
Chapter 7

Generation of Iterations

Abstract The algebraic operations described in Chapter 5 are tools for generat-
ing linear iterations. In this chapter we discuss how these tools can be used to
build new iterative methods. The product of iterations is recalled in Section 7.1 and
refers to later applications in Part III. Many traditional iterations are constructed
by the additive splitting technique of Section 7.2. The regular splitting and weakly
regular splitting defined in §7.2.2 yield sufficient convergence criteria. Another kind
of splitting is the P-regular splitting defined in §7.2.4. A special kind of additive
splitting is the incomplete triangular decomposition (ILU) discussed in Section 7.3.
The transformations introduced in §5.6 will reappear in Section 7.4 under the name
preconditioning.

7.1 Product Iterations

We recall that new iterations can be constructed by the product of simpler ones:

Π := Φ ◦ Ψ for Φ, Ψ ∈ L.

Of particular interest are symmetric iterations. If Φ is not symmetric, it can be
symmetrised: Φsym := Φ∗ ◦ Φ (also Φ ◦ Φ∗ would be possible). The Krylov
methods of Part II are best to combine with positive definite iterations, for which
A > 0 implies N [A] > 0.

Symmetric products of three factors will also appear (see, e.g., Lemma 11.44).
Corollary 5.30 states that Φ∗ ◦ Ψ ◦ Φ is symmetric if Ψ is so. The correspond-
ing statement about positive definiteness follows. Note that Criterion 5.10 yields a
criterion for Φ∗◦ Φ to be positive definite.

Lemma 7.1. If Φ∗◦ Φ ∈ Lpos and Ψ ∈ Lsemi, then the product satisfies

Φ∗◦ Ψ ◦ Φ ∈ Lpos.
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Proof. Let A > 0. One verifies that

NΦ∗◦Ψ◦Φ = MΦ∗NΨM
H
Φ∗ +NΦ∗◦Φ .

Positive semidefiniteness of Ψ yields NΨ ≥ 0 and MΦ∗NΨM
H
Φ∗ ≥ 0, while

NΦ∗◦Φ > 0 follows since Φ∗◦ Φ is positive definite. ��

In §12 we shall produce iterations from A-orthogonal projections.

Definition 7.2. Φ ∈ L is called an A-orthogonal projection if D(Φ) � A > 0
implies that the matrix A1/2N[A]A1/2 is an orthogonal projection.

An orthogonal projection has a spectrum contained in {0, 1}. For our purpose,
the following generalisation is sufficient:

Φ ∈ Lsym with σ(N[A]A) ⊂ [0, 2). (7.1)

Definition 7.3. The iteration Φ(·, ·, A) ∈ L is called nonexpansive (with respect to
an associated norm ‖·‖) if

‖MΦ[A]‖ ≤ 1.

Exercise 7.4. A > 0 and (7.1) imply that Φ is nonexpansive with respect to ‖·‖A .

Lemma 7.5. Assume that A > 0 . Let Φi ∈ L satisfy (7.1) for 1 ≤ i ≤ k. Then
the product iteration

Π(·, · , A) := Φk(·, · , A) ◦ . . . ◦ Φ2(·, · , A) ◦ Φ1(·, · , A)

converges if and only if (5.10) holds (cf. Proposition 5.23).

Proof. (i) Let x ∈
⋂k

i=1 ker(NΦi
). For an indirect proof, assume x �= 0 and set

y := A−1x �= 0. Since x ∈ ker(NΦ1), y = MΦ1y holds for the iteration matrix
MΦ1 = I − NΦ1A. By y = MΦ2y, etc., we obtain y = (MΠ)y for the iteration
matrix MΠ =

∏k
i=1 MΦi of Π(·, ·, A). The eigenvalue 1 of MΠ proves diver-

gence of Π. Hence, convergence implies (5.10).
(ii) Assume that (5.10) holds and define

M̂i := A1/2MΦ1A
−1/2 = I −A1/2NΦ1A

1/2 and M̂Π :=

k∏
i=1

M̂i.

The product iteration Π converges monotonically with respect to the energy norm
if ‖M̂Π‖2 < 1. By (7.1), σ(M̂i) ⊂ (−1, 1] and ‖M̂ix‖2 ≤ ‖x‖2 hold for all
x ∈ KI . In addition, ‖M̂ix‖2 = ‖x‖2 is equivalent to A−1/2x ∈ ker(NΦi

).
As a consequence ‖M̂Πx‖2 ≤ ‖x‖2 holds for all x ∈ KI and ‖M̂Πx‖2 = ‖x‖2
implies A−1/2 x ∈

⋂k
i=1 ker(NΦi

[A]). The assumption (5.10) yields x = 0 .

Hence ‖MΠ‖A = ‖M̂Π‖2 < 1 follows. ��
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7.2 Additive Splitting Technique

7.2.1 Definition and Examples

Most of the classical iterations are constructed by an additive1 splitting as explained
below. Given the system of equations

Ax = b (A ∈ KI×I , b ∈ KI), (7.2)

we split A into the difference

A = W −R (W regular). (7.3)

The system (7.2) is equivalent to

Wx = Rx+ b.

This suggests the iterative method

Wxm+1 = Rxm + b (7.4)

which is well defined since W is required to be regular.

Lemma 7.6. (a) Assume (7.3). Then the iterative method (7.4) is consistent. The
matrices of the first normal form (2.8) are

M = W−1R, N = W−1.

The notation ‘W ’ for the matrix in (7.3) is chosen because the third normal form
(2.12),

W (xm − xm+1) = Axm − b,

is valid with the same matrix W .
(b) Vice versa, any iteration Φ ∈ L with regular N can be obtained from an
additive splitting (7.3).

Proof. (a) A comparison of the representation

xm+1=W−1Rxm +W−1b

derived from (7.4) with (2.8) shows that M = W−1R and W = N−1.
(b) Choose W :=NΦ[A]−1 and R := W −A in (7.3). ��

Because of Lemma 7.6b, the additive splitting technique does not produce a
special class of iterations but all linear iterations. This is a similar situation as the
combination of the Richardson iteration ΦRich

1 with a right transformation T� = N

1 The term ‘additive’ distinguishes this technique from the multiplicative factorisation in §7.3.
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(cf. Proposition 5.44). In the case of the additive splitting, W = N−1 is the primary
quantity, whereas in the latter case, N determines the transformation.

Remark 7.7. The fact that the additive splitting can generate any linear iteration
leads to the question: what are the data on which the choice of W can be based?
The following cases can be distinguished:

(i) The choice is only based on the data of the matrix A. This means that there
is an explicitly available mapping A �→ W [A] or A �→ N [A]. In this case,
the iteration is algebraic (cf. Definition 2.2b).

(ii) The matrix A may be the result of a discretised partial differential equation.
Correspondingly, additional data of the partial differential equation not contained
in the matrix data (e.g., geometric data, coarser discretisations, etc.) can be used
for constructing W .

(iii) An intermediate situation between (i) and (ii) is the following one. The
element matrices B = {B(ν) : ν ∈ J} introduced in §E.3 contain more data
than A. Therefore a mapping B �→ W [B] may be well defined, but cannot be
obtained from A (cf. Remark E.8b).

In §7.4.5 we shall give an example for case (ii). There the proposed matrix W
cannot be derived from the matrix A.

A typical example of cases (ii) or (iii) are domain decomposition iterations
involving submatrices discretising Neumann boundary problems in subdomains
(cf. §12.3). These subproblems lead to matrices A1 and A2 such that A = A1+A2.
Obviously, A is a result of A1 and A2 , but these matrices cannot be determined
from A.

All splittings discussed in this section and in §7.3 correspond to the case (i) of
Remark 7.7.

Example 7.8. (a) A natural choice of W is some part of the matrix A. The splitting
A = D − (A−D) with the diagonal W =D of A yields the Jacobi iteration.
(b) Starting from the splitting A = D−E−F in (1.16), we choose W = D−E and
R = F . The resulting iteration (7.4) is the Gauss–Seidel iteration. Alternatively,
the choice W = D − F and R = E yields the backward Gauss–Seidel method
(cf. Proposition 5.1).
(c) Using the blockwise version of A = Dblock − Eblock − Fblock in (3.19a–d),
the respective splitting yields the block-Jacobi and block-Gauss–Seidel iterations.

Note that in the previous examples the matrices D, D − E, Dblock − Eblock

contain increasing parts of the matrix A. In Theorem 7.13 and §7.2.3 we shall see
that this fact may improve the convergence. On the other hand, W must still be
(easily) invertible, since we have to solve the system (2.12′).

The additive splitting can be combined with the summation introduced in §5.3
and yields the multi-splitting method (cf. O’Leary–White [296]).
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7.2.2 Regular Splittings

In this section we shall make use of M-matrices (cf. §C.3). Accordingly, we use the
notation

A < B, A ≤ B, x < y, x ≤ y, . . .

for matrices and vectors in the sense of componentwise inequalities. In particular,
A > 0 denotes a positive matrix, not a positive definite one.

The following definition of a ‘regular splitting’ is due to Varga [375]. It allows
not only qualitative convergence statements but also a comparison of different
iterative methods.

Definition 7.9 (regular splitting). The real matrix W ∈ RI×I describes a regular
splitting of A ∈ RI×I if

W regular, W−1 ≥ 0, W ≥ A (i.e., R := W −A ≥ 0). (7.5)

Condition (7.5) may be compared with (3.35g) in the positive definite case.
The iteration matrix of the iteration (7.4) is

M = W−1R with R := W −A

(cf. Lemma 7.6a). Condition (7.5) implies that

M ≥ 0 for regular splittings (7.6)

because of R ≥ 0. Using (7.6), we can weaken Definition 7.9 (cf. Ortega [298]).

Definition 7.10 (weakly regular splitting). The splitting (7.3) is weakly regular if

W regular, W−1 ≥ 0, M = W−1R ≥ 0. (7.7)

Theorem 7.11 (convergence). Let A be inverse positive: A−1 > 0 (a sufficient
condition is that A be an M-matrix). Assume that W describes a weakly regular
splitting of A. Then the induced iteration (7.4) converges:

ρ(M) = ρ(W−1R) =
ρ(A−1R)

1 + ρ(A−1R)
< 1. (7.8)

Proof. (i) Obviously, it is sufficient to show ρ(W−1R) = ρ(C)/(1 + ρ(C)) for
C := A−1R . The weak regularity (7.7) implies that

0 ≤ M = W−1R = [A−1W ]−1A−1R

= [A−1(A+R)]−1A−1R = [I + C]−1C.
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By Theorem C.34 and M ≥ 0 , there is an eigenvector x � 0 belonging to the
eigenvalue λ = ρ(M) ∈ σ(M). Rewriting λx = Mx = (I +C)−1Cx, we obtain

λx+ λCx = Cx (7.9a)

The value λ = 1 is excluded, since (7.9a) would yield x = 0. Hence,

Cx = λ
1−λx (7.9b)

follows. In part (iii) we shall show that C ≥ 0. Equation (7.9b), together with
x � 0 and Cx ≥ 0, ensures the inequality λ

1−λ ≥ 0 , i.e., 0 ≤ λ = ρ(M) < 1.

