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Abstract. We examine the problem of rendezvous, i.e., having multiple
mobile agents gather in a single node of the network. Unlike previous
studies, we need to achieve rendezvous in presence of a very powerful
adversary, a malicious agent that moves through the network and tries
to block the honest agents and prevents them from gathering. The mali-
cious agent can be thought of as a mobile fault in the network. The
malicious agent is assumed to be arbitrarily fast, has full knowledge of
the network and it cannot be exterminated by the honest agents. On
the other hand, the honest agents are assumed to be quite weak: They
are asynchronous and anonymous, they have only finite memory, they
have no prior knowledge of the network and they can communicate with
the other agents only when they meet at a node. Can the honest agents
achieve rendezvous starting from an arbitrary configuration in spite of
the malicious agent? We present some necessary conditions for solving
rendezvous in spite of the malicious agent in arbitrary networks. We
then focus on the ring and mesh topologies and provide algorithms to
solve rendezvous. For ring networks, our algorithms solve rendezvous in
all feasible instances of the problem, while we show that rendezvous is
impossible for an even number of agents in unoriented rings. For the
oriented mesh networks, we prove that the problem can be solved when
the honest agents initially form a connected configuration without holes
if and only if they can see which are the occupied nodes within a two-
hops distance. To the best of our knowledge, this is the first attempt to
study such a powerful and mobile fault model, in the context of mobile
agents. Our model lies between the more powerful but static fault model
of black holes (which can even destroy the agents), and the less powerful
but mobile fault model of Byzantine agents (which can only imitate the
honest agents but can neither harm nor stop them).

S. Das—This work has been partially supported by the ANR - MACARON project
(anr-13-js02-0002).
F.L. Luccio—This work has been partially supported by the PRIN 2010 Project
Security Horizons.
E. Markou—Part of this work has been done while this author was visiting Università
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1 Introduction

One of the fundamental problems in distributed computing with mobile robots
or agents is the problem of gathering all agents at a single location, known as
the rendezvous problem. Rendezvous is important for example, for coordination
between the agents or for sharing information or for planning a collaborative
task. This problem has been well studied for the fault-free environment but
there are very few results on solving rendezvous in the presence of faults, in
particular, in the presence of a hostile entity that could prevent the agents from
achieving their task. As in most previous works, we model the environment as
a connected graph with multiple mobile agents moving along the edges of the
graph; the objective is to gather them at a single node of the graph. In this
context, the hostile entity may be either stationary (e.g. a harmful node in the
graph) or mobile (e.g. a virus propagating on a network). Methods for protecting
mobile agents from malicious host nodes have been proposed, e.g. based on
the identification of the malicious host [14]. However, the issue of protecting a
network (hosts and mobile agents) from a malicious and mobile entity is still
wide open (see [18] and references therein).

A model for a particularly harmful node which has been extensively studied
is the black hole, where a node which contains a stationary process destroys all
mobile agents upon visiting it, without leaving any trace. In this case, although
the hostile entity is very powerful, it is stationary; the mobile agents can simply
avoid the black hole once its location is known. Thus, the main issue is locating
the black hole [14,17,19]. Locating and avoiding a malicious entity that is also
mobile and moves from node to node of the graph, seems to be a more difficult
problem. A recent result considers the problem of rendezvous in the presence
of Byzantine agents [12]. A Byzantine agent is indistinguishable from the legit-
imate or honest agents, except that it may behave in an arbitrary manner and
may provide false information to the honest agents in order to induce them to
make mistakes, thus preventing the rendezvous of the honest agents. Thus, the
issue here is identifying the Byzantine agents and distinguishing them from the
honest agents. Note that the Byzantine agent cannot actively harm the agent
or physically prevent the agents from gathering. In this paper, we consider a
more powerful adversary called a malicious agent which can actively block the
movement of an honest agent to the node occupied by the malicious agent. For
example, when two honest agents are close to each other, the malicious agent can
enter the path between the two agents and prevent them from meeting. We inves-
tigate the feasibility of rendezvous in the presence of such a powerful adversary.
In particular, the malicious agent is more powerful than the honest agents; it can
move arbitrarily fast through the graph, has full information about the current
configuration (i.e. the graph and location of the agents), and has knowledge of
the next action to be taken by each honest agent. On the other hand, the honest
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agents are relatively weak; they are anonymous finite automata, they move asyn-
chronously without any prior knowledge of the graph and they can communicate
only locally on meeting another agent at the same node. We remark here that
the malicious agent is distinguishable from the honest agents, so the question of
identifying the malicious agent (as in Dieudonne et al. [12]), does not arise here.

