
Chapter 9

Gradient Method

Abstract The gradient method is an optimisation method of greedy type. For this
purpose, the system of equations has to be rewritten as a minimisation problem
(see Section 9.1). The gradient method Υgrad[Φ] derived in Section 9.2 determines
the damping factors of the underlying iteration Φ ∈ L. It turns out that the conver-
gence is not faster than the optimally damped version Φϑopt

of Φ, but the method
can be applied without knowing the spectral values determining ϑopt. In Section
9.3 we discuss the drawback of the gradient directions and introduce the conjugate
directions in preparation for the conjugate gradient method in the next chapter. The
final Section 9.4 mentions a variant of the gradient method: the minimal residual
iteration which can be applied to any regular matrix A.

9.1 Reformulation as Minimisation Problem

9.1.1 Minimisation Problem

In the following, A ∈ RI×I and b ∈ RI are real. We consider a system

Ax = b

and assume that
A is positive definite. (9.1)

System Ax = b is associated with the function

F (x) :=
1

2
〈Ax, x〉 − 〈b, x〉 . (9.2)

The derivative (gradient) of F is F ′(x) = 1
2 (A + AT)x − b. Since A = AT by

assumption1 (9.1), the derivative is equal to

1 Under the weaker assumption (C.2), the function F can also be minimised, but the minimiser
would not be the solution of Ax = b; i.e., the method would be inconsistent.
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F ′(x) = gradF (x) = Ax− b.

A necessary condition for a minimum of F is the vanishing of the gradient: Ax=b.
Since the Hessian matrix F ′′(x) = (Fxixj

)i,j∈I = A is positive definite, the
solution of Ax = b (in the following denoted by x∗) in fact leads to a minimum.
This proves the next lemma.

Lemma 9.1. Let A ∈ RI×I be positive definite. The solution of the system Ax = b
is equivalent to the solution to the minimisation problem

F (x)
!
= min .

A second proof of Lemma 9.1 results from the representation

F (x) = F (x∗) +
1

2

〈
A(x− x∗), x− x∗〉 with x∗ := A−1b. (9.3)

This equation proves F (x) > F (x∗) for x �= x∗, i.e., x∗ = A−1b is the unique
minimiser of F . The representation (9.3) is a particular case of the following
Taylor expansion of F around an arbitrary value x̃ ∈ RI :

F (x) = F (x̃) +
〈
Ax̃− b, x− x̃

〉
+

1

2

〈
A(x− x̃), x− x̃

〉
. (9.4)

9.1.2 Search Directions

In the following, the minimisation of F with respect to a particular direction
p ∈ RI\{0} plays a central role. Optimisation over all x ∈ RI is replaced by
the one-dimensional minimisation problem (9.5a,b):

f(λ)
!
= min for the function (9.5a)

f(λ) := F (x+ λp) (x, p ∈ RI fixed, λ ∈ R). (9.5b)

Replacing the variables x and x̃ in (9.4) by x+ λp and x, we obtain that

f(λ) = F (x) + λ
〈
Ax− b, p

〉
+

λ2

2

〈
Ap, p

〉
. (9.5c)

p �= 0 implies that 〈Ap, p〉 > 0 (cf. (9.1)); hence, the minimum of the parabola f
can be determined from f ′(λ) = 0.

Lemma 9.2. Assume p �= 0 and (9.1): A > 0 . The unique minimum of problem
(9.5a,b) is attained at

λ = λopt(r, p, A) :=
〈r, p〉
〈Ap, p〉 , (9.6a)

where
r := b−Ax .



9.1 Reformulation as Minimisation Problem 213

In the following, the letter r always denotes the residual (residue) b−Ax of the
actual x. It is the negative defect Ax−b and also the negative gradient F ′ = Ax−b.

The optimal search direction is evidently p = x∗−x (or a nonvanishing multiple)
because f(λopt) = F (x∗) yields the global minimum. However, since p = x∗ − x
requires knowledge of the solution, another proposal is needed. Let p be normalised
by ‖p‖2 = 1. The directional derivative f ′(0) = −〈r, p〉 = 〈grad F (x), p〉 at
λ = 0 is maximal for the gradient direction p = −r/ ‖r‖2 and minimal for the
reverse direction p = r/ ‖r‖2. The vector grad F (x) = −r is the direction of
the steepest ascent, while the residual r is the direction of the steepest descent.
This consideration shows the optimality of p = r from a local point of view.
For p = r, the expression (9.6a) becomes

λ = λopt(r, r, A) =
‖r‖22
〈Ar, r〉 for r := b−Ax �= 0. (9.6b)

The definition
λopt(r, 0, A) := 0 (9.6c)

is added for formal reasons only: now λopt(·, ·, A) is defined for all arguments.
As soon as r = 0 occurs, x is already the exact solution x∗.

9.1.3 Other Quadratic Functionals

The function F in (9.2) is not the only quadratic function having x∗ :=A−1b as the
minimiser.

