
Chapter 13

H-LU Iteration

Abstract The H-LU iteration is a fast iteration for discretisations of boundary
value problems. It even applies to fully populated matrices obtained by the boundary
element method. The H-LU iteration has an almost optimal order of convergence.
Section 13.1 describes computing the general LU decomposition by using hierarchi-
cal matrices. In the case of sparse matrices, in particular, finite element matrices, the
cluster tree can be modified (cf. Section 13.2) so that the corresponding LU decom-
position partially preserves sparsity. The H-LU decomposition is not exact, but the
error can be rather small. Correspondingly, the H-LU iteration described in Section
13.4 is very fast. The variant discussed in §13.4.2 is purely algebraic, i.e., the data
needed for the iteration are only based on the underlying matrix. Concerning details
about the technique of hierarchical matrices, we refer to Appendix D.

13.1 Approximate LU Decomposition

The LU decomposition based on the technique of hierarchical matrices (cf. Ap-
pendix D) yields an approximation of the exact LU factors in A = LU and is
called H-LU decomposition (cf. Hackbusch [198, §7.6 and §7.8] and Grasedyck–
Kriemann–Le Borne [165, 166]). The accuracy can be controlled by an appropriate
local rank. Therefore the H-LU factorisation is quite different from the incomplete
(ILU) decomposition described in §7.3.

In the positive definite case, LU decomposition can be replaced by Cholesky de-
composition A = LLT. For symmetric but not necessarily positive definite matrices
A, we may use the LDL decomposition A = LDLT. In the following we restrict
ourselves to the general LU case. In this section we make no assumption about
sparsity of the matrix. The algorithms explained below can also be applied to fully
populated matrices, e.g., arising from discretising an integral equation.

In Section 13.2 we shall assume that A is a sparse finite element matrix. Then it
is largely possible to preserve sparsity, i.e., the computed factors L and U contain
many vanishing matrix blocks.

371© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_13

372 13 H-LU Iteration

13.1.1 Triangular Matrices

Triangular matrices can only be defined with respect to a prescribed ordering.
The appropriate ordering of the index set I is described in §D.2.1.3. The ordering
is consistent with T (I) since each cluster τ ∈ T (I) contains consecutive indices:

τ = {iα(τ), iα(τ)+1, . . . , iβ(τ)}. (13.1)

Correspondingly, disjoint clusters τ, σ are ordered: τ < σ holds if i < j for all
i ∈ τ and j ∈ σ. Let M ∈ H(r, P) be a hierarchical matrix (cf. Definition
D.12). All blocks b = τ × σ ∈ P with τ �= σ are lying completely in the strictly
upper (U) or lower triangular part (L). Diagonal blocks τ × τ ∈ P belong to P−

and the corresponding matrix blocks M |τ×τ are represented as full matrices.
The definition of the format of the hierarchical triangular matrices L and U of

the LU decomposition is that they be triangular and hierarchical:

L,U ∈ H(r, P),

⎧⎨⎩
Liαiβ = 0 for α < β,
Liαiα = 1 for 1 ≤ α ≤ #I,
Uiαiβ = 0 for α > β.

(13.2)

Solvability of a system LUx = b requires that Uiαiα �= 0 for all iα.
The triangular matrices can also be replaced by block-triangular matrices:

off-diagonal blocks: L|τ×σ = O for τ < σ and U |τ×σ = O for τ > σ,

diagonal blocks: L|τ×τ = I and U |τ×τ ∈ F(τ × τ) for τ × τ ∈ P.

Concerning the restriction ·|b to a block b see (A.8b) or Notation D.6. Note that
U |τ×τ is no longer triangular. The block-triangle decomposition has the advantage
that it may be well defined even if the standard LU decomposition does not exist.

13.1.2 Solution of LUx = b

Given a factorisation A = LU, the system Ax = b is solved in two stages: the
equation Ly = b is treated by the procedure Forward Substitution and Ux = y
by Backward Substitution. These steps can easily be formulated for hierarchical
matrices and performed exactly. The procedure Forward Substitution(L, τ, y, b)
yields the (exact) solution y|τ of L|τ×τy|τ = b|τ . To solve Ly = b, one has to
call Forward Substitution(L, I, y, b) with τ = I (the input vector b is overwritten).

procedure Forward Substitution(L, τ, y, b);
if τ × τ ∈ P then for j := α(τ) to β(τ) do (cf. (13.1))

begin yj := bj ; for i := j+1 to β(τ) do bi := bi−Lijyj end

else for j := 1 to #S(τ) do

begin Forward Substitution(L, τ [j], y, b);
for i := j + 1 to #S(τ) do b|τ [i] := b|τ [i] − L|τ [i]×τ [j] · y|τ [j]

end;

13.1 Approximate LU Decomposition 373

The requirements for the parameters are: τ ∈ T (I×I, P), y, b ∈ KI , and L satisfies
(13.2) with P ⊂ T (I × I). In line 6, τ [1], . . . , τ [#S(τ)] is an enumeration of the
sons of τ .

