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Preface

The present volume contains the invited contributions and a selection of papers presented
at the 16th International Conference on Membrane Computing (CMC16), which was held
in Valencia, Spain, August 17–21, 2015 (website: http://users.dsic.upv.es/workshops/
cmc16/), as well as three selected papers from the Asian Conference on Membrane
Computing (ACMC) 2015, held in Anhui University, Hefei, Anhui, China, November
12–15, 2015 (website: http://2015.asiancmc.org/).

The CMC series started with three workshops organized in Curtea de Argeş,
Romania, in 2000, 2001, and 2002. The workshops were then held in Tarragona, Spain
(2003), Milan, Italy (2004), Vienna, Austria (2005), Leiden, The Netherlands (2006),
Thessaloniki, Greece (2007), and Edinburgh, UK (2008).

The 10th edition was organized again in Curtea de Argeş, in August 2009, where it
was decided to continue the series as the Conference on Membrane Computing (CMC).
Subsequent editions were held in Jena, Germany (2010), Fontainebleau, France (2011),
Budapest, Hungary (2012), Chişinău, Moldova (2013), and Prague, Czech Republic
(2014).

A regional version of CMC, the Asian Conference on Membrane Computing,
ACMC, started in 2012 in Wuhan (China), and continued in Chengdu, China (2013)
and Coimbatore, India (2014).

CMC16 was organized, under the auspices of the European Molecular Computing
Consortium (EMCC), by the Research Group on Computation Models and Formal
Languages of the Universitat Politècnica de València and it was supported by the
Escuela Técnica de Ingeniería Informática (ETSINF, UPV).

CMC16 consisted of three different parts: the first day was organized as a tutorial
day, with lectures by Gheorghe Paun, Rudolf Freund, Claudio Zandron, Gyorgy Vaszil,
and Agustín Riscos-Núñez. From Tuesday to Thursday the conference continued with
standard sessions; invited lectures were given by Ion Petre (Abo Akademi University,
Finland), Andrés Moya (Universitat de València, Spain), and Vincenzo Manca
(University of Verona, Italy). The last day of the conference was devoted to the
presentation of extended abstracts and to interaction between participants. Based on the
votes of the CMC16 participants, the Best Paper Award of this edition was given to
Rudolf Freund and Petr Sosík for their paper “On the Power of Catalytic P Systems
with One Catalyst.”

The editors express their gratitude to the Program Committee, the invited speakers,
the authors of the papers, the reviewers, and all the participants for their contributions
to the success of CMC16.

November 2015 Grzegorz Rozenberg
Arto Salomaa

José M. Sempere
Claudio Zandron

http://users.dsic.upv.es/workshops/cmc16/
http://users.dsic.upv.es/workshops/cmc16/
http://2015.asiancmc.org/
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Information Theory in Genome Analysis

Vincenzo Manca(B)

Dipartimento di Informatica, Centro di BioMedicina Computazionale,
Università degli Studi di Verona, Verona, Italy

vincenzo.manca@univr.it

Abstract. Classical concepts of Information Theory are quickly sum-
marized and their application to the computational analysis of genomes
is outlined. Genomes are long strings, and this open the possibility of
considering them as information sources. From this viewpoint, it turns
out that information entropy, mutual information, entropic divergences,
codes, and dictionaries (finite formal languages) are fundamental tools
for extracting the biological information on which biological functionali-
ties are based on. The importance of random genomes is also motivated,
and some genomic distributions are presented and discussed.

1 Introduction

Genomes are containers of biological information that direct the functions of the
organisms and transmit biological information along their generations. Recently,
concepts from algorithms, formal languages, computer science, and linguistics
[2,5–7,10,12–14,17,19,23–25,28,29,31,32] were applied to the mathematical and
computational analysis of DNA and genomes. Moreover, alignment free methods
emerged [15,16,32,33], where genomes are investigated, in the whole, rather than
by means of local similarities deduced by classical methods of string alignment.
Here we show that many aspects of genomic information are related to concepts
of information theory, which can be fruitfully applied when genomes are consid-
ered as information sources in the original sense developed by Shannon in his
seminal work on the mathematical theory of communication [30] (see [20–22] for
short introductions to related subjects).

2 Basic Notation

Let us recall basic concepts and notation. For basic concepts on strings and
formal languages, the reader can refer to classical textbooks (see for example
[27]). Strings will be denoted by Greek letters (possibly with subscripts). In
particular, λ denotes empty string. The length of a string α is denoted by |α|, α[i]
denotes the symbol occurring at position i of α, and α[i, j] denotes the substring
of α starting at position i and ending at position j (all the symbols between
these positions in the order they have in α). The most important operation over
strings is concatenation of α, β, usually denoted by the juxtaposition αβ. The
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-28475-0 1



4 V. Manca

overlap concatenation of two strings αγ, γβ, is αγβ where γ is the maximum
substring that is suffix of the first string and prefix of the second one.

The genomic alphabet of symbols representing nucleotides is Γ =
{a, c, g, t} (and Γ � is the set of all possible words over Γ ). A genome G is a
“long” string over Γ (its symbols are written in a linear order, from left to right,
according to the chemical orientation 5′ − 3′ of DNA molecules). All the sub-
strings of a genome G define the finite language D(G), while all the substrings
of length k provide the language Dk(G). Any subset of D(G) is a dictionary
of G. Elements of D(G) are also called words, factors, k-mers, k-grams) of
G (k prefix is used when we want explicitly mention the length of strings). The
set of positions where (the first symbol of) a factor α occurs in G is denoted
posG(α), and the multiplicity of a factor α in G, that is, the number of times it
occurs in G, is denoted by multG(α).

It is very important to distinguish two kinds of words of a genome G: repeat
and hapaxes. A hapax of G is a word occurring in G once, while a repeat of G is
a word occurring in G at least twice. Any string that includes a hapax is a hapax
too, while any string included in a repeat is a repeat too. A repeat is maximal
if it is not substring of another repeat. A hapax is minimal if any substring of
it is a repeat. From the given definitions, elongating a maximal repeat α with
a symbol x ∈ Γ , both αx and xα are minimal hapaxes. However, the converse
implication does not hold, because if αx (or xα), is a minimal hapax, this does
not imply that α is a maximal repeat (even if it is surely a repeat).

A dictionary L of a genome G (completely) covers G if, when we arrange the
words of L in all the position intervals of G where they occur, then any position
of G belongs to some interval where a word α of L occurs. When L does not
cover G, the fraction of positions covered by the words of L is the sequential
coverage of L, while the number of words covering a position is the positional
coverage of L in that position.

Important genomic indexes for a genome G are: (i) mrl(G) denoting
the maximal repeat length, (ii) mhl(G) denoting the minimal hapax length,
(iii) mfl(G) denoting the shortest length m such that for all k < m, all k-mers
over γ occur in G.

3 A Glimpse in Information Theory

Information theory “officially” begins with Shannon’s booklet [30] published in
1948. The main idea of Shannon is linking information with probability. In fact,
the starting definition of this seminal work is that of information source as
a pair (X, p), where X is a finite set of objects (data, signals, words) and p is
a probability function assigning to every x ∈ X the probability p(x) of occur-
rence (emission, reception, production). The perspective of this approach is the
mathematical analysis of communication processes, but its impact is completely
general and expresses the probabilistic nature of information. Information is an
inverse function of probability, because it is a sort of a posteriori counterpart of
the a priori uncertainty represented by probability, measuring the gain of knowl-
edge when an event occurs. For this reason the more an event is rare, the more
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it is informative. However, if event E has probability pE , for several technical
reason it is better to define inf(E) as 1/ lg(pE) = − lg(pE) than 1/pE . The
logarithm guarantees the information additivity for a joint event (E,E′) where
components are independent, giving inf(E,E′) = inf(E) + inf(E′). However,
in passing, it is important to remark that the relationship between information
and probability is in both verses, because as Bayesian approaches make evident,
information can change the probability evaluation (conditional probability, on
which Bayes theorem is based, defines how probability changes when we know
that an event occurred). A famous example of this phenomenon is the famous
three-doors (or Monty Hall) dilemma [26], which can be fully explained by using
Bayes theorem.

In the following of this section we give a quick overview of the basic concepts
in Information theory. The reader is advised to refer to [9,11,30] for more details
in Information and Probability theory.

3.1 Entropy

As a consequence of the probabilistic approach, the average quantity of infor-
mation, for an information source (X, p) is given by

H(X, p) = −
∑

x∈X

p(x) lg p(x). (1)

Information entropy corresponds (apart multiplicative and additive constants) to
H function defined by Ludwig Boltzmann when he founded statistical mechan-
ics as microscopical representation of thermodynamical entropy. This is the rea-
son for which physics entropy and information entropy share a common name.
Mathematically, they are the same thing, and this equivalence has a deep com-
mon probabilistic basis with consequences so far not completely understood (a
belief common to many physicists claims that information could explain some
of unsolved puzzles of modern physics): It from bit is one of the last specula-
tions of John Archibald Wheeler, a founder of quantum gravity, suggesting that
information is fundamental to the physics of the universe.

Entropy allows us to discover theorems connecting the probabilistic measure
of information with the digital quantity of information. The digital quantity of
information is always related to a given code, that is, a function from a set C, a
finite language over a finite alphabet, of strings (words, signals, . . . ) to a set X
of data. In order to simplify our discussion, assume that a code is 1-to-1, or that
it is represented by a function γ : X → C (codes where more than an encoding
in C are associated to one datum, are called redundant, but are not considered
here). The digital quantity of datum d, with respect to the code is the length of
string α encoding it. Usually, codes are required to have some basic properties
ensuring simple sequential decoding. Namely, a code is univocal if any string over
the alphabet of the code can be factorized in a unique way as concatenation of
strings of the code.
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Let p a probability defined on set of pairs (a cartesian product) X × Y . The
joint entropy extends naturally to:

H(X × Y, p) = −
∑

x∈Xy∈Y

p(x, y) lg p(x, y). (2)

Conditional entropy is defined by using conditional probability:

p(y|x) = p(x, y)/p(x) (3)

where
p(x) =

∑

y∈Y

p(x, y) (4)

by setting:
H(Y |X, p) = −

∑

x∈X,y∈Y

p(x, y) lg p(y|x). (5)

It can be shown that:

H(X × Y, p) = H(X, pX) + H(Y |X, p) −
∑

x∈Xy∈Y

p(x, y) lg p(x, y)

where pX is the marginal probability assigning to x the value p(x) defined in (4).

3.2 Entropic Divergence

After the definition of entropy for an information source (X, p) other two key con-
cepts are the entropic divergence and the mutual information. Shannon defines
directly the second one, but after Kullback and Leibler [18] now it seems more
appropriate to define mutual information by means of the entropic divergence
KL. It is a sort of distance measuring how much two probability distributions
defined on the same domain differ each other. This value is always positive, apart
the case of two identical distribution (in this case D(p, q) = 0), However KL is
nor symmetric neither transitive. The formula is the following:

KL(p, q) =
∑

x∈X

p(x) lg(p(x)/q(x)). (6)

Similar divergences can be defined, in particular a symmetric version of diver-
gence of KL, due to Jeffreys [9] is given by:

JKL(p, q) =
∑

x∈X

[p(x) − q(x)] lg(p(x)/q(x)) (7)

It is easy to realize that JKL(p, q) = KL(p, q) + KL(p, q).
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3.3 Mutual Information

Let p a probability defined over X × Y , where pX , pY are the two marginal
probabilities over X,Y respectively, the mutual information I(X,Y ) is given by:

I(X,Y ) = KL(p, (pX · pY )). (8)

It can be shown that (probabilities over X,Y are not indicated):

I(X,Y ) = H(X) + H(Y ) − H(X,Y ) (9)

and
I(X,Y ) = H(X) − H(X|Y ). (10)

Shannon’s booklet proves three fundamental theorems. The first Shannon’s
theorem provides a lower bound to the optimality of codes. Given an informa-
tion source no code can exist having a average length (with respect to a given
probability distribution of data) shorter that the entropy of the source.

Mutual information is the basis of Shannon’s second theorem: even if symbols
of an information source are transmitted with some noise along a channel, then
it is possible to encode them in such a way that transmission could become safe,
in the sense that, the longer are the transmission encodings, the more error prob-
ability, along the channel, approaches to zero. In more precise terms, the theorem
establishes quantitative notions giving the possibility of avoiding error transmis-
sion if the rate of transmission is lower that the capacity of transmission channel,
where notions of transmission rate and of capacity channel are formally defined
in terms of transmission codes and in terms of mutual information (between the
transmitter information source and the receiver information source).

Third Shannon’s theorem concerns with signals. To this end, the entropic
notions are extended to the case of continuous information sources, then, by using
these continuous notions, quantitative evaluation about safe communication by
means of continuous signals are proven.

3.4 Univocal and Prefix-Free Codes

A code C with n words is minimal if no code of n words exist having a shorter
average length. A lexicographic code of n words consists of the first n words in
the lexicographic ordering of strings. A lexicographic code is minimal.

A code γ : X → C, encoding a set of data X, where γ(x) is the encoding
of datum x, is optimal with respect to an information source (X, p) if no other
code exists having a smaller average length:

∑

x∈X

|x|p(x).

The Kraft norm associated to a code γ : X → C is defined by in the following
way (for the sake of simplification let us identify a code with the set C of its
encodings), where k is the cardinality of the alphabet of the code.

||C|| =
∑

α∈C

k|α|. (11)
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A theorem tell us that a code C is univocal iff ||C|| ≤ 1 [9]. Moreover,
for any C satisfying this inequality it is possible to construct a code C ′ with
the same Kraft norm, that is prefix free (no encoding of C is prefix of another
encoding). Prefix freeness of a code guarantees an efficient way for reconstruct the
sequence of data associated to the concatenation of their encodings (in the same
order as data are arranged). Therefore, when encodings of data are transmitted
with a prefix-free code, we do not need to separate encodings in order to avoid
ambiguity. Other more complex properties can be defined on codes, which ensure
other efficiency properties of decoding processes. Of course, no ambiguity is
present if codes are fixed-length codes where all the encodings have the same
length. However this requirement is often too strong in many cases of encoding
processes. In fact, assume that we want to optimize the global length of a string
encoding a sequence of data. In this case, it is reasonable to have codes where
data more frequent are encoded by shorter strings, while data seldom appearing
are encoded by longer strings.

In general a code is optimal with respect to a probability of occurrences of
its data, when its probabilistic average length

∑
α∈C |α|p(α) is minimal. Sim-

ple algorithms exist providing codes that are optimal for a given probability
distribution (the famous Huffman encoding [9] is one of them).

3.5 Compression

An issue related to optimal encodings is the compression of strings. In general
terms, a compression algorithm is a way of representing a string α by a string
β shorten than α (let us assume β to belong to the same alphabet of α) such
that the original string α can be completely and univocally recovered from β
by a decompression algorithm (partial forms of compression where sone loss of
original string are tolerated, are also useful in some cases). The compression
ratio is given by the fraction |β|/|α|, and the smaller it is, the more the com-
pression algorithm gains space when it compress the original string. Of course,
this gain is usually paid by a computational cost in the compression and/or in
the decompression. It is easy to realize that a compression algorithm cannot be
universal. In fact it can give a small ratio for some strings, but it cannot do the
same for all the strings over the alphabet, because otherwise by the compression
algorithm we could represent all the strings of a given length by means of shorter
strings, but this is impossible because the cardinality of longer strings is greater
than that of shorter strings, therefore all the strings of a given length could not
be uniquely determined from their compressed corresponding strings. Neverthe-
less, it is often interesting that compression could really compress some classes
of strings for which a more compact way is required in some circumstances.
Methods of compression are usually based on three different principles (in many
aspects related). The first is based on a known distribution of probabilities of
some words occurring in the string. In this case, it is enough to define short
encodings for words with high occurrence probabilities and longer encodings for
those with low probabilities. The second method is based on dictionaries. If we
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know a dictionary of words occurring in a string, then we memorize this dictio-
nary, and replace in the text the words by the corresponding encodings. This
provides a space gain when we have for example one thousand binary words of
length 20. In fact, one thousand objects need only binary strings of length 10,
therefore we gain 10 bits for each word. In a text of 100.000 binary symbols
we have 100.000/20 = 5000 word occurrences of length 10, giving an encod-
ing string of 500.000 binary symbols, therefore if the dictionary memorization
requires 10.000 binary symbols, we obtain a representation of the original string
with an encoding string of 50.000 symbols plus a dictionary of 10.000, with a
compression ratio of 60.000/100.000. The third method is based on a rearrange-
ment of a string from which the original string can uniquely be recovered, in
such a way that in the rearranged string similar substrings are contiguous. If
this happen, an element of type αn can be encoded by encoding α and n, that
need |α| symbols plus O(lg n) symbols instead than n|α| symbols (the n copies
of α scattered in the original sequence).

3.6 Entropic Paradox

It is important to remark an aspect that highlights an intrinsic paradoxical
nature of information. An initial section of Shannon’s fundamental booklet
(Sect. 6), devoted to introduce the notion of entropy is entitled “Choice, Uncer-
tainty and Entropy”. What sounds strange in this title is a sort of identification
between Entropy and uncertainty, where the first was already defined as an aver-
age measure of the information quantity emitted by an information source. It
reasonable to identify notions that seem to be opposite? This impression of con-
tradiction continues when Shannon proves that the maximum value reached by
entropy is realized when the probability distribution of an information source is
the uniform distribution where all the events (emitted symbols) have the same
probability. In this sense, a completely random source reaches the maximum
entropy. This means that a random symbol emission process is more informa-
tive than a process where symbols are generated according to a precise rule.
Why Shannon does found its theory on such a kind of conceptual ambiguity?
Of course, Shannon is not interested in philosophical issues, but surely he is
conscious of this problem. Is it safe to identify information with uncertainty? Is
it not something like to identify knowledge with ignorance? A possible answer
to this position is related to the intrinsic relative nature of information. It is
not really important to quantify information, but the gain/loss of information
in the passage between two different states. In this sense it is only matter of
the orientation we choose, because a gain of information corresponds exactly
to the same loss of uncertainty, or equivalently, what is the information quan-
tity that we gain, after a passage of state, corresponds to the uncertainty that
we lose with respect to the previous state. Information is oriented in time, or
better, time arrow is a consequence of information orientation along a dynam-
ical process. When we put gas molecules inside a volume, each of them having
an initial position and speed, if collisions are elastic (with no energy loss, that
implies constancy of speed distribution variance), then in colliding they exchange
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information, by tending to a limit distribution (which can be proved to be the
gaussian speed distribution). Information theory tell us that Gaussian distrib-
ution is the distribution having the maximum entropy among those having a
fixed variance. This means that the thermodynamical low of maximum entropy
is a consequence of large numbers laws and information theory laws (this is an
extreme simplification of the phenomenon, but centers its main point).

4 Genomic Distributions and Dictionaries

For the following discussion it is important to recall explicitly the notion of
discrete distribution. It is a function assigning to any value x of a finite
or enumerable subset B of real numbers a real value f(x) in such a way that∑

x∈B f(x) is a finite value b. When b = 1 the distribution is called a (dis-
crete) probability distribution, because f(x) can be seen as the probability of
occurrence of the value x ∈ B. When B is a set of values expressing quantities
defined on genomes, then the distribution is called a genomic distribution. In
the following, we consider some genomic distributions that result important in
the perspective of informational analyses of genomes. Of course, any genomic
distribution f , when is normalized (by considering f(x)/b), it becomes a prob-
ability distribution, therefore it determines an information source, to which all
concepts outlined above can be applied. Many important genomic distributions
are based on the notion of genomic dictionary, and genomic distributions are
the key for applying information theoretic concepts to genomes. Here we will
give only a succinct list of distributions and related concepts. We want to stress
that by using them we can extract and analyze information from real genomes,
by deciding if some parts of a genome are almost casual or if their informa-
tion content is telling us that possibly some biological functions are related to
their “information density”. In this regard, an aspect that is outside the classical
approach of Shannon is the comparison with randomness. This comparison can
be developed by generating (pseudo) random genomes and comparing directly
them with real genomes, or indirectly, by comparing distributions observed over
genomes with those that probability theory tell us to rule random processes. This
is an amazing aspect, almost paradoxical, of probability theory (related to the
laws of large numbers): purely random phenomena follow perfect mathematical
laws. When you extracted balls from an urn where you are completely ignorant
about what can be the result of your extraction, in this case, we know that the
probability of extracting k white balls in n extraction is

(
n
k

)
1/2n, and that for

n going to infinite, the distribution of these probabilities approximates to the
Gaussian curve (Moivre-Laplace’s theorem, that Gauss discovered as the law
according to which errors are distributed). The apparent contradiction of such
rule comes when we consider “random” as equivalent to “chaos” (to be precise,
the two concepts are not equivalent, but a deep analysis of this distinction would
be out the scope of the present discussion). In fact, if chaos is, in some sense,
the lack of any rule how it is possible that chaotic/random phenomena can be
described by precise mathematical laws? The nature of this paradox is informa-
tional (as the previous use of the term “ignorance” suggests) and only a deep
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discrimination between the causes acting over an observed phenomenon, and the
knowledge of their nature and realization (what happens and what I know about
what happens), can conciliate some intrinsic aporias underlying facts and con-
jectures about them (Jacob Bernoulli’s “Ars Conjectandi” is the title of the first
systematic treatise about probability). Now, we can generate (pseudo) random
strings with deterministic algorithms. This is one of the most exciting success
of twentieth century (Universal Computability and Deterministic Chaos among
the top scientific achievements of the century, and they are related). If we can
generate random strings over alphabet of four symbols, we can generate random
genomes, and these genomes are probably the origins of real genomes. There-
fore a key point, that we do not touch here, for understanding life evolution is
just based in methods comparing real genomes with random genomes. But let
us stop abruptly here this discussion and go back to the list of some genomic
distributions.

4.1 Distributions of k-mer Cardinality

Given a genome G the distribution:

k �→ |Dk(G|

is a characteristic of G. Important values of k, related to G, are the value for
which |Dk(G| is maximum and the value for which the possible k-words are more
than k-words occurring in the genome (corresponding to mfl(G)). Of course,
these values are strongly related to the length of G, but their exact determination
is related to specific aspect of the genome.

4.2 Multiplicity and Co-multiplicity Distributions

Let G a genome and L be a genomic dictionary of G. Let us consider the multi-
plicity multG(α) for every α ∈ L. If we set:

||L|| =
∑

α∈L

multG(α)

then multG(α)/||L|| is a probability distribution. Let M = max{multG(α) | α ∈
L}. A distribution directly related to multiplicity is the co-multiplicity comult,
assigning to any value k in {1, 2, . . . M} the number of words of L having mul-
tiplicity k, that is:

k �→ |{α ∈ L | multG(α) = k}|.
Also co-multiplicity can be normalized if co-multiplicities are divided by |L|,
the cardinality of L. Particular cases of multiplicity and co-multiplicity distrib-
utions are based on the k-mer of G, for some k. These distributions, especially
multiplicity, are well studied especially for small values of k (k < 12). The empir-
ical entropy Ek(G) of length k of a genome G is the entropy associated to the



12 V. Manca

information source (Dk(G),multG(α)/||L||), that is:

Ek(G) =
∑

α∈Dk(G)

(multG(α)/||Dk(G||)) lg(multG(α)/Dk(G||)).

It is easy to verify that Dk(G||) = |G| − k + 1.

4.3 Distributions Relating Word Length and Multiplicity

These kinds of genomic distributions answer to the following questions. (i) What
is the average, minimum, or maximum length of words occurring k times in a
genome G? (ii) How many times do the words of length k occur in a genome G

(on average, minimum, or maximum value)?

4.4 Spectra of Genomic Dictionaries

When a word occurs in a genome G, we say that it occurs at the position where
its first symbol occurs. The set posG(α), also called the spectrum of word α in
G, provides all the positions of G, where α occurs (if α does not occur in G its
spectrum in G is empty). Of course, if a dictionary L covers completely G, then
from the spectra of its words it is possible to reconstruct uniquely G. Moreover,
the following equation derives directly from the definitions of mult and pos:

multG(α) = |posG(α)|.

Representations of genomes by means of word spectra may be very redundant,
and the redundancy level can be measured in terms of average positional cov-
erage. However, this redundancy is a positive aspect when we want recover the
genome from a dictionary that covers completely it. The set of all k-mers occur-
ring in a genome is a completely covering dictionary, therefore spectra of k-
mers uniquely determines genomes. However, an important question concerns the
search for minimal dictionaries that, almost completely, cover a given genome. In
fact, in this case, their spectra identify (almost completely) the entire genome by
reducing the representation redundancy. For example, in human chromosomes,
we found [3] that around a third of all possible 6-mers has a coverage near to
98 %, but these 6-mers are specific of each chromosome, even if, in groups of
four, their intersections are very consistent (around one thousand).

4.5 Hapax Overlap Factorizations

Given a genome G there exist a non trivial dictionary L of G such that G

is completely determined by L? The following algorithm provides an answer to
this question, by generating a dictionary of m-forward overlap factors having
this property of univocal identification of G. Before giving a pseudo-code of the
algorithm, let us explain the main idea. Let fix a length m amd factorize G in the
following manner, where wj for j = 1, 2, . . . n, are substrings of G of length m,
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while hj are the shortest hapaxes between the w substrings, hn is the rightmost
hapax of G, and wn+1 is the string following hn up to the end of G:

G = w1h1w2h2w3h3 . . . hn−1wnhnwn+1.

Given the representation above of G, we define a dictionary L by setting:

L = {w1h1, h1w2h2, h2w3h3, . . . hn−1wnhn, hnwn+1}.

The algorithm generating L is given by the following procedure.

1 Set i := 1, j := 1;
2 Move m positions forward from position i of G;
3 From position i + m go forward and set hj as the first position of G such

that factor G[i + m,hj ] is a hapax of G. If such a hapax does not exist, set
g := j − 1 and go to step 5;

4 Set i := hj + 1 and go to step 2;
5 Set F1 = G[1, h1];
6 For j = 1, . . . , g − 1 Set Fj = G[hj , hj+1];
7 Set Fg = G[hg−1, |G|].

It can easily be shown that the factors F1, F2, . . . given from the previous
algorithm are exactly the dictionary L as defined above, and directly from their
construction (they share hapaxes at most with other two factors) they can be
concatenated (with overlap) in a unique way and their overlap concatenation
is exactly G. These factors are very useful in the analysis of G. Researches in
progress are using these factors in some analyses of genomes that are relevant
to the identification of genome pathological situations (in human genome). Of
course, changing the value of m, we get different factorizations. According to the
cases of interest, a suitable trade-off between the length of m and the average
length of hapaxes can be required. Moreover, a variable forward length can
be used for optimize some aspects of the factorization. In [2] a more complex
algorithm generating hapax overlap factorization is given, aimed at realizing
some minimality principles.

4.6 Recurrence Distance Distributions

Let us consider the spectrum posG(α) of a given word α in a given genome G,
and enumerate the positions of this set in their increasing order: p1, p2, . . . , pm.
Then the values d1 = p2 − p1, . . . , di = pi+1 − pi, . . . , dm−1 = pm − pm−1 are
called recurrence distances of α in G. Distribution RDDG(α) associates to any
recurrence distance the number of times it appear in the above enumeration. It
can be shown that in Bernoullian genomes RDD distributions are exponential
distributions (λe−λx for some real parameter λ). This fact is very important,
because the entropic divergence between the observed RDD(α) of a genome and
the exponential RDD(α) in a Bernoullian genome of the same length is a sort
of measure of the non-randomness of α in G (parameter λ can be evaluated by
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searching the exponential with the minimum error with respect to the observed
distribution). In [4] RDD distributions were used for introducing a new method
for discovering DNA encoding regions (inclusive of transcribed region that are
not translated into proteins).

4.7 Genome Representations

The three preceding subsections determine in a natural way forms of genome rep-
resentations that are alternative to the standard sequence representation over
Γ ∗. The reader is invited to provide the details of this. However, other uncon-
ventional genome representations can be defined, which could suggest new ways
to consider and analyze genomes. Let us shortly mention some of them.

1. Hapax Permutation. Let us factorize G as:

G = G[1, p1]G[p1, p2]G[p2, p3] . . .G[pm−1, pm]

where all factors above are hapaxes, then the set of these factors (enumerated
in some order, for example, in lexicographic order) plus a permutation of
{1, 2, . . . ,m} identifies G.

2. Characteristic vectors. G is identified by three boolean vectors: vector X
of length |G| where 1 is placed in all the positions where a is in G, vector Y
of length |G| − ∑

X where 1 is placed in all the positions where c is in G,
vector Z of length |X|−∑

Y where 1 is placed in all the positions where g is
in G (in the positions of X which do not correspond to 1 in Y and Z, surely
t is placed in G).

3. Random Exceptions. Let us generate a random sequence R of length |G|
over the symbols of Γ (by means of some algorithm of random generation,
where some parameters of the adopted random generation seed identify com-
pletely the generated sequence). Then, consider a boolean vector B of length
|G| having 1 in the positions where G differs from R. If m is the number
of the different positions, we can associate to B other two vectors X and
Y . Vector X of length m has 1 in the positions i where the order distance
G(i) − B(i) is 1, according the circular order a < c < g < t < a (for example,
d(a, c) = 1, d(a, g) = 2, d(a, t) = 3), while vector Y of length m − ∑

X (value∑
X corresponds to the number of 1 of X) has 1 in the positions j where the

order distance G(j) − B(j) is 2. Of course, in the remaining positions k of B
the distance G(k) − B(k) is 3.

4. Word Elongations. Consider a dictionary of L of all possible k-words (for
some length k, for example k = 6). If for every word w in L we give the
sequence ElongG(w) of the words L following all the occurrence of w, then
G is completely identified by the set ElongG(L) = {ElongG(w) | w ∈ L}
of elongations of w, and from the word w1 of L occurring in the first k
positions of G (a simple algorithm can be given for reconstructing univocally
G from ElongG(L) and w1). Other kinds of representations can be developed,
where the idea of elongation is elaborated in similar, but different, ways (for
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example, elongations of some “seeds”, located in suitable positions of G, until
the elongations do not reach the position before the beginning of another
seed).

5. Lexicographic Gaps. Let us factorize G by words of a given length. Each
of them represents the number ||w|| corresponding to the position of w in the
lexicographic order of strings. Then, given the first word of G, the sequence
of integer numbers ||w|| − ||w′||, where w′ is the word following w, identifies
completely G.

6. Alphabetic Transcription. The usual string representation of a genome
over the alphabet Γ can be transformed into a string in a different alphabet by
encoding k-mers into suitable characters (letters, ciphers, colors, . . . ). These
kinds of representations are more properly “visualizations” of genomes, but
can be very useful for a better reading of recurrent pattern that become more
evident for specific inspections of genomic regions [3].

4.8 Complete Segmentations and Segment Dictionaries

A Segmentation S(G) of a genome G is given by a sequence of substrings of G,
of factors, or segments G1,G2, . . . ,Gm such that their concatenation provides G.
Given a genomic dictionary L of G, the segmentation S(G) is L-complete when
D(Gi) = L for 1 ≤ i ≤ m. In real genomes, very often, complete segmentations
consist of factors with very different lengths. This means that words of a dictio-
nary are usually distributed in a non homogeneous way. Symmetrically, we can
consider a segmentation where all the factors have the same length and for each
of them we consider the words of L occurring in that factor. In this case, very
often, we get very different set of words in the different factors. Segmentation
distributions can associate to each factor the cardinality of its dictionary, or to
each value of k the minimal lengths l1, l2, . . . , lm such that:

G[1, l1],G[l1 + 1, l2], . . .G[lm−1 + 1, lm]

results to be a L-complete segmentation of G. Given a segmentation of factors
of the same length and a word α, how much are the segments where α occurs k
times? In a Bernoullian genome this distribution follow a Poisson law λke−λ/k!
(parameter λ depends on the genome length and on the segment length).

4.9 Occurrence Order and Context Dictionaries

Given a genome G and a word α of a dictionary L of G, we say that at position
h word α has occurrence order j, and write occurG(α, h) = j, if α occurs in G at
position h (its first symbol occurs in h) and multG[1,h−1](α, h) = j − 1. In this
case, the context dictionary of α in G, around its occurrence of order j, within
radius m, is the set of words of L that are in G within m positions before and
after h:

Lj,k(α){β ∈ L | occurG(α, h) = j, β = G[l1, l2], h − m < l1 < l2 < h + m}.
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For some suitable m, the following language:

Lm(α) = ∩j∈posG(α)Lj,m

defines the words of G that are related to α in G. These kind of languages are
very important in the analyses of functions that some words play in a given
genome.

5 Conclusions

The previous discussion was mainly of mathematical (and philosophical) nature.
However, in closing we want avoid to give the impression that these two aspects
cover all the aspects of genomes viewed as information sources. The main inter-
est in defining informational concepts over genomes, is the computational aspect
that here was not presented. The interested reader is advised to consult the
papers given in reference for realizing the kind of results that can be obtained
when informational measures, dictionaries, and distributions are computed in
real genomes. After computing them, we compare them, and extract regulari-
ties and characteristics related to particular genomes or classes of genomes. In
this kind of activity, the most critical point is the computational efficiency. For
example, when we consider human genome, and its dictionary of 30-mers, you
reach a dictionary size of billions of words (near to the length of the whole
genome). If you want use it for computing the empirical entropy at length 30,
your computer almost surely crashes and you cannot conclude your computa-
tion. This means that suitable data structure have be used for avoiding these
computational limits. In this specific case, if you represent dictionaries in terms
of suffix arrays [1], you can obtain your result in two hours with a normal laptop.
This strategy was systematically implemented in [3] that supports a number of
functionalities for computing almost all the formulas that were presented in this
paper. Presently, we analyzed more than two hundreds genomes of several types
(virus, archea, prokaryotes, eukaryotes, multicellular organisms of different types
up to many type of mammalians). Two main research lines, only mentioned in
the discussion above, are: (i) the extraction of dictionaries, based only of infor-
mational analyses that could integrate analogous analyses developed according
to biochemical aspects (see The project ENCODE (ENCyclopedia Of DNA Ele-
ments) [8], http://nature.com/encode, http://epd.vital-it.ch); (ii) the analysis
of evolution of genomes on the basis of their genomic complexity (according to
suitable definitions of this notion) [3,20]. The field of investigation is very rich
and the challenges are very ambitious, but what is encouraging and exciting
is that results obtained so far seem to confirm that genomes obey to the laws
of information theory, the same rules that nowadays allows us to communicate
in a so integrate and pervasive way (transmitting data that obey to Shannon’s
theorems).

http://nature.com/encode
http://epd.vital-it.ch
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Abstract. In this paper, I set out the contributions made by some
European biologists, as well as other more heterodox ones, to the recent
development of theoretical thinking in biology. Theoretical biology is a
relatively new discipline when compared with theoretical physics, in part
because the formal languages of logic and computing which it uses have
only emerged recently. Finally, I suggest that in order to build a theory
of life we need to combine a cell theory based on a proper description
of the laws that map the genotype in the phenotype and vice versa with
the laws of evolution. Only then will we be able to properly explain the
transformation and complexity of living things.

1 Introduction

A biologist presenting their ideas on logic and computing at a conference of
experts in computing - computing with membranes to be precise - is surprising for
two reasons: firstly, because it reflects the intellectual openness of the computer
scientists who invited me, and then secondly because I think they sense, like me,
that there is a very close relationship between biology and computing. Hence I
believe that my audaciousness in presenting my ideas in such a special forum is
justified.

The purpose of this paper is to describe my own path to discovering what
I can now put forward as an early thesis statement: that logic and computing
are the natural abstract languages of biology, in the same way that calculus
was in its day for physics. I do not mean that other formal languages are not
appropriate for biology, but rather that computing is the most appropriate one.
I have reached this conclusion by way of some fairly tortuous thinking which I
am going to set out in this paper, a paper which, in a nutshell, is a condensed
version of my recent book “The Calculus of Life” [1]. The logic in its development
has a certain historical chronology involving three periods. The first relates to
the relevance which particular biologists, who can in some way be considered
recent pioneers of theoretical biology, have had for me. Although admittedly,
they are just some of the scientists and intellectuals who have influenced me.
The second period coincides with my search for ways of approaching biology
c© Springer International Publishing Switzerland 2015
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from logic and computing. Computing is a recent science, as is modern logic,
even though it precedes computing. Some of the reasons why it has been so
difficult to develop theoretical biology, in the same way as we have theoretical
physics that is almost as old as physics itself, are internal to biology, mainly the
complexity of its many objects of study. However, here I will look at the late
development of languages, namely logic and computing, which are appropriate
for biology. Biology has been waiting for them, and when we have begun to apply
them, biological theorising has soared to levels of explanatory depth of biological
entities which were barely imaginable beforehand. Finally, the third period is my
own thinking in the field of new biology, the field of systems. This modern biology
is the one that Goethe would have dreamed of, and probably other later vitalist
authors too. Theoretical biology is arranged around the biology of (computable)
systems. We can model and compare biological phenomena and we are on track
to improve this even more. This modern biology means that theoretical biology
is not a purely speculative field that is excessively conceptual and abstract and
unconnected with biologists empiricist interests.

2 Biology

There is a fine tradition of recent theoretical thought in biology which, in some
ways, has been buried by the subsequent emergence of biology popularisation
literature, mainly about biological evolution, which has been promoted by British
or American authors such as Gould and Dawkins to mention just two great
icons in the field. They are authors, scientists themselves, who also wrote and
thought about biology. I consider them as important forerunners for the estab-
lishment of theoretical biology. The list is skewed by my own interests but their
names are well known: Jacob and Monod, pioneers of molecular biology, von
Bertalanffy, a pioneer of the systemic conception of entities including biological
ones, and Waddington, a pioneer of theoretical biology. There are other authors
worthy of attention who go back even further than the four I have just mentioned
and whose logical-mathematical training and willingness to address biology as
a whole were very significant. Here I am talking about Woodger, Turing, Rosen
and von Neumann. Although I briefly discuss the work of these latter four, in
my book I focus on the four I mentioned previously, probably because they are
scientists involved in the research of life.

Monod poses a key problem in biology, one which hovers over its entire
history. It is the confrontation or the relative weight that contingency and chance
have had in the evolution of life compared with necessity. In fact, contemporary
biology is strongly influenced by the idea that new biological developments of
any kind appear by chance and are selected. Necessity has a teleological after-
taste to the extent that if you examine the tree of life and the time when these
fresh developments have emerged, you get the impression that the most recent
ones are more complex than the oldest ones. Put in another way, the evolution
of life is an evolution in complexity. However, we do not have much experience
with which to test this. The ideal experiment would be to see the dynamics of
life on other planets where it has emerged.
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Jacob is important for his theories about reductionism, particularly in its
ontological variant. As a pioneer in molecular biology he confers full powers on
genes to map the phenotype. He does not deny that properties not written in
the genes may emerge, but he claims that these properties appear because the
genes are there. Genes are the basic units that are transmitted from genera-
tion to generation and it is their products which, in broad interaction between
them and with the environment, make it possible to create that entire functional
superstructure which we call a living being.

von Bertalanffy is the father of the general systems theory. If anyone could
be credited with the idea that the whole is greater than the sum of its parts, that
person would be von Bertalanffy. von Bertalanffy is the most theoretical of all my
favourite theoretical biologists. Living organisms are systemic conglomerates at
all their levels. Cells, multicellular organisms, populations, ecosystems; all these
hierarchies of biological organisation are systems formed by the most basic unit
components from which properties emerge. von Bertalanffys systems contrast
with Jacobs ontological reductionism. Yet that is biology, in which there is always
a vigorous debate between the analytical-reductionist and synthetic-systemic
traditions.

Finally, Waddington is the great conceptual father of modern theoretical
biology. We owe the concept of epigenetics to him, and like few others he was
prescient in seeing that the big problem of biology lies in the discovery and
integration of the laws governing the relationship between genotypes and pheno-
types. Biology requires the development of a phenotype theory which combines
the laws that map the genotype in the phenotype and the phenotype in the geno-
type. Although Waddington, and anyone at this time, recognises the enormous
contribution that genetics has made to verifying the tree of life proposed by
Darwin, i.e. confirmation of the unit and the genealogical relationship between
all living beings, it is still an insufficient and gene-centric contribution to the
origin and transformation of living beings. For Waddington, I would repeat, we
need an evolutionary theory of the phenotype.

3 Logic and Computing

Modern logic was born with Frege and Boole and its history is recent when we
consider the Aristotelian origins of traditional logic, which is as old as reasoning
in the West. I mention the youth of modern logic to stress that the science of
computing has largely drawn on these authors, particularly Boole, for the advent
of computing which, obviously, is even younger than modern logic. What does
computing have that makes it so familiar to biology and means I venture to claim
that it is a very appropriate formal language for it? Consider the extraordinary
analogy of hardware (machinery) and software (algorithm) in computing with
cellular machinery, proteins or the phenotype as biological hardware and DNA or
genes as biological software, program or algorithm. As far as biology is concerned,
the twin concepts of hardware/software (machinery/program) have permeated
it to such an extent that much of the deep reasoning underlying modern biology,
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particularly in molecular biology, uses concepts drawn from computing. Hence
we can say that DNA - at least, because there may be other informational levels -
is an informational program or algorithm run at the cellular level by the protein
machinery. The relationship between computing and biology is deeper than this,
because if we admit the algorithmic nature of DNA then we can assess whether,
for example, it is feasible to measure its complexity or whether the cell is a
Turing machine.

However, I would now like to stress one aspect of computing which in my view
is fundamental to biology; the simulation of biological phenomena. In my book,
I use two examples, which can now be seen as historical, and which explore and
contrast the properties of living beings. They are the cellular automaton called
‘Life’ by the mathematician Conway and ‘Algorithmic Chemistry’ by Fontana
and Buss.

‘Life’ is a cellular automaton playing with the fundamental property of life;
its ability to persist. In fact, a cell of the grid (which would be the equivalent of
an organic cell) is defined as living or dead by the status of its eight neighbours.
It starts from an initial set of live or active cells which are arranged in a certain
way in the grid. Rules are applied to them in order to assess in successive rounds
(generations) what the map of living cells will be, continuing the process for as
long as they exist. Though the rules are simple, indeed disdainfully simple, they
show properties on the grid that are reminiscent of the behaviour of living beings
such as cooperation, competition, multiplication or the indefinite survival of some
of the structures formed by these cells, etc. The rules are as follows: (a) if two
neighbouring cells are alive, the reference cell maintains its status: dead if it was
dead and alive if it was alive; (b) if there are three live neighbours, the reference
cell will be alive regardless of whether it was alive or dead before applying the
rule; and (c) if the number of neighbouring live cells is zero, one, four, five, six,
seven or eight, the reference cell will die after applying the rule.

‘Life’ is an example of life dynamics under deterministic rules that make up
a closed evolution. The dynamic is the same whenever we begin with the same
number of cells, including their location, as well as the same starting grid size
(the environment). However, in spite of this and as noted above the simulation
captures many properties of living entities.

Another computational approach to biological phenomena which intrigued
me at the time is Fontana and Busss ‘Algorithmic Chemistry’. It is essentially
a reactor consisting of a set of initial objects which are structures that follow
the rules of lambda calculus, well known in computational theory. The total set
of objects remains constant and in each cycle or generation they are allowed
to interact or collide with each other to reconfigure the population in terms of
composition. A general observation in all the experiments conducted in these
reactors was the invariable appearance after a reasonably high number of cycles
of new objects, usually much more complex than any of the initial ones, which
exhibited properties typical of biological entities such as self-maintenance and
multiplication. They also observed emergent properties. Indeed, they identified
the emergence of new complex objects due to the joining together of others which,
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in turn, already had a degree of complexity and exhibited new properties with
respect to those presented by the combined objects. These behaviours emulated
the hierarchical organisation of biological entities where, for example, cells which
exhibit specific properties are grouped into tissues or organs that collectively
present other properties.

These computational experiments by Fontana and Buss show behaviour typ-
ical of the evolutionary dynamics of open systems. Although the rules or axioms
are defined, the interactions between the objects are not, and instead are ran-
dom, and the simulation itself allows the incorporation of mutations (random
alteration of objects in the reactor at any time during the experiment). How-
ever, the amazing thing was the systematic emergence and persistence of complex
structures with emergent properties and organisational hierarchy in spite of the
contingency introduced by the chance factor of the random combination of the
objects and mutations. It would be something like a kind of necessity inherent
in the dynamics of the living entities which evolved towards greater complexity.

4 Cell and Evolution

The development of a theory of life would involve a suitable combination of two
sets of sub-theories which unfortunately have been unevenly developed. They
are the theories of the cell and of evolution. It is almost a platitude now to
say that the fundamental unit of life is the cell, and this is a key finding of
biology which has been well accepted for centuries. Indeed, it predates evolu-
tionary theory itself, which has only been consolidated after much time and
effort. Yet taking the cell as the basic unit of life is not the same as saying that
we thoroughly grasp all the processes that occur within it. Molecular biology
has been the science that has taken the most important steps in examining the
structure and function of cellular components in depth. However, we still need to
draw up a catalogue of the laws that govern it. To a great extent, and going back
once more to the twin concepts of (genetic) information and (metabolic) cellular
machinery, the phenotype of a cell is far from fully understood on the basis of its
primary genetic information (genotype). In fact, the laws of transformation that
enable us to infer the phenotype (or mapping) from the informational genotype
as well as possible additional epigenetic laws are the big problem of modern biol-
ogy. Nevertheless, we should not think that as a result we have not made great
strides. Quite the reverse is the case. We are in a very sweet spot in research into
the cell as a fundamental unit in which we are close to learning as never before
about its collective behaviour (as a whole) based on real-time knowledge of all
its fundamental components and processes. In the history of biology, ridicule
has been heaped on vitalist authors, some of them distinguished biologists, who
refused to accept that the essence of life - for example the essence of a cell -
can be captured by studying its parts. This vitalist tradition began with Goethe
and continued with Bergson and Driesch. Their intention would probably be
not so much resorting to a non-physical principle in which to site the essence
of living things, but rather the unavailability of methodological and conceptual
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procedures to address living entities as a whole. These authors would be recon-
ciled with modern biology if, as Mayr says, we showed them that relationships
between the parts of an entity, which we can now measure, are as important as
the parts themselves. It would be like Goethes dream come true.

As I noted above, modern evolutionary theory confirms without a shadow
of a doubt the union of all organisms in their evolution from the moment that
life appeared on Earth. Nevertheless, deeper understanding of this transforma-
tion and the gradual emergence of more complex forms calls for the addition
of thorough knowledge of the laws of genotype-phenotype transformation of the
cell. The combination of the two sub-theories would provide a unified theory
of life.

Acknowledgements. This paper has been supported by the European Union’s ST-
FLOW and SYMBIOMICS projects, the Ministry of Economy and Competitive-
ness’s SAF2012-31187 project and the Regional Government of Valencia’s Prometeo
II/2014/065 project.

Reference

1. Moya, A.: The Calculus of Life. Springer, New York (2015)



An Excursion Through Quantitative
Model Refinement

Sepinoud Azimi1,3, Eugen Czeizler1,3, Cristian Gratie1,3, Diana Gratie1,3,
Bogdan Iancu1,3, Nebiat Ibssa2, Ion Petre1,3(B), Vladimir Rogojin1,3,

Tolou Shadbahr1, and Fatemeh Shokri1

1 Department of Computer Science, Åbo Akademi University, Turku, Finland
2 Department of Information Technology, University of Turku, Turku, Finland

3 Turku Centre for Computer Science (TUCS), Turku, Finland
ipetre@abo.fi

Abstract. There is growing interest in creating large-scale computa-
tional models for biological process. One of the challenges in such a
project is to fit and validate larger and larger models, a process that
requires more high-quality experimental data and more computational
effort as the size of the model grows. Quantitative model refinement is
a recently proposed model construction technique addressing this chal-
lenge. It proposes to create a model in an iterative fashion by adding
details to its species, and to fix the numerical setup in a way that guar-
antees to preserve the fit and validation of the model. In this survey we
make an excursion through quantitative model refinement – this includes
introducing the concept of quantitative model refinement for reaction-
based models, for rule-based models, for Petri nets and for guarded com-
mand language models, and to illustrate it on three case studies (the
heat shock response, the ErbB signaling pathway, and the self-assembly
of intermediate filaments).

1 Introduction

Building and analysing large-scale models has attracted much attention recently
as shown, e.g., by building whole-cell models [24] or organ models [2,34]. This
is supported by advancement of biotechnologies, especially in terms of growing
amounts of experimental data leading to a deeper understanding of the functions
of a cell. On the other hand, the computational techniques for building biomodels
have seen in contrast more modest progress. The most commonly used technique
today is to compile a collection of submodels and to focus the computational
effort on the communication and compatibility between them. This is a rather
ad-hoc approach, highly sensitive to availability of existing submodels and vul-
nerable even to minor changes in them.

We discuss in this paper an approach for building large-scale models based
on the idea of iteratively building the model through adding details to it step-
by-step so that its experimental fit and validation is preserved in each step. This
allows the modeler to start with an abstract view of the model and to add details
c© Springer International Publishing Switzerland 2015
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to it as they become available; it also allows the modeler to deal with a hierarchy
of models and to easily zoom-in and -out to various levels of detail as needed
in various applications. Several methods have been proposed to facilitate model
refinement in different frameworks, e.g., ODE-based models [9,19], rule-based
models [29], Petri nets [37], biochemical reaction networks [21], π-calculus [33].

This paper is thought of as an excursion through quantitative model refine-
ment, introducing briefly the concept of fit-preserving refinement in several mod-
eling frameworks and demonstrating it on three case-studies. It is only partially
self-contained due to space restrictions; instead it indicates in many places ref-
erences for further reading on each topic. The paper is structured as follows.
In Sect. 2 we introduce reaction-based models and their associated ODE-based
mass-action semantic. In Sect. 3 we introduce the main concept of this paper,
that of quantitative model refinement; we also formulate a necessary and suffi-
cient condition for how the numerical details of a refined model should be set
so that it preserves the fit and the validation of the initial model. In Sect. 4 we
introduce our three case studies: the heat shock response, the ErbB signaling
pathway, and the self-assembly of intermediate filaments. In Sect. 5 we discuss
two software implementations of the quantitative model refinement. In Sect. 6
we discuss the concept of model refinement in the context of rule-based, Petri
nets, and guarded command language modeling. We conclude the paper with a
short discussion in Sect. 7.

2 Preliminaries

We recall in this section some of the basic notions and definitions we need
throughout the paper. For more details we refer to [5,9,11,20].

2.1 Reaction-Based Models

In this section we briefly introduce the notion of reaction-based models following
the notations in [9,11].

A reaction-based model N = (S ,R) consists of a set of species S = {S1,
S2, ..., Sm} and a set of reactions R = {r1, . . . , rn}. A reaction rj is of the form:

rj :
m∑

i=1

cijSi →
m∑

i=1

dijSi,

where ci,j , di,j ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A reaction can also be described as:

rj : cj → dj,

where cj = (c1j , c2j , ..., cmj)T and dj = (d1j , d2j , ..., dmj)T are called the left-
and right-complex of reaction rj , resp.

The stoichiometric coefficient of species Si in reaction rj is denoted by sij

and defined as sij = dij − cij . We say a species Si is produced in reaction rj of
N , if If sij > 0, and that it is consumed otherwise.
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A mass-action reaction-based model is described as M = (S ,R,k) where
N = (S ,R) is a reaction-based model and k = (kr1 , . . . , krn

) ∈ RR
≥0. We call

kc→d the reaction rate constant of reaction c → d.

2.2 ODE-based Mass-Action Model

We introduce here the ODE-based mass-action model corresponding to a
reaction-based model; for details we refer to [13,25]. In an ODE the dynam-
ics of a system is expressed in terms of the time-dependent evolution of each
species’ concentration. We assume that the concentrations of the species is only
affected by the reaction. In the case of an ODE model the time evolution of any
Si concentration can be considered as a function si : R≥0 → R≥0. We define si

in the case of mass-action kinetics, through the following system of ODEs:

ṡi =
n∑

j=1

(dij − cij)kj

m∏

q=1

scqj
q ,

where ṡ denotes the differential of s. We define the system of ODE for all species
in a compact form as:

ṡ =
∑

c→d∈R

kc→dsc(d − c),

where s = (s1, s2, ..., sm)T , ṡ = (ṡ1, ṡ2, ..., ˙sm)T and sc =
m∏

i=1

sci
i .

Note that we only consider irreversible reactions since any reversible reaction
in the form of

rj :
m∑

i=1

cijSi �
m∑

i=1

dijSi

can also be written as two different irreversible reactions:

r
(1)
j :

m∑

i=1

cijSi →
m∑

i=1

dijSi, r
(2)
j :

m∑

i=1

dijSi →
m∑

i=1

cijSi.

3 Quantitative Model Refinement

The top-down development of large biological models starts with an initial
abstraction of the considered biological phenomena, which can then iteratively
extended by adding details to it. In the context of reaction-based models relying
on mass-action kinetics, one can distinguish data refinement, which consists in
the replacement of one (or more) species with several variants, i.e. subspecies,
and process refinement, where a generic reaction is replaced with a set of reac-
tions that captures the process in more details by providing intermediary steps.
We focus here on data refinement.

Building models via refinement becomes increasingly difficult as the model
size grows. Generating the refined reactions manually is both tedious and error
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prone. To address this, one can rely on structural refinement, which provides a
generic and systematic approach for generating refined reactions based on the
desired refinement of species. Furthermore, fitting a large model is a computa-
tionally expensive process and thus it becomes critical that, to the extent possi-
ble, the computational effort spent on fitting previous versions of the model is not
completely wasted, but instead the obtained parameter values are reused for the
initialization of the refined model. This can be accomplished via fit-preserving
refinement, where the parameters of the refined model are set up so as to capture
the same dynamics with respect to the species of the original model.

3.1 Structural Refinement

In this subsection we discuss structural data refinement, as introduced in [9].
We start with the definition of species refinement, which aims to capture the
replacement of species from the original model with subspecies in the refined
one.

Definition 1 ([9]). Let S and S ′ be two sets of species. A relation ρ ⊆ S ×S ′

is a species refinement relation if and only if it satisfies the following conditions:

1. for each S ∈ S , ρ(S) �= ∅;
2. for each S′ ∈ S ′ there exists exactly one S ∈ S such that S′ ∈ ρ(S).

For each S ∈ S we denote ρ(S) = {S ∈ S ′ | (S, S′) ∈ ρ}. Intuitively,
the constraints from the definition ensure that each species from the original
model is refined to at least one subspecies (more than one in the case of non-
trivial refinements) and each species of the refined model corresponds to exactly
one “parent” species from the original model. A species refinement ρ can also be
written as an (S×S ′)-matrix with {0, 1} entries, referred to as the characteristic
matrix of ρ, defined as follows:

Mρ = (mS,S′)S∈S ,S′∈S ′ , mS,S′ =

{
1, if S′ ∈ ρ(S);
0, otherwise.

Note that each column of the matrix has exactly one 1-entry.
The species refinement relation induces the structural refinement of com-

plexes, reactions and reaction networks.

Definition 2 ([11]). Let S = {S1, . . . , Sm} and S ′ = {S′
1, . . . , S

′
m′} be two

sets of species and ρ ⊆ S × S ′ a species refinement relation.

1. Let c = [c1, . . . , cm]T ∈ N
S and c′ = [c′

1, . . . , c
′
m′ ] ∈ N

S ′
be two complexes

over S , respectively S ′. We say that c′ is a ρ-refinement of c, denoted c′ ∈
ρ(c), if ∑

1≤j≤m′

S′
j∈ρ(Si)

c′
j = ci, for all 1 ≤ i ≤ m

or, equivalently, if c = Mρc
′.
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2. Let r : c → d be a reaction over S and r′ : c′ → d′ a reaction over S ′. We
say that r’ is a ρ-refinement of r, denoted r′ ∈ ρ(r), if c′ ∈ ρ(c) and d′ ∈ ρ(d).

3. Let N = (S ,R) and N ′ = (S ′,R′) be two reaction-based models. We say
that N’ is a ρ-refinement of N, denoted N ′ ∈ ρ(N), if

R′ ⊆
⋃

r∈R

ρ(r) and ρ(r) ∩ R′ �= ∅, for all r ∈ R.

In case R′ =
⋃

r∈R ρ(r), we say that N’ is the full ρ-refinement of N.
4. Let M = (S ,R,k) and M ′ = (S ′,R′,k′) be two mass-action reaction-based

models. We say that M’ is a ρ-refinement of M, denoted M ′ ∈ ρ(M), if
(S ′,R′) ∈ ρ(S ,R). We say that M’ is a full ρ-refinement of M if (S ′,R′)
is the full ρ-refinement of (S ,R).

5 Let σ ∈ R
S and σ′ ∈ R

S ′
(thought of as the initial values for the system

of ODEs associated to M and M ′). We say that σ′ is a ρ-refinement of σ,
denoted σ′ ∈ ρ(σ), if σ = Mρσ

′.

Example 1. Consider the reaction A + B
k−→ 2B. We refine the reaction to

include two different subtypes of species A, A1 and A2; species B remains
unchanged but for the lack of clarity we denote it in the refined model by a
new variable, say B1. The corresponding species refinement relation is given by
ρ = {(A,A1), (A,A2), (B,B1)}. The two possible refinements of the considered
reaction are A1 + B1

k1−→ 2B1, A2 + B1
k2−→ 2B1.

Note that this reaction is part of the Lotka-Volterra model; for a complete
discussion of the refinement of this model we refer to [5,10].

3.2 Fit-Preserving Refinement

In this subsection we define the fit-preserving refinement, as introduced in [5],
with the notations and formal definition from [9]. Given an initial value problem,
i.e. an ODE ẋ = F (x) with the initial condition x(0) = x0, we use x[x0] to
denote its (unique) solution.

The problem we investigate in this section is the following:

What is the numerical setup (kinetic rate constants and initial values) of a
refined model ensuring that for each species of the basic model, its corresponding
function in the mathematical model is the sum of the functions corresponding to
its subspecies in the refined model?

The problem is strongly motivated by the need to preserve the numerical fit of
an already validated model, while allowing its extension with additional details
through quantitative model refinements. We give this problem a solution in this
section and we use this solution in several different frameworks and case-studies
in the remaining of the paper.

Definition 3. Let M = (S ,R,k) and M ′ = (S ′,R′,k′) be two mass-action
reaction networks and ρ ⊆ S × S ′ a species refinement relation. For any σ ∈
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R
S
≥0 and σ′ ∈ R

S ′
≥0 we denote by s[σ] : [0, τ) → R

S
≥0 (s′[σ′] : [0, τ ′) → R

S ′
≥0) the

vector of the real functions obtained as solutions of the ODE system associated
to M (to M ′, resp.) with initial values σ (σ′, resp.).

We say that M’ is a ρ-fit-preserving refinement of M if M ′ ∈ ρ(M) and, for
all σ ∈ R

S
≥0 and σ′ ∈ R

S ′
≥0 such that σ = Mρσ

′, we have that

s[σ](t) = Mρs
′[σ′](t),

for all values of t in a suitable right-neighborhood of 0.

Note that, for the same set of reactions, it is sometimes possible that two
different assignments of kinetic rate constants lead to exactly the same ODE.
For such models it is shown in [4] that the values of the rate constants can not
be computed even from exact and complete experimental data for the system’s
dynamics. As such, the requirement that a model has uniquely identifiable rate
constants will be regarded as reasonable and desirable even outside the refine-
ment framework.

What we are looking for is an effective procedure for assigning the values of
the kinetic rate constants of the refined model so that a fit-preserving refinement
is obtained. An (implicit) assignment that achieves this is given in Definition 4.

Definition 4. Let M = (S ,R,k) and M ′ = (S ′,R′,k′) be two mass-action
reaction networks and ρ ⊆ S × S ′ a species refinement relation. We say that
M ′ is a canonical ρ-refinement of M if M ′ is a full ρ-refinement of M and, for
every c → d ∈ R and every c′ ∈ ρ(c), we have that

∑

d′∈ρ(d)

k′
c′→d′ =

(
c

c′

)
kc→d , where

(
c

c′

)
=

∏|S |
i=1 ci!

∏|S ′|
j=1 c′

j !
.

It is shown in [9] that any canonical ρ-refinement is also a fit-preserving
refinement. We provide here the stronger result of [11].

Theorem 1 ([11]). Let M = (S ,R,k) and M ′ = (S ′,R′,k′) be two reaction
networks such that M ′ is a full ρ-refinement of M .

1. If M ′ is a canonical ρ-refinement of M , then M ′ is a fit-preserving ρ-
refinement of M .

2. If M has uniquely identifiable rate constants, then M ′ is a fit-preserving ρ-
refinement of M if and only if M ′ is a canonical ρ-refinement of M .

Note that Theorem 1 provides a complete characterization of fit-preserving
refinement in the context of mass-action models. What is remarkable in this char-
acterization is the linear dependency between the rate constants of the refined
model and those of the original model.

Example 2. Consider again the reaction from Example 1 and its refinements. In
this case, canonical refinement translates to having k1 = k and k2 = k, since the
left hand sides of the two refined reactions are distinct.

For a more comprehensive discussion of fit-preserving refinement, see [11],
where several distinct fit-preserving refinements of the Brusselator [30] are pre-
sented and compared.
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3.3 Refinement Induced by the Composition of Species

In this subsection we rely on the initial refinement ideas proposed in [5], where
a distinction is made between complex species (which consist of several, smaller,
units, e.g. molecules composed of atoms) and atomic species, which can not
be divided into smaller parts, within the current resolution of the model. For
example, consider the following chemical reaction: A + B:C k−→ A:B + C.

The definition of refinement presented in Sect. 3 does not consider the com-
position of species. However, this information may be relevant, particularly in
cases when the subspecies distinguished in the refined model are in fact induced
by the data refinement of one (or several) atomic species. For the chosen reac-
tion, note that there are three atomic species, namely A, B and C, and two
complex species, A:B and B:C. For uniformity, we assume that the reactants
and products of a reaction are all complex species, thus we allow a complex
species to be composed of a single atomic species.

Assume that in the refined model we can distinguish two types of B. We can
write this as an atomic refinement relation:

ρatomic = {(A,A1), (B,B1), (B,B2), (C,C1)}.

This induces a refinement of all complex species of the model where, just as
in the case of reaction refinement, we aim to capture all possible combinations of
subspecies which are meaningful with respect to the composition of the species
from the original model. In this case, the species refinement relation for complex
species becomes

ρ = {(A,A1), (B:C,B1:C1), (B:C,B2:C1), (A:B,A1:B1), (A:B,A1:B2), (C,C1)}.

Given the species refinement relation ρ, structural refinement can proceed as
in Sect. 3.1. The advantage of defining an atomic refinement is its compactness.
Moreover, as we show in Sect. 5, this is enough for enabling the automated
computation of the structural refinement of a model.

4 Case-Studies

We introduce in this section the three case studies discussed in this paper: the
heat shock response, the ErbB signaling pathway, and the self-assembly of inter-
mediate filaments.

4.1 The Heat Shock Response

The eukaryotic heat shock response is a conserved regulatory network that acts
as a defence mechanism against proteotoxicity arising from environmental stres-
sors such as: elevated temperature, toxins, infections, etc. Elevated temperatures
induce protein misfolding leading to the formation of aggregates which hinder
protein homeostasis, eventually bringing about apoptosis. The deleterious effects
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of elevated temperature upon proteins are counterbalanced by a family of mole-
cular chaperones, called heat shock proteins, which bind to misfolded proteins,
facilitating their recovery process so as to prevent apotosis. We consider the
following basic molecular model for the heat shock response, introduced in [32].

Heat shock proteins (hsp’s) play a key role in the process of protein refold-
ing, chaperoning misfolded proteins in the recovery process and facilitating the
degradation of severely damaged proteins. Heat shock proteins possess an affin-
ity towards misfolded proteins and, hence, they sequester them, form hsp:mfp
complexes, helping them recover to their original conformation (prot). The hsp-
encoding genes transactivation controls the cell’s response to environmental
stressors. Gene transcription is regulated by a family of proteins, called heat
shock factors (hsf’s). Heat shock factors are found predominantly in the cell in a
monomeric state when the cell does not withstand any stress from the environ-
ment, extensively bound to heat shock proteins (hsp: hsf). Elevated temperatures
lead to the breakage of hsp: hsf, causing the release of hsf’s. Heat stress induces
the dimerization of heat shock factors (hsf2) and their consequent trimerization
(hsf3), bringing them to a conformation which enables their binding with the
promoter elements of the hsp-encoding gene, heat shock element (hse). This pro-
motes hsp synthesis. However, once the expression level of hsp is elevated enough
for the cell to endure the effects of environmental stressors, hsp synthesis is turned
off. Heat shock proteins, thus, sequestrate the free hsf’s, break dimers and trimers
and impel DNA unbinding, by the formation of hsp: hsf complexes. Consequently,
the production of trimers is impeded. Temperature elevation causes proteins to
misfold, as a consequence heat shock proteins are detached from heat shock fac-
tors, hsp: hsf complexes being broken. Now free hsf’s dimerize and trimerize, thus
promoting the synthesis of hsp’s. We list the complete set of reactions in Table 1.

Table 1. The molecular model for the eukaryotic heat shock response proposed in [32].

Reaction Description

2 hsf � hsf2 Dimerization (1)

hsf + hsf2 � hsf3 Trimerization (2)

hsf3 + hse � hsf3: hse DNA binding (3)

hsf3: hse → hsf3: hse+ hsp hsp synthesis (4)

hsp+ hsf � hsp: hsf hsf sequestration (5)

hsp+ hsf2 → hsp: hsf + hsf Dimer dissipation (6)

hsp+ hsf3 → hsp: hsf +2 hsf Trimer dissipation (7)

hsp+ hsf3: hse → hsp: hsf +2 hsf + hse DNA unbinding (8)

hsp → ∅ hsp degradation (9)

prot → mfp Protein misfolding (10)

hsp+mfp � hsp:mfp mfp sequestration (11)

hsp:mfp → hsp+ prot Protein refolding (12)
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Various post-translational modifications can affect heat shock factors (phos-
phorylation, acetylation, sumoylation) and influence DNA-binding activity. The
heat shock response is attenuated as a result of the acetylation of heat shock fac-
tors (hsf’s). We introduce here the refinement of hsf molecules as shown in [19],
by considering the acetylation status of the hsf molecule at its K80 residue.

The species in the refined model are classified in two categories: atomic or
complex. Atomic species refer to self-contained species, autonomous in their
structure, see [12]. The structure of a complex however consists in at least two
atomic species bound together. All species to be refined, previously mentioned
above are atomic.

The refined model includes two types of heat shock factors: one to represent
the acetylation of the lysine residue (K80) of hsf’s and one for the non-acetylated
hsf’s. As a consequence, the hsf3: hse complex, for example, is to be refined into 4
subtypes conforming to the status of its every hsf molecule, considering the sym-
metry in the acetylation sites distribution: rhsf3: rhse, rhsf3(1): rhse, rhsf3(2): rhse,
rhsf3

(3): rhse. We denote by rhsf3
(i) : rhse the complex where i of the 3 hsf’s are

acetylated at site K80.
The refinement described above can be formalized through the species refine-

ment relation below (one row for each species of the basic model):

ρ ={(hse, rhse), (hsp, rhsp), (prot, rprot), (mfp, rmfp), (hsp:mfp, rhsp: rmfp),

(hsf, rhsf), (hsf, rhsf(1)),

(hsf2, rhsf2), (hsf2, rhsf2(1)), (hsf2, rhsf2(2)),

(hsf3, rhsf3), (hsf3, rhsf3(1)), (hsf3, rhsf3(2)), (hsf3, rhsf3(3)),

(hsp: hsf, hsp: rhsf), (hsp: hsf, rhsp: rhsf(1)),

(hsf3: hse, rhsf3: rhse), (hsf3: hse, rhsf3(1): rhse), (hsf3: hse, rhsf3(2): rhse),

(hsf3: hse, rhsf3(3): rhse)}.

The refined model in [19] comprises 20 reactants and 55 irreversible reac-
tions, while the initial model in [32] consists of 10 reactants and 17 irreversible
reactions. The numerical details of the refined model, set in accordance with
Theorem 1, can be found in [19]. Through refinement, the model preserves its
fit and validation, even though its size increases considerably, both in number
of reactants, and in number of reactions.

4.2 The ErbB Signalling Pathway

The ErbB signalling pathway is an evolutionary regulatory pathway, which plays
a key role in the regulation of diverse cellular processes (growth, differentiation,
motility, etc.) and whose anomalous behaviour is associated with cancer devel-
opment in humans. The ErbB signalling pathway involves a number of cellular
ligands, among which we are interested in this survey in EGF and HRG, and four
receptor tyrosine kinases: ErbB1, ErbB2, ErbB3, ErbB4.
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The Initial ErbB Signalling Pathway Model. The activation of the pathway
commences with the binding of the epidermal growth factor (EGF) to the epi-
dermal growth factor receptor EGFR (ErbB1), which brings about a dimerization
of the newly formed complex and subsequently a rapid auto-phosphorylation of
its tyrosine residues. The signal is propagated through two distinct pathways:
Shc-dependent and Shc-independent, both of which lead to the activation of
Ras-GTP. The Shc-dependent pathway is activated by the Shc protein, which
binds to the dimerized, phosphorylated, ligand-bound receptor and then sub-
sequently to Grb2. The Shc-independent pathway is in turn activated by the
direct binding with Grb2. Both the aforementioned pathways require Sos to be
recruited to the membrane. The pathway sustains an elaborate internalization
process along with the degradation of several complexes. However, the recruit-
ment of Sos impels an association with protein Ras which causes the activation
of Ras in a GTP-dependent manner. Subsequent to its formation and activation,
the inactivation of Ras-GTP is a consequence of the dissociation from the recep-
tor complex involving protein GAP. It is not clear so far however what is the
responsible kinase for the phosphorylation of Raf, but the model in [17] consid-
ers protein Raf to be phosphorylated by free Ras-GTP. Then in turn, subsequent
to its phosphorylation, Raf is able to phosphorylate MEK. Doubly phosphory-
lated MEK sucessively phosphorylates ERK, see [17]. The initial model in [17]
acknowledges the negative feedback loop from doubly phosporylated ERK to Sos,
promoting as a result, the unbinding between Grb2-Sos and the receptor com-
plex. Without any stimulation from EGF, the system is in a steady-state. The
initial model described in [17] distinguishes between two pools of dually phos-
phorylated ERK (ERK-PP), first of which is identified in the cytoplasm and the
latter in association to the internalized receptor. As described in [17], the model
consists of 13 chemical processes: the activation of EGFR , the recruitment of
the following proteins: Shc, Grb2 and Sos, the activation and the inactivation
of Ras, the activation of Raf, the MEK phosphorylation/dephosphorylation, the
dephosphorylation of ERK , the negative feedback from ERK to Sos, the inter-
nalization of receptor complexes and degradations reaction. A more elaborate
discussion about the model can be found in [17]. The model has 103 species and
148 reactions.

The Refined ErbB Signaling Pathway Model. This subsection briefly
describes the expansion of the EGFR signalling pathway model from [17] by
means of fit-preserving data refinement, taking into account four members of
the ErbB family: ErbB1 (EGFR), ErbB2 (HER2), ErbB3, ErbB4, and two ligands:
EGF and HRG. The resulting model has 421 species and 928 reactions.

We consider only the following two refinements of two atomic species:

EGFR → {ErbB1,ErbB2,ErbB3,ErbB4}; EGF → {EGF,HRG}.

Obviously, these refinements cascade to other refinements of complex species.
We discuss this in the following.
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Consider first the receptor activation reaction:

EGF+EGFR
k+
lb↔ EGF-EGFR . (1)

We refine it to include both ligands L1, L2 ∈ {EGF,HRG} and the receptors
R1, . . . , R4 ∈ {ErbB1,ErbB2,ErbB3,ErbB4} as follows:

Li + Rj

k+
i,j←−→

k−
i,j

Li−Rj , for all i = 1, 2, j = 1, 4.

We aim to set the kinetic rate constants of the refined model in concordance
to the sufficient conditions for fit-preserving refinement in Sect. 3. Let’s consider
the ligand-binding reaction (1); its corresponding kinetic rate constants are set
as follows: k−

i,j = k−
lb and k+

i,j = k+
lb , for all i = 1, 2, j = 1, 4.

Consider now the dimerization of the ligand-bound receptor reaction:

2EGF-EGFR
k+
d←→

k−
d

(EGF-EGFR)2 .

In the refined model we considered all possible combinations of ligand-bound
receptor monomers, found on the left-hand side of the dimerization reactions.
Since we have two types of ligands and four types of receptors, this gives us
eight types of combinations ligand-receptors. Accordingly, the dimerization of
the ligand-bound receptor is refined in the following manner:

Ci + Cj

k+
i,j,l←−→

k−
i,j,l

(Cl)2,

where Ci, Cj , Cl ∈ {EGF−ErbBp,HRG−ErbBq |p, q ∈ 1, 4}. Note that we only
consider the formation of homo-dimers in our considerations; hetero-dimers may
also be included, with the consequence of drastically increasing the model size.

According to Theorem 1, the kinetic rate constants of the refined dimerization
reaction are set as follows:

k+
i,j,l =

{
0, if l �= i; j
k+

d , otherwise.; k−
i,j,l =

{
0, if l �= i; j
k−
d

8 , otherwise.

Consider now the receptor production
kp−→ EGFR, refined as ki−→ Ri, i =

1, 4, where Ri ∈ {ErbB1, ErbB2, ErbB3, ErbB4}. The corresponding kinetic rate
constants are set so as to comply with the condition in Theorem 1: ki = kp

4 .
Finally, complex species of the initial model of [17] were refined taking into

account all combinations of receptor-ligand binding. Let’s take, for instance, a
species (EGF-EGFR*)2-AC, where AC represents a so-called chain of bound atomic
species (such as GAP-Grb2-Sos-Ras-GDP-Prot). According to our method, species
(EGF-EGFR*)2-AC was refined into the subspecies below:

(EGF-EGFR*)2-AC → {(Ci
∗)2 − AC}, 1 ≤ i ≤ 8,

with Ci ∈ {EGF−ErbBp,HRG−ErbBq |p, q = 1, 4} and with “∗” character
denoting the phosphorylation status the molecule.
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4.3 Intermediate Filaments Self-assembly

Intermediate filaments (IF), together with actin filaments and microtubules,
are the three types of protein filaments forming the cytoskeleton of eukaryotic
cells [35]. IF in particular have an important role in the structural reinforce-
ment of the cells and their organization into tissues, and in distributing the
tensile forces across cells within a tissue [27]. IF sub-units are α-helical rods
which assemble both laterally and using end-to-end interactions into rope-like
filaments [15]. The emerging filaments range in length from hundreds of nm to
micro-meter values, while their width (when in mature state) is preserved at
11 nm.

In the following we choose vimentin filaments as a representative for the
class of intermediate filaments proteins, and we analyze their in-vitro assembly
principles. Based on the recent studies in [6] and [28] we present both a well
validated molecular and computational model of the in vitro vimentin assembly
into filaments, as well as a refined model distinguishing between the different
lengths of the emerging filaments.

The in-vitro vimentin assembly process follows four stages. In the first stage,
monomers associate laterally into dimers and then into tetrameres (denoted as
T ). The tetramer sub-units are the first chemically stable compounds in the
IF assembly process, and, moreover, the assembly can be blocked/freezed before
continuing further. This is why when modelling the in-vitro IF assembly this first
stage is omitted, and the IF assembly is assumed to be starting from tetramer
level. The second assembly phase consist of a series of further lateral associ-
ations: two tetrameres merge into an octamer (O), two octamers merge into
a hexadecamer (H), and two hexadecamer merge into a unit length filament
(ULF). ULFs (denoted as U) are the basic units of the emerging filament struc-
tures. In the third assembly phase the filaments start forming and elongating,
by sub-sequent end-to-end associations of both ULFs and of shorter filaments.
In the final assembly phase the filaments undergo a radial compaction, from an
ULF diameter of about 15 nm to a filament diameter of about 11 nm [15]. Since
within this last assembly phase the ULF per filament ratio does not suffer any
further modifications, this stage does not bring any changes within the molecular
model itself.

Depending on the number n of constituent ULF’s within one filament, we can
differentiate between the emergent assemblies based on their “size” n. A common
problem in modelling self-assembly systems is dealing with the combinatorial
explosion of all possible emergent assemblies as possible different species. In
case of the IF model above, this translates into the problem of representing and
reasoning about all the emergent filaments of size 1, 2, 3, etc. In [6], the authors
introduce a well validated molecular and numerical model for in-vitro vimentin
assembly. Within this model, see Table 2 (a), the emerging filaments consisting
of at least two ULFs are treated in a homogenous manner, and are captured
within the same generic species F . With this assumption in place, the authors
succeed to validate several experimental data sets on the time dependent mean
length of the emerging vimentin IFs. The model however is not able to capture
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the time distribution of a particular length filament, say the time distribution
of filaments containing exactly 3 ULFs.

Using the refinement method described in Sect. 3 we can refine the generic
filament species F according to any desired (finite) resolution level. For example,
for introducing a model distinguishing between all filaments of lengths 1 to 5
ULFs, as well as filaments containing at least 6 ULFs, we can use the species
refinement relation below; the entire refined molecular model is described in
Table 2(b):

ρ = {(T, rT), (O, rO), (H, rH), (U, rF1), (F, rF2), (F, rF3), (F, rF4), (F, rF5), (F, rF≥6)}.

Moreover, by setting the kinetic rate constants of the refined model as in
Theorem 1, we can ensure that the newly generated refined model is preserving
its predictions for mean filament length. This implies that the refined models is
indeed also validating the experimental data sets used in [6]. The kinetic rate
constants of the refined model may be chosen as described in Table 2(b).

5 Software Support

We discuss in this section two software tools for implementing quantitative model
refinement in practice.

5.1 ModelRef

We have developed a software tool called ModelRef [22] implementing fit-
preserving model refinement for atomic-only species as described in Sect. 3. The

Table 2. The molecular models of the basic (a) and the refined (b) representations of
the IF assembly process.

(a) Basic model (b) Refined model

Reaction Rate constant Reaction Rate constant

T+T → O kt rT+ rT → rO kt
′ = kt

O+O → H ko rO+ rO → rH ko
′ = ko

H+H → U kh rH+ rH → rF1 kh
′ = kh

U + U → F ku rF1 + rF1 → rF2 k(1,1)
′ = ku

U + F → F kuf rF1 + rFi → rFi+1, 1 ≤ i ≤ 4 k(1,i)
′ = kuf

F+F → F kff rF1 + rFj → rF≥6, j ∈ {5, ≥ 6} k(1,j)
′ = kuf

rF2 + rF2 → rF4 k(2,2)
′ = kff

rFi + rFi → rF≥6, k(i,i)
′ = kff

rFi + rFi ,i ∈ {3, 4, 5, ≥ 6}
rF2 + rF3 → rF5 k(2,3)

′ = 2 kff

rFi + rFj → rF≥6, k(i,j)
′ = 2 kff

rFi + rFj, 2 ≤ i < j ≤ 5, i + j ≥ 6

rFi + rF≥6 → rF≥6 2 ≤ i ≤ 5 k(i,≥6)
′ = 2 kff
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user provides as the input a numerical model as well as the refinement criteria.
The numerical model in the input contains a set of chemical species, their initial
concentrations, set of chemical reactions and their reaction kinetic rates. In the
refinement criteria one indicates the correspondence between original and the
refined species.

ModelRef generates the refined model as follows:

– Every species from the original model that should be refined is substituted
with the corresponding set of the refinement species.

– Every reaction from the original model that includes species being refined
either as reactants or products is substituted with the set of reactions including
the respective refinement species. The resulting set of reactions and their
kinetic rates are calculated as defined in Sect. 3.

ModelRef handles models in both SBML and CPS file formats. The Sys-
tems Biology Markup Language (SBML) is one of the most wide-spread open
interchange formats for computer models of biological processes [18]. CPS is a
native file format of Complex Simulator Pathway (COPASI) [16] for storing and
exchanging biological models.

The refinement criteria should be provided in CSV (Comma Separated Val-
ues) table, where the first column contains names of the original biochemical
species, while the right column contains a set of species that should substi-
tute/refine the respective original species from the left column.

ModelRef is implemented as a Java library and it is deployed as a stand-
alone Java console application, as an Anduril [31] component and as a web-
based service. Anduril is an open source component-based workflow framework
for scientific data analysis developed at the Computational Systems Biology
Laboratory, University of Helsinki. Anduril provides and API that allows to
integrate rapidly various existing software tools and algorithms into a single
data analysis pipeline. An Anduril pipeline comprises a set of interconnected
executable programs (called components) with well-defined I/O ports, where an
output port of a component may be connected to the input ports of some number
of other components.

The web-service allows for a user to upload on our web-server a numerical
model in either SBML or CPS formats, the refinement criteria as CSV table,
and then, it sends back to the user the resulting refined model in either SBML
or CPS format.

Since ModelRef is implemented as a Java class library, its functionality can
be extended by other developers and it can be directly incorporated into other
Java programs. As an Anduril component, ModelRef can be easily incorporated
into data analysis pipelines.

5.2 StructRef

StructRef relies on the data refinement induced by an atomic refinement relation,
as described in Sect. 3.3. The software is thought of as an interactive tool allowing
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the modeler to specify the initial atomic refinement relation, but also to intervene
and alter intermediary results to better fit prior knowledge about the model that
is refined.

The software takes as input a model represented in the SBML format. Inter-
mediary results are saved as XML files. The final output, the structural refine-
ment of the input model, is represented as SBML, with the intermediary results
inserted as annotations, to allow for their reuse.

The software works as follows:

– Species are read from the input model and their composition is inferred from
their names. Currently, the software assumes that the atomic components of
a complex species are separated by colons, but this can easily be extended
in future versions. Moreover, at the end of this step, an XML is generated
with the composition information. The modeler can inspect this file and make
changes as needed.

– The (possibly updated) composition information is used for inferring the
names of all atomic species from the model. A template XML file is produced
for the atomic refinement relation. The template contains a trivial refinement,
namely the renaming of all atomic species by prepending “r” to their origi-
nal names. The modeler must edit this file in order to describe a nontrivial
refinement.

– The composition information and the atomic refinement relation are used for
generating the refinement of complex species, using the approach presented
in Sect. 3.3. The result is presented in XML format and contains the name
and composition information for each of the refined species. The modeler can
update this file to rename species, or to remove some of them, so as to match
prior knowledge about the system that is modeled (some of the automatically
generated combinations of refined atomic species may be impossible).

– The refinement of complex species is used to generate the refined reactions of
the model, as described in Sect. 3.1. Again, the modeler can alter the results
to remove some of the reactions.

– The refined model is generated as an SBML file, including all the intermediary
information that was generated by the software.

The software was implemented in Python and uses Qt4 for the graphical user
interface. It can be found at [36]

6 Quantitative Refinement in Other Formalisms

Quantitative refinement is by no mean restricted to the reaction-based and ODE-
based models. In this section we discuss the refinement in three other formalisms,
namely rule-based models, Petri net models and guarded command based mod-
els. In each part we briefly introduce the modeling in that specific framework
and we also give a short explanation on how to apply the refinement in each
formalisms. The structural part of the refinement has a different solution in
each approach, in some cases leading to a compact representation of the refined
models. For a more detailed discussion we refer to [21].
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6.1 Rule-Based Models Refinement

A model within a a rule-based modelling framework is described by the mole-
cules of interest, their components (i.e. a post-translational modification site)
and the states corresponding to each component. The interaction between the
components are captured through graph-rewriting rules, where a rule can refer
to either a certain type of reactions or a class of reactions. We refer to [8] for a
detailed presentation of this framework.

Fig. 1. A graphical representation of the species EGF-EGFR and of the rule showing
the dimerization of EGF-EGFR through a binding site. Note that the sites denoted by
letter P represent phosphorylation sites, while the other sites represent binding sites.

Rule-based languages are used to characterize the dynamics of the system
at hand. Rules produce reactants introducing classes of reactions, which express
classes of reactions describing specific interactions between atomic and/or com-
plex species. In practice, a rule specifies group rules, which characterize interac-
tions between species through regular expressions. The conversion from reactants
to products is enabled through a rate law.

A graphical representation of the dimerization of EGF-EGFR is in Fig. 1.
In case one would need to refine either of the species to include two types

of ligands or four types of receptors as discussed in Sect. 4.2, the only required
adjustment needed is adding a site for EGF (with two possible vlaues) and one
for EGFR (with four possible values). Note that the rule illustrated in Fig. 1
remains unchanged, in stark contrast with the combinatorial explosion discussed
in Sect. 4.2.

6.2 Refinement of Petri Net Models

The Petri nets formalism is used to represent systems with concurrency and
resource sharing, which makes it suitable for modeling biological systems. In
this formalism each species is represented by a place with as many tokens as
the number of instances of the species present in the system, and each reaction
by a transition whose pre- and post-places correspond to the species on the left
and the right hand side of the reaction, respectively, where arc multiplicities
represent the stoichiometric coefficients of species involved in the reaction. For
more information on modeling biological systems in the framework of Petri nets
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Fig. 2. Petri net representation of the initial HSR model.

we refer to [26]. A Petri net model of the heat shock response case study is
presented in Fig. 2.

Coloured Petri nets are an extension of Petri nets where places are assigned
data types called color sets, and each place may host tokens of different colors
(values in the place’s color set). Transitions can have additional constraints on
the colors of the tokens traversing them, in the form of guards, and arc multi-
plicities are replaced by expressions containing variables and/or values from the
color set of the place connected to the arc. For more information on modeling
with colored Petri nets, see [23].

Refinement of a model in the sense of Sect. 3 can be implemented in the
framework of Petri nets by creating a new model where each refined species is
represented as a place, and each refined reaction as a transition, which results in
a model explosion of the same magnitude as in the case of reaction-based models.
In the framework of colored Petri nets, the initial model can be transformed in
the refined model via coloring. All subspecies of a species may be modeled using
the same place as the parent species, having a color set with as many colors as
the desired number of subspecies. New reactions can be represented with the
same transition as the parent reaction, with possible constraints expressed via
transition guards. It can also happen that the coloring scheme chosen for the
refinement of species prompts to adding new transitions in the refined model to
account for some of the refined reaction, in case the modeler wants to avoid too
complex transition guards.

For the case study of the heat shock response, one coloring strategy is to
consider integer color sets with as many colors as the number of subspecies
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Fig. 3. Representation of the refined HSR model as a colored Petri net, using as few
colors as possible (Color figure online).

for the species refining to at least two subspecies. A possible resulting model
is depicted in Fig. 3. Compared to the network for the initial HSR model, this
refined version contains several additional transitions. They account for reactions
that have the same left hand side, but different right hand sides, e.g. a trimer
with one acetylated molecule can produce either a non-acetylated monomer and
a single-acetylated dimer, or an acetylated monomer and a non-acetylated dimer.
The same model could be implemented while preserving the network structure by
using variables on each adjacent arc and a guard on the trimerizationbw transition
that accounts for all valid variable bindings at once.

A different coloring strategy is to consider the color set of places represent-
ing complex species to be the cartesian product of the color sets of the places
representing the components of the complex. In this case, there is a distinction
between e.g. one-acetylated dimers, depending on which of the two composing
monomers is acetylated. This results in an adjustment of the kinetic constants of
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some reactions, but the resulting colored Petri net has exactly the same struc-
ture as the initial one. We refer to [14,21] for all details of this construction.
Note that both colored Petri net representations of the refinement are smaller
in size than the fully expanded model, showing that the framework of colored
Petri nets can be successfully used to obtain compact models upon refinement.

6.3 Guarded Command-Based Models Refinement

The guarded command-based models, inspired by the guarded command lan-
guages first introduced in [7], is a modelling framework to capture the dynamics
of alternative and repetitive constructs with a non-deterministic component in
which the enabled activity is not utterly dependent on the initial input.

Table 3. Basic guarded command-based model for intermediate filaments self-
assembly.

Guarded command

[r2]T ≥ 2 → T2 ∗ kt : T′ = T−2 ∧ O′ = O+1; (2)

[r3]O ≥ 2 → O2 ∗ ko : O′ = O−2 ∧ H′ = H+1; (3)

[r4]H ≥ 2 → H2 ∗ kh : H′ = H−2 ∧ U′ = U + 1; (4)

[r5]U ≥ 2 → U2 ∗ kh : U′ = U − 2 ∧ F′ = F+1; (5)

[r6]U ≥ 1 ∧ F ≥ 1 → U ∗ F ∗ kuf : U′ = U − 1 ∧ F′ = F−1 ∧ F′ = F+1 (6)

[r7]F ≥ 2 → F2 ∗ kff : F′ = F−2 ∧ F′ = F+1. (7)

A guarded command-based model comprises a set of variables and a set of
guarded commands. A guarded command consists of a guard, an update and a
corresponding rate to the guarded command. The guard is a Boolean predicate
over all the variables in the model and the update describes a transition which
the system can make if the guard is true. To obtain the guarded command
corresponding to a reaction of a reaction network we use the approach proposed
in [1], for example the guard corresponding to the reaction F+F → F of Table 2
is obtained as follows:

– the reaction can be enabled whenever there are at least two F in the system
to bind and form an F, therefore, we define the corresponding guard to be
“F ≥ 2”, i.e. the guarded command can be enabled whenever F ≥ 2;

– we define the rate corresponding to the guarded command to be “F2 ∗ kff”
which is in correspondence with the definition of a reaction rate of a mass-
action ODE-based model, see [25];

– we define the update corresponding to the guarded command to be “F′ =
F−2 ∧ F′ = F+1”, i.e. whenever the guard is enable two F are consumed and
one F is produced.
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Table 4. Refined guarded command-based model for intermediate filaments self-
assembly.

Guarded command

[r8] rT ≥ 2 → rT2 ∗ kt
′ : rT′ = rT−2 ∧ rO′ = rO+1; (8)

[r9] rO ≥ 2 → rO2 ∗ ko
′ : rO′ = rO−2 ∧ rH′ = rH+1; (9)

[r10] rH ≥ 2 → rH2 ∗ kh
′ : rH′ = rH−2 ∧ rF1

′ = rF1 +1; (10)

[r11] rF1 ≥ 2 → rF1
2 ∗ k(1,1)′ : rF1

′ = rF1 −2 ∧ rF2
′ = rF2 +1; (11)

for 1 ≤ i ≤ 4 :

[r12] rF1 ≥ 1 ∧ rFi ≥ 1∧ → rF1 ∗ rFi ∗ k(1,i)′ : rF1
′ = rF1 −1∧ (12)

rFi
′ = rFi −1 ∧ rFi+1

′ = rFi+1 +1;

for j ∈ {5, ≥ 6} :

[r13] rF1 ≥ 1 ∧ rFj ≥ 1∧ → rF1 ∗ rFj ∗ k(1,i)′ : rF1
′ = rF1 −1∧ (13)

rFj
′ = rFj −1 ∧ rF≥6

′ = rF≥6 +1;

[r14] rF2 ≥ 2 → rF2
2 ∗ k(2,2)′ : rF2

′ = rF2 −2 ∧ rF4
′ = rF4 +1; (14)

for i ∈ {3, 4, 5, ≥ 6} :

[r15] rFi ≥ 2 → rF1 ∗ rFj ∗ k(1,i)′ : rFi
′ = rFi −2 ∧ rF≥6

′ = rF≥6 +1; (15)

[r16] rF2 ≥ 1 ∧ rF3 ≥ 1∧ → rF2 ∗ rF3 ∗ k(2,3)′ : rF2
′ = rF2 −1∧ (16)

rF3
′ = rF3 −1 ∧ rF5

′ = rF5 +1;

for 2 ≤ i < j ≤ 5, i + j ≥ 6 :

[r17] rFi ≥ 1 ∧ rFj ≥ 1∧ → rFi ∗ rFj ∗ k(i,j)′ : rFi
′ = rFi −1∧ (17)

rFj
′ = rFj −1 ∧ rF≥6

′ = rF≥6 +1;

[r18] rFi ≥ 1 ∧ rF≥6 ≥ 1∧ → rFi ∗ rF≥6 ∗ k(i,≥6)
′ : rFi

′ = rFi −1∧ (18)

rF≥6
′ = rF≥6 −1 ∧ rF≥6

′ = rF≥6 +1.

The list of all guarded commands corresponding to the basic intermediate fila-
ments self-assembly is presented in Table 3.

Refinement in guarded command-based models is similar to the one of
reaction-based models. In this approach whenever there is a refined variable
in a guard we replace that guard with a set of guards considering to all possible
refinements whereas in the refinement of reaction networks we would replace each
reaction involving any refined reactant by the corresponding set of all possible
refined reactions, for more information we refer to [1].

The list of all guarded commands corresponding to the refined intermediate
filaments self-assembly is presented in Table 4.

7 Discussion

We discussed in this paper quantitative model refinement, an algorithmic app-
roach for building large biomodels in an iterative fashion, while ensuring that
the fit and the validation of the model is preserved throughout the construction.
This allows the computational modeler to avoid repeating parameter estimation
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in each step of the model construction, even as the model size increases in each
step; rather, the modeler may choose a setup that allows the model to preserve
its fit to existing data in each step. Quantitative refinement also allows the mod-
eler to deal with partial information about some of the parameters of the model,
including such numerical values of the parameters whenever available, checking
their consistency with the other parameters and with the data, and compensat-
ing for lack of information about parameters with an algorithmic solution. We
investigated the versatility of the fit-preserving refinement method with respect
to four broadly used frameworks: reaction models, rule-based models, Petri net
models, and guarded command-based models.

The computational advantages of the refinement-driven top-down approach
as opposed to the bottom-up approach based on collection of submodels is most
evident in the case study on the ErbB signaling pathway. For instance, the ErbbB
model of [3], consisting of 828 reactions and 499 reactants, was fit to experimental
data by running about 100 times annealing methods, over 24 hours on a cluster
consisting of 100 nodes. The refinement-driven approach starts from an initial
model of [17] consisting of 103 reactants and 148 reactions, and leading to a
refined model consisting of 421 reactants involved in 928 reactions; the refined
model has a good numerical behavior, avoiding any supplementary model fit.

An interesting challenge that remains open to investigate is the scalability of
the quantitative model refinement approach on larger case studies.

Acknowledgments. This work was partially supported by the Academy of Finland
under project 267915. Bogdan Iancu’s current affiliation is at Department of Mathe-
matics and Statistics, University of Turku, Finland.
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Abstract. The aim of this paper is to study the computational power
of P systems with one active membrane without polarizations. For P
systems with active membranes, it is known that computational com-
pleteness can be obtained with either of the following combinations of
features: (i) two polarizations, (ii) membrane creation and dissolution,
(iii) four membranes with three labels, membrane division and dissolu-
tion, (iv) seven membranes with two labels, membrane division and dis-
solution. Obviously, in polarizationless P systems with only one active
membrane only object evolution rules and send-out rules are possible.
We consider two variants here – external output and internal output –
and show how the choice of the output region influences the generative
power. Moreover, we illustrate the connection between (polarizationless)
P systems with one active membrane and catalytic P systems with one
catalyst in the skin region.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset
processing. It has been introduced by Gheorghe Păun in 1998, and since then it
has been an active research are, see [11] for the comprehensive bibliography and
[7,9] for a systematic survey. Membrane systems are also called P systems.

It has been shown in [4] (some results being improvements of the results from
[1,3]) that the following P systems with active membranes are computationally
complete:

(i) P systems with one membrane and two polarizations, as acceptors,
(ii) polarizationless P systems with membrane creation and dissolution,
(iii) polarizationless P systems starting with four membranes and three labels,
(iv) polarizationless P systems starting with seven membranes and two labels.

In this paper we investigate the family of P systems with one active mem-
brane without polarizations. Similar questions have been addressed in [2] for
non-cooperative transitional P systems without any additional features.

c© Springer International Publishing Switzerland 2015
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2 Definitions

We assume the reader to be familiar with the basic notions from formal language
theory, e.g., see [10], and for the area of P systems we refer to [6,7,9] as well as
to [11] for actual news.

2.1 Formal Language Prerequisites

The set of all positive integers is denoted by N1, and the set of all non-negative
integers by N. For a finite set V , the set of all strings over V is denoted by
V ∗. The concatenation operation for strings is denoted by • (which is only writ-
ten when necessary) and the empty string is denoted by λ. Any set L ⊆ V ∗

is called a (string) language. For a string w ∈ V ∗ and a symbol a ∈ V , the
number of occurrences of a in w is written as |w|a. The set of permutations of a
string w ∈ V ∗ is denoted by Perm(w) = {x ∈ V ∗ : |x|a = |w|a for all a ∈ V }. We
denote the set of all permutations of the strings in L by Perm(L), and we extend
this notation to families of languages. We use FIN , REG, LIN , CF , MON ,
RE to denote the families of finite, regular, linear, context-free, monotone, and
recursively enumerable languages, respectively. The family of languages gener-
ated by matrix grammars without appearance checking and with erasing rules
and the family of extended [tabled] interactionless L systems is denoted by MAT
and E[T ]0L, respectively. The family of sets of numbers generated by forbidden
random context multiset grammars is denoted by NfRC.

Throughout this paper we use the string notation to denote multisets,
although in membrane systems, the order in which symbols are written is irrele-
vant, unless we speak about the symbols sent to the environment. In particular,
speaking about the contents of some membrane, when we write an1

1 · · · anm
m (or

any permutation of it), we mean a multiset consisting of ni instances of symbol
ai, 1 ≤ i ≤ m.