We believe this is an interesting model for studying mobile faults in a graph,
that has never been considered before. In some sense this model can be seen as
an extension of the model of networks with delay faults. For example, Chalopin
et al. [8] consider the problem of rendezvous in the presence of an adversary
that can prevent an agent from moving for an arbitrary but finite time. In their
case, the agent cannot be blocked forever as in our scenario. Our model can
also be contrasted with the model for network decontamination or, cops and
robbers search games on graphs, where a team of good agents (called cops) tries
to capture a fast fugitive (robber). The fugitive or hostile entity is exterminated
as soon as one of the cops reaches it. Thus the behavior of the hostile entity, in
this case, is opposite to that of the malicious agent in our model – instead of
blocking the honest agents, the hostile entity tries to get away from the good
agents.

In terms of practical motivation for this research, we can think of the mali-
cious agent as representing a virus that may spread around the network. While in
the classical decontamination problem the aim is to extinguish the virus, in our
setting the virus cannot be extinguished and has to be contained in one part of
the network, thus dividing the network into unstrusted and trusted subnetworks.
This scenario can be compared to the problem of botnets, i.e. a subnet of com-
promised computers (bots), typically used for denial-of-service attacks on the
internet. The untrusted subnetwork in our model can be seen as a botnet, and
the botmaster who controls the bots represents the malicious agent. An honest
agent that resides on a node protects the trusted network from the untrusted
one by running some protection mechanism (e.g. a firewall, an intrusion detec-
tion mechanism, etc.). Thus the malicious agent cannot enter a node already
occupied by an honest agent. On the other hand the botnet is dynamic, and it
may reduce its dimension (i.e., when the botmaster leaves the host) or it may
increase it only on hosts not occupied, i.e., not protected by an agent. Honest
agents may expand towards the untrusted hosts which are not controlled by the
botmaster anymore by running botnet detection mechanisms (see, e.g., [25]). We
are then interested in solving the rendezvous problem in the trusted subnetwork,
and we want to study how this malicious behaviour affects the solvability of the
Rendezvous problem.

Related Work: The rendezvous problem has been studied for agents moving
on graphs [2] or for robots moving on the plane [9], using either deterministic or
randomized algorithms. In the fault-free scenario, the rendezvous problem can
be solved relatively easily, even in asynchronous networks, when the network
has an asymmetry (e.g., a distinguished node), and can be explored by the
agents, since the mobile agents can simply be instructed to meet at such a
distinguished node. However, this is not the case for symmetric networks, or when
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the agents is incapable of visiting all nodes of the network, and the rendezvous
problem in such settings is non-trivial and not always solvable even in simple
topologies such as the ring network [21]. Symmetry-breaking for the rendezvous
problem can be achieved by attaching unique identifiers to the agents (see, e.g.,
[10,24]), or in the anonymous case using tokens as in e.g., [6,11]. With respect
to hostile environments, the Rendezvous problem has been studied when there is
a black hole or other stationary faults in the network [7,13,23]. Another model
for hostile nodes has been presented in [3,20], where the authors have studied
how a more severe (than a black hole) behaviour of a malicious host affects the
solvability of the Periodic Data Retrieval problem in asynchronous networks.
A well studied problem in the context of a mobile adversary is the problem of
graph searching where a team of mobile agents has to decontaminate the infected
sites and prevent any reinfection of cleaned areas. This problem is equivalent to
the one of capturing a fast and invisible fugitive moving in the network. For
results on this and related problems see, e.g., [4,15,16,22].

Gathering of mobile agents has been also studied in the plane when there
are faulty agents which may crash [1,5] and in networks with delay faults [8] or
in the presence of Byzantine agents [12], as mentioned before. However, to the
best of our knowledge, the rendezvous problem has never been studied under
the presence of hostile agents that may block other agents from having access
to parts of the network.