Lemma 9.3. (a) Any quadratic form with a unique minimum at x∗=A−1b has the
form

F (x) = 1
2

〈
HA(x−x∗), A(x−x∗)

〉
+ c = 1

2

〈
H(Ax−b), Ax−b

〉
+ c (9.7a)

with an arbitrary constant c and

H > 0. (9.7b)

Here, in contrast to (9.1), A may be any regular matrix.
(b) To ensure that the calculation of grad F (x) = AHHA(x − x∗) = −AHHr
from the residual r = Ax − b be practical, the matrix H must be such that the
matrix-vector multiplication r �→ AHHr is feasible.
(c) Under assumption (9.1), H := A−1 and c := 1

2 〈b, x∗〉 may be chosen. Then F
in (9.7a) coincides with F in (9.2).

Proof of (c). By (9.1), H = A−1 satisfies (9.7b) (cf. Lemma C.4b). A comparison
of (9.7a) and (9.3) shows that c=F (x∗)= 1

2 〈Ax∗, x∗〉 − 〈b, x∗〉=− 1
2 〈b, x∗〉. ��
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Conclusion 9.4. Let A be positive definite. The (energy) scalar product 〈·, ·〉A and
(energy) norm ‖·‖A are defined by (9.8a):

〈x, y〉A := 〈Ax, y〉 , ‖x‖A := ‖A1/2x‖2 =
√

〈x, x〉A . (9.8a)

The minimisation of F in (9.2) is equivalent to the minimisation problem

‖x− x∗‖A !
= min with x∗ := A−1b . (9.8b)

Proof. Problem (9.8b) may be replaced with ‖x− x∗‖2A
!
= min. The identity

‖x− x∗‖2A = 2 [F (x)− F (x∗)] (cf. (9.3)) (9.8c)

completes the proof. ��

Remark 9.5. (a) For the choice H = I and c = 0, equation (9.7a) becomes
F (x) = 1

2 ‖Ax− b‖22 and describes the least-squares minimisation.

(b) For H = A−HA−1 > 0 and c = 0, the identity F (x) = 1
2‖x− x∗‖22 holds.

(c) For a positive definite K, the minimisation of the norm

‖x− x∗‖2K = ‖K1/2(x− x∗)‖22

corresponds to problem (9.7a) with

H =
1

2
A−HKA−1, c = 0 .

According to Lemma 9.3b, multiplying by KA−1 must be feasible.

Remark 9.6. Any iteration converging (weakly) monotonically with respect to the
norm ‖·‖A leads to a descent sequence

F (x0) ≥ F (x1) ≥ . . . .

9.1.4 Complex Case

In the complex case of A ∈ CI×I and b ∈ CI , the function F can again be
defined by (9.7a,b), provided that c in (9.7a) is real. Definition (9.2) cannot be
generalised without change, since only real functions F can be minimised and,
in general, F is not real because of the term 〈b, x〉. One has to replace F in (9.2) by

F (x) :=
1

2
〈Ax, x〉 − �e 〈b, x〉 for x ∈ CI . (9.9a)
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Exercise 9.7. Assume (9.1) and let F be defined by (9.9a). Prove the following:
(a) F is real, and �e〈b, x∗〉 = 〈b, x∗〉 holds for x∗ = A−1b .
(b) Equations (9.9b,c) hold for x, y ∈ KI :

F (x) = 1
2 [ 〈A(x− x∗), x− x∗〉 − 〈b, x∗〉 ] , (9.9b)

F (x) = F (y) + �e 〈Ay − b, x− y〉+ 1
2 〈A(x− y), x− y〉 . (9.9c)

(c) The minimum of f(λ) = F (x + λp) over λ ∈ C with F in (9.9a) is attained
for the value λopt(r, p, A) in (9.6a), which in general is complex.

9.2 Gradient Method

Another name for the gradient method is the method of steepest descent.

9.2.1 Construction

In general, the gradient method is an algorithm for solving a minimisation problem
F (x) = min with a differentiable function F : RI → R (cf., e.g., Kosmol [240, §4],
Quarteroni–Sacco–Saleri [314, §7.2.2]). We apply the gradient method only to the
quadratic function F in (9.2) or (9.7a).

The gradient method minimises F iteratively in the direction of the steepest
descent :

x0 ∈ RI : arbitrary starting iterate, (9.10a)

iteration m = 0, 1, . . . :
rm := b−Axm, (9.10b)

xm+1 := xm + λopt(r
m, rm, A)rm. (9.10c)

The representation

rm+1 = b−Axm+1 = b−A(xm + λoptr
m) = rm − λoptArm

allows the following update of the residual:

start: x0: arbitrary, r0 := b−Ax0, (9.11a)
iteration m = 0, 1, . . . : xm+1 := xm + λopt(r

m, rm, A)rm, (9.11b)
rm+1 := rm − λopt(r

m, rm, A)Arm (9.11c)

with λopt(r
m, rm, A) in (9.6b,c). The advantage of (9.11c) over (9.10b) is the fact

that the product Arm is already calculated in (9.6b) when λopt is determined.
The gradient method (9.11a–c) is denoted by Υgrad[Φ

Rich
1 ] (cf. §9.2.4).

