
Automated Verification of Stochastic
Spiking Neural P Systems

Bogdan Aman(B) and Gabriel Ciobanu

Institute of Computer Science, Romanian Academy, Iaşi, Romania
bogdan.aman@gmail.com, gabriel@info.uaic.ro

Abstract. In this paper we consider stochastic spiking neural P sys-
tems, a class of distributed parallel neural-like computing models. We
translate a restricted variant of the stochastic spiking neural P systems
using uniform distribution into a network of timed automata, proving
that such a translation preserves faithfully their behaviours. This rela-
tionship allows the verification of several kinds of properties (both qual-
itative and quantitative) using the statistical model checking extension
of the complex software tool Uppaal .

1 Introduction

Membrane computing [13] is a known branch of natural computing that aims
to abstract computing ideas and formal models from the structure and func-
tioning of living cells, as well as from the organization of cells in tissues, organs
(brain included) or other higher order structures such as colonies of cells (e.g.,
of bacteria) [1]. A structure is represented by a set of regions, each delimited
by a surrounding membrane, and arranged in a tree or a graph form. Multi-
sets of objects are distributed inside these regions, and they can be modified
or moved between adjacent/connected compartments. Objects represent the for-
mal counterpart of the molecular species (spikes, ions, proteins, etc.) floating
inside cellular compartments, and are described by means of strings over a given
alphabet. Evolution rules represent the formal counterpart of chemical reactions,
and are given in the form of rewriting rules that operate on objects. The mod-
els considered, called membrane systems (P systems), are parallel, distributed
computing models, processing multisets of symbols in cell-like compartmental
architectures. These models have been applied to the description of biological
systems [10,11].

Spiking neural (SN) P systems represent a class of distributed parallel com-
puting models inspired from the way neurons communicate with each other by
means of electrical impulses (see Fig. 1), where there is a synapse between each
pair of connected neurons. Roughly, a spiking neural P system consists of a set
of neurons placed in the nodes of a directed graph, where neurons send signals
(spikes, denoted by the symbol a) along synapses (arcs of the graph). Stochastic
spiking neural P systems are obtained from spiking neural P systems by associ-
ating to each spiking rule a firing time that indicates how long an enabled rule
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 77–91, 2015.
DOI: 10.1007/978-3-319-28475-0 6

78 B. Aman and G. Ciobanu

waits before it is executed. Such firing times are random variables (abstractions
for the concept of chance) whose probability distribution functions have domain
contained in R

+.

Fig. 1. Communication between neurons

The presence of unreliable components in spiking neural P system can be
considered in many different aspects (e.g., in the form of a stochastic delays
of the spiking rules [8], or the stochastic loss of spikes [15]). The presence of
unreliable components pose an important constrains on the possible modelling
and verification of spiking neural P system. In this paper we provide a formally
correct algorithm for translating systems described in stochastic spiking neural
P systems of [8] into a class of timed safety automata. This connection allows
the verification of several kinds of properties, both qualitative and quantitative,
using the statistical model checking extension of the Uppaal software tool.

2 Stochastic Spiking Neural P Systems

Some notations and basic definitions are shortly presented.
The set of non-negative integers is denoted by N. Given a finite alphabet
V = {a1, . . . , an}, the free monoid generated by V under the operation of con-
catenation is denoted by V ∗. The elements of V ∗ are called strings, and the
empty string is denoted by λ. The set of all non-empty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead
of {a}∗ and {a}+, respectively.

A regular expression E over an alphabet V is defined as follows:

E = λ | a | (E)(E) | (E) ∪ (E) | (E)+,where a ∈ V.

E∗ = (E)+ ∪ {λ}. We associate a language L(E) to each expression E:

L(E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{λ} if E = λ;
{a} if E = a;
L(E1)L(E2) if E = (E1)(E2);
L(E1) ∪ L(E2) if E = (E1) ∪ (E2);
L((E1)+) if E = (E1)+.

Automated Verification of Stochastic Spiking Neural P Systems 79

Some parentheses can be omitted when writing a regular expression. More
details can be found in [14].

We use a restricted version of the stochastic spiking neural P system pre-
sented in [8], considering only uniform distribution up to a given bound.

