
Chapter 2

Iterative Methods

Abstract In this chapter we consider general properties of iterative methods.
Such properties are consistency, ensuring the connection between the iterative
method and the given system of equations, as well as convergence, guaranteeing
the success of the iteration. The most important result of this chapter is the charac-
terisation of the convergence of linear iterations by the spectral radius of the iteration
matrix (cf. §2.1.4). Since we only consider iterative methods for systems with
regular matrices, iterative methods for singular systems or those with rectangular
matrices will not be studied.1 The quality of a linear iteration depends on both the
cost and the convergence speed. The resulting efficacy is discussed in Section 2.3.
Finally, Section 2.4 explains how to test iterative methods numerically.

2.1 Consistency and Convergence

2.1.1 Notation

We want to solve the system of linear equations

Ax = b (A ∈ KI×I and b ∈ KI given) (2.1)

(cf. (1.10)). To guarantee solvability for all b ∈ KI , we generally assume:

A is regular. (2.2)

An iterative method producing iterates x1, x2, . . . from the starting value x0

can be characterised by a prescription xm+1 := Φ(xm). Φ depends on the data A
and b in (2.1). These parameters are explicitly expressed by the notation

1 Concerning this topic, we refer, e.g., to Björck [47], Marek [275], Kosmol–Zhou [241], Berman–
Plemmons [46], and Remark 5.17.
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xm+1 := Φ(xm, b, A) (m ≥ 0, b in (2.1)). (2.3)

Since in most of the cases the matrix A is fixed, we usually write

xm+1 := Φ(xm, b)

instead of Φ(xm, b, A). By Φ(·, ·, A) we express the fact that we consider the
iteration (2.3) exclusively for the matrix A.

Definition 2.1. An iterative method is a (in general nonlinear) mapping

Φ : KI ×KI ×KI×I → KI .

By xm = xm(x0, b, A) we denote the iterates of the sequence generated by the
prescription (2.3) with a starting value x0 = y ∈ KI :

x0(y, b, A) := y ,

xm+1(y, b, A) := Φ(xm(y, b, A), b, A) for m ≥ 0.
(2.4)

If A is fixed, we write xm(y, b) instead of xm(y, b, A). If all parameters y, b, A
are fixed, we write xm.

If Φ is called an iteration method, we expect that the method is applicable to a
whole class of matrices A. Here ‘applicable’ means that Φ is well defined (includ-
ing the case that the sequence xm diverges).

Definition 2.2. (a) D(Φ) := {A : Φ(·, ·, A) well defined} is the domain of Φ.
(b) An iteration is called algebraic if the definition of Φ(·, ·, A) can be based
exclusively on the data of A ∈ D(Φ).

In the case of the Gauss–Seidel iteration ΦGS in (1.15), the domain is defined by
D(ΦGS) = {A ∈ KI×I : aii �= 0 for all i ∈ I, I finite}. Another extreme case is
D(Φ) = {A }, i.e., the iteration can only be applied to one particular matrix A .

2.1.2 Fixed Points

Definition 2.3. x∗=x∗(b, A) is called a fixed point of the iteration Φ corresponding
to b ∈ KI and A ∈ D(Φ) (or shortly: a fixed point of Φ(·, b, A)) if

x∗ = Φ(x∗, b, A).

If the sequence {xm} of the iterates generated by (2.3) converges, we may form
the limit in (2.3) and obtain the next lemma.

Lemma 2.4. Let the iteration Φ be continuous with respect to the first argument. If

x∗ := lim
m→∞x

m(y, b, A) (cf. (2.4))

exists, x∗ is a fixed point of Φ(·, b, A).
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2.1.3 Consistency

Lemma 2.4 states that possible results of the iteration method have to be sought
in the set of fixed points. Therefore, a minimum condition is that the solution of
system (2.1) with the right-hand side b ∈ KI be a fixed point with respect to b. This
property is the subject of the following definition.

Definition 2.5 (consistency). The iterative method Φ is called consistent to the
system (2.1) with A ∈ D(Φ) if, for all right-hand sides b ∈ KI , any solution
of Ax = b is a fixed point of Φ(·, b, A).

According to Definition 2.5, consistency means: For all b, x ∈ KI and all
matrices A ∈ D(Φ), the implication Ax = b ⇒ x = Φ(x, b, A) holds. The re-
verse implication would yield an alternative (nonequivalent) form of consistency:

Ax = b for all fixed points x of Φ(·, b, A) and for all b ∈ KI, A ∈ D(Φ). (2.5)

Note that both variants of consistency do not require the regularity assumption
(2.2). Even without (2.2), there may be a solution of Ax = b for certain b.
Then Definition 2.5 implies the existence of a fixed point of Φ(·, b). Vice versa,
(2.5) states the existence of a solution of Ax = b as soon as Φ(·, b, A) has a fixed
point. The regularity of A will be discussed in Theorem 2.8.

2.1.4 Convergence

A natural definition of the convergence of an iterative method Φ seems to be

lim
m→∞xm(y, b, A) exists for all y, b ∈ KI , (2.6)

where xm(y, b, A) are the iterates defined in (2.4) corresponding to the starting
value x0 := y, while A ∈ D(Φ) is a fixed matrix. Since the starting value may
be chosen arbitrarily, it may happen that an iteration satisfying (2.6) converges, but
to different limits depending on the starting value. Therefore, the independence of
the limit has to be incorporated into the definition of convergence. This yields the
following definition, which is stronger than (2.6).

