
Chapter 11

Multigrid Iterations

Abstract Multigrid methods belong to the class of fastest linear iterations, since
their convergence rate is bounded independently of the step size h. Furthermore,
their applicability does not require symmetry or positive definiteness. Books de-
voted to multigrid are Hackbusch [183], Wesseling [395], Trottenberg–Oosterlee–
Schuller [367], Shaidurov [338], and Vassilevski [378]; see also [205, pp. 1–312].
The ‘smoothing step’ and the ‘coarse-grid correction’ together with the involved
restrictions and prolongations are typical ingredients of the multigrid iteration.
They are introduced in Section 11.1 for the Poisson model problem. The two-grid
iteration explained in Section 11.2 is the first step towards the multigrid method.
The iteration matrix is provided in §11.2.3. First numerical examples are presented
in §11.2.4.
Before a more general proof of convergence is presented, Section 11.3 investigates
the one-dimensional model problem. The proof demonstrates the complementary
roles of the smoothing part and the coarse-grid correction. Moreover, the depen-
dence of the convergence rate on the number of smoothing steps is determined.
The multigrid iteration is defined in Section 11.4. Its computational work is dis-
cussed and numerical examples are presented. The iteration matrix is described in
§11.4.4.
The nested iteration presented in Section 11.5 is a typical technique combined with
the multigrid iteration. In principle, it can be combined with any iteration, provided
that a hierarchy of discretisations is given. Besides a reduction of the computational
work, the nested iteration technique allows us to adjust the iteration error to the
discretisation error.
A general convergence analysis of the W-cycle is presented in Section 11.6. Stronger
statements are possible in the positive definite case which is studied in Section 11.7.
Here, also the V-cycle convergence is proved. As long as lower order terms are
responsible for the nonsymmetric structure, the symmetric convergence results
can be transferred as shown in §11.7.6. This includes the case of the V-cycle.
Possible combinations with semi-iterative methods are discussed in Section 11.8.
Concluding comments are given in Section 11.9.
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11.1 Introduction

Multigrid iterations consist of two complementary parts: the smoothing step and
the coarse-grid correction. Below we explain both steps in the case of the Poisson
model problem.

11.1.1 Smoothing

Let A be the matrix of the Poisson model problem with step size h. As the simplest
example we choose Richardson’s iteration:

xm+1 = ΦRich
Θ (xm, b) = xm −Θ(Axm − b) with (11.1a)

Θ = 1
8h

2 ≈ 1/λmax(A) = 1/ρ(A) (cf. (3.1c)). (11.1b)

ρ(A) = λmax(A) is the eigenvalue corresponding to the eigenfunction

eαβ(x, y) = 2h sin(απx) sin(βπy) (1 ≤ α, β ≤ N − 1, (x, y) ∈ Ωh) (11.2a)

of the highest frequency α = β = N − 1 (cf. (3.2)). The convergence rate
ρ(MRich

Θ ) = 1−Θλmin ≈ 1− λmin/λmax ≤ 1−O(h2) is attained by the lowest
frequency α = β = 1, i.e., when the error em = xm − x is a multiple of the
eigenfunction e1,1.

All x ∈ X := RI can be represented by the orthonormal eigenvector basis
(11.2a):

x =

N−1∑
α,β=1

ξαβ e
αβ with ξαβ :=

〈
x, eαβ

〉
. (11.2b)

Since high frequencies α, β correspond to strong oscillations of the sine functions
(11.2a), we define

Xosc := span
{
eαβ : 1 ≤ α, β ≤ N − 1, max{α, β} > N

2

}
(11.2c)

as a subspace of the oscillatory components. Note that at least one of the indices
α, β lies in the high-frequency part (N/2, N) of the frequency interval [1, N−1]. If
we are able to generate an approximation x0, whose error lies in the subspace Xosc,

e0 := x0 − x ∈ Xosc (e0 is the error, not an eigenvector!), (11.2d)

the simple Richardson iteration yields fast convergence.

Lemma 11.1. Assume the Poisson model case with (11.2d). Then all succeeding
errors em also belong to Xosc and satisfy the error estimate

‖em‖2 ≤ 3
4‖e

m+1‖2, (11.3)

i.e., restricted to Xosc, the convergence rate is h-independent.
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Proof. Since the vectors (11.2a) are orthonormal (cf. Lemma 3.2), we have

‖x‖22 =

N−1∑
α,β=1

|ξαβ |2 for x in (11.2b).

Because of Meαβ = (1−Θλαβ) e
αβ , applying the iteration matrix M = I−ΘA

to the error em with coefficients ξαβ yields em+1 satisfying

‖em+1‖22 ≤
∑

|1−Θλαβ |2 |ξαβ |2 ≤ max |1−Θλαβ |2
∑

|ξαβ |2

= max |1−Θλαβ |2 ‖em‖22 ,

with λαβ = 4h−2
[
sin2(απh/2) + sin2(βπh/2)

]
(cf. (3.1a)). The maximum has

to be taken over all α, β appearing in (11.2c). By symmetry, we may restrict the
frequencies to 0 < α < N and N/2 < β < N . For these α, β,

2h−2 = 4h−2 sin2(π/4) < λαβ ≤ λN−1,N−1 < 8h−2

holds; hence, |1−Θλαβ | = |1 − h2

8 λαβ | < 1 − h2

8 2h−2 = 3
4 proves the desired

inequality (11.3). ��

The statement of the lemma is not of direct practical use because the assumption
(11.2d) cannot be established in practice (at least not with less work than for solving
Ax = b exactly). However, we can conclude the following estimate involving the
smooth subspace Xsm := X⊥

osc = span{eαβ : 1 ≤ α, β ≤ N/2}.

Conclusion 11.2. Split the starting error e0 into

e0 = e0osc + e0sm, e0osc ∈ Xosc, e0sm ∈ Xsm := X⊥
osc.

Then, after m steps of Richardson’s iteration (11.1a,b), we have

em = emosc + emsm with

emosc = Mme0osc ∈ Xosc, emsm = Mme0sm ∈ Xsm,

‖emosc‖2 ≤
(
3
4

)m ‖e0osc‖2,

while emsm converges only very slowly to 0. Since emosc decreases faster than emsm ,
the smooth part of em has increased, and one may regard em as ‘smoother’ than e0.
The smoothness of em can be measured by the ratio ‖emsm‖2/‖emosc‖2.

For illustration purposes, we present the numerical results for the system

Ax = b with A = h−2 tridiag{−1, 2,−1} (11.4a)

of n = N − 1 = 1
h − 1 equations corresponding to the one-dimensional Poisson

boundary value problem

−u′′(x) = f(x) for 0 < x < 1, u(0) = u0, u(1) = u1. (11.4b)
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Fig. 11.1 Errors em ∈ Xosc of example (11.4a).

Figure 11.1 shows the (piecewise
linearly connected) initial values e0i
(0 ≤ i ≤ N = 8) and the errors
em of the first three Richardson iter-
ates. The errors em are insignificantly
smaller than e0 but clearly smoother.

We call iterative methods such
as the Richardson iteration (11.1a,b)
smoothing iterations and use the
symbol S instead of Φ.

Exercise 11.3. The choice of Θ in (11.1b) is not the optimal value. Determine Θ
such that the bound in (11.3) becomes minimal.

In the following, an iteration Ψ with a complementary property is desired: Ψ
should effectively reduce the smooth components in

Xsm = X⊥
osc = span

{
eαβ : 1 ≤ α, β ≤ N/2

}
.

Ψ is not required to have good convergence with respect to the subspace Xosc.
Then the product method Ψ ◦ S would have the property that for both subspaces
Xosc and Xsm one of the factors in Ψ ◦ S yields fast convergence.

Unfortunately, none of the methods mentioned so far has this property. To
construct such an iteration Ψ , we adhere to the concept that smooth grid func-
tions can be well approximated by using a coarser grid. After introducing coarser
grids in §§11.1.2–11.1.4, we shall return to the construction of the coarse-grid
correction Ψ in §11.1.5.

11.1.2 Hierarchy of Systems of Equations

For the following considerations, we have to embed the problem Ax = b into
a family of systems. In the model case, for all step sizes h = 1/N , we obtain a
system Ax = b depending on N or h, respectively. Let

h0 > h1 > . . . > h�−1 > h� > . . . with lim
�→∞

h� = 0

be a sequence of step sizes, which may be generated, e.g., by

h� := h0/2
� (� ≥ 0). (11.5a)

The index � is the level-number. � = 0 corresponds to the coarsest grid. In the
model case, for which the grid Ω� := Ωh�

is contained in the unit square, the step
size

h0 = 1/2 (11.5b)

is the coarsest one. Then Ω0 = Ωh0 contains only one interior grid point.
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Each step size h� (i.e., each level �) corresponds to a system

A�x� = b� (� = 0, 1, 2, . . .) (11.6a)

of order n�, which in the model case amounts to

n� = (N� − 1)2 = (1/h� − 1)2. (11.6b)

The family of systems (11.6a) for � = 0, 1, 2, . . . represents the hierarchy of systems
of equations. The actual problem Ax = b to be solved corresponds to a particular
level � = �max. For solving A�x� = b� at � = �max, we shall use all lower levels
� < �max.

Remark 11.4. Concerning the construction of the family {A�, b�}�=0,1,... of
discretisations, we mention two quite different approaches:
(A) A maximal level �max and the corresponding system A�max

x�max
= b�max

are
given. Then auxiliary problems A�x� = b� for � < �max are created in some way.
(B) The discretisation starts with A0x0 = b0. Local (or global) grid refinement
is used to construct A�x� = b� for � = 1, 2, . . . until the discretisation error is
sufficiently small.

11.1.3 Prolongation

The vectors x� and b� in (11.6a) are elements of the vector space

X� = Rn� . (11.7)

To connect different levels � = 0, 1, 2, . . . , �max , we introduce the prolongation

p : X�−1 → X� (� ≥ 1), (11.8)

which is assumed to be a linear and injective mapping (more precisely; a family of
mappings1 for all � ≥ 1) from the coarse grid into the fine one.

In the one-dimensional case (11.4a), the vector x� can be regarded as a grid
function defined on Ω� = {μh� : 0 < μ < N� = 1/h�}. The vector x� is rewritten
as u� if it is understood as a grid function on Ω� with values

u�(μh�) = x�,μ (1 ≤ μ ≤ N� − 1),

i.e., for all step sizes the arguments of u� belong to the interval Ω = (0, 1) and are
restricted to the nodal points in Ω�. For ease of notation, we include the boundary
values

u�(0) = u�(1) = 0. (11.9)

1 A more precise notation would be p�,�−1 indicating the involved levels. However, the context
will uniquely determine the levels.
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An obvious proposal for the prolongation p is piecewise linear interpolation
between the grid points of Ω�−1:

(pu�−1)(ξ) := u�−1(ξ) for ξ ∈ Ω�−1 ⊂ Ω�, (11.10a)

(pu�−1)(ξ) :=
1

2
[u�−1(ξ + h�) + u�−1(ξ − h�)] for ξ ∈ Ω�\Ω�−1, (11.10b)

where definition (11.9) is used at ξ = h� and ξ = 1−h�. A shorter characterisation
of the prolongation p is the symbol (11.10c):

p =
[
1
2 1 1

2

]
. (11.10c)

The stencil in (11.10c) indicates that the unit vector x�−1 = (. . . , 0, 1, 0, . . .)T is
mapped into x� = px�−1 = (. . . , 0, 1

2 , 1,
1
2 , 0, . . .)

T.
For the two-dimensional Poisson equation, the vector x� is represented by the

grid function u�:

u�(ξ, η) = x�,ij for 1 ≤ i, j ≤ N� − 1, (ξ, η) = (ih�, jh�) ∈ Ω�,

where the boundary values are defined by

u�(ξ, η) := 0 for ξ = 0 or ξ = 1 or η = 0 or η = 1.

The two-dimensional generalisation of the piecewise linear interpolation (11.10a,b)
(bilinear interpolation) reads as follows:

(pu�−1)(ξ, η) := u�−1(ξ, η) for ( ξ, η) ∈ Ω�−1 ⊂ Ω�,

(pu�−1)(ξ, η) :=
1

2
[u�−1(ξ + h�, η) + u�−1(ξ − h�, η)]

for ξ/h� odd, η/h� even,

(pu�−1)(ξ, η) :=
1

2
[u�−1(ξ, η + h�) + u�−1(ξ, η − h�)]

for ξ/h� even, η/h� odd,

(pu�−1)(ξ, η) :=
1

4

[
u�−1(x+ h�, h+ h�) + u�−1(x− h�, h− h�)

+u�−1(x− h�, h+ h�) + u�−1(x+ h�, h− h�)

]
for ξ/h� and η/h� odd.

The abbreviation of p defined above is the star

p =

⎡⎣ 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤⎦ (nine-point prolongation), (11.11)

since the application of p to a unit vector yields the values indicated in (11.11)
extended by zero is the remaining grid.
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In general, the stencil

p =

⎡⎣ π−1,1 π0,1 π1,1

π−1,0 π0,0 π1,0

π−1,−1 π0,−1 π1,−1

⎤⎦ (11.12)

describes the following mapping, where the summation is taken over all i, j with
(ξ − ih�, η − jh�) ∈ Ω�−1:

(pu�−1)(ξ, η) :=
∑
i,j

πiju�−1(ξ − ih�, η − jh�) for (ξ, η) ∈ Ω�.

Other linear interpolations as well as prolongations of higher order are discussed
by Hackbusch [183, §3.4]. A so-called matrix-dependent prolongation is defined by
(11.12) with the coefficients

π00 := 1, π±1,0 := −
∑

j α∓1,j∑
j α0,j

, π0,±1 := −
∑

i αi,∓1∑
i αi,0

, (11.13a)

(A� p u�−1)(ξ, η) = 0 for ξ/h� and η/h� odd, (11.13b)

where αi,j are the coefficients of A� according to (1.13a,b). Condition (11.13b)
determines π±1,±1 (cf. Hackbusch [183, §10.3] and de Zeeuw [104]).

11.1.4 Restriction

The restriction r is a linear and surjective mapping

r : X� → X�−1 (� ≥ 1) ,

which maps fine-grid functions into coarse-grid functions. If Ω�−1 ⊂ Ω� holds as
in the model case, the simplest choice is the trivial restriction

(rtrivu�)(ξ, η) = u�(ξ, η) for (ξ, η) ∈ Ω�−1 .

However, because of certain disadvantages, we advise against its use (cf. Hackbusch
[183, §3.5]). Instead, we define (r u�)(ξ, η) as the weighted mean of the neighbour-
ing values. The stencil

r =

⎡⎣ ρ−1,1 ρ0,1 ρ1,1
ρ−1,0 ρ0,0 ρ1,0
ρ−1,−1 ρ0,−1 ρ1,−1

⎤⎦ (11.14)

characterises the restriction

(ru�)(ξ, η) =

1∑
i,j=−1

ρij u�(ξ + ih�, η + jh�) for (ξ, η) ∈ Ω�−1.



272 11 Multigrid Iterations

The nine-point prolongation (11.11) corresponds to the nine-point restriction

r =
1

4

⎡⎣ 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤⎦ , (11.15)

which can be considered as the adjoint to (11.11), where the definition of adjoint
mappings is based on the scalar products

〈·, ·〉 = 〈·, ·〉� with 〈u�, v�〉� = hd
�

∑
α∈I

u�,α v�,α (11.16)

for X� . d is the dimension of the grid Ω� ⊂ Rd. The adjoint mapping is denoted by
p∗. Since p can also considered as a matrix, the transposed matrix pT is defined.
Because of the different weighting factors hd

� in (11.16), p∗ and pT differ by a
factor as stated in the next exercise.

Exercise 11.5. Assume the two-dimensional case d = 2 and prove that the mapping
adjoint to p defined in (11.12) is r in (11.14) with ρij = πij/4. Prove for general
d that p∗ = 2−dpT.

Having fixed the prolongation, we can always choose the adjoint mapping

r := p∗ (11.17)

as a restriction. For example, we can define a matrix-dependent restriction by
(11.13a,b) and (11.17).

11.1.5 Coarse-Grid Correction

Let x̄� be the result of a few steps of the smoothing iteration (11.1a,b). The corre-
sponding error ē� := x̄� − x� is the exact correction; i.e., the solution can be
obtained by

x� = x̄� − ē� .

Since A�ē� = A�(x̄� − x�) = A�x̄� −A�x� = A�x̄� − b�, the correction ē� satisfies
the equation

A� ē� = d� with the defect d� := A�x̄� − b� . (11.18a)

According to considerations in §11.1.1, ē� is smooth. Therefore, it should be
possible to approximate ē� by using the coarse grid: ē� ≈ pe�−1. As ansatz for
e�−1, we take the coarse-grid equation corresponding to (11.18a):

A�−1e�−1 = d�−1 with d�−1 := rd�. (11.18b)

Assume that we are able to solve the coarse-grid equation (11.18b) exactly:
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e�−1 = A−1
�−1d�−1 . (11.18c)

Its image pe�−1 under the prolongation p should approximate the solution ē� of
(11.18a), so that the coarse-grid correction is completed by

xnew
� := x̄� − p e�−1. (11.18d)

In compact form, the coarse-grid correction (11.18a–d) reads as follows:

x̄� �−→ xnew
� := x̄� − pA−1

�−1r(A�x̄� − b�).

Renaming x̄� and xnew
� by xm

� and xm+1
� , the mapping above defines an iterative

method which we call the coarse-grid correction:

ΦCGC
� (x�, b�) := x� − pA−1

�−1r(A�x� − b�). (11.19)

Remark 11.6. The iteration matrix MCGC
� and the matrix NCGC

� of the second
normal form of the coarse-grid correction are

MCGC
� = I − pA−1

�−1rA� , NCGC
� = pA−1

�−1r .

ΦCGC
� (as such without smoothing) is not an interesting iteration as stated next.

Remark 11.7. The coarse-grid correction ΦCGC
� is consistent, but not convergent.

Proof. The consistency is a consequence of the second normal form. n� > n�−1

implies dimX� > dimX�−1; hence, the kernel of the restriction r is nontrivial.
Let 0 �= x ∈ ker(r). Since MCGC

� η = η for η := A−1
� x, the matrix MCGC

� has
an eigenvalue λ = 1, so that ρ(MCGC

� ) ≥ 1 indicates divergence. ��

For systems obtained from Galerkin discretisation (cf. Proposition E.16 and
Hackbusch [183, Note 3.6.6]), the so-called Galerkin product representation of
A�−1 is valid:

A�−1 = r A� p. (11.20)

Remark 11.8. Given A = A�max , one can use (11.20) as a recursive definition
of the coarse-grid matrices A� for � = �max − 1, . . . , 0, provided that suitable
mappings r and p are available (see case (A) in Remark 11.4). If one uses the
definition (11.17) of r, only the prolongations p have to be defined.

Lemma 11.9. Assume (11.20). Then ΦCGC
� (x̂�, b�) = x̂� holds for all vectors x̂�

with ê� = x̂� − x� ∈ range(p); i.e., ΦCGC
� is a projection (cf. Definition 5.12).

Proof. Use MCGC
� p = p− pA−1

�−1rA�p = p− pA−1
�−1A�−1 = p− p = 0. ��

The next exercise shows that the coarse-grid equation (11.18b) is a reasonable
ansatz for e�−1.