The procedure Backward Substitution for solving Ux = y is quite similar.
U , τ , y are input parameters, while x is the output. The vector y is overwritten.

procedure Backward Substitution(U, τ, x, y);
if τ × τ ∈ P then for j := β(τ) downto α(τ) do

begin xj := yj/Ujj ;
for i := α(τ) to j − 1 do yi := yi − Uijxj

end

else for j := #S(τ) downto 1 do

begin Backward Substitution(U, τ [j], x, y);
for i := 1 to j − 1 do y|τ [i] := y|τ [i] − U |τ [i]×τ [j] · x|τ [j]

end;

The complete solution of LUx = b uses

procedure Solve LU(L,U, I, x, b); {L,U, I, b input; x output}
begin x := b ;

Forward Substitution(L, I, x, x);
Backward Substitution(U, I, x, x)

end;

Formulating the block version is left to the reader as an exercise. Since then
the diagonal matrix blocks U |τ×τ (τ × τ ∈ P) must be inverted during the solution
of Ux= y, the best approach is to invert U |τ×τ immediately after constructing U.
Then the backward substitution procedure can multiply by the precomputed inverse
stored in U |τ×τ .

Finally, we need an algorithm for solving xTU = yT. This equation is identical
to Lx = y with L := UT; however, in this case, the lower triangular matrix L is
not normed. The corresponding procedure is left to the reader:

procedure Forward SubstitutionT(U, τ, x, y); {solving xTU = yT}.

13.1.3 Matrix-Valued Solutions of LX = Z and XU = Z

The matrix L ∈ H(r, P) with P ⊂ T (I×I) is a lower triangular matrix (cf. (13.2)).
Let X,Z ∈ H(r, P ′) be rectangular hierarchical matrices corresponding to a
partition P ′ ⊂ T (I × J). The index set I is the same as for L ∈ KI×I . We want to
solve the matrix equation

LX = Z

374 13 H-LU Iteration

in KI×J , which represents #J simultaneous equations of the form Lx = z.
The following procedure Forward M solves L|τ×τX|τ×σ =Z|τ×σ for the blocks
τ × τ ∈ T (I×I, P) and τ×σ ∈ T (I×J, P ′). The complete system LX = Z
in I × J is solved by Forward M(L,X,Z, I, J). By Xτ,j we denote the j-th
columns of X ∈ Kτ×σ, i.e., Xτ,j = (Xij)i∈τ .

procedure Forward M(L,X,Z, τ, σ) ;
if τ × σ ∈ P− then {column-wise forward substitution}

for all j ∈ σ do Forward Substitution(L, τ,Xτ,j , Zτ,j)
else if τ × σ ∈ P+ then

begin {let Z|τ×σ = ABT according to (D.1) with A ∈ Kτ×{1,...,r}}
for j = 1 to r do Forward Substitution(L, τ, A′

τ,j , Aτ,j);
X|τ×σ := rank-r representation by A′BT

end else

for i = 1 to #S(τ) do for σ′ ∈ S(σ) do

begin Forward M(L,X,Z, τ [i], σ′) ;
for j = i+ 1 to #S(τ) do {),�: operations with truncation}
Z|τ [j]×σ′ := Z|τ [j]×σ′) L|τ [j]×τ [i] �X|τ [i]×σ′

end;

In the standard case of #S(σ) = 2, the problem

L|τ×τX|τ×σ = Z|τ×σ

has the block structure[
L11 0
L21 L22

] [
X11 X12

X21 X22

]
=

[
Z11 Z12

Z21 Z22

]
with

Lij = L|τ [i]×τ [j], Xij = X|τ [i]×σ[j], Zij = Z|τ [i]×σ[j].

