
Chapter 10

Conjugate Gradient Methods and

Generalisations

Abstract The conjugate gradient method is the best-known semi-iteration. Con-
suming only a small computational overhead, it is able to accelerate the underlying
iteration. However, its use is restricted to positive definite matrices and positive
definite iterations. There are several generalisations to the Hermitian and to the
general case. In Section 10.1 we introduce the general concept of the required
orthogonality conditions and the possible connection to minimisation principles.
The standard conjugate gradient method is discussed in Section 10.2. The method
of conjugate residuals introduced in Section 10.3 applies to Hermitian but possibly
indefinite matrices. The method of orthogonal directions described in Section 10.4
also applies to general Hermitian matrices. General nonsymmetric problems are
treated in Section 10.5. The generalised minimal residual method (GMRES;
cf. §10.5.1), the full orthogonalisation method (cf. §10.5.2), and the biconjugate
gradient method and its variants (cf. §10.5.3) are discussed.

10.1 Preparatory Considerations

In the following x∗ := A−1b denotes the exact solution, while x ∈ KI may be
used as a variable. The iterate xm is associated with the error em = xm − x∗ and
the residual rm = b−Axm = −Aem.

10.1.1 Characterisation by Orthogonality

As seen in Conclusion 8.13a, the semi-iterates (8.3) belong to the affine space
x0 + NKm(AN, r0) = x0 + Km(NA,Nr0). In the following, we replace the
Krylov space Km(NA,Nr0) by a general subspace

Um ⊂ KI with dim(Um) = m. (10.1a)
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The reason for using Um is that the following arguments are independent of the
special nature of the Krylov space. We are looking for candidates

xm ∈ x0 + Um. (10.1b)

The second space
Vm ⊂ KI with dim(Vm) = m

may coincide with Um.
For the practical implementation, we use bases

Um = span{u1, . . . , um}, Vm = span{v1, . . . , vm}. (10.1c)

Remark 10.1. (a) The spaces are nested if

U1 ⊂ . . . ⊂ Um ⊂ Um+1 ⊂ . . . . (10.2)

In this case, it is advantageous if the basis vectors u1, . . . , um of Um coincide with
the first m basis vectors of Um+1.
(b) For stability reasons, orthonormal bases are a good choice. In the case of
Um ⊂ Um+1, u

m+1 ∈ Um+1 is the normalised vector with um+1 ⊥ Um.

The following methods are directly or indirectly characterised by the condition
that the m-th iterate xm fulfils an orthogonality condition:

xm satisfies (10.1b) and rm := b−Axm ⊥Vm. (10.3)

The questions that arise are:

1. Is (10.3) uniquely solvable?
2. Can we derive estimates for the error em in some norm?
3. How costly is the solution of (10.3)?

The first question will be answered in §10.1.2 and the second in §10.1.5. The
cost is discussed later for the concrete choice of spaces.

Remark 10.2. Condition (10.3) is equivalent to〈
rm, vi

〉
= 0 for all 1 ≤ i ≤ m (10.4)

(cf. (10.1c)). A generalisation of (10.3) could be
〈
rm, vi

〉
X

= 0 using another
scalar product 〈u, v〉X := 〈Xu, v〉 for some X > 0 (cf. Remark C.10). However,
this approach is identical to (10.3) with Vm replaced with XVm.
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10.1.2 Solvability

As required in (2.2), we always assume that the underlying matrix A of the system
Ax = b is regular.

The basis (10.1c) of Um allows us to make the ansatz xm = x0 +
∑m

j=1 aju
j .

This implies that rm= r0−
∑m

j=1 ajAuj . The conditions in (10.4) yield the system

Za = z with Zij :=
〈
Auj , vi

〉
, zi :=

〈
r0, vi

〉
. (10.5)

In general, there is no guarantee that Z is regular. If m ≤ #I/2, the orthogonal
situation AUm ⊥Vm is possible and yields the extreme case of Z = 0.

Remark 10.3. The regularity of Z is equivalent to either of the conditions

(AUm)⊥ ∩ Vm = U⊥
m ∩AHVm = AUm ∩ V⊥

m = Um ∩AHV⊥
m = {0}.

It remains to formulate sufficient conditions ensuring the regularity of Z.

Criterion 10.4. (a) Let Um = Vm and assume A+AH > 0 . Then Z is regular .
(b) If K = C , the previous condition may be replaced with i (AH −A) > 0.
(c) Um = Vm and A > 0 are sufficient.
(d) For N > 0 and a general regular matrix A, the choice of Vm = NAUm

ensures regularity of Z.

Proof. (a) If Z is singular, there is some 0 �= a ∈ Km with Za = 0, i.e., Au⊥Vm

for u :=
∑m

j=1 aju
j �= 0. This is a contradiction to 0 <

〈
(A+AH)u, u

〉
=

2�e〈Au, u〉, since u ∈ Vm.
(b) 1

i (A−AH) > 0 implies that 0 < 2%m〈Au, u〉. Part (c) is trivial.
(d) Without loss of generality, the basis of Vm can be defined by vi = NAui.

Then Zij =
〈
Auj , vi

〉
=
〈
AHNAuj , vi

〉
corresponds to case (c) with A replaced

by AHNA > 0 . ��

10.1.3 Galerkin and Petrov–Galerkin Methods

Appendix E describes the discretisation of boundary value problems by the
Galerkin method. This method can also be applied to finite-dimensional problems.
The system Ax = b (x, b ∈ KI ) can be rewritten as the variation problem

〈Ax, v〉 = 〈b, v〉 for all v ∈ KI .

Using the initial value x0, we write x = x0 + u so that

〈Au, v〉 =
〈
r0, v
〉

for all v ∈ KI with r0 = b−Ax0.
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The Galerkin method replaces this problem by a system of lower dimension m.
Let Um be the subspace in (10.1a). Then the Galerkin solution xm ∈ x0 + Um is
defined by xm = x0 + u with

u ∈ Um satisfying 〈Au, v〉 =
〈
r0, v
〉

for all v ∈ Um.

Obviously this problem is equivalent to rm⊥ Um and therefore to the condition
(10.3) with Vm = Um.

The coercivity formulated in (E.3) requires A + AH ≥ 1
C I for some C > 0.

In the finite-dimensional case, this is equivalent to A+AH>0 as in Criterion 10.4a.

The more general Petrov–Galerkin method in Definition E.7 yields the problem

find xm ∈ x0 + u, u ∈ Um with 〈Au, v〉 =
〈
r0, v
〉

for all v ∈ Vm,

where now Vm may be different from Um. This yields the general condition (10.3).

10.1.4 Minimisation

The orthogonality condition (10.3) may be a consequence of another formulation.
If A > 0, the Galerkin formulation is the first variation of the minimisation problem
(9.2): F (x) = 1

2 〈Ax, x〉 − 〈b, x〉 = min.
The most general quadratic form whose minimum is the solution of Ax = b,

is described in Lemma 9.3: F (x) = 1
2‖H1/2r‖22 + c with r = b−Ax and H > 0.

Its first variation leads us to the case (d) in Criterion 10.4 with N = H .

10.1.5 Error Statements

Even if the auxiliary system in (10.5) is solvable, there is no guarantee that the
quality of xm improves with increasing m. Nevertheless, if the method makes sense
for all m ≤ #I , we reach the exact solution, provided that the arithmetic is exact.

Remark 10.5. Let n := #I . (a) The iterate xn is the exact solution: xn = A−1b.
(b) If rm ∈ Vm for some m ≤ n, then xm is the exact solution.

Proof. By definition, rm ⊥ Vm holds. Combining this statement with rm ∈ Vm

yields rm = 0, i.e., xm = A−1b. This proves part (b). Since Vn = KI because
of dim(Vn) = n, part (b) applies. ��

Error estimates can be based on an underlying minimisation problem, provided
that condition (10.3) is the result of an optimisation problem. The formulation of
the optimisation problem also defines the norm for measuring the error.
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10.1.5.1 Energy Norm

Assume a positive definite matrix A > 0 so that the energy norm ‖·‖A can be
defined (cf. (C.5a)). The Galerkin formulation in a subspace Um = Vm determines
the minimiser of F (x) = 1

2 〈Ax, x〉 − 〈b, x〉 in x0 + Um, i.e.,

‖xm − x∗‖A = min
{
‖x− x∗‖A : x ∈ x0 + Um

}
. (10.6)

If the spaces are nested (cf. (10.2)), the norm ‖xm − x∗‖A decreases weakly with
increasing m. This statement also holds for minimisation later on.

In the case of Φ(·, ·, A) ∈ L>0, i.e., NA > 0, the minimisation in (10.6) uses
the norm ‖·‖NA instead of ‖·‖A.

The classical CG method in §10.2 will lead us to (10.6) with Um= Km(A, r0).

10.1.5.2 Residual Norm

The norm |||xm − x∗|||A coincides with ‖A(xm − x∗)‖2 = ‖rm‖2 . The minimisa-
tion of the residual

‖rm‖2 = min
{
‖A(x− x∗)‖2 : x ∈ x0 + Um

}
(10.7)

implies the orthogonality
rm⊥AUm =: Vm. (10.8)

The latter statement can also be written as AHrm⊥Um. For general matrices, the
use of Krylov subspaces leads us to the GMRES method in §10.5.1.

The minimisation of F (x) = 1
2‖N1/2r‖22 + c for some N > 0 (cf. §10.1.4)

generalises (10.7) to∥∥N1/2rm
∥∥
2
= min

{∥∥N1/2A(x− x∗)
∥∥
2
: x ∈ x0 + Um

}
.

In the case of Hermitian matrices A, the realisation with Krylov spaces is given in
§10.3.

One must be aware of the fact that a small residual ‖rm‖2 does not necessarily
imply that the error ‖xm − x∗‖2 is small (cf. Remark 2.35).

10.1.5.3 Euclidean Norm

The first idea may be to approximate the solution x of Ax = b by the best
approximation x∗ in x0 + Um :

‖xm − x∗‖2 = min
{
‖x− x∗‖2 : x ∈ x0 + Um

}
.
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The first variation yields the orthogonality condition em ⊥ Um. In terms of the
condition (10.3), this can be written as

rm ⊥A−H Um . (10.9)

However, in general, this problem is not feasible. The cost for computing xm

is at least as high as solving the system Ax = b. For instance, x1 = x0 + αu
(u normalised vector with U1 = span{u}) is the minimiser if α = −

〈
e0, u
〉
.

However, e0 = x0 − x∗ is not available unless the exact solution x∗ is known.
Therefore, evaluating the scalar product

〈
e0, u
〉

causes a problem.
Nevertheless, the problem becomes solvable if the subspace Um can be written

as Um = AHVm and a basis {v1, . . . , vm} of Vm is known. Then the basis of Um

can be chosen as {u1, . . . , um} with uj := AHvj . In this case, condition (10.9)
becomes rm ⊥Vm.

For A = AH and Krylov spaces Vm, this approach is realised by the method of
orthogonal directions in §10.4.

10.2 Conjugate Gradient Method

Concerning books on Krylov methods we refer, e.g., to Greenbaum [167, Part I],
Liesen–Strakos [265], Meurant [283], Saad [328], Stoer [355], and van der Vorst
[373, §§5–12]. The history is described by Golub–O’Leary [155].

