
Chapter 6

Analysis of Positive Definite Iterations

Abstract This chapter gathers convergence statements about iterations satisfying
suitable requirements connected with positive definiteness. Section 6.1 enumerates
six cases which are analysed in Section 6.2. In several cases, convergence holds
for a suitably damped version of the iteration. Of particular interest are symmetric
and positive definite iterations constructed in the previous chapter. In Section 6.3
we analyse traditional symmetric iterative methods: the symmetric Gauss–Seidel
iteration and the symmetric SOR method, abbreviated by SSOR. The conver-
gence properties of SSOR are investigated in §§6.3.1–6.3.2, while modifications are
described in §§6.3.3–6.3.4. Finally, in §6.3.5, numerical examples illustrate the
convergence behaviour.

6.1 Different Cases of Positivity

We distinguish six cases of positivity. Consider any Φ ∈ L and denote the corre-
sponding matrices by

M = M [A], N = N [A], W = W [A].

• Case 1: positive spectrum of NA.

The weakest condition considered in this chapter is a positive spectrum of NA :

σ(NA) ⊂ (0,∞). (6.1a)

• Case 2: directly positive definite iterations Φ ∈ L>0.

Positive definiteness appears in two versions. For directly positive definite itera-
tions (cf. Definition 5.14) we have

NA > 0 . (6.1b)

Note that in this case no conditions on A are required except for regularity.
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• Case 3: positive definite iterations Φ ∈ Lpos.

The standard situation is the case of an positive definite iteration (cf. Definition
5.8). Application to a positive definite matrix A yields

A > 0, N > 0, W > 0. (6.1c)

Simple conclusions concerning the iteration matrix M are gathered in the next
remark.

Remark 6.1. (a) Each condition in (6.1a–c) implies that σ(M) ⊂ (−∞, 1).
(b) In the case of (6.1b), M is Hermitian and satisfies M < I .

The positive definite matrices in (6.1b,c) induce the corresponding vector and
matrix norms ‖·‖X for X ∈ {NA,A,N,W} as defined in (C.5a,d).

Remark 6.2. Assume that convergence holds. (a) Then each of the conditions
(6.1a–c) implies σ(M) ⊂ (−1, 1).
(b) In the case of (6.1b), the convergence is monotone with respect to the Euclidean
norm ‖·‖ and the norms ‖·‖NA and ‖·‖(NA)−1 . The identities σ(M) = ‖M‖ =

‖M‖NA = ‖M‖(NA)−1 hold.
(c) In the case of (6.1c), the convergence is monotone with respect to the norms
‖·‖A and ‖·‖W , and σ(M) = ‖M‖A = ‖M‖W holds.

Exercise 6.3. Assume (6.1c). The energy scalar product 〈·, ·〉A is defined in (C.5b).
Prove that M is symmetric with respect to 〈·, ·〉A, i.e., 〈Mx, y〉A = 〈x,My〉A, and
that this statement is equivalent to M = A−1MHA.

Let A > 0. The symmetry with respect to 〈·, ·〉A can be transferred to the usual
symmetry by the following similarity transformation: M̂ = M̂H holds for

M̂ := A1/2MA−1/2 = I −A1/2NA1/2 = I −A1/2 W−1A1/2. (6.2a)

Similarly, W > 0 induces the similarity transformation

M̌ := W 1/2M W−1/2 = I −W−1/2AW−1/2 = I −N1/2AN1/2. (6.2b)

The statement of Remark 6.2c can be expressed by

ρ(M) = ρ(M̂) = ‖M̂‖2 = ‖M‖A , (6.2c)

ρ(M) = ρ(M̌) = ‖M̌‖2 = ‖M‖W . (6.2d)

The proof follows from (A.6c) and (B.21b).
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• Case 4: positive definite W +WH.

The positive definiteness of W can be generalised to

W +WH > A > 0.

The weaker condition
W +WH > 0

will also be discussed, i.e., the Hermitian part of W is positive definite. An equiva-
lent condition is

N +NH > 0.

• Case 5: symmetrised iteration Φ sym ∈ Lsym.

We recall the construction of a symmetric iteration Φ sym = Φ∗ ◦Φ described in
§5.4.2. Theorem 5.29 states that A = AH leads to the matrices

M sym = (I −NHA)(I −NA) = I −N symA,

N sym = N +NH −NHAN, (6.3)

W sym = W (W +WH −A)−1WH

with N and W belonging to Φ, while the Hermitian matrices M sym, N sym, and
W sym are associated with Φ sym.

