
Chapter 8

Semi-Iterative Methods

Abstract The semi-iteration comes in three formulations. The first one in Section
8.1 is the most general and associates each semi-iterate with a polynomial. Using
the notion of Krylov spaces, we only require that the errors of the semi-iterates ym

be elements of the Krylov space x0 +NKm(AN, r0). In the second formulation of
Section 8.2, the polynomials pm associated with ym are related either by a two-term
or by a three-term recursion. Section 8.3 tries to determine the optimal polynomials.
Here the result depends on what quantity we want to minimise. Three minimisation
problems are discussed. The last formulation is practically solvable and leads to
(transformed) Chebyshev polynomials. The corresponding semi-iteration is called
the Chebyshev method (cf. §8.3.4). The Chebyshev method improves the order of
convergence. Its convergence speed corresponds to the square root of the spectral
condition number (cf. §8.3.5). In Section 8.4 the Chebyshev method is applied to
the iterations discussed in Part I. In Section 8.5 we describe the ADI method which
is not really of the form discussed above, but it might be seen as a generalisation of
semi-iterations (replacing scalar parameters by matrix-valued ones).

8.1 First Formulation

8.1.1 Notation

Let Φ ∈ L be a linear and consistent (not necessarily convergent) iteration with
an iteration matrix M . In the following Φ is also called the basic iteration. Assume
that for a starting iterate x0, the iterates

xm+1 =Mxm +Nb = Φ(xm, b)

are computed. Up to now, the last computed iterate xm is regarded as the result of
the iterative process. The previously calculated xj (0 ≤ j ≤ m− 1) are ‘forgotten’.
The semi-iterative method is based on a different view. Now, the result of m steps
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of the basic iteration Φ is the complete sequence

Xm := (x0, x1, . . . , xm) ∈ (KI)m+1. (8.1)

We shall investigate whether a better result than xm can be constructed from Xm.
A semi-iterative method is a mapping

Σ :

∞⋃
m=0

(KI)m+1 → KI .

The results
ym := Σ(Xm) (m = 0, 1, 2, . . .)

yield a new sequence: the semi-iterative sequence. We shall see that in many cases
{ym} converges faster than {xm}.

Remark 8.1. The simple example ym = Σ(x0, x1, . . . , xm) := xm shows that an
optimally chosen semi-iterative method cannot be worse than the basic iteration.

To simplify the notation of polynomials, we introduce the following definition.

Definition 8.2. For m ∈ N0, Pm is the linear space of polynomials of degree ≤m
with the underlying field K. P−1 := {0} contains the zero polynomial.

8.1.2 Consistency and Asymptotic Convergence Rate

Similar as in Definition 2.5, a semi-iterative method Σ is called consistent if
equation (8.2) holds for all solutions of Ax = b :

x = Σ( x, x, . . . , x︸ ︷︷ ︸
m+1 arguments

) (m = 0, 1, 2, . . .). (8.2)

The convergence rate ρ=ρ(M) can be characterised as the minimal ρ satisfying

lim
m→∞(‖xm − x‖/‖x0 − x‖)1/m ≤ ρ for all x0 �= x (cf. Remark 2.22b).

This characterisation can be transferred to the semi-iterative case.

Definition 8.3. The semi-iterative method has the asymptotic convergence rate ρ,
if ρ is the smallest number with

lim
m→∞

(
‖ym − x‖/‖y0 − x‖

)1/m ≤ ρ
(
x = A−1b

)
for all semi-iterative sequences {ym} corresponding to arbitrary starting iterates
y0 = x0.



8.1 First Formulation 177

In the following, we restrict our considerations to linear semi-iterations. Σ is
called linear if ym = Σ(Xm) is a linear combination

ym =

m∑
j=0

αmj x
j (8.3)

with coefficients αmj ∈ K (m ∈ N0, 1 ≤ j ≤ m). Obviously, a linear semi-
iterative method is consistent if and only if

m∑
j=0

αmj = 1 for all m = 0, 1, 2, . . . . (8.4)

Applying condition (8.4) to m = 0, we find that a consistent semi-iterative method
satisfies the initial condition

y0 = x0. (8.5)

8.1.3 Error Representation

Theorem 8.4. Let x be a solution of Ax=b , while M denotes the iteration matrix
of the basic iteration Φ ∈ L . Then the error

ηm := ym − x (x = A−1b) (8.6a)

admits the representation

ηm = pm(M) e0 with e0 := x0 − x, (8.6b)

where y0 = x0 (cf. (8.5)) is the starting iterate and pm is the polynomial

pm(ζ) =

m∑
j=0

αmj ζ
j ∈ Pm (8.6c)

with the coefficients αmj in (8.4).

Proof. Let ej = xj − x be the iteration errors of the basic iteration. Subtracting
x =

∑m
j=0 αmjx from ym =

∑m
j=0 αmjx

j (cf. (8.2) and (8.4)), we obtain the
semi-iterative error

ηm := ym − x =

m∑
j=0

αmj(x
j − x) =

m∑
j=0

αmje
j .

Inserting the representation ej = xj − x =M je0 (cf. (2.16b)), we arrive at
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ηm =

m∑
j=0

αmj

(
M je0

)
=
( m∑

j=0

αmjM
j
)
e0 = pm(M)e0. ��

Theorem 8.4 associates the linear semi-iteration Σ with a family of polynomials

{pm ∈ Pm : m = 0, 1, . . .}.

Vice versa, any sequence {pm ∈ Pm} of polynomials defines a semi-iterative
method by means of its coefficients αmj .

Remark 8.5. (a) A linear semi-iterative method Σ is uniquely described by the
family of associated polynomial sequence {pm ∈ Pm}. Σ is consistent if and
only if

pm(1) = 1 for m = 0, 1, . . . . (8.6d)

(b) Let the basic iteration with iteration matrix M be consistent. Then the semi-
iterates ym have the representation1

ym =Mmx
0 +Nmb with Mm := pm(M), Nm := (I −Mm)A−1. (8.7)

(c) The asymptotic convergence rate is equal to

lim
m→∞ ρ(pm(M))1/m.

If M is diagonalisable, the quantity above coincides with lim ‖pm(M)‖1/m.
The equality

lim ρ(pm(M))1/m = lim ‖pm(M)‖1/m

is not valid in general, but holds for many important polynomial sequences pm
(cf. Eiermann–Niethammer–Varga [120]).

From (8.6d), we derive an alternative characterisation of pm.

Remark 8.6. (a) Any polynomial pm ∈ Pm satisfying the consistency condition
(8.6d) is uniquely associated with a polynomial qm ∈ Pm−1 so that

pm(ζ) = 1 − (1 − ζ) qm(1 − ζ) . (8.8)

(b) M = I −NA (cf. (2.9′)) yields

pm(M) = I −NAqm(NA).

1 The expression I −Mm has the form XmA so that (I −Mm)A−1 = Xm is well defined
also for singular A.
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8.1.4 Krylov Space

Definition 8.7. The Krylov space associated with a matrix X ∈ KI×I and with a
vector v ∈ KI is defined by

Km(X, v) := span{v,Xv, . . . , Xm−1v} for m ∈ N,

while K0(X, v) := {0} (cf. Aleksey Nikolaevich Krylov [249]).

Exercise 8.8. Let U = span{u1, . . . , um} be a subspace of KI .
(a) Prove that span{U , x} = span{U , y} for any x, y with x− y ∈ U .
(b) Let A ∈ KI×I be any matrix. AU abbreviates the subspace {Ax : x ∈ U}.
Prove that AU = span{Au1, . . . , Aum}.

Since the monomials {1, x, . . . , xm−1} span the space Pm−1 of polynomials of
degree ≤ m − 1, we obtain the first statement of the next remark. There we use
the notation v + U := {v + u : u ∈ U} for the affine subspace with a subspace
U ⊂ KI and a vector v ∈ KI . The residual of an approximation x̃ is defined by
r := b−Ax̃ and is the negative defect (2.17).

Proposition 8.9. (a) The connection with matrix polynomials is given by

Km(X, v) = {p(X)v : p ∈ Pm−1} .

(b) Assume that the iteration Φ with the iteration matrix M = I − NA yields
the iterates xm with the errors em = xm − x and the residuals rm := b− Axm.
They satisfy

xm ∈ x0 +NKm(AN, r0) = x0 +NAKm(NA, e0) ⊂ x+ Km+1(NA, e
0),

em ∈ e0 +NKm(AN, r0) = e0 +NAKm(NA, e0) ⊂ Km+1(NA, e
0),

rm ∈ r0 +ANKm(AN, r0) ⊂ Km+1(AN, r
0),

and

span{e0, . . . , em−1} = Km(M, e0) = Km(NA, e0),

span{r0, . . . , rm−1} = Km(M, r0) = Km(NA, r0).

(c) The following identity holds for regular T :

TKm(X, v) = Km(TXT−1, T v).

(d) For m ∈ N0, we have

XKm(X, v) ⊂ v+XKm(X, v) ⊂ span{v}+XKm(X, v) = Km+1(X, v). (8.9)
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Proof. The statements in part (b) follow by induction. Note that Km(M, v) =
Km(NA, v) holds for all v since a polynomial in M = I − NA can be written
as a polynomial of same degree in NA. The inclusions use part (d).

Part (c) is a consequence of Exercise A.16a. ��

Definition 8.10. The degree of a vector v∈KI (with respect to a matrixX∈KI×I )
is defined by

degX(v) := min {m ∈ N0 : p(X)v = 0 for p ∈ Pm with degree(p) = m} .

Exercise 8.11. For m ∈ N, prove: (a) dim(Km(X, v)) = min{m, degX(v)} ≤
m.
(b) If dim(Km+1(X, v)) = dim(Km(X, v)), then Km+1(X, v) = Km(X, v).
If, in addition, X is regular, XKm(X, v) = Km(X, v) also holds.
(c) degX(v) = 0 holds if and only if v = 0, while degX(v) = 1 characterises all
eigenvectors of X .
(d) degX(v) ≤ degree(μX) ≤ #I , where μX is the minimum function (A.16c).
(e) Any w∈ Km(X, v) is characterised by a polynomial p∈ Pm−1 via w=p(X)v.
If dim(Km(X, v)) = m, this polynomial is unique.

Lemma 8.12. For any v ∈ KI and any regular matrix X, the polynomial p with
p(X)v = 0 and degree(p) = degX(v) satisfies p(0) �= 0.

Proof. If p(0) = 0, there is a polynomial q ∈ PdegX(v)−1 with p(ξ) = ξ q(ξ).
Hence 0 = p(X)v = Xq(X)v implies that q(X)v = 0 in contradiction to the
minimality of degX(v). ��

Combining Proposition 8.9a with Theorem 8.4 and repeating the arguments of
Proposition 8.9, we obtain the next statement.