Definition 2.6. Fix A ∈ D(Φ). An iterative method Φ(·, ·, A) is called convergent
if for all b ∈ KI , there is a limit x∗(b, A) of the iterates (2.4) independent of the
starting value x0 = y ∈ KI .

Note that consistency is a property of Φ for all A ∈ D(Φ), whereas convergence
is required for a particular A ∈ D(Φ). Therefore Φ(·, ·, A) may be convergent for
some A, while Φ(·, ·, A′) diverges for another A′.
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2.1.5 Convergence and Consistency

Remark 2.7. In the following, we shall often assume that the iterative method Φ is
convergent and consistent. The term ‘convergent and consistent’ refers to a matrix
A ∈ D(Φ) and means precisely: Φ is consistent and, for A ∈ D(Φ), the particular
iteration Φ(·, ·, A) is convergent.

It will turn out that the chosen definitions of the terms ‘convergence’ and
‘consistency’ of Φ are almost equivalent to the combination of the alternative
definitions in (2.5) and (2.6).

Theorem 2.8. Let Φ be continuous in the first argument. Then Φ is consistent and
convergent if and only if A is regular and Φ fulfils the conditions (2.5) and (2.6).

Proof. (i) Assume Φ to be consistent and convergent. (2.6) follows from Defini-
tion 2.6. If A is singular, the equation Ax = 0 would have a nontrivial solution
x∗∗ �= 0 besides x∗ = 0. By consistency, both are fixed points of Φ with
respect to b = 0. Therefore, choosing the starting values x0 = x∗ and x0 = x∗∗,
we obtain the constant sequences xm(x∗, 0) = x∗ and xm(x∗∗, 0) = x∗∗. The
convergence definition states that the limits x∗ and x∗∗ coincide contrary to the
assumption. Hence, A is regular. It remains to prove (2.5). The preceding argument
shows that a convergent iterative method can have only one fixed point with respect
to b. Because of the regularity of A, there is a solution of Ax = b that, thanks to
consistency, is the unique fixed point of Φ with b. Hence, (2.5) is proved.

(ii) Assume Φ(x, b) to be continuous in x and that (2.5) and (2.6) are fulfilled.
Furthermore, let A be regular. Due to Lemma 2.4, x∗ := limxm(y, b) is a fixed
point of Φ with respect to b and therefore, by (2.5), a solution of Ax = b. Because
of the regularity of A, the solution of the system is unique and hence also the limit of
xm(y, b), which thereby cannot depend on y. Hence, Φ is convergent in the sense of
Definition 2.6. Convergence leads to the uniqueness of the fixed point with respect
to b (cf. part (i)). Since, by (2.5), this fixed point is the uniquely determined solution
of Ax = b, Φ is consistent. ��

2.1.6 Defect Correction as an Example of an Inconsistent Iteration

In this monograph, all iterations will be assumed to be consistent. Usually, incon-
sistent iterations are an involuntary consequence of a bug in the implementation.
However, there are examples where inconsistent iterations are of practical relevance.
Assume that both Ax = b and By = c are discretisations of the same partial dif-
ferential equation. Assume further that Ax = b is simpler to solve than By = c,
but the error of the discretisation by B is smaller than the discretisation error of A.
Then there are combinations of both discretisations so that the overall treatment is
as simple as for A but yielding the accuracy of B.
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The standard defect correction xm+1 = xm − A−1(Bxm − c) can be stopped
after a few iteration steps since the desired discretisation accuracy is reached (cf.
[194, §14.2.2], [197, §7.5.9.2]). This is even true if the matrix B is singular or almost
singular (this is the case of an unstable but consistent2 discretisation). An extreme
case of solving a problem with an unstable discretisation of high consistency order
is demonstrated in [178].

Another mixing of both discretisation is described in [194, §14.3.3], where parts
of the multigrid iteration for Ax = b use B in the smoothing step. The limit x∗ of
the iterates solves neither Ax∗ = b nor Bx∗ = c.

2.2 Linear Iterative Methods

One would expect iterative methods to be linear in x, b, since they solve linear equa-
tions. In fact, most of the methods described in this book are linear, but there are also
important nonlinear iterations as, e.g., discussed in Part II.

2.2.1 Notation, First Normal Form

Definition 2.9 (linear iteration, iteration matrix). An iterative method Φ is called
linear if Φ(x, b) is linear in (x, b), i.e., if there are matrices M and N such that

Φ(x, b, A) = M [A]x+N [A] b.

In most of the cases, A is fixed and we use the shorter form

Φ(x, b) = Mx+Nb. (2.7)

Here, the matrix M = M [A] is called the iteration matrix of the iteration Φ.

Iteration (2.3) takes the form (2.8), which represents the first normal form of the
iteration Φ :

xm+1 := Mxm +Nb (m ≥ 0, b in (2.1)). (2.8)

Whenever possible, we shall denote the iteration matrix of a specific iteration
method ‘xyz’ by Mxyz; e.g., MGS belongs to the Gauss-Seidel method. Similarly
for Nxyz . When we refer to the mapping Φ, we write MΦ, NΦ, etc.