• Case 6: perturbed positive definite A.

A non-Hermitian matrix A may be split into A = A0+iA1 with positive definite
A0 := 1

2 (A+AH) (cf. (3.27)). If A1 is small in a suitable sense, A can be regarded
as a perturbation of the positive definite matrix A0.

6.2 Convergence Analysis

6.2.1 Case 1: Positive Spectrum

We assume (6.1a): σ(NA) ⊂ (0,∞). Sufficient conditions for (6.1a) are given in
Lemma 5.18.

In §3.5.1, convergence of the Richardson iteration is investigated under the
condition σ(A) ⊂ (0,∞). Using Proposition 5.44, we can transfer the results in
§3.5.1 to NA. The quantities Θ and A in Lemma 3.21 and in Theorems 3.22, 3.23
have to be replaced with ϑ and NA. The matrices corresponding to the damped
iteration Φϑ are denoted by Mϑ = I − ϑNA, Nϑ = ϑN , and Wϑ = N−1

ϑ .

Lemma 6.4. Assume that σ(NA) ⊂ R and denote the extreme eigenvalues of NA
by λmin and λmax. Then the spectrum of the iteration matrix Mϑ is real for any
ϑ ∈ R, i.e., σ(Mϑ) ⊂ R . The spectral radius is characterised by

ρ(Mϑ) = max{|1− ϑλmin| , |1− ϑλmax|} for all ϑ ∈ R. (6.4)
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Exercise 6.5. Characterise ρ(Mϑ) under the above assumptions for complex ϑ.

Theorem 6.6. Assume that condition (6.1a) holds and let λmax(NA) be the
maximal eigenvalue of NA. Then, for real ϑ, the damped iteration Φϑ converges
if and only if

0 < ϑ < 2/λmax(NA). (6.5)

The convergence rate is described by (6.4).

Theorem 6.7 (optimal ϑ). Under the assumptions of Theorem 6.6, the optimal
convergence rate of Φϑ is attained for

ϑopt =
2

λmax + λmin
with ρ(Mϑopt) =

λmax − λmin

λmax + λmin
=

κ(NA)− 1

κ(NA) + 1
. (6.6a)

κ(NA) = λmax/λmin is the spectral condition number of NA (cf. (B.13)). For
large κ(NA) � 1, the asymptotic behaviour is

κ(NA)− 1

κ(NA) + 1
= 1− 2

κ(NA)
+O

(
κ(NA)−2

)
. (6.6b)

The expression 1−2/κ has to be compared with the rate 1− 1/κ for iterations
with σ(M) ⊂ [0, 1).

Remark 6.8. Assume (6.1a) and σ(M) ⊂ [0,∞). The optimal scaling factor ϑ
satisfying σ(Mϑ) ⊂ [ 0, 1) is ϑ+ = 1/λmax. The corresponding rate is ρ(Mϑ+) =
1− 1

κ(NA) .

For a complex spectrum of NA, compare with Exercise 3.26 and Theorem 3.27.

6.2.2 Case 2: Positive Definite NA

Theorem 6.9. Assume NA > 0 and ϑ ∈ R . Then iteration (5.8) converges if and
only if

0 < ϑ < 2/ ‖NA‖2 .

The convergence is monotone with respect to the Euclidean norm ‖·‖2 and the
energy norm ‖·‖NA. Furthermore, the convergence rate and the contraction number
coincide:

ρ(Mϑ) = ‖Mϑ‖2 = ‖Mϑ‖NA.

The optimal convergence rate (6.6a) can be expressed as a function of the condition
number κ(NA) = cond2(NA):

ρ(Mϑopt
) =

κ(NA)− 1

κ(NA) + 1
for ϑopt =

2

λmax(NA) + λmin(NA)
. (6.7)

Proof. Use the results in §6.2.1, λmax(NA) = ‖NA‖2 , and Remark 6.2b. ��
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6.2.3 Case 3: Positive Definite Iteration

Now we assume (6.1c). This case is already treated by Theorem 3.34. Since the
proof is still missing, we repeat the statements in short. Note that (6.8a) describes a
sufficient and necessary condition for convergence.