Our Results: In this paper we consider a network modelled as a connected
undirected graph with multiple honest agents located at distinct nodes of the
graph. There is also a hostile entity which is mobile, called the malicious agent.
It cannot harm the honest agents but can prevent them from visiting a node:
an honest mobile agent cannot visit a node which is occupied by a malicious
agent and vice versa. We are interested in solving the rendezvous of all honest
agents in this hostile environment. Our objective is to study the feasibility of
rendezvous with minimal assumptions. Thus, we consider the weakest possible
model for the honest agents. The honest agents are finite state automata with
local communication capability and having no prior knowledge of the network.
In Sect. 2 we show some configurations in which the problem is unsolvable and
we discuss properties that must be respected by any correct algorithm for the
problem. For the rest of the paper, we consider ring and mesh networks – two
topologies that can be explored even by a finite automaton. In Sect. 3 we present
a rendezvous algorithm for ring networks. For oriented rings, we have a univer-
sal algorithm that achieves rendezvous starting from any initial configuration,
despite the existence of a malicious agent. We prove that the problem is unsolv-
able for any even number of agents in unoriented rings. Finally, we present an
algorithm for rendezvous of any odd number of agents in unoriented rings, thus
solving the problem in all solvable instances. In Sect. 4 we consider oriented mesh
topologies and we prove that the problem can be solved when the agents initially
form a connected configuration without holes if and only if they can detect which
are the occupied nodes within a distance of two hops. We show that this latter
capability is necessary to achieve rendezvous even for connected configurations
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without holes. We conclude in Sect. 5 with a discussion about future research
directions for this new model. For space limitation, proofs of some lemmas and
theorems have been omitted; these can be found in the full version of the paper.

2 Preliminaries

2.1 Our Model

We represent the network by a graph G = (V,E) composed by |V | = n anony-
mous nodes or hosts and |E| edges or connections between nodes. Each host
is connected to other hosts by bidirectional asynchronous FIFO links (i.e., an
agent cannot overtake another agent moving in the same edge), and it is capable
of serving agents by a mutual exclusive mechanism (i.e., an agent at a node u
must finish its computation and move or decide to stay, before any other agent
at u starts its computation or another agent visits u). The links incident to a
host are distinctly labelled but this port labelling (unless explicitly mentioned),
is not globally consistent. In the network there are some mobile agents which are
independent computational processes with some constant internal memory. The
agents are initially scattered in the network (i.e., at most one agent at a node),
and can move along its edges. An agent arriving at a node u, learns the label
of the incoming port, the degree of u and the labels of the outgoing ports. We
assume there are k honest anonymous identical agents A1, A2, . . . Ak, and one
malicious agent M which may deviate from the proper operations. The initial
locations of the honest and malicious agents are decided by an adversary. We
describe below the capabilities and behaviour of honest and malicious agents.

Honest Agents: An honest agent located at a node u can see all other agents
at u (if any), and can also read their states. It can also read the degree of u and
the labels of the outgoing ports. The agents are anonymous, cannot exchange
messages and cannot leave messages at nodes. They are identical finite state
automata, hence they have some constant memory. The agents do not know n
and k. Two agents travelling on the same edge in different directions do not
notice each other, and cannot meet on the edge. Their goal is to rendezvous at
a node.

Malicious Agent: We consider a worst case scenario in which the malicious
agent M is a very powerful entity compared to honest agents: It can move
arbitrarily fast inside the network (since the model is asynchronous and the
adversary is combined with the malicious agent) and it can permanently ‘see’
the positions of all the other agents. It has unlimited memory and knows the
transition function of the honest agents. When it resides at a node u it prevents
any honest agent A from visiting u (i.e., it “blocks” A): if an agent A attempts
to visit u it receives a signal that M is in u (botnet detection) and in that case
we say that A bumps into M . The malicious agent can neither visit a node which
is already occupied by some honest agent, nor cross some honest agent in a link.
It also obeys the FIFO property of the links (i.e., it cannot overpass an honest
agent which is moving on a link).
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We call a node u occupied (respectively, free or unoccupied) when one or
more (no) honest agents are in u. We notice here that some of our impossibility
results hold even for stronger models, e.g., when honest agents have unlimited
memory, distinct identities, knowledge about the size of the network, visibility,
etc. Our algorithm for the ring topology only requires the capabilities of the
honest agents mentioned above while for the mesh topology we assume that the
honest agents also have the ability to scan whether a node within a two-hops
distance, is occupied or not.