The equations L11X11 = Z11 and L11X12 = Z12 of the first block row are solved
for i = 1 by the call of Forward M in line 10, whereas the remaining equations
L21X11 + L22X21 = Z21 of the first block row and L21X12 + L22X22 = Z22 of
the second one are reformulated as

L22X21 = Z ′
21 := Z21−L21X11, L22X22 = Z ′

22 := Z22−L21X12

in line 12 and are solved for i = 2 in line 10 with respect to X21, X22.

For solving the equation XU = Z with an upper triangular hierarchical matrix
U and an unknown matrix X left of U , we use a similar procedure involving the
procedure Forward SubstitutionT defined above:

procedure ForwardT M (U,X,Z, τ, σ) ; (13.3)

(details in [198, (7.33b)]).

13.1 Approximate LU Decomposition 375

13.1.4 Generation of the LU Decomposition

It remains to describe the generation of the hierarchical LU factors in

A = LU ∈ KI×I .

To simplify the explanation we assume that #S(I) = 2. Then the matrices in
A = LU have the structure[

A11 A12

A21 A22

]
=

[
L11 O
L21 L22

] [
U11 U12

O U22

]
. (13.4)

This leads to the four subtasks

(i) compute L11 and U11 as factors of the LU decomposition of A11,
(ii) compute U12 from L11U12 = A12,
(iii) compute L21 from L21U11 = A21,
(iv) compute L22 and U22 as LU decomposition of L22U22 = A22 − L21U12.

Problem (ii) is solved by the procedure Forward M(L11, U12, A12, τ1, τ2), whereas
for problem (iii) we use the procedure ForwardT M in (13.3). The right-hand side
in

L22U22 = A22 − L21U12

can be computed by the usual formatted multiplication.
We still have to determine the LU factors of L11U11 = . . . and L22U22 =

This defines a recursion, which at the leaves is defined by the usual LU decomposi-
tion of full matrices.

The call of LU Decomposition(L,U,A, I) yields the desired LU factors of A.
More generally, the procedure LU Decomposition(L,U,A, τ) solves the problem
L|τ×τU |τ×τ = A|τ×τ for τ ∈ T (I × I, P).

procedure LU Decomposition(L,U,A, τ) ;
if τ × τ ∈ P then compute L|τ×τ and U |τ×τ as LU factors of A|τ×τ

else for i = 1 to #S(τ) do

begin LU Decomposition(L,U,A, τ [i]) ;
for j = i+ 1 to #S(τ) do

begin ForwardT M (U,L,A,τ [j],τ [i]);
Forward M(L,U,A,τ [i],τ [j]);
for r = i+ 1 to #S(τ) do

A|τ [j]×τ [r] := A|τ [j]×τ [r]) L|τ [j]×τ [i] � U |τ [i]×τ [r]

end end;

(13.5)

The sons of S(τ) are denoted by τ [1], . . . , τ [#S(τ)].

376 13 H-LU Iteration

13.1.5 Cost of the H-LU Decomposition

Because of the triangular structure, the two matrices L and U need not more storage
than a usual hierarchical matrix:

SLU(r, P) = SH(r, P),

where SH(r, P) is given in Lemma D.17.
As in Lemma D.18, one verifies that the cost of Forward Substitution(L, I, y, b)

can be estimated by the double storage cost of L. An analogous result holds for
Backward Substitution(U, τ, x, y). Together we obtain

NLU(r, P) ≤ 2SH(r, P).

Comparing the costs for solving both systems LX = Z and XU = Z with a
standard multiplication of hierarchical matrices, we obtain

NForward M(r, P) +NForwardT M(r, P) ≤ NMM(P, r, r)

with NMM(P, r, r) in (D.15). Generating the LU decomposition by the procedure
in (13.5) also does not require more operations than matrix-matrix multiplication:

NLU decomposition(r, P) ≤ NMM(P, r, r).

13.2 H-LU Decomposition for Sparse Matrices

13.2.1 Finite Element Matrices

Finite element matrices are sparse in the classical sense. They can exactly be
transferred into the H(r, P) format. This transfer is required if we want to apply
hierarchical matrix operations other than matrix-vector multiplication.

Lemma 13.1. Let H(r, P) ⊂ KI×I be an arbitrary hierarchical format, and P an
admissible partition. Let dist(τ, σ) be defined by (D.8) and (D.9b). Then any finite
element matrix belongs to H(r, P) for all r ∈ N0.