(ii) (7.9b) proves that λ is an eigenvalue of M if and only if μ = λ
1−λ is an

eigenvalue of C. The inequality 0 ≤ λ < 1 shows that μ ≥ 0. Since μ = λ
1−λ

increases monotonically in λ, |μ| = μ is maximal for λ = ρ(M) ∈ σ(M).
By Theorem C.34, μ = ρ(C) ∈ σ(C) is the maximal eigenvalue of C; therefore
we have ρ(C) = ρ(M)/[1 − ρ(M)]. Solving this equation for ρ(M), we arrive
at assertion (7.8): ρ(M) = ρ(C)/[1 + ρ(C)].

(iii) From

0 ≤
[
m−1∑
ν=0

Mν

]
W−1, W−1 = (I −M)A−1, and

m−1∑
ν=0

Mν(I −M) = I −Mm,

we conclude that

0 ≤ (I −Mm)A−1 ≤ A−1 and 0 ≤ MmA−1 ≤ A−1.

Therefore, Mm is bounded. This fact proves that κ = ρ(M) < 1. Since λ = 1 is
already excluded, ρ(M) < 1 holds and implies

C = A−1R = [W (I −M)]−1R = (I −M)−1W−1R =

[ ∞∑
ν=0

Mν

]
M ≥ 0. ��

It might be expected that the iteration converges faster the closer W is to A,
i.e., the smaller the remainder R = W−A is. This property is stated more precisely
in the following comparison theorem.

Theorem 7.12. Let A be inverse positive: A−1 ≥ 0. Let W1 and W2 define two
regular splittings. If W1 and W2 are comparable in the sense of

A ≤ W1 ≤ W2 , (7.10a)

then the convergence rates satisfy the corresponding inequalities

0 ≤ ρ(M1) ≤ ρ(M2) < 1, where Mi := W−1
i Ri, Ri := Wi −A. (7.10b)
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Proof. The matrices B := A−1R1 and C := A−1R2 satisfy 0 ≤ B ≤ C and
therefore 0 ≤ ρ(B) ≤ ρ(C) (cf. (C.15)). From representation (7.8) we obtain

0 ≤ ρ(M1) = ρ(B)/[1+ρ(B)] ≤ ρ(C)/[1+ρ(C)] = ρ(M2) < 1. ��

The comparisons in (7.10a,b) can be strengthened into strict inequalities.

Theorem 7.13. From A−1 > 0 and

A � W1 � W2, W1,W2 : regular splittings, (7.11a)

the strict inequalities

0 < ρ(M1) < ρ(M2) < 1 with Mi := W−1
i Ri , Ri := Wi −A (7.11b)

follows.

Proof. Define B and C as in the previous proof. Since B = A−1R1 may be
reducible, Theorem C.25 is not directly applicable. R1 ≥ 0 holds since the splitting
is regular. Define

I+ := {β ∈ I : R1,αβ > 0 for some α ∈ I} and I0 := I\I+.

Any column s = (R1,αβ)α∈I of R1 corresponding to an index β ∈ I+ satisfies
s � 0 and therefore A−1s > 0 by Exercise C.20b. Hence, B has the form

B =

[
B1 0
B2 0

]
with positive blocks B1 > 0 and B2 > 0

corresponding to the block structure {I+, I0}. In particular,

ρ(B) = ρ(B1) > 0 (7.11c)

holds (cf. (C.11a)). Because of R2 − R1 = W2 − W1 � 0, there is a pair (α, β)
with (R2 − R1)αβ > 0. Hence, the column of C − B = A−1(R2 − R1) for the
index β is positive. Assume β ∈ I+. In this case, C1 � B1 and C2 � B2 hold

for the blocks in C =

[
C1 C3

C2 C4

]
. Lemma C.30 and (C.11c) yield the inequality

ρ(C) ≥ ρ(C1) > ρ(B1).

In the remaining case of β ∈ I0, we conclude that

C3 � B3 = 0, C4 � B4 = 0,

and
ρ(C) > ρ(C1) ≥ ρ(B1)

(cf. Lemma C.30). In any case, using (7.11c), we arrive at the strict inequality
ρ(C) > ρ(B) > 0, which via (7.8) leads us to the assertion. ��
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7.2.3 Applications

Theorem 7.14. Let A be an M-matrix. Then the point- and blockwise Jacobi
iterations converge. Moreover, the blockwise iteration is faster:

ρ(MblockJac) ≤ ρ(MJac) < 1. (7.12a)

Let D be the pointwise diagonal Dptw or the block diagonal Dblock of A. Then

D describes a regular splitting. (7.12b)

Assuming explicitly (7.12b), we may replace the assumption ‘A is an M-matrix’ by
the inverse positivity: A−1 ≥ 0. The strict inequality

0 < ρ(MblockJac) < ρ(MJac) < 1

holds instead of (7.12a) if A−1 > 0 and Dptw �= Dblock �= A .

Proof. For an M-matrix A, the diagonals D = Dptw and D = Dblock satisfy the
inequality D > A and the sign condition (C.18b). By Theorem C.53, D is again
an M-matrix, so that D−1 ≥ 0 and (7.12b) follow. Because of Dptw ≥ Dblock,
Theorem 7.12 proves inequality (7.12a). Concerning the strict inequality, compare
with Theorem 7.13. ��

Theorem 7.15. Split A = D − E − F according to (3.11a–d) or (3.19a–d).
The statements of Theorem 7.14 carry over to analogous ones for the pointwise
and blockwise Gauss–Seidel iteration, where the statements (7.12a,b) become

ρ(MblockGS) ≤ ρ(MGS) < 1, D − E describes a regular splitting.

We omit the proof, since it is completely analogous to the previous one. The
comparison between the Jacobi and Gauss–Seidel iteration is more interesting. The
quantitative relation ρ(MGS) = ρ(MJac)2, which according to Conclusion 4.30
holds for consistent orderings, can no longer be shown for the general case.
However, a corresponding qualitative statement derived from D−E ≤ D is valid.

Theorem 7.16. For an M-matrix A, the following inequalities hold:

ρ(MGS) ≤ ρ(MJac) < 1, ρ(MblockGS) ≤ ρ(MblockJac) < 1.

This statement can be generalised to other than M-matrices.

Theorem 7.17 (Stein–Rosenberg [352]). Exactly one of the following four alter-
natives holds for the pointwise Jacobi and Gauss–Seidel iterations if A fulfils the
sign condition (C.18b), aαβ ≤ 0 for α �= β:

0 = ρ(MGS) = ρ(MJac),

0 < ρ(MGS) < ρ(MJac) < 1,

ρ(MGS) = ρ(MJac) = 1,

ρ(MGS) > ρ(MJac) > 1.
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In particular, both methods converge or diverge simultaneously. The statement
of the theorem remains valid if MJac and MGS are replaced by L + U and
(I − L)−1U with L ≥ 0 being an arbitrary, strictly lower triangular matrix and
U ≥ 0 a strictly upper one.

The proof can be found in Varga [375, §3.3] or in the original paper [352].
For generalisations, see Buoni–Varga [88, 89].

In the case of overrelaxation (i.e., for ω > 1), the SOR iteration does not
lead to a regular splitting. To ensure regularity of the splitting, we have to restrict
the parameter ω to 0 < ω < 1 (underrelaxation).

Exercise 7.18. Prove that the SOR iteration arises from a splitting (7.3) with
W = ω−1D − E. Let A be an M-matrix and D its diagonal. For 0 < ω ≤ 1,
the matrix W describes a regular splitting. What conclusion can be drawn from
ω−1D − E ≥ D − E ?

In the case of a regular splitting, the property (7.7) (i.e., M ≥ 0) allows an
enclosure of the solution x = A−1b, provided that we find suitable starting iterates.

Theorem 7.19. Let M ≥ 0 be the iteration matrix of a convergent iteration.
Starting with initial iterates x0 and y0 satisfying

x0 ≤ x1, x0 ≤ y0, y1 ≤ y0,

we obtain iterates xm and ym with the enclosure property

x0 ≤ x1 ≤ . . . ≤ xm ≤ . . . ≤ x=A−1b ≤ . . . ≤ ym ≤ . . . ≤ y1 ≤ y0.

Proof. It follows from the estimates xm+1 − xm = Mm(x1 − x0) ≥ 0 , and
ym − ym+1 = Mm(y0 − y1) ≥ 0, ym − xm = Mm(y0 − x0) ≥ 0 (cf. (2.16b)).��

We recall the generalisation of the M-matrices by the H-matrices in Definition
C.60 and the definition of diagonal dominance in §C.3.3.

Theorem 7.20. Each of the following conditions (7.13a,b) is sufficient for the
convergence of the pointwise Jacobi and Gauss–Seidel iterations:

A is an H-matrix, (7.13a)
A is strictly, irreducibly, or essentially diagonally dominant. (7.13b)

Exercise 7.21. Prove that (7.13b) implies (7.13a) and ‖MJac‖∞≤1, ‖MGS‖∞≤1.

Proof. (i) The case (7.13b) is reduced to (7.13a) because of Exercise 7.21.
(ii) Define B := |D| − |A−D| as in Definition C.60 and denote the iteration

matrix of the Jacobi iteration for B by MJac
B := |D|−1 |A−D|. Theorem 7.16

yields ρ(MJac
B ) < 1. By |MJac

B | = MJac
B , the convergence ρ(MJac) < 1 follows

from the next lemma, which remains to be proved.
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Lemma 7.22. ρ(A) ≤ ρ(|A|) for all A ∈ CI×I .

(iii) Split A = D − E − F according to (3.11a–d) and define L := D−1E,
U := D−1F . Since B = |D| − |E| − |F | = |D|(I − |L| − |U |), the iteration
matrices belonging to A and B are:

MGS = (I − L)−1U =

∞∑
ν=0

LνU, MGS
B = (I − |L|)−1 |U | =

∞∑
ν=0

|L|ν |U |

(cf. Lemma A.13). Hence, |MGS| = |
∑∞

ν=0 L
νU | ≤

∑∞
ν=0 |L|

ν |U | = MGS
B .

From Lemma 7.22 and Theorem 7.15, we conclude that ρ(MGS)≤ρ(MGS
B )<1. ��

Proof of Lemma 7.22. By ‖Aν‖∞ = ‖ |Aν | ‖∞ ≤ ‖ |A|ν ‖∞, Theorem B.27
yields

ρ(A) = lim
ν→∞ ‖Aν‖1/ν∞ ≤ lim

ν→∞ ‖ |A|ν ‖1/ν∞ = ρ(|A|). ��

The diagonal dominance in (7.13b) is often used as a convergence criterion since
the proof becomes very simple. Strict diagonal dominance is historically the first
convergence criterion for the Jacobi iteration (see the paper of R. von Mises and
H. Pollaczek-Geiringer [381, Satz 2] from 1929).

