 (2) 75 (4)

805 (4) 101 (4) 48 (3) 77 (4)

808 (4) 104 (4) 49 (3) 79 (4)

205 (4) 50 (3) 80 (3)

238 (2) 51 (2) 95 (3)

338 (1) 52 (1) 97 (1)

341 (1) 53 (1) 99 (4)

805 (4) 54 (1) 101 (4)

806 (4) 55 (1) 102 (4)

56 (1) 104 (4)

69 (2) 205 (4)

74 (2) 805 (4)

82 (1)

92 (4)

93 (1)

96 (3)

340 (1)

341 (1)

806 (4)

808 (4)

N 28 15 34 20 45 26 37 19
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warhead distance included in the predictor set. It can be seen that for the top model
g7 + hbonds + distance (with 15/43 = 35 % false negatives (FNs) and 28/81 = 35 %
false positives (FPs)) of the 15 FNs, 13 (87 %) are in warhead class 1 and 2
(aldehydes and ketones etc.) i.e. the chemical group that is suitable for covalent
attachment. By contrast of the 28 FPs, 18 (64 %) are in warhead class 3 and 4
(esters and amides plus alcohols) i.e. the chemical groups that are not capable of
covalently interacting with the calpain). This generalisation makes good chemical
sense, with all active compounds requiring a suitable warhead to covalently react
with the calpain and hence block its activity.

7 The Structure of the False Negatives and False Positives

Examination of the molecular structures showed that almost all the false positives,
compounds which have a high IC50 but are classified as good inhibitors have a
warhead distance < 10 angstroms, i.e. they are predicted to interact strongly with
the calpain active site. This begs the question as to why are these compounds
actually true poor binders as defined by a high IC50 value? An investigation of their
structures confirms that such false positives lack a suitable warhead chemical group
and/or a suitable backbone composition for binding (see Fig. 15), and as such these

Fig. 15 Structural features of 2 false positive ligands (1st and 2nd structures) and one true
negative calpain ligand (third chemical structure at the bottom of the figure)
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ligands are unable to bind to calpain and thus show low activity. On the other hand,
the false negatives (experimentally determined good binders as defined by low
IC50) either have the reactive warhead ‘masked’ or they contain suitable func-
tionality in their backbone that is able to extend into additional P’ binding sites of
calpain (see Fig. 16). This second case allows tight binding of a nature not possible
for other derivatives in the data set, i.e. these ligands are chemically unique.

Re-evaluation is advised for compounds which have shown higher activities in
the literature or in the cases where a higher activity was expected after comparison
with closely related compounds. Examples in this study are the biphenlyic com-
pound, which show a higher activity in the original literature, and the Michael type
acceptors which might need different assay conditions to be implemented due to
their slow binding kinetics (Figs. 17, 18, 19 and 20).

As stated above most of the false negatives have a masked aldehyde warhead. It
is likely that under physiological conditions, the aldehyde warhead is generated and
therefore the docked species differs from the tested species (Fig. 20). Differences in
the activities to the unmasked compounds generated in situ can thus be explained
by the lower active concentration of inhibitor. The second group of false negatives
have large substituents e.g. in the P3 position (or P prime position, see schema of
the mechanism of binding, Fig. 9). Here, an induced fit mechanism is likely for the
assay, however this has not been evaluated in the docking experiments.

Fig. 16 Structural features of false negative and true positive calpain ligands
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8 SOM and HUM Analysis of 3 Levels of Binding Affinity

In this section we briefly explore the applicability of extending our best SOM
g7 + distance + hbonds (k = 2) model to 3 dimensions (k = 3). To this end we
utilised HUM (Hypervolume Under the Manifold) [109] in the R statistical platform
(http://www.R-project.org/) to perform a multi-category receiver operating char-
acteristic (ROC) analysis. The aim of this section is to test the SOM classification of
molecular binding strength at 3 levels. The 3 levels of true binding affinity are set
at: best (true binding strength (BS) at levels 0 (IC50 < 500 nM) or BS at level 1
(500 nM < IC50 < 5 μM)); moderate (true BS at level 2 (5 μM < IC50 < 100 μM))
and worst binding affinity (true BS at level 3, i.e. IC50 > 100 μM)). HUM [109–111]
is a recent tool for ROC curve analysis in 2D- and 3D-space, which allows for
visualisation of the ROC curve for two or three class labels. HUM thus extends
traditional ROC analyses of FPs and FNs to 3 dimensions (see Obuchowski et al.
[104] who discuss conventional ROC Curves in Clinical Chemistry in terms of uses

Fig. 17 False Negatives: biphenyls, Michael acceptor; ‘short’, interesting new compound
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and misuse). HUM’s main quantitative job is to compute the maximal HUM value
between all possible permutations of class labels for all the individual features,
selected for analysis (for the 3D problem).

Fig. 18 Hydrolysis of hydrazones and semicarbazones to the corresponding aldehyde

Fig. 19 Equilibrium between cyclic hemiacetal and l3-hydroxy aldehyde

Fig. 20 The only ‘real’ false negative: compound shows high activity, and is promising to the
‘chemical eye’ but is classified as a poor binder
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8.1 SOM (K = 3)

The SOM (k = 3) U matrix and separate components SOM graph for the (k = 3)
g7 + distance + hbonds model are given in Figs. 21 and 22, respectively. The
resultant 3 SOM classes and their predictor means are given in Table 11, with
corresponding barchart also presented (Fig. 23). These show good visual and
quantitative separation between the predicted moderate, worst and best binding
strength classes of molecules (P < 0.003). Table 12 gives a breakdown of the 3
predicted SOM classes (moderate, worst and best binding affinity classes) each with
41, 34 and 49 molecules, in that order of predicted binding strength (BS). SOM
class membership is significantly associated with true BS (LR statistic = 14.1,
P < 0.025) (Table 12). Of the 81 true poor binders, 57 (70 %) are in SOM’s
moderate and worst classes, with only 24 (30 %), in the best binders class. Of the 43
true good binders, 25 (58 %) are grouped in the best class, with only 8 (19 %)
molecules classified in the worst predictor class.

The relationship between predicted binding class (moderate, worst, best) by true
binding affinity (at 2 levels, good vs. poor) for the g7 + hbonds + distance model for
each of the 2 warhead class groupings (1, 2) versus (3, 4) is shown in Table 13.
There is a statistically significant difference in the association between predicted
binding class membership and true binding affinity across warhead class (1 or 2)
and warhead grouping (3 or 4) (LR statistic = 14.1, P < 0.025).

From Table 13 we have that of the 74 ligands in warhead class 1 or 2 (aldehydes
and ketones plus masked aldehydes, ketones, Michael Acceptors, epoxides);

• of the 34 predicted best binders, 59 % are true good binders, 28 % are true poor
binders

Fig. 21 U-matrix (k = 3) for
the g7 + distance + hbonds
model
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Fig. 22 SOM (k = 3) separate components graph for the g7 + distance + hbonds model

Table 11 Means of the
molecular descriptors and
glide subcomponents of the 3
SOM clusters:
g7 + distance + hbonds model
(k = 3)

Predicted BS (cluster)

Descriptor best moderate worst

distance 5.29 5.15 7.2

hbonds 2.49 2.29 0.94

g.emodel −57.55 −51.25 −47.45

g.lipo −2.63 −2.49 −2.37

ghbond −2.72 −2.12 −2.46

g.eburp 0.21 −0.51 −0.64

g.evdw −32.74 −31.74 −29.13

g.ecoul −11.11 −7.64 −7.68

g.erotb 0.6 0.75 0.82

g.esite 0.18 0.14 0.17

g.einternal 8.44 6.58 6.29

Glide Score −5.91 −6.02 −6.26

log IC50 −5.14 −4.45 −4.09

N 49 41 34
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• of the 22 predicted moderate binders, 22 % are true good binders, 41 % are true
poor binders

• of the 18 predicted worst binders, 19 % are true good binders, 31 %, are true
poor binders

• of the 42 true good binders, 60 % are classified as best, 19 % as worst and 21 %
as best binders

• of the 32 true poor binders, 28 % are classified as best, 31 % as worst and 41 %
as moderate binders.

From Table 13 we have that molecules in warhead class 3 or 4 (mostly esters and
amides plus alcohols and non-classical);

• of the 15 predicted best binders, 0 % are true good binders, 100 % true poor
binders

Table 12 Cross tabulation of the 3 SOM predicted clusters/classes (moderate, worst, best binders)
by true binding strength (BS) for the g7 + distance + hbonds model

SOM (k = 3) model Class categories True binding strength

0 1 2 3 Total

g7 + hb + distance Moderate 3 7 23 8 41

Worst 6 2 20 6 34

Best 14 11 16 8 49

Total 23 20 59 22 124

0 or 1 2 or 3

g7 + hb + distance Moderate 10 31 41

Worst 8 26 34

Best 25 24 49

Total 43 81 124

Fig. 23 Barchart of the means of the molecular descriptors and glide components for the 3 SOM
classes: g7 + distance + hbonds model
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• of the 18 predicted moderate binders, 6 % are true good binders, 94 % true poor
binders

• of the 16 predicted worst binders, 0 % are true good binders, with 100 % being
true poor binders.

HUM allows visualisation of a 3D ROC curve for the three class label problem
(moderate, worst, best predicted binding classes). HUM computes point coordinates
for obtaining and plotting 3D-points for a 3D-ROC curve, shown in Fig. 24 for the
g7 + distance + hbonds (k = 3) model; and in Fig. 25 for the simple parameter
predictor set, i.e. the glide +distance (k = 3) model. The optimal threshold values

Table 13 Cross tabulation of 3 SOM predicted cluster/class (worst, moderate, best) by true
binding strength (BS) for warhead class (1, 2) and (3, 4) for the g7 + distance + hbonds model

Warhead class 1 or
2

True binding
strength

% per class of
true good (of
true poor, in
brackets)

% predicted
classes for true
good and for true
poor (in brackets)

SOM (k = 3) Cluster Good Poor

g7 + hb + distance
model

Moderate 9 13 21 % (41 %) 22 % (41 %)

Worst 8 10 19 % (31 %) 19 % (31 %)

Best 25 9 60 % (28 %) 59 % (28 %)

Total 42 32

Warhead class 3 or
4

True binding
strength

% per class of
true good (of
true poor, in
brackets)

% predicted
classes for true
good
and for true poor
(in brackets)

g7 + hb + distance
model

Moderate 1 18 37 % (100 %) 6 % (94 %)

Worst 0 16 32 % (0 %) 0 % (100 %)

Best 0 15 31 % (0 %) 0 % (100 %)

Total 1 49

Fig. 24 3D HUM ROC
graph for the
g7 + distance + hbonds SOM
model (k = 3)
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and the accuracy of the classifier are given in Table 14 for the 16 candidate models.
Whereas the optimal threshold for the traditional two-class problem is the pair of
sensitivity and specificity values for the selected feature classifier (e.g. class), the
optimal threshold for our three-class problem is the 3D-point with the coordinates
presenting the fraction of the correctly classified data objects for each class. These
are the r (optimal), s (optimal) and threshold (optimal values) in Table 14. These are

Fig. 25 3D HUM ROC
graph for the glide +distance
SOM model (k = 3)

Table 14 HUM analysis of the 16 SOM (k = 3) models

SOM Models (k = 3) r (optimal) s (optimal) Threshold (optimal) P value
Predicted class
by warhead

g7 0.455 0.000 0.837 0.11

g7.distance 0.500 0.407 0.465 0.12

g7.hbonds 0.458 0.000 0.860 0.07

g7.hbonds.distance 0.729 0.000 0.581 NSa

g8 0.424 0.791 0.000 0.015

g8.distance 0.000 0.000 1.000 0.017

g8.hbonds 0.458 0.860 0.000 0.045

g8.hbonds.distance 0.458 0.884 0.000 0.01

glide 0.488 0.424 0.364 NS

glide.distance 0.559 0.419 0.455 0.007

glide.hbonds 0.000 0.000 1.000 NS

glide.hbonds.
distance

0.465 0.458 0.318 NS

emodel 0.682 0.000 0.581 NS

emodel.distance 0.000 0.814 0.409 NS

emodel.hbonds 0.407 0.364 0.349 NS

emodel.hbonds.
distance

0.455 0.419 0.373 NS

aNS denotes not significant at the 5 % level of significance
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(0.73, 0.00, 0.58) and (0.56, 0.42, 0.46) for the g7 + distance + hbonds (k = 3)
model and for the glide + distance (k = 3) model, respectively. The r (optimal),
s (optimal) and threshold (optimal) values for the g7 + distance (k = 3) model is
(0.50, 0.417, 0.47), which is similar to the glide + distance model. Note that for the
glide + distance model the 3 class prediction is significantly different across the
warhead classes (P = 0.007 for the 3 level predicted classes by warhead interaction)
(last column of Table 14).

8.2 Logistic and Multinomial Models for True Binding
Affinity BS

In this section we test whether the following predictors, the molecule’s predicted
SOM cluster membership obtained from the optimal g7 + distance + hbonds model,
(poor vs. good binder), along with the molecule’s warhead class and their inter-
action (cluster by warhead class) are significant predictors of the ligand’s true
binding strength, BS. Likewise we test prediction models for true BS using the
ligand’s glide score, number of hydrogen bonds, warhead distance and its warhead
class as possible predictors, along with interactive effects of glide score and these
structural parameters by warhead class (SOM cluster is not included in this
prediction).

Such modelling of true binding strength (BS) at either 2 or 3 levels is performed
using logistic and multinomial models, respectively, as given in the R statistical
platform [112–114]. The aims of these analyses are to establish:

• whether structural parameters such as warhead distance, the number of hydrogen
bonds (hbonds) plus predicted SOM cluster (poor vs. good binder), along with
the molecule’s warhead class are significant predictors of true binding strength
(BS), and whether warhead class interacts with SOM cluster in this prediction
(warhead class is considered at k = 2 or 4 levels)

• whether the glide score alone, along with both or either warhead distance and
hbonds, plus warhead class are significant predictors of true BS. Cluster is not a
predictor in these models. Again we also test whether warhead class interacts
with any of the glide, distance or hbonds parameters in this prediction, with
warhead class at k = 2 or 4 levels.

8.2.1 Logit and Multinomial Models of True Binding Affinity

The results of the logistic (logit) and multinomial models are reported in brief in this
sub-section.

SOM predicted cluster status (poor vs. good binder) is a highly significant
predictor (P < 0.005) of true BS, as is the molecule’s warhead class, whether at 2
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levels WH (1, 2) versus WH (3, 4) (P < 0.00007) or at 4 levels (P < 0.002).
When SOM predicted cluster is in the model along with warhead class, then
warhead distance and the number of hydrogen bonds (hbonds) are no longer sig-
nificant predictors of true BS.

From the logistic regression the predicted probability of a ligand from the good
SOM cluster, being a true poor binder (BS = 2, 3) is 0.28 and 0.96 for WH class (1,
2) and WH class (3, 4), respectively. Whereas the predicted probability of a ligand
from the poor binder SOM cluster, being a true poor binder is higher at 0.59 and
0.99 for WH class (1, 2) and WH class (3, 4), respectively. The impact of warhead
classification is similar across the SOM predicted binding statuses.

By contrast when using warhead at 4 levels in the logistic regression model, the
predicted probability of a ligand classified as a good binder via SOM clustering,
being a true poor binder is 0.20, 0.44, 1.0 and 0.91 for ligands in WH classes 1 to 4,
in that order. The corresponding predicted probabilities of true good binding for this
stratum of molecules is (0.80, 0.56, 0.00 and 0.09). Whereas the predicted proba-
bility of a ligand classified as a poor binder via SOM clusters, being a true poor
binder is 0.53, 0.78, 1.0 and 0.99 for ligands in WH classes 1 to 4, in that order. The
corresponding predicted probabilities of true good binding is (0.47, 0.22, 0.0 and
0.01).

For the logistic models using glide, distance, hbonds and warhead class as
predictors of true BS (but not including SOMs cluster), the probability of a ligand
being a poor binder is significantly impacted by the number of hbonds (P < 0.03),
with less hbonds related to poorer BS. After adjusting for the ligand’s number of
hbonds, then poor binding is also significantly related to WH class at 2 levels
(P < 0.0006) and at 4 levels WH (P < 0.005), with ligands in warhead class 4 having
a significantly increased likelihood of poor binding compared to warhead class 1.
The impact of the effect of increasing number of hbonds is similar across the
warhead classes.

Multinomial models, with BS at 3 levels as the response variable, show similar
trends to the logit models, with SOM predicted class (good vs. poor) impacting
significantly on the likelihood of worst binding status versus the true moderate and
the best binders (P < 0.03). True BS at 3 levels is also significantly impacted by
warhead class (P < 0.00005). There is no interaction between SOM cluster status
and warhead class. Multinomial models which include glide score, distance, hbonds
and warhead class as predictors of BS (SOM cluster is not in the model) show that
warhead classification alone is a significant predictor of true BS at 3 levels.

9 Conclusion

In the course of developing calpain inhibitors new tools for the evaluation of
docking experiments were required and developed by Abell and his colleagues [11–
20]. A combination of docking experiments, of analysis of the docked
protein-ligand-complexes, and assay results to obtain IC50 has been applied to
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predict the binding mode of a data set of calpain ligands by our ANN methods.
SOM/KM is shown to be valid for classification in our molecular docking exper-
iments. Moreover, the SOM/KM prediction of binding affinity with glide score (or
its subcomponents) along with distance and/or the number of hydrogen bonds
(hbonds) enables reliable classification of compounds as (good) binders and (poor)
non-binders of calpain—leading to a significantly lower number of false positives
and also of false negatives than using the glide score alone.

Furthermore, the SOM analysis provides optimal sets of parameters for pre-
dicting true binding strength of calpain inhibitors with good specificity, sensitivity
and AUC accuracy. We have established that the following models are optimal
according to both the AUC and (r + s) criteria (given our SOM method). These 6
models delineate specific subsets of predictors that best identify true binding
affinity. The models are: g7 + distance + hbonds, g7, g7 + hbonds, g7 + distance
and the glide + distance and the glide + hbonds + distance model. The afore-
mentioned four g7 based models are shown to correctly identify 6-7 out of 10 true
good binders and 6 out of 10 true poor binders. The two parameter glide score with
distance model, also does well, correctly classifying 7 out of 10 true good binders
and 6 out of 10 true poor binders. These rates are significantly superior to the glide
score only model, which correctly identifies merely 2 out of 10 true good binders, in
contrast to a high rate of correct classification for the true poor binders (8 out of 10).
All 6 candidate models are equivalent in terms of prediction accuracy to the best
g7 + distance + hbonds model.

We have demonstrated that the predictor sets containing; (i) warhead distance,
and the number of hydrogen bonds, added to the seven partial energies of glide, or
(ii) the simpler 3 parameter predictor set (model) containing warhead distance and
hbonds added to just the glide score—give optimal classification of molecular
binding affinity. These results verify that structure adds information to the exercise
of virtual screening [115, 116]. All our models perform better than classification
based on glide score only. Moreover as binding affinity in this data set is optimally
described by just adding warhead distance to glide score alone (with or without
adding the number of hydrogen bonds), we have a simple model by which to
classify molecules, with no need to extract the 7 subcomponents (g7) of the glide
score.

Molecules that are false positives are shown to be mostly esters and amides plus
alcohols and non-classical, while the majority of false negatives are aldehydes and
ketones, masked aldehydes and ketones and Michael acceptors and epoxides. There
is a clear difference in the relationship between predicted class (good vs. poor) and
true binding affinity across warhead class (1, 2) and warhead class (3, 4) for our best
g7 + distance + hbonds model. This is also true for another 11 SOM/KM models.
Specifically for our best g7 + distance + hbonds model an examination of the
molecules in warhead class 1 or 2 shows that of the predicted good binders, 74 %
are true good binders, with 26 % true poor binders; correspondingly of the predicted
poor binders 39 % are true good binders with more than 1.5 times more, 61 %,
being true poor binders. Likewise of the true good binders in warhead class (1, 2),
67 % are classified as good binders, with 33 % predicted as poor binders. Of the
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true poor binders 31 % are classified as good binders, with more than twice, 69 %,
predicted as poor binders. By contrast for the ligands in warhead class 3 or 4 (esters
and amides plus alcohols and non-classical), of the predicted good binders, 0 % are
true good binders, 100 % being true poor binders, and of the predicted poor binders
3 % are true good binders, with 97 % being true poor binders. The one true good
binder in warhead class 3 or 4, is classified as a poor binder, and of the true poor
binders, 37 % are classified as good binders, with 1.7 times more, 63 %, classified
as poor binders.

There is a clear statistically significant relationship between the 3 predicted
classes (moderate, worst, best) and true binding affinity across warhead class (1, 2)
and warhead grouping (3, 4) (for the optimal g7 + hbonds + distance model). An
examination of the ligands in warhead class 1 or 2 shows that of the predicted
moderate binders 21 % are true good binders, with 41 % true poor binders; of the
predicted worst binders, 19 % are true good binders and 31 % are true poor binders,
and of the predicted best binders 60 % are true good binders and 28 % are true poor
binders,. Notably for the true good binders, 59 % are classified as the best binders,
22 % as moderate and 19 % predicted as worst binders. In contrast of the true poor
binders, 28 % are classified as best, 41 % as moderate and 31 % as the worst
binders. By contrast in warhead class 3 or 4 (esters and amides plus alcohols and
non-classical) 100 % of the predicted worst and best binders are true poor binders.

There are still a number of false positives that our SOM/KM methods obtain.
Re-evaluation is advised for such compounds which have shown higher activities in
the literature or in the cases where a higher activity was expected after comparison
with closely related compounds. Examples in this study are the biphenlyic com-
pound, which showed a higher activity in the original literature, and the Michael
type acceptors which might need different assay conditions to be implemented due
to their slow binding kinetics. An investigation of the structures of all the false
positives showed the majority of them to have a warhead distance <10 angstroms
i.e. they are predicted to interact strongly with the calpain active site. An investi-
gation of the structures confirms that, however, they lack a suitable warhead
chemical group and/or a suitable backbone composition for binding—so confirming
that these ligands are unable to bind to calpain and consequently demonstrate low
activity. If several closely related compounds show the same classification and
comparable activities re-modelling may also be necessary. Compared with other
compounds, these inhibitors are much smaller. Therefore, the molecular weight
and/or the length of the inhibitors might be an additional parameter to be evaluated.
Some ‘false positives’ are actually much more active than was to be expected from
their structure and have an IC50 just below the set threshold. Therefore, their
clustering as a good binder may help reveal interesting new structures for further
development.

On the other hand, compounds with a high assay activity but which are classified
as poor binders (‘false negatives’) are rarer than false positives, generally half as
many FNs to FPs. The false negatives (experimentally determined good binders as
defined by low IC50) either have the reactive warhead ‘masked’ or they contain
suitable functionality in their backbone that is able to extend into additional P’
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binding sites of calpain. The second scenario allows tight binding of a nature not
possible for other derivatives in the data set, i.e. these ligands are chemically unique
and have large substituents e.g. in the P3 position (or P prime position). Here, an
induced fit mechanism is likely for the assay, however this has not been evaluated
in the docking experiments.

The false positives and false negatives give important feedback to docking
experimentalists, as to where to change docking procedures where graphical
location by visualisation is required to decide optimal molecular docking positions
of the ligand to the protein molecule. Some such misclassified molecules need
re-testing/re-modelling to assess their true binding affinity (IC50), and importantly
some false positive molecules have as shown, a N-Methyl group that decreases
binding in assays. The methods described in this chapter should find broader
application in docking experiments aimed at verifying the binding mode of a whole
class of compounds in complex cases where no crystal structure nor NMR structure
is available. Thereby, we should be able to discriminate between binders and
non-binders in those very scenarios where traditionally used scoring functions may
fail to give accurate results. Our new indicator model(s) (predictor sets) for binding
affinity may assist the identification of poor binders that should be excluded from
further FDA drug development—thus enabling developers of scoring functions to
improve on parameterisation of scoring functions, by concentrating their efforts and
focus on the likely binders, eliminating ahead of time the likely non binders.

Future research will entail performing hybrid SOM approaches with popular
mixture type cluster methods (according to Mengersen et al. [117]) to investigate
whether these models perform better than the SOM/KM methods [118]. Such
approaches were recently applied in a research study of sleep, wake and duty
profiles of Australian railway drivers [56], to research of personality indicators of
depression and psychological distress [119] and the study of drug data bases [120,
129]. Specifically recent EMMIX skew type models developed by Lee and
McLachlan [121–124] will be tested on this data set of 124 ligands. These models
will be compared to Bayesian mixture approaches developed by Kim [128].

Additionally we will explore the full set of 16 candidate SOM models via the use
of HUM in the R statistical platform (http://www.R-project.org/) for multi-category
receiver operating characteristic (ROC) analysis to test ANN-SOM classification of
molecular binding strength at 3 levels [109–111]. Various 3 levels of binding
affinity that will be tested and compared to our current 3 categories of true binding
affinity, namely, best (true binding strength (BS) at level 0 (IC50 < 500 nM) and BS
at level 1 (500 nM < IC50 < 5 μM)), moderate (true BS at level 2
(5 μM < IC50 < 100 μM)) and worst binding affinity (true BS at level 3, i.e.
IC50 > 100 μM). HUM will extend the traditional ROC analyses of false positives
and false negatives to 3 dimensions [104].

Another important future direction is to re-analyse the study data set of calpains
using recently developed software programs for covalent inhibitors (consider the
work of London et al. [125]) and by using autodock (http://autodock.scripps.edu).
Their implementation is described recently by Bianco et al. [90]. Of late, the merits
and pitfalls of the theory and applications used in the development of covalent
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inhibitors and covalent docking in drug discovery was further discussed by Kumalo
et al. [91] and by Mah et al. [38]. These covalent docking platforms and approaches
were not available at the time our SOM/KM and glide analyses were performed.
Use of CovalentDock is another candidate program recently developed for covalent
docking, as described by Ouyang et al. [126]. These authors investigated automated
covalent docking via parameterised covalent linkage energy estimation and specific
molecular geometry constraints. These studies and that of Zhu et al. [28], on a
parameter free approach to pose prediction and scoring in the docking of covalent
inhibitors, underscores the recent momentum for covalent inhibitor research via
docking.

References

1. V.G. Maltarollo, et al., Applications of Artificial Neural Networks in Chemical Problems,
Artificial Neural Networks—Architectures and Applications (InTech, 2013)

2. V.G. Maltarollo et al., Applying machine learning techniques for ADME-Tox prediction: a
review. Exp. Opin. Drug Metab. Toxicol. 11, 259–271 (2015)

3. F. Marini et al., Artificial neural networks in chemometrics: History, examples and
perspectives. Microchem. J. 88, 178–185 (2008)

4. L. Wang, et al., Self-organizing map clustering analysis for molecular data, ed. by J. Wang,
et al., in Advances in Neural Networks, ISNN 2006, vol. 3971 (Springer, Berlin, 2006),
pp. 1250–1255

5. J.C. Gertrudes et al., Machine learning techniques and drug design. Curr. Med. Chem. 19,
4289–4297 (2012)

6. R.G. Brereton, Self organising maps for visualising and modelling. Chem. Cent. J. 6(Suppl
2), S1 (2012)

7. Y.D. Xiao, et al., Supervised self-organizing maps in drug discovery. 1. Robust behavior
with overdetermined data sets. J. Chem. Inf. Model 45, 1749–1758 (2005)

8. Y.D. Xiao, et al., Supervised self-organizing maps in drug discovery. 2. Improvements in
descriptor selection and model validation. J. Chem. Inf. Model 46, 137–144 (2006)

9. F. Marini et al., Class-modeling using Kohonen artificial neural networks. Anal. Chim. Acta
544, 306–314 (2005)

10. M. Stahl et al., Mapping of protein surface cavities and prediction of enzyme class by a
self-organizing neural network. Protein Eng. 13, 83–88 (2000)

11. A.T. Neffe, A.D. Abell, Developments in the design and synthesis of calpain inhibitors. Curr.
Opin. Drug Discov. Dev. 8, 684–700 (2005)

12. A.D. Abell et al., Molecular modeling, synthesis, and biological evaluation of macrocyclic
calpain inhibitors. Angew. Chem. Int. Ed. Engl. 48, 1455–1458 (2009)

13. A.D. Abell et al., Investigation into the P3 binding domain of m-calpain using
photoswitchable diazo- and triazene-dipeptide aldehydes: new anticataract agents. J. Med.
Chem. 50, 2916–2920 (2007)

14. M.A. Jones et al., Synthesis, biological evaluation and molecular modelling of
N-heterocyclic dipeptide aldehydes as selective calpain inhibitors. Bioorg. Med. Chem. 16,
6911–6923 (2008)

15. S.A. Jones et al., The preparation of macrocyclic calpain inhibitors by ring closing metathesis
and cross metathesis. Aust. J. Chem. 67, 1257–1263 (2014)

16. S.A. Jones et al., A template-based approach to inhibitors of calpain 2, 20S proteasome, and
HIV-1 protease. ChemMedChem 8, 1918–1921 (2013)

Classifying Calpain Inhibitors for the Treatment of Cataracts … 207



17. J.D. Morton et al., A macrocyclic calpain inhibitor slows the development of inherited
cortical cataracts in a sheep model. Invest. Ophthalmol. Vis. Sci. 54, 389–395 (2013)

18. A.D. Pehere et al., Synthesis and extended activity of triazole-containing macrocyclic
protease inhibitors. Chemistry 19, 7975–7981 (2013)

19. M. Pietsch et al., Calpains: attractive targets for the development of synthetic inhibitors. Curr.
Top. Med. Chem. 10, 270–293 (2010)

20. B.G. Stuart et al., Molecular modeling: a search for a calpain inhibitor as a new treatment for
cataractogenesis. J. Med. Chem. 54, 7503–7522 (2011)

21. K.C.H. Chua et al., Macrocyclic Protease Inhibitors with reduced peptide character. Angew.
Chem. Int. Ed. 53, 7828–7831 (2014)

22. J.P. Hughes et al., Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249
(2011)

23. A.D. Bochevarov et al., Jaguar: a high-performance quantum chemistry software program
with strengths in life and materials sciences. Int. J. Quantum Chem. 113, 2110–2142 (2013)

24. E. Kellenberger et al., Comparative evaluation of eight docking tools for docking and virtual
screening accuracy. Proteins 57, 225–242 (2004)

25. R. Sink et al., False positives in the early stages of drug discovery. Curr. Med. Chem. 17,
4231–4255 (2010)

26. R. Macarron, Critical review of the role of HTS in drug discovery. Drug Discov. Today 11,
277–279 (2006)

27. E. Yuriev, P.A. Ramsland, Latest developments in molecular docking: 2010–2011 in review.
J. Mol. Recognit. 26, 215–239 (2013)

28. K. Zhu et al., Docking covalent inhibitors: a parameter free approach to pose prediction and
scoring. J. Chem. Inf. Model. 54, 1932–1940 (2014)

29. S. Kawatkar et al., Virtual fragment screening: an exploration of various docking and scoring
protocols for fragments using Glide. J. Comput. Aided Mol. Des. 23, 527–539 (2009)

30. T.A. Halgren et al., Glide: a new approach for rapid, accurate docking and scoring. 2.
Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004)

31. A.R. Leach et al., Prediction of protein-ligand interactions. Docking and scoring: successes
and gaps. J. Med. Chem. 49, 5851–5855 (2006)

32. T. Schulz-Gasch, M. Stahl, Scoring functions for protein-ligand interactions: a critical
perspective. Drug Discov. Today Technol. 1, 231–239 (2004)

33. P. Ferrara et al., Assessing scoring functions for protein-ligand interactions. J. Med. Chem.
47, 3032–3047 (2004)

34. G.D. Geromichalos, Importance of molecular computer modeling in anticancer drug
development. J. Buon. 12(Suppl 1), S101–118 (2007)

35. A.J. Knox, et al., Considerations in compound database preparation—“hidden” impact on
virtual screening results. J. Chem. Inf. Model. 45, 1908–1919 (2005)

36. N. Moitessier et al., Towards the development of universal, fast and highly accurate
docking/scoring methods: a long way to go. Br. J. Pharmacol. 153(Suppl 1), S7–26 (2008)

37. T. Tuccinardi, Docking-based virtual screening: recent developments. Comb. Chem. High
Throughput Screen. 12, 303–314 (2009)

38. R. Mah et al., Drug discovery considerations in the development of covalent inhibitors.
Bioorg. Med. Chem. Lett. 24, 33–39 (2014)

39. S.J. Macalino, et al., Role of computer-aided drug design in modern drug discovery. Arch.
Pharm. Res. (2015)

40. T. Kohonen, Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)
41. J. Vesanto, E. Alhoniemi, Clustering of the self-organizing map. IEEE Trans. Neural Netw.

11, 586–600 (2000)
42. R. Rojas, Neural Networks: A Systematic Introduction (Springer, New York, Inc., 1996)
43. G. Schneider, Analysis of chemical space, in Madame Curie Bioscience Database [Internet]

(Landes Bioscience, 2000). http://www.ncbi.nlm.nih.gov/books/NBK6062/
44. J. Sadowski, H. Kubinyi, A scoring scheme for discriminating between drugs and nondrugs.

J. Med. Chem. 41, 3325–3329 (1998)

208 I.L. Hudson et al.

http://www.ncbi.nlm.nih.gov/books/NBK6062/


45. V.N. Viswanadhan, et al., Atomic physicochemical parameters for three dimensional
structure directed quantitative structure-activity relationships. 4. Additional parameters for
hydrophobic and dispersive interactions and their application for an automated superposition
of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 29, 163–172
(1989)

46. M. Otto, Chemometrics: Statistics and Computer Application in Analytical Chemistry
Weinheim (Wiley-VCH, New York, 1999)

47. D.W. Wichern, R.A. Johnson, Applied Multivariate Statistical Analysis (Prentice Hall, Upper
Saddle River, 2007)

48. J.C. Fort, SOM’s mathematics. Neural Netw. 19, 812–816 (2006)
49. J. Vesanto, SOM-based data visualization methods. Intell. Data Anal. 3, 111–126 (1999)
50. J. Himberg, et al., The Self-organizing map as a tool in knowledge engineering, in Pattern

Recognition in Soft Computing Paradigm, ed. (World Scientific Publishing Co., Inc., 2001),
pp. 38–65

51. MATLAB:2015, version R2015a (The MathWorks Inc., Natick, 2015)
52. J. Vesanto, et al., Self-organizing map in Matlab: the SOM Toolbox, in Matlab DSP

Conference, 1999, pp. 35–40
53. R. Wehrens, L.M.C. Buydens, Self- and Super-organizing maps in R: The kohonen package.

J. Stat. Softw. 21, 19 (2007)
54. T. Vatanen et al., Self-organization and missing values in SOM and GTM. Neurocomputing

147, 60–70 (2015)
55. B. Everitt et al., Cluster Analysis (Wiley, New York, 2011)
56. I.L. Hudson, et al., SOM clustering and modelling of Australian railway drivers’ sleep, wake,

duty profiles, in 28th International Workshop on Statistical Modelling, Palermo, Italy, 2013,
pp. 177–182

57. I.L. Hudson, J.A. Sleep, Comparison of self-organising maps, mixture, K-means and hybrid
approaches to risk classification of passive railway crossings, in 23rd International
Workshop on Statistical Modelling (IWSM), Utrecht, The Netherlands, 2008, pp. 396–401

58. F. Lopez-Vallejo et al., Integrating virtual screening and combinatorial chemistry for
accelerated drug discovery. Comb. Chem. High Throughput Screen. 14, 475–487 (2011)

59. S.Y. Huang, X. Zou, Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11,
3016–3034 (2010)

60. X. Li et al., Evaluation of the performance of four molecular docking programs on a diverse
set of protein-ligand complexes. J. Comput. Chem. 31, 2109–2125 (2010)

61. C. Bissantz et al., Protein-based virtual screening of chemical databases. 1. Evaluation of
different docking/scoring combinations. J. Med. Chem. 43, 4759–4767 (2000)

62. D.B. Kitchen et al., Docking and scoring in virtual screening for drug discovery: methods
and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004)

63. W. Xu et al., Comparing sixteen scoring functions for predicting biological activities of
ligands for protein targets. J. Mol. Graph. Model. 57, 76–88 (2015)

64. Swiss Institute of Bioinformatics, Click2Drug: Directory of Computer-Aided Drug Design
Tools (2013)

65. I.D. Kuntz et al., A geometric approach to macromolecule-ligand interactions. J. Mol. Biol.
161, 269–288 (1982)

66. C.A. Baxter et al., Flexible docking using Tabu search and an empirical estimate of binding
affinity. Proteins 33, 367–382 (1998)

67. J.S. Dixon, Evaluation of the CASP2 docking section. Proteins 1(Suppl), 198–204 (1997)
68. D.K. Jones-Hertzog, W.L. Jorgensen, Binding affinities for sulfonamide inhibitors with

human thrombin using Monte Carlo simulations with a linear response method. J. Med.
Chem. 40, 1539–1549 (1997)

69. H. Li et al., GAsDock: a new approach for rapid flexible docking based on an improved
multi-population genetic algorithm. Bioorg. Med. Chem. Lett. 14, 4671–4676 (2004)

Classifying Calpain Inhibitors for the Treatment of Cataracts … 209



70. M.D. Miller et al., FLOG: a system to select ‘quasi-flexible’ ligands complementary to a
receptor of known three-dimensional structure. J. Comput. Aided Mol. Des. 8, 153–174
(1994)

71. G.M. Morris et al., Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

72. E. Perola et al., Successful virtual screening of a chemical database for farnesyltransferase
inhibitor leads. J. Med. Chem. 43, 401–408 (2000)

73. M. Rarey et al., A fast flexible docking method using an incremental construction algorithm.
J. Mol. Biol. 261, 470–489 (1996)

74. C.M. Venkatachalam et al., LigandFit: a novel method for the shape-directed rapid docking
of ligands to protein active sites. J. Mol. Graph. Model. 21, 289–307 (2003)

75. W. Welch et al., Hammerhead: fast, fully automated docking of flexible ligands to protein
binding sites. Chem. Biol. 3, 449–462 (1996)

76. P.A. Buckley et al., Protein-protein recognition, hydride transfer and proton pumping in the
transhydrogenase complex. Structure 8, 809–815 (2000)

77. B.K. Shoichet et al., Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6,
439–446 (2002)

78. H.-J. Böhm, M. Stahl, The use of scoring functions in drug discovery applications, in
Reviews in Computational Chemistry, ed (Wiley, Inc., New York, 2003), pp. 41–87

79. H. Gohlke, G. Klebe, Approaches to the description and prediction of the binding affinity of
small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. Engl. 41, 2644–
2676 (2002)

80. H. Li et al., An effective docking strategy for virtual screening based on multi-objective
optimization algorithm. BMC Bioinformatics 10, 58 (2009)

81. P.S. Charifson et al., Consensus scoring: A method for obtaining improved hit rates from
docking databases of three-dimensional structures into proteins. J. Med. Chem. 42, 5100–
5109 (1999)

82. R.D. Clark et al., Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model.
20, 281–295 (2002)

83. I.J. Enyedy, W.J. Egan, Can we use docking and scoring for hit-to-lead optimization?
J. Comput. Aided Mol. Des. 22, 161–168 (2008)

84. T. Oprea, G. Marshall, Receptor-based prediction of binding affinities. Persp. Drug Discov.
Des. 9–11, 35–61 (1998)

85. S. Betzi, et al., GFscore: a general nonlinear consensus scoring function for high-throughput
docking. J. Chem. Inf. Model 46, 1704–1712 (2006)

86. M. Feher, Consensus scoring for protein-ligand interactions. Drug Discov. Today 11, 421–
428 (2006)

87. E. Perola, Minimizing false positives in kinase virtual screens. Proteins 64, 422–435 (2006)
88. T.V. Pyrkov et al., Complementarity of hydrophobic properties in ATP-protein binding: a

new criterion to rank docking solutions. Proteins 66, 388–398 (2007)
89. V. Katritch, et al., Discovery of small molecule inhibitors of ubiquitin-like poxvirus

proteinase I7L using homology modeling and covalent docking approaches. J. Comput.
Aided Mol. Des. 21, 549–558 (2007)

90. G. Bianco, et al., Covalent docking using autodock: two-point attractor and flexible side
chain methods. Protein Sci. (2015)

91. H.M. Kumalo et al., Theory and applications of covalent docking in drug discovery: merits
and pitfalls. Molecules 20, 1984–2000 (2015)

92. X. Fradera et al., Unsupervised guided docking of covalently bound ligands. J. Comput.
Aided Mol. Des. 18, 635–650 (2004)

93. L. Wang et al., Accurate and reliable prediction of relative ligand binding potency in
prospective drug discovery by way of a modern free-energy calculation protocol and force
field. J. Am. Chem. Soc. 137, 2695–2703 (2015)

94. G.A. Ross, et al., One size does not fit all: the limits of structure-based models in drug
discovery. J. Chem. Theory Comput. 9, 4266–4274 (2013)

210 I.L. Hudson et al.



95. E. Yuriev, et al., Challenges and advances in computational docking: 2009 in review. J. Mol.
Recognit. 24, 149–164 (2011)

96. I.O. Donkor, Calpain inhibitors: a survey of compounds reported in the patent and scientific
literature. Expert Opin. Ther. Pat. 21, 601–636 (2011)

97. E. Perola et al., A detailed comparison of current docking and scoring methods on systems of
pharmaceutical relevance. Proteins 56, 235–249 (2004)

98. R.A. Friesner et al., Glide: a new approach for rapid, accurate docking and scoring. 1.
Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004)

99. T. Schulz-Gasch, M. Stahl, Binding site characteristics in structure-based virtual screening:
evaluation of current docking tools. J. Mol. Model. 9, 47–57 (2003)

100. A. Taube, Sensitivity, specificity and predictive values: a graphical approach. Stat. Med. 5,
585–591 (1986)

101. A. Agresti, Categorical data analysis, 2nd edn. (Wiley, Hoboken, 2002)
102. N. Mantel, W. Haenszel, Statistical aspects of the analysis of data from retrospective studies

of disease. J. Natl. Cancer Inst. 22, 719–748 (1959)
103. T. Fawcett, An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)
104. N.A. Obuchowski et al., ROC curves in clinical chemistry: uses, misuses, and possible

solutions. Clin. Chem. 50, 1118–1125 (2004)
105. W.J. Youden, Index for rating diagnostic tests. Cancer 3, 32–35 (1950)
106. D. Hand, R. Till, A simple generalisation of the area under the ROC curve for multiple class

classification problems. Mach. Learn. 45, 171–186 (2001)
107. X. Robin et al., pROC: an open-source package for R and S + to analyze and compare ROC

curves. BMC Bioinformatics 12, 77 (2011)
108. D. Bohning et al., Revisiting Youden’s index as a useful measure of the misclassification

error in meta-analysis of diagnostic studies. Stat. Methods Med. Res. 17, 543–554 (2008)
109. N. Novoselova et al., HUM calculator and HUM package for R: easy-to-use software tools

for multicategory receiver operating characteristic analysis. Bioinformatics 30, 1635–1636
(2014)

110. Z. Cai et al., Classification of lung cancer using ensemble-based feature selection and
machine learning methods. Mol. BioSyst. 11, 791–800 (2015)

111. J. Hu, et al., Comparison of three-dimensional ROC surfaces for clustered and correlated
markers, with a proteomics application. Stat. Neerlandica, Wiley Online Library (2015)

112. B. Carstensen, et al. (2015). Epi: A Package for Statistical Analysis in Epidemiology.
R package version 1.1.71. http://CRAN.R-project.org/package=Epi

113. W. Venables, B. Ripley. (2015). nnet: Feed-forward neural networks and multinomial
log-linear models. R package version 7.3-11. http://CRAN.R-project.org/package=nnet

114. R Core Team. (2015). R: A language and environment for statistical computing.
R Foundation for Statistical Computing. http://www.R-project.org/

115. C.N. Cavasotto, A.J. Orry, Ligand docking and structure-based virtual screening in drug
discovery. Curr. Top. Med. Chem. 7, 1006–1014 (2007)

116. C. McInnes, Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11, 494–
502 (2007)

117. K.L. Mengersen, et al., Mixtures: Estimation and Applications, vol. 896 (Wiley, New York,
2011)

118. I.L. Hudson, et al., EMMIX skew classification of molecular ligand binding potency of
calpain inhibitors. Mol. Inf. (in prep)

119. S. Lee, et al., Visualizing improved prognosis in psychiatric treatment via mixtures, SOMs
and Chernoff faces, in Australian Statistical Conference, Adelaide, Australia, 2012, p. 131

120. I.L. Hudson, et al., Druggability in drug discovery: Self organising maps with a mixture
discriminant approach, presented at the Austraian Statistical Conference, Adelaide, South
Australia, 2012, p. 108

121. S.X. Lee, G.J. McLachlan, Model-based clustering and classification with non-normal
mixture distributions. Stat. Methods Appl. 22, 427–454 (2013)

Classifying Calpain Inhibitors for the Treatment of Cataracts … 211

http://CRAN.R-project.org/package%3dEpi
http://CRAN.R-project.org/package%3dnnet
http://www.R-project.org/


122. S.X. Lee, G.J. McLachlan, On mixtures of skew-normal and skew t-distributions. Adv. Data
Anal. Classif. 7, 241–266 (2013)

123. S.X. Lee, G.J. McLachlan, EMMIX-uskew: An R package for fitting mixtures of multivariate
skew t-distributions via the EM algorithm. J. Stat. Softw. 55, 1–22 (2013)

124. S. Lee, G.J. McLachlan, Finite mixtures of multivariate skew t-distributions: some recent and
new results. Stat. Comput. 24, 181–202 (2014)

125. N. London et al., Covalent docking of large libraries for the discovery of chemical probes.
Nat. Chem. Biol. 10, 1066–1072 (2014)

126. X. Ouyang et al., CovalentDock: automated covalent docking with parameterized covalent
linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34, 326–
336 (2013)

127. J. Polanski et al., Priveleged structures-dream or reality: preferential organization of
azanaphthalene scaffold. Curr. Med. Chem. 19(13), 1921–1945 (2012)

128. S.W. Kim, Bayesian and non-Bayesian mixture paradigms for clustering multivariate data:
time series synchrony tests. PhD, University of South Australia, Adelaide, Australia (2011)

129. S. Zafar, et al., Linking ordinal log-linear models with correspondence analysis: an
application to estimating drug-likeness in the drug discovery process, ed. by J. Piantadosi, R.
S. Anderssen, J. Boland, MODSIM2013, in 20th International Congress on Modelling and
Simulation (Modelling and Simulation Society of Australia and NZ, 2013), pp. 1945–1951.
ISBN: 978-0-9872143-3-1. http://www.mssanz.org.au./modsim2013/I1/zafar.pdf

212 I.L. Hudson et al.



Improved Ultrasound Based Computer
Aided Diagnosis System for Breast Cancer
Incorporating a New Feature of Mass
Central Regularity Degree (CRD)

Ali Al-Yousef and Sandhya Samarasinghe

Abstract Ultrasound is one of the most frequently used methods for early detec-
tion of breast cancer. Currently, the accuracy of Computer Aided Diagnosis
(CAD) systems based on ultrasound images is about 90 % and needs further
enhancement in order to save lives of the undetected. A meaningful approach to do
this is to explore new and meaningful features with effective discriminating ability
and incorporate them into CAD systems. Some of the most powerful features used
in cancer detection are based on the gross features of mass (e.g., shape and margin)
that are subjectively evaluated. Recently, from an extensive investigation of
ultrasound images, we extracted an easily quantifiable and easily measurable new
geometric feature related to the mass shape in ultrasound images and called it
Central Regularity Degree (CRD) as an effective discriminator of breast cancer.
This feature takes into account a consistent pattern of regularity of the central region
of the malignant mass. To demonstrate the effect of CRD on differentiating
malignant from benign masses and the potential improvement to the diagnostic
accuracy of breast cancer using ultrasound, this chapter evaluates the diagnostic
accuracy of different classifiers when the CRD was added to five powerful mass
features obtained from previous studies including one geometric feature:
Depth-Width ratio (DW); two morphological features: shape and margin; blood
flow and age. Feed forward Artificial Neural Networks (ANN) with structure
optimized by SOM/Ward clustering of correlated weighted hidden neuron activa-
tion, K-Nearest Neighbour (KNN), Nearest Centroid and Linear Discriminant
Analysis (LDA) were employed for classification and evaluation. Ninety nine breast
sonograms—46 malignant and 53 benign- were evaluated. The results reveal that
CRD is an effective feature discriminating between malignant and benign cases
leading to improved accuracy of diagnosis of breast cancer. The best results were
obtained by ANN where accuracy for training and testing using all features except
CRD was 100 and 81.8 %, respectively, and 100 and 95.45 % using all features.
Therefore, the overall improvement by adding CRD was about 14 %, a significant
improvement.
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1 Introduction

Breast tumors including benign and malignant solid masses start with few cells and
grow faster than the normal cells and form a mass inside the breast tissues. A typical
growing solid benign mass pushes and compresses the surrounding tissues to create
a space which makes a well-defined boundary for the mass. Benign masses in most
cases take an oval shape where the large axis of the oval is parallel to the skin line.
Usually, the benign masses block the blood vessels which reduce the blood flow
into the mass. Most of the diagnosed benign masses are fibroadinoma. Another
example of benign tumors is cysts which are a fluid-filled mass with a clear margin.
On the other hand, malignant masses grow and invade the surrounding tissues and
not restricted to a limited area resulting in an irregular shape and ill-defined margin
[1]. They also have an increased level of blood flow.

There are several changes in the breast anatomy during a female’s life. In some
cases, calcium salt gets deposited in the soft tissues that makes them harder; this is
called calcification. Several factors contribute to this including age, past trauma to
breast and breast inflammation. Also, calcification in a few cases is a sign of breast
carcinoma. There are two types of calcification: the first is macro-calcification,
where the size of calcium mass is large and probably benign. The second one is
micro-calcification, where the size of calcium deposit is very small, less than
0.5 mm, and this type is probably malignant and requires further checking for
micro-calcification morphology and distribution [2].

Ultrasound is one of the most frequently used methods for early detection of
breast cancer. This method uses inaudible sound waves. The tumours are divided
into four types according to their ability to return the sound waves (echogenicity).
The first is anechoic lesions, and has no internal echo. This type of lesion is a
benign cyst. The second one is hypoechoic lesions and has low level echoes
throughout the lesion and is probably malignant. The third type is hyperechoic
lesions with increased echogenicity compared to their surrounding fat, and are
probably benign. The last type is isoechoic lesions with similar echogenicity
compared to the fat echogenicity, and are probably benign [3, 4].

An ultrasound image is processed carefully to differentiate malignant from
benign masses. Radiologists extract a number of mass features from an ultrasound
image such as, shape, margin, orientation, echogenic pattern, posterior acoustic
(shadow) features, effect on surrounding parenchyma and Calcifications (Table 1)
[3, 5]. All these features are currently used to differentiate benign from malignant
masses. Table 1 describes characteristics of each feature that help achieve this aim.

There are two main types of mass features in the image; combined morpho-
logical and geometric features and texture features. Morphological features are
related to the structure of the mass such as, shape, margin, blood flow and the
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pattern of mass [6]. Geometric features, such as, volumes, spaces and measure-
ments, can also be used to assess morphological features of the mass to extract new
mass features. On the other hand, texture features are related to the arrangement of
colours and other intrinsic pattern regularities, smoothness, etc., in the ultrasound
image. This type of features are harder to extract as they require image processing
algorithms to analyse the image.

Several studies have used texture features of ultrasound images for building
Breast Cancer-Computer Aided Diagnosis Systems (BC-CAD). For example, 28
texture descriptors related to the intensities of the pixels in the Region Of Interest
(ROI) including: the Mean of the Sum of the Average of intensities, Range of the
Sum of the Entropy of pixels, pixel correlation,…,etc., and two Posterior Acoustic
Attenuation Descriptors (PAAD) including—the difference between the average
gray level within (ROI) and within regions of 32 × 32 pixels inside the (ROI), and
the difference between the gray level in a region of 32 × 32 pixels inside the
(ROI) and the average of the average of gray levels in the two adjacent 32 × 32
pixel regions to the left and right of ROI—were extracted and used for differenti-
ating a cyst from solid mass [7]. Stepwise logistic regression was used for feature
selection and the study obtained 95.4 % classification accuracy using Mean of the
Sum of Average of intensities, Range of the Sum of Entropy of pixels and the
second PAAD descriptor. In another study, the co-variance of pixel intensity in the
Region Of Interest (ROI) and the pixel similarity were used to differentiate benign
from malignant masses in ultrasound image with 95.6 % classification accuracy [8].

Table 1 Ultrasound mass features and a brief description of each feature [19]

Feature Description

Shape Mass takes two main shapes, regular or irregular; the regular masses (or
oval) are probably benign and irregular masses (speculated) are probably
malignant

Margin The border that separates the mass from the neighbouring normal tissue; it
can be clear or well defined, which is suggestive of benign or it can be
blurry or ill-defined which is probably malignant.

Orientation The long axis of the mass can be parallel to the skin line, which is
suggestive of benign

Posterior acoustic The shadow behind the mass usually caused by malignant lesion

Echogenic pattern This feature reflects the internal mass echogenicity (indication of density of
the mass); hypoechoic lesions with low echogenicity are suggestive of
malignant

Surrounding
tissue

The effect of the mass on the surrounding tissues; depends on the mass
type; for example, solid benign or malignant mass may compact the
neighbouring tissues

Calcification The presence of calcium inside the breast tissues; microcalcification is
suggestive of malignant and macrocalcification is suggestive of benign

Blood flow The speed of blood flow inside the mass tissues; high speed is suggestive
of malignant

Envelop Most benign masses are enveloped or partially enveloped
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Another study [9] used the shape and texture features of the mass including:
eccentricity (the eccentricity of the ellipse that has the same second moment as the
mass region); solidity of the mass, ratio of the number pixels in the mass to that of
the convex including the mass; convex hull’s area minus convex rectangular area
that contain the convex; Cross correlation left and cross correlation right (i.e., cross
correlation value between the convex rectangular area that contain the convex and
the left side and right side areas, respectively) to classify the masses into benign and
malignant. These features were used as inputs to a Support Vector Machine
(SVM) to obtain 95 % classification accuracy. Furthermore, texture features
including auto-covariance coefficients of pixel intensities, smoothness of the mass
and block difference of inverse probabilities were used with Support Vector
Machines (SVM) in another study [6] that produced 94.4 % classification accuracy.
Another study [10] extracted eight texture features, three geometric features and
two pixel histogram features, and used them as input to a Fuzzy Support Vector
Machine (FSVM), Artificial Neural Networks (ANN) and SVM to classify 87
lesions into benign and malignant. The FSVM obtained the best results where the
accuracy was 94.2 % followed by the ANN with 88.51 % diagnostic accuracy.

Compared with texture features, there are few studies that used the morphological
features for building BC-CADs. For example, shape, orientation, margin, lesion
boundary, echo pattern, and posterior acoustic features were used as inputs for a
BC-CAD with 91.7 % classification accuracy (88.89 % sensitivity and 92.5 %
specificity) [11]. Also, another study [12] extracted 6 morphological features of the
mass shape including: Form Factor, Roundness, Aspect Ratio, Convexity, Solidity
and Extent; all of these features were based on amaximum andminimum diameters of
the mass and area, convex and perimeter of the mass. These features were used with a
Support Vector Machine and obtained 91.7 % classification accuracy (90.59 %
sensitivity and 92.22 % specificity). Another study [13] extracted seven morpho-
logical features including the number of substantial protuberances and depressions,
lobulation index, elliptic-normalized circumference, elliptic-normalized skeleton,
long axis to short axis ratio, depth-to-width ratio, and size of the lesion. Multilayer
Perceptron MLP neural networks was used for classification. The accuracy, sensi-
tivity, specificity measures were 92.95 ± 2 %, 93.6 ± 3 % and 91.9 ± 5.3 %,
respectively.

Although texture features are good in differentiating benign from malignant,
their values depend on the settings of the ultrasound machine and require extensive
processing of ultrasound images. On the other hand, the morphological features are
system independent and therefore, they are easy to incorporate into CAD systems
and more commonly used in diagnosis systems [14].

However, the accuracy of current CAD systems based on the morphological
features of ultrasound images is around 90 % and needs further enhancement to
save the lives of the undetected. A meaningful approach to do this is to explore new
and meaningful features with enhanced discriminating power and incorporate them
into CAD systems.

Mass shape is one of the most useful features in breast cancer CAD systems and
has been used as an input for classifiers in several studies [11, 15–17]. This feature
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takes two main forms; regular or irregular shape. Irregular mass is indicative of
malignancy; however, there are several types of benign mass that also take an
irregular shape. Greater clarity on this issue may provide better ways to improve
breast cancer diagnostic accuracy.

The aim of this chapter is to enhance the diagnostic accuracy of ultrasound based
CAD systems based on morphological features by a thorough investigation of the
shape of the mass in ultrasound images in order to extract a new mass feature with
greater discriminating power and employ this feature in a CAD system along with
few carefully selected morphological features. In doing so, we expand our work
reported in [19].

2 Materials and Methods

This study evaluates 99 cases; 46 malignant and 53 benign. All cases were obtained
from The Digital Database for Breast Ultrasound Images (DDBUI) [18]. The
Second Affiliated Hospital of Harbin Medical University collected all images from
2002 to 2007. Each case in the database contains 1–6 images and a text file
(Table 2) that lists important information of the patient and the lesions, such as, age,
family history, shape, margin, size, blood flow, echo, micro-calcification number
and shape. All these features were obtained by five experts.