Exercise 11.10. Let A� be positive definite. The best approximation of ē�∈X� with
respect to the A� norm ‖x�‖A := 〈A�x�, x�〉1/2� is pe�−1, where p = r∗ according
to (11.17) and e�−1 is the solution of (11.18b) with the Galerkin matrix (11.20).
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11.2 Two-Grid Method

11.2.1 Algorithm

The smoothing iteration S� is defined in §11.1.1 and the coarse-grid correction
ΦCGC
� is constructed in §11.1.5. The two-grid iteration is the product iteration

ΦTGM
� := ΦCGC

� ◦ Sν
� (� ≥ 1, ν ≥ 1)

(cf. §5.4), where ν is the number of smoothing steps. In algorithmic notation, the
iteration ΦTGM

� takes the form

function ΦTGM
� (x�, b�); (11.21)

begin for i := 1 to ν do x� := S�(x�, b�); (11.21a)
d�−1 := r(A�x� − b�); (11.21b)
e�−1 := A−1

�−1d�−1; (11.21c)
x� := x� − pe�−1; (11.21d)
ΦTGM
� := x� (11.21e)

end;

11.2.2 Modifications

As stated in Proposition 5.25b, ΦCGC
� ◦Sν

� has the same convergence behaviour as

Φ
TGM(ν1,ν2)
� := Sν2

� ◦ ΦCGC
� ◦ Sν1

� with ν = ν1 + ν2. (11.22a)

In this case, ν1 pre- and ν2 post-smoothing steps are applied. Algorithm (11.21) is
the special case of iteration (11.22a) with ν1 = ν and ν2 = 0. In the sequel, we use
the more general version (11.22a).

One may also use different iterations S� and Ŝ� as pre- and post-smoothers:

Ŝν2

� ◦ ΦCGC
� ◦ Sν1

� . (11.22b)

A semi-iterative smoothing instead of (11.21a) will be discussed in §11.8.1.

11.2.3 Iteration Matrix

Lemma 11.11. Let S� be a consistent iteration with iteration matrix S�. Then
Φ
TGM(ν1,ν2)
� is a consistent iteration with the iteration matrix

M
TGM(ν1,ν2)
� = Sν2

� (I − pA−1
�−1rA�)S

ν1

� . (11.23)

Proof. According to Proposition 5.25b, MTGM
� is the product of the iteration

matrices of Ŝν2

� , ΦCGC
� , Sν1

� . Equation (11.23) follows from Remark 11.6. ��
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Since S� is consistent, the matrix N
TGM(ν1,ν2)
� of the second normal form is

implicitly determined by

M
TGM(ν1,ν2)
� = I −N

TGM(ν1,ν2)
� A� .

As known from (5.12b), the second normal form matrices do not have a simple
representation for product iterations. The same statement holds for W

TGM(ν1,ν2)
� .

11.2.4 Numerical Examples

m ‖xm
� − x�‖2

0 2.93510-02
1 1.21010-03
2 6.20610-05
3 3.37810-06
4 1.93910-07
5 1.15210-08
6 7.05810-10
7 4.43210-11
8 7.18810-12

Table 11.1 Iteration
errors for h5=

1
64

.

As an example we choose the two-dimensional Poisson model
problem with the step sizes h� in (11.5a,b). A�max

and the aux-
iliary matrices A� (� < �max) are defined by the five-point
discretisation (1.4a). The two-grid parameters are ν1 = 2,
ν2 = 0. The smoothing iteration is the chequer-board variant
of the Gauss–Seidel iteration (cf. (1.20)). The error norms
‖em� ‖2 = ‖xm

� − x�‖2 at level � = 5 with h5 = 1/64 are
shown in Table 11.1. Table 11.2 contains the reduction factors
‖xm

� − x�‖2/‖xm−1
� − x�‖2. The last row in Table 11.2 shows

the averaged convergence factors ρ� := (‖e8�‖2/‖e0�‖2)1/8. In
contrast to the foregoing iterative methods, the convergence
factors hardly depend on the step size. Furthermore, the convergence rate of about
0.06 is very favourable.

m h� =
1
4

1
8

1
16

1
32

1
64

1
128

1 0.10391 0.10420 0.07778 0.05465 0.03807 0.02661
2 0.06210 0.05549 0.04730 0.04336 0.04121 0.04009
3 0.06248 0.05738 0.05409 0.05238 0.05132 0.05077
4 0.06250 0.05851 0.05804 0.05565 0.05445 0.05375
5 0.06250 0.05963 0.06191 0.05866 0.05741 0.05665
6 0.06250 0.06061 0.06512 0.06089 0.05937 0.05835
7 0.06250 0.06143 0.06768 0.06292 0.06124 0.05996
8 0.06250 0.06208 0.06954 0.06463 0.06285 0.06132
ρ� 0.06654 0.06360 0.06203 0.05626 0.05248 0.04939

Table 11.2 Error ratios ‖xm − x�‖2/‖xm−1 − x�‖2 and aver-
aged convergence factors ρ� for the two-grid method with ν1 = 2
and ν2 = 0.

Since the two-grid
method depends on the
parameters ν1 and ν2,
their influence on the
convergence is be inves-
tigated. As mentioned in
§11.2.2, the convergence
rate depends only on
ν = ν1 + ν2. Therefore,
we may choose ν1 = ν
and ν2 = 0 without loss
of generality. The con-
vergence factors ρ� for
h3 = 1/16 determined

ν 1 2 3 4 5 6 10
ρ3(ν) 0.222 0.062 0.04 0.03 0.023 0.0196 0.0133
0.135

0.135+ν 0.119 0.063 0.043 0.033 0.026 0.022 0.0133

Table 11.3 Convergence factors for different smoothing numbers ν.

as above are shown in
Table 11.3. As expected,
convergence improves
with increasing ν. In
the last row, ρ3(ν) is
compared with the function C/(C + ν) for C = 0.135. It suggests the asymp-
totic behaviour ρ�(ν) ≈ O(1/ν).
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11.3 Analysis for a One-Dimensional Example

In principle, one can analyse the two-grid convergence for the two-dimensional
Poisson model problem (cf. Hackbusch [183, §8.1.1]); however, it is not sufficiently
transparent for an introductory consideration. Therefore, we consider the tridiagonal
equation (11.4a):

Ax = b with A = h−2

⎡⎢⎢⎢⎢⎣
2 −1

−1 2
. . .

. . . . . . −1
−1 2

⎤⎥⎥⎥⎥⎦ (11.24)

discretising the one-dimensional Poisson equation (11.4b). It should be emphasised
that tridiagonal matrices are easy to solve directly. Analysis of iterative methods for
these tridiagonal equations is of interest only because of the fact that the conver-
gence properties also carry over to the general case of two or more spatial dimen-
sions. Furthermore, this chapter serves as a demonstration of how model problems
can be investigated by the help of Fourier analysis.

11.3.1 Fourier Analysis

We abbreviate the quantities at levels � and �− 1 by

N = N�, N ′ = N�−1, h = h� = 1/N, h′ = h�−1 = 2h.

The vector x = (xk)1≤k≤N−1 is formally extended by the components

x0 = xN = 0. (11.25a)

The vectors (grid functions) eα with the components

eαk =
√
2h sin(αkπh) (0 ≤ k ≤ N) (11.25b)

satisfy condition (11.25a) for all frequencies α ∈ Z. According to Exercise 3.3,
{eα : 1 ≤ α ≤ N − 1} forms an orthonormal basis. Therefore, the matrix Q built
by eα as columns is unitary: QHQ = I (cf. Definition A.27):

Q :=
[
e1, eN−1, e2, eN−2, . . . , eα, eN−α, . . . , e

N
2 −1, e

N
2 +1, e

N
2

]
. (11.25c)

The reason for the special ordering of the columns will be seen next. M := MTGM
�

denotes the iteration matrix of the two-grid method. Since multiplying by Q or



11.3 Analysis for a One-Dimensional Example 277

QH = Q−1 does not change the spectral norm and spectral radius (cf. Lemma
B.18), we conclude that

‖M̂‖2 = ‖M‖2 , ρ(M̂) = ρ(M) for M̂ := Q−1MQ. (11.25d)

M̂ is the Fourier-transformed iteration matrix. We shall show in §11.3.2 that M̂
has a block-diagonal structure:

M̂ = blockdiag {M1,M2, . . . ,MN ′−1,MN ′} with
Mα : 2× 2 matrices for 1 ≤ α ≤ N ′ − 1, MN ′ : 1× 1 matrix.

(11.25e)

Applying (A.10) to M̂ and M̂HM̂ , we obtain the next statement.

Lemma 11.12. Matrices of the form (11.25e) satisfy

‖M̂‖2 = max
1≤α≤N ′

‖Mα‖2 , ρ(M̂) = max
1≤α≤N ′

ρ(Mα).

We choose the Richardson iteration with Θ = h2

4 ≈ 1
ρ(A�)

as the smoothing
iteration. For proving the block structure (11.25e), we transform the iteration matrix

M = (I − pA−1
�−1rA�)S

ν
� with S� = I −ΘA�, Θ = h2/4 .

The Fourier transform applied to the matrices A�, S� yields

Â� := Q−1A� Q, Ŝ� := Q−1S� Q . (11.26a)

Next, we need a Fourier map Q′ : X�−1 → X�−1 defined in the coarse grid space.
It is defined by

Q′ =
[
e′ 1, e′ 2, . . . , e′N

′−1
]

with the orthonormal columns

e′αk =
√
4h sin(2αkπh) (0 ≤ k ≤ N ′). (11.26b)

The vectors e′α ∈ X�−1 are obtained from eα in (11.25b) by replacing h = h�

with h′ = h�−1. Now p, A�−1, and r can be transformed into

p̂ = Q−1pQ′, Â�−1 := Q′−1A�−1 Q
′, r̂ := Q′−1 r Q.

One verifies that M̂ in (11.25d) takes the form

M̂ = (I − p̂Â−1
�−1r̂Â�) Ŝ

ν
�

(check that p̂Â−1
�−1r̂Â� = Q−1pA−1

�−1rA�Q).
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11.3.2 Transformed Quantities

Now we prove that all factors p̂, Â−1
�−1, r̂, Â�, Ŝ

ν
� are block-diagonal as stated in

(11.25e). According to §3.1, A�e
α = λαe

α holds with λα = 4h−2 sin2(απh/2).
We introduce

s2α = sin2(απh/2), c2α = cos2(απh/2).

Noting that λN−α = s2N−α = c2α, we obtain

Â� := Q−1A�Q = blockdiag{A1, . . . , AN ′} with the blocks (11.27a)

Aα = 4h−2

[
s2α 0
0 c2α

]
for 1≤α≤N ′−1, AN ′ = 2h−2. (11.27b)

Since S� = I − 1
4h

2A� and s2α + c2α = 1, equations (11.27a,b) yield the result

Ŝ� = Q−1S�Q = blockdiag{S1, . . . , SN ′} with the blocks (11.27c)

Sα =

[
c2α 0
0 s2α

]
for 1 ≤ α ≤ N ′−1, SN ′ =

1

2
. (11.27d)

Because of A�−1e
′α = λ′

αe
′ α with λ′

α = 4h′−2 sin2(απh′/2) = h−2 sin2(απh)
and using sin2(απh) = 4s2αc

2
α , we obtain the diagonal matrix

Â�−1 := Q′−1A�−1Q
′ = diag{A′

1, . . . , A
′
N ′} with A′

α =
4

h2
s2αc

2
α . (11.27e)

Next, we transform p and r. Let p be defined by (11.10a–c). For r, we choose
the adjoint mapping r = p∗:

r = 1
2

[
1
2 1 1

2

]
, i.e., (ru�)(ξ) =

1
4u�(ξ − h) + 1

2u�(ξ) +
1
4u�(ξ + h). (11.27f)

r and r̂ are matrices of the format (N ′ − 1)× (N − 1) = (N ′ − 1)× (2N ′ − 1).
The representation

r̂ := [ blockdiag{r1, . . . , rN ′−1}, 0 ] with rα =
√

1
2

[
c2α,−s2α

]
(11.27g)

means that the last column of r̂ := Q′−1r Q vanishes (this follows from reN
′
= 0)

and that the remaining part of the format (N ′ − 1)×(2N ′ − 1) consists of N ′−1
blocks rα of size 1× 2. For the proof of (11.27g), it must be shown that

reα = c2αe
′α/

√
2, reN−α = −s2αe

′α/
√
2 for 1 ≤ α ≤ N ′ − 1 .

The restriction (11.27f) yields

r sin(αxπ) = [sin(α(x− h)π) + 2 sin(αxπ) + sin(α(x+ h)π)] /4

= [1 + cos(αhπ)] sin(αxπ)/2 = cos(αhπ/2)2 sin(αxπ) = c2α sin(αxπ)
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for all frequencies α. The different scaling of the vectors eα, e′α explains the
additional factor in reα = c2αe

′α/
√
2. Since this identity holds for all α ∈ Z ,

we may replace α by N − α: reN−α = c2N−αe
′N−α/

√
2. For 0 ≤ k ≤ N ′,

the equality sin(2αkπh) = − sin(2(N − α)kπh) leads to e′N−α = −e′α (cf.
definition (11.26b)). Finally, c2N−α = s2α proves reN−α = −s2αe

′α/
√
2.

p in (11.10a–c) and r in (11.27f) are connected by r = p∗. From p∗ = 1
2 p

T,
we derives the representation

p̂ = Q−1pQ′ = Q−1(2r)TQ′ = QT(2r)TQ′ = 2
[
Q′TrQ

]T
= 2 r̂T.

Therefore, the result (11.27g) for r̂ proves

p̂ = Q−1pQ′ =
[
blockdiag {p1, . . . , pN ′−1}

0

]
(11.27h)

with pα =
√
2

[
c2α

−s2α

]
.

11.3.3 Convergence Results

Since all factors in (11.26a) have a block-diagonal structure, this carries over to M̂
and proves the structure (11.25e). For the 2 × 2 blocks Mα (1 ≤ α ≤ N ′ − 1)
and the 1× 1 block MN ′ , the statements (11.27b, d, e, g, h) yield

Mα = (I − pαA
′−1
α rαAα)S

ν
α (1≤α≤N ′ − 1), MN ′ = 2−ν .

Inserting the representations of pα, A′
α, rα, Aα, Sν

α, we obtain

Mα =

([
1 0
0 1

]
−
[

c2α
−s2α

]
h2

4s2αc
2
α

[
c2α −s2α

]
4h−2

[
s2α 0
0 c2α

])[
c2α 0
0 s2α

]ν
(11.28)

=

([
1 0
0 1

]
−
[

c2α −c2α
−s2α s2α

])[
c2α 0
0 s2α

]ν
=

[
s2α c2α
s2α c2α

] [
c2α 0
0 s2α

]ν
.

The block Mα describes the application of M to the two functions eα, eN−α

(the respective columns of the matrix Q, cf. (11.25c)). Since α < N ′ < N − α,
eα corresponds to a smooth grid function and eN−α to an oscillatory one.
Obviously, the inequalities 0 < α < N ′ < N − α < N lead to

0 < s2α <
1

2
< c2α < 1. (11.29)

The two 2 × 2 matrices in (11.28) characterise the coarse-grid correction and the
smoothing iteration, respectively. Let the error have a representation

∑N−1
α=1 ξαe

α

as in (11.2b). The entries c2α > s2α express the fact that the smooth eα-components
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converge more slowly than the nonsmooth eN−α-components. The first matrix
reflects the complementary behaviour of the coarse-grid correction: The smooth
components (s2α in the first column) are better reduced than the oscillatory ones
(c2α in the second column).

Exercise 11.13. Prove that ρ(Mα)=ρν(s
2
α) and ‖Mα‖2=ζν(s

2
α) with

ρν(ξ) := ξ(1− ξ)ν + (1− ξ)ξν , (11.30a)

ζν(ξ) :=

√
2
[
ξ2 (1− ξ)

2ν
+ (1− ξ)

2
ξ2ν
]
. (11.30b)

Combining (11.25d), Lemma 11.12, and Exercise 11.13 yields

ρ(M) = max{ρν(s2α) : 1 ≤ α ≤ N ′}, ‖Mα‖2 = max{ζν(s2α) : 1 ≤ α ≤ N ′}.

Since the values of s2α for 1 ≤ α ≤ N ′ are between 0 and 1
2 (cf. (11.29)), the

following estimates are valid:

ρ(M) ≤ ρν := max{ρν(ξ) : 0 ≤ ξ ≤ 1/2}, (11.31a)
‖M‖2 ≤ ζν := max{ζν(ξ) : 0 ≤ ξ ≤ 1/2}. (11.31b)

ν ρν ζν
1 1/2 1/2
2 1/4 1/4
3 1/8 0.150
4 0.0832 0.1159
5 0.0671 0.0947

10 0.0350 0.0496

Table 11.4 ρν and ζν .

The bounds ρν and ζν of the convergence rate and con-
traction numbers depend on the smoothing number ν ;
however, they do not depend on the step size h. Since
ρν and ζν decrease monotonically with increasing ν and
ρ1 = ζ1 = 1

2 < 1, the convergence of the two-grid
method for the one-dimensional model problem (11.24) is
proved. A more detailed discussion of the functions ρν(ξ)
and ζν(ξ) and their maxima in [0, 1

2 ] yields the following.

Theorem 11.14. Let the two-grid method for solving the system (11.24) be charac-
terised by Richardson’s iteration with Θ = h2/4 (identical to the Jacobi iteration
damped by 1

2 ) as smoother, by the piecewise linear prolongation p, and the ad-
joint restriction (11.27f). Then the two-grid method with ν ≥ 1 smoothing steps
converges with the rate ρν in (11.31a), which is h-independent. The contraction
number (with respect to the Euclidean norm) is bounded by ζν in (11.31b).
For increasing ν, these bounds have the asymptotic behaviour

ρν =
1

e ν
+O
(
ν−2
)
, ζν =

√
2

e ν
+O
(
ν−2
)
.

Some values of ρν , ζν are listed in Table 11.4. Obviously, the quantities ρ(M),
‖M‖2 converge with a decreasing step size parameter to their bounds ρν and ζν ;
hence, the given estimates are strict. In §11.6 we will derive a convergence rate for
general problems that also behaves like O(1/ν). Theorem 11.14 demonstrates that
such results about the asymptotic behaviour for large ν are not too pessimistic.
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11.4 Multigrid Iteration

11.4.1 Algorithm

The two-grid method is not yet suited for practical applications because one still has
to solve one system per iteration at level �−1. The problem to be solved in (11.21c)
has the form

A�−1 e�−1 = d�−1; (11.32)

hence it is of the same structure as the original problem A�x� = b�. Instead of
solving the system (11.32) exactly, one may approximate the solution iteratively.
The iteration of choice is again the two-grid method, now applied to levels � − 1
and �− 2 instead of � and �− 1. Then new auxiliary problems A�−2e�−2 = d�−2

arise, for which again the two-grid method (now at level �− 2) can be applied until
equations A0e0 = d0 arise at the coarsest grid. The corresponding recursive method
is the multigrid iteration Φ

MGM(ν1,ν2)
� , which has the following algorithmic form:

procedure Φ
MGM(ν1,ν2)
� (x�, b�); (11.33)

if � = 0 then Φ
MGM(ν1,ν2)
� := A−1

0 b0 else (11.33a)
begin for i := 1 to ν1 do x� := S�(x�, b�); (11.33b)

d�−1 := r(A�x� − b�); (11.33c)
e
(0)
�−1 := 0; (11.33d1)

for i := 1 to γ do e
(i)
�−1 := Φ

MGM(ν1,ν2)
�−1 (e

(i−1)
�−1 , d�−1); (11.33d2)

x� := x� − pe
(γ)
�−1; (11.33e)

for i := 1 to ν2 do x� := Ŝ�(x�, b�); (11.33f)
Φ
MGM(ν1,ν2)
� := x� (11.33g)

end;

The pre- and post-smoothing steps are the same as in (11.22b). Obviously, the
recursive calls terminate after � steps when level � = 0 is reached. Hence, the
algorithm is well-defined.

ν1 and ν2 denote again the number of pre- and post-smoothing steps. A natural
assumption is ν := ν1 + ν2 > 0 . For the iterative solution of the coarse-grid
equation (11.32), γ steps of the iteration Φ

MGM(ν1,ν2)
�−1 are applied to the starting

value (11.33d1). We shall see that γ = 2 is sufficient. Therefore, only the cases
γ = 1 and γ = 2 are of practical interest. The multigrid iteration with γ = 1
has the name ‘V-cycle’, whereas the iteration with γ = 2 is called the ‘W-cycle’
(concerning the reason for these names, see Hackbusch [183, §2.5]).