Remark 2.10. Assume (2.2). If N = N [A] is singular, there is some x∗ �= 0 with
Nx∗ = 0 and b := Ax∗ �= 0. Starting iteration (2.8) with x0 = 0 yields xm = 0
and hence limxm = 0. In Corollary 2.17b we shall state that, in this case, the
iteration is not convergent.

The iteration Φ(·, ·, A) is algebraic in the sense of Definition 2.2b if and only if
the matrices M and N are explicit functions of A.

2 Concerning the terms ‘consistent’ and ‘consistency order’, we refer to Hackbusch [197, §§6,7].

2.1 Consistency and Convergence
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2.2.2 Consistency and Second Normal Form

For a linear and consistent iteration Φ, each solution of Ax = b must be a fixed
point with respect to b: x = Mx + Nb. Each x ∈ KI can be the solution of
Ax = b (namely, for b := Ax). Hence,

x = Mx+Nb = Mx+NAx

holds for all x and leads to the matrix equation

M [A] +N [A]A = I, (2.9)

or in short,
M +NA = I,

establishing a relation between M and N in (2.8). This proves the next theorem.

Theorem 2.11 (consistency). A linear iteration Φ is consistent if and only if the
iteration matrix M can be determined from N by

M [A] = I −N [A]A for all A ∈ D(Φ). (2.9′)

If, in addition, A is regular, N can be represented as a function of M :

N [A] = (I −M [A])A−1. (2.9′′)

Combining formulae (2.8) and (2.9′), we can represent linear and consistent
iterations in their second normal form:

xm+1 := xm −N [A] (Axm − b) (m > 0, A, b in (2.1)). (2.10)

In the sequel, the matrix

N = N [A] = NΦ = NΦ[A]

will be called the ‘matrix of the second normal form of Φ’. Equation (2.10) shows
that xm+1 is obtained from xm by a correction which is the defect Axm − b
of xm multiplied by N . The fact that the defect of xm vanishes if and only if it
is a solution of Ax = b, proves the next remark.

Remark 2.12. The second normal form (2.10) with arbitrary N ∈ KI×I represents
all linear and consistent iterations.

Since consistent linear iterations are the standard case, we introduce the follow-
ing notation for the set of these iterations:

L := {Φ : KI ×KI ×KI×I → KI consistent linear iteration, #I < ∞}. (2.11)
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2.2.3 Third Normal Form

The third normal form of a linear iteration reads as follows:

W [A] (xm − xm+1) = Axm − b (m > 0, A, b in (2.1)). (2.12)

W = W [A] = WΦ = WΦ[A] is called the ‘matrix of the third normal form of Φ’.
Equation (2.12) can be understood in the following algorithmic form:

solve Wδ = Axm − b and define xm+1 := xm − δ. (2.12′)

This represents a definition of xm+1 as long as W is regular. Under this assumption,
one can solve for xm+1. A comparison with (2.10) proves the following.

Remark 2.13. If W in (2.12) is regular, iteration (2.12) coincides with the second
normal form (2.10), where N is defined by

N = W−1. (2.13)

Vice versa, the representation (2.10) with regular N can be rewritten as (2.12) with
W = N−1.

We shall see that for the interesting cases, N must be regular (cf. Remark 2.18).
Combining (2.9′) and (2.13) yields

M [A] = I −W [A]−1A. (2.13′)

2.2.4 Representation of the Iterates xm

By the notation xm(x0, b, A) in (2.4) we express the dependency on the starting
value x0 and on the the data b, A of the system (2.1). The explicit representation
of xm in terms of x0 and b is given in (2.14).

Theorem 2.14. The linear iteration (2.7) produces the iterates

xm(x0, b, A) = M [A]mx0 +

m−1∑
k=0

M [A]kN [A] b (2.14)

for m ≥ 0 and A ∈ D(Φ) .

Proof. For the induction start at m = 0, Eq. (2.14) takes the form x0(x0, b) = x0

in accordance with (2.4). Assuming (2.14) for m− 1, we obtain from (2.7) that

xm(x0, b) = Mxm−1 +Nb = M

(
Mm−1x0 +

m−2∑
k=0

MkNb

)
+Nb

= Mmx0 +

m−1∑
k=1

MkNb+Nb = Mmx0 +

m−1∑
k=0

MkNb. ��
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In the following, em denotes the (iteration) error of xm:

em := xm − x, where x solves Ax = b. (2.15)

Assuming consistency, we have x = Mx + Nb for the solution x in (2.15).
Forming the difference with (2.8): xm+1=Mxm+Nb, we attain the simple relation

em+1 = Mem (m ≥ 0), e0 = x0 − x, (2.16a)

between two successive errors. Therefore the iteration matrix is the amplification
matrix of the error. A trivial conclusion is

em = Mme0 (m ≥ 0). (2.16b)

The expression Ax− b is called the defect of a vector x. In particular,

dm := Axm − b (2.17)

denotes the defect of the m-th iterate xm.

Exercise 2.15. Prove: (a) The defect d̄ = Ax̄ − b and the error ē = x̄ − x fulfil
the equation A ē = d̄ .
(b) Let Φ ∈ L (cf. (2.11)) and assume that A is regular. Then the defects satisfy

dm+1 = AMA−1dm, d0 := Ax0 − b, dm = (AMA−1)md0.