Definition 1. A stochastic spiking neural P system of degree m ≥ 1 is defined
by Π = (O, σ1, . . . , σm, syn, out), where:

• O = {a} is the singleton alphabet (a is called spike);
• σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,where :

(a) ni ≥ 0 is the initial number of spikes contained in σi;
(b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a;F (d), where E is a regular expression over a, and c ≥ 1,
and F is a probability distribution function with domain [0, d];

(2) as → λ;F (d), for s ≥ 1, with the restriction that for each rule E/ac →
a;F ′ of type (1) from Ri, we have as /∈ L(E), and F is a probability
distribution function with domain [0, d];

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × N with i �= j for each (i, j, r) ∈ syn,
1 ≤ i, j ≤ m (synapses between neurons);

• out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are called spiking rules, and are applied as follows: if the
neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule E/ac → a;F ′

can be applied. This means removing c spikes from neuron σi, and producing 1
spike. The rules of type (2) are called forgetting rules and are applied as follows:
if the neuron σi contains exactly s spikes, then the rule as → λ;F ′′ from Ri can
be used, meaning that s spikes are removed from neuron σi.

From the moment in which a rule is enabled up to the moment when the rule
fires, a random amount of time elapses, whose probability distribution is speci-
fied by a function F associated to the rule (different rules may have associated
different distributions). Once the rule fires, the update of the number of spikes
in the neuron, the emission of spikes and the update of spikes in the receiving
neurons are all simultaneous and instantaneous events. Multiple rules may be
simultaneously enabled in the same neuron. Whenever multiple enabled rules
in a neuron have the same random firing time, the order of firing is randomly
chosen, with a uniform probability distribution across the set of possible firing
orders.

The initial configuration of the system is C0 = {n1, . . . , nm}, where
n1, . . . , nm are the numbers of spikes present in each neuron. During the compu-
tation, a configuration C = {n′

1, . . . , n′
m} is described by the number of spikes

n′
i present in each neuron σi, for 1 ≤ i ≤ m. Using the rules described above,

we can define transitions among the configurations of a system. Notice that,
because of the way the firing of the rules has been defined, in general there is no
upper bound on how many rules fire for each transition. For two configurations

80 B. Aman and G. Ciobanu

C1, C2 of Π we denote by C1
rj→ C2 the effect of applying a rule rj of a neuron.

Also C1 ⇒ C2 denotes the fact that there is a direct transition from C1 to C2

in Π in which at most one rule was applied in each neuron, followed by moving
to the next time step. The reflexive and transitive closure of the relation ⇒ is
denoted by ⇒∗. Any sequence of transitions starting in the initial configuration
C0 is called a computation. A computation halts if it reaches a configuration Ci

where no rule can be used.

Example 1. In what follows we present a graphical form of stochastic spiking
neural P systems. Here we just introduce the example without emphasizing on
its behaviour (we will consider latter this aspect). In Fig. 2, each neuron is rep-
resented by an oval marked with a label and having inside both its current
number of spikes and its rules. The synapses linking the neurons are represented
by directed arrows, while a short directed arrow pointing to (from) the environ-
ment identifies the output (input) neuron. In the following example we consider
only an output neuron (and so the input synapse is not drawn).

1

a11

a+/a → a;F (2)

a+/a2 → a;F (1)

3

a

a+/a → a;F (1)

a3/a2 → a;F (3)
2

a+/a3 → a;F (1)

Fig. 2. A simple example of a stochastic SN P system

The system consists of three neurons labelled by 1, 2, 3 in which neuron 3 is the
output one. In an initial configuration C0, neurons 1 and 3 are ready to fire. The
spike of neuron 3 leaves it empty, and unable to spike again before receiving a
new spike. Neuron 2 cannot fire until it succeeds to collect exactly 3 spikes. The
computation continues until consuming all spikes from all neurons.

3 Networks of Timed Automata

Timed automata [2] extended with integer variables, structured data types, user
defined functions, broadcast, urgent channels and channel synchronization have
been used by several software tools for simulation and verification of various
systems with time.

Syntax. We assume a finite set of real-valued variables C ranged over by x, y
standing for clocks, a set of clock resets ranged by r, ri, and a finite alphabet Σ
ranged over by a, b standing for actions. A clock constraint g is a conjunctive
formula of constraints of the form x ∼ m or x − y ∼ m, for x, y ∈ C, ∼∈ {≤, <,
=, >,≥}, and m ∈ N. The set of clock constraints is denoted by B(C).