Proposition 7.23. If the strict diagonal dominance (C.16) can be quantified by a
number q > 1 such that

|aαα| ≥ q
∑

β∈I\{α}
|aαβ | for all α ∈ I, (7.14a)

then the Jacobi and Gauss–Seidel iterations converge monotonically with respect to
the maximum norm with the contraction numbers

‖MJac‖∞, ‖MGS‖∞ ≤ 1/q < 1. (7.14b)

Proof. Using (7.14a), the estimate of MJac = D−1(A−D) by ‖MJac‖∞ ≤ 1/q
follows immediately from (B.8).

In the Gauss–Seidel case, we use the description of the iteration by (1.15). The
components of the error em = xm − x satisfy

em+1
i = −

⎛⎝ i−1∑
j=1

aije
m+1
j +

n∑
j=i+1

aije
m
j

⎞⎠ /aii.

Induction on i yields ‖em+1‖∞ ≤ ‖em‖∞/q. Since em+1 = MGSem, the in-
equality (7.14b) follows. ��

Concerning the convergence of the SSOR iteration for H-matrices, we refer to
Alefeld–Varga [3] and Neumaier–Varga [289].
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7.2.4 P-Regular Splitting

The P-regular splitting defined below is of different nature. In particular, it is based
on the order relation of positive definite matrices (cf. §C.1). The term ‘P-regular’ is
introduced by Ortega [298], but the following convergence statement goes back to
Weissinger [392] in 1953 (see also Weissinger [391]).

Lemma 7.24. Let X be any general matrix, while Z is positive definite; i.e., Z > 0.
Then Z −XHZX > 0 implies that

ρ(X) < 1 and ‖Z1/2XZ−1/2‖2 < 1.

Proof. Set Y := Z1/2XZ−1/2. Multiplying Z − XHZX > 0 by Z−1/2 from
both sides yields I − Y HY > 0 or Y HY < I (cf. (C.3a′)). Hence ‖Y ‖22 =
ρ(Y HY )<ρ(I)=1 proves the last statement. Since X and Y are similar matrices,
ρ(X) = ρ(Y ) ≤ ‖Y ‖2 proves ρ(X) < 1. ��

Definition 7.25. The splitting A = W −R is called P-regular if W is regular
and the Hermitian part 1

2 (C + CH) of C := W +R is positive definite.

The last condition can be written as 0 < 1
2 (C+CH) = 1

2 (W+WH+R+RH) =
W +WH − 1

2 (A+AH), i.e.,

W +WH >
1

2
(A+AH) =: Â. (7.15)

Theorem 7.26 (Weissinger [392]). Assume A+AH > 0 and consider a P-regular
splitting A = W − R. The corresponding iteration (7.4) converges monotonically
with respect to the norm ‖·‖Â with Â defined in (7.15):

ρ(M) ≤ ‖M‖Â < 1 for M = I −W−1A. (7.16)

Proof. The splitting A = W − R yields the iteration matrix M = W−1R . Note
that

A−MHAM = A− (I −W−1A)HA(I −W−1A)

= (W−1A)HA+AW−1A− (W−1A)HA(W−1A)

= (W−1A)H(W +WH −A)(W−1A) =: B.

Forming the expression 1
2 (B +BH) and using Â in (7.15), we arrive at

Â−MHÂM = (W−1A)H(W +WH − Â)(W−1A) > 0

because of (7.15). Lemma 7.24 with Z := Â yields (7.16). ��
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7.3 Incomplete Triangular Decompositions

One learns from Theorem 7.13 that the convergence speed of Jacobi and Gauss–
Seidel iterations could be improved if even larger parts of the matrix A were con-
tained in W . The practical obstacle is that we must be able to solve the system
Wδ = d efficiently. In particular, this requirement seems to exclude splittings
with W containing larger portions of A than the lower and upper triangular parts.
However, if we are able to decompose W into triangular factors2

W = LU (L lower triangular, U upper triangular matrix),

the solution of LUδ = d can easily be performed using the forward and backward
substitution (cf. Quarteroni–Sacco–Saleri [314, §3.2]).

Therefore, we are looking for a suitable matrix W = LU . In general, W = A
is not a good candidate since its LU decomposition leads to a fill-in, i.e., to larger
nonzero parts of the matrix. In the case of sparse factors L, U with A �= W = LU,
this factorisation is called an incomplete LU decomposition of A and abbreviated as
ILU.

Besides the use of ILU as a linear iteration (possibly accelerated by techniques
of Part II), ILU is also of interest as smoothing iteration of the multigrid method
(cf. §11.9.2).

7.3.1 Introduction and ILU Iteration

In the following, the index set I is ordered. Here the standard choice in the model
case is the lexicographical ordering. By Conclusion 1.11, the LU decomposition
A = LU has proved to be inappropriate for sparse matrices, since the factors L
and U contain many more nonzero entries than the original matrix A. Computing
the LU decomposition is completely identical to Gauss elimination: U is the upper
triangular matrix remaining after eliminating the entries below the diagonal,
whereas L contains the elimination factors Lji=a

(i)
ji /a

(i)
ii (j ≥ i) (cf. Quarteroni–

Sacco–Saleri [314, §3.3]). Instead of computing L and U by Gauss elimination,
we may determine the n2 + n unknown entries Lji, Uij (j ≥ i) directly from the
n normalisation conditions

Lii = 1 (1 ≤ i ≤ n) (7.17a)

and the n2 equations involved in A = LU :

n∑
j=1

LijUjk = Aik (1 ≤ i, k ≤ n). (7.17b)

2 In this section, L and U are general (nonstrict) triangular matrices and do not coincide with the
matrices L, U defined in (3.15d).
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The incomplete LU decomposition is based on the idea of not eliminating all
matrix entries of A to avoid the fill-in of the matrix during the elimination process.
Since, after an incomplete elimination, entries remain in the lower triangular part, an
exact solution of the system is not possible. Instead, the previous equality A = LU
holds up to remainder R :

A = LU −R. (7.18)

For the exact description of the ILU process, we choose a subset E ⊂ I × I
of the product of the ordered index set I = {1, 2, . . . , n}. The elimination is
restricted to the pairs (i, j) ∈ E. Concerning E, we always require

(i, i) ∈ E for all i ∈ I. (7.19a)

In general, one should choose E large enough, so that the graph G(A) of A is
contained in E (cf. Definition C.12):

G(A) ⊂ E. (7.19b)

E is called the (elimination) pattern of the ILU decomposition. Examples of E
will be given in §7.3.2. Through the definition of the triangular matrices,we have

Lij = Uji = 0 for 1 ≤ i < j ≤ n. (7.20a)

To construct sparse matrices L and U , nonzero entries are allowed only at posi-
tions of the pattern E; otherwise, we require

Lij = Uij = 0 for (i, j) /∈ E. (7.20b)

Exercise 7.27. Prove that there are #E matrix entries of L and U which are not
directly determined by (7.17a), (7.20a), and (7.20b).

In analogy to (7.17b), we pose #E equations for the same number of unknowns:

n∑
j=1

LijUjk = Aik for all (i, k) ∈ E. (7.20c)

The remainder R = LU −A is obtained from (7.20d,e):

Rik = 0 for all (i, k) ∈ E, (7.20d)

Rik =

n∑
j=1

LijUjk −Aik for all (i, k) /∈ E. (7.20e)

Under assumption (7.19b), the term Aik in 7.20e may be omitted because of Aik=0.
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The ILU factors satisfying (7.17a) and (7.20a–c) can, e.g., be constructed by the
following algorithm:

L := 0; U := 0;
for i := 1 to n do

begin Lii := 1;
for k := 1 to i− 1 do if (i, k) ∈ E then Lik :=

Aik−
∑′

LijUjk

Ukk
; (7.21a)

for k := 1 to i do if (k, i) ∈ E then Uki := Aki −
∑′′

LkjUji (7.21b)
end;

The sums
∑′ and

∑′′ are taken over all j with j �= k. Since all indices referring
to vanishing terms can be omitted, we may write:

Σ′ =
∑

j∈I with j<k, (i,j)∈E, (j,k)∈E

, Σ′′ =
∑

j∈I with j<k, (k,j)∈E, (j,i)∈E

.

The definition of Lik in (7.21a) is obtained from (7.20c). To prove (7.21b), inter-
change i and k in (7.20c). One verifies that only those components of L and U are
involved in the right-hand sides of (7.21a,b) that are already computed. Remark 7.28
will enable a simplification of the algorithm.

Remark 7.28. The definitions D := diag{U}, U ′ := U − D, L′ := (L − I)D
lead to a strictly lower triangular matrix L′ and a strictly upper triangular matrix
U ′. Equation (7.18) rewritten with the new quantities becomes

A = (D + L′)D−1(D + U ′)−R . (7.22)

The quantities D, L′, and U ′ are the result of the following algorithm:

D := 0 ; L′ := 0 ; U ′ := 0 ;
for i := 1 to n do

begin

for k := 1 to i−1 do if (i, k)∈E then L′
ik := Aik−

∑′
L′
ijD

−1
jj U ′

jk ; (7.23a)
for k := 1 to i−1 do if (k, i)∈E then U ′

ki := Aki−
∑′′

L′
kjD

−1
jj U ′

ji ; (7.23b)
Dii := Aii −

∑′′
L′
ijD

−1
jj U ′

ji (7.23c)
end;

Hence, ILU iteration based on L′, D, U ′ is algebraic.

Remark 7.29. (a) If A is Hermitian, (7.23a–c) immediately implies the symmetries
L′ = U ′H and D = DH.
(b) The incomplete Cholesky decomposition A = L′′L′′H −R for positive definite
matrices A follows from (7.22) with L′′ := (D + L′)D−1/2.

Tacitly, we assume that the quantities Ukk (pivot entries) in (7.21a) and Djj in
(7.23a) do not vanish and that, in the case of Remark 7.29b, even Djj > 0 holds.
Concerning these assumptions, we refer to the analysis in §7.3.5.
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Exercise 7.30. Complete LU decompositions are characterised by R = 0 in (7.18).
Prove: (a) R = 0 holds for cases (i) E = I×I or (ii) E = {(i, j) : |i− j| ≤ w}
for band matrices of band width w ≥ 0 .
(b) D = diag{A} and L′ = U ′ = 0 hold for the diagonal elimination pattern
E = { (i, i) : i ∈ I}, which is the minimal pattern satisfying (7.19a).

The additive splitting A = W − R of A given by (7.18) or (7.22) defines the
corresponding ILU iteration:

W (xm − xm+1) = Axm − b with (7.24a)

W = LU or W = (D + L′)D−1(D + U ′), respectively. (7.24b)

The matrices of the first and second normal forms are

M=NR with N=U−1L−1 or N=(D + U ′)−1D (D + L′)−1.

Remark 7.31. In addition to the factors L, U (or D, L′, U ′, respectively), we can
either store A and use (7.24a) or store R and apply the representation (7.25):

Wxm+1 = b+Rxm. (7.25)

Concerning the computational work, we recall §2.3.1: the decomposition (7.23a–c)
defines the initialisation cost denoted by Init(ΦILU, A), while Work(ΦILU, A) is
the cost required by (7.25).