2.2.5 Convergence

A necessary and sufficient convergence criterion can be formulated by the spectral
radius ρ(M) of the iteration matrix (cf. Definition A.17).

Theorem 2.16 (convergence theorem, convergence rate). A linear iteration (2.7)
with the iteration matrix M = M [A] is convergent if and only if

ρ(M) < 1. (2.18)

ρ(M) is called the convergence rate of the iteration Φ(·, ·, A).

In the sequel, the terms convergence rate, convergence speed, and iteration speed
are used synonymously for ρ(M). Some authors define the convergence rate as the
negative logarithm − log(ρ(M)) (cf. (2.30a) and Varga [375], Young [412]).

Proof. (i) Let iteration (2.7) be convergent. In Definition 2.6 we may choose b := 0
and exploit the representation (2.14): xm = Mmx0. The starting value x0 := 0
yields the limit x∗= 0, which by the convergence definition must hold for any start-
ing value. If ρ(M) ≥ 1, one could choose x0 �= 0 as the eigenvector corresponding
to an eigenvalue λ with |λ| = ρ(M) ≥ 1. The resulting sequence xm = λmx0

cannot converge to x∗ = 0. Hence, inequality (2.18) is necessary for convergence.
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(ii) Now let (2.18) be valid: ρ(M) < 1. By Lemma B.28, Mmx0 converges
to zero, while Theorem B.29 proves

∑m−1
k=0 Mk → (I − M)−1. Thanks to the

representation (2.14), xm tends to

x∗ := (I −M)−1Nb. (2.19)

Since this limit does not depend on the starting value, the iteration is convergent. ��

The proof already contains the first statement of the following corollary.

Corollary 2.17. (a) If the iterative method (2.7) is convergent, the iterates converge
to (I −M)−1Nb.
(b) If the iteration is convergent, then A and N = N [A] are regular.
(c) If, in addition, the iteration is consistent, the iterates xm converge to the unique
solution x = A−1b.

Proof. (b) If either A or N are singular, the product AN is singular and ANx = 0
holds for some x �= 0. As M = I − NA, x is an eigenvector of M with the
eigenvalue 1. Hence ρ(M) ≥ 1 proves the divergence of the iteration. This proves
part (b).

(c) By consistency and part (b), there is a representation (2.10) with regular N
and A, so that (I −M)−1N = A−1 follows from (2.9). (2.19) proves part (c). ��

Remark 2.18. Since only convergent and consistent iterations are of interest and
since in this case, by Corollary 2.17b, A and N are regular, the representation (2.9′′)
of N and the third normal form (2.4) hold with the matrix W = N−1.

The convergence xm → x is an asymptotic statement for m → ∞ that allows
no conclusion concerning the error em = xm − x for some fixed m. The values
of um

16,16 given in Tables 1.1–1.2 even deteriorate during the first steps before they
converge monotonically to the limit 1

2 . Often, one would like to have a statement for
a fixed iteration number m. In this case, the convergence criterion (2.18) has to be
replaced with a norm estimate.

Theorem 2.19. Let ‖·‖ be a corresponding matrix norm. A sufficient condition for
convergence of an iteration is the estimate

‖M‖ < 1 (2.20)

of the iteration matrix M . If the iteration is consistent, the error estimates (2.21)
hold:

‖em+1‖ ≤ ‖M‖ ‖em‖ , ‖em‖ ≤ ‖M‖m ‖e0‖. (2.21)

Proof. (2.20) implies (2.18) (cf. (B.20b)). (2.21) is a consequence of (2.16a,b). ��

‖M‖ is called the contraction number of the iteration (with respect to the norm
‖·‖). In the case of (2.20), the iteration is called monotonically convergent with
respect to the norm ‖·‖, since ‖em+1‖ < ‖em‖. If the norm ‖·‖ fulfils the equality
ρ(M) = ‖M‖, the terms ‘convergence’ and ‘monotone convergence’ coincide.
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2.2.6 Convergence Speed

Inequality (2.21), i.e., ‖em+1‖ ≤ ζ ‖em‖ with ζ := ‖M‖ < 1, describes linear
convergence. Faster convergence than linear convergence is only attainable by non-
linear methods (cf. §10.2.3). The contraction number ζ depends on the choice of the
norm. According to (B.20b), the contraction number ζ is always larger or equal to
the convergence rate ρ(M). On the other hand, Lemma B.26 ensures that for a suit-
able choice of the norm, the contraction number ζ approximates the convergence
rate ρ(M) arbitrarily well.

The contraction number as well as the convergence rate determine the quality
of an iterative method. Both quantities can be determined from the errors em as
follows.

Remark 2.20. The contraction number is the maximum of the ratios ‖e1‖/‖e0‖
taken over all starting values x.

Proof. Use (2.16b) for m = 1 and Exercise B.10d. ��

Exercise 2.21. Prove: (a) In general, Remark 2.20 becomes wrong if ‖e1‖/‖e0‖ is
replaced with ‖em+1‖/ ‖em‖ for some m > 0.
(b) The latter quotient takes the maximum

ζm+1 :=

{
max{‖Mx‖ / ‖x‖ : x ∈ range(Mm)\{0}} if Mm �= 0,
0 otherwise,

which can be interpreted as the matrix norm of the mapping x �→ Mx restricted to
the subspace Vm := range(Mm) := {Mmx : x ∈ KI}.
(c) The inclusion Vm+1 ⊂ Vm holds with an equality sign at least for m ≥ #I .
(d) ρ(M) ≤ ζm+1 ≤ ζm ≤ ζ0 = ζ := ‖M‖ holds for m ≥ 0.
(e) For regular M, one has ζm = ζ for all m.