Theorem 6.10. Let (6.1c) be valid. Then, for 0 ≤ λ ≤ Λ , the following equivalence
relations hold:

2W > A > 0 ⇐⇒ ρ(M) < 1, (6.8a)
0 < λW ≤ A ≤ ΛW ⇐⇒ σ(M) ⊂ [1− Λ, 1− λ ], (6.8b)
0 ≤ λW < A < ΛW ⇐⇒ σ(M) ⊂ (1− Λ, 1− λ), (6.8c)

W ≥ A > 0 ⇐⇒ σ(M) ⊂ [0, 1). (6.8d)

Proof. Using the matrix M̂ in (6.2a), σ(M) = σ(M̂) allows us to reformulate
σ(M̂) ⊂ [1− Λ, 1− λ] as

(1− Λ) I ≤ M̂ = I −A1/2NA1/2 ≤ (1− λ) I

(cf. (C.3e)). Applying (C.3b′) with C := A−1/2, we get the equivalent inequalities

(1− Λ)A−1 ≤ A−1 −N ≤ (1− λ)A−1.

The left inequality yields −ΛA−1 ≤ −N ⇔ ΛA−1 ≥ N . Applying (C.3g), we
arrive at 1

ΛA ≤ N−1 = W, i.e., A ≤ ΛW. The proof of λW ≤ A is analogous.
This proves (6.8b). Replacing ‘≤ ’ with ‘< ’, we obtain (6.8c). The implications
(6.8a,d) follow for special values of λ and Λ. ��

Denote the iteration defined by the matrices (6.1c) by Φ. Below we discuss the
damped iteration Φϑ. Theorems 6.6 and 6.7 and (6.2c,d) yield the following result.

Theorem 6.11. Assume (6.1c). The damped iteration Φϑ defined by (5.8) converges
if and only if ϑ satisfies

0 < ϑ < 2/λmax with

λmax := ‖N1/2AN1/2‖2 = ‖A1/2NA1/2‖2 = ρ(NA).
(6.9)

An equivalent formulation of condition (6.9) using W = N−1 is

0 < ϑA < 2W.

The convergence rate (even for general ϑ ∈ C) is

ρ(Mϑ) = ‖Mϑ‖A = ‖Mϑ‖W = max{|1− ϑλmin| , |1− ϑλmax|},

where λmin is the minimal eigenvalue of NA . The optimal value of ϑ minimising
ρ(Mϑ) is ϑopt in (6.7).

Corollary 6.12. (a) If A > 0 and N < 0 (⇔ W < 0), then Φϑ converges if and
only if 0 > ϑ > 2/ρ(NA).
(b) If A>0, N=NH, and neither N>0 nor N<0 , Φϑ diverges for all ϑ ∈ C.
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6.2.4 Case 4: Positive Definite W+W H or N+NH

First, we assume
W +WH > A > 0. (6.10)

The first part of the next theorem coincides with Theorem 3.35.

Theorem 6.13. Under condition (6.10), the iteration converges monotonically with
respect to the energy norm:

ρ(M) ≤ ‖M‖A < 1 for M = I −W−1A.

W+WH > A is also necessary for ‖M‖A < 1 (but even without condition (6.10),
ρ(M) < 1 is possible).

Proof. Assume that W+WH − A has a nonpositive eigenvalue. Then, by (3.37),
M̂HM̂ = I − A1/2WH(W + WH − A)WA1/2 has an eigenvalue ≥ 1 implying
‖M‖A ≥ 1. ��

Next, we assume

W +WH > 0 and A > 0.

To regain inequality (6.10), we have to apply a suitable damping, since Φϑ is
associated with Wϑ = 1

ϑW. For instance, the choice

ϑ <
λmin(W +WH)

λmax(A)
(6.11)

ensures that Wϑ +WH
ϑ > A > 0.

Exercise 6.14. The sharper estimate ϑ < λmin

(
A−1/2

(
W +WH

)
A−1/2

)
also

implies Wϑ +WH
ϑ > A > 0.

Remark 6.15. Theorem 6.13 proves that Φϑ with ϑ in (6.11) is convergent. The
convergence is monotone with respect to the energy norm: ‖Mϑ‖A = ‖M̂ϑ‖2 =

ρ(M̂H
ϑ M̂ϑ)

1/2 (M̂ϑ as in (6.2a)).

Optimising the damping factor ϑ leads us to the quadratic inequality

ϑ
(
W +WH

)
≥ ϑ2A+ αWHAW, α = α(ϑ) > 0. (6.12)

For each sufficiently small ϑ > 0, there is a maximal α(ϑ) satisfying (6.12). ϑopt

is the maximiser of α(ϑ).