7.3.2 Incomplete Decomposition with Respect to a Star Pattern

For the description of the pattern E, we should not use the ordered indices 1, . . . , n.
In the case of the model problem, the pairs (i, j) for 1 ≤ i, j ≤ N − 1 are
taken as indices of I. The edges of the graph G(A) are described by the pairs
((i, j) , (i± 1, j)) (horizontal neighbours) and ((i, j) , (i, j ± 1)) (vertical neigh-
bours). For the case of a regular grid, the star notation was already used in §1.3.2
as short-hand notation of the matrices. In the following, we use the so-called star
patterns. The entries ‘ ∗ ’ in the examples⎡⎣ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

⎤⎦ ,
⎡⎣ ∗ ∗
∗ ∗ ∗
∗ ∗

⎤⎦ ,
⎡⎣ · · · ∗

· · ·
∗ · · ·

⎤⎦
refer to elements in the set E. If, for instance, ‘ ∗ ’ is the right neighbour of the mid-
point, this means that for all α ∈ I having a right neighbour β ∈ I , the pair (α, β)
belongs to E. Unmarked positions or the sign ‘ · ’ signify that the corresponding
pairs (α, β) do not belong to E.

Remark 7.32. The 1×1 star [∗] characterises the minimal set E = {(i, i) : i ∈ I} of
Exercise 7.30b. The corresponding ILU iteration coincides with the Jacobi iteration.
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7.3.3 Application to General Five-Point Formulae

Algorithm (7.23a,b) should be regarded more as a definition than a method for
practically computing the matrices D, L′, U ′. For the example of a general
five-point formula A, we demonstrate how to derive a cheaper computation. For
the sake of convenience, we assume that the coefficients are constant:

A =

⎡⎣ −e
−a d −b

−c

⎤⎦ (cf. (1.13a)). (7.26)

To ensure that A be an M-matrix, we requite that

a, b, c, e ≥ 0, d ≥ a+ b+ c+ e .

The smallest pattern satisfying (7.19b) is

E = G(A), i.e., E =

⎡⎣ ∗
∗ ∗ ∗

∗

⎤⎦ ( five-point pattern). (7.27a)

Using lexicographical ordering, the strictly triangular matrix L′ has the pattern⎡⎣ ·
∗ · ·
∗

⎤⎦ ,
since the ∗-marked positions are the only matrix entries corresponding to the pattern
E and located below the diagonal. Correspondingly, U ′ has the pattern⎡⎣ ∗

· · ∗
·

⎤⎦ .
In (7.23a,b), we replace the indices i, j, k ∈ {1, . . . , n} by α, β, γ ∈ I =

Ωh and, subsequently, we identify α = (x, y) = (kαh, lαh) ∈ Ωh with the pair
(kα, �α), where now 1 < kα, �α < N − 1 holds (cf. (1.3)). First, one has to discuss
the sum Σ′ in (7.23a). L′

αγ �= 0 can only be true for γ = (kγ , �γ) = (kα − 1, �α)
or γ=(kα, �α−1), whereas U ′

γβ �=0 leads to β=(kγ +1, �γ) or β=(kγ , �γ +1).
Hence,

L′
αγD

−1
γγ U ′

γβ �= 0

requires β = α or β = (kα+1, �α−1). Both possibilities contradict the inequality
α �= β —in (7.23a) written as k ≤ i − 1—and (α, β) ∈ E. Therefore, Σ′ is an
empty sum and (7.23a) reduces to L′

αβ = Aαβ for α > β and (α, β) ∈ E.
Hence, L′ is the constant two-point star
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L′ =

⎡⎣ 0
−a 0 0

−c

⎤⎦ . (7.27b)

Similarly, we obtain

U ′ =

⎡⎣ −e
0 0 −b

0

⎤⎦ . (7.27c)

Only for α = β, is the sum Σ′′ in (7.23c) not empty and does contain the two
indices γ = (iα − 1, jα) and γ = (iα, jα − 1). We abbreviate the diagonal entry
Dαα by dα = diα,jα . Because of Aαα = d and the already known values in
(7.27b,c), definition (7.23c) can be rewritten as

di,j = d− ab

di−1,j
− ce

di,j−1
(1 ≤ i, j ≤ N − 1), (7.27d)

where the terms with j − 1 = 0 or i − 1 = 0 have to be ignored. In particular,
we obtain d11 = d for the first grid point. For the five-point formula (7.26),
the double loop in (7.23a–c) is reduced to a simple loop over all (i, j) ∈ I = Ωh.

It is also possible to determine the remainder matrix R. Equations (7.20d,e)
become

Rαβ = 0 for (α, β) ∈ E,
Rαβ = (L′D−1U ′)αβ for (α, β) /∈ E.

(7.27e)

One verifies that R has two (variable) coefficients per row:

R =

⎡⎣ rij · ·
· · ·
· · sij

⎤⎦ with rij =
ae

di−1,j
, sij =

cb

di,j−1
, (7.27f)

where rij = 0 holds for i = 1 and sij = 0 for j = 1.

Remark 7.33. The ILU decomposition of a five-point formula with constant or
variable coefficients requires 6n operations for computing the dij values in (7.27d).
The solution of

Wδ = (D + L′)D−1(D + U ′)δ = d

takes 10n operations; hence because of the additional 10n operations for comput-
ing d = Axm − b, one ILU iteration step (7.24a) requires, in total, 21n operations.
Note that the dij values in (7.27d) have to be determined only once. An alterna-
tive is determining R by additional 4n operations. Afterwards, the iteration (7.25)
requires only 14n operations. Together with CA = 5, the following cost factors
result:

CILU = 4.2 or CILU = 2.8 respectively for E in (7.27a).
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7.3.4 Modified ILU Decompositions

So far we ignored matrix entries aij for (i, j) /∈ E completely. One may pose
the question of whether or not this is a good strategy. The following approach will
indirectly use all aij .

We recall the Gauss–Seidel iteration, where the matrix W = D−E is changed
into W = 1

ωD − E for the SOR method. Hence, overrelaxation, which in general
leads to improved convergence, corresponds to diminishing the diagonal in W .
Following Wittum [403], we introduce a modification which also leads to a
diminishing or enlargement of the diagonal depending on the choice of ω.

Let 1 be the vector (1)α∈I consisting of the entries 1α = 1. Gustafsson [172]
proposes replacing the equation Rii = 0 (i.e., (7.20d) for i = k) by

A1 = W1, i.e., R1 = 0. (7.28)

One may view 1 as a test vector. By condition (7.28), W is gauged in such a
way that A and W coincide with respect to their application to 1. We generalise
the condition R1 = 0 by

Rii = ω
∑
j �=i

Rij (ω ∈ R) (7.29)

and denote the corresponding decomposition as ILUω decomposition (its existence
is not yet claimed). The corresponding ILUω iteration is denoted by ΦILU

ω .

Remark 7.34. (a) For ω = 0, Eq. (7.29) coincides with (7.20d) for i = k: Rii = 0.
Hence, the unmodified ILU decomposition is the ILU0 decomposition.
(b) For ω = −1, the conditions (7.28) and (7.29) are identical, i.e., the ILU−1

decomposition describes the modification by Gustafsson [172].

In the case of the five-point formula (7.26) and the five-point pattern (7.27a),
L′ and U ′ are still obtainable from (7.27b,c), whereas recursion (7.27d) for the
entries dij of D becomes

dij := d+
(ωe− b)a

di−1,j
+

(ωb− e)c

di,j−1
(7.30)

(terms with i− 1 = 0 and j − 1 = 0 are again to be ignored).

7.3.5 Existence and Stability of the ILU Decomposition

In this section, the inequalities A ≤ B have to be understood in the sense of
elementwise inequalities Aαβ ≤ Bαβ (α, β ∈ I) as in §C.3.

It is well known that the (complete) LU decomposition exists if and only if all
principal submatrices (aij)1≤i,j≤k are regular for 1 ≤ k ≤ n. However, even if
the decomposition A = LU exists, it can be useless since the solution process of
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the equations Ly = b and Ux = y may be unstable. Choose, e.g., A = LU
with U = L� and L = tridiag{α, 1, 0} for α < 1, and investigate the error
propagation (cf. Elman [121]). The criterion involving the principal submatrices is
satisfied for positive definite matrices. However, there are positive definite matrices
for which the ILU decomposition fails because of Ukk = 0 in (7.21a). The first
part of the following criterion is stated by Meijerink–van der Vorst [280], while the
second part is due to Manteuffel [273].

Theorem 7.35. Let E ⊂ I × I satisfy (7.19a). (a) M-matrices A permits an ILU
decomposition A = W − R with W in (7.24b), which, in addition, represents a
splitting (7.4) in the sense of Definition 7.9.

(b) If an H-matrix A has a positive diagonal D, the ILU decomposition

A = (D + L′)D−1(D + U ′)

exists. Â := D − |A−D| (cf. Definition C.60) has also an ILU decomposition
(D̂ + L̂′)D̂−1(D̂ + Û ′). Then the following inequalities hold:

0 ≤ D̂ ≤ D, L̂′D̂−1 ≤ −
∣∣L′D−1

∣∣ ≤ 0, D̂−1Û ′ ≤ −
∣∣D−1U ′∣∣ ≤ 0.

Meijerink–van der Vorst [280] prove part (a) by interpreting the ILU decomposi-
tion as a sequence of Gauss elimination steps which conserve the M-matrix property
(cf. Lemma C.59). We give another proof directly referring to the defining equations
(7.20c) and requiring weaker assumptions.

XE denotes the restriction of a matrix X to the index subset E:

(XE)αβ :=

{
Xαβ if (α, β) ∈ E,
0 otherwise.

The matrices denoted in the following by the letters D, L, and U with different
indices should always be of diagonal structure or strictly lower or upper triangu-
lar structure, respectively. Note that the triple (D,L,U) is uniquely defined by the
sum X = D + L + U . To express the single components of this triple, we write
X = diag{X}+ L(X) + U(X).

In the following, it is not necessarily assumed that Aαβ ≤ 0 holds for α �= β,
as it is necessary for M-matrices. We define

(A−)αβ :=

{
Aαβ if α = β or Aαβ ≤ 0,
0 otherwise.

The matrix A is assumed to fulfil the following conditions:

Aαβ ≤
(
L(A−)E ·diag{A}−1 · U(A−)E

)
αβ

for all
{
α �= β,
(α, β) ∈ E,

(7.31a)

A has a complete LU decomposition

A = (D + L)D−1(D + U) = D + L+ U + LD−1U

with D ≥ 0 , L ≤ 0 , U ≤ 0 .

(7.31b)
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Remark 7.36. All M-matrices A satisfy the assumptions (7.31a,b). (7.31b) implies
the inverse positivity of A, i.e., A−1 ≥ 0. Condition (7.31a) is always satisfied
if A fulfils the sign condition Aαβ ≤ 0 (α �= β) for all (α, β) ∈ E.