Exercise 2.21 demonstrates that the contraction number is a somewhat too coarse
term: It may happen that the contraction number gives a too pessimistic prediction
of the convergence speed. A more favourable estimate can be obtained by the nu-
merical radius r(·) of the matrix Mm (cf. §B.3.4). The inequalities

‖Mm‖2 ≤ 2 r(Mm) (cf. (B.28d)) (2.22a)

and (2.16b) yield the error estimate

‖em‖2 ≤ 2 r(Mm) ‖e0‖2 (m ≥ 0) (2.22b)

with respect to the Euclidean norm. If ‖·‖C is the norm defined by (C.5a) with a
positive definite matrix C, one analogously proves the inequality

‖em‖C ≤ 2 r(C1/2MmC−1/2)‖e0‖C (m ≥ 0). (2.22c)

For the practical judgment of the convergence speed from ‘experimental data’,
i.e., from a sequence of errors em belonging to a special starting value x0, one
may use the reduction factors
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ρm+1,m := ‖em+1‖/‖em‖ . (2.23a)

These numbers can, e.g., be found in the last column of Tables 1.1–1.2. More
interesting than a single value ρm+1,m is the geometric mean

ρm+k,m := [ρm+k,m+k−1 · ρm+k−1,m+k−2 · . . . · ρm+1,m]
1/k

,

which due to definition (2.23a) can more easily be represented by

ρm+k,m :=
[
‖em+k‖/‖em‖

]1/k
. (2.23b)

The properties of ρm+k,m are summarised below.

Remark 2.22. (a) Denote the dependence of the magnitude ρm+k,m on the starting
value x0 by ρm+k,m(x0). Then

lim
k→∞

max{ρm+k,m(x0) : x0 ∈ KI} = ρ(M) for all m.

(b) Even without maximisation over all x0 ∈ KI ,

lim
k→∞

ρm+k,m(x0) = ρ(M) for all m (2.23c)

holds, provided that x0 does not lie in the subspace U ⊂ KI of dimension <#I
spanned by all eigenvectors and possibly existing principal vectors of the matrix
M corresponding to eigenvalues λ with |λ| < ρ(M). (2.23c) holds almost always
because a stochastically chosen starting value x0 lying in a fixed lower dimensional
subspace has probability zero.
(c) The reduction factors ρm+1,m(x0) tend to the spectral radius of M :

lim
m→∞ ρm+1,m(x0) = ρ(M) (2.23d)

for all x0 /∈ U with U in part (b) if and only if there is exactly one eigenvalue λ ∈
σ(M) with |λ| = ρ(M), and if, for this eigenvalue, the geometric and algebraic
multiplicities coincide. Sufficient conditions are: (i) λ ∈ σ(M) with |λ| = ρ(M)
is a single eigenvalue, or (ii) M is a positive matrix (cf. (C.11a)).
(d) Choose a norm ‖·‖ = ‖·‖C with C > 0 (cf. (2.22c)) in (2.23a). If C

1
2MC− 1

2

is Hermitian, ρm+1,m(x0) (x0 /∈ U ) converges monotonically increasing to ρ(M).

Proof. (i) Use

ρ(M) ≤ max
x0∈KI

ρm+k,m(x0) ≤ max
x0∈KI

ρk,0(x
0) ≤ ‖Mk‖1/k

and ‖Mk‖1/k → ρ(M) according to Theorem B.27. This proves part (a).
(ii) Let I0 ⊂ I be the nonempty index subset I0 := {i ∈ I : |Jii| = ρ(M)},

where Jii are the diagonal elements of the Jordan normal form M = TJ T−1 (cf.
(A.15a,b)). The subspace U := {x : (T−1x)i = 0 for all i ∈ I0} is the maximal
subspace with the property limm→∞ [ ‖Mmx‖ / ‖x‖ ]1/m < ρ(M). Its dimension
is dim(U) = #I −#I0 < #I .
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(iii) Define M̂ = C1/2MC−1/2 and êm := C1/2em. Since the norms are
related by ‖em‖C = ‖êm‖2, we obtain for m ≥ 1 that

‖êm‖22 = ‖M̂mê0‖22 =
〈
M̂mê0, M̂mê0

〉
=
〈
M̂m+1ê0, M̂m−1ê0

〉
=
〈
êm+1, êm−1

〉
≤ ‖êm+1‖2‖êm−1‖2.

Hence it follows that ρm+1,m = ‖em+1‖
‖em‖ = ‖êm+1‖2

‖êm‖2
≥ ‖êm‖2

‖êm−1‖2
= ρm,m−1. ��

Remark 2.22 allows us to view the value ρm+k,m and possibly also ρm+1,m for
sufficiently large m as a good approximation of the spectral radius. This viewpoint
can be reversed.

Remark 2.23. The convergence rate ρ(M) is a suitable measure for judging
(asymptotically) the convergence speed. This holds even if convergence is required
with respect to a specific norm.