Automated Verification of Stochastic Spiking Neural P Systems 81

Definition 2. A timed safety automaton A is a tuple 〈N,n0, E, I〉, where
• N is a finite set of nodes;
• n0 is the initial node;
• E ⊆ N × B(C) × Σ × 2C × N is the set of edges;
• I : N → B(C) assigns invariants to nodes.

n
g,a,r−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. Node invariants are

restricted to constraints of the form x ≤ m or x < m, where m ∈ N.

A simple example of a timed safety automaton is depicted in Fig. 3.

idle
y<=3

fire
y<=5

spike
y<=2

4<=y
timing

x:=0, y:=0

6<=y
finish
y:=0

x<=1
syn
x:=0

1<=y
y:=0

Fig. 3. Timed safety automata

A timed safety automata is a graph hav-
ing a finite set of nodes and a finite set of
labelled transitions, using real time clocks.
The clocks are initialized with zero when
the system starts, and then increased syn-
chronously with the same rate. The behav-
iour of the automaton is restricted by using
clock constraints, i.e. guards on transitions,
and node invariants (e.g., see Fig. 3). An
automaton is allowed to stay in a node as
long as the timing conditions of that node
are satisfied. A transition can be taken when
the transition guards are satisfied. When a
transition is taken, clocks may be reset to
zero.

Networks of Timed Automata. A network of
timed automata is the parallel composition
A1 | . . . | An of a set of timed automata

A1, . . . ,An combined into a single system using the CCS-like parallel composi-
tion operator and with all internal actions hidden. Synchronous communication
inside the network is by handshake synchronization of input and output actions.
In this case, the action alphabet Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for internal actions). A detailed
example is found in [12].

A network can perform both delay and action transitions. An action transi-
tion is enabled if the clocks and variables assignment satisfies all guards on the
corresponding edges. In synchronization transitions, the resets on the edge with
an output label are performed before the resets on the edge with an input label.
To model urgent synchronization transitions that have priority with respect to
the delay transitions, a notion of urgent channels is used. On urgent channels
it is not possible to delay an execution whenever such an execution is possible.
One-to-many synchronizations are possible using broadcast channels: an edge
with synchronization label a! emits a broadcast and any enabled edge with syn-
chronization label a? synchronizes with the emitting automata.

82 B. Aman and G. Ciobanu

Let u, v,. . . denote clock assignments mapping C to R+ of non-negative real
numbers. g |= u means that the clock values u satisfy the guard g. For d ∈ R+,
the clock assignment mapping all x ∈ C to u(x)+d is denoted by u+d. Also, for
r ⊆ C, the clock assignment mapping all clocks of r to 0 and agreeing with u for
the other clocks in C\r is denoted by [r → 0]u. Let ni stand for the ith element of
a node vector n, and n[n′

i/ni] for the vector n with ni being substituted with n′
i.

A network state is a pair 〈n, u〉, where n denotes a vector of current nodes of
the network (one for each automaton), and u is a clock assignment storing the
current values of all network clocks and integer variables.

Definition 3. The operational semantics of a timed automaton is a transition
system where states are pairs 〈n, u〉 and transitions are defined by the rules:

• 〈n, u〉 d−→ 〈n, u + d〉 if u ∈ I(n) and (u + d) ∈ I(n), where I(n) =
∧

I(ni);
• 〈n, u〉 τ−→ 〈n[n′

i/ni], u′〉 if ni
g,τ,r−−−→ n′

i, g |= u, u′ =[r → 0]u and u′ ∈I(n[n′
i/ni]);

• 〈n, u〉 τ−→ 〈n[n′
i/ni][n′

j/nj], u′〉 if there exist i �= j such that

1. ni
gi,a?,ri−−−−−→ n′

i, nj
gj ,a!,rj−−−−−→ n′

j, gi ∧ gj |= u,
2. u′ = [ri → 0]([rj → 0]u) and u′ ∈ I(n[n′

i/ni][n′
j/nj]).

4 Relating Stochastic SN P Systems to Timed Automata

In this section we present an algorithmic translation of stochastic spiking neural
P systems into timed safety automata, and prove that such a timed safety
automata has a bisimilar behaviour with the initial stochastic spiking neural
P system. This allows the use of existing tools such as Uppaal for the verifica-
tion of complex systems of neurons.

Building a Timed Safety Automaton for each Neuron: Given a neuron σi =
(ni, Ri) of a stochastic spiking neural P system Π, we associate to it several
timed safety automata.