Conclusion 8.13. (a) The first formulation of a semi-iteration is equivalent to

ym ∈ x0 +NKm(AN, r0) ⊂ x+ Km+1(NA, e
0),

where x := A−1b . The polynomial (8.6c) coincides with the polynomial associated
with the error ηm = ym − x ∈ Km+1(NA, e

0) in (8.6a) by Exercise 8.11e.
(b) If the polynomials in (8.6c) satisfy degree(pμ) = μ , the errors ηm span

Km(M, e0) = span{η0, η1, . . . , ηm−1}.

(c) The residuals rm = −Aηm = b − Aym of the semi-iterates span the space
A span{η0, . . . , ηm−1} . Under the conditions of part (b), Proposition 8.9c yields

span{r0, r1, . . . , rm−1} = AKm(M, e0) = Km(AN, r0).
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8.2 Second Formulation of a Semi-Iterative Method

8.2.1 General Representation

The representation used in §8.1 requires storing all iterates (x0, x1, . . . , xm), which
is not desirable in the case of largem and high-dimensional systems. Since, in §8.1,
the definition of ym = Σ(Xm) is completely independent of the previous iterates
yj = Σ(Xj) (0≤ j≤m−1), it is in general not possible to use the semi-iterative
results y0, . . . , ym−1 for computing ym.

This situation changes in the second formulation. Let Φ ∈ L be the basic
iteration. After starting with

y0 = x0 (cf. (8.5)), (8.10a)

we compute the iterates recursively by

ym = ϑm Φ(y
m−1, b) + (1 − ϑm)ym−1 (m ≥ 1) (8.10b)

with extrapolation factors ϑm ∈ K (m ∈ N) that may be chosen arbitrarily.
Exploiting the normal forms Φ(x, b) = Mx +Nb = x −N(Ax − b), equation

(8.10b) can be written in the form (8.10b′) or (8.10b′′”):

ym = ϑm (Mym−1 +Nb) + (1 − ϑm) ym−1, (8.10b′)

ym = ym−1 − ϑmN(Aym−1 − b) = Φϑm
(ym−1, b). (8.10b′′”)

Formulae (8.10b′,b′′) represent one step of the damped version Φϑm
of the basic

iteration (cf. §5.2.2), however with a parameter ϑm depending on m.
Below we state that recursion (8.10a,b) yields a semi-iterative method.

Theorem 8.14. For arbitrary factors ϑm ∈ K (m ∈ N) , algorithm (8.10a,b)
defines a linear and consistent semi-iteration Σ. The polynomials {pm ∈ Pm}
describing Σ are recursively defined by

p0(ζ) = 1, pm(ζ) = (ϑmζ + 1 − ϑm) pm−1(ζ) (m ∈ N). (8.11)

Proof. (i) One shows by induction that the polynomials pm in (8.11) satisfy the
consistency condition (8.6d): pm(1) = 1. Also degree (pm) ≤ m is obvious.

(ii) The basic iteration Φ is assumed to be consistent. By construction (8.10b′),
the first matrix Mm in the representation ym = Mmx

0 + Nmb has the form
Mm = ϑmMMm−1 + (1 − ϑm)Mm−1, where M0 = I . According to (8.7),
the polynomials in (8.11) lead to the same matrix Mm = pm(M). Since these
matrices uniquely determine ym because of Nm := (I − Mm)A−1 (using the
consistency of Φ), the method (8.10a,b) coincides with the semi-iteration defined
by the polynomials (8.11). The case of an inconsistent basic iteration is left to the
reader (proof by induction). ��

The case ϑm=0 is uninteresting because of ym=ym−1. Therefore, we assume
that ϑm �= 0. The set of all methods representable by (8.10a,b) is characterised next.
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Lemma 8.15. Let Φ∈L be the basic iteration and assume ϑm �= 0 in (8.10b). Then
the second formulation (8.10a,b) represents exactly those linear and consistent
semi-iterations for which the associated polynomials pm satisfy (8.6d) and

degree(pm) = m, pm−1 is a divisor of pm for all m ≥ 1. (8.12a)

Given polynomials {pm} with (8.6d) and (8.12a), the extrapolation factors ϑm
of the equivalent representation (8.10a,b) are determined by

pm(ζ)

pm−1(ζ)
= 1 + ϑm(ζ − 1). (8.12b)

Proof. In the case of ϑm �= 0, the method (8.10a,b) leads to polynomials (8.11)
satisfying degree(pm) = m; hence, (8.12a) is satisfied. Vice versa, under the
assumption (8.12a), pm/pm−1 must be a polynomial of the form (8.12b). ��

The example of recursion (8.10a,b) shows that the mappingXm �→ym=Σ(Xm)
does not need the iterates ofXm explicitly. SinceXm is uniquely determined by x0,
there is a mapping Ξ : x0 �→ ym for ym =Σ(Xm). Recursion (8.10a,b) describes
such a mapping Ξ .

By Lemma 8.15, the semi-iterate ym for a fixed m can be produced as follows.

Remark 8.16. ym is connected with a polynomial pm. Let

pm(ζ) = cm
∏m

ν=1
(ζ − ζν) with cm = 1/

∏m

ν=1
(1 − ζν) (8.13a)

be a factorisation into linear factors (possibly with complex ζν) and define auxiliary
polynomials p̂μ for 0 ≤ μ ≤ m by

p̂μ(ζ) =
∏μ

ν=1

ζ − ζν
1 − ζν

. (8.13b)

Set ϑμ := 1
1−ζμ

for 0 < μ ≤ m. Then all polynomials p̂μ satisfy (8.12a,b) and
p̂m = pm. The corresponding semi-iteration

ŷμ=Φϑμ(ŷ
μ−1, b) (1 ≤ μ ≤ m; cf. (8.10a,b))

is as easy to perform and yields ŷm = ym (only for μ = m, not for μ < m).
However, this approach has severe disadvantages.

1. To compute the next ym+1, we have to perform (8.10a,b) again from μ = 0 to
μ = m+ 1, since then other auxiliary polynomials p̂μ are needed.

2. The second formulation (8.10a,b) may be unstable. For relative small m, the
rounding error influence of the iteration errors ym − x can already predominate.
It is possible to avoid instability by a suitable renumbering of the ϑν . Concern-
ing the stability analysis and the choice of an appropriate ordering, we refer to
Lebedev–Finogenov [261, 262] (cf. also Samarskii–Nikolaev [330, §6.2.4]).

It will turn out that the three-term recursion described next is the best represen-
tation of the polynomials.
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8.2.2 Three-Term Recursion

Algorithm (8.10b) determines ym from ym−1. Alternatively, a three-term recursion
connects ym with ym−1 and ym−2 (cf. §2.2.8):

y0 = x0, (8.14a)

y1 = (1 − 1
2ϑ1)x

1 + 1
2ϑ1x

0 = (1 − 1
2ϑ1)Φ(x

0, b) + 1
2ϑ1x

0, (8.14b)

ym = Θm

[
Φ(ym−1, b) − ym−2

]
+ ϑm (ym−1 − ym−2) + ym−2. (8.14c)

From Φ(x, b) =Mx+Nb = x−N(Ax− b), we obtain the representations

y1 = (1 − 1
2ϑ1)(Mx

0 +Nb) + 1
2ϑ1x

0

= x0 − (1 − 1
2ϑ1)N(Ax0 − b),

ym = Θm

(
Mym−1 +Nb− ym−2

)
+ ϑm(ym−1 − ym−2) + ym−2

= (1 + ϑm +Θm)ym−2 + (ϑm +Θm)(ym−1−ym−2) −ΘmN(Aym−1−b).

Analogous to Theorem 8.14, one proves the next theorem.

Theorem 8.17. For arbitrary factors Θm and ϑm , algorithm (8.14a–c) defines a
linear and consistent semi-iteration Σ . The polynomials {pm} describing Σ are
recursively defined by

p0(ζ) = 1, p1(ζ) =
(
1 − 1

2ϑ1
)
ζ + 1

2ϑ1, (8.15a)

pm(ζ) =
(
Θmζ + ϑm

)
pm−1(ζ) +

(
1 −Θm − ϑm

)
pm−2(ζ). (8.15b)

For the particular choice ϑm = 0 , the recursion becomes

p0(ζ) = 1, p1(ζ) = ζ, (8.15c)

pm(ζ) = Θm

[
ζ pm−1(ζ) − pm−2(ζ)

]
+ pm−2(ζ). (8.15d)

We remark that all orthogonal polynomials can be generated by recursion of the
form (8.15a,b) (cf. Quarteroni–Sacco–Saleri [314, §10.1]).

Exercise 8.18. Prove that the polynomials qm in (8.8) associated with pm and
defined either in (8.15a,b) or (8.15c,d) can be determined by the recursion

q0(ξ) = 0, q1(ξ) = 1 − 1
2ϑ1,

qm(ξ) = Θm + (1 −Θm − ϑm) qm−2(ξ) + (Θm (1 − ξ) + ϑm) qm−1(ξ)

or, respectively,

q0(ξ) = 0, q1(ξ) = 1,

qm(ξ) = Θm + (1 −Θm) qm−2(ξ) +Θm (1 − ξ) qm−1(ξ).
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8.3 Optimal Polynomials

Since the semi-iterates are completely determined by polynomials, we can ask for
the best polynomials in the sense that the corresponding semi-iteration is as fast as
possible. The quantity to be minimised is still to be specified. It might be a certain
norm of the error (cf. Problem 8.19) or the convergence rate (cf. Problem 8.21) or
an upper bound of the error (cf. Problem 8.20).

8.3.1 Minimisation Problem

Let Σ be a linear and consistent semi-iteration. By Theorem 8.4, the semi-iteration
error ηm = ym − x has the representation (8.6b):

ηm = pm(M)e0.

Therefore, it seems reasonable to pose the following problem.

Problem 8.19 (first minimisation problem). Given m ∈ N , determine a polyno-
mial pm ∈ Pm satisfying (8.6d), i.e.,

pm(1) = 1, (8.16)

such that
‖pm(M)e0‖2 !

= min, (8.17)

i.e., ‖pm(M)e0‖2 ≤ ‖qm(M)e0‖2 for all admissible polynomials.

The solution of (8.17) seems hopeless, since the unknown error e0 = x0 − x
is involved in the problem (if e0 were known, x = x0 − e0 already represents the
solution). Nevertheless, we shall solve this problem with respect to the energy norm
instead of ‖·‖2 in §9.3 (cf. Remark 10.12).

Even if e0 is unknown, ‖pm(M)e0‖2 can be estimated by

‖pm(M)e0‖2 ≤ ‖pm(M)‖2 ‖e0‖2

and the factor ‖pm(M)‖2 can be minimised separately.