10.2.1 First Formulation

In the following, the gradient method and the conjugate directions in §§9.2–9.3 will
be combined. In order not to lose optimality with respect to the previous search
directions, we only permit conjugate directions. The residuals (negative gradients)
are used to determine the search direction pm in (9.24). As for the gradient method
we assume

A > 0 and F (x) =
1

2
〈Ax, x〉 − 〈b, x〉 .

After constructing (linearly independent) p0, p1, . . . , pm−1, we can orthogo-
nalise rm with respect to the energy scalar product 〈·, ·〉A (cf. Remark A.26a):

pm := rm −
m−1∑
�=0

〈
Arm, p�

〉
〈Ap�, p�〉 p�, (10.10a)

p0 := r0. (10.10b)

Note that for m = 0 the empty sum in (10.10a) implies (10.10b).
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Remark 10.6. (a) pm in (10.10a) is conjugate to all p� with 0 ≤ � ≤ m− 1.
(b) The directions p� span the Krylov subspace

Km(A, r0) = span{p0, . . . , pm−1} = span{r0, . . . , rm−1}. (10.11a)

(c) Having constructed xm and its residual rm by the method of conjugate
directions, the vectors rm and pm can only vanish simultaneously. This means
that either xm = x∗ is the exact solution or pm �= 0 holds.
(d) The residual is orthogonal to the preceding subspaces:

rm ⊥ K�(A, r0) for all � ≤ m. (10.11b)

Proof. (a) By construction (10.10a),
〈
Apm, pj

〉
= 0 holds for j < m.

(b) Equation (10.11a) holds for m = 1. Let (10.11a) be valid for m. Defini-
tion (10.10a) implies the identity span{Km(A, r0), pm} = span{Km(A, r0), rm}
because of Exercise 8.8a and yields assertion (10.11a) for m+ 1.

(d) Repeat (9.25b) stated in Theorem 9.27.
(c) By (10.10a), pm = 0 follows from rm = 0. Assume the case of pm = 0.

(10.10a) shows that rm ∈ Km(A, r0). On the other hand, rm ⊥Km(A, r0) holds
(cf. (10.11b)). Both statements together imply that rm = 0. ��

A first provisional representation of the conjugate gradient method reads as
follows:

start: x0 arbitrary; r0 := b−Ax0; (10.12a)

Loop over m = 0, 1, . . . , n− 1: (n := #I)

stop if rm = 0, otherwise
compute pm from rm according to (10.10a,b) (10.12b)

xm+1 := xm + λopt(r
m, pm, A) pm with λopt in (9.24c); (10.12c)

rm+1 := rm − λopt(r
m, pm, A)Apm; (10.12d)

The properties of this method are summarised below.

Theorem 10.7. (a) Let m0 be the value when the loop (10.12b–d) terminates with
rm0 = 0 and xm0 = x∗. Assuming exact arithmetic, m0 = degA(e

0) = degA(r
0)

holds. Since m0 ≤ n := #I, the loop terminates latest after n steps.

(b) The iterates xm (0 ≤ m ≤ m0) can be characterised by each of the following
minimisation problems:

F (xm) = min

{
F
(
x0 +

m−1∑
�=0

λ� p
�
)
: λ0, . . . , λm−1 ∈ K

}
, (10.13a)
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F (xm) = min

{
F
(
x0 +

m−1∑
�=0

μ� r
�
)
: μ0, . . . , μm−1 ∈ K

}
, (10.13b)

F (xm) = min
{
F
(
x0 + pm−1(A) r0

)
: pm−1 ∈ Pm−1

}
. (10.13c)

(c) The minima (10.13a–c) can also be expressed by the energy norm ‖·‖A:

‖em‖A = min
λ0,...,λm−1∈K

∥∥∥∥e0 + m−1∑
�=0

λ� p
�

∥∥∥∥
A

= min
μ0,...,μm−1∈K

∥∥∥∥e0 + m−1∑
�=0

μ� r
�

∥∥∥∥
A

= min
pm−1∈Pm−1

‖e0 + pm−1(A) r0‖A = min
ξ∈Km(A,r0)

‖e0 + ξ‖A. (10.13d)

Proof. (b) Because of (10.11a), all minimisation problems (10.13a–c) are of the
form

F (xm) = min{F (x0 + ξ) : ξ ∈ Km(A, r0)}.

This statement coincides with (10.11b) in Remark 10.6d.
(c) The equivalence of the statements in the parts (b) and (c) follows from (9.3):

F (x) = ‖x−A−1b‖2A + const.
(a) For m∗ = degA(e

0), there is a polynomial p = pm∗ of degree m∗ with
p(A)e0 = 0. The scaling can be chosen so that p(0) = 1 (cf. Lemma 8.12). Define
q∈Pm∗−1 by p(ξ)=1− q(ξ)ξ. Since 0=p(A)e0=e0 − q(A)Ae0=e0 + q(A)r0,
the minimum in (10.13d) yields em

∗
= 0. This proves that the first m = m0 with

em0 = 0 satisfies m0 ≤ m∗. On the other hand, em0 = 0 and (10.13d) prove
that there is some polynomial p(ξ) = 1 − q(ξ)ξ of degree m0 with p(A)e0 = 0.
Hence m0 ≥ m∗=degA(e

0). ��

The proposed algorithm (10.12a–d) can significantly be simplified in step
(10.12b). Computing most of the scalar products

〈
Arm, p�

〉
in (10.10a) can be

avoided.

Lemma 10.8.
〈
Arm, p�

〉
= 0 holds for all 0 ≤ � ≤ m− 2, m ≤ m0.

Proof. We have
〈
Arm, p�

〉
=
〈
rm, Ap�

〉
. Equation (10.11a) and inclusion (8.9)

show that Ap� ∈ AK�+1(A, r0) ⊂ K�+2(A, r0) ⊂ Km(A, r0). Therefore, the
assertion follows from (10.11b): rm⊥Km(A, r0). ��

Only the term for � = m− 1 does remain in the sum (10.10a):

pm := rm −
〈
Arm, pm−1

〉
〈Apm−1, pm−1〉 p

m−1 = rm −
〈
rm, Apm−1

〉
〈Apm−1, pm−1〉 p

m−1. (10.14)

The second representation in (10.14) has the advantage that only the product Apm−1

is needed which already appears in the denominator, in λopt, and in (10.12d).
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10.2.2 CG Method (Applied to Richardson’s Iteration)

Using (10.14), we present the CG method (10.12a–d) in the following form (‘CG’
abbreviates ‘conjugate gradient’).

ΥCG[Φ
Rich
1 ] CG method (applied to Richardson’s iteration) (10.15)

start: x0 arbitrary; r0 := b−Ax0; p0 := r0; (10.15a)

Loop over m = 0, 1, . . . , n− 1: stop if rm = 0, otherwise:

xm+1 := xm + λopt p
m with (10.15b)

λopt := λopt(r
m, pm, A) = 〈rm, pm〉 / 〈Apm, pm〉 ; (10.15c)

rm+1 := rm − λopt Apm; (10.15d)

pm+1 := rm+1 − 〈rm+1,Apm〉
〈Apm,pm〉 pm; (10.15e)

Exercise 10.9. The following alternatives are equivalent to (10.15c,e):

λopt(r
m, pm, A) = ‖rm‖22 / 〈Apm, pm〉 , (10.15c′)

pm+1 = rm+1 +
‖rm+1‖22
‖rm‖22

pm. (10.15e′)

Remark 10.10. One CG step xm �→ xm+1 requires one multiplication Apm and,
in addition, only simple vector operations and scalar products. On the other hand,
the storage requirement is higher. Besides xm, also rm and pm are needed.

The CG method was first presented in 1952 by Stiefel [353] in a paper still worth
reading. Independently, the method was described in the same year by Hestenes
(cf. Hestenes [218], Hestenes–Stiefel [219]).

The CG method can be interpreted in two completely different ways:

• as a direct method,
• as an iterative method.

Formally, the CG algorithm is a direct method because it produces the exact
solution x∗ after finitely many operations (see m0 in Theorem 10.7a). For the
practical performance, this is not true. Since the later and smaller residuals rm

arise from linear combinations of larger quantities, cancellation leads to an error
amplification, so that the vectors {p0, . . . , pn−1} no longer form a conjugate system.
After losing the orthogonality, two cases may appear:

• stagnation: the errors em fluctuate about the reached level of accuracy,
• instability: the errors start to grow again.
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The first case is harmless, provided that the reached error level is sufficient.
The second case will happen for many Krylov methods discussed later. This is the
reason that there are many equivalent algorithms, i.e., algorithms producing iden-
tical results under exact arithmetic, but behaving differently under floating-point
perturbation. In the best case, there are ‘stabilised’ versions which do not become
unstable. There is a further, still more severe problem. Division by 〈Apm, pm〉
already appears in (10.15c). A division by zero leads to a breakdown of the al-
gorithm. A lucky breakdown happens if a vanishing divisor only appears if xm

is already the exact solution (so that the algorithm need not to be continued).
In the ‘unlucky’ cases, the ‘stabilised’ versions should overcome this difficulty
(cf. §10.3.3). In any case, one can state that the Krylov methods cannot be used
as a practical method for the direct solution of large linear systems.

It was Reid [319] how emphasised the use of the CG method as an iterative
method. Although the limit process m → ∞ does not make sense,1 the decrease
of the error em in a range 0 ≤ m ≤ m0 with m0 ! n = #I is all we need for
practical applications, provided that at least em0 is small enough.

The problem caused by floating-point perturbations suggests a modification to-
wards an infinite CG iteration.2 Assume that perturbations get out of control after
(more than) k steps. Then, after every k steps (i.e., for m = 0, k, 2k, . . .), we start
again with the last descent direction pk := rk, etc. This method is usually called the
restarted CG method:

start: x0 arbitrary starting iterate, (10.16)
iteration m = 1, 2, . . . xm: as in (10.15b,d),

rm, pm: as in (10.15c–e), if m is not a multiple of k;
rm := pm := b−Axm, if m = 0, k, 2k, . . .

10.2.3 Convergence Analysis

The convergence analysis is based on the following observation corresponding to
Remark 9.9 in the case of the gradient method. Property (10.17d) stated below
coincides with the characterisation in §10.1.5.1.

Proposition 10.11. Let x0, . . . , xm0 be the sequence of the CG iterates.
(a) The CG results can be regarded as the results of the semi-iterative Richardson
iteration ΦRich

1 . The related polynomials pk ∈ Pk in (8.6c) with pk(1) = 1 yield
the error representation

ek = xk − x∗ = pk(M
Rich
1 )e0 = pk(I −A)e0 (MRich

1 = I −A). (10.17a)

1 The terms ‘convergence’ and ‘asymptotic convergence rate’ lose their meaning since no limit can
be formed.
2 This is still a nonlinear iteration. If xm = A−1b , the lucky breakdown stops the iteration.
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(b) pk and qk−1(ξ) := [pk(1 − ξ) − 1]/ξ are the optimal polynomials solving the
respective minimisation problems

‖ek‖A = ‖pk(MRich
1 )e0‖A ≤ ‖p̃k(MRich

1 )e0‖A (10.17b)
for all polynomials p̃k ∈ Pk with p̃k(1) = 1,

‖ek‖A = ‖e0 + qk−1(A)r0‖A ≤ ‖e0 + q̃k−1(A)r
0‖A (10.17c)

for all polynomials q̃k−1 ∈ Pk−1,

‖ek‖A = min
{
‖x− x∗‖A : x ∈ x0 +Kk(A)r0

}
. (10.17d)

Proof. (a) (10.15b) shows that xk = x0 +
∑k−1

ν=0 βνp
ν with βν := λopt(r

ν , pν , A),
i.e.,

xk − x0 = ek − e0 ∈ span{p0, . . . , pk−1} = Kk(A, r0) (cf. (10.11a)).