The exact solution of linear equations is not completely avoided in the multigrid
algorithm (11.33). In (11.33a), the system A0x0 = b0 corresponding to the coarsest
grid has to be solved. Since the coarsest grid has the smallest number of grid points,
the solution should not lead to practical difficulties. In the model case, according to
(11.5b), h0 = 1

2 would be a possible choice of the coarsest grid size. In this case,
A0x0 = b0 represents a single scalar equation.
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Formally, the multigrid method is the product of the smoothing iteration and
coarse-grid correction, where the latter almost corresponds to a composed method
with a secondary iteration as described in §5.5. But different from §5.5, the auxiliary
problem, which has to be approximated by the secondary iteration, does not belong
to the same space X� but to the lower-dimensional space X�−1.

11.4.2 Numerical Examples

The model problem with the step size h = h5 = 1/64 is taken as an example.
Table 11.5 shows the Euclidean norm ‖em‖2 of the errors and the reduction factors
ρm+1,m = ‖em‖2/‖em−1‖2 . The parameters are ν1 = 2, ν2 = 0, h0 = 1

2 .
All matrices A� are defined by the five-point discretisation, p is the nine-point
prolongation, and r the nine-point restriction. We choose the chequer-board
Gauss–Seidel method as the smoothing iteration. The comparison of the results
for γ = 1 (V-cycle) and γ = 2 (W-cycle) in Table 11.5 with the two-grid results
(corresponding formally to γ = ∞; the values are copied from Table 11.2) show
that γ = 2 yields almost the same fast convergence as the two-grid method, whereas
the V-cycle results are less favourable.

γ = 1 (V-cycle) γ = 2 (W-cycle) γ = ∞
(two−grid algorithm)

m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m ρm+1,m

1 1.327410-1 0.1727 2.998410-02 0.03902 0.03807
2 2.222310-2 0.1674 1.321910-03 0.04408 0.04121
3 3.765610-3 0.1694 6.905010-05 0.05223 0.05132
4 6.411010-4 0.1702 3.782410-06 0.05477 0.05445
5 1.094110-4 0.1706 2.158410-07 0.05706 0.05741
6 1.870110-5 0.1709 1.268910-08 0.05879 0.05937
7 3.199610-6 0.1710 7.678810-10 0.06051 0.06124

Table 11.5 Multigrid iteration for the Poisson model problem with step size h = 1/64.

m ρm+1,m

1 0.03025
2 0.04722
3 0.05308
4 0.05510
5 0.05694
6 0.05835
7 0.05970
8 0.06092
9 0.06206
10 0.06312

pointwise Gauss–Seidel row Gauss–Seidel
m γ = 1 γ = 2 γ = 1
1 0.1584 0.0275 0.0465
2 0.2602 0.0955 0.0999
3 0.3351 0.2734 0.0952
4 0.3479 0.3003 0.1319
5 0.3360 0.2945 0.1267
6 0.3142 0.3062 0.1471
7 0.2920 0.3200 0.1304
8 0.2720 0.3348 0.1487
9 0.2553 0.3257 0.1328

Table 11.6 Multigrid convergence rates ρm+1,m for Eq. (11.34) with c = 4 (left) and c = 100
(right), h = 1/64 and Gauss–Seidel smoothing.
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In order to demonstrate that the multigrid iteration not only works well for
positive definite problems, the next example is the nonsymmetric differential
equation (convection-diffusion equation):

−Δu+ cux = f

in Ω = (0, 1)× (0, 1) with Dirichlet boundary values (1.1b), discretised by

A� = h−2
�

⎡⎣ −1
−1 4 −1

−1

⎤⎦+
1

2
ch−1

�

⎡⎣ 0
−1 0 1

0

⎤⎦ . (11.34)

First, we choose c = 4 (for this value, all A� are M-matrices). f = u = 0 are
taken as the right-hand side and exact solution, while x(1 − x + y) serves as the
starting value. The other parameters are the same as in Table 11.5. The W-cycle
(γ = 2) shows a convergence rate of ≈ 0.06 (cf. Tab. 11.6) and hardly differs from
the corresponding rate of the Poisson model case.

As soon as the coefficient c becomes substantially larger, e.g., c=100, a stability
problem arises. Discretisation (11.34) yields an M-matrix for h5 = 1/64, but not
for larger h. A remedy is the matrix-dependent prolongation (11.13a,b) and the
corresponding restriction, together with the Galerkin product (11.20) for � < 5
(cf. Hackbusch [183, §10.4]). Table 11.6 shows the convergence rates ρm+1,m for
γ=1 and γ=2. Different from the model case, the results for γ = 2 are hardly better
than those for γ=1. Furthermore, the rate ≈0.3 is not so favourable. The rate can be
improved to ≈ 0.14 by row-wise Gauss–Seidel smoothing instead of the chequer-
board Gauss–Seidel iteration (Table 11.6, right column).

In §§10.3.5–10.4 (cf. Tables 10.4, 10.6) the indefinite problem with the matrix

A� := h−2
�

⎡⎣ −1
−1 4 −1

−1

⎤⎦−

⎡⎣ 0
0 50 0

0

⎤⎦ (11.35)

m ‖em‖2 ρm+1,m

1 1.30110-1 0.169309
2 5.60710-2 0.430985
3 2.48010-2 0.442381
4 1.09710-2 0.442503
5 4.85710-3 0.442505

Table 11.7 Results for the
indefinite problem (11.35).

is solved. As we shall see in §11.6.2, for indefinite
problems the choice of the coarsest step size is restricted.
Here h0 = 1

2 is too coarse, but h = 1
4 is possible.

However, better results can be obtained with h = 1
8 as

the coarsest step size. Table 11.7 shows the results for
h5 = 1

64 , h0 = 1
8 , γ = 2, nine-point prolongation,

and nine-point restriction. ν1 = 2 chequer-board Gauss–
Seidel steps are applied (ν2 = 0) as smoothing. The con-
vergence rate (here 0.442) improves with decreasing grid
size. Vice versa, the worse rate 0.613 results for h=1/16.

It is not necessary to choose h0 sufficiently small if one uses the Kaczmarz
iteration for smoothing (cf. §5.6.3), which is also convergent for the indefinite
matrix (11.35). However, for the parameters h0 = 1

2 , ν1 = 2, ν2 = 0, γ = 2, one
obtains the rather unfavourable convergence rate 0.833 (for h = 1

16 even 0.917 ) .
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11.4.3 Computational Work

To judge the convergence rates in §11.4.2, we have to take into account the amount
of work per iteration (cf. §2.3). Because of the recursive structure, the amount of
work is not quite obvious. The operations appearing in (11.33) are S� in (11.33b,f),
r(A�x� − b�) in (11.33c), and x� − pe�−1 in (11.33e). We denote the corresponding
work by

CS n� operations for x� �−→ S�(x�, b�) or Ŝ�(x�, b�), (11.36a)
CD n� operations for x� �−→ r(A�x� − b�), (11.36b)
CC n� operations for x� �−→ x� − pe�−1 . (11.36c)

Proportionality to dimension n� is a consequence of the sparsity of the matrix A�

(cf. (2.28)). For standard approaches to fully populated matrices, n� would have to
be replaced by n2

� in (11.36a,b) (but see §D or Hackbusch [198, §10]).
The dimensions n� should increase with increasing level-number � at least by

a fixed factor Ch:
n�−1 ≤ n�/Ch for � ≥ 1 . (11.37)

Otherwise, the difficulty would arise that the auxiliary problems A�−1e�−1 = d�−1

are of a similar dimension as A�x� = b�.

Remark 11.15. For the standard choice h� = h�−1/2 and the spatial dimension
d: Ω⊂Rd, inequality (11.37) holds with Ch=2d. In the model case, d=2 is valid.

Theorem 11.16. Assume (11.36a–c) and (11.37). Let γ in (11.33d2) satisfy

γ < Ch . (11.38)

Then the work of the multigrid iteration is proportional to n� :

Work(Φ
MGM(ν1,ν2)
� ) ≤ C(ν1 + ν2) · n� with

C(ν) =
νCS + CD + CC

1− γ/Ch
+O
(
(γ/Ch)

�
)
. (11.39)

Proof. Let C� n� be the work for one Φ
MGM(ν1,ν2)
� step. From the representation

(11.33), we conclude that C�n� ≤ (νCS + CD + CC)n� + γC�−1n�−1. Inequality
(11.37) yields C� ≤ (νCS + CD + CC) + ϑC�−1 with ϑ := γ/Ch and results in
the geometrical sum

C� ≤ (νCS + CD + CC)(1 + ϑ+ . . .+ ϑ�−1) + γC0/n� ,

where C0 denotes the work for (11.33a) (independent of h�). Since γ�/n�≤ϑ�/n1,
(11.39) follows. ��

Remark 11.17. In the two-dimensional case d = 2, (11.38) is satisfied for the
interesting values γ = 1, 2 because of Ch = 4 (cf. Remark 11.15). The following
constants are obtained for (11.39):
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CV (ν) =
4

3
(νCS + CD + CC) +O

(
(γ/Ch)

�
)

for γ = 1, (11.40a)

CW (ν) = 2 (νCS + CD + CC) +O
(
(γ/Ch)

�
)

for γ = 2. (11.40b)

Since γ/Ch < 1 (cf. (11.38)), formulae (11.39) and (11.40a,b) show that for
increasing � the work for solving A0x0=b0 in (11.33a) requires a vanishing portion
of the total work.

Exercise 11.18. Although the one-dimensional case (11.24) is not of practical
interest, one may apply the multigrid algorithm. Then (11.38) is not satisfied be-
cause Ch = 2 holds for the W-cycle (γ = 2). Prove that the work is equal to
O(� n�) = O(n� log n�).

For the standard multigrid parameters as used before, the work amounts to

CS = 2(CA − 1) for the Gauss–Seidel iteration, cf. (3.20b), (11.41a)
CD = 2CA + 11/4 for r = nine-point restriction (11.15), (11.41b)
CC = 3/2 for p = nine-point prolongation (11.11). (11.41c)

The constants CS and CD improve for the Poisson model case (CA = 5, since
multiplications by coefficients 1 can be omitted):

CS = 5 for the Gauss–Seidel iteration, cf. (3.21), (11.41a′)
CD = 5 + 10/4 for r = nine-point restriction (11.15), (11.41b′)

If the chequer-board Gauss–Seidel method is used, some operations can be saved
when applying r and p (cf. Hackbusch [183, Note 4.3.4]). Inserting formulae
(11.41a–11.41b′), the numbers (11.40a,b) become

CV (ν) =
8

3
(ν + 1)CA +

17− 8ν

3
+O(1/4�) for γ = 1, (11.41d)

CV (ν) = 12 +
20

3
ν +O(1/4�) (Poisson model case, γ = 1), (11.41d′)

CW (ν) = 4(ν + 1)CA +
17− 8ν

3
+O(1/2�) for γ = 2, (11.41e)

CW (ν) = 18 + 10ν +O(1/2�) (Poisson model case, γ = 2). (11.41e′)

The corresponding effective work of the V- and W-cycle for the Poisson model
problem with ν = 2 is CV [W ](2)/ |CA log(ρ)|. Using the convergence rates ρ
in Table 11.5, we obtain

Eff(Φ
MGM(2,0)
� ) = −CV (2)/ [5 log(0.171)] ≈ 2.89 for γ = 1,

Eff(Φ
MGM(2,0)
� ) = −CW (2)/ [5 log(0.06)] ≈ 2.7 for γ = 2.

Together with the convergence rate, the effective work is also h-independent.
One should compare the numbers Eff(Φ

MGM(2,0)
� ) with the competing values in
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Remark 8.49 (for h = 1/32). The numbers (11.41d′,e′) can also be interpreted as
follows. One V-cycle step costs as much as ≈ 5 Gauss–Seidel iteration steps, one
W-cycle step corresponds to 7.6 Gauss–Seidel steps.

Finally, we address the question how many smoothing steps should be
performed. The numerical results in §11.4.2 have shown good agreement with
the two-grid results. According to Table 11.3, these rates behave as
≈Cρ/(1+ν), where ν = ν1+ν2. For simplification, assume that CC+CD =CS .
Then the multigrid work behaves like Work(Φ

MGM(ν1,ν2)
� ) ≈ (1 + ν)C. With an

increasing number ν of smoothing steps, the convergence improves, however, the
work also increases. We have to minimise the effective work

− (1 + ν)C/CA

log (Cρ/(1 + ν))
= C ′ 1 + ν

log(1 + ν)− log (Cρ)
.

The minimum is taken for ν∗= Cρe− 1 and has the value eCρC/CA. This shows
at least asymptotically that the faster the multigrid iteration (i.e., the smaller Cρ),
the smaller the number of smoothing steps should be. If, vice versa, it turns out that
many smoothing steps are necessary, the multigrid method is not favourable and one
should look for a better suited smoothing iteration.

11.4.4 Iteration Matrix

Since the iteration is defined recursively, the multigrid iteration matrix is also deter-
mined recursively.

Theorem 11.19. Let S�, Ŝ� be the iteration matrices of the respective consistent
pre- and post-smoothing iterations S� and Ŝ�. Then the multigrid iteration
Φ
MGM(ν1,ν2)
� is also consistent. Its iteration matrix MMGM

� = M
MGM(ν1,ν2)
� is

defined by

MMGM
0 = 0, MMGM

1 = M
TGM(ν1,ν2)
� , (11.42a)

MMGM
� = M

TGM(ν1,ν2)
� + Ŝν2

� p
(
MMGM

�−1

)γ
A−1

�−1rA�S
ν1

� for � ≥ 1. (11.42b)

Proof. Obviously, the coarse-grid correction (11.33c–e) is consistent. Hence,
Proposition 5.25a shows that ΦMGM

� is consistent. For � = 0, ΦMGM
0 describes

the exact solution, i.e., MMGM
0 = 0. For � = 1, the multi- and two-grid methods

coincide. This proves (11.42a). The iteration matrix of the coarse-grid correction
(11.33c–e) is

MCGC
� = I − p

[
I −
(
MMGM

�−1

)γ]
A−1

�−1rA�,

because we have e
(γ)
�−1 = I − p

[
I −
(
MMGM

�−1

)γ]
A−1

�−1rA�e� in (11.33e), as can
be shown similarly as in the proof of (5.21b). (5.12a) and (11.23) prove (11.42b).��
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11.5 Nested Iteration

Contrary to the name ‘nested iteration’, the following scheme is not an iteration,
but a finite technique which can be applied to any iterative method, provided that
there is a hierarchy of problems

A� x� = b� (� = 0, 1, 2, . . .).

The latter requirement is the same as for constructing the multigrid method.
Therefore, it is natural to combine the multigrid iteration with the nested iteration.
This will be done in §11.5.4. First, we discuss the nested iteration independently
of the multigrid method. Concerning the construction of discretisations we refer
to Remark 11.4. The concept of the nested iteration is of particular help for non-
linear problems, for which the choice of sufficiently close starting values is essential
(cf. §11.9.5).

11.5.1 Discretisation Error and Relative Discretisation Error

We recall Remark 2.34. As long as x� is only considered as an approximation
to a continuous solution of a differential equation, it makes no sense to compute
x� more precisely than indicated by the discretisation error. The nested iteration
provides a convenient way to obtain this goal.

For standard discretisations, the consistency order κ is known; i.e., the depen-
dence on the step size is given by

discretisation error: δ� ≤ Cde h
κ
� ,

but the constant Cde is usually unknown (in principle, it may be described by the
derivatives of the solution, but these are unknown). One may use error estimators,
to bound δ� (cf. Verfürth [380]) and to stop the iteration as soon as the iteration
error is below δ�. Since δ� is the difference2 between the exact solution and x�,
the triangle inequality yields an estimate O(hκ

� + hκ
�−1) of the difference of x�

and x�−1 by δ� + δ�+1. Provided that h�/h�−1 is uniformly bounded, the previous
estimate yields the following bound of the relative discretisation error :

‖x� − p̃x�−1‖ ≤ C1h
κ
� (κ > 0, x�, x�−1 solutions to (11.6a)). (11.43)

Here, p̃ : X�−1 → X� is a suitable prolongation, which may not necessarily
coincide with p in §11.1.3 and (11.33e). In the following, only the exponent κ
in (11.43) must be known, not the constant C1.

2 The precise notation of the difference might be x − Px� or Rx − x� (x and x� belong to
different spaces; P and R are prolongations and restrictions between these spaces).
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11.5.2 Algorithm

Obviously, the result xm
� of an iteration is more desirable, the better the starting

iterate x0
� is. So far, we did not study the choice of a starting iterate.3 Inequality

(11.43) suggests using approximations to x�−1 as the starting iterate of the iteration
at level �. The algorithm as proposed by Kronsjø–Dahlquist [248] reads as follows:

x̃0 := suitable approximation of the solution of A0x0 = b0;
for � := 1 to �max do

begin x̃� := p̃ x̃�−1;
for i := 1 to m� do x̃� := Φ�(x̃�, b�)

end;

(11.44)

Here, Φ� is any convergent and consistent linear iteration.4 The number m� of
iterations is still to be determined. Theorem 11.20 will propose an appropriate
choice.

Note that (11.44) is not an iteration in the proper sense, but a finite process.
Furthermore, it produces approximate solutions x̃� for all levels 1 ≤ � ≤ �max.

11.5.3 Error Analysis

First, we analyse the case of non-optimal linear iterations; i.e., the contraction
number behave as

‖MΦ
� ‖ ≤ 1− cΦ� h

τ
� with τ > 0 for all � ≥ 1 (11.45a)

(cf. (2.32c)). Here, MΦ
� is the iteration matrix of Φ�. An inequality opposite to

condition (11.37), n�−1≤n�/Ch, is

n� ≤ Ch n�−1.

By n�/n�−1≈ (h�−1/h�)
d, the latter inequality also gives an estimate of h�−1/h�

appearing above. Together with the norm of p̃ , we obtain an estimate of the form

‖p̃‖(h�−1/h�)
κ ≤ C2 ( p̃ : X�−1 → X� ) (11.45b)

with κ as in (11.43). The inequalities (11.43) and (11.45a,b) must use the same
family of norms in X� .

3 If one has to solve A
(ν)
� x

(ν)
� = b

(ν)
� (ν = 1, 2) for similar data (A

(ν)
� , b

(ν)
� ), one may take the

solution of A(1)
� x

(1)
� = b

(1)
� as starting value for solving A

(2)
� x

(2)
� = b

(2)
� .

4 The m�-fold application of Φ� may be replaced by a semi-iteration, or acceleration methods
may be used (cf. §10).
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Theorem 11.20. Assume (11.43) and (11.45a,b). Fix some constant K > 0 and
choose

m� ≥
1 + log(C2 + 1/K)

cΦ�
h−τ
� .

Then the nested iteration (11.44) with (11.49) produces results x̃� for all levels
0 ≤ � ≤ �max satisfying the error estimates

‖x̃� − x�‖ ≤ KC1h
κ
� (11.46)

provided that the starting iterate x̃0 satisfies inequality (11.46) for � = 0.

Proof. By assumption, (11.46) holds for � = 0. Assume (11.46) for all level
numbers ≤ � − 1. The starting iterate x0

� := p̃ x̃�−1 has an error that can be
bounded by

‖x0
� − x�‖ ≤ ‖p̃ x�−1 − x�‖+ ‖p̃ (x̃�−1 − x�−1)‖

≤ ‖p̃ x�−1 − x�‖+ ‖p̃ ‖ ‖x̃�−1 − x�−1‖
≤ C1h

κ
� + ‖p̃ ‖KC1h

κ
�−1

≤ C1h
κ
� [1 + ‖p̃ ‖(h�−1/h�)

κK]

≤ C1h
κ
� [1 + C2K)] .

m� iteration steps reduce the error to ‖xm�

� − x�‖ ≤
(
1− cΦ� h

τ
�

)m� ‖x0
� − x�‖.