Problem 8.20 (second minimisation problem). Given m ∈ N, determine a poly-
nomial pm ∈ Pm with (8.16) such that

‖pm(M)‖2
!
= min . (8.18)
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8.3.2 Discussion of the Second Minimisation Problem

A partial answer to the minimisation problems follows in Theorem A.37 (Cayley–
Hamilton). Assume that M has no eigenvalue λ = 1 (ρ(M) < 1 is sufficient).
For all m ≥ n := #I , the choice pm(λ) = χ(λ) := det(λI −M)/ det(I −M)
leads to a polynomial with the properties (8.16) and degree(pm) ≤ m solving
problems (8.17) and (8.18). In particular, (8.19) holds:

pm(M) = 0 and ‖pm(M)‖ = 0. (8.19)

The minimum function pm(λ) = μ(λ) of M (cf. (A.16c)) already satisfies (8.19)
for m ≥ mμ := degree(μ).

The solution given in (8.19) is unsatisfactory for two reasons. First, the char-
acteristic polynomial χ (more precisely, its coefficients) is not easy to compute;
second, the case m ≥ n is rather uninteresting.

Intermediately, we require that

M be normal, (8.20)

i.e., MMH =MHM (M being Hermitian would be sufficient). Since then pm(M)
is also normal, Theorem B.25 implies that

‖pm(M)‖2 = ρ(pm(M)) = max{|pm(λ)| : λ ∈ σ(M)}.

Therefore, minimising (8.18) is equivalent to determining a polynomial whose ab-
solute value is minimal on the set σ(M). Even if the normality (8.20) does not hold,
minimisation of max{|pm(λ)| : λ ∈ σ(M)} makes sense. The new minimisation
problem is

ρ(pm(M)) = max{|pm(λ)| : λ ∈ σ(M)} !
= min, (8.21a)

i.e., the spectral radius is minimised over all admissible polynomial in Pm instead
of the spectral norm ‖pm(M)‖2.

For the next interpretation, we assume that M = T−1DT (D diagonal matrix)
is diagonalisable. This leads to pm(M) = pm(T−1DT ) = T−1pm(D)T . Using
the norm ||| · |||T defined in Exercise B.13c, we obtain

||| pm(M) |||T = ‖T pm(M)T−1‖2 = ‖pm(D)‖2 = ρ(pm(D))

= ρ(pm(M)) = max{|pm(λ)| : λ ∈ σ(M)}. (8.21b)

Alternatively, we may estimate by

‖pm(M)‖2 ≤ cond2(T )‖pm(D)‖ = cond2(T ) ρ(pm(M)). (8.21c)

Hence minimising the spectral radius ρ(pm(M)) in (8.21a) minimises the upper
bound cond2(T )‖pm(D)‖ in (8.21c).
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According to §5.1.2, symmetric iterations have the property that A > 0 im-
plies that A1/2MA−1/2 is also Hermitian. Then the energy norm of pm(M) is well
defined and equal to

‖pm(M)‖A = max{|pm(λ)| : λ ∈ σ(M)} = ρ(pm(M)). (8.21d)

The minimisation of max{|pm(λ)| : λ ∈ σ(M)} can only be solved with the
knowledge of the spectrum σ(M). Computing the complete spectrum, however,
would be by far more expensive than the solution of the system.

As a remedy, we assume that there is an a priori known superset

σM ⊃ σ(M)

containing the spectrum. Then σ(M) can be replaced with σM . An example for
the larger set σM is the complex circle

σM = {λ ∈ C : |λ| ≤ ρ̄} with ρ̄ ≥ ρ(M).

Unfortunately, this circle is inappropriate for our purposes as we shall see in
Theorem 8.32. If, however, M has only real eigenvalues, the interval

σM = [−ρ̄, ρ̄ ] with ρ̄ ≥ ρ(M) (8.22a)

is a candidate. In some cases, it is known that M has only nonnegative eigenvalues
(cf. Theorem 3.34c). Then one may choose

σM = [ 0, ρ̄ ] with ρ̄ ≥ ρ(M). (8.22b)

In all cases, it is sufficient to know an upper bound ρ̄ of ρ(M), where ρ̄ = ρ(M)
would be optimal and ρ̄ < 1 must hold. For instance, we may choose ρ̄ as ρm+k,k

in (2.23b) for suitable m and k (cf. Remark 2.32).

Accordingly, the minimisation of ‖pm(M)‖2 in Problem 8.20 is replaced with
the following minimisation.

Problem 8.21 (third minimisation problem). Given m ∈ N and σM , determine
a polynomial pm ∈ Pm with (8.16) such that

max{|pm(λ)| : λ ∈ σM} !
= min . (8.23)

Finally, we briefly discuss the choice of alternative norms in (8.17) and (8.18).
A non-Hilbert norm (as, e.g., the maximum or row-sum norm ‖·‖∞) leads to a
considerably more complicated minimisation problem. It would be possible to
replace the Euclidean norm ‖·‖2 by ||| x |||T = ‖Tx‖2 or ‖x‖K = ‖K1/2x‖2
(K positive definite) as already done in (8.21b,d). Examples for K would be A and
the matrix W of the third normal form (cf. (3.35e) and (8.21d)).
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8.3.3 Chebyshev Polynomials

As a preparation for the next section we discuss the Chebyshev polynomials.

Definition 8.22. The Chebyshev polynomials Tm are defined by

Tm(x) := cos(m arccosx) for m ∈ N0, −1 ≤ x ≤ 1. (8.24)

Part (a) of the following theorem summarising all properties needed later shows
that the functions Tm are in fact polynomials of degree m.

Lemma 8.23. (a) The functions Tm in (8.24) fulfil the recursion

T0(x) = 1, T1(x) = x, Tm+1(x) = 2xTm(x) − Tm−1(x). (8.25a)

(b) For x ≥ 1, the polynomials Tm have the representation

Tm(x) = cosh(m arcoshx) for m ∈ N0, x > 1, (8.25b)

where cosh(x) = ex+e−x

2 is the hyperbolic cosine, while arcosh (area-hyperbolic
cosine) is its inverse function.
(c) For all x ∈ C , the representation (8.25c) holds:

Tm(x) =
1

2

[(
x+
√
x2 − 1

)m
+
(
x+
√
x2 − 1

)−m
]
. (8.25c)

Proof. Eqs. (8.25a) follows from the cosine addition theorem. For (8.25b), it is
sufficient to prove that the functions defined there also satisfy recursion (8.25a).
Substituting x = cos ζ, we see that (8.25c) coincides with cos(mζ) = Tm(x). ��

{Tm} are orthogonal polynomials with respect to the weight function 1√
1−x2 , i.e.,∫ 1

−1
Tm(x)Tn(x)√

1−x2 dx = 0 for n �= m (cf. Quarteroni–Sacco–Saleri [314, §10.1.1]).

8.3.4 Chebyshev Method (Solution of the Third Minimisation
Problem)

As in the examples (8.22a,b), we assume that σM is a real interval. The solution to
the third minimisation problem (8.23) is given below.

Notation 8.24. In the following, the real numbers a, b with −∞ < a ≤ b < 1
define an interval with the property

σM = [a, b ] ⊃ σ(M). (8.26a)
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Because M = I −NA = I −W−1A (cf. (2.9)), inclusion (8.26a) is equivalent to

[γ, Γ ] ⊃ σ(NA) = σ(W−1A) (8.26b)

with
γ = 1 − b, Γ = 1 − a. (8.26c)

Note that 0 < γ ≤ Γ < ∞ . Often, the use of γ and Γ leads to simpler formulae.
In particular, the ratio

κ = Γ/γ (8.26d)

is of interest. If the inclusion (8.26a) is strict, i.e., a, b ∈ σ(M), [γ, Γ ] ⊃ σ(NA)
is also strict and κ = κ(NA) is the spectral number defined in (B.13).

Lemma 8.25. Let [a, b ] be an interval with −∞ < a ≤ b < 1. The problem

minimise max{|pm(λ)| : a ≤ λ ≤ b}
with respect to all polynomials pm ∈ Pm and pm(1) = 1

has the unique solution

pm(ζ) = Tm
(
2ζ−a−b

b−a

)
/Cm with Cm := Tm

(
2−a−b
b−a

)
= Tm

(
Γ+γ
Γ−γ

)
. (8.27a)

Here, γ, Γ are as in (8.26c) and Tm is the Chebyshev polynomial defined in (8.24).
The minimising polynomial pm has the degree m and leads to the minimum

max{|pm(λ)| : a ≤ λ ≤ b} = 1/Cm for pm in (8.27a). (8.27b)

Proof. (i) The constant Cm does not vanish, since the argument 2−a−b
b−a lies outside

of [−1, 1] and the representation (8.25b) applies. By construction, pm(1) = 1 and
degree(pm) =m hold. For a ≤ ζ ≤ b, the argument 2ζ−a−b

b−a belongs to [−1, 1].
Definition (8.24) shows that |Tm| ≤ 1 in [−1, 1]. Since Tm attains the bounds ±1,
the statement (8.27b) follows.

(ii) It remains to show that for any other polynomial the maximum in (8.27b)
is larger than 1/Cm. Let qm ∈ Pm be a polynomial with qm(1) = 1 and
max{|qm(λ)| : γ ≤ λ ≤ Γ} ≤ 1/Cm. The Chebyshev polynomial Tm(x) =
cos(m arccosx) meets the values ±1 in alternating ordering at x = cos nπ

m for
n = −m, 1 − m, . . . , 0. The function pm obtained from Tm by transforming
x �→ ζ = 1

2 [a+ b+ x(b−a)] is pm( 12 [a+ b+ x(b−a)]) := Tm(x) and has the
values

pm(ζν) = (−1)ν/Cm (−m ≤ ν ≤ 0)

at ζν = 1
2

[
a+ b+ (b− a) cos νπ

m

]
. From |qm(ζν)| ≤ 1/Cm = |pm(ζν)| , we

conclude that the difference r := pm − qm satisfies

r(ζν) ≥ 0 for even ν, r(ζν) ≤ 0 for odd ν.

By the intermediate value theorem, there exists at least one zero of r in each sub-
interval [ζν−1, ζν ] (1 − m ≤ ν ≤ 0). If the zeros in [ζν−1, ζν ] and [ζν , ζν+1]
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coincide at the common point ζν , this is a double zero. Hence, counted with
respect to multiplicity, r has at least m zeros in [a, b]. By pm(1) = qm(1) = 1,
the value 1 /∈ [a, b] represents the (m+1)-th zero of r. Hence, r= 0 follows from
degree(r) ≤ m, proving that pm = qm is unique. ��

Exercise 8.26. (a) Prove by means of (8.25a) that the polynomials pm in (8.27a)
can be obtained by the recursion

p0(ζ) = 1, p1(ζ) =
2ζ − a− b

2 − a− b
, (8.28a)

Cm+1 pm+1(ζ) = 2
2ζ − a− b

2 − a− b
Cm pm(ζ) − Cm−1 pm−1(ζ). (8.28b)

(b) Let ϑopt = 2
Γ+γ (cf. (6.6a)). Prove that

pm(I −NA) =
1

Cm
Tm
(
Γ+γ
Γ−γ I +

2
Γ−γ NA

)
=

1

Cm
Tm
(
Γ+γ
Γ−γ

[
I + ϑoptNA

])
.