Proof. For an admissible block b = τ×σ ∈ P+, the indices i ∈ τ and j ∈ σ belong
to basis functions with disjoint supports Xi and Xj . Hence the finite element matrix
restricted to b is a zero block and, therefore, belongs to Rr(b). ��

Modern direct solvers for sparse systems apply sophisticated algorithms to
minimise the fill-in during the LU decomposition. Formally, this means finding
a permutation P , so that the LU decomposition of PAPT (without pivoting)
is sparser than for A. For instance, one may try to minimise the band width
since fill-in of the LU factors occurs only within the band (cf. [314, §3.9.1]).
Similarly, we may try to optimise the H-LU decomposition for sparse matrices.

13.2 H-LU Decomposition for Sparse Matrices 377

The precise conditions concerning the sparsity pattern will be discussed in §13.2.2.
Let I be the index set in A ∈ KI×I . The ordering of the index set, determining
the LU decomposition, is derived from the cluster tree T (I) (cf. (13.1)). There-
fore, alternative permutations require alternative cluster trees. Such a cluster tree
will be introduced in §13.2.3. The following LU variants are based on the articles
Le Borne–Grasedyck–Kriemann [259] and Grasedyck–Kriemann–Le Borne [166].

The inverse of a sparse finite element matrix is a fully populated matrix. It is
shown in Bebendorf–Hackbusch [39], Faustmann–Melenk–Praetorius [129], and
Faustmann [128] that the inverse matrix can be well approximated by the format
H(r, P). The involved truncation error decreases exponentially with r. These
results can be transferred to the LU decomposition; i.e., the factors L and U
are also well approximated by hierarchical triangular matrices in H(r, P) (cf. [198,
§9.2.8] or Grasedyck–Kriemann–Le Borne [166], Faustmann [128, §6]). A similar
result holds for the inverse and the LU factors of matrices arising from the boundary
element method (cf. Faustmann–Melenk–Praetorius [130]).

13.2.2 Separability of the Matrix

Sparsity alone is not sufficient for our purpose. In addition, we need the following
condition. The index set I can be decomposed disjointly:

I = I1 ∪̇ I2 ∪̇ Is with #I1 ≈ #I2, #Is ! #I, (13.6a)

so that the matrix A, which we want to partition, has the following block structure:

A =
11A

22A

1sA

ssA
2sA

s1A s2A
Is

Is

I1

I1 I2

I2

O

O
{

{

{

{

{

{

. (13.6b)

The index set Is is called the separator since A|(I\Is)×(I\Is) is decomposed into
the matrix blocks A11 and A22; the off-diagonal blocks A12 and A21 contain only
zero entries.

sΙ

Ι Ι1 2

Fig. 13.1 Matrix graph
separated by Is.

Condition #I1 ≈ #I2 in (13.6a) ensures that (i) A11

and A22 be similar in size, (ii) the zero blocks are large.
Condition #Is ! #I requires the separator to be com-

parably small. More quantitative statements will follow.
The requirements (13.6a,b) can easily be formulated

by the matrix graph G(A) (cf. §C.2). I is the vertex set.
There must be a (small) subset Is so that the graph without
the Is-vertices and corresponding edges disaggregates into
two unconnected subgraphs with the vertex sets I1 and I2
(cf. Fig. 13.1).

378 13 H-LU Iteration

γ

1i 2i

Fig. 13.2 Domain decompo-
sition by γ.

The last formulation yields a sufficient condition
for (13.6a,b). If G(A) is a planar graph, a linear sub-
graph—as in Figure 13.1—is a sufficient choice of the
separator. Planar graphs are, e.g., obtained by discre-
tising two-dimensional boundary value problems by
a standard difference method or by piecewise linear
finite elements. If n = #I is the problem size, one
expects a separator of the cardinality #Is = O(

√
n),

while #I1,#I2 ≈ n/2. In the case of finite elements in a domain Ω ⊂ R2,
one determines a curve γ ⊂ Ω with endpoints on Γ = ∂Ω, consisting of edges
belonging to the finite element triangulation (cf. Fig. 13.2). The indices i ∈ Is are
associated with the nodal points in γ. The vertices left or right of γ form the respec-
tive sets I1 or I2. If i1 ∈ I1 and i2 ∈ I2, supports of the basis functions φi1 and φi2

lie on different sides of γ and can overlap at most by their boundaries. This implies
that Ai1i2 =0, as required in (13.6b).

The example of a boundary value problem in Ω shows that the method can be
iterated: γ divides Ω into subdomains Ω1 and Ω2, and the submatrices A11 and A22

in (13.6b) belong to boundary value problems in these subdomains; hence, they are
of the same kind as the original matrix.