Hence, there is a polynomial qk−1 ∈ Pk−1 with ek = e0 − qk−1(A)r
0. Since

r0 =−Ae0, ek = p̂k(A)e0 holds for the polynomial p̂k(ξ) := 1 + ξqk−1(ξ) ∈ Pk.
The related polynomial pk(ξ) := p̂k(1 − ξ) satisfies the consistency condition
pk(1) = p̂k(0) = 1. The identity pk(M

Rich
1 )e0 = pk(I − A)e0 = p̂k(A)e

0 = ek

proves that pk ∈ Pk is the polynomial in (10.17a).
(b) Since the CG results satisfy (10.13d), the polynomial qk−1 is the minimiser

in (10.17c). Problem (10.17b) is equivalent to (10.17c) and (10.17d). ��

Remark 10.12. The CG iterates xm are not the solutions of the minimisation
problem posed in §8.3.1 because there the minimisation is required with respect to
the Euclidean norm ‖·‖2. However, if ‖·‖2 is replaced by ‖·‖A, the CG method offers
the possibility of solving the modified minimisation problem ‖pm(M)e0‖A = min
without knowledge of the initial error e0 and the spectrum of MRich

1 = I − A
(equivalently, of the spectrum of A).

Remark 10.13. For any polynomial Pm ∈ Pm satisfying Pm(1) = 1, the errors
em = xm − x∗ of the CG iterates satisfy the error estimate

‖em‖A ≤ max {|Pm(1− λ)| : λ ∈ σ(A)} ‖e0‖A. (10.18)

Proof. (10.17b) shows that ‖em‖A ≤ ‖Pm(I−A)‖A‖e0‖A. The matrix norm ‖·‖A
has the representation ‖X‖A = ‖A1/2XA−1/2‖2 (cf. (C.5d)). A1/2 commutes with
polynomials in A : A1/2Pm(I − A)A−1/2 = Pm(I − A). The assertion (10.18)
follows from ‖Pm(I −A)‖2 = max{|Pm(1− λ)| : λ ∈ σ(A)}. ��

The following theorem shows that—as in the case of the Chebyshev method—an
order improvement can be achieved.

Theorem 10.14. Let A be positive definite with λ := λmin(A), Λ := λmax(A) and
abbreviate the spectral condition number by κ = κ(A) = Λ/λ. The errors em of
the CG iterates xm satisfy the estimate
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‖em‖A ≤
2
(
1− 1

κ

)m(
1 + 1√

κ

)2m
+
(
1− 1√

κ

)2m ‖e0‖A =
2cm

1 + c2m
‖e0‖A (10.19)

with c :=

√
κ− 1√
κ+ 1

=

√
Λ−

√
λ√

Λ+
√
λ

.

Proof. Let Pm be the transformed Chebyshev polynomial (8.27a) belonging to
σM := [a, b] ⊃ σ(MRich) = σ(I − A) with a = 1 − Λ and b = 1 − λ.
(10.18) and (8.27b) yield ‖em‖A ≤ ‖e0‖A/Cm . (8.28c) proves (10.19). ��

The error estimate (10.19) uses an upper bound that may be too pessimistic.
It is based on the Chebyshev polynomial Pm which is the optimal choice for
minimising max{|Pm(ξ)| : ξ ∈ σM = [a, b]}, but not necessarily for minimising
max{|Pm(ξ)| : ξ ∈ σ(MRich) = σ(I − A)} = max{|Pm(1− λ)| : λ ∈ σ(A)}.
This leads to the following statement.

Remark 10.15. Although the asymptotic convergence rate of the gradient method
depends exclusively on the spectral condition number κ(A) and therefore the
extreme eigenvalues, the convergence of the CG method is influenced by the whole
spectrum.

The following simple example will illustrate this fact. Assume that the inclusion
σ(MRich) ⊂ [a, b] with a = 1− Λ, b = 1− λ can be strengthened to σ(MRich) ⊂
σM := [a, a′] ∪ [b′, b] with a ≤ a′ < b′ ≤ b. Then one may find a polynomial
Pm for which max{|Pm(1− λ)| : λ ∈ σ(A)} is smaller than for the Chebyshev
polynomial (cf. §8.3.6). Hence, Pm yields a better estimate than (10.19). Generally
speaking, if the eigenvalues of A are not distributed uniformly over [λ,Λ]
(e.g., if they accumulate in smaller subintervals), the CG method converges better
than estimated by (10.19).

Exercise 10.16. If the spectrum σ(MRich) = {λ,Λ} contains only the extreme
eigenvalues λ and Λ, the cg method yields xm0 = x∗ for m0 ≤ 2.

Even if the eigenvalue distribution permits no better polynomial than the Cheby-
shev polynomial, the ratios ‖em+1‖A/‖em‖A improve with increasing iteration
number m and become smaller than c ≈ 1 − 2/

√
κ in (10.19). The reason is

as follows. In the case of the gradient method (9.11a–c), the error em converges
to the subspace V := span{v1, v2} spanned by the eigenvectors belonging to
λ := λmin(A) and Λ := λmax(A) (see the proof of Corollary 9.11). For the CG
case, this behaviour cannot occur. If the CG error em lies exactly in the subspace V ,
2 = dimV steps of the CG methods would be sufficient to obtain em+2 = 0. It
can be proved that the CG error moves towards V ⊥. Restricting the matrix A to
V ⊥, we obtain the spectrum σ(A)\{λ,Λ} and the condition is Λ2/λ2, where λ2

is the second smallest and Λ2 the second largest eigenvalue. Hence, after a certain
number of steps, the error ratios behave more like c ≈ 1 − 2/

√
Λ2/λ2 < c . A

precise analysis of this superconvergence phenomenon is given by van der Sluis–
van der Vorst [370]. See also Strakos [357].
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10.2.4 CG Method Applied to Positive Definite Iterations

10.2.4.1 Standard Version

As the gradient method, the method of conjugate gradients can be applied to other
positive definite iterations than the Richardson method. This yields the so-called
preconditioned CG method (but notice that the gradients are preconditioned not the
CG method). Assume Φ ∈ Lpos . Hence, the standard assumption A > 0 implies
N > 0 for the matrix N = N [Φ] in

xm+1 = xm −N(Axm − b) with A,N positive definite. (10.20a)

As in (9.15b), we introduce Ǎ := N
1
2AN

1
2 and b̌ := N

1
2 b . Algorithm (10.20a)

is equivalent to the Richardson iteration (10.20b) for solving Ǎx̌ = b̌ :

x̌m+1 = x̌m − (Ǎx̌m − b̌). (10.20b)

Applying the CG algorithm (10.15a–e) to Ǎx̌ = b̌, we obtain:

start: x̌0 := N−1/2x0; ř0 := b̌− Ǎx̌0; p̌0 := ř0; (10.21a)
for m = 0, 1, 2, . . . (while řm �= 0) :

x̌m+1 := x̌m + λopt p̌
m with (10.21b)

λopt := λopt(ř
m, p̌m, A) = 〈řm, p̌m〉 /

〈
Ǎp̌m, p̌m

〉
; (10.21c)

řm+1 := řm − λopt Ǎ p̌m (= b̌− Ǎx̌m+1); (10.21d)
p̌m+1 := řm+1 −

〈
řm+1, Ǎp̌m

〉
/
〈
Ǎp̌m, p̌m

〉
p̌m; (10.21e)

Insert Ǎ = N1/2AN1/2 and b̌ = N1/2b, define xm and pm by

x̌m = N−1/2xm, p̌m = N−1/2pm (10.21f)

and use N1/2rm = N1/2(b−Axm) = b̌− Ǎx̌m = řm. (10.21a–e) becomes

start: x0 arbitrary; r0 := b−Ax0; p0 := Nr0; (10.22a)
iteration: for m = 0, 1, 2, . . . (while rm �= 0) :

xm+1 := xm + λopt p
m with (10.22b)

λopt := λopt(r
m, pm, A) = 〈rm, pm〉 / 〈Apm, pm〉; (10.22c)

rm+1 := rm − λopt Apm; (10.22d)

pm+1 := Nrm+1 − 〈Nrm+1,Apm〉
〈Apm,pm〉 pm; (10.22e)

The expression (10.22c) coincides with the original definition (9.6a) of λopt.
(10.22e) shows that the search directions pm are produced from the ‘preconditioned’
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gradient Nrm by an A-orthogonalisation. Exploiting the equivalent formulations
(10.15c′,e′), we end up with

λopt := 〈Nrm, rm〉 / 〈Apm, pm〉 ;

pm+1 := Nrm+1 +

〈
Nrm+1, rm+1

〉
〈Nrm, rm〉 pm.

If one carries along the variables xm, pm, rm, and ρm := 〈Nrm, rm〉 during
the iteration, the CG algorithm ΥCG[Φ] takes the form (10.23a–f):

start: x0 arbitrary; (10.23)
r0 := b−Ax0; p0 := Nr0; ρ0 :=

〈
p0, r0

〉
; (10.23a)

iteration: for m = 0, 1, 2, . . . (while m < n := #I and rm �= 0):
am := Apm; λopt := ρm/ 〈am, pm〉; (10.23b)
xm+1 := xm + λopt p

m; (10.23c)
rm+1 := rm − λopt a

m; (10.23d)
qm+1 := Nrm+1; ρm+1 :=

〈
qm+1, rm+1

〉
; (10.23e)

pm+1 := qm+1 − ρm+1

ρm
pm; (10.23f)

The error estimate for em = xm − x∗ follows as in §9.2.4, since the inequality
(10.19) for ěm = x̌m − x̌∗ = N−1/2em can be transferred to em: ‖ěm‖Ǎ=‖em‖A.
Notice that κ=κ(Ǎ)=κ(N1/2AN1/2)=κ(NA)=Γ/γ with Γ and γ in (10.24a).

Theorem 10.17 (error estimate). Assume Φ ∈ Lpos and A > 0 . The matrix
W = N−1 of the third normal form is assumed to satisfy

γW ≤ A ≤ ΓW (γ > 0 , cf. (9.18a)). (10.24a)

Then the iterates xm of the CG method ΥCG[Φ] in (10.23a–f) are the minimisers
of min

{
‖x− x∗‖A : x = x0 +Km(NA)Nr0

}
and fulfil the energy norm estimate

‖em‖A ≤ 2cm

1 + c2m
‖e0‖A with c =

√
κ− 1√
κ+ 1

=

√
Γ −√

γ√
Γ +

√
γ
, κ =

Γ

γ
. (10.24b)

Lemma 10.18. (a) m0 = degǍ(ě
0) = degNA(e

0) = degAN (r0) ≤ n = #I is the
first index m0 with rm0 = 0 and xm0 = x∗.
(b) The search directions generated by (10.23a–f) are conjugate with respect to the
original matrix A: 〈

pk, p�
〉
A
= 0 for k �= �. (10.25)

(c) The statements in (10.11a,b) become

rm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1}
= span{Nr0, . . . , Nrm−1}.
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(d) The iterate xm is the minimiser of the expressions

F (xm) = min
λ0,...,λm−1∈K

F

(
x0+

m−1∑
�=0

λ� p
�

)
= min

μ0,...,μm−1∈K

F

(
x0+N

m−1∑
�=0

μ� r
�

)
= min

pm−1∈Pm−1

F
(
x0 + pm−1(NA)Nr0

)
= min

ξ∈Km(NA,Nr0)
F
(
x0 + ξ

)
.