Table 2 The contents of the
text file in the database

Assessment: Malignant

Ultrasound Doctor’s Depiction:

Assessment Sex: Female

Age: 32

Family History Criterion: none

Shape: Not Regular

Border: Blur

Echo: Unequable

Envelope: None

Side Echo: None

Micro-calcification Shape: None,

Micro-calcification Number: 0–0

Reduction: Has

Lymph Transformation: None

Blood: I or III Level

Mass Maximal Diameter: More than 2

Mammogram Total Number: 0

Radiologist Assessment: None

Biopsy Result: None

Biopsy Description:

Operation Result: Benign

Operation Description: breast fibroadenoma
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2.1 Methods

The methodology is primarily aimed at extracting a new feature and assessing its
effectiveness following four main steps shown in Fig. 1. The first step is feature
extraction where all features indicative of breast cancer is extracted. Importantly,
this step also contains the extraction of the proposed new feature related to the mass
shape and called Central Regularity Degree (CRD) (see Sect. 2.1.1). All features are
normalised and then, the features that are strongly related to breast cancer are
selected for classification using hierarchical clustering and self organizing maps
(SOM). Next, the selected features are used as inputs to four classifier systems
based on neural networks and statistical methods (MFFNN—multi-layer feed for-
ward neural network; KNN—K-nearest neighbour; LDA—Linear Discriminant
Analysis; NC—Nearest Centroid). Here, two sets of inputs are used: a set without
the new feature and a set including the new feature. Finally, individual classifiers
are evaluated using test datasets and the results of different CAD systems are
compared to assess the effectiveness of the new feature and the classifiers.

2.1.1 Feature Extraction

As mentioned, each case in the dataset has been described using a text file (Table 2)
and 1–6 images. The text file contains 12 features and some of these features are
described using linguistic variables such as shape: regular or irregular; envelop:

Fig. 1 The components of the proposed ultrasound CAD system (CRD—Central Regularity
Degree (proposed new feature); MFFNN—multi-layer feed forward neural network; KNN—
K-nearest neighbor; LDA—Linear Discriminant Analysis; NC—Nearest Centroid)
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enveloped, not filled or none. To use these features in classifications, we converted
the linguistic variables subjectively into numeric values as shown in Table 3.

Also we used the case images to extract two mass geometric features; Width to
Depth ratio (WD) and the proposed new feature Central Regularity Degree (CRD).
To compute the WD feature we applied the following steps:

1 For each case edit the ultrasound image of the mass using an image editor.
2 Draw the smallest rectangle that contains the mass as shown in Fig. 2. The

X-axis of the rectangle parallels the skin line and represents the width of the
mass, whereas the Y-axis represents the depth of the mass.

Table 3 Description of the
mass features and the numeric
value assigned to each
description

Feature Description Coding

Shape Regular 1

Irregular 2

Border Clear 1

Blur 2

Echo Equable 1

Unequable 2

Envelope None 1

Not filled 2

Yes 3

Sides Echo (sides shadow) None 1

Yes 2

Micro-calcification shape None 1

Needle 2

Cluster 3

Large 4

Micro-calcification number 0 0

1 1

1–2 1.5

2–3 2.5

3–4 3.5

4–5 4

5–6 5.5

Reduction (back shadow) None 1

Yes 2

Lymph Transformation None 1

Yes 2

Blood Level 1 1

Level 2 or 3 2

Mass Maximal Diameter <1 1

>1 and <2 2

>2 3
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3 Compute the length of mass along X (W) and Y axes (D) (in pixels).
4 Compute WD = W/D = X/Y.

A new feature—mass Central Regularity Degree (CRD).
As mentioned previously, mass shape is either regular or irregular. The irregular

shape of mass is an indication of malignancy but there are several benign masses
that take an irregular shape too. Similarly, regular mass is suggestive of a benign
case but there are few malignant masses that take a regular shape. Thus there is a
need for further investigation into the mass shape to differentiate irregular benign
mass from irregular malignant mass. In an in-depth investigation and closer
examination of mass shape to discover potential new features, we were able to
define a new geometric feature related to the mass shape called Central Regularity
Degree (CRD). The CRD reflects the degree of regularity of the middle part of the
mass. This was inspired by the fact that malignant masses typically have irregular
shape and CRD is designed to specifically capture this irregularity in the more
central part of the mass. As illustrated in Fig. 3, the mass boundary in this image
was defined previously by experts as the white outline [18] and CRD involves
defining the smallest width of the mass (red line).

To find CRD, we drew on ultrasound images (Fig. 2), a small rectangle that
contains the complete mass using image editor software. The rectangle lines X and
Y represent the mass width and the mass depth, respectively. Then we divided the
rectangle horizontally into three equal parts; upper, middle and lower (Fig. 3). Next,
for the middle part of the mass we found the length (Z) of the shortest line that is
parallel to the horizontal axis (X). Finally, we found the ratio of Z to the rectangle
width (X) (Eq. 1). The output value represents the Central Regularity Degree of the
middle part of the mass.

CRD ¼ Z � X ð1Þ

After extracting and coding the mass features, there were a total of 14 features
(age, 11 features listed in Table 3 and the two geometric features (WD, CRD)) as
inputs for the next step. But still there is a need for data normalization to speed up

Fig. 2 The smallest rectangle containing the mass. Thin line represents the mass boundary and the
thick line represents the boundary of the smallest rectangle that contain the mass. The X represents
the width of the mass along horizontal axis and Y represents the depth of the mass along vertical
axis
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the classification process and to remove the effect of large spread of some features.
For this, Min-Max normalization method was applied (Eq. 2).

X 0 ¼ X � minA
maxA � minA

maxn � minnð Þþminn ð2Þ

where X′, A, n are; normalised values of X, old range and new range, respectively.

2.1.2 Feature Selection

In this step, we used a wrapper method to select a subset of ultrasound features that
are strongly related to breast cancer. Now each case in the ultrasound dataset is
represented as a vector of case features S ¼ S1; . . .; Snf g. The set of features that is
strongly related to breast cancer is selected by using Hierarchal clustering (Johnson
1967) [19] and Self-Organizing Map (SOM) as follows:

1 Build a state space starting from empty set in the root and add features one by
one until the set of all features is reached.

2 Use sequential search starting from the root to find the node that separates
benign clusters from malignant clusters by applying the following steps:

a. Apply Hierarchal clustering.
b. Find the best cut off point that differentiates benign clusters from malignant

clusters.
c. Compute and save the accuracy and the node index.
d. Repeat a-c until all nodes in the state space are visited

3 Select the node with the highest accuracy.
4 Validate the results using Self Organizing Map (SOM) combined with WARD

clustering.

Fig. 3 New mass feature Central Regularity Degree (CRD). X is the rectangle width parallel to
skin line, Y is the rectangle depth and Z is the shortest line in the middle part of the mass [19]
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2.1.3 Classification

To evaluate the effect of the new ultrasound feature CRD on classification accuracy
we applied four supervised classifiers: Multilayer Feed Forward Neural Network
(MFFNN), Nearest Centroid (NC), K nearest neighbour (KNN) and Linear
Discriminant Analysis (LDA) [20]. We divided the dataset randomly into two
groups: training and testing, where, 77 cases were used for training and 22 for
testing. Each classifier was trained and tested four times using different randomly
extracted subsets. Each time the results were stored for the final evaluation.

Multilayer Feed Forward Neural Network (MFFNN)
Here, we used a Multilayer Feed Forward Neural Network with an input layer,

one hidden layer and one neuron in the output layer. The network was trained using
Scaled Conjugate Gradient Back Propagation Algorithm (SCGBP) and Logistic
function as the neuron activation function.

Optimizing the number of hidden neurons in the network is still a challenge.
Insufficient number of hidden neurons results in two problems: the first is under
fitting that results from selecting a small number of hidden neurons giving rise to
bias in generalisation. The second problem is over fitting that results from selecting
a large number of hidden neurons giving rise to variance in generalisation. To
overcome these problems, this study used a Self Organizing Map (SOM) based
approach to optimize the number of hidden neurons in the network as described by
Samarasinghe [21]. The algorithm starts with training a feed forward neural net-
work with a relatively large number of neurons in the hidden layer. Then it reduces
the number of hidden neurons by removing the redundant neurons that form cor-
related associations with other neurons in terms of the weighted hidden neuron
activation that feeds the output neuron.

A summary of the MFFNN and its optimisation is given below. The net or
weighted input ui to neuron i and the output yi of each neuron in the hidden layer is
given by the following equations:

ui ¼
Xr

m¼1

xmwim; yi ¼ 1
1þ e�ui

ð3Þ

where x is an input vector, r is the number of inputs including bias inputs and wi is
the weight vector between input vector x and neuron i. From Eq. 3, the weighted
input to the output neuron v and the final output of the neural network are:

v ¼ b0 þ
Xn

i¼1

yibi; z ¼ 1
1þ e�v ð4Þ

where, b0 is the bias input to the output neuron, b is the weight vector between
hidden neurons and the output neuron.
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Form Samarasinghe [21], the weighted activation of redundant hidden neurons
across the input vectors correlate. The weighted activation for neuron j is as shown
in Eq. 5 where yj is hidden neuron output and bj is its weight to the output neuron.

Nj ¼ bjyj ð5Þ

Now, we have a hidden neuron weighted activation matrix N where each row in
the matrix represents one neuron j. To reduce the complexity of the neural network,
we removed the redundant neurons. For this, we applied Self Organising Map
(SOM) with correlation distance measure where the activation vector of each
neuron was an input vector. The SOM brings similar input vectors closer together
by distributing input vectors according to similarity. Similar SOM neurons was
clustered using WARD clustering. The number of different clusters on the SOM
indicates the optimum number of hidden neurons.

K-Nearest Neighbour (KNN)
In KNN, data vectors or the experimental samples are represented as marked

points in the space where each point belongs to a known class (benign or malignant,
for example). For a new instance, the classifier represents the instance in the same
space and calculates the distance between it and the experimental samples. The
label of the new instance depends on the labels of the K closest points to the new
instance. The instance is labelled with the class label that has the largest number of
points within K closest points [22]. To select the value of K we applied the fol-
lowing steps:

1 Set F = 0.
2 For I = 2 to N, where N is a large number:

a. Set the value of K = I
b. Classify the samples using KNN.
c. Compute the overall accuracy.
d. If accuracy ≥ F then set F = accuracy and Best = I.

3 Set K = Best

Nearest Centroid (NC)
In this classifier, the classification is done by calculating the mean (centroid) of

both classes, malignant and benign, from the available data. For the new object x,
the algorithm calculates the distance between the new object and the means of the
classes; the object is then labelled with the label of the closest class centroid [23].

Linear Discriminant Analysis (LDA)
This classifier uses a covariance matrix to build a hyperplane between the benign

and malignant classes by maximizing between to within variance ratio for the
classes (Eq. 6) [24] such that

PðijxÞ[ pðjjxÞ 8i 6¼ j ð6Þ
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The probability that x belongs to class i is not easy to compute; therefore, the
simplest mathematical formula of LDA is:

fi(xk) ¼ liC
�1xTk �

1
2
liC

�1lTi þ ln(piÞ ð7Þ

where µi is the mean vector of class i, C−1 is the inverse of covariance matrix of the
dataset, pi is the probability of class i and T is transpose.

The xk belongs to class i if and only if:

fiðxkÞ� fjðxkÞ 8 i 6¼ j ð8Þ

2.1.4 Evaluation

The aim of this step is to evaluate the performance of the two CAD systems (with
and without the new feature CRD) using sensitivity, specificity, False Positive
(FP) rate, False Negative (FN) rate and overall accuracy [25].

Sensitivity ¼ Number of malignant samples correctly classified
Total number of malignant samples

ð9Þ

Specificity ¼ Number of benign samples correctly classified
Total number of benign samples

ð10Þ

Accuracy ¼ Number of samples correctly classified
Total number of samples

ð11Þ

FP ¼ Number of benign samples falsly classified
Total number of samples in malignant class

ð12Þ

FN ¼ Number of malignant samples falsly classified
Total number of samples in benign class

ð13Þ

3 Results and Discussion

3.1 Feature Selection

Frequencies of specific ultrasound features in both malignant and benign cases are
shown in Table 4. A feature would be considered effective or good if it clearly
separated benign from malignant cases; for example, the margin was considered an
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effective feature because most malignant cases (38 out of 46) were blurry and most
benign cases (38 out of 53) were clear. On the other hand, the mass echo was not
considered effective because most benign (34 out of 53) and malignant (42 out of
46) cases were not equable.

Table 4 shows seven effective features and these are: Age, Shape, Margin,
Micro-calcification, Blood level, WD ratio and CRD. In particular, it shows that the
new feature CRD is on a par with the most effective feature- margin. According to

Table 4 Frequency of
ultrasound features in the 99
cases (46 malignant (M) and
53 benign (B)) and their
effectiveness as a feature that
discriminates between
malignant and benign cases
[19]

Feature M B Effectiveness

Age (mean) 46.4 38 Good

Shape

Regular 2 29 Good

Irregular 44 24

Margin

Clear 8 38 Good

Blur 38 15

Echo

Equable 4 19 Not good

Not equable 42 34

Envelope

Enveloped 8 9

Partially 5 9 Not good

No 33 35

Microcalcification

Big 2 0 Good

Cluster 2 1

Needle 21 6

None 21 46

Blood level

Level 1 14 41 Good

>1 32 12

WD ratio

> = 1.34 17 36 Good

<1.34 29 17

CRD

> = 0.7 10 39 Good

<0.7 36 14

Diameter

<= 1 2 8 Not good

>1 and <=2 24 26

>2 20 19
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these effective features, a malignant mass has irregular shape, blurry margin,
potential micro-calcification, higher speed of blood flow, lower WD ratio (below
1.34) indicative of less elongated shape and smaller CRD (below 0.7) indicative of
more irregular shape.

Hierarchical clustering (HC) and self-organizing maps were used for feature
selection. We started with hierarchical clustering to find a set of features that
separates benign cases and malignant cases into different clusters. Hierarchical
Clustering (HC) found age, shape, margin, level of blood flow, DW and our new
feature CRD as the features that strongly demarcate breast cancer cases. HC divided
the dataset into 9 different clusters. The distribution of malignant samples was: 39
out of 46 cases were distributed over 2 different clusters (clusters X and Y) with
0.84 sensitivity (ratio of malignant cases in the 2 clusters to total malignant cases)
(Fig. 4). On the other hand, 42 out of 53 benign cases were distributed over 7
clusters with 0.793 specificity (ratio of benign cases in the 7 clusters to total benign
cases) (Fig. 4). Hierarchical clustering produced 81.8 % accuracy.

To confirm the above results, we used SOM to find the distribution of the 99
ultrasound samples over SOM map using the same features (Fig. 5). The dataset
was distributed over different regions on the SOM map where most of the malignant
cases (41 out of 46) were distributed in the upper part of SOM and most benign
cases (37 out of 53) were distributed in the lower part of SOM (Fig. 5c). The SOM
U-matrix clearly divided the upper part of SOM into three clusters that appear in the
U-matrix as dark blue regions (Fig. 5b). To clarify the boundary of each cluster in
SOM map, we used K-mean clustering (k = 9), same number of clusters in hier-
archal clustering, to cluster the neurons of SOM (Fig. 5a). By analysing the 9

Fig. 4 Hierarchal clustering of the 99 cases using the 6 selected features. Each color represents a
cluster. Hierarchal clustering has spread the 99 cases over 9 different clusters. (Clusters X and Y
are the two clusters containing most of the malignant cases. Other clusters contain benign cases)
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Fig. 5 SOM clustering of ultrasound data [19]: a Clusters (clarified by K-means) (colour coded).
b SOM U-matrix—the distance of a neuron to the neighboring nodes in the SOM lattice is
represented by a color according to the bar that appears on the right side of the figure; the distances
range from dark blue (small distance) to dark red (large distance). Large distances indicate
potential cluster boundaries. c The distribution of the benign (a) and malignant (m) cases over the
SOM lattice which indicates that most malignant cases are in the upper part of SOM whereas most
benign cases are in the lower part of SOM
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clusters we found 89 % of malignant cases were distributed over 3 clusters (1, 2 and
3) in the upper part of SOM and 70 % of benign cases were distributed over the
other 6 clusters. Both Hierarchical clustering and SOM found the above features
strongly related to breast cancer.

3.2 Classifications and Evaluation

The selected features and the new feature (CRD) were tested for their ability to
differentiate between malignant and benign cases. This step was divided into two
main stages: In the first stage, we applied the four classifiers; KNN, MFFNN, NC
and LDA, on the dataset using all features including CRD. For KNN, firstly, we
must determine the value of K, which represents the number of neighbours that
controls the class label of the new instance. For this, we started with a large K = 30
and decreased it down to K = 1 (Fig. 6). The best result was obtained when the
value of k = 3.

The MFFNN is more complicated than KNN. In the MFFNN, we must take into
account the optimal number of neurons in the hidden layer. For this, firstly, we
trained and tested an MFFNN using a large number of hidden neurons and reduced
the number gradually. Every time, we compared the results with the previous results
until the best results were achieved. The best results were obtained using 15 hidden
neurons. Secondly, despite the goodness of the results obtained with the 15 hidden
neurons, we applied the previously described network pruning method based on

Fig. 6 The accuracies for different k values in KNN clustering. (X-axis represents the value of K
and Y-axis represents the accuracy)
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SOM clustering of correlated weighted hidden neuron activation patterns [21] to the
MFFNN network just developed. The purpose was to determine whether there is a
simpler network than the 15 hidden neuron network that would still give good
results. Weighted activation of each hidden neuron for the original inputs consti-
tuted an input vector, each representing an individual hidden neuron, into SOM.

To build the SOM, we started with selecting the SOM topology. As the maxi-
mum possible clusters is 15 which is the number of hidden neurons, a 4 × 5
rectangular map was built and trained. Then we divided the map neurons into
clusters using WARD clustering which resulted in 9 different clusters (Fig. 7).
According to Samarasinghe [21], the number of different clusters represents the
number of optimum hidden neurons. To verify the performance of the 9 hidden
neurons against 15 neurons, we trained and tested a new MFFNN with 9 neurons
using the same dataset. The output results obtained from 9 hidden neuron MFFNN
were compared with the results from 15 hidden neuron MFFNN and the values of
accuracy, sensitivity and specificity were found equal in both networks. The clas-
sification accuracy was 95.4 % with 100 % sensitivity and 90.9 % specificity. The
results show that the SOM reduced the number of hidden neurons without any
effect on the classification performance and reduced the complexity of the neural
networks.

The outputs of different classifiers obtained from the first stage are shown in
Table 5 (refer to numbers without brackets). The MFFNN was the superior

Fig. 7 SOM representing 15 hidden neurons. a Distribution of 15 neurons over the map; groups
of hidden neurons (4, 7, 10), (6, 12) and (14, 15) each shared an SOM neuron (and formed three
Ward clusters). b U-matrix for the 15 hidden neurons; neurons (9, 1, 8) were found close to each
other (the blue color on the top right of the matrix) and considered to be one cluster by WARD
clustering that divided the SOM neurons into 9 clusters
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classifier with 100 % sensitivity, 90.9 % specificity, 8.3 % False Positive (FP) rate,
100 % True Negative (TN) rate and 95.4 % classification accuracy. MFFNN has
100 % results in the training stage. NC is the worst classifier. KNN and LDA had
similar accuracies but LDA was a better discriminator of malignant cases.

In the second stage, we applied the same classifiers (KNN, NC, MFFNN and
LDA) on the same dataset using all features except CRD. The output results of
different classifiers are shown in Table 5 (numbers within brackets). By comparing
the results of different classifiers obtained from the first and second stages we found
that, the sensitivities of KNN and LDA in the training phase were improved by 5.7
and 2.8 %, respectively, by adding CRD. Also, the specificity of LDA was
increased from 83.3 to 85.7 %; furthermore the overall accuracies of LDA and
KNN have increased. In the testing phase, the sensitivity of MFFNN and NC were
improved by 18.2 and 9.1 %, respectively, by adding CRD. Also the specificity of
MFFNN and LDA were increased to 90.9 and 81.8 % from 81.8 and 72.7 %,
respectively. Adding the CRD increased the overall accuracy of the three classifiers,
MFFNN, NC and LDA.

Only in the testing phase of KNN classifier that we found adding CRD decreased
the classification accuracy. This is because of the disadvantages KNN that leads to
an increase in the number of misclassified cases in the testing phase. However, the
overall accuracy of the classifier (training and testing) is increased by adding the
new CRD feature where the overall accuracy of KNN using all features except CRD
is ((22*90.9/100) + (77*85.7))/99) % = 86.9 %; whereas, the overall accuracy of
KNN using all features is 88.8 %.

From the above comparison, we found that adding the new feature CRD
enhanced the diagnostic accuracy of the BC-CAD. The best results were obtained
by MFFNN with 95.4 % accuracy, 90.9 % specificity and 100 % sensitivity in the
testing phase. These results were compared with Wei et al. (2007) [11] study that
used the same morphological features of masses except our new feature CRD as
inputs to the CAD. The comparison found the accuracy of the current system 3.7 %
better than their system. Furthermore, a significant improvement of the proposed
BC-CAD over the system in [11] was in the 100 % sensitivity achieved by it
compared to only 88.89 % achieved by the system in [11] which means that
11.11 % of cancer cases misdiagnosed in [11] could be diagnosed correctly by the
current system and hence more lives could be saved.

Table 5 Performance of different classifiers (SN is sensitivity, SP specificity and Ac accuracy)

Classifier Training Testing

SN (%) SP (%) Ac (%) SN (%) SP (%) Ac (%)

KNN 85.7 (80) 92.8 (92.8) 89.6 (85.7) 81.9 (90.9) 90.9 (90.0) 86.4 (90.9)

NC 82.8 (82.8) 75.6 (75.6) 80.5 (80.5) 100 (90.9) 63.6 (63.6) 81.8 (77.3)

MFFNN 100 (100) 100 (100) 100 (100) 100 (81.8) 90.9 (81.8) 95.4 (81.8)

LDA 82.8 (80) 85.7 (83.3) 84.4 (81.8) 90.9 (90.9) 81.8 (72.7) 86.4 (81.4)

Numbers without brackets are for all features (including CRD) and those within brackets are for all
features excluding CRD)
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Also, we compared the results of the current system with Chang et al.
(2005) [12] results and we found that the current diagnostic system has 3.7 %
higher accuracy and 9 % higher sensitivity, a significant improvement.
Furthermore, the results of the current system was slightly better than the results
obtained by Chen et al. [13] where the best accuracy for this system was 94.8 %
compared with 95.4 % classification accuracy of the current system. But Chen et al.
[13] system was more complicated than the current system because all the features
used in their system were based on image processing algorithms that are compu-
tationally exhaustive and time consuming. Also, it is difficult for a radiologist to
extract such features which make these features unusable in a direct diagnostic
assessment made by the radiologist. In contrast, all the features used in the current
system are extracted from the radiologist report, except DW ratio and our new
feature CRD that are easy to extract and be used by a radiologist, without requiring
any image processing. By these comparisons we found that the current system has
superior diagnostic accuracy to previous ultrasound based BC-CAD systems.

4 Conclusions

We have presented in this chapter a new ultrasound based CAD system for early
detection of breast cancer, incorporating a novel effective geometric feature—
Central Regularity Degree (CRD). From a thorough investigation of the ultrasound
images, we extracted this new geometric feature related to the shape of the mass in
images, and it was inspired by the fact that most malignant masses are irregular.
The CRD reflects the degree of regularity of the middle part of the mass. To
demonstrate the effect of CRD in differentiating malignant from benign masses and
the resulting improvement in the diagnostic accuracy of breast cancer based on
ultrasound images, this study evaluated the diagnostic accuracy of four different
classifiers when CRD was added to five known effective mass features: one geo-
metric feature which is Width-Depth ratio (WD); two morphological features: shape
and margin; level of blood flow and age.

Multilayer Feed Forward Neural Networks (MFFNN), K Nearest Neighbour
(KNN), Nearest Centroid (NC) and Linear Discriminant Analysis (LDA) were used
for classification and accuracy, sensitivity and specificity measures were used for
evaluation. Ninety-nine breast sonograms—46 of which were malignant and 53
benign were evaluated. The results revealed that CRD is an effective feature dis-
criminating between malignant and benign cases leading to improved accuracy of
diagnosis of breast cancer. MFFNN obtained the best results, where the accuracies
in the training and testing phases using all features except CRD were 100 and
81.8 %, respectively. On the other hand, adding CRD improves the accuracy of
training and testing phases to 100 and 95.5 %, respectively. Therefore, the overall
improvement by adding CRD was about 14 %, a significant improvement. Also, the
new CRD feature makes the current system better than the previous CADs that used
the morphological features of ultrasound images by a considerable margin.
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SOM Clustering and Modelling
of Australian Railway Drivers’
Sleep, Wake, Duty Profiles

Irene L. Hudson, Shalem Y. Leemaqz, Susan W. Kim,
David Darwent, Greg Roach and Drew Dawson

Abstract Two SOM ANN approaches were used in a study of Australian railway
drivers (RDs) to classify RDs’ sleep/wake states and their sleep duration time series
profiles over 14 days follow-up. The first approach was a feature-based SOM
approach that clustered the most frequently occurring patterns of sleep. The second
created RD networks of sleep/wake/duty/break feature parameter vectors of
between-states transition probabilities via a multivariate extension of the mixture
transition distribution (MTD) model, accommodating covariate interactions.
SOM/ANN found 4 clusters of RDs whose sleep profiles differed significantly.
Generalised Additive Models for Location, Scale and Shape of the 2 sleep out-
comes confirmed that break and sleep onset times, break duration and hours to next
duty are significant effects which operate differentially across the groups. Generally
sleep increases for next duty onset between 10 am and 4 pm, and when hours since
break onset exceeds 1 day. These 2 factors were significant factors determining
current sleep, which have differential impacts across the clusters. Some drivers
groups catch up sleep after the night shift, while others do so before the night shift.
Sleep is governed by the RD’s anticipatory behaviour of next scheduled duty onset
and hours since break onset, and driver experience, age and domestic scenario. This
has clear health and safety implications for the rail industry.
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1 Introduction

Fatigue in the rail industry is an important health and safety issue in Australia [1–4].
The Australian rail industry is large and varied, combining passenger and freight
operations, and employing over 40,000 people, involved in 24-h operations, with
clear impacts on sleep, fatigue and subsequently waking function [5–7]. From an
organisational viewpoint, the fatigue associated with working time is managed
primarily by regulating work hours [1, 3, 8]. Inherent to this strategy is the
assumption that all employees use non-work time to obtain recovery sleep and that
sleep periods are of equal value to all employees [9–11].

Fatigue is affected by many factors with sleep and circadian rhythms, two of the
fundamental physiological factors. For railway drivers many factors such as envi-
ronmental, physical conditions, and type of work also impact on fatigue. Domestic
factors, marital status, presence of dependents and health status may also contribute
to sleep behaviour [9, 11], along with shiftwork experience and age. Darwent et al.
[12] demonstrated the extent to which social factors modify the timing and duration
of sleep–wake behaviour over and above the purely physiological (e.g. sleep and
circadian factors). These authors extended their initial work on using the timing and
duration of work schedules to predict sleep–wake behaviour in long-haul airline
pilots and to present a more general model that can be applied to a broader set of
work places and occupations. This work provides significant support for the
development of second-generation biomathematical models to deliver improved
capacity to design schedules for adequate sleep opportunity (see Dawson [3]).
Some recent studies of Australian railways shift workers [1, 11–13] have suggested
that drivers tend to have similar sleep patterns despite differing work schedules and
personal attributes—sleeping during the night and awake during the day. There are
clear policy implications from these findings [10, 14, 15].

The focus of this chapter is the classification and modelling of the full data set or
a subset of 190 railway drivers (RDs) sleep/wake states and also of their multi-
variate sleep duration time series profiles with respect to ANN-derived groups.
Modelling these two types of sleep outcomes (sleep state or duration) was per-
formed with respect to drivers’ predictors of sleep onset time, current and next duty
onset times, work and break onset times and break duration. RDs were asked to
wear an activity monitor 24 h a day for 14 days and record details of sleep in a
diary. Socio-demographics—marital status, number of dependents, RD age and
experience were also collected. Generalised Additive Models for Location, Scale
and Shape (GAMLSS) [16] were then used to model the two sleep outcomes with
respect to the resultant ANN clusters and the predictors of sleep/duty/break and
next duty onset and interactions with cluster.
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1.1 A Brief Overview of Biomathematical Models of Sleep
and Waking Alertness

Under normal environmental conditions, the sleep/wake cycle is synchronised with
the exogenous day/night cycle. Sleep onset recurs several hours after dusk of each
day and persists in a single consolidated bout for 6–8 h until sleep offset in the
morning. The modern era of sleep research was foreshadowed by the rise in
prominence of the biological sciences in the 19th and 20th centuries. Among the
landmark events were the technological development of the electroencephalogram
(EEG) and the discovery of rapid eye movement (REM) sleep. These formative
events elevated the historic view of sleep as a simple and passive state of rest to its
contemporary status as an essential and highly complex state of functional neuro-
logical activity.

Biomathematical models of sleep and waking alertness were originally devel-
oped to describe and evaluate competing hypotheses about the nature of the bio-
logical processes that regulate the sleep/wake cycle. The current generation of
models have their origins in the two-process model of sleep-wake regulation [17,
18]. According to this model, the sleep/wake cycle is generated by two basic
biological processes, including: (1) a circadian process—that determines 24-h
oscillations in sleepiness and alertness; and (2) a sleep homeostatic process—that
minimizes deviations from an optimal sleep amount by inducing sleepiness in
response to wake and alertness in response to sleep. Sleep restriction below the
optimum, i.e. <6–8 h/day, yields predictable dose-dependent deficits in waking
function that can be masked by alertness-enhancing activities or drugs but which
ultimately can only be recovered by sleep [19, 20].

Synchrony between the sleep/wake and exogenous day/night cycle is established
via a master anatomical pacemaker located in the suprachiasmatic nucleus (SCN) of
the anterior hypothalamus. The SCN is innervated by a rhetinohypothalamic tract
that receives light input from the exogenous environment via photosensitive
receptors in the retina. The phase and period of the pacemaker is dependent on the
input of appropriately-timed light stimuli—which under normal conditions is lar-
gely determined by the daily light/dark cycle. Encoding of exogenous light into a
biologic signal entrains the pacemaker to the day/night cycle, but this mechanism is
reciprocally mediated by the sleep/wake cycle;—which alternately retards (i.e.
closed eyes) and facilitates (i.e. open closed) passage of light into the retina.

The two-process model of sleep/wake regulation stimulated the development of
augmented biomathematical models of sleep and alertness. These sought to explain
nonlinear interactions between the circadian and homeostatic processes [21], the
distribution of REM/Non-REM cycles within sleep [22, 23], the dynamics of photic
entrainment [24, 25], and the alertness consequences of restricted and/or mistimed
sleep [26]. The predictions made by these models demonstrated robust agreement
with observed data collected in laboratory-based, experimental protocols. These
successes encouraged researchers to generalize their models to predict the perfor-
mance impairment associated with the disturbed sleep/wake cycles exhibited by
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shiftworkers in occupational settings [27–29]. The basic premise was to estimate
sleep times on the basis of biological principles and then estimate any consequent
performance impairment.

Models based on biological principles often yield poor agreement with the
sleep/wake times observed in real-world settings, particularly in shiftwork opera-
tions that involve transmeridian travel [30]. The consequence of this failure is that
the secondary algorithms used to estimate performance impairment based on
sleep/wake times are similarly poor. Failure to accurately predict sleep/wake times
in real-world settings occurs for three main reasons. First, light exposure in the
technological age is no longer dictated by the geophysical day/night cycle and is
easily altered with artificial light sources. Second, individuals have the capacity to
self-select the timing of sleep/wake cycles by the use of artificial countermeasures
(e.g. lights, noise, and drugs) to override endogenous sleep promoting signals.
Third, in the laboratory, there is a relative absence of competing
cultural/social/family priorities that in real-world situations place downward com-
petitive pressure on the time that individuals allocate to sleep.

In response to these limitations, a novel class of models emerged that instead
focused on predicting statistical distributions of sleep. These latter models were
parameterised using data collected from shiftworkers e.g. train drivers [12] and
aviation pilots [31], during their normal day-to-day lives. Calculations of perfor-
mance, which unlike sleep times are primarily determined by circadian and
homeostatic processes irrespective of cultural/social/familial factors, are then based
on the estimated sleep times. This involves intermediate algorithms to estimate the
state of the circadian and homeostatic processes given the likely distribution of
sleep times. The implication is that improved accuracy of sleep estimates leads to
improved performance predictions.

The remainder of this section gives a brief overview and motivation of the
railway driver application of this chapter which aims to understand the impacts of
duty and sleep time and break duration on sleep. Sleep enables people to recover
from the tiredness of one wakeful period in preparation for the ensuing wake period
[32–35]. Generally, the duration and quality of sleep determines the person’s
alertness and level of performance during the following period of wakefulness [36].
Researchers have shown that this relationship is positive, that is, performance and
alertness increases as sleep duration increases [37, 38] although not linear [39].

As stated earlier a two-process model was proposed by Borbely [17] based on
two basic physiological processes, a homeostatic process (S) and a circadian pro-
cess (C) [33, 40–43] which allows for the regulation of (i) the minimum quantity of
sleep for optimal daytime functioning (homeostatic), then (ii) the timing and
structure (propensity) of sleep throughout the day (circadian rhythm) [32, 33, 35].
Indeed the effects of cumulative sleep loss become manifest in sleepiness and lack
of focus during performance, with total sleep deprivation worsening a person’s
actual measures of subjective sleepiness [44], sleep latency [45], neurobehavioural
performance [46–50], and complex cognitive functions [51–53]. Performance
quality and alertness are also reduced with restricted sleep duration over one or
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more consecutive nights [54–57]. Irregular shift work schedules increase sleepiness
at work [58–60] and also increase the risk of accidents [61].

Disturbed sleep is understood to have major consequences for shift workers [62–
65], but the adverse effects may be diminished for those who effectively optimise
sleep and socialisation opportunities during their scheduled rest periods. Darwent
et al. [12] suggested that the primary factors governing optimal sleep are the timing
and duration of rest periods, which was also suggested by Kurumatani et al. [66], as
were the significant influences of local day-night cycles. Various studies [62, 67–
69] have suggested that sub-optimal sleep is a deleterious consequence of working
night shifts. Day time sleep tends to be shorter and of poorer quality due to higher
levels of ambient noise and light encroaching on the sleeping environment [70, 71],
and the desire for family and social interaction impacting further on the sleeper [72–
82]. Studies suggest that nocturnal people usually take a daytime nap and this
behaviour coincides with low alertness after lunch time [83–86]. Roach et al. [11]
investigated the effects of break duration and time of break onset on the amount of
sleep (sleep duration) obtained between consecutive work periods in a real work
setting of RD’s. Subsequently, Darwent et al. [12] proposed that when the
opportunity for sleep coincides with natural circadian rhythms (C) and homeostatic
processes (S) (outlined in the two-process model above), less sleep is achieved
when one’s sleep schedules conflict with or disrupt natural cycles [33]. The
methodologies used in the one-step and two-step biomathematical models of human
fatigue and performance is given schematically in Fig. 1 (from [33]). Unbroken
lines represent the transfer of respective inputted values. Dashed lines represent the
transfer of predicted values.

It has been suggested that railway drivers tend to have similar sleep patterns
regardless of their differing work schedules and personal attributes—that is, they
generally sleep during the night and remain awake during the day (see Kim [13],
Darwent [1, 12]). There have been suggestions that rail drivers do not tend to adapt
physiologically to irregular work schedules, with alertness and performance lowest
at 2.15 am during the early morning shift. Adequate amounts of sleep (5–6 h) have
been reported only by those drivers whose breaks began between 6 pm and 4 am,
suggestive that drivers whose breaks commence outside of these hours need a
longer break duration [1, 12, 13, 33].

1.1.1 The Data: Sleep, Wake and Duty Profiles of Australian Railway
Drivers

A series of fourteen field-based studies (two depots chosen by each of seven
members of Rail consortium) are used in this chapter. The Rail consortium com-
prised seven national rail organisations and the Rail, Tram and Bus Union. Railway
drivers were observed for a period of 14 days between June 1996 and June 1997.
For each study, drivers who participated in the study on a voluntary basis were
asked to wear an activity monitor (actigraph) 24 h a day for 14 days and to record
details of their sleep in a diary. The established reliability of self-reported subjective
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sleepiness [87] makes it a valuable feedback procedure for safety management
assessment of drivers [88, 89]. Work records were taken from the depot rosters for
the first two field studies, but because rostered work times were sometimes found to
deviate widely from realised work time, drivers who participated in the study were
also asked to keep a record of their actual work schedule, and complete the standard
shiftwork survey which covered questions on domestic and social situations, health
and wellbeing along with sleep, wake, duty and break details (see Roach et al. [11]).

Australia wide, 253 drivers of an average age of 39.7 years (range 25–59) and an
average length of shiftwork experience of 19.8 years (range 3–41 years), partici-
pated in the fourteen studies. Overall, 95 % of the actigraphy data was successfully

Fig. 1 One-step (top) and two-step (bottom) biomathematical models
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collected [33]. Two hundred and fifty one drivers returned sleep diaries, 249
returned work diaries and 233 drivers returned their completed Standard Shiftwork
Survey [13, 33]. Of the 253 drivers, there were 63 drivers who had missing
sleep/wake or work behaviour records. Only sleep/wake and work behaviour data
of 190 drivers (i.e. those without missing data) were analysed [13]. This data set of
190 time series constitutes 2814 sleep episodes (or transitions) (between 4 and 23
sleep periods for each driver) and with sleep duration ranging from 1 to 35 h. Six
variables were calculated from the diaries: Break duration (total hours off-duty);
Hours Since Break Onset; Hours To Next Duty; Next Duty Onset, Break and Sleep
onset times (on a 24-h clock). Sleep duration (hrs) was calculated per sleep episode
and socio-demographics (marital status, number of dependents, RD age, status of
young kids and driver experience) collected.

1.1.2 Model and Methods

Two ANN approaches were performed. The first approach (see Sect. 3 and Part A
of the Sect. 4 results) aimed to create RD sleep networks based on their
sleep/wake/duty feature parameter vectors, comprising weights and transition
probabilities between states (λ, Q) obtained via a transitional state process approach
of Kim [13]. See also Kim et al. [90] and the book chapter of Hudson et al. [91].
Recently Kim’s approach was generalised to a multivariate system applied by
Hudson et al. [92, 93]. This multivariate extension of the univariate mixture tran-
sition distribution (MTDg) accommodated covariate interactions [13], thus gener-
alising the MTD model of Berchtold and Raftery [94] which had no interaction
terms. The SOM/MTD analysis in this chapter was performed on the full set of 190
RDs and allows RDs to have differing lengths of sleep time series (either of 14 days
or shorter than 14 days). The mathematical details of the multivariate M-MTDg are
given in Appendix A.

The second approach (see Part B results, Sect. 5) adopts a feature-based
approach which uses ANN/SOMs to cluster the most frequently occurring patterns
of sleep duration time series profiles per driver as based on a subset of 69 of the
original 190 drivers, with a full record of 14 days sleep. ANN clustering of RDs’
sleep series was performed via VANTED [95], which was used by Hudson et al.
[92, 93] for climate change research and subsequently on this set of RDs data by
Hudson et al. [96]. The latter approach involved modelling so-called RD-specific
time series profiles, and created RD networks based on the RD’s sleep/wake/duty
feature parameter vectors.

Generalised Additive Models for Location, Scale and Shape (GAMLSS) [16]
were then used to model the two sleep outcomes (namely, the states (k; Q) and the
sleep duration (hrs) per RD) with respect to the resultant ANN clusters and the
predictors of sleep/duty/break and next duty onset and interaction terms with
cluster. GAMLSS modelling of the VANTED SOMs of sleep duration also tested
four additional predictors—hours to next duty and hours since break onset (fol-
lowing Hudson et al. [96]) along with sleep hours attained during 1 or 2 episodes
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prior to the current sleep period. GAMLSS models were recently used to investigate
climatic effects and thresholds on the intensity of Eucalypt flowering [97, 98, 168].
Similarly we aim in this chapter to establish which levels/thresholds of work/break
and timing of sleep/break/next duty trigger fatigue. GAMLSS model optimality is
based on the AIC criterion, RD is treated as a random effect and cubic splines used.
Circularity of time is accommodated for in Part B for all onset times on a 24 h clock
(e,g, sleep onset, break onset, next duty onset). Two models- 1 and 2- are fitted
using both stepwise and non-stepwise GAMLSS procedures. Model 1 contains the
predictors; sleep at lag 1–2, SOM group factor, sleep, break and next duty onset
times, break duration, hours to next duty (and their interactions with group). Model
2 is Model 1 plus the additional covariate, hours since break onset.

2 The Self Organising Maps

The Self Organising Map [99], known as the Kohonen feature map, converts
complex, nonlinear statistical relationships between high-dimensional data into
simple geometric relationships on a low-dimensional display, usually a 2D
map. The SOM as such is a topological map which organises itself based on the
input patterns that it is trained on. A non-time series SOM approach was used
recently to map living standards in VietNam [100] and for accident risk classifi-
cation of Australian railway crossings [101], the latter study developed a SOM with
mixtures approach where the SOM best mapping units were clustered using model
based clustering (MCLUST) of Fraley et al. [102]. The SOM algorithm converts
complex, nonlinear relationships between high-dimensional data into simple net-
works and a map based on the most likely patterns in the multiplicity of time series
that it trains. The aim of this chapter is to cluster and model the profiles using a
SOM approach adapted recently for multivariate time series data to analyse flow-
ering series and to derive a new metric for species synchronisation of flowering
[92]. We adopt a feature-based approach which uses SOMs to cluster the most
frequently occurring patterns of profiles of episodic sleep events. Generalised
Additive Models for Location, Scale and Shape (GAMLSS) [16] of attained sleep
are then used to model RDs’ sleep with respect to resultant SOM cluster mem-
bership and the following predictors: hours to next duty and hours since break
onset, sleep onset time, next duty onset time, break onset time and break duration;
and their interactions with cluster, along with sleep hours attained 1 or 2 sleep
episodes prior.

2.1 Time Series Clustering: Why SOMs?

Given a set of (possibly unlabeled) time series, one often wants to determine groups
of time series that are similar [103]. This process is called time series clustering, a
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method organised into 3 groups depending upon whether they are applied directly
to the raw data either in the time or frequency domain, or work indirectly with
(i) features extracted from the raw time series data, or indirectly with (ii) models
built from the raw data. The former raw data approach relies on a major modifi-
cation of replacing the distance/similarity measure for static (non-time series) data
with an appropriate one for time series. The latter approaches (i) and (ii) first
convert raw time series data either into a feature vector of lower dimension or a
number of model parameters, both result in forms of static data, so that existing
algorithms for clustering static data can be used directly. Conventional clustering
algorithms can then be applied to the extracted feature vectors or model parameters.
These approaches are thus called a feature-based and model-based approach,
respectively. There are two major approaches of feature and model-based methods:
a statistical approach (e.g. AutoClass [104], which uses Bayesian statistical analysis
to estimate the number of clusters), and a neural network approach. A well-known
method of the neural network approach to clustering used in this chapter is
Kohonen’s self-organising feature map [99]. The 3 major procedural steps for time
series clustering are: clustering algorithms; data similarity/distance measurement;
and performance evaluation criterion of clusters. Various iterative algorithms have
been developed to cluster different types of time series. Generally these modify
existing algorithms for clustering of non-time-series (static) data—our focus is
self-organising maps (SOMs).

Raw-data-based approaches usually imply working in a high dimensional space
and apply either in the time or frequency domain. Any two time series being
compared are conventionally sampled at the same interval, but their length (number
of time points) may vary. Particular raw data-based applications are studies to find
similar regions of activation of the brain using functional MRI (fMRI) data; DNA
microarray studies and use of clustering and discriminant analysis of non-stationary
time series. Feature-based clustering methods have been proposed to reduce
dimensionality and to deal with time series that are highly variable in time (and
possibly space), attributes which phenological time series often possess (see
Hudson et al. 2011 [92]). Feature extraction methods tend to be generic in that the
extracted features are usually application dependent, applications can involve
clustering algorithms of spectra constructed from the original time series or clus-
tering using the Haar wavelet transform, e.g. using fMRI time series to identify
brain regions with similar activation patterns, whereby features extracted comprise
cross-correlation measures.

The performance of a time series clustering method relies on the function used to
measure the similarity between two data sets being compared to determine the
appropriate number of clusters, M. Data may be of various forms—as raw values of
equal or unequal length, vectors of feature-value pairs, and also transition matrices
(as in Sects. 3 and 5, Part B). Whilst the following clustering algorithms, k-means,
and fuzzy c-means algorithms, require the number of clusters M to be specified a
priori, this is not necessarily the case for SOMs as used in batch mode. For
example, M was determined for the SOM application in this chapter as that number
of clusters for which the correlation between the RD sleep hour pairs (network
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arms) remain stable (for changing values of cluster number, as an iterative process).
Information criteria (IC) such as the Akaike (AIC), Schwarz (BIC) and the inte-
grated complete likelihood (ICL) [105] can be used if the data arise from an
underlying mixture of Gaussian distributions with equal isotropic covariance
matrices. The optimal number of clusters is then the one that yields the highest
value of the information criterion. Under the framework of time series clustering, as
described above, we investigate in this study a feature-based time series clustering
approach which uses SOMs to investigate the most frequently occurring patterns
(features) of a set of RD time series profiles of attained sleep (duration).

2.2 Clustering Based on the SOM Algorithm

Self-organising maps (SOMs) [99] are a popular tool for analysing variability in
large, complex, multidimensional, multivariate datasets. Among the various exist-
ing neural network architectures and learning algorithms, the SOM is one of most
popular neural network models. It is an unsupervised learning algorithm, funda-
mentally a pattern recognition process, in which intrinsic inter- and intra-pattern
relationships within the data set are learnt without the presence of a potentially
prejudiced or outside influence. SOMs provide a powerful, nonlinear technique to
optimally summarise and visualise complex data using a preselected number of
“icons” or SOM states, allowing rapid identification of preferred patterns and
numerous aspects of data variability [106]. SOMs produce an expedient, concise
organisation (to identify natural groupings) of multivariate data based on similar-
ities among the patterns. This is achieved without imposing a structure on the data
(as done by K means) [101, 107]. The SOM consists essentially of two layers of
neurons (or nodes): the so-called input-layer and the output layer (Fig. 2). The SOM
algorithm presents a regular, traditionally two-dimensional (2-D), grid of map
nodes, where each node is represented by a prototype vector, which is of the input
vector-dimension. The nodes are connected to adjacent units by a neighbourhood
relation (see Fig. 2 and steps 2 and 3 in Sect. 2.2.1).

In general terms the SOM algorithm involves an iterative training procedure,
where an elastic net that folds onto the ‘data cloud’ is formed [108]. This is
achieved by mapping data points that are close together (in the Euclidean sense)
onto adjacent map units. Learning in SOM is founded on competitive learning
where the output nodes of the network compete amongst themselves to be activated
or fired (Fig. 2). Only one output node, or one node per group, is considered to be
on at any one time. The output nodes that win the competition are traditionally
termed the winner-take-all nodes. During the self-organisation process, the cluster
unit whose weight most closely matches the input data (typically, in terms of the
minimum squared Euclidean distance) is chosen as the winner. The weights of the
winning node and its neighbours are then updated proportionally in the iteration
process.
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2.2.1 Initialize Weights, BMUs and Adjusting the Weights

SOM as applied in this chapter is a tool for extraction of common measurement
patterns over time. The mathematics described in this follows the framework of
Hudson et al. [92]. Consider a time series Y tð Þ ¼ S ¼ y1; . . .. . .:; ynð Þ and fix the
sliding window’s width at l. A set of time series segments X sð Þ ¼
si ¼ si; . . .; siþ l�1ð Þ ji ¼ 1; . . .. . .; n� lþ 1f g can be formed, and will be presented

to the SOM initial map as input patterns for training of the network. In contrast to
the traditional SOM algorithm, where the input vector is the actual data vector and
the final trained map groups data nodes with similar characteristics, the trained map
in this study inputs patterns of time series and is expected to group a set of patterns
X1; . . .;Xk , where k is the size of output map (or output layer plane). The SOM
process can be split into two phases, the training phase and the assigning phase.
During the training process, the temporal patterns represented by each node of the
output layer change at each iteration according to the pattern inputted (Fig. 2).
A pattern structure that represents the majority of the winning candidates and is
different from its neighbours is formed in the final process. This final set of patterns,
obtained from the output layer, then represents the most frequently appearing
patterns according to the given time series inputted into SOM. Figure 3 exemplifies
such a formation of frequently appearing patterns from two output nodes. Different
iterations of the whole SOM training process lead to such an evolving process.

Firstly the SOM algorithm is described in more general terms of the best
mapping unit (BMU) and centroids, and secondly by a more mathematical
description of the algorithmic steps of the SOM (steps 1–3 below). The SOM
approach constitutes firstly a training phase in which clusters of common input
patterns in the data are identified. Secondly, a lookup phase which assigns each
input vector to the best fitting cluster (centroid). At the beginning of each iteration,
an input pattern vector is chosen randomly from the set of input patterns, denoted

Fig. 2 The architecture of the
Self Organising Map
(SOM) with M cluster nodes
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by the subscript k. The chosen input pattern is then given by Xi; i 2 1; 2; . . .; nf g.
After an input pattern vector Xi is selected, the SOM examines all the remaining
nodes in the lattice (network or grid) to identify the so-called Best Matching Unit
(BMU) (steps 1–5 below), considered to be the node corresponding to the weight
vector that is nearest to the current input pattern vector.

For each input pattern Xi and each node j, the closeness between each input node
and the initial weights is given by:

Dj ¼
X

i
ðXi � wijÞ2 ð1Þ

where w is the weight vector, and X are the input patterns.
Equation (1) is equivalent to the more general formulation, given in Eq. (2) of

step 1 below. The BMUs are thus obtained by selecting input patterns that have the
minimum Euclidean distance. These BMUs can be considered as the most fre-
quently appearing patterns (these are shown in the RD-specific coloured boxes of
Fig. 9 according to the input time series). After the BMUs are obtained, in each
iteration, the neighbouring nodes within the BMU radius (neighbourhood) are
found using Pythagoras theorem (step 2).

The final step in each training iteration is the adjustment of the weights for the
nodes in the BMU’s neighbourhood set (step 3). During this step, the BMU and its
neighbours are moved closer to the input vector Xi in the input space. Nodes that are
nearer to the BMU have a larger weight alteration than the ones further away. The
weight adjustment is different for each neighbourhood node, and is dependent on
the distance between the node and the BMU and the learning rate (step 2). By
repeating this process using a different random input vector for each iteration, a
topology-ordered map is produced by SOM [109]. Thus during the training phase, a
SOM weight matrix is trained based on the mapping-data analysed. SOM adapts
itself to common input patterns. The outputs of this phase are centroids, or BMUs.

An overview of the mathematical approach and algorithmic steps of the SOM
follow. The SOM algorithm begins from an initial map containing random weights,
which are standardised random values between 0 and 1, i.e. 0 < w < 1. After the
weights are initialised, the input pattern Xi is presented to the initial map or lattice.

Fig. 3 Two examples of patterns gleaned during the pattern discovery process (http://www.
researchgate.net/publication/228771755_Pattern_discovery_from_stock_time_series_using_self-
organizing_maps accessed September, 2015)
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Essentially each training-iteration consists of the following iterative steps: presen-
tation of a randomly chosen input pattern vector from the input space, the evalu-
ation of the network, and updating of the weight vectors (steps 1–3 below).

Step 1. Initialization of the training process: Initialize by assigning small random
values to the weight vectors w of the neurons in the network. Each of the neurons
i in the 2-D map is assigned a weight vector. At each training step t, a so-called
training data X(t) = x(t) (time series at training step t of length n), or input pattern
from the input space, is chosen randomly. The Euclidean distances between the
input pattern x(t) and weight vector is computed for all M neurons in the network.
A winner neuron (cluster) wv is that which achieves the smallest Euclidean distance
to x(t):

v ¼ argmin
i

xðtÞ � witk k; i 2 f1; . . .;Mg ð2Þ

for M the total number of neurons in the 2D map (or grid).
Step 2. SOM adjusts the weight of the winner neuron (cluster) and all the

neighborhood neurons as follows. The weight of neuron i is updated depending
upon whether it lies within a certain neighbourhood kernel hmi tð Þ around the winner
neuron or not. The updating rule for the weight of the winner neuron is:

wiðtþ 1Þ ¼ wiðtÞþ aðtÞ � hmiðtÞ � ½xðtÞ � wiðtÞ� ð3Þ

where aðtÞ is the learning rate and hmiðtÞ is the neighborhood kernel at training step
(or time) t, respectively. The neighbourhood kernel hmiðtÞ is a function which is
defined over the lattice points (Fig. 2). Both the size of the neighbourhood and the
learning rate (or step size of weight adaptation) shrink monotonically with the
iterations, i.e. decrease monotonically with time within 0 and 1.

Step 3. Update the weights of the neighbourhood neurons such that:

wkðtþ 1Þ ¼ wkðtÞþ aðtÞ � hmkðtÞ

�

xðtÞ � wmðtÞþ wmðtÞ � wkðtÞ½ � dmk
Dmkk

� 1
� �h i� �

; if wmðtÞ between xðtÞ and wkðtÞ

xðtÞ � wmðtÞ � wmðtÞ � wkðtÞ½ � dmk
Dmkk

� 1
� �h i� �

; if wkðtÞ between xðtÞ and wmðtÞ

xðtÞ � p½ � þ p� wkðtÞ½ � dmk
Dmkk

� 1
� �� �

; otherwise

8>>>><
>>>>:

where dmk and Dmk are the distances between neurons v and k in the data space on the
map, respectively. Here k is a positive and pre-specified resolution parameter. It
represents the desired inter-neuron distance reflected in the input space and depends
on the size of the map, the variability in the data, and the required resolution of the
map.

Step 4. Refresh the map randomly and choose a neuron weight.
Step 5. Repeat steps 1–4 until the map converges.
In each iteration, the winner neuron (cluster) in the output space is found and its

center (centroid) is updated according to step 3. The number of centroids M needs
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to be determined before the training phase, but M can remain unspecified and vary
in the batch mode of SOMs. Since the neighbouring neurons are updated at each
step, there is a tendency that neighbouring neurons in the network represent
neighbouring locations in the feature space. Hence the topology of the data in the
input space is preserved during mapping via the SOM algorithm. The algorithm
requires many iterations in order for SOM to determine a map of stable zones,
which subsequently acts as a feature classifier. The unseen input vectors simulate
nodes in the zone which have similar weight vectors [110].

2.2.2 Visualisation Software: VANTED

Clustering of the RDs’ sleep duration time series of this chapter was performed
using the VANTED (visualization and analysis of networks containing experi-
mental data) software platform [111] (see Part B results). The VANTED system
offers a variety of new functionalities for visual exploration, statistical calculations
(t-test, outlier identification, correlation analysis), and data clustering with
self-organising maps, available free at http://vanted.ipk-gatersleben.de.
Applications of VANTED including a user guide and example data are available at
the web site. To date, no other data visualisation tool apart from VANTED permits:
(i) calculation of correlations within a complex data set; (ii) automatic generation of
correlation networks from such correlations; and (iii) clustering of data via neural
(or neuronal) network algorithms, i.e. SOM developed by Klukas et al. [111] and
Junker et al. [95]). SOM is useful when correlations between vector components in
the input data exist. SOM visualisation can also be used to inspect correlations
based on clustering the patterns underlying the time series records, even if they are
in different parts of the data space. Such correlations, for example, were given by
Hudson et al. [92] for each of the phenological Eucalypt species pairs analysed in
those climate studies (see also Kim [13]).

2.3 Verifying the SOM/KM Groups via GAMLSS Modelling

GAMLSS [16] methods were used to model the RDs’ dynamic profiles of attained
sleep (sleep duration) over time, in part to verify the multivariate MTD-SOM/KM
groupings or SOM VANTED groups and also importantly to test for important
differential effects of various predictors of sleep (break onset time, break duration,
sleep onset and next duty onset time) across the MTD-SOM/KM groupings.
Significant predictor by group interactions thus add insight as to what drives
specific groups of RDs to sleep and wake as they do. The benefits of GAMLSS for
time series analysis are that they can: identify the main drivers of the event of
interest from a multiplicity of predictors, allow for possible non-linear impacts of
the explanatory variables/predictors and detect statistically for change points and
account for the auto-correlated nature of time series, by incorporating lag effects.
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The GAMLSS framework of statistical modelling is implemented in a series of
packages in R, which can be downloaded from the R library, CRAN, or from http://
www.gamlss.com. The GAMLSS procedure used here [112] involved cubic spline
smoothing functions, where ‘spline’ refers to a wide class of functions used in
applications requiring data interpolation and/or smoothing. For each model tested it
was assumed that the sleep duration series is represented by a Gaussian (normal)
distribution. The RS algorithm, a generalisation of the algorithm of Rigby and
Stasinopoulos [113, 114], was used to obtain the estimates of covariate (predictors
of sleep hours or duration of sleep) as non-linear cubic spline terms.

3 MTDg Procedural Methods: Part A

The aim of Part A of this chapter is to study the multivariate relationship between
the probability of sleep states (on/off), in relation to discrete states of the 6 pre-
dictors of shift, duty, next duty break and break duration along with characteristics
of the driver’s next scheduled duty. This is performed via a generalised multivariate
generalisation of the mixture transition distribution (MTD) analysis, which allows
for a different transition matrix for each lag (up to 2 sleep episodes backwards in
time) to the present sleep episode, the so-called MTDg analysis (of Berchtold [115–
117]). Following Hudson et al. [91, 93] and Kim [13] in this chapter we use our
extended MTDg model to allow for interactions (between covariates) to account for
changes in the transition matrices amongst the differing sleep lags. This work
extends both the MARCH MTD software [116, 117] and generalises also the
previous work of Kim et al. [90, 118] used to model historical flowering records of
four eucalyptus species with respect to climate indicator time series. An early
review of the original MTD is given by Berchtold and Raftery [94].