2.2 P Systems with One (Active) Membrane

We present the definition of a P system with active membranes, simplified for
studying the generative power in case of systems with only one membrane, i.e.,
with the simplest membrane structure μ = [ ]

1
:

Π =
(
O, [ ]

1
, w1, R1, i0

)
, where

O is a finite set of objects,
w1 is the initial multiset in membrane region 1,
R1 is the set of rules associated to membrane 1,
i0 is the output region; i0 = 0 is assumed for languages.

The rules of a membrane system have the forms (a0) [ a → u ]
1

(evolution
rules, evolving an object), and (c0) [ a ]

1
→ [ ]

1
b (send-out rules, sending an

object out, possibly renaming it), where a, b ∈ O and u ∈ O∗.
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The rules are applied in the maximally parallel way: no further rule should
be applicable to the idle objects, except that rules of type (c0) may be applied
to at most one object in any step.

A catalytic P system (with one membrane) is a construct

Π =
(
O,C, [ ]1, w1, R1, i0

)
, where

O is a finite set of objects,
C is a special subset of O whose elements are called catalysts,

w1 is the initial multiset in membrane region 1,
R1 is the set of rules associated to membrane 1,
i0 is the output region; i0 = 0 is assumed for languages.

The rules in R are either of the form a → (b1, tar1) · · · (bk, tark) (non-
cooperative rules) with a and the bi, 1 ≤ i ≤ k, k ≥ 0, being from O \ C
and the tari ∈ {here, out} being the targets for the corresponding symbols bi,
or of the form ca → c (b1, tar1) · · · (bk, tark) (catalytic rules) with c ∈ C.

A configuration of a P system is a construct which contains the information
about the contents of the skin membrane as well as the sequence of objects sent
out. A sequence of transitions between the configurations is called a computation.
The computation halts when a configuration is reached such that no rules are
applicable. In case of external output (i0 = 0), as the result of a (halting)
computation we may consider the strings obtained by the sequence of objects
sent to the environment; we denote it by L (Π). Both in case of internal output
(i0 = 1) and in case of external output, we may consider as the result the vector
of multiplicities of objects in region i0, which we denote by Ps (Π), or the total
number of objects in region i0, which we denote by N (Π).

The family of P systems with one polarizationless active membrane is denoted
by OP1 (a0, c0). The class of sets of numbers/vectors/strings generated by a
family F of P system is denoted by NF , PsF and LF , respectively. We use
the superscript int or ext when speaking about internal and external output,
respectively, and we may omit superscript ext in the case of generating languages,
i.e., external output always has to be assumed for LF .

Moreover, we may use a subscript T to denote terminal filtering of the result;
in this case, a subset T ⊂ O is additionally specified for Π, and the objects
not belonging to T are not considered in the result. For example, the family
of sets of vectors of non-negative integers generated internally by P systems
with one polarizationless active membrane with terminal filtering is denoted by
Psint

T OP1 (a0, c0).

Example 1. To illustrate generation, consider the following P system:

Π =
(
O = {S, a, b, c, d, f}, [ ]

1
, w1 = S,R1, i0

)
,

R1 = { [ S → Sabcd ]1, [ S → f ]1,

[ a ]1 → [ ]1a, [ b ]1 → [ ]1b, [ c ]1 → [ ]1c
}

.

Object S produces objects a, b, c, d in arbitrary but equal amounts. Objects a,
b, c are sent out in arbitrary order. Hence, if i0 = 1 then N(Π) = N1 (i.e., the



54 A. Alhazov and R. Freund

set of all positive integers), and if i0 = 0 then L (Π) =
⋃

n≥0 Perm (anbncn) =
{w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}.

P systems can be also viewed as acceptors. In that case, an input subalphabet
Σ is additionally specified in the tuple defining P system before μ, and i0 = 1
is the input region. An input multiset over Σ is additionally placed inside the
membrane before the computation starts, and it is accepted if and only if the
computation halts; the result Psacc(Π) is the set of all accepted inputs, and the
family of vector sets accepted by P systems with one active membrane is denoted
by PsaccOP1 (a0, c0).

3 Comparison with a Transitional Model: Catalytic
P Systems with One Catalyst

The model of P systems with active membranes, for the case of one mem-
brane, can be compared with the following case of transitional P systems:
non-distributed P systems with one catalyst. Indeed, for each P system with
one active membrane, there exists a 1-catalytic non-distributed P system with
the same behavior, as non-cooperative rules work equivalently in both models:
[ A → u ]

h
is equivalent to A → u, and sending out corresponds to particular

rules with one catalyst, i.e., [ A ]h → [ ]ha corresponds with cA → c(a, out), or,
if without restricting generality we assume the set of symbols that may appear
inside the system to be disjoint from the set of symbols that may be sent to the
environment, simply with cA → c(a, here).

Notice that for P system with external output, we may ignore the objects
remaining inside the system when it halts (as explained in the next section),
while for P systems with internal output, we should ignore the objects sent
out. In this way, for the case of internal output, sending out corresponds to a
catalytic erasing, while for the case of external output sending out corresponds
to a catalytic renaming of a non-terminal symbol into a terminal symbol.

Hence, we can immediately conclude that

Xα
β OP1 (a0, c0) ⊆ XβOP1 (ncoo, cat1)

for X ∈ {N,Ps, L}, α ∈ {int, ext}, β ∈ {−, T}, where β = − stands for not
specifying a subscript.

One-catalytic P systems were investigated in [5], where some subclasses of
P systems with one catalyst are defined and certain results on their generative
power are presented. In particular, it was shown in [5] that

N−cOP1 (wsepcat1) = NREG and N−cOP1 (complcat1) ⊆ NfRC.

Clearly, the corresponding restrictions might also be considered for polariza-
tionless P systems with one active membrane, and such results can be claimed
as upper bounds for the corresponding restrictions, e.g.,

NOP1 (wsep (a0, c0)) = NREG,



Polarizationless P Systems with One Active Membrane 55

where the restriction of the weak separation can be reformulated for the model
with active membranes as follows: the set O of objects is divided into three
disjoint subsets O′, O′′ and O′′′, such that

– objects a ∈ O′ have no associated rules (they cannot evolve or be sent out, so
if they are produced, they remain idle inside the system),

– objects a ∈ O′′ have associated send-out rules, but no evolution rules,
– objects a ∈ O′′′ have associated evolution rules, but no send-out rules.

It is worth mentioning that the additional requirement from [5] that the
objects produced by a catalytic rule cannot undergo a non-cooperative rule is
automatically satisfied after translation into the active membrane case, so the
only restriction remaining in the case of weak separation is that a rule of type
(a0) and a rule of type (c0) are not allowed to compete for the same object.
This restriction means, for instance, that all objects that have associated send-
out rules cannot evolve inside the system, they simply wait there until they are
chosen to be sent out.

A different restriction considered in [5] is complete P systems (mentioned
above as complcat1). It can be reformulated in the model of polarizationless P
systems with active membranes as follows: there is no object having associated
rules of type (c0) and no rules of type (a0). This restriction means that no object
is allowed to be temporarily idle; if it is not sent out, then it either evolves
immediately, or remains idle throughout the computation. It follows that

NREG ⊆ NOP1 (compl (a0, c0)) ⊆ NfRC.

It is interesting to note that weak separation and completeness are, in some
sense, two opposite requirements. While the latter one requires that all objects
which can be sent out must evolve if they are not chosen to be sent out, the
first special case requires that no objects which can be sent out are allowed to
evolve. Of course, in the most general case there can be both kinds of objects
which can be sent out.

4 External Output

The first goal of this section is to present a reduction of any P system with one
active membrane without polarizations and external output to an equivalent
normal form. Then we will use this normal form to prove an upper bound result.
For this the normal form, without loss of generality we assume the output sym-
bols appearing in the environment to be disjoint from the symbols used inside
the skin membrane; in this case we write Π =

(
O, T, [ ]

1
, w1, R1, 1

)
with T ⊂ O

being the output alphabet:

Theorem 1. For any P system Π =
(
O, T, [ ]1, w1, R1, 1

)
with one active

membrane without polarizations and external output (where we assume the out-
put symbols appearing in the environment to be disjoint from the symbols used
inside the skin membrane) we can effectively construct an equivalent P system



56 A. Alhazov and R. Freund

Π ′ (O′, T, [ ]1, w
′
1 = S,R′

1, 1
)

with one active membrane without polarizations
and external output (where again the output symbols appearing in the environ-
ment are disjoint from the symbols used inside the skin membrane) in the normal
form fulfilling the following conditions:

1. The initial multiset in Π ′ is a single symbol S which does not appear on the
right side of any other rule in R′

1.
2. The only erasing rule allowed is � S → λ ]1 for the initial object S.
3. Every symbol in O′ appears on the left side of some rule in R′

1 and can be
reached from S by using the evolution rules in Π ′.

Proof. We approach this normal form in several stages, thereby constructing O′

and R′
1 step by step.

1. First, we remark that we can guarantee that in Π ′ no objects remain inside
the skin region when Π ′ halts. Indeed, let Oλ be the set of all objects that do
not have associated rules. Starting with R1 for R′

1, we now add the rule set
Rλ =

{
[ a → λ ]

1
| a ∈ Oλ

}
to R′

1, thus making sure that there are no objects
that can remain idle at the end of a halting computation. On the other hand,
adding the rules from Rλ does not affect the results obtained by the original
P system Π with external output, since preserving/erasing objects from Oλ

has no alternatives, and it does not affect the environment.
2. Second, starting with O′ = O, we can use a new symbol S /∈ O and add it

to O′ as the new initial multiset w′
1; moreover, we add RS =

{
[ S → w1 ]1

}

to R′
1.

3. Third, we eliminate all symbols which cannot be obtained by using evolutions
rules when starting with S: In fact, we start with the set M0 = {S} and
iteratively, for i ≥ 1, construct the sets

Mi := Mi−1 ∪ {X | X ∈ w for some w with

[ v ]
1

=⇒ [ w ]
1

and v ∈ Mi−1

}
,

where the derivation steps [ v ]1 =⇒ [ w ]1 use evolution rules from the
rule set R′

1 constructed so far. Obviously, these iterations end after at most
n := |O�T |+2 steps, in fact, as soon as Mi = Mi−1. Then we take O′ := Mn

and eliminate from R′
1 all rules containing a symbol from (O�T ) �Mn on

the left or on the right side. Hence, now O′ and R′
1 only contain symbols

which can be reached from S.
4. We now claim that we can eliminate the λ-rules [ a → λ ]

1
in the rule set

R′
1 constructed so far, eventually except for [ S → λ ]1. For this purpose,

we first compute the set of objects from which the empty multiset λ can
be obtained: We start with Mλ

0 =
{
a | [ a → λ ]

1
∈ R′

1

}
and iteratively, for

i ≥ 1, construct the sets

Mλ
i := Mλ

i−1 ∪ {
a | [ a → u ]

1
for some u ∈ M∗

i−1

}
.

Obviously, these iterations end after at most n := |O�T |+2 steps, in fact, as
soon as Mλ

i = Mλ
i−1. Then we take Mλ

n and replace each rule [ a → u ]1 by



Polarizationless P Systems with One Active Membrane 57

all possible rules [ a → u′ ]1 where the u′ are obtained from u by removing,
in all possible combinations, some objects from Mλ

n . This will again yield
an equivalent system, because instead of eliminating a symbol in the next
step we just do not produce it. Hence, we now can just eliminate the λ-rules
[ a → λ ]1 ∈ R′

1 for all a ∈ O� (T ∪ {S}) from ∈ R′
1 without affecting the

results, yet with one exception – if there is a rule [ a ]
1

→ [ ]
1
b ∈ R1 for

some b ∈ T , but no other rule for a except [ a → λ ]1, in which case only one
copy of a can be sent out to the environment, whereas all other copies of a
would have been eliminated by the rule [ a → λ ]

1
; to cope with this subtle

detail, we finally have to add the set of rules

Rt =
{
[ a → # ]

1
| [ a → λ ]

1
∈ R1,

[ a ]1 → [ ]1b ∈ R1 for some b ∈ T , and

[ a → λ ]1 is the only evolution rule for a in R1

}

∪ {
[ # → # ]1

}

to the rule set R′
1 constructed so far; # is a new symbol to be added to O′,

and if it appears in a configuration, the system will never halt and therefore
will not produce any result. The introduction of # is only enforced in case we
non-deterministically generate more than one copy of a symbol a for which
the only rules are the evolution rule [ a → λ ]1 and some send-out rules of
the form [ a ]1 → [ ]1b ∈ R1 for some b ∈ T , from which only one can be
used in one derivation step.

In that way, from the original P system Π we finally have obtained an equivalent
P system Π ′ fulfilling all normal form conditions. ��
Corollary 1. LOP1 (a0, c0) ⊆ MON .

Proof. Indeed, the total number of objects (inside and outside the membrane)
never decreases throughout the computation (except, possibly, for the empty
string, generated in one step), and the length of the result matches the total
number of objects when the system halts. ��

Obviously, similar results hold for the corresponding sets of (vectors of) num-
bers generated by OP1 (a0, c0) systems with external output:

Corollary 2. For any Y ∈ {N,Ps}, Y extOP1 (a0, c0) ⊆ Y MON .

We now proceed with a lower bound result.

Theorem 2. LOP1 (a0, c0) ⊇ REG • Perm (REG).

Proof. Consider an alphabet T and two arbitrary regular languages over T .
Then there exist reduced regular grammars G1 = (N1, T, P1, S1) and G2 =
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(N2, T, P2, S2) generating them, such that N1 ∩ N2 = ∅. We construct the fol-
lowing P system:

Π =
(
O = N1 ∪ N2 ∪ T ∪ T ′, [ ]

1
, w1 = S1, R1

)
,

T ′ = {a′ | a ∈ T} ,

R1 =
{
[ A → aB ]1 | (A → aB) ∈ P1

} ∪ {
[ A → S2 ]1 | (A → λ) ∈ P1

}

∪ {
[ A → a′B ]1 | (A → aB) ∈ P2

} ∪ {
[ A → λ ]1 | (A → λ) ∈ P2

}

∪ {
[ a′ → a′ ]

1
| a ∈ T

}

∪ {
[ a ]

1
→ [ ]

1
a, [ a′ ]

1
→ [ ]

1
a | a ∈ T

}
.

The P system constructed above generates L (G1) • L (G2), except that the
symbols generated by the second grammars are first produced in a primed form,
and may undergo trivial rewriting for an arbitrarily long time before they are sent
out, which ensures that after generating a string from L (G1), any permutation
of a string from L (G2) can be generated. ��

We have to mention that for the sets of (Parikh vectors of) natural numbers
generated by OP1 (a0, c0) systems, the preceding lower bound result does not
help at all, since obviously Ps (REG • Perm (REG)) = Ps (REG), i.e.,

Y (REG) ⊆ Y OP1 (a0, c0) , Y ∈ {
Next, P sext

}
.

We now present a few closure properties for the families Y OP1 (a0, c0), Y ∈
{L,Next, P sext}.

Theorem 3. For any Y ∈ {L,Next, P sext}, the families Y OP1 (a0, c0) are
closed under renaming morphisms.

Proof. The statement follows from applying the renaming morphism to the send-
out rules. ��
Theorem 4. For any Y ∈ {

L,Next, P sext, N int, P sint
}
, the families

Y OP1 (a0, c0) are closed under union.

Proof. The closure under union follows from adding a new axiom and produc-
tions for the non-deterministic choice between multiple axioms. ��

5 Internal Output

In this case the environment is no longer relevant: it does not matter which
symbol is written on the right side of a send-out rule. The object sent out no
longer affects the result, so sending out is equivalent to a sequential version of
erasing.

Of course, we can generate PsREG with rules of type (a0) corresponding to
the rules of a reduced regular grammar. Hence,

PsintOP1 (a0, c0) ⊇ PsREG.

Is it an open question whether non-semilinear number sets can be generated,
see also the partial results transferred from the one-catalytic model, recalled in
Sect. 3.
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6 P Systems with Internal Input

In this section we show that, not very surprisingly, for P systems with one
polarizationless active membrane, their accepting power is even smaller than
their generative power. More exactly, unless such a P system accepts all allowed
inputs, it only accepts specific finite sets. We start by establishing some useful
facts (we remind that we use ⊆ to denote the submultiset relation, ∪ to denote
the union of multisets, and \ to denote the difference of multisets).

Lemma 1. Let Π be an OP1 (a0, c0) system with alphabet O and let [ u ]
1

⇒
[ v ]1α be a derivation in Π, with α ∈ O ∪ {λ}. Then for every multiset u′ ⊆ u,
either [ u′ ]

1
is already a halting configuration, or there exist a multiset v′ ⊆ v

and a β ∈ O ∪ {λ} such that [ u′ ]
1

⇒ [ v′ ]
1
β in Π.

Proof. In a transition [ u ]1 ⇒ [ v ]1α, one of three possible cases happens for
every (copy of) object a in u:

– a is rewritten by some rule of Π into a (possibly empty) multiset γ, with γ
contributing to v;

– a is sent out by some rule of Π as α;
– a remains idle, contributing to v.

Note that v consists exactly of the resulting objects from the first case and
the objects of the third case. More precisely, let the union of multisets of the
right side rules for all copies of rewritten objects be vr, and let the multiset of
idle objects be vi; then, v = vr ∪ vi. By definition of the model, the second case
was applied to at most one (copy of) an object in u. Also by definition of the
model, for each object in the third case, there exist no rules to evolve it, except,
possibly, send-out rules, in which case α �= λ.

We recall that u′ may be obtained from u by erasing some (copies) of objects.
Fix some correspondence of (copies of) objects in u′ to objects in u, and consider
a transition from u′ by the same behavior of objects in u′ as of objects in u:

– rewritten objects will yield some submultiset v′
r of vr;

– β will be produced in the environment, with β = α or β = λ;
– idle objects will yield some submultiset v′

i of vi.

It is obvious that these rules are applicable, and that v′
r ∪v′

i ⊆ v. Maximality
also holds, except in one special situation: in case α �= λ, α was produced from a
(copy of) an object not in u′, and there exists at least one object b that was idle
in the transition [ u ]

1
⇒ [ v ]

1
α. In this situation, one such object b, instead

of staying idle, has to be sent out as β, and the resulting multiset in the skin is
v′ = v′

r ∪ v′
i \ b.

Therefore, [ u′ ]
1

⇒ [ v′ ]
1
β in Π if at least one (copy of) object from u′

falls into the first or the second case, and otherwise [ u′ ]1 is already a halting
configuration. ��
Lemma 2. If n ∈ N(Π), then also n′ ∈ N(Π) for any non-negative integer
n′ ≤ n.
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Proof. Let the alphabet of Π be O, let the initial contents of the skin membrane
of Π be w1, and let the input subalphabet of Π be Σ. By definition of acceptance,
a number n is accepted if and only if there exists a halting computation in Π
starting from configuration [ u ]1, for some u ∈ {w1} Σn.

Consider the “sub-input” of only n′ objects, i.e., u′ ∈ {w1} Σn′
such that

u′ ⊆ u. If [ u ]
1

is already halting, then so is [ u′ ]
1
, hence, the statement

of the lemma holds. Now we assume the contrary: [ u ]1 ⇒ [ v ]1α. By the
previous lemma, in one step, either the computation with u′ in the skin will
immediately halt (and the statement of the lemma again holds), or there is a
one-step transition [ u′ ]1 ⇒ [ v′ ]1β with v′ ⊆ v.

Iterating the application of the previous lemma, by induction, we conclude
that there exists a computation starting from [ u′ ]

1
that will halt in at most as

many steps as the halting computation starting from [ u ]1 that we considered.
Hence, n′ ∈ N(Π). ��

It follows that the accepted set of numbers is either N, or empty, or it contains
all integers less than or equal to the maximal accepted number, so accepting P
systems with one polarizationless active membrane cannot be computationally
complete, and P systems with one polarizationless active membrane are obvi-
ously weaker as acceptors than as generators:

NaccOP1 (a0, c0) ⊆ {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N} .

In the rest of the section we show, by all necessary examples, that this inclu-
sion is an equality:

Π∅ =
(
O = {a}, Σ = {a}, [ ]1, w1 = a,R1, i0 = 1

)
, where

R1 =
{
[ a → a ]1

}
.

ΠN =
(
O = {a}, Σ = {a}, [ ]

1
, w1 = λ,R1, i0 = 1

)
, where

R1 =
{
[ a → λ ]1

}
.

Πn =
(
O,Σ = {a0} , [ ]

1
, w1 = λ,R1, i0 = 1

)
, where

O = {ai | 0 ≤ i ≤ n} ,
R1 =

{
[ ai → ai+1 ]1, [ ai ]1 → [ ]1a0 | 0 ≤ i < n

} ∪ {
[ an → an ]1

}
.

Clearly, Π∅ accepts nothing, since with any input it starts with at least one
object, and then carries out an infinite computation. On the other end of the
spectrum, system ΠN accepts any input, with erasing it in one step and then
halting. Finally, we claim that system Πn accepts exactly the set {k | 0 ≤ k ≤ n}.
Indeed, any object increments its index every step, unless the object is sent out,
or the index reaches n (forcing an infinite computation). It is easy to see that at
most n input objects may be sent out in this way; the system with input (a0)

k

has a halting computation if and only if k ≤ n.
Overall, we have established the following results (with α ∈ {int, ext}):

REG • Perm (REG) ⊆ LOP1 (a0, c0) ⊆ MON,
PsREG ⊆ PsαOP1 (a0, c0) ,
NαOP1 (wsep (a0, c0)) = NREG ⊆ NαOP1 (compl (a0, c0)) ⊆ NfRC,
NaccOP1 (a0, c0) = {{k | 0 ≤ k ≤ n} | n ∈ N} ∪ {∅, N}.
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7 Conclusions

In this paper we have considered the family of languages generated by polar-
izationless P systems with one active membrane. A normal form was given for
the case of external output. It was then shown that the family of languages
generated by polarizationless P systems with one active membrane lies between
REG • Perm(REG) and MON , and that it is closed under union and renaming
morphisms. The exact characterization is an open question, but polarizationless
P systems with one active membrane can be simulated by (and are, therefore, at
most as powerful as) P systems with one catalyst in the skin membrane, transfer-
ring two results on the generative power of two restricted classes, independently
from the output region.

Then we also considered sets of vectors or numbers generated internally, as
well as sets of (vectors of) numbers accepted by polarizationless P systems with
one active membrane. Several questions about the families of these sets are still
open, too.

Another possible generalization to be considered is to allow rules of type
(b0) to bring objects from the environment into the skin region. Note that such
systems would still correspond to a subclass of 1-catalytic P systems, but some
definitions would have to be revised, as well as all related results.

We have proved that accepting P systems with one polarizationless active
membrane are not computationally complete, unlike those with two polariza-
tions or like those with membrane creation and dissolution, or with multiple
membranes and membrane dissolution.

The questions about the computational power of polarizationless P systems
with active membranes with 2 and 3 membranes in the initial configuration are
still open, as well as of polarizationless systems with less than 7 membranes and
two labels, or of all polarizationless systems with only one label.
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Abstract. We continue the line of research of deterministic parallel non-
cooperative multiset rewriting with control. We here generalize control,
i.e., rule applicability context conditions, from promoters and inhibitors,
which are checking presence or absence of certain objects up to some
bound, to regular and even stronger predicates, focusing on predicates
over the multiplicity of one symbol at a time.

1 Introduction

As shown in [18], non-cooperative P systems with atomic promoters have
PsET0L as lower bound and with atomic inhibitors even characterize PsET0L,
while when in addition using one catalyst, see [7,12], or else promoters or
inhibitors of weight 2, see [8], leads to the computational completeness of non-
cooperative P systems. A question about the power of deterministic systems
was posed in [10], inspired by the fact that all identical objects have the same
behavior in the same context. This question was answered in [2]: determinis-
tic non-cooperative P systems have weak power, namely, only accepting finite
number sets and their complements, even using generalized context conditions
(except for the sequential case, when they keep computational completeness).

Generalized context conditions for rule applicability are defined as a list of
pairs (pi, Fi), 1 ≤ i ≤ k, applicable to a rule if at least one condition applies,
in the following way: pi, called promoter, must be a submultiset of the current
configuration (or the contents of the current region), and none of the elements of
Fi, called inhibitors, is allowed to be a submultiset of the current configuration
(or the contents of the current region). A subsequent paper, [5], precisely char-
acterized the power of priorities alone, as well as established how much power of
promoters and inhibitors is actually needed to reach NFIN ∪coNFIN . Already
in [2] it has been shown that generalized context conditions are equivalent to
arbitrary predicates on boundings, i.e., all boolean combinations over conditions
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< m (and, hence, also ≥ m, > m, ≤ m, = m and �= m) for multiplicities of sym-
bols. In other words, generalized context conditions are able to check exactly
the multiplicities of symbols up to an arbitrary fixed bound m. In this paper we
consider stronger context conditions.

The model we study is very closely related to the model called conditional
grammars, see [9], where a context-free rule is applicable if the current sentential
form belongs to a specified language. The main differences are that here we
consider multisets instead of strings and that the computation is maximally
parallel and deterministic. Actually, since the scope of this paper is limited to
non-cooperative rules, maximal parallelism simply means that all objects that
can evolve must do so, and since we only focus on determinism, it follows that
all copies of the same object in a configuration have to evolve by the same rule.

This paper is a revised version of [3], with improved presentation and
extended with new results.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ.

In this paper we will not distinguish between a multiset, its string represen-
tation (having as many occurrences of every symbol as its multiplicity in the
multiset, the order in the string being irrelevant), and a vector of multiplicities
(assuming that the order of enumeration of symbols from V is fixed). By V ◦ we
denote the set of all multisets over V .

For further notions and concepts from formal language theory we refer the
reader to textbooks as [17], and for the area of P systems we refer to [14–16] as
well as to [19] for actual news.

2.1 Register Machines

Register machines are well-known universal devices for computing (generating
or accepting) sets of (vectors of) natural numbers.

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P )

where

– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions of M can be of the following forms:
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– p : (ADD(r), q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to
instruction q or s.

– p : (SUB(r), q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s
(zero-test case).

– lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed. M is called deterministic if the ADD-instructions all are of the
form p : (ADD (r) , q).

In the accepting case, a computation starts with the input of a k-vector of
natural numbers in its first k registers and by executing the first instruction of P
(labeled with l0); it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty at the end of the
computation.

2.2 P Systems

In this paper, we only consider membrane systems with the simplest membrane
structure μ = [ ]1, i.e., with even omitting μ, we consider a (cell-like) P system
as a construct

Π = (O,Σ,w1, R1)

where O is the alphabet of objects, Σ ⊆ O is the alphabet of input symbols, w1 the
multiset of objects present in the skin region at the beginning of a computation,
and R1 is a finite set of evolution rules, associated with the skin region.

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative.

3 Context Conditions

Let Π = (O,Σ,w1, R1) be a P system.
By a strong context in this paper we mean a language of multisets, i.e., a

subset of O◦. Let a ∈ O and u ∈ O◦, then a → u is a non-cooperative rule. The
rules are applied in the maximally parallel way, which in the case of our interest,
i.e., for deterministic non-cooperative P systems, correspond to replacing every
occurrence of each symbol a by the corresponding multiset u from the right side
of the applicable rule (if there is any; no competition between different rules can
happen due to determinism).

Now let w be a multiset in the skin region. Then rule a → u with a strong
context condition C ⊂ O◦ (written a → u|C) is applicable if and only if |w|a > 0
and w ∈ C. We especially consider the following variants:
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– +(s) = {w ∈ O◦ | |w|s > 0}: a singleton atomic promoter s ∈ O represents
the context condition;

– −(s) = {w ∈ O◦ | |w|s = 0}: a singleton atomic inhibitor s ∈ O represents the
complementary context condition;

– +(p) = {w ∈ O◦ | p ⊆ w}: a singleton promoter p ∈ O◦ of a higher weight
represents the context condition;

– −(q) = {w ∈ O◦ | q �⊆ w}: a singleton inhibitor q ∈ O◦ of a higher weight
corresponds to the complementary context condition;

– +(P ) =
⋃

p∈P +(p): a (finite) promoter-set P ⊂ O◦ is specified, i.e., at least
one promoter out of P must be satisfied;

– −(Q) =
⋂

q∈Q −(q): a (finite) inhibitor-set Q ⊂ O◦ corresponds to the com-
plementary context condition, i.e., any inhibitor from Q can forbid the rule
to be applied;

– +(P ) ∩ −(Q): a promoter-set P and an inhibitor-set Q together are called a
simple context condition, written (P,Q);

–
⋃

1≤i≤m (+ (Pi) ∩ − (Qi)): a finite union of simple context conditions is speci-
fied (these context conditions were considered in [2,5] and shown to be equiv-
alent to predicates on boundings1);

– {w ∈ O◦ | bk(w) ∈ M}: a bounding bk is an operation on a multiset, for any
symbol preserving its multiplicity up to k, or “cropping” it down to k other-
wise; a predicate on bounding can be specified by a finite set M of multisets
with multiplicities not exceeding k; it can express precisely all Boolean com-
binations of conditions |w|a < j, a ∈ O, 1 ≤ j ≤ k;

– ctxt(REG): a regular strong context condition can be specified by a regular
multiset language or as a Parikh image of a regular string language; e.g.,

Eq(a, b) = {w ∈ O◦ | |w|a = |w|b};

– ctxtk: if a strong context condition only depends on the multiplicities of k
symbols from O (and all other symbols do not affect the applicability), we
represent this property by a superscript k of ctxt; for instance, if we denote
the symbols mentioned above by S = {s1, · · · , sk}, then

ctxtk(REG) = {{u ∪ v | u ∈ L, v ∈ (O \ S)◦} | L ⊆ S◦, L ∈ PsREG} ;

hence Eq(a, b) ∈ ctxt2(REG); by ctxt(Eq) we denote being able to compare
the multiplicities of two symbols (for different pairs of symbols separately) for
being equal, together with the complementary condition;

– ctxt(REC): to stay within Turing computability of the resulting P systems,
in this paper we at most consider recursive context conditions, i.e., multiset
languages with decidable membership; for example, ctxt(CS) means that we
use Parikh images of context-sensitive languages;

1 The meaning of a promoter-set in [7] is different, but the results on the computational
power are equivalent up to the descriptional complexity parameters such as number
of promoters/inhibitors and their weights.
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– if a one-symbol strong context condition only depends on the multiplicity of
one symbol, it can be specified by a predicate over N; for example,

Sq(a) =
{
w ∈ O◦ | |w|a = k2, k ≥ 0

}
and

Sq′(a) =
{
w ∈ O◦ | |w|a = k2, k ≥ 1

}

are examples; hence, Sq, Sq′ ∈ ctxt1(CS) ⊆ ctxt1(REC); by ctxt(Sq) or
ctxt(Sq′) we denote being able to test the multiplicities (of different symbols
separately) for squares (including zero or not, respectively), together with the
complementary condition.

Remark 1. Take an arbitrary context condition Z ⊆ O◦. It is not difficult to
see that any rule a → u without a context condition can be replaced by two
rules a → u|Z and a → u| (O◦ \ Z), yielding an equivalent system preserving
determinism.

It was already mentioned that context conditions as considered in [2,5] are
equivalent to predicates on boundings. We would like to note that such checking
up to bounded multiplicities precisely corresponds to the predicates that can be
specified by first-order logic.

For the rest of the paper we need some additional definitions. Let R1 ∈ T1
◦,

R2 ∈ T2
◦ be multiset languages. The direct product of R1 and R2, denoted by

R1 × R2, is the multiset language {u ∪ v | u ∈ R1, v ∈ R2}. Equivalently, we
may say that R1 × R2 consists of all multisets w such that prT1(w) ∈ R1 and
prT2(w) ∈ R2, where prT is the projection on the subalphabet T (prT (a) = a
if a ∈ T and prT (a) = λ otherwise). A direct product of multiset languages is
similar to language concatenation or language shuffle in the string case, but there
is no linear order in multisets (for our purposes, the case of disjoint subalphabets
suffices).

We now can explain more formally what we mean when we say that a strong
condition only depends on multiplicities of k symbols: it is any multiset language
of the form L × (O \ S)◦, where L ⊆ S◦ and |S| = k. Although L × (O \ S)◦ is
itself a multiset language over O, not over S, we informally call it a condition
over k symbols, because w ∈ L × (O \ S)◦ if and only if prS(w) ∈ L.

Finally, we introduce a special class of regular multiset languages, let us call
them separated regular multiset languages, denoted by sepREG, which are finite
unions of direct products of unary regular multiset languages.

Remark 2. Let C be a separated regular multiset language over the alphabet
Σ = {ai | 1 ≤ i ≤ k}, i.e., a finite union of direct products of unary regular
multiset languages; let us write C as

C =
m⋃

s=1

U
(s)
1 × · · · × U

(s)
k .

The U
(s)
i , 1 ≤ i ≤ k, 1 ≤ s ≤ m, are regular unary languages over the symbol ai,

i.e., each of them is the union of a finite set over ai and a finite union of infinite
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sets of the form {a
n′′(i)(s)+m(i)(s)j
i | j ≥ 0}. As is well known, we can take the

least common multiple (lcm) M(i)(s) of the m(i)(s) and thus obtain each U
(s)
i

as the union of a finite set over ai and a finite union of infinite sets of the form
{a

n′(s)(i)+M(i)(s)j
i | j ≥ 0}. Now taking again the lcm M of all the M(i)(s), we

obtain a representation of the U
(s)
i , 1 ≤ i ≤ k, 1 ≤ s ≤ m, as the union of a

finite set over ai – with all elements therein < M – and a finite union of infinite
sets of the form {a

n(s)(i)+Mj
i | j ≥ 1} with 0 ≤ n(s)(i) < M .

4 Regular Context Conditions

As expected, computational completeness can easily be obtained with specific
regular context conditions.

Theorem 1. PsaDOP1

(
ncoo, ctxt2(REG)

)
=

PsaDOP1 (ncoo, ctxt(Eq)) = PsRE.

Proof. Consider an arbitrary register machine M = (m,B, l0, lh, P ) with m reg-
isters. For each register i, 1 ≤ i ≤ m, we represent its value by the difference of
the multiplicities of associated objects ai and bi. Hence, increment can be per-
formed by producing one copy of ai, decrement can be performed by producing
one copy of bi, and zero can be distinguished from non-zero by the following
regular conditions:

Zi = {w ∈ O◦ | |w|ai
= |w|bi} = Eq (ai, bi ), 1 ≤ i ≤ m;

Pi = {w ∈ O◦ | |w|ai
�= |w|bi} = O◦ \ Eq (ai, bi ), 1 ≤ i ≤ m.

We now construct the following P system:

Π = (O,Σ,w1, R1), where
O = Q ∪ {ai, bi | 1 ≤ i ≤ m},

Σ ⊆ {ai | 1 ≤ i ≤ m},

w1 = q0,

R1 = {q → aiq
′ | q : (ADD(i), q′) ∈ P}

∪ {q → biq
′|Pi, q → q′′|Zi | q : (SUB(i), q′, q′′) ∈ P}.

Using the regular context conditions Pi and Zi, the P system Π can simulate
the SUB-instructions on register i in an obvious way and thus simulate the
computations of the given register machine M . ��

A natural question arises – what can P systems do if each of their context
conditions only depends on the multiplicity of one symbol? We address this
important issue in the following subsection.
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4.1 One-Symbol Regular Context Conditions

It turns out that with regular context conditions over one symbol, P systems can
only accept subregular multiset languages, namely exactly the separated regular
multiset languages.

Theorem 2. PsaDOP1

(
ncoo, ctxt1(REG)

)
= sepREG.

Proof. We first show that every separated regular multiset language over an
alphabet Σ = {ai | 1 ≤ i ≤ k} can be accepted by a P system with one-symbol
regular context conditions in a deterministic way. For establishing this inclusion,
we first consider arbitrary unary regular multiset languages Ui over ai, 1 ≤ i ≤ k,
as well as the following P system.

Π = (O = Σ ∪ {pi | 1 ≤ i ≤ k + 1}, w1 = p1, R1),
R1 = {pi → pi+1|Ci, pi → pi|C ′

i | 1 ≤ i ≤ k},

Ci = Ui × (Σ \ {ai})◦
, C ′

i = Σ◦ \ Ci, 1 ≤ i ≤ k.

The work of Π is simple. We start with p1 and check if the multiplicity n(1) of
a1 is in C1 or not; in case a1

n(1) /∈ C1, we enter an infinite loop with the rule
p1 → p1|C ′

1, otherwise we proceed to p2 using the rule p1 → p2|C1. In general,
for each symbol ai with multiplicity n(i), we enter an infinite loop with the rule
pi → pi|C ′

i in case ai
n(i) /∈ Ci, whereas otherwise, in case ai

n(i) ∈ Ci, we proceed
to pi+1 using the rule pi → pi+1|Ci. After having checked ai

n(i) ∈ Ci successfully
for all i, 1 ≤ i ≤ k, the P system finally reaches pk+1 and halts. Hence, Π accepts
precisely the multiset language C = U1 × · · · × Uk.

It remains to show how an arbitrary finite union of such sets C can be
accepted in a deterministic way. Let

C =
m⋃

s=1

U
(s)
1 × · · · × U

(s)
k .

Instead of the objects pi we now use the control symbols p
(s)
i , 1 ≤ s ≤ m, 1 ≤

i ≤ k, where the s are the indices of the sets Cs = U
(s)
1 × · · · × U

(s)
k the given

separated regular multiset language consists of. Then R1 contains the following
rules:

R1 = {p
(s)
i → p

(s)
i+1|C(s)

i , p
(s)
i → p

(s+1)
1 |C ′(s)

i | 1 ≤ s ≤ m, 1 ≤ i ≤ k}
∪ {p

(m+1)
1 → p

(m+1)
1 }.

These rules now control the checking procedure as follows: for each s, s =
1, · · · ,m, sequentially we check whether the multiplicity ni of symbol ai is in
C

(s)
i and as before proceed to i+1 in the positive case, whereas in case of failure,

i.e., if ai
n(i) /∈ U

(s)
i , which means that the input cannot be in C

(s), instead of
entering an infinite loop we proceed to checking whether the input is in C

(s+1).
Only in the case we have not found any s such that the input is in C

(s), we
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obtain p(m+1) and thus enter an infinite loop with the rule p
(m+1)
1 → p

(m+1)
1 .

Hence, any separated regular multiset language can be accepted by a P system
with one-symbol regular context conditions in a deterministic way.

We now prove the other inclusion, i.e., for any arbitrary P system Π with
regular context conditions over one symbol and with the input subalphabet Σ
we effectively construct the separated regular multiset language over Σ accepted
by Π.

Consider the P system

Π = (O = Σ ∪ N,w1, R1).

According to Remark 2, any rule a → w|C in R1 with a regular context
condition C can be split into a finite number of rules of the form a → w|C ′

where C ′ either is a singleton set containing one unary multiset {bn} over some
b ∈ O or an infinite multiset over b of the form {bn+Mj | j ≥ 1} such that
0 ≤ n < M .

Now let M be this constant from Remark 2, computed from all the one-
symbol regular context conditions appearing in the rules of R1. We partition
the space O◦ of all possible multisets over O into 2M |O| disjoint classes, such
that each class is represented by the information about the multiplicities n(a)
of each symbol a ∈ O: either M ≤ n(a) < 2M , which then also represents all
multisets with multiplicities n(a) + jM , j ≥ 1, or 0 ≤ n(a) < M . Hence, each
class can thus be represented by some multiset over O where each symbol has
multiplicity less than 2M . In fact, in our derivation sequences we have to take
into account the multiplicities of the symbols in N as well as of the symbols in
the input alphabet Σ.

As inputs we only have to consider multisets with multiplicities n(a) of the
input symbols a obeying either the condition M ≤ n(a) < 2M , which then
also represent all inputs with multiplicities n(a) + jM , j ≥ 1, or the condition
0 ≤ n(a) < M . Hence, each class can thus be represented by some input over
Σ where each symbol has multiplicity less than 2M . In fact, in our derivation
sequences we never need to take into account multiplicities of symbols which
exceed 2M – if this happens after the application of a maximal multiset of
rules, then we reduce the corresponding numbers by multiples of M to again
obtain numbers in the range between M and 2M − 1 and proceed with this
reduced configuration. The reason why we can do this is simple - multiples of
M symbols again evolve into multiples of M symbols, hence, they would not
lead outside the corresponding class obtained after this reduction process. For
any such input as described above, we either reach a halting configuration or
else, according to the pigeon hole principle, we inevitably end up in an infinite
loop and never halt. Each of these accepted inputs describes a separated regular
multiset language C = U1 × · · · × Uk, where for every i, 1 ≤ i ≤ k, either
Ui = {ai

n} or Ui =
{
ai

n+Mj | j ≥ 1
}
. Therefore, the (finite) union of all these

accepted classes C is a separated regular multiset language, too. ��
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5 Stronger Context Conditions

We now consider one-symbol context conditions that are slightly stronger than
regular. It is expected that with recursively enumerable context conditions over
one symbol we get something like PsRE ∪ coPsRE, so we are interested in
intermediate cases. We look at ways of obtaining PsRE by encoding a number by
a multiplicity of one object, say, ai, in such a way that increment and decrement
are reasonably simple to be performed with non-removable objects.

We propose the following encoding: “ignoring the greatest square”, i.e., a
number t ≥ 0 is encoded by n = k2 + t where k > (t−1)/2. The latter inequality
is equivalent to t < 2k + 1, which is equivalent to k2 + t < (k + 1)2, so k is
the greatest square not exceeding n, hence, n − (

max
{
k | k2 ≤ n

})2 is indeed a
correct decoding of t.

In this way, a zero-test becomes a test whether the encoding number is a
perfect square. Increment is performed as increment of the encoding number,
followed by the addition of 2k + 1 if the next perfect square, i.e., (k + 1)2, has
been reached. On the other hand, a decrement can be done by adding 2k to
the encoding number. The value k can be stored as the multiplicity of another
non-removable object, say, bi, whose multiplicity is to be incremented each time
the encoding number is increased by 2k or by 2k + 1. Hence, while knowing n
is enough to be able to find t, to implement increment and decrement in a P
system, number t is represented by an

i bki .
Note that we start with one copy of ai and bi for every i, and these objects

are not erased until the end of a computation. While n = 1 and k = 1 encode
t = 0, there is no need to consider 0 in the testing for perfect squares, so we can
use Sq′ instead of Sq. On the other hand, for symbols q ∈ O which never appear
in the computation in more than one copy, Sq′(q) can also serve in the role of a
promoter q.

Putting all that together, with taking

Zi = {w ∈ O◦ | |w|ai
= k2, k ≥ 1} = Sq′ (ai) , Pi = O◦ \ Zi, 1 ≤ i ≤ m,

we construct the following deterministic accepting P system:

Π = (O,Σ,w1, R1), where
O = Q ∪ {ai, bi | 1 ≤ i ≤ m},

Σ ⊆ {ai | 1 ≤ i ≤ m},

w1 = q0a1b1 · · · ambm,

R1 =
{
q → aiq̃, q̃ → q′|Pi, q̃ → q̂|Zi, q̂ → aibiq

′, bi → aiaibi|Sq′ (q̂)

| q : (ADD(i), q′) ∈ P
}

∪ {
q → q′′|Zi, q → q̂|Pi, q̂ → biq

′, bi → aiaibi|Sq′ (q̂)

| q : (SUB(i), q′, q′′) ∈ P
}

∪ {ai → λ|Sq′ (qf ) , bi → λ|Sq′ (qf ) | 1 ≤ i ≤ m} ∪ {qf → λ}.
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The rules in the last line of the description of R1 are not needed for accep-
tance, but can be used in the case of computing functions to remove all objects
representing the contents of the decrementable registers when the simulated reg-
ister machine reaches the final state qf .

Yet there is a major drawback of this result established above in comparison
with the result from Theorem 1, as the input has to be encoded: given a number
ni for input register i, we have to compute the numbers ni + k2

i and ki such
that k2

i ≤ ni ≤ k2
i + 2ki. But this is an algorithm which is not difficult to be

implemented; also our context condition for testing a number to be a perfect
square does not require a difficult algorithm.

Hence, we have just shown the following result, where the subscript wa
instead of a in PswaDOP1 (ncoo, ctxt(Sq′)) indicates weak computational com-
pleteness as for having to encode the input:

Theorem 3. PswaDOP1

(
ncoo, ctxt1(CS)

)
=

PswaDOP1 (ncoo, ctxt(Sq′)) = PsRE.

We can strengthen the claim of Theorem 3 by showing strong computational
completeness, in the sense of deterministic acceptance. Yet the same construc-
tion as given above even works for computing functions: without restricting the
computing power of register machines, we assume that in the simulated register
machine, the output registers are never decremented. For the additional output
registers, we then simulate each increment instruction q : (ADD(i), q′) ∈ P on
the output register i by a single rule q → aiq

′. In this way, the output is produced
without encoding.

It remains to show that P systems with strong context conditions over one
symbol can simulate register machines where also the input is not encoded. We
use the following idea. To represent the input N of a register in the way the
P system constructed in the proof of Theorem 3 needs it, we first describe how
to get two numbers xN and yN such that N is a function of xN and yN , and,
moreover, by computing these two numbers from N , we get their representation
in the form we need them as for the P system constructed in Theorem 3.

First we explain the algorithm how to obtain xN and yN : Starting with
N represented by N copies of an object cN , the multiplicity of these input
objects is incremented until it becomes a perfect positive square (counting the
increments, thus finally obtaining xN ), and then incrementing it (again counting
the increments, thus finally obtaining yN ) until it again becomes a perfect square.
From these two numbers xN and yN we can regain N by the formula computed
in the following:

Given input N , the next positive perfect squares are k2
N = N +xN (xN ≥ 0)

and (kN + 1)2 = N + xN + yN , then yN = 2kN + 1, so kN = (yN − 1) /2,
and N = k2

N − xN = (yN − 1)2 /4 − xN . Of course, the function f (xN , yN ) =
(yN −1)2/4−xN decoding N from xN and yN can be implemented by a register
machine and simulated by a P system as described in Theorem 3. In the following
example we specify more formally the precomputing block mentioned above.



Bridging Deterministic P Systems and Conditional Grammars 73

Example 1. Encoding the input number N . Let the input N be given as a mul-
tiplicity of symbol ci, and we want to obtain values xN and yN described above
in auxiliary registers j and l, respectively, but represented already in the way we
need their contents xN and yN implemented with the corresponding number of
symbols aj and bj as well as al and bl. We also use an additional starting object
si and in sum the following rules:

si → ciaj s̃i|P ′
i , s̃i → s′|Pj , s̃i → ŝi|Zj , ŝi → ajbjs

′, bj → ajajbj |Sq′(ŝi),
si → citi|Z ′

i,

ti → cial t̃i|P ′
i , t̃i → t′i|Pl, t̃i → t̂i|Zl, t̂i → albkt

′, bk → alalbl|Sq′(t̂i),

ti → q
(i)
0 |Z ′

i, where
Z ′
i =

{
w ∈ O◦ | |w|ci = k2, k ≥ 1

}
= Sq′ (ci) , P ′

i = O◦ \ Z ′
i.

Essentially, the rules above are exactly like increment instructions from The-
orem 3, tracking how many times the multiplicity of the input object ci has to
be incremented to reach a positive perfect square and the next perfect square.

In the next phase of the encoding procedure, the P system should simu-
late a register machine which starts in state q

(i)
0 and computes the function

f (xN , yN ) = (yN − 1)2/4 − xN , given xN in register j and yN in register l,
producing the result (i.e., the value N of the input register i to be represented)
in register i, represented by symbols ai and bi and thus in a suitable way to be
the input for the P system constructed in Theorem3.

Theorem 4. PsaDOP1

(
ncoo, ctxt1(CS)

)
=

PsaDOP1 (ncoo, ctxt(Sq′)) = PsRE.

Proof. Clearly, any input vector can be processed accordingly in the way
described in Example 1, and then a simulation of the register machine on
these inputs as outlined in Theorem3 completes the explanation of the stated
result. ��

6 Bridging P Systems and Indian Parallel Grammars

Most of the upper bound results for deterministic controlled P systems heavily
rely on determinism. A closer look at the proofs reveals that it is not determinism
itself which is important, but rather the requirement that in any derivation, if
some object evolves, then also all identical objects evolve by means of the same
rule. Hence, we would like to consider relaxing determinism to this property.

A similar property has been considered in [13] already in 1980, for the
case of L systems, calling them 0LIP systems: like in Indian parallel gram-
mars, all identical symbols simultaneously evolve by the same rule, but like in
Lindenmayer systems, all symbols evolve in parallel. In the area of P systems,
such a requirement may be viewed as a special case of the label agreement fea-
ture (label selection, target selection, and target agreement have extensively been
studied, for example, see [4,6]).
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For non-cooperative P systems, we define the rule agreement derivation
mode (denoted by ra) as follows: the evolution is maximally parallel and non-
deterministic with the single restriction that in one derivation step, the same
rule must be used for all identical objects.

Obviously, deterministic controlled P systems are a subclass of controlled
P systems with rule agreement. With enough consideration, it should not be
difficult to see that such coordinated non-determinism does not increase the
power of controlled P systems, e.g., in case of Theorem 2, which also should stay
valid in this case, so PsaOP ra

1

(
ncoo, ctxt1(REG)

)
= sepREG. Similarly, the

accepting power with generalized context conditions also should not be increased,
remaining NFIN ∪ coNFIN . However, we now have enough non-determinism
to be able to consider the generative case, too.

Lemma 1. PsOP ra
1 (ncoo) ⊇ PsREG.

Proof. No context conditions are needed to generate a set from PsREG. More-
over, the rule agreement feature is not essential for this inclusion, as the con-
struction below does not rely on parallelism. Indeed, for an arbitrary reduced
regular grammar G = (N,T, P, S), consider the P system

Π = (O = N ∪ T,w1 = S,R1),
R1 = {A → aB | A → aB ∈ P} ∪ {A → λ | A → λ ∈ P},

which generates Ps (L (G)). ��
Using the rules A → (a, out) instead of the rules A → a we could even

generate the regular languages themselves in the usual way by concatenating the
symbols sent out to the environment into strings. However, the case of generating
languages is known to be complicated even in the weakest case, see [1]. We do
not go into these details here, and instead concentrate on generating vectors for
the rest of this section; we also do not use any other communication with the
environment, noticing that this does not influence the computational power of
non-cooperative systems.

The rule agreement feature is known to increase the generative power of non-
cooperative P systems: while it is folklore that PsOP (ncoo) = PsREG, with
the rule agreement feature the famous non-regular set of powers of two can be
generated already with two rules:

Π = (O = {a, b}, w1 = a,R1 = {a → aa, a → b}).

It is worth noting that already with R1 being a finite subset of
{
a → ak | k ≥ 0

} ∪ {a → b}
the entire class of languages generated by DTU0L systems is covered. Inspecting
more carefully the way P systems with rule agreement work, we realize a strong
connection with the [E]0LIP systems introduced in [13], but we cannot claim
equality since with rule agreement alone we are not able to synchronize for
different symbols when we stop evolving them and take the result.
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7 Conclusions

It is known that generalized context conditions are equivalent to predicates
on boundings, and that using them in deterministic maximally parallel non-
cooperative P systems still leaves their accepting power as low as NFIN ∪
coNFIN . We have shown that regular context conditions over two symbols yield
computational completeness of deterministic maximally parallel non-cooperative
P systems. We have characterized the power of P systems with regular context
conditions over one symbol by some restricted subclass of regular multiset lan-
guages. On the other hand, we have shown computational completeness using a
simple stronger one-symbol context condition, namely

Sq′(a) = {w ∈ O◦ | |w|a = k2, k ≥ 1}.

Finally, we have considered a relaxation of the determinism requirement to the
so-called rule agreement. The obtained P systems often have the same accept-
ing power as the deterministic ones, while their generative power is of separate
interest.

Some interesting questions remain open for future research:

– What kind of additional context conditions is necessary and sufficient for
generating some set of vectors that cannot be generated without context con-
ditions?

– What kind of additional context conditions is necessary and sufficient for
obtaining computational completeness of non-cooperative P systems with rule
agreement?
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Abstract. In this paper we consider stochastic spiking neural P sys-
tems, a class of distributed parallel neural-like computing models. We
translate a restricted variant of the stochastic spiking neural P systems
using uniform distribution into a network of timed automata, proving
that such a translation preserves faithfully their behaviours. This rela-
tionship allows the verification of several kinds of properties (both qual-
itative and quantitative) using the statistical model checking extension
of the complex software tool Uppaal .

1 Introduction

Membrane computing [13] is a known branch of natural computing that aims
to abstract computing ideas and formal models from the structure and func-
tioning of living cells, as well as from the organization of cells in tissues, organs
(brain included) or other higher order structures such as colonies of cells (e.g.,
of bacteria) [1]. A structure is represented by a set of regions, each delimited
by a surrounding membrane, and arranged in a tree or a graph form. Multi-
sets of objects are distributed inside these regions, and they can be modified
or moved between adjacent/connected compartments. Objects represent the for-
mal counterpart of the molecular species (spikes, ions, proteins, etc.) floating
inside cellular compartments, and are described by means of strings over a given
alphabet. Evolution rules represent the formal counterpart of chemical reactions,
and are given in the form of rewriting rules that operate on objects. The mod-
els considered, called membrane systems (P systems), are parallel, distributed
computing models, processing multisets of symbols in cell-like compartmental
architectures. These models have been applied to the description of biological
systems [10,11].

Spiking neural (SN) P systems represent a class of distributed parallel com-
puting models inspired from the way neurons communicate with each other by
means of electrical impulses (see Fig. 1), where there is a synapse between each
pair of connected neurons. Roughly, a spiking neural P system consists of a set
of neurons placed in the nodes of a directed graph, where neurons send signals
(spikes, denoted by the symbol a) along synapses (arcs of the graph). Stochastic
spiking neural P systems are obtained from spiking neural P systems by associ-
ating to each spiking rule a firing time that indicates how long an enabled rule
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 77–91, 2015.
DOI: 10.1007/978-3-319-28475-0 6
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waits before it is executed. Such firing times are random variables (abstractions
for the concept of chance) whose probability distribution functions have domain
contained in R

+.

Fig. 1. Communication between neurons

The presence of unreliable components in spiking neural P system can be
considered in many different aspects (e.g., in the form of a stochastic delays
of the spiking rules [8], or the stochastic loss of spikes [15]). The presence of
unreliable components pose an important constrains on the possible modelling
and verification of spiking neural P system. In this paper we provide a formally
correct algorithm for translating systems described in stochastic spiking neural
P systems of [8] into a class of timed safety automata. This connection allows
the verification of several kinds of properties, both qualitative and quantitative,
using the statistical model checking extension of the Uppaal software tool.

2 Stochastic Spiking Neural P Systems

Some notations and basic definitions are shortly presented.
The set of non-negative integers is denoted by N. Given a finite alphabet
V = {a1, . . . , an}, the free monoid generated by V under the operation of con-
catenation is denoted by V ∗. The elements of V ∗ are called strings, and the
empty string is denoted by λ. The set of all non-empty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead
of {a}∗ and {a}+, respectively.

A regular expression E over an alphabet V is defined as follows:

E = λ | a | (E)(E) | (E) ∪ (E) | (E)+,where a ∈ V.

E∗ = (E)+ ∪ {λ}. We associate a language L(E) to each expression E:

L(E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{λ} if E = λ;
{a} if E = a;
L(E1)L(E2) if E = (E1)(E2);
L(E1) ∪ L(E2) if E = (E1) ∪ (E2);
L((E1)+) if E = (E1)+.
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Some parentheses can be omitted when writing a regular expression. More
details can be found in [14].

We use a restricted version of the stochastic spiking neural P system pre-
sented in [8], considering only uniform distribution up to a given bound.

Definition 1. A stochastic spiking neural P system of degree m ≥ 1 is defined
by Π = (O, σ1, . . . , σm, syn, out), where:

• O = {a} is the singleton alphabet (a is called spike);
• σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,where :

(a) ni ≥ 0 is the initial number of spikes contained in σi;
(b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a;F (d), where E is a regular expression over a, and c ≥ 1,
and F is a probability distribution function with domain [0, d];

(2) as → λ;F (d), for s ≥ 1, with the restriction that for each rule E/ac →
a;F ′ of type (1) from Ri, we have as /∈ L(E), and F is a probability
distribution function with domain [0, d];

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × N with i �= j for each (i, j, r) ∈ syn,
1 ≤ i, j ≤ m (synapses between neurons);

• out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are called spiking rules, and are applied as follows: if the
neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule E/ac → a;F ′

can be applied. This means removing c spikes from neuron σi, and producing 1
spike. The rules of type (2) are called forgetting rules and are applied as follows:
if the neuron σi contains exactly s spikes, then the rule as → λ;F ′′ from Ri can
be used, meaning that s spikes are removed from neuron σi.

From the moment in which a rule is enabled up to the moment when the rule
fires, a random amount of time elapses, whose probability distribution is speci-
fied by a function F associated to the rule (different rules may have associated
different distributions). Once the rule fires, the update of the number of spikes
in the neuron, the emission of spikes and the update of spikes in the receiving
neurons are all simultaneous and instantaneous events. Multiple rules may be
simultaneously enabled in the same neuron. Whenever multiple enabled rules
in a neuron have the same random firing time, the order of firing is randomly
chosen, with a uniform probability distribution across the set of possible firing
orders.

The initial configuration of the system is C0 = {n1, . . . , nm}, where
n1, . . . , nm are the numbers of spikes present in each neuron. During the compu-
tation, a configuration C = {n′

1, . . . , n′
m} is described by the number of spikes

n′
i present in each neuron σi, for 1 ≤ i ≤ m. Using the rules described above,

we can define transitions among the configurations of a system. Notice that,
because of the way the firing of the rules has been defined, in general there is no
upper bound on how many rules fire for each transition. For two configurations
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C1, C2 of Π we denote by C1
rj→ C2 the effect of applying a rule rj of a neuron.

Also C1 ⇒ C2 denotes the fact that there is a direct transition from C1 to C2

in Π in which at most one rule was applied in each neuron, followed by moving
to the next time step. The reflexive and transitive closure of the relation ⇒ is
denoted by ⇒∗. Any sequence of transitions starting in the initial configuration
C0 is called a computation. A computation halts if it reaches a configuration Ci

where no rule can be used.

Example 1. In what follows we present a graphical form of stochastic spiking
neural P systems. Here we just introduce the example without emphasizing on
its behaviour (we will consider latter this aspect). In Fig. 2, each neuron is rep-
resented by an oval marked with a label and having inside both its current
number of spikes and its rules. The synapses linking the neurons are represented
by directed arrows, while a short directed arrow pointing to (from) the environ-
ment identifies the output (input) neuron. In the following example we consider
only an output neuron (and so the input synapse is not drawn).

1

a11

a+/a → a;F (2)

a+/a2 → a;F (1)

3

a

a+/a → a;F (1)

a3/a2 → a;F (3)
2

a+/a3 → a;F (1)

Fig. 2. A simple example of a stochastic SN P system

The system consists of three neurons labelled by 1, 2, 3 in which neuron 3 is the
output one. In an initial configuration C0, neurons 1 and 3 are ready to fire. The
spike of neuron 3 leaves it empty, and unable to spike again before receiving a
new spike. Neuron 2 cannot fire until it succeeds to collect exactly 3 spikes. The
computation continues until consuming all spikes from all neurons.

3 Networks of Timed Automata

Timed automata [2] extended with integer variables, structured data types, user
defined functions, broadcast, urgent channels and channel synchronization have
been used by several software tools for simulation and verification of various
systems with time.

Syntax. We assume a finite set of real-valued variables C ranged over by x, y
standing for clocks, a set of clock resets ranged by r, ri, and a finite alphabet Σ
ranged over by a, b standing for actions. A clock constraint g is a conjunctive
formula of constraints of the form x ∼ m or x − y ∼ m, for x, y ∈ C, ∼∈ {≤, <,
=, >,≥}, and m ∈ N. The set of clock constraints is denoted by B(C).
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Definition 2. A timed safety automaton A is a tuple 〈N,n0, E, I〉, where
• N is a finite set of nodes;
• n0 is the initial node;
• E ⊆ N × B(C) × Σ × 2C × N is the set of edges;
• I : N → B(C) assigns invariants to nodes.

n
g,a,r−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. Node invariants are

restricted to constraints of the form x ≤ m or x < m, where m ∈ N.

A simple example of a timed safety automaton is depicted in Fig. 3.

idle
y<=3

fire
y<=5

spike
y<=2

4<=y
timing

x:=0, y:=0

6<=y
finish
y:=0

x<=1
syn
x:=0

1<=y
y:=0

Fig. 3. Timed safety automata

A timed safety automata is a graph hav-
ing a finite set of nodes and a finite set of
labelled transitions, using real time clocks.
The clocks are initialized with zero when
the system starts, and then increased syn-
chronously with the same rate. The behav-
iour of the automaton is restricted by using
clock constraints, i.e. guards on transitions,
and node invariants (e.g., see Fig. 3). An
automaton is allowed to stay in a node as
long as the timing conditions of that node
are satisfied. A transition can be taken when
the transition guards are satisfied. When a
transition is taken, clocks may be reset to
zero.

Networks of Timed Automata. A network of
timed automata is the parallel composition
A1 | . . . | An of a set of timed automata

A1, . . . ,An combined into a single system using the CCS-like parallel composi-
tion operator and with all internal actions hidden. Synchronous communication
inside the network is by handshake synchronization of input and output actions.
In this case, the action alphabet Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for internal actions). A detailed
example is found in [12].

A network can perform both delay and action transitions. An action transi-
tion is enabled if the clocks and variables assignment satisfies all guards on the
corresponding edges. In synchronization transitions, the resets on the edge with
an output label are performed before the resets on the edge with an input label.
To model urgent synchronization transitions that have priority with respect to
the delay transitions, a notion of urgent channels is used. On urgent channels
it is not possible to delay an execution whenever such an execution is possible.
One-to-many synchronizations are possible using broadcast channels: an edge
with synchronization label a! emits a broadcast and any enabled edge with syn-
chronization label a? synchronizes with the emitting automata.
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Let u, v,. . . denote clock assignments mapping C to R+ of non-negative real
numbers. g |= u means that the clock values u satisfy the guard g. For d ∈ R+,
the clock assignment mapping all x ∈ C to u(x)+d is denoted by u+d. Also, for
r ⊆ C, the clock assignment mapping all clocks of r to 0 and agreeing with u for
the other clocks in C\r is denoted by [r → 0]u. Let ni stand for the ith element of
a node vector n, and n[n′

i/ni] for the vector n with ni being substituted with n′
i.

A network state is a pair 〈n, u〉, where n denotes a vector of current nodes of
the network (one for each automaton), and u is a clock assignment storing the
current values of all network clocks and integer variables.

Definition 3. The operational semantics of a timed automaton is a transition
system where states are pairs 〈n, u〉 and transitions are defined by the rules:

• 〈n, u〉 d−→ 〈n, u + d〉 if u ∈ I(n) and (u + d) ∈ I(n), where I(n) =
∧

I(ni);
• 〈n, u〉 τ−→ 〈n[n′

i/ni], u′〉 if ni
g,τ,r−−−→ n′

i, g |= u, u′ =[r → 0]u and u′ ∈I(n[n′
i/ni]);

• 〈n, u〉 τ−→ 〈n[n′
i/ni][n′

j/nj ], u′〉 if there exist i �= j such that

1. ni
gi,a?,ri−−−−−→ n′

i, nj
gj ,a!,rj−−−−−→ n′

j, gi ∧ gj |= u,
2. u′ = [ri → 0]([rj → 0]u) and u′ ∈ I(n[n′

i/ni][n′
j/nj ]).

4 Relating Stochastic SN P Systems to Timed Automata

In this section we present an algorithmic translation of stochastic spiking neural
P systems into timed safety automata, and prove that such a timed safety
automata has a bisimilar behaviour with the initial stochastic spiking neural
P system. This allows the use of existing tools such as Uppaal for the verifica-
tion of complex systems of neurons.

Building a Timed Safety Automaton for each Neuron: Given a neuron σi =
(ni, Ri) of a stochastic spiking neural P system Π, we associate to it several
timed safety automata.

– For each rule rij : E/ac → a;F (d) ∈ Ri we associate an automaton Aij =
〈Ni, nij , Eij , Iij〉, where the components are as follows:

• Ni = {n ij, n ij fired}
The node n ij denotes that in neuron i exists a rule rij , while the node
n ij fired illustrates that the neuron i fired the rule rij .

• I(n ij) = {x <= d}, I(n ij fired) = {x <= 0}
The nodes n ij and n ij fired should be exited before a maximum of d
and 0, respectively, units of time have elapsed.

• Eij = {nij , E, r[i][j]?, {ni = ni − c, x = 0}, nij fired}
The transition {nij , E, r[i][j]?, {ni = ni − c, x = 0}, nijc} illustrates the
fact that when a rule rij is executed in neuron i (denoted by the synchro-
nization on urgent channel r[i][j]? and the fulfilment of expression E),
then c spikes are removed from nij and the local clock x is reset to 0 in
order to model the delay according to the distribution F (d). Using urgent
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channels illustrates the fact that from all rules of a neuron one will be
selected nondeterministically.
To simulate the continuation of the rule we have three cases:
(1) Eij = Eij ∪ {nij fired, , syn[i][1]?, , nij}

The transition {nij fired, , syn[i][1]?, , nij} illustrates the fact that the
spike created by rule rij is sent on all outgoing synapses (illustrated by
the broadcast channel syn[i][1]). Graphically the obtain automaton
can be represented as in Fig. 4.

Fig. 4. An automaton associated to a rule rij : E/ac → a; F (d)

(2) Eij = Eij ∪ {nij fired, , , , nij}
This case is similar with the previous case, except that there is no
outgoing synapse (illustrated by the missing of the broadcast channel
syn[i][1]) as illustrated in Fig. 5.

Fig. 5. An automaton associated to a rule rij : E/ac → a; F (d)

(3) Eij = Eij ∪ {nij fired, , output = output + 1, , nij}
This case is similar with the case (1), except that there is no outgoing
synapse (illustrated by the missing of the broadcast channel syn[i][1])
but the current neuron is the output neuron (illustrated by the update
output = output + 1). Graphically this case can be represented as in
Fig. 6.
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Fig. 6. A transition associated to a rule rij : E/ac → ap; d

– for each rule rij : as → λ we associate an automaton Aij = 〈Ni, nij , Eij , Iij〉,
where the components are as follows:

• Ni = {n ij, n ij fired}
The node n ij denotes that in neuron i exists a rule rij , while the node
n ij fired illustrates that the neuron i fired the rule rij .

• I(n ij) = {x <= d}
The node n ij should be exited before a maximum of d units of time have
elapsed.

• Eij = {nij , ni == s, r[i][j]?, {ni = ni − s, x = 0}, nij fired}
∪ {nij fired, , , , nij}

The transition {nij , ni == s, r[i][j]?, {ni = ni − s, x = 0}, nij fired}
describes that s spikes are removed from ni, if ni contains exactly s spikes,
and the local clock x is reset to 0 whenever a forgetting rule rij is executed
in neuron i (denoted by the synchronization on urgent channel r[i][j]?).
The transition {nij fired, , , , nij} illustrates that in the next step the
neuron will be able to fire again. Graphically the automaton is represented
in Fig. 7.

Fig. 7. A transition associated to a rule rj : as → λ

– For each neuron ni we associate an automaton Ai = 〈Ni, ni, Ei, Ii〉, where
Ni = {ni}, Ei = ∅, Ii = ∅. The components Ni, Ei and Ii are updated
depending on the structure of σi and the incoming/outgoing synapses:

• for each incoming synapse (z, i) we have:
∗ Ei = Ei ∪ {ni, , syn[z][pzi]!, ni = ni + pzi, ni};

If on synapse (z, i) are received pzi spikes on the broadcast channel
syn, then the number of spikes from neuron ni is incremented with
pzi. Graphically this transition can be represented as in Fig. 8.
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Fig. 8. A transition associated to an incoming synapse (z, i, wzi)

• for each rule rij ∈ Ri we have:
∗ Ei = Ei ∪ {ni, , r[i][j]!, , ni};

This transition signifies the fact that a rule rij of neuron ni will be
executed if it synchronizes on the urgent channel r[i][j]. Graphically
this transition can be represented as in Fig. 9.

Fig. 9. An automaton associated to a rule rij

Building a timed automaton for each neuron leads to the next result about
the equivalence between a stochastic spiking neural P systems Π with the initial
configuration C0 and its corresponding timed safety automaton AΠ in the initial
state 〈nC0 , uC0〉 (i.e., (AΠ , 〈nC0 , uC0〉). Their transition systems differ not only
in transitions, but also in states. Thus, we adapt the notion of bisimilarity.

Definition 4. A symmetric relation ∼ over stochastic spiking neural P sys-
tems and the corresponding timed safety automata, is a bisimulation if whenever
(C, (AΠ , 〈nC , uC〉)) ∈∼:

– if C
rj→c C ′, then 〈nC , uC〉 τ→ 〈nC′ , uC′〉 and (C ′, (AΠ , 〈nC′ , uC′〉)) ∈∼ for

some C ′.
– if C

rj→p C ′, then 〈nC , uC〉 τ→ 〈nC′ , uC′〉 and (C ′, (AΠ , 〈nC′ , uC′〉)) ∈∼ for
some C ′.

– if C
d� C ′, then 〈nC , uC〉 d−→ 〈nC′ , uC′〉 and (C ′, (AΠ , 〈nC′ , uC′〉)) ∈∼ for

some C ′, where uC′ = uC + d.

Having defined bisimulation, we can state our main theorem as follows.

Theorem 1. Given a stochastic spiking neural P system Π with initial configu-
ration C0, there exists a timed safety automaton AΠ with a bisimilar behaviour.
Formally, C0 ∼ (AΠ , 〈nC0 , uC0〉).
Proof (Sketch). The construction of the timed safety automaton simulating a
given stochastic spiking neural P system is presented above.

A bisimilar behaviour is given by:
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• when execution starts, the global clock of the stochastic spiking neural P
system and the local clocks of the corresponding timed automata are set to 0;

• the application of a rule in a neuron is matched by two τ edges obtained by
translation (a τ edge corresponds to the consumption/production of spikes);

• the passage of time is similar in both formalisms: in stochastic spiking neural P
system the global clock is used to decrement by d all timers in the configuration
when no rule is applicable, while in the timed automata all local clocks are
decremented synchronously with the same value d when no edge can be taken.

Thus, the size of a timed safety automata AΠ is polynomial with respect to the
size of a stochastic spiking neural P system Π, and the state spaces have the
same number of states.

Reachability Analysis. One of the most useful question to ask about a timed
automaton is the reachability of a given set of final states. Such final states may
be used to characterize safety properties of a system.

Definition 5. We write 〈n, u〉 −→ 〈n′, u′〉 whenever 〈n, u〉 σ−→ 〈n′, u′〉 for σ ∈
Σ ∪ R+. For an automaton with initial state 〈n0, u0〉, 〈n, u〉 is reachable if and
only if 〈n0, u0〉 →∗ 〈n, u〉. More generally, given a constraint φ ∈ B(C) if 〈n, u〉
is reachable for some u satisfying φ then a state 〈n, φ〉 is reachable.

Invariant properties can be specified using clock constraints in combination
with local properties on nodes. The reachability problem is decidable [7].

The reachability problem can be also defined for stochastic SN P systems.

Definition 6. We write C −→ C ′ if C
rj→c C ′ or C

rj→p C ′ or C
d� C ′. Starting

from a configuration C0, a configuration C1 is reachable if and only if C0 →∗ C1.

The following result is a consequence of Theorem 1.

Corollary 1. For a stochastic spiking neural P system, the reachability problem
is decidable.

Bisimulation. Two timed automata are defined to be timed bisimilar in [7] if
and only if they perform the same action transitions and reach bisimilar states.

Definition 7. A symmetric relation R over the timed automata and the alpha-
bet Σ ∪ R+, is a bisimulation if:

– for all (s1, s2) ∈ R, if s1
σ−→ s′

1 for σ ∈ Σ ∪ R+ and s′
1, then s2

σ−→ s′
2 and

(s′
1, s

′
2) ∈ R for some s′

2.

Proposition 1. [9] Timed bisimulation is decidable.

In a similar way we define the bisimulation over configurations of stochastic
spiking neural P systems.

Definition 8. A symmetric relation R over configurations of stochastic spiking
neural P systems, is a bisimulation if:
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– for all (C1, C2) ∈ R, if C1
rj→c C ′

1 for some C ′
1, then C2

rj→c C ′
2 and (C ′

1, C
′
2) ∈

R for some C ′
2.

– for all (C1, C2) ∈ R, if C1
rj→p C ′

1 for some C ′
1, then C2

rj→p C ′
2 and (C ′

1, C
′
2) ∈

R for some C ′
2.

– for all (C1, C2) ∈ R, if C1
t� C ′

1 for t ∈ N and some C ′
1, then C2

t� C ′
2 and

(C ′
1, C

′
2) ∈ R for some C ′

2.

The following result is a consequence of Theorem 1.

Corollary 2. For two configurations of stochastic spiking neural P systems,
timed bisimulation is decidable.

5 Verification of Stochastic Spiking Neural P Systems

In this section we present the automated verification of the stochastic spiking
neural P system by using the software tool Uppaal (http://www.uppaal.org/).
Such a verification is possible due to the translation of stochastic spiking neural
P systems into timed safety automata presented in the previous section.

We start from the stochastic spiking neural P system described in Example 1,
and translate it into the timed safety automata described in Fig. 10.

Fig. 10. A simple example modelled in Uppaal

Uppaal allows the automated verification of several properties involving sev-
eral thousands of possible states, very difficult to be validated by any experi-
mental effort. In this way we show how it is possible to prove/verify certain

http://www.uppaal.org/
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complex properties of complex biological systems modelled by stochastic spiking
neural P systems. This can be done without the high expenses required by the
experimental work in laboratories leading sometimes to wrong conclusions.

The model checking approach uses various techniques to automatically and
efficiently check a given system against specified formulas. The formulas can be of
two types path formulae (quantify over paths or traces of the model) and state
formulae (individual states). Path formulae can be classified into reachability
(E 〈 〉 φ), safety (A [ ] φ and E [ ] φ) and liveness (A 〈 〉 φ and φ � ψ), where
φ and ψ are boolean expressions over predicates on nodes and integer variables.

Reachability properties are used to check whether there exist a path starting
at an initial state, such that φ is eventually satisfied along that path. Safety
properties are used to verify that something bad will never happen, while liveness
properties check whether the system always progresses.

We present various properties that could be analyzed and verified for the
running example. We have used an Intel PC with 8 GB memory, 2.50 GHz ×
4 CPU and 64-bit Ubuntu 14.04 LTS to run the experiments. The results are
presented for each analyzed property.

Example 2. Using reachability and safety properties, and some given initial val-
ues we performed some verifications in Uppaal for the system presented in
Example 1. The system on which we performed the verification was composed
out of three neurons and six automata, by using the declarations:

const int N = 2; //Number of synapses
typedef int[0, N − 1] id s; //The id s defines a vector of N integer numbers.
int n1 = 11; //Number of spikes in neuron 1
int n2 = 0; //Number of spikes in neuron 2
int n3 = 1; //Number of spikes in neuron 3

where “//text” represents a comment.
Since the neurons nondeterministically choose which rule to apply, the num-

ber of possible configurations of this system is high. The complexity of such
systems increases even more when additional neurons and synapses are used,
and that is why we use the model checker of Uppaal for verification.

• E <> n1 == 2 and n2 == 1 and n3 == 1 and output == 2
Starting from the initial configuration, Uppaal can be used to check if cer-
tain amounts of spikes can be obtain in the system during its evolutions. The
result is shown in Fig. 11.

Fig. 11. Verification of reachability of a given configuration

If our constructed systems is correct, we should not be able to reach configu-
rations in which the amount of certain spikes does not respect the evolution
of the model. Considering such an impossible to reach configuration: n1 == 2
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and n2 == 0 and n3 == 1 and output == 4 we obtain, as expected, a
negative response as shown in Fig. 12.

Fig. 12. Verification of reachability for a given configuration

• A <> output == i, for i ∈ {1, 2, 3, 4, 5}
Starting from the initial configuration, Uppaal can be used to check if certain
amounts of spikes can be obtain as the output of the system. In this case we
check which can be the output of the system and, depending on the applied
rules, the output can be different. The results are shown in Fig. 13.

Fig. 13. Verification that always its output is between 1 and 4

• A[ ] not deadlock
A deadlock is a state in which no further evolution is possible. The existence
of the deadlock means that the systems stops after some steps. For the above
system, the result of the deadlock verification is depicted in Fig. 14.

Fig. 14. Verification of deadlock
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• Pr[# <= 100](<> output == 4) Estimates the probability of the output to
be equal to 4 within 100 model time steps. The result of the verification is
depicted in Fig. 15.

Fig. 15. Probability of reaching output == 4 in less than 100 steps

The tool can produce a number of histograms over model time, like proba-
bility density distribution (Fig. 16) that is useful for comparison of various
distributions.

Fig. 16. Probability density distribution

6 Conclusion

Over the years we provided several connections between membrane systems and
Petri nets for simulation and automated verification of the properties of mem-
brane systems: enhanced mobile membranes [3,4] are verified in [5], while mobile
membrane with delays are verified in [6].
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In this paper we provide a formally correct algorithm for translating stochas-
tic spiking neural P systems into a network of timed automata, and so suitable to
be verified by using Uppaal . This allows the verification of several kinds of prop-
erties, both qualitative and quantitative, involving also the Uppaal statistical
model checking. This approach could be related to a previous attempt of mod-
elling complex neural systems by using stochastic spiking neural P systems [8].
Due to the large number of possible reachable configurations of such a neural
system, it makes sense to use various model checking capabilities of a com-
plex software tool as Uppaal to verify several properties: reachability of desired
configurations, the fact that the system does not stop, whether the amount of
resources is constant and which is the probability of some events happening.
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References

1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.:
Molecular Biology of the Cell, 6th edn. Garland Science, New York (2014)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

3. Aman, B., Ciobanu, G.: Describing the immune system using enhanced mobile
membranes. Electron. Notes Theor. Comput. Sci. 194, 5–18 (2008)

4. Aman, B., Ciobanu, G.: Simple, enhanced and mutual mobile membranes. In: Pri-
ami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biol-
ogy XI. LNCS, vol. 5750, pp. 26–44. Springer, Heidelberg (2009)

5. Aman, B., Ciobanu, G.: Properties of enhanced mobile membranes via coloured
Petri nets. Inf. Process. Lett. 112, 243–248 (2012)

6. Aman, B., Ciobanu, G.: Verification of membrane systems with delays via Petri
nets with delays. Theor. Comput. Sci. 598, 87–101 (2015)

7. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. Lect.
Notes Comput. Sci. 3098, 87–124 (2004)

8. Cavaliere, M., Mura, I.: Experiments on the reliability of stochastic spiking neural
P systems. Nat. Comput. 7(4), 453–470 (2008)

9. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes.
Lect. Notes Comput. Sci. 663, 302–315 (1992)
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Abstract. We define a modified concept of a generalized communicat-
ing P system, where the environment is represented by a finite multiset
of objects which is allowed to dynamically change during the computa-
tion. We demonstrate the computational completeness of three restricted
variants of this model, the cases when the system uses only split rules,
or only join rules, or only parallel-shift rules. We discuss the relation
between the original and the new model, and propose classifications of
the environment.

1 Introduction

Among computational complete subclasses of P systems, there are purely com-
municating variants, i.e., membrane systems which work without any change of
their objects but only with importing/exporting objects from and/or to the envi-
ronment and communicating objects between their regions. The possible large
computational power of these constructs is due to the fact that some types of the
objects are supposed to be found in an unbounded number in the environment.
That is, whenever the P system needs some extension of its “workspace”, i.e., to
complete a transition it needs more (a finite number of new) objects than it has
inside, then these objects are always available. This property implies the question
how the computational power (and the behavior) of membrane systems change
if there is only a finite number of objects in the environment that changes from
time-to-time. Such model is where the objects in the environment are provided
by a multiset rewriting system which starts its work from an initial finite mul-
tiset. Thus, at any computational step, the current environment is represented
by a finite multiset of objects that is allowed to dynamically change during the
computation.

This question is especially interesting in the case when the membrane system
represents a complex service system, thus any type of the objects corresponds
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 92–105, 2015.
DOI: 10.1007/978-3-319-28475-0 7
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to a service and/or an application. Generalized communicating P systems are
such models. These constructs were introduced in [8], originally with the aim of
providing a common generalization of various purely communicating models.

A generalized communicating P system, or a GCPS for short, is a tissue-like
P system (a hypergraph) where each node represents a cell and each edge is
represented by a rule. Every node contains a multiset of objects which can be
communicated, that is, it may move between the cells according to interaction
(communication) rules. The form of an interaction rule is (a, i)(b, j) → (a, k)(b, l)
where a and b are objects and i, j, k, l are labels identifying the input and the
output cells. Such a rule means that an object a from cell i and an object b from
cell j move synchronously to cell k and cell l, respectively. The system is embed-
ded in an environment, represented by cell 0, which may have certain objects in
an infinite number of copies and certain objects only in a finite number of copies.
The GCPS and the environment interact by using the communication (interac-
tion) rules given above, with the restriction that at every computation step only
a finite number of objects is allowed to enter in any cell from the environment.
The rules are applied in a maximally parallel manner, possibly implying changes
in the configuration of the GCPS, i.e., changing the multisets representing the
contents of the cells. A computation in a GCPS is a sequence of configurations
directly following each other, starting from the initial configuration and ending
in a halting configuration. The result of the computation is the number of objects
found in a distinguished cell, the output cell.

GCPSs have been studied in details, with special emphasis on their generative
(computational) power. It has been shown that even restricted variants of these
constructs (with respect to the form of rules) are able to generate any recursively
enumerable set of numbers. Furthermore, several of them even with relatively
small numbers of cells and with simple underlying (hypergraph) architectures
are computationally complete [2,3]. It is also shown that the maximal expressive
power can also be obtained with GCPSs where the alphabet of objects is a
singleton [1].

One other important property of GCPSs is their strong similarity with Petri
nets, and thus they can be used for behavioral investigation of complex service
and/or application compositions (e.g. scientific workflows) as well. Since work-
flows are usually executed in heterogeneous and distributed environments, to
achieve automated enactment of workflows in these remote and complex systems,
adaptation, i.e., reacting to unpredictable changes of the conditions is highly
recommended. This observation was one more inspiration for us to introduce a
modified version of generalized communicating P systems where the objects of
the environment are provided by a multiset rewriting system which starts its
work from an initial finite multiset.

In the paper, after introducing the new model, we demonstrate the compu-
tational completeness of its three restricted variants, the cases where the system
uses only split, or only join, or only parallel-shift rules. We also discuss the rela-
tion between the basic and the new model of GCPSs, and propose classifications
of the environment.
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2 Preliminaries

We first recall some basic notions and notations from membrane comput-
ing, formal language theory and computability theory; for further details
consult [5–7].

2.1 Some Basic Notions

An alphabet is a finite non-empty set of symbols. For an alphabet V , we denote
by V ∗ the set of all strings over V , including the empty string, λ.

A finite multiset over V is a mapping M : V −→ N; M(a) is said to be
the multiplicity of a in M (N denotes the set of non-negative integers). A finite
multiset M over an alphabet V can be represented by all permutations of a
string x = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where aj ∈ V , M(aj) �= 0, 1 ≤ j ≤ n;

x represents M in V ∗. The size of a finite multiset M, represented by x ∈ V ∗

is defined as Σa∈V |x|a. We note that if no confusion arises, we also use the
customary set notation for denoting multisets. Thus, we denote the set of finite
multisets over V by V ∗.

A pair M = (O,P ) is said to be a multiset rewriting scheme, if O is an
alphabet, the alphabet of objects, and P is a finite set of rules of the form
u → v, where u, v are finite multisets over O and u is non-empty. P is called the
set of multiset rewriting rules of M .

Let x, y be two finite multisets over O. We say that y can be directly derived
from x by M , written as x =⇒M y if y can be obtained from x by a maximally
parallel application of rules in P ; i.e., there is a multiset R of rules of elements
of P such that y is obtained from x by parallel application of elements of R and
there is no multiset R′ properly including R such that y can be obtained from
x by applying elements of R′ in parallel.

The reflexive and transitive closure of =⇒M is denoted by =⇒∗
M .

2.2 Register Machines

Now we recall the notion of a register machine; for further details the reader is
referred to [4].

A register machine is a 5-tuple RM = (Q,R, q0, qf , I), where Q is a finite
non-empty set, called the set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of
registers, q0 ∈ Q is the initial state, and qf ∈ Q is the final state. I is a set of
instructions of the following forms: (p,A+, r, s), where p, r, s ∈ Q, p �= qf , A ∈ R,
called an increment instruction or (p,A−, r, s), where p, r, s ∈ Q, p �= qf , A ∈ R,
called a decrement instruction. Furthermore, for every p ∈ Q, (p �= qf ), there is
exactly one instruction of the form either (p,A+, r, s) or (p,A−, r, s).

A configuration of a register machine RM , defined above, is given by a (k+1)-
tuple (q,m1, . . . , mk), where q ∈ Q and m1, . . . , mk are non-negative integers, q
corresponds to the current state of RM and m1, . . . , mk are the current numbers
stored in the registers (in other words, the current contents of the registers or
the value of the registers) A1, . . . Ak, respectively.
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A transition of the register machine consists in updating the number stored
in a register and in changing the current state to another one, according to an
instruction.

An increment instruction (p,A+, r, s) ∈ I is performed if RM is in state p,
the number stored in register A is increased by 1, and after that RM enters
either state r or state s, chosen non-deterministically.

A decrement instruction (p,A−, r, s) ∈ I is performed if RM is in state p,
and if the number stored in register A is positive, then it is decreased by 1 and
then RM enters state r, and if the number stored in A is 0, then the contents
of A remains unchanged and RM enters state s.

We say that a register machine RM = (Q,R, q0, qf , I), with k registers,
given as above, generates a non-negative integer n if starting from the initial
configuration (q0, 0, 0, . . . , 0) it enters the final configuration (qf , n, 0, . . . , 0).

The set of non-negative integers generated by RM is denoted by N(RM).
Register machines generate all recursively enumerable sets of non-negative

integers [4]; the family of these sets of numbers is denoted by NRE.

3 Generalized Communicating P Systems with a
Dynamically Changing Environment

One important characteristics of generalized communicating P systems is that
certain environmental objects are available in an infinite number of copies at
each computational step, thus, if needed, the GCPS can freely use an arbitrary
number of them. A reasonable restriction is, if the environment is supposed to
be a dynamically changing supply of a finite number of objects at every step of
the computation. In the following, we define the concept of a generalized com-
municating P system with a dynamically changing environment, a deGCPS for
short, where the number of objects present in the environment is finite at every
step of the computation and it is determined by the interaction of a multiset
rewriting system representing the environment and the “core” GCPS. In other
words, a computation step consists of two substeps: at first, using its rewriting
rules the multiset rewriting system generates the contents of the environment,
i.e., changes the multiset of objects present in the environment. Then, the com-
munication rules of the “core” GCPS are applied to its cells, possibly involving
objects of the environment in these actions, in a maximal parallel manner.

Definition 1. A generalized communicating P system with dynamic environ-
ment (a deGCPS, for short) of degree n, where n ≥ 1, is an (n + 5)-tuple

Π = (O,M,w0, w1, . . . , wn, R, h)

where

1. O is a finite alphabet, called the set of objects of Π;
2. M = (O,P ) is a multiset rewriting scheme;
3. w0 is a finite multiset representing the initial environment and wi ∈ O∗, for

every i, 1 ≤ i ≤ n, is a finite multiset of objects initially associated to cell i;
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4. R is a finite set of interaction rules of the form (a, i)(b, j) → (a, k)(b, l), where
a, b ∈ O, 0 ≤ i, j, k, l ≤ n;

5. h ∈ {1, . . . , n} is the output cell.

The n + 3-tuple (O,w1, . . . , wn, R, h) is said to be the core (core GCPS) of Π.

Now we define the functioning of deGCPSs.
We start with the semantics of the interaction rules.
The cells and the environment interact with each other by means of the rules,

having the form (a, i)(b, j) → (a, k)(b, l), with a, b ∈ O and 0 ≤ i, j, k, l ≤ n, given
above. For simplicity, we consider the environment as the cell labeled by 0. Such
an interaction rule may be applied if there is an object a in cell i and an object
b in cell j. As the result of the application of the rule, the object a moves from
cell i to cell k and b moves from cell j to cell l.

Let Π = (O,M,w0, w1, . . . , wn, R, h), n ≥ 1, be a deGCPS.
A configuration of Π is an (n + 1)-tuple (z0, z1, . . . , zn) with z0, zi ∈ O∗, for

all 1 ≤ i ≤ n; z0 is the multiset of objects present in the environment, whereas,
for all 1 ≤ i ≤ n, zi is the multiset of objects present inside cell i.

The initial configuration of Π is (w0, w1, . . . , wn).
Generalized communicating P systems with dynamically changing environ-

ment work by performing transitions. A transition in Π consists of two steps:
first, the current multiset of the environment is changed by applying the rules of
M in maximally parallel, and then rules of R are applied in a maximally parallel
manner.

Formally, for a configuration c = (z0, z1, . . . , zn) of Π, a new configura-
tion c′′ = (z′′

0 , z′′
1 , . . . , z′′

n) of Π is obtained by a transition as follows: c′ =
(z′

0, z
′
1, . . . , z

′
n) is obtained from c = (z0, z1, . . . , zn) by the maximally parallel

application of rules in M , denoted by c =⇒P c′, and then c′′ is obtained from c′

by a maximally parallel application of rules in R, denoted by c =⇒R c′.
A successful generation in Π is a sequence of transitions starting from the

initial configuration and ending in a final configuration, i.e., in a configuration
of the form cf = (u0, u1, . . . , un), where no rule of R can be applied to cf and no
rule of P can be applied to u0. Notice, that in this case neither the environment,
nor the system is able to continue its work.

The result of a successful generation in a deGCPS Π is the number of objects
present in the output cell, cell h.

We say that Π generates a non-negative integer n if there is a successful
generation by Π such that n is the size of the multiset of objects present inside
the output cell in the final configuration.

The set of non-negative integers generated by a deGCPS Π in this way is
denoted by N(Π).

Analogously to generalized communicating P systems, possible restrictions
on the interaction rules (modulo symmetry) can be introduced: Let O be an
alphabet and let us consider an interaction rule (a, i)(b, j) → (a, k)(b, l) with
a, b ∈ O, i, j, k, l ≥ 0. Then, the following cases can be distinguished:
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1. i = j = k �= l: the conditional-uniport-out rule sends b to cell l provided that
a and b are in cell i (rule of type uout, for short);

2. i = k = l �= j: the conditional-uniport-in rule brings b to cell i provided that
a is in that cell (rule of type uin, for short);

3. i = j, k = l, i �= k : the symport2 rule corresponds to the minimal symport
rule [6], i.e., a and b move together from cell i to k (rule of type sym2, for
short);

4. i = l, j = k, i �= j : the antiport1 rule corresponds to the minimal antiport
rule [6], i.e., a and b are exchanged in cells i and k (rule of type anti1, for
short);

5. i = k and i �= j, i �= l, j �= l: the presence-move rule moves the object b from
cell j to l, provided that there is an object a in cell i and i, j, l are pairwise
different cells (rule of type presence, for short);

6. i = j, i �= k, i �= l, k �= l : the split rule sends a and b from cell i to cells k
and l, respectively (rule of type split, for short);

7. k = l, i �= j, k �= i, k �= j : the join rule brings a and b together to cell i (rule
of type join, for short);

8. i = l, i �= j, i �= k and j �= k : the chain rule moves a from cell i to cell k
while b is moved from cell j to cell i, i.e., to the cell where a was previously
(rule of type chain, for short);

9. i, j, k, l are pairwise different numbers: the parallel-shift rule moves a and b
from two different cells to another two different cells (rule of type shift, for
short).

NOdetPk(x) denotes the set of numbers generated by generalized
communicating P systems with dynamically changing environment of
degree k and with rules of type x where k ≥ 1 and x ∈
{uout, uin, sym2, anti1, presence, split, join, chain, shift}.

NOdetP∗(x) is the notation for
⋃∞

k=1 NOdetPk(x).

4 Power of deGCPS Systems

In the following we show that any recursively enumerable set of numbers can be
obtained with a deGCPS system with four cells, using rules only of type split
or join.

Theorem 1. NOdetP4(split) = NRE.

Proof. Let RM = (Q,R, q0, qf , I) be an arbitrary register machine, where Q is
the set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state, and I is a set of instructions. To prove the
statement, we construct a dePCGS Π with only split rules and four cells such
that N(RM) = N(Π) holds.

Let us assume, without the loss of generality, that there are no two decrement
instructions (i, A−, j, k) and (l, A−,m, n) in I such that j = n, that is, there
is no instruction label which appears in two different decrement instructions in
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such a way that in one instruction it is the label which follows the decrement
of a non-empty register (j in the first instruction above), and in another one
it is the label which follows the successful zero check of the register (n in the
second instruction above). To see why this assumption can be made, consider
the following: if two such instructions (p,A−, r, s) and (q,A−, s, t) exist, then
we relabel the second one to (q,A−, s′, t), and for all (s,A±, k, l) ∈ P , we also
add (s′, A±, k, l) to P .

To help the easier reading, we first show how instructions of RM can be sim-
ulated, the components of Π then easily can be inferred from the constructions.

Now we show how to construct rules simulating an increment instruction
(p,Ai+, r, s): at the beginning of the simulation of any instruction, cell 1 contains
objects X and Y , cell 2 contains as many occurrences of ci as the number stored
in register Ai, and cells 3 and 4 are empty. The environment contains symbol Qp.

The rules in R are as follows:

1. (p, 0)(ci, 0) → (p, 2)(ci, 3),
2. (X, 1)(Y, 1) → (X, 2)(Y, 3),
3. (Y, 3)(ci, 3) → (Y, 1)(ci, 2),
4. (X, 2)(p, 2) → (X, 1)(p, 0),

and corresponding rules in M are:

(a) : Qp → pciQ
′
p, (b) : Q′

p → Q′′
p , (c) : pQ′′

p → Qr, (d) : pQ′′
p → Qs.

Π works as follows: First the environment rewrites Qp to pciQ
′
p. Then symbol

X moves to cell 2, and Y moves to to cell 3, while by rule 1., p moves to cell 2 and
ci to cell 3. Then M rewrites Q′

p to Q′′
p and using rules 3. and 4., objects X and Y

return to cell 1, ci moves to cell 2 (thus, the contents of register Ai is incremented
by one) and p returns to the environment. After this, the environment rewrites
Q′′

p either to Qr or Qs, non-deterministically chosen and erases p. Thus, the
next instruction can be executed.

Rules simulating a decrement instruction (p,Ai−, r, s) are as follows: at the
beginning of the simulation of any instruction, cell 1 contains objects X and Y ,
cell 2 contains as many occurrences of ci as the number stored in register Ai,
and cell 3 and cell 4 are empty. The rules in R are given as follows:

1. (p, 0)(c̄i, 0) → (p, 4)(c̄i, 2),
2. (X, 1)(Y, 1) → (X, 3)(Y, 4),
3. (c̄i, 2)(ci, 2) → (c̄i, 3)(ci, 0),
4. (p, 4)(Y, 4) → (p, 0)(Y, 1),
5. (p, 4)(Y, 4) → (p, 3)(Y, 2),
6. (X, 3)(c̄i, 3) → (X, 1)(c̄i, 0),
7. (c̄i, 2)(Y, 2) → (c̄i, 0)(Y, 1),
8. (X, 3)(p, 3) → (X, 1)(p, 0).

The corresponding rules in M are the following:

(a) : Qp → Q′
pc̄ip, (b) : Q′

p → Q̄r, (c) : Q′
p → Q̄s,

(d) : Q̄rcip → Q̄′
r, (e) : Q̄r → #, (f) : p → #,

(g) : ci → #, (h) : Q̄′
r c̄i → Qr, (i) : Q̄s → Q̄′

s,
(j) : Q̄′

sc̄ip → Qs, (k) : # → #.
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Notice that because of our assumption on the register machine RM , for any
instruction label l, either Ql → # or Ql → Q̄′

l, is present in I.
Π simulates the execution of the instruction as follows: At the beginning the

environment contains Qp and there is no other symbol in it. The environment
rewrites Qp to pc̄iQ

′
p, and then, by rule 2. of R, symbols X and Y leave cell 1

and move to cell 3 and 4, respectively, and by rule 1. of R, p moves to cell 4
and c̄i moves to cell 2. The computation now may continue in two directions,
depending on whether the simulated register supposed to store zero or not, thus
Q′

p will be rewritten to Q̄r (the register is not empty), or Q̄s (the register is
empty). Suppose that the simulated register Ai is not empty. Then in cell 2
there should exist at least one ci. This implies that rules 3. and 4. or rules 3.
and 5. of can be applied in parallel.