Proof. By Theorem B.27, for each ε > 0 there is some m0 such that m ≥ m0

implies that ρ(M) ≤ ‖Mm‖1/m ≤ ρ(M) + ε and ‖em‖ ≤ (ρ(M) + ε)m‖e0‖. ��

2.2.7 Remarks Concerning the Matrices M , N , and W

Considerations in §§2.2.5–2.2.6 show the close connection between the iteration
matrix M and the convergence speed. M directly describes the error reduction or
amplification (cf. (2.16a)). Roughly speaking, the convergence is better the smaller
M is. M = 0 would be optimal. However, then Φ is a direct method, since x1 is
already the exact solution (its error is e1 = Me0 = 0).

The matrix N transforms the defect Axm − b into the correction xm − xm+1.
The optimal case3 M = 0 mentioned above corresponds to N [A] =A−1. There-
fore, one may regard N [A] as an approximate inverse of A.

Concerning implementation, often the matrix W of the third normal form (2.12)
is the important one. By the relation W = N−1 (cf. (2.13)), W = A would be
optimal. However, then computing the correction xm − xm+1 is equivalent to the
direct solution of the original equation. Therefore, one has to find approximations
W of A, so that the solution of the system Wδ = d is sufficiently easy.

In the case of some of the classical iterations discussed in §3, we have explicit
expressions for N or W and may use these matrices for the computation. On the
other hand, there will be iterative methods, for which the algorithm is implemented
differently without reference to the matrices M, N, W (see, e.g., Propositions 3.13
or 5.25).

3 Consistent linear iterations with M = 0 can be called direct solvers. Vice versa, any direct
solver defines a linear iteration with M = 0.
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2.2.8 Three-Term Recursions, Two- and Multi-Step Iterations

So far we considered one-step iterations, i.e., xm+1 is computed in one step from
xm. Sometimes linear iterations occur, in which computing xm+1 involves xm

and xm−1:

xm+1 = M0 x
m +M1 x

m−1 +N0 b (m ≥ 1). (2.24)

For the starting procedure, one needs two initial values x0 and x1. Such two-step
iterations are also called three-term recursions since they involved the three terms
xm+1, xm, xm−1. Formally, a three-term recursion can be reduced to a standard
one-step iteration acting in the space KI ×KI :[

xm+1

xm

]
= M

[
xm

xm−1

]
+

[
N0b
0

]
with M :=

[
M0 M1

I 0

]
. (2.25)

Now the convergence condition

ρ(M) < 1 (2.26a)

ensures that recursion (2.25) has a limit that is also the fixed point. The consistency
condition takes the form

I −M0 −M1 = N0A . (2.26b)

Exercise 2.24. The limit of the iteration (2.25) has the general form
[
ξ
η

]
∈ KI ×KI .

Show that the conditions (2.26a,b) imply ξ = η = A−1b.

Exercise 2.25. Given an iteration xm+1 = Mxm + Nb, define the matrices M0,
M1, N0 in (2.24) by

M0 := ΘM + ϑI,

M1 := (1−Θ − ϑ) I,

N0 := ΘN

with Θ, ϑ ∈ R. The three-term recursion (2.24) takes the form

xm+1 = Θ
[
(Mx

m
+Nb)− x

m−1
]
+ ϑ(xm − xm−1) + xm−1. (2.27)

Prove that (a) M has the spectrum

σ(M) =

{
1

2
(Θλ+ ϑ)±

√
1−Θ − ϑ+

1

4
(Θλ+ ϑ)

2
: λ ∈ σ(M)

}
.

(b) Conclude from ρ(M) < 1 and Θ > 0, ϑ ≥ 0, Θ + ϑ ≤ 1 that ρ(M) < 1.
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2.3 Efficacy of Iterative Methods

The convergence rate cannot be the only criterion for the quality of an iterative
method because one has also to take into account the amount of computational
work of Φ.

2.3.1 Amount of Computational Work

The representation (2.12′) suggests that any iteration requires at least computing the
defect Axm−b. For a general n×n matrix A ∈ KI×I (n=#I), multiplying Axm

would require 2n2 operations. However, as discussed in §1.7, it is more realistic
to assume that A is sparse; i.e., the number s(n) of the nonzero elements of A
is distinctly smaller than n2. For matrices arising from discretisations of partial
differential equations, one has

s(n) ≤ CAn, (2.28)

where CA is a constant with respect to n, but depends on the matrix A. For the five-
point formula (1.4a) of the model problem, inequality (2.28) holds with CA = 5.
Under assumption (2.28), one can perform matrix-vector multiplication in 2CAn
operations.

After evaluating d := Axm − b, one has still to solve the system Wδ = d
in (2.12′). For any practical iterative method, we should require that this part
consumes only O(n) operations, so that the total amount of work is also of the
order O(n). We relate the constant in O(n) to CA in (2.28) and obtain the
following formulation:

The number of arithmetic operations per iteration
step of the method Φ is Work (Φ,A) ≤ CΦCAn . (2.29)

Here, Work (Φ,A) is the amount of work of the Φ iteration applied to Ax = b. Note
that CΦ depends on the iteration Φ but not on A, whereas CAn indicates the degree
of sparsity of A. Therefore, the constant CΦ may be called the cost factor of the
iteration Φ.