2.2 Basic Properties

In this section we show a special class of configurations for which the problem
is unsolvable. Intuitively, those are configurations in which the malicious agent
can keep separated at least two agents forever.

Definition 1. Let C be a configuration of a number of agents in a graph G with
a malicious agent. The configuration C is called separable if there is a connected
vertex cut-set F composed of free nodes which, when removed, disconnects G so
that not all occupied nodes are in the same connected component.

Lemma 1. Rendezvous is impossible for any initial configuration in a graph G
which is separable, even if the agents have unlimited memory, distinct identities
and can always see their current configuration.

Proof. Let C be an initial configuration which is separable, and let F be a con-
nected vertex cut-set, whose removal disconnects G so that not all occupied nodes
are in the same connected component. Let u, v be two occupied nodes which are
in different connected components of G and let A,B be the honest agents located
at u, v respectively. Due to asynchronicity an adversary can introduce delays to
A’s and B’s movements while at the same time the malicious agent, which has
been initially placed at a node in F , can move everywhere in F (since F has only
free nodes and it is connected) preventing agents A,B, from visiting any node in
F . Since all paths between u and v include at least one node of F , agents A,B
can never meet, no matter how powerful they are. ��

Hence for every initial separable configuration the problem is unsolvable. A
natural question is whether there are non-separable initial configurations for
which the problem is unsolvable. The answer is yes and one can easily find such
configurations. We now state sufficient conditions under which the problem is
unsolvable for a separable (initial or not) configuration of agents.

Definition 2. Let Ct be a configuration at time t ≥ 0 (i.e., initial or not) of a
number of agents in a graph G with a malicious agent. The configuration Ct is
called separating if Ct is separable and either Ct is an initial configuration or
the following conditions hold:

– there is a node xm ∈ Ft (Ft is any vertex cut-set of Ct as defined in
Definition 1) and a path of nodes (x0, x1, . . . , xm) so that x0 is free at time
0 and,
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– the sequence of nodes (x0, x1, . . . , xm) can be partitioned in k ≤ t+1 contiguous
subsequences (x0

0, . . . , x
0
i ), (x

1
i+1, . . . , x

1
j ), . . . , (x

k
l+1, . . . , x

k
m), where 0 ≤ i <

j < l < m and,
– the nodes (xs

w, . . . , x
s
r) belonging to the same subsequence s are free at time s,

where 0 ≤ s ≤ k and nodes (xk
w, . . . , x

k
r ) are free at time t.

Lemma 2. Rendezvous is impossible for any separating configuration in a graph
G, even if the agents have unlimited memory, distinct identities and can always
see their current configuration.

Intuitively, Lemma 2 states that if Ct is a separable configuration, and in Ct

there is a free node x so that either: (i) x has been always free or, (ii) there
are paths of nodes which eventually become free and they form a connection
between a free node at C0 and x, then there are at least two agents in Ct which
will never meet. Hence, any correct algorithm for the solution of the problem
should avoid creating a separating configuration.

3 Rendezvous in a Ring Network

In this section we will study the rendezvous problem in bidirectional rings with
a malicious agent M . Notice that in a ring topology there are no separable (and
hence no separating either) configurations, since there cannot exist a connected
cut-set composed of free nodes whose removal would disconnect the ring. How-
ever, since the ring is highly symmetric, rendezvous is impossible even if the
agents have unlimited memory and have full knowledge of the configuration,
since an adversary can keep synchronized the agents so that they always take
the same actions at the same time and therefore they maintain their initial dis-
tances (the malicious agent can keep on moving synchronized with the honest
agents). Thus, in order to solve the problem we need to add some constraints to
the model. A natural step is to assume that there is a special node labeled o∗ in
the ring which can be recognized by the agents. Note that the malicious agent
is so powerful that it could place itself on o∗ and never move from there. Our
strategies also work under this scenario. We now present algorithms for solving
the problem in oriented and unoriented rings.

3.1 Oriented Ring

In an oriented ring, the two incident edges at each node are labelled as clockwise
or counter-clockwise in a consistent manner; so, all agents agree on the ring
orientation.