The general inequality 1 + ξ ≤ exp(ξ) for all ξ ∈ R yields

(
1− cΦ� h

τ
�

)m� ≤ exp(1−m�c
Φ
� h

τ
� ) ≤ exp

(
1−
(
1 + log(C2 +

1

K
)
))

= 1/
(
C2 +

1

K

)
=

K

1 + C2K
.

By the previous estimate of ‖x0
� − x�‖, (11.46) holds for �. ��

Choose K somewhat smaller than one. Since C1h
κ
� is the relative discretisation

error, we obtain approximations x̃� with an iteration error similar in size:

‖x̃� − x�‖ ≤ K × relative discretisation error. (11.47)

Note that this statement holds, although the size of C1 involved in the relative
discretisation error C1h

κ
� does not enter the algorithm.

The cost of the nested iteration is dominated by the work O(n�h
−τ
� ) at the

maximal level � = �max. However, the standard approach using the starting value
x0
�max

= 0 requires O(n�maxh
−τ
�max

κ log(1/h�max)) operations (cf. (2.31b)).

The analysis of the cascade algorithm in Bornemann–Deuflhard [56] demon-
strates that the choice of the norm ‖ · ‖ is essential.
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11.5.4 Application to Optimal Iterations

Now we assume that the iteration (as, e.g., the multigrid method; cf. Kronsjø [247])
has an h-independent contraction number:

‖MΦ
� ‖ ≤ ζ < 1 for all � ≥ 1, MΦ

� : iteration matrix of Φ� . (11.48)

Here the numbers m� in (11.44) can be chosen independently of � :

m� = m (� ≥ 1) . (11.49)

In Remark 11.22 we shall see that even the smallest possible number m = 1 is of
practical interest.

Theorem 11.21. Assume (11.43), (11.48), and (11.45b). The iteration number
m� = m (cf. (11.49)) should be sufficiently large so that

C2 ζ
m < 1. (11.50)

Then the nested iteration (11.44) with (11.49) produces results x̃� for all levels
0 ≤ � ≤ �max satisfying the error estimates

‖x̃� − x�‖ ≤ C3(ζ
m)C1h

κ
� with C3(ζ

m) := ζm/(1− C2ζ
m), (11.51)

provided that the starting iterate x̃0 satisfies inequality (11.51) for � = 0.

Proof. We repeat the induction proof of Theorem 11.20. Assume (11.51) for levels
≤ �− 1. The starting iterate x0

� := p̃ x̃�−1 has an error that can be bounded by

‖x0
� − x�‖ ≤ ‖p̃ x�−1 − x�‖+ ‖p̃ (x̃�−1 − x�−1)‖

≤ ‖p̃ x�−1 − x�‖+ ‖p̃ ‖ ‖x̃�−1 − x�−1‖
≤ C1h

κ
� + ‖p̃ ‖C3(ζ

m)C1h
κ
�−1

≤ C1h
κ
� [1 + ‖p̃ ‖(h�−1/h�)

κC3(ζ
m)]

≤ C1h
κ
� [1 + C2C3(ζ

m)] .

After m iteration steps, the error is reduced to ‖xm
� − x�‖ ≤ ζm‖x0

� − x�‖ ≤
C1 h

κ
� {ζm [ 1 + C2 C3 (ζ

m)]} because of (11.48). Definition of C3(·) in (11.51)
shows that {. . .} = C3(ζ

m) and proves (11.51) for �. ��

Again the iteration error ‖x̃� − x�‖ coincides up to a factor C3(ζ
m) with the

relative discretisation error C1h
κ
� , i.e., (11.47) holds with K := C3(ζ

m).

Remark 11.22. The standard choice h� = h�−1/2 and the inequality ‖p̃ ‖ ≤ 1,
which is valid for standard interpolations, yield the constant C2 = 2κ in (11.45b).
The consistency order of the model case is κ = 2, from which C2 = 4. Therefore,
the factor C3(ζ

m) is equal to

C3(ζ
m) = ζm/ (1− 4ζm) .

For multigrid methods with convergence rates ≤ζ=0.2 (see the results in §11.4.2),
condition (11.50) is satisfied for only one iteration step (i.e., m = 1) and produces
the value C3(0.2) = 1.
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11.5.5 Amount of Computational Work

Let Cn� be the work required by one step of the iteration Φ� at level � and assume
(11.37): n�−1 ≤ n�/Ch. The work for x̃�−1 �→ p̃x̃�−1 is considered negligible. The
total work amounting to Cnestedn� ≤ mC(n1 + n2 + . . . + n�) can be estimated,
using the geometrical sum n1 + . . .+ n� ≤ n�

∑
k C

−k
h ≤ Chn�/(Ch − 1), by

Cnested ≤ mC Ch / (Ch − 1).

For the standard case Ch = 2d = 4 (cf. Remark 11.15), we obtain the result

Work(11.44) ≤
4m

3
Work(Φ�max). (11.52)

If we try to achieve an accuracy of ε = Chκ at level � = �max with the starting
iterate x̃� := 0 by iterating with Φ�, the work would be proportional to O(|log ε|) =
O(|log h�|) (cf. (2.31b)). According to Remark 11.22, m = 1 is a realistic choice.
Inequality (11.52) shows that sufficient accuracy for all levels 0 ≤ � ≤ �max can be
attained with the 4/3-fold work of a single Φ�max step.

Together with the numbers in (11.41d′, e′) and Table 11.5 (with ν1 = 2, ν2 = 0,
m = 1), we obtain the following results:

the V-cycle (γ = 1) requires 34n�max
operations to produce

‖x̃� − x�‖ ≤ 0.53C1h
κ
� for 0 ≤ � ≤ �max ,

(11.53a)

the W-cycle (γ = 2) requires 51n�max
operations to produce

‖x̃� − x�‖ ≤ 0.08C1h
κ
� for 0 ≤ � ≤ �max .

(11.53b)

The work given in (11.53b) corresponds to about 10 steps of the Gauss–Seidel
iteration at level �max.

Since the nested iteration (11.44) is a finite process and not an iteration, con-
siderations in §2.3 are not applicable. How many operations are necessary, depends
on the desired accuracy.

11.5.6 Numerical Examples

First, the nested iteration is applied to the differential equation

−Δu=f :=−Δ(ex+y2

) (11.54a)

with boundary values ϕ = ex+y2

. The negative Laplacian −Δ is discretised at
all levels by the standard five-point star. p̃ is cubic interpolation. Let x∗

� be
the restriction of the exact solution ex+y2

of (11.54a) to the grid Ω�. Note that
x∗
� does not coincide with the discrete solution x� of the system A�x� = b�
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corresponding to (11.54a). In Table 11.8, the results x̃� of the nested iteration are
compared with x∗

� because this is the error most interesting in practice. The maxi-
mum norm ‖x̃� − x�‖∞ of these errors is given for cases m = 1 and m = 2 (m in
(11.49)). For comparison, the last column shows the discretisation error ‖x�−x∗

�‖∞,
� h� m = 1 m = 2 m = ∞
0 1/2 7.994465810-2 7.994465810-2 7.994465810-2
1 1/4 3.990875610-2 2.921560510-2 2.896948810-2
2 1/8 1.578872110-2 8.102313610-3 8.030778910-3
3 1/16 3.291934610-3 2.076839110-3 2.072985510-3
4 1/32 5.759154910-4 5.225375810-4 5.224739910-4
5 1/64 1.329168910-4 1.309394610-4 1.309395610-4

Table 11.8 Errors ‖x̃� − x∗
�‖∞ of the nested iteration

for (11.54a).

which formally corresponds to
m = ∞. The multigrid iteration
used for solving (11.44) has the
same parameters as the W-cycle
(γ = 2) in Table 11.5. The data
in Table 11.8 demonstrate that the
choice m=1 is sufficient. m=2
doubles the work but cannot im-
prove the total error ‖x̃� − x∗

�‖∞
substantially.

Analogous data are given in Table 11.9 for the differential equation

−Δu = f := −Δ(y sin(10x)) (11.54b)

� h� m = 1 m = 2 m = ∞
0 1/2 2.824909910-0 2.824909910-0 2.824909910-0
1 1/4 5.087621210-1 4.612430210-1 4.788003310-1
2 1/8 9.588134110-2 1.033094810-1 1.030877010-1
3 1/16 2.764897910-2 2.663671010-2 2.668921310-2
4 1/32 6.879857010-3 6.648636810-3 6.650699310-3
5 1/64 1.699836510-3 1.671606910-3 1.671401410-3

Table 11.9 Errors ‖x̃� − x∗
�‖∞ of the nested iteration

for (11.54b).

with a solution y sin(10x) which
is oscillatory in the x direction.
By the nonsmooth behaviour of
the solution, the discretisation
error (last column) for problem
(11.54b) is nearly one digit worse
than for (11.54a). Therefore, the
additional error O(h2

�) of linear
interpolation p̃, which is used in-
stead of the cubic one, is of minor consequence. Also for this example, it does not
pay to perform m = 2 iterations per level.

11.5.7 Comments

Additional variants for the nested iteration (e.g., combinations with extrapolation
techniques) are discussed in Hackbusch [183, §5.4, §9.3.4, §16.4] and [191, §5.6.5].

Although nonlinear systems are not the subject of this book, we remark that the
nested iteration is of even greater importance for nonlinear systems of equations.
In the linear case, it helps to save computer time. For nonlinear iterations, however,
the availability of sufficiently good starting iterates often decides on convergence
(to the desired solution) or divergence. The nested iteration with its starting value
x̃� := p̃ x̃�−1 is a suitable technique for generating such starting iterates.

A description and analysis of the nonlinear multigrid method and the correspond-
ing nested iteration can be found in §11.9.5.
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11.6 Convergence Analysis

11.6.1 Summary

The convergence proof of multigrid methods differs from the convergence proofs
of other iterations because here the relationship between the equations A� x� = b�
and A�−1x�−1 = b�−1 plays an important role.

As sufficient criteria, we introduce and discuss two conditions in §§11.6.2–
11.6.3: the smoothing and approximation property. The smoothing property is of
algebraic nature, whereas the proof of the approximation property involves the
continuous problem, whose discretisation is described by A�x� = b� . Together,
the smoothing and approximation properties yield the convergence statement for
the two-grid iteration (§11.6.4). For γ ≥ 2, multigrid convergence can be concluded
directly from the two-grid convergence (§11.6.5).

For positive definite matrices A�, the multigrid method can be designed as a
positive definite iteration. In this case, we shall achieve even better convergence
results, including the V-cycle (γ = 1; see §11.7). These results are generalised in
Theorem 11.61 to the nonsymmetric case.

The analysis represented below is strongly simplified compared with that of
Hackbusch [194], since presently we base our considerations mostly on the
Euclidean and spectral norm. Other norms are mentioned in §11.6.6 and §11.7.2.

In contrast to what has been said above, there are multigrid methods for which
convergence proofs can be performed by purely algebraic considerations. These
variants will be discussed in §12.9.

11.6.2 Smoothing Property

In §11.1.1 we called a grid function x� =
∑

ξαβ e
αβ (cf. (11.2b)) smooth if the

coefficients ξαβ of high frequencies α, β (corresponding to the large eigenval-
ues λαβ in (3.1a)) are small. Quantitatively, one may measure the smoothness
by ‖A�x�‖2 = (

∑
λαβξαβ |2)1/2. If the smoothing step (11.21a) really leads

to a smoothing of the errors e� = x0
� − x�, the error Sν

� e� produced by the
smoothing step must have a better smoothing measure ‖A�S

ν
� e�‖2 than e�. There-

fore, the smoothing ability is characterised by the spectral norm ‖A�S
ν
� ‖2. Before

defining the smoothing property, we analyse ‖A�S
ν
� ‖2 for Richardson’s iteration

with positive definite A� :

S�(x�, b�) := x� −Θ(A�x� − b�) (11.55a)
with Θ = Θ� = 1/ρ(A�) = 1/‖A�‖2 . (11.55b)

We have ‖A�S
ν
� ‖2 = ‖A�(I − ΘA�)

ν‖2 = ‖X(I − X)ν‖2/Θ with X := ΘA�.
The following lemma applies to the matrix polynomial X(I −X)ν .
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Lemma 11.23. (a) For all matrices X with 0 ≤ X ≤ I , the inequality

‖X(I −X)ν‖2 ≤ η 0(ν) (ν ≥ 0)

holds, where the function η 0(ν) is defined by

η 0(ν) := νν/ (ν + 1)ν+1. (11.56)

(b) The asymptotic behaviour of η 0(ν) for ν → ∞ is

η 0(ν) =
1

e ν
+O(ν−2).

Proof. Set f(ξ) := ξ(1− ξ)ν . According to Lemma A.11a, we have

‖X(I −X)ν‖2 = ρ(X(I −X)ν) = max{|f(ξ)| : ξ ∈ σ(X)}.

By f(ξ) ≤ f(1/(ν + 1)) = η 0(ν) for all ξ ∈ [0, 1] ⊃ σ(X), part (a) is proved.
The discussion of the function η 0(ν) yields statement (b). ��

Remark 11.24. For A� > 0, Richardson’s method (11.55a,b) leads to

‖A�S
ν
� ‖2 ≤ η 0(ν) ‖A�‖2 for all ν ≥ 0, � ≥ 0. (11.57)

Note that the factor η 0(ν) is independent of h� and �. The smoothing property,
which we are going to define, is an estimate with a form similar to (11.57). Instead
of η 0(ν), we may take an arbitrary zero sequence η(ν) → 0 . Furthermore, it is
neither necessary nor desirable to require an inequality as (11.57) for all ν ≥ 0.

Definition 11.25 (smoothing property). An iteration S� (� ≥ 0) with iteration
matrix S� satisfies the smoothing property if there are functions η(ν) and ν̄(h)
independent of � with

‖A�S
ν
� ‖2 ≤ η(ν)‖A�‖2 for all 0 ≤ ν < ν̄(h�), � ≥ 1, (11.58a)

lim
ν→∞ η(ν) = 0, (11.58b)

lim
h→0

ν̄(h) = ∞ or ν̄(h) = ∞. (11.58c)

The equality ν̄(h) = ∞ in (11.58c) expresses the fact that (11.58a) holds for
all ν. This happens only for convergent iterations S�, as shown below.

Remark 11.26. The conditions (11.58a,b) together with ν̄(h) = ∞ imply conver-
gence of S�.

Proof. ρ(Sν
� ) ≤ ‖Sν

� ‖2 ≤ ‖A−1
� ‖2‖A�S

ν
� ‖2 ≤ η(ν) cond2(A�) < 1 for suffi-

ciently large ν follows from η(ν) → 0 and implies ρ(S�) < 1. ��

From Remark 11.24, we conclude the next theorem.

Theorem 11.27. For A� > 0, the Richardson iteration (11.55a,b) satisfies the
smoothing property (11.58a–c) with η(ν) := η 0(ν) and ν̄(h) = ∞.
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The reason for the more general condition (11.58c) instead of ν̄(h) = ∞ is
that the smoothing property can also be formulated for non-convergent iterations.
Examples of divergent iterations are the Gauss–Seidel iteration for the
indefinite problem (11.35), as well as Richardson’s iteration in the next remark.

Remark 11.28. Assume that the indefinite matrix A� = AH
� has the spectrum

σ(A�) ⊂ [−α�, β�] with 0 ≤ α� ≤ β� and lim�→∞ α�/β� = 0. Although the
Richardson iteration with Θ=1/β� is divergent, it satisfies the smoothing property.

Proof. The damping factor is Θ = 1/β�. As in the proof for Lemma 11.23, we
have ‖A�(I − ΘA�)

ν‖2 ≤ max {η0(ν), (α�/β�)(1 + α�/β�)
ν} ‖A�‖2. Define

ν̄(h�) by ν̄(h�) := β�/α� → ∞. For ν < ν̄ := ν̄(h�), the inequalities

(α�/β�)(1 + α�/β�)
ν ≤ (α�/β�) exp{να�/β�} = 1

ν

(
ν
ν̄ exp ν

ν̄

)
≤ e

ν

follow. Hence, (11.58a–c) is satisfied by η(ν) := max{η0(ν), e/ν} = e/ν. ��

The assumptions of Remark 11.28 are fulfilled for discretisation of the Helmholtz
equation −Δu− cu = f (c > 0), because O(α�/β�) = O(h2

�).
The following theorem can be considered as a perturbation lemma. It shows that

the smoothing property remains valid under the perturbation of the matrix A′
� into

A� = A′
� +A′′

� , where A� may be indefinite and nonsymmetric.

Theorem 11.29. Let A� = A′
� + A′′

� and S� = S�(·, ·, A�) and S ′
� = S ′

�(·, ·, A′
�)

be the smoothing iterations corresponding to A� and A′
� , respectively. Their

iteration matrices are denoted by S� and S′
� with S′′

� := S� − S′
� . Assume that

A′
� and S′

� satisfy the smoothing property with η′(ν), ν̄′(h), (11.59a)
‖S′

�‖2 ≤ C ′
S for all � ≥ 1, (11.59b)

lim
�→∞

‖S′′
� ‖2 = 0, (11.59c)

lim
�→∞

‖A′′
� ‖2/‖A′

�‖2 = 0. (11.59d)

Then the iteration S� = S�(·, ·, A�) for A� also satisfies the smoothing property.
The corresponding bound η(ν) can be chosen, e.g., as η(ν) := 2η′(ν).

Proof. CS := C ′
S + max{‖S′′

� ‖2 : � ≥ 1} satisfies ‖S�‖2 ≤ CS for all � ≥ 1.
Without loss of generality, we may suppose that CS ≥ 1. Sν

� can be split into
S′ν
� + S

′′(ν)
� with

‖S′′(ν)
� ‖2 = ‖Sν

� − S′ν
� ‖2

=

∥∥∥∥ ν−1∑
μ=0

Sμ
� (S� − S′

�)S
′ν−1−μ
�

∥∥∥∥
2

=

∥∥∥∥ ν−1∑
μ=0

Sμ
� S

′′
� S

′ν−1−μ
�

∥∥∥∥
2

≤
( ν−1∑

μ=0

Cμ
SC

′ν−1−μ
S

)
‖S′′

� ‖2 ≤ νCν−1
S ‖S′′

� ‖2 →
(11.59c)

0 (11.59e)
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for � → ∞. For 1 ≤ ν ≤ ν̄′(h�), we have

‖A�S
ν
� ‖2 ≤ ‖A′

�S
′ν
� ‖2 + ‖A′′

� ‖2‖Sν
� ‖2 + ‖A′

�‖2‖S
′′(ν)
� ‖2 (11.59f)

≤ η′(ν)‖A′
�‖2 + Cν

S‖A′′
� ‖2 + νCν−1

S ‖S′′
� ‖2‖A′

�‖2

= η′(ν)‖A�‖2
{
‖A′

�‖2
‖A�‖2

+Cν
S

‖A′′
� ‖2

‖A�‖2
+ νCν−1

S

‖A′
�‖2

‖A�‖2
‖S′′

� ‖2
}
.

By ‖A′′
� ‖2/‖A′

�‖2 → 0, ‖S′′
� ‖2 → 0, ‖A′

�‖2/‖A�‖2 → 1, ‖A′′
� ‖2/‖A�‖2 → 0,

the expression {. . .} converges to 1 for � → ∞ (i.e., for h = h� → 0) while ν is
fixed. This proves that ν̄′′(h) → ∞ (h → 0) for

ν̄′′(h) := sup

{
ν>0 :

‖A′
�‖2

‖A�‖2
(
1+νCν−1

S ‖S′′
� ‖2
)
+Cν

S

‖A′′
� ‖2

‖A�‖2
≤ 2 for h� ≤ h

}
.