Our extended multivariate version of the MTDg model [91, 93] as employed in
this chapter accommodates interactions via the AD Model BuilderTM (ADMB) of
Fournier [119] (see the recent review of Fournier et al. [120]). Our extended model
is different to MARCH [116] given it is multivariate in nature, but also in the way it
incorporates interactions between covariates and in its minimisation process,
namely use of ADMB [119, 120]. ADMB employs auto-differentiation as a min-
imisation tool, which we showed to be computationally less intensive than MARCH
[13, 90, 118]. Details of the mathematical formulation of our M-MTDg are given in
Appendix A.

The methodologies used in Part A, the multivariate-MTDg (M-MTDg) and the
SOM analysis involve the following steps. Firstly an MTDg analysis is performed
to obtain the reparameterised time series profiles, thus creating new equal length
time series per driver, which are of significantly reduced dimensions. Secondly a
SOM/KM classification is adopted to cluster the M-MTDg reparameterised time
series profiles into groups with similar sleep duration profiles. Thirdly the groupings
identified by the SOM/KM classification were used as a categorical predictor
(‘SOM/KM group’ factor) in a subsequent analysis of the 190 time series, a record
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of RDs’ daily sleep hours per sleep episode. The analytic method for modelling
sleep duration was the generalised additive model for location scale and shape
(GAMLSS) developed by Rigby and Stasinopoulos [16] and adapted to include
interactions (see similar applications by Hudson et al. [97, 98, 121, 122]).

These GAMLSS results are given in Sect. 4. In part they aim to verify the
significance of the four SOM/KM groupings established by our two-step M-MTDg

then SOM/KM approach. More importantly the GAMLSS analysis is also able to
identify significant differential effects of the following 6 predictors on attained sleep
across groups—namely, break onset time, sleep onset and next duty onset time,
break duration (hrs), hours since break onset and hours to next duty. Lagged
differences of the current number of hours of sleep were added into GAMLSS as
autoregressive (AR) lags. Cubic spline effects are denoted as cs(·). Railway driver
effects were modelled as a random ‘driver’ effect in GAMLSS [13, 16].

3.1 The MTDg Data

3.1.1 The Data: Sleep, Wake and Duty Profiles of Australian Railway
Drivers

Sleep/wake and duty and off-duty records are shown visually in Figs. 4 and 5
(see also Fig. 6). Using these raw records, the following six variables were derived:

Fig. 4 Schematic of sleep/wake and break/duty data for drivers with ID 1002, 1007, 1010, 1013
and 1020. Horizontal axis indicates time on the 24 h clock (7: 7 am, 21: 9 pm). Each driver’s duty
schedule is colour coded: pink for duty; blue for off duty; grey for night (9 pm–7 am), white for no
data. ‘—’ indicates that the Railway driver is in the sleep state (see Kim [13])
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• Break onset time: the time (on a 24 h clock) when a driver starts his or her break
(i.e. time at the first hour off-duty). If a driver is off-duty, the time when the
off-duty episode began is their break onset time.

• Break duration: total number of hours of an off-duty period if a driver is
off-duty.

Fig. 6 Estimated P (sleep) obtained via Model C (blue bars) with observed sleep/wake states
(black lines). Pink shades indicate duty and grey shades indicate night. A 7 on the x-axis indicates
7 am, 21 indicates 9 pm, and 0 indicates midnight (refer to Kim [13])

252 I.L. Hudson et al.



• HrsSinceBreakOnset: number of hours since a break started, i.e. the number of
hours since break onset when a driver goes to sleep

• HrsToNextDuty: number of hours left till the next duty begins, i.e. the number
of hours left till the next duty.

• Sleep onset time: the time (on a 24-h clock) when a driver goes to sleep.
• Sleep duration: the duration (in hours) of a sleep period or episode.

The six variables are illustrated for five RDs, with unique ID’s as given in
Table 1 (see also Figs. 5 and 6). Note that driver 1002 (driver ID = 1002) had 14
sleep episodes recorded, the first two sleeps were of duration 8 and 9 h, which
occurred at 10 pm (‘sleephr’ = 22 h) and 9 pm (21 h), respectively. These two sleep
durations happened during driver 1002’s break or off-duty period, both of which
lasted 177 h and commenced at 10 pm (22 h). These sleep episodes occurred 8 and
32 h after driver 1002 commenced their break (hrs since break onset). This driver
anticipated the next duty to start at 7 am, with 169 and 145 h to the next anticipated
duty (at each of the first two sleep episodes). Note that all drivers can have a
variable number of follow up days. For example, driver 1007 had 10 sleep episodes
recorded, and their last two sleep episodes (9 and 10) were relatively short in
duration (6 and 7 h). Driver 1007 commenced duty in the early morning, for break
periods of a relatively short duration (9 and 22 h), and with sleep periods that
occurred quite close to the next duty onset (15 and 4 h ahead). In total we analysed
190 railway drivers’ sleep/wake/duty records which comprised 2,814 sleeps (4–23
sleeps for each driver) with a follow-up duration ranging from 1 to 35 h.

Table 1 Format of the data per railway driver (RD)

Driver Sleep
number
(ID)a

Duration
of sleepb

Sleep
onset
timec

Break
onset
time

Break
duration

Hrs
since
break
onset

Next
duty
onset
time

Hrs to
next duty
onset

1002 1 8 22 22 177 8 7 169

1002 2 9 21 22 177 32 7 145

… … … … … … … … …

1002 13 7 23 16 31 14 23 17

1002 14 2 19 16 31 29 23 2

1007 1 10 23 16 57 17 1 40

1007 2 8 23 16 57 39 1 18

… … … … … … … … …

1007 9 6 1 22 24 9 22 15

1007 10 7 0 9 26 22 11 4

… … … … … … … … …

1020 1 7 0 0 64 7 16 57

… … … … … … … … …
aSleep number denotes the number of sleep episodes for each driver
bDuration of sleep (hrs) per sleep episode for a given sleep period
cSleep onset time is on the 24-h clock and defines the start of each sleep episode
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3.1.2 Cut-Points for Categorisation of the Predictor Variables

The variables in the sleep series such as sleep onset time, break onset time, break
duration, next duty onset time, number of hours since break onset and number of
hours to next duty onset time, and time were categorised for the implementation of
the MTD analysis. The categories for each predictor variable, as summarised and
interpreted in terms of sleep research ‘speak’ are given in Table 2. Such

Table 2 Interpretation of the four categories of the 6 predictors of sleep behaviour gleaned by the
GAMLSS analysis

Variable name Category Category description

sleepOnset 9 pm–11 pm Sleep opportunity at night—morning types

0 am–3 am Sleep opportunity at night—evening types

4 am–9 am Sleep opportunity in the early morning

10 am–8 pm Sleep opportunity in the afternoon and daytime
nappers

breakOnset 9 am–1 pm Break after the night shift

2 pm–7 pm Break after the morning shift

8 pm–1 am Break after the afternoon shift

2 am–8 am Break after the evening shift

breakDuration 1–24 h Break between consecutive shifts of the same type

25–35 h Break between consecutive shifts of a different
type

36–159 h Break between non-consecutive shifts

>159 h Leave (not a normal rest period)

NextDutyOnset 7 pm–midnight Start night shift (daytime sleep beforehand)

1 am–6 am Start morning shift (short night sleep before)

7 am–noon Start morning shift (normal night sleep before)

1 pm–6 pm Start afternoon shift (late night sleep before)

HrsSinceBreakOnset 1–15 h Sleep opportunity within a day since break onset

16–35 h Sleep opportunity in 1-1.5 days since break onset

36–71 h Sleep opportunity during a longer break

>71 h Sleep opportunity during leave from work

HrsToNextDuty 1–8 h Sleep opportunity of a sleep less than 8 h

9–16 h Sleep opportunity of a sleep longer than 8 h

17–85 h Sleep opportunity during a break longer than half a
day

>85 h Sleep opportunity during leave
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interpretations (in the category description column of Table 2) were obtained after
consultation with sleep research experts (authors Dawson, Darwent and Roach).

3.2 MTDg Models: Analysis of the Dynamic Sleep
and Wake States

In Kim [13] 10 MTD models were presented whereby each driver’s dynamic
discretised sleep and wake (sleep = ‘off’) states were analysed with respect to
subsets of six predictors, break onset time (‘bonset’), break duration (‘bduration’),
next duty onset time (‘ndonset’), hours since break onset (‘HSBO’), hours to next
duty onset (‘HTND’) and time of the day (‘time’), which were categorised into four
levels (Table 2). Note that an extra 5th category, ‘duty’, was required for each
predictor, so that a wake episode, when a driver is ‘on duty’, could be distinguished
from waking episodes which interrupt a period when a driver is off-duty. Also
‘sleephr’ was categorised as a sleep/wake indicator (0 for wake, 1 for sleep). The
notion of ‘time’ needed also to be investigated as a possible candidate predictor of
sleep propensity or opportunity (Table 2).

The ten MTD models of Kim [13] were run and tested on each of the RDs’ time
series, e.g. 190 runs for each model, i.e. 1900 runs in all for 10 models. Firstly four
main effects models were analysed, these are denoted by Model A, B, C and D as
follows;

• Model A: ‘bonset’ + ‘bduration’ + ‘ndonset’ + ‘HSBO’
• Model B: ‘bonset’ + ‘bduration’ + ‘ndonset’ + ‘HTND’
• Model C: ‘bonset’ + ‘bduration’ + ‘ndonset’ + ‘time’
• Model D: ‘bonset’ + ‘bduration’ + ‘ndonset’.

Model C was found to be optimal for 173 of the 190 drivers [13], so subse-
quently a two-way interaction between specific predictor variables was added to
Model C to test a further six interaction models.

Ten MTD models in total were compared, as in Kim [13], and their model
specification is given below. These six interaction models based on Model C
denoted by Model CIj (j = 1, …, 6) were:

• Model CI1: Break onset time (‘bonset’) and break duration (‘bduration’)
• Model CI2: Break onset time (‘bonset’) and next duty onset time (‘ndonset’)
• Model CI3: Break onset time (‘bonset’) and time of the day (‘time’)
• Model CI4: Break duration (‘bduration’) and next duty onset time (‘ndonset’)
• Model CI5: Break duration (‘bduration’) and time of the day (‘time’)
• Model CI6: Next duty onset time (‘ndonset’) and time of the day (‘time’).
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Table 4 shows the estimated values of the (λ, Q) parameter vectors, for a
selection of five drivers (with IDs 1002, 1007, 1010, 1013 and 1020). See also
Fig. 6. Each RD’s sleep/wake time series is analysed by MTD model C, CI3 and
CI6. Figure 6 shows the MTDg predicted sleep probabilities, P(sleep), as blue bars,
with the driver’s observed sleep/wake states shown as black lines, for four drivers
(each from group j, j = 1, …, 4), found subsequently by the cluster analysis of each
RD’s MTDg (λ, Q) vector profiles (see Fig. 6, Tables 3 and 4).

Table 3 MTDg parameters (k; Q)

Model Model specification

Main effects models

C P sleepð Þ ¼ kbonsetqbonsetsleep þ kbdurationqbdurationsleep þ kndonsetqndonsetsleep þ ktimeqtimesleep

Interaction models (CIj, j = 1, 2, …, 6)

CI3
P sleepð Þ ¼ kbonsetqbonsetsleep þ kbdurationqbdurationsleep þ kndonsetqndonsetsleep þ ktimeqtimesleep

þ kbonset�timeqbonset�timesleep

CI6
P sleepð Þ ¼ kbonsetqbonsetsleep þ kbdurationqbdurationsleep þ kndonsetqndonsetsleep þ ktimeqtimesleep

þ kndonset�timeqndonset�timesleep

where the MTDg weights are related to the following main and interaction effects,

kbonset break onset time variable

kbduration break duration variable

kndonset next duty onset time variable

kHSBO hours break onset variable

kHTND hours to next duty onset variable

ktime time of day variable

kbonset�time interaction between break onset time and time of day

kndonset�time interaction between next duty onset time and time of day

and the relevant vector of MTDg transition probabilities (TPs) are:

qbonsetsleep transition probabilities from break onset time categories to sleep

qbdurationsleep transition probabilities from the break duration categories to sleep

qndonsetsleep transition probabilities from the next duty onset time categories to sleep

qHSBOsleep transition probabilities from the hours since the break onset categories to sleep

qHTNDsleep transition probabilities from the hours to the next duty onset categories to sleep

qtimesleep transition probabilities from the time of a day categories to sleep

qbonset�timesleep transition probabilities from the interaction between break onset time and time of a day

qndonset�timesleep transition probabilities from the interaction between next duty onset and time of a day
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4 Results and Interpretation: Part A

4.1 SOM/KM of M-MTD and the GAMLSS Models

In this section we focus on two variants of MTD Model C, namely Model CI3 and
Model CI6 (see Sects. 4.1.1–4.1.5) in our reporting of the results of the analysis of
SOM/KM clustering of the multivariate RD-specific MTD parameters (k; Q).

4.1.1 Summary of the CI6 Model

Figure 7 shows the U matrices of the SOM/KM clustering of the CI6 model (k; Q)
data, where model CI6 is {bonset + bduration + ndonset + time + ndonset*time}.
SOM/KM found 4 groups of size 29, 59, 45 and 47 which have significantly
different sleep duration, where the group effect is denoted by SOMKMj (j = 1, 2, 4)
in the GAMLSS model (Table 5). Group 3 is the baseline contrast. Table 5 and
Fig. 8 show that group 2 drivers have the least sleep and group 3–4 the most
sleep. Table 5 shows that sleep patterns differ significantly between group 1 and 3
(p < 0.003) and between group 2 and 3 (p < 0.02). Current sleep is also highly
positively related to attained sleep one episode prior (p < 0.00005) and at lag 2
(p < 0.05). The other significant main effects are break onset (p < 0.0003) and next
duty onset time (p < 0.005). Sleep onset and break duration are not significant main

Fig. 7 SOM/KM clustering and U matrices for Model CI6 (k; Q) data. From top left hand corner:
U-matrix, k1; k2; k3; middle row k4; k5 and q1, q2 and bottom row q3, q4 and q5. The lambda
weights are for break onset time, break duration (hrs), next duty onset and sleep onset time and
time of duty/shift
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effects. All significant factors are shown to have non-linear effects on current
sleep. GAMLSS found significant differential effects on attained sleep of the fol-
lowing factors by group: sleep onset time by group (group 1 vs 3, p < 0.003; group
2 vs 3, p < 0.0005; group 4 vs 3; p < 0.03) and of next duty onset time by group
(group 2 vs 3, p < 0.005). The impact of break onset time and break duration was
similar across the groups. Interactions can be interpreted from Fig. 8 (LHS).
Figure 8 shows the predicted sleep hours using the GAMLSS model for CI6 (left)
and model CI3 (right) allowing interaction effects of group by sleep onset time, by
break onset time, by break duration and by next duty onset time (group is
colour-coded).

Table 5 GAMLSS model for Model CI6

Estimate SE t value Pr(> |t|)

(Intercept) 4.385 0.34 12.777 0.0000

Group differences

SOMKM1 −1.51 0.5 −3.0541 0.002

SOMKM2 −1.32 0.52 −2.5263 0.012

SOMKM4 −0.767 0.48 −1.5944 NS†

Lag effects

cs(lag1) 0.138 0.033 4.2174 0.00003

cs(lag2) 0.066 0.033 2.0069 0.045

Main effects

cs(sleepOnset) −8.30E-04 0.009 −0.0899 NS

cs(breakOnset) 4.85E-02 0.011 4.2214 0.00025

cs(breakDuration) 3.07E-03 0.003 1.2259 NS

cs(NextDutyOnset) 3.35E-02 0.012 2.8289 0.0047

Group by sleep onset interaction

SOMKM1:cs(sleepOnset) 3.94E-02 0.013 3.0042 0.0027

SOMKM2:cs(sleepOnset) 4.23E-02 0.012 3.5060 0.00046

SOMKM4:cs(sleepOnset) 2.91E-02 0.013 2.2886 0.02

Group by break onset interaction

SOMKM1:cs(breakOnset) −1.12E-02 0.017 −0.6374 NS

SOMKM2:cs(breakOnset) −1.47E-02 0.016 −0.8967 NS

SOMKM4:cs(breakOnset) −8.67E-03 0.017 −0.5217 NS

Group by break duration interaction

SOMKM1:cs(breakDuration) −1.28E-03 0.003 −0.426 NS

SOMKM2:cs(breakDuration) 5.75E-05 0.003 0.0169 NS

SOMKM4:cs(breakDuration) 4.24E-03 0.003 1.5421 NS

Group by next duty onset interaction

SOMKM1:cs(NextDutyOnset) 1.99E-02 0.019 1.0618 NS

SOMKM2:cs(NextDutyOnset) 3.80E-02 0.02 1.937 0.05

SOMKM4:cs(NextDutyOnset) 1.52E-02 0.018 0.8364 NS
aNS denotes not significant at the 5 % level of significance
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4.1.2 Summary of the CI3 Model

For model CI3, namely {bonset + bduration + ndonset + time + bonset*time}, the
SOM/KM clustering of the (λ, Q) data of the CI3 model also found 4 groups of size
43, 50, 49 and 48 which have significantly different sleep durations. Group 3 is the
baseline contrast in GAMLSS modelling. Group 2 drivers have the least sleep and
group 4 the most sleep. Sleep patterns differ significantly between group 1 and 3
(p < 0.005) only. Current sleep is also highly positively related to attained sleep one
episode prior (p < 0.00001) and at lag 2 (p < 0.00001). The other significant main
effects are break onset (p < 0.000001), break duration (p < 0.000001) and next duty
onset time (p < 0.000001). All significant factors are shown to have non-linear
effects on current sleep. Sleep onset time is not a significant main effect. GAMLSS
found significant differential effects on attained sleep of the following factors by
group: sleep onset time by group (group 2 vs 3, p < 0.02); and of break duration by
group (group 2 vs 3, p < 0.03). The impact of break onset and next duty onset time
was similar across the groups. Figure 8 shows the predicted sleep hours using the
GAMLSS model for CI3 (right). Note that RD membership in CI3 and CI6 groups
are not significantly related (LR = 6.45, p > 0.6).

Fig. 8 Predicted sleep hours using the GAMLSS model for CI6 (left) and model CI3 (right)
allowing interaction effects of group by sleep onset time, by break onset time, break duration and
by next duty onset time (group is colour-coded)
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4.1.3 Interpreting the Interactions in the GAMLSS Models

Adequate sleep (5–6 h) is reported only by RDs with breaks between 6 pm and 4
am except for group 2 with minimum sleep (CI3 model) and for group 1 the cluster
with the next lowest attained sleep hours. Next duty onset time and break onset time
are significant factors in determining current sleep, for both the CI3 and CI6
models. When break onset is between 7 am and 8 pm sleep increases similarly
across groups for both models. Sleep onset time has a different effect across groups
for both models, with differences particularly evident between the groups with
maximum versus minimum sleep.

Next duty onset time and break duration also operate differently on current sleep
across the RD groups, for models CI6 and CI3, respectively. Specifically for model
CI6, group 3 RDs, with maximum sleep, rapidly increase sleep hours (duration) as
their next duty onset occurs later than 12 noon; whereas group 2 RDs, with min-
imum sleep, have reduced sleep hours when their next duty onset occurs between
midnight and 5 am, or from 7 pm to midnight.

Generally RDs increase sleep for break duration of 1-2 days. For model CI3
break onset time and next duty onset time have a similar effect across the RD
groups. Most sleep occurs when the diver’s next duty onset occurs between midday
and 4 pm and least sleep duration, when next duty onset is between midnight and
3 am. For model CI6 generally sleep increases for next duty onset (NDO) between
10 am and 4 pm for all groups, except for group 2 (RDs with minimum sleep) for
whom most sleep occurs when the RD’s NDO occurs around midday to 6 pm. Least
sleep is obtained for group 2 when their NDO is between midnight to 3 am. Note in
contrast for group 2 when NDO is between 3 am and 10 am sleep increases with
increasing lateness of the driver’s NDO between 10 am and 12 noon. Generally
groups with maximum sleep, rapidly increase sleep as their next duty onset is later
than 12 noon, and the group with minimum sleep, has reduced sleep hours when
next duty onset occurs between midnight and 6 am, or from 4 pm to midnight.

Generally RDs increase sleep when their break duration lasts 1–2 days. For the
CI6 model as break duration increases beyond 2 days RDs in group 2, with min-
imum sleep, and in group 1, with next lowest attained sleep, reduce their sleep
hours, with increasing length of break duration. These RDs seem unable to maintain
increased sleep for longer break duration periods. However sleep hours are main-
tained for groups 3 and 4 with the highest sleep durations (model CI6). Similarly for
the CI3 model, group 2 RDs, with least sleep, steadily decrease sleep as their break
duration increases past 2 days. In contrast RDs in groups 4 and 3 for the CI3 model
increase sleep as break duration exceeds 2 days, and notably sleep in group 1
plateaus.

4.1.4 Conditions for Most and Least Sleep Based on (k; Q)

Table 6 gives a detailed description of conditions for most and least sleep for the
RDs in each group for the CI6 MTDg model, according to the statistically
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significant main and interaction effects based purely on the estimated (k; Q) MTDg

parameters. This differs to the GAMLSS models interpreted in Sect. 4.1.3.
Break onset time significantly impacts group 1 RDs’ sleep duration (λ = 0.012).

Both group 1 and 3 RDs sleep the most when break onset is between 2 am and 8 am
i.e. the drivers break after the evening shift. In contrast groups 2 and 4 sleep the
most when their break onset is between 9 am and 1 pm, i.e. the drivers break after
the night shift. Groups 1, 3 and 4 sleep the least when break onset is between 8 pm
and 1 am i.e. break after the afternoon shift. In contrast group 2 drivers with
minimum sleep have least sleep when break onset is between 2 pm and 7 pm, i.e.
break after the morning shift (Table 6).

Sleep is significantly impacted by break duration for all four groups of drivers.
All RDs sleep most for break durations of 1–24 h i.e. break between consecutive
shifts. Least sleep is obtained for all groups when their break occurs between
non-consecutive shifts (i.e. break duration is between 36 and 159 h) (Table 6).
Sleep attainment is significantly impacted by sleep onset time, particularly for
group 4 and 1, with maximum and minimum sleep, respectively. Group 4 and 3
sleep most between 4 am and 9 am, in contrast group 1 and 2 RDs, who sleep most

Table 6 Most sleep and least sleep categories of the 4 MTD-SOM groups for Model CI6’s (λ, Q)
MTDg parameterisation

Group 1 Group 2 Group 3 Group 4

Next duty onset

λ 0.046 0.007 0.096 0.15
Most sleep 7 pm–0 am 1 pm–6 pm 7 pm–0 am 7 pm–0 am

Least sleep 7 am–12 pm 7 pm–0 am 7 am–12 pm 1 am–6 am

Sleep onset time

λ 0.037 0.027 0.009 0.039
Most sleep 0–3 am 0–3 am 4 am–9 am 4 am–9 am

Least sleep 10 am–8 pm 9 pm–11 pm 0 am–3 am 9 pm–11 pm

Break onset

λ 0.006 0.007 0.015 0.008

Most sleep 2 am–8 am 9 am–1 pm 2 am–8 am 9 am–1 pm

Least sleep 3 pm–1 am 2 pm–7 pm 8 pm–1 am 8 pm–1 am

Break duration

λ 0.757 0.873 0.543 0.872
Most sleep 1–24 h 1–24 h 1–24 h 1–24 h

Least sleep 36–159 h 36–159 h 36–159 h 36–159 h

Next duty * sleep onset

λ 0.046 0.007 0.096 0.015
Most sleep 1–6 am * 9–

11 am
7 pm–0 am * 9–
11 am

1 am–6 am * 0–
3 am

1 am–6 am *
0 am–3 am

Least sleep 7 am–12 pm *
10 am–8 pm

1 am–6 am *
10 am–8 pm

7 am–12 pm *
10 am–8 pm

9 am–12 pm *
10 am–8 pm
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between 0 am and 3 am. Least sleep is attained between 9 pm and 11 pm for groups
2 and 4, and between 10 am and 8 pm for group 1 (with minimal sleep) and
between 0 am and 3 am in group 3 (the same period 0 am–3 am, when group 1 and
2 sleep the most) (Table 6).

Sleep is significantly impacted by next duty onset (NDO) time for all groups,
except for group 2. Most sleep is gained by RDs in groups 1, 3 and 4 when NDO is
between 7 pm–midnight (i.e. drivers start night shift after a daytime sleep before-
hand). In contrast group 2 (the group with least sleep) gains most sleep when NDO
is between 1 pm and 6 pm (i.e. RDs next duty is the afternoon shift with a late night
sleep beforehand) (Table 6). Groups 1 and 3 sleep the least for NDO between 7 am–

noon (start morning shift, with a normal night sleep prior). Whereas group 4 is sleep
deficit when NDO is between 1 am and 6 am (i.e. start morning shift with a short
night sleep before). In contrast RDs in group 2, with least sleep across groups, are
sleep deficit when their NDO is between 7 pm–midnight (i.e. drivers start night shift
with daytime sleep beforehand) (Table 6).

NDO interacts with sleep onset time for all groups, especially for groups 3 and
1. For groups 3 and 4 (with higher sleep duration) most sleep is gained when RDs
sleep between 0 and 3 am (sleep opportunity at night) prior to their next duty being
an early morning shift (1 am–6 am, with a short night sleep prior). For this case
NDO* time in Table 6 is given by (1 am–6 am)*(0 am–3 am). Group 1 RDs (with
low sleep levels) gain the most sleep between 9 am and 11 am when their next duty
onset time is the early morning shift (after a short sleep the night before). For group 2
(with the lowest sleep duration across groups) most sleep occurs also between 9 am
and 11 am and when the RDs next duty is scheduled between 7 pm to midnight (i.e.
the RD is about to start night shift, with a daytime sleep beforehand) (Table 6).

Least sleep is gained for all groups for daytime sleep between 10 am and 8 pm,
but sleep is impacted significantly by the onset time of the RD’s next duty.
Specifically groups 1 and 3 are sleep deficit when they have daytime sleep (10 am–

8 pm) (i.e. the daytime nappers) and their next anticipated duty is the morning shift
(7 am–noon). Like groups 1 and 3, groups 2 and 4 have least sleep from 10 am–

8 pm (daytime napping), when their next duty is the very early morning shift
(1 am–6 am) for group 2; or is the later start morning shift between (7 am–noon) for
group 4 (Table 6).

4.1.5 Socio-Demographics of the 4 Groups of Railway Drivers

Table 7 gives a summary of the domestic scenario and RD-specific experience for
the groups based on the CI6 model data. Model CI6 groups are shown to differ
according to age of the RD, years of shiftwork and the average number of
dependents in the domestic situation (P = 0.05, MANOVA test). From Table 6 we
note that group 2 (G2) RDs, with minimum sleep duration, had the maximum
number of dependents (mean = 2.46) and were drivers of lowest mean age
(39 years). Group 3 (G3) RDs with a high sleep duration had the greatest years of
experience (mean = 21.9 years) and were the oldest (mean age = 40.7 years).
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Model CI3 demographics given in Table 6 show that the groups differ according
to the number of RDs with young kids in their domestic situation (LR statis-
tic = 11.4, p < 0.02); with group 2 and 3 (with lowest and second highest mean
attained sleep) having low numbers of young kids. However, from Table 6 group 2
(G2) RDs, with minimum sleep duration, had the maximum number of dependents
(mean = 2.4) and the lowest years of driver experience (19.7 years). Group 4 (G4)
RDs with maximum sleep duration had the highest years of shiftwork
(mean = 20.8 years) and were the oldest RDs (mean age = 41.6 years). It seems that
higher mean age and driver experience tends to be associated with more sleep and
accommodation of shifts and breaks; and lowest sleep is related with increased
number of dependents, lower years of experience and younger age.

5 Results and Interpretation: Part B

5.1 SOM/VANTED of the Multivariate Sleep Duration
Series

SOM VANTED clustering was based on a subset of 69 of the 190 RDs used for the
earlier M-MTD analysis (Part A, Sect. 4). These 69 RDs had a full record of 14
consecutive day work/shift/break activity. GAMLSS modelling of the sleep dura-
tion in this section follows some results recently presented by Hudson et al. [96],
wherein two additional predictors for the GAMLSS modelling are included, com-
pared to the analysis in Part A. These additional predictors are termed
HrsSinceBreakOnset, which denotes the number of hours since a break started, i.e.
the number of hours since break onset when a driver goes to sleep, and
HrsToNextDuty, which denotes the number of hours left till the next duty begins.
These 2 predictors are modelled along with break onset time, break duration and
sleep onset and next duty onset time (as in Part A, see Table 5).

5.2 SOM/VANTED Clusters and GAMLSS Modelling
Effects

SOM VANTED clustering found 4 clusters/groups 1–4 of size 18, 13, 12 and 26 (in
that order) across which sleep patterns were significantly different (Fig. 9). RDs in
cluster 1 (n = 18) had minimum sleep hours per episode (average = 6.96 h), cluster
2 RDs (n = 13) gained maximum sleep (average = 7.71 h), cluster 3 (n = 12) and 4
(n = 26) RDs average hours attained sleep is 7.44 and 7.35 h, respectively. Cluster 4
was the baseline contrast in the GAMLSS (Table 5).

For model M1 current sleep was highly positively related to attained sleep one
episode prior (P < 0.001), but not at lag 2. The highly significant main effects of
sleep onset time (P < 0.000003), break onset time (P < 0.03) and hours to next duty
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onset (P < 0.0005) were shown to be the same across groups. Sleep was highly
significantly related to next duty onset time (P < 0.000006), but hours since break
onset was not a significant main effect (Fig. 10). GAMLSS found significant dif-
ferential effects on attained sleep of the following factors by group: next duty onset
time (group 4 vs 1; P < 0.005) and hours since break onset (group 4 vs 1; P < 0.08,
significant at 10 %) (Fig. 11).

When hours since break onset was included (as in Model M2), it was shown to
be an additional significant main effect (P < 0.05) and break duration also had a
significant impact on attained sleep. This was not the case for model M1, where
break onset time was a significant main effect (not break duration), as was hours to
next duty (model M1). Stepwise variants of M1 and M2 found cluster/group as a
significant main effect, with group 1 RDs attaining the least sleep across groups
(detailed results not shown here).

From the SOM VANTED and GAMLSS modelling break and sleep onset times,
break duration and hours to next duty are significant effects which operate similarly

Fig. 9 SOM VANTED clusters of the sleep time series: clusters 4, 2, 3, and 1 from left to right, of
sizes 26, 13, 12 and 18 (in that order)

Fig. 10 GAMLSS term plots of effect of hours to next duty (P = 0.005) and sleep onset time
(P = 0.000003)
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across the groups. Next duty onset time and hours since break onset were found to
be significant factors in determining current sleep, which have differential impacts
on current sleep across the 4 groups. Group 2 RDs, with maximum sleep, rapidly
increase sleep as their next duty onset is later than 12 noon, group 1, with minimum
sleep, have reduced sleep hours when next duty onset occurs between midnight and
6 am, or from 4 pm to midnight. Group 2 and 1 RDs increase sleep as their hours
since work/duty break exceeds 1 and 2 days, respectively. Group 3 and 4 RDs’
sleep duration decreased when hours since break onset exceeds 1 day. Generally
RDs increase sleep for break duration from 1–2 days.

6 Conclusion

The ANNs found 4 clusters of railway drivers. GAMLSS confirmed that both the
timing of sleep, break and next duty, duration of break, and hours to next duty can
significantly influence sleep. Break and sleep onset times, break duration and hours
to next duty are significant factors which can operate differentially across the
groups. Although RDs have different sleep patterns, the amount of sleep is gen-
erally higher at night and when break duration is 1–2 days or more. Sleep increases
for next duty onset between 10 am and 4 pm, and when hours since break onset
exceeds 1 day. These 2 factors were significant factors determining current sleep,
which also had differential impact across the clusters. Some drivers catch up sleep
after the night shift, while others do so before the night shift. Sleep is governed by
the RD’s anticipatory behaviour of next scheduled duty onset and hours since break
onset.

Sleep onset times, break duration and hours to next duty are significant pre-
dictors which operate similarly across the groups. Adequate sleep (5–6 h) is

Fig. 11 Interaction plots for next duty onset time (P = 0.000006) and hours since break onset
(P = 0.08)
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reported only by RDs with breaks between 6 pm and 4 am. Next duty onset time
and hours since break onset are found to be significant factors in determining
current sleep, which have differential impacts on current sleep across groups.
Generally RDs increase sleep for break duration from 1 to 2 days. Most drivers’
sleep patterns were affected by time of day, with sleep patterns influenced also by
break onset time and next duty onset time and by break duration.

The extent to which factors other than working time might affect the sleep
behaviour of employees in the large and diverse Australian rail industry is not well
documented. Sleep duration was greatest prior to night shifts, followed by afternoon
shifts and morning shifts. Overall RDs with dependents got significantly less sleep
than participants without dependents. Consistent with previous research, partici-
pants with dependents were found to obtain significantly less sleep than participants
without dependents [123, 124]. It also seems that higher mean age and driver
experience tends to be associated with more sleep and accommodation of shifts and
breaks; and lowest sleep was related to increased number of dependents, lower
years of experience and younger RD age. We have demonstrated that some pre-
dictors such as age of RD, years of shiftwork and number of dependents are
significantly different between the identified clusters.

As far as the authors are aware Hudson et al. [96] was the first study to find that
sleep patterns are governed by anticipatory behaviour in relation to hours since
break onset. Earlier Kim [13] was the first study using M-MTDg to establish a
significant anticipatory effect of next duty onset time on RD sleep patterns. Our
results support this via SOM/KM clustering. We have some evidence from the
SOM on the M-MTDg data and GAMLSS that social predictors such as age of RD,
years of shiftwork and number of dependents can act differently between our
identified RD clusters/groups. All significant factors are shown to have non-linear
impacts on current sleep. A preliminary analysis of the dataset of 69 RDs, using
multivariate Gaussian Hidden Markov Model (HMM) analysis [125], which like-
wise accommodates covariates and interactions supports the results of this chapter.
Further investigations will involve adapting HMMs to semi-Markov HMMs
allowing RD profiles with disparate lengths (<14 days and 14 days monitoring). All
future study will also aim to establish the effects of consecutive shifts and to
investigate the effects of two additional predictors, the number of hours to the RDs
next break and the duration of the next break.

Appendix A: Mathematics of M-MTDg

A.1 The Mixture Transition Distribution (MTD) Model

The classic Markov chain is a probabilistic model that represents dependences
between successive observations of a random variable (usually over time). In this
chapter a discrete state random variable (or multivariate analogues of) taking values
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in the finite set {1,…, m} is considered in the MTD formulation, which allows for a
covariate interaction and modelling of high-order Markov chains (from a time series
viewpoint). Markov chains are traditionally used to predict the current value as a
function of the previous observations of this same variable (the so-called lagged
dependency). The Markov chain was introduced by Andrej A. Markov [126] at the
beginning of the twentieth century and has wide applicability in many areas such as:
mathematical biology [127], internet applications [128], economics [129], meteo-
rology [130], geography [131], biology [132], chemistry [133], physics [134],
behavioural science [135], social sciences [136] and music [137]. For a compre-
hensive treatment of Markov chains and early applications see Bremaud [138].
Seneta [139] provides an account of Markov’s motivations including an excellent
discussion of the early development of the theory.

Raftery [140] introduced the mixture transition distribution (MTD) model to
model high-order Markov chains. Berchtold [135, 141–149] subsequently devel-
oped software (called Markovian Models Computation and Analysis, MARCH) to
model Markov chains using a suite of methods including the MTD and the double
chain Markov model. The MTD model has been applied to genomic sequence and
time series data [147, 150–153].

The aim of part A of this chapter is to study the multivariate relationship
between the probability of sleep with 4-states each of sleep onset times, break onset
times, next duty onset times, break duration, and time of sleep via a multivariate
mixture transition distribution (M-MTD) which accommodates a different transition
matrix from each lag to the present (MTDg) analysis [154]. The issue of accom-
modating for interaction terms between covariates itself had not, till the work of
Kim [155] and of Hudson et al. [156], been addressed in the MTD [140], MTDg nor
MARCH [149] literature. Kim et al. [154, 157] and Hudson et al. [158] first
introduced the concept of interactions based on work in this current chapter, along
with GAMLSS [159].

The idea of the original mixture transition distribution model was to consider
independently the effect of each lag to the present instead of considering the effect of
the combination of lags as in pure Markov chain processes. The assumption behind
the MTD model, namely the assumed equality of the transition matrices among
different lags, is a strong assumption. We further extend the MTDg model to allow
for interactions (between break, duration and next onset times with sleep times) to
account for changes in the transition matrices amongst the differing covariates.

This work extends both the MARCH MTD software of Berchtold [149] and the
previous work Hudson et al. [156] and of Kim et al. [160–162]. Our model is
different to MARCH in terms of incorporating interactions between the covariates
and also in its minimisation process [155]. It uses the AD Model BuilderTM [163],
[164]. This M-MTD adaptation also utilises auto-differentiation as a minimisation
tool, and was shown to be computationally less intensive than MARCH (see the
papers of Kim et al. [161, 162] and Kim [155]). The AD Model BuilderTM platform
(see Fournier et al. [164]) has great application in fisheries research and recently in
computational mathematics and operations management (e.g. electronic systems
models [165, 166]).
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A.1.1 The MTD Model

Let {Yi} be a sequence of random variables taking values in the finite set N = {1,…,
m}. In a lth-order Markov chain, the probability that it, …, io 2 N depends on the
combination of values taken by Xt-l, …, Xt-1. In the MTD model, the contributions
of the different lags are combined additively, as follows:

P Xt ¼ i0jX0 ¼ it; . . .;Xt�1 ¼ i1ð Þ

¼
Xl
g¼1

kgP Xt ¼ i0jXt�g ¼ ig
� � ¼Xl

g¼1

kgqigi0
ðA:1Þ

where it, …, io 2 N, and where the probabilities qigi0 are elements of a m × m tran-
sition matrix Q ¼ qigi0

� �
, each row of which is a probability distribution (i.e., each

row sums to 1 and the elements are nonnegative) and k ¼ kl; . . .; k1ð Þ0 is a vector of
lag parameters, such that

0�
Xl
g¼1

kgqigi0 � 1

The vector λ is made subject to the following constraints,
Pl
g¼1

kg ¼ 1; and kg � 0.

Equation (A.1) gives the probability for each individual combination of il, …, i0.
The model can also be written in matrix form, giving the whole distribution of Xt

[19].
Each row of the transition matrix Q is a probability distribution and as such sums

to 1, where the matrix has m(m-1) independent parameters. In addition, a lth-order
model has l lag parameters λ1,…, λl, but only (l− 1) of them are independent. Thus
a lth order MTD model has m (m – 1) + (l – 1) independent parameters, which is far
more parsimonious than the corresponding fully parameterised Markov chain which
has ml(m – 1) parameters. Moreover, each additional lag in a MTD model adds only
one extra parameter. For the basic MTD model of Raftery [15], the same transition
matrix Q is used to model the relationship between any of the lags and the present
state.

A.1.2 The MTDg Model

Let {Yi} be a sequence of randomvariables taking values in thefinite setN= {1,…,m}.
In an lth-order Markov chain, the probability that Xt ¼ i0 ; i0 2 N, depends on the
combination of values taken by Yt�l; . . .; Yt�1. In the basic MTD model, the same
transition matrix Q is used to model the relation between any of the lags and the
present. The idea of the mixture transition distribution (MTD) model is to consider
independently the effect of each lag to the present instead of considering the effect of
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the combination of lags (Fig. A.1), as in the case of the more traditional pure Markov
chain process. The constraints imposed by the use of only one transition matrix to
represent the relation between each lag and the present is sometimes too strong to
allow goodmodeling of the real high-order transitionmatrix. In this case, it is possible
to replace the basicMTDmodel by anMTDgmodel. The principle of theMTDgmodel
is to use a different transitionmatrix of size (k× k) to represent the relationship between
each lag and the present. The high-order transition probabilities are then written as
follows,

P Yt ¼ i0jYt�1 ¼ i1; . . .; Yt�f ¼ if
� � ¼Xf

g¼1

kgqgigi0

where qgigi0 is the transition probability from modality ig observed at time t-g and
modality i0 observed at time t in the transition matrix Qg associated with the gth lag.
In addition to the lag weight vector k1; . . .; kf

� �
, the MTDg model implies the

estimation of f transition matrices Q1,…,Qf, for a total of fk(k − 1) + (f − 1) inde-
pendent parameters. This is much more than was involved in the basic MTD model,
but this number of parameters remains small compared to the number of inde-
pendent parameters of a real fully parameterised fth order Markov chain; thus the
MTDg and its extensions model prove useful in many situations, as shown in this
chapter. Here, the contribution of each lag upon the present is considered inde-
pendently. The MTD model thus approximates high-order Markov chains with far
fewer parameters than the fully parameterised model. Though Markov chains are
well suited to represent high-order dependencies between successive observations
(of a random variable), as the order l of the chain and the number of possible values
m increase, the number of independent parameters increases exponentially. The
problem then becomes too large to be estimated efficiently, as is often the case for
data sets of the size typically encountered in practice [145].

Fig. A.1 Comparison between a 3rd order Markov chain and its MTD model analogue. In a real
high-order Markov chain, the combination of all lags influences the probability of the present
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A.1.3 The MTDg Model with Interactions

The MTDg model with interactions can also have a different transition matrix of
size (k × k) to represent the relationship between each lag and the present [155]. The
high-order transition probabilities are then computed as follows

P Yt ¼ i0jYt�1 ¼ i1; . . .; Yt�f ¼ if ;C1 ¼ c1; . . .;Ce ¼ ce;M1 ¼ m1; . . .;Ml ¼ ml
� �
¼
Xf
g¼1

kgqgigi0 þ
Xe
h¼1

kf þ hdhjhi0 þ
Xl
u¼1

kf þ eþ usuvui0

where kf þ eþ u is the weight for the interaction term, qgigi0 is the transition proba-
bility from modality ig observed at time t–g and modality i0 observed at time t in the
transition matrix Qg associated with the gth lag, suvui0 is transition probability
between covariate h1 and covariate h2 interaction term (vu ¼ dh1jh1 � dh2jh2 ) and Yt,

and where
Pf þ eþ l

g¼1
kg ¼ 1 and kg � 0.

A.1.4 Parameter Estimation

The parameters λ and q of the MTDg model can be estimated by minimising the
negative the log-likelihood (NLL) of the model:

NLL ¼ �
Xm

il;...;i0¼1

nil;...;i0 log
Xf
g¼1

kgqgigi0 þ
Xe
h¼1

kf þ hdhjhi0 þ
Xl
u¼1

kf þ eþ usuvui0

 !

where nil;...;i0 is the number of sequences of the form

Yt�1 ¼ i1; . . .; Yt�f ¼ if ;C1 ¼ c1; . . .;Ce ¼ ce;M1 ¼ m1; . . .; Ml ¼ ml:

To ensure that the model defines a high order Markov chain, the negative
log-likelihood is minimised with respect to the constraints delineated above.
ADMBTM was used to minimise the negative the log-likelihood (NLL). This uses
auto-differentiation (AUTODIFF) [164] as the minimisation tool, shown to be
computationally less intensive than MARCH [155]. Estimation algorithms relevant
to this procedure can be found in Fournier [163, 167]. A major advantage of the
new model is that its run-time is considerably shorter (less than one minute as
compared with two days for the original MTD model [157]) and it can be run from
a batch file in DOS. Hence, multiple models can be tested consecutively in remote
mode. Outputs can also be appended into one file to allow easy access by any
graphical software package [155].
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A Neural Approach to Electricity Demand
Forecasting

Omid Motlagh, George Grozev and Elpiniki I. Papageorgiou

Abstract Electricity demand forecasting is significant in supply-demand man-
agement, service provisioning, and quality. This chapter introduces a short-term
load forecasting model using Fuzzy Cognitive Map, a popular neural computation
technique. The historic data of intraday load levels are mapped to network nodes
while a differential Hebbian technique is used to train the network’s adjacency
matrix. The inferred knowledge over weekly training window is then used for
demand projection with Mean Absolute Percentage Error (MAPE) of 5.87 % for
12 h lead time, and 8.32 % for 24 h lead time. A Principal Component Analysis is
also discussed to extend the model for training using big data, and to facilitate
long-term load forecasting.

Keywords Energy demand forecasting � Neural networks � Time series

1 Introduction

A significant issue for successful smart grid implementation is about management
of supply and demand. Electricity is by its nature difficult to store and has to be
available on demand. Hence, demand variability influences everything from quality
and stability of electricity supply to long-term investment decisions at base and
peak load plants, physical transmission network, power system protection, and
various financial aspects. The classic protection strategy suggests periodic isolation
of over-demanding nodes whilst maintaining rest of network in operation.
However, this involves sophisticated and highly reliable protection hardware,
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which themselves need additional cost and maintenance. The risk of blackout still
remains as there is no insight into unexpected demand behaviors. Dynamic demand
can remedy the situation by delaying appliance operating cycles by a few seconds
to increase the diversity factor of the set of loads. The government of the state of
Queensland, Australia, plans to have devices fitted onto certain household appli-
ances such as air conditioners, pool pumps, and hot water systems.

These devices would allow energy companies to remotely cycle the use of these
items during peak hours. Demand response is another approach at user end that
includes any reactive or preventative method (mainly in response to time-of-use
tariff) which automatically can reduce, flatten or shift peak demand. However, both
techniques require reliable forecasting at their fundamentals, first on short-term
forecasting of load levels, and second on forecasting patterns of usage behaviors. In
Victoria, more than 80 % of power stations burn brown coal making large on-off
time lags [1]. Metrological and urban factors change dynamically which lead to
unstable demand patterns. On the other hand, the extent and schedule of dynamic
demand control are based on the difference between forecasted demand level and
scheduled generation capacity in a particular region. Hence, forecasting plays a key
role in all aspects of modern energy management systems. The modern approach
suggests utilization of new algorithms and software solutions alongside ever
advancing hardware.

Methods of artificial intelligence enable for reliable projection of demand, at
regional substations down to neighborhoods and blocks. Long-term models of
future electricity demand generally use global climate model (GCM) datasets that
predict decadal trends of changing temperatures, humidity, rainfall, etc.
Accordingly, they are appropriate for determining the future investments, such as
building new peaking plants. On the other hand, short-term models are more crucial
when it comes to power system protection. Network stability and consistent supply
could be improved by prediction of intraday demand curves from patterns of other
data such as climate data, demand profiles and usage behavior. Most short-term
techniques attempt at drawing linear regression models of regional electricity
demand with variables such as temperature, wind speed, humidity, etc. The state of
the art suggests that a large proportion of the variability in electricity demand is
dependent on the weather. Accordingly, it incorporates weather forecasting with
focus on relationship between temperature and electricity demand. Despite some
reliable methods in the literature, regression models are subject to criticism, unless
all of the multi-variables are taken into account. Electricity demand is a function of
tens of multivariate that have to be concurrently analyzed in a single model, a task
far beyond current achievements.

This article first argues about the existing approaches towards short-term pre-
diction of electricity demand in the literature (in Sects. 2.1 and 2.2). Section 2.3
discusses the disadvantages which briefly include the facts that (1) climate data are
not always available, (2) climate forecast is subject to uncertainty which leads to
augmented error in electricity demand projection, and (3) electricity demand is a
function of many heterogeneously independent variables requiring multivariate
regression models which are mathematically complex, inefficient, and incomplete
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due to variables which are not even known to experts. In Sect. 2.4, we outline an
alternative strategy to model future demand as a function of time, i.e., focusing only
on intraday demand curves themselves without need for any other data.

As the intended contribution, this strategy is implemented through the devel-
opment of an unsupervised neural model first introduced in this article (Sect. 3). We
understand the patterns of changes along intraday demand curves on weekly basis
that is proven to be most effective. The model uses past and current data, to forecast
future demand, and since it does not need other data (metrological, etc.) it can be
regarded as a benchmark for more sophisticated techniques. Section 4 presents
results and validation of methodology using actual dataset, followed by conclusion,
and recommendations for future works (in Sect. 5).

2 Review of the Literature

Residential electricity demand is most volatile as compared against other compo-
nents, namely commercial and industrial demand. It is also significant as most
distribution and retailer companies make higher profit out of residential services.
There are techniques for separating residential demand from other components, such
as independent component analysis (ICA), and down to individual components of
load profiles [2]. Another robust approach is based on decomposition by separating
daily, weekly, monthly, and seasonal patterns [3] so that more volatile behaviours
(associated with residential demand) could be spotted. However, having a different
scope, and with the available mixed dataset from Australian Energy Market Operator
[4], in this article we present the mixed mode demand curves at state level.

2.1 Factors Influencing Electricity Demand Behaviour

There are tens of various variables influencing patterns of electricity consumption at
individual households or a power network at broader scope. Weather variables,
temperature, precipitation, wind speed, wind direction, humidity, pressure, and
solar radiation, are only one type of variables influencing electricity demand [5, 6]
while such variables themselves may depend on one another. The complexity of
relationships among climate variables and electricity demand even increases when
the time dimension involves, i.e., issues such as global warming and climate
changes. There has been abundance of research to project gradual impact of global
warming and climate change [7, 8] mainly using multivariate regression techniques
to draw relationships among one or more climate variables and energy demand.

Apart from climate factors, number of occupants, type of occupancy, occupants
daily routines, patterns of behaviours and time-dependent activities, are just another
group of variables [9, 10]. The probability of occupants be at home, the conditional
probability to start an activity, and the probability distribution function for the
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duration of that activity, are examples of factors to be analysed in the first place [10]
while understanding their relationship with electricity demand, and other classes of
variables is another challenge. Another type of information is related to types and
estimated numbers of electrical appliances used at individual households [10],
which itself relates to many other financial and socio-cultural factors. It is for
example understood that women indirectly contribute to increasing consumption as
home appliances are purchased to alleviate time pressure [11]. In a broader scope
where demand behaviour of a larger district is concerned, other variables come to
play role such as residential building stock, geographical factors, demographics of
gender, age, income and many others. Economy influences electricity demand
[3, 12, 13] or vice versa [14]. In addition, demand behaviour also varies due to other
external factors such as regulations set by government and other authorities.
Dispatch and settlement routines, quota, time of use tariff, and billing policies
[15–17], external dynamic demand control by suppliers, and demand response from
user side, all vary in relation to one another.

E ¼ f ðv1 . . . vmÞ ð1Þ

It is therefore concluded in Eq. 1 that electricity demand (E) is a non-linear
function ( f ) of many heterogeneously inter-dependent variables v1 … vm, e.g.,
related to demographics, geo-climate, social and urban development, as well as
other unknown variables and factors yet to be discovered. And despite the fact that
variables could be grouped into different types, sadly the non-linear function
( f ) could not be broken down leaving a complex multi-dimensional problem.
Accordingly, exhaustive multivariate regression models are needed to obtain f for a
given residential unit or district, or to understand their behaviours.

2.2 Soft Models Versus Conventional Models

An alternative to reduce the problem size as seen in most of the literature is to focus
on more dominant variables (or variables of interest) and ignore the others under
certain circumstances. For example, temperature is proven to have a major impact
on electricity usage [18, 19]. A traditional way to describe the impact of temper-
ature is in terms of heating degree days (HDDs) and cooling degree days (CDDs).
HDDs and CDDs measure the difference between the daily mean temperatures
above or below a regional base temperature [20, 21]. The aim is to draw a linear
regression model between regional electricity demand and temperature [18] to
forecast intraday demand behaviour. A justification for temperature-related demand
forecasting is that apparent temperature [22] encompasses other climate variables,
e.g., humidity, and therefore reduces the problem size. From this perspective,
regression techniques such as smooth transition regression (STR), threshold
regression (TR), and switching regression (SR) have been examined [19], as well as
other linear [13], non-linear spline method [23], least square, and maximum
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likelihood [17] methods. Probabilistic such as Bayesian [24] and grey methods [25]
are also employed to build future data. However, none can guarantee reliable
forecast as the problem in Eq. 1 remains unsolved. A comprehensive review of the
literature reveals that most previous research seeks one-to-one relationships among
influencing variables and electricity demand.

A common problem is that, due to numerous sources of impact, misleading
conclusions might be drawn in univariate relationship models, i.e., between a single
variable and demand. In other words, while for example a variable is taken to have
a decreasing impact on electricity demand, in reality such decrease might not be due
to that variable but other unconsidered or ignored variables.

Misunderstanding about system behaviours causes unreliable projection.
Therefore, the only classic solution is to consider all variables concurrently which
lie in multi-dimensional regression. On the other hand, multivariate regression in
such as that in Eq. 1, is barely practical using hard mathematics as level of com-
plexity exponentially increases with number of variables. Alternatively, the state of
the art in demand forecast is based on utilization of artificial neural networks
(ANN) [26–28], genetic algorithm (GA) [29], fuzzy and hybrid methods [30–32],
and other soft approaches for learning and prediction of demand patterns. In a
primary model, load was predicted for specific daily hours based on a combination
of load data and temperature, and using a multi-layer perceptron [33]. Smaller size
mainly linear problems could be simply modelled using single-layer perceptron
[34]. Single hidden layer feed-forward networks are also among widely-used
models [35], mainly using standard or enhanced back propagation rule, e.g., using
conjugate gradient algorithm (GCA) [1]. However, recurrent models such as
Hopfield network [36], and fuzzy cognitive map (FCM) [37] became more popular
as more relationship configurations could be obtained. More sophisticated neural
structures have evolved to correlate multi variables to electricity demand, a task
math models barely accomplish. Overall, neural regression models appeared to be
viable alternatives to the stepwise and classic regression models in learning energy
consumption patterns [38] being the introduction to forecast. Numerical and neural
models provide easier implementation, and more information especially about
relationships among variables themselves, e.g., impact of climate change on cost of
electricity use [6], in addition to their relationships with electricity demand. Another
advantage of neural models is based on efficient utilization of principal component
analysis (PCA) [39], exploratory factor analysis (EFA) [40], both on the assumption
of linear relationship between observed variables, and other variable reduction
techniques. At last, neural networks are applicable to both short and long term
projection [41] and in general outperform other methods [42].

An n-node fuzzy cognitive map [37] is a recurrent neural network where each
node (so called concept) Cj, Cj 2 {C1 … Cn}, is the output of all other nodes Ci, Ci

2 {C1 … Cn}, i ≠ j, i.e., n interrelated single-layer (n−1)-node perceptron networks.
The goal is to train the matrix of edge weights (or FCM adjacency matrix) to hold
the FCM at convergence (Eq. 2). In other words, if a neutral (linear with unit slope)
activation function is employed, i.e., net weight is directly assigned to output
without squashing, a product of the 1 × n state vector of nodes C = {C1 … Cn} at
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cycle τ (C(τ)) and the n × n adjacency matrix W, should reveal the same values for
the next cycle (C(τ+1) = C(τ)).

To obtain W as a non-identity matrix, initial weights must start from zero while
the perceptron rule (Eq. 3 with learning rate α) applies to all wi,j 2 W, provided
i ≠ j. Accordingly, the matrix W describes all possible relationships among vari-
ables, including input-output relationship as well as relationships among inputs
themselves.

C sþ 1ð Þ ¼ C sð Þ ¼ C sð Þ �W sð Þ ð2Þ

w sþ 1ð Þ
ij ¼ w sð Þ

ij þ aC sð Þ
i ðC sð Þ �W sð Þ

j � C sð Þ
j Þ ð3Þ

C sð Þ
j ¼ C sð Þ �W sð Þ

j ; w sð Þ
jj ¼ 0 ð4Þ

Upon sufficient training, matrix W simply provides an (n−1)-dimensional linear
regression model for all variables assigned to FCM nodes, i.e., each variable (node
Cj) is a result of all variables (nodes Ci, i = 1 … n, i ≠ j) which influence on Cj

through weights wi,j as shown in Eq. 4. W is also called the relationship model of all
variables [43] with wide range of applications especially when it comes to multi-
variate systems. However, an important issue is that although impacts of variables
on a specific output do not need to be independent, perceptron learning is limited to
single-trend systems, i.e., extents of impacts of variables on a specific output must
not have inverse relationship with one another. In this case, utilization of nonlinear
rules such as Hebbian rule is more viable. Another design issue affecting accuracy
of forecast and generalization is related to the employed activation function. There
are various choices among sigmoid-based, linear and hard limiters depend on the
range and format of data, e.g., grey or binary. While there are highly efficient
activation models such as cumulative sigmoid activation [37], a new philosophy
suggests retaining neutral activation at output (i.e., net weights to appear directly at
output) while replacing incoming edge weights with functions rather than crisp
values, i.e., natural activation technique [43]. In addition, edge functions, such as
polynomial, trigonometric, etc., allow for variables to follow multi-trends.

Nonlinear Hebbian rule facilitates learning of multi-trend behaviours. Of the
fundamental ideas in biological learning, Hebb law [44] has become an established
learning method in artificial neural networks (NN) when it comes to distinct patterns
of inputs, used in classification, memory and retrieval systems. The idea is to
strengthen the connection between neurons i and j, if neuron i is near enough to
excite neuron j making it more sensitive to such stimuli. Therefore, a learning rate α
is multiplied by the values of the input and output neurons to be added to the current
weight of the link connecting input to the output. On the other hand, to prevent
weights from indefinite growth, a decay factor φ is multiplied by the connecting
weight and the value of the memorized output to mimic the phenomenon of for-
getting in biological brain. Equation 5 [45] shows the concept of Hebbian rule for
weight update from iteration τ to τ + 1 in a typical feed forward neural network.
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Dw sð Þ
ij ¼ aC sð Þ

i C sð Þ
j � uC sð Þ

j w sð Þ
ij and w sþ 1ð Þ

ij ¼ w sð Þ
ij þDw sð Þ

ij ð5Þ

The basic rule in Eq. 5 needs modifications in recurrent models such as FCM
depend on several criteria such as sequence of activation of neurons, and selection
of active nodes. Kosko proposed the initial model known as differential Hebbian
(DH) model [46]. DH was then improved into balanced differential algorithm
(BDA) [47]. In BDA, weight update depends on values of selected FCM nodes
which are acting at the same time. However, major advancements were related to
non-linear Hebbian learning (NHL) [48] and active Hebbian learning (AHL) [49].
NHL is based on the premise that FCM graph has to be updated synchronously
whereby all neurons (state vector of nodes or concepts) are updated at the same
time. In contrast, AHL involves the sequence of active concepts and updates new
weights of all concepts as influenced by the active concept at any time.