So far we only discussed the cost arising by performing one iteration step of Φ.
Depending on the method, some initialisation may be necessary for precomputing
some quantities required by Φ . Let Init(Φ,A) be the corresponding cost.

Remark 2.26. If m iteration steps are performed, the effective cost per iteration is

Work (Φ,A) + Init(Φ,A)/m.

In the standard case, the initialisation uses only the data of A. Therefore it pays if
many systems Axi = bi are solved with different right-hand sides bi but the same
matrix A.
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2.3.2 Efficacy

An iteration Φ can be called ‘more effective’ than Ψ if for the same amount of
work Φ is faster, or if Φ has the same convergence rate, but consumes less work
than Ψ . To obtain a common measure, we ask for the amount of work that is
necessary to reduce the error by a fixed factor. This factor is chosen as 1/e, since
the natural logarithm is involved. According to Remark 2.23, we use the conver-
gence rate ρ(M) for the (asymptotic) description of the error reduction per iteration
step. After m iteration steps, the asymptotic error reduction is ρ(M)m. In order
to ensure ρ(M)m ≤ 1/e, we have to choose m ≥ −1/ log(ρ(M)), provided that
convergence holds: ρ(M) < 1 ⇔ log(ρ(M)) < 0. Therefore, we define

It(Φ) := −1/ log(ρ(M)). (2.30a)

It(Φ) represents the (asymptotic) number of the iteration steps for an error
reduction by the factor of 1/e. Note that, in general, It(Φ) is not an integer.

Remark 2.27. (a) Convergence of Φ is equivalent to 0 ≤ It(Φ) < ∞. The value
It(Φ) = 0 corresponds to ρ(M) = 0, i.e., to a direct method.
(b) Let Φ ∈ L . To reduce the iteration error (asymptotically) by a factor of ε < 1,
we need the following number of iteration steps:

It(Φ, ε) := −It(Φ) log(ε) (2.30b)

(c) If ρ(M) = ‖M‖ or ρ(M) in (2.30a) is replaced with ‖M‖ < 1, one can
guarantee (not only asymptotically) that

‖em+k‖ ≤ ε ‖em‖ for k ≥ It(Φ, ε). (2.30c)

(d) If r(M) < 1 holds for the numerical radius of M introduced in §B.3.4,
definition (2.30b) can be replaced with It(Φ, ε) := log(ε/2)/ log(r(M)). Then,
inequality (2.30c) holds with respect to the Euclidean norm.

The amount of work corresponding to the error reduction by 1/e is the product
It(Φ)Work(Φ,A) ≤ It(Φ)CΦCAn (cf. (2.29)). As a characteristic quantity we
choose the effective amount of work

Eff(Φ) := It(Φ)CΦ = −CΦ/ log(ρ(M)). (2.31a)

Eff(Φ) measures the amount of work for an error reduction by 1/e in the unit
‘CAn arithmetic operations’. Correspondingly, the effective amount of work for the
error reduction by the factor of 1/e is given by

Eff(Φ, ε) := −It(Φ)CΦ log(ε) = CΦ log(ε)/ log(ρ(M)). (2.31b)

Example 2.28. In the case of the model problem, the cost factor of the Gauss–Seidel
iteration is CΦ = 1 (because of CA = 5, cf. Remark 1.14). The numerical values in
Table 1.1 suggest ρ(M) = 0.99039 for the grid size h = 1/32. Thus, the effective
amount of work equals Eff(Φ) = 103.6. Using ρ(M) = 0.82 for the SOR method
and CΦ = 7/5, we deduce an effective amount of work of Eff(Φ) = 7.05 for the
SOR method with h = 1/32.
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2.3.3 Order of Linear Convergence

The convergence rates ρ(M) in Example 2.28 are typically close to one; i.e., the
convergence is rather slow. Therefore, we may use the ansatz

ρ(M) = 1− η (η small). (2.32a)

The Taylor expansion yields log(1−η) = −η+O(η2) and −1
log(1−η) =

1
η(1+O(η)) =

1/η +O(1), since 1/(1− ζ) = 1 + ζ +O(ζ2). Assuming (2.32a), we obtain the
following effective amount of work:

Eff(Φ) = CΦ/η +O(1). (2.32b)

For instance, the respective numbers in Example 2.28 yield CΦ/η = 104 for the
Gauss–Seidel iteration and 7.8 for SOR.

For most of the methods we are going to discuss, assumption (2.32a) holds in the
case of the model problem. More precisely, η is related to the grid size h = 1/N =
1/(1 +

√
n ) by (2.32c) with some exponent τ > 0 and a constant Cη :

η = Cηh
τ +O(h2τ ), i.e., ρ(M) = 1− Cηh

τ +O(h2τ ) with τ > 0 (2.32c)

Inserting this relation into (2.32b), we obtain

Eff(Φ) = Ceffh
−τ +O(1) with Ceff := CΦ/Cη. (2.32d)

Remark 2.29. (a) The exponent τ in (2.32c) is called the order of convergence rate.
If an iteration Φ has a higher order than an iteration Ψ , Φ is more expensive than Ψ
for sufficiently small step size h. The smaller the order, the better the method.
(b) If Φ1 and Φ2 have the same order but different constants Ceff,1 < Ceff,2, then
Φ2 is more expensive by a factor of Ceff,2/Ceff,1.