– For each rule rij : E/ac → a;F (d) ∈ Ri we associate an automaton Aij =
〈Ni, nij , Eij , Iij〉, where the components are as follows:

• Ni = {n ij, n ij fired}
The node n ij denotes that in neuron i exists a rule rij , while the node
n ij fired illustrates that the neuron i fired the rule rij .

• I(n ij) = {x <= d}, I(n ij fired) = {x <= 0}
The nodes n ij and n ij fired should be exited before a maximum of d
and 0, respectively, units of time have elapsed.

• Eij = {nij , E, r[i][j]?, {ni = ni − c, x = 0}, nij fired}
The transition {nij , E, r[i][j]?, {ni = ni − c, x = 0}, nijc} illustrates the
fact that when a rule rij is executed in neuron i (denoted by the synchro-
nization on urgent channel r[i][j]? and the fulfilment of expression E),
then c spikes are removed from nij and the local clock x is reset to 0 in
order to model the delay according to the distribution F (d). Using urgent

Automated Verification of Stochastic Spiking Neural P Systems 83

channels illustrates the fact that from all rules of a neuron one will be
selected nondeterministically.
To simulate the continuation of the rule we have three cases:
(1) Eij = Eij ∪ {nij fired, , syn[i][1]?, , nij}

The transition {nij fired, , syn[i][1]?, , nij} illustrates the fact that the
spike created by rule rij is sent on all outgoing synapses (illustrated by
the broadcast channel syn[i][1]). Graphically the obtain automaton
can be represented as in Fig. 4.

Fig. 4. An automaton associated to a rule rij : E/ac → a; F (d)

(2) Eij = Eij ∪ {nij fired, , , , nij}
This case is similar with the previous case, except that there is no
outgoing synapse (illustrated by the missing of the broadcast channel
syn[i][1]) as illustrated in Fig. 5.

Fig. 5. An automaton associated to a rule rij : E/ac → a; F (d)

(3) Eij = Eij ∪ {nij fired, , output = output + 1, , nij}
This case is similar with the case (1), except that there is no outgoing
synapse (illustrated by the missing of the broadcast channel syn[i][1])
but the current neuron is the output neuron (illustrated by the update
output = output + 1). Graphically this case can be represented as in
Fig. 6.

84 B. Aman and G. Ciobanu

Fig. 6. A transition associated to a rule rij : E/ac → ap; d

– for each rule rij : as → λ we associate an automaton Aij = 〈Ni, nij , Eij , Iij〉,
where the components are as follows:

• Ni = {n ij, n ij fired}
The node n ij denotes that in neuron i exists a rule rij , while the node
n ij fired illustrates that the neuron i fired the rule rij .

• I(n ij) = {x <= d}
The node n ij should be exited before a maximum of d units of time have
elapsed.

• Eij = {nij , ni == s, r[i][j]?, {ni = ni − s, x = 0}, nij fired}
∪ {nij fired, , , , nij}

The transition {nij , ni == s, r[i][j]?, {ni = ni − s, x = 0}, nij fired}
describes that s spikes are removed from ni, if ni contains exactly s spikes,
and the local clock x is reset to 0 whenever a forgetting rule rij is executed
in neuron i (denoted by the synchronization on urgent channel r[i][j]?).
The transition {nij fired, , , , nij} illustrates that in the next step the
neuron will be able to fire again. Graphically the automaton is represented
in Fig. 7.

Fig. 7. A transition associated to a rule rj : as → λ

– For each neuron ni we associate an automaton Ai = 〈Ni, ni, Ei, Ii〉, where
Ni = {ni}, Ei = ∅, Ii = ∅. The components Ni, Ei and Ii are updated
depending on the structure of σi and the incoming/outgoing synapses:

• for each incoming synapse (z, i) we have:
∗ Ei = Ei ∪ {ni, , syn[z][pzi]!, ni = ni + pzi, ni};

If on synapse (z, i) are received pzi spikes on the broadcast channel
syn, then the number of spikes from neuron ni is incremented with
pzi. Graphically this transition can be represented as in Fig. 8.