2.3 Electricity Demand as Function of Time

Neural regression uses actual dataset such as 365 × 24 records of diurnal hourly
data of temperature, wind speed, humidity, etc. as inputs, and observed electricity
demand or scheduled generation as output, to obtain multivariate equations that can
be generalized, i.e., to be applied to future known input factors to guess on the
amount of output (electricity demand) in future. The problem in Eq. 1 is seemingly
resolved, yet the reality is the variables v1,…,vm are only the known variables
although still subject to measurement errors. More adversely, such multivariate are
also subject to forecasting error. For example, exact climate data are not always
available. Climate forecast is subject to uncertainty which leads to augmented error
in electricity demand forecast as forecast model itself is not error free.

Here, we resort to an entirely different strategy by looking not at influencing
variables but electricity demand itself as a function of time, especially when short
term forecast is needed. Significance of short term forecast is in management of
energy which relates to controlling and scheduling of power systems, power system
protection [50], and dynamic demand control in smart grid implementations [51].
The focus varies from minutes to hours depending on desired accuracy, sensitivity
of the network, dispatch and settlement policy, e.g., 5 min dispatch and 30 min
settlement in Australian.

The stochastic nature of demand as a function of time has been modelled using
time series analysis, such as autoregressive moving average (ARMA) [52, 53],
autoregressive integrated moving average (ARIMA) [54, 55], Kalman filter for
prediction based on multivariate and then update based on observed demand level
[26], and cyclic time horizon such as daily, weekly [39, 56], and monthly [1],
known as naive forecasting. The weekly patterns are particularly interesting sources
for forecasting. In many cases, electricity demand curves during two successive
weeks follow similar trends [39], which is even consistent throughout the year.
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More people in the world are now following weekly routines of working days and
weekends activities, and therefore knowledge of day-of-week and time-of-day
improves accuracy of modelling, e.g., in modelling urban transportation routines
[57], and electricity demand [31]. This could be a reason for identical weekly usage
patterns under similar circumstances such as consistent temperature and other cli-
mate variables. Accordingly, available demand data of a particular day-time of the
week can be used to guess on the demand level of the same day-time in the
following week. AEMO uses a seven days rolling window to forecast the demand,
supply, and reserve for daily peak demand, at each NEM region over the next seven
days. In particular the estimates include the total generation capacity, the daily peak
demand level, net interchange, and reserve, for every region [58]. A comprehensive
summary of naive forecast models of electricity demand such as on weekly basis is
given in [56].

3 FCM-Based Forecasting

In the remainder of the article, we present three dynamic forecasting models using
recurrent structure of fuzzy cognitive map (FCM), with minimal size of training set,
and yet reliable forecast accuracy and robustness. At any instance of time, at most
three weeks of half hourly time series data samples have been used (mainly within
one week rolling window) to forecast up to one day ahead. In the first model
(Sect. 3.1) database is updated in parallel (one day (d) demand data (Dd) updates
data of the same day in the past week (Dd−7)). In the second model (Sect. 3.2), fresh
half hourly data at current time instance (ti) denoted as (Dti) replaces the last
observed data (Dti−1) in a serial fashion. At last, the final model in Sect. 3.3 utilizes
both parallel and serial updating for forecasting with up to one day lead time.

3.1 Forecast Using 7-Days Data, Daily Rolling Window,
and Parallel Updating

This section suggests a supervised learning approach for daily demand curves
within one week to be used for short term prediction of electricity demand, while a
time series smoother is used to refine forecasts in real-time depending on desired
frequency. A precise Hebbian learning technique is introduced and implemented to
discover patterns of usage behaviour from weekly data with half hour frequency.
The database therefore includes 7 records or 7 × 48 piece of data. Inspired by a
naive forecast technique [56] the ideas is that the next amount of demand (during
the next half hour) relates to the demand at the same day-time in the past week. In
other words, the demand level Dti of half hour ti (e.g., hh:00 to hh:30) in day d of
week k is related to Dti in day d of week k−1, and so is the relationship between
transition from half hour ti to ti+1 in the two weeks. This inherently lets the influence
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of variables such as users occupancy and usage behaviour be inclusive and con-
tribute into accuracy of forecast on the assumption that users most likely follow
similar weekly routines as supported by the literature. However, the model is
unsupervised so that any new pattern of demand behaviour will have an impact due
to plasticity of neural pathways in the system memory.

Another idea is to perform learning on the correlation of all 48 intraday demand
levels to one another, in contrast to other methods where focus goes on learning the
forward sequence along time. The philosophy is that not only the demand level of a
future interval is related to (influenced by) demand level in a past interval as
conventionally suggested in time series analysis, but also a past or current demand
level might be related to (or influenced by) the demand level in future. This could
be generally formulated as: demand level during any time period ti is related to
demand during another period tj at least within a single day, i.e., ti and tj are two
intraday intervals. For example, users may opt to postpone turning their air con-
ditioner on from time ti to tj due to any reason, such as time-of-use tariff, tem-
perature, or other explanatory variables. Likewise, a task to be performed in future
might be brought forth such as doing laundry earlier so that one could sleep earlier.
It could be therefore said that the demand levels Dti and Dtj are interactive with
mutual impact. On the other hand, the implicit impact of explanatory multivariate
on demand levels becomes apparent in their interactions. For example, a negative
cause-effect link from node Dti to node Dtj can be interpreted in terms of why an
increase in demand during ti has caused decrease in demand during tj. The answer
can lie in the fact that cooling during hot time ti still keeps the house cool until and
during tj. On the basis of this idea, in this method we aimed to mutually correlate all
48 intraday demand variables using a recurrent neural structure that is in contrast to
feed forward structures (e.g., in [56]). At last, a correlation must be created between
latest scheduled demand and observed demand levels inspired by naive forecasting.
Such correlation could be made using any of the time series analysis technique
available in the literature. Therefore apart from weekly and daily correlations, the
next half hourly demand (which makes basis of decision for the next scheduled
generation) is predicted from the previous actual demand (last 30 min) just
observed.

Figure 1 shows the concept for scheduling generation based on the memorized
knowledgebase (i.e., relationship among half-hourly demand levels of each specific
day and therefore demand patterns throughout the week), refined by a real-time
closed-loop corrective action method (smoother) using last observed demand level
and its difference with last forecasted demand level. FCM is used for data mining
where an adjacency model of the network suggests relationships among half-hourly
demand levels. Accordingly, a 48-node FCM is employed to satisfy the desired
accuracy. The 48 × 48 adjacency matrix (W) is trained to attain FCM convergence
as described for Eq. 2, where state vector (C) is a 1 × 48 vector that is iteratively
loaded with observed demand levels (C1 … C48 = Dt1 … Dt48) of each and every of
the past seven days (d1 … d7). The training rule is based on fundamental Hebbian
concept for learning and forgetting (Eq. 5), however, both phenomena are merged
into one differential rule (Eq. 6) to encourage simultaneous growth and decay of
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weights in response to input state vectors. The unsupervised model has fair flexi-
bility to out-of-sample data without scarifying smooth trends.

Dw sð Þ
ij ¼ aDC sð Þ

i DC sð Þ
j and w sþ 1ð Þ

ij ¼ w sð Þ
ij þDw sð Þ

ij ð6Þ

Dðtiþ 1jiÞ ¼ qCiþ 1 þ 1� qð ÞDðtijiÞ � eDDðtiÞ 1� D tiji
� �� �

ð7Þ

and; DDðtiÞ ¼ Dðtiji�1Þ � DðtijiÞ

Dðtiþ 1jiÞ ¼
1� l1ð ÞCiþ 1 þ 1� l2ð ÞD tiji

� �� �

2
� e D tiji�1

� �� D tiji
� �� �

where; l1 ¼ D tiji
� �� Ci

�� ��; l2 ¼ Dðti�1ji�1Þ � DðtijiÞ
�� ��

and; e ¼ e0 var D ti�2ji�2
� �

. . .D tiji
� �� �

ð8Þ

The database in Fig. 1 is dynamic and frequently updated with freshly observed
datum along the rolling window which replaces its counterpart in past week, e.g.,
Dti of today (d8) replaces Dti in seven days ago (d1). Accordingly, the knowl-
edgebase is also dynamic as training of W continues. Next, the trained FCM will be
used for forecasting the demand during the next time period (Dti+1). Here, the state
vector C is consisted of two parts, first from Dt1 to Dti which are the observed
demand levels of the current day (d8), and second from Dti+1 to Dt48 adapted from
the last similar day (d1). The product of the state vector and the trained FCM
adjacency matrix gives a new vector whose elements Ci+1 and onwards are expected

Update

Ci+1
Last forecasted de-
mand ( Dti+1|i) 

Physical Network:    
City, Town, Substation 

Zone, Block, etc.

Demand Level (MW)

A 48-Node FCM

Unsupervised learning 
of correlation of half-
hourly demand levels 
per day in one week.
Computation cost de-

pends on forecast accu-
racy & frequency.

Objective: C=CxW

Knowledge-
base

W (weights 
matrix) is the 
adjacency ma-

trix which 
holds FCM at 
convergence. 

FCM-based Forecast

C (1x48) x W (48x48)

Last ob-
served de-
mand level 
at tiSchedule G

enera-
tion

Refine Forecast

Using closed-loop correction, 
Kalman filter, or other methods

Dynamic 7-Days Database

d7: Last completed day (yesterday)

d6: Day before yesterday

d1: 7 days ago  day in rolling window

d5,d4,d3,d2: Past days

Dt1(00:00-00:30) Dt2 …   Dti-1   Dti Dti+1    …  Dt48 (23:30-00:00)Today (d8):

Fig. 1 Forecast expert with parallel updating where d8 is assumed to have similar behavior with
d1. Forecasts during day d8 are on the bases of values of Dti+1 … Dt48 adapted from d1, while fresh
observations during d8 (Dt1 … Dti) are stored in d1 for use in the following week. Bold arrows
show data flow within the database
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to reveal forecasted Dti+1 and onwards, respectively. For half hour lead time, only
forecasted value of Dti+1 is concerned as revealed by Ci+1. The notation Dti+1|i
represents the estimate of demand at time step ti+1 given observations up to and
including at time ti. Accordingly, Dti|i is a posteriori state or observation at ti. Dti+1
(obtained with respect to demand behaviours of the past 7 days) is further refined in
a separate process with respect to the last observed demand level Dti and the last
forecasting error ΔDti. Equation 7 presents the resultant Dti+1|i where constant ρ
represent the assumed similarity of Dti+1 with FCM output Ci+1 being extracted
from its match in past week. ε multiplies by recent forecasting error ΔDti and is
applied as the gain of a negative feedback to complete the proportional controller.
The values of constants ρ, ε are both obtained using a standard annealing technique
on the available dataset given in Sect. 4.1

In another attempt, an improvement is made by specifying sources of forecasting
error. The week to week error μ1 accounts for the dissimilarity between last
observed Dti and the FCM-generated Dti (i.e., previously revealed by Ci) which
therefore acts against ρ. μ1 could therefore be modelled as 1−ρ. Time to time
demand error μ2 is the difference between demand levels Dti and Dti-1, and is related
to consistency of usage. The recent forecasting error remains as a corrective
feedback with gain ε, which overall results in modification of Eq. 7 to Eq. 8.
However, this time the feedback gain ε follows the curve’s variance (of last three
observations) rather than a fixed value. It is also important to avoid over training as
addressed in [56], and therefore FCM cycles (τmax) are kept to minimal in order to
increase accuracy of forecast rather based on the observed data, almost similar to a
higher gain in a Kalman-based implementation.

3.2 Forecast Using 7-Days Data, Weekly Rolling Window,
and Serial Updating

The model described in the previous section is tested using actual dataset. The
obtained results are given in Sect. 4.1 along with comparison against similar works
in the literature. This section, presents an improved version of the above system that
facilitates forecasting up to one day lead time. The structure of the forecast model,
although new, is fundamental and solely based on FCM working principles. In this
method, forecasting for any shorter lead time (e.g., 1 h, 6 h) could be made even
more accurately than the benchmark (one day lead time). A general concept of the
forecast model is presented in Fig. 2.

A single 336-node state vector of past week (PW) records the initial dataset
being 7 × 48 pieces of observed data in one week, from Dt1(d:hh:mm) until Dt336
(d + 7:hh:mm-00:30). An FCM is trained through application of the differential rule
in Eq. 6 on the state vector PW. The adjacency model (W) is derived to hold FCM
at convergence. Since W provides a model of mutual relationships among all usage
levels in one week, it is suggested that W can be generalized to rebuild the data of
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the following week as also shown in the experiments in Sect. 4.1. With the current
observation (let us name it Dt288) occurring at (d + 13:hh:mm-00:30) during the
current week (CW), and other known data from first day-time of CW until Dt288,
the model must predict the remaining data of CW that is up to one day ahead (Dt289
(d + 13:hh:mm) until Dt336 (d + 14:hh:mm-00:30)).

The solution is straight forward based on loading known data into respective
nodes in the trained FCM and then running for stable values of unknown nodes, i.e.,
forecasting one day ahead. The forecast trials are then repeated upon every new
half-hourly observation while the one-week rolling window (left to right) updates
the training set (PW) in a serial fashion. As a result, there will be 336 forecast trials
(each with one day lead time) for forecasting seven successive days that can also be
repeated for following weeks dynamically.

3.3 Benchmark FCM Forecast Model with Parallel-Serial
Database Updating

This section re-examines FCM method using a two dimensional dataset updating
strategy. We use merely an unsupervised FCM with no support from other
smoothing, regression, or forecast techniques. Following three classic naive fore-
casting rules (Eqs. 9–11) this method is going to serve as an FCM-based benchmark
model (in Sect. 4.2). The database consists of a weekly rolling window, updating
itself as well as the past two weeks in serial (by shifting to left) with every half
hourly observation. Accordingly, the following 24 h as targeted for forecasting
(Forecast Day) will have its counterparts in parallel from the past two weeks. The
training set is selected from four days as follows. Previous day (Eq. 9), last day of
the same type (whether holiday or working day) (Eq. 10), same day in the past week
(Eq. 11), and same day in two weeks ago (extension of Eq. 11).

CW:

Forecasted demand curve for next 24 hoursLast observed Demand Level (MW)

Dynamic Database (1-Week Rolling Window)

Dt1(d:hh:mm) …       …           …            Dt336 (d+7:hh:mm-00:30)

Dt1(d+7:hh:mm) … Dt288 (d+13:hh:mm-00:30) … Dt336(d+14:hh:mm-00:30)

PW:

Fig. 2 Schematic diagram of the second forecast expert based on serial updating of data. Bold
arrows show serial flow of data along and from the current week (CW) to and along the past
week (PW)
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D d : hh : mmð Þ ¼ D d � 1 : hh : mmð Þ ð9Þ

Dðdtype : hh : mm; typeÞ ¼ D d � 1type : hh : mm; type
� � ð10Þ

and; type 2 weekday;weekendðor holidayÞf g
D d : hh : mmð Þ ¼ D d � 7 : hh : mmð Þ ð11Þ

This selection allows for very small yet most relevant training set which
encompasses naive techniques in the literature [56]. It does relate a day to its
counterparts in past, while at the same time FCM inference relates all intraday load
levels to one another within the day. There are methods in the literature which used
limited hours of the previous days for naive forecast, e.g., recent six hours from
previous day [39], in order to keep training set as small as possible. Also, most
methods employed feed forward (FF) structures which indeed provide lower
computation cost than recurrent structures. However, FCM based implementation is
still advantageous as it provides a model of mutual relationships among load levels
during different hours of day which is a property beyond FF models. On the other
hand, to compensate for higher computation cost in recurrent models we suggest
PCA to compress the training set in terms of both variables (intraday readings) and
samples (past days). The results obtained using this method along with related PCA
is given in Sect. 4.2.

4 Results and Discussion

The obtained results presented in Sect. 4.1 are related to the methods in 3.1 and 3.2,
while results in Sect. 4.2 are related to the method in Sect. 3.3 of this article. The
dataset of historical demand in Victoria, Australia, has been used for the experi-
ments which are publically available on the AEMO website (Australian Energy
Market Operator (AEMO) [4].

4.1 Preliminary Results

Starting from 00:00-00:30 on 8 August 2013 the rolling window moves forward to
forecast demand levels in the following weeks. As the rolling window moves,
freshly observed data replace old counterparts in the past week. Accordingly, upon
completion of second week, the database (and therefore knowledgebase) is prepared
for forecasting third week’s demand levels. Figure 3a–g include the obtained results
on seven days. The maximum absolute intraday forecast errors (i.e., each within one
day) are 189, 214, 195, 195, 367, 310, 240 MW, with their maximum of 367 MW
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obtained on the fifth day (Monday), while the average maximum weekly forecast
error equals 244 MW. Figure 3h shows the average intraday forecast error (i.e., for
the same intervals on the seven days). It is observed that on average, maximum
intraday forecast errors occurs at 6:00 AM (around 130 MW) and then at 9:00 PM
(around 115 MW) which closely match with peak demand in morning and evening.
In the experiments in Fig. 3, optimal values of proportion rate ρ = 4.892, and
feedback gain ε = 0.676 have been employed while FCM cycles are kept to minimal
so that the computation cost for each forecast is as small as around 417 ms on an
Intel 2.7 GHz machine with 64-b OS and 8 GB RAM. Through the modification of
the model, based on week to week and time to time error control, maximum average
daily error of 312 MW and average weekly forecast error of 203 MW was obtained
on the same dataset, showing slight improvements. Figure 4a–g show the obtained

Fig. 3 a–g Actual demand levels on 8–14 August 2013 (solid), versus actual demand levels on
respective days in previous week 1–7 August 2013 (dotted). The forecast intraday demand curves
are shown with bold-faced perforated lines, h seven days average intraday error (with maximum at
6:00 AM)
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results with 30 min lead time. The maximum daily error is still on Monday, while
on average, the maximum intraday error is also at around 6 AM as shown in
Fig. 4h.

It must be noted that the surge in error before and after midnight, i.e., the two
ends of the error curve, is merely a computation error and has no root in reality. The
considerable error at the first point (at 00:00) is due to lack of fresh data and
conducting forecast only based on the respective demand level of the same day-time
in the previous week. Reversely, the error at the last point (at 23:30) is due to high
level of integration between memorized data and the forecast. Best results were
obtained with around 4300 FCM cycles per forecast, with maximum daily and
mean weekly errors of respectively 291 and 194 MW, and 4.8 s run-time per
forecast on the same machine. Maximum intraday forecast error of 115.26 MW is
still obtained at 6:00 AM (morning peak demand) while the forecast error related to
evening peak demand seems to be slightly harnessed.

Fig. 4 a–g Similar experiments as presented in Fig. 3, however with control over sources of error,
h seven-days average intraday error (with maximum at 6:00 AM)
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The series of experiments (in Figs. 3 and 4), reveal relatively reliable prediction
of intraday demand levels with half hour lead time. Maximum intraday forecast
error of less than 120 MW was obtained in two successive weeks which seemingly
compares well with 325 MW (or adjusted R-squared of 0.7526 for Victoria) in [18]
and adjusted R-squared 0.63–0.89 obtained for predicting weekly electricity
demand in [59], both using temperature-demand regression models. However, the
developed model does not provide predictions of growth in peak and mean demand
levels which are provided in [18, 59], that is due to lack of direct influence from
climate-related variables.

Another shortcoming is that unfortunately in both experiments the maximum
average intraday error occurs at around morning peak (around 06:00 AM) although
the forecasting error for the more serious peak in evening is controlled especially
using the modified model (Fig. 4). Better forecasts for evening peak as compared
against morning peak is obviously due to availability of more intraday observations
in the evening. This signifies that FCM training window must be rolling on
half-hour basis rather than on daily intervals so that consistent training will be
performed prior to each half-hourly forecast.

Accordingly, instead of parallel database updating method (Sect. 3.1) serial
updating (Sect. 3.2) was employed expecting more consistent intraday forecast error
on and off peak. Figure 5 shows an example of forecasting one day ahead on
half-hour basis with 12.73 % averaged absolute error on a typical weekday (at left)
being the first day.

Despite serial database updating, it is still realized qualitatively that as more
intraday samples are received in the current day, forecast error decreases for the
remainder of the day, including the second peak, and until the same hour of the
following day (at right). Hence, the main drawback is still related to forecasting the
first peak in morning which required more extensive work on this model.

The performance of weekly rolling window for shorter lead time is expected to
be better than the parallel window. Therefore, to examine this model, a seven days
testing set from 15 to 21 August 2013 was forecasted on half-hour basis and with
12 h lead time. Figure 6 shows the forecasts made exactly at noon and midnight

Fig. 5 Forecasting electricity demand (MW) up to one day lead time using weekly rolling
window. While the rolling window covers a day (at left), the following day (at right) is being
predicted (on half hour basis)
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intervals for the following 12 h. The maximum absolute error between the actual
and forecast load levels falls below 100 MW with the MAPE of M = 5.8717 %
(Eq. 12). The obtained error shows better performance than the parallel model,
however, it does not compare well against AEMO’s MAPE of 2.4 % for Victorian
demand on a similar horizon (August 2013 [60]).

M ¼ 100%
336

X7

j¼1

X48

i¼1

Dtiji dþ jð Þ � Dtiji�1ðdþ jÞ
Dtiji dþ jð Þ

����

���� ; d is 15; Aug ð12Þ

4.2 FCM-Based Benchmark Forecasting Model

The strategies in previous models were incorporated into one, as described in
Sect. 3.3. This section describes the related experimental work for daily forecast of
seven successive days (15 through 21 August 2013). The results signify that the
four-days database and derived FCM-based knowledgebase provide a reliable naive
forecasting platform, however, this has to be further analyzed for different types of
days. An advantage is about flexibility of FCM graph to expansion so that it can
serve as the base for more sophisticated techniques to build upon, where clean data
or clear knowledge of other multivariate (e.g., temperature) is available.

Depending on availability of new data, such as temperature observations, new
nodes can be added or removed from the graph without disturbing other variables or

Fig. 6 Forecasting electricity demand (MW) with 12 h lead time using weekly rolling window.
Absolute error between the actual load levels (dotted) and forecast loads (solid) does not exceed
100 MW (shown at the bottom). The one week forecast shows MAPE of 5.8717 % purely
using FCM
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the ongoing sequence of forecasts. The inference process for tuning graph’s adja-
cency matrix simply adapts to existence of new variables by expanding the matrix
at both dimensions. Other than techniques to be integrated into FCM inference, the
final outputs (sequence of forecast) can be given to separate modules such as
smoothers (e.g., Kalman filter) and other time series analysis algorithms.

Figure 7a–g show the forecast results on the seven test days along with the
maximum errors and respective observations given in Table 1. The maximum
absolute error of 658.4 MW on one day lead time, and estimated MAPE error of
M = 8.32 % has been obtained on the small testing set, which accounts for 91.7 %
average accuracy of the model. Exact MAPE value however could be obtained from
Eq. 12. To further investigate the properties of the system and interpretation of the
obtained results, a PCA was conducted on both training and testing sets. The three
weeks dataset (1–21 August) is analyzed where variables are the 48 half hourly

Fig. 7 a–g Obtained daily forecast for Thursday 15 through Wednesday 21 Aug, 2013, using
FCM-based naive forecasting with 4-days dataset. Actual and forecast intraday load levels are
indicated with dotted and solid curves, respectively. Bottom lines show the forecast error.
h Forecast with revised rules for Friday 16
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readings and the samples are the 21 days. The Scree test gives a sharp elbow on the
second component whichmakes analysis straightforwardmainly using PC1 and PC2.

Figure 8 shows score plots on PC1–PC2 (a) and PC1–PC3 (b). The scores on
PC1–PC3 at least show the distinction between working days and weekends, while
in addition, scores on PC1–PC2 plot show clear distinction between Mondays, from
the rest of the weekdays. The three midweek days (Tuesdays, Wednesdays, and
Thursdays) sit together. Fridays however are on islands which indicate dissimilar
behavior to other days as well as to one another that might be due to their busy and
diverse schedules. This single fact justifies the highest error of 1667 MW on Friday
at around 2 PM. Weekends, although barely grouped together still reveal reliable
conclusions. For example, it is well observed that 17 (Saturday) is close to 11
(Sunday) being the last day of the same type (Eq. 10), as well as to 10 (Saturday) in
the past week (Eq. 11). However, it is barely related to its preceding day 16 (Friday)
which defies the rule in Eq. 9. On the other hand, Wednesdays and Thursdays

Fig. 8 Scores of the 21 days dataset reveal facts yet to be confirmed using larger dataset
throughout the year
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support the same rule as they show close behavior with their preceding days.
Mondays and Tuesdays are exceptional in that they only follow their counterparts in
previous weeks. Accordingly, more counterpart days in series of past weeks can be
considered instead of only one week in Eq. 11. Inspired by this analysis, the basic
rules in Eq. 9–11, or any additional rule, could be tailored for each individual day.
Indeed a more extensive analysis is required such as using larger dataset from
different seasons before confirming the naive rules. Another benefit of such analysis
is in reduction of redundant samples while using larger dataset. Days which are
confirmed to be in one cluster can be represented with limited members of that
cluster which leads to compression of dataset (in terms of number of samples)
without losing the traits.

Another strategy for dataset compression is based on reduction of correlated
variables (half hourly readings) by grouping and then representing groups with their
key members that is different from reduction via transformation to PCs space. The
loading plots in Fig. 9 show this strategy which results in reduction from 48 to 30
variables, where selection criterion is merely based on the Euclidean distance to the
group’s centre of shape. The grouping itself is for up to four members per group
unless additional members fall within a threshold distance on PC1 to the centre of
shape. Another fact is that readings 10–20 (between 5 and 10 AM) are most
volatile. The biplots show most Mondays, Fridays, and Sundays are related with 11
AM and onwards (negative on PC2), while other days are more related to other
variables (midnight until 11 AM). Extensive PCA is required on yearly data to
customize the rules, which eventually lead to a development of a forecasting
platform merely using demand curves and no other data.

For example, Fig. 10 shows the intraday loadings for 73 selected days covering
the entire year 2013. While most readings fall within interlinked clusters at the left
and right extremes, it is confirmed that the 15th–21st (07:30-10:30) and then 39th–
42nd (19:30-21:00) readings are notably more volatile and therefore should be
treated more independently, while an optimization technique can be incorporated
for selection of other representatives from the clusters.

Fig. 9 The loadings on the 48 readings. Grouping allows to reduce readings to 30 instances: 1, 6,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 30, 31, 33, 36, 38, 41, 42, 43, 44,
45, 47, half hours
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5 Conclusion

Weekly patterns provide reliable basis for forecasting, however, there are excep-
tions such as irregular public holidays, most Fridays and Mondays, or days which
climate and other variables change tremendously. It is therefore concluded that a
highly reliable forecast platform must take account of more system behaviours,
upon which forecasting rules intelligently evolve. For example, as a conclusion and
proof of concept, the analysis in this section is used to modify the rules for Friday
16th on the assumption that it is close only to its preceding day.

Accordingly, the training set changes from the four-days (as used for other days)
to a two-days training set, i.e., only considering the previous day, and the last day of
the same type (rules in Eq. 9 and 10). Figure 7h shows the obtained result with
reduced error down to 989 MW, still at around 2 PM. The overall system accuracy
is increased to 93 %.

Apart from customizing the training set, and utilization of larger yet compressed
dataset, the FCM-generated knowledgebase can also be improved in terms of
activation and training [37, 43]. Accordingly, the future work involves three steps:
to conduct more extensive analysis to confirm a robust naive benchmark based on
weekly patterns in one year for forecasting up to one day ahead, to elaborate a
relationship model for concurrent analysis of multivariate interactions, and to
implement this concept in a small scale, such as individual household level, or
statistical local area.

This study is part of the Simulation of Electricity Demand project, at the CSIRO
Ecosystem Sciences Urban Systems Program, in Victoria, AU. The authors are
grateful to the internal and external peer reviewers, and to Dr. Chi-Hsiang Wang,

Fig. 10 The loadings on the 48 variables for 73 selected days (on every five days basis) along the
year 2013
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whose comments improved this submission, and the Australian Energy Market
Operator (AEMO) for their reliable electricity demand dataset.
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Development of Artificial Intelligence
Based Regional Flood Estimation
Techniques for Eastern Australia

Kashif Aziz, Ataur Rahman and Asaad Shamseldin

Abstract This chapter focuses on the development of artificial intelligence based
regional flood frequency analysis (RFFA) techniques for Eastern Australia. The tech-
niques considered in this study include artificial neural network (ANN), genetic algo-
rithm based artificial neural network (GAANN), gene-expression programing
(GEP) and co-active neuro fuzzy inference system (CANFIS). This uses data from 452
small to medium sized catchments from Eastern Australia. In the development/training
of the artificial intelligencebasedRFFAmodels, the selected 452 catchments aredivided
into two groups: (i) training data set, consisting of 362 catchments; and (ii) validation
data set, consisting of 90 catchments. It has been shown that in the training of the four
artificial intelligence based RFFA models, no model performs the best across all the
considered six average recurrence intervals (ARIs) for all the adopted statistical criteria.
Overall, the ANN based RFFA model is found to outperform the other three models in
the training. Based on an independent validation, themedian relative error values for the
ANN based RFFAmodel are found to be in the range of 35–44% for eastern Australia.
The results show that ANN based RFFA model is applicable to eastern Australia.

1 Introduction

Flood is one of the worst natural disasters that cause significant impacts on econ-
omy. About 951 people lost their lives and another 1326 were injured in Australia
by floods during 1852–2011 [1]. During 2010–11, over 70 % of Queensland state
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was affected by severe flooding, with the total damage to public infrastructure was
estimated to be $5 billion [2]. Design flood estimate, a probabilistic flood magni-
tude, is used in engineering design to safeguard water infrastructures and to min-
imise the overall flood damage. To estimate design floods, at-site flood frequency
analysis is the most commonly adopted technique; however, at the locations where
streamflow record is unavailable or is of limited length or of poor quality, regional
flood frequency analysis (RFFA) is generally adopted to estimate design floods.
A RFFA technique attempts to use flood data from a group of homogeneous donor
gauged catchments to make flood estimation at ungauged location of interest.

For developing the regional flood prediction equations, the commonly used
techniques include the rational method, index flood method and quantile regression
technique. These techniques generally adopt a linear method of transforming inputs
to outputs. Since hydrologic systems are often non-linear, RFFA techniques based
on non-linear methods can be a better alternative to linear methods. Among the
non-linear methods, artificial intelligence based techniques have been widely
adopted in various water resources engineering problems. However, their applica-
tion to RFFA problems is quite limited.

This chapter presents the development of artificial intelligence based RFFA
methods for eastern Australia. The non-linear techniques considered in this chapter
are artificial neural network (ANN), genetic algorithm based artificial neural net-
work (GAANN), gene-expression programing (GEP) and co-active neuro fuzzy
inference system (CANFIS).

2 Review of Artificial Intelligence Based Estimation
Methods in Hydrology

RFFA essentially consists of two principal steps: (i) formation of regions; and
(ii) development of prediction equations. Regions have traditionally been formed
based on geographic, political, administrative or physiographic boundaries [3, 4].
Regions have also been formed in catchment characteristics data space using
multivariate statistical techniques [5, 6]. Regions can also be formed using a
region-of-influence approach where a certain number of catchments based on
proximity in geographic or catchment attributes space are pooled together based on
an objective function to form an optimum region [7–9].

For developing the regional flood prediction equations, the commonly used
techniques include the rational method, index flood method and quantile regression
technique (QRT). The rational method has widely been adopted in estimating design
floods for small ungauged catchments [4, 10–12]. The index floodmethod has widely
been adopted in many countries, which relies on the identification of homogeneous
regions [13–18]. The QRT, proposed by the United States Geological Survey
(USGS), has been applied by many researchers using either an Ordinary Least Square
(OLS) or Generalized Least Square (GLS) regression techniques [19–27].
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Most of the above RFFA methods assume linear relationship between flood
statistics and predictor variables in log domain while developing the regional
prediction equations. However, most of the hydrologic processes are nonlinear and
exhibit a high degree of spatial and temporal variability and a simple log trans-
formation may not guarantee achievement of linearity in modeling. Therefore, there
have been applications of artificial intelligence based methods such as artificial
neural networks (ANN), genetic algorithm based ANN (GAANN), gene expression
programming (GEP) and co-active neuro-fuzzy inference system (CANFIS) in
water resources engineering such as rainfall runoff modeling and hydrologic fore-
casting, but there have been relatively few studies till to-date involving the appli-
cation of these techniques to RFFA [28–33]. Application of these techniques may
help developing new improved RFFA techniques for Australia, which experiences a
highly variable rainfall and hydrologic conditions. Unlike regression based
approach, the artificial intelligence based techniques do not impose any fixed model
structure on the data rather the data itself identifies the model form through use of
artificial intelligence.

3 Methodology

Since the first neural model by McCulloch and Pitts [34], there have been devel-
opments of hundreds of different models which are considered ANN. The differ-
ences in them might be the functions, the accepted values, the topology, the
learning algorithms, and the like. Since the function of ANN is to process infor-
mation, they are used mainly in fields related to information processing. There are a
wide variety of ANN that are used to model real neural networks, and study
behaviour and control in animals and machines, but also there are ANN which are
used for engineering purposes such as pattern recognition, flood forecasting, and
data compression.

In this study, the adopted ANN modelling, Lavenberg-Marquardt method was
used as the training algorithm to minimize the mean squared error (MSE) between
the observed and predicted flood quantiles. The purpose of training an ANN with a
set of input and output data is to adjust the weights in the ANN to minimize the
MSE between the desired flood quantile and the ANN predicted flood quantile.
Three hidden-layered neural networks were selected with 7, 3 and 1 neurons to each
of these three layers. Two inputs, catchment area (A) and rainfall intensity with
duration equal to time of concentration (tc) and a given average recurrence interval
(ARI) were used in one input layer and one output layer with one output called
predicted flood quantile (Qpred). The transfer function used for the hidden layers and
the output layer was all hyperbolic tangent sigmoid function. Transfer functions
calculate a layer’s output from its net input. A maximum training iteration of 20,000
was adopted. All dependent and independent variables were standardized to the
range of (0.05, 0.95), so that extreme flood events, which exceeded the range of the
training data set could be modelled between the boundaries (0, 1) during testing.
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A learning rate of 0.05 was used together with a momentum constant of 0.95.
MATLAB was used to perform the ANN training. To select the best performing
model the different combinations of hidden layers, algorithm, and number of
neurons were observed against the MSE value. In order to obtain the best
ANN-based model, the MSE values between the observed and predicted flood
quantiles were calculated and the training was undertaken to minimize this error.

The major difference between GA and the classical optimization search tech-
niques is that the GA works with a population of possible solutions; whereas, the
classical optimization techniques work with a single solution [35]. GA is based on
the Darwinian-type survival of the fittest strategy, whereby potential solutions to a
problem compete and mate with each other in order to produce increasingly
stronger individuals. Each individual in the population represents a potential
solution to the problem that is to be solved and is referred to as a chromosome [36].
An initial population of individuals (also called chromosomes) is created and
according to an objective function in focus the fitness values of all chromosomes is
evaluated. From this initial population parents are selected who mate together to
produce off springs (also called children). The genes of parents and children are
mutated. The fittest among parents and children are sent to a new pool. The whole
procedure is carried over until any of the two stopping criteria is met i.e. the
required number of generations has been reached or convergence has been
achieved. Chromosomes are the basic unit of population and represent the possible
solution vector; they are assembled from a set of genes that are generally binary
digits, integers or real numbers [37, 38].

An initial population is crowded with “n” number of chromosomes where “n” is
referred to as the population size. An objective function comprising of feed forward
ANN model with complete description of its architecture is defined. It reads training
patterns once at the start of model and stores them in memory for applying to each
chromosome. The total number of genes l of each chromosome represents the total
synaptic weights of ANN model.

g1; g2; . . .glf g ¼ fwðif!hrÞ; wðib!hrÞ; wðhf!orÞ; wðhb!orÞg ð1Þ

where ‘w’ represents the value of a synaptic weight, subscript ‘i’ represents a node
of input layer, ‘h’ is a node of hidden layer and ‘o’ represents the output layer node,
‘f’ is serial number of node which forwards the information (i.e. f = 1, 2, 3, …), ‘r’
is serial number of node which receives information (i.e. r = 1, 2, 3, …), ‘ib’
represent the bias node of input layer and ‘hb’ is bias node of hidden layer.

At the start of model, the fitness values of all the chromosomes of population are
evaluated by ANN function. The real values stored in the genes of chromosome are
read as the respective weights of ANN model. The ANN performs feed forward
calculations with the weights read from genes of forwarded chromosome, and
calculates MSE. The inverse of MSE is regarded as the fitness value of chromo-
some. By this way, the fitness values of all chromosomes of initial population are
calculated by ANN function.
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The selection operator selects two parent chromosomes randomly. The roulette
wheel operator with elitism is used in this model. Elitism is a scheme in which the
best chromosome of each generation is carried over to the next generation in order
to ensure that the best chromosome does not lost during the calculations. The
selected parents are mated to produce two children having the same number of
genes. The uniform crossover operator is used with a crossover rate of pc = 1.0. In
uniform crossover, a toss is done at each gene position of an offspring and
depending upon the result of toss, the gene value of 1st parent or 2nd parent is
copied to the offspring. The genes of children are then mutated with the swap
mutation operator with a mutation rate of pm = 0.8. The mutated children are then
evaluated by ANN function to know their fitness values. The fitness values of all
the four chromosomes (2 parents & 2 children) are compared and the two chro-
mosomes of highest fitness values are then sent to a new population and the other
two are abolished. The evolutionary operators continue this loop of selection,
crossover, mutation and replacement until the population size of new pool is same
as old pool. One generation cycle completes at this stage and process is repeated
until any of two stopping criteria is fulfilled i.e. maximum number of generations
are reached or the convergence has been achieved. And the best chromosome which
is tracked so far through the number of generations is sent to the ANN function. The
genes of best chromosome are read as weights of ANN model and represent the
optimised weights of ANN model. With these weights, the model is said to be fully
trained. Finally, the train and test sets are simulated by using these weights.

The GAANN is coded in C language and some sub routines of LibGA package
[39] for evolutionary operators of GA has been used with alterations to read and
process the negative real values.

Gene-expression Programming (GEP) is used to perform a non-parametric
symbolic regression. Symbolic regression although is very similar to traditional
parametric regression, does not start with a known function relating dependent and
independent variables as the latter. GEP programs are encoded as linear strings of
fixed length (the genome or chromosomes), which are afterwards expressed as
nonlinear entities of different sizes and shapes [40–42].

GEP automatically generates algorithms and expressions for the solution of
problems, which are coded as a tree structure with its leaves (terminals) and nodes
(functions). The generated candidates (programs) are evaluated against a “fitness
function” and the candidates with higher performance are then modified and
re-evaluated. This modification evaluation cycle is repeated until an optimum
solution is achieved. In GEP a population of individual combined model solutions
is created initially in which each individual solution is described by genes
(sub-models) which are linked together using a predefined mathematical operation
(e.g. addition). In order to create the next generation of model solutions, individual
solutions from the current generation are selected according to fitness which is
based on the pre-chosen objective function. These selected individual solutions are
allowed to evolve using evolutionary dynamics to create the individual solutions of
the next generation. This process of creating new generations is repeated until a
certain stopping criterion is met [43].
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Two important components of the GEP include the chromosomes and the
expression trees (ETs). The ETs are the expression of the genetic information
encoded in the chromosomes. The process of information decoding from chro-
mosomes to the ETs is called translation, which is based on a kind of code and a set
of rules. There exist very simple one to one relationships between the symbols of
the chromosome and the functions or terminals they represent in the genetic code.
To predict the flood quantiles the set of independent variables (predictor variables)
to be used in the individual prediction equation are to be identified. Then a set of
functions (e.g. ex, xa, sin(x), cos(x), ln(x), log(x), 10x, etc.) and arithmetic operations
(+, −, /, *) are defined. The terminals and the functions form the junctions in the tree
of a program.

In GEP, k-expressions (from Karva notation) which are fixed length list of
symbols are used to represent an ET. These symbols are called chromosomes, and
the list is a gene. The Gene “sqrt, × , ± , a, b, c and d” can be represented as ET.
The GEP gene contains head and a tail. The symbols that represent both functions
and terminals are present in the head while tail only contains terminals. The length
of the head of the gene h is selected for each problem while the length of the tail is a
function of length of the head of the gene.

In order to obtain the best GEP model, the mean squared error was used as
‘fitness function’, which was based on the observed and predicted flood quantiles;
the training was undertaken to minimize this error.

For the CANFIS model development, model catchments were clustered based on
model variables (A, Itc_ARI) into several class values in layer 1 to build up fuzzy
rules, and each fuzzy rule was constructed through several parameters of mem-
bership function in layer 2. A fuzzy inference system structure was generated from
the data using subtractive clustering. This was used in order to establish the rule
base relationship between the inputs.

In order to obtain the best CANFIS models, the MSE was used as the ‘fitness
function’, which was based on the observed and predicted flood quantiles; the
training was undertaken to minimise this error. Lavenberg-Marquardt (LM) method
was used as the training algorithm to minimize the MSE. CANFIS model was
trained with a set of input and output data to adjust the weights and to minimize the
MSE between the desired outputs and the model outputs. The testing data set was
selected randomly to produce a reasonable sample of different catchment types and
sizes. Two inputs (A, Itc_ARI) were used in one input layer and one output layer with
one output (Qpred).

In the case of CANFIS, the bell membership function and the TSK neuro fuzzy
model were used, as this type of fuzzy model best fits the multi-input, single output
system [44]. LM algorithm was used for the training of CANFIS model. The
stopping criteria for the training of the CANFIS network was set to be a maximum
of 1000 epochs and training was set to terminate when the MSE drops to 0.01
threshold value.
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The following statistical measures were used to compare various RFFA models
[45, 46]:

• Ratio between predicted and observed flood quantiles:

Ratio of predicted and observed flood quantile ¼ Qpred

Qobs
ð2Þ

• Relative error (RE):

RE %ð Þ ¼ Abs
Qpred � Qobs
� �

Qobs
� 100

� �
ð3Þ

• Coefficient of efficiency (CE):

CE ¼ 1�
Pn

i¼1
ðQobs � QpredÞ2

Pn

i¼1
ðQpred � �QÞ2

ð4Þ

where Qpred is the flood quantile estimate from the ANNs-based or GEP based
RFFA model, Qobs is the at-site flood frequency estimate obtained from LP3 dis-
tribution using a Bayesian parameter fitting procedure [47, 48] and �Q is the mean of
Qobs. The median relative error and median ratio values were used to measure the
relative accuracy of a model. A Qpred/Qobs ratio closer to 1 indicates a perfect match
between the observed and predicted value and a smaller median relative error is
desirable for a model. A CE value closer to 1 is the best; however a value greater
than 0.5 is acceptable.

4 Data Selection

Eastern Australia was selected as the study area, which includes states of New
South Wales (NSW), Victoria (VIC), Queensland (QLD) and Tasmania (TAS).
This part of Australia was selected since this has the highest density of streamflow
gauging stations with good quality data as compared to other parts of Australia.
For RFFA study, streamflow data (annual maximum series) and climatic and
catchment characteristics data are needed. A total of 452 catchments, which are
rural and are not affected my major regulation were selected for this study. The
locations of the selected catchments are shown in Fig. 1. A total of 96, 131, 172
and 53 stations from NSW, VIC, QLD and TAS, respectively were selected.
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The catchment sizes of the selected 452 stations range from 1.3 to 1900 km2 with
the median value of 256 km2. For the stations of NSW, VIC and QLD, the upper
limit of catchment size was 1000 km2, however for Tasmania; there were 4
catchments in the range of 1000 to 1900 km2. Overall, there are about 12 %
catchments in the range of 1 to 50 km2, about 11 % in the range of 50 to 100 km2,
53 % in the range of 100 to 500 km2 and 24 % greater than 1000 km2.

The annual maximum flood record lengths of the selected stations range from 25
to 75 years (mean: 33 years). The Grubbs and Beck [47] method was adopted in
detecting high and low outliers (at the 10 % level of significance) in the annual
maximum flood series data. The detected low outliers were treated as censored
flows in flood frequency analysis. Only a few stations had a high outlier, which was
not removed from the data set as no data error was detected for these high flows.

In estimating the flood quantiles for each of the selected stations, log-Pearson III
(LP3) distribution was fitted to the annual maximum flood series using Bayesian
method as implemented in FLIKE software [48]. According to Australian Rainfall

Fig. 1 Locations of the
selected catchments
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and Runoff (ARR), LP3 is the recommended distribution for at-site flood frequency
analysis in Australia [4], and hence it was adopted. In previous applications [27, 49,
50], it has been found that LP3 distribution provide an adequate fit to the Australian
annual maximum flood data.

In developing the prediction equations for flood quantiles, initially a total of five
explanatory variables were adopted as part of study [45] using the same 452
catchments. These variables are: (i) catchment area expressed in km2 (A); (ii) design
rainfall intensity values in mm/h Itc, ARI (where ARI = 2, 5, 10, 20, 50 and 100 years
and tc = time of concentration (hour), estimated from tc = 0.76A0.38) (iii) mean
annual rainfall expressed in mm/y (R); (iv) mean annual areal evapo-transpiration
expressed in mm/y (E); (v) main stream slope expressed in m/km (S). In both of
these studies where the ANN and Gene Expression programming techniques were
used to develop the prediction equation, this was found that two variables (A and Itc,
ARI) model outperformed other models. Based on this finding, two predictor vari-
ables i.e., A and Itc, ARI are selected for this study.

5 Results

At the beginning each of the four artificial intelligence based RFFA models is
trained using MATLAB codes (developed as a part of this research) by minimising
the mean squared error between the observed and predicted flood quantiles for each
of six ARIs (2, 5, 10, 20, 50 and 100 years). This is done using the training data set
consisting of 362 catchments.

Table 1 shows the median of the absolute relative error values for the ANN,
GAANN, GEP and CANFIS based RFFA models. It can be seen that ANN based
RFFA model outperforms the other models with a median RE value of 42.1 % over
all the six ARIs. In some cases, the GAANN based RFFA model performs better or
equal to the ANN based model i.e. for ARIs of 2, 5, 20 and 100 years; however, for
50 years ARI it shows a very high RE (60 %). In terms of consistency over the
ARIs, ANN outperforms the other three models. Both GEP and CANFIS have quite
high RE values (GEP = 54.02 %, CANFIS = 59.46 %). Importantly, CANFIS
shows very high RE values for 2 years ARI (94.02 %) and 50 years ARI (71.94 %).

Table 1 Median RE (%)
values of four artificial
intelligence based RFFA
models (training)

ARI (years) ANN GAANN GEP CANFIS

2 43.75 40.92 73.3 94.02

5 39.53 39.31 43.91 43.55

10 39.14 41.01 43.25 45.27

20 40.38 40.29 54.61 46.07

50 43.32 60.00 54.22 71.94

100 46.30 45.28 54.82 55.89

Overall 42.07 44.47 54.02 59.46

Development of Artificial Intelligence … 315



Overall, in terms of RE value, the ANN is the best performer, followed by the
GAANN, GEP and CANFIS.

The CE, median Qpred/Qobs ratio and median relative error values are compared
in Table 2 for the training and validation datasets for the ANN based RFFA model.
In terms of CE value, the best agreement between the training and validation data
sets is found for ARIs of 10, 20 and 50 years, a reasonable degree of agreement is
found for ARIs of 2 and 5 years and relatively poor agreement is found for the ARI
of 100 years where the CE value for the validation data set is remarkably small.
With respect to median Qpred/Qobs ratio value, the best agreement between the
training and validation data sets is found for 2 years ARI, a moderate agreement is
noticed for 10, 20, 50 and 100 years ARIs and a poor agreement is found for 5 years
ARI. However, for 5 years ARI validation data set gives a very good Qpred/Qobs

ratio value (0.99). In relation to the median relative error values, the best agreement
between the training and validation data sets is found for ARIs of 5 and 100 years, a
moderate agreement for ARI of 50 years and poor agreement for ARIs of 2 and
10 years. From these results, it is noted that the ANN based RFFA model shows
different degrees of agreement between the training and validation data sets for
different ARIs across the three criteria adopted here.

From the results of the training of the four artificial intelligence based RFFA
models, it has been found that none of the four models perform the best in all the
adopted assessment criteria over the six ARIs. Based on the four different criteria as
shown in Table 3, the performances of the four models are assessed in a heuristic

Table 2 Comparison of training and validation results for the ANN based RFFA model

Training Validation

ARI
(years)

CE Qpred/Qobs

(median)
RE (%)
(median)

CE Qpred/Qobs

(median)
RE
(median)

2 0.59 1.03 43.75 0.69 1.04 37.56

5 0.73 1.12 39.53 0.59 0.99 40.39

10 0.64 1.06 39.14 0.63 1.02 44.63

20 0.71 1.10 40.38 0.69 1.04 35.62

50 0.70 1.08 43.32 0.68 1.14 39.09

100 0.64 1.15 46.30 0.40 1.10 44.53

Overall 0.67 1.09 42.07 0.61 1.06 40.30

Table 3 Ranking of the four artificial intelligence based RFFA models with respect to training

Criterion Rank 1 Rank 2 Rank 3 Rank 4

Scatter plot of Qobs Vs Qpred ANN GANN CANFIS GEP

Median Qpred/Qobs ANN GEP GAANN/CANFIS #

Median RE ANN GAANN GEP CANFIS

Median CE GAANN ANN GEP/CANFIS #

Overall score ANN-15, GAANN-12, GEP-10, CANFIS-7
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manner. In this assessment, a model is ranked based on four different criteria as
shown in Table 3. Four different ranks are used, with a relative score ranging from 4
to 1. If a model is ranked 1 for a criterion, it scores 4. For ranks of 2, 3 and 4, scores
of 3, 2 and 1, respectively are assigned.

Table 3 shows that the ANN based RFFA model has the highest score of 15,
followed by the GANN with a score of 12. The GEP receives a score of 10, while
the CANFIS receives only 7 making it the least favourable model in terms of its
performance during training. The ANN based model is placed at rank 1 in the 3 out
of 4 criteria. Hence, it is decided that the ANN based RFFA model is the best
performing artificial intelligence based model in terms of training/calibration of the
model.

Table 4 shows the ranking of the four artificial intelligence based RFFA models
based on the agreement between the training and validation using three criteria.
Four different ranks are used with a relative score ranging from 4 to 1 as mentioned

Table 4 Ranking of the four artificial intelligence based RFFA models with respect to agreement
between training and validation

Criterion Rank 1 Rank 2 Rank 3 Rank 4

Median
Qpred/
Qobs

GEP
(Best agreement:
Q2, Q5, Q10, Q20

Moderate
agreement: Q50,

Q100

Poor agreement:
none)

ANN
(Best
agreement: Q2,
Q10, Q100

Moderate
agreement:
Q20, Q50

Poor
agreement: Q5)

CANFIS
(Best agreement:
Q5, Q10, Q20, Q50,

Q100

Moderate
agreement: none
Very poor
agreement: Q2)

GAANN
(Best agreement:
Q2, Q10, Q20, Q100

Moderate
agreement: Q5

Very poor
agreement: Q50)

Median
RE (%)

GEP
(Best agreement:
Q2, Q5, Q10, Q20,
Q100

Moderate
agreement: Q50

Poor agreement:
none)

ANN
(Best
agreement: Q5,
Q100

Moderate
agreement:
Q50, Q20

Poor
agreement: Q2,

Q10)

GAANN
(Best agreement:
Q50, Q100

Moderate
agreement: Q20

Very poor
agreement: Q2, Q5,

Q10)

CANFIS
(Best agreement:
Q5, Q10, Q20, Q50,

Q100

Moderate
agreement: none
Significantly poor
agreement: Q2

Median
CE

GAANN
(Best agreement:
Q2, Q5, Q20, Q100

Moderate
agreement: Q10

Poor agreement:
Q50)

ANN
(Best
agreement:
Q10, Q20, Q50

Moderate
agreement: Q2,

Q5

Poor
agreement:
Q100)

CANFIS
(Best agreement:
Q10, Q20, Q50, Q100

Moderate
agreement: Q5

Poor agreement:
Q2)

GEP
(Best agreement:
Q5, Q20, Q50

Moderate
agreement: Q10,

Q100

Poor agreement:
Q2)

Overall score ANN-9, GEP-9, GAANN-7, CANFIS-5
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earlier. It is found that the ANN and GEP based RFFA models both score 9,
followed by the GAAANN and CANFIS. Overall, ANN based RFFA model shows
the best training/calibration and the CANFIS the least favourable one.

Figure 2 compares the predicted flood quantiles for the selected 90 test catch-
ments from the ANN based RFFA model with the observed flood quantiles for
20 years ARI (Q20). The observed flood quantiles are estimated using an LP3
distribution and Bayesian parameter estimation procedure [48]. It should be noted
here that the observed flood quantiles are not free from error; these are subject to
data error (such as rating curve extrapolation error), sampling error (due to limited
record length of annual maximum flood series data), error due to choice of flood
frequency distribution and error due to selection of parameter estimation method.
This error undermines the usefulness of the validation statistics (e.g. RE); however,
this provides an indication of possible error of the developed RFFA model as far as
practical application of the RFFA model is concerned. The ratio Qpred/Qobs and RE
values are used for the assessment of models; however, the CE value is not very
useful here as the mean of observed flood quantile is not known.

Figure 2 shows a good agreement overall between the predicted and observed
flood quantiles; however, there is some over-estimations by the ANN based RFFA
model when the observed flood quantiles are smaller than about 50 m3/s. Most of
the test catchments are within a narrow range of variability from the 45-degree line
except for a few outliers. The plots of predicted and observed flood quantiles for
other ARIs showed very similar for ARIs of 2, 5, 10 and 20 years. Results for ARIs
of 50 and 100 years exhibited some overestimation by the ANN based RFFA model
for smaller to medium discharges.

Figure 3 shows the boxplot of relative error (RE) values of the selected test
catchments for ANN based RFFA model for different flood quantiles. It can be seen
from Fig. 3 that the median RE values (represented by the thick black lines within
the boxes) are located very close to the zero RE line (indicated by 0–0 horizontal

Fig. 2 Comparison of
observed and predicted flood
quantiles for ANN based
RFFA model for Q20
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line in Fig. 3), in particular for ARIs of 2, 5, 10 and 20 years. However, for ARIs of
50 and 100 years, the median RE values are located above the zero line with ARI of
50 years showing the highest departure, which indicates an overestimation by the
ANN based RFFA model. Overall, the ANN based RFFA model produces nearly
unbaised estimates of flood quantiles as the median RE values match with the zero
RE line quite closely as can be seen in Fig. 3.

In terms of the spread of the RE (represented by the width of the box), ARI of 50
and 100 years present the highest RE band and ARIs of 2 and 5 years present the
smallest RE band, followed by ARI of 20 and 10 years. The RE bands for 50 and
100 years ARIs are almost double to RE bands of 2 and 5 years ARIs. This implies
that ANN based RFFA model provides the most accurate flood quantile estimates
for 2 and 5 years ARIs, and the least accurate flood quantiles for ARIs of 50 and
100 years. Overall. the boxplot in Fig. 3 shows that better results in terms of RE
values are achieved for the smaller ARIs (i.e. 2, 5, 10 and 20 years ARIs) as
compared to higher ARIs for the ANN based RFFA model. Some outliers (evi-
denced by notable overestimation with a positive RE) can be seen for all the ARIs,
which may need to be examined more closely for data errors or issues regarding the
hydrology and physical characteristics of these catchments; if these catchments are
deemed to be genuine outliers they should be removed to enhance the ANN based
RFFA model; however, this has not been undertaken in this chapter.

Figure 4 shows the boxplot of the Qobs/Qpred ratio values of the selected 90 test
catchments for ANN based RFFA model for different ARIs. The median Qobs/Qpred

ratio values (represented by the thick black lines within the boxes) are located closer
to 1–1 line (the horizontal line in Fig. 4), in particular for ARIs of 2, 5, 10 and
20 years. However, for ARI of 50 years (and to a lesser degree for ARI of
100 years), the median Qobs/Qpred ratio value is clearly located above the 1–1 line.

These results indicate that the ANN based RFFA model generally provides
reasonably accurate flood quantiles with the expected Qobs/Qpred ratio value very
close to 1.00, although there is a noticeable overestimation for ARI of 50 and
100 years. In terms of the spread of the Qobs/Qpred ratio values, ARI of 2 and 5 years
provide the lowest spread followed by ARIs of 20, 10, 100 and 50 years.
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Fig. 3 Boxplot of relative
error (RE) values for ANN
based RFFA model
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Considering, the RE and Qobs/Qpred ratio values as discussed above, it can be
concluded that ANN based RFFA model generally provide unbiased flood esti-
mates for smaller to medium ARIs (2 to 20 years); however, the model slightly
overestimates the observed flood quantiles for higher ARIs (50 to 100 years).