Proof. Since the Gauss elimination yields the complete LU decomposition, the
inequalities in (7.31b) follow from Lemma C.59. Vice versa, the inequalities in
(7.31b) imply (D + L)−1 ≥ 0, D−1 ≥ 0, (D + U)−1 ≥ 0, from which A−1 ≥ 0
can be concluded. If A is an M-matrix and therefore Aαβ ≤ 0 for α �= β,
(A−)αβ ≤ 0 ≤ (L(A−)E diag{A}−1U(A−)E)αβ follows. ��

Theorem 7.37. Assume that E ⊂ I × I satisfies (7.19a) and that the matrix A
fulfils (7.31a,b). Then A permits an ILU decomposition A = W − R with W
in (7.24b). A = W − R is a regular splitting if Aαβ ≤ 0 for (α, β) /∈ E
(the minimal condition (7.19b) is sufficient). The enclosure (7.32) holds with D ,
L , U from (7.31b):

(D + L+ U)E ≤ D + L′ + U ′ ≤ (A−)E . (7.32)

Proof. The conditions (7.20d) can be written as RE = 0. Inserting the remainder
R=D+L′+U ′+L′D−1U ′−A, we obtain (D+L′+U ′+L′D−1U ′−A)E = 0, i.e.,

(D + L′ + U ′)E = (A− L′D−1U ′)E . (7.33)

Using the mapping

X �→ Φ(X) :=
(
A− L(X) · diag{X}−1 · U(X)

)
E

, (7.34a)

we may write the defining equation (7.33) as a fixed-point equation

D + L′ + U ′ = Φ(D + L′ + U ′). (7.33′)

Assume the monotonicity properties

C1 ≤ C2, diag{C1} ≥ 0,

L(C2) + U(C2) ≤ 0

}
=⇒ Φ(C1) ≤ Φ(C2). (7.34b)

Equation (7.31b) states that A = D + L+ U + LD−1U . We set

A0 := D + L+ U and A0 := (A−)E . (7.34c)

LD−1U ≥ 0 yields

A0 = (A0)− ≤ ((A0)−)E ≤ ((A0 + LD−1U)−)E = (A−)E = A0,

i.e.,
A0 ≤ A0. (7.34d)

Next, we show that
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A0 ≤ Φ(A0) and Φ(A0) ≤ A0. (7.34e)

Φ(A0) = (A − LD−1 U)E = (D + L + U)E = (A0)E ≥ A0 holds because of
L , U ≤ 0. The second inequality in (7.34e) is identical to (7.31a). Φ defines the
following fixed-point iterations:

Am+1 := Φ(Am), Am+1 := Φ(Am). (7.34f)

The monotonicity (7.34b) and the inequalities (7.34d,e) lead to

A0 ≤ A1 ≤ . . . ≤ Am ≤ . . . ≤ Am ≤ . . . ≤ A1 ≤ A0 (7.34g)

(cf. Theorem 7.19). Hence, both sequences must converge to a unique limit
C = D + L′ + U ′ satisfying the fixed-point equation (7.33′). (7.32) follows from
(7.34c) and A0 ≤ D + L′ + U ′ ≤ A0. W−1 = (D + U ′)−1D(D + L′)−1 ≥ 0
is a consequence of the inequalities D ≥ 0 and L′, U ′ ≤ 0. Remainder R
vanishes on E: RE = 0; otherwise, Rαβ = (L′D−1U ′ − A)αβ holds. The
inequality Aαβ ≤ 0 for indices (α, β) /∈ E implies Rαβ ≥ (L′D−1U ′)αβ ≥ 0.
Hence, the splitting A = W −R is regular. ��

The stability3 of the ILU decomposition is expressed in (7.32) by the estimate of
the diagonal D from below by D.

To generalise Theorem 7.37 to the ILUω decomposition with ω �= 0, we may
write the equations Rij = 0 for i �= j, (i, j) ∈ E, and (7.29) as

RE − ω diag{RE′1} = 0 with R = D + L+ U + LD−1U −A,

Here, E′ := (I × I)\E is the complement. For a vector v = (v1, . . . , vn)
T,

diag{v} denotes the diagonal matrix diag{v1, . . . , vn}. Carrying over the proof
technique, we are led to the fixed-point equation C = Φω(C) with

Φω(C) := Φ(C)− ω diag{(A− L(C) · diag{C}−1 · U(C))E′1} (7.35)

and Φ defined in (7.34a). In general, however, Φω does not have the desired
properties. The monotonicity corresponding to (7.34b) may be violated for ω > 0,
whereas for ω < 0, it may happen that no A0 exists with Φω(A0) ≥ A0 (and
hence, no solution exists).

For a precise discussion, we study the five-point formula (7.26) with the five-
point pattern (7.27a). Since L′, U ′ are already uniquely determined (cf. (7.27b,c)),
the fixed-point equation simplifies to a scalar equation for D :

D = Φω(D) := diag{A− L′D−1U ′} − ω diag{(A− L′D−1U ′)E′1}
= diag {d+ (ωa− c)e/Di−1,j + (ωc− a)b/Di,j−1} (7.36a)

3 Concerning the problem that the solution of the systems (D + L)x = b or (D + U)x = b
may lead to instabilities, we refer to Elman [121], where ILU decompositions for nonsymmetric
matrices are discussed.
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(cf. (7.30)). For analysing this equation, we investigate the one-dimensional fixed-
point equation

d = ϕω(d) := d+ [(ωe− b)a+ (vb− e)c] /d. (7.36b)

A discussion of the function ϕω , which is left to the reader, shows the following.
(i) The fixed-point equation (7.36b) is solvable if and only if

4γ < d2 for γ := ce+ ab− ω(ae+ cb). (7.36c)

(ii) If (7.36c) is satisfied, the solutions of (7.36b) are

δ± =
1

2

(
d±
√

d2 − 4γ
)
. (7.36d)

(iii) δ+ is the stable fixed point because (7.36e) leads to (7.36f):

ϕω(δ) < δ for δ > δ+, ϕω(δ) > δ for δ− < δ < δ+, (7.36e)
lim δm = δ+ for δ0 > δ−, δm+1 := ϕω(δm). (7.36f)

(iv) On the other hand, starting values δ0<δ− generate sequences {δm} which
contain at least one element δm ≤ 0.

Exercise 7.38. Let A in (7.26) be diagonally dominant and symmetric:

a = b ≥ 0, c = e ≥ 0, s := a+ c > 0, d = 2σ + ε with ε ≥ 0. (7.37a)

Prove that for ω = −1, the value δ+ is obtained from (7.36d) with γ = σ2. For
small ε, this value has the expansion

δ+ = σ +
√
εσ +O(ε). (7.37b)

Assuming (7.37a), we obtain for ω = 0 that

δ+ = a+ c+
√
2ac+O(

√
ε).

Theorem 7.39. Let ω ∈ [−1, ω∗] , where ω∗ := min{ c
a ,

a
c }. Assume that the

matrix A in (7.26) satisfies (7.37a). Then the ILUω decomposition exists, and the
entries dij of the diagonal D are enclosed by

δ+ =
d+
√

d2 − 4 (c2 + a2 − 2ωac)

2
< dij ≤ d for (i, j) ∈ I. (7.38)

The fixed-point iteration (7.36a) with the starting iterate D0 := diag{d1} con-
verges from above to D.

Proof. (7.36c) is satisfied for ω > −1, while Φω is monotone for ω ≤ ω∗.
One verifies that D0 ≤ Φω(D0) and Φω(D

0) ≤ D0 hold for D0 := diag{δ+1}
and D0 := diag{d1}. Hence, we can draw the same conclusions as in the proof of
Theorem 7.37. ��
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7.3.6 Properties of the ILU Decomposition

An immediate consequence of Theorem 7.11 is the following convergence state-
ment.

Theorem 7.40. If A is an M-matrix or, if according to Theorem 7.37, A = W −R
describes a regular splitting, the ILU iteration (7.24a,b) converges with the
convergence rate ρ(A−1R)/(1 + ρ(A−1R)).

In the standard case, one may assume ‖R‖ = O(‖A‖), so that ρ(A−1R) ≤
‖A−1‖ ‖R‖ ≤ C‖A−1‖ ‖A‖ = C cond(A) � 1 leads to the convergence rate
(1+1/ρ(A−1R))−1 ≈ 1−O(1/ cond(A)). Hence, the ILU decomposition has the
same order as the Jacobi or Gauss–Seidel iteration. A better result can be derived for
the modified ILU−1 decomposition (cf. (7.28) or (7.29) with ω = −1). We prepare
its analysis with the following lemma (cf. Wittum [402]).

Lemma 7.41. Assume (7.39a), where A, DA , and D are positive definite:

A = DA − L− LH, W = (D + L′)D−1(D + L′H). (7.39a)

The spectrum σ(W−1A) is contained in [0, Γ ] if

(2− 1
Γ )D −DA + L+ LH + L′ + L′H is positive semidefinite. (7.39b)

Proof. We write D + L′ as 1
Γ D + C with C := (1− 1

Γ )D + L′. From

ΓW −A = ( 1
Γ D + C)( 1

Γ D)−1( 1
Γ D + C)H −A ≥ 1

Γ D + C + CH −A

= (2− 1
Γ )D −DA + L+ LH + L′ + L′H ≥ 0

with ‘≥ ’ in the sense of semidefiniteness, it follows that σ(W−1A) ∈ [0, Γ ]. ��

Theorem 7.42. Let −1 ≤ ω ≤ ω∗ (cf. Theorem 7.39). The five-point formula (7.26)
and the five-point pattern (7.27a) are assumed to satisfy (7.37a). Then the inequality

γW ≤ A ≤ ΓW with
{
γ = 1/[1 + (1 + ω) 2ac

δ+λmin
],

Γ = δ+/ [2δ+ − d] ,
(7.40)

holds with ‘≤ ’ in the sense of semidefiniteness, where δ+ is defined in (7.38) and
λmin = ε+ 4(a+ c) sin2 πh

2 is the smallest eigenvalue of A. In particular, (7.41)
holds:

γ = 1, Γ =
1

2

√
σ

ε
− 1

4
+O
(√

ε

σ

)
for ω = −1. (7.41)

Proof. (i) (7.39b) becomes (2 − 1
Γ )D − DA ≥ 0, since by (7.27b,c), L = −L′

holds in Lemma 7.41. Thanks to DA = dI and δ+I ≤ D (cf. (7.38)), Γ with
(2− 1

Γ )δ+=d is sufficient for (7.39b). Solving for Γ, we obtain Γ =δ+/(2δ+−d).
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(ii) The entries rij , sij of R (cf. (7.27f)) are bounded from above by 2ac/δ+.
According to (7.29), the diagonal entries of R are equal to ω(rij +sij). The eigen-
values of R lie in the Gershgorin circles around ω(rij + sij) with the radius
rij + sij (cf. Hackbusch [193, Criterion 4.3.4], Varga [376]) and, hence, they are
bounded by (1+ω)(rij+sij) ≤ 2 (1+ω) ac/δ+, implying R ≤ [ 2 (1+ω) ac/δ+] I .
From λminI ≤ A, we deduce R ≤ ρA with ρ := 2(1 + ω)ac/(δ+λmin).
A = W − R ≥ W − ρA yields W ≤ (1 + ρ)A. Hence, γ = 1/(1 + ρ) leads to
the representation of γ.