Suppose that rules 3. and 4. are applied in parallel. Then symbol c̄i moves
to cell 3, symbols ci and p leave to the environment and symbol Y moves to cell
1. Then the environment uses its rule Q̄rcip → Q̄′

r. If rules 3. and 5. are used
together, then only ci leaves to the environment. Then the environment uses
its rules Q̄r → #, ci → #, p → #. Thus, the computation terminates without
any success. Notice, that the same happens if the latter rules are used after
performing rules 3. and 4., thus the computation continues only if the correct
choice of the environmental rules takes place. Having Q̄′

r in the environment, rule
6. of R is performed, thus c̄i leaves to the environment. The procedure ends with
the application of the environmental rule Q̄′

r c̄i → Qr. Now suppose that after
introducing Q̄r in the environment, rule 3. cannot be applied, i.e., Ai is empty.
Then either rule 4. or rule 5. can be applied, but none of them introduces ci
in the environment. Then the environment introduces #, thus the computation
ends unsuccessfully.

Suppose now that the simulated register, Ai, should be empty. Then Q̄s

should be introduced in the environment. Then either rule 4. or rule 5. of R
can be applied. If rule 4. is applied then p leaves to the environment. Let the
environment have rules Q̄s → Q̄′

s and p → #. Then the only correct choice is
rule 5. Then, in the next step Π uses its rules 7. and 8., thus c̄i and p leave
to the environment and x and Y return to cell 1. Then the environment uses
rule Q̄′

sc̄ip → Qs and the computation successfully ends. Suppose that after
introducing Q̄s in the environment, register Ai is not empty. But then either
rules 3. and 4. or rules 3. and 5. can be applied in parallel. If the environment
has rule ci → #, then the environment, which is of the form Q̄sci or Q̄spci
will be rewritten to Q′

p# or Q′
p##, thus, the computation will not successfully

terminate.
Notice that the rules in P and in R, together, simulate the instructions of

RM , and they are given in such way that the simulation of every instruction
does not interfere with the simulation of any other instruction.

The initial state of the environment in Qq0 . If Qqf , i.e., the counterpart of
state qf in Π appears in the environment, after then no rule of P will be applica-
ble. In the next step, R performs a rule, i.e., moves objects X and Y , but after
then no rule of R is applicable. Thus, the end of the generation process in RM
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corresponds to the end of the computation in Π. Notice, that the number gen-
erated by RM is the number stored in register 1, and this is exactly the number
of objects c1 that can be found in cell 2, which is the output cell. By the expla-
nations and arguments given above, it can be seen that Π correctly simulates
RM and N(Π) = N(RM) holds. Since any recursively enumerable set of num-
bers can be generated by a register machine, and reversely, any register machine
generates a recursively enumerable set of numbers, we proved the statement.

In the following we deal with deGCPSs with join operation.

Theorem 2. NOdetP4(join) = NRE.

Proof. As in the previous case, we will simulate the work of register machines.
Suppose that RM = (Q,R, q0, qf , I) is an arbitrary register machine. To prove
the statement, we construct a dePCGS Π such that N(RM) = N(Π) holds
and Π has four cells. As in the previous case, we assume that there are no two
decrement instructions (p,A−, r, s) and (q,A−, s, t) in I, that is, there is no
instruction label which appears in two different decrement instructions in such
a way that in one instruction it is the state which follows the decrement of a
non-empty register (s in the second instruction above), and in another one it is
the label which follows the successful zero check of the register (s in the first
instruction above).

As in the previous proof, to help the easier reading, we first show how instruc-
tions of RM can be simulated. Then, the reader may easily infer the components
of Π from the constructions.

The rules simulating an increment instruction (p,Ai+, r, s) are given as fol-
lows: at the beginning of the simulation of any instruction, cell 1 contains objects
X and Y , cell 2 contains as many occurrences of ci as the number stored in reg-
ister Ai, and cells 3,4 are empty. The environment contains symbol Qp.

The rules in R are as follows:

1. (p, 0)(X, 1) → (p, 3)(X, 3),
2. (ci, 0)(Y, 1) → (ci, 2)(Y, 2),
3. (p, 3)(Y, 2) → (p, 0)(Y, 0),
4. (X, 3)(Y, 0) → (X, 1)(Y, 1).

The corresponding rules in M are as follows:

(a) : Qp → Q′
pcip, (b) : Q′

p → Q′′
p , (c) : Q′′

ppY → Q′′′
p Y,

(d) : Q′′′
p → Qr, (e) : Q′′′

p → Qs.

Π simulates the instruction as follows: At the beginning the only symbol in
the environment is Qp. At the first step, M rewrites Qp to Q′

ppci. At the next
step, by rules 1. and 2. of R, symbols p and X move to cell 3 and symbols ci and
Y move to cell 2. After then the environment rewrites Q′

p to Q′′
p . Then rule 3. of

R is applied, moving p and Y to the environment. The environment then uses
its rule Q′′

ppY → Q′′′
p Y . After then rule 4. of R is applied and Y and X move
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to cell 1. At the next step the environment changes Q′′′
p either to Qr or to Qs.

Thus the instruction is simulated.
Next we show how a decrement instruction (p,Ai−, r, s) is simulated: at the

beginning of the simulation of the instruction, cell 1 contains objects X and Y ,
cell 2 contains as many occurrences of objects ci as the number stored in register
Ai, and cells 3 and 4 are empty. The environment contains symbol Qp.

The corresponding rules in R are as follows:

1. (p, 0)(X, 1) → (p, 3)(X, 3),
2. (ci, 2)(Y, 1) → (ci, 4)(Y, 4),
3. (p, 3)(ci, 4) → (p, 0)(ci, 0),
4. (X, 3)(Y, 4) → (X, 1)(Y, 1),
5. (p, 3)(Y, 1) → (p, 0)(Y, 0),
6. (X, 3)(Y, 0) → (X, 1)(Y, 1).

The corresponding rules in M are the following:

(a) : Qp → Q′
pp, (b) : Q′

p → Q′′
p , (c) : Q′′

ppci → Qr,
(d) : Qp → Q̄pp, (e) : Q̄p → Q̄′

p, (f) : Q̄′
ppY → Q̄′′

pY,
(g) : Q̄′′

p → Qs, (h) : Q′′
p → #, (i) : Q̄′

p → #,
(j) : # → #.

Suppose that Ai is not empty. At the first step, the environment rewrites
Qp to Q′

pp. Then, by parallel application of rules 1. and 2. of R, objects p and
X move to cell 3 and objects Y and ci move to cell 4. After then, Q′

p will be
rewritten to Q′′

p . In the next step, rules 3. and 4. of R are used in parallel, moving
p and ci to the environment, and objects X and Y return to cell 1. Then the
environment will use its rule Q′′

ppci → Qr, thus the instruction was correctly
simulated. Suppose now that no ci was present in cell 2, thus, the guess about
the simulated register Ai being non-empty was wrong. Then rule 2. was not
applicable, and objects p and X moved to cell 3. After the next step by R, the
environment will have the form Q′′

ppY , but only the rule Q′′
p → # is applicable

to this word, thus the computation does not terminate successfully.
Let us consider the case when the simulated register Ai is empty. At the first

step, the environment rewrites Qp to Q̄pp. Then by rule 1. of R, objects p and X
move to cell 3. In the next step, the environment rewrites Q̄p to Q̄′

p. By rule 5.
of R, objects p and Y move to the environment. Then the actual environment,
Q̄′

ppY will be rewritten to Q̄′′
pY , and then by rule 6. of R objects X and Y move

to cell 1. In the next step, the environment will be rewritten to Qs. Suppose
now that although Ai was guessed to be empty, cell 2 contained at least one ci.
Then, after the second step by R, the environment will be of the form Q̄′

ppci.
Since only the rule Q̄′

p → # is applicable, the computation does not terminate
successfully. Thus the instruction was correctly simulated.

The rules in P and R, together, simulate the instructions of RM , and the
simulation of every instruction does not interfere with the simulation of any
other instruction.
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The initial state of the environment in Qq0 . If Qqf , i.e., the counterpart
of state qf in Π appears in the environment, after then no rule of P and R.
Thus, the end of the generation process in RM corresponds to the end of the
computation in Π. Notice, that the number generated by RM is the number
stored in register 1, and this is exactly the number of objects c1 that can be
found in cell 2, which is the output cell. By the arguments given above, it can
be seen that Π correctly simulates RM and N(Π) = N(RM) holds. Since any
recursively enumerable set of numbers can be generated by a register machine,
and reversely, any register machine generates a recursively enumerable set of
numbers, we proved the statement.

Next we investigate deGCPSs with only parallel-shift rules.

Theorem 3. NOdetP5(shift) = NRE.

Proof. The proof follows the same way as we did in the previous cases, based
on simulation the work of register machines, hence we hold the same assump-
tions supposing that RM = (Q,R, q0, qf , I) is an arbitrary register machine; a
dePCGS Π such that N(RM) = N(Π) holds, but now Π has five cells. More-
over we assume that there are no two decrement instructions (p,A−, r, s) and
(q,A−, s, t) in I.

As in the previous proofs, to help the easier reading, we first show how
instructions of RM can be simulated. Then, the reader may easily infer the
components of Π from the constructions.

The rules simulating an increment instruction (p,Ai+, r, s) are given as fol-
lows: at the beginning of the simulation of any instruction, cell 1 contains objects
X, cell 2 contains as many occurrences of ci as the number stored in register Ai,
and cells 3,4 and 5 are empty. The environment contains symbol Qp.

The rules in R are as follows:

1. (p, 0)(X, 1) → (p, 1)(X, 2),
2. (ci, 0)(X, 2) → (ci, 2)(X, 3),
3. (X, 3)(p, 1) → (X, 1)(p, 0).

The corresponding rules in M are as follows:

(a) : Qp → Q′
pp, (b) : Q′

p → Q′′
pci, (c) : Q′′

p → Q′′′
p ,

(d) : Q′′′
p p → Qr, (e) : Q′′′

p p → Qs.

The instruction is simulated by Π as follows: At first, M rewrites Qp to Q′
pp

introducing a new p instruction symbol. Then rule 1 is applied, which moves
symbol p from the environment to cell 1 while symbol X is moved from cell
1 to cell 2. Next, as symbol p is disappeared from the environment, rewriting
rule b can be applied in M , hence symbol Q′

p is rewritten to Q′′
pci. Therefore in

the next step rule 2 of R can be applied that moves ci to cell 2, and symbol X
from cell 2 to cell 3. By applying rule c in M , symbol Q′′

p will be rewritten to
Q′′′

p . Next symbol X is moved to cell 1 while p leaves cell 1 and moves to the
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environment. Finally M rewrites its content nondeterministically to Qs or Qr.
Thus the instruction is simulated.

Next we show how a decrement instruction (p,Ai−, r, s) is simulated: at the
beginning of the simulation of the instruction, cell 1 contains object Yp for all
p ∈ Q, cell 3 contains Z1 and Z2, cell 2 contains as many occurrences of objects
ci as the number stored in register Ai, and cells 4, 5 are empty. The environment
contains symbol Qp.

The corresponding rules in R are as follows.

1. (p, 0)(Yp, 1) → (p, 1)(Yp, 2),
2. (Yp, 2)(Z1, 3) → (Yp, 3)(Z1, 4),
3. (ci, 2)(Yp, 3) → (ci, 3)(Yp, 4),
4. (Z1, 4)(Z2, 3) → (Z1, 3)(Z2, 2),
5. (Z2, 2)(ci, 3) → (Z2, 3)(ci, 0),
6. (Yp, 4)(p, 1) → (Yp, 1)(p, 0),
7. (Z2, 2)(Yp, 3) → (Z2, 3)(Yp, 5),
8. (Yp, 5)(p, 1) → (Yp, 1)(p, 0).

The corresponding rules in M are the following:

(a) : Qp → Q′
pp, (b) : Q′

p → Q′′
p , (c) : Q′′

p → Q′′′
p ,

(d) : Q′′′
p → Q̄p, (e) : Q̄p → Q̄′

p, (f) : Q̄pcip → Qr,
(g) : Q̄′

pp → Qs, (h) : p → #, (i) : ci → #,
(j) : # → #.

At the first step, the environment rewrites Qp to Q′
pp. Then, by application

of rule 1 of R, object p moves to cell 1 in parallel with Yp which moves from
cell 1 to cell 2. After this, Q′

p will be rewritten to Q′′
p . In the next step, rule 2

is applied moving symbol Yp and Z1 from cell 2 and cell 3 to cell 3 and cell 4
respectively. In the next step the environment rewrites it content to symbol Q′′′

p .
Let us suppose first that Ai is not empty. It means that at least one occurrence

of ci is in cell 2. Now rule 3 and rule 4 is applied in parallel, moving ci and Z1

to cell 3, symbol Yp to cell 4 and Z2 to cell 2. Now the environment rewrites Q′′′
p

to Q̄p. In the last communication step rule 5 and rule 6 are applied returning
symbol Yp and Z2 to their original cell, and moving ci and p to the environment.
Now ci and p appeared in the environment, therefore rule f is applied by M
that rewrites the content to Qr.

Now we suppose that Ai is empty. As above, the environment contains Q′′′
p ,

symbol p is in cell 1, Yp is in cell 3 and symbol Z1 is in cell 4. Now symbols Z1

and Z2 are moved to cell 3 and cell 2 respectively by application of rule 4. The
environment rewrites its content to Q̄p, and then - as rule 3 cannot be applied in
the previous step - application of rule 7 returns Z2 to cell 3, while Yp is moved
to cell 5. In the environment rewriting rule e is applied that replaces Q̄p with
Q̄′

p. Next, rule 8 moves Yp to cell 1 while p returns to the environment. This
indicates the application of rule g rewriting Q̄′

pp to Qs.
As in the previous proofs, the rules in P and R, together, simulate the instruc-

tions of RM , and the simulation of every instruction does not interfere with the
simulation of any other instruction.
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The initial state of the environment in Qq0 , the final state is Qqf , i.e., the
counterpart of state qf . When the final state appears in the environment, no rule
of P (and R) is applicable, thus, the end of the computation in RM corresponds
to the end of the computation in Π. Also, the number generated by RM (the
number stored in register 1) is exactly the number of objects c1 that can be
found in cell 2, which is the output cell. By the arguments given above, it can
be seen that Π correctly simulates RM and N(Π) = N(RM) holds. Since any
recursively enumerable set of numbers can be generated by a register machine,
and reversely, any register machine generates a recursively enumerable set of
numbers, our statement is proved.

4.1 Discussion

In the generic model, in GCPSs a subset of objects is distinguished, elements of
which are allowed to occur in an infinite number of copies in the environment.
Thus, the environment serves an infinite supply of certain objects. In some sense,
this environment could be considered as a static one, since whenever the GCPS
needs such an object from the environment, the object is available. This might
not be the case for deGCPSs. Therefore, according to their effect on the com-
putation process, we may distinguish different types of environments: how much
extent the computed set of numbers and the computation processes differ from
each other in a certain deGCPSs and a GCPS obtained from its core. Some other
research direction is to study the robustness of a deGCPS: the system is robust
if it computes the same set of numbers for any environment M , sensitive with
respect to the environment if there exists at least two different environments M
and M ′ which lead to different sets of computed numbers, and hypersensitive
if there exists infinitely many pairwise different environments Mn, n = 1, 2, . . .
such that any two of them results in different sets of computed numbers. We
plan study these problems in the future.

The interesting fact that both “infinite” and finite environments turn out to
be universal is due to that in the “infinite” case in any computation step the nec-
essary number of objects that should be/can be imported from the environment
is a finite number. Thus, by a suitable multiset rewriting system, the necessary
environmental objects for the core GCPS can be provided.

In other words, in the previous sections we showed that the core GCPS in
cooperation with a rewriting system as environment has the same generative
power as the general model that requires the possibility of symbols in infinite
occurrences contained by the environment.

Considering that real-life situations e.g. workflow enactment on a dynamic
and heterogeneous distributed infrastructure has no control on the change of the
environment. In addition it must prevent its execution and adapt itself to the
unpredictable environmental changes. Therefore in the following we consider the
case when the environment is not created just for supporting correctness of the
computation, but it may cause harmful exceptions in the course of the execution
of the core GCPS.
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Abstract. Spiking neural P systems with structural plasticity (in short,
SNPSP systems) are models of computations inspired by the function and
structure of biological neurons. In SNPSP systems, neurons can create
or delete synapses using plasticity rules. We report two families of solu-
tions: a non-uniform and a uniform one, to the NP-complete problem
Subset Sum using SNPSP systems. Instead of the usual rule-level non-
determinism (choosing which rule to apply) we use synapse-level nonde-
terminism (choosing which synapses to create or delete). The nondeter-
minism due to plasticity rules have the following improvements from a
previous solution: in our non-uniform solution, plasticity rules allowed
for a normal form to be used (i.e. without forgetting rules or rules with
delays, system is simple, only synapse-level nondeterminism); in our uni-
form solution the number of neurons and the computation steps are
reduced.

Keywords: Membrane computing · Spiking neural P system · Struc-
tural plasticity · NP-complete · Subset Sum

1 Introduction

Membrane computing, [18] a branch of natural computing, aims to abstract and
obtain computing ideas, data structures and operations from the function and
structure of living cells. Several introductory and advanced books [8,19] (includ-
ing a handbook [21]) have been produced for this branch, as well as a recent
collection of applications to systems and synthetic biology [9]. As early as 2006,
membrane algorithms [16] have been introduced for approximation inspired by
P systems (the model of computations in membrane computing). The P systems
webpage [1] includes an updated list of workshops, conferences, and books on
or related to membrane computing (including a collection of PhD theses). The
Thomson Reuters Institute for Scientific Information (in short, ISI) has identified
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membrane computing as a “fast emerging research front” as early as October
2003, see e.g. [2].

In this work, the specific P systems we consider are spiking neural P systems
(in short, SNP systems) first introduced in [12]. In particular, we focus on a
variant of SNP systems known as spiking neural P systems with structural plas-
ticity (in short, SNPSP systems), recently introduced in [4] and improved and
extended in [7]. We do not go into the details of SNP systems here, including
their neuroscience inspirations, computing power (i.e. what a model can or can-
not compute) and computational complexity (i.e. time and space efficiency in
solving problems). We refer the reader instead to good introductions in [12,20]
and the SNP systems chapter in the membrane computing handbook [21]. In
SNPSP systems, neurons are placed on the vertices of a directed graph, and the
edges between neurons are called synapses. Aside from spiking rules (more details
below) which are used to consume and produce spikes, SNPSP systems have plas-
ticity rules. Plasticity rules allow a neuron σi to create or delete synapses from
itself (i.e. outgoing edges of σi) but cannot create or delete synapses towards
itself (incoming edges of σi). The plasticity rules in SNPSP systems are inspired
by actual structural plasticity in biological neurons [3].

In this work we use SNPSP systems to provide families of solutions to the
NP-complete problem Subset Sum. The hardness of the Subset Sum problem is
applied to practical and important use in order to secure many systems requiring
encryption, e.g. in [11]. Of course, when we refer to solutions to a problem,
we mean to say that we provide an algorithm solving the problem, where the
algorithm in this case is the constructed SNPSP system.

This paper is organized as follows: some preliminaries for the rest of this
work are given in Sect. 2. Syntax and semantics of SNPSP systems in Sect. 3.
The Subset Sum problem as well as some existing solutions using SNP systems
are provided in Sect. 4. Complexity classes of SNPSP systems, with respect to the
type of solution, are also provided in Sect. 4. A non-uniform family of solutions
is given in Sect. 5. A uniform family of solution is provided in Sect. 6. Lastly,
Sect. 7 provides some final remarks and future research directions.

2 Preliminaries

Before proceeding to the syntax (i.e. elements that constitute a model) and
semantics (i.e. the meaning and use of elements of a model) of SNPSP systems,
we briefly recall regular expressions. Regular expressions will be used by neurons
to check which spiking or plasticity rules to apply. We denote the set of natural
(counting) numbers as N = {0, 1, 2, . . .}, where N

+ = N − {0}. Let V be an
alphabet, V ∗ is the set of all finite strings over V with respect to concatenation
and the identity element λ (the empty string). The set of all non-empty strings
over V is denoted as V +, so V + = V ∗ − {λ}.

A language L ⊆ V ∗ is regular if there is a regular expression E over V such
that L(E) = L. A regular expression over an alphabet V is constructed starting
from λ and the symbols of V using the operations union, concatenation, and +.
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Specifically, (i) λ and each a ∈ V are regular expressions, (ii) if E1 and E2 are
regular expressions over V then (E1∪E2), E1E2, and E+

1 are regular expressions
over V , and (iii) nothing else is a regular expression over V . With each expression
E we associate a language L(E) defined in the following way: (i) L(λ) = {λ}
and L(a) = {a} for all a ∈ V , (ii) L(E1 ∪ E2) = L(E1) ∪ L(E2), L(E1E2) =
L(E1)L(E2), and L(E+

1 ) = L(E1)+, for all regular expressions E1, E2 over
V . Unnecessary parentheses are omitted when writing regular expressions. If
V = {a}, we simply write a∗ and a+ instead of {a}∗ and {a}+. If a ∈ V , we
write a0 = λ.

3 Spiking Neural P Systems with Structural Plasticity

In this section we define SNP systems with structural plasticity. Motivations and
recent results in SNPSP systems are included in a series of papers in [5–7]. A
spiking neural P system with structural plasticity (SNPSP systems) of degree
m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over O,

c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . , m} − {i};
– syn ⊆ {1, . . . , m} × {1, . . . , m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
– in, out ∈ {1, . . . , m} indicate the input and output neuron labels.

Given neuron σi (we also say neuron i or simply σi) we denote the set of
neuron labels with σi as their presynaptic (postsynaptic, respectively) neuron as
pres(i), i.e. pres(i) = {j|(i, j) ∈ syn} (as pos(i) = {j|(j, i) ∈ syn}, respectively).
Essentially, |pres(i)| and |pos(i)| is the out- and in-degree of the neuron (i.e.
vertex) σi, respectively. Spiking rules are applied as follows: If neuron σi contains
b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri can be applied.
Applying such a rule means consuming c spikes from σi, thus only b − c spikes
remain in σi. Neuron i sends one spike to every neuron with a label in pres(i) at
the same step as rule application. A writing convention we adopt is as follows:
if a rule E/ac → a has L(E) = {ac}, we simply write this as ac → a.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N is
a collection of neurons to which σi can create a synapse to, or remove a synapse
from, using the applied plasticity rule. The rule consumes c spikes and performs
one of the following, depending on α:

– If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created or
removed. The former case corresponds to the case when σi has a synapse to
all neurons with labels in N , while the latter corresponds to the case when σi

has no more outgoing synapses to delete.
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– for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every
σl, l ∈ Nj − pres(i). If however |N − pres(i)| > k, nondeterministically select
k neurons in N − pres(i), and create one synapse to each selected neuron.

– for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i). If
however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If α := ± (α := ∓, respectively), create (delete, respectively) synapses at step t
and then delete (create, respectively) synapses at step t+1. Only the application
priority of synapse creation or deletion is changed, but the semantics of synapse
creation and deletion remain the same as when α ∈ {+,−}. Neuron i can receive
spikes from t until t + 1, but σi can only apply another rule at time t + 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves a sending of one spike when σi connects to a neuron.
This single spike is sent at the time the synapse creation is applied, i.e. whenever
synapse (i, j) is created between σi and σj during synapse creation, we have σi

immediately transferring one spike to σj .
SNPSP systems are locally sequential (at each step, at most one rule is applied

per neuron) but globally parallel (neurons operate in parallel). Note that the
application of rules in neurons are synchronized, i.e. a global clock is assumed
and if a neuron can apply a rule then it must do so. A configuration of an
SNPSP system is based on (a) distribution of spikes in neurons, and (b) neuron
connections based on syn. For some step t, we can represent: (a) as 〈s1, . . . , sm〉
where si, 1 ≤ i ≤ m, is the number of spikes contained in σi; for (b) we can derive
pres(i) and pos(i) from syn, for a given σi. The initial configuration therefore
is represented as 〈n1, . . . , nm〉, with the possibility of a disconnected graph.

Rule application (as defined above) allows for transitions from one configu-
ration to another. A computation is defined as a sequence of transitions, from an
initial configuration, and following rule application semantics. A computation
halts if the system reaches a halting configuration, i.e. a configuration where no
rules can be applied. The output neuron applying a rule (we also say firing) trig-
gers an output of the system, which will be defined below. The output neuron
sends spikes to the environment, and pres(out) = ∅. The input neuron receives
spikes from the environment and pos(in) = ∅.

An example of an SNPSP system is Π = ({a}, σl, σm, σn, syn, n) where
σl = (1, {a → ±1(l, {m,n}}), σm = σn = (0, {a → a}), syn = {(m,n)}, and
the output neuron is σn. However and in what follows, for the sake of brevity
we omit formally defining the SNPSP system construct. We instead provide a
graphical representation as in Fig. 1. A computation of Π is as follows: the initial

Fig. 1. An SNPSP system Π.
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configuration is 〈1, 0, 0〉 representing the corresponding spike distribution in the
neuron order σl, σm, σn.

Since a ∈ L(a), the plasticity rule of σl can be applied (we denote this as
step t). Since α := ± and k = 1 < |{m,n}|, σl must nondeterministically choose
to create either synapse (l,m) or (l, n) at t. At t therefore we have either the
synapse set syn′ = syn ∪ {(l,m)} or syn′′ = syn ∪ {(l, n)}. Also at t we have σl

immediately sending a spike to σm if (l,m) is created, and the spike distribution
is now 〈0, 1, 0〉. If (l, n) is created, the spike distribution is 〈0, 0, 1〉, since σn

immediately receives a spike from σi during synapse creation. At step t + 1 the
created synapse at t is deleted, since α := ±, so we have syn = {(m,n)} again.
Notice that if (l,m) was created, the single spike is sent out to the environment
(i.e. σn spikes) at step t + 2. Otherwise the spike is sent to the environment at
t + 1 (if (l, n) was created).

4 Solving Subset Sum with SNPSP systems

SNP systems have been used to solve many NP-complete problems, see e.g.
[13–15,17,22]. These solutions are usually categorized as either non-uniform or
uniform solutions. A problem Q is solved in a non-uniform way if for each spec-
ified instance I of Q we build an SNPSP system ΠQ,I , whose structure and
initial configuration depend on I. Furthermore, ΠQ,I halts and the output neu-
ron spikes at a specified time interval if and only if I is a positive instance of
Q. A uniform solution to Q consists of a family {ΠQ(n)}n∈N of SNPSP systems
such that, given an instance I ∈ Q of size n, we introduced a polynomial (in n)
number of spikes in specified (set of) input neuron(s) of ΠQ(n). Again, ΠQ(n)
halts and the output neuron spikes at a specified time, if and only if I is a
positive instance.

More formally, let X = (IX , ΘX) be a decision problem, and g : N → N

a computable function, where IX is a set of instances and ΘX is a predicate
over IX . We say X is solvable by a family Π = {Π(n)|n ∈ N} of SNPSP
systems, in time bounded by g, in a nondeterministic and uniform way (denoted
as X ∈ NSNP(g)) if the following hold:

– The family Π is polynomially uniform by Turing machines, i.e. there exists
a deterministic Turing machine working in polynomial time which constructs
Π(n), n ∈ N.

– There exist polynomial time computable functions, cod and s, over IX , such
that

• For each instance w ∈ IX , s(w) is a natural number, and cod(w) is a valid
input (using some encoding) of the SNPSP system Π(s(w)).

• The family Π is g-bounded with respect to (X, cod, s), i.e. for each instance
w ∈ IX , the minimum length of an accepting computation of Π(s(w)) with
input cod(w) is bounded by g(|w|).

• The family Π is sound with respect to (X, cod, s), i.e. for each w ∈ IX ,
if there exists an accepting computation of Π(s(w)) with input cod(w),
then ΘX(w) = 1.
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• The family Π is complete with respect to (X, cod, s), i.e. for every w ∈ IX ,
if ΘX(w) = 1 then there exists a computation of Π(w) with input cod(w)
which is an accepting computation.

We say X = (IX , ΘX) is solvable in polynomial time by a family Π =
{Π(n)|n ∈ N} of SNPSP systems, in a nondeterministic and uniform way
(denoted as X ∈ NPSNP) if there exists a k ∈ N such that X is solvable
by the family Π in time bounded by a polynomial, in a nondeterministic and
uniform way.

The preference of uniform solutions over non-uniform solutions is given by the
fact that the former are more strictly related to the structure of the problem,
instead of specific instances of the problem. For non-uniform solutions, input
neurons are not needed since the problem instance is embedded in the system
structure (e.g. number of spikes, neurons, or rules) while in uniform solutions,
at least one input neuron is needed to introduce the instance into the system.

Deterministic and nondeterministic solutions (both for non-uniform and uni-
form solutions) can be found in [13–15,17,22]. Note that nondeterministic solu-
tions allow for more “compact” solutions, in terms of the number of neurons
in the system. Unless P = NP, we need exponential space (i.e. neurons) to
deterministically solve hard problems in polynomial time.

The NP-complete problem considered here, Subset sum, can be defined as
follows:
Problem: Subset Sum [10]

– Instance: S, and a (multi)set V = {v1, v2, . . . , vn}, with S, vi ∈ N and
1 ≤ i ≤ n;

– Question: Is there a sub(multi)set B ⊆ V such that
∑
b∈B

b = S?

In [15], the Subset sum problem was also solved in a nondeterministic and
non-uniform way using SNP systems with extended rules: extended rules, as
compared to spiking rules, are of the form E/ac → ap with the meaning that
each step a neuron can produce p ≥ 1 spikes instead of only one spike. Addition-
ally, [15] used some neurons that applied rules sequentially, while some neurons
applied their rules in an exhaustive manner (i.e. it is possible to apply a rule
more than once in one step). A follow-up and improved (uniform) solution was
then given in [14]. There are several ways of encoding an instance of Subset Sum
as the input to the system. Two common ways (used in this work, and as [15]
and [14]) involve either (i) starting with an initial configuration where each σi

stores vi number of spikes, 1 ≤ i ≤ n (for the non-uniform solution), or (ii)
each σini

receives a number of spikes from the environment equal to non-zero
multiples of vi, 1 ≤ i ≤ n (for the uniform solution).

5 A Non-uniform Solution to Subset Sum

We begin by providing a family Π of nondeterministic and non-uniform SNPSP
systems solving Subset Sum in constant time, as given in [7]. Actually, the
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non-uniform solution provided in this section fixes a “bug” in the non-uniform
solution given in [7]. The non-uniform solution provided in [7] indeed solves the
Subset Sum problem, but it is possible for the solution to produce false posi-
tive results. The size of each Π ∈ Π is dependent on the value of n and each
vi, 1 ≤ i ≤ n. The number of neurons is a function of the magnitude of each vi.

The construct of each SNPSP system Πss,I ,Πss ∈ Π, that solves instance I
of the Subset Sum problem is as follows:

Πss,I =
({a},

{
σi, σi(Y ) , σi(N) , σi(j) , σout

∣∣1 ≤ i ≤ n, 1 ≤ j ≤ vi
}
, syn, out

)

where V = {v1, v2, . . . , vn} and we need to check for the value S. We refer
to Fig. 2 for a graphical representation of Πss. Compared to the non-uniform
solution in [15], each Πss has the following normal form (i.e. a simplifying set of
restrictions): (i) simple, i.e. each neuron has exactly one rule; (ii) only synapse-
level nondeterminism, i.e. nondeterministic choice exists only in choosing which
synapse to create and not which rule to apply (known as rule-level nondetermin-
ism; (iii) no forgetting rule or rule with a delay is used.

The initial configuration is where every σi has one spike, and every other
neuron has none. In step 1, each neuron σi nondeterministically chooses to create
either synapse

(
i, i(Y )

)
or

(
i, i(N)

)
. If

(
i, i(N)

)
is created, neuron σi(N) consumes

a spike but has pres
(
i(N)

)
= ∅, hence no more computations can proceed. If(

i, i(Y )

)
is created, then at step 2, σi(Y ) then it sends one spike each to σi(1) to

σi(vi)
, i.e. vi number of spikes are produced since

∣∣pres
(
i(Y )

)∣∣ = vi.
Once neurons σi(1) to σi(vi)

receive one spike each, they send one spike each
to σout at step 3. If exactly S number of spikes are received by σout then σout

will send a spike to the environment. Therefore if an affirmative answer to the
problem instance exists, a spike would be sent to the environment in four steps
since the initial configuration. Otherwise, no spike sent to the environment in
four steps indicates a negative answer to the instance. Whether σout sends a
spike or not, the system still halts in four steps. This ends the description of the
non-uniform solution.

Fig. 2. The non-uniform SNPSP system Πss solving Subset Sum.
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In Πss the computation time is constant (four steps) but the number of
neurons is dependent on the individual values of the input numbers vi, 1 ≤
i ≤ n. In this case, our non-uniform solution using exactly one (plasticity) rule
in some neurons is enough to replace the functions of rules with delays and
forgetting rules in the non-uniform solution in [15]. At the price of extending the
computation time, we obtain a uniform solution in the following section.

6 A Uniform Solution to Subset Sum

Next, we provide a family Π solving Subset Sum in a nondeterministic and
uniform way in constant time. In this case, the system only “knows” the value of
n, while S and each vi, 1 ≤ i ≤ n must be introduced into the system using n+1
input neurons. This uniform family of solutions improves the solution provided
in the previous section and the uniform solution in [15].

Each SNPSP system Πus(n),Πus ∈ Π, that solves instance I of size n of
the problem is illustrated in Fig. 3. We introduce 2vi, 1 ≤ i ≤ n spikes into the
corresponding input neuron ini, while we introduce 2S spikes into inn+1. Figure 3
shows these spikes already present in the n+1 input neurons. These even number
of spikes cannot be used by σini

until a spike is received from σci . Neurons
σci , 1 ≤ i ≤ n are the only neurons with nondeterminism (synapse-level). These
neurons nondeterministically allow their corresponding σini

neurons to spike (if
σci creates synapse (ci, ini)) or not (if σci creates synapse (ci, x)). Note that
there is no σx so that (ci, x) is never actually created.

Neurons σci apply their rules at step 1, and at step 3 neurons ei,1 spike if
they become activated from their corresponding ini neuron. It also takes 3 steps
before σh3 and σh4 begin to spike, starting with the spiking of σh1 at step 1.
Neurons σh3 and σh4 “feed” a spike to each other starting at step 3. A spike is
also sent from σh4 to σt1 (the “comparison trigger” neuron). At step 4 the odd
number of spikes in σt1 , sent by the activated ei,1 neurons and σh4), allows the
use of its forgetting rule to remove all of its spikes.

At step 5 only σh4 sends a spike to σt1 . At step 6, σt1 sends one spike each
to σh4 and σt2 , while σt1 receives one more spike from σh4 . At step 7, σh4 stores
two spikes so it can never spike again, while σt1 sends one more spike to σt2 . At
step 8, σt2 sends a spike to σacc and σnn+1 which become activated with an odd
number of spikes now. Both σacc and σnn+1 empty their spikes (removing two
spikes each step) while sending one spike each to σout.

If the number of spikes accumulated in σacc equals the 2S number of spikes in
σnn+1 , then the system will halt without producing a spike to the environment.
Otherwise, σout will receive one spike from either σacc or σnn+1 and send one
spike to the environment. Halting without σout producing a spike, and halting
with σout producing a spike, corresponds to a positive and negative answer to the
problem instance, respectively. This ends the description of the uniform solution.

The number of neurons is constant, with 4n + 9 neurons. The system halts
in at most 2

∑n
i=1 vi + 6 steps: we have one initial step; at most max{vi|1 ≤ i ≤

n} + 1 to move the spikes from σini
to σt1 ; one step for σt1 to send its first (out
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of two) spike; σacc and σinn+1 become activated after two steps, once σt1 has
sent two spikes; at most

∑n
i=1 vi steps for comparison between the spikes of σacc

and σinn+1 ; the last step is for σout to send one spike to the environment. Since
max{vi|1 ≤ i ≤ n} ≤ ∑n

i=1 vi, we obtain the upper bound for the halting time.

Fig. 3. The uniform SNPSP system Πus solving Subset Sum.

Actually, the forgetting rules in Πus can be removed by using a plasticity rule
that functions like a forgetting rule, which is done by the σci neurons (synapse
(ci, x) is never created). The number of neurons and the halting time will still
remain the same. In comparison, the non-uniform system in [15] solving Subset
Sum (using forgetting rules, rules with delays, and standard rules) computes in
four steps, while their uniform solution halts in at most 3

∑n
i=1 vi+6 steps using

5n + 13 neurons (also using delays, forgetting rules, and standard rules). Thus,
one benefit of using synapse-level nondeterminism in this case is decreasing the
needed neurons by a linear amount. Also in this case, fewer number of neurons
helped improve the computation time: spikes have fewer neurons to pass through,
so the spike of σout is sent to the environment sooner rather than later.

7 Final Remarks

In this work, we fixed the non-uniform solution to Subset Sum in [7] using
SNPSP systems. We also provided a uniform family of solutions to Subset Sum
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using SNPSP systems. The use of plasticity rules in this case allowed for a sim-
plifying set of requirements (i.e. normal form) to be applied to our non-uniform
solution, compared to the non-uniform solution in [15]. In particular, in our
non-uniform solution the plasticity rules could replace forgetting rules and rules
with delays. Our uniform solution decreased the number of neurons compared
to a uniform solution to Subset Sum using SNP systems in [15]. A clear research
direction of interest is to show how to solve other hard problems using plasticity
rules. Also, how do we make better use of the nondeterminism at the synapse
level due to plasticity rules, to perhaps encode problem instances?

Synapse-level nondeterminism in this work provided a reduction in the num-
ber of neurons, but perhaps we can also use plasticity rules to further reduce sys-
tem parameters, e.g. number of neurons, number of rules in neurons, or synapses
in the system. As an extension and future work, we also plan to use SNPSP sys-
tems to solve other hard problems, in particular, combinatorial problems come
to mind: since plasticity rules can (non)deterministically try to create connec-
tions (i.e. synapses), one natural use of such rules is to try different combinations
of connections in order to solve problems. These work extensions will provide
further complexity classes (e.g. semi- or non-uniform) and members of these
classes.
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P systems with structural plasticity. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC
2015. LNCS, vol. 9252, pp. 132–143. Springer, Heidelberg (2015)
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61, av. Général de Gaulle, 94010 Créteil, France
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Abstract. In this paper we extend the definition of a multiset by allow-
ing elements to have multiplicities from an arbitrary totally ordered
Abelian group instead of only using natural numbers. We consider P sys-
tems with such generalized multisets and give well-founded notations for
the applicability of rules and for different derivation modes. These new
definitions raise challenging mathematical questions and we propose sev-
eral solutions yielding models sometimes having quite unexpected behav-
ior. Another interesting application of our results is the possibility to
consider complex objects and to manipulate them directly in a P system
instead of their numerical encodings.

1 Introduction

Recent developments in the P systems area consider objects which can have
a kind of negative quantities. The notions of anti-spike [9] and antimatter [2]
introduce dual objects that “annihilate” if they are present at the same moment
in the configuration. Motivated by these results, the paper [14] asks for a “nega-
tive” extension of multisets in P systems, i.e. replacing the multiset multiplicity
function f : O → N by the function f : O → Z. The question of multisets with
negative and more generally with real coefficients is not new, for example, in [4,5]
a first-order two-sorted theory for such generalized multisets is developed, and
it “contains” the classical ZFC set theory (Zermelo-Fraenkel set theory with the
axiom of choice). Another approach is used in [1] where some properties of mul-
tisets with integer coefficients are obtained. An overview of other attempts to
generalize the concept of multisets can be found in [3].

The challenging part in the definition of a P system working with generalized
multisets is to properly define the notion of the applicability of a rule. In order to
be able to solve this problem we restrict the model to generalized multisets over
Abelian groups with total order and a recursive description. Thus, our multiset
multiplicity function will be of the form f : O → G, where G is such a group. The
recursive description condition allows us to claim that the power of the obtained
model does not go beyond the power of Turing machines. As in ordinary P sys-
tems, the definition of the applicability of rules and multisets of rules takes into
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 117–136, 2015.
DOI: 10.1007/978-3-319-28475-0 9
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account the existence of some resources that cannot be over-consumed. However,
the richer underlying group structure allows us to define several variants for the
applicability of individual rules and multisets of rules which do not always have
an equivalent in the traditional model of P systems. We define three possibili-
ties: the free mode which does not impose any restriction, the ∃ − mode which
requests that at least one resource decreases, and the ∀ − mode which requests
that all resources decrease. The application of multisets of rules can be also
defined in several ways. Together with the traditional interpretation, it becomes
possible to define other variants, for example, allowing multisets of rules to be
applicable even though not all the individual rules contained there are applica-
ble themselves. Another interesting question is the definition of the maximally
parallel derivation mode, which is a rather complex task, because we also have
to deal with negative coefficients. We also remark that traditional P systems
are obtained as a particular case of our model using generalized multisets with
multiplicities from the group (Z,+), additionally restricted to positive values.

An important consequence of our results is that they permit to define P
systems manipulating more complex objects directly. For example, a point (x, y)
in a 2-dimensional plane can be represented directly as a(x,y) and manipulated
directly with rewriting rules, e.g., consider the rule a(1,0) → a(2,2), which moves
the point marked by a from the coordinate (x, y) to the coordinate (x+1, y+2).
Of course, this can be done in traditional P systems by using four objects (for
each half-coordinate) and the corresponding rules, but we think that a direct
representation is more concise and better reflects the computational process.

The paper is organized as follows. Section 2.1 contains the notions we use from
group theory and Sect. 3 defines the concept of generalized multisets over totally
ordered Abelian groups. Section 4 introduces P systems over such generalized
multisets and gives sufficient conditions for the finiteness of the set of applicable
multisets of rules in each step. Section 5 contains several examples using a direct
manipulation of group objects.

2 Definitions

In this section, we first recall some well-known notations. We assume the reader
to be familiar with the underlying notions and concepts from formal language
theory, e.g., see [13], as well as from the area of P systems, e.g., see [10–12]; we
also refer the reader to [15] for actual news in this area. In the second subsection,
we introduce some notions from group theory, e.g., see [7].

2.1 Preliminaries

The set of integers is denoted by Z, and the set of non-negative integers by N.
For an alphabet V , by V ∗ we denote the free monoid generated by V under

the operation of concatenation, i.e., containing all possible strings over V. The
empty string is denoted by λ. A multiset M with underlying set A is a pair (A, f)
where f : A → N is a mapping. If M = (A, f) is a multiset then its support
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is defined as supp(M) = {x ∈ A | f(x) > 0}. A multiset is empty (respectively
finite) if its support is the empty set (respectively a finite set).

A relation over a set A is any subset R ⊆ A × A. We will also use the infix
notation aRb for (a, b) ∈ R.

Given a set A, a total function f : A × A → A is called a binary operation
over A. As for relations, we will also use the infix notation afb to refer to f(a, b),
for a, b ∈ A.

A relation ≤ ⊆ A × A is a called a total order if the following statements
hold for every three elements a, b, c ∈ A:

– antisymmetry: if a ≤ b and b ≤ a then a = b,
– transitivity: if a ≤ b and b ≤ c then a ≤ c,
– totality: either a ≤ b or b ≤a.

For a, b ∈ A and a total order ≤ on A, we will sometimes write b ≥ a as
equivalent to a ≤ b, and use a < b (a > b) to denote that a ≤ b and a 	= b (a ≥ b
and a 	= b).

2.2 Groups and Group Presentations

Groups. Let G = (G′, ◦) be a group with group operation ◦ being a binary
operation. As is well-known, the group axioms are

– closure: for any a, b ∈ G′, a ◦ b ∈ G′,
– associativity: for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
– identity: there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e = a for all a ∈ G′, and
– invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

Moreover, the group is called commutative or Abelian, if for any a, b ∈ G′,
a ◦ b = b ◦ a.

For any element b ∈ G′, the order of b is the smallest number n ∈ N such
that bn = e provided such an n exists, and then we write ord (b) = n; if no such
n exists, {bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) = ∞.

In the following, we will not distinguish between G′ and G if the group
operation is obvious from the context.

A subgroup of the group (G, ◦) is any group (H, ◦) with H ⊆ G and the same
group operation ◦.

Representation of Groups. For representing group elements we can use
strings; the definitions and examples from group theory we exhibit now follow
the exposition given in [2], based on the notions in [7].

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings in(

B ∪ B−1
)∗ and two strings as different unless their equality follows from the
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group axioms, i.e., for any a, b, c ∈ (
B ∪ B−1

)∗, a ◦ b ◦ b−1 ◦ c = a ◦ c; using these
reductions, we obtain a set of irreducible strings from those in

(
B ∪ B−1

)∗,
the set of which we denote by I (B). Then the free group generated by B is
F (B) = (I (B) , ◦) with the elements being the irreducible strings over B ∪ B−1

and the group operation to be interpreted as the usual string concatenation,
yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group G
if every element a from G can be written as a finite product/sum of elements from
B, i.e., a = b1 ◦ · · · ◦ bm for b1, . . . , bm ∈ B. In this paper, we restrict ourselves to
finitely presented groups, i.e., having a finite presentation 〈B | R〉 with B being
a finite generator set and moreover, R being a finite set of relations among these
generators. In a similar way as in the definition of the free group generated by B,
we here consider the strings in B∗ to be reduced according to the group axioms
and the relations given in R. Informally, the group G = 〈B | R〉 is the largest
one generated by B subject only to the group axioms and the relations in R.
Formally, we will restrict ourselves to relations of the form b1 ◦ · · · ◦ bm = c−1

with b1, . . . , bm, c ∈ B, which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e;
hence, instead of such relations we may specify R by strings over B yielding the
group identity, i.e., instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these
strings then are called relators).

Example 1. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 2. The cyclic group of order n has the presentation 〈{a} | {an}〉 (or,
omitting the set brackets, written as 〈a | an〉); it is also known as Zn or as the
quotient group Z/Zn.

Example 3. Z is a special case of an Abelian group generated by (1) and its
inverse (−1), i.e., Z is the free group generated by (1). Zd is an Abelian group
generated by the unit vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group where the torsion group may be written
as a direct sum of finitely many groups of the form Z/pk

Z for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z.

Example 4. A very well-known example for a non-Abelian group is the hexagonal
group with the finite presentation

〈
a, b, c | a2, b2, c2

〉
. All three generators a, b, c

are self-inverse.

Remark 1. Given a finite presentation of a group 〈B | R〉, in general it is not even
decidable whether the group presented in that way is finite or infinite. Hence,
in this paper we restrict ourselves to infinite groups where the word equivalence
problem u = v is decidable, or equivalently, there is a decision procedure telling
us whether, given two strings u and v, u ◦ v−1 = e. In that case, we call 〈B | R〉
a recursive or computable finite group presentation.
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Remark 2. In general, as long as we have given the group by a computable finite
presentation, for a mechanism having the full power of Turing computability,
we can require that the “strings” computed are irreducible ones. Hence, for
a given recursively enumerable set L of elements over the computable finite
presentation 〈B | R〉 of a group, such a mechanism can generate the irreducible
string representations of the elements in L and also compute recursive relations
on them.

For an additive group (G,+), where the group operation can be interpreted
as addition, the sum a + (−b) is often written as a − b, and e is replaced by 0,
whenever no ambiguity arises. The following shortcut notations are also fre-
quently used, for a ∈ G and z ∈ Z defining the scalar product of a group element
a with an integer number z:

za =

⎧
⎪⎨

⎪⎩

az =
∑n

i=1 a, z > 0,

a0 = 0 (group identity), z = 0,

(−a)−z =
∑n

i=1(−a), z < 0.

A linearly or totally ordered group is construct (A,+,≤) where (A,+) is a
group, ≤ ⊆ A × A is a total order on A and, for any triple a, b, c ∈ A, the fact
that a ≤ b implies that c + a ≤ c + b and a + c ≤ b + c.

A linearly ordered group (A,+,≤) is said to be Archimedean, if for every
a, b ∈ A there exists an n ∈ N such that b ≤ na holds.

Remark 3. An equivalent definition is that an Archimedean group is a linearly
ordered group without any bounded cyclic subgroup (i.e., there does not exist a
cyclic subgroup S and an element x with x greater than all elements in S).

Remark 4. As is well known, an Archimedean group is isomorphic to a subgroup
of the field of real numbers, and therefore any Archimedean group is an Abelian
group, too.

Example 5. A typical example for an Archimedean group (with a computable
finite presentation) is (Z,+,≤) with the normal order relation ≤; on the other
hand, for n > 1, (Zn,+,≤) with the lexicographic ordering ≤ is a totally ordered
Abelian group, but not Archimedean.

3 Generalized Multisets over an Abelian Group

Given an Abelian group (G,+), a generalized multiset over G or a G−multiset
over a finite alphabet V is a mapping h : V → G. For any a ∈ G, h(a) denotes
the coefficient of a in h considered as a formal power series Σx∈V h(x)x, and in
the sense of multisets, h(a) will also be called the multiplicity of a in h. The
support of h is defined as the set of objects which have nonzero multiplicity in
h: supp(h) = {a ∈ V | h(a) 	= 0}, where 0 ∈ G is the identity in G. We will
denote the empty G-multiset by 0, i.e., 0(a) = 0, for all a ∈ V . The set of all
G-multisets over the alphabet V will be denoted by V G.
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The union of two G-multisets h1 and h2 over the same alphabet V is defined
as the G-multiset h1 + h2 with the property that (h1 + h2)(a) = h1(a) + h2(a),
for all a ∈ V . Symmetrically, the difference of h1 and h2 is defined as the G-
multiset h1 − h2 such that (h1 − h2)(a) = h1(a) − h2(a), for all a ∈ V . Thus, all
G-multisets over V form the Abelian group (V G,+) with the identity element
0 and −h as the inverse of h. By fixing an enumeration of the elements of V ,
each G-multiset over V can be represented as a vector of size |V | containing
elements of G as components, i.e., an element h ∈ (V G,+) can also be written
as a vector (h(a1), . . . , h(an)) where 〈a1, . . . , an〉 is an ordered version of the
alphabet V = {a1, . . . , an}. In that sense, (V G,+) is a vector space over V
with scalar multiplication over Z. If G is totally ordered, (V G,+) is also totally
ordered with respect to the lexicographical ordering.

Conventional multisets can be seen as (Z,+)-multisets additionally restricted
to non-negative multiplicities. With this constraint, the submultiset relation can
be defined in the usual way, and submultiset difference h1 −h2 can be restricted
to the cases in which h2 is a submultiset of h1.

4 P Systems with Multisets over a Totally Ordered
Abelian Group

Given a totally ordered Abelian group G and a finite alphabet V , we
first define three variants for rewriting a G-multiset w over V by a V G −
multiset rewriting rule u → v, where u, v ∈ V G:

Definition 1. Let G be a totally ordered Abelian group G and V a finite alpha-
bet, then a V G − multiset rewriting rule u → v, where u, v ∈ V G, is said to
be

– ∀ − applicable to w ∈ V G if and only if for all a ∈ V such that u(a) 	= 0, the
following holds:

u(a) > 0 and u(a) ≤ w(a) or u(a) < 0 and − u(a) ≤ −w(a).

– ∃ − applicable to w ∈ V G if and only if there exists an a ∈ V such that
u(a) 	= 0, the following holds:

u(a) > 0 and u(a) ≤ w(a) oru(a) < 0 and − u(a) ≤ −w(a).

– freely applicable to w ∈ V G.

The result of the application of the rule u → v to w in any variant of applicability
is w − u + v.

We remark that the conditions for the ∀-applicability and for the ∃-appli-
cability of a rule are identical, except for the objects against which they are
checked.
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4.1 P Systems

In order to keep definitions more readable, we here only define P systems with
only one membrane region, i.e., we need not define the membrane structure and
the communication of multisets through membranes.

Definition 2. For a totally ordered Abelian group (G,+), a P system with gen-
eralized multisets is a tuple

ΠG = (O, T,w0, R) where

– O is a finite alphabet of objects,
– T ⊆ O is the alphabet of terminal objects,
– w0 is the initial contents of the skin region of the system, and
– R is a finite set of OG-multiset rewriting rules of the form u → v, where u 	= 0

and v are OG-multisets.

Definition 3. For a multiset of OG-multiset rewriting rules R, we define the
following shortcut notations:

LHS(R) =
∑

u→v∈R

u and RHS(R) =
∑

u→v∈R

v.

A configuration of ΠG is described by the OG-multiset contained in the skin
region. Applying a multiset P of rules from R to a configuration w leads to a
new configuration w′ defined as

w′ = w − LHS(P ) + RHS(P )

for all the three variants for the application of the rule LHS(P ) → RHS(P )
as defined in Definition 1, i.e., we take the multiset of rules to get one bigger
rule to be applied in these three ways, with the applicability in the ∀- and ∃-case
being constrained by the conditions on all elements or on one element from O
as defined there.

Example 6. In this example we will show that in the ∀-mode and the ∃-mode the
applicability of a multiset of rules can differ from the applicability of individual
rules. Consider the following P system Π over (Z,+,≤):

Π = ({a, b, c}, {a, b, c}, ac,R), where R = {r1 : ab → c; r2 : cb−1 → a}.

Then it is clear that neither r1 nor r2 is ∃- or ∀-applicable to ac. At the same
time, the multiset of rules r1r2 is both ∃- and ∀-applicable to ac as b and b−1

will reduce to zero.

Definition 4. A derivation in ΠG is a sequence of configurations w0, w1, . . . , wn

with wi ∈ OG and in which wi+1 is obtained from wi by applying a subset of
rules Pi ⊆ R according to the strategy for choosing the subsets Pi which is called
the derivation mode, variants of which will be defined and discussed later. The
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last configuration of a derivation that also fulfills the halting condition is called
a halting configuration. We remark that usually the total halting condition is
considered checking that no multiset of rules taken according to the derivation
mode is applicable any more. The result of a halting derivation is the projection
of the contents of the skin in the halting configuration on T , i.e., if wn ∈ OG,
then the result wT in TG is obtained by taking wT (a) = wn(a) for a ∈ T and
wT (a) = 0 for a ∈ O \ T .

The set of TG-multisets computed by ΠG as results of halting derivations
using the α-mode of rule application in the derivation mode δ with the halting
condition τ is denoted by Lα,δ,τ (ΠG), where α ∈ {free,∀,∃} are the three vari-
ants of rule application as defined in Definition 1. In the case of the total halting
condition we will omit τ .

4.2 Derivation Modes

In general, no applicability conditions would be required for G-multiset rewrit-
ing rules to be applied, because multiset difference is defined for any pair of
G-multisets, which is reflected by the variant of free rule application. Yet with-
out any applicability condition, every rule is applicable to any configuration of
a P system. Generalizing the idea of limited resources usually employed in con-
ventional P systems, the two rule applicability variants α ∈ {∀,∃} have been
defined in Definition 1.

In the case of conventional multisets restrained to non-negative numbers
exclusively, the ∀-applicability translates to the usual applicability condition
requiring the sum of the left-hand sides of a rule to be a submultiset of the
current contents of the skin region, whereas the ∃-applicability is very much
different.

Definition 5. Let (G,+) be a totally ordered Abelian group and let ΠG =
(O, T,w0, R) be a P system with G-multisets over O; then for any configuration
C of Π the set of applicable multisets of rules taken from R in the α-mode of
rule applicability, α ∈ {free,∀,∃}, is denoted by Asynα(C). The asynchronous
derivation mode then is defined by applying any multiset of rules from Asynα(C)
in a derivation step in Π from C.

Definition 6. The sequential derivation mode is defined as the mode in which
exactly one rule is applied in every derivation step – according to the α-mode of
rule application, α ∈ {free,∀,∃}.

The sequential mode of conventional P systems is generalized by the ∀-
sequential mode in P systems with generalized multisets.

The three different approaches to defining rule application can be directly
used to generalize even other derivation modes in which the size of multisets of
rules applied in every configuration is statically bounded, like the k-restricted
minimal parallelism.

On the other hand, for the maximally parallel mode further constraints on
the choice of rules are necessary, because otherwise, even with ∀-applicability, the
number of multisets of rules applicable to a given configuration may be infinite:
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Example 7. Consider the two-letter alphabet O = {a, b}, the Archimedean group
(Z,+,≤), and the following three Z-multisets over O: w, u1, and u2, with w(a) =
1, u1(a) = 1, u2(a) = −2, and w(b) = u1(b) = u2(b) = 0. Take two OZ-multiset
rewriting rules r1 and r2 having u1 and u2 as left-hand sides, respectively. Then
any multiset of rules from the infinite set {ri

1r
j
2 | i = 2j + 1, j ∈ N} will be ∀-

applicable to w, i.e., even Asyn∀(w) is infinite and thus there will be no multiset
of rules which cannot be extended.

In fact, we want to avoid such a situation during a computation, and so our
first approach for getting a maximality condition on applicable multisets of rules
is what we call dynamic maximality, defined as follows:

(a) only consider such ∀-applicable multisets of rules in R so that, for any non-
empty submultiset R′, LHS(R′) 	= 0, and

(b) whenever the set of ∀-applicable multisets is infinite, no rules are applied
and the system halts.

In our previous example with the configuration w and the rules r1 and r2, we
would not be able to consider any multiset of rules which includes r21r2, because
LHS(r21r2) = 0. The number of applicable multisets of rules in this case would
be finite. We also remark that dynamic maximality does not statically forbid
rules which may lead to a lock-up of the system. So, for example, if the P system
is in configuration w with w(a) = 0 and w(b) 	= 0 and has a rule acting on the
object b, the rules r1 and r2 will not be ∀-applicable and the system can evolve.

Condition (a) from above makes sense in general, so all derivation modes
could be defined with requiring this condition for all multisets of rules called to
be applicable:

Definition 7. Let (G,+) be a totally ordered Abelian group and let ΠG =
(O, T,w0, R) be a P system with G-multisets over O; then for any configuration
C of Π the set of applicable multisets of rules taken from R and also fulfilling
the condition that for any non-empty submultiset R′ ⊆ R, LHS(R′) 	= 0, in
the α-mode of rule applicability, α ∈ {free,∀,∃}, is denoted by Asyn+

α (C). The
asynchronous+mode of derivation then is defined by applying any multiset of
rules from Asyn+

α (C) in a derivation step in Π from C.

We can even put stronger conditions on the applicability of rules:

Definition 8. Let (G,+) be a totally ordered Abelian group and let ΠG =
(O, T,w0, R) be a P system with G-multisets over O; then for any configura-
tion C of Π the set Asyn++

α (C) ⊆ Asyn+
α (C) contains all rules u → v from

Asyn+
α (C), α ∈ {free,∀,∃}, such that for all a ∈ O, u(a) ≥ 0 if C(a) ≥ 0 and

u(a) < 0 if C(a) < 0. The asynchronous++mode of derivation then is defined
by applying any multiset of rules from Asyn++

α (C) in a derivation step in Π
from C.

Based on this definition of Asyn+
α (C) and Asyn++

α (C), our second approach
to getting a maximality condition which guarantees that in any case we can get
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a finite set of rules applicable in the maximally parallel way, is to require an
additional feature for the underlying group.

We first define a partial order relation on vectors over a totally ordered
Abelian group based on comparing the values of each component.

Definition 9. Let (G,+,≤) be a totally ordered Abelian group. Then we define
the partial order relation ≤c on vectors over G as follows: Let u and v be two non-
zero n-dimensional vectors over G with all components being non-negative, i.e.,
u = (u1, . . . , un), v = (v1, . . . , vn), uj ≥ 0 and vj ≥ 0, 1 ≤ j ≤ n,

∑n
i=1 ui > 0

and
∑n

i=1 vi > 0, then we say that (u1, . . . , un) ≤c (v1, . . . , vn) if and only if
uj ≤ vj for all 1 ≤ j ≤ n.

This componentwise comparison of two vectors which are non-negative can
be extended to arbitrary vectors having in mind the typical concept of reducing
resources, but now from any side of zero in each component.

Definition 10. For a totally ordered Abelian group (G,+,≤) we define the
signum function sg : G → {−1, 0, 1} as follows:

sg(x) =

⎧
⎪⎨

⎪⎩

1, if x > 0,

0, if x = 0,

−1, if x < 0.

We extend this function to n-dimensional vectors over G as follows: for an
n-dimensional vector v = (v1, . . . , vn) over G, we define sg((v1, . . . , vn)) =
(sg(v1), . . . , sg(vn)).

Definition 11. Let (G,+,≤) be a totally ordered Abelian group. Then we define
the partial order relation ≤sg−c on vectors over G as follows: Let u and v be two
arbitrary n-dimensional vectors over G, u = (u1, . . . , un), v = (v1, . . . , vn); then
we say that (u1, . . . , un) ≤sg−c (v1, . . . , vn) if and only if for all 1 ≤ j ≤ n,

sg(uj)sg(vj) ≥ 0 and sg(uj)uj ≤ sg(vj)vj .

Remark 5. We observe that, in the preceding definition, sg(uj)uj ≤ sg(vj)vj

can also be written as |uj | ≤ |vj |. Moreover, using the Hadamard product �,
i.e., multiplying vectors component-wise, u ≤sg−c v can also be defined by the
conditions sg(u) � sg(v) ≥ 0 and sg(u) � u ≤ sg(v) � v.

Definition 12. Let (G,+,≤) be a totally ordered Abelian group. G is called a
P − group if and only if the following condition holds:

– Let r1, . . . , rk be any non-empty set of non-zero n-dimensional vectors over
G with all components being non-negative and let r be any arbitrary n-
dimensional vector over G with all components being non-negative. Then
the inequality

k∑

i=1

xiri ≤c r

only has a finite number of solutions (x1, . . . , xk) in N
k.
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Example 8. Consider (Zn,+,≤) with ≤ being the following order relation: For
two vectors u, v ∈ Z

n, u 	= v, u ≤ v if and only if ||u|| < ||v|| or ||u|| = ||v||
and u < v with respect to the lexicographic ordering <. Then (Zn,+,≤) is a
P -group. As norm ||u|| of a vector u = (u1, . . . , un) we can take the maximum
norm defined as ||u|| = max{u1, . . . , un}.

Lemma 1. Let (G,+,≤) be a P -group. Then G is Archimedean.

Proof. Consider w, v ∈ G with both being positive. Then according to the P -
condition for G, the inequality xw ≤ v only has finitely many solutions for
x ∈ N. Let n be the maximal solution; then (n + 1)w > v, which proves that G
is Archimedean. ��

Yet for totally ordered Abelian groups, also the converse of this lemma is
true.

Lemma 2. Let (G,+,≤) be an Archimedean group. Then G is a P -group, too.

Proof. Let r1, . . . , rk be any set of non-zero n-dimensional vectors over G with
all components being non-negative and let r be any arbitrary n-dimensional
vector over G with all components being non-negative. If a component j of r
is zero, then any solution with xi > 0 implies ri(j) = 0. Now let r(j) > 0. If
ri(j) = 0 for all 1 ≤ i ≤ k, then obviously for this component the desired order
relation will always be fulfilled. Yet as all the vectors ri are non-zero, there
must be a component ji such that ri(ji) > 0, and let r(ji) > 0. Due to the
Archimedean property of the group G, there must exist a natural number mi

such that miri(ji) > r(ji) > 0. Hence, for every solution (x1, . . . , xk) in N
k of

the inequality
k∑

i=1

xiri ≤c r

we must have 0 ≤ xi < mi for all 1 ≤ i ≤ k. As the number of such vectors
obviously is finite, we conclude that G is a P -group. ��
Lemma 3. Let (G,+,≤) be a P -group and ΠG = (O, T,w0, R) be a P system
with G-multisets over O. Then for any configuration C of Π the set Asyn++

∀ (C)
is finite.

Proof. Consider a configuration C of ΠG and a multiset of rules P . Then con-
struct the corresponding G-multiset C ′ with C ′(a) = C(a) for C(a) ≥ 0 and
C ′(a) = −C(a) for C(a) < 0, i.e., we take C ′ := sg(C) � C. For any rule
ri from P we construct the corresponding rule r′

i in the same way, i.e., we
take r′

i := sg(ri) � ri. According to the definition of a P -group, the inequality
x1r

′
1+. . .+xnr′

n ≤c C ′ has only finitely many solutions over N, which themselves
constitute the – finite – set Asyn++

∀ (C). We observe that taking Asyn++
∀ (C)

guarantees that all the ri are approaching each component of C from the same
side of the zero element, hence, summing up the left-hand sides of the rules yields
the same effect as summing up the absolute values of them. ��
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As according to Lemma 3 the set Asyn++
∀ (C) must be finite, the set of non-

extendable rules in Asyn++
∀ (C) must be finite, too; hence, it is a well-defined

finite set.

Definition 13. Let (G,+,≤) be a P -group and ΠG = (O, T,w0, R) be a P
system with G-multisets over O. Then for any configuration C of Π, the set
of all non-extendable multisets from Asyn++

∀ (C) is denoted by MaxparP++
∀ (C).

The maximally parallel derivation mode maxparP++
∀ then is defined by applying

any multiset of rules from MaxparP++
∀ (C) in a derivation step in Π from C.

Remark 6. If we only consider non-negative components in the vectors repre-
senting rules and configurations, then our model with Asyn++

∀ (C) in a P system
over a P -group directly corresponds to the usual concept of P systems, except
that now we are dealing with generalized multisets. Moreover, the derivation
mode maxparP++

∀ corresponds to the “classical” maximally parallel derivation
mode.

Remark 7. In some sense, Lemma 3 corresponds to the representation of negative
multiplicities by using antimatter. In fact, for any rule either positive or negative
components can be used, but not both at the same time. This is equivalent to
having two non-negative components encoding the positive and the negative
part of the original component (of course, both of them cannot be positive at
the same time).

As we want to deal with negative multiplicities directly, we want to consider
Asyn+

∀ (C) and not Asyn++
∀ (C) and therefore need a stricter variant of P -groups:

Definition 14. Let (G,+,≤) be a totally ordered Abelian group (G,+,≤). G is
called a GP − group if and only if the following condition holds:

– Let r1, . . . , rk, k > 0, be any set of n-dimensional vectors over G and let r
be any arbitrary n-dimensional vector over G. Then the inequality

k∑

i=1

xiri ≤sg−c r

only has a finite number of solutions (x1, . . . , xk) in N
k fulfilling the condition

that

for all non-zero vectors (y1, . . . , yk) over G with
(0, . . . , 0) ≤c (y1, . . . , yk) ≤c (x1, . . . , xk) we have

∑k
i=1 yiri 	= 0. (∗)

We immediately observe that for non-negative vectors the condition for the
GP -group reduces to the condition in the P -group, as in this case ≤c coincides
with ≤sg−c.

Lemma 4. Let (G,+,≤) be a GP-group. Then G is a P-group, too.
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Proof. Let r1, . . . , rk be any set of non-zero n-dimensional vectors over G with all
components being non-negative and let r be any arbitrary n-dimensional vector
over G with all components being non-negative. The inequality

k∑

i=1

xiri ≤sg−c r

then can also be written as
k∑

i=1

xiri ≤c r

and, moreover, condition (∗) must also be fulfilled, as the sum
∑k

i=1 xiri is always
non-negative. Hence, from the GP -condition being fulfilled we immediately infer
that the P -condition must be fulfilled, too, i.e., the inequality only has finitely
many solutions. ��
Lemma 5. Let (G,+,≤) be a GP -group and ΠG = (O, T,w0, R) be a P system
with G-multisets over O, then for any configuration C of Π the set Asyn+

∀ (C)
is finite.

Proof. Let |O| = n and |R| = k. We define Li := LHS(ri), 1 ≤ i ≤ k, for some
enumeration of rules of R. Obviously, C and each Li, 1 ≤ i ≤ k, can be seen as
members of the n-dimensional vector space over G. From the definition of the
GP -group we conclude that the inequality

k∑

i=1

xiLi ≤sg−c C

has only a finite number of solutions (x1, . . . , xk) satisfying condition (∗).
We remark that the multiplicities of elements for any multiset of rules R′ ∈
Asyn∀(C) can be seen as a vector (v1, . . . , vk) ∈ N

k. Using the previous inequal-
ity we obtain that there are only a finite number of elements in Asyn∀(C) that
satisfy condition (∗). The remaining elements in R′ ∈ Asyn∀(C) do not satisfy it,
so for each such element R′ there must exist a vector (y1, . . . , yk) ∈ N

k such that∑k
i=1 yiLi = 0. But this implies that there exists a submultiset R′′ ⊆ R′ such

that LHS(R′′) = 0. Now consider Asyn+
∀ (C). Since it contains only multisets of

rules R′ such that there are no submultisets R′′ ⊆ R′ having LHS(R′′) = 0 we
immediately obtain that Asyn+

∀ (C) is finite. ��
Definition 15. Let (G,+,≤) be a GP -group and ΠG = (O, T,w0, R) be a P
system with G-multisets over O. Then for any configuration C of Π, the set of
all non-extendable multisets from Asyn+

∀ (C) is denoted by MaxparGP+
∀ (C). The

maximally parallel derivation mode maxparGP+
∀ then is defined by applying any

multiset of rules from MaxparGP+
∀ (C) in a derivation step in Π from C.

As according to Lemma 5 the set Asyn+
∀ (C) must be finite, the set of non-

extendable rules in Asyn+
∀ (C) must be finite, too; hence, this set MaxparP+

∀ (C)
is a well-defined finite set.
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We now prove that the “standard” example of an Archimedean group, namely
(Zn,+,≤), is a GP-group.

Lemma 6. (Zn,+,≤) is a GP-group.

Proof. Consider arbitrary d-dimensional vectors r1, . . . , rk, r over Z
n. Consider

the polytope P delimited by r and the hyperplanes parallel to the coordinate
axes. Since P is closed, it only contains a finite number of points. Denote
P (x1, . . . , xn) =

∑k
i=1 xiri. Let S ⊆ N

k be the set of vectors such that any
(x1, . . . , xn) ∈ S satisfies the inequality

∑k
i=1 xiri ≤sg−c r and the condition

(∗). Then it is clear that P (x1, . . . , xn) must belong to P. We claim that S is
finite. We shall prove this statement by contradiction:

Assume that S is infinite. Since P is finite, by the pigeonhole principle there
exists an infinite number of vectors v1, v2, · · · ∈ S such that P (v1) = P (v2) =
. . . = P (v). Now by the pigeonhole principle applied to the vector components
there must be infinitely many of them with the same signum vector sg (u). Let
us list these vectors as u1, u2, . . . . Then, again using the pigeonhole principle
applied to the vector components, we obtain that for any vector ui there exists
a vector uj such that ui(m) < uj(m) for some m, 1 ≤ m ≤ k. As we only
have a finite number of components, among all those vectors there must exist
some ui and uj such that ui ≤sg−c uj . Hence, we obtain that there exist two
vectors ui, uj ∈ S such that P (ui) = P (uj) and ui ≤sg−c uj . But in this case
P (uj − ui) = 0 contradicts condition (∗). ��

5 Examples

In this section we will give some examples of how P systems with generalized
multisets can directly manipulate complex objects. We will model the movement
of a chess knight on an infinite two-dimensional plane. To represent the position
of the knight, we will use two-component integer tuples from the Archimedean
group (Z2,+,≤) as defined in Example 8.

We explicitly define the set of coordinate offsets corresponding to the eight
possible knight moves as follows:

J = {(i, j) : |i| = 3 − |j|, j ∈ {1, 2}}.

For illustration purposes only, we will allow rules with empty left-hand sides
in our first example. In such a rule the multiplicity of every symbol in the left-
hand side is the zero element of the group. Recall that usually such rules are not
allowed in our model.

Example 9. Consider the following P system with Z
2-multisets:

Π1 = ({a}, {a}, a(0,0), R1),
R1 = {a(0,0) → av | v ∈ J},

working in the sequential derivation mode and an α-mode of rule applicability,
with α ∈ {free,∀,∃}. The multiplicity of a in a configuration represents the
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current position of the knight. Any of the rules in R1 is applicable to any con-
figuration of Π1, and an application of any one of them corresponds to a knight
move. Unconditional halting can be employed to assure that the system stops.

Remark that in the case of rules with empty left-hand sides, ∃- and ∀-
applicability conditions essentially reduce to free applicability. To avoid such
rules, we can rely on a special object which behaves similarly to a catalyst in
conventional P systems.

Example 10. Consider the following P system with Z
2-multisets:

Π2 = ({a, c}, {a}, cxa(0,0), R2),
R2 = {cxa(0,0) → cxav | v ∈ J},

where x ∈ Z
2 and x 	= (0, 0). With ∀-applicability, at most one rule from R2

can be applied to any configuration, because every rule from R2 consumes and
reproduces cx. Thus, even in a parallel derivation mode, the activity of Π2 will
be sequential. Halting can be achieved by adding the rule cxa(0,0) → c(0,0)a(0,0),
which may “erase” c whenever the knight reaches the origin (the multiplicity of
a is (0, 0)).

It also is possible to stay off empty left-hand sides without adding the
“catalyst”, by specifying the coordinate offsets for all four elements of I =
{(1, 0), (0, 1), (−1, 0), (0,−1)}.

Example 11. Consider the following P system with generalized multisets:

Π3 = ({a}, {a}, au0 , R3),
R3 = {a(x,y) → a(z,t) | (x, y) ∈ I, (z − x, t − y) ∈ J},

where u0 ∈ Z
2, and u0 	= (0, 0). The set R3 contains a rule per each element

of I, per each possible knight movement. This is necessary to allow the knight
to move throughout the whole plane under ∃- and ∀-applicability: indeed, with
these conditions, the rules with a(1,0) in the left-hand side will only be applicable
when the knight is in the half-plane to the right of the vertical axis, and will
not be applicable when the knight is to the left of the vertical axis or right on
it, because in these two cases the configuration of Π3 will have the form a(u,0),
with u ≤ 0.

Since Π3 does not employ a “catalyst”, its behaviour in a parallel mode with
∀-applicability is very different from that of Π2. Suppose that the knight is at
position (i, j), with i > 0 and j > 0; the corresponding configuration of Π3 will
be a(i,j). The rules for R3 which are ∀-applicable in this configuration are of the
forms a(1,0) → a(z,t) and a(0,1) → a(z,t); the multiset of rules to be applied can
therefore contain i rules of the first type and j rules of the second. But since
each rule corresponds to a knight move, this means that, in a parallel mode with
∀-applicability, the knight may make up to i+j moves in a single evolution step.
In other words, the farther the knight is from origin, the faster it can move.
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Fig. 1. A possible choice of the multiset of rules to be applied in configuration a(i,j).
The segments correspond to the left-hand sides of the form a(1,0), while the seg-
ments correspond to the left-hand sides of the form a(0,1).

Figure 1 illustrates the way in which the position of the knight relative to the
origin influences the form of applicable multisets of rules.

We remark that in the case of one-symbol alphabets, like that of Π3, the ∃-
and ∀-applicability conditions are effectively equivalent. This means that all of
the arguments about Π3 from the previous paragraph are valid for a parallel
derivation mode with ∃-applicability as well.

In the case of a P system over a GP -group and a parallel mode in which
∀-applicability is required for the whole multiset of rules, but not for each rule
individually, the simulation of knight movement can be done in a yet different
way. Instead of having four rules per each move, it is possible to only have one
rule per move, and to make use of special compensation rules.

Example 12. Consider the following P system with generalized multisets:

Π4 = ({a}, {a}, au0 , R4),
R4 = {a(1,0) → a(z,t) | (z − 1, t) ∈ J} ∪ R′

4,
R′

4 =
{
av → av | v ∈ {(−2, 0), (−1, 1), (−1,−1)}},

working in a parallel mode with ∀-applicability, where u0 ∈ Z
2, and u0 	= (0, 0).

Remember that the rules of the form r : a(1,0) → a(z,t) are not applicable when
the knight is in the second quadrant, for example. However, in this case it is
possible to consider the multiset of rules containing an instance of r and of the
compensation rule a(−2,0) → a(−2,0). The total left-hand side of this two-element
multiset will be a(−1,0), so this multiset will be applicable whenever the knight
is to the left of the vertical axis. On the other hand, the total right-hand side
will be a(z−2,t), and the total effect of applying these two rules at the same time
will be displacing the knight by (z − 1, t), which is precisely the effect of r when
it is applied alone.

While the rules of the form a(1,0) → (z, t) together with the compensation rule
a(−2,0) → a(−2,0) can simulate knight moves in both the half-planes delimited
by the vertical axis, they cannot handle the situations in which the knight is on
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the axis itself, because in those situations the configuration of Π4 has the form
a(0,y). The compensation rules av → av with v ∈ {(−1, 1), (−1,−1)} are meant
to handle precisely these cases. Indeed, when the knight is at the coordinates
(0, y) with y > 0, one may consider the multiset of rules including an instance of
a(1,0) → a(z,t) and an instance of a(−1,1) → a(−1,1). The total left-hand side will
be a(0,1), so the multiset of rules will be applicable to a(0,y), while the cumulative
effect will amount to doing the move (z − 1, t). Similarly, the compensation rule
a(−1,−1) → a(−1,−1) helps to handle the situations in which the knight is at the
coordinates (0, y) for y < 0.

We stress once again the fact that in Π4 it is the rules of the form
a(1,0) → a(z,t) that actually modify the configurations of the system. Compensa-
tion rules only matter when multisets of applicable rules are picked and do not
by themselves cause any displacement of the knight.

Besides structural dissimilarities between Π3 and Π4, we remark that the
dynamic characteristics of the two systems working in parallel modes are quite
different as well. In Π3, the number of rules applied in one step depends on the
distance of the knight from the origin. In Π4, however, the condition that no
submultisets of the applied multiset of rules are allowed to have zero total left-
hand side comes into play. It means that not more than one rule r : a(1,0) → a(z,t)

can be applied in one step if the compensation rule a(−2,0) → a(−2,0) is used.
Indeed if this compensation rule is combined with two instances of r, the total
left-hand side of the group will be a(0,0). This issue does not affect the other two
compensation rules, because, when put together with instances of r, they always
yield a non-zero total left-hand side.

Therefore, in Π4 working in the maximally parallel mode with ∀-applicability,
the knight performs “supermoves” in the right half-plane and on the vertical axis,
just like in Π3, while in the left half-plane it may only do one movement per
evolution step of the system.

Due to the restriction that no multiset of rules which has zero total left-hand
side can be applied in a parallel mode, both the systems Π3 and Π4 from the
previous two examples halt whenever the knight reaches the origin. This can
be avoided by adding “catalytic” rules, similar to those shown in the definition
of Π2.

Example 13. Consider the following P system with generalized multisets:

Π5 = ({a, c}, {a}, cxa(0,0), R5),
R5 = {c(0,0)u → c(0,0)v | u → v ∈ R4} ∪ R′

5,
R′

5 = {cxa(0,0) → cxav | v ∈ J},

working in a parallel mode with ∀-applicability. The rules of the form c(0,0)u →
c(0,0)v are essentially the rules from R4 lifted to employ the “catalyst”. Remark
that these rules do not actually use c: it appears with multiplicity (0, 0) in both
the left-hand and in the right-hand sides, and it has therefore no effect on the
way in which these rules are picked for application. This means that these lifted
rules assure precisely the same behavior of the system as those from R4. The
rules from R′

5, on the other hand, do make use of the catalyst to allow the knight
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to leave the origin. By putting the lifted rules together with those from R′
5, we

assure that the knight can move throughout the plane unhindered.
The side effect of having the additional rules from R′

5 in Π5 is that, in the
maximally parallel mode, these rules will be applicable once to any configuration.
Thus, in Π5 with maximal parallelism, the knight always makes one move more
than in Π4.

We will now give a more complex example of a P system with generalized
multisets which simulates the simultaneous movement of two knights, and which
halts when the two knights reach the same position in the plane. We will employ
maximal parallelism with ∀-applicability, and will prefer to allow the two knights
to make multiple moves in a single evolution step. To achieve proper synchro-
nization, we will use rules with priorities, defined as in the case of conventional
P systems.

For reasons of readability, we will omit the symbols which have the mul-
tiplicity (0, 0) when writing the rules. We will also need the notations E =
{(1, 0), (0, 1)} and z ∈ Z

2, z 	= (0, 0).

Example 14. Consider the P system Π6 = (V, T,w0, R6) with generalized multi-
sets over the GP -group Z

2, with the alphabet V = {a, b, ā, b̄, c, t1, t2, t3,#}, the
set of terminal symbols T = {c}, and the initial configuration w0 = tz1a

u1bu2 ,
where u1, u2 ∈ Z

2 are the initial positions of the two knights. The set of rules of
Π6 is defined as follows:

R6 = Rmove
6 ∪ Rcomp

6 ∪ Rtime
6 ∪ Rtrap

6 , where
Rmove

6 = {au → av, bu → bv | au → av ∈ R},

Rcomp
6 = {xu → x̄u | x ∈ {a, b}, u ∈ E} ∪ {āub̄u → cu | u ∈ E},

Rtime
6 = {tz1 → tz1, t

z
1 → tz2, t

z
2 → tz3},

Rtrap
6 = {tz1x̄

u → #z, tz2x
u → #z, tz3x̄

u → #z,#z → #z | x ∈ {a, b}, u ∈ E},

where the rules from Rtrap
6 have priority over all other rules, and R is a set of

rules simulating knight movement in a parallel mode without a “catalyst”, like,
for instance, R3 or R4. The rules from Rmove

6 therefore assure the parallel and
independent movement of the knights. The rules from Rcomp

6 compare the posi-
tions by first rewriting a and b to their barred variants, and by then transforming
the pairs of ā and b̄ into instances of c. The rules from Rtime

6 implement a timer
which waits for some number of steps by using the rule tz1 → tz1 and which is
then successively transformed into t2 and t3. The rules from Rtrap

6 control the
whole process: if some a or b are rewritten into ā or b̄ while t1 is still present in
the system, the trap symbol # is added; the trap symbol can never be erased
and forces the system to loop indefinitely. Similarly, if not all of a or b have been
rewritten to ā and b̄ when t2 appears in the system, the trap symbol is added.
Finally, if after the rules from Rcomp

6 have rewritten some pairs of ā and b̄ into
instances of c, there are still some ā or b̄ in the system, the rule tz3x̄

u → #z, with
x ∈ {a, b}, will introduce the trap symbol as well.

The rules of Π6 therefore ensure that the system evolves in two phases:
the movement phase, during which the knights are allowed to move, and the
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comparison phase, during which the knights are no longer allowed to move and
their positions are compared one to the other. The multiplicity of c in the halting
configuration indicates the position in the plane where the two knights met.

6 Conclusions

In this paper we have considered the challenging problem of defining P systems
using generalized multisets that can have multiplicities taken from a totally
ordered Abelian group. This definition rises several interesting mathematical
questions concerning the applicability and the definition of unbounded group
modes. We gave a partial answer to these questions defining some sufficient
conditions that allow for defining a behavior similar to the one in the traditional
case. Moreover, by considering generalized multisets with multiplicities from the
group (Z,+) restricted to positive values, we obtain the exact behavior of P
systems.

Another interesting point is the ability to represent and manipulate the
objects directly, without encoding them using natural numbers. This approaches
the idea of numerical P systems [12], as our model can be considered as a set of
variables updated by rewriting rules.
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11. Păun, Gh.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)

http://www.tucs.fi


136 R. Freund et al.
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Abstract. We show that catalytic P systems with one catalyst can
simulate partially blind register machines and partially blind counter
automata. To demonstrate their capability, we also present an example
of a P automaton with one catalyst accepting a language with non-
semilinear Parikh image as well as an example of a P system with one
catalyst generating a non-semilinear vector set.

1 Introduction

Catalytic P systems represent the original model of P systems introduced in
the seminal papers [12]. Its key ingredient is a hierarchical structure of mem-
branes μ embedded in the outermost skin membrane. Every membrane encloses
a region possibly containing other membranes and also specific objects (used in
the multiset sense). The objects evolve, alone or together with other objects, due
to evolution rules, being transformed into new objects, eventually also passing
through a membrane. The objects evolve in the maximally parallel way, i.e.,
only non-extendable multisets of rules are applied in each derivation step in
every membrane. If the evolution rules only allow the objects to evolve alone,
then the system is said to be non-cooperative; if there are rules which specify the
evolution of several objects together at the same time, then the system is called
cooperative; an intermediate case is that where a certain object which cannot be
changed itself (and therefore is called a catalyst) appears together with another
object in an evolution rule, then such a rule is called catalytic, and P systems
using catalytic rules together with non-cooperative rules are called catalytic P
systems; if only catalytic rules appear, we speak of a purely catalytic P system.
As it was finally shown in [6], catalytic P systems with two and purely catalytic
P systems with three catalysts are computationally complete, i.e., they are able
to generate any recursively enumerable set of vectors of natural numbers.

It is a long-standing open problem how to characterize the families of (vectors
of) natural numbers generated by catalytic P systems with only one catalyst and
by purely catalytic P systems with only two catalysts. In this paper we establish a
lower bound for the family of (vectors of) natural numbers generated by catalytic
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P systems with only one catalyst by showing that such systems can at least simu-
late partially blind register machines. We also give an example of a P automaton
with one catalyst and 165 rules accepting a language with non-semilinear Parikh
image. The proof techniques presented in Sects. 3 and 4 imply that the corre-
sponding non-semilinear set of vectors of non-negative integers can be accepted
or generated by a catalytic P system with one catalyst in an analogous way.
Moreover, we even exhibit an example of a P system with one catalyst generat-
ing a non-semilinear vector set, namely {(n,m) | 0 ≤ n, n ≤ m ≤ 2n}, with only
19 rules, which nicely relates to the result shown in [1], where a P system with
two catalysts was exhibited generating this non-semilinear vector set with 14
rules, and the result proved in [2], where a P system with two catalysts gener-
ating a more complicated non-semilinear number set, namely {2n | n ≥ 1}, with
only 20 rules was constructed.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ. A multiset M with underlying set A is a pair (A, f) where
f : A → N is a mapping. If M = (A, f) is a multiset then its support is defined
as supp(M) = {x ∈ A | f(x) > 0}. A multiset is empty (respectively finite) if
its support is the empty set (respectively a finite set). If M = (A, f) is a finite
multiset over A and supp(M) = {a1, . . . , ak}, then it can also be represented
by the string a

f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}, and, moreover, all

permutations of this string precisely identify the same multiset M .

2.1 Register Machines and Multi-Counter Automata

Register machines are well-known universal devices for computing (generating
or accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P )

where

– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions of M can be of the following forms:

– l1 : (ADD (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to
instruction l2 or l3.
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– l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction l2, otherwise jump to instruction l3
( zero-test case).

– lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed.

In the accepting case, a computation starts with the input of a k-vector of
natural numbers in its first k registers and by executing the first instruction of P
(labeled with l0); it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty at the end of the
computation.

In the generating case, a computation starts with all registers being empty
and by executing the first instruction of P (labeled with l0); it terminates with
reaching the HALT -instruction and the output of a k-vector of natural numbers
in its first k registers. Without loss of generality, we may assume all registers
> k to be empty at the end of the computation.

Definition 2. A multi-counter automaton is a construct

M = (m,T,B, l0, lh, P )

where

– m is the number of registers,
– T is the input alphabet,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions of M can be of the following forms:

– l1 : (read(a), l2), l1 ∈ B \ {lh}, l2 ∈ B, a ∈ T . The symbol a is read from the
input tape, and the computation continues with the instruction labeled by l2.

– l1 : (ADD (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to
instruction l2 or l3.

– l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction l2, otherwise jump to instruction l3
( zero test case).

– lh : HALT . Stop the execution of the multi-counter automaton.
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A multi-counter automaton works with its registers in the same way as a
register machine, yet the input now is a string over the input alphabet T , which
is read symbol by symbol from the input tape by using the read-operations
l1 : (read(a), l2). With the accepting computations a set of strings is defined.

We can also generate a set of strings by using write operations which symbol
by symbol write the string to be generated on the output tape:

– l1 : (read(a), l2), l1 ∈ B \ {lh}, l2 ∈ B, a ∈ T .

The symbol a is written on the output tape.

2.2 Partially Blind Register Machines and Multi-Counter Automata

We now consider one-way nondeterministic machines which have registers or
counters allowed to hold positive or negative integers and which accept by final
state with all registers or counters being zero. Such machines are called blind
if their actions depend on state and input alone and not on the register or
counter configuration. They are called partially blind if they block when any
register or counter is negative (i.e., only non-negative register or counter con-
tents are permissible) but do not know whether or not any of the registers or
counters contains zero. Blind multi-counter automata are equivalent in power to
the reversal bounded multi-counter machines of Baker and Book [4].

Definition 3. A partially blind register machine is a construct

M = (m,B, l0, lh, P )

where

– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions of M can be of the following forms:

– l1 : (ADD (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to
instruction l2 or l3.

– l1 : (SUB (r) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by
one and jump to instruction l2, otherwise abort the computation.

– lh : HALT .
Stop the execution of the register machine.

Again, a configuration of a partially blind register machine is described by
the contents of each register and by the value of the current label, which indicates
the next instruction to be executed.
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A computation works as for a register machine, yet with the restriction that
a computation is aborted if one tries to decrement a register which is zero.
Moreover, acceptance or generation now also requires all registers (except output
registers) to be empty at the end of the computation.

Definition 4. A partially blind multi-counter automaton is a construct

M = (m,T,B, l0, lh, P )

where

– m is the number of registers,
– T is the input alphabet,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions of M can be of the following forms (with read(a) for accep-
tance of strings and write(a) for the generation of strings):

– l1 : (read(a), l2), l1 ∈ B \ {lh}, l2 ∈ B, a ∈ T .
The symbol a is read from the input tape, and the computation continueswith
the instruction labeled by l2.

– l1 : write(a), l1 ∈ B \ {lh}, a ∈ T .
The symbol a is written on the output tape.

– l1 : (ADD (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to
instruction l2 or l3.

– l1 : (SUB (r) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero, then decrease the value of register r by
one and jump to instruction l2, otherwise abort the computation.

– lh : HALT .
Stop the execution of the register machine.

A computation works as for a multi-counter automaton, yet with the restric-
tion that a computation is aborted if one tries to decrement a counter which
is zero. Moreover, acceptance or generation now also requires all counters to be
empty at the end of the computation.

2.3 Catalytic P Systems

The following definition cites Definition 4.1 in Chap. 4 of [14].

Definition 5. An extended catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, μ,w1, . . . , wm, R1, . . . , Rm, i0) where

1. O is the alphabet of objects;
2. C ⊆ O is the alphabet of catalysts;
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3. μ is a membrane structure of degree m with membranes labeled in a one-to-one
manner with the natural numbers 1, 2, . . . ,m;

4. w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions
of μ;

5. Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the
regions 1, 2, . . . ,m of μ; these evolution rules are of the forms ca → cv or
a → v, where c is a catalyst, a is an object from O \C, and v is a string from
((O \ C) × {here, out, in})∗;

6. i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute a configuration of
the P system; the initial configuration is given by the initial multisets w1, . . . , wm.
A transition between configurations is governed by the application of the evo-
lution rules, which is done in the maximally parallel way, i.e., only applicable
multisets of rules which cannot be extended by further rules are to be applied
to the objects in all membrane regions.

The application of a rule u → v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes
due to the targets in and out. We refer to [14] for further details and examples.

The P system continues with applying multisets of rules in the maximally
parallel way until there remain no applicable rules in any region of Π. Then
the system halts. We consider the number of objects from O \ C contained in
the output region i0 at the moment when the system halts as the result of the
underlying computation of Π. The system is called extended since the catalytic
objects in C are not counted to the result of a computation. The set of results
of all computations possible in Π is called the set of natural numbers generated
by Π and it is denoted by N(Π) if we only count the total number of objects
in the output membrane; if we distinguish between the multiplicities of different
objects, we obtain a set of vectors of natural numbers denoted by Ps(Π).

The problem how to count the catalysts in the case of generating catalytic
P systems can be avoided if using external output, i.e., the output is sent to the
environment, indicated by i0 = 0.

When the sequence of symbols sent out to the environment from the skin
membrane is interpreted as a string, a catalytic P system constitutes a device to
generate a string language. If in one computation step of a catalytic P system
(with only one catalyst) more than one symbol is sent out to the environment,
any permutation of the symbols sent out in this step is considered for building
up a final string as a result of a computation.

For the input being taken from the environment, we need an additional target
indication come as, for example, used in a special variant of communication P
systems introduced by Petr Sośık (e.g., see [16]) where no objects are generated
or deleted, but the objects may only pass through membranes; (a, come) on
the right-hand side of a rule applied in the skin membrane means that the
object a is taken into the skin membrane from the environment (all objects
there are assumed to be available in an unbounded number). The multiset of all
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objects taken from the environment during a halting computation then is the
multiset accepted by this accepting P system, which in this case we shall call a
P automaton; the idea of P automata was first published in [5] and considered
at the same time under the notion of analysing P systems in [8]. The set of
non-negative integers and the set of (Parikh) vectors of non-negative integers
accepted by halting computations in Π are denoted by Naut (Π) and Psaut (Π),
respectively.

Moreover, a P automaton can also be considered as a device to accept string
languages by considering the sequence of symbols taken in during a successful
computation as the accepted string. If in one computation step of a catalytic P
system (with only one catalyst) more than one symbol is taken in from the envi-
ronment, any permutation of the symbols taken in during this step is considered
for building up a final string as a result of a computation.

Remark 1. As in this paper we only consider catalytic P systems with only one
catalyst, without loss of generality, also taking into account the well-known flat-
tening process, e.g., see [7], we can restrict ourselves to one-membrane catalytic
P systems with the single catalyst in the skin membrane and with external out-
put, i.e., for obtaining the set of vectors of natural numbers or sets of strings the
needed objects are sent out from the skin membrane to the environment; on the
other hand, for accepting strings in the automaton case, the input anyway has
to be taken from the environment.

Remark 2. Finally, we make the convention that a one-membrane catalytic P
system with the single catalyst in the skin membrane and with external output
throughout the rest of the paper will be described without specifying the trivial
membrane structure or the output region (assumed to be the environment), i.e.,
we will just write

Π = (O, {c}, T, w,R)

where O is the set of objects, c is the single catalyst, T is the input alphabet
in case of generating or accepting string languages (and omitted if we only deal
with natural numbers), w is the initial input specifying the initial configuration,
and R is the set of rules.

3 One-Membrane Catalytic P Systems with One Catalyst
Can Simulate Partially Blind Register Machines

We now prove our main result, i.e., we show how the computations of a partially
blind register machine can be simulated by a one-membrane P system with one
catalyst.

Theorem 1. Any partially blind register machine can be simulated by a one-
membrane catalytic P system with one catalyst.
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Proof. We prove this result for a partially blind register machine accepting sets
of vectors of natural numbers. Hence, consider a partially blind register machine

M = (m,B, l0, h, P )

with the input vector (n1, . . . , nk) being given in the first k ≤ m registers. We
divide the set B into disjoint sets, i.e.,

B =
⋃

1≤r≤m

BADD(r) ∪
⋃

1≤r≤m

BSUB(r) ∪ {h},

where BADD(r) exactly contains the labels of ADD-instructions and BSUB(r)

exactly contains the labels of SUB-instructions on register r.
We now construct a one-membrane catalytic P system with one catalyst

Π = (O, {c}, w,R),
O = {or | 1 ≤ r ≤ m} ∪ {#, c, d, d′}

∪ {or,j | 1 ≤ r ≤ m, 0 ≤ j ≤ r}
∪ B ∪ {pj | p ∈ B, 0 ≤ j ≤ m + 1} ∪ {hm+2},

w = l0cdo1
n1 . . . ok

nk ,

R = Rs ∪ R#,

where (n1, . . . , nk) is the input vector.
The set of rules R consists of the simulation rules in Rs and the trap rules

in R#; Rs contains both catalytic and non-cooperative rules:

Rs = {cor → cor,0 | 1 ≤ r ≤ m}
∪ {cp → cp0or | p ∈ BADD(r), 1 ≤ r ≤ m}
∪ {cpi → cpi+1 | p ∈ BADD(r), 1 ≤ r ≤ m, 0 ≤ i ≤ m}
∪ {cpm+1 → cq, cpm+1 → cs | p : (ADD (r) , q, s) ∈ P, 1 ≤ r ≤ m}
∪ {p → p0 | p ∈ BSUB(r), 1 ≤ r ≤ m}
∪ {cor → cor,0, cor,r → c | 1 ≤ r ≤ m}
∪ {cpi → cpi+1, or,i → or,i+1 | p ∈ BSUB(r), 1 ≤ r ≤ m, 0 ≤ i < r}
∪ {pr → pr+1 | p ∈ BSUB(r), 1 ≤ r ≤ m}
∪ {cpi → cpi+1 | p ∈ BSUB(r), 1 ≤ r ≤ m, r + 1 ≤ i ≤ m}
∪ {cpm+1 → cq | p : (SUB (r) , q) ∈ P, 1 ≤ r ≤ m}
∪ {h → h0, h0 → h1, h1 → h2, cd → cd′, cd′ → c}
∪ {chi → chi+1 | 2 ≤ i ≤ m + 1} ∪ {chm+2 → c}



On the Power of Catalytic P Systems with One Catalyst 145

R# only contains non-cooperative rules:

R# = {or,r → # | 1 ≤ r ≤ m}
∪ {p → # | p ∈ BADD(r), 1 ≤ r ≤ m}
∪ {pi → # | p ∈ BADD(r), 1 ≤ r ≤ m, 0 ≤ i ≤ m + 1}
∪ {pi → # | p ∈ BSUB(r), 1 ≤ r ≤ m, 0 ≤ i ≤ m + 1, i �= r}
∪ {hi → # | 2 ≤ r ≤ m + 2}
∪ {d′ → #,# → #}

For all or, 1 ≤ r ≤ m, we use the rules

cor → cor,0 and or,j → or,j+1, 1 ≤ r ≤ m, 0 ≤ j < r,

i.e., we count up the second index from 0 to r until we reach or,r.
The simulation of ADD- and SUB-instructions runs through a cycle of m+3

steps which allow the catalyst to eliminate one copy of the symbol or (whose
copies represent the number in register r) in step r + 2 when simulating a SUB-
instruction.