9.1 Reformulation as Minimisation Problem
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9.2.2 Properties of the Gradient Method

Remark 9.8. Assume (9.1). (a) In contrast to the previous methods, the iteration
xm �→ Φ(xm, b) defined in (9.11a–c) is not linear.
(b) Φ(·, ·) is continuous with respect to both of its arguments.
(c) The gradient method is consistent and convergent.

Proof. (a) λopt(r
m, rm) = λopt(b − Axm, b − Axm) is a nonconstant function of

xm and b . Hence, Φ(x, b) = x+ λopt(b−Ax, b−Ax,A)(b−Ax) is not linear.
(c) Convergence will be proved in Theorem 9.10. If x∗ is a solution of Ax= b,

the residual r vanishes. Together with (9.6c), we conclude that Φ(x∗, b) = x∗,
i.e., F is consistent. ��

Although the gradient method is not linear, it can be interpreted as a semi-
iterative method applied to a linear basic iteration.

Remark 9.9. The sequence {xm} of the gradient method (9.11a–c) is identical to
the sequence {ym} of the semi-iterative Richardson method

ym+1 = ym −Θm+1 (Aym − b) = ΦRich
Θm+1

(ym, b) (9.12)

(cf. (8.10b)), if one chooses y0 = x0 and fixes the factors Θm+1 by

Θm+1 := λopt(r
m, rm, A) with rm := b−Axm.

Theorem 9.10 (convergence). Let A be positive definite and denote the extreme
eigenvalues of A by λ = λmin(A) and Λ = λmax(A) . Let F be defined by (9.2).
Then, for any starting iterate x0, the sequence {xm} of the gradient method
converges to the solution x∗ = A−1b and satisfies the error estimates

F (xm)− F (x∗) ≤
(
Λ− λ

Λ+ λ

)2m [
F (x0)− F (x∗)

]
, (9.13a)

‖xm − x∗‖A ≤
(
Λ− λ

Λ+ λ

)m

‖x0 − x∗‖A . (9.13b)

Proof. (i) By (9.8c), the estimates (9.13a) and (9.13b) are equivalent.
(ii) For proving (9.13b), it is sufficient to consider the case m = 1. The Richard-

son iteration

x1
Rich = x0 −ΘRich

(
Ax0 − b

)
with ΘRich = 2/(Λ+ λ)

yields the error e1Rich = Me0. The iteration matrix M = MRich
ΘRich

= I − ΘRichA
has the norm ‖M‖2 ≤ η , where

η =
Λ− λ

Λ+ λ
(9.13c)
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(cf. Theorem 3.23). Since M commutes with A and A1/2, we have

ẽ1Rich = M ẽ0 for ẽ1Rich := A1/2e1Rich, ẽ0 := A1/2e0.

By ‖ẽ0‖2 = ‖e0‖A and ‖ẽ1Rich‖2 = ‖e1Rich‖A, we can estimate e1Rich by

‖e1Rich‖A = ‖ẽ1Rich‖2 ≤ ‖M‖2 ‖ẽ0‖2 ≤ η ‖e0‖A.

Both x1
Rich and x1 are of the form x0 +Θr0. Since the iterate x1 of the gradient

method minimises the error ‖x1 −x∗‖A (cf. Conclusion 9.4), the assertion follows
for m = 1: ‖x1 − x∗‖A ≤ ‖e1Rich‖A ≤ η ‖e0‖A. ��

Corollary 9.11. (a) The factor η in (9.13c) is the minimal one in (9.13a,b).
(b) The asymptotic convergence rate of the gradient method is η.
(c) η depends only on the condition κ(A) = cond2(A) = Λ/λ :

η =
κ− 1

κ+ 1
with κ = κ(A). (9.14)

Proof. Let v1 and v2 with ‖v1‖2 = Λ and ‖v2‖2 = λ be the eigenvectors cor-
responding to Λ and λ. For x0 := x∗ + e0 with e0 := v1 ± v2, one obtains
e1 = η(v1 ∓ v2) and e2 = η2(v1 ± v2) = η2e0. ‖e2‖A/‖e0‖A = η2 proves
part (a). Analogously, e2k = η2ke0 shows part (b). ��

Usually, the values λ = λmin(A) and Λ = λmax(A) are not known. Their
numerical approximation is discussed below.

Remark 9.12 (approximation of λ and Λ ). (a) Let
〈
e0, vi

〉
�= 0 hold for the

eigenvectors v1 and v2 of A corresponding to Λ and λ . Then

ρm+1,m := ‖xm+1 − x∗‖A/‖xm − x∗‖A (xm defined by (9.11a–c))

converges to η = (κ− 1)/(κ+ 1) in (9.14).
(b) Using ρ(MRich

Θ ) = 1− Θλ (e.g., for Θ = 1/ ‖A‖∞), we can approximate λ
from the convergence behaviour of the Richardson method. The approximation of
η yields an approximation of κ = (1 + η)/(1 − η) which allows us to determine
the other extreme eigenvalue Λ by Λ/λ = κ.

Finally, we describe the relation of the gradient method with the Krylov space
(cf. §8.1.4).