The latter observation leads to the final assumption:

The submatrices Aii := A|Ii×Ii (i = 1, 2) must again
satisfy (13.6a–c) or be sufficiently small. (13.6c)

0

0 0
0

0
0

Fig. 13.3 Twofold
decomposition.

This requirement ensures that the partition can be continued recur-
sively (Fig. 13.3 shows the result after two partitions). Obviously,
the condition #Is ! #I is vague. In particular, the symbol ! is
meaningless if #I is not large. In this case, the recursion termi-
nates since ‘sufficiently small’ submatrices occur (cf. (13.6c)).

The partition (13.6a,b) is well known as the dissection method
introduced by George [149]. It also corresponds to the (iterated
form of the) domain decomposition method.

13.2.3 Construction of the Cluster Tree

The partition of the index set I into the three subsets in (13.6a) can easily be per-
formed. A variant of the partition in §D.2.1.2 works as follows. Assume that the
indices i ∈ I are again associated with nodal points ξi ∈ Kd. Let the partition
of the cuboid (minimal box) yield the binary decomposition of I into Î1 and Î2.
The first set I1 := Î1 remains unchanged, while the second is split again:

Is := {i ∈ Î2 : there are Aij �= 0 or Aji �= 0 for some j ∈ I1}, I2 := Î2\Is.

Obviously, the partition into I1, I2, Is satisfies condition (13.6a).

13.2 H-LU Decomposition for Sparse Matrices 379

In principle, this decomposition algorithm could be continued recursively.
The result would be a ternary tree T (I). However, this procedure is not optimal.
The reason are the different characters of the three subsets I1, I2, and Is. For an
illustration, assume the two-dimensional case Ω ⊂ R2. The first two sets I1 and
I2 correspond to the (two-dimensional) subdomains Ω1 and Ω2 (cf. Fig. 13.2),
whereas the indices of Is are vertices of the (one-dimensional) curve γ. We recall
the bisection of the bounding box in §D.2.1.2. d bisection steps of a d-dimensional
cuboid lead to 2d subcuboids of half the size. This means that the diameter of
an index set belonging to subdomains of Ω is reduced by about 1/

√
2, whereas the

diameter of an index set belonging to the (one-dimensional) separator γ is reduced
by 1/2. Therefore, with increasing level �, the subset T (�)(I) defined in (D.7) con-
tains index sets exhibiting increasingly different sizes. Therefore the block cluster
tree contains rather flat blocks σ × τ .

The following modification (here explained and illustrated for d = 2) avoids a
systematic distortion of the cluster sizes in T (�)(I). The cluster set T (I) is divided
into ‘two-dimensional’ clusters Td(I) and ‘one-dimensional’ clusters Td−1(I).
Their definition is given by

(a) I ∈ Td(I),

(b) if τ ∈ Td(I), the sons τ1, τ2 belong to Td(I), whereas τs belongs to Td−1(I),

(c) all successors of τ ∈ Td−1(I) belong to Td−1(I).

In Figure 13.4, the rectangles with dashed sides correspond to clusters in Td−1(I),
the other rectangles correspond to Td−1(I).

The decomposition rules are as follows:

(a) A cluster τ ∈ Td(I) is always decomposed into three parts. Since, in the
case of an LU decomposition, an ordering of the sons of τ is required, we
define the order as follows: First, the sons τ1, τ2 ∈ S(τ)∩ Td(I) are arranged
in arbitrary order (edges depicted by solid lines in Fig. 13.4), then the son
τs ∈ S(τ) ∩ Td−1(I) follows (dashed line).

(b) The treatment of a cluster τ ∈ Td−1(I) depends on its graph distance to
the next Td(I)-predecessor. For this purpose, we introduce

κ(τ) := min{level(τ)− level(τ ′) : τ ′ ∈ Td(I) predecessor of τ}.

(ba) If κ(τ) is odd, τ remains unchanged (dotted edge in Fig. 13.4).
(bb) If κ(τ) is even, τ is decomposed in a binary1 way according to

§D.2.1.2 (broken-dotted edges in Fig. 13.4).

These rules guarantee that all clusters in T (�)(I) have successors at level �+ 2
with a diameter of about half the size. For d = 3, one has to modify these rules
suitably.

1 Here a ternary splitting does not make sense.

380 13 H-LU Iteration

I 1 I 2

I 11 I 12 I 1s I 21 I 22 I 2s I s

I s

I

Fig. 13.4 Cluster tree T (I).