Proof. Part (a) is identical to Theorem 10.7a. Part (b) follows from (10.21f),〈
p̌k, p̌�

〉
Ǎ
=
〈
Ǎp̌k, p̌�

〉
=
〈
N1/2AN1/2N−1/2pk, N−1/2p�

〉
=
〈
Apk, p�

〉
=
〈
pk, p�

〉
A

and the Ǎ-orthogonality of the search directions p̌k. Parts (c) and (d) are con-
sequences of (10.13a–c) applied to the ∨-quantities in (10.21f). ��

The alternative reformulation x̄m+1 := x̄m − (Āx̄m − b̄) used in §9.2.4.2 will
be discussed in §10.3.

10.2.4.2 Directly Positive Definite Case

Assume Φ∈L>0, i.e., the iteration Φ(·, ·, A) is directly positive definite: N [A]A>0

(cf. Definition 5.14). Now we substitute A, x, b by Â := NA, x̂ = x, b̂ = Nb
in the CG algorithm (10.21a–e). Reformulation the algorithm in terms of the
quantities A, x, b yields

start: x0 arbitrary; r0 := b−Ax0; p0 := Nr0; m := 0;

iteration: xm+1 := xm + λopt p
m with

λopt := λopt(Nrm, pm, NA) = 〈Nrm, pm〉 / 〈NApm, pm〉;
rm+1 := rm − λopt Apm;

pm+1 := Nrm+1 − 〈Nrm+1,NApm〉
〈NApm,pm〉 pm;

Proposition 10.19. (a) The final iteration number is m0 = degNA(e
0).

(b) The directions pm are NA-orthogonal.
(c) The transformed residuals are orthogonal:

Nrm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1} = span{Nr0, . . . , Nrm−1}.

(d) ‖em‖NA ≤ 2cm

1 + c2m
‖e0‖NA holds with c =

√
Γ −√

γ√
Γ +

√
γ

, where γ and Γ are

the minimal and maximal eigenvalues of NA.
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10.2.5 Numerical Examples

m value in the middle ‖em‖A

‖em−1‖A

1 -0.00186560978 0.670874
2 -0.00460087980 0.791286
3 -0.00739241614 0.860663
4 -0.01111605755 0.865691
10 -0.04408187826 0.917138
20 -0.11796241337 0.939358
30 0.40673579950 0.918423
40 0.49137792828 0.843496
50 0.50013929834 0.832459
60 0.50010381735 0.738779
70 0.50001053720 0.761377
80 0.50000013936 0.708295
90 0.50000000342 0.661969
100 0.50000000001

Table 10.1 Results of ΥCG[ΦRich
1 ]

applied to the Poisson model prob-
lem with h = 1/32.

We choose the Poisson model problem for
h = 1/32. Applying the CG method to the
Richardson iteration (i.e., algorithm ΥCG[Φ

Rich
1 ]

in (10.15a–e)) yields the results given in Table
10.1. Due to inequality (10.19), the convergence
factors ‖em‖A/‖em−1‖A measured with respect
to the energy norm ‖·‖A should become smaller
than c = (

√
Λ−

√
λ )/(

√
Λ+

√
λ ). Inserting the

eigenvalues λ and Λ in (3.1b,c) for h = 1/32,
we obtain c = 0.9063471. In fact, the conver-
gence factor decreases from 0.9 to 0.66 when
m = 30 increases to m = 90. This ‘superlinear’
convergence behaviour illustrates the improve-
ment of the effective condition during the iteration
as discussed in the last paragraph of §10.2.3.

Table 10.2 reports the CG results for h = 1
32

with the SSOR and ILU iteration as basic iterations. The optimal SSOR parameter is
the same as for Table 9.2. The ILU iteration is the modified five-point version ILU5

with ω=−1 and enlargement of the diagonal by 5 (cf. §7.3.10). The condition of the
SSOR method determined in §9.2.5 is κ≈7.66. This yields the value c ≈ 0.47 for c
in (10.24b). In the SSOR case, the averaged convergence factors (‖em‖A/‖e0‖A)

1
m

5-point ILU with ω = −1 SSOR with ω=1.8212691200

m u16,16
‖em‖A

‖em−1‖A
u16,16

‖em‖A

‖em−1‖A

1 0.2262513522 0.156365 0.0285107511 0.457624
2 0.5320480495 0.446360 0.1146321025 0.307093
3 0.4582969109 0.465620 0.2093879771 0.599140
4 0.4818928890 0.459572 0.3500438579 0.530214
5 0.4827955876 0.490598 0.4301535841 0.491911
10 0.4999129317 0.380570 0.4992951874 0.464830
11 0.5000044282 0.358332 0.4998541213 0.465082
12 0.4999850353 0.429905 0.4999456258 0.394760
20 0.5000000033 0.342381 0.5000000087 0.320139
21 0.5000000026 0.388711 0.5000000020 0.487606
22 0.5000000008 0.405064 0.5000000055 0.405755
23 0.5000000002 0.313452 0.5000000041 0.408013
24 0.5000000000 0.355741 0.5000000000 0.332715
25 0.5000000000 0.451311 0.5000000005 0.432772
26 0.5000000000 0.557156 0.5000000001 0.334264
27 0.5000000000 0.517255 0.5000000001 0.366209
28 0.5000000000 0.802069 0.5000000000 0.365471
29 0.5000000000 0.969482 0.5000000000 0.487797
30 0.5000000000 1.00102 0.5000000000 0.776690

Table 10.2 The CG method (10.21a–e) applied to the ILU and SSOR iterations.
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are around 0.47 until m= 11. Afterwards they decrease to 0.42 for m ≈ 30. The
values u16,16 (‘value in the middle’) given in Table 10.2 show that for m≥ 27 the
rounding errors acquire the upper hand. Nevertheless, the CG algorithm is stable.

The superlinear convergence behaviour mentioned in connection with Table 10.1
should not be overrated. Its advantage can be exploited only if m becomes
sufficiently large. In the case of Table 10.1, ‘sufficiently large’ means m ≥ 30;
in the SSOR case of Table 10.2, it is m ≥ 17. Inspecting the values in these tables
illustrates the following dilemma:

• Either the iteration is fast (as in Table 10.2). Then one would like to stop the
iteration before reaching the critical value of m indicating the appearance of
superconvergence.

• Or the iteration is slow (as in Table 10.1). Then one would prefer to replace the
iteration Φ with a better one.

10.2.6 Amount of Work of the CG Method

One iteration step (10.23b–f) requires one evaluation of p �→ Ap and r �→ Nr,
three vector additions, three multiplications of a vector by a scalar number, and
two scalar products. This adds up to

CG-Work(Φ) = C(A) + C(N) + 8n

arithmetic operations for ΥCG[Φ], where

C(A): work for p �→ Ap, C(N): work for r �→ Nr.

Performing the Φ-iteration step in the form Φ(x, b) = x − N(Ax − b), we need
C(A) + C(N) + 2n operations, so that

CG-Work(Φ) = Work(Φ) + 6n.

Hence, as in the semi-iterative case (cf. §8.3.9), the cost factor is equal to

CΦ,cg = CΦ + 6/CA.

According to the analysis of convergence behaviour discussed above, we choose
c = (

√
Λ−

√
λ )/(

√
Λ+

√
λ ) in (10.24b) as the asymptotic rate on which we base

the effective amount of work:

Effcg(Φ) = −
(
CΦ +

6

CA

)
log

(√
Λ−

√
λ√

Λ+
√
λ

)
.
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Remark 10.20. Even if these numbers coincide exactly with those obtained in
§8.3.9 for the Chebyshev method, one has to emphasise one important advantage
of the CG method: The eigenvalue bounds γ and Γ may be unknown to the user.
Vice versa, the efficacy of the Chebyshev method deteriorates if too pessimistic
bounds γ, Γ are inserted.

10.2.7 Suitability for Secondary Iterations

Section 5.5 describes composed iterations arising from x �→ x − B−1(Ax − b)
by replacing the exact solution of Bδ = d with the approximation by a secondary
iteration. Now we can start with δ0 = 0 and perform m steps of the CG algo-
rithm. Positive and negative comments concerning this approach are given in the
next lemma.

Lemma 10.21. Let A and B be positive definite matrices.

ΦA(x, b) = x−B−1(Ax− b)

is the primary iteration. For solving Bδ = d, the CG method ΥCG[ΦB ] based on
the iteration

ΦB(δ, d) = δ − C−1(Bδ − d)

with a starting iterate δ0 = 0 is inserted as a secondary solver. The number k of
CG steps is chosen such that 2ck ≤ ε holds with

c = (
√
Λ−

√
λ )/(

√
Λ+

√
λ ), 0 < δC ≤ B ≤ ΔC.

The composed iteration Φk is no longer linear, but it still can be written in the form

Φk(x, b) = Mk(Ax− b)x+Nk(Ax− b)b (10.26a)

with matrices Mk(d), Nk(d) depending on the defect d = Ax − b. They have the
contraction number (10.26b) with respect to the energy norm:

‖Mk(Ax− b)‖A ≤ ‖MA‖A + ε‖A 1
2B−1A

1
2 ‖2 (MA = I −B−1A). (10.26b)

Before proving the lemma, we comment on (10.26b). If, as in §5.5.1, B is a
preconditioner with κ(B−1A) = ‖A1/2B−1A1/2‖2 = O(1), the right-hand side in
(10.26b) is bounded by ‖MA‖A + Cε. For example, one should choose ε such that

‖MA‖A + Cε ≤ 1

2
(1 + ‖MA‖A) < 1.

Proof of Lemma 10.21. The right-hand side d in Bδ=d is the defect d=Axm−b
(cf. (5.18a)). Because of δ0 = 0, the error estimate (10.24b) yields the B-energy
norm ‖δk − δ‖B ≤ ε‖δ0 − δ‖B = ε‖δ‖B , δ := B−1d . From
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‖δ‖B = ‖B1/2δ‖2 = ‖B−1/2A(xm − x∗)‖2 ≤ ‖B−1/2AB−1/2‖2‖xm − x∗‖B ,

we deduce

‖xm+1 − x∗‖B = ‖xm − δk − x∗‖B ≤ ‖xm − δ − x∗‖B + ‖δk − δ‖B
= ‖ΦA(xm, b)− x∗‖B + ‖δk − δ‖B
≤ ‖MA‖B ‖xm − x∗‖B + ε‖δ‖B
≤
[
‖MA‖B + ε‖B−1/2AB−1/2‖2

]
‖xm − x∗‖B .