Proposition 9.13. The errors em = xm − x∗ of the gradient method satisfy

Km(A, e0) = span{e0, e1, . . . , em−1}

for all m ∈ N. The residuals rμ = −Aeμ (0 ≤ μ ≤ m − 1) span the space
Km(A, r0) = AKm(A, e0).
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Proof. As long as rm �= 0, the equivalent semi-iteration corresponds to polyno-
mials pm of degree m, so that Conclusion 8.13b applies. Otherwise, there is a first
m′ with rm

′
= −Aem

′
= 0. Since em

′
= pm′(A)e0, degA(e

0) ≤ m′ follows
(cf. Definition 8.10). Exercise 8.11a states that Km(A, e0) = Km′(A, e0) for all
m ≥ m′. Therefore, the statement also holds in the degenerate case of rm

′
= 0. ��

9.2.3 Numerical Examples

At first view, the gradient method seems to surpass the semi-iterative method be-
cause, in the latter case, the parameters Θk have to be chosen a priori (cf. (9.12)),
whereas the gradient method determines these values a posteriori in an optimal
way. However, the opposite is the case. While the Chebyshev method leads to
an improvement of the order, Corollary 9.11a yields the convergence rate η in
(9.13c), which is as slow as the stationary Richardson method with Θ = Θopt (cf.
Theorem 3.23).

In the model case, λ and Λ in (3.1b,c) are known and lead to

η =
cos2 (πh/2)− sin2 (πh/2)

cos2 (πh/2) + sin2 (πh/2)
= cos (πh) = 1− π2h2

2
+O(h4).

The low convergence speed of the gradient method is confirmed by the following
numerical example (Poisson model problem (2.33a,b)). Table 9.1 contains the
results for the step size h = 1/32 and the starting iterate x0 = 0. The ratios
‖xm+1 − x∗‖A/‖xm − x∗‖A in the last column of Table 9.1 clearly approxi-
mate the asymptotic convergence rate h = cos π

32 = 0.9951847. Even after 300
iterations, the value u16,16 at the midpoint is wrong by 50%: 0.2778 instead of
0.5. The error measured in the scaled energy norm h2‖xm − x∗‖A deviates very
little from the maximum norm ‖em‖∞. However, the error with respect to the
energy norm ‖·‖A decreases uniformly, whereas the ratios of ‖em‖∞ oscillate.
Because η = ρ(MJac), the results in Table 9.1 and Table 3.1 prove to be very
similar.

m value in the middle ‖em‖A

‖em−1‖A
m value in the middle ‖em‖A

‖em−1‖A

1 -1.8656010-3 100 -1.8977110-2 0.993444
2 -3.5229310-3 0.844824 110 -5.1352010-3 0.993749
3 -4.8403410-3 0.907804 120 1.0180510-2 0.993990
4 -5.9761110-3 0.935293 200 1.4514610-1 0.994852
5 -7.1019810-3 0.946906 250 2.1830110-1 0.995024
6 -8.1629510-3 0.953838 296 2.7354810-1 0.995102
7 -9.2399810-3 0.958895 297 2.7571010-1 0.995103
8 -1.0269910-2 0.962711 298 2.7570210-1 0.995104
9 -1.1323010-2 0.965778 299 2.7784410-1 0.995105
10 -1.2336010-2 0.968271 300 2.7783610-1 0.995106

Table 9.1 Result of the gradient method Υgrad[ΦRich
1 ] for h=1/32 (Poisson model problem).



9.2 Gradient Method 219

9.2.4 Gradient Method Based on Other Basic Iterations

Let Υgrad ∈ N be the notation of the gradient method. Above we applied the
gradient method to the Richardson iteration ΦRich

1 resulting in the nonlinear
iteration Υgrad[Φ

Rich
1 ]. Now we discuss Υgrad[Φ] for other iterations.

9.2.4.1 Standard Version

By Remark 9.9, the gradient method is a particular semi-iterative method with
Richardson’s iteration as the basic iteration. From the analysis of semi-iterative
methods, we know that other basic iterations Φ may better suit because of a smaller
spectral condition number κ(NA) with the matrix N = NΦ[A] of the second
normal form. This suggests replacing Richardson’s iteration by another one (e.g.,
the SSOR iteration; cf. §8.4.4). For this purpose, the matrix A has to be replaced
formally with Â := NA, because the Richardson method applied to the left-
transformed (preconditioned) system Âx = b̂ := Nb is equivalent to Φ applied to
A (cf. Proposition 5.44).

Let A and N be positive definite. Since, in general, the matrix Â = NA is no
longer symmetric, Â does not satisfy the assumption (9.1), which is necessary for
the applicability of the gradient method. A remedy is offered in §5.6.6: the iteration
Φ̌ defined by

x̌m+1 = x̌m −N1/2(AN1/2x̌m − b) = x̌m − (Ǎx̌m − b̌), (9.15a)

Ǎ := N1/2AN1/2, b̌ := N1/2b , (9.15b)

is equivalent to the basic iteration Φ(xm, b) = xm − N(Axm − b) via the trans-
formation

x̌m = N−1/2xm

(multiplying by N±1/2 is of course not practically feasible2) and represents the
Richardson iteration for the system Ǎx̌ = b̌ with the positive definite matrix Ǎ.
Therefore, the gradient method has to be applied not to F in (9.2) but to

F̌ (x̌) :=
1

2

〈
Ǎx̌, x̌

〉
−
〈
b̌, x̌

〉
. (9.15c)

Its negative gradient is the new residual

ř := b̌− Ǎx̌ = N1/2r (r = b−Ax).