We define η(ν) := 2η′(ν) and ν̄(η) := min{ν̄′(h), ν̄′′(h)}. For ν ≤ ν̄(h),
inequality (11.59f) proves the smoothing property ‖A�S

ν
� ‖2 ≤ η(ν)‖A�‖2. ��

Usually, discretisations of elliptic differential equations satisfy the following
conditions:

There is an h-independent constant c0 such that
A′

� :=
1
2 (A� +AH

� ) + c0I is positive definite, (11.60a)

Ch−2m
� ≤ ‖A′

�‖2 ≤ C̄h−2m
� (2m: order of the differential eq.), (11.60b)

‖A′′
� ‖2 ≤ Ch1−2m

� for A′′
� := A� −A′

� =
1

2
(A� −AH

� )− c0I (11.60c)

(cf. Hackbusch [183, 201]). To apply Theorem 11.29, one proves the smoothing
property for the positive definite matrix A′

� and transfers this property to A� by
Theorem 11.29. Condition (11.59d) follows from (11.60b,c) by ‖A′′

� ‖2/‖A′
�‖2 ≤

O(h�) → 0. Since S′′
� = −ΘA′′

� = −A′′
� /‖A′

�‖2 in the case of the Richardson
iteration, (11.59d) also implies (11.59c). (11.59b) is always satisfied by CS = 2,
because S′

� = I −A′
�/‖A′

�‖2 (even CS = 1 if A′
� ≥ 0).

The smoothing property can be proved not only for the Richardson method but
also for the damped (block-)Jacobi iteration, the 2-cyclic Gauss–Seidel iteration (in
particular, the chequer-board Gauss–Seidel method for five-point formulae), and the
Kaczmarz iteration. Furthermore, symmetric iterations like the symmetric Gauss–
Seidel method, SSOR, and the ILU iteration (cf. deZeeuw[105]) belong to this class.
The symmetric case will be considered in §11.7.3. The smoothing property does not
hold, e.g., for the undamped Jacobi method or the SOR method with ω ≥ ωopt.
For the smoothing analysis of the iterations mentioned above, see Hackbusch [183,
§6.2].

The proof of Lemma 11.23 is based on the properties of the spectral norm for
normal matrices. Correspondingly, statements for general matrices are proved via
perturbation arguments. Nevertheless, it is possible to obtain the smoothing property
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for general matrices directly. Even other norms than the spectral norm are possible.
The following result by Reusken appeared in a report of 1991 and later in [323, 322].

Theorem 11.30. Let ‖·‖ be a matrix norm corresponding to a vector norm. Let
S� = I − W−1

� A� be the iteration matrix of the smoothing iteration and assume
that

‖I − 2W−1
� A�‖ ≤ 1 , (11.61a)
‖W�‖ ≤ C ‖A�‖ (11.61b)

with a constant C independent of �. Then the smoothing property (11.61c) holds:

‖A�S
ν
� ‖ ≤ C

√
2/(πν) ‖A�‖ for all ν ≥ 1. (11.61c)

The matrix in (11.61a) is the iteration matrix of Sϑ=2,�, the extrapolated version
of S� with ϑ = 2. Inequality (11.61a) does not imply convergence of Sϑ=2,�,
but characterises the weak contractivity or nonexpansivity (cf. Definition 7.3).
The proof of the theorem is based on the following lemma.

Lemma 11.31. Let the matrix B satisfy ‖B‖ ≤ 1 with respect to a matrix norm
corresponding to a vector norm. Then5

‖(I −B)(I +B)ν‖ ≤ 2

(
ν

&ν/2'

)
≤ 2ν+1

√
2/(πν).

Proof. Note that
(I −B)(I +B)ν = (I −B)

ν∑
μ=0

(
ν
μ

)
Bμ = I +

ν∑
μ=1

(
ν
μ

)
Bμ−

ν−1∑
μ=0

(
ν
μ

)
Bμ+1−Bν+1

=
(
I −Bν+1

)
+

ν∑
μ=1

[(
ν
μ

)
−
(

ν
μ−1

)]
Bμ.

By ‖Bμ‖ ≤ 1 ,
(

ν
μ−α

)
=
(
ν
α

)
and
(
ν
μ

)
≥
(

ν
μ−1

)
for μ ≤ &ν/2' we obtain

‖(I −B)(I +B)ν‖ ≤ 2 + 2

�ν/2�∑
μ=1

∣∣∣∣(νμ
)
−
(

ν

μ− 1

)∣∣∣∣
= 2 + 2

�ν/2�∑
μ=1

{(
ν

μ

)
−
(

ν

μ− 1

)}
= 2 + 2

(
ν

&ν/2'

)
− 2

(
ν

0

)
= 2

(
ν

&ν/2'

)
.

The sequence ak :=
(
2k
k

)√
k / 22k is monotonically increasing and tends to

lim ak = 1√
π

. The identity
(

ν
�ν/2�
)
= aν/2 2

ν/
√
ν/2 for even powers ν leads

to the desired estimate ak ≤ 1/
√
π . For odd ν use

(
ν

�ν/2�
)
= 1

2

(
ν+1

(ν+1)/2

)
. ��

Proof of Theorem 11.30. (I − B)(I + B)ν = 2ν+1W−1
� A� S

ν
� holds with

B := I − 2W−1
� A� ; hence,

‖A�S
ν
� ‖ = 2−ν−1‖W�(I −B)(I +B)ν‖ ≤ 2−ν−1‖W�‖‖(I −B)(I +B)ν‖.

Assumption (11.61b) and Lemma 11.31 yield the statement. ��

5 �x	 = max{n ∈ Z : n ≤ x} is the rounding down to the next integer.
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Example 11.32. (a) Let Ci > 0 (1 ≤ i ≤ 4) be positive constants independent
of � with

C1I ≤ 1
2 (A� +AH

� ) ≤ C2h
−2
� I,

‖ 1
2 (A� −AH

� )‖2 ≤ C3h
−1
� I,

‖A�‖2 ≥ C4h
−2
� I.

Set Θ = Θ� := h2
�C1/(C1C2 +C2

3 ) and C := (C1C2 + vC2
3 )/(C1C4). Then

the Richardson iteration damped by Θ� satisfies the smoothing property (11.61c)
with the constant C above.
(b) Let S� be the Jacobi or Gauss–Seidel iteration damped by ϑ = 1

2 . Furthermore,
A� is assumed to be weakly diagonally dominant. Then the smoothing property
(11.61c) holds with C = 2 with respect to the row-sum norm ‖·‖∞.

Proof. (i) Theorem 3.30 proves (11.61a). (11.61b) follows with C = 1/Θ.
(ii) Since ϑ = 1/2, inequality (11.61a) is the estimation of the nondamped

Jacobi or Gauss–Seidel iterations. Weak diagonal dominance implies (11.61a).
From ‖D�‖∞ ≤ ‖D� − E�‖∞ ≤ ‖A�‖∞ for A = D − E − F (cf. (3.11a–d)),
we conclude (11.61b) with C = 1/ϑ. ��

11.6.3 Approximation Property

11.6.3.1 Formulation

For the coarse-grid correction, the fine-grid solution e� of A�e� = d� is replaced
by p e�−1 obtained from A�−1e�−1 = d�−1 := rd�. Therefore, p e�−1 ≈ e�, i.e.,
pA−1

�−1rd� ≈ A−1
� d� should be valid. We quantify this requirement by

‖pA−1
�−1rd� −A−1

� d�‖2 ≤ CA‖d�‖2/‖A�‖2 for � ≥ 1, d� ∈ X�.

This inequality can be rewritten by the matrix norm (spectral norm) as the approxi-
mation property

‖A−1
� − pA−1

�−1r‖2 ≤ CA/‖A�‖2 for all � ≥ 1. (11.63)

In general, proofs of the approximation property (11.63) are not of algebraic
nature but use (at least indirectly) properties of the underlying boundary value
problem. One possible route to the proof is as follows. Assume that A�−1 = rA� p
holds according to (11.20). For an arbitrary restriction r′ : X� → X�−1, the
following factorisation holds:

A−1
� − pA−1

�−1r = (I − pA−1
�−1rA�)A

−1
� = (I − pA−1

�−1rA�)(I − p r′)A−1
� .
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Under suitable conditions,6 the solution v� := A−1
� f� is sufficiently smooth, so

that the interpolation error

d� = (I − pr′)v� = v� − pr′v�

can be estimated by ‖d�‖2 ≤ C‖f�‖2/‖A�‖2. The same tools can be used to show
that ‖I − pA−1

�−1rA�‖ ≤ const. Together, one obtains the approximation property
(11.63). In case A�−1 is not the Galerkin product, see Hackbusch [183, Criteria
6.3.35 and 6.3.38].

The easiest proof of the approximation property can be given for Galerkin
discretisations. The discretisation, together with the prolongations and restrictions,
is defined in §§11.6.3.2–11.6.3.3. The crucial part of the proof of the approximation
property is given in §11.6.3.4.

11.6.3.2 Galerkin Discretisation

The boundary value problem is described in the variational form (E.5). Instead of a
single finite-dimensional subspace Vn ⊂ V we consider a hierarchy of subspaces

V0 ⊂ V1 ⊂ . . . ⊂ V�−1 ⊂ V� ⊂ . . . ⊂ V,

where V� replaces the notation Vn�
(n� = dim(V�)) used in §E.2. Similarly, all

mappings Pn = Pn�
, . . . used in §§E.2–E.6 are now denoted by P� : V� → V, . . .

11.6.3.3 Canonical Prolongation and Restriction

Section E.6 discusses the relation of Galerkin discretisations using two subspaces
Vn′ ⊂ Vn, now denoted by V�−1 ⊂ V� . According to Proposition E.15, there are
mappings p : X�−1 → X� and r : X� → X�−1 with

P� p = P�−1, r = p∗, rR� = R�−1. (11.64)

Since p and r are the natural choice (see the diagram in (E.19)), they are called the
canonical prolongation and the canonical restriction.

Remark 11.33. (a) Using the representation p = R̂�P�−1 in (E.18) and the bounds
in (E.10a,b) and (E.11c), we get the uniform estimates

‖p‖X�←X�−1
= ‖r‖X�−1←X�

≤ CP C̄P for all � ≥ 1.

(b) The matrices A� and A�−1 are connected by (11.20):

A�−1 = r A� p for all � ≥ 1.

6 In the case of difference schemes, the theory of discrete regularity can be used; cf. Hackbusch
[180, 181], [183, §6.3.2.1], [201, §9.2], and Jovanovič–Süli [229].
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11.6.3.4 Proof of the Approximation Property

Based on the 2m-regularity (E.13b), the error estimate (E.14) is proved in §E.5:

‖E�‖U←U ≤ CEh
m
� for all � ≥ 1, (11.65a)

where E� := A−1 − P�A
−1
� R�. 2m is the order of the differential operator. The

inverse estimate, together with the boundedness of the bilinear form, yields (E.12c):

‖A�‖2 ≤ CKh−2m
� for all � ≥ 1. (11.65b)

The inequality
‖R̂�‖X�←U = ‖P̂�‖U←X�

≤ CP (11.65c)

is mentioned in (E.11c). A last condition for the approximation property is almost
identical to the inequality n� ≤ Ch n�−1 used in §11.5.3:

h�−1 ≤ Chh� for all � ≥ 1. (11.65d)

Usually, (11.65d) holds with Ch = 2.

Theorem 11.34. Let A� be the matrices (E.7b) of the Galerkin discretisation.
Choose the canonical p and r . Assume (11.65a–d). Then the approximation
property (11.63) holds.

Proof. Use inequality (11.65a) for � and �− 1:

‖P�A
−1
� R� − P�−1A

−1
�−1R�−1‖U←U

= ‖E�−1 − E�‖U←U ≤ CE

(
h2m
� + h2m

�−1

)
.

(11.65d) implies h2m
�−1 ≤ C2m

h h2m
� . From

h2m
� ≤ CK/ ‖A�‖2 (cf. (11.65b)) and P� = P�−1p, R� = rR−1

� (cf. (11.64)),

we conclude that

‖P�(A
−1
� − pA−1

�−1r)R�‖U←U ≤ C ′/ ‖A�‖2

with C ′ := CECK(1 + C2m
h ). Multiplying P�(A

−1
� − pA−1

�−1r)R� by R̂� from
the left and by P̂� from the right and using (E.11b,c), we obtain

‖A−1
� − pA−1

�−1r‖2 ≤ ‖R̂�‖X�←U‖P�(A
−1
� − pA−1

�−1r)R�‖U←U‖P̂�‖U←X�

≤ C ′C2
P / ‖A�‖2 ,

which is the approximation property with CA := C ′C2
P . ��
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11.6.4 Convergence of the Two-Grid Iteration

As mentioned in §11.2.2, ρ(MTGM(ν1,ν2)
� )=ρ(M

TGM(ν,0)
� ) holds for ν = ν1+ν2,

so that we may restrict our considerations to ν = ν1 > 0 , ν2 = 0. This choice
is optimal for statements concerning the contraction number ‖MTGM(ν,0)

� ‖2 with
respect to the spectral norm. The following Theorems 11.35 and 11.36 correspond
to the cases ν̄(h) = ∞ and ν̄(h) < ∞ , respectively.

Theorem 11.35. Assume the smoothing and approximation properties (11.58a–c),
(11.63) with ν̄(h) = ∞ . For given 0 < ζ < 1, there exists a lower bound ν such
that

‖MTGM(ν,0)
� ‖2 ≤ CAη(ν) ≤ ζ for all ν ≥ ν , � ≥ 1. (11.66)

Here, CA and η(ν) are the quantities in (11.63) and (11.58a,b). By ζ < 1, in-
equality (11.66) implies convergence of the two-grid iteration. Note that the con-
traction bound CA η(ν) is independent of h�.

Proof. The two-grid iteration matrix can be factorised as follows:

M
TGM(ν,0)
� = (I − pA−1

�−1rA�)S
ν
� =
[
A−1

� − pA−1
�−1r
]
[A�S

ν
� ]

(cf. Lemma 11.11). Estimating both factors by (11.58a) and (11.63), we obtain the
inequality (11.66). ��

Theorem 11.36. Assume the smoothing and approximation properties (11.58a–c),
(11.63), including the case ν̄(h) < ∞ . For all 0 < ζ < 1 , there exist bounds
h̄ > 0 and ν such that (11.66) holds for all ν∈ [ ν, ν̄(h)) and all h� with h� ≤ h̄,
where the interval [ ν, ν̄(h)) is not empty (i.e., ν < ν̄(h)).

Proof. Choose ν as in Theorem 11.35. Because of ν̄(h) → ∞ (h → 0), h̄ can
be chosen such that ν̄(h�) > ν for all h� ≤ h̄ . ��

11.6.5 Convergence of the Multigrid Iteration

In Theorem 11.19, the representation M
MGM(ν,0)
� =M

TGM(ν,0)
� − . . . of the multi-

grid iteration matrix is shown. We are exploiting the fact that the perturbation ‘. . .’
is sufficiently small; hence, two-grid convergence implies multigrid convergence.
Besides the smoothing and approximation properties, we require additional condi-
tions, which are easy to satisfy. The first one is

‖Sν
� ‖2 ≤ CS for all � ≥ 1, 0 < ν < ν̄ := min

�≥1
ν̄(h�) (11.67a)

with ν̄(h�) defined in (11.58c).



302 11 Multigrid Iterations

Exercise 11.37. Assume S� := S′
� + S′′

� . Let (11.67a) hold for S′ν
� and assume

(11.59c): lim�→∞ ‖S′′
� ‖2 = 0 . Prove (11.67a) for S� (similar to Theorem 11.29).

Exercise 11.38. Prove the inequalities

C−1
p ‖x�−1‖2 ≤ ‖px�−1‖2 ≤ C̄p ‖x�−1‖2 (x�−1 ∈ X�−1, � ≥ 1) (11.67b)

for the canonical choice (11.64) by using (E.9) with Cp = C̄p := CP C̄P .

The identity pA−1
�−1rA�S

ν
� = Sν

� −
[
A−1

� − pA−1
�−1r
]
A�S

ν
� = Sν

� −M
TGM(ν,0)
�

implies the next statement.

Lemma 11.39. Let (11.67a,b) be valid. Then

‖A−1
�−1rA�S

ν
� ‖2 ≤ Cp(CS + ‖MTGM(ν,0)

� ‖2). (11.67c)

Let ν = ν1 > 0 and ν2 = 0 be the numbers of smoothing steps as in §11.6.4.
Using (11.67b, c), we can estimate the multigrid iteration matrix in (11.42a,b) by

‖MMGM(ν,0)
� ‖2 ≤ ‖MTGM(ν,0)

� ‖2 + C∗‖MMGM(ν,0)
�−1 ‖γ2 for � ≥ 1 (11.68a)

with C∗ := CpC̄p(CS + 1).

Here, ν is assumed to be chosen large enough so that ‖MTGM(ν,0)
� ‖2≤1 according

to Theorem 11.35 or 11.36. Together with MMGM
0 = 0 (cf. (11.42a)), inequality

(11.68a) leads to the recursive inequalities (11.68c) for the quantities ζ� :

ζ� := ‖MMGM(ν,0)
� ‖2 (� ≥ 0), (11.68b)

ζ0 := 0, ζ� ≤ ζ + C∗(ζ�−1)
γ for � ≥ 1. (11.68c)

ζ is the �-independent bound for the two-grid convergence, whose existence is
stated by Theorem 11.35 or 11.36:

‖MTGM(ν,0)
� ‖2 ≤ ζ . (11.68d)

Analysing the fixed-point equation x = ζ + C∗xγ , we obtain the next result.

Lemma 11.40. Assume γ ≥ 2 , C∗γ > 1, and ζ ≤ γ−1
γ / γ−1

√
C∗γ. Then all

solutions of the inequalities (11.68c) are bounded by

ζ� ≤ ζ∗ ≤ γ

γ − 1
ζ < 1 for all � ≥ 0. (11.69)

Exercise 11.41. For the most interesting case of γ = 2, prove that

ζ∗ = 2 ζ /
(
1−
√

1− 4C∗ζ
)

for ζ∗ in (11.69).

Since, by (11.68b), ζ� are the contraction number bounds, we obtain the desired
convergence result.
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Theorem 11.42 (multigrid convergence). Assume the smoothing and the approxi-
mation properties (11.58a–c) and (11.63), the conditions (11.67a,b), and,
in addition, γ ≥ 2 . As in Theorems 11.35 and 11.36, for every 0 < ζ ′ < 1 there
are ν and h̄ > 0 such that

‖MMGM(ν,0)
� ‖2 ≤ ζ ′ < 1 for ν ≤ ν < ν̄ := min

�≥1
ν̄(h�),

provided that h1 ≤ h̄. Here, ν < ν̄ holds. In the case of ν̄(h) = ∞, one may set
h̄ := ∞ (i.e., the choice of the grid size is not restricted).

Proof. Choose ζ := γ−1
γ ζ ′ small enough, so that ζ fulfils the assumptions of

Lemma 11.40. According to Theorem 11.36, ν and h̄ have to be chosen in such
a way that (11.68d) holds: ‖MTGM(ν,0)

� ‖2 ≤ ζ for ν ≤ ν < ν̄. Lemmata 11.39
and 11.40 give ζ� = ‖MMGM(ν,0)

� ‖2 ≤ γ
γ−1ζ ≤ ζ ′. ��

11.6.6 Case of Weaker Regularity

The proof of the approximation property uses the 2m-regularity (cf. (E.13b)) which,
in the case of the Poisson equation, is A−1 = −Δ−1 : U = L2(Ω) = H0(Ω) →
H2(Ω) ∩ H1

0 (Ω). This assumption is true for the unit square Ω = (0, 1) × (0, 1)
as for any convex domain, but it does not hold, e.g., for domains with re-entrant
corners. In the general case, one obtains only statements of the form

A−1 : H−σm(Ω) → H(2−σ)m(Ω) ∩Hm
0 (Ω) for some σ ∈ (0, 1)

(cf. Hackbusch [193, §9.1]). A similar statement may be assumed for A∗. If σ<1,
the approximation property (11.63) cannot be proved but has to be formulated by
the help of other norms.