The identity ‖B−1/2AB−1/2‖2 = ‖A1/2B−1/2‖22 = ‖A1/2B−1A
1/2
2 ‖ (cf. (B.21a))

proves the contraction number (10.26b). The definition of Mk(Ax − b) and
Nk(Ax − b) in (10.26a) is obvious. Since the CG method is nonlinear (analogous
to Remark 9.8a), Φk is also. ��

Remark 10.22. The composed iteration Φk defined in Lemma 10.21 is not well
suited to be the basic iteration for the Chebyshev or CG method because the matrix
Wk(δ) = A(I − Mk(δ)), δ = Ax − b, of the third normal form of Φk depends
on the value of the iterates xm. Concerning this problem, see Golub–Overton [156]
and Axelsson–Vassilevski [17].

10.2.8 Three-Term Recursion for pm

Finally, we describe another formulation of the CG method. The three-term formu-
lation is less important for the CG method itself, but is required as a stabilisation of,
e.g., the CR algorithm in §10.3.3.

Inserting definition (10.23b,d): rm+1 := rm−λApm into (10.23f), one obtains
pm+1 :=Nrm − λNApm + const·pm. Since the scaling of the search direction is
irrelevant, we may replace pm+1 by −pm+1/λ. Because Nrm ∈Km+1(NA,Nr0)
and pm ∈ Km+1(NA,Nr0), the following ansatz is justified:

pm+1 := NApm −
m∑

μ=0

αμ,m+1 p
m−μ. (10.27)

Condition (10.25) states that
〈
Apm+1, pm

〉
= 0 and determines the coefficients

α0,m+1 = 〈ANApm, pm〉 / 〈Apm, pm〉 ,

since 〈Apm−μ, pm〉 = 0 for μ > 0. Similarly we obtain

a1,m+1 =
〈
ANApm, pm−1

〉
/
〈
Apm−1, pm−1

〉
.

Lemma 10.23. Assume (AN)H = NA . Then the coefficients in (10.27) satisfy
αμ,m+1 = 0 for μ ≥ 2.
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Proof. The condition
〈
Apm+1, pm−μ

〉
= 0 yields the equation〈

ANApm, pm−μ
〉
= αμ,m

〈
Apm−μ, pm−μ

〉
.

The assertion follows from〈
ANApm, pm−μ

〉
=
〈
Apm, NApm−μ

〉
=

(10.27)

〈
Apm, pm+1−μ +

m−μ∑
ν=0

αμ,m+1−μ p
m−μ−ν

〉
= 0 . ��

Thanks to Lemma 10.23, pm+1 can be calculated from the three-term recursion

pm+1 = NApm − α0 p
m − α1 p

m−1

with α0 =
〈ANApm, pm〉
〈Apm, pm〉 , α1 =

〈
ANApm, pm−1

〉
〈Apm−1, pm−1〉 ,

where the last term is absent for m = 0 (formally, we may set α1 = 0, p−1 = 0).
The CG algorithm (10.23a–f) is equivalent to (10.28a–e):

start: x0 arbitrary; r0 := b−Ax0; p−1 := 0; p0 := Nr0; (10.28a)

iteration: for m = 0, 1, 2, . . . while 〈Apm, pm〉 �= 0:
xm+1 := xm + λoptp

m; rm+1 := rm − λoptApm with (10.28b)
λopt := 〈rm, pm〉 / 〈Apm, pm〉; (10.28c)
pm+1 := NApm − α0 p

m − α1 p
m−1 with (10.28d)

α0 := 〈ANApm,pm〉
〈Apm,pm〉 ; α1 =

〈ANApm,pm−1〉
〈Apm−1,pm−1〉 ; (10.28e)

where again α1 := 0 is chosen for m = 0.

The next theorem is based on the very weak assumption (AN)H = NA which
follows from A > 0, N > 0 or from A = AH, N = NH.

Theorem 10.24. Assume (AN)H = NA. Let m0 be the maximal index such that
the directions generated in (10.28d) satisfy 〈Apm, pm〉 �= 0 for all 0 ≤ m ≤ m0.

(a) The quantities xm, rm, pm (0≤m≤m0) in (10.28a–e) satisfy rm = b − Axm

and 〈
Apm, p�

〉
=
〈
rm, Nr�

〉
=
〈
rm, p�

〉
= 0 for 0 ≤ � < m,

span{p0, . . . , pm} = Km+1(NA,Nr0) ⊃ span{Nr0, . . . , Nrm}

for 0 ≤ m ≤ m0 . More precisely, we have

Nrm ∈ span{pm, pm−1} for 0 ≤ m ≤ m0 . (10.29)
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(b) As long as algorithm (10.22a–e) does not terminate, (10.22a–e) and (10.28a–e)
produce the same iterates xm, whereas the search directions pm may differ by a
nonvanishing factor.
(c) Assume, in addition, that N + NH > 0. If the iteration (10.28a–e) terminates
because of pm = 0, the iterate xm is already the exact solution.

Proof. The assertion is proved by induction. The start m = 0 is trivial. Let the
statements hold for 0, 1, . . . ,m− 1. We abbreviate Km(NA,Nr0) by Km.

(i) For the proof of
〈
Apm, p�

〉
= 0, we use (10.28d):

Apm = ANApm−1 − α0 Apm−1 − α1 Apm−2.

For � ∈ {m− 2,m− 1}, the definitions of α0 and α1 prove
〈
Apm, p�

〉
= 0.

Let � ≤ m − 3. The assumption (AN)H = NA yields
〈
ANApm−1, p�

〉
=〈

Apm−1, NAp�
〉

. From p� ∈ span{p0, . . . , p�} = K�+1, we conclude that

NAp� ∈ K�+2 ⊂ Km−1 = span{p0, . . . , pm−2}⊥Apm−1.

Since Apm−1 and Apm−2 are also perpendicular to p�,
〈
Apm, p�

〉
= 0 follows.

(ii) By induction Km = span{p0, . . . , pm−1} holds. We use again (10.28d):
pm = NApm−1−α0 p

m−1−α1 p
m−2 ∈ NAKm+span{p0, . . . , pm−1} ⊂ Km+1.

This proves span{p0, . . . , pm} ⊂ Km+1. On the other hand, we have

Km+1 ⊂ Km +NAKm = span{p0, . . . , pm−1}+NA span{p0, . . . , pm−1} � pm

because of (10.28d). This proves the reverse inclusion Km+1 ⊂ span{p0, . . . , pm}.

(iii) 0 =
〈
rm, p�

〉
=
〈
rm−1, p�

〉
−λopt

〈
Apm, p�

〉
= 0 holds for � < m− 1 by

induction and follows for � = m− 1 by definition of λopt. This proves rm⊥Km.

(iv) Now we prove (10.29). The definition of rm in (10.28b) shows that Nrm =
Nrm−1 − λNApm−1. By induction Nrm−1 ∈ span{pm−2, pm−1} holds, while
(10.28d) yields NApm−1 = pm+α0 p

m−1+α1 p
m−2 ∈ span{pm−2, pm−1, pm}.

Hence ANrm has the representation

ANrm = b0Apm + b1Apm−1 + b2Apm−2.

The scalar product with pm−2 yields the value b2 =
〈ANrm,pm−2〉
〈Apm−2,pm−2〉 . By assump-

tion (AN)H = NA,
〈
ANrm, pm−2

〉
=
〈
rm, NApm−2

〉
holds. Since NApm−2 ∈

NAKm−1 ⊂ Km, part (iii) proves b2 = 0 and Nrm ∈ span{pm−1, pm} follows.

(v)
〈
rm, Nr�

〉
= 0 for � < m is a consequence of (10.29) and rm ⊥Km.

(vi) Part (b) holds, since another scaling of pm does not change xm.

(vii) If pm=0, (10.29) implies Nrm∈ span{p0, . . . , pm−1}. Since
〈
rm, p�

〉
=0

for � < m, we conclude that 〈rm, Nrm〉 = 0 and the assumption N + NH > 0
implies that rm = 0. ��
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10.3 Method of Conjugate Residuals (CR)

10.3.1 Algorithm

In the case of the gradient method, a residual oriented transformation is discussed in
§9.2.4.2. Under the assumption A > 0, the iteration Φ ∈ Lpos with N > 0 is
transformed to x̄m+1 := x̄m − (Āx̄m − b̄) with Ā := A1/2NA1/2 > 0,
b̄ := A1/2Nb, x̄m := A1/2xm, p̄m = A1/2pm, r̄m = A1/2Nrm (cf. (9.19)).
As in (10.21a–e), we can formulate the CG algorithm (10.21a–e) with A, x, b, p, r
replaced by Ā, x̄, b̄, p̄, r̄. Then we substitute these quantities by the original ones
and obtain the following algorithm ΥCR[Φ]:

start: x0 arbitrary; r0 := b−Ax0; p0 := Nr0; m = 0;

iteration: xm+1 := xm + λopt p
m with

λopt := λopt(r
m, NApm, N) = 〈Nrm,Apm〉

〈NApm,Apm〉 ;

rm+1 := rm − λopt Apm;

pm+1 := Nrm+1 − 〈ANrm+1,NApm〉
〈NApm,Apm〉 pm;

(10.30)

For N = I, this method is equivalent to the method of the conjugate residuals (CR)
of Stiefel [354].

The following statements follow from the properties of the CG method applied
to Ā, x̄, b̄, p̄, r̄ after a reformulation by A, x, b, p, r.

Proposition 10.25. (a) The number m0 = degĀ(ē
0) = degNA(e

0) = degAN (r0)
is the same as in Lemma 10.18a.

(b) The directions pm are ANA-orthogonal.

(c) The statements in (10.11a,b) become

ANrm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1} = span{Nr0, . . . , Nrm−1}.

(d) The convergence rate c is the same c as in Theorem 10.17. Note that the involved
norms are different. Here the residuals are the minimisers of

min
{
‖N1/2A(x− x∗)‖2 : x = x0 +Km(NA,Nr0)

}
and are bounded by

‖N1/2rm‖2 ≤ 2cm

1 + c2m
‖N1/2r0‖2.

In the case of N=I , the CR method corresponds to the formulation in §10.1.5.2
with the Krylov spaces Um=Km(A, r0) and Vm=AKm(A, r0) (note that A=AH).
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10.3.2 Application to Hermitian Matrices

In the following we assume

A = AH regular and N > 0.

Since AHNA > 0, the denominator 〈NApm, Apm〉 in (10.30) vanishes if and only
if pm = 0. Hence, the algorithm (10.30) is applicable as long as pm �= 0. In the in-
definite case, however, there is a severe difference to the conjugate gradient method.
The CG method for A > 0 terminates with rm = 0, i.e., xm = A−1b (‘lucky
breakdown’), whereas for an indefinite matrix A an unlucky breakdown may occur.

Remark 10.26. Assume that A = AH has positive and negative eigenvalues. Then
there are initial values x0 �= A−1b so that λopt(r

0, NAp0, N) = 0. Then p1 = 0
leads to a breakdown, while x1 = x0 is still different from the true solution.

Proof. λopt(r
0, NAp0, N) = 0 follows from

〈
Ap0, p0

〉
=
〈
NANp0, p0

〉
= 0

which holds for certain p0 �= 0. Since p1⊥NAN p0 and p1∈ span{p0} because of
λopt = 0, p1 = 0 follows. ��

Lemma 10.27. Let A = AH and N > 0. Assume that the algorithm (10.30) for
a fixed x0 is applicable for all 0 ≤ m ≤ m0. Then, as in Proposition 10.25b–c,
the search directions pm are ANA-orthogonal and

ANrm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1} = span{Nr0, . . . , Nrm−1}

holds. The iterate xm in (10.30) minimises the norm

‖N1/2rm‖2 = min
{
‖N1/2A(x− x∗)‖2 : x ∈ x0 +Km(NA,Nr0)

}
. (10.31)

Proof. (i) Concerning the first two statements, the previous proof by induction can
be repeated without change.