The gradient method (9.11b,c) associated with Ǎ yields the iterates

Υgrad[Φ̌] :
x̌m+1 := x̌m + λ̌opt ř

m,

řm+1 := řm − λ̌opt Ǎ řm

}
with λ̌opt :=

‖řm‖22〈
Ǎřm, řm

〉 .
2 In principle, we may replace the factorisation N = N

1

2 ·N 1

2 with the Cholesky decomposition
N = V V H and introduce Ǎ = V HAV (cf. Exercise 5.63).
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Inserting Ǎ = N1/2AN1/2, x̌m = N−1/2xm, řm = N1/2rm, and solving the
defining equations for xm+1 and rm+1, we obtain the following algorithm for the
iterates {xm}:

xm+1 := xm + λ̌optNrm with N = NΦ[A], (9.16a)

Υgrad[Φ] : rm+1 := rm − λ̌optANrm with (9.16b)

λ̌opt := λopt(r
m, Nrm, A) =

〈Nrm, rm〉
〈ANrm, Nrm〉 . (9.16c)

The quantities N± 1
2 do no longer appear, so that Υgrad[Φ] defined by (9.16a–c)

is a practical algorithm. We call Υgrad[Φ] defined in (9.16a–c) the gradient method
applied to the basic iteration Φ(·, ·, A). The term ‘preconditioned gradient method’
is also used. Note that not the method but the gradient is ‘preconditioned’. While
the method (9.11a–c) takes the (negative) gradient rm as search direction, this is
replaced in (9.17a–e) with the ‘preconditioned’ gradient q = Nr.

The derivation of (9.16a–c) requires N > 0. Nevertheless, Υgrad[Φ] is well de-
fined as long as A > 0 and N is regular since this guarantees 〈ANrm, Nrm〉 > 0
for rm �= 0 (rm = 0 is a ‘lucky breakdown’ since the exact solution x = xm is
found). However, the convergence statements are restricted to the case A > 0 and
N > 0 . Since A > 0 implies N > 0 for Φ ∈ Lsym, symmetric iterations Φ are
the natural basic iterations of the gradient method.

In analogy to Remark 9.9, equation (9.16a) proves the next remark.

Remark 9.14. The sequence {xm} of the gradient method (9.16a–c) applied to the
positive definite iteration Φ is identical to the sequence {ym} of the semi-iterative
method

ym+1 = ym −Θm+1N(Aym − b) = Θm+1Φ(y
m, b, A) + (1−Θm+1)y

m

with Φ as the basic iteration when the factors Θm+1 are defined by λ̌opt in (9.16c).

The amount of work needed by the algorithm (9.16a–c) can be reduced by
introducing qm := Nrm and am := Aqm. Note that qm and am need not be
saved for the next iteration step.

start: x0 arbitrary; r0 := b−Ax0; (9.17a)
iteration m = 0, 1, . . . : qm := Nrm; am := Aqm; (9.17b)

λopt := λopt(r
m, qm, A) = 〈qm,rm〉

〈am,qm〉 ; (9.17c)
xm+1 := xm + λoptq

m; (9.17d)
rm+1 := rm − λopta

m; (9.17e)

Remark 9.15. The representation (9.17a–e) shows that for each iteration step only
one multiplication by N and one by A are necessary. For N = I, we regain the
algorithm (9.11a–c).
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The convergence of the method (9.17a–e) follows by applying the convergence
statement of Theorem 9.10 to the transformed problem (9.15c): Φ̌(x̌) = min.
First, we obtain an error estimate for x̌m with respect to the corresponding energy
norm ‖·‖Ǎ. Because of

‖x̌m − x̌∗‖2
Ǎ
=

〈
Ǎ(x̌m − x̌∗), x̌m − x̌∗〉

= 〈A(xm − x∗), xm − x∗〉
= ‖xm − x∗‖2A ( x̌∗ = N−1/2x∗ )

the Ǎ-estimates of x̌m − x̌∗ carry over to the A-norm of the error xm − x∗.

Theorem 9.16 (convergence). Let A and N = W−1 be positive definite. If

γW ≤ A ≤ ΓW, (9.18a)

the iterates in (9.17a–e) satisfy the error estimate

‖xm − x∗‖A ≤
(
Γ − γ

Γ + γ

)m

‖x0 − x∗‖A . (9.18b)

Remark 9.17. Under an assumption analogous to that in Remark 9.12a, we con-
clude for algorithm (9.17a–e) that the convergence factors converge to η = κ−1

κ+1
with κ := κ (NA) = Γ / γ (here, γ and Γ are the optimal bounds in (9.18a)).
Therefore, the gradient method (9.17a–e) can be used to determine the spectral
condition number Γ/γ.