To investigate the minimum 1/Cm = 1/Tm( 2−a−b
b−a ) reached in (8.27b), we

have to evaluate (8.25c) at

x0 :=
2 − a− b

b− a
=
Γ + γ

Γ − γ

with γ and Γ defined in (8.26c). We use that x20 − 1 = 4γΓ/(Γ − γ)2 > 0 and
x0 +

√
x20 − 1 =

(√
Γ +

√
γ
)2
/(Γ − γ). The representation (8.25c) shows that

Cm =
1

2

{(
(
√
Γ +

√
γ )2

Γ − γ

)m
+

(
(
√
Γ +

√
γ )2

Γ − γ

)−m
}
.

The bracket (
√
Γ+

√
γ )2

Γ−γ can be rewritten as Γ
Γ−γ

(
1 +
√

γ
Γ

)2
. To simplify the

expression, we introduce

κ :=
Γ

γ
and c :=

(
1 − 1√

κ

)
/

(
1 +

1√
κ

)
(cf. (8.26d)).

Since Γ−γ
Γ = 1 − 1

κ = (1 − 1√
κ
)(1 + 1√

κ
) and 1 +

√
γ
Γ = 1 + 1√

κ
, we arrive at

(
√
Γ +

√
γ )2

Γ − γ
=

1 + 1√
κ

1 − 1√
κ

=
1

c
.

Hence, the expression for 1/Cm reduces to

1

Cm
=

2cm

1 + c2m
with c =

1 − 1/
√
κ

1 + 1/
√
κ
=

√
κ− 1√
κ+ 1

, κ =
Γ

γ
. (8.28c)

For the interpretation of κ as a spectral condition number, compare with Nota-
tion 8.24.
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Conclusion 8.27. (a) For the case (8.22a), i.e., σM = [−ρ̄, ρ̄ ] with 0 < ρ̄ < 1,
the solution to the third minimisation problem (8.23) is:

pm(ζ) = Tm(ζ/ρ̄) /Cm with Cm := Tm(1/ρ̄) . (8.29a)

(b) For the case (8.22b): σM = [ 0, ρ̄ ] with 0 < ρ̄ < 1, the respective solution
becomes

pm(ζ) = Tm

(
2ζ − ρ̄

ρ̄

)
/Cm with Cm := Tm

(
2 − ρ̄

ρ̄

)
. (8.29b)

(c) The respective attained minima are

1

Cm
=

2cm

1 + c2m
with c =

⎧⎨⎩
2ρ̄

(
√
1+ρ̄+

√
1−ρ̄)

2 for (8.29a),
ρ̄

(1+
√
1−ρ̄)

2 for (8.29b).

(d) If NA is diagonalisable by a transformation T (cf. (8.21c)), the semi-iterates
ym satisfy the error estimate

‖ym − x‖2 ≤ ηm cond2(T )‖x0 − x‖2 with (8.29c)

ηm = 2
(
1 − 1

κ

)m
/
[ (

1 + 1√
κ

)2m
+
(
1 − 1√

κ

)2m ]
,

where κ is defined by (8.28c). In the case of a symmetric iteration applied to A > 0
(cf. §3.5.2), an estimate analogous to (8.29c) holds with respect to the energy norm:

‖ym − x‖A ≤ ηm‖x0 − x‖A.

Proof of (d). Use c = (1 − 1/κ) / (1 + 1/
√
κ)

2. ��
For the implementation of the Chebyshev method, one could in principle apply

Remark 8.16 and use the second formulation. The Chebyshev polynomial Tm has
the zeros

xν = cos
(
[ν + 1

2 ]π/m
)

(1 ≤ ν ≤ m).

Hence, the transformed polynomial pm in (8.27a) admits the factorisation (8.13a)
with ζν = 1

2 [a + b + (b − a)xν ]. The auxiliary polynomials pμ in (8.13b) lead to
the damping factors ϑμ :=1/(1−ζμ) in (8.10b) and (8.12b). However, this approach
suffers from numerical instabilities (cf. Lebedev–Finogenov [261, 262]).

The only elegant and practical implementation is the use of the three-term
recursion (8.14a–c), since recursion (8.28a,b) is a particular case of (8.15a,b). The
coefficients Θm and ϑm required in (8.14a–c) are provided by the next exercise.

Exercise 8.28. Prove: (a) For the case of σM = [a, b] with a < b < 1, recursion
(8.15a,b) for pm in (8.28a,b) uses the factors

Θm = 4Cm−1/[(b− a)Cm], (8.30a)
ϑm = −2(a+ b)Cm−1/[(b− a)Cm]. (8.30b)
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(b) In the case of σM = [−ρ, ρ ] with ρ > 0, (8.28b) leads to recursion (8.15c,d)
with

Θm = 2Cm−1/(ρCm) = 1 + Cm−2/Cm.

(c) Which coefficients correspond to the case of σM = [ 0, ρ ]?
(d) Use Eq. (8.28b) at ζ = 1:Cm+1 = ACm−Cm−1 withA := 2(2−a−b)/(b−a)
and prove for the general case of σM = [a, b ] that

Θm =
16

8 (2 − a− b) − (b− a)2Θm−1
, Θ1 =

4

2 − a− b
, (8.30c)

ϑm = −1

2
(a+ b)Θm . (8.30d)

(e) The coefficients converge monotonically to

limΘm =
4c

b− a
and limϑm =

−2c (a+ b)

b− a

with c in (8.28c).
(f) The assumptions a < b in (a) and ρ > 0 in (b) avoid the division by zero.
Show that a = b or ρ = 0 lead to a direct solution: the semi-iterate y1 is already
the exact solution.

Hint for (a): For m > 2, compare the coefficients in (8.15b) and (8.28b). For
m = 1, compare (8.15a) with (8.28a), taking notice of C0 = 1 and C1 =

2−a−b
b−a

according to (8.28c). Part (e): Insert (8.28c) into (8.30a,b).

Instead of Θm and ϑm, one can also compute the sum σm := Θm + ϑm
recursively from

σ1 = 2, σm = 4 /

{
4 −
(
1 − 1/κ

1 + 1/κ

)2
σm−1

}
(derived from (8.30c,d) with κ in (8.26d)). Equation (8.30d) yields the values

Θm = 2σm/(2 − a− b), ϑm = −(a+ b)σm/(2 − a− b).

The coefficients σm can also be used directly for the three-term recursion.
Given the matrix N of the second normal form of Φ, the formulae (8.14a–c)
with the coefficients (8.30a,b) are equivalent to

y0 = x0, y1 = y0 − 2

2 − a− b
N
(
Ay0 − b

)
,

ym = σm

{
ym−1 − 2

2 − a− b
N(Aym−1 − b)

}
+ (1 − σm)ym−2.

(8.31)

The factor 2
2−a−b may also be written as 2

γ+Γ (cf. (8.26c)).
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We recall the set N of nonlinear acceleration methods mentioned on page 173.
The Chebyshev method is a first example.

Notation 8.29. We denote the Chebyshev method based on σM = [a, b] by

ΥCheb
a,b ∈ N .

In principle, the Chebyshev method is well defined for all iterations Φ ∈ L. How-
ever, the convergence statements only refer to algorithm ΥCheb

a,b [Φ] and matrices A
such that σ(M) ⊂ [a, b] holds for the iteration matrix M =MΦ[A] of Φ.

8.3.5 Order Improvement by the Chebyshev Method

Theorem 8.30. (a) Assume that σ(M) ⊂ σM = [a, b] holds with a < b < 1. The

Chebyshev method has the asymptotic convergence rate c = limm→∞ m

√
1

Cm
with

c =
b− a

2 − a− b+ 2
√

(1 − a) (1 − b)
=

Γ − γ

(
√
Γ +

√
γ )2

=

√
κ− 1√
κ+ 1

, (8.32a)

where κ = Γ/γ (cf. (8.26c)). Particular cases are

lim
m→∞

m

√
1

Cm
=

ρ

1 +
√

1 − ρ2
for σM = [−ρ, ρ], ρ < 1, (8.32b)

lim
m→∞

m

√
1

Cm
=

ρ(
1 +

√
1 − ρ

)2 for σM = [0, ρ], ρ < 1. (8.32c)

(b) Let τ be the order of the basic iteration: ρ(M) = 1 − Chτ + O(h2τ ). Then
the Chebyshev method is of order τ/2 . The asymptotic convergence rate equals

1 − 2
√

C
1−γ h

τ/2 + O(hτ ) for (8.32a) with Γ = ρ(M),

1 −
√
2C hτ/2 + O(hτ ) for σM = [−ρ(M), ρ(M)],

1 − 2
√
C hτ/2 + O(hτ ) for σM = [ 0, ρ(M)].

Proof. Since 0 ≤ c ≤ 1, (8.28c) shows that m

√
1

Cm
= c m
√
2/ (1 + c2m) → c . ��

Therefore, the Chebyshev method achieves a halving of the order similar to the
SOR iteration. Concerning the connection of both methods, we refer to §8.4.3 and
Varga [375, §5.2].
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8.3.6 Optimisation Over Other Sets

Up to now, we considered an interval [a, b] with a < b < 1. If, for instance, no
eigenvalue of M lies in (a′, b′) ⊂ [ a, b ], we may replace σM by the smaller set

σM = [ a, a′ ] ∪ [ b′, b ] (a ≤ a′ < b′ ≤ b). (8.33)

Obviously, the minimum of {maxζ∈σM
|pm(ζ)| : pm ∈ Pm} can only become

smaller. In the case of a′ −a = b−b′, it is easy to describe the optimal polyno-
mial (cf. Axelsson–Barker [13, p. 26f]). Concerning the determination of optimal
polynomials, we refer to de Boor–Rice [102] and Fischer [133, §3.3]. In particular,
the case σM = [a, a′] ∪ [b′, b] for a ≤ a′ < 1 < b′ ≤ b is interesting. The latter
situation occurs for indefinite matrices.

Remark 8.31. Consider discretisation of Helmholtz’ equation −Δu− cu = f with
positive c, which leads to A = AΔ − cI , where AΔ is the matrix of the Poisson
model problem. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of AΔ. Assume
for a suitable k that λk < c< λk+1. Then the spectrum of A = AH is contained in

σA = [−β−,−α−] ∪ [α+, β+] with − β− ≤ −α− < 0 < α+ < β+ ,

where β− := c−λ1, α− := c−λk, α+ := λk+1−c, β+ := λn−c. The Richardson
iteration with 0 < Θ < 1/β+ leads to the iteration matrix M = MRich

Θ whose
spectrum is contained in the set σM described in (8.33), where

a = 1 −Θβ+ < a
′ = 1 −Θα+ < 1 < b′ = 1 +Θα− ≤ b = 1 +Θβ− .

If one extreme eigenvalue b of M is known and the others are enclosed by
[a, b′], we arrive at

σM = [ a, b′ ] ∪ {b} with b′ < b, b′ < 1, b �= 1.