6 Conclusion

This chapter presents development and testing of non-linear artificial intelligence
based regional flood frequency analysis (RFFA) models. For this purpose, a data-
base of 452 small to medium sized catchments from eastern Australia has been
used. Four different artificial intelligence based RFFA models have been considered
in this research. It has been found that non-linear artificial intelligence based RFFA
techniques can be applied successfully to eastern Australian catchments. Among the
four artificial intelligence based models, the ANN based RFFA model has been
found to be the best performing model, followed by the GAANN based RFFA
model. It has been shown that in the training of the four artificial intelligence based
RFFA models, no model performs the best for all the six ARIs over all the adopted
criteria. Overall, the ANN based RFFA model is found to outperform the three
other models in the training/calibration. Based on independent validation, the
median relative error values for the ANN based RFFA model are found to be in the
range of 35 to 44 % for eastern Australia.
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Artificial Neural Networks in Precipitation
Nowcasting: An Australian Case Study

Benjamin J.E. Schroeter

Abstract Accurate prediction of precipitation is beneficial to many aspects of
modern society, such as emergency planning, farming, and public weather fore-
casting. Prediction on the scale of several kilometres over forecast horizons of 0–6 h
(nowcasting) is extrapolated from current weather conditions using radar and satellite
observations. However, in Australia, the use of radar for nowcasting is challenging
due to sparse radar coverage, particularly in regional areas. Satellite-based methods
of precipitation estimation are therefore an appealing alternative; however, the
ever-increasing spatial and temporal resolution of satellite data prompts investigation
into options that can meet operational performance needs while also managing the
large volume of data. In this chapter, the use of Artificial Neural Networks to nowcast
precipitation in Australia is explored, and the current limitations of this technique are
discussed. The Artificial Neural Network in this study is found to be capable of
meeting or exceeding the performance of the industry-standard Hydro-Estimator
method using a variety of Machine Learning metrics for the chosen verification
scene. Further research is required to determine the optimal configuration of model
parameters and generalisation of the model to different times and areas. This may
assist Artificial Neural Networks to better reflect seasonal and orographic influences,
and to meet operational performance benchmarks.

1 Introduction

Precipitation nowcasting in Australia currently relies on the use of a Radar (Radio
Detecting and Ranging) network spanning 60 instruments distributed across the
continent. These instruments emit electromagnetic waves in short pulses, which are
scattered back to the radar upon intercepting particles of precipitation. Information
about the location and magnitude of the precipitation is then interpreted from the
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returning signal, determining the reflectivity of the pulse (which measures the
volume of precipitation) and its velocity (which measures rate of movement and its
trajectory in comparison with the instrument) [1]. From this information, maps of
rain rate can be created and types of precipitation inferred (e.g. stratiform or con-
vective) in the local region [2]. These maps are used to inform short-term fore-
casting of weather, known as nowcasting. Nowcasting specifically refers to weather
prediction for a local area for a period of 0–6 h after the time of the observations,
detailing the initial conditions as well as the extrapolation of these conditions to
forecast the very short-term future weather conditions through numerical weather
prediction and other techniques [3]. The Australian Bureau of Meteorology uses
nowcasting and numerical weather prediction techniques to estimate precipitation
amounts to reach ground level 3–6 h ahead [4].

The majority of Australia’s radar instruments are located at or near major pop-
ulation areas, such as the capital cities, or along the coastline (Fig. 1). Coverage in
rural areas and the interior of the continent is sparse. Given the size of the Australian
continent and the remoteness of much of its interior, achieving continent-wide radar
coverage is a significant challenge.

Recent improvements to satellite technology have vastly increased spatial and
temporal resolution of imagery that can be used to observe weather in much greater
detail [6]. This affords researchers the opportunity to take advantage of compre-
hensive remotely sensed data as a more cost-effective tool in precipitation mod-
elling. However, increased data resolution also leads to increased data volume, and
the need to utilise methods that can process a substantial data load in a short period

Fig. 1 Australian national coverage map [5]
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of time while also mapping the non-linearity of precipitation events. An Artificial
Neural Network (ANN) is possibly one such method. In this study, the performance
of an ANN is tested against an industry method (Hydro-Estimator) to determine
whether ANNs have the potential to meet the required accuracy for precipitation
estimation at the time of observation for the Australian continent. This study does
not seek to evaluate the ANN method for forecasting purposes at this time.

2 Data, Models and Methods

The data used in this study include a Blended Rainfall Product (rain gauge and
Radar), Hydro-Estimator precipitation estimates, and Himawari-8 satellite imagery
for a precipitation event over Darwin on January 29, 2015. The model was trained
and monitored using two consecutive hourly time periods starting from 0800 and
verified using the third (Table 1). Monitoring data was used to observe model
evolution during execution and was not used in analysis.

2.1 Blended Rainfall Product

The training data were derived from a Bureau internal blended rainfall product,
which represents an optimally interpolated blend of reflectivity data and rainfall
gauge measurements [7]. These data cover a spatial domain 256 km surrounding
coordinates (−11.082 N, 132.233E) at 2 km resolution and covering a temporal
window of the previous 30 min of accumulated precipitation. After preliminary
quality control is applied, such as the removal of clutter, barrier effects and real-time
adjustment using gauges, the individual data sets are blended to form a single
gridded rain field product representing an accumulation over the observation period
and expressed as mm/hr. This is achieved through interpolation, which uses a form
of Kriging described in Sinclair and Pegram [8].

2.2 Hydro-Estimator

Hydro-Estimator is a proprietary industry model from the US National
Oceanographic and Atmospheric Administration (NOAA) that estimates precipi-
tation using infrared satellite data [9]. The model estimates the location and rate of

Table 1 Temporal partitioning of data set

Training Monitoring Verification

0800–0900 h 0900–1000 h 1000–1100 h
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rainfall by determining below-average brightness temperature values at cloud tops,
and adjusts rainfall rate based on the relative temperature of the pixel to its sur-
roundings. This makes it useful for providing rainfall estimates in large, sparsely
populated regions, and therefore a potential candidate for rainfall estimation in the
vast interior of the Australian continent. Global hourly data from Hydro-Estimator
is available through public repositories in ASCII format as integers in the range [0,
256]. The 0.045° resolution data must be converted to a rainfall rate (RR = mm/hr)
via the following formula [10]:

RR ¼ ðvalue� 2:0Þ � 0:3

Under this mapping, a value of 0 indicates missing data and a value of 2
necessarily indicates no precipitation.

2.3 Himawari-8

Himawari-8 satellite data consists of 16 Visible (VIS), Near Infrared (NIR) and
Infrared (IR) channels with a spectral range of between 0.47 and 13.3 μm at a
temporal resolution of 10 min and a spatial resolution of between 0.5 and 2 km
(Table 2). Of these, bands 7 through 16 were used in feature selection, in an attempt
to train a model that could function without daylight. Using Schmit, et al. [11] for
reference, the feature set was cultivated apriori to satellite bands in the IR portion

Table 2 Himawari-8 satellite
band configuration [22]

Band Central
wavelength
(μm)

Resolution
(km)

Used in
training

1 0.47 1 –

2 0.51 1 –

3 0.64 0.5 –

4 0.86 1 –

5 1.6 2 –

6 2.3 2 –

7 3.9 2 YES

8 6.2 2 YES

9 6.9 2 YES

10 7.3 2 YES

11 8.6 2 YES

12 9.6 2 YES

13 10.4 2 YES

14 11.2 2 YES

15 12.4 2 YES

16 13.3 2 YES
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of the instrument’s capabilities, largely to avoid the need for daylight and the
anomalous error that may be introduced where visible reflectivity contributes to
sensor reading (as it does with VIS and NIR).

2.4 Data Homogenisation, Cleansing and Instance
Extraction

The three data sources used in this study were of different projections, temporal and
spatial scales. As such, it was necessary to homogenise the data for effective model
comparison and verification. Hydro-Estimator (equirectangular latitude/longitude)
and Himawari-8 (normalised geostationary projection [GEOS]) were reprojected
into the blended rainfall product’s gnomonic projection and cropped to the same
spatial domain. The datasets were then temporally aligned by first summing the
radar scenes (30 min) to cover the same temporal window as Hydro-Estimator (1 h),
then by averaging a composite of the 6 temporally collocated Himawari-8 scenes
(10 min) to cover the same period.

Finally, training instances were extracted from the resulting dataset by tran-
secting the data space along the z-axis through the satellite bands down to the
equivalent rain field grid cell (Fig. 2). Invalid or missing data in either the radar or
satellite bands were omitted from the training, monitoring and verification datasets.
The final data sets totalled approximately 35,000 training instances each and were
representative a contiguous 3 × 1 h time period. The Artificial Neural Network was
trained on these transect instances using the first hour, monitored on the second and

Fig. 2 Instance transect
through the data space

Artificial Neural Networks in Precipitation Nowcasting … 329



verified on the third. Hydro-Estimator was compared directly with the associated
radar observation values in the third hour.

2.5 Artificial Neural Network

The single-layer feed-forward Artificial Neural Network (ANN) used in this study
takes the net input signals of the transect training vector, multiplies them by a
weight matrix, sums with a bias vector, and passes them through the activation
function. The model input layer is made up of the 10 features of the training
instance; the hidden layer consists of 30 neurons, and an output layer of a single
neuron indicating the amount of precipitation as a regressed value (Fig. 3).

The network was trained with standard back-propagation [12] via Stochastic
Gradient Descent (SGD) and attempts to resolve the issues of slow/no convergence,
vanishing gradient descent [13] and over-fitting through the following optimisations:

2.5.1 Momentum

Momentum involves the addition of the previous t step’s delta term, which effec-
tively assumes that the error gradient will continue to move in the same direction of
the model space, the average “downhill direction” [14]. Assuming this to be the
case, momentum has the capacity to increase the speed at which convergence is
found. The momentum term is simply a weight parameter 0 < m < 1 applied to the
weight delta dW (and similarly the bias delta) as follows:

Fig. 3 Illustration of artificial
neural network
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d̂ðtÞW ¼ dðtÞW þmdðt�1Þ
W

This case study assumes an initial arbitrary momentum term of 0.5 and a
momentum adjustment schedule, which saturates to 0.9 at the final epoch.

2.5.2 Learning Rate Decay

Another optimisation to address the convergence problem is the application of a
learning rate adjustment schedule or decay (often referred to as an annealed learning
rate [14]). In this study, a simple decay-by-factor approach was applied to the
learning rate τ via the following formula:

stþ 1 ¼ ast

Given the large variance in the input data, an initial learning rate τ of 0.0001 and
a decay factor α of 0.9 (that is, the next step uses 90 % of the previous learning rate)
were applied.

2.5.3 Rectified Linear Units (ReLU)

The problem of vanishing gradient descent [13] is largely subverted through the use
of a different activation function to the standard sigmoid, specifically the use of a
linear or near-linear activation function. For this case study, a generic linear acti-
vation function with a hard value of 0 on the x-intercept was chosen for the
regression task to predict continuous values.

2.5.4 Dropout Regularisation

To prevent the ANN model from over-fitting training data, Hinton, et al. [15]
devised a means to prevent the co-adaptation of features by introduction a selective
omission of input signals at each layer of the network. This has the effect of
regularising the network and is generally applied by generating a dropout vector ξ
for each layer l to be pairwise multiplied with the activation and derivative acti-
vation signals.

nl ¼
0 with probability q
1

1�q otherwise

�

/ðfl�1ðxÞWl þ blÞ � nl
/0ðfl�1ðxÞWl þ blÞ � nl
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where / and /0 are the activation and derivative activation functions respectively,
fi�1 xð Þ are the activations of layer l, W1 the weight matrix of layer l and b1 the bi-as
vector.

2.5.5 Early Stopping Criterion

The final optimization technique included in the model was to place an early stopping
criterion on model execution. This again reduces over-fitting and was implemented
by limiting the number of training epochs to ten thousand and model execution to 4 h
over the training scene, whichever came first. To reiterate, the model in this study was
trained using a precipitation event over Darwin on January 29, 2015.

3 Verification

The primary means to measure rainfall estimates are rain gauges, Radar rainfall
estimates, or objective analysis of one or both types of measurement [16] and these
estimates are verified through one or several metrics. This study uses the afore-
mentioned blended rainfall product as reference for verification and measures
performance using the following formulae of measurement:

Mean Error (ME) measures the average forecast error in the difference between
observed o and modelled values y with a perfect score being 0. However, it is
possible to get a perfect score for a poor forecast, as the metric does not measure the
correspondence between forecast and observations.

ME ¼ 1
N

XN

i¼1

yi � oið Þ

Mean Absolute Error (MAE) recognises the magnitude of the error for a more
general indication of model performance in either direction with a perfect score of
0. Unlike other metrics, the MAE is unambiguous and often featured in forecasting
literature [17], however, MAE does not discriminate between over and under
estimation.

MAE ¼ 1
N

XN

i¼1

yi � oij j

The Mean Squared Error (MSE) incorporates both the bias and the variance of
the model [18], two quantities a forecasting experiment such as this should seek to
minimise towards a perfect score of 0. This metric penalises outliers, encouraging
stable homogeneous performance across the verification data set. Additionally, this
metric was used as the objective/loss function in model training for this study.
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MSE ¼ 1
N

XN

i¼1

yi � oið Þ2

Root Mean Squared Error (RMSE) adds an additional form of measurement,
again penalising outliers [19]. The metric is widely used in Machine Learning
literature, typically as a training or objective function (perfect score is 0). However,
it is considered ambiguous and unreliable in the forecasting space [17, 20, 21], as it
is a function of three separate metrics: the sum of squared errors (SSE), the mean of
the SSE, and the square root of the mean. This metric may be preferable to
encourage conservative forecasting.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

yi � oið Þ2
vuut

Pearson’s R was used to measure the linear correlation (if any) between the
predicted and observed values. Note: this statistic can also be used to measure the
correlation between prediction error and observation to observe trends as rainfall
rate varies.

r ¼
PN

i¼1 yi � �yð Þ oi � �oð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 yi � �yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 oi � �oð Þ2

q

The strength of correlation was categorised on a scale of values between −1 and
+1, whereby an absolute value of 1 indicates a perfect correlation and 0 no cor-
relation. The scale formalised by Dancy and Reidy [23] was adapted to interpret the
strength of the correlation as indicated in Table 3. Where values of r fall between
classifications a nominal distinction was made. For example, a score of r = 0.35 was
denoted “weak to moderate”.

Lastly, these metrics were used to derive a Skill Score, a metric that shows a
model’s performance relative to some reference value, such as climatology or the
output of another model [16]. A set of skill scores was chosen using the verification
outputs of Hydro-Estimator (ME, MAE, MSE, RMSE and correlation) for
reference.

Table 3 Nominal classes of
correlation strength (adapted
from [23])

Value Strength

1.0 Perfect correlation

0.7–0.9 Strong

0.4–0.6 Moderate

0.1–0.3 Weak

0.0 No correlation
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Skill ¼ scoreestimate � scorereference
scoreperfect � scorereference

This study considered all of the aforementioned metrics in deriving skill to
observe model performance under a range of measurement schemes. Note that a
Skill Score > 0 indicates that ANN outperforms Hydro-Estimator on the given
metric.

4 Results

In the following figures the blended rainfall product is compared against the esti-
mation technique of interest. It is observed that transect conditions requiring valid
data in the Radar; Hydro-Estimator and Himawari-8 datasets has significantly
reduced the data available for training and verification as indicated by the unco-
loured portions of the images. The industry method Hydro-Estimator used in this
study overestimates both the areal coverage and magnitude of precipitation in the
target scene (Fig. 4) and fails to capture the complexity of the high-intensity core in
the lower left of the rain field. Subjective analysis shows that the technique has
captured the general spatial distribution in the area.

There is a weak, positive correlation (r = 0.16) between the predicted and
observed values, showing little association between reference observations and
Hydro-Estimator estimates (Table 4). A value close to zero for Mean Error (ME) is

Fig. 4 Hydro-estimator output (mm/hr)

Table 4 Performance of hydro-estimator and ANN (stochastic gradient descent)

Model ME
(mm/hr)

MAE
(mm/hr)

MSE
(mm/hr)2

RMSE
(mm/hr)

r

Hydro-estimator 0.77 1.11 12.55 3.54 0.16

ANN (SGD) 0.77 1.02 4.29 2.07 0.24
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desired, and the Hydro-Estimator score is promising for this metric. However, the
score of 12.55 for Mean Square Error (MSE) and 3.54 for Root Mean Squared Error
(RMSE) are comparatively high, and are discussed further in the following section.

The Artificial Neural Network was run for four hours (5,187 epochs) and,
despite promising initial results, Dropout Regularisation was ultimately disabled
due to an adverse effect on model performance and is discussed in the following
section. The ANN has similarly overestimated the areal coverage of the precipi-
tation event while producing only pinpoints of intensity proximal to what was
observed (Fig. 5). The model performance against observations was largely similar
in ME and MAE but significantly improved on MSE and RMSE compared with the
Hydro-Estimator output (Table 4). Again it is observed that the missing data in
training, monitoring and verification is identical to that of the Hydro-Estimator
comparison. This indicates that the missing data of the rain field is the primary
driver for conditionally omitting data from the experiment.

The skill of the Artificial Neural Network is shown in Table 5 as a comparison
against the Hydro-Estimator model for reference. The difference in skill between
the ANN and the Hydro-Estimator is negligible in terms of Mean Error, Mean
Absolute Error, and correlation. The Skill Scores for Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) are significantly higher for the ANN.

5 Discussion

Initial results from the ANN appear promising as noted in the respective metrics and
Skill Scores; however, precipitation coverage at lower intensities is significantly
over-estimated. Upon closer inspectionwithout explicit scaling tomatch observations

Fig. 5 Artificial neural network (SGD) output (mm//hr)

Table 5 ANN skill score (using hydro-estimator as reference) over each metric

ME MAE MSE RMSE R

0.00 +0.08 +0.66 +0.41 +0.09
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(Fig. 6) this may be an issue of model tuning (parameter configuration on one or
several of the optimisation techniques), the relatively low number of precipitating
cells in the training scene, or the low dimensionality of the problem in general. The
detrimental effect of Dropout Regularisation may also be attributed to the low
dimensionality of the problem as in McMahan, et al. [24], where the feature distri-
bution is comparatively sparser than convolutional or vision-based learning tasks and
this is particularly the case given the noisy nature of the target regression value. In this
instance, Dropout Regularisation adversely affects model performance simply by
reducing the amount of data on which to train.

The ANN model produced favourable ME (0.77), MAE (1.02), MSE (4.29) and
RMSE (2.07) scores, matching or outperforming the Hydro-Estimator under these
measures. However, these MSE and RMSE scores are not unexpected, given that
the model was trained using MSE as an objective/loss function [25]. Considering
that MAE is a more reliable measure of forecast quality [17, 21], the ANN has a
marginal improvement upon the Hydro-Estimator. A slight increase in positive
correlation (r = 0.24) was also noted.

In general, neither approach faithfully recreated the distribution and magnitude
of the rain field in the target scene. The punitive nature of a point-based evaluation
also heavily penalises both techniques, as a close estimate off by a few grid cells
would score poorly, albeit still be of use to forecasters. By evaluating a neigh-
bourhood around a cell for verification, it is possible in future to be able to reduce
the spatial fallacies [26] involved with this form of evaluation (locational, atomic,
modifiable area unit problem) to account for the dislocation as well as incorporating
the fact that rain does not necessarily fall immediately below its cloud due to effects
such as wind speed and direction [27].

The feature engineering in this approach is admittedly simplified, using apriori
knowledge of the satellite instrument capabilities to thin the number input features
[28]. As such, there remain a number of feature engineering methods available for

Fig. 6 Artificial neural
network without explicit
scaling (mm/hr)
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future investigation, such as Principle Component Analysis [29] through which the
expected loss of data may result in a simpler model space. Further to this, the
approach to data set selection and generation could also be improved by incorpo-
rating knowledge from both the Machine Learning and Meteorological fields.
Provost [30] notes that a balanced dataset with a more equitable range of targets
generally improves performance over an imbalanced dataset, such as the scene
chosen for this study. Further investigation is warranted with a wider variety of
precipitation (light, moderate, intense) covering a greater proportion of the training
scene to test this approach. The temporal homogenisation used in this study can also
be taken further; including both the satellite scan line time (rather than the file time
metadata) and considering the additional minutes required for ice crystals detected
at cloud tops to fall as precipitation (possibly) below the cloud [31].

Lastly given the noisy nature of the target regression variable, multi-category
classification metrics, such as rainfall range classes of threshold exceedance [32]
could also be considered for subsequent investigation.

6 Conclusion

It is clear that both the ANN and the Hydro-Estimator have differing strengths
among the metrics used in this study. That the ANN overestimates precipitation
area to a greater extent than Hydro-Estimator is perhaps the most significant failing
of the use of the Artificial Neural Network method in precipitation estimation,
though its accuracy in other metrics appears promising. At this stage, it is unlikely
that a simple Artificial Neural Network, such as that provided in this study, could
easily replace the Hydro-Estimator model in terms of performance on such an
imbalanced training data set. However, given that only a simplified example of an
ANN is used here against a fully operational industry model for a small data
sample, the results suggest that the ANN is worthy of further investigation.
Improved parameterisation, data curation and model training could yield still
greater accuracy of rain rate estimation and this case study provides compelling
support for further research into the use of Machine Learning techniques such as the
Artificial Neural Network for precipitation estimation.
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Construction of PMx Concentration
Surfaces Using Neural Evolutionary Fuzzy
Models of Type Semi Physical Class

Alejandro Peña and Jesús Antonio Hernández

Abstract Pollution by particulate matter (PMx) is the accumulation of tiny parti-
cles in the atmosphere due to natural or anthropogenic activities. Particulate matter
becomes a pollutant that seriously affects the health of people. In order to reduce its
concentration (PMx), understanding its behavior in space is necessary, overcoming
both physical and mathematical limitations. Limitations here refer to little infor-
mation that a set of monitoring stations provided with regard to air quality and with
respect to the dynamics of a pollutant. Furthermore, to the effect that an emission
source produces within a certain area (source apportionment). Therefore, this work
proposes the development of a model for spatial analytical representation of PMx

concentration over time as fuzzy information. The design of the model is inspired
by the structure of a Self-Organizing Map (SOM). The model consists of an input
layer (n_sources) and an output layer (m_stations) that were determined in shape
and size for the study area. Connections between layers are defined by a
Lagrangian backward Gaussian puff tracking model, which depend on the mete-
orological dynamics of the area. The model allows the estimation of emissions in
n_sources, based on the measurement of (PMx) concentration in the m_stations that
were considered. The connection weights are adjusted by using evolutionary
algorithms. The model showed a series of analytical forecasting maps that describe
the spatial temporal behavior of PMx concentration in terms of the puffs emitted by
n_sources. The result is a spatial neural evolutionary fuzzy model of type
semi-physical class. Its application can support the improvement of air quality in an
study area.
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Keywords Particulate matter (PMx) � Self-organizing map (SOM) � Estimation
distribution algorithms (EDA) � Forecasting maps � Neural-fuzzy model

1 Introduction

Governments have established various measures in order to improve air quality, but
pollution by particulate matter (PMx) is still considered a serious threat for human
health [1]. Scientific evidence has shown that prolonged exposure of humans to this
pollutant has been associated with an increase in human morbidity and mortality
due to the effects generated on health [2–4]. In recent years, particulate matter has
been classified as a carcinogenic pollutant [5]. European legislation on air quality
for PM10 (PM < 10 µm) and PM2.5, establishes a daily limit in terms of the
concentration for PM10 of 50 ug.m−3 [1]. Due to this problem, building scale maps
that explain the behavior of the PMx concentration constitutes an essential tool in
monitoring compliance, and assessing the implementation of policies to mitigate the
effects this pollutant generates on human population [6].

One of the main questions when trying to decrease the effects of particulate
matter (PMx) concentration in a study zone is directly related to a better under-
standing of its spatial behavior throughout time. To solve this question it is nec-
essary to overcome physics and mathematical restrictions. In the physical field, they
go from the pollution sort to the impossibility of carrying out massive measurement
campaigns. Besides, the little information provided about the spatial behavior of the
pollutant by a set of m_stations that monitor the air quality. From the mathematical
point of view, the restrictions are associated with the relationship between
n punctual sources of emission and m air quality monitoring stations, their location
and the analytical spatial representation of the phenomenon [7, 8].

From the point of view of models, these restrictions are associated with the
underestimation generated by Chemistry Transport Models (CTM) with respect to
the reference concentration in estimating PMx emissions in space. This is due to the
uncertainty associated with the composition of emissions in a particular source, and
the formation of secondary pollutants due to the weather dynamics within the study
area [9]. Alternatively, empirical models based on geostatistics [10] and the use of
regression models [11], have yielded many promising results in the spatial repre-
sentation of PMx. These models have strong restrictions as the conditions under
which they were developed, assume that the mean and variance are stationary,
meaning that the relationship between observed measurements and CTM for PMx

do not vary over time and space [12].
This chapter provides a spatial model inspired by the structure of Self organizing

maps (SOM), to explain the spatiotemporal behavior of PMx concentration in a
study zone. The developed model possesses two layers. A first layer or point layer
(input layer), which is composed of a set of n_sources of particle emissions of PMx,
while a second layer (output layer) allows describing the spatial behavior of the
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concentration of PMx throughout time. The connections of the model are described
in terms of a lagragian gaussian puff model of type backward puff tracking, setting
a spatial neural model which allows obtaining a series of forecast maps for PMx.
The analytical representation of these maps is given in terms of the puffs emitted by
each of the sources, which are represented by Gaussian functions, and setting a
neural evolutionary fuzzy model of semi physical class supporting the decision
making process in order to mitigate the effects of PMx concentration within the area
of study.

For the analysis and validation of the proposed model two stages were con-
sidered. In a first stage, a series of theoretical measurement campaigns using the
CALMET/CALPUFF model were carried out. This was done in order to assess the
ability of the model with regard to the estimation of emissions from n_sources and
using the obtained surfaces reflecting the temporary space PM10 concentration
behavior within an area of study and considering different configurations for n_-
sources of emission and m_stationsof monitoring air quality. In a second stage, a
series of actual measurement campaigns were carried out in order to evaluate the
behavior of the model with reference to a number of obtained surfaces that account
for the spatiotemporal behavior of PM10 concentration within the study area.
Departing from the densification the model shows the point performance of PM10

concentration in space, according to the weather dynamics that the model incor-
porates [13].

Thus, the proposed model overcame a group of restrictions imposed by the
limited information provided by m_stations that monitored air quality and reveals
the spatiotemporal behavior of a dispersion phenomenon within an area of study. In
particularly the dispersion of particulate matter PM10 that is mainly generated by
stationary sources. Due to its design, the proposed model can be used to determine
the space temporal behavior of PM10 concentration in a given study area and thanks
to its ability to adapt itself to different environments by learning, and because it
incorporates to its structure the weather dynamics governing the dynamics of dis-
persion of pollutants in an area of study.

1.1 Trends on Pollutants Dispersion Modelling

Dispersion models are models that explain the behavior of pollutants in the
atmosphere, and are used by the environmental authorities in order to establish a
framework that allows mitigating the generated effects of such pollutants on human
health. Regarding the development of pollutant dispersion models two well-defined
trends of development can be found in literature: a first trend focusses on the
development of models trying to explain the punctual behavior of pollutants in an
area of study, while the second trend focusses on the development of models that
explain the spatiotemporal behavior of pollutants in space.

Within the first trend, a model based on the Positive Matrix Factorization
(PMF) can be found. This has been proposed in order to determine the source
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apportionment (SA) of different pollutants on points that are spatially distributed in
a study zone [14], applying multidimensional patterns of the weather dynamics in
that zone. Argyropoulos and Samara [15] presented a model to calculate the SA for
PMx in a study zone by a mass and energy balance (CMB) based on a
source-receptor model. This model integrates the weather dynamics of this zone,
allowing a unique solution to the conventional problem that presents the chemical
mass balance CMB in estimating SA. For the automation of the data management
and for estimating the concentration for PM10, the model takes the name of Robotic
Chemical Mass Balance (RCMB).In a later work, Givehchi et al. [13] adopted a
methodology to determine the sources that generate episodes of high PM10 con-
centrations in desert regions close to Teheran. For this identification, the authors
used the HYSPLIT model (Hybrid Single Particle Lagrangian Integrated
Trajectory), in order to determine the sources in the desert area that contributed
more to these pollution episodes. Another work recounts the main source-receptor
models that have been used for the SA to determine tracing elements, organic and
elemental carbon (PAHS). This work showed in conclusion, the difficulty for these
models to identify the origin of pollutants from industrial sources [16]. However,
these models have been used for making decisions in order to mitigate the effects of
the concentration of certain pollutants generated on specific points within a study
area.

In a second development trend, work focuses on the development of models that
attempt to explain the spatiotemporal behavior of PMx concentration in a study
zone, using source-receptor models that integrate geospatial concepts from geo-
graphical information systems (GIS). In this way, a model was developed by De la
Rosa et al. [17] in 2007; they conducted a study of space pollution for PM10 in
southern Spain by building a series of geochemical maps by interpolating data
obtained from a set of 17 stations that monitored air quality and that were spatially
distributed in the zone. These maps allowed determining the origin of PM10 pol-
lution in cities and sites that have high ecological value in Andalucia, Spain.
Afterward, Pisoni et al. [18] proposed a methodology that integrates a chemical
contaminant transport model with geostatistics to obtain the temporary concentra-
tion maps for PM10.

The construction of these maps was done through the interpolation of a series of
specific measures of PM10 concentration, allowing evaluating the concentration
regularly within the area of study. This tool helped to implement more effective
strategies to mitigate the impact generated from this type of pollutant on human
health.

Within this trend, and consistently with the objectives pursued by the environ-
mental authorities, to provide information to the public about air quality in the area,
Singh et al. [19] proposed a spatial model to estimate hourly concentrations of
ozone and particulate matter PMx by spatial interpolation of a set of stations that
monitor air quality and by using techniques of cokriging, which are supported in a
deterministic chemical model (CTM). This model was used to estimate the con-
centrations of these pollutants in areas of difficult access, or in which it is impos-
sible to carry out measurement campaigns. In the same line, other work can be
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found in which two models based on the principles of computational intelligence
such as the Self Organizing Maps (SOM) and the Bayesian Hierarchical Model
(BHM) were used to estimate spatial concentrations of benzene, affecting the urban
zone in the city of Leipzig, Germany. Both models helped identify periodic spatial
variations of benzene in the winter and in late summer [20]. Another study [21] has
been highlighted which used neural networks with the k-means technique,
explaining the spatiotemporal behavior for PM2.5 and PM10 concentration from
time series and describing the punctual behavior of these pollutants according to the
weather dynamics within a study zone. This spatial model allowed, through clus-
tering, evidencing the effects of vehicular traffic, anthropometric activities as well as
the sea spray on these series.

In order to mitigate the effects that pollution causes, and consistently with the
second trend of development, other authors have proposed geospatial models to
determine the origin of particulate matter PM10 affecting a study area. In a first
model, Diaz et al. [22] used a series of factors of spatial diffusion that, departing
from a set of monitoring stations, enabled the estimation of the concentration for
PM10 in neighboring areas in which it is not possible to perform measurement
campaigns [22], similar to the other models described above. In this way, Pilla and
Borderick [23] propose an information system to spatially measure the exposure of
the inhabitants of Dublin to concentrations of particulate matter PM10. For this
system, different dispersion models were incorporated, as well as different layers
that deal with land use and population density in order to take measures to mitigate
the effects of such pollutants, especially on humans when traveling to work.

According to the above, the scientific community shows an observable interest
for the development of information systems supporting spatial decision making
with the objective to mitigate the effects of particulate matter PMX concentration
within a study zone. Many of these systems incorporate specific source-receptor
type dispersion models, which lead to a limitation in explaining a spatiotemporal
phenomenon, as happens in the phenomena of dispersion of pollutants in the
atmosphere.

2 Methodology

2.1 Neuro Evolutionary Spatial Model

To determine the spatiotemporal behavior of the concentration of particulate matter
PMx within an area of study, the model has a structure inspired on a Self-organizing
map (SOM) with two layers [24, 25]. The input layer or source layer has n point
sources (n_sources). The output layer or air quality monitoring stations layer has
m cells or monitoring stations (m_stations). Both input and output layer are spa-
tially restricted through the limits of the study zone, as shown in Fig. 1.
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The relationship between layers of the SOM, represent the puffs’ flow among the
sources and the monitoring stations, and is defined by the weather dynamics within
the study area and in terms of a Lagrangian gaussian model of the type backward
gaussian puff tracking [26, 27]. For the emission estimation, the proposed model
takes the form on the Eq. 1.

Uj xj; yj; zj; k
� � ¼Xne

j¼1

Xnf
i¼1

Xnp
k¼1

/ xo;i;k; yo;i;k; xj; yj
� �

:G zo;i;k; zj
� � ð1Þ

where:
U xj; yj; zj; k
� �

: PMx contribution of each puff to the j_cell, from the piling of
emitted puffs from each of the n_sources in a moment k [1/m3].

xj; yj; zj: Spatial location of each cell or monitoring station in the output layer, in
UTM_x [km], UTM_y [km] and MSL (meter sea level) coordinates.

k, a moment of time.
/ xo;i;k; yo;i;k; xj; yj
� �

: Form and size of the emitted puffs from each one of the
i_sources.

xo;i;k; yo;i;k: Location of each emitted puff from an i_source, in a moment k. In
UTM_x [km], UTM_y [km] coordinates.

G z; kð Þ: Effects of n_reflections of each pollutant puff on the Earth surface and
the thermal inversion layer located in a height H(k). The mixing layer is between
both surfaces.

Fig. 1 Geospatial SOM to determine the space-time behavior of PMx concentration in a study
zone
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nf: Number of sources (in the sources layer), i = 1,2,3,…….., nf
ne:Number of monitoring stations (cells number—output layer), j = 1,2,…….., ne
np: Number of emitted puffs from each i_source, k = 1,2,3,….,np.
The form and size of the puffs are mathematically defined in Eq. 2.

u xo;i;k; yo;i;k; xj; yj
� � ¼ 1

2pð Þ3=2rxry
Exp � 1

2
xj � xo;i;k

rx

� �2

þ yj � yo;i;k
ry

� �2
" #" #

ð2Þ

where
rx; ry: Coefficients of turbulent diffusion that determine the form and size of

each emitted puff [m].
Mathematically, the concept of reflections and virtual sources is expressed in

Eq. 3, [28].

G z; kð Þ ¼
X1
n¼�1

exp �ð2nH kð Þ � he kð Þ � zÞ
2r2z tð Þ

� �
þ exp �ð2nH kð Þþ he kð Þ � zÞ

2r2z tð Þ
� �� �

ð3Þ

where
he kð Þ: Height of each pollutant puff [m].
z: Calculated Height for the n_reflections concept.

2.1.1 Solution Structure (Evolutionary Individual)

In accordance with the spatial structure of the proposed model, the solution
structure or evolutionary individual is defined as in Fig. 2:

Where:
Qi: Pollutant amount inside each emitted puff from the source [g].
BDL: Initial mixing layer high for the study zone [m].
K1,i: Number of point sources spatially clustered.
K2,i: Opening size of the gases output (m2).
K3,i: Gases output speed (m/s).
For the concentrations computation and following the solution structure, the

emissions value is recalculated with the known information of the source, as in Eq. 4.

Qi ¼ Qi= K1;i � K2i � K3;i
� � ð4Þ

Q1 Q2 Q3 …… Qn K11 K12 K13 …. K1n K2n K3n BDL

Fig. 2 Solution structure or evolutionary individual
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In Eq. 4, the constants K1,i, K2,i, K3,i, are given according to the adaptation the
evolutionary model makes with regard to the known information of a point source
during a set of measurement campaigns within the same study zone. Using the
CALMET/CALPUFF model [29] through Eq. 5 the value of those constants is
obtained.

K1;i ¼ K1;i
�
nfi K2;i ¼ K2;i

�
/ch;i K3;i ¼ K3;i

�
vi ð5Þ

where:

nfi: Number of sources, clustered by companies.
/ch;i: Chimney size of the point source /ch;i ¼ 2 m.
vi: Gases output speed, vi ¼ 50 m=s.

From Eq. 4 it can be observed that for a same value of emission, a larger value of
pollutant (Qi) is required, depending of the known information of the source. The
fitness function that qualifies the emission pattern (or evolutionary individual
quality) regarding the solution is given as in Eq. 6.

FA ¼ Ke

1
2

Pne
j¼1

Pnf
i¼1

Pnp
k¼1

Ccj xo;i;k; yo;i;k; zo;:i;k
� �� �

� Cbj xj; yj; zj
� �� �2

 ! ð6Þ

where:
Cbj xjyj; zj
� �

: Base Concentration, or activation value for j_cell[ug/m3].
Ccj xo;i;k; yo;i;k; zo;i;k
� �

: Puff piling in j_cell by the connections coming from each
of thei_source due to the emission pattern [ug/m3].

Ke: Proportionality constant scaling the fitness function.

2.1.2 Evolutionary Asynchronous Model (Emission Estimate)

One of the most important elements in the present development of Evolutionary
Computation (EC) is the EDA (Estimation Distribution Algorithms), which unlike
algorithms for traditional evolution, do not require genetic operators, but statisti-
cally based operators for the evolution of the population of individuals or sets of
possible solutions [30, 31].

For estimating emissions, the proposed Neuro Evolutionary Fuzzy Spatial
Computational Model (SCM) incorporates an EDA, the MAGO (Multi dynamics
Algorithm for Global Optimization). MAGO integrates three autonomous dynamics
of evolution: Emergent dynamics, Crowd dynamics and Accidental dynamics [32].
For the particular case study, these dynamics will be used sequentially with respect
to a single population of individuals, generating three stages in the process of
emission estimation at a source and for each step of time k, which comprises a
measurement campaign.
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This mechanism began with the random generation of a population of individ-
uals (Stage 0), which includes a set of random solutions generated by random
sampling of the solution space of the problem. In a first stage (Stage 1), the
algorithm proceeds with the emerging application of population dynamics, gener-
ating a fast convergence (SC) in estimation of emissions. The first stage or
Emergent dynamics (Stage 1) allows correction for calculated PMx concentrations
of the best individuals toward the very best of all. At this stage the new subgroup of
individuals is given as follows in Eq. 6:

Q gð Þ
i ¼ Q gð Þ

i þF gð Þ: Q gð Þ
i;B � Q gð Þ

i;M

	 

ð6Þ

where to incorporate the information of relationships between genes of the popu-
lation, the weighting factor is obtained from the correlation matrix, Eq. 7:

FðgÞ ¼ SðgÞ

SðgÞk k ð7Þ

where:

F(g): Modification factor between the variables that determine the second sub-
structure of generation g.
SðgÞ: Indicates the covariance matrix of the whole population over the generation g
in instant k.
Sgk k: Represents the diagonal of the correlation matrix.

At the second stage, the Crowd Dynamics [32], a new subgroup of individuals is
created by randomly sampling over the hyper-rectangular distribution, defined by
Eq. 8:

LBðiÞ ¼ QðiÞ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S gð Þð Þ

q
;UB ið Þ ¼ Q ið Þ

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S gð Þð Þ

q
ð8Þ

where:

QðiÞ
M : Represents the average of the whole population of genes that makes up the

former genetic structure of the solution individuals, over the generation g for each
instant of time k.

diag(SðgÞ): Variance of each individual.
Individuals generated by the Emergent Dynamics at each generation are incor-

porated into the new population, in terms of an amount of N1, as long as it exceeds
the value of the Fitness Function (FF) of their predecessors. The Crowd Dynamics
adds N2 individuals (around the actual mean). It should be noted that for each step
of time k, the SCM will require a number of generations, g, which indicate the
number of times the population of individuals evolve.
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Finally, the population is completed by the Accidental Dynamics, a subgroup of
individuals created randomly over the whole searching space, as the initial popu-
lation at the beginning of a campaign of measurement, but of a dynamic size, N3.
The three dynamics can maintain genetic diversity of the population along a
measurement campaign. The three dynamics (Stage 1, 2 and 3) are applied in each
generation to the population of individuals and for each step of time, k, allowing the
population to prepare for estimating emissions at an instant of time k + 1. The
population of individuals in a constant number N is kept summing the dynamical
cardinalities N1, N2 and N3. In the following Fig. 3, the pseudo code of the MAGO
algorithm is presented.

2.2 Case Study

For the analytical representation of the spatiotemporal behavior of the concentration
of particulate matter PM10, a study zone was selected. This zone comprises an area
of 50 * 50 km2 and It is characterized by surrounding mountains with heights up to
3200 (msl), which significantly modifies the direction and speed of the wind. The
computed multiannual wind rose shows that most of the time (31 % calmness) there
is no atmospheric movement around the monitoring stations. Meanwhile, the pre-
dominant winds come from the north 20 % and from the south 14 % of the time, as
is shown in Fig. 4.

For the analysis and validation of the proposed model, two stages were defined
that allowed evaluating the mechanism for estimating emissions from n_sources of
emission and by using a set of m_stations of monitoring of air quality, and that are

Pseudo code of MAGO
1: j = 0, Generation of the initial population, with auniformrandomlydistribu-

tion in the search space.
2: Repeat
3: Evaluate each individual by means of the objective function
4: Calculate the covariance matrix of the populationand the first, second and 

third dispersion.
5: Calculate the N1, N2 and N3 cardinalities of groups G1, G2 and G3.
6: Select N1 of the best individuals, modify according to the objective function

and make them compete. Winners pass to the next generation j + 1.
7: Sampling N2 individuals from the uniform distribution in the hyper rectangle 

[LB (j), UB (j)], and move on to the next generation j + 1.
8: Sampling N3 individuals from the uniform distribution throughout the whole 

search space and move to the next generation j + 1.
9: j = j + 1

10:Do until a termination criterion is satisfied.

Fig. 3 MAGO pseudocode
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located in the study area. For the first stage, a total of 24 theoretical campaigns were
carried out in order to measure the concentration for PM10 in the study area, using
the CALMET/CALPUFF model for different configurations of monitoring m_sta-
tions and n_sources [18]. In a second stage, a total of 7 real campaigns were carried
out, which allowed to measure the concentration of PM10 in the same area, taking
into account for this purpose a total of 973 point sources of emission. These were
reduced to 403 point sources per cluster (403_sources) according to the spatial
organization and 17 monitoring stations of air quality (17_stations). The emission
sources are completely from the industrial and service sector within the study zone.
In the second stage, for the background concentration, 137 emission sources were
taken into account. These sources correspond with the area sources and fuzzy
sources, the later ones coming from the flow of traffic, open air handling and
transportation of particulate matter as in quarries, activities related with construc-
tion, the service sector, commerce and nourishment in the study zone. To achieve
the estimated emissions the first stage counted with a total of 48 h (2 days) per
campaign, while for the second stage and given the number of emission sources, a
total of 480 h (20 days) per campaign were taken. The meteorological dynamics of
the study area that define the connections between the layers of the model was
estimated fora height of 10 m to 0.5 km resolution. The layers that make up the
model were defined in shape and size for the study area as shown in Fig. 5.

2.3 Model Evaluation

For each measurement campaign considered for each stage, the estimation of
emissions at n_sources was carried out considering the reference hourly concen-
trations for PM10 measured in each of m monitoring stations of air quality
(m_stations).In its first stage, for each hourly estimation process, the model
delivered as a result two digital elevation models (DEM) for PM10 by point den-
sification of the output layer (source apportionment). Each of these models

Fig. 4 Study zone. a Upper view—level curves. b Multiannual wind rose
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comprises a total of 10 * 10 points, which are arranged regularly for a first DEM,
while for a second DEM, these points are arranged irregularly.

After finishing the point densification of the output layer in the first stage, it
continued with the selection of interpolation model taking into account the most
relevant features from five spatial interpolation models based on the principles of
computational intelligence, which have been used as reference for the representa-
tion of spatial phenomena such as:

1. IDW method (Inverse Distance Weight) [33].
2. Cokriging—Radial Basis Neural nets (FBR) [19].
3. Integrated method of Kohonen-IDW maps [21, 34].
4. NURBS method (Non Uniform Rational Basis Splines) [7].
5. Takagi sugeno NURBS method [33, 35].

After selection of interpolation model, the construction of hourly analytic sur-
faces for PM10 concentration was also carried out for both stages.

For a general evaluation of the proposed model, eight statistic metrics were used
according to the fuzzy model developed by Park & Ok-Hyum [36]: Fractional Bias
(FB), Geometric Mean Bias (MG), Geometric Mean Variance (VG), Index of
Agreement (IOA), Within a Factor of Two (FAC2), Normalized Mean Square Error
(NMSE), Index of Agreement (IOA), and Unpaired Accuracy of Peak (UAPC2).
They are sorted in the following manner:

1. To measure the discrepancy between the baseline and estimated emissions on
each considered n_sources of emission (input layer), MRE, IOA metrics were
used.

2. To measure the discrepancy between the reference of PM10 concentrations and
the calculated PM10 concentrations on each m_stations monitoring air quality

Fig. 5 Spatial location of point sources, area sources, fuzzy sources and monitoring stations
(UTM_x, UTM_y coordinates)
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spatially located in the study area (output layer), the NMSE, UAPC2 and IOA
metrics are used.

3. For the selection of the interpolation model, all the arranged metrics by the Park
& Ok-Hyum model were used [36]. These metrics allow the assessment of the
quality of the interpolation in terms of DEM accounting for the source appor-
tionment in the study area (output layer).

4. For a general evaluation of selected interpolation model in both stages, FB, MG,
VG, FAC2 and IOA metrics assess the quality of the interpolation in terms of
the point densification of the output layer, and in terms of the points of PM10

reference concentration, where monitoring stations of air quality are located.

In accordance with the Park & Ok-Hyum model [36], each of the applied metrics
assumes a qualitative fuzzy value of Good (G), Fair (F), OverFair (OF), Under Fair
(UF) and Poor (P). With respect to the performance indicator of the model,
quantitative values are assigned to each quality in the following way: G (8.5), F
(5.5), OF (6.0), UF (5.0) and P (2.5), where the maximum score that a model can
reach in terms of its behavior of the data is 68 points. According to this score, a
model can be ranked in the following descending order with grades from A t to Z,
where A represents the best level of performance, while Z represents the lowest
level of performance.

3 Results

The results from the proposed model, compared to the estimation of emissions
according to each of the measurement campaigns carried out using the
CALMET/CALPUFF model in the first stage, are shown in Table 1.

Regarding to the measurement campaign conducted on the days 215–216 for a
configuration of 5_sources and 25_stations, the average results obtained by spatial
interpolation models used as a reference against the hourly densification grids are
shown in Table 2.

The results obtained by the interpolation model versus spatial analytical repre-
sentation of the PM10 concentration for both stages, was made taking into account
the punctual reference values for PM10measured in each m_stations (Point Index),
and considering the spatial densification of the output layer(Spatial Index), they are
presented in Table 3. The metrics used FB, MG, VG, FAC2 and IOA represent the
amount of contaminant present at the interpolation model and in the study area.

The general structure of the concentration surfaces obtained as a result of
interpolation and modelling the spatial behavior of the PM10 concentration on the
study area in the first stage is shown in Fig. 6.

The general structure of the point and spatial correlation diagrams reflecting the
spatial behavior of the hourly interpolation model is shown in Fig. 7.
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Table 1 General results of the hourly estimation of emissions for each theoretical measurement
campaign (first stage)

Configuration Point index (m_stations) Estimated
emissions
(n_sources)

Days Sources Stations NMSE UAPC2 IOA MRE IOA

03–05
04/8:00

4 20 0.488 0.012 0.810 0.134 0.854

08–10
08/11:00

4 6 0.104 −0.043 0.702 0.047 0.758

08–10
09/13:00

4 10 0.100 −0.043 0.691 0.047 0.739

08–10
08/16:00

4 15 0.102 −0.048 0.814 0.030 0.818

08–10
09/12:00

4 20 0.061 0.010 0.985 0.042 0.987

32–33
32/1:00

4 4 0.197 −0.155 0.711 0.076 0.665

60–62
61/2:00

4 4 0.168 −0.127 0.758 0.122 0.726

91–92
92:15:00

4 4 0.167 −0.113 0.727 0.045 0.763

121–122
122/18:00

4 4 0.166 −0.137 0.743 0.086 0.771

152–153
152/18:00

4 4 0.191 0.161 0.752 0.129 0.730

169–170
170/3:00

4 4 0.051 0.037 0.858 0.036 0.773

200–201
200/21:00

4 10 0.065 0.016 0.927 0.063 0.874

215–216
215/12:00

5 5 0.048 0.020 0.881 0.061 0.854

215–217
216/12:00

5 10 0.040 0.021 0.860 0.116 0.888

215–217
216/14:00

5 15 0.077 0.029 0.886 0.125 0.917

215–216
215/14:00

5 20 0.074 0.028 0.863 0.050 0.814

215–216
215/8:00

5 25 0.019 −0.026 0.987 0.103 0.911

281–282
281:23:00

4 4 0.074 −0.154 0.702 0.074 0.649

299–300
300/15:00

4 5 0.030 0.030 0.859 0.171 0.873

299–300
299/8:00

4 10 0.055 0.165 0.930 0.009 0.873

(continued)
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Table 1 (continued)

Configuration Point index (m_stations) Estimated
emissions
(n_sources)

Days Sources Stations NMSE UAPC2 IOA MRE IOA

299–300
300/8:00

4 15 0.063 0.025 0.878 0.050 0.932

299–300
299/16:00

4 20 0.017 0.014 0.951 0.040 0.971

335–336
335/16:00

4 4 0.059 0.019 0.829 0.008 0.774

Mean 0.105 −0.011 0.831 0.072 0.822

Score G G G G G

General grade A

Table 2 Obtained results by the interpolation models proposed in the first stage for a regular point
densification (10 * 10 points) and for an irregular point densification (10 * 10 points) from the
campaign on the days 215–216 at 12:00

NURBS(I) Koh-IDW
(R)

TSK(I) TSK(R) IDW(R)

FB 0.0001111 G −0.0010082 G 0.0165561 G 0.0455780 G 0.0228327 G

NMSE 0.0163013 G 0.0114598 G 0.0121486 G 0.0136514 G 0.0131965 G

MG 0.9942878 G 0.9944282 G 1.0121008 G 1.0427821 G 1.0165692 G

VG 1.0141951 G 1.0121065 G 1.0129690 G 1.0145486 G 1.0138470 G

FAC2 0.5567901 G 0.5333333 G 0.5086420 G 0.4788215 G 0.5148148 G

IOA 0.5238519 G 0.3170034 F 0.2957412 F 0.3788214 F 0.2099060 F

UAPC2 0.2296449 G 0.2926553 G 0.3342298 G 0.3609910 G 0.3685556 G

MRE −0.0124441 G −0.0101842 G 0.0076331 G 0.0374228 G 0.0112567 G

Score 68 64.5 64.5 64.5 64.5

NURBS(R) Koh-IDW
(I)

Radial(R) IDW(I) Radial(I)

FB −0.4941252 G 0.0128698 G 0.0007982 G 0.0004590 G −0.501408 G

NMSE 0.2793502 G 0.0135772 G 0.0105381 G 0.0096290 G 0.2793502 G

MG 0.5966920 G 1.0085556 G 0.9971540 G 0.9982475 G 0.5966920 G

VG 1.3273490 G 1.0142992 G 1.0105806 G 1.0107813 G 1.3273490 G

FAC2 0.5123457 G 0.3333333 F 0.3456790 F 0.2839506 F 0.2812345 F

IOA 0.0662445 P 0.1532171 P 0.1420121 P 0.0095830 P 0.0662445 P

UAPC2 −0.1070951 G 0.3690680 G 0.3637503 G 0.2914025 G −0.1070951 G

MRE −0.6852289 G 0.0030310 G −0.0066364 G −0.0053863 G −0.6852289 G

Score 62 58.5 58.5 58.5 58.5
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Fig. 6 Spatial behavior of the PM10 concentration. Hour 8 day 215 year 2008 (5_stations,
25_sources, first stage). a CALMET/CALPUFF source apportionment, b Concentration surface
for PM10

Fig. 7 Hourly correlation diagrams obtained in the first stage (5_stations, 25_sources). a Point
correlation for PM10 resulting from the interpolation taking into account m_stations that monitor
air quality within a study zone per campaign. b Spatial correlation resulting from the spatial
interpolation taking into account the point densification made by the CALMET/CALPUFF model
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The results from the model against the analytical representation of the spatial
behavior of the concentration of PM10 in the study area during the second stage are
shown in Table 4.

The general structure of the concentration surfaces, obtained from the interpo-
lation and exposition of the spatial behavior of the PM10 concentration with in the
study area during the second stage, are shown in Fig. 8.

The general structure of the correlation diagrams, that are showing the quality of
the spatial interpolation resulting from the PM10 concentration surfaces in its sec-
ond stage, are shown in Fig. 9.

4 Discussion

The surfaces which account for the behavior of spatiotemporal PM10 concentration
for both model validation steps generally showed consistency with the weather
dynamics that characterized the study area, as shown in Fig. 10. It is noteworthy
that the form and size of the layers of the proposed model were defined in shape and
size according to the study area.

According to Table 1, it can be observed with respect to the estimation of
emissions in each of the emission sources considered for each campaign, that the
proposed model reached correlation values close to an average of 82 %, with a
relative error near 7 %. Regarding the calculation of concentrations, the model
reached an average rate similar to the estimative (83.1 %), with a NMSE index
reaching a value close to 0.105 on average, with an underestimation of the maxi-
mum concentration values close to 1 % on average as shown in the UAPC2 index,
which shows the quality of the model with regard to both the estimation of emis-
sions, as well as with respect to the calculation of concentrations in each of the
monitoring m_stations considered for each campaign.

According to Table 2, the interpolation models used as reference for the spatial
analytical representation of the PM10 concentration in the study area were classified
depending on the score achieved by each model and applying the Park & Ok-Hyum
scheme.

Thus, high performance interpolators were interpolators which reached scores on
average at 65.2, while the average performance interpolators are interpolators which
reached lower scores than this value on average at 59.2. It should be noted that a
score of 68 points is the maximum score established by the model of Park &
Ok-Hyum. This classification was also made taking in account the information such
models need for interpolating, or the explanatory power they have regarding to the
phenomenon of dispersion of this pollutant in accordance with the principles of a
Lagrangian Gaussian puff model.

• Interpolators of High Performance: According to Table 2, the interpolators based
on NURBS (Non Uniform Rational Basis Splines) for irregular point grids had
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Fig. 8 Spatial behavior of the PM10 concentration, Hour 8:00, day 150, year 2008 (17_stations,
403_sources, first stage). a Source apportionment by the proposed model, b obtained surface from
the interpolation of the point densification

Fig. 9 General diagrams of hourly correlation (second stage). a Point correlation for PM10

resulting from the interpolation and taking into account m_stations that monitor the air quality
within a study zone, per each measurement campaign. b Spatial correlation resulting from the
interpolation taking into account the point densification made by the proposed model
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the best performance indices. That was mainly due to the analytical definition of
their basis functions, which are similar to the equations that are defining the puffs,
which are traveling on the connections of the proposed model. Primarily because
their basis functions are located spatially at points where there is a greater amount
of information, which overcomes the limitation of little existing information in
other areas of the zone. Another interpolator, which turned out as one of the best
performance indices, was the method of Takagi sugeno for grids with irregular
points. This was due to the properties of this method in the compression -
decompression of complex surfaces [33, 34, 37].

• Interpolators of Average Performance: In Table 2, it can be seen, that the IDW
and Koh-IDW methods on irregular point grids showed a poor performance,
mainly because these methods are very sensitive to the amount of available
information about a phenomenon in an area of study. Geostatistical methods for
representing and interpolating complex surfaces base their power on the amount
of available information within an area of study, as in the interpolation methods
of Kohonen-IDW and IDW for regular grids, and unlike NURBS(R) interpo-
lation methods and Neural Networks with Radial Basis Functions (RBF). These
showed acceptable results, mainly because these methods are very sensitive to
the saturation of information, especially when there is redundant information, as
in a continuous phenomenon, and when it is spatially distributed.

According to the above, the integration of the high performance interpolation
methods of Takagi sugeno and Non uniform puffs functions NURBS (TKSN) will
set up an interpolation model based on the physical phenomenon of pollutant
dispersion. The rational basis functions will be given in terms of concentration of
puffs in space or macropuffs, which are consistent in shape and size to the equation
of puffs that are emitted by the sources. Thus, the overall structure of the proposed
interpolation model TKSN is denoted and defined as in Eqs. 9 and 10 [8, 35, 37]:

Fig. 10 a Prevailing wind field in the study area(CALMET/CALPUFF). b Spatial map for PM10

concentration according to the spatial distribution of sources and stations, and in accordance with
the shape and size of the study area
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PMx;1 ¼
Xnp
i¼1

;i;x ui;x:PMx i; jð Þþ uiþ 1;x:PMx iþ 1; jð Þ� �
=
Xnp
i¼1

;i;x ð9Þ

PMx;2 ¼
Xnp
i¼1

;i;x ui;x:PMx i; jþ 1ð Þþ uiþ 1;x:PMx iþ 1; jþ 1ð Þ� �
=
Xnp
i¼1

;i;x ð10Þ

According to the above equations, the output of the TSKN model is denoted and
defined by the Eq. 11, and its structure is shown in Fig. 11.

PMx;s ¼
Xnp
i¼1

;i;y ui;y:PMx;1 þ uiþ 1;y:PMx;2
� �

=
Xnp
i¼1

;i;y ð11Þ

where:
PMx;S: Indicates output system of the study.
PMx,1, PMx,2: Spatial subsystem in UTM_y [km].
PMy,1, PMy,2: Spatial subsystem in UTM_y [km].

Fig. 11 TKSN, spatial
interpolation model
integrating Takagi sugeno and
NURBS (Non Uniform
Rational Basis Splines)
modelling the estimation of
emissions
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µi,x: Spatial influence of each monitoring station on each j_cell of densification
axis in axis UTM_x [km].

µi,y: Spatial influence of each monitoring station on each j_cell of densification
axis in axis UMT_y [km].