Theorem 6.16. Let Φϑ satisfy (6.12). Then Φϑ converges with the contraction
number

‖Mϑ‖A =
√
1− α .

Proof. Repeat the estimate of M̂H
ϑ M̂ϑ in (3.37) and use (6.12). ��
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The assumption N + NH > 0 does not yield new results because of the next
lemma, but in concrete cases the matrix N + NH may be easier to analyse than
W +WH.

Lemma 6.17. N +NH > 0 and W +WH > 0 are equivalent.

Proof. N +NH > 0 ⇔ WH
(
N +NH

)
W = W +WH > 0 by (C.3a). ��

Remark 6.18. Assume N +NH > 0 . With a suitable scaling, Nϑ satisfies

Nϑ +NH
ϑ > NH

ϑANϑ

which is equivalent to Wϑ+WH
ϑ > A > 0 and allows applying Theorem 6.13.

The estimate
Nϑ +NH

ϑ −NH
ϑANϑ ≥ αA

is equivalent to (6.12).

6.2.5 Case 5: Symmetrised Iteration Φ sym

Below we use the notation defined in (6.3). In particular, M sym and M are the
respective iteration matrices of Φ sym = Φ∗◦ Φ and Φ.

Remark 6.19. Assume A > 0. Then

σ(M sym) = ‖M̂ sym‖2 = ‖M sym‖A ⊂ [0,∞)

holds, where M̂ sym = A1/2M symA−1/2 > 0. The connection to the iteration Φ
is given by

σ(M sym) = ‖M‖2A = ‖M̂‖22 (M̂ := A1/2MA−1/2). (6.13)

If Φ sym converges, the convergence is monotone with respect to the energy norm
‖ · ‖A, and σ(M sym) ⊂ [0, 1) holds.

Proof. Use M̂ sym = M̂HM̂ ≥ 0 with M̂ = A1/2MA−1/2 and the similarity of
M sym and M̂ sym. ��

Equation (6.13) yields the following important conclusion. In general, the
condition ‖M‖A < 1 (monotone convergence with respect to the energy norm)
is only sufficient for convergence. Because of the next statement this is even a
necessary condition for Φ sym. Therefore estimates of ‖M‖A become important.

Conclusion 6.20. Φ sym = Φ∗ ◦ Φ converges if and only if Φ is monotonically
converging with respect to the energy norm, i.e., ‖MΦ‖A < 1.



130 6 Analysis of Positive Definite Iterations

The construction of Φ sym = Φ∗ ◦ Φ in §5.4.2 ensures that A > 0 im-
plies N sym = (N sym)H. N sym is Hermitian, but not necessarily positive definite.
By Corollary 6.12b, convergence of the damped version of Φ sym requires either
N sym > 0 or N sym < 0. The second case is completely nonstandard. Since
N sym = N +NH −NHAN (cf. (6.3)), the condition N sym > 0 is equivalent to
the identical conditions N + NH > NHAN and W+WH > A > 0 in Remark
6.18. As stated in Remark 6.18, these inequalities can be guaranteed by a suitable
scaling if N +NH > 0 or equivalently W +WH > 0 .

Next, we investigate the properties of (Φϑ)
sym = Φ∗

ϑ ◦ Φϑ. For a proof, use
Remark 6.19.

Proposition 6.21. Assume A>0. Let M, N, W and Mϑ, Nϑ, Wϑ be the matrices
associated with Φ and the damped iteration Φϑ, while Mϑ,sym, Nϑ,sym, Wϑ,sym

are those of (Φϑ)
sym = Φ∗

ϑ ◦ Φϑ.

(a) Positive definite case N + NH > 0 : For a suitable scaling factor ϑ > 0 ,
Wϑ+W

H
ϑ >A holds and (Φϑ)

sym converges. Since Nϑ,sym=Nϑ+NH
ϑ −NH

ϑANϑ,
the statements of Remark 6.18 apply. In the convergent case, the transformed
iteration matrix M̂ϑ,sym := A1/2Mϑ,symA−1/2 satisfies

0 ≤ M̂ϑ,sym < I ,

and (Φϑ)
sym is a positive definite iteration.

(b) Negative definite case N +NH < 0 : A negative ϑ leads us back to case (a).

(c) Otherwise, (Φϑ)
sym diverges for any choice of ϑ.

Let ϑ be a suitable scaling of Φ so that Wϑ + WH
ϑ > A holds. Rename Φϑ,

Mϑ, Nϑ, Wϑ, (Φϑ)
sym by Φ, MΦ, NΦ, WΦ, Φsym. The statements of Remark 6.19,

together with the convergence criterion WΦ +WH
Φ > A > 0, yield the next result.