Let qm−1 ∈ Pm−1 with qm−1(1) = 1 be optimal for [a, b′ ]. A simple but not
optimal proposal for a polynomial pm suited to σM is

pm(ζ) := qm−1(ζ)(ζ − b)/(1 − b).

Concerning the construction of asymptotically optimal polynomials for arbitrary
compact sets σM with 1 /∈σM , we refer to Niethammer–Varga [294] and Eiermann–
Niethammer–Varga [119]. The simplest set σM that is more general than the interval
[a, b] is the ellipse (cf. Fischer–Freund [134, 135], Niethammer–Varga [294], and
Manteuffel [272]). Since, in general, a suitable ellipse enclosing the eigenvalues
of M is not known a priori, one has to improve its parameters adaptively (cf.
Manteuffel [272]). The fact that the ellipse lies in the complex plane does not
imply that the optimal polynomial has also complex parameters. As long as σ(M)
is symmetric with respect to the real axis (i.e., all complex eigenvalues belong to
conjugate pairs), one can find an optimal polynomial with real coefficients (cf.
Opfer–Schober [297]).
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In any case, the spectrum σ(M) is enclosed by the complex circle

σM = {z = x+ iy ∈ C : x2 + y2 ≤ ρ(M)2}.
Unfortunately, this choice does not lead to an interesting solution (cf. [297]).

Theorem 8.32. Let σM be a circle around z0 ∈ C\{1} with radius r < |1 − z0|.
The optimal polynomial for σM is pm(ζ) = [(ζ − z0)/(1 − z0)]

m. In particular,
for z0 = 0, the corresponding semi-iteration coincides with the basic iteration
Φ. In the general case, the semi-iteration corresponds to the damped iteration Φϑ

with ϑ := 1/ |1 − z0|.

Proof. The absolute value of the polynomial pm defined above takes its maximum

ρ := max{|pm(ζ)| : ζ ∈ σM} = r/ |1 − z0|
at all boundary points ζ ∈ ∂σM . If pm is not optimal, there is some polynomial
qm ∈ Pm with qm(1)=1 and max{|qm(ζ)| : ζ ∈ σM} < ρ . qm(ζ) < ρ = pm(ζ)
holds for all boundary values ζ∈∂σM , so that the theorem of Rouché is applicable;
i.e., the holomorphic functions pm and pm − qm have the same number of zeros in
σM . Since pm has an m-fold zero at z0, pm − qm has also m zeros in σM . Since
(pm − qm)(1) = pm(1)− qm(1) = 1− 1 = 0, the polynomial pm − qm ∈ Pm has
even m+ 1 zeros, implying pm = qm. Hence, pm is already optimal. ��

8.3.7 Cyclic Iteration

Following Conclusion 8.27, it has been mentioned that in principle it would be pos-
sible to apply the second formulation (8.10b) with the factors ϑν := 1/(1 − ζν),
ζν = cos([ν + 1

2 ]π/m) for ν = 1, . . . ,m. The result ym (only for this fixed m)
is the desired Chebyshev semi-iterate. However, by this approach the Chebyshev
method cannot be continued. To obtain an infinite iterative process, we may repeat
the extrapolation factors m-periodically:

ϑ1, ϑ2, . . . , ϑm given,
ϑi := ϑi−m for i > m.

A semi-iterative method (8.10a,b) with these parameters is called a cyclic iteration.
The restriction to the iterates y0, ym, y2m, y3m, . . . produces a proper linear itera-
tion. The related iteration matrix is pm(M) with pm generated by {ϑi : 1 ≤ i ≤ m}.
The convergence rate of the cyclic iteration is not described by ρ(pm(M))
but by ρ(pm(M))1/m, since one cycle y0 �−→ ym is thought to consist of m and
not of one step. The cyclic iteration also runs the risk of numerical instabilities as
already discussed after Conclusion 8.27.

Exercise 8.33. Prove: Viewing the cyclic iteration as a semi-iteration {y0, y1, . . .}
of all iterates, the asymptotic convergence rate in Definition 8.3 also coincides with
m
√
ρ(pm(M)).
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8.3.8 Two- and Multi-Step Iterations

Exercise 8.28e yields the limits Θ = limΘm and ϑ = limϑm. Hence, the three-
term recursion (8.14c) converges to the (stationary) two-step iteration (2.27):

ym = Θ
[
Φ(ym−1, b) − ym−2

]
+ ϑ(ym−1 − ym−2) + ym−2. (8.35)

As described in §2.2.8, the convergence of iteration (2.27) can be reduced to the
convergence of a one-step iteration with the iteration matrix

M =

[
μ0M+μ1I μ2I
I 0

]
, μ0=

4c

b− a
, μ1=−2 c

a+ b

b− a
, μ2=1 − μ0 − μ1

(c defined in (8.28c)). From these coefficients, assuming that σ(M) ⊂ σM and using
Exercise 2.25, we obtain the value ρ(M) = c , i.e., the (stationary) two-step itera-
tion (8.35) achieves the same convergence rate as the semi-iterative method. Hence,
the two-step iteration (8.35) also yield an improvement of the order of convergence.

More generally, one can consider the k-step iteration

xm = μ0 Φ(x
m, b) +

k∑
i=1

μix
m−i with

k∑
i=1

μi = 1.

The connection between k-step iterations and semi-iterative methods is described
by Niethammer–Varga [294].

8.3.9 Amount of Work of the Semi-Iterative Method

We consider the realisation of the Chebyshev method by (8.31). There the call
of the basic iteration Φ(x, b) = x − W−1(Ax − b) is replaced by the call of
W−1(b − Ay) = Φ(x, b) − x. Besides the call of the basic iteration Φ, the
implementation (8.31) (for m ≥ 2) requires six operations per grid point:

semi-iterative Work(Φ) ≤ Work(Φ) + 6n

(cf. §2.3 and §3.4). Hence, the cost factor amounts to

CΦ,semi = CΦ + 6
CA
,

where CAn is defined in §2.3 as the number of nonzero elements of A.
Replacing in (2.31a) the convergence rate by the asymptotic value c in (8.32a),

we obtain the effective amount of work

Effsemi(Φ) = −(CΦ + 6
CA

)/ log c .

If γ/Γ ! 1 holds as in the examples discussed in §8.4, we can exploit the asymp-
totic behaviour log c = −2

√
γ/Γ + O(γ/Γ ):

Effsemi(Φ) ≈
(
CΦ

2
+

3

CA

)√
Γ

γ
. (8.36)
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Exercise 8.34. Assume that the iteration matrix of Φ fulfils σ(M) ⊂ [a, b] with
b = 1 − O(h−τ ) and τ > 0. Prove the following comparison of Effsemi and Eff:

Effsemi(Φ) ≈
(
CΦ + 6

CA

)√
Eff(Φ)/ [(1 − a)CΦ] .

8.4 Application to Iterations Discussed Above

8.4.1 Preliminaries

The essential condition for the applicability2 of the Chebyshev method is that the
spectrum σ(M) be real. This excludes the SOR method. Semi-iterative variants
based on other supersets σM ⊃ σ(M) are also not successful for the SOR method
with ω ≥ ωopt (cf. §8.3.6)). The reason for this is statement (e) of Theorem 4.27.
For ω ≥ ωopt, all eigenvalues λ ∈ σ(MSOR

ω ) are situated on the boundary of the
complex circle |ζ| = ω − 1, for which no convergence acceleration is possible, as
stated in Theorem 8.32.

If A is positive definite, the following already mentioned iterations lead to a real
spectrum: the Richardson, (block-)Jacobi, and (block-)SSOR methods. Numerical
results for these choices of basic iterations will be presented for the Poisson model
problem in the following sections.

Besides the iterations mentioned above, in §5.2 we constructed their damped
variants. However, for a discussion of semi-iterative methods the damped variants
are without any interest as stated next.

Lemma 8.35. Let the iteration Φ have a real spectrum σ(M). Then Φ and the
corresponding damped iterations Φϑ with ϑ �= 0 generate identical semi-iterative
results ym.

Proof. By (8.6a,b), the semi-iterate ym generated by Φ has the representation
ym = x0 + pm(M)(x0 − x). The damped iteration has the iteration matrix

Mϑ = I − ϑNA = I −NϑA with Nϑ := ϑN.

For Nϑ, inclusion (8.26b) can be written as σ(NϑA) ⊂ [γ′, Γ ′] with γ′ := ϑγ

and Γ ′ := ϑΓ (possibly a complex interval). pm(M) = Tm
(
Γ+γ
Γ−γ I +

2
Γ−γ NA

)
(cf. Exercise 8.26b) is invariant with respect to the replacement of γ, Γ, N by
γ′, Γ ′, Nϑ. Hence pm,ϑ(Mϑ)=pm(M), where pm,ϑ is the polynomial adapted to
the interval [ γ′, Γ ′ ] ⊃ σ(NϑA). The iterates ymϑ = x0 + pm,ϑ(Mϑ)(x

0 − x) of
Φϑ coincide with those of Φ. ��

2 Here ‘applicability of the Chebyshev method’ means that also the assumptions of the convergence
statements hold. Otherwise, the Chebyshev method can be applied to any A ∈ D(Φ).
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8.4.2 Semi-Iterative Richardson Method

According to Lemma 8.35, we may fix the factor of Richardson’s method (3.4) by
Θ = 1, i.e., xm+1 = xm−(Ax−b). Then the matrix N = I of the second normal
form is as simple as possible and condition (8.26b) becomes σ(A) ⊂ [γ, Γ ].

Remark 8.36. (a) The Chebyshev method is applicable if A has only positive
eigenvalues. For the estimation of γ and Γ in (8.26b), one has to use the respective
bounds for the extreme eigenvalues of A.
(b) In particular, the assumptions are satisfied if A is positive definite. In this case,
one has to choose γ = 1/‖A−1‖2 and Γ = ‖A‖2 (optimal choice) or at least
γ ≤ 1/‖A−1‖2 and Γ ≥ ‖A‖2 .

For the Poisson model problem, we obtain

γ = λmin = 8h−2 sin2(πh/2), Γ = λmax = 8h−2 cos2(πh/2)

according to (3.1b,c). Inserting these values into the asymptotic convergence rate
(8.32a), we arrive at

lim
m→∞

m

√
1

Cm
= c = cos(πh)/(1 + sin(πh)) = 1 − πh+ O(h2).