Let |·|t for −1 ≤ t ≤ 1 be a discrete analogue of the Sobolev norm Htm(Ω).
We define U� := (X�, |·|σ) and F� := (X�, |·|−σ). Then

‖A−1
� − pA−1

�−1r‖U�←F�
≤ (CA/ ‖A�‖2)1−σ (11.70)

can be shown (cf. Hackbusch [183, §6.3.1.3]; cf. (E.15)). For the notation of the
norm on the left-hand side, compare with (B.11). For A� > 0, the norms can be
defined by

‖x�‖U�
= |x�|σ := ‖Aσ/2

� x�‖2, ‖f�‖F�
= |f�|−σ := ‖A−σ/2

� f�‖2. (11.71)

In the general case, replace the matrix A� in (11.71) by the positive definite part
A′

� :=
1
2 (A� +AH

� ) + c0I (cf. (11.60a)).
Part (11.58a) of the smoothing property (11.58a–c) has to be adapted to the new

norms. Inequality (11.58a) becomes

‖A�S
ν
� ‖F�←U�

≤ η(ν) ‖A�‖1−σ
2 for 0 ≤ ν ≤ ν̄(h�). (11.72)
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Exercise 11.43. Let S� be the Richardson iteration (11.55a,b) and assume A� > 0.
Using the norms in (11.71), prove for all ν ≥ 0 that

‖A�S
ν
� ‖F�←U�

= ‖A1−σ
� (I −ΘA�)

ν‖2 ≤
[
η0(

ν
1−σ ) ‖A�‖2

]1−σ

. (11.73)

The two-grid contraction number with respect to ‖·‖U�
can be concluded from

the product of (11.70) and (11.72):

‖MTGM(ν,0)
� ‖U�←U�

≤ η(ν)C 1−σ
A . (11.74)

Similar to §11.6.5, we obtain a corresponding convergence result for the multigrid
iteration.

Consider the bound η(ν) =
[
η0(

ν
1−σ )CA

]1−σ
in (11.73). For the standard

case discussed in §§11.6.2–11.6.5, we had σ = 0 and the bound η(ν) in (11.74)
behaved as O( 1ν ). For 0<σ<1, the contraction number behaves as O(1/ν1−σ).
The value σ = 1 is not sufficient because η(ν) fails to fulfil (11.58b).

11.7 Symmetric Multigrid Methods

The multigrid analysis above addresses the general (nonsymmetric) case in order
to emphasise that multigrid iterations are not restricted to symmetric or even only
positive definite problems. However, the symmetric case admits some stronger
statements that are covered in this chapter.

11.7.1 Symmetric and Positive Definite Multigrid Algorithms

We consider the two-grid algorithm (11.22b) and the multigrid iteration (11.33).
The required symmetry conditions are

r = p∗, ν1 = ν2 =
ν

2
, Ŝ� = S∗

� for all � ≥ 0 (11.75a)

(cf. (11.17)). The second condition requires the post-smoothing Ŝ� to be adjoint to
the pre-smoothing S�. Occasionally, we need the Galerkin product property:

A�−1 = r A� p . (11.75b)

The Galerkin product (11.75b), together with r = p∗, ensures that A�max
= AH

�max

implies A� = AH
� for all 0 ≤ � < �max. Otherwise, this property must be required

explicitly:

A�max = AH
�max

=⇒ A� = AH
� for all 0 ≤ � < �max, (11.75c)
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Lemma 11.44. Let (11.75a,c) be valid. Then the two- and multigrid iterations
Φ
TGM( ν

2 ,
ν
2 )

� and Φ
MGM( ν

2 ,
ν
2 )

� are symmetric: Φ
TGM( ν

2 ,
ν
2 )

� , Φ
MGM( ν

2 ,
ν
2 )

� ∈ Lsym.

Proof. (i) We have to prove that the Hermitian symmetry of A=A�max implies the
symmetry of the matrix N�max =N

MGM( ν
2 ,

ν
2 )

�max
of the second normal form (cf. (5.4)).

(ii) Assume A�max
= AH

�max
and by (11.75c) that A� = AH

� holds for all

levels. First, we prove Φ
TGM(ν/2,ν/2)
� ∈ Lsym. Note that ΦCGC

� ∈ Lsym, since
NCGC

� = pA−1
�−1r in Remark 11.6 is symmetric. By Corollary 5.30, the two-grid

iteration Φ
TGM( ν

2 ,
ν
2 )

� =(S∗
� )

ν◦ΦCGC
� ◦Sν

� = (Sν
� )

∗ ◦ΦCGC
� ◦Sν

� is also symmetric.
(iii) Next, we use the definition (11.42a,b) for an induction on �. Assume that

Φ
MGM( ν

2 ,
ν
2 )

�−1 ∈ Lsym. Then
(
Φ
MGM( ν

2 ,
ν
2 )

�−1

)γ
is also symmetric and, by Criterion 5.5,

the matrix M
MGM( ν

2 ,
ν
2 )

�−1 A−1
�−1 is symmetric. The steps (11.33c–e) define an coarse-

grid correction Φ̂CGC
� with the iteration matrix MCGC

� := p
(
MMGM

�−1

)γ
A−1

�−1rA�.

Obviously, MCGC
� A−1

� = p
[(
MMGM

�−1

)γ
A−1

�−1

]
r ∈ Lsym holds, and Criterion 5.5

proves the symmetry of Φ̂CGC
� . As in part (ii), the symmetry of Φ

MGM(ν/2,ν/2)
�

follows from the representation Φ
MGM(ν/2,ν/2)
� = (Sν

� )
∗ ◦ Φ̂CGC

� ◦ Sν
� . ��

The positive definiteness of Φ
TGM( ν

2 ,
ν
2 )

� and Φ
MGM( ν

2 ,
ν
2 )

� is considered next.

Lemma 11.45. Assume (11.75a) and A� > 0. Set M� := M
MGM(ν/2,ν/2)
� and

W� := W
MGM(ν/2,ν/2)
� . The following statements also hold for the two-grid case.

(a) Assume that the iteration Φ
MGM( ν

2 ,
ν
2 )

� converges. Then it is positive definite,
i.e., ΦMGM( ν

2 ,
ν
2 )

� ∈ L pos , and converges monotonically with respect the energy
norm ‖·‖A�

. The transformed iteration matrices A1/2
� M�A

−1/2
� are Hermitian. The

matrix W� of the third normal form is positive definite and fulfils

(1− ρ�)W� ≤ A� ≤ (1 + ρ�)W� with ρ� = ρ(M�) = ‖A
1
2

� M�A
− 1

2

� ‖2. (11.76a)

If, according to Theorems 11.35 or 11.42, ρ� ≤ ρ < 1 is h�-independent, then the
condition (11.76b) is also h�-independent:

κ(W−1
� A�) ≤

1 + ρ�
1− ρ�

≤ 1 + ρ

1− ρ
. (11.76b)

(b) In the case of (11.75b), the inequalities (11.76a,b) can be improved:

(1− ρ�)W� ≤ A� ≤ W�, κ(W−1
� A�) ≤ 1/(1− ρ�) ≤ 1/(1− ρ).

Proof. The representations (11.23) and (11.42a,b) show that A�M�A
−1
� = MH

� ,
because A� Ŝ� A

−1
� = SH

� according to (5.2b). This proves part (a). Part (b) is
obtained from Theorem 3.34c. Part (c) is based on the property A

1/2
� M�A

−1/2
� ≥ 0,

which will be proved in (11.87b). ��
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11.7.2 Two-Grid Convergence for ν1 > 0 , ν2 > 0

The case ν1 = ν > 0 and ν2 = 0 is treated in §11.6. The technique used there can
also be applied to the general case ν1 ≥ 0, ν2 ≥ 0, ν := ν1+ν2 > 0, and especially
to ν1 = ν2 = ν/2.

Exercise 11.46. Assume (11.75a) without the condition ν1 = ν2. Prove

Φ
TGM(ν1,ν2)
� =

(
Φ
TGM(ν2,ν1)
�

)∗
, (11.77a)

Φ
TGM(ν1,ν2)
� = Φ

TGM(0,ν2)
� ◦ ΦTGM(ν1,0)

� in the case of (11.75b). (11.77b)

Under assumption (11.75b), the statements (11.77c,d) for the two-grid iteration
matrices M�(ν1, ν2) := M

TGM(ν1,ν2)
� follow from (11.77a,b):

M�(ν1, ν2) = M�(0, ν2)M�(ν1, 0) = A−1
� M�(ν2, 0)

HA�M�(ν1, 0), (11.77c)

A
1
2

� M�(ν1, ν2)A
− 1

2

� =
(
A

1
2

� M�(ν2, 0)A
− 1

2

�

)H(
A

1
2

� M�(ν1, 0)A
− 1

2

�

)
. (11.77d)

For estimating A
1/2
� M�(ν, 0)A

−1/2
� , we may use the approximation property

(11.78a) and the smoothing property (11.78b):

‖A1/2
� (A−1

� − pA−1
�−1r)‖2 ≤

√
CA/ ‖A�‖2 , (11.78a)

‖A�S
ν
� A

−1/2
� ‖2 ≤

√
η(2ν) ‖A�‖2 , (11.78b)

which correspond to (11.70) and (11.72) for the energy norm ‖·‖U�
= ‖·‖A�

and
the Euclidean norm ‖·‖F�

= ‖·‖2. Under assumption (11.75b), inequality (11.78a)
is equivalent to the approximation property (11.63). In the case of Richardson’s
iteration (11.55a,b), inequality (11.78b) holds because of

‖A�S
ν
� A

−1/2
� ‖2 = ‖A1/2

� Sν
� ‖22 = ‖A�S

2ν
� ‖2 ≤ η0(2ν)‖A�‖2

with η(2ν) = η0(2ν) (η0 in (11.56)). The inequalities (11.78a,b) yield the estimate

‖MTGM(ν,0)
� ‖A�

= ‖A1/2
� M

TGM(ν,0)
� A

−1/2
� ‖2 ≤

√
η(2ν)CA.

Using (11.77d), we finally prove the following convergence theorem.

Theorem 11.47. Assume (11.75a,b) without ν1 = ν2. The smoothing and approxi-
mation properties (11.78a,b) imply

‖MTGM(ν1,ν2)
� ‖A�

≤ CA

√
η(2ν1)η(2ν2),

‖MTGM(ν/2,ν/2)
� ‖A�

≤ CA η(ν).

Two-grid convergence follows as in Theorems 11.35–11.36.

As in §11.6.5, multigrid convergence can be concluded from the two-grid
convergence. However, it has to be emphasised that the proof technique in §11.6.5
requires γ ≥ 2 and therefore excludes the V-cycle (γ = 1).
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11.7.3 Smoothing Property in the Symmetric Case

In particular, condition (11.75b): Ŝ� = S∗
� is satisfied if Ŝ� = S� is a symmetric

smoothing iteration. For symmetric iterations, the proof of the smoothing property
is rather easy.

Lemma 11.48. Let S� = I − W−1
� A� be the iteration matrix of a positive definite

iteration S� and assume that γW� ≤A� ≤ ΓW� for all �≥ 0 with 0≤ γ ≤ Γ < 2.
Then

‖A�S
ν
� ‖2 ≤ ‖W�‖2 max{η 0(ν), Γ |1− Γ |ν}

implies the smoothing property (11.58a–c) with ν̄(h) = ∞ if there is some CW with

‖W�‖2 ≤ CW ‖A�‖2 for all � > 0. (11.79)

Proof. Define Y := W
−1/2
� R�W

−1/2
� with R� in A� = W� −R� and note that

‖A�S
ν
� ‖2 = ‖W 1/2

� (I − Y )Y νW
1/2
� ‖2 ≤ ‖W 1/2

� ‖22 ‖(I − Y )Y ν‖2.

The first factor is equal to ‖W�‖2, the second can be estimated as in Lemma 11.23
by max{η0(ν), Γ |1− Γ |ν} because of (1− Γ )I ≤ Y ≤ (1− γ)I . ��

The following variant of the estimate is due to Wittum [403]. The estimate is
helpful if good bounds for ‖R�‖2 are known.

Lemma 11.49. In addition to the assumptions of Lemma 11.48, assume ν ≥ 2.
Define R� := W� −A� . Then

‖A�S
ν
� ‖2 ≤ ‖S�‖2 ‖R�‖2 max{η0(ν − 2), Γ |1− Γ |ν−2}.

Proof. Define Y as above, estimate ‖A�S
ν
� ‖2 by ‖W 1/2

� Y ‖22‖(I − Y )Y ν−2‖2
and use ‖W

1
2

� Y ‖22 = ‖W− 1
2

� R2
� W

− 1
2

� ‖2 = ρ(W
− 1

2

� R2
� W

− 1
2

� ) = ρ(W−1
� R2

� ) ≤
‖W−1

� R�‖2‖R�‖2 = ‖S�‖2‖R�‖2 . ��

Exercise 11.50. Prove under the same assumption as in Lemma 11.48 that

‖A�S
ν
� A

−1
� ‖2 ≤

√
‖W�‖2 max{η0(2ν), Γ |1− Γ |2ν}. (11.80)

Inequality (11.80) can be regarded as a modification of (11.78b).
The condition Γ < 2 in 0 < γW� ≤ A� ≤ ΓW� coincides with the conver-

gence condition in Theorem 3.34b. However, γ = 0 is sufficient for the smoothing
property, although the convergence rate ρ(S�) becomes worse the smaller γ is.
Since damping corresponds to the replacement of W� by ϑ−1W�, we obtain the
following.

Remark 11.51. After a possibly necessary damping, all positive definite iterations
satisfy the assumption γW� ≤ A� ≤ ΓW� with 0 ≤ γ ≤ Γ < 2.
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11.7.4 Strengthened Two-Grid Convergence Estimates

To simplify the following considerations, the smoothing iteration S� is assumed to
satisfy the inequality γW� ≤ A� ≤ ΓW� with 0 ≤ γ ≤ Γ ≤ 1. As mentioned
in Remark 11.51, this assumption can always be achieved by suitable damping.
However, the following statements also hold in a somewhat modified form for
0 ≤ γ ≤ Γ < 2 . The assumptions are

Ŝ� = S�, Ŝ� = S� = I −W−1
� A�, 0 < A� ≤ W�. (11.81)

The approximation property is required in the form (11.70) with ‖·‖U�
:= ‖·‖W�

,
‖·‖F�

:= ‖·‖W−1
�

(see the following Remark 11.57):

‖W 1/2
� (A−1

� − pA−1
�−1r)W

1/2
� ‖2 ≤ CA for all � ≥ 1. (11.82)

Lemma 11.52. Assume (11.75a,b). The approximation property (11.82) is equiva-
lent to the following inequality:

0 ≤ A−1
� − pA−1

�−1r ≤ CAW
−1
� for all � ≥ 1. (11.83)

Proof. (C.3f) yields −CAI ≤ W
1
2

� (A−1
� − pA−1

�−1r)W
1
2

� ≤ CAI . Multiplying by

W
− 1

2

� from both sides yields the bounds ±CAW
−1
� for A−1

� − pA−1
�−1r. The lower

bound −CAI can be replaced by 0, as can be concluded from Lemma 11.53. ��

We postpone the proof of the modified approximation property (11.82) until Re-
mark 11.57. Now we transform all quantities into a form better suited to symmetry:

p̌ := A
1/2
� pA

−1/2
�−1 , ř := p̌∗ = A

−1/2
�−1 rA

1/2
� , Q� := I − p̌ ř,

X� := A
1/2
� W−1

� A
1/2
� , Š� := A

1/2
� S�A

−1/2
� = I −X�.

Since (11.75b) can be rewritten as řp̌ = I , the following lemma can be concluded.

Lemma 11.53. Under the assumption (11.75a,b), Q� = I − p̌ ř is an orthogonal
projection: Q� = QH

� . As any orthogonal projection, it fulfils

0 ≤ Q� ≤ I for all � ≥ 1. (11.84a)

Q� ≥ 0 also implies 0 ≤ A
−1/2
� Q�A

−1/2
� = A−1

� − pA−1
�−1r, so that the proof

of the first inequality in (11.83) is completed. Multiplying (11.83) by A
1/2
� from

both sides yields the next lemma.

Lemma 11.54. Assume (11.75a,b). The statements (11.82) or (11.83) are equivalent
to

0 ≤ Q� ≤ CAX� for all � ≥ 1. (11.84b)

According to (11.23), the transformed two-grid iteration matrix is
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M̌�(ν1, ν2) := A
1/2
� M

TGM(ν1,ν2)
� A

−1/2
� = Šν2

� Q�Š
ν1

� . (11.85)

In contrast to Theorems 11.35 to 11.55, it is now possible to prove convergence for
all ν > 0.

Theorem 11.55 (two-grid convergence). Assume (11.75a,b), (11.81), and the ap-
proximation property (11.82). Then the two-grid iteration converges monotonically
with respect to the energy norm ‖·‖A�

:

ρ(M
TGM(ν/2,ν/2)
� ) = ‖MTGM(ν/2,ν/2)

� ‖A�
(11.86)

=
∥∥∥M̌�

(ν
2
,
ν

2

)∥∥∥
2
≤
{
CAη0(ν) if CA ≤ 1 + ν
(1− 1/CA)

ν if CA > 1 + ν

}
< 1.

Proof. It remains to show the inequality ‘≤’ in (11.86). The inequality (11.87a)
following from (11.84a,b) can be inserted into (11.85) and yields (11.87b):

0 ≤ Q� ≤ αCAX� + (1− α)I for all 0 ≤ α ≤ 1, (11.87a)

0 ≤ M̌� ≤ Š
ν/2
� [αCAX� + (1− α)I] Š

ν/2
� for all 0 ≤ α ≤ 1. (11.87b)

Since Š� = I −X�, the right-hand side of (11.87b) is a polynomial f(X�;α) with

f(ξ;α) := (1− ξ)ν(1− α+ αCA ξ). (11.87c)

For all 0 ≤ α ≤ 1, inequality 0 ≤ X� ≤ I (cf. (11.81)) implies the estimate

‖M̌�‖2 ≤ ‖f(X�;α)‖2 ≤ m(α) := max{f(ξ;α) : 0 ≤ ξ ≤ 1}.

In particular, for α = 1, we obtain the bound CAη0(ν). If 1 + ν < CA, the value
α∗ := ν

CA−1 belongs to [0, 1] and yields the better bound m(α∗) = (1− 1
CA

)ν . ��

Exercise 11.56. Prove the statements of Lemmata 11.52, 11.54 and Theorem 11.55
under the assumption rA� p ≤ A�−1 instead of (11.75b).

It remains to discuss the approximation property (11.82).

Remark 11.57. Assume the approximation property in the original form (11.63):
‖A−1

� − pA−1
�−1r‖2 ≤ C ′

A/ ‖A�‖2. Furthermore, let (11.79) be valid: ‖W�‖2 ≤
CW ‖A�‖2. Then (11.82) is satisfied by CA := C ′

ACW .

Exercise 11.58. Assume (11.75a,b) without ν1 = ν2, as well as (11.81) and ν =

ν1 + ν2 > 0. Prove that the two-grid iteration Φ
TGM(ν1,ν2)
� converges monotoni-

cally with respect to the energy norm ‖·‖A�
. What is the h�-independent contraction

number? Hint: First, use (11.77d) to estimate ‖M̌�(
ν
2 , 0)‖2 and thereafter apply

(11.77d) to ‖M̌�(ν1, ν2)‖2.

In the proof of Theorem 11.55, the smoothing property is also used indirectly;
however, now it is formulated by the polynomial (11.87c) for arbitrary 0 ≤ α ≤ 1
instead of α = 1.
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11.7.5 V-Cycle Convergence

We apply the technique of §11.7.4 to the multigrid method. Since Theorem 11.42
excludes the V-cycle (γ = 1), we concentrate on this case. For another proof, see
Braess–Hackbusch [65].