Automated Verification of Stochastic Spiking Neural P Systems 85

Fig. 8. A transition associated to an incoming synapse (z, i, wzi)

• for each rule rij ∈ Ri we have:
∗ Ei = Ei ∪ {ni, , r[i][j]!, , ni};

This transition signifies the fact that a rule rij of neuron ni will be
executed if it synchronizes on the urgent channel r[i][j]. Graphically
this transition can be represented as in Fig. 9.

Fig. 9. An automaton associated to a rule rij

Building a timed automaton for each neuron leads to the next result about
the equivalence between a stochastic spiking neural P systems Π with the initial
configuration C0 and its corresponding timed safety automaton AΠ in the initial
state 〈nC0 , uC0〉 (i.e., (AΠ , 〈nC0 , uC0〉). Their transition systems differ not only
in transitions, but also in states. Thus, we adapt the notion of bisimilarity.

Definition 4. A symmetric relation ∼ over stochastic spiking neural P sys-
tems and the corresponding timed safety automata, is a bisimulation if whenever
(C, (AΠ , 〈nC , uC〉)) ∈∼:

– if C
rj→c C ′, then 〈nC , uC〉 τ→ 〈nC′ , uC′〉 and (C ′, (AΠ , 〈nC′ , uC′〉)) ∈∼ for

some C ′.
– if C

rj→p C ′, then 〈nC , uC〉 τ→ 〈nC′ , uC′〉 and (C ′, (AΠ , 〈nC′ , uC′〉)) ∈∼ for
some C ′.

– if C
d� C ′, then 〈nC , uC〉 d−→ 〈nC′ , uC′〉 and (C ′, (AΠ , 〈nC′ , uC′〉)) ∈∼ for

some C ′, where uC′ = uC + d.

Having defined bisimulation, we can state our main theorem as follows.

Theorem 1. Given a stochastic spiking neural P system Π with initial configu-
ration C0, there exists a timed safety automaton AΠ with a bisimilar behaviour.
Formally, C0 ∼ (AΠ , 〈nC0 , uC0〉).
Proof (Sketch). The construction of the timed safety automaton simulating a
given stochastic spiking neural P system is presented above.

A bisimilar behaviour is given by:

86 B. Aman and G. Ciobanu

• when execution starts, the global clock of the stochastic spiking neural P
system and the local clocks of the corresponding timed automata are set to 0;

• the application of a rule in a neuron is matched by two τ edges obtained by
translation (a τ edge corresponds to the consumption/production of spikes);

• the passage of time is similar in both formalisms: in stochastic spiking neural P
system the global clock is used to decrement by d all timers in the configuration
when no rule is applicable, while in the timed automata all local clocks are
decremented synchronously with the same value d when no edge can be taken.

Thus, the size of a timed safety automata AΠ is polynomial with respect to the
size of a stochastic spiking neural P system Π, and the state spaces have the
same number of states.

Reachability Analysis. One of the most useful question to ask about a timed
automaton is the reachability of a given set of final states. Such final states may
be used to characterize safety properties of a system.

Definition 5. We write 〈n, u〉 −→ 〈n′, u′〉 whenever 〈n, u〉 σ−→ 〈n′, u′〉 for σ ∈
Σ ∪ R+. For an automaton with initial state 〈n0, u0〉, 〈n, u〉 is reachable if and
only if 〈n0, u0〉 →∗ 〈n, u〉. More generally, given a constraint φ ∈ B(C) if 〈n, u〉
is reachable for some u satisfying φ then a state 〈n, φ〉 is reachable.

Invariant properties can be specified using clock constraints in combination
with local properties on nodes. The reachability problem is decidable [7].

The reachability problem can be also defined for stochastic SN P systems.

Definition 6. We write C −→ C ′ if C
rj→c C ′ or C

rj→p C ′ or C
d� C ′. Starting

from a configuration C0, a configuration C1 is reachable if and only if C0 →∗ C1.

The following result is a consequence of Theorem 1.

Corollary 1. For a stochastic spiking neural P system, the reachability problem
is decidable.

Bisimulation. Two timed automata are defined to be timed bisimilar in [7] if
and only if they perform the same action transitions and reach bisimilar states.

Definition 7. A symmetric relation R over the timed automata and the alpha-
bet Σ ∪ R+, is a bisimulation if:

– for all (s1, s2) ∈ R, if s1
σ−→ s′

1 for σ ∈ Σ ∪ R+ and s′
1, then s2

σ−→ s′
2 and

(s′
1, s

′
2) ∈ R for some s′

2.