Øi,x: Macropuff influence on each j_cell, in axis UTM_x [km].
Øi,y: Macropuff influence on each j_cell, in axis UTM_y [km].
According to the proposed model for the spatial interpolation, and in agreement

with the structure of solution to the problem of estimating emissions, the structure
of solution is extended, see Fig. 12, and in accordance with the position of each
macro-puff used to obtain the spatial concentration surface of PM10:

Where:
Cix, Ciy: Location space (UTM_x [km], UTM_y [km]) of each macropuff.
Ωix, Ωjy: Size of each macropuff [m].
Kix, Kjy: Eccentricity deformation parameters for each macropuff.
i = 1,2,…,nx: Spatial resolution of the concentration on the axis UMT_x

depending of the cell densification in the output layer.
j = i, 2,…,ny: Spatial resolution of the concentration on the axis UMT_y

depending of the cell densification in the output layer.
According to the point densification of the output layer in terms of the spa-

tiotemporal relationship between sources and sinks, the fitness function, which
describes the quality of each individual with respect to the solution of the problem,
is denoted and defined as in Eq. 12:

FASM ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþ 1ð Þ: mþ 1ð Þ

i¼1

PMx;d i; jð Þ � PMx i; jð Þ� �2
vuut ð12Þ

where:
FASM Fitness function, in terms of the inverse of the mean square error for each

location of each cell of densification
PM10,

d

Digital elevation model (DEM) for PM10 concentration, or reference DEM,
obtained after the emission estimation process (µg/m3)

PM10 DEM for PM10, obtained after the interpolation representation process
through adaptive model (µg/m3)

For building concentration surfaces for PM10, the proposed interpolation model
uses the MAGO algorithm independently of the version used for the emissions
estimation process. According to the structure of solution, the MAGO will identify

C1x C2x … Cnmx Ciy C2y … Cnm,y … …

Genotype 1 Genotype 2 Genotype 3 Genotype 4

Fig. 12 Solution structure, or individual, used for the interpolation of the concentration surfaces
for PMx
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the highest concentration of puffs in space or macropuffs, overcoming the limitations
imposed by spatial interpolation models of medium and high performance, which are
dependent on the spatial distribution of information used for interpolation.

Results from the interpolation model during the first stage for a particular hour
for each measurement campaign show that the model reached a score of 67.71
(Grade A) on average, according to the model of Park and Ok-Hyum [36]. This
promoted mainly by the average values reached by the MG (1.171) and VG (1.097)
indices, which show that the amount of contaminant in the areas of concentration
for PM10, generally have the same amount of contaminant in PM10 present in the
study area. From a point view, the proposed model reached an average IOA of
0.836 and the FAC2 equals to 0.903, with a slight underestimation of concentration
for PM10 as shown in the FB index, which took a value of 0.151. These indices
show that the surface indicates in its outcome the same spatial PM10 concentration
value in each of the points obtained as a result of the point densification, and each
of the reference points (m_stations) that were used to estimate the emissions. It
should be noted that the performance of the interpolation model, in terms of the
IOA, was favored by a larger number of stations that monitored the air quality
within the study area.

Table 4 shows the behavior of the proposed modeling the second phase of
validation. The model achieved the score A with 63.35, this promoted mainly by
the IOA achieved by the estimation model (0842), in calculating the concentrations
(0.843), and there presentation of the spatial behavior of the concentration as a
result of the point densification for PM10 of the study area (0.892). As in the
previous case, MG (1.036) and VG (1.011) indices reached values close to unity,
which shows the similarity between the amount of contaminant in the study area
and the amount of contaminant on the concentration surface, even though the model
shows a small underestimation of the concentration, as shown by the point index
MRE (0.162) and the FB spatial index (0.004).

According to the above, it can be observed the good performance achieved by the
proposed model with the analytical representation of the spatiotemporal behavior of
the PM10 concentration in the two stages of validation, integrated into a single model
the calculation of PM10 concentration, the dynamics of the dispersion phenomenon
of pollutants and the pollutant cloud within a study area, setting a neural evolu-
tionary fuzzy model of the type semi physical class, which allows to explain the
spatial phenomenon of pollution by particulate matter PMx in a study zone.

5 Conclusions

The proposed Neural Evolutionary Fuzzy model overcomes the limitations imposed
by the lack of spatial information that a set of m_stations that monitor the air
quality, yields with regard to the behavior of a dispersion phenomenon. Thanks to
its adaptability, it can be used to describe the behavior of particulate matter
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concentration (PMx) in any study area, if information about the meteorological
dynamics of the study area is available.

This model obtains analytic surfaces for PMx concentration, takes a series of
rational basis functions or macropuffs, which are obtained because of the clustering
of puffs in space. The equation defining each macropuff, used by the interpolation,
is determined by the equation that defines each puff emitted by each source, con-
stituting a semi physical adaptive model; these puffs depend on the pollutant
dispersion.

This model incorporates an asynchronous evolutionary tool, this due to the fact
that for each instant of time during a measurement campaign the algorithm pro-
cesses an emission source estimation and then it continues with the clustering of
puffs in space to achieve the PMx concentration surfaces according to the TSKN
model structure of interpolation.

Point densification of the study zone is achieved through spatial continuity that
generates the background concentration for PMx due to the effect of the emission of
pollutant puffs for each of the sources considered. The representation of each of the
sources of emission that forms the structure of solution as a stochastic process, and
its mapping on the output layer of the proposed model, allowed to obtain a series of
forecasting maps that show the spatial behavior of PM10 concentration throughout
the duration of a measurement campaign. Thus, manipulating each of the genes of
the solution structure establishes a set of actions to mitigate the effects that con-
centration can cause within an area of study.

The proposed model can be extended by evolution, to determine the
spatio-temporal behavior of particulate matter PMx for different particles sizes as
PM2.5, PM1.0, since the rate of deposit of the particles is defined by the Eq. 9, which
in turn define the fitness function of the integrated model to estimate emissions.
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Application of Artificial Neural Network
in Social Media Data Analysis: A Case
of Lodging Business in Philadelphia

Thai Le, Phillip Pardo and William Claster

Abstract Artificial Neural Network (ANN) is an area of extensive research.
The ANN has been shown to have utility in a wide range of applications. In this
chapter, we demonstrate practical applications of ANN in analyzing social media
data in order to gain insight into competitive analysis in the field tourism. We have
leveraged the use of an ANN architecture in creating a Self-Organizing Map
(SOM) to cluster all the textual conversational topics being shared through thou-
sands of management tweets of more than ten upper class hotels in Philadelphia. By
doing so, we are able not only to picture the overall strategies being practiced by
those hotels, but also to indicate the differences in approaching online media among
them through very lucid and informative presentations. We also carry out predictive
analysis as an effort to forecast the occupancy rate of luxury and upper upscale
group of hotels in Philadelphia by implementing Neural Network based time series
analysis with Twitter data and Google Trend as overlay data. As a result, hotel
managers can take into account which events in the life of the city will have deepest
impact. In short, with the use of ANN and other complementary tools, it becomes
possible for hotel and tourism managers to monitor the real-time flow of social
media data in order to conduct competitive analysis over very short timeframes.
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1 Introduction

Starwood Hotels and Resorts was one of the very first hotels to realize the critical
role of social media data, and to leverage the information to support customers in
their travel decisions [1]. Gradually, not only have more and more tourism busi-
nesses become actively involved in online activities on different social network
channels such as Twitter and Facebook, but many of them are also considering
social media data as a valuable and timely information source of input for various
decision making processes [2]. Ironically, regardless of the prevalent adoption of
social media usage in the tourism industry (e.g. [3–7]), there is still a lack of
comprehensive guidelines on how online social data can be interpreted to gain
competitive knowledge in the hospitality industry. In this chapter, we introduce
approaches based on using unsupervised ANN, namely self-organizing map
(SOM) based methods to analyze Twitter and Google Trends data of two different
groups of hotels, namely luxury and upper upscale, in Philadelphia during the
period between 2011 and 2014. First, we look at how related data is collected and
pre-processed. Then, the chapter shares and discusses the implementation of SOMs,
which are trained by ANN, in analyzing textual contents of hotel’s management
tweets. An application for using ANN in predicting the occupancy rate of the two
groups of hotels with different overlay data is subsequently examined.

2 Data Collection and Pre-Processing

Social media data is scattered throughout the Internet in many forms, but most are
in the form of micro-blogs, which are found on various online social networks such
as Facebook, Twitter, etc. Because of this, in this research, data was mainly col-
lected from two sources: Tweets data from Twitter and search queries data from
Google Trend, which were also effectively employed in various related researches
(e.g. [8–12]). Moreover, data regarding Philadelphia hotels’ average occupancy rate
between January 2008 and May 2014 is provided from Smith Travel Research Inc.
(STR). Regarding the Twitter data, we collected thousands of tweets posted by the
public Twitter accounts of eight different hotels in Philadelphia, which we cate-
gorized into two groups: luxury and upper upscale. The Google Trend data is
normalized query volume of keywords worldwide, which in this case were the
names of the examined hotels as in Table 1.

After collecting all the data, we proceed to the pre-processing procedure, in
which the data is cleaned up to ensure a sound subsequent analysis. In particular, all
the duplicated tweets, English stop-words (the, a, an, etc.), numeric figures,
Philadelphia’s different entities (PA, Philly, etc.), and hyperlinks are filtered and
eliminated from the dataset. Regarding AKA Rittenhouse hotel, since only a cor-
porate Twitter account is found, solely tweets concerned with location in
Philadelphia are selected for the purpose of this research.
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3 Neural Network Facilitated Self-Organized Map

Since we postulate that the tweet’s contents represent the marketing strategies used
in approaching customers through online channels, understanding the relationship
of different keywords being used in the tweets can help us to gain viable com-
petitive knowledge from the different hotels’ manager’s perspective. However,
since each of the keywords belongs not only to one but several documents, or
tweets, the collected tweets can be considered as a huge sparse matrix of several
thousand-dimensional vectors. Hence, an algorithmic approach enabling unsuper-
vised clustering is needed to transform this matrix into meaningful visual exposi-
tions. In this section, we share an application of an unsupervised ANN that is able
to cluster multi-dimensional data into a two-dimensional informative map. The map
is called Self-Organizing-Map (SOM) proposed Kohonen [13], which is recognized
to be a very effective analysis tool in data clustering facilitated by an unsupervised
ANN learning algorithm [14–17].

In order to clearly picture the use of SOM in the analysis of social media data in
the field of tourism and hospitality, results of such a neural network training process
on the management tweets of the Four Season Philadelphia and Sofitel Philadelphia
hotels, which belong to two different hotel ranks listed as luxury and upper upscale
respectively, are introduced as follows in Fig. 1.

As we can clearly see, the above generated SOM map (Fig. 1) contains a total of
1029 nodes representing 1029 neurons, classifying over 9716 terms from 3149
management tweets posted by the Four Season hotel into 20 clusters. Each of the
clusters is pictured by different colors, which has a algorithmically generated central

Table 1 Input query string used to collect google trend data and tweets data collection results

Hotel names Input query string on google trend Number of
retrieved user’s
tweets

Hyatt at the
Bellevue

Hyat1t at The Bellevue 352/353 (99.7 %)

Windsor Suites Windsor suites philadelphia 3035/3037
(99.9 %)

Le Meridien
Philadelphia

lemeridienphiladelphia 694/694 (100 %)

Kimpton Hotel
Palomar
Philadelphia

hotelpalomarphiladelphia + palomarphiladelphia 2006/2011
(99.7 %)

Sofitel Philadelphia sofitelphiladelphia 3151/6868 (46 %)

Four Seasons Hotel
Philadelphia

four seasons philadelphia 3149/9081 (35 %)

The Latham Hotel thelatham hotel + the lathamphiladelphia 40/40 (100 %)

AKA Rittenhouse
Hotel

Aka_Rittenhouse philadelphia 2924/2929
(99.8 %)
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concept expressed as the cluster name. In the same way that color on a world map
color only serves as a visual demarcation between countries, the color in these
visualizations do not express any qualitative or quantitative attributes of the data.
However, the position, as well as the size of each of the clusters does have meaning.
To illustrate, the most prevalent cluster “check out” located at the center of the map
containing terms such as “culture”, “events”, and “local”, shows a marketing effort
as it suggests various available activities occurring locally in Philadelphia.
Specifically, the cluster “#fsfoodtruck” and “charity” located in a position adjoining
each other doubtless describe an effort to market the corporation’s food-truck
campaign around September 2014 to raise donation for the Children’s Hospital in
Philadelphia. Above that is the “beer” cluster, which probably points to a beer
festival that occurred in the city around that time. A portion of the map is covered
by the “new year” concept, which is located right next to “happy”, “#luxbride”, and
“what” cluster. If we look at the details of the messages which include these top
keywords, we can find terms such as “resolution”, “wedding”, “weddingplanning”,
etc., which in fact describe a marketing promotion for the hotel on the social
networks of a wedding package during the New Year period. Additionally, located
at the top left corner of the map are three aggregated clusters namely “fri”, “chat”,
“join” that help us to learn about the publicity surrounding of regular speaking
events featuring some famous regional editors in fashion and lifestyle. Through the
lens of the Kohonen map, it is possible to gain a deeper insight into the hotel’s
marketing strategies and campaigns during this time, and also to picture the hotel’s
different emphases in approaching customers via online social media.

In comparison with the previous SOM (Fig. 1) the one found in Fig. 2 for Sofitel
Philadelphia’s hotel management tweets, shows several noticeable differences.
Other than the centered “holiday” cluster, the “#conciergechoice” motif seems to be

Fig. 1 Self-organizing-map (SOM) for four season Philadelphia, 2011–14
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the largest among them. The fact that this concept was surrounded by the “new” and
“events” clusters implies that the hotel enjoys giving out advice and suggestions
about new activities and events to its customers. If we look deeper into the “new”
cluster, some related phrases can be found such as “new native American voices
exhibit”, “new app for iphone”, and “new and coming-soon restaurants”. In addi-
tion, the “baseball” cluster located next to “events” also implies that the hotel
marketers seem to be leveraging the popularity of news regarding local baseball
games to make their entity prevalent on the social network. Despite the fact that
there are many events being promoted by the hotel’s tweets, most of them relate to
“baseball”, and “battle”, hence the algorithm creates a separate grouping for this
concept. Noticeably, many concepts shown on the map are described by keywords
in French such as “merci” or “magnifique”. This also suggests that the Sofitel
Philadelphia concentrates on advertising one of its unique features, which is the
combination of French style and American living.

4 Time Series Prediction with Neural Network

Because of its great impact on various aspects in the field of tourism, hotel occu-
pancy forecasting has always been a main focus of hotel managers. Hotel occu-
pancy is not only a metric for the internal assessment of a single hotel, but it is also
an indicator of the changing patterns of customers within a specific geographic area
such as city, or country. In other words, hotel occupancy rates reflect the con-
sumer’s cognition and behavior, which are also recognized to possess a linkage
with social media data. Because of this, we propose forecasting the hotel occupancy
rate of these two groups of hotels in Philadelphia using the retrieved data from the
Twitter social network. Our goal was to find if there are strong quantitative

Fig. 2 Self-organizing-map (SOM) for Sofitel Philadelphia, 2011–14
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relationships between management tweets and hotel occupancy rate. Moreover, this
forecasting model also makes use of Google Trend data to partly reflect the con-
tribution of consumer’s online behavior in the hotel occupancy rate.

Within the scope of this chapter, implementations of time series forecasting
facilitated by a Multilayer Perceptron ANN with different overlay data using the
Weka data mining software [18] is suggested. Part of the collected data (occupancy
rate, management tweets, and Google trends) is filtered so that the respective time
period is aligned with each other. Then, it is divided into training and testing dataset
with a ratio of 7:3. Different evaluation metrics namely Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE) are used to
fit the trained model on the testing dataset to compare the respective results with the
performance of Linear Regression.

Regarding the analysis on the luxury group of hotels (Table 2), Weka’s
Multilayers Perceptron (MLP) provided a better forecast of occupancy than did
Linear Regression and this is partly due to MLP flexibility in being able to tune
multiple parameters, in particular the learning rate (−L) and momentum (−M). This
improvement showed up across all the evaluation measures (MAE, MAPE, RMSE,
and MSE). However, the introduction of social media data: Tweets, Google Trend,
or both, did not improve the forecasts.

In the analysis on the upper upscale group of hotel we observed a different
scenario (Table 3). Even though the MLP model outperformed linear regression in
the analysis without overlay data, social media data showed itself to be significant.
Specifically, management tweets greatly improved the forecasting results with
linear regression model, and the inclusion of both management tweets and Google
trends data shows slight enhancement in the case of MLP model.

Table 2 Prediction analysis result on the luxury group of hotels data using MLP and linear
regression

No overlay
data

Tweets overlay Trend overlay Tweets + trend
overlay

Linear regression MAE 6.1587 MAE: 6.8693 MAE: 7.1971 MAE: 6.8693

MAPE: 8.0194 MAPE: 8.9465 MAPE: 9.3409 MAPE: 8.9465

RMSE: 8.0204 RMSE: 9.2922 RMSE: 9.8314 RMSE:9.2922

MSE: 64.3276 MSE: 86.3453 MSE: 96.6559 MSE: 86.3453

Multilayer
perceptron (−L 0.3
−M 0.2)

MAE: 3.8041 MAE: 5.0625 MAE: 4.939 MAE: 3.899

MAPE: 5.06 MAPE: 6.6659 MAPE: 6.495 MAPE: 5.2032

RMSE: 4.3529 RMSE: 5.9638 RMSE: 6.1949 RMSE: 5.4229

MSE: 18.9478 MSE: 35.5664 MSE: 38.3763 MSE: 29.4084

Multilayer
perceptron (−L 0.2
−M 0.001)

MAE: 4.0597 MAE: 3.8467 MAE: 3.5707 MAE: 3.9372
MAPE: 5.3961 MAPE: 5.1286 MAPE: 4.7686 MAPE: 5.262
RMSE: 4.7331 RMSE: 4.4672 RMSE: 4.5605 RMSE: 4.8992
MSE: 22.4024 MSE: 19.9558 MSE: 20.7982 MSE: 24.0018
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In overall, it is noticeable that either linear regression or MLP ANN has its own
advantages with different input data of the two groups of hotels in Philadelphia.
However, the ANN model is shown to be more adaptable, since its parameters are
easily altered accordingly with different scenario.

5 Conclusion

In this chapter, we have shown that ANN facilitated SOM is powerful in analyzing
social media data to gain competitive knowledge in the field of tourism. Because of
the flexibility of the algorithm, the introduced methodology can be easily cus-
tomized and employed in different business scenarios. The capability of MLP ANN
is also demonstrated through its application in time series forecasting, hotel
occupancy prediction particularly, with different overlay data. ANN is without
doubt a very dynamic and supportive in business analytics, and its potentials will be
surely pushed beyond any recognizable boundaries in the present context.
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Sentiment Analysis on Morphologically
Rich Languages: An Artificial Neural
Network (ANN) Approach

Nishantha Medagoda

Abstract The extraction and analysis of human feelings, emotions and experiences
contained in a text is commonly known as sentiment analysis and opinion mining.
This research domain has several challenging tasks as well as commercial interest.
The major tasks in the area of study are, identifying the subjectivity of the opin-
ionated sentence or clause of the sentence and then classifying the opinionated text
as positive or negative. In this chapter we present an investigation of machine
learning approaches mainly the application of an artificial neural network (ANN) to
classifying sentiments of reader reviews on news articles written in Sinhala, one of
the morphologically rich languages in Asia. Sentiment analysis provides the
polarity of a comment suggesting the reader’s view on a topic. We trained from a
set of reader comments which were manually annotated as positive or negative and
then evaluated the ANN architectures for their ability to classify new comments.
The primary interest in this experiment was the exploration of selecting appropriate
Adjectives and Adverbs for the classification of sentiment in a given language. The
experiment was conducted in different weighting schemes by examining binary
features to complex weightings for generating the polarity scores of adjectives and
adverbs. We trained and evaluated several ANN architectures with supervised
learning for sentiment classification. A number of problems had to be dealt with in
this experiment and they are: the unavailability of the main part of speech, adjective
and adverb and the sample size of the training set. Despite the issues, our approach
achieved significant results for sentence level sentiment prediction in both positive
and negative classification.
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1 Introduction

Text mining is a sub area of the study of natural language processing that relates to
in a way understanding and generating high quality information from human lan-
guages, such as English, French, Japanese, and Hindi etc. The understanding of a
given language is not only of the spoken language but in the use of written scripts
as well. Text mining is more suited to the written text of documents including the
unstructured textual information about, facts and opinions. Opinions are subjective
expressions of human thoughts, emotions and feelings. The research area of ana-
lyzing the opinions contained in texts is popularly known as opinion mining and it
is basically about two methods that are run in a sequence [1]. The first identifies the
subjectivity of the opinionated sentence or clause of the sentence and the second
classifies the opinionated text as positive or negative. The former method is known
as subjectivity classification and the latter one is referred to as sentiment analysis.

The modern world contains an unimaginably vast amount of digital information
which is growing faster than ever before [2]. As the result of recent technological
advances everyone is benefited, today anyone can gather and analyse considerably
high volumes of data for extracting useful information on matters that are of interest
to the individual concerned.

In general, data collected for any research or simple analysis can be broadly
divided into two main categories; (a) Quantitative Data (b) Qualitative Data. This
qualitative text data can be related to thoughts, opinions and experience of a
respondent. The data for a particular topic can be collected in a number of ways.
The most traditional and popular method, in past decade has been paper based
questionnaires [3]. But today, in this technologically sophisticated world, the
Internet is used not only to collect the data but to analyse in a very efficient manner
as well. In the paper based questionnaire method, qualitative text data is acquired
from open-ended questions. It is apparent that presently more people specially web
surfers express their views, opinions or experience on politics, products, services
and many other things in the web itself [4]. This has increased rapidly with the
introduction of social networks in the later part of the 20th century. Identifying such
information systematically using opinion mining software tools saves time and
money significantly when compared with alternative methods, such as surveys or
market research. Another advantage of such an approach is that mining opinions
using a systematic approach reveals precise information hidden in these views [5].

The benefits of opinion mining are several fold and they are;

Customers interested in finding specific information on a certain product or service, can use
an opinion mining system to gather he relevant information without having to read the
verbal comments of the clients who had used the same product or service.

Governments as well as political parties benefit enormously from the use of data mining
approaches to predict election results based on comments given by the public using the
social networks as the means for voicing their opinions.

Manufacturers or merchants interested in determining the success of a new version of a
product or service, based on its popularity or identifying the demographics of those who
like or dislike the special features of the commodity, could establish customer profiles
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before launching a new advertising campaign. Identifying this kind of information sys-
tematically by using opinion mining tools saves time and money by comparison with the
use of time consuming surveys or market research. In addition, the results are likely to be
more accurate and reliable since the data has been created by real customers in ideal
situations without forcing responses from them.

Traditionally, the opinion or comments are collected using questions where the
researcher has allocated some space in the questionnaire to write views. These
questions are defined as open-ended questions and information other than that of a
quantitative nature is included in the responses [3]. Today the most popular and
freely available source for collecting such information, is the World Wide Web.
Blogs, review sites and micro blogs, all provide a good understanding of the
perceptions of customers of the products and services of interest [6]. The social
networks are the newly invented repositories for customer comments. Social net-
works especially contain a wealth of human feelings and expressions on a vast
number of topics such as politics, products, services and actions taken by the
governments or state institutions [5]. The content of the social webs is dynamic and
rapidly changing to reflect the societal and sentimental fluctuations of contributors
as well as the use of a language. Even though contents of the social media are
messy and highly heterogeneous they represent a valuable source of information of
attitudes, interests and expectations of the citizens and consumers everywhere [7].
With the dramatic increase in the Internet usage the blog pages are also growing
rapidly. Unlike the comments or opinions, in social webs the blogger content tends
to be longer and the language is more structured. Blogs are used as a source of
opinions in many of the studies related to sentiment analysis [8]. Review sites are
useful for any consumer who is looking for others’ comments on a certain product
or service. A large and growing body of user generated reviews is available on the
Internet [6].

The core of the sentiment analysis is first identifying the subjectivity of a sen-
tence containing an opinion followed by judging the polarity (sentiment) of the
view expressed. These tasks are carried out using machine learning algorithms as
well as many other methods. The choice of the specific learning algorithm used is a
critical step. The methods of determining the semantic orientation used for iden-
tifying the polarity of the sentence are categorized into two approaches: supervised
and unsupervised classification techniques. The evidence of initial attempts on the
application of an unsupervised approach by Pang et al. in 2002 and supervised
method by Peter Turney can be seen in Kobayasi et al. [9]. Supervised classification
algorithm is one of the learning algorithms most frequently used in text classifi-
cation systems [10]. In supervised classification two sets of opinion are required
namely, training and testing data sets. The training data set is used to train the
classifier to learn the variation of the characteristics of the sentence or document
and the test data is used to validate the performance of the classification algorithm.
The supervised machine learning techniques, such as Naïve Bayes, support vector
machines (SVM) and maximum entropy, are the most popular ones and they have
been proven to be the most successful in sentiment classification [6].
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In this research, we investigated the application of supervised classification
algorithm using an Artificial Neural Network (ANN) for categorising the sentiment
of an opinion. In addition to examining the applicability of ANN, we investigated
the usage of adjectives and adverbs as important features of classification algorithm.

This article is organised as follows. Previous related work on this theme and
related topics by other researchers is explained in Sect. 2. Then we discussed the
methodology including feature selection, learning algorithms and evaluation in
Sect. 3. The results of the case study in Sinhala with accuracy measurements are
presented in Sect. 4. Finally, Sect. 5 concludes the paper with some interesting
initial results and anticipations relating to future directions.

2 Previous Related Work

Currently many researchers pay attention for sentiment classification using machine
learning algorithms. Among these classification algorithms Naïve Bayes and SVM
are more common and give higher accuracy [4]. However, there are several studies
that have used neural networks for classification of sentiments into positive or
negative. Backpropagation neural networks (BPNN) and modified backpropagation
networks (MBPNN) were initially proposed for text classification [11, 12]. A neural
network based sentiment classification index was implemented combining the
machine learning techniques and information retrieval methods by Long et al. [13]
to detect the harmful negative blogger comments quickly and effectively. In that
study for each sentiment four orientation indexes were used as the input for the
BPNN approach. These indexes included two types of point wise mutual infor-
mation, latent semantic index and the other stated as index SO-A, For a word SO-A
is defined as the association with a positive paradigm (a set of positive words)
minus the strength of its association with a negative paradigm (a set of negative
words). The language specific features such as adjectives, adverbs, nouns and verbs
were considered to construct the input vector. The vocabulary size that is the
dimension of the feature vectors range from 35 to 48. Authors mentioned that
dimensionality is the major problem as the textual data will grow exponentially. In
the paper, the use of tf-idf and n-gram features in the classification has been
mentioned but there was no evidence of it in the way how they were used. The
results on the use of such features were not made available either. Different data sets
were tested to evaluate the performance of the proposed algorithm which had given
F values in the range of 0.4–0.8. The calculation complexity of the proposed
indexes was the major drawback of the proposed method.

Cıcero et al. [14] proposed a sentiment classification method for short texts using
deep convolution neural network. In their approach the authors suggested character-
to sentence-level information to perform sentiment analysis of short texts. The neural
network architecture jointly used character-level, word-level and sentence-level
representations to perform sentiment analysis. Authors claimed the novelty of the
approach as use of two convolution layers which allow the handling of the words and
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sentences. In the first layer network transforms the words into real-valued feature
vectors that capture the morphological, syntactic and semantic information of the
words. The network was evaluated for performance with two corpuses, and each
sentence had five classes. Backpropagation neural network architecture was pro-
posed for the work with the network trained by minimizing a negative likelihood
over the training set. Classification accuracies achieved were in the range of 79.4–
85.7 in different algorithm scenarios.

A recursive neural network (RNN) model that learns compositional vector
representations for phrases and sentences of arbitrary syntactic type and length was
introduced by Richard et al. [15] to capture the compositional meaning of longer
phrases, preventing them from a deeper understanding of languages. The compo-
sitionality (an ability to learn vector representations for various types of phrases and
sentences of arbitrary length), was modelled by matrix-vector representation. Based
on the authors’ statement, the vector captures the meaning of that constituent. The
matrix captures how it modifies the meaning of the other word that it combines
with. In the first approach, the experiment was carried out using the
adjective-adverb pair with the aim of predicting fine gained sentiment distributions.
The publicly available data set was used to extract the adjective-adverb pairs. The
network was trained by computing via backpropagation. The approach gave 79 %
of accuracy.

3 Neural Network Based Sentiment Classification
Methodology

In this section, we outline the neural network based sentiment classification
methodology used in the paper. Our proposed method consists of five steps and they
are; (1) data pre-processing, (2) feature selection, (3) feature indexing, (4) classifi-
cation and finally (5) evaluation.

3.1 Step 1: Data Set and Pre-processing

We conducted the experiment on non-English text data, collected from one of the
morphologically rich language in Asia, Sinhala. It is an official language in Sri
Lanka with over more than 22 million speaker population in the country. Sinhala
belongs to the Indo-Arian branch of the Indo-European language family. It is a
SOV (subject-object-verb) word order language with its own scripts. Modern
Sinhala scripts consist of 18 vowels and 43 consonants. We performed an exper-
iment for testing the application of an ANN approach to Sentiment analysis using a
set of Sinhala opinions provided for newspaper articles. 2084 comments were
extracted from the text data from a leading online newspaper called “Lankadeepa”
(http://lankadeepa.lk/). As this is a domain independent classification, a sample

Sentiment Analysis on Morphologically Rich … 381

http://lankadeepa.lk/


consisting of different news articles was chosen, the domains included in the sample
being; Political, Criminal, Education, Religion, Medical and General. The sample
consists of general and political discussions rather than the Medical and Religion
related news (Fig. 1). The data set contains 44,426 words with an average comment
length of 21 words.

In the initial step of pre-processing stage, we cleaned the text data by removing
the words with spelling mistakes and all punctuation marks with numerals. With an
aim of applying supervised (Neural Network) classification techniques to analysing
the comments, the collected comments were classified into sentiment categories
manually, and the categories are: positive, negative and neutral. The classification
was done manually by native speakers. If a comment expressed was in supportive
of the news article then it was classified as positive and if the expression was
opposed to the contents of the article, the comment was classified as a negative one.
On the other hand, if the comment was in the form of an objective issue then it was
coded as neutral.

The coding is done by individuals who are native speakers of the language.
Three language users coded the opinions, and the common agreement of opinions
was included in the sample in the first pass. Opinions differently coded were
reconsidered and the researcher coded those based on his understanding. Finally,
based on the categorisation, the tested sample comprised of 745 positive (P), 838
Negative (N) and 500 neutral (N) opinions.

In the next step, we removed all the function (stop) words. Function (gram-
matical) words are words which have little meaning but essential to maintain the
grammatical relationships with other words [16]. Function words also known as
stop words include prepositions, pronouns, auxiliary verbs, conjunctions, gram-
matical articles or particles. For a given language, the set of function words is
closed and freely available. In text analysis, these words are dropped in order to
reduce the dimension of the feature vector set. Since these function words carry less
importance to the meaning, it is reasonable to remove them all. But in this research,
the stop words relating to negation were not removed, such as no, not and can’t.
The sense of these words affects the total meaning hence the sentiment scale of the
comments.

Fig. 1 Opinion sample distribution
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3.2 Step 2: Feature Selection

Sentiment classification methods based on vector models always require a vector
which represents the opinion or review. The components of the vector are known as
features, they are the special characteristics of an opinion. These features may be a
language specific characteristic or most of the cases they provide statistical infor-
mation retrieved from the opinion. The most widely used approach in document
classification is referred to as a bag of words methods where each term presenting
the document is considered as a separate feature [17]. A relevant set of features
always provide useful information to discriminate the different opinions. On the
other hand irrelevant, redundant or noisy features decrease the accuracy also,
increasing the computational complexity. Therefore, the performance of sentiment
classification can be enhanced by applying effective and efficient feature selection
methodologies.

Feature selection methods are classified as filter, wrapper and embedded meth-
ods. Filter feature section methods are less complex in terms of computational
processing, simple and they give considerably good levels of accuracies. Some of
filter feature selection methods are; Information gain, Gain ratio, chi-square, gini
index, odds ratio, document frequency and mutual information.

In this experiment, document term frequencies are used to select the most rel-
evant terms that can represent an opinion. But in sentiment classification, it is
important to consider respective language features to select most relevant terms in
addition to the term frequencies. In this experiment part of speech (POS) is con-
sidered to select the language specific terms. For the purpose of sentiment classi-
fication, the most suitable POS categories are Adjectives and Adverbs. Adjectives
always describe the nouns and adverbs add the manner of the verbs. Therefore,
Adjectives and Adverbs are most important language units (parts of speech) when
analysing sentiments in any language [18, 19]. Hence, initially, we calculated the
term frequencies of all words contained in the experiment data set. Then, filtered
out the adjectives and adverbs in the list using a predefined set of adjectives and
adverbs for the Sinhala language. The predefined adjective and adverb list is
retrieved from a 10 million words corpus of the target language Sinhala. The list
consists of 7503 adjectives and 671 adverbs. It was also found that more that 70 %
of the opinions out of 2083 include at least one adjective. But the number of
opinion includes at least one adverbs was less than 15 %.

Initially, the frequency distribution of adverbs and adjectives is investigated to
select the most relevant word list to construct the feature vector. This investigation
is done on the opinions after removing the stop words explained in step2. The
frequency distribution of adjectives and adverbs is given in the Fig. 2.

The minimum frequency of 1 indicates that the adjective/adverb is less important
to the concept of the comment being talked about. On the other hand, a word with
maximum frequency is highly correlated with the concept. It is also noted that it
follows the Zip’s rule which suggests that 80 % of the words are with less frequencies
and 20 % of them show higher frequency counts [20]. The list of adjective/adverb for
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further analysis was selected by removing the adjective/adverb with fewer occur-
rences. The threshold for this selection was decided by considering the Zip’s law and
the graph of adjective/adverb versus frequencies (Fig. 2). It was concluded to use the
words with frequencies greater than 3 as the adjective/adverb list for the rest of
analysis. This selection contributes to 83 % of the total adjectives and adverbs.

In this selection, 128 adjectives were selected out of 328 different types’
adjectives. This is approximately 49 % and the total adjectives considered for the
classification is 83 %. The similar statistics for the adjectives are 37 and 87 %
respectively. This reveals that as quantity for both groups are sufficiently con-
tributed to the feature vector however, these quantities poorly represent the type or
quality of each adjective and adverb group.

We also investigated the number of opinions that had at least one adjective
included within this selected frequency greater than 3. Only 37 % included at least
one adjective and 10 % of the opinion has at least one adverb. But the estimate for
combined features was 42 %.

3.3 Step 3. Feature Indexing

The next step was to calculate the weightages of selected adjective/adverb for the
feature vector. In this work, document frequency and inverse document frequency
(tf-idf) weights were tested on the above mentioned data set. Where tf denotes the
term frequency for the opinion which is simply the number of times a given term
appears in that opinion. This value is normalized to avoid the bias to long opinions
and to give the exact importance for the same word in a shorter one. And it is
calculated using the following equation

tfi;j ¼ ni;jP
k nk;j

where ni,j is number of times the term ti appears in the opinion dj and the
denominator is the sum of all the words in the opinion dj.

Fig. 2 Adjectives and Adverbs distributions (a left) Adjectives (b right) Adverbs
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The inverse document frequency (idf) is a measure of the general importance of
the term. Idf is obtained by dividing the number of all opinion by the number of
opinions containing the term. Then the logarithm of the quotient is calculated as

idfi ¼ log
Dj j

fj : ti 2 djg
�� ��

where Dj j total number of opinionsconsidered and jfj : ti 2 djgj is the number of
opinions where the term ti appears. The division-by-zero occurs when the term ti is
not present in the opinions. To avoid this one can change the denominator to
1þ j : ti 2 dj

� ��� ��.
Finally;

tf - idfð Þi;j¼ tfi;j � idfi

The other weighing alternative to the above is binary representation. The binary
vector for each and every opinion is constructed by considering the presence and
absence of highly frequent adjective or adverb. As for the tf-idf the length of the
binary vector is the length of the word (adjective or adverb) with the highest
frequency. We classified the opinions as either positive, negative or neutral using
both vector representation of tf-idf and binary.

3.4 Step 4A: Classification using Artificial Neural Networks

A neural network is a massively parallel distributed processors made up of single
units, which has a natural propensity for storing knowledge and making it available
for use [21]. These processors known as neurons are structured in different manners
that are known as network architectures. In general three fundamental architectures
can be identified namely; Single layer Feedforward networks, Multilayer Feed
forward networks and Recurrent networks (Fig. 3). In the single layer architecture,
we have an input layer of source nodes that are connected to the output layer. Here
network is feedforward or acyclic. In the second type there are many layers between
the input and output layers that are commonly known as hidden layers. A recurrent
neural network has at least one feedback loop.

In addition to the above classification neural nets can be classified into two
categories and they are; Feed forward and feedback networks. Feed forward has a
higher accuracy in classification tasks [21, 22]. Therefore, we deployed feed for-
ward neural network in the sentiment classification. The back-propagation networks
(BPN) is the best among the feed forward neural network. The iterative gradient
algorithm in BPN minimizes the mean square error between the actual output of a
multilayer feedforward perceptron and the desired output. The parameter of the
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BPN, such as, the number of layers could be one or two [23]. The backpropagation
algorithm runs in two passes; forward pass and backward pass. The purpose of the
forward pass is to obtain the activation value, and the backward pass is to adjust the
weights and biases based on the difference between the desired and the actual
network outputs. These two passes will be continued iteratively until the network
converges [11].

3.5 Step 4B-Training the neural network

The experimental opinion set was trained with different neural network architec-
tures. The sample was divided into several training and test samples in the rage of
60–90 %. In addition, we trained and tested the network using 10 % cross vali-
dation. Each training set was obtained after randomly sorting the original opinion
data set. The main parameters of BPN, such as, the number of hidden neurons,
training iterations, and training rates are all tested arbitrarily. The best performance
combination is selected after completing the evaluation.

3.6 Step 5. Evaluation

In general, text categorization algorithms are evaluated using Precision, Recall and
F-measures in addition to classification accuracies. These standard measures have
significantly higher correlation with human judgments [24]. These are first defined
for the simple case where a text categorization system returns the categories.

Fig. 3 Different types of neural network architectures (a left) single layer (b mid) multi-layer
(c right) recurrent
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Precision (P) is the fraction of retrieved documents that are relevant

Precision ¼ #ðrelevent items retrivedÞ
#ðretrieved itemsÞ ¼ PðrelevantjretrivedÞ

Recall (R) is the fraction of relevant documents that are retrieved

Precision ¼ #ðrelevent items retrivedÞ
#ðrelevent itemsÞ ¼ P retrivedjrelevantð Þ

These notions can be made clear by examining the following contingency
(Table 1);

Then;

P ¼ tp
ðtpþ fpÞ

R ¼ tp
ðtpþ fnÞ

The measures of precision and recall concentrate the evaluation on the return of
true positives, asking what percentage of the relevant documents has been found
and how many false positives have also been returned.

A single measure that trades off precision versus recall is the F measure, which is
the weighted harmonic mean of precision and recall. F score is a measure of a test’s
accuracy. There are differentweights that can be calculated for Fmeasure. The balance
F measure equally weights precision and recall and it is commonly written as F1

F1 ¼ 2PR
ðPþRÞ

Then, the F1 score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.

4 Experimental Results

In the first attempt, we experimented the sentiment classification using binary vectors.
That is the input feature vector for the neural network is a binary vector of adjectives
and adverbs. We tested several network architectures using the representation.

Table 1 Precision and recall
contingency table

Relevant Non-relevant

Retrieved True positives (tp) False positives (fp)

Not retrieved False negatives (fn) True negatives (tn)
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The experimental scenarios and the classification accuracies are given the Table 2.
The test cases include testing the different language features such as adjectives and
adverbs considering each case individually and combining both. In addition, the
neural networks were trained to find the ideal number of hidden layers. The cases
which obtained highest accuracies are presented in the Table 2.

Based on Table 2, the highest classification accuracy is shown when the feature
vector consists of only adverbs. But out of 2083 opinions only 208 include the
adverbs of frequency greater than 3. On the other hand, the best test case with
respect to Precision, Recall and F measure are shown in Table 3.

Table 3 reveals that opinions with adjectives and adverbs give the highest F
measure when the neural network was set up with no hidden layers.

The experiment was continued with different approaches as the results of binary
representation did not given acceptable performance. Next we experimented with
feature vectors where the weights of the features are tf-idf measures as explained in
Sect. 3.

Table 2 Classification accuracies in binary vector

Feature Number of
features

Number of
opinions

Number of hidden
layers

Accuracy

Adjectives 127 704 1 45.3901

Adverbs 25 208 1 53.6585

Adjectives and
Adverbs

178 740 1 49.3243

Table 3 F measures in binary vector

Feature Number of
features

Number of
opinions

Number of
hidden layers

P R F

Adjectives 127 704 a 0.459 0.482 0.445

Adverbs 25 208 1 0.37 0.463 0.411

Adjectives
and Adverbs

178 740 0 0.48 0.48 0.453

Table 4 Classification accuracies for tf-idf measures

Feature Number of
features

Number of
opinions

Number of hidden
layers

Accuracy

Adjectives 127 781 0 42.3816

Adverbs 25 217 a 48.3871

Adverbs 25 217 1 48.3871

Adjectives and
Adverbs

153 872 0 43.1193

Adjectives and
Adverbs

153 872 2 43.0046
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The best performance showed in the classification (Table 4), if the feature vector
constructed was only by adverbs than the other cases of adjectives or both. It is
noted that these accuracies are shown in both cases where the number of hidden
layers were set to ‘a’ and 1. Where ‘a’ is the default number of hidden layers used in
WEKA and it is equal to ‘a’ = (number of attributes + number of classes)/2. In these
cases the value is 14. The precision and recall with F measures for these cases are
given the Table 5.

Based onto Table 5 the highest F value is shown in the case where adjectives and
adverbs were combined in the feature vector, however, as in the case of binary
vector use and here as well the number of hidden layers remained same.

Due to this poor performance given by different classification settings authors
decided to carry out the experiment by dropping the “neutral” class. The approach
is empirically defensible as most of the sentiment classification experiments for
English and other major languages have been conducted without the “neutral” class
[25, 26]. In similar situations, authors have considered the above classification
accuracies and built the input vector for the neural network including both adjec-
tives and adverbs. In addition, used the 10 fold cross validation for training the
network. The classification accuracy measures with precision, recall and F values
are given in Table 6.

Table 5 F measures in tf-idf vector

Feature Number of
features

Number of
opinions

Number of
hidden layers

P R F

Adjectives 127 781 0 0.408 0.424 0.415

Adverbs 25 217 a 0.431 0.484 0.396

Adverbs 25 217 1 0.45 0.484 0.329

Adjectives
and Adverbs

153 872 0 0.425 0.431 0.423

Adjectives
and Adverbs

153 872 2 0.361 0.43 0.374

Table 6 Classification accuracies for positive and negative classes for 10-fold cross validation

Feature Number of
features

Number of
opinions

Number of
hidden layers

Accuracy P R F

Adjectives
and Adverbs

153 703 a 53.3428 0.525 0.533 0.486

Adjectives
and Adverbs

153 703 0 52.9161 0.524 0.529 0.521

Adjectives
and Adverbs

153 703 1 53.3428 0.525 0.533 0.498

Adjectives
and Adverbs

153 703 2 54.7653 0.545 0.548 0.505

Adjectives
and Adverbs

153 703 3 52.7738 0.523 0.528 0.52
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The classification accuracies achieved with the proposed neural network clas-
sification algorithm is 55 % giving a F value 0.51. Two hidden layers were utilised
in the neural network architecture for training in this case. A significant improve-
ment was shown over the classification with “neural” “class”. On the other hand, of
all the cases experimented, the highest F measure was resulted from a network with
no hidden layers in the training algorithm. Another experiment was carried out for
different training strategies by dividing the sample into 80 % for training and rest
for the testing.

Based on Table 6, the highest classification accuracy obtained by the network
with no hidden layers also showed the highest F value. Another fact noticed in this
experiment was that in 80 % training sample classification accuracy (Table 7)
dropped by 0.86 % when compared with 10-fold cross validation test.

To understand the classification errors in both cases, the confusion matrices for
both cases were examined. In the investigation, authors found that the error of the
classification largely occurred in positive cases than those in the negatives (Tables 8
and 9).

From the above analyses, it can be concluded that the neural network training for
sentiment classification gives better performance in 10-fold cross validation training
with two hidden layers in terms of classification accuracy.

Table 7 Classification accuracies for positive and negative class of 80 % training sample

Feature Number of
features

Number of
opinions

Number of
hidden layers

Accuracy P R F

Adjectives
and Adverbs

153 703 a 49.6454 0.485 0.496 0.412

Adjectives
and Adverbs

153 703 0 53.9007 0.55 0.539 0.508

Adjectives
and Adverbs

153 703 1 50.3546 0.523 0.504 0.396

Adjectives
and Adverbs

153 703 2 51.773 0.588 0.518 0.39

Adjectives
and Adverbs

153 703 3 49.6454 0.488 0.496 0.425

Table 8 Confusion matrix
10-fold cross validation

Negative Positive

Negative 306 67

Positive 251 79

Table 9 Confusion matrix
80 % sample

Negative Positive

Negative 56 15

Positive 50 20
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5 Discussion and Conclusion

In this experiment an attempt was made to investigate the rate of success with
neural network based sentiment classification for morphological rich languages.
The method proposed examined the basic single word vector space model as the
input for the neural network. The single word feature vector comprises
adjective-adverb language features. The backpropagation architecture with different
hidden layers were tested for the classification of the sentiments in the comments
given by “Lankadeepa” newspaper reviewers. The Maximum accuracy obtained
was around 53 % by the proposed approach and authors postulate several reasons
for the average classification accuracies. One reason for this average accuracy may
be the lack of structural linguistic information represented by the model. The vector
used in this approach includes a single word and it does not represent the contextual
information. The only form for linguistic information applied was the part of speech
of the word whether it is adjective or adverb. The model can be improved imme-
diately by introducing the bigrams or trigrams instead of single word use. The
bigrams deals with collocations of words in a comment that will add the importance
of two adjacent words to the polarity of the comment. It is further viewed that the
combination of both unigrams (single word) and bigram have a greater chance of
increasing the accuracy over the baseline accuracies.

As mentioned in the introduction, Sinhala language considered in this experi-
ment is morphologically rich and the polarity of the words also changes with the
word formation. As an example the word (good) has several morpho-
logical forms. These morphological forms carry different polarity strength in dif-

ferent contexts. As an example the polarity of word (best) is much

higher than the word (good). Both words functioned as adjectives and the
difference between them was not distinguished by the neural network model.
Authors suggest that incorporating different weight calculation such as sentiment
score for these morphologically derived words could be a better solution.

Another enhancement for the existing modal is applying the feature selection
procedures such as information gain or chi-square. The current feature selection
mechanism based on the word frequencies and some highly correlated words with
the sentiment might have been filtered out in the model tested in this research. On
the other hand, words with less or no contribution to the polarity of the sentiment
might have been included in the feature set.

Based on Tables 6 and 7 in Sect. 4, the network architecture deployed for the
sentiment classification did not affect the classification accuracies significantly. In
addition, the accuracies are approximately equal for different number of hidden
layers. Although the above complexities and weaknesses in the proposed classifi-
cation algorithm gave around 53 % accuracy, the experiment shows that neural
network based sentiment classification for morphologically rich languages is
plausible and with further improvements suggested the classification success rate
could be further increased.
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Predicting Stock Price Movements
with News Sentiment: An Artificial
Neural Network Approach

Kin-Yip Ho and Wanbin (Walter) Wang

Abstract Behavioural finance suggests that emotions, moods and sentiments in
response to news play a significant role in the decision-making process of investors.
In particular, research in behavioural finance apparently indicates that news senti-
ment is significantly related to stock price movements. Using news sentiment
analytics from the unique database RavenPack Dow Jones News Analytics, this
study develops an Artificial Neural Network (ANN) model to predict the stock price
movements of Google Inc. (NASDAQ:GOOG) and test its potential profitability
with out-of-sample prediction.

Keywords Technical analysis � News sentiment � Artificial neural network
JEL classification C45 � C53 � G14 � G17

1 Introduction

Technical analysis is the study of past price movements with the aim of forecasting
potential future price movements. Market participants who use technical analysis
often exploit primary market data, such as historical prices, volume and trends, to
develop trading rules, models and even technical trading systems. These systems
comprise a set of trading strategies and rules that generate trading signals, such as buy
and sell signals, in the market. Several studies [1–5] examine the profitability of
trading strategies, which include moving average, momentum and contrarian strate-
gies. In particular, Park and Irwin [1] show that out of 95 modern studies on technical
trading strategies, 56 of them provide statistically significant evidence that technical
analysis generates positive results. Han et al. [2] demonstrate that a relatively
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straightforward application of a moving average timing strategy outperform the
passive buy-and-hold strategy. Bessembinder and Chan [3] suggest that technical
trading rules have varying degrees of success across different international stock
markets; in general, these rules tend to be more successful in the emerging markets.
Fernandez-Rodrıguez et al. [4] examine the profitability of a simple technical trading
rule based on the Artificial Neural Networks (ANNs) and conclude that the ANN
trading rule is mostly superior to a passive buy-and-hold trading strategy during
“bear” market and “stable” market episodes.

Most of the existing research on technical trading rules and strategies focuses on
objective and unambiguous rules based on historical market information without
considering investor sentiment. Behavioral finance shows that information flows in
markets play a significant role in human decision-making, and financial decisions
are significantly driven by mood and sentiment [6]. In particular, research in
behavioural finance apparently indicates that news sentiment is significantly related
to stock price movements [7–12]. For instance, Antweiler and Frank [8] suggest
that internet messages have a significant impact on stock returns and disagreement
among the posted messages is associated with increased trading volumes.
Schmeling [9] finds that sentiment negatively forecasts aggregate stock market
returns on average across countries. Moreover, Schmeling [9] suggests that the
impact of sentiment on stock returns is higher for countries that have less market
integrity and are more susceptible to market overreaction and herding. Wang et al.
[12] show evidence that whilst news volume does not Granger-cause stock price
change, news sentiment does Granger-cause stock price change. In general, these
papers suggest that the impact of sentiment on stock markets cannot be ignored.

In this paper, we combine a trading strategy based on the ANN model with news
sentiment to build our ANN model for predicting the stock price movements of
Google Inc. (NASDAQ:GOOG). GOOG is an American public corporation spe-
cializing in internet-related services and products that enhance the ways people
connect with information [13]. Its primary source of revenue comes from delivering
online advertising that are relevant to consumers and cost-effective for advertisers.
Founded by Larry Page and Sergey Brin as a privately held company in 1998, GOOG
became a public corporation after the initial public offering (IPO) on August 19,
2004. In the past decade, its share has grown by more than 1500 %. As of December
31, 2014, Google had 53,600 full-time employees. Its current range of services
includes web search, email, mapping, office productivity, and video sharing ser-
vices. We focus on GOOG for the following reasons: one, as a major stock on
NASDAQ, GOOG is one of the few that has relatively straight forward transaction
data because it is a non-dividend-paying stock. As noted on Google’s Investor
Relations website, Google has “never declared or paid a cash dividend nor do we
expect to pay any cash dividends in the foreseeable future” [13]; two, since its IPO
11 years ago, GOOG is considered one of the best performers in the stock market, as
its stock price has risen bymore than 15 times over the past decade and only 13 stocks
in the S&P500 index have outperformed GOOG; three, GOOG has a very high
volume of outstanding shares (over 300 million shares with an average daily trading
volume of 2.4 million shares) and high stock price (over $600 in September 2015),
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making it unlikely the subject of price manipulation [13]; four, as a frequently traded
share with a large market capitalization exceeding US$400 billion, news directly
related to GOOG is frequently reported in various major media outlets. These news
releases are a rich source of data to examine the impact of news sentiment on
GOOG’s price movements.

To quantify the sentiment associated with each news release, we use the dataset
obtained from the RavenPack News Analytics Dow Jones Edition (RavenPack).
RavenPack systematically tracks and analyzes information on more than 2,200
government organizations, 138,000 key geographical locations, 150 major curren-
cies, 80 traded commodities and over 30,000 companies. It is a comprehensive
database covering more than 1,200 types of firm-specific and macroeconomic news
events. Among its many benefits, RavenPack delivers sentiment analysis and event
data that are most likely to affect financial markets and trading around the world—all
in a matter of milliseconds. It continuously analyses relevant information from major
real-time newswires and trustworthy sources such as Dow Jones Newswires, regional
editions of the Wall Street Journal and Barron’s and Internet sources including
financial sites, blogs, and local and regional newspapers, to produce real-time news
sentiment scores. All relevant news articles about entities are classified and quantified
according to their sentiment, relevance, topic, novelty and market effect. In terms of
the sentiment, RavenPack uses a proprietary computational linguistic analysis
algorithm to quantify the positive and negative perceptions on facts and opinions
reported in the news textual content. The core of the algorithm can be divided into two
steps. In the first step, RavenPack builds up a historical database of words, phrases,
combinations and other word-level definitions that have affected the target company,
market or asset class. Subsequently, in the second stage, the text in the specific news
story is compared with the historical database, and the sentiments score is generated
accordingly. In this paper, we use the sentiment score to classify news type.

The remainder of the paper is organized as follows. In the second section, we
discuss the artificial neural networks (ANN) used to generate predictions. In Sect. 3,
we discuss the datasets used in this paper. The empirical results of using ANN
to predict stock price movements of Google Inc. are discussed in Sect. 4. The last
section concludes this paper.

2 Methodology

In the past decade, the availability of datasets has increased tremendously in various
fields including finance. Therefore, the empirical applications of data mining
techniques, such as classification, clustering and association, have become
increasingly important [14]. In particular, there is a burgeoning strand of literature
on the applications of data mining techniques to the analysis of stock price
movements [15]. This strand of literature suggests that the Artificial Neural
Network (ANN) model is fast becoming one of the leading data mining techniques
in the field of stock market prediction [16–25]. Chang et al. [22] suggest that ANN
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can be employed to enhance the accuracy of stock price forecasting. De Oliveira
et al. [25] also show that the ANN model is a feasible alternative to conventional
techniques of predicting the trends and behavior of stocks in the Brazilian market.

The structure of the ANN model mimics the human brain and nervous system
[26–28]. Most neural networks contain three types of layers: input, hidden, and
output layers. Each neuron in a hidden layer receives the input data attributes from
every single neuron in an input layer, and the attributes are added through applied
weights and converted to an output value by an activation function. Subsequently,
the output is passed to neurons in the next layer, providing a feed-forward path to
the output layer.

Probabilistic Neural Network (PNN) is one of the most widely implemented
neural network topologies [29]. PNN is developed based on the classical Bayesian
classifier, whose goal is to statistically minimize the risk of misclassifications.
Based on the concept of posterior probability, which assumes that the probability
density function of the population from which the data are drawn is known a priori,
the decision rule of the PNN is to classify a sample to the class with the maximum
posterior probability. The PNN then uses a training set to obtain the desired sta-
tistical Bayesian information.

In this paper, the PNN is implemented by using the MATLAB Neural Network
Toolbox, with the network structures specified according to the default settings [30].
More specifically, the PNN creates a two-layer network structure. The first layer has
radial basis network neurons, and calculates its weighted inputs by vector distance
between its weight vector and the input vector, multiplied by the bias. The second
layer has competitive transfer function neurons, and calculates its weighted input with
dot product weight function and its network inputs with the sum of network inputs.

3 Datasets

We use the daily prices of Google Inc. (ticker symbol “NASDAQ:GOOG”)
obtained from SIRCA Thomson Reuters Tick History (TRTH). The news dataset
for GOOG is obtained from RavenPack News Analytics Dow Jones Edition
(RavenPack), which provides sentiment analysis for the news articles relevant to
GOOG. For each news article, RavenPack provides the following key information:
the date and time each news article is released, a unique firm identifier, and several
variables that measure the relevance, content, sentiment and form of the article. For
instance, the “Relevance” score, which ranges from 0 to 100, indicates the extent to
which the underlying news story is directly relevant to GOOG; a score of 100
indicates the article is highly relevant. The “Event Sentiment Score”
(ESS) measures the sentiment associated with the news article. ESS ranges from 0
to 100, where 0 indicates extremely negative news, 50 indicates neutral news, and
100 indicates extremely positive news. To compute the ESS, RavenPack uses a
proprietary computational linguistic analysis algorithm to quantify positive and
negative perceptions on facts and opinions reported in the news textual content.
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We construct the Daily Sentiment Score (DSS) for GOOG using the Relevance
Score and ESS based on the formula provided below. The period that we use to
calculate the DSS in day i−1 is the 24-h period before the market opens in day i:

DSSi�1 ¼
X

all news about the given firm in 24 h before market open in the dayi
IðRelevance ¼ 100Þ � ðESS� 50Þ

ð1Þ

Figure 1 shows the Daily Sentiment Score for GOOG from January 1, 2013 to
June 30, 2015.

In this paper, we use daily opening and closing prices of GOOG from January 1,
2013 to June 30, 2015 to test the predictive accuracy of the PNN model. The prices
are obtained from SIRCA’s Thomson Reuters Tick History (TRTH) database.
Figure 2 shows the daily closing prices of GOOG. In 2014, the price experienced a
big jump, which is due to the Google 2-for-1 stock split on April 3, 2014. As a
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result of the stock split, GOOG’s shareholders received two shares (Class A and
Class C) for every one share that they owned. The main difference between these
two classes is that Class A confers voting rights whereas Class C does not.

To compute the returns of GOOG, we calculate the difference between the
natural logarithm of the daily opening and closing stock prices and multiply the
difference by 100 as the stock return in the day i.

Stock returni ¼ 100 � ln Piopen
�
Piclose

� � ð2Þ

Piopen is the opening price of the GOOG in day i and Piclose is the closingprice of
the GOOG in day i. As we use daily opening and closing stock price to calculate the
stock returns, the stock split of GOOG does not affect our estimation results.