The idea of the algorithm is the following. Each agent moves in the clockwise
direction until it meets o∗ or bumps into M . For the first three times that the
agent bumps into M without meeting o∗, it reverses its direction and contin-
ues moving in the opposite direction. Due to the FIFO property and the fact
that the agent cannot pass over M , we can show that if an agent bump into
M after reversing directions at least three times, then the other agents should
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Algorithm 1. RV-OR : Rendezvous of k ≥ 2 agents in oriented rings
Let i := 0;
DIR := Clockwise;
while not Stopped do

Move DIR until you bump into M or meet o∗ or a stopped agent;
i=i+1;
if you met a Stopped agent then

Become Stopped and Exit loop;

if i = 1 or i = 2 then
if Current node is o∗ then

Become Stopped and Exit loop;

else if Bumped into M then
Reverse direction (DIR := inverse(DIR));

if i = 3 then
if Current node is o∗ or Bumped into M then

Reverse direction (DIR := inverse(DIR));

if i = 4 then
if Current node is o∗ or Bumped into M then

Become Stopped and Exit Loop ;

have bumped into M at least twice, without meeting the special node o∗ (see
Lemma 3). After an agent has already bumped into M three times, the next
time it bumps into M or meets o∗ it stops. On the other hand, if the agent
meets o∗ before it bumps into M twice, then the agent stops at o∗, and all the
other agents will arrive at o∗ after bumping into M at most once. The algorithm
called RV-OR is presented below.

Lemma 3. During the execution of the algorithm, if an agent bumps into M in
the fourth iteration of the while loop, then any other agent must have bumped
into M at least two times.

Lemma 4. Algorithm RV-OR solves rendezvous of k ≥ 2 agents in spite of one
malicious agent, in any oriented ring containing one special node o∗.

3.2 Unoriented Rings

In unoriented rings, each agent has its own notion of clockwise and the agents
may not agree on the clockwise direction. In this case rendezvous is not always
feasible.

Lemma 5. For any even number k ≥ 2, the rendezvous problem for k honest
agents and one malicious agent cannot be solved in any bidirectional unoriented
anonymous ring with a special node o∗, even if the agents know k.
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We now present an algorithm for solving rendezvous of k agents, for any
odd integer k, in an unoriented asynchronous ring network. Notice that in an
unoriented ring, if we follow an algorithm similar to Algorithm RV-OR it is
possible that the agents form two distinct groups that gather at two distinct
nodes. However, since the total number of agents is odd, exactly one of the two
groups would have even number of agents, thus one of the agents of this group
could move to collect all the other agents. The algorithm must ensure that there
are at most two groups of agents, i.e. there are at most two distinct nodes where
the agents stop in the initial phase. In our algorithm, an agent stops at o∗ only
if it has seen it at least three times, while moving in the same direction. This
implies that this agent has traversed the complete ring two times and while M
has moved at least once around the ring. So, there could be no agents moving
in the opposite direction. On the other hand if some agent stops while bumping
into M , then any agent moving in the same direction would reach this node with
the stopped agent before reaching M or o∗. In all cases, there will be at most two
nodes where the agents stop. When two or more agents have gathered at a node
v, one of the agents called the searcher1 reverses direction and moves to search
for the other agents. The searcher only stops when it reaches the other node w
containing stopped agents. If the number of agents gathered at node w is even
then the searcher becomes a Collector and it collects all agents and returns to
node v. Note that the agent does not need to count the number of other agents
as the algorithm depends only on the parity of the size of the group of agents.
The complete algorithm, called RV-UR is presented in a following table.

Lemma 6. Consider an anonymous ring consisting of n nodes, including a spe-
cial node o∗ and one malicious agent. If k ≥ 2 honest agents execute Algorithm
RV-UR, then, after a total number of O(kn) edge traversals the honest agents
correctly rendezvous, if k is odd.

The following result summarizes the results of this section:

Theorem 1. In any anonymous and asynchronous ring with a special node o∗

and one malicious agent, k honest agents having constant memory and no knowl-
edge about their number, can solve the rendezvous problem if and only if either
the ring is oriented or k is odd.

We briefly consider the case when there could be multiple malicious agents in
the network. In this case, rendezvous is feasible only if all the malicious agents
are located in a continuous segment of the ring with no honest agent in between.
This scenario is equivalent to the one with a single malicious agent and thus the
same algorithm would work in this case.