The corresponding block cluster tree T (I × I) is obtained as in Definition D.8.
A block partition of depth L = 2 is shown in Figure 13.3.

13.2.4 Application to Inversion

The inversion algorithm in §D.3.6 has an intrinsic disadvantage concerning its
parallel treatment. The inversion of M |τ×τ has to wait until the inversions in the
blocks τ ′ × τ ′ (τ ′ ∈S(τ)) are performed. This requires a sequential computing2.
Also in the case of partition (13.6b), one has first to invert the diagonal blocks A11

and A22 before the Schur complement in Is× Is can be formed and inverted, but (i)
the inverses of A11 and A22 can be computed in parallel and (ii) the computations
in Is × Is are significantly cheaper than the inversions of A11 and A22 because of
#Is ! #I .

The algorithm is still sequential in the level-number: The inversion of M |τ×τ

can take place as soon as the inversions in τ ′ × τ ′ (τ ′∈S(τ)) are performed.
More details about this method can be found in Hackbusch [192] and Hackbusch–

Khoromskij–Kriemann [202]. Parallel H-matrix implementations are discussed by
Kriemann [245].

2 Of course, the arising matrix-matrix multiplications and additions can be parallelised.

381

13.2.5 Admissibility Condition

The zero blocks in (13.6b) are characterised by

τ ′ × τ ′′ with τ ′ �= τ ′′ and τ ′, τ ′′ ∈ S(τ) ∩ Td(I) for some τ ∈ Td(I). (13.7)

The blocks b = τ ′ × τ ′′ are not admissible in the sense of Definition D.11,
since the support sets Xτ ′ and Xτ ′′ touch at the separating line γ, and therefore
dist(τ ′, τ ′′) vanishes. Nevertheless, it does not make sense to decompose b again.
Therefore the admissibility condition adm∗ in (D.11) is modified as follows:

adm∗∗(τ ′ × τ ′′) :=
[
adm∗(τ ′ × τ ′′) or τ ′ × τ ′′ satisfies (13.7)

]
.

The minimal admissible partition P ⊂ T (I × I) is now defined in (D.12)
with adm∗ replaced by adm∗∗. So far, we divided P into the near- and far-field:
P = P− ∪̇P+. Now a ternary partition is appropriate: P = P 0 ∪̇P− ∪̇P+ with
P 0 := {b ∈ P satisfies (13.7)}, while P\P 0 is split into P−∪̇P+ as before.

13.2.6 LU Decomposition

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

15 15
10 10

15 15
10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

15 15
10 10

15 15
10 10

15
10 10

15 15
10 10 16

4 4 6

15 15 9

10 10

10 7

15 15
10 10 16

15 15 6

15 15 9 17

15
10 10

11
15

15 15
8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

10 10

15 15

10 10

15 15

10

10 15
8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

10 10

15 15

10 10

15 15

10

10 15
10 10

15 15 16
4 4 6

15 15 9

10 10

7 10

10 10

15 15 16
15 15 6

15 15 9 17

10

10 15

11
15

15 15

15 10

10 10 25 16
4 4 10

15 15 10 25 13 10 36
15 10

15 15 10 25 16
8 4

8 4 10

4

8 4

8 4 10 25 13 10

13 10 8

8 30

15 15 10

10 10 25 16

30 25 17

16 8

8 20
15 10

15 10 25 16
8 4

8 4 10

8 4

8 4 10 25 17

17 8

8 21

15
10 10

11
15

15 15

11 7

7 13

15

15 15

14

9

9 9

9 7

6 9

9

9 9

Fig. 13.5 Factor U ;
white blocks are zero.

The algorithm in §13.1 can be applied without changes. The
advantage of the new cluster tree T (I) can be seen from the
following statement.
Remark 13.2. Let the matrix A ∈ H(r, P) satisfy A|b = 0
for all b ∈ P 0. Then the approximate LU decomposition
according to (13.5) yields factors L, U ∈ H(r, P) satisfying
again L|b = U |b = 0 for b ∈ P 0 (cf. Fig. 13.5).

Detailed numerical results and comparisons with other
algorithms can be found in Grasedyck–Hackbusch–Kriemann [164].

13.3 UL Decomposition of the Inverse Matrix

If a regular matrix A possesses an LU decomposition A = LU , A−1 can also be
decomposed into U ′L′ with L′ := L−1 and U ′ := U−1 and vice versa. Here we
use that the inverse of a (normed) triangular matrix is again (normed) triangular.
Note the different ordering of the factors in A−1 = U ′L′: the first matrix is the
upper triangular, while the second one is the normed lower matrix.