Theorem 6.22. Assume that

WΦ +WH
Φ > A > 0.

Then the symmetrised iteration Φsym := Φ∗ ◦ Φ converges monotonically:

ρ(MΦsym) = ‖MΦ‖2A < 1. (6.14)

Moreover the spectrum is nonnegative:

σ(MΦsym) ⊂ [0, ρ(MΦsym)] ⊂ [0, 1).

Proof. For the last equality combine (6.13) in the form σ(MΦsym)⊂ [0, ρ(MΦsym)]
with (6.14). ��

Since σ(MΦsym) ⊂ [0, 1) holds, Remark 6.8 shows that the convergence rate
can be improved by damping (extrapolation).
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Concerning the contraction number with respect to the energy norm, Φ and
Φsym behave the same: Φsym consists of two iteration steps and yields the same
bound ‖MΦ‖2A as two steps of Φ. However, concerning the convergence rate, the
symmetric iteration performs worse. While ρ(MΦ) may be strictly smaller than
‖MΦ‖A (cf. Remark 6.15), ρ(MΦsym) is equal to ‖MΦ‖2A ; i.e., the inequality

ρ(MΦsym) ≥ ρ(MΦ)
2

holds and may possibly be a strict inequality.
When assessing Φsym and Φ only with regard to convergence speed, Φ should

be preferred. The advantage of Φsym will be seen in connection with Krylov
methods. Another advantage is the possibility to perform Φsym with less cost than
two steps of Φ (cf. Remark 6.27).

6.2.6 Case 6: Perturbed Positive Definite Case

The next generalisation splits A into A0 + iA1 according to (3.27). The condition
A > 0 is weakened by A0 > 0.

Theorem 6.23. Assume that A = A0 + iA1 according to (3.27) satisfies A0 > 0 .
Let W = N [A]−1 > 0 hold for the matrix of the third normal form of Φ(·, ·, A).
The optimal constants 0 < λ ≤ Λ and τ ≥ 0 in

λW ≤ A0 ≤ ΛW, −τW ≤ A1 ≤ τW (6.15)

are λ = λmin(NA0), Λ = λmax(NA0), and τ := ρ(NA1). Then the damped
iteration (5.8) converges for

0 < ϑ <
2λ

λΛ+ τ2

monotonically with respect to the norm ‖·‖W :

ρ(Mϑ) ≤ ‖Mϑ‖W ≤ 1

2
ϑ(Λ− λ) +

√[
1− 1

2Θ (Λ+ λ)
]2

+Θ2τ2 < 1.

The optimal ϑ can be determined as in (3.31c).

Proof. Mϑ is similar to M := N−1/2MϑN
1/2 = I − ϑN1/2AN1/2. M can

be regarded as the iteration matrix of the Richardson method for Θ := ϑ and
A′ := N1/2AN1/2 instead of A. The splitting A = A0 + iA1 induces the
splitting A′ = A′

0 + iA′
1 with the Hermitian matrices

A′
0 = N1/2A0 N

1/2, A′
1 = N1/2A1 N

1/2.

The inequalities (3.30a,b) applied to A′ are equivalent to (6.15). The estimate
(3.31b) following from Theorem 3.30 refers to the iteration matrix M and reads
as ‖M‖2 = ‖W 1/2MϑW

−1/2‖2 = ‖Mϑ‖W . ��
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The counterpart of Theorem 3.31 reads as follows.
Theorem 6.24. Under the assumption (3.30a,b), the estimate

ρ(Mϑ) ≤ rϑ :=
√
ϑ2τ2 +max {|1− ϑλ| , |1− ϑΛ|}

holds for the damped iteration (5.8) with λ and Λ as in Theorem 6.23. The
convergence is ensured in the form rϑ < 1 if

0 < ϑ < ϑ with ϑ :=

{
2Λ/

(
Λ2 + τ2

)
if τ2 < λΛ ,

2λ /
(
Λ2 + τ2

)
if τ2 ≥ λΛ .

rϑ is minimal for ϑ′ := min{ λ
λ2+τ2 ,

2
λ+Λ}. Moreover, the norm estimate (6.16)

holds:
‖(Mϑ)

m‖W ≤ 2rmϑ (m ≥ 0). (6.16)

Exercise 6.25. Reformulate Corollary 3.32 for the damped iteration (5.8).