Proposition 1. [9] Timed bisimulation is decidable.

In a similar way we define the bisimulation over configurations of stochastic
spiking neural P systems.

Definition 8. A symmetric relation R over configurations of stochastic spiking
neural P systems, is a bisimulation if:

Automated Verification of Stochastic Spiking Neural P Systems 87

– for all (C1, C2) ∈ R, if C1
rj→c C ′

1 for some C ′
1, then C2

rj→c C ′
2 and (C ′

1, C
′
2) ∈

R for some C ′
2.

– for all (C1, C2) ∈ R, if C1
rj→p C ′

1 for some C ′
1, then C2

rj→p C ′
2 and (C ′

1, C
′
2) ∈

R for some C ′
2.

– for all (C1, C2) ∈ R, if C1
t� C ′

1 for t ∈ N and some C ′
1, then C2

t� C ′
2 and

(C ′
1, C

′
2) ∈ R for some C ′

2.

The following result is a consequence of Theorem 1.

Corollary 2. For two configurations of stochastic spiking neural P systems,
timed bisimulation is decidable.

5 Verification of Stochastic Spiking Neural P Systems

In this section we present the automated verification of the stochastic spiking
neural P system by using the software tool Uppaal (http://www.uppaal.org/).
Such a verification is possible due to the translation of stochastic spiking neural
P systems into timed safety automata presented in the previous section.

We start from the stochastic spiking neural P system described in Example 1,
and translate it into the timed safety automata described in Fig. 10.

Fig. 10. A simple example modelled in Uppaal

Uppaal allows the automated verification of several properties involving sev-
eral thousands of possible states, very difficult to be validated by any experi-
mental effort. In this way we show how it is possible to prove/verify certain

http://www.uppaal.org/

88 B. Aman and G. Ciobanu

complex properties of complex biological systems modelled by stochastic spiking
neural P systems. This can be done without the high expenses required by the
experimental work in laboratories leading sometimes to wrong conclusions.

The model checking approach uses various techniques to automatically and
efficiently check a given system against specified formulas. The formulas can be of
two types path formulae (quantify over paths or traces of the model) and state
formulae (individual states). Path formulae can be classified into reachability
(E 〈 〉 φ), safety (A [] φ and E [] φ) and liveness (A 〈 〉 φ and φ � ψ), where
φ and ψ are boolean expressions over predicates on nodes and integer variables.

Reachability properties are used to check whether there exist a path starting
at an initial state, such that φ is eventually satisfied along that path. Safety
properties are used to verify that something bad will never happen, while liveness
properties check whether the system always progresses.

We present various properties that could be analyzed and verified for the
running example. We have used an Intel PC with 8 GB memory, 2.50 GHz ×
4 CPU and 64-bit Ubuntu 14.04 LTS to run the experiments. The results are
presented for each analyzed property.

Example 2. Using reachability and safety properties, and some given initial val-
ues we performed some verifications in Uppaal for the system presented in
Example 1. The system on which we performed the verification was composed
out of three neurons and six automata, by using the declarations:

const int N = 2; //Number of synapses
typedef int[0, N − 1] id s; //The id s defines a vector of N integer numbers.
int n1 = 11; //Number of spikes in neuron 1
int n2 = 0; //Number of spikes in neuron 2
int n3 = 1; //Number of spikes in neuron 3

where “//text” represents a comment.
Since the neurons nondeterministically choose which rule to apply, the num-

ber of possible configurations of this system is high. The complexity of such
systems increases even more when additional neurons and synapses are used,
and that is why we use the model checker of Uppaal for verification.

• E <> n1 == 2 and n2 == 1 and n3 == 1 and output == 2
Starting from the initial configuration, Uppaal can be used to check if cer-
tain amounts of spikes can be obtain in the system during its evolutions. The
result is shown in Fig. 11.

Fig. 11. Verification of reachability of a given configuration

If our constructed systems is correct, we should not be able to reach configu-
rations in which the amount of certain spikes does not respect the evolution
of the model. Considering such an impossible to reach configuration: n1 == 2

Automated Verification of Stochastic Spiking Neural P Systems 89

and n2 == 0 and n3 == 1 and output == 4 we obtain, as expected, a
negative response as shown in Fig. 12.