For h = 1/16 and h = 1/32, we obtain c = 0.82 and c = 0.906. The numerical
results in Table 8.1 show that the reduction factor approximates the convergence
rate only for sufficiently large m. The ratios

ρm := ‖ym − x‖2/‖ym−1 − x‖2, ρ̂m := (‖ym − x‖2/‖y0 − x‖2)1/m

tend to c from above.

m ‖ym − x‖2 ρm ρ̂m
1 6.4410-1 9.0910-1 9.0910-1
10 2.4410-1 8.9110-1 8.9910-1
20 6.3510-2 8.5910-1 8.8610-1
30 1.2910-2 8.4810-1 8.7510-1
40 2.3610-3 8.4110-1 8.6710-1
50 4.0710-4 8.3610-1 8.6110-1
60 6.7510-5 8.3410-1 8.5710-1
70 1.0810-5 8.3210-1 8.5310-1
80 1.7210-6 8.3110-1 8.5010-1
90 2.6710-7 8.2910-1 8.4810-1
100 4.1110-8 8.2810-1 8.4610-1

m ‖ym − x‖2 ρm ρ̂m
1 7.1410-1 9.5410-1 9.5410-1
10 4.4710-1 9.4810-1 9.4910-1
30 1.4010-1 9.3610-1 9.4510-1
50 3.2110-2 9.2410-1 9.3810-1
70 6.2610-3 9.1910-1 9.3310-1
80 2.6610-3 9.1710-1 9.3110-1
100 4.6510-4 9.1510-1 9.2810-1
120 7.8010-5 9.1310-1 9.2610-1
130 3.1510-5 9.1310-1 9.2510-1
140 1.2710-5 9.1210-1 9.2410-1
150 5.0910-6 9.1210-1 9.2310-1

Table 8.1 Semi-iterative Richardson method for h = 1/16 (left) und h = 1/32 (right).
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8.4.3 Semi-Iterative Jacobi and Block-Jacobi Method

Numerical examples are unnecessary, since in the Poisson model case, the Jacobi
method coincides with the damped Richardson method and, according to Lemma
8.35, reproduces the results in Table 8.1.

Concerning the lower bound a of the spectrum σ(MJac), Lemma 4.8 proves that
a = −b holds for a particular case.

Lemma 8.37. If (A,D) is weakly 2-cyclic (cf. Definition 4.2) , the Jacobi iteration
matrix MJac has a symmetric spectrum: σ(MJac) = −σ(MJac) . The smallest
enclosing interval is [ a, b ] = [−ρ(MJac), ρ(MJac)] .

A comparison of the semi-iterative Jacobi iteration with the SOR method is
possible. In the weakly 2-cyclic case, (8.32b) is applicable because of Lemma 8.37
and yields the asymptotic semi-iterative convergence rate

β/[1 +
√

1 − β2 ] with β := ρ(MJac).

This quantity coincides with the square root of the optimal SOR convergence rate
ωopt−1; hence, the semi-iterative Jacobi iteration is half as fast as the SOR method.
The order improvement by an optimal choice ωopt in the SOR case and the order
improvement by the Chebyshev method (cf. Theorem 8.30b) lead to very similar
results.

m ‖ym − x‖2 ρm ρ̂m
1 6.0910-1 8.6010-1 8.6010-1
20 1.6210-2 7.9510-1 8.2710-1
40 1.1910-4 7.7510-1 8.0410-1
60 6.6810-7 7.6910-1 7.9310-1
80 3.3310-9 7.6510-1 7.8610-1
90 2.110-10 7.5510-1 7.8410-1

m ‖ym − x‖2 ρm ρ̂m
1 6.9410-1 9.2810-1 9.2810-1
20 1.5310-1 9.1210-1 9.2310-1
40 1.8410-2 8.9210-1 9.1110-1
60 1.7010-3 8.8510-1 9.0310-1
80 1.4010-4 8.8110-1 8.9810-1
100 1.0810-5 8.7810-1 8.9410-1

Table 8.2 Semi-iterative column-block-Jacobi iteration for h = 1/16 (left) and h = 1/32 (right).

The block variants of the Jacobi iteration converge faster than the pointwise
version. Correspondingly, the results of the semi-iterative column-block-Jacobi
method in Table 8.2 are better than those in Table 8.1. The factors should tend to the
asymptotic value 0.7565 for h = 1/16 and to 0.8702 for h = 1/32.

8.4.4 Semi-Iterative SSOR and Block-SSOR Iteration

As already mentioned in §8.4.1, the Gauss–Seidel and SOR methods are not suited
for semi-iterative purposes, since, in general, the spectrum is not real. A remedy
is offered by the symmetric Gauss–Seidel and SSOR iteration. Theorem 6.26
states that the spectrum of the SSOR method is real for Hermitian matrices A.
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Theorem 6.28 gives an upper bound for the spectral radius ρ(MSSOR
ω ). Hence,

under conditions (6.18a,b), the spectrum can be enclosed by the interval [a, b ] with

a = 0, b = 1−2Ω/
[Ω2

γ
+Ω+

Γ

4

]
, where Ω :=

2 − ω

2ω
, 0 < ω < 2. (8.37)

Here, Γ is defined by (6.18b). Corollary 3.45 helps to determine Γ . For the
Poisson model problem, Lemma 3.62 yields the value Γ = 2. Inequality (6.18a)
states that γ coincides with λ in (3.35c) applied to the (block-)Jacobi method.
In the Poisson model case, γ = 2 sin2(πh/2) holds.

Theorem 8.38. Let A = D − E − EH > 0 and γ, Γ satisfy the assumptions
(6.18a,b). Assume, in addition, that 0 < ω ≤ 2/(Γ + 1). Then

a =

(
1 − ξ

1 + ξ

)2

with ξ :=
2 − ω

Γ ω
(8.38)

is a lower bound of the spectrum σ(MSSOR
ω ).

Proof. Using the parameter Ω in (3.46c), we can rewrite

W SSOR
ω =

(
1

ω
D − E

)[( 2
ω

− 1
)
D

]−1(
1

ω
D − E

)H

as

W SSOR
ω = [ΩD +Δ](2ΩD)−1[ΩD +Δ]H with Δ :=

1

2
D − E.

Defining X := ΩD + (1 − α)Δ for some real α, we have [ΩD +Δ] = X + αΔ.
The expansion of [X + αΔ](2ΩD)−1[X + αΔ]H yields

W SSOR
ω =

1

2Ω
XD−1XH +

α

2
A+

1

2Ω
(2α− α2)ΔD−1ΔH.

because of Δ+ΔH = A . The factor (2α− α2) is negative for α > 2 . Hence,

W SSOR
ω ≥ g(α)A with g(α) :=

α

2

(
1 +

Γ

4

2 − α

Ω

)
for α ≥ 2.

The assumption ω ≤ 2/(Γ + 1) implies α0 := 1 + 2Ω/Γ ≥ 2. Theorem 3.34a
with 1 − a = 1/g(α0) yields the value (8.38). ��

The statement is less interesting, since (because of Γ = 2 for the Poisson model
case) Theorem 8.38 only applies to strong underrelaxation: ω ≤ 2/3.



200 8 Semi-Iterative Methods

There are two possibilities in improving (halving) the convergence order. First,
this can be achieved by the optimal choice of ω in the SOR or SSOR method
(cf. Conclusions 3.46 and 6.29). Second, the semi-iterative method leads to
halving of the order compared with the basic iteration. In the case of SSOR as
the basic iteration, both techniques can be applied simultaneously. First, the opti-
mal SSOR relaxation parameter ω′ is chosen as described in (3.47b). The hereby
defined iteration ΦSSOR

ω′ is chosen as the basic iteration of the Chebyshev method.
Together, we succeed in quartering the order. In the Poisson model case, we obtain
the asymptotic convergence rate 1 − O(h1/2).

The bound b in (8.37) becomes minimal for

ω′ = 2/
(
1 +
√
γΓ
)
.

The corresponding value is

b =

√
Γ − √

γ√
Γ +

√
γ
=

1 −
√
γ/Γ

1 +
√
γ/Γ

.

. (8.39a)

Inserting this value into (8.32c) yields the asymptotic convergence rate

lim
m→∞

m

√
1

Cm
= c =

1 −
√
1 − b

1 +
√
1 − b

with b in (8.39a). (8.39b)

The spectral condition number κ = κ((W SSOR)−1A) is equal to 1
2 (1 +

√
γ/Γ ) .

Using the inequality γ ≥ 1/κ(A) in Exercise 5.20, we end up with the result

κ((W SSOR)−1A) ≤ 1

2

(
1 +
√
Γ κ(A)

)
. (8.39c)

m ‖ym − x‖2 ρm ρ̂m
1 4.67310-1 6.2410-1 6.2410-1
2 2.76110-1 5.9010-1 6.0710-1
3 1.35910-1 4.9210-1 5.6610-1
4 7.68110-2 5.6510-1 5.6610-1
5 3.80110-2 4.9410-1 5.5110-1

20 2.08010-6 5.0810-1 5.2710-1
21 1.00710-6 4.8410-1 5.2510-1
22 5.19510-7 5.1510-1 5.2410-1
23 2.54110-7 4.8910-1 5.2310-1

29 3.39510-9 4.8210-1 5.1510-1
30 1.62810-9 4.7910-1 5.1410-1

N ω′ c
2 0.8284 0.0470
4 1.1329 0.1467
8 1.4386 0.2727

16 1.6721 0.4059
32 1.8212 0.5315
64 1.9064 0.6408

128 1.9520 0.7305
256 1.9757 0.8010
512 1.9878 0.8549

1028 1.9939 0.8953

5000 1.9987 0.9511
10000 1.9993 0.9651

Table 8.3 Left: semi-iterative lexicographical SSOR for the parameters in (8.40); concerning ρm
and ρ̂m see Table 8.1. Right: optimal ω′ and asymptotic rate c for h = 1/N .

For the values γ and Γ in Lemma 3.62 (Poisson model case), the convergence
rate (8.39b) is asymptotically equal to the value
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c = 1 − Ch1/2 + O(h) with C = 2
√
π.

The results in Table 8.3 refer to the parameters

h = 1/32, ω = 1.8455, a = 0, b=0.878. (8.40)

In §6.3.5 the value ω is proved to be optimal (note that ω′ is optimal only for the
bound in (6.18c)). We learn from Table 6.1 that b = 0.878 is an upper bound of the
convergence rate. From (8.39b) with b = 0.878, one calculates the rate c = 0.482,
which is numerically well confirmed (cf. Table 8.3). From CSSOR

Φ =2+6/CA=3.2
(according to Remark 6.27 and because of CA = 5 for five-point formulae), we
obtain the effective amount of work

Effsemi(Φ
SSOR) = −3.2/ log c = 4.38 (8.41)

for the semi-iterative SSOR method with h = 1/32, which can be compared, e.g.,
with Eff(ΦSOR) = 7.05 in Example 2.28.

If we use the values ω′ in (3.47b), Eq. (8.39b) yields the asymptotic convergence
rates c reported in Table 8.3. These values give an impression of the asymptotic
value c = 1 − O(h1/2).

8.5 Method of Alternating Directions (ADI)

The alternating-direction-implicit iteration or shortly ADI method was first
described in 1955 by Peaceman–Rachford [308] in connection with parabolic
differential equations. ADI is not a semi-iterative method in the sense of the pre-
vious sections, but it can be considered as a generalisation using rational functions
instead of polynomials (see also §8.5.4).

Further material can be found in Marchuk [274] and Wachspress [383].