In the case of a matrix NA = C0 + iC1 decomposed into a Hermitian part
C0 := (NA+ AHNH)/2 and a skew-Hermitian part C1 := (NA− AHNH)/(2i),
we can apply the counterparts of Theorems 3.28, 3.30, 3.31 and Corollaries 3.32,
3.33 to get similar results as above.

6.3 Symmetric Gauss–Seidel Iteration and SSOR

The symmetric Gauss–Seidel method ΦsymGS = ΦGS
backw ◦ ΦGS ∈ Lsym and the

symmetric SOR method (SSOR) ΦSSOR
ω = ΦbackwSOR

ω ◦ ΦSOR
ω ∈ Lsym are

defined in §5.4.3. In 1955, the SSOR method is first described by Sheldon [339].
Since ΦSOR

1 = ΦGS (cf. Proposition 3.13c), the symmetric Gauss–Seidel
iteration also satisfies ΦsymGS = ΦSSOR

1 . Therefore the symmetric Gauss–Seidel
method does not require a separate analysis.

6.3.1 The Case A > 0

Theorem 6.26. Let A be positive definite. The symmetric SOR method ΦSSOR
ω

converges for 0 < ω < 2 with

ρ(MSSOR
ω ) = ‖MSOR

ω ‖2A < 1, where MSSOR
ω = MbackwSOR

ω MSOR
ω

(cf. Remark 5.2 and (3.15b)). The spectrum σ(MSSOR
ω ) is contained in [0, 1).

ΦSSOR
ω diverges for all real ω /∈ (0, 2) . The same statements hold for the block-

SSOR version.

Proof. Combine the result of Theorem 3.41 (Ostrowski) with Theorem 6.22.
Concerning ω /∈ (0, 2) use ρ(MSSOR

ω ) = ‖MSOR
ω ‖2A ≥ ρ(MSOR

ω )2 and (3.41). ��



6.3 Symmetric Gauss–Seidel Iteration and SSOR 133

The amount of work required by the symmetric SOR iteration seems to be twice
as large as that for the original SOR method, since one SSOR step consists of two
SOR steps (cf. (5.14)). However, this disadvantage can be overcome.

Remark 6.27 (Niethammer [292, 293]). The SSOR iteration requires essentially
the same amount of work as the SOR method if one tolerates additional storage
needed for an auxiliary vector. The cost factor (cf. §2.3) amounts to

CSSOR
Φ = CSOR

Φ + 5/CA = 2 + 6/CA

for an optimal implementation instead of 2CSOR
Φ = 4 + 2/CA for the naive

implementation (5.14).

Proof. The first SSOR half-step xm �−→ xm+1/2 can be rewritten as

xm+1/2 = xm + ω
(
Lxm+1/2 − xm + Uxm +D−1b

)
(6.17a)

(cf. (3.15f)). The second backward SOR step

xm+1 = xm+1/2 + ω
(
Uxm+1 − xm+1/2 + Lxm+1/2 +D−1b

)
(6.17b)

contains the term Lxm+1/2 which is already evaluated in (6.17a). Analogously,
the term Uxm+1 computed in (6.17b) can be used in the following half-step:

xm+3/2 = xm+1 + ω
(
Lxm+3/2 − xm+1 + Uxm+1 +D−1b

)
.

On the average, one SSOR step requires one evaluation of Lx and Ux . ��

The statements of Theorem 3.44 can be translated into the following statement
about the SSOR method.

Theorem 6.28. Let A = D−E−EH > 0 and 0 < ω < 2 . Furthermore, assume
that there are constants γ > 0 and Γ with (6.18a,b) (cf. (3.46a,b)):

0 < γD ≤ A , (6.18a)(
1

2
D − E

)
D−1

(
1

2
D − EH

)
≤ 1

4
ΓA . (6.18b)

Then the following estimate holds:

ρ(MSSOR
ω ) = ‖MSSOR

ω ‖A ≤ 1− 2Ω
Ω2

γ +Ω + Γ
4

with Ω :=
2− ω

2ω
. (6.18c)

For ω′ = 2/(1 +
√
γΓ ) , the bound in (6.18c) becomes a minimum:

ρ(MSSOR
ω ) ≤

√
Γ −√

γ√
Γ +

√
γ
=

1−
√

γ/Γ

1 +
√

γ/Γ
.

Proof. Combine (6.14) with Theorem 3.44. ��
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The following statement is analogous to Conclusion 3.46.