We regard the gradient method as a general technique that can be applied to all
positive definite iterations Φ and problems with A > 0. This is the same situation
as the Chebyshev method which also requires specifying the basic iteration.

Theorem 9.18. Let Φ be a positive definite iteration and assume that A > 0 . The
gradient method applied to Φ converges as fast as the optimally damped iteration
Φϑopt

for ϑopt = 2
Γ+γ . However, the explicit knowledge of the optimal bounds

γ and Γ in (9.18a) is not necessary.

Proof. Compare the results of Theorem 6.7 and (9.18b), and use γ = λmin(NA)
and Γ = λmax(NA). ��

Now the statement of Proposition 9.13 reads as follows.

Remark 9.19. The errors em = xm − x∗ of the gradient method (9.17a–e) satisfy

Km(NA, e0) = span{e0, e1, . . . , em−1}

for all m ∈ N. The residuals rμ = −Aeμ (0 ≤ μ ≤ m − 1) span the space
AKm(NA, e0) = Km(AN, r0).
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9.2.4.2 Residual Oriented Version

In (9.15a) we interpreted the iteration Φ as Richardson’s iteration applied to the
positive definite matrix Ǎ. This is not the only possibility. Φ is also equivalent to
ΦRich
1 applied to Ā:

x̄m+1 := x̄m − (Āx̄m − b̄) with

Ā := A1/2NA1/2 > 0, b̄ := A1/2Nb, x̄m := A1/2xm. (9.19)

Exercise 9.20. Prove the following: (a) The application of the gradient method to
the minimisation of F̄ (x̄) := 1

2

〈
Āx̄, x̄

〉
−

〈
b̄, x̄

〉
yields (9.20a–c)—denoted by

Υ res
grad[Φ]—after a reformulation using the x-quantities:

start: x0 arbitrary, q0 := N(b−Ax0), (9.20a)

xm+1 := xm + λopt q
m (9.20b)

with λopt := λopt(q
m, Aqm, N) = 〈qm,Aqm〉

〈NAqm,Aqm〉 ,

qm+1 := qm − λopt NAqm. (9.20c)

(b) The methods Υgrad[Φ] in (9.17a–e) and Υ res
grad[Φ] in (9.20a–c) are different.

Choosing N = I, we do not regain the gradient method (9.11a–c).
(c) Let γ and Γ be the bounds in (9.18a). Then the error estimate (9.20d) holds:

‖N1/2A(xm − x∗)‖2 ≤
(
Γ − γ

Γ + γ

)m

‖N1/2A(x0 − x∗)‖2. (9.20d)

Note that both versions (9.17a–e) and (9.20a–c) lead to the same convergence
rate, but the involved norms are different. If W ∼ A, the norms ‖ · ‖A and ‖ · ‖ANA

are equivalent. On the other hand, for N = I the residual A(xm − x∗) = rm

is the subject of minimisation and for N ∼ I the norms ‖N1/2rm‖2 and ‖rm‖2
are equivalent.

Remark 9.21. The statements of Remark 9.19 also hold for the errors em=xm−x∗

of the gradient method (9.20a–c) as well as for the results of the following variant
(9.21a–c).

9.2.4.3 Directly Positive Definite Case

Assume Φ ∈ L>0, i.e., the iteration Φ(·, ·, A) is directly positive definite:

N [A]A > 0 (cf. Definition 5.14).

Then the original method (9.10a–c) can be applied with A replaced with the matrix
N [A]A. Note that in this case the matrix A ∈ D(Φ) is only required to be regular.
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The quadratic function

F (x) :=
1

2
〈NAx, x〉 − 〈Nb, x〉

replaces F in (9.2). The corresponding gradient method reads as follows:

start: x0 arbitrary, q0 := N(b−Ax0), (9.21a)

xm+1 := xm + λ̊ qm with λ̊ :=
‖qm‖22

〈NAqm, qm〉 , (9.21b)

qm+1 := qm − λ̊ NA qm. (9.21c)

Theorem 9.22. Let NA be positive definite with

γ := λmin(NA) and Γ := λmax(NA).

The iterates in (9.21a–c) satisfy the error estimate

‖xm − x∗‖NA ≤
(
Γ − γ

Γ + γ

)m

‖x0 − x∗‖NA .

9.2.5 Numerical Examples

m value in the middle ‖em‖A

‖em−1‖A

1 0.2851075107 0.4576
2 0.9245177570 0.5192
3 0.1780816984 0.5886
4 0.2274720552 0.6454
5 0.2956906889 0.6858

10 0.4381492069 0.7577
20 0.4954559469 0.7672
30 0.4996724015 0.7682
40 0.4999764630 0.7685
50 0.4999983084 0.7687
60 0.4999998782 0.7688
70 0.4999999912 0.7689

Table 9.2 Gradient method Υgrad[ΦSSOR
ω=1.82]

applied to the SSOR iteration for h = 1/32.