8.5.1 Application to the Model Problem

For the model problem in §1.2, the matrix A can be split into

A = B + C, where (8.42a)

(Bu)(x, y) = h−2 [−u(x− h, y) + 2u(x, y) − u(x+ h, y)], (8.42b)

(Cu)(x, y) = h−2 [−u(x, y − h) + 2u(x, y) − u(x, y + h)] (8.42c)

for (x, y) ∈ Ωh are the second differences of u with respect to the x and y direc-
tion. If we choose the rows (x direction) of Ωh as blocks, B + 2h−2I represents
the block diagonal of A. Similarly, C + 2h−2I is the block diagonal of A if the
columns (y direction) are chosen as blocks.

8.4 Application to Iterations Discussed Above
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Remark 8.39. For A, B, and C in (8.42a–c), the statements (8.43a,b) hold:

B > 0 and C > 0 , (8.43a)
A,B,C are pairwise commutative. (8.43b)

The last statement is equivalent to

A, B, C can simultaneously be transformed to diagonal form. (8.43b′)

Proof. Lemma 3.58 analyses the block diagonal ofA (with respect to the row-block
structure). Because of the x–y symmetry, the same result holds for the column-block
structure. Therefore, the spectrum of B + 2h−2I and C + 2h−2I is equal to{

h−2
[
2 + 4 sin2

jhπ

2

]
: 1 ≤ j ≤ N − 1

}
,

i.e., 4h−2 sin2 jhπ
2 are the eigenvalues of B and C. Since these values are positive,

(8.43a) is proved. By Lemma 3.58 the eigenvectors eij of A (cf. Lemma 3.2)
are also the eigenvectors of B + 2h−2I , C + 2h−2I and hence of B and C.
This proves (8.43b′) and (8.43b). ��

The first half-step of the ADI method corresponds to the additive splitting

A =W −R with W = ωI +B and R = ωI − C (8.44a)

and reads

xm+1/2 := ΦB
ω (x

m, b) := (ωI +B)−1(b+ ωxm − Cxm), (8.45a)

where ω is a (real) parameter. Interchanging the roles of B and C, i.e., alternating
the directions, we generate the splitting (8.44b) of the second half-step (8.45b):

A =W −R with W = ωI + C, R = ωI −B, (8.44b)

xm+1 := ΦC
ω (x

m+ 1
2 , b) := (ωI + C)−1(b+ ωxm+ 1

2 −Bxm+ 1
2 ). (8.45b)

Remark 8.40. Each single half-step (8.45a,b) resembles a block-Jacobi method. For
ω = 2h−2, iteration (8.45a) represents the row- and (8.45b) the column-block-
Jacobi iteration. Because of (8.43a), the matrices ωI+B and ωI+C with ω ≥ 0 are
positive definite and therefore regular; hence, the steps (8.45a,b) are well defined.
Since, furthermore, ωI + B and ωI + C are tridiagonal matrices, the solution of
(ωI +B)z = c or (ωI + C)z = c required in (8.45a,b) is easy to perform.

The complete ADI step xm �−→ xm+1 is the product iteration

ΦADI
ω := ΦC

ω ◦ ΦB
ω . (8.45c)
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8.5.2 General Representation

In the general case, we start from a splitting (8.42a):A = B+C and assume (8.43a)
in a weakened form. One of the matrices B or C may be only positive semidefinite.
Without loss of generality, this might be C:

B > 0 , C ≥ 0 . (8.46a)

Therefore, for
ω > 0 , (8.46b)

the matrices ωI + B and ωI + C are positive definite and, in particular, regular.
Hence, ADI iteration (8.45c) can be defined by (8.45a,b). To ensure practicability,
we assume (8.46c):

equations with ωI +B or ωI + C are easy to solve. (8.46c)

Theorem 8.41 (convergence). (a) The iteration matrix of the ADI method is

MADI
ω = (ωI + C)−1(ωI −B)(ωI +B)−1(ωI − C). (8.47a)

(b) If (8.46a,b) holds, the ADI iteration converges.

Proof. MADI
ω is the product of the iteration matrices (ωI + C)−1(ωI − B)

and (ωI + B)−1(ωI − C) of the respective half-steps ΦC
ω and ΦB

ω (cf. §5.4).
Lemma A.20 allows a cyclic permutation of the factors in the argument of the
spectral radius:

ρ(MADI
ω ) = ρ((ωI −B)(ωI +B)−1(ωI − C)(ωI + C)−1) (8.47b)

≤
∥∥(ωI −B)(ωI +B)−1(ωI − C)(ωI + C)−1

∥∥
2

≤
∥∥(ωI −B)(ωI +B)−1

∥∥
2

∥∥(ωI − C)(ωI + C)−1
∥∥
2
.

As B is Hermitian, Bω := (ωI − B)(ωI + B)−1 is also. In particular, it is a
normal matrix, implying that ρ(Bω) = ‖Bω‖2 (cf. Theorem B.25). Therefore,
(8.47b) becomes

ρ(MADI
ω ) ≤ ρ(Bω) ρ(Cω) (8.47c)

since analogous considerations also apply to Cω := (ωI − C)(ωI + C)−1. By
Remark A.15b, the spectrum of Bω is equal to

σ(Bω) =

{
ω − β

ω + β
: β ∈ σ(B)

}
, ρ(Bω) = max

β∈σ(B)

∣∣∣∣ω − β

ω + β

∣∣∣∣ . (8.47d)

By assumption (8.46a), β is positive. This fact implies that |ω − β| < |ω + β|
for all ω > 0. This proves ρ(Bω) < 1. Since C is only positive semidefinite,
a similar argument leads to ρ(Cω) ≤ 1. (8.47c) proves ρ(MADI

ω ) < 1. ��
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Exercise 8.42. Formulate a convergence statement in the case of normal matrices
B and C under the condition that the splittings (8.44a,b) are regular. For which ω
are (8.44a,b) regular splittings in the model case?

Next, we want to determine the optimal value ωopt of the ADI method. Here,
we restrict ourselves to the minimisation of ρ(Bω). If, as for the model problem,
ρ(Cω) = ρ(Bω) holds, minimisation of ρ(Bω) is equivalent to the minimisation
of the bound ρ(Bω)ρ(Cω) in (8.47c).

The extreme eigenvalues of B (or their bounds) are assumed to be

0 < βmin ≤ βmax with σ(B) ⊂ [βmin, βmax]. (8.48a)

In the model case, as seen in the proof of Remark 8.39, the eigenvalues of B are
4h−2 sin2(jhπ/2) for 1 ≤ j ≤ N − 1. This implies that

βmin = 4h−2 sin2(hπ/2), βmax = 4h−2 cos2(hπ/2).

For any β ∈ [βmin, βmax] and therefore for any β ∈ σ(B), we have∣∣∣∣ω − β

ω + β

∣∣∣∣ ≤ max

{∣∣∣∣ω − βmin

ω + βmin

∣∣∣∣ , ∣∣∣∣ω − βmax

ω + βmax

∣∣∣∣} (ω > 0) (8.48b)

since |ω − β| / |ω + β| as a function of β is decreasing in [0, ω] and increasing in
[ω,∞). To minimise the right-hand side in (8.48b), one has to determine ω from∣∣∣ω−βmin

ω+βmin

∣∣∣ = ∣∣∣ω−βmax

ω+βmax

∣∣∣. The result is given by

ωopt =
√
βminβmax . (8.48c)

Inserting this value into (8.47d), we obtain

ρ(Bωopt) =
(√

βmax −
√
βmin

)
/
(√

βmax +
√
βmin

)
.

Exercise 8.43. Prove for the Poisson model problem: (a) The following holds:

ωopt = 2h−2 sinhπ,

ρ(Bωopt
) =
[
cos

πh

2
− sin

πh

2

]
/
[
cos

πh

2
+ sin

πh

2

]
,

ρ(MADI
ωopt

) = [1 − sin(πh)] / [1 + sin(πh)] .

(b) The convergence speed ρ(MADI
ωopt

) coincides exactly with the optimal conver-
gence rate (4.33) of the SOR iteration.

If we replace the definiteness in assumption (8.46a) by the M-matrix property,
the convergence proof becomes much more difficult. A general convergence result
of this kind (also for instationary ADI methods) is due to Alefeld [1]. Here, we
call the method stationary if ω is constant during the iteration and instationary if it
varies (as, e.g., it is assumed throughout the following section).
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8.5.3 ADI in the Commutative Case

In addition to the assumptions (8.46a–c), we require that

BC = CB. (8.49a)

Commutativity is equivalent to the simultaneous diagonalisability:

QHBQ = DB = diag{βα : α ∈ I},
QHCQ = DC = diag{γα : α ∈ I}

(8.49b)

(cf. Theorem A.43), which here can be achieved by a unitary transformation Q,
since B and C are Hermitian. Assumption (8.49b) implies that Bω, Cω , and the
iteration matrix MADI

ω built from these matrices can also be transformed by Q to
diagonal form (cf. (8.47a)):

QHMADI
ω Q = diag

{
ω − γα
ω + γα

ω − βα
ω + βα

: α ∈ I
}
. (8.49c)

In the following, we apply the ADI method with varying parameters ω = ωm:

ym+1 = ΦADI
ωm

(ym, b) (m ∈ N).

Exercise 8.44. Let x be the solution of Ax = b. Prove that the error ηm = ym − x
has the representation

ηm =MADI
ωm

· . . . ·MADI
ω1

η0.

We would like to choose the parameters ω1, ω2, . . . , ωm ≥ 0 such that the
spectral norm of the matrix MADI

ωm
· . . . ·MADI

ω1
becomes as small as possible:

‖MADI
ωm

· . . . ·MADI
ω1

‖2 !
= min . (8.50a)

Multiplications by unitary matrices do not change the spectral norm:

‖QHMADI
ωm

· . . . ·MADI
ω1

Q‖2 = ‖QHMADI
ωm

Q · . . . ·QHMADI
ω1

Q‖2

=

∥∥∥∥∥
m∏
i=1

diag

{
ωi − γα
ωi + γα

ωi − βα
ωi + βα

: α ∈ I
}∥∥∥∥∥

2

.

Together with (8.49c), we obtain∥∥∥∥∥diagα∈I

{
m∏
i=1

ωi − γα
ωi + γα

ωi − βα
ωi + βα

}∥∥∥∥∥
2

= max
α∈I

∣∣∣∣∣
m∏
i=1

ωi − γα
ωi + γα

ωi − βα
ωi + βα

∣∣∣∣∣ .
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Hence, the minimisation problem (8.50a) is equivalent to

max
α∈I

∣∣∣∣∣
m∏
i=1

ωi − γα
ωi + γα

ωi − βα
ωi + βα

∣∣∣∣∣ !
= min . (8.50b)

Remark 8.45. For m ≥ n := #I , as in §8.3.2, one finds parameters ωi bringing
the left-hand side in (8.50b) to the minimum 0. For this purpose, the values ωi must
be an enumeration of the eigenvalues {γα : α ∈ I} ∪ {βα : α ∈ I}.