4 Rendezvous in an Oriented Mesh Network

We now study the problem in an oriented mesh network. In view of Lemma 1, ren-
dezvous is impossible for separable initial configurations. Hence, in this section
1 We select as searcher the second agent that arrives at node v.
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Algorithm 2. RV-UR : Rendezvous in unoriented rings
Case 0. Initial state

Move clockwise until:

Case 0.1. You meet node o∗ unoccupied for the third time:

Change state to stopper;

Case 0.2. You bump into M trying to move from a node that hosts only you:

Change state to stopper;

Case 0.3. You meet an agent not at node o∗:
Case 0.3.1. The agent you meet is alone and is a stopper:

Change state to transformer-1;

Case 0.3.2. Every other agent at the node is at state final:

Change state to stopper;

Case 0.3.3. You meet a stopper and at least one agent at state final:

Change state to transformer-2;

Case 1. State transformer-1

Wait until all other agents change to state final;

Change state to searcher;

Case 2. State searcher

Move counter-clockwise until you bump into M while you try to move from a node u:

Case 2.1. You see one or more agents at u and all of them are at state final:

Change state to stopper;

Case 2.2. You see no agent at u or an agent not at state final:

Change state to collector;

Case 3. State stopper

Wait until:

Case 3.1. You see a transformer-1 or transformer-2: Change state to final;

Case 3.2. You see a collector: Follow collector;

Case 3.3. You see a terminator: Change state to terminator;

Case 4. State collector

Wait until every other agent at the node changes its state to stopper;

Collect everyone;

Move clockwise collecting every agent you meet, until you meet an agent at state final;

Change state to terminator;

Case 5. State final

Wait until:

Case 5.1. You see a collector: Change state to stopper;

Case 5.2. You see a terminator: Change state to terminator;

Case 6. State transformer-2

Wait until every other agent at the node changes its state to final;

Change state to final;

Case 7. State terminator

Wait until every other agent at the node changes its state to terminator;

Exit;

we study the problem for a special class of non separable initial configurations
and we give an algorithm that solves the problem for this type of configurations.
In particular, we focus on initial configurations where the induced subgraph of
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the occupied nodes is connected without holes, i.e., there is no connected set of
unoccupied nodes surrounded by occupied nodes. At the end of the section we
discuss the solvability of the problem in other classes of initial non separable
configurations.

First observe that even in configurations that consist of a simple path of occu-
pied nodes, the problem is unsolvable in the considered model due to network
asynchronicity: Initially all agents have the same input and thus (following any
potentially correct algorithm), they should all try to move; however, an adver-
sary may slowdown all agents, except for one not located at the endpoints of the
path, hence creating a separating configuration. Thus, by Lemma 2 the prob-
lem is unsolvable. Therefore, the agents need to be able to gain some knowledge
about their current configuration before they move in order to avoid creating
a separating configuration. We enhance our model by giving the agents, the
capability to discover all occupied nodes within a distance of d-hops.

Definition 3. We say that an agent A located at a node x can see (or scan) at a
distance d or it has d-visibility if A can decide for any node u within a distance
of d hops from x, whether u is occupied or not by an honest agent.

We emphasize that, if a node u scanned by agent A is occupied, A cannot
tell how many agents are in u, or read their states. When the agents have a
d−visibility capability we assume that moves are instantaneous, i.e., an agent
cannot be traveling along an edge while another agent is scanning its neighbour-
hood. Unfortunately, as we show below, even when the agents have 1−visibility
(i.e., they can only scan their neighbours), the problem remains unsolvable for
some connected without holes configurations.

Lemma 7. The rendezvous problem is unsolvable in an oriented mesh with a
malicious agent for initial connected without holes configurations, even when the
agents are capable of scanning their adjacent nodes.

Hence we further equip the agents with the capability of discovering the
occupied nodes within a two-hops distance. In that case, as we show below, the
problem can be solved for any connected without holes initial configuration.