The SSOR iteration is used as a basic
iteration of the gradient method for the
Poisson model case. As in Table 6.1, we
choose the relaxation parameter

ω = 1.82126912

for the step size h = 1/32. The results
given in Table 9.2 suggest the conver-
gence rate η ≈ 0.769. From (9.14), we
conclude the spectral condition number

Γ/γ = κ = (1 + η)/(1− η) = 7.66.

According to Table 6.1, the convergence
rate of the SSOR iteration equals 0.8796.
From ρ(MSSOR) = 1 − λ, we deduce
λ = 0.1204, implying Γ = 7.66 and γ = 0.922. Hence,

ϑopt = 2/(Γ + γ) ≈ 1.92

is the optimal damping or (more precisely) extrapolation factor for ΦSSOR
ω=1.82 in the

Poisson model case with h = 1/32.
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9.3 Method of the Conjugate Directions

9.3.1 Optimality with Respect to a Direction

The slowness of the gradient method is demonstrated in Theorem 9.10 by the
two-dimensional subspace spanned by the two extreme eigenvectors. Therefore, a
system of two equations is able illustrate this situation. The matrix

A = diag{λ1, λ2} with 0 < λ1 ≤ λ2

has the condition cond2(A) = λ2/λ1. The corresponding function F in (9.2) leads
to ellipses as level curves

Nc := {x ∈ R2 : Φ(x) = c}, where c ∈ R.

In the two-dimensional case, the gradient method can be illustrated graphically as
follows: The point xm [xm+1] lies on the ellipse E(m) := Nc with c = F (xm)
[or E(m+1) := Nc with c = F (xm+1), respectively]. The straight line xmxm+1

is vertical to E(m) and tangential to E(m+1). Therefore, succeeding straight lines
(i.e., the corrections xm+1−xm) form right angles. Figure 9.1 shows the case of an
elongated ellipse, where the iteration path forms a zigzag line. This illustrates that
the approximation to the centre requires many iteration steps. Note that the ellipses
are more elongated the larger the condition is. In the case of a circle (λ1 = λ2),
the first correction would already yield the exact solution x∗.

x0

x1

2x

3x
x*

Fig. 9.1 The iterates xm and the corresponding level lines of the function F .

From the fact that the corrections xm+3−xm+2 and xm+1−xm are parallel, one
understands that the iterate xm+2 must be corrected in exactly the same direction
in which xm has been corrected previously. Hence, xm+2 has lost the property of
xm+1 being optimal with respect to the direction xm+1 − xm. We define:

x is optimal with respect to a direction p �= 0, if
F (x) ≤ F (x+ λp) for all λ ∈ K .
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Lemma 9.23. The optimality of x with respect to p is equivalent to

p⊥ r := b−Ax.

Proof. A necessary condition for f(λ) = F (x + λp) in (9.5c) to be minimal for
λ = 0 is 〈Ax− b, p〉 = −〈r, p〉 = 0. As (9.5c) is restricted to the field R, use
(9.9c) for the complex case. ��

Exercise 9.24. x is called optimal with respect to a subspace U if F (x)≤F (x+ ξ)
for all ξ ∈ U . Prove that x is optimal with respect to U if and only if

r = b−Ax ⊥ U .

Remark 9.25. The iterates xm of the gradient method satisfy (9.22a,b):

xm+1 is optimal with respect to rm = b−Axm, (m ≥ 0) (9.22a)

rm+1 ⊥ rm. (9.22b)

Proof. By Lemma 9.23, (9.22a) and (9.22b) are equivalent. rm ⊥ rm+1 =
rm − λopt(r

m, rm)Arm follows from the definition (9.6b,c) of λopt. ��

The principal deficit of the gradient method can be stated as follows.
The relation rm+1 ⊥ rm is not transitive, i.e., rm⊥ rm+1 and rm+1 ⊥ rm+2 do
not imply rm ⊥ rm+2. Therefore, in general, xm+2 has lost its optimality with
respect to rm.

9.3.2 Conjugate Directions

The change of x into x′ := x + q (q �=0) transforms the residual r = b− Ax of
x into the residual

r′ = b−Ax′ = b−A(x+ q) = b−Ax−Aq = r −Aq

of x′. Let x be optimal with respect to the direction p :

r⊥ p .

The new value x′ remains optimal with respect to p if and only if r′⊥ p, i.e., Aq⊥ p,
because the latter property is equivalent to

−〈Aq, p〉 = 〈r −Aq, p〉 = 〈r′, p〉 = 0 .
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This proves the next statement.

Lemma 9.26. The optimality of x with respect to p �= 0 implies the optimality of
x′ = x+ q with respect to the same p �= 0 if and only if

Aq⊥ p . (9.23)

Vectors p , q with the property (9.23) are called conjugate. The term ‘conjugate’
can also be replaced with ‘A-orthogonal’, abbreviated as

q ⊥A p ,

where ⊥A denotes orthogonality with respect to the scalar product 〈·, ·〉A in (9.8a).
Note that the latter definitions only make sense if A > 0.