Simulation of p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m:

– cp → cp0or,1, p → #;
in the first step, a new copy of or is generated;

– cpi → cpi+1, pi → #, 0 ≤ i ≤ m;
the index i is counted up from 0 to m + 1;

– cpm+1 → cq, cpm+1 → cs, pm+1 → #;
finally, the new label q or s is introduced.

In every step, the catalyst c is kept busy with the program symbols pi, as oth-
erwise the rules pi → # would enforce the introduction of the trap symbol #.

Simulation of p : (SUB (r) , q), with p ∈ B \ {lh}, q ∈ B, 1 ≤ j ≤ m:

– p → p0, cor → cor,0;
in the first step, one copy of or is marked; the choice is non-deterministic,
hence, we have to guarantee that at the end, only the corresponding symbol
or,r can be erased in step r + 2, whereas any other symbol ox,x, x �= r will
be trapped by the rule ox,x → #; moreover, if no register, even none of the
others, is non-empty, the additional symbol d has to be used, which in the
next step will be trapped, i.e., the rules cd → cd′ and then d′ → # would
have to be used in the first two steps;

– cpi → cpi+1, or,i → or,i+1, pi → #, 0 ≤ i < r;
the indices i of both the program symbol and the object symbol are incre-
mented in every step until r is reached, with the program symbol pi keeping
the catalyst busy;

– pr → pr+1, cor,r → c, or,r → #;
in step r + 2 of the cycle, the catalyst c is left free from the program symbol
pr for erasing or,r, which otherwise would have to be trapped, which also
happens if the catalyst is misused for another rule cox → cox,0, 1 ≤ x ≤ m;
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– cpi → cpi+1, pi → #, r + 1 ≤ i ≤ m;
the index of the program symbol pi is incremented until m + 1 is reached;

– cpm+1 → cq, pm+1 → #;
finally, the next program symbol q is obtained.

In the moment the halt label h has been generated, we have to check that
all registers are empty, as the computation should halt if and only if all registers
are empty and no wrong guess has been made during the whole computation
causing an infinite computation with the trap rule # → #.

Final procedure when the halt label h has been generated:

– h → h0, cd → cd′;
h0 → h1, cd′ → c, d′ → #;
in the first two steps, the additional symbol d is erased;

– h1 → h2;
in the third step, due to maximal parallelism, the catalyst would have to be
used with any register symbol or using the rule cor → cor,0;

– chi → chi+1, hi → #, 2 ≤ i ≤ m + 1;
during the next m steps, any register object or,r introduced in one of the first
three steps has got the chance to be trapped;

– chm+2 → c, hm+2 → #;
with erasing the final program symbol, the computation in the P system now
stops if and only if all registers have been empty at the end and if during the
whole simulation no wrong guess has been made.

In sum, we conclude that the P system with its successful computations
exactly simulates the successful computations of the given partially blind register
machine and therefore accepts the same set of vectors of natural numbers. 	


4 One-Membrane Catalytic P Systems with One Catalyst
Can Simulate Partially Blind Multi-counter Machines

As an immediate consequence of our main theorem established in Sect. 3, we can
easily show the corresponding result for partially blind multi-counter automata:

Theorem 2. Any partially blind multi-counter automaton can be simulated by
a one-membrane catalytic P system with one catalyst.

Proof. Consider a partially blind multi-counter automaton

M = (m,T,B, l0, lh, P )

with the inputs being strings over T .
A one-membrane catalytic P automaton with one catalyst

Π = (O, {c}, T, w,R)
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simulating the computations of M can be constructed as in the proof of Theo-
rem 1; the input now is taken in by rules using (a, come), a ∈ T .

The simulation of p : (read (a) , q) ∈ P works like the simulation of an ADD-
instruction, yet now starting with cp → cp0(a, come).

In that way we accept the string read in with the rules having (a, come) on
the right-hand side, which exactly mimics the acceptance of the corresponding
string accepted by the underlying partially blind multi-counter automaton. 	


5 Examples

We first construct a one-membrane P automaton with one catalyst accepting
the language

L = {anbm | 0 ≤ n, 1 ≤ m ≤ 2n}
whose Parikh image is the corresponding non-semilinear set of vectors of integers

Ps (L) = {(n,m) | 0 ≤ n, 1 ≤ m ≤ 2n} .

The language L is accepted by the partially blind multi-counter automaton

M = (2, {a, b}, B, l0, lh, P )

with the set P containing the instructions
l0 : (ADD(1), l1, l8) l8 : (read(b), l9)
l1 : (read(a), l2) l9 : (SUB(1), l10)
l2 : (SUB(1), l3) l10 : (ADD(2), l8, l11)
l3 : (ADD(2), l4, l4) l11 : (ADD(2), l12, l14)
l4 : (ADD(2), l2, l5) l12 : (SUB(2), l13)
l5 : (SUB(2), l6) l13 : (SUB(2), l11)
l6 : (ADD(1), l5, l7) l14 : (SUB(2), lh)
l7 : (SUB(1), l0) lh : HALT

A string from {anbm | 0 ≤ n, 1 ≤ m ≤ 2n} is accepted as follows:

(a) Instruction l0 non-deterministically guesses whether all symbols a have been
already read from the input tape; in the affirmative case the program con-
tinues with step (c).

(b) Instructions l1 to l7 read the symbol a and then try to double the contents
of counter 1 into counter 2 and copy the contents of counter 2 back to
counter 1. Since M is partially blind, it can only guess when the whole
contents of counter 1 has been doubled and when the whole contents of
counter 2 has been copied back to counter 1. In any case, the program loops
back to step (a), with counter 1 now containing any value between 1 and 2k

where k is the number of cycles executed so far.
(c) After n repetitions of the loop formed by instructions l0 to l7, after the last

execution of instruction l0, counter 1 contains a randomly guessed value m
between 1 and 2n. Instructions l8 to l10 cyclically read symbols b from the
input tape and simultaneously decrement counter 1. Counter 2 serves as an
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auxiliary counter only needed for using non-deterministic ADD-instructions
to guess when all symbols b have been read and when all counters are empty.
On the other hand, we note that if the automaton attempts to decrement
counter i, i ∈ {1, 2}, after having emptied it, the computation crashes.

(d) If both guesses mentioned in step (c) have been correct, then the whole tape
contents has been read and counter 1 is zero. Instructions l11 to l14 empty
counter 2 and the program halts.

The description given above explains that only strings from the language L
are accepted by the machine M . Now we can construct a one-membrane catalytic
P automaton with one catalyst

Π = (O, {c}, T, w,R),
O = {o1, o2,#, c, d, d′}

∪ {o1,0, o1,1, o1,2, o2,0, o2,1, o2,2}
∪ B ∪ {pj | p ∈ B, 0 ≤ j ≤ 3} ∪ {h4},

T = {a, b},

w = l0cd,

R = Rs ∪ R#.

In accordance with the notation in Sect. 3, we have

BADD(1) = {l0, l6},

BADD(2) = {l3, l4, l10, l11},

BSUB(1) = {l2, l7, l9},

BSUB(2) = {l5, l12, l13, l14},

B = BADD(1) ∪ BADD(2) ∪ BSUB(1) ∪ BSUB(2) ∪ {l1, l8, lh}.

Then the set of rules R is exactly constructed as in Sect. 3, except that
there are also rules simulating instructions (read(a), l2) and l8 : (read(b), l9)
as explained in Sect. 4. Following the description, we obtain that Rs contains
97 rules (35 to simulate ADD-instructions, 10 to simulate read -instructions, 44
to simulate SUB -instructions, and 8 for miscellaneous purposes). The set R#

contains 68 rules, altogether it sums up to 165 rules for the whole P automaton.
By Theorems 1 and 2, the P automaton Π accepts exactly the language L.

Now we show how we can obtain the vector set

S = {(n,m) | 0 ≤ n, n ≤ m ≤ 2n}

generated by a P system with only one catalyst and 19 rules. In fact, we are
simulating a generalized version of partially blind register machines, where each
SUB -instruction also allows for a non-deterministic choice as well as for including
arbitrary ADD-instructions with each continuing label, e.g., compare with the
corresponding model in [2]:
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The vector set S is generated by the generalized partially blind register
machine

M = (4, B, l0, lh, P )

with the set P containing the generalized instructions:

l0 :
(
SUB(1), {l0ADD(2)2, l1ADD(2)2, l2ADD(4)})

l1 : (SUB(2), {l1ADD(1)ADD(4), l0ADD(3)ADD(4)})
l2 : (SUB(2), {l2, lh})
lh : HALT

We also assume that M already starts with 1 in register 1 and in register 4,
thus avoiding to have initial instructions ADD(1) and ADD(4). With instruction
l0, we double the contents of register 1 into register 2, and as we cannot check
for zero, we non-deterministically either jump back to l0 to continue this process
or else jump to l1, where we recopy the contents of register 1 into register 2, and
again, as we cannot check for zero, we non-deterministically either jump back to
l1 to continue this process or else jump to l0 The registers 3 and 4 are the output
registers for the first and second component of the output vector (n,m). In order
to assure correct halting with zero registers 0 and 1 we have to assume that in
the last round register 1 is emptied with l0 and finally register 2 is emptied with
using instruction l2.

Looking carefully into the proof constructions given in the preceding section
we realize that the final cleaning is not necessary to be implemented, because
after the elimination of the auxiliary symbol d we may immediately may stop
the simulation, as checking the registers 1 and 2 for zero is not a constituting
element of the construction in the generating case. Hence, in that case we can
save a lot of rules at the end, and in fact are simulating the following program
for M instead:

l0 :
(
SUB(1), {l0ADD(2)2, l1ADD(2)2, λADD(4)})

l1 : (SUB(2), {l1ADD(1)ADD(4), l0ADD(3)ADD(4)})
Instead of lh we simply use λ, i.e., we just omit all the symbols and pro-

ductions involving variants of the halting label. We now implement this reduced
program using the proof construction given in the proof of Theorem1 taking into
account the simplifications discussed above, i.e., we can construct the following
one-membrane catalytic P system with one catalyst:

Π = (O, {c}, T, w,R),
O = {o1, o2, o3, o4,#, c, d, d′}

∪ {o1,0, o1,1, o1,2, o2,0, o2,1, o2,2}
∪ {li,j | i ∈ {0, 1}, j ∈ {0, 1, 2, 3}},

T = {o3, o4},

w = l0cdo1o4.
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R only contains the following 32 rules:

R = {l0 → l0,0, l1 → l1,0, co1 → co1,0, co2 → co2,0}
∪ {cl0,0 → cl0,1, o1,0 → o1,1, cl1,0 → cl1,1, o2,0 → o2,1}
∪ {l0,1 → l0,2, co1,1 → c, cl0,2 → cl0,3}
∪ {cl0,3 → cl0o2o2, cl0,3 → cl1o2o2, cl0,3 → co4}
∪ {cl1,1 → cl1,2, o2,1 → o2,2, l1,2 → l1,3, co2,2 → c}
∪ {cl1,3 → cl1o1o4, cl1,3 → cl0o1o3o4, cd → cd′, cd′ → c}
∪ {x → # | x ∈ {l0,0, l0,2, l0,3, l1,0, l1,1, l1,3, o1,1, o2,2, d

′,#}}.

The P system constructed above still can be reduced in a considerable way,
as we observe that during the whole simulation of the program of the generalized
partially blind register machine the situation that both registers are empty can
never happen, hence, we do not need the auxiliary symbol d and its derivative
d′. Moreover, this also allows us to reduce the length of the cycles from 5 to 3,
which yields the much smaller P system only needing 19 rules:

Π = (O, {c}, T, w,R),
O = {o1, o2, o3, o4, o1,1, o2,1, o2,2#, c} ∪ {li,j | i ∈ {0, 1}, j ∈ {1, 2}},

T = {o3, o4},

w = l0co1o4,

R = {l0 → l0,1, l1 → l1,1, co1 → co1,1, co2 → co2,1}
∪ {l0,1 → l0,2, co1,1 → c, o1,1 → #,# → #}
∪ {cl0,2 → cl0o2o2, cl0,2 → cl1o2o2, cl0,2 → co4, l0,2 → #}
∪ {cl1,1 → cl1,2, l1,1 → #, o2,1 → o2,2}
∪ {co2,2 → c, o2,2 → #, l1,2 → l1o1o4, l1,2 → l0o1o3o4}.

We finally observe that the final configuration of a halting computation only
contains terminal symbols, i.e., as common in usual P systems generating sets
of (vectors of) numbers we need not specify T . Moreover, we can save all trap
rules generating the trap symbol # if we take the model of toxic objects, see [3];
in this case only 14 rules remain.

6 Conclusion

In this paper we have shown a lower bound for the computational power of cat-
alytic P systems with only one catalyst – at least, these systems are able to simu-
late partially blind register machines and partially blind multi-counter automata.
Yet the proof technique we have applied here so far could not be applied to purely
catalytic P systems with two catalysts. The reason is the following: inspecting
carefully the proof of Theorem1, one can observe that non-cooperative rules are
essential especially during the simulation of SUB-instructions. Simultaneously,
when a wrong rule is chosen non-deterministically, again non-cooperative rules
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are used to generate the trap symbol # in the same computational step. In
the case of purely catalytic system with two catalysts, all these non-cooperative
rules have to be replaced by catalytic rules with the second catalyst. Hence, there
would be no guarantee of producing the trap symbol # due to the existence of
two rules using the second catalyst, while only one of them (randomly chosen)
can be executed.

The problem of the upper bound for the computational power of catalytic P
systems with one catalyst, as well as that for purely catalytic P systems with
two catalysts, still remains open.
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5. Csuhaj-Varjú, E., Vaszil, Gy.: P automata or purely communicating accepting P
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Abstract. P systems are the computational models introduced in the
context of membrane computing, a computational paradigm within the
more general area of unconventional computing. Kernel P (kP) systems
are defined to unify the specification of different variants of P systems,
motivated by challenging theoretical aspects and the need to model dif-
ferent problems. kP systems are supported by a software framework,
called kPWorkbench, which integrates a set of related simulation and
verification methodologies and tools. In this paper, we present an exten-
sion to kPWorkbench with a new model checking framework support-
ing the formal verification of kP system models. This framework supports
both LTL and CTL properties. To make the property specification an
easier task, we propose a property language, composed of natural lan-
guage statements. We demonstrate our proposed methodology with an
example.

1 Introduction

Membrane computing is a computational paradigm, within the more general
area of unconventional computing [29], inspired by the structure and behav-
iour of eukaryotic cells. The formal models introduced in this context are called
membrane systems or P systems. After their introduction [27], membrane sys-
tems have been widely investigated for computational properties and complexity
aspects, but also as a model for various applications [28]. The introduction of
different variants of P systems has been motivated by challenging theoretical
aspects, but also by the need to model different problems. An account of the
theoretical developments is presented in [28], a set of general applications can be
found in [6], whereas specific applications in systems and synthetic biology are
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provided in [11,20,24] and some of the future challenges are presented in [15].
More recently, applications in optimisations and graphics [16] and synchronisa-
tion of distributed systems [9] have been developed.

In many cases the specification of a certain system requires features, con-
straints or types of behaviour which are not always provided by a single formal
model. It is very helpful to have some flexibility with modelling approaches.
This flexibility might come from the way new features can be added or old ones
are redefined. This approach might lead to a proliferation of various variants of
the model. Software tools supporting the most used P system models have been
conceived. They come with a set of specification languages, known generically
as P–Lingua [26]. P–Lingua aims to keep the syntax as close as possible to the
original models and provides a simulation platform for all these models and a
consistent user interface environment, called MeCoSim [25].

An alternative approach has been considered, by defining a specification lan-
guage that allows to relatively easily specify the most utilised P system models.
The newly defined concept of kernel P systems (kP systems) has been introduced
in order to provide a theoretical support for this language. A revised version of
the model and the specification language can be found in [12] and its usage to
specify the 3-colouring problem and a comparison to another solution provided
in a similar context [8], is described in [14]. The kP systems have been also used
to specify and analyse, through formal verification, synthetic biology systems,
e.g. genetic gates [21,22].

Kernel P systems are supported by a software framework, kPWorkbench,
which integrates a set of related simulation and verification methodologies and
tools. In this paper, we present a new model checking framework that we have
developed in support of formal verification of kernel P system models. The frame-
work supports both LTL and CTL properties by making use of the Spin and
NuSMV model checkers. To make the property specification an easier task,
we propose a property language, composed of natural language statements. We
demonstrate our proposed methodology on the subset sum problem.

The paper consists of five sections. Section 2 introduces the basic concepts
related to kP systems. Section 3 discusses the previous model checking approach,
and presents the new model checking methodology. Section 4 applies our pro-
posed methodology to an instance of the subset sum problem. Section 5 briefly
discusses the applicability of our approach to the analysis of biological systems.
Finally, Sect. 6 draws conclusions and provides some future research directions.

2 Kernel P Systems

A kernel P system is a formal model that uses some well-known features of
existing P systems and also includes some new concepts and, more importantly,
it provides a coherent framework integrating all these elements. So, it can be
considered as a unifying framework allowing to express different variants of P
systems within the same formalism [2,10,12].
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2.1 KP–Lingua

The kP system models are described in a machine readable language, called
kP–Lingua [10]. Below, we illustrate the kP systems concepts with an example,
which is slightly adjusted from [2,10].

Example 1. A type definition in kP–Lingua.

type C1 {
choice {

> 2b : 2b -> b, a(C2) .
b -> 2b .

}
}

type C2 {
choice {

a -> a, {b, 2c}(C1) .
}

}
m1 {2x, b} (C1) - m2 {x} (C2) .

Above, C1, C2 denote two compartment types, which are instantiated as m1, m2,
respectively. m1 starts with the initial multiset 2x, b and m2 starts with x. The
rules of C1 are chosen non-deterministically, only one at a time – this is achieved
by the use of the key word choice. The first rule is fired only when its guard
becomes true; in other words, only when the current multiset has at least three
b’s. This rule also sends an a to the instance of C2 that is linked. In the type C2,
there is only one rule to be fired, which happens only when there is an a in the
compartment C1.

2.2 kPWorkbench

The specifications written in kP–Lingua are supported by a software platform,
kPWorkbench, which integrates a set of tools and translators that bridge
several target specifications that we employ for kP system models, written in
kP-Lingua. kPWorkbench permits simulation and formal verification of kP
system models using several simulation and verification tools and methods.

The framework features a native simulator [3,23], allowing the simulation of
kP system models. In addition, it also integrates the Flame simulator [7], a gen-
eral purpose large scale agent based simulation environment, based on a method
that allows to express kP systems as a set of communicating X-machines [17].

kPWorkbench’s model checking environment permits the formal verifica-
tion of kernel P system models. The framework supports both Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) properties by making use of
the Spin [18] and NuSMV [5] model checkers. In order to facilitate the formal
specification, kPWorkbench features a property language, called kP-Queries,
comprising a list of natural language statements representing formal property
patterns, from which the formal syntax of the Spin and NuSMV formulas are
automatically generated.
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3 Verification of kP Systems

The application scope of P systems has recently broadened from contextual
grammars to synthetic biology. This has unsurprisingly increased the efforts
for establishing formal verification, in particular model checking, methods and
methodologies for various P systems [4,13,19]. These successful attempts were
mainly concerned with specific variants bound to an array of constraints, e.g. a
limited feature set and a basic set of properties.

However, the efforts for a comprehensive, integrated and automated verifi-
cation approach for general and unified languages, e.g. kP systems, are limited.
This is mainly due to the computational challenges imposed by such formalisms.
These bring in a lot of complications as they feature a dynamic structure by
preserving the structure changing rules such as membrane division, dissolution
and link creation/destruction. A state defined in this expansive context is con-
sequently variable in size. It is, however, a challenging task to find the proper
projections of such complex abstractions in model checking tools, as they require
a fixed sized pre-allocated data model.

Table 1. The LTL and CTL property constructs currently supported by the kP-Queries
file

Property pattern Language construct LTL formula CTL formula

Next next p X p EX p

Existence eventually p F p EF p

Absence never p ¬(F p) ¬(EF p)

Universality always p G p AG p

Recurrence infinitely-often p G F p AG EF p

Steady-State steady-state p F G p AF AG p

Until p until q p U q A (p U q)

Response p followed-by q G (p → F q) AG (p → EF q)

Precedence q preceded-by p ¬(¬p U (¬p ∧ q)) ¬(E (¬p U (¬p ∧ q)))

3.1 Previous Approach

In [10] we presented our initial efforts towards an integrated model checking app-
roach, which permits formal properties to be verified against kP system models,
specified in kP-Lingua, using the Spin model checker. The kP-Lingua repre-
sentations of the models are automatically translated into the Spin’s modelling
language Promela. In order to ease the intricate and complex process of build-
ing logical formulas, the approach also features a natural language query (NLQ)
tool, automatically converting predefined natural language queries into the cor-
responding Promela representation of temporal logic (LTL) formulas, through
graphical user interface (GUI) elements.
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In this approach, a strategy is devised to find a projection and mapping
between a kP-Lingua model and the Promela representation. For some enti-
ties, e.g. multiset of objects, compartments, guards, rules, etc., finding a direct
correspondence is possible. However, concepts such as maximal parallelism and
membrane division are more difficult to deal with. To handle such cases, the fol-
lowing solution is devised [10]: “We collapse individual instructions (to atomic
blocks) to the highest degree permitted by Spin, minimizing the so-called inter-
mediate state space which is irrelevant to a P system computation; and secondly,
we appoint the states relevant to our model explicitly, using a global flag (i.e.
a Boolean variable), raised when all processes have completed a computational
step. Hence, we make a clear distinction between states that are pertinent to
the formal investigation and the ones which should be discarded. This contrast
is in turn reflected by the temporal logic formulae, which require adjustment to
an orchestrated context where only a narrow subset of the global state space is
pursued.”

Although this approach employs useful strategies for both automatic trans-
lation of models and properties, it has some drawbacks: (i) It reformulates LTL
properties into their corresponding Promela specifications. The translation
requires introducing some special predicates into the state expressions. This
results in long and complex state expressions, and hence formulas, which require
manual manipulation of the corresponding translation in order to build complex
queries with nested temporal operators. (ii) It only considers the use of Spin
model checker and hence only focuses on verifying LTL properties. Since there is
no CTL model checker, e.g. NuSMV, integrated into the tool, we cannot verify
CTL properties. (iii) According to some user feedbacks, the use of the NLQ tool
has not been very practical. The tool has two user interfaces: one for construct-
ing state expressions and one for constructing the actual properties. A property
building task requires traversing between two interfaces, causing usability incon-
veniences.

Table 2. The LTL and CTL property constructs currently supported by the kP-Queries
file

Pattern Spin – LTL Translation NuSMV – LTL Translation NuSMV – CTL Translation

Next ltl p1 { X (!pInS U (p && pInS)) } LTLSPEC X p SPEC EX p
Existence ltl p1 { <> (p && pInS) } LTLSPEC F p SPEC EF p
Absence ltl p1 { !(<> (p && pInS)) } LTLSPEC !(F p) SPEC !(EF p)
Universality ltl p1 { [] (p || pInS) } LTLSPEC G p SPEC AG p
Recurrence ltl p1 { [] (<> (p && pInS) || !pInS) } LTLSPEC G (F p) SPEC AG (EF p)
Steady-State ltl p1 { <> ([] (p || !pInS) && pInS) } LTLSPEC F (G p) SPEC AF (AG p)
Until ltl p1 { (p || !pInS) U (q && pInS) } LTLSPEC p U q SPEC A [p U q]
Response ltl p1 { [] ((p -> <> (q && pInS)) || !pInS) } LTLSPEC G (p -> F q) SPEC AG (p -> EF q)
Precedence ltl p1 { !((!p || !pInS) U (!p && q && pInS)) } LTLSPEC !(!p U (!p & q)) SPEC !(E [!p U (!p & q)])

3.2 The New Approach

To tackle these drawbacks, a new model checking environment for
kPWorkbench has been developed, including a property language (with an
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editor) for the specification of queries1 to be verified against kP-Lingua models.
An EBNF grammar for this language is defined for the most common property
patterns and a parser supporting the new property specification language has
been implemented.

The property language editor interacts with the kP-Lingua model in question
and allows users to directly access the native elements in the model, which results
in less verbose and shorter state expressions, and hence more comprehensible
formulas. These features and the natural language like syntax of the language
make the property construction much easier compared to our previous approach.

The new model checking environment supports both Spin and NuSMV
model checkers. The translations from a kP-Lingua representation to the cor-
responding Spin and NuSMV inputs are automatically performed. The prop-
erty language allows specifying the target logical formalism (i.e. LTL and CTL)
for the different properties, without placing a requirement on a specific model
checker, the same set of properties being able to be reused in various model
checking experiments.

Targeting flexibility, expressivity and model checking language independence,
the new verification approach for kP-Lingua models enriches kPWorkbench
with a mechanism for defining kP-Queries files, which are especially designed for
the purpose of being used to verify kP-Lingua models. The format of kP-Queries
file is supported by an intuitive, coherent and integrated property specification
language, allowing the construction of queries involving kP-Lingua model entities
and targeting the LTL and CTL formalisms.

The new introduced property specification language aims to be independent
from any target model checking language, yet integrating elements from LTL
and CTL logical formalisms in a uniform way, such that property patterns from
a set of most commonly used ones are considered in conjunction with two special
keywords, ltl and ctl, giving the queries a formal context to be represented in.
This approach also addresses one other limitation of the previous one, allow-
ing the specification of nested properties in constructing more complex queries.
Complex state expressions can be formulated by using relational and Boolean
operators, while the only currently supported atomic operands are the object
multiplicities of kP-Lingua model membranes. Table 1 summarizes the currently
considered property patterns, together with the corresponding language con-
struct, LTL and CTL representations.

Aiming for a generic and reusable property language, kP-Queries files do not
embody any constructs that pertain to specific model checking languages, nor
do they specify the target translation language the queries will be represented
in. kP-Queries can be associated with kP-Lingua models, in conjunction with
them serving as input for the translation engines defined in kPWorkbench.
The properties specified in a formalism which is not supported by the target
model checking language are simply discarded, only the appropriate ones being
considered for translation.
1 In the paper, we use the terms property and query interchangeably.
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kPWorkbench currently integrates translation mechanisms for two targets:
Promela and Smv, the modeling languages of the model checkers Spin and
NuSMV, respectively. While both Promela and Smv allow the specification of
LTL properties, the latter also supports the CTL formalism.

As kP systems modelled in kP-Lingua are automatically translated into a
computationally equivalent representation targeting a model checking language,
the verification procedure should take into account one subtle difference con-
cerning the modelling procedure and the underlying formalism of the two com-
putationally equivalent models. The translation of queries specified into the kP-
Queries files needs to be formulated in such a way that we target only P system
states (i.e. the states in which the computational step of the P system is com-
pleted), regardless of the various intermediate states required by the formalism
of the translated model. This is the case for the translations targeting the Spin
model checker, as the translated model and properties are required to accom-
modate a special variable and state expressions over it, respectively. Namely,
each LTL formula should be translated to Spin using a special predicate, pInS,
showing that the current Spin state represents a P system configuration (the
predicate is true when a Spin configuration reaches a P system state on the exe-
cution path) or represents an intermediate state (it is false if intermediary steps
are executed) – see [19] for the theoretical validation of this translation. On the
other hand, the translations targeting NuSMV does not require a special treat-
ment from the point of view of differentiating between source and destination
model states. Table 2 depicts the translations of the above considered property
patterns, targeting both Spin and NuSMV, emphasizing also the use of the
special Boolean variable pInS.

The implementation of the domain specific language used by kP-Queries files
relies on ANTLR (ANother Tool for Language Recognition) [1] for its state
of the art parser generator capabilities. The EBNF grammar of the property
specification language serves as input for ANTLR in order to automatically
generate the corresponding syntactical and semantic analyzers, together with
the necessary data structures for representing the resulted abstract syntax tree
(AST) and the underlying functionality of traversing it.

As the abstract syntax tree resulted from the parsing process directly reflects
the structure of the grammar and its semantic model, a well defined domain
model layer was introduced for supporting the internal representation of the
data, thus decoupling the functionality relying on this data structure from the
underlaying components of the parsing framework. By projecting the abstract
syntax tree representation into a semantically equivalent internal data structure,
a separation of concerns is achieved with the benefit of gaining greater flexibility
in being able to independently change the parsing strategy from the property
translation functionality. The projection of the abstract syntax tree to the inter-
nal data structure representation is achieved by the implementation of a model
builder mechanism which is able to traverse the hierarchical representation of
the AST, having at the same time the responsibility of semantically validating
the kP-Queries files.
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The new model checking module for kPWorkbench is especially designed
around the concepts of maintainability and extensibility, following the SOLID
programming principles [31] in achieving this goal. The entities composing the
internal data representation, besides of playing the role of data transfer objects
(DTO), are augmented with a minimal yet very powerful functionality for allow-
ing them to be treated in an uniform way. The internal data structure is a
tree-like hierarchical representation, augmented with the behavior required by
the Visitor design pattern [32], aiming for separation of concerns (i.e. separating
the translation strategies form the internal data structure they operate on) and
following the open/closed principle (i.e. the set of translation strategies is open to
be extended while the internal data structure is closed to further modifications).

The design pattern used in the model checking module implementation treats
the nodes from the internal data representation as visitable entities, capable of
accepting visitors and requests to visit them. Each visitor implementation holds
specific functionality for visiting every single node. The model checking mod-
ule implements its property translation strategies as visitors, being capable of
translating every node of the internal representation of the properties into the
corresponding form required by the target model checking language. By using
this mechanism, each translation strategy implementation is independent, local-
ized and coherent. Furthermore, a Singleton [30] implementation of a translation
manager is able to receive an internal representation of a property together with
a translation target and to perform the translation of the property by instantiat-
ing the corresponding visitor and delegate it to visit the property data structure.

4 Case Studies

4.1 The Subset Sum Problem

This case, the subset sum problem, will illustrate most of the features of the
kP–Lingua, the presence of compartments, guarded rules and flexible execution
strategies. The subset sum problem is stated as follows [2]:

Given a finite set A = {a1, . . . , an}, of n elements, where each element ai
has an associated weight, wi, and a constant k, it is requested to determine
whether or not there exists a subset B ⊆ A such that w(B) = k, where
w(B) =

∑
ai∈B wi. The following kP-Lingua code represents a model, where

n = 7, w(A) = {3, 25, 8, 23, 5, 14, 30} and k = 55.

type Main {

choice {
= 55x: a -> {yes, halt} (Output) .
> 55x: a -> # .

}

choice {
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!r1: a -> [a, r1][3x, a, r1] .
!r2: a -> [a, r2][25x, a, r2] .
!r3: a -> [a, r3][8x, a, r3] .
!r4: a -> [a, r4][23x, a, r4] .
!r5: a -> [a, r5][5x, a, r5] .
!r6: a -> [a, r6][14x, a, r6] .
!r7: a -> [a, r7][30x, a, r7] .

}
}

type Output {
step -> 2step .
!yes: 9step -> no, halt .
}

main {a} (Main) - output {step} (Output) .

The model has two compartment types, Main and Output, and two compart-
ments output, and main. The first rule of Main is a rewrite communication rule,
which is guarded by {= 55x}. If this guard is satisfied, it will produce a yes
and a halt object in Output, which is a positive answer for the problem. The
second rule is a structure changing rule which results in the compartment dis-
solution. These two rules are encapsulated within a choice block, which means
that at each step only one of the rules is selected and executed, and the selection
is non-deterministic. The second choice block consists of seven division rules,
each of which is guarded with !ri, which aims to prevent any of the successor
compartment to execute the same rule. Each rule divides the active compart-
ment into two new compartments of the type Main. New compartments will
inherit the multiset objects of their parent. In addition, the multiset objects on
the right hand side of the rule will pass to the corresponding child compartment.
For example, if the first division rule is selected, then the compartment will be
divided into two new compartments and both will inherit their parent objects.
In addition, one of them will have the {a, r1} objects, while the other one will
have {3x, a, r1}.

The compartment type Output has been added just to collect the results.
We have extended the model to be able to produce a negative answer, no, if the
system reaches its maximum number of steps and has not produced a positive
answer, yes, so far. Output has two rewriting rules: the first rule increments
the multiplicity of the step counter by one at each step, and the second rule
produces a halt and a no object, if a yes object has not been produced so far,
and the step counter is 9. In this case, both rules are executed (or at least the
system attempts to execute both), in the given order.

kPWorkbench automatically converts the kP-Lingua model into the cor-
responding input languages of Spin, and NuSMV. In order to verify that the
Subset Sum problem works as desired, we have constructed a set of properties
specified in kP-Queries, listed in Table 3. A subset of these properties are verified
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Table 3. List of properties derived from the property language and their representa-
tions in different formats.

in [10] using the model checker Spin using the old verification approach. Here,
we use the new procedure of verifying kP-Lingua models for investigating the
validity of a set of properties.

The applied pattern types are given in the second column of the table. For
each property we provide the following information; (i) informal description
of each kP-Query, (ii) the formal kP-Query, (iii) the translated form of the
kP-Query into the Spin modelling language, Promela, and into the (iv) CTL,
and (v) LTL forms of the NuSMV specification. The results of all queries are
positive.
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In the following, we briefly describe why all properties listed in the Table 3
are true. After all division rules are applied, 27 = 128 compartments of the type
Main are generated. The contents of each compartment are determined by their
ancestors. Here, we try to find out if any of the child compartments includes 55 x
objects. Since there are more than one compartment with exactly 55 x objects,
the output produces a yes and a halt object. If none of the compartments
included 55 x objects, then the output would produce a no and a halt object
(without producing a yes object). Hence, a halt object is always produced.
This explains why Properties 1, 2, 3, and 5 are true. Property 4 is also true,
since the algorithm is a faithful linear time solution and the computation ends
at most within n+ 2 steps. Property 6 tests that there will never be a no object
before a yes object is produced. Since there is at least one child compartment
which has 55 x, a yes will be triggered first. Thus, a no object is never produced
before it. In other words, a yes object is always produced before a no object.
Hence, Properties 6 and 9 are true. Property 7 is also true, because after the first
step, the division rules will be applied and a child compartment will be created.
Then, the child compartments that have 55 x will trigger a yes object in the
output. After the production of a yes object, it will remain inside the output
compartment. This explains why Property 8 returns true.

As illustrated in Table 3, the intuitive and coherent form of kP-Queries lead
to relatively short, yet natural language-like property specifications, which are
independent from any specific model checking language. This approach brings
the flexibility of independently considering the particularities of each model
checker when translating properties, without the need to embody any of the
required aspects into the specification language of kP-Queries. Being associated
to kP-Lingua models, kP-Queries facilitates the construction of queries against
the entities of the model and automatically considering the translation of these
entities without user interaction.

Furthermore, unlike the previous one, the new verification approach is not
bound to the usage of a graphical user interface. Although by using a GUI the
property specification process is more intuitive, it is considered more tedious
by most users aiming to script and automate a verification task. In order to
address this usability problem, the process of using the new kPWorkbench
verification approach is also assisted by a simple GUI, guiding non-expert users
through the entire procedure, while empowering experienced users with a flexible
and expressive mechanism for using the verification framework from a command
line interface or shell scripts.

4.2 Generating Square Numbers

We present below a kernel P systems model that generates square numbers
(starting with 1) each step. The multiplicity of object “s” is equal to the square
number produced each step.
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Table 4. List of properties derived from the property language and their representa-
tions in different formats.

type main {
max {
= t: a -> {} .
< t: a -> a, 2b, s .
< t: a -> a, s, t .
< t: b -> b, s .

}
}

m {a} (main).

An execution trace for this model can be visualised as follows:

a
a 2b s
a 4b 4s
a 6b 9s
...
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Fig. 1. The structure.

kPWorkbench automatically converts the kP-Lingua model into the corre-
sponding input languages of the Spin, and NuSMV model checkers. In order to
verify that the problem works as desired, we have constructed a set of properties
specified in kP-Queries, listed in Table 4. The applied pattern types are given in
the second column of the table. For each property we provide the following infor-
mation; (i) informal description of each kP-Query, (ii) the formal kP-Query, (iii)
the translated form of the kP-Query into the LTL specifications written in Spin
modelling language, and CTL specifications written in the NuSMV language.
The results of all queries are positive, as expected (Fig. 1).

4.3 Broadcasting with Acknowledgement

In this case study, we consider broadcasting with acknowledgement in ad-hoc
networks. Each level of nodes in the hierarchy has associated a unique type with
communication rules to neighbouring (lower and upper) levels. This is the only
way we can simulate signalling with kP systems such that we do not hard-wire
the target membranes in communication rules, i.e. assume we do not know how
many child-nodes are connected to each parent as long as we group them by the
same type; evidently, this only applies to tree structures. The kP Systems model
written in kP–Lingua is given as follows:

type L0 {
max {
a -> b, a (L1), a (L2) .

}
}
type L1 {
max {
a, c -> c (L0) .

}
}

type L2 {
max {
a -> b, a (L3) .
b, c -> c (L0) .
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}
}

type L3 {
max {
a, c -> c (L2) .

}
}

m0 {a} (L0) .

m1 {c} (L1) - m0 .
m2 {} (L2) - m0.
m3 {c} (L3) - m2 .

In order to verify that the model works as desired, we have verified some
properties, presented in Table 5. The results are positive, except Properties 1
and 5, as expected. These results confirm the desired system behaviour.

Table 5. List of properties derived from the property language and their representa-
tions in different formats.
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5 Discussion

kP systems (and P systems in general) are a suitable formalism for modelling
biological systems, especially multi-cellular systems and molecular interactions
taking place in different locations of living cells. These non-deterministic mod-
els facilitate the qualitative analysis of such systems. Namely, they allow one to
describe all chains of reactions, observe various interactions between species and
determine various dependencies between molecules. In [22], two biological sys-
tems, the quorum sensing in P. aeruginosas and the synthetic pulse generator,
and in [21] some genetic Boolean gates have been qualitatively analysed using
the NuSMV and Spin model checkers. However, the ideas and methodology
presented in these papers were not fully automated. Our work presented in this
paper tackles this issue. The model checking framework now works in a fully
automated fashion and is integrated into the kPWorkbench platform. Thus,
this work can be considered progress on the conceptually presented methodology
introduced in [21,22].

6 Conclusions and Future Work

In this paper, we have presented a new model checking framework that we have
developed in support of formal verification of kP system models. It supports both
LTL and CTL properties by making use of the Spin and NuSMV model check-
ers. The new framework for kP-Lingua models enriches kPWorkbench with a
mechanism for defining kP-Queries files, which are especially designed for the
purpose of being used to verify kP-Lingua models. The format of kP-Queries file
is supported by an intuitive, coherent and integrated property specification lan-
guage, allowing the construction of queries involving kP-Lingua model entities
and targeting the LTL and CTL formalisms. We have demonstrated our pro-
posed methodology on the subset sum problem, by verifying a set of properties
constructed in kP-Queries.

Recently, in addition to the properties presented in the paper, we have investi-
gated and proved more complex and interested properties for the three examples
provided. For example, in the square numbers generator, by introducing a new
symbol to denote the iteration step and modifying the rules so that this is incre-
mented whenever s is incremented from a (in rules (2) and (3) of type Main),
we can verify that s equals the square of the iteration step. In the subset sum
example, we cannot verify anything related to newly created compartments as
we cannot refer to them. One way of addressing this problem would be to map
somehow the compartment creation into a corresponding symbol in the Output
compartment. For example, when a new compartment of type Main is created
and this contains 3 elements (the first rule of the second choice of compartment
Main), a rule which will send a r1 into Output whenever a compartment with
3 elements is created (has both 3 x and r1) will be added. We can then verify
that there is a path for which output.r1 > 0 (this means in Output an r1 has
been received after the compartment Main with 3 elements has been created).
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We aim to extend the current implementation by considering more com-
plex queries over kP-Lingua model entities, offering the verification tool greater
power and expressivity, and also by investigating how properties involving the
active membranes can be formulated and proved. We also aim to evaluate the
methodology with several other case studies to better understand its potential
and limitations more generally. In this respect, we will expand the synthetic
biology investigations [21,22] and develop verification strategies for some syn-
chronisation [9] and graphics [16] problems.
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Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems - version 1. In: 11th Brain-
storming Week on Membrane Computing, pp. 97–124. Fénix Editora (2013)

13. Gheorghe, M., Ipate, F., Lefticaru, R., Dragomir, C.: An integrated approach to P
systems formal verification. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G.,
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Abstract. One of the major challenges that current P systems simu-
lators have to deal with is to be as efficient as possible. A P system
is syntactically described as a membrane structure delimiting regions
where multisets of objects evolve by means of evolution rules. Accord-
ing to that, on each computation step, the applicability of the rules for
the current P system configuration must be calculated. In this paper we
extend previous works that use Rete-based simulation algorithm in order
to improve the time consumed during the checking phase in the selection
of rules. A new approach is presented, oriented to the acceleration of
Population Dynamics P Systems simulations.

Keywords: Rete algorithm · P systems · Membrane computing · Rule
applicability · Simulator performance

1 Introduction

In Membrane Computing it is relatively common to find in the literature designs
of P systems where a collection of rules is described by means of a single tem-
plate (usually using indexed objects). P-Lingua standard allows the definition
of rule patterns with parameters, thus getting closer to the usual syntax used
in the papers. For example, the following rule pattern represents one thousand
evolution rules acting over different objects:

[oi → xi], 1 ≤ i ≤ 1000.

Nevertheless, when designing simulator software, we commonly assume that the
rules will be handled individually. For instance, all built-in simulators in the
pLinguaCore library (even those from PMCGPU project [27]) always unwrap
any rule pattern within the .pli file, and then they load in memory every
single rule obtained. Therefore, in the previous example, our simulators would
handle those 1000 rules separately. It seems clear that, if we were able to process
rule patterns without unwrapping them, then the performance would improve
dramatically.

This paper provides a step forward in this direction, proposing an improve-
ment of the first phase of the simulation loop based on a Rete network: checking
which rules are applicable (an how many times).
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-28475-0 12
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The paper is structured as follows. First, some preliminary notions about
production systems and the classical Rete algorithm are recalled. Then, Sect. 3
discusses how to bring a Rete-like approach into the pseudocode of simulation
engines used in membrane computing software tools. Some further details are
given for the case of PDP systems in Sect. 4. Finally, the paper concludes with
some final remarks and future work.

2 Production Systems

A rule-based production system is a model of computation that has been widely
used in the field of Artificial Intelligence for a wide range of tasks in many
domains. It is classically defined by a set of rules (rulebase), a set of facts (work-
ing memory), and a rule engine that controls the execution.

Each rule consists of a conjunction of condition elements and a set of actions.
The general form is

if [condition]* then [action]*
Usually the condition part is known as the left-hand side (LHS) of the rule

and each condition is called a pattern. The action part is known as the right-hand
side (RHS) and describe the effects of applying the rule.

The rule engine repeatedly performs the operations described in Algorithm1
until no more rule is applicable (or an action element stops it).

applicable ← ∅;
foreach rule do

Test LHS of the rule against the working memory;
if it matches then

add rule to applicable
end

end
Choose one rule from applicable (if any);
Perform the actions of the RHS of the selected rule;

Algorithm 1. Match-act cycle

The actions produce, in most cases, the inclusion and/or deletion of facts
within the working memory. Because of those changes, some rules may become
applicable while, conversely, some other rules may stop being applicable.

It is well known that a large part of the time and memory consumed by a
ruled-based production system is due to the matching phase; that is, determining
which rules are applicable at any given instant, according to the current facts in
the working memory. Thus, the main challenge of match algorithms is to update
this information in an efficient way.



A New Strategy to Improve the Performance of PDP-Systems Simulators 173

2.1 The Rete Algorithm

The Rete algorithm [8] is a classic and widely used algorithm for checking rule
satisfaction. It takes advantage of two empirical observations:

– Temporal redundancy: The application of the rules does not change all the
working memory. Only some facts are affected and the remaining ones (prob-
ably, most of them) stay unchanged. Rete maintains state information across
cycles and performs incremental matching.

– Structural similarity: Several rules can (partially) share the same (or similar)
conditions in the LHS. Rete recognises those identical features in order to
avoid making the same tests multiple times.

Before the match-act cycles take place, the set of rules is preprocessed yielding
a network (a directed acyclic graph). During the match-act cycles, tokens associ-
ated with facts flow through this network each time that they are added/deleted
to the working memory. At any given point, the contents of the network cor-
respond to the conditions that have already been checked against the current
facts.

We will use the set of rules in Fig. 1(a), and the network associated to it
(displayed below the set of rules) in order to illustrate the description of the
different components of such a network and the process followed to construct
it. Figure 1(b) shows how tokens, corresponding to different facts added to the
working memory, pass through the network during a match-act cycle.

The network constructed for a given set of rules has two roots and three
kinds of nodes:

– Root α is the entry to the α-nodes subnetwork. During the match-act cycles
this root receives the changes in the working memory (added or removed facts)
and pass those tokens to its successors (α-nodes).

In the figure, root α is represented as a squared node with a symbol α
inside.

– α-nodes, children of the root α. They are included in the network for each
different pattern appearing in any of the LHS of the rules. α-nodes perform
the checking for the associated condition to all the tokens they receive. Only
when the test is successful, the token passes to the successors (β-nodes).

In the figure, α-nodes are represented as rectangles, showing their associated
condition inside them. For example, in order to match the first condition of
rule R1, an object must verify p1 relation, and its first argument must be equal
to number 3, as described in the corresponding α-node. Since in this small
example there are only three different patterns in the LHS of R1 and R2, the
network contains only three different α-nodes.

– Root β is the entry to the β-nodes subnetwork.
In the figure, root β is the double squared node with a symbol β inside.

– β -nodes perform inter–patterns conditions. β-nodes receive tokens from two
nodes (an α-node and a β-node) and have two different memories to store
the tokens that arrive from each parent. Every time a new token arrives,
the condition will be checked for all possible combinations of this token with
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Fig. 1. Two different Rete networks for R1 and R2. The one on the right also illustrates
the flow of tokens for a given working memory f1, . . . , f6.

tokens from the local memory of the other parent. Successful combinations (if
any) are passed on to successor nodes (either terminal or β-nodes).

β-nodes directly connected to the root β are a particular case; they do not
use any local memory, they just let tokens pass trough them.

In the figure, β-nodes are the double squared ones where the associated
inter–pattern condition is displayed inside them. Below the condition there
are two cells, where the tokens stored in each local memory are shown.

For the given example, the first non-elementary β-node is associated to
the following condition: the second argument of the token verifying the p1
relation must be the same as the first argument of the token that verifies the
p2 relation (we denote this as y(p1) = y(p2)).

– Terminal-nodes receive tokens which match all the conditions of the LHS
of a rule (including inter–patterns conditions), and produce the output of the
network. The set of applicable rules is composed by the rules whose terminal-
node are not empty.

In the figure, terminal-nodes are the grey ones.

The path from the root β, through different β-nodes, down to a terminal-node
defines the complete LHS of a rule. Unless otherwise indicated, inter–pattern
conditions are checked in the same order as they occur in the rule.
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Note that a very simple change in the order of R1 conditions yields a very
different network, as shown in Fig. 1(b). Now, the set of rules not only share
conditions p2(y, z, z) and p1(3,y), but also that they occur at the beginning
of the LHS, and moreover in the same order. Therefore, they continue sharing
the α-nodes for those conditions (like in Fig. 1(a)), but now they also share the
first β-nodes.

Algorithm 2 describes the general process that constructs the network for a
given set of rules.

NET ← graph ({α, β}, ∅);
foreach rule, R do

C ← first condition of R;
A ← α-node in NET associated to C;
// if it does not exist, then add it to NET as an α child

B ← β-node in NET child of A and β;
// if it does not exist, then add it to NET

foreach condition D in R (in order of occurrence after C) do
A ← α-node in NET associated to D;
// if it does not exist, then add it to NET as an α child

B ← β-node in NET, child of A and B, associated to inter-pattern
condition between D and previous conditions in R;
// if it does not exist, then add it to NET

end
T ← terminal-node in NET, child of B;
// if it does not exist, then add it to NET as child of B
Add R to T memory;

end
Algorithm 2. Network construction

The most important issue regarding performance is the order of the condi-
tions in the LHS of the rules. This leads to consider the following strategies to
improve the efficiency.

– Most specific to most general. If the rule activation can be controlled by a
single data, place it first.

– Data with the lowest number of occurrences in the working memory should
go near the top.

– Volatile data (ones that are added and eliminated continuously) should go
last, particularly if the rest of the conditions are mostly independent.

Those strategies try to minimise (in general), not only the number of β-nodes
that will exist in the network (and, therefore, the number of checks performed
until a token arrives into a terminal node), but also the number of β-nodes that
must be updated each time that a fact flows through their memories.

In resume, the key advantage of Rete is that rule conditions are only re-
evaluated when a fact is asserted or deleted. In this way, asserting a new fact is
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simply a case of passing a token through the network, and a smaller number of
matching operations are performed. In a naive implementation, each new fact
would be compared against every single pattern of every rule, which means a
greater time complexity. Retracting a fact is identical to assertion, but items are
removed from node memories.

3 Rete and P System Simulation

In this section we explore how the Rete algorithm and the strategies described
in the previous section can be adapted to Membrane Computing simulators. We
assume that the reader is familiar with basic concepts related to this area, for
an extensive bibliography and documentation please refer to the handbook [23]
and the P systems webpage [25].

Since there is no implementation in vivo nor in vitro of P systems, the devel-
opment of in silico simulators has been one of the most active research lines
in the area [7,12]. In [9], a specification language for membrane systems called
P-Lingua has been presented. This language aims to be a standard to define
P systems. The P-Lingua framework also includes a Java library called pLin-
guaCore, which is able to parse (plain-text) files in P-Lingua format defining
P systems from a number of different models [6,14,18], checking whether they
contain any syntax or semantics errors. P-Lingua files can also be exported into
xml or binary formats, so that the converted files can then be used as the input
for simulation tools. Moreover, the library includes several built-in simulators
for each supported model. It is an Open Source software tool available at [26].

We will now discuss about the functioning of such simulator engines provided
by pLinguaCore. After parsing the P system defined in the input P-Lingua (.pli)
file, the simulation process of each computation step is carried out in two phases:
selection and execution of rules. In the first phase, the checking of the applica-
bility of the rules is made sequentially. Such method only simulates one possible
computation, so it is used for confluent P systems (that is, systems for which all
the computations with the same input lead to the same result).

Checking the applicability of rules normally consumes plenty of time in pLin-
guaCore simulators, and in fact, it is mainly in this checking subroutine where
the complexity of the simulation algorithm resides. For P systems where the rules
have an associated probability, there is an additional difficulty: deciding how to
implement the semantics, which informally indicate that rules should be applied
in a “maximally parallel way, according to their probabilities”. In particular,
pLinguaCore includes a variety of simulation algorithms for PDP systems: Bino-
mial Block Based (BBB) algorithm [1] does a random loop over blocks of rules
(i.e. rules having the same LHS), and assigns a maximal number of applications
to each one; Direct Non Deterministic distribution with Probabilities (DNDP)
algorithm [6] does also a random loop, but over the rules, and assigning a prob-
abilistic number of applications; and Direct distribution based on Consistent
Blocks Algorithm (DCBA) [16] performs a proportional distribution of objects
among blocks of rules before assigning a maximal, but probabilistic number of
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applications to each rule. The main difference among these three approaches
is not their performance, but the fact that they produce significantly different
behaviours. DCBA is the one that tries to perform the selection of rules to be
applied in a more realistic or accurate way, from an ecological point of view.
Since it is the most common choice for PDP systems simulation, in what follows
we will focus particularly on it.

It is worth stressing the fact that the Rete-based algorithm that we intro-
duce in this paper is completely independent from the computation mode of
the considered P-system model (sequential, maximal/minimal parallelism, dis-
tributed, etc.). Indeed, the Rete network contains information about which rules
are “individually” applicable. When calculating applicable multisets of rules, the
computation model comes into play.

For a first approximation to the study of how to use Rete algorithm ideas
within Membrane Computing we have chosen to focus on rules handling polari-
sation, which can be written in the following form

un11 · · · unkk [vm11 · · · vmll ]cs → . . .

(k and/or l can be 0) with u1, . . . , uk, v1, . . . , vl ∈ Γ .
Also, on many occasions the symbols of the alphabet have subscripts (gen-

erally numerical) used to describe rulesets. In general, the following possibilities
occur:

– Subscripts belong to a fixed set of possibilities:

ui[vj]cs → . . . such that 1 ≤ i, j ≤ 10

– The value of a subscript of an object is determined by other subscripts values:

ui,i+1[]cs → . . . such that 1 ≤ i ≤ 10

– Subscripts from different symbols may also be related:

ui,j[vi+1,j−1]cs → . . . such that 1 ≤ i, j ≤ 10

Generalising the above, rulesets schemes would be something of the form:

un1j1:Γ1 . . . unkjk:Γk : γk[vm1i1:Θ1 : θ1 . . . v
mk′
ik′ :Θk′ : θk′ ]cs → . . .

where each Γ is a relation over the symbol subscripts and each γ is a relation
over the symbol subscripts and all the subscripts of the previous symbols. In
such a scheme we can distinguish three kinds of conditions:

– A membrane labelled with s must have charge c : []cs
– Outside the membrane there must be at least nj copies of element uj and its

subscripts must verify Γj: u
nj
j:Γj : γj.

This condition is interrelated with the previous one as the membrane has
to be the same as in the previous conditions. Also, the object subscripts are
related in terms of γj with the subscripts of the objects in the former condi-
tions.
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Fig. 2. Rete network for P systems

– Inside the membrane there must be at least mi copies of element vi and its
subscripts must verify Θi: [vmii:Θi : θi].

Equivalent interrelation to those listed above have to be taken into account.

So, for each symbol in a given P system configuration, the token passing
trough the network must contain information about the number of copies and
its subscripts. As the symbol is, at the same time, inside a membrane and,
probably, outside of one or more membranes a different token is sent for each
symbol situation.

Following the work introduced in [10], α-nodes can be divided into several
nodes, one for each condition over the arguments of a pattern. Moreover, we
consider here a strategy to reduce the amount of redundant information in the
network. We will allow these new detailed α-nodes to be used by several patterns,
in such a way that each pattern will not be associated to a single α-node, but
to a path from root α to a β-node.

For example, let us consider the following rules

1. aib3i[fi+1]+2 → . . . for 1 ≤ i ≤ 1000
2. b3i[fi+1e20]

+
2 → . . . for 1 ≤ i ≤ 1000

It is important to highlight that this strategy allows us to handle only two
templates of LHS, instead two thousand different (but similar) individual rules.
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First of all, we can rewrite them as in Sect. 2.1, in order to put at the begin-
ning common conditions. Figure 2 shows the new syntax, together with the con-
structed network. Note that there are specific detailed α-nodes for conditions
about the membrane charge, about the region where the objects should be,
about the index of the objects, and about their multiplicity.

Considering that, in a given configuration, several membranes may have
the same label, all β-nodes (including those directly connected to root β) and
terminal-nodes have different slots to distinguish between them.

In production systems, the changes in the working memory correspond
mainly to adding or removing facts. In membrane computing, the modifica-
tions caused by the application of the rules mainly refer to polarization of the
membranes or their associated multisets of objects. Each time that something
is modified on a configuration, the corresponding tokens go trough the network,
and in β-nodes the inter–relations between them are checked. Moreover, the
checking does not yield a Boolean answer, but instead, the maximum number of
times that the related rules could be used is updated.

4 Population Dynamics P Systems and DCBA Algorithm

Population Dynamics P systems are a variant of multienvironment P systems
with extended active membranes [5]. As discussed before, the simulation of PDP
systems has been a research topic for years. In total, up to 4 simulation algo-
rithms were defined, each trying to improve both in accuracy and in performance
for their predecessor. The latest defined algorithm is called DCBA [16], which
implements a proportional distribution of objects among rules with overlapping
LHS (i.e. competing for objects). Rules having the same LHS are arranged into
blocks, and these are also restricted to the consistency condition: rules within a
block must have the same LHS and the same charge in the RHS [16].

DCBA consists of 3 phases for the selection of rules: phase 1 (distribution),
phase 2 (maximality) and phase 3 (probabilistic). The general scheme is the
following:

1. Initialization of the algorithm: static distribution table (columns: blocks,
Rows: (objects,membrane))

2. Loop over Time
3. Selection stage:
4. Phase 1 (Distribution of objects along rule blocks)
5. Phase 2 (Maximality selection of rule blocks)
6. Phase 3 (Probabilistic distribution, blocks to rules)
7. Execution stage

As analysed in [17], Phase 1 is the bottleneck of the simulation in sequential
mode, taking more than the half of the run time. Whereas Phase 2 performs a
random loop over remaining blocks of rules to achieve maximality, and Phase 3
carries out a random multinomial distribution from blocks to rules, Phase 1 has
to deal with all the defined blocks of rules, and distribute the objects among
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foreach environment ej , 1 ≤ j ≤ m do
Apply filters 1 and 2 to Tj using configuration Ct, obtaining the dynamic
table T ′

j ;
Check mutual consistency for the blocks remaining in T ′

j . Launch an error if
at least one inconsistency is found. Optionally, select a maximal subset of
consistent blocks, and continue;
Apply filter 3 to T ′

j (delete empty rows);
repeat

Add all non-null values in the rows of T ′
j ;

Normalize the values of T ′
j by using the total sum of rows;

Multiply each row by the number of copies of the corresponding object
in Ct;
Calculate the minimum of the previous values per column;
Select the block corresponding to the column with that minimum value;
Delete the number of copies of the objects in the LHS according to that
selection;
Apply filters 2 and 3 to T ′

j ;
until (Reached a maximum number of iterations) ∨ (All the column
minimums are 0);

end

Algorithm 3. DCBA selection (Phase 1)

them. Algorithm 3 shows a brief overview of Phase 1 (more details can be seen
in [16]).

Essentially, the proportional distribution of objects is carried out by using
a table which implements the relationship between rules and their LHS as fol-
lows: each column corresponds to each rule block, each row to a pair (object,
membrane), and the value in position (i, j) is 1/k, if the object of row i appears
k times in the LHS of block of j, or 0 otherwise. The algorithm always starts
with a static table, that will be the same for each transition step. The checking
of applicability of rules is carried by applying two filters to the static table, and
generating a dynamic table in turn. Depending on the current configuration of
the PDP system, the table is dynamically modified by deleting columns related
to non-applicable blocks: due to the charge associated to the membrane in the
LHS (filter 1), and due to the availability of objects in the LHS according to the
configuration (filter 2).

Finally, there is a further restriction within phase 1: if two non-consistent
blocks (having different associated right-hand charge) can be selected at the
same time given a configuration, then the simulation algorithm will return an
error, or optionally non-deterministically choose a subset of consistent blocks.

Evolution rules in PDP systems follow the scheme presented in previous
section. Moreover, each environment contains a P system. Since they do not
share objects directly, a separate Rete evolution network for each P system can
be considered.
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foreach environment ej , 1 ≤ j ≤ m do
repeat

Add all non-null values in the rows of Tj ;
Normalize the values of Tj by using the total sum of rows;
Multiply each row by the number of copies of the corresponding object
in Ct;
Calculate the minimum of the previous values per column;
Select the block corresponding to the column with that minimum value;
Delete the number of copies of the objects in the LHS according to that
selection and send the corresponding tokens to the networks;

until (Reached a maximum number of iterations) ∨ (All the column
minimums are 0);

end
Algorithm 4. Phase 1 reduction due to the use of Rete networks

Environments can send (receive) objects to (from) other environments, by
means of a set of communication rules of the following form.

(x)ej → (y1)ej1 · · · (yh)ejh

A new network for the set of communication rules has to be constructed, but
this is quite simple as their LHS include just one single condition, the existence
of an object in an specific environment.

These communitation network must be synchronised with the evolution net-
works for an accurate simulation. When the initial configuration is included,
for each object in the environments, a token is sent to the evolution network
associated to that environment and to the communication network. If during a
computation step of a simulation, an evolution rule of any P system sends out to
its environment an object, then a token removing it is sent to the corresponding
evolution network and, also, a token adding it to the corresponding environment
has to be sent to the communication network. Moreover, when a communica-
tion rule is used during a computation step, in addition to tokens sent trough
the communication network, a token has to be sent to the evolution network
associated to each receiving P system.

As mentioned before, each time that a token passes through the network the
maximum number of times that any rule affected by this change in a configura-
tion is updated. With this information, Tj is dynamically updated and there is
no need to use an initial static distribution table (step 1 in DCBA is replaced
by the construction of the networks). Indeed, it would not be necessary to apply
any filter to Tj . This updating includes checking mutual consistency launching
an error if an inconsistency is found. Algorithm4 briefly describes new Phase 1.

5 Conclusions and Future Work

In this paper we have presented how to use Rete-based checking for applicabil-
ity to improve the time consuming by DCBA. For further work new simulators
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have to be added to pLinguaCore (and also to PMCGPU project), not unwrap-
ping rules and constructing Rete-based networks instead, and adapting selection
phase. The basic lines shown should be adapted to each specific model in order
to improve the efficiency of the designed simulator.

As is well known, one of the key points of the efficiency of the Rete algo-
rithm is the proper order in the conditions of the LHS of the rule. On the other
hand, one of its disadvantages is the memory consumed by β-nodes, what has
led to modified algorithms for production systems as [19] and the more recent
Rete* [24]. It will be interesting to study the impact of this drawback within
Membrane Computing framework. In order to test the performance, it is desir-
able to work on a battery of examples as diverse and demanding as possible (e.g.
in [17] a random generator of systems was used to stress the simulators).

On the other hand, the adaptation of the Rete algorithm has been made by
considering that the computer where the software runs has only one processor
and, in this way, the software simulation of the P systems is made sequentially
in a one-processor machine. Nonetheless, new hardware architectures are being
used for simulating P systems [2–4,15,17,20–22], so the parallel versions of the
Rete algorithm [11,13] and their relations with parallel simulators of P systems
will be considered in the future.
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References

1. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
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paring simulation algorithms for multienvironment probabilistic P systems over a
standard virtual ecosystem. Nat. Comput. 11(3), 369–379 (2012)



A New Strategy to Improve the Performance of PDP-Systems Simulators 183

7. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Pérez-
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Pérez-Jiménez, M.J.: Population dynamics P systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 247–266. Springer, Heidelberg
(2012)
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A.: A P-Lingua based simulator for tissue P systems. J. Log. Algebr. Program.
79(6), 374–382 (2010)

19. Miranker, D.P.: TREAT: a better match algorithm for AI production systems.
In: Proceedings of the National Conference on Artificial Intelligence, pp. 42–47.
American Association for Artificial Intelligence, August 1987

20. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant app-
roach to hardware source code generation in reconfig-P. J. Log. Algebr. Program.
79(6), 383–396 (2010)

21. Peña-Cantillana, F., Dı́az-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A
parallel implementation of the thresholding problem by using tissue-like P systems.
In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.)
CAIP 2011, Part II. LNCS, vol. 6855, pp. 277–284. Springer, Heidelberg (2011)



184 C. Graciani et al.

22. Peña-Cantillana, F., Dı́az-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.:
Implementation on CUDA of the smoothing problem with tissue-like P systems.
Int. J. Nat. Comput. Res. 2(3), 25–34 (2011)
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Abstract. The present work proposes a translation of MP systems into
register machines. The already proved universality of MP grammars [6]
and the very simple subclass derived from it are used, in here, to present
a specification of the metabolic computational paradigm of MP gram-
mars at low (register) level, which is a first step toward a circuit-based
implementation of these systems.

1 Introduction

Metabolic P (MP) systems have been evolving since its conception from a mod-
elling language for biological systems using the nature inspired P system [11] to a
computational framework for diverse mathematical activities, such as arithmeti-
cal operations [10] or regression of temporal series [13]. Consequently, questions
concerning the computational power of MP systems have driven the research
to some correspondent models [3,12] without a complete equivalence to Turing
machines or more powerful devices [5,19].

From the synthetic and systems biology perspective, on the other hand, there
is a rise on the number of methods seeking to import to those fields already
established methodologies in engineering, in a kind of computer-aided biology.
Component modelling [17], hardware design [7,16] and compiler techniques [1]
are some of them. Although well-intentioned, these suggestions are reinterpreta-
tions of engineering practices and result to be alien, at times difficult, languages
to the biological community.

Trying to unify both standpoints (discrete metabolic computing framework
and formal design of systems and synthetic biology), the present work closes the
cycle (started with [6]) of MP system as a universal computational model of
discrete and deterministic metabolic computing, providing the means to convert
a rule based system coded as a particular MP system (Definition 9) into an
equivalent register machine description as well as formally describe the core
algorithms implemented in our compiler software under development1; hence,
a bidirectional bridge between computational and mathematical modelling and
chemical and biological worlds is built and, as a consequence, also a base to
develop new tools that connect them.
1 The current version of the software (command-line application) may be downloaded

at http://ricardo.guiraldelli.com/resources/software/compiler/regtomp.zip.
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To introduce our mechanism of translation between models, the present paper
is divided as follows: Sect. 2 introduces the concept of register machine and
specifies the one used as target modelling language in the text; then, there is a
review on classical MP systems followed by the presentation of the MP+ class of
systems, our reference model. Section 4 scrutinize the details of the translation
between MP+V systems and register machine. Finally, we make final remarks
on the Sect. 5.

2 Register Machine

The literature enumerates several Turing-powerful models of computation [9],
each one suitable for different context and applications given their own partic-
ularities. For the case in which the circumstance requires a great proximity to
the bare-metal real computers, the register machine is one the most convenient
models to be used.

A register machine is defined by a finite set R of registers, a finite set O of
operations over the registers and a program P , an indexed sequence of applied
operations. Each of the registers r ∈ R has infinite capacity, storing numbers of
arbitrary length and precision (in our case, any number n ∈ N) [14]. The set of
operations must, at least, provide the features to define and reproduce recursive
functions [9], free access to resources (memory units or program instructions) as
the unconstrained head of the Turing machine, a signalization of end of compu-
tation and be restricted to the set N. Therefore, the set O can be defined using
four operations: zero, successor, decrements or jump and halt [14]. Nevertheless,
we have chosen to embrace both the standard and the extended2 Shepherdson’s
and Sturgis’ register machine models [18], both more appropriate for the devel-
opment and understanding of the present work.

Definition 1 (Standard Register Machine). A (standard) register machine
R is a computational device defined as

R = (R,O, P )

where:

1. R = {R1, R2, . . . , Rm} is a finite set of infinite capacity registers, with m ∈ N;
2. O = {INC, DEC, JNZ, HALT} is the set of operations;
3. P = (I1, I2, . . . , In) is the program, with n ∈ N.

The execution of the program P always start at the first instruction I1 and pro-
ceeds sequentially (unless for programmed execution re-route).

2 The original model of what we call Shepherdson’s and Sturgis’ extended register
machine model [18] does not contain the JNZ instruction: it is introduced later and
is shown that both JMP and JZ can be rewritten in terms of JNZ [18].
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Definition 2 (Extended Register Machine). An extended register machine
R is a standard register machine as in Definition 1 with the set of operations O
redefined as

O = {INC, DEC, CLR, JMP, JZ, JNZ, HALT}

The concept of instruction of a register machine R (as referenced in Def-
inition 1) is simply a convenient notation to name the operations in O over
addressed registers Ri ∈ R or other instructions; the behaviour of those men-
tioned so far is described in Definition 3.

Definition 3 (Instructions). Let the content of register Ri be equal to x.
Then, the definition of the instructions in the set I derived from the operations
in O for the register machine R is:

1. INC(Ri) ≡ Ri ← x + 1

2. DEC(Ri) ≡
{

Ri ← x − 1 , if x > 0
Ri ← 0 , otherwise

3. CLR(Ri) ≡ Ri ← 0
4. JMP(Ij) change the execution flow of R, setting Ij as the next instruction to

be executed;
5. JZ(Ri, Ij) change the execution flow of R, setting Ij as the next instruction

to be executed case x = 0; otherwise, the execution flow keeps sequential;
6. JNZ(Ri, Ij) change the execution flow of R, setting Ij as the next instruction

to be executed case x > 0; otherwise, the execution flow keeps sequential;
7. HALT ends the computation of R.

We also define three subprograms3, CPY, ADD and SUB, to simplify some of
the algorithms included in this text. CPY simply copy the contents of the origin
register R1 to the destination one, R2, overwriting its values; the other two
algorithms represent respectively the arithmetical operations of addition and
subtraction and allow the destination register (R3 in the Algorithms 2 and 3) to
be one of the terms of the operation (R1 or R2), a desired property that also
contributes for the conciseness of the codes in the Sect. 4.

The above definitions of register machine specify a very simple and powerful
computation model very close to the real implementation of hardware architec-
ture and can be translated to a series of other models, such as software instruc-
tions, digital circuits or metabolic systems [6], serving as an useful intermediate
language.
3 The algorithms use a kind of exponential notation to represent repetitions of com-

mands, notation originally defined by Shepherdson and Sturgis [18]. They also make
use of special registers, Rα and Rβ , which are simply auxiliary registers to store
values of intermediary operations. In fact, all the registers with greek-letter indexes,
in the present work, are auxiliary registers. More details on them will be given in
Sect. 4.
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Algorithm 1. CPY(R1, R2) subprogram, where R2 ← R1

1 CLR(Rα)
2 CLR(R2)
3 {INC(Rα), INC(R2)}R1

4 {INC(R1)}Rα

Algorithm 2. ADD(R1, R2, R3) subprogram, where R3 ← R1 + R2

1 CLR(Rα)
2 CLR(Rβ)
3 CPY(R1, Rα)
4 {INC(Rα), INC(Rβ)}R2

5 {INC(R2)}Rβ

6 CPY(Rα, R3)

3 Metabolic P Systems

Metabolic P (for short, MP) systems are a particular type of formalism inside the
class of membrane computing. Originally, it has been developed inspired by the
purposes of P systems but specialized to the modelling of biological dynamics [11]
(particularly, metabolic ones).

Concerning its features, MP systems inherit the basic structures of its super-
class [15] (membrane structure, multisets of objects and rules), but also possess
those of discrete dynamical systems [8] such as discrete step of execution, parallel
execution of all of their rules and feedback-like update of their state variables.
The elements and the influence of both perspectives mentioned above can be
seen in the formal (and modular) definition of the MP systems [10] given below.

Definition 4 (MP grammar). An MP grammar G is a generative grammar
for time series defined as

G = (M,R, I, Φ)

where:

1. M = {x1, x2, . . . , xn} the finite set of substances (variables or metabolites),
and n ∈ N the number of substances.

2. R = {αj → βj : 1 ≤ j ≤ m} the set of rules (or reactions), with αj and βj

multisets over M , and m ∈ N the number of reactions.

Algorithm 3. SUB(R1, R2, R3) subprogram, where R3 ← R1 − R2

1 CLR(Rα)
2 CLR(Rβ)
3 CPY(R1, Rα)
4 {JZ(Rα, 5), DEC(Rα), INC(Rβ)}R2

5 {INC(R2)}Rβ

6 CPY(Rα, R3)
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3. I = (x1[0], x2[0], . . . , xn[0]) is the vector of initial values of the substances or
the metabolic state at initial step (step zero or t0).

4. Φ = {ϕ1, ϕ2, . . . , ϕm} is a set of functions (also called regulators or fluxes),
in which every ϕj : Rn �→ R, for 1 ≤ j ≤ m, is associated with a rule rj ∈ R.

The above, static definition of MP grammar encompasses all its composing
elements as well as all membrane computing features: the membrane structure
represented by the grammar G itself, the multisets defined by the metabolites M
and their initial states I and the rules through the sets R and Φ. And although
the set of fluxes Φ also indicates features of dynamical systems, it is essential to
define the recurrent computational process of the state variables (i.e., metabo-
lites quantities) in order to give MP systems a dynamical behaviour.

Definition 5 (Stoichiometric Matrix). Given an MP grammar G =
(M,R, I, Φ), let ri ∈ R be an MP rule of the form αi → βi as in Definition 4.

The operator mult+(xj , ri) retrieves the multiplicity of the metabolite xj in
the right-side of the rule ( i.e., in βi). Its counterpart mult−(xj , ri) operates
similarly, but over the multiset αi.

Then, a stoichiometric matrix A for the MP grammar G has each of its
elements defined by

ap,q = mult+(xp, rq) − mult−(xp, rq)

for 1 ≤ p ≤ |M | and 1 ≤ q ≤ |R|.
Definition 6 (Equational Metabolic Algorithm (EMA)). At a given time
ti ∈ N, let ϕj(ti) be the computed value of the flux ϕj at time ti and U [ti] =
(ϕ1(ti), ϕ2(ti), . . . , ϕm(ti))

T the vector of all fluxes’ values at that step.
The vector of substance variation at step ti, Δ[ti], is defined by the equation

Δ[ti] = A × U [ti]

and the so-called Equational Metabolic Algorithm, which computes the value of
any substance in the future time step ti+1, is computed through the following
recurrent equation

X[ti+1] = X[ti] + Δ[ti]

Definition 7 (MP system). An MP system M is a discrete dynamical system
defined4 as

M = (G, τ)

with
4 This definition of MP system is a simplification over the one presented in [10]: the

concepts of number ν of conventional mole and vector μ of mole masses are useful in
some circumstances, but not essential—specially in the context of the present work.
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1. G being an MP grammar following the Definition 4;
2. τ ∈ R, the period (amount of time) of a computational step;

Hence, a static MP grammar becomes an MP (dynamical) system through
the existence of a procedure to compute its future states (Definition 6) and an
association with a time scale (Definition 7).

3.1 The MP+ Class of Systems

There is a (sub)class of MP systems, introduced in [6], called positively controlled
MP systems (or, for short, MP+) which restricts the quantities of MP substances
to the infimum of zero. With such attribute, this kind of system is suitable for
correspondences with biological systems, in which quantities are represented in
the set N or R

+, and is enough to become a Turing-powerful model equivalent
to register machine [6].

Definition 8 (MP+ Grammar). An MP+ grammar G′ = (M,R, I ′, Φ′) is a
derivation from a standard MP grammar G = (M,R, I, Φ) if its vector of initial
values for substances I ′ has all components greater than or equal to zero, the set
of consuming fluxes of the metabolite x defined as Φ′−

x =
{
ϕ′

j : mult−(x, rj) > 0 ,
∀rj ∈ R}, and G′ respects the following restrictions at every computational
step ti:

1. ∀ϕ ∈ Φ : ϕ′(ti) =

{
ϕ(ti), if ϕ(ti) ≥ 0
0, otherwise

;

2.
∑

ϕ′∈Φ′−
x

ϕ′(ti) ≤ x(ti); otherwise ϕ′(ti) = 0,∀ϕ′ ∈ Φ′−
x at the execution step ti.

From the procedures to transform a register machine into a MP+ system [6]
arises, as a pattern, a very simple and deterministic class which we call MP+V
(MP positively controlled grammar with variable gap regulators).

Definition 9 (MP+ Grammar). An MP+V grammar G = (M,R, I, Φ) is a
MP+ one in which:

1. ∀r ∈ R and v′, v′′ ∈ M , r must have one of the following shapes:
(a) ∅ → v′′;
(b) v′ → ∅; or
(c) v′ → v′′;

2. ∀ϕ ∈ Φ and m′,m′′ ∈ M , the flux has either the form ϕ = m′ or ϕ = m′−m′′.
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4 Translation of MP+V Systems into Register Machine
Programs

From the equivalence result between MP systems and Turing machines [6], it
is easy to realize that any given algorithm A represented in register machine
notation, which we may conveniently call AR, can also be expressed in MP terms
(or, simply, as AM ). From this equivalence also derives the transformation on
the other way round, i.e. TM : AM �→ AR, translating any MP algorithm into a
register machine one. In fact, TM is the present focus of this work.

To simplify its definition, we are going to restrict the input MP system to the
MP+V class, without loss of generality (Sect. 3). This class of systems is chosen
because:

1. it is the output from the transformation TR : AR �→ AM [6];
2. all of its fluxes ϕ ∈ Φ are functions of the type N �→ N, meaning the operations

of MP+V systems are performed over the set N of number as those in the
register machine; and,

3. it presents a reduced set of rules with only two types of fluxes: single variable
or subtraction of two variables.

Although TM may sound a trivial inverse transformation of TR, its definition
poses challenges that require a proper treatment in order to provide a correct and
total transformation of every AM into AR. Hence, we dedicate the remainder of
this section to describe and give mathematical treatment for all of them.

4.1 The Caveats of MP+V

The MP+V systems have two intrinsic properties nonexistent in most of the
computational formalisms (including the register machines) that require atten-
tive study before any attempt to define a translation procedure to those systems.
These properties are the unordered, parallel application of the rules and the pos-
itive control property.

Inherited from P systems, the parallel application of the MP+V rules has
a meaning in the metabolic systems since it describes different contexts regu-
lated by chemical rules independent among each other, inside the cell fluid and
behaving under the Brownian rules.

This parallelism of the rules is converted to sequential steps through the
establishment of a block of execution (such as those present in program lan-
guages) in which all the rules and its fluxes are computed for all the variables
over auxiliary values, as if the variable values were frozen while the block is being
computed. Figure 1 explains the process.

The positive control, on the other side, is a system’s property which requires
the variable values to be greater than or equal the sum of all its consuming
fluxes; this restriction, though to not allow negative quantities of metabolites,
is not completely satisfied by the subtraction in N and must be implemented
as a special routine when translating MP+V to register machine according to
Definition 8.
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Fig. 1. Graphical representation of the block of execution. The upper part of the dashed
line represents the sequential application of MP rules, while the lower part stands for the
parallel application of MP rules in the system. Two computational steps are depicted
in the figure, t0–t1 and t1–t2.

4.2 The MP+V Rules

The MP+V systems, as a result of the AR �→ AM translation procedure [6],
generates simply four kinds of MP rules that add quantity to a variable V1 (i.e.,
∅ → V1), remove quantity from it (V1 → ∅), transfer quantity to another variable
V2 (in the form of the rule V1 → V2) or, halts the computation (V1 → HALT ),
which requires the additional, special purpose metabolite HALT to signalize the
end of the procedure5. All of them may be combined solely with fluxes controlled
by a single referenced variable (e.g. ϕ = V1) or a subtraction of two variables
(ϕ = V1 − V2).

The translation procedures of TM for each of the above MP rules resemble
inverse versions of those in TR [6]. Nonetheless, additional operations are added
in order to provide the correct behavior for any inputted MP+V system, not
only those outputted from a TR transformation.

The strictly increasing MP rule, the one of the form ∅ → V1 : ϕ, simply add
the value of ϕ(t) (at time t) to the variable V1; as a recurrent expression, it may
be expressed as V1[t + 1] = V1[t] + ϕ(t). In the context of the extended register
machine, with RV1 as the register address of the variable V1, Rϕ as the one for
ϕ(t) and Raux the address for an auxiliary variable, we have the translation of
strictly increasing MP rule as Algorithm 4.

Algorithm 4. Strictly increasing MP rule as Register Machine code.
1 ADD(RV1 , Rϕ, Raux)
2 CPY(Raux, RV1)

5 In order to differentiate the two “halts” in this paper, HALT represents the halting
instruction in register machines while HALT the metabolite in MP+V systems.
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Similarly, the strictly decreasing MP rule V1 → ∅ : ϕ is mathematically
represented as V1[t + 1] = V1[t] − ϕ(t) and produces a translation code of the
form of Algorithm 5.

Algorithm 5. Strictly decreasing MP rule as Register Machine code.
1 SUB(RV1 , Rϕ, Raux)
2 CPY(Raux, RV1)

The transfer MP rule, V1 → V2 : ϕ, can be seen as a composition of both pre-
vious rules according to I/O MP systems [10]; hence, it is not a single recurrent
equation, but two of them (Eq. 1). Consequently, as can be seen in Algorithm 6,
the register machine subprogram for its transformation is simply a concatenation
of the previous Algorithms 4 and 5.

{
V1[t + 1] = V1[t] − ϕ(t)
V2[t + 1] = V2[t] + ϕ(t)

(1)

Algorithm 6. Transfer MP rule as Register Machine code.
1 SUB(RV1 , Rϕ, Raux)
2 CPY(Raux, RV1)
3 ADD(RV2 , Rϕ, Raux)
4 CPY(Raux, RV2)

Finally, the halting rule V1 → HALT : ϕ simply signalizes the end of the
computation when the quantity of the HALT variable is greater than zero.
Hence, the produced code verifies if there is a halting situation (and halts if
there is), otherwise updates the quantity of V1 and halts the execution.

Algorithm 7. Halting MP rule as Register Machine code.
1 JNZ(RHALT , 3)
2 JMP(4)
3 HALT

4 SUB(RV1 , Rϕ, Raux)
5 CPY(Raux, RV1)
6 ADD(RHALT , Rϕ, Raux)
7 CPY(Raux, RHALT )

As already discussed and graphically shown in Fig. 1, one computational step
of MP+V systems is expanded in several register machine instructions that also
include a framework of operations reflecting properties of MP+V nonexistent
in the addressed architecture. These additional operations are, now, studied in
details.
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4.3 Surroundings of MP+V Steps

Translating the rules of MP+V systems to register machine subprograms is just
one of the parts to correct transform one system into another. As can be seen
in Fig. 2 (and previously discussed in Sect. 4.1), it is necessary to define (i) a
sequential, block of computational referent to the execution of a step in the
MP+V dynamics; (ii) guards for the variables to isolate the computation of the
future value (i.e., V [t + 1]) with the actual value V [t]; (iii) evaluation of the
positive control property; and, finally, (iv) the recurrent call of the dynamical
system.

Fig. 2. Representation of a computation step MP+V systems (lower part) and its
equivalent register machine (upper part).

The sequential block of computation is nothing more than simple concate-
nation of the aforementioned subprograms (ii) and (iii); it is the upper arc in
Fig. 2 which, in a sequential way, process all the required procedures for the
computation of a single MP+V step as a register machine.

The guards, by the other hand, are specialized pieces of code that keep the
variables unchanged during the sequential execution of the MP+V step; as can
be seen in Fig. 2, they represent all the surplus of operations nonexistent in the
MP+V track: copy of the values of variables into auxiliary registers, computation
of fluxes with assignment to particular registers and update of the variables value
after computational step.

It is necessary to freeze the values of the variables, and rely on auxiliary
register copies of them during a computational step, because rules and fluxes may
reference the quantity of the variable V at time ti (i.e. V [ti]), not an intermediary
and already changed value V [ti+ε], with ti < ti+ε < ti+1, that solely exists in
the sequential (or register machine) context: changes on variables quantities
must occur uniquely in the end of the computational step, in accordance to
the behaviour of dynamical systems; in-between, all operations must occur over
auxiliary variables.

A similar pattern arises for the fluxes values. Fluxes must be updated at every
MP+V step and their values must be promptly available for the re-computation
of the variable quantities according to the application of the rules. Moreover,
fluxes values are subject to the positivity control (Definition 8) which, in case
of nonsatisfiability of the property, sets the appropriate fluxes to zero; hence,
instead of performing computations of fluxes and their verification at each rule
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application, it is enough to calculate their values once in the step of computation
and, then, consult them in their respective dedicated registers.

All these guards demand simplistic algorithms: the copy and update of vari-
ables rely on the CPY instruction, while the fluxes, depending of their nature,
either on the CPY or the subtraction subprogram SUB.

Algorithm 8. Copy variable to its auxiliary register.
1 CPY(RV , RVaux)

Algorithm 9. Update variable with its auxiliary register value.
1 CPY(RVaux , RV )

Algorithm 10. Update the flux value.
if ϕ = V then

1 CPY(RV , Rϕ)
else � Hence, ϕ = V1 − V2

1 SUB(RV1 , RV2 , Rϕ)
end if

The translation of the positivity control property to the register machine
specification is, however, slightly more intricate: while in the MP+V systems it
is enough to be stated as a system’s property, in the register machine it must be
ensured by actually coding both constraints in Definition 8.

The first of them is a statement, in mathematical terms, that any flux ϕ
is a function with co-domain equals to the natural set of numbers N, an easily
satisfied requirement since the values of the registers (and, hence, variables) are
restricted to N by the register machine definition (Definition 1) and the fluxes are
restricted to monomials or subtraction of variables. As we have already seen, the
SUB subprogram has an intrinsic mechanism to guarantee no value goes below
zero (Sect. 2).

Conversely, the other constraint requires a special subprogram to satisfy its
conditions. It sets to zero all consuming fluxes for a certain variable V if the sum
of them are greater than the actual available quantity of V . In mathematical
terms, if Φ−

V is the set of consuming fluxes of V ,
∑

ϕ∈Φ−
V

ϕ(ti) ≤ V [ti] at time ti;

otherwise ∀ϕ ∈ Φ−
V , ϕ(ti) = 0. Since the compiler knows both the variable V

and the consuming fluxes Φ−
V = {ϕ1, ϕ2, . . . , ϕk} (with k =

∣∣Φ−
V

∣∣), the generated
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Algorithm 11. Positivity control algorithm.
1 CLR(Rsum)
2 ADD(Rϕ1 , Rsum, Rsum)
3 ADD(Rϕ1 , Rsum, Rsum)
4 ADD(Rϕ2 , Rsum, Rsum)

...
k+1 ADD(Rϕk , Rsum, Rsum)
k+2 CPY(RV , Rcomparator)
k+3 JZ(Rsum, 2 · k + 8)
k+4 JZ(Rcomparator, k + 8)
k+5 DEC(Rsum)
k+6 DEC(Rcomparator)
k+7 JMP(k + 3)
k+8 CLR(Rϕ1)
k+9 CLR(Rϕ2)

...
2·k+7 CLR(Rϕk )

subprogram does not have to seek for this information and, for each variable,
can have the form of Algorithm 11.

The explicit references to the fluxes in Algorithm11 in both computation of
the sum (lines 2 to k+1) and the invalidation of the fluxes (lines k+8 to 2 ·k+7)
makes positivity control property the biggest contributor for the line of codes in
the equivalent register machine version of a MP+V system.

Finally, we must ensure the execution of the recurrent computation (Defini-
tion 6) of the MP+V system in the TM transformation. From examples such as
Goniometricus or Sirius [10], we know that some MP systems work as generators
for infinite series and signals, indefinitely computing values without an explicit
procedure for stopping them; in contrast, functions such as max(R1, R2) imple-
mented in [6] converges to a particular fixed-point (halt) state which signalizes
the end of the calculation process of the system [6]. The differentiation between
them, nonetheless, relies solely in the existence of a variable HALT in the lat-
ter system, as well as a strictly increasing or transfer rule which increments the
value of HALT . Hence, in terms of register machine, these systems diverge in
the existence of a RHALT register and an instruction to stop the execution when
RHALT �= 0.

As can be seen in the upper part of Fig. 2, all the register machine code gen-
erated by the transformation TM : AM �→ AR is enclosed inside two sequential
steps ti and ti+1, except by the recurrent call of the dynamical system. In fact,
all the computation performed by the equivalent register machine (i.e., all the
algorithms seen so far) is, actually, the computation of a single MP+V step. The
purpose of the recurrent call is, then, to recall the computation procedures up to
the moment RHALT �= 0; to achieve it, the procedure verifies the state of the
RHALT before step reckoning and chooses if the program should be halt (a jump



Automatic Translation of MP+V Systems to Register Machines 197

Algorithm 12. Loop control of the dynamical systems that halts.
1 JNZ(RHALT , �)

...
�-1 JMP(1)
� HALT

Algorithm 13. Complete translation procedure from MP+V system to register
machine

while RHALT = 0 do
for all variable v ∈ M do � copy variables to auxiliaries

Rv′ ← Rv

end for
for all flux ϕ ∈ Φ do � compute fluxes

Rϕ ← ϕ(ti)
end for
for all variable v ∈ M do � positivity control property

for all flux ϕ−
v ∈ Φ−

v do
Rsum ← Rsum + R

ϕ−
v

end for
if Rsum > v then

for all flux ϕ−
v ∈ Φ−

v do
R

ϕ−
v

← 0
end for

end if
end for
for all rule r do � compute rules

if r is of the form ∅ → v : ϕ then
Rv′ ← Rv′ + ϕ

else if r is of the form v → ∅ : ϕ then
Rv′ ← Rv′ − ϕ

else � hence, it must be of the form v1 → v2 : ϕ
Rv′

1
← Rv′

1
+ ϕ

Rv′
2

← Rv′
2

− ϕ
end if

end for
for all variable v ∈ M do � update variables

Rv ← Rv′

end for
end while

to the last line of the program, � in Algorithm 12, where a HALT is always present)
or continue with normal execution; in case of the latter, the penultimate line of
the program (� − 1) redirects the execution back to the first line. In algorithm
terms:

Finally, the pseudo-code produced by the transformation is represented in
Algorithm 13.
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5 Conclusion

There were no doubts of the possibility to translate MP systems to register
machine or any other Turing-powerful formalism: the discrete and deterministic
characteristics of these metabolic systems are exactly those that guarantee the
feasibility of this translation. The novelty, on the other hand, relies in the direct
transformation of modelling languages with completely different paradigms: from
the metabolic, parallel and centered on pair of substances transformations to a
computational and globally oriented sequence of instructions standpoint; from
MP systems to von Neumann architecture.

It is worth to note that it is not the target language (here the register
machine, but equivalently for hardware description or programming ones), but
the idea of an algorithmic transformation between models that permits
the effortless and automatic translation of metabolic systems into either pieces
of software (e.g., for simulation purposes), hardware (such as [4,7,16]), visual
representations (automata) or any other common use case for exogenous model
transformation [2].

At last, the availability of the bidirectional translation and equivalence
between MP+V systems and register machines open the way for implementa-
tion of hardware circuits based on metabolic (MP) systems.

References

1. Beal, J., Lu, T., Weiss, R.: Automatic compilation from high-level biologically-
oriented programming language to genetic regulatory networks. PLoS One 6(8),
e22490 (2011)

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Synthesis Lectures on Software Engineering, vol. 1, pp. 1–182. Morgan &
Claypool, San Rafael (2012)

3. Castellini, A., Franco, G., Manca, V.: Hybrid functional Petri nets as MP systems.
Nat. Comput. 9, 61–81 (2010)

4. Fernandez, L., Martinez, V.J., Arroyo, F., Mingo, L.F.: A hardware circuit for
selecting active rules in transition P systems. In: Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005),
p. 4. IEEE (2005)

5. Gheorghe, M., Stannett, M.: Membrane system models for super-turing paradigms.
Nat. Comput. 11(2), 253–259 (2012)

6. Gracini Guiraldelli, R.H., Manca, V.: The Computational Universality of Metabolic
Computing (2015). arxiv.org/abs/1505.02420

7. Gravitz, L.: Cell on a Chip (2009). http://www.technologyreview.com/news/
414622/cell-on-a-chip/

8. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modelling, State
Space Analysis, Stability and Robustness, Texts in Applied Mathematics, vol. 48.
Springer, Heidelberg (2005)

9. Lewis, H., Papadimitriou, C.: Elements of the Theory of Computation, 2nd edn.
Prentice-Hall, Upper Saddle River (1997)

10. Manca, V.: Infobiotics: Information in Biotic Systems. Emergence, Complexity and
Computation, vol. 3. Springer, Heidelberg (2013)

http://arxiv.org/abs/org/abs/1505.02420
http://www.technologyreview.com/news/414622/cell-on-a-chip/
http://www.technologyreview.com/news/414622/cell-on-a-chip/


Automatic Translation of MP+V Systems to Register Machines 199

11. Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: appli-
cations to biological phenomena. In: Mauri, G., Păun, G., Pérez-J́ımenez, M.J.,
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Abstract. In this paper, the communication complexity of non-
confluent solutions for Vertex Cover Problem (VCP) and 3-Satisfiability
Problem (3SP) in Evolution-Communication P systems (ECP) are ana-
lyzed. We use dynamical communication measures suggested by previ-
ous literature in our analysis. Solutions are constructed in several modes
of operation: when communication is prioritized over evolution (CPE),
when evolution is prioritized over communication (EPC) and when no
priority is imposed (CME). VCP and 3SP are problems that have already
been problems of interest for works that investigate communication com-
plexity in an ECP system variant called Evolution-Communication P
system with Energy (ECPe system). In this paper, we are interested in
employing the technique used in ECPe system, this time for solutions in
ECP system.

Keywords: Membrane computing · Evolution-communication P
systems · Communication complexity · Vertex cover problem ·
3-satisfiability problem

1 Introduction

Membrane computing, as proposed by Gheorghe Păun, is a compartmentalized
and distributed model of computing inspired by living cells [12]. These so-called
P systems are often composed of several regions, each enclosed by a membrane,
working together to perform a computation. Hence, communication among these
membranes plays an essential role for the functioning of P systems.

However, the communication complexity of P systems is a less addressed issue
in the field of membrane computing (this has been included as research topic
in [13]). The authors in [1] tackled this concern, and presented the Evolution-
Communication P systems with energy (ECPe systems) alongside dynamical
complexity measures. In ECPe systems, energy objects e were introduced to
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Evolution-Communication P systems (ECP) to aid in gauging the communica-
tion complexity of a system. The special objects e were used as a form of payment
whenever an object is communicated. Initial investigation of ECPe system used
three modes of operation: one has priority on evolution (EPC), another has pri-
ority on communication (CPE), and the other does not impose priority on either
evolution or communication (CME). These modes were originally defined in [3]
for ECP systems.

The dynamical measures presented in [1] were applied in [8] for analyzing
the communication complexity of some decision problems solved in ECPe sys-
tems operating in CME mode. The problems tackled are NP-hard problems:
the Vertex Cover Problem (VCP) and the 3-Satisfiability problem (3SP). These
problems have already been solved [6,10,11] in other P system models, e.g. P
systems with active membranes, where polynomial time solutions are traded-off
with exponential workspace. While the solutions in these previous literatures
are confluent, the ECPe system solutions presented in [8] are non-confluent; this
means that whenever an instance of the problem is associated with a yes, there
is a computation in the P system solution that outputs a yes. Otherwise, all
computations in the P system solution outputs a no. Non-confluent solutions to
VCP and 3SP in other modes, specifically CPE and EPC, were presented in [5].

In this paper, we present non-confluent solutions to VCP and 3SP, this time,
in ECP systems. This model is introduced and shown to be computationally-
complete in [3] (with additional completeness proofs in [2]). We are interested
in exploring the communication resources when previous solutions are adapted
in the original model, i.e. if we remove the object e requirement imposed during
communication. Thus, the solutions in this paper follow a similar pattern as in
previous solutions working in ECPe systems. In analyzing the communication
resources used in computations, we used a slight modification of the dynamical
measures given in previous works (e.g. in [1,8]).

2 Preliminaries

Before we proceed, we assume that readers are familiar with the fundamentals
of formal language theory and membrane computing [12,14]. We start with a
formal definition of the problems used in our study. We take the definitions of a
graph, vertex cover, Vertex Cover Problem, Boolean formula and 3-Satisfiability
Problem from [8].

A graph is defined as an ordered pair (V,E) where V is the set of vertices
and the set of edges E ⊆ V × V . Figure 1 is a graph where V = {1, 2, 3, 4} and
E = {(1, 2), (2, 3), (3, 4)}. A vertex cover V Ck where 1 ≤ k ≤ |V | is a set of
vertices with size less than or equal to k where for all edges (i, j) ∈ E, i ∈ V Ck

or j ∈ V Ck.

Definition 1. Vertex Cover Problem (VCP) Given a graph G = (V,E)
and a positive integer k where 1 ≤ k ≤ |V |, is there a vertex cover V Ck?

A Boolean formula φX where X is a set of variables x1, x2 . . . xp in conjunc-
tive normal form (CNF) is a conjunction, denoted by C1 ∧ C2 ∧ . . . ∧ Cm where
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Fig. 1. An example of a graph

m ∈ Z
+, of propositional clauses Ci which are a disjunction of literals yij defined

as Ci = (yi1 ∨ yi2 ∨ . . . ∨ yin) where n ∈ Z
+ and yij ∈ X ∪ {x|x ∈ X}, 1 ≤ j ≤ n.

The notation x implies a negation.
In a k-CNF Boolean formula, each clause is a disjunction of exactly k vari-

ables. A Boolean formula is said to be satisfiable if there exists a truth value (1
as true, 0 as false) assignment for all variables on which the formula evaluates
to true.

Definition 2. 3 Satisfiability Problem (3SP) Given a 3-CNF Boolean for-
mula φX over a set of variables X, is φX satisfiable?

We now give the formal definition of the main model used in this study. We
define an Evolution-Communication P system (ECP system) similar to [3] as
follows:

Definition 3. An ECP system (without energy) is a construct of the form Π =
(O,μ,w1, . . . , wm, R1, R′

1, . . . , Rm, R′
m, houtput) where m is the total number of

membranes; O is the alphabet of objects; μ is a hierarchical membrane structure
(a rooted tree) of degree m, bijectively labelled from 1 to m, and the interior of
each membrane defines a region h (1 ≤ h ≤ m); the environment is referred as
region 0; wh is the initial multiset over (O∗ in region h (1 ≤ h ≤ m); Rh is the
set of evolution rules in region h; Each rule has the form u → v where u ∈ O+,
v ∈ O∗. R′

h are sets of communication rules in membrane h; There are two
types of communication rules: symport and antiport. A symport rule takes one
of the following form: (u, in) or (u, out), where u ∈ O+. An antiport rule takes
the form (u, out; v, in) where u, v ∈ O+. houtput ∈ {0, 1, . . . ,m} is the output
region.