Since, in general, γα or βα are not known, we optimise over a larger set [a, b]
containing the spectra of B and C, as we did in the third minimisation problem
(8.23):

0 < a ≤ γα, βα ≤ b for all α ∈ I.

Then, the minimisation problem takes the following form. Let

rm(ζ) :=
m∏
i=1

ωi − ζ

ωi + ζ

be a rational function with a numerator and denominator of degree m replacing
the previous polynomials. Substituting the discrete eigenvalues in (8.50b) by the
interval [a, b], we arrive at the problem

determine parameters {ωi : 1 ≤ i ≤ m} so that
max{|rm(β)rm(γ)| : a ≤ β, γ ≤ b} = min . (8.51a)

Because of maxβ,γ{|rm(β)rm(γ)|} = maxβ{|rm(β)|}maxγ{|rm(γ)|}, we may
optimise each factor separately. Hence, problem (8.51a) simplifies to

determine parameters {ωi : 1 ≤ i ≤ m} so that
max{|rm(ζ)| : a ≤ ζ ≤ b} = min . (8.51b)

The following results are due to Wachspress [382] (see also Wachspress–Habetler
[384] from 1960). We omit these proofs, since the derivation of Eqs. (8.52a–c) is
presented in detail in the book of Varga [375, S. 224f].

Theorem 8.46 (optimal ADI parameters). (a) For any m ∈ N, the problem
(8.51b) has a unique solution {ω1, . . . , ωm}. The parameters ωi are disjoint
numbers in (a, b).

(b) The increasingly ordered parameters ω1 < ω2 < . . . < ωm satisfy

ωm+1−i = ab/ωi for 1 ≤ i ≤ m. (8.52a)
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(c) Denote the parameters ω1 < ω2 < . . . < ωm belonging to m ∈ N and the
interval [a, b] with 0 < a < b by ωi(a, b,m) (1 ≤ i ≤ m) . Then we have

ω2m+1−i(a, b, 2m) = ωi

(√
ab, a+b

2 ,m
)
+

√
ωi

(√
ab, a+b

2 ,m
)2

− ab (8.52b)

for i = 1, . . . ,m.

(d) The minimised quantities δm := max{|rm(ζ)| : a ≤ ζ ≤ b} for m = 2p are

δm =
(√

bp − √
ap

)
/
(√

bp +
√
ap

)
, (8.52c)

where a0 = a, b0 = b, ai+1 =
√
aibi , bi+1 = 1

2 (ai + bi) for 0 ≤ i ≤ p− 1.

Determining the ADI parameters ωi is very easy for binary powersm = 2p. For
p = 0 (i.e., m = 1), we conclude from (8.52a) that

ω1(a, b, 1) =
√
ab , (8.52d)

repeating the result in (8.48c). As soon as the parameters for m = 2p−1 are known,
those for 2m = 2p can be obtained from formula (8.52b) for the indices 2m+1−i ∈
[m+ 1, . . . , 2m]. The parameters ωi for 1 ≤ i ≤ m result from (8.48a).

Evidently, one may apply the calculated parameters ωi in a cyclic manner:
ωi+km := ωi (1 ≤ i ≤ m, k ∈ N). Different from the case in §8.3.7, the cyclic
ADI process does not lead to stability problems.
δm in (8.52c) is the bound for rm(Bω) and rm(Cω). Therefore, the asymptotic

rate is bounded by ρm := δ
2/m
m . One recognises from (8.52c) that ρm depends

only on the ratio a/b, which in the model case has the size O(h2). The recursions
ai+1 =

√
aibi and bi+1 = 1

2 (ai + bi) prove the following remark.

Remark 8.47. Let a/b = O(hτ ) and assume (8.49a). For the optimal choice of the
parameters, the cyclic ADI method with m parameters has the order τ/m :

ρm = 1 − O(hτ/2m) = 1 − Cmh
τ/2m + O(hτ/m).

Hence, the instationary ADI method permits not only halving of the order (for
the case m = 1, compare also with Exercise 8.43b), but any arbitrarily small (and
hence very favourable) order can be reached for sufficiently large m. However, we
will see in §8.5.5 that the obvious conclusion of choosing a rather large number m
leads to practical difficulties.

The construction of the parameters ωi in Theorem 8.46d is restricted tom = 2p.
For other m, the description of ωi requires elliptic integrals (cf. Wachspress [383],
Samarskii–Nikolaev [330, page 276]). Lebedev [260] was the first suggesting that
the solution to the approximation problem (8.51b) could be reformulated into
another one for rational functions that is already solved in 1877 by Zolotarev.
In this connection, we refer to the review paper of Todd [363] concerning the
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‘legacy of Zolotarev’ (see also Todd [364]). Approximation problems appearing
here also play an important role in the iterative solution of the Sylvester matrix
equation AX − XB = C (A, B, C given, X unknown; cf. Starke [350] and
Wachspress [383, §5]). Concerning the determination of the parameters in the case
of nonsymmetric matrices, we refer to Starke–Niethammer [351].

Although the asymptotic convergence rates ρm in Remark 8.47 and the following
Table 8.4 look quite favourable, the effective amount of work is less favourable
because of the relatively expensive iteration (8.45a,b) (cf. Remark 8.49). Moreover,
the assumption of commutativity (8.49a) is rarely satisfied in practice. As soon as it
is violated, one is not able to achieve good convergence acceleration.

8.5.4 ADI Method and Semi-Iterative Methods

After choosing the Richardson method as the basic iteration, the half-steps (8.45a,b)
have the representation (8.10b):

ym+ 1
2 = Θm+ 1

2
(MRich

1 ym +NRich
1 b) + (1 −Θm+ 1

2
) ym,

ym+1 = Θm+1 (M
Rich
1 ym+ 1

2 +NRich
1 b) + (1 −Θm+1) y

m+ 1
2

with MRich
1 = I −A and NRich

1 = I , if we allow the matrix-valued factors

Θm+ 1
2
= (ωI +B)

−1
, Θm+1 = (ωI + C)

−1
.

These equations correspond to the second formulation in §8.2. If, as in the case
of §8.5.3, B and C commute with A, we obtain the first formulation (8.3):
ym =

∑
αmj x

j , where xj are the Richardson iterates and αmj are matrices
commuting with A. In this sense, one might view the ADI method as a semi-
iteration with matrix-valued coefficients.

On the other hand, the ADI method can function as a basic iteration of the
Chebyshev method, as shown in the next exercise.

Exercise 8.48. Assume that B, C, and ω satisfy (8.46a,b) and (8.49a). Prove:
(a) The matrix of the third normal form of ΦADI

ω is

Wω = 1
2ω (ωI + C)(ωI +B) (hint: (5.12c)).

(b) ΦADI
ω is a positive definite iteration.

(c) Products Φ := ΦADI
ω1

◦ ΦADI
ω2

◦ . . . ◦ ΦADI
ωm

with ωj > 0 form a positive definite
iteration. Hint: DetermineNΦ in Φ(x, b) = x−NΦ(Ax− b) and show that NΦ>0.
(d) In the stationary case, choose ω according to (8.52d). Determine the bounds
in γW ≤ A ≤ ΓW . What is the optimal damping factor ϑopt for ΦADI

ω (cf.
Theorem 6.7)?
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8.5.5 Amount of Work and Numerical Examples

m h = 1/32 1/64 1/128

1 0.8215 0.9065 0.9521
2 0.5231 0.6373 0.7291
4 0.3735 0.4607 0.5365
8 0.3141 0.3874 0.4513

16 0.2880 0.3553 0.4139

Table 8.4 Asymptotic convergence
rates ρm for ADI-cycle length m.

The ADI method was already applied in §5.5.6
as a secondary iteration. In the following, we
consider a general five-point formula (CA = 5).
The amount of work for solving the equations with
the tridiagonal matrices ωI + C, ωI +B amounts
to 5n operations. Evaluating b + ωx − Cx and
b+ωx−Bx requires 6n operations each. Because
of CA= 5, this leads to

CADI
Φ = 4.4

and, in the Poisson model case, even to CADI
Φ =4.

The asymptotic rates ρm = δ
1/m
m attainable by (8.52c) are reported in Table 8.4.

We observe that for small step sizes, good rates are achieved. The concrete results
for h = 1

128 with m = 4 different parameters from Table 8.5 confirm that the
factor 0.5365 in Table 8.4 is reached. The convergence behaves regularly modulo
m. Each second ratio ‖ek‖2/‖ek−1‖2 is ≈ 1. However, since one cannot achieve
the accuracy of ‖ek‖2 ≈ δkm‖e0‖2 with fewer than m iteration steps, the following
dilemma arises:

(i) To exploit the good (asymptotic) convergence rate δm for large m, one must
perform at least m iterations.

k value in
the middle ‖ek‖2 ‖ek‖2

‖ek−1‖2

m

√
‖ek‖2

‖e0‖2

1 -0.0320913257 5.0210-1 0.6446 0.6446
2 -0.0342861024 4.6210-1 0.9106 0.7699
3 0.3534506991 5.9810-2 0.1295 0.4250
4 0.3538351873 5.4910-2 0.9187 0.5154
5 0.4031600829 3.8710-2 0.7055 0.5488
6 0.4063222547 3.6810-2 0.9487 0.6012
7 0.4976831847 4.4710-3 0.1215 0.4784
8 0.4976688610 4.26

10
-3 0.9536 0.5215

9 0.4961625617 3.1010-3 0.7284 0.5412
10 0.4961175712 2.9710-3 0.9568 0.5729
11 0.4990489164 3.5010-4 0.1179 0.4962
12 0.4990525844 3.3710-4 0.9625 0.5244
13 0.4993912351 2.5110-4 0.7454 0.5388
14 0.4994041549 2.4110-4 0.9612 0.5615
15 0.4999776724 2.7910-5 0.1154 0.5053
16 0.4999776614 2.6910-5 0.9671 0.5262

Table 8.5 ADI results (Poisson model problem,
four parameters ωi, h = 1/128).

(ii) On the other hand, one would
like to stop the iteration as soon as,
e.g., the error becomes ‖ek‖2 ≈
1/1000 (cf. Remark 2.34). The better
the convergence rate, the fewer itera-
tions one is willing to perform.

In the example of Table 8.5, about
eight steps would be sufficient. Hence,
one could still enlarge the cycle length
from 4 to 8 (the corresponding result is
‖e8‖2 = 1.0510-3); a further increase
to 16 or more parameters would not
help. The last two columns in Table 8.5
correspond to ρk,k−1 and ρk,0.

Remark 8.49. Good convergence rates
are combined with a relatively high
cost factor CADI

Φ = 4 in the Poisson
model case. For the example in Table 8.5, the effective amount of work is equal to
Eff(ΦADI) = −4

log 0.5365 = 6.42. For h = 1/32 and four parameters, we obtain
Eff(ΦADI) = 4.06 (for comparison: Eff(ΦSOR) = 7.05 in Example 2.28 and
Eff(ΦSSOR

semi ) = 4.38 in (8.41)).
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