(iii) For ω = −1, insert the representation (7.37b) into (7.40). ��

Conclusion 7.43. (a) Replacing the Poisson equation −Δu=f with the Helmholtz
equation −Δu+ εu = f with ε > 0 , we obtain the coefficients a = b = c = e =
−h−2, d = 4h−2 + ε in (7.37a). Equation (7.41) yields the bound and condition
number Γ = Γ/γ = h−1/

√
2ε+O(1) indicating the order improvement.

(b) Let ω = −1. The (modified) ILU−1 iteration damped by ϑopt = 2/(γ + Γ ) =
2
√
2εh+O(h2) has the convergence speed

ρ(M ILU
ϑopt

) ≤ (Γ − 1)/(Γ + 1) ≈ 1− 2/Γ ≈ 1− 2
√
2ε h.

Hence, similar to the SSOR method with an optimal relaxation parameter ωSSOR ,
it is of first order as long as ε > 0 .

Proof. Use Theorem 6.7. ��

The applicability of the ILU−1 decomposition is not at all restricted to strict
diagonal dominance in Theorem 7.42 and Remark 7.43b, as shown by the following
remark.

Remark 7.44 (enlargement of the diagonal). Let A = Aε be a matrix satisfying
(7.37a) with ε > −4(a + c) sin2 πh

2 (i.e., λmin(A) > 0) instead of ε > 0.
Then the ILU−1 decomposition Aη = Wη − Rη has to be applied to the matrix
Aη := A + (η − ε)I with η > 0 in order to re-establish diagonal dominance
d > 2σ. Wη can be viewed as the ILU decomposition of A=Aε with remainder
R = Wη − A = Rη − (η − ε)I . Conclusion 7.43 yields the spectral condition
number κ(W−1

η Aη). Let λ = λmin(A) and Λ = λmax(A) be the extreme eigen-
values of A . Because of

κ(A−1
η A) = κ(A−1

η Aε) =
Λ (λ+ η − ε)

λ (Λ+ η − ε)
≈ 1 +

η − ε

λmin(A)
,

Lemma 7.55 shows that

κ(W−1
η Aε) � h−1

(
1 +

η − ε

λmin(A)

)
/
√
2η . (7.42)

Exercise 7.45. Prove that the right-hand side of (7.42) becomes minimal for
η = 4(a+ c) sin2 πh

2 .
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Exercise 7.46. Prove that the ILU decomposition coincides with the exact LU

decomposition if A has the tridiagonal pattern
[

·
∗ ∗ ∗
·

]
or
[

∗· ∗ ·
∗

]
. Then the

ILU iteration solves Ax = b directly.

7.3.7 ILU Decompositions Corresponding to Other Patterns

Strengthening (7.19b) by E � G(A) is the minimal requirement to construct new
methods. When choosing a pattern E larger than G(A), we should add those
positions where R = 0 is violated: According to (7.27f), these are the positions[
∗ · ·· · ·· · ∗

]
. Adding

[
∗ · ·· · ·· · ∗

]
to the five-point pattern, we obtain

E =

⎡⎣ ∗ ∗
∗ ∗ ∗
∗ ∗

⎤⎦ (‘seven-point pattern’). (7.43)

Now the lower triangular matrix L′ and upper triangular matrix U ′ have the form

L′ = −

⎡⎣ 0 0
aij 0 0

c fij

⎤⎦ , U ′ = −

⎡⎣ gij e
0 0 bij

0 0

⎤⎦ ,
whose coefficients result from the recursions

dij = d− ec/di,j−1 + aij(ωgi−1,j − bi−1,j)/di−1,j

+ fij(ωbi+1,j−1 − gi+1,j−1)/di+1,j−1,

aij = a+ gi,j−1c/di,j−1, bij = b+ efij/di+1,j−1, (7.44)
fij = bi,j−1c/di,j−1, gij = aije/di−1,j

for 1 ≤ i, j ≤ N − 1, where all terms with indices i − 1 = 0, j − 1 = 0, or
i+ 1 = N have to be ignored. This seven-point ILU decomposition has properties
similar to those of the five-point version in Theorem 7.42 (cf. Gustafsson [172],
Axelsson–Barker [13, §7]).

Exercise 7.47. Prove: (a) For −1 ≤ ω ≤ 0, the fixed-point iteration (7.35)
converges for the starting iterate C = A to values satisfying the inequalities
aij ≤ α := a/Δ, bij ≤ β := b/Δ, fij ≤ βc/γ, gij ≤ αe/δ, dij ≥ δ with
Δ := 1− ec/δ2, where d is the maximal solution of the fixed-point equation

δ = ϕ(δ) := d−
[
ec+

ab

Δ2
(1 +

ec

δ2
)− ω

δ
(α2e+ β2c)

]
/δ.

(b) For the next considerations, assume the symmetry a = b, c = e as well as the
diagonal dominance d = 2(a + c) + ε with ε ≥ 0. Furthermore, choose ω = −1
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(i.e., the modified ILU). Prove that the equation δ = ϕ(δ) can be brought into the
form 2a+ ε = a(ξ + ξ−1) with ξ := aδ/(δ − c)2. Hence, the solution is

δ = c+ a/(2ξ) +
√

ac/ξ + a2/(4ξ2)

with ξ = 1 + ε/(2a) +
√

ε/a+ ε2/(4a2) .
(c) For ε ≥ 0, a solution δ = δ0 + C

√
ε+O(ε) exists.

(d) δ solves the equation (δ − γ − e− β)2 = εδ.
(e) The weak diagonal dominance, which is sufficient for (7.39b), leads to the
condition 2ϕ+ 2 |a− α| ≤ (2− 1

Γ )δ − d . Show that Γ = δ/
(
2
√
εδ − ε

)
.

(f) As in (7.41), the estimate γW ≤ A ≤ ΓW holds with γ = 1.

Concerning ILU decompositions with a general k-point pattern, note that the
amount of computational work increases more than linearly with the number k of
pattern entries.

7.3.8 Approximative ILU Decompositions

The ILU decompositions, as defined in (7.27d) or (7.30), are strictly sequential
algorithms. The same statement holds for solving the systems (D + L)x = b
and (D + U)x = b arising during the solution of Wδ = d. This is a disad-
vantage for a parallel treatment. The parallel treatment of the systems is discussed
by van der Vorst [371] (cf. also Ortega [298, §3.4]). Here we discuss the compu-
tation of the ILU decomposition. Note that the fixed-point iteration (7.34f) in the
proof of Theorem 7.37 is suited to numerical computations. The upper starting
iterate A0 = (A−)E (in general, A0 = A) is available (in contrast to A0), so
that the iterates Am+1 = Φ(Am) are computable.

Remark 7.48. The evaluation of the function Φ in (7.34a) can be performed in
parallel for all coefficients Φ(X)αβ , (α, β) ∈ E.

The equations (7.33′): X = Φ(X) or, more precisely, the recursions (7.30) and
(7.44) represent simple systems of equations for the unknowns dij (and possibly
aij , bij , fij , gij), which can be solved by backward substitutions. Independently
of the starting iterate, the values for (i, j) with max{i, j} ≤ m are exact after
m iteration steps. If A and therefore also the starting iterate A0 (cf. (7.34c)) have
constant coefficients, the m-th iterate Am has identical constant coefficients for all
positions4 (i, j) with min{i, j} ≥ m . Since the coefficients of Am coincide for
min{i, j} ≥ m, one need not calculate all of them. This consideration leads us to
the truncated ILU version introduced by Wittum [400] for constant coefficients:

4 At positions with min{i, j} < m other values are possible, since in (7.30) or (7.44) some terms
may be absent because of i− 1 = 0 or j − 1 = 0.
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Compute dij (and possibly aij , bij , fij , gij) from (7.30)
or, respectively, (7.44) for all i, j with max{i, j} = k for
k = 1, 2, . . . ,m and continue these values constantly by
means of dij := dmin{i,m},min{j,m} for max{i, j} > m

(7.45)

(analogously for aij , bij , fij , gij). The amount of computational work is O(m2)
independent of dimension n of the matrix. The same statement holds for the storage
requirement. The truncated ILU decomposition is a good substitute for the
standard ILU decomposition and has favourable stability properties (cf. Wittum–
Liebau [406]).

7.3.9 Blockwise ILU Decomposition

Choosing the row or column variables as blocks, A has a block structure with
tridiagonal matrix blocks in diagonal position as shown in (3.17). In the decom-
position ansatz (7.22):

A = (D + L′)D−1(D + U ′)−R = D + L′ + U ′ + L′D−1U ′ −R ,

we may also require that D be a block-diagonal matrix with blocks of tridiagonal
structure and that L′ and U ′ be strictly (lower/upper) block-triangular matrices.
The algorithm is similar to (7.23a,b) (cf. (11.95a–c)). With the increased amount
of computational work, one gains, in general, more robust convergence properties.
Block-ILU decompositions were introduced in the early 1980s (cf. §7.3.11).

7.3.10 Numerical Examples

version ω ϑ ‖x20 − x‖2 ‖x20−x‖2

‖x19−x‖2

ILU 5 0 1.66 1.61710-1 0.9455
ILU 5 -1 0.25 1.62810-3 0.7666
ILU 5 1 1.9 2.34910-1 0.9617
ILU 7 0 1 8.90410-2 0.9185
ILU 7 0 1.66 2.69010-2 0.8646
ILU 7 -1 0.4 4.72210-5 0.6254

Table 7.1 Results of the ILU iteration for the
Poisson model case.

Table 7.1 shows the errors ‖xm − x‖2
after m = 20 iterations and the conver-
gence factors for different ILU variants.
ILU 5 refers to the five-point ILU defined
by (7.27a), while ILU 7 refers to (7.43).
The step size of the Poisson model prob-
lem is h = 1/32. For ω = 0 and ω = 1,
the ILU iteration is applied to the original
matrix, whereas for the modified method
with ω = −1 an enlargement of the diag-
onal by Aη := A+5I is chosen according to Remark 7.44. ϑ is the damping factor
in (5.8).

Exercise 7.49. Count the arithmetic operations (separately for the decompositions
and the solution phase) and compare ILU 5 and ILU 7 with regard to the effective
amount of work.
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7.3.11 Remarks

ILU decompositions are first mentioned in 1960 by Varga [374, §6] and Buleev
[84]. The first precise analysis is due to Meijerink–van der Vorst [280]. Here, we
also mention Jennings–Malik [228]. ILU methods have proved to be very robust.
This means that good convergence properties are not restricted to the Poisson
model problem, but hold for a large class of problems. Since the existence of
an ILU decomposition is not always ensured, there are many stabilising variants.
Concerning literature about the ILU method, we refer to Axelsson–Barker [13],
Axelsson [12, §7], and Beauwens [37].