The model used in our P systems consist of the usual P system features, i.e. a
hierarchical membrane structure; each membrane encloses a region that contains
a multiset of objects; objects can be evolved or communicated through a set
of rules. We represent a hierarchical membrane structure through a string of
matching square brackets with labels. If membrane j is immediately contained
in membrane h, i.e. [...[ ]j ]h, h is referred as parent of j (denoted by parent(j)).
Consequently, j is a child membrane of h. This is denoted by j ∈ children(h)
where children(h) is the set of all child membranes of h. Suppose a region consists
of a multiset w, we use the term ‘copy of a’ to refer to an instance of object a
present in multiset w. We use the evolution rules associated with each region
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in order to evolve copies of objects, while communication rules associated with
each membrane are used to communicate copies of objects across membranes.

A set of evolution rules Rh is associated with each region h. To describe how
each evolution rule is executed, we refer to Definition 3 to recall the form followed
by each rule in Rh. When applying a rule of this type, multiset u transforms
into a multiset v in the next time step. This is similar to the multiset-rewriting
rule for TP systems [12]. However, the multiset produced always stays in the
same region. Each membrane h (1 ≤ h ≤ m) has a set of communication rules;
each communication rule can either be a symport or an antiport rule. A symport
rule can be of the form (u, in) or (u, out), where u ∈ O+. By using this rule,
the multiset u are transported inside (denoted by in) or outside (denoted by
out) the membrane where the rule is defined. An antiport rule is of the form
(u, out; v, in) where u, v ∈ O+. By using this rule, a multiset u in the region
immediately outside the membrane where the rule is declared, and a multiset
v inside the region bounded by the membrane should exist. When such rule is
applied, multisets u and v are swapped in the different regions, respectively. As
can be observed, the format for communication rules are adapted from rules
used in another model called P systems with symport and antiport [12].

In the model presented, rules are applied in a non-deterministic and max-
imally parallel manner, starting from the initial multiset in each region. Non-
determinism implies that at a certain step, if there are more than two rules that
can be applied to a copy of an object, the system non-deterministically chooses
the rule to be applied for each copy. Maximally parallel means that there are no
further rules applicable to copies that are not used in any rule. A configuration
C of a P system describes the state of a P system, i.e. the membrane structure
and the content of regions. The process of applying all applicable rules in a cur-
rent configuration, thus obtaining a new configuration is called a transition. A
computation is a (finite or infinite) sequence of configurations such that: (a) the
first term is the initial configuration of the system; (b) for each n ≥ 2, the n-th
configuration of the sequence is obtained from the previous configuration in one
transition step; and (c) if the sequence is finite then the last term is a halting
configuration (a configuration where no rule of the system is applicable to it).
Computation succeeds when the system halts. If the computation doesn’t halt,
computation fails because the system did not produce any output.

It can be observed that in ECP system, evolution rules are distinguished
from communication rules. Thus, following non-determinism, a copy of an object
may either be communicated or evolved. In [3], aside from this usual mode of
operation, they also investigated ECP systems where some priority is imposed
over rules. The resulting three modes are explicitly stated in the next definition:

Definition 4. We define three modes of operation for a given ECP system:

– CPE mode (communication has priority over evolution) - if there is a com-
munication rule that can be applied in any membrane in the system, then only
communication rules are applied on that step and no evolution rule can be
performed.
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– CME mode (communication and evolution rules are mixed) - there is no
priority over evolution or communication rule.

– EPC mode (evolution has priority over communication) - if there is an
evolution rule that can be applied in any membrane in the system, then only
evolution rules are applied on that step and no evolution rule can be performed.

To further illustrate these modes of operation, suppose in a computation step of
an ECP system, we can apply an evolution rule r1 and a communication rule r2.
In the CME mode, both rules are applied to proceed to the next configuration.
However, in CPE mode, only rule r2 is applied. In EPC mode, only rule r1 is
applied.

3 On Communication Complexity of Problems Solved
in ECP Systems

We slightly modified the definitions in [8] to define communication complexity
classes for problems solved in ECP systems.

3.1 Solving Hard Problems in ECP Systems

We first define a recognizer ECP system used in solving decision problems as
adapted from [15].

Definition 5. A recognizer ECP system is an ECP system Π whose alphabet
contains two distinct objects yes and no. Every computation of Π is halting and
during each computation, exactly one of the objects yes, no is sent out from the
skin to signal acceptance or rejection. If all the computations of Π agree on the
result, then Π is said to be confluent; if this is not necessarily the case, then it
is said to be non-confluent and the global result is acceptance if and only if there
exists an accepting computation.

Based on [15], a decision problem can be represented as a pair Y = (IY , θY )
where IY is a language over a finite alphabet and θY is a total Boolean function
over IY . In the next definition, a family of recognizer ECP systems is used to
solve a decision problem. A family of recognizer ECP systems Π(n) is a set of
ECP systems that takes a parameter n to construct each system.

Definition 6. A family Π(n), n ∈ N, of ECP systems, solves a problem (IY , θY )
if there exists a pair (cod, s) over IY such that for each instance u ∈ IY :

(i) n = s(u) ∈ N and cod(u) is an input multiset of the system Π(n)
(ii) there exists an accepting computation of Π(n) with input cod(u) if and only

if θY (u) = 1.
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3.2 Some Dynamical Communication Measures and Communication
Complexity Class

We start with the definition of some dynamical communication measures origi-
nally defined in [1] for a variant of ECP systems called Evolution-Communication
P systems with Energy (ECPe systems).

ComN(Ci ⇒ Ci+1) =

⎧
⎨

⎩

1 if a communication rule is used
in this transition,

0 otherwise
ComR(Ci ⇒ Ci+1) = the number of communication rules

used in this transition

Another dynamical measure used in [1] employs special object e (so-called
energy) as cost for every communicated object. Such form of cost is of impor-
tance when defining the weight of every communication (or ComW ). Since ECP
systems do not employ energy, we modified the communication weight used in
this study, we denote it by ComW ′.

ComW ′(Ci ⇒ Ci+1) = the sum of application of all communication rules
used in this transition.

These measures can be extended for computations. Specifically, for ComX ∈
{ComN,ComR,ComW ′} and a halting computation δ : C0 ⇒ C1 ⇒ · · · ⇒ Ch:

ComX(δ) =
h−1∑

i=0

ComX(Ci ⇒ Ci+1)

We use the measures above to define communication complexity classes for ECP
systems and for problems solved in ECP systems.

Definition 7. Let Y = (IY , θY ) be a decision problem, Π(n), n ∈ N, be a fam-
ily of recognizer ECP systems solving Y with a pair (cod, s) over IY . For each
instance u ∈ IY :

ComX(u,Π(n)) = min{ComX(δ) | δ : C0 ⇒ C1 ⇒ · · · ⇒ Ch in Π(n)
with n = s(u) and cod(u) is an input multiset in Π(n)},

where X ∈ {N,R,W ′}. To analyze the communication resources used by Π(n)
in solving problem Y,ComX(Y, Π(n)) is defined as:

ComX(Y,Π(n)) = max{ComX(u,Π(n)) | u ∈ IY }.

Definition 8. Let FmodeComX where X ∈ {N,R,W ′} and mode ∈ {CPE,
CME,EPC}. Decision problem Y = (IY , θY ) ∈ FmodeComX(k) if and only if:

(i) There exists a family Π(n), n ∈ N, of confluent recognizer ECP systems that
operates in mode and decides Y
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(ii) ComX(Y,Π(n)) = k.

The analogous complexity classes for non-confluent recognizer ECP systems are
NFmodeComX where X ∈ {N,R,W ′} and mode ∈ {CPE, CME,EPC}.

We say that Y ∈ FmodeComNRW ′(p, q, r) if and only if Y ∈
FmodeComN(p), Y ∈ FmodeComR(q) and Y ∈ FmodeComW ′(r). We use
NFmodeComNRW ′ for non-confluent recognizer ECP systems.

4 On ECP Solutions to VCP

From [8], the Vertex Cover Problem (VCP) can be represented by a pair V CP =
(IV CP , θV CP ) where IV CP = {w(G,k) | w(G,k) is a string representing a graph
G and a positive integer k}. The Boolean function θV CP (w(G,k)) = 1 whenever
there is a vertex cover V Ck in the graph G; otherwise, θV CP (w(G,k)) = 0. In the
succeeding VCP solutions, we will be using the same encoding as in [8]: The pair
(cod, s) for every instance wG,k over IV CP have s(wG,k) = |VG| (which is also
the parameter input for the family of ECP system solving VCP) and cod(wG,k)
as an input multiset in region 0 consisting of Aij for every (i, j) ∈ EG, k copies
of object c, and |EG| − k copies of object d.

The solutions for VCP stated in the paper follow the pattern of the solution
presented in [5,8]. This implies that computations in every ECP solution for VCP
follow four consecutive phases namely: setup phase, finding a candidate solution,
verifying the candidate solution and output phase. During the setup phase, an
end-vertex is selected for each of the edges. In the next phase, a candidate vertex
cover is determined. The validity of the candidate vertex cover is examined in
the succeeding phase. Finally, in the output phase, a yes or no is sent to the
environment depending on whether the examined vertex cover is valid or not.

Theorem 1. V CP ∈ NFCPEComNRW ′(6, 2k + 4, |EG| + 2k + 3) where EG

represents the set of edges.

Proof. To prove the above theorem, we define a family of ECP systems operating
in CPE mode as Π(n) where n = s(w(G,k)) = |VG|:

Π(n) = (O, [0[1]1[2]2]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, R2, R

′
2, 0),

– O = {Aij , vi, i, i|1 ≤ i < j ≤ n} ∪ {c, c′, d,no,yes} ∪ {#0,#1,#2,#3}
– w0 = v1v2 . . . vn#0cod(w(G,k))
– R0 = {Aij → i, Aij → j | 1 ≤ i < j ≤ n} ∪ {#3 → no}
– R′

0 = {(yes, out), (no, out)}
– R1 = {vi → in−1 | 1 ≤ i ≤ n} ∪ {c → c′}
– R′

1 = {(vi, in; c′, out), (i, in; i, out) | 1 ≤ i ≤ n} ∪ {(c, in)}
– R2 = {#0 → #1,#1 → #2,#2 → #3,#3 → yes}
– R′

2 = {(i, in;#3, out) | 1 ≤ i ≤ n} ∪ {(#0, in), (yes, out), (no, out)}
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Table 1. Communication Resources for VCP solution in CPE mode. N refers to the
number of communication steps, R refers to the number of communication rules and
W′ refers to the sum of application of all communication rules

N R W′

Setup 1 2 k + 1

Finding a candidate 1 k k

Validation 1 at most k at most|EG| (if candidate is valid)

Output 2 2 2

The computation of the ECP system in CPE mode solving the VCP problem is
as follows: the setup phase is composed of two steps. In the initial step, k copies
of object c are transported to region 1 and #0 is transported to region 2. Since
no communication can occur in the next step, evolution rules are applied. The
evolution rules applied are used to evolve each Aij to either i or j and each c
to c′. Also, #0 evolves to #1. The next time step signals the phase of finding a
candidate solution. There are k rules of the form (vi, in; c′, out) that are used in
this step to select a candidate vertex cover.

In the next step signaling the validation phase, no communication can be
applied. Instead, select evolution rules are applied to evolve all vi’s into n −
1 number of i objects. Simultaneously in region 2, #1 will evolve to #2. In
the next step, the system can use some communication rules. Specifically, the
communication rules of the form (i, in; i, out) may be used up to |EG| number
of times depending on whether the candidate vertex cover is valid or not. If the
chosen vertex cover is valid, the rule will be used |EG| times because all the
edges will be covered. The next step involves an evolution rule that changes #2

to #3. This step signals the last phase, i.e. the output phase. When #3 already
exists in region 2, two scenarios may occur. If the chosen vertex cover is invalid,
the communication rule (i, in;#3, out) will be used. Otherwise, #3 will evolve to
yes. Note that although the rule #3 → yes may also be applicable in the case
of an invalid candidate vertex cover, the rule will not be applied because the
mode used in the system prioritizes communication over evolution. Afterwards,
if the chosen vertex cover is invalid, the next step makes use of rule #3 → no in
region 0. Otherwise, the object yes will be transported from region 2 to region
0. In the last step, either a yes or a no occurs in the outermost region. Thus in
the last step, one of these objects is sent to the environment.

Table 1 summarizes the communication resources used per phase.

For the succeeding theorems in this section, we only give a sketch of their proofs.

Theorem 2. V CP ∈ NFCMEComNRW ′(6, 2k + 5, |EG| + 2k + 4) where EG

represents the set of edges.

Proof. To prove Theorem 2, we define a family of ECP systems operating in
CME mode as Π(n) where n = s(w(G,k)) = |VG|:

Π(n) = (O, [0[1]1[2]2]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, R2, R

′
2, 0),
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– O = {Aij , vi, i, i | 1 ≤ i < j ≤ n}∪{c, c′, d,no,yes}∪{#0,#1,#2,#3,#4,#5,
#6, α0, α1, α2, α3, α4}

– w0 = v1v2 . . . vn#0α0cod(w(G,k))
– R0 = {Aij → i, Aij → j|1 ≤ i < j ≤ n}

∪ {#0 → #1,#1 → #2,#2 → #3,#3 → #4,#4 → #5,#5 → #6}
– R′

0 = {(yes, out), (no, out)}
– R1 = {c → c′} ∪ {vi → in−1 | 1 ≤ i ≤ n}
– R′

1 = {(c, in)} ∪ {(vi, in; c′, out), (i, in; i, out) | 1 ≤ i ≤ n}
– R2 = {α0 → α1, α1 → α2, α2 → α3, α3 → α4} ∪ {#6 → yes}

∪ {i → no | 1 ≤ i ≤ n}
– R′

2 = {(α0, in), (#6, in;α4, out), (i, in;α4, out)} ∪ {(yes, out), (no, out)}
Table 2 summarizes the communication resources used per phase.

Table 2. Communication Resources for VCP solution in CME mode. N refers to the
number of communication steps, R refers to the number of communication rules and
W′ refers to the sum of application of all communication rules

N R W′

Setup and finding a candidate 2 k + 2 2k + 1

Validation 1 at most k at most|EG| (if candidate is valid)

Output 3 3 3

Theorem 3. V CP ∈ NFEPCComNRW ′(7, 2k + 8, |EG| + 2k + 7) where EG

represents the set of edges.

Proof. To prove Theorem 3, we define a family of ECP systems operating in EPC
mode as Π(n) where n = s(w(G,k)) = |VG|:

Π(n) = (O, [0[1]1[2]2]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, R2, R

′
2, 0),

– O = {Aij , vi, i, i|1 ≤ i < j ≤ n} ∪ {c, c′, d,no,yes} ∪ {#0,#1,#2, α0, α1, Ω}
– w0 = v1v2 . . . vn#0cod(w(G,k))
– R0 = {Aij → i, Aij → j|1 ≤ i < j ≤ n} ∪ {#1 → #2, α0 → α1}
– R′

0 = {(yes, out), (no, out)}
– R1 = {c → c′} ∪ {vi → in−1 | 1 ≤ i ≤ n}
– R′

1 = {(c, in)} ∪ {(vi, in; c′, out), (i, in; i, out) | 1 ≤ i ≤ n}
– R2 = {#0 → #1,#2 → α0Ω} ∪ {α1 → yes} ∪ {i → no | 1 ≤ i ≤ n}
– R′

2 = {(#0, in), (#1, out), (#2, in)} ∪ {(α0, out), (α1, in;Ω, out)}
∪ {(i, in;Ω, out) | 1 ≤ i ≤ n} ∪ {(yes, out), (no, out)}

Table 3 summarizes the communication resources used per phase.
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Table 3. Communication Resources for VCP solution in EPC mode. N refers to the
number of communication steps, R refers to the number of communication rules and
W′ refers to the sum of application of all communication rules

N R W′

Setup 1 2 k + 1

Finding a candidate 1 k + 1 k + 1

Validation 1 at most k + 1 at most|EG|+ 1 (if
candidate is
valid)

Output at most 4 (if
candidate is
valid)

at most 4 (if
candidate
is valid)

at most 4 (if
candidate is
valid)

5 On ECP Solutions to 3SP

In [8], the 3-Satisfiability Problem (3SP) can be represented by a pair 3SP =
(I3SP , φ3SP ) where I3SP = {wφX

| wφX
is a string representing a 3-CNF Boolean

formula φX}. The θ3SP (wφX
) = 1 evaluates to 1 if φX is satisfiable; otherwise,

θ3SP (wφX
) = 0. In the succeeding 3SP solutions, we will be using the same

encoding as in [8]: The pair (cod, s) associated with the ECP system for every
instance wφX

over IφX
has size s(wφX

) as the number of clauses for the Boolean
formula φX . The encoding cod(wφX

) is an input multiset in region 0. This encod-
ing consists of Ai1i2i3,q for 1 ≤ q ≤ n where if Cq = yi1,q ∨ yi2,q ∨ yi3,q, then

il =

{
d if yil,q = xd

d̂ if yil,q = xd

for l = {1, 2, 3}, where xd ∈ {x1, x2, . . . , xn}.
As in solutions in VCP, solution in 3SP for the succeeding theorems fol-

low the pattern of the solutions presented in [5,8]. Computations in every ECP
solution for 3SP also follow four phases: setup phase, finding a candidate solu-
tion, verifying the candidate solution and output phase. During the setup phase
and finding a candidate solution, objects representing each clause is sent to a
target region whereas the variables involved are assigned a truth value. The val-
idation phase determines whether all clauses are satisfied by the chosen truth
assignment. Finally, in the output phase, a yes or no is sent to the environment
depending on whether the examined truth assignment is valid or not.

Theorem 4. 3SP ∈ NFCPEComNRW ′(6, 2n+4, 3n+3) where n is the number
of clauses for the input 3-CNF Boolean formula.

Proof. To prove the above theorem, we define a family of ECP systems operating
in CPE mode as Π(n), n = s(wφX

):

Π(n) = (O, [0[1]1]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, 0),
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– O = {xd, 0d, 1d, d, d̂ | 1 ≤ d ≤ 3n} ∪ {Ai1i2i3,q | 1 ≤ q ≤ n and ir ∈
3n⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {c,#0,#1,#2,#3, α2, β,no,yes}
– w0 = x1x2 . . . x3n#0cod(wφx)
– R0 = {xd → 0n

d , xd → 1n
d , d → c, d̂ → c | 1 ≤ d ≤ 3n} ∪ {#0 → #1,#2 →

#3,#1 → #2α2}
– R′

0 = {(yes, out), (no, out)}
– R1 = {α2 → α3, α3 → yes,#3 → no} ∪ {Ai1i2i3,q → i1, Ai1i2i3,q →

i2, Ai1i2i3,q → i3 | 1 ≤ q ≤ n and ir ∈
3n⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {0d →
β, 1d → β | 1 ≤ d ≤ 3n}

– R′
1 = {(Ai1i2i3,q, in) | 1 ≤ q ≤ n and ir ∈

3n⋃
d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪
{(0d, in; d̂, out), (1d, in; d, out), (#3, in; d, out), (#3, in; d̂, out) | 1 ≤ d ≤

3n} ∪ {(c, in;β, out), (#3, in;yes, out), (c, in;no, out)} ∪ {(α2, in)}
Computation proceeds as follows: Initially, since communication rules are prior-
itized, the first step is to send the objects Ai1i2i3,q (for 1 ≤ q ≤ n), representing
each clause in the formula, to region 1 using the rule (Ai1i2i3,q, in). In the next
step, the assignment of truth value for each variable is done by non-deterministic
application of any of the evolution rules xd → 0n

d or xd → 1n
d for each object xd.

In region 1, a literal contained in the clause is non-deterministically chosen to
represent each clause through application of the rules having any of the following
forms: Ai1i2i3,q → i1, Ai1i2i3,q → i2, and Ai1i2i3,q → i3. At the same time, #0

evolves to #1.
The next step signals the validation step: objects representing variables in

region 1 are exchanged with their corresponding truth values in region 0 through
the rules (0d, in; d̂, out) and/or (1d, in; d, out). When no copy of d or d̂ remains
in region 1, it means that all clauses are satisfied by the candidate variable
assignment. In the next step, object #1 becomes #2 while also producing α2.
All copies of d are evolved to c and all copies of 0d and 1d are evolved to β.
Object α2 enters region 1 in the succeeding step, at the same time, every copy
of β in region 1 is swapped with a copy of c in region 0. The objects #2 and α2

then evolve to #3 and α3, respectively.
If all the clauses are validated, no communication rule can be applied at this

time step. Thus, α3 in region 1 transforms into a yes. In the opposite case, object
#3 is communicated through membrane 1 with the use of the rule (#3, in; d, out)
or (#3, in; d̂, out). If the object yes is in region 1, it will be sent to region 0 and
to the environment in two steps. This implies that computation halts after two
steps. If this is not the case, #3 evolves to a no. Then no will be sent to region
0 and eventually to the environment. Computation halts afterwards.

Table 4 summarizes the communication resources used per phase.

For the succeeding theorems in this section, we only give a sketch of their proofs.
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Table 4. Communication Resources for 3SP solution in CPE mode. N refers to the
number of communication steps, R refers to the number of communication rules and
W′ refers to the sum of application of all communication rules

N R W′

Setup and finding a
candidate solution

1 n n

Validation and
Output

at most 5 (if
candidate is
not valid)

at most n+4 at most 2n+ 3 (if
candidate is valid)

Theorem 5. 3SP ∈ NFCMEComNRW ′(5, 2n+4, 3n+3) where n is the num-
ber of clauses for the input 3-CNF Boolean formula.

Proof. To prove this theorem, we define a family of ECP systems operating in
CME mode as Π(n), n = s(wφX

).

Π(n) = (O, [0[1]1]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, 0),

– O = {xd, 0d, 1d, d, d̂ | 1 ≤ d ≤ 3n} ∪ {Ai1i2i3,q | 1 ≤ q ≤ n and ir ∈
3n⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {c,#0,#1,#2,#3,#4, α0, α1, α2, α3, β,no,yes}
– w0 = x1x2 . . . x3n#0α0cod(wφx)
– R0 = {xd → 0n

d , xd → 1n
d , d → c, d̂ → c|1 ≤ d ≤ 3n} ∪ {#0 → #1,#1 →

#2,#2 → #3, #3 → #4}
– R′

0 = {(yes, out), (no, out)}
– R1 = {Ai1i2i3,q → i1, Ai1i2i3,q → i2, Ai1i2i3,q → i3 | 1 ≤ q ≤ n and ir ∈

3n⋃
d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {0d → β, 1d → β | 1 ≤ d ≤ 3n} ∪ {α0 →
α1, α1 → α2, α2 → α3, α3 → yes,#4 → no}

– R′
1 = {(Ai1i2i3,q, in) | 1 ≤ q ≤ n and ir ∈

3n⋃
d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪
{(0d, in; d̂, out), (1d, in; d, out), (#4, in; d, out), (#4, in; d̂, out) | 1 ≤ d ≤

3n} ∪ {(c, in;β, out), (#4, in;yes, out), (c, in;no, out), (α0, in)}
Table 5 below summarizes the communication resources used per phase.

Theorem 6. 3SP ∈ NFEPCComNRW ′(5, 2n+4, 3n+3) where n is the number
of clauses for the input 3-CNF Boolean formula.

Proof. To prove the above theorem, we define a family of ECP systems operating
in EPC mode Π(n).

Π(n) = (O, [0[1]1]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1, 0),

– O = {xd, 0d, 1d, d, d̂ | 1 ≤ d ≤ 3n} ∪ {Ai1i2i3,q | 1 ≤ q ≤ n and ir ∈
3n⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {c,#0,#1,#2,#3, α0, α1, α2, β,no,yes}
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Table 5. Communication Resources for 3SP solution in CME mode. N refers to the
number of communication steps, R refers to the number of communication rules and
W′ refers to the sum of application of all communication rules

N R W′

Setup and finding a candidate
solution

1 n+ 1 n+ 1

Validation and Output 4 at most n+3 at most 2n+2 (if
candidate is valid)

Table 6. Communication Resources for 3SP solution in EPC mode. N refers to the
number of communication steps, R refers to the number of communication rules and
W′ refers to the sum of application of all communication rules

N R W′

Setup and finding a candidate
solution

1 n+ 1 n+ 1

Validation and Output 4 at most n+3 at most 2n+2 (if
candidate is valid)

– w0 = x1x2 . . . x3n#0α0cod(wφx)
– R0 = {xd → 0n

d , xd → 1n
d , d → c, d̂ → c | 1 ≤ d ≤ 3n} ∪ {#0 → #1,#2 →

#3, α1 → α2}
– R′

0 = {(yes, out), (no, out)}
– R1 = {α0 → α1, α2 → α3, α3 → yes,#1 → #2,#3 → no} ∪ {Ai1i2i3,q →

i1, Ai1i2i3,q → i2, Ai1i2i3,q → i3 | 1 ≤ q ≤ n and ir ∈
3n⋃

d=1

{d, d̂},∀r ∈
{1, 2, 3}} ∪ {0d → β, 1d → β | 1 ≤ d ≤ 3n}

– R′
1 = {(Ai1i2i3,q, in) | 1 ≤ q ≤ n and ir ∈

3n⋃
d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪
{(0d, in; d̂, out), (1d, in; d, out), (#3, in; d, out), (#3, in; d̂, out) | 1 ≤ d ≤

3n} ∪ {(c, in;β, out), (#3, in;yes, out), (c, in;no, out)} ∪
{(#1, in), (#2, out)} ∪ {(α0, in), (α1, out), (α2, in)}

Table 6 summarizes the communication resources used per phase.

6 Conclusion

The following are the summary of the results for non-confluent solution of VCP
and 3SP in ECP system:

a. V CP ∈ NFCPEComNRW ′(6, 2k + 4, |EG| + 2k + 3),
b. V CP ∈ NFCMEComNRW ′(6, 2k + 5, |EG| + 2k + 4),
c. V CP ∈ NFEPCComNRW ′(7, 2k + 8, |EG| + 2k + 7), where EG represents

the set of edges, and k is the input positive integer k.
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d. 3SP ∈ NFCPEComNRW ′(6, 2n + 4, 3n + 3),
e. 3SP ∈ NFCMEComNRW ′(5, 2n + 4, 3n + 3),
f. 3SP ∈ NFEPCComNRW ′(5, 2n+4, 3n+3) where n is the number of clauses

for the input 3-CNF Boolean formula.

From the results for VCP, it can be observed that in all modes, there is a linear
increase in the resources from the value ComN to ComR to ComW ′. The result
show a similar pattern as in [5,8] although we would like to emphasize that
the third measure (ComW ′) is different in previous work which makes use of
the concept of energy to impose a form of payment for every communicated
object. The results for VCP also seem to show increase of ‘difficulty’ in terms of
communication resources from CPE to CME to EPC (an observation similar to
that in [1]).

There is also a similarity in the results for 3SP in our current work and those
presented in [5,8]. However, we can observe that in these previous works, the
number of membranes utilized are linear to the number of clauses in the input
formula. This is in contrast to our work where we only require two membranes.
This seems to suggest that, for 3SP, it is more ‘difficult’ to devise non-confluent
solutions in ECPe systems than in ECP system. In our future works, we aim
to further investigate this issue by using Sevilla carpets [4,7], as suggested in
[9], to provide a detailed comparison of the communication resources used for
VCP and 3SP solutions in both ECPe systems and ECP systems operating in
different modes.

We end our paper with some open problems: can we have a non-confluent
solution in ECP system that can minimize the resources used in this paper (e.g.
a constant ComR or a linear ComW′ for VCP)? What about a comparison of
communication resources for confluent and deterministic solutions?
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G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145.
Springer, Heidelberg (2003)



214 N.H.S. Hernandez et al.
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Abstract. Temperature represents an elementary environmental stim-
ulus crucial for survival and fitness of organisms. Molecular membrane-
based mechanisms for temperature sensing and behavioral response seem
to be among the oldest principles of biological information processing.
It is believed that some archaea – early microbes prior to bacteria and
eukaryotes – developed thermoreceptors. In addition, they were able to
maintain a circadian clock, a biochemical oscillatory system whose peri-
odicity reflects a daily rhythm. Both features on their own, but espe-
cially their combination, gives raise for effective evolutionary advantage.
Along with the notion of applied systems biology, we explore capabilities
of resulting reaction models by exploitation of deterministic P modules
and their dynamical coupling by means of simulation studies. Our find-
ings indicate that a minimalistic circadian clock equipped with a chemi-
cal temperature sensor enables robust and practicable entrainment to an
external daily temperature rhythm induced by the sun in contrast to a
clock variant without thermoreceptor. Having a more adaptable circadian
clock, archaea comprise better preconditions to populate larger oceanic
regions from the equator towards the poles. From a modelling point of
view, we incorporate the global quantity temperature and its effect on
reaction velocity according to Arrhenius’ equation into the framework of
deterministic P modules.

1 Introduction and Background

Systems biology as a highly interdisciplinary field of research aims at achieving
a detailed understanding of living organisms at a molecular level [19]. Having in
mind that a single biological cell is typically composed of 108 up to 109 molecules,
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 215–235, 2015.
DOI: 10.1007/978-3-319-28475-0 15
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it becomes obvious that coping with the tremendous number of possible mole-
cular interactions and reactions turns out to be a challenging and interminable
task even for unicellular organisms. A promising clue to tackle this challenge
comes from engineering: Here, complex systems are mostly constructed from a
small set of modular functional units in a hierarchical manner. Minimised and
well-defined interfaces between these units imply a sparse scheme of interactions
mainly organised in local clusters in which each unit communicates with a small
number of other units. Due to this reduction of inherent complexity, the function
of resulting systems can be understood more or less easily, even if the total num-
ber of elementary components in the entire system is high. Systems biology might
benefit from engineering. To this end, a complex molecular system under study
should be divided into its underlying functional units. Along with this identifi-
cation process, the interface structure and potential multi-modular components
become visible [9]. For a “minimal” unicellular life form whose genome comprises
a magnitude of only 500 genes, these attempts succeeded in a first stage [5] while
many other organisms revealed relevant parts of its function. This line of research
also sheds light on an outstanding aspect: Tracing the potential progress of bio-
logical evolution in its early phase. There is some evidence that several molecular
functional units have been widely conserved for more than 2 billion years [7]. A
fascinating example in this context are molecular thermoreceptors able to sense
environmental temperature.

From today’s scientific perspective, our planet earth came into existence 4.6
billion years ago [7]. It is supposed that the potential origin of life on earth dates
back around 3.8 billion years initiated by self-replicable strands composed of
ribonucleic acid (RNA). After complementing RNA by more stable deoxyribonu-
cleic acid (DNA) along with usage of proteins and the biochemical mechanism
of transcription and translation based on genetic information, biological cells
could have emerged able to reproduce by cell division. Mineral-rich oceanic water
heated by submarine volcanic activity and surrounded by fine pored rocks and
geological formations might have provided advantageous preconditions for long-
term maintenance and survival of cell populations. The process of early cellular
evolution could have resulted in the unicellular prokaryotic life form of archaea
about 2.5 billion years ago. Archaea are seen as ancestor of subsequent biological
domains like bacteria and eukaryotes. Possibly, archaea competitively succeeded
since they combine a minimalistic molecular equipment with an astonishing flex-
ibility in coping with environmental conditions. Nowadays, archaea can be found
widespread at numerous places, even inside the human body. Most impressively,
some archaea populate extreme regions, physically hostile to life. For instance,
thermophilic exemplars grow at a temperature of 130◦C when deep-sea water
under enlarged pressure is still liquid. Others seem to prefer high environmental
acid concentrations (pH ≈ 0) while alkaliphilic forms resist pH up to 10.

Prepared to spend their life by “swimming” in aqueous conditions, most
forms of archaea possess flagella which allows a moderately controlled move-
ment by chemotaxis. Sensory capabilities exist, but in a rudimentary state. To
our best knowledge, there are no photoreceptors and no further sensors for light.
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This means that archaea probably cannot detect sunlight directly which in turn
might be dangerous: High-energy radiation induced by the sun is able to pene-
trate water up to several metres. Due to the lack of any atmospheric protection
on earth at that primeval era, this radiation can cause life-threatening damages
of DNA and other complex molecular structures. In consequence, the easiest
survival strategy would consist in avoidance of water near the surface and pref-
erence to stay in deeper regions instead. Unfortunately, submarine CO2 in heated
water and organic substances, both needed for survival, are typically located near
the surface in sufficient concentration. Despite this contradictory terms, there is
some evidence that archaea succeeded in populating large areas of the oceans
on earth around 2 billion years ago [27].

The crucial clue to overcome this obstacle could be exploitation of temper-
ature signals. The temporal course of temperature follows the brightness and
intensity of sunlight with a short delay. During the darkness of night with low
influence of radiation, a stay near the water surface for resorption prevents from
damages while persisting within a region of deeper water during the day enables
protection. Organisms able to act in this manner come with an evolutionary
advantage over those who do not. Studies show that the temperature of oceanic
water from surface up to 2 m depth varies between approximately 3◦C and 1◦C
according to the daily rhythm of sunlight [6]. Within equatorial lines of latitude,
this effect is stronger than northwards and southwards since the periodical inten-
sity of sunlight reaches its maximum here. Close to the poles, daily variations of
sea surface temperature are negligible.

For response to daily variations of water temperature, a molecular thermore-
ceptor would fit which is able to reliably convert environmental temperature
into a chemical signal suitable for further processing. Indeed, archaea organisms
contain such sensorial units within their outer cell membrane.

Temperature Reception

Molecular thermoreception found in archaea is based on presence of movable
electrically charged particles, especially cations (positively charged). This com-
plements the observation that a majority of complex intracellular molecules
exhibits a negative electrical charge such as RNA, DNA, and most proteins.
Hence, the cell as a whole acts as a negative electrical potential surrounded by
free or loosely bound cations like calcium (Ca2+), natrium (Na+), or potassium
(K+). Originated from environmental minerals, they reside at the outer face of
the cell membrane.

An archaean thermoreceptor is made of an ion channel, a large protein placed
throughout the outer cell membrane, see Fig. 1. An ion channel allows a group
of ions to pass together into the cell driven by an electrochemical gradient [7].
To this end, the channel temporarily opens by deblocking a molecular gate. This
gate, formed by an amino acid chain as a part of the underlying large protein, is
controlled by electrical forces between the opposite ends of the channel. When-
ever the resulting voltage difference exceeds a certain threshold, the molecular
gate becomes open, and a group of ions quickly runs into the cell inducing a
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Fig. 1. Schematic representation of an ion channel and its functional principle. Cations
(+) accumulate at the outer face of the cell membrane (left). After their amount
has reached a certain threshold, the voltage difference with respect to the negatively
charged inner part of the cell (−) induces an electrical force which in turn temporarily
opens a molecular gate. A group of cations passes this gate together which results in
a spiking signal (right). Afterwards, the voltage difference is nearly compensated and
the molecular gate becomes closed again.

spike-shaped electrical signal. Afterwards, the voltage difference between the
opposite ends of the channel is nearly compensated which implies closing the
gate by adjusting the corresponding amino acid chain. It takes some time until
enough cations accumulate at the outer end of the ion channel in order to open
the gate again. Finally, the ion channel exhibits a spiking oscillatory behaviour
over time regarding the concentration course of entering cations. Inside the cell,
these cations propagate through the cytosol initiating wave patterns and trigger-
ing downstream processes [29]. In this connection, cations can either cycle within
the cell or bind to other substances and become released into the environment
leaving the cell.

Beneficially, the permeability of ion channels acting as thermoreceptors is
sensitive to environmental temperature. Along with increasing temperature, the
required electrical force to open the molecular gate becomes diminished [27]. This
leads to a higher frequency (or shorter periodicity, respectively) of the spiking
oscillation, see Fig. 2. From a systems biology point of view, a thermoreceptor
based on an ion channel primarily performs a frequency encoding of the input
temperature signal comparable with frequency modulation in engineering.
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Fig. 2. Signalling scheme of a thermoreceptor based on an ion channel by frequency
encoding of environmental temperature within physiological range (warm sensor).

In more detail, thermoreceptors found in archaea were identified as so-called
transient receptor potential (TRP) channels [25]. In its original form, a TRP
channel acts as a warm sensor meaning that higher temperature implies a higher
spiking frequency and vice versa within a physiological range. The transfer curve
mapping temperature into frequency resembles a logarithmic relationship.

The fundamental principle of molecular temperature sensing via TRP chan-
nels seems to be highly conserved throughout biological evolution. In the course
of time, distinct variants of thermoreceptors emerged whose function is more
selective to specific cations and whose physiological ranges slightly differ. It
was reported that TRP receptors in the bacterium Escherichia coli can sense
changes in temperature for thermotaxis [22]. Moreover, the motional inten-
sity of flagella is directly controlled by environmental temperature which per-
mits the bacterium to find an optimal survival strategy [23]. Interestingly, the
temperature-dependent impulsive motion reaches its maximum in water between
approximately 30◦C and 40◦C. The fruit fly drosophila melanogaster utilises
TRP channels embedded in its skin as part of the nervous system in order to
sense temperature [1]. In a similar way, the human body is provided with envi-
ronmental temperature signals perceived by neural bursts [20].

Circadian Clock

Circadian rhythms embody an interesting biological phenomenon that can be
seen as a widespread property of life. The coordination of biological activities
into daily cycles provides an important advantage for the fitness of diverse organ-
isms [28]. Based on a self-sustained biochemical oscillation, a circadian rhythm is
characterised by a period in accordance with a full rotation of earth. To this end,
a circadian clock is able to be entrained. This property allows a gradual reset of
the underlying oscillatory system for adjustment by exposure to external stim-
uli like daily variations of brightness or daytime-nighttime temperature cycles.
Under constant environmental conditions, the synchronism of the clock gets lost
but the endogenous oscillation persists with slightly modified periodicity which
runs the clock a bit faster or slower.
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The earliest life forms reported to comprise a circadian clock are cyanobacte-
ria, prokaryotes often called blue-green algae [4]. It is believed that cyanobacteria
were the first unicellular organisms able to practise photosynthesis in order to
exploit sunlight for respiration. This capability came along with photoreceptors
for direct sensing of light and its intensity. An evolutionary advantage becomes
obvious when coupling the circadian rhythm with photoreceptors towards a fre-
quency control loop keeping the clock synchronously with the daily cycle of
sunlight. Having available this feature, the cyanobacterium might start time-
consuming pre-stages of photosynthesis at the right time before sunrise which
facilitates a more comprehensive utilisation of sunlight.

In contrast to cyanobacteria, archaea probably lack any light-sensitive recep-
tor and any potential of photosynthesis. Nevertheless, a circadian clock could be
a useful attribute since it could help to optimally organise the day into phases
of respiration and phases of regeneration and protection against harmful radia-
tion. Possibly, circadian clocks turn out to be much older than those proved in
cyanobacteria. Indeed, archaea could have developed early forms of a circadian
clock around 2 billion years ago [4,18]. A diurnally entrained anticipatory behav-
iour in archaea became also evident [30]. Although there is to our best knowl-
edge no comprehensive experimental proof for existence of a circadian clock in
archaea, the fascinating question arises: what if?

Combining Circadian Clock with Thermoreceptor

This paper is inspired by the idea to hypothesise about the importance of ther-
moreception for development and dissemination of life forms on earth during
an early phase of biological evolution. Presence of an effective molecular ther-
moreceptor emphasises the conjecture that circadian clocks could have come
into existence long before availability of photosensors just by exploiting daily
variations of the sea-water temperature course for synchronisation. A reliable
circadian rhythm is supposed to be helpful for archaea to populate large regions
of oceans worldwide. An inherent clock supports division of each day into phases
of dedicated activities in concert with regularly cycling environmental needs. An
improved adaptability to environmental conditions in turn could be a crucial
factor for an elongated life span in which a higher amount of cell divisions might
occur. For sure, this line of argumentation remains rather speculative but it
follows a conclusive chain of causes and effects.

In the following section, we familiarise the reader with mathematical and
denotational prerequisites necessary for fine-grained description and simulation
of coupled reaction systems. To this end, we extend the concept of determinis-
tic P modules – introduced in [12] and refined in [14] – by a global component
reflecting temperature and by reaction-specific components quantifying activa-
tion energy and reactivity in compliance with parameters in Arrhenius’ equation.
Section 3 is dedicated to a thermoreceptor model which mimics an ion chan-
nel together with intracellular signal transduction and a decoding mechanism
converting the produced spiking frequency into a steady concentration value.
Therefor, chemical modules for some numerical operations are employed like
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an integrator, a smoothing cascade, a subtractor, and a multiplier, all of them
based on [11]. The model comes along with simulation studies revealing the
overall capability of the entire information processing unit. Section 4 is focused
on evolving an effective circadian clock model able to be entrained exclusively
by environmental temperature. We start from a minimalistic model without
thermoreceptor but comprising all other features of a frequency control system
following the principle of a phase locked loop [11]. Astonishingly, this sensorless
clock model is entrainable to daily temperature rhythms if and only if the ampli-
tude of temperature variation is permanently kept below approximately 0.3◦C.
Although insufficient, it gives potential for evolutionary improvement. For this
purpose, we combine the sensorless circadian clock model with our thermore-
ceptor model to achieve a temperature-entrainable clock within a reasonable
physiological range between 0 and about 40◦C. Final remarks summarise main
findings in a broader context for further work.

2 Extending Deterministic P Modules by Temperature
and Activation Energy

For description of the temporal behaviour of chemical reaction networks we
consider substrate concentrations over time presuming homogeneity in reaction
space. General mass-action kinetics [19] formulates reaction system’s dynamics
subject to production and consumption rates vp and vc of each substrate S in
order to continuously change its concentration by d [S]

d t = vp − vc. A reaction
system with a total number of n substrates and r reactions

a1,1S1 + a2,1S2 + . . . + an,1Sn
k1−→ b1,1S1 + b2,1S2 + . . . + bn,1Sn

a1,2S1 + a2,2S2 + . . . + an,2Sn
k2−→ b1,2S1 + b2,2S2 + . . . + bn,2Sn

...
a1,rS1 + a2,rS2 + . . . + an,rSn

kr−→ b1,rS1 + b2,rS2 + . . . + bn,rSn

employs stoichiometric factors ai,j ∈ N (reactants), bi,j ∈ N (products) and
kinetic parameters kj ∈ R>0 assigned to each reaction quantifying its velocity
(N: natural numbers, R>0: positive real numbers). The corresponding ordinary
differential equations (ODEs) read:

˙[Si] =
d [Si]
d t

=
r∑

h=1

(
kh · (bi,h − ai,h) ·

n∏

l=1

[Sl]al,h

)
with i = 1, . . . , n

In order to obtain a concrete trajectory, all initial concentrations [Si](0) ∈ R≥0,
i = 1, . . . , n are allowed to be set according to the relevance for the system.

The kinetic parameter kj captures for each reaction j ∈ {1, . . . , r} its depen-
dency on environmental temperature T , activation energy Ej(T ), and sensitivity
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to spatial orientation of colliding molecules Aj(T ). The corresponding law is
expressed by the Arrhenius equation:

kj = Aj(T ) · e−Ej(T )
R·T

Here, the Kelvin-scaled temperature T ∈ R>0 acts as global quantity for the
entire reaction system. Temperature subsumes the average kinetic energy of reac-
tive molecules within the underlying system. Following the notion of a collision-
based reaction model, a reaction occurs if and only if colliding substrate mole-
cules comprise enough kinetic and free energy in order to exceed the required
activation energy Ej(T ). Typical activation energies span a range from approx-
imately 30 up to around 100 kJ

mol . Particularly in biochemistry, catalysts can
reduce impractically high activation energies into a feasible guidance value of
around 67 kJ

mol [10]. The activation energy of a reaction commonly appears to be
almost constant but it might be slightly subject to environmental temperature.
For instance, chemical core oscillators found in circadian clocks are able to vary
its activation energy along with temperature changes in order to keep constant
kj . In this way, reaction velocity is almost independent of temperature. So, the
resulting clock pace cannot be perturbed by temperature within a physiolog-
ical range [26]. Temperature compensation of circadian clocks by adjustment
of activation energy is essential to maintain its function. We reflect this aspect
by describing activation energy as a function subject to T . Furthermore, the
Arrhenius equation contains the pre-exponential factor Aj(T ) whose value con-
stitutes a possible sensitivity of the reaction to spatial orientation of colliding
substrate molecules. By abstracting from the submolecular substrate structure
and handled as a system global constant in sufficient approximation, Aj(T ) pro-
vides a parameter suitable for calibration in order to achieve a complete and
consistent overall parameter setting throughout the reaction system. Finally,
R = 8.3144621 J

K·mol denotes the gas constant.
When taking environmental temperature T as an input value in terms of

performing a computation it turns out that we obtain a chemical counterpart
of a slide rule. Here, numerical multiplication becomes reduced to addition on a
logarithmic scale according to the law: log(x · y) = log(x) + log(y) Chemically
spoken, an amplification (multiplication) of reaction velocity can be reached by
increase (addition) of temperature. In practical biochemistry, this is covered by
the Q10 law which means that a reaction runs twice up to three times faster
when temperature is increased by 10K.

Within the sphere of membrane systems, the general framework of deter-
ministic P modules [12] captures a mathematical specification of the temporal
behaviour of a predictable system in its course of involved signals. Here, the
system is specified by an underlying reaction system of coupled first-order ordi-
nary differential equations according to mass-action reaction kinetics in addition
with complementary functions for expression of Arrhenius equations, activation
energies, and pre-exponential factors. A numerical solver supplements the deter-
ministic P module in order to trace all signals (chemical concentrations and
temperature) over time. Simultaneously, discretised signal values (each chemical
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concentration mapped into total amount of molecular species) are provided fol-
lowing the multiset-based notion of a P system [24]. We enrich each deterministic
P module with an additional temperature signal T as part of the list of input
signal identifiers. Hence, we consider a deterministic P module by a triple

< module name >= (↓, ↑,�)

where ↓= (T, I1, . . . , Ii) indicates a finite enumerative list of input signal iden-
tifiers, ↑= (O1, . . . , Oo) a finite enumerative list of output signal identifiers, and
� the underlying system specification processing the input signals and produc-
ing the output signals with or without usage of auxiliary inherent signals not
mentioned in the P module’s input-output interface. Each signal is assumed to
represent a real-valued temporal course, hence a specific function σ : R≥0 −→ R.

The system specification given in � can be exclusively composed of arithmetic
equations in an explicite manner. Often, the specification is described implicitly
instead, for instance resulting in ordinary differential equations (ODEs). Here,
the deterministic P module makes use of a numerical ODE solver, preferably
Runge-Kutta methods. For technical details, we refer the reader to [3]. In brief,
the ODE system becomes adaptively discretised in progression of simulation
time. For each point in time considered so far, the absolute number of molecules
for each species derived from the concentration is estimated and temporarily
stored. The process of numerical ODE solution in conjunction with determina-
tion of absolute molecule numbers for discrete points in time can be perceived
in terms of running a membrane system as introduced in [24]. For in-silico sim-
ulation, we utilise the Complex Pathway Simulator (Copasi) [16] and Matrix
Laboratory (MatLab) [21].

In line with the intention of systems biology stating that a complex
(bio)chemical system is composed of functional units, so-called modules, we seize
the formalism of P meta framework introduced in [12]. A P meta framework is
able to describe a dynamical assembly of deterministic P modules towards more
complex systems following the idea of a controlled evolutionary program. A P
meta framework is a construct

Ππ↑↓ = (M,P )

where M denotes a finite multiset of deterministic P modules with finite car-
dinality while the finite set P keeps the evolutionary program composed by a
number of instructions affecting the interplay of underlying modules in M .

When initiating Ππ↑↓, a corresponding directed graph G = (V,E) is created
that formalises the current connectivity structure of interacting deterministic P
modules. All available modules on their own instantiate the nodes of G. There
are no connections between them before executing the program P :

V := {m[i] | m ∈ supp(M) ∧ i ∈ {1, . . . , M(m)}} E := ∅
Indexing of all instances (copies) m[i] constituted from a module m allows a
unique identification necessary for an appropriate matching of nodes addressed
by program instructions.
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Directed edges between nodes of G symbolise the connectivity of module
instances. Let a = (a↓, a↑, a�) ∈ supp(M) and b = (b↓, b↑, b�) ∈ supp(M) be
two module instances derived from M . An edge (a, b,Ra→b) ∈ E denotes a
connection from a to b where dedicated output species of a act as input species
of b. To this end, each edge comes with a binary relation Ra→b ⊆ a↑ × b↓
in which the mapping of a’s output species onto b’s input is given. Ra→b is
handled in an injective manner since one output species is allowed to cover
several downstream input species, but each input species must be supplied by
at most one upstream output species. Formally, we require: ∀x, z ∈ X and ∀y ∈
Y : (x, y) ∈ R ∧ (z, y) ∈ R ⇒ x = z where R ⊆ X × Y stands for Ra→b.

Attention must be paid to the composition of deterministic P modules to
keep signal semantics and quantitative signal values along with signal identifiers
consistent when migrating from one module to another.

The instructions of the evolutionary program P capture the dynamics of
our P meta framework Ππ↑↓ in (re-)assembly of its module instances. The
underlying graph G becomes updated whenever an instruction from P is exe-
cuted. To bring the individual instructions into a temporal order, we assume
a global clock whose progression is expressed by a non-negative real-valued
variable t marking points in time. We arrange two types of instructions called
ModuleConnect and ModuleDisconnect. A time stamp t opens each instruction.
Let a = (a↓, a↑, a�) ∈ supp(M) and b = (b↓, b↑, b�) ∈ supp(M) be two module
instances derived from M :

t : ModuleConnect(a → b, Ra→b) connects some or all of module a’s output species

to represent b’s input species by sharing species

identifiers according to the injective binary rela-

tion Ra→b ⊆ a↑ × b↓. Edge update scheme: E :=

E ∪ {(a, b, Ra→b)}
t : ModuleDisconnect(a ↔ b) completely disconnects modules a and b by anni-

hilating all cross-modular species sharings. This

comes along with removing Ra→b as well as Rb→a,

respectively. Edge update scheme:

E := E \ {(a, b, Ra→b)} \ {(b, a, Rb→a)}

Several instructions in P might occur simultaneously if they are effectively inde-
pendent from each other. This is the case if and only if all resulting permu-
tations of sequences, in which instructions marked by the same time stamp t
can be executed, lead to equivalent graphs G. We employ a P meta framework
Ππ↑↓ = (M,P ) for composition and analysis of a thermoreceptor model and
its incorporation into a circadian clock model. Further examples of the P meta
framework are given in [13,14].
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3 Thermoreceptor Model Emulating Ion Channel,
Frequency Modulation, Transduction, and Decoding

The spiking oscillatory behaviour of ion channels mimicking a temperature sen-
sor results from a positive feedback loop within the underlying reaction scheme
[15]. In more detail, the oscillation is driven by a controlled interplay between
calcium ions (Ca2+) and inositol trisphosphate (IP3), a secondary messenger
hormone mainly available close to the cell membrane. We assume presence of a
certain initial amount of IP3 which is required to modify the ion-channel forming
protein for toggling between “open” and “closed” state by its spatial conforma-
tion. Accumulating calcium ions at the outer end of the channel need to reach a
notable concentration in order to interact (pass) the ion channel.

During passage, a self-amplifying effect occurs (positive feedback) which
attracts more and more available calcium ions to enter the cell. This self-
amplification is restricted to be maintained for a short duration. Afterwards,
there is no adequate supply of further calcium ions which in turn stalls the self-
amplification. When attempting to formalise the spiking processing scheme, we
noticed its high similarity to the Brusselator, an abstract model for spiking oscil-
lations based on a positive feedback loop [2,31]. The Brusselator is composed of
four abstract reactions: (1) A

k1−→ D; (2) C + 2D
k2−→ 3D; (3) B + D

k3−→ C; (4)
D

k4−→ W . Figure 3 illustrates this reaction scheme by a hypergraph. The model
is equipped with two supplier species A and B. A corresponds to IP3 and B
symbolises calcium ions outside the cell. D can be seen as the permeability of
the ion channel in a way that a high value [D] stands for a closed channel while
a low value marks the opened channel. W refers to a “waste” species collecting
an excess of [D] in order to delimit the maximum impermeability of the ion
channel. Finally, calcium ions inside the cell are identified by species C whose
concentration course [C](t) over time forms the oscillatory output.

In its signalling function, the Brusselator generates limit-cycle oscillations
which implies a high oscillatory stability along with extensive robustness against
perturbations. In order to ensure an endogenous oscillatory behaviour, initial
concentrations of species A, B, C, and D need to be set >0 to be attracted by
the limit cycle. From numerous empirical simulation studies it became evident
that a harmonised choice of kinetic parameter values k1 up to k4 takes care
for widemost spread of undamped oscillatory region with respect to the kinetic
parameter. Thus, we utilise a common mass-action parameter k inside the Brus-
selator by setting k = k1 = k2 = k3 = k4. Figure 3, lower left part, shows the
resulting behaviour. Examining a range from k = 10−100 . . . 10+100, we consis-
tently observe a stable spiking oscillation whose period lengths reversely vary
from a magnitude of 10+100 s up to 10−100 s.

For preparation of the Brusselator model to act as temperature sensor, a cal-
ibration is required by adjustment of relevant free parameters. To this end, we
refer to [17] stating a spiking period length of about 100ms for temperature sen-
sitive ion channels at 20◦C (293.15K). Along with the common activation energy
E(T ) = 67 000 J

mol , this setting entails Act(T ) = 2.0149 · 1014 as pre-exponential
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Fig. 3. Ion channel model based on Brusselator. Spiking oscillatory output: concen-
tration course of C over time (upper part, right). Initial concentrations: [B](0) =
3, [A](0) = 1, [C](0) = 0.5, [D](0) = 0.5, [W ](0) = 0. Common mass-action parameter
setting: k = k1 = k2 = k3 = k4. Transfer curve for calibration (lower part, left).
Oscillator calibrated to exhibit period length of 100 ms at temperature of 20◦C obtained
with T = 293.15, E(T ) = 67000, A(T ) = 2.0149 · 1014, k = 232. Period length subject
to temperature most significantly within range 0 . . . 40◦C (lower part, right)

factor. The large value indicates a low interdependency on the spatial orienta-
tion of involved substrate molecules according to expectations of a non-selective
ion channel. The lower right part of Fig. 3 depicts the Brusselator thermosensing
transfer curve by exhibiting period length subject to temperature. Sensitivity is
most significant between 0 . . . 40◦C which coincides with typical oceanic water
temperatures near the surface.

Formally, the deterministic P module of the thermosensor reads:

thermosensor = ((T ), ([C]),�) with

� : ˙[A] = −k(T )[A], ˙[B] = −k(T )[B][D], ˙[W ] = k(T )[D],
˙[C] = k(T )[B][D] − k(T )[C][D]2,
˙[D] = −k(T )[B][D] + k(T )[C][D]2 + k(T )[A] − k(T )[D],
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k(T ) = Act(T ) · e− E(T )
R·T ,

[A](0) = 1, [B](0) = 3, [C](0) = 0.5, [D](0) = 0.5, [W ](0) = 0,

Act(T ) = 2.0149 · 1014, E(T ) = 67 000, R = 8.31446

Since the thermosensor maps environmental temperature into a correspond-
ing periodicity, it carries out a chemical counterpart of frequency modulation
known from engineering. This concept for signal encoding is characterised by
an outstanding robustness against perturbations, especially in comparison to
signals managed in a purely analogous manner. By spatio-temporal waves of
calcium ions (and/or additional further cations), the frequency-encoded temper-
ature signal passes the cytosol (transduction) and finally reaches parts of the cell
in charge of exploitation and response. An effective evaluation of a frequency-
based oscillatory signal requires different processing stages in order to obtain a
corresponding steady-state species concentration whose value can initiate and
trigger subsequent intracellular processes in response.

A simple and reliable way to decode a frequency signal consists in utilisa-
tion of a numerical integrator. For a predefined sliding time span, the oscillating
input becomes consecutively accumulated. A high number of spikes within the
time span induces a larger sum signal than a lower number of spikes within the
same time span. In order to build a numerical integrator from chemical reactions,
we define a reaction cascade to be passed by the oscillatory signal. Each reac-
tion within this cascade produces a short delay (offset) in signal transduction.
Furthermore, the original spiking waveform is successively transformed into an
almost sinusoidal shape. By summation of the signal courses present at the indi-
vidual nodes of the cascade, a numerical integration appears. Attention must be
paid to an appropriate chemical integrator setup. The number of nodes within
the cascade estimates the numerical precision of the output sum signal. A low
number (2 . . . 4) seems to be improperly while a high number is implausible in
terms of an evolutionary origination. In our sample setup, we employ six nodes,
see Fig. 4. Kinetic parameters within the cascade need to be balanced in order
to produce a sufficient signal offset on the one hand and keeping away on the
other hand from obtaining a simple average signal from partially overlapping
waves interfering to each other. We achieved practicable results by setting cas-
cade kinetic parameters kI around 10 times higher than k in the Brusselator.
Reactions involved in summation should run at least at the same velocity as kI .
As output of the numerical integrator, the species concentration [K] over time
decodes temperature in a first approximation.

integrator = ((T, [C]), ([K]),�) with

� : ˙[I1] = kC(T )[C] − kI,1(T )[I2] + kI,7(T )[I1],
˙[Ij ] = kI,j−1(T )[Ij−1] − kI,j+1(T )[Ij+1] j = 2, . . . , 5,

˙[I6] = kI,5(T )[I5],
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˙[K] =

⎛

⎝
6∑

j=1

kI,7(T )[Ij ]

⎞

⎠ − kI,8(T )[K],

kI,m(T ) = Actm(T ) · e−E(T )
R·T m = 1, . . . 8,

[Ip](0) = 0 p = 1, . . . , 6, [K](0) = 0,

Actr(T ) = 2.0571 · 1015 r = 1, . . . , 5,

Act7(T ) = 2.02 · 1014, Act8(T ) = 2.02 · 1014,
E(T ) = 67 000, R = 8.31446

After an initial transient phase, [K] tends to oscillate between a minimal
and a maximal value in low frequency due to the nature of the underlying input
oscillation. A subsequent module called smoother acts in terms of a moving
average element by forming a chemical low-pass filter as described in [11]. Within
the smoother, we organise descending kS values k · 10−2, k · 10−3, and k · 10−4

within the three-stage cascade. Species concentration [X1] over time provides the
resulting smoothed signal value. When passing through the relevant temperature
range it turns out that the corresponding steady [X1] values span a range starting
away from zero. For instance, we realise 124.45.

smoother = ((T, [K]), ([X1]),�) with

� : ˙[L] = kS,1(T )[K]2 − kS,2(T )[M ],
˙[M ] = kS,2(T )[M ] − kS,3(T )[X1],
˙[X1] = kS,3(T )[X1],

kS,m(T ) = Actm(T ) · e−E(T )
R·T m = 1, . . . , 3,

Act1(T ) = 2.0149 · 1012, Act2(T ) = 2.0149 · 1011,
Act3(T ) = 2.0149 · 1010, E(T ) = 67 000, R = 8.31446

Hence, the closing part of signal processing is dedicated to perform a final
mapping into a species concentration ranging from 0 up to – lets say – 10 (arbi-
trarily chosen). To this end, we equip the thermoreceptor model with a subtractor
(calculates [S] := [X1]−̇[X2]) and a multiplicator ([Y ] := [F ] · [S]). Both arith-
metic P modules were introduced in [11] and incorporated into the final model
whose topology and composition in a modular manner is shown in Fig. 4. Its
lower left part depicts the overall transfer curve of species concentration [Y ]
subject to environmental temperature T . In accordance with the delimited slid-
ing time span of the numerical integrator, [Y ] converges towards an upper bound.
Having all individual modules at hand (one copy of each), the corresponding P
meta framework reads:

Πthermoreceptor = (M, P ) with

M = {(thermosensor, 1), (integrator, 1), (smoother, 1),

(subtractor, 1), (multiplicator, 1)}
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Fig. 4. Entire thermoreceptor model based on five subsequent modules: thermosen-
sor (frequency encoder), numerical integrator (frequency decoder) with downstream
smoother, subtractor ([X2](0) = 124.45), and multiplicator ([F ](0) = 49.68). Transfer
curve maps input temperature T into species concentration [Y ].

P = {0 : ModuleConnect(thermosensor[1] → integrator[1], {(C, C)}),

0 : ModuleConnect(integrator[1] → smoother[1], {(K, K)}),

0 : ModuleConnect(smoother[1] → subtractor[1], {(X1, X1)}),

0 : ModuleConnect(subtractor[1] → multiplicator[1], {(S, S)})}

4 Evolving Temperature Entrainable Circadian
Clock Model

It is believed that there are diverse evolutionary origins of circadian clocks what
emphasises its importance for survival and fitness of organisms to exhibit an
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anticipatory behaviour [4]. All circadian clocks discovered up to now have in
common a so-called core oscillator embedded into at least one global feedback
loop primarily responsible for synchronisation (entrainment) of the core oscilla-
tor’s rhythm to an external oscillatory stimulus like daily alterations of sunlight
and darkness [28]. Occasionally, a circadian clock can incorporate several coupled
core oscillators to stabilise its clock function against single damages.

A core oscillator induces a self-sustained (endogenous) rhythm of sinusoidal
or almost sinusoidal waveform whose periodicity accomodates to an external
stimulus indicating a full rotation of earth. To do so, core oscillator’s fre-
quency must be able to be modified within an appropriate range. In the absence
of an external stimulus, a core oscillator maintains its rhythm with slightly
varied period which runs the clock a bit faster or slower. Most core oscilla-
tors currently known comprise a cyclic reaction scheme with negative feed-
back composed of subsequent activating and inhibiting stages, each of them
mainly carried out by gene expression, protein activation, or protein deactiva-
tion. These enzymatically controlled processes typically necessitate a saturation
kinetics for modelling because of the limited amount of reactive enzyme. Here,
Goodwin-type core oscillators [8] provide an established meta-model based on
three species and a three-stage cycle. Oscillation frequency is mainly determined
by velocities of degradation reactions attached to each species. When utilis-
ing enzymatically controlled degradation, we obtain a deterministic P module
of the plain form core oscillator = ((), ([Z]),�) with � containing three ODEs
˙[X] = a

b+K1[Z]2 − k2[X]
K2+[X] ;

˙[Y ] = k3[X]−k5[Y ]− k4[Y ]
K4+[Y ] ;

˙[Z] = k5[Y ]− k6[Z]
K6+[Z]

to formalise a Goodwin-type core oscillator. Parameters a, b,K1,K2,K4, and
K6, all ∈ R>0, need to be set or fitted for the concrete system under study.
The same holds for the kinetic parameters k2 up to k6 and initial concentrations
[X](0), [Y ](0), [Z](0).

In [14], we introduced a minimalistic model of a circadian clock based on
deterministic P modules equipped with a Goodwin-type core oscillator as cen-
tral part of a chemical frequency control system representing a phase locked
loop (PLL), see upper part of Fig. 5. The global feedback consists of a signal
comparator (arithmetic multiplicator), a low-pass filter (reaction cascade) and
a scaler for preparation of the tuning signal which in turn regulates core oscil-
lator’s frequency. In its original form, the PLL model releases the concentration
course [Z](t) over time as output signal adapted to [E](t) that is handled as
external oscillatory stimulus. For instance, [E](t) could result from an upstream
photo cascade converting the intensity of environmental light into a correspond-
ing chemical concentration value.

Now, we are going to explore the minimalistic PLL circadian clock model con-
cerning its entrainability exclusively by environmental temperature T . Addition-
ally, we assume that there is no mechanism of temperature compensation within
the circadian clock model under study. Temperature compensation neutralises
the effect of varying environmental temperature to the clock pace in which higher
temperature accelerates chemical reactions towards a faster rhythm and lower
temperature vice versa. Mechanisms of temperature compensation by variation
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Fig. 5. Sensorless PLL-based circadian clock model with Goodwin-type core oscil-
lator, low-pass filter, and scaler. Temperature exclusively handled via Arrhenius
terms attached to the reactions. Constant concentrations: [E](t) = 5, [U ](t) = 1.
Temperature-independent kinetic parameterisation: a = 6, b = 0.6, K1 = 1, K2 =
0.2, K4 = 0.2, K6 = 1.44. Kinetic reference values at T = 293.15 K: k2 = 3.4, k3 =
0.3, k4 = 2.2, k5 = 0.1, k6 = 1.3, k7 = 1000, k8 = 100, l1 = l2 = l3 = 0.108, l4 =
3600, l5 = 180, m1 = 100. Initial concentrations: [Z](0) = 5, all unmentioned species: 0.
Studies A: oscillatory region, B and C: entrainability to external temperature rhythms,
see text.
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Fig. 6. Modular framework of PLL-based circadian clock model exclusively entrainable
by temperature sensed using thermoreceptor (upper and right part). Deterministic
P modules share common species to interact according to connectivity interface. Arnold
tongue silhouettes significant section of entrainment region (lower left part).

of activation energy became apparent when life forms left the oceanic water and
were exposed to comparatively strong changes in environmental temperature.
Early submarine life forms like archaea could rarely benefit from temperature
compensation.

Initially, we re-formulate the entire PLL model by interacting determinis-
tic P modules including consideration of temperature. To this end, we need to
refine all underlying kinetic parameters following Arrhenius’ equation. Assum-
ing all involved values ki, li, mi from [14] to be valid for 20◦C (293.15K) and
67 000 J

mol activation energy, the corresponding pre-exponential factor arises for
each individual reaction. Having the entire parameter setting at hand, we con-
duct different simulation studies.

Our first study intends to learn more about the influence of temperature onto
the free running circadian clock. For this purpose, we disconnect the external
stimulus by setting [E](t) to the constant value 5 which represents the medium or
average number of the former oscillation in [14]. The study is aimed at localisa-
tion of the stable oscillatory region subject to temporally constant environmen-
tal temperature. Part A of Fig. 5 shows resulting period lengths. It reveals that
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there is a minimum temperature of nearly 12◦C (285.1K) which marks the lower
oscillatory limit. At 20◦C (293.15K), we obtain a period length of 24 h according
to parameter calibration. Along with increasing temperature, period length of
[Z](t) becomes hyperbolically shortened. Around 62◦C (335K), the stable limit
cycle oscillation turns into a pre-stage of deterministic chaos by poly-frequential
behaviour. At this upper limit, period length had been reduced to less than one
hour.

Now, we exploratively analyse entrainability of the sensorless PLL circadian
clock model to an external oscillatory temperature stimulus inspired by daily
variations of oceanic water temperature near the surface. We keep constant
[E](t) = 5. Temperature is reflected exclusively by Arrhenius terms attached
to the reactions. There is no dedicated temperature receptor or sensor. We start
with amplitude of ΔT = 3K by sinusoidally oscillating environmental temper-
ature between 18.5 and 21.5◦C. Part B of Fig. 5 illustrates the resulting poor
entrainability to both, slightly modified period length (left) and initial phase
shift (right). In all cases, the circadian clock runs in a long-term poly-frequential
manner unable to adjust a synchronous frequency. Since the PLL tries to “catch”
external stimulus’ frequency by accelerating its core oscillator due to an increas-
ing error (difference) signal [D](t), resulting period lengths decline into a range
below 24 h. In subsequent studies, we successively decreased the amplitude ΔT .
At 0.3K (and below), we notice entrainability, see part C. This is due to the
moderate growth of the error signal which prevents the core oscillator from
excessive acceleration. Entrainability to various period lengths becomes worse
with increasing deviation (left) while initial phase shifts have been reliably elim-
inated, even for an almost antiphasic scenario (initial phase shift φ = π or 12 h,
respectively).

Finally, we combine the sensorless PLL circadian clock model with the ther-
moreceptor model from Sect. 3. Temporal concentration course of thermorecep-
tor output species Y acts as external stimulus E now connecting both modules
by this shared species. For the entire framework of interacting deterministic
P modules, we were able to confirm extensive entrainability. It turns out that
there is no qualitative discrepancy between entrainment by light (managed via
photo cascade, [14]) and entrainment by temperature (sensed via thermorecep-
tor). It seems that both concepts are equivalent regarding the entrainment power
when considering region of entrainability. Entrainment by temperature tends to
synchronise a bit slower than entrainment by light (time to synchronisation pro-
longated up to approx. 20%) due to the inherent latency in signal processing
caused by the thermoreceptor. Figure 6 depicts connectivity of all involved mod-
ules along with the summarising Arnold tongue. For numerous ratios between
initial period lengths in [Z] (internal oscillator) and [E] (external oscillator) and
for varying amplitudes of [E], each black cross marks entrainability (signal syn-
chronisation) proved by simulation. The highlighted tongue-shaped silhouette
indicates the overall region of entrainability which coincides with typical daily
changes in oceanic surface water temperature.
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5 Conclusions

This paper is inspired by the hypothesis that effective circadian clocks could
have been emerged without evolution of photoreceptors and lightsensors merely
by exploitation of daily temperature cycles. By consistent utilisation and com-
bination of modules following the notion of systems biology, we consolidate an
imagination of functional simplicity and hence evolvability of underlying reac-
tion schemes. The concept of deterministic P modules along with their assem-
bly and combination towards complex models opens a wide field of applications
within explorative elucidation using grey boxes, hypothetical but plausible chem-
ical units successively replaced by its biological counterparts. Simulation studies
were carried out using MatLab except those for transfer curve for Brusselator
calibration whose data were obtained by Copasi due to its larger domain of
numerical values. Sources are available from the first author upon request.
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Abstract. In this paper we prove that uniform families of P systems
with active membranes and using antimatter characterize the complexity
class P when polarizations, dissolution rules and membrane division rules
are not used. This means that the use of antimatter significantly increases
the computational power of these systems having the above restrictions,
since it is known that without the use of antimatter and using reasonably
weak uniformity conditions they have very limited computational power
only.

1 Introduction

The idea of generalizing the notion of spikes and anti-spikes from spiking neural
P systems was first proposed in [9]. The use of objects and anti-objects (also
called matter and antimatter, resp.) in various classes of P systems provides
new research lines in Membrane Computing. Since an object a and its anti-
object pair ā can not stay together in a compartment, it is supposed that a rule
of the form aā → λ is applied to remove these objects regardless to the possible
application of other kinds of rules. This means that these rules (which are also
called annihilation rules) have priorities over the other types of rules. This phe-
nomenon can significantly increase the computation power of those membrane
systems where anti-matter and annihilation rules are used (see e.g. [1–3]).

Recently, it was shown in [3] that using antimatter and annihilation rules in
P systems with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary membranes increases the power
of these systems significantly: while without antimatter these systems can only
solve problems in the complexity class P [6], with antimatter they are capable
to solve NP-complete problems too.

In this paper we show that antimatter and annihilation rules increase the
power also of those P systems which do not employ membrane division rules.
Namely, we show that (L,L)-uniform families of P systems with active mem-
branes, without polarizations, dissolution and division of membranes, but with
antimatter and annihilation rules characterize the complexity class P. Here L
denotes the class of functions computable by Turing machines using logarithmic
space. The lower bound on the power of these P systems is shown by presenting
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a solution of the P-complete Horn-SAT problem (where the task is to decide
if a Horn-formula is satisfiable or not). Since it is known that these P systems
without antimatter and using strict uniformity conditions have very limited com-
putational power only (see e.g. Theorem 10 in [7]), our result shows that the use
of antimatter significantly increases the computational power of these P systems.

The paper is organized as follows. In the next section the necessary notions
concerning the investigated P systems are introduced. In Sect. 3 the main result
of the paper is proved. Finally, in Sect. 4 some concluding remarks are given.

2 Preliminaries

First, we recall some basic concepts used later. Nevertheless, we assume that the
reader is familiar with Membrane Computing techniques (for a detailed descrip-
tion, see e.g. [10]).

Propositional Formulas

Let V ar = {X1,X2,X3, . . .} be a countable set of propositional variables (vari-
ables, to be short), and, for every n ∈ N, where N denotes the set of nat-
ural numbers, let V arn := {X1, . . . , Xn}. An interpretation of the variables in
V arn (or just an interpretation if V arn is clear from the context) is a function
I : V arn → {true, false}.

The variables and their negations are called literals. A literal l is called a
positive (resp. negative) literal, if l = X (resp. l = ¬X), for some X ∈ V ar.
A clause C is a disjunction of finitely many pairwise different literals satisfying
the condition that there is no X ∈ V ar such that both X and ¬X occur in C.
A formula in conjunctive normal form (CNF) is a conjunction of finitely many
clauses. We can treat formulas in CNF as finite sets of clauses, where the clauses
are finite sets of literals. A Horn formula is a formula ϕ in CNF satisfying that
every clause in ϕ contains at most one positive literal. A clause containing a
single positive literal is called a unit clause. A formula ϕ in CNF over variables
in V arn, for some n ∈ N, is satisfiable, if there is an interpretation under which ϕ
evaluates to true. Notice that a formula ϕ in CNF is satisfiable, only if there is an
interpretation I such that, for every clause of ϕ of the form {X}, I(X) = true.

Recognizer P Systems

A P system is a construct of the form Π = (Γ,H, μ,w1, . . . , wm, R), where m ≥ 1
is the initial degree of the system; Γ is the working alphabet of objects; H is
a finite set of labels of the membranes; μ is a membrane structure consisting
of m membranes and labeled with elements of H; w1, . . . , wm ⊆ Γ ∗ are the
initial multisets of objects placed in the m regions of μ; and R is a finite set of
developmental rules.

A P system with input is a tuple (Π,Σ, i0), where Π is a P system with
working alphabet Γ ; Σ is an (input) alphabet strictly contained in Γ ; the initial
multisets are over Γ\Σ; and i0 is the label of a distinguished (input) membrane.
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We say that Π is a recognizer P system [11,12] if Π is a P system with input
alphabet Σ and working alphabet Γ ; Γ has two designated objects yes and no;
every computation of Π halts and sends out to the environment the same object
which is either yes or no, and this object is sent out in the last step of the
computation. The input of Π is a word w ∈ Σ∗, whose corresponding multiset
is added to the system by placing it into the input membrane i0 in the initial
configuration.

P Systems with Active Membranes Using Antimatter

In this paper we investigate recognizer P systems with active membranes [8]. In
fact we will consider such a variant of these systems where the polarizations of the
membranes, dissolution rules and membrane division rules are not used. On the
other hand, the use of antimatter and annihilation rules are allowed. We denote
the class of these P systems by AM0

−d,−e,+antPri, where −d (resp. −e) denotes
that dissolution (resp. membrane division) rules are not allowed, and +antPri
indicates that the use of antimatter and annihilation rules with priority are
allowed. The rules of P systems of type AM0

−d,−e,+antPri are formally defined
as follows:

(a) [a → v]h, for h ∈ H, a ∈ Γ, v ∈ Γ ∗ (object evolution rules, associated with
membranes and depending on the label of the membranes, but not directly
involving the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them)

(b) a[ ]h → [b]h, for h ∈ H, a, b ∈ Γ (send-in communication rules, sending
an object into a membrane, the object being maybe modified during this
process)

(c) [a]h → [ ]hb, for h ∈ H, a, b ∈ Γ (send-out communication rules; an object
is sent out of the membrane, the object being maybe modified during this
process)

(d) [ aā → λ ]h for h ∈ H, a, ā ∈ Γ (annihilation rules, associated with a mem-
brane labeled by h: the pair of objects a, ā ∈ Γ , belonging simultaneously to
this membrane, disappears by the use of this rule.

As it is usual in membrane computing, a P system with active membranes using
antimatter works in the maximally parallel manner:

– In one step, any object of a membrane that can evolve must evolve, but one
object can be used by only one rule in (a)–(d).

– If an object can be used with two or more different rules, then one of these rules
is non-deterministically chosen. The only exception is when an annihilation
rule can be applied, since, by physical inspiration, these rules have priority
over all of the other types of rules (see also [3]).

– When some rules in (b) or (c) can be applied to a certain membrane, then
one of them must be applied, but a membrane can be the subject of only one
of these rules during each step.
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Uniform Families of P Systems

We will solve the Horn-SAT problem with a uniform family of P systems. Since
this problem is in the complexity class P, we should use such a uniform family
where the members of the family and the encoding of the Horn formulas can
be constructed with reasonably weak Turing machines. According to the widely
believed hypothesis that Turing machines using logarithmic space are strictly
weaker than Turing machines using polynomial time, we will use logarithmic
space uniform families of P systems. The definition of uniformity presented below
follows the notion of uniformity used in [13]. Let E and F be classes of com-
putable functions. A family Π = (Π(i))i∈N of recognizer P systems is called
(E,F)-uniform if and only if (i) there is a function f ∈ F such that, for every
n ∈ N, Π(n) = f(1n) (i.e., mapping the unary encoding of each natural number
to an encoding of the P system processing all the inputs of length n); (ii) there
is a function e ∈ E that maps every word x ∈ Σ∗ with length n to a multiset
e(x) = wx over the input alphabet of Π(n).

An (E,F)-uniform family of P systems Π = (Π(i))i∈N decides a language
L ⊆ Σ∗ if, for every word x ∈ Σ∗ with length n, when Π(n) is started with
wx in its input membrane, it sends out to the environment yes if and only if
x ∈ L. In general, E and F are well known complexity classes such as P or
L, however in our work we use only (L,L)-uniform families of P systems. The
class of problems decidable in polynomial time by (E,F)-uniform families of P
systems of type F is denoted by (E,F) − PMCF .

We say that Π(n) works in time t(n) (t : N → N) if Π(n) halts in at most
t(n) steps, for every input multiset in its input membrane.

3 The Main Result

Here we prove that the computational power of P systems of type
AM0

−d,−e,+antPri characterizes the complexity class P.

3.1 Solving Horn-SAT

In this subsection we give a family of P systems of type AM0
−d,−e,+antPri to

solve the P-complete Horn-SAT problem. This problem is the following one:
Given a Horn formula ϕ, decide if ϕ is satisfiable.

We are going to implement the following algorithm HS, which is a simple
modification of the well-known algorithm based on unit-propagation (see e.g. [4]),
to solve Horn-SAT. We decided to use an outer For cycle instead of While, in
order to avoid a more complicated implementation. Let ϕ = H1 ∧ · · · ∧ Hm be a
Horn formula over the variables in V arn.
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procedure Horn-SAT
input: ϕ
ϕ′ := ϕ
For i = 1 . . . n do

R := {H ∈ ϕ′ | His a unit clause in ϕ′s
Foreach H in R do

Foreach clause C in ϕ′ do
·C ′ := Reduce(C,H)
·Replace C in ϕ′ with C ′

If ϕ′ contains an empty clause then return false
else return true

function Reduce(C,H)
If C contains ¬X, for some X ∈ H then return C\{¬X}
else return C

Intuitively, the above algorithm works as follows on an input formula ϕ. HS
does an n-times iterated loop, where in every iteration step, it chooses the unit
clauses of ϕ′ (which, at the beginning, equals to ϕ). Clearly, if an interpretation
satisfies ϕ′, then it must assign true to the variables occurring in these clauses.
Then HS removes all the corresponding negative literals from the clauses of
ϕ′, since these negative literals cannot be true in a satisfying interpretation.
Then we get a formula, that is satisfiable if and only if ϕ is satisfiable. For
example, (X ∨ ¬Y ∨ ¬Z ∨ ¬U) ∧ Y ∧ Z is satisfiable if and only if X ∨ ¬U is
satisfiable, and such satisfying interpretations must assign true to Y and Z. If
at the end of the cycle ϕ′ contains an empty clause, then it means that ϕ cannot
be satisfied. Otherwise it can be. In the following example we show the working
of the algorithm:

Example 1. ϕ = X ∧ (¬X ∨ Y ) ∧ (¬Y )
ϕ′ := ϕ
1. R = {X}

• For X ∈ R :
- For P ∈ ϕ′ :

Reduce X (from ϕ′) with X (from R); the solution is X
Replace X in ϕ′ with X

- For ¬X ∨ Y ∈ ϕ′ :
Reduce ¬X ∨ Y with X; the solution is Y
Replace ¬X ∨ Y in ϕ′ with Y

- For ¬Y ∈ ϕ′ :
Reduce ¬Y with X; the solution is ¬Y
Replace ¬Y in ϕ′ with ¬Y

• ϕ′ = {X,Y,¬Y }
2. R = {X,Y }

• For X ∈ R :
. . .

• For Y ∈ R :
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- For X ∈ ϕ′ :
Reduce X with Y ; the solution is X
Replace X in ϕ′ with X

- For Y ∈ ϕ′ :
Reduce Y (from ϕ′) with Y (from R); the solution is Y
Replace Y in ϕ′ with Y

- For ¬Y ∈ ϕ′ :
Reduce ¬Y with Y ; the solution is �
Replace ¬Y in ϕ′ with �

• ϕ′ = {X,Y,�}
Since ϕ′ contains �, the algorithm returns false
In this example the formula contains two literals (namely X and Y ), so the

algorithm will take a two rounded loop. In the first round it detects the only one
unit clause, X, and removes its negated appearances from the clauses (namely it
replaces ¬X ∨Y with Y ). In the second round there are two unit clauses, X and
Y . The algorithm performes the necessary reduction(s), so � (i.e., the empty
clause) appears in ϕ′. Then the algorithm gives the correct answer: the formula
is unsatisfiable.

The P System. Here we present a family of P systems that implements the
algorithm HS. We will use the following encoding of a Horn formula ϕ = H1 ∧
· · · ∧ Hm over the variables in V arn. The encoding of ϕ, denoted by cod(ϕ), is
a multiset over the alphabet {xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1},
where xi,j,1 (resp. xi,j,0) represents the fact that xi (resp. ¬xi) occurs in Hj

(notice that since barred objects usually denote antimatter, we cannot use x̄i,j

to represent negated variables).
Let us consider an appropriate pairing function 〈 , 〉 from N × N to N. We

construct a P system Π(〈n,m〉) processing ϕ, when cod(ϕ) is supplied in its
input membrane. The family presented here is:

Π = {(Π(〈n,m〉), Σ(〈n,m〉), i(〈n,m〉)) | (n,m) ∈ N
2},

where the input alphabet is Σ(〈n,m〉) = {xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤
k ≤ 1}, the input membrane is i(〈n,m〉) = 0, and the P system

Π(〈n,m〉) = (Γ (〈n,m〉),H(〈n,m〉), μ, w0, w1, . . . , wm, R(〈n,m〉))
is defined as follows:

– Working alphabet: Γ (〈n,m〉) = Σ(〈n,m〉)∪

{x
(p,q)
i,j,k , y

(p,q)
i | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1, 0 ≤ p ≤ n − 1, 1 ≤ q ≤ n}∪

{xi,k, x
(q)
i,k | 1 ≤ i ≤ n, 0 ≤ k ≤ 1, 0 ≤ q ≤ n − 1}∪

{x′(q)
i,k , x̄′(0)

i,k | 1 ≤ i ≤ n, 0 ≤ k ≤ 1, 0 ≤ q ≤ n + 2}∪
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{yi, ȳi, ȳi
(0,n−i+1), x̄i,0 | 1 ≤ i ≤ n}∪

{y
(q)
i , z

(q)
i | 1 ≤ i ≤ n, 0 ≤ q ≤ n − 1}∪

{d(s) | 0 ≤ s ≤ n2 + 5n + 2}∪

{e(t) | 0 ≤ t ≤ n2 + 5n + 4}∪

{no, n̄o, yes, ¯yes, noout, n̄oout, nokill}
– The set of labels: H = {SKIN, 0, 1, . . . ,m}
– The membrane structure: μ = [[[ ]1[ ]2 . . . [ ]m]0]SKIN

– The initial multisets: wSKIN = ∅, w0 = {e(0)}, w1 = w2 = · · · = wm = {d(0)}
– The set of rules R consists of the following subsets of rules:

(1) [xi,j,k → x
(i−1,n)
i,j,k ]0 (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1),

[x(p,q)
i,j,k → x

(p−1,q−1)
i,j,k ]0 (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1, 1 ≤ p ≤

n − 1, 2 ≤ q ≤ n),

x
(0,n−i+1)
i,j,k [ ]j → [x(n−i)

i,k ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1),

[x(q)
i,k → x

(q−1)
i,k ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1, 1 ≤ q ≤ n − 1),

[x(0)
i,k → xi,k]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1).

(These rules are used to collect all the literals of a clause into the corre-
sponding membrane; this is done in a synchronized way, i.e., the object
that represents the first literal of the corresponding clause goes into the
membrane at first.)

(2) (a) [xi,1 → x′(0)
i,1 yin̄o]j , [xi,0 → x′(0)

i,0 ȳ1ȳ2 . . . ȳnn̄o]j ,

[yiȳi → λ]j , [ȳi → λ]j , [yi]j → [ ]jyi (1 ≤ i ≤ n, 1 ≤ j ≤ m).

(These rules are used to find those inner membranes which contain
one positive literal and no negative literals; the last rule in this group
sends out these literals to membrane 0.)

(b) [yi → (y(i−1,n)
i z

(i−1)
i )m]0 (1 ≤ i ≤ n),

[y(p,q)
i → y

(p−1,q−1)
i ]0 (1 ≤ i ≤ n, 1 ≤ p ≤ n − 1, 2 ≤ q ≤ n),

y
(0,n−i+1)
i [ ]j → [y(n−i)

i ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m),

[y(q)
i → y

(q−1)
i ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ q ≤ n − 1),

[y(0)
i → x̄i,0]j (1 ≤ i ≤ n, 1 ≤ j ≤ m).
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(These rules are used to create copies of the positive literals and send
them into every inner membrane.)

(c) [z(p)i → z
(p−1)
i ]0, [z(0)i → ȳ

(0,n−i+1)
i ]0 (1 ≤ i ≤ n, 1 ≤ p ≤ n − 1),

[ȳ(0,n−i+1)
i y

(0,n−i+1)
i → λ]0 (1 ≤ i ≤ n).

(With these rules the system can remove certain superfluous copies
of the positive literals occurring in the skin.)

(d) [x′(q)
i,k → x′(q+1)

i,k ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ q ≤ n + 1, 0 ≤ k ≤ 1),

[x′(n+2)
i,k → xi,k]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1),

[xi,0x̄i,0 → λ]j , [x̄i,0 → λ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m).

(These rules are used to remove those objects from the inner mem-
branes that represent such negative literals that occur together with
their positive pairs; in other words, these rules are responsible for
simulating the function calls reduce(C,H) in HS.)

(3) [d(s) → d(s+1)]j (1 ≤ j ≤ m, 0 ≤ s ≤ n2 + 5n + 1),

[d(n
2+5n+2) → no x̄′(0)

1,0 . . . x̄′(0)
n,0 x̄′(0)

1,1 . . . x̄′(0)
n,1 ȳ1 . . . ȳn]j (1 ≤ j ≤ m),

[x′(0)
i,k x̄′(0)

i,k → λ]j , [x̄′(0)
i,k → λ]j (1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ 1),

(These rules are responsible for finishing the computation after simulat-
ing n iterations of the loop in HS.)

(4) [no n̄o → λ]j , [no]j → [ ]jno, [n̄o → λ]j (1 ≤ j ≤ m),

[no → noout ¯yes]0, [noout]0 → [ ]0no, [yes ¯yes → λ]0,

[e(t) → e(t+1)]0 (0 ≤ t ≤ n2 + 5n + 3),

[e(n
2+5n+4) → nom−1

kill yes]0, [yes]0 → [ ]0yes, [nokill →
n̄oout]0, [n̄oout → λ]0, [no]SKIN → [ ]SKINno, [yes]SKIN →
[ ]SKINyes.

(These rules generate the correct answer and send it out to the environ-
ment.)

A Short Overview of the Computation. Assume that the P system
Π(〈n,m〉) is started with cod(ϕ) in its input membrane, where ϕ = H1∧. . .∧Hm

is a Horn formula over the variables in V arn. The work of Π(〈n,m〉) on ϕ can
be divided into the following stages.

Collection of the objects representing a clause. The objects of the form xi,j,k, for
some j ∈ {1, . . . , m}, represent the jth clause of ϕ. First these objects are sent
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to the membrane with label j. In this way Π(〈n,m〉) collects all the literals of a
clause into a corresponding membrane (this is done by rules (1) in R). In order
to synchronize the collection of these literals, the objects of the form xi,j,k are
assigned with two counters (first rule in (1)). At the beginning, the first counter
is set to i−1 and the second one to n. These counters will decrease at every step
of Π(〈n,m〉). (Notice that in this stage of the computation this synchronization
could be solved with only one counter, but later we will need two counters in
a similar situation and thus, in order to unify the notations, we decided to use
two counters already here).

When the first counter p in an object x
(p,q)
i,j,k reaches 0, then this object enters

into the jth membrane and “drops” its second index j and its first counter, as
these components are not needed any more (thus the corresponding objects in
membrane j have the form x

(p)
i,k , see the third rule in (1)). Now the remaining

counter of these objects keep decreasing step by step, and at that time when
this counter reaches 0, the membrane j contains all the literals that represent
the corresponding clause of ϕ′ (which equals to ϕ at this point). From now on
the counter in the upper index is not needed, and the objects evolve to the
form xi,k (last rule in (1)). This part of the computation takes n + 2 steps. The
initial configuration of the P system solving the formula in Example 1 and its
configuration after collecting the literals into the corresponding membranes can
be seen in Figs. 1 and 2., respectively.

Fig. 1. The initial configuration of the system solving ϕ in Example 1

Fig. 2. The configuration after collecting the literals into the corresponding membranes
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Implementation of the n-times iterated loop of HS. In this stage Π(〈n,m〉) first
selects the unit clauses. To do so, every object xi,1 (notice that such an object
represents a positive literal) creates two objects yi and x′(0)

i,1 (first rule in (2a)).
The primed object will be transformed back to xi,1 after n + 3 steps in order to
be able to start the simulation of the next iteration of the loop (first two rules in
(2d)). It also creates the anti-object n̄o, but this object will be used only when
the last iteration of the loop is done. If this is not the case, then this object
disappears after one step.

Meanwhile, every object of the form xi,0 (notice that such an object rep-
resents a negative literal) in an inner membrane j creates a multiset {ȳl | l ∈
{1, . . . , m}} of anti-objects. Moreover, xi,0 creates an object x′(0)

i,0 and an anti-
object n̄o too (second rule in (2a)). At this point the multiset content of the
membrane with label j satisfies one of the following four possibilities:

1. It contains yi and none of the anti-objects ȳl (l ∈ {1, . . . , m}) (i.e., the jth
clause consists of a single positive literal). In this case yi is sent out to the
outer membrane (fifth rule in (2a)).

2. It contains yi and all of the anti-objects ȳl (l ∈ {1, . . . , m}) (i.e., the jth
clause consists of a positive and at least one negative literal). In this case the
corresponding anti-object will annihilate yi and the other anti-objects will
disappear (third and fourth rules in (2a)).

3. It contains all of the anti-objects ȳl (l ∈ {1, . . . , m}) and does not contain
any yi (i.e., the jth clause contains no positive literals). In this case the anti-
objects will disappear without applying any annihilation rule.

4. It does not contain neither the object yi nor the anti-objects ȳl (l ∈
{1, . . . , m}) (i.e., the jth clause contains no literals). In this case the mem-
brane is ready to produce the objects which will be used to send out no to
the environment.

According to the above discussion, at this point of the computation the following
holds. There is an object yi (i ∈ {1, . . . , n}) in the outer membrane if and only if
the jth clause of ϕ′ (for some j ∈ {1, . . . , m}) consists of one positive literal (so
it is a unit clause). Clearly, it can happen that more than one copy of yi occur
in the outer membrane (this happens when at least two different clauses of ϕ′

equal to {Xi}).
The system should send every positive literal in the outer membrane to every

inner membrane in order to be able to simulate the function calls reduce(C,H)
performed by Algorithm HS. For this purpose, every object yi in the outer
membrane creates m copies of itself by applying the first rule in (2b). These new
copies are assigned with two counters. Clearly, if there are more than one copy
of yi in the outer membrane before the application of this rule, then more than
m copies are produced. But the system works correctly only if exactly m copies
are used in the computation. Therefore, the first rule in (2b) also introduces
m copies of zi, each assigned with a counter. These objects will eliminate the
superfluous copies of yi.
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The counters in the copies of yi (i.e., p and q in the objects of the form y
(p,q)
i )

are decreased step by step (second rule in (2b)). Using these counters the system
can send the copies of yi to every inner membrane in a synchronized way (i.e.,
first the copies of y1 can enter to the inner membranes, then the copies of y2, and
so on). The counter q of an object y

(q)
i keeps decreasing in the inner membranes

until it reaches 0 (fourth rules in (2b)). When this happens, y
(0)
i introduces x̄i,0

(last rule in (2b)) which will annihilate the corresponding objects representing
negative literals in the inner membranes (third rule in (2d)). In this way all the
function calls reduce(C,H) of HS in the current iteration step are simulated
(notice that while usually the Foreach command is implemented in a sequential
way, Π(〈n,m〉) will do the inner Foreach in parallel).

As we have discussed before, the extra copies of an object yi in the outer
membrane are eliminated by using the objects z

(q)
i introduced by the first rule

in (2b). Using their counters, these objects become proper anti-objects at the
right moment and annihilate these superfluous copies of yi (see rules in (2c)). The
simulation of one iteration takes n + 4 steps. The configurations implementing
the first round of the loop in Example 1 can be seen in Fig. 3.

Fig. 3. The configurations implementing the first round of the loop in Example 1
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Sending out the correct answer to the environment. After simulating n iterations
of the loop in Algorithm HS, the system must stop the evolution of objects x′

i,k.
For this purpose it uses a counter object d(0) in every inner membrane. This
object, after n2 + 5n + 2 evolution steps, introduces such anti-objects, that will
annihilate the objects x′(0)

i,k . At this step also an object no is introduced (see the
rules in (3)). Now, after the simulation of the n-times iterated loop of HS (one
step before the last evolution of object d) we have the following two possibilities.

Case 1. There is an inner membrane not containing any object of the form xi,k.
Then no anti-object n̄o is produced in this membrane. In this case the earlier
produced no goes out to the outer membrane (second rule in (4)). In the outer
membrane objects no evolve to noout, one noout goes out to the SKIN, and the
rest of them are annihilated by anti-objects n̄oout (first, fourth and fifth rules in
(4), resp.). These anti-objects n̄oout are produced by a properly timed counter
object e (using the seventh, eighth, and eleventh rules in (4)). In this case the
object yes (which is also produced during the evolution of e) is annihilated too
(sixth rule in (4)). Thus, in this case one no goes out to the environment and
the computation halts.

Case 2. Every inner membrane contains an object of the form xi,k. Then no
object no goes out to the outer membrane and no anti-object ¯yes can be pro-
duced. Therefore the object yes (which is produced after the evolution of object
e) is not annihilated. Thus yes goes out to SKIN, and then to the environment
and the computation halts.

Using the above discussion we can see that Π(〈n,m〉) decides correctly the
satisfiability of ϕ. Moreover, it works in quadratic time in n.

The (L,L)-uniformity of Π. As it is discussed earlier, in solutions of problems
in P via uniform families of P systems we should use reasonably weak uniformity
conditions. Therefore, to solve Horn-SAT we used an (L,L)-uniform family of
P systems. This can be seen as follows. For an instance ϕ of Horn-SAT, the
multiset cod(ϕ) can be computed by a Turing machine that reads the clauses of
ϕ and needs to store only the number of the current clause in binary form on its
tapes. This can be done using O(log(m)) space. Moreover, as in our P systems
the working alphabet Γ , the set of labels H, and the rule set R have size O(n3 ·m)
(the indexes of their elements are in ranges 1 . . . n and 1 . . . m, respectively) and
every rule in R has size O(n + m), there is a deterministic Turing machine that
can enumerate the elements of Γ,H, and R using O(log(n)+log(m)) space. This,
together with the statement about the correctness and the running time of the
presented family of P systems and using the fact that Horn-SAT is P-complete
under log-space reduction implies the following theorem:

Theorem 1. P ⊆ (L,L) − PMCAM0
−d,−e,+antPri

3.2 P Upper Bound

Here we show that (L,L) − PMCAM0
−d,−e,+antPri

⊆ P. Let Π = (Π(n))n∈N

be an (L,L)-uniform family of P systems of type AM0
−d,−e,+antPri and assume
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that the P systems in Π work in polynomial time in n. Let p(n) be a polynomial
such that the computation steps of a P system Π(n) ∈ Π are upper bounded by
p(n).

Let us consider now a P system Π(n) ∈ Π with an input multiset I in its
input membrane (notice that the size of I is polynomially bounded in n). Since
Π(n) is a recognizer P system, all of its computations on I halt and yield the
same answer. Thus, it is enough to simulate one particular halting computation
of Π(n) to find out its answer when it is started with input I. Therefore, we
introduce weak priorities on the rules of type (a) − (c) (clearly, by definition,
annihilation rules have priority all over the rest of the rules): evolution rules
have priority over the communication rules and send-in communication rules
have priority over send-out communication rules. Moreover, if there are two
different rules with the same type and having the same left hand side, then we
assume that Π(n) applies that rule which occurs earlier in the representation of
Π(n).