Remark 13.3. The standard forward and backward substitution in x �→ U−1L−1x
avoids inversion, but is mainly sequential. In contrast to this, matrix-vector multi-
plications in x �→ U ′L′x can be parallelised much better (see Kriemann–Le Borne
[246, Tables 3 and 4]).

Similar to the discussion of (13.4), the factors in A−1 = U ′L′ can be determined
from L′AU ′ = I (cf. [198, §7.6.5] and Kriemann–Le Borne [246]).

13.2 H-LU Decomposition for Sparse Matrices

382 13 H-LU Iteration

13.4 H-LU Iteration

13.4.1 General Construction

The H-matrix technique may be considered as a direct method with the difference
that the error is not characterised by the machine precision, but by the accuracy of
the H-matrix computation. Note that the H-matrix accuracy can be adjusted to the
discretisation error.

In fact, there is a smooth transition from a direct method to an iterative one.
We recall that even the Gauss elimination becomes an iteration when it is re-iterated
(cf. Skeel [341], Björck [48, §1.4.6]).

The H-LU decomposition A ≈ LU induces the iteration ΦH-LU :

xm+1 = xm −W−1 (Axm − b) with W = LU. (13.8)

The properties of the method are collected in the next remark.

Remark 13.4. (a) Since an LU decomposition does not exist for any regular
matrix, the existence of the H-LU decomposition is not guaranteed in general.
If the hierarchical LU decomposition is successful, the involved rank controls the
error I −W−1A.

(b) The inversion of W = LU uses the procedures in §13.1.2, which are very fast.
(c) The data required to determine W are the matrix A including the geometric
information about the nodal points ξi (i ∈ I). In the case of a sparse matrix, the
geometric data can be replaced by the graph G(A). In that case, the method is
algebraic (cf. Definition 2.2b).
(d) If A > 0, also W > 0 is expected (here Cholesky decomposition should be
used). There are strategies to ensure W > 0 in spite of truncation errors (cf. [198,
§6.8.2]). Then the iteration is positive definite: ΦH-LU ∈ Lpos.

The statements W ≈ A or N = W−1 ≈ A−1 can be made more precise by the
error estimate

‖I −NA‖2 ≤ ε < 1. (13.9a)

Inequality (13.9a) implies the corresponding estimate with respect to the spectral
radius:

ρ(I −NA) ≤ ε < 1. (13.9b)

If, e.g., ε = 1
10 in (13.9a), each step of the iteration (13.8) improves the result by

one decimal. ε = 1
10 is already considered as fast convergence, whereas N with

ε = 1
10 in (13.9a) may be still regarded as a rough approximation of the inverse.

An alternative to (13.9a) is

‖I −NA‖A = ‖I −A1/2NA1/2‖2 ≤ ε < 1 (13.9c)

13.4 H-LU Iteration 383

for positive definite A. (13.9c) also implies (13.9b). The contraction properties
(13.9a) or (13.9c) are very important if only a few iteration steps are performed.

For determining the approximate inverse N = W−1, we have to weight up the
following properties.

• Relatively rough approximation (moderate ε < 1): In this case, a smaller local
rank of the H-matrix representation is sufficient; hence, the storage cost and
computational cost is reduced. As a consequence, we have to perform several
steps of the iterative method (13.8). However, the latter fact is of lesser impor-
tance since the matrix-vector multiplications Axm and Nd for d := Axm − b
are significantly faster than inversion or LU decomposition required for N .

• Relatively accurate approximation (small ε! 1): The local rank of the H-matrix
representation will increase logarithmically with 1/ε. On the other hand, the
iterative method requires only one or two steps.

The effective amount of work is

Eff(ΦH-LU) = O(rα logβ n) (n = #I)

with α, β > 0 (cf. (2.31a)). Therefore smaller local ranks r may be preferred.
Usually, the maximal r is O(log∗ n), since then the discretisation error is reached.
Hence the effective amount of work is always bounded by O(log∗ n) ; i.e., the
H-LU iteration is almost optimal.

Let A and W be a positive definite matrix. We recall the spectral equivalence
of A and W defined by

1

c
〈Ax, x〉 ≤ 〈Wx, x〉 ≤ c 〈Ax, x〉 for all x ∈ KI (13.10)

with a constant c > 0 (cf. Definition 7.56). According to (7.51e), (13.10) is equi-
valent to 1

c I ≤ A−1/2WA−1/2 ≤ cI . Inversion yields 1
c I ≤ A1/2NA1/2 ≤ cI .