(ii) Note that xm − x0 ∈ Km := span{p0, . . . , pm−1} = Km(NA,Nr0)}.
Because of ANA > 0, {〈A(x− x∗), NA(x− x∗)〉 : x − x0 ∈ Km} attains its
minimum at x = xm if and only if the gradient ANA(xm − x∗) = −ANrm is
orthogonal to Km. This, however, is the second statement of the lemma. ��

The reason for the breakdown mentioned in Remark 10.26 is that the spaces
span{Nr0, Nr1} = span{Nr0} and span{Nr0, NANr0} differ. This fact
suggests that the subspace Km(NA,Nr0) = span{Nr0, . . . , (NA)m−1Nr0} is
better suited than span{Nr0, . . . , Nrm−1}.

Even if 〈ANrm, Nrm〉 = 0 does not occur during the calculations, it may
happen that Nrm is ‘almost’ contained in Km(NA,Nr0), leading to a numerical
instability of the algorithm. One remedy is constructing the search directions pm by
the three-term recursion explained in §10.2.8.
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10.3.3 Stabilised Method of Conjugate Residuals

Using the three-term recursion in algorithm (10.30), we obtain the following algo-
rithm Υ stab

CR [Φ]:

Υ stab
CR [Φ] stabilised method of the conjugate residuals (10.32)

start: x0 arbitrary; r0 := b−Ax0; p−1 := 0; p0 := Nr0; (10.32a)

iteration: for m = 0, 1, 2, . . . while 〈Apm, NApm〉 �= 0:

xm+1 := xm + λpm; rm+1 := rm − λApm with (10.32b)

λ := 〈rm, NApm〉 / 〈Apm, NApm〉; (10.32c)

pm+1 := NApm − α0p
m − α1p

m−1 with (10.32d)

α0 := 〈ANApm,NApm〉
〈Apm,NApm〉 ; α1 =

〈ANApm,NApm−1〉
〈Apm−1,NApm−1〉 ; (10.32e)

Exercise 10.28. By ANApm appearing in (10.32e), algorithm (10.32a–e) seems
to cost two multiplications by the matrix A per iteration step. Rewrite algorithm
(10.32a–e) with an additional recursion for am := Apm so that only one multipli-
cation by A is needed.

Theorem 10.29. Assume (AN)H=NA. Let m0 be the maximal index such that the
directions generated in (10.28d) satisfy 〈Apm, NApm〉 �= 0 for all 0 ≤ m ≤ m0 .

(a) The quantities xm, rm, pm (0≤m≤m0) in (10.28a–e) satisfy rm = b − Axm

and 〈
Apm, NAp�

〉
=
〈
rm, NANr�

〉
=
〈
rm, NAp�

〉
= 0 for 0 ≤ � < m,

span{p0, . . . , pm} = Km+1(NA,Nr0) ⊃ span{Nr0, . . . , Nrm}

for 0 ≤ m ≤ m0 . More precisely, we have

Nrm ∈ span{pm, pm−1} for 0 ≤ m ≤ m0. (10.33)

(b) As long as algorithm (10.30) does not terminate, (10.30) and (10.32a–e) produce
the same iterates xm, whereas the search directions may differ by a nonvanishing
factor.

(c) Assume in addition that N + NH > 0. If the iteration (10.32a–e) terminates
because of pm = 0, the iterate xm is already the exact solution.

Proof. The assertion is proved by induction. The start m = 0 is trivial. Let the
statements hold for 0, 1, . . . ,m− 1. We abbreviate Km(NA,Nr0) by Km.

(i) For the proof of
〈
Apm, NAp�

〉
= 0, we use (10.32d):

Apm = ANApm−1 − α0 Apm−1 − α1 Apm−2.
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For � ∈ {m− 2,m− 1}, the definitions of α0 and α1 prove
〈
Apm, NAp�

〉
= 0.

Let � ≤ m − 3. The assumption (AN)H = NA yields
〈
ANApm−1, NAp�

〉
=〈

Apm−1, (NA)2p�
〉
. From p� ∈ span{p0, . . . , p�} = K�+1, we conclude that

NAp� ∈ K�+2 ⊂ Km−1 = span{p0, . . . , pm−2} and NAKm−1 ⊥Apm−1. Since
Apm−1 and Apm−2 are also perpendicular to NAp�,

〈
Apm, NAp�

〉
= 0 follows.

(ii) By induction, Km = span{p0, . . . , pm−1} holds. We again use (10.32d):
pm = NApm−1−α0 p

m−1−α1 p
m−2 ∈ NAKm+span{pm−2, pm−1} ⊂ Km+1.

This proves span{p0, . . . , pm} ⊂ Km+1. On the other hand, the inclusion

Km+1 ⊂ Km +NAKm = span{p0, . . . , pm−1}+NA span{p0, . . . , pm−1} � pm

follows from (10.32d) proving the reverse inclusion Km+1 ⊂ span{p0, . . . , pm}.
(iii) 0 =

〈
rm, NAp�

〉
=
〈
rm−1, NAp�

〉
− λopt

〈
Apm, NAp�

〉
= 0 holds for

� < m − 1 by induction and follows for � = m − 1 by definition of λopt. This
proves rm ⊥NAKm.

(iv) For the proof of (10.33), use the definition of rm in (10.32b): Nrm =
Nrm−1 − λNApm−1. By induction Nrm−1 ∈ span{pm−2, pm−1} holds, while
(10.32d) yields NApm−1= pm +α0 p

m−1 +α1 p
m−2 ∈ span{pm−2, pm−1, pm}.

Hence Nrm has the representation

Nrm = b0 p
m + b1 p

m−1 + b2 p
m−2.

Using part (i), we obtain b2 =
〈ANrm,NApm−2〉
〈Apm−2,NApm−2〉 by taking the scalar product

of ANrm with NApm−2. (AN)H = NA implies that
〈
ANrm, NApm−2

〉
=〈

rm, (NA)2pm−2
〉

holds. Since NApm−2 ∈ NAKm−1 ⊂ Km, part (iii) proves
b2 = 0 , and Nrm ∈ span{pm−1, pm} follows.

(v)
〈
rm, NANr�

〉
=0 for �<m is a consequence of (10.29) and rm⊥NAKm.

(vi) Statement (b) follows as in Theorem 10.24. For Part (c), use that pm = 0
implies Nrm = cpm−1 for some c ∈ K. Obviously, c = 0 and rm = 0 follow
from 0 =

〈
ANrm, NApm−1

〉
=
〈
rm, (NA)2pm−1

〉
. This equation holds since

pm = 0 implies Km = Km+1 and therefore
〈
rm, (NA)2pm−1

〉
= 0 because of

rm ⊥NAKm = NAKm+1 = (NA)2Km. ��

10.3.4 Convergence Results for Indefinite Matrices

Lemma 10.27 carries over to algorithm (10.32) since it produces the same iter-
ates xm. The error estimate in Proposition 10.25d cannot be transferred directly to
indefinite matrices because the spectrum of NA no longer lies in the positive part.
In the general case, the resulting convergence speed is definitely slower than in
the positive definite case. Note that the quantity c below is defined in terms of κ,
whereas c in Proposition 10.25d is derived from

√
κ. Hence, in general, the typical

acceleration by the conjugate gradient technique does not take place, but notice
Theorem 10.31.
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Theorem 10.30. Assume N > 0 , A = AH regular, and κ = κ(NA) . Then the
iterates xm of algorithm (10.32) satisfy the error estimate

‖N1/2A(xm − x∗)‖2 ≤ 2cμ

1 + c2μ
‖N1/2A(x0 − x∗)‖2 (10.34)

with c := (κ − 1)/(κ + 1) and m
2 − 1 < μ ≤ m

2 , where μ ∈ N0. Hence, the
asymptotic convergence rate amounts to

√
c = 1− 1/κ+O(κ−2).

Proof. For odd m, we exploit the monotone convergence ‖N1/2Aem+1‖2 ≤
‖N1/2Aem‖2 following from (10.31). Therefore, consider an even m = 2μ.
Analogously to Remark 10.13,

‖N1/2Aem‖2 ≤
(

max
λ∈σ(NA)

|Pm(1− λ)|
)
‖N1/2Ae0‖2 (10.35)

holds for any polynomial Pm ∈ Pm with Pm(1) = 1 . Let pμ be a polynomial
of degree ≤ μ = m

2 with pμ(1) = 1. Pm(ξ) := pμ(ξ(2− ξ)) is of degree ≤ m
and satisfies Pm(1) = 1. Evidently, Pm(1− λ) = pμ(1− λ2) holds, from which

‖N1/2Aem‖2 ≤ max
{∣∣pμ(1− λ2)

∣∣ : λ ∈ σ(NA)
}

‖N1/2Ae0‖2.

follows. If λ ∈ σ(NA), we have |λ| ∈ [γ, Γ ] and λ2 ∈ [γ2, Γ 2], where

γ := 1/ρ(A−1N−1) = min{|λ| : λ ∈ σ(NA)}, Γ := ρ(NA).

Since [γ2, Γ 2] lies in the positive half-axis, the Chebyshev polynomial (8.27a)
yields the following estimate with c = (Γ − γ)/(Γ + γ) = (κ− 1)/(κ+ 1):

max
{∣∣pμ(1− λ2)

∣∣ : λ ∈ σ(NA)
}
≤ max

γ2≤ξ≤Γ 2
|pμ(1− ξ)| ≤ 2cμ

1 + c2μ
. ��

Estimate (10.34) may be too pessimistic. Often a milder form of indefiniteness
occurs. If, for instance, the Helmholtz equation −Δu − cu = f with c > 0 is
discretised, A has eigenvalues λh

μ (1 ≤ μ ≤ n = nh), where

λh
μ = λh

μ,0 − c, 0 < λh
μ,0 : eigenvalues of the Poisson model case (3.1a).

For h → 0, the discrete eigenvalues λh
μ tend to the Laplace eigenvalues λμ which

cannot accumulate (cf. [193, §11]). Therefore the following properties are satisfied:

The number k of negative eigenvalues is bounded for h → 0 . (10.36a)

For all h > 0, the nonpositive eigenvalues
belong to [−c1,−c0] with 0 < c0 ≤ c1 .

(10.36b)

The positive eigenvalues are in [γ, Γ ] with 0 < γ ≤ Γ . (10.36c)

Let k = kh be the number of negative eigenvalues λh
μ, 1 ≤ μ ≤ k. Define



10.3 Method of Conjugate Residuals (CR) 255

πh(1− ξ) =

k∏
μ=1

(1− ξ/λh
μ).