Fig. 12. Verification of reachability for a given configuration

• A <> output == i, for i ∈ {1, 2, 3, 4, 5}
Starting from the initial configuration, Uppaal can be used to check if certain
amounts of spikes can be obtain as the output of the system. In this case we
check which can be the output of the system and, depending on the applied
rules, the output can be different. The results are shown in Fig. 13.

Fig. 13. Verification that always its output is between 1 and 4

• A[] not deadlock
A deadlock is a state in which no further evolution is possible. The existence
of the deadlock means that the systems stops after some steps. For the above
system, the result of the deadlock verification is depicted in Fig. 14.

Fig. 14. Verification of deadlock

90 B. Aman and G. Ciobanu

• Pr[# <= 100](<> output == 4) Estimates the probability of the output to
be equal to 4 within 100 model time steps. The result of the verification is
depicted in Fig. 15.

Fig. 15. Probability of reaching output == 4 in less than 100 steps

The tool can produce a number of histograms over model time, like proba-
bility density distribution (Fig. 16) that is useful for comparison of various
distributions.

Fig. 16. Probability density distribution

6 Conclusion

Over the years we provided several connections between membrane systems and
Petri nets for simulation and automated verification of the properties of mem-
brane systems: enhanced mobile membranes [3,4] are verified in [5], while mobile
membrane with delays are verified in [6].

Automated Verification of Stochastic Spiking Neural P Systems 91

In this paper we provide a formally correct algorithm for translating stochas-
tic spiking neural P systems into a network of timed automata, and so suitable to
be verified by using Uppaal . This allows the verification of several kinds of prop-
erties, both qualitative and quantitative, involving also the Uppaal statistical
model checking. This approach could be related to a previous attempt of mod-
elling complex neural systems by using stochastic spiking neural P systems [8].
Due to the large number of possible reachable configurations of such a neural
system, it makes sense to use various model checking capabilities of a com-
plex software tool as Uppaal to verify several properties: reachability of desired
configurations, the fact that the system does not stop, whether the amount of
resources is constant and which is the probability of some events happening.

Acknowledgements. Many thanks to the reviewers for their useful comments. The
work was supported by a grant of the Romanian National Authority for Scientific
Research, project number PN-II-ID-PCE-2011-3-0919.

References

1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.:
Molecular Biology of the Cell, 6th edn. Garland Science, New York (2014)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

3. Aman, B., Ciobanu, G.: Describing the immune system using enhanced mobile
membranes. Electron. Notes Theor. Comput. Sci. 194, 5–18 (2008)

4. Aman, B., Ciobanu, G.: Simple, enhanced and mutual mobile membranes. In: Pri-
ami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biol-
ogy XI. LNCS, vol. 5750, pp. 26–44. Springer, Heidelberg (2009)

5. Aman, B., Ciobanu, G.: Properties of enhanced mobile membranes via coloured
Petri nets. Inf. Process. Lett. 112, 243–248 (2012)

6. Aman, B., Ciobanu, G.: Verification of membrane systems with delays via Petri
nets with delays. Theor. Comput. Sci. 598, 87–101 (2015)

7. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. Lect.
Notes Comput. Sci. 3098, 87–124 (2004)

8. Cavaliere, M., Mura, I.: Experiments on the reliability of stochastic spiking neural
P systems. Nat. Comput. 7(4), 453–470 (2008)

9. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes.
Lect. Notes Comput. Sci. 663, 302–315 (1992)

10. Ciobanu, G., Păun, Gh., Pérez-Jiménez, M.J. (eds.) Applications of Membrane
Computing. Springer, Heidelberg (2006)

11. Frisco, P., Păun, Gh., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Com-
puting in Systems and Synthetic Biology. Springer, Heidelberg (2014)

12. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111, 192–224 (1994)

13. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Handbook of Membrane Computing.
Oxford University Press, New York (2010)

14. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Heidelberg (1997)

15. Xu, Z., Cavaliere, M., An, P., Vrudhula, S., Cao, Y.: The stochastic loss of spikes in
spiking neural P systems: design and implementation of reliable arithmetic circuits.
Fundamenta Informaticae 134(1–2), 183–200 (2014)

	Automated Verification of Stochastic Spiking Neural P Systems
	1 Introduction
	2 Stochastic Spiking Neural P Systems
	3 Networks of Timed Automata
	4 Relating Stochastic SN P Systems to Timed Automata
	5 Verification of Stochastic Spiking Neural P Systems
	6 Conclusion
	References