Conclusion 6.29 (order improvement). In the case of ρ(D−1ED−1EH) ≤ 1/4
(or ≤ 1/4 +O(1−ρ(MJac))), the choice ω = ω′ enables an order improvement.
If τ is the order of the Jacobi (and of the symmetric Gauss–Seidel) method, then
τ/2 is the order of the SSOR method with ω = ω′.

The condition ρ(D−1ED−1EH) ≤ 1/4 is essential. This inequality does not
hold for the model problem with chequer-board ordering. Then, as we shall see in
§6.3.4, no order improvement is possible.

For completeness, we repeat the properties of the symmetric Gauss–Seidel
iteration.

Proposition 6.30. (a) The iteration matrix of the symmetric Gauss–Seidel iteration
and the matrices of the second and third normal forms are

M symGS = (D − F )−1E(D − E)−1F,

N symGS = (D − F )−1D(D − E)−1,

W symGS = (D − E)D−1(D − F ) = A+ ED−1F.

(b) The symmetric Gauss–Seidel iteration is a symmetric iteration in the sense of
Definition 5.3, provided that D ∈ RI×I .

(c) If A > 0, the matrix W symGS of the third normal form is also positive definite,
so that the symmetric Gauss–Seidel iteration is a positive definite iteration.

(d) The symmetric Gauss–Seidel iteration converges and the spectrum of the
iteration matrix is nonnegative:

σ(M symGS) ⊂ [0, 1) .

6.3.2 SSOR in the 2-Cyclic Case

In the 2-cyclic case, we can rewrite the backward SOR iteration as ΦbackwSOR
ω =

Φ
(1)
ω ◦Φ(2)

ω with the partial steps defined in (6.19a,b). Therefore, the symmetric SOR
iteration takes the form

ΦSSOR
ω = Φ(1)

ω ◦ Φ(2)
ω ◦ Φ(2)

ω ◦ Φ(1)
ω ∈ Lsym.

Exercise 6.31. Prove: (a) The SSOR iteration matrix MSSOR
ω =M

(1)
ω M

(2)
ω M

(2)
ω M

(1)
ω

leads to the rate

ρ(M (1)
ω M (2)

ω M (2)
ω M (1)

ω ) = ρ(M (2)
ω M (2)

ω M (1)
ω M (1)

ω ).

(b) M (1)
ω M

(1)
ω = M

(1)
ω′ and M

(2)
ω M

(2)
ω = M

(2)
ω′ hold with ω′ := ω(2− ω).

(c) 0 < ω < 2 implies 0 < ω′ ≤ 1. ω′ = 1 is only achieved for ω = 1.
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Exercise 6.31 entails the following negative conclusion.

Conclusion 6.32. In the 2-cyclic case, ρ(MSSOR
ω ) = ρ(MSOR

ω′ ) holds with ω′ :=
ω(2 − ω) ≤ 1 for all 0 < ω < 2. According to Theorem 4.27, underrelaxation
(ω′<1) is always slower than the Gauss–Seidel iteration (ω′=1). Hence, ω=1 is
the optimal parameter and SSOR simplifies to the symmetric Gauss–Seidel iteration
(cf. Alefeld [2]).

The reason for the missing order improvement is that, differently from the
situation discussed in Remark 6.29, the condition ρ(D−1ED−1EH) ≤ 1

4 is not
satisfied. In the 2-cyclic case, we have ρ(D−1ED−1EH) = ρ(D−1

1 A1D
−1
2 A2) =

ρ(MGS) ≈ 1 (cf. Theorem 4.20).

Exercise 6.33. Let (A,D) be 2-cyclic. Prove that

M symGS =

[
0 −D−1

1 A1D
−1
2 A2D

−1
1 A1

0 D−1
2 A2D

−1
1 A1

]
is the iteration matrix of the symmetric Gauss–Seidel method and that

ρ(M symGS) = ρ(MGS).

6.3.3 Modified SOR

In the 2-cyclic case, we can regard the SOR method as a product iteration ΦSOR
ω =

Φ
(2)
ω ◦ Φ

(1)
ω (cf. §5.4), where Φ

(1)
ω involves only the first block of the vector and

Φ
(2)
ω only the second one:

Φ(1)
ω (x, b) =

(
x1 − ω

[
x1 −D−1

1

(
A1x

2 − b1
)]

x2

)
(6.19a)

Φ(2)
ω (x, b) =

(
x1

x2 − ω
[
x2 −D−1

2

(
A2x

1 − b2
)]) (6.19b)

where x =
[
x1

x2

]
, b =

[
b1

b2

]
, and A is split as in (4.3). The corresponding iteration

matrices are

M (1)
ω =

[
(1− ω) I ωD−1

1 A1

0 I

]
, M (2)

ω =

[
I 0
ωD−1

2 A2 (1− ω) I

]
.