4 Empirical Results

In this paper, the stock price movement is an “up” (“down”) in day i if the closing
price of GOOG in day i is larger (smaller) than the opining price of GOOG in day i.
We use the “up” and “down” movements of the stock prices as our training patterns.
The PNN model is trained on the training data and subsequently tested to assess its
performance on the testing data. Basically, the process of training or learning helps
us obtain the optimum neural network weights by minimizing the model error,
which is the difference between the actual output and the desired one. In this paper,
we employ data from January 1, 2013 to December 31, 2014 as the training set and
data from January 1, 2015 to June 30, 2015 as the testing set.

Given these sets, this paper uses stock price returns in the last three trading days
(i.e. Stock returni�3; Stock returni�2; Stock returni�1Þ and DSS in the last trading
day (i.e. DSSi�1Þ as input features in the PNN model. Based on this approach, 4
indices are obtained. In other words, there are 4 input nodes and one output node.
Table 1 shows the basic statistics of these inputs (the close-to-open return and the
daily sentiment score of GOOG).

For the application of binary classification in the PNN model, sensitivity and
specificity are used to assess the performance of the model. In this paper, we define
the pattern as “price up” and “price down”. Then we calculate the following
variables:

Table 1 The basic statistics of the close-to-open return and the daily sentiment score of GOOG

Mean Highest Lowest

Close-to-open return −0.03 % 4.03 % −5.48 %

Daily sentiment score −2.39 396 −418
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Sensitivity ¼ Numberof true “up”
Number of true “up” + Number of false “down”

Specificity ¼ Number of true “down”
Number of true “down”þNumber of false “up”

Prediction rate ¼ Number of true “up”þNumber of true “down”
Number of prediction days

Table 2 shows the performance characteristics of our PNN prediction model.
The sensitivity is 52.83 % and the specificity is 55.71 %. According to the random
walk directional forecast, the stock price has a fifty-fifty chance of closing higher or
lower than the opening price [4, 31]. As can be seen, the total prediction rate of the
PNN model is 54.47 %, which implies that the PNN model can perform better than
a random walk directional forecast.

5 Concluding Remarks

Many papers on trading strategies build trading rules based on historical data such
as stock price and volume. In this paper, we use sentiment scores of news articles
related to GOOG to develop an ANN model to predict its stock price movements.
More specifically, by defining an “up” (“down”) in day i as the closing price in day
i being larger (smaller) than the opening price in day i, our empirical results provide
better predictive accuracy than a random walk directional forecast. Our model
provides a potentially profitable trading strategy with the following rules: if the
model predicts an “up” movement, we should buy the stock at the stock market
open and sell the stock at the stock market close; in contrast, if the model predicts a
“down” movement, we should sell the stock at the stock market open and buy the
stock at the stock market close.
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Modelling Mode Choice of Individual
in Linked Trips with Artificial Neural
Networks and Fuzzy Representation

Nagesh Shukla, Jun Ma, Rohan Wickramasuriya, Nam Huynh
and Pascal Perez

Abstract Traditional mode choice models consider travel modes of an individual
in a consecutive trip to be independent. However, a persons choice of the travel
mode of a trip is likely to be affected by the mode choice of the previous trips,
particularly when it comes to car driving. Furthermore, traditional travel mode
choice models involve discrete choice models, which are largely derived from
expert knowledge, to build rules or heuristics. Their approach relies heavily on a
predefined specific model structure (utility model) and constraining it to hold across
an entire series of historical observations. These studies also assumed that the travel
diaries of individuals in travel survey data is complete, which seldom occurs.
Therefore, in this chapter, we propose a data-driven methodology with artificial
neural networks (ANNs) and fuzzy sets (to better represent historical knowledge in
an intuitive way) to model travel mode choices. The proposed methodology models
and analyses travel mode choice of an individual trip and its influence on con-
secutive trips of individuals. The methodology is tested using the Household Travel
Survey (HTS) data of Sydney metropolitan area and its performance is compared
with the state-of-the-art approaches such as decision trees. Experimental results
indicate that the proposed methodology with ANN and fuzzy sets can effectively
improve the accuracy of travel mode choice prediction.
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Key words Travel mode choice � Consecutive trips � Artificial neural networks �
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1 Introduction

Travel mode choice is an important aspect of travel behavior, and also one of the
four steps in transportation demand estimation for urban planning [20]. It refers to
the procedure of assigning available travel modes (e.g. car, walk, bus, and train) to
each trip of an individual based on the person’s demographic and social charac-
teristics and the environmental conditions. Travel mode choice has received sig-
nificant research attention from academia, industry and governmental management
agencies. Current studies on travel mode choice mainly based on discrete choice
methods which rely heavily on some prerequisites such as specific model structure,
complete historical travel diaries, and expert knowledge, to build rules or heuristics
for mode choice analysis. However, real data used for travel mode choice analysis
seldom fulfill these requisites. Hence, the models built on top of them may well fit
the data available but have limited usefulness for real world applications.

Using machine learning techniques for travel mode choice modeling have drawn
a significant attention in recent years. Methods based on machine learning tech-
niques have been reported to have better performance/accuracy in prediction of
travel mode choices over conventional statistical models. These methods are mainly
data-driven i.e. they are built directly from data without (or minimal) prerequisites
in terms of predefined mathematical model. However, majority of existing machine
learning methods in literature assign mode to each of an individuals trips as
independent procedure without considering the inner interaction of the linked trips.
As trips made by an individual is closely related to his/her travel purpose and
previous trips (if any), therefore, linked trips need to be considered when devel-
oping a machine-learning based models.

Traditionally, mode choice using discrete choice methods tried to link trips in a
travel diary (set of trips performed by an individual in a period) by defining an
explicit utility model as the measurement or evaluation criterion for travel mode
assignment. Such methods required the access to the complete historical travel
diaries of individuals in that period. As travel diaries of individuals may vary in
many aspects such as number of trips, traveling time period, travel purposes, as well
as trip distances; it is hard to apply a common utility model to different types of
travel diaries. Particularly, in a given focal period such as morning peak, input data
of trips may mainly comprise of partial set of trips in travel diaries, which leads to
difficulty in analyzing travel diaries and assigning appropriate modes for the trips in
other time period.

Modeling travel mode choice are largely based on near continuous variables in
travel survey data. Although data about these variables is crucial for travel mode
choice analysis; however, it is too detailed from the point of view of modeling and
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affects the performance of a model. Research indicates that categorizing this data
can effectively improve the predictive performance of a model. To implement this,
fuzzy representation is an appropriate technique because it can effectively harness
the domain and common knowledge to aid model building. For example, we can
use a “morning-peak trip” to describe trips in a given time period without drilling to
the detailed time, or use a “short-distance trip” to summarize trips in a short time
period or with a short distances.

In this chapter, we focus on travel mode choice modeling approach which
considers consecutive (a.k.a linked) pairs of trips of an individual under the
assumption that the individuals previous trip mode affects the following trip mode
choice. Particularly, we considered linked trips of an individual and developed a
machine learning based travel mode choice approach and used fuzzy representation
for data discretisation.

The remainder of the chapter is organised as follows. Section 2 provides an
overview the related models and techniques in travel mode choice literature.
Section 3 analyses the linked trips. Section 4 provides the details of the presented
method. Section 5 describes the experiments conducted on a real travel survey (the
Household Travel Survey (HTS) of Sydney metropolitan area) and compares the
performance of the presented method. Finally, we summarise the main contribu-
tions and future work in Sect. 6.

2 Related Works

Discrete choice models are primarily used in travel mode choice studies. Such
models include the Dogit and Logit models [12, 13], the multinomial logit
(MNL) models [19] and the nested logit models [10]. Arguments about their lim-
itation include (i) a specific model structure needs to be defined in advance, which
ignores the partial relationships between explanatory variables and travel modes for
different population subgroups; (ii) they lack the ability to model complex
non-linear systems, which represent complex relationships involved in human
decision making; and, (iii) they check only for conditions that hold across an entire
sample of observations in the training dataset and patterns cannot be extracted from
different observation subgroups [31].

In past two decades, machine learning has emerged as a superior approach in
travel mode choice research by which travel mode choice can be better predicted
while alleviating aforementioned shortcomings [8, 27, 28, 31]. For example, Xie
et al. [33] report that Artificial Neural Networks (ANN) achieved better results
compared to MNL based on a comparative study using work-related travel data.
Similarly, Rasmidatta ([26]) compared the nested logit models and the ANN models
for long distance travel mode choice, and illustrated a better performance of ANN
over other models. Furthermore, there are other studies that compare and contrast
the performance of machine learning techniques with other traditional statistical
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techniques and propose to use machine learning techniques such as ANN and
Decision Tree (DT) for travel mode choice prediction [8, 15, 24, 27, 28].

Park et al. [25] proposed the use nested model over multinomial logit model and
probability distribution function model for access mode choice behaviors to the
water transportation mode in Bangkok. Nakayama et al. [23] have proposed a
semi-dynamic traffic assignment model with travel mode choice (logit) model
between public transit and car. Bhat and Dubey [4] have proposed a new multi-
nomial probit-based model formulation for integrated choice and latent variable
(ICLV) models and compared its advantages against traditional logit kernel-based
ICLV formulation. Bliemer and Rose [6] have proposed experimental design
strategies to determine reliable and robust parameter estimates for multinomial logit
models. Karlaftis and Vlahogianni [16] have compared the use of neural networks
and statistical methods for their appropriate applicability in transportation research
domain. One of the conclusions from the review is that the neural networks are
regarded as constraint free and flexible when dealing with nonlinearities and
missing data.

Based on the types of trips focused and data used, we summarize the existing
research studies in Table 1. Table 1 indicates that the majority of existing research
focuses on independent trips and crisp (or original survey) data. Research on linked
trips with fuzzy representation has not been reported, which is the main focus of
this study.

3 Linked Trip and Its Influence on Travel Modes

Travel mode choice can be understood as the travel mode to which a traveler
pre-commit for a given activity (shopping, work, school). Majority of the traditional
literature focuses on an independent trip, where each trip is considered as an
independent event. This indicates the assumption that an individual has to make
independent decision about the travel mode regardless of whether these trips are

Table 1 Classification of state-of-the-art approaches in mode choice

Trip type Data Type

Discrete choice models Machine learning models

Crisp data Crisp & Fuzzy
representation

Crisp data Crisp & Fuzzy
representation

Independent
trips

[4, 6, 9, 10, 12,
15, 19, 23, 25]

[11] [8, 15, 27,
28, 31]

[32]

Linked
individual trips

[21] This study [5] This study

Linked
household
trips

[21] Future
work

Future work
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part of a tour (e.g. home-work-shopping-home). However, due to complexity of
patterns of trips performed by an individual in a time period, the assumption of each
trip to be independent is inappropriate. Cirillo and Axhausen [9] suggested that
individuals maintain their mode during a tour, especially if they use an individual
vehicle (car, motorcycle or bicycle). Hence, there is strong dependency between
travel modes adopted in consecutive trips.

In this study, we focus on linked trips (a.k.a. consecutive trips) which comprises
of a chain of trips made by an individual trip maker. Our selection of linked trips is
inspired by the fact that the real household travel survey data are largely incomplete
and it mostly characterizes the travel behavior in different time periods of the day.
These considerations are different from previous research on travel mode choice.
Traditionally, trip-based, activity-based, and tour-based models have considered the
trip maker as the central subject. Hence, survey data needs the travel makers entire
history of travel diaries when building those models. However, we noted that trip
records in household travel survey data are seldom complete. Majority of persons
trip records often have incomplete travel sections i.e. isolate trips. Another reason
for our considering of linked trips is that transportation planning is often based on
common travel periods of the whole community rather than individuals i.e. travel
mode is affected by the time periods. For example, during peak hours, many Sydney
residents drive to the nearby bus or train stations and then use the public trans-
portation in order to avoid the traffic congestion. Therefore, we are trying to dis-
cover the influence of the travel mode used in previous trip on the following trip
during given a time period through the linked trips.

Formally, let O and D be the origin and destination of a travel pO→D, a trip is a
section between locations s and t in the travel and denoted by ps→t. Hence, a travel
with n + 1 trips from O to D is denoted by

pO!D ¼ pO!1[p1!2[ � � � [pn!D

For convenience, we write t0 ¼ pO!1; tn ¼ pn!D; i ¼ 1; . . .; n� 1; i ¼
1; . . .; n� 1 and trip ti+1 is called the linked trip of ti, i = 0, …, n − 1. The travel
mode assigned to trip ti is mi, i = 0, …, n.

Generally, it is not necessary to assume the origin and destination of a travel to
be the same location; and locations O, 1, …, n, D can be different. For example,
Fig. 1 shows some examples of possible linked trips.

4 Methodology

This section details the modeling methodology adopted in this Chapter for the travel
mode choice of an individual using data collected for a household travel survey. As
mentioned in Sect. 2, travel mode choice has been studied largely using discrete
choice models that possess known limitations. From the viewpoint of machine
learning, travel model choice modeling is able to be treated as a classification
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problem, where the classification attribute is the assigned trip mode. This leads us to
explore existing classification methods in machine learning to overcome those
known limitations in discrete choice models. In this study, we mainly use the
artificial neural networks (ANN) and the decision trees (DT) because they are the
widely-used classification methods. We have also employed fuzzy sets to represent
common knowledge about travel time periods, incomes, and other attributes in the
survey data. The first part of this section presents some preliminaries of ANN and
DT followed by a description of linked trips and fuzzy representation of travel
survey data.

4.1 Preliminaries

McCulloch and Pitts [18] developed the concept of artificial neurons to study
cognitive processes. Following this, ANNs have been applied for variety of clas-
sification and pattern recognition problems. In general, an ANN consists of a set of
interconnected processing nodes called neurons which are used to estimate mapping
between explanatory variables (attributes) and the responses. Each neuron combi-
nes its inputs into a single output value based on an activation function.
A commonly used neural network consists of an input layer, an output layer, and a
hidden layer. Multi-layer feed-forward (MLFF) neural networks are the mostly used
structure. It has been recognized that using multiple hidden layers can improve the
ability of an ANN to model complex linear as well as non-linear relationships.
Hence, we employ MLFF ANN for this study.

Figure 2 illustrates a typical MLFF ANN with one hidden layer where
x1, x2, …, xn represent the set of n explanatory variables as inputs and y1, y2, …, yo
represent the set of o responses as outputs. wi,j (i = 1, …, n; j = 1, …, h) represents

Fig. 1 Examples of linked
trips
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the weight associated with the edge between node ni
I in input layer and node nj

H in
hidden layer; and uj,k (j = 1, …, h; k = 1, …, o) represents weight associated with
the edge between node nj

H in hidden layer and node nk
O in output layer.

When an observation (x1, …, xn; y1, …, yn) is presented to the network, each
explanatory variable is multiplied by appropriate weights and summed up together
with respective bias value to adjust magnitude of the output. The resulting value is
fed into transfer function to produce output for a particular hidden node. Formally,

Hj ¼ u
Xn
i

wi;jxi þ bHj

 !
; j ¼ 1; 2; . . .; h ð1Þ

where Hj represents the output of the j-th hidden node, bj
H represents the bias value

for the j-th node in hidden layer and ψ(·) represents a predetermined transfer
function.

Similarly, the value �yk of the k-th output node is represented as:

�yk ¼ w
Xh
j

uj;kHj þ bOk

 !
; k ¼ 1; 2; . . .; o ð2Þ

where bk
O represents bias value for the k-th node in output layer.

Various algorithms have been proposed for training ANN [14, 22]. These
algorithms calibrate wi,j, uj,k, bj

H, bk
O to accurately predict or produce the responses.

We consider the widely-used back-propagation algorithms such as scaled conjugate
gradient [22] and Levenberg-Marquardt optimization [14] for ANN training.

Fig. 2 A typical MLFF ANN
topology
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DT is a type of rule-based modeling method which maps observations (ex-
planatory variables) to their response through branching criteria. DT resembles
human reasoning and produces a white-box model for decision making. In DT,
leaves represent a class label and each node represents a condition or rule for tree
branching. DT presents several advantages such as robustness to noise, low com-
putational cost for model generation and ability to deal with redundant variables.
DT algorithm and its variants such as C4.5 or J4.8 and Classification and
Regression Technique (CART) have been used for classification in variety of areas
[30]. An application of these algorithms to travel mode choices was reported by Xie
et al. [31].

Fuzzy set was introduced by Zadeh [33] as a tool for processing uncertainty in
real application systems which involve human perceptions of vague concepts such
as young person and big heap. Since then, fuzzy set has been successfully used in
engineering, control systems, and decision making [17]. Recently, it has been used
in travel demand modeling [32]. In travel survey data, many attributes such as travel
cost, travel cost, travel time as well as individual demographic characteristics are
measured in more detailed measurements. However, this kind of data is hard to be
used for travel mode choice modeling. Reasons for this include (1) the detailed
measurements are by no means accurate, for example, an individual cannot tell
when exactly he or she started a trip; (2) the detailed measurements prevent a
modeler to find useful pattern, e.g., useful pattern about peak hours will be buried in
too much detailed patterns; and (3) the detailed measurements increase the diffi-
culties to build and tune a robust model. Machine learning research indicates cat-
egorization is an efficient data pre-processing strategy for building models with
better performance. Because fuzzy set or fuzzy representation is a powerful tool for
summarizing information for categorization purpose, we argue that fuzzy sets can
better describe a persons choice of a specific travel mode.

Fuzzy sets can provide better description of and insight into a specific travel
mode choice. Generally speaking, a travel mode choice can be described as an IF-
THEN expression such that:

IF the depart time is 06:30 and the travel distance
is 20.5 km, THEN the travel mode is car-driving.

Although this kind of description is accurate from the modelling perspective and
data accuracy, it lacks insight into the real travel behaviour pattern particularly
when there are so many similar expressions. Using fuzzy sets, we can provide an
intuitive and better understandable expression such as:

IF the depart time is early morning and the
trip is long, THEN the travel mode is car-driving.

Hence, we can combine multiple expressions into an easily understandable
expression and obtain insight into the mode choice pattern.

Fuzzy set offers a way to describe the uncertainty in the travel survey dataset.
Two types of uncertainties exist in the collected data for travel mode choice
analysis. The first type of uncertainty comes from the surveyors questionnaire and
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responses design; and the other type exists in an individual responses. Question
responses in a survey need to be designed with distinguishable and clear meanings.
However, it is very common that the provided response options do not fit the real
opinion or actual behavior of a responder. Therefore, the responder may either
choose from provided options or write down self answers when filling the survey
form. Secondly, due to the differences in responders’ perception of same question,
uncertainty is inevitably added to the collected data. Fuzzy sets can better handle
these two kinds of uncertainties. For example, it is hard for any traveler to
remember exact start and finish time for different trips in a day, however, they can
clearly remember if the trip is started in the morning or afternoon or night. In this
situation, asking the traveler to choose from given time periods or to provide exact
starting time is not a good option. It would be better to ask them to indicate the
starting time using fuzzy terms like early morning, morning or lunch time.

Typically, a fuzzy set is defined as Definition 1. Based on this definition, we can
describe uncertainty and common sense knowledge for the travel mode choice
analysis. Details of operations and algorithms of fuzzy sets can be found in Klir and
Yuan [17] and are not included and discussed here.

Definition 1 Let X be a set of objects (X is called a universe of discourse). A fuzzy
set ~A on X is defined by an associated membership function l~A such that for any
x ∊ X, l~AðxÞ 2 ½0; 1�. l~AðxÞ is called the membership degree of element x in fuzzy
set ~A.

4.2 Linked Trip Representation in Household Travel Survey

In this section, we present the data processing of the household travel survey and
the outcome is used as inputs for ANN and DT. Considering the focus of our
approach, this process mainly includes extracting linked trips from survey data and
representing them based on transportation needs.

Household travel surveys are increasingly used in most of the metropolitan cities
to understand the current travel behavior and demand for transport planning. For
instance, London Travel Demand Survey covers 8000 households annually [29];
Sydney Household Travel Survey covers 3500 household annually to gather travel
related information (source: http://www.bts.nsw.gov.au/HTS/HTS/default.aspx).
These travel surveys record socio-economic characteristics, demographic charac-
teristics, household attributes, travel diary, travel purpose, departing and arriving
times, and travel modes, among others. These records are used by planners to
design or change existing transport plans. This Chapter used the Sydney Household
Travel Survey to model the travel mode choices of an individual given other
attributes.

In the following, let S be a survey dataset of trips made by L travelers. The m-th
trip made by the traveler l is represented by (xlm, ylm), m ∊ {1, 2, …, Ml},
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l ∊ {1, 2,…, L}, where xlm = (x1
lm, x2

lm,…, xn
lm) are values of n explanatory attributes

and ylm = (y1
lm, y2

lm,…, yo
lm) are Boolean values of o decision variable (corresponding

to possible travel modes) such that only one of them is true (= 1).
To describe linked trips, we introduced an additional set of explanatory vari-

ables, which is the travel mode adopted by the individual in front trip, apart from
xlm to model the travel mode choices. The additional variable set is represented as
xlm
′ , formally,

x0lm ¼ 0 m ¼ 1
Y lðm�1Þ m 2 f2; . . .;Mlg

�
ð3Þ

Since the first trip (i.e., m = 1) does not have front trip mode choice (yl0), we use a
dummy vector 0 = (0,…, 0) to represent that. In other words, we treat the first trip of
an individual to be independent and rest of the trips to be dependent on their front trip.

The modified travel survey dataset includes xlm and xlm
′ as explanatory variables

to model the responses in ylm for all l ∊ {1, 2, …, L}, m ∊ {1, 2, …, Ml}.

4.3 Attributes Fuzzy Representation

There are mainly three typical value types in the explanatory variables i.e. cate-
gorical (ordinal or nominal), continuous, and date-time. Research indicates that
categorizing continuous and date-time values can generally improve model per-
formance. To do this, we follow the fuzzy set technique and knowledge from
transport needs.

Based on the features of fuzzy sets, we introduce several fuzzy representations to
replace two selected variables which are depart_time and household_income.

In the survey dataset, the depart_time variable is recorded in minute-basis from
00:00 to 23:59 for a day. For convenience, we let X = {0, …, 1439} be the minutes
apart from the time 00:00 and define fuzzy sets to describe different depart time.

Following Transport for New South Wales (T4NSW) technical documentation
[7], four fuzzy sets are defined for depart time over the 24 h, which are morning
peak” (M), evening peak” (E), inter-peak” (L), and evening/night period” (N).

In our method, morning peak” starts from approximately 6:00AM (x = 360) and
spans to 10:00AM (x = 600), which has 1 h extension before and after the TfNSWs
definition (7:00–9:00AM). The membership function μM is given by

lMðxÞ ¼
e�

ðx�450Þ2
2�602 x\450

1:0 450� x� 510

e�
ðx�510Þ2
2�602 510\x� 1439

8>>><
>>>:

ð4Þ
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where x is the minutes from 00:00. By this definition, the morning peak starts grad-
ually from around 6:00AM, reaches the peak between 7:15AM (x = 450) and 8:45AM
(x = 510) and then ends at about 10:00AM. Similarly, the other three fuzzy sets (for
evening peak”, inter-peak, evening/night period) are defined as following (Fig. 3).

lLðxÞ ¼
e�

ðx�570Þ2
2�602 x\570

1:0 570� x� 870

e�
ðx�870Þ2
2�602 870\x� 1439

8>>><
>>>:

ð5Þ

lEðxÞ ¼
e�

ðx�930Þ2
2�602 x\930

1:0 930� x� 1050

e�
ðx�1050Þ2
2�602 1050\x� 1439

8>>><
>>>:

ð6Þ

lNðxÞ ¼
1:0� e�

ðx�450Þ2
2�602 x\450

0:0 450� x� 1050

1:0� e�
ðx�1050Þ2
2�602 1050\x� 1439

8>>><
>>>:

ð7Þ
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Fig. 3 Fuzzy sets for “depart time”
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In the survey dataset, the variable household_income indicates the annual
approximate household income which ranges from −AU$5005.74 to AU$402741.
Due to the spread of the range, it is hard to get insight of the influence of household
income on travel mode choice. We introduced three fuzzy sets to depict under-
standable concepts which are consistent with individuals ordinary experience on
household income levels. The three fuzzy sets are low income (LI), middle income
(MI) and high income (HI), which are shown in Fig. 4.

The three fuzzy sets are defined based on the information from the Australian
Bureau of Statistics (ABS) and the Australian Taxation Office (ATO). By ABS, the
low income household are located in the second and the third income deciles, the
high income households are located in the 9-th and 10-th deciles, and the other are
middle income households [1]. By ATO income tax rate, the low income threshold
is about AU$37000 [3] and family tax offset threshold is about AU$150000 [2].
Hence, we defined the three fuzzy sets based on aforementioned information.

The fuzzy set “low income” is defined as following:

lLIðxÞ ¼
1:0 x\19600

e�
ðx�19600Þ2
2�36002 x� 19600

(
ð8Þ
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Fig. 4 Fuzzy sets for “household income” (unit AU$000)
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where x is the total household income. Similarly, the other two fuzzy sets are
defined as

lMIðxÞ ¼
e�

ðx�30300Þ2
2�36002 x\30300
1:0 30300� x� 139000

e�
ðx�139000Þ2
2�101002 x[ 139000

8><
>: ð9Þ

lHIðxÞ ¼ e�
ðx�172000Þ2
2�70002 x\172000
1:0 x� 172000

(
ð10Þ

5 Case Study

5.1 Dataset Description

The Sydney Household Travel Survey (HTS) data is the largest and most com-
prehensive source of information on personal travel patterns for the Sydney Greater
Metropolitan Area (GMA), which covers Sydney, the Illawarra Statistical Divisions
and the Newcastle Statistical Subdivision. The data is collected through face-to-face
interviews with approximately 3000–3500 households each year (out of 50000
households in the Sydney GMA randomly invited to participate in the survey).
Details recorded include (but are not limited to) departure time, travel time, travel
mode, purpose, origin and destination of each of the trips that each person in a
household makes over 24 h on a representative day of the year. Socio-demographic
attributes of households and individuals are also collected.

The presented method has been implemented and tested on a 100,000-trip sample
which is randomly selected from the HTS data. We partitioned the sample into three
subsets i.e. a training set (30 %), a testing set (35 %) and a validation set (35 %). The
three partitions are used for all the experiments conducted in this Chapter.

6 Experiments Design

Before conducting the test, we identified 17 variables based on statistical analysis of
their correlations with the travel modes. The identified variables are listed in
Table 3. Among these variables, the variables depart_time and household_income
are replaced by the fuzzy sets defined above when conducting the test for fuzzy
settings. Further, we use previous trip’s mode, pre_mode_new, (as mentioned in
Sect. 4.3) to test the scenarios when considering dependent/linked/consecutive trips
of an individual in a day (Table 2).
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Total 4 experiments (shown in Table 3) have been conducted based on different
empirical settings (on DT and ANN) which are:

Experiment 1 We use travel mode as decision variable and the others as
explanatory variables. Under this setting, we test independent trip mode choice
model and use this result as a benchmark for the following tests.

Experiment 2 Replacing the explanatory variables hh_income and depart_time by
their fuzzy sets in Experiment 1. Under this setting, we test the performance of
fuzzy sets in travel mode choice modeling.

Experiment 3 We add attribute pre_mode_new as an additional exploratory
attribute to experiment 1 and test the performance of travel mode choice modeling
based on linked trips.

Table 2 Attributes used for testing

Attribute ID Attribute name Attribute description

1 tripno Trip order (m)

2 day_no Weekday of a travel

3 hf Household type

4 occupancy Household occupancy

5 veh_parked_here Number of Vehicles Parked at dwelling location

6 hh_income Household income

7 licence_num Number of driving licenses in a household

8 student_sum Number of students in a household

9 work_athome_sum Number of home based working person

10 resident_num Household size

11 pers_num_trips Number of trips made by an individual in a day

12 purpos11 Travel purpose

13 road_dist_xy Trip distance

14 depart_time Trip departure time

15 arrive_time_tune Trip ending time slot (30 min interval)

16 tmode_new Travel mode

17 pre_mode_new Travel mode of trip in front

Table 3 Experiments based
on DT, ANN

Experiment Empirical settings PCI (%)

ID Fuzzy sets Linked trip DT ANN

1 N N 64.71 68.1

2 Y N 67.67 68.7

3 N Y 85.63 85.9

4 Y Y 86.17 86.8
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Experiment 4 We add attribute pre_mode_new as an additional exploratory
attribute to experiment 2 and test the performance of linked trips modeling based on
consecutive trip under fuzzy set settings.

7 Result and Analysis

To measure the performance, we use root mean square error (RMSE) value for
mode share and percentage of records correctly identified (PCI) for each experi-
ment. The RMSE of mode share (for R modes) for a classifier is:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR
r¼1

ðPrOrÞ2
vuut ð11Þ

where, Pr and Or are the percentage of instances of r-th mode in prediction and
original dataset.

TABLE 3 gives the empirical settings and PCI of experiments. Some observa-
tions from this experimentation are:

1. Using dependent (or linked) trips achieves higher PCI. For example, the PCI of
experiment 1, 2 for both ANN and DT increases significantly from 64.71 to
85.63 % in DT and 69.30 to 84.7 % in ANN.

2. Using fuzzy sets as categorization strategy gives higher PCI to ANN and DT.
Experiments 1 and 2 for DT and 3 and 4 for ANN justify the use of Fuzzy sets.

3. ANN performs better than the DT for all the experiments.

Based on the experiments, we can claim that our method improves the PCI of
travel mode choice. Table 4 illustrates the mode shares predicted by proposed
approach considering ANN and DT with fuzzy sets and linked trips and it is
compared with the original mode shares from the HTS data. It illustrates that the
mode shares from proposed approach are consistent with that from the HTS data.
Particularly, we noted that the mode share for public transport and bicycle are very

Table 4 Mode shares for ann prediction

Travel modes HTS data (%) DT prediction (%) ANN prediction (%)

Car_driver 40.95 43.50 43.11

Car_passenger 20.65 30.76 19.05

Public_transport 8.37 7.54 7.74

Walk 29.26 17.68 29.55

Bicycle 0.77 0.53 0.53
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similar to those of the HTS data; and the other modes have slightly varies. The
mode share indicates that the public transport and bicycle modes have strong
correlation between linked trips; however, the other modes may be affected by
many aspects such as travel purpose. This needs more study.

8 Conclusion and Future Work

This Chapter describes a novel methodology for travel mode choices based on
linked trips and fuzzy representation. The proposed method considers (i) common
sense knowledge by using fuzzy sets to categorize over-detailed attributes; and,
(ii) using the linked trips based model that uses travel mode of trips in front as one
predictive variable. We use two typical classification techniques, i.e., the ANN and
DT, to test the methodology on a real-world household travel survey dataset. The
results from various analysis suggests that the use of fuzzy representation and
linked trips for mode choice achieves higher performances in both individual mode
choice and mode share distribution aspects.

In future, this work can be extended to include other explanatory variables, new
fuzzy representation, and linking the individuals in the household to achieve higher
modeling performances. Moreover, considering individual trips are affected by
household characters, such as household activity and household composition, our
next step work will include linked household trips as shown in Table 1.
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Artificial Neural Network (ANN) Pricing
Model for Natural Rubber Products Based
on Climate Dependencies

Reza Septiawan, Arief Rufiyanto, Sardjono Trihatmo, Budi Sulistya,
Erik Madyo Putro and Subana Shanmuganathan

Abstract International Rubber Study Group report in [1] points out that the world
natural rubber consumption continues to increase at an average of 9 per cent per
year. Especially, the demands of natural rubber tire industry in developed countries
such as the USA, Germany, China and Japan have increased steadily. Tropical
countries, such as Indonesia, Malaysia, Thailand and Vietnam, members of the
Association of Natural Rubber Producing Countries (ANRPC) accounted for about
92 per cent of the global production of natural rubber in 2010. The market price of
natural rubber fluctuates reflecting the variations in supply capacity of these pro-
duction countries. Therefore, knowledge on the natural rubber supply from these
countries is significant in order to have an accurate pricing model of natural rubbers.
Moreover, the supply of natural rubber is determined by the climatic conditions in
these countries. Rubber trees grow and produce best in warm with an ideal tem-
perature between 21–35 oC, an annual rainfall of 200-300 cm and moistly condi-
tions. In this context, the chapter looks at the dependencies of natural rubber market
price especially, the climatic conditions in the production countries, and derives at a
natural rubber pricing model to provide farmer information regarding the prediction
of market price using an artificial neural network (ANN) based prediction approach.
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1 Introduction

Based on data relating to natural rubber production and consumption in 2013 [2],
there were six countries in the world that produced about 92 % of the global natural
rubber requirement. In some of these natural rubber producing countries natural
rubber production is less than they really need. These countries still need to import
natural rubber from other producing countries. China produced 856,000 tons of
natural rubber in 2013, but China consumed around 4,150,000 tons natural rubber
(Table 1).

Rubber trees grow and produce the best in warm and moistly climate, i.e.,
temperatures between 21–35 oC with an annual rainfall of 200–300 cm. However,
the production capacity of natural rubber fluctuates with the rubber seed type, age
of the rubber tree and the rubber processing method used.

Furthermore, of the world’s natural rubber producing countries, Thailand has a
production capacity of 34 %, Indonesia 30 % and Malaysia 12 %. Nevertheless, the
biggest harvesting area for national rubber is in Indonesia, approximately
3.4 million Ha, but the natural rubber (NR) production of Indonesia is approxi-
mately lower than that of Thailand. In Thailand the production capacity is 1.5 times
higher than that of Indonesia. The productivity of rubber trees in Indonesia is
approximately 800 kg/Ha while in Thailand the productivity is approximately
1.7 ton/Ha. Two of the main causes for the low productivity of natural rubber in
Indonesia is the type of rubber seed and the most natural rubber trees in Indonesia
are already old. Replantation of natural rubber trees is necessary to boost the
productivity in Indonesia and other countries. China initiated replantation of natural
rubber a few years ago, in an attempt to meet its domestic supply.

Another aspect for the natural rubber price fluctuation is the global price of
natural rubber, which mainly follows from the supply demand condition in the
global market. The demand side fluctuates with the global economic conditions,
such as decreasing demand from the automotive industry due to economic crises.
The supply side is derived from the production parameter of natural rubber, such as
the climate change (temperature, precipitation), seed type, and age of rubber trees.

Table 1 Production and consumption of natural rubbers in NR-production countries [2]

No Country Production (1000 to ns) Consumption (1000 to ns) Surplus (1000 to ns)

1 Thailand 4014 519 3495

2 Indonesia 3180 603 2477

3 Vietnam 950 154 796

4 China 856 4150 -3294

5 Malaysia 820 456 364

424 R. Septiawan et al.



In this paper, the initial results of a study performed to investigate the
relation-ships between natural rubber price and its production environments are
elaborated. The parameters used to reflect the natural environment are: harvesting
areas, production capacity, temperature, precipitation, vapour and cloud. Climate
data is derived from [3], while production data is derived from [4].

2 Methodology

The main objective of this activity is to investigate the potential relationships
between environmental and climate parameter data with the production capacity of
NR-plantation, and the potential relationships between the production capacity of
NR-plantation and the market price of NR products. The indirect relationships
between environment and climate data and the market price of the NR products will
be derived thereafter.

A prediction system that can provide early information to farmers about the
possibility of market price fluctuations based on current or historical environmental
data is developed. Initially, using statistical regression techniques appropriate
dependent variables are selected. Then an ANN model in WEKA for predicting
possible price changes is investigated. WEKA stands for Waikato Environment for
Knowledge Analysis [5], which is open source software issued under GNU
License. Weka is a collection of machine learning algorithms developed for data
mining tasks. WEKA contains tools for ANN prediction and data visualization as
well.

Primary and secondary data regarding the climate parameters is necessary in
order to develop this Pricing Model related to Natural Rubber products. The
parameters needed for this model development are:

1. Data concerning primary and secondary dependent variable parameters of 5
NR-production countries, including temperature, precipitation, vapour, and
cloud coverage.

2. Data concerning primary and secondary parameters of production capacity of
five NR-production countries, including production capacity, harvesting area,
yield and market price of NR-products.

A conceptual system of a prediction/iterative model to analyze the effects of
climate change on the productivity of NR- products in Thailand, Indonesia,
Malaysia, Vietnam, India and China is derived from climate and productivity data.
The climate data is obtained from Tylle [3] and NOAA [6] and the productivity data
is obtained from FAO statistics and UNCTAD data [4, 7–10]. The prediction model
is based on macroclimate i.e., regional scale historical data spanning over a year.
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3 Natural Rubber (NR) and Synthetic Rubber (SR)

Rubbers are categorized into two types, namely natural rubbers (NRs) and synthetic
rubbers (SRs). Natural rubber is a naturally occurring substance obtained from the
exudations of certain tropical plants while synthetic rubber is artificially synthesized
from petrochemical products. Synthetic rubber (SR) attempts to take the place of
natural rubber (NR) since rubber is a significant commodity in our life. NR is
recognized to be more elastic, easy to process, can be formed with low heat and has
a high cracking resistance. Rubber is a polymer of isoprene units, which at normal
temperatures irregular in shape (called latex). With decrease in temperature the
rubber will inflate and restore its shape (elastic). Therefore, during the production
process, some anticoagulant (a solution of soda-Na2CO3), ammonia (NH3) and
sodium-sulfite (Na2SO3) are used to keep NR as a liquid before it is coagulated
using formic acid in order to form rubber sheets.

The types of natural rubber are [7] (Fig. 1):

1. Latex concentrates: made from freshly tapped field latex and uncoagulated. This
is the material obtained from the rubber tree Hevea brasiliensis

2. Dry/solid rubber: made from coagulated field latex rubber (rubber sheets, white
and pale crepes) or made from remilled rubber sheets. Sometimes the dry rubber
is visually graded in sheets or crepes and classified by instruments (block
rubber)

Natural rubber tapped from rubber trees will coagulate within a few hours after
tapping due to field coagulum agents. Farmers put additional preservatives in latex
such as ammonia to prevent the coagulation. Natural rubber has become an
important industrial polymer due to its advantages because of the following:

1. Physical resistance: excellent resilience, tear strength, abrasion resistance,
impact strength, cut growth resistance.

Elastomers

Natural Rubber (NR)

liquid form: latex

dry/solid form: sheet/ 
crepe rubber ...

Synthetic Rubber (SR)
Styrene Butadine 

(SBR)...

Fig. 1 Rubber product types: Synthetic Rubber and Natural Rubber [7]
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2. Environmental resistance: excellent water resistance, low temperature flexibility,
resistance to alcohols and acids

The limitations of natural rubber are poor ozone, sunlight, gasoline, and
hydrocarbon solvent resistance (Fig. 2).

Rubber trees grow and produce best in warm and moist climate between 21–
35 oC with an annual rainfall of 200–300 cm. Rubber trees can grow up to over 40
meters in the wild. However, when the tree is under cultivation it is not allowed to
grow higher than 25 m. A Rubber tree can last for over 100 years by nature.
However, it is usually replanted after 25–35 years, when latex yield decreases. The
production capacity of natural rubber fluctuates with the rubber seed type, age of
the rubber trees and the rubber processing. On the whole, in this paper the pro-
duction capacity relationship to the environment and climate data is investigated
and thereafter a pricing model related to the production capacity is derived.

Electromagnetic Chamber (EMC) in BPPT is used to investigate the difference
in microwave absorption capability between NR and SR samples from Center of
Material Technology in BPPT. The measurement testbed is given in Fig. 3.
The absorption capability of NR and SR is measured in the frequency range of
1–3 GHz generated by a signal generator and transmitted through a directional

Fig. 2 Natural Rubber plantation in Indonesia
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antenna as in Fig. 3. The received signal is measured by an Electromagnetic
Interference (EMI) receiver.

In the frequency range between 1–3 GHz, the absorption capability of NR and
SR samples is shown in Fig. 4. The absorption capability of NR is higher than the
SR sample especially in frequencies: 1.1820 GHz.

The climate data used in this paper is from [3] and earth monitoring station of
NOAA in Indonesia [6]. The parameters used are temperature, precipitation,
vaporation, and cloud cover. The temperature values are annual means related to the
difference between the minimum and maximum temperatures. The cloud cover is
given in the percentage of annual cloud cover. The precipitation is given in the total
precipitation in milimetres, while the vapour pressure is given in hecta-Pascals.

The temperature of NR-producing countries are relatively warm and moistly
with climate in the range of 21–35 oC, except China which has temperatures lower
than the ideal climate to grow rubber tree around 8o Celsius (see Fig. 5).

Fig. 3 Testbed of microwave absorption capability of NR and SR in EMC lab of BPPT

Fig. 4 Microwave absorption capability of NR compared to SR between 1 GHz and 3 GHz
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The precipitation of NR-producing countries are relatively below, the ideal
values of precipitation are between 200–300 cm except for Indonesia and Malaysia,
which have a precipitation value in the range of ideal values of precipitation for
rubber trees. Thailand, Vietnam, India and China have precipitation values lower
than the ideal value (see Fig. 6).

In addition, the cloud coverage parameter is considered. Most NR production
countries ha values in between 50 and 70 % cloud coverage. Except India which
has the lowest cloud coverage (40 %). Malaysia has the highest cloud coverage
around 70 % (see Fig. 7).

Fig. 5 Annual temperatures of NR-production countries

Fig. 6 Annual precipitation of NR-production countries
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The vapour level of most NR-production countries is between 24 to 27 Hpa,
only India and China have vapouration values below 20 Hpa. India has vapour
values around 20 Hpa and China has vapour values below 10 Hpa (Fig. 8).

The above climate data is used as dynamic values for the production and pricing
model.

Fig. 7 Annual cloud coverage of NR-production countries

Fig. 8 Annual vapour values of NR-production countries
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4 Production Data and Price

During the last decade there has been a change in the estate involvement in Natural
Rubber (NR) industry. In order to assure natural rubber supply, there has been an
increase in smallholder farmer (who owns less than 2–3 ha rubber trees area)
involvement in the NR industry. The smallholding NR production of the world
increased by an annual rate of approximately 3 % from 5270 thousands of tons in
1998 and 6310 thousands of tons in 2003 [11].

There has been a change of productivity during the last decade. For instance, in
the 1990s the Indonesian productivity was 680 kg/Ha for smallholdings, the
Thailand Productivity was between 500–800 kg/Ha for smallholdings and
900 kg/Ha in Estates. In 2013, the productivity of rubber trees in Indonesia was
approximately 800 kg/Ha. In contrary, Thailand has increased its productivity to
approximately 1.7 tons/Ha in 2013 [11] (Table 2).

Indonesia has a NR harvested area approximately 3.5 million Ha, of which 85 %
is smallholdings and the majority of the trees are older than 30 years. Therefore, the
NR productivity of Indonesia is lower than that of Thailand. The global price of NR
was USD 4.6/kg in 2011 and it dropped to USD 1.5/kg in 2015. The NR price
keeps decreasing because of higher NR supply in the global market. When the NR
price was high in 2011, most of the International Rubber Council members
increased their NR production. Beginning in 2013 the NR market experienced an
oversupply hence, the price began to decrease.

In the Fig. 9 the production capacity of NR-countries is given. The figure shows a
high increase of production in Thailand, while a moderate increase of production in
other countries such as Indonesia, China, India and Vietnam. Malaysian production
capacity decreased until the end of 1999 but then began to increase by year 2000.

If we consider the harvesting area of each country as given in Fig. 10, the
harvesting area is getting higher in Indonesia and Thailand, but in the other

Table 2 NR Costs structure
(in 1990s, cents/kg) [11]

Indonesia Thailand

Smallholdings Smallholdings

Yields (kg/ha) 680 800

Direct costs
Management and labour: 44.9 18.5

Materials:

Tapping and collection 3.7 2.5

Fertilizers -

Weedicides 6.3 6.5

Pest control -

Other 1.8 3.3

Transportation: 2.0 2.3

Capital costs
Planting investments 14.6 20.6
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countries harvesting areas remain constant or even getting lesser as in Malaysia.
The harvesting area in Malaysia is converted into some palm plantation.

Polynomial Regression
In order to investigate the trend of production capacity, harvest area and yield
(kg/Ha) of each NR-production country, the following polynomial regression model
is used:

y ¼ a0 þ a1xi þ a2x3i þ � � � þ amxmi þ ei;
i ¼ 1; 2; . . .; n

With εi is the remaining error, and in this paper the coefficient of determination
(R2 of R squared) is used to measure how well the data fits the polynomial model in
order to predict the future outcomes and for testing hypotheses. It provides a

Fig. 9 Productivity of NR in 6 countries

Fig. 10 Harvested area in NR-production countries
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standard of measurement on how well the observed outcomes are replicated by the
model especially, the proportion of total variation within the outcomes explained by
the model. The coefficient of determination ranges from 0 to 1. The better the
regression fits the data in comparison, the closer the value of R2 to 1. In addition, a
correlation value is used to tell how different parameters are related to each other,
with values between −1 and 1, where 0 is no relation, and 1 is a very strong
relationship. Square roots are used to have more influence of the extreme values on
the results.

Figure 11 shows the trend of yield ratio (kg/ha) coverage in NR-production
countries.

The trend of Thailand yield ratio is:

y ¼ 2E � 08x6 � 3E � 06x5 þ 0; 0001x4 � 0; 0027x3 þ 0; 0266x2

� 0; 1087x þ 0; 5

with the R square value of R2 = 0,9919.
The trend of Indonesia yield ratio is:

y ¼ �8E � 07x4 þ 5E � 05x3 � 0; 0008x2 þ 0; 0064x þ 0; 5008

with the R square value of R2 = 0,9231
In addition, the relationship between the environmental, climate data and the

productivity of natural rubber based on annually production data in Thailand and
Indonesia during year 1961–2000 is given in Table 3. The R square is better if it is
close to value of 1, while the value of significance_F is better if it is less than 0.05
(similar to value of P).

The environment and climate data is more significant in Indonesia for the pro-
duction capacity of natural rubber (significance F is 1.69E-09) when compared with
that of Thailand (significance F is 0.004442). The Rsquare values is 0.72854 for

Fig. 11 Yield Ratio in NR-production countries
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Indonesia in which the temperature parameter is seen to be the most significant
climate parameter related to the production capacity of natural rubber followed by
the precipitation level of rainfall. While in Thailand the vapour level is seen to be
the most significant parameter.

Furthermore, the prices of natural rubber in Thailand and Indonesia are observed
in relation to the environment and climate data (Table 4). The price of NR in
Thailand varies less with the changes in the independent data (significance
F-0.295101) except for the precipitation (p-value 0.063328), while the price of NR
in Indonesia varies more with the changes in the independent data (significance F
0.086096) especially the vapour (p-value 0.033284) and precipitation (p-value is
0.097408).

Furthermore, the relationship of the price and the productivity of the six Natural
Rubber production countries is given in Table 5.

Table 5 shows that natural rubber price in Thailand and Indonesia relies sig-
nificantly on the other NR-production countries (significance F value is
4,32853E-07 and 4.30769E-09 respectively). Interestingly Indonesian NR-price
relates more to the Malaysian NR-production capacity, while Thailand NR-price
relates more to Indonesian and China NR-production capacities.

The regression line for Thailand NR-price in relation to the Production capacities
of other NR-countries is given as follow.

PrThai ¼ 0:00017 � ProdThai þ 0:00030 � ProdInd þ 0:00037 � ProdMal

þ 0:00034 � ProdViet þ 0:00059 � ProdCHina

Table 3 Productivity varies
by Environment Climate Data

Thailand Indonesia

R Square 0.343487 0.72854

Observations 40 40

significance_F 0.004442 1.69E-09
P_value_Temp 0.126025 7.39E-06
P_Value_Pre 0.611101 0.034334

P_Value_cld 0.682699 0.05754

P_Value_Vap 0.089082 0.202731

Table 4 Price varies by
environment climate data

Thailand Indonesia

R Square 0.569235 0.754618

Observations 10 10

significance_F 0.295101 0.086096
P_value_Temp 0.929699 0.226642

P_Value_Pre 0.063328 0.097048
P_Value_cld 0.215085 0.281241

P_Value_Vap 0.7577 0.033284
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Based on this analysis the pricing model derived using statistical regression and
ANN (in WEKA) show promise. Thailand’s NR-production capacity is related
more to the vapourisation values of the climate data in Thailand. Furthermore
Thailand’s NR-price is related more to the precipitation values within Thailand
climate data and production capacity of Indonesia and China. In ANN results, the
NR-price in Thailand is derived from these parameters using Multilayer perceptron.
The results is given in Appendix A.

The correlation coefficient is about 99.93 % with the Root mean squared error of
9.542 and mean absolute error of 6.1406, with the best selected attributes being
precipitation and vapourisation within Thailand climate data (Fig. 12).

Furthermore, additional parameters were considered to improve the performance
of prediction of Thailand NR-price. The results are given in Appendix B. The use of
more parameters in prediction of Thailand NR-price provides a better result espe-
cially, the improvement is by 103 in error values (see Table 6).

Furthermore, Indonesia’s NR-production capacity is more related to the tem-
perature within the country’s climate data. Indonesia’s NR-price is more related to
the precipitation and vapourisation within the country’s climate data and the pro-
duction capacity of Malaysia. Form the ANN results (WEKA), the NR-price in
Indonesia was derived from these parameters using a Multilayer perceptron. The
results are given in Appendix C (Fig. 13).

Furthermore, additional parameters were considered to improve the performance
in the prediction of Indonesian NR-price. The results are given in Appendix D.

The use of more parameters in the prediction of Indonesian NR-price provides a
better result especially the improvement is by 103 in error values (Table 7).

Table 5 Price Prediction
varies by Production Capacity
of NR-production countries

Indonesia Thailand

R Square 0.937876227 0.888469505

Observations 22 22

significance_F 4.30769E-09 4.32853E-07
Coefficient_Thai_Prod −0.000172368 −0.00165138

Coefficient_Ind_Prod 0.000305791 0.002254715

Coefficient_Mal_Prod 0.000374071 0.00025635

Coefficient_Viet_Prod 0.000343564 −0.001119253

Coefficient_China_Prod 0.000593683 0.006153726

P_Value_Thai_Prod 0.104570761 0.005929221
P_Value_Ind_Prod 0.062850698 0.011934348
P_Value_Mal_Prod 0.082306757 0.81007049

P_Value_Viet_Prod 0.426965085 0.616490397

P_Value_China_Prod 0.231043334 0.024535483
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Fig. 12 Relationship of Thailand NR-price, Thailand climate data and NR-production countries

Table 6 Coefficient of
significance using 6 and 11
parameters of environmental
climate data and productivity
data related to Thailand
NR-price

Thailand NR-Price 6 parameters 11 parameters

Correlation coefficient 0.99930 1.00000

Mean absolute error 6.14060 0.00720

Root mean squared error 9.54200 0.01020

Relative absolute error 3.0767 % 0.0036 %

Root relative squared error 3.8935 % 0.0042 %
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5 Conclusion

It is shown that the price of NR in a NR-producing country is related to its own
productivity and other countries productivities as well. The relationships are
specified in the corresponding coefficients in the respective regression equations
and the corresponding weights of the ANN prediction model. The higher the

Fig. 13 Relationship between Indonesian NR-price and its climate data in

Tabel 7 Coefficient of
significance using 6 and 11
parameters of environmental
climate data and productivity
data related to Indonesian
NR-price

Indonesian NR-price 6 parameters 11 parameters

Correlation coefficient 0.99700 1.00000

Mean absolute error 3.67650 0.07420

Root mean squared error 5.90550 0.08350

Relative absolute error 7.6992 % 0.1554 %

Root relative squared error 9.2210 % 0.1303 %
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coefficients the more the significance in the influence of the country’s productivity
and the price of NR in that country.

Furthermore, the production capacity of each country is related to the environ-
ment and climate in that country. The relationships between production capacity
and environment as well as climate vary among countries. In Thailand, the most
significant independent parameters related to the production capacity are;
vapourisation and precipitation. Meanwhile, the NR-price in Thailand is mostly
related to the production capacity of Indonesia and China. The pricing model is
useful when identifying the potential competitors, for example, NR production
capacities in Indonesia and China influence the NR-price in Thailand and the
influence is more than that of NR-production capacity in Malaysia. In addition,
information regarding the most significant climate variable in the NR-productivity
in a country indicates the robustness of NR-trees and plantation in that country. The
lower the significance exerted by a climate variable the more the robustness of the
NR-tree plantation to the changes in the climate variable.