We present an algorithm which instructs the agents to move only to occupied
nodes in a way that they maintain the connectivity and they do not create holes.
In order to describe the algorithm we define eleven local configurations as shown
in Fig. 1. In these configurations, empty circles represent free nodes, while circles
containing black dots represent occupied nodes. The remaining vertices on the
figures represent nodes which may be either occupied or free. The agent (let
us call it A) which is located below a horizontal arrow in cases (a-g), moves
horizontally as depicted by the arrow. The agent (let us call it B) which is
located left of a vertical arrow in cases (h-m), moves vertically as depicted by
the arrow. Hence the algorithm can be described as follows:
Algorithm RV-Mesh: If an agent has a view (within two hops) like the one
of agent A or B described before, then this agent moves towards the direction
shown by the corresponding arrow; otherwise the agent does not move.
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Fig. 1. View of the scanning agent located below (cases a-g) or left (cases h-m) of
the depicted arrow. Occupied nodes are depicted as cycles containing black dots, while
free nodes are depicted as empty cycles. Nodes which are within two hops from the
scanning agent but not shown, can be either occupied or free. The scanning agent will
move East in cases (a, b), West in cases (c, d, e, f, g), South in case (h), and North in
cases (i, l,m).

Nodes which are within two hops from the scanning agent and are not shown
in those configurations can be either occupied or free. If the location of the
scanning agent is close to the border of the mesh and some of the nodes in those
eleven configurations do not exist, then the agent acts as it would act if those
nodes existed in its view and were free. Moreover, while an agent A located at a
node u is executing its scan or compute phase then no other operation can take
place at u before A moves or decides to stay (i.e., no other agent at u can start
scanning and no other agent can arrive at u). That is, operations at a node u are
executed in mutual exclusion. Notice that if two adjacent agents want to swap
positions they can only do it at the same time.

Lemma 8. Given an n × m oriented mesh, for any connected configuration
without holes of at least three occupied nodes, there is at least one agent whose
view is in one of the configurations depicted in Fig. 1.

Lemma 9. Given an n × m oriented mesh, consider a connected configuration
of k agents in two occupied nodes. According to Algorithm RV-Mesh, after a
total number of at most k+1 edge traversals there will be only one occupied node.

Lemma 10. Given an n × m oriented mesh, consider any connected configu-
ration without holes of k agents occupying at least 3 nodes. After any number
of moves according to Algorithm RV-Mesh, the resulting configuration is also
connected without holes. Furthermore, the number of occupied nodes will strictly
decrease after at most k edge traversals, reaching the value of only one occupied
node after at most O(k2) edge traversals.

In view of Lemmas 7, 8, 9 and 10 we have:

Theorem 2. The rendezvous problem for k ≥ 2 agents can be solved for any
initial connected without holes configuration of agents in an n×m oriented mesh
if and only if the agents are able to discover the occupied nodes within a distance
of two-hops.
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If the initial non separable configuration is different from the one considered
above, then even the 2-visibility capability is not sufficient anymore to solve
rendezvous. In fact the problem remains unsolvable for connected configurations
with holes even when the agents are able to discover the occupied nodes within
any constant distance. The problem is also unsolvable for some disconnected non
separable configurations. Hence it appears that for many initial non separable
configurations in an oriented mesh, the combination of the asynchronicity and
the limited view (to any constant fraction of the complete view) makes the
problem unsolvable.

5 Conclusion

In this paper we studied deterministic protocols for the rendezvous of k ≥ 2 hon-
est agents in asynchronous networks with a malicious agent which can prevent
the agents from reaching any node it occupies. We have presented algorithms for
oriented and unoriented ring networks which gathers the honest agents within
O(kn) edge traversals for all feasible instances of the problem. We have also
presented a deterministic protocol for oriented n × m meshes which leads the
agents to rendezvous within O(k2) edge traversals for any initial connected with-
out holes configuration when the agents can discover the occupied nodes within
a distance of two-hops (which is a necessary condition). Given the novelty of
the model there are many interesting open questions. The first is whether the
problem can be solved in unoriented meshes for connected configurations with-
out holes when the agents are capable of scanning within a constant distance. It
would be also interesting to study randomized protocols for some of the unsolv-
able cases, and also to study this problem in synchronous networks with unit-
speed cooperating agents and unit-speed/infinite-speed malicious agents. Finally,
it would be interesting to study the problem in (m+ 1)-connected graphs in the
presence of m malicious agents, or in the solved cases presented in this paper in
the presence of malicious agents that show a more severe behaviour.
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