Thus we have MSOR
ω = M

(2)
ω M

(1)
ω . The modified SOR iteration (MSOR)

makes use of different relaxation parameters ω and ω′ in both of the half-steps:

ΦmodSOR
ω,ω′ = Φ

(2)
ω′ ◦ Φ(1)

ω .

Again the comment in Remark 3.6 about multiple parameters applies. Concerning
convergence analysis and optimal parameters, we refer to Young [412, §8] and
Hadjidimos [211, §3].
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6.3.4 Unsymmetric SOR Method

The only reason for mentioning the unsymmetric SOR method is that it is con-
structed in analogy to the modified Gauss–Seidel method in §6.3.3. The SSOR
method ΦSSOR

ω = ΦbackwSOR
ω ◦ ΦSOR

ω (cf. (5.15)) can be modified by choosing
different parameters ω, ω′ in both factors. Accordingly, the unsymmetric SOR
iteration reads

ΦunsymSOR
ω,ω′ := ΦbackwSOR

ω′ ◦ ΦSOR
ω .

Again, this method is not notably better than the SSOR method. For more details
and further references, see Hadjidimos [211, §4.1].

6.3.5 Numerical Results for the SSOR Iteration

For methods with an iteration matrix satisfying 0 < A1/2MA−1/2 < ρ(M)I ,
Remark 2.22d is applicable: the quotients ‖em‖A/‖em−1‖A converge monoton-
ically to ρ(M). Since M = MSSOR

ω satisfies this assumption, we observe
this monotone behaviour for the SSOR iteration and the symmetric Gauss–Seidel
method (ω = 1). Table 6.1 (left) contains the results of the SSOR method with
lexicographical ordering. For the Poisson model problem with step size h = 1/32,
we obtain the convergence rate 0.98092. According to Table 3.2, ω = ω′ = 1.8213
is the optimal value for the bound (3.55c), which becomes ‖MSSOR

ω ‖A ≤ 0.9065.
Table 6.1 shows the convergence rates for different ω. Obviously, ρ(MSSOR

ω )
attains its minimum not at ω = ω′ but for ωopt ∈ [1.845, 1.846]. The values
of Table 6.1 demonstrate that, differently from the SOR method (cf. Fig. 4.1),
the convergence rate has a flat minimum. Small errors in the choice of ω = ωopt

deteriorate the convergence rate only insignificantly. In this respect, the choice
ω = ω′ is sufficiently good.

symmetric Gauss–Seidel iteration SSOR with ω=1.8213

m ‖em‖∞‖em‖A ‖em‖∞
‖em−1‖∞

‖em‖A

‖em−1‖A
‖em‖A ‖em‖A

‖em−1‖A

1 1.48 202 0.79011 0.579572 2.310+02 0.67588
2 1.35 159 0.91627 0.790646 1.610+02 0.71534
3 1.27 137 0.94025 0.858495 1.210+02 0.72622
4 1.20 122 0.94528 0.891046 9.010+01 0.73679
5 1.14 111 0.94734 0.910237 6.710+01 0.74876

94 0.158 11.2 0.98074 0.980884 3.410–04 0.87961
95 0.155 11.0 0.98075 0.980891 2.810–04 0.87961
96 0.152 10.8 0.98075 0.980897 2.510–04 0.87961
97 0.149 10.6 0.98076 0.980903 2.210–04 0.87961
98 0.146 10.4 0.98076 0.980909 1.910–04 0.87961
99 0.144 10.2 0.98077 0.980914 1.710–04 0.87961

100 0.141 10.0 0.98077 0.980919 1.510–04 0.87961

ω ρ(MSSOR
ω )

1 0.98092
1.8 0.88376
1.81 0.88163
1.8213 0.87962
1.83 0.87845
1.84 0.87765
1.8450 0.877529
1.8455 0.877528
1.8460 0.877528
1.847 0.877528
1.85 0.87762
1.86 0.87855
1.87 0.88066

Table 6.1 Left: Symmetric Gauss–Seidel iteration and SSOR for h = 1/32. Right: Convergence
rates of the SSOR method for h = 1/32 and different ω.
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