Assume that C = C1, . . . , Cl is a halting computation of Π(n) on I which
satisfies the above introduced priorities. We describe an algorithm A that sim-
ulates the computation C using polynomial time in n. The input of A is the
representation of Π(n) together with an input multiset I. Since Π is an (L,L)-
uniform family of P systems, it follows that the size of the initial configuration
of Π(n) with I is upper-bounded by a polynomial s(n).

Since Π(n) does not use membrane division and dissolution rules, the number
of membranes in the configurations in C is the same as that in C1. Furthermore,
the multiset content of a membrane M in a configuration Ci (i ∈ {1, . . . , l})
can be represented in binary form using O(p(n) · log n) bits (notice that the
maximal number of objects in a configuration is bounded by 2p(n) · s(n), i.e., it
is exponential in n). Thus, the configuration Ci can be represented by A using
O(p(n)·log n) space. Therefore, to simulate a computation step of Π(n), A needs
to go through the representation of the current configuration of Π and apply the
rules to the objects in the configuration. This clearly can be done by A using
polynomial time in n.

Since Π(n) halts in p(n) steps, it follows that the simulation of the whole
computation takes polynomial time in n. Thus we have the following result:

Theorem 2. (L,L) − PMCAM0
−d,−e,+antPri

⊆ P

This, together with Theorem 1 implies

Corollary 1. (L,L) − PMCAM0
−d,−e,+antPri

= P

4 Conclusions

It is known that P systems with active membranes that do not employ
polarizations, dissolution and membrane division rules - so the usual ways of
“communication” between objects are restricted - cannot significantly exceed
the computational power of the systems that are used to construct them
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(see e.g. [7]). By using antimatter and annihilation rules in these systems, a
new method of sending information between membranes in a controlled way
is introduced. In this way, these systems are capable to exceed these bounds.
However, this new method of exchanging information between membranes is not
enough to solve computationally hard problems.

The P lower bound in our result came from proving that the P-complete
Horn-SAT problem can be solved by a corresponding family of P systems in
polynomial time. Although there are classical algorithms that solve Horn-SAT
in polynomial time, the efficiency of the P systems can be seen in our solution too:
while classical algorithms have running time that depends also on the number
of clauses of the formula, the running time of our P systems depends only on
the number of variables of the formula.

It is known that P systems with active membranes, without polarizations,
without dissolution rules, with nonelementary membrane division rules, and
endowed with antimatter and annihilation rules can solve NP-complete prob-
lems [3]. From our result it follows that if we remove from these systems the
possibility of membrane division, then they can solve only problems in P. It is
an interesting question what is the exact power of those variants where elemen-
tary membrane division rules are allowed but nonelementary membrane division
rules not.

Acknowledgements. The author gratefully acknowledges the helpful suggestions and
comments of the anonymous referees.
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Abstract. We prove that polynomial-time tissue P systems with cell
division or cell separation can be simulated efficiently by Turing machines
with oracles for counting problems. This shows that the correspond-
ing complexity classes are included in P#P, thus improving, under
standard complexity theory assumptions, the previously known upper
bound PSPACE.

1 Introduction

Tissue P systems [4] are known to solve NP-complete (and coNP-complete)
problems in polynomial time when cell division [9] or cell separation rules [6]
are available in addition to the standard, context-sensitive communication rules.
In terms of complexity classes, this is denoted by NP ∪ coNP ⊆ PMCT DC
and NP∪ coNP ⊆ PMCT SC , respectively. Division and separation rules allow
the creation of exponentially many cells in polynomial time; the difference is that
division replicates the contents of the original cell, while separation distributes
such contents between the resulting cells according to the nature of the objects.

The previously known upper bound to the classes of problems solved in
polynomial time by tissue P systems with cell division [11] or separation [10]
is PSPACE, a class of problems also solved by P systems with active mem-
branes [1]. Unlike these, tissue P systems lack a complex hierarchical mem-
brane structure, a limitation they share with P systems with elementary active
membranes, where membranes containing further membranes cannot divide; the
problems solved by the latter are known to be bounded by P#P [3], a class
conjecturally smaller than PSPACE.

In this paper we show that the P#P upper bound also applies to tissue
P systems with cell division or cell separation; we describe a simulation that
runs in polynomial time by delegating the communication between regions to an
oracle for a counting problem.
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2 Basic Notions

We begin by recalling the definition of tissue P systems with division and sepa-
ration rules; for a more detailed introduction on multiset processing and tissue
P systems, we refer the reader to the original paper [4].

Definition 1. A tissue P system is a structure Π = (Γ,E,w1, . . . , wd, R),
where:

– Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
– E ⊆ Γ is the alphabet of objects initially located in the external environment,

in infinitely many copies;
– d ≥ 1 is the degree of the system, i.e., the initial number of cells;
– w1, . . . , wd are finite multisets over Γ , describing the initial contents of the d

cells; here 1, . . . , d are labels identifying the cells of the P systems, and 0 is
the label of the external environment;

– R is a finite set of rules.

The rules of R are of the following types:

(a) Communication rules, denoted in this paper by [u]h ↔ [v]k and in the litera-
ture by (h, u/v, k), where h and k are distinct labels (including the environ-
ment), and u and v are multisets over Γ (at least one of them nonempty):
these rules are applicable if there exists a region with label h containing u as
a submultiset and a region k containing v as a submultiset; the effect of the
rule is to exchange u and v between the two regions. If h = 0 (resp., k = 0)
then u (resp., v) must contain at least an object from Γ − E, i.e., an object
with finite multiplicity1. In this paper we consider a rule [u]h ↔ [v]k and its
syntactic reverse [v]k ↔ [u]h to be the same rule.

(b) Division rules, of the form [a]h → [b]h [c]h, where h �= 0 is a cell label
and a, b, c ∈ Γ : these rules can be applied to a cell with label h containing
at least one copy of a; the effect of the rule is to divide the cell into two
cells, both with label h; the object a is replaced in the two cells by b and c,
respectively, while the rest of the original multiset contained in h is replicated
in both cells.

(c) Separation rules, of the form [a]h → [Γ1]h [Γ2]h, where h �= 0 is a cell label,
a ∈ Γ , and {Γ1, Γ2} is a partition of Γ : these rules can be applied to a cell
with label h containing at least one copy of a; the effect of the rule is to
separate the cell into two cells, both with label h; the object a is consumed,
while the objects from Γ1 in the original multiset contained in h are placed
inside one of the cells, and those from Γ2 in the other. All separation rules
in R must share the same partition {Γ1, Γ2} of Γ .

1 Since communication rules are applied in a maximally parallel way, this restriction
avoids the situation where infinitely many objects from the environment simultane-
ously enter a cell.
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A tissue P system with cell division only uses communication and division rules,
while a tissue P system with cell separation only uses communication and sepa-
ration rules.

A configuration C of a tissue P system consists of a multiset over Γ − E
describing the objects appearing with finite multiplicity in the environment,
and a multiset of pairs (h,w), where h is a cell label and w a finite multiset
over Γ , describing the cells. A computation step changes the current configuration
according to the following set of principles:

– Each object can be subject to at most one rule, and each cell can be subject
to any number of communication rules or, alternatively, a single division or
separation rule.

– The application of rules is maximally parallel : each region is subject to a
maximal multiset of rules (i.e., no further rule can be applied).

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

A halting computation C = (C0, . . . , Ck) of the tissue P system Π is a finite
sequence of configurations, where C0 is the initial configuration, every Ci+1 is
reachable from Ci via a single computation step, and no rules are applicable
in Ck.

Tissue P systems can be used as language recognisers by employing two
distinguished objects yes and no: we assume that all computations are halting,
and that either yes or object no (but not both) is released into the environment,
and only in the last computation step, in order to signal acceptance or rejection,
respectively. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the tissue P system is said to be confluent.

In order to solve decision problems (i.e., decide languages), we use families of
recogniser tissue P systems Π = {Πx : x ∈ Σ�}. Each input x is associated with
a tissue P system Πx that decides the membership of x in the language L ⊆ Σ�

by accepting or rejecting. The mapping x 	→ Πx must be efficiently computable
for inputs of any length, as discussed in detail in [5].

Definition 2. A family of tissue P systems Π = {Πx : x ∈ Σ�} is said to
be (polynomial-time) uniform if the mapping x 	→ Πx can be computed by two
polynomial-time deterministic Turing machines E and F as follows:

– F (1n) = Πn, where n is the length of the input x and Πn is a common tissue
P system for all inputs of length n, with a distinguished input cell.

– E(x) = wx, where wx is a multiset encoding the specific input x.
– Finally, Πx is simply Πn with wx added to its input cell.

On the other hand, the family Π is said to be (polynomial-time) semi-uniform
if there exists a single deterministic polynomial-time Turing machine H such
that H(x) = Πx for each x ∈ Σ�.
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Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of cells and objects represented by it does not exceed the length
of the whole description, and the rules are listed one by one. This is also called
a permissible encoding [5].

The class of problems solved by uniform (resp., semi-uniform) families
of confluent tissue P systems with cell division is denoted by PMCT DC
(resp., PMC�

T DC); the corresponding classes for tissue P systems with sepa-
ration are PMCT SC and PMC�

T SC . The inclusions PMCT DC ⊆ PMC�
T DC

and PMCT SC ⊆ PMC�
T SC hold by definition, since uniformity is a special case

of semi-uniformity.
Finally, we recall the definitions of the complexity classes #P and P#P [7].

Definition 3. The complexity class #P consists of all the functions f : Σ� →
N, also called counting problems, with the following property: there exists a
polynomial time nondeterministic Turing machine N such that, for each x ∈ Σ�,
the number of accepting computations of N on input x is exactly f(x).

Definition 4. The complexity class P#P consists of all decision problems solv-
able in polynomial time by deterministic Turing machines with oracles for #P
functions. These are Turing machines Mf , with f ∈ #P, having a distinguished
oracle tape and a query state such that, when Mf enters the query state, the
string x on the oracle tape is replaced in one step with the binary encoding
of f(x).

3 Simulating Tissue P Systems

When simulating a tissue P system, we can limit ourselves to explicitly storing
the configuration of the external environment (i.e., its multiset of objects), since
this is where the result objects yes and no ultimately appear. This configura-
tion can be stored in polynomial space by keeping track of the multiplicities of
the objects in binary, with a special marker for those appearing with infinite
multiplicity.

This is possible as long as we have a way to update this configuration even
when not storing the configurations of the cells; this requires computing the mul-
tisets of objects communicated from or to the environment at each computation
step. We are going to prove that such task can be performed in polynomial
time by querying a #P oracle, by adapting the proof of an analogous result for
P systems with elementary active membranes [3].

The query we would ideally ask is “How much does the multiplicity of object a
in the environment of Π change at time step t?”; however, we only know how
to answer this query by simulating an entire computation of the tissue P system
in polynomial space [11]. In order to try to reduce its complexity, we break it
down into multiple queries with additional inputs describing the history of the
computation up to the previous time step, and partially including the simula-
tion of the current step. These extra inputs are computed using the answers to
previous queries.
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First of all, we need a way to distinguish multiple cells having the same
label. Since cell division can create at most 2t cells with the same label after t
computation steps, we assume that each of these has a unique identifier in the
range [0, 2t); we do not require the identifiers to be contiguous, or that a cell
keep the same identifier during each step of the computation.

Since we are only dealing with confluent tissue P systems in this paper, we
can also make assumptions on how the rules to be applied during each step must
be chosen. Without loss of generality, we give a linear priority to the rules, giving
higher priority to communication rules, and applying a division (or separation)
rule in a cell only when no communication occurs. Within the two groups of
rules (communication versus division and separation), we fix an arbitrary total
ordering. In particular, each communication rule is applied as many times as
possible before applying any of those with lower priority.

We can now define a table associating each communication rule [u]h ↔ [v]k
with the set of identifiers of cells with labels h and k applying it at time t. Since
describing arbitrary subsets of identifiers would require exponential space, we
exploit once again the confluence assumption, and stipulate that each rule must
be applied as many times as possible by all copies of h (resp., k) whose identifier
belongs to a range of the form [0,Mh) (resp., [0,Mk)) for some upper bound Mh

(resp., Mk), where zero is an allowable number of applications. This corresponds
to establishing another priority, over cells sharing the same label, given by the
numerical ordering of the identifiers.

Definition 5. A communication table for a tissue P system Π is a func-
tion T : R × N → N

4 such that, for r = [u]h ↔ [v]k and t ∈ N,

T [r, t] = (Mh,Δh,Mk,Δk)

denotes that the cells with label h where rule r is applied at time t are those
having identifiers in the range [0,Mh]; in particular, the rule is applied as many
times as possible for identifiers strictly lower than Mh, and Δh times (a non-
maximal number of times) for identifier Mh. The values Mk and Δk, symmet-
rically, denote the instances of cell k where r is applied.

A procedure for computing a communication table for a tissue P system is
described later, as a portion of Algorithm 1.

Example 1. Consider the configuration in Fig. 1 of a tissue P system Π after two
computation steps, with three instances of cell h (having identifiers 0, 2, and 3)
and two instances of cell k (with identifiers 0 and 2), and consider the following
two communication rules:

r1 = [aa]h ↔ [b]k r2 = [c]h ↔ [d]k

By giving priority to r1 over r2, and to lower identifiers over higher ones, we deter-
mine a unique way to apply the rules: rule r1 is applied three times between h0

and k2, and once between h2 and k2, while rule r2 is applied once between h2

and k0, and once between h3 and k0. Notice that k0 applies r1 zero times, which
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Fig. 1. Configuration of a tissue P system Π after two computation steps. The sub-
scripts of the cell labels represent the identifiers of the corresponding cell.

happens to be maximal in this case (since k0 does not contain any copy of b).
Thus, the smallest ranges of identifiers for h where r1 and r2 are applied max-
imally are [0, 2) and [0, 4), respectively, while those for k are [0, 3) and [0, 1),
respectively. Furthermore, h2 applies r1 one extra time. Thus, according to
the reasoning above, the communication table for Π has T [r1, 2] = (2, 1, 3, 0)
and T [r2, 2] = (4, 0, 1, 0).

Notice that a communication table for the first t steps of Π can be stored in
polynomial space with respect to t and the length of the description of Π.

Let us now focus on the simulation of tissue P systems with division only, and
let us formulate a query that allows us to perform this task without simulating
the individual cells.

Query Q. Given a tissue P system with division Π = (Γ,E,w1, . . . , wd, R),
a time step t in unary notation, a communication rule r = [u]h ↔ [v]k, and
a communication table T for Π, with entries T [ρ, τ ] filled for all τ < t and
for τ = t if ρ has priority over r, how many times is rule r applied at time t
by cells with label h, assuming the availability of enough copies of v in cells with
label k?

An oracle for query Q allows us to simulate tissue P systems with cell division
with a polynomial slowdown.

Lemma 1. PMC�
T DC ⊆ PQ

Proof. Let L ∈ PMC�
T DC be a language, and let Π = {Πx : x ∈ Σ�} be a semi-

uniform family of tissue P systems with division deciding L in polynomial time.
Algorithm 1 describes how each Πx can be constructed and simulated, given the
input string x, by a deterministic Turing machine with an oracle for Q.

In line 1 we obtain the description of Πx by simulating the machine providing
the semi-uniformity construction for Π on input x. This, by definition, can be
carried out in polynomial time with respect to the length of x.
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1 construct Πx = (Γ, E, w1, . . . , wd, R) from x
2 for each time step t do
3 for each rule r = [u]h ↔ [v]k ∈ R in priority order do
4 T [r, t] := (2t, 0, 2t, 0)
5 repeat
6 p := no. of applications of [u]h ↔ [v]k in h at time t according to T
7 q := no. of applications of [u]h ↔ [v]k in k at time t according to T
8 update T [r, t] by binary search
9 until p = q

10 for each rule r = [u]h ↔ [v]0 do
11 p := no. of applications of r in h at time t according to T
12 remove p instances of v and add p instances of u to the environment
13 if yes or no appear in the environment then
14 accept or reject accordingly

Algorithm 1. Simulation of semi-uniform families of tissue P systems with cell
division.

The loop of lines 2–14 is executed for each simulated time step t, hence,
by hypothesis, a polynomial number of times. Inside this loop, the algorithm
iterates across all communication rules r = [u]h ↔ [v]k of Π in priority order
(lines 3–9) in order to fill the corresponding entry T [r, t] of the communication
table.

We begin (line 4) by assuming that all existing copies of h, i.e., the full range
of identifiers [0, 2t), are allowed to apply rule r, as if there were enough copies
of multiset v among the copies of k; we make the same assumption for k. We
then ask the oracle for Q how many times rule r is applied in cells with label h
(line 6) and k (line 7) under those assumptions; call p and q those two numbers
of applications. If p �= q, then the number of copies of u in cells with label h
differs from the number of copies of v in cells with label k; for the simulation to
be consistent with the current configuration of Π, we need to ensure that p = q.
Suppose, for the sake of example, that p < q. Then, we reduce the range of
cells with label k by repeatedly adjusting the corresponding value Mk and re-
evaluating q with further queries. By performing a binary search (line 8), we can
find in polynomial time (log 2t iterations) the smallest range [0,Mk) of identifiers
maximising the value of q, with the constraint q ≤ p. The difference p−q is finally
recorded as Δk, the number of times r must be applied by the cell having label k
and identifier Mk. (The argument is symmetric if the initial values of p and q are
such that p > q.) This querying procedure is performed even if h = 0 or k = 0,
i.e., one of them is the label of the environment.

The loop of lines 10–12 updates the configuration of the environment that
we explicitly store, by asking the oracle the final number of applications of rules
involving the environment, and adjusting the environment multiset accordingly.
Notice that the rules not involving the environment are not simulated, since the
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1 id := 0
2 for each time step τ ∈ {0, . . . , t} do
3 newid := 2 × id
4 newmultiset := ∅

5 for each rule ρ = [u]h ↔ [v]k in priority order do
6 (Mh,Δh,Mk,Δk) := T [ρ, τ ]
7 if id < Mh then
8 remove as many copies of u as possible from multiset
9 add the same number of copies of v to newmultiset

10 else if id = Mh then
11 remove Δh copies of u from multiset
12 add the same number of copies of v to newmultiset
13 if a rule [a]h → [b0]h [b1]h is applicable then
14 nondeterministically guess a bit i
15 newid := newid + i
16 remove a from multiset
17 add bi to newmultiset
18 id := newid
19 multiset := multiset ∪ newmultiset
20 accept as many times as the no. of applications of r in step t

Algorithm 2. Nondeterministic simulation of the cells having label h, with computa-
tion of the number of applications of communication rule r at time t.

configurations of the cells are not stored by Algorithm 1. In lines 13 and 14 the
computation is halted when one of the result objects yes or no finally appears.

Since the number of queries needed, as well as the number of bookkeep-
ing operations, is polynomially bounded, the simulation can be performed
in PQ.

In order to give a more precise upper bound of the complexity of simulating
tissue P systems, we can now analyse query Q in detail, proving that it can be
answered in polynomial time by a counting machine.

Lemma 2. Query Q is in #P

Proof. Given a query Q with parameters Π, t, r, and T , Algorithm 2 describes
a nondeterministic procedure for the parallel simulation of all cells of Π having
label h, where each computation actually simulates a single cell. This algorithm
manages the identifiers of the cells as follows: the identifier of the unique copy
of cell h in the initial configuration is 0 (line 1); if the identifier of a copy of h at
time τ is id , then in the next time step (line 18) the identifier is 2× id (line 3); if,
furthermore, the cell divides, then the new copy, simulated by the computation
where i = 1, has identifier 2×id+1 (line 15). This identifier schema is essentially
identical to the one proposed by Sośık and Cienciala [11], and satisfies the two
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requirements described above: uniqueness among cells with the same label, and
range [0, 2t) after t steps.

The algorithm simulates sequentially all steps up to t (line 2). In line 4
it initialises an empty multiset newmultiset to collect the objects entering the
cell via communication rules, or rewritten via division rules; since the rules are
simulated sequentially, we employ this auxiliary multiset (in addition to the
actual content of the cell, named multiset in the pseudocode) in order to avoid
applying more than one rule to each object.

The loop of lines 5–12 iterates across all communication rules ρ involving h
(on either side of the rule). In line 6 we read the values corresponding to the
ranges of identifiers for cell labels h and k where rule ρ is applied in the current
time step. If the identifier of the cell being simulated belongs to the range [0,Mh),
then we apply rule ρ as many times as possible (lines 7–9). On the other hand,
if the identifier is exactly Mh, we only apply the rule Δh times (line 10–12). The
rule is not applied if the identifier is strictly greater than Mh.

If a division rule is applicable in the cell (this, in particular, requires that
no communication rule was applied previously), then we apply the first one in
priority order (line 13). This consists in nondeterministically choosing which of
the two resulting cells the current computation will continue to simulate (line
14) and updating the identifier and contents of the selected cell (lines 15–17).
Notice that this establishes a bijection between computations of the algorithm
and instances of cell h.

We can then update the values of id and add to multiset the objects that
appeared inside the current copy of cell h during the computation step just
simulated (lines 18 and 19).

After having simulated t steps, we can check the number of times m that
input rule r was applied in the cell during the last step. The algorithm can now
“fork” m accepting computations2 (line 20). This value contributes to the total
number of accepting computations of the algorithm, which will then correspond
to the number of applications of rule r at time t, as required.

By combining Lemmata 1 and 2 we finally obtain our main result.

Theorem 1. PMCT DC ⊆ PMC�
T DC ⊆ P#P

3.1 Tissue P Systems with Separation

Simulating separation rules [a]h → [Γ0]h [Γ1]h instead of (or in addition to)
division rules only requires a slight change to lines 13 and 17 of Algorithm2. After
having nondeterministically chosen which of the two resulting cells to simulate
(bit i), we need to update multiset by removing the objects in Γ1−i. Since this
can also be performed in polynomial time, query Q remains in #P and, as a
consequence, the simulation of tissue P systems with separation has the same
complexity.

Theorem 2. PMCT SC ⊆ PMC�
T SC ⊆ P#P

2 This can be performed in polynomial time even if m is exponential, as it suffices to
guess Θ(log m) nondeterministic bits.
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4 Conclusions

We have proved a P#P upper bound to the class of problems solvable in polyno-
mial time by uniform or semi-uniform families of tissue P systems using division
or separation rules. The simulation of tissue P systems we provided is also rel-
atively robust with respect to the addition of features; for instance, it can be
easily adapted to accommodate charges, evolution and dissolution rules from
P systems with active membranes [3].

This is the same upper bound that holds [3] for P systems with active mem-
branes where division can only be applied to elementary membranes (i.e., not
containing further membranes). These two variants of P systems share the inabil-
ity to create the complex nested structures of dividing membranes (such as expo-
nentially large full binary trees) that allow unrestricted P systems with active
membranes to solve PSPACE-complete problems in polynomial time [1]. It
would be interesting to understand if it is possible to formalise this intuitive
reasoning and link such membrane structure “complexity” with the ability of
P systems to solve problems in polynomial time.

We do not know yet whether the P#P upper bound is tight, or whether it can
be lowered. Based on analogous results for P systems with active membranes [2],
we conjecture that P#P is indeed a precise characterisation of the problems
solvable by general tissue P systems with division or separation; however, tissue
P systems with maximum communication rule length (i.e., number of objects
appearing in a communication rule) bounded by a small constant might prove
to be weaker. It would be particularly interesting to analyse the borderline case
of tissue P systems with division having rules of length at most 2, or those with
separation having rules of length at most 3, which is the minimum necessary to
solve classically intractable problems [8].
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6. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems.
J. Complex. 26(3), 296–315 (2010)



Tissue P Systems Can be Simulated Efficiently with Counting Oracles 261

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading,
Massachussets (1993)
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Abstract. Fuzzy Reasoning Spiking Neural P systems (FRSN P sys-
tems, for short) is a variant of Spiking Neural P systems incorporating
fuzzy logic elements that make it suitable to model fuzzy diagnosis knowl-
edge and reasoning required for fault diagnosis applications. In this sense,
several FRSN P system variants have been proposed, dealing with real
numbers, trapezoidal numbers, weights, etc. The model incorporating
real numbers was the first introduced [13], presenting promising applica-
tions in the field of fault diagnosis of electrical systems. For this variant,
a matrix-based algorithm was provided which, when executed on par-
allel computing platforms, fully exploits the model maximally parallel
capacities. In this paper we introduce a P-Lingua framework extension
to parse and simulate FRSN P systems with real numbers. Two simu-
lators, implementing a variant of the original matrix-based simulation
algorithm, are provided: a sequential one (written in Java), intended to
run on traditional CPUs, and a parallel one, intended to run on CUDA-
enabled devices.

Keywords: Membrane Computing · P systems · Spiking Neural P
systems · Fuzzy Reasoning Spiking Neural P systems · Fault diagnosis ·
Fuzzy knowledge · Fuzzy reasoning · P-Lingua · Java · CUDA

1 Introduction

Membrane computing is a branch of natural computing, which takes inspira-
tion from the structure and functioning of living cells to provide parallel and
distributed computational models, called membrane systems or P systems.

P systems were first introduced in [15], and many variants were subsequently
developed, which can be divided into three categories: cell-like systems, inspired
by the hierarchical membrane structure of eukaryotic cells [15]; tissue-like sys-
tems, inspired by the way in which cells organize and communicate within a
net-like structure in tissues [8]; and neural-like systems, inspired by the way in
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which the neurons in the brain exchange information by means of the propa-
gation of spikes [5]. Models belonging to this last variant are collectively called
Spiking Neural P systems (SN P systems, for short).

An SN P system consists of a set of neurons placed as nodes of a directed
graph (called the synapse graph). Each neuron contains a number of copies of a
single object type, the spike. Rules are assigned to neurons to control the way
information flows between connected neurons. Two kinds of rules are considered:
firing/spiking rules and forgetting rules. By applying a firing/spiking rule, some
spikes are consumed and new spikes are produced. Produced spikes are sent to all
neurons linked to the neuron executing the rule. By applying a forgetting rule,
spikes are removed from neurons. SN P systems usually work in synchronous
mode, where a global clock is assumed. In each time unit, for each neuron,
only one of the applicable rules is non-deterministically selected to be executed.
Execution of rules takes place in parallel amongst all neurons of the system.

SN P systems have become really popular within the Membrane Computing
community and extensive work has been conducted to study their properties and
produce new variants. For instance, it has been proved that these systems are
computational complete (equivalent in power to Turing machines) when consid-
ered as number computing devices [5], used as language generators [2,3], or to
compute functions [14]. Different kinds of asynchronous “working modes” have
been also addressed [12,16,17]. In what concerns to produce new variants of the
model, this has involved incorporating new elements such as weights [19], anti-
spikes [9], extended rules [16], budding and division rules [10] and astrocytes
[1,7,11], among other examples.

In [13] a new SN P systems variant, called FRSN P systems, was intro-
duced, incorporating fuzzy logic elements. The motivation of this variant was
to bring together desirable features (understandable, dynamical, synchronized,
non-linear, non-deterministic, able to handle incomplete and uncertain informa-
tion) to model diagnosis knowledge and reasoning in the field of fault diagnosis.
To accomplish this, new ingredients were added to extend original SN P sys-
tems: three types of neurons (proposition neurons, AND-type and OR-type rule
neurons), fuzzy truth values (modelled by means of real numbers) and a new
firing mechanism. Also, a matrix-based algorithm was provided, suitable to be
executed on parallel computing platforms, and thus able to fully exploit the
model maximally parallel capacities. Applications of this new model have been
related to fault diagnosis on electrical systems so far [13,21]. Variants have also
appeared since the model introduction, for instance dealing with trapezoidal
numbers [22,23] and weights [20], with applications to power systems fault diag-
nosis.

Due to the promising applications of FRSN P systems, it becomes inter-
esting to provide the corresponding simulators, thus favouring research on this
model within Membrane Computing community as well as in applied fields. In
this paper we introduce support for FRSN P systems with real numbers into
P-Lingua [4,28] framework. P-Lingua consist of a general programming lan-
guage for P systems called P-Lingua itself and a Java [26] based open source
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library called pLinguaCore. In particular, P-Lingua language provides a com-
mon syntax for specifying P systems variants, with pLinguaCore provides both
parsers and simulators for such variants. The notable variety of supported mod-
els (see [28] for a list of related publications) contributed to make P-Lingua
widely used among members of the Membrane Computing community, turning
its specification language into a sort of standard.

Developing FRSN P systems support has involved designing a specific parser
(since with respect to P-Lingua, FRSN P systems are considered a “separated”
variant of SN P systems), a simulation algorithm (which is a variation of the one
introduced in [13]) and the corresponding simulators. The provided simulation
algorithm is a matrix-based one. As such is susceptible to being executed on
parallel platforms, specially intended to work in simultaneously with hundreds
to millions of data stored in matrices. In this way, it can take advantage of the
corresponding execution speedup. Indeed, GPUs have been successfully used to
accelerate well-known linear algebra libraries, such as MKL BLAS and LAPACK.
Specifically, NVIDIA GPUs are able to execute scientific applications through
CUDA [6], harnessing the highly parallel architecture within them (featuring up to
3000 computing cores). In this sense, CUDA offers special linear algebra libraries
such as cuBLAS and CULA tools, delivering up to 17× of speedups for some appli-
cations [24]. Therefore, along with a Java sequential simulator, a parallel one has
been developed intended to be able to run on the majority of CUDA-compatible
[24] devices. This last simulator works by means of a JAVA-CUDA binding provided
by the open source JCUDA [27] library, available for Windows, Linux, MacOS and
other operating systems.

This paper is structured as follows. Section 2 is devoted to recall the basic
ingredients of FRSN P systems with real numbers. In Sect. 3, a P-Lingua syntax
for such variant is introduced. Section 4 is devoted to simulation aspects: the new
matrix-based simulation algorithm is introduced, and invoking the sequential
and parallel simulators is discussed. Also, compatibility and performance of the
parallel simulator is addressed. Section 5 covers conclusions and future work.

2 Fuzzy Reasoning Spiking Neural P Systems with Real
Numbers

In what follows, we recall FRSN P systems with real numbers, which consti-
tute an extension of SN P systems. As new ingredients, three types of neurons
(proposition neurons, AND-type and OR-type rule neurons), and elements from
the fuzzy logic such as fuzzy truth values are incorporated, as well as a new firing
mechanism defined after such fuzzy logic elements. FRSN P systems with real
numbers can model and visualize fuzzy production rules in a diagnosis knowl-
edge base due to their graphical nature. Combination of neuron’s new firing
mechanism and fuzzy logic ensures to automatically accomplish dynamic fuzzy
reasoning. FRSN P systems with real numbers can be defined as follows (an
extensive description of this model can be found at [13]):
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Definition 1. A FRSN P system Π with real numbers of degree (l, q, n, k), with
l, k ≥ 1, q ≥ 0 and n ≥ l+q+1, is a tuple of the form (A, σ1, . . . , σn+k, syn, I,O),
where

(1) A={a} is the singleton alphabet (the object a is called spike);
(2) σ1, . . . , σn+k are neurons, of the form σi=(αi, τi, ri), 1 ≤ i ≤ n + k, where

(�) αi ∈ [0, 1] and it is called the (potential) value of spike contained in
neuron σi (also called pulse value);

(�) τi ∈ [0, 1] is the truth value associated with neuron σi;
(�) ri is a firing/spiking rule contained in neuron σi, of the form E/aα → aβ,

where α, β ∈ [0, 1].
(3) syn ⊆ {1, . . . , n + k} × {1, . . . , n + k} with i �= j for all (i, j) ∈ syn, 1 ≤

i, j ≤ n + k (synapses between neurons);
(4) I = {σ1, . . . , σl} is the set of the input neurons that verifies the following:

for each σ ∈ I, indegree(σ) = 0.
(5) O = {σl+q+1, . . . , σn} is the set of the output neurons that verifies the fol-

lowing: for each σ ∈ O, outdegree(σ) = 0.
(6) Neurons σl+1, . . . , σl+q are called internal neurons.

FRSN P systems with real numbers constitute an extension of SN P systems
in the following way (we refer to [13] for more details):

– There are two types of neurons: proposition neurons (associated with propo-
sitions in a fuzzy knowledge base) and rule neurons (associated with fuzzy
production rules with AND/OR-type antecedent part). Specifically, system
Π has n proposition neurons σ1, . . . , σn and k rule neurons σn+1, . . . , σn+k.
Rule neurons are classified into two classes: AND-type rule neuron and OR-
type rule neuron.

proposition neurons

σ1, . . . , σl︸ ︷︷ ︸
input neurons

, σl+1, . . . , σl+q︸ ︷︷ ︸
internal neurons

, σl+q+1, . . . , σn︸ ︷︷ ︸
output neurons

,
rule neurons

σn+1, . . . , σn+k

– Content of neuron σi is denoted by a fuzzy truth value αi ∈ [0, 1] which can be
interpreted as the (potential) value of spike from the view point of biological
neurons. For a neuron σi, if αi > 0, we say the neuron contains a spike with
(potential) value αi; otherwise, the neuron contains no spike.

– Given that each neuron is associated with either a fuzzy proposition or a fuzzy
production rule, the value τi ∈ [0, 1] will be used to express the truth value of
the fuzzy proposition or confidence factor of the fuzzy production rule.

– Each neuron σi contains only one firing/spiking rule ri, which has the form
E/aα → aβ , where E = an and n ∈ IN is the number of input synapses
from other neurons to the neuron. The condition E = an indicates that if σi

receives n spikes the firing/spiking rule can be applied; otherwise the rule is
not enabled. When the number of spikes received by a neuron is less than n,
value of the spikes received will be updated according to logical AND or OR
operations.
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– The firing mechanism of neurons can be described as follows. For neuron σi,
if its firing rule E/aα → aβ can be applied, this means that its pulse value
α > 0 is consumed, the neuron fires, and then it produces a spike with value
β: all neurons σj with (i, j) ∈ syn will immediately receive the spike. Each
kind of neurons use different ways to handle both α and β.

It is worth pointing out that fuzzy production rules of a fuzzy diagnosis
knowledge base can be mapped into a FRSN P system model (again, we refer
the reader to [13] for more details).

3 P–Lingua Syntax for FRSN P Systems with Real
Numbers

In what follows we discuss an extension of the P-Lingua syntax to specify
FRSN P systems with real numbers. Let us stress the fact that, with respect
to P-Lingua, this variant is considered as separate model from SN P systems.

Definition of P system model

In order to define a FRSN P systems with real numbers, the first line of the
P-Lingua file should be as follows:

@model<fuzzy psystems> .

Main module specification

In P-Lingua, instructions are organized into modules, except for global variables
definitions, that are placed outside any module. At least a module is required,
which is called main, at is the entry point to the P-Lingua model specification.
The syntax to define this module is the following:

def main { /* instructions are placed here */ } ,

Specification of the fuzzy variant

In order to specify the kind of FRSNPS, the following sentence must be written
(it has to be the first sentence in the model specification):

@fvariant = v; ,
where v is a positive integer specifying the variant. In the case of FRSN P
systems with real numbers, v must set to 1, hence @fvariant = 1;.

Specification of the sequential/parallel execution (experimental)

If the model is to be simulated on a CUDA parallel platform, the following sentence
must be written below the @fvariant sentence:

@parallel; .
If this sentence is not included, a sequential simulation is performed. This way
of specifying the sequential/parallel execution is experimental, and may change
in future versions of P-Lingua.
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Specification of proposition neurons

In order to specify the proposition neurons present in the system, the following
sentence must be written:

@mu = p1,...,pi,...,pn; ,
where pi is the label of the ith proposition neuron.

Specification of input proposition neurons
In order to specify the input proposition neurons present in the system, the
following sentence must be written:

@min = pi1,...,piq,...,pis; ,
where piq is the label of the qth input proposition neuron, and must correspond
to a proposition neuron defined in the @mu instruction.

Specification of output proposition neurons

In order to specify the output proposition neurons present in the system, the
following sentence must be written:

@mout = po1,...,pow,...,pod; ,
where pow is the label of the wth output proposition neuron, and must corre-
spond to a proposition neuron defined in the @mu instruction.

Specification of rule neurons

In order to specify the rule neurons present in the system, the following sentence
must be written: @frule(...); . This sentence format depends on the kind of
fuzzy production rule being modelled. The following cases are possible:

– Simple rules of the form Ri : IF pj THEN pk (CF = τi) are written as

@frule(Ri,taui,pj,pk); .

– Type-1 composite rules (AND rules) of the form Ri : IF p1 AND p2 AND ...
AND pk−1 THEN pk (CF = τi) are written as

@frule(Ri,taui,@fand(p1,p2,...,pk-1),pk); .

– Type-2 composite rules of the form Ri : IF p1 THEN p2 AND p3 AND ...
AND pk (CF = τi) are written as

@frule(Ri,taui,p1,(p2,p3,...,pk)); .

– Type-3 composite rules (OR rules) of the form Ri : IF p1 OR p2 OR ... OR
pk−1 THEN pk (CF = τi) are written as

@frule(Ri,taui,@for(p1,p2,...,pk-1),pk); .

Next we illustrate the syntax presented above with the specification the FRSN
P systems with real numbers exemplified in [13].
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@model<fuzzy_psystems>

def main()
{
@fvariant = 1;
@parallel;

@mu = p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14;

@fpin = (p1,0.8),(p2,0.2),(p3,0.8),(p4,0.8),(p5,0.9),
(p6,0.8),(p7,0.2),(p8,0.9),(p9,0.1),(p10,0.2);

@fpout = p11,p12,p13,p14;

@frule(r1,0.8,@fand(p1,p2),p11);
@frule(r2,0.8,@fand(p3,p4,p5,p6),p12);
@frule(r3,0.8,@fand(p5,p7,p8,p9),p13);
@frule(r4,0.8,@fand(p4,p5,p10),p14);
}

In this example, a parallel simulation is performed.

4 Simulating FRSN P Systems with Real Numbers

In this Section we present a matrix-based simulation algorithm for simulating
FRSN P systems with real numbers (a modified version from the one shown in
[13]) and we discuss on simulation of such systems into P-Lingua framework.
Two simulators are provided, a sequential one (written in Java), intended to run
on traditional CPUs, and a parallel one, able to be executed on CUDA-enabled
GPUs. This last simulator works by means of a JAVA-CUDA binding provided by
the open source JCUDA library, available for Windows, Linux, MacOS and other
operating systems.

4.1 Simulation Algorithm

In what follows, we introduce a simulation algorithm for FRSN P systems with
real numbers. In general, simulation algorithms capture semantics of the simu-
lated models, reproducing one or many of the associated computations. In the
case of FRSN P systems with real numbers, since these systems are deterministic
(and thus confluent), providing an algorithm reproducing a single computation
is enough. The algorithm that we are presenting is a revised version of the one
introduced in [13], which re-defines the matrix-based functions and operations
as well as provides an alternative way to compute fuzzy truth values for rule
neurons. As it is a matrix-based algorithm, it is specially suitable to run on
parallel platforms such a CUDA systems.



Simulating FRSN P Systems with Real Numbers in P-Lingua 269

Before presenting the simulation algorithm, let us introduce some required
notations, operations and functions, which closely follows from [13].

Let Π = (A, σ1, . . . , σn+k, syn, I,O) be a FRSN P system with real numbers
modelling all fuzzy production rules in a fuzzy knowledge base. Then, we can
consider the following:

1. The set of neurons σ = (σ1, . . . , σn+k), composed of n proposition neurons
and k rule neurons;

2. The set of n proposition neurons σp = (σp1, . . . , σpn);
3. The set of k rule neurons σr = (σr1, . . . , σrk), with each of them being either

an AND-type or OR-type rule neuron;
4. The set I = {σpi1 , . . . , σpis

}, of input proposition neurons, corresponding to
fuzzy proposition neurons which fuzzy truth values are known;

5. The set O = {σro1 , . . . , σrod
}, of output proposition neurons, corresponding

to fuzzy proposition neurons which fuzzy truth values are unknown and to
be determined;

Let us consider the following vector and matrix notations:

1. U = (ui,j)n×k is a binary matrix, where ui,j ∈ {0, 1}, defined as follows:

ui,j =
{

1 if there is a directed arc from σpi to σrj ;
0 otherwise;

2. V = (vi,j)n×k is a binary matrix, where vi,j ∈ {0, 1}, defined as follows:

vi,j =
{

1 if there is a directed arc from σrj to σpi;
0 otherwise;

3. Λ = diag(τr1, . . . , τrk) is a diagonal real matrix, where τrj represents the
confidence factor of the j th production rule, which is associated with rule
neuron σrj ;

4. H1 = diag(h1, . . . , hk) is a diagonal binary matrix, defined as follows:

hj =
{

1 if the jth rule neuron σrj is an AND-type neuron;
0 otherwise;

5. H2 = diag(h1, . . . , hk) is a diagonal binary matrix, defined as follows:

hj =
{

1 if the jth rule neuron σrj is an OR-type neuron;
0 otherwise;

6. αp = (αp1, . . . , αpn)T is a truth value vector, where αpi ∈ [0, 1] represents
the truth value of ith proposition neuron σpi;

7. αr = (αr1, . . . , αrk)T is a truth value vector, where αrj ∈ [0, 1] represents
the truth value of j th rule neuron σrj ;

8. ap = (ap1, . . . , apn)T is an integer vector, where api represents the number
of spikes received by the ith proposition neuron σpi;
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9. ar = (ar1, . . . , ark)T is an integer vector, where arj represents the number
of spikes received by the j th rule neuron σrj ;

10. λp = (λp1, . . . , λpn)T is an integer vector, where λpi represents the number
of spikes required to fire the ith proposition neuron σpi;

11. λr = (λr1, . . . , λrk)T is an integer vector, where λrj represents the number
of spikes required to fire the j th rule neuron σrj ;

12. βp = (βp1, . . . , βpn)T is a truth value vector, where βpi ∈ [0, 1] represents the
truth value exported by the ith proposition neuron σpi after firing;

13. βr = (βr1, . . . , βrk)T is a truth value vector, where βrj ∈ [0, 1] represents the
truth value exported by the j th rule neuron σrj after firing;

14. bp = (bp1, . . . , bpn)T is an integer vector, where bpi ∈ {0, 1} represents the
number of spikes exported by the ith proposition neuron σpi after firing;

15. br = (br1, . . . , brk)T is an integer vector, where brj ∈ {0, 1} represents the
number of spikes exported by the j th rule neuron σrj after firing;

16. op = (op1, . . . , opn)T is a binary vector, where opi ∈ {0, 1}, defined as follows:

opi =
{

1 if outdegree(σpi) > 0;
0 otherwise;

17. or = (or1, . . . , ork)T is a binary vector, where orj ∈ {0, 1}, defined as follows:

orj =
{

1 if outdegree(σrj) > 0;
0 otherwise;

Let us consider the following matrix functions:

1. diag: D = diag(b), where D = (di,j) is a f × f diagonal real matrix and
b = (b1, . . . , bf ) a real vector, such that

di,j =
{

bi if i = j
0 if i �= j

, 1 ≤ i, j ≤ f ;

2. fire: β = fire(α, a, λ, o), where β = (β1, . . . , βf )T , α = (α1, . . . , αf )T , a =
(a1, . . . , af )T , λ = (λ1, . . . , λf )T , o = (o1, . . . , of )T , such that

βi =

⎧
⎨

⎩

0 if ai < λi

αi if ai = λi ∧ oi = 0
0 if ai = λi ∧ oi = 1

, 1 ≤ i ≤ f ;

3. update: β = update(α, a, λ, o), where β = (β1, . . . , βf )T , α = (α1, . . . , αf )T ,
a = (a1, . . . , af )T , λ = (λ1, . . . , λf )T , o = (o1, . . . , of )T , such that

βi =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ai = 0
αi if 0 < ai < λi

0 if ai = λi ∧ oi = 0
αi if ai = λi ∧ oi = 1

, 1 ≤ i ≤ f ;
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Let us consider the following matrix operations:

1. ⊕ : C = A ⊕ B, where A,B,C are f × g matrices whose elements are non-
negative real numbers, such that

ci,j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ai,j = 0 ∧ bi,j = 0
bi if ai,j = 0 ∧ bi,j > 0
ai if ai,j > 0 ∧ bi,j = 0
max{ai,j , bi,j} if ai,j > 0 ∧ bi,j > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ g;

2. 
 : C = A 
 B, where A,B,C are f × g matrices whose elements are non-
negative real numbers, such that

ci,j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ai,j = 0 ∧ bi,j = 0
bi if ai,j = 0 ∧ bi,j > 0
ai if ai,j > 0 ∧ bi,j = 0
min{ai,j , bi,j} if ai,j > 0 ∧ bi,j > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ g;

3. ⊗ : C = A ⊗ B, where A,B,C are f × g, g × h, f × h, matrices respectively,
whose elements are non-negative real numbers, such that

Si,j = {ai,l · bl,j , 1 ≤ l ≤ g} \ {0}, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

ci,j =
{

0 if |Si,j | = 0
max Si,j if |Si,j | > 0 , 1 ≤ i ≤ f, 1 ≤ j ≤ h;

4. � : C = A � B, where A,B,C are f × g, g × h, f × h, matrices respectively,
whose elements are non-negative real numbers, such that

Si,j = {ai,l · bl,j , 1 ≤ l ≤ g} \ {0}, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

ci,j =
{

0 if |Si,j | = 0
minSi,j if |Si,j | > 0 , 1 ≤ i ≤ f, 1 ≤ j ≤ h;

Finally, we introduce the matrix-based simulation algorithm for FRSN P
systems with real numbers.

FRSN P systems with real numbers simulation algorithm

– INPUT:
• U, V, Λ,H1,H2, λp, λr;

• α0
p = (α0

p1, . . . , α
0
pn), with α0

pi =
{

τpi if σpi ∈ I, τpi is the CF of σpi;
0 otherwise;

• a0
p = (a0

p1, . . . , a
0
pn), with a0

pi =
{

1 ifσpi ∈ I;
0 otherwise;

– OUTPUT:
• αpout = (αpi1 , . . . , αpis

)T , the vector containing the fuzzy truth values of
proposition neurons in O.
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Step 1. Let α0
r = (0, . . . , 0)T , a0

r = (0, . . . , 0)T .

Step 2. Let t = 0.

Step 3. Do:
(1) Prepare firing of proposition neurons.

∗ βt
p = fire

(
αt

p, a
t
p, λp, op

)
.

∗ bt
p = fire

(
1, at

p, λp, op

)
.

∗ αt
p = update

(
αt

p, a
t
p, λp, op

)
.

∗ at
p = update

(
at

p, a
t
p, λp, op

)
.

∗ Bt
p = diag

(
bt
p

)
.

(2) Prepare firing of rule neurons.
∗ βt

r = fire
(
αt

r, a
t
r, λr, or

)
.

∗ bt
r = fire

(
1, at

r, λr, or

)
.

∗ αt
r = update

(
αt

r, a
t
r, λr, or

)
.

∗ at
r = update

(
at

r, a
t
r, λr, or

)
.

∗ Bt
r = diag

(
bt
p

)
.

(3) Update truth values and received spikes for proposition neurons.
∗ αt+1

p = αt
p ⊕

(
(V · Bt

r) ⊗ βt
r

)
.

∗ at+1
p = at

p +
(
(V · Bt

r) · bt
r

)
.

(4) Update truth values and received spikes for rule neurons.
∗ αt+1

r = H1 ·
[
αt

r 

(
(Bt

p ·U)T �βt
p

)]
+H2 ·

[
αt

r ⊕
(
(Bt

p ·U)T ⊗βt
p

)]
.

∗ at+1
r = at

r +
(
(Bt

p · U)T · bt
p

)
.

Step 4. Check termination condition. If the following conditions hold:
(a) at+1

r = (0, 0, . . . , 0)T ;

(b) ap = (ap1, . . . , apn)T , with: api =
{

1 if opi = 1
0 otherwise , 1 ≤ i ≤ n;

then HALT, otherwise go to Step 3.

4.2 P-Lingua Simulators for FRSN P Systems with Real Numbers

In [4], a Java library called pLinguaCore was presented, with this package being
released under GPL [25] license. The library provides parsers to handle input
files, built–in simulators to generate P system computations and is able to export
several output file formats that represent P systems. In what follows, we detail
how to invoke the brand new built–in simulators for FRSN P systems with
real numbers. Two simulators are provided, a sequential one (written in Java),
running on traditional CPUs, and a parallel one, able to run on CUDA-enabled
devices. The parallel simulator uses a CUDA kernel in which threads compute
the results of the different matrix-based operations executed in the simulation
algorithm described above. This paper version of pLinguaCore library can be
found at www.p-lingua.org/mecosim/.

http://www.p-lingua.org/mecosim/
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Invoking the Sequential Simulator. Invoking the sequential simulator
requires for the system to host a Java runtime environment properly installed and
configured. The Java runtime can be found at https://java.com/es/download/.
Also, the following directory structure must be created:

plingua/
plinguacore.jar
input.pli

The plingua directory contains all the required files to run the simulation.
Files description follows:

– plinguacore.jar file hosts the pLinguaCore library.
– input.pli file hosts the FRSN P systems with real numbers model to simu-

late.

Once the files are ready, to invoke the simulator a system console must be
opened and the following command has to be executed from the plingua direc-
tory:

java -jar plinguacore.jar plingua_sim -pli input.pli -o output.txt

This will produce an output file named output.txt in plingua directory
where information about the parser process and the generated computation is
stored.

Invoking the Parallel Simulator. Invoking the parallel simulator requires for
the system to host both a Java runtime environment and a CUDA-enabled GPU
device, with the corresponding NVIDIA driver with CUDA support and the CUDA
Toolkit properly installed and configured. The NVIDIA software can be found
at https://developer.nvidia.com/cuda-downloads. In order to interface the Java
pLinguaCore library with the CUDA platform, a JAVA-CUDA binding is required,
which is provided by the JCUDA library. In the present paper, version 0.6.5 of such
library is used, as well as version 0.0.4 of JCudaUtils library, which contains a
series of utility methods used by JCUDA library. Both of them can be found at
http://www.jcuda.org/. Also, the following directory structure must be created:

plingua/
plinguacore.jar
input.pli
kernelReal.cu
jcudaUtils-0.0.4.jar
jcuda-0.6.5/

*** jcuda-0.6.5 library files ***

The plingua directory contains all the required files to run the simulation.
Files description follows:

https://java.com/es/download/
https://developer.nvidia.com/cuda-downloads
http://www.jcuda.org/
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– plinguacore.jar file hosts the pLinguaCore library.
– input.pli file hosts the FRSN P systems with real numbers model to simu-

late.
– kernelReal.cu file hosts the CUDA kernel corresponding to the parallel

implementation.
– jcudaUtils-0.0.4.jar file hosts JCudaUtils library.
– jcuda-0.6.5 folder hosts the contents of the zip file corresponding to the

0.6.5 version of JCUDA library.

Once the files are ready, to invoke the simulator a system console must be
opened and the following command has to be executed from the plingua direc-
tory:

java -Djava.library.path=jcuda/

-cp"pLinguaCore.jar;jcudaUtils-0.0.4.jar;jcuda/jcuda-0.6.5.jar"

org.gcn.plinguacore.applications.AppMain

plingua_sim -pli input.pli -o output.txt

This will produce an output file named output.txt in plingua directory
where information about the parser process and the generated computation is
stored. Note: the -cp parameter uses the symbol “;” as element separator in
Windows platforms. Other platforms use different separators. For example, Unix
platforms use the symbol “:”.

Parallel Simulator CUDA Compatibility and Performance Considera-
tions. When developing the parallel simulator, the main goal was to make
it able to handle arbitrary matrix size instances and to run on the majority
of CUDA-compatible devices. This has involved making conservative choices in
the implementation. A standard block size equal to 256 (16*16) has been cho-
sen and the tiling/memory coalescing optimization technique has been applied,
which requires a relatively low amount of shared memory for blocks (see [6] for
more details). Fixing matrix size instances and minimum requirements for the
CUDA-compatible device would enable implementing more complex optimization
techniques, such as loop unrolling, data prefetching and thread granularity as
well as a fine grained performance analysis. The appropriate combinations of
performance tuning techniques can make tremendous difference in the perfor-
mance achieved by the simulator; however the programming efforts to manually
search through these combinations is quite large [6]. Automation tools to reduce
such efforts such as CUDA-lite [18] and others become indispensable.

5 Conclusions and Future Work

In this paper we introduce P-Lingua framework support for a new P system
variant, specifically FRSN P systems with real numbers, which incorporate fuzzy
logic elements into SN P systems. The motivation of this variant is to produce a
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framework bringing together desirable features (understandable, dynamical, syn-
chronized, non-linear, non-deterministic, able to handle incomplete and uncer-
tain information) to model diagnosis knowledge and reasoning in the field of fault
diagnosis. Applications of this variant are very promising, which are related to
fault diagnosis of electrical systems [13,21]. In consequence, providing the corre-
sponding P-Lingua support favours the research on this model within Membrane
Computing community as well as in applied fields. Developing such support has
involved designing a specific parser (since with respect to P-Lingua, FRSN P
systems are considered a “separated” variant of SN P systems), a simulation
algorithm (which is a variant of the one introduced in [13]) and the correspond-
ing simulators. As the provided simulation algorithm is a matrix-based one,
which can take advantage of parallel computing platforms, along with a Java
sequential simulator, a parallel one has been developed intended to be able to
run on the majority of CUDA-compatible devices.

As open research lines, we can identify addressing others FRSN P systems
variants, dealing with trapezoidal numbers, weights, etc. and considering the
implementation of more complex optimization techniques, possibly assisted by
automation optimization tools.
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Abstract. A new array P system called 8-directional array P system
is defined in this paper. The regulated evolution of this new model is
capable of generating interesting pictures in its accepting mode of evo-
lution. The relationship between the family of regulating languages of
8-directional array P system and the family of λ-free regular, context-
free, context-sensitive languages is investigated. In the case of RE, the
simulation result requires λ-labeled rules.
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ability · Chomsky languages · RE

1 Introduction

A P system is a new computing model abstracting the biological happening in
membranes. Hence the system is also called membrane system. This computing
model now has several variants [1]. Most P systems variants are computationally
universal exhibiting the power of the systems.

Recently, there were several research papers on array P systems. The arrays
considered in [2] are set to evolve in a P system to generate various pictures. In
[3] the authors set a collection of pictures made up of symbols to evolve using
array rules mostly of isotonic type. The key idea was the construction of array
language by means of halting P system. Hence it is clear to look for the nature
of P systems which have well defined halting configurations. In [4] the authors
looked at the regulating string associated with a computation of a P system with
multi set of objects. In [5] the authors looked at the regulating evolution of an
isotonic array P system where the evolution rules were either regular isotonic or
context-free isotonic as defined in [6]. The authors in this paper also introduce
a new type of isotonic rule called restricted monotonic type which is different
from the array rules used in [3]. Some of the interesting P systems which use
arrays as data structures can be seen in [7,8].

In this paper we introduce a new array model called 8-directional array P
system. The interpretation and manipulation of the data structure ‘string’ will
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be like ‘turtle-like’ graphs with possibilities to turn in multiples of 45 degrees.
This array P system naturally can be seen to produce several interesting arrays
of both rectangular and non rectangular type. We are interested in looking at
the evolution of this P system in a regulating manner.

In Sect. 2, we define 8-directional array grammar and 8-directional array P
system (8dAPS). In Sect. 3, we define labeled 8-directional array P system in
accepting mode (L8dAPSa). We illustrate the model with interesting examples
which are capable of generating pictures. In Sect. 4, we present the main results.
Section 5 presents concluding remarks.

2 8-Directional Array P Systems

In this section we give two definitions: an 8-directional array grammar and
another an 8-directional array P system.

Definition 1. An 8-directional array grammar is defined as a quadruple
G = (N, T, P, S), where

1. N is a finite non-empty set of symbols called non-terminals.
2. T is a finite non-empty set of symbols called terminals such that it is disjoint

from N i.e. N ∩ T = ∅.
3. P is a finite non-empty set of θ-rotation rules of the form

A → βθ

or

αθ → βθ, 2 ≤ |α| ≤ |β| ,

where A ∈ N , β ∈ (N ∪T )+, α contains exactly one non-terminal symbol and
all other symbols in α are terminals, θ ∈

{
0, π

4 , π
2 , 3π

4 , π, 5π
4 , 3π

2 , 7π
4

}
. While

applying the former type of rule, A is rewritten by α in the direction of θ such
that the leftmost symbol of α is placed in the position of A. For the later type
of rule, β is rewritten by α in the direction of θ such that the first symbol of
β is placed in the position of the first symbol of α.

4. S ∈ N is the start symbol.

Remark 1. For the rules of the form A → βθ, the symbols following A are to
be shifted by |β − 1| positions in the direction of θ. For the rules αθ → βθ the
symbols following α are to be shifted by |β| − |α| positions in the direction of θ.

Example 1. If A → (aAB)
π
4 means while applying the rule to any array of the

form αAβ, the resultant array will be

B
A

α a β
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In the above array, apply the rule (aA)
π
4 → (bcdE)

π
4 , the resultant array will be

B
E

d
c

α b β

Definition 2. An 8-directional Array P System (8dAPS) of degree m(≥ 1) is a
construct Π = (V, T, μ, I1, . . . , Im, (R1, ρ1), . . . , (Rm, ρm), io), where V is the
total alphabet, T ⊆ V is the terminal alphabet, μ is a membrane structure with m
membranes labeled in a one-to-one manner with 1, 2, . . . ,m; I1, . . . , Im are finite
sets of arrays over V associated with the m regions of μ; R1, . . . , Rm are finite
sets of θ-rotation rules over V associated with the m regions of μ; ρ1, . . . , ρm

are partial order relations over R1, . . . , Rm. The rules in Ri are of the form
A → αθ (tar), or αθ → βθ (tar), 2 ≤ |α| ≤ |β|, where tar indicates the target
location of the output array obtained by applying such rules. The tar can be here,
out or in. Here A ∈ (V \T ), α contains exactly one non-terminal symbol and all
other symbols in α are terminals, β ∈ V + and θ ∈

{
0, π

4 , π
2 , 3π

4 , π, 5π
4 , 3π

2 , 7π
4

}
.

There can be more than one rule with A or α on its left hand side. The array
produced by using this rule will go to the membrane indicated by tar; finally, io
is the output membrane.

We start from an initial configuration of the system and proceed iteratively,
by transition steps performed by using the θ-rotation rules in parallel, to all
arrays that can be rewritten, obeying the priority relations, and collecting the
terminal arrays generated in a designated membrane, the output one.

Note that each array is processed by one rule only, the parallelism refers
here to processing simultaneously all available arrays by all applicable θ-rotation
rules. If several rules can be applied to an array, may be in several places each,
then we take only one rule and only one possible location to apply it and consider
the obtained array as the next form of the object described by the array. It
is important to have in mind the fact that the evolution of the arrays is not
independent of each other, but interrelated in two ways: (1) if we have priorities,
a rule r1 applicable to an array A can forbid the use of another rule, r2, for
rewriting another array, B, which is present at that time in the same membrane;
after applying the rule r1, if r1 is not applicable to B or to the array A′

obtained
from A by using r1, then it is possible that the rule r2 can now be applied
to B; (2) even without priorities, if an array A can be rewritten for ever, in
the same membrane or on an itinerary through several membranes, and this
cannot be avoided, then all arrays are lost, because the computation never stops,
irrespective of the arrays collected in the output membrane and which cannot
evolve further.

A computation is successful only if it stops, a configuration is reached where
no rule can be applied to the existing arrays. The result of a halting computation
consists of the arrays composed only of symbols from T (terminal symbols)
placed in the membrane with label io in the halting configuration.
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3 Labeled 8dAPS in Accepting Mode and Pictures

In this section we introduce labeled 8dAPS in accepting mode. We illustrate the
model with a few interesting examples which halt always on pictures.

Definition 3. A Labeled 8-directional Array P System in accepting mode
(L8dAPSa) Π of degree m(≥ 1) is a construct Π = (V, T, μ, I1, . . . , Im, (R1, ρ1),
. . . , (Rm, ρm), io, lab, F ), where V, T, μ, I1, . . . , Im, R1, . . . , Rm, ρ1, . . . , ρm, io are
same as in definition 2, lab is a finite set of alphabet, which are used for labeling
the rules and F is the set of final configurations. Let R =

⋃m
i=1 Ri. Here we

assign a label to every rule in R where the labels are chosen from a finite alpha-
bet lab or the labels can be λ (empty label). Define a function f : R → lab ∪ {λ}
called a labeling function that assign a label to each rule in R. Noting that more
than one rule may have the same label, but the same rule in different membranes
cannot be assigned different labels. We extend the labeling for a label sequence
S = l1 l2 . . . lk ∈ R∗ as follows: f(λ) = λ and f(l1 l2 . . . lk) = f(l1)f(l2 . . . lk).
A transition C

b⇒ C
′
between two successive configurations uses only rules with

the same label b and rules labeled with λ. If at least one rule has a label b ∈ lab
then the transition is called λ-restricted transition. If we allow all rules with λ
label then the transition is called λ-unrestricted transition (or λ-transition).

A regulating string of input symbols (over lab) is said to be accepted if all
its symbols are consumed and Π reaches a configuration in the set F . The set
of all regulating strings accepted in this way by computations in a L8dAPSa

Π is denoted by La
λ8dAP (Π). The subscript indicates the fact that λ-steps (all

rules applied in one step can have λ label) are permitted. When only steps
where at least one rule with a non-empty label is used, the accepting language is
denoted by La8dAP (Π). The family of languages La8dAP (Π) associated with
L8dAPSa with at most m membranes, working in accepting mode is denoted by
La8dAPm. In the unrestricted case, the corresponding language family is denoted
by La

λ8dAPm. If the number of membranes is unbounded, then the subscript m
is replaced with 	.

We now give some interesting examples. In Examples 2 and 4 the regulating
languages are regular, Example 3 has context-sensitive regulating language. From
these examples one can see that the halting configuration set can contain both
rectangular and non rectangular arrays.

Example 2. In this example the L8dAPSa Π1, while accepting the regular regu-
lating language, it halts on pictures of stars in its final configuration set F . The
L8dAPSa Π1 with three membranes is given as,
Π1 =

({
A,B,C,D, x

}
,

{
x
}

, [1[2]2[3]3]1, I1, I2, I3, R1, R2, R3, 3,
{

a
}

, F
)
,

where I2 =
{

A
}

, I1 = I3 = φ and R1 =

{
(1) a : B → (Cx)0 , in2, (2) a : D →
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(Ax)π , in2 , (3) a : D → (xx)π , in3

}
,

R2 =

{
(4) a : A → (Bx)

π
2 , out , (5) a : C → (Dx)

3π
2 , out

}
, R3 = φ.

The set of final configurations is F =

{(
φ, φ,

x
x x x

x

)
,

(
φ, φ,

x
x

x x x x x
x
x

)
, . . .

}
.

The working of La8dAPSa Π1 with three membranes is as follows:
We start the configuration with axiom A in region 2, by applying the rule

4 which is the only possible choice. The resulting array is sent to region 1 and
rule 1 is applied sending the array back to region 2. Then rule 5 is applied in

region 2 and the array
x
D x
x

. Now we have two choices, either rule 2 or rule

3 is applicable. Application of rule 2 will result in the array
x

x A x
x

and the

entire process is repeated. Application rule 3 will terminate the configuration
resulting in arrays in F . The above process will lead to the regulating language
La8dAP (Π1) =

{
a4n : n ≥ 1

}
.

Example 3. Consider the L8dAPSa Π2 with two membranes, while accepting
the context-sensitive regulating language, it halts on an array in the set of picture
configurations F given below. L8dAPSa Π2 is given as,
Π2 =

({
A, 0

}
,

{
0
}

, [1[2]2]1, I1, I2, R1, R2, 2,
{

a, b, c
}

, F
)
, where I1 =

{
A

}
,

I2 = φ and R1 =

{
(1) a : A → (0A)

π
4 , ((2) b : A → (0A)

7π
4 , (3) c : A →

(0A)π , in2

}

R2 =

{
(4) c : (0A0)0 → (000)0 > (5) c : A → (0A)π

}
.

The set of final configurations is

F =

{(
φ ,

0
0 0

0 0 0 0 0

)
,

(
φ ,

0
0 0

0 0
0 0 0 0 0 0 0

)
, . . .

}
.

The working of L8dAPSa Π2 with two membranes is as follows: For any
n ≥ 2, application of rule 1, n times and rule 2, n times followed by rule 3 once
will expel the array to region 2. In region 2, apply (2n − 2) times rule 5. Finally
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apply rule 4 one time, the system halts on an array in F . The corresponding
regulating language accepted by Π2 is La8dAP (Π2) =

{
anbnc2n : n ≥ 2

}
.

Example 4. Consider the L8dAPSa Π4 with two membranes, it accepts the reg-
ular regulating language and halts on an array in the given set of picture of a
ladder in its final configuration F given below. L8dAPSa Π4 is given as,
Π4 =

({
A, B, C, 	

}
,

{
	

}
, [1[2]2]1, I1, I2, R1, R2, 2,

{
a, b, c

}
, F

)
, where

I1 =
{

A
}

, I2 = φ and

R1 =

{
(1) a : A → (B 	 C)0 , (2) b : B → (	 	 	A)

3π
2 , (3) c : C →

(	 	 	)
3π
2 , in2

}

R2 =

{
(4) a : A → (	 	 	)0 , (5) a : A → (B 	 C)0 , out

}
.

The set of final configurations is

F =

{(
φ ,

	 	 	
	 	
	 	
	 	 	

)
,

(
φ ,

	 	 	
	 	
	 	
	 	 	
	 	
	 	
	 	 	

)
, . . .

}

The working of L8dAPSa Π4 with two membranes is as follows: Starting with
the axiom A in region 1, apply the rules 1, 2 and 3 in order to expel the array
to region 2. In region 2, apply the rule 5 to send back the array to region 1.
For halting apply rule 4 instead of rule 5. Repeating the above process will
lead to an array in F . The corresponding regulating language accepted by Π4 is
La8dAP (Π4) =

{
(abc)na : n ≥ 1

}
.

4 Main Results

In this section, we investigate the relationship between the family of regulating
languages of 8-directional array P systems in acceptance mode (λ-restricted) and
the family of λ-free regular, context-free, context-sensitive languages. The simu-
lation of recursively enumerable languages is done via λ-unrestricted L8dAPSa.

Notation: For any family P of languages, P\{λ} means the family of λ-free
languages.

Theorem 1. (REG\{λ}) ⊆ La8dAP1.

Proof. Let L ∈ (REG\{λ}) and let D = (Q, Σ, δ, p0, FD) be a deterministic
finite automaton accepting L. Let n be the number of states in D. Rename the
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states as qi, 1 ≤ i ≤ n, such that q1 = p0 and the transition rules are changed
accordingly. Let D

′
= (Q

′
, Σ, δ

′
, q1, F

′
D) be the modified DFA. Using D

′
we

construct a L8dAPSa Π5 with one membrane accepting L(D
′
) as follows:

Π5 =
(
Q

′ ∪ {x}, {x}, [1]1, I1, R1, 1,Σ, F
)
, where

R1 =
{

a : qi → (qj)0 : (qi, a, qj) ∈ δ′
}

∪
{

a : qi → (x)0 : (qi, a, qf ) ∈
δ′ , qf ∈ F

′
D

}
and I1 = {x q1 }. The final configuration F =

{(
x x

)}

The L8dAPSa Π5 constructed above works as follows: The L8dAPSa starts
with an array x q1 where q1 corresponds to the start symbol of the DFA in
the membrane. When the system uses the rule a : qi → qj , it simulates the
application of the rule (qi, a, qj) ∈ δ′ by the DFA, i.e. if the current symbol
is a and the system contains the object qi, then the current input symbol a is
consumed, and the object qi, gets replaced by the object qj (note that, at any
instance, the L8dAPSa contains only a single element from Q

′
in the array).

The system accepts the input string when the input is completely read and the
corresponding configuration in F is reached. The membrane contains the array(

x x
)

which is from F . ��

Remark 2. One can show that the context-free language L =
{

anbn : n ≥ 1
}

can be accepted by an 8dAPS. The following 8dAPS Π can accept L.
Π =

({
A,B, 0, 	

}
,
{

0, 	
}

, [1[2]2]1, I1, I2, R1, R2, 2,
{

a, b
}

, F
)
, where I1 =

{
A

}
, I2 = φ and R1 =

{
(1) a : A → (0A)0 , (2) a : A → (B)0 , in2

}
,

R2 =

{
(3) b : (0B)0 → (B	)0 > (4) b : B → (	)0

}
.

The set of final configurations is F =
{(

φ, 	n
)

: n ≥ 1
}

.

Hence we can deduce the following:

Proposition 1. La8dAP� − REG = ∅.

Remark 3. We conclude from Proposition 1 and Theorem 1 that (REG\{λ}) ⊂
La8dAP�. We proceed further to see whether (CF\{λ}) ⊆ La8dAP� which we
prove in the following theorem.

Theorem 2. (CF\{λ}) ⊆ La8dAP1.

Proof. Let L be a context-free language. Then let G = (N,T, P, S) be a context-
free grammar in Greibach normal form generating L. Let n be the number of
non-terminals in N . Now rename the non-terminals in N as Ai, 1 ≤ i ≤ n,
such that A1 = S and also modify the rules with this renamed non-terminals.
Let G1 = (N

′
, T, P

′
, A1) be the grammar thus modified. Now, we construct a

L8dAPSa Π7 with one membrane for G1 is as follows:
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Π7 =
(
N

′ ∪ {	}, {	}, [1]1, I1, R1, 1, T, F
)
, where I1 = {A1} and

R1 =

{
a : Ai → 	y : Ai → ay ∈ P ′

}
∪

{
a : Ai → 	 : Ai → a ∈ P ′

}

The final configuration F =
{

(	 	 · · · 	 	) : number of 	′s = |w| , w ∈
La8dAP (Π7)

}
.

Initially, the L8dAPSa Π7 starts with an axiom A1, the start symbol of G1.
Now, we can apply either a rule a : A1 → 	y corresponds to A1 → ay or the
rule a : A1 → 	 corresponds to A1 → a. If we apply the latter rule, then the
system halts on the final configuration {(	)}, the corresponding regulated string
accepted by Π7 is a. Suppose, we choose the former rule, A1 is replaced with
	y, y is a string of non-terminals. We adopt the same procedure to the leftmost
non-terminal in the array. Once we choose the rule a : Ai → 	, then the leftmost
non-terminal in the array is replaced by 	. Now, the leftmost symbol in the
array is not a non-terminal, so we prefer the non-terminal next to 	. Again
for this non-terminal we have two possibilities, either we can apply the rule
a : Ai → 	y or the rule a : Ai → 	 . If we proceed in this way, and finally apply
the only possible rule Ai → 	 to rewrite remaining non-terminals in the array
as 	’s, the system halts on the final configuration

{
(	 	 · · · 	 	) : number of

	′s = |w| , w ∈ La8dAP (Π7)
}

. Note that what ever w may be, such that |w| = n,

the halting array is of the form
n︷ ︸︸ ︷

	 	 · · · 	 	. The regulated string is obtained by
consuming a label of the rule in each step. ��
Remark 4. The context-sensitive language {anbncn : n ≥ 1} can be accepted by
an 8dAPS which gives the following proposition.

Proposition 2. La8dAP� − CF = ∅.

Next in the hierarchy we look for CSL.

Theorem 3. CS − La8dAP� = ∅.

Proof. For the proof of this theorem we give a context-sensitive language which
can not be in any La8dAP�. L = {a2n : n ≥ 0} is a context-sensitive language.
Since L is over one letter alphabet and we intend to use no λ-rule, all the rules
in the L8dAPSa must be an a-rule. Let (α)θ → βθ

k be a θ-rotation rule such that
α contains exactly one non-terminal (with zero or more number of terminals)
and βk contains exactly k non-terminals (with zero or more number of termi-
nals). Suppose we assume that there exits a L8dAPSa Π8 with m membranes
that accepts L and halts on a configuration in F , where F is the set of final
configurations. The nonexistence of such a system is shown for m = 1 first. The
argument for m membrane P system will be identical to this. The reason is that
in both situations we need infinite number of rules in the membrane system
to build L. Let A1,A2, . . . ,An be the arrays in the initial configuration of Π8.
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We recall that the successful halting computation means the system must halt
as well as the arrays remaining in the output membrane are terminal arrays
(composed of only terminals).

In the following steps we actually look for rules in the membrane to build L
recursively.

1. In order to accept a regulating string a, whose length is one, the system must
go up to one step (transition). Therefore, each array A1,A2, . . . ,An in Π8

must contain at most one non-terminal (no restriction on terminals). To reach
the successful halting computation, we must apply one or more rules of type
a : αθ → βθ

0 . Note that we have introduced at least one new rule to accept
the regulated string a.

2. By (1) above we know that each array A1,A2, . . . ,An contains at most one
non-terminal. To accept regulating string a2, the system must go up to two
steps (transitions). In order to do this, at least to one of the array, we need
to apply the rule of type a : αθ → βθ

1 , which is a new rule. This rule may be
recursive (repeat any number of times) or non-recursive (apply one time). If
the rule is recursive, then it also accepts the strings a3, a5, a6,. . . /∈ L. Suppose,
it is non-recursive, we can apply it once, followed by an existing rule of type
αθ → βθ

0 to halt the computation. Hence, to accept a2, we have introduced a
new rule of type αθ → βθ

1 .
3. Similarly, in order to accept a4, the system must go up to 4 steps. At least

for one of the arrays we need to apply the rules in a way that there is no
recursion. In all the possible cases, if any of the rule is recursive, it leads to
the generation of a regulating string not in L. Therefore, the only possibility
is non-recursive rules. In all the cases, we can see at least one new rule is
required to accept a4.

So, to accept each string in L = {a2n : n ≥ 0}, we need to introduce at least
one a-rule in each step. Since L is infinite, the number of a-rules required to
accept L is also infinite.

Now we give the argumentative proof similar to the above to show that there
does not exist any L8dAPSa to accept L. Suppose we assume that there is one
such L8dAPSa Π8 with m membranes. If at least in any one of the m membrane
contain a recursive a-rule then, it leads to an infinite loop or the system accepts
a string not in L. On the other hand, if the system contains only non recursive
a-rules then, the number of a-rules must be infinite, which is a contradiction.
Hence the theorem. ��
Theorem 4. La8dAP� ⊂ CS.

Proof. We show how L8dAPSa will be recognized by a linear bounded automa-
ton. In order to do this, we simulate a computation of a L8dAPSa by remem-
bering the number of symbols in the arrays and their corresponding shapes after
the acceptance of each symbol in the regulating string. We then show that the
total number of symbols in the arrays is bounded by the length of the regulating
string.
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Consider a regulating language L of a L8dAPSa Π9 with m membranes and
let p be the total number of rules in these m membranes. Let w = b1b2 . . . bl,
l ≥ 1 be a regulating string in L. Let A1,A2, . . . ,An be the arrays in the m
membranes of Π9 in the initial configuration . We build a multi-track non-
deterministic LBA B which simulates Π9. In order for B to simulate Π9, it
has to keep track the symbols in the arrays and their shapes after accepting
each symbol in the regulating string. So B has a track assigned to every rule of
Π9, a track for each pixel-symbol triple (X, (x, y), i) ∈ V ×Z

2×{1, 2, . . . , n} and
a track for each triple (X,Ai, j) ∈ V × {A1,A2, . . . ,An} × {0, 1, 2, . . . }.

The array Ai plotted in the plane Z = i is as follows: one of the symbols
of the array Ai is plotted at ((0, 0), i), the origin of the plane Z = i. Fix this
symbol, and place the other symbols of the array as follows: a symbol left to it
is plotted at ((−1, 0), i); a symbol right to it is plotted at ((1, 0), i); a symbol
above to it is plotted at ((0, 1), i); a symbol below to it is plotted at ((0,−1), i);
a symbol 45 degree angle to it, is plotted at ((1, 1), i); a symbol 135 degree
angle to it, is plotted at ((−1, 1), i); a symbol 225 degree angle to it, is plotted
at ((−1,−1), i); a symbol 315 degree angle to it, is plotted at ((1,−1), i). In
general, if the fixed symbol is in the position ((x, y), i), then a symbol left to it,
is plotted at ((x − 1, y), i); a symbol right to it, is plotted at ((x + 1, y), i); a
symbol above to it, is plotted at ((x, y + 1), i); a symbol below to it, is plotted
at ((x, y − 1), i); a symbol 45 degree angle to it, is plotted at ((x + 1, y + 1), i);
a symbol 135 degree angle to it, is plotted at ((x − 1, y + 1), i); a symbol 225
degree angle to it, is plotted at ((x−1, y−1), i); a symbol 315 degree angle to it,
is plotted at ((x + 1, y − 1), i). If any symbol of the array remains, then change
the fixed symbol and repeat the same procedure till all the symbols in the array
are plotted.

B keeps track of the configuration of Π9 by writing a positive integer 1 on
each track assigned to the symbol-pixel triple (X, (x, y), i), the symbol X being
plotted in the pixel (x, y) of the plane Z = i. And also writing a positive integer
on each track assigned to the symbol-configuration triple (X,Ai, j), denoting
the number of symbols X in the array Ai at the configuration j. Then for each
triple (X, (x, y), i), B examines the chosen rule set and plots the symbols X in
the pixel (x, y) of the plane Z = i by the procedure mentioned above, increasing
the number on the track (X,Ai, j) accordingly. We can see that in any step of
the computation, the tracks contain integers bounded by the number of symbols
inside Π9 during the corresponding computation step. The shape of the arrays
also preserved.

The number of symbols in the arrays in a configuration C during a com-
putation step is bounded by S(i), where i is the number of symbols generated.
Then the space used by B to record the configurations and to calculate the
configuration change of Π9 is bounded by t × logb(S(i)), where b denotes the
base of the track alphabet and t denotes the number of tracks used. Finally,
B checks whether any more rules can be applied. If not, and also if it reaches
the configuration in F (set of final configurations), it accepts the regulating
string w, otherwise it rejects. So the number of symbols in the arrays present in
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the system is bounded by the input length and hence the accepted language is
context-sensitive language. ��
Theorem 5. La

λ8dAP� = RE.

Proof. The inclusion La
λ8dAP� ⊆ RE follows from Church-Turing hypothesis.

For the proof of the inclusion RE ⊆ La
λ8dAP�, it is enough to prove that

RE ⊆ La
λ8dAP1, since La

λ8dAP1 ⊆ La
λ8dAP�.

Let H = {a1, a2, . . . , ak} and let L ⊆ H∗ be a recursively enumerable lan-
guage. Let e : H �→ {11, 12, 13, . . . , 1k} such that e(ai) = 1i, 1 ≤ i ≤ k.
The encoding for a string w = aiaj . . . al, ai, aj , . . . , al ∈ H is as follows:
e(w) = 0e(ai)0e(aj)0 . . . 0e(al)0 .

For any L, there exists a Turing machine M = (K, {0, 1},Γ, δ, q0, F
′
) which

halts after processing the input i0 placed in its input tape if and only if i0 = e(w)
for some w ∈ L. So it is sufficient to show how to simulate the encoding e(w), and
simulate the transitions of the Turing machine with a L8dAPSa. The transitions
of the Turing machine are simulated by a L8dAPSa is as follows:

• The transition δ(q, a) = (p, b, R) is simulated by the θ-rotation rule (q a c)0 →
(b p c)0 , where c is some non-blank symbol.

• The transition δ(q, a) = (p, b, L) is simulated by the θ-rotation rule (c q a)0 →
(p c b)0 , where c is some non-blank symbol.

We construct a L8dAPSa Π
′

=
(
V, T, [1]1, I1, R1, 1,H, F

)
, where V = {q0,

q1, . . . , qk, 0, 1, x}, T =
{

0, 1, x
}

, I1 =
{

q0 0 e(ai) 0 e(aj) 0 . . . 0 e(al) 0 0
}

,

R1 =
{

ai : (q0 0 1)0 → (0 qi 1)0 : ai ∈ H, 1 ≤ i ≤ k
{

∪ set of all θ-rotation
rules corresponding to the transitions of the Turing machine M which are labeled
with λ. The set of final configurations is F =

{(
e(w)x

)
: w ∈ L

}
.

The L8dAPSa Π
′
performs the following operations.

1. For 1 ≤ i ≤ k, and the symbol ai ∈ H, the rule (q0 0 1)0 → (0 qi 1)0 ,
labeled with ai is used which introduce the symbol qi, it is the symbol used
in the first transition for generating the encoding in Step 2.

2. Perform the computation e(au) = 0e(a)e(u), u ∈ H+, a ∈ H. Assume that
the encoding of w is represented by encoding of each symbol of u padded
by 0 on both ends. The simulation of au is performed by the following sub-
program.
δ(qi, 1) = (qi−1, 1, R) , i = i, i − 1, i − 2, . . . , 3, 2.
δ(q1, 1) = (q0, 1, R)
The transitions of the sub-program can be simulated by the θ-rotation rules
as shown in the beginning of the proof, and these rules are assigned with
label λ.

3. Repeat the Steps 1 and 2 non-deterministically until the last symbol of the
regulated string w gets over.
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4. The output array remains in the system is
{(

e(w)x
)

: w ∈ L
}

, which is
the final configuration. The array reduced in the system is equal to e(w)x for
some w ∈ H+. We now start to simulate the working of the Turing machine
M in recognizing the string e(w). If the Turing machine halts, by introducing
the following transitions:
δ(q0, 0) = (0, x,R)
and the corresponding θ-rotation rule is labeled with λ then w ∈ L, otherwise
the machine goes into an infinite loop.

So, we can see that the computation halts after accepting a string w if and only
if w ∈ L. ��

5 Concluding Remarks

In this paper we introduced a new array P system called 8-directional array
P system (8dAPS) and regulating 8dAPS. The data structure ‘string’ is inter-
preted as ‘turtle-like’ graphs with a possibilities to turn in multiples of 45 degrees.
This P system-based fractal description model can be used to construct several
interesting pictures. The regulating evolution of this model makes the system
more interesting. The regulating languages are from Chomsky hierarchy. We
also understand the halting nature of this P system by means of ‘dependability’.
By dependability we mean to study the halting nature or halting configurations
of P system via string over the labels of the rules. We know that in our model
every rule is labeled and strings over the label set lead the application of the
rules. Such strings decide the strategy of movements in the parallel distributed
computing model, P system. Hence the study becomes significant. The main
difference between grammar rewriting system of describing some space filling
curves like ‘Koch curve’ and our recursive 8-directional array P system is that,
we do not re-scale the template. If we are able to record some where in the
system the shrinking effect, then our 8dAPS can generate almost all curves like
‘Koch curve’, Peano curve etc. One can also extend the study to understand
more about space filling curves which have important role in antenna designing.
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1. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

2. Rama, R., Krishna, S.N., Krithivasan, K.: P Systems with picture Objects. Acta
Cybern. 55(1), 53–74 (2001)
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Abstract. This paper introduces and makes use of spiking neural
P systems with anti-spikes and rules on synapses to sort integers. Here we
discuss two types of sorting, bead sort and bitonic sort to sort integers.

1 Introduction

Spiking neural P systems (in short, SN P systems) introduced in [10] are parallel
and distributed computing models which abstract the way neurons communicate
by means of electrical impulses of identical shape, called spikes. There exist many
variants of spiking neural P systems. However, in some cases, the difference in
these variants are not with the actual structural features but with execution
semantics like maximal, sequential, asynchronous, exhaustive etc. Some of them
have special concepts like extended rules [1], astrocytes [7], anti-spikes [13], neu-
ron division and budding [14], rules on the synapses [17] etc. We refer to the
respective chapter of [15] for general information in this area, and to the mem-
brane computing website from [18] for details.

Here we introduce the hybrid model of SN P systems combining the fea-
tures of anti-spikes with rules on the synapses and name them as spiking neural
P systems with anti-spikes and rules on synapses (in short, SN PA systems with
rules on synapses). So these systems make use of two types of objects called
spikes (a) and anti-spikes (a). The use of anti-spikes not only simplify the com-
plexity of the rules but also allow to include negative numbers in computing.

In standard SN P systems the rules reside inside neurons and upon firing
the spikes emitted by the neurons are sent to all neighbouring neurons through
their outgoing synapses. Instead of rules inside neurons, here we have rules on
the synapses. At any step, when the number of spikes/anti-spikes present in a
given neuron is satisfied by a rule on a synapse leaving from that neuron, the
rule is enabled and upon firing a spike/an anti-spike is sent to the neuron at the
end of the synapse. As expected, the SN PA systems with rules on synapses are
able to compute all Turing computable sets of numbers.

Sorting is one of the most frequent operations in many applications, and
parallel algorithms for sorting have been studied since the beginning of paral-
lel computing. P systems are used to simulate various sorting algorithms [2,3].
c© Springer International Publishing Switzerland 2015
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Batcher’s bitonic sorting network [6] was one of the first methods proposed. The
method is simulated to sort non-negative integers using P systems [3] and SN P
systems [8]. In this paper we simulate the bitonic sorting network using SN PA
systems with rules on synapses to sort integers.

Another natural parallel sorting algorithm for sorting non-negative integers
is bead sort [5]. This algorithm was also simulated using P systems in [4]. Ionescu
and Sburlan in [11] used SN P system to sort n non-negative integers, and the
model consisted of 3 layers of n neurons each. The first layer was made up of input
neurons which in the initial configuration contained the input values codified as
numbers of spikes. At each time unit these neurons sent one spike each to the
second layer. This layer decanted the spikes to the third layer, where the output
neurons were located. After a number of steps equal to the maximum value of
the n numbers, the ith output neuron received the ith smallest value, codified
as number of spikes, sorting thus in ascending order. In a way, the idea of the
algorithm is the same as that of bead sort. The model makes use of 3n neurons,
(3n2 + n)/2 synapses and n2 + n rules. The time complexity of the algorithm
is O(M) where M is the maximum of the n numbers. In this paper we use SN
PA systems with rules on synapses to simulate the algorithm and observe that
this model makes use of 2n + 2 neurons, 4n synapses and n2 + 3n rules to sort
n integers, which is comparatively less complex than the system in [11].

2 Prerequisites

We assume the reader to be familiar with formal language theory and membrane
computing. The reader can find details about them in [15,16] etc.

For an alphabet V , V ∗ is the free monoid generated by V with respect to
the concatenation operation and the identity λ (the empty string); the set of all
non-empty strings over V , that is, V ∗ − {λ}, is denoted by V +. When V = {a}
is a singleton, then we write a∗ and a+ instead of {a}∗ and {a}+.

A regular expression over an alphabet V is defined as: (i) λ and each a ∈ V is
a regular expression, (ii) if E1, E2 are regular expressions over V , then (E1)(E2),
(E1) ∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing else is
a regular expression over V . With each expression E we associate a language
L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a}, for all
a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2), and
L((E1)+) = L(E1)+, for all regular expressions E1, E2 over V .

We now introduce spiking neural P systems with anti-spikes and rules on
synapses.

2.1 Spiking Neural P Systems with Anti-spikes and Rules
on Synapses

A spiking neural P system with anti-spikes and rules on synapses, of degree
m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3,. . ., σm, syn, IN , OUT ), where
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1. O = {a, a} is a binary alphabet; a is called spike and a is called an anti-spike.
2. σ1, σ2, σ3,. . ., σm are neurons of the form σi = (ni) with 1 ≤ i ≤ m where

ni is the number of spikes or anti-spikes contained in the neuron σi and if
ni > 0 then the neuron is having ni spikes and if ni < 0 then the neuron is
having | ni | anti-spikes;

3. syn is the set of synapses; each element in syn is a pair of the form ((i, j),
R(i, j)), where (i, j) indicates that there is a synapse connecting neurons σi

and σj , with i, j ∈ {1, 2, . . . ,m}, i �= j, and R(i, j) is a finite set of rules of
the following two forms:
(i) E/br → b′ where b, b′ ∈ {a, a}, r ≥ 1 and E is a regular expression over b;
(ii) bs → λ for some s ≥ 1, with the restriction that bs /∈ L(E) for any rule
E/br → b′ of type (i) from R(i, j);
There are four categories of spiking rules identified by (b, b′) ∈ {(a, a), (a, a),
(a, a), (a, a)}.

4. IN, OUT ⊆ {1, 2, 3, . . . ,m} are the set of input and output neurons respec-
tively.

A rule E/br → b′ ∈ R(i, j) with b, b′ ∈ {a, a} is applied as follows. If the neuron
σi contains number of bs equal to c, and bc ∈ L(E), c ≥ r, then the rule can
fire, and upon application, r spikes of kind bs are consumed (thus only c − r
remain in σi) and a b′ is released, which will immediately exit the neuron. The
spike/anti-spike emitted by neuron σi will pass immediately to all neurons σj

such that E/br → b′ ∈ R(i, j). This means that the transmission of spike/anti-
spike takes no waiting time (since the rules do not specify a time delay), the
spike/anti-spike will be available in neuron σj in the next step. There is an
additional restriction that a and a cannot stay together, they annihilate each
other. If a neuron has either objects a or objects a, and further objects of either
type (maybe both) arrive from other neurons, such that we end with aq and
as inside, then immediately an annihilation rule aa → λ (which is implicit in
each neuron), is applied in a maximal manner, so that either aq−s or (a)s−q

remain for the next step, provided that q ≥ s or s ≥ q, respectively. This mutual
annihilation of spikes and anti-spikes takes no waiting time and the annihilation
rule has priority over spiking and forgetting rules, so each neuron always contains
either only spikes or anti-spikes. If we have a rule E/br → b′ with L(E) = {br},
then we write it in the simplified form as br → b′ and call it pure. The rules
of the form bs → λ ∈ R(i, j) are called forgetting rules. If the neuron contains
exactly s number of bs, then the forgetting rule bs → λ can be applied removing
s number of bs from the neuron immediately.

The configuration of the system is described by C = 〈β1, β2, . . . , βm〉, where
βi is the number of spikes/anti-spikes present in neuron σi. At any moment, if
βi > 0, it means that there are βi spikes in neuron σi; if βi < 0, it indicates
that neuron σi contains | βi | anti-spikes. The initial configuration is C0 =
〈n1, n2, . . . , nm〉.

As usual in SN P systems, a global clock is assumed, marking the time for
all neurons and synapses. In each time unit, if a synapse (i, j) can use one of
its rules, then a rule from R(i, j) must be used. It is possible that there is
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more than one rule that can be used on a synapse at some moment, since two
firing rules, E1/bc → b′ and E2/b̂r → b̂′ may have L(E1) ∩ L(E2) �= ∅ where
{b, b′, b̂, b̂′} ∈ {a, a}. In this case, the synapse will non-deterministically choose
one of the enabled rules to be used.

The system works sequentially on each synapse (at most one rule from each
set R(i, j) can be used), and in parallel at the level of the system (if a synapse
has at least one rule enabled, then it has to use a rule).

A delicate problem appears when several synapses starting from the same
neuron have rules which can be applied. We work here with the restriction that
all rules which are applied consume the same number of spikes from the given
neuron. Let us assume that the applied rules on the synapses leaving from σi

are of the form Eu/bc → b′ then c number of bs are removed from σi (and not a
multiple of c, according to the number of applied rules). Of course, this restriction
can be replaced by another strategy: various rules can consume various numbers
of spikes and the sum of these numbers of spikes is removed from the neuron.

Using the rules in this way, we pass from one configuration of the system to
another configuration; such a step is called a transition. For two configurations
C and C′ of Π we denote by C =⇒ C′, if there is a direct transition from C to C′

in Π.
A computation of Π is a finite or infinite sequence of transitions starting from

the initial configuration, and every configuration appearing in such a sequence is
called reachable. A computation halts if it reaches a configuration where no
rule can be used. With any halting computation, we associate a number of
spikes/anti-spikes appearing in the output neurons which encode the vector of
integer numbers as the output of the system. When both the input and output
neurons are considered, the system can be used as a transducer. Henceforth in
the paper, SN P systems with anti-spikes and rules on synapses are used as
transducers and are referred to as SN PA systems.

3 Bitonic Sorting Network

This section describes a variant of a sorting network called bitonic network that
has a fast sorting or ordering capability. A sorting network can be used as a
multiple-input, multiple-output switching network. Other applications of sort-
ing networks are as a switching network with buffering, a multi-access memory,
a multi-access content-addressable memory, and as a multiprocessor. The advan-
tage of bitonic networks is the flexibility (one network can accommodate input
lists of various lengths) and the modularity (a large network can be split up into
several identical modules).

The basic component of a bitonic sorting network is a comparator. A com-
parator is a device with two inputs x and y and two outputs l and h. For
an increasing comparator, l = min(x, y) and h = max(x, y); for a decreasing
comparator l = max(x, y) and h = min(x, y). Figure 1 gives the schematic rep-
resentation of the two types of comparators. As two elements enter the input
wires of the comparator, they are compared and, if necessary, exchanged before
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Fig. 1. A schematic representation of comparators

they go to the output wires. We denote an increasing comparator by ↓ and a
decreasing comparator by ↑.

The key operation of the bitonic sorting network is the rearrangement of
a bitonic sequence into a sorted sequence. A bitonic sequence is a sequence of
elements < a0, a1, . . . , an−1 > with the property that either (1) there exists an
index i, 0 ≤ i ≤ n − 1, such that < a0, . . . , ai > is monotonically increasing
and < ai+1, . . . , an−1 > is monotonically decreasing, or (2) there exists a cyclic
shift of indices so that (1) is satisfied. For example, < 1, 2, 4, 7, 6, 0 > is a bitonic
sequence, because it first increases and then decreases.

We present a method to rearrange a bitonic sequence to obtain a monoton-
ically increasing sequence. Let S =< a0, a1, . . . , an−1 > be a bitonic sequence
such that a0 ≤ a1 ≤, . . . ,≤ an/2−1 and an/2 ≥ an/2+1 ≥, . . . ,≥ an−1. Consider
the following subsequences of S:
S1 =< min(a0, an/2),min(a1, an/2+1), . . . , min(an/2−1, an−1) >
S2 =< max(a0, an/2),max(a1, an/2+1), . . . , max(an/2−1, an−1) >.
The sequences S1 and S2 are bitonic sequences. Furthermore, every element of
the first sequence is smaller than every element of the second sequence. Thus,
we have reduced the initial problem of rearranging a bitonic sequence of size
n to that of rearranging two smaller bitonic sequences and concatenating the
results. We refer to the operation of splitting a bitonic sequence S of size n into
the two bitonic sequences S1 and S2 as a bitonic split. Although in obtaining
S1 and S2 we assumed that the original sequence had increasing and decreas-
ing sequences of the same length, the bitonic split operation also holds for any
bitonic sequence.

We can recursively obtain shorter bitonic sequences using bitonic split for
each of the bitonic subsequences until we obtain subsequences of size one. At
that point, the output is sorted in monotonically increasing order. Since after
each bitonic split operation the size of the problem is halved, the number of
splits required to rearrange the bitonic sequence into a sorted sequence is log n.
The procedure of sorting a bitonic sequence using a series of bitonic splits is
called bitonic merge.

So the key components of a bitonic sorting network are the bitonic splitters
and the bitonic mergers. The splitter of size n takes as input a bitonic sequence
of length n and partitions it in two bitonic sequences of equal length. A bitonic
merger of size n consists of a splitter of size n and of two mergers of size n/2, of
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Fig. 2. A bitonic sorting network for n = 8. The network can be partitioned into three
stages, each has bitonic mergers of size 2, 4, and 8 respectively.

opposite direction. It accepts as input a bitonic sequence and sorts it in ascending
or descending order (direction).

Figure 2 illustrates a typical bitonic sorting network for sorting n = 8 num-
bers in ascending order. The input wires are numbered 0, 1, . . . , n − 1. The net-
work can be partitioned into three stages, each has bitonic mergers of size 2, 4,
and 8 respectively. Each stage has column of comparators drawn separately. The
network takes an unsorted sequence of size 8 and outputs it in ascending order.

Let us now see how this network works. The first stage groups the list into
n/2 bitonic sequences of length two. A sequence of two elements x and y forms
a bitonic sequence, since either x ≤ y, in which case the bitonic sequence has x
and y in the increasing part and no elements in the decreasing part, or x ≥ y,
in which case the bitonic sequence has x and y in the decreasing part and no
elements in the increasing part. Hence, any unsorted sequence of elements is
a concatenation of bitonic sequences of size two. It merges the adjacent bitonic
sequences in increasing and decreasing order to get bitonic sequences of size four.

So each stage of the network shown in Fig. 2 merges adjacent bitonic
sequences in increasing and decreasing order. According to the definition of a
bitonic sequence, the sequence obtained by concatenating the increasing and
decreasing sequences is bitonic. Hence, the output of each stage in the network
in Fig. 2 is a concatenation of bitonic sequences that are twice as long as those at
the input. By merging larger and larger bitonic sequences, we eventually obtain
a bitonic sequence of size n. Merging this sequence sorts the input. We refer
to the algorithm embodied in this method as bitonic sort and the network as a
bitonic sorting network. The first three stages of the network are shown in Fig. 2.
The last stage of Fig. 2 is shown explicitly in Fig. 3.

A network can also be represented as a directed acyclic graph [9].

Definition 1 (Network). A network T of size n is a directed acyclic graph
such that:
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Fig. 3. Biotonic merger of size 8 represented as a graph

1. there are n nodes, called input terminals, with in-degree 0 and out-degree 1,
labeled from 0 to n − 1;

2. there are n nodes, called output terminals, with in-degree 1 and out-degree 0,
labeled from 0 to n − 1;

3. all the remaining nodes u, representing comparators, have in-degree and out-
degree 2.