Because of the improved condition number Γ/γ in (7.41), the modified version
(ω = −1) of Gustafsson [172] is the preferred basis for applications of the con-
jugate gradient technique (cf. §10) to ILU iterations. Because of the consistency
condition R1=0, this version is also called an ILU iteration of first order. A special
decomposition for the Poisson model problem of second order is described by Stone
[356]; however, because of other disadvantages, first-order variants are preferred.

The first publication of a blockwise ILU method in 1981 is due to Kettler [235],
who refers to a ‘publication in preparation’ by Meijerink which appeared in [279]
two years later. Additional early papers are those by Axelsson–Brinkkemper–Il’in
[14] (1984 with a preprint in 1983) and Concus–Golub–Meurant [99] (1985 with a
preprint in 1982).

In the literature, the distinction between SSOR and ILU methods is not very
sharp. The SSOR method for A = D+L′+U ′ corresponds to an ILU decomposi-
tion W = (D+L′)D−1(D+U ′) with remainder R = W −A = L′D−1U ′. This
R does not satisfy condition (7.20d); however, this condition is already weakened
by (7.29) and addition of a diagonal part (cf. Remark 7.44). Vice versa, generalised
SSOR methods have been introduced in which D = diag{A} is replaced by an-
other diagonal (cf. Axelsson–Barker [13]). The ILU iteration based on a five-point
pattern also falls into this category.

In the literature, one finds a lot of abbreviations for different ILU variants.
‘IC’ refers to the ‘incomplete Cholesky’ variant of the ILU decomposition.
Additional numbers like ‘(5)’ or ‘(7)’ denote the respective five- or seven-point
pattern. In other papers, ‘(0)’ indicates the pattern E = G(A), whereas ‘(1)’ means
the pattern which is enlarged by one level, etc. The supplement ‘Tr’ characterises
the truncated version (7.45). The letter ‘M’ stands for the modified method with
ω = −1, whereas ‘B’ may indicate a block variant. If the block corresponds to a
grid line (row or column), sometimes the symbol ‘L’ is used.

In particular concerning the ILU(p) variant, we refer to Saad [328, §§10.3].
The thresholding technique ILUT can also be found in [328, §§10.4]. See also
Björck [48, §§4.4.3f]. Another kind of factorisation is proposed by Benzi–Tůma
[42].

While ILU methods are less attractive as linear iterations, their combination
with multigrid methods is successful (see §11.6.2 and Hackbusch–Wittum [208]).
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7.4 Preconditioning

The term ‘preconditioning’ is rather ambiguous. In §7.4.1 we describe the precon-
ditioning in the narrower sense. When it is used in the wider sense it is losing its
original meaning and, in the extreme case, may mean any transformation in the
sense of §5.6 (cf. §7.4.3).

7.4.1 Idea of Preconditioning

We recall the spectral condition number κ(A) := ρ(A)ρ(A−1) of a regular5

matrix defined in (B.13). In the case of A > 0, the spectral condition number κ(A)

simplifies to the ratio κ(A) = λmax(A)
λmin(A) of the extreme eigenvalues. Alternatively,

for a given matrix norm we can define the condition cond(A) := ‖A‖ ‖A−1‖.
If A is normal, the Euclidean condition cond2(A) with respect to the spectral
norm coincides with κ(A). This holds in particular under the assumption A > 0.
Furthermore, we consider the simplest linear iteration: the Richardson iteration
defined in §3.2.1. The convergence analysis in §3.5.1 shows that, for the optimal
parameter Θopt, the convergence rate and contraction number coincide with

ρ(MRich
Θopt

) =
κ(A)− 1

κ(A) + 1
=

1− 1
κ(A)

1 + 1
κ(A)

(cf. (3.26c)). The essential observation is that ρ (MRich
Θopt

) depends only on the
spectral number κ(A) (cf. (B.13)).

If κ(A) is very close to 1, we have very fast convergence. If κ(A) is of
moderate size, a moderate convergence speed results. If, however, κ(A) is large,
the asymptotic approximation ρ(MRich

Θopt
) = 1− 2/κ(A) +O(κ(A)−2) shows that

the convergence is rather slow.
Hence, one can try to choose a left transformation with T� = N = W−1 so that

Â := T� A = W−1A has a positive spectrum, (7.46a)

κ
(
W−1A

)
is as small as possible. (7.46b)

Note that under condition (7.46a) Theorem 6.7 implies that the optimally damped
iteration

ΦW (x, b) := x− ϑoptW
−1(Ax− b) (7.46c)

has the convergence rate

ρ(Mϑopt
) =

κ(W−1A)− 1

κ(W−1A) + 1
.

Often, the matrix W is called the preconditioning matrix, preconditioning,
or preconditioner. Sometimes these names also refer to the matrix N = W−1

5 We may set κ(A) = ∞ for singular A. For certain purposes it makes sense to extend the spectral
condition to singular matrices A �= 0 by κ0(A) := maxλ∈σ(A) |λ| /minλ∈σ(A)\{0} |λ| .
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of the second normal form. The mapping

ΦRich
Θ �→ ΦW = ΦRich

Θ ◦W−1

is also called ‘preconditioning’. Note that this term expresses the intention to im-
prove the condition, but it is not a concrete description of the mapping A �→ W [A].
Besides the size of the condition (and therefore the convergence speed) one must
have in mind the related cost (cf. §2.3.2).

The condition numbers will also appear in Part II in connection with the semi-
iterative method applied to the basic iteration ΦW . Instead of a real spectrum con-
tained in [λmin(A), λmax(A)], we may replace the interval by an ellipse (cf. §8.3.6).

The construction of the iteration (7.46c) is not restricted to the left transformation
ΦW = ΦRich ◦W−1. The right transformation Tr = W−1 applied to the Richard-
son method leads to the same iteration (5.41): ΦW (x, b) = x − W−1(Ax − b).
The two-sided transformation ΦW = W−1/2 ◦ ΦRich ◦ W−1/2 by (5.46) also
leads to the same ‘preconditioned’ iteration.

7.4.2 Examples

As examples of preconditioning the positive definite matrix A = D − E − F (cf.
(1.16)) we recall the matrices W of the already described symmetric iterations:

W = D = diag{A} (Jacobi),

W = (D − E)D−1(D − F ) (SSOR).

Here, the methods can be understood pointwise or blockwise.
Since the choice of ‘W = diagonal matrix’ is especially simple and also com-

putable in parallel, one might ask whether the Jacobi method with D := diag{A}
represents the optimal diagonal preconditioning. The answer in given by Theorems
7.50 and 7.51: D := diag{A} is optimal in the 2-cyclic case, whereas D is close
to the optimum in the general case (see also Higham [221, Theorem 7.5]).

Theorem 7.50 (Forsythe–Strauss [139]). Assume that A is positive definite with
D := diag{A} and A − D is weakly 2-cyclic. Then D := diag{A} is the best
diagonal preconditioner; i.e., κ(D−1A) ≤ κ(Δ−1A) for all diagonal matrices Δ .

Theorem 7.51 (van der Sluis [368]). Let the matrix A be positive definite with
D :=diag{A} and assume that each row of A contains at most CA nonzero entries
(cf. (2.28)). Then κ(D−1A) ≤ CAκ(Δ

−1A) holds for all diagonal matrices Δ .

Bank–Scott [32] describe a related result about the condition of finite element
matrices in the presence of local refinements.

Let Γ be the constant in (8.39c). The SSOR preconditioning improves the con-
dition number from κ(A) to 1

2

(
1 +
√
Γκ(A)

)
. The transition from κ(A) to

O
(√

κ(A)
)

corresponds to the improvement of the order (cf. Conclusion 6.29).
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7.4.3 Preconditioning in the Wider Sense

Let A = Q diag{λi : 1 ≤ i ≤ n}QH (Q is unitary) be any normal matrix with
0 < λ1 ≤ λ2 ≤ · · · ≤ λn. Obviously κ(A) = cond2(A) = λn/λ1 is the con-
dition. Now we replace λ1 with −λ1. Â = Q diag{−λ1, λ2, . . . , λn}QH is an
indefinite matrix also satisfying κ(Â) = cond2(Â) = κ(A). Although the condi-
tion is unchanged, the Richardson iteration has a problem because of Exercise 3.25.
Obviously, it is not the condition which must be improved, but the indefinite matrix
must be turned into a positive definite one. Again a transformation by W−1 = Â
helps: the resulting squared Richardson iteration Â2 is positive definite. However,
the condition κ(A) is replaced with the larger condition κ(Â2) = κ(A)2. Calling
W−1 = Â a preconditioner, the original meaning of improving the condition is
perverted. Nevertheless, we can try to precondition Â2 in the narrower sense. One
learns from this example that beside the condition other structural properties are
important which may be improved by a transformation for which the name ’precon-
ditioning’ is not quite adequate.

Another systematic approach to indefinite Hermitian matrices A (cf. Remark
8.31) is the left transformation by a polynomial in A. Such ‘preconditioners’ are
described, e.g., by Ashby–Manteuffel–Saylor [7]. Here the polynomial T� = p(A)
should be close to the minimiser of min{ρ(p(A)A) : degree(p) = d} for a fixed
degree d ≥ 1.

In the case of non-Hermitian matrices A, even the convergence of the Richard-
son iteration cannot be described by κ(A) or cond2(A). Hence the term ’precon-
ditioning’ loses its meaning. On the other hand, a large condition number is not
necessarily a disadvantage (see the multigrid iteration in §11.4). For the extreme
example of a diagonal matrix A, the system is exactly solvable independently of the
condition.

7.4.4 Rules for Condition Numbers and Spectral Equivalence

The Euclidean condition cond2(·) and the spectral condition number κ(·) satisfy
the following equations and inequalities (cf. (B.12), (B.13)).

Exercise 7.52. Let the matrices A, B, C be regular. Prove the following:

κ(A) = κ(A−1), cond2(A) = cond2(A
−1), (7.47a)

κ(A) = κ(λA), cond2(A) = cond2(λA) for λ ∈ C\{0}, (7.47b)
κ(A) = cond2(A) for normal matrices A, (7.47c)

cond2(AB) ≤ cond2(A) cond2(B), (7.47d)

cond2(C
−1A) ≤ cond2(C

−1B) cond2(B
−1A), (7.47e)

κ(B−1A) = cond2(B
−1/2AB−1/2) for A,B > 0, (7.47f)

κ(AB) = κ(BA). (7.47g)



168 7 Generation of Iterations

Following considerations are restricted to positive definite matrices. The next
lemma shows that the spectral number can be formulated by matrix inequalities.

Lemma 7.53. Let A and B be positive definite. Then κ(B−1A) can be repre-
sented as

κ(B−1A) = ᾱ/α (7.48a)

where ᾱ and α are the best bounds in the inequality

αB ≤ A ≤ ᾱB with α > 0. (7.48b)

Vice versa, (7.48b) implies
κ(B−1A) ≤ ᾱ/α. (7.48c)

Proof. The best bounds in (7.48b) are the extreme eigenvalues of B−1A. Hence,
(7.48a) follows from (B.14). ��

Exercise 7.54. Prove that (7.48b) is equivalent to either of the following inequali-
ties:

1
αA ≤ B ≤ 1

ᾱA with α > 0, (7.48d)

αA−1 ≤ B−1 ≤ ᾱA−1 with α > 0, (7.48e)

α 〈Bx, x〉 ≤ 〈Ax, x〉 ≤ ᾱ 〈Bx, x〉 for all x ∈ KI . (7.48f)

The inequalities (7.47e,f) yield the next lemma.