Condition (9.23) leads us to the following method of conjugate directions.

method of conjugate directions (9.24)

start: x0 arbitrary, r0 := b−Ax0;
loop: for m = 0, 1, . . . , n− 1: (n := #I)

choose a direction pm �= 0 which is conjugate to all (9.24a)
preceding directions p� (� < m);

xm+1 := xm + λopt(r
m, pm, A), A pm with (9.24b)

λopt(r
m, pm, A) := 〈rm, pm〉 / 〈Apm, pm〉 ; (9.24c)

rm+1 := rm − λopt(r
m, pm, A)Apm; (9.24d)

The lines (9.24b,c) show that xm+1 is optimal with respect to the direction pm:
F (xm+1) = min{F (xm + λpm) : λ ∈ K} or equivalently

rm+1 ⊥ pm. (9.24e)

Definition (9.24d) is equivalent to rm+1 := b−Axm+1.

The properties of this method are collected below.

Theorem 9.27. (a) The directions {pm : 0 ≤ m ≤ n− 1} form a basis of pairwise
conjugate vectors, i.e., an A-orthogonal basis.

(b) The algorithm terminates at m = n−1 with the exact solution xm+1=xn=x∗.

(c) The iterate xm is optimal with respect to all directions p0, . . . , pm−1, i.e., it is
optimal with respect to the subspace Um := span{p0, p1, . . . , pm−1}. The residuals
rm satisfy

rm ⊥ p� (0 ≤ � ≤ m− 1), (9.25a)
rm ⊥ U� (1 ≤ � ≤ m). (9.25b)
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(d) The error em = xm − x∗ fulfils the conditions

em ⊥A p� (0 ≤ � ≤ m− 1). (9.25c)

(e) xm solves the minimisation problem

F (xm) = min
λ�∈K

{
F (ξ) : ξ = x0 +

m−1∑
�=0

λ� p
�

}
= min

ξ−x0∈Um

F (ξ), (9.25d)

where the minimum in (9.25d) is taken at λ� = λopt(r
�, p�, A).

Proof. (a) First, we note that the division by 〈Apm, pm〉 in (9.24c) is well defined
because of pm �= 0, as long as an additional conjugate direction exists, i.e., as long
as m < n. As soon as m = n − 1, the vectors p0, . . . , pn−1 span the whole space
KI and the process cannot be continued.

(c) The statement (9.25a) is true for m = 0 since {� : 0 ≤ � ≤ m − 1} is the
empty set. Suppose that (9.25a) holds for m. By Lemma 9.23, xm is optimal with
respect to all directions p� (0≤�≤m−1). According to Lemma 9.26, this property
is inherited by xm+1 because of pm⊥A p� (0≤�≤m− 1); hence rm+1⊥ p� holds
for all 0 ≤ � ≤ m− 1. The missing condition rm+1⊥ pm follows from (9.24e).

(d) (9.25c) follows from (9.25a), as Aem = A(xm − x∗) = Axm − b = −rm.
(b) (9.25b) proves that rn⊥ Un. Since Un = KI (cf. part (a)), rn = 0 follows,

i.e., xn = x∗.
(e) Inserting Eqs. (9.24b) one into another, we obtain

xm = x0 +

m−1∑
�=0

a� p
� with a� = λopt(r

�, p�, A).

From (9.9c) with x̃ := xm, x := ξ , and from rm⊥ Um, we deduce that

F (ξ)− F (xm) = �e
〈
rm,

m−1∑
�=0

(λ� − a�) p
�

〉
+

1

2
〈A(ξ − xm), ξ − xm〉

=
1

2
‖ξ − xm‖2A ≥ 0

with an equal sign only for ξ = xm, i.e., for λ� = a�. This proves (9.25d). ��

The method of conjugate directions is not interesting in practice, unless the
directions pm in (9.24) are suitably selected. If, for instance, one chooses a fixed
conjugate system {p0, . . . , pn−1}, the starting value x0 := x∗ − pn−1 with the
residual r0 = Apn−1 leads to a sequence x0 = x1 = . . . = xn−1 which only in
the last step changes to the exact solution xn = x∗. This explains why, in general,
no convergence estimate as in (9.13b) can be given.
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9.4 Minimal Residual Iteration

For general matrices A, the function (9.7a) with H = I can be minimised, i.e.,
the residual r = b − Ax is minimised: F (x) := ‖A(x− x∗)‖22 = ‖r‖22 = min.
Choosing the gradient of F as search direction, we would regain the gradient
method in §9.2 applied to the equation AHAx − AHb. Instead of this gradient,
one can use the residual r = b − Ax of the original system as search direction.
This yields the minimal residual iteration

xm+1 = xm − �e〈Arm, rm〉
〈Arm, Arm〉 r

m, rm = b−Axm.

For general matrices A, the method cannot converge since r0 �= 0 may lead to〈
Ar0, r0

〉
= 0 so that xm = x0 �= A−1b for all m. To avoid this problem, we

need the following assumptions.

Theorem 9.28. Assume A+AH > 0 . Then the minimal residual iteration converges
with the rate

c :=

√
λmin(A+AH)

2 ‖A‖2
. (9.26)

The convergence is uniform with respect to the residual: ‖rm+1‖2 ≤ c ‖rm‖2 .

Proof. See Saad [328, Theorem 5.10]. ��
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