Theorem 11.59. Under the same assumptions (11.75a,b), (11.81), (11.82) as in
Theorem 11.55, the V-cycle (γ = 1) converges monotonically with respect to the
energy norm ‖·‖A�

with the rate

ρ
(
MV

� (
ν
2 ,

ν
2 )
)
=
∥∥MV

� (
ν
2 ,

ν
2 )
∥∥
A�

≤ CA

CA + ν

Proof. For γ = 1, abbreviate MMGM
� by MV

� . The recursive equations (11.42a,b)
become

MV
0 (ν1, ν2)=0, MV

� (ν1, ν2) = M
TGM(ν1,ν2)
� + Sν

� pM
V
�−1(ν1, ν2)A

−1
�−1rA�S

ν
� .

Transformation into the symmetric form yields

M̌V
� := A

1/2
� MV

� (ν1, ν2)A
−1/2
� = M̌

TGM(ν1,ν2)
� + Šν2

� p̌M̌V
�−1řŠ

ν1

� (11.88)

(11.85)= Šν2

�

{
I − p̌

[
I − M̌V

�−1

]
ř
}
Šν1

� for � ≥ 1, M̌V
0 = 0.

In the following, choose M̌V
� := M̌V

� (
ν
2 ,

ν
2 ), i.e., ν1 = ν2 = ν

2 . Using (11.88),
we obtain

M̌V
� ≥ 0

by induction: M̌V
0 = 0 and I − p̌

[
I − M̌V

�−1

]
ř ≥ I − p̌ ř = Q� ≥ 0. Hence, the

statements (11.89a) and (11.89b) are equivalent:

‖MV
� ( ν2 ,

ν
2 )‖A�

= ‖M̌V
� ‖2 ≤ ζ� (M̌V

� := M̌V
� (

ν
2 ,

ν
2 )), (11.89a)

0 ≤ M̌V
� ≤ ζ�I . (11.89b)

The induction hypothesis is 0 ≤ M̌V
�−1 ≤ ζ�−1I with ζ�−1 := CA

CA+ν . Inserting
this inequality into (11.88), we arrive at

0 ≤ M̌V
� ≤ Š

ν/2
� {I − (1− ζ�−1)p̌ ř} Šν/2

� = Š
ν/2
� {(1− ζ�−1)Q� + ζ�−1I} Šν/2

�

≤
(11.87a)

Š
ν/2
�

{
(1− ζ�−1) [αCAX� + (1− α)I] + ζ�−1I

}
Š
ν/2
�

for all 0 ≤ α ≤ 1. For α ∈ [0, 1], the variable β := (1− ζ�−1)(1−α)+ ζ�−1 varies
in [ζ�−1, 1]. Substitution of α by β yields

0 ≤ M̌V
� ≤ Š

ν/2
� {(1− β)CAX� + βI} Šν/2

� for all ζ�−1 ≤ β ≤ 1.

The right-hand side is the polynomial f(ξ;β) := (1 − ξ)ν [β + (1− β)CAξ] for
ξ = X� and can be estimated by

‖f(X�;β)‖2 ≤ m(β) := max{|f(ξ;β)| : 0 ≤ ξ ≤ 1} (cf. (11.87c,d)).
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For β = ζ�−1 = CA/(CA + ν), one finds m(β) = f(0;β) = β = CA/(CA + ν).
Hence, (11.89b) holds with ζ� = CA/(CA + ν). ��

Exercise 11.60. (a) Under the same assumptions, prove

M̌V
� (0, ν2) M̌

V
� (ν1, 0) = M̌V

� (ν1, ν2)

and discuss convergence for ν = ν1 + ν2 > 0.
(b) Prove the statement of Theorem 11.59 under the weaker condition rA� p ≤A�−1

instead of (11.75b).

The condition A� ≤ W� in (11.81) can be generalised to A� ≤
√
2 W� (cf.

Wittum [402, Proposition 4.2.4]).
Obviously, monotone and h�-independent convergence can also be shown

for the W-cycle (more generally, for γ ≥ 2). For this case (assuming CA ≥ 1),
one finds, e.g., the estimate∥∥MW

� (ν/2, ν/2)
∥∥
A�

≤
√

CA /
(√

CA + ν
)
.

In the case of weaker regularity (cf. §11.6.6) and for γ = 2 (W-cycle), one can
still prove ‖MW

� (ν/2, ν/2)‖A�
≤ O(ν σ−1) < 1 for all ν > 0.

V-cycle convergence without full regularity assumptions is proved by Brenner
[79]. See also §12.9.3.

11.7.6 Unsymmetric Multigrid Convergence for all ν > 0

The analysis in §11.6 shows multigrid convergence for sufficiently large ν ≥ ν.
In the symmetric case, §11.7.5 ensures convergence for all ν > 0 and arbitrarily
coarse h0. In the general case, we still obtain convergence for all ν = ν1 + ν2 > 0;
however, h0 must be sufficiently small: h0 ≤ h̄. The proof technique is the same
as for Theorem 11.29.

Theorem 11.61. Let the matrices A� (� ≥ 0) be split into A� = A′
� + A′′

� such that
A′

� > 0. Let S� and S′
� be the iteration matrices of the corresponding smoothing

iterations S� and S ′
�. For A′′

� and S′′
� := S� − S′

�, assume

‖A′−1/2
� A′′

�A
′−1/2
� ‖2 ≤ C1h

κ
� , ‖A′1/2

� S′′
� A

′−1/2
� ‖2 ≤ C2h

κ
� (11.90a)

with κ > 0. Assume that the following norms are bounded by 1:

‖A′1/2
� S′

�A
′−1/2
� ‖2, ‖A′1/2

� pA
′−1/2
�−1 ‖2, ‖A′−1/2

�−1 rA
′1/2
� ‖2 ≤ 1 (11.90b)

for all � ≥ 1 and that the two- or multigrid method for A′
� (with fixed parameters

γ, ν1, ν2) converges monotonically with respect to the energy norm ‖·‖A′
�

with the
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contraction number ζ ′. Further, let

sup{h�/h�−1 : � ≥ 1} < 1 and ε ∈ (0, 1− ζ ′)

be valid. Then the two- and multigrid iterations for A� also converge monotonically
with respect to the energy norm ‖·‖A′

�
with the contraction number ζ = ζ ′ + ε < 1,

provided that h0 ≤ h̄ holds with sufficiently small h̄.

Proof. First, the two-grid case is considered. The transformed iteration matrix
A

′1/2
� M ′

�A
′−1/2
� (of the iteration for A′

�x
′
� = b′�) is the product[

A
′1/2
� S′

�A
′−1/2
�

]ν2

×
[
A

′1/2
� (A′−1

� − pA′−1
�−1r)A

′1/2
�

]
×
[
A

′−1/2
� A′

�A
′−1/2
�

]
×
[
A

′1/2
� S′

�A
′−1/2
�

]ν1

.

Because of (11.90a), perturbations of S′
� and A′

� in the 1st, 3rd, and 4th factor by S′′
�

and A′′
� , respectively, enlarge the spectral norm only by O(hκ

� ). A similar statement
holds for the second factor because[

A
′1/2
� (A−1

� − pA−1
�−1r)A

′1/2
�

]
−
[
A

′1/2
� (A′−1

� − pA′−1
�−1r)A

′1/2
�

]
= A

′−1/2
� A′′

�A
−1
� A

′1/2
� +A

′1/2
� pA−1

�−1A
′′
�−1A

′−1
�−1rA

′1/2
� .

Let M� be the two-grid iteration matrix associated with the matrix A�. The assertion
follows from

∣∣∣‖M�‖A′
�
− ‖M ′

�‖A′
�

∣∣∣ ≤ Chκ
� ≤ Ch̄κ for the choice h̄ := (ε/C)1/κ.

In the multigrid case, the following recursive estimate holds:∣∣∣‖M�‖A′
�
− ‖M ′

�‖A′
�

∣∣∣ ≤ C0h
κ
� +
∣∣∣‖M�−1‖A′

�−1
−
∥∥M ′

�−1

∥∥
A′

�−1

∣∣∣ ,
which by h�/h�−1≤Ch<1 leads to

∣∣∣‖M�‖A′
�
−‖M ′

�‖A′
�

∣∣∣ ≤ Chκ
0 ≤ Ch̄κ ≤ ε. ��

Remark 11.62. The conditions in (11.90b) are satisfied if

S′
� = I −W ′−1

� A′
� with 2W ′

� ≥ A′
�, r = p∗, rA′

� p ≤ A′
�−1

(cf. (11.81), Exercises 11.56, and 11.60b). (11.75b) is sufficient for rA′
� p ≤ A′

�−1.

The statement of Theorem 11.61 is not yet uniform with respect to ν = ν1 + ν2.
In particular, h̄ might depend on ν. A ν-independent h̄ can be obtained as follows:
Theorem 11.42 (modified according to §11.7.2 to the energy norm ‖·‖A′

�
) shows

convergence for ν ≥ ν as long as h0 ≤ h̄0. For the finitely many ν = 1, . . . , ν − 1,
we conclude convergence for h0 ≤ h̄ν from Theorem 11.61 with suitable h̄ν .
For h0 ≤ h̄ := min{h̄ν : 0 ≤ ν ≤ ν − 1}, we obtain convergence for all ν > 0.

For related results, see Mandel [269] and Bramble–Pasciak–Xu [75].
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11.8 Combination of Multigrid Methods with Semi-Iterations

11.8.1 Semi-Iterative Smoothers

So far, only the ν-fold application of a smoothing iteration S� has been considered
as a smoothing step (11.33b,f). An alternative is a semi-iterative smoothing, where
Sν
� is replaced by a polynomial Pν(S�) of degree ν with Pν(1) = 1. However,

one should not choose the polynomials that were found to be optimal in §8 because
those minimise ρ(Pν(S�)). Using S� for smoothing, we do not primarily want to
make the error small but smooth. The smoothing property (11.58a) leads us to the
following optimisation problem:

minimise ‖A� Pν(S�)‖2 over Pν ∈ Pν with Pν(1) = 1. (11.91)

The semi-iterative Richardson method with A� > 0 and σM := [ 0, ‖A�‖2 ] yields
the optimisation problem

min
Pν∈Pν , Pν(1)=1

max
0≤ξ≤‖A�‖2

∣∣∣∣ξ Pν

(
1− ξ

‖A�‖2

)∣∣∣∣ (11.92)

(analogous to (8.23)). The solution reads as follows.

Theorem 11.63. Let A� > 0 . The minimiser of (11.92) is a polynomial Pν derived
from the Chebyshev polynomial Tν+1 (cf. Lemma 8.23) by

τ Pν(1− τ) = η(ν) Tν+1

(
τ − (1− τ) cos π

2ν+2

)
(11.93)

with η(ν) =
1

ν + 1

sin (π/ (2ν + 2))

1 + cos (π/ (2ν + 2))
≤

2
(√

2− 1
)

(ν + 1)
2 (ν ≥ 1).

Pν is the product Pν(1− τ) =
∏ν

μ=1 (1− ωμτ) with

ωμ =

(
1 + cos

π

2ν + 2

)
/

(
cos

π

2ν + 2
− cos

(2μ+ 1)π

2ν + 2

)
.

The expression (11.92) to be minimised takes the value

‖A�Pν(I −A�/ ‖A�‖2)‖2 ≤ η(ν) ‖A�‖2 .

Proof. (i) Evaluation of Tν+1(. . .) at τ = 0 yields Tν+1(− cos π
2ν+2 ). Note that

− cos π
2ν+2 = cos(π − π

2ν+2 ) = cos( 2ν+1
2ν+2π) and therefore

Tν+1(− cos π
2ν+2 ) = cos

(
(ν + 1) 2ν+1

2ν+2π
)
= cos

(
(ν + 1

2 )π
)
= 0.

This justifies the factor τ on the left-hand side of (11.93).
(ii) The factor η(ν) is chosen such that Pν(1) = d

dτ τ Pν(1 − τ)|τ=0 = 1
ensures the side condition.
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(iii) Since the right-hand side in (11.93) takes the equi-oscillating values ±η(ν)
in [0, 1], it is the minimiser of (11.92). ��

We add some comments to the results of Theorem 11.63.

(i) The semi-iterative smoothing achieves an order improvement. While the
smoothing factor η(ν) of the stationary Richardson method behaves like O( 1

ν+1 ),
the order becomes O(1/(ν + 1)2) in the semi-iterative case.

(ii) The application of the Chebyshev method requires knowledge of the interval
σM = [a, b] containing the spectrum of S�. Especially, the estimation of b =
1 − λ�/ ‖A�‖2 with λ� = λmin(A�) is of decisive importance. An overestimation
of the upper bound Λ� = ‖A�‖2 in λ�I ≤ A� ≤ Λ�I is less sensitive (since Λ�/λ�

is the essential quantity). A different situation arises in Theorem 11.63, where we
estimate the spectrum of A� simply by 0 ≤ A� ≤ Λ�I , Λ� = ‖A�‖2, i.e., the lower
bound λ� is trivially chosen as a := 0. The replacement of 0 ≤ A� by λ�I ≤ A�

with λ� = λmin(A�) would yield only an imperceptible improvement.
(iii) The statements from (ii) clarify the fact that the spectral condition number

κ(W−1
� A�) is not the essential quantity for smoothing.

(iv) The product representation
∏
(1 − ωμτ) seems to disregard the warnings

in §8.3.4 concerning instabilities. The contradiction is solved by the fact that the
number ν of smoothing steps should be relatively small according to the discussion
in §11.4.3. Choosing, e.g., ν ≤ 4, stability problems cannot arise.

For a general positive definite smoothing iteration with S� = I − W−1
� A�,

we obtain analogous results for minimising ‖W−1/2
� A� Pν(S�)W

−1/2
� ‖2 , where

the norms are chosen as for the approximation property (11.82). Corresponding to
the smoothing property (11.78b), the minimisation of

‖W−1/2
� A� Pν(S�)A

1/2
� ‖2 = ‖Y 1/2Pν(I − Y )‖2 with Y := A

1/2
� W−1

� A
1/2
�

is also of interest. The corresponding optimal polynomial can be found in Hack-
busch [183, Proposition 6.2.35]. The bound O(1/

√
ν ) in (11.78b) improves to

O(1/(2ν + 1)). The ADI parameters (cf. §8.5.3 and Hackbusch [183, §3.3.4 and
Lemma 6.2.36]) have also to be chosen differently for optimising the smoothing
effect.

The conjugate gradient method is only conditionally applicable. The standard
CG method minimises ‖Pν(S�)e�‖A�

= ‖A1/2
� Pν(S�)e�‖2, where e� is the error

before smoothing and Pν the corresponding optimal polynomial (cf. Proposition
10.11). However, since not the energy norm but the residual ‖A�Pν(S�)e�‖2 has
to be minimised, the method of the conjugate residuals (cf. §10.3) or the conju-
gate gradient method for the ‘squared’ equation AH

�A�x� = AH
� b� is better suited.

These remarks apply to the pre-smoothing part only. The conjugate gradient
methods do not seem to make much sense for the post-smoother. In any case, an
nonsymmetric multigrid iteration results. See also Bank–Douglas [27].

The smoothing property of conjugate gradient methods has also been mentioned
by Il’in [226].
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11.8.2 Damped Coarse-Grid Corrections

The treatment of nonlinear equations suggests damping the coarse-grid correction as
known from gradient methods, in order to obtain a descent method (cf. Hackbusch–
Reusken [204]). It turns out that in the linear case, it is also possible to improve
convergence. In particular, the V-cycle convergence can be accelerated (cf. Reusken
[321], Braess [62]). The optimally damped coarse-grid correction step reads

xnew
� := x� − λp� with λ :=

〈d�, p�〉�
〈d�, A�p�〉�

,

{
d� := A�x� − b�,
p� := p ẽ�−1,

(11.94)

where ẽ�−1 is the approximation of the solution of the coarse-grid equation
A�−1e�−1 = d�−1 := rd�.

Exercise 11.64. Let A� > 0 and ẽ�−1 as above. Prove that
(a) λ = 1 is optimal for the two-grid method.
(b) If r = p∗ and A�−1 = rA�p, λ in (11.94) can be written in the form

λ = 〈d�−1, ẽ�−1〉�−1 / 〈A�−1ẽ�−1, ẽ�−1〉�−1 .

Another possibility is the damping of the complete multigrid iteration. In the
symmetric case, M̌MGM

� ≥ 0 holds (cf. (11.89b)) and implies that σ(MMGM
� ) ⊂

[ 0, ρ(MMGM
� ) ]. Extrapolation with Θ := 2/(2− ρ (MMGM

� )) ≈ 1 + 1
2ρ (M

MGM
� )

leads to the nearly halved convergence rate ρ(MMGM
� )/(2− ρ(MMGM

� )) .

11.8.3 Multigrid as Basic Iteration of the CG Method

As shown in §11.7.1, the multigrid method for a positive definite matrix A� can be
designed as a positive definite iteration. The convergence statement σ(MMGM

� ) ⊂
[ 0, ρ� ] with ρ� := ρ(MMGM

� ) < 1 corresponds to the inequalities

γWMGM
� ≤ A� ≤ WMGM

� with γ := 1− ρ�

for the matrix WMGM
� of the third normal form of the multigrid iteration (cf. Theo-

rem 6.10). Applying the CG method to ΦMGM
� , after m steps we obtain an improve-

ment by 2 [(
√
κ− 1)/(

√
κ+ 1)]

m, where κ is the condition κ = Γ
γ = 1/(1 − ρ�).

A simple rewriting yields

2

(√
κ− 1√
κ+ 1

)m

= 2ρm� /
(
1 +
√

1− ρ�

)2m
≈ 2
(ρ�
4

+O
(
(ρ�)

2
))m

.

Since ρ� may be assumed to be small (cf. §11.4.2), the convergence rate ρ� of the
multigrid method can be accelerated by using the conjugate gradient method to
ρ�/4 (cf. Braess [61], Kettler [235]).
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However, the use of the conjugate gradient method is of practical interest only
if the multigrid convergence rate is relatively unfavourable (e.g., ρ� > 0.4). The
reason for this are considerations in §11.5.4. In the case of a good convergence rate,
the nested iteration (11.44) requires only very few multigrid steps per level. For
fast multigrid methods, the iteration number m = 1 has proved in §11.5.6 to be
sufficient. For this value, the gradient and conjugate gradient methods still coincide.
Only for m ≥ 2 does the conjugate gradient method deserve attention.

11.9 Further Comments

11.9.1 Multigrid Method of the Second Kind

Discretisation of Fredholm’s integral equations of the second kind leads to fixed-
point equations of the form x� = K� x� + b�, i.e.,

A�x� = b� with A� = I −K�.

Here, K� does not characterise a difference operator as in the case of discre-
tised differential equations, but the discrete counterpart of an integral operator
(Ku)(x) =

∫
D
k(x, y)dy. Therefore, the Picard iteration xm+1

� := K� x
m
� +b� has

a substantially better smoothing property. This implies that the multigrid method
(with γ = 2) has a convergence rate ρ� = O(hκ

� ) with a positive exponent κ.
Hence, different from the situation considered before, convergence is better the
larger the dimension of the problems is. Since the absolute value of ρ� may be of
the size of 10−3 to 10−6, the multigrid method is close to a direct solver. The work
of the method is still proportional to the work of one Picard iteration.

The application is not restricted to discrete integral equations. In the example
in §5.5.1, the equation Ax = b was preconditioned by B, where B as well as
A were discretisations of the differential equation. If both differential equations
share the same principal part (i.e., if the terms of the highest order of differen-
tiation coincide), the equation A′x = b′ := B−1b with A′ := B−1A leads to
the fast multigrid convergence mentioned above. The application of the multigrid
method of the second kind to A′x = b′ requires performing the Picard iteration
xm+1 = Kxm + b′ = xm − B−1(Ax − b). For example, B could be the five-
point formula of the Poisson model problem, whereas A discretises the equation
−Δu+ c1ux + c2uy + cu = f .