Let pμ be the Chebyshev polynomial (8.27a) of degree μ := m−k for a = 1−Γ
and b=1− γ. The product Pm(ξ) :=πh(ξ)pμ(ξ) is of degree m with Pm(1)=1.
Since Pm(1− λ) = 0 holds for the negative eigenvalues λ ∈ σ(NA), the factor on
the right-hand side in (10.35) reduces to

max
{
|Pm(1− λ)| : λ ∈ [γ, Γ ]

}
≤ max

{
|πh(1− λ)| : λ ∈ [γ, Γ ]

} 2cμ

1 + c2μ

with c :=
√
Γ−√

γ√
Γ+

√
γ

(cf. (10.36c)). |πh(1− λ)| can be estimated by (1 + Γ/c0)
k

(cf. (10.36b)). The m-th root of the bound (1 + Γ/c0)
k 2cμ

1+c2μ tends to c. Hence,
the asymptotic convergence rate is not influenced by the negative eigenvalues. This
proves the next theorem.

Theorem 10.31. Assume A = AH, N > 0, and let the eigenvalues of NA satisfy
(10.36a–c). Replace the spectral condition number κ(NA) by the possibly smaller
number κ := Γ/γ (γ, Γ in (10.36c)). Then the error estimate for the algorithm
(10.32) of the conjugate residuals reads

‖N1/2A(xm − x∗)‖2 ≤ 2

(
1 + Γ/c0

c

)k
‖N1/2A(x0 − x∗)‖2

with the asymptotic convergence rate c :=
√
κ−1√
κ+1

=
√
Γ−√

γ√
Γ+

√
γ

and c0 in (10.36a).

m value in the middle ‖em‖A

‖em−1‖A

1 0.2222124445 0.157356
2 0.4269164370 0.537790
3 0.4510237348 0.439627
4 0.4759275765 0.438732

10 0.4998558015 0.384330
20 0.5000000047 0.338399
21 0.5000000029 0.389211
22 0.5000000012 0.407384
23 0.5000000003 0.317164
24 0.5000000002 0.442606
25 0.5000000000 0.691876
26 0.5000000000 0.768926
27 0.5000000000 0.955932
28 0.5000000000 1.02596
29 0.5000000000 1.03161
30 0.5000000000 1.03076

Table 10.3 Υ stab
CR [ΦILU]: CR

method for the Poisson model
problem applied to the 5-point-ILU
iteration (ω = −1, h = 1/32).

An alternative to the method (10.32) of con-
jugate residuals is the application of the standard
CG method to the Kaczmarz iteration (cf. §5.6.3).
Then the convergence speed is as slow as in
Theorem 10.30. In the situation of (10.36a–c), the
convergence rate would not improve.

10.3.5 Numerical Examples

For reasons of comparison, we first test the posi-
tive definite Poisson model problem with h = 1

32 .
We apply the CR method to the ILU iteration
(five-point pattern) with the same parameters as
in Table 10.2. The results given in Table 10.3 are
similar to those of the standard CG method in
Table 10.2.

Next, we choose the discrete Helmholtz equa-
tion −Δu − 50u = f as an indefinite example. Here the matrix A is the Poisson
model matrix minus 50 I . It has three negative eigenvalues λ1 = −30.277,



256 10 Conjugate Gradient Methods and Generalisations

λ2 = λ3 = −0.7866, while λ4 = 28.7 is the smallest positive eigenvalue. For
the modified ILU decomposition, the diagonal must be enlarged by 55 (cf. Remark
7.44). The results of Table 10.4 show that the reduction factor moves toward the
asymptotic convergence rate and is of a size similar to the positive definite case of
Table 10.3. The stagnation for m ≥ 33 is due to rounding. In both examples the
algorithm behaves stable.

m value in the middle ‖em‖A

‖em−1‖A

1 -1.129805206 1.36998
2 0.5616735534 0.41788
3 0.9170148791 0.77945
4 0.7375934000 0.78685
5 0.6675855715 0.88467
6 0.5834957931 0.95835
7 0.5440078825 0.99228
8 0.5222771713 1.00338
9 0.5099064832 1.00768
10 0.5053055088 1.00956
11 0.5029466483 1.01213
12 0.5020970259 1.01621
13 0.5015223028 1.01159
14 0.5015388760 1.00335

m value in the middle ‖em‖A

‖em−1‖A

15 0.5017304154 0.97466
16 0.5019212154 0.86920
17 0.5018558645 0.56086
18 0.5017568935 0.32511
19 0.5008067252 0.27287
20 0.5003741869 0.19130
21 0.5003841894 0.35875
30 0.4999998664 0.30740
31 0.4999999994 0.40910
32 0.4999999838 0.69469
33 0.4999999962 0.90769
34 0.4999999984 0.97862
35 0.4999999986 0.98121
36 0.4999999994 0.99385

Table 10.4 CR method Υ stab
CR [ΦILU] for an indefinite problem based on the 5-point-ILU iteration.

10.4 Method of Orthogonal Directions

The CG method (10.15a–e) minimises the error ‖em‖A = ‖A1/2em‖2 with re-
spect to the energy norm over the Krylov space Km(A, r0). The method of con-
jugate residuals (with N = I) minimises the residual ‖rm‖2 = ‖Aem‖2 over the
same space. A more natural norm would be ‖em‖2. Then the search directions pm

should be orthogonal in the usual sense. This can be achieved by replacing the
Krylov space Km(A, r0) by AKm(A, r0) = Km(A,Ar0). The corresponding
algorithm (10.37) is described by Fridman [140] (1963) and called the method of
orthogonal directions (OD) since the search directions form an orthogonal system
if N=I . The application of OD to an iteration Φ with the matrix N [Φ] > 0 takes
the form

ΥOD[Φ] method of orthogonal directions (10.37)
start: x0 arbitrary; r0 := b−Ax0; q−1 := r0; q0 := ANq−1; (10.37a)
iteration: for m = 0, 1, 2, . . . while qm �= 0:

xm+1 := xm + λpm; rm+1 := rm − λApm with (10.37b)

pm := Nqm; ρm := 〈qm, pm〉 ; λ :=
〈rm,pm−1〉

ρm
; (10.37c)

qm+1 := Apm − α0q
m − α1q

m−1 with (10.37d)
α0 := 〈Apm, pm〉 /ρm; α1 :=

〈
Apm, pm−1

〉
/ρm; (10.37e)
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where α1 := 0 is set for m = 0. The method (10.37) is unstable as we observe from
the results in Tables 10.5 and 10.6. A stabilisation is given by Stoer [355, (3.16)].
On the other hand, we can do without it if only a few iteration steps are required.

m value in the middle ‖em‖2 ‖em‖2

‖em−1‖2

m

√
‖em‖2

‖e0‖2

1 -4.5749285910-2 2.9395610-1 3.9283610-1 3.9283610-1
10 4.98970848010-1 5.1680710-4 3.7421610-1 4.8297610-1
11 5.00247552410-1 1.9113810-4 3.6984410-1 4.7139910-1
15 5.00001586310-1 5.8027410-6 4.6785610-1 4.5635610-1
16 5.00008595810-1 2.7680010-6 4.7701610-1 4.5762110-1
17 4.99986739510-1 4.9816010-6 1.7997110+0 4.9600710-1
18 4.99992355210-1 1.3578110-5 2.7256710+0 5.4525310-1
19 4.99964566110-1 3.7786310-5 2.7828710+0 5.9409510-1
20 4.99866783510-1 1.0592010-4 2.8031510+0 6.4201610-1
27 5.29037314110-1 7.1015910-2 3.2046510+0 9.1647710-1
30 2.37902094210+0 1.3383610+0 1.7762510+0 1.0195710+0

Table 10.5 OD method ΥOD[ΦILU] applied to the same problem as in Table 10.3.

m value in the middle ‖em‖2 ‖em‖2

‖em−1‖2

m

√
‖em‖2

‖e0‖2

1 1.28802556310+0 4.5826810-1 6.1241910-1 6.1241910-1
10 5.10796451110-1 2.0868110-1 9.9382110-1 8.8011910-1
20 5.08414905110-1 1.0052310-2 4.8148510-1 8.0613910-1
30 5.00007269710-1 5.1041610-6 4.2853710-1 6.7265910-1
35 4.99912454310-1 2.0970010-4 2.2868210+0 7.9159110-1
40 4.17891551110-1 5.6400910-2 6.5354010+0 9.3741210-1

Table 10.6 OD method ΥOD[ΦILU] for the indefinite problem in Table 10.4.

The proof of the following theorem is left to the reader.

Theorem 10.32. Assume that N > 0 and A = AH. Let m0 be the largest index with
qm �= 0 . qm0+1=0 implies xm0+1=x∗. For all 0 ≤ m ≤ m0 , (10.38a–c) hold:〈

Nqk, q�
〉
= 0 for 0 ≤ k �= � ≤ m0,〈

Nqk, qk
〉
�= 0 for 0 ≤ k ≤ m0,

(10.38a)

rm ⊥NKm(AN, r0), (10.38b)

span{q0, . . . , qm−1} = ANKm(AN, r0) = Km(AN,ANr0). (10.38c)

xm is the minimiser min{‖N−1/2(x− x∗)‖ : x ∈ x0 +NKm(AN, r0)}.

This case corresponds to the choice of the spaces in §10.1.5.3. The connec-
tion with the Lanczos method is described by Paige–Saunders [307]. The method
SYMMLQ defined there is a further stabilisation of the method (10.37).

A review of the algorithms discussed above and of additional variants is given by
Stoer [355].
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10.5 Solution of Nonsymmetric Systems

Some of the methods described above do not require the assumption (9.1) of positive
definiteness of A and are also applicable to indefinite but still symmetric matrices.
The nonsymmetric situation is more difficult.

10.5.1 Generalised Minimal Residual Method (GMRES)

The following method generalises the minimal residual iteration described in §9.4
and corresponds to the approach in §10.1.5.2.

10.5.1.1 General Setting and Convergence

The ‘generalised minimal residual method’ described by Saad–Schultz [329] (see
also Walker [388]) determines the vector in the affine space x0 + Km(A, r0)
minimising the residual:

xm = argmin
{
‖b−Ax‖2 : x ∈ x0 +Km(A, r0)

}
. (10.39)

We recall that the control of the residual might be questionable (cf. Remark 2.35).
As the CG method, GMRES (with exact arithmetic) yields the true solution after

at least #I steps.

Proposition 10.33. For regular A and m0 := degA(e
0) = degA(r

0) ≤ #I, the
iterate xm0 is the exact solution x∗.

Proof. For regular A, the statements pm0
(A)e0 = 0 and pm0

(A)r0 = −Apm0
(A)e0

= 0 are equivalent. Let pm0 ∈ Pm0 be the polynomial with pm0(A)e
0 = 0. Note

that pm0(0) �= 0 by Lemma 8.12. After a suitable scaling, pm0(0) = 1 holds so that
pm0

(ξ) = 1− ξqm0−1(ξ). The correction qm0−1(A)r0 ∈ Km0
(A, r0) yields

xm0 −A−1b = e0 + qm0−1(A)r
0 = (I −Aqm0−1(A))e0 = pm0(A)e0 = 0,

i.e., xm0 is the exact solution. ��

In the case of a general matrix A, one cannot expect other convergence statements
than xm0 = A−1b, as the following example shows.

Example 10.34. Define A ∈ Rn×n by the entries Aij =

{
1 j − i = 1 mod n
0 otherwise

}
(e.g., A =

[
0 1 0
0 0 1
1 0 0

]
for n = 3). Then there are initial values x0 so that the equality

‖rm‖2 = ‖r0‖2 holds for all residuals rm = b−Axm with m < n.