Applying (13.9c) yields the next statement.

Remark 13.5. Inequality (13.9c) implies the spectral equivalence (13.10) with

c :=
1

1− ε
≈ 1 + ε.

The spectral equivalence may come into play by other means. The solution of
nonlinear problems or parabolic differential equations can lead to the situation3

that many systems A(ν)x(ν) = b(ν) are to be solved, involving different matrices
A(ν) which are still spectrally equivalent. Then it is sufficient to approximate the
inverse N = (A(0))−1 of the first matrix and to use this approximation as precon-
ditioner for all A(1), A(2), . . . (cf. page 321).

3 For instance, in the nonlinear case the Newton method leads to different linearisations A(ν),
where ν is the index of the Newton iteration. In the parabolic case, the matrices A(t) depend on
the time t. The time steps t = 0, Δt, 2Δt, . . . yield A(ν) = A(νΔt).

384 13 H-LU Iteration

13.4.2 Algebraic LU Decomposition

The LU decomposition described in §13.1 is still dependent on geometric data (co-
ordinates of the nodal points). The following construction removes this dependence
and uses only data contained in the matrix A, provided that A is a sparse matrix.

Given A, we obtain the graph G(A) (cf. §C.2). More precisely, we use the un-
directed graph G := Gsym(A) =G(A) ∪ G(AT). We assume that G is connected,
since otherwise the system decomposes into at least two separated systems. For a
connected graph, any two α, β ∈ I are connected by at least one path. The path
length is defined by the number of edges between α and β. The minimal length of
all paths between α and β defines the distance δ(α, β).

The distance δ yields the necessary topology. It allows defining the diameter of
a cluster and the distance of two clusters. Therefore, admissibility condition (D.10)
can be formulated.

The construction of the cluster tree T (I) and, in particular, of the special cluster
tree corresponding to §13.2.3 is explained in [198, §9.2] and Grasedyck–Kriemann–
Le Borne [165]. The latter paper contains numerical examples which show that this
approach is rather robust.

13.5 Further Applications of Hierarchical Matrices

The ‘commonly used matrix formulation’ Ax = b in (1.5) is not the only represen-
tation. The linear equation may take the form of a matrix equation. For this purpose,
let A,C ∈ Kn×n be given matrices, while X ∈ Kn×n is an unknown matrix. Then

AX +XAH = C (13.11)

represents the Lyapunov equation. This is a system of linear equations for all entries
of X . In principle, we can form vectors x, c ∈ Kn2

and a matrix A ∈ Kn2×n2

such
that (13.11) is equivalent to Ax = c. However, if A is a large-scale matrix, the size
of x is equal to n2 which may be too large for practical computations. The remedy
is to use a format for the matrix X which involves only O(n) or O(n log∗ n) data.
Hierarchical matrices are a possible choice. Possibly, even global low-rank matrices
can be used. As shown by Penzl [310], rank(C) = r implies that the singular values
of X decrease exponentially. This property ensures approximability by global low-
rank matrices.

A slight generalisation is the Sylvester equation AX + XB = C with given
matrices A, B, and C. Corresponding statements and approximations by global
low-rank and hierarchical matrices are discussed by Grasedyck [159], Baur [35],
Baur–Benner [36]), and Benner–Breiten [40].

Even the (nonlinear) Riccati equation AX +XAH −XBX = C can be solved
(cf. Hackbusch [198, §15.2] and Grasedyck–Hackbusch–Khoromskij [163]).

	13 H-LU Iteration
	13.1 Approximate LU Decomposition
	13.1.1 Triangular Matrices
	13.1.2 Solution of LUx = b
	13.1.3 Matrix-Valued Solutions of LX = Z and XU = Z
	13.1.4 Generation of the LU Decomposition
	13.1.5 Cost of the H-LU Decomposition

	13.2 H-LU Decomposition for Sparse Matrices
	13.2.1 Finite Element Matrices
	13.2.2 Separability of the Matrix
	13.2.3 Construction of the Cluster Tree
	13.2.4 Application to Inversion
	13.2.5 Admissibility Condition
	13.2.6 LU Decomposition

	13.3 UL Decomposition of the Inverse Matrix
	13.4 H-LU Iteration
	13.4.1 General Construction
	13.4.2 Algebraic LU Decomposition

	13.5 Further Applications of Hierarchical Matrices