Figure 3 represents the bitonic merger under the above formalism. We define
the depth of a node u of network T , d(u), as the length of the longest path in T
from an input node to u. The depth of network T , d(T ), is the maximum depth
of a node of in-degree and out-degree 2 in T .

The last stage of an n-element bitonic sorting network contains a bitonic
merging network with n inputs. This has a depth of log n. The other stages
perform a complete sort of n/2 elements. Hence, the depth, d(T ), of the network
in Fig. 2 is given by Θ(log2n).

The arcs of a network can be partitioned in n arc-disjoint paths, each joining
an input node to an output node. Such a partition yields a line-representation
of T , as in [12].

4 Bitonic Sorting of Integers Using SN PA Systems
with Rules on the Synapses

We note that the above representation is a theoretical model which indicates the
comparisons between input values. However, in the context of SN PA systems
with rules on synapses, this model has a straightforward implementation. We
encode the positive numbers as the number of spikes, negative numbers as the
number of anti-spikes and zero with the symbol λ. Each wire is now represented
by a synapse between two neurons, and each value x travels between two neurons
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as x spikes/anti-spikes, one spike/anti-spike per time unit. Comparators are
implemented by a set of neurons which send the minimum and the maximum
(as number of spikes/anti-spikes) through designated synapses. Once these two
ingredients are at hand, we proceed to construct an SN PA system in the same
way the original sorting network was constructed.

Fig. 4. SN PA with rules on synapses as comparator of integers

In this section we are concerned only with comparators of two elements,
hence with SN PA systems which sort two numbers (for brevity called SN PA
comparators). In Fig. 4(a) we give an ascending comparator, and in Fig. 4(b)
we give a descending comparator. Consider the SN PA system modeling an
ascending comparator in Fig. 4(a) and the numbers x and y to be sorted. In order
to be able to use these SN PA systems with rules on synapses as building blocks
of a bitonic sorting network, we assume that instead of loading the numbers



298 V.P. Metta and A. Kelemenová

x and y as spikes/anti-spikes in i0 and i1 in the initial configuration, they are
fed one by one to these input neurons by another neuron. At each step they
instantaneously send one spike/anti-spike to both s0 and s1. Here there are two
cases. The first case is if both the values are non-negative (negative) then as long
as both the neurons i0 and i1 are sending their spikes (anti-spikes) in each step
of the computation, only s0 has two spikes (two anti-spikes) and thus sending a
spike (an anti-spike) to both the output neurons o0 and o1. During these steps
neuron s1 remains empty because of the annihilation of spike and anti-spike it
receives. After one input neuron has consumed all its spikes (anti-spikes), the
minimum (maximum) is obtained in o0 (o1). There will be only one input neuron
to send spikes (anti-spikes) to s0 and s1. In this case also, the outgoing synapse
from s1 forgets its spike (anti-spike), and s0 forwards it to o1 (o0), where the
maximum (minimum) is obtained.

The other case is if one value is non-negative and the other one is negative
then as long as both i0 and i1 are sending their spikes/anti-spikes, only s1 has two
spikes or two anti-spikes and thus sending an anti-spike to neuron o0 and a spike
to neuron o1 (since negative values are always less than non-negative values).
During these steps neuron s0 remains empty because of the annihilation of spike
and anti-spike it receives. After one input neuron has consumed its spikes (anti-
spikes), the maximum (minimum) value is obtained in o1 (o0). There will be
only one input neuron to send anti-spikes (spikes) to s0 and s1. In this case, the
outgoing synapse from s1 forgets its spikes (anti-spikes), and s0 sends them to o0
(o1), where the minimum (maximum) is obtained Now we prove the composition
lemma for SN PA increasing comparators.

Lemma 1. (Composition lemma for increasing comparator). Suppose that in
each time unit from t0 until t0 +(|x|−1) neuron i0 receives one spike/anti-spike
and that in a rest it does not receive any spike/anti-spike. Analogously, suppose
that in each time unit from t0 to t0 +(|y|− 1) neuron i1 receives one spike/anti-
spike, and that in a rest it does not receive any spike/anti-spike. Then neurons
o0 and o1 either or both receive spike/anti-spike only for time moments from
t0 +2 until t0 +2+(max(|x|, |y|)−1) and at time moment t0 +2+max(|x|, |y|),
the minimum and maximum of x and y codified as number of spikes/anti-spikes
are stored in o0 and o1 respectively.

Proof. Consider the time moment t, with t0 ≤ t ≤ t0 + (min(|x|, |y|) − 1).
Both neurons i0 and i1 receive spikes/anti-spikes and in turn send them through
the synapses by the rules. One of the neurons s0 and s1 has spikes/anti-spikes
depending on the values of x and y, neuron s0 or s1 sends one spike/anti-spike
to both of the neurons o0 and o1. Therefore at time moment t + 2 neurons
o0 and o1 receive their first spike/anti-spike each. This continues till the step
t0 + 2 + (min(|x|, |y|) − 1). From time moment t0 + min(|x|, |y|) onward, only
one neuron of i0 and i1 sends spikes/anti-spikes, hence the rules on the outgoing
synapses of s0 and s1 prevent one of o0 and o1 from receiving other spikes/anti-
spikes. The first part of the claim is proved.

At each time moment t, with t0+min(x, y) ≤ t ≤ t0+(max(x, y)−1), one of
the neurons o0 and o1 receives one spike/anti-spike at moment t + 2. After time
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moment t0 + max(|x|, |y|) there are no other spikes/anti-spikes enters into the
system, hence from time moment t0 + 2 + max(|x|, |y|) onward there will be no
other spikes entering neurons o0 and o1. The minimum and maximum of x and
y codified as number of spikes/anti-spikes are stored in o0 and o1, respectively.
A similar lemma is valid in the case of a SN PA decreasing comparator.

Assume that we are given a network T as a graph, and that we have a line
representation of it (i.e., a set of n arc-disjoint path linking input terminals with
output terminals). Hence, we extend Definition 1, by labeling edges, apart from
input and output terminals. For every path that begins with input terminal
labeled i, we label all its edges with i. More formally, we have the following
definition.

Definition 2 (Edge labeling). Given a graph T as in Definition 1 representing
a sorting network, and a line-representation of T, we attach to each edge e ∈
E(T ) that belongs to a path in the line representation of T beginning with i, label
l(e) = l(i) (supposing that i is labeled with l(i)).

For example, in Fig. 3, we have a labeled bitonic merger. A SN PA system
modeling a sorting network given as a graph is obtained in the following way.
For each input terminal node l we have a corresponding input neuron il. For
each comparator (ascending / descending) we have the s- and o-neurons of a SN
PA comparator (ascending / descending). For each edge of the graph between
two comparators we have synapses between corresponding SN PA comparators.
The output terminal nodes are the o-neurons of the last SN PA comparators.

More formally, we construct and label the SN PA system in the following
recursive way.

1. for each input terminal node l we have a corresponding input neuron il = il,1,
0 ≤ l ≤ n − 1;

2. for each comparator at depth 1 ≤ k ≤ d(T ) with incident edges labeled with l
and j, l < j, we add the s- and o-neurons of a SN PA comparator, connected
in the previously specified way. With the notations in Fig. 4, let s0 and s1,
and o0 and o1 be the s-, and o-neurons, respectively, just added. We add
synapses between the following pairs of neurons: ((il,k, s0), {a → a, a → a}),
((il,k, s1), {a → a, a → a}), ((ij,k, s0), {a → a, a → a}), ((ij,k, s1), {a →
a, a → a}). Additionally, if k < d(T ), we label o0 with ol,k = il,k+1, and o1
with oj,k = ij,k+1; else we label o0 with ol,k = ol, and o1 with oj,k = oj .

As an example, Fig. 5 depicts an SN PA system with rules on synapses which
models the bitonic merger of size 8.

Theorem 1. For any SN PA ascending comparator at depth k corresponding to
a comparator with incident edges l < j which carry values x and y, respectively,
we have that

1. in each time moment from 2(k − 1) until 2(k − 1) + |x| neuron il,k receives
one spike;
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Fig. 5. SN PA system modelling the bitonic merger of size 8

2. in each time moment from 2(k − 1) until 2(k − 1) + |y| neuron ij,k receives
one spike.

3. in each time moment from 2k until 2k + min(|x|, |y|) both the neurons ol,k
and oj,k receive one spike/anti-spike

4. in each time moment from 2k+min(|x|, |y|)+1 until 2k+max(|x|, |y|) either
of the neurons ol,k and oj,k receives one spike/anti-spike

Proof. We prove the claim by induction on k. When k = 1 we are at time moment
t = 0. We have explained previously that the behaviour of the system when the
spikes/anti-spikes are loaded initially in the input neurons is identical to when
they are fed one by one to these neurons. Claims 3 and 4 are true from Lemma1
and t0 = 0. We now suppose that the claim is true for k, with 1 ≤ k < log n, and
prove it for k+1. From claims 3 and 4 of the induction hypothesis, we know that
both the neurons ol,k = il,k+1, oj,k = ij,k+1 receive one spike/anti-spike from 2k
until 2k + min(|x|, |y|), where min(|x|, |y|) is the number of spikes/anti-spikes
carried by both the wires l and j before the comparator at depth k+1. After that,
only one of the neurons ol,k = il,k+1, oj,k = ij,k+1 receives one spike/spikes from
2k + min(|x|, |y|) + 1 until 2k + max(|x|, |y|), where max(|x|, |y|) − min(|x|, |y|)
is the number of spikes/anti-spikes carried by wire l or j before the comparator
at depth k + 1. After the step 2k + max(|x|, |y|), the minimum u = min(x, y) is
stored ol,k and v = max(x, y) is stored oj,k. This proves claims 1 and 2. If we
take t0 = 2k, x = u, and y = v in Lemma 1, we have that claims 3 and 4 are
true.
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5 Bead Sorting of Integers Using SN PA Systems
with Rules on the Synapses

Here we design an SN PA system Πs with rules on synapses that can sort n
integers in ascending order. This model drastically decreases the complexity in
terms of the number of neurons and synapses. We encode the positive numbers
as the number of spikes, negative numbers as the number of anti-spikes and zero
with the symbol λ.

Fig. 6. SN PA system with rules on synapses Πs for sorting integers

The SN PA system Πs shown in Fig. 6 has n input neurons, n output neurons
and two intermediate neurons (labeled s1 and s2). The input is stored in the first
line of the system (hence in the neurons labeled i1, i2, . . . , in) encoded in the
form of number spikes/anti-spikes. Each input neuron has two synapses, one to
neuron s1 and the other to neuron s2. At each step, each input neuron until
not empty, sends an anti-spike to s1 if it contains a negative number encoded
in the form of number of anti-spikes. If the input neuron contains spikes (i.e., it
represents a positive number), then it sends a spike to neuron s2. So all the input
neurons in the first layer of the structure Πs are having the same type of synapses
((il, s1), {a+/a → a}) and ((il, s2), {a+/a → a}) where 1 ≤ l ≤ n. In the second
layer the negative and non-negative integers are filtered. Let the number of
negative numbers in list be m with 0 ≤ m ≤ n. The number of anti-spikes neuron
s1 receives in the first step corresponds to the number of negative numbers in the
original unsorted list. So, in the first step of the computation, neuron s1 receives
m anti-spikes which means that there are m number of negative integers and
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n − m non-negative integers in the unsorted list. The neuron s1 sorts the m
negative numbers in ascending order and stores them in the first m left most
neurons of the third layer. Similarly neuron s2 sorts the positive numbers and
stores them in the rightmost neurons of the third layer.

Intermediate neurons s1 and s2 have outgoing synapses to all neurons in the
third layer of the system. Depending upon the number of anti-spikes the neuron
s1 receives, it sends an anti-spike to one or more output neurons. At any step
during computation, if neuron s1 has p anti-spikes, then in the next step, it sends
an anti-spike to all the p left most output neurons in the third layer. Similarly
if the neuron s2 receives q spikes then it sends a spike to all the q right most
output neurons in the third layer. In this way, the SN PA system Πs can sort
n integers in O(| M |) computational steps, where M is the absolute maximum
of the n numbers. We can observe that this model makes use of 2n + 2 neurons,
4n synapses and n2 + 3n rules to sort n integers, which is comparatively less
complex than the system in [11].

6 Conclusion

In this paper we have simulated two parallel sorting algorithms, bitonic sort
and bead sort to sort n integers using SN PA systems with rules on synapses.
For bitonic sorting, the key operation is the comparison of two elements, so
we have designed the SN PA comparators which can compare two integers and
arrange them in ascending or descending order. Using these comparators, we
have designed the SN PA bitonic sorting network that can perform sorting of an
integer array. We simplified the sorting model in [11] using SN PA systems with
rules on synapses and also incorporated negative numbers in the unsorted list.
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Abstract. Recently a new framework based on multiset approximation
spaces were introduced for modeling the abstract notion of “closeness to
membranes” in P systems. In real biotic/chemical interactions, however,
objects not only have to be close enough to membranes, so that they
are able to pass through them, but they also need to be in an unsta-
ble state, in a state where they are ready to engage into any type of
interactions at all. In order to develop these ideas, we employ multi-
set approximation spaces for the description of stability and instability.
We also demonstrate how the applicability and the use of reaction rules
can be regulated during computations using the notion of membrane
boundaries. An important feature of this type of regulation is the fact
that it does not rely on the maximal parallel way of rule application,
therefore it can be used to enhance the computational power of systems
with asynchronous, sequential, or any other type of derivation modes. As
an example, we show how P systems can generate any recursively enu-
merable set of numbers independently of the applied derivation mode,
which is interesting, since without membrane boundaries asynchronous
or sequential systems generate the Parikh sets of matrix languages only.

Keywords: Asynchronous P systems · Approximation spaces · Poten-
tial energy · Stable states

1 Introduction

Considering membrane systems with communication rules only (which are pow-
erful means of interaction, see [2,8,12] for example), one might argue that real
biotic/chemical interactions represented by these rules in P systems may take
place only in the vicinity of membranes delimiting the regions. At first glance,
vicinity is a spatial concept, but in order to avoid attributing location infor-
mation to the objects, an abstract concept of “closeness to membranes” was
formulated in [3] based on the theory of rough sets.

Rough set theory, Pawlak’s classical theory of set approximations [6,7] gives
a plausible opportunity to model boundary zones around sets in an abstract way.
In P systems, however, regions are associated not with sets, but with multisets
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of objects, thus in [3], the notion of multiset approximation space was intro-
duced as a generalization of set approximation for multisets. P systems with
membrane boundaries were also defined in [3] as an application of the multi-
set approximation framework. These systems have a two-component structure:
(1) a (communicating) P system, and (2) a multiset approximation space which
determines how the boundaries of the regions of the P system are computed.
They were successfully used for the definition of membrane boundaries, some of
their properties were further investigated in [1,4].

Using the multiset approximation technique, however, not only the abstract
notion of closeness around membranes can be specified, but also the issue of
stability can be addressed. This is the subject of the present paper.

Biotic/chemical processes are in the center of the motivation base of mem-
brane computing, together with important aspects, such as robustness, stability,
equilibrium, or periodicity. In order to explain the changes in natural processes,
stored energy is a very useful notion. Stored energy is called potential because
it has the “potential” to do work. In Nature, the lower the potential energy of
a system, the more stable it is. Moreover, natural systems left to themselves
attempt to reach the configuration with the lowest potential energy possible
(under a given set of constraints). We might say that any change of the system
configuration takes place because the system “wishes” to reach a more stable
state, as if changes would resolve the unstabilities which are present.

In biotic/chemical processes there are many “small” coherent units (such as
molecules, for example) which represent stability in the sense that they are less
likely to engage into interactions than the others. In what follows, we will use the
above described multiset approximation framework for the representation of this
kind of “stability” in P systems by presenting a notion of membrane boundaries
based on the concept of chemical or biological stability.

Moreover, as a further application of the concept, will also show how to
generate membrane boundaries in such a way that they can be used to regulate
the application of rules during computations. We will show how to implement the
possibility of “appearance checking” of objects without relying on the maximal
parallelism of rule application (as it is usually the case in P systems theory),
thus, we will be able to use this technique also in asynchronous or sequential
systems. As an initial result, we present a theorem showing that recursively
enumerable sets of numbers can be generated by systems with one membrane
using any type of rule application, which is interesting since systems without
membrane boundaries in the asynchronous or sequential rule application modes
can only generate Parikh sets of matrix languages (see Chapter 5 of [11]) which
is a strict subclass of the class of recursively enumerable languages.

2 Preliminaries

Let U be a finite nonempty set. A multiset M , or an mset M for short, over U is
a mapping M : U → N, where N is the set of natural numbers. If M(a) �= 0, it is
said that a belongs to M , otherwise a does not belong to M . The set supp(M) =
{a ∈ U | M(a) �= 0} is called the support of M . The mset M is the empty mset,



306 T. Mihálydeák and G. Vaszil

denoted by ∅, if supp(M) = ∅. A finite multiset M over an alphabet U can be
represented by all permutations of a string x = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ U∗

where aj ∈ U, M(aj) �= 0, 1 ≤ j ≤ n. The size of a finite multiset M , represented
by x ∈ U∗ is defined as

∑
a∈U |x|a, where |x|a denotes the number of occurrences

of a ∈ U in x. We note that if no confusion arises, we also use the customary set
notation for denoting multisets, and we denote the set of finite multisets over U
by U∗. Let n ∈ N be a positive integer, we say that a ∈n M (a ∈ U) if M(a) = n,
and M1 � M2, if M1(a) ≤ M2(a) for all a ∈ U .

We describe the generalizations of the basic set–theoretical operations for
multisets as follows. Let M,M1,M2 ∈ U∗ be msets over U . The intersection of
two msets, M1 � M2 is defined as (M1 � M2)(a) = min{M1(a),M2(a)} for all
a ∈ U . The set–type union of two msets, M1 	 M2 is defined by (M1 	 M2)(a) =
max{M1(a),M2(a)} for all a ∈ U , with

⊔ ∅ = ∅ by definition. The operation of
multiset addition is defined by (M1 ⊕M2)(a) = M1(a)+M2(a) for all a ∈ U . For
any n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the following
inductive definition:

1. ⊕0M = ∅;
2. ⊕1M = M ;
3. ⊕n+1M = ⊕nM ⊕ M .

We will use the term many-times addition, if n is not specified. We also define
multiset subtraction by (M1 � M2)(a) = max{M1(a) − M2(a), 0} for all a ∈
U . Using the notion of n-times addition, the n-times inclusion relation can be
defined for any n ∈ N as follows: M1 �n M2, if ⊕nM1 � M2 but ⊕n+1M1 �� M2.
We also denote by Un the set of all msets M over U such that M(a) ≤ n for all
a ∈ U .

Now we define the basic notions of P systems which were introduced in
[9]. For more information, see the monograph [10] and the handbook [11]. A
P system is a structure of hierarchically embedded membranes, each having a
label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique and usually labeled with 1,
is called the skin membrane. The membrane structure is denoted by a sequence
of matching parentheses where the matching pairs have the same label as the
membranes they represent. If membrane i contains membrane j, and there is no
other membrane k, such that k contains j and i contains k then we say that
membrane i is the parent membrane of j.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. In the following we concentrate on communication
rules called symport or antiport rules.

Configurations of the system are represented by the multisets of objects
present inside the regions. The application of a collection of rules takes the sys-
tem from one configurations to another, a series of configurations corresponds
to a computation.

The end of the computation is defined by halting: A P system halts when no
more rules can be applied in any of the regions, and the result is the number of
objects in an elementary membrane labeled as output.
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Definition 1. A P system with symport/antiport of degree n ≥ 1 is a construct

Π = (V, μ,w1, . . . , wn, R1, . . . , Rn, out)

where

– V is an alphabet of objects,
– μ is a membrane structure of n membranes,
– wi ∈ V ∗, 1 ≤ i ≤ n, are the initial contents of the n regions,
– Ri, 1 ≤ i ≤ n, are the sets of symport/antiport rules associated to the regions,
– out ∈ {1, . . . , n} is the label of an elementary membrane, the output mem-

brane.

The n-tuple of finite multisets of objects present in the n regions of the
P system Π describes a configuration of Π; (w1, . . . , wn) ∈ (V ∗)n is the initial
configuration.

The P systems changes its configurations by applying its rules simultaneously
in the regions. A symport rule is of the form (x, in) or (x, out), x ∈ V ∗. If such a
rule is present in a region i, then the objects of the multiset x must enter from
the parent region or must leave to the parent region, respectively. An antiport
rule is of the form (x, in; y, out), x, y ∈ V ∗, in this case, objects of x enter from
the parent region and in the same step, objects of y leave to the parent region.

There are several rule application modes which can be considered. If the rules
are applied in the maximal parallel manner, then as many rules are applied in
each region as possible. In the minimal parallel mode, any number of rules can
be applied, but at least one rule has to be applied in all those regions where there
are applicable rules. If the rules are applied asynchronously, then any number
of rules can be applied without any restriction, in the sequential mode, just one
rule is applied in the whole system in each step. More information on these rule
application modes can be found in Chapter 5 of the handbook [11].

3 Multiset Approximation Spaces

A multiset approximation space is defined over a finite alphabet U , and denoted
by MAS(U). It has four basic constituents:

– Domain — a set of finite multisets over U whose members are approximated.
If the multiset approximation space is associated to a membrane system, the
contents of the regions belong to the domain.

– Base system — a set of msets from the domain serving as the basis for the
approximation process. Its members are called base msets.

– The set of definable msets derived from base msets. They are possible approx-
imations of the members of the domain. It is reasonable to define the approx-
imation space in such a way that the base msets and the empty mset are
definable. In approximation spaces associated to membrane systems, we will
assume that the set of definable msets is obtained as the set of unions of the
many-times additions of the base msets.
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– Approximation functions — determining the lower and upper approximations
and the boundaries of the msets of the domain.

Now we present the formal definition of the above listed components of a so
called Pawlakian mset approximation space.

Definition 2. The ordered 6–tuple MAS(U) = 〈U∗,B,DB, l, u, b〉 is a
Pawlakian mset approximation space over U with the domain U∗ if

1. U is a nonempty set.
2. B ⊆ U∗ and if B ∈ B, then B �= ∅. B is called the base system, its members

are the base msets.
3. DB ⊆ U∗ is the set of definable msets, an extension of B such that

(a) ∅ ∈ DB;
(b) B ⊆ DB;
(c) if B⊕ = {⊕nB | B ∈ B, n = 1, 2, . . . } and B′ ⊆ B⊕, then

⊔
B′ ∈ DB.

4. The approximation functions l, u, b : U∗ → U∗ representing the lower, upper
approximations and the boundaries of an mset M ∈ U∗, respectively, are
defined as
(a) l(M) =

⊔{⊕nB | n ∈ N
+, B ∈ B and B �n M},

(b) b(M) =
⊔{⊕nB | B ∈ B, B �� M, B � M �= ∅ and B � M �n M},

(c) u(M) = l(M) 	 b(M).
(When the approximation functions l, u, b are defined as above, they are called
generalized Pawlakian.)

To clarify the above defined notion of multiset approximation space, we
present the following example.

Example 1. Let MAS = 〈V ∗,B,DB, l, u, b〉 be an mset approximation space with
V = {a, b, c, d, e, f}, and a set of base msets (the base system)

B = {a2b, abcdef, ac, b3cd2, b3d2, b3d2f, c, f2, f4}.

Now, according to the above definition, the set of definable msets DB can be
obtained as follows:

– ∅ ∈ DB,
– B⊕ = {a2b, a4b2, a6b3, . . . ,

abcdef, a2b2c2d2e2f2, a3b3c3d2e3f3, . . . ,
ac, a2c2, a3c3, . . . ,
b3cd2, b6c2d4, b9c3d6, . . . ,
b3d2, b6d4, b9d6, . . . ,
b3d2f, b6d4f2, b9d6f3, . . . ,
c, c2, c3 . . . , e3, e6, e9, . . . ,
f2, f4, f6, . . . },

– for any B′ ⊆ B⊕,
⊔
B′ ∈ DB.
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Let M be the multiset M = {a, b, . . . , b︸ ︷︷ ︸
11

, c, c, c, d, . . . , d︸ ︷︷ ︸
9

} = ab11c3d9, and let us

compute boundary of M . According to Definition 2, the boundary is computed
as

b(ab11c3d9) =
⊔

{⊕nB | B ∈ B, B �� ab11c3d9, B � ab11c3d9 �= ∅
and B � ab11c3d9 �n ab11c3d9}.

Thus, we need all elements B of the base system B which are not submultisets
of M , but have nonempty intersections with M . These are

{a2b, abcdef, b3d2f} = {B1, B2, B3} ⊆ B.

Now we need to find for each Bi the numbers ni, such that Bi � M �ni M .
We obtain

– (a2b � ab11c3d9) = ab �1 ab11c3d9, thus, n1 = 1,
– (abcdef � ab11c3d9) = abcd �1 ab11c3d9, thus n2 = 1,
– (b3d2f � ab11c3d9) = b3d2 �3 ab11c3d9, thus n3 = 3.

Now we can compute the boundary as

b(M) =
⊔

{⊕ni
Bi | 1 ≤ i ≤ 3},

that is
b(ab11c3d9) =

⊔
{⊕1a

2b,⊕1abcdef,⊕3b
3d2f},

which means that

b(ab11c3d9) = ⊕1a
2b 	 ⊕1abcdef 	 ⊕3b

3d2f

= a2b 	 abcdef 	 b9d6f3

= a2b9cd6f3.

4 Multiset Approximation Spaces in Membrane
Computing

If the P system Π = (V, μ,w1, w2, . . . , wm, R1, R2, . . . , Rm, out) is given, let
MAS(Π) = 〈V ∗,B,DB, l, u, b〉 be a Pawlakian mset approximation space called
the joint membrane approximation space of the P system Π. Note that in such a
joint membrane approximation space, the definitions of l, u, b are given and the
alphabet V is fixed, but depending on the choice of B, we can obtain different
definable sets DB, and different approximation spaces for a given Π.

Having given a membrane system Π and its joint membrane approximation
space MAS(Π), we can define the boundaries of the regions w1, w2, . . . , wm as
msets with the help of approximation functions l, u, b. But the general notion of
mset boundaries given earlier cannot be used here, because membrane bound-
aries have to follow the given membrane structure μ. In the case of the skin
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region, the Pawlakian boundary b(w1) can be defined using the upper approx-
imation u(w1) without any complications, since the environment is assumed to
contain any object in an arbitrary number of copies. For i = 2, . . . , m, how-
ever, the contents of the parent regions also have to be taken into consideration:
those objects of the base msets making up the membrane boundary, which are
not inside the membrane, have to be elements of the parent region. Thus, the
Pawlakian boundaries have to be adjusted to the membrane structure and the
contents of the regions by the function bnd. Note that b(w1) = bnd(w1), but
b(wi) �= bnd(wi) (i = 2, . . . , m) in general. Moreover, membrane boundaries
bnd(wi) (i = 1, . . . , m) are split into two parts, inside and outside membrane
boundaries.

Before presenting the formal definitions, we illustrate the considerations
above with the following example.

Example 2. Let MAS = 〈V ∗,B,DB, l, u, b〉 be the mset approximation space
from Example 1 associated to the P system Π = (V, [ [ ]2 ]1, w1, w2, R1, R2, out)
where w1 = ef2 and w2 is the multiset from Example 1, thus w2 = ab11c3d9.

When computing the boundary of w2 = ab11c3d9, we need to take into
account that the parent region does not contain the objects in arbitrary number
of copies. Considering the base sets which have nonempty intersections with w2,
we obtain the following.

– Although (a2b � ab11c3d9) = ab, there is no a in the parent region w1 = ef2,
so a2b cannot lie in the boundary of the two regions, it cannot be taken into
account when computing the boundary (that is, n1 = 0 using the notation of
Example 1);

– (abcdef � ab11c3d9) = abcd �1 ab11c3d9 and ef � ef2, so abcdef is taken
into account when computing the boundary (n2 = 1 using the notation of
Example 1);

– (b3d2f �ab11c3d9) = b3d2 and f �2 ef2, so b3d2f is considered for the bound-
ary (n3 = 2 using the notation of Example 1).

Thus, the boundary of the contents of the second region w2 = b11c3d9 is com-
puted as

bnd(ab11c3d9) =
⊔

{⊕0a
2b,⊕1abcdef,⊕2b

3d2f},

which means that

bnd(ab11c3d9) = ⊕0a
2b ⊕1 abcdef 	 ⊕2b

3d2f

= ∅ 	 abcdef 	 b6d4f2 = ab7cd5ef2.

These considerations are formalized in the following definition.

Definition 3. Let Π = 〈V, μ,w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be a P system
and MAS(Π) = 〈V ∗,B,DB, l, u, b〉 be its joint membrane approximation space.
If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =

⎧
⎨

⎩

0, if B � wi or B � wi = ∅;
n, if i = 1 and B � w1 �n w1;
min{k, n | B � wi �k wi, and B � wi �n wparent(i)}, otherwise.
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Then, for i = 1, . . . , m,

bnd(wi) =
⊔

{⊕N(B,i)B | B ∈ B};

bndout(wi) = bnd(wi) � wi;
bndin(wi) = bnd(wi) � bndout(wi).

The functions bnd, bndout and bndin represent membrane boundaries, outside and
inside membrane boundaries, respectively.

Example 3. Consider the MAS = 〈V ∗,B,DB, l, u, b〉 associated to the P sys-
tem Π = (V, [ [ ]2 ]1, w1, w2, R1, R2, out) with w1 = ef2, w2 = ab11c3d9 from
Example 2.

Considering the base system B (see Example 1), we have N(B, 2) = 0 for
almost all the base sets from B, except for B ∈ {a2b, abcdef, b3d2f}.

Now N(a2b, 2) = min{k, n}, where

(a2b � ab11c3d9) �k ab11c3d9, and (a2b � ab11c3d9) �n w1 = ef2,

thus, N(a2b, 2) = min{1, 0} = 0.
Similarly, N(abcdef, 2) = min{k, n}, where

(abcdef � ab11c3d9) �k ab11c3d9, and (abcdef � ab11c3d9) �n w1 = ef2,

thus, N(abcdef, 2) = min{1, 1} = 1, and N(b3d2f, 2) = min{k, n}, where

(b3d2f � ab11c3d9) �k ab11c3d9, and (b3d2f � ab11c3d9) �n w1 = ef2,

thus, N(abcdef, 2) = min{3, 2} = 2.
Now we obtain the boundary of the second region w2 = ab11c3d9 as

bnd(w2) =
⊔

{⊕N(B,2)B | B ∈ B} = {⊕0a
2b} 	 {⊕1abcdef} 	 {⊕2b

3d2f}
= abcdef 	 b6d4f2

= ab7cd5ef2.

When computing the boundary of the first region, w1 = ef2, we have
N(B, 1) = 0 for all B ∈ B where B �= abcdef , so we need to determine
N(abcdef, 1) = n where

(abcdef � ef2) �n ef2,

which means that N(abcdef, 1) = 1, therefore

bnd(w1) =
⊔

{⊕N(B,1)B | B ∈ B} = {⊕1abcdef}
= abcdef.

The inside and outside boundaries are obtained as follows.

bndout(w2) = bnd(w2) � w2 = ab7cd5ef2 � ab11c3d9 = ef2;
bndin(w2) = bnd(w2) � bndout(w2) = ab7cd5ef2 � ef2 = ab7cd5.
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and

bndout(w1) = bnd(w1) � w1 = abcdef � ef2 = abcd;
bndin(w1) = bnd(w1) � bndout(w1) = abcdef � abcd = ef.

Using membrane boundaries, the following constraints for rule executions are
prescribed: a rule r ∈ Ri of a membrane i (i = 1, . . . , m) has to work only in the
membrane boundary of its region. More precisely,

– a symport rule (u, in) is executed only in the case when u � bndout(wi);
– a symport rule (u, out) is executed only in the case when u � bndin(wi);
– an antiport rule (u, in; v, out) is executed only in the case when u � bndout(wi)

and v � bndin(wi).

In [1,3,4], the authors presented examples and showed how the given notion
of membrane boundaries work in a P system.

5 Chemical Stability and the Notion of Membrane
Boundaries

In the present paper we continue to develop the above described framework, we
employ membrane boundaries for the description of the notion of chemical sta-
bility. In this section, we provide an informal background to our considerations.

In the following, within the scope of the proposed framework, the question
of stability of P systems will be focused in our study. The notion of stability
appears in P systems trivially, since if one asks when a membrane computation
process stops, then the answer can be the following: when it reaches a stable
state i.e. when there is no rule which can execute. This means that in systems
which are able to perform some computation, the initial state is not stable: there
are some rules which can work. If the whole computation process is considered,
it can be viewed as a transition form an unstable state to a stable one, but
here we would also like to consider the individual computation steps. What we
are looking for, is a refined notion of stability which is able to capture how the
computational steps themselves lead to more and more stable states, how they
are executed by “resolving” some of the unstabilities of the system which are
present.

In a joint membrane approximation space MAS(Π), each base mset can be
considered as stable or coherent unit i.e. consisting of objects which together
form a coherent unit. Hence, base msets can be taken as the representation of
compounds whose potential energy is lower than the potential energy of their
parts. Therefore, they represent a more stable state of their constituent objects,
and the objects have lower (potential) energy together as they would have sep-
arately.

Membrane boundaries are collections of base msets. A very important aspect
of these base msets is that all of them are split into two parts by the membranes:
They have nonempty intersections with the regions inside and also outside, these
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form the inner and outer parts of the boundaries. In both parts, bisected base
msets are not stable from the energetic point of view. In other words, they are in
“excited states”, i.e., they have higher energy as they would have together as a
coherent unit, namely, a base mset. As it was mentioned earlier, a natural system,
left to itself, attempts to reach the configuration with the possible lowest energy.
Accordingly, base msets bisected by membranes are ready for moving towards
the stable states of lower potential energy. However, they can reach these states
only in the case if the adequate objects are able to pass through the membranes.

The movements of objects through membranes are regulated by communica-
tion rules restricted to membrane boundaries. Consequently, a base mset split
into two parts can only reach a state with lower potential energy, i.e., a more
stable state, if the communication rules make it possible that the objects form
a base mset again. If this happens, the (re)combined base mset may wholly
get inside/outside the region. (Then, at the same time, it is removed from the
membrane boundary as well, i.e., after each computation step in the framework,
boundaries have to be recalculated.)

6 A Notion of Membrane Boundaries Based on Chemical
Stability

We would like to emphasize here again that our definition of membrane bound-
aries does not rely on the notion of space (the notion of physical “closeness”),
it is also possible to consider the notion of stability as its intuitive background.
Boundaries relying on base msets answer the following questions in each com-
putational step: how is a communication rule activated, or in other words, why
do some communication rules execute and others do not? The answer is related
to the notion of stability: the executed rules make direct steps to reach a more
stable state, that is, they try to eliminate some of the unstabilities present.

If we look at the notion of boundaries from this point of view, there is a
problem that we need to solve: We need to take into consideration the stability of
a region and the stability of its parent. Membrane boundaries can only contain
objects that are neither elements of the stable parts of the region, nor of the
stable part of its parent.

In order to take these considerations into account, we will define the bound-
aries in the following way. First, the lower approximation of the regions is com-
puted, and those objects which are not elements of the lower approximation are
considered unstable. The unstable objects are able to take part in reactions, thus,
they may become part of the boundary of the region. If unstable objects on the
two sides of one membrane can form one of the base msets together, then there
is a certain attraction among them towards each other as they could constitute
a stable complex together, thus, this is the situation when they are considered
to be on the boundary.

Let Π = (V, μ,w1, . . . , wm, R1, . . . , Rm, out) be a P system and MAS(Π) =
〈V ∗,B,DB, l, u, b〉 be its joint membrane approximation space. We define the
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(inner) unstable parts of regions as the elements which do not belong to their
lower approximations.

For 1 ≤ i ≤ m, let
UNSin(i) = wi � l(wi).

We also need the notion of the “outer” unstable part of a region, which is just the
inner unstable part of its parent. (As the objects are assumed to be present in
any number of copies in the environment, the skin region has no outer unstable
part.) Thus, for i �= 1, let

UNSout(i) = wparent(i) � l(wparent(i))(= UNSin(parent(i))).

Let us define for all B ∈ B and 1 ≤ i ≤ m the numbers K(B, i),K ′(B, i),
L(B, i) and L′(B, i) as follows.

If B �UNSin(i) = ∅ or B � UNSin(i), then L(B, i) and K(B, i) are undefined,
otherwise let

1. L(B, i) = l where B � UNSin(i) �l UNSin(i) for 1 ≤ i ≤ m;
2. K(B, 1) = L(B, 1);
3. K(B, i) = k where B � (B � UNSin(i)) �k UNSout(i) for 2 ≤ i ≤ m.

Similarly, if B � UNSout(i) = ∅ or B � UNSout(i), then L′(B, i) and K ′(B, i)
are undefined, otherwise let

1. L′(B, 1) = L(B, 1);
2. L′(B, i) = l′ where B � (B � UNSout(i)) �l′ UNSin(i) for 2 ≤ i ≤ m;
3. K ′(B, 1) = K(B, 1);
4. K ′(B, i) = k′ where B � UNSout(i) �k′

UNSout(i) for 2 ≤ i ≤ m.

Before continuing, let us consider the following example.

Example 4. Let us suppose that MAS = 〈V ∗,B,DB, l, u, b〉 is an mset approxi-
mation space with V = {a, b, c} and B = {aaab, cc}, associated to the P system
Π = (V, [ [ ]2 ]1, w1, w2, R1, R2, out) where w1 = aabc6 and w2 = a12c4.

The unstable parts of the regions of Π are obtained as follows.

UNSin(1) = w1 � l(w1) = aabc6 � c6 = aab,

UNSin(2) = w2 � l(w2) = a12c4 � c4 = a12,

the multiset UNSout(1) is undefined, and

UNSout(2) = UNSin(1) = aab.

Now, the only B ∈ B such that it has a nonempty intersection with the
unstable parts of the regions is B = aaab. We can calculate the numbers
K(B, i),K ′(B, i), L(B, i) and L′(B, i) in the following way.

1. L(aaab, 1) = 1 since (aaab � aab) �1 aab;
2. K(aaab, 1) = L(aaab, 1) = 1;
3. L(aaab, 2) = 4 since (aaab � a12) �4 a12; and
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4. K(aaab, 2) = 1 since aaab � (aaab � a12) �1 aab.

Similarly, L′(B, i) and K ′(B, i) are calculated as

1. L′(aaab, 1) = L(aaab, 1) = 1;
2. L′(aaab, 2) = 12 since aaab � (aaab � aab) �12 a12;
3. K ′(aaab, 1) = K(aaab, 1) = 1; and
4. K ′(aaab, 2) = 1 since aaab � aab �1 aab.

The following definition gives the new notions of boundaries based on the
stability of regions and their parents (inside and outside boundaries, as well).

Definition 4. Let Π = (V, μ,w1, w2, . . . , wm, R1, R2, . . . , Rm) be a P system
and MAS(Π) = 〈V ∗,B,DB, l, u, b〉 be its joint membrane approximation space.
If B ∈ B and i = 1, 2, . . . ,m, then let us define Min(B, i) and Min′(B, i).

1. Let B ∈ B and i, 1 ≤ i ≤ m, such that K(B, i) and L(B, i) are defined, and
let

Min(B, i) = min{K(B, i), L(B, i)}.

Otherwise let Min(B, i) = 0.
2. Let B ∈ B and i, 1 ≤ i ≤ m, such that K ′(B, i) and L′(B, i) are defined,

and let
Min′(B, i) = min{K ′(B, i), L′(B, i)}.

Otherwise let Min′(B, i) = 0.

Now for 1 ≤ i ≤ m, we have

– bndfrom in
stable (wi) =

⊔{⊕Min(B,i)B | B ∈ B},
– bndfrom out

stable (wi) =
⊔{⊕Min′(B,i)B | B ∈ B},

and finally, the boundary and its inner and outer parts are given as

– bndstable(wi) = bndfrom in
stable (wi) 	 bndfrom out

stable (wi), and
– bndinstable(wi) = bndstable(wi) � UNSin(i) for 1 ≤ i ≤ m,
– bndoutstable(w1) = bndstable(w1) � bndinstable(w1),
– bndoutstable(wi) = bndstable(wi) � UNSout(i), for 2 ≤ i ≤ m.

Example 5. Let MAS = 〈V ∗,B,DB, l, u, b〉 be the mset approximation space
and Π = (V, [ [ ]2 ]1, w1, w2, R1, R2, out) be the P system from Example 4, thus,
V = {a, b, c}, B = {aaab, cc}, w1 = aabc6 and w2 = a12c4.

Since cc ∈ B does not have a nonempty intersection with any of the unsta-
ble parts of any of the regions, Min(B, i) and Min′(B, i) are only defined for
B = aaab, i = 1, 2:

Min(aaab, 1) = min{1, 1} = 1, Min(aaab, 2) = min{4, 1} = 1,

Min′(aaab, 1) = min{1, 1} = 1, Min′(aaab, 2) = min{12, 1} = 1.

Now, for any i, 1 ≤ i ≤ 2

bndfrom in
stable (wi) = bndfrom out

stable (wi) =
⊔

{⊕1aaab} = aaab,

so the boundary and its inner and outer parts are given as
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– bndstable(w1) = aaab 	 aaab = aaab,
– bndinstable(w1) = aaab � UNSin(1) = aaab � aab = aab,
– bndoutstable(w1) = aaab � aab = a,

and

– bndstable(w2) = aaab 	 aaab = aaab,
– bndinstable(w2) = aaab � UNSin(2) = aaab � a12 = aaa,
– bndoutstable(w2) = aaab � UNSout(2) = aaab � aab = aab.

7 Regulating Rule Application in Asynchronous
P Systems

Now we demonstrate how the boundaries bndinstable and bndoutstable can be used to
regulate the applicability of symport/antiport rules in membrane computations.
We show how we can give the base sets of B in such a way that a certain rule is
only applicable when a given object is not present in the region. This boundary
based method is interesting, because we can implement a kind of “appearance
checking” feature in such a way that it does not rely on the maximal parallelism
of rule application. Thus, it allows us to use it in asynchronous or sequential
systems. As an initial result, we present a theorem showing that recursively
enumerable sets of numbers can be generated by systems with one membrane
using any type of rule application. This result is interesting, because systems
without membrane boundaries can only generate a strict subclass of the class of
recursively enumerable languages, namely the Parikh sets of matrix languages
with asynchronous or sequential rule application (see [11], Chapter 5).

The proof of our theorem relies on the notion of register machines, so we
briefly review this concept first (more information can be found in [5]). A reg-
ister machine consists of a given number of registers each of which can hold an
arbitrarily large non-negative integer number, and a set of labeled instructions
which specify how the numbers stored in registers can be manipulated.

Formally, it is a construct M = (m,H, l0, lh, R), where m is the number
of registers, H is the set of instruction labels, l0 is the start label, lh is the
halting label, and R is the set of instructions; each label from H labels only one
instruction from R. There are several types of instructions which can be used.
For li, lj , lk ∈ H and r ∈ {1, . . . , m} we have

– li : (nADD(r), lj , lk) - nondeterministic add: Add 1 to register r and then go to
one of the instructions with labels lj or lk, nondeterministically chosen.

– li : (SUB(r), lj , lk) - zero check and subtract: If register r is non-empty, then
subtract 1 from it and go to the instruction with label lj , otherwise go to the
instruction with label lk.

– lh : HALT - halt: Stop the machine.

A register machine M computes a set N(M) of numbers in the following way:
It starts with empty registers by executing the instruction with label l0 and
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proceeds by applying instructions as indicated by the labels (and made possible
by the contents of the registers). If the halt instruction is reached, then the
number stored at that time in register 1 is said to be computed by M . Because
of the nondeterminism in choosing the continuation of the computation in the
case of nADD instructions, N(M) can be an infinite set.

Note that register machines can be defined with a deterministic variant of
the nADD instructions, li : (ADD(r), lj), as deterministic computing devices which
compute some function of an input value placed initially in an input register. It
is known (see, e.g., [5]) that in this way they can compute all functions which
are Turing computable. We made the add instruction nondeterministic in order
to obtain a device which generates sets of numbers starting from a unique initial
configuration. As any recursively enumerable set can be obtained as the range
of a Turing computable function on the set of non-negative integers, this way we
can generate any recursively enumerable set of numbers.

Theorem 1. All recursively enumerable sets of natural numbers can be gen-
erated by a symport/antiport P system with membrane boundaries having one
membrane and using minimal parallel, sequential, or asynchronous rule applica-
tion.

Proof. We show how the computations of a register machine can be simulated
by a P system where the applicability of the rules are regulated by the generated
membrane boundaries. Let M = (m,H, l0, lh, R) be a register machine as above,
and let us assume, without the loss of generality, that besides the output register,
all registers are empty when the halt instruction is executed.

Let ΠM = (V, [ ]1, w1, R1) be a P system as follows.

V = {ti,j | li, lj ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {tini, th, b, c, d},

w1 = tini,

R1 = {(tini, out; t0,i, in), (tini, out; t0,j , in) | l0 : (nADD(r), li, lj) ∈ R or
l0 : (SUB(r), li, lj) ∈ R} ∪

{(ti,j , out; artj,X , in), (ti,k, out; artk,X , in) | li : (nADD(r), lj , lk) ∈ R,

lX ∈ H} ∪
{(arti,j , out; tj,X , in), (ti,k, out; tk,X , in) | li : (SUB(r), lj , lk) ∈ R,

lX ∈ H} ∪
{(th,X , out; th, in) | lX ∈ H} ∪ {(c, out; c, in), (thcd, out)}.

The membrane approximation space MAS(ΠM ) = 〈V ∗,B,DB, l, u, b〉 asso-
ciated to ΠM is defined by the base multisets (we use the string notation for
multisets, as before)

B = {cc, thb} ∪ {arb, ard | 1 ≤ r ≤ m} ∪ {th,Xth | X ∈ H} ∪
{ti,jtj,X | li, lj , lX ∈ H} ∪ {ti,kar | li : (SUB(r), lj , lk) ∈ R} ∪
{an

i db | 1 ≤ i ≤ m, n ≥ 1} ∪ {tinit0,X | lX ∈ H}.
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Note that the set of base msets is infinite, it contains a multiset an
i db for all

1 ≤ i ≤ m and n ≥ 1.
To see how the register machine M is simulated by ΠM , consider the follow-

ing. ΠM starts in the initial configuration

(tinicd).

The msets tinit0,X are in B for all lX ∈ H, but there is no object t0,X inside
the first region, so tini is element of the unstable part UNSin(1) of the first (and
only) region, and as there is an unlimited supply of t0,X in the environment,
it is also element of the boundary bndinstable(1) while t0,X for all lX ∈ H are in
bndoutstable(1). This means that a rule (tini, out; t0,X , in) can be used resulting in
the configuration

(t0,Xd) for some lX ∈ H.

This configuration corresponds to the situation when M is going to execute the
instruction l0 which will be followed by instruction lX .

To look at the simulation in a more general way, note that configurations

(an1
1 an2

2 . . . anm
m ti,Xd)

of Π correspond to the configurations of M in such a way, that ni, the number
of occurrences of object ai, 1 ≤ i ≤ m, is the value stored in the ith register,
and the next executed instruction li will be followed by lX .

(1) If lX �= lk for some li : (SUB(r), lj , lk), then ti,X is again the element of
the unstable part of the region, moreover, it is in bndinstable(1) while tX,Y for all
lX , lY ∈ H are in bndoutstable(1) (because ti,XtX,Y ∈ B), so the rule simulating the
instruction li can be executed.

Let us suppose that lX = lj for some instruction li : (nADD(r), lj , lk) or
li : (nADD(r), lk, lj). In this case, the number of ar objects inside the region
should be increased by one. Since the only base msets containing ars are an

r db
for n ≥ 1, and b is not present inside the region, there are either no ars, or
they are the elements of UNSin(1). Moreover, since an

r db ∈ B for all n ≥ 1,
there is an unlimited supply of ar in the outside boundary bndoutstable(w1). Thus,
a rule (ti,j , out; artj,X , in) increasing the number of ars inside the system and
introducing the transition symbol tj,X for some lX ∈ H can be used.

If lX = lj for an instruction li : (SUB(r), lj , lk), then the number of ar objects
inside the region should be decreased by one. Since ardb ∈ B and b is not
inside the system, if there are ar symbols inside, then they are in the inner
boundary bndinstable(w1). This means that the rule (arti,j , out; tj,X , in) simulating
the decrement instruction can be used.

(2) If lX = lk for some li : (SUB(r), lj , lk), then there should be no ar present
inside the system. As ti,k is an element of the boundary only if no ar is present
(because arti,k is a base mset, so if there are ars inside, then ti,k does not become
part of the unstable region of the membrane) the computation can only continue,
if this requirement is satisfied.
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To summarize the above considerations, we can conclude that a configuration

(an1
1 an2

2 . . . anm
m ti,Xd)

is changed to
(an′

1
1 a

n′
2

2 . . . a
n′
m

m tX,Y d)

such that the numbers of occurrences n′
i of ai, 1 ≤ i ≤ m correspond to the

counter contents after executing the instruction labeled by li.
If at some point of the functioning of ΠM , the object th,X is introduced for

some lX ∈ H, then the execution of the halting instruction should follow. This is
possible, since th,X is part of the inner, and th is part of the outer boundary, so
after the use of the rule (th,X , out; th, in) we have th inside the system, which is
again an element of the inner boundary, since thb ∈ B. Thus, the rule (thcd, out)
can be used (c is also in the boundary, because of cc ∈ B, just as is d, because of
an
i db ∈ B) ending the computation by stopping the “infinite loop” implemented

by the rule (c, out; c, in). This infinite loop prevents the halting of the system in
the case of a computation which does not correspond to a computation of the
simulated register machine M .

8 Conclusion

We have introduced a notion of boundaries in membrane systems which is based
on the concept of chemical stability: The base msets of the multiset approxima-
tion space represent stable complexes, the objects which are in a low energy state
together, a state where they are not likely to engage into any type of interaction,
or chemical reaction.

We have also demonstrated how this new notion of membrane boundaries can
be employed to control the application of rules, or more precisely, the availability
of objects for interaction: objects can only be the subject of rule application if
they are on the boundary of the region that contains them. As an initial result,
we used this technique to implement “appearance checking” (or zero checking)
in such a way which does not rely on the maximal parallel way of rule applica-
tion, thus, membrane systems with boundaries can simulate register machines
also when using any type of “non-maximal-parallel” or asynchronous rule appli-
cation. This is an interesting result since these types of systems without mem-
brane boundaries can only generate the Parikh sets of matrix languages, which
is a strict subclass of the class of recursively enumerable languages (see [11],
Chapter 5 for more details).
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12. Sośık, P.: P systems versus register machines: two universality proofs. In: Păun,
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Abstract. We present a simple membrane computing model for a typ-
ical structured grid algorithm: a parallel and distributed seeded region
growing algorithm for gray images. With a proper granularity, the sys-
tem can be efficiently mapped to a distributed Actor system, possibly a
cloud-based Actor system. The image pixels are partitioned in rectangu-
lar sub-images, which are modeled as complex cells and evolve via inter-
cell parallelism. Pixels inside a cell are modeled as sub-cellular objects
and evolve via intra-cell parallelism. The presented model is synchro-
nous, but can be further extended to an asynchronous version. Each cell
can be efficiently implemented on a multi-core or many-core architecture
and cells can communicate their boundary data via messages.

Keywords: Membrane computing · P systems · Inter-cell parallelism ·
Intra-cell parallelism · Prolog terms · Complex objects · Generic rules ·
Image processing · Seeded region growing · Parallel and concurrent mod-
els · Synchronous and asynchronous models · Termination detection ·
Message-based · Actor model · Computation and communication pat-
terns · The 13 Berkeley dwarfs

1 Introduction

We have previously used complex objects to successfully model problems in a
wide variety of domains: image processing and computer vision [12,13,17,18];
graph theory [11,22]; distributed algorithms [6,9,10,21,23,29]; high-level P sys-
tems programming [19,20]; numerical P systems [19,20]; NP-complete prob-
lems [19,20,23].

In this paper, we choose another fundamental image processing task: seeded
region growing of gray images. Specifically, we model the massively parallel algo-
rithm presented by Braünl et al. [5]. This algorithm is typical for a wide range of
parallel algorithms, collectively forming the structured grid dwarf – one of the
13 Berkeley dwarfs [3].

The image pixels are partitioned in rectangular blocks, which are modeled
as complex cells and evolve via inter-cell parallelism. Pixels inside a cell are
modeled as sub-cellular objects and evolve via intra-cell parallelism. Cells can

c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 321–337, 2015.
DOI: 10.1007/978-3-319-28475-0 22
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communicate their boundary data via messages, as in the Actor model [2,14].
The model presented here is synchronous, but can be further extended to an
asynchronous version.

Further, although not detailed here (for lack of space), we provide a couple of
direct emulations of this model in the Actors framework, using, first, (i) the single
system F#’s mailbox processor library [28]; and, next, (ii) its research cloud-
based extension Orleans [4,7]. Each cell/actor can be efficiently implemented on
a multi-core or many-core architecture.

We are aware of only a few previous papers studying membrane comput-
ing models for real-life complex image processing tasks. We remark an inter-
esting series of papers on membrane models for image thinning algorithms:
(i) Reina-Molina et al. [27] propose a traditional tissue system; (ii) Reina-Molina
and Dı́az-Pernil [26] discuss a similar tissue based system; (iii) Peña-Cantillana
et al. [24] discuss a related cellular model, mapped on the CUDA platform;
(iv) Dı́az-Pernil et al. [8] propose a spiking neural model, also mapped on the
CUDA platform; (v) Nicolescu [17] proposes several models based on complex
objects: two multi-cells systems, based on 1:1 mappings between pixels and cells;
and a single-cell system, based on a 1:1 mapping between pixels and sub-cellular
objects.

This experiment reinforces our earlier conjecture [17] that, given a good sup-
port for pattern matching, the translation from complex objects to Actors can
be largely automatised, not only for similar image processing tasks, but for many
other parallel applications, for both synchronous and asynchronous cases.

As in other similar papers, here we do not cover two important issues: the
initialisation and the termination detection of distributed algorithms. In fact,
we are not aware of many membrane computing studies on the distributed ter-
mination detection, which could be quite complex in the asynchronous setting.

For example, Nicolescu and Wu [23] and Wu [30] have recently studied
a systematic approach to distributed termination detection for diffusing (sin-
gle source) algorithms, but more studies are needed on non-diffusing (multiple
source) algorithms such as this (especially for scenarios when a master control
node cannot be easily incorporated). For the P systems model considered in this
paper, we just follow the standard theoretical definition that the whole system
“magically” stops when none of its cells can further evolve.

Because of space constraints, for the rest of the paper, we assume some basic
familiarity with:

– The basic region growing concepts. Section 2 presents a bird’s eye view; for
further details see the monograph of Braünl et al. [5].

– The structured grid pattern in parallel processing. Section 3 presents a bird’s
eye view; for further details see the classical Berkeley papers on the 13 parallel
dwarfs topic, e.g. [1,3].

– The Actor model in functional programming, e.g. as discussed in Sime’s mono-
graph [28].
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– The basic definitions used in traditional tissue-like transition P systems,
including state based rules, weak priority, promoters and inhibitors, e.g. as
discussed in the membrane computing handbook [25].

– The membrane extensions collectively known as complex objects, proposed by
Nicolescu et al. [17,19,20,23], i.e. complex objects, generic rules, and “micro-
surgeries” on inner nested sub-cellular objects. However, to ensure some
degree of self-containment, these extensions are reviewed in Sect. 4.

2 Background: Seeded Region Growing

Like other segmentation methods [5], region growing wants to simplify an image
by evidencing large connected sets of pixels with similar characteristics, which
probably belong to the same objects. More technically, the ideal goal of region
growing is a partition of an image A into regions Ri, such that:

1. A =
⋃

Ri, the regions cover the entire image
2. Each region, Ri, is connected (over the 4 or 8 neighbourhood)
3. Ri ∩ Rj = ∅, i �= j, regions are disjoint (of course)
4. All pixels of a region, Ri, satisfy a specific condition P (Ri)
5. ¬P (Ri ∪ Rj), i �= j, pixels of the union of any two regions do not satisfy the

given condition P

Often, the condition P can simply require that the gray values of pixels are
not too far apart – i.e. their difference is less than a given threshold.

Typically, region growing works bottom-up, in a sequence of steps. It starts
from a set of seeds which define the initial regions. At each step, each region
may grow by annexing adjacent pixels which verify the given condition P ; these
pixels may have been unallocated, but may also be taken from less suitable
regions (which means that some regions may also shrink or shift in the image
space).

The condition P is further specialized. Each region has a value, equal to the
pixel value of its initial seed. Besides the pixel intensity, each node holds a copy
of the region value and an unique label (ID). A region can claim a pixel if the
difference between the region value and that pixel intensity is less than the given
threshold. The process ends when no more changes are possible.

For our study, we select the region growing algorithm described by Braünl et
al. [5]. As in this monograph, we assume that the seeds and the threshold have
already been selected, e.g. either by their gray intensity or by an arithmetic
progression on the image axes – for example, pixels are seeds if their coordinates
are divisible by a given number (e.g. 8). However, we side note that selecting the
best seeds and threshold is another interesting and complex problem.

Conflicting claims, when two regions attempt to annex the same pixel, are
arbitrarily resolved by allocating unique labels (IDs) to each seed and region,
and giving priority to the region with the highest label. This ensures that the
algorithm is highly parallelisable and the resulting solution is unique (but the
result is biased in favour of higher numbered regions).
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While practically validating our P membrane model, we noticed that this
simple algorithm does not necessarily fulfills its theoretical ideal goals:

– The algorithm may violate item (1): the resulting region may not cover the
whole image, as some pixels may remain unallocated. While theoretically
annoying, this is acceptable, as it makes sense in practical cases.

– More problematic, but still acceptable practically, the algorithm may also
violate item (2): a region may split and become unconnected, after some of its
pixels are annexed by another higher-priority region.

It should be interesting to design and investigate more advanced versions of
this algorithm, which are less biased and theoretically correct, but still retaining
a high parallelisation potential — however, this is an open problem, outside the
scope of this paper.

Figures 1, 2, 3 and 4 illustrate a small artificial test image (8 × 8). The
following parameters were used: (i) the 4 neighborhood; (ii) the threshold was
80; (iii) seeds were defined as pixels with coordinates divisible by 3.

Figure 3 shows the regions which have started to form after the first step:
there were 22 changes and, in particular, the initial singleton region 55 (with
value 200) has extended to its N, S and W neighbours (with pixel intensities
200, 200, 180, respectively).

The final results of Fig. 4 highlights the above mentioned issues: (i) some of
the pixels remain unallocated – region label 0; (ii) region 52 ended disconnected
into four areas – also seen on Fig. 1b as medium gray shades below the dark
region.

(a) Test image – 8 × 8 pixels with
deep zoom

(b) Regions resulting from our im-
plementation – deep zoom

Fig. 1. Test which includes “pathological” cases (parameters in the text)

Figure 5 show a practical result of this algorithm. The left Fig. 5a shows a
photo of a night-time lightning. The right Fig. 5b shows the resulting regions,
after applying our implementation, where (i) we used the 4 neighborhood; (ii) the



Structured Grid Algorithms Modelled with Complex Objects 325

10 10 10 130 160 180 200 10

10 10 10 130 160 180 200 20

10 10 10 30 160 180 200 30

10 10 120 140 160 180 200 40

10 10 10 30 160 180 200 50

10 10 10 30 160 180 200 60

10 100 120 140 160 180 200 70
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(a) Pixel intensities
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25 0 0 28 0 0 31 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

49 0 0 52 0 0 55 0

0 0 0 0 0 0 0 0

(b) Seeds and initial region labels

Fig. 2. Initial test image and its 9 seeds (initial regions)
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(a) Region values after step #1

1 1 0 4 4 7 7 0

1 0 0 4 0 0 7 0

25 0 0 0 0 0 31 0

25 25 28 28 28 31 31 0

25 0 0 0 0 0 31 0

49 0 0 0 0 0 55 0

49 0 52 52 52 55 55 0

49 0 0 52 0 0 55 0

(b) Region labels after step #1

Fig. 3. Regions after step #1
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(a) Final region values

49 49 49 52 55 55 55 0

49 49 49 52 55 55 55 0

49 49 49 49 55 55 55 0

49 49 52 55 55 55 55 0

49 49 49 49 55 55 55 0

49 49 49 49 55 55 55 0

49 52 52 55 55 55 55 0

49 49 49 52 55 55 55 0

(b) Final region labels

Fig. 4. Final 3 regions (49, 52, 55) of the test image

(a) Original lightning image from
wikipedia – 457 × 334 pixels

(b) Regions resulting from our im-
plementation

Fig. 5. Region growing – lightning picture (parameters indicated in the text)
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threshold was 80; (iii) seeds were defined as the union of pixels with maximum
intensity (255 = white) and pixels with coordinates divisible by 4.

Like all algorithms from the structured grid class, this algorithm has a high
parallelisation potential and can be straightforwardly adapted for many-core
processors such as GPUs. In this paper, we are looking at modeling and imple-
menting it in a combined parallel+distributed way, where the distributed nodes
can be systems on a given network, but also cloud-based nodes.

3 Background: Structured Grid Dwarf

In the simplest form of the structured grid [1,3], the data is arranged in the
nodes of a rectangular 2D grid of nodes (e.g. 2D arrays) and is processed in a
sequence of steps (phases). Each step computes new values, which only depend
on the current values of a node and its adjacent grid neighbours.

Typically, this local neighbourhood consists of the four horizontally and verti-
cally adjacent nodes – symbolically denoted as N, E, S, W – as shown in Fig. 6a.
In some scenarious, the neighbourhood may also include the four diagonally
adjacent nodes – symbolically denoted as NE, SE, SW, NW – however, here
we do not follow this possible extension. The basic system works synchronously
and, typically, the new values become accessible to the neighbours only after all
nodes have completed their step.

On an uniprocessor system, each step requires a full sweep over the whole
grid. On a typical many-core system (e.g. GPU based), each node is mapped to
its own “thread” and all threads evolve in lock-step. On a multi-core system,
the grid can be partitioned among available cores, and, for each step, each core
sweeps over its allocated region and then post-step synchronisations are required.

Like the multi-core solution, a distributed solution starts with a partition –
typically rectangular – and its sub-grids are allocated among available systems,
as shown in Fig. 6b. Each of these systems can independently be an uni-core,
a many-core or a multi-core system, thus the final solution may combine the
benefits of parallel and distributed computing.

However, the problem is a bit more complex, as border nodes from one system
need data from neighboring systems. This problem can be solved via “ghost”
nodes, i.e. copies of border nodes of adjacent systems. In the simplest case, the
ghost nodes are aligned in one node wide rows and columns and are considered
read-only for the current sub-grid (essentially a one-way buffer), as their next
step values depend on data which is only available in the neighbouring systems.

Of course, these ghost nodes must be timely updated after each global step,
via post-step messages between systems – these updates can be performed via
high-level messages exchanged by a distributed or even cloud-based Actor sys-
tem, such as Orleans [4,7]. Thus, this algorithmic pattern is theoretically syn-
chronous, but its practical implementations need to cope with these typically
asynchronous messages exchanged between systems.

More flexible or more efficient systems can be designed by using (i) larger
ghost areas combined with less frequent messages and/or (ii) more complex
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logic that allows some of the inner nodes to independently progress a few steps
ahead, without requiring synchronizations. These are interesting questions which
however are out of the scope of this paper.

As it should now be apparent, the structured grid pattern is a good match
for the selected region growing algorithm. And, as we will show in Sect. 5, both
are decently modelled by membrane systems with complex objects.

NW N NE

W E

SW S SE

(a) Computing new values in the
4 neighbourhood

E

E

W

W

N
SS

N

(b) Distributed grid with ghost
nodes (gray), local computing
(short arrows) and cloning mes-
sages (long thick arrows)

Fig. 6. Structured grid – bird’s eye view

4 Membrane Computing with Complex Objects

For self-containment, we recall a few non-standard details of our complex-objects
framework. For a fuller picture, the reader is advised to check our earlier paper
on parallel thinning with complex objects [17].

4.1 Complex Objects

Complex objects play the roles of cellular micro-compartments or substructures,
such as organelles, vesicles or cytoophidium assemblies (“snakes”), which are
embedded in cells or travel between cells, but without having the full processing
power of a complete cell. In our proposal, complex objects represent structured
data that have no own processing power: they are acted upon by the rules of
their enclosing cells.

Technically, our complex objects, are Prolog-like first-order terms, recursively
built from multisets of atoms and variables, but extended over multisets (bags).
Atoms are typically denoted by lower case letters, such as a, b, c. Variables are
typically denoted by uppercase letters, such as X, Y , Z.
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Unification. All terms (ground or not) can be (asymmetrically) matched against
ground terms, using an ad-hoc version of pattern matching, more precisely, a one-
way first-order syntactic unification, where an atom can only match another copy
of itself, and a variable can match any bag of ground terms (including the empty
bag, λ). This may create a combinatorial non-determinism, when a combination
of two or more variables are matched against the same bag, in which case an
arbitrary matching is chosen. For example:

– Matching a(X, eY ) = a(b(c), def) deterministically creates a single set of uni-
fiers: X,Y = b(c), df .

– Matching a(XY ) = a(df) non-deterministically creates one of the following
four sets of unifiers: X,Y = λ, df ; X,Y = df, λ; X,Y = d, f ; X,Y = f, d.

– However, matching a(XY, Y ) = a(def, e) deterministically creates a single set
of unifiers: X,Y = df, e.

4.2 Generic Rules

By default, rules are applied top-down, in the so-called weak priority order.
Rules may contain any kind of terms, ground and not-ground; however, in this
proposal, cells can only contain ground terms.
Pattern Matching. Rules are matched against cell contents using the above
discussed pattern matching, which involves the rule’s left-hand side, promoters
and inhibitors. Moreover, the matching is valid only if, after substituting vari-
ables by their values, the rule’s right-hand side contains ground terms only (so
no free variables are injected in the cell or sent to its neighbours), as illustrated
by the following sample scenario:

– The cell’s current content includes the ground term:
n(l10, n(l20, f(l30), f(l40)), f(l50))

– The following rewriting rule is considered:
n(X,n(Y, Y1, Y2), f(Z)) → v(X) n(Y, Y1, Y2) v(Z)

– Our pattern matching determines the following unifiers:
X = l10, Y = l20, Y1 = l30, Y2 = l40, Z = l50.

– This is a valid matching and, after substitutions, the rule’s right-hand side
gives the new content :
v(l10) n(l20, f(l30), f(l40)) v(l50)

Generic Rules Format. More generally, we consider rules of the following
generic format, which defines templates involving variables (here we present a
simplified version, enough to cover all scenarios used in this paper):

current-state objects . . . →α target-state in-objects . . . (out-objects)δ . . .

| promoters . . . ¬ inhibitors . . .
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Where:

– States are complex objects (which can be matched, as previously described).
– All objects, promoters and inhibitors are bags of terms, possibly containing
variables (which are matched as previously described).

– Out-objects are sent, at the end of the step, to the cell’s structural neighbours.
These objects are enclosed in round parentheses which further indicate their
destinations, above abbreviated as δ; the most usual scenarios include: (a) ↓i

indicates that a is sent to child i (unicast), (a) ↑i indicates that a is sent to
parent i (unicast), (a) ↓∀ indicates that a is sent to all children (broadcast),
(a) ↑∀ indicates that a is sent to all parents (broadcast), (a) 	∀ indicates that
a is sent to all neighbours (broadcast).

– Symbol α ∈ {min, max} × {min, max}, indicates a combined instantiation and
rewriting mode, as further discussed below.

Example. To explain our combined instantiation and rewriting mode, let us
consider a cell, σ, containing three counter-like complex objects, c(c(a)), c(c(a)),
c(c(c(a))), and the four possible instantiation⊗rewriting modes of the following
“decrementing” rule:

(ρα) S1 c(c(X)) →α S2 c(X),where α ∈ {min,max} × {min,max}.

1. If α = min⊗min, rule ρmin⊗min nondeterministically generates and applies (in the
min mode) one of the following two rule instances:

(ρ′
1) S1 c(c(a)) →min S2 c(a) or

(ρ′′
1) S1 c(c(c(a))) →min S2 c(c(a)).

Using (ρ′
1), cell σ ends with counters c(a), c(c(a)), c(c(c(a))). Using (ρ′′

1), cell
σ ends with counters c(c(a)), c(c(a)), c(c(a)).

2. If α = max⊗min, rule ρmax⊗min first generates and then applies (in the min mode)
the following two rule instances:

(ρ′
2) S1 c(c(a)) →min S2 c(a) and

(ρ′′
2) S1 c(c(c(a))) →min S2 c(c(a)).

Using (ρ′
2) and (ρ′′

2), cell σ ends with counters c(a), c(c(a)), c(c(a)).
3. If α = min⊗max, rule ρmin⊗max nondeterministically generates and applies (in the

max mode) one of the following rule instances:

(ρ′
3) S1 c(c(a)) →max S2 c(a) or

(ρ′′
3) S1 c(c(c(a))) →max S2 c(c(a)).

Using (ρ′
3), cell σ ends with counters c(a), c(a), c(c(c(a))). Using (ρ′′

3), cell σ
ends with counters c(c(a)), c(c(a)), c(c(a)).
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4. If α = max⊗max, rule ρmin⊗max first generates and then applies (in the max mode)
the following two rule instances:

(ρ′
4) S1 c(c(a)) →max S2 c(a) and

(ρ′′
4) S1 c(c(c(a))) →max S2 c(c(a)).

Using (ρ′
4) and (ρ′′

4), cell σ ends with counters c(a), c(a), c(c(a)).

The interpretation of min⊗min, min⊗max and max⊗max modes is straightforward.
While other interpretations could be considered, the mode max⊗min indicates that
the generic rule is instantiated as many times as possible, without superfluous
instances (i.e. without duplicates or instances which are not applicable) and each
one of the instantiated rules is applied once, if possible.

If a rule does not contain any non-ground term, then it has only one pos-
sible instantiation: itself. Thus, in this case, the instantiation is an idempotent
transformation, and the modes min⊗min, min⊗max, max⊗min, max⊗max fall back onto
traditional modes min, max, min, max, respectively.

Special Cases. Simple scenarios involving generic rules are sometimes seman-
tically equivalent to loop-based sets of non-generic rules. For example, consider
the rule

S1 a(I, J) →max⊗min S2 b(I) c(J),

where I and J are guaranteed to only match integers in ranges [1, n] and [1,m],
respectively. Under these assumptions, this rule is equivalent to the following set
of non-generic rules:

S1 a(i, j) →min S2 b(i) c(j), ∀i ∈ [1, n], j ∈ [1,m].

However, unification is a much more powerful concept, which cannot be gen-
erally reduced to simple loops.

Note. For all modes, the instantiations are conceptually created when rules are
tested for applicability and are also ephemeral, i.e. they disappear at the end of
the step. P system implementations are encouraged to directly apply high-level
generic rules, if this is more efficient (it usually is); they may, but need not, start
by transforming high-level rules into low-level rules, by way of instantiations.

Benefits. This kind of generic rules allows (i) a reasonably fast parsing and
processing of subcomponents, and (ii) algorithm descriptions with fixed size
alphabets and fixed sized rulesets, independent of the size of the problem and
number of cells in the system (often impossible with only atomic symbols).

Synchronous vs Asynchronous. In our models, we do not make any syntactic
difference between the synchronous and asynchronous scenarios; this is strictly
a runtime assumption [16]. Any model is able to run in both the synchronous
and asynchronous runtime “engines”, albeit the results may differ.

In traditional synchronous P systems, all rules in a step take exactly one
time unit and then all message exchanges (including loopback messages for in-
objects) are performed at the end of the step, in zero time (i.e. instantaneously).
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Alternatively, but logically equivalent, we consider that rules in a step are per-
formed in zero time (i.e. instantaneously) and then all message exchanges are
performed in exactly one time unit. This second interpretation is useful, because
it allows us to interpret synchronous runs as special cases of asynchronous runs.

In the asynchronous scenario, we still consider that rules in a step are per-
formed in zero time (i.e. instantaneously), but then each message may take any
finite real time to arrive at the destination. Additionally, unless otherwise spec-
ified, we also assume that messages traveling on the same directed arc follow a
FIFO rule, i.e. no fast message can overtake a slow progressing one. This defin-
ition closely emulates the standard definition used for asynchronous distributed
algorithms [15].

Obviously, any algorithm that works correctly in the asynchronous mode will
also work correctly in the synchronous mode, but the converse is not generally
true: extra care may be needed to transform a correct synchronous algorithm
into a correct asynchronous one; there are also general control layers, such as
synchronisers, that can attempt to run a synchronous algorithm on an existing
asynchronous runtime, but this does not always work [15].

5 Membrane Model

We model the distributed structured grid pattern illustrated in Fig. 6b with one
cell for each sub-grid of the grid partition. Each cell contains a set of complex
objects, representing the internal nodes of the corresponding sub-grid – including
the ghost nodes.

In the basic theoretical scenario, like in many theoretical distributed algo-
rithms of the synchronous network model [15], all cells work synchronously and
exchange messages at the end of each logical step. Messages are sent along arcs
which are labelled N, E, S and W, according to the usual conventions. Effec-
tively, these messages clone the data of the border nodes into ghost nodes of
neighbouring cells.

We use a slightly modified unary notation for all numerical data: coordi-
nates, pixel intensities, region values, region labels. We use digit 1 as the tally
symbol; e.g., multiset 13 represents number 3 and the empty multiset ∅ repre-
sents 0. Like other theoretical models, such as lambda calculus, we use a base
1 number representation. As our model uses only simple arithmetic operations,
which can be very efficiently expressed by our complex rules (incrementations,
decrementations, comparisons), this representation does not affect the runtime
performance.

The threshold is described by a global complex object t(h), a copy of this is
present in each cell. Conceptually, we view each sub-grid as a 0-based 2D array,
whose last coordinates are described by a cell-global complex tuple d(x, y).

For example, d(17, 17) can describe the size of any of the sub-grids of Fig. 6b,
which all have 6 × 6 proper nodes and four groups of 6 ghost nodes – in this
sample, the x and y coordinates run in the 0..7 inclusive interval. Note that
borders are proper nodes, not ghosts – in this sample, borders have one of their
coordinates (either x or y or both) 1 or 6.
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Each internal node is represented as a complex tuple n(x, y, p, v, r), where (i)
x and y are its internal coordinates – zero or maximal x, y coordinates indicate
ghost nodes, otherwise the node is proper; (ii) p is the pixel intensity; (iii) v is
region value; (iv) r is the region label. Temporary copies have an additional com-
ponent (v) c, a change flag, indicating whether the contents have been changed,
0 – no, 1 – yes.

Essentially, a cell updates all its proper nodes in parallel, where each node
updates its state according to the states of its adjacent N, E, S and W nodes.
Although the whole evolution could be described by a single (but quite complex)
membrane step, we prefer a more straightforward ruleset, using a small but
fixed number of membrane steps. Without loss of generality, adjacent nodes are
successively considered in this order: 1–N, 2–E, 3–S, and 4–W.

We start by making temporary copies of all current tuples n, logically keeping
these at the same coordinates, but resetting the change flag to 0 – the resulting
tuples are called n0:

s0 →max⊗min s0 n0(X,Y, P, V,R, 0)
| n(X,Y, P, V,R)

Let us now consider the temporary tuple n0(x, y1, p, v, r, c) and its N neigh-
bour’s tuple n(x, y, p′, v′, r′). If |p − v′| < h and r < r′, then this node can be
claimed by its neighbour’s region and we create another temporary tuple reflect-
ing this, n1(x, y1, p, v′, r′, 1). Otherwise, the new tuple n1 is just a copy of n0.
The following membrane rules model this conditional evolution as one transition
step, from s0 to s1:

s0 n0(X,Y 1, P, V,R, ) →max⊗min s1 n1(X,Y 1, P, PG,R1R′, 1)
| t(G1 ) n(X,Y, P ′, PG,R1R′)

s0 n0(X,Y 1, V ′G,V,R, ) →max⊗min s1 n1(X,Y 1, V ′G,V ′, R1R′, 1)
| t(G1 ) n(X,Y, P ′, V ′, R1R′)

s0 n0(X,Y 1, P, V,R,C) →max⊗min s1 n1(X,Y 1, P, V,R, 1)
| n(X,Y, P ′, V ′, R′)

We repeat similar rules to check the other neighbours, E, S and W:
we next check n1(x, y, p, v, r, c) against the E neighbour n(x1, y, p′, v′, r′, c′),
then n2(x, y, p, v, r, c) against the S neighbour n(x, y1, p′, v′, r′, c′), and finally
n3(x1, y, p, v, r, c) against the W neighbour n(x, y, p′, v′, r′, c′). We end in state
s4, with a temporary tuple n4.

We now replace the existing tuples n by the possibly modified tuples n4 and
then send the updated border nodes data to neighbouring cells. The following
rules detail this update and the outgoing messages due for the N border, which
are sent over the outgoing arc labelled N (the other border cases are not detailed,
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but follow the same pattern). Note the N border is defined by the coordinate
y = 1.

s4 n(X,Y, P, V,R) n4(X,Y, P ′, V ′, R′, C ′) →max⊗min s5 n(X,Y, P ′, V ′, R′, C ′)
s5 →max⊗min s6 g(X, 1, P, V,R,C) 	N

| n(X, 1, P, V,R,C)
s5 →max⊗min s6

The next and final step of this mini-cycle is to reset all ghost cells to the
received data, and then to loop back to the initial state s0. Here we only detail
the process of data received from the S neighbour. Note that data received from
the N border of our S neighbour has y = 1. The system uses these to replace the
S ghost line, which has Y equal to the maximum Y of this cell, as given by our
dimension tuple d.

s6 n(X,Y, , , , ) g(X, 1, P, V,R,C) →max⊗min s0 n(X,Y, P, V,R,C)
| d( , Y )

...

s6 →max⊗min s0

The theoretical system stops when there are no more changes, but practical
implementations must find means that allow the cells to actively detect the
termination. The simplest ad-hoc – but less than optimal – solution is to add
a new node which has only one task: to centralize the state of each other node
and notify the global termination when no cell can make further progress.

6 Evaluation

We evaluate our P systems with Complex Objects model (PCO) against the
Parallaxis version (PAR), used in the original proposal [5].

In contrast with more traditional P systems, but like other models based
on complex objects, PCO uses a small fixed size ruleset and runs in the same
number of rounds as PAR. We believe that the results are encouraging, despite
the fact that there is no totally objective (non-biased) way to directly compare
two very different frameworks, such as PCO and PAR.

Program size

PCO has 11 rules (fixed size). PAR has 42 statements.

Runtime

Both algorithms take the same number of rounds. A PCO round takes 10 P steps.
A PAR round takes 8 critical MOVE/SEND steps, a few other minor steps,
plus a costly critical REDUCE macro-step – which itself may take log n2 more
elementary steps.
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Scalability

PAR runs on one single system only, which may be single-core, multi-core or a
many-core massively parallel SIMD.

Without any changes, PCO scales from running on one single cell to a dis-
tributed grid of cells. In a practical implementation, each cell can be mapped
to one computing node, where each node can independently be a single-core,
multi-core or many-core system.

Asynchronous Support

As defined, PAR strictly requires a synchronous system. As presented here, PCO
also runs on synchronous systems; however, it can be adapted to run on asyn-
chronous systems.

Specifically, a local synchronizer logic [15] can be retrofitted into existing
cells, by including step numbers in data and rules – these will inhibit any evo-
lution until all required data is available (i.e. until receiving all step messages).

Termination

In both cases, the termination detection is laborious or solved by ad-hoc means.
Despite running on one single system only, PAR ends each round with a costly
REDUCE macro-step, which indicates the need for a further round.

As described here, PCO uses the traditional definition for P systems ter-
mination: the system stops when no more changes are globally possible. While
mathematically appealing, this solution is hardly practical in the real world.

A clean shortcut is possible when PCO runs on one single cell (like PAR):
the system could easily stop at state s2, if there are no cell-wide changes, which
is indicated by c(0). For a grid-based implementation, state s2 is good point to
start a termination detection round, but this issue is not further discussed here.

This membrane model has been manually implemented, using F#, as func-
tional Actor system. Conceptually, the implementation is a close match of the
model and its performance is comparable to the performance of manually crafted
more imperative implementations.

7 Conclusions

We discussed a membrane model for a fundamental image processing task: seeded
region growing. Our proposed model is heavily based on our complex object
extensions and compares favourably with the original high-level formalisation,
in terms of size (fixed!), complexity (self-contained) and runtime performance
(counting the number of steps). Our model can be straightforwardly mapped
as a distributed Actor model and further implemented on physical parallel and
distributed systems, including cloud distributed Actor systems.

Our experience suggests that similar modelling techniques can be applied to
many other parallel algorithms which follow patterns similar to the structured
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grid of the Berkeley dwarf mine. Our exercise has also highlighted an extant
open problem, previously unnoticed, in the original algorithm which inspired its
starting base.

While typical image segmentation tasks may not require cloud-based imple-
mentations, other structured grid applications do require substantial processing
power. For example, in medical image analysis, typical 3D images may con-
tain n3 voxels; n = 500..2000 and more, and many such images are involved in
4D (3D + time) dynamic sequences like cine heart images. Such volumes may
require cloud processing. In principle, our approach seems extendable to multi-
dimensional spaces, to offer directly executable models for such complex tasks.

Together with some of our previous results (which have resulted in a corrected
and better refactored practical image processing implementation), these new
results strengthen our positive views on the adequacy of our complex objects
extensions for modelling real world parallel and distributed problems.

This exercise raises quite a few open questions, perhaps more interesting
than the problem it solved (some of these were asked by the reviewers). Can
we design better versions of the considered segmentation algorithm, which over-
comes its limitations while still remaining highly parallelisable? Are there better
ways to detect the termination of such non-diffusing distributed computations?
What is the optimal width of the ghost areas and is it worth to allow a par-
tial asynchrony (e.g. allowing some cells to make several operations ahead of
receiving their post-step synchronisation messages)? Can we effectively develop
crisp and efficient P systems models for structured grid tasks in n-dimensional
spaces? How straightforward can other algorithms or patterns from Berkeley’s
dwarf mine be modelled via P systems with complex objects (or else, would this
require additional extensions)?

Acknowledgments. We are deeply indebted to the anonymous reviewers for their
valuable comments and suggestions.
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Abstract. Stream processing engines have appeared as the next genera-
tion of data processing systems, facing the needs for low-delay processing.
While these systems have been widely studied recently, their ability to
adapt their processing logics at run time upon the detection of some
events calling for adaptation is still an open issue.

Chemistry-inspired models of computation have been shown to ease
the specification of adaptive systems. In this paper, we argue that a
higher-order chemical model can be used to specify such an adaptive
SPE in a natural way. We also show how such programming abstractions
can get enacted in a decentralised environment.

1 Introduction

In the quest to reducing data processing delays for demanding applications,
industry is shifting from the traditional user-driven store-and-process approach
to a system-driven on-the-fly processing approach. The reduction of processing
delays is particularly crucial in domains such as social networking, where current
trends need to be figured out quickly before they get outdated, environmental
systems (e.g., climate and traffic), or military applications (e.g., missile or target
detection).

This reduction of processing delays has led to a new generation of Stream
Processing Engines (SPEs) addressing the processing of continuous streams
of data, while minimizing the end-to-end processing delay. SPE tools and
approaches [1,2,8,10,13] share a common ground in their programming model:
the programmer needs to specify a set of operators every data item is supposed
to traverse. The operators are combined in a directed acyclic graph (DAG). SPEs
are closely related to the field of workflow computing in which the applications
are specified as a DAG of tasks.

For many reasons, this workflow of operators processing an incoming con-
tinuous stream of data may have to be adapted at some point at run time.
Imagine for instance a weather monitoring system based on a workflow W . In
regular conditions of operation, W stays the same, and data sent from the set of
sensors allowing to monitor the weather systematically follows the same path.
Imagine further that, some particular pattern in the data is detected, meaning
that a storm is coming. This calls for a different processing pipeline, specialised
in emergency situations. In this state, W needs to be adapted to, say, W ′ in
order to reflect this new processing pipeline. In other words, the program itself
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-28475-0 23
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needs to be changed at run time, upon the detection of some particular (possibly
complex) event. This kind of adaptiveness cannot afford stopping and restarting
the system as it would require too much time.

Chemistry-inspired models of computation have been shown to ease the spec-
ification of adaptive systems. In this paper, we argue that a higher-order chemical
model can be used to specify such an adaptive SPE in a natural way. We also
show how such programming abstractions can get enacted in a decentralised
environment.

Section 2 presents related work. In Sect. 3, the basics of our programming
model is introduced. In Sect. 4, the abstractions for the specification of adaptive
workflows are presented and illustrated. In Sect. 5, our software prototype for
decentralised workflow execution is briefly discussed, as well as how to include
the support for the new concepts, and Sect. 6 concludes this work.

2 Related Work

There is a longstanding effort to provide suitable frameworks to the scientific
community in order to design and enact workflows [16]. However, most of cur-
rent solutions are not designed to handle stream processing. Moreover, workflow
adaptiveness is rarely targeted in scientific workflows. In this section, we present
some works describing analogous techniques and models.

In [11], authors propose a framework to compensate for the impedance mis-
match between scientific workflows and continuous data streams. They also pro-
pose workflow semantics to incorporate stream in scientific workflows. They aim
at extending the support for workflow execution in a way that satisfies the follow-
ing requirements: preserve the workflow programming model for the user; make
changes transparent to the workflow engine; and define workflow patterns to use
them as new workflow semantics. In a similar way, the work in [19] addresses
the lack of integrated support for data models to support emerging applications
that are streaming oriented. They propose a scientific workflow framework sup-
porting files, structured collections and data streams. Both approaches place the
emphasis upon the programming model rather than the execution model. They
clearly state the need for streaming support in scientific workflows for applica-
tions that responds to events in the environment at real time, but distributed
execution and adaptiveness are not addressed in these works.

Most workflow manager systems ensure enactment flexibility at infrastruc-
ture level. Nevertheless, the work presented in [17] proposes an adaptive excep-
tion handling at definition level that is comparable to our programming abstrac-
tions defined for adaptiveness. The authors propose two patterns to manage the
exception handling based on the Reference Nets-within-Nets formalism: propa-
gation and replacement. In spite of mechanisms for dynamically adapting the
workflow structure at run time, the resulting representation with their reference
model suggests a complex workflow definition, where the original scenario and
the alternative path are mixed (expressed in the same description artifact).

Our work envisages the workflow execution as an autonomous process evolv-
ing in time according to the requirements and dependencies without bounding
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to any preset constraint. A similar approach described by Verma et al. [18] pro-
poses a workflow manager system inspired by P-Systems. Nevertheless, they are
focused on the elasticity properties of their framework and the associated for-
malism. They do not cover features such as adaptiveness or stream processing
support. In terms of architecture, our approach takes its roots in the work pre-
sented in [7]. Although there is an important evolution due to the adaptiveness
introduction and the continuous data streams management detailed hereafter.

The idea of using chemical programming to enact workflows autonomously
is not new [4,5,12]. These works, however, remain abstract, and only few clues
are given concerning how to implement such approach, or if it would include
centralised or decentralised settings. Again, they do not consider neither streams
nor adaptiveness.

3 Preliminaries

In this paper, we rely on the Higher-Order Chemical Language (HOCL) [3].

3.1 HOCL

HOCL is a rule-based language. In HOCL, data is left unstructured in a multiset
on which a set of rules is applied concurrently. The role of the programmer is
to write this set of rules, which given a particular input multiset will output
another multiset containing the results. In other words, the initial multiset of
data, containing the input, is re-written by the rules, to produce the final mul-
tiset, containing the output. Such a programming approach allows users to con-
centrate on the problem to be solved without having to worry on some external
constraints on data structures and control. Let us illustrate the expressiveness
of HOCL through the classic max problem, which extracts the highest values
from a multiset of values. In HOCL, the max problem is solved by the following
program, given a particular input:

let max = replace x, y by x if x ≥ y in 〈2, 3, 5, 8, 9,max〉
The max rule consumes two integers x and y when x ≥ y and replaces them

by x. Initially, several reactions are possible in the provided multiset (between
symbols < and >), max can use any couple of integers satisfying the condition:
2 and 3, 2 and 5, 8 and 9, etc. At run time, the rule will be applied in some
order (unknown, and left to the interpreter’s developer). Whatever the order is,
the final content of the multiset will be 〈9〉.

Looking carefully, we observe that max is part of the program. HOCL pro-
vides the higher order: rules are first-class citizens in the multiset. In fact, max
is present in the solution from the beginning to the end of the execution. Also,
a rule can apply on other rules. For instance, removing max can be done by
structuring the multiset and adding a rule in the initial program.

let max = replace x, y by x if x ≥ y in

let clean = replace − one 〈max, ω〉 by ω in 〈〈2, 3, 5, 8, 9,max〉, clean〉
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The program has been restructured to put our initial program in an outer multi-
set containing it and a new clean rule which will extract the result from the inner
multiset, and remove max at the same time. However, to be sure that the final
(outer) multiset contains the correct result, we need to apply this new rule only
when the execution of the inner multiset is completed. This is what the HOCL
execution model assumes. Note that the latter rule is a replace-one rule. It
is one-shot: it will disappear from the multiset once triggered (and completed).
The ω symbol has a special connotation as it can match any molecule. In this
case, it will match the result.

The chemical analogy is as follows: the multiset is a solution in which data
atoms float and react according to reaction rules when they meet. In the follow-
ing, we adopt the chemical vocabulary to designate artifacts of the programming
model. Note that the terms solution and multiset can be used interchangeably.
An atom can be either a simple one (such as a number or a string), or a struc-
tured one, such as a subsolution, denoted 〈A1, A2, . . . , An〉, or a tuple denoted
A1 : A2 : · · · : An.

The previous example shows how the program’s behaviour can change
dynamically through the injection or removal of some rules. It also suggests
that the multiset is a container for the state of the program, on which possibly
distributed engines can apply rules.

For the sake of simplicity, in the following, we will use the notation A → B
to simplify the specification of the n-shot rule replace A by B. A one-shot
rule will be written A →1 B. Some of them can be named using the following
syntax:

rulename : A → B

Ordered collections are manipulated as lists using the following functions:

– first(l) returns the first element of the list l,
– rest(l) returns l deprived of its first element,
– cons(e,l) returns l with the element e added at its end, and
– concat(l1,l2) returns the concatenation of l1 and l2,

Note that ω denotes any combination of atoms. It is used as a wildcard
molecule, and [] denotes the empty list.

3.2 HOCL and P-Systems

Built on top of the principles of chemical programming, membrane computing,
also called P-systems, relies on a structure of nested membranes [15]. The ele-
ments floating in them are called molecules. The membranes form a hierarchical
structure, and the membrane containing another membranes is called its parent.
An element can move from one membrane to another one which is either its par-
ent or one of its child membranes. These movements between membranes can
be used to model communications. In terms of execution model, and following
a discrete-time approach, one of their primary objective is to consume as many
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molecules as possible at each step, in order to try to minimise the global execu-
tion time. This execution model constitutes a difference with the execution model
of chemical computing where the actual level of parallelism is left to the engine
implementor. Other peculiarities of HOCL compared to P-systems, is its abil-
ity to model sequential behaviours through subsolutioning, and the higher-order.
Note however, that many flavours of execution models, especially regarding level
of parallelism, have been discussed for P-systems in literature [14]. Let us finally
mention the series of work about the MGS system, which is another good exam-
ple of a series of work where rule-based programming has been investigated in
conjunction with membrane systems [9].

4 Programming Abstractions for Workflows

4.1 Workflow Description

We now devise a set of abstractions based on HOCL to program adaptive work-
flows. Each service taking part in the workflow is represented as a subsolution,
and each of these subsolutions will contain a set of atoms modeling queues stor-
ing incoming or result data. Let src be the set of sources of one given service.
Each of these queues is a list � tagged by the parametric keyword ini. Then, the
set of queues can be written:

{ini : �ini | i ∈ src}

Secondly, a service is equipped with a queue where to put the results of the
computation. This queue is unique for each service and is tagged by res:

res : �res

Note that a service implementation (the actual binary program producing the
output) needs to be specified. This will be simplified as a function name tagged
by srv in the following. To sum up, a service S having the set of sources src
and the implementation “func” can be denoted as follows:

S : 〈{ini : �ini
| i ∈ src},res : �res, srv : “func”〉

Let us now give an example of a workflow. Consider the workflow depicted in
Fig. 1. It is given in its graphic form, on the left, and in its HOCL description form
(i.e., the initial multiset) on the right. Each subsolution Si acts as a container
of the information related to a given service. in and res queues, as well as the
actual service to be called, are specified within each service’s subsolution. All
Si subsolutions act as contexts, and delimit the scope of atoms it contains. For
instance, the in : �in atom is present in both S1 and S2 but they are two different
atoms, representing two different input queues. Note that initially, all queues are
empty, except for S1 and S2 that are the first services of the workflow and receive
their input from the external world.
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S1 : in: in, res:[ ], srv:“func1”
S2 : in: in, res:[ ], srv:“func2”
S3 : in1:[ ], in2:[ ], res:[ ], srv:“func3”
S4 : in2:[ ], res:[ ], srv:“func4”
S5 : in3:[ ], res:[ ], srv:“func5”
S6 : in3:[ ], in4:[ ], res:[ ], srv:“func6”
S7 : in5:[ ], in6:[ ], res:[ ], srv:“func7”

Fig. 1. A workflow DAG and its HOCL description counterpart

4.2 Workflow Enactment

Let us now describe the set of rules needed to enact this workflow, in an HOCL
interpreter. We actually need two types of rules. The first one, denoted call, is
related to processing. In other words, it applies the operator specified in the atom
tagged by the srv keyword to the set of inputs. Each service’s input consists
in one element taken from each of the input queues, this represents the set of
parameters for the func-i operator. For instance, the call1,∅ parametric rule to
be put within S1 is:

in : �in,res : �res, srv : “func1”
↓

in : rest (�in),res : cons (func1(first (�in)), �res, srv : “func1”)

This operation takes its input in the head of the in queue, and puts the result
of the invocation of the service it encapsulates at the tail of the res queue. This
rule is specific to S1. The equivalent for S3, call3,{1,2} is the following—the
only noticeable difference, compared to S1 stands in the fact that one element
is taken from both in queues containing the results of S1 and S2, respectively.

in1 : �in1 , in2 : �in2 ,res : �res, srv : “func3”
↓

in1 : rest (�in1), in2 : rest (�in2),res : cons (func3(first (�in1),first (�in2)), �res)

More generally, the calli,src rule can be seen as a parametric template, para-
metric by 1) i, the service identifier and 2) src, the set of identifiers of the
sources of the service. Then, rule calli,src has the following general form:

{inj : �inj
| j ∈ src},res : �res, srv : func :: String

↓
{inj : rest (�inj

) | j ∈ src},res : cons (func({first (�inj
) | j ∈ src}), �res)

The second type of rules, denoted pass, enables the information transfer between
services. Let us consider the transfer needed from S1 to S3. What is needed here
is to model the transfer from S1’s queue res to the queue in1 included in the
S3 subsolution:
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S1 : in:[e1, e2], res:[ ], srv:“func1”, call1,∅ ,
S2 : in1:[ ], res:[ ], srv:“func2”, call2,{1} ,
S3 : in1:[ ], res:[ ], srv:“func3”, call3,{1} ,
S4 : in2:[ ], in3:[ ], res:[ ], “func4”, call4,{2,3} ,
pass1,{2,3}, pass2,{4}, pass3,{4}

Fig. 2. Workflow definition with call and pass rules

S1 : 〈res : �res, ω1〉, S3 : 〈in1 : �in3 , ω3〉
↓

S1 : 〈res : [ ], ω1〉, S3 : 〈in1 : concat (�in3 , �res), ω3〉
Note that, while the call rule makes sense inside the subsolution of the

service invoked, in the pass rule, several subsolutions (source and destinations)
are pertained by the action. Similarly, as for the rule modeling the information
transfer from S1, the rule for S3 is as follows:

S3 : 〈res : �res, ω3〉,
S5 : 〈in3 : �in5,3 , ω5〉, S6 : 〈in3 : �in6,3 , ω6〉

↓
S3 : 〈res : [ ], ω3〉,

S5 : 〈in3 : concat (�in5,3 , �res), ω5〉, S6 : 〈in3 : concat (�in6,3 , �res), ω6〉
Each time this rule is invoked, it empties the result queues, and transfers all
the elements that have been queued since the last application of this rule. More
generally, the pass rules are of the parametric form passsrc,dst, the parameters
being 1) src, the index of the source service, and 2) dst the set of destination
services.

Ssrc : 〈res : �res, ωsrc〉, {Si : 〈insrc : �inj,src , ωi〉 | j ∈ dst}
↓

Ssrc : 〈res : [ ], ωsrc〉, {Si : 〈insrc : concat (�inj,src
, �res), ωi〉 | j ∈ dst}

Let us simplify our example to illustrate a workflow execution. Our simpli-
fied workflow is given in Fig. 2 (left). As detailed above, enacting the workflow
consists in adding the correct set of call and pass rules at the right locations
within the HOCL description to make it a runnable HOCL program. Then, that
description is processed by an HOCL interpreter which actually executes the
workflow.