10.5 Solution of Nonsymmetric Systems 259

Proof. Choose x0 such that r0 = [1 0 . . . 0]T is the first unit vector. The solution
xm of (10.39) is of the form xm = x0 + qm−1(A)r0. The corresponding residual is
rm = r0−qm−1(A)Ar0 = pm(A)r0 with the polynomial pm(ξ) := 1−ξqm−1(ξ),
i.e., pm(ξ) =

∑m
ν=0 aνξ

ν with a0 = 1. Note that the optimal polynomial pm
minimises ‖rm‖2. One checks that the product Aνr0 is the μ-th unit vector with
μ = n + 1 − ν mod n. Hence rm = pm(A)r0 = [a0 an−1 . . . a2 a1]

T

yields the squared norm ‖rm‖22 =
∑m

ν=0 |aν |2. The minimum is achieved for
a1 = a2 = . . . = an−1 = 0 resulting in ‖rm‖2 = 1 = ‖r0‖2. ��

Better results can be obtained if A is Hermitian: A = AH. However, in this case,
the cheaper method of conjugate residuals can be applied, which yields the same
iterates (set N = I in Lemma 10.27).

In the case of A+AH > 0, the convergence can be derived from the convergence
of the minimal residual iteration (cf. §9.4).

Proposition 10.35. Assume A + AH > 0. Then the residuals of GMRES satisfy
‖rm‖2 ≤ cm‖r0‖2 with c in (9.26).

Proof. By construction, rm = pm(A) r0 holds with a polynomial pm ∈ Pm

with pm(0) = 1. The minimal residual iteration yields the sequence (x̂k) with
residuals r̂k. Assume r̂0 = r0. There are polynomials qk ∈ P1 with qk(0) = 1
and r̂k = qk(A)r̂k−1. The product p̂m(ξ) :=

∏m
k=1 qk(ξ) satisfies r̂m =

p̂m(A)r0, p̂m ∈ Pm, and p̂m(0) = 1. The optimality of the GMRES algorithm
yields ‖rm‖2=min{‖ρm(A)r0‖2 : ρm∈Pm, ρm(0)=1} ≤ ‖r̂m‖2≤cm‖r0‖2 . ��

10.5.1.2 Arnoldi Basis

Let {v1, . . . , vm} be any basis of Km(A, r0) (this is possible if and only if
m ≤ degA(r

0)). According to (10.8), the minimiser xm and its residual rm are
characterised by rm ⊥AKm(A, r0). The ansatz xm = x0 +

∑m
ν=1 ανv

ν yields

rm = b−Axm = r0 −
m∑

ν=1

ανAvν ,

and rm⊥AKm(A, r0) produces the m equations

0 = 〈rm, Avμ〉 =
〈
r0, Avμ

〉
−

m∑
ν=1

αν 〈Avν , Avμ〉 (1 ≤ μ ≤ m) (10.40)

for the m unknown factors αν .

Lemma 10.36. For regular A ∈ KI×I , the matrix Gm := (〈Avν , Avμ〉)1≤ν,μ≤m

is regular for all m ≤ degA(r
0) so that the system (10.40) is uniquely solvable.

Proof. Since A is regular, {Av1, . . . , Avm} is also a basis of AKm(A, r0). Hence,
the Gram matrix Gm is regular. ��
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For the actual computation, the basis should be suitably chosen. One strategy
is to arrange the vectors vk such that Km(A, r0) = span{v1, . . . , vm} for all
m ≤ degA(r

0); i.e., Km+1(A, r0) = span{Km(A, r0), vm}. For the purpose of
stability, the basis should be orthonormal. Finally, the basis should be such that the
involved computational work is as small as possible.

Instead of the orthonormalisation procedure in Remark A.26a, we use the
Arnoldi algorithm:

w0 := r0; h0,−1 := ‖r0‖2; m := 0;
while hm,m−1 �= 0 do

begin vm := wm/hm,m−1;
for i := 1 to m do him :=

〈
Avm, vi

〉
;

wm+1 := Avm −
∑m

i=1 himvi; hm+1,m := ‖wm‖2;
m := m+ 1

end;

One easily checks that
〈
vm, vi

〉
= δmi; i.e., (vi)1≤i≤m is an orthonormal basis

of Km(A, r0). The construction implies the property

Avm =

m+1∑
i=1

himvi. (10.41)

Therefore,
〈
Avk, vi

〉
= hik holds, where we define hik := 0 for i > k + 1. We

form the matrices

Vm = [v1 v2 . . . vm] ∈ KI×m, Hm = (hik)1≤i,k≤m ∈ Km×m,

Ĥm+1 = (hik)1≤i≤m+1,1≤k≤m ∈ K(m+1)×m.

Note that Hm and Ĥm+1 are Hessenberg matrices, i.e., hik = 0 for i > k + 1.
From (10.41), we derive

V H
mAVm = Hm, V H

m+1AVm = Ĥm+1.

The ansatz xm ∈ x0 + Km(A, r0) becomes xm = x0 + Vmzm for a vector
zm ∈ Km to be determined. The residual is rm = r0 − AVmzm. Note that
r0 = ‖r0‖2 v1 = ‖r0‖2 Vm+1 e

1 (e1 is the first unit vector). Since Vm+1 is an
orthogonal matrix, Vm+1V

H
m+1 is the orthogonal projection onto Km+1(A, r0).

Therefore, range(AVm) ⊂ Km+1(A, r0) implies that

AVm = (Vm+1V
H
m+1)(AVm) = Vm+1Ĥm+1.

Together we obtain

rm = Vm+1

[
‖r0‖2 e1 + Ĥm+1 z

m
]
.
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Exploiting again the orthogonality of Vm+1 , we conclude that

‖rm‖2 =
∥∥[ ‖r0‖2 e1 + Ĥm+1z

m
] ∥∥

2

has to be minimised over all zm ∈ Km (cf. Exercise B.22). This is a least-squares
problem as considered in Remark B.23: apply the QR decomposition: Ĥm+1 = QR
and solve Rzm = −‖r0‖2QHe1. Because of the Hessenberg form of Ĥm+1, the
QR decomposition is rather cheap (m Givens rotations have to be applied).

Remark 10.37 (cost). The cost of the m-th GMRES step is O(m#I), so that m
steps yield a total amount of O(m2 #I) operations. The storage cost is O(m#I).

The reason is that the involved matrix Ĥm+1 has Hessenberg structure instead of
a tridiagonal one. The existence of short recursions as in the classical CG method is
connected with the B-normality of A as discussed in Liesen–Saylor [264].

In the case of a Hermitian matrix A = AH, the Hessenberg structure becomes a
tridiagonal one and short recursions can be applied. The resulting method is called
MINRES (cf. van der Vorst [373, §6.4]).

10.5.1.3 GMRES(m)

The increasing cost mentioned above is the reason for introducing a restart after
a fixed number of m steps. After reaching the GMRES iterate xm, this value is
used as the new starting value for the next m GMRES steps. The size of m may be
determined by the maximal available storage Smax: O(m#I) ≤ Smax.

Since already for GMRES no convergence statement for m < degA(e
0) could be

given in the general case, the situation is even worse for GMRES(m). In this case,
not even xm = A−1b for m = n can be expected. An alternative approach is to
restrict the orthogonalisation to the last m directions.

10.5.2 Full Orthogonalisation Method (FOM)

The full orthogonalisation method or Arnoldi method tries to determine xm ∈
x0 +Km(A, r0) such that

rm ⊥ Km(A, r0)

(we recall that rm ⊥AKm(A, r0) holds for GMRES).
In the general case, the method can break down without obtaining the exact

solution. For instance, r0 �= 0 with
〈
Ar0, r0

〉
= 0 yields a breakdown since

x1 = x0 + αr0 leads to a zero division in α = ‖r0‖22 /
〈
Ar0, r0

〉
.

If the method can be performed successfully, xm0 = A−1b holds for the index
m0 = degA(r

0) . For a proof, use that rm0 ∈ Km0+1(A, r0) = Km0(A, r0) can
be perpendicular to Km0(A, r0) only if rm0 = 0.
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10.5.3 Biconjugate Gradient Method and Variants

The biconjugate gradient method (abbreviated as BCG or BiCG) uses two
different Krylov subspaces Km(A, r0) and Km(AH, r0∗). Here r0∗ is any vector
with

〈
r0, r0∗

〉
�= 0. As the original conjugate gradient method, it uses a short

recursion for the search directions pm ∈ Km+1(A, r
0) and pm∗ ∈ Km+1(A

H, r0∗).
As a result the residuals are biconjugate: 〈ri, rj∗〉 = 0 for i �= j, while 〈Api, pj∗〉 = 0
for i �= j. The formulation of the method goes back to Lanczos [255] and Fletcher
[136]. This method does not aim at the minimisation of the error in some norm.

The use of AH in the algorithm may lead to problems since sometimes only a
subroutine for x �→ Ax is available. On the other hand, all vectors v ∈ Km(AH, r0∗)
have the representation pm(AH) r0∗ with some polynomial pm ∈ Pm . The arising
scalar products 〈v, x〉 with x = qm(A)r0 ∈ Km(A, r0) can be rewritten as
〈pm(AH)r0∗, x〉= 〈r0∗, pm(A)qm(A)r0〉. Fortunately, the products pmqm are of the
form p2m(ξ) or ξp2m(ξ). This gives rise to the conjugate gradient squared method
CGS by Sonneveld [344] (see also Sonneveld–Wesseling–de Zeeuw [345]).

A stabilised version of CGS called Bi-CGSTAB is developed by van der Vorst
[372]. For details, see the original papers or van der Vorst [373, §7], Kanzow [233,
§7], Saad [328, §§7.3–7.4], Gutknecht [173, 174, 175], and Bank–Chan [26].

10.5.4 Further Remarks

Since matrices that are not positive definite require more or less involved CG vari-
ants, another remedy is worth being considered. As in §5.5, an indefinite or non-
symmetric problem can be preconditioned by a positive definite matrix B, so that
for solving Bδ = d the standard CG method can be applied as a secondary iteration.

Concus–Golub [98] and Widlund [396] describe an interesting method for
general matrices A that are split into their symmetric and skew-symmetric parts:
A=A0 + A1, A0 =

1
2 (A + AH). For many applications, A0 proves to be positive

definite. A two-sided transformation by A−1/2 yields the matrix A′ := I − S
with the skew-symmetric term S := A−1/2A1A

−1/2. The eigenvalues of A′ lie in
a complex interval instead of a real one (cf. Hageman–Young [212, p. 336]. For the
respective CG version, one finds an error estimate with respect to the A0-energy
norm, depending on Λ := ‖A−1

0 A1‖2 and leading to the asymptotic convergence
rate 1−O(1/Λ). In the cases of systems arising from partial differential equa-
tions, Λ is usually h-independent, leading to a convergence rate independent of the
discretisation parameter h. For each step of the algorithm, one system A0δ = d
must be solved. This fact limits practicability. Under similar assumptions, the
multigrid iteration of the second kind even achieves a convergence rate O(hτ ) with
positive (!) exponent τ (cf. §11.9.1).

Young calls NA symmetrisable if there is a similarity transformation such that
WNAW−1 > 0. Then there exist a matrix Z with ZNA > 0. The methods
called ORTHODIR, ORTHOMIN, and ORTHORES are based on this assumption
(cf. Hageman–Young [212, pp. 340–346]).
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