2.4 Test of Iterative Methods

In later chapters numerous iterative methods will be defined. For the judgement and
presentation of numerical results, one may ask how iterations should be tested.

2.4.1 Consistency Test

Because of a bug in the implementation, it may happen that an iterative method is
nicely converging, but to a wrong solution. The reason is a violation of consistency.
For that reason, one should choose some nontrivial vector x ∈ KI (e.g., defined by
random) and compute b := Ax. In that case, the solution x of Ax = b is known
and one can observe the errors em = xm − x.
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2.4.2 Convergence Test

The quality of an iteration is (at least asymptotically) determined by the effective
amount of work Eff(Φ). The amount of computational work per iteration is obtained
by counting the operations.4 It remains to determine the convergence speed experi-
mentally. The following trivial remark emphasises the fact that one need not test the
method with different right-hand sides b (and thereby with different solutions x).

Remark 2.30. A linear iteration applied to the two systems Ax = b and Ax′ = b′

results in the same errors xm − x and x′m − x′ if the starting values x0 and x′0

are related by x0 − x = x′0 − x′.

Conclusion 2.31. Without loss of generality, one may always choose x = b = 0,
together with an arbitrary starting value x0 �= 0.

According to Remark 2.30, the test of an iteration can be based on the errors
em = xm − x and the ratio of their norms,

ρm+1,m := ‖em+1‖/ ‖em‖ (cf. (2.23a)),

for one or more starting vectors e0.
Different starting values yield different errors. However, since the geometri-

cal mean ρm+k,m = (‖em+k‖/‖em‖)1/k (cf. (2.23b)) converges to ρ(M) for
k → ∞, the ratios can show remarkable deviations only during the first iteration
steps. However, note the following remark.

Remark 2.32. In the exceptional case that the starting error e0 = x0 − x lies in the
subspace U defined in Remark 2.22b, the numbers ρm+k,m approximate a value
smaller than ρ(M).

In practice, meeting this exceptional case is unlikely, in particular, when the
solution x is unknown. Furthermore, the usual floating-point errors prevent the
iterate xm from staying in the described subspace.

Computing ρm+1,m = ‖em+1‖/‖em‖ requires the knowledge of the exact so-
lution. If we choose b = 0 and x = 0 according to Conclusion 2.31, ρm+1,m =
‖xm+1‖/‖xm‖ holds. If one wishes to estimate the convergence rate during the
iterative computation of an unknown solution x, one may use

ρ̂m+1,m = ‖xm+1 − xm‖/‖xm − xm−1‖

and ρ̂m+k,m := (ρ̂m+k,m+k−1 · . . . · ρ̂m+1,m)1/k instead of ρm+k,m.

Exercise 2.33. Prove: In spite of 1∈σ(M), ρ̂m+k,m→ρ<1≤ρ(M) may happen
for k → ∞. If 1 /∈ σ(M), ρ̂m+k,m → ρ(M) is valid for all starting errors e0 /∈ U
with U defined in Remark 2.22b.

4 Alternatively, the number of iterations may be replaced with the CPU time.
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2.4.3 Test by the Model Problem

Deviating from the proposal x = b = 0 but according to the choice in §1.6, we
define the solution x of the Poisson model problem as the grid function with the
components

uij = (ih)2 + (jh)2 (1 ≤ i, j ≤ N − 1) (2.33a)

corresponding to the right-hand side (2.33b) (cf. Remark 1.15):

b defined by (1.6a) with f = −4. (2.33b)

We recall that u and x are different representations of the same quantity (1.6b).
The vector b coincides with f in grid points not neighboured to the boundary;
otherwise boundary data are added in (1.6a).

2.4.4 Stopping Criterion

A comment has to be added concerning the desirable size of the (unavoidable)
iteration error ‖em‖. For an unlimited iterative process, the rounding errors prevent
the iteration error from converging to zero. Instead, the error will oscillate around
const · ‖x‖ ·eps (eps : relative machine precision). For testing an iteration, one may
approach this lower limit; in practice, however, there is almost never a reason for
such high accuracy.

Remark 2.34. The (exact) solution x of the Poisson model problem in §1.2 is only
approximating the true solution of the boundary with a discretisation error, which in
this case has the order O(h2) (cf. Hackbusch [193, §4.5]). Therefore, an additional
iteration error of the same order O(h2) is acceptable.

The algorithm in §11.5 will automatically yield an approximation for which the
discretisation and iteration errors are similar in size.

A more accurate approximation xm is needed if, e.g., xm is the starting point of
an error estimation (cf. Verfürth [379]) or for the extrapolation to the limit h→ 0
(‘Richardson extrapolation’, cf. Richardson–Gaunt [325], [194, §14.1.1]).

Often, the stopping criterion is based on the defect Axm − b (or the residual
b − Axm). Here caution must be exercised: ‖b − Axm‖2 ≤ 10−16 might hold, in
spite of ‖em‖2 ≈ 1.

Remark 2.35. In general, the sizes of ‖b−Axm‖2 and ‖em‖2 are not comparable.
Their ratio depends not only on the condition cond2(A) (cf. §5.6.5.2 and Proposition
B.14) but also on the scaling of the vectors x and b.
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