The right part of Fig. 2 represents the HOCL program to be submitted to
some HOCL interpreter acting as the workflow orchestrator and the initial state
of the multiset. For the sake of clarity, we omit the explicit definitions of call
and pass rules, as their parameters are sufficient to get fully understood. Initially,
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only the in queue of the initial service contains some data: the input data.1 For
this example, as illustrated in Fig. 2, we assume two inputs e1 and e2 have been
sent to the workflow to be processed.

Initially, only the call1,∅ is enabled. Indeed, to get enabled, a call rule
needs all the in queues in the relevant services to be non-empty, which is only
the case for S1. The same applies for the pass rules: they need the res queue
to be non-empty. So, in a finite time, call1,∅ is applied. This rule application
encapsulates the invocation of the service, the collection of the results and the
pushing of the results in the res queue of S1, resulting in the following updated
solution (the unchanged part has been greyed out and rules removed for clarity):

S1 : 〈 in:[e2], res:[oute1 ], srv:“func1”〉,
S2 : 〈 in1:[ ], res:[ ], srv:“func2”〉,
S3 : 〈 in1:[ ], res:[ ], srv:“func3”〉,
S4 : 〈 in2:[ ], in3:[ ], res:[ ], srv:“func4”〉

At this point, two rules are enabled, namely call1,∅ and pass1,{2,3}. In other
words, it is possible to process e2 as well as to transfer a first S1 result to S2

and S3. We can verify that all other rules are disabled. Assuming both rules are
applied, the resulting intermediate multiset is the following (again, unchanged
lines/subsolutions have been greyed out):

S1 : 〈 in:[ ], res:[oute2 ], srv:“func1”〉,
S2 : 〈 in1:[oute1 ], res:[ ], srv:“func2”〉,
S3 : 〈 in1:[oute1 ], res:[ ], srv:“func3”〉,
S4 : 〈 in2:[ ], in3:[ ], res:[ ], srv:“func4”〉

Now, S2 and S3 can be called in parallel through the concurrent application
of call2,{1} and call3,{1} rules, respectively (pass1,{2,3} could also be triggered
but the model does not enforce the application of all enabled rules), leading to
the following multiset’s state:

S1 : 〈 in:[ ], res:[oute2 ], srv:”func1”〉,
S2 : 〈 in1:[ ], res:[oute12 ], srv:“func2”〉,
S3 : 〈 in1:[ ], res:[oute13 ], srv:“func3”〉,
S4 : 〈 in2:[ ], in3:[ ], res:[ ], srv:“func4”〉

While the second result of S1 is transferred to S2 and S3, results of S2 and
S3 can also be sent to S4. These actions are enabled through the concurrent
application of pass1,{2,3}, pass2,{4} and pass3,{4} with the following outcome:

S1 : 〈 in:[ ], res:[ ], srv:“func1”〉,
S2 : 〈 in1:[oute2 ], res:[ ], srv:“func2”〉,

1 We assume, that after some time, data is sent to the workflow, filling the in-tagged
list in S1 triggering the workflow.



346 J.R. Balderrama et al.

S3 : 〈 in1:[oute2 ], res:[ ], srv:“func3”〉,
S4 : 〈 in2:[oute12 ], in3:[oute13 ], res:[ ], srv:“func4”〉

We are now in a state where call rules can be applied, in S2, S3 and S4.
Assuming they are applied, the new multiset state is the following:

S1 : 〈 in:[ ], res:[ ], srv:“func1”〉,
S2 : 〈 in1:[ ], res:[oute22 ], srv:“func2”〉,
S3 : 〈 in1:[ ], res:[oute23 ], srv:“func3”〉,
S4 : 〈 in2:[ ], in3:[ ], res:[oute14 ], srv:“func4”〉

The remainder of the execution consists in (1) transferring the second set of
results from the res queues of S2 and S3 to the in queues in S4, and (2) invoking
func4 on them, leading to the following final inert multiset (as long as no new
data is injected in the in queue of S1).

S1 : 〈 in:[ ], res:[ ], srv:“func1”〉,
S2 : 〈 in1:[ ], res:[ ], srv:“func2”〉,
S3 : 〈 in1:[ ], res:[ ], srv:“func3”〉,
S4 : 〈 in2:[ ], in3:[ ], res:[oute14 , oute24 ], srv:“func4”〉

The idea behind using parametric rules is that they can be easily constructed
using the rule template and the parameters given by the user in its workflow
description. The idea is not necessarily to let the user write the HOCL code
directly, but to generate the HOCL code from the user’s own description.

4.3 Adaptiveness

When workflow reconfiguration is needed, the set of atoms (data and rules)
describing the workflow needs to get updated. Let us consider the adaptive
workflow depicted in Fig. 3, along with its HOCL code.

As illustrated on the left of Fig. 3, an alternate workflow is specified by the
services and links in dashed lines, to replace Service 3 in case adaptation is
requested. More specifically, the two services a1 and a2 are to replace Service 3.
The two last lines of the initial workflow specify these two services. Services a1
and a2 are initially disabled in the sense that no pass rule transfers data into
them. Note also the update pass and update s5 (within S5 subsolution) rules
whose purpose is to re-branch the workflow upon adaptation.

The basic idea is to enable the additional services only if the adaptation is
required (i.e., when the reason for adapting is satisfied). As discussed above,
the need for adaptations can take several forms. For the sake of simplicity, we
will assume that the execution monitoring system is simply made to inject some
particular atom in the multiset, so as to trigger the adaptation. In our example,
we will use the adapt atom keyword to reflect this. The execution monitoring
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S1 : in:[e1, e2], res:[ ], srv:“func1”, call1,∅ ,
S2 : in:[e1, e2], res:[ ], srv:“func2”, call2,∅ ,
S3 : in1:[ ], in2:[ ], res:[ ], srv:“func3”, call3,{1,2} ,
S4 : in2:[ ], res:[ ], srv:“func4”, call4,{2} ,
S5 : in3:[ ], in4:[ ], res:[ ], srv:“func5”, call5,{3,4},update s5 ,
pass1,{3}, pass2,{3,4}, pass3,{5}, pass4,{5},

update pass,
Sa1 : in1:[ ], res:[ ], srv:“func-a1”, calla1,{1} ,
Sa2 : ina1:[ ], res:[ ], srv:“func-a2”, calla2,{a1}

Fig. 3. An adaptive workflow, including its HOCL description

system will inject it where needed, namely, at the level of the multiset, and also
inside the S5 subsolution.

When the need for adaptation is declared, the multiset requires to get
updated on-the-fly so as to enable services a1 and a2, and partially redirect
the data flow accordingly. To modify the path of data some pass rules need to
be removed and replaced by pass1,{a1}, pass2,{a1,4}, passa1,{a2} and passa2,{5}.
The specific higher-order one-shot rule update pass, defined below, achieves
this:

adapt, pass1,{3}, pass2,{3,4}, pass3,{5}
↓1

pass1,{a1}, pass2,{a1,4}, passa1,{a2}, passa2,{5}

The other update to perform concerns the internals of S5, the in3 queue needs
to be removed and replaced by an ina2 queue, in order to satisfy the indices. The
S5 call rule needs to be updated accordingly from call5,{3,4} to call5,{a2,4},
as specified by the update s5 rule:

adapt, in3:�in, call5,{3,4}
↓1

ina2:[ ], call5,{a2,4}

This rule is supposed to take place within the S5 subsolution. These rules are
initially present in the multiset, but it can react only if the adapt atoms have
been injecting by the monitoring system. Let us review the execution of such an
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example. Initially, we have the multiset described in Fig. 3. The data traverses
the graph similarly as for the previous workflow. At some point however, the
monitoring system decides that the alternate workflow needs to be triggered,
leading to the following multiset:

S1 : 〈 in:�in1 , res:�res1 , srv:“func1”, call1,∅〉,
S2 : 〈 in:�in2 , res:�res2 , srv:“func2”, call2,∅〉,
S3 : 〈 in1:�in31 , in2:�in32 , res:�res3 , srv:“func3”, call3,{1,2}〉,
S4 : 〈 in2:�in42 , res:�res4 , srv:“func4”, call4,{2}〉,
S5 : 〈 in3:�in53 , in4:�in54 , res:�res5 , srv:“func5”, call5,{3,4},

updateS5 , adapt〉,
pass1,{3}, pass2,{3,4}, pass3,{5}, pass4,{5},

update pass, adapt,
Sa1 : 〈 in1:[ ], res:[ ], srv:“func-a1”, calla1,{1}〉,
Sa2 : 〈 ina1:[ ], res:[ ], srv:“func-a2”, calla2,{a1}〉

At this point, due to the presence of adapt at both global and S5 levels,
the two update * rules are triggered, leading to the following multiset, where
pass rules have been replaced and where S5 has been updated—note that the
update rules, one-shot, have been removed in the reactions:

S1 : 〈 in:�in1 , res:�res1 , srv:“func1”, call1,∅〉,
S2 : 〈 in:�in2 , res:�res2 , srv:“func2”, call2,∅〉,
S3 : 〈 in1:�in31 , in2:�in32 , res:�res3 , srv:“func3”, call3,{1,2}〉,
S4 : 〈 in2:�in42 , res:�res4 , srv:“func4”, call4,{2}〉,
S5 : 〈 ina2:[ ], in4:�in54 , res:�res5 , srv:“func5”, call5,{3,4}〉,
Sa1 : 〈 in1:[ ], res:[ ], srv:“func-a1”, calla1,{1}〉,
Sa2 : 〈 ina1:[ ], res:[ ], srv:“func-a2”, calla2,{a1}〉,
pass1,{a1}, pass2,{a1,4}, passa1,{a2}, passa2,{5}, pass4,{5}

As soon as it is updated, the new workflow is operational, new data flows
being specified by the newly injected rules.

To sum up, two types of workflow-specific one-shot higher-order rules are
needed to enhance the adaptation of the streaming workflow at run time: one
to update the pass rule and one to update the internals of the services whose
sources have changed in the update. Again, these rules can be generated from a
high-level description of the workflow provided by the user.

5 Architecture and Implementation

5.1 Decentralised Architecture

We plan to implement the programming abstractions presented above in Gin-
Flow2, a software initially developed in the context of service composition,
2 http://ginflow.inria.fr.

http://ginflow.inria.fr
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and whose architecture, implementation and experimentation has been recently
detailed in [7]. These works intend to decentralise the execution of workflows and
rely on a shared space to coordinate services involved in a composition. Specifi-
cally, it sits on the HOCL language to describe the service composition (workflow
of services) and its enactment. In this architecture, services are encapsulated
into agents communicating by reading and writing information in a shared data
space.

The architectural model is depicted in Fig. 4. As detailed in [6], the shared
space contains the description of the workflow. During enactment, each time the
execution moves forward, this description is updated so as to reflect the execution
progress. The service agents (SAs) are essentially workers that encapsulate the
invocation of the services. This encapsulation includes an engine able to read,
interpret and update the information contained in the shared space. For instance,
when a SA completes the invocation of a service and collects the result, it pushes
this information to the shared space, allowing another service agent, which was
waiting for this result, to collect this result and use it as input to invoke its own
service.
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In the software prototype built and experimented in [7], each service agent
taking part in the workflow is composed of three elements as shown in Fig. 5.
The first element is the service to invoke (S), or a wrapper of an application
representing the service. The second element is a storage place for a local partial
copy of the multiset. This local copy acts as a cache of the service’s subsolution.
The third element is an HOCL interpreter that reads and updates the local copy
of the multiset each time it tries to apply one of the rule in the subsolution.
Communication between the multiset and the agents is done through the use of
ActiveMQ.3

5.2 Decentralising the Adaptive Stream Processing Rules

Let us now review how the call, pass and update rules can be implemented
on top of this decentralised architecture.

Firstly, when call rules are applied, the service is called from the HOCL
interpreter and the result is injected into the local multiset. Secondly, the pass
rule is supposed to act from outside subsolutions since it requires to match
the atoms from several subsolutions. To avoid the need for a monitoring system
having the global view of the system and keep the control decentralised4, the pass
rules are modified to act within a subsolution. In other words, a passi,dst rule
will be placed inside the Si service and get triggered by the HOCL interpreter
of the SA encapsulating Si. Once the result of the invocation of some service
is collected and put in the local res queue, it triggers the local version of the
pass rule which sends a message to the destination, via the multiset. When
the message is received in the multiset, it is automatically pushed to the right
subsolution. For instance, the pass1,{3} rule will be within the S3 subsolution
and look like this:

res : �res, ω1

↓
res : [ ], transfer(�res, S3), ω1

The transfer() method sends a message to the multiset, which will update the
state of the S3 subsolution by adding �res in its in1 queue and push it to the S3

SA through ActiveMQ.
Finally, to make the update rule work in these decentralised settings, we

need to slightly improve the program. We will first assume that each SA is
equipped with a monitoring system able to inject the adapt atom within the
local multiset managed by the SA. Then, we use that SA, upon the appearance
of the adapt atom, to change the pass rules to reflect the new dataflow. In fact,
instead of only one update rule, we need one updatei rule for each service that
requires to update its dataflow, and include it within each Si subsolution:

update1: pass1,{3} → pass1,{a1}
3 http://activemq.apache.org/.
4 Each SA is allowed to store only its own description.

http://activemq.apache.org/


Chemistry-Inspired Adaptive Stream Processing 351

update2: pass2,{3,4} → pass2,{a1,4}
update5: in3 : �res → ina1

These three rules, initially absent from the multiset, will be injected by the SA
who detected the failure in a manner similar to the pass process. Assume that
the adapt atom has been injected in the S3 service. The following rule, put
within the S3 subsolution will make the updatei rules appear in the relevant
subsolutions, in a fashion similar to how the pass rule transfers results:

trigger-adapt: adapt
↓

transfer(update1, S1), transfer(update2, S2), transfer(update5, S5)

As soon as the updatei rule appears in the Si subsolution, it is triggered by the
HOCL interpreter of its SA encapsulating it. Every updatei can be triggered
concurrently, thus realising the update concurrently.

6 Conclusions

We have presented a set of abstractions using chemistry-inspired programming
model for adaptive decentralised workflows supporting continuous dataflows. We
have described the rules to define workflows, modify their behaviour when excep-
tions are raised, and ensure service invocation management with data streams.
We also have shown the generic approach of services execution based on para-
metric rules. These rules enable a workflow enactment taking advantage of a dis-
tributed execution environment. The use of high-level definitions encompasses a
concise and clear description of workflows delegating the complex instrumenta-
tion to the workflow engine. These definitions allow users to specify the workflow
and its alternate paths at design time. Future work includes testing the frame-
work with real use-cases and evolve towards better scheduling.
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3. Banâtre, J.P., Fradet, P., Radenac, Y.: Generalised multisets for chemical program-

ming. Math. Struct. Comput. Sci. 16(4), 557–580 (2006)
4. Caeiro, M., Németh, Z., Priol, T.: A chemical model for dynamic workflow coordi-

nation. In: The 19th Euromicro International Conference on Parallel, Distributed
and network-based Processing. Ayia Napa, Cyprus, February 2011

5. Di Napoli, C., Giordano, M., Németh, Z., Tonellotto, N.: Adaptive instantiation of
service workflows using a chemical approach. In: The 16th International Euro-Par
Conference on Parallel Processing, Ischia, Italy (2010)

https://storm.apache.org/


352 J.R. Balderrama et al.

6. Fernández, H., Priol, T., Tedeschi, C.: Decentralized approach for execution of com-
posite web services using the chemical paradigm. In: The 8th IEEE International
Conference on Web Services, Miami, FL, July 2010

7. Fernández, H., Tedeschi, C., Priol, T.: Rule-driven service coordination middleware
for scientific applications. Future Gener. Comput. Syst. 35, 1–13 (2014)

8. Gedik, B., Andrade, H., Wu, K., Yu, P.S., Doo, M.: SPADE: the system S declar-
ative stream processing engine. In: The ACM SIGMOD International Conference
on Management of Data, Vancouver, Canada, June 2008

9. Giavitto, J., Michel, O.: MGS: a rule-based programming language for complex
objects and collections. Electronic Notes Theoretical Computer Science, 59(4),
286–304 (2001). http://dx.doi.org/10.1016/S1571-0661(04)00293-2
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Abstract. Virus Machines are a computational paradigm inspired by
the manner in which viruses replicate and transmit from one host cell to
another. This paradigm provides non-deterministic sequential devices.
Non-restricted Virus Machines are unbounded Virus Machines, in the
sense that no restriction on the number of hosts, the number of instruc-
tions and the number of viruses contained in any host along any com-
putation is placed on them. The computational completeness of these
machines has been obtained by simulating register machines. In this
paper, Virus Machines as function computing devices are considered.
Then, the universality of non-restricted virus machines is proved by show-
ing that they can compute all partial recursive functions.

1 Introduction

A new computational paradigm inspired by the replications and transmissions
of viruses was introduced in [1]. The computational devices in this paradigm are
called Virus Machines and they consist of several processing units, called hosts,
connected to each other by transmission channels. A host can be viewed as a
group of cells (being part of a colony, organism, system, organ or tissue). Each
cell in the group will contain at most one virus, but we will not take into account
the number of cells in the group, we will only focus on the number of viruses
that are present in some of the cells of that group (not every cell in the group
does necessarily hold a virus). Only one type of viruses is considered. Channels
allow viruses to be transmitted from one host to another or to the environment
of the system. Each channel has a natural number (the weight of the channel)
associated with it, indicating the number of copies of the virus that will be
generated and transmitted from an original one (i.e., one virus may replicate,
generating a number of copies to be transmitted to the target host group of
cells). Each transmission channel is closed by default and it can be opened by
a control instruction unit. Specifically, there is an instruction-channel control
network that allows opening a channel by means of an activated instruction. In
that moment, the opened channel allows a virus (only one virus) to replicate
c© Springer International Publishing Switzerland 2015
G. Rozenberg et al. (Eds.): CMC 2015, LNCS 9504, pp. 353–368, 2015.
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and transmit through it. Instructions are activated individually according to a
protocol given by an instruction transfer network, so that only one instruction
is enabled in each computation step. That is, an instruction activation signal is
transferred to the network to activate instructions in sequence.

In this work, Virus Machines as computing function devices are introduced.
For this purpose, we deal with Virus Machines having input hosts, allowing us
to introduce some additional numbers of viruses (encoding the information) in
certain distinguished hosts as an input to the Virus Machine. The universality
of non-restricted Virus Machines (Virus Machines where there is no restriction
on the number of hosts, the number of instructions and the number of viruses
contained in any host along any computation) working in the computing mode
is proved by showing that they can compute all partial recursive functions.

This paper is structured as follows. First, some preliminaries are briefly intro-
duced in order to make the work self-contained. Then, in Sect. 3, we formally
define the computing model of virus machines. Section 4 is devoted to discuss the
power of non-restricted Virus Machines, and their computational completeness
(via computing partial recursive functions) is stated. Finally, in Sect. 5 the main
conclusions of this work are summarized and some suggestions for possible lines
of future research are outlined.

2 Preliminaries

In this section some basic concepts needed throughout this paper are introduced,
thus making it self-contained.

2.1 Sets and Functions

In this paper Z denotes the set of integer numbers, Z>0 the set of positive
integers, and N = Z≥0 the set of non-negative integers or natural numbers.

A function from a set A to a set B is a subset of A × B such that every
element of A is related through f with at most one element of B. The domain of
f , dom(f), is the subset of A consisting of all the elements for which f is defined.
If dom(f) = A we say that the function is total, and denote it by f : A → B.
Otherwise, we say that the function is partial, and denote it by f : A → B.

2.2 Graphs

An undirected graph G is a pair (V,E), where V is a finite set and E is a subset
of

{{x, y} | x ∈ V, y ∈ V, x �= y
}
. The set V is called the vertex set of G, and

its elements are called vertices. The set E is called the edge set of G, and its
elements are called edges. If e = {x, y} ∈ E is an edge of G, then we say that edge
e is incident on vertices x and y. In an undirected graph, the degree of a vertex x
is the number of edges incident on it. A bipartite graph G is an undirected graph
(V,E) in which V can be partitioned into two sets V1, V2 such that {u, v} ∈ E
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implies either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1; that is, all edges are
arranged between the two sets V1 and V2 (see [3] for details).

A directed graph G is a pair (V,E), where V is a finite set and E is a subset
of V × V . The set V is called the vertex set of G, and its elements are called
vertices. The set E is called the arc set of G, and its elements are called arcs.
In a directed graph, the out-degree of a vertex is the number of arcs leaving it,
and the in-degree of a vertex is the number of arcs entering it.

3 Virus Machines

In what follows we formally define the syntax of the Virus Machines (see [1] for
more details).

Definition 1. A Virus Machine Π of degree (p, q), with p ≥ 1, q ≥ 1, is a tuple
(Γ,H, I,DH ,DI , GC , n1, . . . , np, istart, hout), where:

– Γ = {v} is the singleton alphabet;
– H = {h1, . . . , hp} and I = {i1, . . . , iq} are ordered sets such that v /∈ H ∪ I

and H ∩ I = ∅;
– DH = (H ∪{hout}, EH , wH) is a weighted directed graph, verifying that EH ⊆

H × (H ∪{hout}), (h, h) /∈ EH for each h ∈ H, out-degree(hout) = 0, and wH

is a mapping from EH to Z>0;
– DI = (I, EI , wI) is a weighted directed graph, where EI ⊆ I × I, wI is a

mapping from EI to Z>0 and, for each vertex ij ∈ I, the out-degree of ij is
less than or equal to 2;

– GC = (VC , EC) is an undirected bipartite graph, where VC = I ∪ EH , being
{I, EH} the partition associated with it (i.e., all edges go between the two sets
I and EH). In addition, for each vertex ij ∈ I, the degree of ij in GC is less
than or equal to 1;

– nj ∈ N (1 ≤ j ≤ p) and istart ∈ I;
– hout /∈ I ∪ {v} and hout is denoted by h0 in the case that hout /∈ H.

A Virus Machine Π = (Γ,H, I,DH ,DI , GC , n1, . . . , np, istart, hout) of degree
(p, q) can be viewed as an ordered set of p hosts labelled with h1, . . . , hp (where
each host hj , 1 ≤ j ≤ p, initially contains exactly nj viruses –copies of the sym-
bol v–), and an ordered set of q control instruction units labelled with i1, . . . , iq.
Symbol hout represents the output region of the system (we use the term region
to refer to host hout in the case that hout ∈ H and to refer to the environment in
the case that hout = h0). Arcs (hs, hs′) from DH represent transmission channels
through which viruses can travel from host hs to hs′ .

Each channel is closed by default, and so it remains until it is opened by
a control instruction (which is attached to the channel by means of an edge in
graph GC) when that instruction is activated. Furthermore, each channel (hs, hs′)
is assigned with a positive integer weight, denoted by ws,s′ , which indicates the
number of viruses that will be transmitted/replicated to the receiving host of
the channel.
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Arcs (ij , ij′) from DI represent instruction transfer paths, and they have
a weight, denoted by wj,j′ , associated with it. Finally, the undirected bipar-
tite graph GC represents the instruction-channel network by which an edge
{ij , (hs, hs′)} indicates a control relationship between instruction ij and channel
(hs, hs′): when instruction ij is activated, the channel (hs, hs′) is opened.

A configuration Ct of a Virus Machine at an instant t is described by a tuple
(a1,t, . . . , ap,t, ut, et), where a1,t, . . . , ap,t and et are non-negative integers and
ut ∈ I ∪ {#}, with # /∈ {v} ∪ H ∪ {h0} ∪ I. The meaning is the following: at
instant t the host hs of the system contains exactly as,t viruses, the output region
hout contains exactly et viruses and, if ut ∈ I, then the control instruction unit ut

will be activated at step t + 1. Otherwise, if ut = #, then no further instruction
will be activated. The initial configuration of the system is the configuration
C0 = (n1, . . . , np, istart, 0).

A configuration Ct = (a1,t, . . . , ap,t, ut, et) is a halting configuration if and
only if ut is the object #. A non-halting configuration Ct = (a1,t, . . . , ap,t, ut, et)
yields configuration Ct+1 = (a1,t+1, . . . , ap,t+1, ut+1, et+1) in one transition step,
denoted by Ct ⇒Π Ct+1, if we can pass from Ct to Ct+1 as follows:

1. First, given that Ct is a non-halting configuration, we have ut ∈ I. So the
control instruction unit ut is activated.

2. Let us assume that instruction ut is attached to channel (hs, hs′). Then this
channel will be opened and:
– If as,t ≥ 1, then a virus (only one virus) is consumed from host hs and

ws,s′ copies of v are produced in host hs′ (if s′ �= out) or in the output
region hout.

– If as,t = 0, then there is no transmission of viruses.
3. Let us assume that instruction ut is not attached to any channel (hs, hs′).

Then there is no transmission of viruses.
4. Object ut+1 ∈ I ∪ {#} is obtained as follows:

– Let us suppose that out-degree(ut) = 2, that is, there are two different
instructions ut′ and ut′′ such that (ut, ut′) ∈ EI and (ut, ut′′) ∈ EI .

• If instruction ut is attached to a channel (hs, hs′) and as,t ≥ 1 then
ut+1 is the instruction corresponding to the highest weight path.

• If instruction ut is attached to a channel (hs, hs′) and as,t = 0 then
ut+1 is the instruction corresponding to the lowest weight path.

• If both weights are equal or if instruction ut is not attached to a
channel, then the next instruction ut+1 is either ut′ or ut′′ , selected in
a non-deterministic way.

– If out-degree(ut) = 1 then the system behaves deterministically and ut+1

is the instruction that verifies (ut, ut+1) ∈ EI .
– If out-degree(ut) = 0 then ut+1 is object # and configuration Ct+1 is a

halting configuration.

A computation of a Virus Machine Π is a (finite or infinite) sequence of
configurations such that: (a) the first element is the initial configuration C0 of
the system; (b) for each n ≥ 1, the n-th element of the sequence is obtained
from the previous element in one transition step; and (c) if the sequence is finite
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(called halting computation) then the last element is a halting configuration.
All the computations start from the initial configuration and proceed as stated
above; only halting computations give a result, which is encoded in the contents
of the output region for the halting configuration.

Definition 2. A Virus Machine Π with input of degree (p, q, r), p ≥ 1, q ≥ 1,
r ≥ 1, is a tuple (Γ,H,Hr, I,DH ,DI , GC , n1, . . . , np, istart, hout), where:

– (Γ,H, I,DH ,DI , GC , n1, . . . , np, istart, hout) represents a Virus Machine of
degree (p, q).

– Hr = {hj1 , . . . , hjr
} ⊆ H is the ordered set of r input hosts and hout /∈ Hr.

The initial configuration of Π with input (α1, . . . , αr) is the configuration
(m1, . . . , mp, istart, 0), where mj = nj + αj , if j ∈ {j1, . . . , jr}, and mj = nj

otherwise. Therefore, in a Virus Machine with input we have an initial configu-
ration associated with each (α1, . . . , αr) ∈ N

r. A computation of a Virus Machine
Π with input (α1, . . . , αr), denoted by Π + (α1, . . . , αr), starts with the initial
configuration (m1, . . . , mp, istart, 0) and proceeds as stated above.

In this paper we work with Virus Machines working in the computing mode.
That is, the result of a computation of a Virus Machine Π with input (α1, . . . , αr)
is the total number n of viruses sent to the output region during the computation.
We say that number n is computed by the Virus Machine Π + (α1, . . . , αr). We
denote by N

(
Π + (α1, . . . , αr)

)
the set of all natural numbers computed by

Π + (α1, . . . , αr).
Throughout this paper, due to technical reasons, we consider hout ∈ H, that

is, the output region of a Virus Machine will be a host.

3.1 Virus Machines as Function Computing Devices

Virus Machines can work in several modes. In this section we introduce a partic-
ular kind of virus machines working in the computing mode providing function
computing devices.

Definition 3. Let f : Nk → N be a partial function. We say that f is computable
by a Virus Machine Π with k input hosts working in the computing mode if the
following holds: for each (x1, . . . , xk) ∈ N

k,

– If (x1, . . . , xk) ∈ dom(f) and f(x1, . . . , xk) = z, then every computation Π +
(x1, . . . , xk) is a halting computation with output z.

– If (x1, . . . , xk) /∈ dom(f), then every computation Π + (x1, . . . , xk) is a non-
halting computation.

The concept of computation of a subset of Nk is introduced below, via func-
tion computing Virus Machines.



358 Á. Romero-Jiménez et al.

Definition 4. Let A ⊆ N
k be a set of k-tuples of natural numbers. We say that

A is computed by a Virus Machine Π with k input hosts working in the comput-
ing mode if Π computes the partial characteristic function C∗

A of A, defined as
follows:

C∗
A(x1, . . . , xk) =

{
1, if (x1, . . . , xk) ∈ A

undefined, otherwise

4 The Universality of Non-restricted Virus Machines

A non-restricted Virus Machine is a Virus Machine such that there is no restric-
tion on the number of hosts, the number of instructions and the number of
viruses contained in any host along any computation.

For each p, q, n ≥ 1, we denote by NV M(p, q, n) the family of all subsets
of N computed by Virus Machines with at most p hosts, q instructions, and
all hosts having at most n viruses at any instant of each computation. If one
of the numbers p, q, n is not bounded, then it is replaced with ∗. In particular,
NV M(∗, ∗, ∗) denotes the family of all subsets of natural numbers computed by
non-restricted Virus Machines.

4.1 Computing Partial Recursive Functions by Virus Machines

In this section, the computational completeness of non-restricted Virus Machines
working in the computing mode is established. Specifically, we prove that they
can compute all partial recursive functions. Indeed, we will design non-restricted
Virus Machines that:

1. Compute the basic or initial functions: constant zero function, successor func-
tion and projection functions.

2. Compute the composition of functions, from Virus Machines computing the
functions to be composed.

3. Compute the primitive recursion of functions, from Virus Machines comput-
ing the functions that participate in the recursion.

4. Compute the unbounded minimization of functions, from a Virus Machine
computing the function to be minimized.

4.2 Modules

In order to ease the design of the Virus Machines computing any partial recur-
sive function, the construction of such Virus Machines will be made in a mod-
ular manner. A module can be seen as a Virus Machine without output host,
with the initial instruction marked as the in instruction and with at least one
instruction marked as an out instruction. The out instructions must have out-
degree less than two, so that they can still be connected to another instruction.
This way, a module m1 can be plugged in before another module m2 or Virus
Machine instruction i by simply connecting the out instructions of m1 with the
in instruction of m2 or with the instruction i.
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The layout of a module must be carefully design to avoid conflicts with other
modules and to allow the module to be executed any number of times. To achieve
the first condition, we will consider that all the hosts (with the only exception of
those belonging to the parameters of the module) and instructions of a module
are individualized for that module, being distinct from the ones of any other
module or Virus Machine. The second condition is met if we ensure that, after
the execution of the module, all its hosts except its parameters contain the same
number of viruses as before the execution.

In this paper we consider two types of modules: action modules and predicate
modules. For the action modules we require all of its out instructions to be
connected to the in instruction of the following module, or to the following
instruction of the Virus Machine. For the predicate modules we consider its out
instructions to be divided in two subsets: the out instructions representing a yes
answer and the out instructions representing a no answer of the predicate. For
each of these subsets, all of its instructions have to be connected to the same
module in instruction or Virus Machine instruction.

The library of modules used in this paper consists of the following modules
(we name the action modules as verbs and the predicate modules as questions):

– EMPTY(h): action module that sets to zero the number of viruses in host h.
To implement this module we only need to introduce an internal host h′,
initially with zero viruses, and associate with the channel from h to h′ an
action that transfers all the viruses from h. Note that host h′ may end with a
nonzero number of viruses, but this does not prevent the module to be reused,
because h′ plays a passive role.

h

0
h

outsend
1

in

2
– ADD(h1, h2): action module that adds to host h2 the number of viruses in host

h1, without modifying the number of viruses in h1.
This module is implemented as follows:

h1

0
h h2

2

sendback

out

send

1

replicate
1

in

2

2
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This way, the module starts by transferring one by one all the viruses from
h1 to h, duplicating them along the way. Then it sends, again and again, one
virus from h to h2 and another one from h to h1, until there are no more
viruses left. It is clear then that when the module ends, the host h1 retains
its initial number of viruses, the host h is empty (thus allowing the module to
be reused), and the host h2 has a number of viruses equal to the sum of the
initial number of viruses in h1 and h2.

– COPY(h1, h2): action module that sets the number of viruses in h2 the same
as in h1, without modifying the number of viruses in h1.
This module is implemented by the following concatenation of modules:

in → EMPTY(h2) → ADD(h1, h2) → out

That is, we first get rid of all the viruses from h2, and then add the viruses
from h1, so h2 ends with the same number of viruses as h1. Also observe that
the module ADD(h1, h2) does not modify the number of viruses in h1, what
will be important later.

– SET(h, n): action module that sets to n the number of viruses in host h. This
module is implemented simply by introducing an internal host h′ with initial
number of viruses n and using the module COPY(h′, h).

– AREEQUAL?(h1, h2): predicate module that checks if the number of viruses in
hosts h1 and h2 coincides.
This module is implemented as follows, where h′

1, h′
2 and h are new internal

hosts:
0
h

0

h1

0

h2

in COPY(h1, h1) COPY(h2, h2) send1 send2

2

2

no

1

finalcheck

1

no

2
yes

1

We first copy the contents of h1 and h2 into the internal hosts h′
1 and h′

2,
so that they do not get modified. Then, in turns, we send one virus from h′

1

to h and then another one from h′
2 to h. If the latter can not be done, this

is because the contents of h1 were greater than the contents of h2 and the
answer is no. If the former can not be done, we must try once more to send a
virus from h′

2 to h to determine if the contents were or not equal.
Notice that the contents of h′

1, h′
2 and h get modified, but this does not prevent

the module to be reused, because the first two get initialized by the first two
COPY modules and the latter plays a passive role.

– ISZERO?(h): predicate module that checks if the number of viruses in host h
is zero.
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This module is simply implemented by introducing an empty internal host h′

and using the module AREEQUAL?(h, h′).

Finally, notice that we can consider any Virus Machine Π as an action module
without parameters, where the initial instruction is the in instruction and any
instruction with out-degree zero is an out instruction. The only problem is that
Π would be a module of one use, because it is not guaranteed that the contents
of its hosts are the same before and after execution. If we wanted to reuse it, we
would need to set Π to its initial state, by means of the following module:

– RESTART(Π): action module that sets the number of viruses of each host hi

of Π to its initial contents ni.
This module is implemented by the following concatenation of modules:

in → SET(h1, n1) → · · · → SET(hp, np) → out

where h1, . . . , hp are the hosts of Π and n1, . . . , np are their initial contents.

4.3 Basic or Initial Functions

We begin by describing function computing Virus Machines that allow us to
compute the basic functions.

– The constant zero function, O : N → N, defined by O(x) = 0, for every x ∈ N,
can be computed by the following virus machine ΠO with input working in
the computing mode:

• The hosts are HO = {h, hzero}, each of them initially empty.
• The input host is h and the output host is hzero.
• The initial and only instruction is halt.
• Each of the three graphs DHO , DIO and GCO determining the functioning

of the machine has an empty set of edges.
This way, for any input the Virus Machine ΠO halts in the very first step, and
the output host hzero remains empty. So the output of this machine is always
zero.

– The successor function, S : N → N, defined by S(x) = x + 1, for every x ∈ N,
can be computed by the following virus machine ΠS with input working in
the computing mode:

• The hosts are HS = {h, hone}, together with the internal hosts of the
module ADD(h, hone).

• The initial contents are zero for the host h and one for the host hone,
together with the initial contents of the internal hosts of the module ADD(h,
hone).

• The input host is h and the output host is hone.
• The instructions are IS = {halt}, together with the instructions of the

module ADD(h, hone).
• The initial instruction is the in instruction of the module ADD(h, hone).
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• The functioning of the Virus Machine is given by the following sequence,
which determines the graphs DHS , DIS and GCS :

ADD(h, hone) → halt

This way, for any input the Virus Machine ΠS adds it from h to hone and
halts. Since host hone contained one virus, the output of this machine is equal
to the input plus one, as required.

– The projection functions, Πm
i : Nm → N, with m ≥ 1 and 1 ≤ i ≤ m, defined

by Πm
i (x1, . . . , xm) = xi, for every (x1, . . . , xm) ∈ N

m, can be computed by
the following Virus Machine ΠΠm

i
with input working in the computing mode:

• The hosts are HΠm
i

= {h1, . . . , hm, hout}, together with the internal hosts
of the module COPY(hi, hout).

• The initial contents are zero for the hosts h1, . . . , hm, hout, together with
the initial contents of the internal hosts of the module COPY(hi, hout).

• The input hosts are h1, . . . , hm and the output host is hout.
• The instructions are IΠm

i
= {halt}, together with the instructions of the

module COPY(hi, hout).
• The initial instruction is the in instruction of the module COPY(hi, hout).
• The functioning of the Virus Machine is given by the following sequence,

which determines the graphs DHΠm
i

, DIΠm
i

and GCΠm
i

:

COPY(hi, hout) → halt

This way, for any input the Virus Machine ΠΠm
i

copies the i-th component
from hi to hout and halts, so the output of the machine is that component.

4.4 Composition of Functions

We show now how the composition of functions can be simulated by Virus
Machines with input working in the computing mode.

Definition 5. Let f : Nm → N and g1 : Nn → N, . . . , gm : Nn → N. Then, the
composition of f with g1 to gm, denoted C(f ; g1, . . . , gm), is a partial function
from N

n to N defined as follows:

C(f ; g1, . . . , gm)(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

for each (x1, . . . , xn) ∈ N
n.

Let Πf ,Πg1 , . . . , Πgm
be Virus Machines with input, computing the functions

f, g1, . . . , gm, respectively. Let us assume that for each x ∈ {f, g1, . . . , gm} the
elements of the Virus Machine Πx are the following:

– The hosts are Hx = {hx
1 , . . . , hx

px
}.

– The initial contents of the hosts are nx
1 , . . . , nx

px
.

– The input hosts are hf
1 , . . . , hf

m and hx
1 , . . . , hx

n for x ∈ {g1, . . . , gm}.
– The output host is hx

out.
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– The instructions are Ix = {ix1 , . . . , ixqx
}.

– The initial instruction is ixstart.
– The functioning of the Virus Machine is determined by the directed graphs

DHx
, DIx

and the bipartite graph GCx
.

Then, the composition of f with g1, . . . , gm can be computed by the following
Virus Machine ΠC(f ;g1,...,gm) with input:

– The hosts are H = {h1, . . . , hn} ∪ Hf ∪ Hg1 ∪ · · · ∪ Hgm
, together with the

internal hosts of the modules.
– The initial contents of the hosts are

(0, . . . , 0, nf
1 , . . . , nf

pf
, ng1

1 , . . . , ng1
pg1

, . . . , ngm

1 , . . . , ngm
pgm

)

together with the initial contents of the internal hosts of the modules.
– The input hosts are {h1, . . . , hn}.
– The output host is hf

out.
– The instructions are If ∪ Ig1 ∪ · · · ∪ Igm

∪ {halt}, together with the individ-
ualized instructions of the modules.

– The initial instruction is the in instruction of the first module.
– The functioning of the Virus Machine is given by the following sequence of

concatenated modules, which determines the graphs DH ,DI and GC :
1. First we simulate the introduction of the input into the input hosts of

Πg1 . Recall that the module ADD(h1, h2) does not change the content of
host h1.

ADD(h1, h
g1
1 ) → · · · → ADD(hn, hg1

n ) →
2. We do the same for the machines Πg2 , . . . , Πgm

.

→ ADD(h1, h
g2
1 ) → · · · → ADD(hn, hg2

n ) →
...

→ ADD(h1, h
gm

1 ) → · · · → ADD(hn, hgm
n ) →

3. Now we can simulate the functions g1, . . . , gm over the received input.

→ Πg1 → . . . → Πgm
→

4. Finally, we introduce the outputs of the previous simulations as input for
Πf , simulate f and finish the execution.

→ ADD(hg1
out, h

f
1 ) → · · · → ADD(hgm

out, h
f
m) → Πf → halt

4.5 Primitive Recursion of Functions

We show now how the primitive recursion of functions can be simulated by Virus
Machines with input working in the computing mode.
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Definition 6. Let f : Nm → N and g : Nm+2 → N. Then, the function obtained
by primitive recursion from f and g, denoted Rec(f ; g), is a partial function
from N

m+1 to N defined as follows:

Rec(f ; g)(x1, . . . , xm, xm+1) =

{
f(x1, . . . , xm), if xm+1 = 0
g(x1, . . . , xm, xm+1, y), otherwise

where y = Rec(f ; g)(x1, . . . , xm, xm+1 − 1)

for each (x1, . . . , xm, xm+1) ∈ N
m+1.

Let Πf and Πg be Virus Machines with input, computing the functions f
and g, respectively. Let us suppose that for each function x ∈ {f, g} the elements
of the virus machine Πx are the following:

– The hosts are Hx = {hx
1 , . . . , hx

px
}.

– The initial contents of the hosts are (nx
1 , . . . , nx

px
).

– The input hosts are hf
1 , . . . , hf

m and hg
1, . . . , h

g
m+2.

– The output host is hx
out.

– The instructions are Ix = {ix1 , . . . , ixqx
}.

– The initial instruction is ixstart.
– The functioning of the Virus Machine is determined by the directed graphs

DHx
, DIx

and the bipartite graph GCx
.

Then, the function Rec(f ; g) can be computed by the following Virus Machine
with input ΠRec(f ;g):

– The hosts are H = {h1, . . . , hm+1, h
′, hone, hout, h

′
out}∪Hf ∪Hg, together with

the internal hosts of the modules.
– The initial contents of the hosts are 0, . . . , 0, 0, 1, 0, 0, nf

1 , . . . , nf
pf

, ng
1, . . . , n

g
pg

,
together with the initial contents of the internal hosts of the modules.

– The input hosts are {h1, . . . , hm+1}.
– The output host is hout.
– The instructions are If ∪Ig ∪{halt}, together with the individualized instruc-

tions of the modules.
– The initial instruction is the in instruction of the first module.
– The functioning of the Virus Machine is given by the following sequence of

concatenated modules, which determines the graphs DH ,DI and GC :
1. Observe that to compute the function Rec(f ; g) we have to repeatedly

compute the function g as many times as indicated by the (m + 1)-th
argument, except for the first time in which the function f has to be
computed instead.

2. First we simulate the introduction of the input for the function f into the
input hosts of Πf .

ADD(h1, h
f
1 ) → · · · → ADD(hm, hf

m) →



Computing Partial Recursive Functions by Virus Machines 365

3. We now simulate the function f over its input and copy the result to hout

and h′
out. This is because if we are done, then the result has to be in hout,

but if we are not done, we must pass this result as the last argument to
g. However, hout is required to have out-degree zero, so we take the result
from h′

out instead.

→ Πf → COPY(hf
out, hout) → COPY(hf

out, h
′
out) →

4. We check if we are done, in which case stop the execution.

→AREEQUAL?(hm+1, h
′)

yes→ halt

↓ no

5. If we are not done, one computation of g has to be simulated. For that, the
(m+1)-th argument of g is updated by adding 1 to it and the appropriate
input is introduced into the input hosts of Πg. The input for the last
argument is the result of the previous computation, that we will ensure
is always within host h′

out.

no→ ADD(hone, h
′) → ADD(h1, h

g
1) → · · · → ADD(hm, hg

m) →
ADD(h′, hg

m+1) → ADD(h′
out, h

g
m+2) →

6. We simulate the function g and copy the result to both hosts hout and
h′
out. Before continuing to step 4, the machine Πg has to be restarted to

its initial state, so that it can be used to simulate again the function g, if
necessary.

→ Πg → COPY(hg
out, hout) → COPY(hg

out, h
′
out) →

RESTART(Πg) → back to step 4

4.6 Unbounded Minimization of Functions

We show now how the unbounded minimization of functions can be simulated
by Virus Machines with input working in the computing mode.

Definition 7. Let f : Nm+1 → N. Then, the function obtained by unbounded
minimization from f , denoted Min(f), is a partial function from N

m to N defined
as follows:

Min(f)(x1, . . . , xm) =

{
yx1,...,xm

, if it exists
undefined, otherwise

where

yx1,...,xm
= min{y ∈ N | ∀z < y

(
f is defined over (x1, . . . , xm, z)

) ∧
f(x1, . . . , xm, y) = 0}

for each (x1, . . . , xm) ∈ N
m.
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Let Πf be a Virus Machine with input, computing the function f . Let us
suppose that the elements of the Virus Machine Πf are the following:

– The hosts are Hf = {hf
1 , . . . , hf

pf
}.

– The initial contents of the hosts are nf
1 , . . . , nf

pf
.

– The input hosts are hf
1 , . . . , hf

m+1.
– The output host is hf

out.
– The instructions are If = {if1 , . . . , ifqf

}.
– The initial instruction is ifstart.
– The functioning of the Virus Machine is determined by the directed graphs

DHf
, DIf

and the bipartite graph GCf
.

Then, the function Min(f) can be computed by the following Virus Machine
with input ΠMin(f):

– The hosts are H = {h1, . . . , hm, hm+1, hone, hout} ∪ Hf , together with the
internal hosts of the modules.

– The initial contents of the hosts are 0, . . . , 0, 0, 1, 0, nf
1 , . . . , nf

pf
, together with

the initial contents of the internal hosts of the modules.
– The input hosts are {h1, . . . , hm}.
– The output host is hout.
– The instructions are If ∪{halt}, together with the individualized instructions

of the modules.
– The initial instruction is the in instruction of the first module.
– The functioning of the Virus Machine is given by the following sequence of

concatenated modules, which determines the graphs DH ,DI and GC :
1. Observe that to compute the function Min(f) we have to repeatedly

compute the function f until we obtain a zero result.
2. First we simulate the introduction of the input for the function f into the

input hosts of Πf .

ADD(h1, h
f
1 ) → · · · → ADD(hm+1, h

f
m+1) →

3. We now simulate the function f over its input and check if the result is
or not zero.

→ Πf →ISZERO?(hf
out)

yes→
↓ no

4. In the case that the result obtained is zero, we copy the last argument to
the output host and stop the execution.

yes→ COPY(hm+1, hout) → halt

5. Otherwise, we add one to the last argument, restart the machine Πf so
that it can be used again to simulate f , and go back to step 2.

no→ ADD(hone, hm+1) → RESTART(Πf ) → back to step 2
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4.7 Main Result

Taking into account that the class of partial recursive functions coincides with
the least class that contains the basic functions and is closed under composition,
primitive recursion and unbounded minimization (see [2]), it is guaranteed that
it is possible to construct virus machines that compute any partial recursive
function. Then, we have the following result.

Theorem 1. The family NV M(∗, ∗, ∗) equals to the family of all the recursively
enumerable sets of natural numbers.

5 Conclusions and Future Work

Virus Machines are a bio-inspired computational paradigm based on the trans-
missions and replications of viruses [1]. The computational completeness of Virus
Machines having no restriction on the number of hosts, the number of instruc-
tions and the number of viruses contained in any host along any computation
has been established by simulating register machines. However, when an upper
bound on the number of viruses present in any host during a computation is set,
the computational power of these systems decreases; in fact, a characterization
of semi-linear sets of numbers is obtained [1].

The semantics of the model makes it easy to construct specific Virus Machines
by assembling small components that carry out a part of the task to be solved.
It is then convenient to develop a library of modules solving common problems
such as comparisons or arithmetic operations between contents of hosts.

In this paper, Virus Machines able to compute partial functions on natural
numbers are introduced. The universality of non-restricted Virus Machines is
then proved by showing that they can compute all partial recursive functions.

In [5] Virus Machines working in the generating mode are considered, and it
is shown how they can generate any diophantine set, providing, via the MRDP
theorem, another proof of the universality of this model of computation. What
is interesting is that the structure of the design of these systems has served
as inspiration to defined a parallel variant of Virus Machines having several
independent instruction transfer networks. It could be interesting to explore
other means of introducing parallelism, such as considering more than one type
of viruses or allowing more than one virus to be transmitted when a channel is
opened.

To study the computational efficiency of this model of computation, for exam-
ple to analyze if the parallel variants of Virus Machines represent an improvement
over the sequential one, a computational complexity theory is required. This way,
the resources needed to solve (hard) problems can be rigorously measured.

Acknowledgments. This work was supported by Project TIN2012-37434 of the Min-
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Abstract. There are many different theoretical computational models,
where mutually independent agents interfere in a shared environment or
they interact with it directly.

In our paper we focus on three models which originate from
colonies – the first of them, eco-colonies, are grammar systems with very
simple agents parallely modifying the shared environment, where the
environment is also evolved by environmental rules (0L scheme). The
second model are P colonies with agents and unordered environment
without its own development, and the third model are eco-P colonies
with a self-developing environment. We compare these three models in
meaning of structure, the way of computation and computational power.

1 Introduction

Eco-colonies were introduced in [16] as extension of colonies [8] – grammar
systems with very simple grammars (components, agents) acting together in
an environment. Eco-colonies extend this concept with environment evolution.
In eco-colonies the evolution of the environment is determined by Lindenmayer
scheme without interaction – 0L scheme (see e.g. [13,15]).

Agents according to their rules process symbols in the environment, the
remaining symbols are processed by the environment. An agent can process
only one particular symbol (in each step it scans the environment, this element
is called the start symbol). Action rules of the given agent specify the strings,
to which the agent can overwrite one occurrence of its start symbol found in the
environment. The important limitation is that the agent is unable to generate
its own start symbol.

In the source [16] two modes of derivation in eco-colony are defined – weakly
parallel wp and strongly parallel sp. In both cases the agents work in parallel,
in wp mode only agents which can find its start symbol in the environment
can work, in sp mode all agents must work otherwise computation ends. Weak
parallelism was defined in a lot of manners (they are more or less equivalent), in
this paper we use the definition published in [12].
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P colonies were introduced in [11] as formal models of a computing device
combining properties of membrane systems and above mentioned distributed sys-
tems of formal grammars called colonies. The concept is inspired by the structure
and functioning of a community of living organisms in a shared environment (for
more information consult [14]).

Eco-P colonies are extended concept of P colonies, where the evolution of the
environment is based on 0L scheme and agents use different type of programs
from programs in P colonies. Reader can find more information in [1].

Sufficient information about options and possibilities of using membrane
systems, P colonies and other models is available on web page http://ppage.
psystems.eu/.

The eco-colonies and P colonies come from the same concept of colonies.
It seems to be interesting question how different are the models. In this paper
we focus on comparability of the environment in eco-colonies and P colonies
(and eco-P colonies respectively). In the first section we remind notations and
definitions, we also show the main properties of the given three systems. The
second section is devoted to relationship of eco-colonies and P colonies, and in
the third section we compare eco-colonies and eco-P colonies.

2 Preliminaries

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing. For further details we refer
to [7,14].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of a symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of objects
V is denoted by V ◦. The set V ′ is called the support of M and denoted by
supp(M) if f(x) �= 0 holds for all x ∈ V ′. The cardinality of M , denoted by
|M |, is defined as |M | =

∑
a∈V f(a). Any multiset of objects M with the set of

objects V ′ = {a1, . . . an} can be represented as a string w over alphabet V ′ with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same multiset M , and ε represents the empty
multiset.

Let x ∈ Σ∗ be an arbitrary string. The number of occurrences of symbols
from Σ in a string x is denoted by |x|. For a language L ⊆ Σ∗ the set length(L) =
{|x| | x ∈ L} is called the length set of L. For a family of languages FL we denote
the family of length sets of languages in FL by NFL.

2.1 Eco-Colonies

We start this subsection with definition of eco-colony, the derivation step and
language generated by eco-colony.

http://ppage.psystems.eu/
http://ppage.psystems.eu/
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Definition 1 (0L eco-colony). An 0L eco-colony of degree n, n ≥ 1, is an
(n + 2)-tuple Σ = (E,w0, A1, A2, . . . , An), where

– E = (V, P ) is 0L scheme, where
• V is a nonempty alphabet,
• P ⊆ V × V ∗ is a finite set of 0L rewriting rules over V,

– w0 ∈ V ∗ is the axiom,
– Ai = (Si, Fi) is the i-th agent, 1 ≤ i ≤ n, where

• Si ∈ V is the start symbol of the agent,
• Fi ⊆ (V − {Si})∗ is a finite set of action rules of the agent (the language
of the agent).

Derivation step in eco-colony is weakly parallel (wp for short), when every
agent which can work must work. An agent can work if its start symbol is in
the environment and any other agent does not occupy selected occurrence of the
symbol. One agent can rewrite only one occurrence of its start symbol in one
step of derivation. In one step the i-th agent finds its start symbol Si and it
rewrites Si to one of strings in the set Fi. Symbols in the environment, which
are not processed by any agent, are changed according to evolving rules of the
environment.

Definition 2. We define a weakly competitive parallel derivation step in an eco-
colony Σ = (E,w0, A1, A2, . . . , An) as the relation

wp⇒ and we say that α directly
derives β in wp mode of derivation (written as α

wp⇒ β) if

– α = v0Si1v1Si2v2 . . . vr−1Sirvr, r > 0,
– β = v′

0fi1v
′
1fi2v

′
2 . . . v′

r−1firv
′
r

for Aik = (Sik , Fik), fik ∈ Fik , 1 ≤ k ≤ r,
– {i1, . . . , ir} ⊆ {1, . . . , n}, ik �= im for all k �= m, 1 ≤ k,m ≤ r,
– we denote tS the number of agents with the start symbol S for all symbols

S ∈ V ; then
r∑

j=1
Sij

=S

|α|Sij
= min (|α|S , tS) (1)

The left side of the equation gives the number of agents with the start symbol
S which work in the given derivation step, the right side of the equation gives
the number of agents with start symbol S which can process their start symbol
in the string α (all agents which can work – their start symbol is in the envi-
ronment and some of the occurrences of this symbol is not occupied by any
other agent – they must work),

– vk⇒v′
k, vk ∈ V ∗, 0 ≤ k ≤ r is the derivation step of the scheme E.

The computation ends when no agent can find its start symbol in the envi-
ronment. For the relation

wp
=⇒ we denote by

wp
=⇒∗

the reflexive and transitive
closure.
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Table 1. Summary of properties of eco-colonies

Property of 0L eco-colony

Environment E = (V, P ) Dynamic, of type 0L, state is a string

Agents A = (S, F ) Are stateless, they can process one specific symbol in the
environment, they can rewrite it to a string

Action rules S → f1
∣∣ f2 ∣∣ · · · ∣∣ fk,

fj ∈ F, F ⊆ (V − S)∗

Priority Agents have priority over the environment

Activity of agents Parallel

Output String – state of the environment

Definition 3. Let Σ = (E,w0, A1, A2, . . . , An) be an eco-colony. The language
generated by Σ using the derivation mode wp is

L(Σ,wp) =
{

w ∈ V ∗
∣∣∣ w0

wp
=⇒∗

w
}

We use 0ECwp for the class of languages generated by 0L eco-colonies with the
wp mode of derivation.

As regards, for the generative power of 0L eco-colonies we find out the fol-
lowing: 0ECwp ⊂ RE, but 0ECwp and the class of context-free languages (CF )
are incomparable.

0ECwp and the class of 0L languages are incomparable – 0L eco-colonies
are not able to generate L1 =

{
a2n

∣∣ n ≥ 0
}

because of the fact that agents
cannot generate their own start symbols, and this language is 0L. Contrarily,
the language of the 0L eco-colony Σ = (E, a3, A) where E = ({a}, {a → aa})
and A = (a, {ε}) is not 0L. This language is infinite and the lengths of the words
are members of the following sequence: a0 = 3, an+1 = 2 · (an − 1) (Table 1).

2.2 P Colonies

We briefly recall the notion of P colonies. A P colony consists of agents and an
environment. Both the agents and the environment contain objects. With each
agent a set of programs is associated. There are two types of rules in the pro-
grams. The rules of the first type, called the evolution rules, are of the form
a → b. It means that the object a inside the agent is rewritten (evolved) to the
object b. The rules of the second type, called the communication rules, are of the
form c ↔ d. When the communication rule is performed, the object c inside the
agent and the object d outside the agent swap their places. Thus after execution
of the rule, the object d appears inside the agent and the object c is placed
outside the agent.

In [9] the set of programs was extended by the checking rules. These rules
give the opportunity to the agents to opt between two possibilities. The rules
are of the form r1/r2. If the checking rule is performed, then the rule r1 has
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higher priority to be executed over the rule r2. It means that the agent checks
whether the rule r1 is applicable. If the rule can be executed, then the agent is
compulsory to use it. If the rule r1 cannot be applied, then the agent uses the
rule r2.

Definition 4. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

– A is the alphabet of the colony, its elements are called objects,
– e ∈ A is the basic object of the colony,
– f ∈ A is the final object of the colony,
– VE is a multiset over A − {e},
– Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where

• Oi is a multiset over A, it determines the initial state (content) of the
agent, |Oi| = k,

• Pi = {pi,1, . . . , pi,ki
} is a finite multiset of programs, where each program

contains exactly k rules, which are in one of the following forms each:
∗ a → b, called the evolution rule,
∗ c ↔ d, called the communication rule,
∗ r1/r2, called the checking rule; r1, r2 are the evolution rules or the

communication rules.

A initial configuration of the P colony is an (n+1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by
the multiset Oi for 1 ≤ i ≤ n and by the set VE . Formally, a configuration of
the P colony Π is given by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi

represents all the objects placed inside the i-th agent, and wE ∈ (A − {e})◦

represents all the objects in the environment different from the object e.
In the paper the parallel model of P colonies will be studied. In each step

of the parallel computation every agent tries to find one usable program. If the
number of applicable programs are higher than one, then the agent chooses one
of its rules nondeterministically. In one step of the computation the maximal
possible number of agents are active.

A configuration is halting if the set of program labels P satisfying the con-
ditions above is the empty set. A set of all possible halting configurations is
denoted by H. A halting computation can be associated with the result of the
computation. It is given by the number of copies of the special symbol f present
in the environment. The set of numbers computed by a P colony Π is defined as

N (Π) = {|vE |f | (w1, . . . , wn, VE) ⇒∗ (v1, . . . , vn, vE) ∈ H},

where (w1, . . . , wn, VE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Let Π be a P colony Π = (A, e, f, �vE , B1, . . . , Bn), the maximal
number of programs associated with the agents is called the height. The degree
is the number of agents in P colony Π. The third parameter characterizing
a P colony is the capacity describing the number of the objects inside each of
the agents (Table 2).
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Table 2. Summary of proprieties of P colonies

Property of P colony

Environment VE Static, state is multiset of objects

Agents B = (O,P ) Have their state, they are equipped by rules allowing
communication with environment

Rules in programs –a → b, a ∈ O (rewriting, evolution)

–c ↔ d, c ∈ O, d ∈ VE (communication)

–p1/p2, where p1, p2 are evolution and communication rules
(checking)

Priority Agents have higher priority, environment has no rules

Action of agents Sequential or parallel

Output Number – the number of objects f present in the
environment

Let us use the following notations:
NPCOLpar(c, n, h) for the family of all sets of numbers computed by the P colo-
nies working in parallel, using no checking rules and with:

– the capacity at most c,
– the degree at most n and
– the height at most h.

If the checking rules are allowed, the family of all sets of numbers computed by
P colonies is denoted by NPCOLparK. If the P colonies are restricted, we use
notation NPCOLparR and NPCOLparKR, respectively.

The P colonies with capacity two are computationally complete.

– NPCOLparKR(2, ∗, 5) = NRE in [5,11],
– NPCOLparR(2, ∗, 5) = NRE in [6],
– NPCOLparK(2, ∗, 4) = NRE in [5],
– NPCOLparKR(2, 1, ∗) = NRE in [6],
– NPCOLparR(2, 2, ∗) = NRE in [2].

The following results are stated for the P colonies with capacity one – there
is only one object inside each agent and each program contains only one rule.

– NPCOLparK(1, ∗, 7) = NRE in [2],
– NPCOLparK(1, 4, ∗) = NRE in [2],
– NPCOLpar(1, 6, ∗) = NRE in [4].

2.3 Eco-P Colonies

In [3] were introduced new types of programs for P colonies with two objects
inside each agent. The first of them are deletion programs — 〈ain; bc → d〉, using
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this program the agent consumes one object (a) from the environment and trans-
forms two objects (b, c) inside the agent into the new one (d). The second type
are insertion programs, the insertion program is of the form 〈aout; b → cd〉. By
executing it the agent sends to the environment one object (a) and from the sec-
ond object (b) the agent generates two new objects (c, d).

The environment of P colonies is static and it can be changed only by activity
of agents. Eco-P colonies are constructed as a natural extension of P colonies with
the environment dynamically evolving independently of agents. The mechanism
of evolution in the environment is based on 0L scheme. 0L scheme is a pair
(Σ,P ), where Σ is the alphabet of 0L scheme and P is the set of context free
rules, it fulfills the following condition ∀a ∈ Σ ∃α ∈ Σ∗ such that (a → α) ∈ P .
For w1, w2 ∈ Σ∗ we write w1 ⇒ w2 if w1 = a1a1 . . . an, w2 = α2α2 . . . αn, for
ai → αi ∈ P, 1 ≤ i ≤ n.

Definition 5. The eco-P colony is a structure
Π = (A, e, f, VE ,DE , B1, . . . , Bn), where

– A is the alphabet of the eco-P colony, its elements are called objects,
– e is the basic (environmental) object of the eco-P colony, e ∈ A,
– f is the final object of the eco-P colony, f ∈ A,
– VE is the initial content of the environment, VE ∈ (A − {e})∗,
– DE is 0L scheme (A,PE), where PE is the set of context-free rules,
– Bi, 1 ≤ i ≤ n, are the agents, every agent is the structure Bi = (Oi, Pi),

where Oi is the multiset over A, it defines the initial state (content) of the
agent Bi and |Oi| = 2, and Pi = {pi,1, . . . , pi,ki

} is the finite set of programs
of two types:
(1) generating 〈a → bc, d out〉 – this program is applicable if agent contains

objects a and d. Object a is used for generating new content of the agent
and object d is sent into the environment.

(2) consuming 〈ab → c, d in〉 – this program is applicable if the agent con-
tains objects a and b. These objects are evolved to one new object c and
the agent imports object d from the environment.

Every agent has only one type of programs. The agent with generating programs
is called sender and the agent with consuming programs is called consumer.

The computation of eco-P colonies is maximally parallel. The configuration
of eco-P colony is final when no agent can find applicable program. The result
of computation is the number of objects f placed in the environment in a final
configuration. Because of nondeterminism we can associate with eco-P colony Π
the set of natural numbers N(Π).

We denote NEPCOLx,y,z(n, h) the family of the sets computing by eco-
P colonies such that:

– x can be one two symbols: s, c. s — if there is an agent sender,
c — if there is an agent consumer in eco-P colony,

– y = passive if the rules of 0L scheme are of the type a → a only,
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Table 3. Summary of properties of eco-P colonies

Property of Eco-P colony

Environment Dynamic, state is multiset of objects, it can evolve because of
0L scheme

Agents B = (O,P ) Have state, two types of rules (programs), depending on their
state they can change the state of the environment

Rules –〈a → bc, d out〉, a, d ∈ O (generating)

–〈ab → c, d in〉, a, b ∈ O, d ∈ VE (consuming)

Priority Agents have higher priority over actions of the environment

Action of the agents Parallel

Output Number – the number of objects f present in the environment

– y = active if the set of rules of 0L scheme contains at least one rule
of another type than a → a,

– z = ini if the environment or agents contain objects different from e,
otherwise we eliminate this notation,

– the degree of eco-P colony is at most n and

– the height is at most h.

The eco-P colonies with two agents (senders and consumers) with passive
environment are computationally complete. If the environment is active, the
eco-P colony can be computationally complete with two agents consumers and
initial content of the environment different from e.

– NEPCOLsc,passive(2, ∗) = NRE,
– NEPCOLc,active,ini(2, ∗) = NRE in [1] (Table 3).

3 Eco-Colonies vs. P Colonies

First we will analyse the notion of environment in eco-colonies and P colonies.
In both cases the agents act in the shared environment. But it is everything in
what they are similar. In eco-colonies the environment is changing dynamically,
in P colonies it is static. Moreover, the general concept of the environment is
discrepant – the environment of eco-colony is a string with 0L scheme assigned
to it to determine its evolution, P colony’s environment is formed as a multiset
of objects in which we do not consider any order of objects.

The P colony agent’s rules are very simple. By using one rule the agent can
process only one object. A rule of agent in eco-colony can generate a string, its
elements are bound to their order and they are inserted into specific, precisely
determined place in the environment.

What is the extent to which we can compare, assimilate and eventually sim-
ulate the activities of agents in the environment of eco-colonies and P colonies?
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Disregarding the differences in understanding of environment and the result of
computation (string vs. number), we find similarity, and the basis for the simu-
lation of the following: Let Σ = (E,w0, A1, . . . , An) be an eco-colony, with

– static environment E = (V, P ), P contains only rules of type a → a, ∀a ∈ V ,
– the agents Ai = (Si, Fi), 1 ≤ i ≤ n, they have restricted possibilities, they

can generate only the strings with length 1: Fi = {fi,1, . . . , fi,ri
}, fi,j ∈

(V − Si), 1 ≤ j ≤ ri.

We construct P colony Π(Σ):

– the agents Bi are created according to agents Ai to obtain similar activity,
– we add two more agents to check whether there are any objects corresponding

to the agents from eco-colony in the environment; in negative case they cause
halting,

– capacity of the P colony is 1,
– there are n+6 consecutive steps of computation corresponding to one step of

derivation in eco-colony,
– every agent Bi has ri programs to evolve object fi,j , 1 ≤ j ≤ ri, and 2 ∗ ri

programs to exchange this object with Si (corresponding to agent Ai) from
the environment,

– the initial content of the environment is similar to the initial state of the
given eco-colony, the initial content of an agent Bi corresponding to an agent
Ai = (Si, Fi) is Si ∈ V .

The whole conversion process is described in Algorithm 1.
Let us outline how the use of a rule Si → fi,j by an agent Ai from the eco-

colony will be simulated by execution of programs of the corresponding agent
Bi in the P colony.

The agent Bn+1 checks whether there is any object Si in the environment.
It is done from checking of presence S1 to checking of presence Sn. In every step
of checking, if it finds some Si (the i-th agent consumes the object Si) it puts
object hi to the environment and waits for appearance of an object a in the
environment. If there is no processable object Si in the environment, the agent
Bn+1 puts the object T1 to the environment. This object can stop activity of
the agent B1.

Let us go through simulation of one derivation step in the eco-colony. It
starts in the initial configuration – the content of the environment corresponds
to the initial state of the eco-colony, the initial content of the agents B1, . . . , Bn

correspond to the start symbols of appropriate agents of the eco-colony.
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The programs associated with the agents B1, B2, . . . , Bn rely on the action rules
of the corresponding agents from the eco-colony.

Algorithm 1. Eco-colony → P colony
Input : Σ = (E,w0, A1, . . . , An)

Environment E = (V, P ), static;
Agents Ai = (Si, Fi), Fi = {fi,1, . . . , fi,ri

},
fi,j ∈ (V −Si), 1 ≤ j ≤ ri;
Initial configuration – w0 ∈ V ∗, |w0| = d;

Output: Π(Σ) = (A, e, f, VE , B1, . . . , Bn+2) with capacity k = 1
agents Bi = (Oi, Pi),
initial configuration – (VE , O1, . . . , On),

Environment:
Alphabet: A = V ∪ {a, e, h, 2, 3, 4, 5, . . . , n + 4} ∪ {Ti | 1 ≤ i ≤ n + 1}
VE =

⋃
1≤j≤d aj , where w0 = a1, . . . , ad

end

Agents: Bi = (Oi, Pi), 1 ≤ i ≤ n, Oi = Si (capacity is 1)
We construct Pi according to Fi = {fi,1, . . . , fi,ri

}:
Pi =

⋃
1≤j≤ri

{pi,ja, pi,jb, pi,jc} ∪ P ′
i , where

P ′
i = {〈Si → S′

i〉 ; 〈S′
i → 2〉 ; 〈2 → 3〉 ; . . . ; 〈n + 3 → n + 4〉 ; } and

for j, 1 ≤ j ≤ ri do
pi,ja = 〈n + 4 → fi,j〉;
pi,jb = 〈fi,j ↔ Si / fi,j → Ti+1〉;
pi,jc = 〈Ti+1 ↔ Ti / Ti+1 → S′

i〉;
end

end
Agent: Bn+1 = (h, Pn+1)

Pn+1 = {〈a → h〉 ; 〈h → h1〉 ; 〈T1 ↔ e〉 ; 〈Sn ↔ a〉;
〈hn ↔ Sn / hn → T1〉} ∪ ⋃

1≤i≤n {pia, pib}
for i, 1 ≤ i ≤ n − 1 do

pia = 〈hi ↔ Si / hi → hi+1〉;
pib = 〈Si ↔ a〉;

end
end
Agent: Bn+2 = (e, Pn+2)

Pn+2 = {〈hn → a〉 ; 〈a ↔ e〉 ; 〈e ↔ Tn+1〉} ∪ ⋃
1≤i≤n {pia, pib}

for i, 1 ≤ i ≤ n − 1 do
pia = 〈e ↔ hi〉;
pib = 〈hi → hi+1〉;

end
end

Every simulation of use of an action rule starts with n + 3 steps of evolving
content of the agent. In this phase the agents Bn+1 and Bn+2 need to check
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whether there is any object Si in the environment. In (n + 4)-th step the agent
Bi rewrites the object n + 4 to some fi,j – the object corresponding to a symbol
generated by the agent Ai. If there is any Si in the environment, the agent Bn+1

consumes it and sends the object hi to the environment. Appearance of the
object hi in the environment makes the program of the agent Bn+2 applicable.
The agent Bn+2 consumes this object and after some “waiting” steps it puts the
object a into the environment.

The “waiting” steps ensure that every simulated derivation step of the eco-
colony takes the same number of steps of computation in the P colony. The agent
Bn+1 exchanges the object Si for the object a and the agents B1, B2, . . . , Bn can
trade “their” contents for the corresponding objects S1, . . . Sn in case that these
objects are placed in the environment. Let S2 (resp. Sn−1) be an object present
in the environment, w ∈ A∗. The two sequences of configurations for these two
objects (see Table 4) show that the given computation takes the same number
of steps for each agent corresponding to an agent of the eco-colony.

Table 4. Configurations of P colony during simulation of execution of the action rule
of the agents B2 or Bn−1 in the case of presence at least one copy of the corresponding
symbol S2 or Sn−1 in the environment

env. B2 Bn−1 Bn+1 Bn+2

1. wS2Sn−1 S2 Sn−1 h e
2. wS2Sn−1 S′

2 S′
n−1 h1 e

3. wS2Sn−1 2 2 h2 e
4. wh2Sn−1 3 3 S2 e
5. wSn−1 4 4 S2 h2

6. wSn−1 5 5 S2 h3

7. wSn−1 6 6 S2 h4

...
(n + 2). wSn−1 n + 1 n + 1 S2 hn−1

(n + 3). wSn−1 n + 2 n + 2 S2 hn

(n + 4). wSn−1 n + 3 n + 3 S2 a
(n + 5). wSn−1a n + 4 n + 4 S2 e
(n + 6). wS2Sn−1 f2,j fn−1,k a e
(n + 7). wf2,jfn−1 S2 Sn−1 h e

env. Bn−1 Bn+1 Bn+2

1. wSn−1 Sn−1 h e
2. wSn−1 S′

n−1 h1 e
3. wSn−1 2 h2 e
4. wSn−1 3 h3 e
5. wSn−1 4 h4 e
...
n. wSn−1 n − 1 hn−1 e

(n + 1). whn−1 n Sn−1 e
(n + 2). w n + 1 Sn−1 hn−1

(n + 3). w n + 2 Sn−1 hn

(n + 4). w n + 3 Sn−1 a
(n + 5). wa n + 4 Sn−1 e
(n + 6). wSn−1 fn−1,j a e
(n + 7). wfn−1,j Sn−1 h e

Two situations can arise in the next configuration – an object Si is either
present or absent in the environment. If there is at least one occurrence of the
object Si in the environment, the i-th agent can use a program with a commu-
nication rule fi,j ↔ Si. Otherwise the agent uses an evolution rule fi,j → Ti+1.
Because of priority (the communication rule must be used if it is possible) we
group these two rules into one checking program. In the following step the agent
rewrites its content to Si and continues with simulation of the next derivation
step of the eco-colony. It does not hold if the object Ti appears in the envi-
ronment. The object Ti signals that no agent can work and it is necessary to
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Table 5. Configurations of P colony during simulation of execution of action rule
of agent B2, agent Bn−1 cannot work because of absence “its” object Sn−1 in the
environment

env. B2 Bn−1 Bn+1 Bn+2

1. wS2 S2 Sn−1 h e
2. wS2 S′

2 S′
n−1 h1 e

3. wS2 2 2 h2 e
4. wh2 3 3 S2 e
5. w 4 4 S2 h2

6. w 5 5 S2 h3

7. w 6 6 S2 h4

...
(n + 2). w n + 1 n + 1 Sn−1 hn−1

(n + 3). w n + 2 n + 2 S2 hn

(n + 4). w n + 3 n + 3 S2 a
(n + 5). wa n + 4 n + 4 S2 e
(n + 6). wS2 f2,j fn−1,k a e
(n + 7). wf2,j S2 Tn h e
(n + 8). wf2,j S′

2 S′
n−1 h1 e − this configuration corresponds

to the configuration 2.

stop computation. After consuming such object, the agent has no applicable pro-
gram. While consuming the object Ti, 1 ≤ i ≤ n, the agent Bi gives the halting
object for the agent Bi+1 into the environment except of object Tn+1, this one
is consumed by the agent Bn+2.

The sample computation for the case when there is no object Sn−1 corre-
sponding with the agent An−1 in the environment is shown in Table 5.

When there is no object Si, 1 ≤ i ≤ n, in the environment the computation
is performed in the way that it is shown in Table 6.

The computation of the P colony begins with the objects corresponding to
the axiom of the eco-colony in the environment. As shown above the previous
agents correctly simulate the behaviour of the eco-colony, and the computation
of the P colony stops if and only if the computation of the eco-colony halts.

According to the previous algorithm and description of simulation process
we obtain the following theorem:

Theorem 1. Let P colony Π = (A, e, f, VE , B1, . . . , Bn+2) with capacity 1 be
constructed from the eco-colony Σ = (E,w0, A1, . . . , An) where Ai = (Si, Fi),
1 ≥ i ≥ n and with |fi,j | ≤ 1 for all fi,j ∈ Fi, 1 ≥ i ≥ n in accordance
with Algorithm1. If wk is state of the environment in the eco-colony Σ after k
derivation steps, k ≥ 0, and w′

k is state of the environment of the P colony Π
after k · (n + 6) derivation steps, then |wk|a = |w′

k|a for all a ∈ V .

In general, we can simulate the execution of the action rules fi,j with the
length greater than one but we have to use a P colony with the capacity at least
two to generate all symbols from the string.
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Table 6. Configurations of P colony during preparing to end the computation

env. B1 B2 . . . Bn Bn+1 Bn+2

1. w S1 S2 . . . Sn h e
2. w S′

1 S′
2 . . . S′

n h1 e
3. w 2 2 . . . 2 h2 e
4. w 3 3 . . . 3 h3 e
...

(n + 1). w n n . . . n hn e
(n + 2). w n + 1 n + 1 . . . n + 1 T1 e
(n + 3). wT1 n + 2 n + 2 . . . n + 2 e e
(n + 4). wT1 n + 3 n + 3 . . . n + 3 e e
(n + 5). wT1 n + 4 n + 4 . . . n + 4 e e
(n + 6). wT1 f1,j1 f2,j2 . . . fn,jn e e
(n + 7). wT1 T2 T3 . . . Tn+1 e e
(n + 8). wT2 T1 S′

2 . . . S′
n e e

(n + 9). wT2 T1 2 . . . 2 e e
(n + 10). wT2 T1 3 . . . 3 e e

...
(n + 15). wT2 T1 n + 4 . . . n + 4 e e
(n + 16). wT2 T1 f2,j2 . . . fn,jn e e
(n + 17). wT2 T1 T3 . . . Tn+1 e e
(n + 18). wT3 T1 T2 . . . S′

n e e
...

(10n). wTn+1 T1 T2 . . . Tn e e
(10n + 1). w T1 T2 . . . Tn e Tn+1

4 Eco-Colonies vs. Eco-P Colonies

In accordance with the definitions above, a closer relationship between eco-
colonies and eco-P colonies could be expected than in case of the previous com-
parison of eco-colonies and P colonies. In the both systems there is dynamic
environment, the environmental changes depend not only on agents’ activity.

Let Σ = (E,w0, A1, . . . , An) be an eco-colony with n agents where

– the environment E = (V, P ) is 0L scheme,
– the agents Ai = (Si, Fi), 1 ≤ i ≤ n generate the strings according to the

action rules from Fi = {fi,1, . . . , fi,ri
}, fi,j ∈ (V − Si)∗, 1 ≤ j ≤ ri.

We construct the eco-P colony Π(Σ):

– the agents Bi are created by the agents Ai such that their activity will be
similar to that of the agents in the environment of the eco-colony,

– one step of derivation in the eco-colony will be simulated in three steps of
computation in the eco-P colony,
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– every agent Bi has ri triples of sets of programs, for each triple-step one of
these sets will be chosen (the third program is the same in all sets so the agent
Bi has 2 ∗ ri + 1 programs),

– the initial content of the eco-P colony’s environment VE corresponds to the
axiom w0 in the eco-colony, and the initial content of an agent Bi based on
the agent Ai = (Si, Fi) is SiX.

Whole construction of the eco-P colony from the given eco-colony is described
in Algorithm 2.

Algorithm 2. Eco-colony → eco-P colony
Input : Σ = (E,w0, A1, . . . , An)

environment E = (V, P ) is 0L scheme
agents Ai = (Si, Fi),
Fi = {fi,1, . . . , fi,ri

} fi,j ∈ (V −Si)∗, 1 ≤ j ≤ ri

axiom w0 ∈ V ∗, |w0| = d
Output: Π(Σ) = (A, e, f, VE ,DE , B1, . . . , Bn)

agents Bi = (Oi, Pi),
the initial configuration (VE , O1, . . . , On)

Environment:
A = V ∪ {e, f,X} ∪ {a′, a′′; a ∈ V } ∪ {[i, j]; 1 ≤ i ≤ n, 1 ≤ j ≤ ri};
VE =

⋃
1≤j≤d aj , where w0 = a1, . . . , ad;

DE = (A − {X}, PE), where
PE = {a → a′, a′ → a′′, a′′ → β; where (a → β) ∈ PE} ∪

∪ {f → f} ∪ {e → e} ∪ {[i, j] → fi,j ; 1 ≤ i ≤ n, fi,j ∈ Fi}
end

Agents: Bi = (Oi, Pi), 1 ≤ i ≤ n
Oi = SiX
Pi is constructed according to Fi = {fi,1, . . . , fi,ri

}:

Pi = {pi,c = 〈Si → SiX, f out〉} ∪
(⋃

1≤j≤ri
{pi,ja, pi,jb}

)
, where

for j, 1 ≤ j ≤ ri do
pi,ja = 〈SiX → [i, j], Si in〉
pi,jb = 〈Si → Sif, [i, j] out〉

end
end

One computation step of the eco-colony is simulated in three (sub)steps in
the eco-P colony. We show that:

– in the first substep (from the given triple-step) only such agents Bi work
whose objects Si are present in the environment,

– in the second and third substep only those agents work, who worked in the
first substep,

– the concept of priority of agents over the evolution of environment is kept.
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We describe how the agents work and how the environment responds. Let us
follow the action of an agent Bi, 1 ≤ i ≤ n:

Substep 1. Only such agent who can find “free” object (which it can process) in
the environment can work. The agent Bi nondeterministically chooses an action
rule from Fi and consumes the object Si from the environment simultaneously,
by using a program 〈SiX → [i, j], Si in〉 for some j, 1 ≤ j ≤ ri. The agent
changes its content from SiX to Si[i, j].

But if the agent Bi does not find its object Si in the environment, it cannot
work in this triple-step because

– any programs of the type pi,ja (see Algorithm 2) are not applicable – there is
no object Si in the environment,

– any programs of the type pi,jb are not applicable – there is no object [i, j]
inside the agent,

– the program pi,c is not applicable – there is no object f inside the agent to
be placed into the environment.

The rules of the type a → a′ are used to evolve the environmentȦfter executing
this substep there are only objects a′, a ∈ V in the environment.

Substep 2. Let the agent Bi worked in the previous substep. Its content is
Si[i, j]. There is only one applicable program 〈Si → Sif, [i, j] out〉 for some
index j ∈ {1, . . . , ri} (pi,ja are not applicable because there is no object Si in
the environment, pi,c cannot be applied because there is no f inside the agent).
The content of the agent changes to Sif , the object [i, j] is placed into the
environment.

After execution of the substep 2 there are these objects in the environment:
a′′, a ∈ V (e and f eventually) and [i, j] produced by active agents.

Substep 3. The agent Bi is in the state Sif . It has only one applicable program
〈Si → SiX, f out〉. The content of the agent changes to SiX and the object f
is placed into the environment.

The rules of the environment evolve it in the following way:

– the objects a′′ are processed by the rules a′′ → β (simulating execution using
the 0L rules of the eco-colony),

– the objects [i, j] are evolved using rules [i, j] → fi,j (the environment cooper-
ates on simulation activity of the agents Ai from the eco-colony).

The content of the environment is corresponding to the string in the eco-colony
except the order of elements. Moreover there is one object f per active agent in
the environment of the eco-P colony.

It is obvious that the process of computation in the eco-P colony corresponds
to this one in the given eco-colony. The number of steps in computation in the
eco-colony is tripled. Now we focus on halting in the eco-P colony. If no agent
in the eco-colony can work (there are not any corresponding objects Si), the
computation in the eco-P colony enters analogical configuration – no agent Bi

can apply any of its programs, and computation ends (Table 7).
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Table 7. Content of the environment and agents in eco-P colony

Substeps: first second third

Object Si is present in the environment:

environment αSiβ ⇒ α′Siβ
′ ⇒ α′′[i, j]β′′ ⇒ γfi,jfδ

agent Bi SiX ⇒ Si[i, j] ⇒ Sif ⇒ SiX

Object Si is absent in the environment:

environment αβ ⇒ α′β′ ⇒ α′′β′′ ⇒ γδ

agent Bi SiX ⇒ SiX ⇒ SiX ⇒ SiX

As the result of computation in the eco-P colony we can observe how many
agents were working during whole computation (the number of occurrences of
the object f at the end of computation placed in the environment).

From the previous algorithm and the description of simulation process we
obtain the following theorem:

Theorem 2. Let eco-P colony Π = (A, e, f, VE ,DE , B1, . . . , Bn) be constructed
from the eco-colony Σ = (E,w0, A1, . . . , An) in accordance with Algorithm2.
If wk is state of the environment in the eco-colony Σ after k derivation steps,
k ≥ 0, and w′

k is state of the environment of the P colony Π after k ·3 derivation
steps, then |wk|a = |w′

k|a for all a ∈ V .

5 Conclusion

As pointed out in Introduction, the aim of this paper is not to compare the com-
putational power of the discussed models, we dealt with comparison of activities
of agents in their shared environment.

While agents of eco-colonies are (intentionally) very simple to construct, they
have no internal status, they only affect the environment (moreover, they can not
generate their own starting symbol), agents of P colonies and eco-P colonies are
rather more sophisticated – they have their own internal state and they interact
with the environment by using several types of rules. By contrast, agents in
eco-colonies can generate various strings, different number of symbols than one
as well, but agents in P colonies and eco-P colonies work with strictly specified
number of symbols in each derivation step.

Eco-colonies and eco-P colonies share one important trait – their environment
is able to self-develop.

In this paper we introduce two algorithms – the input of the both algorithms
is an eco-colony (in the first case it is of the restricted form), the output is
a P colony (Algorithm 1) or an eco-P colony emulating the actions of agents
in the environment. The goal was to ensure similarity of environment changes
synchronously with the original system as close as possible.

The first algorithm is more complicated – it is not possible to utilize self-
developing environment, agents generate only symbols instead of strings, and
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one derivation step of an original (and restricted) eco-colony is simulated by
n+6 steps of the constructed P colony. The main problem was to stop derivation
of the constructed P colony in the step corresponding to the stopping step of
the given eco-colony – it is the reason of adding the additional agents Bn+1 and
Bn+2 and derivation lengthening.

In the second algorithm we were able to count on the possibility of devel-
opment in the environment, we used it not merely for simulating the self-
development of the environment itself but also to provide inserting variously
long strings, in the given eco-colony inserted by agents. One derivation step of
the original eco-colony is simulated by three derivation steps of the constructed
eco-P colony.

We can undoubtedly say that eco-colonies are much more similar to eco-P
colonies than to P colonies, and the above stated algorithms specify degree of
this similarity respectively difference.
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Dedicated to Gheorghe Păun on the Occasion of His 60th Birthday. LNCS, vol.
6610. Springer, Heidelberg (2011)
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612 (2005)



Author Index

Adorna, Henry N. 200
Alhazov, Artiom 51, 63
Aman, Bogdan 77
Azimi, Sepinoud 25

Bakir, Mehmet E. 153
Balaskó, Ákos 92
Balderrama, Javier Rojas 338
Behre, Jörn 215

Cabarle, Francis George C. 106
Cienciala, Luděk 369
Ciencialová, Lucie 369
Ciobanu, Gabriel 77
Csuhaj-Varjú, Erzsébet 92
Czeizler, Eugen 25

Francia, Sherlyne L. 200
Francisco, Denise Alyssa A. 200
Freund, Rudolf 51, 63, 117, 137

Gheorghe, Marian 153
Graciani, Carmen 171
Gracini Guiraldelli, Ricardo Henrique 185
Gratie, Cristian 25
Gratie, Diana 25

Hernandez, Nestine Hope S. 106, 200
Hinze, Thomas 215

Iancu, Bogdan 25
Ibssa, Nebiat 25
Ipate, Florentin 153
Ivanov, Sergiu 117

Juayong, Richelle Ann B. 200

Kelemenová, Alica 290
Kirkici, Korcan 215
Kolonits, Gábor 236
Konur, Savas 153

Leporati, Alberto 251

Macías-Ramos, Luis F. 262
Mahalingam, Kalpana 277
Manca, Vincenzo 3, 185
Manzoni, Luca 251
Martínez-del-Amor, Miguel Ángel 106, 171,

262
Mauri, Giancarlo 251
Metta, Venkata Padmavati 290
Mierla, Laurentiu 153
Mihálydeák, Tamás 304
Moya, Andrés 19

Nicolescu, Radu 321

Pérez-Jiménez, Mario J. 262, 353
Petre, Ion 25
Porreca, Antonio E. 251

Rama, Raghavan 277
Riscos-Núñez, Agustín 171, 353
Rogojin, Vladimir 25
Romero-Jiménez, Álvaro 353

Sauer, Patricia 215
Sauer, Peter 215
Shadbahr, Tolou 25
Shokri, Fatemeh 25
Simonin, Matthieu 338
Sosík, Petr 137
Stannett, Mike 153
Sureshkumar, Williams 277

Tedeschi, Cédric 338

Valencia-Cabrera, Luis 353
Vaszil, György 92, 304
Vavrečková, Šárka 369
Verlan, Sergey 63, 117

Zandron, Claudio 251


	Preface
	Organization
	Contents
	Invited Papers
	Information Theory in Genome Analysis
	1 Introduction
	2 Basic Notation
	3 A Glimpse in Information Theory
	3.1 Entropy
	3.2 Entropic Divergence
	3.3 Mutual Information
	3.4 Univocal and Prefix-Free Codes
	3.5 Compression
	3.6 Entropic Paradox

	4 Genomic Distributions and Dictionaries
	4.1 Distributions of k-mer Cardinality
	4.2 Multiplicity and Co-multiplicity Distributions
	4.3 Distributions Relating Word Length and Multiplicity
	4.4 Spectra of Genomic Dictionaries
	4.5 Hapax Overlap Factorizations
	4.6 Recurrence Distance Distributions
	4.7 Genome Representations
	4.8 Complete Segmentations and Segment Dictionaries
	4.9 Occurrence Order and Context Dictionaries

	5 Conclusions
	References

	Towards a Theory of Life
	1 Introduction
	2 Biology
	3 Logic and Computing
	4 Cell and Evolution
	Reference

	An Excursion Through Quantitative Model Refinement
	1 Introduction
	2 Preliminaries
	2.1 Reaction-Based Models
	2.2 ODE-based Mass-Action Model

	3 Quantitative Model Refinement
	3.1 Structural Refinement
	3.2 Fit-Preserving Refinement
	3.3 Refinement Induced by the Composition of Species

	4 Case-Studies
	4.1 The Heat Shock Response
	4.2 The ErbB Signalling Pathway
	4.3 Intermediate Filaments Self-assembly

	5 Software Support
	5.1 ModelRef
	5.2 StructRef

	6 Quantitative Refinement in Other Formalisms
	6.1 Rule-Based Models Refinement
	6.2 Refinement of Petri Net Models
	6.3 Guarded Command-Based Models Refinement

	7 Discussion
	References

	Regular Papers
	Polarizationless P Systems with One Active Membrane
	1 Introduction
	2 Definitions
	2.1 Formal Language Prerequisites
	2.2 P Systems with One (Active) Membrane

	3 Comparison with a Transitional Model: Catalytic P Systems with One Catalyst
	4 External Output
	5 Internal Output
	6 P Systems with Internal Input
	7 Conclusions
	References

	Bridging Deterministic P Systems and Conditional Grammars
	1 Introduction
	2 Definitions
	2.1 Register Machines
	2.2 P Systems

	3 Context Conditions
	4 Regular Context Conditions
	4.1 One-Symbol Regular Context Conditions

	5 Stronger Context Conditions
	6 Bridging P Systems and Indian Parallel Grammars
	7 Conclusions
	References

	Automated Verification of Stochastic Spiking Neural P Systems
	1 Introduction
	2 Stochastic Spiking Neural P Systems
	3 Networks of Timed Automata
	4 Relating Stochastic SN P Systems to Timed Automata
	5 Verification of Stochastic Spiking Neural P Systems
	6 Conclusion
	References

	Dynamically Changing Environment for Generalized Communicating P Systems
	1 Introduction
	2 Preliminaries
	2.1 Some Basic Notions
	2.2 Register Machines

	3 Generalized Communicating P Systems with a Dynamically Changing Environment
	4 Power of deGCPS Systems
	4.1 Discussion

	References

	Spiking Neural P Systems with Structural Plasticity: Attacking the Subset Sum Problem
	1 Introduction
	2 Preliminaries
	3 Spiking Neural P Systems with Structural Plasticity
	4 Solving Subset Sum with SNPSP systems
	5 A Non-uniform Solution to Subset Sum
	6 A Uniform Solution to Subset Sum
	7 Final Remarks
	References

	P Systems with Generalized Multisets Over Totally Ordered Abelian Groups
	1 Introduction
	2 Definitions
	2.1 Preliminaries
	2.2 Groups and Group Presentations

	3 Generalized Multisets over an Abelian Group
	4 P Systems with Multisets over a Totally Ordered Abelian Group
	4.1 P Systems
	4.2 Derivation Modes

	5 Examples
	6 Conclusions
	References

	On the Power of Catalytic P Systems with One Catalyst
	1 Introduction
	2 Definitions
	2.1 Register Machines and Multi-Counter Automata
	2.2 Partially Blind Register Machines and Multi-Counter Automata
	2.3 Catalytic P Systems

	3 One-Membrane Catalytic P Systems with One Catalyst Can Simulate Partially Blind Register Machines
	4 One-Membrane Catalytic P Systems with One Catalyst Can Simulate Partially Blind Multi-counter Machines
	5 Examples
	6 Conclusion
	References

	An Integrated Model Checking Toolset for Kernel P Systems
	1 Introduction
	2 Kernel P Systems
	2.1 KP--Lingua
	2.2 kPWorkbench

	3 Verification of kP Systems
	3.1 Previous Approach
	3.2 The New Approach

	4 Case Studies
	4.1 The Subset Sum Problem
	4.2 Generating Square Numbers
	4.3 Broadcasting with Acknowledgement

	5 Discussion
	6 Conclusions and Future Work
	References

	A New Strategy to Improve the Performance of PDP-Systems Simulators
	1 Introduction
	2 Production Systems
	2.1 The Rete Algorithm

	3 Rete and P System Simulation
	4 Population Dynamics P Systems and DCBA Algorithm
	5 Conclusions and Future Work
	References

	Automatic Translation of MP+V Systems to Register Machines
	1 Introduction
	2 Register Machine
	3 Metabolic P Systems
	3.1 The MP+ Class of Systems

	4 Translation of MP+V Systems into Register Machine Programs
	4.1 The Caveats of MP+V 
	4.2 The MP+V Rules
	4.3 Surroundings of MP+V Steps

	5 Conclusion
	References

	On the Communication Complexity of the Vertex Cover Problem and 3-Satisfiability Problem in ECP Systems
	1 Introduction
	2 Preliminaries
	3 On Communication Complexity of Problems Solved in ECP Systems
	3.1 Solving Hard Problems in ECP Systems
	3.2 Some Dynamical Communication Measures and Communication Complexity Class

	4 On ECP Solutions to VCP
	5 On ECP Solutions to 3SP
	6 Conclusion
	References

	Membrane Computing Meets Temperature: A Thermoreceptor Model as Molecular Slide Rule with Evolutionary Potential
	1 Introduction and Background
	2 Extending Deterministic P Modules by Temperature and Activation Energy
	3 Thermoreceptor Model Emulating Ion Channel, Frequency Modulation, Transduction, and Decoding
	4 Evolving Temperature Entrainable Circadian Clock Model
	5 Conclusions
	References

	A Solution of Horn-SAT with P Systems Using Antimatter
	1 Introduction
	2 Preliminaries
	3 The Main Result
	3.1 Solving Horn-SAT
	3.2 P Upper Bound

	4 Conclusions
	References

	Tissue P Systems Can be Simulated Efficiently with Counting Oracles
	1 Introduction
	2 Basic Notions
	3 Simulating Tissue P Systems
	3.1 Tissue P Systems with Separation

	4 Conclusions
	References

	Simulating FRSN P Systems with Real Numbers in P-Lingua on sequential and CUDA platforms
	1 Introduction
	2 Fuzzy Reasoning Spiking Neural P Systems with Real Numbers
	3 P--Lingua Syntax for FRSN P Systems with Real Numbers
	4 Simulating FRSN P Systems with Real Numbers
	4.1 Simulation Algorithm
	4.2 P-Lingua Simulators for FRSN P Systems with Real Numbers

	5 Conclusions and Future Work
	References

	Pictures and Chomsky Languages in Array P System
	1 Introduction
	2 8-Directional Array P Systems
	3 Labeled 8dAPS in Accepting Mode and Pictures
	4 Main Results
	5 Concluding Remarks
	References

	Sorting Using Spiking Neural P Systems with Anti-spikes and Rules on Synapses
	1 Introduction
	2 Prerequisites
	2.1 Spiking Neural P Systems with Anti-spikes and Rules on Synapses

	3 Bitonic Sorting Network
	4 Bitonic Sorting of Integers Using SN PA Systems with Rules on the Synapses
	5 Bead Sorting of Integers Using SN PA Systems with Rules on the Synapses
	6 Conclusion
	References

	Regulating Rule Application with Membrane Boundaries in P Systems
	1 Introduction
	2 Preliminaries
	3 Multiset Approximation Spaces
	4 Multiset Approximation Spaces in Membrane Computing
	5 Chemical Stability and the Notion of Membrane Boundaries
	6 A Notion of Membrane Boundaries Based on Chemical Stability
	7 Regulating Rule Application in Asynchronous P Systems
	8 Conclusion
	References

	Structured Grid Algorithms Modelled with Complex Objects
	1 Introduction
	2 Background: Seeded Region Growing
	3 Background: Structured Grid Dwarf
	4 Membrane Computing with Complex Objects
	4.1 Complex Objects
	4.2 Generic Rules

	5 Membrane Model
	6 Evaluation
	7 Conclusions
	References

	Chemistry-Inspired Adaptive Stream Processing
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 HOCL
	3.2 HOCL and P-Systems

	4 Programming Abstractions for Workflows
	4.1 Workflow Description
	4.2 Workflow Enactment
	4.3 Adaptiveness

	5 Architecture and Implementation 
	5.1 Decentralised Architecture
	5.2 Decentralising the Adaptive Stream Processing Rules

	6 Conclusions 
	References

	Computing Partial Recursive Functions by Virus Machines
	1 Introduction
	2 Preliminaries
	2.1 Sets and Functions
	2.2 Graphs

	3 Virus Machines
	3.1 Virus Machines as Function Computing Devices

	4 The Universality of Non-restricted Virus Machines
	4.1 Computing Partial Recursive Functions by Virus Machines
	4.2 Modules
	4.3 Basic or Initial Functions
	4.4 Composition of Functions
	4.5 Primitive Recursion of Functions
	4.6 Unbounded Minimization of Functions
	4.7 Main Result

	5 Conclusions and Future Work
	References

	About Models Derived from Colonies
	1 Introduction
	2 Preliminaries
	2.1 Eco-Colonies
	2.2 P Colonies
	2.3 Eco-P Colonies

	3 Eco-Colonies vs. P Colonies
	4 Eco-Colonies vs. Eco-P Colonies
	5 Conclusion
	References

	Author Index