Lemma 7.55. Let A, B, C be positive definite. Then

κ(C−1A) ≤ κ(C−1B)κ(B−1A). (7.49)

Interpreting (7.47e) and (7.49) in the sense of preconditioning yields the follow-
ing statement. If B is a good preconditioner for A and C is a good preconditioner
for B, then C also represents a good preconditioning for A.

The following definition of spectral equivalence does not make sense for a single
matrix. Instead we need two infinite families

A = (Aν)ν∈F , B = (Bν)ν∈F (#F = ∞)

of matrices (cf. §1.4). Usually, ν ∈ F = N is related to a discretisation grid size
hν with the property hν → 0. In this case, we prefer the notation A = (Ah)h∈H .
Then the size of the matrices is increasing with ν → ∞. Another case may be a
matrix depending on a parameter ν varying in an interval F .

Definition 7.56 (spectral equivalence). Let A = (Aν)ν∈F and B = (Bν)ν∈F be
two families of positive semidefinite matrices. Then A and B are called spectrally
equivalent if there is a constant c > 0 so that

1
cAν ≤ Bν ≤ cAν for all ν ∈ F. (7.50)
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The explicit notation of the equivalence relation is

A ∼ B.
Often, the less precise notation Aν ∼ Bν is used.

The characteristic properties of an equivalence relation are obviously satisfied:
the symmetry A ∼ B ⇔ B ∼ A and the transitivity A ∼ B ∼ C ⇒ A ∼ C.
Gunn [171] used similar arguments in 1964 without mentioning the term spectral
equivalence. This term is introduced by D’Yakonov [110] in 1966.

A more general definition of an equivalence relation can be based on cond(·).6

Remark 7.57. (a) Assume that Aν ≥ 0 but not Aν > 0. Then Aν ∼ Bν implies
that Bν is also semidefinite and that both matrices have coinciding kernels.
(b) If Aν > 0 and Bν > 0, then (7.50) is equivalent to supν∈F κ(A−1

ν Bν) < ∞.

Proof. Rewriting (7.50) using (7.48f), part (a) is obvious. For part (b), use Lemma
7.53. ��

Proposition 7.58. Let the matrices Aν , Bν , Cν , Dν be positive semidefinite.
The spectral equivalence relation satisfies the following rules:

Aν ∼ Bν and λ ≥ 0 ⇒ λAν ∼ λBν , (7.51a)
Aν ∼ Bν and Cν ∼ Dν ⇒ Aν + Cν ∼ Bν +Dν , (7.51b)

Aν ∼ Bν ⇒ A−1
ν ∼ B−1

ν if Aν > 0, (7.51c)

Aν ∼ Bν and Cν ∈ KJ×I ⇒ CνAνC
H
ν ∼ CνBνC

H
ν , (7.51d)

Aν ∼ Bν ⇒ A−1/2
ν BνA

−1/2
ν ∼ I if Aν > 0. (7.51e)

In the cases (7.51a,b,d), the constant c in (7.50) is identical on both sides. The
matrix Cν in (7.51d) may be any rectangular matrix.

Proof. The implications (7.51a,b,d) are an immediate consequence of (7.48f).
For (7.51c), use (7.48d,e). Statement (7.51d) implies (7.51e). ��

We recall that the iteration Φ(x, b) = x−ϑW−1(Ax− b) with optimal damping
has the convergence rate ρ(Mϑopt

) = κ−1
κ+1 with κ = κ(W−1A).

Conclusion 7.59. (a) Assume A,W,W ′ > 0 and W ≤ c′W ′, W ′ ≤ cW. Then the
linear iterations Φ(x, b) = x−ϑW−1(Ax−b) and Φ′(x, b) = x−ϑW ′−1(Ax−b)
with optimal damping have comparable convergence rates determined by

κ = κ(W−1A), κ′ = κ(W ′−1A) with
1

c′
κ′ ≤ κ ≤ cκ′.

6 Consider families of regular matrices. Let cond(A) = ‖A‖‖A−1‖ be defined with respect to
some submultiplicative matrix norm. Analogously to Remark 7.57b, we define

A ∼cond B :⇔ sup
ν∈F

cond(A−1
ν Bν) < ∞.

Also in this case, the properties (7.47a,e) prove that ∼cond is an equivalence relation.
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(b) If the family A = (Ah)h∈H is indexed by the step size and κ(W−1
h Ah) =

O(h−τ ) holds with τ > 0 , the convergence of Φϑopt
is of the order τ . All linear

iterations Φ′
h(x, b) = x − ϑW ′−1

h (Ahx − b) with W ′
h ∼ Wh have the same

convergence order τ . Hence the convergence order is a property of the equivalence
class.

The optimal convergence order is τ = 0 characterised by ρ(Mh) ≤ c < 1.
In the case of linear iterations Φ(x, b) = x − ϑW−1(Ax − b) with A,W > 0,
the latter inequality can be ensured by the next statement.

Proposition 7.60. The family of linear iterations Φh(x, b) = x−ϑoptW
−1
h (Ahx−b)

with Ah,Wh > 0 satisfies

ρ(Mh) ≤ c < 1 for all h ∈ H

if and only if
Ah ∼ Wh .

Proof. Ah ∼ Wh implies that κh = κ(W−1
h Ah) = O(1). Hence ρ(Mϑopt

) =
κh−1
κh+1 ≤ c < 1 holds with c := sup{2/(1 + κh) : h ∈ H}. ��

This result shows a way how to obtain optimal convergence, provided that
W−1

h (Ahx − b) is easy to evaluate. As in Remark 7.7 we have to ask on what
data the choice of Wh could be based. Using only the data of Ah , the traditional
techniques do not lead to Ah ∼ Wh in general. In §13.4 we shall propose a new
technique which is able to satisfy Ah ∼ Wh .

7.4.5 Equivalent Bilinear Forms

We recall the Definition E.2 of coercive forms.

Definition 7.61. Two symmetric and coercive sesquilinear forms a, b : V ×V → C
are called equivalent (notation: a ∼ b) if there is some c > 0 with

1

c
a(u, u) ≤ b(u, u) ≤ c a(u, u) for all u ∈ V . (7.52)

For simplicity, we use the term bilinear which suits for K = R. For K = C,
the form must be sesquilinear (cf. Definition E.1).

The Galerkin matrix Ah corresponding to the bilinear form a(·, ·) satisfies

〈Ahx, y〉 = a(Phx, Phy) for all x, y ∈ KI ,

where 〈·, ·〉 is the Euclidean scalar product (cf. Exercise E.5). The mapping
Ph : KI → Vn ⊂ V is defined in (E.6).
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Applying (7.52) to u = Phx, we obtain

1

c
〈Ahx, x〉 ≤ 〈Bhx, x〉 ≤ c 〈Ahx, x〉 for all x ∈ KI , (7.53a)

where Bh is the Galerkin matrix corresponding to the bilinear form b(·, ·). The
symmetry of a and b implies that Ah and Bh are also Hermitian (cf. Exercise E.6a).
Therefore the property (7.53a) is equivalent to the inequalities

1

c
Ah ≤ Bh ≤ cAh (7.53b)

in the sense of §C.1.1.
Note that the constants in (7.52) and (7.53b) coincide. Therefore they hold for

all discretisation parameters h ∈ H which form the families A = (Ah)h∈H and
B = (Bh)h∈H . Using the notion of equivalence, we obtain the following statement.

Proposition 7.62. Equivalent forms a ∼ b produce equivalent Galerkin matrix
families A ∼ B.

A potential practical strategy is the following. Let a and A correspond to the
problem to be solved. If there is a simpler but equivalent form b, it may be that the
corresponding matrices Bh are easier to handle. Either W−1

h δ = d can be solved for
Wh = Bh or for another choice Wh ∼ Bh. By Proposition 7.62, Ah ∼ Wh holds
as required in Proposition 7.60.

Conclusion 7.63. Let the symmetric and coercive form a(·, ·) correspond to a
boundary value problem for u ∈ V := H1

0 (Ω). Use the same finite element dis-
cretisation for a(·, ·) and the standard Poisson problem. Then both discretisation
matrices are spectrally equivalent.

7.5 Time-Stepping Methods

The term of a time-stepping method is used, in particular, in the engineering
community. The function x(t), 0 ≤ t < ∞, is introduced as a solution of the
system of ordinary differential equations

d

dt
x(t) = b−Ax with the initial value x(0) = x0. (7.54)

If A is positive definite (or if �e(λ) > 0 holds for all eigenvalues λ ∈ σ(A)),
then x(t) converges for t → ∞ to the solution x∗ := A−1b, which is now
interpreted as the stationary solution of (7.54). The time-stepping method tries to
discretise the differential equation by a grid

0 = t0 < t1 < . . .

7.4 Preconditioning
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and to approximate x(t) for a large t = tm. One explicit Euler step with the time
step �t := tm+1 − tm reads as

x(tm+1) ≈ xm+1 = xm −�t (Axm − b) (7.55)

(cf. Quarteroni–Sacco–Saleri [314, §11.2]). For a fixed (or variable) step size �t,
recursion (7.55) describes the stationary (or instationary) Richardson method.

Often Runge–Kutta-like methods are proposed. For example, the Heun method
becomes

x′ := xm −α�t (Axm − b), x(tm+1) ≈ xm+1 = xm − β�t (Ax′ − b) (7.56)

with α = 1
2 and β = 1 (cf. Heun [220]; in the true Runge–Kutta case, there are

four coefficients; cf. Runge [327] and Kutta [250]).
While the original discretisation methods try to achieve small discretisation

errors ‖xm − x(tm)‖ for all grid points tm, the coefficients α, β are now chosen
such that the convergence xm → x∗ is improved. The produced methods
(as, e.g., (7.56)) are the semi-iterative variants of the Richardson iteration which
will be described in §8.3.7.

In the language of ordinary differential equations, one explains the unfavourably
slow convergence of the Richardson variants by the stiffness of the system. When
preconditioning is introduced to speed up the convergence:

xm+1 = xm −�tW−1(Axm − b),

this is called a quasi-time stepping method, which however does no longer approxi-
mate the equation (7.54) but only the same stationary solution x∗.

In essence, the interpretation by a time-stepping method is misleading (e.g., since
the high consistency order of a Runge–Kutta method is given up for purposes which
are not connected with this method). In particular, this concept is of no help for
analysing the iteration or for constructing efficient iterations.

7.6 Nested Iteration

Three families of linear iterations, the multigrid iteration, the domain decomposition
methods, and the hierarchical LU iteration will be described in Part III. The multi-
grid method is usually combined with the nested iteration. As shown in §11.5, the
nested iteration technique can be combined with any linear or nonlinear iteration.
It does not change the iteration, but yields advantageous starting values.
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