Appendix A: WEKA Run Data and Result

=== Run information ===
Scheme:weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Attributes:   6

Thai_Pre 
Thai_Vap
Thai_Prod 
Thai_Price 
Ind_Prod
China_Prod

Test mode:evaluate on training data
=== Classifier model (full training set) ===
Linear Node 0

Inputs    Weights
Threshold    1.749902301630781
Node 1    -2.4013997901314834
Node 2    -3.5162050764531148
Node 3    0.06081154842183814

Sigmoid Node 1
Inputs    Weights
Threshold    0.5236236579674346
Attrib Thai_Pre    -1.8415687438970416

    Attrib Thai_Vap    -1.387438278729828
Attrib Thai_Prod    -0.3276634761924621
Attrib Ind_Prod    0.6024382775884405

    Attrib China_Prod    -2.4850489513900356
Sigmoid Node 2

Inputs    Weights
Threshold    -3.9635874842464256
Attrib Thai_Pre    0.3167431758460005
Attrib Thai_Vap    1.3769004172430026
Attrib Thai_Prod    1.461297417788155
Attrib Ind_Prod    0.09336331236180025
Attrib China_Prod    3.09311785098321

Sigmoid Node 3
Inputs    Weights
Threshold    -0.8457331231854387
Attrib Thai_Pre    -0.8010123058348094

    Attrib Thai_Vap    -0.19957764103345418
Attrib Thai_Prod    -0.5981736564609482
Attrib Ind_Prod    -0.5373350160373417

    Attrib China_Prod    -0.18433659889855544
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Appendix B: WEKA Run Data and Result

=== Run information ===
Scheme:weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Attributes:   11

Thai_Pre 
Thai_Vap
Thai_Prod
Thai_Price 
Ind_Prod
China_Prod
Thai_Temp
Thai_cld
Mal_Prod 
Viet_Prod 
India_Prod

Test mode:evaluate on training data
=== Classifier model (full training set) ===
Linear Node 0

Inputs    Weights
Threshold    1.9138957757497645
Node 1    -1.6452064793932293
Node 2    -0.9392051406150806
Node 3    -1.693330715713067
Node 4    -0.2924948895574329
Node 5    -1.2750101529740436

Sigmoid Node 1
Inputs    Weights
Threshold    0.10261401652715471
Attrib Thai_Pre    -0.3706483151649728
Attrib Thai_Vap    0.3079386208779187
Attrib Thai_Prod    -0.19909232245824043
Attrib Ind_Prod    -0.10101365603842809

    Attrib China_Prod    -0.7501478450595847
Attrib Thai_Temp    -0.022826674663922665
Attrib Thai_cld    0.41677330152507075
Attrib Mal_Prod    -1.2185659909573794
Attrib Viet_Prod    1.1115351280851677
Attrib India_Prod    0.1013896275120634

Sigmoid Node 2
Inputs    Weights
Threshold    -0.27725269461675683
Attrib Thai_Pre    -0.5219136736012591
Attrib Thai_Vap    0.11568300116923473
Attrib Thai_Prod    -0.34502069652616585
Attrib Ind_Prod    -0.1660373873786111

    Attrib China_Prod    -0.7089527729826143
Attrib Thai_Temp    0.2563604970526755
Attrib Thai_cld    -0.044679662376493186
Attrib Mal_Prod    -0.5905218969564233
Attrib Viet_Prod    0.5167595904466141

    Attrib India_Prod    -0.21709496110404175
Sigmoid Node 3

Inputs    Weights
Threshold    0.18994896844661185
Attrib Thai_Pre    -0.36152949612739
Attrib Thai_Vap    0.23915007114901676
Attrib Thai_Prod    -0.2041082472011238
Attrib Ind_Prod    -0.01317691718789573

    Attrib China_Prod    -0.8876609081714663
Attrib Thai_Temp    -0.0521448217271642
Attrib Thai_cld    0.2717446217766461
Attrib Mal_Prod    -1.216021421164287
Attrib Viet_Prod    1.170050420024951
Attrib India_Prod    0.03616020356150899

Sigmoid Node 4
Inputs    Weights
Threshold    -0.6186530548104157
Attrib Thai_Pre    -0.342263287342173
Attrib Thai_Vap    0.17778395806416508
Attrib Thai_Prod    -0.185248136427864
Attrib Ind_Prod    -0.206559041979244
Attrib China_Prod    -0.2197511842802674
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Appendix C: WEKA Run Data and Result

Attrib Thai_Temp    0.3818885339740087
Attrib Thai_cld    0.12924991668705613
Attrib Mal_Prod    -0.1266407071166203
Attrib Viet_Prod    0.3356237616116768
Attrib India_Prod    0.01109119333972902

Sigmoid Node 5
Inputs    Weights
Threshold    -0.12921596947624328
Attrib Thai_Pre    -0.7577985615146368

    Attrib Thai_Vap    -0.06868575732703393
Attrib Thai_Prod    -0.6182231637754222
Attrib Ind_Prod    -0.251095203414586

    Attrib China_Prod    -1.0610622695111707
Attrib Thai_Temp    -0.018400445427221933
Attrib Thai_cld    -0.09345302657090276
Attrib Mal_Prod    -0.5617194399754916
Attrib Viet_Prod    0.3449369784930535

    Attrib India_Prod    -0.4754360443333911

=== Run information ===
Scheme:weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Attributes:   6

Ind_Pre
Ind_Vap
Ind_Temp
Ind_Prod
Ind_Price
Mal_Prod 

=== Classifier model (full training set) ===
Linear Node 0

Inputs    Weights
Threshold    -2.02235331049152
Node 1    2.4809061645508796
Node 2    -0.13654828302806996
Node 3    1.8841614129059234

Sigmoid Node 1
Inputs    Weights
Threshold    0.34106473198010806

    Attrib Ind_Pre    -0.18777061222657074
    Attrib Ind_Vap    -0.6047803356302281

Attrib Ind_Temp    -1.3125870419669445
    Attrib Ind_Prod  1.3976929605351807

Attrib Mal_Prod    2.1265815725425137
Sigmoid Node 2

Inputs    Weights
Threshold    -0.689717384941266

    Attrib Ind_Pre    -0.20693673657319617
Attrib Ind_Vap    0.18349079473081775
Attrib Ind_Temp    0.07607980536693383
Attrib Ind_Prod    -0.18131622948707016
Attrib Mal_Prod    0.24775362765881342

Sigmoid Node 3
Inputs    Weights
Threshold    -1.6721322027039116
Attrib Ind_Pre    1.3272990265105595
Attrib Ind_Vap    1.661845752213534
Attrib Ind_Temp    -0.010500786990556022
Attrib Ind_Prod    -0.30691946961240074
Attrib Mal_Prod    1.8278096406392794
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Appendix D: WEKA Run Data and Result

=== Run information ===
Scheme:weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Attributes:   11

Ind_Pre
Ind_Vap
Ind_Temp
Ind_Prod
Ind_Price
Thai_Prod
Ind_cld
Mal_Prod 
Viet_Prod 
China_Prod
India_Prod

=== Classifier model (full training set) ===
Linear Node 0

Inputs    Weights
Threshold    -0.6513225543454542
Node 1    1.1341620537033892
Node 2    0.7100565252747373 
Node 3    -1.8428244625217802
Node 4    0.15735546322323843
Node 5    0.8449830639796779

Sigmoid Node 1
Inputs    Weights
Threshold    -0.16855868151638012
Attrib Ind_Pre    0.23486987830478206
Attrib Ind_Vap    0.0076257946352456234
Attrib Ind_Temp    -0.37150298477277954
Attrib Ind_Prod    -0.16708931970590685
Attrib Thai_Prod    0.5223904427589126
Attrib Ind_cld    0.31660664077245154
Attrib Mal_Prod    0.381185526330691

    Attrib Viet_Prod    -0.7246949102508935
Attrib China_Prod    0.5263371860286197

    Attrib India_Prod    -0.21326265437105965
Sigmoid Node 2

Inputs    Weights
Threshold    -0.4732383000987289
Attrib Ind_Pre    0.3060357521447042
Attrib Ind_Vap    0.3213220198702666
Attrib Ind_Temp    -0.1241555049673523
Attrib Ind_Prod    -0.1863697704782177
Attrib Thai_Prod    0.22790124048102864
Attrib Ind_cld    0.27337097072653005
Attrib Mal_Prod    0.161581936977685
Attrib Viet_Prod    -0.340007212517958
Attrib China_Prod    0.4092507836225177

    Attrib India_Prod    -0.12241711652997499
Sigmoid Node 3

Inputs    Weights
Threshold    -0.8360763192281531
Attrib Ind_Pre    0.4278974745390614

    Attrib Ind_Vap    0.4788776090293571
Attrib Ind_Temp    1.3899457822502905
Attrib Ind_Prod    0.30332159568932826
Attrib Thai_Prod    -0.5224153744397598
Attrib Ind_cld    0.027180794016561517
Attrib Mal_Prod    -0.8766581275217855
Attrib Viet_Prod    0.9071280468671425

    Attrib China_Prod    -0.2934209766250628
Attrib India_Prod    0.6792461840043068

Sigmoid Node 4
Inputs    Weights
Threshold    -0.4761430261598761

    Attrib Ind_Pre    -0.0044173148824384195
Attrib Ind_Vap    0.1402459988780109
Attrib Ind_Temp    -0.09251126926640348
Attrib Ind_Prod    -0.09309501276609462
Attrib Thai_Prod    0.06156634301797498
Attrib Ind_cld    0.20517104957525495
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A Hybrid Artificial Neural Network
(ANN) Approach to Spatial
and Non-spatial Attribute Data Mining:
A Case Study Experience

Subana Shanmuganathan

Abstract A hybrid artificial neural network (ANN) approach consisting of
self-organising map (SOM) and machine learning techniques (top-down induction
decision tree/TDIDT) to characterising land areas of interest is investigated using
New Zealand’s grape wine regions as a case study. The SOM technique is used for
clustering map image pixels meanwhile, the TDIDT is used for extracting knowl-
edge from SOM cluster membership. The contemporary methods used for such
integrated analysis of both spatial and non-spatial data incorporated into a geo-
graphical information system (GIS), are summarised. Recent approaches to char-
acterise wine regions (viticulture zoning) are based on either a single or composite
(multi-attribute) index, formulated generally using digital data (vector and raster)
representing the variability in environmental and viticulture related factors(wine
label ratings and price range) over different spatial and temporal scales. Meanwhile,
the world’s current wine regions, already well-developed, were initially articulated
based on either grapevine growth phenology (growing degree days/GDD, frost
days, average/minimum temperature, berry ripening temperature range) or wine
style/rating/taste attributes. For both approaches, comprehensive knowledge on
local viticulture, land area, wine quality and taste attributes is a sine qua non. It
makes the characterisation of newworld vineyards or new sites (potential vine-
yards), with insufficient knowledge on local viticulture/environment an impossible
task. For such instances and in other similar not so well-known domains, the
SOM-TDIDT approach provides a means to select ideal features (discerning attri-
butes) for characterising, in this case, within New Zealand’s wine regions or even
within vineyards also scientifically validating the currently used factors regardless
of present day scale and resolution related issues.
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1 Introduction

A hybrid artificial neural network (ANN) approach to data mining spatial and
non-spatial attributes using information from disparate digital data sources incorpo-
rated into a GIS for visualising spatial patterns, correlations and trends in the data is
becoming widespread in many application domains. For example, historic census [1],
healthcare [2, 3] and socio-economics [4] are some of the disciplines and the pub-
lications demonstrated how such an integrated analysis of spatial and non-spatial data
had aided the researchers in understanding the influences of many complex issues
relating to the chosen topic in a spatial context. The major functions that enhance
such integrated analysis of multiple attribute data in a spatial context within a GIS
environment, are summarised. Subsequently, contemporary methodologies used for
characterising the wine regions of some old as well as new world wine producing
countries are outlined. The methodology section describes the hybrid ANN approach,
consisting of SOM clustering and machine learning i.e., top-down induction decision
tree/TDIDT knowledge extraction methods, investigated in this research. The interim
results of this work demonstrate how the SOM-TDIDT approach could be applied to
analysing spatial and non-spatial attribute data (on land related factors) at different
spatial scales. The approach is especially useful when analysing issues in less known
problem domains i.e., zoning/characterising of some wider implications of certain
observed/potential change, i.e., climate change, for decision-making purposes on
potential future change scenarios without the need for high resolution satellite ima-
gery as required in contemporary approaches.

1.1 Integrated Analysis of Spatial and Non-spatial
Attributes

Both simple and complex spatial data analysis methods are efficient when there is
sufficient knowledge in the problem domain as well as the options/solutions being
considered. Such methods do not facilitate an explorative analysis of multi-sourced
spatial data sets hence, new approaches are urgently required to analyse high
volume data in less known problem domains i.e., land areas, to learn about their
suitability for different purposes, such as, new vineyard site selection, resources
management. The commonly used simple methods applied to integrated analysis of
spatial attribute data can be grouped into four main categories and they are:
(1) retrieval/classification/measurement, (2) overlay, (3) neighbourhood, and
(4) connectivity of network functions [5, 6]. It then appears, contemporary GIS and
their functions enable the integration, manipulation, visualisation and analysis of
geo-coded data with ease. They enable analysts to pre-process digital map layers
that consist of attribute data on various landscape features, observations and
measurements. However, they do not enable the explorative analysis of spatial data
at different resolutions and formats i.e., vector and raster.
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1.2 Artificial Neural Networks (ANNs) and Their
Applications

ANNs are biologically inspired approaches to incorporating heuristics into con-
ventional algorithmic computing. The latter needs a clear understanding of the
problem addressed and the solutions considered to resolving the problem. Hence,
many of real world problems, such as image/character/pattern recognition, cannot
be solved using algorithmic computing approaches. In an attempt to overcome the
conventional computing issues, W S McCulloch and W Pitts first introduced a
mathematical model of a neuron in 1943 [7]. They continued their work and
explored network paradigms for pattern recognition despite rotation angle, trans-
lation, and scale factor issues. Most of their work involved simple neuron models
and these neural network systems were generally referred to as perceptrons (for
more details see Chap. 1).

ANNs are sometimes described as a collection of mathematical techniques that
can be used for signal processing, forecasting, and clustering. Based on this
explanation they are referred as non-linear, multi-layered, parallel regression
techniques [8]. ANN modelling is like fitting a line, plane or hyper plane through a
set of data points. A line, plane or hyper plane can be fitted through any data set to
define relationships that may exist between (what the user chooses to be) the inputs
and the outputs; or it can be fitted for identifying a representation of the data on a
smaller scale. The human brain is much more complicated and many of its cog-
nitive functions are still unknown and unlikely to be discovered in the near future.
However, the following are the main characteristics considered as common func-
tions in real and artificial networks: 1. Learning and adaptation, 2. Generalisation, 3.
Massive parallelism, 4. Robustness, 5. Associative storage of information, and
finally 6. Spatiotemporal information processing. ANNs are generally defined using
four parameters and they are: (1) type of neuron, ANN architecture, learning, and
recall algorithms and see Chap. 1 for more details on ANN components.

Intrigued by the potentials of ANNs, professionals from almost all fields are
finding methods by way of creating new hybrid models of possible combinations of
symbolic and subsymbolic paradigms (Artificial Intelligence, Expert Systems),
many of them with Fuzzy techniques and conventional, i.e., statistical, to suit a
variety of applications within their own disciplines.

1.3 Self-organising Maps (SOMs)

A SOM is a two-layered feed-forward artificial neural network. It uses an unsu-
pervised learning algorithm to perform non-linear non-parametric regression. Using
a process called self-organisation, the network configures itself in such a way that
the output layer gradually evolves into a display of topology preserving represen-
tation of the input data. In this output display, similar data are clustered near each
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other (Fig. 3). The topology preserving mapping of the SOM algorithm is useful in
projecting multi-dimensional data sets onto low, usually one- or two- dimensional
planes. Thus, SOM displays can be used for clustering and visualisation of
multi-dimensional data sets that are difficult to analyse using conventional i.e.,
statistical, methods [9, 10].

1.4 Clustering in Spatial Data Mining

Increasingly, new algorithms are being introduced for clustering spatial data to
optimise the efficiency of the clustering process [11]. The problem domains recently
being investigated in the spatial data analysis include; improving cluster quality in
large volumes of high dimensional data sets [12], noise removal [13], uncertainty,
data pre-processing and reduction of running time consumed [14].

1.5 Top-Down Induction Decision Tree (TDIDT)

TDIDT algorithm is considered to be a powerful tool for extracting data classifi-
cation rules from decision trees since the mid-1960s. The TDIDT algorithm has
formed the basis for many classification systems, such as, Iterative Dichotomiser 3
(ID3) and C4.5 (statistical classifier), the latter is an extension to the ID3. Decision
rules can be transformed into a form of a decision tree using TDIDT methods by
repeatedly splitting the values of attributes also referred to as recursive partitioning.
The TDIDT algorithm (Fig. 1) is based on a set of instances used for training. Each
instance can be described by the values of a set of categorical attributes relating to a
member of a universe of objects. With that introduction to spatial data analysis and
clustering, the next section looks at a few major approaches to characterising and
zoning methods adopted in viticulture in the old world (France, Spain, Italy,
Germany, Portugal, Austria, Greece, Lebanon, Israel, Croatia, Georgia, Romania,

IF all the instances in the training set belong to the same class

THEN return the value of the class

ELSE 

(a) Select an attribute A to split on+

(b) Sort the instances in the training set into subsets, one

for each value of attribute A

(c) Return a tree with one branch for each non-empty subset,

each branch having a descendant subtree or a class

value produced by applying the algorithm recursively

+ Never select an attribute twice in the same branch

Fig. 1 The basic TDIDT Algorithm [15], p. 48
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Hungary and Switzerland) and the more recent new world (U.S., New Zealand,
Argentina, Chile, Australia and South Africa) wine producing countries.

2 Viticulture Characterising and Zoning

The empirical studies from literature on this very topic and related themes reveal
that the majority of the traditional viticulture zoning systems still in use relate to a
“French notion” of the 19th century’s terroir concept, which is believed to have
originated from Latin many centuries ago. The zoning systems of some generally
referred to as old world countries, were initially introduced solely to regulate the
wine industry especially, to protect winemaker livelihood in already then estab-
lished wine regions. These old systems and their derivatives portray significantly
less reference to geography. However, in the current context, many different
environmental factors are used to zoning a wine region to manage a nation’s
vineyards, wineries and the production of different wine styles labelled based on
their aroma, flavour, taste compounds and vintage (wine of a particular season’s
yield from a particular vineyard). Both vineyard zoning and wine labelling are
useful when implementing regulatory measures over wine marketing strategies with
designated origins controlled by the respective state institutions, as well as in some
instances for irrigation and other natural resources management purposes [16].

2.1 Viticulture Zoning Approaches

The simplest viticulture zoning approach could be developed with a single
factor/attribute based on its spatial distribution [17]. However, the various
approaches in use vary based on how they aggregate/disaggregate spatial data to
match the demarcating registration boundaries. In general, a demarcating approach
involves the assigning of a boundary to a single pre-existing quantifiable variable
with historically or customarily accepted spatial distribution. The spatial distribu-
tion data of a variable representing any one particular aspect such as, climate,
grapevine or wine style/vintage quality, and the respective boundaries at which
spatial distribution data of different variables are available. Hence, in more complex
approaches with multiple factors, the task of assigning spatial distribution data to
the zoning boundaries becomes confound. In the meantime, many describe the
well-known French notion terroir as a commonsense approach. The terroir concept
is explained as an attempt to convey semi-mystical group of forces of an area that
produced the wine as special and linking it to that region and its local attributes,
such as atmospheric, environmental and cultural moreover, the wine making
practices [18].

Australia has a modern “three tier system” to define its wine regions. In this
system, on the op is the “state”, then mid-way through “zone” and finally at the
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bottom “region”. In some cases, in addition to the three tiers there are sub-regions
defined by the Wine and Brandy Corporation’s Geographical Indications Committee
(GIC) to further subdivide the bottom tier. For instance, Australia’s Adelaide Hills
wine region within the Southern part of the country’s Lofty zone, has two sub
regions, namely, Piccadilly Valley and Lenswood. Similarly, High Eden is defined
as a sub region of the Barossa Valley. Interestingly, a new region only declared in
1997 consisting of roughly an area of 15 by 30 km stretch with 6,800 hectares of
vineyards, got sub regions within it. Even though GIC has not officially declared any
sub regions as such, there are six of them defined unofficially and they are; Seaview,
Willunga Plains, Sellicks Foothills, McLaren Flat, McLaren, Vale/Tatachilla and
finally Blewitt Springs. Winemakers use the sub regions to describe vineyard blocks
based on the difference in a single factor and that is: the temperature experienced
during grape berry ripening season. Some describe the approach as a marketing ploy
to capitalise on the areas that have already established popularity. It enables the
McLaren’s less known producers to charge higher prices, which could in turn be
reinvested to improving vineyards as the region has a higher price expectation. In
fact, within this region, Tatachilla is stated to be a good area [19].

In [20] the authors elaborated on Cabernet Sauvignon phenology from obser-
vations of cropping and fruit characteristics at six vineyard sites in Hawke’s Bay
(New Zealand). The study was based on observations made over three seasons from
which a numerical model was developed to characterise the environmental condi-
tions of a vineyard site. The variables used in that model were; air temperature in
October and January, seasonal rainfall, rooting depth, and gravel percentage as well
as clay-to-silt ratio in topsoil. A “site index” or “SI” calculated using the variables
stated above was described to be significantly correlated with soil temperature and
volumetric soil moisture content, the latter in turn described to be closely linked to
clay-to-silt ratio, air temperature and rainfall. Similarly, vegetative growth, canopy
characteristics, precocity of veraison, total anthocyanins, total soluble solids
(TSS) and malic acid concentrations in grapes were found to be significantly cor-
related with SI values in the six sites over two seasons. The study concluded SI
correlations between particular viticulture variables to be stronger with five climatic
indices for the sites studied and described the SI index as a potential gauge for use
in vineyard zoning and site selection evaluation processes.

In [21] a vineyard register called VINGIS was developed using the following
four sets of variables:

• Agrometeorology (frequency of winter frost damage, spring, fall frost damage),
• Soil (Soil type, Soil forming rock, pH and lime state, physical soil kind, water

management features, Humus level, thickness of the production layer of soil.
The area’s homogeneity concerning the soil type),

• Water management (water management of the area based on site observation),
degree of erosion,

• The lie of the land, elevation (slope degree and aspect, elevation above sea level
on hill and mountainside, emergence from the environment on the plain and flat
areas, relief, area surface on hill and mountainside, relief, area surface on plain
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and flat areas, environment proximity of woods, degree of built-up areas), area
utilization, road conditions.

The highly complex models of viticulture zoning so far developed basically have
attempted to use multiple key variables at the meso or micro scale and these models
could be classified into two major approaches and they are:

• formulate a complex index by adding appropriately weighted vital factors
considered as most contributory to grapevine growth and berry ripening. Such
highly complex models seem to have built to deal with meso scale data projected
onto a national map.

• Study the correlation between selected key variables and most of them at the
micro scale (precision viticulture) within a vineyard and projected onto a
national map are discussed.

“Precision viticulture”, is a refined domain that uses highly advanced tech-
nologies to process satellite imagery at multiple resolutions as used in other
domains, such as urban planning [22]. The major constraint encountered when
incorporating GIS data into precision viticulture systems is that finding processes to
aggregate spatial information where resolution and precision are not the same and
in most of the cases geostatistics and kriging techniques are used to transform all
the data into grids of manageable size. This allows for classical analysis or queries
applied to the data in different layers as in [23]. The authors of that study modelled
the correlations between spatial variability in vigour, elevation, sugar content and
soil resistivity using heterogeneous precision viticulture data by applying uncer-
tainty theories (fuzzy sets, possibility theory and Choqiet integral) all at the micro
scale. With the use of high performance computing the methods could be extended
to meso scale involving several vineyards.

2.2 Remote Sensing in Viticulture

More recent advances in remote sensing and access to satellite imagery have led to
the use of airborne multispectral and hyper spectral imagery in precision viticulture
with greater flexibility especially, in yield mapping integrated to soil, vegetation
vigour or disease properties [24–26]. Literature reviewed reveals the various
approaches investigated for satellite imagery classification in the recent past. In [23,
27] fuzzy logic has been applied to satellite imagery pixel analysis and delineation
of vine parcels by segmentation of high resolution (aerial images).

Contemporary precision viticulture studies as well use increasingly high reso-
lution aerial imagery and micro climate/environmental data acquired using net-
works of wireless/wired sensors/probes to identify the different zones within a
vineyard block [28]. For example in [29, 30], to understand the complex dynamic
relationships between site, soil, water, growth phenology, vine variety and wine
quality, in order to manage the vineyard daily operations efficiently, key variable
interactions, such as, effective soil water storage, plant rooting depth, onset of water
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stress, and daily vine water use, were studied. In recent times, since the beginning
of the last decade the technology has become an important tool in vineyard water
management especially, in countries like Australia, where salinity and water scar-
city are major problems as far as agriculture and viticulture are concerned.

3 The Methodology

In this research, all available thematic (feature) map data in digital formats related to
viticulture (Table 1) is processed and analysed in a GIS environment using ArcGIS
10.0 supported by ESRI (www.esri.com). The successive processing steps of the
approach are outlined in Fig. 2. Initially, all feature layers (vector/polygon maps)
obtained from Landcare Research web portal (www.landcareresearch.co.nz/
resources/data/lris) are converted into raster maps within an ArcMap project.
Secondly, pixel (point attribute) data is extracted from all raster layers for imple-
menting clustering with SOM and then rule extraction using TDIDT method with
WEKA and IBM’s Clementine sw. SOM based clustering was performed on
437,888 pixels along with their attribute data in Table 1.

Table 1 Attributes used for image pixel clustering for charaterising/zoning NZ wine
regions/vineyards

Climate variables Land form variables Soil variables

1. Mean annual temperature:
strongly influences plant
productivity

1. Elevation: 1. Drainage: influences the
oxygen availability in upper
soil layers

2. Mean minimum winter
Temperature: influences plant
survival

2. Slope: Major driver of
drainage, soil rejuvenation
and microclimate

2. Acid soluble phosphorous:
indicates a key soil nutrient

3. Mean annual solar
radiation: determines
potential productivity

3. Aspect: refers to the
compass direction the slope
faces (north, south, east, or
west). Depending on the
region’s climate, different
slopes are selected for the
greatest benefit of vineyard
production

3. Exchange calcium: both a
nutrient and a determinant of
soil weathering

4. Induration (hardness):
determines soil resistance to
weathering

4. Monthly water balance
ratio: indicates average site
“wetness”

5. Age: separates recent,
fertile soils from older less
fertile soils

5. Annual water deficit: gives
an indication of soil dryness,
it is calculated using mean of
daily temperature, daily solar
radiation and rainfall
(Leathwick, Morgan, Wilson,
Rutledge, McLeod, &
Johnston, 2002)

4. Hill shade 6. Chemical limitation of
plant growth: indicates the
presence of salinity of
ultramafic substances
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3.1 SOM Training Algorithm

A SOM consists of a regular, usually two-dimensional grid of neurons. Each neuron
i of the SOM is represented by a weight model vector,

mi ¼ mi1;.........;min
� �

T;

Where, n is equal to the dimension of the input vectors.
The set of weight vectors is called the codebook. Distances (Euclidean) between

x and all the prototype vectors are computed. In the basic SOM algorithm, the
topological relations and the number of neurons are fixed from the beginning. The
number of neurons may vary from a few dozen up to several thousands. It deter-
mines the granularity of the mapping, which in turn affects the accuracy and
generalisation capacity of the SOM. During an iterative training, the SOM forms an
“elastic net” that folds onto the “cloud” dictated by the input data (Fig. 3). The net

(1) (2) (3)

(6) (5)

(4)

Fig. 2 A schematic diagram showing the methodology. Spatial attribute data on different layers
(either vector or raster format) of the land areas are overlaid initially (steps 1 and 2). Subsequently,
vector layers are converted into raster format (3) and then point pixel data are extracted from this
multi-layered map (4) for pixel clustering, knowledge extraction and analysis (5 and 6)

Fig. 3 2D to 1D mapping by a SOM, from [32]
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tends to approximate the probability density of the data; the codebook vectors tend
to drift to places where the data is dense, while there would be only a few codebook
vectors in places where data is sparse. The component planes of the map as well
tend to reflect the relationships between the data attributes enhancing the detection
of patterns within the input data [31, 32] in this case, the land attribute data, and
they are studied using graphs and by overlaying the different cluster membership on
New Zealand maps. At each training step, one sample vector x is randomly chosen
from the input data set and the distances (such as the similarities) between the
vector x and all codebook vectors are computed. The best matching unit
(BMU) denoted here by c, would be the map unit whose weight vector is closest to
x: ||x − mc || = min {||x − mi||}.

After finding the BMU, the weight vectors are updated. The BMU and its
topological neighbours are moved closer to the input vector in the input space. The
update rule for the weight vector of unit i is:

miðtÞ þ a tð Þ xðtÞ� miðtÞ
� �

; ieNc ðtÞ

mi ðtþ 1Þ ¼ mi tð Þ; ieNc ðtÞ

Where, t denotes time. Nc(t) is the non-increasing neighbourhood function
around the winner unit c and 0 < α(t) < 1 is a learning coefficient, a decreasing
function of time [10].

A commercial software package “Viscovery” supported by Eudapics (www.
viscovery.net) was used for clustering the pixels using Kohonen’s SOM algorithm.
In the SOMWard clustering process, similar pixels are grouped together in clusters.
Subsequently, new knowledge in the form of “Rules” are extracted by analysing the
different cluster profiles (pixel data) to enhance the identification of attributes for
zoning land areas, such as wine regions or vineyards.

3.2 WEKA’s JRip Classifier

JRip classifier in WEKA is an implementation of the RIPPER rule learner created
by William W Cohen [33]. In JRip (RIPPER) classes are examined in increasing
size and an initial set of rules for each class is generated. Incremental reduced error
JRip (RIPPER) proceeds are used by treating all the examples of a particular
judgment in the training data as a class when finding a set of rules that cover all the
members of that class. By repeating the process with all the classes, different sets of
rules are generated for each class [34]. WEKA’s JRip classifier model consists of
collection rules and some statistics about those rules (e.g., coverage/no coverage,
true/false positives/negatives).

As anticipated, by evaluating the SOM cluster profiles (values and graphs) as
well as JRip and J48 classifier rules created using SOM membership as the clas-
sifier, interesting patterns within and among the clusters and their attributes have
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been revealed and they are discussed in the next section. The SOM clustering gives
a means to extract information for the selection of meaningful features/attributes for
characterising/zoning land areas in this case, NZ wine regions/terroirs/vineyards at
different scales.

4 Results and Discussion

Initially, all 15 layers, vector as well as raster (Table 1) were overlaid on a New
Zealand map and all vector layers are converted into raster layers. Subsequently,
from this multi-layered map, 437,888 pixels were extracted with values for New
Zealand vineyards. Then pixels were initially clustered into two and then further
into four and finally into 18 clusters. The SOM clusters of both (1 and 2 –> 1a and
1c, 1b, similarly 2 –> 2a and 2b) and finally C1–C18, were analysed using their
cluster profiles i.e., attribute ranges, graphs, association rules and also by overlaying
the SOM cluster membership over New Zealand maps to see the spatial distribution
of each cluster. Subsequently, to evaluate the use of the approach at different scales,
the SOM cluster profile and rules generated (for the SOM cluster profiles) were
analysed at the (1) national with all NZ wine regions, (2) regional or meso, using
individual regional i.e., Marlborough and Auckland vineyard pixel details sepa-
rately and finally, (3) at the micro (vineyard) using a few vineyards with Kumeu
pixels [35].

4.1 Two-Cluster SOM

At the first level, two SOM clusters were created which showed the major dis-
criminating features in the first level clustering C1 and C2 (Figs. 4 and 5) and they
are discussed.

In cluster 1, vineyard pixels 270,584 out of the total 270,798, belong to the
South Island vineyards. Similarly, 137,926 out of total 167,090 of cluster 2, lie in
the North Island vineyards (Fig. 5). Upper South island has both 1 and 2 clusters,
Marlborough region on the top right of the South island mostly consists of cluster 1
and on the top left Nelson got cluster 2 pixels. The former has high annual water
deficiency (7.64–312.2 with an average of 215.9) whereas, the latter has low (0.42–
216 with an average of 149.9). The following are the major observations in the
second level clustering labelled as 1 a and c together and 1 b, and 2 a and 2b
(Figs. 6, 7 and 8):

• Elevation, average minimum temperature, induration (hardness), exchange
calcium, acid soluble phosphorous, soil age, drainage, monthly water balance
ratio and annual water deficit show very high variability that can be used to
characterise the vineyards. Annual water deficit gives an indication of soil
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C2 C1

Fig. 4 Graph of two cluster SOM showing the range of the first levels clusters. All attribute
ranges show considerable variability in clusters 1 and 2. At this first level SOM clustering soil age,
chemical limitation of plant growth and monthly water balance have same average however, their
ranges vary to an extent. Slope for both 1 and 2 clusters remain the same at 0.4–0.05 (ranging
between 0 and 1.26)

Fig. 5 Left and middle SOM cluster 1 and 2 pixels overlaid on New Zealand and annual water
deficiency maps. Right graph showing SOM 1 and 2 cluster profiles of aspect and elevation key: A
water def: annual water deficiency
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dryness, it is calculated using mean of daily temperature, daily solar radiation
and rainfall [36].

• Canterbury and coastal Otago vineyard pixels (1b) get separated (with 62.37 m
average elevation, 1.09 °C average minimum temperature and 4.88 average
drainage) from cluster 1a&c pixels.

• Most of northern North Island and Nelson vineyard pixels are separated into 2b
with major differences in average elevation (93.84 m), average minimum tem-
perature (4.59 °C), average induration (2.28), average acid soluble phosphate,
age, monthly water balance ratio and annual water deficiency.

Fig. 6 Four cluster SOM map (second level clustering) (right). SOM pixel clustering overlaid on
New Zealand map (left). Cluster 1b pixels are found in Canterbury and coastal Otago, whereas,
cluster 2b pixels are in Auckland and Nelson. Cluster 2a pixels are in mid North Island i.e.,
Gisborne and Hawk’s Bay alone and none of 2a pixels lie in the Central Otago region
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• Drainage is high in 1a, b and c when compared with those of 2 a and b.
• Average minimum temperature variability in clusters is becoming more con-

spicuous at this level.
• Cluster 1b pixels are located in the coastal areas of Marlborough and Otago

regions with the lowest average minimum temperature i.e., 1.09 °C. Induration
of this cluster is the highest of all clusters.

C18
no 

pixel 
count

Ele** A 
Temp

A mi
T ** 

A Sol 
R

In-
dura

Ex 
C* 

ASl
P** 

Che 
limit

Age SlopDra
ge**

Wat 
Ba R

Water 
deficit**

C1 50313 82.33 12.39 2.40 14.9 3.32 2.00 4.19 1.00 1.97 0.06 4.81 1.40 261.48 
C3 31141 111.17 12.20 2.01 14.9 2.12 2.00 3.29 1.00 2.00 0.07 2.90 1.50 247.07
C9 14330 81.52 12.40 2.40 14.9 3.32 2.00 4.20 1.00 1.98 0.04 4.80 1.40 261.73 
C13 16064 108.54 12.11 1.87 14.8 2.09 2.00 3.32 1.00 2.00 0.05 2.87 1.52 239.95 
C8 39187 167.00 11.90 1.00 15.2 3.90 1.90 3.90 1.00 1.60 0.03 5.00 2.10 136.28 
C14 14302 167.00 11.90 1.00 15.2 3.90 1.90 3.90 1.00 1.60 0.03 5.00 2.10 136.28 
C15 8945 247.64 10.20 2.40 13.9 2.09 2.10 3.00 1.10 1.98 0.09 4.57 1.00 305.53
C16 2909 385.65 10.14 0.78 14.2 3.37 1.62 3.10 1.00 1.99 0.25 4.49 1.64 170.18
C5 78678 54.14 11.70 1.20 14.1 3.29 2.00 3.90 1.00 1.00 0.03 4.99 1.70 213.31
C6 14929 105.75 11.24 0.52 13.9 3.38 2.09 3.65 1.00 1.99 0.05 4.34 1.73 181.64

Fig. 7 SOM cluster profiles (top), SOM maps (middle), New Zealand maps (bottom) with SOM
cluster pixel information overlaid showing the spatial spread and profile of 18 SOM clusters (sub
clusters of C1 a b and c)
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4.2 SOM Clusters (18-Cluster) and JRip Classifier Rules

The two cluster SOM is further divided into 18 clusters to look at the attribute
variability in wine regions of New Zealand in detail.

Clusters 11 (Auckland, Bay of Plenty, Gisborne, Hawk’s Bay, Northland and
Waikato) and 17 (Auckland, Northland and Waikato are) of the 18 cluster SOM are
found in upper North Island with higher annual average (13.0–15.0 °C) and min-
imum (3.5–8.5 °C) temperatures (Fig. 8). They also have similar range in acid

Fig. 8 New Zealand and SOM maps showing the spatial spread of clusters 11, 12, 17 and 18
(original C2b of the two-cluster SOM) in the 18 cluster SOM (left). New Zealand map
superimposed with clusters 2, 4 7 and 10 (original C2a of the two-cluster SOM) in the 18 cluster
SOM) (right)
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soluble phosphorous (14–15), exchange cation (0–1.6), age (1.0–2.0), slope (0–0.3)
and water balance ratio (2.0–3.0) but vary in drainage and induration. Cluster 12
pixels (Fig. 8) are mainly seen in North Island and upper South Island i.e., a few
pixels (90) in Auckland, Bay of Plenty, Marlborough, Nelson, Northland, Waikato
and Wellington.

Based on SOM clustering patterns, cluster 1 (at the 18 cluster level) consists of
50,313 pixels all belonging to Marlborough region’s vineyards alone and no other.
Similarly, cluster 14 consists of 14,302 pixel belonging to Marlborough alone
(Fig. 9). This shows the diverse as well as some unique nature of the terroirs (or
vineyards) that produce the world famous premium wine labels [37].

In the next stage, JRip classifier rules were created using 1,395 group summaries
(group maximum, average and minimum values Fig. 9) of the 796 vineyard
polygons-18 SOM clusters-11 regions and SOM clustering (1–18) as the target
variable (Figs. 10 and 11).

The JRip rules extracted from vineyard, wine region and SOM group minimum,
average and maximum values gave an accuracy of 94.6915 % when evaluated at
tenfold cross-validation (Fig. 12). This means using the JRip rules the SOM
clustering of the vineyards (based on attributes studied) could be predicted at a
94 % accuracy level.

4.3 SOM Clustering and Rules Extracted for Marlborough
Region

Marlborough wine region pixels are clustered and analysed to see the SOM-TDIDT
method approach at the meso scale. The cluster profiles are analysed using the rules

Fig. 9 Graphs showing the total number of pixels in different regions in each of the 18 SOM
clusters. Marlborough region vineyard pixels are found in all clusters but 4, 6, 10, 11, 15 and 17.
Meanwhile, Clusters 1, 8, 9 and 14 consist of only Marlborough vineyard pixels
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generated for the cluster profiles. The SOM cluster profiles of the Marlborough
wine region (Figs. 13, 14, 15, 16 and 17) clearly distinguish the diverse and unique
characters of the region’s terroirs that give the well-known characteristic flavours
of New Zealand Sauvignon blanc [38]. In order to further study the similarities in
the Marlborough vineyard terroirs, pixel clusters of the region were analysed using
C5 algorithm (for the TDIDT method). The following are the findings from the
rules and pixel overlays on New Zealand maps:

• C7 has the lowest elevation and almost very high annual water deficiency 260.
• C8 and C14 have the same averages for all attributes except for aspect. C8

pixels are in flatland or with north, northwest, southwest or south aspect
(Fig. 10). C14 in the opposite aspect.

• C8 and C14 have the highest drainage (5.00) of all Marlborough clusters 18
SOM clusters.

• Along with C8 and C14, C5 has the highest drainage 5.00. Furthermore, C5 also
has the third lowest average temperature.

Decision tree models are useful when developing a classification system to
predict or classify future observations based on a set of decision rules. For the C5
algorithm, a data set that is divided into classes relating to the research/a topic
(types of land area) is required to build rules that can be used to classify old or new
cases with maximum accuracy. For example, a tree constructed could be used to
classify the new terroirs based on the land attributes. However, for areas where no
such prior classification is available SOM clustering could be used to create a new

SOM cluster Min aspect Max aspect

1 0 275.49

2 8.9 359.93

3 -1 282.71

5 -1 360

7 -1 359.97

8 -1 264.43

9 232.55 360

12 3.82 354.15

13 240.76 359.99

14 237.31 359.99

16 0.23 359.86

18 2.05 352.73

Fig. 10 Minimum and maximum aspects of Marlborough cluster pixels. SOM clusters 8 and 14
are found at 167 m elevation,
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class variable based on the attributes themselves. With such a new class variable,
using the C5.0 node, either a decision tree or a rule set can be developed. Similar to
Ripper algorithm, C5 rules are developed by splitting the data based on the attribute
that provides the maximum information gain at each level. For C5 model, the
“target” or the class field must be categorical [39]. In this case, the SOM cluster

=== Classifier model (full training set) === JRIP rules:
1. (Min of W_BAL_RA <= 1) => C18=15 (16.0/0.0) Otago 
2. (Min of A_SOL >= 15.2) and (Min of ASPECT >= 237.31)

=>C18=14 (26.0/1.0)Marlborough** (dark yellow)
3. (Min of A_SOL >= 15.2) and (Min of ELE_25 >= 167) 

=> C18=8 (30.0/0.0) Marlborough** (dark blue)

4. (Average of ELE_25 >= 284.12) and (Min of A_TEMP <= 11.2) 

=> C18=16 (35.0/0.0)

5. (Average of A_TEMP <= 10.9) and (Min of INDURATION >= 3.6)

=> C18=16 (2.0/0.0)
6. (region = Canterbury) and (Max of INDURATION >= 3.6) => C18=6 (35.0/0.0)
7. (Min of A_TEMP <= 9.8) => C18=6 (4.0/0.0)
8. (Min of ELE_25 <= 7) => C18=7 (52.0/0.0)
9. (Average of INDURATION <= 0) => C18=18 (53.0/0.0)
10. (Min of ACID_S_P >= 4) and (Average of ASPECT >= 279.33) => C18=9 (61.0/0.0) 

Marlborough* (red)
11. (Min of ASPECT >= 240.76) and (Min of MIN_TEMP <= 2) and (Max of A_TEMP 

>= 12.2)  => C18=13 (64.0/0.0)
12. (Average of MIN_TEMP <= 0.8) and (Min of ASPECT >= 285.04) 

=> C18=13 (3.0/0.0)
13. (Average of A_TEMP <= 11.7) and (Min of ELE_25 <= 85) => C18=5 (68.0/0.0)
14. (Max of ELE_25_2 >= 197) => C18=12 (50.0/6.0)
15. (region = Nelson) => C18=12 (42.0/18.0)
16. (region = Wellington) and (Average of A_TEMP <= 12.675) => C18=12 (14.0/6.0)
17. (Min of W_BAL_RA >= 3.2) => C18=12 (3.0/1.0)
18. (Min of ACID_S_P >= 4) => C18=1 (81.0/1.0) Marlborough* (light blue)
19. (Min of W_BAL_RA <= 1.5) => C18=3 (75.0/0.0)
20. (Min of INDURATION >= 3.9) and (Max of ASPECT <= 127.99)=> C18=3 (17.0/2.0)
21. (Min of EXCH_CAL <= 1.1) and (Average of ELE_25 >= 90.46) => C18=17 

(104.0/0.0)
22. (Min of EXCH_CAL <= 1.5) and (Max of ASPECT >= 357.68) => C18=17 (6.0/0.0)
23. (Average of A_TEMP >= 15.784198) => C18=17 (2.0/0.0)
24. (Average of DRA_25 <= 1.9) and (Min of ELE_25 <= 48)=> C18=10 (124.0/0.0) 
25. (Min of A_TEMP <= 13.2) => C18=2 (115.0/6.0)
26. (Average of ELE_25 >= 31) => C18=11 (148.0/0.0)
27. =>C18=4 (164.0/0.0)

Number of Rules: 27 Time taken to build model: 0.92seonds

Fig. 11 WEKA JRip rules extracted from NZ vineyards blocks (795 polygons) (11) in 1394
groups and their minimum, average and maximum values for all 15 attributes using 18 SOM
cluster value as the class (C1–C18)

460 S. Shanmuganathan



=== Stratified cross-validation 
=== Summary ===
Correctly Classified Instances       1320            94.6915 %
Incorrectly Classified Instances 74                5.3085 %
Kappa statistics                          0.9427
Mean absolute error                     0.0074
Root mean squared error               0.0709
Relative absolute error                  7.1766 %
Root relative squared error             31.237 %
Total Number of Instances             1394     
=== Detailed Accuracy By Class ===

TP Rate   FP Rate Precision Recall  F-Measure  ROCArea  Class
0.967 0.002    0.978 0.967    0.972    0.982    3
0.956     0.002    0.97 0.956   0.963    0.991    5
0.981     0          1         0.981    0.99       0.99      7 
0.955     0.002     0.955   0.955    0.955    0.991    13
0.988     0.003     0.952    0.988    0.97       0.992    1
0.967     0          1         0.967    0.983    0.992    9 
0.919     0.001      0.971   0.919    0.944 0.958    16
0.843     0.022      0.808    0.843    0.825     0.982    2
0.964     0          1         0.964    0.981     0.996    18
0.734     0.016      0.734    0.734    0.734     0.972    12
0.986     0.002      0.98      0.986 0.983    0.992    11
1         0.001      0.968    1         0.984     1         8 
0.96      0.001      0.96      0.96      0.96       0.979    14
1         0          1         1         1          1         4 
1         0.002      0.984    1         0.992      0.999    10
0.878     0.004      0.878    0.878    0.878      0.958    6
0.956    0.001      0.991    0.956    0.973      0.975    17
1        0          1         1         1          1        15

Weig Avg. 0.947     0.004      0.948     0.947    0.947      0.988
=== Confusion Matrix ===
a   b   c   d   e   f     g   h   i      j   k   l   m   n   o   p   q   r   <-- classified as
88  0   0   0   0   0   0   2   0   1   0   0   0   0   0   0   0   0 |   a = 3
0  65   0   2   1   0   0   0   0   0   0   0   0   0   0   0   0   0 |   b = 5
0   0  52   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0 |   c = 7
1   0   0  64   0   0   0   1   0   0   0   0   0   0   0   1   0   0 |   d = 13
0  0   0   0  80   0   0   1   0   0   0   0   0   0   0   0   0   0 |   e = 1
0   0   0   0   2  59   0   0   0   0   0   0   0   0   0   0   0   0 |   f = 9
0   0   0   0   0   0  34   0   0   0   0   0   0   0   0   3   0   0 |   g = 16
0   0   0   0   0 0   0 118   0  20 1   0   0   0   0   1   0   0 |   h = 2
0   0   0   0   0   0   0   2  53   0   0   0   0   0   0   0   0   0 |   i = 18
0   0   0   1   0   0   0  19   0  58  1   0   0   0   0   0   0   0 |   j = 12
0   0   0   0   0   0   0   0   0  0 146  0   0   0   1   0   1   0 |   k = 11
0   0   0   0   0   0   0   0   0   0   0  30   0   0   0   0   0   0 |   l = 8
0   0   0   0   0   0   0   0   0   0   0   1  24   0   0   0   0   0 |   m = 14
0   0   0   0   0   0   0   0   0   0   0   0   0 164  0   0   0   0 |   n = 4
0   0   0   0   0   0   0   0   0   0   0   0   0   0 124  0   0   0 |   o = 10
0   2   0   0   0   0   1   2   0   0   0   0   0   0   0  36   0   0 |   p = 6
1   0   0   0   0   0   0   1   0   0   1   0   1   0   1   0 109  0 |   q = 17
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  16 |   r = 15

Fig. 12 Confusion matrix and validation of WEKA JRip rules (Fig. 11) created for NZ vineyards
blocks (795 polygons) in 1394 groups and their minimum, average and maximum values for all 15
attributes using 18 SOM cluster membership
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membership is used as the target and the rules developed give more insight into the
terroirs of Marlborough.

The C5 rules created using cluster minimum, average and maximum values of
Marlborough pixels alone and the maps show the minimum average temperature
(> or <11.9 °C in Fig. 15 left) as the major discerning attribute in the 18 SOM
clustering (Fig. 14 top). The other attributes are minimum drainage (> or <3.1 in
Fig. 14 bottom left), minimum age (> /<1), maximum acid soluble P (<= 3 or > 3 in
Fig. 14 bottom right), minimum/maximum elevation (Fig. 15 right) and
average/maximum aspect.

Marlborough 18-SOM clusters 1, 2, 3, 7, 9 and 13 consist of minimum average
temperature > 11.9 °C (rules underlined in Fig. 13) and all of them are located
closer to the coastal area of the region except for some patches of 3 (Fig. 15).
Meanwhile, clusters 8, 12 and 18, consist of vineyards located in Marlborough
coastal area but <11.9 °C and at higher elevations. Cluster 8 is at elevation <=167 m
(rule no 14 in Fig. 13), cluster 12 with maximum elevation > 167 m (rule no 2 in
Fig. 13) and cluster 18 with minimum elevation > 149 m (rule no 6 in Fig. 13). This
shows that the approach (clustering using SOM techniques and then generating
rules) to unravel new knowledge on attributes and their ranges related to the land
area could be carried out successfully, in this case, to distinguish terroirs among
and within a country’s wine regions.

Similarly, based on rule no. 1 and 15 (Fig. 13 marked with*), the critical point
for a second major attribute, the minimum average temperature is > 11.9 °C and a
third attribute, minimum of drainage with the critical point being 3.1.

Clusters 1 and 9 show minimum of drainage > 3.1, the former with average of
aspect <= 264.4o (min 0o and max 275.49o) and the latter with average of
aspect > 264.4o (min 232.55o and max 360o) next to some of the cluster 1 pixels
(table and maps in Fig. 7). Meanwhile, clusters 13, 2, 3 and 7 with minimum average
drainage <= 3.1 are further divided based on minimum soil age; cluster 7 has <1
suggesting the area as consisting of recent fertile soil. The rest 13, 2 and 3 (in
Fig. 13) vary in minimum elevation, average and maximum aspect (Figs. 15 and 17)

For the Marlborough SOM clusters 12, 14, 16, 18, 5 and 8 with > 11.9 °C
minimum average temperature, soil age seems to be the second main discerning
attribute, and cluster 18 has soil age <1 (rule no 6 with # in Fig. 13) areas with new
fertile soil. The rest with > 1 soil age are further divided based on minimum average
temperature and maximum or minimum elevation (Fig. 15).

Cluster 14 and 8 terroirs (Fig. 13) found in the inland areas are with minimum
annual temperature > 11.2 °C and maximum elevation <= 167 m but complement
each other in aspect, for cluster 8 it is min −1 max 264.43o whereas for cluster 14, it
is min 237.31 max 359.99 (rules 4 and 14 in Fig. 11c). Cluster 5 is a huge area with
minimum elevation <= 149 (rule no 12 ## in Fig. 13).
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1. Rule 1 for 1 (81; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 > 3.1 and Average of 
ASPECT <= 264.4 then 1 + 

2. Rule 1 for 12 (8; 1.0) if Min of A_TEMP <= 11.9 and Min of AGE > 1 and Min of A_TEMP > 
11.2 and Max of ELE_25 > 167 then 12 

3. Rule 1 for 13 (62; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE 
> 1 and Average of ASPECT > 229.925 and Min of ELE_25 <= 111 then 13 
++ 

4. Rule 1 for 14 (25; 1.0) if Min of A_TEMP <= 11.9 and Min of AGE > 1 and Min of A_TEMP 
> 11.2 and Max of ELE_25 <= 167 and Average of ASPECT > 229. 925 Then 
14 +++ 

5. Rule 1 for 16 (22; 1.0) if Min of A_TEMP <= 11.9 and Min of AGE > 1 and Min of A_TEMP 
<= 11.2 then 16 

6. Rule 1 for 18 (20; 1.0) if Min of A_TEMP <= 11.9 and Min of AGE <= 1 and Min of ELE_25 
> 149 then 18 # 

7. Rule 1 for 2 (2; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE > 
1 and Average of ASPECT <= 229.925 and Max of ACID_S_P <= 3 and Max 
of ASPECT <= 136.56 and Min of ELE_25 <= 93 then 2 *** 

8. Rule 2 for  2 (8; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE > 
1 and Average of ASPECT <= 229.925 and Max of ACID_S_P <= 3 and Max 
of ASPECT > 136.56 then 2 *** 

9. Rule 3 for 2 (14; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE 
> 1 and Average of ASPECT > 229.925 and Min of ELE_25 > 111 then 2 *** 

10. Rule 1 for 3 (4; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE > 
1 and Average of ASPECT <= 229.925 and Max of ACID_S_P <= 3 and Max 
of ASPECT <= 136.56 and Min of ELE_25 > 93 then 3 *** 

11. Rule 2 for 3 (72; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE 
> 1 and Average of ASPECT <= 229.925 and Max of ACID_S_P > 3 then 3 *** 

12. Rule 1 for 5 (56; 1.0) if Min of A_TEMP <= 11.9 and Min of AGE <= 1 and Min of ELE_25 
<= 149 then 5 ## 

13. Rule 1 for 7 (43; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 <= 3.1 and Min of AGE 
<= 1 then 7** 

14. Rule 1 for 8 (30; 1.0) if Min of A_TEMP <= 11.9 and Min of AGE > 1 and Min of A_TEMP > 
11.2 and Max of ELE_25 <= 167 and Average of ASPECT <= 229.925 then 8 
+++ 

15. Rule 1 for 9 (61; 1.0) if Min of A_TEMP > 11.9 and Min of DRA_25 > 3.1 and Average of 
ASPECT > 264.4 then 9 * 

Fig. 13 C5 algorithm rules generated using Clementine software for the Marlborough region
pixels. The maps showing cluster 8 and 14 (bottom left) as well as 1 and 9 (bottom right) of the 18
cluster SOM relating to Marlborough vineyard block pixel attributes. The C8 and C14 have
common features, minimum annual temperature > 11.9 °C and Min of DRA> 3.1 but vary in
aspect (rules no 1 and 15)
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Fig. 14 Marlborough census wards and vineyards (top) located mostly in areas with average high
drainage i.e., >4.65 (bottom left) and higher acid soluble P (bottom right)
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Fig. 15 Average temperature (left) and digital elevation (right). The C5 rules created using cluster
minimum, average and maximum values of Marlborough pixels alone, and the maps show the
minimum average temperature (> or <11.9 °C in Fig. 13 rules) as the major discerning attribute
within the 18 SOM clusters

A 

B 
B

e
x

Fig. 16 Left Marlborough pixels displayed over satellite imagery show the unique features
regarding landscape, terrain and vegetation. ex: some blocks identified for vineyard expansion b
(right): section A (shown in the left image) showing the location related details
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4.4 Pixel Clustering and Rules Developed for Within
Auckland Region

The section looks at the clusters, their profiles and rules extracted from Auckland
pixels alone to evaluate the approach among and within vineyards (at the meso
scale). For this second regional level evaluation, 22,462 individual Auckland
vineyard pixel details were used. The cluster profiles were studied using JRip and
J48 rules (with WEKA functions) generated to analyse the similarities within ter-
roirs of Auckland wine region (Fig. 18).

WEKA rules (JRIP and J48 in Figs. 19 and 20 respectively) were created using
Auckland cluster pixels with SOM clusters 10, 11, 12 and 17 as output classes. The
main attributes discerning the pixels are (Fig. 19): average elevation, average
drainage and average hill shade with prediction rate 99 % at tenfold cross valida-
tion. The elevation of clusters 12, 10 and 17 are at > = 214 m with
(1098.0/0.0), <= 40 m with 4140.0/0.0 and > = 92 m with 7767.0/0.0 pixels.

The two main SOM clusters (of C18) 11* with 9,454 and 17** with 7,767 pixels
(Fig. 18), containing the majority of the 22,462 Auckland pixels are spread across
the western and eastern parts of Auckland respectively. The main attribute sepa-
rating the two clusters are elevation, minimum temperature and induration. Cluster
17 pixels in the north eastern and Waikiki Island are at slightly higher eleva-
tion > = 92 m with minimum temperature 6.47 °C and induration 3.12 as compared
to cluster 11 <= 40 m, 4.85 °C and 1.99 for the respective attributes.

Fig. 17 Section B of Fig. 16 (left) showing the location and plot related details
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Meanwhile, the other SOM clusters 10 and 12 reflect the minor areas of both
extremes found in the Auckland region. Most of the southern Auckland pixels
belong to cluster 10 with an average elevation 33.19 m, the lowest for the region
and with poor drainage (1.67) when compared with the other Auckland clusters
(Fig. 18).

Cluster 12 pixels of the Auckland region are at an average elevation 227.69 m,
the highest for the region, and have induration 4 and monthly water balance 3.46
the highest values for the attributes for this region.

From WEKA’s J48 results (Fig. 20), the main attribute distinguishing cluster 11
and 17 is elevation; for C11 it is <=68 m whereas, for C17 it is > 68 < 144 m. C12
consists of areas with elevation > 144 m. Most of cluster 11 pixels have hill-
shade <=202 (9,432 pixels).

The ability to distinguish land attributes from available digital data shows that
the approach can be used to establish meaningful zones in this case terroirs at the
national and regional scales. The results so far discussed using the same 18 SOM
clustering (membership) show promise for zoning of land areas at the national and
regional (meso) scales.

For the micro scale analysis, Kumeu sub regional pixels were used alone to
study the application of the approach among and within vineyards [35]. Kumeu

C10

C17

C12

C11
C17

C12 

C10

Fig. 18 Maps showing drainage (left) and Auckland vineyard pixels (right). As per WEKA rules
elevation and drainage are the contributing factors in the SOM clustering for the Auckland region.
In the drainage map cluster 10 pixels have <= 1.9 and the rest have >1.9
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wine region is in the north western part of Auckland and some of the vineyards in
this suburb are famous for their unique wine labels. More insights regarding the
land attributes and their spatial distribution for the success of the terroirs were
established in [35].

Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

JRIP rules:

===========

(ELE_25 >= 214) => C18=12 (1098.0/0.0) 

(ELE_25 <= 40) => C18=10 (4140.0/0.0) 

(ELE_25 >= 92) => C18=17 (7767.0/0.0)**

(HILLSHAD >= 219) and (ELE_25 <= 49) => C18=17 

(3.0/0.0)

=> C18=11 (9454.0/0.0)*

Number of Rules : 5

Time taken to build model: 1.28seconds

Stratified cross-validation 

=== Summary ===

Correctly Classified Instances     22456   99.9733 %

Incorrectly Classified Instances   6          0.0267 %

Kappa statistic                         0.9996

Mean absolute error  0.0001

Root mean squared error      0.0103

Relative absolute error  0.0355 %

Root relative squared error  2.5105 %

Total Number of Instances  22462     

=== Detailed Accuracy By Class ===

TP Rate FP Rate   Precision   Recall  F-Mea   ROC Area  Class

1         0          0.999     1         1          1        17

1         0          1        1        1          1        11

1         0          1        1         1          1        10

1         0          1        1         1          1        12

WA  1         0         1         1         1          1    

=== Confusion Matrix ===

a b    c    d    <-- classified as

7768   2    0   0 |    a = 17

4 9450 0 0 |    b = 11

0    0 4140   0 | c = 10

0    0    0 1098 |    d = 12

Fig. 19 J48 results for
Auckland pixel attributes and
SOM clustering
(membership) data
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Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

------------------

ELE_25 <= 68

| DRA_25 <= 1.9: 10 (4140.0)

|   DRA_25 > 1.9

| |   HILLSHAD <= 202: 11 (9432.0) 

|   |   HILLSHAD > 202

|   |   |   A_SOL <= 15: 11 (20.0)*

|   |   |   A_SOL > 15

|   |   |   |   HILLSHAD <= 214: 11 (2.0

|   |   |   |   HILLSHAD > 214: 17 (3.0)

ELE_25 > 68

|   ELE_25 <= 144: 17 (7767.0)**

|   ELE_25 > 144: 12 (1098.0)

Number of Leaves  : 7 

Size of the tree : 13

Time taken to build model: 0.41seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 22459  99.9866 %

Incorrectly Classified Instances  3   0.0134 %

Kappa statistic                        0.9998

Mean absolute error             0.0001

Root mean squared error     0.0082

Relative absolute error         0.0245 %

Root relative squared error    2.001  %

Total Number of Instances     22462     

=== Detailed Accuracy By Class ===

TP R  FP Rate Preci Recall  F-Mea ROC Class

1       0         1         1         1    1       17

1      0         1         1         1          1       11

1       0         1         1         1          1       10

1      0         1        1         1          1       12

WA 1  0         1         1         1    1    

=== Confusion Matrix ===

a    b    c    d   <-- classified as

7767    3    0    0 |    a = 17

0 9454    0    0 |    b = 11

0    0 4140    0 |    c = 10

0    0    0 1098 |    d = 12

Fig. 20 J48 results for
Auckland pixel attribute and
SOM cluster (target) data
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5 Conclusions

Literature reviewed for this research reveals that the well-known centuries-old as
well as contemporary approaches to zoning wine regions or characterising terroirs
have been developed based on extensive knowledge on the independent factors
(local atmospheric, environmental, cultural) and wine quality. Moreover, the old
approaches were developed without much reference to geographic location related
information. The need for extensive knowledge makes the zoning of wine regions
of recent origin and assess new cites for potential vineyards a challenging task. In
view of this fact, a new approach consisting of SOM based pixel clustering and
TDIDT method within a GIS environment was investigated. The results of this
research showed that the SOM-TDIDT approach provides a means to overcome the
major impediment when selecting features with unique attributes (along with their
cardinality) that can be used for characterising/zoning less known land areas of
interest, in this case new terroirs within New Zealand wine regions.

The SOM-TDIDT approach as well can be used to overcome resolution and
scale related issues that often cause constraints in similar GIS studies when inte-
grating multi-sourced GIS data. The SOM clustering approach to discerning attri-
butes produced promising results at different scales as well. For Marlborough
minimum average temperature (> or <11.9 °C) was found to be the major dis-
cerning attribute. This also reiterates the current situation there; frost in September
determines the crop of the Marlborough region. In addition, minimum drainage
(> or <3.1), age, acid soluble P (<=3 or >3), elevation and aspect can be used for
characterising the vineyards within this wine region. Similarly, for Auckland,
elevation <= 40 / > = 92 / > = 214), drainage (<= 1.9 or > 1.9) and annual solar
radiation, along with hill shade (related to elevation) were found to be useful factors
for characterising the vineyards of this region. The solar radiation and average and
minimum annual temperatures are used as growing degree days (GDD) in the
currently used traditional factors. Meanwhile, when Kumeu pixels were used alone
in an earlier study [35] to look at the success of the approach at the micro scale, age
(<=1-fertile soils /2-older less fertile soils), elevation (> 92 /approx. 40 m), annual
average temperature <= 14/> 15) along with aspect and hill shade(the latter two are
related to elevation) were are seen as meaningful attributes for characterising among
and even within vineyards. The Kumeu results also revealed the approach as
capable of detecting the variability in aspect and hill shade arising from the subtle
variability in the elevation within vineyards.
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