An exact description and analysis of the multigrid method of the second kind as
well as many examples of application can be found in Hackbusch [183, §16], [191],
[184], [177], [179], [188].

Since the discrete integral operator K� is a fully populated matrix, the naive use
of the Picard iteration leads to squared complexity. To obtain almost linear com-
plexity the technique of hierarchical matrices can be applied (cf. Appendix D).
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11.9.2 Robust Methods

To make our presentation brief, other smoothers than Richardson and chequer-board
Gauss–Seidel are mentioned only marginally. In applications to more complicated
systems, the problem of robustness arises. Are the convergence rates known for the
Poisson model problem uniformly valid in a larger class of problems? The simplest
case is an equation A(ε)x = b depending on one parameter ε ∈ (0,∞). If the
convergence rates not only are of the form ρ(ε) ≤ 1 − C(ε)hτ but hold with a
constant C(ε) = C uniformly in ε ∈ (0,∞)): ρ(ε) ≤ 1−Chτ , then this iteration is
called robust with respect to the class of problems. Robust multigrid methods have
to satisfy ρ(ε) ≤ ζ < 1 (ζ h�- and ε-independent; cf. Hackbusch [183, §10]).

Good experiences concerning robustness—at least for two spatial dimensions—
are observed for ILU smoothers as introduced by Wesseling [394], [393]
(cf. Kettler [235], Wittum [401]). Robustness holds for CG methods applied to the
modified ILU iteration (ω = −1), as well as for multigrid methods using point- or
blockwise ILU iterations as smoother (then with ω = 0 or even ω = 1; cf. Wittum
[403], Kettler [235], Oertel–Stüben [295]).

Another approach is the frequency decomposition multigrid method (cf. Hack-
busch [186, 190]) which uses not only one but several coarse-grid corrections with
different coarse-grid equations. The prolongations from the different coarse grids
into the fine grid are constructed in such a way that the corrections cover different
frequency intervals.

Constructing the coarse-grid equation at level �−1 requires more data than given
by the system A�x� = b� for � = �max. This fact may lead to difficulties when the
multigrid iteration is wanted as a black-box solver. Therefore, it is remarkable that
there are variants, the so-called algebraic multigrid methods, in which the coarse-
grid matrix A�−1 is only constructed by the entries of the matrix A� (cf. Stüben
[359, 360], MacLachlan–Oosterlee [268], Xu–Zikatonov [410]).

11.9.3 History of the Multigrid Method

The first two-grid method was described by Brakhage [69] in 1960. More precisely,
it was a two-grid method of the second kind because it was applied to problems
mentioned in §11.9.1. In 1961, Fedorenko [131] described a two- and in 1964 a
multigrid method for the Poisson model problem (cf. Fedorenko [132]). In 1966,
Bakhvalov [23] proved the typical convergence properties for a more complicated
situation. Additional early publications were due to Astrachancev [8] (1971), Hack-
busch [176] (1976), Bank–Dupont (a report from 1977 was split into [28, 29]),
Brandt [77] (1977), and Nicolaides [290] (1977). Further details concerning these
and other papers by Frederickson, Wesseling, Hemker, and Braess are mentioned
in Hackbusch [183, §2.6.5]. An extensive multigrid bibliography up to 1987 can be
found in the proceedings [278].
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The progress of multigrid algorithms and theory can be traced in the proceedings
of the European Multigrid Conferences: [205, Cologne 1981], [206, Cologne 1985],
[207, Bonn 1990], [216, Amsterdam 1993], [210, Stuttgart 1996], [108, Gent 1999].
The proceedings of the later EMG conferences in Hohenwart (2002), Scheveningen
(2005), Bad Herrenalb (2008), Ischia (2010), Schwetzingen (2012), and Leuven
(2014) can be found in special issues, e.g., of the journal Comput. Vis. Sci.
Further proceedings in this field are [68, 182, 185, 209, 306].

11.9.4 Frequency Filtering Decompositions

An essential characteristic of the multigrid method, besides the use of a coarser grid,
is the product form ΦCGC

� ◦ Sν
� of two iterations which are active in different fre-

quency intervals. Although many methods can be used for smoothing, the question
remains as to whether there exists an alternative to ΦCGC

� ◦Sν
� . It would be desirable

to have a method filtering out the coarse frequencies and needing no hierarchy of
grids. Such a method is proposed by Wittum [404, 405] and is based on a sequence
of partial steps Φν reducing certain frequency intervals.

First, we describe the standard blockwise ILU decomposition. Suppose that A
has the block-tridiagonal structure

A = AH = blocktridiag{Li, Di, L
H
i : i = 1, . . . , N − 1} (11.95a)

(cf. (1.8), (A.9)), which, e.g., holds for five- or nine-point formulae. As in (1.2),
N − 1 = h−1 − 1 is the number of inner grid points per row. The exact LU
decomposition is A = LD−1LH with

L := blocktridiag{Li, Ti, 0}, D := blockdiag{Ti}, (11.95b)

T1 := D1, Ti := Di − LiT
−1
i−1L

H
i (2 ≤ i ≤ N − 1). (11.95c)

Even if the blocks Di are tridiagonal (cf. (1.8)), the matrices Ti are not sparse.
The usual block-ILU decomposition is obtained from (11.95c) by replacing the full
inverse of T−1

i with the tridiagonal part tridiag{T−1
i−1} of the exact inverse.

Another approach goes back to Axelsson–Polman [15]. Let t(1) and t(2) be two
test vectors. The matrices Ti are defined in the next lemma.

Lemma 11.65. Assume that t(1), t(2) ∈ RN−1 satisfy

det
(
(t

(k)
i+j)

k=1,2
j=0,1

)
�= 0 for all 1 ≤ i ≤ N − 2.

The vectors c(1), c(2) ∈ RN−1 may be arbitrary. Then there is a unique symmetric
tridiagonal matrix T satisfying the equations Tt(k) = c(k) for k = 1, 2.

Hence, we can uniquely define symmetric tridiagonal matrices Ti by

T1 := D1, Ti t
(k) = (Di − LiT

−1
i−1L

H
i ) t

(k) (k = 1, 2) (11.96)

for i = 2, . . . , N−1. The matrices Ti inserted into (11.95b) yield a new incomplete
blockwise triangular decomposition A = LD−1LH −C. Definition (11.96) means
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that T is exact with respect to the test subspace span{t(1), t(2)}. The correspond-
ing iteration is

Φ(x, b; t(1), t(2)) := x− L−HDL−1(Ax− b)

with L, D defined in (11.95b) and (11.96).
Wittum [404, 405] proposes taking the sine functions eν in (11.25b) with

different frequencies ν as test vectors:

Φν := Φ(·, · ; eν , eν+1) with ν ∈ [1, N − 2].

Choosing a factor α > 1, which, e.g., may be chosen as α = 2, a geometrical
sequence of frequencies is selected (for &. . .' see Footnote 5 on page 297):

ν1 := 1, νi+1 := max{νi + 2, &ανi'} as long as νi+1 ≤ N − 2, (11.97)

Let k be the number of frequencies selected in (11.97). Obviously, this number is
equal to k = O(logN) = O(|log h|) = O(log n). The iteration of the frequency
filtering decomposition is defined by the product:

Φffd
α := Φνk

◦ . . . ◦ Φν2 ◦ Φν1 (α > 1 with νi in (11.97)).

The work of one iteration Φffd
α amounts to O(n log n). The numerical results

(cf. Wittum [404, 405]) demonstrate the very fast convergence of this iteration. Its
efficacy can even exceed that of the standard multigrid methods.

The convergence is analysed for the case of a nine-point formula A > 0
with constant coefficients Di = Di+1, Li = Li+1 = LH

i (cf. Wittum [405]). The
first step of the proof concerns the monotone convergence of Φν with respect
to the energy norm for all ν. However, the more characteristic step is a neigh-
bourhood property. According to its definition, Φν eliminates error components
in span{eν , eν+1}. It is essential that Φν yields a uniform and h-independent
contraction number for all frequencies in the interval ν ≤ μ ≤ αν, i.e., that Φν

also acts efficiently in a certain neighbourhood of the gauge frequency ν.
The idea of frequency filtering decompositions can also be generalised to

nonsymmetric or even nonlinear problems (cf. Wittum [405], Wagner [385, 386]).
See also Weiler–Wittum [390], Wagner–Wittum [387], and Buzdin–Wittum [91].

Table 11.10 shows the iteration error ‖em‖2 = ‖xm − x‖2 of the frequency
filtering decomposition method Φffd

α for α = 2 applied to the Poisson model
problem. The number k of partial steps ranges from 3 to 6. After 2 to 3 steps,
machine precision is reached. One observes that with decreasing h, the convergence
speed is bounded from above and therefore h-independently bounded.

h = 1/8, k = 3 h = 1/16, k = 4 h = 1/32, k = 5 h = 1/64, k = 6
m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m

0 6.310-01 7.010-01 7.410-01 7.610-01
1 2.610-07 4.110-7 1.810-06 2.610-6 1.410-05 1.910-5 5.610-05 7.310-5
2 1.010-12 3.910-6 2.810-06 1.510-5 1.510-09 1.010-5 2.210-08 3.910-4
3 4.110-13 (4.010-1) 6.710-13 (2.310-2) 1.210-12 8.210-4 9.310-12 4.110-4

Table 11.10 Iteration of the frequency filtering decomposition for the Poisson model problem.
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11.9.5 Nonlinear Systems

Although this monograph is devoted to systems of linear equations, the solution
of nonlinear systems is of great importance. There are two principle approaches.
In §11.9.5.1 we consider the Newton method, while in §11.9.5.2 proper nonlinear
iterations are described.

The nonlinear system is of the form7

A(x) = 0, (11.98)

where the function A : KI → KI is assumed to be continuously differentiable.
We denote the derivative by

A(x) :=
d

du
A(x) ∈ KI×I .

Let x∗ ∈ KI be the solution of (11.98) and define

A := A(x∗). (11.99)

We require A to be regular. Then x∗ is the unique solution in a neighbourhood
X of x∗ and A(x) is regular for all x ∈ X . If the problem (11.98) is derived
by discretising a nonlinear partial differential equation, we expect the same sparse
structure of the matrices A(x) as usual.

11.9.5.1 Newton’s Method

The Newton method is the standard technique to transfer the solution of a nonlinear
system into a sequence of linear problems. Starting with x0 ∈ X , the exact Newton
method yields the sequence

xm+1 := xm −A(xm)−1A(xm). (11.100)

If the neighbourhood X is small enough, the described sequence converges
quadratically to x∗ (cf. Quarteroni–Sacco–Saleri [314, §7.1]). Having in mind
large-scale problems, the linear system

A(xm) δ = A(xm)

for the correction δ = xm − xm+1 should not be computed directly. Instead any of
the linear iterations described in this book can be applied to solve for δ.

Here the following comments apply:

• The derivative A(xm) has to be computed either analytically or by numerical
differentiation. Since this may be costly, often A(xm) is replaced with an

7 In the nonlinear case, without loss of generality, the right-hand side can be defined by zero.
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approximation. For instance, only A(x0) is computed and the later A(xm) are
replaced by A(x0).

• If the iteration for the linear problem requires a larger amount of work for
initialisation, this cost is required for each step of the Newton method. This is
another reason for replacing A(xm) by a fixed matrix Ã.

• If, as above, A(xm) is replaced by some Ã, quadratic convergence is lost and
the convergence of

xm+1 := xm − Ã−1A(xm)

depends on A(xm)− Ã.
• In the case of the true matrix A(xm), the stopping criterion for the iteration

applied to A(xm) δ = A(xm) should produce approximations for δm for δ
such that the error δm − δ is comparable with the error of xm+1 − x∗. A
too accurate solution of δ in the beginning does not pay, whereas a too rough
approximation for later m prevents quadratic convergence.

• Since A(x) is continuous and regular for x ∈ X , the matrices of the family

{A(xm) : m ∈ N0}

are spectrally equivalent. Therefore, in principle, the same preconditioner can be
used for all linear systems that arise.

The usual convergence behaviour of (11.100) shows two phases. In a pre-
asymptotic first phase only linear convergence is observed (say for 0≤m<m0).
Later, for m ≥ m0, proper quadratic convergence occurs and only a few
additional steps are needed. Above, the neighbourhood X is chosen so that
iteration (11.100) converges. Proper quadratic behaviour requires iterates in an
even smaller neighbourhood Xquad. It would be desirable to find a starting value
in Xquad instead of X .

A good strategy for this purpose is the (nonlinear) nested iteration. This requires
defining nonlinear systems at all discretisation levels � = 0, . . . , �max, where the
system at level �max coincides with the original system (11.98):

A�(x�) = b� (0 ≤ � ≤ �max) , (11.101)

where b�max
= 0. The nonlinear nested iteration takes the following form:

x̃0 := somehow computed approximation of A0(x
∗
0) = 0;

for � := 1 to �max do

begin x̃� := p̃ x̃�−1; b̃�−1 := A�−1(x̃�−1);
apply an iterative solver starting with x̃� delivering a new value x̃�

end;

(11.102)

The data b̃� (0 ≤ � ≤ �max − 1) will be used later. Although x̃� is only an
approximation, it is the exact solution of A�(x̃�) = b̃�.
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11.9.5.2 Nonlinear Iterations

Φ in Definition 2.1 can be generalised to the nonlinear problem (11.98) by a non-
linear mapping

xm+1 = Φ(xm,A).

For instance, the nonlinear analogue of the Richardson iteration (3.4) is

xm+1 = ΦRich
nonl (x

m,A) := xm −ΘA(xm).

Rewriting xm by x∗ + em and assuming a small error em, we obtain the Taylor
expansion

A(xm) = A(x∗) +Aem + o(em) = Aem + o(em)

with A in (11.99) and therefore

xm+1 = xm −ΘAem + o(em) ≈ xm −Θ (Axm − b) = ΦRich(xm, b, A)

with b := Ax∗. This proves that

ΦRich
nonl (x,A) → ΦRich(x, b, A) as x → x∗.

The nonlinear analogue of the Gauss–Seidel method replaces each step in (3.9)
by solving the i-th equation in the system A(x) = 0 with respect to the x[i]. The
scalar nonlinear equations that arise can be solved, e.g., by Newton’s method. In the
same way, the nonlinear Jacobi iteration and the nonlinear SOR can be performed
(cf. Törnig [365, §§8.2–8.4]).

More involved algebraic linear iterations as the ILU iteration are hard to transfer
into a nonlinear counterpart since it requires the (incomplete) decomposition of the
derivative A.

The linear iteration Φlin(x, b, A) = x − N (Ax− b) has the obvious nonlinear
counterpart Φnonl(x,A) := x − NA(x). In all these cases, the asymptotic con-
vergence speed of the nonlinear iteration Φnonl coincides with the convergence
speed of the linear iteration Φlin applied to the linearised system Ax − b with A
in (11.99).

11.9.5.3 Nonlinear Two- and Multigrid Iteration

The multigrid iteration has a very natural generalisation to nonlinear systems. The
underlying reason is that the method requires not the derivative A(x) = dA(x)/du
but only a directional derivative.

Instead of (11.98), we consider the family (11.101) of systems at all levels �. We
start with the two-grid iteration involving the levels � and � − 1. We assume that
the nested iteration is already used for levels below �, so that a good starting value
for x�, the approximate solution x̃�−1 at level � − 1 and its defect b̃�−1 are known.
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The real number s used in lines 3 and 5 will be explained below.

function ΦNTGM
� (x�, b�); {solution of A�(x�) = b� desired}

begin x� := Sν1

� (x�, b�); {pre-smoothing}
d�−1 := r (A�(x�)− b�) ; d�−1 := b̃�−1 + s · d�−1;
ξ�−1 := A−1

�−1(d�−1); {coarse-grid solve}
x� := x� − p (ξ�−1 − x̃�−1) /s; {coarse-grid correction}
ΦNTGM
� := Sν2

� (x�, b�); {post-smoothing}
end;

The pre- and post-smoothing iterations S� may, e.g., be the nonlinear Richardson or
Jacobi iteration. Sν

� denotes the ν-fold application.
Let x∗

� be the solution of A�(x
∗
� ) = 0. We recall the neighbourhood X� of x∗

� ,
in which x∗

� is the unique solution. Hence, the function A� : X� → Y� := A�(X�)
is bijective. This allows us to define the inverse function A−1

� on Y�. The function
ΦNTGM
� uses A−1

�−1 for solving a coarse-grid equation A�−1ξ�−1 = d�−1. This re-
quires that d�−1 ∈ Y�−1. Since Y�−1 is a neighbourhood of zero, d�−1 must be small
enough. Since, by definition, x̃�−1 is a good approximation of x∗

�−1, the defect b̃�−1

is small enough. Choosing the number s small enough, d�−1= b̃�−1 − s · d�−1 also
belongs to Y�−1.

To understand the correction x� := x�+p (ξ�−1 − x̃�−1) /s, rewrite the bracket
as

ξ�−1 − x̃�−1 = A−1
�−1(d�−1)−A−1

�−1(b̃�−1) ≈
(

d
dyA

−1
�−1

)(
d�−1 − b̃�−1

)
.

The derivative of the inverse function A−1
�−1(y) is(

d
dxA�−1(x)

)−1
= A−1

�−1 for x = A−1
�−1(y).

Together with d�−1−b̃�−1 = s·d�−1, we obtain ξ�−1−x̃�−1 = sA−1
�−1d�−1 and the

correction step yields asymptotically x� − p (ξ�−1 − x̃�−1) /s ≈ x� − pA−1
�−1d�−1

with the restricted defect d�−1 = r (A�(x�)− b�) . This is the same expression as
in (11.21b–d) and proves that the nonlinear two-grid iteration has an asymptotic
convergence speed which coincides with the convergence speed of the linear two-
grid iteration applied to the linearised system.

The recursive application of ΦNTGM
� yields the nonlinear multigrid iteration.

Note that the application of ΦNTGM
� is interwoven with the nonlinear nested itera-

tion (11.102) in which the solver is the m-fold application of ΦNTGM
� . This implies

that, when ΦNTGM
� is called, the quantities x̃k and b̃k are known for all lower levels

k < �. In addition, we need a nonlinear function Φ̃0(x0, b0) returning a good
approximation of A−1

0 (b0). This may be a Newton method. The number γ has the
same meaning as in the linear case: γ = 1 is the V-cycle, γ = 2 is the W-cycle.
The numbers s = s(d�−1) play the same role as in the two-grid iteration. It can be
chosen such that s · d�−1 is of the same size as b̃�−1.
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function ΦNMGM
� (x�, b�); {solution of A�(x�) = b� desired}

begin x� := Sν1

� (x�, b�); {pre-smoothing}
d�−1 := r (A�(x�)− b�) ; d�−1 := b̃�−1 + s · d�−1;
ξ�−1 := x̃�−1; for i := 1 to γ do ξ�−1 := ΦNMGM

�−1 (ξ�−1, d�−1);
x� := x� − p (ξ�−1 − x̃�−1) /s; {coarse-grid correction}
ΦNMGM
� := Sν2

� (x�, b�); {post-smoothing}
end;

Again the nonlinear multigrid iteration has an asymptotic convergence speed which
coincides with the convergence speed of the linear multigrid iteration applied to the
linearised system. Details about the convergence proof can be found in [194, §9.5].

If one applies ΦNMGM
� to the linear problem A�(x�) = A�x� − b�, the auxiliary

data (x̃�−1, b̃�−1) can be chosen as (0, 0) and the algorithm coincides with the linear
multigrid iteration.

There are different nonlinear multigrid versions using other reference data
(x̃�−1, b̃�−1) and other factors s. A comparison with numerical examples is given in
Hackbusch [189].
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